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Abstract 

In this paper we provide a semantical meta-theory that will support the development 
of higher-order calculi for automated theorem proving like the corresponding methodology 
has in first-order logic. To reach this goal, we establish classes of models that adequately 
characterize the existing theorem-proving calculi and we present a standard methodology of 
abstract consistency methods (by providing the necessary model existence theorems) needed 
to analyze completeness of machine-oriented calculi with respect to this model classes. 

We further parameterize the introduced semantical structures and the corresponding ab­
stract consistency properties with an order k. This provides a finer proof methodology which 
can be used to show that the primitive substitution rule in resolution calculi as discussed in 
[And71] or [BK97] can be restricted with respect to the order of the input problems without 
losing completeness. 
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2	 2 INFORMAL EXPOSITION 

1 Motivation 

In classical first-order predicate logic, it is rather simple to assess the deductive power of a calcu­
lus: first-order logic has a well-established and intuitive set-theoretic semantics, relative to which, 
completeness can easily be verified using for instance the abstract consistency method (see for 
instance the introductory textbooks [And86, Fit90]). This well-understood meta-theory has sup­
ported the development of calculi adapted to special applications - such as automated theorem 
proving (see for instance [Bib98] for an overview). 

In higher-order logics, the situation is rather different: the intuitive set-theoretic standard 
semantics cannot give a sensible notion of completeness, since it does not admit complete cal­
culi [God3l]. However, there is a more general notion of semantics (the so-called Henkin­
models [Hen50]), that allows complete calculi and therefore sets the standard for deductive power 
of calculi. 

Peter Andrews' "Unifying Principle for Type Theory" [And71] provides a method of higher­
order abstract consistency that has become the standard tool for completeness proofs in higher­
order logic, even though it can only be used to show completeness relative to a certain Hilbert 
style calculus 'I'. A calculus C is called complete relative to a calculus C', iff C proves all theorems 
of C'. Since 'I' is not complete with respect to Henkin models, the notion of completeness that can 
be established by this method is a strictly weaker notion than Henkin completeness. 

As a consequence, the calculi developed for higher-order automated theorem proving [Hue73, 
And71 , Mil83, Koh95] and the corresponding theorem proving systems such as Tps [ABI+96], 
or earlier versions of the authors' LEO! are not or cannot be proven complete with respect to 
Henkin models. Moreover, they are not even sound with respect to 'I', since all of them utilize 
1J-conversion, which is not a theorem of'I'. In other words, their deductive power lies somewhere 
between 'I' and Henkin models. 

In this situation, the aim of this paper is to provide a semantical meta-theory that will support 
the development of higher-order calculi for automated theorem proving like the corresponding 
methodology has in first-order logic. To reach this goal, we establish 

• classes	 of models that adequately characterize the deductive power of existing theorem­
proving calculi (making them sound and complete), and 

•	 a standard methodology of abstract consistency methods (by providing the necessary model 
existence theorems, which extend Andrews' Unifying Principle), so that the completeness 
analysis for higher-order calculi will become a simple exercise like in first-order logic. 

Due to the inherent complexity of higher-order semantics we will use the next section for an 
informal exposition of the issues covered and the techniques applied. 

2 Informal Exposition 

Before we turn to the exposition of the semantics in section 2.2 and discuss some applications of 
the results (section 2.3), let us specify what we mean by "higher-order logic": any simply typed 
logical system that allows quantification over function and predicate variables. Technically, we 
will employ a logical system 1-10£:', which is based on the simply typed A-calculus. A related logical 
system is discussed in detail in [And86]. 

2.1 Higher-Order Logic (1iD.c) 

1-IO£:'-formulae are built up from the set V of variables, and the signature E (a set of typed 
constants) as applications and A-abstractions. The set wffo:(E) of well-formed formulae 
term consists of those that can be given a type a so that in all applications, the types of the 

1Based on the results of this paper the resolution calculus underlying newer versions of LEO [Ben97, BK98] can 
be proven complete for Henkin models based, see [BK97]. 
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2.1 Higher-Order Logic (110£) 3 

arguments are the argument types of the function. 'Ve will denote variables with upper-case letters 
(Xa,Y, Z, X,j, X~ .. .), constants with lower-case letters (ca, !a-+{3, ...) and well-formed formulae 

with upper-case bold letters (Aa, B, e l 
,. 00)2. Finally, we abbreviate multiple applications and 

abstractions in a kind of vector notation, so that AUk denotes k-fold application (associating to 
the left) and ),Xk.A denotes k-fold A-abstraction (associating to the right) and use the square dot 
. as an abbreviation for a pair of brackets, where. stands for the left one with its partner as far to 
the right, as is consistent with the bracketing already present in the formula. 

We will use the terms like free and bound variables or closed formulae in their standard 
meaning and use Free(A) for the set of free variables of a formula A. In particular alphabetic 
change of names of bound variables as built into our 110£: we consider alphabetic variants to be 
identical (viewing the actual representation as a representative of an alphabetic equivalence class) 
and use a notion of substitution that avoids variable capture, systematically renaming bound 
variables. We could also have used de Bruijn's indices (dB72], as a concrete implementation of 
this approach at the syntax level. 

We denote a substitution that instantiates a free variable X with a formula A with (AjX] and 
write a, (AjX] for the substitution that is identical with a but instantiates X with A. 

If A has a subterm B at position p, we denote this by A[B]p and we will write the operation 
of replacing this subterm by a formula e with (Cjp]A. 

The structural equality relation of W£ is induced by ,8'/]-reduction 

- (AX.A)B -t{3 (BjX]A (Ax.eX) -t1/ e 
where X is not free in C. It is well-known, that the reduction relations,8, '/], and,8'/] are terminating 
and confluent on wffa(z.), so that there are unique ,87J normal forms (see for instance [Bar84] for 
an introduction). 

In 1-10£, the set of base types is {o, L} for truth values and individuals. We will call a formula of 
type 0 a proposition and a sentence, if it is closed. We will assume that the signature z.contains 
logical constants for negation "'0-+0, conjunction /\0-+0-+0, quantification3 II(a-+o)-+o' and 
possibly equality =~-+a-+o' all other constants are called paraIlleters, since the argumentation 
in this paper is parametric their choice; we only assume that there are closed formulae for both 
base types, and as a consequence that all types are non-empty. In particular, we do not assume 
the existence of description or choice operators. For a detailed discussion of the semantic issues 
raised by the presence of these logical constants see [And72b]. 

It is matter of folklore that equality can directly be expressed in 110£ e.g. by the Leibniz 
forIllula for equality in terms of the other connectives 

Qa := (AXaYa.'VPa-+o'PX ==> PY) 

With this definition, the formula (A =a B), which we use as an abbreviation for Q'"AB ,8-reduces 
to 'VP",-+o.(PA) ::::} (PB), which can be read as: formulae A and B are not equal, iff there exists 
a discerning property p4. In other words, A and B are equal, if they are indiscernible. There are 
alternatives to define equality in terms of the logical connectives (see for example [And86, p. 155]). 

In this paper we differentiate between five different notions of equality. In order to prevent 
misunderstandings we explain these different notions together with their syntactical representation 
here: 

If we define a concept we use := (e.g. let V:= {T,F}) and == represents Meta-equality. We 
refer to the equality relation as an object of our semantical domains with q; note that we possibly 
have one q'" in each domain 7)",. The remaining two notions, = and =, are related to syntax. ='" 
may occur as a constant symbol of type Cl in a signature z. and finally =a (and sometimes also 
Q"') for Leibniz equality. 

2We will denote the type of formulae as an index, if it is not clear from the context. 
3With this quantification constant, standard quantification of the form VX",.A can be regained as an abbreviation 

for ITO (>'X",.A) 
4Note that by contraposition we easily get the backward direction of "*= and hence it is sufficient to use => 

instead of <=>. 
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4 2 INFORMAL EXPOSITION 

2.2 Notions of Models for W.c 

Let us now explore the semantic notions needed to understand figure 1. We will discuss the 
model classes from bottom to top, from the most specific notion of standard models (6'1')to the 
most general notion of v-complexes, motivating the respective generalizations as we go along. In 
section 3, we will proceed the other \vay around, specializing the notion of a ~-model (9J1) more 
and more. 

The symbols in the boxes in figure 1 denote model classes, the symbols labeling the arrows 
indicate the properties inducing the corresponding specialization, and the v-symbols next to the 
boxes indicate the clauses in the definition of abstract consistency class (cf. 4.4) that are needed 
to establish a model existence theorem for this class of models. 

A standard model (6'1', cf. Definition 3.30) for 110£ provides a fixed set 'D. of individuals, 
and a set 'Do := {T, F} of truth values. All the domains for the complex types are defined induc­
tively: 'Da --+{3 is the set of functions f: 'DOl -+ 'D{3. The evaluation function I<p with respect to an 
interpretation I: ~ -+ 'D of constants and an assignment 'P of variables is obtained by the stan­
dard homomorphic construction that evaluates a A-abstraction with a function, whose operational 
semantics is specified by ,6-reduction. 

One can reconstruct the key idea behind Henkin models (jj, cf. Definition 3.30) by the 
following observation. If the set 'D. is infinite, the set 1)'--+0 of sets of individuals must be uncount­
ably infinite. On the other hand, any semantics that admits sound and complete calculi must 
have countable models, because of the compactness theorem that comes with a complete calculus. 
Leon Henkin generalized the class of admissible domains for functional types. Instead of requiring 
'Da --+{3 to be the full set of functions, it is sufficient to require that 'Da --+{3 has enough members that 
any well-formed formula can be evaluated5 • Note that with this generalized notion of a model, 
there are less formulae that are valid in all models (intuitively, for any given formulae there are 
more possibilities for counter-models). In the particular case, the generalization to Henkin models, 
restricts the set of valid formulae sufficiently, so that all of them can be proven by a Hilbert-style 
calculus [Hen50]. 

It is matter of folklore that primitive notion equality (expressed by a primitive equality constant 
=E ~) is not strictly needed, since it can be expressed by the Leibniz formula. However, the Leibniz 
formula only really denotes the semantic equality relation, if 'Da --+ o contains enough properties to 
discern members of O:j in fact, we need that for all a E 'DOl' the singleton set {a} is in 1)01--+0 
(see the proof of Lemma 3.35).6 In other words, we are in the somewhat paradoxical situation, 
that Leibniz Equality (which is commonly used as a substitute for primitive equality) will only 
denote semantical equality, if we can guarantee that the identity relation is already present in the 
model (we call this property q, cf. Definition 3.27). Hence we introduce corresponding semantical 
structures, namely Henkin models without property Q (!JJljt,), in which property q is not necessarily 
valid and thus Leibniz equality does not necessarily denote the equality relation. An example for 
a theorem which is valid within the class of Henkin models but not in the class of !JJljt, 's, is given 
by the axiom offunctional extensionality for Leibniz equality (VFa --+/3.VGa --+{3('iX{3.FX == GX) => 
F =={3 G), see lemma 3.36. 

The next generalization of model classes comes from the fact that we want to characterize the 
deductive power of higher-order theorem provers mentioned above on a semantic level (we will take 
Tps [ABI+96] as an example). Note that Tps cannot be complete with respect to Henkin models 
and is even not generally complete for !JJljt, 's, although there is some 'extensionality treatment' 
build into the proof procedure. The uncompleteness of Tps for Henkin models7 is due to the fact, 
that it, fails to refute formulae such as cAo 1\ ..,c(..,..,A) , where c is a constant of type 0 -+ 0 or 
cAa--+o 1\ cBa --+ o => c(AXa.AX 1\ BX), where c is a constant of type (0: -+ 0) -+ o. The problem 

SIn other words: the functional universes are rich enough to satisfy the comprehension axioms. 
60n a similar note, Peter Andrews remarked in [And72a] that if the set 1)"' ...."' ..... 0 is so sparse, that semantic 

identity relation is not present, then it is possible to construct a Henkin model, where Leibniz equality is non­
extensional. 

7In case the extensionality axioms are not available in the search space. Note that one can add extensionality 
axioms to the calculus in order to achieve, at least in theory, Henkin completeness. But this heavily increases the 
search space and thus is not feasible in practice. 
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axioms to the calculus in  order to  achieve, at least i n  theory, Henkin completeness. But this heavily increases the
search space and thus is  not  feasible i n  practice.
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in the former example is that the higher-order unification algorithm employed by Tps cannot 
determine that A and ...,...,A denote identical semantic objects (by the extensionality principle on 
truth values), and thus returns failure instead of success. In the second example in addition to 
this the principle of functional extensionality is needed in order to prove the theorem. 

The lack of completeness of refutation procedures like Tps occurs especially in these situations, 
where HOC-formulae contain occurrences of propositional formulae dominated by uninterpreted 
constants or variables or where this problem is mixed with the problem offunctional extensionality; 
in our examples the function constant c dominates the proposition A o or the sets Aet.--to and 
Bet.--to. To give a semantical characterization of the deductive power of the Tps procedure, we 
have to generalize the class of Henkin models further, so that there are counter-models to the 
examples above. Obviously, this involves weakening the assumption that V o == {T, F} (we call this 
assumption for Henkin models property b), since this entails that the values of A and ...,...,A are 
identical: In functional I:-models (91lt,~,9Jlq, cf. Definitions 3.28 and 3.24) we only insist 
that there is a valuation v of V o , i.e. a function v: V o -+ {T, F} that is coordinated with the 
functions I(...,), I(I\), I(IIet.) and (possibly) I(=et.). Thus we have a notion of validity for I:: we 
call a proposition A valid in JI,,1 := (V, I, v) under an assignment rp, iff v(I<p(A)) == T. In our first 
example, there is a I:-model structure M == (V,I,v), where I<.p(A) t I<p(...,...,A) and therefore 
I<.p(cA) t I<p(c(""""A)), if we take I(c) to be the identity function on 'Det.. In particular, we 
can have v(I<p(cA)) t v(I<.p(c(...,...,A))), and therefore v(I<p(cAo 1\ ...,c(...,...,A))) == T, since v is a 
valuation. 

Clearly, for functional I:-models we have the same choices about the role of equality, therefore, 
we distinguish the classes 91lt and 9Jlq of functional I:-models without/with property q. Further­
more, we have the class ~ of functional I:-models with (only) property b, Le. where 'Do == {T, F}. 
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in the former example is that the higher-order unification algorithm employed by TPS cannot
determine that A and ~—A denote identical semantic objects (by the extensionality principle on
truth values), and thus returns failure instead of success. In the second example in addition to
this the principle of functional extensionality is needed in order to prove the theorem.

The lack of  completeness of  refutation procedures like TPS occurs especially in these situations,
where HOL-formulae contain occurrences of propositional formulae dominated by uninterpreted
constants or variables or where this problem is mixed with the problem of functional extensionality;
in our examples the function constant ¢ dominates the proposition A ,  or  the sets Ayo  and
Ba-»o- To give a semantical characterization of the deductive power of the TPs procedure, we
have to generalize the class of Henkin models further, so that there are counter-models to the
examples above. Obviously, this involves weakening the assumption that D ,  = {T,F} (we call this
assumption for Henkin models property b), since this entails that the values of A and —--A are
identical: In functional X-models (90%, 9 , 9 ,  cf. Definitions 3.28 and 3.24) we only insist
that there is a valuation v of D,, i.e. a function v :D ,  — {T,F} that is coordinated with the
functions Z(—), Z(A), Z(II*) and (possibly) Z (=* ) .  Thus we have a notion of validity for X: we
call a proposition A valid in M := (D,Z,  v) under an assignment op, iff v(Z,(A)) = T. In our first
example, there is a X-model structure M = (D,ZI,v), where Z, (A)  # Z.(A )  and therefore
Z,  (cA) # Z,(c(—mA)), if we take Z(c) to be the identity function on Da. In particular, we
can have v(Z,(cA)) # v(Z,(c(—-A))), and therefore v(Z,(cA, A -c(-—A))) = T, since v is a
valuation.

Clearly, for functional £-models we have the same choices about the role  of  equality, therefore,
we distinguish the classes 9% and M,  of functional X-models without/with property q. Further-
more, we have the class 9% of functional -models with (only) property b, i.e. where D ,  = {T,F}.
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Since functional ~:-models with properties band q are defined to be r:-Henkin models, we can also 
view ~ as "Henkin models without property q". 

Finally, we even drop the requirement of functional extensionality for r:-models (cf. Defi­
nition 3.24). This is the most general semantical notion that we will discuss in this paper; we 
only insist that the evaluation function is a homomorphism which respects instantiation. In such 
models, a function is not uniquely determined by it's behavior on all possible arguments, therefore 
for the construction of such models we need labelings for functions (e.g. a green and a red version 
of a function f) that allow to discern them, even though they are functionally equivalent. As done 
for functional L:-models, we analyze properties q and b for non-functional L:-Models. Whereas b 
indeed mayor may not hold for non-functional L:-Models, it turns out that property q implies 
functionality and hence there are no non-functionalr:-Models with property q. 

Peter Andrews has pioneered the construction of non-functional models with his v-complexes 
in [And71]. These are even more general constructions than our L:-models, since totality of 
the evaluation function is not assumed. His construction is based on Schiitte's semi-valuation 
method [Sch60], which only needs partial valuations to construct a model for a given Hintikka set. 

In this paper, we concentrate on the other aspects of higher-order models and ensure totality of 
our evaluation functions by a saturation condition (cf. 4.9) in our abstract consistency classes. This 
does not restrict the applicability of our model existence theorems, since saturation is relatively 
simple to prove for a given calculus (see [Koh98, BK97)). For all of the notions of models (except 
naturally for standard models, where such a theorem cannot hold), we present model existence 
theorems tying the differentiating conditions of the models to suitable conditions in the abstract 
consistency classes (see section 4.4). We can use the classical construction in all cases: abstract 
consistent sets are extended to Hintikka sets (see section 4.2), which induce a valuation on a 
term structure (see Definition 3.14). In some cases, we have to pass to a quotient structure (see 
Definition 3.12) to ensure that the set of truth values is exactly {T, F} for property b. 

The simplest way to ensure property q is by assuming that the signature contains a primitive 
logical constant for equality, which is evaluated as semantical identity (we call this property e). 
We will study the case in section 4.3. On the one hand, the semantical situation becomes simpler 
(see figure 2), since mL, ~ and ~ are identified, just as 9J1{" ~ and 5). On the other hand, the 
existence of another logical constant induces further conditions in the definition of the abstract 
consistency classes. 

Finally in section 4.5 we refine our methods further by parameterizing them with a type order 
k and by requiring the function universes with an order greater than k to be full, i.e. to contain 
all functions. With this modified semantical notions it is possible to restrict the conditions in the 
abstract consistency classes with respect to the order k. Concretely, the possible instantions of 
universally quantified formulas can be restricted to terms with an order less or equal to k. With 
this result it becomes possible to show that the primitive substitution rule in the refutation calculi 
as discussed in [And71] or [BK97, Koh98] can be restricted with respect to the order of the input 
problems without loosing completeness. 

2.3 Applications 

Applications of the results presented in this paper, not only comprise automated theorem proving, 
where calculus development up to now has been guided by Andrew's "Unifying Principle for 
Type Theory" [And71]. This model existence theorem has set the completeness standard for 
higher-order calculi such as [Hue73, ALCMP84], even though it is weaker than the intuitive one 
given by Henkin Models. Tlle semantical notions in section 3 come from the attempt to achieve 
completeness with respect to Henkin models for higher-order tableaux [Koh95, Koh98] and higher­
order resolution [Koh94a, Ben97, BK97]. 

A model existence theorem for a logical system .c is a theorem of the form: If a set of sentences 
(b in .c is a member of an abstract consistency class r, then there exists a £-model for (b. Thus 
if we want to show the completeness of a particular calculus C, we first prove that the class r 
of sets of sentences (b that are C-consistent (cannot be refuted in C) is an abstract consistency 
class, then the model existence theorem tells us that C-consistent sets of sentences are satisfiable 

6 2 INFORMAL EXPOSITION

Since functional Z-models with properties b and q are defined to  be Z-Henkin models, we can also
view My  as “Henkin models without property q” .

Finally, we even drop the requirement of functional extensionality for Z-models (cf. Defi-
nition 3.24). This is the most general semantical notion that we will discuss in this paper; we
only insist that the evaluation function is a homomorphism which respects instantiation. In such
models, a function is not uniquely determined by i t ’s  behavior on all possible arguments, therefore
for the construction of  such models we need labelings for functions (e.g. a green and a red version
of  a function f )  that allow to  discern them, even though they are functionally equivalent. As  done
for functional X-models, we analyze properties q and b for non-functional £-Models. Whereas b
indeed may or may not hold for non-functional X-Models, it turns out that property q implies
functionality and hence there are no non-functional®-Models with property q.

Peter Andrews has pioneered the construction of  non-functional models with his v-complexes
in [And71]. These are even more general constructions than our X-models, since totality of
the evaluation function is not assumed. His construction is based on Schiitte’s semi-valuation
method [Sch60], which only needs partial valuations to construct a model for a given Hintikka set.

In  this paper, we concentrate on the other aspects of higher-order models and ensure totality of
our evaluation functions by a saturation condition (cf. 4.9) in  our abstract consistency classes. This
does not restrict the applicability of our model existence theorems, since saturation is relatively
simple to  prove for a given calculus (see [Koh98, BK97]). For all of the notions of models (except
naturally for standard models, where such a theorem cannot hold), we present model existence
theorems tying the differentiating conditions of the models to suitable conditions in  the abstract
consistency classes (see section 4.4). We can use the classical construction in all cases: abstract
consistent sets are extended to Hintikka sets (see section 4.2), which induce a valuation on a
term structure (see Definition 3.14). In some cases, we have to pass to a quotient structure (see
Definition 3.12) to  ensure that the set of truth values is exactly {T,F} for property b.

The simplest way to  ensure property q is by  assuming that the signature contains a primitive
logical constant for equality, which is evaluated as semantical identity (we call this property e).
We  will study the case in section 4.3. On  the one hand, the semantical situation becomes simpler
(see figure 2), since M ,  M;  and M,  are identified, just as M ,  Mp, and H. On the other hand, the
existence of another logical constant induces further conditions in the definition of the abstract
consistency classes.

Finally in section 4.5 we refine our methods further by parameterizing them with a type order
k and by requiring the function universes with an order greater than k to  be full, i.e. to contain
all functions. With this modified semantical notions it is possible to  restrict the conditions in the
abstract consistency classes with respect to the order k .  Concretely, the possible instantions of
universally quantified formulas can be restricted to  terms with an order less or equal to  k .  With
this result it becomes possible to  show that the primitive substitution rule in  the refutation calculi
as discussed in [And71] or [BK97, Koh98] can be restricted with respect to  the order of the input
problems without loosing completeness.

2.3 Applications
Applications of  the results presented in  this paper, not only comprise automated theorem proving,
where calculus development up to  now has been guided by Andrew’s “Unifying Principle for
Type Theory” [And71]. This model existence theorem has set the completeness standard for
higher-order calculi such as [Hue73, ALCMP84], even though it is weaker than the intuitive one
given by Henkin Models. The semantical notions in section 3 come from the attempt to achieve
completeness with respect to Henkin models for higher-order tableaux [Koh95, Koh98] and higher-
order resolution [Koh94a, Ben97, BK97).

A model existence theorem for a logical system £ is a theorem of the form: If  a set of sentences
® in L is a member of  an abstract consistency class T', then there exists a L-model  for ®. Thus
i f  we want to show the completeness of a particular calculus C, we first prove that the class I’
of sets of sentences ® that are C-consistent (cannot be refuted in C) is an abstract consistency
class, then the model existence theorem tells us that C-consistent sets of  sentences are satisfiable
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in £. Now we assume that a sentence A is valid in £, so ...,A does not have a £-model and 
is therefore C-inconsistent. From this it is easy to verify that A is a theorem of C. Note that 
with this argumentation the completeness proof for C condenses to verifying that f is an abstract 
consistency class, a task that does not refer to £-models. Thus the usefulness of model existence 
theorems derives from the fact that it replaces the model-theoretic analysis in completeness proofs 
with the verification of some proof-theoretic conditions (membership in f). In this respect a model 
existence theorem is similar to a Herbrand Theorem, but it is easier to generalize to other logic 
systems like higher-order logic. The technique was developed for first-order logic by J. Hintikka 
and R. Smullyan [Hin55, Smu63, Smu68]. 

Another application of model existence theorems is that they allow for very simple (but non­
constructive) proofs of cut-elimination theorems. In [And71] Peter Andrews applies his "Unifying 
Principle" to cut-elimination in a non-extensional sequent calculus, by proving the calculus com­
plete (relative to 'I) both with and without the cut rule and concludes that cut-elimination is 
valid for this calculus. In the extensional case, where a cut-elimination theorem can be found 
in [Tak68, Tak87], we can directly model a cut-elimination proof after Andrews' approach, using 
the model existence theorem for Henkin models. 

A related application lies in proof transformation for higher-order logics [Mil83, Pfe87]. Here, 
proofs found by higher-order automated theorem provers can be transformed into other calculi, 
such as natural deduction- or sequent calculi that form the basis of tactic-based theorem provers 
for classical logics like ISABELLE [Pau94] or fhlEGA [BCF+97]. Dale Miller's original proof trans­
formation system for Tps' [Mil83], uses Andrews' "Unifying principle" and only works for non­
extensional calculi like higher-order matings. Frank Pfenning's later extensions (by equality and 
extensionality) build on various cut-elimination theorems. Again, the methods developed in this 
paper can shed some light on the situation. 

In all these applications, the leverage added by this paper is that we can now extend non­
extensional results to extensional cases. However, the generalized model classes have a merit of 
their own, for instance in higher-order logic programming [NM94], where the denotational seman­
tics of programs can induce non-standard meanings for the classical connectives. For instance, 
given a SLD-like search strategy as in A-PROLOG [Mil9l], conjunction is not commutative any 
more. Therefore, various authors have proposed model-theoretic semantics, where property b fails. 
For instance David Wolfram uses Andrew's v-complexes [Wo194] as a semantics for A-PROLOG 
and Gopalan Nadathur uses "labelled structures" for the same purpose in [NM94]. It is plausible 
to assume that the results of this paper will be useful for further development in this direction. 

3 Semantics for Higher Order Logic 

In this section we will introduce the semantical constructions and discuss their relationships. We 
will start out with by defining E-structures (and as an intermediate step pre-E-structures) as 
algebraic semantics for the simply typed A-calculus and then specializing them to various notions 
of models by requiring a special treatment of propositional formulae. 

3.1 Pre-L:-Structures 

Definition 3.1 (Pre-E-Structure). A collection V := 1)r := {Vo: IQ E 7} of sets Vo:, indexed 
by the set 7 of types, is called a typed collection (of sets). Let Vr and £r be typed collections, 
then a collection I:= {IO:: 1)0: ~ £0: I 0 E 7} of mappings is called a typed mapping I: Vr --+ 
Er. indexpre-E-structure We call the triple A := (V,@,I) a pre-E-structure, iff V = Vr, is 
a typed collection of sets and 

@ := {@o:.B:Vo:-+J x 1)0: --+ V{3 10,(3 E 7} 

and I: E --+ V are typed total functions. 
The collection V is called the frame of ..4, the set 1)0: the universe of type Q, the function 

@ the application operator, and the function I the interpretation of constants. 

in £ .  Now we assume that a sentence A is valid in £ ,  so =A  does not have a £L-model and
is therefore C-inconsistent. From this it is easy to verify that A is a theorem of C. Note that
with this argumentation the completeness proof for C condenses to verifying that I is an abstract
consistency class, a task that does not refer to  £-models. Thus the usefulness of model existence
theorems derives from the fact that it replaces the model-theoretic analysis in  completeness proofs
with the verification of some proof-theoretic conditions (membership in  I’). In  this respect a model
existence theorem is similar to  a Herbrand Theorem, but i t  is easier to  generalize to  other logic
systems like higher-order logic. The technique was developed for first-order logic by J .  Hintikka
and R. Smullyan [Hin35, Smu63, Smu68].

Another application of  model existence theorems is that they allow for very simple (but non-
constructive) proofs of cut-elimination theorems. In  [And71] Peter Andrews applies his “Unifying
Principle” t o  cut-elimination in a non-extensional sequent calculus, by  proving the calculus com-
plete (relative to ¥)  both with and without the cut rule and concludes that cut-elimination is
valid for this calculus. In the extensional case, where a cut-elimination theorem can be found
in [Tak68, Tak87], we can directly model a cut-elimination proof after Andrews’ approach, using
the model existence theorem for Henkin models.

A related application lies in  proof transformation for higher-order logics [Mil83, Pfe87]. Here,
proofs found by higher-order automated theorem provers can be transformed into other calculi,
such as natural deduction- or sequent calculi that form the basis of tactic-based theorem provers
for classical logics like ISABELLE [Pau94] or QMEGA [BCF*97]. Dale Miller's original proof trans-
formation system for TPs’ [Mil83], uses Andrews’ “Unifying principle” and only works for non-
extensional calculi like higher-order matings. Frank Pfenning’s later extensions (by equality and
extensionality) build on various cut-elimination theorems. Again, the methods developed in  this
paper can shed some light on the situation.

In all these applications, the leverage added by this paper is that we can now extend non-
extensional results to extensional cases. However, the generalized model classes have a merit of
their own, for instance in  higher-order logic programming [NM94], where the denotational seman-
tics of  programs can induce non-standard meanings for the classical connectives. For instance,
given a SLD-like search strategy as in A-PROLOG [Mil91], conjunction is not commutative any
more. Therefore, various authors have proposed model-theoretic semantics, where property b fails.
For instance David Wolfram uses Andrew’s v-complexes [Wol94] as a semantics for A-PROLOG
and Gopalan Nadathur uses “labelled structures” for the same purpose in [NM94]. It is plausible
to  assume that the results of this paper will be useful for further development in this direction.

3 Semantics for Higher Order Logic

In this section we will introduce the semantical constructions and discuss their relationships. We
will start out with by defining E-structures (and as an intermediate step pre-I-structures) as
algebraic semantics for the simply typed A-calculus and then specializing them to various notions
of models by requiring a special treatment of  propositional formulae.

3 .1  Pre-2-Structures

Definition 3.1 (Pre-Z-Structure). A collection D :=  Dr  := {Da | @ € T}  of sets Da, indexed
by  the set T of  types, is called a typed collection (of  sets) .  Let D7  and £7  be typed collections,
then a collection Z :=  {I%: Da = Ea | a € T }  of  mappings is called a typed mapping Z:  D r  —
Er. indexpre-Z-structure We call the triple A :=  (D,@,7) a pre-I-structure, iff D = Dr, is
a typed collection of sets and

Q:=  {@*P :  Duy  Xx Da  — Dg  | a ,BeT}
and I :  ¥ — D are typed total functions.

The collection D is called the frame o f  A ,  the set Da  the universe o f  type a ,  the function
@ the application operator,  and the function Z the interpretation o f  constants.
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We call a pre-~-structure A:= (V,@,I) functional, iff the following statement holds for all 
f, g E V<>-+/3: f == g, if for all a E Vo: f@a == g@a. ~ote that functionality only poses a restriction 
on the function universes. 

Remark 3.2. The application operator @ in a pre-~-structure is an abstract version of function 
application. It is no restriction to exclusively use a binary application operator, which corresponds 
to unary function application, since we can define higher-arity application operators from the 
binary one by setting ("Currying") 

f@(a1, ... ,an ) := ( ... (f@a1) ... @a n ) 

Example 3.3. If we define A@B := (AB) for A E wffo:C'£) and BE wff/3('£), then @: wff<>-+/3(~) x 
wff<>(~) --+ wJJ/3(~) is a total function. Thus (wff(~), @,IdE) is a pre-~-structure. The in­
tuition behind this example is that we can think of the formula A E wffo-+/3(~) as a function 
A: wffo(~) --+ wJJ{3(~) j B t-+ (AB). 

Analogously, we can define the pre-~-structure(cwff(Y:.), @, Id~) of closed formulae. 

Example 3.4. The following are (trivial) examples for functional pre-~-structures: 

1.	 (0 x T, 0, 0) is the empty pre-~-structureand 
2.	 ({a} x T,@3,I3), where a@3a == a and I3(C) ::::: a for all constants c E ~ is called the 

singleton pre-~-structure. 

Definition 3.5 (Y:.-Homomorphism). Let A:= (V,@A,I) and E:= (c,@13,.]) be pre-~­

structures. A ~-homomorphism is a typed function K,: V ~ c such that 

1.	 K,oI:::::.]. 

2.	 For all f E V O -+/3 and g E Vo we have: K,(f)@13K,(g) ::::: K,(f@.Ag). 

The most important method for constructing Y:.-structures with given properties in this paper 
is well-known for algebraic structures and consists in building a suitable ~-Congruence and passing 
to the quotient structure. We will now develop the formal basis for it. 

Definition 3.6 (~-Congruence). Let A := (7), @,I) be a pre-Y:.-structure, then a typed equiv­
alence relation'" is called a ~-congruence on A, iff f '" f' E V o-+{3 and g '" g' E Vex imply 
f@g '" f'@g'. 

It is called functional, iff for all types a, (3 and all f, g E Vo-t{3 the fact that f@a '" g@a for 
all a E V{3 implies f '" g. Note that, since", is a congruence, we also have the other direction so 
we have 

f@a '" g@a for all a E V/3, iff f '" g 

Lemma 3.1. The f3 and f3T/ equality relations 4/3 and 4/3'T/ are congruences on the pre-~­
structures wff(Y:.) and cwff(Y:.) by definition. Moreover, f3T/-equality is functional wff(Y:.) and 
cwff(~)· 

Proof: The congruence properties are a direct consequence of the fact that f3T/ reduction rules 
are defined to act on sub-term positions. We will establish functionality of 4/3'T/ on wff(~) first 
and then use this to obtain the assertion for closed formulae. 

Let A')'-texC')' 4/3'T/ B')'-toC for all C, then in particular, for any variable X E V, that is 
not free in A or B, we have AX 4/3'T/ BX and >.XAX 4/3'T/ >.XBX. By definition we have 

A 4'T/ >.Xo·AX 4/311 >.XoBX 4 11 B. 

To show functionality of f3T/ on closed formulae, let A, B E cwJJo-t{J(~)' such that A ft/3'T/ B. 

Since f3T/ is functional on wff('£), there must be a formula C with AC ft/3'T/ BC. Now let C' 
be a ground instance of C, Le. C' = a(C), where a is a closed substitutionS, then we have 
AC' ft{J'T/ BC'. Thus we have shown that A ft{J'I B entails AC' ft/311 BC', which gives us the 
assertion.	 0 

8This has to exist, since we have assumed all types to be non-empty. 
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We call a pre-X-structure A :=  (D,  @, Z) functional, iff the following statement holds for all
f , g  € Da»o:  f=g, i f  for all a € Da  f@a = g@a. Note that functionality only poses a restriction
on the function universes.

Remark 3.2. The application operator @ in a pre-T-structure is an abstract version of function
application. It is no restriction to exclusively use a binary application operator, which corresponds
t o  unary function application, since we can define higher-arity application operators from the
binary one by setting (“Currying”)

fe(al,. . . ,a") == ( . . .  (f@a')...@a")
Ezample 3.3. If we define AQB  :=  (AB)  for A € uff, (X) and B € uffy(X), then @: uff, , 5 (X )  x
uff, (2) — wff3(X) is a total function. Thus (wff(X),@,Ids) is a pre-Z-structure. The in-
tuition behind this example is that we can think of the formula A € uff, ,45(X) as a function
A:  uff,  (Z) — uwffp(Z) ; B — (AB).

Analogously, we can define the pre-X-structure (cwff(2), @,1ds) of closed formulae.
Ezample 3.4. The following are (trivial) examples for functional pre-X-structures:

1. ( 0x  7,0,0) is the empty pre-X-structure and
2. ({a} x 7,@°,7°), where a@%a = a and Z?(c) = a for all constants c € X is called the

singleton pre-Z-structure.

Definition 3.5 (X-Homomorphism). Let A := (D,@4,Z) and B:=(£,@53,J) be pre-X-
structures. A Y-homomorphism is a typed function x:  D — £ such that

1. ko IT=J .
2. For all f € D,-,5 and g € Da  we have: ( f )@Bk(g)  = s(f@4g).

The most important method for constructing E-structures with given properties in this paper
is well-known for algebraic structures and consists in  building a suitable X-Congruence and passing
to  the quotient structure. We will now develop the formal basis for i t .

Definition 3.6 (X-Congruence). Let A := (D,  @, Z) be a pre-Z-structure, then a typed equiv-
alence relation ~ is called a T-congruence on  A ,  f f  f ~ f' € Dy ,  and g ~ g € Da  imply
fag  ~ f'Qg’.

It is called functional, iff for all types a ,  and all f , g  € Do ,  the fact that f@a ~ g@a for
all a € Dg  implies f ~ g. Note that, since ~ is a congruence, we also have the other direction so
we have

fQa~gQa fo ra l l ae De,iff f ~g

Lemma 3.7. The 8 and Bn equality relations <p  and Son are congruences on the pre-X-
structures wff(X) and cwff(S) by definition. Moreover, Bn-equality is functional wff(X) and
cuff(T).

Proof: The congruence properties are a direct consequence of  the fact that Sn reduction rules
are defined to  act on sub-term positions. We will establish functionality of <3, on wff(X) first
and then use this to  obtain the assertion for closed formulae.

Let AoC ,  Sogn B ,aC for all C ,  then in particular, for any variable X € V,  that is
not free in A or B ,  we have AX  &4, BX  and AXAX © ,  AXBX. By definition we have
AH,  MXaAX Spy AXBX 6 ,  B.

To show functionality of 87 on  closed formulae, let A,B  € cuff, ,5(E), such that A #3,  B.
Since fn  is functional on wff(X), there must be a formula C with AC  $4, BC .  Now let € ’
be a ground instance of C ,  i.e. C '  = o(C),  where o is a closed substitution®, then we have
AC’ $5 ,  BC ’ .  Thus we have shown that A #3 ,  B entails AC ’  #3,  BC’, which gives us the
assertion. Ia

8This has t o  exist, since we have assumed all types to  be  non-empty.

mailto:K,(f@.Ag
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Definition 3.8 (Quotient Pre-"E-Structure). Let A:= (D,@,I) be a pre-"E-structure, V; := 

Hf] I f E V o,}, and I"'(c",) := [I(c",)] for all constants c'" E "E"" Furthermore let @'" be defined 
by [f]I@"'[a]1 := [f@a]l. To see that this definition only depends only on equivalence classes of "', 
consider f' E [f] and g' E [gB, then [f@g] == [f'@g]1 == [f'@g'] == [f@g']I. So @", is well-defined and 
total, thus AI", := (V"',@"',I"') is also a pre-"E-structure. We call AI", the quotient structure of 
A for the relation'" and the typed function 71"",: A ~ AI",; f ~ [f] its canonical projection. 

This definition is justified by the following theorem. 

Theorem 3.9. Let A be a pre-"E-structure and let", be an "E-congruence on A, then the canonical 
projection 71"", is a surjective "E.-homomorphism. Furthermore, AI", is functional, iff '" is functional. 

Proof: Let A := (V,@,I) be a pre-"E.-structure. To convince ourselves that 71"", is indeed 
a surjective "E.-homomorphism, we note that by definition 71"", is surjective and I'" == 71"", 0 I. 
Now let f E Vf3-+"', and g E Dom(f) ~ Vf3' then g' E [g] for all g' E Dom(f) and therefore 
[g] == 7I"",(g) E Dom([f]) == Dom(7I"",(f» and 7I"",(f)@"'7I"",(g) == [f]@"'[g] == [f@g] == 7I"",(f@g). 

The quotient construction trivializes '" to (meta-)equality, so functionality of '" is equivalent 
to functionality of A. Formally we have [f]1 == [g], iff f '" g, iff f@a '" g@a, iff [f@a] == [g@a], iff 
[f]@"'[a] == [g]I@"'[a]1 for all a E V'" and thus for all [a] E V;. 0 

3.2 I:-Structures 

"E-structures are pre-"E.-structures with a notion of evaluation for wff("E). 

Definition 3.10 ("E.-Structure). Let A:= (V,@,I) be a pre-"E-structure. A typed function 
<p: V ~ D is called an assignment into A. We call a total typed mapping9 £: F(V; V) x 
wff("E) ~ V an evaluation function for A, iff for any assignment <p into A, we have 

1. £""I!: == I and £""Iv == <p 
2. £"" is a "E.-homomorphism 
3. £",,(A) == £'/fJ(A), whenever <p and 'IjJ coincide on Free(A) 
4. £",,([BIX]A) == £"",[t'", (B)/Xj (A) 

We call A:= (D,@,£) "E.-structure, iff (V,@,I) is a pre-"E-structure and £ is an evaluation 
function for A. We call £""(A,,,) E D", denotation of A", in A for <po 

If A is a closed formula, then £",,(A) is independent of <p, since Free(A) = 0. In these cases 
we sometimes drop the reference from £'P(A) and simply write £(A). 

Example 3.11. The pre-"E.-structure 7 x 0 cannot be a "E-structure, since we must have 
£",,(.\X""X) E D",-+",. In contrast to this, the singleton pre-"E.-structure is a "E-structure if we 
take £(A) == a, where a is the (unique) member of V"'. 

For a detailed discussion on the closure conditions needed for the function universes to be rich 
enough, we refer the reader to [And72a, And73]. 

Note that the pre-"E.-structure wff("E.) from 3.3 cannot be made into a "E-structure by provid­
ing an evaluation function, since there is no formula C == I",,(.\Xa.B) E wff"'-+f3("E.) such that 
C@A == CA == I"",[A/XJ(B). In particular, the "obvious" choice .\Xa.B for C does not work, 
since (.\X",.B)A t:. I"",[A/Xj(B). In fact, if wff("E.) were a "E-structure, ,B-equality would have to 
be valid in wff("E.) (cf. 3.17), which it clearly is not. 

Definition 3.12 (Quotient "E.-Structure). Let A = (V, @,£) be a "E-structure, '" a "E.­
congruence on A and let AI", = (V"',@"',I"') be the quotient pre-"E-structure of A, where I =£I!:. 

For any assignment 'IjJ AI"" there exists an assignment <p into A such that 'l/J == 71"", 0 <p, since 71"", 

is a surjective "E.-homomorphism. So we can define £; as 71"", 0 £'/fJ, and call AI", ::;: (V"', @"',£"') 
the quotient E-structure of A modulo "'. 

Theorem 3.13. Let A be a "E.-structure and", a "E.-congruence on A, then AI", is a "E.-structure. 

g'We write F(V; 1)) for the set of functions f: V -+ 1) 
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Definition 3.8 (Quotient Pre-X-Structure). Let A :=  (D,@,T) be a pre-X-structure, Dy  :=
{Ifl | f € Da},  and I~(ca) : =  [Z(ca)] for all constants ca € Eq. Furthermore let @~ be defined
by  [ f ]@~[a ]  : =  [f@a]. To  see that this definition only depends only on  equivalence classes of  ~ ,
consider f ’  € [f] and g' € [g], then [fQg] = [f 'Qg] = [f'@g'] = [fQg']. So @” is well-defined and
total,  thus AL  :=  (D~,@~,Z~)  is also a pre-E-structure. We call A /  the quotient structure o f
A for the relation ~ and the typed function 7 :  4A — A/. ; f  — [f] its canonical projection.

This definition is justified by the following theorem.

Theorem 3.9. Let A be a pre-X-structure and let ~ be an X-congruence on A ,  then the canonical
projection 7 is a surjective L-homomorphism. Furthermore, A/  is functional, iff ~ is functional.

Proof: Let A :=  (D ,@,7) be a pre-Z-structure. To convince ourselves that 7 .  is indeed
a surjective X-homomorphism, we note that by  definition 7 is surjective and I~  = m,  o I .
Now let f € Dg_o, and g € Dom(f) C Dg, then g’ € [g] for all g’ € Dom(f) and therefore
[g] = 7-(¢) € Dom([f])  = Dom(r-.(f)) and 7~.(@~n-(¢) = [FJ@”[g] = [f@g} = (Cg).

The quotient construction trivializes ~ to (meta-)equality, so functionality of ~ is equivalent
to functionality of A .  Formally we have [f] = [g], iff f ~ g, iff f@a ~ g@a, iff [fQa] = [gQa], iff
[fl@e~[a] = [g]@“ [a] for all a € Da and thus for all [a] € DJ.  0

3.2 ZX-Structures
Y-structures are pre-X-structures with a notion of evaluation for wff(Z).

Definition 3 .10  (X-Structure). Let A := (D ,@,7 )  be a pre-X-structure. A typed function
@:V — D is called an assignment into A.  We call a total typed mapping® &: F(V;D) x
wff(X) — D an evaluation function for A,  iff for any assignment ¢ into A,  we have

1. Els =7  and Ely =p
2. Ep is a X-homomorphism
3. &,(A)  =Ey (A ) ,  whenever w and w coincide on Free(A)
4. E,( [B/X]A)  = Ep te.(B)/x1(A)

We call A:=(D,@,£) X-structure, iff (D,@,7) is a pre-X-structure and £ is an evaluation
function for A. We call £ , (A,)  € Da  denotation o f  A ,  in A for ¢ .

If A is a closed formula, then £,(A)  is independent of ¢ ,  since Free(A) = @. In these cases
we sometimes drop the reference from £ , (A)  and simply write E(A).

Example 3.11. The pre-Z-structure 7 x 0 cannot be a X-structure, since we must have
E,(AXo.X) € Da-ra- In contrast to this, the singleton pre-X-structure is a X-structure if we
take £ (A )  = a, where a is the (unique) member of Da.

For a detailed discussion on  the closure conditions needed for the function universes to  be  rich
enough, we refer the reader to [And72a, And73].

Note that the pre-I-structure wff(X) from 3.3 cannot be made into a X-structure by provid-
ing an evaluation function, since there is no formula C = Z,(AX..B) € wff,,5(Z) such that
C@A = CA  =I, (a/x(B). In particular, the “obvious” choice AX,.B for C does not work,
since (AX,.B)A # I , a/x](B)- In fact, if wff(X) were a E-structure, B-equality would have to
be valid in wff(X) (cf. 3.17), which it clearly is not.

Definition 3.12 (Quotient I-Structure). Let A = (D,@,£) be a X-structure, ~ a X-
congruence on A and let 4/. = (D~,@"~,ZI"~) be the quotient pre-X-structure of A ,  whereZ = £I s

For any assignment i A / ,  there exists an  assignment ¢ into A such that = 7 oy, since 7 ,

is a surjective X-homomorphism. So we can define £7  as m,  0 Ep, and call AL  = (D~,@,£™)
the quotient X-structure of  A modulo ~ .

Theorem 3.13.  Let A be a T-structure and ~ a X-congruence on  A ,  then Af.  is a T-structure.

9We write F (V ; D) for the set of  functions f :V  — D
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Proof: We prove that E~ is a legal value function by verifying the conditions in 3.10: Let 'P 
and 1j; be assignments, such that 1/J == 7r~ 0 'P, then 

1.	 E;I~ == (7r~ oE",)I~ == 7r~ oE",I~ == 7r~ oI==I~ and
 

E; Iv == (7r~ 0 E",) Iv == 7r~ 0 E", Iv == 7r~ 0 1/J == 'P
 
2.	 E; == 7r~ 0 E", is a 1::-homomorphism, since 7r~ and E", are. 

3.	 E;(A) == [E",(A)]j == [E",.(A)] == E;'(A), iff 'P and 'PI coincide on Free(A), since this entails 
that 1/J and 1j;1 do too. 

4.	 E;([BjX]A) == [E",([BjX)A)]1 == [E",,[c.,(B)/XJ(A)] == E;,[£;(B)/XJ(A), since [E",(B)] ­
E;(B) and therefore 7r~ o 7jJ, [E",(B)jX] == 'P,[E;(B)jX] 0 

Definition 3.14 (Terlll Structures for 1::). Let cwJf(1::).j.{J be the collection of well-formed for­

mulae in ,a-normal form and A@.8B be the ,a-normal form of AB. For the definition of an 
evaluation function let 'P be an assignment into cwff(1::).j.{J' Note that <r := 'PIFree(A) is a substi­

tution, since Free(A) is finite. Thus we can choose E~ (A) := <r(A).j.{J' where A.j.{J is the ,a-normal 

form of A. We call 7S(1::).8 := (cwJf(1::).j.{J' @.8, E.8) the ,a-terlll structure for 1::. 

Analogously, we can define 7S(1::).81J := (cwff(1::) I , @.81J, E.81J) the ,a1J-terlll structure for :E.+{J'I 

The name "term structure" in the previous definition is justified by the following lemma. 

Lelllllla 3.15. 7S(1::).8 is 1::-structure and 7S(1::).81J is a functional 1::-structure. 

Proof: Note that constants are ,a-normal forms, therefore 7S(1::).8 is the quotient structure 
of cwff(:E) for the congruence 4.8' As we have remarked in 3.11, wJf(:E) is not a 1::-structure, 
so we cannot use 3.13, but have to convince ourselves directly that 7S(:E).8 is a 1::-structure by 
verifying the conditions of 3.10. The first three are direct consequences of the definition of E.8 as 
substitution application. 

1.	 E~I~ == I.8 = Id~ and E~lv == 'P 
2.	 E~ is a 1::-homomorphism 

3.	 E~(A) == <reA) == <r1(A) == Ecpl(A), iff 'P and 'P' coincide on Free(A) 

4.	 Ecp([BjX]A) == <r([BjX]A) == [<r(B)jX](<rI(A» == <r,[<r(B)jX)A == E='[C~(B)/Xj(A), where 

<rl is <r, [Xj X). 

Since 4.81J is a sub-relation of 4.8, an analogous argumentation shows that 7S(1::).81J is a 1::­
structure. Furthermore, 4{31J is a functional :E-congruence on wff(1::) (cf. 3.7), so we know by 3.9 
that 7S(1::){31J is functional. 0 

Remark 3.16. Note that 7S(:E){3 is not a functional 1::-structure since e.g. (AX-y.Y-y-+oX)@.8C-y == 
Y@.8C for all C in 7S-y(1::).8 but AX.YX ~ Y. 

In a general 1::-structure A :== (1), @,E) constants are given a meaning by the interpretation 
function I::E -+ V, and variables get their meaning by assignments 'P: V -+ V. Furthermore, the 
evaluation function has to respect instantiation like in first-order logic. This is enough to ensure 
soundness of ,a-equality. We do not have to show soundness of a-equality, since this is trivial as 
we have assumed alphabetic variants to be identical. 

Lelllllla 3.17 (Soundness of ,a-equality). Let A:= (V,@,E) be a 1::-structure and'P an as­
signment into A, then Ecp«AX.A)B) == Ecp([BjX)A) provided that X not bound in A. 

Proof: By the definition of 1::-structures, we have Ecp«AX.A)B) == Ecp(AX.A)@Ecp(B) _ 
Ecp,[£",(B)/Xj(A) == Ecp([BjX]A) 0 
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Proof: We prove that £~  is a legal value function by verifying the conditions in 3.10: Let ¢
and  1 be  assignments, such that yy = 7 ,  oo ,  then

1. EX ]  = (ma 0 Ey)lx = Ta  0 Ey l  =n .  0Z=ZI"  and
EX Ivy = (Ma 0by) | ,  = 7 0Eyly Sano  =o

2. £7  =n .  0&y is a ZS-homomorphism, since 7 ,  and Ey are.
3. £7(A) = [E,(A)]  = [Ep  (A) ]  = E7(A), iff ¢ and ¢’  coincide on Free(A), since this entails

that  ¢ and 1 ’  do too.

4. EZ([B/X]A) = [£4([B/X]A)] = [Ey eum x1(A)] = Een (m) /x)  (A) ;  since [€4(B)]
£5 (B) and therefore 7 ,  0 9 ,  [£4(B)/X] = ¢ ,  [EX (B)/X] o

n

Definition 3.14 (Term Structures for X) .  Let cuff(Z),, be the collection of well-formed for-
mulae in  B-normal form and A@°%B be  the B-normal form of AB .  For the definition of an
evaluation function let ¢ be an assignment into cwff(X),pe Note that o :=  | Free A) is a substi-
tution, since Free(A) is finite. Thus we can choose £8(A)  :=  o(A)  4p» where A ,  is the B-normal

form of  A.  We  call  T8()? :=  (cuff(T)11 @P,EP) the f-term structure for Z.
Analogously, we can define TS(E)"" :=  (cwff(X)Lan?  @%, £87) the On-term structure for X.

The name “term structure” in the previous definition is justified by the following lemma.

Lemma 3.15. TST)? is X-structure and TS(E)?7 is a functional T-structure.

Proof: Note that constants are S-normal forms, therefore TS(E)? is the quotient structure
of cwff(X) for the congruence &g .  As we have remarked in 3.11, wff(X) is not a X-structure,
so we cannot use 3.13, but have to convince ourselves directly that TS(T)? is a X-structure by
verifying the conditions of 3.10. The first three are direct consequences of the definition of £7 as
substitution application.

1. &5 | ,=7 °  = Idx and EB,  =v
2. £8 is a S-homomorphism

3. E3(A) =0 (A )  =0 ' (A )  = EA (A), iff and ¢' coincide on Free(A)

4. £,([B/X]A) = o([B/X]A) = [0(B)/X](0'(A)) = 0,[c(B)/X]A = ES
a is o,[X/X].

28m) x (A) ,  where

Since &g6„ is a sub-relation of <5,  an analogous argumentation shows that 7.S(E)® is a X-
structure. Furthermore, &g, is a functional Z-congruence on wff(Z) (cf. 3.7), so we know by  3.9
that 75()?" is functional. m

Remark 3.16. Note that TSE)? is not a functional E-structure since e.g. (AX,.Y,—sX)@%C, =
Y@AC for all C in 75,(5)? but AXYX £Y.

In a general E-structure A :=  (D ,@, E) constants are given a meaning by the interpretation
function Z :¥  — D ,  and variables get their meaning by assignments ¢ :V  — D .  Furthermore, the
evaluation function has to respect instantiation like in first-order logic. This is enough to  ensure
soundness of G-equality. We do not have to show soundness of a-equality, since this is trivial as
we have assumed alphabetic variants to  be identical.

Lemma 3.17 (Soundness of  f-equality). Let A :=(D,@,£) be a T-structure and v an as-
signment into A,  then £,((AX.A)B) = £,([B/X]A) provided that X not bound in A .

Proof: By the definition of I-structures, we have £,((AX.A)B) = £,(AX.A)Q¢&,(B)
Ep le,(B)/x](A) = E,([B/X]A) a
n
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3.3 Functional ~-structures 

For functional 2:.-structures, there is another way to define evaluation: Since well-formed formulae 
are inductively built up from constants and variables we can extend rp and I to a l:-homomorphism 
on well-formed formulae. 

Definition 3.18 (Homomorphic Extension). Let A:= (D,@,I) be a functional pre-2:.­
structure and let rp be an assignment into A. Then the homomorphic extension Icp of rp 
to wff(2:.) is inductively defined to be a typed partial function Icp: wff(l:) ~ D such that 

1.	 Icp(X) == rp(X), if X is a variable, 
2.	 Icp(c) == I(c), if c is a constant, 
3.	 Icp(AB) == Icp(A)@Icp(B), 
4.	 Icp('\Xa.B,a) is the function in Da..... ,a such that Icp(,\Xa.B)@z := Icp,[z/xj(B). Note that 

this function is unique, since we have assumed A to be functional. 

Note that we have to assume that the universes of functions Da.....,a are rich enough to contain a 
value for all Aa.....,a E wffa.....,a(2:.) for this construction to yield a total function. 

Lemma 3.19. Let A := (D, @,I) be a functional pre-2:.-structure, then £: rp r-+ Icp is an evaluation 
function for A. 

Proof: To prove the assertion, we have to show the conditions of 3.10. The first one is trivially 
met by construction, the second is a direct consequence of the fact that Icp 0 IdE == Io IdI; == I on 
l:. 

For the third condition, we prove that the value of a function only depends on its free variables 
by induction on the structure of A. The only interesting case is the one, where A is an abstraction, 
since the assertion is trivial for constants and variables, and a simple consequence of the inductive 
hypothesis for applications. So let A == ('\X.B) , then Icp(A)@a == Icp,[a/xj(B) == I",,[a/X](B) == 
I",(A)@a by inductive hypothesis, since rp, [aj X] and 'l/J, [aj X] coincide on the free variables of B. 
Thus we obtain the assertion from the definition of Icp. 

Finally, we prove the fourth condition by induction on the structure of A. If A is a constant 
or variable, then the assertion is trivial. The case where A is the application CD is entailed by 
the fact, that substitution and homomorphic extension are defined inductively on the structure of 
applications: We have 

Icp([BjX]CD) _ Icp([BjX]C)@Icp([BjX]D) 

-	 Icp,[I",(B)/Xj(C)@Icp,[I.,.(B)/X](D) 

-	 Icp,[I", (B)/Xj (CD) 

If A == ('\Y.D) and 'l/J == rp, [ajY], then 

Icp([BjX]A)@a == Icp('\Y.[BjX]D)@a == I,p([BjX]D) == I""[I" (B)/Xj (D) 

by inductive hypothesis. Note that 'l/J and rp coincide on the free variables of A, therefore by the 
third condition, which we have proven above, we have I""[I.,. (B)/Xj (D) == Icp,[I",(B)/Xj(,\Y.D)@a, 
which implies the assertion, since A is functional. 0 

In fact, for functional 2:.-structures, the two notions of evaluation coincide, as we shall see in 
the next lemma. 

Lemma 3.20 (Evaluation in functional 2:.-Struetures). If A:= (D,@,£) is a functional 2:.­
structure, then £'1' == Icp for any assignment rp into A. 

Proof: Let A E wff(2:.), we prove the assertion by induction over the size of A. The assertion 
is trivial, if A is a constant or variable and a simple consequence of the inductive hypothesis, if 
A is an application. So let A := ('\X.B), furthermore let Y be a variable not in Free(A) and 
'l/J := rp, [ajY]. Then 

£cp(A)@a == £",(A)@a == £cp(A)@£,p(Y) == £",(AY) == £",([YjX]B) 
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3 .3  Functional Y-structures

For functional X-structures, there is another way to  define evaluation: Since well-formed formulae
are inductively built up from constants and variables we can extend v and Z to  a T-homomorphism
on  well-formed formulae.

Definition 3.18 (Homomorphic Extension). Let A:=(D,Q@,Z) be a functional pre-X-
structure and let ¢ be an assignment into A .  Then the homomorphic extension Z,  o f  ¢
to  wff(X) is inductively defined to  be  a typed partial function Z, :  wff(¥) — D such that

1. Z,(X)  = p(X), if X is a variable,
2. I,(c) = Z(c),  if c is a constant,
3. Z,(AB) = I , (A)@Z,(B) ,
4. I , (AX,Bp) is the function in Dag  such that Z,(AX..B)@z =I, [,/x)(B). Note that

this function is unique, since we have assumed A to  be functional.

Note that we have to  assume that the universes of functions D4 , 3 are rich enough to contain a
value for all Ayo  € wff,_,5(X) for this construction to  yield a total function.

Lemma 3.19. Let A :=  (D,@,I)  be a functional pre-Z-structure, then E:  p — I ,  is an evaluation
function for A .

Proof: To prove the assertion, we have to  show the conditions of  3.10. The first one is trivially
met by  construction, the second is a direct consequence of  the fact that Z ,o l dg  = Zoldzx =Z  on
X.

For the third condition, we prove that the value of  a function only depends on  its free variables
by induction on the structure of A .  The only interesting case is the one, where A is an abstraction,
since the assertion is trivial for constants and variables, and a simple consequence of  the inductive
hypothesis for applications. So let A = (AX.B), then Z,(A)@a = Z, o/x)(B) = Zy,[./x)(B) =
Z,(A)@a by inductive hypothesis, since ¢ ,  [a/X] and 9 ,  [a/X] coincide on the free variables of B .
Thus we obtain the assertion from the definition of  Z,.

Finally, we prove the fourth condition by  induction on  the structure of  A .  If A is a constant
or variable, then the assertion is trivial. The case where A is the application CD  is entailed by
the fact, that substitution and homomorphic extension are defined inductively on the structure of
applications: We have

Z,([B/X]CD) = ZI,(B/X]C)@I,([B/X]D)
= I , ,z ,®)/x1(C)QLy(7,8), x] (D)

Z,,z,(8)/x1(CD)

If A=  (\Y.D) and ¥ = ¢,[a/Y], then

Z,( [B/X]A)@a = Z,(AY.[B/ X]D)@a =Iy([B/ XD)  = I [z,(m)/x)(D)
by inductive hypothesis. Note that 1 and ¢ coincide on the free variables of A ,  therefore by the
third condition, which we have proven above, we have Zu |1_(B)/x])(D) = I, [z,(B)/x](AY.D)@a,
which implies the assertion, since A is functional.

In fact, for functional -structures, the two notions of  evaluation coincide, as we shall see in
the next lemma.

Lemma 3.20 (Evaluation in functional X-Structures). If A :=  (D,@,£) is a functional T -
structure, then £ ,  = I ,  for any assignment yp into A .

Proof: Let A € wff(X), we prove the assertion by induction over the size of A .  The assertion
is trivial, if A is a constant or variable and a simple consequence of the inductive hypothesis, if
A is an application. So let A := (AX.B), furthermore let Y be a variable not in  Free(A) and
Y=  ¢,[a/Y]. Then

£,(A)@a = £,(A)@a = £,(A)QE(Y) = £,(AY) = £,([Y/X]B)

mailto:Icp,[I",(B)/Xj(C)@Icp,[I.,.(B)/X](D
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since .a-equality is sound in I;-structures. Now [Y/ X]B is smaller than A, so we can use the 
inductive hypothesis to obtain 

£",,(A)@a == I,p([Y/X]B) == I,p(AY) == I",,(A)@I,p(Y) == I",,(A)@a 

which entails the assertion since A is functional. o 

Lemma 3.21. Let A := (D, @,£) be a functional I;-structure and X be a variable that is not free 
in A, then £",,(>..X.AX) == £",,(A) for all assignments cp into A. 

Proof: With 3.10.3 and the fact that X is not free in A we have 

£",,(>..X.AX)@a == £"",[a/Xj(A)@£"",[a/Xj(X) == £",,(A)@a 

which implies the assertion £",,(AX.AX) == £",,(A), as A is functional. 0 

We now specialize the notion of I;-structures to the standard general model semantics for A-+ . 

Definition 3.22 (I;-AIgebra). A pre-I;-algebra A := (D, I) is a pre-I;-structure (D, @,I) such 
that D Ot-+{3 ~ F(DOt ;D{3) and f@a == f(a). A pre-I;-algebra is called full, iff DOt -+{3 == F(DOt ;V{3). 
We call a pre-I;-algebra an I;-algebra, iff it is a I;-structure. 

Remark 3.23. Note that pre-I;-algebras are functional, since they are defined as structures of 
mathematical functions. On the other hand, for any functional I;-structure A, we can define an 
isomorphic I;-algebra A' 

Proof: For a functional I;-structure A = (V, @,I) we define a I;-algebra A' = (D', I') and a 
bijective I;-homomorphism K: A ---* A' by an induction on the type: 

•	 D~ := DOt for all a E Br and K= Id'l); obviously K is bijective. 

•	 V~->/J := K(VOt->/J) and K(f) = KO (@f) 0 K- 1 for f E V Ot ->{3' Note that with this construction 
Kis a homomorphism, since 

K is surjective by construction and injective, since A is functional: If f =j:. g E V Ot->{3, then 
there is an a E Do:, such that f(a) =j:. g(a), in particular, we have 

since K is injective on V{3. Thus and therefore K(f) =j:. K(g), since K(f), K(g) E F(DOt ;V{3) 

Now, we only have to choose I' := KO I to complete the construction of A'. o 
As a consequence, we can always consider functional L:-structures as L:-algebras. 

3.4 L;-Models 

Up to now, the semantical notions introduced were totally independent of the set of base types 
assumed. Now, we specialize these to obtain a notion of models by requiring specialized behavior 
on the type 0 of truth values. For this we use the notion of a L:-valuation, which intuitively gives a 
truth-value interpretation to the domain V o of a L:-structure, which is consistent with the intuitive 
interpretations of the logical constants. Since models are semantic entities that are constructed 
to make statements about truth and falsity of formulae, the requirement that there exists a L:­
valuation is perhaps the most general condition under which one wants to speak of a model. Thus 
we will define our most general notion of semantics as L:-structures that have L:-valuations. 

Definition 3.24 (L:-Model). Let A := (V, @,£) be a L:-structure, then a surjective total func­
tion v: V o ---* {T, F} such that 

1. v(£(""')@a) == T, iff v(a) == F, 

2. v(£(V)@a@b) == T, iff v(a) == T or v(b) == T, 
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since B-equality is sound in X-structures. Now [Y/X]B is smaller than A ,  so we can use the
inductive hypothesis to  obtain

E,(A)@a = Z.([Y/X]B) = Ty (AY)  =I, (A)QZy(Y) = I , (A)Qa

which entails the assertion since A is functional. O

Lemma 3.21. Let A := (D ,@,E) be a functional X-structure and X be a variable that is not free
in A ,  then £,(AX.AX) = E,(A) for all assignments p into A .

Proof: With 3.10.3 and the fact that X is not free in A we have

E,(AX.AX)@a = Ep  lay x) (A)QE, Jar X] (X )  = „(A)Q@a

which implies the assertion £,(AX.AX) = £, (A) ,  as A is functional. a
We now specialize the notion of X-structures to the standard general model semantics for A= .

Definition 3.22 (X-Algebra). A pre-X-algebra A := (D, I )  is a pre-X-structure (D,@, Z) such
that Dap  © F(Da;  Dg) and f@a = f(a). A pre-X-algebra is called full, iff Dog  = F(Da;  Dp).
We call a pre-Z-algebra an X-algebra, iff it is a Z-structure.

Remark 3.23. Note that pre-T-algebras are functional, since they are defined as structures of
mathematical functions. On the other hand, for any functional X-structure A ,  we can define an
isomorphic Z-algebra A’

Proof: For a functional Z-structure A = (D,  @,7) we define a T-algebra A’  = (D',Z') and a
bijective Z-homomorphism x: A — A’  by an induction on the type:

e D,  :=  Da for all a € BT  and x = Idp;  obviously x is bijective.

° D,_,5 = (Dap) and £(f) = ko  (@f) 0x7! for f € Dy-,p. Note that with this construction
k is a homomorphism, since

K(f) (5(a)) = s(f@(x7*(x(2)))) = K(fQa)

Kk is surjective by construction and injective, since A is functional: I f f # g € Da ,  then
there is an a € Da, such that f(a) # g(a), in  particular, we have

x(f(a)) = k(f)@x(a) # s(f)@x(a) = x(g(a))

since & is injective on Dg. Thus and therefore x(f) # x(g), since «(f) ,  x(g) € F(Da;  Dg)

Now, we only have to  choose I ’  :=  x oZ  to  complete the construction of A’. a
As a consequence, we can always consider functional X-structures as T-algebras.

3 .4  Y-Models

Up  to  now, the semantical notions introduced were totally independent of the set of base types
assumed. Now, we specialize these to  obtain a notion of models by requiring specialized behavior
on the type o of truth values. For this we use the notion of a X-valuation, which intuitively gives a
truth-value interpretation to  the domain D ,  of  a X-structure, which is consistent with the intuitive
interpretations of the logical constants. Since models are semantic entities that are constructed
to make statements about truth and falsity of formulae, the requirement that there exists a X-
valuation is perhaps the most general condition under which one wants to speak of a model. Thus
we will define our most general notion of semantics as I-structures that have X-valuations.

Definition 3.24 (X-Model). Let A := (D,@,£) be a I-structure, then a surjective total func-
tion v : D,  — {T,F} such that

1. v(E(-)@a) =T, iff v(a) =F,
2. v(E(V)@a@b) =T, iff v(a) = T or v(b) =T,
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3. v(£(IIO:)@f) == T, iff v(f@a) == T for each a E Vo: 

is called a ~-valuation for A and M:= (V,@,£,v) is called a ~-model (9)1). 
We say that an assignment <p satisfies a formula A E wfJo(E) in M (M 1="" A), iff v(£",,(A)) == 

T and that A is valid in M, iff M F"" A for all assignments <po Finally, we say that M is a 
E-model for a set H ~ wfJo(E) (M F H) iff M satisfies all A E H. 

Lemma 3.25 (Truth and Falsity in E-models). Let M := (V,@,£,v) be a ~-model and <p 

an assignment. Furthermore let T o := A o V ,(Ao) for some A o E wfJo and let Fo ;= ,To. Then 
v(£",,(To )) ==T and v(£"" (F o )) ==F. 

Proof: We have v(£rp(To)) == T iff v(£rp(Ao V,(Ao))) == T. Evaluation shows that this 
statement is equivalent to v(£",,(A)) == T or v(£",,(A)) == F, which is valid since <p : Vo -+ V o and 
v ; V o -+ {T, F} are total functions. 
Note further that v(£",,(F0)) == F evaluates to v(£",,(To )) == T which we already know. 0 

Remark 3.26. Note that we only constrain the functional behavior of the values of the logical 
constants. In particular this does not fully specify these values, since 

• M need not be functional 

• there can be more than two truth values. 

Definition 3.27 (Properties f, q and b). Given a ~-model M = (V,@,£,v), we say that M 
has property 

f iff M is functional. 
q iff for all a E T there is a function qO: E Vo:-+o:-+o , such that for all a, b E Vo: holds 

v(qO:@a@b) == T iff a == b. 
b iffVo has at most two elements. Note that V o must always have at least the two elements 

£rp(To ) and £rp(Fo ) by Lemma 3.25, so we can assume without loss of generality that 
V o == {£rp(Fo ) == F,£rp(To) == T} and that v is the identity function 

Definition 3.28 (Specialized E-model Classes). We define special classes of E-models de­
pending on the validity of the properties f, q and b. Thus we obtain ~,9Jit,,9'1tf,~ by requiring 
that the properties specified in the index are valid. 

Remark 3.29. We do not introduce 9JIrq, as we will see later (Lemma 3.37) that q implies f and 
hence that ~ = 9JIrq. 

As Peter Andrews has noted in [And72a], Leon Henkin unintendedly introduced ~ in [Hen50] 
instead of Henkin models in the sense below. A ~ does not necessarily have property q and as 
Andrews has shown in [And72a], a consequence is, that a ~ may lack the principle of functional 
extensionality EXT~-+,8, which he corrected by introducing property q. 

Definition 3.30 (E-Henkin models). A functional E-model is called a E-Henkin model 
(.f) := ~), iff it has properties q and b. If furthermore, all domains Do:-+,8 are full then we 
call 1£ a E-standard model (6'I'). 

Now let us extend the notion of a quotient structure to E-models. 

Definition 3.31 (Quotient E-model). Let M ;= (V,@,£,v) be a E-model, '" a congruence 
on the corresponding E-structure A:= ('D,@,£), and A/~ be the quotient E-structure of 
A ;= (D, @,£) modulo '" as defined in 3.12. 

If v(A) == v(B) for all A, B E wfJo(E) with A '" B, then....., is called a cop.gruence for M. 
Then M/~;= (V~,@~,£-,v-) is called the quotient ~-model of M modulo "', ifv-([a]) == 
v(a) for all a E Vo. 

Remark 3.32. Note the importance of the additional requirement for functional congruence rela­
tions stated in 3.31. Without this requirement the quotient E-models are not well-defined. 
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3. v(E(HN*)@f) =T, iff v(f@a) = T for each a € Da

is called a X-valuation for A and M := (D,@,E,v)  is called a Z-model ( ) .
We say that an assignment satisfies a formula A € wff,(£) in M (M  Fo  A),  iff v(€,(A)) =

T and that A is valid in M ,  iff M | ,  A for all assignments ¢ .  Finally, we say that M is a
Y-model for a set HC wff,(£) (M  [= H)  iff M satisfies all A € H.

Lemma 3.25 (Truth and Falsity in X-models). Let M :=  (D,@,£,v) be a T-model and ¢
an assignment. Furthermore let T ,  := A ,  V (A )  for some A ,  € wff, and let F ,  :=  =T , .  Then
V(€,(T,)) = T and v(E,(F,)) =F.

Proof: We have v(£, (T, ) )  = T iff v(£,(A,  V ~(A, ) ) )  = T. Evaluation shows that this
statement is equivalent to v (€ , (A) )  = T or v(£, (A))  = F, which is valid since ¢ : Vo, + D,  and
v :D ,  — {T,F} are total functions.
Note further that v(E,(F,)) = F evaluates to v(£, (T, ) )  = T which we already know. a

Remark 3.26. Note that we only constrain the functional behavior of the values of the logical
constants. In particular this does not fully specify these values, since

eo M need not be  functional

e there can be  more than two truth values.

Definition 3.27 (Properties f ,  q and b). Given a Z-model M = (D,@,&,v), we say that M
has property

f iff M is functional.
q iff for all @ € T there is a function q® € Da-sa-ro, such that for all a,b € Da holds

v(q*@a@b) = T iff a = b.
b iff D ,  has at  most two elements. Note that D ,  must always have at  least the two elements

Ep,(To) and &,(F,) by Lemma 3.25, so we can assume without loss of generality that
Do = {Ep(Fo) =F ,E , (T , )  = T} and that v is the identity function

Definition 3.28 (Specialized Z-model Classes). We define special classes of X-models de-
pending on the validity of the properties f, q and b. Thus we obtain 0%, Me, MV, Me  by requiring
that the properties specified in the index are valid.

Remark 3.29. We do not introduce My, as we will see later (Lemma 3.37) that q implies { and
hence that 90% = Pi.

As Peter Andrews has noted in  [And72a], Leon Henkin unintendedly introduced My in [Hen50]
instead of  Henkin models in the sense below. A 9% does not necessarily have property q and as
Andrews has shown in [And72a], a consequence is, that a 9% may lack the principle of functional
extensionality EXT? , which he corrected by introducing property q.

Definition 3.30 (Z-Henkin models). A functional ¥-model is called a X-Henkin model
(9  = Mg), iff i t  has properties q and b. If furthermore, all domains D,_,g are full then we
call # a T-standard model (6%).

Now let us extend the notion of a quotient structure to X-models.

Definition 3.31 (Quotient Z-model). Let M := (D,@Q,&,v) be a X-model, ~ a congruence
on the corresponding X-structure A :=(D,@,£) ,  and A/[. be the quotient X-structure of
A := (D,@,£) modulo ~ as defined in 3.12.

If v(A) = v(B) for all A ,B  € uff,(X) with A ~ B ,  then ~ is called a congruence for M .
Then M/[. = (D~,@~,E~,v™) is called the quotient Z-model  o f  M modulo ~ ,  if v~([a]) =
v(a) for all a € Deo.

Remark 3.32. Note the importance of the additional requirement for functional congruence rela-
tions stated in  3.31. Without this requirement the quotient X-models are not well-defined.
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Lemma 3.33. Let M be a 2:.-model and ~ be a congruence for M, then M/~ 1='1' H ~ wffo(2:.), 
if! M 1="" H. 

Proof: Let A o E H. We have v~(c;(Ao» == v~([c<p(Aom == v(c<p(Ao» == T since M 1= H. 
o 

3.5 Leibniz Equality 

Definition 3.34 (Full Extensionality). We call the following formula schemata 

VFo:-+/3.VGo:-+/3('iX/3.FX =. GX) =;> F =.8 G 
VAo.VBo.(A {:> B) {:> A =0 B 

the axioms of full extensionality for Leibniz equality; we refer to the first as axiom of 
functional extensionality and to the latter formula as the extensionality axiom for truth 
values. Note that EXT1--+8 specifies functionality of the relation denoted by the Leibniz formula 
=. We will use the terms functionality and extensionality interchangeably. 

Lemma 3.35 (Leibniz Equality in 2:.-models). Let M:= ('D,@,c,v) be a 2:.-model and <p be 
an assignment. 

1. If c",(A) == £<p(B), then v(c",(A =0: B) == T. 

2. If M is a m, and v(c",(A =0 B» == T, then c",(A) == c",(B). 
3. If M is a!JJiq and v(c",(A =.0: B» == T, then c<p(A) == c<p(B). 

Proof: Let a, bE 'Do: and 'ljJ := <p, [a/Xj, [b/Yj. 

1.	 We show that v(c",(QO:)@a@b) == T if a == b, which entails the assertion. By definition 
c",(QO:) == c",(>.X.>.Y.VP.PX => PY) and thus ccp(QO:)@a@b == £",(VP.PX => PY). Now 
let r E 1)0:-+0' then v(t'.",,(r/Pj(PX» == r@a == F or v(c..p,[rjPj(PY» == r@b == r@a == T, since 
v is total and a == b. So we see that v(c",(Q)@a@b) == v(c..p,[r/PJ(PX => PY» == T for all 
r E 'Do:-+ o , which yields the assertion. 

2.	 First note that by property b we have 'Do == {T, F} and v is the identity function on 1)0' 

Let us assume that v(c<p(A =0 B» == c..p(VP.PA => PB) == T but c<p(A) t c",(B), 
which means that either £<p(A) == T and c",(B) == F or vice a versa. In the first case we 
choose a predicate r:= c<p(>'Xo.Xo ) and get from the first assumption that c<p,[rjPj(PA) == 
C",,[r/Pj(A) == c<p(A) == F or C",,[rjPJ(PB) == C",,[r/Pj(B) == c<p(B) == T, which gives us the 
contradiction. Note that P does not occur free in A or B by definition of =..
 
The second case is analogous with r := £<p(>'Xo,-,Xo).
 

3.	 We show that if v(c",(QO:)@a@b) == T then a == b, which entails the assertion. Sup­
pose a t: b E 'Do: and r == qO:@a where qO: E 1)0:--+0:--+0 is the function guaranteed 
by property q. We know that qO:@a@a == T and qO:@a@b == F, since a t b by as­
sumption. Hence v(c<p(QO:)@a@b) == v(c..p(VP.PX => PY) == F for 'ljJ:=<p,[a/X),[b/Yj, 
since v(c..p,[r/Pj(PX => PY» == F, as v(c",,[r/Pj(PX» == qO:@a@a == r@a == T and 
v(£",,[r/PJ(PY» == qO:@a@b == r@b == F. 0 

Lemma 3.36 (Extensionality in 2:.-models). 

1.	 There exists a 9Jt which is not functional. 
2.	 There exists a ~ for which EXT~--+/3 is not valid. 
3.	 There exists a !JJiq for which EXTL is not valid. 

4. EXT~-+8 is valid in M, if M is a!JJiq. 
5. EXTL is valid in M, if M is a m,. 

As a consequence the following table characterizes the different properties of the introduced se­
mantical structures. If a formula is valid for a certain semantical structure we use a '+' and 
a '-' otherwise. Each entry is further marked with a justification referring to one of the above 
statements. 

14 3 SEMANTICS FOR HIGHER ORDER LOGIC

Lemma 3.33. Let M be a Z-model and ~ be a congruence for M ,  then M/ .  = ,  H C wff,(X),
FM,  H .

Proof: Let A ,  € H.  We have v™(£;(A,)) = v“([Ep(Ao)]) = v(E, (As)  = T since M |= H .
a

3.5 Leibniz Equality
Definition 3.34 (Full Extensionality). We call the following formula schemata

EXT?  = VF, p¥CGasp(VXpFX =GX)=>  F= "G
EXT} = VANB. (A®B)&A="B

the axioms of  full extensionality for Leibniz equality; we refer to the first as axiom of
functional extensionality and t o  the latter formula as the extensionality axiom for truth
values. Note that EXT?  specifies functionality of the relation denoted by the Leibniz formula
=. We will use the terms functionality and extensionality interchangeably.

Lemma 3.35 (Leibniz Equality in Z-models). Let M := (D,@,E,v)  be a T-model and ¢ be
an assignment.

1. IfE,(A) =E£,(B), then v (€ , (A="B )=T .
2. I f  Mis a Me and v(E,(A =° B) )  =T, then £,(A) = £,(B).
8. I f M is aM, and v(E,(A => B) )  =T, then £,(A)  = £ , (B ) .

Proof: Let a,b € D ,  and 9 :=  ¢,[a/X],[b/Y].
1. We show that v(£,(Q*)@a@b) = T if a = b, which entails the assertion. By  definition

E,(Q%) = EL(AXAYVP.PX = PY) and thus £,(Q%)@a@b = £,(VP.PX = PY) .  Now
let r € Dy—so, then v(Ey, (r/p|(PX)) = r@a  =F or u (y  /p|(PY)) = r@b = r@a = T, since
v is total and a = b. So we see that v(£,(Q)@a@b) = v(€y (yp) (PX = PY)) =T for all
r € Dy—0,  which yields the assertion.

2. First note that by property b we have D,  = {T,F} and v is the identity function on De.
Let us assume that v(€,(A =° B)) = £,(VP.PA = PB) = T but £,(A) % £,(B),
which means that either £,(A) = T and £,(B) = F or vice a versa. In the first case we
choose a predicate r :=  £,(AX..X,) and get from the first assumption that & , {/p(PA) =
Ep  i r /P I (A)  = E , (A )  =Fo r  Ep { /P1  (PB)  = Ep  [ r /P\ (B)  = E(B)  = T ,  which gives us  the
contradiction. Note that P does not occur free in  A or  B by  definition of  =.
The second case is analogous with r := £,(AX,.-X,).

3. We show that if v(£,(Q®%)@a@b) = T then a = b, which entails the assertion. Sup-
pose a £ b € Dy, and r = “Qa  where q“ € Dyno  is the function guaranteed
by property q. We know that q*@a@a = T and q*@a@b = F, since a £ b by as-
sumption. Hence v(£,(Q%*)@a@b) = v(Ey(VP.PX = PY) = F for ¢ :=  p,[a/X],[b/Y],
since v(&y ( /p(PX = PY))  = F,  as v(&y/p| (PX))  = q*@2@a = r@a = T and
v (&yry (PY)) = *@a@b = r@b =F. |

Lemma 3.36 (Extensionality in I-models).
There exists a M which is not functional.
There exists a My  for which EXTS™* is not valid.
There exists aM, for which EXT  is not valid.
EXTS™? is valid in M ,  i f M is aM.
EXTY is valid in  M ,  if M is a My.

As a consequence the following table characterizes the different properties of the introduced se-
mantical structures. I f  a formula is valid for a certain semantical structure we use a ‘+’ and
a ‘—’ otherwise. Each entry is further marked with a justification referring to one of  the above
statements.

rd
s 

fo
 d

o
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9Jt~ 9J7q 9Rt,f.mtt,valid in ~ 
EXT".... ,l:1 -(2) +(4) -(2) +(4)L 
EXTL -(3) -(3) +(5) +(5) 

Proof: For the proof of 1. note that I;-models need not to be functional (see also remark 3.26). 
In the model existence theorem 4.28(Q1cc!lJt) we will later explicitly constructs a functional I;-model 
based on the termstructure TS(I;)t3. For TS(I;)t3 we already know by remark 3.16 that it is not 
functional. 

For the proof of 2. we refer to [Andi2a], where Andrews constructs a functional I;-Model 
(actually a ~) which lacks the principle of functional extensionality of Leibnizequality. 

For 3. note that EXT'L can only be valid if V o = {a, £}, which is not required for 9J7q's. For a 
concrete example of a 9J7q which lacks EXTL see 4.28(21cc~). 

Next we consider 4.: Let 1/J := cp, [fI F], [giG]. From Vt/J(VA".FA =GA) == T we get that for 
all a E V" Vt/J,[a/Aj(FA =GA) == T. By lemma 3.35(3) we can conclude that Et/J.[a/A](FA) == 
Et/J,[a/Aj(GA) for all a E V" and hence Et/J,(a/Aj(F)@Et/J,[a/Aj(A) == t't/J,(a/Aj(G)@t't/J,[a/Aj(A). The 
application offunctionality leads to t't/J(F) == t't/J(G) which finally gives us that Vt/J(F ="....t3 G) == T 
with lemma 3.35(1). 

And finally in 5. +we have that for all a, b E V o and all assignments cp v(E<p,[a/A][b/Bj(A {::} 
B)) == T, iff v(E<p,[afA][b/B] (A)) == v(E<p,[a/A][b/Bj(B)). From b we further know that v is the identity 
function and hence this statement is valid, iff t'<p,(a/A][b/Bj(A) == t'<p,(a/A][b/Bj(B) from which we get 
the assertion by lemma 3.35(1). 

o 
We are now in a good position to prove the assertion that property q implies property f stated 

in remark 3.29. Thus the next lemma shows that requiring property q automatically introduces f 
and hence there cannot be a distinction between 9J7q's and 9Jirq's. 

Lemma 3.37 (q implies f). Let M be a I;-model with property q. Then M has property f. 

Proof: Let M = (V,@,t',v) be a 9J7q and let cp := 1/J, [JIF], [giG] for an arbitrary assignment 1/J 
and arbitrary f,g E V" ....t3. We show that iffor all a E 'D" holds that E<p,[a/Xj(FX) == t'<p,[a/Xj(GX) 
then t'<p(F) == t'<p(G), which entails the assertion. From t'<p,(a/Xj(FX) == t'<p,[a/Xj(GX) for all 
a E V" we get with Lemma 3.35(1) that v(t'<p,(a/Xj(FX =GX)) == T for all a E V" and hence 
that v(E<p(VX".FX =GX)) == T. We can apply EXT~""/3, which is valid in M by 3.36(4), and 
thus we get that v(t'<p(F =G)) == T. Now the conclusion follows by Lemma 3.35(3). 0 

Next we discuss the role of Leibniz equality within the different semantic structures. 

Theorem 3.38 (Properties of Leibniz Equality). Let M be a I;-model. For all assignments 
cp and all terms A, B, C E wfl" (I;) and F, G E wfl"....t3 (I;) we have: 

!)Jl t'<p(=") is an equivalence relation on'D" with respect to v. In particular: 

re v(t'<p(A =" A)) == T. 
sy If v(t'<p(A =" B)) == T, then v(t'<p(B =" A)) == T. 
tr If v(t'<p(A =" B)) == T and v(t'<p(B =" C)) == T, then v(E<p(A =" C)) == T. 

!Dif If M is a!Dif, then E<p(=") is a congruence relation on V" with respect to v. In partic­
ular: 

co If v(t'<p(A =" B)) == T then v(E<p(FA =t3 FB)) == T. 

9J7q If M is a 9J7q, then E<p (=") is a functional congruence relation on V" with respect to v. 
In particular: 

fu v(E<p(F ="..../3 G)) == T ifv(E<p(FA =t3 FA») == T for all A E wfl". 

~ If M is a Sj, then E<p(=") is the equality relation on V". 

Proof: 

!)Jl re: v(E<p(A =" A)) == T, iff for all p E V" ....o we have v(E<p.[p/Pj(PA)) _ F or 
v(E<p,[p/Pj(PA)) == T which is obvious since v is total and surjective. 
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valid in | RG My MM Me
EXT | —@ +0  -@ +
EXTg ze  © t e  t e

Proof: For the proof of 1. note that £-models need not to  be functional (see also remark 3.26).
In  the model existence theorem 4.28(2ccor) we will  later explicitly constructs a functional X-model
based on the termstructure TS(Z)?. For TS(E)® we already know by remark 3.16 that it is not
functional.

For the proof of 2. we refer to [And72a], where Andrews constructs a functional ¥-Model
(actually a Ma) which lacks the principle of functional extensionality of Leibnizequality.

For 3. note that EXT  can only be valid if  D ,  = {0,¢}, which is not required for 9%’s. For a
concrete example of a 9 ,  which lacks EXT] see 4.28(2lccoy,).

Next we consider 4.: Let 9 := o,  [f/F],[g/G])- From Vy(VA..FA = GA) = T we get that for
all a € Dy Vy,(a/4)(FA = GA) = T. By  lemma 3.35(3) we can conclude that Ey (,/4)(FA) =
Ep[a/A1(GA) for all a € Da  and hence Ep ta/Ay(F)@E 4 12/41(4)  = Ey 12/4) (GE  2/4) (A). The
application of functionality leads to  £y (F)  = £4(G) which finally gives us that Vy (F  zh  G)=T
with lemma 3.35(1).

And finally in 5. +we have that for all a,b € D, and all assignments v v(En/Alb/B1(4 ©
B) )  = T, f f  v(&, [a/a)16/8](4)) = (Ey [aap B)(B))- From b we further know that v is the identity
function and hence this statement is valid, iff £, (2/4),8)(4)  = &,,(3/41b/8)(B) from which we get
the assertion by lemma 3.35(1).

a
We are now in a good position to  prove the assertion that property q implies property f stated

in remark 3.29. Thus the next lemma shows that requiring property q automatically introduces f
and hence there cannot be a distinction between My’s and 9 , ’s.

Lemma 3.37 (q implies f ) .  Let M be a X-model with property q. Then M has property f.

Proof: Let M = (D,@,&,v) be a M ,  and let ¢ : =  vw, [f/F], [9/G] for an arbitrary assignment 3
and  arbitrary f , g  € Dag .  We show that if  for all a € Da  holds that &,, (o/x)(FX) = &, [4/x)(GX)
then £,(F) = &,(G), which entails the assertion. From Ev(a/x)(FX) = & ,[a/x)(GX) for all
a € Da  we get with Lemma 3.35(1) that v(&, [a /x) (FX = GX))  = T for all a € Da  and hence
that v(€,(VXaFX = GX))  = T. We can apply EXT? , which is valid in M by 3.36(4), and
thus we get that v(€,(F  = G)) = T. Now the conclusion follows by Lemma 3.35(3). O

Next we discuss the role of Leibniz equality within the different semantic structures.

Theorem 3.38 (Properties of  Leibniz Equality). Let M be a X-model. For all assignments
@ and all terms A ,B , C € uff, (2)  and F ,  G € uff, ,5 (X)  we have:

M E,(=%) is an equivalence relation on Da  with respect to v .  In  particular:
re v(E, (A  ="A) )=T.
sy I fu(E, (A=%B))=T,  then v(£,(B =" A) )=T .
tr I fu( l , (A =* B)) =T  and v(€,(B =“ C)) =T, then v(£,(A =“ C)) =T.

MM If M is a Mb, then £,(=") is a congruence relation on Da with respect to v .  In  partic-
ular:

co I f u (€ , (A= "B ) )=T  then v (E, (FA =" FB) )  = T.
IM, If M is a Me, then £, (=")  is a functional congruence relation on Da with respect to v .

In  particular:
fu v(E,(F  ="? G))  =T  if  v(E,(FA =" FA))  =T  for all A € uff.

Me If M is a H ,  then E, (=" )  is the equality relation on  Da .

Proof:
M re: v (E(A  =* A))  = T, iff for all p € Dayo we have v(€,[p/p(PA)) = F or

v(&,,1p/P)(PA)) = T which is obvious since v is total and surjective.
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I total 

Iv-Cfmp I 
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Figure 2: The landscape of Higher-Order Semantics with primitive equality 

sy: Suppose v(£<p(A ==" B» == T but v(£<p(B ==" A)) == F. From the latter we get 
that v(£<p,[p/Pj(PB» == T and v(£<p,[p/Pj(PA» == F for some p E V,,-to' Without loss of 
generality, let p := £<p(V) for a fresh variable V E E,,-to' From the former assumption 
we know that for all q E V,,-to holds v(£<p,[q/Pj(PA» == F or v(£<p,[q/Pj(PB» == T and 
hence v(£<p,[t"",(AX.vX)/Pj(PA» == F or V (£<p,[t"", (AX.VX)/Pj (PB)) == T which is equivalent 
with v(£<p,[p/Pj(PA» == T or V (£<p,[p/Pj (PB» == F and contradicts the latter assumption. 
tr: Similar to sy. 

WIt	 co: Suppose v(£<p(F ==,,-t13 G» == T but v(£<p(FA =" GA» == F. From the latter we get 
that v(£<p,[p/Pj(P(FA») == T and v(£",,[p/Pj(P(GA))) == F for some p E D,,-to. Without 
loss of generality let p := £<p(V) for a fresh variable V E V,,-to' From the former assump­
tion we know that for all q E D,,-to holds v(£<p,[q/Qj(QF» == F or v(£<p,[q/Qj(QG» == T 

and hence v(£<p,[t"",(AX.V(XA))/Pj(PF)) == F or V (£<p,[t"", (AX.v(XA))/PJ (PF)) == T which is 
equivalent with v(£<p,[p/Pj(P(FA))) == For v(£<p,[p/Pj(P(GA») == T and contradicts the 
former assumption. 

~ fu: A direct consequence of lemma 3.36(4). 

~ By property b we know that v is the identity relation on V o and thus we have that == 
denotes a relation for which the principles reflexivity, symmetry, transitivity, congruence 
and functionality hold. Hence == denotes the equality relation. 0 

3.6 Primitive Equality 

The situation of higher-order semantics becomes much simpler if we introduce equality as a prim­
itive logical constant = in E, which we will assume for the rest of this section. Since = is logical, 
we have to specialize the notion of E-valuation (cf. 3.24) by requiring that v(£(=")@a@b) == T, iff 
a == b. In this case, we call v a E-valuation with equality. 

Furthermore, we say that a E-model M has property e, iff for all a, bED" we have 
v(£(=")@a@b) == T, iff a == b. 

A (functional) E-model, which has property e is called a (functional) E-model with full 
equality (~) and a functional one with additional property b is called a E-Henkin model 
with full equality (9J4). 

Clearly, property e entails property q, since £(=") is the function required in property q. 
And we already know that property q implies property f, it is easy to see that the landscape of 
higher-order semantics from figure 1 collapses to one in figure 2. 
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Figure 2: The landscape of  Higher-Order Semantics with primitive equality

sy: Suppose v(£,(A =“ B) )  = T but v(£,(B =“ A))  = F. From the latter we get
that v(&,,;p/p1(PB)) = T and v(&,,[p/p|(PA)) =F  for some p € Dao.  Without loss of
generality, let p :=  £,(V) for a fresh variable V € £,-,,. From the former assumption
we know that for all q € Dao  holds v(E, [q/P1(PA)) = F or v(&, (q/p(PB)) = T and
hence v (€ ,te (ax.v x)/P|(PA)) =F  or v (& ,je (ax.vx)/p|(PB)) = T which is equivalent
with v(&, 1p/p)(PA)) = T or v(&,,(p/p)(PB)) = F and contradicts the latter assumption.
t r :  Similar to  sy.

M co:  Suppose v(E„(F ="? G)) = T but v(£,(FA =* GA)) = F.  From the latter we get
that v (&, p/p (P (FA) ) )  = T and v(&,, [p/p|(P(GA)))  =F for some p € Dg .  Without
loss of  generality let p := £,(V') for a fresh variable V € V,_,,. From the former assump-
tion we know that for all q € Dao  holds v(€, [q/Q(QF)) = F or v(£,,q/q)(QG)) =T
and hence (Ep  ie, (AXV(X  A ) ) /P ]  (PF)  =Fo r  (Ey,  6 ,  (0X .  V (X  A ) ) /P ]  (PF ) )  = T which is
equivalent with v(&, [p/p|(P(FA))) =F  or v(€y,p/p](P(GA))) = T and contradicts the
former assumption.
fu: A direct consequence of  lemma 3.36(4).Me

Mp By  property b we know that v is the identity relation on D,  and thus we have that =
denotes a relation for which the principles reflexivity, symmetry, transitivity, congruence
and functionality hold. Hence = denotes the equality relation. O

3.6 Primitive Equality
The situation of higher-order semantics becomes much simpler if we introduce equality as a prim-
itive logical constant = in X, which we will assume for the rest of this section. Since = is logical,
we have to specialize the notion of T-valuation (cf. 3.24) by requiring that v(£(=%)@a@b) = T, iff
a = b. In this case, we call v a Z-valuation with equality.

Furthermore, we say that a ¥-model M has property e, iff for all a,b € Da we have
v(€(=%)Qa@b) =T ,  iff a = b.

A (functional) X-model, which has property e is called a (functional) X-model with full
equality (97%) and a functional one with additional property b is called a -Henkin model
with full equality (9%).

Clearly, property ¢ entails property q, since £(=2) is the function required in property q.
And we already know that property q implies property f, it is easy to see that the landscape of
higher-order semantics from figure 1 collapses to one in figure 2.



3.6 Primitive Equality	 17 

The connection between property q and e is already discussed in [And72a]. Andrews concludes 
that it seems natural to require the existence of logical connectives =0< in the signature, if one 
is interested in extensionality. In this paper we are especially interested to shed some light on 
both: in extensionality of Leibniz equality in case =0< ~ ~ and in extensionality of Leibniz equality 
and/or primitive equality in case =O<E ~. 

Definition 3.39 (Extensionality). Analogous to the extensionality Axioms for Leibniz equality, 
we can define such for primitive equality. 

EXTO<-+,6 ._ VFo<-+,6.VGo<-+,6(VX,6.FX = GX) ::} F =,6 G 
EXTo ._ VAo.VBo.(A {::> B) {::> A =0 B 

the axioms of full extensionality for primitive equality. 

The following lemma shows that in a ~-model with full equality the denotations of primitive 
equations and corresponding Leibniz equations are identical modulo v. 

Lemma 3.40 (Primitive and Leibniz equality). If M:= (D,@,E,v) E 9Jl., then v(Ecp(A = 
B» == v(Ecp(A == B» for all A,B E wff(~). 

Proof: By lemma 3.35(3) we have v(Ecp(A == B» == T, iff Ecp(A) == Ecp(B), since 9Jl. ~ 9J7q. By 
property e this is equivalent with v(Ecp(A = B» == T. 0 

Lemma 3.41 (Extensionality in ~-models with full equality). 

1.	 There exists a 9Jl. which is not functional. 
2.	 There exists a 9Jl. for which EXTo and EXTL are not valid. 
3.	 EXTO<-+,6 and EXT~-+,6 are valid in M, if M is a 9Jl. 
4.	 EXTo and EXTo is valid in M, if M is a!JJlro. 

Thus we can extend the table in Lemma 3.36 to the following one: 

valid in 9Jl. !JJIro 
EXTO<-+,t1 EXTO<-+,C:!L , 

EXTL,EXTo 
+ 
-

+ 
+ 

Proof: 

1.	 The argumentation is analogous to 3.36(1) and a concrete example of a non-functional 9Jl. 
is given in 4.28(9Jl.). 

2.	 The argumentation is analogous to 3.36(2) and 3.36(3). A concrete example of a !me which 
lacks EXTL and EXTo is provided by 4.28(!me). 

3.	 Note that the only crucial points in the proof of 3.36(4) are functionality, which is given 
here as well, and the application of lemmata 3.35(1) and 3.35(3). Since a !me is also a 9J7q 
both lemmata are applicable here as well and thus for == we get the statement immediately. 
For = the statement can be proven analogously to 3.36(4) using property e instead of the 
lemmata 3.35(1) and 3.35(3). 

4.	 In the proof of 3.36(5) the only crucial parts are the usage of property b and lemma 3.35(1). 
Again for == there is nothing to show, since a !JJIro is also a ~' The statement for = can 
be proven analogously with property e instead of lemma 3.35(1). 

Theorem 3.42. Let M E 9Jl., then Ecp(==O<) and Ecp(=O<) are equivalence relations on Do< with 
respect to v for all assignments ep. If M is a !JJIro, then Ecp (== 0<) = Ecp (=0<) is the equality relation 
on Do<, 

Proof: Note that for == the proofs are provided by lemma 3.38, since !me ~ 9J7q and mm ~ !D7ep. 
Thus it remains to verify the statements for =. Let M E 9Jl., then reflexivity, symmetry and 
transitivity follow from their ==-counterparts by lemma 3.40. Functionality is a direct consequence 
of lemma 3.41(3) and co follows from the functionality of a 9Jl. together with property e. 

0 
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The connection between property q and e is already discussed in [And72a]. Andrews concludes
that i t  seems natural to require the existence of logical connectives = “  in the signature, if one
is interested in extensionality. In this paper we are especially interested to shed some light on
both: in  extensionality of  Leibniz equality in case = *¢  X and in extensionality of  Leibniz equality
and/or primitive equality in case <%¢ X.

Definition 3.39 (Extensionality). Analogous to  the extensionality Axioms for Leibniz equality,
we can define such for primitive equality.

EXT = VF,,3V¥Gasss(VXs.FX  =GX)=>  F=F  GC
EXT? = VA,VB, (A& B)s  A="B

the axioms of  full extensionality for primitive equality.

The following lemma shows that in  a Z-model with full equality the denotations of primitive
equations and corresponding Leibniz equations are identical modulo v.

Lemma 3.40 (Primitive and Leibniz equality). If M := (D,@,E,v) € M ,  then v(E (A =
B) )  = v(€, (A  = B)) for all  A ,B  € uff(%).

Proof: By  lemma 3.35(3) we have v(£,(A  = B) )  = T, iff £,(A) = £,(B), since 9 ,  C M .  By
property e this is equivalent with v(£, (A  =B ) )  =T. {m

Lemma 3.41 (Extensionality in X-models with full equality).
1. There exists a MV, which is not functional.
2. There exists a IM, for which EXT’ and EXT? are not valid.
8. EXT*™f and EXT"? are valid in  M ,  if M is aM,
4. EXT? and EXT? is valid in  M ,  i f M is a My.

Thus we can extend the table in  Lemma 3.36 to the following one:

valid in PM Mo
EXT? EXT | + +
EXT¢,EXT® - +

Proof:

1. The argumentation is analogous to 3.36(1) and a concrete example of a non-functional 9%
is given in 4.28(90%).

2. The argumentation is analogous to 3.36(2) and 3.36(3). A concrete example of a 9% which
lacks EXT¢ and EXT? is provided by 4.28(90%).

3. Note that the only crucial points in  the proof of 3.36(4) are functionality, which is given
here as well, and the application of lemmata 3.35(1) and 3.35(3). Since a 90, is also a M,
both lemmata are applicable here as well and thus for = we get the statement immediately.
For = the statement can be proven analogously to  3.36(4) using property ¢ instead of the
lemmata 3.35(1) and 3.35(3).

4. In the proof of 3.36(5) the only crucial parts are the usage of  property b and lemma 3.35(1).
Again for = there is nothing to  show, since a Mg  is also a Wl.  The statement for = can
be proven analogously with property e instead of lemma 3.35(1). O

Theorem 3.42. Let M EM,  then £, (=")  and £ , (=" )  are equivalence relations on Da with
respect to v for all assignments p .  I f  M is a My, then Ep (= " )  = £ , (=2)  is the equality relation
on  D , .

Proof: Note that for = the proofs are provided by  lemma 3.38, since M ,  C 9%; and My  C Me.
Thus it remains to verify the statements for = .  Let M € 9 ,  then reflexivity, symmetry and
transitivity follow from their =-counterparts by lemma 3.40. Functionality is a direct consequence
of  lemma, 3.41(3) and co  follows from the functionality of  a 90% together with property e.
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If M E 004, then the argumentation for both, == and =, is analogous to 3.41(~): By property 
El we know that v is the identity relation on 1)0 and thus we have that == and = denote relations for 
which the principles reflexivity, symmetry, transitivity, congruence and functionality hold. Hence 
both, == and =, denote the equality relation, since the fact that therer are only two truth values 
does not leave any room for other relations with these properties. 0 

4 Model Existence Theorems 

In this section we introduce the model existence theorems for the different semantical 
notions discussed in section 3. These theorems have the following form, where * E 
{9Jl, 9Jlt, , 917t, 9Jiq , ~ ,9Ji,p !JJ1., 004 }: 

Theorem (Model Existence): For a given abstract consistency class 2(cc* and a set 
HE 2(cc* there is a *-model of H. 

The most important tools used in the proofs of the model existence theorems are the so-called 
~-Hintikka sets. These sets are maximal elements in abstract consistency classes, and allow 
computations that resemble those in the considered semantical structures (e.g. I:-Henkin models). 
These allow to construct *-valuations for the term structures that turn those into *-models. 

The key step in the proof of the model existence theorems is an extension lemma, which 
guarantees a ~-Hintikka set 1£ for any set H of sentences in fE. With this, the proofs for the 
model existence theorems are uniform. 

4.1 Abstract Consistency 

Let us now review a few technicalities that we will need for the proofs of the model existence 
theorems. 

Definition 4.1 (Compactness). Let C be a class of sets. 

1.	 C is called closed under subsets, iff for all sets Sand T the following condition holds: if 
S ~ T and T E C, then SEC. 

2.	 C is called compact iff for every set S the following condition holds: SEC, iff every finite 
subset of S is a member of C. 

Lemma 4.2. If C is compact, then C is closed under subsets. 

Proof: Suppose S ~ T and T E C. Every finite subset A of S is a finite subset of T, and since 
C is compact, we know that A E C. Thus SEC. 0 

Definition 4.3 (Sufficiently Pure). Let ~ be a signature and T be a set of L:-sentences. T is 
called sufficiently L:-pure, iff for each type a there is a set of constants P 01. ~ ~OI. with equal 
cardinality to wffOl (L:), such that the elements of P do not occur in T. 

We will always presuppose that sets of sets of sentences are sufficiently ~-pure in order to 
have enough witness constants. This can be obtained in practice by enriching the signature with 
spurious constants. Another way would be to use specially marked variables (which may never be 
instantiated) as in [Koh94b]. 

\Definition 4.4 (Properties for Abstract Consistency Classes). Let fE be a class of sets 
\of ~-sentences. We need the following conditions, where A, B E cwffo(L:) and F, G E 
cwffOl. ......(3 (L:) :10 

V'c If A is atomic, then A $. ~ or -.A $. ~. 

V'~ If -.-.A E ~, then ~ * A E fE. 

lOIn the following we will use 'P * A as an abbreviation for 'P U {A}. 
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I f  M € Mo, then the argumentation for both,  = and = ,  is analogous t o  3.41(9g): By  property
b we know that v is the identity relation on  D ,  and thus we have that = and = denote relations for
which the principles reflexivity, symmetry, transitivity, congruence and functionality hold. Hence
both, = and = ,  denote the equality relation, since the fact that therer are only two truth values
does not leave any room for other relations with these properties. [MM]

4 Model Existence Theorems

In this section we introduce the model existence theorems for the different semantical
notions discussed in section 3. These theorems have the following form, where * €
{DM De, 9%, Me, Mi, Me Me, Mo}:

Theorem (Model  Existence): For a given abstract consistency class Acc, and a set
H € cc, there is a x-model of  H .

The most important tools used in the proofs of the model existence theorems are the so-called
Y-Hintikka sets. These sets are maximal elements in abstract consistency classes, and allow
computations that resemble those in the considered semantical structures (e.g. Z-Henkin models).
These allow to  construct *-valuations for the term structures that turn those into *-models.

The key step in the proof of the model existence theorems is an extension lemma, which
guarantees a X-Hintikka set # for any set H of  sentences in Iz. With this, the proofs for the
model existence theorems are uniform.

4 .1  Abstract Consistency
Let us now review a few technicalities that we will need for the proofs of  the model existence
theorems.

Definition 4.1 (Compactness). Let C be a class of sets.
1. C is called closed under subsets, iff for all sets S and T the following condition holds: if

SCTandTeC, thenSeC.
2. C is called compact iff for every set S the following condition holds: S € C, iff every finite

subset of S is a member of C.

Lemma 4.2. If  C is compact, then C is closed under subsets.

Proof: Suppose SC T and T € C. Every finite subset A of S is a finite subset of 7', and since
C is compact, we know that A € C. Thus S € C. 0

Definition 4.3 (Sufficiently Pure). Let X be a signature and 7 be a set of X-sentences. T is
called sufficiently Y-pure, iff for each type a there is a set of constants Pa C £4 with equal
cardinality to wff,(X), such that the elements of  P do not occur in  7.

We will always presuppose that sets of sets of sentences are sufficiently X-pure in order to
have enough witness constants. This can be obtained in practice by enriching the signature with
spurious constants. Another way would be to use specially marked variables (which may never be
instantiated) as in [Koh94b].

Definition 4.4 (Properties for Abstract Consistency Classes). Let If be a class of sets
of Z-sentences. We need the following conditions, where A ,B  € cuff,(¥) and F ,G  €
Cuffs ( 5 ) :

Ve If A is atomic, then A ¢ ® or A ¢ &.
Vo. If-—Ae€® then $+ *A€ X.

1015 the following we will use ¢ = A as an abbreviation for v U {A } .
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V,8 If A E <P and B is the .B-normal form of A, then B * <P E fE. 

'Vf If A E <P and B is the .B1J-normal form of A, then B * <P E fE· 

Vv If A VB E <P, then <P *A E fE or <P *B E fE. 
v/\ If ...,(A VB) E <P, then <P U {...,A, ...,B} E fE. 

~ If ITaF E <P, then <P * FW E fE for each W E cwffa(E). 
V3 If ...,ITaF E <P, then <P * ...,(Fw) E fE for any constant w E Ea, which does not occur in <P. 
Vb If ...,(A =0 B) E <P, then <P U {A, ...,B} E fE or <P U {...,A, B} E fE. 

vq If ...,(F =a-+{3 G) E <P, then <P * ...,(Fw =,8 Gw) E fE for any constant w E Ea, which 
does not occur in <P. 

(Additional abstract consistency conditions for primitive equality will be introduced later in sec­
tion 4.3.) 

Remark 4.5. Note that for the connectives V, ITa there are two conditions - a positive and a 
negative one - given in the definition above, namely vv/v/\ for V and ~/V3 for ITa. For =0 and 
=a-+,8 the situation is different, as we need only conditions for the negative cases. The positive 
cases can be inferred at level of Hintikka sets by expanding the Leibniz definition of equality (see 
the proofs of Vqf in lemma 4.15 and Vbf in lemma 4.17). 

Definition 4.6 (Abstract Consistency Classes). Let E be a signature fE be a class of sets 
of E-propositions. Using the properties from the previous definition we introduce the following 
abstract consistency classes: 

21ccVlt	 If Vc, v~, v,8, vv, V,." ~ and 'Y:3 are valid for fE, then fE is called an abstract 
consistency class for E-nlOdels (21ccVlt). 

Based upon this definition we introduce the following specialized abstract consistency classes: 
21cc~, 21ccVltt, 21ccVJtq, 2lCCVlttb' 21ccVJtqb (= 21cc.f), where we indicate by indices which additional prop­
erties from {'Vf, Vq, Vb} are required. 

Sometimes we do not want to differentiate between the particular notions above. In this cases 
we simply speak of an abstract consistency class, with which we refer to an arbitrary but one 
in {21ccVlt, 21cc~, 21ccVltt, 21ccVJtq, 21cc!mp" 21ccVJtqb}' 

Remark 4.7. Note that 21ccVltt corresponds to the abstract consistency property discussed by An­
drews in [And71]. The only (technical) difference is that Andrews does not consider a-conversion 
as built-into the logic but needs a condition similar to v,8 that requires a-standardized forms to 
be abstract consistent. 

Lemma 4.8 (Non-atomic consistency). Let fE be an abstract consistency class and A E 
cwffo(E), then for all <P E fE we have A f/. <P or...,A f/. <P. 

Proof: Let A E wffo(E) and <P E fE, such that A E <P. By v,8, we can assume that A is a 
.B-normal form. So we prove the assertion by an induction over the structure of A. 

If A is atomic, then we get the assertion immediately by \i;:. If A is not atomic, then its head 
must be a logical constant, therefore we can proceed by a case-analysis over the connectives and 
quantifiers. 

Suppose A has the form...,B and {...,B,...,...,B} ~ <P. By v~ we know that {...,B,B} U <P E fE 
which contradicts the induction hypotheses. Now suppose A has the form BvC and {BVC, ...,(BV 
Cn ~ <P. By vv, v/\ we know that {B V C, ...,(B V C), B, ...,B, ...,C} U <P E fE or {B V C, ...,(B V 
C), C, ...,B, ...,C} U <P E fE. In both cases the contradiction is given by the induction hypotheses. 
Suppose A has the form IT('\X.B) and {IT('\X.B) , ...,IT(,\X.Bn ~ <P. By V3, ~ and v,8 we know 
that {IT('\Y.B) , ...,IT('\Y.B) , [W /Y]B, ...,[W/Y]B} U <P E fE which contradicts again the induction 
~~. 0 

In contrast to [And71], we work with saturated abstract consistency classes in order to obtain 
total E-valuations, which makes the proofs of the model existence theorem much simpler and e.g. 
yield much more natural models. 
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Va If A € ® and B is the S-normal form of  A ,  then B+ ® € 5 .
Vi If A € ® and B is the 8n-normal form of A ,  then Bx ® € I .
VW IKAVvBe® then®xAcehLor®+xBecl; .
Va If-(AVB)E ®, then dU{ -A , -B }€  © .
YW IfII°F € $ ,  then $ * FW € I ;  for each W € cuff„(£).
Va If -II°F € ®, then ® * - (Fw)  € Ix for any constant w € I ,  which does not occur in ®.
Ve I - (A= "B )e® ,  then ® U {A ,  -B }  € Iz or $ U { -A ,B }  € I>.
V, If-=(F ="? G)  € ®, then ® * - (Fw =’ Gw) € E: for any constant w € Xa, which

does not occur in ®.

(Additional abstract consistency conditions for primitive equality will be  introduced later in sec-
tion 4.3.)

Remark 4.5. Note that for the connectives V,II* there are two conditions — a positive and a
negative one — given in the definition above, namely W/V, for V and W/V; for I I®.  For =° and
"78  the situation is different, as we need only conditions for the negative cases. The positive
cases can be inferred at level of Hintikka sets by expanding the Leibniz definition of equality (see
the proofs of Vy in lemma 4.15 and Vir in  lemma 4.17).

Definition 4 .6  (Abstract Consistency Classes). Let X be a signature Ix be a class of  sets
of X-propositions. Using the properties from the previous definition we introduce the following
abstract consistency classes:

Aceon If V ,V . , V3, W,  VA, W and V5 are valid for Ig, then I t  is called an abstract
consistency class for X-models (Accor).

Based upon this definition we introduce the following specialized abstract consistency classes:
Aceon, , Acco, , Accor, , Acca,  , Accor, (=  Acca), where we indicate by indices which additional prop-
erties from {V}, Vz, Ve} are required.

Sometimes we do  not want to differentiate between the particular notions above. In this cases
we simply speak of an abstract consistency class, with which we refer to  an arbitrary but one
in {Accor, Aceon, , Accon,, Accor, , Acca,  , Aceon, } -

Remark 4.7. Note that Accox, corresponds to the abstract consistency property discussed by An-
drews in [And71]. The only (technical) difference is that Andrews does not consider a-conversion
as built-into the logic but needs a condition similar to Vj  that requires a-standardized forms to
be abstract consistent.

Lemma 4.8  (Non-atomic consistency). Let Iz be an abstract consistency class and A €
cuff,(X), then for all ® € I5  we have A ¢ ® or A ¢ ®.

Proof: Let A € wff,(¥) and ® € Ii, such that A € ®. By  Vj, we can assume that A is a
B-normal form. So we prove the assertion by an induction over the structure of A .

I f  A is atomic, then we get the assertion immediately by  V.. If A is not atomic, then i ts  head
must be a logical constant, therefore we can proceed by  a case-analysis over the connectives and
quantifiers.

Suppose A has the form =B  and {=-B,-—B} C ®. By  V.  we know that { -B ,B }U® € I};
which contradicts the induction hypotheses. Now suppose A has the form BVC  and {BVC,~(BV
C) }  © ®. By W,  Vi  we know that {BV  C,-(BVv C ) ,B , -B, -C}U® € Ix or {B V C, - (B vV
C) ,  C ,  -B , -C }  U® € I .  In both cases the contradiction is given by the induction hypotheses.
Suppose A has the form II(AX.B) and {II(AX.B),-II(AX.B)} C ®. By  Va, W and V;  we know
that {II(\Y.B), -II(AY.B),[W/Y|B,-[W/Y]|B} U ® € I; which contradicts again the induction
hypotheses. Od

In  contrast to [And71], we work with saturated abstract consistency classes in order to  obtain
total X-valuations, which makes the proofs of the model existence theorem much simpler and e.g.
yield much more natural models.
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Definition 4.9 (Saturated). \-Ve call an abstract consistency class rE atomically saturated, 
iff for all <I> E fE and for all atomic sentences A E cwffoC'E), we have <I> * A E rE or <I> *...,A ErE. 
If this property holds for all sentences A E cwffoC£.)' then we call fE saturated. 

Remark 4.10. Clearly, not all abstract consistency classes are saturated, since the empty set is 
one that is not, even if ~ is empty. 

In the definition of abstract consistency class, we only had to require atomic consistency, i.e. 
that there are no atomic propositions that contradict each other in one abstract consistent set, 
to ensure consistency (see 4.8). The authors conjecture that a similar theorem can be proven for 
saturatedness: 

Conjecture: Let rE be an atomic saturated abstract consistency class. Then there 
exists an saturated abstract consistency class rE, with rE is a subclass of fE. 

Such a result would be of practical importance, as it allows to reduce the problem of proving 
saturatedness of a given calculus to proving atomic saturatedness. 

Lemma 4.11. Let rE be a saturated abstract consistency class, <I> E rE and A an atomic sentence. 
Then <I> * (A V...,A) E fE. 

Proof: Since rE is saturated and <I> E fE, we must have <I> * (A V...,A) EfE or <I> * ...,(A V-,A) E 
fE· We prove the assertion by refuting the second alternative. If <I> * -,(A V -,A) EH:, then 
<I> U {...,(A V ...,A), ...,A, -,-,A, A} E rE by Y"" and Y"~. Since A is an atomic sentence we get a 
contradiction with lemma 4.8. 0 

Lemma 4.12 (Compactness of abstract consistency classes). For each abstract consis­
tency class fE exists an abstract consistency class fE of the same type, such that fE ~ fE' and 
rE is compact. Furthermore rE is saturated, iff rE is. 

Proof: (following and extending [And86], proposition no. 2506) 
We choose fE := {<I> ~ cwffo(~) Ievery finite subset of <I> is in rd. Now suppose that <I> E fE· rE 
is closed under subsets, so every finite subset of <I> is in fE and thus <I> E fE. Hence fE~ fE. 

Next let us show that each rE is compact. Suppose <I> E fE and 1J!' is an arbitrary finite subset 
of <I>. By definition of rE all finite subsets of <I> are in rE and therefore 1J!' E rE. Thus all finite 
subsets of <I> are in rE whenever <I> is in fE. On the other hand, suppose all finite subsets of <I> are 
in fE. Then by the definition of rE the finite subsets of <I> are also in fE, so <I> E fE. Thus rE is 
compact. 

Next we show that if fE satisfies Y"*, then fE satisfies Y"*, by considering the cases of defini­
tion 4.6. First note that by lemma 4.2 we have that rE is closed under subsets. 

Y"c Let <I> ErE and suppose there is an atom A such that {A, ...,A} ~ <I>. Then {A, -,A} ErE 
contradicting Y"c. 

Y"~	 Let <I> E fE' ...,-,A E <I> , 1J!' be any finite subset of <I> * A and e := (1J!' \ {A}) * ...,-,A. e is 
a finite subset of <I>, so e E rE. Since rE is an abstract consistency class and -,-,A E e, 
we get e * A E fE by Y"~. We know that 1J!' ~ e * A and fE is closed under subsets, 
so 1J!' E rE. Thus every finite subset 1J!' of <I> * A is in rE and therefore by definition 
<I> * A E fE. 

Y",8, 'Vt, Yy, Y", 'Qv, Y3 Analogous to Y"~. 

Y"q Let <I> ErE' -,(F =0-+,8 G) E <I> and 1J!' be any finite subset of <I> * -,(FW = GW). 
We show that 1J!' E rE. Clearly e:= (1J!' \ {-,(FW =GW)}) * ...,(F =G) is a finite 
subset of <I> and therefore e E fE. Since fE satisfies Y"q and ...,(F = G) E e, we have 
e * ...,(FW = GW) E rE by Y"q. Furthermore, 1J!' ~ e * -,(FW = GW) and rE is closed 
under subsets, so 1J!' E rE. Thus every finite subset 1J!' of <I> * ...,(FW =GW) is in fE, 
therefore by definition we have <I> * -,(FW =GW) E fE. 

Y"b	 Let <I> E fEwith -,(A =B) E <I> but <I>U{A,-,B} i <I> and <I>U{-,A,B} i <I>. Then there 
exists finite subsets <I>1 and <I>2 of <I> such that <I>1 * {A, -,B} i fE and <I>2 * {...,A, B} i 
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Definition 4.9 (Saturated). We call an abstract consistency class I ;  atomically saturated,
iff for all  € I; and for all atomic sentences A € cuff,(X), we have ® x A € Ix or $+* -A  € > .
If this property holds for all sentences A € cuff,(Z), then we call Ix saturated.

Remark 4.10. Clearly, not all abstract consistency classes are saturated, since the empty set is
one that is not, even if is empty.

In the definition of abstract consistency class, we only had to  require atomic consistency, i.e.
that there are no atomic propositions that contradict each other in one abstract consistent set,
to ensure consistency (see 4.8). The authors conjecture that a similar theorem can be proven for
saturatedness:

Conjecture: Let Ix be an atomic saturated abstract consistency class. Then there
exists an saturated abstract consistency class IX, with Ix: is a subclass of  If}.

Such a result would be of practical importance, as it allows to reduce the problem of proving
saturatedness of a given calculus to  proving atomic saturatedness.

Lemma 4.11.  Le t  I be a saturated abstract consistency class, ® € I and A an  atomic sentence.
Then $® *(A V -A )  EI .

Proof: Since IX is saturated and ® € IX, we must have ® * (A  V A )  ez or $+*-"(AV-A) €
Iz. We prove the assertion by refuting the second alternative. If ® x - (A V ~A) € I ,  then
® U { - (AV-A ) , -A , - -A  A} € It  by VA and V.. Since A is an atomic sentence we get a
contradiction with lemma 4.8. a

Lemma 4.12 (Compactness of  abstract consistency classes). For each abstract consis-
tency class Ix exists an abstract consistency class IX of the same type, such that Iz C If, and
IX is compact. Furthermore Ig is saturated, iff I !  is.

Proof: (following and extending [And86], proposition no. 2506)
We choose IX := {®  C cuff, (XZ) | every finite subset of  ® is in Iz}. Now suppose that ® € Iz. X
is closed under subsets, so every finite subset of ® is in  I ;  and thus ® € X .  Hence 5 CB .

Next let us show that each IX is compact. Suppose ® € IX and ¥ is an arbitrary finite subset
of ®. By  definition of  IX all finite subsets of  ® are in Iz and therefore ¥ € IX. Thus all finite
subsets of ® are in  IX. whenever ® is in  IX. On the other hand, suppose all finite subsets of are
in IX. Then by the definition of IX the finite subsets of ® are also in 5 ,  so ® € X .  Thus IX is
compact.

Next we show that if I ;  satisfies V., then IX satisfies V . ,  by considering the cases of defini-
tion 4.6. First note that by lemma 4.2 we have that IX is closed under subsets.

V; Let ® € X and suppose there is an atom A such that {A , -A }  C ®. Then {A , -A }  eI;
contradicting Vz.

Vo. Let ® € I ,  A € ®, U be any finite subset of # * A and © :=  (© \ {A})*—-A. © is
a finite subset of ®, so © € Ik. Since X is an abstract consistency class and A € © ,
we get O x A € Is by V... We know that ¥ C © * A and I} is closed under subsets,
so ¥ € Is. Thus every finite subset ¥ of  ® * A is in Ix and therefore by definition
$+A€CKH.

Va, Vi, Wo, Va, Wr, Va Analogous to  VL.
Vo Le t®  e I  ~(F =>  G) € ® and ¥ be any finite subset of ® + « (FW = GW).

We show that ¥ € I .  Clearly © := (U  \ {~(FW = GW)})  + ~ (F  = G) is a finite
subset of  ® and therefore © € Ii. Since I ;  satisfies V;  and - (F  = G)  € ©,  we have
O x (FW = GW)  € I ;  by  Vo. Furthermore, ¥ C © * ~(FW = GW)  and I ;  is closed
under subsets, so ¥ € Ix. Thus every finite subset U of ® * ( FW = GW) is in I},
therefore by definition we have ® + (FW = GW) € I .

% Let ® € If  with (A  =B )  € ® but 2U{A , -B }  ¢ ® and U { -A ,B }  ¢ ®. Then there
exists finite subsets ®;  and ® ,  of ® such that ®, * {A , -B }  ¢ I and & ,  * {A ,B }  ¢
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f~. Now we choose If?3 := If?l U If?2 * ...,(A =B). Obviously If?3 is a finite subset of 
If? and therefore If?3 E fE. Since fE satisfies \7b, we have that If?3 U {A, ...,B} E rE or 
If?3 U {...,A, B} E rE. From this and the fact that extensional abstract consistency classes 
are closed under subsets we get that If?l U {A,...,B} E fE or If?2 U {...,A,B} E rE, which 
contradicts our assumption. 

For the proof that fE is saturated, let If? E fE' but neither If? * A nor If? * ...,A be in rE. Then 
there are finite subsets If?+ and <1>- of If? such that If?+ *A tt r~ and If?- * ...,A tt f~ (since all finite 
subsets of If? are in f~). As W:= If?+ U If?- is a finite subset of If?, we have W E f~. Furthermore, 
W* A E f~ or W* ...,A E fE, because rE is saturated. rE is closed under subsets, so If?+ * A E rE 
or If?- *...,A E fE. This is a contradiction, so we can conclude that if If? E f~, then If? * A E rE or 
If? * ...,A E fE. 0 

4.2 Hintikka Sets 

Now, we define Hintikka sets, which are maximal elements in an abstract consistency class. Hin­
tikka sets connect syntax with semantics, as they provide the basis for the model constructions in 
the model existence theorem 4.28. 

Definition 4.13 (L-Hintikka Set). Let fE be an abstract consistency class, then a set 1-£ is 
called a L-Hintikka set for fE, iff it is maximal in fE, Le. iff for each sentence D E cwffo('2:,) 
such that 1-£ * D E fE, we already have D E 1-£. 

In the following we discuss properties of L-Hintikka sets. Since we have different types of 
abstract consistency classes, depending on the additional requirements f, q and h, we have to 
discuss different Hintikka lemmata. 

Theorem 4.14 (Hintikka Lemma for 2lCC!l7t). IffE is a saturated 2lCC!l7t and 1-£ is maximal in 
rE, then the following statements hold for all A, B E cwffo (L), F E cwffo<-+o (L) and C, D, E E 
CWffo«L): 

\7c" A tt 1-£ or...,A tt 1i. 
\7cb A E 1-£, iff...,A tt 1-£. 
~c ...,A E 1-£, iff A tt 1-£. 
\7-, (...,...,A) E 1-£, if! A E 1-£. 

\7,6 If A 4,6 B, then A E 11., if! B E 11.. 
\7v (A V B) E 1-£, iff A E 1-£ or B E 1-£. 
\7" ...,(A V B) E 1-£, iff...,A E 1-£ and...,B E 1-£. 
'Vv IIO<F E 1-£, iff for each D E CWffo«L) we have FD E 1-£. 
~ ...,IIO<F E 1-£, if! there is aD E CWffo«L) such that ...,FD E 1-£. 
\7=~ A =0< A E 1-£ 
\7=c If F[C]p E 1-£ and C =0< D E 11., then F[D]p E 1-£ 
\7.:...y C =0< DE 1-£, iffD =0< C E 1-£ 
\7=t~ C =0< D E 1-£ and D =0< E E 1-£, then C =0< E E 1-£ 

"Vt (A V ...,A) E 1-£ for any sentence A. 

Proof: 

\7c" By 4.8. 

\7cb,Y;;c Both are direct consequences of the saturation of rE and \7c". 

\7-, If ...,...,A E 1-£, then 1-£ * A E fE by \7-,. The maximality of 1-£ now gives us that A E 1-£. 
To obtain the converse, let us assume that A E 1-£. Then by \7cb we know that ...,A tf. 1-£ 
and by \7cc ...,...,A E 1-£. 
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Is. Now we choose ®3 := ®, U ®;  * (A  = B) .  Obviously ®3 is a finite subset of
® and therefore ®;  € Ii. Since I i  satisfies Vu, we have that & ;  U {A , -B }  € I; or
$3 U { -A ,B }  € Iz. From this and the fact that extensional abstract consistency classes
are closed under subsets we get that ®, U {A , -B }  € I i  or ® ,  U { -A ,B }  € Ii, which
contradicts our assumption.

For the proof that IX is saturated, let ® € IX, but neither ® x A nor ® + „A  be in X .  Then
there are finite subsets ®*  and ®7 of ® such that + « A ¢ I; and ®~ + -A  ¢ I (since all finite
subsets of  ® are in x ) .  As U :=  + U &~  is a finite subset of  ®, we have ¥ € 15. Furthermore,
TxA  c l ;  or  Ux-A € Ix, because Ii: is saturated. Ii: is closed under subsets, so d+  * A € I
or ®~  x A € I .  This is a contradiction, so we can conclude that if  € I5, then x A € I f  or
ox -A  cl .  O

4 .2  Hintikka Sets

Now, we define Hintikka sets, which are maximal elements in an abstract consistency class. Hin-
tikka sets connect syntax with semantics, as they provide the basis for the model constructions in
the model existence theorem 4.28.

Definition 4.13 (X-Hintikka Set). Let If be an abstract consistency class, then a set H is
called a Z-Hintikka set for I}, iff it is maximal in Ij, i.e. iff for each sentence D € cuff,(X)
such that # =D  € Ix, we already have D € H .

In the following we discuss properties of X-Hintikka sets. Since we have different types of
abstract consistency classes, depending on the additional requirements f , q  and b, we have to
discuss different Hintikka lemmata.

Theorem 4.14 (Hintikka Lemma for Accor). If  I i  is a saturated Accor and H is maximal in
E:, then the following statements hold for all  A ,B  € cuff,(X), F € cuff,,,(X) and C ,D ,E  €
cuff ( 3 ) :

Vee Ag¢Hor -Ag¢H.
Vs  ACH,  iff ~A¢H.
Vee ACH,  iff A¢H .
V., (—A)eH ,  iffAcH.
Vs I fA&sB ,  then ACH, i f f  Be .

(AVB)eH , i f f  AcHorBeH.
- (AVB)  eH ,  iff AecH and -B cH .
T IF  € H ,  iff for each D € cuff, (X) we have FD  € H .
-II°F € H ,  iff there is a D € cuff,(X) such that -FD € H .
A="AcH
If F[C]» € H and C="D eH ,  then FID], € H
C="DeH,  iff D= "CeH
C=*DeHandD="EcH ,  thenC="EecH

% (AV-A )EH for any sentence A .

@
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Proof:

Vie By 4.8.
Vis,Vec Both are direct consequences of the saturation of Ii; and V . .
Va If - -A cH ,  then H+  A € Ii; by V.. The maximality of H now gives us that A € H .

To  obtain the converse, let us assume that A € H .  Then by  Vs  we know that —A ¢ H
and by  Vc  A eH .
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V,e	 Suppose A 4,e B. Since ,6-reduction is terminating and confluent there is unique C 
such that C is the ,a-normal-form of A and B. Without loss of generality we show that 
if A E 1£, then BE 1£. For that we suppose that A E 1£ but B f/. 1£. From the latter we 
get by by vc< that -.B E 1£. Note that the ,6-normal-form of A is C and of -.B is -.C. 
By v,e and the maximality of 1£ we know that {C, -.C} E 1£ which contradicts Vca. 

Vv	 We get the first direction by Vv and the the maximality of 1£. For the converse direction 
let us assume that A E 1£ or BE 1£ but (AVB) f/.1£. Then by \7c< we get -.(A VB) E 1£ 
and by the first direction of V" we have {-.A, -.B} ~ 1£ which contradicts the assumption 
with \7ca. 

\7"	 Analogous to the Vv case; Note that the argumentation is not circular. In both cases we 
use the forward direction of the counterpart to verify the backward direction, whereas 
forward directions are proven directly. The same holds for the proofs of Vv and \73 below. 

W	 Again, we get the first direction by wand the maximality of 1£. For the converse 
direction let us assume that FD E 1£ for each D E cwffc,,c'£.) , but II"'F f/. 1£. Then 
by \7c< -.II"'F E 1£ and by the first direction of V3 there is aD E cwff",(Y:,), such that 
-.FD E 1£ which is a contradiction. 

V3 Analogous to w. 
\7=," Suppose A ='" A f/.1£. By \7cb, the definition of =, V3 and \7b we have -.(-.QAVQA)) E 

1£ for a Q E cwff,e-+o(Y:,). Applying \7" contradicts \7cb. 

\7=c Suppose F[C]p E 1£ and C = D E 1£. From the latter we obtain (>"P.-.PC V 
PD)(>"X.F[X]p) E 1£ by the definition of = and w. Note that X is free for F[Y]p 
so we have -.F[C]p VF[D]p E 1£ by \713. From this we conclude with Vv that -.F[C]p E 1£ 
or F[D]p E 1£. Since the first option contradicts our assumption with Y::a, it must be 
the case that F[B]p E 1£. 

\7=,y By \7=" and \7=c.
 
\7=,," By v=", \7=" and v='Y.
 
"7t Saturation of fE and maximality of 1£ entails that A E 1£ or -.A E 1£. We now get the
 

assertion by \7v .	 0 

Depending on the kind of abstract consistency class we are considering, Hintikka sets have 
different properties. We discuss this different properties in the Hintikka lemmata below. 

Theorem 4.15 (Hintikka Lemma for mcc9.7lj). IffE is a saturatedmcc9.7lj and 1£ is maximal in 
fE, then for all A, B, C E cwffo (Y:,) 

\7f	 If A 4 1311 B, then A E 1£ iff BE 1£. 

Proof: Analogous to \7,8 in lemma 4.14	 0 

Theorem 4.16 (Hintikka Lemma for mcc!JJ~J. If fE is a saturated mcc!JJtq and 1£ is maximal 
in fE, then for all C E cwff",(Y:,), F, G E cwff",-+,e(Y:,): 

\7q	 -.(F =",-+,e G) E 1£, iff there is aCE cwff",(y:'), such that -.(FC =,8 GC) E 1£. 

\7qt	 F ="'-+,8 G E 1£, iffFC =,8 GC E 1£ for all C E cwff",CE) 

Proof: 

\7q	 We get the first direction by the definition of =, vq and the maximality of 1£. For the 
converse let us suppose that -.(FC = GC) E 1£ but -.(F = G) f/. 1£. From the latter 
we know by \7cb, that F = G E 1£ and by \7=" we have that -.(GC = GC) E 1£ which 
contradicts v=" and \7ca. 

\7qt	 Suppose F = G E 1£ but FC = GC f/. 1£ which means by Y::c, that -.(FC = GC) E 1£. 
From this we get by the definition of =, V3 and v,e, that -.(-.Q(FC) V Q(GC)) E 1£ 
for some Q E wff",-+o(Y:,). On the other hand we know from F = G E 1£ by the 
definition of == and W that (>..p(",-+{3)-+o.-.PF V PG) (>..X",-+{3.Q(XC)) E 1£, and hence 
by \7,8 that -.Q(FC) VQ(GC) E 1£ which contradicts Vca. For the converse assume that 
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Va Suppose A © B .  Since BS-reduction is terminating and confluent there is unique C
such that C is the S-normal-form of  A and B .  Without loss of  generality we show that
if A € H ,  then B € H .  For that we suppose that A € H but B ¢ H .  From the latter we
get by by Vie that -B  € H .  Note that the f-normal-form of A is C and of  =B  is —~C.
By Ve and the maximality of H we know that {C,~C} € H which contradicts Va.

VW We get the first direction by VW and the the maximality of # .  For the converse direction
let us assume that A € H or B € H but (AVB) ¢ H .  Then by Vie we get ~ (AVB)  € H
and bythe first direction of V i  we have { -A ,  -B}  C H which contradicts the assumption
with Va .

Va Analogous to the W case; Note that the argumentation is not circular. In  both cases we
use the forward direction of  the counterpart to verify the backward direction, whereas
forward directions are proven directly. The same holds for the proofs of W and Va below.

W Again, we get the first direction by W and the maximality of H .  For the converse
direction let us assume that FD  € H for each D € cuff, (X ) ,  but II*F ¢ H .  Then
by Vie =II°F € H and by the first direction of Va there is a D € cuff,  (X), such that
=FD € H which is a contradiction.

Va Analogous to % .
Var Suppose A =“ A ¢ H .  By  Vs,  the definition of =, VG and V}, we have -(-QAVQA)) €

H for a Q € cuff, (X). Applying Va contradicts Va.
Vee Suppose F[C], € H and C = D € H.  From the latter we obtain (AP.~PC V

PD)(AX.F[X],)  € H by the definition of = and W.  Note that X is free for F[Y],
so we have ~F[C] ,  VF [D] ,  € H by  Vs. From this we conclude with VW that —=F[C], € H
or FD],  € H .  Since the first option contradicts our assumption with Va ,  it must be
the case that FB],  € H.

Veev By V r  and Ve,
Veer By  Ver,  Vee  and  Ves .

Ye Saturation of  I3; and maximality of  H entails that A € H or -A  € H .  We  now get the
assertion by  VW. 0

Depending on the kind of abstract consistency class we are considering, Hintikka sets have
different properties. We discuss this different properties in the Hintikka lemmata below.

Theorem 4.15 (Hintikka Lemma for Accor). If is a saturated RAccan, and H is maximal in
I ,  then for all A ,B ,C  € cuff,(%)

V IFAS  B,  then AcH  i f  Bet

Proof: Analogous t o  Vj  in lemma 4.14 a

Theorem 4.16 (Hintikka Lemma for Accor,). If Iz is a saturated Accor, and H is maximal
in Iz, then for all C € cuff,  (T),  F ,G  € cuff, ,5(%):

Vi S(F  ="? G)  eH, iff there is a C € cuff,  (X),  such that ~ (FC  =" GC)  ER .
Vo  F=" "PGeH,  i f  FC="  GC  eH  for all C € cuff,(Z)

Proof:
Va We get the first direction by the definition of =, V, and the maximality of H .  For the

converse let us suppose that (FC = GC) € H but ~(F  = G) ¢ H .  From the latter
we know by  Vs ,  that F = G € H and by  V .  we have that - (GC = GC)  € H which
contradicts V.- and Va.

Ve  Suppose F = G € H but FC  = GC ¢ H which means by  V,., that ~ (FC = GC)  € H .
From this we get by the definition of =, Va and Vj, that - (=Q(FC)  v Q(GC)) € H
for some Q € wff,, ,(¥£). On  the other hand we know from F = G € H by the
definition of  = and W that (APrasg)0 :  PF  V PG)(AX,-3 .Q(XC))  € H ,  and hence
by  Ve that ~Q(FC)V  Q (GC)  € H which contradicts V,.. For the converse assume that
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FC =GC E 11. for all C E 1-£ but F =G ~ 1-£. We get by vcc that ...,(F =G) E 1-£ 
which contradicts the assumption with vq and Vca. 0 

Theorem 4.17 (Hintikka Lemma for 2lccw,"). If H: is a saturated 2lcc!mv and 1-£ is maximal 
in rE, then for all A,B E wfJoC'E): 

Vb ...,(A =0 B) E 1-£, ifJ {...,A,B} ~ 1-£ or {A,...,B} ~ 1-£ 
Vb' (A =0 B) E 1-£, ifJ {A, B} ~ 1-£ or {...,A, ...,B} ~ 1-£. 
V=i (A {:} B) E 1-£, ifJ (A =0 B) E 1-£. 
v='c Either A =0 B E 1-£ or A =0 ...,B E 1-£. 
v=" ...,(To == Fo) E 1-£, if To and Fo are defined as in lemma 3.25. 

v='" Either A =0 To E 1-£ or A =0 Fo E 1-£. 

Proof: 

Vb We get the first direction by the definition of =, Vb and the maximality of 11.. Now 
assume that {...,A, B} ~ 1-£ or {A, ...,B} ~ 1-£ but ...,(A =B) ~ 1-£. From the latter we 
know by the definition of =and 'W that {(-XPHo•...,PA V PB)(-XXo.x), (-XPo-+o....,PA V 
PB)(-XXo•...,Xn ~ 1-£ and by v{3 and Vv that one of {...,A,...,...,A}, {B'''''B}, {...,A,...,B} 
or {B, ...,...,A} must be a subset of 1-£. All four cases contradict Vca. 

Vb' Since rE is saturated we have A E 1-£ or ...,A E 1-£. From this we easily get the first 
direction by v=c. For the converse suppose that {A, B} E 1-£ or {...,A,...,B} E 1-£ but 
(A =B) ~ 1-£ which means by vcc that ...,(A == B) E 1-£. By Vb we have {...,A,B} E 1-£ 
or {A,...,B} E 11.. In each of the four cases the contradiction follows by Vca. 

v=i If we assume (A {:} B) E 1-£, then by the definition of {:} and V" we have {...,A V 

B, A V ...,B} ~ 1-£, and by vv that {...,A, A} ~ 1-£ or {...,B, B} ~ 1-£ or {...,A, ...,B} ~ 1-£ or 
{A,B} ~ 1-£. Note that the first two alternatives are impossible because of Vca. Now 
we assume that A =B ~ 1-£ from which we obtain by vcc and Vb that {...,A, B} ~ 1-£ or 
{A,...,B} ~ 1-£. We have to consider four cases and in each case we get a contradiction 
with Vca. 

v='c Assume that A =B ~ 1-£ and A =...,B ~ 1-£. By vc. we have ...,(A =B) E 1-£ and 
...,(A =...,B) E 11., and by Vb we get from the former that {...,A, B} ~ 1-£ or {A,...,B} ~ 1-£ 
and from the latter that {A,...,B} ~ 1-£ or {...,A, ...,...,B} ~ 1-£. We have to consider four 
cases and in each we get a contradiction with Vca. Analogous we can show with Vb' that 
A =B E 1-£ and A =...,B E 1-£ leads to a contradiction. 

V.:...., From \it we know that ToE 1-£. Hence by Vcb and vc. that ...,F0 E 1-£ and finally by Vb 
we get ...,(T0 =0 F 0) E 1-1.. 

V.:...." Follows immediately from v='.' 0 

4.3 Primitive Equality 

Next we will introduce abstract consistency properties for primitive equality. We have different 
options, e.g. we could introduce primitive equality by postulating = to be a functional congruence 
relation or alternatively we could state properties connecting = with =. 

Our concrete choice, namely a property postulating reflexivity and substitutivity of =, is 
motivated from a practical point of view, as we believe that reflexivity and substitutivity are more 
easy to verify in practical applications. 

Definition 4.18 (Abstract Consistency with Primitive Equality). Let 'E be signature and 
let rE be a 2lCC9]l, then we define the following condition, where <P ErE: 

Vc (r) ...,(A =a A) ~ <P 
(s) if F[A]p E <P and A = B E <P, then <P *F[B]p E H: 

Using this properties we introduce the following abstract consistency classes 2lcc9Jl, and 2lcc9Jl,. 
based upon the definition of an 2lCC9]l. 
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FC=GCeHfo ra l  CEHDbut F=G¢H. We get by Ve that -~(F = Gren
which contradicts the assumption with VW and Va.

Theorem 4.17 (Hintikka Lemma for Acc, ). If  I is a saturated Aceon, and H is maximal
in  Ix, then for all A ,B  € uff,( ¥ ) :

V%e - (A=°B )eH ,  iff { -A,B}  CH  or {A,-B}  CH
Ve (AZ=°B)eH,  i f  {A ,B }CH  or { -A , -B }  CH .
Vo  (A®B)eH ,  i f (A=°B)eEeH.
Vase Either A=°BeHorA=°-BeH.

es  (To  =F , )  €H ,  if T ,  and F ,  are defined as in lemma 3.25.
Vier Either A = °T ,eH  or  A="F, eH .

Proof:
V% We get the first direction by the definition of =, V, and the maximality of H .  Now

assume that { -A ,B }  C H or {A , -B }  C H but „ (A  = B)  ¢ H .  From the latter we
know by the definition of = and W that {(AP,—s—PA V PB)(AX,.X), (MPoz0o- PA  V
PB)(AX,~X)} € H and by Vs and W that one of {~A,-—A}, {B , -B } ,  { -A, -B}
or {B ,  ——A} must be a subset of  H .  All four cases contradict Via.

Vir Since Ig is saturated we have A € H or -A  € H .  From this we easily get the first
direction by V... For the converse suppose that {A ,B }  € H or { -A , -B }  € HM but
(A = B)  ¢ H which means by Vc  that (A = B)  € H .  By  V,  we have {-~A,B} € H
or {A ,B }  € H .  In each of  the four cases the contradiction follows by V..

V.: If we assume (A  & B )  € H ,  then by  the definition of  & and Va we have { -A V
B,AV-B }  CH ,  and by W that { -A ,A }  CH  or { -B ,B }  CH  or {-A,-B} © H or
(A ,  B }  © H .  Note that the first two alternatives areimpossible because of Vie. Now
we assume that A = B ¢ H from which we obtain by Vc  and V;  that { -A ,B } CH  or
{A , -B }  € H .  We have to consider four cases andin  each case we get a contradiction
with Va .

Vz: Assume that A = B ¢ Hand A = -B  ¢ H .  By Vc we have (A = B)  € H and
„ (A = =B) € H ,  and by  V,  we get from the former that { -A ,B } C H or {A , -B } CH
and from the latter that {A , -B }  C H or { -A , - -B}  C H .  We have to consider four
cases and in each we get a contradiction with Va. Analogous we can show with Ve that
A =B  eH  and A = -B  € H leads to a contradiction.

Veer From V;  we know that T ,  € H .  Hence by  Vs  and V,. that Fo  € H and finally by  %
we get —(T, =° Fo) € H .

Vs  Follows immediately from Vcc. [m

1
,

4.3 Primitive Equality
Next we will introduce abstract consistency properties for primitive equality. We have different
options, e.g. we could introduce primitive equality by  postulating = to  be a functional congruence
relation or alternatively we could state properties connecting = with =.

Our concrete choice, namely a property postulating reflexivity and substitutivity of = ,  is
motivated from a practical point of  view, as we believe that reflexivity and substitutivity are more
easy to verify in  practical applications.

Definition 4.18 (Abstract Consistency with Primitive Equality). Let X be signature and
let Iz be  a Acco,  then we define the following condition, where ® € Ix:

Ve (r) 2(A=>A)¢
(s) if F [A l , c®  and A=B € ®, then ® + F [B ] ,  € &

Using this properties we introduce the following abstract consistency classes Accax, and Accor,
based upon the definition of  an Accoy.
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Remark 4.19. Just as in the case with Leibniz equality, we can extend a abstract consistency class 
with primitive equality so that it is compact. 

Proof: We proceed just as in the proof of Lemma 4.12 but check the cases for 'V.(r) and 'Vc (s). 
For 'Vc(r) let <P E fEand suppose there is an A E wffoC'E,) with ...,(A = A) E <P. Then 

{..., (A = A)} E fE contradicting 'V. (r). 
For 'V.(s) Let <P E fE' {F[A]p, A = B} ~ <P, 'l1 be any finite subset of <P *F[B]p and e := (IJI \ 

{F[B]p}) U {F[A]p, A = B}. e is a finite subset of <P, so e E fE. Since fE is an 2tCC9J7,b and 
{F[A]p,A = B} ~ e, we get e * F[B]p E fE by'V.(s). We know that 'l1 ~ e * F[B]p and fE is 
closed under subsets, so IJI E fE. Thus every finite subset 'l1 of <P *F[B]p is in fE and therefore by 
definition <P *F[B]p E fE. 0 

The next lemma discusses the connection between Leibniz equality and primitive equality in 
case we are considering an 2tcc9J7, . 

Lemma 4.20 (Leibniz vs. Primitive Equality). Let fE be a saturated 2tCC9J7,. For all <P E fE, 
all A,B E wffor£.) and F,G E wffo-+{3CE.) holds: 

1.	 If ...,(A =0 B) E <P then <P * ...,(A =0 B) E fE 
2.	 If ...,(A =0 B) E <P then <P * -,(A =0 B) E fE 

3. If A =0 B E <P then <P * A =0 B E fE
 

4· If A =0 B E <P then <P *A =0 B E fE
 
5.	 If ...,(F =0-+{3 G) E <P then <P * ...,(Fw ={3 Gw) E fE for any constant w E ~o, which does 

not occur in <P. 

Proof: 

1.	 Suppose ...,(A =0 B) E <P but <P * -,(A =0 B) 'I. fE . Since fE is saturated we have 
<P *A =0 B E fE and by 'Vc(s), that <P * A =0 B * ...,(B =0 B) E fE . From the definition of 
= we further conclude with 'V:J that <P * A =0 B * ...,(B =,:0 B) * -,(...,pB VpB) E rE for any 
constant p E ~o-+o. From this we get the contradiction with 'V" and lemma 4.8. 

2.	 Suppose ...,(A =0 B) E <P but <P * ...,(A =0 B) 'I. rE. Since fE is saturated we have <P *A =0 
B E rE and by definition of =, 'Vv- ·and the subset closure of rE that <P * (>..Po-+o....,PA V 
PB)(>..Xo.A = X) E rE. By 'V{3, 'Vv and the subset closure of fE we finally get that 
<P * ...,(A = A) E fE or <P * A = B E rE. The former is contradictory with 'V.(r) and 
lemma 4.8, and the latter with the assumption ...,(A =0 B) E <P and lemma 4.8. 

3.	 Suppose A =0 B E <P but <P * A =0 B 'I. fE. Since rE is saturated we have <P * ...,(A =0 
B) E fE and by (2) and the subset closure of fE that <P * ...,(A =,:0 B) E fE which contradicts 
the assumption with lemma 4.8. 

4.	 Analogous to (3) with (1). 
5.	 From ...,(F =0-+{3 B) E <P we can derive with (2), 'Vq , (1) and the subset closure of fE that 

<P * ...,(FC =0-+{3 BC) E fE. 0 

Remark 4.21. Lemma 4.20 shows that in an 9JI. the symbol = defines the same relation as =, 
namely a functional congruence relation modulo v. And if we are considering an VJl.b then both 
describe the equality relation. This shows that the conditions 'Vc (i) and 'Vc(s) are sufficient for this 
purpose. We could alternatively introduce primitive equality by requiring the statements 1. and 
2. of lemma 4.20, but this would lead to more complicated proof obligations when proving the 
completeness of calculi with primitive equality. 

We now discuss two new Hintikka lemmata, which take the logical nature of = into account 

Theorem 4.22 (Hintikka Lemma for 2tcC9J7,). If fE is a saturated 2tcc9J7, and 11. is maximal 
in fE, then the following statements hold for all A,B, C E wffo(~)' F, G E wffo-+{3(~) and 
D,E E wffo(~): 

V'=~ (A =0 A) E 11.. 
'V=c If D[A]p E 11. and A =0 B E 11., then D[B]p E 11.. 
'V=,y A =0 B E 11., iff (B =0 A) E 11.. 
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Remark 4.19. Just as in the case with  Leibniz equality, we can extend a abstract consistency class
with primitive equality so that i t  is compact.

Proof: We proceed just as in  the proof of Lemma 4.12 but check the cases for V,(r) and V,(s).
For V ( r )  let ® € I}  and suppose there is  an A € wff„(Z) with (A  = A)  € ®. Then

{—(A = A) }  € I; contradicting V,(r).
For V,(s) Let ® € I}, {F[A], , A =B }  C ®,  ¥ be  any finite subset of  ® * F[B],  and © := ( ¥ \

{F [B] , } )  U {F[A]p, A = B } .  O is a finite subset of  ®, so © € I .  Since I}  is an Aceon, and
{F[A] , ,A = B }  C ©, we get © *F[B], € Ii; by V.(s). We know that ¥ C © * F[B],  and X is
closed under subsets, so ¥ € IX. Thus every finite subset ¥ of ® * F[B],  is in  I}; and therefore by
definition ® * F[B], € X.  a

The next lemma discusses the connection between Leibniz equality and primitive equality in
case we are considering an 2ccoy, .

Lemma 4 .20  (Leibniz vs.  Primitive Equality). Let  I ;  be a saturated Accson, . For all ® € Ii,
all A ,B  € uff (3)  and F ,G  € uff, ,5(X) holds:

I F - (A=* "B )cP then®+- (A="B )  ek
If (A  = “  B )  € ® t hen®* - (A=*B ) ey
I fFA="Be®then®*xA="Bec lk
IfA=Becdthend+xA="Belx
I f  ~ (F  = "  G)  € ® then ® * «(Fw = "  Gu) € I ;  for any constant w € a ,  which does
not  occur in ®.

Proof:
1. Suppose (A  =“ B) € ® but ® + (A  = "  B)  ¢ I .  Since I; is saturated we have

® x A = B € X and by V,(s), that ® * A =>  Bx  ~(B  =“ B)  € Iz.. From the definition of= we further conclude with V5 that ® * A ==  B x - (B =" B)  * ~(-pB V pB) € I for any
constant p € Zoo .  From this we get the contradiction with V5 and lemma 4.8.

2. Suppose (A  =“  B )  € ® but ®*—(A =" B)  ¢ I .  Since I ;  is saturated we have ® * A ="
B € Iz and by definition of  =, WV ‘and the subset closure of  I that ® x (APy—,.~PA V
PB)AXaA = X )  € Iz. By  Va, W and the subset closure of Iz we finally get that
$ + (A  = A )e  RZ o rdxA  =B  € Lk. The former is contradictory with V,(r) and
lemma 4.8, and the latter with the assumption (A  = “  B )  € ® and lemma 4.8.

3. Suppose A =“ B € ® but $+ A =>  B ¢ X .  Since I ;  is saturated we have & * (A  = “
B)  € I;  and by (2) and the subset closure of Ii; that ® x (A  =" B)  € I; which contradicts
the assumption with lemma 4.8.

4. Analogous to (3) with (1).
5. From —(F = "  B )  € ® we can derive with (2), Vz, (1) and the subset closure of I}; that

$ x -+(FC = "  BC)  € kg. O

S
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Remark 4.21. Lemma 4.20 shows that in  an 97  the symbol = defines the same relation as =,
namely a functional congruence relation modulo v .  And if we are considering an M then both
describe the equality relation. This shows that the conditions V;(r) and V,(s) are sufficient for this
purpose. We could alternatively introduce primitive equality by requiring the statements 1. and
2. of lemma 4.20, but this would lead to more complicated proof obligations when proving the
completeness of calculi with primitive equality.

We now discuss two new Hintikka lemmata, which take the logical nature of = into account

Theorem 4.22 (Hintikka Lemma for Accor,). If  I i  is a saturated Aceon, and H is maximal
in Ii, then the following statements hold for all A ,B ,C  € uff,(Z), F ,G  € uff,,3(Z) and
D,E  € uff,(T):

- (A=*A )eH .
« IfD[A], € H and A => B € H,  then DB],  € H.
sy  A=BecH,  i f B= "A )eH .d

g
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V='r A =a B E 1£ and B =a C E 1£, then A =a C E 1£ 
\1=. ...,(F =a~{3 G) E 1£, iff there is aCE wffaC'£), such that ...,(FC ={3 GC) E 1£. 
\1=., F =a~{3 G E 1£, iff FC ={3 GC E 1£ for all C E wffa (:E). 
\1== A =a B E 1£, iff A =a B E 1£. 

\1==' ...,(A =a B) E 1£, iff ...,(A =a B) E 1l. 

Proof: 

\I=r Follows by Y;,(r) and \lcb. 
\I=c By ma.ximality of 1£ and Y;,(s). 

v=oy,V=,r By V=r and v=c 
v== By maximality of 1£,4.20(3.) and 4.20(4.)
 

\1==' By maximality of 1£, 4.20(1.) and 4.20(2.)
 

v=. Follows from vq with v==.
 
v=., Follows from vq with v=='. o
 

Theorem 4.23 (Hintikka Lemma for ~CCror.b)' If rE is a saturated ~CCror.b and 1£ is maximal 
in rE, then for all A, B E wffo ("i:.): 

V=b ...,(A =0 B) E 1£, iff {...,A,B} ~ 1£ or {A,...,B} ~ 1£. 
\I=b' A =0 BE 1£, iff {A,B} ~ 1£ or {...,A,...,B} ~ 1£. 
v=_ A {:? B E 1£, iff A = B E 1£. 
v='c Either A = BE 1£ or A = ...,B E 1£. 

Proof: The statements follow direct from their counterparts Vb - v==,c in lemma 4.17 with the 

help of v== and v=='. 0 

4.4 Model Existence 

Next we come to the proof of the abstract extension lemma, which will nearly immediately yield 
the model existence theorems. For the proof we adapt the construction of Henkin's completeness 
proof from [Hen50]. 

Theorem 4.24 (Abstract Extension Lemma). Let:E be a signature, fE be a compact abstract 
consistency class and let H E fE be a sufficiently "i:.-pure set of "i:.-sentences. Then there exists a 
"i:.-Hintikka set 1£ for fE, such that H ~ 1l. 

Proof: We construct 1£ by inductively constructing a sequence of sets 1£i such that 1£i E fE. 
Then the "i:.-Hintikka set is 1£ := UiEN 1£i ErE. 
Let AI, A 2 , ••• be a sequence of all sentences in wffo("i:.). We define 1£0 := H and the set 1£n+l 
according to the table 3. Since the construction is uniform for all kinds of abstract consistency 
classes 1£n+l depends on the respective kind of abstract consistency class rE we are interested in 
and in the properties of An with respect to this rE. 

Next we show by induction, that 1£n E rE for all n E IN. The base case holds by construction 
(for all kinds of abstract consistency classes). So let 1£n* E rE. We have to show that 1£n+l ErE. 
This is trivial in case 1£n*An ~ fE (again for all abstract consistency classes). In case 1£n*An ErE 
we have to consider four sub cases: 

1.	 If An is of form ...,naB, then we get the conclusion trivially by 'V:J (for all cases). 

2.	 If An is of form ...,(F =a~{3 G) the conclusion is either trivial (by V3 in case of an ~CCmt, 
~cc91T", ~cc!lJlj or 2tcc9Jlp,) or follows by vq • 

3.	 If An is of form ...,(F =a~{3 G) the conclusion is either trivial (by 'V:J in case of an ~CCmt, 

~cc!mo' ~cc!lJlj, ~cc!7Rto' ~ccOO1q, ~ccOO1q&) or follows by 4.20(5). 
4.	 If An is of any other form, then the conclusion is trivial (for all cases). 
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A=BeHandB=CeH,  then A=“"CeEeH
« S(F  = “  G)  € H ,  iff there is a C € wff„(X), such that ~ (FC  =#  GC)  € H .

F= f  GEH,  iff FC=P GC € H for al l C € uff, (XT).
A="BeH,  iff A= "BeH.

» =(A=*B )eH ,  iff (A=>B)  eH .

Proof:

- 4
i 

i 
i 

d
l 

d
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Ver Follows by V,(r) and Va.
VL. By  maximality of  # and V,(s).
Vow, Vtr  By Var and V_-
V_. By maximality of H ,  4.20(3.) and 4.20(4.)
V_. By maximality of H ,  4.20(1.) and 4.20(2.)
V.. Follows from V, with V_..
Vo” Follows from V,  with Vox. mi

Theorem 4.23 (Hintikka Lemma for Aceon,). If  I t  is a saturated Accor, and H is mazimal
in  Ii, then for all  A ,B  € wf,(X):

Ve  —(A=°B)eH,  iff { -A ,B }CH  o r  {A , -B }  CH .
Vv  A="BeH,  iff {A ,B}CH  or  { -A, -B}  CH.
Vai Ae®BeH,  i f  A=BeH.
V i te  Fither A=BeHorA=-BeH.

Proof: The statements follow direct from their counterparts V ,  — Vete in lemma 4.17 with the
help of  V_  and V_... =

4.4 Model Existence

Next we come to the proof of the abstract extension lemma, which will nearly immediately yield
the model existence theorems. For the proof we adapt the construction of  Henkin’s completeness
proof from [Hen50].

Theorem 4.24 (Abstract Extension Lemma). Let X be a signature, I :  be a compact abstract
consistency class and let H € Ix be a sufficiently X-pure set of  T-sentences. Then there exists a
X-Hintikka set H for Ix, such that H C H .

Proof: We construct H by inductively constructing a sequence of sets H* such that H i  € I .
Then the Z-Hintikka set is H :=  J ;  H '  € 5 .
Let A j ,  A, , . . .  be a sequence of all sentences in wff,(X). We define H°  :=  H and the set HH"?
according to  the table 3. Since the construction is uniform for all kinds of abstract consistency
classes H”+*! depends on  the respective kind of  abstract consistency class I3: we are interested in
and in  the properties of A ,  with respect to this I3.

Next we show by  induction, that H ”  € Ij; for all n € IN. The base case holds by construction
(for all kinds of abstract consistency classes). So let H"*  € Iz. We have to  show that HH"! € I .
This is trivial in case H"*  A ,  ¢ Is (again for all  abstract consistency classes). In  case H " *A ,  € I ;
we have to consider four sub cases:

1. If A ,  is of form -II*B, then we get the conclusion trivially by V5 (for all cases).
2. If A ,  is of form ~(F zap  G)  the conclusion is either trivial (by V5 in  case of an Accor,

Aceon,, Aceon, or Accan,) or follows by Vj.
3. If A ,  is of form ~(F =*"# G)  the conclusion is either trivial (by Va in case of an Accor,

Accor,, Aceon,, Accan,,, Acca,, Accan,,) or follows by 4.20(5).
4. If A ,  is of any other form, then the conclusion is trivial (for all cases).
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tin+1 
2lCC!lJ! /2lcc!7Jlt, / 

2lCC!lJ!, /2lCC'YR,b 

2lCC!mq j2lCC'JR"p / 2lCCm. /2lCC<.m.t, / 

tin * An ~ H: tin tin tin 

tin * An 
EH: and 

An of form 
-,rr"'B 

tin * A n* 
-,Bw 

tin * A n* 
-,Bw 

tin * A n* 
-,Bw 

An of form 
-,(F ="'-+13 G) 

tin * An tin * A n* 
-,(Fw =13 Gw) 

tin * A n* 
-,(Fw =13 Gw) 

An of form 
-,(F =",-+(3 G) 

tin * An tin * An tin * A n* 
-,(Fw ==13 Gw) 

An of other form tin * An tin * An tin * An 

wEE", is a constant which is fresh for tin 

Figure 3: Construction of 1{n +l. How to read the table: Assume rE is an an \2lcc'JJ1q and An is of 

form -,(F =cx-t{3 G). The table defines 1{n +l to be 1/.n * An * -,(Fw ={3 Gw) for a fresh w E ~a 
in case An E rE and 1/.n otherwise.) 

Since rE is compact, we also have 1{ ErE. 
Now we know that our inductively defined set 1{ is indeed in rE and that H ~ 1{. It only 

remains to show that 1{ is maximal in rE. So let An E wffo(~) be the n-th sentence from the above 
sequence, such that 1{ * An E rE. Since 1/. is closed under subsets we know that 1{n * An ErE. 
By definition of 1{n+l we conclude that An E 1{n+l and hence An E 1/.. 0 

Next we define two congruence relations which we need in the model existence theorems below 
in order to build quotient models. 

Definition 4.25. Let H: be an abstract consistency class and 1{ be a Hintikka set for rE. For all 
A, B E wff(~) we define: 

A, ~11. B" iff A =' B E 1{. 

A==B if l' == L
 

A, "'11. B" iff {A, B} E 1{ or {A, B} n 1{ == 0 if1'==o

{ AC ""11. BC for all C E wffe" (~) if l' == a -t ,B 

Lemma 4.26. Let rE be an abstract consistency class and 1{ be a Hintikka set for rE. Then ""11. 

is a functional congruence relation, if rE is an \2lccm and ~11. is a functional congruence relation, 
if rE is an \2lCC'JJ1qb • 

Proof: 
~11. is a functional congruence relation by V'=,=~, Y'=,='Y, V'=,=t~, Y'q and V'q" which are valid in case 

rE is an \2lcc'JJ1q•. 
Note that ""11. is a functional congruence by construction. 0 

Remark 4.27. Note that in 3.36 EXT~-t{3 does not hold for = and hence ~11. is not a functional 
congruence in case rE is not at least an \2lcc'JJ1q. Hence ~11. is unsuitable for the model construction 
of an ~ (or WIt,) from a given 91it (or 9J7) as demonstrated below but fits well for the construction 
of an ~ or ~. Fortunately the relation "'11. is already a functional congruence in case rE is an 
2l.cc!l1lj . 

We now use the ~-Hintikka sets, guaranteed by lemma 4.24, to construct a ~-valuation for the 
~-term structure that turns it into the desired model M. 

Theorem 4.28 (Model Existence). Let rE be an saturated \2lcc and H E H.: be a sufficiently 
~-pure set of sentences. For all * E {9J7, 91it,~,~,~, 9Ji", VJ1a,} we have: If rE is an \2lcc*, 
then there exists a countable model in * that satisfies H. 
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Accan /Accon, / | Accan, [Accom / Aceon, /Acc , / |
HHL Acco, [Acco

H*  * An  ¢ I s  HT  HH” HR

An  of form H™ * Ap  H™ * An*  H "  + Ax
-I1°B -Bw -Bw  -Bw
A,  of form H «= A ,  H™ + Ant  H® * An t

H+ An  | « (F= " "?  G)  (Fw =? Gu) (Fw =? Guw)
€ I ;  and | A ,  of  form H™ = A ,  H "  = A ,  H™ x An t

~(F  =>"  @) =(Fw =?  Gu) |
A,  of  other form H*  x A ,  H™ + A ,  H™ x An

w € Ya is a constant which is fresh for H ”

Figure 3: Construction of H "+ ! .  How to read the table: Assume I i  is an an Acc, and A ,  is of
form ~ (F  =~? G) .  The table defines H+!  to  be H "  x A ,  * ~(Fw +?  Gu) for a fresh w € a
in case A ,  € I f  and H ”  otherwise.)

Since Ix is compact, we also have H € Ix.
Now we know that our inductively defined set H is  indeed in  §; and that HC  H .  It only

remains to show that # is maximal in  x .  So let A ,  € wff,(X) be the n-th sentence from the above
sequence, such that H * A ,  € I .  Since H is closed under subsets we know that H "  * A ,  € I .
By  definition of  H™*! we conclude that A ,  € HH"! and hence A,, € H .  0

Next we define two congruence relations which we need in the model existence theorems below
in order to build quotient models.

Definition 4 .25.  Let IX be an  abstract consistency class and H be  a Hintikka set for I5. For all
A,B  € uff(X) we define:

Ay  Au By, iff A= "BeH.

A=B  f y= ı
A,  4 B, ,  i f  { {A ,B }e  Hor  {A ,B }0H=0  if7y=0

AC~yBCfo ra l lCe  wff„(E) f£y=a-—+Bß

Lemma 4.26.  Let  Ig be an abstract consistency class and H be a Hintikka set for Iz. Then ~y
is a functional congruence relation, if  I3; is an Uccop and ~y  is a functional congruence relation,
i f  Ix is an Acc .

Proof:
~.  is a functional congruence relation by Vr, Voy, Ver, Va and Vy, which are valid in  case

I is an Aceop,,-
Note that ~4  is a functional congruence by construction. 0

Remark 4.27. Note that in 3.36 EXT?  does not hold for = and hence ~4  is not a functional
congruence in case I3; is not at  least an  Accor,. Hence — is unsuitable for the model construction
of an Mg  (or My) from a given Mk (or M )  as demonstrated below but fits well for the construction
of an Mg  or My. Fortunately the relation ~ is already a functional congruence in case Ix is an
Acca, .

We now use the Z-Hintikka sets, guaranteed by lemma 4.24, to  construct a X-valuation for the
Y-term structure that turns i t  into the desired model M .

Theorem 4.28 (Model Existence). Let I :  be an saturated Acc and H € Ix be a sufficiently
E-pure set of  sentences. For all x € {M,  9%, Wy, Mg, My, IM, Ws} we have: I f  IE is an  Acc.,
then there exists a countable model in * that satisfies H .
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Proof: Let H: be an abstract consistency class. We can assume without loss of generality 
(see lemma 4.12) that r~ is compact, so the preconditions of 4.24 are met, and therefore there 
exists a ~-Hintikka set H ~ wJJo(~) for r~, such that H ~ H. 

Now, for each different kind of abstract consistency class, we will construct a countable model 
Mtl of the corresponding type. These model constructions closely reflect the relations of the 
different model types as discussed in section 3 and shown in figures 1 and 2. We start with 
the construction of a !m and a 9J1r based upon the non-functional termstructure TS(~){3 and the 
functional TS(~lT/. The remaining model constructions are then based upon these two basic 
constructions. 

!m	 Let r~ be an 2tccwr. Given the ~-Hintikka set H with H ~ H from above, we choose 
v(C) := T, iff C E H. Note that we have v(C) := F, iff -,C E H by 'Vcb. By 'V,a we know 
that v is well-defined on cwJJ(~) -l-j} and by 'Vcb, "Vcc we have that v is a total function on 
V~. _ 
Furthermore by y;'b, 'Vcc, "Vv and 'V.t we have that v is a ~-valuation of the ~-term 

structure TS(~){3 and thus jV{tl := (TS(~){3,v) is a ~-model by construction. We have 
Mtl 1= H, since H ~ H. Note that M tl is indeed countable, since the sets of well-typed 
formulae are countable. 

9J1r Let r~ be an 2tccWlj and hence also an 2tccwr. Analogous to the previous case we construct 
the countable ~-model M7-£ := (TS(~){3T/,v) with M 1= H. Note that in this case v is 
well-defined on V?T/ because of VI. By lemma 3.15 we know that M is functional and 
hence M is an 9J1r. 

We proceed with the construction of a 9JIq and 9J1t, based upon the previous construction of a !m 
and accordingly of a 9JIq and a ~ based upon a 9J1r. Thus we start out with a countable ~-model 

M := (TS(~),a,v) or M := (TS(~){3T/,v) such that M 1= H. Property q is easy to verify, as it 
follows from the properties discussed in the Hintikka-Iemmata 4.14 and 4.16. 

9JIq	 Let r~ be an 2tccWlq. From 'V=r, "V='Y, 'V=,r, 'Vq and 'Vq, we can derive that == Cl< is indeed 
the qCl< required by property q and hence M is a countable 9JIq. 

To verify property b instead we have to construct a M' from M by reducing the set of truth 
values to {T, F}, which can be done with the help of a functional congruence relation. 

9J1t,,~	 Let r~ be an 2tccWlq or 2tcc~. By lemma 4.26, 'Vb' and 'Vcc we can show that the relation 
"'tl defined in 4.25 is a functional ~-congruence for M and thus, by lemma 3.33, the 
quotient structure M /~11. is a functional ~-model which satisfies H. From "Vcb, "Vc. and 
the choice of v we conclude that "'tl has exactly two equivalence classes on TSo(~){3T/. 
Thus we have V o == {T:= [To]],F:= [Fo]}, if we define To and F o as in lemma 3.25. 
Using 'Vt and 'Vcb· we further get that v is the identity relation. Finally note that M /~11. 

is countable since M is. 

We finish the constructions for the cases without a primitive notion of equality with the construc­
tion of a ~-Henkin model (.5) = 9Rcp) in case we are considering an 2tCCWlqb. 

We start with the 9JIq M guaranteed by the discussion above. Analogous to the construction 
of a 9J1t" we make use of a functional congruence relation in order to construct a quotient model 
which fulfills property b. But instead of the relation "'tl we had to use before, we apply the simpler 
relation ~tl which is a functional congruence relation for 9Rcps. 

.5) = ~	 By lemma 4.26 and 'Vb' ,'Vcc we know that the relation ~7-£ is a functional ~-congruence 

for M, so the quotient structure M/",lI. is a 9JIq with M/",lI. 1= H by lemma 3.33. From 
"VCb, 'Vcc and the choice of v, we conclude that "'tl has exactly two equivalence classes 
on TSo(~){3T/. Thus we have 1)0 == {T:= [To],F:= [Fo]}, if we define To and Fo as in 
lemma 3.25. Using 'Vt and y;'b we further get that v is the identity relation. Finally note 
that M/",lI. is countable since M is. 

It remains to discuss the cases with primitive equality and we start with the 9JIq, resp. 9Rcp from 
above. 

4 .4  Model Existence 27

Proof: Let Ix be an abstract consistency class. We can assume without loss of generality
(see lemma 4.12) that Ix is compact, so the preconditions of 4.24 are met, and therefore there
exists a I-Hintikka set H C wff,(X) for Ii, such that H CH .

Now, for each different k ind of  abstract consistency class, we will construct a countable model
M™M of the corresponding type. These model constructions closely reflect the relations of the
different model types as discussed in section 3 and shown in figures 1 and 2. We start with
the construction of a M and a 9% based upon the non-functional termstructure TS)? and the
functional 7S(E)?". The remaining model constructions are then based upon these two basic
constructions.

M Let I ;  be  an Accor. Given the L-Hintikka set H with H C H from above, we choose
v(C)  =T ,  iff C € H .  Note that we have v (C)  :=  F, iff ~C  € H by Va .  By  Va we know
that v is well-defined on cwff(Z)1 and by Ves, Vie we have that v is a total function on

I
Re thermore by Vis, Vie, W and W we have that v is a I-valuation of the Z-term
structure TS(X)? and thus M*  := (TS(T)P,v) is a S-model by  construction. We have
MM  |= H ,  since H C H .  Note that M*  is indeed countable, since the sets of well-typed
formulae are countable.

M Let  I be  an  Aceon, and hence also an  Aceon. Analogous to  the previous case we construct
the countable E-model M*  = (TS(Z)?",v) with M |= H .  Note that in this case v is
well-defined on D5” because of Vj. By lemma 3.15 we know that M is functional and
hence M is an 20%.

We proceed with the construction of  a M ,  and MM based upon the previous construction of  a Mt
and accordingly of a 9 ,  and a J based upon a MM. Thus we start out with a countable X-model
M = (TS)  ‚ v )  or M = (TS(T)?, v )  such that M |= H .  Property q is easy to verify, as i t
follows from the properties discussed in the Hintikka-lemmata 4.14 and 4.16.

M Let I be  an  Accoy,. From Var, Voss, Veer, Va and Vy  we can derive that =“ is indeed
the q required by property q and hence M is a countable M,.

To verify property b instead we have to construct a M ’  from M by reducing the set of truth
values to {T,F}, which can be done with the help of a functional congruence relation.
Mo, Dp Let I; be an Accon, or Accan,. By lemma 4.26, Ver and V .  we can show that the relation

4 defined in 4.25 is a functional X-congruence for M and thus, by lemma 3.33, the
quotient structure M/..,, is a functional ¥-model which satisfies H .  From Va, Ve  and
the choice of  v we conclude that ~4  has exactly two equivalence classes on TS,(2)°? .
Thus we have D ,  = {T  :=  [T , ] ,F  :=  [Fo ] } ,  if we define T ,  and F ,  as in lemma 3.25.
Using V; and VA we further get that v is the identity relation. Finally note that M/.,,
is countable since M is.

We finish the constructions for the cases without a primitive notion of equality with the construc-
tion of a E-Henkin model (% = 9p) in case we are considering an Accoy,, .

We start with the 9 ,  M guaranteed by the discussion above. Analogous to  the construction
of  a MM, we make use of  a functional congruence relation in order to construct a quotient model
which fulfills property b. But  instead of the relation — we had to  use before, we apply the simpler
relation — which is a functional congruence relation for Ms.

H=Mp By  lemma 4.26 and Vor Vee we know that the relation ~ is a functional -congruence
for M ,  so the quotient structure M / .  is aM, with M /F  H by lemma 3.33. From
Vo, Ve and the choice of v ,  we conclude that ~3  has exactly two equivalence classes
on TS,(Z)?". Thus we have D,  = {T : =  [T,],F := [F,]}, if we define To and F,  as in
lemma 3.25. Using V, and VA we further get that v is the identity relation. Finally note
that M/s, is countable since M is.

It remains to discuss the cases with primitive equality and we start with the 9%, resp. My  from
above.
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!JJ1. Let rE be an 21cc9J7" and hence an 21,,~. We construct the countable ~ M with 
A1 P= H as discussed above. It remains to show that property e is valid for M which 
follows from property q by '\7== and '\7==" 

!JJ4 This case is analogous: Let rE be an 21cc9J7". and hence an 21cc~.. We construct a 

countable jj M :== (TS(E).61/, v) with M 1= H. It remains to show that property e is 
valid for M1i which follows again from property q by '\7== and '\7==" 0 

4.5 Order Effects 

It is common to stratify higher-order logics with respect to the complexity of symbols and types 
allowed to occur in formulae. "Ve will use this stratification for a finer analysis of model existence 
for functional E-models in this section. 

Traditionally, the orders offormulae is defined by the order of the types of symbols occurring in 
them: for any k, the formulae of 2kth order logic are those in which no variable or parameter of 
order greater than k occurs and the formulae of 2k -1 th order logic are those in which no variable 
of order greater than k is quantified over. Here, the order ordn(a) of a type a E T is defined 
inductively as ordn(£) == 0 and ordn(o) == 1, and ordn(an -t (3) == maXi<n ord(ai) + 1, where 
{3 E BT. With this convention, first-order logic is the classical notion, only individual variables 
can be quantified over. 

In this paper, we will adopt a slightly different definition of order that does not distinguish 
between quantified variables or constants as a finer distinction does not seem to yield suitable 
restrictions for our model existence theorems. Moreover, we do not commit to a particular order, 
since can identify sufficient conditions a general order function p. 

Definition 4.29 (Type Ordering). We call a function p: T ---t IN a type ordering, if 
p(a),p({3) ~ p(a -+ (3). We say that a is of order k E IN, iff p(a) ~ k. We will say that 
a formula is of order k, iff the types of all of its its subterms are. Similarly, for a signature E or a 
substitution 0', where we require all constants (all O'(X), where O'(X) ::J: X) to be of order k. 

We will denote the sets of (closed) well-formed formulae of order k with wJf(E) (cwJf(E». 
Note that the sets wJtC'£), cwJt(E) are empty if k ~ p(a), and that wJf(E), cwJl(E) are closed 
under substitutions of order k and is therefore also closed under {3-reduction. 

We will call a type ordering p finite, iff for any given k E IN, the set T/: :== {a Ip(a) ~ k, k E 
IN} is finite. 

Example 4.30 (Type Ordering). We have already mentioned the classical ordering scheme for 
higher-order types above. Note that ordn is a type ordering and if we define ord(a -t (3) == 
max(a,,B) + 1, then ordn is a finite type ordering. 

The function J.L: T ---t {O} that gives all types the order zero is trivially a type orderin, albeit 
a very uninteresting one, since with this ordering, all results of this section are subsumed by the 
results above. 

With the notion of type ordering, we can make a finer distinction between Henkin and Standard 
model. 

Definition 4.31 (k-Standard Models). Let p be a type ordering, then we call a E-structure or 
E-model k-standard wrt. p, iff'Do<-+.6 is full (Le. if'Do<-+.6 == ;::('Do<;'D.6» for all types a -+ {3 of 
order ~ k. With this definition a standard model is a O-standard one, since the order of functional 
type is positive. Clearly, we can construct from any E-structure or E-model M a k-standard one 
(which we will denote with M k ), by replacing the function universes related to a type of order 
~ k appropriate full sets of functions and adjusting the application operator accordingly. 

Definition 4.32 (k - E-Structure, k - E-Model). We call a pre-E-structure a k-'£-structure, 
iff c<p meets the conditions in 3.10 for all A E wJf (E), and we call a k - E-structure a k - '£-model, 
iff it has a valuation. 
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M Let I be an Accor, and hence an Accay,. We construct the countable 90%, M with
M |= H as discussed above. It remains to show that property e is  valid for M which
follows from property q by  V_. and V_.-.

My This case is analogous: Let I ;  be an Accgy, and hence an Accyn,. We construct a
countable $ M := (TS(E)®Tv )  with MEH. It remains to  show that property e is
valid for M*  which follows again from property q by V_. and V_.-. d

4 .5  Order Effects

It is common to  stratify higher-order logics with respect to  the complexity of  symbols and types
allowed to  occur in formulae. We will use this stratification for a finer analysis of model existence
for functional X-models in this section.

Traditionally, the orders of  formulae is defined by the order of the types of symbols occurring in
them: for any k ,  the formulae of 2k** order logic are those in  which no variable or parameter of
order greater than k occurs and the formulae of  2 k  —1t# order logic are those in  which no variable
of order greater than k is quantified over. Here, the order ord™(a) of a type a € T is defined
inductively as ord™(¢) = 0 and ord™(0) = 1, and ord™(an — 8) = max;<, ord(a;) + 1, where
B € BT. With this convention, first-order logic is the classical notion, only individual variables
can be quantified over.

In this paper, we will adopt a slightly different definition of order that does not distinguish
between quantified variables or  constants as a finer distinction does not seem to yield suitable
restrictions for our model existence theorems. Moreover, we do not commit to  a particular order,
since can identify sufficient conditions a general order function pu.

Definition 4.29 (Type Ordering). We call a function 4 :7  — IN a type ordering, if
p la ) ,  p(B) < p la  — B). We say that a is of  order k € IN, iff u(a) < k .  We will say that
a formula is of  order k ,  iff the types of  all o f  i ts i ts  subterms are. Similarly, for a signature X or  a
substitution o,  where we require all constants (all # (X) ,  where o (X)  # X)  to  be of order k .

We will denote the sets of (closed) well-formed formulae of order k with wf  (X) (cuf*(Z)).
Note that the sets wff‘ (X), cuff’.( I )  are empty if  k < (a ) ,  and that wff*(Z), cwff (X) are closed
under substitutions of order k and is therefore also closed under G-reduction.

We will call a type ordering u finite, iff for any given k € IN, the set Tx  = {a  | wa )  Xk , ke
IN} is finite.

Ezample 4.30 (Type Ordering). We have already mentioned the classical ordering scheme for
higher-order types above. Note that ord™ is a type ordering and if we define ord(a — ß) =
max(a, 6) + 1, then ord” is a finite type ordering.

The function pu: 7 — {0 }  that gives all types the order zero is trivially a type orderin, albeit
a very uninteresting one, since with this ordering, all results of  this section are subsumed by the
results above.

With the notion of  type ordering, we can make a finer distinction between Henkin and Standard
model.

Definition 4.31 (k-Standard Models). Let 4 be a type ordering, then we call a Z-structure or
Y-model k-standard wrt. pu, iff Dog  is full (i.e. if Dog  = F(Da;  Dg)) for all types a — 3 of
order > k .  With this definition a standard model is a 0-standard one, since the order of  functional
type is positive. Clearly, we can construct from any X-structure or -model M a k-standard one
(which we will denote with M¥), by replacing the function universes related to a type of order
> k appropriate full sets of functions and adjusting the application operator accordingly.

Definition 4.32 (k — Z-Structure, k — X-Model). We call a pre-E-structure a k—X-structure,
iff £ ,  meets the conditions in 3.10 for all A € wff*(Z), and we call a k— Z-structure a k — Z-model,
iff it has a valuation.
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Theorem 4.33 (Term Structure of order k). 
Let 7S(''E)I3'7,k:= ('Dk ,@k,Ik) be the k-standard 'L.-structure induced by 7S('L.)13'7 , then 7S('L.)I3'7,k 
is a functional 'L.-structure, and furthermore for all A E wffo:(Y:.) that I;(A) = a(A).j.il'l if 

ord(A) ::; k and a = cpIFree(A)' 

Proof: We prove that I; is a total function and that I;(A) = a(A).j.il'l if ord(A) ~ k and 

a = cpIFree(A) by an induction on the structure of A E wffo:(''E,). Note that totality of I; ensures 

that 7S('L.)I3'7,k is a functional 'L.-structure. 
The case when A = c E 'L. is trivial, since totality of I; is guaranteed by the totality of I and 

if ord(A) ~ k we have I; (A) = I(A) = A = a(A).j.il'l' 
If A = X E V, totality of I; follows from totality of <I> and furthermore in case ord(A) ~ k 

we get since X E Dom(a) that a(X).j.il'l = cp(X) =I~(X). 

Next we consider the case when Ao: is of form B'Y-+O:C'Y' If ord(A) ~ k the assertions 
immediately follow from 3.15, since up to order k the construction of 7S('L.)I3'7,k is identical with 
7S("E.)13'7 . In case ord(A) > k note that 'Do: is full and hence I~ (A) E 'Do:, which is all we have to 
show. 

In the last case Ao: is of form AX'Y.BI3' If ord(A) > k we only have to show that 
I~(A) E 'Do: which holds since 'Do: is full. If ord(A) ~ k we have I~(A)@kc = I~,[c/xl(B) 

forall c E 'D13 and by induction hypothesis that I~,[c/xl(B) = (a, [cIX](B».j.il'l' Furthermore 
we have (a, [clX](B» = (a([clX]B» I = (a(Ac» I = (a(A)c) I = (a(A» I @k c. ThusI+il'l +il'l +il'l +il'l +il'l 
I;(A) = a(A).j.il'l' 0 

Now, we are in the position to prove a finer-grained model-existence theorem. For this we 
will first weaken the definition of an abstract consistency class by weakening the conditions for 
universal quantification in Definition 4.4 by restricting the sets possible instantiations. 

Definition 4.34 (Abstract Consistency Class with Order). Let fJ be an 21cc*, where * E 
{!m, 9'.Jt, 91it, 9Jlil" 9Jiq, ~, 9J1., 9J7u,} and the condition V\t is replaced by the following one 

\7'; If IIO:F E <I> and ord(<I» = k, then <I> *FG E fE for each G E wftA"E.). 

then we call fJ an 21cc* with order k and write 21cc~. 

Lemma 4.35 (k-Hintikka lemmata). Clearly, we can prove analoga to all Hintikka theorems 
in section 4.2. The only difference lies in the V\t and "V:J cases of Theorem 4.14 where we have 

V\t IIO:F E H, iff for each D E cwJt.("E.) we have FD EH. 
"V:J -.IIO:F E H, iff there is aD E cwJt.("E.) such that -.FD EH. 

Proof: We get the first assertion directly by \7'; and the second by "V:J observing that the 
witness constant is of type a and therefore JL(D) = JL(a) ~ JL(a -+ 0) = ord(IIO:) ::; JL(-.IIO:F) ~ 

JL( <I». We have analogous assertions and argumentations for \7qk and \7q~ in Theorem 4.16 and for 
\7=q and \7=ql in Theorem 4.22. 0 

This gives us the following model existence theorem: 

Theorem 4.36 (Model Existence). Let fE be a saturated 21eek and H E fE be a sufficiently 
"E.-pure set of sentences. For all * E {91it,9Jlil,,9J7.p,9J1.,9J7u,} we have: lffE is an 21ee~, then there 
exists a model in * that satisfies H. 

Proof: In the extension Lemma 4.24 we can guarantee a fE-Hintikka set H with ord(H) = 
ord(H) for any set H E fE: If we take the sequence A 1 ,A2

, ••• to be an enumeration of wjJ("E.)k, 
where k = JL(H) and consider the construction of Hn+l in table 3, then we see that JL(Hn+l) = 
JL(Hn), since the formulae added to Hn are either witness constants of type a or subformulae of 
An. In both cases the order cannot be greater than k. 

The constructions of the "E.-models are analogous to the respective constructions in Theo­
rem 4.28. The only difference is that we will use 7S("E.)I3'7,k instead of 7S("E.)I3'7 as a starting 
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Theorem 4.33 (Term Structure o f  order k).
Let  TS(Z)"* = (D* ,@* ,T* )  be the k-standard X-structure induced by TS(S)P",  then TS(Z)*
is a functional T-structure, and furthermore for all A € wff,(T) that I5(A)  = o (A) , ,  if
ord(A)  <k  and vo = p re  A) :

Proof: We prove that ze is a total function and that T i (A)  = o(A)  on  if ord(A) < k and
c=  © ree  A)  by an  induction on the structure of  A € wff,(X). Note that totality of  I k  ensures

that TS(Z)?™* is  a functional S-structure.
The case when A = ¢ € X is trivial, since totality of  Tk is guaranteed by  the total i ty of  Z and

i f  ord(A) < k we have T5(A) = Z(A) = A =a (A ) , .
If A =X  eV, totality of zi follows from totality of ® and furthermore in  case ord(A) < k

we get since X € Dom(o)  that o (X )  Yon = p (X )  = IHX ) .
Next we consider the case when A ,  is of form B , . ,C , .  If ord(A) < k the assertions

immediately follow from 3.15, since up  to  order k the construction of  T5(%)?7% is identical with
TS(x )?7 .  In case ord(A) > k note that Da  is full and hence TE(A) € Da ,  which is all  we have to
show.

In the last case A ,  is of form AX,Bg. If ord(A) > k we only have to show that
ZE(A) € Da which holds since Da is full. If ord(A) < k we have ZX(A)@Fc = Te ex  (B)
forall ¢ € Dg and by induction hypothesis that Zire/ x (B)  = (o,[c/X](B))Lan‘ Furthermore
we have (0, [e/X1(B)),,, = (o(le/X]B))y,, = (o(Ac))y,, = (a(A)e)y,, = (0(4)),,, Qc. Thus
IEA) = o (A ) , , -  a

Now, we are in the position to  prove a finer-grained model-existence theorem. For this we
will first weaken the definition of an abstract consistency class by weakening the conditions for
universal quantification in  Definition 4.4 by restricting the sets possible instantiations.

Definition 4.34 (Abstract Consistency Class wi th Order). Let I f  be an 2cc,,  where * €
{9%, 90%,, Ws, Dy,  DY, Mig, Dt,  My} and the condition W is replaced by the following one

VF  IfII°F € and o rd (®)  = k, then & + FG  € Ii; for each G € w f  (X).
then we call I an  Acc,  wi th order k and write cc’.
Lemma 4.35 (k-Hintikka lemmata).  Clearly, we can prove analoga to al l  Hintikka theorems
in  section 4.2. The only difference lies in the W and Va cases of Theorem 4.14 where we have

WW  I°F € H ,  iff for each D € cuff:  (X) we have FD  € H .
Va IF  € H ,  iff there is a D € cwff.(Z) such that -FD € #1.

Proof: We get the first assertion directly by  VW and the second by  Va observing that the
witness constant is of type a and therefore u(D)  = u(a) < p la  = 0) = ord(11*) < p(-II*F) <
w(®). We have analogous assertions and argumentations for AA and A in  Theorem 4.16 and for
Y_. and Vo, in  Theorem 4.22. O

This gives us the following model existence theorem:

Theorem 4.36 (Model Existence). Let I; be a saturated Acck and H € i; be a sufficiently
T-pure set of  sentences. For al l  * € {M ,  My, Vp, M,, Dp  } we have: I f  I ;  is an  Acc,  then there
exists a model in * that satisfies H .

Proof: In the extension Lemma 4.24 we can guarantee a I5-Hintikka set H with ord(H) =
ord(H)  for any set H € Ix: If we take the sequence A', A? , . . .  to  be an enumeration of wff(2)*,
where k = u(H) and consider the construction of H”+! in  table 3, then we see that u(H”+1) =
u(H™), since the formulae added to  H ”  are either witness constants of  type a or  subformulae of
A ” ,  In both cases the order cannot be  greater than k .

The constructions of the ¥-models are analogous to the respective constructions in Theo-
rem 4.28. The only difference is that we will use 7S(2)°™* instead of TS(X)”” as a starting
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point. Since the Hintikka set 1l guaranteed by the extended extension Lemma has order k, and 
TS('5:.)!3T},k is a k-'5:.-algebra by 4.33, the constructions from Theorem 4.28 go through directly. 0 

Remark 4.37. An application of this theorem is that we can use this strengthened theorem to 
prove the long-standing conjecture that that in machine-oriented calculi it is sufficient to restrict 
primitive substitutions [And89] to the order of the input formulae. This is important for the 
implementation of fair strategies in automated deduction systems, since the primitive substitution 
rule without this observation is infinitely branching (there are infinitely many quantifiers ITa, since 
T is infinite). If we employ a finite type ordering p, then we only have to consider the finite set 
of quantifiers ITa, where a E T;. For practical implementations it remains to construct type 
orderings that make 0..k as small as possible. 

5 Conclusion 

In this paper, we have given an overview over the landscape of semantics for classical higher-order 
logics. We have differentiated ten different possible notions and have tied the discerning properties 
to conditions of the abstract consistency classes. The model existence theorems presented in this 
paper can serve as an instrument for the design of higher-order calculi. 
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point. Since the Hintikka set H guaranteed by the extended extension Lemma has order k ,  and
TS(x ) mk is  a k-Z-algebra by  4.33, the constructions from Theorem 4.28 go through directly. [J

Remark 4.37. An  application of this theorem is that we can use this strengthened theorem to
prove the long-standing conjecture that that in machine-oriented calculi i t  is sufficient to  restrict
primitive substitutions [And89] t o  the order of the input formulae. This is important for the
implementation of  fair strategies in automated deduction systems, since the primitive substitution
rule without this observation is infinitely branching (there are infinitely many quantifiers II*, since
T is infinite). If we employ a finite type ordering yu, then we only have to consider the finite set
of quantifiers TI*, where a € TE. For practical implementations i t  remains to construct type
orderings that make TF as small as possible.

5 Conclusion

In this paper, we have given an  overview over the landscape of  semantics for classical higher-order
logics. We have differentiated ten different possible notions and have tied the discerning properties
to conditions of the abstract consistency classes. The model existence theorems presented in this
paper can serve as an instrument for the design of higher-order calculi.
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