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Abst rac t

We present a new criterion for confluence of  (possibly) non-terminat ing left-
linear term rewriting systems. The criterion is based on certain strong joinabil-
i ty  properties of parallel critical pairs. We show how this criterion relates to
other well-known results, consider some special cases and discuss some possible
extensions.

1 Introduct ion and Overview

Computat ion formalisms which are based on  rewri t ing systems heavi ly rely on  the
fundamental properties of termination and confluence. For terminating and confluent
systems normal forms exist and are unique, irrespective of the computation (rewriting)
strategy. For non-terminating but confluent systems, normal forms need not exist,
however, i f  a normal form exists, i t  is sti l l  unique. More generally, any (possibly in-
finite) diverging computations can be joined again. In some cases, non-termination
is inherently unavoidable, in  other cases i t  may be very difficult to verify this prop-
erty. Hence the problem of proving confluence (with or without termination) is of
fundamental importance.

For abstract  reduct ion (or  abstract  rewri t ing) systems (ARSs for shor t )  i t  i s  wel l -known
that, under termination, confluence is equivalent to  local confluence, via Newman’s
Lemma. For proving confluence of non-terminating ARSs, however, one usually needs
much stronger local confluence properties. A very interesting unifying framework,
based on so-called decreasing diagrams, for localizing confluence proofs (even without

*This research was supported by the ‘Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)’.
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termination) in the general setting of labelled abstract rewriting systems has recently 
been developed by van Oostrom ([Oos94a]).
 

For term rewriting systems (TRSs for short), which are ARSs with some additional
 
structure, local confluence can be characterized by confluence of critical pairs as ex­

pressed by the well-known Critical Pair Lemma. Hence, for (finite) terminating TRSs,
 
this critical pair test yields decidability of confluence.
 

For non-terminating TRSs, however, the situation is much more difficult again. Even
 
the absence of critical pairs does not guarantee confluence, as there exist non-termina­

ting, non-overlapping TRSs which are (locally confluent but) not confluent (cf. e.g.
 
[Hue80]). These counterexamples must necessarily be non-left-linear.1 In fact, TRSs
 
which are left-linear and non-overlapping, i.e., orthogonal, are confluent (cf. e.g. [Ros73]).
 
This fundamentally important positive result has been considerably generalized by
 
Huet ([Hue80]) and further by Toyama ([Toy88]) by allowing critical pairs, but impos­

ing certain strong joinability properties on them (cf. Theorems 3.2,3.5 and 3.7 below).
 
The first result, Theorem 3.2, however, has the severe drawback that it addition­

ally requires right-linearity, a 'rather unnatural condition' as pointed out in [Hue80].
 
Theorems 3.5 and 3.7 of Huet/Toyama are particularly interesting, since they do not
 
require right-linearity. They are proved by showing strong confluence of parallel reduc­

tion, making essential use of the above mentioned particular joinability properties of
 
(ordinary) critical pairs.
 

Our main new (and quite natural) idea now is that in order to ensure strong confluence
 
of parallel reduction, one may also define and investigate the corresponding notion of
 
parallel critical pairs. This new concept indeed turns out to be very useful, since we
 
are able to state and prove a new sufficient condition for strong confluence of parallel
 
reduction (cf. Theorem 4.11) which is based on certain joinability properties for parallel
 
critical pairs (cf. Definition 4.8).
 

Actually, the idea behind parallel critical pairs is not completely new. Implicitly,
 
parallel critical pairs - or, more precisely, parallel critical peaks - are at the heart of
 
so-called critical pair criteria for completion of terminating TRSs (cf. [WB86], [Kiic85],
 
[KMN88], [BD88]), where certain (ordinary) critical pairs can be ignored during com­

pletion since they are redundant.
 

The rest of the paper is structured as follows. After introducing the necessary ter­

minology, we present in Section 3 the known related results, give an example where
 
none of the known confluence criteria applies, and motivate the introduction of parallel
 
critical pairs. The main result of the paper, Theorem 4.11, is proved in Section 4. Its
 
relation to the previous results, various illuminating examples and other related work
 
are discussed in Section 5. Finally we conclude by discussing directions for further
 
extending and generalizing our approach.
 

lSome interesting efforts for isolating the essence of the source of non-confluence in this case are 
described e.g. in [OT94], [T095]. A decidable sufficient (syntactic) condition for confluence of non­
left-linear, non-terminating TRSs is given in [T095]. 
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2 Preliminaries 

We assume familiarity with the basic theory of abstract reduction systems as well as of 
the special case of term rewriting systems. For comprehensive surveys see e.g. [Kl092], 
[DJ90], [AM90], [Pla94]. Furthermore we also use some basic facts about unification 
theory (cf. e.g. [BS94] for a recent survey). 

2.1 Abstract Reduction Systems 

An abstract reduction system (ARS) is a pair A = (A, -7) consisting of a (base) set A 
and a binary relation -7~ A x A also called (abstract) reduction or (abstract) rewrite 
relation. We use the standard notations -7+, -7*, -7= (or -7::;1) for the transitive, 
transitive-reflexive and reflexive closure, respectively, of -7. The notations for the 
inverse relations 'are obtained by 'mirroring', e.g., we use f- for the inverse of -7. 

Relation composition is denoted by o. Two elements a, b E A are said to be joinable 
(denoted by a 1 b) if there exists c EA: a -7* C *f- b. If a -7* b, we call b a reduct of 
a. The identity relation on A is given by idA = {(a, a) Ia EA}. 

Definition 2.1 (confluence properties) 
Let A = (A, -7) be an ARS. Then A (or -7) 

, 

• is confluent (CONF) if *f- 0 -7* ~ -7* 0 *f-. 

• is Church-Rosser (CR) if +-t* ~ -7* 0 *f-. 

• is locally confluent or weakly Church-Rosser (WCR) if f- 0 -7 ~ -7* 0 *f-. 

• is strongly confluent (SCR) if f- 0 -7 ~ -7* 0 =f-. 

• is subcommutative (WCR::;!) if f- 0 -7 ~ -7= 0 =f-. 

• is uniformly confluent (WCR1
) if f- 0 -7~ idA U (-7 0 f-). 

• has the diamond property (0) if f- 0 -7 ~ -7 0 f-. 

Note that if the reduction relation -7 of A = (A, -7) is reflexive, then the diamond 
property, subcommutativity and uniform confluence (of A) are equivalent. 

Cqnfluence of an ARS A = (A, -7) can be characterized in various equivalent ways. 
For instance, we have: 

CR(-7) {:::::=} CONF(-7) {:::::=} CR(-7*) {:::::=} f- 0 -7* ~ -7* 0 *f- . 

Justified by the equivalence of the first two properties above and following a widespread 
convention we shall subsequently denote the confluence property by CR. 

We note that due to the equivalence CR(-7) ~ CR(-7*) (by idempotence of ''''), 
for proving confluence of -7 it suffices to prove confluence of ~ for some reduction 
relation ~ with the same transitive-reflexive closure, i.e. with ~*=-7*. 
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2 Preliminaries
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The next well-known result summarizes the relationships between the various conflu­
ence properties introduced in Definition 2.1 above. It provides interesting sufficient 
criteria for proving confl~ence by strengthened versions of local confluence. 

Theorem 2.2 (confluence by strengthening local confluence) 
Let A = (A, -+) be an ARS. Then the following implications hold: 

<> ==} WCRI 
==} WCR~1 ==} SCR ==} CR. 

Local confluence (WCR) does not imply confluence (CR) in general, but only under the 
additional assumption of termination. This fundamentally important result, known as 
Newman's Lemma, is at the heart of many confluence proofs in the literature. 

Here, an ARS A = (A, -+) (or -+) is said to be terminating if there exists no infinite 
reduction sequence ao -+ al -+ a2 -+ ... (of elements of A). A (or -+) is called complete 
(or convergent) if it is confluent and terminating. 

Theorem 2.3 (Newman's Lemma, [New42]) 
A terminating ARS A = (A,-+) is confluent if and only if it is locally confluent. 

2.2 Term Rewriting Systems 

A term rewriting system n (over some set T(F, V) of terms) may be viewed as the 
ARS (T(F, V), -+n) where -+n or simply -+ is the rewrite relation induced by the 
rewrite rules 1 -+ r E n (1, rE T(F, V) with Var(r) ~ Var(l)). A term is linear if no 
variable occurs more than once in it. A rewrite rule 1 -+ r is said to be left-linear / 
right-linear if 1 / r is linear. A TRS is left-linear / right-linear if all its rules are 
left-linear / right-linear. 

For substitutions we use prefix notation, sometimes omitting parentheses, e.g., we write 
0"( s) or 0"s to denote the result of applying the substitution 0" to the tyrm s. The domain 
and the variable range of a substitution 0" are denoted by Dom(0") (or Dom 0") and 
V Ran(0") (or V Ran 0"), respectively. 

Positions (of terms) are also defined as usual, and denoted by p, q etc.. They are 
ordered by :::; as usual. The 'empty' root position is denoted by A. Concatenation of 
positions is denoted by juxtaposition. If p :::; q we say that p is above q (or q is below 
p). For subtracting positions we use \, i.e., we write p \ q = q' if p = qq'. Two positions 
p and q are said to be parallel (or independent, disjoint), denoted by p 11 q, if neither 
p :::; q nor q :::; p. These notations extend in a straightforward way to sets of positions. 

The set of positions of a term s is denoted by Pos(s). The sets of variable positions 
and of non-variable, i.e., function symbol, positions of s are denoted by V Pos(s) and 
FPos(s), respectively. The subterm of s at some position p E Pos(s) is denoted by 
s / p. In order to indicate that t is the subterm of s at position pEPos(s ), we also write 
s = s[p = t]. The result of replaCing in s the subterm at position p E Pos(s) by t is 
denoted by s[p ~ t]. The result of (simultaneously) replacing in s the subterms at some 
set P = {PI, ... ,Pn} ~ Pos(s) of parallel positions (of s) by t l , ... , tn, respectively, is 
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denoted by s [PI f- t l ] ... [pn f- tn] (where the order of the replacement is irrelevant) 
or simply s [Pi f- ti 11 :s i :s n]. Similarly, s [Pi = ti 11 :Si :s n] denotes s indicating 
additionally that siPi = ti for all i, 1 :s i :s n. 

If a term s rewrites to t at position p E Pos(s) using rule 1 ---+ l' and substitution a, 
i.e., sip = al, t = s[p f- ar], this is indicated by using the notation s ---+p,O",I--+r tor, 
when ignoring the applied rule and used substitution but keeping the position of the 
contracted (i.e., replaced) redex (i.e., reducible expression), by s ---+p t. Furthermore, 
we write s ---+;:::p t if s reduces (in one step) to t by contracting some redex (in s) below 
p E Pos(s), and similarly for s ---+~p t. 

A unification problem is a (finite) set (or multiset) of equations to be solved. Here 
we use ....:.. in order distinguish e.g. the singleton unification problem s == t from the 
(syntactic) equality s = t (cf. [BS94] for further details). 

For testing local confluence of TRSs the following notion originating from [KB70] IS 

fundamental. 

Definition 2.4 (critical pairs)
 
Let R be a TRS and let 1 ---+ 1', l' ---+ 1" be two rules· of R that w.l.o.g. do not have any
 
common variable. 2 Suppose lip, with p E FPos(l), and l' are unifiable with mgu 0",
 
where VRan(a) n (Var(l) \ Var(llp)) = 0.3 Then the pair of reducts ((0"1)[P f- ar'], 0"1')
 
is called a critical pair of R, determined by overlapping l' ---+ 1" into 1 ---+ l' at position
 
p. The divergence (0"1)[P f- 0"1"] pf-O"l ---+,\ ar is the corresponding critical peak. If 
p = A, we speak of an outside critical peak (or critical overlay)and outside critical pair, 
respectively. Otherwise, i.e., if p > A, we speak of an inside critical peak and inside 
critical pair, respectively (following [Toy88]). If the two rules are renamed versions of 
the same rule we do not consider the case p = A (which gives only rise to improper 
divergences). The set of all critical pairs between rules of R is denoted by CP(R). 
If CP(R) = 0, R is said to be non-overlapping. It is called orthogonal if it is non­
overlapping and left-linear. 

Observe the asymmetry in the definition of critical pairs. This entails in particular, 
that for a critical overlay t l ,\f-S ---+,\ t2 we always get two corresponding critical pairs, 
namely (tt, t 2 ) and (t 2 , t l ). Moreover we note, that a critical pair may correspond 
to (i.e., be obtained from) several distinct critical peaks (if taking into account th.§ 
position of the inside rewrite step and the applied rules).4 

Lemma 2.5 (Critical Pair Lemma, [Hue80])
 
A TRS is locally confluent if and only if all its critical pairs are joinable.
 

Combining Newman's Lemma and the Critical Pair Lemma yields the following fun­
damental result. 

2Note that considering renamed versions of the same rule of n is allowed here, too. 
3This variable condition ensures that the mgu u does not introduce unnecessary identifications of 

variables in l. In case that the mgu oft = [Ip and [' is taken such that no new variables are introduced 
(which is always possible), this condition is vacuously satified. 

4For the sake of readability we dispense here with a completely formal definition of critical peaks 
which is straightforward. 
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denoted by  s[p; « ti1]...[pn « tn] (where the order of the replacement i s  irrelevant)
or simply s[p; — t ; | 1  < i  <n ] .  Similarly, s[p; = t ; | 1  < i < n] denotes s indicating
additionally that s/p; = 4; for a l l i ,  1 < :  <n .

If a term s rewrites to ¢ at position p € Pos(s) using rule | — r and substitution o,
i.e., s/p = ol ,  t = s[p « or], this is indicated by using the notation s —, 4 ,  t or,
when ignoring the applied rule and used substitution but keeping the position of the
contracted (i.e., replaced) redez (i.e., reducible expression), by s —,  t .  Furthermore,
we write s =>,  t i f  s reduces (in one step) to £ by contracting some redex (in s) below
p € Pos(s) ,  and similarly for s —¢ ,  1.

A unification problem is a (finite) set (or multiset) of equations to be solved. Here
we use = in  order distinguish e.g. the singleton unification problem s = t from the
(syntactic) equality s = t (cf. [BS94] for further details).

For testing local confluence of TRSs the following notion originating from [KB70] is
fundamental.

Definition 2.4 (critical pairs)
Let R be a TRS and let ! — r ,  I’ — 1 ’  be two rulesof  R that w.l.o.g. do not have any
common variable.? Suppose !/p, with p € FPos(l), and I' are unifiable with mgu o,
where V Ran(a)N(Var(l)\Var(l/p)) = 0.2 Then the pair of reducts ((o!)[p — or'],  or)
i s  called a critical pai r  of  R ,  determined by  overlapping l' — r '  into | — r at  posit ion
p. The divergence (ol)[p « or'] ‚—ol —,  o r  is the corresponding critical peak. If
p = ) ,  we speak of an outside critical peak (or critical overlay)and outside critical pair,
respectively. Otherwise, i.e., i f p > A, we speak of an inside critical peak and inside
critical pair, respectively (following [Toy88]). If  the two rules are renamed versions of
the same rule we do not consider the case p = A (which gives only rise to improper
divergences). The set of all critical pairs between rules of R is denoted by CP(R).
If CP(R) = 0, R is said to be non-overlapping. It is called orthogonal i f  it is non-
overlapping and left-linear.

Observe the asymmetry in  the definition of critical pairs. This entails in  particular,
that for a critical overlay ¢; x—s —) t2 we always get two corresponding critical pairs,
namely (t1,2) and (f3,¢;). Moreover we note, that a critical pair may correspond
to (i.e., be obtained from) several distinct critical peaks (if taking into account the
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Theorem 2.6 ([KB70]) 
A terminating TRS is confluent (hence complete) if and only if all its critical pairs are 
joinable. 

Known Results and Motivating Examples 

Without termination, showing confluence of a TRS is much more difficult. For left­
linear systems, a few results relying on strong confluence properties are known. 

Definition 3.1 (strongly closed, [Hue80J) 
A TRS R is called strongly closed, which we denote by SCCP(R),5 if for every critical 
pair (tl, t2 ) there exist terms t3 , t~ such that t1 ---+* t3 =+- t2 and t1 ---+= t4 *+- t 2 • 

Theorem 3.2 (strong confluence by strong closedness, [Hue80J) 
A left- and right-linear strongly closed TRS is strongly confluent, hence also confluent. 

Proof: The proof in [Hue80] is by a complete case analysis for one-step divergences 
of the form t 1 +- S ---+ t 2 exploiting strong closedness for the case that t1 +- S ---+ t2 

corresponds to an instance of a critical peak (note that right-linearity is needed for the 
case of a variable overlap). \ • 

The following very nice counterexample shows that right-linearity cannot be dropped 
in Theorem 3.2. 

Example 3.3 (due to J .-J. Levy as cited in [Hue80]) 
The TRS 

R=
 

I(a, a) ---+'g(b, b) 
a ---+ at 

I(a',x) ---+ I(x,x) 
I (x, a') ---+ I (x, x) 
g(b, b) ---+ I(a,a) 

b ---+ b' 
g(b'x) ---+ g(x, x) 

g(x, b') -+ g(x, x) 

is left-linear, non-right-linear and non-terminating. Moreover, it is easily verified that 
R is strongly closed, but non-confluent. In fact, we have e.g. I(a',a') *+- I(a,a) ---+* 

g(b',b') but/(a', a') and g(b',b') do not have a common reduct (cf. Figure 1). 

For left-linear, but not necessarily right-linear TRSs one may use the following approach 
of Huet ([Hue80]). Let R be a TRS. Then the parallel reduction relation (induced by 
R), +n or simply +, is defined as the smallest reflexive relation containing ---+ and 
verifying 

5This is to abbreviate 'strongly closed critical pairs'. 
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Theorem 2.6 ([KB70])
A terminating TRS is confluent (hence complete) if and only if  all its critical pairs are
joinable.

3 Known Results and Motivating Examples

Without termination, showing confluence of a TRS is much more difficult. For left-
linear systems, a few results relying on strong confluence properties are known.

Definition 3.1 (strongly closed, [Hue80])
A TRS R is called strongly closed, which we denote by SCCP(R),” i f  for every critical
pair (t1,%;) there exist terms t3, £4 such that t ;  —* t3 = t3 and t ;  ==  t4 * 12.

Theorem 3.2 (strong confluence by  strong closedness, [Hue80])
A left- and right-linear strongly closed TRS is strongly confluent, hence also confluent.
Proof: The proof in [Hue80] is by a complete case analysis for one-step divergences
of the form t ı  — s — t ;  exploiting strong closedness for the case that t ;  — s — 12
corresponds to an instance of a critical peak (note that right-linearity is needed for the
case of a variable overlap). > ; =
The following very nice counterexample shows that, right-linearity cannot be dropped
in  Theorem 3.2.

Example 3.3 (due t o  J.-J.  Lévy as cited in  [Hue80))
The TRS , j

f(a,a) — g(b, b)
a — a'

f(a',z) > f(x,z)
R = f (x ,  a’) — f ( z , 2 )

9(5,5) — f ( a ,a )
b—VY

g(t'z) — g(z,z)
[ 9(z,8) > g ( ,2 )

is left-linear, non-right-linear and non-terminating. Moreover, i t  is easily verified that
R is strongly closed, but non-confluent. In fact, we have e.g. f (a ’ ,d ' )  *— f (a ,a )  —*
g(¥',b') but.f(a’,  a’) and g(&', 8’) do not have a common reduct (cf. Figure 1).

For left-linear, but not necessarily right-linear TRSs one may use the following approach
of Huet ([Hue80]). Let R be a TRS. Then the parallel reduction relation (induced by
R) ,  b x  or simply > ,  is defined as the smallest reflexive relation containing — and
verifying

s ı  Ab t  N . . .  Sn  b t ,  =— f ( s ı ,  . . .  ‚ Sn) Ab  f ( t ,  . . .  y in )

5This is to abbreviate ‘strongly closed critical pairs’.
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f(a', a) == f(a, a) == g(b, b) =g(b, b') 

11111 1
 
cf(a', a') - f(a, a') g(b', b) -- g(b', b')o 

Figure 1: (partial) reduction graph of Example 3.3 

for all f E F (n-ary). If s reduces to t by a parallel step contracting the redexes in s at 
some set P = {PI, ... ,pd of parallel positions from P, this is also denoted by s+pt. 

Subsequently, we shall tacitly make use of some basic properties of parallel positions 
and parallel reduction, in particular the following ones: 

•	 If PI, P2 ~ Pos(s) are disjoint sets of positions of s such that all positions in 
PI l±J P2 are mutually disjoint, tp -+,\ t~ for all p E PI I±J P2, and s = s[p = 
tp Ip E PI]+P1S[P f- t~ Ip E PI] = SI, S = s[p = tp Ip E P2]+p2S [P f- t~ Ip E 
P2] = S2, then, defining S3 = s[p f- t~ Ip E PI I±J P2], we get S+P1SI+p2S3, 
S+P2S2+Pl S3, and S+P1Up2S3 (by commutation of the two independent par­
allel steps, and by combining both into one parallel step). 

•	 If p :::; q and p' 11 p, then p' 11 q. 

•	 If P is a set of parallel positions of s, q E Pos(s) with q :::; p for all pEP, and s, t l , 

t2 coincide except for the respective subterms at position q, then t l p+-#-s -+q t2 
and tdq Q+-#- s/q -+,\ t2/q, where Q = {p \ q Ip E P}, are equivalent. In other 
words, the relevant part of a divergence t l P+-#- S -+q t2 (with q :::; p.for all pEP) 
can be obtained by extraction, stripping off the common context. 

Clearly, parallel and ordinary reduction are related as follows: -+~ + ~-+*, hence 
also -+*= + *. Thus, for showing confluence of -+, it suffices to prove (strong) 
confluence of +. 
Definition 3.4 (parallel closed, [Hue80]) 
A TRS R is called parallel closed if for every critical pair (t l , t2) of R we have: t1+t2. 

Theorem 3.5 (subcommutativity of parallel reduction by parallel closed­
ness, [Hue80J) , 
If R is a left-linear parallel closed TRS, then parallel reduction (in R) is subcommu­
tative (WCR~l(+)), hence R is confluent. 

Proof: The ingenious proof in [Hue80] proceeds by considering parallel one-step di­
vergences of the form t P+-tt- s+Qu, By induction over the sum of the sizes of those 
'P- and Q-redexes' which are affected in both steps, and by case analysis according to 
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f(a'ya) —7  f(a,a)  g(b,b) — g(b, 4)

I N
of(a’, a’) — f(a,a') g(#',b) — g(¥,¥)o

Figure 1: (partial) reduction graph of Example 3.3

for all f € F (n-ary). If s reduces to  t by  a parallel step contracting the redexes in  s at
some set P = {p ı , . . . , px }  of  parallel positions from P ,  this is also denoted by  s—}-p t .

Subsequently, we shall tacitly make use of some basic properties of parallel positions
and parallel reduction, in  particular the following ones:

e If P ,P ,  © Pos(s) are disjoint sets of positions of s such that all positions in
Pi W P; are mutually disjoint, t, —) % for all p € PW  P,  and s = sp =
t ,  Ip € Pjdbpslp—t pe P l=s , s=sp=1 t | p€  P ı ] - p slip —t, |p€
Po] = s2, then, defining s3 = s[p — |p  € P ı  W Pı], we get sp , 51-{>p, 53,
sp , 82->p, $3 ,  and sp , up, S3 (by commutation of the two independent par-
allel steps, and by combining both into one parallel step).

oe I f p<gandp  | p ,  t henp’ || g.

e If P is a set of parallel positions of s, ¢ € Pos(s) with q < pforallp € P ,  and s , t ; ,
t ,  coincide except for the respective subterms at position gq, then t ;  p s  —,  12
and t ; /q  g f  s/q —x t2/q, where Q = {p \  q |p  € P}, are equivalent. In other
words, the relevant part of a divergence t ;  p+}- s — t ;  (with ¢ < p for all  p € P)
can be obtained by extraction, stripping off the common context.

Clearly, parallel and ordinary reduction are related as follows: —C ++  C—*, hence
also —*=  Jh”. Thus, for showing confluence of  —, i t  suffices to prove (strong)
confluence of + .

Definition 3.4 (parallel closed, [Hue80])
A TRS R is called parallel closed i f  for every critical pair (41,42) of R we have: t ,  Ah .

Theorem 3.5 (subcommutativity of  parallel reduction by  parallel closed-
ness, [Hue80))
If R is a left-linear parallel closed TRS, then parallel reduction ( in R)  is subcommu-
tative (WCRS!(—J}+)), hence R is confluent.
Proof: The ingenious proof in  [Hue80] proceeds by considering parallel one-step di-
vergences of  the form ¢ pdf- s—{,u. By  induction over the sum of  the sizes of  those
‘P- and Q-redexes’ which are affected in  both steps, and by case analysis according to
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* // case (ii) 

case (i)) 

Figure 2: critical pair condition CPCHT 

the positions in P, Q, it is shown that + is subcommutative (WCR9(+)), hence 
confluent, which implies confluence of ----+ since +* =----+*. • 

Toyama ([Toy88]) observed that, in Theorem 3.5 above, the condition that all critical 
pairs are parallel closed can be weakened without losing strong confluence of parallel 
reduction. 

Definition 3.6 (critical pair condition of HuetjToyama, [Toy88]) 
We say that a TRS R satisfies the critical pair condition CPCHT ,6 denoted by CPCHT(R), 
if for every critical peak D: t1 pf-S ----+,\ t2 of R (hence: (t1, t2 ) E CP(R)) we have: 

(i)	 If p = .x, i.e., if D is an outside critical peak, then there exists a term t3 such 
that t1+t3 *f- t2 .

7 

(ii)	 If p > .x, i.e., if D is an inside critical peak, then t1+t2 • 

The conditions (i)-(ii) of Definition 3.6 are depicted in Figure 2 (dashed arrows m 
diagrams are existentially quantified). 

Theorem 3.7 (strong confluence of parallel reduction, [Toy88]8 )
 
If R is a left-linear TRS satisfying the critical pair condition CPCHT , then parallel
 
reduction (in R) 'is strongly confluent (SCR(+)), hence R is confluent. '
 

Proof: The proof in [Toy88] essentially proceeds ~s the one of [Hue80] for Theorem 
3.5 above. One shows strong confluence of parallel reduction by considering parallel 
one-step divergences of the form t P+-tt- s+Qu, The induction is over the sum of the 

6Here, the subscript 'HT' is to abbreviate 'Huet/Toyama'. 
7Note that due to the asymmetry in the definition of critical pairs / peaks this means that there 

must also exist a term t4 with t 1 -+* t4 * t2! 
8In fact, the corresponding result in [Toy88], Corollary 3.2, p. 405, is obtained there by specializing 

a more general version, namely Theorem 3.1, p. 401, formulated in terms of a sufficient condition for 
commutativity of two left-linear TRSs. 
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Figure 2: critical pair condition CPCyr

the  positions in  P,  Q, i t  i s  shown that + is  subcommutative (WCR£'(-)), hence
confluent, which implies confluence of — since > ”  =—*. [ |

Toyama ([Toy88]) observed that,  in Theorem 3.5 above, the condition that all critical
pairs are parallel closed can be weakened without losing strong confluence of parallel
reduction.

Definition 3.6 (critical pair condition o f  Huet/Toyama, [Toy88])
We say that a TRS R satisfies the critical pair condition CPCyr,® denoted by CPCyr(R),
if for every critical peak D : t ;  „—s —» t ;  of R (hence: (t1,t3) € CP(R)) we have:

( i )  I f  p = A, i .e .  if D is an outside critical peak, then there exists a term t3 such
that  13]—ht3  *— t 2 . 7

( i i )  If p > A, i .e. ,  i f D is  an  inside critical  peak, then 41+ t .

The conditions (i)-(ii) of Definition 3.6 are depicted in  Figure 2 (dashed arrows in
diagrams are existentially quantified).

Theorem 3.7 (strong confluence o f  parallel reduct ion,  [Toy88]® )
If R is a left-linear TRS satisfying the critical pair condition CPCyr, then parallel
reduction (in R)  is strongly confluent (SCR(-H+)), hence R is confluent.
Proof: The proof in  [Toy88] essentially proceeds as the one of [Hue80] for Theorem
3.5 above. One shows strong confluence of parallel reduction by considering parallel
one-step divergences of the form t p } -  s—>qu. The induction is over the sum of the

SHere, the subscript ‘HT’ is to abbreviate ‘Huet/Toyama’.
"Note that due to the asymmetry in the definition of critical pairs / peaks this means that there

must also exist a term #4 with  t ı  —* 4 15!
8In fact, the corresponding result in  [Toy88], Corollary 3.2, p .  405, is obtained there by  specializing

a more general version, namely Theorem 3.1, p .  401, formulated in  terms of a sufficient condition for
commutativity of two left-linear TRSs.



sizes of those 'P- and Q-redexes' which are affected in both steps ignoring, however, 
overlaying redexes. _ 

Before proceeding let us elaborate a bit on variations of critical pair conditions for 
ensuring confluence of left-linear TRSs. Huet's result above states that 

(1) s+t for every critical pair (s, t) of R 

suffices for ensuring confluence. Surprisingly, it still seems to be unknown whether any 
of the following conditions also suffices (see [DJK91], Problem 13 of J.-J. Levy). 

(2) s+t or t+s, for every critical pair (s, t) of R. 

(3) s --l-= t or t --l-= s, for every critical pair (s, t) of R. 

(4) t-ft-+s for every critical pair (s, t) of R. 

(5) t --l-= S for every critical pair (s, t) of R. 

Clearly, the following implications hold between these conditions: (5) ====} (3) ====} (2), 
(5) ====} (4) ====} (2). We remark that due to Theorem 3.2 potential counterexamples 
for (3) and (5) would have to be (besides left-linear) non-right-linear, non-terminating 
and non-orthogonal, hence overlapping. Unfortunately, our approach developed below 
does not solve any of these open problems. 

For motivating our approach to showing confluence via strong confluence of parallel 
reduction let us now consider the following modified version of Levy's counterexample 
3.3 above. 

Example 3.8 (no known criterion applicable) 
The TRS 

f(a, a) --l- b 
a --l- a' 

f(a',x) --l- f(x,x)
R= f(x, a') --l- f(x,x) 

f(a', a') --l- b 
b --l- f( a', a') 

is left-linear, but not right-linear, and non-terminating (cf. Figure 3). Moreover, it is 
confluent which cannot be inferred from Theorem 3.7 since e.g. the inside critical peak 
f(a', a) f- f(a, a) --l- b is not parallel closed. Theorem 3.2 isn't applicable either, due to 
non-right-linearity of R, though R is strongly closed. Nevertheless, parallel reduction 
(in R) is strongly confluent (as will be shown). For instance, we observe that the 
divergence f(a',a')+-tt-f(a,a) --l- b can be 'strongly closed' via f(a',a') --l- b (or b--l­
f(a', a')). In Example 3.3 we had the divergence f(a',a')+-tt-f(a,a) --l- g(b, b) which 
could only be closed viag(b,b) --l- f(a,a)-ft-+f(a', a'), but not 'strongly', i.e., there was 
no term t with f(a', a') --l-* t+-tt- g(b, b). Furthermore we note that in both examples in 
the parallel step f( a, a)-ft-+ f( a', a') two parallel (inner) redexes are contracted both of 
which are critical w.r.t. the other outside step. 
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sizes of those ‘P- and @-redexes’ which are affected in both steps ignoring, however,
overlaying redexes. n

Before proceeding let us elaborate a bit on variations of critical pair conditions for
ensuring confluence of left-linear TRSs. Huet’s result above states that

(1) s—h+ for every critical pair ( s , t )  of  R

suffices for ensuring confluence. Surprisingly, i t  still seems t o  be unknown whether any
of the following conditions also suffices (see [DJK91], Problem 13 of J.-J. Lévy).

(2) s—{bt or t s ,  for every critical pair ( s , t )  of  R .

(3) s ==  t o r t  —= s, for every critical pair (s,t) of R .

(4) t s  for every critical pair (s,t) of R.

(5) t —= s for every critical pair (s,t) of R .

Clearly, the following implications hold between these conditions: (5) =>  (3) =>  (2),
(5) = (4) = (2). We remark that due to Theorem 3.2 potential counterexamples
for (3) and (5) would have to be (besides left-linear) non-right-linear, non-terminating
and non-orthogonal, hence overlapping. Unfortunately, our approach developed below
does not solve any of these open problems.

For motivating our approach to showing confluence via strong confluence of parallel
reduction let us now consider the following modified version of Lévy’s counterexample
3.3 above.

Example 3.8 (no known criterion applicable)
The TRS

f(a,a) — b

_ f ( d ' , z )  — f ( z , z )
R= f(z,a') — f(z,2)

is left-linear, but not right-linear, and non-terminating (cf. Figure 3). Moreover, i t  is
confluent which cannot be  inferred from Theorem 3 .7  since e.g.  the inside critical peak
f(a',a) — f(a,a) — bis not parallel closed. Theorem 3.2 isn’t applicable either, due to
non-right-linearity of R ,  though R is strongly closed. Nevertheless, parallel reduction
(in R)  is strongly confluent (as will be shown). For instance, we observe that the
divergence f (a ’ ,a’) 4 f(a,a) — b can be ‘strongly closed’ via f(a’,a’) — b (or b —
f(a’,a’)). In Example 3.3 we had the divergence f (a ’ ,a’) d l  f(a,a) — g¢(b,b) which
could only be closed via g(b,b) — f(a,a)—b f(a’, a’), but not ‘strongly’, i.e., there was
no term t with f(a’,a’) —* t q  g(b, b). Furthermore we note that in  both examples in
the parallel step f(a,a)—jf f(a’,  a’) two parallel (inner) redexes are contracted both of
which are critical w.r.t. the other outside step.
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4 

f(a', a) :=:: f(a, a) 

1 
f(a, a') 

/
of(a', a') .....----_ 

Figure 3: (partial) reduction graph for Example 3.8 

Intuitively, the observations above suggest to analyse more carefully local divergences 
where in one parallel step several (parallel) redex positions are critical w.r.t. the other 
step. From a more abstract point of view this means to study the following questions: 

(1) What are critical peaks / pairs for the parallel reduction relation? 

(2) Which conditions on the corresponding critical peaks / pairs for parallel reduction 
guarantee strong confluence? 

For (1) we shall introduce the notion of parallel critical peaks / pairs. In fact, Definition 
4.1 below only accounts for critical divergences of the form t 1 + s ---t>. t 2 • However, 
this type of divergences (for parallel reduction) will turn out to be sufficient for char­
acterizing strong confluence of + (cf. Lemma 4.9 below). Concerning (2) we shall 
present a parallel critical pair condition (cf. Definition 4.8) which indeed suffices for 
guaranteing strong confluence of + (cf. Theorem 4.11). 

Main Result 

Definition 4.1 (parallel critical pairs / peaks)
 
Let R be a TRS and let 1 ---t r, h ---t rI, ... , In ---t rn be rules of R that w.l.o.g. do not
 
have any common variable. Suppose P = {PI, ... ,Pn} is a non-empty set of parallel
 
non-variable positions of 1. Suppose furthe~ that the unification problem {li == l/Pi 11 ::;
 
i::; n} is solvable, let's say with mgu u, where VRan(u)n(Var(l) \ (Ui=1 Var(l/Pi))) =
 
0. Then the pair of reducts ((u 1) [Pi +- uri 11 ::; i ::; n], ur) is called a parallel critical 
pair of R, determined by overlapping (in parallel) the rules li ---t ri into 1 ---t r at the 
(parallel) positions Pi (of 1). The divergence (ul) [Pi +- uri 11 ::; i ::; n] p+ ul ---t>. ur is 
the corresponding parallel critical peak. If n = 1 and 1 ---t r, /1 ---t rl are two renamed 
versions of the same rules, we do not consider the case p = >. (which gives only rise 
to improper divergences). The set of all parallel critical pairs between rules of R is 
denoted by PCP(R). A parallel critical peak (and its corresponding parallel critical 
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of (0 ,0)  = b

Figure 3:  (partial) reduction graph for Example 3.8

Intuitively, the observations above suggest to analyse more carefully local divergences
where in one parallel step several (parallel) redex positions are critical w.r.t. the other
step. From a more abstract point of view this means to  study the following questions:

(1) What are critical peaks / pairs for the parallel reduction relation?

(2) Which conditions on the corresponding critical peaks / pairs for parallel reduction
guarantee strong confluence?

For (1) we shall introduce the notion of parallel critical peaks / pairs. In  fact, Definition
4.1 below only accounts for critical divergences of the form ¢, +-  s —» t2. However,
this type of divergences (for parallel reduction) will turn out to  be sufficient for char-
acterizing strong confluence of + (cf. Lemma 4.9 below). Concerning (2) we shall
present a parallel critical pair condition (cf. Definition 4.8) which indeed suffices for
guaranteing strong confluence of + (cf. Theorem 4.11).

4 Main Result

Definition 4.1 (parallel critical pairs / peaks)
Let R be a TRS and let / —r , l ;  = r ,  . . . ,  I, = r ,  be rules of R that w.l.o.g. do not
have any common variable. Suppose P = {p i , . . . , p , }  is a non-empty set of parallel
non-variable positions of I .  Suppose further that the unification problem {/ ;  = [/p;  | 1  <
i <n }  is solvable, let’s say with  mgu o ,  where VYRan(o)N(Var()\ (UL, Var( l /p : ) ) )  =
0. Then the pai r  of  reducts ((o!)[p; « o r i | 1  < i  < n ] , o r )  is  called a parallel critical
pair of R ,  determined by overlapping (in parallel) the rules I; — r; into | — r at the
(parallel) positions p; (of I ) .  The divergence (ol)[p; — o r ; | 1  < i  <n ]  pd f  o l  —) or  is
the corresponding parallel crit ical  peak. If n =1  and | — r ,  l ;  — ry are two renamed
versions of the same rules, we do not consider the case p = A (which gives only rise
to improper divergences). The set of all parallel critical pairs between rules of R is
denoted by PCP(R). A parallel critical peak (and its corresponding parallel critical
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pair) is said to be proper if the inside parallel step in it contracts more than one redex 
(with the notation from above: n 2: 2). 

Definition 4.2 (recursive computation of parallel critical pairs)
 
Let R be a TRS. We recursively define the sets PCPk(R) of parallel critical pairs of
 
order k by:
 

•	 PCPI(R) := CP(R), i.e., the parallel critical pairs (and peaks, respectively) of 
order 1 are the ordinary critical pairs (and peaks, respectively) of R. 

•	 PCPk+l(R) (for k 2: 1) is obtained from PCPk(R) as follows: Let t I := (al)[pi t ­
ard1 :::; i:::; k] p+-H-al-+,\ ar =: t2 , with P = {PI, ... ,pd ~ FPos(l), be a 
parallel critical peak of order k, i.e., with (tI, t 2 ) E PCPk(R). Suppose Pk+I E 
F Pos(l) with Pk+I 11 P, i.e., Pk+I is a non-variable position of l which is parallel 

tOPI,···,Pk . 

. Let lk+l -+ rk+l be a rule from R with fresh variables such that a(l/Pk+I) and 
lk+I are unifiable with mgu r, where VRan(r )n(Var(t1)\ (U7=I tdpd) = 0. Then 
the divergence 

t~	 := (ral)[pi t- rari 11 :::; i :::; k][Pk+I t- Trk+d Q+-H- ral-+'\,'To-,l->r Tar =: t; , 

where Q = P I±J {Pk+I} and where the parallel step contracts the redexes in ral 
at the positions from Q using the rules h -+ r1, . .. ,lk+I, respectively, is a parallel 
critical peak of order k +1, and (t~, t~) the corresponding parallel critical pair of 
order k + 1. Performing such an additional superposition for all parallel critical 
peaks of ~rder k in all possible ways, we get the set PCPk+I (R) of all parallel 
critical pairs of order k + 1 (with corresponding parallel critical peaks of order 
k + 1). 

•	 Pcprec(R):= U PCPk(R).
k>I 

Remark 4.3 If in the above definition the size of the left hand sides of R is bounded, 
then there is a maximal k for which PCPk(R) may properly contribute to Pcprec(R). 
This is obvious, since for constructing a parallel critical peak of order k we need at least 
k function symbols occurring at k parallel (non-variable) positions in some left hand 
side of R. Hence, for any m 2: maxl->rE'R.II.:F( l), where the parallel function (symbol) 
width II.:F( s) of a term s is defined by 

0	 if sE V 

11.:F(s)= 1 'n ifsEF 
{ max{l, i~ 11.:F(si)} if s = f(sl, ... , sn) , 

m 

we have Pcprec(R) = U PCPk(R). 
k~I 

Lemma 4.4 For any TRS n the sets PCP(R) and Pcprec(R) coincide (modulo vari­
able renamings). 
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pair) is said to  be proper i f  the inside parallel step in i t  contracts more than one redex
(wi th  the  notation from above: n > 2).

Definition 4.2 (recursive computation of  parallel crit ical  pairs)
Let R be a TRS. We recursively define the sets PCPx(R) of parallel critical pairs of
order k by:

e PCPy(R) : =  CP(R), i .e., the parallel critical pairs (and peaks, respectively) of
order 1 are the ordinary critical pairs (and peaks, respectively) of R.

e PCPr41(R) (for k > 1) is obtained from PCP(R) as follows: Let ¢ ;  : =  (al)[p; «
o r ; | 1  < i  < k] pa l  =»  or = :  ta, with P = {p1 , . . . , p }  © FPos(l), be a
parallel crit ical peak of order k ,  i.e., w i th  (t1,t2) € PCPx (R) .  Suppose p441 €
F Pos(l) with px+1 || P ,  i-e., pr+1 is a non-variable position of / which is parallel
t o  p r y . . . Pk-

> Let 441 — 7x41  be a rule from R with fresh variables such that o(l/py+1) and
le+1 are unifiable with mgu 7 ,  where VRan(7)N(Var(t;)\  (UL, t1/p:)) = 0. Then
the divergence

= (ral)[pi & Tor;  | 1  < i  < k][prt1 — Tre) o t  T l  =)  100 r  TOT = :  15,

where Q = P W {pr4+1} and where the parallel step contracts the redexes in r a l
at the positions from Q using the rules I; — r;,...,Ix4+1, respectively, is a parallel
critical peak of order k + 1, and (t1,%) the corresponding parallel critical pair of
order k + 1. Performing such an additional superposition for all parallel critical
peaks of order k in all possible ways, we get the set PCP„41(R) of all parallel
critical pairs of order k + 1 (with corresponding parallel critical peaks of order
k +1).

e PCP™(R) : =  U PCP(R).
k>1

Remark 4.3 If  in the above definition the size of the left hand sides of R is bounded,
then there is a maximal k for which PCP(R)  may properly contribute to PCP™*(R).
This is obvious, since for constructing a parallel critical  peak of order k we need at least
k function symbols occurring at k parallel (non-variable) positions in  some left hand
side of R .  Hence, for any m > max;_.,er ||#({), where the parallel function (symbol)
width ||( 8 )  of a term s is defined by

0 i f seV
I I z ( s )  = 1 i f seF

max{1, © [l#(s:)} i f s= f ( s , 5a)

we have PCP™(R) = U PCP;(R).
51

Lemma 4.4 For any TRS R the sets PCP(R) and PCP"“(R) coincide (modulo vari-
able renamings).
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Proof: Straightforward, by standard rewriting (and unification) techniques. One 
only has to use the basic fact, that solving a given unification problem E U {s ..:.. t} can 
be recursively done by first solving E yielding (in case of solvability) 'a most, general 
unifier 0- (via a solved form of E), and then solving additionally o-s ..:. o-t producing 
(in case of solvability) let's say the mgu 'ljJ. Then, the composition of 0- and 'ljJ, 0- 0 'ljJ, 
is an mgu of the original unification problem E U {s == t}. • 

In order to get some intuition for the introduced notion of parallel critical pairs / peaks 
and their computation let us give two simple examples. 

Example 4.5 The TRS 

f(g(x),h(x,y)) ~ a 
g(b) ~ c 

h(x,d) ~ e 

has two (parallel) critical peaks of order 1, namely f(c, h(b, y)) l+- f(g(b), h(b, y)) ~A a , 

and f(g(x), e) rf(g(x),h(x,d)) ~A a, obtained by overlapping the second and the 
third rule, respectively, into the first one. And there is one (proper) parallel critical 
peak of order 2, namely f(c,e) {l,2}+-tt- f(g(b),h(b,d)) ~A a, obtained either directly 
by overlapping in parallel the last two rules into the first, or recursively from both 
critical peaks of order 1 by an additional superposition. Hence, we have PCPl('R) = 
{(J(c, h(b, y)), a), (J(g(x), e), an, PCP2 (R) = {(J(c, e), a)}, and PCP(R) = PCPl(R)U 
PCP2 (R). 

Example 4.6 The TRS 
f(g(x), h(x)) ~ a 

R = g(b) ~ d
{ h(c) ~ d 

has two (parallel) critical peaks of order 1, namely f(d, h(b)) l+- f(g(b), h(b)) ~A a 
and f(g(c), d) r f(g(c), h(c)) ~A a, obtained by overlapping the second and the third 
rule, respectively, into the first one. However, there is no (proper) parallel critical peak 
of order 2, since simultaneously unifying g(x) with g( b) and h(x) with h(c) obviously 
fails. Hence, we get PCP(R) = PCPl('R) = {(J(d, h(b)), a), (J(g(c), d), a)}. 

Lemma 4.7 Let R be a TRS. Then any divergence t~ +-tt- s' ~ A t~, with s' ~ A,O',I-+r t~ 

and s'+pt~, P some set of n parallel non-variable positions Pi (1 ::; i ::; n) from l, is 
an instance of a parallel critical peak t l P+-tt- S ~A t 2 of R (of order n). 

Proof: Routine, by a straightforward peak analysis analogous to the situation for 
ordinary critical pairs (as it is used in the proof of the Critical Pair Lemma 2.5). • 

Next we introduce the central condition on parallel critical pairs that will enable us to 
prove strong confluence of parallel reduction. 

Definition 4.8 (parallel critical pair condition) 
We say that a TRS R satisfies the parallel critical pair condition PCPC (PCPC(R) for 
short) if for every parallel critical peak D: t l P+-tt- s ~A t2 of R the following holds: 
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Proof: Straightforward, by standard rewriting (and unification) techniques. One
only has to use the basic fact, that solving a given unification problem EU  {s = t }  can
be recursively done by first solving E yielding ( in  case of solvability) a most general
unifier o (via a solved form of E ) ,  and then solving additionally 6s  = ot  producing
(in case of solvability) let’s say the mgu %. Then, the composition of o and %, 0 o%,
is an mgu of the original unification problem EU  {s = t } .  =

In  order to  get some intuition for the introduced notion of parallel critical pairs / peaks
and their computation let us give two simple examples.

Example 4.5 The TRS

g(b) — c
h(z,d)— e

has two (parallel) critical peaks of order 1, namely f (c,  h(b, y)) —f(g(&),  h(b,y)) > a
and f(g(z),e) #—f(g9(z), h(z,d)) —» a, obtained by overlapping the second and the
third rule, respectively, into the first one. And there is one (proper) parallel critical
peak of order 2, namely f(c,e) { 1 ,234  f(g(b), h(b, d)) — a, obtained either directly
by overlapping in  parallel the last two rules into the first, or recursively from both
critical peaks of order 1 by an additional superposition. Hence, we have PCP;(R) =
AUG M0) (a la) .  a )  POPA(R) = (7c ) ,  and POP(R) = POPL(RIU

2(R).

Example 4.6 The TRS

| F(g(x), h(x,y)) = a
R =

R = g(b) = d
hic) — d

has two (parallel) critical peaks of order 1, namely f(d,h(b)) ++—f(g(b), h(b)) — a
and f(g(c),d) #—f(g(c), h(c)) — a, obtained by overlapping the second and the third
rule, respectively, into the first one. However, there is no (proper) parallel critical  peak
of order 2, since simultaneously unifying g(x) with g(b) and h(z) with h(c) obviously
fails. Hence, we get PCP(R) = PCP1(R) = { ( f (d,  h (b ) ) ,a), (f(g(c),d),a)}.

| f(g(z), h(z)) — a

Lemma 4 .7  Let R be a TRS. Then any divergence t1 4 s’  —) 6,  with  s’  — ıo1 r  15
and s'—»pt } ,  P some set of n parallel non-variable positions p; (1  < ¢ < n )  from I, is
an instance of a parallel critical  peak t ;  pdf  s —» t2 of R (of order n).

Proof: Routine, by a straightforward peak analysis analogous to the situation for
ordinary critical pairs (as i t  is used in  the proof of the Critical Pair Lemma 2.5). m

Next we introduce the central condition on parallel critical pairs that will enable us to
prove strong confluence of parallel reduction.

Definition 4.8 (parallel crit ical pair condition)
We say that a TRS R satisfies the parallel critical pair condition PCPC (PCPC(R) for
short) i f  for every parallel critical peak D : t i  pe  s — tz of R the following holds:
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case (iii) 

case (i)	 case (ii) 

Figure 4: parallel critical pair condition PCPC 

(i)	 If P = P}, i.e., D is an outside critical peak, then there exists t3 such that 
t l +t3 *f- t2 •

9 

(ii)	 If P = {p}, P > A, i.e., D is an inside (ordinary) critical peak, then there exists 
t3 such that t l +t3 *f- t2 . 

(iii)	 If P = {PI,"" Pn}, n ~ 1 such that Pi > A for some i, 1 ~ i ~ n, i.e., D is an 
inside parallel critical peak, then t l -7* t2 • 

The	 conditions (i)-(iii) of Definition 4.8 are depicted in Fig. 4. 

Lemma 4.9 (characterizing strong confluence of parallel reduction) 
For a given TRS, parallel reduction is strongly confluent if and only iffor all terms s, t1, 
t2 we have: whenever t l + s -7 t 2 , then there exists a term t3 such that t l -7* t3 + t2 

(more succintly: SCR(+) {::=:;> + 0-7 ~ -7* 0+). 
Proof: The direction '===}' is obvious by definition of strong confluence and the facts 
-7 ~ +, -7*= +*. Conversely, supposing (1) + 0-7 ~ -7* 0+, we have to 
show (2) + 0 + ~ +* 0 + (note that + = += by definition of +). Now, 

nfrom (1) we obtain + 0-7 ~ -7* 0+ (for all n ~ 0) by a straightforward induction 
on n, hence also + 0-7* ~ ~* 0+ which, by + ~ -7* and -7*= +*, implies 
(2)	 as desired. _ 

In fact, Lemma 4.9 can also be obtained as a special case from the following easy results 
about abstract reduction relations. 

Lemma 4.10 (relating strong confluence of related abstract reduction rela­

tions) ,
 
Let -71, -72 be abstract reduction relations (on some set A). Then the following
 
properties hold:
 

9Note again, that due to the asymmetry in the definition of (parallel) critical pairs / peaks this 
means that there must also exist a term t4 with tt -+* t4<-ft-t2. 
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Figure 4: parallel critical pair condition PCPC

( i )  If P = {A } ,  i .e., D is an outside critical peak, then there exists tz such that
t i t s  * -  4 . )

(ii) If  P = {p},  p>  A, i.e., D is an inside (ordinary) critical peak, then there exists
t3 such that 4, —+ht3 *&— 12.

(iii) If P = {p1,...,Pn}, n > 1 such that p; > A for some ti, 1 < i :  <n ,  ie ,  D i s  an
inside parallel critical peak, then t ;  —* 72.

The conditions (i)-(iii) of Definition 4.8 are depicted in  Fig. 4.

Lemma 4.9 (characterizing strong confluence of  parallel reduction)
For a given TRS, parallel reduction is strongly confluent i f  and only if  for all terms s, ¢;,
t ,  we have: whenever t ;  4 -  s — t2, then there exists a term tz such that ¢; —*  t34}-t;
(more succintly: SCR(—) <=  Ho  — C —*od}-).
Proof: The direction ‘=>’ is obvious by definition of strong confluence and the facts
—C + ,  —*= bh”. Conversely, supposing (1) 4-0 — C—* od}, we have to
show (2) f f  op  © —p*o 4 }  (note that + = -b”  by definition of + ) .  Now,
from (1) we obtain d f  0 ="  C —* oe} (for all n > 0) by a straightforward induction
on n ,  hence also 4 -  0 —*C —* od} which, by Ab  €—*  and —*= -b*, implies
(2) as desired. =

In  fact, Lemma 4.9 can also be obtained as a special case from the following easy results
about abstract reduction relations,

Lemma 4.10 (relating strong confluence of  related abstract reduction rela-
tions)
Let —1,  —2 be abstract reduction relations (on some set A).  Then the following
properties hold:

Note again, that due to the asymmetry in  the definition of  (parallel) crit ical pairs / peaks this
means that  there must also exist a term t4 with ¢; —* t4 to.
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(1)	 If I~O -+2 ~ -+; 0 1~ and -+1 ~ -+; ~ -+r, then SCR(-+1)' 

(2)	 If SCR( -+1) and -+2 ~ -+~ ~ -+;, then I~O -+2 ~ -+; 0 1~' 

Proof: Straightforward. • 
Taking -+1 = + and -+2 = -+, we obviously have -+1 = + ~ -+* = -+; = -+r =-+* 

and -+2 =-+ ~ +* = -+r = -+; = -+*. Hence, Lemma 4.9 follows by properties (1) 
and (2) of Lemma 4.10 above. 

Now we are prepared for the main result of the paper. 

Theorem 4.11 (strong confluence of parallel reduction via parallel critical
 
pairs)
 
If a left-linear TRS R satisfies the parallel critical pair condition PCPC, then parallel
 
reduction (in R) is strongly confluent (more succinctly: PCPC(R) =} SCR(+»,
 
and hence, (ordinary reduction -+ in) R is also confluent.
 

Proof: Let R be a left-linear TRS satisfying PCPC(R). According to Lemma 4.9 it
 
suffices to show that whenever we have a local divergence of the form
 

there exists a term t3 such that 

Hence, suppose s reduces to t 1 by contracting n parallel redexes S/Pl, ... , s/Pn in s 
using the rules /1 -+ rb"" In -+ rn of R and substitutions ab' .. ,an, respectively. We 
may assume that the set P = {PI,'" ,Pn} of parallel redex positions is non-empty, i.e., 
n ;:::: 1 (the case n = 0 is trivial!). Further, suppose that s reduces to t2 by contracting 
some redex s/q in s using some rule 1-+ r of R with substitution a. ' 

We proceed by a complete case distinction according to the relative positions of the 
contracted redexes (at PI, ... ,pn, q in s) in D (this case analysis is illustrated in Fig. 5 
below). 

(1)	 q 11 P (parallel redexes): In this case we obviously get t 1 -+'1 t3 P+#- t 2 by 
commuting the steps, with t3 defined by t3 = idq ~ t 2/q] = t 2[Pi ~ tI/Pi 11 :::; 
i:::;n]. 

(2)	 :JPi E P : q = Pi (overlay case): If the applied rules at S/Pi = slq, i.e., li -+ ri 
and 1 -+ r, are the same, we are done since we then have: t 2+ P\{Pi}t1 =: t3. 
Otherwise, the local divergence hiq A,li-+ri~S Iq -+'1,I-+r t21q (obtained from D 
by considering only the subterm slq) is an instance of a critical overlay (be­
tween the rules li -+ ri and 1 -+ r), hence by (the symmetric version of) the 
assumption PCPC(R)(i) we get tI/q -+* t~+ t2/q for some t~. Combining the 
reductions appropriately and exploiting commutation of parallel redex contrac­
tions we obtain the existence of t~, t3 with S -+'1 S' -+~'1 t~, t2+~'1t~+P\{'1}t3' 

S -+'1 s'+P\{'1}t1 -+~'1 t3· Hence, t 1 -+* is+#- t 2 as desired. 
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(1) If —o —3 C =}  0 T+  and —; C —} C —7, then SCR(—).

(2) If  SCR(—1) and —2 C > }  C —3, then 30  —2 C = }  0 Te.
Proof: Straightforward. =

Taking —;  = bh  and —2 = —, we obviously have —1 = bh  C ===  —*
and —;=—C Fb” =—}= - }=—" .  Hence, Lemma 4.9 follows by properties (1)
and (2) of Lemma 4.10 above.
Now we are prepared for the main result of the paper.

Theorem 4.11 (strong confluence of  parallel reduction v ia parallel critical
pairs)
If  a left-linear TRS R satisfies the parallel critical pair condition PCPC, then parallel
reduction (in R)  is strongly confluent (more succinctly: PCPC(R) =>  SCR(-h)),
and hence, (ordinary reduction — in) R is also confluent.
Proof: Let R be a left-linear TRS satisfying PCPC(R). According to Lemma 4.9 i t
suffices to show that whenever we have a local divergence of the form

D:  t i s — ts,

there exists a term #3 such that

t y  —* t ad  t o  .

Hence, suppose s reduces to  ¢; by contracting n parallel redexes s /p i , . . . , s /Pn  in  s
using the rules ly — rq , . . . , l ,  — r, of R and substitutions 01 , . . .  , 77 ,  respectively. We
may assume that the set P = {py , . . . ,  ps }  of parallel redex positions is non-empty, i.e.,
n > 1 (the case n = 0 i s  tr ivial!).  Further, suppose that s reduces to  t ;  by  contracting
some redex s/g in  s using some rule I — r of R with substitution o.
We proceed by a complete case distinction according to the relative positions of the
contracted redexes (at p ; , . . . ,Pn ,q  in  s) in  D (this case analysis is illustrated in  Fig. 5
below).

(1) q || P (parallel redexes) :  In this case we obviously get t i  —,  t3 pd f  £2 by
commuting the steps, with ¢3 defined by  t3 = #1[q — t2/q] = talpı — t1 /p i | 1  <
i < nj.

(2) 3p; € P :  q = p; (overlay case): I f  the applied rules at s /p ; = s /q ,  i . e ,  [; — Tr:
and | — r ,  are the same, we are done since we then have: t i p {piaf = :  ta.
Otherwise, the local divergence t / q  Aimrié—$ /g  —Aql ır  t2/q (obtained from D

. by considering only the subterm s/q) is an instance of a critical overlay (be-
tween the rules I; — r; and | — r ) ,  hence by (the symmetric version of) the
assumption PCPC(R)(i) we get ¢1/q —* ty }  t2/q for some #5. Combining the
reductions appropriately and exploiting commutation of parallel redex contrac-
tions we obtain the existence of ¢}, { 3  with s —, s’ 23,  11, t abs  ti p\ (3s
8§—g 8"pya r  —-3, ts. Hence, 4 —*  t a }  ty as desired.
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(3)	 ::JPi E P : q > Pi (the single redex is below one of the parallel redexes): 
In this case we further distinguish between a variable and critical overlap. 

(3.1)	 ::Jp E VPOS(li) : q ~ PiP (variable overlap below Pi): Let ldp = x E V 
and P' = q \ (pip), Define 0": by Dom 0": = Dom a, a:y = O"iY for y =1= x, 
and a:x = O"iX[P' f- O"r]. Then we get S = S[Pi = O"Ji]+ptl = tl[Pi = 
airi]+tl[Pi f- O":ri] =: t3 and S ~q t2+ pt3 as desired. 

(3.2)	 q \ P E FPOS(li) (critical overlap below Pi): Let P' = q \ Pi. Then the 
mirrored version of the (extracted) divergence tIfPi = O"iri Af-O"ili = S/Pi = 
S/Pi[P' = all ~p' S/Pi[P' f- O"r] = tdPi is an instance of an (ordinary) inside 
critical peak of R (obtained by overlapping 1 ----+ r into li ~ ri at posi­
tion P' in li)' By assumption (ii) of PCPC(R) we obtain tdPi ~>A t~ and 
t2/Pi+>At~ for some t~. Combining the reductions appropriately and ex­
ploiting c-ommutation of parallel redex contractions we obtain the existence 

ofs', t;, t3 with S ~Pi s'+P\{Pi}tl ~~Pi t3, S ~q t2+~p/;+P\{p;}t3' 
hence t l ~* t3+ t2 as desired. 

(4)	 ::JPi E P ; q < Pi (some parallel redexes are below the single redex): In this 
case (which is the most difficult one) we can simplify the discussion a bit. Namely, 
if we succeed to close the extracted divergence tdq p,+ s/q ~A t2/q, where P' = 
{q \ Pi IPi ~ q}, in the desired form, i.e., if tdq ~~ t~ + t2/ q for some t~, then 
we obtain t l ~~q t3+ t2 from S+Pl t~ +P2tl ~~q t3, s ~q t2+~qt;+P2t3 
(where t~ = s[p f- tdp IP E PI], t; = t2[q f- t~], t3 = tdq f- t~] = t2[q f- t~][P f ­

tIfplp E P2], PI = {qp~ Ip~ E P'}, P2 = P \ PI), simply by commutation of 
independent steps and by combining twice two independent parallel steps into one 
parallel step. Hence, w.l.o.g. we may assume q = ,\ and Vp E P ; P> '\, i.e., D 
has the form t l 4 s ~A t 2 • The idea now is to treat the 'variable overlap part' 
of the parallel step first, and then tackle the remaining 'parallel peak' by using 
assumption (iii) of PCPC(R). So, let Pv = {p E P I::Jp' E V Pos(l) : P ~ p'}, 
Pc = {p E Pip E FPos(l)}. Clearly, we have P = Pv I±J Pc. Now, due to left­
linearity of R we obtain (as in case (3.1) above) s = O"l+pvs' = 0"'1 ~>. O"'r, 
s = 0"1 ~A O"r = t2+a'r, for some 0"'. Furthermore, by definition ,of Pv , Pc, we 
get s' = O"'l+Pctl' Since all redex positions from Pc in s' are critical (w.r.t. the 
step 0"'1 ~A,I-+r O"'r), the divergence t l Pc+ S' = a'l ~A O"'r must be an instance 
of an inside parallel critical peak of R, according to Lemma 4.7. Assumption (iii) 
of PCPC(R) yields joinability from left to right, i.e., t l ~* a'r. Defining now 
t3 := O"'r we are done, since we have obtained t l ~* t3+ t2 as desired. 

• 
Since non-overlapping TRSs have no critical pairs, hence also no parallel critical pairs, 
we obtain as a direct consequence of Theorem 4.11 the following well-known result. 

Corollary 4.12 (cf. e.g. [Ros73]) 
Any orthogonal TRS is confluent. 
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(3) dp; € P :  q > p; (the single redex is below one of  the  parallel redexes):
In this case we further distinguish between a variable and critical overlap.

(3.1) 3p € VPos(l;) : qg > pip (variable overlap below p;):  Let l;/p =z  € V
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(3.2) q\p € FPos(l;) (critical overlap below p;): Let p’ = ¢ \ p;. Then the
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case (which is the most difficult one) we can simplify the discussion a b i t .  Namely,
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P. = {p € P |p  € FPos(l)}. Clearly, we have P = P,  W P,. Now, due to left-
linearity of R we obtain (as in  case (3.1) above) s = o l—bp s' = o' l  — o ' r ,
s = o l  =)  or  = t;—jpo'r, for some ¢ ’ .  Furthermore, by definition of  P,, P., we
get s '  = o l f p . t 1 -  Since all redex positions from P,  in s’ are critical (w.r.t. the
step o' l  — y r  o ' r ) ,  the divergence t ,  pd  s’  = o’ l  — o'r  must be an instance
of an inside parallel critical peak of R ,  according to Lemma 4.7. Assumption (iii)
of PCPC(R) yields joinability from left to right, i.e., tı —* o'r. Defining now
t3 : =  o'r we are done, since we have obtained t ;  —* t34}- t ;  as desired.
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Since non-overlapping TRSs have no critical pairs, hence also no parallel critical pairs,
we obtain as a direct consequence of Theorem 4.11 the following well-known result.

Corollary 4.12 (cf. e.g. [Ros73])
Any orthogonal TRS is confluent.
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5 

For readers which are familiar with the proof of Huet/Toyama for Theorem 3.7 we re­
mark that one crucial difference between their proof (of Theorem 3.7) and ours (of The­
orem 4.11) is the following. In the case that the considered local divergence t1 +-#- S ~ t 2 

has the form t 1 P+-#- S ~>..,o) ...... r t 2 where at least one of the positions pEP is critical 
w.r.t. the outside step, i.e., p E FPos(l) , the proof of Huet/Toyama appeals to the 
induction hypothesis, whereas we proceed as described, namely by exploiting case (iii) 
of the parallel critical pair condition PCPC(R). Interestingly, these two approaches 

. seem to be incompatible, as the examples below suggest. 

Discussion and Related Work 

We give (non-terminating) examples showing that the presented confluence criteria 
SCCP, CPCHT and PCPC are not comparable with each other. In fact, for the former 
two this is well-known. 

Example 5.1 (Example 3.8 continued, left-linear case: PCPC =I} CPCHT ) 
In this example it is easily verified that PCPC(R) is indeed satisfied. In particular, for 
the (proper) parallel critical peak f( a', a') +-#- f( a, a) ~ >.. b we have f( a', a') ~ b, hence 
f(a', a') ~* bas desired. However, CPCHT is not applicable, since e.g. the inside critical 
peak f(a', a) f- f(a, a) ~>.. b is not parallel closed, i.e., we do not have f(a', a)+b. 
Moreover, the strongly closed criterion SCCP is also not applicable, because R is not 
right-linear. 

Example 5.2 (Ieft- and right-linear case: PCPC =I} CPCHT , SCCP)
 
The TRS
 

f(a) ~ f(g(b, b)) 
a ~ g(c, c) 

R= c~d 

d~b 

b~d 

is left- and right-linear (and non-terminating). Moreover, it is easily checked that R 
satisfies PCPC(R), but neither CPCHT(R) nor SCCP(R). 

Example 5.3 (left- and right-linear case: SCCP =I} PCPC) 
The TRS 

f(a,b)~c 

a ~ a' 
b ~ b'

R= 
c~f(a',b) 

c ~ f(a, b') 
c~f(a,b) 

is left- and right-linear (and non-terminating). Furthermore, as it is easy to check, 
we have SCCP(R) but neither CPCHT(R) nor PCPC(R). This means that R is 
strongly confluent. Note, however, that parallel reduction is only confluent here, but 
not strongly confluent. 
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For readers which are familiar with the proof of  Huet/Toyama for Theorem 3.7 we re-
mark that one crucial difference between their proof (of Theorem 3.7) and ours (of The-
orem 4.11) is the following. In  the case that the considered local divergence t ;  4 s — t2
has the form ¢; pdfs — 4 ,1  t2 Where at least one of the positions p € P is critical
w.r.t. the outside step, i.e., p € FPos(l), the proof of Huet/ Toyama appeals to the
induction hypothesis, whereas we proceed as described, namely by exploiting case (iii)
of the parallel critical pair condition PCPC(R). Interestingly, these two approaches

“seem to be incompatible, as the examples below suggest.

5 Discussion and Related Work

We give (non-terminating) examples showing that the presented confluence criteria
SCCP, CPCyt and PCPC are not comparable with each other. In fact, for the former
two this is well-known.

Example 5.1 (Example 3.8 continued, left-linear case: PCPC # CPCpyr)
In this example i t  is easily verified that PCPC(R) is indeed satisfied. In  particular, for
the (proper) parallel critical peak f ( a ’ , a ’ )4 f(a,a) —x b we have f(a’,a’) — b, hence
f(a’ ,  a’) —* bas desired. However, CPCyr is not applicable, since e.g. the inside critical
peak f (a ’ ,a )  — f (a ,a )  —,  b i s  not parallel closed, i.e., we do not have f(a’', a) -hb.
Moreover, the strongly closed criterion SCCP is also not applicable, because R is not
right-linear.

Example 5.2 (left- and right-linear case: PCPC # CPCyr,SCCP)
The TRS

. f(a) — f(g(5,0))
a — g{c,c)

R=  cd
d—b
b—d

is left- and right-linear (and non-terminating). Moreover, i t  is easily checked that R
satisfies PCPC(R), but neither CPCyt(R) nor SCCP(R).

Example 5.3 (left- and r ight- l inear case:  SCCP # PCPC)
The TRS

( f(a,b) = ¢

a—a
) b— bv

c—  f(a',b)
c—  f (a ,  U)

| c—  f(a,b)
is left- and right-linear (and non-terminating). Furthermore, as i t  is easy to check,
we have SCCP(R) but neither CPCHT(R) nor PCPC(R). This means that R is
strongly confluent. Note, however, that parallel reduction is only confluent here, but
not strongly confluent.

ad I
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Example 5.4 (left-linear case: CPCHT ~ PCPC) 
The TRS 

f(a, a) -+ g(J(a, a)) 
'R- a-+b 

- f(b,x)-+g(J(x,x)){ 
f(x, b) -+ g(J(x, x)) 

is left-linear (and non-terminating). Furthermore, it is obviously parallel closed, i.e,., 
CPCHT('R) holds. However, it doesn't satisfy the parallel critical pair condition 
PCPC('R) (because the proper parallel critical pair (J(b, b),g(J(a, a))) is not joinable 
from left to right, i.e., f(b, b) -+* g(J(a, a)) does not hold). 

The last example shows in particular, that CPCHT is not subsumed in general by PCPC. 
However, there is one special case where CPCHT is indeed (properly) subsumed by 
PCPC, namely when there are no proper parallel critical pairs (but only ordinary inside 
ones). In that case, parallel closedness of all inside critical pairs implies conditions 
(ii) and (iii) of PCPC, according to CPCHT(ii). This is obvious for PCPC(ii), and 
PCPC (iii) only has to hold for (ordinary) inside critical peaks which is guaranteed 
again by CPCHT(ii). 

Finally, let us briefly discuss related work and possible extensions of our approach. First 
of all, it seems rather straightforward to generalize our approach to a 'commutation 
setting' analogous to the one of Toyama ([Toy88]) mentioned above for Theorem 3.7. 

Furthermore, we would like to mention one possible source of refinements for Theorem 
4.11 (and related critical pair based confluence criteria) which is based on making use 
of the ambiguity of rewriting. More precisely, it may be the case that a parallel critical 
peak t l >>.+#- 8 -+>. t 2 as in PCPC(iii) is not joinable from left to right as required. 
However, it might e.g. be (an instance of) another outside critical peak t~ >.+-8' -+>. t~ 

which satisfies PCPC(i), i.e., t~ +t3 *+- t~ and t~ -+* t4 + t~ for some t~, t~. In this 
case the reasoning in the proof of Theorem 4.11 still applies. The following simple 
example ilustrates this kind of refinement. 

Example 5.5 (refining PCPC), 
The TRS 

f(a) -+ f(J(a)) 
a-+b 

f(x) -+ f(b) 

does not satisfy PCPC(iii) since for the inside critical peak f(b) >>.+-f(a) -+>. f(J(a)) 
we do not have f(b) -+* f(J(a)). However, we also have the outside critical peak 
f(b) >.+-f(a) -+>. f(J(a)), which is strongly joinable in the sense of PCPC(i), due to 
f(J(a)) -+ f(b). Hence, parallel reduction in 'R is strongly confluent. 

Similar refinements are also possible for Theorem 3.7. 

Another direction of extending our approach is to combine it with the recent results of 
van Oostrom ([00s94b]) who showed that the approach of Huet/Toyama can be gen­
eralized by replacing parallel reduction steps by the more general so-called (complete) 

18
 

Example 5 .4  (left-linear case:  CPCyr  # PCPC)
The TRS

f(a,a) — o(f(a,a))

f(b,2) = 9(f(=,2))
F(z,b) — g(f(z,z))

is left-linear (and non-terminating). Furthermore, it is obviously parallel closed, i.e.,
CPCur(R) holds. However, i t  doesn’t satisfy the parallel critical pair condition
PCPC(R) (because the proper parallel critical pair (f(b, b),g(f(a,a))) is not joinable
from left to right, i.e., f ( , b )  —* g(f(a,a)) does not hold).

R=

The last example shows in  particular, that CPCyr is not subsumed in  general by PCPC.
However, there is one special case where CPCyr is indeed (properly) subsumed by
PCPC, namely when there are no proper parallel critical pairs (but only ordinary inside
ones). In that case, parallel closedness of all inside critical pairs implies conditions
(ii) and (iii) of PCPC, according to CPCyr(ii). This is obvious for PCPC(ii), and
PCPC(iii) only has to hold for (ordinary) inside critical peaks which is guaranteed
again by CPCyr ( i i ) .
Finally, let us briefly discuss related work and possible extensions of our approach. First
of all, i t  seems rather straightforward to generalize our approach to a ‘commutation
setting’ analogous to the one of Toyama ([Toy88|) mentioned above for Theorem 3.7.

Furthermore, we would like to  mention one possible source of refinements for Theorem
4.11 (and related critical pair based confluence criteria) which is based on making use
of the ambiguity of  rewriting. More precisely, i t  may be the case that a parallel critical
peak 4; 14  s —) t2 as in PCPC(iii) is not joinable from left to  right as required.
However, i t  might e.g. be (an instance of) another outside critical peak 41 x—s' > t }
which satisfies PCPC(i), i.e., tj—fta *— t}  and 41 —* 144% for some 43, t } .  In this
case the reasoning in  the proof of Theorem 4.11 still applies. The following simple
example ilustrates this kind of refinement.

Example 5.5 (refining PCPC)
The TRS

| f(a) — f(f(a))
R= a—b

f(z) — f(b)
does not satisfy PCPC( i i i )  s ince for the inside cri t ical peak f ( b )  sx—f(a) > f ( f ( a ) )
we do not have f(b) —* f ( f (a) ) .  However, we also have the outside critical peak
f(0) x—f(a) —x f ( f (a ) ) ,  which is strongly joinable in the sense of PCPC(i), due to
f ( f (a ) )  — f(b). Hence, parallel reduction in  R is strongly confluent.

Similar refinements are also possible for Theorem 3.7.

Another direction of  extending our approach is to  combine i t  wi th  the recent results of
van Oostrom ([Oo0s94b]) who showed that the approach of Huet/Toyama can be gen-
eralized by replacing parallel reduction steps by the more general so-called (complete)
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developments, using essentially the same proof structure as in Theorem 3.7.10 The 
basic idea of developments roughly is that a set of rewrite steps is considered to be 
parallel if a 'parallel extraction' of all the steps in the set is possible ([Oos94bJ). This 
implies for instance, that in a (left-linear) TRS a derivation s = al ~p a'l ~>,,(TI,I-+r a'r 
(with p ~ q for some q E V Pos(1)) can be viewed as a single parallel step. It seems that 
our approach via parallel critical pairs developed in this paper and the approach of van 
Oostrom generalizing the notion of being 'parallel' are 'orthogonal' to each other, hence 
it should be possible to combine both as well as the corresponding proof structures. 

Similarly, it is conceivable that our approach can also be combined with (proof tech­
niques for) confluence results for the higher-order rewrite systems of [MN94]. 

Last but not least we think that the notion of parallel critical pairs that we have 
explicitly introduced here might turn out to be fruitful for other purposes, too. But 
this remains to be seen. 

Acknowledgements: I thank Vincent van Oostrom and Claus-Peter Wirth for useful 
comments and Paul Taylor for his diagrams. 

Final Note: It should be mentioned that Yoshihito Toyama, after having read (a 
longer version of) this paper, informed the author ([Toy95J) about the existence of 
another very early paper, namely "Y. Toyama: On the Church-Rosser property of term 
rewriting systems) NTT ECL Technical Report 17672 (Dec. 23) 1981)) in Japanese", 
containing very similar ideas and results. The relationships between the latter paper 
and ours as well as possible extensions and refinements will be investigated in joint 
future research. 
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