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Abstract

In this paper we are interested in an algebraic specification language that  (1) allows
for sufficient expessiveness, (2) admits a well-defined semantics, and (3) allows for formal
proofs. To that end we study clausal specifications over built-in algebras. To keep things
simple, we consider built- in algebras only that are given as the initial model of a Horn
clause specification. On  top of  this Horn clause specification new operators are (partially)
defined by positive/negative conditional equations. In the first part of  the paper we
define three types of semantics for such a hierarchical specification: model-theoretic,
operational, and rewrite-based semantics. We show that all these semantics coincide,
provided some restrictions are met. We associate a distinguished algebra Aspec  t o  a
hierachical specification spec. This algebra is initial in the class of all models of spec.
In the second part of  the paper we study how to  prove a theorem (a  clause) valid in the
distinguished algebra Aspec .  We first present an abstract framework for inductive theorem
provers. Then we instantiate this framework for proving inductive validity. Finally we
give some examples to  show how concrete proofs are carried out.

*This report was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)
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1 Introduction 

1.1 Motivation 

For the production of software it is desirable to precisely describe the products created 
so far on each level of the development. This will allow one to communicate on the 
products, to perform some reasoning, and finally to prove some correctness properties. 
In this paper we are interested in describing the product on the level of the functional 
design. 

For this purpose, we are interested in a specification language that 
• allows for sufficient expressiveness, 
•	 admits a well-defined semantics, 
• allows for formal reasoning. 

We are interested in executable algebraic specifications, so we require the axioms to 
be (implicitely universally quantified) equations. Then the semantics should be. based 
on equational reasoning on the ground terms (i.e. variable-free terms). This will re­
sult in some kind of initial semantics. Normally a conditional equation is of the form 
B ===} 1 = r where B is a conjunction of equations. Furthermore, the specification 
defines the operators totally. In order to comply more realistically with the needs of a 
specification language, we allow for several extensions: 

(1)	 We allow the axioms to be positive/negative conditional equations, i.e., in B ===} 

1= r we allow also negative equations of the form u =J v. From the logical point of 
view this is a clause. So we speak of clausal specifications. 

(2)	 One would like to have fixed built-in structures such as the integers, the rationals, 
or lists. To keep things simple, in this paper we consider built-in algebras only which 
are themselves given by algebraic specifications. 

(3)	 The specification of interest may define new operators on top of the built-in algebra 
only partially. 

We study how to assign natural semantics to such a specification. We will define 
denotational semantics (based on the notion of models), operational semantics (based 
on equational reasoning on ground terms) and rewrite semantics (based on conditional 
rewriting). Provided some restrictions are met, all these semantics coincide. This 
defines the notion of validity of a clause. We discuss a proof method to prove (or 
disprove) a clause to be valid. 

Our definition of the semantics is so that it complies with the following demands: 

(a)	 If a ground equation s = t is valid then this should be supported by E. (This 
ensures initiality.) 

(h)	 If a ground equation s = t is valid then it should remain valid if the specifica­
tion is extended by adding new axioms. We call this "monotonic extendability of 
specifications" . 
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1 Introduction

1 .1  Motivation

For the production of software i t  is desirable to precisely describe the products created
so far on each level of the development. This will allow one to  communicate on the
products, to  perform some reasoning, and finally to  prove some correctness properties.
In this paper we are interested in  describing the product on the level of the functional
design.

For this purpose, we are interested in  a specification language that
e allows for sufficient expressiveness,
e admits a well-defined semantics,
e allows for formal reasoning.

We are interested in  executable algebraic-specifications, so we require the axioms to
be (implicitely universally quantified) equations. Then the semantics should be.based
on equational reasoning on the ground terms (i.e. variable-free terms). This will re-
sult in  some kind of init ial  semantics. Normally a conditional equation is of the form
B = | = r where B is a conjunction of  equations. Furthermore, the  specification
defines the operators totally. In  order to comply more realistically with the needs of a
specification language, we allow for several extensions:
(1) We allow the axioms to be positive/negative conditional equations, i.e., in B =

l = r we allow also negative equations of the form u # v.  From the logical point of
view this is a clause. So we speak of clausal specifications.

(2) One would like to have fixed built-in structures such as the integers, the rationals,
or lists. To keep things simple, i n  this paper we consider built-in algebras only which
are themselves given by  algebraic specifications.

(8) The specification of interest may define new operators on top of the built-in algebra
only partially.

We study how to  assign natural semantics t o  such a specification. We  will define
denotational semantics (based on the notion of models), operational semantics (based
on equational reasoning on ground terms) and rewrite semantics (based on conditional
rewriting). Provided some restrictions are met, all these semantics coincide. This
defines the notion of validity of a clause. We discuss a proof method to  prove (or
disprove) a clause to be valid.
Our definition of the semantics is so that i t  complies with the following demands:
(a) If a ground equation s = t is valid then this should be supported by E .  (This

ensures initiality.)

(b) If  a ground equation s = t is valid then i t  should remain valid i f  the specifica-
tion is extended by adding new axioms. We call this “monotonic extendability of
specifications”.



We go a little bit more into the details in order to get a feeling what the paper is 
about: A specification spec consists of a signature sig, a base algebra A and a set 
E of positive/negative equations. The algebra A is given as the initial algebra of a 
specification speco = (sigo, Eo), where sigo is a subsignature of sig and Eo ~ E consists 
of positive conditional equations. The axioms in El = E - Eo partially define the new 
operators 

We associate to spec the quotient algebra A spec = Term(F)/ =E of the free term algebra 
Term(F) according to a suitably defined E-equality =E. Note also that we have to 
define carefully how to apply a positive/negative conditional equation, in particular how 
to evaluate the negative conditions. Since we do not restrict to positive conditional 
equations, an initial model of spec in the sence of first order logic may not exist. 
Nevertheless, A spec is defined such that it contains (an isomorphic copy of) A and is 
initial in a natural class of models of spec. Hence we define "A clause is valid in spec 
iff it is valid in A spec". 

We now demonstrate by some examples which problems arise with the specifications 
we consider and how these problems are solved in our approach. 

Example 1.1 (Partially defined operators) Let A be the initial model of Eo over 
Fo = {O, s, +}: 

Eo: x + 0 = x, 
x+s(y) = s(x+y). 

Then 0 + x = x is valid in A. Now we partially define the operator - by El: 

El:	 x - 0 = x,
 
s(x)-s(y) = x-y.
 

Let E = Eo U El. Note that s(O) - 0 is a defined term, i.e., it is E-equal to a base term 
t E Term(Fo). But 0 - s(O) is not defined, so it is a junk term. We want 0 + x = x to 
hold in the distinguished model Aspec specified by E. For that we have to say over which 
terms a variable x in an equation may range. If we allow x to range over all ground 
terms then we may also substitute the junk term t - 0 - s(O) for x, but 0+ t =E t does 
not hold. As a consequence, the principle of monotonic extendability for a specification 
does not hold. Hence, we allow x to range over the defined terms only, then 0+ x =E x 
holds. One may prove that (x + y) - y = E X also holds under this interpretation. This 
is true despite the fact that - is only partially defined by El. We may extend the 
definition of - in different ways. E.g., adding to E the axiom 0 - s(y) = 0 defines - to 
be "minus on N", and adding the axiom 0 - s(y) = s(y) defines - to be x - y = I x - y I 
on N. In both extensions E to E' we have (x + y) - Y =E' X. SO the principle of 
monotonic extendability of specifications is fulfilled. 

Example 1.2 (Another semantics for spec) The last example suggests to define 
"A clause is valid in spec iff it holds in all total models of spec", see [KM86j. We 
show that this definition is unappropriate in our context. 

Let A be given by Fo = {O,s,nil,.} and Eo = 0. Let E = Eo U Et, where El defines 
the operators push, pop and top on lists: 
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We go a l i t t le bit more into the details in  order t o  get a feeling what the paper is
about: A specification spec consists of a signature sig, a base algebra A and a set
E of positive/negative equations. The algebra A is given as the initial algebra of a
specification speco = (sige, Fo),  where stg is a subsignature of  s ig  and Eo © E consists
of positive conditional equations. The axioms in  Fy = E — Ey partially define the new
operators

We associate to spec the quotient algebra Aspe. = Term(F)/=g  of the free term algebra
Term(F) according to a suitably defined E-equality =g .  Note also that we have to
define carefully how to  apply a positive/negative conditional equation, in  particular how
to evaluate the negative conditions. Since we do not restrict to positive conditional
equations, an initial model of spec in  the sence of first order logic may not exist.
Nevertheless, Aspec is defined such that i t  contains (an isomorphic copy of) A and is
initial in  a natural class of models of spec. Hence we define “A  clause is valid in  spec
iff i t  is valid in  A,p..”.
We now demonstrate by some examples which problems arise wi th the specifications
we consider and how these problems are solved in our approach.

Example 1 .1  (Partially defined operators) Let A be the init ial  model of  Ey over
Fy  = {0, S ,  + } :

Ey: z+0  = x,
z+s (y )  = S(z+y)-

Then 0 + z = z is valid in  A .  Now we partially define the operator — by Er:
E, :  z -0  = z ,

s (z ) - s ( y )  = z-y.
Let E = EqU  E ; .  Note that s(0) — 0 is a defined term, i.e., i t  is E-equal to a base term
t € Term(Fy). But 0— s(0) is not defined, so i t  is a junk term. We want 0+ z = x to
hold in the distinguished model Aspe. specified by E .  For that we have to say over which
terms a variable x in an equation may range. I f  we allow x to range over al l  ground
terms then we may also substitute the junk term t = 0 — s(0) for z ,  but 0+ t  =g  t does
not hold. As a consequence, the principle of  monotonic extendability for a specification
does not hold. Hence, we allow x to range over the defined terms only, then 0+ z =p  =
holds. One may prove that (z + y) — y =g  x also holds under this interpretation. This
is true despite the fact that — is only partially defined by Ey. We may extend the
definition of — in different ways. E.g., adding to E the aziom 0— s(y) = 0 defines — to
be “minus on N” ,  and adding the aziom 0 — s(y) = s(y) defines — tobez—y  = |  2—y |
on  N. In  both extensions E to E' we have  (x + y) —y =gE' x .  So the pr inciple of
monotonic extendability of specifications is fulfilled.

Example 1.2 (Another semantics for spec) The last example suggests to define
“A clause is valid in spec iff it holds in  all total models of  spec”, see [KM86]. We
show that this definition is unappropriate in ou r  context.

Let A be given by Fo = {0,s,ni l , .} and Eg = 0. Let E = Eq U E, ,  where Ey defines
the operators push, pop and top on lists:



El:	 push(x, l) - x.l
 
pop(x.l) I
 
top(x.l) x
 

So top and pop are defined on non-empty lists only. According to our semantics the 
clause G= pop(l) = nil ====> push(top(l),pop(l)) = 1 is valid. This is true, because the 
assumption pop(l) = nil is satisfied only if I has the form I =x.I'. This is in accordance 
with the "natural intention" on the specification. But, G is not valid according to 
the definition mentioned above: G is not valid in any model of spec that satisfies 
pop(nil) = nil and x.l =/:- nil. 

Example 1.3 (Negative conditions in axioms) Let A be given by Fa = {O, s, true, 
false} and Eo = 0. We define the operators even und odd by El: 

El:	 even(O) - true 
even(x) true ====> even(s(s(x))) true 
even(x) =/:- true ====> even(s(s(x))) false 

odd(s(O)) true 
odd(s(s(x)) - odd(x) 

We use this example to show that the conditions even(x) =/:- true and noteeven(x) = 
true) are basically different. The condition even(t) =/:- true holds iff even(t) can be 
evaluated to a term to E Term(Fo) and to =/:-Eo true, so even(t) has to be a defined term. 
(See the next example for the motivation for this evaluation of negative conditions.) On 
the other hand, not(even(x) = true) holds iff even(t) cannot be evaluated to true. As 
an example, even(s3(0)) =E] false does not hold in our formalism, since the term 
even(s(O)) is not defined. But even(s3(0)) = false holds if even(x) =/:. true is replaced 
by noteeven(x) = true). (Clearly, noteeven(x) = true) is a syntactic construct not 
allowed in our formalism, but in other formalisms it is allowed to express the oposite 
of even(x) = true.) 
This example also shows that negative conditions naturally arise in specifications. One 
may prove that G =====> even(x) = true V odd(x) = true is valid. This holds, though 
even and odd are only partially defined. 

Example 1.4 (Problems with negative conditions) Let A be given by Fa = {O, s} 
und Eo = 0. We define operators f and g by El: 

El :	 f (s(x), y) - f(x,s(s(y))) 
f(x,y) f(y,x) ====> g(x,y) o 
f(x,y) =/:. f(y,x) ====> g(x,y) s(O) 

Here the question is how to evaluate the conditions of a conditional equation. By 
standard p.ractice we evaluate the conditions before applying the conclusion. Clearly, 
for any x =i(O) we have g(x, x) =E O. But what about g(O, S2(0)) ? Obviously, we 
have no support from E to prove f(O, s2(0)) = f(S2(0), 0), so it is tempting to conclude 
g(O, s2(0)) =E s(O). But that would contradict the principle of monotonic extendability 
of specifications: If we extend E to E' by adding f(O,y) = 0 then we have f(x,y) =E' 0 
for all x =Si(O), Y _ si(O), and hence g(O, S2(0)) =E' O. To resolve this problem, we 
define the condition t 1 =/:- t2 to be E -satisfied, if there are base terms t~, t; E T (Fa) 
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E ı :  push(z,l) = =z.
pop(z.l) = 1
top(z.l) = =z

So top and pop are defined on non-empty lists only. According to our semantics the
clause G = pop(l) = n i l  =>  push(top(l), pop(l)) = 1 is valid. This is true, because the
assumption pop(l) = n i l  is satisfied only i f | has the form | = x.l ' .  This is in accordance
with the “natural intent ion” on  the specification. But, G is no t  val id according t o
the definition mentioned above: G is not valid in any model of spec that satisfies
pop(nil) = ni l  and z. l  # n i l .

Example 1.3 (Negative conditions in  axioms) LetA be given by Fo = {0, s, true,
false} and Eq = 0. We define the operators even und odd by EF,:
Ey:  even(0) = true

even(z )  = t r ue  =>  even (s ( s ( r ) ) )  = t rue
even(z)  # t rue  =>  even(s(s(z)) )  = fa l se

odd(s(0)) = true
odd(s(s(z)) = odd(z)

We use this example to show that the conditions even(z) # true and not(even(z) =
t rue )  are basically different. The condit ion even( t )  # t rue holds iff even(t )  can be
evaluated to a term tg € Term (Fy) and tg #g, true, so even(t) has to be a defined term.
(See the next example for the motivation for this evaluation of negative conditions.) On
the other hand, not(even(z) = true) holds iff even(t) cannot be evaluated to true. As
an example, even(s3(0)) =g, fa lse does not  hold in our  formalism, since the term
even(s(0)) is not defined. But even(s*(0)) = false holds if  even(z) # true is replaced
by not(even(z) = true). (Clearly, not(even(z) = true) is a syntactic construct not
allowed in our formalism, but in  other formalisms i t  is allowed to express the oposite
of even(z) = true.)
This example also shows that negative conditions naturally arise in  specifications. One
may prove that G = =>  even(z) = true  V odd(z) = true is valid. This holds, though
even and odd are only partially defined.

Example 1.4 (Problems wi th  negative conditions) Let A be given by Fo = {0, s}
und Eg = 0. We define operators f and g by E;:

E i :  f(s(z),y) = f(z,3(s(y)))
f lz ,y)  = f ly ,z)  = g(x,y) = 0
f lz,y) # f ly,z) = g (z , y )  = s(0)

Here the question is how to evaluate the conditions of a conditional equation. By
. standard practice we evaluate the conditions before applying the conclusion. Clearly,
for any = = s'(0) we have g(z,z) =g  0. But what about g(0,s%(0)) ? Obviously, we
have no support from E to prove f(0,s%(0)) = f(s%(0),0), so it is tempting to conclude
g(0, s?(0)) =g  s(0). But that would contradict the principle of  monotonic extendability
of specifications: If  we extend E to E'  by adding f (0,y)  = 0 then we have f (z ,y )  =g /  0
for all x = ( 0 ) ,  y = s7(0), and hence g(0,5%(0)) =g '  0. To resolve this problem, we
define the condition t ,  # tz to be E-satisfied, if there are base terms t 1 , t  € T (Fp)
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such that ti =E ti for i = 1,2 and not t~ =Eo t~. In the example above, neither 
9(0, s2(0) =E 0 nor 9(0, s2(0)) =E s(O) holds according to this definition. The term 
g(O, s2(0)) is a junk term. 

From an operational point of view, there are two reasons for a function f to be partial. 
Either the computation of f(t) stops without producing a base term as output, or the 
computation does not stop. The first case splits into two subcases: (1) One wants to 
extend the specification later to define the new operators for more inputs. This was 
discussed in Example 1.1. (2) One does not want to define each new operator totally. 
This is examplified in Example 1.2. Here it does not make sense to define top(nil). 
Also, it does not make sense to define division by zero. We now give an example for 
non-terminating computations. 

Example 1.5 (Nonterminating computations) Let A be given by Fo = {O, s, +} 
and 

Eo: x + 0 x 
x+s(y) s(x+y) 

We define the operators search and div by El: 

El:	 X=V ===} search(x,y,u,v) u
 
x=fv ==} search(x,y,u,v) = search(x,y,s(u),v+y)
 
y =f 0 ===} div(x,y) = search(x,y,O,O)
 

It is easy to see that the rewrite system R associated to E = Eo U El is ground confluent 
but not terminating (see below). We have div(si(O),si(O)) ~R sk(O) iffi = j·k, j > O. 
If j > 0 and j is not a divisor of i then the computation of div(si(O), si(O)) does not 
stop. In this case div(si(O), si(O)) is a junk term. 

Up to now we have discussed on semantic issues. We now shortly comment on how to 
prove a clause to be an inductive theorem of spec, i.e., to be valid in A spec ' Here equa­
tional reasoning is not enough, one needs some kind of induction. We use Noetheriap 
induction, i.e., induction based on a well-founded ordering >-i on the ground terms. 

We will first design an abstract prover based on abstract notions of syntactic units and 
semantic units. Here we will work out the fundamental concepts of an inductive prover, 
what has to be proved for a concrete inductive prover to be correct and refutationally 
complete. This is an abstraction of the method "proof by consistency" developed in 
[Bac88]. This abstract prover can not only be instantiated to prove inductive theorems 
but for other inductive proofs also, e.g., to prove "The specification spec is sufficiently 
complete" or "The rewrite system R is ground confluent". 

Next we instantiate the abstract prover for proving inductive theorems. We will not 
design a deterministic proof procedure. Instead we will design an inference system 
which can be turned into a deterministic prover by fixing a heuristic for applying 
the inference rules. So we remain on. a more conceptual level and do not go down 
to the technical problems of a concrete prover for inductive theorems. Our inference 
rules, however, are in principle powerful enough to simulate classical inductive theorem 
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computation does not stop. The first case splits into two subcases: (1) One wants to
extend the specification later to define the new operators for more inputs. This was
discussed in Example 1.1. (2) One does not want to define each new operator totally.
This is examplified in  Example 1.2. Here i t  does not make sense to define top(n:l).
Also, i t  does not make sense to define division by zero. We now give an example for
non-terminating computations.

Example 1.5 (Nonterminating computations) Let A be given by Fo = {0,s, + }
and
Eo:  z+0  = z

z+s (y )  = s(z+y)
We define the operators search and div by E ı :
E i :  =v  = search(z,y,u,v) = u

r #v  = search(z,y,u,v) = search(z,y,s(u),v+y)
y#0  = div(z,y) = search(z,y,0,0)

It is easy to see that the rewrite system R associated to E = EoUE,  is ground confluent
but not terminating (see below). We have div(s‘(0), s’(0)) ——r s*(0) iffi = j-k, j > 0.
I f  7 > 0 and j is not a divisor of  i then the computation of  div(s*(0),s?(0)) does not
stop. In this case div(s*(0), s’(0)) is a junk term.

Up  to  now we have discussed on semantic issues. We now shortly comment on how to
prove a clause to  be an inductive theorem of spec, i.e., to  be valid in  A,,... Here equa-
tional reasoning is not enough, one needs some kind of induction. We use Noetherian
induction, i.e., induction based on a well-founded ordering > ;  on the ground terms.

We will first design an abstract prover based on abstract notions of syntactic units and
semantic units. Here we will work out the fundamental concepts of an inductive prover,
what has to  be proved for a concrete inductive prover to  be correct and refutationally
complete. This is an abstraction of the method “proof by consistency” developed in
[Bac88]. This abstract prover can not only be instantiated to  prove inductive theorems
but for other inductive proofs also, e.g., to prove “The specification spec is sufficiently
complete” or “The rewrite system R is ground confluent”.
Next we instantiate the abstract prover for proving inductive theorems. We will not
design a deterministic proof procedure. Instead we will design an inference system
which can be turned into a deterministic prover by fixing a heuristic for applying
the inference rules. So we remain on,a more conceptual level and do not go down
to the technical problems of a concrete prover for inductive theorems. Our inference
rules, however, are i n  principle powerful enough to simulate classical inductive theorem
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proving based on concrete recursion schemes [BM79, WaI94], as well as methods based 
on "proof by consistency" [Bac88] or "cover sets" [ZKK88] or "test sets" [BR93]. 

The paper is organized as follows: We define the syntax of hierarchical specifications 
in section 2 and the semantics in section 3. In section 4 we study hierarchical term 
rewriting systems and so define the rewrite semantics of a specification. We discuss 
principal issuses of an inductive theorem prover in section 5 and present an instantiation 
of the abstract prover for proving inductive theorems (i.e. theorems in Aspec ) in section 
6. In section 7 we demonstrate by examples how the inference system presented in 
section 6 works on concrete examples. Finally, in section 8 we discuss how to instantiate 
our prover to simulate inductive theorem provers known in the literature. 

1.2 Related Work 

We first discuss semantic issues. To our knowledge there are almost no papers on ab­
stract data types defined by clausal specifications. We mention the book of Padawitz 
[Pad92], but here the emphasis is more on logic programming than on functional pro­
gramming. There are many papers on Horn clause specification (i.e., only positive 
conditional equations are allowed). If in addition to this restriction no partiality is 
allowed then the initial model of the specification is considered to define the semantics 
of spec [Wec92]. 

If positive/negative conditional equations are allowed, then there are two possibilities 
to evaluate these conditions for .applying the equation: In [BG94] negation by failure 
is used to evaluate the conditions. The semantics are fixed by a reduction ordering 
>-, according to which the conditions of an equation have to be smaller than the 
conclusion. The semantics of spec are then fixed by the perfect model of spec according 
to >-. In this approach no partiality is considered and the principle of monotonic 
extendability of specification does not hold. In [AB94] this approach is combined with 
the concepts of built-in algebras and of partiality. Here new problems arise, e.g., how to 
integrate the built-in algebra into the rewrite mechanism and how to prove confluence 
and termination. 

In this paper we follow the concept of [WG93, WG94a]. Here the negative conditions 
are evaluated constructively in the base algebra A as indicated in Example 1.4. 

In this approach the principle of monotonic extendability holds. In [WG94b], for each 
sort s there are "base variables" ranging over base terms of sort s only, and "general 
variables" ranging over all terms (including the junk terms) of sort s. This gives rise to 
several different notions of inductive validity and so to several semantics for spec. This 
paper clarifies some problems resulting from the fact that in the literature different 
notions of inductive validity are used without commenting on the differences. Here we 
use the type-E semantics of [WG94b], but restrict to base variables only. 

The classical way to model partiality is to consider partial algebras, see e.g. [BWP84]. 
Here the problem arises how to define the equality appropriately. We consider two 
approaches and examplify them using Example 1.4: strong and existential equality. 
One defines on variable-free terms [BWP84] t l =s t2 (strong equality) iff either t l and 
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proving based on concrete recursion schemes [BM79, Wal94], as well as methods based
on “proof by  consistency” [Bac88] or  “cover sets” [ZKK88] or  “ test sets” [BR93].

The paper is organized as follows: We define the syntax of hierarchical specifications
in section 2 and the semantics in  section 3. In section 4 we study hierarchical term
rewriting systems and so define the rewrite semantics of a specification. We discuss
principal issuses of  an inductive theorem prover in  section 5 and present an instantiation
of the abstract prover for proving inductive theorems (i.e. theorems i n  Ap.) i n  section
6. In section 7 we demonstrate by examples how the inference system presented i n
section 6 works on concrete examples. Finally, in  section 8 we discuss how to  instantiate
our prover to simulate inductive theorem provers known in  the literature.

1 .2  Related Work

We first discuss semantic issues. To our knowledge there are almost no papers on ab-
stract data types defined by clausal specifications. We mention the book of Padawitz
[Pad92], but here the emphasis is more on logic programming than on functional pro-
gramming. There are many papers on Horn clause specification (i.e., only positive
conditional equations are allowed). If in  addition to this restriction no partiality is
allowed then the initial  model of  the specification is considered to  define the semantics
of spec [Wec92].
If positive/negative conditional equations are allowed, then there are two possibilities
to  evaluate these conditions for applying the equation: In [BG94] negation by  failure
is used to evaluate the conditions. The semantics are fixed by a reduction ordering
> ,  according to  which the conditions of an equation have to  be smaller than the
conclusion. The semantics of  spec are then fixed by  the perfect model of spec according
to > .  In this approach no partiality is considered and the principle of monotonic
extendability of specification does not hold. In [AB94] this approach is combined with
the concepts of built-in algebras and of partiality. Here new problems arise, e.g., how to
integrate the built- in algebra into the rewrite mechanism and how to prove confluence
and termination.
In this paper we follow the concept of [WG93, WG94a]. Here the negative conditions
are evaluated constructively in  the base algebra A as indicated in  Example 1.4,
In this approach the principle of  monotonic extendability holds. In [WG94b], for each
sort s there are “base variables” ranging over base terms of sort s only, and “general
variables” ranging over all terms (including the junk terms) of  sort s. This gives rise to
several different notions of inductive validity and so to several semantics for spec. This
paper clarifies some problems resulting from the fact that in  the literature different
notions of inductive validity are used without commenting on the differences. Here we
use the type-E semantics of [WG94b], but restrict to base variables only.
The classical way to  model partiality is to consider partial algebras, see e.g. [BWP84].
Here the problem arises how to define the equality appropriately. We consider two
approaches and examplify them using Example 1.4: strong and existential equality.
One defines on variable-free terms [BWP84| ¢; = ;  t ,  (strong equality) iff either ¢; and

7



t2 are both undefined or they are both defined and E-equal. In this approach all junk 
terms are considered equal. In Example 1.4 this would result in g(x,y) = 0 to hold 
for all x - si(O), Y =si(O), i i- j. But adding the axiom f(O,y) = y would result in 
g(O, s(O)) = 0 not to hold. This contradicts the "natural intention" of spec. One defines 
t l -e t2 (existential equality) iff both terms are defined and they are E-equal. In this 
approach any two junk terms are considered unequal. In Example 1.4 we have that 
f( s(O), 0) = f(O, s(s(O))) is not valid, though this is an instance of an axiom. We have 
g(x,y) = s(O) is valid for all x = si(O), Y == si(O), but adding the axiom f(O,y) = 0 
results in g(x, y) = 0 being valid for all these x and y. Again this contradicts the 
"natural intention" of spec. In [BWP84] the conditional equation s = t =:::} I = r is 
defined to be valid iff s =8 t implies I =e r. But this is problematic also. 

In [KM86] an equation t l = t2 is defined to be valid in spec iff t l = t 2 holds in all 
total Fa-generated models of spec. We have already discussed on that in Example 1.2. 
Here we demonstrate some other consequences of this definition. First, the set of valid 
equations tl = t 2 (t l , t 2 being variable free) ist not a complete theory: We may have 
that neither t l = t2 nor t l =I- t z is valid. This is demonstrated with Example 1.2 using 
t l - top(nil) and t 2 _ O. Second, t l = t2 may be valid without E-support of this fact. 
For example [KM86], let A be given by Fa = {true, false} and Ea = 0 and let-not be 
partially defined by El = {not(true) = false}. Then not(not(Jalse)) = false is valid, 
since this equation holds in all total Fa-generated models B of spec: We either have 
not(Jalse) = true or not(Jalse) = false in B, in both cases not(not(Jalse)) = false 
holds in B. But there is no Ea U El-support to prove not(not(Jalse)) = false to be 
valid. 

Now we comment on inductive theorem proving. The classical proof procedure is the 
Boyer-Moore prover [BM79]. Sophisticated proof engineering is incorporated into this 
prover to make it powerful in practice. In principle it extracts an induction scheme and 
a termination ordering from the specification and performs induction according to this 
induction scheme and ordering. Only specifications are allowed which induce a termi­
nating algorithm for computing f(tl"'" tn) for any input tl , ... , tn. See [WaI94] for 
extending this approach, in particular for computing induction schemes. For positive 
conditional specifications methods using "cover sets" [ZKK88] and "test sets" [BR93] 
are developed which, combined with a reduction ordering, allow for inductive proofs. In 
many cases the test or cover sets can be ,computed from the specification. No partiality 
is allowed here. For unconditional specifications the method "proof by consistency" is 
known [HH82], [JK89], [KM87], [Bac88], [Red90]. Again, no partiality is allowed, the 
rewrite system induced by the specification has to be terminating. For unconditional 
partial specifications we refer to [KM86]. We have already commented on that. 

This paper gives a unifying presentation on the work carried out in the project "De­
duction in equational theories" supported in the Special Research Project (SFB 314) 
funded by the German Research Foundation (DFG). Most of the results presented here 
have been published in technical papers earlier. We comment on that where appropri­
ate. The researchers contributing to these results include K. Becker, B. Gramlich and 
C.-P. Wirth. 
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are developed which, combined with a reduction ordering, allow for inductive proofs. In
many cases the test or cover sets can be computed from the specification. No  partiality
is allowed here. For unconditional specifications the method “proof by  consistency” is
known [HH82], [JK89], [KM87], [Bac88], [Red90]. Again, no partiality is allowed, the
rewrite system induced by the specification has to be terminating. For unconditional
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duction in  equational theories” supported in  the Special Research Project (SFB 314)
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2 Hierarchical Specifications 

We are interested in specifications with a fixed built-in algebra A. As mentioned earlier, 
here we restrict to the case where A is the initial algebra of a positive conditional base 
specification. The reader may consult [AB94] for the case where an arbitrary algebra 
is built in. 

2.1 Notations 

In this section we review some main notations from equational logic. The reader may 
consult [DJ90] or [Ave95] for more details. 

A signature sig = (S, F, V, a) consists of a set S of sorts, a set F of function symbols (or 
operators), a set V of variables, and a function a : F ---+ S+ which fixes the input and 
output sorts for each f E F. We write f : SI, ... ,Sn ---+ s instead of aU) = SI .•. SnS' .. 

The variable system V for sig is a system V = (Y:)sES such that Y: ny:, = 0for s #- s'. 
By abuse of notation we also write V = UsES v,. We denote by Terms(F, V) the set 
of terms of sort S constructed from F and V. Then Term(F, V) = UsES Terms(F, V). 
Term(F) = Term(F, 0) is the set of ground terms (variable-free terms). We assume 
Terms(F) = Terms(F,0) to be non-empty for each s E S. We write sort(t) = s if 
t E Terms(F, V). We denote by O(t) the set of positions of t, by tip the subterm of t 
at position p E O(t), and by t[u]p the term resulting from t by replacing the subterm 
tip with term u. We use = to denote the syntactic identity on terms. 

Terms are used to build more complex syntactic units. An equality atom over sig has 
the form u = v with u, v E Terms(F, V) for some S E S. A definiteness atom (a def­
atom, for short) has the form def(t) with t E Term(F, V). Here def is a meta-symbol, 
later interpreted as "defined". An atom is an equality atom Dr a def-atom. A clause 
has the form r ==} ~ where r and ~ are multisets of atoms. We call r the antecedens 
and ~ the succedens of the clause. We will write r, u = v instead of r u {u = v} and 
==} ~ instead of 0 ==} ~. 

A positive/negative conditional equation (a conditional equation, for short) has the form 

r; ~ ==} u = v. 

Its clausal form is r ==} u = v,~. So a conditional equation results from a clause r ==} 

u = v, ~ by singling out an equality axiom from the succedens. We call the elements 
from r the positive conditions and the elements from ~ the negative conditions of 
r; ~ ==} u = v. We speak of a positive conditional equation if ~ = 0. We then write 
r ==} u = v. If in addition r = 0 then we write ==} u = v. This is an unconditional 
equation. 

A signature sigo = (So, Fo, VD, ao) is a subsignature of sig = (S, F, V, a) if (i) So ~ S, 
(ii) Fo ~ F, (iii) VD,s = V, for s E So and (iv) ao is the restriction a IFaof a to Fo. We 
then call sig an enrichment of sigo. 
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Terms are used to build  more complex syntactic units. An  equality atom over sig has
the form u = v with u,v € Term (F ,V )  for some s € S. A definiteness atom (a def-
atom, for short) has the form def ( t )  with t € Term(F,V). Here def is a meta-symbol,
later interpreted as “defined”. An  atom is an equality atom or  a def-atom. A clause
has the form I' =>  A where I" and A are multisets of atoms. We call I the antecedens
and A the succedens of the clause. We will write I';u = v instead of I' U {u  = v}  and
=>  A instead o f § = A.
A positive /negative conditional equation (a conditional equation, for short) has the form
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u = v ,  A by  singling out an  equality axiom from the succedens. We  call the elements
from T' the positive conditions and the elements from A the negative conditions of
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( i i )  Fo C F ,  (i i i) Vos = V, for s € So and (iv) ao is the restriction a |g, of a to  Fo. We
then call sig an enrichment of sig.



After fixing some syntactical notions we now turn to some semantical notions. Let 
sig = (S, F, V, a) be given. A sig-algebra is a pair A = ((As)sES, (JA)fEF) such that (i) 
As is a non-empty set (the carrier set for sort s), for all s E Sand (ii) fA is a function 
fA : AS1 X •.• X Asn ,--+ As if f : s}, .. . , Sn --+ s, for all f E F. We write IA Is = As and 
IAI = A = UsES As. 

Now asume that sigo = (So, Fo, \to, ao) is a subsignature of sig and Ao is a sigo-algebra. 
We say Ao is a subalgebra of A if (i) IAoIs ~ IA Is for all s E So and fAo is the restriction 
of fA to IAo I for all f E Fo. If Ao is generated by Term(Fo) then we call Ao the 
base-reduet of A. 

2.2 Syntax of specifications 

In this section we describe our specification mechanism. We will use hierarchical spec­
ifications: The base specification will describe the built-in algebra A and the full spec­
ification will describe an extended algebra A' = Aspec ' The new operators f in Aspec 

will only be defined partially, i.e., only for some inputs a}, . .. ,an E IA I there is a value 
fAI (a}, ... , an) in A. 

There are two ways to model this in an algebraic setting: (1) One can use the concepts 
of order sorted specifications and order sorted algebras. This is done in [AB94]. (2) 
One can use the concept of constraints to restrict the ranges of the variables to elements 
of A. Here we follow the second approach (as in [WG94aJ) since it needs a simplier 
syntactic overhead. 

We start with the usual notion of a specification. A specification spec = (sig, E) 
consists of a signature sig = (S, F, V, a) and a set of conditional equations E. If E 
contains positive conditional equations only, then we speak of a positive conditional 
specification or a Horn clause specification. (In general, we sometimes speak of a 
positive/negative conditional specification in order to emphasize that positive/negative 
conditional equations are allowed.) If speCo = (sigo, Eo) is a specification and sigo = 
(So, Fo, \to, ao) is a subsignature of sig, then speCo is called as subspecification of spec. 
Now we turn to hierarchic specifications spec. 

Definition 2.1 Let spec = (sig, E) be a specification and speCo = (sigo, Eo) a sub­
specification. Let sig = (S, F, V, a), sigo = (So, Fo, \to, ao), SI = S - So, Fl = F - Fa 
and El = E - Eo. Let Eo consist of positive conditional equations only which do not 
contain a def-atom. Let for each conditional equation f; Ll ===? s = t in El the con­
clusion s = t contain an operator f E F l and let Ll contain no def-atom. Then spec is 
called a hierarchical specification over the base specification speCo. 

A term t E Term(Fo, \to) is called a base term. A syntactic object (atom, clause, ... ) is 
a base object if it contains base terms only. It is called a ground object if it contains 
ground terms only. 

Now we have to model the restriction that base variables may range over base terms 
only. This is done by the definition of a substitution. 
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Definition 2.2 Let spec be a hierarchical specification over the base specification speCo. 
Let V be a variable system for spec. A substitution is a mapping 0- : V -+ Term(F, V) 
such that (i) dom( 0-) = {x I 0-(x) t= x} is finite, (ii) sort(x) = sort(0-( x)) for all x E V 
and (iii) o-(x) is a base term if x is a base variable (i.e. sort(x) E So). We extend 0­

as usual to 0- : Term(F, V) -+ Term(F, V) by o-(J(tI, ... , tn)) - f(o-(tt}, ... , o-(tn)). 
We call 0- a ground substitution ifo-(x) is a ground term for all x E dom(o-). We also 
write 0- = {Xl +- tt, ... ,xn +- in} if dom(o-) . {XI, ... , xn} and ii =o-(Xi)' 
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Definition 2 .2  Let  spec be a hierarchical specification over the base specification specy.
Le t  V be a variable system for spec. A substitution is a mapping 0 : V — Te rm(F ,V )
such that (i) dom(o) = { z  | o(z)  £ x }  is finite, (ii) sort(z) = sort(o(z)) f o ra l l z  € V
and (iit) o(z)  is a base term if x is a base variable (i.e. sort(z) € So). We extend o
as usual to 0 : Term(F,V) — Term(F,V) by o(f( t1,. . . , ta)) = f(o(t1),...,0(tn)).
We call 0 a ground substitution if  o(z) is a ground term for all  x € dom(o). We also
write 0 = {x1 « 11,...,  I n  — tp} if  dom(o) = { z1 , . . . , 2 . }  and t ;  = o(x;).
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3 Semantics of hierarchical specifications 

In this chapter we are going to define the denotational and operational semantics of 
a hierarchical specification spec = (sig, E). The denotational semantics is given by 
defining the models of spec. The operational semantics is given by defining the E­
equality on Term(F). We will define a special model A spec of spec and show that, 
under reasonable conditions, it is initial in the class of all models of spec. 

3.1 Denotational semantics 

Let spec = (sig, E) be a hierarchical specification over speC{) = (sigo, Eo) as in Def­
inition 2.1. In order to define the models of spec we proceed in two steps. First we 
associate to speC{) the initial model A. Then a sig-algebra B is a model of spec if its 
base-reduet is isomorphic to A and it satisfies all conditional equations in E. 

Given the positive conditional specification speC{) = (sigo, Eo) with sigo = (So, Fo, VD, 0:0), 
to define the initial algebra A of speC{) we proceed in the classical way: We define con­
gruence relations1 ("'i)iEN on Term(Fo) in the following way. We have s ""0 t iff s _ t. 
Given "'i, then "'i+1 is the smallest equivalence relation such that s ""i+1 t if (1) s "'i t 
or (2) there is a conditional equation r ==::;. 1 = r, a substitution a and a position 
pE O(s) such that sip =a(l), t = s[a(r)]p and a(u) ""i a(v) for all u = v in r. Then 
=Eo= UiEN ""i is the Eo - equality. 

Definition 3.1 Let speC{) = (sigo, Eo) be a positive conditional specification. For t E 

Term(Fo) let [t] denote the =Eo-equivalence class of t. Then the initial model A of 
speC{) is defined as follows 

As = Ht] It E Terms(Fo)} 
fA ([t1], ... , [tn]) = [J(tt, . .. , tn)] 

It is well known (and easy to prove) that the functions fA are well defined (i.e., [ti] = [Si] 
implies f A([t1], ... , [tn]) = fA([s1J, ... , [sn])) and that A is a model of speC{) in the sense 
of first order logic. We associate to speC{) its initial model A. 

Before defining the models of spec we need to clarify the notion of "a sig-algebra B 
satisfies a conditional equation rj ~ ==::;. 1= r". 

Definition 3.2 Let spec = (sig, E) be a hierarchical specification over speeo = (sigo, Eo) 
as above. LetB = ((Bs)sES, (fB)fEF) be a sig-algebra and BO the base-reduct ofB. Let 
B =IBI and BO =IBol. 
a) A function <p : V -+ B is an evaluation function if <p( x) E B s if sort( x) = s 

and <p(x) E B~ if sort(x) E So. Then <p is extended to 'P : Term(F, V) -+ B by 
<p(f(t1, ... , tn)) = fB(<p(t 1), ... , 'P(tn)). 

1A congruence relation on Term(F) is an equivalence relation '" such that Si ti implies 
f(S1,"" sn) '" f(t1,'''' t n ) for all f E F. 
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Given the positive conditional specification specy = (sigo, Fo) with sigo = (So, Fo, Vo, a0),
to define the initial algebra A of specy we proceed in  the classical way: We define con-
gruence relations! (~;);en on Term (Fp) in the following way. We have s o t  iff s = ¢.
Given ~ ; ,  then ~;; ;  is the smallest equivalence relation such that s —;41 t i f  (1) s ~ ;  t
or (2) there is a conditional equation I' =>  | = r ,  a substitution ¢ and a position
p € O(s) such that s /p  = o( l ) ,  t = s[o(r)] ,  and o(u) ~ ;  o(v) for all u = v i n  I". Then
=g,= Uien ~ i  is  the Ey  — equality.

Definition 3 .1  Let speco = (sige, Eo) be a positive conditional specification. Fo r t  €
Term(Fy) let [t] denote the =p,-equivalence class o f t .  Then the initial model A of
specy is defined as follows

A,  = { [ t ]  | t € Term,(Fo)}
FAL  [ta]) = [ f ( y -+ 20)

It  is well known (and easy to prove) that the functions f4  are well defined (i.e., [t;] = [s:;]
implies fA( [ t1 ] , . . . , [ ts ] )  = fA([s1],---,[8x])) and that A is a model of  specy in  the sense
of first order logic. We associate to  spec, i ts  initial model A .

Before defining the models of  spec we  need to  clarify the notion of  “a  sig-algebra B
satisfies a conditional equation I ;  A =>  | =r ” .

Definition 3.2 Let spec = (stg, E )  be a hierarchical specification over speco = (sige, Eo)
as above. Let B = ((B,).es, (2 )  ser) be a sig-algebra and B°  the base-reduct of  B. Let
B = |B |  and B® =|B°| .
a) A function ¢ : V — B is an evaluation function if  p ( z )  € B,  if sort(z) = s

and v (x )  € BY? if sort(z) € So. Then ¢ is extended to v : Term(F,V)  — B by
( f( t ,  ta) = SF ( l t ) ,  p(ta))-
1A congruence relation on Term(F) is an equivalence relation ~ such that s; ~ t ;  implies

f ( s1 , . . . , 8n )~ f(ts,...,ty) for all f € F .
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b) (B, cp) satisfies an equality axiom u = v if! cp(u) = cp(v) in B and it satisfies a 
def-atom def(t) if! cp(t) E Ba. Finally, (B, cp) satisfies a clause r ===> ~ if it satisfies 
an atom in .6. whenever it satisfies all atoms in r. 

c) B satisfies a clause r ===> .6. (or r ===> .6. is valid in B) if, for each evaluation 
function cp, (B, cp) satisfies r ===> ~. 

We write B F r ===> ~ if B satisfies r ===>~. We write B F A (for an atom A) if B 
satisfies ===> A. In this case we say that B satisfies A. 

With these definitions, B satisfies a conditional equation f; .6. ===> s = t iff B satisfies 
the clause r ===> s = t,~. Now we can define the models of spec. 

Definition 3.3 Let spec = (sig, E) be a hierarchical specification over speeo = (sigo, Eo). 
A sig-algebra B is a model of spec if! 
(1)	 The base-reduct B O of B is isomorphic to the initial algebra A of speeo. 

(2)	 B satisfies every conditional equation in E. 

Example 3.4 We demonstrate these definitions using the specification from Example­
1.1, We have sigo = (So,Fo, vo,ao) with So = {NAT}, Fo = {O,s,+} and 

Eo: x+O = x x+s(y) = s(x+y) 

We also have spec . (sig, E) with sig = (So, F, V, a), F = Fo U {-} and E = Eo U El 

El: x-O = x s(x)-s(y) x-y 

Now, A = (ANAT,{OA,sA,+A}) is given by 

ANAT {[si(O)] liE N} 
OA = [0] [si(O)] +A [si(O)] [i+i(o)] 
sA([si(O)]) = [si+1(0)] 

To define a model B of spec we use the rewrite system 

R:	 x+O -+ x x+s(y) -+ s(x+y)
 
x-O -+ x s(x)-s(y) -+ x-y
 

It is confluent and terminating. So any t E Term(F) has a unique R-normal form t. 
We define B = (BNAT,{OB,sB,+B,_B}) by 

B NAT {I It E Term(F)}
 
OB = 0 t1 +B t2 = t1 + t2
 

sB(1) = s(1) 11 _B t2 = t 1 - t2
 

In order to prove that B is indeed a model of spec one has to prove (i) that B satisfies 
each conditional equation in E and (ii) that A is isomorphic to the base-reduct B O ofB.

O O
That is easily done. We sketch the proof of (ii): We have B O = (BRrAT' {OB , sBO, +B , _BO}) 
with 

BRrAT {Si(O) liE N} 
OBo o 
sB

o 
(si(O» _ si+l(O) 
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b )  (B ,p )  satisfies an equality axiom u = v iff p (u )  = p(v )  in B and it  satisfies a
def-atom def( t )  iff p(t) € B®. Finally, (B , )  satisfies a clause I' =>  A if i t  satisfies
an atom in A whenever i t  satisfies al l  atoms in I .

c) B satisfies a clause I' = A (or T = A is valid in B)  if, for each evaluation
function ¢ ,  (B,p) satisfies =>  A .

We write B FT =>  A if B satisfies ' =>  A .  We write B=  A (for an  atom A) if B
satisfies =>  A .  In this case we say that B satisfies A .

With these definitions, B satisfies a conditional equation I'; A =>  s = t iff B satisfies
the clause I' =>  s = t ,  A. Now we can define the models of spec.

Definition 3.3 Let spec = (sig, E) be a hierarchical specification over speco = (sigo, Fo).
A sig-algebra B is a model of spec iff
(1) The base-reduct B® of B is isomorphic to the initial algebra A of speco.

(2) B satisfies every conditional equation in  E .

Example 3.4 We demonstrate these definitions using the specification from Ezample-
1.1. We have sige = (So, Fo, Vo, a0) with So = {NAT} ,  Fo = {0 , s ,+ }  and
Ey:  240  = =z z+s (y )  = s ( z+y )
We also have spec = (sig,E) with sig = (So, F,V,a), F = FU  { - }  and E = EqU FE,
E i :  z -0  = =z s(z)—s(y) = z—y

Now, A = (Anat,  {04,s4, +4}) is given by

= {[s'0)]  | i € N}  | | a

ot = [0] [$0 ]  + [°(0)]  = [s‘*(0)]
sA([s‘(0)]) =

To define a model B of  spec we use the rewrite system
R:  z+0  — =z z+  s(y) — s(z+y)

z -0  — =z s(z)—s(y) — z - y
It is confluent and terminating. So any t € Term(F) has a unique R-normal form 1.
We define B = (Bnar, {05 ,s?,458, - 5 } )  by
Byar = { i f | t e€  Te rm(F ) }
of = 0 +2  = LITE
BE) = s(@) 7-834 = 41-10

In order to prove that B is indeed a model of  spec one has to prove (i) that B satisfies
each conditional equation in  E and (ii) that A is isomorphic to the base-reduct B® of  B .
That is easily done. We sketch the proofof (ii): We have B® = (BY 41 ,  {08,5 ° ,  +5°, —5°})
with

BR ar  = { s (0 ) ] i eN }
0% = 0 $0)  +5 s7(0) = s+(0)
53  (8(0)) = ( 0 )
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So 'l/; : A --+ BO, 'l/;([si(O)]) = si(O) is a sigo-isomorphism. 

This example may demonstrate how we model partiality: We do not use partial al­
gebras, both algebras Band BO are total algebras (in the sense that all functions are 
totally defined.) But _8 on B induces a partial function _8° on BO: i(O) _8° sj(O) is 
defined if! si(O) _8 sj(O) E B~AT' This holds true if! i 2:: j. If si(O) _8° sj(O) is defined, 
then si(O) _8° si(O) = si(O) _8 si(O)). 

Definition 3.5 Let spec be a hierarchical specification over sigo. Then Mod(spec) zs 
the class of all models of spec. 

Note that Mod(spec) may be empty. This may happen because the equations in E-Eo 
may produce "confusion" on A. For example, if one adds the equation 0 - 0 = s(O) 
to El in Example 3.4 then 0 = s(O) holds in any algebra B satisfying all conditional 
equations in E. So the base-reduct of B cannot be isomorphic to A. 

3.2	 Operational semantics 

We now define the E-equality =E for a hierarchical specification spec = (sig, E). If 
E only contains positive conditional equations, then this can be done in the classical 
way (as in the definition of the initial model in section 3.1). The problem is how to 
evaluate the negative conditions for applying a positive/negative conditional equation. 
As mentioned earlier, we here choose to evaluate the negation constructively in the 
built-in algebra A: A ground inequation u '# v is evaluated to true if! u and v evaluate 
to sigo-ground terms Uo, vo such that Uo #- vo in A. This approach is taken from 
[WG93], [WG94b]. For the approach negation by failure see [BG94] and [AB94]. 

Let spec = (sig, E) be a hierarchical specification over speeo = (sigo, Eo) with sig = 
(S, F, V, a) and sigo = (So, Fo, VO, ao). In order to define the E-equality =E we first 
define an approximation ("'"'i)iEN on Term(F) as we have done for positive conditional 
specifications in section 3.1. For that we need some additional notations. , 

Let"'"' be a congruence relation on Term(F). We say
 
"'"' satisfies u = v if u "'"' v
 
"'"' satisfies def(t) if t "'"' to for some to E Term(Fo)
 
"'"' satisfies u '# v if u "'"' Uo ¥-Eo Vo "'"' v for some Uo, Vo E Term(Fo)
 
"'"' satisfies r;.6. if"'"' satisfies all u = v, def(t) and u' ¥- v' such that u = v, def(t) E r
 
and u' = v' E .6..
 

Definition 3.6 Let spec = (sig, E) be a hierarchical specification over speco = (sigo, Eo). 
Let ("'"'i )iEN be defined on T erm(F) by 

"'"'0	 zs =Eo 

"'"'HI	 is the smallest congruence relation such that s "'"'i+l t if (1) S "'"'i t or (2)
 
there is a conditional equation r; .6. ====? 1= l' in E, a ground substitution
 
0" and a position p E O(s) such that sip = 0"(1), t = s[O"(r)]p and "'i
 
satisfies O"(r); 0"(.6.).
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So  : A — BP, ¥([s'(0)]) = s*(0) is a sigo-isomorphism.

This example may demonstrate how we model partiality: We do not use partial al-
gebras, both algebras B and B°  are total algebras (in the sense that all functions are
totally defined.) But —& on B induces a partial function —%° on B°:  s*(0) —5° si(0) is
defined iff s’(0) —% s/(0) € BY 4 .  This holds true i f fi > j .  If s(0)  —%° s7(0) is defined,
then s¢(0) —%° s7(0) = s°(0) —5  57(0)).

Definition 8 .5  Let  spec be a hierarchical specification ove r  s igg.  Then Mod(spec) is
the class of all models of spec.

Note that Mod(spec) may be empty. This may happen because the equations in  EF — E j
may produce “confusion” on A. For example, i f  one adds the equation 0 — 0 = s(0)
to F;  in  Example 3.4 then 0 = s(0) holds in  any algebra B satisfying all conditional
equations in  E .  So the base-reduct of B cannot be isomorphic to A.

3.2 Operational semantics

We now define the E-equality =g  for a hierarchical specification spec = (sig, FE). If
E only contains positive conditional equations, then this can be done i n  the classical
way (as in  the definition of the initial model in  section 3.1). The problem is how to
evaluate the negative conditions for applying a positive/negative conditional equation.
As mentioned earlier, we here choose to evaluate the negation constructively in  the
built-in algebra A:  A ground inequation u # v is evaluated to true iff u and v evaluate
to stgo-ground terms up, vo such that wo # vo in  A.  This approach is taken from
[WG93], [WG94b]. For the approach negation by failure see [BG94] and [AB94].
Let spec = (s ig , E) be  a hierarchical specification over specy = (s ige,  Eo) wi th s ig  =
(S,F,V,a) and siggy = (So,Fo, Vo, a0). In order to define the E-equality =g  we first
define an approximation (~;)ien on Term(F) as we have done for positive conditional
specifications in  section 3.1. For that we need some additional notations.
Let ~ be a congruence relation on Term(F).  We say
~ satisfies u =v i f u~wv
~ satisfies def( t )  if t ~ to for some tg € Term (Fp)
~ satisfies u # v if u ~ up FE, vo ~ v for some ug, vo € Term(Fy)
~ satisfies I’; A if  ~ satisfies all u = v, def(t) and uw’ # v’ such that u =v ,  def(t) € T
and uw =v ’  € A .

Definition 3.6 Let spec = (sig, E )  be a hierarchical specification over speco = (sige, Eo)-
Let (~;) ien be defined on Term(F)  by

~o  18  =F
~i t1  1s the smallest congruence relation such that s ~ ; 1 t if  (1) s ~ ;  t o r  (2)

there is a conditional equation I ;  A =>  | = r  in  E ,  a ground substitution
o and a position p € O(s) such that s/p = o(l), t = s[o(r]], and ~ ;
satisfies o(I');  o(A).
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Then =E = UiEN'Vi is the E-equality defined by spec. 

Remember that for any ground substitution u we have u(x) E Term(Fo) if sort(x) E So 
(by Definition 2.2). This realizes the restriction that base variables can be instantiated 
by base terms only. The next Lemma shows that the approximation ('Vi)iEN of =E is 
monotonous. This is very similar to the case where only positive conditional equations 
are allowed in a specification. 

Lemma 3.7 
If 'Vi satisfies u = v then 'Vi+! satisfies u = v. 
If 'Vi satisfies def(t) then 'Vi+! satisfies def(t). 
If'Vi satisfies u =I- v then "'i+! satisfies u =I- v. 

Proof: This is easily proved by an induction on i. 

Now we are ready to associate a distinguished algebra A spec to a hierarchical specifica­
tion spec. 

Definition 3.8 Let spec = (sig, E) be a hierarchical specification over speco = (sigo, Eo). 
For t E Term(F) let [t] denote the E-equivalence class oft. Then A spec is defined by 

Aspec,s = Ht] I t E Terms(F)} 
fA.pec([tl] , ... , [tnD = [J(tI, .. . , tn)] 

We call A spec the algebra specified by spec. 

In general, A spec is not a model of spec. There are two reasons for that: (1) The 
base-reduct A~pec of A spec may not be isomorphic to the initial algebra A of speeo. (2) 
We evaluate negative conditions constructively, but that may not be reflected by the 
specification. We give some examples. 

For (1): Consider spec = (sig,E) with So = S = {ANY}, Fo = {a,b}, F = {a,b,c}, 
Eo = 0 and E = {===} c = a, ===} c = b}. Then a = b is valid in A spec , but not in A. 
Hence, A spec (j. M od(spec). 

For (2): Consider spec = (sig,E) with So = S = {ANY}, Fo = {a}, F = {a,b,c}, 
Eo = 0 and El = {a ::J b ===} a = cl. Then a = c or a = b is valid in any model 13 
of spec (since ===} a = b V a = c is the clausal form of a =I- b ==} a = c). But neither 
a = b nor a = c is valid in A spec' So A spec (j. M od(spec). 

We want to consider only those specifications spec such that A spec E M od(spec). This 
is captured by the next definitions. 

Definition 3.9 Let spec = (sig, E) be a hierarchical specification over speeo = (sigo, Eo).
 

a) spec is a consistent extension of speeo if for all base terms s, t E Term(Fo) we have
 
s = E t if! s = Eo t.
 
b) A conditional equation f; ~ ===} 1 = r is def-moderated if de f (u), de f (v) E r for
 
each equality atom u = v in ~. spec is def-moderated if each conditional equation in
 
E is de f -moderated.
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0 

Then =p  = UeN ~;  is the E-equality defined by spec.

Remember that for any ground substitution o we  have o ( z )  € Term(Fp) if sor t (z)  € So
(by Definition 2.2). This realizes the restriction that base variables can be instantiated
by base terms only. The next Lemma shows that the approximation (~;) ien of  =g  is
monotonous. This is very similar to the case where only positive conditional equations
are allowed in  a specification.

Lemma 3.7
If ~;  satisfies u = v then —;+1 satisfies u =v .
If ~;  satisfies def(t) then —;+1 satisfies def ( t ) .
I f  ~ ;  satisfies u # v then m;+1 satisfies u # v .

Proof: This is easily proved by  an induction on  i .  0
Now we are ready to  associate a distinguished algebra Aspec to  a hierarchical specifica-
tion spec.

Definition 3.8 Let spec = (sig, E )  be a hierarchical specification over specy = (igo,  Fo).
For t  € Term(F) let [t] denote the E-equivalence class oft. Then Aspec is defined by

Agpecs = {[t] | t € Term,(F)}
FA( [ t 1 ] , . . . ,[En])= [F(t1-- ota)

We call Aspec the algebra specified by spec.
In  general, Aspec is not a model of spec. There are two reasons for that: (1) The
base-reduct AJ.  of Aspec may not be isomorphic to the initial algebra A of speco. (2)
We evaluate negative conditions constructively, but that may not be reflected by the
specification. We give some examples.
For (1): Consider spec = (sig,E)  with So = S = {ANY},  Fo = {a,b}, F = {a,b,c},
Ey =0  and E = {=> ¢ = a,=—> c = b}. Then a = b is  valid in  Aspec,  but not in A.
Hence, A pec € Mod(spec).
For (2): Consider spec = (sig, E )  with Sg = S = {ANY} ,  Fy = {a} ,  F = {a,b,c},
Eo = 0 and Ey = {a # b=  a = c}. Then a = co r  a = bis valid in any model B
of spec (since =>  a = bV  a = c is the clausal form of a # b =>  a = c). But  neither
a = bnor a = c is  valid in  A,pec.  So Agpec € Mod(spec).
We want to  consider only those specifications spec such that Aspec € Mod(spec). This
is captured by the next definitions.

Definition 3.9 Let spec = (sig, E )  be a hierarchical specification over speco = (sigo, Eo).
a) spec is a consistent extension of  specy if  for all  base terms s, t  € Term(Fo) we have
s=g t i f f s  =g  t .
b) A conditional equation ['; A =>  | = r is def-moderated if def(u),def(v) € T for
each equality atom u = v in  A .  spec is def-moderated if each conditional equation in
E is def-moderated.
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Note that in the preceeding examples the first specification spec is not a consistent 
extension of speCo and the second specification is not def-moderated. In the second 
example, if we replace El by El = {def(a), def(b), a =f:. b ===} a = cl, then spec is def­
moderated, A spec consists of three elements a, band c, and we have A spec E M od(spec). 
In the following we will consider only those hierarchical specifications that are consistent 
and def-moderated. Then A spec will be a model of spec, as the next Theorem says. 

Definition 3.10 The hierarchical specification spec over speCo is admissible if (1) spec 
is a consistent extension of speCo and (2) spec is def-moderated. 

Theorem 3.11 Let spec = (sig, E) be an admissible hierarchical specification over 
speCo = (sigo, Eo). Then A spec is a model of spec. 

Proof: 'a) We have s =Eo tiff S =E t for all s, t E Term(Fo), since spec is a consistent
 
extension of spec. So A is the base-reduct of A spec'
 

b) We have to show that A spec satisfies f ===} 1 = 1', ~ whenever f; ~ ===} 1 = l' is in E.
 

So, for every evaluation function <p : V -t A spec we have to show that (Aspec , <p) satisfies
 
r ===} 1 = r,~. Let [t] be the =E-equivalence class of t E Term(F). For each x E v:
 
there is a t x E Term(F) such that <p(x) = [t x ]. Then <7(x) = t x is a substitution (since
 
t x E Term(Fo) for sort(x) E So). One easily proves <p(t) = [<7(t)] for all t E Term(F).
 

We have to prove: If (Aspec , c.p) satisfies all atoms in f but no atom in ~, then (Aspec , c.p) 
satisfies 1 = r. Since c.p( t) = [a( t)] for all t this is equivalent to: If A spec satisfies 
all atoms in a(f) and no atom in O'(~), then A spec satisfies <7(1) = 0'(1'). We have 
def(u),def(v) E f for all u = v in ~ since spec is def-moderated. So we have to 
prove: If =E satisfies all atoms in <7(f); <7(~) then =E satisfies <7(1) = a(r). We have 
that =E satisfies a ground atom A iff "'i satisfies A for some i. So, if =E satisfies 
a(r); a(~) then some "'i satisfies a(f); a(~). But then "'i+l satisfies a(l) = a(r). 
Hence =E satisfies a(1) = a( l' ). 0 

Corollary 3.12 For any clause G we have: A spec F G iff A spec F r(G) for all ground 
substitutions r. 

Proof: As in the last proof, any evaluation function c.p : V -t A spec defines a ground 
substitution r such that c.p(t) = [r(t)] for all t E Term(F). Conversely, if r is a ground 
substitution then it defines an evaluation function c.p by c.p(x) = [r(x)]. Now the claim 
directly follows from the definition of A spec F G (see Definition 3.2). 0 

Now we prove that the principle of monotonic extendability of specifications holds: 
Atoms valid in E remain valid if E is enlarged to E'. 

Theorem 3.13 Let spec = (sig, E) and spec' = (sig, E') be two admissible hierarchi­
cal specifications over speCo = (sigo, Eo) such that E ~ E'. If s, tare sig-terms and 
A spec F s = t, then Aspecl F s = t. If A spec F def(t), then Aspecl F= def(t). 
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Note that in the preceeding examples the first specification spec is not a consistent
extension of specy and the second specification is not de f-moderated. In the second
example, i f  we replace E,  by E;  = {def(a),def(b),a # b =>  a = c} ,  then spec is def-
moderated, Aspec consists of three elements a, b and ¢ ,  and we have A,,.. € Mod(spec).
In  the following we will consider only those hierarchical specifications that are consistent
and def-moderated. Then Aspec will be a model of spec, as the next Theorem says.

Definition 3.10 The hierarchical specification spec over specg is admissible if (1) spec
is a consistent extension of speco and (2) spec is def-moderated.

Theorem 3.11 Let spec = (sig,E) be an admissible hierarchical specification over
speco = (sigo, Eo). Then Aspe. is a model of  spec.

Proof: a) We have s =g, tiff s =g  t for all s , t  € Term(Fo), since spec is a consistent
extension of spec. So A is the base-reduct of Aspec-
b) We have to show that Ap  satisfies I' =>  | =r ,  A whenever; A = [ = r  i s in  E .
So, for every evaluation function ¢ : V — Aspec we have to  show that (Aspec, ¢ )  satisfies
I' = 1 = r ,A .  Let [t] be the =g-equivalence class of t € Term(F). For each z € V,
there is a t ,  € Term(F) such that (x )  = [t,]. Then o(z) = t, is a substitution (since
tz € Term(Fo) for sort(z) € Sp). One easily proves p(t)  = [o(t)] for all t € Term(F).
We have to  prove: If (Apc,  p )  satisfies all atoms in  I" but no atom in  A ,  then (Aspec, ©)
satisfies | = r .  Since p(t)  = [o(t)] for all t this is equivalent to: I f  Aspec satisfies
all atoms i n  o(I') and no  atom i n  o(A), then Aspec satisfies o(l) = o(r). We have
def(u),def(v) € T for all u = v in A since spec is def-moderated. So we have to
prove: If = f  satisfies all atoms in o(I');5 (A)  then =g  satisfies o( l )  = o(r ) .  We have
that =g  satisfies a ground atom A iff ~ ;  satisfies A for some :. So, i f  = f  satisfies
o (T ) ;0 (A )  then some ~ ;  satisfies o (T ' ) ;0 (A) .  But  then ~;y,  satisfies o ( l )  = o ( r ) .
Hence =g  satisfies o ( l )  = o ( r ) .  a

Corollary 3.12 For any clause G we have: Aspec = G iff Aspec |= 7(G) for all  ground
substitutions rT.

Proof: As in the last proof, any evaluation function ¢ : V — Aspec defines a ground
substitution 7 such that ¢ ( t )  = [ r ( t ) ]  for all t € Term(F) .  Conversely, i f  7 is a ground
substitution then i t  defines an evaluation function ¢ by ¢(z) = [r(z)]. Now the claim
directly follows from the definition of Aspec |= G (see Definition 3.2). O

Now we prove that the principle of monotonic extendability of specifications holds:
Atoms valid in  £ remain valid i f  E is enlarged to E’.

Theorem 3.13 Let spec = (s ig ,E) and spec = (s tg ,E') be two admissible hierarchi-
cal specifications over speco = (sigo, Eo) such that EC E ' .  I f  s , t  are sig-terms and
Aspec [Es = ,  then Aspe |= 3 =1 .  If  Aspec |= def ( t ) ,  then Aspec |= de f ( t ) .
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Proof: Let (""i)iEN and (""DiEN be the approximations of =E and =spec', respectively. 
An induction on i proves: If A is a sig-atom and ""i satisfies A then ""~ satisfies A. 
So, for any ground substitution r: If r(s) =E r(t) then r(s) =E' r(t). Now the claim 
follows from Corollary 3.12. 0 

By Theorem 3.13 an atom remains valid when the specification spec is extended to 
spec/. Clearly, a negated atom valid in spec need not be valid in spec/. For example, if t 
is a ground term and the clause def(t) ===} is valid in A spec , then for no to E Term(Fo) 

, we have t =E to. But t =E' to may hold for some to E Term(Fo), i.e., the clause 
def(t) ===} may not be valid in A spec" We next study which clauses remain valid in 
Aspect. 

Theorem 3.14 Let spec and spec/ be as in Theorem 3.13. Let f ===} ~ be valid in 
A spec ' lfthe clauses ===} def(t) fort E {u,v Iu = v in f}U{u Idef(u) in r} are valid 
in AspecI then r ===} ~ is valid in Aspecl I too. 

Proof: 'Let a be any ground substitution. We have to prove that a(f) ===} a(~) is 
valid in A spec" By the assumptions and Theorem 3.13, if for some atom A E f a(A) is 
not valid in A spec then it is not valid in Aspecl. If for some u = v E ~, a(u) = a(v) is 
valid in A spec , then it is valid in A spec" Hence, since a(f) ===} a(~) is valid in A spec, 
it is valid in Aspecl. 0 

3.3 Initiality 

In this section we show that A spec is initial in the class M od(spec) of all models of spec. 
As a consequence, we have t l = t 2 is valid in A spec iff it is valid in all term-generated 
models of spec. This justifies that we distinguish A spec as the "algebra specified by 
spec" . 

We need some standard notations to work this out. Let A = ((As)sES, (JA)fEF) and 
B = ((B)sES, (f13)fEF) be two sig-algebras, where sig is sig = (S,F, V,a). A sig­
homomorphism from A into B is a mapping 'l/J :IA I -? IB I such that 'l/J : As -? B sand 
'l/J(JA(al, ... ,an )) = f13('l/J(al), ... ,'l/J(an )) for all ai EIAI and f E F. 

Definition 3.15 Let A be a sig-algebra and K a class of sig-algebras. A is called 
initial in K if (i) A E K and (ii) for each B E K there is exactly one sig-homomorphism 
'l/J: A-?B. 

Now let spec = (sig, E) be an admissible hierarchical specification over speeo = 
(sigo, Eo). It is well known from equational logic that the initial algebra A of speeo 
is indeed initial in the class of all models of speeo. We prove that Aspec is initial in 
Mod(spec). 

Let B be a sig-algebra. We define t 13 for t E Term(F) by
 
B
t cB if t=c,a(c)=s
13t f13(tf, ... ,t~) if t = f(tl, ... ,tn ) 
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Proof: Let (~;) ien and (~!);en be the approximations of =g  and =p ,  respectively.
An  induction on  i proves: If A is a sig-atom and ~ ;  satisfies A then ~}  satisfies A .
So, for any ground substitution 7 :  If 7(s) =g  7(t) then 7(s) =p  7(t). Now the claim
follows from Corollary 3.12. a
By Theorem 3.13 an atom remains valid when the specification spec is extended to
spec’. Clearly, a negated atom valid in  spec need not be valid in  spec’. For example, i f  t
is a ground term and the clause def ( t )  ==  is valid in  Aspec ,  then for no to € Term(Fp)

‘we  have t =p  to. But t =p  to may hold for some to € Term(Fp), i.e., the clause
def( t )  =>  may not be valid in  Ape. We next study which clauses remain valid in
Aspect .

Theorem 3.14 Let spec and spec’ be as in Theorem 8.18. Let I' =>  A be valid in
Aspec -  If  the clauses =>  de f ( t )  fo r t  € {u,v | u  =v  in  T }U {u  | def(u) in T'} are valid
in Aspec, then I' ==> A is valid in Aspec ‘ ,  too.

Proof: Let ¢ be any ground substitution. We have to prove that o(I') =>  (A )  is
valid in A,per. By  the assumptions and Theorem 3.13, i f  for some atom A € I o (A )  is
not valid in Aspec then i t  is not valid in  Ape.  If for some u = v € A ,  o(u) = o(v) is
valid in Aspec, then i t  is valid in Apes. Hence, since o(T) =>  o (A )  is valid i n  Ape,
i t  is valid in Apex. 0

3.3 Initiality

In  this section we show that A,p.. is initial in  the class Mod(spec) of all models of spec.
As a consequence, we have t ;  = 1; is valid in  Aspec iff i t  is valid in  all term-generated
models of spec. This justifies that we distinguish Aspec as the “algebra specified by
spec”. :

We need some standard notations to work this out. Let A = ((As)ses, (f4)ser) and
B = ((B)ses, (fB)ser) be two sig-algebras, where sig is sig = (S,F,V,a). A sig-
homomorphism from A into B is a mapping 9 :| A| —|B|  such that % : A,  — B,  and
P(fA(ar,--., a . )  = fB(¥(a1),...,9¥(a,)) for all a; €| Aland f e  F .

Definition 3.15 Let A be a sig-algebra and K a class of  sig-algebras. A is called
initial in  K if (i) A € K and (ii) for each B € K there is exactly one sig-homomorphism
Yv: A—  B.

Now let spec = (sig,  E )  be an admissible hierarchical specification over specy =
(sige, Eo). I t  is well known from equational logic that the initial algebra A of speco
is indeed init ial  in the class of all models of specs. We prove that Aspec is ini t ia l  in
Mod(spec).
Let B be a sig-algebra. We define t?  for t € Term (F )  by

t8  = cP i f  t =c ,a l c )=s
tB = BEB , 18) if t =  f ( t , . . . , t n )
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Lemma 3.16 Let spec be an admissible hierarchical specification over speC{). Let B E 

Mod(spec). For all u,v E Term(F) we have B F= u = v ifu =E v. 

Proof: Let BO be the base-reduct of B and let (""diEN be the approximation of =E.
 

Induction on i gives for all u, v E Term(F):
 
If ""i satisfies u = v then B F= u = v.
 
If ""i satisfies def(u) then uB E BO.
 
If ""i satisfies u f:. v then uB, vB E BO and uB f:. vB.
 
The claim of the Lemma then follows immediately. 0
 

Theorem 3.17 Let spec = (sig, E) be an admissible hierarchical specification over 
speC{) = (sigo, Eo). Then A spec is initial in Mod(spec). 

Proof: Aspec E Mod(spec) by Theorem 3.11. So we have to prove that for each B E 
M od(spec) there is exactly one sig-homomorphism 'ljJ : A spec --+ B. 
Define 'ljJ : Aspec --+ 8 by 

'ljJ([t]) = tB 

Then 'ljJ is well-defined, because [t] = [tl] implies t =E t l and hence tB = tf by Lemma 
3.16. We prove that 'ljJ is a sig-homomorphism: Clearly, 'ljJ([t]) E B s if [t] E As. We 
have 'ljJ(jA.pec([tl], ... ,[tn]) = 'ljJ([J(tl, ... ,tn)]) = f(tl, ... ,tn)B = fB(tf, ... ,t~) = 
fB(?jJ([tlD, ... ,'ljJ([tnD). Hence, 'ljJ is a sig-homorphism. Assume 'ljJ': Aspec --+ 8 is any 
sig-homomorphism. One easily proves by induction on the term structure of t that 
'ljJ([t]) = ?jJ'([t]). So 'ljJ is the only sig-homomorphism from Aspec into B. 0 

Now we relate validity in Aspec to validity in all term-generated models of spec. 

Definition 3.18 Let sig = (8, F, V, a). A sig-algebra B is term-generated if for all 
bE B there is atE Term(F) such that b = tB. 

Theorem 3.19 Let spec = (sig, E) be an admissible hierarchical specification over 
speC{) = (sigo, Eo). Let u, v E Term(F, V). Then A spec F= u = v iff 8 F= u = v for all 
term-generated B E M od(spec). 

Proof: a) If 8 F= u = v for all term-generated B E M od(spec) then Aspec F= u = v,
 
since Aspec is a term-generated model of spec.
 
b) Assume A spec F= u = v and B E M od(spec) is term-generated. Let V' = V ar(u =
 
v) = {Xl, . .. , xn} be the set of variables in u and v. Let ip : V' --+ B be an evaluation
 
function. We have to show (B,ip) satisfies u = v, i.e., ip(u) = ip(v) in B. Let [t] be the
 
=E-equivalence class of t E Term(F).
 

Since B is term-generated, there are ti E Term(F) with ip(Xi) = tf. Let a be the
 
substitution with a(xi) = ti. Since A spec is initial in Mod(spec) , the function 7/J :
 
A spec --+ B, 'ljJ([t]) = tB is a sig-homomorphism. By induction on the term structure
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Lemma 3.16 Let spec be an admissible hierarchical specification over specy. Let B €
Mod(spec). For all u , v  € Term(F) we have Blu =v  i fu =g  v .

Proof: Let B°  be the base-reduct of B and let (~;);en be the approximation of =g .

Induction on £ gives for all u ,v  € Term(F):
If ~;  satisfies u = v then B Eu  =v.
If ~ ;  satisfies def(u)  then u® € BC.
If ~ ;  satisfies u # v then u®, vB € B® and u f  # vB.
The claim of the Lemma then follows immediately. [m

Theorem 3.17 Let spec = (s ig,E)  be an admissible hierarchical specification over
speco = (stgo, Eo). Then Aspe. is initial  in Mod(spec).

Proof: Aspe € Mod(spec) by Theorem 3.11. So we have to  prove that for each B €
Mod(spec) there is exactly one sig-homomorphism % : Aspec — B.
Define % : Aspec — B by

P(e) = t*

Then w% is well-defined, because [t] = [¢] implies ¢ = f  ¢ ,  and hence t? = t? by Lemma
3.16. We prove that ¢ is a sig-homomorphism: Clearly, ( [ t ] )  € B,  i f  [t] € As. We
have $(fAme([t], l t l )  = ( I f . . .  rta)]) = Seas . . . )  = F5(E5 , . .18) =
FE(([t])s---»¥([ts])). Hence, ı is a sig-homorphism. Assume 9’  : Age. — B is any
sig-homomorphism. One easily proves by induction on the term structure of ¢ that
¥([t]) = ¢¥'([t]). So ¢ is the only sig-homomorphism from A ;  into B.  =
Now we relate validity in Aspec to validity in all term-generated models of spec.

Definition 3.18 Let sig = (S,F,V,a). A sig-algebra B is term-generated if for al l
b € B there is a t € Term(F) such that b=  t®,

Theorem 3.19 Let spec = (s ig,E) be an admissible hierarchical specification over
spec = (stgo, Eo). Let u , v  € Term(F,V) .  Then Agpec Fu=v  i f f  BEE u=v  for all
term-generated B € Mod(spec).

Proof: a) If B |= u = v for all term-generated B € Mod(spec) then Ape.  = u = v,
since Ape. is a term-generated model of spec.
b )  Assume Aspec |= u = v and B € Mod(spec) is term-generated. Let V '  = Var(u =
v) = {Tı,..., Zn }  be the set of variables in u and v. Let ¢ : V/ — B be an evaluation
function. We have to show (B , )  satisfies u = v ,  i.e., p (u)  = ¢(v)  in B .  Let [t] be the
=g-equivalence class of  t € Te rm(F ) .

Since B is term-generated, there are t ;  € Term(F) with ¢(z;) = t?. Let o be the
substitution with o(z;)  = t ; .  Since Aspe is ini t ial  i n  Mod(spec), the function % :
Aspec = B ,  P([t]) = tP is a sig-homomorphism. By  induction on the term structure
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0 

one shows <p(t) = "p([O"(t)]) for all t E Term(F, V'). Since A spec F U = v we have 
[O"(u)] = [O"(v)]. This gives <p(u) = "p([O"(u)]) = "p([O"(v)]) = <p(v) in B.
 

These results may justify why we call A spec "the algebra specified by spec": We are
 
interested in clauses that are valid in A spec '
 

Definition 3.20 Let spec be an admissible hierarchic specification over speCo. A 
clause r ====} ~ is called an inductive theorem of spec if A spec F r ====}~. Let 
ITh(spec) denote the set of inductive theorems of spec. 
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one shows ¢(t)  = ¢([o(t) ])  for all t € Term(F,V’) .  Since Aye .  Fu  = v we have
[o(u)] = [o(v)]. This gives p(u) = ¥([o(u)]) = ¥([o(v)]) = #(v) i n  B .  o
These results may justify why we call Aspec “the algebra specified by spec”: We are
interested i n  clauses that are valid in  Ap...

Definition 3.20 Let spec be an admissible hierarchic specification over specy. A
clause ' =>  A is called an inductive theorem of spec if Asgpec ET = A .  Let
ITh(spec) denote the set of inductive theorems of spec.
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4 Rewrite semantics 

Given the results obtained so far, there are two problems left: (1) We are interested 
in executable specifications, so we want to effectively compute in A spec ' (2) In order 
to apply the results of section 3.2 and 3.3, we have to prove that a given hierarchical 
specification spec is admissible. Since it is easy to check whether spec is def-moderated, 
the central problem is to prove that spec is a consistent extension of speCo. In this 
chapter we are going to introduce hierarchical term rewrite systems. This will help 
us to solve these problems. Positive/negative conditional rewriting was introduced by 
Kaplan [Kap88]. 

Let sigo = (So, Fo, '10, ao) be a subsignature of sig = (S, F, V, a) as in section 2.1. A 
positive/negative conditional rewrite rule is an oriented positive/negative conditional 
equation, so it has the form r; .6. ====} l ~ r where .6. contains no def-atom. We require 
Var(r) U Var(.6.) U Var(r) ~ Var(l). 

Definition 4.1 A positive/negative conditional rewrite system R is the union of two 
rewrite systems Ra and RI.
 

Ra contains positive conditional rewrite rules r ====} l ~ rover sigo only. No def-atoms
 
appear in Ra. RI contains positive/negative conditional rewrite rules r;.6. ====} l ~ r 
over sig such that l contains an operator f E F - Fo and.6. contains no def-atom. 

We are going to define the rewrite relations --+Ra and --+R. This is similar to the 
definition of =Eo and =E in section 2.2. In particular, negative conditions u = v 
in a rewrite rule are constructively evaluated over sigo-term. Positive conditions are 
evaluated by joinability (see below). 

We need some notations. Let --+ be a binary relation on Term(F). Then ~ (and 
~ and ~) is the transitive (transitive-reflexive and transitive-reflexive-symmetric, 

respectively) closure of --+. Define the relations ::::\ 1 and 1<1 by ::::\ = --+ U == 
and1=~ 0 ~and1<1= (::;1) 0 ~) n (~0-(9). Termss and t 
are called (strongly) joinable if s 1 t (resp. s 1<1 t) holds. --+ is called confluent if 
~ ~ 1 holds. --+ is called terminating if there-is no infinite sequence (ti)iEN of terms 
such that ti ~ ti+l for all i. 

We say 

--+ satisfies u = v, if u 1 v holds 
--+ satisfies def(t), if t ~ to for some to E Term(Fo) 
--+ satisfies u =I v, if u ~ Uo, v ~ Vo and not Uo 1 Vo for some Uo, Vo E Term(Fo). 
--+ satisfies r;.6., if --+ satisfies all u = v, def(t) and u' =I- v' for all u = v, def(t) E 

rand u = v E .6.. 

For denoting specifications we identify a conditional rewrite system with a set of condi­
tional equations. This is done in the next definition. In the same spirit, =R is defined 
according to Definition 3.6. 
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4 Rewrite semantics

Given the results obtained so far, there are two problems left: (1) We are interested
in executable specifications, so we want to  effectively compute in  Aspec. (2) In order
to apply the results of section 3.2 and 3.3, we have to prove that a given hierarchical
specification spec is admissible. Since i t  is easy to check whether spec is def-moderated,
the central problem is to  prove that spec is a consistent extension of speco. In this
chapter we are going to  introduce hierarchical term rewrite systems. This will help
us to  solve these problems. Positive/negative conditional rewriting was introduced by
Kaplan [Kap88|.
Let sigo = (So, Fo, Vo, 0 )  be a subsignature of sig = (S,  F ,V,  a )  as in  section 2.1. A
positive/negative conditional rewrite rule is an oriented positive/negative conditional
equation, so i t  has the form I ;  A =>  | — r where A contains no def-atom. We require
Var(T) U Var(A) U Var(r) © Var(l).

Definition 4.1 A positive/negative conditional rewrite system R is the union of two
rewrite systems Ro and R ı .

Ro contains positive condit ional  rewrite rules T =>  | — r over siga only. No  def-atoms
appear in Ro. R ı  contains positive/negative conditional rewrite rules T ;A  —=  | — r
over sig such that | contains an operator f € F'  — Fy and A contains no def-atom.

We are going to define the rewrite relations — pg, and — pg. This is similar to the
definition of =g, and =g  in  section 2.2. In particular, negative conditions u = v
in a rewrite rule are constructively evaluated over sigo-term. Positive conditions are
evaluated by joinability (see below).

We need some notations. Let — be a binary relation on Term(F). Then —;  (and
—,  and «—) is the transitive (transitive-reflexive and transitive-reflexive-symmetric,
respectively) closure of —.  Define the relations = | and J by  SS  U=
and | = = 0 and  l g  = (55 0 * )  N (— o &).  Te rmss and t
are called (strongly) joinable if s | t (resp. s | < ı  t )  holds. — is called confluent i f«= C | holds. — is called terminating i f  there is  no  infinite sequence ( ; ) ; en  of  terms
such that ¢; — 4;+1 for all £.

We say
satisfies u = v ,  i f  u | v holds
satisfies def ( t ) ,  i f  t — to for some to € Term(Fy)
satisfies u # v ,  i f  u — ug, v — vo and not ug | vo for some ug, vo € Term(Fp) .
satisfies T; A ,  i f  — satisfies all u = v, def( t)  and v + v '  for all u = v ,  def( t )€
l and  u=v  € A .

For denoting specifications we identify a conditional rewrite system with  a set of condi-
tional equations. This is  donei n  the next definition. In  the same spir i t ,  =pg is defined
according to Definition 3.6.

L
L

L

21



Definition 4.2 Let spec = (sig, R) be a hierarchical specification over speeo = (sigo, Ra). 
a) We define an approximation (---+?)iEN Of---+11.o on Term(F) by: ---+g = = is the 
identity relation and 

s ---+?+l t	 if s ---+? t or for some rule f ~ 1 ---+ r in Ra, p E O(s) and
 
substitution CT we have sip =CT(l), t =s[CT(r)]p and ---+? satisfies
 
CT(r). 

Then ---+11.0= UiEN ---+? 
b) We define an approximation (---+i)iEN of ---+R on Term(F) by ---+0=---+11.0 and 

s ----4i+I t	 if S ---+i t or for some rule fj ~ ~ 1 ---+ r in R, p E O(s) and 
substitution	 u we have sip - u(1), t == s[u(r)]p and ---+i satisfies 
u(r); u(~). 

Then ---+R= UiEN ---+i· 

We say R is confluent (resp. terminating) if ---+R is. Note that ---+11.0 ~ ---+i for all i. 

It is well known that =R1 = ~Rl = tRl for any positive conditional non-hierarchical 
rewrite system RI [Kap84]. This can be translated to our setting. 

Theorem 4.3 Let spec = (sig, R) be a hierarchical specification over speco. If R is 
confluent then =R = ~R = tR. 

Proof: We only sketch the proof since it is tedious. Note that =11.0 = tRo on Term(Fo) 
since R is confluent and so is Ra. Let ("'i)iEN be the approximation of =R. First one 
proves by induction on i that ---+i ~ "'i. This gives ~R ~ =R. Next, using the 
assumption that R is confluent, one proves by induction on i that "'i ~ tR. This gives 
=R ~ LR. Since tR ~ ~R, we have =R = LR = ~R' 0 

Now we use the general assumption on hierarchical rewrite systems that, for a rule 
fj Li. ~ 1 ---+ r in RI = R - Ra, the term 1 contains an operator f E F - Fo. So, 
no term u E Term(Fo) is reducible by a rule in RI' Furthermore, if u ~11.o u' then 
u' E Term(Fo) also. So u tR v implies u tRo v for u, v E Term(Fo). 

Theorem 4.4 Let spec = (sig, R) be a hierarchical specification over speeo = (sigo, Ra). 
If R is confluent then spec is a consistent extension of spec. 

Proof: We have to prove: For any u; v E Term(Fo) we have u =R v iff u =Ro v. We 
have u =R v iff U lR v (by Theorem 4.3) iff u lRo v (by the preceeding remark) if 
u =Ro v (by Theorem 4.3). 0 

As a consequence of this Theorem we get a suffici~nt condition that the results of 
section 3.2 and 3.3 are applicable. 

Corollary 4.5 Let spec = (sig,R) be a hierarchical specification over spec = (sigo,Ro). 
Let R be confluent and def-moderated. Then spec is admissable. 0 

Notice that	 these results require no termination assumption on R. 
\ 

It is easy to check whether R is def-moderated. So it remains to develop conditions 
under which R is confluent. This is done by using the notion of critical pairs. 
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Definition 4.2 Let spec = (s ig,R) be a hierarchical specification over speco = (sige, Ro).
a) We define an  approzimation (—?)ien of  — gr, on  Term  (F) by:  — = = is the
identity relation and
s— 1 t i f s  — t or for some rule T =>  | — r in Ry, p € O(s) and

substitution o we have s/p = o( l ) ,  t = s[o(r) ] ,  and —?  satisfies
o(F).

Then — p=  Uien — 0
b) We define an approzimation (—;);en of  —r  on Term(F)  by —o=—g,  and
sS—41  1 i f 8 —;  t or for some rule TA  =>  1 — r in R,  p € O(s) and

substitution o we have s/p = o ( l ) ,  t = s [o ( r ) ] ,  and —;  satisfies
oT) ;  a(A).

Then — p=  U;en —:-

We say R is confluent (resp. terminating) i f  — is. Note that — pr, © — for all i .
It is well known that =p, = «—pg, = |p, for any positive conditional non-hierarchical
rewrite system R ı  [Kap84]. This can be translated to our setting.

Theorem 4.3 Let spec = (sig, R)  be a hierarchical specification over speco. If  R is
confluent then =p  = «pg = |g .

Proof: We only sketch the proof since i t  is tedious. Note that =p, = |r, on Term(Fy)
since R is confluent and so is Ro. Let (~;) ien be the approximation of =p .  First one
proves by induction on i that —;  € ~ ; .  This gives —>Rp € =g .  Next, using the
assumption that R is  confluent, one proves by  induction on  7 that ~ ;  C | g .  This gives
=r  C l r .  Since | r  © Hp,  we have =p  = | r  = HR.  o
Now we use the general assumption on hierarchical rewrite systems that, for a rule
IA  = 1 — r i n  BR; = R — Ry, the term [ contains an operator f € F — Fy. So,
no term u € Term(Fo) is reducible by a rule in  R;.  Furthermore, i f u —pg, u’  then
u’  € Term(Fo) also. So u |g v implies u |p, v for u,v € Term(Fp).

Theorem 4.4 Let spec = (sig, R) be a hierarchical specification over spec = (stgo, Ro).
I f  R is confluent then spec is a consistent extension o f  spec.

Proof: We have to prove: For any u ; v  € Term(Fo) we have u =g  v iff u =p, v. We
have u =p  v iff u I r  v (by Theorem 4.3) iff u |g, v (by the preceeding remark) i f
u =pg, v (by Theorem 4.3). 0
As a consequence of this Theorem we get a sufficient condition that the results of
section 3.2 and 3.3 are applicable.

Corollary 4.5 Let spec = (sig,  R)  be a hierarchical specification over spec = (sigo, Ro).
Let R be confluent and def-moderated. Then spec is admissable. Oo

Notice that these results require no termination assumption on R.
I t  is easy to check whether R is def-moderated. So it remains to develop conditions
under which R is confluent. This is done by using the notion of critical pairs.
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Definition 4.6 
a) Let R be a hierarchical rewrite system. Let ri; 6.; ==:::} 1i -+ ri, i = 1, 2 be (variab1e­

disjoint) rules in r. Let p E 0(11), lIfp rJ. V and let (J' = mgu(1Ifp, 12 ), Then 
u(r1 U r 2 ); u(6.1 u 6.2) ==:::} u(rl) = U(1dr2]p) is a critical pair for R. Let CP(R) be 
the set of all critical pairs. 

b) A critical pair rj 6. ==:::} u = v is (strongly) joinable if for any ground substitution 
u such that ~R satisfies u(f); u(6.) we have u(u) lR u(v) (resp. u(u) lR,~1 u(v)). 

We first study sufficient conditions for R to be confluent without the assumption that 
R is terminating. For this we use the fact that u(x) E Term(Fo) for all x E V, 
sort(x) E So and all substitutions u. So u(x) is not reducible by any rule rj 6. ~ 1 -+ r 
in R - Ra. This gives rise to sophisticated methods to prove confluence of R (see 
[Wir95]). Here we just mention a very simple result concerning "free constructors". 

Theorem 4.7 Let spec = (sig, R) be a hierarchical specification over speco = (sigo1 0) 
such that So = 'S. If all critical pairs in CP(R) are strongly joinable then R is confluent. 

Proof: We prove that ~ R is strongly confluent, i.e. R f-- 0 ~R S;;; lR,~I' Then 
~R is confluent by a result of Huet [Hue80]. 

We proceede as usual: Assume t -+ t i , i = 1,2, using r i ; 6.i ~ 1; -+ ri, Pi E O(t), (J'i. 
If t/Pl and t/P2 are disjoint subterms of t then clearly we have t 1 lR.~1 t 2 • So assume 
P2 = PIP, i.e. t/P2 is a subterm of tlpl. If p E 0(11), ldp rJ. V, t~en this is covered 
by a critical pair and hence we have t 1 lR,9 t2. Since U2(12) cannot be a subterm of 
Ul(X), x E Var(h), there are no other possibilities than the two mentioned above. 0 

Now we assume that R is terminating. Again, we give only a simple result. It is based 
on the notion that R is decreasing: A partial ordering >- on T erm(F, V) is a reduction 
ordering if (i) it is well-founded (no infinite sequence (ti)iEN exists with ti >- ti+I), (ii) it 
is stable under substitutions (i.e. tl >- t 2 implies u(t1) >- u(t2)) and (iii) it is monotonic 
with respect to the term structure (i.e. t 1 >- t2 implies t[t1]p >- t[t2]p). Let 1> be the 
subterm ordering. If >- is a sort preserving reduction ordering then >-st= (>- U 1»+ 
is well-founded and stable under substitutions. 

Definition 4.8 A hierarchical rewrite system R is decreasing with respect to the re­
cution ordering >- if for each rule rj 6. ~ 1 -+ r we have 
~R S;;; >- and 
u(1) >-st u(s) for all sE {u,v I u = v E rU 6.} U {t I def(t) E r} 

and all substitutions u. 

R is decreasing if it is decreasing with respect to some reduction ordering. 

For example, if >- is a reduction ordering and 
1>- r and I >- st S for all s E {u, v Iu = v E r U 6.} U {t Idef (t) Er} 

holds, then R is decreasing. If R is finite and decreasing then ~R is effectively 
computable. We also have 
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Definition 4.6
a) Let  R be a hierarchical rewrite system. Let T;; A ;  =>  I; — r i ,  © = 1,2 be (variable-

disjoint) rules in I'. Let p € O(lı), l i /p € V and let 0 = mgu(ly/p,l;). Then
o(T1 UT ) ;  0(AL UA)  ==  o(r;)  = o(l[ra]p) is a critical pair for R .  Let CP(R) be
the set of  all critical pairs.

b)  A critical pair  I ' ; A =>  u = v is (strongly) joinable if for any ground substitution
o such that — g satisfies o (T ) ;o (A)  we have o(u)  l r  o(v)  (resp. o(u)  I r ,<1  o(v)) .

We first study sufficient conditions for R to be confluent without the assumption that
R is terminating. For this we use the fact that o(z) € Term(Fo) for all z € V,
sort(z) € Sp and all  substitutions 0 .  So g(z)  is  not reducible by  any rule IA  = 1 — r
in R — Ry. This gives rise to  sophisticated methods to  prove confluence of R (see
[Wir95]). Here we just mention a very simple result concerning “free constructors”.

Theorem 4.7 Let spec = (s tg ,R) be a hierarchical specification over specs = (sigs, 0)
such that So = 'S .  If  all  critical  pairs in  CP(R)  are strongly joinable then R is confluent.

Proof: We prove that —p  is strongly confluent, i.e. p— © —R C | r< i .  Then
—+R is confluent by a result of Huet [Hue80].
We proceede as usual: Assume t — 4; , 7 = 1,2, using I's; A;  = I ;  — ry, p; € O(2), oi.
If t/pı and t/p, are disjoint subterms of t then clearly we have t ;  | r  <1  t2. So assume
p2 = pip, i.e. t/ps is a subterm of t /p; .  I f p € O l ) ,  I ı /p  € V ,  then this is covered
by a critical pair and hence we have t ,  | r  <: ta. Since 03 ( l 3 )  cannot be a subterm of
o1(z), x € Var(l,), there are no other possibilities than the two mentioned above. 0

Now we assume that R is terminating. Again, we give only a simple result. It is based
on the notion that R is decreasing: A partial ordering > on Term(F,V) is a reduction
ordering i f  (i) i t  is well-founded (no infinite sequence (t;);en exists with ¢; > t;41), (ii) i t
is stable under substitutions (i.e. t ;  > tz implies 0 (¢1 )  > o(¢2)) and (iii) i t  is monotonic
with respect to the term structure (i.e. t ;  > tz implies ¢[t1], > ¢[t3],). Let > be the
subterm ordering. If > is a sort preserving reduction ordering then >=  (>  U b>)?
is well-founded and stable under substitutions.

Definition 4.8 A hierarchical rewrite system R is decreasing with respect to the re-
cution ordering > if  for each rule I'; A =>  | — r we have

—r C > and
o(l) = 0(s) for all s € {u,v | [ u=veTUA}U{ t | de f ( t )  eT }

and all substitutions o .

R is decreasing if i t  is decreasing with respect to some reduction ordering.

For example, i f  > is  a reduction ordering and
I > rand !>gs  forall s € {u,  v l u=veTUA}U{ t | de f ( t )  ET}

holds, then R is decreasing. If R is finite and decreasing then —p  is effectively
computable. We also have
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Theorem 4.9 L.et R be a decreasing hierarchical rewrite system. If all critical pairs 
are joinable then R is confluent. 

Proof: The proof is similar to that for positive conditional rewrite systems. One proves 
by Noetherian induction on ~st for all t: If t 1 R ~ t ~R t2 then t 1 !R t 2. 0 

We conclude this chapter by giving some examples. All the examples discussed in 
section 1.1, except Example 1.5 are easily proved to be confluent by using Theorem 
4.9. We consider Example 1:3. There is only one critical pair 

{even(x) = true}; {even( x) = true} ====> true = false 

(This is our formal way of writing even(x) = true; even(x) =1= true ====> true = false.) 
For any substitution u we have u(x) =si(O). One easily proves by induction on i that 
even(s2i(0)) -+R true and even(s2i+l(0)) is irreducible. So there is no 0' such that 
-+R satisfies u(f);u(b.) with r = b. = {even(x) = true}. Hence all critical pairs are 
joinable. Since R is decreasing, R is confluent. 

Let us go into some more detail here. For non-hierarchical decreasing rewrite systems 
the following is known [AL94]: To prove confluence of R, those critical pairs r ====> 
u = v need not be considered where r contains s = t 1 and s = t2 and t 1 i= t2 and 
O'(tt}, U(t2) are irreducible for all ground substitutions u. (This holds, for example, 
it t1 and t2 are irreducible ground terms.) Clearly, this holds for hierarchical rewrite 
systems also. In [Wir95] it is proved that critical pairs r; b. ====> u = v often need not 
be considered if r n b. =1= 0. E.g., the following system is confluent by Theorem 65 of 
[Wir95]. 

We now turn to Example 1.5. Let Fa = {O, s}, F = Fa U {+, search, div}, Ra = 0 and 

R:	 x +0 ---+ x .
 

x +s(y) ---+ s(x + y)
 
y =1= 0 ====> div( x, y) ---+ search(x, y, 0, O}
 
x =1= v ====> search(x,y,u,v) ---+ search(x,y,s(u),v+y)
 
x = v ====> search(x,y,u,v) ---+ u 

Here R is not terminating. One easily proves by induction on the term structure of t: 

It t1 R ~ t -+R t2 then it ~\R 0 R (9 t2 . (Notice that O'(z) == si(O) for any 
ground substitution 0' and any Z E dom(u).) SO -+R is strongly confluent and hence 
confluent. 
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Theorem 4.9 Let R be a decreasing hierarchical rewrite system. If all critical pairs
are joinable then R is confluent.

Proof: The proof is similar t o  that for positive conditional rewrite systems. One proves
by  Noetherian induction on  > ,  for all ¢: If  t ;  p— t —>  gt, then ty I n t .  a

We conclude this chapter by giving some examples. All the examples discussed in
section 1.1, except Example 1.5 are easily proved to be confluent by using Theorem
4.9. We consider Example 1:3. There is only one critical pair

{even(z) = true}; {even(z) = true} = true = false

(This is our formal way of  writing even(z) = true; even(z) # true =>  true = false.)
For any substitution ¢ we have o(z)  = s‘(0). One easily proves by  induction on 7 that
even(s¥(0)) — pg true and even(s*+!(0)) is irreducible. So there is no o such that
— pg satisfies o(I'); 0 (A )  wi th  FT = A = {even(z) = t rue} .  Hence all critical pairs are
joinable. Since R is decreasing, R is confluent.

Let us go into some more detail here. For non-hierarchical decreasing rewrite systems
the following is known [AL94]: To prove confluence of R,  those critical pairs I' =
u = v need not be considered where T contains s = ¢; and s = t ,  and t ;  # t ;  and
a ( t ) ,  o(t2) are irreducible for all ground substitutions o. (This holds, for example,
i t  ¢; and tz are irreducible ground terms.) Clearly, this holds for hierarchical rewrite
systems also. In [Wir95] it is proved that critical pairs I'; A =>  u = v often need not
be considered if NA  # 0. E.g., the following system is confluent by Theorem 65 of
[Wir95].
We now turn to  Example 1.5. Let Fy = {0 ,s } ,  F = FU  {+ ,  search, d iv } ,  Ro = 0 and

R: z+0—z
z + s(y )  — s (z  +)

y#0  =>  div(z,y)— search(z,y,0,0}
r #v  =>  search(z,y,u,v)— search(z,y,s(u),v+y)
z=v  =>  search(z,y,u,v)—u

Here R is not terminating. One easily proves by induction on the term structure of #:
I t t y  pe— t — pty then t ;  S r  be) RE  t2. (Notice that o(z) = s‘(0) for any
ground substitution vv and any z € dom(0).) So — pr is strongly confluent and hence
confluent.
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5 An abstract inductive prover 

5.1 Motivation 

In this chapter we present an abstract framework for a prover based on induction ac­
cording to a Noetherian ordering (the induction ordering). The reason for this abstract 
setting is to single out the basic concepts of inductive provers and to look for condi­
tions that guarantee correctness and refutational competeness of such a prover. The 
abstract prover is based on an abstract (unspecified) inference system. We formulate 
our conditions just mentioned by specifying properties of the inference system and by 
specifying minimal control on how to apply the inference rules. 

There are several degrees of freedom to instantiate the abstract prover. First, it can 
be instantiated for different proof tasks. In this paper we will instantiate it to prove 
inductive theorems, i.e., to prove clauses valid in A spec for a given specification spec. 
Other proof tasks may include to prove that a conditional rewrite system is ground 
confluent or that an operator f E F is totally defined by spec. Second, given a proof 
task, various well-founded orderings may be used as induction ordering. Third, there 
are various ways to design the inference rules and to use the induction hypothesis for 
the induction step. We will not comment on the third point in detail. 

Our proof is an abstraction of Bachmair's method "proof by consistency" [Bac88], so it 
covers this method. Our prover can (in principle) also be instantiated to the cover-set 
method [ZKK88], the test-set method [BR93] and induction based on induction schemes 
[BM79], [Wal94]. But we do not discuss implementation and proof engineering aspects. 

The approach presented here is similar to those in [Bec94] and [WB94]. There one can 
find more technical details and some refinements. 

5.2 The abstract prover 

We now present our abstract prover. We will try to give the intended intuition behind 
the abstract concepts by relating them to the concrete concepts for inductive theorem 
proving. We refer to that by the phrase "in our case". 

We are working on syntactic units G, H, .... In our case that are clauses of the form 
cl> ~ W. We denote by Q and 1i sets of syntactic units. A syntactic unit G may 
describe (in general infinitely) many semantic units (G, 1'). In our case, r is_any ground 
substitution. (G, r) is called a Q-instance if G E Q. Furthermore, we need a predicate 
P defined on the semantic units, the "property to be proved". In our case P(G, r) 
holds iff 1'(G) is valid in Aspeco We write P(G) if P(G, r) holds for all r, and we write 
P(Q) if P(G) holds for all G E Q. 

For disproving P(G) we need a failure predicate Fail. In our case, Fail(G) holds if G 
is "obviously" not valid in A spec . We require that Fail is compatible with P: If Fail(G) 
holds then P(G) does not hold. We write Fail(Q) if Fail(G) for some G E Q. So, if 
Fail(Q) holds then P(Q) does not hold. 
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5 An  abstract inductive prover

5 .1  Motivation

In this chapter we present an abstract framework for a prover based on induction ac-
cording to a Noetherian ordering (the induction ordering). The reason for this abstract
setting is to single out the basic concepts of inductive provers and to look for condi-
t ions that guarantee correctness and refutational competeness of  such a prover. The
abstract prover is based on an abstract (unspecified) inference system. We formulate
our conditions just mentioned by specifying properties of the inference system and by
specifying minimal control on how to apply the inference rules.
There are several degrees of  freedom to instant iate the abstract prover. First, i t  can
be instantiated for different proof tasks. In this paper we will instantiate i t  to prove
inductive theorems, i.e., to prove clauses valid i n  Aspec for a given specification spec.
Other proof tasks may include to prove that a conditional rewrite system is ground
confluent or that an operator f € F is totally defined by spec. Second, given a proof
task, various well-founded orderings may be used as induction ordering. Third, there
are various ways to design the inference rules and to use the induction hypothesis for
the induction step. We will not comment on the third point in  detail.
Our proof is an abstraction of  Bachmair’s method “proof by  consistency” [Bac88], so i t
covers this method. Our prover can ( in  principle) also be instantiated to  the cover-set
method [ZKK88], the test-set method [BR93] and induction based on induction schemes
[BM79], [Wal94]. But we do not discuss implementation and proof engineering aspects.
The approach presented here is similar to those in  [Bec94] and [WB94]. There one can
find more technical details and some refinements.

5.2 The abstract prover

We now present our abstract prover. We will try to give the intended intuition behind
the abstract concepts by  relating them to  the concrete concepts for inductive theorem
proving. We refer t o  that by the phrase “ in  our case”.

We are working on syntactic units G,  H, . . . .  In our case that are clauses of the form
® — VU. We denote by G and H sets of syntactic units. A syntactic unit G may
describe (in general infinitely) many semantic units (G, 7). In  our case, 7 is any ground
substitution. (G, 7) is called a G-instance if  G € G. Furthermore, we need a predicate
P defined on the semantic units, the “property to be proved”. In our case P (G,7)
holds iff 7(G) is valid in  Aspec. We write P(G) i f  P(G, 7) holds for all 7 ,  and we write
P(G) i f  P(G) holds for all G € G.
For disproving P (G)  we  need  a failure predicate Fa i l .  In  our  case, Fa i l (G )  holds i f  G
is “obviously” not valid in  Aspec- We require that Fa i l  is compatible with P :  If  Fa i l (G)
holds then P(G) does not hold. We write Fail(G) i f  Fai l (G) for some G € G. So, i f
Fail(G) holds then P(G) does not hold.
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Our inference system I operates on states of the form (H; g). Here 9 is called the set 
of unprocessed goals and H is the set of processed goals. 

We write 
(H; Q) I-I (H'; Q') 

if (H'; g') can be reached from (H; g) by applying one inference step. To be more 
precise, we assume that I operates on state (H; g) by processing a selected goal G E g. 
If go = 9 u {G} then I processes G by producing a set g' of new goals and shifting G 
into the set of processed goals. (Q' may be empty.) We denote this by 

(H; 90, G) I-I (H, G; 90, 9') 
We write I- instead of I-I if I is known from the context. An I-derivation is a sequence 

n 

(Hi; Qi)i~O such that (Hi; 9i) I- (Hi+I; 9i+d for all i. We then write (Ho; go) I- (Hn, gn). 
* An I-derivation may be finite or infinite. I- is the reflexive-transitive closure of 1-. 

We want I to have the following properties 

* (I) If (0; g) I- (H'; 0) then P(9) holds 

* (11) If (0; 9) I- (H'; 9') and Fail(g') holds then P(9) does not hold. 

* (Ill) If P(9) does not hold then there is a state (H'; 9') such that (0; g) I- (H'; 9') 
and Fail(9') holds. 

Hence, by (I) one can prove P(g) and by (H) one can disprove P(g). We call I induc­
tively correct if (I) holds and refutationally correct if (H) holds. We call I refutationally 
complete if (IH) holds. 

An induction ordering t:i is a quasi-ordering on the semantic units, the strict part >-i 
of which is well-founded. Let t:i be a fixed induction ordering in the following. A 
counter-example is a semantic unit (G, r) such that P(G, r) does not hold. If G E 9 
then (G, r) is a 9-counter-example. The following notion of an inductive state is crucial 
for our generic inductive prover. 

Definition 5.1 Let (H; 9) be a state.
 
a) P(Ho) holds below (G,r) if P(H,1r) holds for all Ho-instances (H,1r) such that
 
(G,r) >-i (H,1r).
 
b) (H; 9) is inductive if the following holds for each 9 -instance (G, r): If P(H) holds
 
below (G, r) then P(G, r) holds.
 
c) The 9-instance (G, r) is an inductive counter-example for (H; 9) if P(H U 9) holds
 
below (G, r) and P(G, r) does not hold.
 

The intention behind this definition is as follows. Since t:i is well-founded, any set of 
semantic units contains t::i-minimal elements. The 9-instance (G, r) is an inductive 
counter-example for (H; 9) iff it is t::i-minimal in the set of all H U 9-counter exam­
ples. The state (H; 9) is inductive iff there is no 9-counter example (G, r) which is 
ti-minimal in the set of al1H U Q-counter examples. Obviously P(Q) holds iff (0; 9) is 
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Our inference system Z operates on states of the form (H;G).  Here G is called the set
of unprocessed goals and H is the set of processed goals.
We write

(H;9) Fr (H'; 6")
i f  (H';G’) can be reached from (H;G) by applying one inference step. To be more
precise, we assume that Z operates on  state (H;  G) by  processing a selected goal G € G.
I f  Go = GU  {G}  then T processes G by  producing a set G’ of new goals and shifting G
into the set of processed goals. (G’ may be empty.) We denote this by

(H; Go, G) br (H,G;Go,G")
We write | instead of -7  i f  Z is known from the context. An  Z-derivation is a sequence
(Hi ;  Gi)i>o such that (Hi ;  Gi) F (Hiya;  Giga) for all  i .  We then write (Ho;  Go) F (Ha, Gn)

An  Z-derivation may be finite or infinite. I is the reflexive-transitive closure of - .
We want Z to have the following properties

( I )  If (0;9) F (H';  0) then P(G) holds

(II) If ( 0 ;G) FE (H';G’) and Fail(g’) holds then P(G) does not hold.

(III) If P(G) does not hold then there is a state (H’ ;G') such that (0;G) F (H';  6")
and Fail(G') holds.

Hence, by (I) one can prove P(G) and by (I I)  one can disprove P(G). We call Z induc-
tively correct if  ( I)  holds and refutationally correct if  (IT) holds. We call ZT refutationally
complete if ( I I I )  holds.
An induction ordering > ;  is a quasi-ordering on the semantic units, the strict part > ;
of which is well-founded. Let > ;  be a fixed induction ordering in  the following. A
counter-ezample is a semantic unit (G,7) such that P(G,7) does not hold. If G EG
then (G ,  7) is  a G-counter-example. The following notion of  an  inductive s tate  i s  crucial
for our generic inductive prover.

Definition 5.1 Let (H;G) be a state.
a) P(Ho) holds below (G,7) if P(H,x) holds for all Ho-instances (H ,nr) such that
(G ,  7) > i  (H,  7).
b) (H;G) is inductive if the following holds for each G-instance (G, 7):  If  P(H)  holds
below (G, 7) then P(G, 7) holds.
c) The G-instance (G, 7) is an inductive counter-example for (H;G) J P(HUG) holds
below (G, 7) and P(G, 1) does not hold.

The intention behind this definition is as follows. Since > ;  i s  well-founded, any set of
semantic units contains »>;-minimal elements. The G-instance (G, 7) is an inductive
counter-example for (H;G) iff i t  is >;-minimal in  the set of all H U G-counter exam-
ples. The state (H;G) is inductive iff there is no G-counter example(G, 7) which is
>;-minimal in the set of all H UG-counter examples. Obviously P(G) holds iff (0; G) is
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inductive. We want to prove that (0, g) is inductive by computing a state transforma­
tion (0; g) = (Ho; go) I- (HI; 91) I- ... I- (Hn;9n) until 9n = 0. Obviously (Hn;0) is 
inductive. So, if we assure that (Hi; 9i) is inductive whenever (Hi+I; 9i+I) is inductive, 
then (0; 9) is inductive and P(9) is proved. We make these considerations precise. 

Definition 5.2 I is inductively sound (with respect to P and 'ci) if (H; g) is inductive 
whenever (H; 9) I- (H'; g') and (H'; 9') is inductive. . 

n 

Theorem 5.3 Let I be inductively sound and let (Hi 9) I- (H'; 0). Then (H; 9) lS 

inductive. If H = 0 then P(9) holds. Hence I is inductively correct. 0 

We now come to property (11). 

Definition 5.4 I is refutationally sound (with respect to P) if P(H' u g') holds when­
ever (H; g) I- (H'; 9') and P(H U g) holds. 

Intuitively speaking, I is refutationally sound if no counter-example is introduced by 
performing an inference step. The next theorem is easily proved by induction on n. 

n 
Theorem 5.5 Let I be refutationally sound and (0, g) I- (H'i g'). If Fail(Q') holds 
then P(9) does not hold. 0 

It remains to give a sufficient condition for property (Ill) to hold. We need two condi­
tions: (1) I decreases any inductive counter-example until is becomes "obvious". (2) I 
is powerful enough according to Fail: If Fail(9) does not hold then an inference step 
is applicable to (H; 9). We make this precise. 

Definition 5.6 I decreases (strictly decreases) inductive counter-examples (with re­
spect to P and 'c.i) if the following holds: If (H; 9) I- (H'; g') and (G, T) is an inductive 
counter-example for (H;9), then either (G,T) is also an inductive counter-example 
for (H'; 9') or there is an inductive 9'-counter-example (G', T') for (H'; 9') such that 
(G,T) 'c.i (G',T') (resp. (G,T) ~i (G',T')). 

Corollary 5.7 If I decreases inductive counter-examples then I is inductively sound. 
o 

Definition 5.8 I is Fail-complete if for any state (H; g) such that 9 =1= 0 and Fail(g) 
does not hold there is a state (H'; g') such that (Hi 9) I- (H'; 9'). 

We will prove that I is refutationally complete if it is Fail-complete and it strictly 
decreases inductive counter-examples. For that we consider fair I-derivations. 
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inductive. We want to  prove that (8,G) is inductive by  computing a state transforma-
tion (0;G) = (Ho;G0) F (M1361) F +++  F (Hn; Gn) until G, = 0. ‘Obviously (Ha;0) is
inductive. So, if we assure that (H; ;  G;) is inductive whenever (H;41; Gi41) is inductive,
then (0; G) i s  inductive and P(G) i s  proved. We  make these considerations precise.

Definition 5.2 I is inductively sound (with respect to P and >;)  if  (H ;  G) is inductive
whenever (H;G) + (H';G') and  (H';G') is induct ive.

Theorem 5.3 Let I be inductively sound and let (H;G) F (H';8). Then (H;G) is
inductive. If H = 0 then P(G) holds. Hence T is inductively correct. 0

We now come to property (II).

Definition 5.4 T is refutationally sound (with respect to P )  if  P(H'  UG’) holds when-
ever (H;G) F (H';G') and P(H  UG) holds.

Intuitively speaking, Z is refutationally sound if  no counter-example is introduced by
performing an inference step. The next theorem is easily proved by induction on n .

Theorem 5.5 Let I be refutationally sound and (0,5) F (H';G"). If  Fail(G") holds
‘then P(G) does not hold. 0

It remains to give a sufficient condition for property ( I I I )  to  hold. We need two condi-
tions: (1) Z decreases any inductive counter-example until is becomes “obvious”. (2) Z
is powerful enough according to Fa i l :  If Fai l (G)  does not hold then an inference step
is applicable to (H;G). We make this precise.

Definition 5.6 I decreases (strictly decreases) inductive counter-examples (with re-
spect to P and >;) if the following holds: I f  (H;G) F (H';G') and (G, 7) is an inductive
counter-example for (H;G) ,  then either (G,T) is also an inductive counter-example
for (H';G’) or there is an inductive G'-counter-example (G',7’) for (H';G’) such that
(G,7) = i  (G', 7") (resp. (G,T) > ;  (G',T')).

Corollary 5.7 If  I decreases inductive counter-ezamples then T is inductively sound.
a

Definition 5.8 I is Fail-complete if for any state (H;  G) such that G # 0 and Fa i l (G)
does not hold there is a state (H';G') such that (H;G) + (H';  G").

We will prove that Z is refutationally complete i f  i t  is Fail-complete and i t  strictly
decreases inductive counter-examples. For that we consider fair Z-derivations.
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Definition 5.9 An I-derivation (Hi; 9i)iEN is fair if (1) or (2) holds: 
(1) The derivation is finite and ends in (Hn;9n) such that Fail(9n) or 9n = 0 holds. 
(2) The derivation is infinite and the set of persistent goals Ui?:O nj?:i 9j is empty. 

Obviously, if I is Fail-complete then any finite derivation can be extended to a fair 
derivation. 

Theorem 5.10 Assume that I strictly decreases inductive counter-examples. For any 
fair I-derivation (0; (0) I- (HI; 9d I- ... such that P(90) does not hold there is an n E N 
such that Fail(9n) holds. 

Proof: There is an inductive counter-example (Go, To) for (Ho; (0) since P(90) does 
not hold. Since I decreases inductive counter:examples, there is a sequence (Gj; Tj)jEN 
such that (Gj , Tj) ~i (Gj+ll Tj+d and (Gj+l' Tj+d is an inductive counter-example for 
('Hj+l; 9j+l)' Since I strictly decreases counter-examples and the derivation is fair, 
there is a subsequence (Gj/:;Tj/:hEN such that (Gj/:;Tj/:) >-i (Gjk+llTj/:+l)' Since >-i is 
well-founded, this subsequence is finite. Let (Gn , Tn ) bei >-i-minimal in the sequence of 
counter-examples. Assume Fail((h) holds for no i ~ n. Then Gn has to be processed, 
since I is.Fail-complete and the derivation is f~ir. Processing Gn produces a smaller 
counter-example than (Gn, Tn). But this is impossible since (Gn, Tn) is minimal. Hence 
the I-derivation is finite. It ends in a state (Hn;9n) such that Fail(9n) holds since it 
is fair. 0 

We now have by Theorem 5.10 

Corollary 5.11 An inference system that strictly decreases inductive counter-examples 
and is Fail-complete is refutationally complete. 0 

We now assume that the inference steps of I can be described by inference rules I. 
Then we are interested in conditions on these inference rules to guarantee properties 
(I) to (Ill) for I. 

As mentioned above, we assume that an inference rule I, when applied to a goal G E 9 
in state (H; 9), produces a set (}' of new goals and shifts G from the unprocessed 
goals to the set of processed goals. There may be several sets 9' possible. We denote 
by I('H; 9, G) the system of these sets 9'. To ease notation we write 9, G instead of 
9 U {G} and 9,9' instead of 9 U 9'. Using these notations we describe the inference 
steps based on I by 

I: -----7-:(H:-:-,-;-=9:........,'
G~)~ 
(H, G; 9,9') 

So (HI; (1) I-I (H2 ; (2) iff for some inference rule I we have 91 9 U {G}, 9' E 

I(H;9,G), 'H2 = HI U {G} and 91 = 9 U 9'. 
We now come to the conditions on the inference rules I. 
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Definition 5.9 An  I-derivation (H;;G:)ien is fair if (1) o r  (2) holds:
(1) The derivation is finite and ends in (Ha; Gn) such that Fail(G,) o r  G, = 0 holds.
(2) The derivation is infinite and the set of  persistent goals U;>o N;»: G; is empty.

Obviously, i f Z is Fail-complete then any finite derivation can be extended to a fair
derivation.

Theorem 5.10 Assume thatT strictly decreases inductive counter-ezamples. For any
fair Z-derivation (8; Go) + (H1;G1) FE ... such that P(Go) does not hold there is ann  € N
such that Fai l (G,)  holds.

Proof: There is an inductive counter-example (Go,70) for (Ho; Go) since P(Go) does
not hold. Since Z decreases inductive counter-examples, there is a sequence (Gj;  T;);en
such that (Gj, 7;) >=: (Gj41,7j41) and (Gj41, 741) is  an  inductive counter-example for
(H;41;Gj+1). Since T strictly decreases counter-examples and the derivation is fair,
there is a subsequence (G j ,; 7,  JkeN such that (Gj; Ti.) > i  (Giyrs T ings ) .  Since >=; is
well-founded, this subsequence is finite. Let (Gy, 7 )  bei >;-minimal in  the sequence of
counter-examples. Assume Fail(G;) holds for no ¢ > n. Then G,  has to be processed,
since I is.Fail-complete and the derivation is fair. Processing G,, produces a smaller
counter-example than (G,,  7,). But this is impossible since (Gy, 7.) is minimal. Hence
the Z-derivation is finite. I t  ends in  a state (H, ;  Gy.) such that Fa: l (G,)  holds since i t
is fair. 9

We now have by Theorem 5.10

Corollary 5 .11 An  inference system that strictly decreases inductive counter-ezamples
and is Fatl-complete is refutationally complete. Oo

We now assume that the inference steps of Z can be described by inference rules Z.
Then we are interested i n  conditions on these inference rules to  guarantee properties
(I) to ( I I I )  for Z.
As mentioned above, we assume that an inference rule I ,  when applied to  a goal G € G
in state (H;G), produces a set G' of new goals and shifts G from the unprocessed
goals to the set of processed goals. There may be several sets G’ possible. We denote
by I (H;G,Q) the system of these sets G’. To ease notation we write G,G instead of
G U {G}  and G,G  instead of G UG’. Using these notations we describe the inference
steps based on I by

(H;6,G)=mcea
So (H ı ;$ ı )  Fr  (Ha; G2) iff for some inference rule I we haveGi  = GU  {G} ,  G’' €
I (H;G,G),  He  =H U {G}  and Gi  =GUG'.
We now come to the conditions on the inference rules I .
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Definition 5.12 a) I decreases (strictly decreases) inductive counter-examples if the
 
following holds for every state (H;9,G): If 9' E I(H;9,G) and (G,T) is an induc­

tive counter-example for (H; G) then there is a 9'-counter-example (G', T') such that
 
(G,T) ~i (G',T') (resp. (G,T) >-i (G',T')).
 
b) I is refutationally sound if the following holds for every state (H; 9, G): If 9' E
 

I(H;9, G) and P(H, 9, G) holds then P(9') holds.
 

Lemma 5.13 a) If each inference rule I in I is refutationally sound then I is refuta­

tionally sound.
 
b) If each inference rule I in I decreases (strictly decreases) inductive counter examples
 
then I decreases (strictly decreases) inductive counter-examples.
 

Proof: Assume (H; 9, G) r (H, G; 9, 9') because of 9' E I(H; 9, G).
 
a) Assume that I is refutationally sound and P(H, 9, G) holds. We have to show that
 
P(H, G, 9, Q') holds. By the assumption P(H, G, 9) holds. Since I is refutationally
 
sound P(Q') holds also. So P(H,G,9,9') holds.
 
b) Assume that I decreases inductive counter-examples and (Go, TO) is an inductive
 
counter-example for (H; 9, G). We have to show that there is an inductive counter­

example (GI,TI) for (H,G;9,9') such that (Go,To) ~i (Gl,TI)'
 
bl) Assume Go = G. There is a 9'-counter example (G', T') such that (Go, To) ~i
 

(G', T') since I decreases counter-examples. P(H, 9, G) holds below (G', T') since
 
(Go, TO) is an inductive counter-example for (H; 9, G'). If P(9') also holds below (G', T')
 
then (G', T') is an inductive counter-example for (H, G; 9,9'). Otherwise, let (G1, T1)
 
be a >-i-minimal 9'-counter-example such that (G',T') >-i (Gl,TI)' Then (G1,Td is an
 
inductive counter-example for (H, Gj 9, 9') with (Go, TO) ~i (Gl, T1)'
 
b2) Assume Go E 9. As before P(H,Q,G) holds below (Go, TO). If also P(Q') holds
 
below (Go, TO) then (Go, TO) is an inductive counter-example for (H, G; 9,9'). Other­

wise, let (Gl, Td be a minimal 9'-counter-example such that (Go, TO) >-i (GI , T1)' Then
 
(Gl, Td is an inductive counter-example for (H, G; 9,9').
 
The case that I strictly decreases inductive counter-examples is similar.
 

Now we restate our previous results in terms of inference rules instead in terms of
 
inference systems. They will be applied later in this form.
 

Theorem 5.14 a) Let all inference rules in I decrease inductive counter-examples. 
* Then I is inductively correct: If (0; Q) r (H'; 0) then P(Q) holds.
 

b) Let all inference rules in I be refutationally sound. Then I is refutationally correct:
 
* If (0; 9) I- (H'; 9') and Fail(9') holds then P(9) does not hold.
 

c) Let all inference rules uf I (i) strictly decrease inductive counter-examples and (ii)
 
be refutationally sound. Let I be Fail-complete. Then I is refutationally complete.
 

Proof: a) This follows from Theorem 5.3, Corollary 5.7 and Lemma 5.13.
 
b) This follows from Theorem 5.5 .und Lemma 5.13.
 
c) This follows from Corollary 5.11 and Lemma 5.13. o
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Definition 5.12 a) I decreases (strictly decreases) inductive counter-examples if the
following holds for every state (H;G,G): If G' € I (H;G,G) and (G,T) is an induc-
tive counter-example for (H;G) then there is a G'-counter-ezample (G',7') such that
(G,7) = i  (G', 7") (resp. (G,T) =: (G',7')).
b) I is refutationally sound if the following holds for every state (H ;G,G) :  If G' €
I(H;G,G) and P(H,G,Q) holds then P(G') holds.

Lemma 5.13 a) If each inference rule I in  T is refutationally sound then T is refuta-
tionally sound.
b) If  each inference rule I i n I decreases (strictly decreases) inductive counter examples
then I decreases (strictly decreases) inductive counter-ezamples.

Proof: Assume (H;G,G) F (H,G;G,G') because of G’' € I (H;G,  G).
a) Assume that I is refutationally sound and P(H ,G ,G)  holds. We  have to  show that
P(H,G,G,G’) holds. By the assumption P(H,G,G) holds. Since I is refutationally
sound P(G’) holds also. So P(H,G,G,G’) holds.
b) Assume that I decreases inductive counter-examples and (Go,70) is an inductive
counter-example for (H;G,G). We have to show that there is an inductive counter-
example (G1 ,71) for (H,G;G,G’)  such that (Go,70) > :  (G1, 71 ) .

b l )  Assume Go = G. There is a G'-counter example (G',7') such that (Go, 70) >=:
(G',7') since I decreases counter-examples. P(H,G,G) holds below (G’,7’) since
(Go,  70) i s  an  inductive counter-example for (H ;  G,  G ' ) .  If P(G’ )  also holds below (G ' ,  7 ’ )
then (G’,7’) is an inductive counter-example for (H,G;G,G’). Otherwise, let (G1 ,7)
be a >;-minimal G’-counter-example such that (G’,  7’) > ;  (Gi,  71 ) .  Then (Gi ,  71 )  is an
inductive counter-example for (H,G;G,G')  with (Go, To) >=: (G1, 71 ) .

b2) Assume Gp € G. As before P(H,G,G) holds below (Go, To). If also P(G’) holds
below (Go,  70) then (Go, 70) i s  an  inductive counter-example for (H ,G;G,G ’ ' ) .  Other-
wise, let (G1, 71) be  a minimal G’-counter-example such that (Go,  70) > ;  (G1,  71). Then
(G1, 7 )  is an inductive counter-example for (H,  G;G,G’).
The case that Z strictly decreases inductive counter-examples is similar. Oo

Now we restate our previous results in  terms of inference rules instead in  terms of
inference systems. They will be applied later in  this form.

Theorem 5.14 a) Let all inference rules in  I decrease inductive counter-ezamples.
Then T is inductively correct: If  (0;G) F (H';0) then P(G) holds.
b) Let all inference rules in I be refutationally sound. Then I is refutationally correct:
If  (0;G) FE (H';G’) and Fail(G') holds then P(G) does not hold.
c) Let all inference rules uf  I (i) strictly decrease inductive counter-examples and (ii)
be refutationally sound. LetIT be Fail-complete. Then T is refutationally complete.

Proof: a) This follows from Theorem 5.3, Corollary 5.7 and Lemma 5.13.
b) This follows from Theorem 5.5 und Lemma 5.13. ’
c) This follows from Corollary 5.11 and Lemma 5.13. m}
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Sometimes one has to verify that 9' E leG) = I(H; 9, G), Le., that the inference 
step is (H; 9, G) I:- (H, G; 9,9') is semantically valid. The verification then consists in 
proving that "9 holds in context H". This is made precise by saying that state (H; 9) 
is inductive. Then we have the "conditional inference rule": 9' E l(G) i£'(H; 9) is 
inductive. The verification of (H; 9) being inductive can be done by recursively calling 
the inductive prover based on the inference system I and using Theorem 5.3. We will 
need this in section 6.2. 
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Sometimes one has to verify that § ’  € I (G) = I(H;G,G), i.e., that the inference
step is (H ;G ,G)  + (H,G;G,G’)  is semantically valid. The verification then consists i n
proving that “G holds in context MH”. This is made precise by saying that state (H;G)
i s  inductive. Then we  have the “conditional inference rule”:  G '  € I (G )  i f  (H ;G)  i s
inductive. The verification of (H;  G) being inductive can be done by  recursively calling
the inductive prover based on the inference system Z and using Theorem 5.3. We will
need this in section 6.2.
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6 An inference system for inductive proofs 

6.1 The general setting 

In this chapter we instantiate the abstract prover described in chapter 5 for the following 
problem: 

Input: a) spec = (sig, R), an admissible hierarchical specification 
over speCo = (sigo, Ra) 

b) G: <[> ==> W, a clause 
Question: Is G valid i!1 Aspec ? 

We instantiate the abstract framework by saying what a syntactic and a semantic 
unit is, by defining the predicates P and Fail, by specifying the inference rules and 
by defining the induction ordering ~i' In order to verify that the inference system 
I has properties (I), (ll) and (Ill) respectively, we have to verify the corresponding 
assumptions, e.g. "P and Fail are compatible", "I is inductively correct", "I is 
refutationally correct", and "I decreases counter-examples". 

The inference system I will be described by only five inference rules. These inference 
rules are rather powerful. We will not specify a heuristic how to apply them. So we 
are not interested to propose a special proveI' for the problem stated above. Instead, 
we will prove that all crucial properties for I to be correct and refutationally complete 
are satisfied. So any concrete proveI' based on I is correct and refutationally complete. 

Our inference system is based on results in [Bec94] and [WB94]. In [Bec94] one can find 
instantiations of the abstract proveI' for other proof tasks also, e.g. for proving that R is 
ground confluent. We mention that many different sets of inference rules are possible. 
Current work is directed to the design of such inference rules that can be directly 
implemented into a concrete proveI'. Note that there are no syntactic restrictions on 
R defining spec, except that spec is admissible. In particular, we do not assume that 
R contains left-linear rules only or that R follows some rules of constructor discipline. 
Simultaneous recursion in defining the operators f E F is allowed. R may be non­
terminating. Furthermore, R may contain postivejnegative conditional rules. So our 
setting is more general than that of any other inductive theorem proveI' we know of. 

6.2 An instantiation of the abstract prover 

We now fix the basic ingredients of the abstract proveI'. A syntactic unit Gm = (G I 
m) consists of a clause G =<[> ==> Wand a measure term m = f3(tI, ... , tn) with 
Var(m) ~ Var(G). Here f3 fj. F is a new (variadic) operator and the ti E Term(F, V) 
are sig-terms. A semantic unit (Gm, r) consists of a syntactic unit Gm and a ground 
substitution r with dom(r) = Var(Gm). The predicate P is defined by 

p(Gm,r) iff A spec F r(G) 
So P(Gm, r) holds iff r(G) is valid in A spec ' We just say r(G) is valid in this case. And 
p(Gm) holds iff G E ITh(spec). We will define the failure predicate Fail later. 
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6 An  inference system for inductive proofs

6.1 The general setting

In  this chapter we instantiate the abstract prover described in  chapter 5 for the following
problem:
Input: a) spec = (sig,  R ) ,  an admissible hierarchical specification

over speco = ( igo,  Ro)
b) G :®  = Y, a clause

Question: Is G valid in Aspec ?

We instantiate the abstract framework by saying what a syntactic and a semantic
unit is, by defining the predicates P and Fai l ,  by specifying the inference rules and
by defining the induction ordering > ; .  In order to  verify that the inference system
TI has properties (I), ( I I)  and (II I)  respectively, we have to verify the corresponding
assumptions, e.g. “P  and Fai l  are compatible”, “ZT is inductively correct”, “TI is
refutationally correct”, and “Z  decreases counter-examples”.

The inference system Z will be described by only five inference rules. These inference
rules are rather powerful. We will not specify a heuristic how to apply them. So we
are not interested to  propose a special prover for the problem stated above. Instead,
we will prove that all  crucial properties for Z to  be correct and refutationally complete
are satisfied. So any concrete prover based on Z is correct and refutationally complete.

Our inference system is based on results in  [Bec94] and [WB94]. In [Bec94] one can find
instantiations of  the abstract prover for other proof tasks also, e.g. for proving that R is
ground confluent. We mention that many different sets of inference rules are possible.
Current work is directed to the design of such inference rules that can be directly
implemented into a concrete prover. Note that there are no syntactic restrictions on
R defining spec, except that spec is admissible. In particular, we do not assume that
R contains left-linear rules only or that R follows some rules of constructor discipline.
Simultaneous recursion in  defining the operators f € F is allowed. R may be non-
terminating. Furthermore, R may contain postive/negative conditional rules. So our
setting is more general than that of any other inductive theorem prover we know of.

6.2 An  instantiation of  the abstract prover

We now fix the basic ingredients of the abstract prover. A syntactic unit G™ = (G |
m) consists of a clause G = ® = ¥ and a measure term m = B ( t y , . . . , t , )  w i th
Var(m) © Var(G). Here 6 g F is a new (variadic) operator and the t ;  € Term (F ,V )
are sig-terms. A semantic unit (G™,7) consists of a syntactic unit G™ and a ground
substitution 7 with dom(7) = Var(G™). The predicate P is defined by

P(G™, 7) iff Aspec = 7(G)
So P(G™, 7) holds iff 7(G) is valid in  Ape .  We just say 7(G) is valid i n  this case. And
P(G™) holds iff G € ITh(spec). We will define the failure predicate Fa i l  later.
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Next we comment on the induction ordering ~i on the semantic units (Gm,T). It is 
defined by a well-founded quasi-ordering ~i ordering on the measure ground terms 

(G~l,Tl) ~i (G~2,T2) iff Tl(ml) ~i T2(m2) 
We will assume that ~i is compatible with R in the sence that Tl (m) ~i T2( m) for all 
ground substitutions Tb T2 such that Tl(X) =R T2(X) for all x E Var(m). So, if Tl 
and T2 are R-equal then Tl(m) and T2(m) are of the same size. We will comment on 
this restriction later. Here we just mention that this restriction is not as severe as it 
may seem: In many applications the measure term m =(3(tt, .. . , tn) will contain base 
terms ti only. Then, if Ro = 0 (i.e., the constructors are free) we have Tl(X) =T2(X) 
whenever Tl and T2 are R-equal. In this case the restriction is empty. 

We extend the ordering ~i to measure terms with variables by ml ~i m2 iff T(ml) ~i 

T(m2) for each ground substitution T. Then G'{"l ~i G~2 iff ml ~i m2. 

There is some freedom for constructing those induction orderings ~i. For example, let 
~o be a well-founded quasi-ordering on Term(F) such that t1 =R t2 implies t1 ~o t2· 
Let ~o be (strict part of the) the multiset ordering based on ~o. Then we may 
define (3(tr, ... ,tn) >-i (3(t~, ... ,t~) iff {tl, ... ,td ~o {t~, ... ,t~}. Or, let >-O,lex be the 
lexicographic ordering based on >-0. Then we may define (3(tI, ... , in) >-i (3(i~, ... , t~) 
iff (it, . .. , tn) >-O,lex (t~, . .. , t~). We do not go into details here how to choose ~o. In 
the special case that the condition Tl(X) =R T2(X) for all x (mentioned above) reduces 
to Tl(X) =T2(X), one may use any reduction ordering for ~o. 

The inference system I has three parameters: spec = (sig, R), the induction ordering 
~i and a set .c of lemmas. We assume R ~ .c ~ ITh(spec). An inference rule I is 
specified by the set 1(11.; 9, Gm) of actions it can perform for processing Gm in state 
(11.; 9, Gm). We define 

(11.; 9, Gm) f-[ (H,Gm;9,Q') iff 9' E 1(11.; 9, Gm) 
Then f-I is the union of all f- [ such that I is an inference rule of I. As before, we write 
f- instead of f- I . SO, an inference step in state (11.; 91) is possible iff 91 = Q, Gm and 
1(11.; 9, Gm) =10 for some inference rule I. 

Informally, the inference rule 10 covers the trivial cases to process Gm. Rules 11 an,d 
12 perform a case splitting on G, rule 13 performs a simplification on Gm (using a 
clause Hm' E .c u 11. u 9) and 14 performs a subsumption of Gm (using a clause 
HmI E .c u 11. u 9). For rules 13 and 14 either "safe knowledge"· Hm' E .c or "inductive 
knowledge" HmI E 11. U 9 will be used. In the latter case HmI has to be smaller than 
Gm according to the induction ordering ~i. This will be made precise below. 

We first indicate how a proof (or disproof) of {Gb' .. , Gm} ~ IT h(spec) is performed: 
We start in state (11.0;90) = (0;{G;n, ... ,Gm}) with m = (3(Xl, ... ,Xh), Xj E Vat(Qo). 

*	 * 
If (Ho; 90) f- (11.'; 0) holds then 90 ~ ITh(spec) is proved. If (11.0,90) f- (11.'; 9') and 
Fail(9') holds then 90 ~ ITh(spec) is disproved. 

We now define the inference rules 10 to 14 , We demonstrate how they work using the 
current rewrite system 

R*:	 ====? x - 0 -+ x (PI)
 
====? s(x) - s(y) -+ x ,- y (P2)
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Next we comment on the induction ordering > ;  on the semantic units (G™, 7). I t  is
defined by a well-founded quasi-ordering >* ordering on the measure ground terms

(GT, r i )  =: (G32,72) iff mama) =F ma(ma)
We will assume that >*  is compatible with R in the sence that r1(m) > ‘  m(m) for all
ground substitutions 7 ,  72 such that m(z) =g  m(z) for all z € Var(m). So, i f  ny
and 7,  are R-equal then 7(m) and 73(m) are of the same size. We will comment on
this restriction later. Here we just mention that this restriction is not as severe as i t
may seem: In many applications the measure term m = f ( t4 , . . . ,%, )  will contain base
terms ¢; only. Then, i f  Ro = @ (i.e., the constructors are free) we have 71(z) = 72(z)
whenever 7,  and 7;  are R-equal. In  this case the restriction is empty.

We extend the ordering = to  measure terms with variables by  m ı  > !  my iff 7 (m;)  =
7(mg2) for each ground substitution 7 .  Then GT" > ;  G5? iff m;  >* m,.
There is some freedom for constructing those induction orderings > ‘ .  For example, let
>o  be a well-founded quasi-ordering on Term(F)  such that ¢; =pg t2 implies t ;  0 2 .
Let >>¢ be (strict part of the) the multiset ordering based on > , .  Then we may
define B ( t 1 , . . . ,ta) > B(t),...,t0) iff {t1,...,t1} Do { t i , . . . , t5} .  Or, let oe,  be the
lexicographic ordering based on >o. Then we may define B(t1, . . . , t , )  > Bt... 15)
iff ( t1 , . . . , tn )  >oyez ( t ) , - . . , t , ) .  We do not go into details here how to choose >o. In
the special case that the condition 71(z) =g  72(z) for all z (mentioned above) reduces
to 11(z) = 72(x), one may use any reduction ordering for > .
The inference system Z has three parameters: spec = (sig, R),  the induction ordering
> ;  and a set £ of lemmas. We assume R C £ C ITh(spec). An inference rule I is
specified by the set I (H;G,G™) of actions i t  can perform for processing G™ in  state
(H;G,G™). We define

( " ;  6 ,  G™)  F r  (H ,  G™; G ,  Gg’) iff € I (H ;G ,G™)
Then F7 is the union of  all I ;  such that I is an inference rule of  Z. As before, we write
FH instead of Fz. So, an inference step in state (H;Gı) is possible iff G;, = G,G™ and
I(H;G,G™) # 0 for some inference rule I .
Informally, the inference rule Io covers the trivial cases to  process G™. Rules I; and
I, perform a case splitting on G, rule I; performs a simplification on G™ (using a
clause H™ € LU  HUG)  and I, performs a subsumption of G™ (using a clause
H™ e LUHU G). For rules I3  and I, either “safe knowledge” H m‘  € £ or “inductive
knowledge” HT € H UG  will be used. In the latter case H™  has to be smaller than
G™ according to  the induction ordering > ; .  This will be made precise below.

We first indicate how a proof (or disproof) of {G1,.. . ,  Gm} © ITh(spec) is performed:
We start in  state (Ho; Go) = (0; {GT,...,G™}) with m = B(z4,..., 24),  z; € Var(Go).
If (Ho; Go) FE (H';0) holds then Go © ITh(spec) is proved. If (Ho,Go) FE (H';G’) and
Fazl(G') holds then Go © ITh(spec) is disproved.
We now define the inference rules I to  Is. We demonstrate how they work using the
current rewrite system

BR: = z -0—1 (p1)
= s(z)—s(y) 27  - y  (p2)
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Note that here the constructors are free, i.e. Ro = 0. We use the induction ordering 
~i which is defined by the multiset ordering based on the subterm ordering 1>. 

An atom is trivial if it is of the form u = u or def(t) with t E Term(Fo,VQ). 

Rule 10 : Trivial actions 
If G =4.> ===} A, q; and A is trivial then 0 E Io(1i; 9, Gm). If G =4.>, A ===} Il! and A 
is trivial then {G'm} E Io(1i;9, Gm) with G' = 4.> ===} Il!. If G _ 4.>, A ===} A, Il! then 
oE Io(1i;9,Gm). If G =4.> ===} A,A, Il! then {G'm} E Io(1i;9,Gm) with G' =4.> ===} 

A, \If. If G =4.>,A,A ===} \If then {G'm} E Io(1i;9,Gm) with G' =<I>,A ===} \If. 

The rule 10 is easy to understand: If G = <I> ===} \If and Il! contains a trivial atom then 
the goal Gm is solved. If 4.> contains a trivial atom A, then G can be simplified to G' 
by deleting A. If an atom A appears both, in the antecedens and in the succedens of 
G, then the goal Gm is solved. Note that Gm and G'm have the same measure term m, 
so Gm is only weakly decreased to G'm in the induction ordering ~i. We write Io(Cm) 
instead of Io(1i; 9, Gm) since 10 only depends on Gm, not on 1i and 9. 

We now come to rule 11 , It is used to perform a case splitting of G _ 4.> ===} Il! 
according to the succedens Il! of C. This is done by computing a covering for Il! as in 
the next definition. 

Definition 6.1 Let \If be a set of atoms. A covering Cov(\If) for \If is a set of substi­
tutions 0" such that for each ground substitution r with dom( r) = Var( Il!) there is a 
0" E Cov(\If) and a r' such that r(x) =R r'(O"(x)) for all x E Var(Il!). 

Note that many coverings for Il! may exist. For example, Cov(ll!) = {O"f If E F} is a 
covering for any Il!. Here 0"f = {x t- f (Xl, ••• , xn )}. It is in general a non-trivial task 
to compute a suitable covering, i.e. one that leads to a successful proof. We comment 
on that in section 7.1. 

Rule 11 : Covering the succedens 
Let Gm = (4.> ===} Il! I m) and let Cov(\If) be a covering for Il!. Let 9' consist of all 
(O"(G) IO"(m)) such that 0" E Cov(Il!). Then 9' E 11 (1i;9,Gm). 

Note that 11 (1i;9,Gm) is independent of 1i and 9, so we simply write 11(cm). Note 
also that 11 ( cm) consists of many 9', each such 9' is determined by the covering 
Cov(Il!). 

We illustrate rule 11 using the current rewrite system R* and the goal cm = (===} 

X - X = 0 I j3(x )). Let \If = {x - X = O} and let Cov(\If) consist of 0"1 = {x t- O} and 
0"2 = {X t- s(x)}. Then Cov(ll!) is a covering for Il! and 9' consists of (===} 0 - 0 = 0 I 
13(0)) and (===} s(x) - s(x) = 0 I ,8(s(x))). 

We now come to rule h. It is used to perform a case splitting on an atom A in the 
antecedens of a clause G = 4.>, A ===} Il!. The main idea is as follows. Call (J a solution 
of A iff Aspec F O"(A). Clearly, in order to prove Aspec F 4.>, A ===} Il! it is enough to 
prove A spec F 0"( <I? ===} 'l!) for all solutions 0" of A. Computing solutions of A can be 
done by narrowing techniques. This will be discussed in section 7.1. 
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Note that here the constructors are free, i.e. Ro = 0. We use the induction ordering
> ;  which.is defined by the multiset ordering based on the subterm ordering b .
An  atom is trivial i f  i t  is of the form u = u or de f ( t )  with t € Term(Fo,Vo).

Rule I :  Trivial act ions
HG = ® — A ,V  and A is trivial then 0 € Iy(H;G,G™). I £G  = ®, A=  V and A
is trivial then {G'™} € In(H;G,G™) with G' = ® = VU. If G = ,  A =>  A ,VW then
0c  Io(H;G,G™). If G = ® =>  A,  AV  then {G'™} € I,(H;G,G™) with @ = ® =>
AV.  If  G = ®, A, A= V then {G™} € Io(H;G,G™) with G'  = ®, A= 1%.
The rule I is easy to  understand: If G = ® — V and ¥ contains a tr ivial  atom then
the goal G™ is solved. If ® contains a trivial atom A, then G can be simplified to G’
by deleting A.  If an atom A appears both, in the antecedens and in  the succedens of
G,  then the goal G™ is solved. Note that G™ and G'™ have the same measure term m ,
so G™ is only weakly decreased to G'™ in  the induction ordering > ; .  We write Io(G™)
instead of Io(H;G,G™) since I only depends on G™, not on H and G.

We now come to rule I;.  It is used to perform a case splitting of G = ® — VU
according to the succedens ¥ of G. This is done by computing a covering for ¥ as in
the next definition.

Definition 6 .1  Let U be a set of  atoms. A covering Cov(¥)  for ¥ is a set of  substi-
tutions o such that for each ground substitution v with dom(r) = Var(W) there is a
o € Cov(¥) and a 7 ’  such that T(z) =g  7'(0(z)) for all x € Var(¥).

Note that many coverings for ¥ may exist. For example, Cov(¥) = {o;  | f € F }  is a
covering for any ¥ .  Here 05  = { z  — f (z1 , . . . ,2 . ) } .  It is in  general a non-trivial task
to compute a suitable covering, i.e. one that leads to a successful proof. We comment
on that in  section 7.1.
Rule I :  Covering the succedens
Let G™ = (2  =>  VW | m )  and let Cov(¥ )  be a covering for V .  Let G’  consist of  all
(6(G) | ¢(m)) such that o € Cov(¥). Then G’ € I,(H;G,G™).
Note that I;(H;G,G™) is independent of H and G, so we simply write I;(G™). Note.
also that I , (G™) consists of  many G’, each such G’  i s  determined by  the covering
Cov(¥).
We illustrate rule I; using the current rewrite system R* and the goal G™ = (=
z—2=0]|pB(z)). Let ¥ = { z  — x = 0} and let Cov(¥) consist of 0 ;  = { z  « 0} and
oy = { z  — s(z)} .  Then Cov(¥) is a covering for ¥ and G’ consists of (== 0—-0=10|
B(0)) and (=> s(z) — s(x) = 0 | B(s(z))).
We now come to rule I;. I t  is used to perform a case splitting on an atom A in  the
antecedens of a clause G = ®, A =>  9 .  The main idea is as follows. Call o a solution
of A iff Aspec |= 0 (A) .  Clearly, in  order to prove Aspec |= ®, A = WV i t  is enough to
prove Aspec |= 0(® = ¥ )  for all solutions o of A .  Computing solutions of A can be
done by  narrowing techniques. This will be discussed in  section 7.1.
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Definition 6.2 Let A be an atom. A weak covering WCov(A) for A is a set of sub­
stitutions 0' such that: For each ground substitution r such that dom(r) = Var(A) and 
T is a solution of A there is a 0' E WCov(A) and a r' such that r(x) =R r'(O'(x)) for 
aB x E Var(A). 

We will discuss in section 7.1 how to compute a weak covering for A. For example, 
if R is confluent and terminating, let WCov(A) consist of (1) all 0' = mgu(u,l) with 
u =Alp a non-variable subterm in A and I the left-hand side of a rule f; D. ==} I -t r 

in Rand (2) J.L = mgu(u,v) if A is u = v and u,v are unifiable. Then WCov(A) is a 
weak covering for A. We will use this fact below. 

Rule 12 : Covering the antecedens 
Let Gm = (If>, A ~ 'l! I m) and let WCov(A) be a weak covering for A. Let Q' consist 
of all (O'(G) IO'(m)) such that 0' E WCov(A). Then Q' E 12 (1i; Q, Gm). 

Note that I 2 (1i;Q, Gm) is independent of 1i and Q, so we simply write I 2 (Gm). Note 
also that 12( Gm) may consist of many Q', each Q' is determined by the weak covering 
WCov(A). Finally note that any atom A in the antecedens If> of G =If> ==} 'l! can be 
selected for the case splitting. 

We illustrate rule 12 using R* and the goal Gm = (x - y = °~ X = y I (3(x, y)). Note 
that R* is 'confluent and terminating. We have A == x - y = °and WCov( A) = {a1' 0'2} 
is a weak covering for A, where 0'1 = {y ~ o} and 0'2 = {x ~ s(x), y ~ s(y)}. So 
Q' consists of (x - 0 = °==} x = °I (3(x, 0)) and (s(x) - s(y) =0 ==} s(x) = s(y) I 
(3(s(x), s(y))). 

The rules 11 and 12 are used to perform a case splitting on the actual goal Gm and so 
to produce new goals. The rule 10 is used, to syntactically simplify or to delete Gm. 
The next two rules will be used to simplify or delete Gm using a lemma Hm' E .£ or 
an induction hypothesis Hm' E 1i u g. To make our inference rules more powerful we 
now extend the notion of a substitution. Recall that for a substitution 0' we require 
that O'(x) E Term(Fo, VD) ifsort(x) E So. (A base variable may only be replaced by a 
base term.) We relax this condition. 

Definition 6.3 A quasi-substitution is a mapping a : V -t Term(F, V) such that 
sort(x) = sort(O'(x)) for all x E V. 0' is extended to a : Term(F, V) -t Term(F,V) 
by O'(J(tt, ... ,tn )) =f(a(tt), ... ,O'(tn )). 

A quasi-substitution 0' is almost a substitution if Aspec F def(0'(x)) for all x E dom(a) n 
VD. We will allow 0' to be a quasi-substitution in the following. But then we have to 
make sure that the goals ~ de f( 0'( x)) are satisfied for all x E dom(0') n VD in the 
given context. If 0' is almost a substitution then there is a substitution 0" such that 
dom(O') = dom(O") and O'(x) == O"(x) is valid for all x E dom(O'). We require that 
O'(m) ~i O"(m) for each measure term m. This is part of our general assumption that 
~i is compatible with R. We comment on that in section 7.3. 

If H is a clause and 0' is a quasi-substitution then Def(H,O') = {def(O'(x)) I x E 
Var(H) n VD , O'(x) rt Term(Fo, Vo)}. 
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Definition 6.2 Let A be an atom. A weak covering WCov(A) for A is a set of  sub-
stitutions o such that: For each ground substitution T such that dom(7) = Var(A) and
7 is a solution of A there is a 0 € WCov(A) and a 7 ’  such that 7(z)  = r  7'(o(z)) for
all z € Var(A).

We will discuss in section 7.1 how to compute a weak covering for A .  For example,
i f  R is confluent and terminating, let  WCov(A)  consist of  (1)  all 0 = mgu(u , ! )  wi th
u = A/p a non-variable subterm in  A and / the left-hand side of a rule ;A = 1 — r
in  R and (2) u = mgu(u,v) i f  A is u = v and u , v  are unifiable. Then WCov(A) is a
weak covering for A. We will use this fact below.
Rule I ; :  Covering the antecedens *

Let G™ = (®, A =>  VW | m) and let WCov(A) be a weak covering for A. Let G’ consist
of all (¢(G) | o(m)) such that 0 € WCov(A). Then G’ € I,(H;G,G™).
Note that I,(H;G,G™) is independent of H and G, so we  simply write I,(G™). Note
also that I3(G™) may consist of many G’, each G’ is determined by the weak covering
WCov(A). Finally note that any atom A i n  the antecedens ® of G = ® = ¥ can be
selected for the case splitting.
We illustrate rule I, using R*  and the goal G™ = (x  —y =0  =>  z = y | B(z,y)) .  Note
that R* is confluent and terminating. We have A = z—y = 0 and WCov(A) = {01,02}
is a weak covering for A, where 0 ;  = {y « 0} and 0 ;  = {z  — s(z),y « s(y)}. So
G' consists of (x —0=0=>  2 =0 ]  B(z,0)) and (s(z) — s(y) =0  = s(x) = s(y) |
B(s(z), s v ) .
The rules I ;  and I ,  are used to  perform a case splitting on  the actual goal G™ and so
to  produce new goals. The rule I j  is used to syntactically simplify or to  delete G™.
The next two rules will be used to  simplify or delete G™ using a lemma H™ € L or
an induction hypothesis H™ € H UG. To make our inference rules more powerful we
now extend the notion of a substitution. Recall that for a substitution o we require
that o (z )  € Term(Fy, Vo) i f  sort(z) € So. (A  base variable may only be replaced by  a
base term.) We relax this condition.

Definition 6.3 A quasi-substitution is a mapping 0 : V — Term(F,V)  such that
sort(z) = sort(o(z)) for all z € V .  0 is extended to o : Term(F,V) — Term(F,V)
by o ( f ( t1 , - - . , ta ) )  = F(o( t1) , . . . ,  0(tn))-

A quasi-substitution o is  almost a substitution  if Aspec |= def(o(z)) for all z € dom(o)N
Vo. We will allow o to be a quasi-substitution in  the following. But then we have to
make sure that the goals =>  def(o(z))  are satisfied for all x € dom(o) N V% i n  the
given context. If o is almost a substitution then there is a substitution ¢ ’  such that
dom(o) = dom(o’) and o(z) = o'(z) is valid for all x € dom(c). We require that
o (m)  = *  o ' (m)  for each measure term m .  This is part of our general assumption that
>* is compatible with R. We comment on that in  section 7.3.
I f  H is a clause and o is a quasi-substitution then Def(H,o)  = {def(c(z)) | z €
Var(H)N Vy , o(z) € Term (Fy, Vo)}.
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Rule 13 : Clausal rewriting 
Let Gm = (~, A ~ \l1 I m) (resp. Gm == (~ ===? A, \l1 I m)) be a goal. Let Hm' E 
£UHUg be a clause Hm' =(f ~ u = v,.6.\ m'). Let a be a quasi-substitution such 
that Alp =a(u). Let (Gm, r) >-i (a(Hm'), r) if H E HUg and r(G) is not valid. Let 9 
consist of all elements (1) (<I>, a(B) ~ W Im) with B E .6. and (2) (<I> ~ a(B), W Im) 
with B E f and (3) (~ ~ B, W I m) with B E Def(H, a). Let (1i; 9) be inductive. 
Let 9' = {(~, A[a(v)]p ~ W I m)} (resp. 9' = {(~ ~ A[a(v)]p, W I m)}). Then 
h(1i; 9, Gm) consists of all these 9'. 
We comment on rule 13 . H transforms G into G' by replacing A with A[a(v)]p. We 
have to fulfill some conditions that this transformation is semantically allowed: (a) a 

is almost a substitution. This is reflected by the goals (3) in 9. (b) a(H) is applicable: 
This is reflected by the goals (1) and (2) in 9. (c) a(H) can be used as an induction 
hypothesis. This reflected by the condition (Gm, r) >- i (;(Em'), r) for all ground 
substitutions r such that r(G) is not valid. This can be verified by showing Gm >-i 
u(Hm'). The proof that (H; 9) is inductive will be done by recursively calling the 
prover we are just describing. This is based on Theorem 5.3. 

The condition Gm >-i a(Hm'), i.e. m >-i a(m'), is evaluated as follows. If a is a 
substitution then a(m') is well defined. If a is a quasi-substitution, then evaluating 
the goals (3) in 9 may compute a substitution a' such that ~ ===} a(x) = a'(x), W 
is valid in context H. Then m >- i a'(m') has to be checked. In general, one has to 
perform an inductive proof for verifying m >-i a(m'). This can be incorporated in the 
prover we are just describing (see [Wir96]). 

Notice that 13 (H; g, Gm) depends on 1i , 9 and Gm. We will write h(Gm) instead of 
h(H;9, Gm) if H , 9 is clear from the context. It contains several 9' since different 
Alp with A in G can be selected and different H E £ u H u9 !llay be used. 

We illustrate rule 13 using the current rewrite system R* and the goal G = s(x) - s(y) = 
o ===} s(x) = s(y). Let H be the rule P2 of R* ~ £, so H ====} s(x) - s(y) = x - y. 
(We do not need the measure terms m in Gm and m' in Hm' since H E £.) We choose 
A = s(x) - s(y) = 0 and a = id. This gives 9 = 0 since a is a substitution and r,.6. 
are empty. (H;9) is inductive. So 9' consists of (x - y = 0 ===} s(x) = s(y) I m) only. 

Rule 13 is used to rewrite a goal using a lemma or an induction hypothesis. It can also 
be used for contextual rewriting. We comment on that in section 7.2. 

We now come to the last inference rule 14 , It performs a partial subsumption on a 
clause G = ~o, ~1 ~ Wo, W1 using H = fo, r 1 ~ .6.0 , .6.1 . If f o ~ .6.0 subsumes 
~o ~ Wo and "the rest can be proved" then G can be deleted from the unprocessed 
goals without producing new goals. 

Rule 14 : Subsumption 
Let Gm - (~o, ~1 ~ Wo, W1 I m) be a goal and Hm' = (fo, f 1 ===} .6.0 ,.6.1 I m') 
in 1i U 9 u £. Let a be a quasi-substitution such that a(fo) ~ ~o and a(.6.o) ~ Wo. 
Let (Gm,r) >-i (a(Hm'),r) if HE 1i u 9 and r(G) is not valid. Let 9 consist of the 
elements (1) (~l,a(B) ~ W1 I m) with B E .6.1 and (2) )~1 ===} a(B), W1 I m) with 
B E f 1 and (3) (~1 ~ B, 'lI1 I m) with B E Def(H, a). Let (H; Q) be inductive. 
Then 14(1i; 9, Gm) = {0}. 
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Rule I3: Clausal rewriting
Let G™ = (® , A=>  ¥ | m) (resp. G™ = (® = A , ¥ | m)) be a goal. Let HT  €
LUHUG  be a clause H™  = (T =>  u = v, A | m'). Let o be a quasi-substitution such
that A/p = o(u). Let (G™,7) > ;  (o(H™),7) i f H € HUG  and 7(G) is not valid. Let G
consist of all  elements(1) (®,0(B) =>  ¥ | m) with B € A and (2) (® =>  o(B) ,¥  | m)
with B € T and (3) (® =>  B,W | m) with B € Def(H,o).  Let (H;G) be inductive.
Let G' = {(®, Alo(v)], =>  ¥ | m)}  (resp. G' = {(® = A[o(v)],,¥ | m)}).  Then
I ; (H;G,G™) consists of  all these G'.

We comment on rule I;. H transforms G into G’ by replacing A with A[o(v)],. We
have to fulfill some conditions that this transformation is semantically allowed: (a) o
is almost a substitution. This is reflected by the goals (3) in  G. (b) o(H) is applicable:
This is reflected by the goals (1) and (2) in  G. (c) o(H) can be used as an  induction
hypothesis. This reflected by the condition (G™,7) > ;  (¢(H™'),7) for all ground
substitutions 7 such that 7(G) is not valid. This can be verified by showing G™ > ;
o(H™).  The proof that (H ;G)  is  inductive will be  done by  recursively call ing the
prover we are just describing. This is based on Theorem 5.3.
The condition G™ = ;  o(H™), i.e. m >? o(m’), is evaluated as follows. If o is a
substitution then o(m’) is well defined. If o is a quasi-substitution, then evaluating
the goals ( 3 )  in  G may compute a substitution ¢ ’  such that  ® = o ( z )  = o ' ( z ) ,  ¥
is valid in  context H.  Then m > ‘  o'(m’) has to be checked. In  general, one has to
perform an inductive proof for verifying m = ‘  o(m'). This can be incorporated in the
prover we are just describing (see [Wir96]).
Notice that I3(*;G,G™) depends on  H , G and G™. We will write I3(G™) instead of
I3(H;G,G™) if H , G is clear from the context. I t  contains several G' since different
A/p with A in G can be selected and different H € LU H UG may be used.
We illustrate rule I 5  using the current rewrite system R* and the goal G = s(z)—s(y) =
0 = s(z) = s(y). Let H be the rule p; of R*  C £ ,  so H ==> s(z) — s(y) = z — y.
(We do not need the measure terms m in  G™ and m’  in  H™  since H € £.) We choose
A = s (z )  — s (y )  = 0 and o = id.  This gives G = 0 since vr i s  a substitution and T ,  A
are empty. (H;G) is inductive. So G’ consists of ( z  — y = 0 ==  s(z) = s(y) | m )  only.

Rule I 3  is used to rewrite a goal using a lemma or an  induction hypothesis. I t  can also
be used for contextual rewriting.. We comment on that in section 7.2.

We now come to the last inference rule I,. I t  performs a partial subsumption on a
clause G = ®g, ®; =>  Vy ,VV; using H = To, I }  = Ao, Ay. If Tg = Ap subsumes
$y — I and “the rest can be proved” then G can be deleted from the unprocessed
goals without producing new goals.
Rule I :  Subsumption .
Let G™ = (®9,®1 =>  Vo, ¥ ;  | m) be a goal and H™ = (To,1 = Ap, A; | m’)
in HUG UL .  Let 0 be a quasi-substitution such that o(To) © ®¢ and o(Ao) C %.
Let (G™,7) > ;  (c(H™),7) if H € HUG and 7(G) is not valid. Let G consist of the
elements (1) (®;,0(B) =>  ¥ ;  | m) with B € A ;  and (2) )®  = o (B ) ,¥;  | m) with
B eT, and (3) (®, = B‚,Y, | m) with B € Def(H,o) .  Let (H;G) be inductive.
Then I(H;G,G™) = {0}.

35



We comment on rule 14 • The goals (3) in G assure that a is almost a substitution a' as 
for rule 13 • The goals (1) and (2) in G make the term "the rest can be proved" precise. 
The condition (Gm,r) >-i (a(Hm'),r) for all r such that r(G) is not valid assures that 
a(Hm') can be used as induction hypothesis. 

Notice that I4(H;Q,Gm) depends on H,Q and Gm; we will write I4 (Gm) instead of 
I4 (H; Q, Gm) if H, Q is clear from the context. 

We illustrate rule 14 using R* and the goal Gm = (x - y = 0 ==> sex) = s(y) I 
,8(s(x),s(y))) and Hm' = (x - y = 0 ==> X = y I ,8(x,y)) in H. We choose cI>0 = f o = 
{x - y = O}, cI>1 = f 1 = 0, Wo = ~o = 0, w1 = {sex) = s(y)} and ~l = {x = y} and 
a = id. We will use the lemma L = x = y ==} sex) = s(y) E ITh(spec). We have 
Q = {(x = y ==} sex) = s(y) I ,8(x,y))} and have to prove that (H;Q) is inductive. 
For that we start the prover and apply 14 to (G I m), with G = x = y ==> sex) = s(y), 
m =(3(x,y) and L. Obviously, 14 (G) = {0}. So (H; (G I m)) f- (H, (G I m); 0), and 
(H; (G I m)) is inductive by Theorem 5.3. Since ,8(s(x),s(y)) >-i ,8(x,y) this gives 
I 4 (Gm) = {0}. 

Definition 6.4 The inference system I consists of the inference rules 10 to 14 • 

We now give a proof for x - y = 0 ==} x = Y E ITh(spec) for spec = (sig, R*). For 
that we assume that I is inductively correct, which will be proved later. We need the 
following goals: 

GO (x - y = 0 ==> x = y 1,8(x,y)) 
Gl - (x - 0 = 0 ==> x = 0 I ,8(x, 0)) 
G2 (s(x) - s(y) = 0 ==} sex) = s(y) 1,8(s(x),s(y))) 
G3 (x = 0 ==} x = 0 1,8(x,O)) 
G4 

_ (x - y = 0 ==> sex) = s(y) 1,8(s(x),s(y))) 

Based on our preceeding illustrations of the rules 10 to 14 we get 

(0; {CO}) f- I2 ({GO};{Gt,G2})f-h ({GO, G1 }; {G2,G3 }) 

f-r3 ({GO , Gt, G2 
}; { G3 

, G4 
} f- 10 ({ GO , Gt, G2 

, G3 
}; { G4 

} ) 

f- I. ( { CO, ... ,G4
}; 0) 

From that we conclude that the clause x - y = 0 ==> x = y is in ITh(spec). 

6.3 Correctness of the inference system I 

In this section we will prove that the inference rules la to 14 decrease inductive counter­
examples and that they are refutationally sound. We will also give a failure predicate 
Fail that is compatible with P. This proves that I works correctly. 

Let spec = (sig, R) be an admissible hierarchical specification over speC{) = (sigo, Ra). 
We say that an atom A or a clause G is valid if it is valid in A spec ' So G is valid if 
G E ITh(spec). 

Notice that the inference rules do not depend on the fact that R is a rewrite system, 
i.e., that the conditional equations are directed. So we may regard R to be a set of 
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We comment on rule I,. The goals (3) in  G assure that o is almost a substitution o’  as
for rule I3. The goals (1) and (2) in  G make the term “the rest can be proved” precise.
The condition (G™,7) > ;  (c(H™'),7) for all 7 such that 7(G) is not valid assures that
o(H™) can be used as induction hypothesis.
Notice that I,(H;G,G™) depends on H,G and G™; we will write I4(G™) instead of
I , (H ;G ,G™)  i f  H ,G  is  clear from the context.

We illustrate rule I g  using R* and the goal G™= ( x —y = 0 =>  s(z) = s(y) |
B(s(z),s(y))) and H™ = (z ~y  =0  =z  =y  | B (z , y ) )i non We choose ® = To =
{ z—y=0} ,0 ,=T1=0 ,  Ug=A¢ =0 ,  Y ı  = { s ( z )= s(y)} and A; = { z  = y }  and
o = id. We will use the lemma L = z = y =>  s(z) = s(y) € ITh(spec). We have
G = { (z  = y = s(z) = s(y) | B(z,y))} and have to prove that (H;G) is inductive.
For that we start the prover and apply I4  to (G  | m) ,  with G = z = y =>  s(z) = s(y),
m = P(z,y) and L .  Obviously, I4(G) = {0}. So (H;  (G | m)) + (H, (G  | m) ;  0), and
(M; (G | m)) is inductive by Theorem 5.3. Since B(s(z),s(y)) > :  B(z,y) this gives
L(G™) = {0}.

Definition 6.4 The inference system I consists of the inference rules I to Is.

We now give a proof for z —y = 0 =>  = = y € ITh(spec) for spec = (sig, R*). For
that we assume that Z is inductively correct, which will be proved later. We need the
following goals:
G = ( z - y=0=z=y |p ( z , y ) )
Gl  = ( z -0=0=z=0 ]  B (z ,0 ) )
G2 = ( s ( z )  _ s ( y )  =0=  s(x) = s(y) | B ( s ( z ) ,  s ( y ) ) )G = ( z=0=>2z=0 ]p (z ,0 ) )Gt  = ( z—y=0=  s ( x )  = s (y )  | B(s(z) ,  s(y)))

Based on  our preceeding illustrations of the rules Ip  to I; we get

0;{G°}) Fr, ({G°}{G',  GH) F r  ({G°, G*}; {G*, G®})
Fr  ({G°, GY 6°}; {GP G*} Fy, ( {G° ,GY, G?, G°}; {G*})
Fi, ( {G°, .  . . ,G*} ;  0 )

From that we conclude that the clause z — y = 0 ==  z = y is i n  ITh(spec).

6.3  Correctness o f  the inference system 7

In this section we will  prove that the inference rules I to  I decrease inductive counter-
examples and that they are refutationally sound. We will also give a failure predicate
Fai l  that is compatible with P. This proves that Z works correctly.
Let spec = (sig, R) be an admissible hierarchical specification over specs = (stgo, Ro).
We say that an atom A or a clause G is valid i f  i t  is valid in  Ap...  So G is valid i f
G € ITh(spec).
Notice that the inference rules do not depend on the fact that R is a rewrite system,
i.e., that the conditional equations are directed. So we may regard R to  be a set of
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(undirected) conditional equations. Later in the paper we will restrict R to be a rewrite 
system in order to reduce the search space for carrying out inductive proofs. 

We now come to the central lemmas of this section. The proofs are given in the 
Appendix. 

Lemma 6.5 The inference rules 10 to 14 decrease inductive counter-examples. 

Lemma 6.6 The inference rules 10 to 14 are refutationally sound. 

We now study how to get refutational correctness. For that we need a failure predicate 
Fail. We first define a relatively weak failure predicate. 

Definition 6.7 Let G =q> ===} wbe a clause. F ailo(Gm) holds iff for each atom 
A E G there is an atom A' such that ===} A' is in {, if A E q> and A' ===} is in (, if 
A E Wand (i) Var(G) n Var(A' ) = 0 for all A E G and (ii) there is a substitution <7 

such that <7( A) = <7( A') for all A E G. 

The condition (ii) states that all pairs (A, A') are simultaneously unifiable by some <7. 
For example, if G ====}def(g(O, x)) and def(g(y, h(z))) ===} is in {, (or in 1Th(spec) 
then Failo(Gm) holds for any measure term m. One easily proves 

Lemma 6.8 Failo is compatible with P. o 

Definition 6.9 The inference system I o is given by the inference rules 10 to 14 , the 
predicate P and the failure predicate Failo. 

We 'now have the first main result of this section. 

Theorem 6.10 I o is inductively and refutationally correct: 
* 

a) If (0; 9) I-Io (H'; 0) then P(9) holds. 
* . 

b) If (0;9) I-Io (H';9') and Failo(Gm) holds for some Gm E Q' then P(9) does not 
hold. 

Proof: This follows from Lemmas 6.5 to 6.8 and Theorem 5.14 

We now come to a stronger failure predicate Fail. It can be applied only if R is a 
confluent and terminating rewrite system. 

The basic idea is as follows: A clause G ====} W is not an inductive theorem if there 
is a ground substitution r such that '"---+R satisfies no r(A) with A E W. In [Bac88] R 
is restricted to be an unconditional rewrite system and Wis restricted to consist of an 
equality atom u = v only. Then there is a r such that ~R does not satisfy r(u = v) 
if u = v is not ground ~educible in R. We extend this approach to our setting. 
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(undirected) conditional equations. Later in  the  paper we will restrict R to  be a rewrite
system in  order to  reduce the search space for carrying out inductive proofs.

We now come to the central lemmas of this section. The proofs are given in the
Appendix.

Lemma 6.5 The inference rules I y  to 14 decrease inductive counter-ezamples.

Lemma 6.6 The inference rules I to I; are refutationally sound.

We now study how to get refutational correctness. For that we need a failure predicate
Fai l .  We first define a relatively weak failure predicate.

Definition 6.7 Let G = ® = VU be a clause. Failo(G™) holds iff for each atom
A € G there is an atom A’ such that =>  A’ i s i n  Lif A€ ® and A = i s i n  L if
A € ¥ and (i) Var(G) NVar(A’ )  = 0 for all A € G and (ii) there is a substitution o
such that o(A) = o(A’) for all A € G.

The condition (ii) states that all pairs (A,  A’) are simultaneously unifiable by some o.
For example, if G ==>  def(g(0,z)) and def(g(y, h(z))) =>  is in  £ (or in  ITh(spec)
then Failo(G™) holds for any measure term m .  One easily proves

Lemma 6.8 Failg is compatible with P .  0

Definition 6.9 The inference system To is given by the inference rules Io to Is, the
predicate P and the failure predicate Faily.

We now have the first main result of  this section.

Theorem 6.10 Zo is inductively and refutationally correct:
a) If  (0;G) bz, (H';0) then P(G) holds.
b) I f  (8 ,6)  Fz, (H';G") and Failo(G™) holds for some G™ € G' then P(G) does not
hold. ;

Proof: This follows from Lemmas 6.5 to 6.8 and Theorem 5.14 [m

We now come to a stronger failure predicate Fai l .  It can be applied only i f  R is a
confluent and terminating rewrite system.
The basic idea is as follows: A clause G ==> W is not an inductive theorem if there
is a ground substitution 7 such that — pg satisfies no  7(A) with A € ¥ .  In  [Bac88| R
is restricted to be an unconditional rewrite system and W is restricted to consist of an
equality atom u = v only. Then there is a 7 such that — pg does not satisfy 7(u  = v)
i f  u = v is not ground reducible i n  R.  We extend this approach to  our setting.
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Let , and # be two new function symbols, let G ====} \II and \II = {UI = VI, , Un = 
V n } U {def(tl), ... ,def(tm)}. Thenwedenoteby,(G)theterm,(ul#vl, ,un#vn, 
t l , ... , tTn ). We denote by Ru and Rt! the unconditional rewrite systems 

flu - {I --+ r I rj ~ ===} I --+ r in R} , 
R~ Ru U {x#x --+ x}. 

We say that G is ground reducible in R u if r(-y(G)) is reducible inR~ for each ground 
substitution r. It is well known that ground reducibility is decidable for unconditional 
rewrite systems. 

Definition 6.11 a) Fail(Gm) holds if either Failo(Gm) holds orG ===::} \II, Io(Gm) =
 
oand G is not ground reducible in R u .
 

b) The inference system I is given by the inference rules 10 to 14 , the predicate P and
 
the failure predicate Fail.
 

Lemma 6.12 Let R be confluent and terminating. Then Fail is compatible with P.
 

Proof: Assume Fail(Gm) holds, we have to show that p(Gm) does not hold. If 
Fai/o(Gffl) holds then p(Gm) does not hold by Lemma 6.8. So assume G -==::} \II, 
Io(Gm) = 0 and G is not ground reducible in R u • We have to show that r(G) is not 
valid for some ground substitution T. Since G is not ground reducible in Ru , there is a 
r such that r(A) is irreducible in R u (and hence in R) for all A in \II and r(u) "¥= r(v) 
for all U = V in \II. Hence ---+R satisfies no equality atom r(A) with A in \II, since R 
is confluent. And ---+R satisfies no def-atom r(A) with A in \II, since l o(Gffl) = 0 and 
so \II contains no atom def(t) with t E Term(Fo, VO). So r(G) is not valid. 0 

We are now ready to give the main result of this section. The next Theorem is much 
more powerful than Theorem 6.10. See the examples in section 7. 

Theorem 6.13 The inference system I is inductively correct. It is also refutationally 
correct for all R which are confluent and terminating. 

Proof: This follows from Lemmas 6.5,6.6, 6.12 and Theorem 5.14. 0 

By Theorems 6.10 and 6.13 we can prove and disprove inductive theorems. We did 
not discuss refutational completeness of the inference system. For unconditional total 
specifications this is easy to reach, see [Bac88]. For conditional specifications this leads 
to undecidable problems. We will comment on that in section 7.2. 
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Let 4 and # be two new function symbols, let G ==> V and ¥ = {uy = vy , . . . , u ,  =
vn} U {de f ( t1 ) , . . . , de f ( tn ) } .  Then we denote by  y(G) the term y(u1#tv1,. . . , unFtvn,
t 1 , . . . , tm ) .  We  denote by  R ,  and R¥ the  unconditional rewri te systems

R, { l - r |A=1 l—>r in R},
R# Ru U {z#z — z}.

We say that G is ground reducible in  R,  i f  7(¥(G)) is reducible in R¥ for each ground
substitution 7 .  It is well known that ground reducibility is decidable for unconditional
rewrite systems. ,

Definition 6.11 a) Fail(G™) holds if either Failo(G™) holds o rG === ¥ ,  Iy(G™) =
0 and G is not ground reducible in  R,.
b) The inference system I is given by  the inference rules Io to  Is, the predicate P and
the failure predicate Fail.

Lemma 6.12 Let R be confluent and terminating. Then Fai l  is compatible with P .

Proof: Assume Fail(G™) holds, we have to show that P(G™) does not hold. If
Failg(G™) holds then P(G™) does not hold by Lemma 6.8. So assume G ==  V¥,
Io(G™) = 0 and G is not ground reducible in R, .  We have to show that 7(G) is not
valid for some ground substitution 7 .  Since G is not ground reducible in  R,, there is a
7 such that 7(A) is irreducible in R,  (and hence in  R) for all A in ¥ and 7(u) # 7(v)
for all uw = v in  ¥ .  Hence — p satisfies no equality atom 7(A) with A in  U ,  since R
is confluent. And — pg, satisfies no def-atom 7(A) with A in ©, since Io(G™) = 0 and
so ¥ contains no atom def(t) with t € Term(Fo, Vo). So 7(G) is not valid. a
We are now ready to give the main result of this section. The next Theorem is much
more powerful than Theorem 6.10. See the examples in  section 7.

Theorem 6.13 The inference system I is inductively correct. It is also refutationally
correct for all  R which are confluent and terminating.

Proof: This follows from Lemmas 6.5, 6.6, 6.12 and Theorem 5.14. 0

By Theorems 6.10 and 6.13 we can prove and disprove inductive theorems. We did
not discuss refutational completeness of the inference system. For unconditional total
specifications this is  easy to  reach, see [Bac88]. For conditional specifications this leads
to  undecidable problems. We will  comment on that in  section 7.2.
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7 Applying the inference system I 

In this chapter we comment on how to apply the inference rules. We also give examples 
of inductive proofs based on I. 

7.1 On applying the rules 11 and 12 

To apply rule It on Gm = (<1> ===} 'l! Im), we have to find a covering Cov('l!) for W. To 
apply rule 12 to Gm = (<1>, A ===} 'l! I m), we have to find a weak covering WCov(A) 
for A. There are several approaches for that, they depend on assumptions on R, e.g., 
whether R is terminating or confluent. 

Definition 7.1 A covering set of substitutions is a set CSubst of substitutions such 
that for each ground substitution 7 there is a a E C Subst and a 7' such that 7(x) == 
7'(a(x)) for all x E dom(7). 

There are several ways to compute a covering set of substitutions. We discuss how to 
cover a fixed sort s E S. Let sort(x) = s, Fs = {f EFl f: St, ... ,Sn --+ s} and 
aj = {x +- f(xt, ... ,xn )} for f E Fs • Then CSubst = {aj If E Fs } is a covering 
set of substitutions for any \l1 with x E Var('l!). It may be refined to get a finer case 
splitting. We demonstrate that with sig = (S,F, V,a), S = {NAT} and F = {O,s}. 
Here CSubst = {at, a2, a3} is a covering set of substitutions for W, where at = {x ~ O}, 
a2 = {x +- s(O)} and a3 = {x ~ s(s(x))}. One may also use several variables to cover 
sort s E S. For example, C Subst = {at, a2, a3} is a covering set of substitutions for \l1, 
where at = {x +- O}, a2 = {x +- s(x),y ~ O} and a3 = {x ~ s(x),y +- s(y)}. 

Note that any covering set of substitutions is a covering for Wand a weak covering for 
A, where 'l! and A are arbitrary. So, if a suitable set C Subst is known then rules It 
and 12 can be applied. (Here "suitable" means that the corresponding case splitting 
leads to a successful proof.) 

The notion of a covering set of substitutions refers to sig only, not to the defining 
equations in R. Now we assume that R is terminating. This allows one to compute 
smaller coverings for 'l! and weak coverings for A and so to compute smaller (}' E It (Gm ) 
and (}' E I2 (Gm), respectively. 

Definition 7.2 Let R be terminating. An R-covering set of substitutions C Subst is 
a set of substitutions such that for each R-irreducible ground substitution 7 there is 
a a E CSubst and a 7' such that 7(X) == 7'(a(x)) for all x E dom(7). Here 7 is 
R-irreducible if 7(x) is R-irreducible for all x E dom(7). 

Note, if C Subst is an R-covering set of substitutions then C Subst is a covering for any 
'lI and a weak covering for any A. So C Subst may be used for applying rules It and 
12 , 
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7 Applying the inference system 7

In this chapter we comment on how to  apply the inference rules. We also give examples
of inductive proofs based on 7.

7 .1  On  applying the rules I; and I,

To apply rule I; on G™ = (® =>  ¥ | m) ,  we have to  find a covering Cov(¥)  for ¥ .  To
apply rule I to  G™ = (® , A=>  ¥ | m) ,  we have to  find a weak covering WCov(A)
for A.  There are several approaches for that, they depend on assumptions on R,  e.g.,
whether R is terminating or confluent.

Definition 7.1 A covering set of substitutions is a set CSubst of substitutions such
that for each ground substitution 7 there is a 0 € CSubst and a 7 ’  such that 7(z) =
' (o (x ) )  for all x € dom(7).

There are several ways to compute a covering set of substitutions. We discuss how to
cover a fixed sort s € S. Let sort(z) = s, Fy, = { f  € F | f :  s1 , . . . , 8 ,  — s} and
oy = {zx « f ( z1 , . . . , 2 , ) }  for f € F,. Then CSubst = {oy | f € F,} is a covering
set of substitutions for any ¥ with x € Var (¥) .  I t  may be refined to get a finer case
splitting. We demonstrate that with sig = (S, F,V,a), S = {NAT} and F = {0,s}.
Here CSubst = {01,032,035} is a covering set of substitutions for ¥ ,  where vo, = { z  « 0},
os = {z  « s(0)} and 03  = {z  « s(s(z))}. One may also use several variables to cover
sort s € S. For example, CSubst = {01,032,035} is a covering set of substitutions for ¥ ,
where 0 ,  = { z  — 0 } ,  02  = { x  — s(z),y — 0}  and 03  = { z  « s(z),y  « s(y)}.
Note that any covering set of substitutions is a covering for ¥ and a weak covering for
A, where ¥ and A are arbitrary. So, if a suitable set CSubst is known then rules I;
and I; can be applied. (Here “suitable” means that the corresponding case splitting
leads to a successful proof.)
The notion of a covering set of substitutions refers to sig only, not to the defining
equations in R. Now we assume that R is terminating. This allows one to compute
smaller coverings for ¥ and weak coverings for A and so to compute smaller G’ € I;,(G™)
and G' € I,(G™), respectively.

Definition 7.2 Let R be terminating. An  R-covering set of substitutions CSubst is
a set of  substitutions such that for each R-irreducible ground substitution Tr there is
a 0 € CSubst and a 7 ’  such that 7(z) = 7'(o(z)) for all z € dom(r). Here 7 is
R-irreducible if  T(z) is R-irreducible for all z € dom(r).

Note, if CSubst is an R-covering set of substitutions then C Subst is a covering for any
¥ and a weak covering for any A .  So CSubst may be used for applying rules I; and
I .
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To give an example, assume .speC{) = (sigo,Ra) with sigo = ({NAT},{O,s,+},V,a) 
and 

Ra: ====} x + 0 --7 X ====} X + s(y) --7 sex + y) 

Then CSubst consisting of {x f- O} and {x f- sex)} is an R-covering set of substitu­
tions but not a covering set of substitutions. 

We now discuss how to compute a weak covering for A. We may assume that A is not 
trivial, i.e.; not of the form u = u or def(t) with t E Term(Fo, Vo). 

Lemma 7.3 Let R be confluent and terminating and A be a non-trivial atom. Let 
WCov(A) consist of all er = mgu(Ajp,l) where Ajp is a non-variable subterm of A 
and r; ~ ====} I --7 r a rule in R. If A is u = v and p. = mgu(u, v) exists, then let 
WCov(A) contain p. also. Then WCov(A) is a weak covering for A. 

Proof: Let r be a ground substitution such that r(A) is valid. We have to show that 
there is a er E WC ov.(A) and a r' such that r (x) =R r'(er(x )). Since R is terminating, 
there is an irreducible ro such that r(x) =R ro(x) for all x E dom(r) = dom(ro). So 
it is enough to show that ro(x) = r'(er(x)) for some er E CSubst and r' and for all 
x E domero). If A is u = v and Toeu) =Toe v) then p. = mgu(u, v) exists and r' 
exists such that ro(x) =r'(p.(x)) for all x E dom(ro). Otherwise, since R is confluent, 
ro(A) has to be reducible. So some subterm ro(A)jp has to be reducible by some rule 
r; ~ ====} I --7 r in R. We may assume that Var(A) n Var(r; ~ ====} 1 --7 r) = 0. 
Since ro is irreducible, p is a position in A and Ajp is not a variable. Hence, for some 
er E WCov(A) and some r' we have ro(x) = r'(er(x)) for all x E dom(ro). 0 

We give two simple examples how to apply this Lemma. 

Example 7.4 
a) Assume So = S = {NAT}, Fo = F = {O,s} and R = 0. Consider G - x = 0, 

x = s(y) ====}. We have 

(Golmo) = (x=O,x=s(y)====}I,B(x,y)) {G~1}EI2(G~O) 

(GI I ml) = (0 = 0,0 = s(y) ====}I ,B(O,y)) 0 E 12(G':1) 

This gives (0;G~O) I- (G~O;Gr'l) I- (G~o,G~1;0), so G E ITh(spec). 
b) Assume So = S = {NAT}, Fo = {a, s}, F = {O, s, -}, Ra = 0 and 

RI: ====} x - 0--7 X ====} sex) - s(y) --7 X - y. 

So we are discussing the current example of section 6.2. Consider G def(O ­
s(y)) ====}. We have 0 E 12(Gm)J so G E ITh(spec) is immediately proved. 

By Lemma 7.3 one can always compute a small set WCov(A) from R for applying 
rule 12. It is tempting to proceed in a similar way to compute a covering Cov(\l1) for 
applying rule 11 • Unfortunately, this does not work in general. This fact is reflected 
by the next Lemma, the proof of which is given in the Appendix. 

Lemma 7.5 Let R be a conditional rewrite system. Let W be a set of non-trivial 
atoms and let Cov(\l1) consist of all er = mgu(Ajp, n where A E \l1J Ajp tf. V and 
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To give an example, assume speco = (sige, Ro) with sigo = ( {NAT} , {0 ,s ,+} ,V ,a)
and

Ry  = z+0—-o2  => z+s (y ) = s(z+y)
Then C Subst consisting of { z  « 0} and { z  — s(z)} is an R-covering set of substitu-
tions but  not a covering set of substitutions.
We now discuss how to  compute a weak covering for A .  We may assume that A is not
trivial, i.e.; not of the form u = u or def( t )  with t € Term(Fq, Vp).

Lemma 7 .3  Let  R be confluent and terminating and A be a non-tr ivial  a tom.  Le t
WCov(A) consist of  all 0 = mgu(A/p,l)  where Alp is a non-variable subterm of  A
and TA  = 1 w r  a ru l e i n  R .  I f A i su  = v and p = mgu(u,v) exists, then let
WCov(A) contain pu also. Then WCou(A) is a weak covering for A .

Proof: Let 7 be  a ground substitution such that 7 (A )  i s  valid. We  have to  show that
there is a 0 € WCou(A) and a 7 ’  such that 7(z) = r  7/(o(z)). Since R is terminating,
there is an irreducible 79  such that 7(z) =g  7o(z) for all z € dom(7) = dom(m). So
i t  is enough to show that (x)  = 7'(o(z)) for some g € CSubst and 7 ’  and for all
z € dom(m). If A i s  u = v and 7o(u) = 7o(v) then u = mgu(u,v) exists and 7 ’

exists such that 7o(z) = 7'(u(z)) for all z € dom(7). Otherwise, since R is confluent,
70(A) has to be  reducible. So some subterm 79(A) /p  has to  be  reducible by  some rule
IA  =>  1 — r in R. We may assume that Var(A) N Var(T;A = | — r )  = 0.
Since 79 is irreducible, p is a position in  A and A/p  is not a variable. Hence, for some
co € WCov(A) and some 7 ’  we have 7o(z) = 7'(0(z)) for all z € dom(7o). =
We give two simple examples how to apply this Lemma.

Example 7 .4
a) Assume So = S = {NAT} ,  Fo = F = {0,s} and R = 0. Consider G = x = 0,

z = s(y) =>. We have ;

(Go|mo) = (x = 0,7 = s(y) =>| ( x ,  y)) {GT*} € L(G5°)
(Gi lm ı )  = (0=0 ,0  = s(y) = |B (0 , y ) )  0€  L(G")

This gives (0; Gg©°) FE (GE;  GT“) F (GE, GT; 0), so G € ITh(spec).
b) Assume So = S = {NAT} ,  Fp = {0,s}, F = {0,s,—}, Ro = 0 and
Ri :  => z -0 ->2  =>  s ( r )—s(y )=z  —vy.

So we are discussing the current ezample of section 6.2. Consider G = def(0 —
s(y)) =>. We have § € I,(G™), so G € ITh(spec) is immediately proved.

By Lemma 7.3 one can always compute a small set WCov(A) from R for applying
rule I , .  It is tempting to proceed in  a similar way to compute a covering Cov(¥) for
applying rule I ; .  Unfortunately, this does not work in  general. This fact is reflected
by the next Lemma, the proof of which is given i n  the Appendix.

Lemma 7.5 Let R be a conditional rewrite system. Let ¥ be a set of  non-trivial
atoms and let Cov(¥) consist of all 0 = mgu(A/p,l) where A € U,  Alp # V and

40



f;~	 ====? 1---7 r in R. Ifu = v in Wand fl = mgu(u,v) exists then let Cov(w) also 
contain fl. It is undecidable whether Cov(w) is a covering.for W. 

Despite the result of this Lemma, one may compute Cov(w) as indicated and try to 
prove that Cov(W) is a covering for W. Then the resulting case splitting performed by 
It is suitable in many cases. 

One may compute a small covering for W as follows: If A E wand Alp = t = 
f(tt, ... , tn) such that T(t) is reducible for each ground substitution T (e.g., f is totally 
defined) then Cov(W) consisting of a = mgu(t', 1), where t' is a non-variable subterm 
of t and f; ~ ====? 1 ---7 r in R, is a complete covering for W. 

Let R be confluent and terminating. Let G =====? wand let Cov(w) be as in Lemma 
7.5. If Cov is not a covering for W then G is not ground reducible in Ru = {====? 1 -7 
r I fj ~ ====? 1 ---7 r in R}, so Fail(Gm) holds for any m. By Theorem 6.13 we can 
conclude that G ~ 1Th(spec). We formulate this as a Lemma. 

Lemma 7.6 Let R be confluent and terminating. Assume G =====? wand Cov('l1) is 
as in Lemma 7.5. If Cov('l1) is not a covering for W then G ~ 1Th(spec). 0 

See Example 7.7 below for an illustration of this result. 

7.2 On applying the rules 13 and 14 

Rule 13 is used to perform equational reasoning on the actual goal Gm using HmI E 
£ u 1-£ U Q and the quasi-substitution a. Rule 14 is used to subsume Gm using HmI 
and a. There are two problems to be solved before carrying out the inference step: (1) 
One has to verify that the inference step is semantically allowed. This is reflected by 
proving that the state (1-£; Q) is inductive (see the definition of rule h and rule 14 ), (2) 
If the clause HmI used is not safe (i.e. HmI rf. £) then one has to verify that a(H) can 
be used as induction hypothesis. This is reflected by proving (Gm, T) ?-i (a( HmI), T) 
for all ground substitutions T such that T(G) is not valid. 

Here we comment on the first problem and postpone the discussion on the second 
problem to section 7.3. We require to prove that (1-£; Q) is inductive before carrying 
out the inference step to ensure refutational completeness. One could also think of 
carrying out the inference step directly and to add Q to the set of unprocessed goals. 
This would mean to verify the goals in Q lazily. This modification of the inference 
system may be a good choice if one is interested in successful proofs only. However, it 
destroys refutational correctness. We give an example for that. Assume Fa = {a, b, c} 
and F = Fo U {f,g} and R 

R:	 ====? f(a) -7 a
 
f(x) = a ====? g(x) ---7 a
 
f(x)=b ====? g(x)-7b
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IA  =1 l—>r inR  I f u=v  in  V and u = mgu (u , v )  exists then le t  Cov(¥) also
contain u .  It is undecidable whether Cov(W) is a covering for Y.

Despite the result of this Lemma, one may compute Cov(¥) as indicated and try t o
prove that Cov(®V) is a covering for W. Then the resulting case splitting performed by
I, is suitable in many cases.
One may compute a small covering for ¥ as follows: If A € ¥ and A/p = ¢ =
f ( t1 , . . . , ts )  such that v(t) is reducible for each ground substitution 7 (e.g., f is totally
defined) then Cov(¥) consisting of 0 = mgu(t’,1), where t '  is a non-variable subterm
o f t  and I'; A =>! — r i n  R,  is a complete covering for Y .

Let R be confluent and terminating. Let G === ¥ and let Cov(¥) be as in  Lemma
7.5. I f  Cov is not a covering for ¥ then G is not ground reducible in  R,  = {== | —
r |  TA  = 1 — r i n  R} ,  so Fail(G™) holds for any m. By Theorem 6.13 we can
conclude that G ¢ ITh(spec). We formulate this as a Lemma.

Lemma 7.6 Let R be confluent and terminating. Assume G ==  ¥ and Cov(¥)  is
as in  Lemma 7.5. If  Cov(¥ )  is no t  a covering for ¥ then G ¢ IT  h(spec). 0

See Example 7.7 below for an illustration of this result.

7.2 On  applying the rules I3 and I;

Rule I; is used to perform equational reasoning on the actual goal G™ using H™ €
LU HUG and the quasi-substitution o .  Rule I; is used to  subsume G™ using H m’

and o. There are two problems to be solved before carrying out the inference step: (1)
One has to  verify that the inference step is semantically allowed. This is reflected by
proving that the state ( ;  G) is inductive (see the definition of rule I 5  and rule I). (2)
If the clause H™ used is not safe (i.e. H™ ¢ £ )  then one has to verify that o(H) can
be used as induction hypothesis. This is reflected by proving (G™,7) > ;  (a(H™), 7)
for all ground substitutions 7 such that 7 (G)  is  not valid.

Here we comment on the first problem and postpone the discussion on the second
problem to section 7.3. We require to prove that (H;G) is inductive before carrying
out the inference step to ensure refutational completeness. One could also think of
carrying out the inference step directly and to  add G to the set of unprocessed goals.
This would mean to verify the goals in  G lazily. This modification of the inference
system may be a good choice i f  one is interested in successful proofs only. However, it
destroys refutational correctness. We  give an  example for that .  Assume Fy  = {a,b,c}
and F = FobU{f,g} andR
R:  =>  f (a ) — a

f l z )=a  — g(z) =a
f l@)=b  = g(z ) bd
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Consider the goal G :==? g(a) = a. Using the modified inference rules 13 and 14 , there 
is a successful derivation2 (0;G) f-- (G;==? a = a,==? f(a) = a) f-- (G,==? a = a;==? 
f(a) = a) f-- (G, ====> a = a, ====> f(a) = a; 0). So G E ITh(spec) holds. But there is 
also a refuting derivation 

(0; G) f-- (Gj ==? b = a, ==? f(a) = b) f-- (G, ==? f(a) = bj ==? b= a, a = b) 
It is easy to see that Fail(==? a = b) is not in ITh(spec). (Notice that R is confluent 
and terminating.) If the modified inference system would be refutational correct then 
we could conclude G fj. ITh(spec). But this is false. 

We mention that in practice the proof for (H; g) to be inductive is often trivial. This
 
is the case, for example, if 9 = 0 or each Gm E9 is subsumed by a lemma HmI E.c
 
or by HmI E HUg and a, where a is a substitution and m >-i a(m'). We give some
 
examples. If G = q> ==? s = t, \lI and H ===? u = v is an unconditional lemma (a rule
 
in R, for example) and a is a substitution with a(u) = sip, then G' can be rewritten
 
to G' = q> ==? s[a(v )]p = t, \lI. (This is done several times in the preceeding examples
 
illustrating the rules 13 and 14 ,) Also, if G = q> ==? \lI and H = r ==? ~ E ITh(spec)
 
totally subsumes G, i.e., a(r) ~ q> and a(~) ~ q> for some substitution a, .then 14
 

is applicable to G and so G can be processed. (This is also done in the preceeding
 
examples.)
 

We now specialize rule 13 for performing contextual rewriting: The goal Gm = (q>, u =
 
v, A[u]p ==? \lI I m) may be rewritten to G'm = (q>, u = v, A[v]p ==? \lI I m). This
 
can be done by rule 13 using the lemma H = u = v ==? u = v and the substitution
 
a = id. Since contextual rewriting is a powerful inference rule in practice we state this
 
explictly as rule ler. It may be added to the rules 10 to 14 •
 

Rule ler: Contextual rewriting
 
Let Gm == (q>, U = v, A[u]p ==? \lI Im) and let g' consist of G,m = (q>, u = v, A[v]p ==?
 

\lI I m) only. Then ler(Hjg,Gm) consists of all these g'. Let Gm = (q>,u = v ==?
 

A[u]p, \lI I m) and let g' consist of G,m = (q>, u = v ==? A[v]p, \lI I m) only. Then
 
leT(H; g, Gm) consists of all these g'.
 
One may want to avoid the necessity to eagerly evaluate the condition that (H; g) is
 
inductive in rules 13 and 14 . This is possible by modifying these rules as follows:
 

Rule l~: Clausal rewriting 
Let Gm = (q>, A ==? \lI I m) be a goal. Let Hm' E .c U Hug be a clause HmI ­
(r ==? u = v, ~ I m'). Let a be a quasi-substitution such that Alp = a(u). Let

/
(Gm,7) >-i (a(Hm ), 7) if HE HUg and T(G) is not valid. Let g' consist of all elements 
(1) (q>, A, a(B) ==? WIm) with B E ~ and (2) (q>, A==? a(B), WIm) with B E rand 
(3) (q>, A==> B, WI m) with B E Def(H, a) and (4) (q>, a(r), A[a(v)]p, Def(H, a) ==? 

\lI, a(~) I m). Then 1~(Hj g, Gm) consists of all these g'. A similar rule holds for 
Gm = (q> ==? A, \lI I m). 

Rule l~: Subsumption 
Let Gm = (q>o, q>l ==> WO, \lI I I m) be.a goal and HmI = (fo, r l ==> ~o, ~l I m') 
in Hug U.c. Let a be a quasi-substitution such that a(ro) ~ q>o and a(~o) ~ \lIo. 

2We do not need here measure terms m. 
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Consider the goal G :=> g(a) = a. Using the modified inference rules I3  and I ,  there
is a successful derivation? (§;G) F (G ;=  a = a ,=  f (a)  = a) FE (G ,=  a = a;  =
f l a )  = a) F (G ,=  a = a,=> f (a)  = a;0). So G € ITh(spec) holds. But  there is
also a refuting derivation

GQ)  FE (G i=b=a ,  = fla)=0b) + (G,= f ( a )=b  =b=a ,a=0 ) .
I t  is easy to see that Fail(=> a = b) is not in  ITh(spec). (Notice that R is confluent
and terminating.) If the modified inference system would be refutational correct then
we  could conclude G € ITh(spec) .  Bu t  this is  false.

We mention that in practice the proof for (H;G) to be inductive is often trivial. This
is the case, for example, i f  G = 0 or each G™ € G is subsumed by a lemma H™ € £
or by HT  € HUG  and co, where © is a substitution and m > ‘  o(m'). We give some
examples. I f  G = ® =>  s = t , ¥  and H ==> u = v is an unconditional lemma (a  rule
i n  R,  for example) and cv is a substitution with o (u )= s/p, then G' can be rewritten
t o  G ' = ® = s [o(v) ] , = ¢, ¥ .  (This i s  done several t imes i n  the  preceeding examples
illustrating the rules I3  and Is.) Also, i f G = ® = ¥ and H =T =>  A € ITh(spec)
totally subsumes G,  i.e., o(T) © ® and o(A)  © ® for some substitution o ,  then I,
is applicable to G and so G can be processed. (This is also done in  the preceeding
examples.)

We now specialize rule I 5  for performing contextual rewriting: The goal G™ = (®,u =
v, Alu], =>  ¥ | m) may be rewritten to G™ = (®,u = v, Av ] ,  = ¥ | m). This
can be done by rule I3  using the lemma H = u = v =>  u = v and the substitution
o = id. Since contextual rewriting is a powerful inference rule in  practice we state this
explictly as rule I,. It may be added to  the rules Ip  to  Is.

Rule I :  Contextual rewriting
Let G™= (®,u = v, Alu],  = ¥ | m) and let G’ consist of G '™= (@, u =v ,  Ap] ,  =
W | m) only. Then I.(H;G,G™) consists of all these G'. Let G™= (®,u = v =
Alulp,¥ | m) and let G' consist of G™ = (®,u = v =>  A[v] , ,¥ | m) only. Then
I . (H ;G ,G™)  consists of all these G'.

One may want to avoid the necessity to eagerly evaluate the condition that (H;G) is
inductive in  rules I3  and I .  This ispossible by modifying these rules as follows:
Rule Ij: Clausal rewriting
Let G™ = (® , A=>  ¥ | m) be a goal. Let H™ € LUHUG be a clause HT  =
( I =  u = v ,A  | m’). Let vo be a quasi-substitution such that A/p = o(u). Let
(G™,7) = ;  (¢ (H™) , )  if H € HUG and 7(G) is not valid. Let G’ consist of all  elements
(1) (®,A,0(B) =>  ¥ | m) withB € A and (2) ( 2 , A =>  o(B),¥ | m) with B € T and
(3) (® , A=>  B,  V | m) with B € Def(H,o)  and (4) (®,0(T), Alo (v)]p, Def(H,0)  =>
U,0(A) | m). Then I4(H;G,G™) consists of all these G'. A similar rule holds for
G”  = (® = A,¥  |m).
Rule Ij: Subsumption
Let G™ = (99,8; = Uo ,¥; | m) be a goal and H™ = (To,T1 = Ag ,Ar | m’)
in HUG UL .  Let o be a quasi-substitution such that v(To) © ®¢ and (Ag)  © Yo.

2We do  not need here measure terms m .
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Let (Gm,r) >-i (a(Hm'),T) if H E 11 U (I and T(G) is not valid. Let (I' consist 
of the elements (1) (<Po, <PI, a(B) ===} Wo, Wl I m) with B E ~1 and (2) (<Po, <PI ===} 

a(B), Wo, W1 I m) with BE r 1 and (3) (<Po, <PI ===} Wo, 'lib B I m) with B E Def(H, a). 
Then 1~ (11; (I, Gm) consists of all these (I'. 

It can be shown that these inference rules are inductively and refutationally sound. 

We now assume that R is confluent and terminating. So assume --+RS;;;;>- for some 
reduction ordering >-. Then one may want to restrict the search space for finding a 
proof for G E 1Th(spec) by applying rule 13 in a simplifying manner only: One rewrites 
G =<P ===} W with H =r ===} u = v, ~ and a only if the term a(u) in G is replaced 
by a(v) and a(u) >- a(v) holds. In this case one can refine the induction ordering ~i to 
~i such that 13 is strictly decreasing. This is done as follows: The reduction ordering 
>- (with --+R S;;;; >-) defines a well-founded ordering >-c on clauses (>-c is the two-fold 
multiset extension of >-). Now ~i is defined by 

(G Im) ~i (G' Im') iff	 m >-i m' or
 
m >-i_ m' m' >-i_ m , G >­,	 c G' 

This allows one to define a weak notion of a fair derivation (see Definition 5.9) and 
to define a refutational complete prover. This is done according to the construction 
in [Bac88]. However, in the more general setting of conditional specifications we need 
an undecidable failure predicate Fail*, see [BL90]. (The main problem is that ground 
reducibility of a term is not decidable.) So we do not go into details here. But we 
mention that, from a practical point of view, applying rule 13 in a simplifying manner 
only is highly recommended. 

7.3 On the induction ordering 

Recall that an induction ordering ~i is a well-founded ordering on the semantic units 
(Gm, T). In our instantiation of the abstractprover it is based on the measure terms 
m in Gm only and so is independent of the clause G. We have (Gm,T) ~i (Hm',T') 
iff T(m) ~i T'(m'). We require that >-i is compatible with R: If T(X) =R T'(X) for all 
x E Var(m) then (Gm,T) ti (Cm,T') for any two ground substitutions T aLld T'. (This 
is expressed by T(m) ~i T'(m).) 

The compatibility of R and ~i expresses the fact that ~i is a semantic ordering, i.e., it 
can be interpreted as a well-founded ordering on A spec ' This is a standard requirement 
in inductive theorem provers of the Boyer-Moore style (see [BM79] and [Wa194]). It 
is not a standard requirement in rewrite based inductive theorem provers ([Bac88], 
[BR93], [Gra90], [Red90], [ZKK88]. Here the induction ordering ~i is strictly coupled 
with the reduction ordering >- satisfying --+R ~ >-, i.e., with the termination ordering 
for R. Note that both classes of provers require R to be terminating. 

We allow R to be non-terminating and so allow the induction ordering to be completely 
independent of the termination of R. This is one reason why we need compatibility of 
R and ~i' So the question arises how to find an appropriate induction ordering or to 
avoid compatibility with R. 
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Let (G™,7) > ;  (o(H™),7) if HE HUG and 7(G) is not valid. Let G’ consist
of the elements (1) (®o, P1,0(B) =>  Uo ,¥; | m) with B € A ;  and (2) ($0 ,® =
o(B), Vo, ¥ ,  | m) with B € T; and (3) (Po, 1 =>  Wo, Uy ,B | m) with B € Def(H, 0).
Then LH ;  G,G™) consists of all these G'.

I t  can be shown that these inference rules are inductively and refutationally sound.
We now assume that R is confluent and terminating. So assume — RC} for some
reduction ordering > .  Then one may want to restrict the search space for finding a
proof for G € ITh(spec) by  applying rule I in  a simplifying manner only: One rewrites
G=® = V with H =T  = u = v ,A  and cv only if the term o(u) in  G is replaced
by o(v) and o(u) > o(v) holds. In this case one can refine the induction ordering > ;  to
> !  such that I is strictly decreasing. This is done as follows: The reduction ordering
> (with — gr C > )  defines a well-founded ordering > .  on clauses ( > .  is the two-fold
multiset extension of  >). Now >?  i s  defined by

(Gm)  = i  (G ' |m ' )  i f  m >"  m'  or
m x m',  m = m,  GG

This allows one to define a weak notion of a fair derivation (see Definition 5.9) and
to define a refutational complete prover. This is done according to  the construction
i n  [Bac88] .  However, i n  the more general sett ing of  condit ional specifications we  need
an undecidable failure predicate Fail*,  see [BL90]. (The main problem is that ground
reducibility of a term is not decidable.) So we do not go into details here. But we
mention that,  from a practical point of view, applying rule I5 in a simplifying manner
only is highly recommended.

7.3 On  the induction ordering

Recall that an induction ordering > ;  is a well-founded ordering on the semantic units
(G™, 7). In our instantiation of the abstract prover i t  is based on the measure terms
m in G™ only and so is independent of the clause G. We have (G™,7) > ;  (H™, 7)
iff 7(m) > ‘  7'(m’). We require that > ;  is compatible with R: If 7(z) =g  7'(z) for all
z € Var (m)  then (G™, 7) = ;  (G™, 7’) for any two ground substitutions r and 7’ .  (This
is expressed by 7(m) >* 7/(m).)
The compatibility of  R and > ;  expresses the fact that > ;  is a semantic ordering, i.e., i t
can be interpreted as a well-founded ordering on Ap... This is a standard requirement
in inductive theorem provers of the Boyer-Moore style (see [BM79] and [Wal94]). I t
is not a standard requirement in rewrite based inductive theorem provers ([Bac88|,
[BR93], [Gra90], [Red90], [ZKK88]. Here the induction ordering > ;  is strictly coupled
with the reduction ordering > satisfying — pr C > ,  i.e., with the termination ordering
for R. Note that both classes of provers require R to be terminating.
We allow R to  be non-terminating and so allow the induction ordering to  be completely
independent of the termination of R.  This is one reason why we need compatibility of
R and > ; .  So the question arises how to  find an appropriate induction ordering or to
avoid compatibility with R.
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We first comment on how t9 deal with the compatibility requirement. The main 
problems come with the application of rules 13 and 14 • Here we have to verify that 
(Gm,r)}-i ((T(Hm'),r) for all ground substitutions r such that r(G) is not valid. Here 
(T may be a quasi-substitution. In general this amounts to verify m }-i (T( m'), which 
may be hard to prove. One may proceed as follows: Define a relation ~i on Term(F, V) 
that can provably be interpreted as a well-founded ordering on A spec (or an isomorphic 
copy of A spec ). Then we have besides the equality atoms u = v and the def-atoms 
def(t) also ordering atoms of the form s > t. Now, to prove m >-i m' amounts to prove 
an inductive theorem ==::::} m >- m'. This proof task can be integrated in the general 
prover we are just describing. This will be worked out in [Wir96]. 

Now we discuss how to avoid the requirement that Rand ti are compatible. There are 
some easy cases: Many inductive theorem provers allow free constructors only. So we 
assume that speCo = (sigo, Ro) with Ro being empty. Then r(x) =R r'(x) is equivalent 
to r(x) r'(x) for all base variables x. So, if m =f3(tI, ... , tn ) consists of base 
terms ti only and (T is a substitution (not a quasi-substitution), then one can base the 
definition of t i on the measure terms (as given in section 6.2) on a reduction ordering 
on Term(Fo, ltO). Here any RPO (recursive path ordering) or any LPO (lexicographic 
path ordering) [DJ90] can be used. We first note that compatibility of R and ~i is used 
to guarantee that rules 11 and 12 decrease inductive counter-examples. From section 
7.1 we learn that compatibility of R and ~i is not needed if we use covering sets of 
substitutions for Cov('lJ) to apply rule 11 and WCov(A) to apply rule h. In this case 
any ground substitution r is directly covered: There is a (T E Cov('lJ) and a r' such 
that r(x) =r'( (T( x)) for all x E domer). (We need the compatibility of Rand ti if we 
only have r(x) =R r'((T(x)) for all x E dom(r), i.e., if r is only R-covered.) By a similar 
argument we do not need compatibility of Rand ti in rule 12 , if (1) R is confluent 
and terminating and (2) WCov(A) and Cov('lJ) are computed as in the Lemmas 7.3 
and 7.5. 'We next note that compatibility of Rand ti is used in rules 13 and 14 to 
verify that Gm >-i (T(Hm'), where (T may be a quasi-substitution. So we have to verify 
m }-i (T(m'). This is no problem if (T is a substitution, since only base terms, have to 
be compared. If (T is a quasi-substitution then also non-base terms need be compared. 
One can avoid this in many cases as follows: We asume that t i is defined on measure 
terms m = f3(tI, . .. , tn) by comparing the arguments in a lexicographic order. Then 
the result of comparing two measure terms may be determined before two non-base 
arguments are compared. 

7.4 Examples 

We now perform some inductive proofs to demonstrate how the inference system I 
works. We start with the example used in section 6.2 to illustrate the inference rules. 

Example 7.7 Let spec = (sig,R), speCo = (sigo,R.J) with So = S = {NAT}, Fo = 
{D, s}, F = {O, s, +, -}, Ro = 0 and 

R:	 ==::::} x +0 ---+ x (pt} ==::::} x - D x
 
==::::}x+s(y) ---+ s(x+y) (P2) =} sex) ---+ s(y) x-y
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We first comment on how to deal with the compatibility requirement. The main
problems come with the application of rules Is and Is. Here we have to verify that
(G™, 7) > ;  (a(H™'), 7) for all ground substitutions 7 such that 7(G) is not valid. Here
o may be a quasi-substitution. In general this amounts to verify m = ‘  o(m’), which
may be hard to prove. One may proceed as follows: Define a relation >* on  Term(F, V)
that can provably be interpreted as a well-founded ordering on Aspec (or an isomorphic
copy of Aspece).  Then we have besides the equality atoms u = v and the def-atoms
def(t)  also ordering atoms of  the form s > t .  Now, to  prove m > "  m’  amounts to  prove
an inductive theorem =>  m > m’. This proof task can be integrated in the general
prover we  are jus t  describing. This will be  worked out i n  [Wir96].

Now we discuss how to avoid the requirement that R and > ;  are compatible. There are
some easy cases: Many inductive theorem provers allow free constructors only. So we
assume that spec = (sige, Ro) with Ro being empty. Then 7(z) =g  7'(z) is equivalent
t o  7(z)  = 7'(z)  for all base variables z .  So, i f  m = B ( t1 , . . . , t . )  consists of base
terms #; only and o is a substitution (not a quasi-substitution}, then one can base the
definition of >* on the measure terms (as given in  section 6.2) on a reduction ordering
on Term(Fo, Vo). Here any RPO (recursive path ordering) or any LPO  (lexicographic
path ordering) [DJ90] can be used. We first note that compatibility of  R and > ;  is used
to guarantee that rules I), and I» decrease inductive counter-examples. From section
7.1 we learn that compatibility of R and > ;  is not needed if  we use covering sets of
substitutions for Cov(¥) to apply rule I ;  and WCov(A) to apply rule I>.  In  th is case
any ground substitution 7 is directly covered: There is a ¢ € Cov(¥) and a 7 ’  such
that 7(z)  = 7/(o(z)) for all z € dom(r).  (We need the compatibility of  R and > ;  i f  we
only have 7(z) =g  7'(¢(2)) for all z € dom(7), i.e., i f  7 is only R-covered.) By  a similar
argument we do not need compatibility of R and > ;  i n  rule I ,  i f  (1) R is confluent
and terminating and (2) WCov(A) and Cov(¥) are computed as in  the Lemmas 7.3
and 7.5. We next note that compatibility of R and > ;  is used in  rules Is and I, to
verify that G™ > ;  o(H™), where 0 may be a quasi-substitution. So we have to verify
m > !  o(m').  This is no problem i f  o is a substitution, since only base terms have to
be compared. I f  o is a quasi-substitution then also non-base terms need be compared.
One can avoid this in  many cases as follows: We asume that > ‘  is defined on measure
terms m = B( t4 , . . . , t , )  by comparing the arguments in  a lexicographic order. Then
the result of comparing two measure terms may be determined before two non-base
arguments are compared.

7.4 Examples

We now perform some inductive proofs to demonstrate how the inference system 7
works. We start with the example used in  section 6.2 to illustrate the inference rules.

Example 7.7 Let spec = (sig, R), speco = (stgo, Ro) with So = S = {NAT} ,  Fy =
{0,8}, F = {0 , s ,+,  —}, Ro = 0 and
R:  =z+40  —- =z ( 1 )  =z  -0  —- x (ps)

=z+s (y )  — s (z+y )  (p2) => s (z ) > s(y) — z—y  (pd)
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Note that R is confluent and terminating and that the constructors (i.e., the f E Fo) 
are free. We consider G ===} (x - y) + y = x. G is not ground reducible in R = Ru . 

For example, for r = {x +- O,y +- s(O)}, Tea) ===} (0 - s(O» + s(O) = 0 is not 
reducible. (Recall that (j = {x +- 0 - s(O), y +- O} is not a substitution, so the second 
rule of R is not applicable to r(G).) By Theorem 6.13, Fail(Gm) holds for any m and 
so G rf. ITh(spec). 

For all examples in this section we have Ra = 0 and all measure terms f3(t 1 , • •• , tn ) 

contain base terms ti only. SO =R is the identity on these base terms. Hence the 
ordering t i on the measure terms is based on an (arbitrary) reduction ordering on 
Term(Fo, VO). Even more, R is confluent and terminating in all examples. So we 
compute coverings Cov(\l1) and weak coverings WCov(A) by overlapping techniques 
as described in section 7.1. In a positive/negative-conditional specification we omit 
the def-atoms for simplicity reasons. So, when giving a specification we mean its 
def-moderated form (see Example 7.10). 

From now on we use a simplified notation to describe I-derivations. 11 applied to G 
instantiates G to several (ji( G). If these ai( G) can immediately be simplified to Gi 
using unconditional rules then we 'write {G1 , • •• , Gn } E I~ (G). The same holds for 12 

instead of 11 • We write 13(G, f), r ~ H u 9 if h can be applied to G using some 
HEr. We write Ii(f) to denote several simplifications of G using rule 13 • 

Example 7.8 Let spec be given as in Example 7.7. Now we consider G == def(x ­
y) ==} (x - y) + y = x. Now we get 

Go = (def(x - y) ==} (x - y) + y = x If3(x,y»)	 {Gt, G2 } E l~( Go) 
G1 - (def(x) ==} (x - 0) + 0 = x I f3(x, 0»)	 {G3 } E li(G1 , 0) 
G2 - (def(x - y) ==} (s(x) - s(y» + s(y) = sex) If3(s(x),s(y») {G4 } E li(G2 , 0) 
G3 - (def(x) ==} x = x I f3(x, 0»)	 oE 10(G3 ) 

G4 = (def(x - y) ==} s((x - y) + y) = sex) If3(s(x),s(y») {Gs} E 
13(G4 ,{Go}) 

Gs = (def(x - y) ==} sex) = sex) If3(s(x),s(y»)	 0E l o(Gs) 
. 

We consider the simplification of G2 in more detail. First G2 is simplified to G~ = 
def(x - y) ==} (x - y) + s(y) = x using rule P4 and substitution a = id. Then G~ is 
simplified to G3 using rule P2 and the quasi-substitution a = {x +- x - y}. So we have 
to prove that (H;9) = (H; {def(x-y) ==} def(a(x»)}) is inductive. But that is trivial 

since	 a(x) = x - y. Now we have (0; {G}) '.f- (H'; 0). That proves G E ITh(spec). 

Example 7.9 This is Example 1.2 revisited. So we assume spec = (sig, R), speeo = 
(sigo, Ra) with So = S = {NAT, LIST}, Fo = {O, s, nil,.}, F = Fo U {push, pop, top}, 
Ra = 0 and 

R:	 ==} push(x, l) -+ x.l (pd
 
==} pop(x.l) -+ 1 (P2)
 
==} top(x./) -+ x (P3)
 

45 

Note that R is confluent and terminating and that the constructors (i.e., the f € Fo)
are free. We consider G ==> ( z  —y)+y  =z .  G is not ground reducible in R = R , .
For example, for 1 = {z  « 0,y « s(0)}, 7(G) ==  (0 — s(0)) + s(0) = 0 is not
reducible. (Recall that 0 = { x  « 0 — s(0),y « 0} is not a substitution, so the second
rule of R is not applicable to 7(G).) By  Theorem 6.13, Fatl(G™) holds for any m and
so G &€ ITh(spec).

For all examples in this section we have Ro = ( and all measure terms B(t1, . . . , t , )
contain base terms ¢; only. So =pg is the identity on these base terms. Hence the
ordering >* on the measure terms is based on an (arbitrary). reduction ordering on
Term(Fo, Vo). Even more, R is confluent and terminating in all examples. So we
compute coverings Cov (¥ )  and weak coverings WCov(A)  by  overlapping techniques
as described in  section 7.1. In a positive/negative-conditional specification we omit
the def-atoms for simplicity reasons. So, when giving a specification we mean its
def-moderated form (see Example 7.10).
From now on we use a simplified notation to  describe Z-derivations. I; applied to G
instantiates G to several o;(G). I f  these 0;(G) can immediately be simplified to G;
using unconditional rules then we write {G1 , . . . ,Gn}  € I { (G) .  The same holds for I
instead of I ; .  We write I3(G,T'), I' © HUG i f  I3  can be applied to G using some
H €T .  We write I(T") to denote several simplifications of G using rule I .

Example 7.8 Let spec be given as in  Example 7.7. Now we consider G = def(z —
y) => (z —y)+y =z. Nowwe get :

Go = (def(z —y) = (z—y) +y  =z  | B(=z,y)) {G1, Ga} € L(Go)
Gi = (def(z) = (x — 0) +0  =z  | B(z,0)) {Gs} € I ; (G4,0)
Gz = (def(z — y) =>  (s(z) — s(y)) + s(y) = s(z) | B(s(x), s(y))) {Ga} € I3(G2,0)
Gs = (def(z)  = = =z  | B(z,0)) 0 € I (Gs)
Ga = (def(z — y) =>  s((z —y) + vy) = s(z) | B(s(z), s(y))) {Gs} €

I3(G4,{Go})
Gs = (def(z — y) =>  s(z) = s(z) | B(s(z), s(y))) DE Io(Gs)

We consider the simplification of G,  in more detail. First Gy is simplified to Gy =
def(z — y) =>  (z  — y) + s(y) = = using rule ps and substitution 0 = id. Then G) is
simplified to Gs using rule p, and the quasi-substitution 0 = { x  — x —y} .  So we have
to prove that (H;G) = (H;  {def(z  —y) =>  def(o(z))})  is inductive. But that is trivial

since o(z) = z — y. Now we have (0; (GH  F (H';0). That proves G € ITh(spec).

Example 7.9 This is Ezample 1.2 revisited. So we assume spec = (sig, R), speco =
(8290, Ro) with So = S = {NAT,  L IST} ,  Fo = {0,s ,n i l , . } ,  F = Fy U {push, pop, top},
Ro = 0 and
R :  = push(z,l) — =z. (p1)

= pop(z.l) — 1 (p2)
=>  top(z.l) — Zz (p3)
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We consider 
G = pop(l) = nil ==? push(top(I),pop(l)) = I 

This gives 

Go (pop(l) = nil ==? push(top(1),pop(1» = I1 (3(1») {Gd E I~(Go) 

GI	 = (I = nil==? push(top(x.l),pop(x.l» = x.ll (3(x.l») {G2} E Ij(G, 0) 
G2	 = (I = nil ==? x.l = x.ll (3(x.l») °E Io(GI) 

This proves G E ITh(spec). 

Example 7.10 This is Example 1.3 slightly changed. So assume spec(sig, R), speeo = 
(sigo,Ra) with So = {NAT}, S = {NAT,BOOL}, Fo = {O,s}, F = {O,s,true,false, 
even, odd}, Ra = 0 and 

R:	 ==? even(O) -+ true (pd
 
even(x) = true ==? even(s(x)) -+ false (P2)
 
even(x) #- true ==? even(s( x» -+ true (P3)
 

==? odd(s(O» -+ true (P4) 
==? odd(S2(X» -+ odd(x) (Ps) 

We consider 
G _ ==? even(x) = true, odd(x) = true 

That gives 

Go =(==? even(x) = true,odd(x) = true I (3(x»)	 {GI G2 } E II(Go) 
GI =(==? even(O) = true,odd(D) = true I (3(0»)	 {G3 } E h(Gl, 0) 
G2 =(==? even(s(x» = true,odd(s(x» = true I (3(s(x))) {G4 ,GS } E I I(G2) 
G3 =(==? true = true,odd(O) = true I (3(0»)	 0 E Io(G3) 
G4 = (==? even(s(O)) = true,odd(s(O» = true I (3(s(O))) {G6 } E h(G4 ,0) 
Gs = (==? even(s2(x» = true,odd(s2(x» = true I(3(s2(x») {Gr } E 13(Gs) 
G6 =(==? even(s(O)) = true, true = true I (3(s(O») °E Io(G6 ) 

G7 =(==? even(s2(x» = true,odd(x) = true I (3(s2(x») {Gs} E 13 (G7 , H) 

provided (H; 0) is inductive, where H = {Go, ... , G7 }, 0 = {G} 
G = (even(s(x» = true ==? odd(x) = true I (3(s2(x») 

provided (H; 0') is inductive, where 0' == {G'} 
G' = (==? even(x) = true,odd(x) == true I (3(S2(X») oE 14(G', {Go}) 

G~ =(false = true ==? odd(x) = true I (3(S2(X»))	 0EI2(GI ) 

Gs = ==? true = true,odd(x) = true I (3(s2(X»)	 oE Ia(Gs) 

Note how the prover is called recursively: To apply 13 to G7 needs to prove that (H; Q) 
is inductive. For this proof 13 is applied to G, so (H; 0') has to be proved inductive. 
This succeeds, so GI can be derived as the result of applying h to G. This in turn 
gives that (H; Q) is inductive, so Gs can be derived. This immediately concludes the 

* 
proof of (0; {G}) f- (H'; 0) and so of P(G). 
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We consider
G = pop(l) = ni l  =>  push(top(l), pop(l)) = 1

This gives

(pop(l) = n i l  =>  push(top(l),pop(l)) = 1 | B(1)) {G i }  € I3(Go)
( I  = n i l  =>  push(top(z.l), pop(z.l)) = z . l  | B(x.1)) {G2} € I3(G,0D)
( I  = nil  = z . l  = z . l |  B(z.l)) 0 € I (Gy)

This proves G € ITh(spec).

N
e

e

Example 7.10 This is Example 1.3 slightly changed. So assume spec(sig, R),  speco =
(stgo, Ro) with So = {NAT},  S = {NAT,BOOL},  Fo.= {0,s}, F = {0,s, true, false,
even,odd}, Ro = 0 and
R :  =>  even(0) — true (p1)

even(z) = true =>  even(s(z)) — false (p2)
even(z) # true = even(s(z)) — true (p3)

=>  odd(s(0)) — true (pa)
=>  odd(s?(z)) — odd(z) (ps)

We consider
G = = even (z )=  t rue ,odd(z)  = t rue

That gives
Go = (=> even(z) = true, odd(z) = true | B(z)) {G1G2} € I1(Go)
G1 = (=> even(0) = true, odd(0) = true | S(0)) {G3} € I3(Gh, 0)
G2 = (=> even(s(z)) = true,  odd(s(z)) = true | B(s(z))) {G4,Gs} € L(G?)
G3 = (=  true = true, odd(0) = true | 5(0)) 0 € I(Gs)
Gs = (=> even(s(0)) = true, odd(s(0)) = true | S(s(0))) {Ge} € I3(G4,0)
Gs = (=> even(s(x)) = true, odd(s!(x)) = true | B(s*(z))) {G+} € I3(Gs)
Ge = (=> even(s(0)) = true, true = true | B(s(0))) 0 € Io(Gs)
Gr = (=> even(s¥(z)) = true, odd(z) = true | B(s%(z))) {Gs} € I;(G+,H)

provided (H;G) is inductive, where H = {Go,...,G7}, ¢= {G}  _ _
G = (even(s(z)) = true =>  odd(z) = true | B(s*(z))) {G1} € I3(G,H)

provided (MH; G') is inductive, where G' = {G'}
_G  = (=> even(z) = true, odd(z) = true | B(s%*(z))) Be  L(G, {Go})
G,  = ( false = true =>  odd(z) = true | B(s*(z))) 0 € I , (Gh)

Gg = =>  true = true,  odd(z) = true | B(s*(z))) 0 € Io(Gs)

Note how the prover is called recursively: To apply Is to  G7 needs to  prove that (H;G)
is inductive. For this proof I; is applied to G,  so (H;  4 ’)  has to be proved inductive.
This succeeds, so Gi  can be derived as the result of applying Is to G. This in  turn
gives that (H;G) is inductive, so Gs can be derived. This immediately concludes the
proof of (0; {G})  F (H';  0) and so of P(G).
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8 Other instantiations of the abstract prover 

We now relate our abstract prover to some inductive theorem provers known in the 
literature. Before doing that we mention a small variation of our abstract prover: 

We decrease semantic units only weakly in performing an inference step: If (}' E 1(G), 
then for each G-instance (G,r) there is Q'-instance (G',r') such that (G,r) ~i (G',r'). 
As a consequence, we can apply in rules 13 and 14 and induction hypotheses a(H) on 
G only if a(H) is stictly smaller than G, i.e. G >-i a(H). Here one can switch: If one 
guarantees (G, r) >-i (G', r') than one can allow G ~ a(H). See [WB94:]. 

This modification of the abstract prover is needed to comment on the inductive prover 
known in the literature. These provers do not introduce explicitly measure terms as 
we did. We found that the introduction of measure terms gives more flexibility in 
designing the inference rules so that they are useful in practice. For that we needed 
the unswitched version of the abstract prover. 

8.1 Rewrite based inductive theorem provers 

We first comment on the prover described in [Bac88]. Here only unconditional and 
flat specifications are allowed. So we have spec = speCo = (sig, R) and R is an 
unconditional rewrite system. R is required to be confluent and terminating. Only 
unit clauses of the form G ====} u = v are considered when proving inductive 
theorems. 

Assume>- is a reduction ordering and ------l'R ~ >-. Then the induction ordering >-i is 
given by 

(===} u = v, r) >- i (===} S = t, r) iff {r (u), r (v)} ~ {r (s), r (t )} . 

Here ~ is the multiset extension of >-. The inference rules are similar to ours (with 12 

being superfluous). Rule 11 is realized by overlapping rules into a goal. So Cov(u = v) 
is computed as described in section 7.1 for R being confluent and terminating. The 
difference of our rule 11 and case splitting in [Bac88] is that after the case splitting each 
new goal is immediately simplified (with our rule 13 ), As a consequence, all inference 
rules are strictly decreasing and so refutational completeness can be reached along 
the lines discussed in sections 5.2 and 7.2. Note that the induction ordering >-i is a 
syntactic ordering and not compatible with R. The reason why no semantic ordering 
is needed was given at the end of section 7.3. 

We now comment on the provers described in [ZKK88] and [BR93]. Here hierarchic
 
specifications are allowed, so partiality has to be considered. But no del-atoms are
 
allowed in goals to be proved valid. No negative conditions are allowed in the condi­

tional equations of the specification. R is assumed to be terminating and the induction
 

. ordering >-i is tightly coupled with the termintion ordering for R. This is done as
 
described above. The case splitting is done by using either covering sets of substitu­

tions or R-covering sets of substitutions. So compatibility of Rand >-i is not required.
 
Quasi-substitutions for rules hand 14 are not considered. In [ZKK88] this is reflected
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8 Other instantiations of  the abstract prover

We now relate our abstract prover to  some inductive theorem provers known i n  the
l i terature. Before doing that we  mention a small variation of  our abstract prover:

We decrease semantic units only weakly in  performing an inference step: If G’ € I(G),
then for each G-instance (G, 7) there is G’-instance (G', 7’) such that (G, 7) = ;  (G', 7").

As a consequence, we can apply in  rules I 3  and I; and induction hypotheses o (H)  on
G only i f  o(H) is stictly smaller than G, i.e. G > ;  o(H). Here one can switch: If one
guarantees (G,7) > ;  (G',7’) than one can allow G > o(H). See [WB94].
This modification of the abstract prover is needed to comment on the inductive prover
known i n  the literature. These provers do not introduce explicitly measure terms as
we did. We found that the introduction of measure terms gives more flexibility i n
designing the inference rules so that they are useful in practice. For that we needed
the unswitched version of the abstract prover.

8 .1  Rewrite based inductive theorem provers

We first comment on the prover described in  [Bac88]. Here only unconditional and
flat specifications are allowed. So we have spec = speco = (sig,R) and R is an
unconditional rewrite system. R is required to be confluent and terminating. Only
unit clauses of the form G = ==  u = v are considered when proving inductive
theorems.
Assume > is a reduction ordering and — pg C > .  Then the induction ordering > ;  is
given by

(=  u = v,7)  > ;  ( =  s=1t ,7)  iff { r ( u ) , 7 ( v ) }>  { r ( s ) , 7 ( ) }

Here >> is the multiset extension of > .  The inference rules are similar to ours (with I
being superfluous). Rule I i s  realized by overlapping rules in to a goal. So Cov(u  = v)
is computed as described in section 7.1 for R being confluent and terminating. The
difference of our rule I; and case splitting in  [Bac88] is that after the case splitting each
new goal i s  immediately simplified (with our rule I3). As  a consequence, all inference
rules are strictly decreasing and so refutational completeness can be reached along
the lines discussed in  sections 5.2 and 7.2. Note that the induction ordering > ;  is a
syntactic ordering and not compatible with R. The reason why no semantic ordering
is needed was given at the end of section 7.3.
We now comment on the provers described in  [ZKK88] and [BR93]. Here hierarchic
specifications are allowed, so partiality has to  be considered. But  no def-atoms are
allowed in  goals to be proved valid. No negative conditions are allowed in  the condi-
tional equations of the specification. R is assumed to be terminating and the induction

“ordering > ;  is  t ightly coupled w i th  the termintion ordering for R .  Th i s  i s  done as
described above. The case splitting is done by using either covering sets of substitu-
tions or R-covering sets of substitutions. So compatibility of R and > ;  is not required.
Quasi-substitutions for rules I3  and I, are not considered. In [ZKK88] this is reflected
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by the semantics of spec: Only algebras with no partial functions are considered as 
models of spec (see section 1.2). So any quasi-substitution automatically is basically a 
substitution. 

8.2 Inductive provers of the Boyer-Moore style 

It is not possible to directly describe the inductive theorem provers of the Boyer-Moore 
style by instantiating our abstract prover. This is true, because the specifications are 
given algorithmically and not algebraically (as we did) and because these provers are 
not described by inference rules on the level we did, but by macro inferences. These 
macro steps are of the form "compute an induction ordering and an appropriate case 
splitting" or "perform induction according to the precomputed induction scheme". 
Very sophisticated techniques are developed to find "appropriate" induction schemes, 
to perform the induction step using the induction hypotheses and to generate Lemmas 
that may help to find a proof. 

Basically speaking, these provers consist of macros which are composed of the inference 
rules 10 to 14 , or variants thereof. These macros are activated by proof heuristics. 
To make the prover powerful (and for theoretical reasons also) some restrictions are 
required to hold for the specification: The constructors have to be free. All defined 
operators have to be totally defined. The specification is so that the evaluation of 
all terms terminates. Syntactic restrictions on the specification guarantee that some 
problems do not appear (e.g. confluence, mutual recursion). 

Semantic orderings are used, both for proving the specification terminating and for 
defining the induction ordering. This allows one to use very powerful orderings. 
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by the semantics of spec: Only algebras with no partial functions are considered as
models of  spec (see section 1.2). So any quasi-substitution automatically is basically a
substitution.

8.2  Inductive provers o f  the  Boyer-Moore style

I t  is not possible to directly describe the inductive theorem provers of the Boyer-Moore
style by  instantiating our abstract prover. This is true, because the specifications are
given algorithmically and not algebraically (as we did) and because these provers are
not described by  inference rules on the level we did, but by macro inferences. These
macro steps are of the form “compute an induction ordering and an appropriate case
splitting” or “perform induction according to the precomputed induction scheme”.
Very sophisticated techniques are developed to find “appropriate” induction schemes,
to perform the induction step using the induction hypotheses and to  generate Lemmas
that may help to find a proof.
Basically speaking, these provers consist of macros which are composed of  the inference
rules I p  to Is, or variants thereof. These macros are activated by proof heuristics.
To make the prover powerful (and for theoretical reasons also) some restrictions are
required to hold for the specification: The constructors have to be free. Al l  defined
operators have to be totally defined. The specification is so that the evaluation of
all terms terminates. Syntactic restrictions on the specification guarantee that some
problems do not appear (e.g. confluence, mutual recursion).
Semantic orderings are used, both for proving the specification terminating and for
defining the induction ordering. This allows one to use very powerful orderings.
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A Appendix A 

We here give the proofs to lemmas 6.5,6.6 and 7.5. 

Lemma 6.5 Each of the inference rules 10 to 14 decreases inductive counter-examples. 

Proof: Let (H; 9, Gm) be a state, (Gm, r) be an inductive counter-example for (H; 9, Gm), 
o :::; j :::; 4 and let 9' E Ij(Gm). We have to show that there is a 9'-counter-~xample 

(G~l,r') such that (Gm,r) t:i (G~l,rl)' Recall that(Gm,r) is a counter-example iff 
r(G) is not valid (in Aspec ). 

We consider 10: We have m = ml for all G~l E 9'. This shows (Gm, r) t:i (G;.nl, rd 
for all G;.nl E 9'. If G is of the form <1> ==::} A, W with A =u = u or A - def(t) and 
t E Term(Fo, vo), then r(G) holds and so (Gm, r) is not a counter-example. The same 
holds if G =<1>, A ==::} A, W. So assume G =<1>, A ==::} Wand A is either u = u or 
def(t) with t E Term(Fo, vo). Then r(A) is valid and r(G) is valid iff r(G1 ) is valid 
where G1 = <1> ==::} W. Since(Gm, r) is a counter-example, so is (Gi, r). 

We consider 11: Assume Gm = (<1> ==::} W I m) and 9' is based on Cov(W). Then any 
G~l E 9' has the form G~l = (u(G) I u(m)) with u E Cov(W). Since Cov(W) is a 
covering for W, there is a r' such that r(x) =R r'(u(x)) for all x E Var(m) ~ Var(G). 
This shows that (Gm,r) t:i (G~I,rd where G1 =u(G),ml =u(m) and rl = r'. Now 
r(G) is valid iff rl (Gd is valid. Since (Gm, r) is a counter-example, so is (G;.nr, rd. 

We consider 12: Assume Gm = (<1>, A==::} W I m) and 9' is based on WCov(A) and a T' 

such that r(x) =R r'(u(x)) for all x E Var(m). Define G1 = u(<1> ==::} W), ml = u(m) 
and rl = r'. Then G~l E 9' and (Gm,r) t:i (G;.nt,rd. Since r(A) is valid, so is rl(A). 
Since r(G) is not valid, so is rl(G1 ). Hence (G;.nl, rl) is a counter-example. 

We consider 13: Assume Gm = (G I m) and G =<1>, A ==::} W. (The case G _ <1> ==::} 

A, W is similar.) Let Hmo = (f ==::} u = v, D. I mo) be in £, U H U 9, let u be a quasi­
substitution such that Alp =u(u) and let m ~i u(mo). Finally, let 9 be given as in 
Rule 13 and let (H; 9) be sound. Then 9 consists of Gi = (<1>, A[u(v)]p ==::} W I m) 
only. Then (Gm,r) t:i (Gi,r). We have to show that r(G1 ) is not valid. Since 
P(H) holds below (Gm,r) and (H;9) is sound, r(G) is valid for all (G,m) in 9. To 
prove that r(G1 ) is not valid assume that each r(B) with B E <1> and no r(B) with 
B E W is valid. We have to prove that r(A[u(v)]p) is valid. By the goals (3) in 
9 there is a substitution u' such that r(u(x) = u'(x)) is valid for all x E Var(H). 
(This is true because def(r(u(x))) is valid.) Then by the goals (1) and (2) in 9 all 
r(u(B)) with B E f and no r(u(B)) with BED. is valid. Since m >-i u(mo) we 
have (Gm,r) >-i (u(Hmo),r) and P(HU9) is valid below (Gm,r), (u(H),r) is valid if 
HE H U 9. Clearly, if HE£' then (u(H),r) is valid also. So r(u(u) = u(v)) is valid 
and hence r(A) is valid iff r(A[u(v )]p) is valid. But r(A) is not valid since r(G) is not 
valid and all r(B) with B E <1> but no r(B) with B E W is valid by our assumption. 
So r(G') is not valid. 

We consider 14: Assume Gm = (G I m) with G = <1>0, <1>1 ==::} Wo, W1 and Hmo = (H I 
mo) with H = f o, f 1 ==::} 6.0 ,6.1 and r is a quasi-substitution such that u(fo) S; <1>0 

and CT(D.O) ~ Wo. Let m r i CT(mo), let 9 be as in Rule 14 and let (H; 9) be sound. We 

49
 

A Appendix A

We here give the proofs to lemmas 6.5, 6.6 and 7.5.
Lemma 6 .5  Each of  the inference rules Ip to  I decreases inductive counter-examples.

Proof: Let (H;G,G™) be a state, (G™, 7)  be an inductive counter-example for (H;  G,G™),
0 < j  <4andlet G' € I;(G™). We have to show that there is a G’-counter-example
(G t , 7’) such that (G™,7) > ;  (G i ,  71 ) .  Recall that(G™,7) is a counter-example iff
7(G) is not valid (in Aspec)-

We consider Io: We have m = m;  for all GT* € G'. This shows (G™,7) = ;  (GT,  71 )

for all GT“ € G'. If G is of the form ® =>  A, VW with A = u = u or A = def(t) and
t € Term(Fy, Vo), then 7(G) holds and so (G™, 7) is not a counter-example. The same
holds i f G = ®, A =>  A,V¥. So assume G = ®, A = V and A is either u = u or
def(t) with t € Term(Fo, Vp). Then 7(A) is valid and 7(G) is valid iff 7(G1) is valid
where Gy = ® =>  VU. Since(G™,  7) i s  a counter-example, so i s  (GT*, 7).
We consider I ; :  Assume G™ = (® = VU | m) and G’ is based on  Cov(¥). Then any
GT? € G' has the form GT" = (0(G) | o(m)) with 0 € Cov(¥). Since Cov(¥) is a
covering for U,  there is a 7 ’  such that 7(z) =g  7'(0(z)) for all z € Var(m) C Var(G).
This shows that (G™,7) > ;  (G I , 71) where Gi  = o(G) ,m; = o(m) and 1; = 7 ’ .  Now
7(Q) is valid iff 71(G}) is valid. Since (G™, 7) is a counter-example, so is (G7**, 71 ) .

We consider I :  Assume G™ = (®, A — ¥ | m) and G’ is based on  WCov(A) and a 7 ’

such that 7(z) =g  1'(0(z)) for all z € Var(m). Define Gi  = o(® = ¥) ,  my, = o(m)
and 7, = 7 .  Then GT} € G' and (G™,7) = ;  (GT*, 71 ) .  Since 7(A)  is valid, so is 71(A).
Since 7(G) is not valid, so is 71(G1). Hence (GT , 71) is a counter-example.

We consider Is: Assume G™ = (G | m) and G = ®,A = 9%. (The case G = & =>
A,U is similar.) Let H™  = ([' =>  u = v ,A  | mp) be in LUH UG, let 0 be a quasi-
substitution such that A/p = o(u) and let m >" o(mo). Finally, let G be given as i n
Rule I 3  and let (H;G) be sound. Then G consists of GT = (®, A[o(v)], = ¥ | m)
only. Then (G™,7) >;  (GT,7). We have to show that 7(G;) is not valid. Since
P(H) holds below (G™,7) and (H;G) is sound, 7(G) is valid for all (G,m)}) in  G. To
prove that 7(G:) is not valid assume that each 7(B) with B € ® and no 7(B) with
B € Wis valid. We have to prove that 7(A[o(v)],) is valid. By the goals (3) in
G there is a substitution o' such that 7(o(z) = o'(z)) is valid for all z € Var(H).
(This is true because def(7(o(z))) is valid.) Then by the goals (1) and (2) in  G all
7(0(B)) with B € T and no 7(o(B)) with B € A is valid. Since m >* o(mg) we
have (G™,7) > ;  (c(H™),7) and P(H  UG) is valid below (G™, 7), ( ¢ (H) ,7) is valid i f
H € HUG. Clearly, i f  H € £ then (¢ (H) ,7) is valid also. So 7(c(u) = o(v)) is valid
and hence 7(A) is valid iff 7(A[o(v)],) is valid. But 7(A) is not valid since 7(G) is not
valid and all 7(B) with B € ® but no 7(B) with B € Wis valid by our assumption.
So 7(G") is not valid.
We consider I4: Assume G™ = (G  | m)  with G = ®g,®;  = Vo, ¥ ;  and H™  = (H  |
mg) with H = I'g,I') = Ag, Aq and 7 is a quasi-substitution such that o(To) © ®
and o(Ao) C Yo. Let m >" (my), let G be as in  Rule I; and let (H ;G)  be sound. We
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show that no inductive counter-example (Gm l r) for (1t; Gm) can exist. Then we have 
proved that 14 decreases inductive counter-examples. 

Assume at the contrary that (G'm, r) is an inductive counter-example. Then P(1i) 
holds below (Gm,r) and (1tjQ) is sound. Hence r(G) is valid for all (G I m) in Q. 
Since r(G) is not valid, each r(B) with B E <.1>0, <.1>1 and no r(B) with B E '1i 0, '1i 1 is 
valid. By goals (3) in Q there is a substitution r' such that r(0"(x) = 0"'(x)) is valid 
for all x E Var(H). Then by goals (1) and (2) in Q each r(O"(B)) with BE f 1 and no 
r(O"(B)) with B E ~1 is valid. From O"(fo) ~ <.1>0 and O"(~o) ~ \lTo we conclude that 
each r(O"(B)) with ~ E f o and no r(O"(B)) with B E ~o is valid. So r(O"(t)) is not 
valid. But for H E 1t U Q we have (Gm, r) >-i (O"(H), r) = (H, r 0 0") and P(1t U Q) is 
valid below (Gm,r), so r(O"(H)) is valid. Clearly, r(O"(H)) is valid also if HE.c. This 
is a contradiction, so (Gm, r) cannot be an inductive counter-example for (1t; G). 0 

Lemma 6.6 All inference rules 10 to 14 are refutationally sound. 

Proof: We have to prove (1tj Q, Gm) f- (1t, Gm; Q, Q') and Q' E I j ( Gm) and r (H) holds 
for all (H, mo) E 1t U {Gm} and all ground substitutions r then r(G') holds for all r 
and all (G' Im') E Q'. 

We consider 10 : If Q' = 0 then nothing is to be proved. So assume G = <.1>, A ::=::> Wand 
A is u = u or def(t) with t E Term(Fo, VC). Then Q' consists of (G' I m) = (<.I> ::=::> W I 
m) only. Clearly, r'(A) is valid for all r'. Since r(G) is valid for all r, r(G') is valid 
vor all r. 

We consider 11 : Let G = <.I> =} W, let Cov('1i) be a covering for Wand let Q' be based 
on Cov(\lT). Any (G' I m') E Q' has the form {O"(G) I O"(m)) for some r E Cov('1i). So 
r(G') is valid since r(0"(G)) is valid. 

We consider 12 : Let G = <.1>, A ==} W (the case G = <.I> ==} A, W is similar), let 
WCov(A) be a weak covering for A and let Q' be based on WCov(A). Then any 
(G' I m') E Q' has the form (O"(G) I O"(m)) for some 0" E WCov(A). So r(G') is valid, 
since r(0"( G)) is valid. 

We consider 13 : Let G = <.1>, A ::=::> \IT, H = f ::=::> u = v, ~ and 0", Q as in Rule 13 , 

Then Q' consist of (G' I m) only where G' = <.1>, A ::=::> '1i and A' = A[O"(v )]p, Since 
(1t; Q) is sound and P(1t) holds, P(Q) holds also. Let r be any ground substitution. 
To prove that r(G') holds, we assume that r(B) holds for each B E<.I> and for no 
B E '1i and prove that r(A') holds. By the clauses (1) in Q there is a substitution r' 
such that r(O"(x) = O"'(x)) holds for all x E Var(H). Then by the clauses (1) and (2) 
in 9 r(O"'(H)) is applicable. Hence r(A) holds iff r(A') holds. But r(A) holds since 
r(G) holds andr(B) holds for each B E <.I> and for no B E W. Hence r(G') holds. 

We consider 14 : Here Q' = 0, so nothing has to be proved. 0 

Lemma 7.5 Let R be an admissible hierarchic conditional rewrite system. Let '1i = 

{A} and let Cov('1i) consist of all 0" = mgu(Alp, 1), where Alp (j. V and 1 is the left­
hand side of a rule f; ~ ::=::> 1 -t r in. If A is u = v and I-" = mgu(u, v) exists, let 
Cov(w) also contain W. It is undecidable whether Cov('1i) is a covering for '1i. 

Proof: We encode Post's Correspondence Problem PCP into this problem. 
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show that no inductive counter-example (G™, 7) for (H;  G™) can exist. Then we have
proved that I,  decreases inductive counter-examples.
Assume at the contrary that (G™,7) is an inductive counter-example. Then P(H)
holds below (G™,7) and (H;G) is sound. Hence 7(G) is valid for all (G | m) in  G.
Since 7(G) is not valid, each 7(B) with B € ® ,  ®; and no 7(B) with B € Yo, Y ı  is
valid. By  goals (3) in G there is a substitution 7 ’  such that r(o(xz) = o/(z)) is valid
for all z € Var(H). Then by goals (1) and (2) in G each 7(o(B)) with B € I'; and no
7(0(B)) with B € A,  is valid. From o(To) © ® and (Ao) © Yo we conclude that
each 7(o(B)) with A € Ty and no 7(0(B)) with B € Ag is valid. So 7(o(2)) is not
valid. But for H € HUG  we have (G™,7) > ;  (¢c(H),7) = (H,700)  and P(HUG)  is
valid below (G”,  7), so 7(o(H)) is valid. Clearly, 7(c(H)) is valid also i f  H € £ .  This
is a contradiction, so (G™, 7) cannot be an  inductive counter-example for (H;G). O

Lemma 6.6 All  inference rules I; to I are refutationally sound.
Proof: We have to prove (M;G,G™) FE (H,G™;G,G’) and G' € I;(G™) and 7(H) holds
for all (H,mo) € HU {G™} and all ground substitutions 7 then 7(G') holds for all 7
and all (G' | m') € G'.
We consider Ip: If  G’ = 0 then nothing is to  be proved. So assume G = ®, A =>  ¥ and
A i s  u = u or def(t) with t € Term(Fo, Vo). Then G’ consists of (G' | m)  = (® = V |
m) only. Clearly, 7/(A) is valid for all 7 ’ .  Since 7(G) is valid for all 7 ,  7(G') is valid
vor all 7 .

We consider I ) :  Let G = ® =>  U ,  let Cov(¥)  be a covering for ¥ and let G’ be based
on Cov(¥). Any (G' | m’) € G' has the form {o(G) | ¢(m)) for some 7 € Cov(¥). So
7(G') is valid since r(o(G)) is valid.
We consider I :  Let G = ® , A =>  V (the case G = ® =>  A ,V¥ is similar), let
WCov(A) be a weak covering for A and let G’ be based on WCov(A). Then any
(G' | m’) € G’ has the form (o(G) | o(m)) for some 0 € WCov(A). So 7(G’) is valid,
since 7(o(@G)) is valid.
We consider I :  Let G = 8 ,A  — ¥ ,  H =T  — u = v ,A and 0,G as in  Rule I .
Then G’ consist of (G' | m) only where G' = ® , A = ¥ and A’ = A[o(v)],. Since
(H;G) is sound and P(H) holds, P(G) holds also. Let 7 be any ground substitution.
To prove that 7(G’) holds, we assume that 7(B) holds for each B € ® and for no
B € ¥ and prove that 7(A’) holds. By  the clauses ( I )  i n  G there is a substitution 7 ’

such that 7(o(z) = o’(z)) holds for all z € Var(H). Then by the clauses (1) and (2)
i n  G r(o’(H)) is applicable. Hence 7(A) holds iff 7(A’) holds. But (A)  holds since
7(G) holds and7(B) holds for each B € ® and for no B € ¥ .  Hence 7(G’) holds.
We consider I :  Here G’ = §, so nothing has to  be proved. oO

Lemma 7.5 Let R be an admissible hierarchic conditional rewrite system. Let ¥ =
{A }  and let Cov(¥) consist of all 0 = mgu(A/p,!), where A/p € V and 7 is the left-
hand side of a rule [ ' ;A =>  | — r i n .  If A i s  u = v and u = mgu(u,v) exists, let
Cov(¥) also contain U. It i s  undecidable whether Cov(¥) is a covering for ¥ .
Proof: We encode Post’s Correspondence Problem PCP  into this problem.
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The PCP over alphabet I: = {al, ... , ar } consists of two lists of words A = (Ut, . .. , un) 
and B = (Vb . .. ,Vn) over I:. For t E {1, ... ,n}+ we define a(t) and j3(t) by a( i) = Ui, 
j3(i) = Vi, a(it) = Uia(t) and j3(it) = vij3(t). Then PCP(A, B) iff a(t) = j3(t) for some 
t E {1, ... , n}+. It is well known that PCP is undecidable. 

Given lists A and B, we construct R and an equality atom A so that Cov(\l!) is a 
covering for \l! iff PCP(A, B) holds: We associate to each ai E I: the unary function 
symbol ai E Fa. Then to any word w = bl ... bn , bi E I: we associate the term 
w(x) =b1( ••• (bn (x)) ...). Now let So = {NAT, LIST, BOOL}, Fa = {O,1, ... ,n} U 
{ab ... ,ar } U{nil,., eq, fA, fB, f, true, false}. The arities of the operators are given by 
i :-+ NAT for i E {a, 1, ... ,n}, aj : NAT -+ NAT, nil:-+ LIST, . : NAT, LIST ~ 

LIST, eq: NAT,NAT -+ BOOL, fA,fB : LIST -+ NAT, f: LIST -+ BOOL and 
true, false :-+ BOOL. Let S = So, F = Fa U {g} and R = Ra U RI where 

Ra: ====} fA(nil) ~ 0 
====} fB(nil) -+ 0 
====} fA(i.l) ~ Ui(jA(l)) 
====} fB(i.l) -+ vi(jB(l)) 
====} eq(x, x) -+ true 
x#- y ====} eq(x,y) -+ false 
====} f(nil) -+ true 
eq(jA(i.l),fB(i.l)) = false ====} f(i.l) ~ true 

RI: ====} g(true) -+ true 
====} g(jalse) -+ false 

A: g(z) = z 

For \l! = {A} Cov(\l!) consists of 0"1 = {z ~ true} and 0"2 = {z ~ false}. It 
is a covering for \l! iff f is totally defined iff PCP( A, B) does not hold. Since it is 
undecidable whether PCP(A, B) holds, it is undecidable whether Cov(\l!) is a covering 
for \IJ. 

Acknowledgement: We thank K. Becker, B. Gramlich, U. Kiihler, and C.-P. Wirth 
for many helpful discussions on the topic of this report. The results presented here are 
based to a large extent on their work, as cited in the text. 
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The PCP over alphabet X = {ay,. . . ,a,}  consists of two lists of words A = (uy, . . . ,u,)
and B = (vy,. . . ,v,)  over X. Fo r t e  { 1 , . . . , n } *  we  define a(t) and A(t) by ( 2 )  = u;,
B(i) = v i ,  ait)  = w;a(t) and B(it) = v;f(t). Then PCP(A,  B )  iff a(t) = B(t) for some
t € {1 , . . . , n } * .  It is well known that PCP  is undecidable.
Given lists A and B ,  we construct R and an equality atom A so that Cov(¥)  is a
covering for ¥ iff PCP(A ,  B )  holds: We associate to  each a; € X the unary function
symbol a; € Fo. Then to any word w = b ; . . . b , ,  bi € X we associate the term
( x )  = Bi l . . .  (bn(z))...). Now let So = {NAT,LIST,BOOL},  Fo = {0,1, . . . ,n}  U
{@y,...,a.}U{nil,. eq ,  fa, fB, f,  true, fa lse}.  The arities of the operators are given by
i :—  NAT f o r i  € {0,1,... ,n},@; : NAT — NAT,  n i l  :— LIST,  . :  NAT, LIST —
LIST, eq: NAT,  NAT — BOOL, fa ,  fg: LIST — NAT,  f :  LIST — BOOL and
true, false :— BOOL. Let S = So, F = Fy U {g} and R = Ro U R;  where
Ry: = fa(ni l)  — 0

= fp(nil) — 0
= fal l !)  — w(fa(l))
=>  fp(2.l) — B:(f6(1))
=>  eq(z,z) — true
z #y  =>  eq(z,y) — false
=>  f(ni l )  — true
eq(fa(.l), fa(3.1)) = false =>  f ( i . l )  — true

Ry: = g(true) — true
=>  g(false) — false

A:  g(z)==z2

For ¥ = {A }  Cov(¥) consists of 0 ;  = { z  « t rue}  and va = { z  « fa lse}.  I t
is a covering for VU iff f is totally defined iff PC P (A,B) does not hold. Since i t  is
undecidable whether PCP(A,  B )  holds, i t  is undecidable whether Cov(V¥) is a covering
for ¥ .  ,

Acknowledgement: We thank K .  Becker, B.  Gramlich, U.  Kühler, and C.-P. Wirth
for many helpful discussions on the topic of this report. The results presented here are
based to a large extent on their work, as cited in  the text.
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