
LA

N==©m&ht

©E(=)
Sa3=2=byQ++

2jos)
asESQ>2A

SEKI Report SR-95-05

oO
=A

d

C
e©=9N©>g=!
©&i=©©<

/asn/qud/op qu-tun- Sa anns(// :dazg M
M

M

AN
YIN

YED
NAMONYEYVVS 17099-C

M
ILYW

HOINI H
O

IAYAEH
O

VA
SHANVTYVVS SAA LV.LISH

AAIN
N

H

o
d

a
y IM

3
S

A Colored Version of the A-Calculus

Dieter Hutter Michael Kohlhase*
German Research Center for Universitat des Saarlandes

Artificial Intelligence D-66141 Saarbrucken

D-66123 Saarbrucken

Abstract

Coloring terms (rippling) is a technique developed for inductive theorem
proving which uses syntactic differences of terms to guide the proof search.
Annotations (colors) to terms are used to maintain this information. This
technique has several advantages, e.g. it is highly goal oriented and involves
little search. In this paper we give a general formalization ofcoloring terms in a
higher-order setting. We introduce a simply-typed lambda calculus with color
annotations and present an appropriate (pre-)unification algorithm. Our work
is a formal basis to the implementation of rippling in a higher-order setting
which is required e.g. in case of middle-out reasoning.

Another application is in the construction of natural language semantics,
where the color annotations rule out linguistically invalid readings that are
possible using standard higher-order unification.

"This work was supported by the Deutsche Forschungsgemeinschaft in SFB 314 (D2)

A Colored Version of the A-Calculus

Dieter Hutter Michael Kohlhase*
German Research Center for Universitat des Saarlandes

Artificial Intelligence D-66141 Saarbrücken
D-66123 Saarbrücken

Abstract

Coloring terms (rippling) is a technique developed for inductive theorem
proving which uses syntactic differences of terms to guide the proof search.
Annotations (colors) to terms are used to maintain this information. This
technique has several advantages, e.g. it is highly goal oriented and involves
little search. In this paper we give a general formalization ofcoloring terms in a
higher-order setting. We introduce a simply-typed lambda calculus with color
annotations and present an appropriate (pre-)unification algorithm. Our work
is a formal basis to the implementation of rippling in a higher-order setting
which is required e.g. in case of middle-out reasoning.

Another application is in the construction of natural language semantics,
where the color annotations rule out linguistically invalid readings that are
possible using standard higher-order unification.

"Th is work was supported by the Deutsche Forschungsgemeinschaft in SFB 314 (D2)

CONTENTS CONTENTS

Contents

1 Introduction 3

1.1 Informal Exposition 3

1.2 Calculating Colored Unifiers . 5

2 Applications 9

2.1 Inductive Proofs . 9

2.2 Lemma Speculation . 10

2.3 Higher-Order Unification and NL semantics. 11

3 Colored A-Calculus 13

4 Unification 16

4.1 Simplification 17

4.2 General Unification. 19

4.3 Pre-C-Unification .. 24

4.4 Higher-Order Patterns 27

5 Skeleton 31

6 Conclusion 36

A Termination of ,81]w-Reduction 39

2

CONTENTS CONTENTS

Contents
1 Introduction 3

1.1 Informal Exposition « t i i e one. . 3
1.2 Calculating Colored Unifiers ee ee eee eee 5

2 Applications 9
2.1 Inductive Proofs i i i i i n . 9
2.2 Lemma Speculation i . . . 10
2.3 Higher-Order Unification and NL semantics 11

3 Colored \-Calculus 13

4 Unification 16
4.1 Simplification ee eee 17
4.2 General Unification J 19
4.3 PreC-Unification «cov v i i i i i i i i t i i e 24
4.4 Higher-Order Patterns o i i i i i n i . . . 27

5 Skeleton 31

6 Conclusion 36

A Termination of fnw-Reduction 39

1 INTRODUCTION

1 Introduction

In the field of inductive theorem proving syntactical differences between the
induction hypothesis and induction conclusion are used in order to guide the
proof [Bun88, BSvH+93], or [Hut90, Hut91]. This method to guide induction proofs
is called rippling / coloring terms. Annotations or colors to each occurrence of a
symbol are used to mark the syntactical differences between induction hypothesis
and induction conclusion. Specific colors denote the skeleton, the common parts
of both formulas while the other parts belong to the wave-fronts. Analogously,
syntactical differences between both sides of equations or implications given in the
database are colored. These formulas are classified depending on the locations of
the wave-fronts inside the skeleton (e.g. wave-fronts on both sides, wave-fronts only
on the right-hand side, or wave-fronts only on the left-hand side). Using these an­
notated (or colored) equations we are able to move, insert, or delete wave-fronts
within the conclusion. This rippling of wave-fronts allows to reduce the differences
between conclusion and hypothesis in a goal directed way.

This paper extends the coloring method to higher-order logic and presents uni­
fication and pre-unification algorithms that we prove correct and complete. Thus
our work provides a formal basis to the implementation of rippling in a higher-order
setting which is required e.g. in case of middle-out reasoning [Hes91] or generaliza­
tion of theorems using proof critics [ffi96]. In the latter the unknown generalized
version of a formula is described by a pattern containing parts of the original for­
mula and higher-order variables denoting the unknown syntactical extensions of
it. Simulating the induction proof the higher-order variables will be instantiated
step by step by the unification with appropriate wave-rules resulting in a possible
(hopefully provable) generalization of the original formula.

But the set of possible applications of our method is not limited to automated
deduction. From an abstract point of view, the coloring technique allows adding
annotations to symbol occurrences in A-terms. Thus in contrast to other semantic
annotation techniques like sorts, it is possible to encode syntactic information and
use that to guide inferencing processes. In section 2.3 we will briefly sketch an ap­
plication [GK96] of our technique in computational linguistics and natural language
semantics, where the use of higher-order unification is used to construct the values
of elliptical references [DSP9l] in the context of Montegovian semantics.

1.1 Informal Exposition

Since the formal development of the theory involves quite a lot of technical machin­
ery, we will begin with a rather informal account first. The references in brackets
indicate, where the reader can find a fully formal development of the respective
informal arguments.

The colored A-calculus is a variant of the simply typed A-calculus [Chu40], where
symbol occurrences can be annotated with so-called colors (calor constants C =
{a, b, ...} and color variables X = {A, B, ...}; whenever colors are irrelevant, we
simply omit them; colors are indicated by subscripts labeling symbol occurrences).

The set wjjo: of well-formed formulae of type l
0: (3.6) consists of

•	 (colored) constants cO:, c~ , I~ ,If, ...,

•	 (colored or uncolored) variables Xf, YaO:, po:-+{3 ... (of which we assume an
infinite supply for each type and color) of type 0:,

lSince for the purposes of this informal introduction types only play a theoretical role (they
for instance make ,BT/-reduction terminating and therefore ,BT/-equality decidable), they are often
omitted from the examples. .

3

1 INTRODUCTION

1 Introduction
In the field of inductive theorem proving syntactical differences between the
induction hypothesis and induction conclusion are used in order to guide the
proof [Bun88, BSvH*93], or [Hut90, Hut91]. This method to guide induction proofs
is called rippling / coloring terms. Annotations or colors to each occurrence of a
symbol are used to mark the syntactical differences between induction hypothesis
and induction conclusion. Specific colors denote the skeleton, the common parts
of both formulas while the other parts belong to the wave-fronts. Analogously,
syntactical differences between both sides of equations or implications given in the
database are colored. These formulas are classified depending on the locations of
the wave-fronts inside the skeleton (e.g. wave-fronts on both sides, wave-fronts only
on the right-hand side, or wave-fronts only on the left-hand side). Using these an-
notated (or colored) equations we are able to move, insert, or delete wave-fronts
within the conclusion. This rippling of wave-fronts allows to reduce the differences
between conclusion and hypothesis in a goal directed way.

This paper extends the coloring method to higher-order logic and presents uni-
fication and pre-unification algorithms that we prove correct and complete. Thus
our work provides a formal basis to the implementation of rippling in a higher-order
setting which is required e.g. in case of middle-out reasoning [Hes91] or generaliza-
tion of theorems using proof critics [IB96]. In the latter the unknown generalized
version of a formula is described by a pattern containing parts of the original for-
mula and higher-order variables denoting the unknown syntactical extensions of
i t . Simulating the induction proof the higher-order variables will be instantiated
step by step by the unification with appropriate wave-rules resulting in a possible
(hopefully provable) generalization of the original formula.

But the set of possible applications of our method is not limited to automated
deduction. From an abstract point of view, the coloring technique allows adding
annotations to symbol occurrences in A-terms. Thus in contrast to other semantic
annotation techniques like sorts, i t is possible to encode syntactic information and
use that to guide inferencing processes. In section 2.3 we will briefly sketch an ap-
plication [GK96] of our technique in computational linguistics and natural language
semantics, where the use of higher-order unification is used to construct the values
of elliptical references [DSP91] in the context of Montegovian semantics.

1 .1 Informal Exposition

Since the formal development of the theory involves quite a lot of technical machin-
ery, we will begin with a rather informal account first. The references in brackets
indicate, where the reader can find a fully formal development of the respective
informal arguments.

The colored A-calculus is a variant of the simply typed A-calculus [Chu40], where
symbol occurrences can be annotated with so-called colors (color constants C =
{a,b, . . . } and color variables X = {A,B,...}; whenever colors are irrelevant, we
simply omit them; colors are indicated by subscripts labeling symbol occurrences).

The set wff, of well-formed formulae of type! a (3.6) consists of

e (colored) constants ¢®, cg, f&, f& , . . . ,

e (colored or uncolored) variables X&,Y.®, F*=*# . . . (of which we assume an
infinite supply for each type and color) of type a ,

S ince for the purposes o f this informal introduction types only play a theoretical role (they
for instance make frn-reduction terminating and therefore Sn-equality decidable), they are often
omitted from the examples. ’

1 INTRODUCTION 1.1 Informal Exposition

e (function) applications of the form M?~**N” and

e)-abstractions of the form \X*.M”, if a = (8 —+ 7). Note that only
variables without colors can be abstracted over.

We call a formula M c-monochrome (3.8), if all symbolsin M are annotated by
a single color c.

Clearly the colored A-calculusis a generalization of the simply typed A-calculus,
since we can always restrict the supply of colors to a single color constant. Therefore
we will use various elementary concepts of the A-calculus, such as free and bound

u r rences of variables or substitutions without defining them explicitly here.We
will denote the substitution of a term N for all free occurrences of X in M with ;

[N/X]M. Furthermorewe will follow t he A-calculus tradition and consider formulae
that only differ in the names of the bound variables as identical and we will require
that the substitution process renames all bound variablesin M in order to avoid
variable capture.

It is crucial for our system that colors annotate symbol occurrences (i.e. colors
are not gorts!), in particular, it is intended that different occurrences of symbals
carry different colors (e.g. f(X.; Xx)) and that symbols that carry different colors
are treated differently. This observation leads to the notion of colored substitutions
(3.13), a notion of substitution that takes the color information of formulae into
account. In contrast to traditional (uncolored) substitutions, a colored substitution
o is a pair (of, 0°), where the term substitution of maps colored variables (i.e.
the pair X, of a variable X and the color¢) to formulae of appropriatetypes and
the color substitution 0° maps color variables to colors. In order to be a legal
C-substitution such a mapping o must obey the following constraints:

o If A and B are different colors, then |o(X.)| = je(Xa)lı where [M]| is the
color erasure of M, ie. the formula obtained from M by erasing all color
annotat ionsin M (3.12)

» If c € C is a color constant, then o(X.) is c-monochromse.

The first condition ensures that the color erasure of a C-substitution is a classical .
substitution of the simply typed A-calculus. The second condition formalizes the
fact that free variables with constantcolors stand for monochrome subformulse,
whereas variable colors do not constrain the substitutions.

We say that M can be f-reduced (3.10) to N, i f N is obtained from. M by
applying the following replacement rule

‚ (AX.P)Q —; [Q/XTP
to a well-formed subformula of M. This rule relates the evaluation of functions
(defined using A-abstraction) to the process ofsubstitutingthe argumentQ for all
formal parameters X in. P. We obtain the notion of n-reduction (3.10) with the rule

AX.PX —, P

— where the variable X is not free in P. If formulae M and N are convertible using
a sequence of these reduction rules and their inverses (M =g, M), they denote:
the same object or function. Thus An-equality is considered to be built into the
A-calculus. In particular we will solve all equations used in our analysis with respect
to On-equality.

Nate that since the bound variables do not carry color information,Sn-reduction
in the colored A-calculus is just the classical notion. Thus we can lift all the known
thecreticalresults to the colored calculus, such as the fact that Sn-reduction always

1 INTRODUCTION 1.2 Calculating Colored Uniners

terminates producing unique normal forms and that pry-equality can be tested by
reducing to normal form and comparing for syntactic equality. This gives us a
decidable test for validity of an equation.

In contrast to this, higher-order unification (4.2) tests for satisfiability by find­
ing a substitution (j that makes a given equation M = N valid ((j(M) =/31/ (j(N)),
even if the original equation is not (M #/31/ N). In the colored A-calculus the
space of (semantic) solutions is further constrained by requiring the solutions to
be C-substitutions. Such a substitution is called a C-unifier (4.2) of M and N. In
particular, C-unification will only succeed if comparable formulae have unifiable col­
ors. For instance, fa(Pa, jb, Xa) unifies with fa(Ya,jA, Sa) but not with fa(Pa, ja, sa)
because of the calor clash on j.

,Even with the color restriction, the set of C-unifiers of a given equation is enor­
mous. Furthermore, most of these solutions introduce un-necessary instantiations;
thus one is not interested in the set of all C-unifiers, but rather in a subset that
generates this set by instantiation. A substitution (j is called more general (4.2)
than T, iff there is a substitution p, such that T =/31/ po(j, Le. T can be reconstructed
from (j by instantiation with p.

It is well-known, that in first-order logic (and in certain related forms of feature
structures) there is always a most general unifier for any equation that is solvable at
all. This is not the case for higher-order (colored) unification, where variables can
range over functions, instead of only individuals. In fact there can even be solvable
equations that have infinite chains of unifiers that become more and more general.
In other words most general unifiers need not to exist in general.

1.2 Calculating Colored Unifiers

Just as in the case of unification for first-order terms, the higher-order unification
algorithm is a process of recursive decomposition and variable elimination that
transform sets of equations into solved forms. Since C-substitutions have two parts,
a term- and a calor part, we need two kinds of equations (M =t N for term
equations and c =c d for color equations). Sets £ of equations in solved form (Le.
where all equations are of the form X = M such that the variable X does not
occur anywhere else in Mc or £) have a unique most general C-unifier (j£ that also
C-unifies the initial equation (4.3).

There are several rules (4.9) that decompose the syntactic structure of formulae,
we will only present two of them. The rule for abstractions transforms equations
of the form AX.A =t AY.B to [Z/X]A =t [Z/Y]B, where Z is a new constant,
while the rule for applications decomposes ha(Sl, ••• , sn) =t hb (t l , ..• , tn) to the
set {a =c b, Si =t t l , .•• , Sn =t tn }, provided that h is a constant. Furthermore
equations are kept in pry-normal form. Note that this decomposition process also
eliminates trivial equations, where both sides are pry-equal.

The variable elimination process for color variables is very simple, it allows to
transform a set £U{A =c d} of equations to [d/A]£U{A =c d}, making the equation
{A =C d} solved in the result. In case of formula equations, elimination is not that
simple, since we have to ensure that 1(j(XA)I = 1(j(Xs)I to obtain a C-substitution (j.
Thus we cannot simply transform a set £ U{Xd =t M} into [M/Xd]£ U{Xd =t M},
since this would (incorrectly) solve the equations {Xc = fc,Xd = 9d}. The correct
variable elimination rule transforms £u {Xd =t M} into (j(£) U {Xd =t M,XC1 =
M l

, ..• , Xc,. =t M n
}, where Ci are all colors of the variable X occurring in M and

£, the M i are appropriately colored variants (same color erasure) of M, and (j is
the C-substitution that eliminates all occurrences of X from e.

It would be convenient, if the transformations described so far, were sufficient
for transforming all unifiable sets of equations into solved form and thus finding
all unifiers. But, due to the presence of function variables, systematic application

5

1 INTRODUCTION 1.2 Calculating Colored Unifiers

terminates producing unique normal forms and that 87-equality can be tested by
reducing to normal form and comparing for syntactic equality. This gives us a
decidable test for validity of an equation.

In contrast to this, higher-order unification (4.2) tests for satisfiability by find-
ing a substitution o that makes a given equation M = N valid (70(M) =g, o(N)),
even if the original equation is not (M #g, N) . In the colored A-calculus the
space of (semantic) solutions is further constrained by requiring the solutions to
be C-substitutions. Such a substitution is called a C-unifier (4.2) of M and N. In
particular, C-unification will only succeed if comparable formulae have unifiable col-
ors. For instance, fa(pa, jv, Xa) unifies with fa(Ya, ja, Sa) but not with fo(pa, ja, Sa)

because of the color clash on j .
‚Even with the color restriction, the set of C-unifiers of a given equation is enor-

mous. Furthermore, most of these solutions introduce un-necessary instantiations;
thus one is not interested in the set of all C-unifiers, but rather in a subset that
generates this set by instantiation. A substitution o is called more general (4.2)
than r , iff there is a substitution p, such that 7 =g, poo, i.e. T can be reconstructed
from ¢ by instantiation with p.

It is well-known, that in first-order logic (and in certain related forms of feature
structures) there is always a most general unifier for any equation that is solvable at
all. This is not the case for higher-order (colored) unification, where variables can
range over functions, instead of only individuals. In fact there can even be solvable
equations that have infinite chains of unifiers that become more and more general.
In other words most general unifiers need not to exist in general.

1.2 Calculating Colored Unifiers
Just as in the case of unification for first-order terms, the higher-order unification
algorithm is a process of recursive decomposition and variable elimination that
transform sets of equations into solved forms. Since C-substitutions have two parts,
a term- and a color part, we need two kinds of equations (M = ! N for term
equations and c = “ d for color equations). Sets £ of equations in solved form (i.e.
where all equations are of the form X = M such that the variable X does not
occur anywhere else in M , or £) have a unique most general C-unifier o¢ that also
C-unifies the initial equation (4.3).

There are several rules (4.9) that decompose the syntactic structure of formulae,
we will only present two of them. The rule for abstractions transforms equations
of the form AX.A =* AY.B to [Z/X]A = ! [Z/Y]B, where Z is a new constant,
while the rule for applications decomposes ha(s',...,s?) =* hy(t},...,t") to the
set {a = “ b,s* =t t ! , . . . , s® =? t " } , provided that h is a constant. Furthermore
equations are kept in On-normal form. Note that this decomposition process also
eliminates trivial equations, where both sides are On-equal.

The variable elimination process for color variables is very simple, it allows to
transform a set £U {A = ° d} of equations to [d/A]£U {A =“ d}, making the equation
{A = “ d} solved in the result. In case of formula equations, elimination is not that
simple, since we have to ensure that |0(X,)| = |¢(Xs)| to obtain a C-substitution co.
Thus we cannot simply transform a set £U{Xq =* M} into [M/Xa]£ U {Xa =* M},
since this would (incorrectly) solve the equations {X. = fc, Xa = ga}. The correct
variable elimination rule transforms £ U {Xa =* M} into o(E) U {Xs = t M , X, , =
ML. . . Xe. =* M"} , where c ; are all colors of the variable X occurring in M and
E, the M* are appropriately colored variants (same color erasure) of M , and o is
the C-substitution that eliminates all occurrences of X from &.

It would be convenient, i f the transformations described so far, were sufficient
for transforming. all unifiable sets of equations into solved form and thus finding
all unifiers. Bu t , due t o the presence of function variables, systematic application

1 INTRODUCTION	 1.2 Calculating Colored Unifiers

can terminate with equations of the form Xe(Sl, ... , sn) =t hd(t1 , ••• , tm). Such
equations can neither be further decomposed by the rules above, since this would
loose unifiers, nor can the right hand side be substituted for X as in a variable
elimination rule, since the types would clash. Let us consider the uncolored equation
X(a) =t a which has the solutions ('\Z.a) and ('\Z.Z) for X.

The standard solution (4.14) for finding a complete set of solutions in this so­
called flex/rigid situation is to substitute a term for X that will enable decompo­
sition to be applicable afterwards. It turns out that for finding all C-unifiers it is
sufficient to bind X to terms of the same type as X (otherwise the unifier would be
ill-typed) and compatible color (otherwise the unifier would not be a C-substitution)
that either

• have the same head as the right hand side; the so-called imitation solution
(,\Z.a in our example) or

• where the head is a bound variable that enables the head of one of the argu­
ments of X to become head; the so-called projection binding ('\Z.Z).

In order to get a better understanding of the situation let us reconsider our example
using colors. Xci(ae) = aci. For the imitation solution (,\Z.aci) we "imitate" the right
hand side, so the color on a must be d. For the projection solution we instantiate
('\Z.Z) for X and obtain ('\Z.Z)ae , which .a-reduces to ac . We see that this "lifts"
the constant ac from the argument position to the top. Incidentally, the projection
is only a C-unifier of our colored example, if c and d are identical.

Fortunately, the choice of instantiations can be further restricted to the most
general terms in the categories above. If Xc has type .an -+ a and hci has type then
these so-called general bindings (4.11) have the following form:

g; = ,\za1 ••• za" .@(H;l Z) ... (H::" z)

where

•	 @ = za; and aj ='Ym -+ a for some j ~ n, or @ = Sci for some constant or
free variable S of type 'Ym -+ a,

•	 the Hi are new variables of type .an -+ 'Yi,

•	 the ei are either distinct color variables (if c E X) or ei =d =c (if c E C).

If @ is one of the bound variables za., then g~ is called a projection binding,
and else, (@ is a colored constant or free variable), an imitation binding. Note
that while imitation bindings are unique up to the names of the new free variables
Hi, there can be up to n projection bindings, depending on the types involved.

The general rule for flex/rigid equations (4.14) transforms equations of the form

£ /\ Xc(Sl, ... , sn) =t hci(t1
, •.• , tm)

into
£ /\Xc(sl, ... ,sn) =t hci(tl, ... ,tm

) /\Xc = g~

which in essence only fixes a particular binding for the head variable Xc. It turns
out (cf 4.2) that these general bindings suffice to solve all flex/rigid situations,
possibly at the cost of creating new flex/rigid situations after elimination of the
variable Xc and decomposition of the changed equations (the elimination of X
changes X c(sl, ... , sn) to g~(Sl, ... ,sn) which has head h).

Finally the only remaining case, where the heads of both sides of the equation
are free variables the so-called flex/flex case. The solution of this case is either to
project as in the flex/rigid case or to "guess" (computationally: to search for) the

6

1 INTRODUCTION 1.2 Calculating Colored Unifiers

can terminate with equations of the form X . (s ! , . . . , s ") =* ha(t!,...,t™). Such
equations can neither be further decomposed by the rules above, since this would
loose unifiers, nor can the right hand side be substituted for X as in a variable
elimination rule, since the types would clash. Let us consider the uncolored equation
X (a) =* a which has the solutions (AZ.a) and (AZ.Z) for X .

The standard solution (4.14) for finding a complete set of solutions in this so-
called flex /rigid situation is to substitute a term for X that will enable decompo-
sition to be applicable afterwards. It turns out that for finding all C-unifiers it is
sufficient to bind X to terms of the same type as X (otherwise the unifier would be
ill-typed) and compatible color {otherwise the unifier would not be a C-substitution)
that either

e have the same head as the right hand side; the so-called imitation solution
(AZ.a in our example) or

» where the head is a bound variable that enables the head of one of the argu-
ments of X to become head; the so-called projection binding (AZ.Z).

In order to get a better understanding of the situation let us reconsider our example
using colors. X4(a.) = aa. For the imitation solution (AZ.aq4) we “imitate” the right
hand side, so the color on a must be d. For the projection solution we instantiate
(AZ.Z) for X and obtain (AZ.Z)a., which G-reduces to a.. We see that this “lifts”
the constant a . from the argument position to the top. Incidentally, the projection
is only a C-unifier of our colored example, if ¢ and d are identical.

Fortunately, the choice of instantiations can be further restricted to the most
general terms in the categories above. If X . has type 8 , — a and hq has type then
these so-called general bindings (4.11) have the following form:

Gh =Az%...Z2% @HLZ) . . . (H7)
where

eo @ = 27% and a j = 7m — a for some j < n , or @ = Sa for some constant or
free variable S of type 7m — a,

eo the H* are new variables of type Bn — Vi ,

e the e; are either distinct color variables (if c€ A) o re ; =d =c (if c € ().

If @ is one of the bound variables Z%, then G2 is called a projection binding,
and else, (@ is a colored constant or free variable), an imitation binding. Note
that while imitation bindings are unique up to the names of the new free variables
H‘, there can be up to n projection bindings, depending on the types involved.

The general rule for flex/rigid equations (4.14) transforms equations of the form

ENKXels!,...,87) =ha (t ! , . . . , t™)

into
EN KXe l s ! , . . . ,87) =" h(t, . . . , t ") AX . = GP

which in essence only fixes a particular binding for the head variable X . . It turns
out (cf 4.2) that these general bindings suffice to solve all flex/rigid situations,
possibly at the cost of creating new flex/rigid situations after elimination of the
variable X ; and decomposition of the changed equations (the elimination of X
changes X.(s%,...,s™) to G?(s!,...,s™) which has head A).

Finally the only remaining case, where the heads of both sides of the equation
are free variables the so-called flex/flex case. The solution of this case is either to
project as in the flex/rigid case or to “guess” (computationally: to search for) the

1 INTRODUCTION	 1.2 Calculating Colored UniBers

right head for the equation and bind the head variable to the appropriate imitation
binding. Clearly this need for guessing the right head leads to a serious explosion
of the search space, which makes higher-order colored unification computationally
infeasible. Fortunately, most applications do not need full higher-order unification:

•	 For theorem proving purposes it is only important to know about the existence
of any unifier. In the case of classical higher-order unification it is therefore
sufficient to consider flex/flex pairs as solved, since they are guaranteed to
have unifiers (cf. section 4.3). In the colored case, this is no longer the case,
Le. there are flex/flex unification problems that do not have unifiers. We
identify a necessary and sufficient condition (the absence of so-called flexible
chains (4.25)) and specialise the unification algorithm accordingly.

•	 The linguistic applications sketched in section 2.3 formulae belong to very
restricted syntactic subclasses, for which much better results are known (for
classical higher-order unification). In particular, the fact that free variables
only occur on the left hand side ofour equations reduces the problem of finding
solutions to higher-order matching, of which decidability has been proven for
the subclass of third-order formulae [Dow92]. This class, (intuitively allowing
only nesting functions as arguments up to depth three) covers all examples
studied so far.

To fortify our intuition on calculating higher-order colored unifiers let us consider
the following example. Let G be a function variable of type t -+ t, i an individual
constant and f a binary function constant, then we compute the unifiers of the
equation

Gb(ia) = fb(ia,iA)

Since G is a variable, we are in a flex/rigid situation and have the possibilities of
projection and imitation. The projection binding for Gb would be >"X.X, since it
has to be of type t -+ t; which would lead us to the equation ia = fb(i a, i A), which
is obviously unsolvable, since the head constants i a and fb clash. So we can only
bind Gb to the imitation binding (>"X.fb(H;X) (H;X)) , where the new variables
Hi have type l -+ t. This leaves us with the set

from which we can directly eliminate the variable Gb, since there are no other
variants. The resulting equation

can be decomposed to
(H~ia) = i a /\ (H;ia) = i A

Let us first look at the first equation; in this flex/rigid situation, only the pro­
jection binding (>"Z.Z) can be applied, since the imitation binding (>"Z.ia) is not
b-monochrome. Thus we are left with the second equation, since (>"Z.z)ia ,a-reduces
to i a, giving the trivial equation ia =ia which can be deleted by the decomposition
rules. In the remaining equation

both imitation and projection bindings yield a legal solution:

•	 The imitation binding for H~ is (>..Z.ib), and not (>"Z.i.d, asone is tempted
to believe, since it has to be b-monochrame. Thus we are left with i b = i A,

which can (uniquely) be solved by the calor substitution [b/A].

7

1 INTRODUCTION 1.2 Calculating Colored Unifiers

right head for the equation and bind the head variable to the appropriate imitation
binding. Clearly this need for guessing the right head leads to a serious explosion
of the search space, which makes higher-order colored unification computationally
infeasible. Fortunately, most applications do not need full higher-order unification:

e For theorem proving purposes it is only important to know about the existence
of any unifier. In the case of classical higher-order unification i t is therefore
sufficient to consider flex/flex pairs as solved, since they are guaranteed to
have unifiers (cf. section 4.3). In the colored case, this is no longer the case,
i.e. there are flex/flex unification problems that do not have unifiers. We
identify a necessary and sufficient condition (the absence of so-called flexible
chains (4.25)) and specialise the unification algorithm accordingly.

e The linguistic applications sketched in section 2.3 formulae belong to very
restricted syntactic subclasses, for which much better results are known (for
classical higher-order unification). In particular, the fact that free variables
only occur on the left hand side of our equations reduces the problem of finding
solutions to higher-order matching, of which decidability has been proven for
the subclass of third-order formulae [Dow92]. This class, (intuitively allowing
only nesting functions as arguments up to depth three) covers all examples
studied so far.

To fortify our intuition on calculating higher-order colored unifiers let us consider
the following example. Let G be a function variable of type ¢ — ¢, £ an individual
constant and f a binary function constant, then we compute the unifiers of the
equation

Gy(ta) = Alta, ta)
Since G is a variable, we are in a flex/rigid situation and have the possibilities of
projection and imitation. The projection binding for Gy would be AX.X, since it
has to be of type ¢ = ı ; which would lead us to the equation i , = fu(¢a,%1), which
is obviously unsolvable, since the head constants ¢, and f, clash. So we can only
bind Gp to the imitation binding (AX.fo(HLX)(HZX)), where the new variables
H‘ have type ¢ —+ ı . This leaves us with the set

Gola) = folia,ia) A Gy = (AX. fo (Hy X)(H X)
from which. we can directly eliminate the variable Gy, since there are no other
variants. The resulting equation

AH} (a) , Hy (ia)) = fo (i a , i a)

can be decomposed to
(Ali) = i a A (HZia) = ia

Let us first look at the first equation; in this flex/rigid situation, only the pro-
jection binding (AZ.Z) can be applied, since the imitation binding (AZ.i,) is not
b-monochrome. Thus we are left with the second equation, since (AZ.Z)i , S-reduces
to Za, giving the trivial equation i , = 2, which can be deleted by the decomposition
rules. In the remaining equation i

(HZ t a) = ZA

both imitation and projection bindings yield a legal solution:

e The imitation binding for HZ is (\Z.ip), and not (AZ.i,), as one is tempted
t o believe, since i t has t o be b-monochrome. Thus we are left with i, = i,,
which can (uniquely) be solved by the color substitution [b/A].

1 INTRODUCTION 1.2 Calculating Colored Unifiers

e I f we bind H } to (AZ.Z), then we are left with i a = i x , which can (uniquely)
be solved by the color substitution [a/4).

If we collect the instantiations, we arrive at two possible solutions for Gy in the
original equations:

Gv = (AX.fu(X,1)
Go = (AX.f i (X,X))

Obviously both of them solve the equation and furthermore, they are both most
general solutions, since i, cannot be inserted for the variable X in the second unifier
(which would make it more general than the first), since X is bound.

2 APPLICATIONS

2 Applications

2.1 Inductive Proofs

Rippling was developed for proving theorems by induction and has been applied to
a large number of practical examples from this domain [Bun88, BSvH+93, Hut91].
It is based on an observation that one can iteratively unfold recursive functions in
the induction conclusion, preserving the structure of the induction hypothesis while
unfolding. We use colors in order to indicate the structure of the hypothesis within
the conclusion. Symbols belonging to this joined structure are annotated with the
color "white" while differences between both formulas are colored "grey". Also left­
and right-hand sides of given equations are difference unified: the common structure
of both terms of a given equation is annotated by color variables while differences
are colored grey. Rippling then applies just these annotated equations which move
the difference out of the way leaving behind the skeleton. In their simplest form,
these equations to be used are of the form 0:(1fyI) = 1Ia(-y)1.2 By design, the
skeleton 0:(,) remains unaltered by their application. If rippling succeeds then the
induction conclusion P(~l) is rewritten using wave-rules into some function of
the induction hypothesis, P(n)j that is, into i.P(n)1 (f may be the identity). At
this point we can call upon the induction hypothesis to simplify the result.

To illustrate rippling and motivate our work on colored higher order unification
let us consider the following simple theorem that can be proven by inductive theorem
provers using rippling/colouring techniques.

n n n

L: f(i) + L:g(i) = L:[f + g](i)
i=l i=l i=l

where f, 9 are functions from natural numbers to naturals and we have overloaded
the function + also to act on such functions. This example illustrates the properties
of rippling and introduces also some higher-order colored unification problems.

We formalise summation by a binary function sum that takes a function (that is
summed over) and a upper bound as arguments. Furthermore, we will the following
definition of sum (let f, g, H be of type nat -+ nat and N, n be of type nat)3:

VH : sum(H,O) = 0 (1)

VH,N: sum(H,s(N)) = sum(H,N) + H(s(N)) (2)

Then our theorem takes the form

Vf,g,n: sum(f,n) + sum(g,n) = sum(>"x.f(x) + g(x),n)

In order to prove this, simple heuristics employed by most inductive provers suggest
induction on n which results in the following step case4 :

sum(f, n) + sum(g, n) = sum(>..x.f(x) + g(x), n)
-+ sum(f,s(n)) + sum(g,s(n)) = sum(>..x.f(x) + g(x),s(n))

To simplify the step case using rippling, the differences between the induction con­
clusion and the induction hypothesis are shaded as follows:

sum(f, n) + sum(g, n) = sum(>..x.f(x) + g(x), n) (3)
-+ sum(f' tint)) + sum(g,lInl) = sum(>..x·f(x) + g(x), ,(@niJ)

2Por sake of simplicity we use a shading for symbols which are annotated by the color grey
while non-shaded areas are annotated either by white or color variables. But in case the distinction
between color variables and white is necessary we shall annotate the colors explicitly.

3\Ve employ the Prolog convention of using capital letters to indicate metavariables.
4The proof of the base case can be directly obtained by applying (1), so it is omitted here.

9

2 APPLICATIONS

2 Applications

2 .1 Inductive Proofs

Rippling was developed for proving theorems by induction and has been applied to
a large number of practical examples from this domain [Bun88, BSvH+93, Hut91].
It is based on an observation that one can iteratively unfold recursive functions in
the induction conclusion, preserving the structure of the induction hypothesis while
unfolding. We use colors in order to indicate the structure of the hypothesis within
the conclusion. Symbols belonging to this joined structure are annotated with the
color “white” while differences between both formulas are colored “grey”. Also left-
and right-hand sides of given equations are difference unified: the common structure
of both terms of a given equation is annotated by color variables while differences
are colored grey. Rippling then applies just these annotated equations which move
the difference out of the way leaving behind the skeleton. In their simplest form,
these equations to be used are of the form a(% = ZRa(v)].? By design, the
skeleton a{(-y) remains unaltered by their application. If rippling succeeds then the
induction conclusion P(génil) is rewritten using wave-rules into some function of
the induction hypothesis, P(n); thatis , into @P(n)§ (f may be the identity). At
this point we can call upon the induction hypothesis to simplify the result.

To illustrate rippling and motivate our work on colored higher order unification
let us consider the following simple theorem that can be proven by inductive theorem
provers using rippling/colouring techniques.

> £0) +306)= XI + g l
i=1 i=1

where f , g are functions from natural numbers to naturals and we have overloaded
the function + also to act on such functions. This example illustrates the properties
of rippling and introduces also some higher-order colored unification problems.

We formalise summation by a binary function sum that takes a function (that is
summed over) and a upper bound as arguments. Furthermore, we will the following
definition of sum (let f,g, H be of type nat — nat and N ,n be of type nat)3:

VH : sum(H,0) = 0 (1)
VH,N: sum(H,s(N)) = sum(H ,N) + H(s(N)) (2)

Then our theorem takes the form

Vf ,g ,n : sum(f ,n) + sum(g,n) = sum(Az.f(z) + g (z) , n)

In order to prove this, simple heuristics employed by most inductive provers suggest
induction on n which resultsin the following step case*:

sum(f,n) + sum(g,n) = sum(Az.f(z) + g(z),n)
—+ sum(f, s(n)) + sum(g, s(n)) = sum(Az.f(z) + g(x), s(n))

To simplify the step case using rippling, the differences between the induction con-
clusion and the induction hypothesis are shaded as follows:

sum(f,ni f +io n) = sum(Az.f(z) + 9(z), n) (3)
| Sn] = sum(Az.f(z) + g(z), stn)

2For sake of simplicity we use a shading for symbols which are annotated by the color grey
while non-shaded areas are annotated either by white or color variables. But in case the distinction
between color variables and white is necessary we shall annotate the colors explicitly.

3We employ the Prolog convention of using capital letters to indicate metavariables.
4The proof of the base case can be directly obtained by applying (1), so i t is omitted here.

2 APPLICATIONS 2.2 Lemma Speculation

If we can move the shaded areas, so-called contexts or wave-fronts, out of the
way, then we will be able to simplify the induction conclusion by appealing to the
induction hypothesis.

Rippling moves wave-fronts using annotated equations based on axioms, recur­
sive definitions and previously proven lemmas that preserve the skeleton of the
term being rewritten. Corresponding to the recursive definitions for sum we have
the following annotated equation of (2)

sum(H,.NI) = sum(H,N)_ (4)

When rippling, the annotations on the left-hand side of the wave-rule must match
those in the term being rewritten. As a consequence, there is very little search
during rewriting. In order to simplify the conclusion of (3) by rippling we apply (4)
on both sides yielding the modified conclusion:

Isum(f,n)_+
=sum(Ax.f(x) + g(x), n

Applying associativity and commutativity law of + results in

I(sum(f,n) + sum(g,n))
=Isum(Ax.f(x) + g(x), n

which allows weak fertilisation5 on either side which completes the proof.

2.2 Lemma Speculation

The rippling process - as illustrated in the example above - relies on the exis­
tence of appropriate annotated equations in order to ripple out (or ripple inside)
the occurring wave-fronts. In cases appropriate equations are missing, Ireland &
Bundy [IB96] presented a technique to speculate Lemmata which push the rippling
process further and which are treated as subtasks to be proven separately. Their
approach is based on some kind of higher order rippling.

In order to illustrate this application of our calculus, consider the following
example involving list manipulations

'ix,y: list rev(app(rev(x),y)) = app(rev(y),x)

Here rev and app stand for the operations of reversing and concatenating lists. Using
induction on x we obtain the following formula as an induction conclusion:

rev(app(rev(~"'xfW),y)) = app(rev(y),).~.;~AW'_ ;}fl~II ,J~~ .. lW

The rippling process gets blocked6 after unfolding the definition of rev on the left­
hand side:

In order to push the rippling process further, Ireland & Bundy speculate appropriate
Lemmata which are then considered as subtasks of the proof. In this example they
calculate a schematic form of an appropriate annotated equation

app(X,_ZI) = app(!rll,x.••, Z) (5)

5This standard technique from inductive theorem proving allows to use the inducti....e hypothesis
to rewrite the inductive conclusion

6There are no applicable annotated equations in the data base.

10

2 APPLICATIONS 2.2 Lemma Speculation

If we can move the shaded areas, so-called contexts or wave-fronts, out of the
way, then we will be able to simplify the induction conclusion by appealing to the
induction hypothesis.

Rippling moves wave-fronts using annotated equations based on axioms, recur-
sive definitions and previously proven lemmas that preserve the skeleton of the
term being rewritten. Corresponding to the recursive definitions for sum we have
the following annotated equation of {2)

4)

When rippling, the annotations on the left-hand side of the wave-rule must match
those in the term being rewritten. As a consequence, there is very little search
during rewriting. In order to simplify the conclusion of (3) by rippling we apply (4)
on both sides yielding the modified conclusion:

Esum(f,n + Fsum(g,n)
= sum(Az.f(z) + g(z),n)}

Applying associativity and commutativity law of + results in

e
rE(sum(f,n) + sum(g,n)

= fsum(Az.f(z) + g(z), n)

which allows weak fertilisation® on either side which completes the proof.

2 .2 Lemma Speculation
The rippling process — as illustrated in the example above — relies on the exis-
tence of appropriate annotated equations in order to ripple out (or ripple inside)
the occurring wave-fronts. In cases appropriate equations are missing, Ireland &
Bundy [IB96] presented a technique to speculate Lemmata which push the rippling
process further and which are treated as subtasks to be proven separately. Their
approach is based on some kind of higher order rippling.

In order to illustrate this application of our calculus, consider the following
example involving list manipulations

Vz,y : l ist rev(app(rev(z),y)) = app(rev(y), x)

Here rev and app stand for the operations of reversing and concatenating lists. Using
induction on z we obtain the following formula as an induction conclusion:

The rippling process gets blocked® after unfolding the definition of rev on the left-
hand side:

1 :9) = app(rev(y),;

In order to push the rippling process further, Ireland & Bundy speculate appropriate
Lemmata which are then considered as subtasks of the proof. In this example they
calculate a schematic form of an appropriate annotated equation

2.2) (5)
5This standard technique from inductive theorem proving allows to use the inductive hypothesis

to rewrite the inductive conclusion
6 There are no applicable annotated equations in the data base.

10

2 APPLICATIONS 2.3 Higher-Order Unification and NL semantics

which can be used to move the blocked wave-front on the right-hand side towards
the sink y. While the left-hand side of the speculated lemma is just a generalization
of the subterm to be modified, the higher-order variable F1 represents the unknown
wave-front on the right-hand side which has still to be constrained by the further
rippling process. Applying this equation on the right-hand side yields:

rev(app("rev(x)_,y)) = app(Brev(y)",x) (6)

In order to enable the use of the induction hypothesis in this example the context
has to be moved in front of the universally quantified variable y which operates as
a so-called sink. Thus, we use the annotated equation

l'Jitev(Y)_ = rev(1IIlIIY1) (7)

in order to ripple the wave-front on the right-hand side towards y. In order for (7) to
be applicable to (6), we must unify7 Rrev(y)1II1 and lI'Itev(Y)_.
Higher-order colored unification (see example 4.15 for a trace of the computation)
results in a solution [AU, V, W_UIIIIIIII/II, y/Yj Applying the instance
of (7) to the right-hand side of (6) the wave-front is moved towards the sink y:

rev(app(B«rev(x)_,y)) = app(rev(rBIfIyI),x) (8)

The unifier used to perform this step now also refines the scheme of the speculated
annotated equation (5) we used previously to unblock the rippling process, to

(9)

Using this speculated equation (9) also on the left-hand side finally yields:

rev(app(rev(x),IIlIIYI)) = app(rev(~I),x)

which enables the use of the induction hypothesis and completes this particular
proof. Proving also the speculated lemma (9) by induction finishes the overall
proof.

2.3 Higher-Order Unification and NL semantics

In this section we will present a different kind of application of higher-order colored
unification. In [GK96] the colored lambda calculus is used as a tool to specify the
interface between the classical semantic construction process (using higher-order
unification) and other sources of linguistic information (which are coded into color
information). We will now briefly sketch the underlying ideas for the case of verb­
phrase ellipsis (the phenomenon that parts of natural language sentences can be
replaced by utterances like "does too"), for a thorough treatment of cases like
focus constructions, second-occurrence expressions, and adverbial quantification,
see [GK96].

The basic idea [DSP91] underlying the use of higher-order unification for natural
language semantics is very simple: Following [Mon74], the typed A-calculus is used
as a semantic representation language while semantically underspecified elements
(e.g. anaphoric references or ellipses) are represented by free variables whose value

1To ease readability we have slightly simplified the method of [IB96] since in practice the
overall method is a bit more elaborate: In order to allow the speculation of more complex
wave-fronts the occurrence of the meta-variable :,I:1Irev(y)B:FJ is replaced by a nested term
r.I:iI6rev(y)BIIiI1~.Thus, in general F2 allows one to create additional wave-fronts in the
later rippling process but in this example it is of no use and will only be instantiated to the
projection >,X, Y, Z.X.

11

2 APPLICATIONS 2.3 Higher-Order Unification and NL semantics

which can be used to move the blocked wave-front on the right-hand side towards
the sink y. While the left-hand side of the speculated lemma is just a generalization
of the subterm to be modified, the higher-order variable F} represents the unknown
wave-front on the right-hand side which has still to be constrained by the further
rippling process. Applying this equation on the right-hand side yields:

In order to enable the use of the induction hypothesis in this example the context
has to be moved in front of the universally quantified variable y which operates as
a so-called sink. Thus, we use the annotated equation

The unifier used to perform this step now also refines the scheme of the speculated
annotated equation (5) we used previously to unblock the rippling process, to

app(X, SRE (9)

which enables the use of the induction hypothesis and completes this particular
proof. Proving also the speculated lemma (9) by induction finishes the overall
proof.

2.3 Higher-Order Unification and NL semantics
In this section we will present a different kind of application of higher-order colored
unification. In [GK96] the colored lambda calculus is used as a tool to specify the
interface between the classical semantic construction process (using higher-order
unification) and other sources of linguistic information (which are coded into color
information). We will now briefly sketch the underlying ideas for the case of verb-
phrase ellipsis (the phenomenon that parts of natural language sentences can be
replaced by utterances like “does too”), for a thorough treatment of cases like
focus constructions, second-occurrence expressions, and adverbial quantification,
see [GK96).

The basic idea [DSP91] underlying the use of higher-order unification for natural
language semantics is very simple: Following [Mon74], the typed A-calculus is used
as a semantic representation language while semantically underspecified elements
(e.g. anaphoric references or ellipses) are represented by free variables whose value

7To ease readability we have slightly simplified the method of [IB96] since in practice the
overall method is a b i t more elaborate: In order to allow the speculation of more complex
wave-fronts the occurrence of the meta-variable J i l u(y) ES is replaced by a nested term

: } . Thus, in general F> allows one t o create additional wave-fronts i n t he
later rippling process but i n this example i t is of no use and will only be instantiated to the
projection AX ,Y ,Z .X .

11

2 APPLICATIONS 2.3 Higher-Order Unification and NL semantics

is determined by solving higher-order equations. For instance, the discourse Dan
likes golf. Peter does too. has the semantic representation

like(dan,golf) 1\ R(peter)

where the value of the predicate variable R is determined by equation

like(dan,golf) =R(dan)

however, only the first of the solutions

(11 = [>"X.like(X,golf)jR] and (12 = [>"X.like(dan, golf)]

leads to the linguistically desired solution like(dan,golf) Alike(peter,golf), while
the other one leads to like(dan, golf) 1\ like(dan, golf), which is clearly not the
desired reading of the discourse. .

To remedy this shortcoming, Dalrymple, Shieber and Pereira, who have pio­
neered this analysis in [DSP91] propose an informal restriction, the primary oc­
currence restriction, which from the set of linguistically valid solutions, deletes
any solution which contains a pre-determined so-called primary occurrence (in our
case dan).

In the colored >..-calculus, the primary occurrence restriction can directly be
modelled as follows: Primary occurrences are p-colored while free variables are s­
colored (all other non-bound symbols are colored by distinct color variables, which
we will not show in our examples). Given the restriction for C-substitutions, such
a coloring ensures that any solution containing a primary occurrence is ruled out.
Hence no substitution will ever contain a primary occurrence (i.e. a p-colored sym­
bol) as was required by the primary occurrence restriction. For instance, the colored
representation of our little discourse above is like(dany"golf) 1\ Rs(peter) together
with the colored unification problem like(danp, golf) = Rs(danp), which only has
the C-unifier [>"X.like(x,golf)jRs]. The color erasure of the equation above has
another unifier [>"X.like(danp,golf)jRs] which is not well-colored.

Even though we have only sketched the relevant ideas, should be clear, that
higher-order colored unification provides a general framework for specifying the
linguistic information for the construction process that avoids over-generalization
(i.e. the construction of linguistically undesired readings of discourses).

12

2 APPLICATIONS 2.3 Higher-Order Unification and NL semantics

is determined by solving higher-order equations. For instance, the discourse Dan
likes golf. Peter does too. has the semantic representation

like(dan, golf) \ R(peter)

where the value of the predicate variable R is determined by equation

like(dan, golf) = R(dan)

however, only the first of the solutions

01 = [AX.like(X, golf)/R) and 02 = [AX.like(dan, golf)]

leads to the linguistically desired solution like(dan, golf) A like(peter, golf) , while
the other one leads to like(dan, golf) A l ike(dan, golf), which is clearly not the
desired reading of the discourse. ;

To remedy this shortcoming, Dalrymple, Shieber and Pereira, who have pio-
neered this analysis in [DSP91] propose an informal restriction, the primary oc-
currence restriction, which from the set of linguistically valid solutions, deletes
any solution which contains a pre-determined so-called primary occurrence (in our
case dan).

In the colored A-calculus, the primary occurrence restriction can directly be
modelled as follows: Primary occurrences are p-colored while free variables are s-
colored (all other non-bound symbols are colored by distinct color variables, which
we will not show in our examples). Given the restriction for C-substitutions, such
a coloring ensures that any solution containing a primary occurrence is ruled out.
Hence no substitution will ever contain a primary occurrence (i.e. a p-colored sym-
bol) as was required by the primary occurrence restriction. For instance, the colored
representation of our little discourse above is like(dany, golf) A Rs(peter) together
with the colored unification problem like(dang, golf) = R.(dan,), which only has
the C-unifier [AX.like(z,golf)/R,]. The color erasure of the equation above has
another unifier (AX.like(dan,, golf)/R,] which is not well-colored.

Even though we have only sketched the relevant ideas, should be clear, that
higher-order colored unification provides a general framework for specifying the
linguistic information for the construction process that avoids over-generalization
(i.e. the construction of linguistically undesired readings of discourses)..

12

3

3	 COLORED A-CALCULUS

Colored A-Calculus

In this section we extend the simply typed A-Calculus with a concept of color
annotations for constant and variable occurrences.

Definition 3.1 (Types) Let Br be a set of base types, then the set 7 of types
is inductively defined to be the set Br together with all expressions a ~ 13, where
a and 13 are types. The functional type a ~ 13 denotes the type of functions with
domain a and codomain 13.

We use the convention of association to the right for omitting parentheses in
functional types, thus a ~ 13 ~ '1 is an abbreviation for (a ~ (13 ~ '1». This way
the type '1 := 131 ~ ... ~ 13n ~ a denotes the type of n-ary functions, that take
n arguments of the types 131, ... , 13n and have values of type a. To conserve even
more space we use a kind of vector notation and abbreviate '1 by 13n ~ a.

Definition 3.2 (Typed Collection) A collection V := V, := {Va la E 7} of
sets V a , indexed by the set 7 of types, is called a typed collection (of sets).
A typed collection I := {Ia E :Fp(Vaj ca) la E 7} of functions is called a typed
function I: V, ~ c,.

We will write finite functions like substitutions or variable assignments as sets
of pairs <p := [a1 jX1], ••. ,[anjXnJ with the intended meaning that <p(X i) = ai .

Furthermore we use the convention that 'l/J := <p, [aJX] assigns a to X and coincides
with <p everywhere else. We say that (partial) functions f and 6. agree (fll6.),
iff for each X E Dom(r) n Dom(6.) we have f(X) = 6.(X). In this case the
set-theoretic union f U 6. (taking partial functions to be right-unique relations) is
again a partial function.

Definition 3.3 (Basic Material) For the definition of well-formed formulae we
fix a signature, Le. a typed collection E, of symbols and countably infinite (un­
typed) sets V of variables, C of colors and X of color variables.

Definition 3.4 (Colored Symbols) Atomic occurrences in well-formed formulae
have a color annotation, therefore we fix the notation Ez for the set {eale E E, a E
Z} for some subset Z C C U X, and analogously for Vz.

While the constants in E are a priori typed by definition (T(e) = a, iff e E Ea)
the variables are more volatile objects and obtain their type by a variable context
f.

Definition 3.5 (Variable Context) A variable context fz is a pair consisting
of a partial function f, that assigns types to variables and a set Z ~ C U X of
colours. We will use f z as a partial function assigns types to coloured variables in
Dom(fz) := Dom(r)z.

We will say fzll6.w , iff fll6. and use fz U 6.w as an abbreviation for ef U
6.)zuw. If Z is clear from the context or irrelevant, then we will often drop the
reference and only write f for f z.

Definition 3.6 (Well-Formed Formulae) Let f z be a variable context, then for
each a E 7 we inductively define the set wffa(E; fz) of well-formed formulae of
type a. For this we also need a function CE, where CE(S, B) is the set of the color
annotations of all occurrences of the symbol S in the formula B.

1.	 If Sa E ~~ U V~, then SaE wffa(~j fz) and Ce(Sa, Sa) = {a}

2.	 IT A E wff{3-+o.(Ej fz) and B E wff{3(E; 6., W), and furthermore fzll~w,
then AB E wffo.(E;fz U ~w) and CE(S,AB) = CE(S,A) UCE(S,B).

13

3 COLORED A-CALCULUS

3 Colored A-Calculus
In this section we extend the simply typed A-Calculus with a concept of color
annotations for constant and variable occurrences.

Definition 3 .1 (Types) Let BT be a set of base types, then the set 7 of types
is inductively defined to be the set BT together with all expressions a — 3 , where
a and ß are types. The functional type a — 8 denotes the type of functions with
domain & and codomain 3 .

We use the convention of association to the right for omitting parentheses in
functional types, thus a — #8 — 7 is an abbreviation for (@ —+ (8 — v)). This way
the type v : = 81 = . . . = Ba —+ « denotes the type of n-ary functions, that take
n arguments of the types fi, . . . , On and have values of type a . To conserve even
more space we use a kind of vector notation and abbreviate y by 8 , — a .

Definition 3.2 (Typed Collection) A collection D := D r : = {Dale € T } of
sets Da, indexed by the set 7 of types, is called a typed collection (of sets).
A typed collection I : = {I® € F,(Da;&a)|a € T } of functions is called a typed
function Z: D r — Er.

We will write finite functions like substitutions or variable assignments as sets
of pairs ¢ : = [a' /X1],. . . , [a"/X™] with the intended meaning that p(X?) = a’.
Furthermore we use the convention that 1 : = , [a/X] assigns a to X and coincides
with © everywhere else. We say that (partial) functions T and A agree (T||A),
iff for each X € Dom(T) N Dom(A) we have I['(X) = A(X) . In this case the
set-theoretic union I' U A (taking partial functions to be right-unique relations) is
again a partial function.

Definition 3.3 (Basic Material) For the definition of well-formed formulae we
fix a signature, i.e. a typed collection + of symbols and countably infinite (un-
typed) sets V of variables, C of colors and X of color variables.

Definition 3.4 (Colored Symbols) Atomic occurrences in well-formed formulae
have a color annotation, therefore we fix the notation Xz for the set {calc €X ,ac
Z} for some subset Z C CU X , and analogously for Vz.

While the constants in X are a priori typed by definition (7(c) = a , iff c € £4)
the variables are more volatile objects and obtain their type by a variable context
T.

Definition 3.5 (Variable Context) A variable context I'z is a pair consisting
of a partial function I', that assigns types to variables and a set Z C CU X of
colours. We will use I'z as a partial function assigns types to coloured variables in
Dom(T'z) : = Dom(T)z.

We will say I ' z | |Aw, iff T| |A and use I'z U Aw as an abbreviation for (TU .
A)zuw . If Z is clear from the context or irrelevant, then we will often drop the
reference and only write I for I'z.

Definition 3.6 (Well-Formed Formulae) Let I z be a variable context, then for
each a € T we inductively define the set wff,(X;T z) of well-formed formulae o f
type a . For this we also need a function Ce, where Ce (S ,B) is the set of the color
annotations of all occurrences of the symbol S in the formula B .

1 . If S , € $2 U Vg, then S , € uff,(T ; Tz) and Ce(S., Sa.) = {a }

2. If A € wffy_,,(5;Tz) and B € wf fg (X;A, W), and furthermore T’z||Aw,
then AB € uff, (Z;Tz U Aw) and Ce(S, AB) = Cc(S,A) UCe(S, B).

13

3 COLORED)..-CALCULUS

3.	 If A E wffa(L:;r, [X:,8]z), and Ce(X,A) = 0 then ()..X.a.A) E wff.a--+a(L:;rz)
and Ce(S,)..x.A) =Ce(S, A).

We call formulae of the form AB applications, and formulae of the form)..Xa.A
abstractions.

Note that this definition gives a dynamic account of variable typing, only re­
quiring to specify the free variables of a formula in the context. For instance the
variable X is discharged from the context r, when it is bound by the abstraction.

We adopt the usual definition of free and bound (all occurrences of the variable
~ in)..Xa.A are called bound), variables and call a formula closed, iff it does not
contain free variables. We will write free(A) for the set of (color and term) variables
in A. As in first-order logic the names of bound variables have no meaning at all,
thus we consider alphabetic variants as identical and use a notion of substitution
that systematically renames bound variables in order to avoid variable capture.

Remark 3.1 Note that for a well-formed formula A E wff(L:; r z), we can restrict
r z, such that Dom(r) is just the set of variables and Z that of colors occurring in
A. Furthermore, since there can only be finitely many occurrences of variables and
constants in a well-formed formula, we can restrict ourselves to the case, where r
and Z, and consequently Dom(rz) are finite.

Definition 3.8 We will call a formula A E wff(L:; r z)

• flexible, iff Ce (S, A) ~ X for all symbols S E Dom(f) U L:

• rigid, iff Ce(S, A) ~ C for all SE Dom(r) U L:

• a-monochrome, iff there is a single colour constant a, such that Ce (S, A) =
{a} for all S E Dom(r) U L:.

• flexichrome, iff A is flexible and any color variable occurs at most once in
A.

Finally, we call a formula A compatible with a colour a, iff a E C implies that A
is a-monochrome.

Example 3.9 FA(sd(ac)),)..X.Sd(X) are examples of colored)..-terms while
)..X.Sd(XB) is not a colored)..-term (bound variables may not have colours).

\Ve denote the constants by lower case letters and the variables by upper case
letters and use bold upper case letters Aa, Bct-t,B, C')' ... as syntactical vari­
ables for well-formed formulae. In order to make the notation of well-formed
formulae more legible, we use the convention that the group brackets (and)
associate to the left and that the square dot . denotes a left bracket, whose
mate is as far right as consistent with the brackets already present. Addi­
tionally, we combine successive)..-abstractions, so that the well-formed formulae
(AX 1.)..X2....)..Xn.AE1

. .• E m) and >X1 Xn.AE1 ... E m and)"Xn.AEm stand
for ()..Xl()..X2 ... ()..xn(AE1)E2 ... Em)). Finally we will abbreviate a formula
IIct()"Xa.A) with "IXa.A in order to re-obtain a more traditional appearance of
quantified formulae.

Definition 3.10 (A-Reduction) Let A E {,8, ,81), 71}. We say that a well-formed
formula B is obtained from a well-formed formula A by a one-step A-reduction
(A --+,\ B), if it is obtained by applying one of the following rules to a well-formed
part (which we call a A-redex) of A.

,B-Reduction ()"X.C)D -+.a [DjX]C.

14

3 COLORED A-CALCULUS

3. If A € uff,(5;T,[X: Az), and Ce(X, A) = 0 then (\Xg.A) € wffs_,o(S;Tz)
and Ce(S, AX.A) = Ce(S , A).

We call formulae of the form AB applications, and formulae of the form AX,.A
abstractions.

Note that this definition gives a dynamic account of variable typing, only re-
quiring to specify the free variables of a formula in the context. For instance the
variable X is discharged from the context I', when it is bound by the abstraction.

We adopt the usual definition of free and bound (all occurrences of the variable
X in AXa-A are called bound), variables and call a formula closed, iff it does not
contain free variables. We will write free(A) for the set of (color and term) variables
in A . As in first-order logic the names of bound variables have no meaning at all,
thus we consider alphabetic variants as identical and use a notion of substitution
that systematically renames bound variables in order to avoid variable capture.

Remark 3.7 Note that for a well-formed formula A € wff(Z; I z) , we can restrict
Tz , such that Dom(T) is just the set of variables and Z that of colors occurring in
A. Furthermore, since there can only be finitely many occurrences of variables and
constants in a well-formed formula, we can restrict ourselves t o the case, where I
and Z , and consequently Dom(I'z) are finite.

Definition 3.8 We will call a formula A € wff(Z;Tz)

e flexible, iff Cc(S, A) C X for all symbols S € Dom(T) US

e rigid, iff Cc(S,A) © C for all S € Dom(T) UZ

e a-monochrome, iff there is a single colour constant a, such that C¢(S,A) =
{a} for all S € Dom(T) UX.

se flexichrome, iff A is flexible and any color variable occurs at most once in
A .

Finally, we call a formula A compatible with a colour a, iff a € C implies that A
is a~-monochrome.

Example 3.9 Fj(sq(a.)), AX.sa(X) are examples of colored A-terms while
AX.34(X3) is not a colored A-term (bound variables may not have colours).

We denote the constants by lower case letters and the variables by upper case
letters and use bold upper case letters Ag, Boog, Cy . . . as syntactical vari-
ables for well-formed formulae. In order to make the notation of well-formed
formulae more legible, we use the convention that the group brackets (and)
associate to the left and that the square dot . denotes a left bracket, whose
mate is as far right as consistent with the brackets already present. Addi-
tionally, we combine successive A-abstractions, so that the well-formedformulae
(AXLAX2 . . .AX"AE ! . . .E™) and AX ! . . .X "AE ! . . .E™ and AX".AE™ stand
for AX1(AX2.. . (AX"(AE')E®.. .E™)---) . Finally we will abbreviate a formula
I*(AX,.A) with VX , A in order to re-obtain a more traditional appearance of
quantified formulae.

Definition 3.10 (A-Reduction) Let A € {3,8n,7}. We say that a well-formed
formula B is obtained from a well-formed formula A by a one-step A-reduction
(A —) B), if i t is obtained by applying one of the following rules to a well-formed
part (which we call a A-redex) of A .

B-Reduction (AX.C)D — [D/X]C.

14

3 COLORED A-CALCULUS

1]-Reduction If X is not free in C, then (AX.CX) -+., C.

As usual we denote the transitive closure of a reduction relation -+A with -+1.
These rules induce equivalence relations ={3, =." and ={3., on wjj('£; r z), which we
call the A-equality relations. A formula that does not contain a A-redex, and thus
cannot be reduced by A-reduction, is called a A-normal form.

Remark 3.11 Clearly the colors annotating the atoms do not affect ,81]­
convertibility, since bound variables are not colored. Therefore, the /3-, 7]-, and
/31]-reduction relations are terminating and confluent, as in the simply typed case.
Thus for any formula A there is a sequence of /3-reductions A -+p B such that B
is a /3-normal form.

To make arguments like the above more formal we define the erasure of a colored
formula, this is a simply typed A-term, which we obtain erasing all color-information:

Definition 3.12 (Erasure) The erasure of colored A-terms to simply typed A­
terms is defined by:

•	 IAal = A if A E '£ U V and a E C U X

•	 j(AB)1 = (IAIIBI)

• I(AXa.A) I = AXa·IAI

We call any colored formulae A and B variants, if IAI = IBI

We now have the tools for defining C-substitutions, a restriction of well-typed
substitutions that preserves syntactic color information, such as the skeleton (cf. 5).

Definition 3.13 (C-Substitution) Let r z , and ~w be variable contexts, then a
C-substitution a is a pair (at, aT), where at is a typed mapping Vw -+ wjj('£; ~w)

and aT: Z -+ W such that

•	 If a E C, then a(Xa) must be a-monochrome for any variable X a E Dom(rz),
Le. a(Xa) must be compatible with a.

A C-substitution a with domain rz and codomain ~w can always be extended
to a homomorphism a: wjj('£; r z) -+ wjj('£; ~w) by the standard construc­
tion. Note that C-substitutions always have a finite domain Dom(a): = {Xa E
Dom(rz) la(Xa) i:- Xa}, since we have restricted ourselves to finite variable con­
texts. We will denote the set of all substitutions with domain rz (and codomain
~w) with SUB('£; rz -+ ~w) (SUB('£; rz)).

Remark 3.14 Note that the second condition in the definition of C-substitutions
(instances of variants are variants) holds in general as a simple induction on the
structure shows: If a is a C-substitution and A and B are variants, then a(A) and
a(B) are vari~ts.

15

3 COLORED X\-CALCULUS

n-Reduction If X is not free in C , then (AX.CX) —, C .

As usual we denote the’ transitive closure of a reduction relation —» with 3 .
These rules induce equivalence relations =g, = , , and =g, on wff(L;I'z), which we
call the A-equality relations. A formula that does not contain a A-redex, and thus
cannot be reduced by A-reduction, is called a A-normal form.

Remark 3.11 Clearly the colors annotating the atoms do not affect Gn
convertibility, since bound variables are not colored. Therefore, the 8-, - , and
Bn-reduction relations are terminating and confluent, as in the simply typed case.
Thus for any formula A there is a sequence of B-reductions A —% B such that B
is a f-normal form.

To make arguments like the above more formal we define the erasure of a colored
formula, this is a simply typed A-term, which we obtain erasing all color-information:

Definition 3.12 (Erasure) The erasure of colored A-terms to simply typed A-
terms is defined by:

e | [A , | =A i fAcXZUVandaeCu i

* | (AB) | = (JA |IB])

e |(AXpA)| = AX, A]

We call any colored formulae A and B variants, if [A| = |B|

We now have the tools for defining C-substitutions, a restriction of well-typed
substitutions that preserves syntactic color information, such as the skeleton (cf. 5).

Definition 3 .13 (C-Substitution) Let I'z, and Aw be variable contexts, then a
C-substitution ¢ is a pair (0*, 07), where o? is a typed mapping Vw —+ wff(Z; Aw)
and 07: Z —+ W such that

e If a € C, then ¢(X,) must be a-monochrome for any variable X ; € Dom(T2),
i.e. o(X,) must be compatible with a.

oe |o(X,)| = |o(Xy)| for all X , , X € Dom(X).

A C-substitution ¢ with domain I'z and codomain Aw can always be extended
to a homomorphism vo: uwff(Z;Tz) — wff(X;Aw) by the standard construc-
t ion. Note that C-substitutions always have a finite domain Dom(o) := {X, €
Dom(I'z)|o(X,) # Xa}, since we have restricted ourselves to finite variable con-
texts. We will denote the set of all substitutions with domain I'z (and codomain
Aw) with SUB(Z;T'z = Aw) (SUB(Z;Tz)).

Remark 3.14 Note that the second condition in the definition of C-substitutions
(instances of variants are variants) holds in general as a simple induction on the
structure shows: If go is a C-substitution and A and B are variants, then o(A) and
o(B) are variants.

15

4 UNIFICATION

4 Unification

The central data structure higher-order unification is that of unification problems,
Le. sets of pairs A 1 =B i of formulae together with two variable contexts f z and
10·

Definition 4.1 (Unification Problem) A unification problem is a formula of
the form £ =3fz.V10.Pl /\ .. .P n , where fz, 10 are variable contexts and the P l
are (term or colour) pairs. Term pairs are of the form A =t B, where A, B E
wff(Jt (:E; f z U 10) for some type a, whereas color pairs are of the form a =C b with
a, b E Z. If we do not want to specify whether a pair is a term- or colour pair, we
use A == B.

We have chosen this logical form, since the existence of C-unifiers for & corre­
sponds to validity of the formula £. The existential context f z collects type and
colour information of the free variables for which the problem is to be solved. The
universal context 10 is needed for the specific set of transformations presented in
this paper (cf. 4.9 which decompose abstractions and accumulate bound variables
(which are uncoloured) in 10)'

Definition 4.2 (Unifier) We call a C-substitution fJ E SUB(Ejfz) with
fJ(Ai)=,6qB(Bi

) for all 1 ~ i ~ n C-unifier for & and we will denote the set of
C-unifiers of & with U(&).

We call a subset -q; ~ U(&) a complete set of C-unifiers of &, iff for all
eE U(&) there is a 0" E -q; that is more general than B, Le. there is a C-substitution
p, such that O"(X)=,6qp(B(X» for all X E Dom(A) =Dom(O"). If the singleton set
{O"} is a complete set of unifiers of £, then we call 0" a most general unifier for £.

Definition 4.3 (Solved Form) Let £ := 3fZ.V10.A == B /\ &' be a unification
problem, then we call the pair A == B solved in &, iff

• it is a term pair Xa =t B for some Xa E Dom(fz), such that

- Xi free(B) and

- if Xb E free(&'» for some b E Z, then it occurs in the left hand side of
a pair Xb =t C IBI = ICI, and furthermore

- Dom(1) n free(A) =0,

• it is a color pair A =C b for some color variable A EX.

We call & in solved form, iff all atoms in Dom(fz) are solved in &. Clearly, any
C-substitution 0" = [Al /h;J, ... ,[An /h~J uniquely determines a solved unifica­
tion problem £rr = 3fz.V10,X~1 =t A 1 /\ ... /\ X:.. =t An in solved form. Con­
versely, the conditions on solved forms ensure that the corresponding substitutions
are C-substitutions: The first condition ensures well-definedness (occurs-check) and
idempotence, the second ensures that 0"£ is a C-substitution and the third condition
forbids bound variables in solutions (which would be unsound, as already the 3"1
notation suggests).

Lemma 4.4 Let & = 3fz.V10.&rr be a C-unification problem in solved form, then
0" is ,a most general C-unifier for &. In particular, for any C-unifier of & we have
B={31}B 0 0"[&].

Proof: We have O"(Fa) = O"(A) for any pair Fa =t A E £rr, thus 0" is a C-unifier
for &. If e E SUB(Ej f) is a unifier for £, then B 0 O"(Xi) = B(Ai)={3qB(Xi) and
B(Y) =B0 O"(Y) for Y i Dom(fz), so that indeed B=/3qB 00". Now it only remains
to verify that 0"£ is a C-substitution. -. 0

16

4 UNIFICATION

4 Unification
The central data structure higher-order unification is that of unification problems,
i.e. sets of pairs A ! = B* of formulae together with two variable contexts I'z and
Yo.
Definition 4.1 (Unification Problem) A unification problem is a formula of
the form & = 3FzVYg.Pı A . . .P „ , where I'z, Tp are variable contexts and the Py
are (term or colour) pairs. Term pairs are of the form A = ! B , where A ,B €
wff, (2 ; Tz U Tp) for some type &x, whereas color pairs are of the form a =“ b with
a,b € Z . If we do not want to specify whether a pair is a term- or colour pair, we
use A = B.

We have chosen this logical form, since the existence of C-unifiers for £ corre-
sponds to validity of the formula £. The existential context I'z collects type and
colour information of the free variables for which the problem is to be solved. The
universal context Yg is needed for the specific set of transformations presented in
this paper (cf. 4.9 which decompose abstractions and accumulate bound variables
(which are uncoloured) in Tgp).

Definition 4.2 (Unifier) We call a C-substitution § € SUB(X;Tz) with
6(A*)=g,0(B*) for all 1 < i < n C-unifier for £& and we will denote the set of
C-unifiers of £& with U(£).

We call a subset ¥ C U(£) a complete set of C-unifiers o f &, iff for all
8 € U(&) there is a go € U that is more general than 8, i.e. there is a C-substitution
p, such that o(X)=p3,p(0(X)) for all X € Dom(A) = Dom(c). If the singleton set
{o} is a complete set of unifiers of £, then we call 0 a most general unifier for £.

Definition 4.3 (Solved Form) Let £ : = IT z2VTpA = B A £' be a unification
problem, then we call the pair A = B solved in &, iff

e it is a term pair X , =* B for some X. € Dom(Tz) , such that

— X ¢ free(B) and
— if X € free(&’)) for some b € Z , then it occurs in the left hand side of

a pair X , =* C |B| = |C]|, and furthermore
— Dom(Y) Nfree(A) = %,

e it is a color pair A =° b for some color variable A € X .

We call £ in solved form, iff all atoms in Dom(I'z) are solved in £. Clearly, any
C-substitution o = [A!/hl] , . . . , [A™/h"] uniquely determines a solved unifica-
tion problem &, = ICzVTe.XL, = t A ' A . . . AX]? =* A” in solved form. Con-
versely, the conditions on solved forms ensure that the corresponding substitutions
are C-substitutions: The first condition ensures well-definedness (occurs-check) and
idempotence, the second ensures that vg is a C-substitution and the third condition
forbids bound variables in solutions (which would be unsound, as already the 3V
notation suggests).

Lemma 4.4 Let £ = ATzVYy&, be a C-unification problem in solved form, then
o is a most general C-unifier for E. In particular, for any C-unifier of £ we have
0=6n0 © o[E]-

Proof: We have o(F,) = o(A) for any pair F, =* A € &,, thusco is a C-unifier
for £. If 9 € SUB(Z;T) is a unifier for £ , then 8 o o(X*) = §(A*)=g,6(X*) and
0(Y)=0o00(Y) for Y ¢ Dom(T'z), so that indeed 8=4,6 0 5 . Now it only remains
to verify that og is a C-substitution. a O

16

4 UNIFICATION	 4.1 SimpliB.cation

Lemma 4.5 U(3rz.'VY0.£/\ £u) = U(3rz.'VY0.0'(£) /\ £u)

Proof: Note that () E U(3rz.'VY0.£ /\ £u), iff () E U(3rz.'VY0.£u) n U(3rz.'VY0.£),
·so() == () 0 0' by 4.4(1). Now () 0 0' E U(3rZ.'VY0.£), iff () E U(3rz.'VY0.0'(£)), which
gives the assertion. 0

4.1 Simplification

A C-substitution () has to obey the dependencies between different variables. In­
stantiating Xa and Xb we have to take care that I()(Xa)I = IB(Xb)l. Hence, if the
unification process instantiates Xa with a formula A, we also have to instantiate
Xb with suitable formula A' in order to satisfy the conditions for C-substitutions
in 3.13. In particular we have to have

•	 IAI = IA'I and

•	 [A' / Xb] has must be a C-substitution

If b E C, then there is a unique solution for A' which we call ab-monochrome
variant of A. Intuitively we can obtain A' from A by re-dyeing all colors and
color-variables to b. In case b E X the color annotations in A' are not restricted, so
we only require IAI = IA'I. Thus we need some "most general pattern" which can
be instantiated to any possible A'. We call these patterns flexichrome variants
and obtain a flexichrome variant for A by replacing each color or color-variable in
A by new color-variables.

Definition 4.6 (a-Chrome Variant) Let A,B E Wffa(LirZ), then we call Ba

•	 a flexichrome variant of A, iff B is flexichrome and IAI = IBI,

•	 a a-monochrome variant of A, iff B is a-monochrome and IAI = IBI,

•	 a b-chrome variant of A, iff b E X and B is a flexichrome variant of A or
bE C and B is a b-monochrome variant of A

Note that a-monochrome variants are uniquely determined, since we can obtain
them by replacing each color and color-variable by a.

Example 4.7 SA(XB) is a flexichrome variant of Sd(Xc), and AX.SA(SBX) one of
AX.Sd(ScX), but AX,SA(SAX) and AX.SA(ScX) are not. Furthermore, the formulae
sc(Xc), AX.Sc(ScX) are d-chrome variants of SdXA respectively AX.Sd(ScX).

Lemma 4.8 If a formula A is compatible with some color a E C UX, then there is
a a-chrome variant G of A and a C-substitution p, such that peG) = B.

Proof: If a is a color variable, then by a simple induction on the structure of A, we
see that there is a flexichrome variant G of A and furthermore that we can chose
p to be a color substitution that re-dyes the color variables of G. If a E C, then A
must be a-monochrome by compatibility, and we can choose G = A and p to be
the identity substitution. 0

17

4 UNIFICATION 4.1 Simplification

Lemma 4.5 UBT zVTpEAE) = U2 VY 0.0(E) AES)

Proof: Note that 9 € U(3Fz.VYg.E A Er), iff 8 € UBC 2VYeE,) NUE2VYp.E),
500 = 000g by 44(1) . Now f oo € UFzVT.E), iff € UAT 2z.VYp.0(E)), which
gives the assertion. g

4 .1 Simplification
A C-substitution has to obey the dependencies between different variables. In-
stantiating X , and X, we have to take care that |8(X,)| = |#(X,)|. Hence, if the
unification process instantiates X , with a formula A , we also have to instantiate
X with suitable formula A ’ in order to satisfy the conditions for C-substitutions
in 3.13. In particular we have to have

* |A | = |A’] and

eo [A’/X%] has must be a C-substitution

If b € C, then there is a unique solution for A ’ which we call a b-monochrome
variant of A . Intuitively we can obtain A’ from A by re-dyeing all colors and
color-variables to b. In case b € X the color annotations in A ’ are not restricted, so
we only require |A | = |A’|. Thus we need some “most general pattern” which can
be instantiated to any possible A ’ . We call these patterns flexichrome variants
and obtain a flexichrome variant for A by replacing each color or color-variable in
A by new color-variables.

Definition 4 .6 (a-Chrome Variant) Let A ,B € uff, (2;I 'z), then we call B a

e a flexichrome variant of A, iff B is flexichrome and |A| = |B],

e a a-monochrome variant of A , iff B is a-monochrome and |A | = |B],

e a b-chrome variant of A , iff be X and B is a flexichrome variant of A or
b € € and B is a b-monochrome variant of A

Note that a-monochrome variants are uniquely determined, since we can obtain
them by replacing each color and color-variable by a.

Example 4.7 5,(X3) is a flexichrome variant of s4(X.), and AX.s;(ssX) one of
AX.54(8.X), but AX.s1(s ıX) and AX.sx(s.X) are not. Furthermore, the formulae
S (X) , AX.sc(s.X) are d-chrome variants of s4.X, respectively AX.sq{s.X).

Lemma 4.8 If a formula A is compatible with some color a € CU X , then there is
a a-chrome variant G of A and a C-substitution p , such that p (G) = B .

Proof: If a is a color variable, then by a simple induction on the structure of A , we
see that there is a flexichrome variant G of A and furthermore that we can chose
p to be a color substitution that re-dyes the color variables of G . If a € C, then A
must be a-monochrome by compatibility, and we can choose G = A and p to be
the identity substitution. D

17

4 UNIFICATION 4.1 Simplification

Definition 4.9 (SIM: Simplification of C-Unification Problems) The rules
for constraint simplification consist of the decomposition rules

3fz.VT0.(.XX",.A) =t (AY",.B)
----------SIM(o:)
3fz .VT, [Z: o:].[Z/X]A =t [Z/Y]B

3fz .VT0.(AX",.A) =t B
---------SIM(TJ)
3fz.VT, [Z: o:]_[Z/X]A =t (BZ)

- t ­3fz.VY0.haUn = hbV n
1\ £ h E 'E U Dom(Y)

---------------SIM(dec)
a =C b 1\ U l =t VI 1\ ... 1\ Un =t V n 1\ £

where Z rf. Dom(fz) U Dom(Y) is a new variable and the following variable
elimination rules:

3fz,VY0.A =C b 1\ £ A E X
---------SIM(elim:col)

. 3fz.VY0.A =c b 1\ [b/A]£

where a E free(£) but A rf. free(A).

3fz.VY0.FaXk =t A 1\ £ Xi E Dom(Y)
-------------- SIM(elim:term)
3fz"VY0.Fb =t G 1\ FaXk =t A 1\ [G/Fb]£

Here we assume t·hat F rf. free(A), but Fb E free(£) for some color b and that G
is a b-chrome variant of AXk.A8. The new set Z' of colors is the set Z possibly
augmented by the new color variables needed for G, if if is flexichrome.

We apply these rules with the understanding that the operators 1\ and =t are
commutative and associative, that trivial pairs may be dropped and that vacuous
quantifications can be eliminated from the prefix. Furthermore after the application
of each rule all formulae are reduced to head normal form. Finally, no rule may be
applied to a solved pair.

Lemma 4.10 lID: £ I-SIM £', then U(£) =U(£')[£].

Proof: Clearly it suffices to show the assertion for the case, where D consists of a
single rule application. For SIM(o:) we have the following situation:

3fz ,VY0.(..\X",.A) =t (..\Y",.B) I\:F
------------SIM(o:)
3rz.VY,[Z:0:]0_[ZjX]A=t [Z/YjBI\:F .

where t::.' := t::., [Z: 0:] and Z rf. Dom(t::.). For any C-substitution () we have
()(..\X.A) = ()(AY.B) , iff 8(AZ.[Z/X]A) = ()(..\Z.[Z/Y]B) by o:-conversion and

SIn contrast to the simple higher-order unification we restrict the variable elimination rules to
cases, where it is certain that the elementary substitutions are C-substitutions. In particular the
second rule does not immediately eliminate a colored variable F.; but rather eliminates· all variants
Fe of Fa first, in order to ensure that the instantiations for all variants of Fa are variants.

18

4 UNIFICATION 4.1 Simplification

Definition 4.9 (SZM: Simplification of C-Unification Problems) The rules
for constraint simplification consist of the decomposition rules

ArzVY0.(AXeA) =* (\Y,.B)
IC zVY,[Z: al[Z/X]A = t [Z/Y]B

STM(«a)

I zVYa(AXa.A) = t B

AUzVY,[Z: al.[Z/X]A = ! (BZ)
SIM(n)

I z VY eh U? =" BVP AE he TUDom(Y)
a=bAUL= tV IA . . .AU= t V *AE

STM (dec)

where Z € Dom(I'z) U Dom(Y) is a new variable and the following variable
elimination rules:

AzVTpA =°bAE AEX

IF zVYg.A =° DA [b/AJE
STM(elim:col)

where a € free(E) but A ¢ free(A).

IrzVTeFuXE=t ANE Xe Dom(Y)

MV =t G AFXF =t AN[G/E)E
SIM(elim:term)

Here we assume that F ¢ free(A), but FA € free(€) for some color b and that G
is a b-chrome variant of AX*.A8. The new set Z ' of colors is the set Z possibly
augmented by the new color variables needed for G , if if is flexichrome.

We apply these rules with the understanding that the operators A and = ! are
commutative and associative, that trivial pairs may be dropped and that vacuous
quantifications can be eliminated from the prefix. Furthermore after the application
of each rule all formulae are reduced to head normal form. Finally, no rule may be
applied to a solved pair.

Lemma 4.10 If D:€ Fszpm E', then U(E) = U(E)[E].

Proof: Clearly it suffices to show the assertion for the case, where D consists of a
single rule application. For SZM(a) we have the following situation:

ICV Ye(A XA) =" (AY,B) A F

I0ZNY,[Z: alo[Z/X]A =* [Z/Y]BAF
SIM(a)

where A ’ : = A, [Z :a] and Z ¢ Dom(A). For any C-substitution 0 we have
(1X.A) = 6(XY.B), iff 0(AZ.[Z/X]A) = 6(1Z.[Z/Y]B) by a-conversion and

8In contrast to the simple higher-order unification we restrict the variable elimination rules to
cases, where i t i s certain that the elementary substitutions are C-substitutions. I n particular the
second rule does not immediately eliminate a colored variable Fy, but rather eliminates all variants
Fy of F, first, in order to ensure that the instantiations for all variants of F, are variants.

18

4 UNIFICATION 4.2 General Unification

(AZ.B([ZjX]A) = (AZ.B([ZjY]B), since we can assume that X, Y :f; Dom(6.).
However the last condition is equivalent to B([ZjX]A) = B([ZjY]B). Thus the sets
of substitutions that solve c and c' are identical.

In the presence of SIM(a) the rule SIM(17) is equivalent to a direct conse­
quence of 17-conversion: let c = 3fz.V'T0.AXa.A =t B, then B=7)AXa.BX. Since
C-unifiability is defined modulo 17-equality, the set of C-unifiers does not change
by replacing B by its 17-expansion (AXa.BX). Now we obtain the assertion for
SIM(17) by that for SIM(a).

In the SIM (dec) case we have

where hE "EUDom(T). Let BE U(3fz.V'T 0.a =C bU1 =t yl /\ ... /\ Un =t yn /\ c),
then B(a) = B(b) and B(Ui)=,67)B(yi) for alII::; i ::; n and therefore

B(haUn) = hb B(Un)={37)hB(yn) = B(hyn)

Thus we have B E U(C). The SIM(elim:col) case is a direct consequence of
Lemma 4.5.

For SIM(elim:term) let c = 3fz.V'T0.C' be a C-unification problem and
(FaX) =t A be the pair in C' that the rule SI}vt(elim:term) acts upon. fur­
thermore let Fb E free(c') for some b :f; a.

We show that for an arbitrary idempotent C-unifier B of C, the b-chrome variant
of the formula AXn.A is more general than B(Fb). So let B be an arbitrary C-unifier
of C, then

B(Fa)={37)B(AX.FaX) ={37)AX.B(FaX)={37)AX.B(A) ={37)O(AX.A)

since the Xi are not in Dom(B). Now we know that IB(Fb)1 = B(Fa)j, since B is a
C-substitution, on the other hand B(Fb) is compatible with b, so there is a unique
b-chrome variant G of AX.A and a substitution p, such that p(G) = AX.A by
lemma 4.8, thus we obtain the assertion by 4.5. 0

Clearly the SIM Transformations are a generalization of the first-order colored
unification algorithms as they have been presented in [Hut91j. Just as the first-order
unification transformations they are terminating (if c f-SIM c', then p,(c') -< p,(c»
and confluent up to associativity and commutativity of /\, =t and =C. Thus it
makes sense to speak of a SI}vt-normal form. Unlike unification for first-order
logic, the SIM-normal forms are not solved forms, but can contain pairs of the
form haU =t kb U, where at least one of the heads ha and ka is a colored variable.

4.2 General Unification

The classical approach to higher-order unification reduces the problem of finding
solutions for SIM-normal pairs as described above to the following (essential) part
(the general binding problem, which is virtually trivial in the classical case): Given
a type a and a symbol h, find the most general well-formed formula of type a that
has head h.

We will proceed in the same manner and use standard techniques from [Sny91,
Koh94] to obtain the unification algorithm (cf. section 4). For C-unification we have
to analyse the general binding problem more carefully than in the classical case.

Since we work in a colored context, where we have to ensure well-coloredness of
substitutions we have to specialise the notion of general bindings by requiring them
to be a-chrome.

19

4 UNIFICATION 4.2 General Unification

(A\Z.6([Z/X]A) = (AZ.8([Z/Y]B), since we can assume that X ,Y # Dom(A).
However the last condition is equivalent to 8([Z/X]A) = 8([Z/Y]B). Thus the sets
of substitutions that solve £ and £ ’ are identical.

In the presence of SZM(a) the Tule SZM(n) is equivalent to a direct conse-
quence of n-conversion: let £ = 3 I ' 2 .YYpA Xa A =* B, then B=,1X,.BX. Since
C-unifiability is defined modulo n-equality, the set of C-unifiers does not change
by replacing B by its n-expansion (AX,.BX). Now we obtain the assertion for
SIM(n) by that for STM(a).

In the SZM(dec) case we have

IL zVY pha U? =t VE AE
Az 0a =bAU l =" V IA . . . AU = VAL

SIM (dec)

where h € ZUDom(Y). Let § € U(3Tz.VYTg.a =° PU = VIA . . .AUP= t VP AE),
then (a) = 8(b) and 8(U*)=g,0(V*) for all 1 < i < n and therefore

8(h,U™) = ho8(U™)=p,h8(V") = (KV?)
Thus we have § € U(£). The SIM(elim:col) case is a direct consequence of
Lemma 4.5.

For SIM(elim:iterm) let E = 3CzVYeL' be a C-unification problem and
(FoX) =* A be the pair in £’ that the rule SZM(elim:term) acts upon. Fur-
thermore let F, € free(E') for some b # a.

We show that for an arbitrary idempotent C-unifier 9 of £ , the b-chrome variant
of the formula AX™.A is more general than 8(F,). So let 8 be an arbitrary C-unifier
of £ , then

B(F.)=p,0 \X.F. X)=gq A\X.8(FaX)=gpAX.8(A) =p,0(AX.A)

since the X ; are not in Dom(f). Now we know that |9(F%)| = 6(F,)|, since 0 is a
C-substitution, on the other hand #(F,) is compatible with b , so there is a unique
b-chrome variant G of AX.A and a substitution p, such that p(G) = AX.A by
lemma. 4.8, thus we obtain the assertion by 4.5. a

Clearly the SZM Transformations are a generalization of the first-order colored
unification algorithms as they have been presented in [Hut91]. Just as the first-order
unification transformations they are terminating (if £ sz E’, then u(E') < u(€))
and confluent up to associativity and commutativity of A, =* and =° . Thus i t
makes sense to speak of a STM-normal form. Unlike unification for first-order
logic, the STM-normal forms are not solved forms, but can contain pairs of the
form h,U =? ky U, where at least one of the heads h, and k, is a colored variable.

4 .2 General Unification

The classical approach to higher-order unification reduces the problem of finding
solutions for SZM-normal pairs as described above to the following (essential) part
(the general binding problem, which is virtually trivial in the classical case): Given
a type a and a symbol h, find the most general well-formed formula of type a that
has head h .

We will proceed in the same manner and use standard techniques from [Sny91,
Koh94] to obtain the unification algorithm (cf. section 4). For C-unification we have
to analyse the general binding problem more carefully than in the classical case.

Since we work in a colored context, where we have to ensure well-coloredness of
substitutions we have to specialise the notion of general bindings by requiring them
to be a-chrome.

19

4 UNIFICATION	 4.2 General Unification

Definition 4.11 (General Binding) Let fz be a variable context and a E Z,
then

G :=)"X~I.@(H;lXl) ... (H:' Xl)

is called a a-chrome general binding of type a = ({31 --1,) and head @, if @ is
the bound variable xt and aj = (<>m --1 ,), or @ =hb for some h E ~ U Dom(rz)
with type <>m --1 ,. Furthermore, if a is a

•	 colour constant, then b = ai = a for all 1 :5 i :5 m.

•	 colour variable, then b is a new colour variable and the ai are distinct color
variables that do not occur in Dom(fz) (in particular B i: ai)

The new variables Hi obtain their types from the context

which is called the context of variables introduced for G. Note that general
bindings are unique up to the choice of names for the variables Hi and the color
variables aj in A. General bindings, where the head is a bound variable Xj are called
projection bindings (we write them as g~,a(r:;fz;A» and imitation bindings
(written g~~a(r:;fz;A» else.

Since we need both imitation and projection bindings for higher-order unifica­
tion, we collect them in the set of approximating bindings for h and a

Note that all general bindings in AE~ba (r:; f z; A) are a-chrome, Le. they are
a-monochrome, if a E C an9- fiexichrome, if a is a color variable.

Example 4.12 The following are a-chrome general bindings

1.)"Y.se(HaY) is an imitation binding for Se, if either a E X or a E C and c = a.

2.)..Y.sB(HcY) is an imitation binding with head SB, if a E X.

3.)..X, Y, Z.Y(HAY Z) is a 2-projection binding.

It is easily verified that g~~b E wflx(r:; r z U A), that it is b-monochrome and
head(G) = ha, which explains the naming in the definition above. The following
theorem is the basis of the unification transformations given below.

Theorem 4.13 (General Binding Theorem) Let A = ()..Xk.hbUm) E wffa(r:; fz)
be a long head normal form that is compatible with a E CU X, then there exists a a­
chrome general binding G = gB~~a(r:; rz; A) and aC-substitutionp E SUB(r:; A --1

f z), such that dp(p) < dp(A) (where dp(A) is the depth of A as a tree) and
p(G)=f31)A.

Proof: By definition gB~~a (r:; f z; A) =)"X~I.hb(H~l Xl) ... (H:' Xl), so we can

take p = [(AXk.Ui)/H~], ... , [()..Xk.um)/H~]; Thus the depth condition is met by
construction. Now it only remains· to show that p is C-substitution. Since the Hi
are distinct variables, we only have to show compatibility: If a E C, then A and the
U i must be a-monochrome, since A is compatible with A. If a E X then there is
~~~~. 

Building upon the notion of general bindings we give a set of transformations for 
C-unification, which we will prove correct and complete with the methods of [Sny91, 
Koh94]. 

20 

0 

4 UNIFICATION 4.2 General Unification

Definition 4.11 (General Binding) Let I'z be a variable context and a € Z ,
then

G : =  AX. @Q(HLXY) . . . (H™ XY)
is called a a-chrome general binding of  type a = (Bi = 7) and head @, if @ is
the bound variable X2, and a;  = (0m — 7),  or @ = hy, for some h € ZUDom(T'z)
with type dm — v .  Furthermore, if  a is a

e colour constant, then b = a; =aforall 1 < i  <m.

e colour variable, then b is a new colour variable and the a; are distinct color
variables that do not occur in Dom(I'z) (in particular B # a;)

The new variables H* obtain their types from the context

A=  [HYG = 8Y , . . . , [H™Bi — 07]

which is called the context of  variables introduced for G .  Note that general
bindings are unique up to the choice of names for the variables H* and the color
variables a;  in  A.  General bindings, where the head is a bound variable X7 are called
projection bindings (we write them as Gi  „ (Z;  T'z; A)) and imitation bindings
(written GA(X ;  Tz; A)) else.

Since we need both imitation and projection bindings for higher-order unifica-
tion, we collect them in the set of approximating bindings for h and a

ABP (2 ;  Tz ;  A)  = {Gh (Z iT  2 ;  A ) }  U {GL. (Z ;  Tz ;  A ) | j  < 1 }

Note that all general bindings in AB ,  (Z;Tz;A) are a-chrome, i.e. they are
a-monochrome, if a € C and flexichrome, i f a is a color variable.

Example 4.12 The following are a-chrome general bindings

1. AY.s.(H.Y) is an  imitation binding for s., i f  either a € Xo ra  € C and c = a.

2 .  AY.sg(HcY) is an  imitation binding with head sg, if a € X .

3. A\X,Y,ZY(H,YZ) is a 2-projection binding.

It is easily verified that G i  € w„(Z;Tz U A),  that it is b-monochrome and
“ .  head(G) = ha, which explains the naming in the definition above. The following

theorem is the basis of the unification transformations given below.

Theorem 4.13 (General Binding Theorem) LetA = (AX*.h,U™) € uff, (Z;Tz)
be a long head normal form that is compatible with a € CUX, then there exists a a-
chrome general binding G = GBM (Z;  T z ; A) and a C-substitution p € SUB(X;  A —
T'z), such that dp{p) < dp(A) (where dp(A) is the depth of A as a tree) and
p(G)=gnA.

Proof: By  definition GBM,(3 ;Tz ;  A) = Mech (Hi XY)... (HT X') ,  so we can
take p = [(AXEUY/HY),...,[(AXEU™)/H™): Thus the depth condition is met by
construction. Now i t  only remainsto  show that p is C-substitution. Since the H !
are distinct variables, we only have to  show compatibility: If a € C, then A and the
U* must be  a-monochrome, since A is compatible with A .  If a € X then there is
nothing to show. |

Building upon the notion of general bindings we give a set of transformations for
C-unification, which we will prove correct and complete with the methods of [Sny91,
‘Koh94].

20



4 UNIFICATION	 4.2 General Unification 

Definition 4.14 (CUT: Transformations for C-Unification) Let CUT be the 
system SIM augmented by the following inference rules 

3rz.VY0.FaUn =t Fbyn /\ e F E Dom(r) a, b E C U X 
-------------------CUT(dec) 

3rZ •VY0.a =c b /\ U I =t yl /\ ... /\ Un =t yn /\ e 

together with the following rules where G E AB~ba(2:, A, A), 

3rz.VY0.FaU =t GbY /\ e r(F) = a r(G) = (J
----------------CUT(guess) 
3rz U A.VY0.Fa =t G /\ [G/ Fa](FU =t H b y /\ e) 

Just as in SIM leave the associativity and commutativity of /\, =t, and =C implicit. 
We have combined the classical imitation (G has head hb ) and projection (G is a 
projection binding) transformations (see [Sny91]) into CUT(fiex/rig). This set of 
rules is used with the convention that all formulae are eagerly reduced to SIM­
normal form. 

As an example let us reconsider the list example from the introduction (cf. 2.2), 
where we had used higher-order coloured unification for constraining a speculated 
lemma in an induction proof. We give a full trace of the unification involved there. 

Example 4.15 Let the types A and E stand for lists and their elements, and 

2: = [app: A-r A-r A], [rev: A-r A], [cons: E-r A-r A], [h: El, [nil: A], [u, v: A] 

Furthermore let r = [F: A-r A-r El, [Y: A], [X: E] then the unification problem 

3rz.Fg(rev"u,,)hgvg =t apPg(reVBYA)(consgXgnilg) 

can be transformed to 

:Jr,	 [H, K: A-r E -r A-r A]. 
Fg =t (AU", VEW",.apPg(HUVW) (KUVW»/\ 
Fg ( rev"u,,)hgvg =t apPg(reVBYA)(consgXgnilg) 

by CUT(ftex/rig) and further to 

:J[Y: A],	 [X: E], [H, K: A-r E -r A-r A]. 
Fg =t (AU>. v.o W",. apPg(HUVW) (KUVW»/\ 
apPg(Hg(rev"u,,)hgvg)(Kg(rev"u,,)hgvg) =t apPg(reVBYA)(consgXgnilg) 

by SIM(elim:term). Note that there are no variants of F, s6 Fg can be eliminated 
right away. Now we can proceed by decomposing the problem by SIM(dec) to 

3[Y: A],	 [X: E], [H, K:.A -r E -r A-r A]. 
Pg =t (AU", VEW",.apPg(HUVW) (KUVW»/\ 
Hg(rev"u,,)hgvg =t reVBYA/\ Kg(rev"u,,)hgvg) =t consgXgnilg 

21
 

4 UNIFICATION 4.2 General Unification

Definition 4.14 (CUT: Transformations for C-Unification) Let CUT be the
system STM  augmented by the following inference rules

FrzVYeF,U" =!  RV"AE FeDom( l )  abeCUX
r zVTea="bAU l= t  V IA . . .AU"=V*AE

CUT (dec)

together with the following rules where G € AB» (X, A,  A)

A zVYeF,U= hVAE T(F) =a

ICz U AVY oF, =? G A[G/F)(F.U =* MV  AE)
CUT(flexrig)

AVI  FU = GVAE T(F)=c IG) =p
30z U AVYo.F, =" G A [G/F(FU ="  H,V AE)

CUT(guess)

Just as in  STM  leave the associativity and commutativity of A, =* ,  and = “  implicit.
We have combined the classical imitation (G  has head hs) and projection (G  is a
projection binding) transformations (see [Sny91]) into CUT (flez/rig). This set of
rules is used with the convention that all formulae are eagerly reduced to STM-
normal form.

As an example let us reconsider the list example from the introduction (cf. 2.2),
where we had used higher-order coloured unification for constraining a speculated
lemma in an induction proof. We give a full trace of the unification involved there.

Example 4.15 Let the types A and e stand for lists and their elements, and

I = [app:A = A = A], [rev:A — A], [cons:e + A — A,  [h: €], [nil: A], [u, v: A]

Furthermore let I’ = [F: XA = XA = €,[Y: A], [X:  ¢] then the unification problem

IT  2 .Fy(revua)hevg = app, (rewnYs)(consg Xgnily)

can be  transformed to

IT ,  [HK  =e  A AL
Fy =? (A\UAVW.app(HUVW)(KUVW))A
Fy(revaus) hug =* appg(revsYi)(consgXgnily)

by CUT {flex /rig) and further to

3[Y: A], [X:€,[H,K:A=>e—= A=  AL
Fy =? (\U\V.Wh.app,(HUVW)(KUVW))A
6ppg(He(revuts)have) (Kg(revyus)hgvg) =* appy(revsYy)(consg Xnily)

4

by SZM (elim:term). Note that there are no variants of F ,  so Fy can be eliminated
right away. Now we can proceed by decomposing the problem by SZM(dec) to

3[(Y:A], [X:e] , [H,K:A + € + A=
Fy = (UAV.Wa.appg(HUVW)(KUVW))A
Hg (revauy)hgug = "  revgYy A Kg(revou,)hgvg) =* consgXgnilg

21



4 UNIFICATION	 4.2 General Uni.fication 

Here, we choose9 the I-projection binding (AU). ~ W)..U) for Hgin CUT(ftex/rig), 
subsequent elimination1o of H g with SIM(elim:term) yields 

3f,	 [H: A """+ e -t A -t AJ. 
Fg =t (AU).~W)..apPgX(KUVW)) 
revvuv =t reVsYA t\ Kg(revvuv)hgvg =t consgXgnilg 

finally we can decompose again and eliminate Yi. for U v yielding 

3f,	 [K:A -t e -t A -t AJ. 
Fg =t (AU)'~W,\..apPgU(KUVW)) 

YA =t U v t\ Kg(revvuv)hgvg =t consgXgnilg 

Now we choose the imitation AU, V, W.consg(MgUVW) (NgUVW) for Kg and de­
compose to arrive at 

3f	 [M: A -t e -t A -t e], [N: A -t e -t A -t AJ. 
Fg =t (AU,\. ~WA.apPg(U, cons(MgUVW)(NgUVW)) 
YA =t Uv t\ Mg(reVvuv)hgvg =t X g t\ Ng(reVvuv)hgvg =t nilg 

Now we can solve Ng with the imitation binding AU, V, W.nilg and simplify to 

3f	 [M: A -t e -t A -t eJ. 
Fg =t (AU). ~W)..apPg(U(consg(MgUVW)nilg)) 

YA =t Uv t\ Xg =t Mg(revvuv)hgvg 

which can be solved by choosing (AU,\. ~W,\..V) 11 for Mg (the last pair is simplified 
to hg =t hg). 

Thus one final solution of the unification problem is 

We have indicated the choice points for the other solutions in the footnotes. 

Lemma 4.16 Let El-cuT E' by a single application ofCUT(dec) to a pair haUn =t 

hayn, then for any substitution 8 we have 

1. If ha E Dom(8), then fJ E U(E') implies that 8 E U(E). 

2. If ha rt Dom(B), then fJ E U(£), if! BE U(E'). 

Proof: Let B E U(E'), so B(Ui)=.afJ(yi) for all 1 ~ i ~ n and therefore 

Thus for any atom ha we have fJ E U(£). Now let ha rt Dom(B) and B E U(E), 
then B(ha ) = ha, so in this case we have B E U(£'). 0 

By applying the rules CUT(ftex/rig) and CUT(guess) we effectively commit 
ourselves to a particular approximation of a solution, and thus cannot reasonably 
expect'to conserve the set of C-unifiers. 

9The 2-projection binding is impossible for type reasons and the 3-projection bind­
ing leads to immediate subsequent clash. The imitation binding leads to a solution 
AUVW.apPg(revg(LgUVW))(consgYnil) for Fg that is not wanted in our motivating example, 
so we will not pursue it here. 

lOsince the variable H does not occur in the original problem, we need not record it in the 
unification problem. 

11 The 3-projection (AU,\. V. W",.W) or the imitation binding (AU", V. W",.Qg) for some new variable 
Q would also have worked. 

22 

4 UNIFICATION 4.2 General Unification

Here, we choose? the 1-projection binding (AU V.WU)  for Hg  in CUT (flez/rig),
subsequent elimination’? of  Hg  with STM (elim:term) yields

ar, 5 Are  A Al
= t (AUAV. Wa.app,X (KUVW))retin=* rewgYy A Kg(revaus)hgvg=* consgXgnilg

finally we can decompose again and eliminate Y ı  for u ,  yielding

ar, [ x  A re=  AA
=t> (AUAVeW.appU(KUVW))

ye= f  uy  A Kg(revsue)hgvg=* consgXgnilg

Now we choose the imitation AU, V, W.consg(MUVW)(N,UVW) for K ,  and de-
compose to  arrive at

ar ick A t  e+A  € ) ,  [N:A > €e—> AA )
=*"AUVs app, (U, cons(McUVW) (NUVW))

i = u AM rem) hevg = Xg  A Ng(revous)hgvg=* nilg

Now we can solve N;  with the imitation binding AU, V, W.nil; and simplify to

ar  j g A re  A re )
=t  AAV.Wi.pd (consg( MUVW)nilg))

i = uy A Xp =)  Mg(reveuy)hgvg

which can be solved by choosing (AU,V,Wy.V)!! for Mg (the last pair is simplified
to  hg =* hg).

Thus one final solution of  the unification problem is

[AU\V: Wx.app,(U, consg(V, nilg))/ Fl, [ue/ Yal, [he/ Xi]
We have indicated the choice points for the other solutions in the footnotes.

Lemma 4.16 Let E Foyt  E '  by a single application of CUT (dec) to a pair h,U” =*
h,V”,  then for any substitution § we have

1. If  ha € Dom(6), then 9 € U(E' )  implies that § € U(E).

2. If  ha ¢ Dom(8) ,  then 8 € U(E),  i f f 6 € U(E").

Proof: Let 0 € U(£ ' ) ,  so 8(U)=30(V?) for all 1 < i < n and therefore

6(haU™)= 6(ha)9(U”)=g0(ha)9(V”)= 0(haV”)

Thus for any atom h ,  we have 8 € U(£). Now let h,  ¢ Dom(f) and 8 € U(¢),
then 8(ha) = ha, so in  this case we have 9 € U(£'). a

By  applying the rules CUT (flex/rig) and CUT (guess) we effectively commit
ourselves to a particular approximation of a solution, and thus cannot reasonably
expectto conserve the set of C-unifiers.

9The 2-projection binding is impossible for type reasons and the 3-projection bind-
ing leads t o  immediate subsequent clash. The imitation binding leads t o  a solution
AUVW.appg(revg(LgUVW))(consgYnil) for Fy that is not wanted in  our motivating example,
so we will not pursue i t  here.

10since the variable H does not occur in  the original problem, we need not record it in  the
unification problem.

11  The 3-projection (AU) Ve Wy.W) or the imitation binding (AUV:W.Qg) for some new variable
Q would also have worked.

22



4 UNIFICATION 4.2 General Uniiicp,tion 

Lemma 4.17 If £ I-CUT £' by a CUT-derivation only containing applications of 
the rules CUT(fiex/rig) and CUT(guess) , then U(£') ~ U(£). 

Proof: The transformations CUT(flex/rig) and CUT(guess) can be divided into 
three parts, first adding a pair X ==t G, then eliminating the variable, and finally 
SIM-reducing. Clearly adding a new pair does not create new C-unifiers, so we 
must have U(£ /\ X ==t A) c U(£). Thus obtain the assertion with 4.4(2) and 4.10. 

o 

Theorem 4.18 (Soundness of CUT) If £ == 3rz.VY0.E1 I-cuT £11 such that £11 
is in C-solved form, then the substitution 0'&" IDOIIl(rz) E U(£). 

Proof: We prove 0'&" E U(£) by induction on the length of the transformation 
sequence using the above Lemmata in the induction step. The restriction of 0'&" 

does not affect the fact that 0'&" IDOIIl(rz) still C-unifies £. 0 

So if the algorithm CUT returns a substitution 0 for an initial system £, then 0 
is indeed a C-unmer for £. The main result of this section is the converse, namely, 
that given an initial C-unmcation problem £ and a C-unifier 0, the algorithm CUT 
can compute a C-unifier 0' of £, which is more general than O. 

As higher-order unification is undecidable [Go181], our set of transformations 
cannot be terminating in general. We will prove, that CUT is a complete C­
unification procedure, that is, if for any given 0 E U(£) there is a CUT-derivation 
£ I-cuT £1 such that £' is a C-unification problem in C-solved form, and O'e is more 
general than O. For this we only need termination for CUT inference rules that 
approximate O. 

The following measure provides the basis for the following semi-termination 
result for C-unification. 

Definition 4.19 Let £ == 3rZ,VY0.£1 be a C-unmcation problem and 0 be a C­
substitution, then 

J1-(£,O):== (J1-1(£,O),J1-2(£)) 

is called a measure for £ and 0, iff J1-1 (£, 0) is a multiset of depths formulae 
O(Aa), where Aa E Dom(O) is unsolved in £ and J1-2(£) is the multiset of depths 
of formulae in £. Furthermore, let -< be the strict lexicographic ordering for the 
obvious component orderings. 

Lemma 4.20 Let £ be a C-unification problem in SIM-normal form, but not in 
C-solved form, 0 E U(£), then there exists a C-unification problem £1, and an £1­
substitution 0', such that £ I-cuT £', and 

1. 0 == 0' [£], 

2. 0' E U(£'), 

3. J1-(£',B') -< J1-(£,O). 

Proof: Let £ == 3rz.VY0'£" and A ==t B be a pair in £", that is not C-solved. 
Furthermore let A == FU and B == GY. We observe that F and G must be atoms 
and cannot be equal constants, and moreover we cannot have A==.B'7B, since £ is in 
SI.AIf-normal form. 

If F, G E V \ Dom(O), then CUT(dec) applies. By 4.16 we have BE U(£') and 
J1-(£',O) -< J1-(£,B), since J1-1(£/,O) ::5 J1-1(£' O) and J1-2(£/) -< J1-(£). 

Otherwise either F :f: G or F == G E Dom(O). In both cases, since £ is C­
unifiable, either F or G is an colored variable Fa E Dom(O) with r(Fa) == a at the 
head. Without loss of generality we assume that Fa == F. By the general binding 

23
 

4 UNIFICATION 4.2 General Unification

Lemma 4.17 If £ Feyr E' by a CUT -derivation only containing applications of
the rules CUT (flex /rig) and CUT (guess), then U(E') C U(E).

Proof: The transformations CUT(flex /rig) and CUT (guess) can be divided into
three parts, first adding a pair X = !  G,  then eliminating the variable, and finally
SZM-reducing. Clearly adding a new pair does not create new C-unifiers, so we
must have U(€ A X =* A) C U(£). Thus obtain the assertion with 4.4(2) and 4.10.

0

Theorem 4.18 (Soundness of  CUT) If £ = Tz VY EL’ Feyur E"  such that EN
is in C-solved form, then the substitution og» |Domrz)€ u(é).

Proof: We prove og» € U(€)  by induction on the length of the transformation
sequence using the above Lemmata in the induction step. The restriction of og
does not affect the fact that ag» Dom(I'z) still C-unifies £ .  |

So if the algorithm CUT  returns a substitution 0 for an initial system £ ,  then 9
is indeed a C-unifier for £.  The main result of this section is the converse, namely,
that given an initial C-unification problem £ and a C-unifier 8, the algorithm CUT
can compute a C-unifier o of £ ,  which is more general than 6.

As higher-order unification is undecidable [Gol81], our set of transformations
cannot be terminating in general. We will prove, that CUT is a complete C-
unification procedure, that is, if for any given § € U(£) there is a CUT -derivation
E Four E'  such that E’ is a C-unification problem in C-solved form, and of  is more
general than 0. For this we only need termination for CUT inference rules that
approximate 6.

The following measure provides the basis for the following semi-termination
result for C-unification.

Definition 4.19 Let £ = 3F’zVYg.E’ be a C-unification problem and 9 be a C-
substitution, then

(E08) : =  (m1(E, 0), u2(£))
is called a measure for £ and 4, iff p;(£,0) is a multiset of depths formulae
6(A.,), where A ,  € Dom(d) is unsolved in £ and p2(€) is the multiset of depths
of formulae in £.  Furthermore, let < be the strict lexicographic ordering for the
obvious component orderings.

Lemma 4.20 Let £ be a C-unification problem in SIM-normal form, but not in
C-solved form, 0 € U(E), then there exists a C-unification problem &', and an &’-
substitution 9', such that E Feur E', and

1. 6=0 '¢ ,

2. 6" e UE" ) ,

3. u(€',0') < (EB) .
Proof: Let £ = 3F2.VYgE” and A = !  B be a pair in £”, that is not C-solved.
Furthermore let A = FU  and B = GV. We observe that F and G must be  atoms
and cannot be equal constants, and moreover we cannot have A=4,B,  since £ is in
SZM-normal form.

If F ,G  € V \  Dom(#) ,  then CUT (dec) applies. By  4.16 we have 8 € U(£ ’ )  and
B(E',0) < p(€,8), since u1(£',8) =X p1(€,0) and pa (€') < u(€).

Otherwise either F # G or F = G € Dom(6). In both cases, since £ is C-
unifiable, either F or G is an colored variable F,  € Dom(f) with I'(F,) = a at the
head. Without loss of generality we assume that F,  = F .  By  the general binding

23



4 UNIFICATION 4.3 Pre-C-Unification 

theorem 4.13 there exists a general binding G E AB~~aad(6(F.» (2:, (3, r z), A) of 
type a and a C-substitution p, such that Dom(p) = Dom(A) and P(G}=;31/J(Fa). 
Therefore, 

• if head(G) rt. Dom(O), then CUT(flex/rig) applies. 

• if head(G) E Dom(O) then CUT(guess) applies. 

In all these cases we set 0' := 0 U P and have 0 = B' [£], since Dom(p) nDom(rz) = 
Dom(A) n Dom(rz) = 0 and B' E U(£') by 4.18. 

The rules CUT(guess) and CUT(flex / rig) remove Fa from the set of variables in 
Dom(B) that are not C-solved in £ and replace it with the set Dom(A) = Dom(p). 
Since the depth of p is smaller than that for O(F), we have p.l(£',B') -< p.l(£,B). 
Thus we have p.(£',B') -< p.(£,B). [J 

If we call such a transformation p.-prescribed, then each application of a p.­
prescribed transformation decreases the well-founded measure fJ.. Thus any sequence 
()f fJ.-prescribed transformations must terminate. The previous lemma also guaran­
tees that any system obtained by exhaustively applying p.-prescribed transforma­
tions to a C-unifiable system must be C-solved, since otherwise it guarantees another 
fJ.-prescribed transformation. 

Corollary 4.21 If £ is a C-unifiable unification problem such that no p.-prescribed 
transformation rule from CUT is applicable, then £ is in C-solved form. 

Theorem 4.22 (Completeness Theorem for CUT) For any C-unification prob­
lem £ and any C-substitution BE U(£), there is a CUT-derivation £ f-CUT £' such 
that £' is in C-solved form and Ge '5:{31/ B[£]. 

Proof: Let £ = 3rz.'v'T0.£" and 1): £ f-CUT £' be a maximal J.L-prescribed CUT­
derivation out of £. By 4.20 this is always finite, so we can prove the assertion by 
induction on the number n of nodes in 1). If n = 0, then £ is in C-solved form and 
Ge is a most general C-unifier for £. In particular, we have Ge '5:{31/ B[£]. 

If n > 0, then there is a J.L-prescribed transformation £ f-cuT £' and a C­
substitution 0' satisfying 4.20. By inductive hypothesis there is a CUT-derivation 
£' f-cuT £" such that CT£ =;31/B' [£']. By 4.18 we have 0'£ E U(£')<; U(£). Further­
more, by inspection of the inference rules we see that CUT rules only expand the 
set of colored variables in rz, so Ge" '5:;31/ B'[£'] implies Ge" '5:;31/ B'[£], which in 
turn yields the assertion with the conclusion B' = B[£] of 4.20. 0 

If we combine the soundness results theorem 4.18 with the completeness result 
from theorem 4.22, we can characterise the set of solutions found by the algorithm 
CUT by the following corollary. 

Corollary 4.23 For any C-unification problem £ the set 

CUT(£) := {CTel£ f-cur £r and £' is in C-solved form} 

is a complete set of C-unifiers for £. 

4.3 Pre-C-Unification 

As for unification in the simply typed lambda calculus, the rule CUT(guess) gives 
rise to a serious explosion of the search space for unifiers. Huet's solution to this 
problem was to redefine the higher-order unification problem to a form sufficient 
for refutation purposes: For the pre-unification problem flex-flex pairs are consid­
ered already solved, since they can always be trivially solved by binding the head 

24 

4 UNIFICATION 4.3 PreC-Unification

theorem 4.13 there exists a general binding G € ABHOR)  (2  ( zT ) , A) of
type a and a C-substitution p,  such that Dom(p) = Dom(A) and p(G)=3,0(F.)-
Therefore,

o if  head(G) ¢ Dom(#), then CUT (flez/rig) applies.

e if  head(G) € Dom(f)  then CUT(guess) applies.

In all these cases we set 0’ :=  Up  and have 9 = ¢’[£], since Dom(p)NDom(I'z) =
Dom(A)NDom(T'z) = ® and §' € U(£’) by 4.18.

The rules CUT (guess) and CUT (flex rig) remove F,  from the set of variables in
Dom(6) that are not C-solved in  & and replace it with the set Dom(A) = Dom(p).
Since the depth of p is smaller than that for 8(F), we have u1(£',8') < u1(€,8).
Thus we have u(E’,0') < u(€,0). O

If we call such a transformation u-prescribed, then each application of a u-
prescribed transformation decreases the well-founded measure u. Thus any sequence
of u-prescribed transformations must terminate. The previous lemma also guaran-
tees that any system obtained by exhatstively applying u-prescribed transforma-
tions to  a C-unifiable system must be C-solved, since otherwise it guarantees another
prescribed transformation.

Corollary 4.21 If  £€ is a C-unifiable unification problem such that no p-prescribed
transformation rule from CUT is applicable, then E is in  C-solved form.

Theorem 4.22 (Completeness Theorem for CUT) For any C-unification prob-
lem E and any C-substitution 0 € U(E) ,  there is a CUT -derivation £ Foyt E '  such
that £ '  is in  C-solved form and of  <g,  O[E].

Proof: Let £ = 32.  VYg.E" and D:E beyr £ '  be a maximal p-prescribed CUT-
derivation out of £. By  4.20 this is always finite, so we can prove the assertion by
induction on  the number n of  nodes in D .  If n = 0,  then £ is in C-solved form and
o¢  is a most general C-unifier for £ .  In particular, we have gg  <g,  9[£].

If n > 0 ,  then there is a u-prescribed transformation & Fey  £ '  and a C-
substitution 0’ satisfying 4.20. By  inductive hypothesis there is a CU{T-derivation
E'  Foyt E”  such that og=g,0'[£']. By  4.18 we have of  € U(£’ ) C U(£) .  Further-
more, by inspection of the inference rules we see that CUT rules only expand the
set of  colored variables in Tz ,  so og» <g, 0'[E’] implies gg" <g, 9'[E], which in
turn yields the assertion with the conclusion 0’ = 8[£] of 4.20. a

If we combine the soundness results theorem 4.18 with the completeness result
from theorem 4.22, we can characterise the set of  solutions found by the algorithm
CUT  by  the following corollary.

Corollary 4.23 For any C-unification problem E the set

CUT(E) = {o4|E Feur £ and £' is in C-solved form}

is a complete set of C-unifiers for £ .

4 .3  Pre-C-Unification

As for unification in the simply typed lambda calculus, the rule CUT (guess) gives
rise to  a serious explosion of  the search space for unifiers. Huet’s solution to this
problem was to  redefine the higher-order unification problem to a form sufficient
for refutation purposes: For the pre-unification problem flex-flex pairs are consid-
ered already solved, since they can always be trivially solved by binding the head

24



4 UNIFICATION 4.3 Pre-C-Unification 

variables to special constant functions that identify the formulae by absorbing their 
arguments. 

In case of the colored lambda-calculus a flex-flex pair may have no solution if 
the top-level variables of both terms are annotated by different colors. Consider the 
following examples: 

Example 4.24 Let F, G E Dom(r) , then the unification problem 3rz.Fdad =t 

Gcac has no unifier. On the other hand 3rz.Fdac =t Gcac has an unifier 
[AX.x/Fd], [AX.x/GcJ. 

The reason for this is the fact that projections, Le. terms of the form AXk .Xi , 

have no calor informations but are valid instances of colored variables like Fd or 
Gc. Hence, in order to solve such flex-flex pairs we have to map one of the top-level 
variables to a projection formula. This gives rise to the following definition: 

Definition 4.25 (Flexible Chain) Let £ be a C-unification problem, then a set 
£' = A I =t B I /\ ... /\ An =t B n of flex/flex pairs in £ is called a a flexible chain 
of £ iff head(A i

) =head(B i
-

l ) E Vx for 2 :s; i :s; n. We call head(AI) =Fe and 
head(Bn

) = Gd the left and right ends of £1. 
If C, d E C and c =1= d then we call £1 a reducible chain, otherwise safe chain, 

similarly, we call a pair in £1 safe, iff there is no reducible chain in £1 that contains 
it, and a unification problem, if it does not contain reducible chains. 

It will turn out that safe chains always have solutions, whereas a reducible 
chain in a system £ indicates a clash of different calor annotations to the top-level 
variables. As mentioned above the resolution of this clash will be to map one of 
these top-level variables to a projection formula. Thus, we can step by step reduce 
the number of reducible chains in £. 

Lemma 4.26 Let £ = 3rz.VT0.£' /\ er, where £r = Al =t B I /\ ... /\ An =t B n is 
a reducible chain, then for each C-unifier a of £, there is a number 1 :s; i :s; n, such 
that a(head(A i » or a(head(B i » is a projection formula. 

Proof: Let F~i = head(A i
) and Gt = head(B i 

), then aI, bn E C, but al =1= bn , 

since £r is reducible by assumption. If we assume that none of the F~i = head(Ai
) 

and Gt = head(B i
) is a projection, then we have 

head(a(FIJ) = head(a(AI» = head(aBI» = head(a(G~J) = head(a(F;2» 

= head(a(A2» = ... = head(a(G~J) 

However a (F;l ) and a(G~,,) must be monochrome, as a is well-colored and therefore 
al = b n , which contradicts our assumption that £r is reducible. 0 

Definition 4.21 (Pre-C-Solved Form) Let £ be a C-unification problem the we 
call a pair A =t B in £ pre-solved in £, iff A =t B is solved in £ or A =t B 
is a safe flex/flex pair. We call £ pre-C-solved, iff all of its pairs are. Thus £ is 
pre-C-solved, iff all of its pairs are solved or flex/flex and safe. 

This definition is tailored to guarantee that pre-C-unifiers can always be extended 
to C-unifiers by finding trivial unifiers for the flexible pairs and that equational 
problems in pre-C-solved form always have most general unifiers. Therefore an 
equational system £ is pre-C-unifiable, iff it is C-unifiable. 

Definition 4.28 (Color Restriction) Let £ be a safe system, then the color 
restriction cr(Xa , £) of a colored variable Xa with respect to £ is defined by 

25
 

4 UNIFICATION 4.3 Pre-C-Unification

variables to  special constant functions that identify the formulae by absorbing their
arguments.

In case of  the colored lambda-calculus a flex-flex pair may have no  solution if
the top-level variables of  both terms are annotated by  different colors. Consider the
following examples:

Example 4.24 Let F ,G € Dom(T), then the unification problem IC'z.Fzaq =?
G.a.  has no  unifier. On  the other hand Irz.Fia. = !  G.a.  has an unifier
[AX.X /Fy ,[A X.X/G.].

The reason for this is the fact that projections, i.e. terms of the form AX*.X?,
have no color informations but are valid instances of colored variables like Fy or
Ge. Hence, in  order to solve such flex-flex pairs we have to  map one of  the top-level
variables to a projection formula. This gives rise to the following definition:

Definition 4.25 (Flexible Chain) Let £ be a C-unification problem, then a set
E=A '= tB 'A . . .A  A"  =* B"  of flex/flex pairs in £ is called a a flexible chain
of  £ iff head(A®) = head(Bi7!) € Vx  for 2 < i  < n .  We call head(A')  = F.  and
head(B")  = G4 the left and right ends of £’.

If c ,d  € C and c # d then we call £ ’  a reducible chain, otherwise safe chain,
similarly, we call a pair in £ '  safe, iff there is no reducible chain in £’  that contains
i t ,  and a unification problem, if i t does not contain reducible chains.

It will turn out that safe chains always have solutions, whereas a reducible
chain in a system & indicates a clash of different color annotations to the top-level
variables. As mentioned above the resolution of this clash will be to map one of
these top-level variables to a projection formula. Thus, we can step by step reduce
the number of  reducible chains in £ .

Lemma 4.26 Let £ = ITzNYo.E' AE ,  where Er = A l  = *B l  A . . .  AA?  =t  B "  is
a reducible chain, then for each C-unifier o of £ ,  there is a number 1 < i  <n ,  such
that o(head(A*)) or o(head(B*)) is a projection formula.

Proof: Let F i  = head(A®) and Gi, = head(B‘), then a ; , b ,  € C, but a; # by,
since £,  is reducible by  assumption. If we assume that none of  the F i  = head(A?)
and Gi, = head(B‘) is a projection, then we have

head(s(F.)) = head(o(A')) = head(sB')) = head(s(GL,)) = head(o(F2))
head(s(A?)) = . . .  = head(d(G2))

However o(FL,) and o(Gg,) must be monochrome, as o is well-colored and therefore
a;  = b , ,  which contradicts our assumption that &,  is reducible. 0

Definition 4.27 (Pre-C-Solved Form) Let £ be a C-unification problem the we
call a pair A = !  B in £ pre-solved in &, iff A = !  B i s  solved in £ or A = t  B
is a safe flex/flex pair. We call £ pre-C-solved, iff all of its pairs are. Thus € is
pre-C-solved, iff all of its pairs are solved or flex/flex and safe.

This definition is tailored to  guarantee that pre-C-unifiers can always be extended
to C-unifiers by  finding trivial unifiers for the flexible pairs and that equational
problems in pre-C-solved form always have most general unifiers. Therefore an
equational system £ is pre-C-unifiable, iff it is C-unifiable.

Definition 4.28 (Color Restriction) Let £ be a safe system, then the color
restriction cr(X,,£) of a colored variable X .  with respect to  £ is defined by

25



4 UNIFICATION	 4.3 Pre-C-Unification 

•	 cr(Xa, £) = d if a E X and there is flexible chain £1 in £ with left head Xa 
and right head Yd for some d E C. 

•	 cr(Xa, £) = a otherwise. 

Given a safe system £ the notion of color restriction is well-defined. Suppose, 
there are two subsets of £ satisfying the condition of the definition above which result 
in different color restrictions c and c' for a colored variable atom Xa. Merging both 
sets we would obtain a reducible chain in £, which contradicts our assumption that 
£ is safe. Note that for nay flex/flex pair FaU =t Gby in £ either 

•	 cr(Fa, £) = cr(Gb, £) E Cor 

•	 both cr(Fa, £) and cr(Gb, £) are color variables. 

In the first case we furthermore know that either a E X or cr(Fa, £) = a (and 
similarly for band cr(Gb,£)). 

Example 4.29 Both unification problems 3rz.Fdad =t Gcac and 3rz.Fdac =t 

Gcac from example 4.24 are reducible flexible chains, so any unifier has to be a pro­
jection. Indeed for the second one, the projection bindings [AX.X/Fd], [AX,X/Gc ] 

succeed, whereas they clash for the first problem. 
The problem £ = 3rz.Faac =t GAbc A. GA =t Hsbd is safe, and cr(GA,£) = 

cr(Hs , £) = a. Finally F = 3rz.FAac =t GSbd is safe with cr(FA, F) = A and 
cr(Gs , F) = B. 

Definition 4.30 (Trivial Unifier) Let £ = 3rZ.VY0'£' be a pre-C-solved C­
unification problem, such that £11 := FaUn =t Gbym is a pre-C-solved pair in 
£ with 6.(F) = an --+ {3, 6.(G) = "(m -+ {3. Furthermore let 1i := {H.6I{3 E T} be a 
reserved set of typed variables with 11. n Dom(r) = 0. Furthermore let 

(&" := [AX~l ... X~".H~r(F.,&/Fa], [AX~l ... X:.::...H~r(G.,e/GbJ 

If cr(Fa,£) -:f; cr(Gb,£), then both are color variables and (e" is augmented by the 
color substitution [cr(Gb,£)/cr(Fa,£)]. Finally, we define (e as the union of the 
(ell for all flex-flex pairs £11 in £'. 

The next Lemma shows that pre-C-unifiers can always be extended to C-unifiers 
by finding trivial C-unifiers for the pre-C-solved pairs. Therefore a L:-unification 
problem £ is pre-C-unifiable, iff it is C-unifiable. 

Lemma 4.31 Let £ be a pre-C-solved unification problem, then aeU(e is a C-unifier 
of£ 

Proof: Let £11 and (e" be as in 4.30, then (£" is a C-unifier for 3rz.VY0'£"' since 

(£11 (FaUn)=/311Hcr(G.,£) =/311(£11 (Gbym) 

and either cr(Fa, £) = cr(Gb, £) or they are identified by (£11. Consequently, ae U(£ 
,is a pre-C-unifier of £, since ae unifies the C-solved pairs in £ and (£ the flex/flex 
ones. 

To show that (£ is a C-substitution, we verify the conditions of 3.13: We have 
. two cases 

•	 cr(Fa,£) = cr(Gb,£) E C and a E C (in which case (c(Fa) = 
AX~l" .X:L.Hcr(G.,e) is a = cr(Gb,£)-monochrome) or 

•	 a EX, which is unproblematic. 

26 

4 UNIFICATION 4.3 Pre-C-Unification

oe cr(X,) = dif a € X and there is flexible chain £'  in £ with left head X ,
and right head Ya for some d € C.

e cr(X,,&) = a otherwise.

Given a safe system E£ the notion of color restriction is well-defined. Suppose,
there are two subsets of £ satisfying the condition of the definition above which result
in different color restrictions c and ¢ ’  for a colored variable atom X,. Merging both
sets we would obtain a reducible chain in £ ,  which contradicts our assumption that
E is safe. Note that for nay flex/flex pair F,U = GyV in & either

se cr(F,,E) = cr(Gy,E) EC  or

e both cr(F,,E) and cr(Gy, £) are color variables.

In the first case we furthermore know that either a € X or cr(F,,£) = a (and
similarly for b and cr(Gv, £)).

Example 4 .29  Both unification problems 3T'z.Fyaq =* Ga.  and I'z.Faa. =?
Ga. from example 4.24 are reducible flexible chains, so any unifier has to  be a pro-
jection. Indeed for the second one, the projection bindings [AX.X/Fy], [AX.X/G.]
succeed, whereas they clash for the first problem.

The problem & = Ilz.Fia. =!  Gabe A Gy =* Haba is safe, and cr(Gy,E) =
cr(Hp,€) = a. Finally F = Ilz.Fia. = !  Ggby is safe with cr(Fy,F) = A and
cr(Gs, F )  =B.

Definition 4.30 (Trivial Unifier) Let £ = 3rzVYyL’' be a pre-C-solved C-
unification problem, such that £”  :=  F,U" =* G,V™ is a pre-C-solved pair in
E with A(F) =a " —+ 8, A(G) = 7 "  — B. Furthermore let H : =  {H?|3 € T}  be a
reserved set of typed variables with HM  Dom(T') = 0. Furthermore let

Cen i =  AXL . . .  b l :  (CN) AN X ee  KH ) /  Go]

¥ er(F,,E) # cr(G,, £), then both are color variables and (g¢»~ is augmented by the
color substitution [cer(Gy,E)/cr(Fa, E)]. Finally, we define Ce as the union of the
Cer for all flex-flex pairs E”  in €’.

The next Lemma shows that pre-C-unifiers can always be extended to  C-unifiers
by finding trivial C-unifiers for the pre-C-solved pairs. Therefore a Z-unification
problem £ is pre-C-unifiable, iff it is C-unifiable.

Lemma 4.31 Let £ be a pre-C-solved unification problem, then gg UCg is a C-unifier
of £

Proof: Let £”  and Ce” be as in 4.30, then Ce” is a C-unifier for IT z.VYp.£", since

Cen (FU Y=gaHer(cr£)=pnCen (GV)
and either cr(F,,£) = cr(G,,  E) or they are identified by Ce”. Consequently, og UCe

‚ is  a pre-C-unifier of £ ,  since o¢  unifies the C-solved pairs in £ and (¢ the flex/flex
ones.

To show that (¢ is a C-substitution, we verify the conditions of 3.13: We have
. two cases

oe cr(Fh,E) = cr(Gw,E) € C and a € C (in which case (¢(F,) =
AXE, . . .  XZ He.(G,e)  is a = cr(Gy,&)-monochrome) or

e a € X ,  which is unproblematic.

26



0 

4 UNIFICATION 4.4 Higber-Order Patterns 

The argumentation for Gb is analogous 
For the consistency conditions on erasures note that for any variable X and 

colors e,f we have I(e(Xe )I = 1(c:(Xf)l, since the head H{3 and thus the erasure 
itself is uniquely determined by the type of X. 

Definition 4.32 (CP7:Transformations for C.Pre-Unification) 
We define the set CP7 of transformations for pre-C-unification by modifying 
the CU7 rules CU7(dec) and CU7(fiex/rig) by requiring that they may not be 
performed on C-pre-solved pairs and replacing CU7(guess) by the following rule of 
inference. 

for some general projection binding G E gB~,a (Ej Ll; A), where FaU =t GbV is a 
pair of a reducible chain of the hypothesis. 

With the definitions above we obtain a completeness result for CP7 similar 
to 4.22. 

Theorem 4.33 For any C-unification problem £ the set 

CP7(£) := {O"EI£ I-c'P'T £' and £' is in pre-C-solved form} 

is a complete set of pre-C-unifiers for £. 

Proof sketch: The proof goes through with exactly the same methods, as we have 
used them in section 4: Most of the technical difficulties are encapsulated in the 
general binding theorem and in the analogue of 4.20 we use Lemma 4.26 to account 
for the restricted flex/flex-case. 0 

Note that in contrast to classical higher-order pre-unification we cannot drop the 
CU7(guess) and CU7(dec) rules altogether, but the restriction for is severe enough 
to make pre-C-unification tractable. In particular the restriction alleviates the need 
for unspecified imitations in CU7(guess) , which makes full unification infinitely 
branching. 

4.4 Higher-Order Patterns 

There are certain syntactic fragments of the simply typed lambda calculus, where 
the higher-order unification problem has better properties than in the general case. 
We will concentrate on higher-order patterns [Mil92], where the problem is unitary 
for the uncolored case. In the colored case, the problem is slightly more complex, 
and we will profit from the understanding of colored flex/flex pairs that we have 
achieved in the last section. Higher-order pattern extensions rippling have already 
been studied in the context of program synthesis in [Kra94], without arriving at an 
satisfying algorithm or treatment of the meta-theory. The theory presented below 
can a posteriori be taken as a logical basis for the Kraan's work. 

For the calored A-calculus, the definition of higher-order patterns is exactly as 
in the uncolored case (we will reiterate it here, to make the paper self-contained). 

Definition 4.34 (Higher-Order Pattern) We call a formula A E wfJ a higher­
order pattern, iff any occurrence of a free variable F E Dom(rz) in A must 
be in a subformula B of A of the form F Xcp(l) ••• X FCP(n), where the Xl, ... ,xn 

27 

4 UNIFICATION 4.4 Higher-Order Patterns

The argumentation for Gy is analogous
For the consistency conditions on erasures note that for any variable X and

colors e , f  we have |Cs(X.)| = |¢s(X¢)|, since the head H? and thus the erasure
itself is  uniquely determined by  the type of  X .  0

Definition 4.32 (CPT: Transformations for C-Pre-Unification)
We define the set CPT  of transformations for pre-C-unification by modifying
the CUT rules CUT (dec) and CUT (flex/rig) by requiring that they may not be
performed on C-pre-solved pairs and replacing CUT(guess) by  the following rule of
inference.

MV = GVAE T(F) =a

3Az U AVY y.Fy =t  GA  [G/F|(F.U =* h,V AE)
CPT (flex/flex)

for some general projection binding G € GB, „(X;  A ;  A) ,  where F,U = !  G,V is a
pair of a reducible chain of the hypothesis.

With the definitions above we obtain a completeness result for CP7 similar
to 4.22.

Theorem 4 .33  For any C-unification problem E the set

CPT(E) : =  {o|€ Fepr & and £'  is in pre-C-solved form}

is a complete set of pre-C-unifiers for £.

Proof sketch: The proof goes through with exactly the same methods, as we have
used them in section 4: Most of the technical difficulties are encapsulated in the
general binding theorem and in  the analogue of 4.20 we use Lemma 4.26 to  account
for the restricted flex/flex-case. a

Note that in  contrast to  classical higher-order pre-unification we cannot drop the
CUT(guess) and CUT (dec) rules altogether, but the restriction for is severe enough
‚ t o  make pre-C-unification tractable. In  particular the restriction alleviates the need
for unspecified imitations in CUT(guess), which makes full unification infinitely
branching.

4.4  Higher-Order Patterns
There are certain syntactic fragments of  the simply typed lambda calculus, where
the higher-order unification problem has better properties than in the general case.
We will concentrate on higher-order patterns [Mil92], where the problem is unitary
for the uncolored case. In the colored case, the problem is slightly more complex,
and we will profit from the understanding of colored flex/flex pairs that we have
achieved in the last section. Higher-order pattern extensions rippling have already
been studied in the context of program synthesis in [Kra94], without arriving at an
satisfying algorithm or treatment of the meta-theory. The theory presented below
can a posteriori be taken as a logical basis for the Kraan’s work.

For the colored A-calculus, the definition of higher-order patterns is exactly as
in the uncolored case (we will reiterate it here, to  make the paper self-contained).

Definition 4.34 (Higher-Order Pattern) We call a formula A € wff a higher-
order pattern, iff any occurrence of a free variable F € Dom(I'z) in A must
be in a subformula B of A of the form FX¥()  . .  XFM),  where the X1 , . . . ,X "

27



4 UNIFICATION 4.4 Higher-Order Patterns 

are bound in A and <p is a partial permutation from k into n, Le. an injective 
mapping from {1, ... , k} into {1, ... ,n 2: k}, where k is the length of the type r(F). 
In other words, all free variables of a higher-order pattern occur at the leaves, or 
applied to a list of distinct bound variables. 

We will call a formula A in a unification problem & := 3fz.VY0'& /\ A =t B a 
higher-order pattern, iff the Xi are bound in A or in Dom(Y) j Le. the universally 
quantified variables from the declaration are also allowed for the as the arguments 
for the existential ones (which take the role of the free ones). We will call & a 
pattern unification problem, iff all formulae occurring in its pairs are higher-order 
patterns. 

Finally, we will call a C-substitution CJ E SUB(:E; ~ ~ f) a pattern substitution, 
iff for all X a in Dom(CJ), CJ(Xa) is a higher-order pattern. 

Example 4.35 Let j, a be constants and F, G be variables of appropriate type, 
then )"XYZ.FaZX and ).,X!A().,YFbXY)aa(GaX) are higher-order patterns, while 
Fa, ).,X.FcXaB, ).,XFaXX, and ).,XYFcX(YX) are not. Furthermore, all first­
order formulae and all closed formulae are higher-order patterns, since they do 
not contain free function variables. Finally, rigid general bindings are higher-order 
patterns, while flexible are not in general. 

Lemma 4.36 The class of higher-order patterns is closed under the application of 
pattern C-substitutions and ;3-reduction. 

Proof: We will only summarise the main idea of the proof, which can be made for­
mal by a simple simultaneous induction over the structure of the formulae involved. 

Consider a subformula B = FXcp(l) ... X FCP(n) of a higher-order pattern A, 
where F E Dom(CJ) and CJ(F) = ).,yn.C. Then CJ(B) = ().,yn.C)xcp(n) which is 
obviously a higher-order pattern (only the variable F has been eliminated). Fur­
thermore, ;3-reduction of CJ(B) will only replace the variables yi in C that were 
bound in CJ(F) for the Xi that are bound in A. 0 

However, unlike to the uncolored case, colored pattern unification cannot be 
unitary, since conflicting colors on flex/flex pairs can force the instantiations to be 
(uncolored) projections. As we have seen above, conflicting colors can entail that 
flex/flex pairs are unsolvable, on the other hand, for pattern unification, they can 
also lead multiple solutions (the erasures of which can be represented by a more 
general uncolored higher-order pattern). Consider for instance the pair 

).,Xa, y a, za, W a.FaXYZW =t ).,Xa, y a , Za, W a.FbYX ZW 

where a is a base type and a, bE C. Obviously, there are two most general solutions 

CJ3 ._ [).,Xa, ya, za, Wa.Z/Fa], [)"Xa,Y"',Z"', W"'.Z/Fb] 

CJ4 .- [).,X"', Y"',Z"', W"'.W/Fa], [).,X"', Y"',Z"', W"'.W/Fb] 

This syntactic fragment allows to specialise the unification rules from 4.14. 

Definition 4.37 (Transformations for Pattern Unification) The inference rules 
for UPat are those of CPT, together with the following additional rules for safe 
flex/flex pairs. The first one handles the case, where the heads are identical and 
the second one, where they are distinct. . 

Let Y = [Xl: al],.'" [xn: an], f(F) = ak ~ ;3, and <p, 'l/J. be partial permuta­
tions from k to n 

28
 

4 UNIFICATION 4.4 Higher-Order Patterns

are bound in A and ¢ is a partial permutation from k into n ,  i.e. an injective
mapping from {1 , . . . , k }  into { 1 , . . . , n  > k } ,  where k is the length of  the type T'(F).
In other words, all free variables of a higher-order pattern occur at the leaves, or
applied to  a list of distinct bound variables.

We will call a formula A in a unification problem £ :=  IATzVYpE AA = tB  a
higher-order pattern, iff the X* are bound in A or in Dom(Y);  i.e. the universally
quantified variables from the declaration are also allowed for the as the arguments
for the existential ones (which take the röle of the free ones). We will call £ a
pattern unification problem, iff all formulae occurring in its pairs are higher-order
patterns.

Finally, we will call a C-substitution 0 € SUB(X;  A — T) a pattern substitution,
iff for all X ,  in  Dom(s),  0(X.) is a higher-order pattern.

Example 4 .35 Let f , a  be constants and F ,G  be variables of  appropriate type,
then AXYZ.F,ZX and AX f i (A\YF,  XY )a.(GaX) are higher-order patterns, while
Fa, \X.F. Xap, AXF, XX,  and AXYF.X(YX) are not. Furthermore, all first-
order formulae and all closed formulae are higher-order patterns, since they do
not contain free function variables. Finally, rigid general bindings are higher-order
patterns, while flexible are not in general.

Lemma 4.36 The class of  higher-order patterns is closed under theapplication of
pattern C-substitutions and B-reduction.

Proof: We will only summarise the main idea of  the proof, which can be made for-
mal by  a simple simuitaneous induction over the structure of  the formulae involved.

Consider a subformula B = FX?)  XF¥( of a higher-order pattern A,
where F € Dom(o) and o(F) = AY™.C. Then o (B)  = (AY™C)X¥(™ which is
obviously a higher-order pattern (only the variable F has been eliminated). Fur-
thermore, B-reduction of o(B) will only replace the variables Y* in C that were
bound in ¢(F) for the X*  that are bound in A .  a

However, unlike t o  the uncolored case, colored pattern unification cannot be
unitary, since conflicting colors on flex/flex pairs can force the instantiations to be
(uncolored) projections. As we have seen above, conflicting colors can entail that
flex/flex pairs are unsolvable, on the other hand, for pattern unification, they can
also lead multiple solutions (the erasures of which can be represented by a more
general uncolored higher-order pattern). Consider for instance the pair

AX®, Ye,  Ze We.F,XYZW =* AX* ,Y* ,  ZW. RYXZW

where a is a base type and a,b € C. Obviously, there are two most general solutions

03  = [AX®, YZ  We.Z/F)],  [AX  Y®, Z “ ,  W*.Z/F)
04  = [AX Y* ,Z%,WEW/F) ] ,  [AM X *Y*  ZW W/F)

This syntactic fragment allows to specialise the unification rules from 4.14.

Definition 4.37 (Transformations for Pattern Unification) The inference rules
for UPat are those of CPT, together with the following additional rules for safe
flex/flex pairs. The first one handles the case, where the heads are identical and
the second one, where they are distinct.

Let T = [X!l:az)],..., [X”: ag), T(F) = ag — 8, and op, + be partial ‘permuta-
tions from k to  n

M zT X =t RX  AE
UP at(same)

aT, [H: 57  = INTo-(FE) ==cr(Fy,E) AE A FX? =t FAXE
AF, = t AYE HYPO )

AF; = t  AYE „HEY

28



4 UNIFICATION 4.4 Higher-Order Patterns 

where p is a partial permutation from k to l, such that p(i) = cpU), iff cp(j) = 'l/J(j), 
Le. p picks out all arguments, where cp and 'l/J coincide. 

For the case with distinct heads let r(F) = ak -+ {3, r(G) = al -+ {3 and cp, 'l/J 
be partial permutations from k (l) to n. 

:Jrz.VT0.FaX <P(k) =t Gb X1/J(I) /\ £ 
__ __ UP at( difJ) 

3r, [H: a<p'(m) -+ {3].VT0.A =c b /\ FaX<P(k) =t GbXl/J(I) /\ £ 
/\F =t >.-:Y;C-.H y<p'(m) 

a "'<p(k) a-----:..,..,........,...
 
/\Gb =t >.yr-.Hby1/J'(m)

"''''(I) 

where cpl and 'l/JI are partial permutations from m into k,l, such that cpl(m) = i 
and 'l/J1(m) =j, iff cp(i) = 'l/J(j). 

Soundness of these rules immediately comes from the fact that they are special­
isations of the CUT rules. We will now show completeness. 

Lemma 4.38 If £ is a pattern unification problem and £ l-u'P atF, then 
PatU(£) = PatU(F). 

Proof: The assertion can be verified by a simple inspection of the rules. For SIM 
we have already verified this in 4.10. Furthermore for higher-order patterns the 
CUT(ftex / rig) rule is deterministic, that is, all but the imitation or one projection 
immediately lead to failure. Thus by Lemma 4.20 CUT(ftex / rig) must conserve the 
set of unifiers. 

For UPat(same) we have 

£ = 3rz.VT0.FaX<P(k) =t FbX1/J(I) /\ £ 

where T = [Xl: al], ... , [xn: an], r(F) = ak -+ {3, and cp, 'l/J be partial permuta­
tions from k to n. Now, for any solution a E PatU(£) we have a(Fa)=J'1>'Yk.A 
and a(Fb)=.8'1>'Yk.B, where IAI = IBI· Since the color conditions are triv­
ial, we disregard the colors and reason about the erasures alone: if we assume 
that A contains an occurrence of Yi (say at position p) with cp(i) "# 'l/J(i) , then 
a(F)X<P(k)=J'1[X<P(k) /yk]A and a(F)X1/J(k)=J'1[X1/J(k) /yk]A, so these differ at po­
sition p. This contradicts the assumption that a is a unifier of £, since this would 
entail that a(F)X<P(k)=.8'1a(F)X1/J(k). Thus A can only contain occurrences of yi 
where cp(i) = 'l/J(i) and therefore is an instance of HYp(l) as in UPat(same). 

Finally, for UPat(difJ) we use a similar argumentation with a(F)=J'1>'Yk.A and 
a(G)=.8'1>,ZI.B. Since a is a unifier of £, we have 

so in particular if Yi occurs in A, then Zj must occur in B at the same position for 
some i,j, where cp(i) = 'l/J(j), and vice versa. If any other Y; and Zj would occur, 
then the terms would differ. Furthermore, A and B must be equal up to these 
differences. This concludes the proof of the assertion. 

Theorem 4.39 (Completeness for UPat) Let £ be an unification problem, then 
UPat is terminating and yields an irreducible problem F, such that either 

• :F is solved and a:;: is a most general unifier of £ or 

• :F is not solved and £ is not unifiable. 

29 

0 

4 UNIFICATION 4.4 Higher-Order Patterns

where p is a partial permutation from k to  I ,  such that p(i) = v ( j ) ,  iff p(§) = ¥ ( j ) ,
i.e. p picks out all arguments, where ¢ and ı% coincide.

For the case with distinct heads let T'(F) = ay  — 8 ,  I'(G) = Er — 8 and v,w%
be partial permutations from k (I) to n .

I r  z VY pF K l )  =t Gp X4O) AE
UP at(diff)

IT,  [H:  T im) — BlVTeA = DAF, X00) = t  GoXY  AE
AF, = t  AYEHY¢'(m)
AGy = AY, HY  ¥ ' (m)

where vw’ and 1’  are partial permutations from m into k , l ,  such that ¢’'(m) = i
and ¢'(m) = j ,  iff o(i) = ¥(j).

Soundness of  these rules immediately comes from the fact that they are special-
isations of the CUT rules. We will now show completeness.

Lemma 4.38 If £ is a pattern unification problem and £ typ atF, then
PatU(£) = PatU(F).

Proof: The assertion can be verified by a simple inspection of  the rules. For STM
we have already verified this in 4.10. Furthermore for higher-order patterns the
CUT(flex / rig) rule is deterministic, that is, all but the imitation or one projection
immediately lead to failure. Thus by Lemma 4.20 CUT(flez/rig) must conserve the
set of unifiers.

For UP at(same) we have

E = MT  Xo)  = LXV  AE

where T = [X ! : a j ] , . . . ,[X”: an], T'(F) = ar — B, and ¢,% be partial permuta-
tions from k to n .  Now, for any solution 0 € PatU(£) we have o(F,)=3,AYi.A
and o(Fy)=p,\Y:.B, where |A |  = |B|. Since the color conditions are triv-
ial, we disregard the colors and reason about the erasures alone: if we assume
that A contains an occurrence o f  Y; (say at position p) with ( i )  # ( i ) ,  then
o(F) XR)  =5,[X 9%)  [Yk]|A and o(F)X¥(*)=p, [X¥(*)[Y*]A, so these differ at po-
sition p. This contradicts the assumption that ¢ is a unifier of £ ,  since this would
entail that o(F)X¥(*)=g,0(F)X¥(*). Thus A can only contain occurrences of Y*
where ( i )  = ( i )  and therefore is an instance of  HY?(!) as in UP at(same).

Finally, for UP  at(diff) we use a similar argumentation with o(F)=g,AY%.A and
0(G)=g,AZ;.B. Since o is a unifier of £ ,  we have

[XPM [YHA=py0 (F )X?P)=0(G) XV =,[X70] ZTB
so in particular if Y; occurs in A ,  then Z;  must occur in B at  the same position for
some i, j ,  where ¢( i )  = 9¥(j), and vice versa. If any other Y; and Z;  would occur,
then the terms would differ. Furthermore, A and B must be equal up  to these
differences. This concludes the proof of the assertion. 0

Theorem 4.39 (Completeness for UPat) Let E be an unification problem, then
UPat is terminating and yields an irreducible problem F,  such that either

e F is solved and o r  is a most general unifier of E or

e F is not solved and E is not unifiable.

29



4 UNIFICATION 4.4 Higher-Order Patterns 

Furthermore, UPat is confluent exceptforCPT(flexfflex), which is finitely branch­
ing. 

Proof: Since the erasures of all transformation rules involved are those for un­
colored pattern unification, termination is a trivial consequence of the termination 
result for the uncolored case. 

Confluence and completeness can be verified by a simple inspection of the rules. 
For SIM we have already verified confluence. Furthermore for higher-order pat­
terns the CUT(flex f rig) rule is deterministic, that is, all but the imitation or one 
projection immediately lead to failure. The rules UPat(diJJ) and UP at(same) have 
disjoint accessibility conditions and cannot lead to divergence. Finally, the rule 
CPT(flex f flex) can diverge, as we have seen above, but since there are only finitely 
many projection (bounded by the length of the type), it must be finitely branching. 

o 
Now the completeness result above directly yields the fact that there can be at 

most one most general solution to a pattern unification problem. 

Corollary 4.40 Higher-order colored pattern unification is decidable and finitary, 
i. e. pattern unification problems have at most finitely many most general unifiers. 

30
 

4 UNIFICATION 4.4 Higher-Order Patterns

Furthermore, UPat is confluent except for CPT(flez flex), which is finitely branch-
ing.

Proof: Since the erasures of all transformation rules involved are those for un-
colored pattern unification, termination is a trivial consequence of the termination
result for the uncolored case.

Confluence and completeness can be verified by  a simple inspection of the rules.
For S IM we have already verified confluence. Furthermore for higher-order pat-
terns the CUT(flex /rig) rule is deterministic, that is, all but the imitation or one
projection immediately lead to failure. The rules UP at(diff) and UP  at(same) have
disjoint accessibility conditions and cannot lead to divergence. Finally, the rule
CPT {(flex/flex) can diverge, as we have seen above, but since there are only finitely
many projection (bounded by the length of the type), it must be finitely branching.

O
Now the completeness result above directly yields the fact that there can be at

most one most general solution to a pattern unification problem.

Corollary 4.40 Higher-order colored ‘pattern unification is decidable and finitary,
i.e. pattern unification problems have at most finitely many most general unifiers.

30



5 SKELETON
 

5 Skeleton 

In this section we will define and discuss the notion of a skeleton of a colored 'x-term 
as it will be used to guide induction proofs. Analogously'to the first order case we 
shall define the skeleton Ov(A) of a colored term A with respect to a set V ~ C 
of legal colors as a set of of colored 'x-terms, where the illegal colors of the colored 
'x-term have been filtered out, 

Originally in the first-order case, the skeleton of a colored term describes which 
symbols of specific colors (resp. color-variables) occur within a colored term and how 
these occurrences are related to each other wrt. the subterm-relation. Consider, for 
instance, the skeleton {Se(ae), Se (be)} wrt. {cl of a colored term Se (p1usd(ae , be))). 
In this case the skeleton encodes the information that a and b ocCur independently 
within the argument of s. In general one can prove that for first order terms, the 
skeletons of two colored terms are equal if the subterm-relations of the specifically 
colored occurrences of symbols coincide in both terms. Thus, the skeleton repre­
sents the relation between specifically colored occurrences of symbols wrt. the term 
construction. The next remarks give a small insight into the difficulties in lifting 
the notion of skeletons to a higher order setting. 

While for first order terms, the different arguments of a function, e.g. plus, 
are considered to be independent wrt. the subterm-relation, there is an implicit 
dependency in a higher order setting. Consider for instance the first order term 
plusd(ae, be) which is represented as ((plusdae)be) in the 'x-calculus (Currying). be 
denotes the argument to a function (plusdae)' Thus, be is related (wrt. subterms) to 
ae in contrast to the standard first order case. This fact has serious consequences 
on the possible definitions of skeletons. ' Given, for instance, two functions 9 E 
wff(a-+a)-HJt-+Cl and h E wffa-+a consider the possible skeletons of (gdfc) and fe. 
From an first-order point of view both colored terms should agree on their skeleton, 
namely fe. But then consider the terms ((gdfc)ae). Corresponding to our example 
of plus we would expect to obtain {fe, ae} as a skeleton while the latter example ­
combined with the restriction of a skeleton being a congruence on terms - suggests 
{(Jcae)} to be the skeleton. 

For practical reasons we prefer a solution which is compatible to the first-order 
case. The reason is that (up to now) the main application of the colored 'x-calculus 
are first-order problems. Solving these problems by methods like middle-out rea­
soning [Hes91.] involves higher-order variables which are used as meta-variables de­
noting non-specified wave-fronts or contexts. Thus, the terms under consideration 
are usually of base types in this area. 

Thus in the example above, the skeleton OV((Jdtr)t2) should be the union of 
the skeletons of its arguments. Since (Jdtl) is a well-formed term and the skeleton 
has to denote a congruence on terms OV((Jdtr)t2) has to be a function of OV(Jdtr) 
and OV(t2) yielding OV(tl) UOV(t2) as a result. 

In the C-calculus the symbol ,x and all bound variables have no specific color 
annotation. This is due to the fact that 'x-expressions closely relate to functions 
in the framework of functional programming and the ,B-rule is used to open up a 
function call. Thus, it seems to be useless to color the formal parameters since the 
color information will be inherited by the actual parameters and using ,B-reduction 
the formal parameters disappear. In addition, compatibility and subterm-stability 

, together with ,B-reduction implies that a certain amount of information concerning 
'x-expressions have to be saved within the skeleton regardless whether ,x occurs 
within a denoted context or skeleton. Consider the following example: given an 
equation id = ,XX.ad we can manipulate fdae to (,XX.ad)ae which reduces to ad' 
Although the above equation contains no symbols colored by a variable or some 
color of V, its application "destroys" the intended skeleton of the given term. Thus, 
id and ,XX.ad must have different skeletons. 

31 

5 SKELETON

5 Skeleton

In  this section we will define and discuss the notion of a skeleton of a colored A-term
as it will  be  used to  guide induction proofs. Analogously to  the first order case we
shall define the skeleton Qp(A) of a colored term A with respect to a set D CC
of  legal colors as a set of  of  colored A-terms, where the illegal colors of  the colored
A-term have been filtered out.

Originally in the first-order case, the skeleton of a colored term describes which
symbols of  specific colors (resp. color-variables) occur within a colored term and  how
these occurrences are related to  each other wrt. the subterm-relation. Consider, for
instance, the skeleton {sc(ac) ,sc(bc)} wrt. {c}  of a colored term s.(plusa(ac, bc))).
In this case the skeleton encodes the information that a and b oceur independently
within the argument of s. In general one can prove that for first order terms, the
skeletons of two colored terms are equal if the subterm-relations of the specifically
colored occurrences of symbols coincide in both terms. Thus, the skeleton repre-
sents the relation between specifically colored occurrences of  symbols wrt. the term
construction. The next remarks give a small insight into the difficulties in lifting
the notion of skeletons to  a higher order setting.

While for first order terms, the different arguments of a function, e.g. plus,
are considered to be independent wrt. the subterm-relation, there is an implicit
dependency in a higher order setting. Consider for instance the first order term
plusy(ac, be) which is represented as ((plusqac)b.) in the A-calculus (Currying). be
denotes the argument to a function (plusasac). Thus, db. is related (wrt. subterms) to
a. in contrast to the standard first order case. This fact has serious consequences
on the possible definitions of  skeletons. Given, for instance, two functions g €
Wifiesa)sama and h € uff , , ,  consider the possible skeletons of (gafc) and f..
From an  first-order point of  view both colored terms should agree on  their skeleton,
namely f . .  But then consider the terms ((gafc)a.). Corresponding t o  our example
of  plus we would expect to obtain { f . , a . }  as a skeleton while the latter example -
combined with the restriction of a skeleton being a congruence on terms - suggests
{(feac)} to be the skeleton.

For practical reasons we prefer a solution which is compatible to the first-order
case. The reason is that (up to  now) the main application of  the colored A-calculus
are first-order problems. Solving these problems by methods like middle-out rea-
soning [Hes91] involves higher-order variables which are used as meta-variables de-
noting non-specified wave-fronts or contexts. Thus, the terms under consideration
are usually of base types in this area.

Thus in the example above, the skeleton Qp((fst1)t2) should be the union of
the skeletons of  its arguments. Since (f3t;) is a well-formed term and the skeleton
has to denote a congruence on terms Qp((fat1)t2) has to  be a function of Qp(fat1)
and Qp(t;) yielding Op (21) U No(ta) as a result.

In the C-calculus the symbol A and all bound variables have no specific color
annotation. This is due to the fact that A-expressions closely relate to functions
in the framework of  functional programming and the S-rule is used to open up  a
function call. Thus, it seems to  be useless to color the formal parameters since the
color information will be  inherited by  the actual parameters and using 8-reduction
the formal parameters disappear. In addition, compatibility and subterm-stability

' together with B-reduction implies that a certain amount of  information concerning
A-expressions have to be saved within the skeleton regardless whether A occurs
within a denoted context or skeleton: Consider the following example: given an
equation fa = AX.aa we can manipulate fsa. to  (AX.asa)a. which reduces to aq.
Although the above equation contains no symbols colored by  a variable or some
color of D ,  its application “destroys” the intended skeleton of the given term. Thus,
fa  and AX.aq must have different skeletons.

31



5 SKELETON
 

Computing the skeleton of a colored term we want to "clue" the occurrences of 
symbols of specific colors together regardless what types they have. Since we want 
to conserve well-typedness during the process of skelettification, we presuppose for 
any_ pair a, (3 of types the existence of syntactical type-conversion functions f::(3 of 
type a ~ (3. These functions do not carry any semantic status and are only used to 
conserve well-typedness, which is a technical convenience for the termination proofs. 
In some terms, occurrence of such constants are redundant, so we use the following 
equality theory to remove the redundancies. 

Definition 5.1 (w-Reduction (---+w» We say that a well-formed formula B is 
obtained by a well-formed formula A by a one-step w-reduction (A ---+w), if it is 
obtained by applying one of the following rules to a well-formed part of A 

•	 #3..-+"Y( .;a-+(3X ) ---+ .;a..-+"YXJw Jw a wJw a 

As usual we define the transitive closure of the reduction relation ---+w with ---+~ 

and we use -+13T/w for the union of the reduction relations' -+(3, ---+T/' and ---+w. 

As the next Lemmata will state, w-reduction commutes with ,81]-equality and 
there exists a ,81]w-normal form t .J..(3T/W of a term t: 

Lemma 5.2 (Strong Normalisation) Every sequence of ,81]w-reductions is fi­
nite. 

Proof: The result is proven by the logical-relation method in the appendix. See 
theorem A.S there. 0 

In order to prove the confluence of (31]w-reduction we show that ,81]w-reduction 
is local confluent. Since ,81]w-reductions are finite it ensures that (31Jw-reduction is 
confluent. 

Lemma 5.3 (Local Confluence) If A ---+13T/w A' and A ---+13T/w A" then there 
must exit some term B such that A' ---+~T/W B and A" ---+~T/W B. 

Proof: Obviously both, ---+~ and ---+~T/ satisfy the Church Rosser-property. 
Thus, in the following we have only to prove that in case A ---+(3,T/ A' and A ---+w 
A" there is a term B with A' ---+~T/W B and A" ---+ f3T/W B. As in [BarSO] we 
use M[t] to denote a term with a specific subterm t inside a so-called context M. 
Let A -+(3 A' then A = M[(.:\X.C)C'] and A' = M[[C'IX]C]. In case a w­
rule has been applied inside C then obviously the same rule is also applicable in 
[C' j X]C. Analogously an application of a w-rule on C' can be simulated by several 
applications of the same w-rule on each occurrence of C' in [C' jX]C. On the other 
hand suppose the w-rule has been applied inside the context M then the same w­
rule is also applicable in M[[C' j X]C]. Analogous considerations can be made in 
case of the 1]-rule. 

Hence, we may restrict ourselves to the following conflicts: 

• let A = M[.:\X.U::-+aX)] and A' = M[f::-+a] and A" = M[.:\X.X]. With 
B = A' A" ---+w B. 

•	 let A = M[«.:\X.U::..-+aC))B)] and A' = M [U::-+ a [Dj X]C)] and A" = 
IV:l[(.:\X.C)D] Let B =M[[DIX]c] then A' -+w B and A" ---+(3T/ B. 

,	 , 

• let A = M[(.:\X.x)D] and A' =D and A" = M[U::-+aB)]. Let B = D then 
A" ---+w B. 0 

32
 

5 SKELETON

Computing the skeleton of  a colored term we want to “clue” the occurrences of
symbols of specific colors together regardless what types they have. Since we want
to  conserve well-typedness during the process of  skelettification, we presuppose for
any  pair a,  8 of types the existence of syntactical type-conversion functions f °  of
type a — ß .  These functions do not carry any semantic status and are only used to
conserve well-typedness, which is a technical convenience for the termination proofs.
In some terms, occurrence of  such constants are redundant, so we use the following
equality theory to remove the redundancies.

Definition 5 .1  (w-Reduction (—, ) )  We say that a well-formed formula B is
obtained by a well-formed formula A by a one-step w-reduction (4  —,), if  it is
obtained by applying one of the following rules to a well-formed part of A

° f e  (fo HB X )  —y £57" Xe

hd 57  Xa  —u Xa

LJ Azz  —_—tw fa  +«

As  usual we define the transitive closure of  the reduction relation — with —,
and we use —+g4. for the union of the reduction relations —g,  —, ,  and —, .

As the next Lemmata will state, w-reduction commutes with Or-equality and
there exists a Snw-normal form t Law of a term t :

Lemma 5.2 (Strong Normalisation) Every sequence of fnw-reductions is fi-
nite.

Proof: The result is proven by the logical-relation method in the appendix. See
theorem A.8 there. a

In order to prove the confluence of Snw-reduction we show that Snw-reduction
is local confluent. Since Snw-reductions are finite it ensures that Snw-reduction is
confluent.

Lemma 5.3 (Local Confluence) If A —9 ,  A ’  and A —> 97  A"  then there
must ezit some term B such that A' —%., B and A”  —3 | B.

Proof: Obviously both, —% and —} ,  satisfy the Church Rosser-property.
Thus, in the following we have only to prove that in case A —3 ,  A ’  and A —,
A"  there is a term B with A’ —3  Band A”  —}   B. As in [Bar80] we
use Mt ]  to denote a term with a specific subterm t inside a so-called context M .
Let A — A’  then A = M[(AX.C)C'] and A’  = M[[C'/X]C]. In case a w-
rule has been applied inside C then obviously the same rule is also applicable in
[C ' /X]C.  Analogously an application of a w-rule on C’  can be simulated by several
applications of  the same w-rule on each occurrence of C'  in [C’ /X]C. On  the other
hand suppose the w-rule has been applied inside the context M then the same w-
rule is also applicable in M[[C'/X]C]. Analogous considerations can be made in
case of the n-rule.

Hence, we may restrict ourselves to the following conflicts:

o let A = M\X.(f~°X)]  and A’  = M[fe~°] and A ”  = M[AX.X]. With
B=A 'A "  —,B .

eo let A = M[(AX:(f¢>C))B)] and A’ = M[(f3*[D/X]|C)] and A"  =
M[(AX.C)D] Let B = M[[D/X]C] then A’  —,  B and A"  —g,  B .

o let A = M[(AX.X)D] and A’  = D and A "  = M{(f2~B)].  Let B = D then
A"  —,  B .  a

32



5 SKELETON
 

Due to our previous comments we obtain the following lemma: 

Lemma 5.4 (Church-Rosser Theorem) If A "---t~T/W_ AI and A --+~T/W All 
then there must exit some term B such that AI --+~T/w B and All --+~T/W B. 

Based on the remarks mentioned above we define the skeleton of a colored term 
as follows: 

Definition 5.5 (Skeleton) Let 1) C C be a set of colors, and rv the context, 
such that q) = r 1 and q)(X) = r 2 (X) n (1) UX). Then we inductively define the 
skeleton Ov by 

if a E 1) U X or h is bound 
if ha E wJJo:n ....../3 else 
if ha E wff/3 

/ I•	 Ov(AX.A) = {(AX.A ) -l-,8T/w IA E Ov(A)}) 

•	 Ov(AB) = ((A/B/) -l-,8'1W IAI 
E Ov(A) and B I E Ov(B)} 

Example 5.6 Let a,p and s be constants of types a, a -+ /3 and a -+ a, let 
r = [C:a -+ a],[D:a -+ /3 -+ 0:], [X: 0:]. Furthermore let 1) = {cl, then the 
following holds: 

OV(Sd) = {f~"""0:} 

OV(SdXA) = {XA} 

Ov(CAae) = {CAae} 

Ov(AX.CA(SdX» = {AX.CAX} 

WV (AXa.Dd (seX) (PAX» = {Se, AX.f~""",8(PAX)} 

Just as in the first-order case, the skeleton is stable with respect to subterm 
replacement: 

Lemzna 5.7 For all A, B E wffo:('L.; r z ) Ov(A) = Ov(BI1l") implies Ov(B) = 
Ov([A/7l"]B). 

Proof: This lemma is a trivial consequence from the definition of the skeleton
 
function. 0
 

Also, the skeleton is invariant wrt /37]-reductions:
 

Lemzna 5.8 For all A E wffo:('L.; rz) : A --+,8,1'1 B implies Ov(A) -+0: Ov(B)
 

Proof:
 

--+'1: Let A = AX.(BX):
 
IOv(A) = Ov(AX.(BX» = ((AX.B /) .}I3T/w I B E Ov(BX)}
 

= ((AX.(BIX) .},8T/w) .}13'1w I B I 
E Ov(B)} = {(AX.(BIX» -l-13'1w I B I 

E
 
Ov(B)}
 
= fEr .},8'1w I B I 

E Ov(B)} = Ov(B)
 

--+,8: Let A = «AX.C)D) and B = [DIX]C 
we first prove Ov([DIX]C) = {([DIIX]C/) .}13'1w I Cl E Ov(C), D I E Ov(D)} 
by induction: 

•	 Let C = ha and X ~ C: 
Ov([DIX]c) = Ov(C) = (([DIIX]C/) -l-I3T/w I et E Ov(C),DI 

E 
Ov(D)} 

33 

5 SKELETON

Due to our previous comments we obtain the following lemma:

Lemma 5.4 (Church-Rosser Theorem) If A ne .  A’  and A —3,,  A "
then there must exit some term B such that A ’  — on  B and A ”  — Bu  B .

Based on  the remarks mentioned above we define the skeleton of  a colored term
as follows:

Definition 5.5 (Skeleton) Let D CC be a set of colors, and I'p the context,
such that Th  = I’! and T%(X) =T*(X)N (DU X).  Then we inductively define the
skeleton 0 by

{ha} if a€DUAXor his bound
° Qp (hs )  = * {Am for Pz . . .  +s Amefog , } i f  ha  € Wf fzan  —ß else

0 i f  ha  € uff

e Qp(AX.A) = {(AX.A") lan IA’ € Qp(A)} )

e Qp(AB) = {(A'B') l q  |A’ € Qp(A) and B' € Qp(B)}

Example 5 .6  Let a ,p  and s be  constants of  types a ,  a —+ ß and a — a ,  let
= [C:a = a],[D:a + 8 — a],[X:a]. Furthermore let D = {c}, then the

following holds:

Qp(sa) { fs }
Qp(saXa) {Xia}
Qp(Crac) = {Cac}

Qp(\X.Cu(saX)) = {MXCiX)

wp(AXa-Da(s:X)(maX)) = {8,2 X-fS7 (ma X) }

Just as in the first-order case, the skeleton is stable with respect to subterm
replacement:

Lemma 5.7 For all A ,B  € uff, (Z;Tz) Qp(A) = Qp(Bls) implies Qp(B) =
Qo([A/7]B).

it

Proof: This lemma is a trivial consequence from the definition of the skeleton
function. |
Also, the skeleton is invariant wrt Gn-reductions:

Lemma 5 .8  For all A € uff , ( 5 ;Tz ) :  A — 3 ,  B implies Qp (A )  =o Qp(B)

Proof:

— 7: Let A = AX.(BX):
Qp(A)  = Qp(AX.(BX)) = {(AX.B')  gw  | B '  € Op(BX) }
= {(AX.(B'X) lpn) Janw | B '  € Q(B)} = {(MX.(B'X)) Jon | B '  €
Qp(B) }
= {B'  lg.  | B '  € 2p(B)}  = Op(B)

'—+: Let A = (AX.C)D) and B = [D/X]C
we first prove Qp([D/X]C) = { ( ID ' /X ]C" )  enw  | Ce  Qp (C) ,D ’  € Qp (D) }
by induction: ‘

oe LetC=h ,and X #C:
Qp( [D/X]C) = Qp(C) = { (D ' /X]C' )  Janw | C '  € Qp (C) ,D ' €
Qp(D)}

33



5 SKELETON
 

• C=X: 
flv([DjX]C) =flv(D) = ([D'jX]XI D' E flv(D)}
 
= (([D'jX1X) -I-/3f/W I D' E Ov(D)} = (([D'jX1C') -I-/3f/w.lc' E
 
Ov(C), D' E Ov(D)}
 

• C = Ay.C' and as induction hypothesis we assume: 

Ov([DjX1C') = ([D'jXlC"I C" E Ov(C'),D' E Ov(D)} 

Ov([DjX1c) 
= Ov([DjXl(Ay.c'))
 

= flV(Ay.[DjX]C')
 

= ((AY.C") -I-/3f/W I C" E Ov([DjX1C')} 

= ((Ay.([D'jX1C") -I-/3f/w) -I-/3f/W I C" E Ov(C'),D' E Ov(D)} 
= {([D'jXl(Ay.c")) -I-/3f/W I C" E Ov(C'),D' E Ov(D)} 
= {([D' j X1C') -I-/3f/W I C' E Ov (Ay.C'), D' E Ov(D)} 

= (([D'jX1C') -I-/3f/W IC' E Ov(C),D' E Ov(D)} 

• C = (E'F') and as induction hypotheses we assume: 

Ov([DjX1E) = (([D'jX1E') -I-/3f/W lE' E Ov(E),D' E Ov(D)} 
Ov([DjX1F) = {([D'jX1F') -I-/3f/W IF' E Ov(F),D' E Ov(D)} 

Ov([D j X1C) 
= Ov([DjX](EF)) 

= Ov([DjX1E[DjX1F) 
= ((E'F') -I-/3f/W lE' E Ov([DjX1E),F' E Ov([DjX1F)} 

= {(E' -I-/3f/W F' -I-/3f/w) -I-/3f/W I 

E' E [D'jX10v(E),F' E [D'jX10v(F),D' E Ov(D)} 

= ((E'F') -I-/3f/W IE' E [D' j X10v(E), F' E [D' j X]Ov(F), D' E Ov(D)} 
= (([D'jX](E'F')) -I-/3f/W lE' E Ov(E),F' E Ov(F),D E Ov(D)} 

= {([D' j X10v(EF)) -I-/3f/W ID' E Ov(D)} 

Thus, we know 

Ov«AX.C)D) 
= {(C'D') -I-/3f/w IC' E Ov(AX.C),D' E Ov(D)} 
= {«AX.C") -I-/3f/W D') -I-/3f/W Ie" E Ov(C), D' E flv(D)} 
= {([D' j X1C") -I-/3f/W I C" E Ov(C), D' E Ov(D)} 

= Ov([DjX]C) 

holds. o 
The skeleton does not have all nice properties it has in the first-order logic: In 

particular, it is not stable with respect to C-substitutions. In first-order skeletons 
are substitution stable, Le. if Ov(s) = Ov(t) then Ov(O"(s)) = Ov(O"(t)) holds for all 
s, t and substitutions 0". In case of the lambda calculus any meaningful definition of 
a skeleton will violate this restriction. Consider, for example, the terms Fdacbd and 
fdacbd which b~th coincide in their skeletons like ac. Instantiating Fd by AX.(AY.Y) 
will (after ,8-reduction) result in terms bd and fdacbd which do obviously not coincide 

34 

5 SKELETON

ee C=X:
Qp( [D/X]C)  = Qp(D)  = { [D’ /X]X|  D ’  € Op(D)}
= {([D’/X]X) Jen | D '  € Qp(D) }  = { ( [D ’ /X ]C ' )  lpnw.IC' €
Qp(C),D’  € Np(D)}

e C = \y.C' and as induction hypothesis we assume:

p([D/X]C') = { [D' /X]C"|  C "  € p (C ' ) ,D ’  € Op(D) }

Qp([D/X]C)
Qp([D/X](0y-C")
Qp(Ay.[D/X]C')

{(w.C") Jan | C ”  € Qp([D/X]C')}
= {(Ay.([D’'/X]C”) Janw) Jgnw | C ”EN„ (C ) ,D '€  Qp(D) }

= {([D’/X](Ay.C")) pnw | C "  € Qp(C" ) ,D ’  € Op(D) }
= {([D'/X]C') lpn | © € Qp(My.C ' ) ,D ’  € Qp(D) }

= {([D'/X]C') lpm | C'  € @p(C),D’ € Op(D)}

se C = (E'F’') and as induction hypotheses we assume:

Qp([D/  XIE) = {( [D' /  XE) {pq | E '  € Qp(E) ,D ’  € Qp(D)}
Qp([D/X]F) = {([D'/X]F') Jam | F '  € Qp (F ) ,D ’  € Qp (D) }

Qp([D/X]C)
= Qp([D/X|(EF))
= OQp([D/X]E[D/X]F)

{(E'F’) l p  | E' € Qp([D/X]E),F’ € Qp([D/X]F)}
{ (E  Lon  F'  Lgnw) donw |

E'  € [D'/X]Qp(E),F’ '  € [D' /X]OQp(F),D’ € Qp(D) }

= {(E'F)  Jon | E'  € [D'/X]Qp(E),F' € [D'/X]Qp(F),D' € Qp(D)}
= {([D'/X)(EF)) Jan | E'  € Qp(E),F' € Qp(F),D € Qp(D)}
= {([D'/X]Qp(EF)) {pq | D'  € Qp(D)}

Thus, we know

if

0p  ((AX.C)D)
{(C'D’) Jan | ©’ € Qp(AX.C),D' € Qp(D)}
{((AX.C") dpm D ' )  Ign | © ”  € 2p (C ) ,D’ € Qp(D)}
{ ( ID ' /X]C")  lpn. | C "  € 2p (C ) ,D’ € Qp(D) }
p([D/X]C)

holds. O
The skeleton does not have all nice properties it has in the first-order logic: In

particular, it is not stable with respect to C-substitutions. In first-order skeletons
are substitution stable, i.e. if Qp(s) = Qp(t)  then Qp(o(s)) = Qp(o( t ) )  holds for all
s , t  and substitutions o .  In  case of  the lambda calculus any meaningful definition of
a skeleton will violate this restriction. Consider, for example, the terms Fya.bs and
faacba which both  coincide in their skeletons like a . .  Instantiating Fa by  AX.(AY.Y)
will (after B-reduction) result in  terms ba and faa<ba which do  obviously not coincide

34



5 SKELETON
 

in their skeleton. The reason is that the instantiation enables the use of the (3­
rule which then, deletes parts of the skeleton. Two possibilities to get rid of this 
problem immediately suggest themselves: adding function variables (regardless of 
their annotations) always to the skeleton or restricting admissible substitutions in 
order to avoid these substitutions. However both will be to restrictive for practical 
reasons. Thus, the skeleton as defined in 5.5 is in general not substitution-stable if 
some variable of a non-base type is affected by the substitution. This is no major 
drawback in using a C-calculus for deduction. For instance in case of instantiating 
a C-equation we have only to test whether the skeletons of both instantiated sides 
still coincides. 

35
 

5 SKELETON

in their skeleton. The reason is that the instantiation enables the use of the ß-
rule which then, deletes parts of the skeleton. Two possibilities to get rid of this
problem immediately suggest themselves: adding function variables (regardless of
their annotations) always to the skeleton or restricting admissible substitutions in
order to avoid these substitutions. However both will be to restrictive for practical
reasons. Thus, the skeleton as defined in 5.5 is in  general not substitution-stable if
some variable of a non-base type is affected by the substitution. This is no major
drawback in using a C-calculus for deduction. For instance in case of instantiating
a C-equation we have only to test whether the skeletons of  both instantiated sides
still coincides.

35



6 

6 CONCLUSION
 

Conelusion 

We have extended the first-order rippling/coloring method to higher-order logic and 
present unification, pre-unification and pattern unification algorithms that we prove 
correct and complete. Thus we have provided a formal basis to the implementation 
of rippling in a higher-order setting which is required e.g. in case of middle-out 
reasoning [Hes91, IB96] and also a logical basis for an interface for linguistic extra­
semantical information in the construction of natural-language semantics [GK96]. 

Furthermore, the work presented in this paper provides a starting point for the 
mechanization of higher-order reasoning with equality along the lines of [WNB92, 
CH94] which develop heuristics that guide the difference reduction process in first­
order equality calculi such as [Mor69, Dig81]. These difference reducing approaches 
seem to be more promising for higher-order logic, since they can reduce the search 
spaces (comparing to those induced by encoding equality via the Leibniz formula) 
without needing reduction orderings, which become very weak in the presence of 
higher-order (function)-variables. 

iFrom an abstract point of view, the coloring technique allows adding annota­
tions to symbol occurrences in A-terms. Thus in contrast to other semantic anno­
tation techniques like sorts, it is possible to encode syntactic information and use 
that to guide inferencing processes. In this sense coloring is orthogonal to the intro­
duction of sorts, and the combination of the two mechanisms would an interesting 
subject for further investigation, since it is reasonable to expect a multiplication of 
the filtering effects provided by both methods in automated deduction. 

36
 

6 CONCLUSION

6 Conclusion

We have extended the first-order rippling/coloring method to  higher-order logic and
present unification, pre-unification and pattern unification algorithms that we prove
correct and complete. Thus we have provided a formal basis to  the implementation
of rippling in a higher-order setting which is required e.g. in case of  middle-out
reasoning [Hes91, IB96] and also a logical basis for an interface for linguistic extra-
semantical information in the construction of natural-language semantics [GK96).

Furthermore, the work presented in this paper provides a starting point for the
mechanization of  higher-order reasoning with equality along the lines of  [WNB92,
CH94] which develop heuristics that guide the difference reduction process in first-
order equality calculi such as [Mor69, Dig81]. These difference reducing approaches
seem to  be more promising for higher-order logic, since they can reduce the search
spaces (comparing to those induced by encoding equality via the Leibniz formula)
without needing reduction orderings, which become very weak in the presence of
higher-order (function)-variables.

From an  abstract point of  view, the coloring technique allows adding annota-
tions to  symbol occurrences in A-terms. Thus in contrast to other semantic anno-
tation techniques like sorts, it is possible to encode syntactic information and use
that to  guide inferencing processes. In  this sense coloring is  orthogonal to  the intro-
duction of  sorts, and the combination of  the two mechanisms would an  interesting
subject for further investigation, since it is reasonable to  expect a multiplication of
the filtering effects provided by  both methods in automated deduction.

36



REFERENCES	 REFERENCES
 

References 

[Bar80]	 Hendrik P. Barendregt. The Lambda- Calculus: Its Syntax and Seman­
tics. North-Holland, 1980. 

[BSvH+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, 
and Alan Smaill. Rippling: a heuristic for guiding inductive proofs. AI, 
62:185-253, 1993. 

[Bun88]	 Alan Bundy. The use of explicit plans to guide inductive proofs. In 
Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the 9th 
Conference on Automated Deduction, number 310 in LNCS, pages 111­
120, Argonne, lllinois, USA, 1988. 

[CH94]	 J. Cleve and D. Hutter. A methodology for equational reasoning. In jr. 
Eds: Jay F. Nunamaker and jr. Ralph H. Sprague, editors, Proceedings 
Hawaii International Conference on System Sciences 27 Volume Ill: 
Information Systems: DSSjKnowledge-based Systems, pages 569 - 578. 
IEEE Computer Society Press, Los Alamitos, California, 1994. 

[Chu40]	 Alonzo Church. A formulation of the simple theory of types. Journal 
of Symbolic Logic, 5:56-68, 1940. 

[Dig81]	 Vincent J. Digricoli. The efficacy of RUE resolution, experimental re-' 
suIts and heuristic theory. In Ann Drinan, editor, Proceedings of the 
7th International Joint Conference on Artificial Intelligence (ICJAI), 
pages 539-547, Vancouver, Canada, 1981. Morgan Kaufmann, San Ma­
teo, California, USA. 

[Dow92]	 Gilles Dowek. Third order matching is decidable. In Proceedings of the 
7th Annual IEEE Symposium on Logic in Computer Science (LICS-7), 
pages 2-10. IEEE Computer Society Press, 1992. 

[DSP9:1.]	 M. Dalrymple, S. Shieber, and F. Pereira. Ellipsis and higher-order 
unification. Linguistics and Philosophy, 14:399-452, 1991. 

[GK96] Claire Gardent and Michael Kohlhase. Higher-order coloured unifica­
. tion and natural language semantics. Submitted to COLING'96, 1996. 

[GoI81]	 Warren D. Goldfarb. The undecidability of the second-order unification 
problem. Theoretical Computer Science, 13:225-230, 198!. 

[Hes91]	 Jane Hesketh. Using Middle-Out Reasoning to Guide Induction. PhD 
thesis, University of Edinburgh, 1991. 

[HS86]	 J. Hindley and J. Seldin. Introduction to Combinators and Lambda 
Calculus. Cambridge University Press, 1986. 

[Hut90]	 Dieter Hutter. Guiding induction proofs. In Mark Stickel, editor, Pro­
ceedings of the 10th Conference on Automated Deduction, number 449 
in LNCS, pages 147-161, Kaiserslautern, Germany, 1990. 

[Hut91]	 Dieter Hutter. Mustergesteuerte Strategien zum Beweisen von Gleich­
heiten. PhD thesis, Universitat Karlsruhe, Karlsruhe, 1991. 

[IB96]	 Andrew Ireland and Alan Bundy. Productive use of failure in inductive 
proof. Special Issue of the Journal of Automated Reasoning, to appear, 
1996. . 

37 

REFERENCES REFERENCES

References

[Bar80] Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Seman-
tics. North-Holland, 1980.

[BSvH+*93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland,

[Bun88]

[CH94]

[Chu40]

[Dig81]

[Dow92]

[DSP91]

[GK96]

[Gol81]

[Hes91]

[S86]

[Hut 90}

[Hut91]

[B96]

and Alan Smaill. Rippling: a heuristic for guiding inductive proofs. Al,
62:185-253, 1993.

Alan Bundy. The use of explicit plans to guide inductive proofs. In
Ewing L .  Lusk and Ross A. Overbeek, editors, Proceedings of  the 9th
Conference on Automated Deduction, number 310 in  LNCS, pages 111-
120, Argonne, Illinois, USA,  1988.

J. Cleve and D .  Hutter. A methodology for equational reasoning. In  j r .
Eds : Jay F .  Nunamaker and j r .  Ralph H .  Sprague, editors, Proceedings
Hawaii International Conference on System Sciences 27 Volume III:
Information Systems : DSS/Knowledge-based Systems, pages 569 — 578.
IEEE Computer Society Press, Los Alamitos, California, 1994.

Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56-68, 1940.

Vincent J.  Digricoli. The efficacy of RUE resolution, experimental re- -
sults and heuristic theory. In Ann Drinan, editor, Proceedings of the
7th International Joint Conference on Artificial Intelligence (ICJAI),
pages 539-547, Vancouver, Canada, 1981. Morgan Kaufmann, San Ma-
teo, California, USA.

Gilles Dowek. Third order matching is decidable. In Proceedings of the
7th Annual IEEE Symposium on Logic in Computer Science (LICS-7),
pages 2-10. IEEE Computer Society Press, 1992.

M.  Dalrymple, S. Shieber, and F .  Pereira. Ellipsis and higher-order
unification. Linguistics and Philosophy, 14:399-452, 1991.

Claire Gardent and Michael Kohlhase. Higher-order coloured unifica-
tion and natural language semantics. Submitted to COLING’96, 1996.

Warren D.  Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225-230, 1981.

Jane Hesketh. Using Middle-Out Reasoning to Guide Induction. PhD
thesis, University of  Edinburgh, 1991.

J. Hindley and J. Seldin. Introduction to Combinators and Lambda
Calculus. Cambridge University Press, 1986.

Dieter Hutter. Guiding induction proofs. In Mark Stickel, editor, Pro-
ceedings of the 10th Conference on  Automated Deduction, number 449
in LNCS, pages 147-161, Kaiserslautern, Germany, 1990.

Dieter Hutter. Mustergesteuerte Strategien zum Beweisen von Gleich-
heiten. PhD thesis, Universitit Karlsruhe, Karlsruhe, 1991.

Andrew Ireland and Alan Bundy. Productive use of failure in inductive
proof. Special Issue of the Journal of Automated Reasoning, to appear,
1996.

37

PN



REFERENCES REFERENCES 

[Koh94] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic 
Based on the Resolution Principle. PhD thesis, Universitat des Saar­
landes, 1994. 

[Kra94] Ina Kraan. Proof Planning for Logic Program Synthesis. 
University of Edinburgh, 1994. 

PhD thesis, 

[Mil92] Dale Miller. Unification under a mixed prefix. 
Computation, 14:321-358, 1992. 

Journal of Symbolic 

[Mon74] R. Montague. The proper treatment of quantification in ordinary en­
glish. In R. Montague, editor, Formal Philosophy. Selected Papers. Yale 
University Press, New Haven, 1974. 

[Mor69] James B. Morris. E-resolution: Extension of resolution to include the 
equality relation. In Donald E. Walker and Lewis Norton, editors, Pro­
ceedings of the 1st International Joint Conference on Artificial Intelli­
gence, pages 287-294, 1969. 

[Sny91] Wayne Snyder. A Proof Theory for General Unification. 
Computer Science and Applied Logic. Birkhauser, 1991. 

Progress in 

[StaB5] R. Statman. Logical relations and the typed lambda calculus. 
mation and Computation, 65, 1985. 

Infor­

[Tai67] W. Tait. Intensional interpretation of functionals of finite type 1. 
formation and Computation, 32:198-212, 1967. 

In­

[WNB92] Toby Walsh, A. Nunes, and Alan Bundy. The use of proof plans to 
sum series. In D. Kapur, editor, Proceedings of the 11th Conference on 
Automated Deduction, volume 607 of LNCS, pages 325-339, Saratoga 
Spings, NY, USA, 1992. Springer Verlag. 

38
 

REFERENCES REFERENCES

[Koh94]

[Kra94]

[Mil92]

[Mon74]

[Mor69]

[Sny91]

[Sta85]

[Tai67]

[WNB92]

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic
Based on the Resolution Principle. PhD thesis, Universität des Saar-
landes, 1994.

Ina Kraan. Proof Planning for Logic Program Synthesis. PhD thesis,
University of Edinburgh, 1994.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14:321-358, 1992.

R.  Montague. The proper treatment of  quantification in ordinary en-
glish. In  R.  Montague, editor, Formal Philosophy. Selected Papers. Yale
University Press, New Haven, 1974.

James B .  Morris. E-resolution: Extension of  resolution to  include the
equality relation. In  Donald E.  Walker and Lewis Norton, editors, Pro-
ceedings of the Ist  International Joint Conference on Artificial Intelli-
gence, pages 287-294, 1969.

Wayne Snyder. A Proof Theory for General Unification. Progress in
Computer Science and Applied Logic. Birkhduser, 1991.

R. Statman. Logical relations and the typed lambda calculus. Infor-
mation and Computation, 65, 1985.

W.  Tait. Intensional interpretation of functionals of finite type I .  In-
formation and Computation, 32:198-212, 1967.

Toby Walsh, A. Nunes, and Alan Bundy. The use of proof plans to
sum series. In  D .  Kapur, editor, Proceedings of the 11th Conference on
Automated Deduction, volume 607 of LNCS, pages 325-339, Saratoga
Spings, NY,  USA, 1992. Springer Verlag.

38



A TERMINATION OF fBnw-REDUCTION

A Termination of  fnw-Reduction
In  this appendix we will prove termination of  the Snw-Reduction used in the defini-
tion of  a Skeleton using the well-known logical-relations method due to Tait [Tai67]
and Statman [Sta85]

Definition A .1  (Logical Relation) A unary typed relation £ C wff,(Z;z) is
called a logical relation, iff for all types « = v — J and all A € uff, (%;T'z)
we have L(A), iff £ ; (AC) for all C € uff, with £, (C).  Clearly, logical relations
are totally determined by their values on base types. For any other unary typed
relation S, we call the (unique) logical relation £ that coincides with S on base
types the logical relation induced by  S.

Definition A .2  (Admissible) Let £ be a logical relation, then a head reduction

(AXa.Aq)B —5  [B/X]A

is called admissible, iff £ ; (B) .  A logical Relation R is said to be admissible if  Co
is closed under admissible head expansions. (Formally: Let a be a base type, and
let Aa,  Ba  be terms with A —* B,  then a logical Relation £ is called admissible
if £ , (B)  implies that £ , (A) . )

The key tool for the logical relation method is the fundamental theorem for
logical relations. A proof can be found in [Sta85].

Theorem A .3  (Fundamental Theorem for Logical Relations) If £ is ad-
missible and A in wff,(Z;Tz), then LC,(A).

Definition A .4  (Terminating at A)
We say that gnw-reduction is terminating at  A ,  iff any sequence of fnw-reductions
starting with A terminates. Let S be the typed relation, such that S,(A), iff Snw-
reduction is terminating at A .  Furthermore let £ be the logical relation induced by
S

Lemma A.5  If fnw-reduction is terminating at C ,  and B is a subformula of C ,
then Snw-reduction is terminating at B

Proof: Any infinite reduction sequence from B can be transformed to one from C .
0

The proof of termination will proceed in two steps: We will first show that
£ CS  and then that £ is admissible. Combining these results with the fundamental
theorem, we obtain that £ , (A)  for any formula A € wff,(T;T'z) and therefore
S, (A), which implies universal termination of  Snw-reduction.

Lemma A.6  ( LCS)

1. Let h be a constant or  variable of type a = a™ — ß and Sy  (AY), then
L(hAT).

2. L(A) implies S(A).

Proof: We prove the assertion by  a simultaneous induction over the type a .  If
& is a base type, the second assertion is a trivial consequence of  the definition of
L .  For the first assertion we have to consider two cases: If h # FEB, then we
obtain the fact that Snw-reduction is terminating at hA",  since the A ’  are (since

39



A TERMINATION OF {JTJw-REDUCTION 

the arguments of h are independent, there can be no (JTJw-redexes that are not in 
the Ai), thus £(3 (hAn) since a: E BT (S = £ there). 

If h = 1::->(3, then 

where the head of B is not 1w. We show the assertion by an induction over the 
number n, using the previous case for n = o. For the inductive case we note that 
the first two w-rules transform hAn into a formula of th~ame form with reduced 
n and the third rule cannot apply at the top-level of hAi at all. Thus we have 
completed the proof of the first assertion in the case type case. 

For the inductive case let a: = (J --+ I' and £(3(B). By the second inductive 

hypothesis we have S(3(B), by the first inductive hypothesis £"((hAnB). Thus 

£(3 (hAn) by definition and we have proven the first assertion. 
For the second assertion let £,AA) and X(3 ft free(A). With the first inductive 

hypothesis (n = 0) we have £(3(X), and thus £"((AX) by definition. Now we see 
that (JTJw-reduction is terminating at A, since by the second inductive hypothesis 
we have S"((AX) and S",(A) by A.5. 0 

Lemma A.7 £ is admissible. 

Proof: For the case of the unary relation £ we have to show that £",([B(X]A) 
implies £",((AX(3.A)B). Now let a: = ;:y --+ 0, such that 0 E BT, furthermore 
let £",(A), and £"(.(Ci). Then (by an iterated application of the definition of 

£) it is sufficient to show that So((AX.A)BC) ( .BTJw-reduction is terminating at 
(AX.A~BC), since 0 is a base type. 

So let us assume that £",([B(X]A), then by definition of £ we have 
£o([B(X]AC) and thus So([B(X]AC). In particular S",([B(X]A) and S"(.(Ci

) 

by A.5. Furthermore the head reduction is admissible and therefore £(3(B) and 
thus S~(B) by A.G. Finally, {JTJw-reduction must be terminating at A, since an in­
finite reduction from A would imply one from [B(X]A ({JTJw-reduction is invariant 
under instantiation). Thus there cannot be an infinite sequence of reductions from 
(AX.A)BC that only contracts redexes from [B/X]A and the Ci. Thus such a 
reduction sequence from (AX.A)BC has the form 

(AX.A)BC	 -+~1/W (AX.A')B'C' 
-+(31/W [B'/X]A'C' 
-+~1/w 

where A -+~ A', B -+~ B' and Ci -+~ C,i. Thus [B(X]A -+~ [B'(X]A' and 
in particular (in contradiction to our assumption), we have constructed an infinite 
reduction 

[B(X]AC -+(31/w * [B'(X]A'C' 

-+~1/W 

o 

Corollary A.8 (Termination) (JTJw-Reduction is terminating. 

Proof: Let A E wfJ",(I:; rz) be an arbitrary formula, by A.7 and the fundamental 
theorem A.3 we have £",(A) and thus S",(A) by A.5. 0 

40
 

A TERMINATION OF  Bnw-REDUCTION

the arguments of /are independent, there can be no fAnw-redexes that are not in
the A ; ) ,  thus L5(hA™) since a € BT  (S  = L there).

If h = f&7#, then

RAT= ( fo l  (£ ,B) . .  JA? A”)

where the head of B is not f,. We show the assertion by an induction over the
number n ,  using the previous case for n = 0. For the inductive case we note that
the first two w-rules transform AA" into a formula of  the same form with reduced
n and the third rule cannot apply at the top-level of  hA7 at all. Thus we have
completed the proof of the first assertion in the case type case.

For the inductive case let a '=   —+ 7 ,  and L4(B).  By  the second inductive
hypothesis we have Sg(B), by the first inductive hypothesis £,(hA"B).  Thus
L(hA™) by definition and we have proven the first assertion.

For the second assertion let £ , (A )  and Xz  ¢ free(A). With the first inductive
hypothesis (n  = 0) we have L5(X) ,  and thus £,(AX) by definition. Now we see
that Bnw-reduction is terminating at A ,  since by  the second inductive hypothesis
we have S,(AX) and S,(A) by A.5. a

Lemma A .7  L£ is admissible.

Proof: For the case of the unary relation £ we have to show that £ , ( [B/X]A)
implies £,((AX3.A)B). Now let a = 7 — 4, such that § € BT, furthermore
let £ , (A ) ,  and L.:(CY). Then (by an iterated application of the definition of
L) i t  is sufficient to show that S;((AX.A)BC) ( fnw-reduction is terminating at
(AX.A)BC), since 4 is a base type.

So let us assume that L,([B/X]A), then by definition of £ we have
L;([B/X]AC) and thus 5;([B/X]AC). In particular S,([B/X]A) and S.:(C)
by A.5. Furthermore the head reduction is admissible and therefore £45(B) and
thus S;(B) by A.6. Finally, fnw-reduction must be terminating at A ,  since an in-
finite reduction from A would imply one from [B/X]A (Anw-reduction is invariant
under instantiation). Thus there cannot be an infinite sequence of reductions from
(AX.A)BC that only contracts redexes from [B/X]A and the C*. Thus such a
reduction sequence from (AX.A)BC has the form

(AX.A)BC —3,, (AX.A")B'C
—pnw  [B'/X]A'C
—

where A —% A ’ ,  B —3 B' and C ‘  —% C'.  Thus [B/X]A —}  [B'/X]A and
in particular (in contradiction to our assumption), we have constructed an infinite
reduction _

[B/X]AT —3,, [B'/X]A'C
— Baw

Corollary A .8  (Termination) Snw-Reduction is terminating.

Proof: Let A € wff,(3;T'z) be  an  arbitrary formula, by  A.7  and the fundamental
theorem A.3 we have £ (A) and thus S,(A) by A.6. [m

40




	BB_0005.jpg
	SR-1995-05-4.png
	SR-1995-05-8.png
	SR-1995-05-39.png

