Matthias Fuchs

SEKI Report SR-96-08

n
ft
O
s
3]
k=
el
=
@]
O
ao
g
>
=)
>
=

usaine|siasiey] £99/9-(

wnelsiasiey) EUSIAUN 11Od4e - IAJS

Yijewou| ydiisqyde

Evolving Combinators®

Matthias Fuchs
Fachbereich Informatik
Universitat Kaiserslautern
Postfach 3049
67653 Kaiserslautern
Germany
E-mail: fuchs@informatik.uni-kl.de

October 28, 1996

Abstract

One of the many abilities that distinguish a mathematician from an auto-
mated deduction system is to be able to offer appropriate expressions based on
intuition and experience that are substituted for existentially quantified variables
so as to simplify the problem at hand substantially. We propose to simulate this
ability with a technique called genetic programming for use in automated deduc-
tion. We apply this approach to problems of combinatory logic. Our experimen-
tal results show that the approach is viable and actually produces very promising
results. A comparison with the renowned theorem prover OTTER underlines the
achievements.

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

mailto:fuchs@informatik.uni-kl.de

2 1 INTRODUCTION

1 Introduction

Automated deduction systems have gained remarkable powerfulness in recent years.
Nevertheless, they still lack a number of abilities that distinguish a good mathemati-
cian. Onmne of these abilities is to use intuition and experience to suggest a solution
to a problem and then to solve the usually much easier task of proving that it is in-
deed a correct solution. Since mostly the first suggested solution is not correct, this
process may continue over several stages possibly involving modification or re-design
of a solution (“trial and error”). Although this procedure cannot deny a relation to
guesswork and as such should be considered “non-mathematical”, it is nevertheless an
indispensable and valid tool in the repertoire of a mathematician that—as history has
shown—is often the crucial key to solving intricate problems.

Therefore it appears to be profitable to equip an automated deduction system with the
ability to suggest solutions and to (attempt to) prove their correctness instead of having
the system attempt to construe a correct solution by means of deductive mechanisms.
As appealing as this idea sounds, it immediately raises the serious question as to how
pivotal concepts such as “intuition” and “experience” that are hardly accessible by
a computer can be brought to bear. Since enumerating all solutions or suggesting
solutions at random in most cases are impractical or insufficient alternatives, a sensible
automated suggestion of solutions seems to be out of reach.

In the area of deduction, suggesting a solution essentially amounts to finding expres-
sions to be substituted for existentially quantified variables so that the validity of the
whole formula at hand is not changed. In the majority of cases, after replacing the ex-
istentially quantified variables with the “right” expressions, the problem then becomes
much simpler which explains the profitableness of this kind of proceeding. Assuming
that we are dealing with problems of first-order predicate logic, these expressions can
be represented by first-order terms. Thus, basically a search for the “right” first-order
terms must be conducted.

Genetic programming (GP, [9]) is a method for searching large spaces of programs
in order to find a program that performs some given task satisfactorily. A program
is commonly a LISP S-expression that essentially is a first-order term. Hence, GP
can be applied to searching for the “right” terms to be substituted for existentially
quantified variables. We shall demonstrate the use of GP for this purpose in the area
of combinatory logic (CL, [1], [3]). More precisely, we shall evolve combinators that are
to satisfy a certain condition specified by the problem of CL at hand. Our experiments
have shown that this at first sight hopeless endeavor is practical and actually produces
very promising results as a comparison with a powerful proving system such as OTTER
shows.

The report is organized as follows: First, section 2 introduces the basics of CL and the
problems addressed here. Then, section 3 outlines GP in the light of this particular
application. Section 4 documents the experimental studies. Finally, section 5 concludes
the report. '

2 Combinatory Logic

In this section we shall present CL from the viewpoint of automated deduction (see
also [19], [20], [12], [11]). We assume that the reader is familiar with the basic notions
of rewriting systems.

In [1] CL is defined by equational axioms for the combinators S and K:
Szyz = r2(yz) Kzy=r=x

Expressions are implicitly left-associated, i.e., zyz = (zy)z. z, y and z denote vari-
ables from the set V of variables. For use with an automated deduction system, such
expressions are transformed into “proper” first-order terms by using a binary function
“symbol a (“apply”), e.g., the equation for S given above then reads as

a(a(a(S,z),y), z) = a(a(z, 2), a(y, 2)).
Besides combinators S and K various other combinators can be studied.

The first kind of problem we are interested in is to find out whether combinators from
a given set B of combinators (a basis) can be combined so as to satisfy the equation of
a combinator © ¢ B. Consider, for instance, B = {B, W}, where

Bryz = z(yz) and Wry = zyy,

and the question is whether there is a combination of Bs and Ws that satisfies the
equation of L with Lzy = z(yy). In first-order predicate logic, this question gives rise
to the following goal:

A2V, y: zzy = z(yy) ?

An automated deduction system proceeds by negating and Skolemizing the goal and
then adding it to the set of axioms originating from the combinators in B. It then
attempts to prove the resulting set of equations and inequations to be inconsistent,
i.e., for the example the set

a(a(a(B,z),y),2) = a(z,a(y,z))
a(a(W,2),y) = ala(z,y),y)
a(a(z, f1(2)), f2(2)) # a(fi(2),a(f2(2), f2(2)))

must be shown to be inconsistent by deducing s # s (s being some term). This is
achieved through continuous paramodulation or demodulation steps mainly involving
the goal and the resulting derivatives of it. The search spaces created this way can
become enormous and quite often exceed the power of automated deduction systems.
(Furthermore, additional measures must be taken if we are not only interested in the
fact that a combinator exists, but also want to know exactly what it looks like.) Were
we, however, simply requested to show that BWB indeed is a combinator® satisfying
the equation for L, the resulting problem involving the goal

Vz,y : BWBzy = z(yy) or a(a(a(a(B, W), B),c1), c2) # a(cy, aley, ¢3))

!Both elementary combinators such as B or W and compound combinators such as BWB are de-
noted as combinators. Obviously, elementary combinators are a special case of compound combinators.

4 3 GENETIC PROGRAMMING

merely requires a number of rewrite steps, in this case (given in short notation):
BWBzy = W(Bz)y = Bxyy = z(yy).

If the axioms can be transformed into a convergent (confluent and terminating) system
of rewrite rules, a proof of the latter problem simply reduces to computing normal
forms. (This is of course not possible for the axioms in the example.)

The second kind of problem we want to address here is to check for the so-called sirong
fized-point property ([17]; see also [14]). A (compound) combinator © satisfies the
strong fixed-point property if

' V : Oz = z(Ox).

Given a basis B, the question is if there exists a combination of (elementary) combina-
tors in B that satisfies the strong fixed-point property, i.e.,

AzVz : 2z = z(zz) ?

The existential quantification again results in an enormous growth rate of the search
space.

If we are given a combinator © and the problem is to prove that © actually satisfies
the strong fixed-point property, the task is usually much simpler: Vz : Oz = z(Ox) is
proved by rewriting both ©z and z(Oz) to some term t. This usually causes consider-
ably less search effort than a use of paramodulation in the presence of an existentially
quantified goal. If the axioms form (or can be completed so that they form) a set of
convergent rewrite rules, there is no search at all, and Vz : Oz = 2(O2) is actually
decidable by computing normal forms. In the case that there is no convergent (in
particular no terminating) set of rewrite rules, the search space can nevertheless be
minimized—possibly at the expense of losing completeness—by applying the axioms
despite non-termination as rewrite rules with the combinator occurring in the left side
of a rule (coupled with a restriction of the number of permitted rewrite steps) which
complies with the basic idea of these axioms that are to be utilized for evaluating ex-
pressions involving combinators. (A complete discussion of these issues is beyond the
scope of this report. See, e.g., [16] instead.)

The essential part is that for both kinds of problems it is desirable to find some other
(efficient) means to come up with a combinator than search-intensive deductive mecha-
nisms (paramodulation) in order to significantly simplify the problems. The use of GP
for this purpose is the topic of the next section.

3 Genetic Programming

GP is an instance of the general genetic algorithm (GA) introduced in [8]. We shall
therefore concisely describe the fundamentals of the GA before the specifics of GP will
be addressed. (See also, e.g., [5] for a comprehensive description of the GA.)

The GA is an adaptive method based on principles known from general genetics and
biological evolution. It is very useful for finding (nearly) optimal solutions of problems

in many domains. Unlike other search methods, the GA maintains a set of (sub-
optimal) solutions, i.e., several points in the search space. In this context, a solution
is preferably called an individual, and the whole set is referred to as a population or
generation. Usually, the size of the population is fixed. In order to explore the search
space, the GA applies so-called genetic operators to (a subset of the) individuals of its
current population. This way, new individuals can be created and hence new points
in the search space can be reached. In order to keep the population size fixed, it
must be determined which individuals are to be eliminated in order to make room
for the new ones. For this purpose a so-called fitness measure is employed which
rates the fitness (i.e., the ability to solve the problem at hand) of each individual of
the current population. The genetic operators are applied to the fittest individuals,
this way producing offspring which then replaces the least fit individuals (Darwinian
principle of “survival of the fittest” or, in GA terminology, elite or truncate selection;
other modes of selection are also possible).

So, the GA basically proceeds as follows: Starting with a randomly generated initial
population, the GA repeats the cycle comprising the rating of all individuals using the
fitness measure, applying the genetic operators to (a selection of) the best individuals,
and replacing the worst individuals with offspring of the best, until some termina-
tion condition is satisfied (e.g., an individual with a satisfactory fitness level has been
created).

In the context of GP, an individual commonly corresponds to a LISP S-expression,
i.e., a program that is to solve a given task. In our particular case here, an individual
is a first-order term (a combinator) composed of combinators from a basis B and the
binary function symbol a. As a matter of fact, the purpose of the A-calculus in general
and CL in particular suggests to consider a combinator to be a (functional) program.
The semantics of such a program is defined by the axioms that each specify the effects
of the respective combinator in 5.

The initial population hence consists of random combinators. A random combinator
is a random binary tree with internal nodes labeled by a and leaves labeled by one of
the combinators in B. Details of generating random combinators will be discussed in
the context of our experiments (section 4).

Since we used exclusively crossover as genetic operator, we shall confine ourselves to
a description of this operator. (‘Reproduction’ as given in [9], for instance, is basically
realized by the survival of the fittest individuals.) The crossover operator selects two
(not necessarily distinct) parents from the pool of 7% best (surviving) individuals of
the current generation. In each parent, a sub-tree is chosen at random. Two child
individuals are produced by creating copies of the parents and then exchanging the
chosen sub-trees. (For more details of this process see [9].)

The motivation and purpose of crossover is to isolate good “partial” solutions and to
re-combine them in order to form ever fitter complete solutions. Building blocks (sub-
terms in our case) of the fittest individuals persist and have the potential to contribute
to an individual showing satisfactory performance. It is this information acquired in
the course of the genetic search and in a way stored in the form of individuals that
distinguishes GP (the GA in general) from (pure) random search. There are theoretical

6 3 GENETIC PROGRAMMING

studies and ample empirical evidence that corroborate this fact (cf. [§], [9]).

The fitness measure ® determines which individuals will survive and which individuals
will be eliminated in order to make room for offspring of the surviving individuals. ® is
pivotal for GP (for the GA in general), exerting “genetic pressure” that guides and
strongly influences the search despite omnipresent random effects that are actually
indispensable to escape from local optima and to explore new regions of the search
space—a distinctive property of GP and the GA in general. But the fitness measure
poses serious problems for our application of GP in the area of automated deduction.

Given an individual (a combinator ©), the only information we have available is that
© either solves the problem at hand or it does not, or it is not known if it does so
because of the undecidability in case the axioms cannot be transformed into a set
of convergent rewrite rules. This kind of information is insufficient to produce an
effective fitness measure. (E.g., in the initial population mostly none of the individuals
solve the problem so that the same fitness would be assigned to all of them, thus
making it impossible to discriminate fitter individuals from less fit ones.) In spite of
the substantial lack of reliable information on how close a combinator © comes to
solving the given problem, the fitness measure developed in the sequel nonetheless
attempts to estimate the performance of a © in a more differentiated way than merely
by qualifying a © as “solving”, “not solving”, or “unknown”.

Both kinds of problems of CL introduced in section 2 reduce to checking for the validity
of an all-quantified equation s = t once a combinator has been substituted for the
existentially quantified variable. Such an equation is valid if its sides can be rewritten
to identical terms using the given axioms. If this cannot be achieved, a term difference 6
(related to ideas presented in [4]) may be employed to estimate by how much s = ¢
“missed” validity. In the following, u and v are first-order terms construed with the
help of a, B and V, i.e., u,v € Term(F,V) with F = {a} U B. Note that a combinator
© € Term(F), i.e., © does not contain variables.

0, =vA(u,v€EBVuy,veV)
§(u,v) =< 6(uy,vy) + 6(ug, va), u = alug,us) Av = alvy,vy)
|v(u) = y(v)|+1, otherwise.

v(u) counts the number of function symbols in v € Term(F, V):

(u) = 1, veBvuecV
=1+ Y(u1) + v(u2), © = aluq, ug).

Hence we have 6(u,v) = 0 if and only if u = v. Essentially, § identifies disagreeing
sub-terms and adds up measures for their disagreement. These measures basically are
differences in the number of symbols occurring in disagreeing sub-terms.

The term difference ¢ is the basis for our fitness measure. Naturally, 6 is only one
among many sensible possibilities. The simplicity of § and our experimental results
speak in favor of our definition of term difference.

However, using 6 to design a fitness measure without any further modifications can
cause problems. Consider B = {B, T}, where Bzxyz = z(yz), Tzy = yz, and the prob-
lem is to find a combinator from B that satisfies the equation for @ with Qzyz = y(zz).

(Note that the equations for B and T can be transformed into a set of convergent rewrite
rules so that there always exist unique normal forms.) When using & to compare the
outcome z(yz) of Bxyz with the desired expression y(zz) we obtain §(z(yz), y(zz)) = 2.
This is about the best result attained by a random combinator. The simplicity of B
also practically guarantees that B will be among the random combinators of the initial
population (see the method for generating random combinators given in section 4).
However, B carries little “genetic” information and hence is not very useful for the
search process of GP. Even worse, B will be very likely to cause GP to converge pre-
maturely in that the whole population consists of Bs only. (If B is one parent, and
the sub-tree of the other parent © chosen for crossover is © itself, then another B
will be produced as offspring. If two Bs are selected as parents, two more Bs will be
produced. The high fitness of B ensures “survival”. Note that GP does not eliminate
duplicates mainly for efficiency reasons.) Nonetheless we are of course interested in
short combinators that solve the problem at hand so that it does not make sense to
rigorously disallow short combinators.

We resolve this dilemma by introducing a “minimal structure requirement” that causes
a penalty depending on how much the length £(©) of a combinator © falls short of a
given minimal length l,;,. £(©) simply counts the number of symbols of B occurring
in ©. (We use L£(©) rather than v(©) in order to focus on the essential parts of
a ©; recall that the symbol a was merely introduced to obtain proper first-order terms
and hence is only necessary for using common notation.) L correlates with + in the
following way:

_v(©)+1

2

The correspondingly modified term difference is

£(©)

No(u,v) = { §(t,v) + (lmin — £(©) + 1), otherwise.

The fitness ®(O) of a combinator © is now determined as follows: Let s = t be the
goal obtained after replacing the existential variable with © (i.e., all remaining variables
occurring in s = ¢ are implicitly all-quantified; cp. section 2). In case the axioms form
a convergent rewrite system we let ®(©) = Ag(s],t|), where u| denotes the (unique)
normal form of u € Term(F,V) with respect to the axioms. Under these conditions,
we have ®(©) = 0 if and only if O is a solution.

In case convergence cannot be guaranteed (for all problems considered here it means
that termination fails to hold), we rewrite s and ¢ a limited number of times and then
compare the results of these rewrite steps. More precisely, let R(u) = {uy,...,u,}
satisfying v = u3 = -+ = u,, n € IN, and = is the rewrite relation generated by
regarding the axioms as rewrite rules as described earlier. (Note that R () is unique if
a fixed reduction strategy is employed. We employed leftmost/outermost reduction as
the most “natural” reduction strategy for these kinds of problems.) Then the fitness
of © is given by

3(0) = min({Ae(s,t') | &' € R(s),¢ € R(£)}).

8 4 EXPERIMENTS

Here, we have that © is a solution if ®(6) = 0. That is, we naturally miss out on some
solutions.

In both cases, the fitness measure is the smaller the fitter a combinator © is considered
to be. If $(0) = 0 then O is a solution. As a refinement, we consider ©; to be
fitter than ©, even though ®(0;) = &(0,) if L(©;) < L(O-) in order to favor shorter
combinators. (Note that the possible disadvantages of short combinators discussed
earlier are compensated for by ln.)

Naturally, when a combinator © has an almost perfect fitness, say ®(0) = 1, we have
absolutely no guarantee that © bears significant resemblance to a combinator that ac-
tually solves the problem. But this is a difficulty that GP can and has to cope with
in general: A LISP program that “almost” solves a given task may be significantly
different from a program that actually solves the task. But the powerfulness and limi-
tations of GP cannot be addressed with theoretical considerations. We shall therefore
now present our experimental results.

4 Experiments

We conducted our experimental studies in the light of 30 problems of CL taken from the
TPTP problem library ([18]) version 1.2.1. The names of the problems (as used in the
TPTP) are listed in the first column of table 1. Problems marked with an asterisk have
a set of axioms that can immediately be used as convergent rewrite rules. Therefore
they allow for computing the fitness measure based on comparing two normal forms as
opposed to the more expensive (and less reliable) comparison of several intermediate
rewrite steps. These 30 problems are all the problems in the TPTP that belong to one of
two problem categories introduced in section 2. They also appear under various names
in the literature (e.g., [19], [20], [12], [11]). Please consult the TPTP (sub-directory
COL) for the specification of the problems.

Recall that GP starts with a population of combinators generated at random. A combi-
nator is a term composed of the binary function symbol a and combinators (constants)
from the current basis B. For our experiments we adopted the following method for
creating random combinators: When creating a term, we place either the symbol a at
the root with probability p, or a combinator © € B with probability pg. Here, we set
po = 0.5 and pe = 0.5/|B| for all © € B. If symbol a is put at the root, we proceed
recursively for both sub-terms. In case a given maximal depth d,,.. € IN is reached,
where the depth d(u) of a term u is defined by

d(u):{o, ueEBVueV
1+ max({d(v;),d(uq)}), © = alu,us),

we forcefully stop the recursive generation of sub-terms (on the branches of the random
term that account for reaching d,,,.) by setting p, = 0 and pe = 1/|B| for all © € B.
(In [9] further, more elaborate methods for generating random terms are proposed. It
remains to be investigated how those methods affect the outcome of our experiments.)

Table 1: Comparing GP, random search, and OTTER: Of the 30 problems, GP solves
27 problems, whereas 21 problems can be solved by random search, and 14 problems
can be solved by OTTER in the autonomous mode (given the respective limitations of
resources; see text for more information). “

RANDOM GP Proving with GP|| OTTER
Name P ngnp ||G*| R* I min |max auto mode
COL003-1 [0.000004 1,151,291 19| 10 | 200,000 || 11s [427s —
COL004-1 |0.000001 [4,605,168/19 | 18 | 360,000 || 6s |121s —
COLo06-1 0 00 —| — — —_— — —
COL029-1 | 0.12466 35 0|1 1,000 | 6.5s|8.9s <1s
COL030-1 [0.003876| 1186 0] 1 1,000 | 6.1s|8.2s <1s
COLO31-1 [0.000694| 6634 3|1 4,000 | 5.1s]9.1s < 1s
COL032-1 [0.000596| 7725 3| 2 8,000 || 25 |6.3s < 1s
COL033-1 |0.001248| 3688 0|5 5,000 | 3.3s|8.9s < 1s
COL034-1 [0.000004 (1,151,291 (|14 | 15 | 225,000 || 31s |464s 1.2s
COL035-1 [0.000121| 38,057 || 0 | 40| 40,000 | 3.6s|107s 13s
COL0O36-1 [0.000001 4,605,168 15| 49 | 784,000 || 52s |489s 53
'|COL037-1 0 o0 26 |2286,156,000 || 446s | 558s 20s
COL038~-1 0 o0 22129 | 667,000 || 25s |561s —

COL039-1 |0.000446| 10,324 || 4 | 2 | 10,000 3s |148s
COLO41-1 |0.000017| 270,891 (|17 4 | 72,000 | 44s |222s

| COLO042-1 0 00 15| 90 | 1,440,000 35s | 35s —
COL043-1 |0.000001|4,605,168| 23 | 56 |1,344,000 | 292s |581s —
C0L044-1 0 o0 241 3 75,000 35s |211s 14s
COL0O46-1 0 o® 191 11 | 220,000 || 68s [551s —
COL049-1 [0.000014] 328,939 || 0 [113] 113,000 || 13s [400s < 1s
'COLO57-1 0 o0 20 1228(4,788,000 || 563s | 563s 5.3s

COL060-17]0.000082| 56,159 || 9 | 1 10,000 ||< 1s|5.3s
COLO61-1*0.000116| 39,698 | 7 8,000 | < 1s|4.8s
COL062-1* [0.000008) 575,644 (|15| 4 | 64,000 | 7.4s| 29s
COL063-1*0.000011| 418,650 ||14| 2 | 30,000 | 2.6s | 26s
COL064-1*|0.000002 2,302,583 15| 20 | 320,000 | 20s |109s
COL065~1*0.000001 /4,605,168 || 7 | 90 | 720,000 | 13s |311s
COLO66-1 [0.000014| 328,939 (121 3 | 66,000 | 3.3s] 38s
COLO67-1 0 o) — | — — — | —
COLO72-1 0 00 —| — — — | —

—

SSOOOOOOO@#ka\IQOOOOOOOCﬁOOODOOOSCO‘OJX
A
—
wn

10 4 EXPERIMENTS

For our experiments we used d,.; = 10. This is the depth limit for random combina-
tors. For combinators produced via crossover, we restricted the depth to Dy, = 17.
Offspring exceeding D,,q. is discarded. (Note that these depth restrictions are only
motivated by practical considerations. Large combinators are very likely to be more
time consuming during fitness evaluations, but the gains of admitting very large com-
binators might be very marginal. So, depth restrictions must be viewed as an attempt
to attain a reasonable cost-benefit ratio.) Furthermore, we set the “minimal structure
requirement” l,;, = 10, the “survival rate” r = 30%, and the number of “Intermedi-
ate rewrite steps” n = 20 which implies that [R(u)| < 20 for all v € Term(F,V).2
The setting of these parameters were in parts inspired by [9] and by our own prelim-
inary (non-conclusive) experiments. These parameters were so far not subjected to
systematic studies and are hence in no sense optimal, but appear to be appropriate.

Besides these control parameters and fitness-related parameters, the success of GP
largely depends on the size M of the population. Usually, the bigger M is, the better
are the chances of success. However, in practice we have to find a compromise between
a large population and acceptable computation time: Unlike in nature, on most com-
puters the fitness of individuals is computed sequentially which accounts for the lion’s
share of computation effort. (All other computations involved in GP are practically
negligible.) We therefore decided on a size M = 1000 that is pretty common for GP.

A run of GP—which consists of creating an initial random generation (population)
commonly referred to as generation 0, and then successively producing successor gener-
ations 1, 2, ... by applying truncate selection and crossover (after assessing fitness)—is
terminated as soon as a generation satisfies a given success predicate. Here, the success
predicate is satisfied if a generation contains a combinator © that solves the problem
at hand which is equivalent to © having fitness $(0) = 0. (In case we are interested in
finding combinators that do not exceed a given maximal length L,,,, we can use the
success predicate ®(0) = 0A L(O) < L) GP also terminates if generation Gnq is
reached.

When trying to solve a problem with GP, it has proven useful to make several shorter
runs (with a relatively small G,,4;) instead of one long run (cp. [9]). In order to decide
on a suitable value for G, we employ a method introduced in [9]. The hub of this
method is to perform numerous runs of GP for a given problem. In each run the ordinal
of the generation that satisfied the success predicate is recorded (unless of course the
run terminated on account of exceeding a given G,.,). The data collected this way can
be utilized to (empirically) determine probabilities P(M,1) to succeed no later than
by generation ¢ when using a population of size M. (All other parameters derive from
context.) This method is of course only a means for a posterior: analyses that is of
no immediate use for a novel problem, but it is useful for detecting general tendencies
and for conducting empirical studies.

In order to determine P(M, 1) here for a given problem, we ran GP 100 times. During
each of these 100 runs, as soon as a generation satisfied the success predicate, the
number of this generation was recorded. Otherwise GP stopped after reaching genera-

2We have |R(u)| < 20 if w can be rewritten to a normal form in less than 20 rewrite steps (using
leftmost /outermost reduction).

11

tion 50 (thus having processed 51 generations because of generation 0). With this data,
P(M,1) can be determined for the problem at hand. Since P(M,1) is the probability
to succeed by generation ¢,

z=1-(1-P(M,i)~?

is the probability to succeed at least once by generation ¢ in R € IN (independent) runs.
That is, if we run GP R times with G,,., = ¢, we shall have at least one generation
satisfying the success predicate in one of these runs with probability z. In order to
assess the difficulty of a problem for GP, we want to know how many runs R = R(z,1)
of GP with G,,.. = 7 we have to execute so that a given success probability z is
achieved. (All other parameters are kept fixed.) R(z,1) is given by

L, P(M, i)=0
R(z,4) =< 1, P(M,i) =1
log(l—2z i
[ﬁm’%ﬂ , otherwise.

(The symbol ‘L’ represents “undefined”.) The number of individuals that have to be
processed during R(z,?) runs with G,,., = ¢ and a population of size M is

I(M,i,z) = R(z,3) - M - (i + 1)

(Note that—for our parameter setting, in particular r = 30%—300 of the 1000 individ-
uals of a generation ¢ > 0 are simply copied from generation 7z — 1 and do not require
their fitness to be (re-) computed.)

Following [9], we set z = 0.99. Then, for each problem, if there is a 0 <7 < 50 so that
P(M,%) > 0 (i.e., GP could solve the problem at least once during the 100 runs), we
can identify a 0 < G* < 50 and an associated R* = R(z, G*) so that

I'=I(MG,z)=R"-M-(G*+1)

is minimal.

For each of the 30 problems of CL the values for G*, R* and I* are listed in table 1
in the correspondingly labeled columns. (An entry ‘—’ indicates that P(M,1) = 0 for
all 0 <17 < 50. That is, GP did not succeed in any of the 100 runs.) As an example,
consider problem COL041-1 (cf. table 1). There, we have G* = 17 and R* = 4 which
signifies that—according to our empirical data—4 runs of GP, each run not going
beyond generation 17, will produce at least one successful individual with a probability

of 0.99 when using a population of size 1000. In doing so, I* = 4-(17+1)-1000 = 72, 000
individuals will be processed (at most).

This empirical study resulting in a measure I* of the difficulty for GP to solve the
respective problem can be utilized to counter a frequent criticism of GP, namely to be
just a costly disguise for pure random search. Although Koza in [9] invalidates this
criticism at least by presenting ample experimental evidence that, as a matter of fact,
random search is no match for GP, we nevertheless conducted a number of experiments
displayed by table 1 that allow for comparing random search with GP with respect to
our application of GP.

12 4 EXPERIMENTS

We examined random search as follows: For each of the 30 problems we (empirically)
determined thé probability p to encounter a combinator © with ®(©) = 0 by generating
10® random combinators and using the relative frequency of combinators © satisfying
®(©) = 0 as p. These random combinators, were produced using the same algorithm
that was also employed to produce the random combinators of the initial population
for GP.% Based on p, the number n(z) of random combinators that have to be generated
in order to find at least one combinator © satisfying ®(©) = 0 with probability z is
(analogous to R(z,%)) given by

_L’ p o O
n(z) =< 1, p=1
log(1l—2z .
(ﬁ%r_;ﬂ , otherwise.

For each problem, table 1 shows p and ngyp = n(0.99). A comparison of ngyp and I*
in table 1 reveals that random search can keep up with GP only for the simplest
problems (e.g., COL029-1,...,C0L033-1) which GP also often solves best merely by
generating a random generation 0 a few times. (Note that GP processes a number of
individuals that is a multiple of M = 1000.) For all other problems, I* is significantly
smaller than ngyp. Also, GP can solve some problems with a rather small I'* (e.g.,
COL044-1 or COL046-1) where random search did not find a single combinator solving
the respective problem among 10° random combinators.* All in all, 27 of the 30 prob-
lems can be solved by GP, whereas only 21 problems (a subset of the 27 problems) can
be solved by random search.

Thus, the above stated criticism is also not valid for this application of GP. As a
matter of fact, the results obtained with GP encouraged us to make a rather daring
experiment in that we compared the run-times of a GP-based prover (GPP) with a
powerful “standard” theorem prover, namely OTTER. GPP simply repeats running GP
until generation G, = 25, and it stops this iteration as soon as the success predicate
is satisfied. (Gmer = 25 is inspired by the experimental results of table 1.) Besides
such a successful halt, GPP can also time out. The time-out T was set to 600 seconds.

Hence, a run of GPP comprises several runs of GP (using G = 25), and it stops on
account of a satisfied success predicate or if it exceeds T'. Since GPP is subject to random
effects, we did 10 runs with GPP in order to obtain more reliable data. In table 1, the
columns labeled ‘min’ and ‘max’ list the minimal and maximal time (CPU time in
seconds) required by GPP to succeed regarding the 10 runs. Column ‘X’ shows how
many of the 10 runs were terminated by a time-out. Under the given conditions, GPP
solves 27 problems in at least one of the 10 runs. (Note that one of the problems that
cannot be solved, namely COL067-1, is labeled as an “open problem” in the TPTP.)

3Note that we limit the depth of combinators to dpq, = 10 for random search as well as in the
initial population of GP, whereas combinators of depth D,,,, = 17 may be produced via crossover.
This does not put random search at a disadvantage: All the combinators found by GP well fit within
the dpor restriction. GP can make use of the bigger D,y o4 to create “intermediate” larger combinators
that play a role in the evolutionary process (cp. [9]).

*We picked the number 10° somewhat arbitrarily, but we think it is adequate for our purposes here.
Genmnerating more random combinators might help to find a random combinator where none could be
found before, but this will not significantly distort the observed trend.

13

We employed OTTER in its “autonomous mode” ([13]) where it uses built-in strategies
for recognizing probléem domains and choosing appropriate parameter settings. Both
OTTER and GPP are implemented in C and were run on a SPARCstation 10. The
time-out 7" = 600 seconds was also imposed on OTTER resulting in an entry ‘—’ in
table 1 (last column).

The results of OTTER, which—in the autonomous mode—solves merely 14 problems
that GPP can also cope with, show that these 30 problems of CL comprise several
hard problems that cannot be handled reasonably by a theorem prover with standard
or automated parameter settings. (This is in spite of the fact that the designers of
OTTER have extensive experience with problems of CL.) Of course OTTER can prove
some more of these 30 problems if the parameters are set appropriately for each problem
by a user who is ezperienced in working with OTTER (cp. [11]). GPP, however, tackled
all problems with the same parameter setting. We believe that an automated theorem
prover (such as OTTER) is hardly capable of achieving a success rate comparable to that
of GPP, and if it is, then it is not without significant (and mostly laborious and time-
consuming) intervention on the parts of a user. Furthermore, even if a theorem prover
is faster than GPP (at least for certain problems, as it is the case for OTTER in particular
in connection with problems COLO36-1, COL037-1, COL044-1, and COLO57~-1), we must
not forget the enormous potential for massive parallelization inherent to GP. Instead of
computing the fitness of individuals sequentially (as it is done in our implementation),
it is literally natural to perform these computations in parallel so that the maximum of
these computation times rather than their sum adds to the overall computation time.
Then, overall computation time becomes less sensitive to an increasing population size
(assuming a suitable hardware architecture) which entails salient speed-ups (e.g., [6]).
Also note that GP requires much less memory. Memory requirement naturally depends
on the population size M. With M = 1000, GP needs less than 1 MB, which is a value
no theorem prover can work with reasonably.

We do not want to deny that GPP also has unpleasant properties. Since random effects
play a (vital) role in GP, sometimes GPP succeeds very fast, sometimes it takes longer,
and sometimes it even times out. But this indeterminism may also be regarded as
a benefit: While a user of a standard theorem prover has to sit down and think of
alternative parameter settings if his system failed when using a particular setting, for
GPP it makes sense to simply “try again”—one might get lucky next time.

And just to add another argument to the role of luck in answering open questions, we
indeed can now answer a question posed in [19] regarding problem COL004-1 (named
‘Problem 4’ in [19]). Problem COL004-1 is concerned with the question whether there
is a combinator composed of combinators from B = {S, K'} that satisfies the equation
for U given by Uzy = y(zzy). In [19], the shortest known combinator has length 13,
and the question was whether there is a shorter combinator. During our experiments
we encountered combinators of length 10, 11, and 12:

S(S(K(S(SKS))NSKS) S(S(K(S(SKS))SK(KK))

S(KS)S(S(KS)(SK))(SKS)

14 5 DISCUSSION

5 Discussion

The idea of applying processes governed by random influences to a theoretically well-
founded field such as automated reasoning appears strange, even absurd.. Yet, making
an automated reasoning system actually work heavily depends on procedures that
elude a rigorous theoretical study. The (practical) value of procedures such as the
eminently important and omnipresent search-guiding heuristics can only be assessed
via empirical studies. Dealing efficiently with the general undecidability of problems
related to automated reasoning also led researchers to test approaches that seemed
ludicrous, but turned out practical (e.g., [7]). Such approaches should not be precluded
without a closer investigation just because they are—at the moment—not as amenable
to a thorough theoretical examination as other (possibly less beneficial) approaches
are.

The application of genetic programming to solving problems of combinatory logic is
an attempt to model the ability of mathematicians to suggest—based on intuition
and experience—appropriate expressions to be substituted for existentially quantified
variables so as to significantly simplify the problem at hand. The fact that genetic
programming basically realizes intuition and experience with randomness and evolution
seems odd, but it suits the computer, and our experimental results clearly speak in
favor of this approach. Although we only implemented a very basic version of genetic
programming (for extensions and refinements see, e.g., [10], [15]), our results are very
encouraging. The success rate of our approach is remarkable even though we employed
one fixed parameter setting. Further experiments have to show whether modifications
of these settings can bring improvements in particular with respect to the problems
not handled to our complete satisfaction.

Furthermore, it might be worthwhile investigating the applicability of this approach
to inductive theorem proving, where existential quantifications pose even more serious
problems (e.g., [2]).

Finally, we applied genetic programming to a very limited domain of automated reason-
ing in order to show that genetic programming can simulate to some extent a likewise
limited but nonetheless important capability of mathematicians. After replacing exis-
tentially quantified variables, the problems became “almost decidable” which is here
crucial for an efficient and sensible fitness evaluation required by genetic programming.
It remains to be investigated how genetic programming can be applied more univer-
sally to a broader range of problems from automated reasoning. That is, the question is
whether genetic programming or the general genetic algorithm can also in the context
of automated reasoning be fully used as what it actually is, namely an alternative and
powerful search method.

REFERENCES 15

References

1]

2]

[4]

[5]

9]
[10]
[11]
[12]
[13]
[14]

[15]

Barendregt, H.P.: The Lambda Calculus: Its. Syntar and Semantics, North-
Holland, Amsterdam, 1981.

Biundo, S.: Automated Synthesis of Recursive Algorithms as a Theorem Prov-
ing Tool, Proc. 8" European Conference on AI (ECAI-88), Munich, GER, 1988,
pPp- 553-558.

Curry, H.B.; Feys, R.: Combinatory Logic, North-Holland, Amsterdam, 1958.

Denzinger, J.; Fuchs, M.: Goal oriented equational theorem proving using
teamwork, Proc. 18" German Conference on Al (KI-94), Saarbriicken, GER, 1994,
LNAT 861, pp. 343-354.

De Jong, K.: Learning with Genetic Algorithms: An Overview, Machine Learn-
ing 3:121-138, 1988.

Dracopoulos, D.C.; Kent, S.: Speeding up Genetic Programming: A Parallel
BSP Implementation, Proc. 1% International Conference on Genetic Programming
(GP-96), Stanford University, CA, USA, 1996, p. 421.

Ertel, W.: Random Competition: A Svmple, but Efficient Method for Paral-
lelizing Inference Systems, Techn. Report TUM-19050, Technical University of
Munich, 1990.

Holland, J.H.: Adaptation in natural and artificial systems, Ann Arbor: Uan
of Michigan Press, 2" edition, 1992.

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA | 1992.

Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Pro-
grams, MIT Press, Cambridge, MA, 1994.

Lusk, E.; McCune, W.: Uniform Strategies: The CADE-11 Theorem Proving
Contest, Journal of Automated Reasoning 11, 1993.

Lusk, E.; Wos, L.: Benchmark Problems in Which Equality Plays the Major
Role, CADE-11, Saratoga Springs, NY, USA, 1992, LNAT 607, pp. 781-785.

McCune, W.: OTTER 3.0 Reference Manual and Guide, Techn. Report ANL-
94/6, Argonne Natl. Laboratory, 1994.

McCune, W.; Wos, L.: A Case Study in Automated Theorem Proving: Finding
Sages in Combinatory Logic, Journal of Automated Reasoning 3, 1987, pp. 91-107.

Niwa, T.; Iba, H.: Distributed Genetic Programming: Empirical Study and
Analysis, Proc. 1°* International Conference on Genetic Programming (GP-96),
Stanford University, CA, USA, 1996, pp. 339-344.

16 REFERENCES

[16] O’Donnell, M.J.: Computing in Systems Described by Equations, LNCS 58,
Springer-Verlag, 1977.

[17) Smullyan, R.: To Mock a Mockingbird, A. Knopf, New York, 1985.

[18] Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library, Proc.
CADE-12, Nancy, FRA, 1994, LNAI 814, pp. 252-266.

[19] Wos, L.; McCune, W.: Challenge Problems Focusing on Equality and Combina-
tory Logic: Fvaluating Automated Theorem-Proving Programs, CADE-9, Argonne,
IL, USA, 1988, LNCS 310, pp. 714-729.

[20] Wos, L.; Winker, S.; McCune, W.; Overbeek, R., Lusk, E.; Stevens, R.:
Automated Reasoning Contributes to Mathematics and Logic, CADE-10, Kaisers-
lautern, GER, 1990, LNAI 449, pp. 485-499.

	BB_0006.jpg

