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Synthesis of  Object Models
from Partial Models

Marco Alberti
Dipartimento di  Ingegneria, Universitä degli Studi di  Ferrara

Via Saragat, 1 - 44100 Ferrara (Italy)
telephone: +39 0532 974894 - email: malberti@ing.unife.it

1 Introduction

Model-based Object Recognition is one of the key problems in  Computer Vision.
One of  the most widely accepted definitions of  the problem is:

“Given a model of  an object, and data in which the object may be present,
discover whether, and where, the object is present in  the data”.

This definition assumes the model itself of the object as part of the data of the
problem. In  those cases in which, for some reason, the availability of the model is
not easy to achieve, an automatic model construction procedure might be useful.

In  practical cases, the representation of model of the object to be recognized
is strongly dependent on the nature of data used for recognition. For example,
for visual search in range images a representation of objects in terms of  surfaces
and relations among them is often the most suitable. Most of  the automatic model
construction methods proposed in  literature are designed to fit a particular class of
models [6,  7].

In  this paper an approach to automatic model construction is presented which
makes extensive use of the Constraint Satisfaction Problems paradigm, exploiting
its generality to achieve a wider range of  applicability. In fact, the concepts the
work is based upon are not even intrinsically linked to Computer Vision: no strict
assumptions have been made about the nature of the primitives used to describe
the models, and the relationships among them.

This is made possible by assuming the data of the model construction problem
to be descriptions of  parts of the object, of the same nature of that of the resulting



complete model, which is built by a synthesis process. With this assumption, it  is
possible to treat the primitives used for model description as parameters, so they
do not affect the algorithms here proposed directly. In  other words, the problem
here formulated and, to some extent, solved, is that of building the model of an
object abstracting from the peculiar features of its representation.

The partial models (in the following, views) are expressed as CSPs. This
choice allows for very general and flexible representations, which can take advan-
tage of  the extensive research work on CSPs of the recent years (also applied to
Computer Vision: see, for instance, [5]). The resulting model is, as well, a CSP,
obtained by establishing a correspondence between its elements and the views’
elements, so to  maintain the relations among elements.

The model synthesis problem is, itself, stated as a CSP.
For the problem solution, two algorithms have been implemented, and tested

in a common problem in Computer Vision.
This paper is meant to only give a quick survey of the approach: further details

can be found in  [3].

2 Problem representation
To achieve higher generality, the concepts involved in the problem formulation are
defined at the highest possible level of abstraction, avoiding mentioning a priori
hypotheses about the kind of  primitives chosen for the model representation.

2.1 (partial) Model  representation
A (partial) object model is defined as composed by:

e Elements: a finite set o f  entities which are considered atomic at  the chosen
level of  abstraction; ;

® Attributes: meant to represent features of  n-ples of  elements, attributes
are functions which have an n-ple of elements as argument and an m-
dimensional vector of values (where m is the dimension of the attribute).
Value’s components are bounded open intervals in  R for real attributes (so
to take into account possible representation/measurement errors) and ele-
ments of  a discrete set for discrete attributes.



e Relations: describing relations among elements, relations are defined in the
usual mathematical ways, i.e., an n-ary relation is a subset of E™, if  E is the
elements set.

Given such representation, it  is straightforward to express the model as a CSP,
where E is the set of  variables, A and R define constraints respectively over and
among elements of  E .

2.2 Labeling
A labeling function defines the correspondence between a view of  an object and
a (complete) model. For any given element of a view the value of a labeling
function is the correspondent element of the model.

Among the possible labeling functions, the only relevant for the purposes here
considered are those which do not  raise contraddictions in the model: for example,
if the views’ elements are surfaces, two elements having different values of the
unary shape attribute (say, triangle and square) cannot be labeled with the same
model element.

Having the notions of  compatibility for attributes and relations been defined,
it is possible to define a compatible labeling as a labeling of a view’s elements
with model elements such that all attributes’ values and relations of the view’s
elements and of  the labeling’s image are compatible.

If  there exists a compatible labeling of a given view with a given model, the
view is said to be a view of  the model.

Notice that compatibility constraints imply that only view-invariant attributes
and relations can be used for views and model descriptions.

2.3 Problem statement and solutions
The problem considered here can thus be stated as:

“Given a set of  views of  an object, find a model such that all of  the views are
view of  the model”.

In  the following, we will  refer to this as a model synthesis problem.
A solution to the problem is defined by both the model and the labeling func-

tions for the views.
For any model synthesis problem, there is at least one trivial solution, obtained

by the juxtaposition of the views. This is achieved by constructing a model such



that each element of  each view is labeled with a distinguished element of the
model. Obviously, this solution is of  no use (and no interest).

It makes more sense to search for solutions by performing a better synthesis
of views, i.e., by labeling elements of different views with the same element of
the model, keeping the view of relation between the views and the model valid.

The set of all the possible solutions is quite huge for practical problems. How-
. ever, we identify two classes of  especially significant solutions among them: min-

imal solutions, whose model has the minimal cardinality compatible with compat-
ibility constraints; and correct solutions, whose labeling is coherent, i.e., if two
elements of  different views represent the same entity of  the object, then they are
labeled with the same element of the model and vice-versa.

3 Searching for solutions
For solving the synthesis problem, two algorithms have been developed.

The first, implemented in SWI-Prolog [1], is designed to search for minimal
solutions and is based on a standard backtracking approach. For limiting its com-
putational complexity to a tractable size, it  has been necessary to devise a trade-off
which does not guarantee minimality, but has proved satisfactory in  the tests which
have been run.

~The  second, implemented using the CHR [4] library of SICStus Prolog [2],
follows a constraint-based approach, using compatibility constraints to  build the
labeling functions and exploiting a configurable heuristic procedure to guide the
choices. The experimental results of this algorithm (for both correctness of solu-
tions and performance) are heavily influenced by the quality of  the information
available as data.

However, it  is worth to remind that both of the algorithms find actual solutions
of  the synthesis problem: thus, if the set of  views taken as data is representa-
tive enough, all of  the synthesized models are acceptable for Object Recognition
applications.

Acknowledgments
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NUMERATION SYSTEM BASED ON  GENERALIZED
GOLDEN MEAN

Petr Ambroz, Edita Pelantovä
Czech Technical University, Faculty of Nuclear Science and Physical Engineering

Trojanova 13, 120 00 Prague 2, Czech Republic
e-mail: ampyQlinux.fjfi.cvut.cz

This work engage in arithmetic operation in numeration system with ir-
rational base 3 ,  where ß is the cubic golden mean, i.e. real root of  equation
z3 = 22 + z + 1, i t  is approximately 1.8392. Arithmetic with irrational base
B > 1 yields interesting phenomenons, which cannot be observed in usual
systems with natural base.

Basic term, which we will be working with, is the ß-expansion. A ß-
expansion of  a number x > 0 is its representation in the form of  an infinite
sequence x = Txf* + Tx_185 1+... + 218+ zo + x_18~1  + . . . ,  which can be
computed by the greedy algorithm. Coeficients in  the B-expansion obtained by
the greedy algorithm are integers from the set A = {0 ,1 , . . . , [ f ] } .  Real num-
bers having a zero fractional part in their 3-expansion are called S-integers.
The set of  all S-integers is denoted by  Zg.

Except from ordinary S-expansion, we define for number 1 one more rep-
resentation in powers of 8 — the so called Rényi development of  number 1
[RN]. This expansion significantly influences properties of the set Zg — while
for BEN, 8 > 2, Zg is equal to the set of  all integers Z ,  for 8 ¢ N are sets Zg
and Z different.

If  we inspect the distances between neighbours in  the set Zg, we will find out
that for most values of 3 the set {x  | x is distance between nighbours in Zg}
is infinite. Values of 8 having finite set of distances between neighbours in
Zg are called “f-numbers”. A 8 € R,ß > 1 is a S-number if and only if its
Rényi’s development of  1 is eventually periodic. Every S-number is an algebraic
integer.

There is another difference between natural andirrational base: in  a system
with natural base every combination of admissible digis forms a S-expansion,
whereas for the case of irrational base there are substrings which are not al-
lowed to appear in any S-expansion. These forbidden combinations of  digits
can be simply characterized just by means of Rényi’s development of 1.

The most studied “S-number” is the golden mean 7 = LYE Properties of
Z,  are well described because Z,  can be equivalently defined by projection of
points of Z? lying between two parallel lines with slope 7 .  The coeficients in  a



T-expansion of arbitrary z > 0 are 0 and 1; substring 11 is forbidden. There are
two possible distances between neighbours in the set Z, :  A=1 and B = 1/7,
moreover the infinite sequence of distances in Z,  can be simply generated by
substitution rules A — AB,  B — A,  starting from A .

In contrary to Z ,  the set Zg  for 8 ¢ N is not closed under addition, sub-
traction and multiplication, the result of  these operations does not even need
to have finite number of  fractional digits. It is still open problem to describe
the set of all numbers 8,  for which the result of addition, subtraction and
multiplication of every pair of S-integers is finite. In [FS] it is shown that
the greatest real root of  the equation y"  = a,_1y™! + . . .  + a1y  + ao, where
Gp-1  > An-2 2 . . .  2 a1 > ag > 1 belongs among these 5. The golden mean as
well as the cubic golden mean are roots of equations of this type.

When we perform arithmetic operations in these numeration systems by
computer, we will need to know how much memory i t  will take to store the
result, i.e. the maximal number of fractional digits that can arise. For addition
and multiplication we denote these maxima by Lg(8) and Lg(5) respectively.

Values Lg(8), Lo(B) are known for some quadratic irrationalities [GMP]:

Le(B) Lo(B) |B
1 1 B root of 22 = mz — 1, where m € N
2 2 ß root of 2 = mz + 1, where m EN

2m B root of 22  = mz  +m,  where m EN
[ 2 ]  B root of 22 = mz +n ,  where m,n EN, m > n

The aim of this work is to describe the set Zg for 8 — cubic golden mean
and to find out values of Lg(8), Le(B). From now on the symbol 8 will stand
for the cubic golden mean.

First of  all we will mention some properties of S-integers. Digits in the ß-
expansion of an arbitrary number are 0 and 1, the forbidden substring of digits
is 111. That is why a real number z is a S-integer if  and only if  its absolute value
|z| can be written in  the form |z| = 779 a:b’, where ag, a3, . . .  , a,  € {0,1} and
the product a;a;410;4+2 = 0 for Vi  = 0 ,1 , . . .  , n  — 2. Several smallest elements
of the set Zg are drawn on the Figure 1.

The distances between neighbouring elements of the set Zz take only three
values: A = 1, B = 8 -1 ,  C = 1/8. The sequence of gaps in Zg can be
interpreted as an infinite word in the alphabet {A,  B ,C } .  It is interesting to
mention that this word is invariant under substitution

A— AB B— AC CH A



B A A B A C A B A A B

Figure 1: Several elements of the set Zg

An example which shows that Zg is not closed under addition is the 8
expansion of  2 =1  +1  = 10.001.

We have investigated two methods to obtain the upper bounds for Lg(8)
and Lg (8). Because 6? = 42+  f +  1, we can write also 6* = 282 +26 +1  and
similarly an arbitrary power 6*  can be represented in the form

id  = Fp? + GiB + Hy, where Fy ,Gy ,H ;  € Z .  (1)

It means, that an arbitrary S-integer can be written as an integer combination
of 1, 8, and ß?, thus

Zs C Z[ f ) :={a+b8+ch*  | a ,bceZ} .  (2)

Z[6] is a ring, because it is closed under addition and multiplication. Since
Z[f] is dense in  R, we have Zg G Z[S). Let us note that Z[5] can be obtained
by the projection of the lattice Z3 on a properly chosen straight line in  R3.

We denote the other roots of equation 2°  = 2 +z  +1  by 8’  and 8". They
are in modulus less than 1 and A’ = 8". The mapping y = a + bß + cf? —
y '=  a+  b f  + cB”? for a,b,c € Q is the isomorphism between the fileds Q{3]
and Q[0’].

For obtaining the upper bound on Lg  and Lg, the following statement was
crucial:

Theorem 1 .  I f x € Zg, then

1

ZA ®)
Let z,y € Zg be S-integers, such that z+  y > 0 and let us define z :=

max{w € Zg | w < = + y} .  Since the biggest gap in Zg is 1, we may rewrite
x+y  = z+  r ,  where r (the fractional part of  the result of  x + y) satisfies

r € Z[B], 0 < r  < 1. We have r = z + y — z and thus according to Theorem 1,
Im) = lz’ +y '  — Z| < | |  + [ |  + | ]  < 3h.

Note that the set R :=  { r  =a+b8+cf? | a,b,c € Z ,0<  r < 1, |r'| < 3h}
is finite. Explicit listing shows that the S-expansion of any r € R has no more
than six fractional digits.

|z'| < h :=
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The elements of R are only candidates for the fractional part of a sum
on Zg. We obtain the estimate Lg  < 6. Similar method was used to get the
estimate Lo  < 6.

In order to  explain the second method of  estimation, we have to  point out
the properties of the sequence (F,)$° defined by equation (1). It is easy to see
that Fy  = F = 0 ,  FR  = 1 and F i s  = Frio + Fry + Fy  for any  k=  0 ,1 ,2 , . . . .

Numbers Fj. are sometimes called Tribonacci numbers. Every natural number
m can be expressed as a combination of  Tribonacci numbers m = Soha a;F;,
where a; € {0,1} and the product a;a;+10;+2 = 0 for Vi = 3,4,. . .  ,n— 2. This
fact enables us to  prove another important theorem:

Theorem 2 .  For any u € Z[ß] there exist z € Ze, K ,L  € Z such that u =
z+  K+  LS.

In  particular, any sum of  B-integers x ,  y can be written as z+y = z+ K+L§.
Using the isomorphism mapping and Theorem 1 one obtains the relation

IK  + LB8'| = |z' +y' — Z|  < 3h. (4)

Again, the set of K + Lf  satisfying (4) is finite. This implies that there
exists a finite set F'  such that Zg+Zg  C Zg+F ,  i.e. Zg+Zs can be covered by
a finite number of  shifted copies of  Zg. Inspecting the 3-expansions of  elements
in F,  we have deduced Lg  < 8 and similarly Ly  < 8. We conclude that the
first method provides better estimate on Lg  and Lo.

In order to obtain the lower bounds on Lg  and Lg  it is sufficient to find
suitable sum/product of S-integers. For example

1001011010+1001011011=10100100100.10101
110100100101101%110100100101101=110010001000100001001001011011.0011

We can conclude

5<  Lg <6, 4< Ly  <6.

Note that both methods of  upper estimation can be used for an arbitrary
Pisot number ß, i.e. an algebraic integer with Galois conjugates in modulus
less than 1.
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Mechanizing proofs in Homological Algebra*

J.  Aransay! C.  Ballarin? J.  Rubio!

Abstract

In recent years, there has been an increasing interest in Symbolic
Computation in Homological Algebra and Algebraic Topology. An  es-
sential tool for the design of algorithms in this field is known as Basic
Perturbation Lemma (or BPL, in  short). We report here on our project
of constructing a mechanized proof of the BPL, by means of the Isabelle
tactical theorem prover.

1 Introduction

Kenzo [2] is a software system, written under the direction of Sergeraert,
for Symbolic Computation in Algebraic Topology and Homological Algebra.
Kenzo has a great computational power that has allowed to  obtain some results
(specifically, homology groups) which had never been determined before, using
neither theoretical nor computational methods. The basis for this success is
the intensive use of functional programming techniques, which enable in par-
ticular to  encode and handle at  runtime the infinite data structures appearing
in the algorithms in Algebraic Topology (see [8, 9]).

In order to  increase the reliability of the system, a project was undertaken
to  formally analyze fragments of  the program (see some first results related to
algebraic specification of data structures in [4]). As a part of this more general
plan, we search for certified versions of  some crucial fragments of  the program.

*Partially supported by  DGES PB98-1621-C02-01
tDepartamento de Mateméticas y Computacién. Universidad de La Rioja.

Edificio Vives. Calle Luis de Ulloa s/n. 26004 Logrofio (La Rioja, Spain).
{jesus-maria.aransay, julio.rubio}@dmc.unirioja.es

Institut für Informatik. Technische Universitit München. 80290 München (Germany).
ballarin@in.tum.de
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Due to the importance of functional programming, the tactical theorem prover
Isabelle [7, 6] was chosen as a tool to  mechanize our approach. As a first task,
we focus on the Basic Perturbation Lemma, a result from homological algebra
which is presented in the following section, and more exactly, on a previous
lemma presented in section 4, an important step in the way to a full proof of
the BPL (for fundamentals on homological algebra see, for instance, [8]).

2 The Basic Perturbation Lemma

Definition 2.1. A reduction Dx => Cx between two chain complexes is a triple
( f , g , h )  where: (a) The components f and g are chain complex morphisms
f f :  Dx — Cx and g : Cx — Dx; (b) The component h is a homotopy
operator h : Dx  — Dx  (degree 1); (c) The following relations are satisfied: (1)
fg  =idg,; (2) g f  + dp.h + hdp, =idp,; (3) fh  =0 ;  (4) hg = 0; (5) hh = 0.

Definition 2.2. Let Dx be a chain complex. A perturbation of the differential
dp, is a morphism of graded modules dp, : Dx — Dx such that dp, + dp, is a
differential for the underlying graded module of  Dx .  A perturbation dp, of  dp,
satisfies the nilpotency condition with respect to a reduction (f,  g,h) : Dx =
Cx if the composition ép, © h is pointwise nilpotent, that is, (6p, o h)*(z) = 0
for an n € N depending on z.

Theorem 2.3. Basic Perturbation Lemma — Let ( f ,g,h)  : Dx = Cx be a
chain complex reduction and ép, : Dx  — Dx  a perturbation of  the differential
dp, satisfying the nilpotency condition. Then a new reduction (f ',g',h') :
D j  = C can be obtained where the underlying graded modules of Dx and D/,
(resp. Cx and Cj) are the same, but the differentials are perturbed: dp, =
dp, + 6p,, dc, = dc, + bc,, and bc, = fddp.g; f ' = fo; ¢ = (1 — hedp,)g;
h' = ho, where ¢ = 3 oon (—1)!(dp. oh ) .

Since the statement of the BPL in  modern terms [1], plenty of proofs have
been described in  the literature. We are interested in  a proof due to  Sergeraert
[8]. This proof is separated in two parts.
Part 1. Let ı be } 2(—1)}(hodp,)’. From the BPL hypothesis, the following
equations are proved: ¢h  = ht; dp,¢ = ¥ép,; ¢ =1—  hép,¢ = 1 — ¢hép, =
1 -  hép,; % =1—  op. he  =1 -  Yop, h =1 -  6p, dh.
Part 2 .  Then, and only by using the previous equations, the BPL conclusion
is proved.



3 Algebraic structures in Isabelle
Isabelle [6] is a theorem prover developed at the University of Cambridge which
provides a tool to interactive proof, specification and verification in higher-
order logic. Our main initial interest is to formalize in Isabelle mathematical
structures such as chain complexes and morphisms. Since the algebraic struc-
tures that appear in the proof of  the BPL are quite involved, we first focus on
an  elementary example: semigroups.

The formalization is based on the work by Naraschewski and Wenzel [5],
where signatures are record types. The implementation of  structures in  Kenzo
was made also trough records with functional fields. In the particular case of
semigroups, we start with the following type definition.

record ’ a  semigroup = " ’ a  carrier"
+ prod : :  " ’ a  => ’ a  => ’ a "

This gives only the signature of  the semigroup. In order to  include the azioms
for semigroups, we specify a predicate which is true on the records of type
semigroup on which the axioms of a real semigroup hold. It is done in the
following Isabelle definition.

constdefs
semigroup : :  "\<lparr>carrier : :  ’ a  se t ,

prod : :  ’ a  \<Rightarrow> ’ a  \<Rightarrow> ’ a ,
\<dots> : :  ’b\<rparr> \<Rightarrow> bool"

"semigroup S \<equiv>
\<forall>x \<in> carrier S.
\<forall>y \<in> carrier S.
\<forall>z \<in> carrier S.

prod S (prod S x y)  z = prod S x (prod S y 2 ) "

This specification appropiately restricts the axiom to the carrier set of the
concrete structure. This allows the convenient construction of arbitrary car-
riers: they are not restricted to types on higher order logic. Note that this
construction uses the facility of  dependent sets, which was provided by  Florian
Kammueller [3]. From this basis, it is possible to operate with semigroups in
Isabelle, and for instance to  prove that the cartesian product of  two semigroups
(with the canonical binary operation) is also a semigroup. This kind of results
are necessary, with more complex structures, to mechanize a proof of the BPL.
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4 Mathematical structures for the BPL

An additional benefit of the use of Naraschewski and Wenzel’s perspective to
formalize algebraic structures is that they are easily extensible. This allows
algebraic specification with inheritance. For instance, both the declaration
and the specification of  the structure Group can be constructed from that of
Semigroup, as it is shown in the following Isabelle fragment.

record ’ a  group = " ’ a  semigroup" +
inv : :  " ’ a  \<Rightarrow> ’a"
one : :  ’ a

constdefs
group : :  "\<lparr>carrier : :  ’ a  se t ,

prod : :  ’ a  \<Rightarrow> ’ a  \<Rightarrow> ’ a ,
inv : :  ’ a  \<Rightarrow> ’ a ,  one : :  ‘ a ,
\<dots> : :  ’b\<rparr> \<Rightarrow> bool"

"group G \<equiv> semigroup G \<and>
(\<foral l>x. prod G (inv G x) x = one G) \<and>
(\<foral l>x. prod G (one G) x = x ) "

Then, it is easy to understand how the algebraic structures for the BPL can
be constructed step-by-step. From Group to Abelian Group and from this
to Differential Abelian Group (an abelian group G endowed with a group
homomorphismd : G — G such as dod  = 0). This is “almost” a chain
complex (only the degree information is missing there). We conjecture that
the main parts of the BPL, more concretely, of the second part of Sergeraert’s
proof previously evoked, could be established in this more general setting.

While developing step-by-step the data structures, the constructions on
these structures should be also produced in  a modular (and “extensible”) way.
For instance, the cartesian product construction on semigroups should be ex-
tended to the cartesian product (direct sum) of chain complexes. At that
stage, the first important lemmas to prove the BPL would be stated. Our first
objective would be to prove the following result, an auxiliary lemma to our
foreseen proof of the BPL.

Theorem 4.1. Let Ax and Bx be two chain complexes such that Ax is endowed
with a homotopy operator h (that is, h : Ax — Ax, degree 1, such that:
dach + hdy, = ida, ) .  Then the triple (p2, 12, (h, 0 ) )  : Ax  ® Bx  = By  isa
reduction, where py is the canonical projection and ig the canonical inclusion.
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5 Conclusions

The preliminary studies realized up to the date show that Isabelle can be a
suitable tool to mechanize proofs in a complex application field as construc-
tive homological algebra. The benefits for increasing the reliability of software
systems as Kenzo [2] are quite obvious, if certified versions of  the algorithms
are produced. On the other side, to confront theorem provers with such com-
plicated data structures and processes seems a challenging and fruitful task.
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Motivations
Distance constraints occur in numerous applications, for instance in molecu-
lar conformation problem or in  the optimal design of mecanic systems. These
constraints are often only a subpart of  a more complex constraint system.
The global form of the quadratic equation system to solve is :

where p is the dimension of  the euclidian space, z;* is the k¢ coordinate of i .
point P; and ö;; is the euclidian distance between P; and P;.
More precisely, consider n points of  an euclidian space, for which an approxi-
mation of the euclidian distances between some pairs of points is known. The
coordinates of these points and the distances are bounded by finite values,
that is to say an interval [z,Z]! is associated to each coordinate and each
distance. The aim is to prune the domains of the coordinates to remove in-
consistant values that do not verify distance constraints. Classical filtering
algorithm (eg. 2B-consistency, Box-consistency [12, 11, 6]) usually achieve a
very poor pruning on such constraints. We propose here two specific algo-
rithms to handle distance constraints. The essential point is the introduction
of redundant constraints and a more global filtering.

Before going into the details, let us explain why classical filtering tech-
niques are unable to do this job. Local filtering methods are based on a

1. z (resp. Z) stands for the lower(resp. upper) bound of the domain of variation of z .

1
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relaxation of arc-consistency[1]. The main drawback of these methods comes
from their local processing. Then, the notion of point itself is lost during the
pruning process.

A simple example
Let us consider a quad ABCD where E is the middle of segment CD :
A(0 ,0 ) ,  B (8 ,0 ) ,  C(zc  yc), D (zp , yp ) ,  E (zg , yE )
BC=CE=DE=2  AD=3 ,CD=4 ,  AB=28

D,, = [-20,20], D,, = [-20,20]
Dep = [-20,20], D,, = [-20,20]
D,, = [ -20 ,20 ] ,  D , , = [-20,20]

Then we have the following underconstrained system of  distance constraints:
Ci :  (zc — 8 )  +yc?  = 4
Ca  : (zc - zg) + (ye — ye ) ’  =4
Cs :  (zp — zc )?  + (yp — ve)?  =16

Ca: (ep — 5 ) "  + (yp — yp) = 4
Cs:  zp  +yp?=9
where the unknowns are the coordinates of the points C,  D and E.  Figure 1

FIG. 1 — Comparison of the results for 2B-consistency, $B-consistency and
3B-consistency over triangles with redundant constraints

shows that neither 2B-consistency (external box) nor 3B-consistency (middle
box) are able to achieve a relevant pruning of the domain of E.  The instan-

2



ciation of each coordinate by a value of its domain satisfies the constraints
but no acceptable instanciation of  both coordinates of  FE exists.

A refinement of  the filtering
In distance constraint problems two types of entries can be distinguished:
the domains of the coordinates of the points, for which we want an optimal
filtering and distances relations. These distances relations may not always be
satisfied since all triplet of distances must at least verify triangular inequali-
ties. To ensure this property we can add the following redundant constraints:

a 5 0ij < Gir + j kVi ,  j , k  € [1 . .n ]  i i i  u {  b i  > [din — Oj]

Table 2 shows the results? of the filtering using these redundant constraints
for the precedent example.

21

2B on I 2B on I; | CLOSE-FILTER |.
D,  2,3] [2,3] [2,3]
D,. | [2.23223] | F2.23,2.23] | [-2.23,2.23]
Dep  16,7] [6,7] [6,7]
D,, | FL73173] | F1.731.73] | F1.73,1.73]
D,, [4,5] [4,5] [4,5]

[ _D , .  | [3463.46] | [2.64,2.64] | [2.64,2.64]
CPU time 0.12s 0.12s 0.03s

FIG. 2 — Comparison of  the results for different ezperimentations

A polynomial t ime algorithm for computing a closure
The bound-smoothing algorithm[5], based on Floyd’s shortest path algorithm[14],
provides a second way to  improve the filtering of  distance constraints. This
algorithm computes distance graph closure(see fig. 3). So, we introduce a
filtering procedure to prune coordinates domains each time a distance do-
main is updated by the closure algorithm. The filtering procedure uses the
projection function defined by local filtering methods. The point is that the
worst case complexity of  this algorithm is independant from the size of the
domains. This algorithm achieves a significant filtering but does not ensure
2B-consistency over the whole system.

Introduction of  the barycenter for triangle filtering
The introduction of redundant constraints using triangle isobarycenter im-
proves also the filtering of the domains of the coordinates. The coordinates

2. We used a computer with a bi-processor pentium 1Ghz and a memory of  256Mo

3
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 F1G.  3 — Distance graph of the instance I is closed by the algorithm to gene-
rate a new closed instance Z;.

of the barycenter are defined by a simple linear function of vertices coordi-
nates. The property of  the closure allows us to  introduce an approximation of
the distance between the barycenter and each vertex of  any triangle. So the
following set of constraints is generated for each triangular system P;P;P,:

(za — =)? + (yo — wv)? = §(20% + 26% — 2%)
(xe — ; ) *  + (yo — v;)* = 55  + 26%, — 0

Cit = (x6— 24 )?  + (ya —yr)? = (20% + 20%, — 68)
IG  3 (x; +z ;+  Zi)
vo = s(Wi+yi+ww)

Therefore, a 3B filtering can be performed on each triangle for which the
barycenter constraints have been generated. Note that these constraints add
implicit angular information that may improve the filtering quality in many
cases. However slow convergence cycle may occur in a triangle whereas it not
appears on the initial system. The figure 4 shows that this method provides
a better filtering than usual methods and how it might be costly.

3B on Z 3B on ZI; | 3B on triangles
Dec [2.31,3] [2.31,3] [2.31.3]
Dre [-1.91,1.91] | [=1.91,1.91] | [=1.91,1.91]
D.,  [6,6.81] [6,6.81] [6,6.81]
Dyp [-1.61,1.61] | [-1.61,1.61] | [—1.61,1.61]
D., [4,5] [4,5] [4154.9]
Dye [=2.14,2.14] | [-1.82,1.82] | [-1.76,1.76]

CPU time 1.05s 0.74s 15.08s |

FIG. 4 — A global consistency for the exemple

Further work concerns the integration of these algorithms in the more
general framework introduced in [15].
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1 Introduction

Current Public Key Infrastructures (PKI) are resource consuming and not suitable for
thin clients such as mobile devices. Therefore, our aim is to design and prototype a
PKI based on the concept of proof-carrying certification that can be used efficiently
from a constrained mobile device. From a more theoretical point of view, we are also
interested in  proving the consistency of our system and its validity in terms of security
: we will use a formalism like the r-calculus[1] to formally prove our assumptions.

2 Background
2.1 Lightweight Devices
The lightweight devices have limited processing power, memory, local storage and
speed of network link and are typically mobile devices such as PDAs|[2] and Java
Phones[3]. These mobile devices will be used as part of our test bed.

2.2 Public Key Infrastructure
Asymmetric cryptography[4] uses a matching key pair to secure electronic commerce
transactions. The private key is meant to  be kept secret by its owner, while the public
key needs to  be made available so that any user who wants to use it can find it. The
main problem with this scheme is public key distribution : how can Alice be sure that
she’s using Bob’s public key in order to secure the transaction she’s conducting with
him ? In  other words, how to  bind a public key to a user ? This can be done by  using
a digital certificate[5], a document that is the electronic equivalent of physical proofs
of  identity and that is issued by a trusted authority (certificate authority) and stored
in  a directory. The infrastructure composed by all these entities is called a Public Key
Infrastructure.

The majority of current Public Key Infrastructures (PKIs) are based on X.509[6]
and while this technology is suitable for many existing applications, the limited pro-
cessing power, storage and network connectivity of mobile devices makes full-blown
X.509 unsuitable for most mobile applications. Considering the hierarchical model
of X509, a mobile application must first retrieve a whole chain of digital certificates
(called certification path) and check it to be able to use the certificate she requested.
Then to be sure that none of them has been revoked [7], one may have to check the
revocation status of the certificates.

The most widely used mechanism to check if a certificate has been revoked is
to go through a CRL (Certificate Revocation List), issued by a certificate authority.
However, this data can get very large (several megabytes) and therefore, downloading,
validating and using a CRL on a small mobile device with constrained bandwidth can
be problematic.

In  a nutshell, the amount of network traffic and latency, and the number of cryp-
tographic operations required to check the validity of a certificate within an X509
infrastructure makes X509 unsuitable for small devices.
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2.3 Proof Carrying Authentication
This approach developed by  Appel and Felten [8] is based on the work carried out by
Georges Necula on Proof Carrying Code[9]. The idea is to  use a distributed framework
based on higher order logic to  provide authentication techniques. Alice wants to  have
access to some resource on a server owned by Bob. To do so, she will construct a
request using a language based on higher order logics and submit it to Bob who will
decide whether or not he will grant her access to  the resource. Considering that logics
with quantification over predicates tend to  be undecidable, a formal proof needs to  be
attached to the statement sent to  Bob, so that he can verify that Alice has the rights
to access the resource by using a proof checker.

The advantage of  this approach is that all the burden of  proving the access control
is left to the client, i.e the client must construct a proof and the server needs only to
check this proof. An application of that theory was developed in {10] to provide access
control to  some web pages.

The same kind of  approach can be applied to our problem. Our strategy aims at
delegating as much processing as possible on a server. Therefore, the server would
produce a proof that the thin client would have to formally check.

3 Our Approach

3 .1  Description
The main objective of the Public Key Infrastructure we are designing is to leave the
mobile device with a minimum number of  actions to  perform. The two main tasks the
lightweight device will have to carry out are :

e Performing Cryptographic operations (digital signature/validation, encryption/decryption)
e Retrieving Certificates and validating them
Some cryptographic operations can be very resource consuming. For example,

operations such as prime number generation used for key generation in RSA[11] or
random number generation can slow down a program. Therefore, our aim is to speed
them up  as much as possible, depending on the capacities of the small devices, and to
reduce the number of operations that a device must perform.

In order to reduce the time required to perform the certification path discovery
and validation on the mobile device, we will develop a new technique based on Proof
Carrying Authentication [8]. This Proof carrying Certification will enable thin devices
to take short cuts through the certificate validation process. Lightweight devices will
act as clients of a server implementing the delegated path validation and discovery
protocols (IETF) [12]. This server will collect information related to certificates, pro-
duce a formal proof and leave mobile devices with the only constraint to perform a
simple formal proof checking to validate a single certificate or a certification chain.

Rather than having to verify multiple digital signatures, thin clients will take
advantage of the concept of  Proof carrying Certification to reduce the number of
cryptographic operations needed during the proof checking.

A different formal proof will be designed for every PKI, guarantying interoperabil-
ity between the various infrastructures.

3.1.1 Cryptographic operations
Two determining factors will influence the speed of these operations : the choice
between different algorithms to sign and verify signatures and its implementation.

Given the limited processing power of  most mobile devices, the efficiency of  public-
key encryption is crucial in determining the response time for users. Efficient ciphers



and implementations are required to avoid unacceptable delays. Elliptic Curve Cryp-
tography (ECC)[13] is generally accepted as being more efficient than RSA; in  partic-
ular, ECC requires smaller keys and key pair generation is simpler.

Java has been chosen to implement the cryptographic component of the PKI, so
that the infrastructure will be platform independent. However, since mobile devices
have different processing capabilities, several configurations will be implemented :

e One full Java version that can run on every device.
e One Java/C++ version using some native calls to speed up  the key generation

process, the signature/verification operations, a version that can run on  more
advanced devices like PDAs or 3G phones.

3.1.2 Certificate retrieval and validation

Our approach aims at delegating all the burden of retrieving the certificate chain to a
server. To do so, the small device will communicate with a non trusted server [Figure
1] implementing the Delegation Path Discovery protocol (DPD) partially defined in
[12].

od  5)  Formal proof and
certification chain sent
backETaud

BR;  Thin client

6) Proof checking,
validation o f  the signed
object

Figure 1 : Validation process

Once the certification chain is retrieved, the server will be able to construct the
formal proof. In  order to  enable future developments on our infrastructure and remain
interoperable with other infrastructures like SPKI/SDSI or PGP, a meta proof imple-
mented as an XSLT file, different for each PKI, will be used to generate the actual
proof [Figure 2]. The logic used to describe the formal proof is first order predicate
and may include some temporal logic in order to deal with issues related to time.

Then, both the proof and the certification chain are sent back to be checked on
the thin client side.
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X509_ Proof
R(1) : : [ t rustedCA  (C1) ” keybind (C1 ,K1)  signed (K1, c2)=>is Trusted (c2)]
R(2 ) : : [R (1 ) ”  conta in  (c2 ,C2,K2)=>keyb ind  (C2,K2) ]
R(3)::[R(2) "signed (K2, c3)=>is Trusted (c3) ]
R (4 ) : : [R (3 ) "  contain (¢3,C3,K3)=>keybind (C3,K3)]
R(5 ) : : [R (4 ) "  ce r t  (C3,KA,A) s igned  (KA,F)=>says(A,F) ]

Figure 2: A formal proof example

The proof checker implemented in Java on the small device generates small proofs
that are cached and that can be re-used for a certain amount of  time, depending on
how secure one wants the certificate checking to  be. This idea is one of the shortcuts
we are planning to apply in order to  speed up  computations on the thin client.

4 Conclusion
In  this abstract, we describe a public key infrastructure suitable for constrained mobile
devices, that is interoperable with existing public key infrastructures. We have started
to  build an  implementation of  a prototype using a Compaq iPAQ 3600 :

® The cryptographic side of the infrastructure is completely achieved : Signature
and verification of digitally signed documents can be done in  less than a second
using the enhanced version of the cryptographic component.

es The proof checker used to  validate the formal proof sent by the DPD  server has
been partially designed and will be implemented in Java.

However, some issues remain unsolved as the secure random number seed, used
for key generation on the lightweight device and the secure private key storage. A
revocation checking method has to  be integrated as well in the formal proof so that
the thin client can formally check that some certificates haven’t been revoked.

Speeding up  cryptographic operations on the thin client is efficient but reducing
their number is even better. On  the basis of  that principle, we still need to develop
our idea of shortcuts enabling small devices to  skip some steps in  the certification path
validation.

In  the long term, once our infrastructure is completely designed and implemented,
we plan to formally prove that it is secure by developing a theory based on the =-
calculus.
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1 Introduction

Proof planning [2, 10] is a reasoning process in which mathematical theorem proving is
viewed as a planning problem. It incorporates domain-dependent and/or general math-
ematical knowledge, and shows a great potential in the area where the traditional logic-
based theorem proving systems have been typically weak. The plan operator — method
~ encodes a piece of mathematical knowledge. When there are more than one method
applicable, the proof planner has to determine which one to  choose. Some methods may
lead to a dead end where no more method is applicable. In this case the proof planner
needs to backtrack to a previous stage, and apply another method. In order to min-
imise the backtrackings, good heuristics are needed. Up  to now such heuristics are only
useful in some particular cases. For instance, heuristic information can be encoded in
form of specificity which prefers a specific method over a general one, or in form of an
explicit ranking which rates methods independently of the concrete situation. None of
these approaches provides a satisfying answer to what method to  choose.

In this abstract, the idea of semantically guided proof planning is presented, and an
implementation and experiments are discussed. For the research, the {MEGA theorem
proving environment [1] is used. The semantically guided proof planner has been realised
in  MULTI - the multi-strategy proof planner of the MEGA system. The model-guidance
module plays the most important role in  the semantic guidance. It updates a database of
reference models and answers queries from MULTI whether a concrete method application
is suitable with regard to  the current reference models and how promising a method appli-
cation is. In  order to  obtain the reference models, the model-guidance module provides an
interface to FINDER [11], which is a first order model generator. Heuristic search control
information is generated from the models.
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2 Proof Planning with Semantic Guidance

2.1 Semantic Guidance in Automated Reasoning
Since human mathematicians make strong use of semantic information in order to obtain
heuristics to  solve problems, i t  is believed that a semantic approach is important for mod-
elling the human reasoning capabilities in  mathematics. There have been many attempts
to use semantic information to guide proof search (see for instance [12, 8]). The basic idea
is to use a reference model or a set of reference models to heuristically guide the choice
of the clauses in the inference step. However, the generation of models in each inference
step sometimes causes a significant overhead. Recently, a new method was introduced [6]
in which the theorem prover generates models only at the beginning, and uses them in
later stages of  the proof search. Furthermore, in some problems where typically theorem
provers fall into an exponential explosion, the assumption part of the problem can be
refined to a simplified form before a refutation search is started [3].

Like the semantic guidance used in the traditional resolution-based theorem provers,
semantic information can also be used in proof planning to guide the choice of the next
method to apply. The semantics of the assumptions and the conclusion can be used
to evaluate whether new premises can contribute to the proof (in forward planning), or
whether a new open goal can be proved (in backward planning). The semantically guided
proof planning approach (proposed by Choi and Kerber [5]) uses reference models as
search control heuristics.

2.2 Semantics in Proof Planning
In proof planning, mainly two different types of  planning strategies are used, forward
planning and backward planning. In forward planning, the planner searches for a method
that takes assumptions (like axioms, definitions, or already proved intermediate results)
and produces new facts that can be used as new assumptions in the following planning
steps. Initially there is a gap between the premises (the initial assumptions) and the
theorem, the planner continues filling in the gaps between assumptions and the theorem
until there are no more open goals. Likewise, in backward planning, a method takes a
theorem and produces subgoals sufficient to deduce the theorem. Some of the subgoals
may be identical to existing assumptions, but typically some others are new and to be
added as open goals to  be proved in later steps.

As in any search problem, the efficiency of  proof planning depends on exploring the
more promising parts of  the search space first. In order to  do so, we need good heuristics.
Some heuristic information can be encoded in form of  specificity, that is, prefer the appli-
cation of  a specific method over the application of  a more general one. Another approach
is to explicitly ranking methods, e.g., by a rating, and to apply the applicable method
that has the highest ranking, independently of  the concrete situation.

The main idea of  the work proposed here is that the plausibility of  a method can be es-
timated by means of comparing the semantics of new open goals generated by the method



with those of  the assumptions and of  the theorem. We extend the idea to intermediate
results that any model of the assumptions I" has also to be a model of the theorem ¢.
More concretely, assume we have a reference set of interpretations M .  The model sets
Mr  :=  {m € M |m  EFT} and My  :=  {m  € M |m  |= ¢}  are defined; then it follows from
T |= ¢ that M r  C M4.  If an intermediate result 9 is semantically not a superset of Mr,
that is, M r  € My, in backward planning, or not a subset of Mg, that is, My  € Mg;
in forward planning, we can assume that % is not plausible. We will not be able to  prove
the theorem with v unless the models of the assumptions, i.e., of M r  N My, are a subset
of the models of  the theorem, i.e., of  Mg,  and neither will we be able to  prove 9 with the
given assumptions unless its models form a superset of Mr.

2 .3  Semantic Restriction and Selection

A semantic restriction strategy is a strategy that refuses any methods whose applications
produce an intermediate result with which the above semantic relation is not satisfied.
This simple strategy can avoid many useless steps. For instance, the search for a proof
plan for S — VzQ(z) FE Vz(S — Q(z)) can be reduced from 10 steps to only 3 steps [7, 5]
with the semantic restriction strategy in the {MEGA proof planner. Likewise, the search
for a proof plan for a Topology theory example int(AN B)  = int(A) Nint(B) which would
not be proved without semantic guidance, can also be proved [4].

A semantic selection strategy is a strategy which not only restricts the number of
methods in the semantic way, but heuristically chooses one that seems to make most
progress towards filling the gap. It evaluates the semantics of each method where all
methods would seem equally applicable if semantics were not taken into consideration.
More promising methods can be distinguished from the other candidates by estimating
how well they semantically match the open goals with respect to the subset and superset
relation with the given premises. In a forward reasoning approach, the methods that
restrict the model class best in the direction to the theorem are better. Concretely, if the
problem is I' I ¢ and two methods M;  and M ;  transform the problem to IT, + ¢ and
T2 + ¢, respectively, where Mr  © Mr,  and (Mr N Mr , )  © Mg  with i = 1 or 2, select
M,  rather than M ,  if and only if Mr,  is bigger than Mr,. (If the sets have the same
cardinality, make a random choice.) Likewise in backwards reasoning, a method should
be selected which produces the smallest model class Mr .

3 Implementation and Experiments
The semantic proof planner has been realised on the basis of  the {MEGA system. Previ-
ously, MEGA  did not evaluate methods with respect to  the concrete proof state when two
or more methods are applicable. Instead, it depended on a fixed rating factor assigned to
each method by the developer. The issues about implementation and experiments have
been reported in [7]. In order to get a form of semantics, we generate models from the
premises and the open goals with a model generator. However, since it is not practical
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to keep a huge amount of models, we may use a smaller set of carefully defined typical
models which is sufficient for determining the semantic relationship. The model set rep-
resents semantics and, in addition, the relation between two model sets correspond to  the
semantic relation between two premises. For instance, if the model set of the premises is
not a subset of  the model set of  an open goal, we can assume that the open goal cannot
be deduced from these premises. Thus, we should prevent the method from being applied
and, as a consequence, avoid unnecessary steps that would have led to  backtracking.

4 Further Work

In the semantically guided proof planner based on MULTI, a small number of simple
problems in first order logic and Topology theory have been tested. The experimental
results have been successful. Thus, our first task is to evaluate the implemented approach
with respect to a broader case study. When applying our approach to problems from
complicated mathematical domains, there are still  many open questions. One important
question is how to incorporate domain knowledge. Currently we pass only the proof
assumptions to FINDER. If domain knowledge such as theorems and axioms is available,
it could also be provided to FINDER to generate better models. However, if  large sets of
axioms and theorems are available, the question is how to restrict the set of candidate
facts passed to  FINDER. Another important question is how to  select informative models.
Currently we use FINDER to generate reference models. While this is already informative
(and reduces search) in some examples we looked at, we want to improve i t  further
in several ways. In particular, we want to keep the reference set of  models small and
informative at the same time. The idea of typical models as introduced by Kerber et al.
[9] is considered promising for this purpose.
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We have finished a constructive formalization in the theorem prover Coq
of the Fundamental Theorem of  Calculus, which states that differentiation
and integration are inverse processes. This formalization is built upon the
library of constructive algebra created in the FTA (Fundamental Theorem
of  Algebra) project, which is extended with results about the real numbers,
namely about (power) series.

This formalization was done closely following the work of Bishop [1]; the
real numbers were first axiomatically characterized as a complete ordered
field with the archimedian property; later, this axiomatization was proved by
Geuvers and Niqui [4] to be appropriate (in the sense that the construction
of real numbers as Cauchy sequences of rationals satisfies the axioms) and
categorical (as any two models of  these axioms are isomorphic).

Using this work as a basis, partial functions are defined as a Coq record
type consisting of  a predicate and a total function on the set of  real num-
bers that satisfy that predicate (see [3]). The usual operations (composition,
addition, multiplication, division) are then defined as yielding partial func-
tions from partial functions. We can then define continuity, differentiability
and integration, and prove the usual properties of these: preservation of
continuity and differentiability through algebraic operations and functional
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composition, uniqueness of derivative and the rules for computing deriva-
tives. Using these, we can then formalize Bishop’s proofs of  the constructive
versions of  Rolle’s theorem, the Mean Law and Taylor’s theorem, as well as
of  the Fundamental Theorem of  Calculus.

One of the most important issues throughout this work is automating
routine tasks, such as computing the derivative of  a function. This was suc-
cessfully done in Coq by using the general method of reflection as described
in [7] and [5] adapted to our domain to define new tactics suitable for use
with specific kinds of goals. With these tactics further development of the
theory became much more high-level, allowing proofs to be done at a level
of  detail more similar to what is usual in mathematics.

Finally, the usual elementary transcendental functions (exponential, si-
nus, cosinus, tangent and their inverses) were defined as examples of  partial
functions and their properties were proved using the theoretical tools previ-
ously formalized.

Future work will include developing a higher level of automation, includ-
ing the use of reflection to build a new tactic that can automatically prove a
large class of equalities of real numbers.
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1 Introduction

The success of  model-checking in  hardware and in  protocol analysis has led nat-
urally to several attempts to develop similar techniques for the analysis of soft-
ware. As pointed out in [2] a fundamental problem in this endeavor is to  identify
a model for programs (analogous to the finite state machines used for modeling
hardware circuits) for which reasonably simple abstractions from conventional
programming languages (such as C and Java) as well as efficient model-checking
procedures do exist.

The SLAM project at MSR follows this path of action by proposing (%)
boolean programs as a model for sequential programs and (ii) a procedure that
abstracts any program given as input, say P ,  into a boolean program B having
the same control-flow graph as P and whose execution traces are a superset of
those of P.  Boolean programs have the usual control-flow constructs, procedural
abstraction with call-by-value parameter passing and recursion; program vari-
ables (both locals and globals) are restricted to range over the domain of the
boolean values T and F .  The core idea of SLAM project is that the study of
the properties of a program may be reduced to the study of line reachability:
in fact, considering a program P and a property ¢,  it is possible to  rewrite P
as an equivalent program P, where a line £ is reached iff ¢ is violated. Giving
to £ the meaning of  the error line, its reachability implies the violation of  ¢.
The reachability of £ in  P ı  is indirectly determined by checking the reachability
of £ in B by means of a model-checking procedure for boolean programs. If £ is
unreachable in B then this is detected by the model-checker and the unreacha-
bility of £ in  P,  is reported to the user. Otherwise an execution trace leading to
£ in B is found by the model-checker and its feasibility in Pi is checked. If the
feasibility check succeeds, then an execution trace leading to  £ in  P;  is returned,
otherwise B is refined in some way so to rule out the unfeasible path and the
whole procedure is iterated.

The efficiency of the approach depends heavily on the number of  unfeasible
paths allowed by the abstract program. In the SLAM approach, the abstrac-
tion to boolean programs is rather coarse and many unfeasible paths may be
encountered by the procedure before finding a feasible one (if any).

We propose linear programs as a model for sequential programs and propose
a model-checking procedure for this family of programs. Similarly to boolean
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programs, linear programs have the usual control-flow constructs and proce-
dural abstraction with call-by-value parameter passing and recursion. Linear
programs differ from boolean programs in that program variables can range over
a numeric domain (e.g. the integers or the reals); moreover, all conditions and
assignments to variables involve linear expressions, i.e. expressions of  the form
Co+ C171 +- -+Cn Ty, Where cp,. .., Cc ,  are numeric constants and z , . . . , z ,  are
program variables ranging over a numeric domain. Linear programs are consider-
ably more expressive than boolean programs and can encode explicitly complex
correlations between data and control that must necessarily be abstracted away
when using boolean programs. However the reachability problem for linear pro-
grams is undecidable and therefore any sound and complete procedure for this
problem may not terminate.

2 Linear Programs

A linear program is a conventional imperative program consisting of  a sequence
of declarations of global variables followed by a sequence of procedure definitions.
Instructions are built out of  basic instructions (skip, parallel assignment, and
procedure invocation) using the usual control-flow constructs (if-then-else,
while-do,  goto, and assert). Instructions can be labeled. Procedures use call-
by-value parameter passing and can be recursive. The distinguishing feature of
linear programs is that all conditions and assignments to variables involve linear
expressions, i.e. expressions of  the form co + ¢12)  + - + - + €,Zy, Where cg, . . . ,Cn
are numeric constants and z , , . . . , Z ,  are program variables ranging over the
reals.

Let L be a linear program with n instructions and p procedures. We assign
to  each instruction a unique index from 1 to n and to  each procedure an index
from n + 1 to n + p.  In what follows s; denotes the instruction associated with
index ¢. For simplicity, we assume that variable and label names are globally
unique in L .

With the notation Globals(L) we mean the set of global variables of L and
so, intuitively, Locals ( i ) ,  will be the set of local variables at instruction s;,
InScope;(i) the set of  visible variables and finally Formals,(i) and Actuals;(i)
the sets of  formal and actual parameters involved in procedure calls.

We briefly give all the definitions needed in the remaining of the paper:
First; (p) denotes the first statement of a procedure p, and ProcOf;(i) is the
procedure to which s; belongs. Ezit, is the exit node of the procedure and
Succr (1) the successor relation.

The control-flow graph of a linear program L is a directed graph Gr  =
(Vi, Succr). The set Vz = {0 ,1 , . . . ,n  + p} contains one vertex for each in-
struction (vertices 1 , . . . , n ) ,  one exit vertex ezit,, for each procedure (vertices
n+1 , . . . , p ) ,  and the vertex 0 used to  model the failure of  an assert statement.

Let D be the domain of  computation and £ € Vy, then a valuation for £ is
function w : InScope;,(1) = D.  A state of the program is a pair (i,w) wherei € Vi,
and w is a valuation for i .  We assume that L contains a distinguished procedure



called main. A state (i,w) is initial iff { = First;(main). State transitions in a
linear program L are denoted by (i1,w;) =r  (i2, ws)

A path is a sequence (ip,wp) —r (i1,w1) —=L --- =L  (in,  wn) such that
(tk, wi) Az  (ia+1,Wr+1) for k=0 , . . . , n—1.

A valid path is a path (io, wo) = (i1,w1) AL :  AL  (in, wy) such to  capture
the transmission of effects from (ig, wp) to (in, wy) via a sequence of execution
steps which may end with some number of  activation records on the call stack.
This allows us to  reason about non-terminating or abortive executions.

A state (i,w) is reachable iff there exists a valid path from some initial state
to ( i ,w).  A vertex i € Vz is reachable iff there exists a valuation w such that
( i ,  w) reachable.

3 Model Checking of  Linear Programs

Program reachability can be reduced to computing for each vertex ¢ in the
control-flow graph of the program the set of valuations 2;  such that (i,w) is
reachable iff w € §2;. Clearly the statement associated to vertex ¢ is reachable
iff £2; is not empty. In  order to do this efficiently, the model-checking procedure
proposed in [1] computes (i) “path edges” to represent the reachability status
of vertices and (ii) “summary edges” to record the input/output behavior of
procedures. ;

Let i € Vi and e = First_(ProcOf,(i)). A path edge 7;  = (we,wi) of £ is
a pair of valuations such that there exists a valid path (First(main),wo) —7"
+++  —+5* (e,w.) and a same-level valid path (e,we) —=7*** --- =¢~ (i,w;) for
some valuation wo. In other words, a path edge represents a suffix of a valid
path from (First(main),wp) to (i,w;).

Let £ € Vi, be such that s ;  = pr (e1 , . . . ,en) ,  let y ı , . . . , yn  be the formal
parameters of  p r  associated to  the actuals ey,. . . , e,, respectively, and let {w;,w,)
a path edge of ezit,,. A summary edge 0 = (w;,w2) of (wi,w,) is a pair of
valuations such that

1. wi(z) = we(z) for all x € Localsy (3),
2. w iz)  = wi(z) and wa(z) = w,(z) for all z € Globals(L), and
3. wi(ej) = wi(y;) for j=1 , . . . ,n .

Intuitively, a summary edge of  { represents information about how the valuation
after the procedure call depends on the valuation before the call. The creation of
summary edges is the most important and original part in the algorithm: when
a summary edge (wı,w2) is built for a procedure, it is no more necessary to
study again the same procedure for the input wi ,  because it will be immediately
used the output valuation ws. In cases of frequently called procedures and of
recursion, this will turn into a great improvement in performance.

Our procedure works by incrementally computing the ADLCs representing
the set of path edges of the reachable nodes and the summary edges of the
procedure calls.
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4 The Constraint Solver

Our procedure represents path edges and summary edges symbolically by means
of abstract disjunctive linear constraints (ADLCs for short), i.e. expressions of
the form AzAz'.c where c is a disjunctive linear constraint (DLC for short), i.e.
a disjunction of  conjunctions of  linear constraints (which we represent as sets of
sets of linear constrains). A linear constraint is an expression of the form e < 0,
e = 0, or e # 0 where e is linear expression. Notice that IT is an infinite set
of path edges but it is nevertheless compactly represented by the above ADLC.
More precisely, let i be a vertex of the control-flow graph, x = InScope,(i),  and
z '  be a vector of distinguished variables obtained by priming the variables in
x .  The set of path edges associated with i ,  say IT;, is represented by the ADLC
6 = Axz)z'.c where c is a DLC in the variables x and x ’ .  In  particular we have
that IT; = {(wı,w2)s.t. wiUw; satisfies c(z, z’)} where w’ = {(z',d) : (z,d) € w}.

The constrain solver manipulates ADLCs and is abstractly characterized by
the following interface functionalities: -

— Application.
— Conjunction.
— Disjunction.
— Projection.
~ Entaslment.

In  our prototype implementation the constraint solver is based on the Fourier-
Motzkin elimination method [5].

5 Conclusions

Linear programs are considerably more expressive than boolean programs and
thus we believe that their study will allow the construction of  better models for
minimizing inefficiencies in  model description. The model-checking procedure for
boolean programs introduced in [1] can be readily used to model-check linear
programs by  using a constraint solver for linear arithmetics.

In  the future, we plan to  cope with the non termination of our model-checking
procedure by investigating the use of widening techniques [4] [3].

An alternative approach would be to consider subsets of linear arithmetics
such as difference constraints [6] (i.e. constraints of the form z — y < ¢).

Another important issue is, starting from the backstanding abstraction tech-
nique used in  the SLAM  project and described in [2], to  develop a an abstraction
tool and so create a stand-alone model checker for real programs.

A final significant step in our research will be to find a suitable set of real
problems, which could also suggest some optimizations tailored to this new ap-
plication domain.
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1 The Authors

Prof. Alan Bundy and Dr  John Levine are members of the Mathematical Rea-
soning Group (MRG) and the Artificial Intelligence Applications Institute, which
are both part of the Centre for Intelligent Systems and their Applications within
the Division of Informatics at the University of Edinburgh. The Division of In-
formatics was one of only six computing departments in  UK  to  have obtained a
5* ranking in the 2001 Research Assessment Exercise. It returned the highest
number of research active staff and was the only 5*A department. It contains
world-class research groups in  the areas of theoretical computer science, artificial
intelligence and cognitive science.

1 .1  Prof. Alan Bundy
Prof. Bundy has been active in automated mathematical reasoning research
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witnessed by his being made a founding fellow of both of the two international
AI  societies: AAAI and ECCAI, in addition to the UK society, AISB, and serving
terms as Chair of both 13CAI Inc and CADE  Inc. He is also a Fellow of the Royal
Society of Edinburgh and of the British Computer Society. He won the SPL
Insight Award in 1986, was an SERC Senior Fellow (1987-92), a member of the
Hewlett-Packard Research Board (1989-91), Head of the Division of Informatics
at Edinburgh (1998-2001), a member of the ITEC Foresight Panel (1994-96), a
member of the Computer Science RAE panel (1999-2001) and is the founding
Convener of UKCRC (2000-date). He is the author of over 140 publications.

1 .2  Dr.  John Levine
Dr. John Levine is an Informatics Research Fellow at A1AI working on AI  plan-
ning systems and evolutionary computation. His current research program con-
sists of  applying genetic search and  learning techniques to  A l  planning problems,
applying AI planning and evolutionary computation techniques to real-world
problems, and mixed-initiative systems for planning and optimisation. He has

47



48

an MA  in Computer Science, an MPhil  in  Computer Speech and Language Pro-
cessing, and a PhD in Computer Science, all from the University of  Cambridge.
He is a member of the review board of Applied Intelligence Journal and is the
chair of the PLANSIG 2001 conference on AI  Planning and Scheduling systems.
He has taught a wide range of  undergraduate, postgraduate and commercial
courses in Artificial Intelligence, including Common Lisp, Planning and Search,
Knowledge Representation, Fuzzy Logic and Practical Reasoning Methodolo-
gies.

1 .3  Miss. Hazel Duncan

Miss. Hazel Duncan is completing an Honours degree in Maths and Artificial
Intelligence from the University of Edinburgh and will graduate in 2002. Her
final-year project involved mathematical theorem proving using Isabelle.

2 Description of  Proposed Research and  its Con-
text

This project will explore the application of data-mining techniques to  the auto-
matic construction of proof plans from a large corpus of proofs.

2.1 Background
Proof planning is a technique for the guidance of  proof search in  automated the-
orem proving. Until recently, this has required the manual construction of  proof
plans. This is a time-consuming and highly skilled process which has limited
the more widespread uptake of this technology. The automatic construction of
proof plans would remove this impediment.

2 .1 .1  Proof Planning

A proof method is the computational representation of a common pattern of
proof in a family of related proofs [Bundy, 1991). A proof critic similarly
represents a common technique for patching an initially failed proof attempt
[Ireland and Bundy]. Both methods and critics consist of a tactic plus a specifi-
cation of  its preconditions and effects, expressed in a meta-language describing
the syntactic properties of the formulae input to and output by the tactic. A
tactic is a computer program for applying the rules of inference of a math-
ematical theory [Gordon et al, 1979]. Tactics are combined with tacticals to

- produce higher-level tactics. Tacticals include operations of sequencing, non-
determinism and repetition. Proof planning is the use of Al plan formation
technology to guide proof search by constraining it to a set of proof methods
and critics. Proof planning limits the combinatorial explosion of potential proof
steps, which occurs if exhaustive search techniques are used.



The MRG invented the technique of proof planning, implemented it in the
AClam proof planner [Div2000] and applied it particularly to the kind of in-
ductive proofs that arise in verification and synthesis of IT  systems. It has
extended the range of problems that can be solved without human intervention.
In  particular, the use of proof critics has automated the discovery of intermedi-
ate lemmas and generalisations [Ireland and Bundy] - so called, “eureka” steps,
which were previously thought to  require human intervention.

2.2 Previous Work on  Learning Proof Methods
There have been several previous attempts to learn new proof methods from
example proofs.

In  his PhD project with MRG, Bernard Silver applied techniques of explanation-
based learning to the automated learning of proof methods for equation solving
[Silver,1984]. His Learning-Press system analysed successful solutions to equa-
tions and generalised these solutions to form methods for guiding the Press
system. In this way, he  was able to  automatically rediscover simplified versions
of many of the previously hand-coded methods of Press.

Similarly, another MRG PhD,  Roberto Desimone, automated the reconstruc-
tion of inductive proof plans, [Desimone, 1989]. The techniques of both Silver
and Desimone generalised from single successful proofs and required the system
to  be primed with some key meta-level concepts for expressing the preconditions
and effects of  the methods they learnt.

More recently, Kerber, Jamnik and Benzmiiller, from Birmingham Univer-
sity, have applied the techniques of  least general generalisation to  a family of  sim-
ilar proofs to learn new proof methods for algebraic reasoning [Jamnik et al, 2000].
Note that this technique required all the proofs in the family to be examples of
the learned method.

2.3 Data-Mining
In this project we intend to data-mine a large corpus of proofs to extract new
proof tactics. Unlike the previous projects at Edinburgh, we will initially only
attempt to learn the tactics, but not the specifications of these tactics, which
would also be required in order to learn the proof methods. This simplification
will enable us to postpone the problem of either anticipating or learning the
meta-language that the tactics will require. Unlike the previous project at
Birmingham, we will not assume that the proofs in the corpus are all examples
of the tactic to be learnt. Rather we will try to identify common patterns of
proof within a heterogeneous corpus. Note that a pattern may correspond to
only part of a proof.

The data-mining will consist of  two stages. Firstly, frequently occurring se-
quences of  proof steps will be identified using probabilistic reasoning. Secondly,
these sequences will be used to  seed a genetic programming process to combine
the sequences with tacticals. This two stage process will create a family of
tactics, whose effectiveness will then be  evaluated.
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2.4 Identifying the Corpus of  Proofs

The corpus of proofs to  be used in  this project must meet exacting requirements.

1.  It must be  stored in computational form, so that it is available for data-
ining.

2. It must be sufficiently large to contain many examples of multiply occur-
ring patterns of  proof.

3. There must be an appropriate diversity of kinds of proof steps, i.e. suf-
+ ficient different kinds of  proof steps that patterns can be identified, but

not so much diversity that patterns do  not recur. Note that the appropri-
ateness of  diversity is relative to corpus size: the larger the diversity the
larger the corpus required for the re-occurrence of  patterns.

We have identified several corpuses that may meet these requirements.
Note first that the huge search spaces generated by resolution-style theorem

provers are, unfortunately, mostly unsuitable because of requirement 3 above:
typically only one or two rules of inference are used. We could try to differen-
tiate rule applications by the formulae they manipulate, but these formulae are
generated during the proof search and are too diverse, e.g. millions of derived
clauses. A possible exception that deserves examination is model elimination
[Loveland, 1978], in which one parent clause of each non-ancestor resolution
must be an input clause — thus limiting the diversity. Using search spaces,
rather than proofs, would have the potential advantage that negative informa-
tion from the unsuccessful branches could also be used in tactic formation, so
this possibility is well worth investigation.

Better corpus candidates may be generated by the sequent calculus based
theorem provers, since the wider range of rules of inference provides the nec-
essary diversity to meet requirement 3. Most of  these provers are interactive,
so the proofs have been structured by human users, making it more likely that
proof patterns are present!. Also, most of these provers are tactic based; these
tactics provide additional proof step diversity and permit our new tactics to  be
built on top of existing ones: leading to a hierarchically structured family of
tactics, as required in  proof planning.

One set of  candidates arises from the Isabelle prover [Paulson, 1986]. Jacques
Fleuriot, in MRG, has developed a corpus of several thousand proofs in non-
standard analysis. Worldwide, there are many other users with similar cor-
puses. Unfortunately, there is a technical problem that Isabelle normally stores
its proofs as derived rules generalised from the proof using explanation-based
learning. If this technical problem can be overcome then Isabelle could provide
some ideal corpuses.

Another candidate is the Mizar proof library [Rudnicki, 1992]. This contains
several thousand proofs of major theorems in  Mathematics, built up over several

I n  automatically generated proofs i t  is more likely that two or more proof patterns are
interleaved, making them hard to detect.



decades. There are some technical problems in making this library available,
but Paul Jackson, in MRG, is already studying this problem.
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1 Introduction

Critical systems are those where error is unacceptable. Historically, critical
systems have been restricted to safety-critical systems, where failure could risk
human life. However, the economic and technological advantages of computers
have led to wide spread use of  computer systems, resulting in other categories
of  systems that must meet the same high integrity constraints.

There is a need to develop tools and techniques for constructing the high
integrity software demanded of critical systems. Praxis Critical Systems have
had commercial success developing critical systems using their SPARK approach
[2]. However, the SPARK approach does not exploit modern techniques in auto-
mated reasoning. It is our intention to enhance the applicability of the SPARK
approach by extending their proof checker SPADE using existing and developing
new techniques in automated reasoning.

2 Overview

2 .1  Software Verification

Software verification involves constructing a formal proof that a program meets
its specification. Qur work is intended for procedure based imperative program-
ming languages.

Floyd [10] and Hoare [14] introduced an inductive assertion method for prov-
ing the partial correctness of software, that if a program terminates, it meets
its specification. To support this’a formal description of the semantics of the
programming is supplied as Hoare style proof rules. The inductive assertion

*Supported by the EPSRC Critical Systems Programme - EPSRC grant GR/R24081.
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method involves adding the program specification to procedures in the form of
assertions. A precondition assertion is added stating what must be true when
entering the procedure and a postcondition is added to  state what must be true
if the procedure terminates. An  invariant or inductive assertion is required to
specify the behaviour within each loop. Conjectures called verification condi-
tions (VCs) are automatically generated for each path of execution between
assertions, or in the case of paths round loops, from the invariant back to  itself.
Proving these VCs is sufficient to prove that the program is partially correct.
Conversely, proving that any one of these VCs is false will prove that their is
an error in the specification, code or both.

The Floyd-Hoare method for proving programs was traditionally conducted
in a batch style after the program has been written. It is often the case that
many of resulting VCs are trivial, and can be discharged by an automatic the-
orem prover. Those VCs that can not be discharged are then tackled inside an
interactive theorem prover.

A number of  systems have adopted this batch style, proving many programs.
However, it became increasingly clear that the batch style did not scale up to
larger problems. It became difficult to determine if failed VCs relate to  errors
in the code or specification and which parts of these. Further, the process of
generating good invariants for code from scratch is difficult. Finally, the proof
effort required to  discharge the VCs typically involved frequent and sophisticated
human interaction.

Building on the work of Floyd-Hoare, Dijkstra [9] elaborated on the inductive
assertion method, adding a proof of termination to  the proof of partial correct-
ness to give total correctness. Further, Dijkstra refined the methods by  which
programming language semantics are described using predicate transformers
over Hoare proof rules. Most significantly, Dijkstra and Gries [12] advocated
that a program and proof should be developed in cooperation, with the proof
ideas leading the way. Although not overcoming the difficulties of Floyd-Hoare
verification, this cooperation style has the potential to  lessen the problems.

Praxis Critical Systems is a commercial company building high integrity
software. They advocate correctness by construction [13, 8] building on the
Dijkstra-Gries cooperation style of software verification by consideringissues of
verification from the start of software development. The SPARK approach [2] has
been shown to  be successful in  developing a number of critical systems (LOCK-
HEED C130J [8, 7], CA [13, 7]). Of  particular merit, the SPARK approach was
used to  build the first system (SHOLIS [19, 7]) that met the stringent standards
of the MOD  Defence Standards 00-55 and 00-56 for SIL4, the most critical class
of software.

Underpinning the SPARK approach is a formal description of the semantics
for a subset of Ada'. The subset has been carefully carved out of Ada to
provide an unambiguous, useful and most significantly provable programming
language called SPARK. In addition to the functional Ada parts of SPARK, the
language also allows additional information to  be provided through annotations.

1Subsets are defined for both Ada 83 and Ada 95.



These include information and data flow annotations and Floyd-Hoare inductive
assertions. The SPARK approach prescribes best practise for using the SPARK
language as REVEAL for requirements capture and INFORMED [1] for software
design.

There are two different kinds of tools supporting the SPARK approach. The
EXAMINER performs static analysis on SPARK code. It enforces the SPARK syn-
tax, performs sophisticated static analysis using the flow annotations [4], and
generates VCs for proof of  exception freedom (no run time errors) and partial
correctness. The other tools are geared toward formal proof. The SIMPLIFIER
is a trivial VC eliminator and SPADE is an interactive theorem prover.

In spite of the successes of SPARK it does not overcome the difficulties in
performing Floyd-Hoare verification. It is not uncommon for several months to
be spent tackling the VCs for a realistically sized SPARK project.

2.2 Automated Reasoning
Two broad styles of automated reasoning have emerged, machine and human
oriented. The machine oriented approach replaces the human operator with
an algorithm executed by the computer. To provide full automation, machine
oriented approaches necessarily operate in  logics where the cut rule? is not avail-
able. This prevents machine oriented approaches from providing full automation
where reasoning about iteration, a key concept in software verification. Machine
oriented approaches include decision procedures (Davis-Putnum, Presenburger
Arithmetic) uniform proof procedures (Resolution) and analytical tools (con-
straint logic programming, computer algebraic systems).

The human oriented approach relies on interaction with the user where au-
tomation is unsuccessful. Automation is achieved through heuristic strategies.
Heuristics are general rules of thumb and it is expected that they will some-
times fail. Proof planning [6, 5] provides a mechanism to  make explicit heuristic
search strategies. It separates the search for a proof from the soundness of the
logical argument. This decoupling means that flexible search strategies can be
used. Tactics are procedures that perform large grain proof steps, following
the LCF style of theorem proving [11]. Methods are partial tactic specifications,
outlining the preconditions that should be true before applying a tactic and
the resulting effects having applied the tactic. Proof planning involves a search
using the methods alone. During this search methods may fail to  apply and crit-
ics [15, 17] may be invoked to patch the proof. Critics have been successfully
applied in patching induction proofs [16, 17, 18]. Once a proof plan is found it
is converted into its corresponding tactic sequence and executed inside a sound
theorem prover. Proof planning has been implemented in OMEGA [3], CLAM
and A-CLAM. A project also practically demonstrated the separation between
soundness and search by changing the object level of the CLAM proof planner
from OYSTER to  HOL in CLAM-HOL [20].

20 f  the form: Tre Lats
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2.3 Progress Toward Automated VC  Proof
There has been extensive research on automating the discovery of loop invari-
ants. Key to performing this is information discovery. Most research has been
placed on gaining the additional information by employing a top-down strategy,
where information is extracted from the program specification. This strategy
has been implemented successfully within the proof planning paradigm using
critics to automate the discovery of invariants and lemmas [21]. An opposing
bottom-up approach is also applicable, extracting information directly from the
program source code. The branching factor of a bottom-up strategy is high,
requiring some constraints to to  provide more targeted information.

Industrial strength verification systems have yet to adopt these techniques
for automating the proof of VCs. There is a need to develop systems in the
spirit of  CLAM but with an industrial context.

3 Research Proposal
The SPARK approach stands out as one of  the few examples of  software verifica-
tion being successfully applied in industry. However, the SPARK approach has
not directly addressed the difficulties associated with performing Floyd-Hoare
verification. Research into automated reasoning has produced many promising
ideas for automating the proof of theorems in  general and VCs in  specific. How-
ever, the exploration of this research has typically been outside an industrial
setting.

We propose to  further enhance the applicability of  the the SPARK approach
by improving the automation of its tools supporting formal proof. The proof
planning paradigm will be used as a flexible framework within which this au-
tomation can be explored. Although focus will be placed on the SPARK verifica-
tion problems, as a regular imperative language the techniques discovered are
likely to  be useful in  other contexts. Our research hypothesis is:

Significant productivity gains can be made in automating the veri-
fication of high integrity software by developing new heuristics and
implementing these within the proof planning paradigm.

Some possible classes of heuristics have already been identified. Exploiting
existing tools inside a NUSPADE context could bring some benefits. Decision
procedures, uniform proof procedures and analytical tools may all have a role
to  play as heuristics. Further, information discovery is key for supporting many
heuristics. The strong foundations for the top-down approach can be built
upon, while some exploratory work using bottom-up techniques may also be
advantageous. Finally, proving that a VC is false indicates that there is an
error in the specification, code or both. Heuristics could be constructed that
target such non-theorems. Experience from the testing community may bring
valuable insights into where to look for non-theorems.
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The poster will describe the cooperation between the mathematical knowledge repository
MBASE [5] and the mathematical proof assistant {MEGA [2]. The cooperation aims to assist
a user of  {MEGA during the proof construction, namely to suggest possible theorems and lem-
mas that could be applied in the current proof situation. For this task, we exploit the particular
features provided by the two systems. MBASE is a repository for mathematical content ranging
from mathematical texts to formal theories. Besides simple retrieval functionality MBASE allows
to find specific pieces of knowledge by structural queries. MEGA manages the process of proof
construction integrating different approaches: interactive and automated theorem proving, proof
planning, use of external systems.

MBASE

MBASE is a mathematical knowledge management system based on OMDoc [4], which is an
extension of the OPENMATH standard (http://www.openmath.org/). OPENMATH provides a
universal syntax for formal mathematical objects and is appropriate for communication with au-
tomated deduction services and computer algebra systems. Based on this representation for terms,
OMDoc can be used to  represent mathematical documents in a varying degree of  formalization,
ranging from text in natural language containing OPENMATH formulae up to completely formal-
ized theories. From a practical point of view, the MBASE system can be seen as a repository of
OMDoc collections, which can be accessed and searched by humans and software systems. Thus
MBASE provides separate interfaces for these two different types of “clients”: one can browse
through MBASE content via the web interface whereas software systems can access it via an
XML~RPC interface.

One query service offered by MBASE is the search for theorems containing a subterm that
matches a given pattern. We are using simple structural matching here. In principle, one can
supply any OPENMATH object as a pattern. Additionally, meta-variables can be used to  match
arbitrary subterms consistently. Examples for patterns are commutativity f(z,y) = f(y,z) or
monotonicity f ( z ,y )  = f(g(x),  g(y)) where f ,  g,  z ,  y are meta-variables and = ,  => are OPENMATH
symbols.

OMEGA

(IMEGA is designed as a mathematical assistant for the construction of  mathematical proofs. The
main features of {MEGA are automatic generation of proofs based on the proof planner MULTI
and the support of  interactive theorem proving with the agent-based command suggestion mech-
anism ANTS [1]. Proofs are represented in the three-dimensional proof data structure PDS that
allows to have proofs at different levels of abstractness with the base calculus as least abstract
level. MEGA has a graphical user interface called LQUI [3], allows for the verbalization of formal
proofs into natural language via the proof explanation system P.rex and has access to differ-
ent mathematical services via MathWeb [4]. Available mathematical services are first-order and
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higher-order automated theorem proving systems, computer algebras systems, model checkers,
constraint solvers, and the mathematical knowledge base MBASE.

MBASE is used to store and provide theories (containing the signature, definitions, theorems
and problems) of formalized mathematics for MEGA.

Cooperation between MBASE and (MEGA

On the side of  NMEGA the 2ANTS mechanism is used to suggest possible commands to the user.
fIANTS is a blackboard architecture where for each inference rule and its arguments so-called
agents check for possible instantiations of the inference rule in the current proof context. The
inference rules are either rules of the basic calculus, tactics or methods from proof planning, and
have premises, conclusions, and possibly additional parameters as arguments. If the agents found
instantiations for inference rules, the corresponding commands are presented to the user in a
window of the graphical user interface LQ  UL

We implemented two commands for the application of theorems and the corresponding agents
in MEGA, namely assertion-application and rewrite-application. The first command applies a
theorem of the form V, , , .  2,1 A . . .  A Pn  = C when C matches with the formula to prove
and introduces P , . . . ,  Py  as new unproved formulas. The latter applies conditional equations
Ves,zaPL A . . .  A Pp  = t ;  = ty where t ;  (or t2) matches a subterm of the formula to  prove and
introduces Pi,  . . . ,  Py, and the old formula where t ;  is replaced by t2, or ¢, is replaced by ¢; resp.,
as new unjustified formulas.

Agents that try to provide a suggestion for a theorem would have to test all theorems which
is rather expensive. A t  this point we use the pattern matching facilities of  MBASE to get a
preselected set of theorems which are tested for applicability. In detail, MBASE is queried for
theorems containing a subformula matching the current formula to prove in case of assertion-
application, or for an equation containing a subterm of the current goal as right hand side or left
hand side of  an equation for rewrite-application. The argument agent filters from this preselection
all theorems that are not of the right form or not applicable and presents the remaining theorems
to  the user.

WWW-References:

e MBASE: http://www.mathweb.org/mbase
Demo http://mbase.mathweb. org:  8080/mbase/

e (IMEGA: http://www.ags.uni-sb.de/ omega/
Demo http://wuw.ags.uni-sb.de/~omega/demo/
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1 Introduction

Algebra systems solve equations with just one function (e.g. Solve) by deciding to which
equation type the given equation belongs to, and by choosing the right method for solving
that equation type. In order to  acchieve this functionality, the equation solvers of algebra
systems implement a sophisticated search on a huge hierarchy of equation types.

The equation solvers of algebra systems do their work hidden from the user, and just
come up with the solution. The ZSAC-project, in contrary, aims at making the functions
transparent to  the user. In  the case of equation solving this means to  show how the system
determines the type of the equation, which is the first step of solving the equation.

Another aim of ZSAC is to  provide for a sound logical base for doing mathematics. As
I have been told so far, this aim is not my concern, except an involvement in  typing (ZSAC
is based on Isabelle and uses the types implemented in HOL) and sub-typing, eventually.

In this extended abstract I will describe the problems I have to solve within my task
in the ZSAC-project, and I will give an example, and show how the task can be done using
ZSAC’s mathematics engine so far. The notions pattern, matching, normal form, orderd
rewriting, term order , rewriting, rewrite system, reduction system, reduction order use as
defined in [Baader 1998].

2 My  task within the ZSAC-project

2 .1  Equation types
An equation type can be discribed with a pattern. For example the pattern for a linear
eqaution could look like

a + bx  boundVariable = 0

where a and b stand for any (sub-)term not containing boundVariable, the bound variable
of the equation. The equation

4+2*z=0
matches the pattern if x is declared to  be the bound variable.

2 .2  Normal forms

The equation
1+2*z * r+s=0  (1)

does not match the pattern although it is an linear eqaution in  x. For matching the pattern
it first has to  be transformed into a normal form. For the above example the normal form
would be

(1+s )+ (2 * r ) * z=0  (2)



if x is the bound variable. If  r is the bound variable the normal form would be

(1+s )+ (2 *z ) * r = 0.

2.3 Ordered rewriting
The standard method for transforming equations in  such a way is ordered rewriting. There-
fore you need a set of (rewrite-)rules and a term order. To transform the above equation
(1) into the normal form (2) you would need the commutative rules for + and * .  So the
respective rule set would look like

rn: (n+m=>m+n)
(3)r a :  ( n *m=  mn)

In  the first step you need to use the rule r, to change 2 * x * r+s  to s+ 2 * z * r  and then
you need to use the rule r2 to change 2 * z x r to 2 * r x z. To use rules for transforming
egautions into a different form is called rewriting and the set of such rewrite rules is called
the rewrite system.

If you want to automate the transformation the system needs to be smart enought to
decide, when to use which rule to get the desired result (e.g. the normal form). It also
could happen that the transformation doesn ’ t  terminate. For example if  the system would
apply the rule r i  to the same two operands consecutively and thus never would terminate.

Therefore you need an order which can compare two terms in  respect to  special criterias.
In  Ordered rewriting you just apply a rule to a term if  the resulting term is smaller in  respect
to the order. Such a rewrite system is also called a reduction system with a respective
reduction order .

2.4 The scope of  my  task
My  task is restricted to all equations which are taught at Austrian high-schools (actually
to all equations contained in  a frequently used textbook). For these equations I have to  do
the following:

1. determine normal forms for all equation types such that they are distinct

2. design a hierarchy for the equation types such that they can be searched efficiently

3. for each normal form search for an appropriate term order, and develop a toolbox of
term orders.

3 Some trials with Z8AC’s math engine
On this point I would like to show with an example how ZSAC’s math engine works.

I will take the above equation (1) and show how to get it into the normal form (2)
using the ZSAC’s math engine. First I want to do this step by step using the rules in (3)
and then automate the procedure by using the rules as an rule set with a term order.

3
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3 .1  Step by  step calculation

The rules (3) implemented in  ZSAC look like the following:

ML> radd_commute;
val i t  = "?m + ?n = ?n + "Tm" : thm
ML> rmult_commute;
val i t  = "?m * ?n = ?n * 7m" : thm

The equation (1) is stored in the variable ¢ and has the following notation:

ML> val t = "#1  + #2 * x * r + 8 = #0" ;
val t = " #1  + #2 * x x r  + 8 = #0" : string

The equation can be transformed to  the normalform in  two steps using the function rewrite
with some additional parameters, applying the two rules to  it:

ML> val Some ( t , _ )  =
rewrite "LinArith.thy""tless_true""e_rls"false ("radd_commute","") t ;

val t = " s  + (#1 + #2 * x * r )  = #0" : string

ML> val Some ( t , _ )  =
rewrite "LinArith.thy""tless_true""e_rls"false ("rmult_commute","") t ;

val t = " s  + (#1  + r * (#2 * x ) )  = #0"  : string

3.2  Automated calculation

In  ZSACyou can implement a rule set as a set of theorems:

ML> assoc_add_mult;
val i t  =

Rls
{preconds=[]  , r ew_ord=( " t l ess_ t rue " , f n ) ,
rules=[Thm ("radd_commute","?m + ?n = 7n + 7m"),

Thm ("rmult_commute”,"?m * ?n = ?n * 7m")],
scr=Script (Free ("xxx","RealDef.real"))} : r ls

The term order rew-ord is an order which prefers the bound variable shifted to the right
within a term. The system now tries to apply one rule after the other to  the equation but
just doing so if the term is getting smaller. If it can’t apply a rule any more the system
stops and returns the result.

ML> val Some ( t , _ )  = rewrite_set “LinArith. thy" "eval_rls" false "assoc_add_mult" t ;
### trying thm ’radd_commute’
### rewrite_set_: s + (#1 + #2 * x * r )  = #0
### trying thm ’radd_commute’



### no t :  " s+  (#1  + #2 * x * I ) "  > "#1  + #2 x X * r  + 8"

### no t :  " #1  + #2 * x * 5 "  > "#2 * x * r + #1"
### trying thm ’rmult_commute’
### rewrite _set_: 8 + (#1  + r * (#2 * x ) )  = #0
### trying thm ’rmult_commute’
### no t :  " r  * (#2 * x ) "  > "#2 * x * r "
### no t :  "#2 * x "  > " x  * #2"
### trying thm ’radd_commute’ ;

### no t :  " s  + (#1  + r  * (#2 * x ) ) "  > "#1  + xr * (#2 * x )  + 8"

### no t :  " #1  + r  * (#2 * xX)" > " r  * (#2 * x )  + #1"
### trying thm ’rmult_commute’
### no t :  " r  * (#2 * x ) "  > "#2 * x * r "
### no t :  "#2 * x "  > " x  x #2"
val t = " s  + (#1 + r * (#2 * x ) )  = #0" : string

4 Summary
This abstract presents the problem I have to solve within my diploma thesis and within
the ZSAC-project: use term orders for rewriting to normal forms, which can be matched
with patterns of  types of  equations.

My  work started a few weeks ago, and I hope to proceed during the time until the
Calculemus Autumn School such that I may present my work in a more advanced way.
And  I hope to  get background information (deduction systems, partiality etc.) on  the work
I amgo ingto do.
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Supporting Interactive Theorem Proving in a
calculus-free Framework

Malte Hübner

Fachbereich Informatik, Universität des Saarlandes
D-66041 Saarbrücken, Germany

Abstract. This paper describes work aimed at extending the recently
developed proof-planning framework CORE [1] by a suggestion mecha-
nism that supports interactive proof search.

1 Introduction

Problems inherent to fully automated theorem provers as well as the
need for intelligent mathematical assistant systems have led to  a growing
interest in interactive theorem proving environments. However, most of
the current systems are not very intuitive to use and require a strong
background in mathematical logic in order to apply them successfully.
These shortcomings are mainly caused by the fact that interactive the-
orem provers are usually too tightly related to a logical calculus: In-
teractive proof search typically proceeds by sequentially selecting and
applying inference rules of the calculus that underlies the respective sys-
tem. In  order to  assist the user, these systems are often able to  pre-select
a set of applicable rules from the set of all available inference rules and
might even be able to  automatically instantiate parameters of  these rules
(cf. the 2-ANTs [3] suggestion mechanism of the 2MEGA [2] system).
However, the need to  apply rules from a given calculus commits the user
to  perform very fine grained proof steps that often do not correspond to
the broader steps that one would find in a proof of a human mathemati-
cian. Moreover, most calculi make it necessary to perform many proof
steps that would not occur in human generated text book proofs at all.
One example is focusing on subtasks which is often done automatically
by humans but which is very hard to mimic when being committed to
the application of a fixed set of calculus rules.
As an attempt to overcome these problems Autexier [1] recently pre-
sented a more intuitive proof framework which does not directly depend
on any calculus. Rather, the system allows the user to  focus on a part of
a given formula and then to  rewrite this subformula by  applying rewrite
rules which are computed by the system from the context of the subfor-
mula under focus.
As  an  example, consider the situation, where a formula of  the form

FA(A1V . . .VA , . = B)=G

is to be proven. In this situation it would be natural to focus on the
subformula G and to  show that G is true by using information encoded in
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the antecedent of the formula (In fact, showing that G holds corresponds
to  rewriting it to  true in the new system). The system supports this style
of reasoning by suppling amongst others, the rewrite rules B — A;  to
manipulate the subformula G. That is, any occurrence of B in G can be
replaced by any of the A;.  Intuitively this expresses the fact that in  order
to show B ,  it is sufficient to show A;, and then conclude B by making
use of the fact that (4; V . . .V  An = B)  belongs to the context of G. In
general, the rewrite rules generated by  the system are of  the form

[ # l h  =v

where & is a set of conditions under which application of the rule is
valid. If a rule is applied, the conditions are introduced as new open
goals. h is called the head of the rule. Any subformula in the current
focus that matches this head can be replaced by  the value v. A formula
is a tautology if it can be rewritten to T .
In this paper I will briefly report on an ongoing project which aims at
extending the system by a suggestion mechanism that supports the user
by making suggestions about the subformulas to be focussed on and
suggests rewrite rules for application.
The remainder of the paper is organized into six short, informal sections.
In the following section I will informally characterize the search space of
the new system. Each of the then following sections describes one of
the central problems that have to be addressed in the project. The final
section describes the current state of the project.

2 Proof Search

The style of  reasoning supported by  the system requires the user to  make
one out of  two kinds of choices at any proof state, i.e. the user can either
1. apply any of the available rewrite rules to transform the focus, or
2. narrow or widen the focus, or set the focus onto a completely different

subformula.
However, none of the choices is trivial. First, there are usually many
rewrite-rules available, not all of  which are applicable because their heads
do not match any term in the focus. Selecting the right inference rule
might therefore sometimes become difficult. In  real-world scenarios there
are easily 30 rewrite rules available in each proof state. In these cases i t
is a non-trivial task to  identify the applicable rules.
Second, focusing on the right subformulais crucial for structuring the
search; e.g. if thereis  more than one disjunctive goal, choosing the write
goal can be crucial for successful search. The system would therefore
benefit from a suggestion mechanism that
1. is able to make suggestions about which subformulas to focus on,

and
2. presents only the applicable rewrite rules, ordered according to a

heuristic in such a way that the preferred rule can be suggested for
application.



3 Tactics

As is possible for other systems, there should be a way to encode the
definition of mathematical concepts or larger proof steps (induction, di-
agonalization, etc.) in form of a tactic in the system. Providing a way to
use such tactics again causes two problems:
1. It has to be decided on how tactics and their expansion can be

represented in the system.
2. Application of tactics should be supported by a suggestion mecha-

nism in a similar way as was described for the rewrite rules.

4 Representation of  Tactics

In many theorem proving systems tactics are represented as a set of
premises and a conclusion (for instance in f2MEGA). When reasoning
backward, premises that cannot be instantiated with a proof line are
introduced as open problems when the tactic is applied. Forward ap-
plication of a tactic leads to an extension of the support-lines by the
conclusion of the tactic.
It was decided to chose a similar representation of tactics for the new
system. The reason for this is twofold:
First, specifying tactics in this way is very intuitive for the designer of a
tactic. Second, if tactics are encoded in this way it is a straightforward
task to adapt {MEGA s already existing suggestion mechanism 2-ANTS
to the new framework.
The tactic interpreter of the new system now allows the user to specify
tactics in the manner described above. Informally, the interpreter con-

1 . . .  n

verts a tactic of the form C into a rewrite rule of the form
C — Pı, A Pi, where the P;, are those premises of the tactic for which
no instantiation could be found. Application of a tactic then corresponds
to application of  the computed rewrite rule. (Compare this to 2MEGA
s natural deduction like calculus where the P;, are introduced as new
goals).
However, application of a tactic yields the new open goal (P;, AP;, = C)
which has to be closed through tactic expansion. Currently, we intend
to  expand tactics by  simply handing the newly introduced subgoal along
with some necessary definitions or axioms to  an external theorem prover
(such as OTTER, etc.). We hope that most problems that are introduced
by tactic application are simple enough to  be solved immediately by  such
a system. However, eventually a proper mechanism for tactic expansion
will have to  be provided, although this is not  part of  the project described
here.

5 Supporting Proof Search

To support proof search i t was decided to  adapt the agent based sugges-
tion mechanism £2-ANTS [3,4] to the new system. 2-ANTS is an agent-
based, concurrent suggestion mechanism that was developed to  support
interactive proof search in the 2MEGA system.
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Because the representation of tactics in  the new systems is similar to  the
one used in 2MEGA the adaption of f2-ANTs to the new system is quite
straightforward.
Currently, £2-ANTS already supports backward application of tactics in
the new system by searching for instances of the conclusion amongst the
positive subformulas in the current focus. (This can later be extended
to search through all negative subfomulas, which would correspond to
considering all possible foci). Once an instance for a conclusion of  the
tactic is found, the system searches for instances of  the parameters of
the tactic in all positive subformulas that are a-related’ to  the instance
of the conclusion.
More difficult is the task of extending §2-ANTS to support the dynam-
ically generated rewrite rules that change when the focus is shifted. A
suggestion mechanism that supports reasoning with this rules should
ideally be able to:

— Filter out those rules whose head matches a subformula in  the focus,
i.e. determine the set of applicable rules.

— For all applicable rules, try to find instances for the conditions of
the rules. If such an instance is found, the corresponding condition
no longer has to be introduced as a new open subgoal but can be
closed immediately.

— Order the applicable rules according to a given heuristic.
Although these demands seem to be quite similar to those required to
support application of tactics, they are not directly available in the
2-ANTs system. The main reason for this is that 2-ANTS allows to
specify agents that search for instantiation of  parameters for a given in-
ference rule. However, because the dynamically available rules are only
computed during the proof, no agents can be specified in advance.
To solve this problem it is intended to extend the system by an agent
that sequentially checks for the applicability of  each rewrite rule and -if
a rule is applicable- also searches for instances of the condition of  the
respective rule.

6 Focusing

Focusing on the correct subformula of a goal is crucial for successful proof
search. This can be seen as follows: a rewrite rule is applicable in a given
focus if  its head matches any of the subformulas in the focus. Hence, the
more subformulas a focus contains, the more rewrite-rules are generally
applicable in that situation. With more applicable rules at hand the
task of selecting or suggesting the correct rule for application becomes
more difficult. Moreover, in case of automated proof search, where each
rules has to be applied systematically, the search space becomes larger if
more rules are available. Furthermore, not every subformula needs to  be
focused on;i.e. when a goal consists of certain disjunctive subgoals it is

! In the new system formulas are annotated with a primary type a ,  8 , 7  or 6. Intu-
itively, formulas of  type ß are those formulas that cause a split in  a sequent calculus
proof. However, see [5] for details



sufficient to select one of the subgoals and rewrite i t  to  true. Hence, focus
placement is important to structure the proof search in an intelligent
way. Consequently, a suggestion mechanism for the framework should be
able to identify a minimal set of foci required to show the validity of a
formula where each of the selected foci should contain as small formulas
as possible.
To enable the system to make suggestions on where to place the focus it
is planned to add a so called focus agent to the suggestion mechanism.
This agent should analyze the current goal and identify a set of subfor-
mulas that have to be manipulated in order to prove the overall goal.
By carefully selecting those subformulas the agent guides the user by
suggesting subgoals which have to  be proven in turn. Ideally, the agent
is able to identify the crucial foci and to present them to the user one
after another, so that the user only needs to  concentrate on selecting the
correct rewrite rules.

7 Current State of  Implementation
Currently, the 2- ANTS suggestion mechanism has been successfully adapted
to  support the use of tactics in  the new framework. However, the sugges-
tion mechanism cannot yet deal with the dynamically generated rewrite
rules. Furthermore, a simple tactic interpreter has been implemented
which allows one to execute tactics which can be specified in  the manner
described above.
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ABSTRACT

A problem of  reasoning about actions is given in terms of  an initial situation,
a terminal situation, a set of  feasible actions, and a set of constraints. The task
of  a problem solver is to find the best sequence of  permissible actions that can
transform the initial situation into the terminal situation. Proof planning is an
approach to theorem proving which uses proof methods rather than low-level
logical inference rules to prove a theorem at hand. It is a powerful technique for
guiding the search for proofs in automated reasoning for it often dramatically
reduces the search space, allows reuse of  proof methods, and moreover
generates proofs where the reasoning strategies o f  proofs are transparent.

In general, realistic problems have enormous associated spaces of  possible
solutions that must be explored (searched) to find an actual solution that meets
the requirements of  the problem. These spaces are much too large to be
searched in their entirety, and ways must be found to focus or short-circuit the
search for solutions if  systems are to  have any practical utility. Put another way,
almost every interesting problem class is computationally intractable
(NP-complete or worse), meaning that in the worst case problems may take
time exponential in the problem size to solve. Important questions include ways
to reduce problem size and to focus search, and techniques for finding
approximate solutions quickly.

Suppose you have left your keys somewhere in the house but cannot
remember where, and need to find them quickly. You could do a systematic
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search of  the entire house, perhaps starting in the garage and exploring every
nook and cranny to be absolutely sure the keys are not there before moving to
other rooms. However, experience suggests that this ought to be a last resort
and that a quick search following your instinct or “following your nose” is often
likely to be successful more quickly. This suggests that when the search space is
very large and a complete search will take too long, then it can be worthwhile to
give up any hope of  ever doing a complete systematic search and instead use an
algorithm that concentrates on first exploring a good selection of  the most likely
places.

Many such algorithms are based on some form of  “iterative repair.” We
propose a solution, look at its deficiencies and then try to repair one of  these
deficiencies, obtaining a new state that we hope is closer to an acceptable
solution. This process is repeated many times until the state is acceptable, or we
run out o f  patience. In  order to save memory such algorithms cannot remember
all the places that have already been searched. Hence, they often intentionally
involve some degree of  randomness: i f  decisions are made by tossing a coin
then it is less likely that we will repeat exactly the same mistakes on each
attempt to solve the problem.

Also, we can encode an optimized reasoning strategy (e.g. expert knowledge)
in proof methods, which can be used in proof planning, by employing all kinds
of  different reasoning techniques in particular reasoning systems (e.g. computer
algebra system).
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Introduction. The problem of construction of a goal-oriented technique
for inference search based on the sequent formalism of first-order classical
logic is solved. This technique gives an simple way for extension of logic-
programming tools using SLD-resolution in the form of SLD-trees.

In this connection, we note that Gentzen calculi [1], including Kanger’s
calculus [2], significantly yield proof search efficiency to resolution-type meth-
ods (such that resolution-type methods, Maslov’s inverse method, etc.), which
rely upon results of Skolem [3] and Herbrand [4]. To overcome this obstacle,
special goal-oriented sequent calculi are constructed here. Two peculiarities
are inherent in the calculi: preliminary skolemization is used for increasing
their proof search efficiency (and this permits to use a technique of finding
most general unifiers) and selection of an appropriate rule is driven by a goal
under consideration. Soundness and completeness of these calculi are proven.

As to SLD-resolution, we must note that results obtained give a simple
way to transform sequent trees to trees, which can be considered as a general
conclusion of the usual notion of SLD-trees. This gives a “key” for con-
structing complete extensions of SLD-resolution when logical consequence of
arbitrary first-order formulas skolemized is under consideration.

Preliminaries. A sequent form of first-order classical logic without equal-
ity is considered. It is known [5] that deducibility of any sequent can be
reduced to deducibility of a sequent with eliminated positive quantifiers and
with bound variables only. Therefore, we can assume that any sequent con-
sists of quantifier-free formulas, which in twos have no common variables.

Notions of  terms, formulas, and literals are considered to  be known. If L
is a literal, then ~L  denotes its complement. The expression F ”  denotes the
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result of one-step carrying of the negation into a formula F and f denotes the
empty formula. Also note that we understand positive (P|F * | )  and negative
(P |F~]) occurrences of  a formula F in  a formula P in the usual sense.

We treat the notion of (simultaneous) most general unifier as in [6].
An  equation is a pair of terms s and ¢, which is written as s 8 .

Let L be a literal of a form R( t , , . . . , t . )  ( -R( ty , . . . , t , ) )  and M be a literal
of a form R(sy,...,3s) (-R(s ı , . . . ,8n)),  where R is a predicate symbol and
t 1y . . +y l nyS1 , . . . , 8 ,  are terms. Then X (L ,M) denotes the set of equations
{ t :  = s1 , . . . , t ,  = Sn} .  In this case, L and M are said to  be equal modulo
E(L,M)(L  = M modulo X(L, M)). :

We understand sequents in the usual sense. Further we consider only
one-goal sequents. Note that a sequent of the form I' — f is called an axiom.

A notion of trees uses in  the usual sense. In  what follows, so-called sequent
trees are considered. A sequent tree is a tree with nodes labeled by sequents.

When a proof of  an  initial sequent S is searched, an inference tree T r  w.r.t.
S is constructed. At  the beginning, Tr  contains only S. The subsequent
nodes are generated when suitable rules are applied “from top to bottom”.

A set Eq(Tr) of equations is connected with every inference tree Tr. We
suppose Eq(Tr) is equal to @ for every initial tree Tr. For an inference
tree Tr  different from an initial tree, Eq(Tr) is determined as Eq(Tr') U
Y(L,M),  where Tr’  is such a tree that Tr  is “inferred” from Tr’ with some
rule application and X(L,  M )  is determined by this rule application.

An inference tree T'r is considered to be a proof tree w.r.t. S if  and only if
the following conditions are satisfied: every leaf of Tr  is an axiom and there
exists a simultaneous general unifier of all equations from Eq(Tr).

A Goal-Oriented Sequent Calculus. A calculus GS described below is
intended to establish that a formula G is the logical consequence of formu-
las Py, . . . ,Pa. (In this case, P , . . . ,P , ,  and G are called initial formulas.)
Clearly, for defining GS  i t  only remains to  give i ts inference rules (cf. [7]).

Goal Splitting rules. These rules are used for elimination of the principal
logical connective from the goal of a sequent under consideration. Any rule
application results in  generation of a new sequent (sequents) with a new goal
(goals) and, possibly, with new premises. Note that for all Goal Splitting
rules £(L,  M )  is equal to 0.

' r -FDOF ' -  FDO HR ' -FVF

I ' F -  F LF  — FF DT, FF

r -FVH TFA  ' =F
DEF ' -FT I -H  FF “
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Premise Duplication Rule.

I T ,  FIM*+] ,T2—L
T1 ,  F ' ,  F |M+ ] ,T2  — L

where L =~ M modulo ¥ (L ,M) ,  and F'  is a variant of a formula F .
Auziliary Goals rules. As in [7], an order of applications of the rules

of this group is “controlled” by a succedent literal L .  Note that below M
denotes a literal satisfying the following condition: L ~ M modulo X(L,M)

I ,  F IM ]  DAR,  IT; —-L  I ' , F>F |M* ,T ;—-L

I ,  (F IM* ] ) " ,T ;  =» L I ,Ty  — FT  I'y, A i |M* | ,T ;  = L I r ,  F

Ty, FV  F |M* | ,T ;  > L Ty, F |M* |V Fy, Ty — L
I ,  i lM+ | ,T ;  =» L I , J ,  = FT, F |M+J ,T2  — L I,I'; =» - F

I ,  F IM*  ART ;  > L PL,  FAFR{M* | ,T ;  =» L
I ,  F IM* t | ,F ,T ,—= L I ,  A |M* | ,F ,T ;  —» L

Ty, ~(F|M-|),T2— L Ty, M,T; = L
Ty, F~|M+|,T; > L Ty, M,T'2 — §

Contrary Closing rule(CC — rule). Let Tr  be a sequent tree and Br  be
i ts  branch with a leaf L f  labeled a sequent I' — L ,  where T is a sequence of
formulas, and L is a literal. Let B r  contain a sequent I ’  — M ,  where I" is a
sequence of  formulas, and M is a literal such that ~ L = M modulo X (~  L ,
M). If Tr’  is obtained from Tr  by means of adding one successor labeled by
I' — § to Lf,  then Tr’ is said to be inferred from Tr  by  CC-rule. The set
Eq(Tr') is determined as Eq(Tr)  U E (~  L ,  M).

By defining all the rules of GS, we have the following result.
Proposit ion 1 .  Let formulas P , , . . . ,P ,  form a consistent finite set of

formulas. A formula G is the logical consequence of P, , . . .  , P, if and only if
there exists a proof tree w.r.t. the sequent P , , . . . ,P , ,  -G  — G in  GS.

Modifications of  GS. A separate consideration requires the case, when
we examine only sequents of  the form My; V...V My ,  . . . ,  Mp1 V . .V  Maya

— Ly A...ALy, where My;, . . . ,  Mp», L1 , . . . ,Lj are literals. Because any
first-order formula can be reduced to the conjunctive (disjunctive) normal
form by  means of  logical-equivalence preserving transformations, i t  i s  easy to
see that establishing deducibility of any sequent is equivalent to establishing

3
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deducibility of a sequent of the form M;; V...V Miyyy . . . 5 May V..V M,,,
— Ly A.. .  A L i .  That is why we can investigate these sequents only. In this
connection note that if Gis Ly A. . .  AL i ,  then GT i s~  L;  V . . .V  ~ L;.

Taking the above into account, the calculus GS can be transformed into
a calculus LS  of literal sequents having the following rules.

Goal Splitting rule. The rule below generalizes (— A)-rule from GS in
the case, when A is considered as a multiple-place operation.

T—  LA . . .  ALm
'—Ly , . . . , T = L ,

Auziliary Goals rule. This rule is applied when the goal of a sequent is a
literal.

h ,A iV . . .VA , .VMVBV. . .VB ,  3 = L
Mn Al . . .  I "  9~  AT" 5~ B,,... ‚ I 'm  B!

where A ; , . . .  , VA,  By , . . . ,B , , L ,  and M are literals, I” is the sequence
l ,A1V. . .VA,  VM  V B,  V . . .V  B,,T3, L % M modulo X(L,M), and

15 ,  Al,  B i , . . . ,B ]  are new variants of A4,,...,A,,  B ı , . . .  , B,,  respec-
tively.

The calculus LS  has the same (— {)-rule and CC-rule, as GS has.
Proposition 2.  Let clauses P , , . . . ,P ,  form a consistent finite set of

clauses. A conjunction of literals G is the logical consequence of Py, . . .  ,P,
if  and only if  there exists a proof tree w.r.t. the sequent P ı , . . .  ,P, ,  G™ = G
in the calculus LS.

The peculiarity of LS  is that antecedents of inferred sequents coincide
with an antecedent of an initial sequent, say, I". This permits to consider
T as a set of input clauses and to transform any inference tree Tr  in LS
into a tree (Tr)  having the same nodes, as Tr  has, and labelling by only
goals of corresponding sequents. Such a tree (Tr) is said to be a goal-
tree corresponding to Tr  and we have an easy way to go from LS  to SLD-
resolution.

The completeness of SLD-resolution is a well-known result in Logic Pro-
gramming (see, for example, [8, 9]). The proposition below contains it.

Corollary (Soundness and Completeness of SLD-resolution). Let posi-
tive Horn clauses P , . . .  , P,  form a consistent finite set of clauses and G be
a conjunction of atomic formulas. The goal G is the logical consequence
of P , . . . ,P ,  i f  and only i f  there exists a proof tree w.r.t. the sequent
P, . . . ,P , ,  G™ — G in  the calculus LS  without any CC-rule application.

In conclusion, let us note that the corollary asserts that the calculi GS
and LS  can be considered as complete extensions of SLD-resolution.
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ABSTRACT
The main result of [2] was the probabilistic algorithm to obtain the autoreduced Grébner Basis of  an algebraic ideal over the
ring of integer numbers. This algorithm leaves a place for a possibility, that the basis obtained is not valid Gröbner one (with
certain, usually very small probability). The important idea is that we perform computation of  the autoreduced Grébner Basis
for the integer ideal I and for its projection I p  over the modular field Z,  simultaneously. I f  we see the zero reduction in
modular case, we don’t perform integer one either. We extended this idea for the Minimal Involutive Basis algorithm [6].
Using the method described in  [2], it was shown, that this algorithm is also very sequential.

1. INTRODUCTION
In this work we present an attempt to  parallelize the algorithm of computation of the minimal involutive bases. As Faugere
has shown, the task of the Gribner-like basis computation is very sequential and, therefore, every attempt to parallelize it
essentially breaks the original algorithm. The main reason is that the result of  the polynomial reduction often depends on
the other polynomial, in particular, on the last reduced polynomial.

We present also a pseudo-probabilistic Faugére-type version of the computation method of the minimal involutive basis of the
ideal. For example, we need to  launch the Minimal Involutive Basis algorithm [6] on an integer system. Usually most of the
time will be spent on involutive reducing the unnecessary polynomials (which have zeros as normal form). Instead of true
integer computation we can perform its modular analog, and see which involutive prolongations are redundant. And later,
having obtained the modular involutive reduction protocol, we can perform corresponding integer involutive reductions step
by step. Certainly, this algorithm is not correct everywhere, but it gives the valid minimal involutive basis with very high
probability. Upon completion of this part we have to  check the involutive basis property. If we have failed we have to  execute
slow integer computation.

Surprisingly, for most systems we can obtain a correct minimal involutive basis using this method without slow integer
computation and  in  many cases the check phase is very quick. We can also perform parallel checking using as much processors
as we have.

2. PSEUDO-PROBABILISTIC RECOMPUTING APPROACH, SEQUENTIAL VERSION
In  paper [2] a general probabilistic approach to the Buchberger-like algorithms is scetched. In  our paper we use this approach
to the Minimal Involutive Basis algorithm presented in [6]

In  the following algorithm we will denote by NFL the involutive normal form, by NM, the set of non-multiplicative variables
and by Criterion the involutive interpretation of the standard Buchberger criterion.

Criterion(g,u, T)  is true provided that if there is ( f , v ,  D)  € T such that Im(f)|Llm(g) and lem(u,v) < Im(g).
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The 82 ger Probabilistic Minimal Involutive Basis Algorithm works as follows: we assume the sets F,  G, T ,  Q to be the
sets of the polynomials with the integer coefficients. By  F,, G,,  Tp, Qp we will denote their projections to the sets of the
polynomials over Z,. The symbol g,  stands for the modular projection of an polynomial with integer coefficients g.

Procedure GetModularProjection(g) projects the polynomial g with the integer coefficients to a polynomial with the co-
efficients over the ring Z,  and returns its projection gp. If we have the set N of polynomials we will denote by Np, =
GetModular Projection(N) the set of projections of polynomials which are contained in N .

Procedure CheckV alidity() does the check phase of the algorithm. It checks, whether the initial monomials of the elements of
integer and modular set coincide(first case), or the leading monomials of a polynomial and its modular projection are equal.
If that equivalence doesn’t hold, that means, that there's sufficient divergence between the integer and modular case, and
there is no sense to continue the process. In that case CheckV alidity() stops the algorithm.

Algorithm Integer Probabilistic Minimal Involutive Basis
Input: F ,  a finite polynomial set
Output: G ,  probably, the minimal involutive basis of the ideal Id(F)
begin

F :=  Autoreduce(F)
Fr  : =  Ge tModular Projection(F)
CheckValidity(F,Fp)
choose g € F with the lowest Im(g) w.r.t. <
T :=  {(g,Im(g),9)}; Q :=  6;G :=  {g}
for eachf € F \ {g} do

Q:=QU{(f,im(f),0)}
gp :=  GetModularProjection(g); Gp : =  {9p}
CheckV alidity(g, gp)
repeat
"h :=0

while Q #0  and h=0do
choose g in (g,u,P)  € Q with the lowest Im(g) w.r.t. <
9» = GetModular Projection(g)
CheckV alidity(g, gp)
Q:=Q\ { (g ,u ,  P ) }
if Criterion(g,u,T) is false then hp :=  NF  (gp, Gp)
if hy, # 0 then h = NF.(9,G)

CheckV alidity(h,hp)
end
i f h # 0 then G :=  GU {h} ;  Gp := Gp U {hp}

i f  Im(h) = Im(g) then T :=  TU  {(h,  u ,  P ) }
else T : =  TU  {(h,im(h),0)}

for each f in ( f , v ,D )  € T s.t. Im(f) > Im(h) do
T :=T \ { ( f , v ,D ) } ;Q  = QU{(f,5 D ) } ;G  = G\ {f}
fp  :=  GetModular Projection(f); Gp : =  Gp \ {fp}

while exist (g ,u ,P) € T and z € NMr(9,G)  \ P and, i f Q # 0,
s.t. Im(gz) < Im(f) for all f i n  ( f , v ,D )  € Q do

choose such (g, u ,P) ,  x with the lowest Im(g)z w.r.t. <
T :=T \ { (9 ,u ,  P ) }  U{(g,u, PU {z} ) }
i f  Criterion(gz,u,T) is false then hy, : =  NFL(gpz, Gp)

if hy # 0 then h :=  NF.(9,G)
CheckValidity(h,hy)
if Im(h) = lm(gz) then T : =  TU  {(h,u,0)}
else T :=  TU  {(h,Im(h), 0)}

for each f in ( f , v ,D )  € T with Im(f)  > Im(h) do
T :=T \ { ( f , 5  D ) }Q  = QU{ ( f , n ,D ) } ;G  = G\ { f }
Jp : =  GetModular Projection(f); Gp : =  Gp \ {fn}

end
until Q #0

end

This algorithm seems to be efficient, when the integer coefficients of the polynomials proceeded are very large. The zero
reductions are very common during the execution of the algorithm. Experience shows, that the coefficients of these reduced
to  zero polynomials in  process of the reduction are often the largest during the entire algorithm. Avoiding of this work is the



83main reason of the effectiveness of the algorithm presented.

Of  course, we can give some examples, where such a procedure doesn’t give the valid Minimal Involutive Basis. In that case
we should perform the canonical algorithm.

After the execution of the probabilistic algorithm, we have to test, whether the system of polynomials obtained is the valid
Minimal Involutive Basis. The procedure is simple. Let G be the obtained set. We make all non-multiplicative prolongations
of the elements of  G and reduce them with respect to  G. If all prolongations are reducible to  zero, the basis is obtained. Else
we have to  perform canonical algorithm.

3. PSEUDO-PROBABILISTIC RECOMPUTING APPROACH, PARALLEL VERSION
The detailed analysis shows that involutive reducing of the redundant prolongations (the prolongations whose normal form is
zero) take a lot of  running time. The only way to  eliminate them correctly is to  use criteria, described in [7]. But this is only
a part of  the task. Some zero prolongations remain. For integer computations, the cost of one involutive reduction is rather
expensive, and the elimination of  redundant prolongations is very important.

In integer computations, probabilistic approaches play a significant role. The word “probabilistic” means that, after ter-
mination of the algorithm, we are to check, whether the obtained polynomial system is the minimal involutive basis of the
initial ideal. The theory requires that a Buchberger-like algorithm should be run again. (We generate prolongations and try
to get the normal form of them.) But empirical results show that, if the initial system is an involutive basis of an ideal, a
Buchberger-like algorithm quickly finishes the work.

Let I be an initial integer polynomial system and I ,  its modular projection. The algorithm consists of three steps:

oe Sequential calculation of the minimial involutive basis of  I ,  and recording the non-zero involutive reductions into the
list RL.

e Parallel re-execution of RL-reductions on the set I .  We finally obtain an integer system RL(I).

e Parallel checking whether RL(I) is an involutive basis.

We record the reductions in  the following form. Assume that we have added n—1 polynomials to  the basis. We are proceeding
the polynomial number n.  Initially, i t can be formed as the polynomial prolongation of the polynomials k by the variable
y or may be one of the initial generators. Then, it is reduced by polynomials number n ; , . . . , n :  to a non-zero involutive
normal form. Its protocol is, by definition, [Prolongation, k ,y,1,  . . . n i ]  in  prolongation case, and [FromInitialSet,n,,...  nz]
otherwise, where Prolongation and FromlInitialSet are the two opposite values of a Boolean indicator.

We do the second step as follows. Let us call a pair {polynomial,protocol} a reduction map. A one-step transformation of a
reduction map is one operation of  the following forms:

{0, [Prolongation,k,  y ,n ı , . . .n ı ] }  > {Prolongation(k,y), [nı, .. . n ı ] }  (1)

{0,[FromInitialSet, ni, . . . nx ] }  > {NextFromInitialSet,[nı,...  ne l }  (2)

{p, [n i , - . .nk] }  > {invoReduce(p,ni), [ni+1,...  nk]} (3)

The transformation 2 can be always performed. Operations 1 and 3 can be done only when the polynomials k or n; have
been yet computed. Otherwise, the map is called locked. A map {p, []}, where p is an arbitrary polynomial, is terminal.

We have one master and N slaves. Every slave keeps all the previously computed basis polynomials. At  each step, the master
reads protocols in  RL  and distributes the maps of the form

{0, [Prolongation,k , y ,n , . . . n i ] }  or {polynomial from initial set, [nı,..  .n ı ]}

over the slaves. Each slave transforms (reduces) the maps, which are not terminal or locked, and then sends polynomials from
terminal maps back to master. Sometimes, a slave interrupts its work to get all new computed basis polynomials from the
master and the new maps. After that, some locked pairs become non-locked and master can continue its work with them.
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When the algorithm ends its work, the master (and all slaves) will have the system which is likely to  be the minimal involutive
basis. But it not always so, and, hence, we need checking.

The checking is done in the following way. We create non-multiplicative prolongations of polynomials from RL(I) and send
them to the slaves. Since every slave has the whole basis list, i t involutively reduces the received pairs itself and sends the
error message if the result is not zero. One can see that with increasing of the slave number, the speed of testing also linearly
increases.

Also we present results of the theoretical estimation of the maximum possible parallelization quality for number of test
systems. This is done using Faugére’s technique, for detailed description refer to  [2].

Pseudo-Probabilistic Faugére’s algorithm is a mighty tool for computing the involutive basis of integer polynomial systems.
The most important fact for parallelization of  this algorithm is the possibility to  check basis using all available processors.

Our program complex supports both integer and modular field computations. It is implemented in  Microsoft Visual C++  6.0
and can be compiled on many platforms. Parallelization is supported by means of MPI  1.1 standard.
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In this poster we present the Stern-Brocot tree and a (binary) repre-
sentation for rational and real numbers based on this tree. We show some
arithmetical algorithms for this binary representation.

The Stern-Brocot tree is a binary tree containing all positive rational
numbers with the important property that each rational number occurs ex-
actly once. For B and EB we define the mediant of them to be the fraction
214 In this tree every row consists of the fractions that are mediants of
elements of previous rows. We start to write the two pseudo-fractions 2 and
3 we proceed to construct the tree row by row. The first row is the mediant
of  the two initial pseudo-fractions, that is 21  = I We write this mediant
in the middle of the initial pseudo-fractions. The second row consists of the
mediant of ( f ,1)  and the mediant of ( } , } ) .  We continue in this way and
each time we choose two neighbouring fractions (i.e. two fractions which
when moving from left to  right there is no other fraction between them); and
we place their mediant in a new row and in the middle of  the two parents.
This construction is illustrated in Figure I .  The resulting tree has many in-
teresting properties. We present some of the basic properties in this poster.
For more properties including some combinatorial properties see [4, 1].

Lemma 1 All  the fractions occurring in  the Stern-Brocot tree are irreducible.
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Lemma 2 Every positive rational number occurs exactly once in the Stern-
Brocot tree.

It has already been observed [4] that this property can be used to give
a binary encoding of positive rational numbers. We will formally introduce
this representation as a basis for inductively defined rational numbers and
present the algorithms for computing the arithmetical expressions on them.
This representation has the benefit that it is easily formalisable in  a theorem
prover using inductive types. Thus we define the set USB  of unsigned Stern-
Brocot rational numbers as:

USB=L  USB | R USB | I
Therefore we represent any positive rational number by  a finite sequence

of L 's  and R’s which ends in I .  Subsequently following the methods for
computing with continued fractions [3, 7, 5, 6] we will show the algorithms
for computing homographic functions:

Hy :  QQ
Hy(z) = = a,bc,deZ A=][%}

and quadratic functions:

Qs:  RY — RY
Qulz ,y)  = Zretars obode fo heZ

for this representation. The latter will give us the algorithms for computing
the field operations.

We will show that this inductive representation can be generalised to
a coinductive representation. That is to say we define the set of  unsigned
Stern-Brocot real numbers:

CoInductive USB  =L :  USB — USB | R: USB — USB | I :  USB

As defined here, a real number is a possibly infinite binary stream of  L ’s
and R’s (and if i t  is finite it ends in I ) .  As it is the case with all efficient
representation of real numbers, some redundancy will arise here. In the
poster we will briefly discuss this redundancy.



Similarly the algorithms that we defined for computation on the rational
Stern-Brocot representation (the homographic and quadratic algorithms),
can be generalised to obtain lazy algorithms for the case of  real numbers.

Furthermore, we shall give some generalisations of quadratic algorithm,
to  calculate more complex arithmetical expressions, such as polynomials and
rational functions. We will also mention how one can use the methods given
in [6] to evaluate the power series of transcendental functions.

The formalisation of algorithms in the Coq theorem prover [2], is in
progress. We conclude the presentation by showing some of  the difficulties
peculiar to this formalisation.
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Abstract
We present a prototype of a browser based GUI  for the interactive reasoning system CORE. Very

sophisticated reasoning and proof planning systems such as CORE and QMEGA exist for experts.
The purpose of our research is to make these systems usable by the non-experts. We consider this a
prerequisite to establish automated reasoning and proof planning as an advanced assistant tool for
maths education and human mathematical reasoning. On the proof of ”/2 is irrational” we provide
a demo of a prototypical browser based GUI  of CORE.

Introduction
A calculator is such an easy to use helper for basic mathematical operation as a simple text editor
for writing words. To calculate log(8) (up to a certain precision) only three actions are necessary
and within a millisecond we see the result on the display. One reason why we use the calculator
is obviously its speed, but another reason is that we would not know how to calculate it by hand.
Either because we have never learned it or we cannot remember. If we calculated log once in school
by hand then probably just to  get a better "feeling” of the function log in  general rather then for the
result itself. As long as we can interprete the meaning of log(8) and its computed result we actually
do not need to  know how to  calculate i t .  So we can dispatch the job of the mechanical calculation to
the calculator which does it correctly.

The success of  a calculator is (besides its computational speed) due to  its user interface: It is very
straightforward to type in what you want to be calculated. So we learn very early in school how to
use such a tool.

Success of  Computer Algebra Systems in Maths Education
For maths education the use of a calculator is  o f  course very limited, mainly as service for pure
calculation. With the rise of computer algebra systems more powerful tools are available. Many of
them are capable of  symbolic computation and they provide their own programming language. But
the more features a tool offers the more difficult it is to  make the whole functionality transparent to
the user.

Nowadays there are CAS with a very complex functionality (such as Maple, Mathematica, Mu-
PAD, etc.). In spite of their complexity they seem to be user friendly enough to be employed in
maths education.

We can dispatch such tasks as, e.g., integration of functions, simplification of  fractions or equations
etc. to  such a CAS (with some restrictions to  correctness). Even though there is no longer a keyboard
that provides a key for each operation (like e.g. a "log”-key on calculator) the instruction to  the CAS
is almost as simple as the "log”-key. One types just such more or less self explaining commands like
Integrate[t(x), {x, a, b}]".

Interactive and Automated Theorem Proving
CAS are even able to  do proofs if we consider a proof a mapping from a statement to  a truth value (a
trivial example: Mathematica maps " 0  < a —a” to  "false”). But a CAS does not supply a framework

91



92
for interactive or automated theorem proving. The user does not have access to any kind of logical
calculus within the system not to speak of proof planning.

Reasoning systems such as CORE and (MEGA [1, 2] are built on logical calculi and they provide
means to do logical justified proof steps. They even provide methods (MEGA now and CORE in
future) which abstract from the calculus-level and allow proof steps at  a level that is closer to  human
mathematical reasoning.

As such systems already exist, why dont we use them in education or as proof assistant? The
answer is: They are far from being user friendly! It is still a challenge how to  model formally human
like mathematical reasoning in methods, control knowledge, strategies etc. (which is not part of this
work). Moreover it is the missing intuitive interface to the user (the primal goal of this work).

Difficulties of  Building an  U I  for a Theorem Prover
If we look inside a mathematical text book, we find that all those operations that could be done by
a CAS - like integration of functions, simplification of fractions or equations etc. - have a (quasi)
formal presentation. For instance, the equation ” [ sin(z)dz = cos” can be read as an procedure in
a CAS: "The operator Integrate applied on sin yields cos”. Or ”(a? — b%)/(a +b)  = a — b” as "The
operator Simplify applied on (a? — b?)/(a + b) yields a — 5”.

In contrast we do not find formal presentation of logical operations that could be done by a
theorem prover. For instance we never find (quasi) formal presentation of the application of modus
ponens, or the forall introduction in mathematical text book. Actually, mathematicians rarely use
a logical calculus for mathematical reasoning. Russell and Whitehead [4] showed in their Principia
Mathematica how tedious simple proofs become if they obey to  a formal calculus. Therefore, human
mathematical reasoning has still a rather informal look.

Unfortunately, a theorem prover does only understand formal input. Even if we try to model
human like mathematical reasoning by an interactive proof planning system it  is still a system which
needs a formal input. But there is no corresponding formal presentation of tactics, methods, strate-
gies, etc. in  mathematical text books. In order to  tell the system to  apply one of the proof planning
operations we first have to learn its meaning. This includes the understanding of its formal presen-
tation. But there is no cultura! evolved (quasi) formal and widely understood presentation of proof
planning objects which could be the basis of the UL

So one difficulty of the design of a UI  for a theorem prover is that the presentation of opera-
tions should suggest their meaning much more than in CAS where the UI  is rather concerned with
presentation of already understood operations.

UI  for Core on  the calculus level
Since the definition of  the operations and components which constitutes proof planning in the new
system CORE  is still in  progress, it is to  soon to  design a UI  for proof planning. But one can already
prove very interesting theorems interactively in CORE without the help of  proof planning just using
its elegant calculus.

Actually, this calculus itself is a great improvement towards a rather human oriented logical
reasoning. Also MEGA did already a step in this direction as its underlying calculus is natural
deduction rather then a machine-oriented calculus like resolution of  the traditional automated theorem
provers. But also natural deduction appears too low-level to  be practicable even for simple proofs.

In a real mathematical proof scenario the formal presentation of the theorem to be proved is a
more or less complex logical formula. From formal perspective the mathematician typically wants
to focus on some subformula in order to  refine it to subgoals. Using natural deduction to get access
to the subformula under focus someone is concerned with a lot of technical inference steps like e.g.
quantifier elimination.

In CORE’s underlying calculus you have a straight access to subexpressions. This means that
you set your focus there and the system provides you the complete collection of replacement rules
which are allowed to apply on the focus (within a given theory). Of  course only those are applicable
which match the subexpression. The application of  replacement rules yield new subgoals.

Even a user with almost no formal logic background who has no glue how the system finds the
replacement rules to  a given focus has immediately an idea what to  do with replacement rules namely
replacing expressions. So as soon as the user knows which subexpression of a given complex formula
he wants to manipulate CORE does a valuable service.



Though the handling of CORE  is very easy it is absolutely not user friendly in practice although
i t  has a GUI  namely COUT.

Features of  our New Prototype U l
To reveal the power of CORE to a non developer we must be aware that he gets soon impatient if
basic interactions with the system are awkward to handle. This is the case in LUZ  so far: Putting
a focus on subformula forces the user to type in the corresponding position as list of numbers.

The much more intuitive interaction for this goal is just pointing with the mouse to the corre-
sponding subformula. Before we switch to  the new focus we want to  see the selected focus highlighted
in  order to be sure that the system selects the intended subformula. Alternatively to mouse selection
i t  is comfortable to navigate through a formula tree with arrow keys. The selection of replacement
rules should work in a similar manner.

Before we can do anything with CORE, the problem (i.e. the theorem + the theory) must be
passed to the system. Up to now this is done via a specification file written in the specification
language casL (in future OpenMath will be supported too) [3]. Existing problems must be loadable,
of  course. In addition the user may modify or extend a problem or even write his own one. So we
need an input editor. An  input editor is a project on its own, but we try to provide a restricted input
editor for demonstration purpose. We leave the input editors list of  features open.

During the proof the user may recall some previous steps. So some means to browse through
proof history and the proof plan must be provided. Also, a graphical tree that represents the proof
plan does a good service to survey the proof procedure. A click on node yields the concerning proof
status of the history.

Of  course we want a state of the art rendering of mathematical expressions. We abandon com-
pletely verbalization (as verbalization is a research field on its own). Therefore, the user must be
capable to understand logic syntax.

Implementation of  the Prototype
We try to  provide most of the features mentioned above in our prototype. The basic requirement is
the facility of  interaction on state of  the art rendered mathematical expression. In modern browser
(e.g. Mozilla, Internet Explorer) we get this for free. Therefore, we decided to  implement a browser
UL Interaction events can be sufficiently controlled by JavaScript. This script language is also
predestinated for fast prototyping.

The purpose of the prototype is also to find the basic system architecture of the final UI. In
principle we follow the Model View Control design pattern. Roughly spoken the control handles the
interaction events, the view renders the presentational layout and the model manages the logical
functionality of the interactive objects and communicates with CORE. View and control lie on client
side and the model on server side. We take a Lisp server which enables an easy communication with
CORE which is also written in Lisp.

Conclusion and Outlook
We restricted our prototype GUI for CORE to an interactive proof frontend on CORE'’s calculus
level. In a demo proof of "+2 is irrational”, we hope to make CORE’s elegant calculus visible. In
this case it shows that real world proofs can be carried out in  an almost mathematical natural fashion
at a calculus level.

For more complex theorem proving a more abstract framework as developed in the proof planning
research is needed. As soon as this framework is established for CORE we go ahead prototyping a
GUI  that supports it too.

The long term goal is an interactive maths environment for theorem proving and proof presentation
that can be connected to a reasoning system like CORE and to a mathematical tutor system that
supports meta reasoning in a Polya style. But it should be also possible to  use it stand alone as tool
that supports the user structuring his proof ideas just like with the pencil and paper but with an
intelligent support of elaborated interactive features.

The demo prototype is a component within this large vision.
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Take a look at the following problem:
Let K be a field and let K[z] be the commutative polynomial ring in one

variable over K .  Let K[f,  g] be the subalgebra generated by  the nonconstant
polynomials f and g, what are the necessary and sufficient conditions for
K[ f ,g )= Klz] ?

In our research group we are inspired by this problem and study other
problems which are related to subalgebras generated by two polynomials in
the univariate polynomial ring. Even though most of the problems are fairly
easy to  formulate, the proofs are often far from straightforward. Most results
rely on the characteristic of the field, as for instance the theorem, which was
first proved in [1]:

Theorem 1 Let f , g  € K[z] \ 0. Assume that the characteristic of K does
not divide ged(deg(f),deg(g)). If  K(f,  g] = K|z] then either deg(f) divides
deg(g) or deg(g) divides deg(f).

Since most results have similar restrictions on the characteristic of  the field,
or are even restricted to characteristic zero, i t  is natural to ask whether these
limitations are imposed by  the problem or if they are a result of  the method
of proof. We have tried to find a characteristic independent approach to
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these problems and have managed to prove some results which are indeed
independent of  the characteristic.

SAGBI bases, as introduced in [3] and independently in [2], have many
natural connections to these problems. This is illustrated by the appearance
of the SAGBI concept in the theorems below, which are a selection of the
results we have managed to prove:

Theorem 2 { f ,g }  is a SAGBI-basis if  gcd(deg(f), deg(g)) = 1.

Theorem 3 { f , g }  is a SAGBI-basis if and only if [K(z) : K( f ,9 ) ]  =
ged(deg(f),  deg(g))-

Theorem 4 Let n = deg(f), m = deg(g), d = ged(n,m), n' = n/d and
m'  = m/d If  h is the S-reduced remainder of the S-polynomial f™  —g™ and
ged(d, deg(h)) = 1 then { f , g , h }  is a SAGBI-basis.

Note that a consequence of  Theorem 2 and Theorem 3 is that if
ged(deg(f),deg(g)) = 1 then K(x) = K(f,  g), this however does not imply
that K [x] = K|[f, g] as can be seen from the example f = 2%, g = z3.
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When we deal with real mathematical problems in the automated reason-
ing, we rarely meet “absolute”, unconstrained rules, definitions, statements.
Usually, everything we use is supplied with certain conditions (e.g. type con-
straints), so that we have to eliminate them first. For example, we can’t
reduce the fraction 2 until we prove that x is non-zero.

Consider a big formula of the kind (---Vz(z € R* D> (---Z&...)) .--) .
I t 's  evident that we can replace % with y ,  but how to prove i t? The task
itself seems to be absurdive: as soon as a term depends on bound variables,
we can’t reason about i t .  In the traditional fashion, we should first split
our big formula up to the quantifier bounding z, make a substitution (or
skolemization), separate x € R t ,  and only then make the simplification.

One can argue that there is no gain in  any simplifications while a formula
to  be simplified lies deep inside, that we would split our big formula anyway
to use that fraction in a proof. However, we believe that i t ’s useful and
instructive to simplify our problem in it ’s initial form as far as possible in
order to  select the most perspective way of the proof search.

Besides constrained simplification, there is a question of  well-definedness
of a given formula. Every occurrence of a defined symbol must conform the
definition guards to be consistent. And it’s quite important to check that our
problem is correctly formulated before investigating it seriously. But such a
verification is connected as well with the reasoning about terms containing
bound variables (regard the example above).

The same problem exists on the propositional level. Suppose that our
theory contains an axiom A DO B ,  where A and B are fixed propositional
letters, and consider a formula of the kind (---  (AA  ( - - -B - - - ) ) - - - ) .  Again,
it would be reasonable to replace B with T (truth) and then simplify the
whole formula. Again, we have no means to do it directly.

Let us return to  our first example. While the statement “x  is non-zero” is
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surely meaningless, we can say “z is non-zero in this occurrence of X ” ,  Our
intuition prompts that side by side with the usual truth value, there exists a
so called local truth value defined with respect to  a context, to  some position
in a formula. A statement that is generally false or even meaningless can
become locally true being considered in that position.

In  the paper we develop the notion of a locally true statement. and show
that we can consistently reason about interiors of  a formula. For the sake of
brevity, we give our statements without proofs.

Preliminaries. We consider the first-order language with the equality = ,
the logical connectives =, A, V, D, and = ,  and the quantifiers V and 3. Two
formulas F and G are said to be equivalent (written F = G) if their logical
equivalence is valid in the first-order logic, i.e. | F = G. We denote the
universal closure of a formula U by VU.

A position is a word in {0,1}*. The set of positions of a formula F ,
denoted by II(F), is defined as follows (below, i.II denotes {i.w | € IT}):

(A)  = {e} where A is an atom
I (x  F)  = {e}U 0.II(F) where * € {Vz,3z,-}

II(F *G)  = {¢}  U 0.II(F) U 1.I1(G) where * € {A ,V ,  >, = }

An  occurrence is a pair (F,7) ,  where F is a formula and 7 € II(F).
For every such pair, we denote by F | ,  the subformula of  F at position = :
Fl. =F ,  ( *  F ) l ox  = Fx ,  (F  * G) lox  = Fy ,  (F  * G)l1.x  = G l .

Given an occurrence (F, 7) and a formula U, the formula F[U/x] is defined
as follows (free variables of U are allowed to be bound in F[U/x]):

F[U/e] =U (x F)[U/0.7] = (x F[U/rx])
(F*G)U/0.7) = (F[U/T]*G) (F»*G)[U/1.7] = (F  * G[U/x])

Local images. Given an occurrence (F, 7) and a formula U,  we define the
(F,m)-image of U (denoted (U)F) by the following identities:

U)  =U Uhr =GD(U)y  Ur = FU)
Ulex= U)r Ukea® =GV(U)y UMS= FVU)E
Ua =Vz (U) r  Urt =GVU)E  UMS= FU)
URE =U)   (U)zS= (U)F (UNC= (U)

The formula (U)? says “U  is true at position x in  F ” .  Note that it doesn’t
depend on the subformula F|,.
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Example 1 Let F be the formula

Vr ( reND Vn(neN D (z=fib(n) =
= ( (n<1Az=1 )V  z=  ( f ib(n-1)+f ib(n—2))) ) ) )

This formula represents a recursive definition, i.e. i t  contains occurrences of
the symbol being defined to the right of the “main” equivalence sign. Indeed,
for t  =0.1.0.1.1.1, F l ,  = (z = (fib(n— 1) + fib(n — 2))). We want to verify
that the arguments (n  — 1) and (n  — 2) satisfy guards of the definition and
are strictly less than n (note that the ordering must be well-founded).

Consider the second term. We should prove ((n—2) € NA (n—2) < nF.
The latter formula is equal to

Vi(zreNDODVn(neND ( (n<1Az=1 )V ((n-2) e NA (n-2) < n))))

But this formula is false given n = x = 0. And this points out a mistake in
our definition: z = 0 makes false the left side of the disjunction F|o.1.0.1.1» SO

we have to consider the right side with n = 0 in order to evaluate the truth
value of the whole disjunction. Now it’s easy to build a good definition F':

Vz (ze  ND Vn (n€N  DO (z ~ fib(n)
= (n€<1Az=1 )V  (n22A  z=  (fib(n — 1) + fib(n — 2)))))))

Let us sketch some important properties of  local images.

Lemma 2 For any occurrence (F,r) and a formula U, VU (UF.

Lemma 3 For any occurrence (F, 7) and formulas U and V,

(U  = V)r  >00 )  = (V i )  EUAV)  = ( (U)FA (V)7)

Corollary 4 EE (UD  V)E > (UF  D (V)F)

Corollary 5 Given a quantifier-free context C,

E{Q=WEA-ANUs=Va) iA t ims )EA- Abm = sm)E) D
i») (C l t y . . .  Uns t ay  y t )  =C[V i . . . ,  Vay 815. evs  Sm]))E

These lemmas show that we really can reason about locally true state-
ments: combine them in conjunctions, use the substitutivity of equivalence,
apply modus ponens. However, the key property of local images is given by
the following theorem.
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Theorem 6 For any occurrence (F ,x )  and formulas U and V ,

= (U  = V)F > (FIU/x) = FIV/x))

Corollary 7 Given an occurrence (F ,x )  and a formula U,

EU)  5 (F=F I /UAFL) ] )  (UF 5 (F=  Fix/(U > Fla)

So we can safely replace subformulas not only with equivalent formulas
but with locally equivalent ones as well. Note that the inverse of Theorem 6
holds in the propositional logic: |=  (U = V)F = (F[U/x] = F[V/x]). The
local equivalence is there a criterion of the substitutional equivalence. It’s
not the case for the first-order logic, where (3zz  ~0 )  = (3zz  % 0).

Now, why can we trust the reasonings from Example 1? Let us define
a definition as a closed formula of the form VZ(C(Z) > (P(%) = D(3))),
with P a predicate symbol, X a sequence of distinct variables, C' a guard
formula that doesn’t contain P ,  and D a ezpansion formula. Consider any
occurrence (F, 7 ) ,  where F | ,  = P(3). If we can prove (C(3))I, then we have
(P(8) = D(5))f by Lemma 2 and Corollary 4 (sure, on condition that the
definition makes part of the theory). Then we can replace P(3) in  (F, 7) with
D(3) by Theorem 6, i.e. expand the definition.

Returning back to Example 1, we can guarantee that such an expansion
is always possible (since (n  —1 € N A n—2  € N )F  holds) and never infinite
(since (n —1 <n  A n—2 <n ) f  holds).

Conclusion. We hope that proposed notion of  a locally true statement can
be useful in automated reasoning, especially, in the frame of  interactive the-
orem proving with various proof assistants. I t allows to formalize and check
certain correctness properties of  formulas with regard to a given theory. I t
can also serve for the expansion of definitions and for simplification routines.

Note that all our results are intuitionistic. Furthermore, the definition of
the (F, 7)-image can be easily extended to the language of the (uni)-modal
logic: take (U)SF = D(U)F and (U)$F = O(U)F. Then our statements
can be proved for the modal logic K ,  hence for any normal modal logic.

In  future, we plan to integrate this technique into a deductive framework
and to investigate further its capabilities. In particular, we would like to
learn how transformations of  a problem during a proof search influence its
“local properties”, i.e. statements that are locally true in it.
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1 Introduction :

The representation formalisms for mathematics of  current theorem proving sys-
tems are usually based on first-order logic, higher-order logic, A-calculus, type
systems or set theory. In  [BMM*01] we identified a phenomenon that we called
‘loss of  information’, that is, some important aspects of  the knowledge a mathe-
matician has about concepts is hard to  reconstruct when it is expressed in  one of
the formalisms mentioned before. A more elaborated analysis of the differences
between representations used in  mathematical textbooks and logical formalisms
is given in [KP02].

With the poster I want to  address one of  these shortcomings, namely propose
a frame-based data structure to  model the hierarchal knowledge mathematicians
have about concepts and describe its application for theorem proving.

2 Motivation

New concepts in  mathematical textbooks are typically introduced by its defini-
tion followed by lemmas stating the basic properties of the concepts, examples
are given and connections to already known concepts are introduced.

As an example we take the degree of a polynomial. The degree deg[p(z)]
is defined as the highest exponent of the polynomial p(z). The immediate
properties are

deglp(z) - g(z)] = deg[p(z)] + deglg(z)],
deglp(z) + q(z)] < max{degp(z)}, deglg(2)]},

deg[p(z)] = 0 iff p(z) is a constant.
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These equations are so strongly connected to the concept degree, that their use
would not be explicitly referenced.

As another example, a group can be defined as an non-empty set G and
associative operation o : G x G — G such that there exists an neutral element
e € G so that for all z € G holds zoe  = x = eo z ,  and for each y € G exists
an inverse element z € G with yo  z = e = y 0 z. Immediate results are that
the neutral element is unique and there is exactly one inverse element of for
each member of  G. This property is so fundamental that the inverse element is
usually denoted by a function 7 !  : G = G with z 0 z~ !  = e. The new concept
group can be connected to already introduced concepts as monoid, since every
group is a monoid.

It seems that the immediate results are used by mathematicians as if they
would belong to the definition of the concept itself. Theorems about subsumed
definitions allow the transfer of knowledge to other concepts. This hierarchical
structure is hard to retrieve when the concepts are defined by a formula and
every property is uniformly encoded as theorem.

I argue that the hierarchical knowledge about concepts can be important for
theorem proving system, because:

e The structure of mathematical textbooks should instruct the reader how
to work with the introduced concepts. Since this structure is important
for human reasoning it could be important to enhance the reasoning ca-
pabilities of theorem proving systems.

e A mathematician as user of a theorem proving system would expect that
the system is able to apply the knowledge he trivially connects with a
concept.

3 Frames

Kerber introduced in [Ker92] a frame data structure for mathematical concepts
to  be used for mathematical databases. A very similar object-oriented encoding
is proposed by Vernitski [Ver] for the use in education systems and databases.
A frame is data structure with the slots given in the following table:

concept
parameters
equivalent def in i t ions
simple properties
typical examples

The slots contain lists of objects corresponding to the label of the slot. The
information encoded in the frame representation shall be used to allow the
following functionalities:

¢ Inheritance of  frames: properties of  a concept can be  accessed from sub-
sumed concepts.
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e Flexible formalisation: different views on objects can be expressed by
different definitions given in the slot equivalent definitions.

e Choose simple condition to establish an assertion: equivalent definitions
allows to choose how to prove that an object is an instance of a concept.

e Detection of ‘situations’: detection of a property becomes more indepen-
dent from the actual problem encoding, it can be accessed via the inheri-
tance of  frames.

e Context attached to  objects: it becomes possible to get an answer to the
question “What is known about the object z.”

e Prove trivial assertions: a mechanism to prove assertions that are direct
conclusions of the knowledge encoded in frames. This can be used to
introduce the notion ‘trivial.’

e (Presentation: use the knowledge about concepts to  explain proof steps.)
With the poster I will present an  implementation of  the frame representation in
the QMEGA system [SBB*02] and possible applications for proof planning.
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Abstract

This poster is about the OpenMath related Java software developed at  RIACA ([4]). This list of software
includes: an API for handling OpenMath objects ([5]), MathBook ([2]) an OpenMath-based document markup
language, OpenMath shells ([7]), several phrasebooks, and a JSP tag library for handling OpenMath ([6]),
among other products.

OpenMath([3]) is a language designed for the representation of  mathematical objects. It has evolved from
its initial goal of  being the lingua franca among computer algebra packages to  that of being the language used
for communicating mathematics among computational packages. OpenMath focuses on the content side of
mathematics with the understanding that for presentation it is better to  use MathML([1]).
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Formal Concept Analysis arose around 1980’s as a result of  a systematic
framework development of  lattice theory applications by  a research group in
Darmstadt University of Technology, Germany.It is a field of applied mathe-
matics used for deriving implicit conceptual structures out of  explicit knowl-
edge. Formal Concept Analysis is based on the mathematical formalization
of  the philosophical understanding of  concept and conceptual hierarchy, bor-
rowing mathematical foundations from lattice theory.A concept is constituted
by two parts: its extension, which consists of  all the objects belonging to  the
concept, and its intention which contains the attributes common to  all  objects
of  the concept. This formalization allows to  form all concepts of  a context and
introduce a subsumption hierarchy between the concepts, giving a complete
lattice called the concept lattice of  the context.

Formal Concept Analysis looks at knowledge representation and pro-
cessing from a mathematical order theoretic point of view.It allows graph-
ical representation of structured knowledge as conceptual hierarchies and
mathematical thinking for conceptual data analysis and knowledge process-
ing. Knowledge is represented as concepts in the nodes of  the concept lattice
ordered by the subsumption relation, giving a taxonomy.Concept lattice is

. used to query the knowledge and to derive implicit information about the
knowledge.

Isabelle is a generic theory development environment for implementing

1
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logical formalisms.It has been instantiated to support reasoning in several
object-logics like first-order-logic, higher-order-logic, Zermelo-Fraenkel set
theory and T,  S4 and S43 modal logic systems.Specialization of  Isabelle for
Higher Order Logic is called Isabelle/HOL [1].Isabelle/HOL theorem proving
environment provides an  ML  programming language-like interactive interface
for theory and proof development.Isar extension of Isabelle [2] provides a con-
ceptually different view on machine-checked proofs through an interpreted
language environment which is a more robust and comfortable development
platform, with support for theory development graphs and single-step trans-
actions.

Isabelle theories consist of a signature which contains necessary typ-
ing and parsing information, and a collection of axioms.A theory defini-
tion extends an existing theory with new signature specifications and ax-
ioms.Development of  a theory may involve many other theories in a hierar-
chy.Each Isabelle proof works in a single theory associated with the proof
state, but many theories may exist at the same time.

My aim is to implement the theory of Formal Concept Analysis in Is-
abelle/HOL proof assistant.My motivation is to build a Formal Concept
Analysis tool for knowledge representation and query on the concept lat-
tice with machine-checked theory. In my  implementation I will use the Isar
extension for better readability of proofs and ease of implementation.For
the ordering and lattices in Formal Concept Analysis, I will use Markus
Wenzel’s orders, bounds, lattices and complete lattices theories [3] in Is-
abelle/HOL.Implementation of the theory will proceed following the text-
book Formal Concept Analysis [4].I will start the implementation with for-
mal definitions of context, concept, common objects (extent) and common
attributes (intent) of  a concept and will proceed with the proof of  basic theo-
rem.My aim is to be able to prove the major theorems of the subject covered
in [4].

Keywords: Knowledge Representation, Formal Concept Analysis, con-
cept lattice, Isabelle/HOL Proof Assistant.
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Abstract

We study aformal specification of  the shared data space architecture, JavaSpaces. This Java technol-
ogy provides a virtual spacefor entities, like clients and servers, to  communicate by sharing objects.

We use uCRL [7, 2], a language that combines abstract data types with process algebra [1, 5], to
model an abstraction of this coordination architecture. Besides the basic primitives write, read and
take, our model also captures the event notification mechanism, transactions and leasing.

The formal model can be used to verify distributed JavaSpaces applications and to evaluate the ar-
chitecture itself and its possible extensions or  modifications.

1 Introduction

It is well known that the design of  reliable distributed system can be an extremely arduous task.
The parallel composition of  processes with a simple behavior can even produce a wildly complicated
system. The use of  coordination architectures is a suitable way to manage the complexity of  specifying
and programming large distributed applications.

We study the JavaSpaces technology which is based in  Linda [4] and provides a platform for designing
distributed computing systems. Protocols built under this technology are modeled as a flow of objects
between the space and the external processes. The space handles the details of  concurrent access to the
common repository. The interface provided by JavaSpaces is essentially composed by insertion (write)
and lookup primitives (read, take, readlfExists and takelfExists). The objects in the space are leased
for a period of time, after i t  they are automatically removed by the space. Programmers can specify
a timeout to the look up operations meaning how long the operation is  willing to wait for a matching
entry. JavaSpaces supports a transactional model ensuring that a set of  grouped operations are performed
atomically. Processes can register their interest in  future incoming entries, the space notifies the arrival
of  new entries by sending events. Figure 1 shows an overview of  the architecture, for more information,
see: [6, 10].

*Partially supported by PROGRESS, the embedded systems research program of  the Dutch organisation for Scientific



112

Application processES
reada

wity |  @ comes
App l i ca t  Vid  f i

= S| ® 2

waiting for notify| SP  \ i
notification Event TR —

read(waiting) / Transaction
0 write \ take

-
"Application Application

process process

Figure 1.  JavaSpaces architecture overview

The goals of  this research are: to evaluate the features of  the JavaSpaces architecture and its possible
variations and to verify the correctness of JavaSpaces applications. Therefore, we specify a formal model
covering the main characteristics of the technology in uCRL, a language which combines abstract data
types with process algebra [7]. The verification of  the systems is done by simulation, visualization of
the state space and model checking using the combination of  uCRL and CADP tool sets.

2 Specification

A uCRL specification is composed by two parts: the definition of  the data types, called sorts and
the processes definitions which are composed by parameterized actions and process variables combined
using the operators: .,+,||, sum (X),  that express the possibility of  infinite choice of  one element of  a
sort, and the conditional expression “if-then-else” denotedp < b > g, where b is a boolean expression,
p and gq process terms. If  b is  true then the system behaves as p otherwise i t  behaves like gq.

The space is modeled as a single process calledjavaspace. External agents are implemented as sepa-
rate processes executed in  parallel with the space. A JavaSpaces system is specified in  uCRL as follows:

System = javaspace(...) || external_Py(idy:Nat,...) || external_P,(id;:Nat,...) || ...

The arguments of  the javaspace process represent the current state of  the space. They are com-
posed by: stored objects, active transactions, the current time, active operations, notify registrations, et
cetera. .. External processes interact with the space by means of  a set of  synchronous actions, derived
from the JavaSpaces API. Every process has a unique identification number used by the space to control
the access to the common repository. Processes use the sort Entry to encapsulate the shared data.

The insertion of  a new entry into the space is  done with the action write which has four arguments: the
process identification number of  the sort Nat (naturals), the entry of  the sort Entry, the lease of  naturals
and the reference to a transaction (null  i f  i t  is  not submitted to any one). When the space receives a write
request, it automatically encapsulates the entry, with its lease and the reference to the transaction, in  an
new data sort (Object) and stores it  in  the database which has the structure of  a Ser.

Research NWO, the Dutch Ministry of Economic Affairs and the Technology Foundation STW, grant CES.5009.



113

The JavaSpaces specification says that a look up request searches in  the space for an Entry that matches
the template provided in the action. If the match is found, a reference to a copy of  the matching entry
is returned. If no match is found, null is returned. We do not use templates to model the matching
operation but by adding to every invocation one predicate, as argument, which determines if an Entry
matches or not the action. This predicate belongs to the sort Query, defined by the user according to
the specification of  the Entry. The sort must include the operator fest used to perform the matching.
An entry of  the space will match a look up action i f  i t  satisfies the associated test predicate. Look up
operations are not atomic, they are performed by means of  two synchronous actions. First, the process
makes the request and blocks waiting for a matching entry or for the timeout expiration. The space
stores this request in  a set with other pending requests and afterward i t  returns, using a different action,
a matching entry, i f  i t  is found, or a null value, i f  the timeout has expired.

Processes can join several operations in such a way that either all of  them complete or none are
executed. The behavior of  all the primitives would be slightly different depending on whether they are
executed under a transaction or not. Transactions are modeled by a system of  lock sets in which the
changes done by the primitives are stored until the transaction commits or aborts.

The space also manages a set of  registered processes that wait for the arrival of  new entries. When
a new entry matches a registration query, the space send a notification event to the associated listener
through a non reliable network (modeled as a different process), that can always loose or duplicate it.

3 Example

In  this section, we are going to formalize a simple JavaSpaces application to show the possibilities of
the 4CRL tool set for system model checking. The system is inspired by the classical arcade game Ping-
Pong, in  which two players throw one ball from one to the other. This example has been taken from the
chapter 5 of  the book “JavaSpaces™ Principles, Patterns, and Practice” [6]. The players are modeled
by two processes called Ping and Pong which communicate by means of an entry that encapsulates the
ball. They play during a fixed number of  rounds. The following fragment of 4CRL code specifies the
players process:

proc player(id:Nat,name:Name,round:Nat) =
take(id, NULL, FOREVER, forMe(name))
-2e:Entry (Return(id,e)

.print(name)

.write(id, ball(other(name)),
NULL, FOREVER))

.player(id,name,S(round))
< lt(round, maxRounds) > ö

A player, first tries to get the ball from the space by performing a take action, then he executes the
external action Print used to inform the environment that he has got the entry. Finally, the player writes
the ball back and loops increasing the counter of  rounds. The complete system is composed by the
parallel composition of  the two instances of  the player process, Ping and Pong, and the javaspaces
process, which initially has a ball directed to Ping.

To each uCRL specification belongs a labeled transition system (LTS) being a directed graph, in  which
the nodes represent states and the edges are labeled with actions. If this transition system has a finite
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number of  states the uCRL tool set can automatically generate this graph. Subsequently, the CESAR
ALDEBARAN DEVELOPMENT PACKAGE (CADP) can be used to visualise and to analyse this transition
system. Figure 2 shows the generated LTS of  a the external behavior of  the two rows game.

Figure 2.  External behavior of  2 rows simple Ping-Pong game
The fair execution of the game is 0-3-1-2-4. If the time reaches the bound the system halts, and it’s

possible that the system stops before all the rows have been completed, this behavior corresponds to the
transitions 0-4, 3-4 and 1-4.

Properties can be automatically verified by the Evaluator tool from the CADP package. These prop-
erties are expressed in in the regular alternation-free u-calculus [9]. For example, a safety property
expresses the prohibition of “bad” execution sequences. The following formula means that the player
Ping cannot throw the ball twice in  a row:

[ true* . “print(Ping)” . (not "print(Pong)”y* .”print(Ping)” | false

Our mode] supports more complicated systems, for  example, we introduce a small change in  the rules
of  the game: once a player catched the ball, he has one time unit to put i t  back in the space, otherwise
he looses the game. We model this approach by using transactions. After a player has performed the
take, he creates a transaction leased for one second. Once the write operation is done, the transaction
can commit:

proc player(id:Nat,name:Name,round:Nat) =
take(id, NULL, FOREVER, forMe(name))
«Xe:Entry (Return( id ,e )

Sena (Create(id, tre, S(0))
.(write(id, ball(other(name)),

trc, FOREVER)
+ Exception(id, trc).looser(name))

.(print(name)
+ Exception(id, trc).looser(name))

.(commit(id, trc))
+ Exception(id, trc).looser(name)))

.player(id,name,S(round))
< It(round, maxRounds) > §

4 Conclusion

We have built a formal specification of the JavaSpaces technology that covers its main features, see
references [11, 12]. The formal model attempts to study and clarify the issues that were unclear or am-
biguous in the JavaSpaces specification. Furthermore, the model has been successfully used to model
check some simple distributed applications. Other approaches to verification of coordination architec-
tures can be found in [8, 3].
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