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Abstract
We show that a prominent counterexample for the completeness of first order RUE-resolution
does not apply to  the  higher order RUE-resolution approach ERUE.

Bonacina shows in  [BH92] that the first order RUE-NRF resolution approach as introduced in [Dig79,
Dig81, DH86] is not complete. The counterexample consists in the following set of first order
clauses:

{9(f(a)) = a, f (9(X))  # X }
Here X is a variable and f , g  are unary function symbols. It is illustrated in [BH92] that this
obviously inconsistent clause set cannot be refuted in the first order RUE-resolution approach of
Digricoli.

The extensional higher order RUE-resolution variant FRUE has been proposed in  [Ben99b,
Ben99a) and completeness is analyzed in  [Ben99a). An interesting question is whether the above
example is also a counterexample to  the completeness of EFRUE. The two ERUE refutations presented
below illustrate that this is not the case.

We do not present the ERUE calculus here and instead refer to [Ben99b, Ben99a). In the
following we consider (A + B )  as shorthand for (A A B )  V (—A A =B) .  We furthermore use
the [... ]7 and [...]¥ -notation of [Ben99a) to denote positive and negative literals. Terms are
presented in  the usual first order style notation, i.e. we write g(f(a)) instead of (g ( f  a)) as done
in {Ben99b, Ben99a]. The decomposition rule employed in  the refutations below is

CV [pA™ = hVMF D
CV[A} = V1F vV...V [AP = VIE

The reader might be more used to  this form of  decomposition than t o  the one employed in [Ben99b,
Ben99a]. Compared to the latter the above rule Dec also shortens the presentation. The decom-
position rule employed in [Ben99b, Ben99a] is more general, i.e. rule Dec above is derivable in
calculus ERIE.

The first refutation in ERUE presented below (which has been suggested by Chad Brown)
employs a flex-rigid unification step (Flex  Rig) in the very beginning. In this key step variable X
is bound to an imitation binding that introduces f at head position. The rest of the refutation is
then straight forward.

The second refutation shows that there are alternatives to the flex-rigid unification step for
variable X at the beginning. The key idea now is to derive the positive reflexivity literal [f(a) =
f(@)]F in clause Cs.  While positive reflexivity literals cannot be derived in first order RUE-
resolution, our example shows that this is (theoretically) possible in FRUE for some symbols and
terms occuring in  the given clause context, like f (a)  in our case.

We now present both FRUE-refutations in  detail. f and g are stil l unary function symbols,
while X is a variable. H and Y are freshly introduced variables.
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Refutation I

C1: [9(f(a)) = a]T
Ca: [F(9(X)) = XIF

FlezRig(Co) : C3:[F(g(X)) = X]F  v [X  = F(H(X) IF
Solve(Cs) : Ca:  [F(9(X)) = FHHX)IF
Dec(C4) : Cs : [9(X) = H(X)]F
Res(C1,Cs): Cs : [ (9(f(a))  = a) = (9(X) = H(X) ) )F
Dec(Ce) : Cr : [9(f(a))  = g (X) IF  V [a = H(X) }F
Dec(Cr) : Cs : [ f (a)  = XIF V [a = H(X) ]F
Solve (Cs) : Co : [f(a) = f(a) V [a = H(f(a))]F
Triv(Co): Cio: [a = H(f(a))IF
F lexR ig (C10 )  : C11  H [a  = H( f (a ) ] ¥  V [h  = AY.a ]F

Solve(C11) : Cı2 : [a = a]F
Triv(C2) :

Refutation I I

Cı : [9(f(a)) = a]?
C2: [ f(9(X)) = X]F

Res(C1,Ca): Cs: [(9(f(a)) = a) = ( f (g(X))  = X)JF
Equiv(Cs): Ca: [(g(f(a)) = a) & ( f (9 (X) )  = X ) ”
nxCn f (Ca ) :  Cs: [g(f(a)) =a ]  V [F(9(X)) = X]*

Ce : [g(f(a)) = a)”  V [F(9(X)) = X]F
Res(Ce,Cı): Cr :  [(g(f(a)) = a) = (g(f(a)) = a )  V [f(9(X)) = X]F
Dec(C7) : Cs : [f(a) = F(a)]F V [a = a]" V [F(g(X)) = X]¥
Triv(Cs) : Co : [f(a) = f(a)]F V[f(g(X)) = X]F
Fac(Cs) : Cio :  [f(a) = f(@)]" V[(f(a) = f(a)  = (f(9(X)) = X)]F
Triv(Cro) : Cu  : [ ( f (a)  = f (a )  = ( f (9 (X) )  = X I
Equiv(C11) Ciz : [ ( f (a )  = f (a ) )  & (F(9(X))  = X) IF
nx  Cnf(C12): C is :  [ f (a)  = f (a ) ”  V [F(9(X)) = X]T

Cua: [ f(a) = f(a)]T V [f(9(X)) = X]F
Res(Cis,C2): Cis:  [ f (a)  = f(a)IT V [(f(9(X)) = X )  = (f(g(X")) = X") ]*
Dec(Cs5) : Cis : [f(a) = F(a)]T V[f(9(X)) = Flg(X'NIF v [X = X']F
Solve(C16) : Cır : [f(a) = F(a)]T V[f(g(X") = f lg(XN)F
Triv(Ci7) : Cis : [ f (a )  = f (a) ]T
Res(C3,C18) : Cio :  [(F(9(X)) = X)  = ( f (a)= f(a))]F
Dec(C19) : Cao : [f(9(X)) = f(@))F VIX = f(a))F
Solve(Cz0) : Ca :  [f(9(f(a))) = f(@)]F :

Dec(Ca1) : Caz : [9(f(a)) = a)”
Res(C32,C1): Cas: [(9(f(a)) = a) = (9(f(a)) = a)]F
Tr i v (Cas )  : Cas : 0

The above refutations are admittedly non-trivial. For this particular kind of problems paramod-
ulation therefore seems to  be a more appropriate approach. However, we suggest a more thorough
analysis to sufficiently clarify this question for the higher order case.

Acknowledgment: I thank Chad Brown, CMU,  Pittsburgh, USA,  for his comments and con-
tribution.
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