
U
N

IV
E

R
S

IT
Ä

T
D

ES
 S

AA
R

LA
N

D
ES

FA
C

H
B

E
R

E
IC

H
 IN

F
O

R
M

A
T

IK
D

-6
60

41
 S

A
A

R
B

R
U

C
K

E
N

G
E

R
M

A
N

Y

SE
KI

 R
ep

or
t

N

W
W

W
: h

tt
p:

 //
js

w
w

w
.c

s.
un

i-s
b.

de
/p

ub
/w

w
w

/

Higher-Order Multi-Valued
Resolution

Michael Kohlhase, Ortwin Scheja

SEKI Report SR-95-04

Also published as: short version submitted to ECAI'96

U
N

IV
E

R
S

IT
Ä

T
D

ES
 S

AA
R

LA
N

D
ES

FA
C

H
B

E
R

E
IC

H
 IN

F
O

R
M

A
T

IK
D

-6
60

41
 S

A
A

R
B

R
U

C
K

E
N

G
E

R
M

A
N

Y

SE
KI

 R
ep

or
t

N

W
W

W
: h

tt
p:

 //
js

w
w

w
.c

s.
un

i-s
b.

de
/p

ub
/w

w
w

/

Higher-Order Multi-Valued
Resolution

Michael Kohlhase, Ortwin Scheja

SEKI Report SR-95-04

Also published as: short version submitted to ECAI'96

Higher-Order Multi-Valued Resolution

Michael Kohlhase Ortwin Scheja
Fachbereich Informatik Fachbereich Mathematik

kohlhase@cs.uni-sb.de, scheja@math.uni-sb.de

teljfax: (49)-681-302-4627/4421 tel: (49)-681-302-2230

Universitat des Saarlandes, 66041 Saarbriicken, Germany

Abstract

This paper introduces a multi-valued variant of higher-order resolution and proves
it correct and complete with respect to a natural multi-valued variant of Henkin's
general model semantics. This resolution method is parametric in the number of truth
values as well as in the particular choice of the set of connectives (given by arbitrary
truth tables) and even substitutional quantifiers. In the course of the completeness
proof we establish a model existence theorem for this logical system. The work
reported in this paper provides a basis for developing higher-order mechanizations
for many non-classical logics.

Higher-Order Multi-Valued Resolution

Michael Kohlhase Ortwin Scheja
Fachbereich Informatik Fachbereich Mathematik

kohlhase@cs.uni-sb.de, scheja@math.uni-sb.de
tel/fax: (49)-681-302-4627/4421 tel: (49)-681-302-2230

Universität des Saarlandes, 66041 Saarbrücken, Germany

Abstract

This paper introduces a multi-valued variant of higher-order resolution and proves
i t correct and complete with respect to a natural multi-valued variant of Henkin’s
general model semantics. This resolution method is parametric in the number of truth
values as well as in the particular choice of the set of connectives (given by arbitrary
truth tables) and even substitutional quantifiers. In the course of the completeness
proof we establish a model existence theorem for this logical system. The work
reported in this paper provides a basis for developing higher-order mechanizations
for many non-classical logics.

Higher-Order Multi-Valued Resolution

Michael Kohlhase Ortwin Scheja
Fachbereich Informatik Fachbereich Mathematik

kohlhase@cs.uni-sb.de, scheja@math.uni-sb.de
tel/fax: (49)-681-302-4627/4421 tel: (49)-681-302-2230

Universität des Saarlandes, 66041 Saarbrücken, Germany

Abstract

This paper introduces a multi-valued variant of higher-order resolution and proves
i t correct and complete with respect to a natural multi-valued variant of Henkin’s
general model semantics. This resolution method is parametric in the number of truth
values as well as in the particular choice of the set of connectives (given by arbitrary
truth tables) and even substitutional quantifiers. In the course of the completeness
proof we establish a model existence theorem for this logical system. The work
reported in this paper provides a basis for developing higher-order mechanizations
for many non-classical logics.

mailto:scheja@math.uni-sb.de
mailto:kohlhase@cs.uni-sb.de

1 INTRODUCTION 2

1 Introduction

Many specialized logics in the field of artificial intelligence use more than two truth values
in order to deal with notions like vagueness, uncertainty, undefinedness and even non­
monotonicity. Moreover, these logics primarily obtain their specialized behavior by utilizing
nonstandard truth tables for connectives and quantifiers. On the other hand, the past
25 years have seen a tremendous increase in the deductive power of automated reasoning
systems for standard two-valued first-order predicate logic. These systems have reached the
ability to solve nontrivial theorems fully automatically. Stimulated by this development,
multi valued logics, after they had been of theoretic interest in the field of mathematical
logic in the past, are nowadays treated in the context of deduction systems, Le. with an
emphasis on mechanization.

For this, it is desirable to have a method that is parametric in the choice of the sets
of truth values, connectives and quantifiers. Such a method can be instantiated with a
particular choice and (possibly after optimization) would yield a mechanization for that
logic system. In [Car87, Car91] Carnielli presents a tableau method, a resolution calculus is
given by Baaz and Fermiiller [BF92]. A sorted version of these methods [KK94, KK95] can
be used to mechanize Kleene's strong logic for partial functions [Kle52], thus giving a clean
foundation for first-order automated theorem proving in mathematics, where most func­
tions are only defined on parts of the universe. However a first-order language cannot be
adequate for mathematics, since quantification over functions or predicates is widespread.
For instance the natural numbers cannot be fully characterized in first-order logic (the
induction axiom quantifies over sets).

This has been the initial motivation to investigate the multi-valued framework for
higher-order logic. In [Sch94] the second author presents an n-valued higher-order logic
and gives a sound and complete resolution calculus by combining results of Huet [Hue72] on
higher-order resolution with the first-order framework of multi-valued deduction mentioned
above. Our system is further refined in this paper to a logic 1-If)£n and a resolution calculus
1-tRn using techniques and results from [Koh94]. Thus the proofs omitted in this paper
can be easily adapted from those in these sources.

The resulting framework can be combined with the sort techniques developed in [Koh94]
to obtain a higher-order formalization of mathematics in the spirit of [KK94]. Naturally the
results reported here are much more widely applicable, they extend to all logical systems
that combine multiple truth values with higher-order features, such as A-binding and f3TJ­
conversion. Even if the target logic does not contain higher-order features, the added
expressivity of 1-If)£n admits simple and efficient relativizations (especially for first-order
target logics, such as modal logics). Thus llRn makes mechanization of the target logic
much simpler than the first-order multi-valued frameworks.

1 INTRODUCTION 2

1 Introduction

Many specialized logics in the field of artificial intelligence use more than two truth values
in order to deal with notions like vagueness, uncertainty, undefinedness and even non-
monotonicity. Moreover, these logics primarily obtain their specialized behavior by utilizing
nonstandard truth tables for connectives and quantifiers. On the other hand, the past
25 years have seen a tremendous increase in the deductive power of automated reasoning
systems for standard two-valued first-order predicate logic. These systems have reached the
ability to solve nontrivial theorems fully automatically. Stimulated by this development,
multi valued logics, after they had been of theoretic interest in the field of mathematical
logic in the past, are nowadays treated in the context of deduction systems, i.e. with an
emphasis on mechanization.

For this, i t is desirable to have a method that is parametric in the choice of the sets
of truth values, connectives and quantifiers. Such a method can be instantiated with a
particular choice and (possibly after optimization) would yield a mechanization for that
logic system. In [Car87, Car91] Carnielli presents a tableau method, a resolution calculus is
given by Baaz and Fermiiller [BF92]. A sorted version of these methods [KK94, KK95] can
be used to mechanize Kleene’s strong logic for partial functions [Kle52], thus giving a clean
foundation for first-order automated theorem proving in mathematics, where most func-
tions are only defined on parts of the universe. However a first-order language cannot be
adequate for mathematics, since quantification over functions or predicates is widespread.
For instance the natural numbers cannot be fully characterized in first-order logic (the
induction axiom quantifies over sets).

This has been the initial motivation to investigate the multi-valued framework for
higher-order logic. In [Sch94] the second author presents an n—valued higher-order logic
and gives a sound and complete resolution calculus by combining results of Huet [Hue72] on
higher-order resolution with the first-order framework of multi-valued deduction mentioned
above. Our system is further refined in this paper to a logic HOL" and a resolution calculus
HR" using techniques and results from [Koh94]. Thus the proofs omitted in this paper
can be easily adapted from those in these sources.

The resulting framework can be combined with the sort techniques developed in [Koh94]
to obtain a higher-order formalization of mathematics in the spirit of [KK94]. Naturally the
results reported here are much more widely applicable, they extend to all logical systems
that combine multiple truth values with higher-order features, such as A-binding and On-
conversion. Even i f the target logic does not contain higher-order features, the added
expressivity of HOL™ admits simple and efficient relativizations (especially for first-order
target logics, such as modal logics). Thus HR” makes mechanization of the target logic
much simpler than the first-order multi-valued frameworks. =~

1 INTRODUCTION 2

1 Introduction

Many specialized logics in the field of artificial intelligence use more than two truth values
in order to deal with notions like vagueness, uncertainty, undefinedness and even non-
monotonicity. Moreover, these logics primarily obtain their specialized behavior by utilizing
nonstandard truth tables for connectives and quantifiers. On the other hand, the past
25 years have seen a tremendous increase in the deductive power of automated reasoning
systems for standard two-valued first-order predicate logic. These systems have reached the
ability to solve nontrivial theorems fully automatically. Stimulated by this development,
multi valued logics, after they had been of theoretic interest in the field of mathematical
logic in the past, are nowadays treated in the context of deduction systems, i.e. with an
emphasis on mechanization.

For this, i t is desirable to have a method that is parametric in the choice of the sets
of truth values, connectives and quantifiers. Such a method can be instantiated with a
particular choice and (possibly after optimization) would yield a mechanization for that
logic system. In [Car87, Car91] Carnielli presents a tableau method, a resolution calculus is
given by Baaz and Fermiiller [BF92]. A sorted version of these methods [KK94, KK95] can
be used to mechanize Kleene’s strong logic for partial functions [Kle52], thus giving a clean
foundation for first-order automated theorem proving in mathematics, where most func-
tions are only defined on parts of the universe. However a first-order language cannot be
adequate for mathematics, since quantification over functions or predicates is widespread.
For instance the natural numbers cannot be fully characterized in first-order logic (the
induction axiom quantifies over sets).

This has been the initial motivation to investigate the multi-valued framework for
higher-order logic. In [Sch94] the second author presents an n—valued higher-order logic
and gives a sound and complete resolution calculus by combining results of Huet [Hue72] on
higher-order resolution with the first-order framework of multi-valued deduction mentioned
above. Our system is further refined in this paper to a logic HOL" and a resolution calculus
HR" using techniques and results from [Koh94]. Thus the proofs omitted in this paper
can be easily adapted from those in these sources.

The resulting framework can be combined with the sort techniques developed in [Koh94]
to obtain a higher-order formalization of mathematics in the spirit of [KK94]. Naturally the
results reported here are much more widely applicable, they extend to all logical systems
that combine multiple truth values with higher-order features, such as A-binding and On-
conversion. Even i f the target logic does not contain higher-order features, the added
expressivity of HOL™ admits simple and efficient relativizations (especially for first-order
target logics, such as modal logics). Thus HR” makes mechanization of the target logic
much simpler than the first-order multi-valued frameworks. =~

2

2 HIGHER-ORDER LOGIC 3

Higher-Order Logic

In this paper we study a higher-order logic liO[,n, which is parametric in the number n of
truth values and the choice of connectives and quantifiers. It is based on the simply typed
lambda calculus which we will shortly review in the following.

Definition 2.1 (Types). Let Br : = {o, t,}, then the set T of types is inductively de­
fined to be the set Br together with all expressions a -+ 13, where a and /3 are types. Here
the base type t, stands for the set of individuals and the type ° for the truth values.
The functional type a -+ /3 denotes the type of functions with domain a and codomain /3.
The types in Br ~ T are called base types, types of the form a -+ /3 are called func­
tional types. We use the convention of association to the right for omitting parentheses
in functional types, thus a -+ /3 -+, is an abbreviation for (a -+ ({3 -+ ,)). This way the
type, : = /31 -+ -+ /3n -+ a denotes the type of k-ary functions, that take k arguments
of the types/3b , /3k and have values of type a. To conserve even more space we use a
kind of vector notation and abbreviate, by /3k -+ a.

We will write finite functions like substitutions or variable assignments as sets of pairs
cp : = [aI/Xl], ... ,[ak / X k] with the intended meaning that cp(Xi) = ai . Furthermore we
use the convention that 'l/J : = cp, [a/X] assigns a to X and coincides with cp everywhere
else. '

For the definition of well-formed formulae we fix a signature and collection of vari ­
ables, Le. typed collection E : = UaET Ea and V : = UaET Vaof symbols, such that each
Va is countably infinite.

We denote the constants by lower case letters and the variables by upper case letters
and use bold upper case letters Aa, Ba->P, C'Y ... as syntactical variables for well-formed
formulae.

Definition 2.2 (Well-Formed Formulae). For each a E T we define the set wffa(E) of
well-formed formulae of type a inductively by

1. Ea ~ wffa(E)

2. If X E Va, then X E wffa(E).

3. If A E wffP->a(E) and B E wffp(E), then AB E wffa(E).

4. If A E wffaC£), then (AXp.A) E wffP->a(E).

We call formulae of the form AB applications, and formulae of the form)..Xa.A A­
abstractions. We will often write the type as a subscript Aa, if it is not irrelevant or
clear from the context.

We adopt the usual definition of free and bound (all occurrences of the variable X
in AXa.A are called bound), variables and call a formula closed, iff it does not contain
free variables. As in first-order logic the names of bound variables have no meaning at
all, thus we consider alphabetic variants as identical and use a notion of substitution that

2 HIGHER-ORDER LOGIC 3

2 Higher-Order Logic
In this paper we study a higher-order logic HOL", which is parametric in the number n of
truth values and the choice of connectives and quantifiers. I t is based on the simply typed
lambda, calculus which we will shortly review in the following.

Definition 2.1 (Types). Let BT : = {o,:} , then the set T of types is inductively de-
fined to be the set BT together with all expressions a: — 3 , where a and (are types. Here
the base type ı stands for the set of individuals and the type o for the truth values.
The functional type a — ß denotes the type of functions with domain & and codomain ß.
The types in BT © T are called base types, types of the form a — ß are called func-
tional types. We use the convention of association to the right for omitting parentheses
in functional types, thus a — 8 — « is an abbreviation for (x — (8 — y)). This way the
type v : = f i — . . . — Bn — a denotes the type of k-ary functions, that take k arguments
of the types £1, . . . , Br and have values of type a. To conserve even more space we use a
kind of vector notation and abbreviate y by Gr — a.

We will write finite functions like substitutions or variable assignments as sets of pairs
¢ : = [a ' /X1] , . . . , [a * /X¥] with the intended meaning that v(X*) = a’. Furthermore we
use the convention that % : = , [a/X] assigns a to X and coincides with ¢ everywhere
else.

For the definition of well-formed formulae we fix a signature and collection of vari-
ables, i.e. typed collection : = Uaer Xo and V : = Uyer Vaof symbols, such that each
Va is countably infinite.

We denote the constants by lower case letters and the variables by upper case letters
and use bold upper case letters A , , Bog, C , . . . as syntactical variables for well-formed
formulae.

Definition 2.2 (Well-Formed Formulae). For each & € T we define the set wff,(Z) of
well-formed formulae of type a inductively by

1. Ba C uff, (2)

2. I f X € Va, then X € uff,(2).

3. If A € wffy_,,(X) and B € uwffp(Z), then AB € wff,(Z).

4. If A € wff„ (X), then (AXA) € wffz_,o(T).

We call formulae of the form AB applications, and formulae of the form AX ,A) -
abstractions. We will often write the type as a subscript Aa, if it is not irrelevant or
clear from the context.

We adopt the usual definition of free and bound (all occurrences of the variable X
in AXa-A are called bound), variables and call a formula closed, iff i t does not contain
free variables. As in first-order logic the names of bound variables have no meaning at
all, thus we consider alphabetic variants as identical and use a notion of substitution that ‘

2 HIGHER-ORDER LOGIC 3

2 Higher-Order Logic
In this paper we study a higher-order logic HOL", which is parametric in the number n of
truth values and the choice of connectives and quantifiers. I t is based on the simply typed
lambda, calculus which we will shortly review in the following.

Definition 2.1 (Types). Let BT : = {o,:} , then the set T of types is inductively de-
fined to be the set BT together with all expressions a: — 3 , where a and (are types. Here
the base type ı stands for the set of individuals and the type o for the truth values.
The functional type a — ß denotes the type of functions with domain & and codomain ß.
The types in BT © T are called base types, types of the form a — ß are called func-
tional types. We use the convention of association to the right for omitting parentheses
in functional types, thus a — 8 — « is an abbreviation for (x — (8 — y)). This way the
type v : = f i — . . . — Bn — a denotes the type of k-ary functions, that take k arguments
of the types £1, . . . , Br and have values of type a. To conserve even more space we use a
kind of vector notation and abbreviate y by Gr — a.

We will write finite functions like substitutions or variable assignments as sets of pairs
¢ : = [a ' /X1] , . . . , [a * /X¥] with the intended meaning that v(X*) = a’. Furthermore we
use the convention that % : = , [a/X] assigns a to X and coincides with ¢ everywhere
else.

For the definition of well-formed formulae we fix a signature and collection of vari-
ables, i.e. typed collection : = Uaer Xo and V : = Uyer Vaof symbols, such that each
Va is countably infinite.

We denote the constants by lower case letters and the variables by upper case letters
and use bold upper case letters A , , Bog, C , . . . as syntactical variables for well-formed
formulae.

Definition 2.2 (Well-Formed Formulae). For each & € T we define the set wff,(Z) of
well-formed formulae of type a inductively by

1. Ba C uff, (2)

2. I f X € Va, then X € uff,(2).

3. If A € wffy_,,(X) and B € uwffp(Z), then AB € wff,(Z).

4. If A € wff„ (X), then (AXA) € wffz_,o(T).

We call formulae of the form AB applications, and formulae of the form AX ,A) -
abstractions. We will often write the type as a subscript Aa, if it is not irrelevant or
clear from the context.

We adopt the usual definition of free and bound (all occurrences of the variable X
in AXa-A are called bound), variables and call a formula closed, iff i t does not contain
free variables. As in first-order logic the names of bound variables have no meaning at
all, thus we consider alphabetic variants as identical and use a notion of substitution that ‘

3 SEMANTICS 4

systematically renames bound variables in order to avoid variable capture. We refer to
formulae of type 0 as propositions and as sentences if they are closed.

We assume fixed subsets .:J = UkEN .:Jk ~ 2:; of connectives and Q = UaEr Qa ~ 2:; of
quantifiers. Here .:Jk is the set of k-ary connectives of type Ok --+ 0 and Qa ~ 2:;(a-+o)-+o.
We generally apply the convention that quantified expression QXa.A is an abbreviation of
Q(AXa.A), which is a well-formed formula (in the A-calculus, quantifiers can be represented
by ordinary constants, since the A-binding mechanism can be utilized).

The case of classical higher-order logic [Chu40] can be recovered as WJ:,2, where we
have .:J = {-'o-+o, vo-+o-+o} and Q = {ITola E 7} where YXa.A is an abbreviation for
ITO(AXo.A).

In order to make the notation of well-formed formulae more legible, we use the con­
vention that the group brackets (and) associate to the left and that the square dot
. denotes a left bracket, whose mate is as far right as consistent with the brackets al­
ready present. Additionally, we combine successive A-abstractions, so that the formulae
AX1 .•. xn.AE1 ... Em and AXn.AEm stand for (AX 1(AX2 ... (Axn(AE1)E2 ... Em) ...).

Let A E {,B, ,BT], T]}. We say that a well-formed formula B is obtained from a well-formed
formula A by a one-step A-reduction (A --+A B), if it is obtained by applying one of the
following rules to a well-formed part of A.

,B-Reduction (AX.C)D --+/3 [DjX]C.

T]-Reduction If X is not free in C, then (AX.CX) --+1/ C.

As usual we denote the transitive closure of a reduction relation --+A with --+~. These rules
induce equivalence relations =/3, =1/' and =/31/ on wff(2:;) , which we call the A-equality
relations. A formula that does not contain a A-redex, and thus cannot be reduced by
A-reduction, is called a A-normal form.

The A-reduction relations are terminating and confluent, as the reader can convince
himself by looking at the proofs for instance in [HS86]. Thus for any formula A there is a
sequence of A-reductions A --+~ AJ- such that AJ- is a A-normal form.

3 Semantics

For the semantics we first define the algebraic structure of model structures which will
serve as a model for the underlying A-calculus. Then we will specialize the type 0 of truth
values to give the system its meaning of a multi-valued higher-order logic. Model structures
are built up from a carrier set 'Or, i.e. a collection 'Or = {Vala E 7} of sets, such that
'00 -+/3 ~ F(Vo ; '0/3), and a (well-typed) interpretation of constants I: 2:; ---+ V.

We call a function cp: V ---+ V an assignment, iff cp(Xo) E '00 for all variables X O • We
call a pair A : = (V, I) a model structure, iff for each assignment cp the interpretation
function I can inductively be extended to a function Iep: wff(2:;) --+ V by the following
rules.

3 SEMANTICS 4

systematically renames bound variables in order to avoid variable capture. We refer to
formulae of type o as propositions and as sentences i f they are closed.

We assume fixed subsets J = Uren J* € T of connectives and Q = Uper Q* CT of
quantifiers. Here J * is the set of k-ary connectives of type 0x — 0 and 9 * C L(as0)no-
We generally apply the convention that quantified expression QX,.A is an abbreviation of
Q(1XxA), which is a well-formed formula (in the A-calculus, quantifiers can be represented
by ordinary constants, since the A-binding mechanism can be utilized).

The case of classical higher-order logic [Chu40] can be recovered as HOL?, where we
have J = {450 Vomoao} and Q = {1° |o € T } where VX,.A is an abbreviation for
M*(A XA). :

In order to make the notation of well-formed formulae more legible, we use the con-
vention that the group brackets (and) associate to the left and that the square dot
. denotes a left bracket, whose mate is as far right as consistent with the brackets al-
ready present. Additionally, we combine successive A-abstractions, so that the formulae
AX... X "AE ! . . .E™ and AX".AE™ stand for (AX}(AX2. . . (AX*(AE)E?. . .E™). . .) .

Let A € {8 , n , n } . We say that a well-formed formula B is obtained from a well-formed
formula A by a one-step A-reduction (A —) B), if i t is obtained by applying one of the
following rules to a well-formed part of A .

B-Reduction (AX.C)D —4 [D/X]C.

n-Reduction If X is not free in C, then (AX.CX) —, C.

As usual we denote the transitive closure of a reduction relation —, with —3. These rules
induce equivalence relations =g ,= , , and =p, on wff(X), which we call the A-equality
relations. A formula that does not contain a A-redex, and thus cannot be reduced by
A-reduction, is called a A-normal form.

The A-reduction relations are terminating and confluent, as the reader can convince
himself by looking at the proofs for instance in [HS86]. Thus for any formula A there is a
sequence of A\-reductions A —3} AJ such that A l is a A-normal form.

3 Semantics

For the semantics we first define the algebraic structure of model structures which will
serve as a model for the underlying A-calculus. Then we wil l specialize the type o of truth
values to give the system its meaning of a multi-valued higher-order logic. Model structures
are built up from a carrier set Dy, i.e. a collection D r = {Del € T } of sets, such that
Dawg © F(Da; Dp), and a (well-typed) interpretation of constants Z : X — D.

We call a function ¢ : V — D an assignment, iff ¢(X,) € Da for all variables X . We
call a pair A : = (D,Z) a model structure, iff for each assignment ¢ the interpretation
function Z can inductively be extended to a function Z , : wff(¥) — D by the following
rules.

3 SEMANTICS 4

systematically renames bound variables in order to avoid variable capture. We refer to
formulae of type o as propositions and as sentences i f they are closed.

We assume fixed subsets J = Uren J* € T of connectives and Q = Uper Q* CT of
quantifiers. Here J * is the set of k-ary connectives of type 0x — 0 and 9 * C L(as0)no-
We generally apply the convention that quantified expression QX,.A is an abbreviation of
Q(1XxA), which is a well-formed formula (in the A-calculus, quantifiers can be represented
by ordinary constants, since the A-binding mechanism can be utilized).

The case of classical higher-order logic [Chu40] can be recovered as HOL?, where we
have J = {450 Vomoao} and Q = {1° |o € T } where VX,.A is an abbreviation for
M*(A XA). :

In order to make the notation of well-formed formulae more legible, we use the con-
vention that the group brackets (and) associate to the left and that the square dot
. denotes a left bracket, whose mate is as far right as consistent with the brackets al-
ready present. Additionally, we combine successive A-abstractions, so that the formulae
AX... X "AE ! . . .E™ and AX".AE™ stand for (AX}(AX2. . . (AX*(AE)E?. . .E™). . .) .

Let A € {8 , n , n } . We say that a well-formed formula B is obtained from a well-formed
formula A by a one-step A-reduction (A —) B), if i t is obtained by applying one of the
following rules to a well-formed part of A .

B-Reduction (AX.C)D —4 [D/X]C.

n-Reduction If X is not free in C, then (AX.CX) —, C.

As usual we denote the transitive closure of a reduction relation —, with —3. These rules
induce equivalence relations =g ,= , , and =p, on wff(X), which we call the A-equality
relations. A formula that does not contain a A-redex, and thus cannot be reduced by
A-reduction, is called a A-normal form.

The A-reduction relations are terminating and confluent, as the reader can convince
himself by looking at the proofs for instance in [HS86]. Thus for any formula A there is a
sequence of A\-reductions A —3} AJ such that A l is a A-normal form.

3 Semantics

For the semantics we first define the algebraic structure of model structures which will
serve as a model for the underlying A-calculus. Then we wil l specialize the type o of truth
values to give the system its meaning of a multi-valued higher-order logic. Model structures
are built up from a carrier set Dy, i.e. a collection D r = {Del € T } of sets, such that
Dawg © F(Da; Dp), and a (well-typed) interpretation of constants Z : X — D.

We call a function ¢ : V — D an assignment, iff ¢(X,) € Da for all variables X . We
call a pair A : = (D,Z) a model structure, iff for each assignment ¢ the interpretation
function Z can inductively be extended to a function Z , : wff(¥) — D by the following
rules.

3 SEMANTICS	 5

1.	 Icp(X) = cp(X), if X is a variable,

2.	 Icp(e) = I(e) , if e is a constant,

3.	 Icp(AB) = Icp(A) [Icp(B)],

4.	 Icp('\Xo.B,a) is the unique function in f E 1Jo-t,a such that fez) : = Icp,[z/xj(B), else
undefined.

Maybe the most prominent example of a model structure is the set wff(:E)1 of well-formed
formulae in ,87]-normal form, together with I = Idr;. Here we consider formulae A of
type a --+ ,8 as functions, such that A(B) = (AB)1. In this setting,. assignments are
substitutions and Icp(A) = cp(A)!. -.

So far the semantical notions do not make any requirements on the special type 0 of
truth values. In contrast to classical higher-order logic [Chu40] WJ:,n has a finite set ~ of
truth values that has n :2: 2 elements. In this, we have a designated, nonempty subset
'! ~ ~ that denotes those truth values, which are considered as true (in the sense that
formulae that evaluate to a member of'! are valid).

We have claimed that W£,n is parametric in the choice of the set of connectives and
quantifiers. Indeed the semantics makes no assumptions on the value] = I(j): ~k --+ ~
for a connective j E .:Jk.

In first-order multi-valued logics the intended meaning of a quantifier Q is traditionally
given as a function Q: P*(~) --+ ~, where we write P(M) for the power set of a set M
and P*(M) := P(M) \ f/J. With this, the value of a quantified expression is computed by
applying Q to the set of truth-values of all of the instances of its scope. Note that these
definitions generalize the classical case, where ~ = {T, F} and 'I = {T} and for instance
V(M) is true, iff M = {T}.

In higher-order logic a truth-function Q induces the value I(Q) that is defined by
I(Q)(p) = Q(p(1Jo)) for all pE 1Jo-to' Thus we have

Icp(QXo.A) = Icp(Q('\Xo.A)) = Q(Icp(AXo.A)(1Jo)) = Q({Icp,[a/X] (A)\a E 1Jo})

In the following we will assume that the truth tables] of connectives and truth functions
Qfor quantifiers are fixed (given by the user).

We will use. Kleene's strong logic K 3 [Kle52] as a running example. There we have
~ = {T, F, J...} and'! = {T}. Here the third truth value J... is intended for atomic formulae
that contain a non-denoting subformula, such as t or the predecessor of zero. K 3 has the
same sets of connectives and quantifiers, which will however have extended truth functions:

V F J... T
T for M = {T}

F F J... T F T 9(1\11) ..L forM={T,..L}or{J...}
J... J...J...T ..L ..L	 { F FEM

T T T T T F

3 SEMANTICS 5

1. Z,(X) = (X) , if X is a variable,

Z,(c) = Z(c), if c is a constant,

I,(AB) = L,(A) [Z,(B)];

Z,(AXa.Bp) is the unique function in f € D,,p such that f (z) : = iax1(B), else
undefined.

L
a

l
&%

 8

Maybe the most prominent example of a model structure is the set wff(X)| of well-formed
formulae in B7-normal form, together with Z = Ids. Here we consider formulae A of
type a — ß as functions, such that A(B) = (AB)| . In this setting, assignments are
substitutions and Z,(A) = (A).

So far the semantical notions do not make any requirements on the special type o of
truth values. In contrast to classical higher-order logic [Chu40] HOL™ has a finite set B of
truth values that has n > 2 elements. In this, we have a designated, nonempty subset
TC B that denotes those truth values, which are considered as true (in the sense that
formulae that evaluate to a member of % are valid).

We have claimed that HOL™ is parametric in the choice of the set of connectives and
quantifiers. Indeed the semantics makes no assumptions on the value j = Z (j) : B* — B
for a connective j € J*.

In first-order multi-valued logics the intended meaning of a quantifier Q is traditionally
given as a function Q : P* (B) — B , where we write P(M) for the power set of a set M
and P*(M) : = P(M) \ 0. With this, the value of a quantified expression is computed by
applying Q to the set of truth-values of all of the instances of its scope. Note that these
definitions generalize the classical case, where B = {T,F} and T = {T} and for instance
V(M) is true, iff M = {T}.

In higher-order logic a truth-function Q induces the value Z(Q) that is defined by
Z(Q)(p) = Q(p(Da)) for all p € Dayo. Thus we have

T,(@XaA)=I,(Q(A XA) = Q(Z,(AXe-A) (Da) = Q({Zpforx1(A)]a€ Da})
In the following we will assume that the truth tablesj of connectives and truth functions

Q for quantifiers are fixed (given by the user).
We will use Kleene’s strong logic K* [Kle52] as a running example. There we have

B = {T,F,L} and X = {T}. Here the third truth value .L is intended for atomic formulae
that contain a non-denoting subformula, such as : or the predecessor of zero. K* has the
same sets of connectives and quantifiers, which will however have extended truth functions:

V IF LT 5
_ T fo r M = {T}

F |F LT F IT V (M) := € L for M = {T, L}or {Ll}
L ILLT L{L F FeM
T ITTT T |F

3 SEMANTICS 5

1. Z,(X) = (X) , if X is a variable,

Z,(c) = Z(c), if c is a constant,

I,(AB) = L,(A) [Z,(B)];

Z,(AXa.Bp) is the unique function in f € D,,p such that f (z) : = iax1(B), else
undefined.

L
a

l
&%

 8

Maybe the most prominent example of a model structure is the set wff(X)| of well-formed
formulae in B7-normal form, together with Z = Ids. Here we consider formulae A of
type a — ß as functions, such that A(B) = (AB)| . In this setting, assignments are
substitutions and Z,(A) = (A).

So far the semantical notions do not make any requirements on the special type o of
truth values. In contrast to classical higher-order logic [Chu40] HOL™ has a finite set B of
truth values that has n > 2 elements. In this, we have a designated, nonempty subset
TC B that denotes those truth values, which are considered as true (in the sense that
formulae that evaluate to a member of % are valid).

We have claimed that HOL™ is parametric in the choice of the set of connectives and
quantifiers. Indeed the semantics makes no assumptions on the value j = Z (j) : B* — B
for a connective j € J*.

In first-order multi-valued logics the intended meaning of a quantifier Q is traditionally
given as a function Q : P* (B) — B , where we write P(M) for the power set of a set M
and P*(M) : = P(M) \ 0. With this, the value of a quantified expression is computed by
applying Q to the set of truth-values of all of the instances of its scope. Note that these
definitions generalize the classical case, where B = {T,F} and T = {T} and for instance
V(M) is true, iff M = {T}.

In higher-order logic a truth-function Q induces the value Z(Q) that is defined by
Z(Q)(p) = Q(p(Da)) for all p € Dayo. Thus we have

T,(@XaA)=I,(Q(A XA) = Q(Z,(AXe-A) (Da) = Q({Zpforx1(A)]a€ Da})
In the following we will assume that the truth tablesj of connectives and truth functions

Q for quantifiers are fixed (given by the user).
We will use Kleene’s strong logic K* [Kle52] as a running example. There we have

B = {T,F,L} and X = {T}. Here the third truth value .L is intended for atomic formulae
that contain a non-denoting subformula, such as : or the predecessor of zero. K* has the
same sets of connectives and quantifiers, which will however have extended truth functions:

V IF LT 5
_ T fo r M = {T}

F |F LT F IT V (M) := € L for M = {T, L}or {Ll}
L ILLT L{L F FeM
T ITTT T |F

3 SEMANTICS 6

Now we can use K 3 to formalize a simple mathematical fact about function division,
namely a cancelation law for real functions: For all real functions F and G, the product
of FIG and G is F, provided that G is nowhere zero. Note the use of quantification over
functions in this example.

Example 3.1. Of the real numbers we use the constants 0,1 and the functions inv and *.
Since we want inv to be partial (undefined on 0), we assume an error element 1.a for all
types a E 7 and all functions and predicates to be strict with respect to it (where a =I 0

and f3 does not have 0 as an argument type):

\:IFa-t(3.F1.a = 1.(3 (1)

We will also use the symbols inv and * on functions, defined by

inv - (.-\F.-\X.inv(FX)) (2)

* - (.-\F, G.-\X.(FX)*(GX)) (3)

This allows us to define function division by

+ = (.-\F, G.F*(invG)) (4)

In order to prove the theorem we need the following axioms of elementary calculus.

\:IX.(invX = 1.L) =X = 0 (5)

\:IX.(X =I 0) ===? (invX*X)=l (6)

together with associativity of * and the unit axiom for 1 and *. In the theory defined by
axioms (1)-(6), the theorem stated above has the form

\:IF,G.(\:IX.GX =I OI\GX =I 1.) ===? (*(+FG)G) = F (7)

In fact, this axiomatization is not yet correct, since the universal quantifications include
the error-element 1.. In order to arrive at a correct representation, we have to change all
quantified expressions of the form \:IX.A into \:IX.(X =I 1.) ===? A.

Let us now turn to the definition of models.

Definition 3.2 (Henkin Model). A model structure A is called a Henkin model, iff
V o = Q3, I(j) =] and I(Q) (f) = Q({f(a)la E V a }) for any j E:J and Q E Qa.

The class of standard models (where we furthermore require that Va -t(3 is the set of
all functions V a ----t V (3) is in some way the most natural notion of semantics for Wf,n,

however, with the notion of completeness induced by this semantics there cannot be com­
plete calculi [God31] , a fact that makes it virtually useless for our purposes. Unfortunately,
we cannot even use Henkin models directly, since they make too strong assertions about
extensionality on V o

1 that higher-order refutation calculi cannot yet handle. So we cannot
require that V o = Q3, but we have to make the more general assumption that there exists
a valuation (a mapping that respects the intended meaning of connectives and quantifiers)
from V o to Q3.

Ithe fact that V o = {T, F} implies that equivalent propositions can be substituted for each other

3 SEMANTICS 6

Now we can use K? to formalize a simple mathematical fact about function division,
namely a cancelation law for real functions: For al l real functions F and G , the product
of F/G and G is F, provided that G is nowhere zero. Note the use of quantification over
functions in this example.
Ezample 3.1. Of the real numbers we use the constants 0,1 and the functions inv and x.
Since we want inv to be partial (undefined on 0), we assume an error element 1 , for all
types a € 7 and all functions and predicates to be strict with respect to i t (where a # o
and G does not have o as an argument type):

Van Fle = 1p (1)

We will also use the symbols inv and * on functions, defined by

inv = (AFAX.inv(FX)) (2)
* = (AF,GAX.(FX)*(GX)) (3)

This allows us to define function division by

+ = (AF, G.Fx(invQ3)) (4)

In order to prove the theorem we need the following axioms of elementary calculus.

VX.(invX = 1 ,))=X=0 (5)
VX.(X #0) = (i nvX*X)=1 (6)

together with associativity of * and the unit axiom for 1 and * . In the theory defined by
axioms (1)—(6), the theorem stated above has the form

VF,G.(VX.GX #0AGX # 1) => (x (+FG)G)=F (7)

In fact, this axiomatization is not yet correct, since the universal quantifications include
the error-element 1 . In order to arrive at a correct representation, we have to change all
quantified expressions of the form VX.A into VX.(X # 1) => A .

Let us now turn to the definition of models.

Definition 3.2 (Henkin Model) . A model structure A is called a Henkin model, iff
D, = B , Z(j) = j and Z (Q) (f) = Q({ f (a) | a € Da }) for anyj € J and Q € Q .

The class of standard models (where we furthermore require that D,_,s is the set of
all functions Da — Dj) is in some way the most natural notion of semantics for HOL™,
however, with the notion of completeness induced by this semantics there cannot be com-
plete calculi [God31], a fact that makes i t virtually useless for our purposes. Unfortunately,
we cannot even use Henkin models directly, since they make too strong assertions about
extensionality on D,! that higher-order refutation calculi cannot yet handle. So we cannot
require that D , = B , but we have to make the more general assumption that there exists
a valuation (a mapping that respects the intended meaning of connectives and quantifiers)
from D , to B .

~ l the fact that D , = {T,F} implies that equivalent propositions can be substituted for each other

3 SEMANTICS 6

Now we can use K? to formalize a simple mathematical fact about function division,
namely a cancelation law for real functions: For al l real functions F and G , the product
of F/G and G is F, provided that G is nowhere zero. Note the use of quantification over
functions in this example.
Ezample 3.1. Of the real numbers we use the constants 0,1 and the functions inv and x.
Since we want inv to be partial (undefined on 0), we assume an error element 1 , for all
types a € 7 and all functions and predicates to be strict with respect to i t (where a # o
and G does not have o as an argument type):

Van Fle = 1p (1)

We will also use the symbols inv and * on functions, defined by

inv = (AFAX.inv(FX)) (2)
* = (AF,GAX.(FX)*(GX)) (3)

This allows us to define function division by

+ = (AF, G.Fx(invQ3)) (4)

In order to prove the theorem we need the following axioms of elementary calculus.

VX.(invX = 1 ,))=X=0 (5)
VX.(X #0) = (i nvX*X)=1 (6)

together with associativity of * and the unit axiom for 1 and * . In the theory defined by
axioms (1)—(6), the theorem stated above has the form

VF,G.(VX.GX #0AGX # 1) => (x (+FG)G)=F (7)

In fact, this axiomatization is not yet correct, since the universal quantifications include
the error-element 1 . In order to arrive at a correct representation, we have to change all
quantified expressions of the form VX.A into VX.(X # 1) => A .

Let us now turn to the definition of models.

Definition 3.2 (Henkin Model) . A model structure A is called a Henkin model, iff
D, = B , Z(j) = j and Z (Q) (f) = Q({ f (a) | a € Da }) for anyj € J and Q € Q .

The class of standard models (where we furthermore require that D,_,s is the set of
all functions Da — Dj) is in some way the most natural notion of semantics for HOL™,
however, with the notion of completeness induced by this semantics there cannot be com-
plete calculi [God31], a fact that makes i t virtually useless for our purposes. Unfortunately,
we cannot even use Henkin models directly, since they make too strong assertions about
extensionality on D,! that higher-order refutation calculi cannot yet handle. So we cannot
require that D , = B , but we have to make the more general assumption that there exists
a valuation (a mapping that respects the intended meaning of connectives and quantifiers)
from D , to B .

~ l the fact that D , = {T,F} implies that equivalent propositions can be substituted for each other

4

4 MODEL EXISTENCE 7

Definition 3.3 (Frege Structure). Let A = (V, I) be a model structure, then a surjec­
tive total function v: 1)0 -----+ ~ with

1. v (I(j)[al , ... ,an]) =] [Veal), ... ,v(ak)] for any j E :rk.

2. v(I(Q)[f]) = Q({v(f[a])la E VQ}) for any Q E QQ.

is called a valuation for A. In this case we call the triple M : = (1), I, v) a Frege struc­
ture. For a given assignment cp the evaluation of a formula A consists of interpretation
Iep(A) in A and the subsequent valuation with v. Thus we call a formula A E wffo("£)

. valid in M under an assignment cp (M Fep A), iff v 0 Iep(A) E'I'.

Model Existence

We now introduce an important tool for proving completeness results in higher-order logic.
Model existence theorems state that sets which belong to a so-called abstract consistency
class are satisfiable. With their help the completeness proof for a given logical system C
is reduced to the (purely proof-theoretic) demonstration that the class of C-consistent sets
is an abstract consistency· class. This proof technique was first introduced by Smullyan
in [Smu68] based on work by Hintikka and Beth. It was later generalized to higher-order
logic by Andrews in [And71] and to multi-valued first-order logics by Carnielli [Car87].
Since there is no simple Herbrand theorem in higher-order logic, Andrews' model existence
theorem for higher-order logic [And71] has become the standard method for completeness
proofs in higher-order logic.

We call a pair A W a labeled formula, iff A E wffo("£) and W E~. For a labeled .
formula A W we require v 0 Itp(A) = w. As usual we can derive a notion of satisfiability
from this.

For the definition of an abstract consistency class we must consider the relation of
satisfiability of a labeled formula jA to the values of its subformulae Ai' The immediate
answer to this question is that Itp(jA) =](Itp(A)) and thus (Iep(A I) , ... ,Itp(An)) E
]-l(w) is the relevant condition. However it is possible to optimize this condition, if] is
constant on some argument. We formalize this in the notion of a IT-consequence, which
has been introduced by Carnielli [Car87].

Definition 4.1 (IT-Consequence). Let ~* : = ~ U { *} and vn = (VI, . " ,vn) and wn =
(WI' ... ,wn) be members of ~*n, then we say that vn is more general than wn (vn !; wn),
if for some :r ~ {I, ... ,n} we have Vk = * for all k E :r and Wi = Vi for all i ~ :r.
Intuitively, higher generality can be obtained by replacing some components of a vector
by *. For a sequence A = Ai ... An of formulae we write Jf!n for the set {Ay; IVi =1=

*}. Asterisks mark positions without influence on the value of connective formulae; they
can be left out of consideration while forming semantic consequences. Let us extend the
function] to all of ~* by inductively defining](VI, ... ,Vi-I, *, Vi+l,'" ,Vn) = V whenever
](VI, ... ,Vi-I, W, Vi+l,'" ,Vn) = V for all W E ~ and undefined else. Then we call the set

4 MODEL EXISTENCE 7

Definition 3.3 (Frege Structure). Let A = (D,Z) be a model structure, then a surjec-
tive total function v : D , — B with

1. v (Z () [a , - - . ‚an]) = j [v (a i) , . . . ,v(az)] for anyj € J*.

2. v(Z(Q)[f]) = Q({v(fla])|a € Da}) for any Q € Q°.

is called a valuation for A. In this case we call the triple M : = (D,Z,v) a Frege struc-
ture. For a given assignment ¢ the evaluation of a formula A consists of interpretation
Z,(A) in A and the subsequent valuation with v . Thus we call a formula A € wff,(X)

- valid in M under an assignment v (M |=, A) , iff vo Z,(A) € T.

4 Model Existence

We now introduce an important tool for proving completeness results in higher-order logic.
Model existence theorems state that sets which belong to a so-called abstract consistency
class are satisfiable. With their help the completeness proof for a given logical system C
is reduced to the (purely proof-theoretic) demonstration that the class of C-consistent sets
is an abstract consistency class. This proof technique was first introduced by Smullyan
in [Smu68| based on work by Hintikka and Beth. It was later generalized to higher-order
logic by Andrews in [And71] and to multi-valued first-order logics by Carnielli [Car87).
Since there is no simple Herbrand theorem in higher-order logic, Andrews’ model existence
theorem for higher-order logic [And71] has become the standard method for completeness
proofs in higher-order logic.

We call a pair A ” a labeled formula, iff A € wff,(¥) and w € 9B. For a labeled
formula A ” we require vo Z,(A) = w. As usual we can derive a notion of satisfiability
from this.

For the definition of an abstract consistency class we must consider the relation of
satisfiability of a labeled formula JA" to the values of i ts subformulae A ; . The immediate
answer to this question is that Z,(jA) = j(Z,(A)) and thus (Z , (A1) , . . . ,T , (A,)) €
j~}(w) is the relevant condition. However i t is possible to optimize this condition, i f j is
constant on some argument. We formalize this in the notion of a II-consequence, which
has been introduced by Carnielli [Car87].

Definition 4.1 (II-Consequence). Let B * : = BU {+} and % = (vy,... , v ,) and Wr =
(wy, . - . , wp) be members of B * " , then we say that 4, is more general than w, (7, C ,) ,
i f for some J C {1 , . . . , n } we have vy = * fo ra l l k € J and w; = v; for al l i ¢ J .
Intuitively, higher generality can be obtained by replacing some components of a vector
by * . For a sequence A = A ; . . .A , of formulae we write A ” for the set {AY | v #
x}. Asterisks mark positions without influence on the value of connective formulae; they
can be left out of consideration while forming semantic consequences. Let us extend the
function j to all o f B * by inductively defining 7 (vy, eee 3 Vin , * , V i l , - - , Up) = U whenever
Jy . e t Vie l , W, Vig, . . . , Up) = U for all w € B and undefined else. Then we call the set

4 MODEL EXISTENCE 7

Definition 3.3 (Frege Structure). Let A = (D,Z) be a model structure, then a surjec-
tive total function v : D , — B with

1. v (Z () [a , - - . ‚an]) = j [v (a i) , . . . ,v(az)] for anyj € J*.

2. v(Z(Q)[f]) = Q({v(fla])|a € Da}) for any Q € Q°.

is called a valuation for A. In this case we call the triple M : = (D,Z,v) a Frege struc-
ture. For a given assignment ¢ the evaluation of a formula A consists of interpretation
Z,(A) in A and the subsequent valuation with v . Thus we call a formula A € wff,(X)

- valid in M under an assignment v (M |=, A) , iff vo Z,(A) € T.

4 Model Existence

We now introduce an important tool for proving completeness results in higher-order logic.
Model existence theorems state that sets which belong to a so-called abstract consistency
class are satisfiable. With their help the completeness proof for a given logical system C
is reduced to the (purely proof-theoretic) demonstration that the class of C-consistent sets
is an abstract consistency class. This proof technique was first introduced by Smullyan
in [Smu68| based on work by Hintikka and Beth. It was later generalized to higher-order
logic by Andrews in [And71] and to multi-valued first-order logics by Carnielli [Car87).
Since there is no simple Herbrand theorem in higher-order logic, Andrews’ model existence
theorem for higher-order logic [And71] has become the standard method for completeness
proofs in higher-order logic.

We call a pair A ” a labeled formula, iff A € wff,(¥) and w € 9B. For a labeled
formula A ” we require vo Z,(A) = w. As usual we can derive a notion of satisfiability
from this.

For the definition of an abstract consistency class we must consider the relation of
satisfiability of a labeled formula JA" to the values of i ts subformulae A ; . The immediate
answer to this question is that Z,(jA) = j(Z,(A)) and thus (Z , (A1) , . . . ,T , (A,)) €
j~}(w) is the relevant condition. However i t is possible to optimize this condition, i f j is
constant on some argument. We formalize this in the notion of a II-consequence, which
has been introduced by Carnielli [Car87].

Definition 4.1 (II-Consequence). Let B * : = BU {+} and % = (vy,... , v ,) and Wr =
(wy, . - . , wp) be members of B * " , then we say that 4, is more general than w, (7, C ,) ,
i f for some J C {1 , . . . , n } we have vy = * fo ra l l k € J and w; = v; for al l i ¢ J .
Intuitively, higher generality can be obtained by replacing some components of a vector
by * . For a sequence A = A ; . . .A , of formulae we write A ” for the set {AY | v #
x}. Asterisks mark positions without influence on the value of connective formulae; they
can be left out of consideration while forming semantic consequences. Let us extend the
function j to all o f B * by inductively defining 7 (vy, eee 3 Vin , * , V i l , - - , Up) = U whenever
Jy . e t Vie l , W, Vig, . . . , Up) = U for all w € B and undefined else. Then we call the set

· .~

4 MODEL EXISTENCE	 8

llV (j) : =]-l(V) ~ 23*n the propositional condition for a connective j and the truth
value v. From this we can choose a set J-lr;1iv(j) of generators (a vector vn generates the
set of all wn with fin !;::;; Wn). Now let BV be a labeled formula of the form (jA l ... An)V,

nthen a set r is called a IT-consequence of B V , iff wn E J-lr;llv(j).

Note that the set of IT-consequences can be empty. Furthermore this construction is not
necessarily unique for connectives of arity k > 2 (for a detailed discussion see [Hah92]). In
order to have a unique notion of IT-consequence we fix some general method of constructing
these sets in advance. For the construction of term models it is necessary to introduce
formulae that contain witnesses for existential expressions.

For this we assume a countably infinite set of new witness constants (which we will
denote with fa, f{3 ...) for each type.

Definition 4.3 (Set ofwitnesses). Let M = {Wll'" ,wm } ~ 23 be a set of truth
values, A E wffa-to('£) a closed formula and <I> be a set of sentences. We call a set
BM(A) : = {(Afl)Wl, ... , (Afm)Wm} a set of M-witnesses for A in environment <I>.

Definition 4.4 (Abstract Consistency Class). Let V be a class of sets of labeled propo­
sitions, then V is called an abstract consistency class, iff V is closed under subsets,
and for all sets <I> E V the following conditions hold:

VI	 There are no truth values v =1= w, such that AV, AWE <I> for an atomic formula
A E wffo(l:.).

V2	 If A WE <I>, then <I>U {A.!.}W E V.

V3	 IfBv = (jAl ... An)V E <I>, then there is a IT-consequence WofBv
, such that <I>uw E

V.

V4	 If (Qa A)V E <I>, then there is a set M ~ 23 of truth values with Q(M) = v, such that
for any set BM(A) of M-witnesses in the environment <I> and for each closed formula
B E wffa(l:.) there is a truth value W E M, such that <I> U BM(A) U {(AB)W} E "V.

We call an abstract consistency class saturated, iff for all <I> E V and all atomic proposi­
tions A E wffo(l:.) we have <I> U {AV} E "V for some v E 23.

Remember that abstract consistency is intended to be a notion of consistency that is
independent of a particular calculus. Thus the first condition just states that there may not
be elementary contradictions in "consistent" sets, whereas the second one is just a closure

4 MODEL EXISTENCE | 8

H(j) : = j ~ (v) € B*" the propositional condition for a connective j and the truth
value v . From this we can choose a set u -# , (j) of generators (a vector 7, generates the
set of all w, with 7, C w,). Now let B” be a labeled formula of the form (jA ; . . .A ,) ”
then a set A “ is called a II-consequence of BY, iff w, € uc , (j) .

ba

Ezample 4.2. For the connectives of K® we have the following II-consequences:
IT-cons. II-consequences

(mA)F | {AT} (AVB) | {AT}, {B}
(mA)* | {at} (A V B)* | {A*, B - } , {A*, B"} , {AT,B ' }
(-=A)T | {AF} (AVB) ! [{AT,B"} .

Note that the set of II-consequences can be empty. Furthermore this construction is not
necessarily unique for connectives of arity k > 2 (for a detailed discussion see [Häh92]). In
order to have a unique notion of II-consequence we fix some general method of constructing
these sets in advance. For the construction of term models i t is necessary to introduce
formulae that contain witnesses for existential expressions.

For this we assume a countably infinite set of new witness constants (which we will
denote with £ , , f 5 . . .) for each type.

Definition 4.3 (Set of witnesses). Let M = {ws,... , wn} © B be a set of truth
values, A € uff, , , (¥) a closed formula and ® be a set of sentences. We call a set
Em(A) : = { (A f)™, . . . , (A f ,) " } a set of M-witnesses for A in environment &.

Definition 4.4 (Abstract Consistency Class). Let V be a class of sets of labeled propo-
sitions, then V is called an abstract consistency class, iff V is closed under subsets,
and for all sets ® € V the following conditions hold:

V1 There are no truth values v # w, such that A ’ , A” € ® for an atomic formula
A € uff,(2) .

V2. I f AY € ®, then SU {AJ}" € V.

V3 If BY = (jA ; . . .A ,) " € ®, then there is a II-consequence ¥ of BY, such that UT €
V.

V4 If (Q*A)Y € ®, then there is a set M C B of truth values with Q(M) =v , such that
for any set Zu(A) of M-witnesses in the environment ® and for each closed formula
B € wff,(X) there is a truth value w € M , such that ® UZ (A) U { (AB)¥} € V.

We call an abstract consistency class saturated, iff for all ® € V and all atomic proposi-
tions A € wff,(X) we have ® U {A"} € V for some v € B .

Remember that abstract consistency is intended to be a notion of consistency that is
independent of a particular calculus. Thus the first condition just states that there may not
be elementary contradictions in “consistent” sets, whereas the second one is just a closure

4 MODEL EXISTENCE | 8

H(j) : = j ~ (v) € B*" the propositional condition for a connective j and the truth
value v . From this we can choose a set u -# , (j) of generators (a vector 7, generates the
set of all w, with 7, C w,). Now let B” be a labeled formula of the form (jA ; . . .A ,) ”
then a set A “ is called a II-consequence of BY, iff w, € uc , (j) .

ba

Ezample 4.2. For the connectives of K® we have the following II-consequences:
IT-cons. II-consequences

(mA)F | {AT} (AVB) | {AT}, {B}
(mA)* | {at} (A V B)* | {A*, B - } , {A*, B"} , {AT,B ' }
(-=A)T | {AF} (AVB) ! [{AT,B"} .

Note that the set of II-consequences can be empty. Furthermore this construction is not
necessarily unique for connectives of arity k > 2 (for a detailed discussion see [Häh92]). In
order to have a unique notion of II-consequence we fix some general method of constructing
these sets in advance. For the construction of term models i t is necessary to introduce
formulae that contain witnesses for existential expressions.

For this we assume a countably infinite set of new witness constants (which we will
denote with £ , , f 5 . . .) for each type.

Definition 4.3 (Set of witnesses). Let M = {ws,... , wn} © B be a set of truth
values, A € uff, , , (¥) a closed formula and ® be a set of sentences. We call a set
Em(A) : = { (A f)™, . . . , (A f ,) " } a set of M-witnesses for A in environment &.

Definition 4.4 (Abstract Consistency Class). Let V be a class of sets of labeled propo-
sitions, then V is called an abstract consistency class, iff V is closed under subsets,
and for all sets ® € V the following conditions hold:

V1 There are no truth values v # w, such that A ’ , A” € ® for an atomic formula
A € uff,(2) .

V2. I f AY € ®, then SU {AJ}" € V.

V3 If BY = (jA ; . . .A ,) " € ®, then there is a II-consequence ¥ of BY, such that UT €
V.

V4 If (Q*A)Y € ®, then there is a set M C B of truth values with Q(M) =v , such that
for any set Zu(A) of M-witnesses in the environment ® and for each closed formula
B € wff,(X) there is a truth value w € M , such that ® UZ (A) U { (AB)¥} € V.

We call an abstract consistency class saturated, iff for all ® € V and all atomic proposi-
tions A € wff,(X) we have ® U {A"} € V for some v € B .

Remember that abstract consistency is intended to be a notion of consistency that is
independent of a particular calculus. Thus the first condition just states that there may not
be elementary contradictions in “consistent” sets, whereas the second one is just a closure

5 RESOLUTION (1£nN
)	 9

condition for ,B7]-equality. The remaining conditions state that a "consistent" set of propo­
sitions can be extended by certain logical preconditions without loosing "consistency". In
contrast to the two-valued case, n-valued quantifiers have in general both existential and
universal nature, thus it is necessary to extend by preconditions that contain arbitrary
instances as well as witnesses (negative variables).

The significance of abstract consistency classes lies in the following theorem, which we
cite from [Sch94].

Theorem 4.5 (Existence of Frege Structures).
Let H E '\1 and '\1 be a saturated abstract consistency class, then there is a model structure

M with M FH.

Proof sketch: The set H can be extended to higher-order Hintikka set,Le. a maximal
set 1£ E '\1, such that H ~ 1£. For this we can build a Frege structure (V, I, v) that satisfies
1£ by choosing V to be the set of closed formulae in ,B7]-normal forms, and I to be the
identity on constants. Since 1-£ E '\1, the function v: 'Do -t ~ defined by v(Ao) = w,
iff A W E 1£ is a valuation. Note that with this construction we can only obtain Frege
structures, not Henkin models, since the set of closed formulae of sort 0 is different from
~. 0

5 Resolution (HRn
)

Now that we have specified the semantics we can turn to the exposition of our resolution
calculus 1£nn. There are three main differences to the first-order case.

•	 Higher-order unification is undecidable, therefore we cannot simply use it as a sub­
procedure that is invoked during resolution. The solution for this problem is to treat
the unification problem as a constraint and residuate it in the resolution and factoring
rules. In fact we use negative equality literals that are disjunctively bound to the
clause (cf. 5.1).

•	 Not all instantiations for predicate variables can be found by unification. For com­
pleteness the instantiations of head variables of literals must contain logical constants,
which cannot be supplied by unification, since they are not even present in the clauses
set, as they have been eliminated in the clause normal form transformations.

•	 Naive Skolemization is not sound for higher-order logic. In this paper we will use
Dale Miller's solution to this problem: His idea is to introduce arities for the witness
constants (we call the resulting pair f~, where the arity k is smaller than the length
of a a Skolem constant). Then the language is restricted to so-called Skolem
formulae, where all Skolem constants f~ have all their necessary arguments (i.e. at
least k of them) and furthermore no variables occurring in necessary arguments of
Skolem constants are bound outside. For lack of space, we will not go into depth
here; the reader is referred to [Mil83] for details.

5 RESOLUTION (HRY) 9

condition for An-equality. The remaining conditions state that a “consistent” set of propo-
sitions can be extended by certain logical preconditions without loosing “consistency”. In
contrast to the two-valued case, n-valued quantifiers have in general both existential and
universal nature, thus it is necessary to extend by preconditions that contain arbitrary
instances as well as witnesses (negative variables).

The significance of abstract consistency classes lies in the following theorem, which we
cite from [Sch94].
Theorem 4.5 (Existence of Frege Structures).
Let H € V and V be a saturated abstract consistency class, then there is a model structure

M withM |= H.

Proof sketch: The set H can be extended to higher-order Hintikka set,i.e. a maximal
set H € V , such that H C H . For this we can build a Frege structure (D, Z, v) that satisfies
‘H by choosing D to be the set of closed formulae in Gn-normal forms, and Z to be the
identity on constants. Since H € V, the function v : D, — B defined by v(A,) = w,
iff AY € H is a valuation. Note that with this construction we can only obtain Frege
structures, not Henkin models, since the set of closed formulae of sort o is different from
B . [m]

5 Resolution (HR™)
Now that we have specified the semantics we can turn to the exposition of our resolution
calculus HR”. There are three main differences to the first-order case.

e Higher-order unification is undecidable, therefore we cannot simply use it as a sub-
procedure that is invoked during resolution. The solution for this problem is to treat
the unification problem as a constraint and residuate i t in the resolution and factoring
rules. In fact we use negative equality literals that are disjunctively bound to the
clause (cf. 5.1).

e Not all instantiations for predicate variables can be found by unification. For com-
pleteness the instantiations of head variables of literals must contain logical constants,
which cannot be supplied by unification, since they are not even present in the clauses
set, as they have been eliminated in the clause normal form transformations.

e Naive Skolemization is not sound for higher-order logic. In this paper we will use
Dale Miller’s solution to this problem: His idea is to introduce arities for the witness
constants (we call the resulting pair f “ , where the arity k is smaller than the length
of a a Skolem constant). Then the language is restricted to so-called Skolem
formulae, where all Skolem constants ££ have all their necessary arguments (i.e. at
least k of them) and furthermore no variables occurring in necessary arguments of
Skolem constants are bound outside. For lack of space, we will not go into depth
here; the reader is referred to [Mil83] for details.

5 RESOLUTION (HRY) 9

condition for An-equality. The remaining conditions state that a “consistent” set of propo-
sitions can be extended by certain logical preconditions without loosing “consistency”. In
contrast to the two-valued case, n-valued quantifiers have in general both existential and
universal nature, thus it is necessary to extend by preconditions that contain arbitrary
instances as well as witnesses (negative variables).

The significance of abstract consistency classes lies in the following theorem, which we
cite from [Sch94].
Theorem 4.5 (Existence of Frege Structures).
Let H € V and V be a saturated abstract consistency class, then there is a model structure

M withM |= H.

Proof sketch: The set H can be extended to higher-order Hintikka set,i.e. a maximal
set H € V , such that H C H . For this we can build a Frege structure (D, Z, v) that satisfies
‘H by choosing D to be the set of closed formulae in Gn-normal forms, and Z to be the
identity on constants. Since H € V, the function v : D, — B defined by v(A,) = w,
iff AY € H is a valuation. Note that with this construction we can only obtain Frege
structures, not Henkin models, since the set of closed formulae of sort o is different from
B . [m]

5 Resolution (HR™)
Now that we have specified the semantics we can turn to the exposition of our resolution
calculus HR”. There are three main differences to the first-order case.

e Higher-order unification is undecidable, therefore we cannot simply use it as a sub-
procedure that is invoked during resolution. The solution for this problem is to treat
the unification problem as a constraint and residuate i t in the resolution and factoring
rules. In fact we use negative equality literals that are disjunctively bound to the
clause (cf. 5.1).

e Not all instantiations for predicate variables can be found by unification. For com-
pleteness the instantiations of head variables of literals must contain logical constants,
which cannot be supplied by unification, since they are not even present in the clauses
set, as they have been eliminated in the clause normal form transformations.

e Naive Skolemization is not sound for higher-order logic. In this paper we will use
Dale Miller’s solution to this problem: His idea is to introduce arities for the witness
constants (we call the resulting pair f “ , where the arity k is smaller than the length
of a a Skolem constant). Then the language is restricted to so-called Skolem
formulae, where all Skolem constants ££ have all their necessary arguments (i.e. at
least k of them) and furthermore no variables occurring in necessary arguments of
Skolem constants are bound outside. For lack of space, we will not go into depth
here; the reader is referred to [Mil83] for details.

5 RESOLUTION (1tRN
) 10

In our definition of clauses, we will uSe disjunctions as meta-symbols for sets of formulae,
in order to enhance legibility. Note that since the disjuncts are labeled formulae, these
symbols are different from the disjunction constants in the signature.

Definition 5.1 (Clause). IfMi E wffoCE) and Vi E ~, then we call a formula 1) : = CVe
a generalized clause, if C is of the form C : = Mfl V... VM~n , and if e is a disjunction
of pairs of the form A L #? B 1 V ... V Am #? Bm (we will consider unification pairs of the
form Aa =I=? Ba as literals, since this will simplify the presentation). We call C a clause, iff
the M~i are literals (a labeled formula Av is called literal, if the head of A is a parameter
or variable). In order to conserve space we will write disjunctions of the form VvEV AV as
AV, so AV V A Wbecomes A Vw .

In 1-lRn the transformation to clause normal form only need two parametric rules, one
for the connectives

which basically transforms a labeled connective formula (jA)V into the cross product of
all it's IT-consequences r n; and one for the quantifiers

where f3(AtI) = {(A(ffXk))Wi IWi E M}U{VWiEM(AX)Wi}, where Free(A) = {Xb .. · ,Xk}.
This set plays the role of the set =M(A) of witnesses defined in 4.3. The key difference is
that instead of arbitrary instances j3(M) uses variables that will be instantiated appropri­
ately by unification.

For a a given set \l1 of generalized clauses we call the set cnf(\l1) of clauses that is
derivable from W the clause normal form of \l1. Since in order to show that a sentence
A E wffoC'E.) is valid (i.e. obtains a truth value in 'I), it is sufficient to refute that A obtains
a truth value in ~ \ 'I, we define the clause normal form of a set <I> of sentences as

CNF(<I» = U cnf(V A W
)

AE'P wE'B\'!"

If we apply the rules above to classical higher-order logic, we obtain the traditional
clause normal form reductions for -, and V, but a quantifier reduction that is significantly
less efficient. Fortunately, wide classes of naturally occuring quantifiers admit generic
optimizations [Sch94] that yield the classical rules for 1If)£2. This also holds for our
running example K 3 , where we obtain the following (optimized) transformation rules. For

5 RESOLUTION (HRY) 10

" In our definition of clauses, we will use disjunctions as meta-symbols for sets of formulae,
in order to enhance legibility. Note that since the disjuncts are labeled formulae, these
symbols are different from the disjunction constants in the signature.

Definition 5 .1 (Clause). I f M ; € wff,(X) and v; € B , then we call a formulaD : = CVE
a generalized clause, i f C is of the form C : = M{' V . . .VM7” , and i f £ is a disjunction
of pairs of the form A ; # ’ B ; V . . .V A , # ’ Bm (we will consider unification pairs of the
form A , # ’ Ba as literals, since this will simplify the presentation). We call C a clause, iff
the M;* are literals (a labeled formula A” is called literal, i f the head of A is a parameter
or variable). In order to conserve space we will write disjunctions of the form Vy A” as
AY, so A” V AY becomes A”,

In HR” the transformation to clause normal form only need two parametric rules, one
for the connectives .

Rares 2 Wn

CV (jA)" DE Vg, cun .)A

CvD
RC(j)

which basically transforms a labeled connective formula (jA)* into the cross product of
all i t ’s IT-consequences A " ; and one for the quantifiers

CV (Q*A)* D € Viyregim BM)
CVD

RC(Q)

where B(M) = {(A (EEX) uw; € M}U{Vwiem(AX)“i}, where Free(A) = {X , . . . , Xx}.
This set plays the role of the set Zpr(A) of witnesses defined in 4.3. The key difference is
that instead of arbitrary instances S (M) uses variables that will be instantiated appropri-
ately by unification.

For a a given set ¥ of generalized clauses we call the set cnf(¥) of clauses that is
derivable from ¥ the clause normal form of ¥ . Since in order to show that a sentence
A € uff,(Z) is valid (i.e. obtains a truth value in %), i t is sufficient t o refute that A obtains
a truth value in 8 \ T, we define the clause normal form of a set ® of sentences as

CNF(@) = | enf(\/ A
cd weB\T

I f we apply the rules above to classical higher-order logic, we obtain the traditional
clause normal form reductions for — and V, but a quantifier reduction that is significantly
less efficient. Fortunately, wide classes of naturally occuring quantifiers admit generic
optimizations [Sch94] that yield the classical rules for #OL?. This also holds for our
running example K*, where we obtain the following (optimized) transformation rules. For

5 RESOLUTION (HRY) 10

" In our definition of clauses, we will use disjunctions as meta-symbols for sets of formulae,
in order to enhance legibility. Note that since the disjuncts are labeled formulae, these
symbols are different from the disjunction constants in the signature.

Definition 5 .1 (Clause). I f M ; € wff,(X) and v; € B , then we call a formulaD : = CVE
a generalized clause, i f C is of the form C : = M{' V . . .VM7” , and i f £ is a disjunction
of pairs of the form A ; # ’ B ; V . . .V A , # ’ Bm (we will consider unification pairs of the
form A , # ’ Ba as literals, since this will simplify the presentation). We call C a clause, iff
the M;* are literals (a labeled formula A” is called literal, i f the head of A is a parameter
or variable). In order to conserve space we will write disjunctions of the form Vy A” as
AY, so A” V AY becomes A”,

In HR” the transformation to clause normal form only need two parametric rules, one
for the connectives .

Rares 2 Wn

CV (jA)" DE Vg, cun .)A

CvD
RC(j)

which basically transforms a labeled connective formula (jA)* into the cross product of
all i t ’s IT-consequences A " ; and one for the quantifiers

CV (Q*A)* D € Viyregim BM)
CVD

RC(Q)

where B(M) = {(A (EEX) uw; € M}U{Vwiem(AX)“i}, where Free(A) = {X , . . . , Xx}.
This set plays the role of the set Zpr(A) of witnesses defined in 4.3. The key difference is
that instead of arbitrary instances S (M) uses variables that will be instantiated appropri-
ately by unification.

For a a given set ¥ of generalized clauses we call the set cnf(¥) of clauses that is
derivable from ¥ the clause normal form of ¥ . Since in order to show that a sentence
A € uff,(Z) is valid (i.e. obtains a truth value in %), i t is sufficient t o refute that A obtains
a truth value in 8 \ T, we define the clause normal form of a set ® of sentences as

CNF(@) = | enf(\/ A
cd weB\T

I f we apply the rules above to classical higher-order logic, we obtain the traditional
clause normal form reductions for — and V, but a quantifier reduction that is significantly
less efficient. Fortunately, wide classes of naturally occuring quantifiers admit generic
optimizations [Sch94] that yield the classical rules for #OL?. This also holds for our
running example K*, where we obtain the following (optimized) transformation rules. For

5 RESOLUTION (1t:RN
) 11

instance the VJ. rule, where the number of introduced clauses is decreased from six to two.

C V (A V B)F C V (A V B)l.

Cv AF CVBF

CV (Ir.lAl

C V (A(f~Xk)? C V (A(f~Xk))J. Cv (AX)l.T

The regularity of K 3 allows us to optimize this clause normal form even further: As
first noticed by Rainer Hahnle [Hah92], clause normalization can be more efficient, if we
process disjunctions L {VI, ..• ,Vn} (written as L Vl."Vn) in one step. In particular for K 3 , labeled
formulae containing literals L UF are tautologous and can be deleted and normalization
rules acting on AT,l. or AF,J. (intuitively meaning that 'the formula A must not be FIT) are
rimch more regular than the combination of the T, and .L rules induced by the disjunctions.
For instance we have the following rules for sets of signs

C V (A V B)U C V (A V B)FJ.

Cv ATJ. V BTJ. Cv AFJ. C V BFJ.

C V (IJC~ A)U C V (n°A)FJ.

Cv (AX)U C V (A(f~ Xk))FJ.

Let us now return to our example 3.1 to prove the theorem 7, we have to consider the
clause normal form of the set of axioms (1)-(6) labeled with T, together with (7) labeled
with F.L (we have to refute that it obtains the truth values F or .l). Using the optimized
reduction rules above the clause normal form of our example 3.1 has the following form:

Al (Ft-H.Lt = .Lt)T
A2 X=.LTV(invX=.L)FV(X=OF
A3 X =.LTV (invX = .L)T V (X = oy
A4 (X = .L)T V (X = O)'r V (invX*X) = IT
Tl (fO = .L)FJ.
T2 (gO = .l)FJ.
T3 (X = .L)TJ. V (gO X = O)FJ.
T4 (X = .L)U V (gOX = .L)FJ.
T5 (().Y.(fOY)*(inv(gOY))*(goy)) = fO)FJ.

where Al comes from strictness (1), A2-A3 from (5), and A4 comes from (6). The theorem
clauses Tl and T2 have been obtained from (7) by eliminating definitions (2) - (4) and
clause normalizing.

5 RESOLUTION (HRY) 11

instance the V+ rule, where the number of introduced clauses is decreased from six to two.

Cv(AvB) ! CV (AVB)f Cv(A v B)+
CvVA’vVB! CVAF CVPBF CvAY¥ CvBY¥ CvA lvB* t

Cv(-A CV(-A)} Cv(-AF
Cv AF CVA ‘ CVAT

Cv (H°A)” Cv (I*A) Cv ([I*A)*

CV (AX) CV (A(£FXL))" CV (A (X) Cv (AX)

The regularity of K? allows us to optimize this clause normal form even further: As
first noticed by Rainer Hahnle [Häh92], clause normalization can be more efficient, if we
process disjunctions L{#?=} (written as L ” **) in one step. In particular for K?, labeled
formulae containing literals L™F are tautologous and can be deleted and normalization
rules acting on A™ or AF (intuitively meaning that the formula A must not be F/T) are
much more regular than the combination of the T, and .L rules induced by the disjunctions.
For instance we have the following rules for sets of signs a

C V (A v B)!+ Cv (A v B)F+

CvA™vB™ CV Aft CvBH
Cv (I*A)™ Cv (II*A)F+

Cv(AX)™ CV(AET)™

Let us now return to our example 3.1 to prove the theorem 7, we have to consider the
clause normal form of the set of axioms (1)—(6) labeled with T, together with (7) labeled
with FL (we have to refute that i t obtains the truth values F or L) . Using the optimized
reduction rules above the clause normal form of our example 3.1 has the following form:

A l (Fis L , = 1) !
A2 X=1TV(i nvX = 1) " v (X = 0)
A3 X = 1 "V (i nvX = 1) ! v (X = 0)
Ad (X=L)TV(X = 0)" V (invX+*X) = 17
T1 (f° = L)F+
T2 (g° = L)F+

T3 (X=L1) "v (eX =0)F
T4 (X=LMv(gX=L1)F
T5 ((AY(£°Y)*(inv(g°Y))+(g°Y)) = £0)F+

where A l comes from strictness (1), A2— A3 from (5), and A4 comes from (6). The theorem
clauses T'1 and T2 have been obtained from (7) by eliminating definitions (2) — (4) and
clause normalizing.

5 RESOLUTION (HRY) 11

instance the V+ rule, where the number of introduced clauses is decreased from six to two.

Cv(AvB) ! CV (AVB)f Cv(A v B)+
CvVA’vVB! CVAF CVPBF CvAY¥ CvBY¥ CvA lvB* t

Cv(-A CV(-A)} Cv(-AF
Cv AF CVA ‘ CVAT

Cv (H°A)” Cv (I*A) Cv ([I*A)*

CV (AX) CV (A(£FXL))" CV (A (X) Cv (AX)

The regularity of K? allows us to optimize this clause normal form even further: As
first noticed by Rainer Hahnle [Häh92], clause normalization can be more efficient, if we
process disjunctions L{#?=} (written as L ” **) in one step. In particular for K?, labeled
formulae containing literals L™F are tautologous and can be deleted and normalization
rules acting on A™ or AF (intuitively meaning that the formula A must not be F/T) are
much more regular than the combination of the T, and .L rules induced by the disjunctions.
For instance we have the following rules for sets of signs a

C V (A v B)!+ Cv (A v B)F+

CvA™vB™ CV Aft CvBH
Cv (I*A)™ Cv (II*A)F+

Cv(AX)™ CV(AET)™

Let us now return to our example 3.1 to prove the theorem 7, we have to consider the
clause normal form of the set of axioms (1)—(6) labeled with T, together with (7) labeled
with FL (we have to refute that i t obtains the truth values F or L) . Using the optimized
reduction rules above the clause normal form of our example 3.1 has the following form:

A l (Fis L , = 1) !
A2 X=1TV(i nvX = 1) " v (X = 0)
A3 X = 1 "V (i nvX = 1) ! v (X = 0)
Ad (X=L)TV(X = 0)" V (invX+*X) = 17
T1 (f° = L)F+
T2 (g° = L)F+

T3 (X=L1) "v (eX =0)F
T4 (X=LMv(gX=L1)F
T5 ((AY(£°Y)*(inv(g°Y))+(g°Y)) = £0)F+

where A l comes from strictness (1), A2— A3 from (5), and A4 comes from (6). The theorem
clauses T'1 and T2 have been obtained from (7) by eliminating definitions (2) — (4) and
clause normalizing.

5 RESOLUTION (1-tR,N) 12

To prove the theorem from this clause set, we have two possibilities: We can either
axiomatize transitivity, reflexivity, symmetry, and substitutivity of equality or or eliminate
the equality predicate via the well-known Leibniz formulation

We will execute neither here, since multi-valued resolution proofs look almost exactly the
same as classical resolution proofs (the special features of the logic only come into play
during the clause form transformation).

Theorem 5.2 (Clause Normal Form Theorem).
A set q> of sentences is valid, if CNF(q» is unsatisfiable.

Proof sketch: The notion of satisfiability for clauses in this theorem is nearly straight­
forward, a clause C is satisfiable in M= (V, I), iff there is a literal LV in C such that
Irp(L) = v for some assignment cp. However, due to the non-standard nature of Skolem
constants, they may not be interpreted as normal functions in the model; but for our
'restricted class of Skolem formulae interpretation is unproblematic. With this and the
definition of IT-consequences the proof of the assertion reduces to a standard argument
about Skolemization. For details about the model construction see [Sch94]. 0

5.1 Higher-Order Unification

The higher-order unification problem can be reduced to the/problem of finding most general
formulae of a given type and a given head symbol.

Definition 5.3 (General Binding). Let Cl! = (/31 -+ '1'), and h be a constant or variable
of type (<5m -+ '1'), then G : = >"X~l.hvm is called a general binding of type a and
head h, if Vi = HiX~I' The Hi are new variables of types /31 -+ <5i . It is easy to show that
general bindings indeed have the type and head claimed in the name and are most general
in the class of all such terms. Moreover they are unique up to the choice of variable names.

General bindings, where the head is a bound variable X$j are called projection bind­
ings (we write them as g~(~)) and imitation bindings (written g~(~)) else. Since we
need both imitation and projection bindings for higher-order unification, we collect them
in the set of Approximations A~(~) : = {g~(~)} U {g~(~)lj :::; l}.

5.2 The Resolution Calculus llnn

Now we turn to the actual resolution calculus 1inn
. The previous results set the stage

by giving a semantic justification of a resolution calculus that proves sentences A by
converting VvE!B\'!' A v to clause normal form and then by deriving the empty clause from
that. Intuitively, this refutes that possibility that A obtains a value in ~ \ '! in order to
prove that it indeed obtains a value in '! and thus is valid.

5 RESOLUTION (HRY) 12

To prove the theorem from this clause set, we have two possibilities: We can either
axiomatize transitivity, reflexivity, symmetry, and substitutivity of equality or or eliminate
the equality predicate via the well-known Leibniz formulation

= : = (AX.YaVPsryoPX = PY)

We will execute neither here, since multi-valued resolution proofs look almost exactly the
same as classical resolution proofs (the special features of the logic only come into play
during the clause form transformation).

Theorem 5.2 (Clause Normal Form Theorem).
A set ® of sentences is valid, if CNF(®) is unsatisfiable.

Proof sketch: The notion of satisfiability for clauses in this theorem is nearly straight-
forward, a clause C is satisfiable in M = (D,Z), iff there is a literal L” in C such that
Z,(L) = v for some assignment ¢ . However, due to the non-standard nature of Skolem
constants, they may not be interpreted as normal functions in the model; but for our
restricted class of Skolem formulae interpretation is unproblematic. With this and the
definition of II-consequences the proof of the assertion reduces to a standard argument
about Skolemization. For details about the model construction see [Sch94). 0

5.1 Higher-Order Unification
The higher-order unification problem can be reduced to the:problem of finding most general
formulae of a given type and a given head symbol.

Definition 5.3 (General Binding). Let a = (8 — 7), and h be a constant or variable
of type (dm — 7), then G : = AXL .hV™ is called a general binding of type o and
head h, if V* = H'XZ. The H' are new variables of types B; — 6%. It is easy to show that
general bindings indeed have the type and head claimed in the name and are most general
in the class of al l such terms. Moreover they are unique up to the choice of variable names.

General bindings, where the head is a bound variable X5 are called projection bind-
ings (we write them as GJ(Z)) and imitation bindings (written G2(Z)) else. Since we
need both imitation and projection bindings for higher-order unification, we collect them
in the set of Approximations AM) : = {GMX)} U {Gi (D)|j < l i }

5.2 The Resolution Calculus HR"
Now we turn to the actual resolution calculus HR". The previous results set the stage
by giving a semantic justification of a resolution calculus that proves sentences A by
converting V,em\g A” to clause normal form and then by deriving the empty clause from
that. Intuitively, this refutes that possibility that A obtains a value in 9 \ T in order to
prove that i t indeed obtains a value in X and thus is valid.

5 RESOLUTION (HRY) 12

To prove the theorem from this clause set, we have two possibilities: We can either
axiomatize transitivity, reflexivity, symmetry, and substitutivity of equality or or eliminate
the equality predicate via the well-known Leibniz formulation

= : = (AX.YaVPsryoPX = PY)

We will execute neither here, since multi-valued resolution proofs look almost exactly the
same as classical resolution proofs (the special features of the logic only come into play
during the clause form transformation).

Theorem 5.2 (Clause Normal Form Theorem).
A set ® of sentences is valid, if CNF(®) is unsatisfiable.

Proof sketch: The notion of satisfiability for clauses in this theorem is nearly straight-
forward, a clause C is satisfiable in M = (D,Z), iff there is a literal L” in C such that
Z,(L) = v for some assignment ¢ . However, due to the non-standard nature of Skolem
constants, they may not be interpreted as normal functions in the model; but for our
restricted class of Skolem formulae interpretation is unproblematic. With this and the
definition of II-consequences the proof of the assertion reduces to a standard argument
about Skolemization. For details about the model construction see [Sch94). 0

5.1 Higher-Order Unification
The higher-order unification problem can be reduced to the:problem of finding most general
formulae of a given type and a given head symbol.

Definition 5.3 (General Binding). Let a = (8 — 7), and h be a constant or variable
of type (dm — 7), then G : = AXL .hV™ is called a general binding of type o and
head h, if V* = H'XZ. The H' are new variables of types B; — 6%. It is easy to show that
general bindings indeed have the type and head claimed in the name and are most general
in the class of al l such terms. Moreover they are unique up to the choice of variable names.

General bindings, where the head is a bound variable X5 are called projection bind-
ings (we write them as GJ(Z)) and imitation bindings (written G2(Z)) else. Since we
need both imitation and projection bindings for higher-order unification, we collect them
in the set of Approximations AM) : = {GMX)} U {Gi (D)|j < l i }

5.2 The Resolution Calculus HR"
Now we turn to the actual resolution calculus HR". The previous results set the stage
by giving a semantic justification of a resolution calculus that proves sentences A by
converting V,em\g A” to clause normal form and then by deriving the empty clause from
that. Intuitively, this refutes that possibility that A obtains a value in 9 \ T in order to
prove that i t indeed obtains a value in X and thus is valid.

5 RESOLUTION (1-lRN
) 13

Definition 5.4 (Higher-Order Resolution (1-lRn
)). The calculus 1-lRn is a variant of

Huet's resolution calculus from [Hue72], and has the following rules of inference:

NVvC MWvD v#w (
---------1-lR Res)

C V D V M #? N

V V

M
M V N V C 1-lR(Fac)

V V C V M #? N

which operate on the clause part of clauses. For manipulating the unification constraints
1-lRn utilizes pre-unification rules (cf. [Koh94]) of which we will only state the most inter­
esting one:

CVFaUi=?hV
--------1-lR(ftex - rigid)
CV F #? G V FU #? hV

Here G is a general binding in A~ (I;). The following inference rule

FaIf V C ""'(.)------- 1-l,,, Przm
Cv Flf V F #? P

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive
variable. Here P E A~(2:) is'a general binding of type a that approximates some logical
constant k E :J u Q. llRn has one further inference rule

C V £ V X #? A ()
------1-lR Solv

C

where X #? A is solved in £ V X #? A and C E CNF([A/X]C V [A/X]£). This
rule propagates partial solutions from the constraints to the clause part, and thus helps
detect clashes early. Since thEt instantiation may well change the propositional structure
of the clause by instantiating a predicate variable, we have to renormalize the resulting
generalized clause on the fly.

We call a clause' empty, iff it does not contain any proper literals and its unification
constraint is pre-solved (i.e. contains only solved pairs X #? A or flex/flex pairs). Since
these clauses play the role of the empty clause in our resolution calculus we denote them
collectively by O. Clearly any empty clause 0 is unsatisfiable with respect to Frege struc­
tures, since the constraint is solvable. We will call a set Wof generalized clauses refutable,
iff 0 is derivable from it and a set <I? of sentences provable, iff CNF(<I?) is refutable.

In contrast to Huet's calculus we allow pre-unification transformations to be applied
to clauses during the resolution process. This generalization allows us to investigate more
realistic strategies than in Huet's calculus, which uses the "lazy unification" strategy, that
only allows unification to happen after a terminal clause has been derived.

5 RESOLUTION (HRY) 13

Definition 5.4 (Higher-Order Resolution (HR")) . The calculus HR" is a variant of
Huet’s resolution calculus from [Hue72], and has the following rules of inference:

NVC MVD v#w

CVDVM# 'N
HR(Res)

M’VN ’VvC—— HR (Fac)
MVCVM# N

which operate on the clause part of clauses. For manipulating the unification constraints
HR" utilizes pre-unification rules (cf. [Koh94]) of which we will only state the most inter-
esting one:

CV F,U#'hV
- ————— HR (flex — rigid)

CVF £ GVFUA AV

Here G is a general binding in A*(X). The following inference rule

F,U'vC
CVFU VF #£'P

HR(Prim)

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive
variable. Here P € A(X) is'a general binding of type a that approximates some logical
constant ke J U Q. HR" has one further inference rule

CVEVX# A
HR(Solv)

where X #’ A is solved in EV X #’ A and C € CNF([A/X]C v [A/X]€). This
rule propagates partial solutions from the constraints to the clause part, and thus helps
detect clashes early. Since theinstantiation may well change the propositional structure
of the clause by instantiating a predicate variable, we have to renormalize the resulting
generalized clause on the fly.

We call a clause empty, iff i t does not contain any proper literals and its unification
constraint is pre-solved (i.e. contains only solved pairs X # ’ A or flex/flex pairs). Since
these clauses play the role of the empty clause in our resolution calculus we denote them
collectively by 00. Clearly any empty clause [J is unsatisfiable with respect to Frege struc-
tures, since the constraint is solvable. We will call a set ¥ of generalized clauses refutable,
iff O is derivable from it and a set ® of sentences provable, iff CNF(®) is refutable.

In contrast to Huet’s calculus we allow pre-unification transformations to be applied
to clauses during the resolution process. This generalization allows us to investigate more
realistic strategies than im Huet’s calculus, which uses the “lazy unification” strategy, that
only allows unification to happen after a terminal clause has been derived.

5 RESOLUTION (HRY) 13

Definition 5.4 (Higher-Order Resolution (HR")) . The calculus HR" is a variant of
Huet’s resolution calculus from [Hue72], and has the following rules of inference:

NVC MVD v#w

CVDVM# 'N
HR(Res)

M’VN ’VvC—— HR (Fac)
MVCVM# N

which operate on the clause part of clauses. For manipulating the unification constraints
HR" utilizes pre-unification rules (cf. [Koh94]) of which we will only state the most inter-
esting one:

CV F,U#'hV
- ————— HR (flex — rigid)

CVF £ GVFUA AV

Here G is a general binding in A*(X). The following inference rule

F,U'vC
CVFU VF #£'P

HR(Prim)

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive
variable. Here P € A(X) is'a general binding of type a that approximates some logical
constant ke J U Q. HR" has one further inference rule

CVEVX# A
HR(Solv)

where X #’ A is solved in EV X #’ A and C € CNF([A/X]C v [A/X]€). This
rule propagates partial solutions from the constraints to the clause part, and thus helps
detect clashes early. Since theinstantiation may well change the propositional structure
of the clause by instantiating a predicate variable, we have to renormalize the resulting
generalized clause on the fly.

We call a clause empty, iff i t does not contain any proper literals and its unification
constraint is pre-solved (i.e. contains only solved pairs X # ’ A or flex/flex pairs). Since
these clauses play the role of the empty clause in our resolution calculus we denote them
collectively by 00. Clearly any empty clause [J is unsatisfiable with respect to Frege struc-
tures, since the constraint is solvable. We will call a set ¥ of generalized clauses refutable,
iff O is derivable from it and a set ® of sentences provable, iff CNF(®) is refutable.

In contrast to Huet’s calculus we allow pre-unification transformations to be applied
to clauses during the resolution process. This generalization allows us to investigate more
realistic strategies than im Huet’s calculus, which uses the “lazy unification” strategy, that
only allows unification to happen after a terminal clause has been derived.

5 RESOLUTION (1tRN
)	 14

Theorem 5.5 (Soundness). If a set <l? of propositions is provable, then it is valid.

Proof: The soundness is a simple consequence of the soundness of unification and '
the clause normal form theorem 5.2 since the resolution and factoring rules residuate the
appropriate unification constraint. 0

Lemma 5.6. Let <l? be a set of generalized clauses, () a substitution V a refutation of()(<l?).
Then there is a derivation V': <l? rll'R. E, where E is a set of pairs. Furthermore there is
an extension ()I of (), such that

•	 ()I unifies E, and

•	 the new variables in the domain of ()I do not occur in <l?

Proof sketch: The derivation Viis constructed along the line of V. In order to
do this, it is essential to maintain a close correspondence between the clause sets involved
(see the notion of a clause set isomorphism in [Koh94]). Note that the clause normal
form transformations from V can also be applied to the corresponding clauses in <l? with
the exception of the case, where the clause in <l? contains a flexible literal, whose head
() instantiates with a formula whose head is a logical constant. Here the transformation
from V must be mimicked by using the 1lR(Prim) rule that introduces the appropriate
constant. Since the 1lR(Prim) rule contains an application of 1lR(Solv), the ensuing
clause normal form transformation makes it possible to update the correspondence. Thus
by a simple inductive argument we see that the clause normal form transformation part of
V can be lifted to a 1lR-derivation.

The rest of V can then be lifted one inference rule at a time. The only two interesting
aspects of this:

•	 In the lifting of the 1lR(Solv) rule, we can have the case, that again () introduces
logical constants in the codomain of the eliminated variables. Fortunately, this can
be solved by exactly the argument above.

•	 The clause isomorphism can be destroyed by the fact that literals in V may corre­
spond to more than one literal in V', t,hen we use 1lR(Fac) to collapse them (restoring
the correspondence).

The results on ()I are obtained by maintaining () along with the correspondence (updating
it with the primitive substitutions) and carefully analyzing unifiability conditions. 0

Theorem 5.7 (Completeness). 1lRn is complete with respect to Frege structures.

Proof: The proof is conducted by verifying that the property of clause sets not
to be refutable is a saturated abstract consistency property. So by the model existence
theorem 4.5 we see that non-refutable sets of generalized clauses are satisfiable in the class
of Frege structures. Since this is just the contrapositive of the statement of completeness,
we have finished the proof. Thus it only remains to verify the conditions of 4.4.

5 RESOLUTION (HRY) 14

Theorem 5.5 (Soundness). If a set ® of propositions is provable, then it is valid.

Proof: The soundness is a simple consequence of the soundness of unification and '
the clause normal form theorem 5.2 since the resolution and factoring rules residuate the
appropriate unification constraint. [m

Lemma 5.6. Let ® be a set of generalized clauses, 0 a substitution D a refutation of 0(®).
Then there is a derivation D ' : ® Fur E , where E is a set of pairs. Furthermore there is
an extension 8 of 8, such that

e § unifies £ , and

e the new variables in the domain of @ do not occur in P .

Proof sketch: The derivation D’ is constructed along the line of D . In order to
do this, i t is essential to maintain a close correspondence between the clause sets involved
(see the notion of a clause set isomorphism in [Koh94]). Note that the clause normal
form transformations from D can also be applied to the corresponding clauses in ® with
the exception of the case, where the clause in ® contains a flexible literal, whose head
9 instantiates with a formula whose head is a logical constant. Here the transformation
from D must be mimicked by using the HR(Prim) rule that introduces the appropriate
constant. Since the HR(Prim) rule contains an application of HR(Solv), the ensuing
clause normal form transformation makes i t possible to update the correspondence. Thus
by a simple inductive argument we see that the clause normal form transformation part of
D can be lifted to a HR-derivation.

The rest of D can then be lifted one inference rule at a time. The only two interesting
aspects of this:

e In the lifting of the HR (Solv) rule, we can have the case, that again 6 introduces
logical constants in the codomain of the eliminated variables. Fortunately, this can
be solved by exactly the argument above.

e The clause isomorphism can be destroyed by the fact that literals in D may corre-
spond to more than one literal in D’, then we use HR (Fac) to collapse them (restoring
the correspondence).

The results on 8’ are obtained by maintaining @ along with the correspondence (updating
i t with the primitive substitutions) and carefully analyzing unifiability conditions. a

Theorem 5 .7 (Completeness). HR" is complete with respect to Frege structures.

Proof: The proof is conducted by verifying that the property of clause sets not
to be refutable is a saturated abstract consistency property. So by the model existence
theorem 4.5 we see that non-refutable sets of generalized clauses are satisfiable in the class
of Frege structures. Since this is just the contrapositive of the statement of completeness,
we have finished the proof. Thus it only remains to verify the conditions of 4.4.

5 RESOLUTION (HRY) 14

Theorem 5.5 (Soundness). If a set ® of propositions is provable, then it is valid.

Proof: The soundness is a simple consequence of the soundness of unification and '
the clause normal form theorem 5.2 since the resolution and factoring rules residuate the
appropriate unification constraint. [m

Lemma 5.6. Let ® be a set of generalized clauses, 0 a substitution D a refutation of 0(®).
Then there is a derivation D ' : ® Fur E , where E is a set of pairs. Furthermore there is
an extension 8 of 8, such that

e § unifies £ , and

e the new variables in the domain of @ do not occur in P .

Proof sketch: The derivation D’ is constructed along the line of D . In order to
do this, i t is essential to maintain a close correspondence between the clause sets involved
(see the notion of a clause set isomorphism in [Koh94]). Note that the clause normal
form transformations from D can also be applied to the corresponding clauses in ® with
the exception of the case, where the clause in ® contains a flexible literal, whose head
9 instantiates with a formula whose head is a logical constant. Here the transformation
from D must be mimicked by using the HR(Prim) rule that introduces the appropriate
constant. Since the HR(Prim) rule contains an application of HR(Solv), the ensuing
clause normal form transformation makes i t possible to update the correspondence. Thus
by a simple inductive argument we see that the clause normal form transformation part of
D can be lifted to a HR-derivation.

The rest of D can then be lifted one inference rule at a time. The only two interesting
aspects of this:

e In the lifting of the HR (Solv) rule, we can have the case, that again 6 introduces
logical constants in the codomain of the eliminated variables. Fortunately, this can
be solved by exactly the argument above.

e The clause isomorphism can be destroyed by the fact that literals in D may corre-
spond to more than one literal in D’, then we use HR (Fac) to collapse them (restoring
the correspondence).

The results on 8’ are obtained by maintaining @ along with the correspondence (updating
i t with the primitive substitutions) and carefully analyzing unifiability conditions. a

Theorem 5 .7 (Completeness). HR" is complete with respect to Frege structures.

Proof: The proof is conducted by verifying that the property of clause sets not
to be refutable is a saturated abstract consistency property. So by the model existence
theorem 4.5 we see that non-refutable sets of generalized clauses are satisfiable in the class
of Frege structures. Since this is just the contrapositive of the statement of completeness,
we have finished the proof. Thus it only remains to verify the conditions of 4.4.

5 RESOLUTION (1-lRN
)	 15

\71	 We prove the converse: Assume there are literals AV, A W E q, for v =j:. w, then q, is
refutable, since there are unit clauses AV and A W in the clause normal form of q"

which can be resolved to the empty clause.

\72 This condition is trivially met, since the clause normal form is invariant under f3TJ­
equality.

\73 Again we prove the converse: Assume that for each IT-consequence C i of a formula
(jA)W there is a refutation of q,uC. We inductively merge these refutations together
to a refutation 'D of q, U Cl Q9 ••• ® Ck where '1' Q9 e is the set

{A V BIA E cnf('1'); BE cnf(8n

For this construction we use a technical result (disjunction lemma) that refutations
of =: U '1' and 2: u e imply the existence of a refutation of 2: U ('1' Q9 e). We concluded
the proof by remarking that Cl Q9 ••• Q9 ck is just the clause normal form of (jA)w.

\74 Let (QA)V E q,. We have to show that the existence of a family of refutations 'D%f
of q, U =:M(A) U {(AB)W}, where M E Q-I(V) and WE M implies the existence of a
refutation 'D of q,.

Remember that in the clause normal form reduction, (QA)V is transformed to gen­
eralized clauses of the form L I V .,. V L k

, where the L i comes from some f3(Mi).

From refutations 'D%f, w E M, we will construct refutations 'DM of q, U f3(M). With
a disjunction lemma technique similar to the one above the 'DM are combined to a
refutation 'D of q, U {LI V ... V LklLi E ,6(Mi)}, which has the same clause normal
form as q,. Thus'D is indeed the refutation needed to complete the proof.

Let us fix a M = {WI, ... ,wm } E Q-I(V), then

f3(M) = {(A(f~Xk))Wilwi E NI} U { V (AX)Wi}
w;EM

For each 'D%f, W EM, the lifting lemma (cf. 5.6 take () = [B/ X]) guarantees a
derivation :FM: q, U 2:M (A) U {(AX)W} 1-1fR. C, where the resulting clause C only
contains a set £w of pairs. Again by a disjunction lemma technique, we can combine
these to a derivation

The solutions ()W of the £w from the lifting lemma can be combined to a substitution
()M = ()Wl U ... U()Wk, since they agree on X. Thus £Wl V ... V £Wn is pre-unifiable
and hence (higher-order unification is complete) there is a derivation 1-lm (using only
pre-unification steps) that derives the empty clause from £Wl V ... V £Wn. Finally
we remark the Skolem subterms (i.e. the Skolem constants with all their necessary
arguments) from the clause form transformation directly correspond to the witness
constants in the abstract consistency property. 0

5 RESOLUTION (HR") 15

V1

V2

V3

V4

We prove the converse: Assume there are literals A ” , A” € ® for v # w, then ® is
refutable, since there are unit clauses A” and A ” in the clause normal form of ®,
which can be resolved to the empty clause.

This condition is trivially met, since the clause normal form is invariant under ßn-
equality.

Again we prove the converse: Assume that for each IT-consequence C' of a formula
(A) there is a refutation of UC . We inductively merge these refutations together
to a refutation D of @UC' ® --- ® C* where ¥ ® © is the set

{A VB |A € cnf(¥); B € cnf(0)}

For this construction we use a technical result (disjunction lemma) that refutations
of ZU ¥ and ZU © imply the existence of a refutation of ZU (¥ ® ©). We concluded
the proof by remarking that C ! ® --- ® CF is just the clause normal form of (jA)“.

Let (QA)” € ®. We have to show that the existence of a family of refutations D¥
of ® UZ (A) U { (AB)*} , where M € Q~(v) and w € M implies the existence of aa
refutation D of ®.
Remember that in the clause normal form reduction, (QA)” is transformed to gen-
eralized clauses of the form L ' Vv . . . Vv L*, where the L* comes from some S(M?).
From refutations Div, w € M, we will construct refutations Dys of ® U B(M) . With
a disjunction lemma technique similar to the one above the Dj, are combined to a
refutation D of ® U {Ly V . . .V L i |Ls € B(M;) } , which has the same clause normal
form as ®. Thus D is indeed the refutation needed to complete the proof.
Let us fix a M = {wy, . . . ,wn } € Q7!(v), then

B(M) = {(A(£FXL))"wi € M}U{ V (AX)™}
wiEM

For each DY, w € M, the lifting lemma (cf. 5.6 take § = [B/X]) guarantees a
derivation F : ® U Zp (A) U { (AX)"} u r C, where the resulting clause C only
contains a set £¥ of pairs. Again by a disjunction lemma technique, we can combine
these to a derivation

Fu: ®UEM(A)U{(AX)* VV... V (AX)™} Far EMV. . . V EY

The solutions 8% of the £¥ from the lifting lemma can be combined to a substitution
Op = 0 " U...U 0 “ , since they agree on X . Thus E”1 V . . .V EY is pre-unifiable
and hence (higher-order unification is complete) there is a derivation H , (using only
pre-unification steps) that derives the empty clause from £** Vv . . .V £%. Finally
we remark the Skolem subterms (i.e. the Skolem constants with all their necessary
arguments) from the clause form transformation directly correspond to the witness
constants in the abstract consistency property. [m

5 RESOLUTION (HR") 15

V1

V2

V3

V4

We prove the converse: Assume there are literals A ” , A” € ® for v # w, then ® is
refutable, since there are unit clauses A” and A ” in the clause normal form of ®,
which can be resolved to the empty clause.

This condition is trivially met, since the clause normal form is invariant under ßn-
equality.

Again we prove the converse: Assume that for each IT-consequence C' of a formula
(A) there is a refutation of UC . We inductively merge these refutations together
to a refutation D of @UC' ® --- ® C* where ¥ ® © is the set

{A VB |A € cnf(¥); B € cnf(0)}

For this construction we use a technical result (disjunction lemma) that refutations
of ZU ¥ and ZU © imply the existence of a refutation of ZU (¥ ® ©). We concluded
the proof by remarking that C ! ® --- ® CF is just the clause normal form of (jA)“.

Let (QA)” € ®. We have to show that the existence of a family of refutations D¥
of ® UZ (A) U { (AB)*} , where M € Q~(v) and w € M implies the existence of aa
refutation D of ®.
Remember that in the clause normal form reduction, (QA)” is transformed to gen-
eralized clauses of the form L ' Vv . . . Vv L*, where the L* comes from some S(M?).
From refutations Div, w € M, we will construct refutations Dys of ® U B(M) . With
a disjunction lemma technique similar to the one above the Dj, are combined to a
refutation D of ® U {Ly V . . .V L i |Ls € B(M;) } , which has the same clause normal
form as ®. Thus D is indeed the refutation needed to complete the proof.
Let us fix a M = {wy, . . . ,wn } € Q7!(v), then

B(M) = {(A(£FXL))"wi € M}U{ V (AX)™}
wiEM

For each DY, w € M, the lifting lemma (cf. 5.6 take § = [B/X]) guarantees a
derivation F : ® U Zp (A) U { (AX)"} u r C, where the resulting clause C only
contains a set £¥ of pairs. Again by a disjunction lemma technique, we can combine
these to a derivation

Fu: ®UEM(A)U{(AX)* VV... V (AX)™} Far EMV. . . V EY

The solutions 8% of the £¥ from the lifting lemma can be combined to a substitution
Op = 0 " U...U 0 “ , since they agree on X . Thus E”1 V . . .V EY is pre-unifiable
and hence (higher-order unification is complete) there is a derivation H , (using only
pre-unification steps) that derives the empty clause from £** Vv . . .V £%. Finally
we remark the Skolem subterms (i.e. the Skolem constants with all their necessary
arguments) from the clause form transformation directly correspond to the witness
constants in the abstract consistency property. [m

6 CONCL USION 16

6 Conclusion

We have presented a multi-valued higher-order logic W.cn and a higher-order- resolution
calculus llRn that is sound and complete with respect to multi-valued Frege structures.
Since this logical system combines multiple truth values and parametric choice of connec­
tives and quantifiers with higher-order features, such as A-binding and ,LJT/-conversion, it
is a suitable basis for the development of artificial intelligence logics. Even if the target
logic does not contain higher-order features, the added expressivity of W.cn admits simple
and efficient relativizations (especially for first-order target logics, such as modal logics).
Thus llRn makes mechanization of the target logic much simpler than the first-order
multi-valued frameworks.

However, as we have seen in the example, W.cn can only be a starting point for
the development of a higher-order logic with partial functions. In order for an adequate
treatment of quantification (which must exclude the undefined element) it will be necessary
to combine it with the sort techniques of [Koh94] in the spirit of [KK94]. This will yield·a
suitable basis for formalizing and mechanizing informal mathematical vernacular.

References

[And71] Peter B. Andrews.
36(3):414-432, 1971.

Resolution in type theory. Journal of Symbolic Logic,

[BF92] Matthias Baaz and Christian G. Fermiiller. Resolution for many-valued logics.
In 1992, editor, Proceedings of the International Conference on Logic Program­
ming and Automated Reasoning LPAR'92, volume 624 of LNAI, pages 107-118.
Springer Verlag, St. Petersburg, Russia, 1992.

[Car87] WaIter A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux. Journal of Symbolic Logic, 52:473-493, 1987.

[Car91] vValter A. Carnielli. On sequents and tableaux for many-valued logics.
of Non-Classical Logic, 8(1):59-76, 1991.

Journal:

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[G6d31] Kurt G6del. Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173-198,
1931. English Version in [vH67).

[Hah92] Rainer Hahnle. Tableaux-Based Theorem Proving in Multiple- Valued Logics. PhD
thesis, Universitat Karlsruhe, Germany, 1992.

[HS86] J. Hindley and J. Seldin. Introduction to
Cambridge University Press, 1986.

Combinators and Lambda Calculus.

6 CONCLUSION 16

6 Conclusion
We have presented a multi-valued higher-order logic HOL™ and a higher-order resolution
calculus HR” that is sound and complete with respect to multi-valued Frege structures.
Since this logical system combines multiple truth values and parametric choice of connec-
tives and quantifiers with higher-order features, such as A-binding and On-conversion, it
is a suitable basis for the development of artificial intelligence logics. Even if the target
logic does not contain higher-order features, the added expressivity of HOL” admits simple
and efficient relativizations (especially for first-order target logics, such as modal logics).
Thus HR” makes mechanization of the target logic much simpler than the first-order
multi-valued frameworks.

However, as we have seen in the example, HOL" can only be a starting point for
the development of a higher-order logic with partial functions. In order for an adequate
treatment of quantification (which must exclude the undefined element) i t will be necessary
to combine it with the sort techniques of [Koh94] in the spirit of [KK94]. This will yielda
suitable basis for formalizing and mechanizing informal mathematical vernacular.

References

[And71] Peter B . Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414-432, 1971.

[BF92] Matthias Baaz and Christian G. Fermiiller. Resolution for many-valued logics.
In 1992, editor, Proceedings of the International Conference on Logic Program-
ming and Automated Reasoning LPAR’92, volume 624 of LNAI, pages 107-118.
Springer Verlag, St. Petersburg, Russia, 1992.

[Car87] Walter A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux. Journal of Symbolic Logic, 52:473-493, 1987.

[Car91] Walter A . Carnielli. On sequents and tableaux for many-valued logics. Journal:
of Non-Classical Logic, 8(1):59-76, 1991.

[Chud0] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[G6d31] Kurt Godel. Uber formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I . Monatshefte der Mathematischen Physik, 38:173-198,
1931. English Version in [vH67).

[Häh92] Rainer Hahnle. Tableauz-Based Theorem Proving in Multiple-Valued Logics. PhD
thesis, Universitat Karlsruhe, Germany, 1992.

[HS86] J. Hindley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

6 CONCLUSION 16

6 Conclusion
We have presented a multi-valued higher-order logic HOL™ and a higher-order resolution
calculus HR” that is sound and complete with respect to multi-valued Frege structures.
Since this logical system combines multiple truth values and parametric choice of connec-
tives and quantifiers with higher-order features, such as A-binding and On-conversion, it
is a suitable basis for the development of artificial intelligence logics. Even if the target
logic does not contain higher-order features, the added expressivity of HOL” admits simple
and efficient relativizations (especially for first-order target logics, such as modal logics).
Thus HR” makes mechanization of the target logic much simpler than the first-order
multi-valued frameworks.

However, as we have seen in the example, HOL" can only be a starting point for
the development of a higher-order logic with partial functions. In order for an adequate
treatment of quantification (which must exclude the undefined element) i t will be necessary
to combine it with the sort techniques of [Koh94] in the spirit of [KK94]. This will yielda
suitable basis for formalizing and mechanizing informal mathematical vernacular.

References

[And71] Peter B . Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414-432, 1971.

[BF92] Matthias Baaz and Christian G. Fermiiller. Resolution for many-valued logics.
In 1992, editor, Proceedings of the International Conference on Logic Program-
ming and Automated Reasoning LPAR’92, volume 624 of LNAI, pages 107-118.
Springer Verlag, St. Petersburg, Russia, 1992.

[Car87] Walter A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux. Journal of Symbolic Logic, 52:473-493, 1987.

[Car91] Walter A . Carnielli. On sequents and tableaux for many-valued logics. Journal:
of Non-Classical Logic, 8(1):59-76, 1991.

[Chud0] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[G6d31] Kurt Godel. Uber formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I . Monatshefte der Mathematischen Physik, 38:173-198,
1931. English Version in [vH67).

[Häh92] Rainer Hahnle. Tableauz-Based Theorem Proving in Multiple-Valued Logics. PhD
thesis, Universitat Karlsruhe, Germany, 1992.

[HS86] J. Hindley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

17 REFERENCES

[Hue72]	 Gerard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

[KK94]	 Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic
for partial functions. In Alan Bundy, editor, Proceedings of the 12th Conference
on Automated Deduction, LNAI, pages 371-385, Nancy, France, 1994.

[KK95]	 Manfred Kerber and Michael Kohlhase. A tableau calculus for partial functions.
In Annals of the Kurt-Godel-Society. Springer Verlag, 1995.

[Kle52]	 Stephen C. Kleene. Introcuction to Meta-Mathematics. North Holland, 1952.

[Koh94]	 Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle. PhD thesis, Universitat des Saarlandes, 1994.

[Mil83]	 Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univer­
sity, 1983.

[Sch94]	 Ortwin Scheja. Resolution in mehrwertigen Logiken hoherer Stufe. SEKI­
Working-Paper SWP-94-07, Universitat des Saarlandes, 1994.

[Smu68]	 Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

[vH67]	 Jean van Heijenoort, editor. From Frege to Goel A Soruce Book in Mathematical
Logic, 1879-1931. Source Books in the History of the Sciences. Harvard University
Press, 1967.

REFERENCES 17

[Hue72]

[KK94]

[KK95]

[Kle52]

[Koh94]

[Mil83]

[Sch94]

[Smu68]

[vH67]

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic
for partial functions. In Alan Bundy, editor, Proceedings of the 12th Conference
on Automated Deduction, LNAI, pages 371-385, Nancy, France, 1994.

Manfred Kerber and Michael Kohlhase. A tableau calculus for partial functions.
In Annals of the Kurt-Gddel-Society. Springer Verlag, 1995.

Stephen C. Kleene. Introcuction to Meta-Mathematics. North Holland, 1952.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle. PhD thesis, Universitat des Saarlandes, 1994.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univer-
sity, 1983.

Ortwin Scheja. Resolution in mehrwertigen Logiken höherer Stufe. SEKI-
Working-Paper SWP-94-07, Universitit des Saarlandes, 1994.

Raymond M . Smullyan. First-Order Logic. Springer Verlag, 1968.

Jean van Heijenoort, editor. From Frege to Goel A Soruce Book in Mathematical
Logic, 1879-19381. Source Books in the History of the Sciences. Harvard University
Press, 1967.

REFERENCES 17

[Hue72]

[KK94]

[KK95]

[Kle52]

[Koh94]

[Mil83]

[Sch94]

[Smu68]

[vH67]

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic
for partial functions. In Alan Bundy, editor, Proceedings of the 12th Conference
on Automated Deduction, LNAI, pages 371-385, Nancy, France, 1994.

Manfred Kerber and Michael Kohlhase. A tableau calculus for partial functions.
In Annals of the Kurt-Gddel-Society. Springer Verlag, 1995.

Stephen C. Kleene. Introcuction to Meta-Mathematics. North Holland, 1952.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle. PhD thesis, Universitat des Saarlandes, 1994.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univer-
sity, 1983.

Ortwin Scheja. Resolution in mehrwertigen Logiken höherer Stufe. SEKI-
Working-Paper SWP-94-07, Universitit des Saarlandes, 1994.

Raymond M . Smullyan. First-Order Logic. Springer Verlag, 1968.

Jean van Heijenoort, editor. From Frege to Goel A Soruce Book in Mathematical
Logic, 1879-19381. Source Books in the History of the Sciences. Harvard University
Press, 1967.

	BB_0004.jpg

