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Abstract 

We present a method for learning heuristics employed by an automated proveI' 
to control its inference machine. The hub of the method is the adaptation of the 
parameters of a heuristic. Adaptation is accomplished by a genetic algorithm. 
The necessary guidance during the learning process is provided by a proof prob­
lem and a proof of it found in the past. The objective of learning consists in 
finding a parameter configuration that avoids redundant effort w.r.t. this prob­
lem and the particular proof of it. A heuristic learned (adapted) this way can 
then be applied profitably when searching for a proof of a similar problem. So, 
our method can be used to train a proof heuristic for a class of similar problems. 

A number of experiments (with an automated proveI' for purely equational 
logic) show that adapted heuristics are not only able to speed up enormously the 
search for the prooflearned during adaptation. They also reduce redundancies in 
the search for proofs of similar theorems. This not only results in finding proofs 
faster, but also enables the proveI' to prove theorems it could not handle before. 

Introduction 

Automated deduction is-at its lowest level-a search problem that spans huge search 
spaces. It is well known that automated deduction can for this reason be a very expen­
sive task in terms of computing time and usage of computer memory when it comes 
to proving "challenging" theorems. Despite its superior inference rate the computer is 
in these cases mostly inferior to (human) mathematicians. One prominent reason feir 

"This work was supported by the Deuische Forschungsgemeinschaft (DFG). 
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Abs t rac t

We present a method for learning heuristics employed by an automated prover
to  control i t s  inference machine. The hub of  the method is the adaptation of  the
parameters of  a heuristic. Adaptation is accomplished by a genetic algorithm.
The necessary guidance during the learning process is provided by a proof prob-
lem and a proof of  i t  found in the past. The objective of  learning consists i n
finding a parameter configuration that avoids redundant effort w.r.t. this prob-
lem and the particular proof of  i t .  A heuristic learned (adapted) this way can
then be applied profitably when searching for a proof of a similar problem. So,
our method can be  used t o  t rain a proof  heuristic for a class of  similar problems.

A number of  experiments (wi th  an automated prover for purely equational
logic) show that adapted heuristics are not  only able to  speed up  enormously the
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the search for proofs of similar theorems. This not only results in  finding proofs
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Introduct ion

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).
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this fact is the ability of humans to apply information gained during past attempts to
find (similar) proofs. Automated provers that lack this ability (and most of them do)
tack le  each prob lem as a comple te  nov ice .  A substant ia l  amount of redundant work
is done by exploring regions of the enormous, in  general infinite search space which
do not contribute anything useful to finding a proof. Such regions could possibly be
detected i f  the automated prover were able to fall back on past experience gathered
while trying to solve a “similar” proof problem.

But  striking problems arise when trying to reuse past experience in  the context of
automated deduction. First of all,  unlike i n  other fields of research (such as planning
or case-based reasoning, e.g., [Ca86], [Bu89]), the use of analogy in  the wider sense i n
connection with deduction is much more difficult and hazardous (cp. [KN93]), because
i t  is not the case that “small changes of  the problem description (usually) cause small
changes of  the solution”. Moreover, even i f  the proofs of two problems are (intuitively)
non-trivially similar‘, this similarity can very seldom be reduced to simple, easy to
define symbolic mappings. Furthermore, the general undecidability of problems i n  the
area of (automated) deduction adds to these tremendous difficulties.

Despite these rather slim prospects of success we sti l l  think that i t  is worthwhile
trying to equip automated provers wi th  the option to  make use of past experience. The
central idea of  t he  method we are going to  propose (see also [Sm83]) i s  the adaptation
(“tuning”) of parameters of a heuristic, which the automated prover at hand employs
for controlling i ts  inference machine. The a im of adaptation is to  “tune” a heuristic so
that i t  allows the automated prover using i t  to prove a given proof problem A’  with “as
l i t t le redundancy as possible”. A proof P of A ’  found in  the past is used to guide this
learning process which is accomplished by a genetic algorithm. An  adapted heuristic
obtained this way can then be employed when proving a similar, novel problem A .  The
reduction of redundancies w.r.t. the original problem A’  and its proof P ,  i.e., avoiding
paths of the search space which do not (immediately) lead to P (“pruning” the search
space), carries over to an improved performance w.r.t. a similar problem A .  Inherent
i n  this method is a suitable compromise between exactness and flexibility which is
necessary to exploit non-trivial similarities profitably.

The experiments conducted with our method for learning? heuristics in  the field of
equational reasoning are very promising. We were not only able to achieve outstanding
speed-ups i n  several cases, but also enabled the prover to  handle problems i t  could
not cope with before, because its memory was swamped wi th  redundant information.
We want to emphasize that the problems in  question include tasks such respected and
powerful deduction systems as OTTER 3.0 ([Mc94]) and Herky ([Zh92]) have difficulties
with (see subsection 6.4).

In  the following sections details wi l l  be presented. First of all, section 2 will discuss
general aspects of util izing proofs found i n  the past and wil l  introduce the fundamentals
of our approach. Since a genetic algorithm will play an essential role for our learning

' I r iv ia l  simi lar i ty” or “ t r iv ia l  relatedness” denote identity modulo renaming.
2We use the notions “adaptation” and “learning” as well as the expressions “learning (adapting)

a heuristic” and “learning (adapting) the parameters (of a heuristic)” synonymously.
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procedure, section 3 will give an overview of this topic. In section 4 the basics of the 
automated proveI' used for our experiments are described. In section 5 details of the 
central problematic of our method will be discussed. The results of our experiments 
are summarized in section 6, followed by a short discussion of related work in section 7. 
Finally, a summary in section 8 brings this report to a close. 

Fundamentals 

Utilizing proofs found in the past generally confronts us with the following situation: 
We are given a problem description A = (Ax, T h) , and the task is to find a proof for 
the theorem Th based on the axioms in Ax. In order to accomplish this we make use 
of a proof found in the past. Let AI = (Ax l

, Th l
) be a problem for which a proof is 

known. AI is referred to as the source, while A is called the target. 

The first idea that comes to mind when thinking about reusing a proof found in the 
past (the source proof) to prove a given theorem is to try to infer facts that are in some 
way similar to those needed for the source proof ("derivational analogy", e.g. [Ca86]). 
This method surely works perfectly when we have total correspondence between the 
source and the target. Then "similar" means "identical" and the target proof can be 
found (almost) without redundant work by merely re-enacting the source proof. But 
this case is not very exciting since we can achieve the same effect simply by storing and 
retrieving proofs from a database (memory-based reasoning). Things tend to become 
more interesting if source and target are "similar to some degree", but do not agree 
completely. In that case a meaningful similarity measure is much harder to define. 
Furthermore, in case the chain of reasoning induced by the source proof is disrupted, 
patching strategies must be available to compensate for the loss of guidance from the 
source proof. Such strategies are difficult to construct since the cause for a failure of 
the source proof will usually not be obvious. So, we are mostly left with bits and pieces. 

The general disadvantage of such an approach is the fact that it stays too close to the 
source proof. This results in a significant inflexibility necessitating elaborate methods 
to cushion failures (i.e., deviations from the source proof). For this very reason we 
have chosen a different approach: Almost any automated prover disposes of a set of 
heuristics for controlling the application of its inference rules. Usually, these heuristics 
are parameterized. So, why don't we try to adapt (learn) these parameters in order 
to find the source proof more quickly? Of course by doing so the intention is not to 
improve overall performance of the respective heuristic, but to tailor a heuristic which 
is especially suitable for proofs like the source proof it was adapted to. In other words, 
in adaptJng existing heuristics we intend to capture ("learn") essential properties of 
a certain type of proof. An adapted heuristic should then be profitably applicable to 
proofs that share these properties "to some extent". This way of proceeding takes 
off our back the heavy load of designing patching strategies, since even an adapted 
heuristic should still be flexible enough to cope with minor deviations. This property 
of commonly used heuristics stems from their limitedness that will in general prevent 
any learning procedure from finding parameter configurations that allow for searching 
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a proof totally without redundancy, i.e., without taking unnecessary steps. But this 
inherent inexactness is a benefit, because it is vital for the flexibility of an ada.pted 
heuristic, which in turn is crucial for its profitable applicability to non-trivially related 
problems. Furthermore, this approach avoids the necessity to pin down the (exact) 
nature of similarity between two related problems in order to be successfully applicable. 

A further advantage of our approach is the non-existence of any kind of overhead 
during application on account of reusing proof experiences. All the work is done once 
during adaptation. As a matter of fact we actually reuse proofs indirectly: By adapting 
the parameters of a heuristic this he~ristic "learns" the given (source) proof, being com­
pletely unaware of a (possible) future target. When the adapted heuristic is employed 
for tackling a similar problem the proof learned during adaptation is not consulted 
anymore. Its "essence" has been assimilated by the parameters of the heuristic in the 
course of adaptation. 

We have now laid down the motivation for our approach, i.e., adapting parameters 
of heuristics. Hence it is time to think about how adaptation can be accomplished, 
which is (in general) a very demanding task. Commonly, a parameter of a heuristic is 
a flag or a numerical value, both of which can very conveniently be represented by one 
or several bits. Thus the complete set of parameters of a heuristic is representable as 
a string of bits. Since the basic structure of a heuristic remains untouched, any string 
of bits representing a parameter configuration is a (more or less suitable) solution of 
an adaptation. Hence the use of a genetic algorithm (CA) suggests itself. A CA is the 
core of our adaptive method. Its basics will therefore be outlined in the subsequent 
section, together with an explanation of its application to our problem. 

3 Learning parameters using a genetic algorithm 

3.1 Fundamentals of genetic algorithms 

The genetic algorithm ([H075], [Da88], [Ra91])-CA for short-is an adaptive method 
based on principles known from general genetics and biological evolution. It is very 
useful for finding (near) optimal solutions to problems in many domains. It differs 
from other optimization techniques in that it maintains a set of individuals (usually 
with a fixed size) which is called a population or generation. Each of these individuals 
corresponds to a (sub-optimal) solution of the given problem. An individual is thus 
a representation of a solution that suits the CA. The CA constructs new individu­
als (and hence new solutions) using the best ones of its current population, replacing 
those considered least fit ("survival of the fittest"). The assessment of individuals is 
accomplished by the so-called fitness function. The construction of new individuals is 
achieved by applying genetic operators which basically reflect and simulate the pro­
cesses involved in biological reproduction. The most important genetic operators are 
crossover, mutation (and invel'sion). They are defined by 
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Definition 3.1 «One-point) crossover) Given two individuals al ... an and 
bl ... bn, where the ai and bj each represent one bit, randomly choose k E {2, ... , n} 
and then construct two (new) individuals 

It is possible to discard randomly or deterministically one of the two descendants 
("children") or to retain them both. 

Definition 3.2 (Mutation) Given an individual Cl ••. Cn, each bit Ci may be inverted 
with a probability pmut. 

Definition 3.3 (Inversion) Given an individual Cl .•. Cn, randomly choose kl , k2 E 
{I, ... , n} with k2 > kl . Replace then the sub-string Ck j ••• Ck2 with Ck2 ••• Ck j • 

An important prerequisite for the GA to be applicable is a structure of the indi­
viduals that is amenable to these genetic operators. Common is a representation as a 
string of bits of a fixed length n. 

A further essential component of the GA is the fitness function. The fitness function 
actually establishes the (only) connection between the GA and the current problem. 
It assesses the fitness of a solution associated with an individual and hence performs 
among other things the transformation of a bit string into. an actual description of 
a solution. Biologically speaking, the fitness function transforms the genotype (bit 
string) into the phenotype (actual solution) and provides the environment for testing 
the fitness of the respective "organism". But in usual applications of GAs that trans­
formation process ("morphogenesis") is merely a translation of the genotype (i.e., a 
representational change) rather than a real development (e.g., a bit string of length 8n 
is transformed into a set of n 8-bit integers, for instance n numbers ranging from -128 
to 127). The fitness rating is used to determine the chances of an individual to become 
reproductive (i.e., to be one of the "parents" in the crossover operation) or to be elim­
inated. Usually, pretain percent of the individuals rated best by the fitness function are 
admitted to reproduction, their offspring replacing the remaining 100 - pretain percent. 
Chances for becoming reproductive may be proportional to the fitness rating or some 
other function of it. 

We can now give a concise description of the GA in algorithmic form: 

Step 1:	 Initialize a population of size n pop by (usually randomly) generating npop bit 
strings (individuals) of length n. 
Initialize the "generation counter" cgen := 1. 

Step 2:	 Rate the individuals of the current population with the fitness function. 

Step 3:	 Retain the pretain percent best individuals. Replace the rest with offspring 
of the best ("survival of the fittest"). Offspring is produced by randomly 
selecting (with the probability possibly depending on the fitness rating) two 
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individuals among those best ones and applying the crossover operator. The
mutation and inversion operators are applied to  the offspring, the latter
operator w i th  a probability p in .  Increment the generation counter Cyen and
continue with step 2.

Notes: The GA  terminates i f  the best individual achieves a rating which is better than
a given limit or if  the number of generations Cgen exceeds a given threshold. Each run
through the loop formed by step 2 and step 3 may also be called a cycle (of the GA).

We conclude this subsection with a few remarks on the implementation of a GA
used for our experiments.

The  best pre ta in  percent individuals have an  equal chance t o  take part i n  reproduc-
tion. Both “children” are retained.

Pretain = 30% Pinv = 10%
MN pop = 50  Pmut  = 10%

I t  is worth noting that although we have a rather simple implementation of a GA (there
are no  additional features such as maintaining diversi ty through a variable mutat ion
rate, for instance) and although the population size n,o, = 50 is quite small compared
t o  common standards,  our GA  performed sufficiently wel l .  Furthermore, we  d id  (so
far) not experiment intensively with the settings of the above parameters since we
recognized that finding better solutions is mainly a question of finding a better fitness
function. As a matter of fact, designing an appropriate fitness function is the crucial
problem of  our application as the following subsection will reveal.

3.2 Our  appl icat ion o f  the  GA

The previous subsection has presented the major components of a GA ,  namely (the
representation of) individuals, the genetic operators and the fitness function. In  our
case, ind iv idua ls  correspond t o  parameter configurations of  a heuristic for select ing the
next (deductive) inference to be performed by an automated prover. By  restricting
the range of each parameter a parameter configuration can be represented by  a string
of bits of fixed length which is constructed by concatenating the bit representation
of each parameter of the configuration. Hence no problems are raised regarding the
applicability of the genetic operators. So, the major problem that remains is the design
of an appropriate fitness function. The fitness function is i n  general very important for
any GA  application, because i t  establishes the (only) connection between the (abstract)
underlying search method and the actual (optimization) problem. Our problem consists
i n  finding a parameter configuration for a heuristic so that an automated prover using
this (adapted) heuristic can find a proof of a given proof problem A = (Az ,  Th)  with
“minimal redundancy”. The—as we shall see—necessary guidance during the search
for an optimal parameter configuration is provided by a (source) proof P of A found
i n  the past.

Let W be a generic heuristic, and w an instance of W ,  i.e., the parameters of W are
set to specific values. The quality of an w is expressed by the amount of redundancy
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w would produce if a proof of A guided by w were attempted. So, the ideal and most 
exact way to assess an w consists in proving or attempting to prove that Th follows 
from Ax using wand subsequently analyzing statistical data collected during the search. 
But clearly enough this is impractical. The fitness function has to be applied to each 
(new) individual during each cycle3 , and hence a fitness function that needs at least 
a couple of seconds (which has to be considered the lower limit to obtain expressive 
statistical data during a proof attempt) for rating just one individual is untenable. 

The following considerations offer an efficient alternative. Most redundancies during 
a search for P are caused by inferring facts which do not contribute to finding P. The 
source proof P corresponds to a particular set of paths in the search space. With the 
help of P all (potentially) inferable facts can be classified into two categories: On the 
one hand, there are "useful" (positive) facts, which have to be inferred in order to follow 
such a path given by P. On the other hand, "useless" (negative) facts represent facts 
that lead away from these paths, entailing redundant search effort. (We emphasize 
that the terms "positive" and "negative" must be seen in the context of finding the 
particular proof P.) Consequently, an obvious method for estimating an w consists in 
measuring its ability to distinguish positive facts from negative ones, i.e., its ability to 
cut off misleading paths. Here, we have to face another problem: While the set P of 
positive facts is fini te (and usually rather small), the set of negative facts is in general 
infinite. Hence we have to confine ourselves to a finite subset N of the set of (all) 
negative facts. P and N can be extracted from the proof run that yielded P, for 
instance. But there is one crucial problem in this approach, namely using a static N. 
Even in case we succeed in adapting W "perfectly", i.e., it associates weights4 with the 
members of P and N so that the highest weight of a fact in P is still below the weight 
of any fact in N, we have absolutely no guarantee that such a perfect "adaptation" will 
carry over to an improved search for a proof. As a matteroffact, it is even possible for 
the adapted heuristic w to perform more poorly than the heuristic originally employed 
to find P. The reason for such a behavior is the high probability that w may infer 
negative facts different from those in N, which might actually complicate the search 
for P even more. We therefore have to step back from the idea of using a static N. 

The problems just outlined can-at least to a large extent-be compensated for by 
periodically updating N, i.e., by maintaining a dynamic N. The adaptive procedure 
(learning) then proceeds as follows: Starting with N = 0, the automated prover is run 
for a given time T before calling the CA for the first time, and then each time the CA 
has executed ne cycles. Each run through this outer loop (the inner loop corresponds 
to a cycle of the CA) will be referred to as an iteration. For these update runs the 
prover uses the w currently rated best. If the prover actually succeeds in finding a 
proof, w will be among the output of the adaptive procedure. Facts generated during 
time T which are not in P are considered as negative facts and are added to N. It must 
be emphasized that newly occurring (negative) facts are added to N and the "old" ones 

30ne cycle of the GA comprises the rating of all individuals, selecting the best and replacing the 
rest with offspring of the best. 

4 It is assumed that a heuristic associates a weight (a natural number) with all potentially inferable 
facts and that the fact with the smallest weight is actually inferred. 
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w would produce i f  a proof of A guided by w were attempted. So, the ideal and most
exact way to  assess an w consists i n  proving or attempting to  prove that Th  follows
from Az  using w and subsequently analyzing statistical data collected during the search.
But  clearly enough this is impractical. The fitness function has to  be applied to each
(new) individual during each cycle®, and hence a fitness function that needs at least
a couple of seconds (which has to be considered the lower l imit  to  obtain expressive
statistical data during a proof attempt) for rating just one individual is untenable.

The following considerations offer an efficient alternative. Most redundancies during
a search for P are caused by inferring facts which do not contribute to finding P .  The
source proof P corresponds to  a particular set of paths in  the search space. With the
help of P all (potentially) inferable facts can be classified into two categories: On the
one hand, there are “useful” (positive) facts, which have to  be inferred i n  order to  follow
such a path given by P .  On the other hand, “useless” (negative) facts represent facts
that  lead away from these pa ths ,  entailing redundant search effort. (We emphasize
that the terms “positive” and “negative” must be seen in  the context of finding the
particular proof P . )  Consequently; an obvious method for estimating an w consists i n
measuring i ts ability to distinguish positive facts from negative ones, i.e., i ts ability to
cut off misleading paths. Here, we have to face another problem: While the set P of
positive facts i s  finite (and  usually rather small), the set o f  negative facts i s  i n  general
infinite. Hence we have to confine ourselves to a finite subset N of the set of (all)
negative facts. P and N can be extracted from the proof run that yielded P ,  for
instance. But  there is one crucial problem in  this approach, namely using a static N .
Even i n  case we succeed i n  adapting W “perfectly”, i.e., i t  associates weights* with  the
members of P and N so that the highest weight of a fact in  P is still below the weight
of any fact i n  N ,  we have absolutely no guarantee that such a perfect “adaptation” will
carry over to an improved search for a proof. As a matterof fact, i t  is even possible for
the  adapted heuristic w to  perform more poorly than the heuristic originally employed
to  find P .  The reason for such a behavior is the high probability that w may infer
negative facts different from those i n  N ,  which might actually complicate the search
for P even more. We therefore have to step back from the idea of using a static N .

The problems just outlined can—at least to a large extent—be compensated for by
periodically updating N ,  i.e., by maintaining a dynamic N .  The adaptive procedure
(learning) then proceeds as follows: Starting with N = 0, the automated prover is run
for a given time T before calling the GA for the first time, and then each time the GA
has executed n ,  cycles. Each run through this outer loop (the inner loop corresponds
to a cycle of the GA) will be referred to as an iteration. For these update runs the
prover uses the w currently rated best. I f  the prover actually succeeds i n  finding a
proof, w wil l  be among the output of the adaptive procedure. Facts generated during
time T which are not i n  P are considered as negative facts and are added to N .  I t  must
be emphasized that newly occurring (negative) facts are added to N and the “old” ones

30ne cycle of  the GA  comprises the rat ing of  a l l  individuals, selecting the best and replacing the
rest with offspring of the best.

4 I t  i s  assumed tha t  a heuristic associates a weight  ( a  natural number )  w i t h  al l  potentially in fe rab le
facts and that the fact with the smallest weight is actually inferred.
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are not discarded. Otherwise, if replacing N each time, chances are that we might run 
into some form of "oscillation" where the same N appear cyclically, which may have 
severely disadvantageous effects on the GA's search for an optimum. 

We have now explained the central role the GA plays regarding our learning task. 
We have also brought out that the central problematic of this GA application is the 
design of a fitness function. Through the discussion above it has become clear that­
for efficiency and practicability reasons-we have to content ourselves with a fitness 
function that simulates rather than actually performs proof runs. This simulation is 
based on the sets P and N which depend on the source proof P. We already pointed 
out that N has to be updated periodically. This measure is a remnant of the "ideal" 
fitness function which is indispensable to be able to achieve a "realistic" simulation. 
Section 5 will present the fitness function in a more detailed way. This necessitates 
that we can no longer refer to arbitrary provers. Therefore, and because we want 
to substantiate our considerations with experimental results (see section 6) we have 
to confine ourselves to a specific automated prover. We have chosen an equational 
prover based on the unfailing Knuth-Bendix completion procedure (UKB-procedure), 
namely the DISCOUNT system ([ADF95J). Our choice has mainly been favored by 
the existence of knowhow and implementations. We believe that our method can be 
utilized by almost any (automated) proveI' that uses parameterized heuristics to control 
its inference machine and explicitly infers facts. 

Before describing the details of the fitness function in this specific context in sec­
tion 5 we shall outline the foundations of the UKB-procedure in the following section in 
order to clarify the terminology and to provide some basic insight into its functioning 
as well as to present the heuristics that are candidates for adaptation. 

Equational theorem proving with the UKB-pro­
cedure 

In this section we shall describe the fundamentals of the unfailing Knuth-Bendix com­
pletion procedure ([KB70], [HR87], [BDP89J). The UKB-procedure can be used for 
solving the word problem in structures defined by equations in two ways. Firstly, it 
may attempt to complete the initial set of equations (the axioms) yielding-in case 
of success-a convergent (i.e., confluent and terminating) system which can then be 
used as a decision procedure for the word problem. Secondly, it may concentrate on a 
given word problem (the theorem) and stop as soon as it has been solved (semi-decision 
procedure). The UKB-procedure is based on the operational semantics of equational 
reasoning ("substituting terms by equal terms"). We shall now outline its foundations. 

First, we have to define some basic notions. 

Definition 4.1 (signature) A signature is a tuple sig = (F,T) where F is a finite 
set of function symbols, and TU) denotes the arity of any f E F, i.e.} TU) E IN. 
f E F is called a constant if TU) = O. 
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are not discarded. Otherwise, i f  replacing N each time, chances are that we might run
into some form of “oscillation” where the same N appear cyclically, which may have
severely disadvantageous effects on the GA’s search for an optimum.

We have now explained the central role the GA  plays regarding our learning task.
We have also brought out that the central problematic of this GA application is the
design of a fitness function. Through the discussion above i t  has become clear that—
for efficiency and practicability reasons—we have to content ourselves with a fitness
function that simulates rather than actually performs proof runs. This simulation is
based on the sets P and N which depend on the source proof P .  We already pointed
out that N has to  be updated periodically. This measure is a remnant of the “ideal”
fitness function which is indispensable to  be able to achieve a “realistic” simulation.
Section 5 will present the fitness function i n  a more detailed way. This necessitates
that we can no longer refer to arbitrary provers. Therefore, and because we want
to substantiate our considerations with experimental results (see section 6) we have
t o  confine ourselves t o  a specific automated prover. We have chosen an  equational
prover based on the unfailing Knuth-Bendix completion procedure ( UKB-procedure),
namely the DISCOUNT system ([ADF95]). Our choice has mainly been favored by
the existence of knowhow and implementations. We believe that our method can be
utilized by almost any (automated) prover that uses parameterized heuristics to  control
its inference machine and explicitly infers facts.

Before describing the details of the fitness function i n  this specific context in  sec-
tion 5 we shall outline the foundations of the UKB-procedure in  the following section in
order to clarify the terminology and to provide some basic insight into its functioning
as well as to present the heuristics that are candidates for adaptation.

4 Equational theorem proving with the UKB-pro-
cedure

I n  this section we shall describe the fundamentals of the unfailing Knuth-Bendix com-
pletion procedure ([KB70], [HR87], [BDP89]). The UKB-procedure can be used for
solving the word problem in  structures defined by  equations i n  two ways. Firstly, i t
may attempt to  complete the init ial set of equations (the azioms) yielding—in case
of success—a convergent (i.e., confluent and terminating) system which can then be
used as a decision procedure for the word problem. Secondly, i t  may concentrate on a
given word problem (the theorem) and stop as soon as i t  has been solved (semi-decision
procedure). The UKB-procedure is based on the operational semantics of equational
reasoning (“substituting terms by equal terms”). We shall now outline its foundations.

First, we have to  define some basic notions.

Definition 4 .1  (s ignature) A signature is a tuple sig = (F ,7 )  where F is a finite
set of function symbols, and 7 ( f )  denotes the arity of  any f € F,  i . e ,  7 ( f )  € IN.
f € F is called a constant if  7 ( f )  = 0.



Definition 4.2 (term) LetV = {x,y,z, ...} be a (enumerable) set of variables, sig = 
(F, r) a signature, V n F = 0. The set of terms Term(F, V) is defined as follows. 
t E Term(F, V) iff 
(1) t E V or 
(2) i = f(tt, . .. , in), where f E F, i 1 , • •• ,in E Term(F, V) and TU) = n. 
If V = 0 then Term(F) := Term(F, 0) is the set of ground terms. 

In the following, V will always denote a (enumerable) set o~' variables. Furthermore, 
F and T will always refer to the signature sig = (F,T). 

Definition 4.3 (substitution) A function : V --+ Term(F, V) is called a substi­(7 

tution with the (finite) domain dom((7) = {x E V I (7(x) ;j=. x}. (7 is extended to
 
Term(F, V) by (7(1(t 1 , ... , tn )) = f((7(i 1 ), ••. , (7(t n )) for all f E F, TU) = n.
 
z:; denotes the set of all substitutions.
 

Definition 4.4 (occurrences) Let t E Term(F, V). The set of occurrences in t,
 
denoted O(i), is defined by O(t) = {c}, tie == t, ifi E V or t is a constant.
 
Otherwise, if t == f(t l , ... , tn), O(t) = {ip 11 ::; i ::; n, p E O(td} U {c}, tlip == tilp,
 

tie == t.
 
If s E Term(F, V), p E O(t), then t[p ~ s] denotes the term obtained by replacing tip
 
with s.
 

Definition 4.5 (equation, specification) A pair of terms (t 1 , t2) E Term(F, V)2 is
 
called an equation, usually written as t 1 = t 2 • A set of equations E together with the
 
corresponding signature sig is called a specification spec = (sig, E).
 

For equational reasoning, a problem A = (Ax, Th) as introduced in section 2 sig­
nifies that we have a specification spec = (sig, Ax) and an equation Th which is the 
theorem to be proved (the goal). Throughout this report we assume that all variables 
occurring in (the equations ofAx or) Th are implicitly V-quantified (for extensions, 
i.e., 3-quantified variables in Th, see [De93], pp. 19-41). In order to handle the vari­
ables properly in any case T h == s = t is negated and skolemized yielding s' i= t'. 
In our case (V-quantification only), s' or t' are obtained from S or t, respectively, by 
merely replacing all variables with (new) Skolem constants. Skolemization also allows 
us to deal with theorems of the form Vi : SI = t 1 1\ ... 1\ Sn = tn --+ S = t (cp. sec­
tion 6.3). Negation and skolemization produce s~ = t~ 1\ ... 1\ s~ = t~ 1\ s' i= t'. Hence, 
s~ = t~ 1\ ... 1\ s~ = t~ are added to the set of axioms, and s' i= t' is the actual goal. In 
the following we shall not rigorously distinct between the original theorem Th and its 
negated and skolemized counterpart, keeping in mind that the UKB-procedure works 
with the latter. 

The general proceeding of the UKB-procedure when attempting to prove Th con­
sists in inferring new equations from Ax (and its derived descendants). When possible 
the goal Th is rewritten using the equations derived so far. Rewriting a term t with 
an equation SI = 82 or 82 = 81 means replacing a sub-term tip of t (p E O(t)), which is 
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Definition 4.2 ( term)  Le tV  = { z , y , z , . . . }  be a (enumerable) set of variables, sig =
(F ,7 )  a signature, VN F = 0. The set of terms Term(F ,V)  is defined as follows.
t € Term(F,V) iff
(1) t eVy  o r
(2) t =  f ( t1, . . .  tn), where f € F , t ı , . . . , t n  € Term(F,V) and 7( f )  =n .
I f V = 0 then Term (F) : =  Term(F ,0 )  is the set of  ground terms.

In  the following, V will always denote a (enumerable) set o!  variables. Furthermore,
F and 7 will always refer to the signature sig = (F,  7).

Definition 4.3 (subst i tu t ion)  A function o : V — Term(F,V)  is called a substi-
tution with the (finite) domain dom(c) = {x  € V | o(z)  # x } .  o is extended to
Term (F ,V)  by o(f(t1,-..,ta)) = f(o(t1),...,0(tn)) for all f € F ,  7 ( f )  =n .
X denotes the set of  a l l  substitutions.

Definition 4.4 (occurrences) Le t t  € Term(F,V) .  The set of occurrences in  i,
denoted O ( t ) ,  is  defined by O ( t )  = { e } ,  tlc = t ,  i f t € V o r t  is a constant.
Otherwise, i f t = f ( t1, . . . , ta),  O t )  = {ip [ 1  < i  <n ,  p € Ol(ti)} U {e}, t ip = til,,
tle = .
I f s € Term(F,V), p € O(t), then t[p « s] denotes the term obtained by replacing t | ,
with s.

Definition 4.5 (equat ion,  specification) A pair of  terms (t1,t;) € Term (F, V)? is
called an equation, usually written as t ;  = t ; .  A set of equations E together with the
corresponding signature sig is called a specification spec = (sig, E).

For equational reasoning, a problem A = (Az ,Th )  as introduced i n  section 2 sig-
nifies that we  have a specification spec = ( s ig ,  Az )  and an  equat ion T'h which i s  t he
theorem to be proved (the goal). Throughout this report we assume that all variables
occurring i n  (the equations of Az  or) Th  are implicitly V-quantified (for extensions,
i.e., 3-quantified variables in  Th, see [De93], pp. 19-41). In  order to handle the vari-
ables properly i n  any case Th  = s = t is negated and skolemized yielding s' # ft’.
In  our case (V-quantification only), s’ or t ’  are obtained from s or ¢ ,  respectively, by
merely replacing all variables with (new) Skolem constants. Skolemization also allows
us t o  deal wi th theorems of the form VZ : sy = t1  A. . .  As ,  = I n  = s = 1 (cp.  sec-
t i on  6.3). Negat ion and skolemizat ion produce s i  = t j  A. . .  As), = t ,  As’ U. Hence,
= A . . .  As ,  = t ,  are added to  the set of axioms, and s’ # t ’  is the actual goal. I n
the following we shall not rigorously distinct between the original theorem Th  and its
negated and skolemized counterpart, keeping in  mind that the UKB-procedure works
with the latter.

The general proceeding of the UKB-procedure when attempting to  prove Th  con-
sists i n  inferring new equations from Az  (and i ts derived descendants). When possible
t he  goal Th  is rewr i t ten us ing the  equations der ived so  far. Rewriting a te rm t with
an equation s ;  = 82  or Sa = $ ;  means replacing a sub-term t | ,  of t (p € O(¢)), which is
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an instance of sy, i.e., t | ,  = o(sı) for some o € X, with o(s2). Th  is proved i f  both of
i ts sides can be made identical this way.

A strong advantage of the UKB-procedure resides i n  the use of a reduction order-
ing > .  Strictly speaking, equations are symmetrical, i.e., they can be applied from left
to  right or from right to  left. I f  the sides of an equation can be compared wi th  > then
this equation needs only be applied in  the direction from the bigger side (w.r.t. > )  to
the smaller side. An  equation s;  = so that can be compared with  > is called a rule and
is written as / — r ,  where | = max, ({s1,s:}) and r = min,  ({s1, s2}). The definition
of a reduction ordering follows.

Definition 4.6 (reduction ordering) A partial ordering on  Term(F,V) is a reduc-
t ion ordering if i t  satisfies the following condit ions (let s ı , s2 ,5 , t  € Term  (F ,V ) ) .
(1) s > t  implies o(s) > o(t) for all 0 € X (compatibility with substitution)
(2) sı > s2 and pe  O(s) imply s [ p«— s1] = s[p sq]  (compatibility with term structure)
(3) > is well founded (there are no infinitely descending chains s ı  > sa > ++).
A ground reduction ordering is a reduction ordering which is total on ground terms.

The UKB-procedure can now be described i n  a more detailed way. As already
sketched above new equations have to be inferred. This is accomplished by generating
so-called critical pairs. For this process the reduction ordering can be employed as a
restrictive means.

Definition 4.7 (cr i t ica l  pa i r )  Let I ;  ~ ;  r ı  and l y  ~3  ra be rules o r  equations (i.e.,
m,  m € {—,= } ) ,  >= a reduction ordering, p € O(l}),  0 € X with o ( l 1 , )  = ( l y ) .
( u , v )  is a cr i t ical  pa i r  o f  ly ~ ;  ry and  I ,  ~3  ry if

u=  o(l ı)[p — o(ra)] , v=o ( r )
- and

o(r)  # al l )  , o r )  # l l ) .
Note :  The lat ter two conditions are always true i f  the respective ~ ;=—.  Furthermore,
ly ~1  71  and I ;  m r2 do not necessarily have to be distinct.

The efficiency of t he  UKB-procedure depends largely on  the application of reduct ion
as the only rewriting inference. Reduction corresponds to a special case of rewriting,
the restriction being that, i f  o(s;) = o(sz) is the instance of the equation for rewriting
by substituting o(s;) for o(s1), then o(s1) > o(s;) must be satisfied. Hence, rules
can always be used for reductions ( in  the direction of the arrow). For equations, since
neither s ;  > s ;  nor s ;  > $1 ,  i t  must be tested i f  for the given instances o(s; )  and o(s2)
a(sy) > o(s;) holds.

In  order t o  solve the  given problem A = (Az, Th), i .e . ,  t o  show Az += Th, the
UKB-procedure operates on three sets R ,  E and CP.  R is the set of rules, E the
set of  equations ( their  sides cannot be  compared wi th  the reduction ordering > )  and
CP  is the set of critical pairs (“unprocessed equations”). Before we can present the
UKB-procedure in  an algorithmic form we still have to introduce the notions “normal
form” and “interreduction”.
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A normal form of a term s is a term s' (also denoted si) which can be obtained 
from s via reductions using the rules in R and the equations in E, and which cannot be 
reduced any further. In that case we say that si is in normal form with reference to R 
and E. Note that normal forms are not necessarily unique, i.e., there may exist more 
than one normal form of a term s. In case of termination (which is guaranteed here 
because of the reductiqn ordering) at [east one normal form exists. Confluence entails 
the existence of at most one normal form. Hence convergence guarantees 'the existence 
of exactly one normal form. Normalization is a further advantageous concept of the 
UKB-procedure simplifying the available facts as much as possible, thus keeping them 
as concise as possible. An equation or rule is said to be normalized if both its sides are 
in normal form. Strongly related with normalization is interreduction. Interreducing 
Rand E with a rule I -+ r (u = v) means that it is attempted to reduce every rule 
of R and every equation of E with [ -+ l' (u = v). In case of success the respective side 
of the ruleS or equation in question is brought into normal form w.r.t. R U {[ -+ T'} 
and E (R and E U {u = v}). Of course, a rule or equation must not be reduced with 
itself. 

Initially, R = E = 0, GP = Ax and the goal G == s' =I=- t'. The UKB-procedure 
then proceeds as follows: 

while GP =I=- 0 and s' 1=- t' 
do 

select a (u', v') E GP 
GP:= GP\ {(u',v')} 
(u, v) := (u', v') normalized w.r.t. Rand E 
if u =t v then 

if u >- v or v >- u then 
let [= max>-({u,v}), r = min>-({u,v}) 
interreduce Rand E with l -+ r 
R := R U {l -+ T'} 
normalize G w.r.t. Rand E 
GPnew := set of normalized critical pairs between [ -+ T' and Rand E 

else 
interreduce Rand E with u = v 
E:= E U {u = v} 
normalize G w.r.t. Rand E 
GPnew := set of normalized critical pairs between u = v and Rand E 

fi 
GP:= GP U GPnew 

fi 
done 

5 A rule [' -+ I" in R whose left side could be reduced yielding [" is moved from R to C P since 
[" >- 1" might no longer be valid. 
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A normal form of a term s is a term s’ (also denoted s | )  which can be obtained
from s via reductions using the rules in  R and the equations in  £ ,  and which cannot be
reduced any further. In  that case we say that s |  is i n  normal form with reference to R
and E .  Note that normal forms are not necessarily unique, i.e., there may exist more
than one normal form of a term s. In  case of termination (which is guaranteed here
because of the reduction ordering) at least one normal form exists. Confluence entails
the existence of at most one normal form. Hence convergence guarantees the existence
of exactly one normal form. Normalization is a further advantageous concept of the
UKB-procedure simplifying the available facts as much as possible, thus keeping them
as concise as possible. An  equation or rule  is said t o  be  normalized i f  bo th  i t s  sides are
i n  normal form. Strongly related wi th  normalization is interreduction. Interreducing
Rand  E wi th  a rule | — r ( u  = v )  means that i t  is  attempted to reduce every ru le
of R and every equation of E wi th  { — r (u  = v). In  case of success the respective side
of the rule® or equation in  question is brought into normal form w.r.t. RU { I  — r }
and E (Rand EU  {u  = v}). Of course, a rule or equation must not be reduced with
itself.

Initially, R = E = 0, CP = Az  and the goal G = s' # t’. The UKB-procedure
then proceeds as follows:

while CP  # 0 and s' # t/
do

select a (u’,v') € CP
CP  : =CP \  { { v , v ) }
(u,v) : =  ( u , v )  normalized w.r.t. Rand  E
i f  u # v then

i f  u > vo r  v > u then
let { = max, ({u,v}),  r = min, ({u,v})
interreduce R and E w i t h  | — r
R:=RU{ l—- r }
normalize G w.r . t .  Rand  E
C Pew = set o f  normalized critical pairs between | — r and R and £

else
interreduce R and F wi th  u = v
E:=FU {u=v }
normalize G w.r . t .  Rand E
C Ppew : =  set of normalized critical pairs between u = v and R and F

fi
CP.=CPuCP, . ,

fi
done

5A  ru le  I ’  — r ‘  i n  R whose left s ide  cou ld  be  reduced  yielding { i s  moved from R to  CP  s i nce
I "  > r' might no longer be valid.
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Notes: 

•	 If the above procedure stops with C P = 0 and s' :f= t' then the theorem is not 
provable. 

•	 The procedure may not stop at all (general undecidability of the problem'Ax I­
Th?'). 

•	 This procedure may also be used for completion (see [KB70]) by omitting every­
thing related to G. 

The crucial, indeterministic step of the UKB-procedure is the selection of the next 
critical pair to become a rule or equation. A judicious choice can speed up proving 
(completion) considerably, whereas poor choices can slow it down extremely and even 
make it (practically) impossible. Due to the general undecidability ofAx I- T h only 
heuristics can be applied to resolve this indeterminism. 

A heuristic for selecting the next critical pair usually associates a weight (a natural 
number) with each critical pair. Commonly (and that is what we assume here) the 
critical pair with the lowest weight is the one considered the most suitable and will be 
selected. (If there are several critical pairs with the same lowest weight then the one 
that has been in the set C P for the longest time is picked (FIFO).) 

The DISCOUNT system ([ADF95]) is an automated equational prover based on the 
procedure just described. It is implemented in C and features tools for proof analysis 
and extraction (see [DS94a], [DS94b]) we applied to extract source proofs. All our 
experimental results were obtained with this system. In the sequel we shall present 
the (generic) heuristics of DISCOUNT we used for the experiments documented in 
section 6. 

The heuristics for choosing the next critical pair are based on a weighting function 
cP : F U V -t IN, where cP(x) = W v E IN for all x E V and cPU) = wf for all f E F. 
cP can be extended to Tenn(F, V) by defining 

Definition 4.8 (weight of a term) 

ift = x E V
 
ift == f(t1, ... ,tn ), f E F, n = TU)
 

A generalized form cPlp of cP is used by the heuristic "linpol". It assigns a linear polynom 
with the coefficients c{, ... , c~(f) E IN to each f E F. 

Definition 4.9 

ift == x E V
 
ift == f(t1, ... ,tn ), f E F, n = TU)
 

In	 the following let (u, v) be a critical pair, i.e., u, v E Term(F, V). 
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Notes:

e I f  the above procedure stops with CP  = 0 and s’ £ t '  then the theorem is not
provable.

e The procedure may not stop at all (general undecidability of the problem ‘Az  I
Th? ) .

e This procedure may also be used for completion (see [KB70]) by omitting every-
thing related to G.

The crucial, indeterministic step of the UKB-procedure is the selection of the next
critical pair to become a rule or equation. A judicious choice can speed up proving
(completion) considerably, whereas poor choices can slow i t  down extremely and even
make i t  (practically) impossible. Due to the general undecidability of Az  + Th  only
heuristics can be applied to  resolve this indeterminism.

A heuristic for selecting the next critical pair usually associates a weight (a natural
number) with each critical pair. Commonly (and that is what we assume here) the
critical pair wi th  the lowest weight is the one considered the most suitable and will be
selected. (If there are several critical pairs with the same lowest weight then the one
that has been in  the set CP  for the longest time is picked (FIFO).)

The  DISCOUNT system ([ADF95]) i s  an  automated equational  prover  based on  the
procedure just described. I t  is implemented i n  C and features tools for proof analysis
and extraction (see [DS94a], [DS94b]) we applied to extract source proofs. All our
experimental results were obtained with this system. In the sequel we shall present
t he  (generic) heur is t ics  of  DISCOUNT we  used for t he  experiments documented i n
section 6.

The heuristics for choosing the next critical pair are based on a weighting function
6 :  FUV — N ,  where ¢(z) = w € N for all z € V and ¢ ( f )  = wy for all f € F.
¢ can be extended to T'erm(F,V) by defining

Definition 4.8 (weight o f  a term)

A l t )  = Wy, i f t =zeV

| wr + T i l t ) ,  i f t =  f h ,  tn), FEF ,  n=1 ( f )

A generalized form ¢ ,  of ¢ is used by the heuristic “l inpol”. It assigns a linear polynom
with the coefficients cf, . . .  ‚An € IN to  each f € F.

Definition 4 .9

u ( t )  = { 2 f t =zeV
? wi  + Tire u( t ) ,  i f  t= f ( t ,  ta), f € F ın= f )

I n  the following let (u,v) be a critical pair, i.e., u,v € Term(F,V).
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Definition 4.10 Let >- be the reduction ordering, s =I- t the negated and skolemized 
goal (cp. section 4). Let furthermore for all f E F mf 2: 1 be factors expressing 
some structural difference between a critical pair (u, v) and s =I- t (see appendix A for 
details). The heuristics add, max, gt, linpol and occnest are defined as follows: 

add( (u, v)) </J(u) + </J(v) 
max( (u, v)) max ({</J(u), </J(v)} ) 

</J(u), if u >- v 
gt( (u, v)) </J(v) , if v >- u

{ </J(u) + </J( v), otherwise 

linpol( (u, v)) </Jlp(u) + </Jlp(v) 
occnests#t( (u, v)) (</J(u) + </J( v)). IT m f 

fEF 

(Note: occnest is a goal oriented heuristic and is therefore labeled with the current 
goal s =I- t. Cf. also appendix A.) 

The parameters of these heuristics are the values W v and W f for all f E F, as well as 
the coefficients c{, ... ,c~(f) for all f E F in case of linpol, and a flag in case of occnest 
(see appendix A). 

The default versions of these heuristics (as used by DISCOUNT) are specified by the 
following choice of parameters: W v = 1, wf = 2 for all f E F, D = F (only relevant for 
occnest, see appendix A), c{ = 1 for all f E F, 1 :=:; i :=:; TU) (only relevant for linpol). 
The default version of linpol is hence equivalent to the default version of add. \Ve 
shall therefore not distinguish between these two heuristics when considering default 
versions. 

The following section will describe the details of the fitness function (cp. section 3) 
with respect to this particular equationalprover. Once again we want to emphasize 
that our approach is not limited to this kind of provers, but can be applied to any kind 
of deductive system employing parameterized heuristics and explicitly inferring facts. 

Designing a fitness function 

As outlined in sections 2 and 3 our approach proceeds as follows: Given a proof P of 
a proof problem A' = (Ax', T h')-the source proof-and a (generic) heuristic W (add, 
max, gt, linpol or occnest, cp. section 4) we are looking for values of the parameters W v 

and Wf for all f E F so that the respective instance w of W enables the prover (in our 
case DISCOUNT) to find a proof ofAx' f- Th' with as little redundancy as possible. If 
a future proof problem A is "similar" to A', then this particular w is employed to guide 
the search. Thus, we indirectly reuse the proof P of A' by using w which "learned" 
that proof. 

The learning of the parameters of W is conducted by a genetic algorithm (GA). 
Representing solutions (i.e., parameter configurations resp. instances w of W) and 
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Definition 4.10 Let > be the reduction ordering, s # t the negated and skolemized
goal (cp. section 4). Let furthermore for all f € F my > 1 be factors expressing
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add((u,v)) = ( u ) + ¢(v)
maz( (u , v ) )  = max ( { g (u ) , $ ( v ) } )

(u ) ,  i f u>v
gt({(u,v)) = é(v), i f  vu

(u )  + ¢(v), otherwise
l i npo l ( {u ,v ) )  = d i n (w )+ lv)

ocenes t , ( ( u ,0 ) )  = (#(u) + $ (v ) ) - II my
f eF

(Note: occnest is a goal oriented heuristic and is therefore labeled wi th the current
goal s # t .  Cf. also appendix A.)

The parameters of these heuristics are the values w,  and wy for all f € F, as well as
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(see appendix A).
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The default version of l inpol is hence equivalent to  the default version of add. We
shall therefore not distinguish between these two heuristics when considering default
versions.

The following section will describe the details of the fitness function (cp. section 3)
with respect to  this particular equational prover. Once again we want to  emphasize
that  our approach is  not l imited  to th is  k ind of  provers, bu t  can be  appl ied to  any k ind
of deductive system employing parameterized heuristics and explicitly inferring facts.

5 Designing a fitness function

As outlined i n  sections 2 and 3 our approach proceeds as follows: Given a proof P of
a proof problem A’  = (Az’, Th’)—the source proof—and a (generic) heuristic W (add,
maz,  g t ,  l inpol  or occnest, cp. section 4) we are looking for values of the parameters w,
and wy for all f € F so that the respective instance w of W enables the prover ( in  our
case DISCOUNT) to find a proof of Az’  Th ’  with  as l i t t le  redundancy as possible. I f
a future proof problem A is “similar” to A’ ,  then this particular w is employed to  guide
the search. Thus, we indirectly reuse the proof P of A’  by using w which “learned”
that proof.

The learning of the parameters of W is conducted by a genetic algorithm (GA).
Representing solutions (i.e., parameter configurations resp. instances w of W) and
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constructing new ones by applying genetic operators is no problem at all (cp. section 3). 
The major difficulty is the design of an accurate, yet efficient fitness function. Section 3 
explained its foundations, namely the use of the fixed set P of positive critical pairs (or 
facts in general) and a set N of negative critical pairs. P represents the steps necessary 
to attain the proof P of A' found in the past, whereas N stands for a subset of all 
inferences which do. not contribute to this particular proof P. We already discussed in 
section 3 why-in contrast to P-N cannot be fixed (static). Periodic proof runs have 
to update N in order to take into account the changing search bel:avior of the evolving 
instances w of W. In the sequel, we present technical details by gradually developing 
the fitness function. 

5.1 First steps 

So, the fitness function of the GA works with the two sets P = { (Uj, Vj) I 1 ::; j ::; m} 
and N, the latter being periodically updated after ne cycles of the GA. In order to 
estimate the quality of an w, i.e., its ability to prefer elements of P to elements of N, 
the following sets Ij(N) ~ N associated with each (Uj, Vj) E P are pivotal. The 
elements of each Ij(N) are the currently known negative critical pairs which may be 
preferred to the respective (Uj, Vj) E P during a search for P using w. 

Ij(N) = {(u,v) EN I w((u,v))::; w((Uj,Vj))} , 

The elements of Ij(N) are those negative critical pairs that are (potentially) preferred 
to (Uj, Vj) E P. It is quite obvious that w should be considered the better the smaller 
the sets Ir(N), ... ,I'::t(N) are. A "perfect" adaptation entails Ij(N) = 0 for all 
1 ::; j ::; m. Since this will hardly ever be the case we have to find a more subtle way 
of rating a given w. So, the first idea for a fitness function 19 1 evaluating w consists in 
adding up the sizes of Il'(N), . .. ,I'::,(N), i.e., 

m 

19 1(w) = E IIj(N)I· 
j=l 

But this simple solution has many shortcomings mainly because of the following ob­
servation: It depends on two factors if the members of a Ij(N) are actually worked 
on before (Uj, Vj) is chosen when attempting a proof using w. Firstly, a (u, v) E Ij(N) 
with w( (u, v)) = w( (Uj, Vj)) is not given necessarily priority to. Secondly, so far nothing 
is said about the position of a (u, v) in the derivation graph w.r.t. w; it might be the 
case that (u, v) has not yet been generated while (Uj, Vj) already is in the set CP. If 
this is the case, then (u, v) is not an obstacle for the selection of (Uj, Vj). 

In this context we must point out that measuring a !Ieuristic by its ability to prefer 
elements of P to elements of N can probably never be an equally good. substitute for 
actually evaluating a proof or proof attempt. The main reason for this drawback is the 
set N. N is updated after each iteration by attempting a proof using one particular 
w'-the best generated so far. N can consequently contain critical pairs which may be 
"irrelevant" for a w other than w'. Here, irrelevant critical pairs denote critical pairs 
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constructing new ones by  applying genetic operators is no problem at all  (cp. section 3).
The major difficulty is the design of an accurate, yet efficient fitness function. Section 3
explained i t s  foundations, namely the use o f  the  fixed set P of  positive cri t ical  pairs (or
facts in  general) and a set N of negative critical pairs. P represents the steps necessary
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The elements of Z¥( NV) are those negative critical pairs that are (potentially) preferred
t o  (u j ,v ; )  € P .  I t  is quite obvious that w should be considered the better the smaller
the sets ZY(N),..., Zu (N) are. A “perfect” adaptation entails Z7(N) = 0 for all
1 < j  < m .  Since this will hardly ever be  the case we have to  find a more subtle way
of rating a given w. So, the first idea for a fitness function 7 ,  evaluating w consists i n
adding up the sizes of Z¥(N),...,Z%(N), i .e,

Bw)  = 3° ITP).
j =1

But this simple solution has many shortcomings mainly because of the following ob-
servation: I t  depends on two factors i f  the members of a Z¥(IV) are actually worked
on before (u j ,  v;) is chosen when attempting a proof using w. Firstly,  a (u,v)  € Z¥(N)
wi th  w ( (u , v ) )  = w({u;,v;)) i s  not  given necessarily priority to .  Secondly, so far noth ing
is said about the position of a (u,v) in the derivation graph w.r.t. w; i t  might be the
case that (u,v) has not yet been generated while (u;,v;) already is i n  the set CP. I f
this is the case, then (u,v) is not an obstacle for the selection of (u;,v;).

In  this context we must point out that measuring a heuristic by  i ts ability to  prefer
elements of P to elements of N can probably never be an equally good. substitute for
actually evaluating a proof or proof attempt. The main reason for this drawback is the
set N .  N is updated after each iteration by attempting a proof using one particular
w'—the best generated so far. N can consequently contain critical pairs which may be
“irrelevant” for a w other than w‘. Here, irrelevant critical pairs denote critical pairs
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in N which contribute to the assessment of w in a possibly negative way by increasing 
the size of some of the Ij(N), but which would not have been selected before the 
respective (uj, Vj) E P if a proof using this w had been attempted. Similarly, "relevant" 
critical pairs are critical pairs possibly not in N, but they would be members of some of 
the Ij(N) and they would have been selected if the UKB-procedure had been using w. 

The following definition formalizes these notions. . 

Definition 5.1 (Relevance, Irrelevance) Let w be an instance of a heuristic W 
and (uj,Vj) E P. A negative critical pair (u,v), i.e., (u,v) tf. P, is relevant w.r.t. w 
and (Uj,Vj) ifw((u,v)) ~ w((Uj,Vj)) and (u,v) would be selected before (uj,Vj) ifw 
were used during a proof or proof attempt. (u, v) is irrelevant w.r.t. wand (uj, Vj) if 
w((u,v)) ~ w((uj,Vj)) and (u,v) would not be selected before (Uj,Vj) ifw were used 
during a proof or proof attempt. 

Note that relevance or irrelevance of a negative critical pair are to be seen w.r.t. a 
certain wand a (uj, Vj) E P, but not as a general property. A negative critical pair (u, v) 
may be relevant w.r.t. wand (Uj, Vj) E P, but irrelevant w.r.t. w' and (Uk' Vk) E P, 
or vice versa (where w ::j. w' or j =1= k). Relevance or irrelevance of a critical pair for a 
given wand a (uj, Vj) E P can only be decided if the UKB-procedure is started each 
time a w is to be evaluated. This is exactly what we wanted to avoid. Therefore we have 
to find other ways to get around this problem. By employing the best w during update 
runs we already diminish the number of irrelevant critical pairs. But this is achieved 
at the expense of also decreasing the number of relevant critical pairs. This dilemma 
of not having relevant critical pairs-which can make a "bad" w look better than it 
actually is-and having irrelevant critical pairs-which can make a "good" w look 
worse than it is-cannot be overcome completely unless computing the individual N 
of each w to be rated. But this is-as we already discussed-too time consuming and 
hence impractical. 

Before we take a look at improvements of 'l9 1 including measures taken to cope with 
the dilemma just described, we have to examine another problem whose solution will 
lead to an extension of 'l9 1 that will also be the basis for handling the dilemma. 

5.2	 First improvements: Penalizing frequently and recently 
occurring critical pairs 

Suppose that an update run does not bring out any new members for N. This means 
that N does not change, and it is highly probable that the best w which was used for 
this update run will still be the best in the next iteration. Therefore the CA may get 
stuck in a "local optimum", not on account of a deficiency of the CA itself, but on 
account of the inadequacy of the "testing environment" provided by N (and P) which 
is only a simulation of the "real thing", namely the first T (milli-) seconds of a proof as 
opposed to a complete proof. Moreover, such a "local optimum" can be substantially 
inferior to -the global optimum. The essential problem consists in '19 1 considering only 
the number of elements in each Ij(N), not the elements themselves. It is especially 
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i n  N which contribute to the assessment of w i n  a possibly negative way by  increasing
the size of some of the Z7/(N), but which would not have been selected before the
respective (u j ,  v;) € P if  a proof using this w had been attempted. Similarly, “relevant”
critical pairs are critical pairs possibly not i n  N ,  but they would be members of some of
the Z¢¥(N) and they would have been selected if the UKB-procedure had been using w.
The following definition formalizes these notions.

Definition 5.1  (Relevance, Irrelevance) Let w be an instance of a heuristic W
and (u;,v;) € P .  A negative critical pair (u,v), i.e., (u,v) € P ,  is relevant w.r.t. w
and (u;,v;)  if w({u,v)) < w((uj,v;))  and (u,v) would be selected before (u j ,v ; )  if w
were used during a proof or proof attempt. (u,v) is irrelevant w.r.t. w and (uj,v;) if
w({u,v)) < w((u;,v;)) and (u,v) would not be selected before (uj,v;) if w were used
during a proof or  proof attempt.

Note that relevance or irrelevance of a negative critical pair are to be seen w.r.t. a
certain w and a (u j ,  v;) € P ,  but  not as a general property. A negative critical  pair (u,v)
may be relevant w.r.t. w and (uj,v;) € P ,  but irrelevant w.r.t. w’ and (ug, vx) € P ,
or vice versa (where w # w' or  j # k) .  Relevance or irrelevance of a critical pair for a
given w and a (u j , v ; )  € P can only be  decided i f  the  UKB-procedure i s  s tar ted each
time a w is to be evaluated. This is exactly what we wanted to  avoid. Therefore we have
to find other ways to  get around this problem. By  employing the best w during update
runs we already diminish the number of irrelevant critical pairs. Bu t  this is achieved
at the expense of also decreasing the number of relevant critical pairs. This dilemma
of not having relevant critical pairs—which can make a “bad” w look better than i t
actually is—and having irrelevant critical pairs—which can make a “good” w look
worse than i t  is—cannot be overcome completely unless computing the individual N
of each w to be rated. Bu t  this is—as we already discussed—too time consuming and
hence impractical.

Before we take a look at improvements of  9 ;  including measures taken to  cope wi th
the dilemma just described, we have to  examine another problem whose solution will
lead to an extension of ¥ ,  that will also be the basis for handling the dilemma.

5.2 First improvements: Penalizing frequently and recently
occurring crit ical  pairs

Suppose that an update run does not bring out any new members for N .  This means
that N does not change, and i t  is highly probable that the best w which was used for
this update run will st i l l  be the best i n  the next iteration. Therefore the GA  may get
stuck in a “local optimum”, not on account of a deficiency of the GA itself, but on
account of the inadequacy of the “testing environment” provided by  N (and P )  which
i s  only a simulation of  t he  “real  th ing ” ,  namely the first T' (milli-) seconds of  a proof as
opposed to  a complete proof. Moreover, such a “local optimum” can be substantially
inferior to the global optimum. The essential problem consists in  ¢ ,  considering only
the number of  elements i n  each I¥(NV), not the elements themselves. I t  is especially
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unable to favor a w which is associated with different I"f(N) , .,. ,I~(N) and has the 
same or may be an even worse fitness rating than w. But such a w might actually shake 
the search up by admitting alternative negative critical pairs. 

It is also worthwhile noting that a situation where there are no changes of N during 
an update run quite often originates from the generation of few, but "time intensive" 
negative critical pairs. (Time intensive critical pairs denote critical pairs that entail 
a lot of reductions and the generation of many further critical pairs when they are 
activated to become rules or equations.) Considering the fact that an update run­
lasting only a limited time T -corresponds to the initial part of a proof attempt, we 
have to "predict" the subsequent behavior. From our own experience (and most readers 
will agree) such a situation as just described is in most cases disadvantageous since a 
heuristic that produces many unnecessary critical pairs, but does so fast, is in general 
less prone to wasting a lot of time than a heuristic that is busy with fewer, but more 
time intensive negative critical pairs. 

Considering all this, it seems recommendable to introduce a penalty for negative 
critical pairs that keep on appearing in update runs in order to allow the GA to examine 
alternatives. This measure can be realized by associating with each element of N a 
number indicating how often the respective negative critical pair occurred during an 
update run. That is, we have a fL with 1 ::; fL( (u, v)) ::; i c for all (u, v) EN, where i c is 
the number of the current iteration and fL( (u, v)) denotes the number of occurrences of 
(u, v) ENduring the past i c update runs. (Recall that an update run is executed at 
the beginning of each iteration.) Then we use L(u,V)Elj(N) fL((U, v)) instead of IIj(N) I· 
(Note that IIj(N)1 ::; L(u,V)Elj(N)fL((U,V)) and Ij(N) ~ N.) Hence we have 

m 

19 2(w)=L L f1((u,v)). 
j=l (u,v)EIj(N) 

It must be outlined that any update run will cause a change of fL unless it produces no 
negative critical pairs at all. (But in that case the respective w used for the update run 
should have found a proof if T is not too small.) Furthermore we achieved the goal to 
penalize frequently occurring negative critical pairs. As a consequence, a heuristic w 
with possibly more, but less frequently occurring negative critical pairs in the respective 
sets I~(N), ... ,I'::,,(N) will finally be given a better evaluation than a w' that has less, 
but more frequently occurring negative critical pairs in its I~/ (N), . .. ,I'::: (N). fL can 
hence be regarded as a meter for relevance or irrelevance of negative critical pairs, 
because a negative critical pair (u, v) which is generated over and over again although 
the w used for the update runs changed must be considered more relevant than a 
negative critical pair (u' ,Vi) possibly generated only once. So, fL( (u, v)) and fL( (u' ,Vi)) 
will differ more and more as the number of iterations increases, and the in this sense 
more relevant (u, v) will have the desired property of influencing 19 2 with augmented 
intensity compared to (u' ,Vi). 

The use of fL as just described already enables us to handle the problematic related 
to relevance and irrelevance of negative critical pairs in a satisfactory way. But we 
can still refine 19 2 • Considering the fact that the best w-which is used for update 
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unable to favor a @ which is  associated w i th  different Z¥(N),...,ZZ(N) and has the
same or may be an even worse fitness rating than w. But  such a @ might actually shake
the  search up  by  admitting alternative negative cr i t ical  pairs.

I t  is also worthwhile noting that a situation where there are no changes of N during
an  update run quite often originates from the generation of few, but “time intensive”
negative critical pairs. (Time intensive critical pairs denote critical pairs that entail
a lot of reductions and the generation of many further critical pairs when they are
activated to  become rules o r  equat ions.)  Considering the fact that an  update run—
lasting only a l imited time T'—corresponds to the initial part of a proof attempt, we
have to “predict” the subsequent behavior. From our own experience (and most readers
will agree) such a situation as just described is i n  most cases disadvantageous since a
heuristic that produces many unnecessary critical pairs, but does so fast, is in  general
less prone to  wasting a lo t  of  t ime  than a heuristic that i s  busy  w i t h  fewer, but  more
time intensive negative critical pairs.

Considering all this, i t  seems recommendable to  introduce a penalty for negative
critical pairs that keep on appearing in  update runs i n  order to  allow the GA  to  examine
al ternat ives.  Th is  measure can be  real ized by  associating w i th  each element of  N a
number indicating how often the respective negative critical pair occurred during an
update run. That is, we have a u with 1 < p((u,v)) < i .  for all  (u,v) € N ,  where i .  is
the number of the current iteration and y((u,v)) denotes the number of occurrences of
(u,v) € N during the past i ,  update runs.  (Recall that an update run  is executed at
the  beginning  of  each i t e ra t i on . )  Then we  use X (u)€T¥ (N) p((u,v)) ins tead  of  [Z7(N)|.
(Note that |Z¥(N)| < 2 (uv) ETH (N) #((u,v)) and ZF(N) © N.)  Hence we have

B=  ¥ ww) .
3=1(uv)€T¥(N)

I t  must be outlined that any update run will cause a change of wu unless i t  produces no
negative critical pairs at all. (But  i n  that case the respective w used for the update run
should have found a proof i f  T' is not too small.) Furthermore we achieved the goal to
penalize frequently occurring negative critical pairs. As a consequence, a heuristic w
with possibly more, but less frequently occurring negative critical pairs in  the respective
sets I ¥ (N ) , . . . , I ¥ (N )  will finally be given a better evaluation than a w’ that has less,
but more frequently occurring negative critical pairs in  its Z¢'(N),...,Z% (N). u can
hence be regarded as a meter for relevance or irrelevance of negative critical pairs,
because a negative critical pair (u,v) which is generated over and over again although
the w used for the update runs changed must be considered more relevant than a
negative critical pair (u’,v’) possibly generated only once. So, u((u,v)) and u({(v',v’))
wil l  differ more and more as the number of iterations increases, and the i n  this sense
more relevant (u,v) wi l l  have the desired property of influencing 9 ,  with augmented
intensity compared to  (u',v’).

The use of u as just described already enables us to  handle the problematic related
to relevance and irrelevance of negative critical pairs in  a satisfactory way. But we
can s t i l l  refine ¥;,. Considering the  fact that the best w—which is used for update
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runs-becomes more and more adapted from iteration to iteration, it is obvious that 
negative critical pairs encountered in recent iterations are more important than those 
generated in initial iterations. A function 1/; takes this into account by having the 
value fL( (u, v)) "fade away" as long as (u, v) E Iv does not reappear during update 
runs, whereas p( (u, v)) remains unchanged if (u, v) occurred in the most recent update 
run. We define 1/;: Term(F, V)2 -+ IN as 

1/;((u,v)) = (3(fL((U,V)),- (ic - imr((u,v)))) 

where 
x>O

(3:Z-+IN, ;3(x) = { x,
1, otherwise 

As above, i c is the number of the current iteration. imr((u, v)) denotes the number of the 
iteration whose associated update run (u, v) last occurred in, i.e., 1 ::; imr ((u, v)) ::; i c 

for all (u, v) E N. Thus we have 

m 

19 3(w)=L L 1/;((u,v)) 
j=1 (u,v)ETj(N) 

5.3 Further refinements 

A further refinement of 19 3 can be accomplished by distinguishing elements of I'j( N) 
with a weight equal to w((Uj,Vj)) and elements with a smaller weight. AssUIning the 
existence of (u, v) (cp. what we said above), the latter always are obstacles during 
search, because they will definitely be preferred to (Uj, Vj), whereas the former do not 
necessarily cause a delay (recall that critical pairs with equal weights are processed 
according to the FIFO-strategy, see section 4). The following extensions epr, ... , ep% 
of fL implement this aspect. 

{ l
JL({U,V))+IJ 'f (( )) (( ))

ep~((u,v))= 2,1 W U,V =w Uj,Vj 1 :::; j :::; m, (u, v) E Ij(N) 
J fL((U,V)), otherwise 

Consequently, instead of one 1/; we have 

1/;jW((u,V)) = (3 (epj((u,v)) - (ic - imr((u,V)))), 1:::; j:::; m, (u,v) E Ij(N) 

with i c , imr and (3 as before, and 

19 4 (w) = L 
m 

L 1/;t( (u, v)) 
j=1 (u,v)ETj(N) 

So far we have not taken into account the position of the members of N or P in the 
derivation graph. Since this property is rather independent of the particular W used to 
update N, it appears profitable to make use of it as an additional means to support 
our efforts to distinguish relevant and irrelevant (negative) critical pairs. We chose the 
depth of a critical pair .as the quantity describing its position in the derivation graph 
in the most expressive and concise way. 
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runs—becomes more and more adapted from iteration to iteration, i t  is obvious that
negative critical pairs encountered i n  recent iterations are more important than those
generated i n  ini t ial  iterations. A function % takes this into account by having the
value u((u,v)) “fade away” as long as (u,v) € N does not reappear during update
runs, whereas p((u,v)) remains unchanged i f  (u,v) occurred in  the most recent update
run. We define 3 :  Term(F,V)? —» N as

(u ,  v)) = B (p ( (u , v ) )— (2c — Imr((u, v))))

where
z ,  z>0B:Z—-N,  pe)  = ;  otherwise

As above, i .  is the number of the current iteration. z,,,({u,v)) denotes the number of the
iteration whose associated update run (u,v) last occurred in ,  i.e., 1 < i p( {u , v ) )  < Ze
for all (u,v) € N .  Thus we have

Baw) = 3 > (wo )
j =1  {u,v)EIY(N)

5 .3  Further refinements

A further refinement of 43 can be accomplished by distinguishing elements of T¢(N)
with a weight equal to w((u;,v;)) and elements with a smaller weight. Assuming the
existence of (u,v) (cp. what we said above), the latter always are obstacles during
search, because they  will definitely be  preferred to  (uj,  v;), whereas the former do  no t
necessarily cause a delay (recall that critical pairs with equal weights are processed
according to the FIFO-strategy, see section 4). The following extensions ¢Y , . . . , ¢%
of u implement this aspect.

[ 22  | ,  Gt ( u , v )  = w((uj,v;))
#((u,v)), otherwise

5 ( t uo )  = | 1< j<m,  (u,v) €I7(N)

Consequently, instead of one 1) we  have

$v )  = B (951, 0) — (ic — ime((,0))), 1SGSm, (wo )€ THN)
with 2 ,  tn ,  and 3 as before, and

m

daw)=3_ > ij ( ( uv ) )
j =1  (u,w)ET*(N)

So far we have not taken into account the position of the members of N or P i n  the
derivation graph. Since this property is rather independent of the particular w used to
update N ,  i t  appears profitable to make use of i t  as an additional means to support
our efforts to distinguish relevant and irrelevant (negative) critical pairs. We chose the
depth of  a critical pair as the quantity describing i ts position in  the derivation graph
in  the most expressive and concise way.
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Definition 5.2 (depth) Let (u, v) be a critical pair, l1 ""1 r1, l2 ""2 r2 rules or 
equations, i. e., ""1, ""2 E {~, =}, and A = (Ax, T h) the CUT'T'ent problem. The depth 
8 : Term(F, V)2 ~ IN is defined as 

The depth of a rule or eq'uation equals the depth of the critical pair the rule or equation 
stems from. 

FOT every (Uj,Vj) E P, 8«(uj,vj)) is determined a priori using the known proof P and 
stays fixed during the whole adaptation procedure. For a (u, v) E N, 8( (u, v)) is-if 
necessary-updated resp. initialized after each update run. 

Let us now examine what kind of information we can possibly obtain considering 
the depth of a (u, v) E I'f(N) compared to the depth of (Uj, Vj) E P. Recall that we 
intend to employ 8 as an additional means for estimating relevance or irrelevance. Let 
d = 8( (Uj, Vj)) for some 1 :::; j :::; rn. It is obvious that, on the one hand, the probability 
that (u, v) E I'f (N) does not exist before (u j, Vj) is chosen (and hence is iT'T'elevant) 
increases the more 8( (u, v)) exceeds d. On the other hand, the probability that (u, v) E 
I'f(N) does exist before (uj, Vj) is chosen (and hence is iT'T'elevant) increases as 8( (u, v)) 
decreases. 

We decided to incorporate these considerations by making use of the difference 
8( (uJ , Vj)) - 8( (u, v)). Hence, we obtain 1/J'l, ... ,1/J'::-. in place of 1/J~w, ... ,1/J':::: 

l/Jj«U,v)) = ;3Ucpj«u,v)) - (ic - imr«u,v))) ),' f3(8«uj,vj)) - 8«(u,v)) +D)J 

occurrence"component depth co~ponent 

The value of 1/Jj( (u, v)), 1 :::; j :::; rn, becomes the bigger the more 8( (Uj, Vj)) exceeds 
8( (u, v)). D E Z together with ;3 control the effect of the difference 8( (Uj, Vj)) -8( (u, v)). 

5.4 The final fitness function 

The last refinement attempts to estimate the (detrimental) influence of relevant nega­
tive critical pairs which did not (yet) occur during update runs. Once again it must be 
emphasized that relevance is not a global property, but must be seen w.r.t. a particu­
lar wand a (u j, vj) E P. Recall that, due to the fact that update runs are performed 
using only one (the best) w' of the current population, it is almost certain that, given 
any wand a (Uj, Vj) E P, there will be relevant negative critical pairs w.r.t. wand 
(Uj,Vj) E P which are not (yet) in N. 

A relevant negative critical pair (u, v) w.r.t. a given wand a (Uj, Vj) E P satisfies 
w«u,v)) :::; w«Uj,Vj)) (cp. definition 5.1). So, the chance to encounter such a relevant 
negative critical pairs grows with w«Uj,Vj)). In general, the number of relevant nega­
tive critical pairs (u, v) w.r.t. wand (uj, Vj) E P does not depend linearly on w( (Uj, Vj)). 
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Definition 5.2 (dep th )  Let (u,v) be a critical pair, ly —1 r ı ,  I ma ra rules or
equations, i.e., ~y ,~9  € {—,= } ,  and A = (Az, Th) the current problem. The depth
8 :  Term(F,V)? — IN  is defined as

0, f u=v€  Az
8 ( (u , v ) )=<  ( h i r )  + 1, (u,v) obtained by reducing ly ~1  1 ,

max ({§(ly~171),8(la~272)}) + 1, (u ,v)  crit.  pair of  ly ~17r ;  and Ia—ara

The depth of a rule or  equation equals the depth of  the critical pair  the rule or  equation
stems from.

For every (u;,v;) € P ,  ö((u;,v;)) is determined a priori using the known proof P and
stays fixed during the whole adaptation procedure. For a (u,v) € N ,  6((u,v)) is—if
necessary—updated resp. initialized after each update run.

Let us now examine what kind of information we can possibly obtain considering
the depth of a (u ,v)  € IY  (N) compared to  the depth of (u ; ,v ; )  € P .  Recall that we
intend to employ ö as an additional means for estimating relevance or irrelevance. Let
d = 6({uj,v;)) for some 1 < j < m .  I t  is obvious that, on the one hand, the probability
that (u,v) € I¥(N) does not exist before (u;,v;) is chosen (and hence is irrelevant)
increases the more 6 ( {u , v ) )  exceeds d .  On  the  other  hand, the  probability that  ( u , v )  €
T¥(N). does exist before (u;,v;) is chosen (and hence is irrelevant) increases as §({u,v))
decreases.

We decided to  incorporate these considerations by making use of the difference
6((uj ,v;))  — 6({(u,v)). Hence, we obtain ¥¥,..., 9%  in  place of 9}, . . .  U :

$5 (G0 )  = B( (25 ( 0 )  — (ie — ime((w,0)))) + B(6((us,03)) —6({w,0)) +P))
—.—

occurrence component depth component

The value of ¥%((u,v)), 1 < j < m,  becomes the bigger the more 6({u;,v;)) exceeds
6({u,v)). D € Z together with ß control the effect of the difference §({u;,v;))—6({u,v)).

5 .4  The final fitness function

The last  refinement attempts to estimate the  (detrimental) influence of  relevant nega-
tive critical pairs which did not (yet) occur during update runs. Once again i t  must be
emphasized that relevance is not a global property, but must be seen w.r.t. a particu-
lar w and a (uj,v;) € P .  Recall that, due to the fact that update runs are performed
using only one (the best) w’ of the current population, i t  is almost certain that, given
any w and a (u; ,v;)  € P ,  there will be relevant negative critical pairs w.r.t. w and
(u j ,vj) € P which are not (yet) i n  N .

A relevant negat ive cr i t i ca l  pa i r  (u,v) w. r . t .  a given w and a (u;,v;) € P satisfies
w((u,v)) < w({uj,v;)) (cp. definition 5.1). So, the chance to encounter such a relevant
negative critical pairs grows with w((u;,v;)). In  general, the number of relevant nega-
tive critical pairs (u,v) w.r.t. w and (u;,v;) € P does not depend linearly on w((u;,  v;)).
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As a matter of fact, this number may even increase exponentially. As a consequence, 
the probability that a negative critical pair not (yet) in N occurs during a proof at­
tempt using w (and hence is relevant w.r.t. wand (uj,Vj)) grows over-proportionally 
with w( (uj, Vj)), 1 :::; j :::; m. This should be reflected by the fitness function. One 
problem here is the fact that w is not "normalized", i.e., depending on the parame­
ters one w may generally produce lower or higher weights than some other w' with­
out necessarily being inherently different. Therefore a quantity Kj based on IIj(N)I, 
1 :::; j :::; m, is introduced for this purpose. This choice is motivated by IIf( N) I being 
"more normalized" than w( (Uj, Vj) ), but still providing a reasonable means for esti­
mating the probability that additional negative critical pairs occur: The connection 
between IIj{N) I and w( (Uj, Vj)) is revealed by the observation that it is the more likely 
to run into a negative critical pair (u,v) 1. N with w((u,v)) :::; w((Uj,Vj)) the more 
elements already are in Ij(N), and as before, this likelihood grows over-proportionally 
with IIj(N)I. Kj-based on IIj(N)I-precludes those members of Ij(N) considered 
irrelevant according to the criteria elaborated for '13 3 and '13 4 above. 

Kj= 2: 7r(cpj((u,v))-(ic -imr((u,V)))) 
(u,v)ET';'(N) 

where 

7r: Z -+ {O,l}, 7r(X) = { ~: x>O 
otherwise. 

(Note: Kj ::; IIj(N)I.) 

Let furthermore (j = L(u,v)ETj(N) 'lfJj( (u, v)). (j is a measure for the "difficulties" 
we (probably) have to face when using wand trying to reach (uj, Vj) E P. If (j grows 
these difficulties (are thought to) augment. The ideas presented above are realized by 

m 

'I3 A(w) = 2:a (Kj,(j)
j=l 

where 

l
2 

a(x,y) = x ' Yj , C E:IN.
C 

a is of course not only inspired by the above considerations, but also by experi­
menting. 

The final version of the fitness function '13 is a lexicographic combination of '13 A, 

'I3 B (corresponds to '13 4), 'I3 c (average weight of all positive critical pairs) and 'I3 D (the 
negative average weight of all currently known negative critical pairs): 

m 

'I3 B(w) 2:(j
j=l 

'I3c(w) 
L~l w( (Uj, Vj)) 

m 
(m> 0) 

'I3 D(w) 
L(u,v}E~ w( (u, v)) 

1Nl (N i= 0) 
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As a matter of fact, this number may even increase exponentially. As a consequence,
the probability that a negative critical pair not (yet) in N occurs during a proof at-
tempt using w (and hence is relevant w.r.t. w and (u; ,v;))  grows over-proportionally
with w((u;,v;)),  1 < j  < m .  This should be reflected by the fitness function. One
problem here is the fact that w is not “normalized”, i.e., depending on the parame-
ters one w may generally produce lower or higher weights than some other w’ with-
out necessarily being inherently different. Therefore a quantity £% based on [I¥(N)],
1 < j  < m ,  i s  in t roduced for th i s  purpose.  This choice i s  motivated by  |Z “ (N ) |  be ing
“more normalized” than w((uj,v;)), but still providing a reasonable means for esti-
mating the probability that additional negative critical pairs occur: The connection
between |Z¢(N)| and w((u;,v;)) is revealed by the observation that i t  is the more likely
t o  run in to  a negative cr i t ical pa i r  ( u , v )  ¢ N w i th  w ( (u , v ) )  < w ( (u ; , v ; ) )  the  more
elements already are i n  Z7(N) ,  and as before, this likelihood grows over-proportionally
with |Z¥(N)|. k{—based on |I{(NV)|—precludes those members of Z¥(/N) considered
irrelevant according to the criteria elaborated for J ;  and Ja above.

=X  ( 0 )  — (ie — imr((w,v))))
(u,v)EZY (N )

where
I, z>0

T :Z— {0,1}, ( 2 )  = | 0, otherwise.

(Note: «% < |Z7(N)|.)
Let furthermore (* = Luyezy(n )  P¥((u,v)). CF is a measure for the “difficulties”

we (probably) have to face when using w and trying to reach (u;,v;)  € P .  If  (>  grows
these difficulties (are thought to) augment. The ideas presented above are realized by

9 a(w) = >a  (ky,¢2)
J=

where \

a (z , y )  = = |  , CeN.

a is  of course not only inspired by  the above considerations, but also by  experi-
menting.

The final version of the fitness function J is a lexicographic combination of 94,
Jp  (corresponds to 94), Jc  (average weight of all positive critical pairs) and Jp  (the
negative average weight of all  currently known negative critical pairs):

9a)  = X

p (w)  — ah  (N  + 0 )

19



6 

Hence 19(w) = (19 A (W),19 B (w),19c(W),19 D (w)), and 19(w) <lex 19(w') signifies that w is 
considered to be better than w l

. <lex is the lexicographic comparison from left to right 
using the usual ordering < on natural numbers. 

Having developed the fitness function 19 we can conclude this section. It remains 
to remark that {) is a dynamically changing fitness function because of the periodic 
updates of the set N which {) is in part based on. 

The next section documents our experimental results. 

Experimental results 

In this section we document the results achieved with our method for learning proof 
heuristics. Recall that the aim of learning is to find parameters for a heuristic W (add, 
max, gt, occnest or linpol, cp. section 4) so that a proof problem AI can be solved with 
as little redundancy as possible when employing the learned instance w of W. (Criteria 
for the minimality of redundancy are, for instance, the number of rules, equations and 
critical pairs generated, the number of reductions and-last but not least-the time 
spent on finding a proof.) The learning process is guided by a known proof P of AI, 
which also makes our approach a method for (indirect) proof reuse. Of course, the 
major goal of any kind of proof reuse does not consist in merely speeding up the search 
for a known proof. The broader expectations are that a problem A similar to AI can 
be solved (much) faster using an w adapted to A' than with a default heuristic. For 
each set of (similar) prbblems we shall therefore also list the results produced by the 
default versions of the heuristics. As we shall see, we could not only establish salient 
speed-ups, but also succeeded in proving (completing) problems that were out of reach 
for DISCOUNT when using default heuristics. 

In subsection 3.2 we sketched the working method of the adaptive procedure which 
accomplishes the learning of parameters of a given W. The adaptive procedure per­
forms iterations (during which the genetic algorithm performs ne cycles). Each of 
these iterations starts with an update run that lasts at most T seconds. Update runs 
produce (new) negative facts (critical pairs) which influence the fitness function. Con­
sequently, T is an important parameter of the adaptive procedure. So is W, because 
the suitability of W to learn a given P depends on W itself. Some W may be "ideal" 
to learn a proof P, while another W is not, because the properties of W I cannot be' 
made to agree sufficiently with the features of P, i.e., redundancies cannot be reduced 
significantly. In the experimental stage we are currently in it is satisfactory to leave a 
judicious choice of T and W to the experimenter. (An obvious choice for T is a certain 
percentage of the time needed to find the proof P. A good choice for W is the heuristic 
employed to find P or one that proved to be successful for a number of problems with 
the same axiomatization.) We shall investigate this problem more closely when its 
(complete) automation becomes necessary. For the moment, we content ourselves with 
the fact that adaptation can be successful provided that T and W have been chosen 
appropriately. 
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Hence d(w) = (Da l (w ) ,da(w), de(w), dp(w)), and Hw)  < iex  I (w ’ )  signifies that w is
considered to be better than w'. < j ,  is the lexicographic comparison from left to right
using the usual ordering < on natural numbers.

Having developed the fitness function ¥ we can conclude this section. I t  remains
to remark that J is a dynamically changing fitness function because of the periodic
updates of the set N which 9 is in  part based on.

The next section documents our experimental results.

6 Experimental results

I n  this section we document the results achieved with our method for learning proof
heuristics. Recall that the a im  of  learning is  t o  find parameters for a heurist ic W (add,
maz ,  g t ,  occnest or  linpol, cp. section 4) so that  a proof  problem A ’  can be  solved wi th
as little redundancy as possible when employing the learned instance w of W. (Criteria
for the minimality of redundancy are, for instance, the number of rules, equations and
critical pairs generated, the number of reductions and—last but not least—the time
spent on finding a proof.) The learning process is guided by a known proof P of A ’ ,
which also makes our approach a method for (indirect) proof reuse. Of course, the
major goal of any kind  of proof reuse does not consist in  merely speeding up the search
for a known proof. The broader expectations are that a problem A similar to A’  can
be solved (much) faster using an w adapted to A’  than with a default heuristic. For
each set of (similar) problems we shall therefore also list the results produced by the
default versions of the heuristics. As we shall see, we could not only establish salient
speed-ups, but also succeeded i n  proving (completing) problems that were out of reach
for DISCOUNT when using default heuristics.

In  subsection 3.2 we sketched the working method of the adaptive procedure which
accomplishes the learning of parameters of a given W.  The adaptive procedure per-
forms i terat ions (dur ing which the genet ic algorithm performs n .  cycles).  Each of
these iterations starts with an update run that lasts at most T seconds. Update runs
produce (new) negative facts (critical pairs) which influence the fitness function. Con-
sequently, T' is an important parameter of the adaptive procedure. So is W,  because
the suitability of W to learn a given P depends on W itself. Some W may be “ideal”
to learn a proof P ,  while another W ’  is not, because the properties of W ’  cannot be
made to  agree sufficiently wi th the features of P ,  i.e., redundancies cannot be reduced
significantly. I n  the experimental stage we are currently i n  i t  is satisfactory to leave a
judicious choice of T" and W to the experimenter. (An obvious choice for T is a certain
percentage of the time needed to find the proof P .  A good choice for W is the heuristic
employed to find P or one that proved to be successful for a number of problems with
the same axiomatization.) We shall investigate this problem more closely when i ts
(complete) automation becomes necessary. For the moment, we content ourselves with
the fact that adaptation can be successful provided that 7' and W have been chosen
appropriately.
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Our experiments were conducted as follows: Given a set of (intuitively) more or 
less similar problems AI, ... , An and their associated proofs PI, ... , Pn, we had the 
adaptive procedure perform ten iterations using an Ai and its associated proof Pi 
taken from (a subset of) {AI"'" An} in order to adapt an also given W to Pi. The 
'time out' parameter T was also provided. Any instance w of W employed during 
one of the ten update runs that allowed for a proof of Ai (within T seconds) was 
among the output of the adaptive procedure (cp. subsection 3.2). Subsections 6.1­
6.4-each dealing with a different set of "similar" problems-only display the best of 
the w obtained during the ten iterations that exhibit clearly distinct properties. (A 
complete list can be found in appendix B.) Every w was not only tested w.r.t. the 
problem Ai it was adapted to, but also w.r.t. all "similar" problems Al, ... ,An , in 
order to find out if our broader expectations, namely the successful applicability of a 
learned w to similar problems, are also fulfilled. (Note: In the following subsections, 
the results (instances) attained when adapting a heuristic Ware only reported if they 
are not generally inferior to those obtained when adapting a different W'.) 

The entries in the bodies of the subsequent tables display run-times (in seconds) 
obtained on a SPARCstation 1. We shall explain by way of example how to interpret 
the tables. The run-times of the adaptive procedure to produce the instances of the 
heuristics reported in subsections 6.1-6.4 ranged in general between one and three min­
utes. Computation time was significantly higher when we chose W == linpol, because 
linpol requires multiple precision integer arithmetic which is rather time consuming. 
For this reason we fell back on linpol only if the adaptation of any other heuristic 
did not produce satisfactory results. But we think that the time spent by the adaptive 
procedure is not an essential issue anyway, because our concept allows to carry through 
adaptation during the prover's "spare time" since it is completely independent of future 
target problems. Apart from that, some of the improvements do justify this effort (see 
in particular subsection 6.4) even if the time spent by the adaptive procedure is taken 
into account rigorously. 

6.1 The first set of examples: non-associative rings 

The first set of examples is taken from the theory of non-associative rings (see, for 
instance, [Sch66]). Three problems Af"A, A~A and AfA were examined, where Ai"A = 
(Ax N A, T hi"A) for 1 ::; i ::; 3. The set of axioms AxN A is: 

f(x,O) x h(x,h(y,y)) h(h(x,y),y) 

f(x,g(x)) ° h(h(x,x),y) h(x,h(x,y)) 
f(f(x,y),z) f(x,f(y,z)) h(x,f(y,z)) - f(h(x,y),h(x,z)) 

f(x,y) = f(y,x) h(f(x,y),z) - f(h(x,z),h(y,z)) 

a(x,y,z) = f( h(h(x, y), z), g(h(x, h(y, z)))) 

and the three theorems represent the linearity of the associator a in all of its three 
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Our  experiments were conducted as follows: Given a set of  ( in tu i t ive ly)  more or
less similar problems A4,,. . . , .A, and their associated proofs P i , . . . ,P , ,  we had the
adapt ive procedure perform ten  i tera t ions us ing an  A; and i t s  associated proo f  P;
taken from (a subset of) {A i , . . . ,A , }  in  order to adapt an also given W to P;. The
‘time out’ parameter T’ was also provided. Any instance w of W employed during
one of the  ten update runs that  allowed for a proof of  A ;  (w i th in  T' seconds) was
among the output of the adaptive procedure (cp. subsection 3.2). Subsections 6.1-
6.4—each dealing with a different set of “similar” problems —only display the best of
the w obtained during the ten iterations that exhibit clearly distinct properties. (A
complete list can be found i n  appendix B.) Every w was not only tested w.r.t. the
problem A;  i t  was adapted to, but also w.r.t. all “similar” problems A , , . . . ,A , ,  i n
order to find out i f  our broader expectations, namely the successful applicability of a
learned w to  similar problems, are also fulfilled. (Note: In  the following subsections,
the results (instances) attained when adapting a heuristic W are only reported i f  they
are not generally inferior to those obtained when adapting a different W'. )

The entries i n  the bodies of the subsequent tables display run-times ( in  seconds)
obtained on a SPARCstation 1. We shall explain by way of example how to interpret
the tables. The run-times of the adaptive procedure to produce the instances of the
heuristics reported i n  subsections 6.1-6.4 ranged i n  general between one and three min-
utes. Computat ion t ime  was significantly higher when we chose W = l inpo l ,  because
l inpol requires multiple precision integer arithmetic which is rather time consuming.
For this reason we fell back on l inpol only i f  the adaptation of any other heuristic
did not produce satisfactory results. But  we think that the time spent by the adaptive
procedure is not  an  essential issue anyway, because our concept allows t o  carry through
adaptation during the prover’s “spare time” since i t  is completely independent of future
target problems. Apart from that, some of the improvements do justify this effort (see
in  particular subsection 6.4) even i f  the time spent by the adaptive procedure is taken
into account rigorously.

6 .1  The first set o f  examples: non-associat ive r ings

The first set of examples is taken from the theory of non-associative rings (see, for
instance, [Sch66]). Three problems ANA, AY4 and AFY4 were examined, where ANA =
(AzNA, ThN4) for 1 < i  < 3. The set of axioms Az™N4 is

f ( z , 0 )  = = h(z ,h (y ,y ) )  = h (h (z ,y ) , y )
f ( x ,g (x ) )  = 0 h(h(z,z) ,y)  = h(x,h(zx,y))

f ( f (z ,y ) ,2 )  = f ( z ,  f(y,z)) hz ,  f(y,2)) = f(h(z,y),h(z,2))
f l z , y )  = f l y , 2 )  h ( f ( z ,y ) ,2 )  = f (h(z ,2) ,h(y ,2) )

a(z,y,z) = f(h(h(z,y),2),9(h(z,  h(y,2))))

and the three theorems represent the linearity of the associator a i n  all of i ts three
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arguments:

ThA a( f (z ,y ) ,u ,v )  = f la (z ,  u ,v) ,a ly ,u,v))

THYA = alu, f(z,y),v) = F(a(u, 2 ) ,  a(u,y,v))
ThY* = a(u,v,f(2,9)) = f(a(u,v,2),a(x,v,y))

The first four rows of table 6.1.1 show the results obtained using the default versions
of our heuristics. The last three rows summarize the best results obtained by the
adaptive procedure. wl) was produced by the adaptive procedure when learning the
proof of AN4. I t  corresponds to w; in table B.1.i (see appendix B) where also the
remaining (inferior) w’s are listed. In every case we chose W = gt and T = 5sec. The
reduction ordering always was a LPO with precedence a > ,  h > ,  g > ,  f > ,  0. An
entry ‘co’ indicates that no proof could be found within 3 hours.

| AM | Ay“  AT
add 148.2s | 148.3s | 149.1s
max  oo  oo  oxo

gt 7.59s | 7 .558| 7.71s
occnest oe} 00 0

wit) 0.337s | 0.342s | 0.337s
ws?) 0.341s | 0.349s | 0.342sws [0.3365 | 0.345s | 0.337s

Table 6.1.1

Table 6.1.1 (and all the subsequent tables) can be read in  the usual manner, i.e., look
up the entry i n  the row labeled H and the column labeled A i n  order to find out how
long i t  took DISCOUNT to prove A when using the default or adapted heuristic H .

The results listed i n  tables 6.1 show that, no matter which theorem’s proof was
learned during adaptation, the respectively best parameter configurations yield speed-
ups of more than 20, and—even more important to  note—these improvements remain
effective when employing them for proving the other theorems. So, our method easily
captured the obvious similarity of Th¥4, ThY4 and Th}4 without having to pin down
the nature of this similarity. It is also worth noting that (in all three cases) the best
parameter configuration allows for a proof with a negligible amount of redundancy.

6.2 The second set o f  examples: proposit ional logic

The second set of examples stems from [Ta56]. The set of axioms Az”* is given by

c(t,z) =
c (z , c ( y , z ) )  =

c(n(n(z)),z) =
(c(z,n(n(z))) =

c(c(zx, c (y ,  2 ) ,  c (c ( z , y ) ,  c ( x , 2 ) ) )  = %

c (c (z ,  e l y ,  z ) ) ,  c ( y ,  c ( x ,  2 ) ) )

c(c(z,y), e(n(y),n(z))) = *o
b

 
e

n
 

8

N
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and is an equational axiomatization of the propositional logic. ('e' corresponds to 
'implication', on' to 'not' and 't' to 'true'.) Consequently, the theorems are tautologies 
of the propositional logic. 

e(x,e(n(x),y)) = t ThrL _ c(n(x),c(x,n(y))) = t 
c(n(e(n(x),y)),c(y,n(z))) = t ThfL c(n(c(x,n(y))),y) = t 
c(n(t),x) = t Th:L c(n(c(n(x),n(y))),y) = t 

c(n(x),c(x,y)) = t fTlh PL 
i 9 - c(x,c(n(c(y,n(y))),y)) = t 

c(x,c(n(x),n(y))) = t ThfoL 
- c(x,c(n(y),c(y,n(z)))) = t 

Table 6.2.1 shows the results of the default heuristics. For these problems the default 
v.ersions of add, max and gt agree completely. Therefore only the results produced 
by add and occnest are listed. We always used a LPO with precedence c >-p n >-p t. 

add 278.2s 16.1s 6.1s 276.1s 13.6s 13.8s 6.1s 6.1s 6.1s 13.8s 
occnest 13.8s 30.2s 6.3s 13.9s . 14.5s 14.6s 7.4s 9.7s 8.8s 56.1s 

Table 6.2.1: default heurzstzcs 

Table 6.2.2 lists the most prominent results achieved when adapting W =occnest. 
(wfj) is an instance of W generated when learning a proof of AfL = (Ax PL ,ThfL). 
It corresponds to Wi in table B.2.2.j of appendix B which shows all instances of W 
produced in the course of ten iterations of the adaptive procedure.) We set T = 5sec., 
except when learning the proofs of AiL, AfL and AfL, where we raised T to 9sec. 
in order to find instances of W that enabled DISCOUNT to succeed before time out. 
Note that increasing T not only allows for detecting instances w that require more time 
to find a proof but also changes the search behavior, because more negativt: critical 
pairs occur during prolonged update runs (which affect the fitness function). At the 
one hand, increasing T may be a benefit, because update runs can then provide more 
accurate data with l'espect to an w employed during an update run. On the other hand, 
this may aggravate the problematic connected with irrelevant (negative) critical pairs 
for all those·w (constituting the majority) which are not used for update runs. (The 
choice of T-as we already stated in the introduction to this section-is so far left to 
the (human) experimenter.) Tables 6.2.2 and 6.2.3 can again be interpreted in the usual 
manner. (E.g., in table 6.2.2, w~6) enabled DISCOUNT to prove AfL in 2.2sec.) An 
entry '-' indicates that no pr?of could be found in a time comparable to the run-times 
achieved when using a default heuristic or another adapted heuristic. 

Although there is (intuitively) little resemblance between the above theorems (ex­
cept for ThiL and ThfL and instances ThfL and ThfL thereof) tables 6.2.2 and 6.2.3 
reveal that certain groups of theorems can be proved in a similar fashion. We shall 
now take a closer look at parts of the results presented in these two tables. 

First of all we have to clarify an observation in connection with ThiL and ThfL 
and their respective instances ThfL and ThrL. From table 6.2.2 we can see that it 
takes DISCOUNT about twice as long to prove the instances AfL and ArL when 
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and is an equational axiomatization of the propositional logic. (‘c’ corresponds to
‘implication’, ‘ n ’  to  ‘not’  and ‘ t ’  to ‘true’.) Consequently, the theorems are tautologies
of the propositional logic.

THEY = c (z ,e (n ( z ) , y ) )= € The = c(n(z ) ,c (z ,n (y ) ) )=
THEE = en(e(n(z ) ,y ) ) ,e (y ,n (z ) ) )=t TMP* = c(n(c(z ,n(y) ) ) ,y)=
THEE = c (n ( t ) , s )= ¢ THEY = c(n(c(n(z),n(y))), =
THEE = c(n(z) ,c le ,y) ) = t ThE: = f z ,  c(n(c(y,  n(y))),y))=
THEE = c (z ,e (n ( x ) , n ( y ) ) )= Th  = e r t
Table 6.2.1 shows the results of the default heuristics. For these problems the default
versions of add, max and gt agree completely. Therefore only the results produced
by add and occnest are listed. We always used a LPO with precedence ¢ > ,  n > ,  t .

I | AT | Ar“ | A™| Ar“ | As“ | Ab“ [A  | A | A6”| AT
add || 278.25 | 16.15 | 6.15 | 276.15 | 13.6s | 13.85 | 6.1s | 6.15 | 6.1s | 13.85
occnest || 13.8s | 30.2s | 6.3s | 13.9s | 14.5s | 14.6s | 7.4s | 9.7s | 8.8s | 56.1s

Table 6.2.1: default heuristics

Table 6.2.2 lists the most prominent results achieved when adapting W = occnest.
(WV7) is an instance of W generated when learning a proof of APE = (AzPL, ThTL).
I t  corresponds to w; i n  table B.2.2.7 of appendix B which shows all instances of W
produced i n  the course of ten iterations of the adaptive procedure.) We set T = 5sec.,
except when learning the proofs of AL ,  APL and ALT, where we raised T to 9sec.
in  order to find instances of W that enabled DISCOUNT to succeed before time out.
Note that increasing 7 not only allows for detecting instances w that require more t ime
to find a proof but also changes the search behavior, because more negative critical
pairs occur during prolonged update runs (which affect the fitness function). At  the
one hand, increasing 7" may be a benefit, because update runs can then provide more
accurate data with respect to an w employed during an update run. On  the other hand,
this may aggravate the problematic connected with irrelevant (negative) critical pairs
for all those-w (constituting the majority) which are not used for update runs. (The
choice of T—as we already stated i n  the introduction to  this section—is so far left to
the (human) experimenter.) Tables 6.2.2 and 6.2.3 can again be interpreted in  the usual
manner. (E .g., in  table 6.2.2, w(® enabled DISCOUNT to prove AFLi n  2.2sec.) An
entry ‘— ’  indicates that no proof could be foundi n  a time comparable to  the run-times
achieved when using a default heuristic or another adapted heuristic.

Although therei s  (intuitively) little resemblance between the above theorems (ex-
cept for ThP*  and ThEL  and instances ThE: and ThE  thereof) tables 6.2.2 and 6.2.3
reveal that certain groups of theorems can be proved in  a similar fashion. We shall
now take a closer look at parts of the results presented in  these two tables.

First of all we have to clarify an observation i n  connection with Th[*  and ThE?
and their respective instances Th fL  and ThEE. From table 6.2.2 we can  see that it
takes DISCOUNT about twice as long to prove the instances ALL and ALL when
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~ AiL I AfL I AfL IAfL I A[L I AfL I AfL I AfLI ArL I Ail I 

~~ 
I] 7.95 I 26.25 I 8.45 I 7.8s 116.7s 116.45 I 9.28 114.65 111.65 1 18.28 I 

~ I 2.25 I 1 I 1.88 I 1.95 1=1 - 115.35 13.58 

~ I - I 4.45 I 1- [ - 19.55 1 15.45 [10.85 1- I
I 

~ 7.85 I 26.35 I 7.85 1 7.85 116.65 116.58 9.28 114.75 111.15 118.28 I1 

,( 5J w 2 - 2.25 - - 1.85 1.95 - - 15.35 3.55 
,(5 J 

w 4 - 11.85 - - 2.15 2.25 - - 2.45 3.55 

wi6 
) - 12.75 - - 2.15 2.25 - - 2.15 3.55 

w~6) - 2.25 - - 1.85 1.95 - - 12.85 2.55 
W(7)

1 - - 18.65 - 28.25 28.05 4.15 5.75 2.75 24.55 

WrJ - 19.95 - - 30.05 29.85 2.75 3.85 2.45 -

,~8) w l - 17.75 - - 27.75 28.05 7.45 7.75 1.75 21.15 
w~8) - - 7.75 - 26.05 25.85 5.55 6.95 6.05 23.45 

w~9) - 19.65 - - 30.15 29.95 3.05 4.25 2.35 -

,(9)
w2 - 11.95 - - 27.75 28.05 17.95 19.25 1.75 21.15 

,FO)w l - 12.35 - - 3.25 3.35 17.95 18.75 2.55 2.85 
,( 10)

W2 - 2.45 - - 2.05 2.15 - - 13.35 2.65 
Table 6.2.2: W == occnest 
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[APPT AFT TAFT [A r  [ Ap  | Agr | Are | AF [ A TA
[wi [7.95 [26.25 | 8.4s | 7.85 | 16.75 | 16.45 | 9.25 | 14.65 | 11.65 | 18.25 |
[w? —T22s] —]  — [18  [19s] — | — [153s] 3.55|
(wf  | — | — J4a4s] —]  — | — [| 95s | 15 .4s] 10.85 | — |
| wi  | 7.85 [26.35 | 7.85 | 7.85 | 16.65 | 16.55 | 9.25 | 14 .7s| 11.15 | 18.25|

Ww | |  — [22s] — | — [18 | 19s] — | — [153s] 3 .5
wh  | — [118] — | — 21s] 22s  | — | — | 24s  | 3.55

Ww | — 127s] — | — Jas] 22s] — | — | 21s  | 35s
w® — | 2.2s — — | 18s | 1.9s — — 112.85 | 2.5s
wi  | — | — [186s] — | 928.2s [28.0s | 41s  | 5.7s | 2.7s | 24.55
Wi? | — [199s] — | — |300s|20.8s| 27s | 3.85 | 24s | —
Ww | — [117s] — | — [277s] 28.0s | 74s | 7.7s | 1.7s | 211s
Ww | — | — [77s | — |26.0s [25.8s | 5.55 | 69s  | 6.0s | 23.45

Ww 1 — 196s] — | — [301s[29.9s| 30s | 425 | 23s | —

w | | — [119s] — | — [27.7] 28.0s | 17.9s | 19.25 | 1.7s | 21.1s

WON — 123s] — | — [32s] 33s | 17.9s | 18.7s | 2.55 | 2.8s
wi  | — | 24s | — | — [20s] 21s] — | — [133s] 26s

Table 6.2.2: W = occnest
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1 

A PLI [I	 AiL AfL I AfL I AfL I AfL A:L 
10 

4.9s 5.4s 11.3s I ======~=I 21.3s 3.2s 
1=33=.4~SI=~= 1=29.1s 4.3s	 0.9s 

W~3) 24.2s ­ 27.1s 1.7s 24.0s 15.4s 15.7s 2.0s 1.7s 1.8s 18.8s 
W~3) - - 0.7s - - - 0.7s 0.7s 0.7s -

4I wi ) ~	 4.9s I 5.4s I 1.3s I 4.8s I 3.2s I 3.3s I - [~ [3.2s 
,(5 ) 

W2 20.0s 29.9s 24.2s 20.5s LOs 1.6s - - - LOs 
,(5) 

W5 - - - - 0.5s 0.5s - - - 0.5s 

6.9s 6.2s 9.1s 6.9s 1.9s 1.9s	 2.0s 
~;;;r=~== 

24.2s 1.6s 9.3s 9.5s 1.6s 1.6s 1.6s 9..5s 
==::!;==:=; 

9.8s l1.0s 0.8s 9.6s 5.2s 5.3s 0.9s 0.8s 0.8s 5.4s 
,l9)

W2 - 21.0s 2.0s - 14.3s 14.5s 2.4s 2.4s 2.4s 14.5s 
W~9) - - 0.6s - 16.5s 16.6s 0.6s 0.6s 0.7s 16.6s 

,( 10)
W 2 5.7s 7.5s 5.0s 5.6s 2.3s 2.4s - - - 2.4s 

,(10)
W 4 

- - - - 0.7s 0.7s - - - 0.7s 
Table 6.2.3: W == linpol 

using w~1) or w~4), which learned a proof of AiL and AfL, respectively. This at first 
sight confusing and contradictory finding is explained by the goal oriented character 
of occnest which causes changes in the search behavior depending on the current goal. 
(This is not the case when adapting W == linpol as we can see from table 6.2.3.) 

Table 6.2.2 also displays the all-pervasive dilemma between specialization (i.e., being 
tailored to the needs of a very narrow group of problems) and generality (i.e., being 
more generally applicable with (moderate) success). Consider again the rows headed by 
wP) and W~4). When applying these heuristics DISCOUNT can prove all ten theorems 
with moderate improvements and moderate deterioration. Hence wi1) and w~4) can 
be viewed as "general", whereas w~5) and wi

5
), for instance, are more "specialized", 

because they cause substantial improvements for half the problems which come at the 
expense of (substantial) deterioration of the remaining problems. 

w~5) and wi
5
) reveal another phenomenon which consists in a kind of "incompatibil ­

ity" between AfL and ACL as far as proving them using a heuristic that learned a proof 
of AfL is concerned: Reducing the run-time for proving either AfL or A~L always en­
tails increasing the run-time for proving the other problem (see also table B.2.2.5). 
The same goes for wi

6
) and W~6). 

Basically, the same effects can also be observed in table 6.2.3, where we list the 
results obtained when adapting W == linpol. (As before, the complete results are com­
piled in tables B.2.3.1-B.2.3.10.) The benefit and drawback of specialization becomes 
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[ | A"  | Az” | Az” | Ay“ | Ar“ | Ar“ | Az" | Az“| AST | Alo |
Bs  | 49s |54s | 1.35 | 4.85 | 31s | 32s | — | — [21.3] 3.25|
|wi® [29.15| 4.35 [ 33 .45| 28.9s | 0.8s | 09s | — | — | — | 0.9s |
2 24.251 27.1s | 1.7s | 24.0s | 154s | 15.7s | 2.0s | 1.7s | 1.8s | 18.8s
Ww | — | — [07 — | —  — lows | 0.7s | 0.7s | —
Ww | 49s  | 54s  | 135 | 485 [32 [33 | — | — | — [32

ws 1120.0s | 29.9s | 24.25 | 205s | 1.0s | 16s  | — | — | — | 1.0s
Ww — | — | — | — |oss [05 | — |] — |] — | 05s

wi  ] 6.95 | 6.25 | 9.15 | 6.95 | 19s | 19s | — | — | — | 2 .0s|
lw ” [| — [242s] 16s | — | 93s  | 95s  | 1.65 | 1.65| 1.6s | 9.55 |
[WP || 9.85 [11.05| 0.85 I 9.65 | 5.25 | 53s | 0.95 | 0.85 | 0.85 | 5.45 |
Ww | — [210s] 20s  || — [143s 14.55 | 2.45 | 2.45 | 2.45 | 14.55
Ww | — | — [06s | — [16.55] 16.6s| 0.6s | 0.65 | 0.7s | 16.6s

wi  | 57s | 7.55 | 5.05 | 5.65 | 23s | 24s | — | — | — | 24s
Ol  — | = — | — [078 07  | — | — | — | 07s

Table 6.2.3: W = l inpol

using wi !) or wi?  , which learned a proof of AFL and AFL, respectively. This at first
sight confusing and contradictory findingis  explained by the goal oriented character
of occnest which causes changes i n  the search behavior depending on the current goal.
(This is not the case when adapting W = l inpol as we can see from table 6.2.3.)

Table 6.2.2 also displays the all-pervasive dilemma between specialization (i.e., being
tailored to the needs of a very narrow group of problems) and generality (i.e., being
more generally appl icable wi th (moderate) success). Consider again the rows headed by
wit  and wi .  When applying these heuristics DISCOUNT can prove al l  ten theorems

(1) and wit canwith moderate improvements and moderate deterioration. Hence wy;
be viewed as “general”, whereas wl?) and w i ) for instance, are more “specialized”,
because they cause substantial improvements for half the problems which come at the
expense of (substantial) deterioration of the remaining problems.

w® and wS  reveal another phenomenon which consists i n  a kind of “incompatibil-
i ty”  between AFL and AFL as far as proving them using a heuristic that learned a proof
of AFL is concerned: Reducing the run-time for proving either AZZ or ALL always en-
tails increasing the run-time for proving the other problem (see also table B.2.2.5).
The same goes for w®  and uw,

Basically, the same effects can also be observed i n  table 6.2.3, where we list the
results obtained when adapting W = linpol. (As before, the complete results are com-
piled in  tables B.2.3.1-B.2.3.10.) The benefit and drawback of specialization becomes
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particularly apparent in the row of table 6.2.3 headed by W~5). The adapted heuris­
tic wP) allows for extremely fast proofs of AfL, A~L and Afl, but is unsuitable for 
the remaining problems. 

It is important to note that w~8) (i.e., an instance of linpol that learned a proof 
of A:L

) allows for proofs of all the problems with moderate to significant improvements 
without a change for the worse. 

Although both occnest and linpol differ in their learning capability, we still can 
recognize in both tables that some of the problems must be very similar, because the 
heuristics adapted to them behave similarly. E.g., in both table 6.2.2 and table 6.2.3 
the results obtained when learning AfL or AfL are almost identical (cf. wP) and W~4) 
in table 6.2.2, wP) and W~4) in table 6.2.3). 

The above tables show that the danger of causing a change for the worse by employ­
ing adapted heuristics (as compared to default heuristics) is omnipresent. Therefore 
means for assessing (or better :'guessing") the benefit of a learned heuristic for han­
dling a new problem a priori are indispensable. Evaluation of the data collected in 
these tables allows an a posteriori estimation of profitableness, but may also serve as 
a statistic foundation of a priori estimations. 

6.3 The third set of examples: Lattice ordered groups 

The equational axiomatization of lattice ordered groups AxLOG (cp. also [Fu94]) is 
as follows. (Note: u and I represent the least upper resp. greatest lower bound.) tor 
details on (lattice) ordered groups see, for instance, [KK74]. 

l(x, y) l(y,x) 

u(x,y) u(y,x) f(J(x,y),z) f(x, f(y, z)) 

l(l(x, y), z) - l(x,l(y,z)) f(1,x) x 

u(u(x,y),z) u(x,u(y, z)) f(i(x),x) 1 

u(x,x) x f(x, u(y, z)) u(J(x,y),f(x,z)) 

l(x, x) x f(x, l(y, z)) l(J(x,y),f(x,z)) 

u(x, l(x,y)) x f(u(x,y),z) u(J(x,z),f(y,z)) 

l(x,u(x,y)) x f(l(x,y),z) 1(J(x, z), f(y, z)) 

The theorems are: 

Th LOG 
la u(i(x),i(y))=i(x) -t U(X,y)=y 

Th LOG 
lb l(i(x),i(y))=i(x) -t l(x,y)=y 

Th LOG 
2a U(X,y)=X -t u(i(x),i(y))=i(y) 

Th LOG 
2b l(x,y) = x -t l(i(x),i(y)) = i(y) 

Th LOG 
3a u(1,x) = x,u(1,y) =y,u(1,z) = z,1 = l(x,y) -t l(x,f(y,z)) = l(x,z) 

Th LOG 
3b 1(1, X) = 1,1(1, y) = 1,1(1, z) = 1,1 = l(x, y) -t l(x,j(y, z)) = l(x, z) 
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5)particularly apparent i n  the row of table 6.2.3 headed by wi  . The adapted heuris-
{5)t ic ws” allows for extremely fast proofs of AFL, AFL and ALL, but is unsuitable for

the remaining problems.
I t i s  important  t o  note that ws ) (i.e., an  instance of  l inpol  t ha t  learned a proof

of ALL) allows for proofs of all  the problems with  moderate to  significant improvements
without a change for the worse.

Although both occnest and l inpol differ i n  their learning capability, we sti l l  can
recognize in  both tables that some of the problems must be very similar, because the
heuristics adapted to  them behave similarly. E.g., in  both table 6.2.2 and table 6.2.3
the results obtained when learning AYE or ASL are almost identical (cf. wi!) and wit
i n  tab le  6.2.2, w® and w{* i n  tab le  6.2.3).

The above tables show that the danger of causing a change for the worse by employ-
ing adapted heuristics (as compared to default heuristics) is omnipresent. Therefore
means for assessing (or better “guessing”) the benefit of a learned heuristic for han-
dling a new problem a pr ior i  are indispensable. Evaluation of the data collected i n
these tables allows an a posteriori estimation of profitableness, but may also serve as
a statistic foundation of a priori estimations.

6.3 The third set of  examples: Latt ice ordered groups

The equational axiomatization of lattice ordered groups AzZ9CG (cp. also [Fu94]) is
as follows. (Note:  u and { represent the least upper resp. greatest lower bound.) For
details on (lattice) ordered groups see, for instance, [KK74].

l (z,y) = l y , z )
wz,y) = u(y,z) f(f(=z,9),2) = f(=,f(y,2))

I ( ( z , y ) , 2 )  = U(=z,1(y,2)) fLiz) = =
u(u(z,y), 2 )  = u(z,u(y,2)) f l i (z) ,z)  = 1

u (z , z )  = I f ( z ,  u l y ,  2)) = u(f(z,y),  f ( z ,  2))
l(z,z) = = f (z  l y ,  2)) = Uf(z:y),f(z, 2))

u(z , l (z ,y ) )  = = f u l z , y ) , z )  = u ( f ( z , 2 ) , f ( y , 2 ) )
l ( z , u ( z , y ) )  = I f ( l ( z , y ) , 2 )  = I ( f ( z , 2 ) ,  f (y,2))

The theorems are:

Thiy° = u(i(z),iy)) = i (z )  —> u(z,y) =v
Thi?® = I ( i ( z ) , i ( y ) )= i(z) — l(z,y) =vy
Th i  = u (z , y )=z  — u ( i ( z ) , i ( y ) )= i(y)
Thy? = I z y )  =2  — I( i (z) , i (y))  = i (y )
ThEOS = wu(l,z)==z,u(l,y) =vy,u(l ,2) = 2,1  = l (z ,y )  — I(=z, f (y,2))  = (=z,2)
TRIPS = (1 ,2 )  =1,I(1,y) = 1,i(1,2) = 1,1 = l(z,y) — Hz, f ly,2)) = I ( x ,2)
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A LOG I A LOG I A LOG I A LOGI heuristic ~ . la lb 2a 2b I 
add 00 00 44.88 44.98 
max 00 00 8708 8698 
gt 00 00 3588 3578 
occnest 00 00 5.28 3.88 

Table 6.3.1: default versions 

,Fa) 0.2948 0.2958 0.3708 0.3998W7 
,(lb) 0.2538 0.2368 0.2518 0.2228W I 
,~2a) 0.303s 0.300s 0.324s 0.498sWs 

1~2b) 0.5388 0.6378 0.6388 0.8558W2 

,(la) 0.166s 0.1748 0.2268 0.2098W6 
,( lb) 0.1878 0.1898 0.2088 0.2108WI 
,pa) 0.1988 0.197s 0.226s 0.211sWI 
,(2b) 0.2048 0.2038 0.2188 0.2158W I 

Table 6.3.2: W == add Table 6.3.3: W == max 

,(la) 0.214s 0.292s 0.275s 0.226sW I 
,Fb) 0.210s 0.231s 0.318s 0.56lsW I 
,~2a) 0.207s 0.220s 0.333s 0.324sW2 
,(2b) 1.758s 0.421s 0.733s 0.439sW 4 

A LOG 
I A LOG 

I A LOG A LOG 
la lb 2a 2b 

,!la)
W3 0.381s 0.367s 0.215s 0.2298 

,( lb)
W3 0.295s 0.274s 0.447s 0.553s 

,Fa)
W 7 1.174s 1.248s 0.990s 1.042s 

,( 2b) 
W3 1.909s 1.953s 1.188s 1.187s 

Table 6.3.4: W == gt Table 6.3.5: W == occnest 

Let AtOG = (AxLOG,ThtOG) for [, E {la,lb,2a,2b,3a,3b}. It is quite apparent 
that the problems in M I = {Af,?G, AfbOG, Af,?G, AffG} are similar. The same goes 
for the problems in M 2 = {A~,?G,A~fG}. A problem in MI, however, does not bear 
any resemblance to a problem in M 2 • Therefore we shall first consider the problems 
in M I and then separately examine those in M 2 • 

Table 6.3.1 lists the run-times of DISCOUNT w.r.t. the problems in M I when using 
the default heuristics. An entry '00' indicates that no proof was found within 3 hours, 
or DISCOUNT had to abort due to memory shortage. The results obtained when 
using adapted heuristics (also w.r.t. the problems in M I ) can be found in tables 6.3.2­
6.3.5. These tables display the best instance8 of add, max, gt and occnest, respectively, 
found by the adaptive procedure. An w)C) in table 6.3.i was produced when adapting 

the heuristic W designated at the bottom of that table to A~OG. w)C) corresponds to Wj 

in table B.3.i.£ (see appendix B). Table B.3.i.[, also shows all the other instances of the 
respective W generated in the course of the ten iterations performed by the adaptive 
procedure. In all ca8es we set T = 5 seconds, and the reduction ordering was a LPO 
with precedence i >-p f >-p I >-p U >-p 1. (Note: If W had to learn a proof of Af,?G 
or AffG, the respective proof-which could not be found u8ing our default heuri8tics 
(cp. table 6.3.1)-was nevertheless provided by DISCOUNT by applying the teamwork 
method ([AD93], [De93]). See also [DF94].) The m08t remarkable accomplishments of 
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[ heu r i s t i c  || APO#] APC | ALOOT] ALOE |
add oo 00 448s | 449s
maz ore) 00  870s | 869s
gt  co oo 358s | 357s
ocenest co  co  5.2s 3.8s

Table 6.3.1: default versions

l l l  [_— ART l l ART | Are
wi? 0.2045 0.295s | 0.370s | 0.399s | | w&* | 0.166s | 0.174s | 0.226s | 0.209s
Ww [|  0.253s | 0.236s | 0.251s | 0.222s | | w“*” || 0.187s | 0.189s | 0.208s | 0.210s
wi  | 0.303s | 0.300s | 0.3245 | 0.498s | | w{®* 1 0.198s | 0.197s | 0.2265 | 0.2115
w i  | 0.538s | 0.637s | 0.638s | 0.855s | | wi” [| 0.204s | 0.203s | 0.2185 | 0.215s

Table 6.3.2: W = add Table 6.3.3: W = maz

| I ALOG | AO, 7 ALOT | ALT  [ [ ALOT | ALOT | ALOT | A r  |

Ww T 9.3818 | 0.367s | 0.215s | 0.229s | | w™| 0.214s | 0.2925 | 0.2755 | 0.2265
wi™ [0.2955 | 0.2745 | 0.4475 | 0.553s | | ww” | 0.210s | 0.231s | 0.3185 | 0.561s
wi  [1.1745 | 1.248s | 0.990s | 1.0425 | | w#* | 0.207s | 0.220s | 0.333s | 0.3245
wi  || 1.909s | 1.9535 | 1.188s | 1.187s | | wi’ || 1.758s | 0.421s | 0.733s | 0.439s

Table 6.3.4: W = gt Table 6.3.5: W = occnest

Let AL0C = (Az9% ThEOC) for £ € {la,1b,2a,2b,3a,3b}. I t  is quite apparent
that the problems i n  M i  = {AOC AOC ALOG, ALOG) are similar. The same goes
for the problemsin  M, = {A%0°, ALOCG} A problemi n  M; ,  however, does not bear
any resemblance to a problemi n  M, .  Therefore we shall first consider the problems
i n  M ;  and then separately examine those i n  M,.

Table 6.3.1 lists the run-times of DISCOUNT w.r.t. the problems in  M ;  when using
the default heuristics. An entry ‘co’ indicates that no proof was found within 3 hours,
or DISCOUNT had to abort due to memory shortage. The results obtained when
us ing  adapted heuristics (also w. r . t .  the  problems i n  M; )  can be  found i n  tables 6.3.2-
6.3.5. These tables display the best instances of add, maz,  gt and occnest, respectively,
found by the adaptive procedure. An  wit) i n  table 6.3.7 was produced when adapting
the heuristic W designated at the bottom of that table to A%9C, w{® corresponds to  w;
i n  table B.3.:.L (see appendix B) .  Table B.3.:.L also shows all the other instances of the
respective W generated in the course of the ten iterations performed by the adaptive
procedure. In all cases we  set T' = 5 seconds, and the reduct ion ordering was a LPO
with precedence i > ,  f >p | =,  u >p.1. (Note: If W had to learn a proof of ALOC
or AG,  the respective proof—which could not be found using our default heuristics
(cp. table 6.3.1)—was nevertheless provided by DISCOUNT by applying the teamwork
method ([AD93], [De93]). See also [DF94].) The most remarkable accomplishments of
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adaptation can be viewed in the third and fourth rows of tables 6.3.2-6.3.5. These rows 
show the results of the best instances of the respective W generated when learning a 
proof of Af.?G (third row) or A~JfG (fourth row). These proofs can-as table 6.3.1 
reveals-be found by any of the default heuristics (more or less quickly). But with 
these learned instances DISCOUNT can also prove Af~G and AffG. Thus, the horizon 
of DISCOUNT is clearly broadened due to solving previously "unsolvable" problems, 
and this has been made possible by learning. The first and second rows exhibit salient 
speed-ups. Furthermore, it is important to note that the properties of the best instances 
do not vary significantly, no matter which heuristic W was adapted nor which problem 
it was adapted to. 

Note that-on account of the duality of u and I in the axioms as well as to some extent 
in the theorems-we reversed the roles of u and I when applying wJla) or wya) (wJ 1b) 
or wyb)) to AffG or AfbOG (Af~G or Af~G). 'Reversing the roles' here simply means 
that the values of the parameters W u and Wl are exchanged. This obvious measure is 
indispensable for success in these cases. 

To conclude this subsection we briefly examine the problems in M 2 . The first 
four rows of table 6.3.6 below display the performance of DISCOUNT using default 
heuristics. Rows five and six show the results obtained when employing the best 
instance of W== occnest6 adapted to Af~G and AffG, respectively. (wJL:) corresponds 
to (;.'j in table B.3.6.£.) 

add 209.1s 207.1s 
rnax 00 00 

I gt 6157s 00 

occnest 19.6s 51.0s 
, ,pal
(,,(.,3 1.80s 2.45s 

,(3b)
W 1 6.53s 0.825s 

Note: When using w~3a) to prove AfPG (wPb) to prove 
Af~G), the roles of 'U and I were again reversed. But 
this is not necessary here. Without reversing the roles, 
w~3a) (w~3b)) allows for a proof of AffG (Af~G) within 
2.2 (6.1) seconds. There is hence no notable diff2rence 
between both alternatives. 

Table 6.3.6 

The main aspect of this example is the fact that the "antisymmetry" of Af~G and AffG 
(w. 1'. t. exchanging u and l) is not only reflected by the findings described in the 
above note, but also by an "antisymmetric learning behavior": wfa) , which learned 
the proof of Af~G, is equally profitable for Af~G and for AfbOG, whereas W~3b) is not, 
showing merely moderate improvement w.r.t. Af~G. This phenomenon deserves a 
closer investigation beyond the focus of this report. 

6.4 The fourth set of examples: Completion tasks 

The fourth and final set of examples comprises eleven completion tasks A 8 , A lO , A zo , 

A30 , A 40 , A so , A60 , A 70 , A80 , A90 and A lOO (cp. [Ch93], [Zh92]). 

60nly occnest could learn the proof of Af,7G resp, AfbOG and exhibit significant improvements. 
(linpol was not considered for reasons explained in the introduction of this section,) 
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adaptation can be viewed i n  the th i rd  and fourth rows of tables 6.3.2-6.3.5. These rows
show the results of the best instances of the respective W generated when learning a
proof o f  AZOC (third row)  o r  ALPC (fourth r ow) .  These proofs can—as table 6.3.1
reveals—be found by any of t he  default heuristics (more or  less quickly). Bu t  with
these learned instances DISCOUNT can also prove AFC  and ALPS. Thus, the horizon
of DISCOUNT is clearly broadened due to solving previously “unsolvable” problems,
and this has been made possible by learning. The first and second rows exhibit salient
speed-ups. Furthermore, i t  is important to note that the properties of the best instances
do not vary significantly, no matter which heuristic W was adapted nor which problem
i t  was adapted to.
Note that—on account of  t he  duality of  u and / i n  the axioms as well as to  some extent
i n  the theorems—we reversed the roles of u and { when applying wit  or  wi? (wi
or wi?) to APC or ALOC (ALOG or ALOC). ‘Reversing the roles’ here simply means
that the values of the parameters w,  and w; are exchanged. This obvious measure is
indispensable for success in  these cases.

To conclude th is  subsection we briefly examine the problems i n  M j .  The first
four rows of table 6.3.6 below display the performance of DISCOUNT using default
heuristics. Rows five and six show the results obtained when employing the best
instance of W = occnest® adapted to  ALC and ALC, respectively. (wi) corresponds
to w; in  table B.3.6.L.)

L | Ase| Ass | Note: When using wi? to prove ALCC (Ww to prove
add 209.1s | 207.1s| AL9F), the  roles of  u and [ were again reversed. But
max co co | this is not necessary here. Without reversing the roles,
gt  6157s co | Ww (WE) allows for a proof of ALCS (ALOF) within
occnest | 19.6s | 51.0s | 2.2 (6.1) seconds. There is hence no notable difference

| wl  1.80s | 2.45s between both alternatives.

Pu  6.53s | 0.825s
Table 6.3.6

The main aspect of this example is the fact that the “antisymmetry” of A%°¢ and ALOC
(w.r.t. exchanging u and I )  is not only reflected by the findings described in  the

wi  , which learnedabove note, but  also by an “antisymmetric learning behavior”:
the  proof of  ALC, is  equally profitable for ALOC and for ALCS, whereas w(* is  not,
showing merely moderate improvement w.r.t. A9S. This phenomenon deserves a
closer investigation beyond the focus of this report.

6.4 The fourth set o f  examples: Completion tasks

The fourth and final set of examples comprises eleven completion tasks As, Ao ,  Azo,
Aso, Aso, Aso, Aso, Azo, Aso, Ago and Ajoo (cp. [Ch93], [Zh92]).

0n ly  occnest could learn the proof of AFOCG resp. A706 and exhibit significant improvements.
( l inpol  was not  considered for reasons explained i n  the introduction of  this section.)
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The initial set of equations for An is 

f(ej,x) = X l:Sj:Sn 
f(x,ij(x)) = ej l:Sj:Sn 
f(f(x,y),z) = f(x,f(Y,z)). 

The completed system has 3n +6 rules and no equations if the reduction ordering is a 
LPO with precedence in >-p ... >-p i l >-p f >-p en >-p ... >-p el' 

Note that it still makes sense to talk about proofs in this context if we view the com­
pletion process as proving the rules and equations of the resulting convergent system. 

The first three rows of table 604.1 list the results of the default heuristics add, 
max and gt. (We omitted occnest because it does not make sense to use a goal 
oriented heuristic for completion.) The entry '00' indicates that no convergent system 
could be produced, because DISCOUNT ran out of memory. The fourth row displays 
the results produced by the best adapted heuristic W2 (cp. table BA.1) which was 
generated by adapting W == max to the completion of the simplest task As. Here we 
set T = 3 seconds. The fifth row shows the results produced by Herky, which is one of 
the most powerful equational provers currently available (cf. [Zh92]' [Zh93]). Note that 
Herky is implemented in LISP, but can nevertheless defy serious C implementations 
(e.g., OTTER) w.r.t. many equational problems. 

add 1.6s 2.9s 27.0s 110s 340s 850s 00 00 00 00 00 

rrwx 3.9s 8.0s 93.8s 1120s 4600s 00 00 00 00 00 00 

gt 3.9s 8.0s 99.9s 1141s 4630s 00 00 00 00 00 00 

W2 0.23s 0.28s 0.69s 1.37s 2.16s 3.18s 4.16s 5.34s 6.87s 8.56s 10.1s 
Herky 4.2s 6.8s 25.0s 79.9s 179s 323s 623s 1031s 1610s 2238s 2964s 

Table 6.4.1: default versions, best adapted heurzstic (max) and Herky 

Again, the performance of DISCOUNT could be enhanced significantly. To underline 
the achievements of our method we refer to [Zh92] where the automated prover Herky is 
compared to OTTER (probably an earlier release than version 3.0) and Hiper ([Ch93]). 
Herky outperforms both OTTER and Hiper, because it generates far less critical pairs 
due to the application of sophisticated, but time consuming techniques. But the (run­
times and) number of generated critical pairs reported in [Zh92] are no match to our 
results. For instance, when employing W2 DISCOUNT generates 11,336 critical pairs 
during the completion of AlOo , whereas Herky generates 73,144. Moreover, all these 
improvements stem from the effort of learning made once (about 3 minutes learning 
time), which starts to payoff beyond A40 (w.r.t. Herky, earlier w.r.t. add, max or gt), 
even if merely one application of the learned heuristic is taken into account. 

Technical remark: The problem that Ai has a different number of function symbols 
than A j for i =!=- j was resolved in the following way: Assuming that Ai is the completion 
task W was adapted to resulting in w, three cases arise when transforming w into w' 

then to be used for the completion of Aj. 
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The init ial  set of equations for A ,  is

f l e j , z )  == ’ 1< j<n
f (z ,15(z) )  =€ j  ‚, 1< j<n
f ( f (=,y) ,2)  = f = ,  f(y,2))-

The completed system has 3n + 6 rules and no equations i f  the reduction ordering is a
LPO with  precedence i ,  >p + > ,  91 >p  f >p €n  =p dp

Note that i t  st i l l  makes sense to talk about proofs in  this context i f  we view the com-
pletion process as proving the rules and equations of the resulting convergent system.

The first three rows of table 6.4.1 list the results of the default heuristics add,
maz and gt. (We omitted occnest because i t  does not make sense to use a goal
oriented heuristic for completion.) The entry ‘co’ indicates that no convergent system
could be produced, because DISCOUNT ran out of memory. The fourth row displays
the results produced by the best adapted heuristic wp (cp. table B.4.1) which was
generated by  adapting W = maa to the completion of the simplest task As.  Here we
set T' = 3 seconds. The fifth row shows the results produced by Herky, which is one of
the most powerful equational provers currently available (cf. [Zh92], [Zh93]). Note that
Herky is implemented i n  LISP, but can nevertheless defy serious C implementations
(e.g., OTTER) w.r.t. many equational problems.

| | As | Aw | Aso | Aso| Aso| Aso | Aso | Aro | Aso| Ago| A100  |
add 1.6s | 2.9s |27.0s| 110s | 340s | 850s | oo 00 00 00 00

max  3.95 | 8.0s | 93.8s | 1120s [4600s | co 0 co 00 oo co
gt 3.9s | 8.0s |99.9s |1141s | 4630s | co | co  | oo 00 00 00

wo 0.235] 0.285 | 0.69s | 1.37s | 2.16s | 3.18s | 4.165 | 5.34s | 6.87s | 8.56s | 10.1s
Herky || 4.2s | 6.8s | 25.05] 79.9s | 179s | 323s | 623s | 1031s | 1610s | 2238s | 2964s

Table 6.4.1: default versions, best adapted heuristic (maz) and Herky

Again, the performance of DISCOUNT could be enhanced significantly. To underline
the achievements of our method we refer to  [Zh92] where the automated prover Herky is
compared to OTTER (probably an earlier release than version 3.0) and Hiper ([Ch93]).
Herky outperforms both OTTER and Hiper, because i t  generates far less critical pairs
due to the application of sophisticated, but t ime consuming techniques. But  the (run-
times and) number of generated critical pairs reported in  [Zh92] are no match to our
results. For instance, when employing wa DISCOUNT generates 11,336 critical pairs
during the completion of A jo,  whereas Herky generates 73,144. Moreover, al l  these
improvements stem from the effort of learning made once (about 3 minutes learning
t ime), which starts to pay off beyond Aao (w.r.t. Herky, earlier w.r.t. add, maz or gt),
even i f  merely one application of the learned heuristic is taken into account.

Technical remark: The problem that A;  has a different number of function symbols
than A ;  for ¢ # j was resolved i n  the  following way: Assuming that  A ;  is the completion
task W was adapted to resulting i n  w, three cases arise when transforming w into « ’
then to be used for the completion of A;.
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7 

(i) i > j Construct w' by simply omitting from w the function symbols 
ej+l, .. ·, ei and ij+l,"" ii not occurring in Aj . 

(ii) t = J	 Use w as it is, i.e., w' = w. 

(iii)	 i < j w' is obtained by treating the additional ei+l, ... , ej (ii+l, ... , i j ) 

.like the average el, ... , ei (i l , ... , ii) in w, precluding those ek (i k ), 

1 :::; i :::; k, that deviate considerably from the average. That means 
that the weights of the new function symbols become the "average" 
weight of the "corresponding" known function symbols. 
This way of proceeding is of course only a heuristic motivated by 
the intuitively convincing hypothesis that additional ek or ik will 
play the same role as the majority of the em and i m already there. 

(Remark: Adding or omitting function symbols was done manually. But this procedure 
will not be difficult to automate as long as the problems are as transparently structured 
as they are here.) 

Related work 

Poor performance of automated proving systems when it comes to proving difficult 
theorems, and the resulting lack of competitiveness compared to mathematicians are 
the main reasons to improve the heuristics of the respective provers. Although most 
designers of automated provers have recognized that the best and most natural way to 
do this is by learning from previous successfully solved tasks (e.g., [BCPSS], [BuSS] and 
more recently [KW94]) the number of reports on automated approaches to learning in 
this environment substantiated by experimental results is rather low. To our knowledge, 
there has so far no work been done aiming at integrating an automated learning com­
ponent into a proveI' for purely equational logic. We are aware of two research papers 
dealing with such a component for provers for first order logic ([SF71] and [SE90]). 
Common to both approaches is the representation of knowledge as clauses (CNF), and 
both use so-called features of clauses (see also [Su90]) as the basis of learning. 

Features reflect certain properties of clauses, e.g., the total number of literals, the 
number of positive and negative literals etc. In [SF71], feature vectors are extracted 
from the data provided by a successful proof, each feature vector belonging to one 
clause derived during search. "Profit values" are associated with each feature vector, 
each expressing in some respect the usefulness of the related clause. Learning consists 
in finding functions approximating the 'feature vector vs. profit value'-relation. These 
functions are linear polynoms (in the features) whose coefficients are determined via 
multiple regression analysis (see [SF71] for details). 

[SE90] also use feature vectors which are-properly encoded-presented to a neural 
network. The desired input-output behavior of the net is extracted from successful 
proofs (The only output unit is supposed to produce 1 for "useful" clauses, 0 for 
"useless" ones). 

Both approaches will not work when, applied to pure equational deduction unless 
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( i )  11> ]  Construct w’ by simply omitting from w the function symbols
e j+1 , - . . . ,  6 ;  and Z ;41 , . . . , 4%;  not occurring i n  A;.

Gi)  i=j Use w as i t  is, 1.e., w' = w.

(iit) 1< )  w’ is obtained by treating the additional e ;41 , . . . , € ;  (Fig1,...,%;)
l ike the average ey, . . . , e ;  (¢1,...,%) in  w, precluding those ex (ix),
1 £1: Lk ,  that  deviate considerably from the  average. That means
that  the weights  of  t he  new function symbols become the “average”
weight of the “corresponding” known function symbols.
This way of proceeding is of course only a heuristic motivated by
the intuitively convincing hypothesis that additional ex or i ;  will
play the same role as the majority of the e,, and im  already there.

(Remark: Adding or omitt ing function symbols was done manually. Bu t  this procedure
will  not be difficult to  automate as long as the problems are as transparently structured
as they are here.)

7 Related work

Poor performance of automated proving systems when i t  comes to  proving difficult
theorems, and the resulting lack of competitiveness compared to mathematicians are
the main reasons to  improve the heuristics of the respective provers. Although most
designers of automated provers have recognized that the best and most natural way to
do  this i s  by  learning from previous successfully solved tasks (e.g.,  [BCP88], [Bu88] and
more recently [KW94]) the number of reports on automated approaches to  learning i n
this environment substantiated by experimental results is rather low. To our knowledge,
there has so far no work been done aiming at integrating an automated learning com-
ponent into a prover for purely equational logic. We are aware of two research papers
dealing wi th such a component for provers for first order logic ([SF71] and [SE90]).
Common to  bo th  approaches i s  t he  representat ion of  knowledge as clauses (CNF), and
both use so-called features of clauses (see also [Su90]) as the basis of learning.

Features reflect certain properties of clauses, e.g., the total number of literals, the
number of positive and negative literals etc. In  [SF71], feature vectors are extracted
from the data provided by a successful proof, each feature vector belonging to one
clause derived during search. “Profit values” are associated with each feature vector,
each expressing in  some respect the usefulness of the related clause. Learning consists
i n  finding functions approximating the ‘feature vector vs. profit value’-relation. These
functions are linear polynoms (in the features) whose coefficients are determined via
multiple regression analysis (see [SF71] for details).

[SE90] also use feature vectors which are—properly encoded—presented to a neural
network. The desired input-output behavior of the net is extracted from successful
proofs (The only output unit  is supposed to produce 1 for “useful” clauses, 0 for
“useless” ones).

Both approaches will not work when applied to pure equational deduction unless
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additional features are introduced. Most of the current features are not distinctive 
when the clauses are limited to unit clauses with the equality predicate as the only 
predicate. 

We believe that our approach is not limited to (pure) equational deduction, but can 
be applied to any search problem that is tackled using parameterized heuristics. The 
quality of the results will of course heavily depend on the adequacy of these heuristics. 
Furthermore, our approach causes no additional overhead when a learned heuristic is 
used during a proof run. Both [SF71] and [SE90] have to accept overhead not present 
in the original prover due to additional computations caused by feature evaluation 
and-only for [SE90]-processing the resulting data through a neural net. 

In the general context of proof reuse also the work reported in [KW94] ought to be 
mentioned. The approach taken there combines ideas from explanation based learning 
and analogical reasoning as well as abstraction techniques. It consequently differs 
substantially from our approach, since proof reuse is accomplished by analyzing and 
generalizing proofs found in the past, which are then-properly instantiated-utilized 
for finding similar proofs. In [KW94], the notion 'similarity' is clearly defined, but 
proofs have to be very similar in this sense in order for this approach to be successful. 

Summary 

We have shown for a prover for purely equational logic that by adapting (learning) the 
parameters of a proof heuristic W via a genetic algorithm not only the proof that W was 
adapted to can be found considerably faster, but also the reduction of redundancies 
carries over to proofs that are in some way "similar". We emphasize that learning 
and application are completely independent of each other. This entails that the effort 
made for learning has to be made only once, and there are no additional costs involved 
when applying an adapted heuristic. We believe that our approach is not limited to 
(purely) equational deduction, but can be applied to any deductive system that tackles 
problems with parameterized heuristics and explicitly infers facts. 

We have conducted numerous experiments demonstrating the capabilities of our 
approach to reusing proofs. We hope to have illustrated with their results summarized 
in section 6. that our method is naturally not the answer to "reusing proofs", but is 
quite a powerful member of a future set of methods dealing with this problematic. 

Finally, this report deals with the problematic how to learn and this way (indirectly) 
reuse a known proof. Future work has to concentrate on an inherent difficulty of proof 
reuse not addressed in this report, namely to determine when to apply experiences 
gained in the past. A judicious decision on that score is crucial in order to avoid a 
major pitfall of proof reuse which consists in sometimes causing a change for the worse 
compared to proving from scratch (cp. [KN93]). 
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additional features are introduced. Most of the current features are not distinctive
when the clauses are limited to  unit clauses with the equality predicate as the only
predicate.

We believe that our approach is not limited to (pure) equational deduction, but can
be applied to any search problem that is tackled using parameterized heuristics. The
quality of the results will of course heavily depend on the adequacy of these heuristics.
Furthermore, our  approach causes no  add i t iona l  overhead when a learned heuristic is
used during a proof run. Both [SF71] and [SE90] have to accept overhead not present
i n  the original prover due to additional computations caused by feature evaluation
and—only for [SE90]—processing the resulting data through a neural net.

In the general context of proof reuse also the work reported in  [KW94] ought to be
mentioned. The approach taken there combines ideas from explanation based learning
and analogical reasoning as well as abstraction techniques. I t  consequently differs
substantially from our approach, since proof reuse is accomplished by analyzing and
generalizing proofs found in  the past, which are then—properly instantiated—utilized
for finding similar proofs. In [KW94], the notion ‘similarity’ is clearly defined, but
proofs have to  be very similar i n  this sense i n  order for this approach to  be successful.

8 Summary

We have shown for a prover for purely equational logic that by adapting (learning) the
parameters of a proof heuristic W via a genetic algorithm not  only the proof that W was
adapted t o  can be  found considerably faster, but  also the reduction o f  redundancies
carries over to proofs that are in  some way “similar”. We emphasize that learning
and application are completely independent of each other. This entails that the effort
made for learning has to be made only once, and there are no additional costs involved
when applying an adapted heuristic. We believe that our approach is not l imited to
(purely) equational deduction, but can be applied to  any deductive system that tackles
problems with parameterized heuristics and explicitly infers facts.

We have conducted numerous experiments demonstrating the capabilities of our
approach to reusing proofs. We hope to have illustrated with their results summarized
in  section 6 that our method is naturally not the answer to “reusing proofs”, but is
quite a powerful member of a future set of methods dealing with this problematic.

Finally, this report deals with the problematic how to learn and this way (indirectly)
reuse a known proof. Future work has t o  concentrate on  an  inherent difficulty of  proof
reuse not addressed in  this report, namely to  determine when to  apply experiences
gained i n  the past. A judicious decision on that score is crucial in  order to  avoid a
major pitfall  of proof reuse which consists in  sometimes causing a change for the worse
compared to proving from scratch (cp. [KN93]).

31



A The heuristic "occnest" 

The heuristic occnest is a goal oriented selection strategy for critical pairs based on 
so-called measures which were first introduced by S. Anantharaman and N. Andria­
narievelo ([AA90]). Measures express some property of a term t (e.g., the number of 
occurrences of a function symbol f in t) as integer values. Goal orientation is achieved 
by comparing measures acquired from a critical pair (u, v) with the corresponding 
measures obtained from the goal s i- t. The comparison can be accomplished in many 
ways. The way we chose is sketched below. For a more detailed discussion see [Fu94], 
[DF94]. 

We already know (cf. definition 4.10) that occnest is defined as follows: 

occnestsit((u, v)) = (4)(u) + 4>(v)), IT mf 
fE:T 

where 4> is the weighting function for terms from definition 4.8. The multipliers nI. f 

(f E F) can be computed by comparing the measures of (u, v) w.r.t. f with the 
respective measures of s i- t (w.r.t. I). Two measures are employed for occnest, 
namely occurrences and nesting. We shall first define both notions for terms and then 
extend these definitions to pairs of terms, which is necessary since occnest operates on 
(two) pairs of terms (a critical pair (u, v) and the goal s i- t). 

Definition A.I (occurrences) Let f E F, t E Term(F, V). The (number of) oc­
currences of f in t is defined by 

ift E V 
ift == g(t 1 , .•• , tn), g:t f 
ift == f(t 1 , ... ,tn) 

The nesting of f in t as given by the following definition captures the maximal 
number of consecutive occurrences of f on the branches of t (t is viewed as a tree). 

Definition A.2 (nesting) Let f E F, t E Term(F, V). The nesting of f in t zs 

{ 

defined by 

nest(f, t) = { ~(f, t, 0, 0), 
if f is a constant 
otherwise 

whe1'e 

Y(f,t,c,a) = 
max({c,a}), ift E V ort 
max({Y(f,ti,O,max({c,a})).ll::; i::; n}), ~ft =g(t1, 

is a constant 
,tn), g:t f 

max( {Y(f,ti, c + 1, a) 11 ::; z ::; n}) ift = f(t 1 , , tn) 

occ and nest are.made applicable to pairs of terms in the following way: 

Occ(f, (u, v)) max ({occ(f, u), occ(f, v)} ) 

N est(f, (u, v)) max ({ nest(f, u), nest(f, v)}) 
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A The heurist ic “occnest”

The heuristic occnest is a goal oriented selection strategy for critical pairs based on
so-called measures which were first introduced by S. Anantharaman and N .  Andria-
narievelo ([AA90]). Measures express some property of a term ¢ (e.g., the number of
occurrences of a function symbol f in  t )  as integer values. Goal orientation is achieved
by comparing measures acquired from a critical pair (u,v) with the corresponding
measures obtained from the goal s # t. The comparison can be accomplished in  many
ways. The way we chose is sketched below. For a more detailed discussion see [Fu94],
[DF94].

We already know (cf. definition 4.10) that occnest is defined as follows:

occnes tsz ((u, v)) = (d(u) + ¢(v)) - I I  my
f e r

where ¢ is the weighting function for terms from definition 4.8. The multipliers mg
( f  € F)  can be computed by comparing the measures of (u,v) w.r.t. f with the
respective measures of s # t (w.r.t. f ) .  Two measures are employed for occnest,
namely occurrences and nesting. We shall first define both notions for terms and then
extend these definitions to  pairs of terms, which is necessary since occnest operates on
(two) pairs of terms (a critical pair (u,v) and the goal s # t) .

Definition A .1  (occurrences) Let f € F ,  t € Term(F,V). The (number of) oc-
currences of f i n t is defined by

0 i f t ey
oce ( f , t )  = | S r  oce(f,  ti), i f  t = g ( ta , .  . ota), g # f

1+X AL, oce( f o t ) ,  i f t =  f ( t i , . . . . t a )

The nesting of f in  t as given by the following definition captures the maximal
number of consecutive occurrences of f on the branches of € ( t  is viewed as a tree).

Definition A .2  (nest ing) Let f € F,  t € Term(F,V) .  The nest ing of f i n t  is
defined by

_ 0, i f f is a constant
nest(f,t) = { T(f , t ,0,0),  otherwise

where

max({c,a}), ift € V o r t  is a constant
T(f , t ,c,a)  = < max({Y(f,t,0,max({c,a})) | 1 < i  <n } ) , i f t =g ( t s , . . . ,tn), EF

max({T( f , t i ,c+1,a) |1  < i  <n } )  i f t = f ( t 1 , . . . , t a )

occ and nest are. made applicable to pairs of terms in  the following way:

Occ(f, ( u , v )  = max ({occ(f,u),occ(f,v)})
Nest(f,(u,v)) = max ({nest(f,u),nest(f,v)})
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Now we can define the multipliers: 

Definition A.3 (multipliers) Let 'D ~ F, (u, v) a critical pair, s f:. t the goal (i.e., 
u, v E Term(F, V), s, t E Term(F U Fsk, V), where Fsk denotes the set of Skolem 
symbols). For all f E F: 

I, if f tJ. 'D 
mJ = { ()(Occ(f,(u,v))-Occ(f,(s,t))). ()(Nest(f,(u,v))-Nest(f,(s,t))), else 

where 
if x > 0()(x) = { x + 1, 

1, otherwise 

'D as a subset of F allows to preclude certain function symbols (namely those not 
in 'D). The measures of a function symbol f tJ. 'D are simply ignored (mJ = 1). When 
using 'D = 0 occnest degenerates into the heuristic add. 

In our implementation we use a flag admitting either 'D = F or 'D = {f EFl 
Occ(f,(s,t)) > O}, i.e., the set of all function symbols occurring in the goal s f:. t. 
Furthermore, note that we always have mJ ~ 1, and mJ increases the more (at least 
one of) these measures of a critical pair exceed the thresholds set by the goal (provided 
that f E 'D). 

Experiments with the default versions (cp. section 6) showed that occnest is in many 
cases substantially superior to the heuristic add (linpol), max and gt7 (see [Fu94]). 

7We must point out that we used a different version of gt in [Fu94]. Although the version used 
now is often superior to the former version, the fact that gt is still outperformed by occnest is lasting. 
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Now we can define the multipliers:

Definition A .3  (mult ip l iers)  Let D CF ,  (u,v)  a critical pair, s £ t the goal (i.e.,
u,v € Term(F,V), s,t € Term(FU Fa, V), where Fg. denotes the set of Skolem
symbols). For al l  f € F :

5 .  B i f f #D
I 0(Occe(f, ( u ,v )  —Oce(f, (s,t))):  O(Nest(f, (u,v))—Nest(f,(s,t))), else

where .
z+1 ,  i f z>0

bz )  = | 1, otherwise

D as a subset of F allows to  preclude certain function symbols (namely those not
i n  D ) .  The measures of a function symbol f ¢ D are simply ignored (ms = 1). When
using D = 0 occnest degenerates into the heuristic add.

I n  our implementation we use a flag admitting either D = F or D = { f  € F |
Occ ( f , ( s , t ) )  > 0}, i . e .  the  set of  a l l  funct ion symbols occurr ing i n  t he  goal s # t.
Furthermore, note that we always have my > 1, and my increases the more (at least
one of) these measures of a critical pair exceed the thresholds set by the goal (provided
that f € D).

Experiments wi th  the default versions (cp. section 6) showed that occnest is i n  many
cases substant ial ly super ior  t o  the heuristic add ( l i npo l ) ,  maz and g t ”  (see [Fu94]).

"We must  po in t  ou t  that  we used a different version of  g t  in  [Fu94]. Al though the version used
now is often superior t o  the former version, the fact that  gt is s t i l l  outperformed by  occnest is lasting.
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B Complete listing of all results 

We present here the complete listing of all experimental results which are referenced 
by section 6. Each of the following tables shows all the "successful" instances W of a 
heuristic W generated by the adaptive procedure during ten iterations. W is specified 
at the bottom of each table. The proof problem A (resp. the proof of A) it was adapted 
to is given in the left upper corner of each table. 

This appendix is divided in subsections the same way section 6 is. Therefore the ta­
bles in subsections B.1, B.2, B.3 and B.4 refer to the problems dealt with in subsections 
6.1, 6.2, 6.3 and 6.4, respectively. 

In any of the tables below the indices of the instances w do not necessarily corre­
spond to the iteration the respective w arose from. But they do reflect the chronological 
order. 

Please note that the Wi of a table do not always improve monotonously (with the 
number of iterations). On the contrary, they sometimes exhibit a rather irregular 
behavior. This property, as well as occasional "setbacks", are caused by the sudden 
changes of the fitness function on account of update runs. 

An entry '-' signifies that no proof could be found in a time comparable to that 
of a default heuristic or another adapted heuristic. 

B .1 Non-associative rings 

Wl 2.072s 2.076s 2.064s 
W2 0.796s 0.803s 0.743s 

W3 0.3378 0.3428 0.337s 

Wl 2.781s 2.817s 2.793s 

W2 0.341s 0.349s 0.342s 

W3 0.344s 0.350s 0.353s 
Table B.l.l: W == gt Table B.1.2: W == gt 

Wl 2.063s 2.079s 2.067s 
W2 0.795s 0.803s 0.735s 
W3 0.336s 0.345s 0.337s 

Table B.1.3: W == gt 

B.2 Propositional logic 

A PL 
10 

Wl 7.9s 26.2s 8.4s 7.8s 16.7s 16.4s 9.2s 14.6s l1.6s 18.2s 
W2 l1.5s 27.78 7.88 10.8s 17.5s 17.2s 9.8s 15.2s 11.6s 18.3s 

Table B.2.2.1: W == occnest 
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B Complete listing of  all results

We present here the complete listing of all experimental results which are referenced
by section 6. Each of the following tables shows all the “successful” instances w of a
heuristic W generated by the adaptive procedure during ten iterations. W is specified
at the bottom of each table. The proof problem A (resp. the proof of A )  i t  was adapted
to is given in  the left upper corner of each table.

This appendix is divided i n  subsections the same way section 6 is. Therefore the ta-
bles in  subsections B.1, B.2, B.3 and B.4 refer to  the problems dealt wi th  in  subsections
6.1, 6.2, 6.3 and 6.4, respectively.

In  any of the tables below the indices of the instances w do not necessarily corre-
spond to the iteration the respective w arose from. But  they do reflect the chronological
order.

Please note that the w; of a table do not always improve monotonously (wi th the
number of iterations). On the contrary, they sometimes exhibit a rather irregular
behavior. This property, as well as occasional “setbacks”, are caused by the sudden
changes of the fitness function on account of update runs.

An  entry ‘—’  signifies that no proof could be found i n  a time comparable to that
of a default heuristic or another adapted heuristic.

B.1  Non-associative r ings

[AT  Ay  [ AT A (ATT  A A A
wy 2.072s | 2.076s | 2.064s wr 2.781s | 2.817s | 2.793s
wa 0.796s | 0.803s | 0.743s wo 0.341s | 0.349s | 0.342s
w3 0.337s | 0.342s | 0.337s w3 0.344s | 0.350s | 0.353s

Table B.1.1: W = gt Table B.1.2: W = gt

LATA ATA| AYA | AFA
wy 2.063s | 2.079s | 2.067s -
Wa 0.795s | 0.803s | 0.735s
wa 0.336s | 0.345s | 0.337s

Table B.1.3: W = g t

B.2  Proposit ional  logic

LACS AT  | AE [ASE APE | AGE | AG™ | APE| Ar“ | Ast| Ayo
wy 79s  | 26.2s | 8.4s | 7.8s | 16.7s | 16.4s | 9.25 | 14.65 | 11.6s | 18.2s
wo 11.5s | 27.7s | 7.8s | 10.8s | 17.5s | 17.2s | 9.8s | 15.2s | 11.6s | 18.3s

Table B.2.2.1: W = occnest
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Wl - 2.3s - - 2.1s 2.5s - - 13.0s 3.6s 
W2 - 2.9s - - - - - - - -
W3 - 2.3s - - 2.2s 1.9s - - 15.3s 3.7s 
W4 - 2.4s - - 1.8s 2.2s - - 15.3s 3.5s 
Ws - 2.7s - - ~ - - - - -

W6 - 2.3s - - 1.8s 1.9s - - 15.2s 3.6s 
W7 - 2.2s - - 1.8s 1.9s - - 15.3s 3.6s 
Ws - 2.2s - - 1.8s 1.9s - - 15.3s 3.5s 
Wg - 2.8s - - - - - - - -

Table B.2.2.2: W == occnest 

Wl - - 4.9s - - - 9.4s 15.6s 10.6s -

W2 - - 4.4s - - - 9.5s 15.4s 10.8s -

W3 - - 4.4s - - - 9.0s 15.5s 10.9s -

Table B.2.2.3: W == occnest 

Wl 7.9s 29.3s 7.8s 7.7s 16.5s 16.5s 9.1s 14.7s ILls 18.2s 
W2 7.8s 26.3s 7.8s 7.8s 16.6s 16.5s 9.2s 14.7s ILls 18.2s 

W3 7.8s 28.2s 10.3s 7.9s 16.5s 17.1s 9.4s 15.9s 12.4s 21.6s 
Table B.2.2.4: W == occnest 

Wl - 12.2s - - 2.1s 2.2s - - 2.0s 3.5s 

W2 - 2.2s - - 1.8s 1.9s - - 15.3s 3.5s 
W3 - 2.4s - - 1.8s 1.9s - - 15.3s 3.5s 

W4 - 11.8s - - 2.1s 2.2s - - 2.4s 3.5s 
Ws - 2.3s - - 2.0s 2.1s - - 15.2s 2.5s 

Table B.2.2.5: W == occnest 

Wl - 12.7s - - 2.1s 2.2s - - . 2.1s 3.5s 

W2 - 2.3s - - 1.8s 1.9s - - 18.6s 3.5s 
W3 - 2.2s - - 1.8s 1.9s - - 15.2s 3.6s 
W4 - 2.3s - - 2.0s 2.0s - - 15.3s 3.5s 
Ws - 2.2s - - 1.8s 1.9s - - 12.8s 2.5s 
W6 - 2.3s - - 1.8s 1.9s - - 15.3s 3.5s 

Table B.2.2.6: W == occnest 
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| Ar t  [ ATA  [AT  AF  [AT  | AT  [A ]  AT  APT  | ATL

wy — | 23s  | — — | 21s  | 25s  | — 13.0s | 3.6s
wo — | 29s  | — — — — — — — —
ws — | 23s  | — — | 2.2s 19s  | — — | 15.3s | 3.7s
Wy — | 24s | — — | 18  | 2.28 | — — 1 15.3s | 3.5s
Ws — | 27s  | — — — — — — — —
We — [| 23s  | — — | 18  | 1.95 | — — | 15.2s | 3.6s
wr — | 22s  — — | 18] 19s  | — — | 15.3s | 3.6s
wg — | 22s  | — — | 18  | 19s  | — — | 153s  | 3.5s
we — | 2 .8  | — — — — — — — —

Table B.2.2.2: W = occnest

| APT I APT | APL | APL APT | APL AFT€ AFT | APT T APT | AFL

wy — — | 4.9s — — 9.4s | 15.6s | 10.6s | —
Wo — — | 44s  | — — — | 9.5s | 15.4s | 10.8s | —
ws — — | 44s | — — — | 9.0s | 15.5s | 10.9s | —

Table B.2.2.3: W = occnest

[AFT ATT A"  [ARE TARE | AUF | AUT [ AUF| AR | AR | AY
wy 79s  | 29.3s | 7.8s | 7.7s | 16.5s | 16.5s | 9.1s | 14.7s | 11.1s | 18.2s
Wa 7.85 | 263s  | 7.8s | 7.85 | 16.6s | 16.5s | 9.2s | 14.7s | 11.1s | 18.2s
ws | |  7.85 | 28.25 | 10.3s | 7.9s | 16.5s | 17.1s | 9.4s | 15.9s | 12.4s | 21.6s

Table B.2.2.4: W = occnest

(ATE [ATE] A"  [ASE [A  A [AT  | A | A“  | AST | Ag’
wr — 122s | — — | 21s  | 22s  | — — 2.0s | 3.55
wa — | 2.2s — — [18 | 1.9s | — — | 153s  | 3.5s
ws — | 2.4s — — | 1 .8  | 19s  | — — | 15.3s | 3.5s
Wy — [11.8 | — — | 21s  | 22s  | — — 2.4s | 3.5s
ws — 2.3s — — | 2.0s | 2.18 | — — | 15.2s | 2.5s

Table B.2.2.5: W = occnest

[A  J AT  [A  | A | AG AE | AE AFT | A A]  ATE]
wy — | 127s  | — — | 21s  | 22s  | — — [ |  2.1s | 3.55
wa — | 2.3s — — | 1 .8  | 19s  | — — | 18.6s | 3.5s
ws — | 22s  | — — | 1 .8  | 19s  | — — | 15.25 | 3.6s
wy — 2.3s — — | 20s  | 20s  | — — | 153s  | 3.5s
ws — 2.2s — — | 1 .8  | 1.9s | — — | 12.85 | 2.5s
We — 2.3s — — | 1.8s | 19s  | — — | 15.3s | 3.5s

Table B.2.2.6: W = occnest
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W1 - - 18.6s - 28.2s 28.0s 4.1s 5.7s 2.7s 24.5s 
Wz - 19.9s - - 30.0s 29.8s 2.7s 3.8s 2.4s -

Table B.2.2.7: W == occnest 

W1 - 17.7s - - 27.7s 28.0s 7.4s 7.7s 1.7s 21.1s 
Wz - - 18.5s - 28.48 28.28 4.18 5.08 2.58 24.68 
W3 - 19.08 - - 31.48 31.28 3.08 4.38 2.58 -

W4 - - 7.78 - 26.08 25.88 5.58 6.98 6.08 23.48 
Ws - 20.1s - - 30.48 30.28 2.78 3.88 2.8s -

0.,,16 - 19.88 - - 30.18 29.98 3.08 4.2s 2.3s -

W7 - - 7.78 - 26.4s 26.0s 5.48 6.98 6.0s 21.5s 
Table B.2.2.8: W == occnest 

0.,,1 1 - 19.6s - - 30.1s 29.98 3.0s 4.28 2.38 -

Wz - 11.9s - - 27.78 28.08 17.98 19.2s 1.7s 21.1s 
0.,,'3 - 20.1s - - 30.1s 29.98 2.78 3.8s 2.3s -

W4 - 17.08 --­ - ­ 27.98 28.28 17.58 18.98 1.58 21.1s 

Ws - 17.28 - - 27.6s 27.98 17.6s 18.8s 1.5s 21.1s 

W6 - 22.48 - - 30.9s 30.78 3.7s 4.6s 2.4s -

Table B.2.2.9: W == occnest 

W1 - 12.38 - - 3.28 3.38 17.9s 18.78 2.5s 2.8s 

Wz - 2.4s - - 2.08 2.18 - - 13.3s 2.6s 
W3 - 2.4s - - 2.08 2.18 - - 13.38 2.68 
W4 - 2.4s - - 2.18 2.28 - - 13.58 2.7s 

Table B.2.2.10: W == occnest 

I AiL ~ AiL I AfL I AfL I AfL I AfL I A[L I AfL I AfL I AfL I Ail'
 
I W1 11 4.98 I 5.48 I 1.38 I 4.88 I 3.1s I 3.28 I - I - I 21.38 I 3.28
 

Table B.2.3.1: W == linpol
 

I AfL ~ AfL I AfL I AfL I AfL I AfL I ArL I AfL I AfL I ArL I Ail I 

I 0.,,1 1 ~ 29.1s I 4.38 I 33.4s I 28.98 I 0.88 I 0.98 I - I - I - I 0.98 , 
Table B.2.3.2: W == linpol 
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I 

(AFT A TAGE TAGE T ART AUF TAGE ARE TAT | Am | A
wy — — |18.6s| — | 28.2s | 28.0s | 4.1s | 5.7s | 2.7s | 24.5s
wo — 1199s | — — | 30.0s | 29.85 | 2.7s | 3.8s | 2.45 —

Table B.2.2.7: W = occnest

As” [ATR] ATE [AFT | Art| AFT [ AST TAPE TAFE [AST | Ar
wy — | 177s  | — — | 27.7s | 2B.0s | 7.4s | 7.7s | 1.7s | 21.1s
Wy — — 18.5s | — | 28.4s | 28.2s | 4.1s | 5.0s | 2.5s | 24.6s
wa — | 190s  | — — | 314s  | 31.2s | 3.0s | 4.35 | 2.5s —
Wy — — 7.7s | — | 26.0s | 25.8s | 5.5s | 6.9s | 6.0s | 23.4s
ws — 1|20.1s| — — | 30.4s | 30.2s | 2.7s | 3.8s | 2.8s —
We — [19.8 | — — 1 30.1s | 29.95 | 3.0s | 4.25 | 2.3s —
wr — — 7.7s — | 26.45 | 26.0s | 5.4s | 6.9s | 6.0s | 21.5s

Table B.2.2.8:  W = occnest

[AT  [ATR AFT | AST | AUT | AFT | ATT [ATT | AT  [A | A l
wy — | 196s  | — — | 30.1s | 29.95 | 3.0s | 4.25 | 2.3s —
wo — | 11.95 | — — | 27.7s | 28.0s | 17.95 | 19.25 | 1.7s | 21.1s
wa — [201s | — — 130.1s | 29.95 | 2.7s | 3.8s | 2.3s —
Wy — | 170s  | — — | 279s  | 28.25 | 17.55 | 18.95 | 1.55 | 21.1s
ws — | 17.28 | — — | 27.65 | 279s  | 17.6s | 18.8s | 1.5s | 21.1s
We — | 224s  | — — 1309s | 30.7s | 3.7s | 4.6s | 2.4s —

Table B.2.2.9: W = occnest

ERE ar ar ar ar T AUT | AFET AUT TAU TAN
wy — | 123s | — — | 32s  | 3.3s | 17.95 | 18.7s | 2.5s | 2.8s
Wo — 2.4s — — | 2.0s | 2.1s — — | 13.3s | 2.6s
w3 — 2.4s — — | 2.0s | 2.1s — — 1 13.3s | 2.6s
Wy — 2.4s — — | 2.1s | 2.2s — — | 13.5s | 2.7s

Table B.2.2.10: W = occnest

(A  A | A A | | A | A | A ]  Ar  | A
Con [49s [54s | 1.3s [ 48  [31s [ 32  | — | — [213s] 3.25 |

Table B.2.3.1: W = linpol

(A r  || Ar“ [| Ar“| ASR | ATE ASE] ACT [ATE | Ab” | As” | Alem
Table B.2.3.2: W = linpol
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|| 29 .1s| 4.3s| 33.4s | 28.9s | 0.8s [09s | — | — | — | 0.9s |



Wl 24.28 27.18 1.78 24.08 15.48 15.78 2.08 1.78 1.88 18.88 

W2 - - 0.78 - - - 0.78 0.78 0.78 -

W3 - - 0.98 - 26.48 26.78 1.08 1.08 1.08 26.78 
W4 - - 1.28 - - - 1.28 1.28 3.48 -

Ws - - 1.08 - - - 1.08 1.08 1.28 -

W6 - - 0.88 - 25.78 25.08 0.98 0.98 2.88 24.88 
Table B.2.3.3: W == linpol 

I AfL ~ AiL I AfL I AfL I AfL I AfL [ A:L I AfL I AfL I A~L I Ail I
 
I Wl ~ 4.98 I 5.48 I 1.38 I 4.88 I 3.28 I 3.3s I - I - [ - I 3.28 I
 

Table B.2.3.4: W == linpol
 

Wl - - - - LOs 1.28 - - - 0.98 

W2 20.08 29.98 24.28 20.58 1.08 1.68 - - - 1.08 

W3 - - - - 0.68 0.98 - - - 0.68 
W4 - - - - 0.68 1.08 - - - 0.68 

Ws - - - - 0.58 0.58 - - - 0.58 
W6 - - - - 0.68 0.78 - - - 0.58 
W7 - - - - 0.8s LOs - - - 0.78 

Table B.2.3.5: W == lznpol 

Wl - - - - 1. 7s 1.8s - - - 1.88 
W2 - - - - 1.58 1.68 - - - 1.68 

W3 - - - - 1.28 1.38 - - - 1.38 

W4 - - - - 2.18 2.28 - - - 2.28 

Ws - - - - 1.38 1.48 - - - 1.48 
W6 - - - - 1.28 1.48 - - - 1.58 
W7 6.98 6.28 9.18 6.98 1.98 1.98 - - - 2.08 

Table B.2.3.6: W == lznpol 

Wl - 24.28 1.68 - 9.38 9.58 1.68' 1.68 1.68 9.58 

W2 - - 1.38 - - - 1.48 1.48 1.48 -

W3 - - 1.08 - - - 1.08 1.08 1.08 -

W4 - - 2.08 - - - 2.48 2.48 2.48 -

Ws - - 0.68 - 20.28 20.58 0.68 0.68 0.68 20.38 
W6 - 30.98 0.88 - 19.58 19.98 0.88 0.88 0.88 19.98 
W7 - - 0.68 - - - 0.68 0.68 0.68 -

Table B.2.3.7: W == ltnpol 
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LA“  | Ar“ | AT| A3t | Ag“ | AR | AST | Ar t| Ag” | AS“| AP
wy 24.25 | 271s | 1.7s | 24.0s | 15.45 | 15.7s | 2.0s | 1.7s | 1.8s | 18.8s
wo — — | 0.7s — — — | 0.7s | 0.7s | 0.7s —
ws — — 0.9s — [26.45 | 26.7s | 1.0s | 1.0s | 1.0s | 26.7s
Wa — — 1.2s — — — 1.2s | 1.2s | 3 .4s —
Ws — — 1.0s — — — 1.0s | 1.0s | 1.2s —
We — — 0.8s — | 25.7s | 25.0s | 0.9s | 0.9s | 2.8s | 24.8s

Table B.2.3.3: W = l inpol

[Ac  [AT | Ar“ | Az“ | Ay“ | Az“ | Ag“ | Ar“ | Az“ | As“ | Aig’|
Lr [ 49s | 54s | 1 . 3s  [48s [ 32s  [ 33s | — | — | — | 32s]

Table B.2.3.4: W = linpol

A | Ai “ | Az”| AB” | AL” | ATE | ASE| Art“ | As“ | Ab”| Ayo
wi — — — — 1.0s | 1.2s | — — — | 0.9s
ws 200s | 29.95 | 24.25 | 205s  | 1.0s | 1.6s | — — — | 1.0s
wa — — — — 1|0.6s | 0.95 | — — — | 0.6s
wy — — — — 06s  | 1.0s | — — — | 0.6s

‘Ws — — — — | 05s | 0 . 5  | — — — | 0.5s
We — — — — 0.6s | 0.7s | — — — | 0.5s
wr — — — — [| 0.8s | 1.0s | — — — | 0.7s

Table B.2.3.5: W = l inpol

As“ [| Ar“ | A” | A"  | Ar“ | As“| Ab“ | Ar“ | Az“ | AST| Aig
wy — — — — | 1.7s | 1.85 | — — — | 1.83
wo — — — — | 1.5s | 1.6s | — — — | 1.6s
ws — — — — | 1.2s | 1.3s | — — — | 1.3s
Wa — — — — | 2.1s | 2.28 | — — — | 2.2s
ws — — — — | 1.3s | 14s  | — — — | 1.4s
we — — — — | 1.2s | 14s  | — — — 1.5s
wr 69s  | 6.25 | 9.1s | 6.95 | 1.9s | 1.9s | — — — | 2.0s

Table B.2.3.6: W = l inpol

[A  [A ]  Ar“ | Ar“ | Ar“| As“| Ab“ | Ar“ | As”| AST AT
wy — [24.25 | 1.6s | — 93s  | 9.5s | 1.6s| 1.6s | 1.6s | 9.5s
wo — — 1.3s | — — — 1.4s | 1.4s | 1.4s —

w3 — — 1.0s | — — — 1.0s | 1.0s | 1.0s —
w4 — — | 2.0s | — — — | 2.4s | 2.4s | 2.4s | —
ws — — 0.6s | — | 20.2s | 20.5s | 0.6s | 0.6s | 0.6s | 20.3s
We — 1309s | 08  | — | 19.5s | 19.9s | 0.85 | 0.8s | 0.8s | 19.9s
wr — — 06s  | — — — 0.6s | 0.6s | 0.6s —

Table B.2.3.7: W = linpol
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Wl - 13.8s 1.3s - 8.5s 8.6s 1.3s 1.3s 1.3s 8.7s 
W2 - - LOs - - - 1.08 1.08 1.08 -
W3 - - 0.68 - - - 0.68 0.68 0.6s -
W4 9.88 11.0s 0.8s 9.6s 5.28 5.38 0.98 0.8s 0.88 5.4s 
Ws - - 0.9s - - - 1.08 1.08 1.08 -

W6 - - 1.6s - 13.4s 13.58 1.68 1.6s 1.6s 13.58 
Table B.2.3.8: W == linpol 

Wl - - 0.9s - - - LOs 1.08 1.08 -

W2 - 21.08 2.08 - 14.38 14:58 2.48 2.48 2.48 14.58 
W3 - - 0.98 - - - 1.08 1.08 1.08 -
W4 - - LIs - 28.78 29.1s 1.2s 1.28 1.28 28.98 

Ws - - LOs - - - LOs 1.08 1.08 -

W6 - - 0.7s - - - 0.78 0.7s 0.7s -

W7 - - 0.6s - 16.58 16.68 0.6s 0.6s 0.7s 16.6s 
Table B.2.3.9: W == lznpol 

Wl - - - - 1.58 1.58 - - - 1.58 

W2 5.78 7.58 5.0s 5.6s 2.3s 2.4s - - - 2.48 

w3 - - - - 2.78 2.8s - - - 2.8s 

W4 - - - - 0.7s 0.78 - - - 0.7s 
Ws 39.18 - - 38.98 0.8s 0.98 - - - 0.88 

W6 16.78 - 7.4s 16.9s 4.7s 4.8s - - - 4.8s 
Table B.2.3.10: W == linpol 

B.3 Lattice ordered groups 

WI 3.6028 0.2108 0.2158 -

W2 2.675s 2.252s 1.4258 3.609s 
W3 0.4328 0.4278 0.5308 0.6628 

W4 1.3548 4.445s 1.4478 2.8298 

Ws 100.58 77.98 2.1198 -

W6 0.5378 0.4958 0.5648 0.5758 
W7 1.2708 3.1248 0.259s 0.5388 
Wg 0.303s 0.3008 0.3245 0.498s 

LOG ALOGA 2a 2b 

Wl 0.9008 1.018s 0.824s 0.829s 
Wz 0.7958 0.802s 0.993s 1.284s 

"'-'3 3.2778 8.3568 - -

W4 1.704s 2.475s 0.4628 0.5858 
Ws 0.227s 1.0408 0.236s 0.2968 
W6 1.3358 1.448s 1.4948 1.682s 
W7 0.2948 0.295s 0.370s 0.399s 
Wg 0.350s 0.350s 0.7448 0.727s 

Table B.3.2.1a: W == add Table B.3.2.2a: W == add 
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[As  | Ar“| Ar“ [Asm | Ay“ | Abt | Ab“ | Ar“ | Ag“ | As”| Alo-
wy — | 13 .8  | 1.3s | — 85s  | 86s  | 1.35 | 1.3s | 1.3s | 8.7s
wy mn 10s  | — — — 1.0s | 1.0s | 1.0s —
ws — — | 06s  | — — — | 0.6s | 0.6s | 0.6s | —
Wa 9.8s | 11.0s | 0.8s | 9.6s | 5.2s | 5.3s | 0.9s | 0.8s | 0.8s | 5.4s
Ws — — 0.9s | — — — 1.0s | 1.0s | 1.0s —
We — — 16s  | — | 134s  | 13.5s | 1.6s | 1.6s | 1.6s | 13.5s

Table B.2.3.8: W = linpol

As“ [| Ay“| Ar” | Az“| Ay“ | As“ | Ab“ | Ar | As™| AS“ | Ao|
wy — — 0.9s | — — 1.0s | 1.0s | 1.0s —
wo — | 210s | 2.0s | — | 14.3s | 145s | 2.4s | 2.4s | 2.4s | 14.5s
ws — — 0.9s | — — — 1.0s | 1.0s | 1.0s —
Wy — — 1.1s | — | 28.7s | 29.1s | 1.2s | 1.2s | 1.2s | 28.9s
ws — — 1.0s | — — — 1.0s | 1.0s | 1.0s —

We — — 0.7s | — — — | 0.7s | 0.7s | 0.7s —
wy — — 0.6s | — | 16.5s | 16.6s | 0.6s | 0.6s | 0.7s | 16.6s

Table B.2.3.9: W = linpol

| ATT  ATT  | ATT  | ATT  | ATT  | APL  | APL  ] APL  | AT  | APT | AFT |

wy — — — — 15s  | 1.5s | — — — 1.5s
Wa 57s  | 7.5s | 5.0s | 5.6s | 2.35 | 2.4s | — — — | 24s
ws — — — — 2.7s | 2.85 | — — — | 2.8s
wy — — — — 0.7s | 0.7s | — — — | 0.7s
ws 39.1s | — — [389s | 0 . 8  | 09s  | — — — | 0.8s
we 167s  | — | 7.4s | 169s  | 4.7s | 4.85 | — — — | 4.8s

Table B.2.3.10: W = [ inpol

B.3  Lattice ordered groups

Ara  [ A r  A l  Azz  Az  E Ay?  | ASC [A  | ART | A
0.900s | 1.018s | 0.824s | 0.829s 3.602s | 0.210s | 0.215s —

wo 0.795s | 0.802s | 0.993s | 1.284s | | wo 2.675s | 2.252s | 1.425s | 3.609s
wa 3.277s | 8.356s — — wa 0.432s | 0.427s | 0.530s | 0.662s
Wy 1.704s | 2.475s | 0.462s | 0.583s | | wa 1.354s | 4.445s | 1.447s | 2.829s
Ws 0.227s | 1.040s | 0.236s | 0.296s | | ws 100.5s | 77.9s | 2.119s —
We 1.335s | 1.448s | 1.494s | 1.682s | | ws 0.537s | 0.495s | 0.564s | 0.575s
wr 0.294s | 0.295s | 0.370s | 0.399s | | wr 1.270s | 3.124s | 0.259s | 0.538s
ws 0.350s | 0.350s | 0.744s | 0.727s | | ws 0.303s | 0.300s | 0.324s | 0.498s

Table B.3.2.1a: W = add
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Table B.3.2.2a: W = add



I Afpe ~ Afoe I Afpe I ALoe I ALoe Ia 2a 2b 

4.5845 29.28 50.6s1.3265Wl 

0.729s 0.4225 0.33980.5535W2 

0.185s 0.212s 0.223s0.173sW3 

0.191s 0.196s 0.2328 0.218sW4 

1.9168 1.8915 0.:3385 0.3368Ws 

0.1745 0.20950.1668 0.2265W6 

0.1938 0.1968 0.2205 0.219sW7 

~ 

a 2a 2b 
2a 2b 

Wl 0.1985 0.1975 0.2265 0.2118 

w2 0.193s 0.2655 0.2185 0.215s 
W3 1.831s 3.6355 1.967s 3.424s 

W4 10.5s 18.45 0.250s 0.238s 

Ws 3.5238 5.3778 0.2328 0.2118 

w6 2.804s 4.9148 0.2355 0.2235 

W7 1.843s 3.2538 0.2095 0.1958 
Wg 1.8788 3.252s 0.2355 0.2238 

Table B.3.3.2a: W == nwx 

0.253sWl 

0.376sW2 

0.309sW3 

0.635sW4 

36.9sWs 

1.186sW6 

0.2715W7 

0.236s 
0.381s 
0.283s 
0.789s 
0.2675 
0.271s 
0.2675 

0.251s 
0.426s 
0.453s 
0.735s 
98.95 

0.3238 
0.3788 

Table B.3.2.1b: W == add 

0.222s 
0.420s 
0.364s 
0.958s 
0.2575 
0.2645 
0.4225 

I Arpe 

Wl 

W2
 

W3
 

W4
 

Ws
 

Afpe 
7.2095 
0.5388 
38.9 

1.743s 
0.827s 

I Afpe I ALoe I ALoe I 

4.1675 
0.637s 
21.0 

0.361s 
0.800s 

2a 

0.4568 
0.6385 
109.9s 
0.550s 
2.542s 

Table B.3.2.2b: W == add 

2b 

0.2705 
0.8558 
1.516s 
0.3885 
2.9095 

Table B.3.3.1a: W == max 

Table B.3.3.2b: W == max 

a lb 2a 2b 
2a 2b 

Wl 0.1875 0.1898 0.2088 0.210s 
Wl 0.2048 0.203s 0.218s 0.21.5s 

W2 1.992s 2.0105 117.68 118.5s 
W2 0.7975 0.6538 2.0738 1.9955 

"'-'3 0.1795 0.1905 0.224s 0.2208 
W3 5.437s 5.5895 0.213s 0.2068 

W4 0.255s 0.2768 0.287s 0.2828 
W4 3.3375 3.5165 0.2198 0.198s 

Ws 0.1918 0.1995 0.2208 0.2335 
Ws 3.5995 3.7468 0.2115 0.2108 

W6 1.8955 1.990s 0.3288 0.2198 
W6 2.064s 2.1648 0.2415 0.2428 

W7 1.890s 1.953s 0.2415 0.234s 
W7 1.6955 1.7918 0.218s 0.207s 

Table B.3.3.1b: W == max 
Wg 0.756s 0.9155 0.2085 0.211s 

Table B.3.4.2a: W == gt
Table B.3.4.1a: W == gt 

I Afpe ~ Afoe I Afpe I ALoe I ALoe Ia 2a 2b I ALoe ~ ALoe I ALoe 
Wl 3.0665 3.147s 3.0888 3.0855 

2a la lb I Arpe I Afpe I 

W2 0.732s 0.791s 2.4108 4.5375 
Wl 6.0295 10.35 2.599s 2.516s 

W3 0.3815 0.3678 0.2158 0.2295 
W2 2.7335 2.6545 1.576s 1.6118 

W4 0.8575 0.8788 0.635s 0.668s 
W3 2.5645 2.550s 2.2895 2.420s 

Ws 0.6435 0.7008 0.304s 0.316s 
W4 1.7815 1.8505 0.8735 0.9148 

W6 3.0075 2.586s 2.541s 11.8s 
Ws 1.9445 2.490s 0.580s 0.6278 

W7 1.8285 2.2788 2.0068 1.988s 
W6 1.781s 1.952s 0.8728 0.88.55 

Ws 2.1285 2.0795 1.0285 1.4435 W7 1. 174s 1.248s 0.9908 1.0428 
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| A IDS | „ALOG | ABOG | AOC | ALPE

wi  0.253s | 0.236s | 0.251s | 0.222s
| ADS | ALOE | ALPE | ALOG | AS  |

Wa 0.376s | 0.381s | 0.426s | 0.420s | | wy 7.209s | 4.167s | 0.456s | 0.270s |
wa 0.309s | 0.283s | 0.453s | 0.364s | | wo 0.538s | 0.637s | 0.638s | 0.855s
Wa 0.635s | 0.789s | 0.735s | 0.958s | | ws 38.9  21.0  | 109.9s | 1.516s
ws 36.9s | 0.267s | 98.9s | 0.257s | | wy 1.743s | 0.361s | 0.550s | 0.388s
We 1.186s | 0.271s | 0.323s | 0.264s | | ws 0.827s | 0.800s | 2.542s | 2.909s
wy 0.271s | 0.267s | 0.378s | 0.422s Table B.3.2.2b: W = add

Table B.3.2.1b: W = add

AL  A f  AK  AL  AX  As ,  A t ,  A r  As ,  As

= = = wy 0.198s | 0.197s | 0.226s | 0.211s9 )

A 4.5845 | 1.326s | 29.25 | 50.6s | == 0.193s | 0.265s | 0.218s | 0.2155
Wo 0.553s | 0.729s | 0.4225 | 0.339s 1831s | 3.6355 | 1.967s | 3.2245ws 831s  633s  967s  424s
ws 0.173s | 0.185s | 0.212s | 0.223s .

Wa 10.5s | 18.4s | 0.250s | 0.238s
Wy 0.191s | 0.196s | 0.232s | 0.218s ” 3593s  | 5.377s | 0.93% | 0.2118
ws 1.916s | 1.891s | 0.338s | 0.336s | — : : = i

g we 2.804s | 4.914s | 0.235s | 0.223s
We 0.166s | 0.174s | 0.226s | 0.209s ” 1843s  | 3.2535 | 0.209 | 0.1955
wr 0.193s | 0.196s | 0.220s | 0.219s 7 : . . :

wg 1.878s | 3.252s | 0.235s | 0.223s
Table B.3.3.1a: W = max Table B.3.3.2a: W = maz

Elid Ea  le uA  al EAE SEC E dE
“ 1  0.187s | 0.189s | 0.208s 03105 po ae  Ser  55a r r
wo 1.992s | 2.010s | 117.6s | 118.5s pa 5.4375 | 5.5895 | 0.2135 0.5064
ws 0.179s | 0.190s | 0.224s | 0.220s Da 3.3375 3.5168 0919  0.1985
Wa 0.255s | 0.276s | 0.287s | 0.282s ws 3.5005 | 3.7465 | 0.211s | 0.2105
ws 0.191s | 0.199s | 0.220s | 0.233s oe 9064s | 2.1645 1 0.2415 | 0.2495
we 1.895s | 1.990s | 0.328s | 0.219s on 1.6958 1791s 1 0.2185 0.207
wy 1.890s | 1.953s | 0.241s | 0.234s ” 0.7565 1 0.9155 | 0.2085 0311s

Table B.3.3.1b: W = maz 8 Table BA  39h :  w — — -

ALOG ALOG ALOG ALOG AOC

| = 3.066 | 3.147 | 3.088 J 3.085 | | A ”  A r  | AR  | Az  | A |
“ 1  ODS | 9221S | 9.008 | 9.7098 | Im 6.029s | 10.3s | 2.599s | 2.5165
Wo 0.732s | 0.791s | 2.410s | 4.537s ” 5.7335 | 2.6545 | 1.5765 | 1611s
wa 0.381s | 0.367s | 0.215s | 0.229s | |— : : : :

wa 2.564s | 2.550s | 2.289s | 2.420s
Wa 0.857s | 0.878s | 0.635s | 0.668s ” 1.7815 | 1.8505 | 0.8735 | 0.914s
ws 0.643s | 0.700s | 0.304s | 0.316s 4 : : : :

3007s | 2.5865 | 2.541 11.8 ws 1.944s | 2.490s | 0.580s | 0.627s
we IS  | 20908 | 4,0525 | 1205 | 1.781s | 1.952s | 0.87% | 0.885s
ws 1.828s | 2.278s | 2.006s | 1.988s pe 1174s | 1.248s | 0.990s | 1.0425
ws 2.128s | 2.079s | 1.028s | 1.443s

Table B.3.4.1a: W = gt
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Table B.3.4.2a: W = g t



I 

Wl 0.6058 0.6098 0.2598 0.3328 
Wz 0.4428 0.4178 0.4548 0.4698 
W3 0.2958 0.2748 0.4478 0.5538 
W4 1.1138 1.2898 0.8788 1.4098 
Ws 0.3218 0.2988 0.3038 0.3258 
W6 0.3398 0.3278 0.4408 0.6448 
W7 0.3388 0.3798 0.4398 0.4728 

Wl 1.7728 1.8808 1.6598 1.6738 
W2 2.0238 2.0648 2.3288 2.4278 

W3 1.9098 1.9538 1.1888 1.1878 

W4 2.3438 2.4508 2.0748 2.1608 

Ws 1.2898 1.3378 1.6528 2.0848 
Table B.304.2b: W == gt 

Table B.304.1 b: W == gt 

~\l 0.2148 0.2928 0.2758 0.2268 
W2 0.9098 1.7858 1.7928 3.0388 
W3 0.3218 0.3418 0.7188 1.1028 
W4 0.4348 3.5558 0.2198 0.2948 
Ws 0.4428 0.4158 0.4438 0.8998 
W6 0.4638 0.4128 1.3768 1.2078 
W7 0.5868 004148 1.1828 1.2798 
Ws 0.4338 0.6128 1.1738 1.3098 
Wg 0.4108 0.3958 2.0518 2.0708 

WlO 0.1708 0.1388 1.0128 1.0078 

Wl 8.3038 0.2408 0.2848 7.5218 

W2 0.2078 0.2208 0.3338 0.3248 

W3 0.4478 11.88 0.6708 1.1618 

W4 - - 2.5208 5.0768 

Ws 2.3238 4.0218 0.4118 9.9748 

W6 2.4728 2.4268 0.4678 8.5568 

W7 26.28 1.6598 0.5048 0.5918 

Ws 9.9588 5.4318 2.0528 1.3018 

Wg 0.4138 9.3448 0.4558 0.6738 

WlO 15.58 1.6928 0.5228 0.5648 

Table B.3.5.1a: W == occnest Table B.3.5.2a: W == occnest 

Wl 0.2108 0.2318 0.3188 0.5618 Wl - - 5.2678 3.8538 

Wz 1.6358 1.3028 2.8768 2.8448 W2 0.4508 1.6098 11.7 8 0.2268 

W3 0.3208 0.3108 0.3708 0.4488 W3 14.28 1.4418 2.9018 3.1738 
W4 1.5548 0.2138 0.4428 0.3988 W4 1. 7588 0.4218 0.7338 0.4398 
Ws 0.4278 0.4468 1.7Q58 1.7448 Ws 2.3008 2.3078 0.4188 0.4208 

W6 0.4338 0.4518 2.3558 2.4928 W6 14.28 2.9208 1.5478 1.3428 

W7 0.4248 0.4438 2.6188 2.2538 W7 1.7488 0.3918 0.5588 0.4078 

Ws 0.4208 0.4468 2.4238 2.5568 Wg 2.8248 3.0008 0.3498 . 0.3498 
Wg 0.2638 0.3058 0.4428 0.4918 Wg 3.2698 0.3268 0.5098 0.4748 

Table B.3.5.1b: W == occnest Table B.3.5.2b: W == occnest 
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| ADS ] AOC | APC ) Az9C | AS  |

Arawp 0.605s | 0.609s | 0.259s | 0.332s | | Az  Ap” | Asa | Ag
wo 0.442s | 0.417s | 0.454s | 0.469s wh 1.772s | 1.880s | 1.659s | 1.673s
ws 0.295s | 0.274s | 0.447s | 0.553s | | wo 2.023s | 2.064s | 2.328s | 2.427s
Wa 1.113s | 1.289s | 0.878s | 1.409s | | w3 1.909s | 1.953s | 1.188s | 1.187s
ws 0.321s | 0.298s | 0.303s | 0.325s | | wa 2.343s | 2.450s | 2.074s | 2.160s
we 0.339s | 0.327s | 0.440s | 0.644s | | ws 1.289s | 1.337s | 1.652s | 2.084s
wr 0.338s | 0.379s | 0.439s | 0.472s Table B.3.4.2b: W = g t

Table B.3.4.1b: W = gt

ARS  | AC  | ARC TAOST ARC | [ARC [ARC| AIRC | APC | ARC
wn 0.214s | 0.292s | 0.275s | 0.226s | | w ı  8.303s | 0.240s | 0.284s | 7.521s
wo 0.909s | 1.785s | 1.792s | 3.038s | | wo 0.207s | 0.220s | 0.333s | 0.324s
ws 0.321s | 0.341s | 0.718s | 1.102s ws 0.447s | 11.8s | 0.670s | 1.161s
wy 0.434s | 3.555s | 0.219s | 0.294s | | wa — — 2.520s | 5.076s
ws 0.442s | 0.415s | 0.443s | 0.899s | | ws 2.323s | 4.021s | 0.411s | 9.974s
We 0.463s | 0.412s | 1.376s | 1.207s | | we 2.472s | 2.426s | 0.467s | 8.556s
wz 0.586s | 0.414s | 1.182s | 1.279s | | wr 26.2s | 1.659s | 0.504s | 0.591s
wg 0.433s | 0.6125 | 1.173s | 1.309s | | ws 9.958s | 5.431s | 2.052s | 1.301s
Wo 0.410s | 0.395s | 2.051s | 2.070s | | wg 0.413s | 9.344s | 0.455s | 0.673s
wio 0.170s | 0.138s | 1.012s | 1.007s | | wı0 15.55 | 1.692s | 0.522s | 0.564s

Table B.3.5.1a: W = occnest Table B.3.5.2a: W = occnest

ALC ] ALOGT ALOG | ALOT [ ALOT I ALOT [AALOT T ALOT ALOG ALOT

wy 0.210s | 0.231s | 0.318s | 0.561s | |  wn — — 5.267s | 3.853s
wa 1.635s | 1.302s | 2.876s | 2.844s | |  wo 0.450s | 1.609s | 11.7 s | 0.226s
wa 0.320s | 0.310s | 0.370s | 0.448s | |  ws 14.2s | 1.441s | 2.901s | 3.173s
wa 1.554s | 0.213s | 0.442s | 0.398s | |  wy 1.758s | 0.421s | 0.733s | 0.439s
ws 0.427s | 0.446s | 1.755s | 1.744s | |  ws 2.300s | 2.307s | 0.418s | 0.420s
we 0.433s | 0.451s | 2.355s | 2.492s | |  we 14.2s | 2.920s | 1.547s | 1.342s
wr 0.424s | 0.443s | 2.618s | 2.253s | |  wr 1.748s | 0.391s | 0.558s | 0.407s
wg 0.420s | 0.446s | 2.423s | 2.5565 | |  ws 2.824s | 3.000s | 0.349s | 0.349s
We 0.263s | 0.305s | 0.442s | 0.491s | |  wy 3.269s | 0.326s | 0.509s | 0.474s

Table B.3.5.1b: W = occnest
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Table B.3.5.2b: W = occnest



Wl 0.32s 0.38s 0.88s 1.60s 2.53s 3.54s 4.74s 6.03s 7.58s 9.51s 10.9s 
W2 0.23s 0.28s 0.69s 1.37s 2.16s 3.185 4.16s 5.34s 6.87s 8.56s 10.ls 
W3 0.265 0.34s 1.08s 2.15s 3.68s 5.37s 7.47s 10.ls 13.7s 17.6s 20.9s 
W4 0.46s 0.55s 1.33s 2.54s 3.95s 5.64s 7.70s 9.98s 12.7s 15.7s 18.45 
Ws O.72s 0.88s 1.90s 3.51s 5.60s 7.96s 10.8s 14.0s I 18.1s 23.0s 27.0s 

Table BA.I: W == max 
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APC TT AZO ] ADS | AIDS
wi  6.530s | 0.825s | 6.108s
wo — 3.992s —

| APC || APY | APC| APT ws 10.9s | 1.170s | 21.9s
wh 3.006s | 2.441s | 1.347s Wy 29.3s | 2.004s —
wo 3.646s | 2.516s | 1.836s ws 14.8s | 0.835s | 55.6s
ws 1.801s | 2.449s | 2.138s we 28.0s | 2.216s —

Table B.3.6.3a: W = occnest wr 13.9s | 2.013s —
ws 14.6s | 2.102s —
wo 33.9s | 3.337s —

Table B.3.6.3b: W = occnest

I n  the  columns marked w i th  an  asterisk the roles of  u and | were not  reversed (cp.
subsection 6.3).

B.4  Complet ion tasks

| As | As | Alo | Aso | Aso | Aso | Aso | Aso Axo | Aso | Ago | A100 |
wp || 0.32s | 0.385 | 0.88s | 1.60s | 2.53s | 3.545 | 4.745 | 6.03s | 7.585 | 9.515 | 10.9s
wg | 0.23s | 0.285 | 0.69s | 1.37s | 2.165 | 3.185 | 4.165 | 5.345 | 6.87s | 8.565 | 10.15
wz || 0.26s | 0.34s | 1.085 (2.155 | 3.68s | 5.37s | 7.47s | 10.1s | 13.75 | 17.65 | 20.95
wy || 0.465 | 0.55s | 1.335 | 2.545 | 3.955 | 5.64s | 7.705 | 9.985 | 12.7s | 15.75 | 18.4s
ws || 0.725] 0.88s| 1.90s | 3.51s | 5.60s | 7.96s | 10.8s | 14 .0s| 18.1s | 23.05 | 27.0s

Table B.4.1: W = maz
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