Fachbereich .Informatik

Universitat Kaiserslautern
D-67663 Kaiserslautern

SEKI - REPORT

High Performance ATP Systems by
Combining Several AI Methods

Jorg Denzinger. Matthias Fuchs, Mare Fuchs

SEKI Report SR-96-09

High Performance ATP Systems by Combining
Several AI Methods

Jorg Denzinger, Matthias Fuchs
Centre for Learning Systems and Applications (LSA)
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049
67653 Kaiserslautern
Germany
E-mail: {denzinge|fuchs}@informatik.uni-k1.de

Marc Fuchs
Fakultat fir Informatik
TU Minchen
80290 Miinchen
Germany
E-mail: fuchsm@informatik.tu-muenchen.de

October 29, 1996

Abstract

We present a concept for an automated theorem prover that employs a search
control based on ideas from several areas of artificial intelligence (AI). The combi-
nation of case-based reasoning, several similarity concepts, a cooperation concept
of distributed AI and reactive planning enables a system using our concept to
learn form previous successful proof attempts. In a kind of bootstrapping process
easy problems are used to solve more and more complicated ones.

We provide case studies from two domains of interest in pure equational
theorem proving taken from the TPTP library. These case studies show that
an instantiation of our architecture achieves a high grade of automation and
outperforms state-of-the-art conventional theorem provers.

mailto:fuchsm@informatik.tu-muenchen.de
mailto:denzingelfuchs}@informatik.uni-kl.de

2 1 INTRODUCTION

1 Introduction

Research concerned with achieving more efficient (fully automated) theorem provers
focuses on three directions: higher inference rates, eliminating unnecessary inferences,
and better control of the search. Each of these main directions has several sub-
directions. For example, one can achieve higher inference rates either by reducing the
time spent for an inference (through more sophisticated implementation techniques) or
by executing several inferences in parallel.

Although all these directions can indeed lead to more efficient theorem provers, better
control of the search offers the highest gains in efficiency, but also causes the most
problems and has some risks. Nearly all approaches to improving search control involve
the use of techniques and methods from other areas of artificial intelligence (Al), as for
example knowledge representation, case-based reasoning (CBR), learning, planning, or
multi-agent systems. In most of the known works only ideas from one of these areas
are exploited. For example, [Bu88| employs planning, [CMM90] multi-agent systems,
and [KW94] explanation-based learning.

One area that should—from the human point of view—be the most promising for high
efficiency gains is learning. The central point of the education of mathematicians is
presenting important techniques by means of examples and learning these techniques
by solving further related examples. But the use of machine-learning techniques for
improving automated theorem provers faces several severe problems. First of all, learn-
ing is not enough. Learned knowledge has to be stored, the appropriate knowledge for
solving a given problem has to be retrieved, and very often knowledge from different
sources has to be combined. So, the focus of attention should not be restricted to the
area of machine learning. Other areas of Al must also contribute in order to successfully
apply the results the learning techniques produce.

In this paper we present an approach to controlling the search of an automated theorem
prover that combines techniques form several areas of Al to overcome the problems that
arise when trying to learn and to use control knowledge. The central idea is to utilize
a known (i.e., learned) proof of a so-called source problem solved previously in order
to guide the search for a proof of the target problem at hand. To this end we employ
a method called flexible re-enactment (cp. [Fu96]).

Source problems must of course satisfy certain similarity criteria with respect to the
target problem. Our techniques for maintaining a database of source problems and our
mechanisms for selecting source problems that are the most similar to the target are
inspired by CBR. Unfortunately, one of the important premises of CBR, namely that
“small differences between problems result in small differences of their solutions”, is
not fulfilled in automated theorem proving. Therefore we have to expect that flexible
re-enactment cannot always succeed.

We cope with this uncertainty by applying the TEAMWORK method ([AD93], [De95]),
a multi-agent approach to distributed search. TEAMWORK reduces the risk of deploy-
ing an inappropriate heuristic by having a team of heuristics (agents) guide the search
concurrently and cooperatively. The reactive planning capabilities of a further agent,
namely the supervisor, are made use of to compose a suitable team (cf. [DK96]). More-

over, the selection of the most suitable source problem required by flexible re-enactment
can also be integrated with TEAMWORK in form of a specialized agent.

This specialized agent, called PES, employs a combination of similarity measures that
allow for a good comparison (with respect to the target problem) even of problems that
may share only some axioms with the target (after renaming symbols appropriately).
As a result, PES can often suggest a source problem so that the flexible re-enactment
of the source proof, together with some help of other agents, succeeds.

The combination of all these Al methods allowed us to build an automated theorem
prover for pure equality reasoning that is fully automated, in both learning and proving,
and is able to solve hard problems by using a kind of bootstrapping process that starts
with easy problems and uses their proofs to gradually solve harder and harder ones.
Besides providing the problems, no further interaction with the system is required.
Our experiments validate and substantiate the achievements of our system.

2 Equational Reasoning

Equational reasoning deals with the following problem:

Given: A set £ = {s; =t;| 1 <7 <n & IN} of equations (of terms over a fixed
signature sig) and a goal u = v.
Question: Is the goal equation a logical consequence of E, i.e., E | u = v?

The completion method by Knuth and Bendix ([KB70], extended to unfailing com-
pletion, [BDP89], [HR87]) has proven to be quite successful for solving such a proof
problem A = (E,u = v). The method is also a good example for so-called generating
theorem provers, i.e., provers that are based on generating new facts until a fact de-
scribing the goal is reached. In the following, we assume the reader to be familiar with
rewriting and completion techniques. For an overview see [AM90] or [DJ90].

As usual, a signature sig is a pair (F,7), where F is a set of operators and 7 is a
function 7 : F — IN that returns the arity of an operator. The set of terms T'(F, V)
for a signature sig and a set V of variables is recursively defined by z € T(F, V), if
¢ €V, and f(t1,....tn) € T(F, V) if f € F with 7(f) =n and t,...,t, € T(F, V).

The inference rules of a generating theorem prover can be divided into two classes:
extension rules and contraction rules (see [De90]). Completion uses the expansion rule
critical-pair-generation and the contraction rules reduction and subsumption. Basis for
the completion procedure is a so-called reduction ordering > that is used to restrict
the applicability of the inference rules and to avoid cycles. In the following definitions,
the right and left hand sides of equations may be exchanged.

A critical pair of two equations l; = ry and [; = r; is defined as the equation o({;)[p «—
o(ra)] = o(r1), if p is a position in {; (and ly/p ¢ V), so that o is the mgu of I;/p and
lo, and it holds true that o(l))[p « o(r2)] # o({1) and o(ry) # o(l1). The resulting
equation can be added to the set of equations, since it is a valid consequence of the
two parent equations.

4 2 EQUATIONAL REASONING

A reduction of an equation s = t with an equation /! = r eliminates s = ¢ from the
set of equations and replaces it with s’ = ¢. A reduction may only be performed if
there is a position p in s so that there is a match p from ! to s/p, i.e., u(l) = s/p,
and p(l) > p(r). Then s is given by s’ = s[p « u(r)]. If there is no equation that
can reduce a term of an equation, then term (and equation) are in normal form. The
normalization of a term (or equation) is always a finite process.

The second contraction rule, subsumption, also concerns two equations s = ¢ and
[= r and totally eliminates s = ¢. The equation [= r subsumes s = t—in symbols
[= r s =t—if there is a position p in s so that there is a match yu so that u(l) = s/p
and ¢ = s[p « u(r)].

An algorithmic realization of the inference rules of a generating theorem prover can
be characterized as follows. There are two sets of facts (equations in our case): the
set F'* of active facts and the set F'¥ of passive facts (the latter set may be represented
implicitly). The algorithm centers on a main loop with the following body:

¢ select and remove a fact A from FP (“activate A € FF”)
e normalize A (result is \')
e if)\ is neither trivial nor subsumed then

— normalize all elements of F4
— add X to FA

— add to FF all facts that the inference rules can generate using A’ and ele-
ments of F'4

For equational reasoning, a proof is found, if the normalization of the two terms of the
goal leads to the same term. If the set F'F becomes empty without this effect, then the
goal is no logical consequence of the axioms.

If we assume that there is a given order in which contracting inference rules are applied,
then the normalization of a fact is done deterministically. Hence, the remaining inde-
terminism is to determine which fact should be activated (i.e., selected from the set F'¥
of passive facts) next. In order to eliminate this indeterminism, selection strategies and
heuristics are used (see for example [DF94]). In section 4 we present such a selection
heuristic that is based on re-enacting a successful proof attempt for a problem that is
somewhat similar to the problem at hand.

Since we want to learn from (successful) proof attempts in a domain of interest, we have
to represent an actual proof run produced by our algorithm and a selection heuristic.
In order to produce such a representation all steps of the prover have to be recorded
(even all steps concerning elements of F'¥', since such an element may be selected later
in the proof run). This complete protocol £ 4 of a proof problem A can become rather
large. For learning purposes steps of the prover concerning elements of ¥ that were
not selected during the proof run are not important. If we eliminate these steps from
L 4, which results in the search protocol S 4, the protocol becomes significantly smaller.
But S4 is not the actual proof of A, since in S4 there are also steps concerning selected
facts that did not contribute to the proof (for most heuristics much more facts are

selected than needed in the proof). If we eliminate these steps from S4 we get a list
P 4 that represents the proof actually found. The facts occurring in P4 are also referred
to as the set P4 of positive facts (in particular if we are not interested in their order of
activation). The other facts in S4 are the negative facts N that are needed for some
learning approaches (see [Fu95al, [Fu96]). In order to be able to reproduce a run we "
store a successful proof attempt as quadruple (A, H,54,P4), where H is the heuristic
used. So, the use of various approaches for learning from previous proof experience is
permitted.

3 Teamwork

The TEAMWORK method is a knowledge-based distribution method for certain search
processes ([De95]). Equational deduction by completion, as well as for example first-
order deduction by (hyper-) resolution, is a member of this class of search processes.

In a TEAMWORK-based system there are four different types of agents: experts, spe-
cialists, referees, and -a supervisor. Experts and specialists are the agents that work
on really solving a given problem. Experts form the core of a team. They are problem
solvers (in our case theorem provers) that use the same inference mechanism (in our
case unfailing completion), but different selection strategies for the next inference step
to do. Therefore each expert can work with the search state of each other expert (but
will obviously search in its own direction). In our case, a search state is represented by
the sets F4 and FF of active and passive facts.

Specialists can either also search for a solution of the given problem or a part of it,
or they can perform administrative tasks that require time-consuming computations
that help the supervisor do its work. They may even combine these two tasks. In case
of a theorem prover, specialists may use other inference mechanisms than the experts
to generate new facts, or they may analyze and classify the given problem like our
specialist PES does (see section 5.2).

Each expert and specialist of a team needs its own computing node and works in-
dependent of the others for a given time, the so-called working period. Typically, in
a TEAMWORK-based system there are much more experts and specialists than avail-
able computing nodes. Therefore, the supervisor determines the subset of experts and
specialists that are active during a working period.

After a working period a team meeting takes place. In the first phase of a team meeting,
the judgment phase, each active expert and specialist 1s evaluated by a referee. Each
referee has two tasks: judging the whole work of the expert /specialist of the last working
period and selecting outstanding results. The first task results in a measure of success,
an objective measure that allows the supervisor to compare the experts. The second
task is responsible for the cooperation of the experts and specialists, since each selected
result will be part of the common start search state of the next working period. For
both tasks statistical criteria (with small extensions) have proven to be sufficient (see
[DF96]). The referees send the results of their work, together with special information
generated by some specialists, to the supervisor.

6 3 TEAMWORK

After the supervisor has received the results of the referees, the cooperation phase of
a team meeting begins. During this phase, the supervisor has to construct a new
starting point for the next working period, select the members of the team for this
next period and determine the length of the period. The new start state for the whole
team is constructed by taking the search state S = (F4, FF) of the expert with the
best measure of success and by enriching this state with the selected results of the
other experts and the specialists. In case of a theorem prover results are facts, and the
enrichment is achieved by adding selected results to F'¥ and immediately activating
them.

The supervisor determines the members of the next team with a reactive planning
process involving general information about experts, specialists, referees and domains of
interest (the long-term memory) and actual information on the performance of (former
or current) team members regarding the given problem (i.e., the measures of success
which form the short-term memory). Which general information to use is decided with
the help of the results of some specialists that determine which parts of the general
information affect the actual problem. The long-term memory often suggests a plan
skeleton that contains several small teams for different phases of a proof attempt. These
suggested teams are reinforced with appropriate experts/specialists (if more computing
nodes are available). If such a plan is put to work, then during each team meeting
the plan has to be updated. This means that adjustments are made according to the
actual results. These adjustments range from exchanging only one or a few experts
over moving on to the next phase of the plan skeleton to totally changing the plan (see
[DK96]). ’

The length of the next working period is also determined by the reactive planning
process. Depending on the extent of the changes in the team, its success and the size of
the new start state, a basic time is either shortened or lengthened. When the supervisor
has fulfilled these three tasks it sends the new start state to all computing nodes (after
experts/specialists and referees were assigned to them following the previous decision)
and the team meeting ends.

TEAMWORK allows (even without experts and specialists using learned knowledge)
for synergetic effects that result in enormous speed-ups and in finding solutions to
problems that are beyond the possibilities of the single experts and specialists. While
the competition of the experts directs the whole team into interesting (and promising)
parts of the search space, the cooperation provides the experts with excellent facts they
are not able to come up with alone. Thus gaps in their derivations towards the goal
can be closed.

Obviously, TEAMWORK solves many of the problems that the use of learned knowl-
edge causes. Applicable learned knowledge can be detected by specialists. Applicable
knowledge that does not lead towards solving the actual problem is detected and not
used anymore. Instead, the whole system is adapted to the given problem by the re-
active planning process. Gaps in derivations that are caused by using similarity with
respect to only a certain aspect between a source problem and the given problem can
be filled through cooperation with other experts. In general, even learning is easier,
because it is only necessary to learn single aspects or parts of the solution of a source
problem. These parts can be put together by forming a team.

As already stated, learning requires representations of found proofs and the runs that
led to these proofs. Distributed provers cause additional problems that are solved in
TEAMWORK-based systems by means of so-called reproduction runs (see [DS96]). In
order to make such reproduction runs possible, during each (conventional) run a small
protocol C is written that contains all necessary information (i.e., which expert has
made how many steps in which working periods, which referees were used, etc.) to
reproduce this run. So C can be seen as the description of a “hyper-heuristic” and is
used instead of a single heuristic H when storing data regarding distributed proofs.

4 Flexible Re-enactment

Similarity between two proof problems .A and B can occur in many variations. One
possible kind of similarity is that a considerable number of the facts that contribute to
a proof of A are also useful for proving B (or vice versa). This means in our terminology
that the associated sets of positive facts P4 and Pg or the proofs P4 and Pg “have a
lot in common” or, in other words, share many facts. (“P4 N Pg is almost equal to Py
and Pg.”) Our goal is to think up a heuristic that is able to exploit such a similarity.

Given I = (As,H,Saq, Pas) as past experience regarding a source problem Ag, and
assuming that a target problem Ar is similar to Ag in the way just described, it
is reasonable to concentrate on mainly deducing facts when attempting to prove Az
that also played a role in finding the source proof P4, namely the positive facts Pg4..
We therefore design a heuristic FlexRE which—when trying to prove Ary—makes use
of T by giving preference to facts that were important for finding P4,. Such facts
will henceforth be referred to as focus facts. Note that focus facts are facts inferred
or inferable in connection with Ar. They must be distinguished from the positive
facts P4, belonging to the source problem Ag, since it might be the case that some A €
P4 is not deducible at all in connection with Az (due to a different axiomatization).
P4, is merely used to determine if some fact A inferable in connection with Ar is a
focus fact. To put it another way, the use of Py, is effected by FlexRE on a strictly
heuristic basis, meaning that P4, only influences the selection of facts from F¥, not,
for instance, F'¥ itself. That is, P4 is a guideline that FlexRE tries to follow if possible.

Nevertheless, our following definitions (paired with sensible parameter settings) will
guarantee that, if the proof of Ag is also a proof of Ar, then no (or at most a negligible
amount of) unnecessary facts will be selected. In contrast to [KW94], a “search” still
takes place, but the computational effort is minimal (due to the then (nearly) perfect
control). Naturally, the strength of FlexRE consists in being able to deal with cases in
which another, but quite similar proof is needed (which is beyond the scope of [KW94]).

Depending on how strongly focus facts are preferred, FlexRE will re-enact (parts of)
P4, more or less quickly. Some of the focus facts, though useful for proving Ag, may
be irrelevant regarding the proof Pa, of Ar eventually found. But these irrelevant
focus facts are not a big problem. The crucial difficulty is to find those (non-focus)
facts that have to supplement the relevant focus facts in order to obtain a proof Pu..
It is very likely that these (few) missing facts are descendants of relevant focus facts.

8 ' 4 FLEXIBLE RE-ENACTMENT

Consequently, FlexRE should also favor descendants of focus facts. Favoring descen-
dants should weaken with their “distance” from focus facts, since it cannot be assumed
that the few missing facts are located very deeply relative to focus facts.!

Preferring descendants of focus facts in addition to giving preference to focus facts
themselves justifies the attribute ‘flexible’ in the term ‘flexible re-enactment’ which
summarizes the working method of FlexRE. We shall now explain details.

For the definition of FlexRE the notions ‘difference’ and ‘distance’ are pivotal. First,
we define the difference diff between two facts A and) in order to make the notion
‘focus fact’ computationally tangible:

. N AN
diff (A, X') = { 100, otherwise.

For the time being, we content ourselves with this simple definition of difference. Note
that the values 0 and 100 are somewhat arbitrary but intuitive hints of percentages,
denoting ‘no difference’ and ‘total difference’, respectively. Or, expressed with opposite
terms, 0 and 100 represent “perfect similarity” and “no similarity at all”, respectively.
As we shall see, the restriction of diff to INjoo = {0,1,...,100} entails that all further
computations will produce values from IN1gg, which makes computations more trans-
parent and easier to interpret and to handle than, for instance, computations involving
unbounded values.

diff is used to find out whether a given fact A is a focus fact. We define
D(\) = min ({diff (A, ') | X' € Pa,}).

Hence, D(A) returns the minimal difference between a given fact A (target) and the
positive facts (source). If D(A) = 0 then X is considered to be a focus fact, which
complies with the ideas from above.

Now recall that also descendants of focus facts are to be favored. The preference
given to them should, however, decrease with their distance from focus facts. The
distance d(A) of a given fact A measures distance, roughly said, in terms of the number
of inference steps separating A from ancestors which are focus facts. It depends on

the distance of the immediate ancestors of A from focus facts (if A is not an axiom)
and D(A):

P q,D(A)), if A is an axiom
d(A) = < $(d(\),D(N), if \; is the (only) immediate ancestor of A
P fy(d(/\l),d()\g)),D(/\)), if A and A, are the immediate ancestors of A.

The first argument of v represents the distance of the immediate ancestors, which is
simply given as the distance of the immediate ancestor if there is just one immediate
ancestor. If A is an axiom (i.e., there are no ancestors), this value is specified by a
parameter ¢ € INjgo. If A has two immediate ancestors, then v computes this value.

l“Distance” and (relative) depth basically refer to the number of inference steps separating two
facts, one of these facts contributing to the deduction of the other.

We chose a parameterized ¥ employing a parameter ¢; € [0;1]. Depending on ¢,
the result of vy ranges between the minimum, the average, and the maximum of the
distances of the immediate ancestors:

v(z,y) = min(z,y) + |¢1 - (max(z, y) — min(z,y))] .

Using ¢; = 0 or ¢; = 1, ¥ computes the minimum or maximum, respectively. With
q1 = 0.5, v computes the (integer part of the)? average.

The distance of immediate ancestors (or ¢) and D are combined by ¢ yielding d(\).
¥ should—for obvious reasons—satisfy the following criteria: On the one hand, d())
should be minimal (i.e., 0) if D(A) = 0, in which case A itself is a focus fact. On
the other hand, the value produced by % should increase (reasonably) with the values
obtained from v and D in order to reflect the (growing) remoteness of A from focus
facts (and, in a way, from the source proof). As a matter of fact, v already satisfies
the latter criterion. Therefore, ¢ is in parts identical to v. It also uses a parameter

g2 € [0;1].

wa={0’ y="0

’ min(z,y) + | g2 - (max(z,y) — min(z,y))|, otherwise.

The remaining task consists in designing FlexRE so that it offers a reasonable degree
of specialization in (i.e., focus on) the source proof that is paired with an acceptable
degree of flexibility, i.e., the ability to cope with a target problem with a proof that
requires minor to moderate deviations from the source proof. The use of d already
provides sufficient speaahzatlon by directing the search towards the source proof. Its
rudimentary flexibility can be enhanced by combining it with some (basic) heuristic H
giving FlexRE.

Among several sensible alternatives we picked the following:

FlexRE(A) = (d(A) +p) - H(A), peN

The parameter p controls the effect of d(A) on the final weight'FlexRE()X). d(A) will be
dominant if p = 0. In this case, if d(A) = 0, FlexRE()) will also be 0 regardless of H(A).
As p grows, H increasingly influences the final weight, thus mitigating the inflexibility
of the underlying method, namely using d(A) alone as a measure of the suitability of a
fact A. For very large p, the influence of d(A) becomes negligible, and FlexRE basically
degenerates into H.

Finally, we would like to emphasize that flexible re-enactment can achieve much more
than can be achieved by simply adding (positive) facts of a source proof as lemmas to
the target axiomatization. Adding lemmas is allowed only if the equivalence of target
and source axiomatization. is known. Flexible re-enactment does not depend on this

2We restrict our computations to IN, because there is no gain in “high precision arithmetic” when
dealing with weighting functions, but there would be a loss in efficiency w.r.t. computation time.

10 5 LEARNING AND CBR IN THE TEAMWORK ENVIRONMENT

requirement. As a matter of fact, flexible re-enactment also proves very useful if tar-
get and source axioms agree merely partially (cp. [Fu96]). But even when source and
target axioms are the same, experiments documented in [Fu95b] reveal that flexible
re-enactment is superior to adding lemmas. The superiority mainly originates from
favoring focus facts (lemmas) and their descendants, which is an important property
of flexible re-enactment that keeps the search close to the source proof. This focused
search cannot be achieved by simply adding lemmas. Naturally, if the source is inap-
propriate, focusing on the source proof will be counterproductive.

5 Learning and CBR in the Teamwork Environ-
ment

In sections 3 and 4 we concentrated on how to use knowledge learned from previous
successful proofs (in form of flexible re-enactment) and on how to overcome the prob-
lems such a use might cause (in form of the TEAMWORK method with cooperation with
other experts, assessment of experts and results, and reactive planning to adapt to the
problem at hand using long- and short-term memory). The problems that remain are
how to find a proof that should be (flexibly) re-enacted in order to solve a given target
problem and how to structure, build, and maintain the long-term memory from proof
run to proof run.

The first problem will be tackled by a specialist PES that is providing the supervi-
sor with information about known proof problems that are similar to the given target
problem (see subsection 5.2). The second problem naturally depends on how the proof
problems are presented to the system. Found proofs have simply to be extracted, ana-
lyzed and stored (the latter depending on how specialist PES will perform its retrieval).
As we shall see in the next subsection, the necessary components are already provided
in form of TEAMWORK agents.

5.1 The Basic Learning Cycle

Systems that use learning techniques for solving their tasks can be (very) roughly
divided into two groups: systems that have a clearly defined learning phase after which
(usually) no further learning takes place, and systems that always learn. In automated
theorem proving, systems of the first type may be usable in clearly defined situations
(see, for example, [Fu95a)), but in general, as in the case of mathematicians, learning
should never stop.

Nevertheless, one can observe times in the use of a (learning) theorem prover in which
new domains of interest are explored, and other times in which one is interested in
proving one particular problem (perhaps without any a priori knowledge which domain
it belongs to). When exploring a new domain, typically there is a set of example
problems to be solved, and when starting the exploration no knowledge in the prover
will be triggered. In the following, we will first concentrate on the exploration of a new
domain and then we will point out how the one-problem case is handled.

5.1 The Basic Learning Cycle 11

When exploring a new domain the ordering of the problems given to a prover may
influence its success. Even when teaching (human) students of mathematics there
are very often several different ways to introduce a concept, and it depends on the
respective student which ways result in successful learning. In the case of a learning
automated theorem prover this problem is particularly grave, since the calculus used
by the prover very seldom is also the calculus a human teacher uses. This can have the
effect that problems a human being thinks of as easy are very difficult for the prover
and vice versa. '

In order to deal with this problem we decided to let the prover handle the ordering in
which it tries to solve a given set of problems and also allow the prover to make several
attempts to solve a problem. The latter is necessary since each solved problem may
result in new knowledge that allows for solving some other problems that could not be
solved so far (“bootstrapping”). Note that the set of problems given to the prover has
to include easy and typical problems of a domain of interest that the prover can use to
get fundamental knowledge about the domain. This is similar to a human student who
cannot be expected to work on difficult problems of a domain without having learned
the basics of it before.

As already stated, in a TEAMWORK-based system the long-term memory that repre-
sents knowledge about domains of interest is the responsibility of the supervisor. When
confronted with a set of example problems of a new domain, the supervisor controls
not only the single proof attempts, but a whole series of proof attempts that are to
result in solving as many of the problems as possible.

Since the supervisor has no appropriate information when being confronted with a new
domain, the first step is to try to solve the given problems with conventional means,
i.e., without the use of experts and specialists that employ learned knowledge. This
is accomplished by using a pre-defined team for a few cycles for each of the given
problems (in a separate run). Those problems that could be solved by this team in the
given period of time will be rerun in the so-called reproduction mode using the small
protocol C. Note that generating a complete protocol is rather expensive (both in run
time and disk space needed), so that this mode is only used if one is really interested
in a proof (that was already found by the prover). See [DS96] for details on this topic.

After generating 7 = (A,C,S4,P4) for each solved problem A, this data is integrated
into a database of past proof experience that is part of the long-term memory of the
system. This database is essentially organized as case base. Hence, the structure and
retrieval processes regarding this database are strongly related to CBR techniques (cp.
[Ko92] and subsection 5.2). Then the supervisor tries to solve the remaining problems
(again imposing a time limit on each run), but now the teams are different. The team
of the first working period is again pre-defined, and contains, besides good general
purpose experts, the specialist PES.

After the first working period, the supervisor uses its reactive planning process to adapt
the team to the problem. If PES was not able to report to the supervisor a problem
from the case base that is similar to the target problem at hand, then the supervisor
proceeds according to its standard procedure (i.e., trying to adapt the team to the
problem at hand, cp. [DK96]). Otherwise, the expert FlexRE will become a member of

12 5 LEARNING AND CBR IN THE TEAMWORK ENVIRONMENT

Long-term memory

. selects/ Expert Data Referee
Supervisor Dat
ata

) uses FlexRE

controls l—
Wuses
Past Specialist Data
Proof Proof Proof
p é Extraction and | 100 PES
rocess " i lts i Data use
reproduction | Analysis results 1n
. (case base)

Figure 1: The learning cycle

the next team, utilizing the reported problem from the case base as source problem.?
Problems that can now be solved (due to the use of previous proof experience and the
adaptation to the given problem) are rerun again to produce new data for the case
base. For the remaining unsolved problems this whole process is repeated until no
more new problems can be proven.

Note that after the initial round, that uses the pre-defined team without components
using learned knowledge, in all other rounds each solved problem is immediately added
to the case base so that it already can be used for the proof attempt of the next
problem. This way, the number of rounds is often reduced.

In the one-problem case, i.e., in the presence of fundamental domain knowledge, the
supervisor immediately employs a team that includes PES, and the supervisor plans
and controls the whole proof attempt as described above. A time limit for the attempt
can be provided by the user. If the system is successful, the data of the run is also
added to the case base. The whole learning cycle (with the structure of the long-term
memory and the components that use the case base) is depicted by figure 1.

5.2 Specialist PES

As described before, it is the main task of specialist PES to retrieve one or possibly
several source problems that are similar to a given target problem A7z, and to trans-
mit information on these problems to the supervisor. More exactly, after receiving a
target problem Ay = (Azr, Ar) given over a fixed signature sigr, PES returns informa-
tion Rpgs(.A7) on similar problems As, where Rpgs(Ar) = {(0, Ps) : condr(c{As))}.
The data is determined by condr and comprises the set of positive facts Ps associated
with source problem Ag, and a signature match o from As to Ar. condr denotes

3If PES provides more than one possible source problem, then the supervisor can react in various
ways: It can select the most similar source problem (breaking ties arbitrarily) and discarding all
others—which is what we did in our experiments—, or it may use several experts FlexRE, each using
a different source problem (without exceeding the number of available computing nodes of course),
or it may supply the single FlexRE with the source problems provided by PES in succession, limiting
each attempt to a reasonable number of working phases.

5.2 Specialist PES 13

that a problem Ag (translated from sigs to sigr by applying o) is most similar to Ar
(there are no other problems more similar to Az than Ag), but also that the similarity
between As and Ar seems to be sufficient (details are given below).

o is an injective, arity-preserving function that maps the function symbols of signature
sigs to the function symbols of signature sigr. Note that o can be easily extended to
terms, equations, sets of equations, and finally proof problems. Usually there exists
more than one signature match. o makes us independent of possible renaming of
function symbols. This is necessary to employ syntactic criteria to measure similarity,
which are in particular applied by flexible re-enactment (cp. section 4), but also by
condr to be discussed in the sequel.*

Recall that the predicate condr determines the source problems (in the case base)
that should be transmitted to the supervisor. We are interested in a predicate condrp
defined for proof problems over sigr with condr(o(As)) if (and only if) there exists
no other source problem more similar to Ag than Ag, and the similarity between Ar
and Ag is sufficient (i.e., exceeds some threshold), so that it is very likely that flexible
re-enactment will be successful. In order to construct such a predicate we shall use
a quasi-ordering > that allows us to compare the similarity between proof problems
and a target problem. It should hold true that 4; 1 A, if (and only if) Az is more
similar to \4; than to A,. Furthermore, an absolute measure of similarity is needed
in order to construct -a minimal similarity predicate ms that estimates whether the
similarity between the target and a source problem seems to be sufficient or not.

Basically, there are two possibilities to estimate whether a problem .4; can provide a
more suitable source proof than a problem 4;. These two possibilities that can be used
to realize =71 are a comparison of problem descriptions and a comparison of the search
effort spent on solving the two problems. Considering the working method of flexible
re-enactment, it is reasonable to consider A; as providing a more suitable source proof
than A, if the target Ag is more similar to problem A4; than to A, with respect
to its problem description. Nevertheless some information on the search conducted
to solve a problem, namely the length of the search protocol &, can be consulted.
Experiments have shown that often more difficult proof problems (problems with a
longer search protocol) are more useful for flexible re-enactment than easier ones. This
is understandable, because a longer search protocol usually indicates that some of the
positive facts were quite difficult to reach when proving a problem. Considering this, it
seems to be sensible to force the activation of these probably useful, but hard to reach
facts by using them as focus facts (cp. section 4).

Similarity between problem descriptions is surely also suitable for constructing an ab-
solute similarity value in order to decide in favor of or against sufficient similarity. But
information on the search protocol is difficult to use for this particular purpose. Thus
the length of the search protocol can be useful to compare different problems, but using
it as a criterion for deciding whether the similarity to a target is sufficient or not does
not appear to be sensible.

4If there is no signature match from sigs to sigr, then problem As cannot be used as a source
problem for target Agp.

14 5 LEARNING AND CBR IN THE TEAMWORK ENVIRONMENT

In order to assess the differences between the problem descriptions of two proof prob-
lems we employ the similarity measure simp. As discussed before, this measure is
useful to construct >, but also to measure the degree of similarity between a problem
and the target so as to obtain the predicate ms. The design of simr is motivated by
the fact that a target problem Ar = (Azr,Ar) is proved by virtue of a proof of a
source problem Ag = (Azg, Ag), if all axioms of Azg are subsumed by axioms of the
target problem, and the target goal A7 is subsumed by the source goal As. Hence, sub-
sumption criteria like this will play the major role in our approach. Furthermore, we
refine our measure simg by using several other criteria like subsumption modulo some
theory (e.g., AC) or homeomorphic embedding. These refinements have proven their
usefulness in experiments, although naturally a simple proof replay often is impossible
if Azs and Azt are similar in such a way.

In order to realize measure simg we introduce a (asymmetric) similarity rating simg’
defined on equations over sigr.

Definition 5.1 (sim%) Let az; and az, be two equations in Term(F,V)?. Let further
A denote some theory (e.g., AC). We define sim¥ : Term(F,V)? x Term(F,V)* —
[0;1] by

1 jaxy 4 azy

0.8 ;az1 d4 azs A azy Aaz,

0.2 ;(azy dponm axy V azy dgom az1) A azy dazs A azy A sazs
0 ;otherwise.

simy (azy,azq) =

< denotes “plain” subsumption, and <14 subsumption modulo the theory given by A.
(Here, we shall always use A = AC. Note that for testing <1 4¢ we basically assume
every binary function symbol f to be AC, although f need not actually be AC. Hence
the lesser “reliability” value 0.8. Subsumption modulo AC nevertheless makes sense
since often certain sub-structures are AC.) az; <dgonm az2 stands for a homeomorphic
embedding of az, in ax;. Refinements of sim7 are possible by adding further similarity
criteria. (Refinements are actually recommendable in order to increase the ability
of stim7 to produce distinctive measures. A description of these technical details is
beyond the scope of this report.) The values of sim3 represent the importance of
the similarity criteria we use. As described above subsumption is considered to be
very important, whereas homeomorphic embedding is considered to be a very weak
similarity criterion. Note that stm7(az1,az,) does not depend on az; and az, being
equations, but can basically be applied to any kind of formula.

With the help of this measure we are able to construct a similarity measure defined on
proof problems:

Definition 5.2 (simr) Let Ar = (Azr, A7) be a target problem, and As = (Azs, As)
be a source problem given over sigr. Let Azy = {az,...,az,}, Azs = {azi,...,az)}
(n,m > 0). The similarity of target and source problem is simr(Ar, As) = (81,32, $3)
€ [0;1]3, where

n
51 = —-» max{simf(az,az]) : ax € Az}
n

=1

5.2 Specialist PES 15

1 & A

s = — -3 max{sim¥(az;,az): az € Azs}
m =1

83 = simgg()\s, AT)

Thus, s; judges the degree of “coverage” of Azs through similar axioms of Azr. For
‘example, we have s; = 1 if all source axioms are subsumed by target axioms. Naturally,
81 decreases if only weaker similarity criteria are fulfilled. The value s, represents the
percentage of target axioms that have a similar counterpart in Azg. Additional axioms
in Azz do not prevent the source proof from being applicable (in the case s; = 1), but
may complicate the search for this proof. Finally, s; measures the similarity between
target and source goal A7 and As. For example, we have s3 = 1 if Ag subsumes A7.
With the help of simr we are now able to estimate if the similarity between Ar and
As seems to be sufficient. To this end, we check if the predicate ms is fulfilled with
ms(simr(Ar, As)) iff ¢1- 81+ co- 82+ ¢3- 835 > min, where ¢1,¢,¢c3 € R, and min € R
is the threshold. In our implementation we use ¢; = 3, c2 = 1, ¢3 = 2, and min = 1.
Hence additional axioms in Azr are considered quite harmless, while a good coverage
of Azs is considered to be important. Since we use min = 1, a subsumption of one
third of the axioms of Azg, or no superfluous target axioms, or a subsumed target goal
each suffice alone to reach the threshold.

simg is also employed to define >=7. We define > as a lexicographic combination
of two quasi-orderings >g and >p, where >g compares the similarity of two problem
descriptions with respect to the target problem, and >p compares the length of the
search protocols.

Definition 5.3 (=7) Let Ar be a target problem, and A; and A; be two source prod-
lems over sigr. S; denotes the search protocol obtained when solving A; (i € {1,2}).
Let simp(Ar, A1) = (81, 52, 83), stmg(Ar, Az) = (81,85, 55). We define > by

Ar >s Ay iff (81, 82,83) = (81,85,53) V (81> 87 A sy > sy A sz > s5).
Furthermore, we define >p by
A >2p Ao ff |Si] =[S
Finally, =1 is\deﬁned as the lexicographic combination of >s and >p.
Using >7 and ms, we can define condr.

Definition 5.4 (condr) Let Ar and Ag be a target and source problem given over
stgr. condr is defined as follows:

CO'ndT(.As) iff ms(simT(AT, .As)) A=JA: A =1 Ag.

In the subsequent section we shall discuss the experimental results we obtained with
DISCOUNT by using specialist PES and expert FlexRE. But at first we want to illustrate
the previous definitions with the following example.

16 6 EXPERIMENTAL RESULTS

Example 5.1 Let sig = (F,7) be a signature with F = {+,—,0} and 7(+) = 2,
(=) =1, and 7(0) = 0. Let As, = (Azg,,As) and As, = (Azs,, As,) be two solved
source problems given over sig. Furthermore, let Ay = (Az7, A1) be a target problem
over stg. The proof problems are defined as follows:

Azs,: z+(y+2) = (z4+y)+=2 Azs,: z4+(y+2) = (z+y)+z=
z+0 = =z O+z = =z
z+(-z) = 0 (—z)+z = 0

Asi: —(e4+y)+0 = (—p)+(-z) As,: —(e+y) = (-y)+(-2)

Furthermore, Az = Azs, and A\r = —(2 +0) = (—0) + (—z). Rating the similarity
between the source problems and the target results in

simr(As,, Ar) = (81, $2,83) with s; = % -(14+0.8+0.8)=0.86
so=1.(1+08+0.38) =086

- 83 = 0

simr(As,, Ar) = (1, 82,83) with sy = ;- (1+14+1) =1
sa=1.(14141)=1
S3 = 1

We obtain As, >1 As, because As, >s Ag. Since ms(simr(As,, Ar)) = 5 >
1 = min, condr(As,) holds true. Consequently, specialist PES would return Rpgs =
{(¢d, Ps,)}. id and Ps, denote the trivial signature match and the positive facts of As,,
respectively. This judgement of PES is sensible since the proof of As, can be “replayed”
without any changes whereas (few) changes are necessary to transform the proof of Asg,
into a proof of the target.

Note however, that also As, is assigned relatively high similarity values that would, in
the absence of As,, result in the selection of the proof of As, for flexible re-enactment.

6 Experimental Results

As already stated, a learning theorem prover has to be given not only the hard and
interesting problems of a domain of interest, but also less challenging problems of
various difficulty in order to generate an appropriate case base to tackle the hard
problems. Unfortunately, in most publications only the hard problems are reported
with perhaps one easy example problem so that the human reader gets an impression
of the problem domain.

It would have been easy to use in the following our own sets of problems for our
own domains, but then one might argue that we have chosen the problems in such
a way that they suit our approach. Therefore we tried to ensure that at least the
general problems were provided by someone else and we just had to construct equational
formalizations for them. This way we were able to come up with two domains and sets
of problems from the TPTP library, version 1.2.0 (see [SSY95]). One domain, the area
of groups (GRP domain) could be used without any changes, while for the domain
logic calculi (LCL domain) no pure unit-equality axiomatization was given. But such
an axiomatization can be copstructed, as we will see later. A second problem with
the LCL domain is that the problems presented in the TPTP library are not one

6.1 The Setting 17

homogeneous domain, but they constitute several (sub)domains, some of which consist
of only one hard problem, again. Therefore we have chosen one of these (sub)domains,
namely the CN calculus, for our experiments.

In order to allow the readers to observe and judge the effects our ideas have and how
our system compares to other provers, we will provide also data on our best heuristics
that do not learn and on the results of OTTER (version 3.0, using the autonomous
mode, see [Mc94]) for the chosen problems. Our best heuristics (for the two domains)
are called AddWeight and Occnest (see [DF94]). AddWeight counts function symbols
and variables and selects a fact with minimal count. Occnest counts occurrences and
nesting of function symbols with respect to the goal. Since OTTER has won the CADE-
13 theorem prover competition ([SS96]) in the category “Unit Equality Problems”, we
think that a comparison with the current state-of-the-art is thus provided.

6.1 The Setting

We carried out the experiments with our prover DISCOUNT (see [ADF95]) that we
extended to include the specialist PES, the expert FlexRE and the case base (with
the appropriate changes to the supervisor). DISCOUNT is implemented in C on Unix
machines and its basic inference engine is old and relatively slow (and not comparable
to the basic inference engine of OTTER, although the various experts of DISCOUNT
result in a good performance of the distributed system in general and a good sequential
performance in some domains of interest).

In our experiments, we limited each distributed run of DISCOUNT to 3 minutes, while
we granted OTTER and the single expert runs a timeout of 10 minutes. Consequently,
during the bootstrapping process our learning system can make approximately three
attempts in the time that was granted to the other provers (not cournting the time when
the system was successful, which causes an additional reproduction run and additional
computations in order to generate the case quadruple for the case base). The ordering
in which the problems were tried out is the lexicographical ordering on the names of
the problems.

Specialist PES determines a set of appropriate source problems paired with a suitable
signature match (from source to target). Since it is possible that there is an astronom-
ical number of possible signature matches, we limited the number of signature matches
to be considered for a certain source problem to 100. In practice this is not a severe
restriction because in case there are (much) more than 100 possible signature matches
they are essentially equivalent (i.e., they do not have different effects on simr). All
experiments were performed on SUN Sparc-10 machines. The team runs employed two
computing nodes (computers in this case). The length of the first working period was
set to 10 seconds.

There are 125 problems in the GRP domain of the TPTP library. A substantial part of
the problems of this domain were provided by a mathematician, I. Dahn, who presented
the domain as he would have presented it to a human student. Due to this reason, this
domain is usable for learning provers.

In the LCL domain we used the problems of the CN calculus (for the concrete names
of these problems see Table 3). These problems are problems in the area of condensed

18 6 EXPERIMENTAL RESULTS

Domain number of || learning team OTTER AddWeight Occnest
problems || # solved | % || # solved | % || # solved | % || # solved | %

GRP 125 113 | 90 93 | 74 86 | 67 91 | 73

LCL (CN) 24 17| 71 11 | 46 12 | 50 6| 25

Table 1: Comparison learning team vs. OTTER vs. best experts

detachment (cf. [Fu96]). In the TPTP, problems of CN are available in conjunctive
clause normal form. The inference rule condensed detachment for the CN calculus that
allows for inferring o(t) from ¢(s,t) and s'—o being the mgu of s and ', and ¢ being
a distinguished binary function symbol—is specified by =P(i(z,y)) V =P(z) V P(y).
All axioms are given as positive unit clauses P(t;), and the goal is given as a negative
unit clause ~P(t). In order to tackle these problems with DISCOUNT, we introduce
two new constants 7' and F (“true” and “false”), and rewrite the unit clauses to
P(t;) = T or P(t) = F. (The goal is proven if T = F can be inferred.) The rule
of condensed detachment is realized with if (and(P(i(z,y)), P(z)), P(y)) = T and the
obvious equations specifying if and aend (if (T,z) = z, and(T,z) =z, ...). (OTTER is
also given these equational problems for comparability although it can of course handle
the original problem format.)

6.2 The Results

Our main goal was to develop a theorem prover that is able to automatically learn and
that is therefore able to prove more problems (without help from the user) than other
provers. As Table 1 shows, this goal has definitely been achieved. If we look at the
percentage of problems that have been proven, then our new version of DISCOUNT has
in both domains a lead of over 15 compared to OTTER and even more compared to
the best single experts.

In the following, we will examine the results more closely. Tables 2 and 3 report the
results for the problems of the two domains (We omitted in the domain group all
problems that can be solved by the conventional experts in less than 20 seconds and
that were not used as source problems. Also all problems were omitted that could not
be solved by our learning team and the conventional experts. Merely one of the latter
problems can be solved by OTTER).

Both tables are organized as follows. The first column states the name of the target
problem, the second one the name of the source problem that was detected by PES
and used by FlexRE in the successful proof attempt. The third column reports the
runtime of the successful proof attempt. The columns 4, 5, and 6 report the runtimes
of OTTER, AddWeight, and Occnest. The entry “—” indicates that no proof was found
before the timeout.

The clustering of the rows indicate the rounds of the bootstrapping process. So, the
first cluster shows the problems that could be solved by the conventional team (which
is also indicated by the empty source column). The next cluster reports those problems
that could be solved using the problems of the first cluster, and those problems that

6.2 The Results 19

(ta,rgetj source runtinin OTTERJ AddWeighEl Occnei]

190-1 — 4s 25 24s 3s |
191-1 — 3s 2s 24s 2s |
| 179-1 — 125 — — —
169-1 || 191-1 36s 4s — —
169-2 || 190-1 38s 4s — —
179-2 || 179-1 37s — — —
179-3 || 179-1 38s — — —
186-1 [179-1 41s — — —
186-2 || 179-1 40s — — — |
183-1 || 179-2 40s — — —
183-2 | 183-1 42s — — —
183-3 || 183-1 40s — — —
183-4 | 183-1 425 — — —
167-3 || 183-1 129s — —] —]
167-4 | 183-1 130s — — — |
167-1 || 167-3 32s — — | — |
167-2 || 167-4 35s — — —

Table 2: Experiments in the GRP domain (selection)

already have been solved in the round. The last cluster of Table 3 contains the problems
that could not be solved.

Table 2 reports a selection of results for the GRP domain. The results of the learning
process in the bootstrapping manner can be clearly observed. For example, by solving
problem 179-1 conventionally, DISCOUNT was able to solve in the next round problem
179-2, which was basis for solving problem 183-1 (in the same round). Among the
problems that were solvable using 183-1 was 167-3, which was used in the fourth round
to solve problem 167-1. Note that the start point of this chain, problem 179-1, could
only be solved by a team of experts, which demonstrates the potential of TEAMWORK
even without learning experts.

As stated before, our learning team was able to solve all problems that OTTER could
solve, except for problem 177-2. But this learning team was able to solve 21 other
problems (some of which due to the team of the first round without any learning; those
are not mentioned in Table 2) that the autonomous mode of OTTER could not solve
within the time limit. Our statistic looks even more impressive, if we omit the “easy
problems” (i.e. problems solvable by AddWeight or Occnest within 20 seconds) before
computing the percentage rates. Then our learning team solves 59%, OTTER 16%,
AddWeight 3%, and Occnest 6%.

Table 3 reports our experiments in the LCL domain for the CN calculus. Here, only
two rounds were able to increase the number of problems that could be solved. One
chain is problem 047-1 that is used to solve 048-1 which allows for solving 050-1 that
then is the source for problem 051-1 (all of these proofs found in the second round).

20 6 EXPERIMENTAL RESULTS

target || source | runtime || OTTER | AddWeight [Occnest

046-1 — <1s <ls <ls 44s
047-1 — 21s 137s 27s —
059-1 — 56s — 55s —
064-1 — 22s — 31s 37s
069-1 — 11s 25s 15s —
048-1 047-1 14s 138s 27s 35s
049-1 047-1 26s — 80s 63s
050-1 048-1 32s — — —
051-1 050-1 15s — — —
052-1 047-1 98s 245s 304s —
053-1 048-1 77s 484s — 279s
055-1 047-1 27s 198s — —
056-1 047-1 26s 204s 99s —
057-1 056-1 23s 203s 289s —
065-1 064-1 12s 317s 53s —
066-1 065-1 12s 10s 15s 19s
068-1 069-1 T1s —_ — C—
| 054-1 — — — — —
058-1 — — — — —
060-1 — — — — —
061-1 — — — — —
062-1 — — — — —
063-1 — — — — —
067-1 — — — — —

Table 3: Experiments in the LCL domain

21

Note that neither 050-1 nor 051-1 can be solved by the other provers within the time
limit.

Besides the number of successes also the runtimes are interesting, because they indicate
that the successful runs.of our learning team must be much better controlled than the
successful runs of OTTER. Since the inference engine of OTTER is much faster than
the engine of DISCOUNT we can assume that during the OTTER runs a much larger
number of inferences were made. Naturally, it has to be mentioned that this better
control is the result of additional computational efforts, namely the effort for proving
the source problem and the effort that was spent on the unsuccessful attempts to prove
the problem during the previous rounds of the bootstrapping process.

Note that, as in the case of the GRP domain, also in the LCL domain there are several
problems that are solved due to the cooperation of experts that do not learn.

In general, our experiments show that our concept of a learning theorem prover clearly
outperforms the current conventional theorem provers, if the learning prover is provided
with enough “exercise” in the domain of interest it has to work in. In this case even
the learning process is accomplished by the prover without help from the user.

7 Conclusion and Future Work

We presented a concept for a learning theorem prover that uses methods from sev-
eral areas of Al. Based on the TEAMWORK multi-agent architecture for distributed
search, we employ case-based reasoning and reactive planning together with concepts
for similarity of terms.

The combination of these concepts and techniques resulted in a system that clearly
outperformed renowned theorem provers in domains that were presented in a learnable
way. This means that, as in the case of a human student, not only the hardest problems
are given to the system, but also easy and moderate problems that the system can solve
alone and that provide the necessary basis for the learning process. Then, in a kind of
bootstrapping process, the system is able to solve more and more harder problems.

Although the system has proven to be very successful, nevertheless most components
represent only first ideas with regard to the several areas of Al they are taken from.
Already there are other concepts that can be used (for example, learning of charac-
teristic features of a source proof, see [Fu96], or learning the structure of promising
terms of a domain, see [DS96]) and that will provide a wider range in the use of learned
knowledge.

Consequently, the selection process of the right knowledge has to be modified and im-
proved, both with respect to these new experts and with respect to the combination of
these experts to form good teams. Also, in addition to the structuring of the knowledge
base that is already provided, it may become necessary to refrain from adding some
new problems (and their proofs) that do not represent essential new knowledge. This
may be based on an analysis of the proof found for a problem. If a source problem
was used and the number of unnecessary facts generated was not much higher than
the number of the necessary facts, then this problem obviously represents no necessary
addition to the case base.

22 7 CONCLUSION AND FUTURE WORK

Furthermore, the selection of good results by the referees can be improved by using
learned knowledge, although the basis has to remain the a posteriori analysis of the
utility of facts. Finally, an important technique of human problem solving is dividing a
problem into easier subproblems. While in first-oder theorem proving with generating
provers this technique has so far not proved to be successful due to the missing ability
to identify suitable subproblems, proof analysis and learning might suggest sets of suit-
able subproblems (as it is already the case in inductive theorem proving, see [KW94],
[Me95]).

REFERENCES 23

References

[AD93]

[ADF95]

[AM90]

[BDP89)]

[Bu8s]

[CMM90]

[De90]

[De93]

[DF94]

[DF96)

[DJ90]

[DK96]

[DS96]

Avenhaus, J.; Denzinger, J.: Distributing equational theorem proving,
Proc. 5% RTA, Montreal, LNCS 690, 1993, pp. 62-76.

Avenhaus, J.; Denzinger, J.; Fuchs, Matt.: DISCOUNT: A System
For Distributed Equational Deduction, Proc. 6** RTA, Kaiserslautern, LNCS
914, 1995, pp. 397-402.

Avenhaus, J. ; Madlener, K.: Term Rewriting and Equational Rea-
soning, in R.B. Banerji (ed): Formal Techniques in Artificial Intelligence,
Elsevier, 1990, pp. 1-43.

Bachmair, L.; Dershowitz, N.; Plaisted, D.A.: Completion with-
out Failure, Coll. on the Resolution of Equations in Algebraic Structures,
Austin, TX, USA (1987), Academic Press, 1989.

Bundy, A.: The use of explicit plans to guide inductive proofs, Proc.
CADE-9, 1988.

Conry, S.E.; MacIntosh, D.J.; Meyer, R.A.: DARES: A Distributed
Automated Reasoning System, In Proc. AAAI-90, 1990, pp. 78-85.

Dershowitz, N.: A mazimal-Literal Unit Strategy for Horn Clauses, Proc.
2nd CTRS, Montreal, LNCS 516, 1990, pp. 14-25.

Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork,
Proc. ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

Denzinger, J.; Fuchs, Matt.: Goal-oriented equational theorem proving
using teamwork, Proc. 18" KI-94, Saarbriicken, LNAI 861, 1994, pp. 343~
354; also available as SEKI-Report SR-94-04, University of Kaiserslautern,
1994.

Denzinger, J.; Fuchs, D.: Referees for Teamwork, Proc. FLAIRS 96,
Key West, FL, USA, 1996.

Dershowitz, N. ; Jouannaud, J.P.: Rewriting systems, in J. van

Leeuwen (Ed.): Handbook of theoretical computer science, Vol. B., Else-
vier, 1990, pp. 241-320.

Denzinger, J.; Kronenburg, M.: Planning for Distributed Theorem
Proving: The Teamwork Approach, Proc. KI-96 (German annual conference
on Al), Dresden, GER, LNAI 1137, 1996, pp. 43-56.

Denzinger, J.; Schulz, S.: Recording and Analysing Knowledge-Based
Distributed Deduction Processes, to appear in Journal of Symbolic Compu-
tation, 1996.

24

[Fu95a]

[fu95b]

[Fu96]
[HR87]
[KB70]
[Ko92]
[KW94]
[Mc94]
[Me95]

[9596]

[SSY95]

REFERENCES

Fuchs, Matt.: Learning proof heuristics by adapting parameters, In Ar-
mand Prieditis & Stuart Russell, eds., Machine Learning: Proceedings of
the Twelfth International Conference, Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1995, pp. 235-243.

Fuchs, Matt.: Erperiments in the Heuristic Use of Past Proof Ezperience,
SEKI-Report SR-95-10, University of Kaiserslautern, 1995, obtainable via
WWW at http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html

Fuchs, Matt.: FEzperiments in the Heuristic Use of Past Proof Ezperience,
Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp. 523-537.

Hsiang, J.; Rusinowitch, M.: On word problems in equational theories,
Proc. 14" ICALP, Karlsruhe, FRG, LNCS 267, 1987, pp. 54-71.

Knuth, D.E.; Bendix, P.B.: Simple Word Problems in Universal Alge-
bra, Computational Algebra, J. Leech, Pergamon Press, 1970, pp. 263-297.

Kolodner, J.L.: An Introduction to Case-Based Reasoning, Artificial In-
telligence Review 6, 1992, pp. 3-34.

Kolbe, T.; Walther, C.: Reusing proofs, Proc. 11t* ECAI ’94, Amster-
dam, HOL, 1994, pp. 80-84.

McCune, W.W.: OTTER 3.0 Reference manual and Guide, Tech. rep.
ANL-94/6, Argonne National Laboratory, 1994.

Melis, E.: A model of analogy-driven proof-plan construction, Proc. 14" 1J-
CAI, Montreal, AAAI Press, 1995, pp. 182-189.

Sutcliffe, G.; Suttner, C.B.: The Design of the CADE-13 ATP System
Competition, Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996,
pp. 146-160.

Sutcliffe, G.; Suttner, C.B.; Yemenis, T.: The TPTP Problem Library,
Proc. 12t* CADE, Nancy, LNAI 814, 1994, pp. 252-266.

	BB_0007.jpg

