
Fa
ch

be
re

ic
h

In
fo

rm
at

ik

=
©Pf
joo

Le,
%
b
©

Dr
SSXo
0 ©
=

Qe
= 3

Ja

SE
KI

 -
R

EP
O

R
T

D
-6

76
63

 K
ai

se
rs

la
ut

er
n

Plann ing for d is t r ibuted theorem
proving: The team work approach

Jorg Denzinger. Martin Kronenburg
SEKI Report SR-94-09

Planning for distributed theorem proving:
The team work approach

Jörg Denzinger, Martin Kronenburg
Department of Computer Science

University of Kaiserslautern
Postfach 3049

67653 Kaiserslautern
Email: {denzinge, kronburg}@informatik.uni-kl.de

Abst rac t

This paper presents a new way to use planning in automated theorem proving
by means of distribution. To overcome the problem that often subtasks for
a proof problem can not be detected a priori (which prevents the use of the
known planning and distribution techniques) we use a team of experts that work
independentlywith different heuristics on the problem. After a certain amount of
time referees judge their results using the impact of the results on the behaviour
of the expert and a supervisor combines the selected results t o a new starting
point.

This supervisor also selects the experts that can work on the problem in
the next round. This selection is a reactive planning task. We outline which
information the supervisor can use t o fulfill this task and how this information
is processed to result in a plan or t o revise a plan. We also show that the use
of planning for the assignment of experts t o the team allows the system to solve
many different examples in an acceptable time with the same start configuration
and without any consultation of the user.

Plans are always subject to change

Shin’a’in proverb

1 Introduct ion

A main problem of automated theorem proving is the immense search space that even
for small problems a theorem prover has to deal with. Research for solutions to this
problem centers on two directions, the use of distr ibuted provers and the use of knowl-
edge to guide the prover through the search space. Although this guidance is used

quite some time in provers by means of heuristics, only in the last few years better
concepts of guidance, namely planning, find their way into proving systems.

Both, distributed provers and provers using planning have to deal with the same prob­
lem: the inability of finding a priori appropriate subtasks for a proof problem. Only
if very much about a proof problem is known, such subtasks can be determined. But
what when the knowledge about the proof problem in addition to the input is vague?

To deal with this problem we developed the team work method (see [De93], [AD93])
for the distribution of problem solving tasks. It is applicable where the descriptions of
the tasks show no obvious ways for distribution. The general idea of team work is to
let a team of several so called experts work independently on the proof problem. They
differ in the heuristics they use to determine the next step to do. After a given amount
of tiine the experts stop their work and for each expert a referee assesses the work of
the expert and reports a general assessment and a few good results to a supervisor.
This supervisor collects the reports, generates based on these reports a new starting
point for the experts and selects experts and referees fdr the next working round. We
call the phase when the referees and the supervisor work a team meeting.

Structure and behaviour of our teams lead to a system that uses both competition and
cooperation between its components (mainly the experts) to solve given problems. The
experts compete with each other in order to stay in the team. But with the help of the
referees they also cooperate, because their best results are used to form a new starting
point for the work of the team.

In [AD93] we mainly concentrated on the general aspects and the theory of this ap­
proach and showed that for many examples there exist combinations of experts that
allow big speed-ups. In [DF94] we designed powerful experts and demonstrated that
we are even able to solve examples using team work that could not be solved by any
of our experts working alone. But the question remains how to choose automatically
good teams for a given example, so that in general different examples can be solved in
an acceptable time. The solution to this problem is the supervisor. During the team
meetings he selects the members of the team for the next round.

We see this process of creating a new team in each team meeting as a kind of reactive
planning in which the supervisor uses general knowledge about the experts, the referees
and their relationships, dependencies and incompatibilities (the long-term memory) in
combination with the results of the experts on the given problem so far (the short-term
memory), to determine the team members. He selects not only the team members of
the next round but also can make assignments for further rounds provided that the
selected team comes up with the expected results. Otherwise the behaviour of the
selected team is used to find better suited experts. This can be seen as replanning or
plan revision.

By planning the team we contribute to the problem of finding subtasks for a proof
problem. If subtasks can be detected, they can be assigned to experts that are capable
to prove them. If no subtasks can be found, then the supervisor tries several experts
and adjusts the whole system more and more to the given problem.

Using reactive planning by the supervisor we were able to automatically solve most

2

quite some t ime i n provers by means of heuristics, only in the last few years better
concepts of guidance, namely planning, find their way into proving systems.
Both, distributed provers and provers using planning have to deal with the same prob-
lem: the inability of finding a priori appropriate subtasks for a proof problem. Only
i f very much about a proof problem is known, such subtasks can be determined. But
what when the knowledge about the proof problem in addition to the input is vague ?
To deal with this problem we developed the team work method (see [De93], [AD93])
for the distribution of problem solving tasks. It is applicable where the descriptions of
the tasks show no obvious ways for distribution. The general idea of team work i s to
let a team of several so called experts work independently on the proof problem. They
differ in the heuristics they use to determine the next step to do. After a given amount
of t ime the experts stop their work and for each expert a referee assesses the work of
the expert and reports a general assessment and a few good results to a supervisor.
This supervisor collects the reports, generates based on these reports a new starting
point for the experts and selects experts and referees for the next working round. We
call the phase when the referees and the supervisor work a team meeting.
Structure and behaviour of our teams lead to a system that uses both competition and
cooperation between i ts components (mainly the experts) to solve given problems. The
experts compete with each other in order t o stay in the team. But with the help of the
referees they also cooperate, because their best results are used to form a new starting
point for the work of the team.
In [AD93] we mainly concentrated on the general aspects and the theory of this ap-
proach and showed that for many examples there exist combinations of experts that
allow b ig speed-ups. In [DF94] we designed powerful experts and demonstrated that
we are even able to solve examples using team work that could not be solved by any
of our experts working alone. Bu t the question remains how to choose automatically
good teams for a given example, so that in general different examples can be solved in
an acceptable time. The solution to this problem is the supervisor. During the team
meetings he selects the members of the team for the next round.
We see this process of creating a new team in each team meeting as a kind of reactive
planning in which the supervisor uses general knowledge about the experts, the referees
and their relationships, dependencies and incompatibilities (the long-term memory) in
combination with the results of the experts on the given problem so far (the short-term
memory), to determine the team members. He selects not only the team members of
the next round but also can make assignments for further rounds provided that the
selected team comes up with the expected results. Otherwise the behaviour of the
selected team is used to find better suited experts. This can be seen as replanning or
plan revision.

By planning the team we contribute to the problem of finding subtasks for a proof
problem. If subtasks can be detected, they can be assigned to experts that are capable
to prove them. If no subtasks can be found, then the supervisor tries several experts
and adjusts the whole system more and more to the given problem.
Using reactive planning by the supervisor we were able to automatically solve most

2

2

of the examples of [DF94] and [AD93] without any interference by the user: no team
selection, no parameter adjustment by the user was necessary, just planning using
general but vague knowledge was enough (see section 5). The knowledge-based reactive
planning approach used by the supervisor of a team presented in this paper allows for
a much easier extension of the system to new domains than the auto mode of Otter
(see [Mc94])does. Here the code must be changed in order to deal with new domains.
This auto mode was, like team work, designed to provide a fully automatic theorem
prover to users that do not want to learn all about the tricks of a prover in order to
work with it.

Our paper is organized as follows: After this introduction we will give a brief survey of
equational deduction by completion which is the task we want to improve using team
work. In section 3 we take a deeper look on the team work method and it's use for
distributing automated theorem proving. In section 4 we concentrate on the tasks of
the supervisor in a team and show how we represent the knowledge he needs and how
he can use this knowledge to plan our distributed proof process. In section 5 we report
on our experiences and discuss how the supervisor guides the search for a proof. In
section 6 we relate our work to other works in the field of planning in AI. Finally in
section 7, we give a conclusion.

Automated theorem proving and completion

Because this paper is mainly aimed to analyze and describe the planning aspect of team
work done by the supervisor, we only give a very brief introduction into automated
theorem proving, equational theorem proving and the completion method for equc:1tional
proving. For more details we refer to [AD93], [CL73], [HR87] and [BDP89].

Theorem proving means solving the following problem:

Given: A set A of axioms and a theorem T to prove.
Question: Is T a logical consequence of A ?

In equational theorem proving A = {Si = ti- i=l,... ,n} is a set of (all-quantified)
equations and T is an equation u = v, too.

All successful methods for automated theorem proving, if equality is involved, are based
on two kinds of inference rules: generation rules and contraction rules. The generation
inference rules add new facts to the data base. These facts are derived either from the
axioms alone (as in the case of equational theorem proving by completion, i.e. the
critical pair generation) or from both, the axioms and the theorem T (as in the case
of resolution and paramodulation). The contraction inference rules change or delete
facts from the data base. A well known contraction inference is the reduction (or
demodulation) that uses an equation I = r as rule 1-+ r in order to exchange instances
of I in a fact by the appropriate instance of r. Then a fact is in normal form, if no
reductions with any equation of the data base is possible.

Fro~ a theoretical point of view we need for an automated theorem praver, besides
the inference rules, fairness criteria for the use of the inference rules. These criteria

3

of the examples of [DF94] and [AD93] without any interference by the user: no team
selection, no parameter adjustment by the user was necessary, Just planning using
general but vague knowledge was enough (see section 5). The knowledge-based reactive
planning approach used by the supervisor of a team presented in this paper allows for
a much easier extension of the system to new domains than the auto mode of Otter
(see [Mc94])does. Here the code must be changed in order to deal with new domains.
This auto mode was, like team work, designed to provide a fully automatic theorem
prover to users that do not want to learn all about the tricks of a prover in order to
work with it.

Our paper is organized as follows : After this introduction we will give a brief survey of
equational deduction by completion which is the task we want t o improve using team
work. In section 3 we take a deeper look on the team work method and i t ’s use for
distributing automated theorem proving. In section 4 we concentrate on the tasks of
the supervisor in a team and show how we represent the knowledge he needs and how
he can use this knowledge to plan our distributed proof process. In section 5 we report
on our experiences and discuss how the supervisor guides the search for a proof. In
section 6 we relate our work to other works in the field of planning in Al. Finally in
section 7, we give a conclusion.

2 Automated theorem proving and completion

Because this paper is mainly aimed to analyze and describe the planning aspect of team
work done by the supervisor, we only give a very brief introduction into automated
theorem proving, equational theorem proving and the completion method for equational
proving. For more details we refer to [AD93], [CL73], [HR87] and [BDP89].

Theorem proving means solving the following. problem :
Given: A set A of axioms and a theorem T to prove.
Question: Is T a logical consequence o f A ?
In equational theorem proving A = {s; = t,— i=1,...,n} is a set of (all-quantified)
equations and T is an equation u = v , too.

All successful methods for automated theorem proving, i f equality is involved, are based
on two kinds of inference rules : generation rules and contraction rules. The generation
inference rules add new facts to the data base. These facts are derived either from the
axioms alone (as in the case of equational theorem proving by completion, i.e. the
critical pair generation) or from both, the axioms and the theorem T (as in the case
of resolution and paramodulation). The contraction inference rules change or delete
facts from the data base. A well known contraction inference is the reduction (or
demodulation) that uses an equation 1 = r as ru le] — r in order to exchange instances
of 1 in a fact by the appropriate instance of r . Then a fact is in normal form, i f no
reductions with any equation of the data base is possible.

From a theoretical point of view we need for an automated theorem prover, besides
the inference rules, fairness criteria for the use of the inference rules. These criteria

3

3

guarantee that each application of an inference rule that is possible indeed will at some
time be made. But for challenging examples there are many possible inferences and
a systelllatic application results both in enorlllOUS run tillles and the need of much
(memory) space. For such examples the prover very often has an agenda of 50,000,
100,000 or even more inference rule applications.

Therefore implementations of automated theorem provers use strategies and heuristics
to select the next inference rule to apply and the facts these rules should work on. A
strategy guarantees theoretical completeness whereas for heuristics it is possible that
the prover will not find a proof even if there is one and enough time and space are
provided. Many theorem provers allow the user to choose between various strategies
and heuristics. But two problems remain. First, for a given problem there may be no
appropriate strategy or heuristic implemented in the system. Second, even if there is
a good one implemented, how does the user know which one is good ?

We tackled both problems with our team work method as we will demonstrate in the
next section.

The Team work method

The team work method is inspired by project teams in business companies. Due to
their temporary existence they allow an exact tuning to the problem they have to solve.
This tuning is achieved by the supervisor of the team who chooses always the team he
thinks is best suited for the current status of the solution of the given problem.

So one major task of the supervisor in a system based on the team work method is a
planned selection of the team members. This planning must also. allow a fast reaction
to problems with the selected teams or when unexpected breakthroughs occur. We will
discuss this task of the supervisor in more detail in the next section. In this section we
will look at the other components of a team, the experts and referees, and their tasks
and how they compete and cooperate to solve a given problem.

Experts are those components that work on the problem solution. They have to gener­
ate new facts and goals. Therefore for each expert there has to be a processor. If there
are more experts than processors (which is usually the case) then the experts have to
compete with each other in order to get a processor for the next working period. Each
expert uses other methods to gain new· data and represents a different view on the
problem than his colleagues.

In automated theorem proving one achieves these distinctions by using different selec­
tion strategies and heuristics for the next inference step in the experts. There are many
many criteria that can be used to get different heuristics. In our team work completion
system we use, beside others, heuristics that

- focus on parts of the set of known facts,

- focus on statistical properties of the facts (for example the number of symbols),

4

guarantee that-each application of an inference rule that is possible indeed will at some
time be made. But for challenging examples there are many possible inferences and
a systematic application resul ts both in enormous run t imes and the need o f much
(memory) space. For such examples the prover very often has an agenda of 50,000,
100,000 or even more inference rule applications.

Therefore implementations of automated theorem provers use strategies and heuristics
to select the next inference rule to apply and the facts these rules should work on. A
strategy guarantees theoretical completeness whereas for heuristics i t is possible that
the prover will not find a proof even i f there is one and enough time and space are
provided. Many theorem provers allow the user to choose between various strategies
and heuristics. But two problems remain. First, for a given problem there may be no
appropriate strategy or heuristic implemented in the system. Second, even i f there is
a good one implemented, how does the user know which one is good ?
We tackled both problems wi th our team work method as we will demonstrate in the
next section.

3 The Team work method

The team work method is inspired by project teams in business companies. Due to
their temporary existence they allow an exact tuning to the problem they have to solve.
This tuning is achieved by the supervisor of the team who chooses always the team he
thinks is best suited for the current status of the solution of the given problem.
So one major task of the supervisor in a system based on the team work method is a
planned selection of the team members. This planning must also, allow a fast reaction
to problems with the selected teams or when unexpected breakthroughs occur. We will
discuss this task of the supervisor in more detail in the next section. In this section we
will look at the other components of a team, the experts and referees, and their tasks
and how they compete and cooperate to solve a given problem.

Experts are those components that work on the problem solution. They have to gener-
ate new facts and goals. Therefore for each expert there has to be a processor. If there
are more experts than processors (which is usually the case) then the experts have to
compete with each other in order to get a processor for the next working period. Each
expert uses other methods to gain new data and represents a different view on the
problem than his colleagues.

In automated theorem proving one achieves these distinctions by using different selec-
t ion strategies and heuristics for the next inference step in the experts. There are many
many criteria that can be used to get different heuristics. In our team work completion
system we use, beside others, heuristics that

- focus on parts of the set of known facts,

- focus on statistical properties of the facts (for example the number of symbols),

- focus on special properties of the method used by the experts, i.e. completion,

- focus on the goal to prove.

Experts compete for processors, but a characteristic of a project team is also that
the members of the team cooperate with each other. As a result of this cooperation,
problems can be solved much faster than by a team member, i.e. an expert, alone. A
good team is able to solve a problem faster than an expert alone even if we consider as
time for finding the solution the sum of the times needed by all members (instead of
time you can also be interested in the costs, but you will make the same observation).
So cooperation leads to synergetic effects.

The team work method achieves cooperation between the experts by using referees and
team meetings. After certain periods of time (the period length is determined by the
supervisor) in which each expert works on the problem independently, a team meeting
takes place. Before the meeting, each expert and his work so far is evaluated by a
referee. The tasks of the referees are to compute a measure for the success of their
experts and to select good results of the experts. The measure of an expert is used by
the supervisor to determine the team members of the next round. The selected results
are used to generate a new data base of facts and goals that is the starting point for the
next round. Note that during a team meeting the main work is done by the supervisor.
All processors, but the one running the supervisor, are most of the meeting idle.

The main problem in designing referees is how to compute measures for the overall
behaviour of an expert on a problem and for the usefulness of generated results. For
both measures there are statistical criteria that have proven to be quite successful in
our application, automated theorem proving. Our different referees use a weighted sum
of the following numbers (and some more, specific to the inference rule system used)
to measure an expert (different referees are using different weights):

- the size of the data base,

- the number of contraction inferences that were performed, split into the number
of contractions of facts and the number of contractions of goals,

- the number of potential inferences,

- the quotient of the average weight of the last few performed inferences and the
average weight of all performed inferences.

The last number indicates whether the heuristic used by the expert is getting better
at the moment (quotient smaller than 1) or getting worse (quotient larger than 1).

Note that during a proof attempt it is often necessary to change the referee of an
expert. Whereas at the beginning of an attempt one expects a growing size of the data
base and is therefore more interested in experts that have performed many contraction
inferences, later in .a proof one want to give such experts a good measure that can keep
the size of their data bases stable or even manage to shrink it.

5

- focus on special properties of the method used by the experts, i.e. completion,

- focus on the goal to prove.

Experts compete for processors,. but a characteristic of a project team is also that
the members of the team cooperate with each other. As a result of this cooperation,
problems can be solved much faster than by a team member, i.e. an expert, alone. A
good team i s able to solve a problem faster than an expert alone even i f we consider as
time for finding the solution the sum of the times needed by all members (instead of
time you can also be interested in the costs, but you will make the same observation).
So cooperation leads to synergetic effects.

The team work method achieves cooperation between the experts by using referees and
team meetings. After certain periods of time (the period length is determined by the
supervisor) in which each expert works on the problem independently, a team meeting
takes place. Before the meeting, each expert and his work so far is evaluated by a
referee. The tasks of the referees are to compute a measure for the success of their
experts and to select good results of the experts. The measure of an expert is used by
the supervisor to determinethe team members of the next round. The selected results
are used to generate a new data base of facts and goals that is the starting point for the
next round. Note that during a team meeting the main work is done by the supervisor.
All processors, but the one running the supervisor, are most of the meeting idle.

The main problem in designing referees is how to compute measures for the overall
behaviour of an expert on a problem and for the usefulness of generated results. For
both measures there are statistical criteria that have proven to be quite successful i n
our application, automated theorem proving. Our different referees use a weighted sum
of the following numbers (and some more, specific t o the inference rule system used)
to measure an expert (different referees are using different weights):

the size of the data base,

the number of contraction inferences that were performed, split into the number
of contractions of facts and the number of contractions of goals,

the number of potential inferences,

the quotient of the average weight of the last few performed inferences and the
average weight of all performed inferences.

The last number indicates whether the heuristic used by the expert is getting better
at the moment (quotient smaller than 1) or getting worse (quotient larger than 1).
Note that during a proof attempt i t is often necessary to change the referee of an
expert. Whereas at the beginning of an attempt one expects a growing size of the data
base and is therefore more interested in experts that have performed many contraction
inferences, later in a proof one want to give such experts a good measure that can keep
the size of their data bases stable or even manage to shrink it.

4

In order to select good results we use similar statistical criteria, but compute them
for one fact, for example the number of contractions performed with this fact. Also
we give the referees a maximal number of facts that can be selected and a minimal
measure that each selected fact must at least achieve. So experts that only produce
bad results can not add even some of their results to the new starting data base. By
this we avoid blowing up the search space with unnecessary results.

Before we can concentrate on the planning aspects of the supervisor, we have to describe
how the new starting data base is constructed. In order to guarantee completeness of
our prover using the team work method we use the data base of the expert with the
best overall measure as basis. Then we add the selected results of the other experts to
this basis. This way, the whole progress of one expert (the best one !) is part of the
new data base, but the good results of the other experts can improve this data base
significantly thus leading much faster to a solution.

Selection of experts and referees by planning

As in the case of human project teams, systems based on the team work method rely
on a good use of the given resources, i.e. the processors. The supervisor is responsible
for the future assignment of these resources. In order to find such an assignment he
has to use planning.

The main problem one has to face if one wants to use planning in theorem proving
is a general vagueness of all information one can use. In contrast to areas like the
blocks world or even movement planning for robots, there are no operators with fixed
pre~ and postconditions that can be put together in order to obtain an executable
plan. In theorem proving the only candidates for such operators are the inference rules
themselves and using them would lead back to the initial proof problem.

Instead one has to use planning on an abstract level that allows an easy search for a
plan to a given problem. But such a plan may not be executable. By executable we
mean that all preconditions a step of a plan needs are fulfilled when this step is done
on the level of the inferences. A step may not be executable, because the outcome of
prior steps delivered not the expected results. In general, one can say that the more
knowledge about a problem is available the better a plan can be constructed and the
more reliable this plan is during execution. The known planning approaches to theorem
proving, for example [Bu88] or [SD93] (see section 6), require a lot of very concrete
knowledge to be able to operate.

The abstraction level that is provided by the experts and referees of team work is much
higher than the level used by the other approaches. This means that the information
we have to a given problem is very vague. Therefore we have always to expect that
a generated plan is wrong and we have to deal with this problem. Also one can not
do a complete planning before doing any inference steps in the prover, because the
more future steps one plans the more vague is the information about the outcome
of these steps. A main reason for the vagueness of the used information is that, as

6

In order to select good results we use similar statistical criteria, but compute them
for one fact, for example the number of contractions performed with this fact. Also
we give the referees a maximal number of facts that can be selected and a minimal
measure that each selected fact must at least achieve. So experts that only produce
bad results can not add even some of their results to the new starting data base. By
this we avoid blowing up the search space with unnecessary results.
Before we can concentrate on the planning aspects of the supervisor, we have to describe
how the new starting data base is constructed. In order to guarantee completeness of
our prover using the team work method we use the data base of the expert with the
best overall measure as basis. Then we add the selected results of the other experts to
this basis. This way, the whole progress of one expert (the best one !) is part of the
new data base, but the good results of the other experts can improve this data base
significantly thus leading much faster to a solution.

4 Selection of experts and referees by planning

As in the case of human project teams, systems based on the team work method rely
on a good use of the given resources, i.e. the processors. The supervisor i s responsible
for the future assignment of these resources. In order to find such an assignment he
has to use planning.

The main problem one has to face if one wants to use planning in theorem proving
is a general vagueness of all information one can use. In contrast to areas like the
blocks world or even movement planning for robots, there are no operators with fixed
pre- and postconditions that can be put together in order to obtain an executable
plan. In theorem proving the only candidates for such operators are the inference rules
themselves and using them would lead back to the initial proof problem.

Instead one has to use planning on an abstract level that allows an easy search for a
plan to a given problem. But such a plan may not be executable. By executable we
mean that all preconditions a step of a plan needs are fulfilled when this step is done
on the level of the inferences. A step may not be executable, because the outcome of
prior steps delivered not the expected results. In general, one can say that the more
knowledge about a problem is available the better a plan can be constructed and the
more reliable this plan is during execution. The known planning approaches to theorem
proving, for example [Bu88] or [SD93] (see section 6), require a lot of very concrete
knowledge to be able to operate.

The abstraction level that is provided by the experts and referees of team work is much
higher than the level used by the other approaches. This means that the information
we have to a given problem is very vague. Therefore we have always to expect that
a generated plan is wrong and we have to deal with this problem. Also one can not
do a complete planning before doing any inference steps in the prover, because the
more future steps one plans the more vague is the information about the outcome
of these steps. A main reason for the vagueness of the used information is that, as

already stated, in most cases one can not detect appropriate subproblems to a given
proof problem a priori (the other approaches rely heavily on the detection of such
subproblems).

Using team work we have to face a second problem when doing planning. The com­
ponent responsible for planning is the supervisor, the component that represents the
bottleneck of our distributed system. Therefore we have to do the planning in a cer­
tain, but varying, time limit that is small in contrast to the time of a working period.
We hope to deliver better results with increasing planning time, but this can not be
guaranteed (see later in this section).

Our solutions to these problems are first team work itself that allows in form of the
experts to follow several promising directions at once, thus allowing some vagueness
in the information used by the system. The referees enable the system to determine
which of the directions is the most promising one and which of the other directions
can provide good auxiliary results. As general planning approach we use ideas from
planning reactive behavior (see [Mc90], [Be9l]). These ideas, combining a long-term
memory with knowledge about earlier proof attempts in a domain of interest and
a short-term memory of the behaviour of experts on the actual problem, allow for
adequate reactions to problems and unsuccessful plans and make replanning easier.
The second problem is solved by implementing our planning approach as anytime
algorithm ·(see [BD88]) that allows to stop with planning at any a priori given time.

The main concept that is used by the supervisor for planning is the domain of a given
example. As in other proof planning systems, a domain is a collection of information
about a set of proof examples one is (or was) interested in. In our system a domain
is a collection of facts (defining the domain), consequences of these facts, methods
useful for these facts and other information. The following example shows the domain
description for the domain "ring".

domainname: ring

signature: ~:2 , 0:0 , -:1 , *:2

equations: x~O = x ; x+(-x) = 0

(x~y)~z = x~(y~z) ; x+y = y~x

(x*y)*z = x*(y*z) ; (x*y)+(x*z) = x*(y~z)

(x*y)~(z*y) = (x+z)*y
consequences: O+x = x ; (-x)~x = 0
starting team: ADD-WEIGHT; ADD-RWEIGHT
middle team: ADD-WEIGHT; ADD-RWEIGHT
end team: ADD-WEIGHT; GOAL-SIM
superior domain: group
speeializ~d domains: boolean ring
similar domains: non-associative ring

Before we can go into detail how domains are used for planning we have to show how
domains can be detected in order to be of any use. There are several possibilities how

. to determine weather a given example belongs to a domain or not. They differ in the
amount of deduction used and therefore in the chances that a domain is detected.

7

already stated, in most cases one can not detect appropriate subproblems to a given
proof problem a priori (the other approaches rely heavily on the detection of such
subproblems).
Using team work we have to face a second problem when doing planning. The com-
ponent responsible for planning is the supervisor, the component that represents the
bottleneck of our distributed system. Therefore we have to do the planning in a cer-
tain, but varying, t ime l imi t that is small in contrast to the time of a working period.
We hope to deliver better results with increasing planning time, but this can not be
guaranteed (see later in this section).
Our solutions to these problems are first team work itself that allows in form of the
experts to follow several promising directions at once, thus allowing some vagueness
in the information used by the system. The referees enable the system to determine
which of the directions is the most promising one and which of the other directions
can provide good auxiliary results. As general planning approach we use ideas from
planning reactive behavior (see [Mc90] , [Be91}). These ideas, combining a long-term
memory wi th knowledge about earlier proof attempts in a domain of interest and
a short-term memory of the behaviour of experts on the actual problem, allow for
adequate reactions to problems and unsuccessful plans and make replanning easier.
The second problem is solved by implementing our planning approach as anytime
algorithm (see [BD88]) that allows to stop with planning at any a priori given time.

The main concept that is used by the supervisor for planning is the domain of a given
example. As in other proof planning systems, a domain is a collection of information
about a set of proof examples one is (or was) interested in. In our system a domain
is a collection of facts (defining the domain), consequences of these facts, methods
useful for these facts and other information. The following example shows the domain
description for the domain "ring”.

domainname: ring
signature: + :2 ,0 :0 , - : 1 , *:2
equations: x+0 =x ; x+(-x) = 0

(x+y)+z = x+(y+2) ; x+y = y+x
(x*y)*z = x*(y*z) ; (x*y)+(x*z) = x*(y+2)
(x*y)+(z*y) = (x+2)*y

consequences: 0+x =x ; (-x)+x = 0
start ing team: ADD-WEIGHT ; ADD-RWEIGHT
middle team: ADD-WEIGHT ; ADD-RWEIGHT
end team: ADD-WEIGHT ; GOAL-SIM
superior domain: group
specialized domains: boolean ring
similar domains: non-associative ring

Before we can go into detail how domains are used for planning we have to show how
domains can be detected in order to be of any use. There are several possibilities how

° to determine weather a given example belongs to a domain or not. They differ in the
amount of deduction used and therefore in the chances that a domain is detected.

If one wants to use as little deduction as possible then one should first try to find a
match E from the signature of the domain (slot signature) to the signature of the
example and then test for all facts of equations instantiated by E, if they are in the
facts (Le equations) that describe the example (up to renaming of variables). In practise
this method has the problem that other equations of the example may reduce equations
that are in equations. Then they can not be detected by the method although the
example is in the domain.

The other extreme is to find a signature match E such that one can prove for all facts
s=t in equations that E(s) = E(t) is an equational consequence of the set E that defines
the example. Instead to show one goal one would have to show many of them which
is very difficult, because there may be domains to which an example does, not belong
(meaning that one has to prove that an equation is not a consequence of E which can
lead to an infinite computation).

We have chosen a method between those two extremes. We check, if there is a signature
match E such that for all instantiated elements of equations the normal forms of
these equations are either identical or subsumed by an equations of the example. This
overcomes the problems of the first method, but is also guaranteed to be decidable.
Testing for domains is done in team work by a so-called "domain detection specialist"
whose only task is to check many domain descriptions and to report those domains for
which such a match can be found to the supervisor. In addition, this specialist can also
report the equations of the slot consequences, instantiated by E, to the supervisor
(or a referee's selection of these equations).

Using a domain detection specialist as member of the team of the first working period
the supervisor can take advantage of the other information he has about the detected
domains. I

During the first team meeting the planning task of the supervisor is to select a plan
skeleton. A plan skeleton is the central part of the description of a domain of the
supervisor. It describes three good teams to use for problems of the domain. These
teams should be used in the three different phases we have observed in many proofs.
The starting phase is characterized by a growing number offacts (slot starting team).
In the middle phase the number of facts both decreases and then increases, again (slot
middle team). In the end phase, the proof is completed with a few further inferences
(slot en,d team). We developed special experts for the end phase that use criteria that
are based on similarities between the goal and the facts (see [DF94]). It is obvious that
it is not easy to determine in which phase a proof attempt is. Especially the detection
of the middle phase is very difficult. Currently we define the start of the middle phase
as the team meeting in which most of the members of the starting team (that are not
also members of the middle team) either are not member of the actual team anymore
or have a measure that is below a predefined percentage of the best expert.

In the first team meeting the supervisor has to determine which of the detected domains
and thus which of the plan skeletons he will use. It is very seldom that exactly one
domain is detected. For example, if the domain "ring" is detected then also the domain
"group" can be found, because it is part of the domain "ring". Even worse, a given

8

I f one wants to use as l itt le deduction as possible then one should first try to find a
match ¥ from the signature of the domain (slot signature) to the signature of the
example and then test for all facts of equat ions instantiated by I , if they are in the
facts (i.e equations) that describe the example (up to renaming of variables). In practise
this method has the problem that other equations of the example may reduce equations
that are in equations. Then they can not be detected by the method although the
example is in the domain.
The other extreme is to find a signature match X such that one can prove for all facts
s=t in equations that X(s) = X(t) is an equational consequence of the set E that defines
the example. Instead to show one goal one would have to show many of them which
is very difficult, because there may be domains to which an example does not belong
(meaning that one has to prove that an equation is not a consequence of E which can
lead to an infinite computation).
We have chosen a method between those two extremes. We check, if there is a signature
match X such that for all instantiated elements of equations the normal forms of
these equations are either identical or subsumed by an equations of the example. This
overcomes the problems of the first method, but is also guaranteed to be decidable.
Testing for domains is done in team work by a so-called domain detection specialist”
whose only task is to check many domain descriptions and to report those domains for
which such a match can be found to the supervisor. In addition, this specialist can also
report the equations of the slot consequences, instantiated by X, to the supervisor
(or a referee’s selection of these equations).
Using a domain detection specialist as member of the team of the first working period
the supervisor can take advantage of the other information he has about the detected
domains. '

During the first team meeting the planning task of the supervisor is to select a plan
skeleton. A plan skeleton is the central part of the description of a domain of the
supervisor. It describes three good teams to use for problems of the domain. These
teams should be used in the three different phases we have observed in many proofs.
The starting phase is characterized by a growing number of facts (slot s tar t ing team).
In the middle phase the number of facts both decreases and then increases, again (slot
middle team). In the end phase, the proof is completed with a few further inferences
(slot end team). We developed special experts for the end phase that use criteria that
are based on similarities between the goal and the facts (see [DF94]). It is obvious that
i t is not easy to determine in which phase a proof attempt is. Especially the detection
of the middle phase is very difficult. Currently we define the start of the middle phase
as the team meeting in which most of the members of the starting team (that are not
also members of the middle team) either are not member of the actual team anymore
or have a measure that is below a predefined percentage of the best expert.
In the first team meeting the supervisor has to determine which of the detected domains
and thus which of the plan skeletons he will use. I t is very seldom that exactly one
domain is detected. For example, if the domain ”ring” is detected then also the domain
“group” can be found, because i t is part of the domain r ing”. Even worse, a given

proof problem can involve different domains that have no equations in common.

The supervisor grounds his decision mainly on the hierarchical information he has in
the domain descriptions, in the slots superior domain, specialized domains and
similar domains. Candidates for the domain the supervisor will concentrate on are
all detected domains that are no superior domain to another detected domain. From
these candidates the supervisor also eliminates those domains that are similar domains
to a superior domain of another candidate. If we then have more than one domain
as candidate left, we have no further knowledge available and therefore the supervisor
chooses one random domain out of the candidates. The experts of the starting team
of this domain will be members of the next working team.

If there are more processors available than there are experts in starting team, the
supervisor will use also the starting teams of other detected domains. If the chosen
domain has specialized domains, then a domain detection expert for these domains will
also be a member of the team (if there are processors left, after the starting team of the
detected domain is appointed to processors). If there are even more processors avail­
able, the supervisor will select experts that are known to cooperate well with already
selected experts (see later). The supervisor stores all information he has received from
referees and all decisions he has made in a file for future use (we have to use a file,
because the processor that runs the supervisor can change during a proof attempt).

In every further team meeting the supervisor has to perform the following actions after
he has received the reports of the referees:

1.	 Compute the time he has for selecting a new team.

2.	 Determine, whether the used plan skeleton is still good and whether the phase
should be changed. If a change of the plan skeleton is necessary, a new skeleton
and the appropriate phase has to be selected or the supervisor can decide to work
without a domain (and a skeleton).

3. Choose the members of the next team.

4.	 Compute the length of the next working period.

The first task is easy, because we want the periods the supervisor is active to be very
short. Therefore we do not allow the supervisor to use more time than one percent
of the length of the last working period. There are exceptions dealing with very short
working periods (less than 5 seconds).

We have given the supervisor two reasons when to look for further domains and there­
fore for a different plan skeleton. The first one is that a new domain is detected by a
domain detection expert. If this detected domain is a specialization of the already used
one, the supervisor immediately switches to the plan skeleton for this new domain. If
the new domain is a superior domain to the already used one, then no change of plan is
necessary. In all other cases a little more computation is needed to determine, whether
a change should be made or not.

9

proof problem can involve different domains that have no equations in common.
The supervisor grounds his decision mainly on the hierarchical information he has i n
the domain descriptions, in the slots superior domain, specialized domains and
simi lar domains. Candidates for the domain the supervisor will concentrate on are
all detected domains that are no superior domain to another detected domain. From
these candidates the supervisor also eliminates those domains that are similar domains
to a superior domain of another candidate. If we then have more than one domain
as candidate left, we have no further knowledge available and therefore the supervisor
chooses one random domain out of the candidates. The experts of the starting team
of this domain will be members of the next working team.

If there are more processors available than there are experts in start ing team, the
supervisor will use also the starting teams of other detected domains. If the chosen
domain has specialized domains, then a domain detection expert for these domains will
also be a member of the team (if there are processors left, after the starting team of the
detected domain is appointed to processors). If there are even more processors avail-
able, the supervisor will select experts that are known to cooperate well with already
selected experts (see later). The supervisor stores all information he has received from
referees and all decisions he has made in a file for future use (we have to use a file,
because the processor that runs the supervisor can change during a proof attempt).
In every further team meeting the supervisor has to perform the following actions after
he has received the reports of the referees :

1. Compute the time he has for selecting a new team.

2. Determine, whether the used plan skeleton is st i l l good and whether the phase
should be changed. I f a change of the plan skeleton is necessary, a new skeleton
and the appropriate phase has to be selected or the supervisor can decide to work
without a domain (and a skeleton).

3. Choose the members of the next team.

4. Compute the length of the next working period.

The first task is easy, because we want the periods the supervisor is active to be very
short. Therefore we do not allow the supervisor to use more time than one percent
of the length of the last working period. There are exceptions dealing with very short
working periods (less than 5 seconds).
We have given the supervisor two reasons when to look for further domains and there-
fore for a different plan skeleton. The first one is that a new domain is detected by a
domain detection expert. If this detected domain is a specialization of the already used
one, the supervisor immediately switches to the plan skeleton for this new domain. If
the new domain is a superior domain to the already used one, then no change of plan is
necessary. In all other cases a little more computation is needed to determine, whether
a change should be made or not.

This computation is similar to the one made, when the second reason for domain
change can be observed, namely that the experts chosen due to the plan skeleton are
much worse than the best experts of the last team (according to the measures of their
referees). For the decision which domain will be best one and therefore the further
base of the planning process we rate the detected domains according to the following
criterion:

The supervisor sums up the measures of the experts of the teams of the plan
skeletons of the domains. Each measure is weighted by 1 divided by the number
of working periods since the measure was given. Therefore older information
gets less credit. The domain with the best sum will be selected, if a certain
threshold is reached. Otherwise the supervisor will use no plan skeleton and
he will choose experts as we will describe for point 3 without use of domain in­
formation. If an expert was never member of a team during the proof attempt,
he will get a measure of zero.

As the next step, the members of the team have to be selected. The best experts of
the last working period and the members of the team of the current phase of the plan
skeleton will be selected, with the exception that a member of the plan skeleton is
not selected if his performance in the last working period has been much worse than
the performance of the best expert. If there remain processors without an expert, the
supervisor uses the following routine to find experts for them. If no expert of the plan
skeleton was best expert, then it is possible that the proof attempt has reached another
phase. Therefore the experts of the next phase of the skeleton get places in the team.
If they perform well in the next working phase, the supervisor will assume that the
next phase is reached.

Depending on the amount of time left for the meeting, weights for the members of the
following groups of experts are computed (when they are not already in the teamf

- the experts of the last team,

- the experts that work well together with the best expert of the last working
period,

- the experts that work well together with the experts of the current phase of the
plan skeleton,

- the experts that are suggested by other detected domains,

- all other experts.

In order to find the experts of these groups the supervisor needs information about
experts. This information also includes data that is needed to compute the weight of
the expert. Again we have chosen a frame representation for this information. The
following is an example for such a frame.

10

This computation is similar to the one made, when the second reason for domain
change can be observed, namely that the experts chosen due to the plan skeleton are
much worse than the best experts of the last team (according to the measures of their
referees). For the decision which domain will be best one and therefore the further
base of the planning process we rate the detected domains according to the following
criterion:

The supervisor sums up the measures of the experts of the teams of the plan
skeletons of the domains. Each measure is weighted by 1 divided by the number
of working periods since the measure was given. Therefore older information
gets less credit. The domain with the best sum will be selected, i f a certain
threshold is reached. Otherwise the supervisor will use no plan skeleton and
he will choose experts as we will describe for point 3 without use of domain in-
formation. If an expert was never member of a team during the proof attempt,
he will get a measure of zero.

As the next step, the members of the team have to be selected. The best experts of
the last working period and the members of the team of the current phase of the plan
skeleton will be selected, with the exception that a member of the plan skeleton is
not selected i f his performance in the last working period has been much worse than
the performance of the best expert. I f there remain processors without an expert, the
supervisor uses the following routine to find experts for them. I f no expert o f the plan
skeleton was best expert, then i t is possible that the proof attempt has reached another
phase. Therefore the experts of the next phase of the skeleton get places in the team.
I f they perform well in the next working phase, the supervisor will assume that the
next phase is reached.
Depending on the amount of time left for the meeting, weights for the members of the
following groups of experts are computed (when they are not already in the team).

the experts of the last team,

the experts that work well together with the best expert of the last working
period,

the experts that work well together with the experts of the current phase of the
plan skeleton,

the experts that are suggested by other detected domains,

all other experts.

In order to find the experts of these groups the supervisor needs information about
experts. This information also includes data that is needed to compute the weight of
the expert. Again we have chosen a frame representation for this information. The
following is an example for such a frame.

\

10

expertname: ADD-WEIGHT
robustness: 0.8
knowledge involved: 0.1
proof phase: start: 0.6

middle: 0.5
end: 0.5

referees: STATISTIC-I, start
STATISTIC-4, middle
STATISTIC-6, end

domains: all
similar experts: ADD-FWEIGHT-1 ; ADD-RWEIGHT
cooperative experts: GOAL-SIM ; GOAL-MATCH
impossible experts: none

The experts mentioned in cooperative experts are those we referred to as working
well together with the expert described (in our example ADD-WEIGHT). All the other
information is needed to determine a weight for this expert.

The computation of the weight of an expert according to the status of a proof attempt
depends on the time the supervisor has left, again. The more time is available the
more criteria are taken into account.. These criteria are, in descending order:

- How good is the expert rated with respect to the detected domains and the phase
of the proof ?

- How good were the results of the expert in earlier phases of this proof attempt?

- How good does the expert cooperate with the already chosen team members?

- How specialized is the expert ?

- How good is the robustness of the expert for the current proof phase?

Each criterion will lead to a measure between -1 (bad) and 1 (good) and the weight
of the expert is a weighted sum of these measures. If an expert that has never been
member of a team has to be compared with experts that have been members, we use
adjusted weights for the other criteria. Let us now take a closer look at the criteria.

The rating of the suitability of an expert for a domain takes into account, whether
the expert is member of the team of the plan skeleton of the domain for the current
phase and whether the domain is in the domain slot of the expert. If this is the case
for all detected domains we would get a measure of 1. Note that experts that are not
members of a plan skeleton of a domain may have the domain in their domain slot.

The measure that represents the history of the expert on the current proof attempt is
computed as the mean value of the comparisons of the expert with the best experts of
the working phases when the expert was member of the team. We get the comparison
by dividing the result of the expert by the result of the best expert.

11

expertname: ADD-WEIGHT
robustness: 0.8
knowledge involved: 0.1
proof phase: start: 0.6

middle: 0.5
end: 0.5

referees: STATISTIC-1, start
STATISTIC-4, middle
STATISTIC-6, end

domains: all
similar experts: ADD-FWEIGHT-1 ; ADD-RWEIGHT
cooperative experts: GOAL-SIM ; GOAL-MATCH
impossible experts: none

The experts mentioned in cooperative experts are those we referred to as working
well together with the expert described (in our example ADD-WEIGHT). All the other
information is needed to determine a weight for this expert.
The computation of the weight of an expert according to the status of a proof attempt
depends on the time the supervisor has left, again. The more time is available the
more criteria are taken into account. These criteria are, in descending order :

How good is the expert rated with respect to the detected domains and the phase
of the proof ?

How good were the results of the expert in earlier phases of this proof attempt ?

How good does the expert cooperate with the already chosen team members ?

How specialized is the expert ?

How good is the robustness of the expert for the current proof phase ?

Each criterion will lead to a measure between -1 (bad) and 1 (good) and the weight
of the expert is a weighted sum of these measures. If an expert that has never been
member of a team has to be compared with experts that have been members, we use
adjusted weights for the other criteria. Let us now take a closer look at the criteria.
The rating of the suitability of an expert for a domain takes into account, whether
the expert is member of the team of the plan skeleton of the domain for the current
phase and whether the domain is in the domain slot of the expert. If this is the case
for all detected domains we would get a measure of 1. Note that experts that are not
members of a plan skeleton of a domain may have the domain in their domain slot.
The measure that represents the history of the expert on the current proof attempt is
computed as the mean value of the comparisons of the expert with the best experts of
the working phases when the expert was member of the team. We get the comparison
by dividing the result of the expert by the result of the best expert.

11

5

The measure for cooperation uses the slots similar experts, cooperative experts
and impossible experts. For each already chosen expert we add 1, if the chosen
expert is in cooperative experts, we add -1, if the chosen expert is in impossible
experts and we add -0.1, if the chosen expert is similar to the expert we check at the
moment. We add a small negative number, because this way the more similar experts
we have in a team the more unlikely it would be to add another similar one. The sum
is then divided by the number of chosen experts that are mentioned in the three slots.

If at least one domain was detected, we use the value of knowledge involved as
indication for the specialization of the expert.

Finally, we multiply robustness with the appropriate value of proof phase to get a
measure of the robustness of the expert.

If we have n free processors, the supervisor will choose the n experts with the highest
measure. Note that the more time the supervisor has the more experts can be examined
and the more knowledge can be used to come to a decision. But there is no guarantee
that this decision will really improve over the time, because of the vagueness of the
information we use.

Let us now take a look at point 4 of the actions the supervisor has to perform during
a team meeting, the computation of the length of the next working period. If the plan
has been successful so far, that means that the experts of the chosen plan skeleton or
all experts of the last round have had good measures, then the lengths of the working
periods increase linearly. When most of the experts did not have the time to perform
more than 10 inference steps, the supervisor will use an exponential growing length.

If most of the experts of the next team are new, then it is difficult to tell whether
the team will be good or bad. Therefore the length of the next working period will
be shorter. How short depends on the number of facts that constitute the current
problem description. The more facts the more time is needed to perform an inference
step. In order to get useful measures from the referees, the experts have to perform
several inference steps in the working period. If the team was successful, then it will
get more time the next round, else other experts will be tried out.

Experiences

In the last section we described how the supervisor plans a proof attempt and reacts
on the measures and results that he gets from the referees. In this section we will
demonstrate that this planning enhances the performance of the whole system.

In [AD93] and [DF94] we showed by experiments that team work, without planning by
the supervisor, can reduce the run time of a system on a proof problem dramatically
compared to the run times of the used experts, when working alone. But these results
have a drawback. We selected the team members of the teams. And these teams
changed from example to example.

It is well known that all automated theorem provers have many parameters that can be

12

The measure for cooperation uses the slots similar experts, cooperative experts
and impossible experts. For each already chosen expert we add 1, if the chosen
expert is in cooperative experts, we add -1, i f the chosen expert is in impossible
experts and we add -0.1, i f the chosen expert is similar to the expert we check at the
moment. We add a small negative number, because this way the more similar experts
we have in a team the more unlikely it would be to add another similar one. The sum
is then divided by the number of chosen experts that are mentioned in the three slots.

If at least one domain was detected, we use the value of knowledge involved as
indication for the specialization of the expert.
Finally, we multiply robustness with the appropriate value of proof phase to get a
measure of the robustness of the expert.

If we have n free processors, the supervisor will choose the n experts with the highest
measure. Note that the more t ime the supervisor has the more experts can be examined
and the more knowledge can be used to come to a decision. But there is no guarantee
that this decision will really improve over the time, because of the vagueness of the
information we use.

Let us now take a look at point 4 of the actions the supervisor has to perform during
a team meeting, the computation of the length of the next working period. If the plan
has been successful so far, that means that the experts of the chosen plan skeleton or
all experts of the last round have had good measures, then the lengths of the working
periods increase linearly. When most of the experts did not have the time to perform
more than 10 inference steps, the supervisor will use an exponential growing length.

I f most of the experts of the next team are new, then it is difficult to tell whether
the team will be good or bad. Therefore the length of the next working period will
be shorter. How short depends on the number of facts that constitute the current
problem description. The more facts the more time is needed to perform an inference
step. In order to get useful measures from the referees, the experts have to perform
several inference steps in the working period. If the team was successful, then i t will
get more time the next round, else other experts will be tried out.

5 Experiences

In the last section we described how the supervisor plans a proof attempt and reacts
on the measures and results that he gets from the referees. In this section we will
demonstrate that this planning enhances the performance of the whole system.
In [AD93] and [DF94] we showed by experiments that team work, without planning by
the supervisor, can reduce the run time of a system on a proof problem dramatically
compared to the run times of the used experts, when working alone. But these results
have a drawback. We selected the team members of the teams. And these teams
changed from example to example.

I t is well known that all automated theorem provers have many parameters that can be

12

adjusted to a given proof problem. Our important parameter was the team members.
But this requires that the user of a theorem prover has much knowledge about the
prover and its parameters, so that he can plan his proof attempts with the prover. But
we want a system which can solve many, very different examples without the support
of an user in an acceptable time.

We demonstrate that team work with planning enables us to build such a system by
reporting results with examples from four different domains: propositional calculus
(pll to 4), lattice ordered groups (lat1 to 17), boolean rings (boo15b) and rings (lusk6).
For the descriptions of these examples see [DF94] and [AD93] or the appendix of this
paper. In order to demonstrate what examples are in which domain we changed the
names, but stated the original ones in parenthesis. We ·added the last two examples to
make the detection of domains more difficult. The four domains provide a wide range
of equational problems.

Table 1 documents our results. Besides the run times of a team using planning we
also give the run times of the best team consisting of two experts we were able to find,
the two experts that form this best team and the run time of the best expert working
alone on the problem. We have chosen to use only two processors because with small
resources a good use of them is very important. In order to allow a better comparison
we restricted also the best user selected teams to two processors.

The team runs using planning were always started with the same starting team and
the same system configuration. Besides the input of equations, a reduction ordering
and the goal of an example and the start command no interaction between system and
user took place. The alterations in the composition of the team were only effected by
the actions described in section 4. The system configuration specially includes some
basic data for computing the lengths of the working periods which play an important
part in the run of a proof. Note that for the times of the best teams also the lengths
of the several periods have been adapted to the specific examples.

The main observation in table 1 is that the team with planning needs a little more time
than the best team for most of the examples but still can solve also those examples that
no single expert can solve. It is clear that using planning we have to expect a certain
overhead. Our analysis of the runs using our proof extraction and analysis tool (see
[DS94]) showed that not the time for planning is responsible for the longer run times
but the need to tryout experts and the replanning that is involved when adjusting the
team to a problem.

If we take a look at the experts that constitute the best teams it is quite obvious
that even in one domain very different teams were needed. Especially in the domain
propositional calculus for each example a different team was best. Therefore it can not
be expected that the first plan to a domain always succeeds. Instead the reactive part
of the system must detect bad experts and exchange them. A~ld these bad experts in
most cases do not contribute to finding a proof but slow the system down.

Interestingly, there are some examples (pll, p14, bool5b, lat7, lat8, latlO, latll) for
which the team with planning needs less time than the best team (which lets one ask
why we call it the best team). While the run times for the lat examples are so short

13

adjusted to a given proof problem. Our important parameter was the team members.
But this requires that the user of a theorem prover has much knowledge about the
prover and its parameters, so that he can plan his proof attempts with the prover. But
we want a system which can solve many, very different examples without the support
of an user i n an acceptable time.

We demonstrate that team work with planning enables us to build such a system by
reporting results with examples from four different domains: propositional calculus
(pll to 4), latt ice ordered groups (latl t o 17), boolean rings (bool5b) and rings (lusk6).
For the descriptions of these examples see [DF94] and [AD93] or the appendix of this
paper. In order to demonstrate what examples are i n which domain we changed the
names, but stated the original ones in parenthesis. We added the last two examples to
make the detection of domains more difficult. The four domains provide a wide range
of equational problems.
Table 1 documents our results. Besides the run times of a team using planning we
also give the run times of the best team consisting of two experts we were able to find,
the two experts that form this best team and the run time of the best expert working
alone on the problem. We have chosen to use only two processors because with small
resources a good use of them is very important. In order to allow a better comparison
we restricted also the best user selected teams to two processors.

The team runs using planning were always started with the same starting team and
the same system configuration. Besides the input of equations, a reduction ordering
and the goal of an example and the start command no interaction between system and
user took place. The alterations in the composition of the team were only effected by
the actions described in section 4. The system configuration specially includes some
basic data for computing the lengths of the working periods which play an important
part in the run of a proof. Note that for the times of the best teams also the lengths
of the several periods have been adapted to the specific examples.

The main observation in table 1 is that the team with planning needs a l itt le more t ime
than the best team for most of the examples but still can solve also those examples that
no single expert can solve. It is clear that using planning we have to expect a certain
overhead. Our analysis of the runs using our proof extraction and analysis tool (see
[DS94]) showed that not the time for planning is responsible for the longer run times
but the need to try out experts and the replanning that is involved when adjusting the
team to a problem.
If we take a look at the experts that constitute the best teams i t is quite obvious
that even in one domain very different teams were needed. Especially in the domain
propositional calculus for each example a different team was best. Therefore i t can not
be expected that the first plan to a domain always succeeds. Instead the reactive part
of the system must detect bad experts and exchange them. And these bad experts in
most cases do not contribute to finding a proof but slow the system down.
Interestingly, there are some examples (pl l , pl4, bool5b, lat7, lat8, latl0, la t l l) for
which the team with planning needs less t ime than the best team (which lets one ask
why we call i t the best team). While the run times for the lat examples are so short

13

example team with
planning

best team best team
members

best sequential
expert

pH 29.91 35.07 MaxWeight, GP-in-Goal 40.99
pl2 50.18 14.21 AddFWeight, GTWeight 45.02
pl3 202.89 72.19 Goal-in-GP, AddRWeight 297.16
pl4 84.86 96.47 Goal-in-GP, GP-in-Goal -

l=;b=o:::;:o=;;:15=b==~=====5=:=0=:=.1~1=:=1=::::::==:5:::::=8.=:=86:::=1 Goal-Ill-GP, AddWelght 1 -I
Ilusk6 500.08 1 307.96 1 AddWeight, AddRWeight I 3019.00 I

latl (monola) 0.35 0.05 Occnest, AddWeight 0.05
lat2 (monolb) 0.36 0.05 Occnest, MaxWeight 0.05
lat3 (mono2a) 0.33 0.04 Occnest, AddWeight 0.03
lat4 (mono2b) 0.33 0.04 Occnest, AddWeight 0.03
lat5 (pIa) 0.71 0.28 Occnest, MaxWeight 0.27
lat6 (plb) 0.68 0.47 Occnest, AddWeight 0.28
lat7 (p2a) 2.46 5.41 AddRWeight, Occnest 79.52
lat8 (p3a) 3.04 4.23 Occnest, AddWeight 4.14
lat9 (p3b) 2.94 2.62 Occnest, AddWeight 2.55
latlO (p4a) 2.02 2.46 Occnest, AddWeight 1.84
latH (p4b) 1.93 2.06 Occnest, AddWeight 1.71
latl2 (p6a) 0.84 0.40 Occnest, MaxWeight 0.39
latl3 (p6b) 0.58 0.16 Occnest, MaxWeight 0.16
latl4 (p8b) 93.54 56.84 MaxRWeight, Goal-in-GP -

lat15 (p9a) 22.58 8.66 Occnest, AddWeight 19.57
latl6 (p9b) 23.95 8.44 AddWeight, Occnest 50.95
lat17 (plO) 37.94 25.20 MaxRWeight, Goal-in-GP -

Table 1: run-time comparison team with planning vs best team and best sequential
expert (in seconds)

14

example team with | best team best team | best sequential
planning members expert

pi l 29.91 35.07 MaxWeight, CP-in-Goal 40.99
pl2 50.18 14.21 | AddFWeight, GTWeight 45.02
pl3 202.89 72.19 | Goal-in-CP, AddRWeight 297.16
pl4 84.86 96.47 | Goal-in-CP, CP-in-Goal —

| bool5b | 50.11 | 58.86 | Goal-in-CP, AddWeight | —
[Tusk6] 500.08 | 307.96 | AddWeight, AddRWeight| 3019.00 |

latl (monola) 0.35 0.05 Occnest, AddWeight 0.05
lat2 (monolb) 0.36 0.05 Occnest, MaxWeight 0.05
lat3 (mono2a) 0.33 0.04 Occnest, AddWeight 0.03
lat4 (mono2b) 0.33 0.04 Occnest, AddWeight 0.03
lat5 (pla) 0.71 0.28 Occnest, MaxWeight | 0.27
lat6 (p1b) 0.68 0.47 Occnest, AddWeight 0.28
lat7 (p2a) 2.46 5.41 AddRWeight, Occnest 79.52
lat8 (p3a) 3.04 4.23 Occnest, AddWeight 4.14
lat9 (p3b) 2.94 2.62 Occnest, AddWeight 2.55
lat10 (pda) 2.02 2.46 Occnest, AddWeight 1.84
lat11 (p4b) 1.93 2.06 Occnest, AddWeight 1.71
lat12 (p6a) 0.84 0.40 Occnest, MaxWeight 0.39
lat13 (p6b) 0.58 0.16 Occnest, Max Weight 0.16

| 1at14 (p8b) 93.54 56.84 | MaxRWeight, Goal-in-CP —
lat15 (p9a) 22.58 8.66 Occnest, AddWeight 19.57
lat16 (p9b) 23.95 8.44 AddWeight, Occnest 50.95
lat17 (p10) 37.94 25.20 | MaxRWeight, Goal-in-CP —

Table 1: run-time comparison team wi th planning vs best team and best sequential
expert (in seconds)

14

6

that this would not be significant, the other three examples proved to be interesting.
Our analysis (and later experiments) showed that the better run times of the team with
planning were due to the fact that experts that were not members of the best team
-but chosen by the supervisor in the run using planning- provided results necessary for
the proof a little earlier than the members of the best team. But they were not able
to produce enough results to form with one of the members of the best team a better
team (of two experts, which is why the term best team for the third and fourth row
is correct). Using a team with three experts we were able to obtain a better run time
than the team with planning.

So, in these examples planning allowed us a better use of the resources. But in general
we have to expect that a change of the initial plan is necessary for many examples and
that in some working periods some experts do not contribute to a proof.

If we compare the team using planning with the best sequential experts for an example
we can observe that for small, easy examples the best sequential expert finds a proof
faster. But for harder examples the team with planning clearly outperforms the best
sequential expert and it still finds proofs when no sequential expert can. If we would
compare our team using planning with a fixed sequential expert there would be much
more examples for which this expert would find no proof. So the synergetic effect of
team work can also be observed when the team uses planning.

Finally we have to point out that in section 4 two ways of using a detected domain has
been described: first in order to add known consequences, second for planning purposes
of the supervisor. In all the examples listed in table 1 a domain was only used in the
second way, in order to emphasize the planning aspect of a domain. (It is obvious that
adding suited results will extremely reduce the run time of the prover.)

Related Work

The work presented here is related to three areas of artificial intelligence, namely
automated theorem proving, planning and distributed artificial intelligence (DAI). The
first work that is related to the first two areas is due to A. Bundy (see [Bu88]), who
invented the term proof planning. He concentrated on inductive theorem proving and
used a STRIPS-like (see [FHN81]) planning approach. He invented so called tactics
that are similar to the operators that can be defined in STRIPS. A proof attempt
consists of two phases, a planning phase, where on a meta-Ievel a proof is constructed
using the tactics, and a proof phase, where the selected tactics are evaluated on the
level of inference rules.

The problem of this approach is that the domains of the proof problems have to be
understood very well, so that it will be possible to find appropriate subproblems to a
proof problem. In equational or first-order theorem proving this is not the case as we
stated in the introduction. The information about domains we have accessible is much
too vague to allow the use of Bundy's approach.

In the area of planning we were inspired by the works of McDermott and Beetz on

15

that this would not be significant, the other three examples proved to be interesting.
Our analysis (and later experiments) showed that the better run times of the team with
planning were due to the fact that experts that were not members of the best team
-but chosen by the supervisor in the run using planning- provided results necessary for
the proof a l itt le earlier than the members of the best team. But they were not able
to produce enough results to form with one of the members of the best team a better
team (of two experts, which is why the term best team for the third and fourth row
is correct). Using a team with three experts we were able to obtain a better run time
than the team with planning.

So, in these examples planning allowed us a better use of the resources. But in general
we have to expect that a change of the initial plan is necessary for many examples and
that in some working periods some experts do not contribute to a proof.

If we compare the team using planning with the best sequential experts for an example
we can observe that for small, easy examples the best sequential expert finds a proof
faster. But for harder examples the team with planning clearly outperforms the best
sequential expert and i t st i l l finds proofs when no sequential expert can. If we would
compare our team using planning with a fixed sequential expert there would be much
more examples for which this expert would find no proof. So the synergetic effect of
team work can also be observed when the team uses planning.
Finally we have to point out that in section 4 two ways of using a detected domain has
been described: first in order to add known consequences, second for planning purposes
of the supervisor. In all the examples listed in table 1 a domain was only used in the
second way, in order to emphasize the planning aspect of a domain. (I t is obvious that
adding suited results wil l extremely reduce the run t ime of the prover.)

6 Related Work

The work presented here is related to three areas of artificial intelligence, namely
automated theorem proving, planning and distributed artificial intell igence (DA I) . The
first work that is related to the first two areas is due to A. Bundy (see [Bu88]), who
invented the term proof planning. He concentrated on inductive theorem proving and
used a STRIPS-like (see [FHN81]) planning approach. He invented so called tactics
that are similar to the operators that can be defined in STRIPS. A proof attempt
consists of two phases, a planning phase, where on a meta-level a proof is constructed
using the tactics, and a proof phase, where the selected tactics are evaluated on the
level of inference rules.
The problem of this approach is that the domains of the proof problems have to be
understood very well, so that i t will be possible to find appropriate subproblems to a
proof problem. In equational or first-order theorem proving this is not the case as we
stated in the introduction. The information about domains we have accessible is much
too vague to allow the use of Bundy’s approach.
In the area of planning we were inspired by the works of McDermott and Beetz on

15

7

planning reactive behaviour (see [Mc90], [Be9lD. Here planning was intended to help
a robot navigate through an area and perform certain tasks with limited time available
for planning. This limitation is also an important point of our approach. Now, robot
control and automated theorem proving are very different areas, but, as stated before,
both involve the necessity to deal with vague information. By use of several experts
we have the possibility to choose the situation we want to continue on, which is not
possible for only one robot.

In the areas of planning and distributed AI the research mainly concentrates on plan­
ning for autonomous agents, i.e. systems without a central control (see for example
[DL87D, or oh central planning of tasks that require coordination, because there are
dependencies between the actions of the agents (for example plans for several robots,
see [R082D. As the supervisor is the central control of the team and theorem proving
using team work is a task where no dependencies occur, we have ea~y solutions to most
of the problems addressed in these papers.

Conclusion and Future Work

We have presented a distributed theorem proving method where planning of the as­
signments of agents to the processors allows us to improve significantly the number of
theorems that can be proved without the user fiddling with parameters of the prover.
Although the run times of th~ version of our prover using planning are slower than
the run times of the best known teams for the problems we were able to prove ex­
amples from different domains to which none of our sequential provers could find a
solution thus still showing synergetic effects. Further, reactive planning enables us to
prove examples from one domain where the best known teams differ from example to
example.

Our approach to proof planning allows us to deal with knowledge about domains that
is vague and can even be contradictory. This is due to the competition of the experts
in the teams. So far, all other approaches to proof planning require exact and often
total knowledge about a domain of interest. in order to achieve satisfactory results.
Furthermore, the addition of new domains to our system is easy because of the explicit
representation of the knowledge about a domain by frames.

The detection of subproblems and the use of special methods to solve them that are
a characteristic of other approaches can also be integrated in our approach without
loosing the ability to deal with vague information. This is one direction in which we
want to investigate in the future.

Other topics of future research are to automate the generation of domain informa­
tion by learning from examples for the domain and the improvement of planning by
not only selecting known experts but also by generating new experts using parameter
adjustments of generic experts.

16

planning reactive behaviour (see [Mc90], [Be91]). Here planning was intended to help
a robot navigate through an area and perform certain tasks with limited time available
for planning. This limitation is also an important point of our approach. Now, robot
control and automated theorem proving are very different areas, but, as stated before,
both involve the necessity to deal with vague information. By use of several experts
we have the possibility to choose the situation we want t o continue on, which is not
possible for only one robot.
In the areas of planning and distributed A I the research mainly concentrates on plan-
ning for autonomous agents, i.e. systems without a central control (see for example
[DL8T7]), or on central planning of tasks that require coordination, because there are
dependencies between the actions of the agents (for example plans for several robots,
see [Ro82]). As the supervisor is the central control of the team and theorem proving
using team work is a task where no dependencies occur, we have easy solutions to most
of the problems addressed in these papers.

7 Conclusion and Future Work

We have presented a distributed theorem proving method where planning of the as-
signments of agents to the processors allows us to improve significantly the number of
theorems that can be proved without the user fiddling with parameters of the prover.
Although the run times of the version of our prover using planning are slower than
the run times of the best known teams for the problems we were able to prove ex-
amples from different domains to which none of our sequential provers could find a
solution thus st i l l showing synergetic effects. Further, reactive planning enables us to
prove examples from one domain where the best known teams differ from example to
example.

Our approach to proof planning allows us to deal with knowledge about domains that
is vague and can even be contradictory. This is due to the competition of the experts
i n the teams. So far, all other approaches to proof planning require exact and often
total knowledge about a domain of interest in order to achieve satisfactory results.
Furthermore, the addition of new domains to our system is easy because of the explicit
representation of the knowledge about a domain by frames.
The detection of subproblems and the use of special methods to solve them that are
a characteristic of other approaches can also be integrated in our approach without
loosing the ability to deal wi th vague information. This is one direction i n which we
want to investigate in the future.
Other topics of future research are to automate the generation of domain informa-
t ion by learning from examples for the domain and the improvement of planning by
not only selecting known experts but also by generating new experts using parameter
adjustments of generic experts.

16

References

[AD93] Avenhaus, J.; Denzinger, J.: Distributing equational theorem proving,
Proc. 5th RTA, Montreal, LNCS 690, 1993, pp. 62-76.

[BD88] Boddy, M.; Dean, T.: An Analysis of Time-Dependent Planning, Proc. 7.
National Conf. on AI, Minneapolis, 1988, pp. 49-54.

[BDP89]	 Bachmair, L.; Dershowitz, N.; Plaisted, D.A.: Completion without
Failure, ColI. on the Resolution of Equations in Algebraic Structures, Austin
(1987), Academic Press, 1989.

[Be91]	 Beetz, M.: Decision-theoretic Transformational Planning, Internal report,
Yale University, 1991.

[Bu88]	 Bundy, A.: The use of explicit plans to guide inductive proofs, Proc. 9th
CADE, 1988.

[CL73]	 Chang, C.L.; Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

[De93]	 Denzinger, J.: TEAMWORK: A method to design distributed knowl­
edge based theorem provers (in German), Ph.D. thesis, University of Kaiser­
slauterrr, 1993.

[DF94]	 Denzinger, J.; Fuchs, M.: Goal oriented equational theorem proving using
teamwork, Proc. 18th KI-94, Saarbriicken, LNAI861, 1994, pp. 343-354; also
available as SEKI-Report SR-94-04, University of Kaiserslautern, 1994.

[DL87]	 Durfee, E.H.; Lesser, V.R.: Using Partial Global Plans to Coordinate
Distributed Problem Solvers, Proc. IJCAI-87, 1987, pp.875-883.

[DS94]	 Denzinger, J.; Schulz, S.: Recording, Analyzing and Presenting Dis­
tributed Deduction Processes, Proc. PASCO'94, Linz, 1994, pp. 114-123.

[FHN81]	 Fikes, R.E.; Hart, P.E.; Nilsson, N.J.: Learning and executing general­
ized robot plans, in Webber, Nilsson (eds.) Readings in AI, 1981, pp.231-249.

[HR87]	 Hsiang, J.; Rusinowitch, M.: On word problems in equational theories,
Proc. 14th ICALP, Karlsruhe, LNCS 267, 1987, pp. 54-71.

[L085]	 Lusk, E.L.; Overbeek, R.A.: Reasoning about Equality, JAR 1, 1985, pp.
209-228.

[Mc94]	 McCune, W.W.: OTTER 3.0 Reference manual and Guide, Tech. Rep.
ANL-94/6, Argonne National Laboratory, 1994.

[Mc90]	 Mc Dermott, D.: Planning reactive behaviour: A progress report, in J.
AlIen, J.Handler, A. Tate: Innovative Approaches to Planning, Scheduling
and Control, Kaufmann, 1990, pp.450-458.

17

References

[AD93]

[BD88]

[BDP89]

[Be91]

[Bu88]

[CL73]

[De93]

[DF94]

[DL87]

[DS94]

[FHN81]

[HR87]

[LO85]

[Mc94]

[Mc90]

Avenhaus, J . ; Denzinger, J . : Distributing equational theorem proving,
Proc. 5th RTA, Montreal, LNCS 690, 1993, pp. 62-76.

Boddy, M . ; Dean, T . : An Analysis of Time-Dependent Planning, Proc. 7.
National Conf. on A I , Minneapolis, 1988, pp. 49-54.

Bachmair, L . ; Dershowitz, N . ; Plaisted, D .A . : Completion without
Failure, Coll. on the Resolution of Equations in Algebraic Structures, Austin
(1987), Academic Press, 1989.

Beetz , M . : Decision-theoretic Transformational Planning, Internal report,
Yale University, 1991.

Bundy, A . : The use of explicit plans to guide inductive proofs, Proc. 9 th
CADE, 1988.

Chang, C.L.; Lee, R .C . : Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

Denzinger, J.: TEAMWORK : A method to design distributed knowl-
edge based theorem provers (in German), Ph.D. thesis, University of Kaiser-
slautern, 1993.

Denzinger, J . ; Fuchs, M . : Goal oriented equational theorem proving using
teamwork, Proc. 18th KI-94, Saarbricken, LNAI 861, 1994, pp. 343-354; also
available as SEKI-Report SR-94-04, University of Kaiserslautern, 1994.

Durfee, E.H. ; Lesser, V.R.: Using Partial Global Plans to Coordinate
Distributed Problem Solvers, Proc. IJCAI-87, 1987, pp.875-883.

Denzinger, J . ; Schulz, S.: Recording, Analyzing and Presenting Dis-
tributed Deduction Processes, Proc. PASCO’94, Linz, 1994, pp. 114-123.

Fikes, R.E.; Hart, P.E.; Nilsson, N.J. : Learning and executing general-
ized robot plans, in Webber, Nilsson (eds.) Readings in AI , 1981, pp.231-249.

Hsiang, J . ; Rusinowitch, M . : On word problems in equational theories,
Proc. 14th ICALP, Karlsruhe, LNCS 267, 1987, pp. 54-71.

Lusk, E .L . ; Overbeek, R.A. : Reasoning about Equality, JAR 1, 1985, pp.
209-228.

McCune, W.W. : OTTER 3.0 Reference manual and Guide, Tech. Rep.
ANL-94/6, Argonne National Laboratory, 1994.

Mc Dermott , D . : Planning reactive behaviour: A progress report, in J.
Allen, J.Handler, A . Tate: Innovative Approaches to Planning, Scheduling
and Control, Kaufmann, 1990, pp.450-458.

17

[Ro82] Rosenschein, J.S.: Synchronization of Multi-Agent Plans, Proc. AAAI-82,
1982, pp.115-119.

[SD93] Sonntag, I.; Denzinger, J.: Extending automatic theorem proving by plan­
ning, SEKI-Report SR-93-02, University of Kaiserslautern, 1993.

[Ta56] Tarski, A.:
1956.

Logic, Semantics, Metamathematics, Oxford University Press,

18

[Ro82] Rosenschein, J.S.: Synchronization of Multi-Agent Plans, Proc. AAAI-82,
1982, pp.115-119.

[SD93] Sonntag, I . ; Denzinger, J . : Extending automatic theorem proving by plan-
ning, SEKI-Report SR-93-02, University of Kaiserslautern, 1993.

[Tab56] Tarski, A. : Logic, Semantics, Metamathematics, Oxford University Press,
1956.

18

Appendix: Input equations for the examples

The domain	 propositional calculus

These examples are based on a set of axioms for tautologies in propositional calculus
given by Frege (see [Ta56]). All examples have the following set of defining equations
and use an LPO with precedence C >- N >- T >- Ap >- Aq >- Ar as reduction ordering.

EQUATIONS	 C (T,x) = x

C (p,C (q,p)) = T

C (C (p,C (q,r)),C (C (p,q),C (p,r))) = T

C (C (p,C (q,r)),C (q,C(p,r))) = T

C (C (p,q), C (N (q),N (p))) = T

C (N (N (p)), p) = T

C (p, N (N (p))) = T

The task is to prove the following goals:

pll C (C (Ap,Aq),C (C (Aq,Ar),C (Ap,Ar))) = T
pl2 C (C (N (Ap),Ap),Ap) = T
p13 C (Ap, C (N (Ap), Aq)) = T
pl4 C (C (N(Ap),N(Aq)),C (Aq,Ap)) = T

The example bool5b

This example states that in a Boolean Ring the associativity axioms are redundant. As
reduction ordering we did not use the Knuth-Bendix ordering (with which this example
is easy to prove), but an LPO with precedence n >- a >- 0 >- 1 >- °>- xo >- xl >- x2.

EQUATIONS	 0 (x,y) = 0 (y,x)

a (x,y) = a (y,x)

a (x,o (y,z)) = 0 (a (x,y),a (x,z))

o (x,a (y,z)) = a (0 (x,y),o (x,z))
o (x,O) = x

a (x,l) = x

a (x,n (x)) = °

o (x,n (x)) = 1

CONCLUSION a(a(xO,x1),x2) = a(xO,a(x1,x2))

The example lusk6

This examples states that a ring where x3 = x holds is commutative. It is the most
difficult example mentioned in [L085]. Note that we do not use a special handling of
the AC theory in our prover. The used ordering is an KBO with f:5 >- j:4 >- g:3 >- 0:1
>- b:1 >- a:1 (weights of the symbols are given behind the :-sign, weights of variables
are 1).

19

Appendix: Input equations for the examples

The domain propositional calculus

These examples are based on a set of axioms for tautologies in propositional calculus
given by Frege (see [Ta56]). All examples have the following set of defining equations
and use an LPO with precedence C > N > T > Ap > Aq > Ar as reduction ordering.
EQUATIONS C (Tx) =x

C(p ,C (ap)=T
C (C (p,C (q,r)),C (C (p,a),C (pr))) = T
C (C (p,C (q,r)),C (a,C (p,r))) = T
C (C (p,q), C (N (q),N (p))) = T
C (N (N (p)), p) = T
Cle, N(N(p)=T

The task is to prove the following goals:

pll : C(C (Ap,Aq),C (C (Aq,Ar),C (Ap,Ar)))= T
pl2 : C (C (N (Ap) ,Ap) ,Ap)= T
pl3 : C(Ap ,C (N (Ap), Aq)) = T
pl4 : C(C (N(Ap),N(Aq)),C (Aq,Ap))= T

The example bool5b

This example states that in a Boolean Ring the associativity axioms are redundant. As
reduction ordering we d id not use the Knuth-Bendix ordering (with which th is example
is easy to prove), but an LPO with precedencen > a > o> 1 > 0 >» x0 > x1 > x2.

EQUATIONS o (x,y) = o (y,x)
a (x,y) = a (yx)
a (x0 (v,2)) = o (a (x,y),a (x,2))
o (x,a (y,2)) = a (0 (x,y),0 (x,2))
o(x,0) =x
a (x,1) =x
a (x,n (x)) = 0
o (x,n (x)) = 1

CONCLUSION a(a(x0,x1),x2) = a(x0,a(x1,x2))

The example lusk6

This examples states that a ring where x® = x holds is commutative. It is the most
difficult example mentioned in [LO85]. Note that we do not use a special handling of
the AC theory in our prover. The used ordering is an KBO with f:5 > j:4 > g:3 > 0:1
> b : l > a: l (weights of the symbols are given behind the :-sign, weights of variables
are 1) .

19

EQUATIONS j (O,x) = x
j (x,O) = x

j (g (x),x) = 0

j (x,g (x)) = 0

j (j (x,y),z) = j (x,j (y,z))

j (x,y) = j(y,x)

f (f (x,y),z) = f (x,f (y,z))

f (x,j (y,z)) = j (f (x,y),f (x,z))

f (j (x,y),z) = j (f (x,z),f (y,z))

f (f(x,x),x) = x

CONCLUSION f (a,b) = f (b,a)

The domain lattice ordered groups

All examples of this domain have the following set of defining equations and use an
LPO with precedence i >- f>- n >- u >- 1 >- a >- b >- c as reduction ordering.

EQUATIONS	 n (x,y) = n (y,x)

u (x,y) = u (y,x)

n (x,n (y,z)) = n (n (x,y),z)

u (x,u (y,z)) = u (u (x,y),z)

u (x,x) = x

n (x,x) = x

u (x,n (x,y)) = x

n (x,u (x,y)) = x

f (x,f (y,z)) = f (f (x,y),z)

f (l,x) = x

f (i (x),x) = 1

f (x,u (y,z)) = u (f (x,y),f (x,z))

f (x,n (y,z)) = n (f (x,y),f (x,z))

f (u (y,z),x) = u (f (y,x),f(z,x))

f (n (y,z),x) = n (f(y,x),f (z,x))

Since most of the goals to prove are conditional equations we listed in the following
the additional equations and the conclusion we have to prove for all the examples of
Table 1.

20

EQUATIONS j (0,x) = x
j (x,0) = x
j (g (x) , x) =0
j (x,g (x)) = 0
iG (x,y),z) = i (xi (y,z))
j (x,y) = j(y,x)
f (f (x,y),z) = f (x,f (y,z))
f (x,j (v,2)) = 3 (f (x,y);£ (x,2))
f (j (x,y);z) = j (f (x,z),f (y,z))
f (f(x,x),x) = x

CONCLUSION f (a,b) = f (b,a)

The domain lattice ordered groups

Al l examples of th is domain have the following set o f defining equations and use an
LPO with precedencei > f > n > u > 1 > a > b > c as reduction ordering.
EQUATIONS n (x,y) =n (yx)

u (x,y) = u (yx)
n (xn (v,2)) = n (n (x,y),2)
u (x,u (y,2)) = u (u (x,y);7)
u (x,x) = x
n (x,x) = x
u (x,n (x,y)) = x
n (x ,u (x ,y)) = x
f (x f (y,2)) = £ (f (x,y),2)
f (l x)=x
f (i (x) ,x) = 1
f (x ,u (v,2)) = u (f (x,y) , f (x,2))
f (xn (v2) =n (f (x ,y) , f (x ,z))
f (u (y,z),x) = u (f (y,x),f (z,x))
f (n (y,z),x) = n (£.(y,x),f (z,x))

Since most of the goals to prove are conditional equations we listed in the following
the additional equations and the conclusion we have to prove for all the examples of
Table 1 .

20

latl

lat2

lat3

lat4

lat5

laW

lat7

lat8

EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

lat9
CONCLUSION
EQUATIONS

latlO
CONCLUSION
EQUATIONS

latH
CONCLUSION
EQUATIONS

lat12

lat13

lat14

CONCLUSION
EQUATIO~S

CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

latl5
CONCLUSION
EQUATIONS

lat16
CONCLUSION
EQUATIONS

lat17
CONCLUSION
CONCLUSION

u (a,b) = b
u (f (a,e),f (b,e)) = f (b,e)
n (a,b) = a
n (f (a,e),f (b,e)) = f (a,e)
u (a,b) = b
u (f (e,a),£ (e,b)) = £ (e,b)
n (a,b) = a
n (£ (e,a),£ (e,b)) = £ (e,a)
u (a,b) = b
u (£ (i (e),£ (a,e)),£ (i (e),£ (b,e))) = £ (i (e),£ (b,e))
n (a,b) = a
n (£ (i (e),£ (a,e)),£ (i (e),f (b,e))) = f (i (e),£ (a,e))
u (i (a),i (b)) = i (b)
u (a,b) = a
u (a,b) = b
u (e,d) = d
u (£ (a,e),£ (b,d)) = £ (b,d)
n (a,b) = a
n (e,d) = e
n (£ (a,e),£ (b,d)) = £ (a,e)
u (l,a) = a
u (l,b) = b
u (1,£ (a,b)) = £ (a,b)
n (l,a) = 1
n (l,b) = 1
n (1,£ (a,b)) = 1
u (l,b) = b
u (l,f (i (a),f (b,a))) = f (i (a),f (b,a))
n (l,b) = 1
n (1,£ (i (a),£ (b,a))) = 1
n (l,a) = 1
n (l,b) = 1
n (l,e) = 1
n (n (a,£ (b,e)),£ (n (a,b),n (a,e))) = n (a,£ (b,e))
u (l,a) = a
u (l,b) = b
u (l,e) = e
n (a,b) = 1
n (a,f (b,e)) = n (a,e)
n (l,a) = 1
n(l,b) = 1
n (l,e) = 1
n (a,b) = 1
n (a,f (b,e)) = n (a,e)
i (u (a,b)) = n (i (a),i (b))

21

l a t l

lat2

lat3

lat4

lat5

la t6

lat7

lat8

lat9

lat10

la t11

lat12

lat13

lat14

lat15

lat16

lat17

EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
CONCLUSION

u (a,b) = b
u (f (a,c),f (bye) = f (b,c)
n (a,b) = a
n (f (a,c),f (b,c)) = f (a,c)
u (a,b) = b
u (f (c,a),f (c,b)) = f (c,b)
n (ab) =a

n (f (ca)f (6b) = £ (0,2)
u (a,b) = b
uue L t (a,c)),f (i (c),f (b,c))) = (i (c) f (b,c))

n (f (i (c),f (a,c)),f (i (c),f (b,c))) = f (i (c),f (a,c))
u i (0 (5) = 10)
u (a ,b)=
u (a,b) =
u (c,d) =
u (f (a,c),f (bd) = f (b,d)
n (a,b) = a
n (c,d) =
n (f (a,c),f (b,d)) = f (a,c)
u (l a)=a
u (l , b)=b
u (1,f (a,b)) = f (a,b)
n (l a) = 1
n (1,b) =
n (1,f (a,b)) = 1
u (1,b) = b
u (1 , f (i (a) . f (b ,a))) = f (i (a) . f (b ,a))
n (l b)=1
n (1,f (i (a),f (b,a))) =
n (la) =1
n (l b) = 1
n (l , c)=1
n i ME (b,c)),f(n (a,b),n (a,c))) = n (a f (b,c))

u (1,b) = b
ul(l , ‚c)=c
n (a,b) = 1
n (a f (b ,c) = n (a0)
n (l a)=1
n (1,b) =1
n (lec) = 1
n (a,b) = 1
n (a f (b,c)) = n (a,c)
i (u (a ,b)= n (i (a),i (b))

21

