
Fa
ch

be
re

ic
h 

In
fo

rm
at

ik

=
©Pf
joo

Le,
%
b
©

Dr
SSXo
0 ©
=

Qe
= 3

Ja

SE
KI

 - 
R

EP
O

R
T

D
-6

76
63

 K
ai

se
rs

la
ut

er
n

Plann ing  for d is t r ibuted theorem
proving:  The team work approach

Jorg Denzinger. Martin Kronenburg
SEKI Report SR-94-09





Planning for distributed theorem proving:
The team work approach

Jörg Denzinger, Martin Kronenburg
Department of  Computer Science

University of Kaiserslautern
Postfach 3049

67653 Kaiserslautern
Email: {denzinge, kronburg}@informatik.uni-kl.de

Abst rac t

This paper presents a new way to  use planning in  automated theorem proving
by means of distribution. To overcome the problem that often subtasks for
a proof problem can not be detected a priori (which prevents the use of the
known planning and distribution techniques) we use a team of  experts that work
independentlywith different heuristics on  the problem. After a certain amount of
time referees judge their results using the impact of  the results on the behaviour
of the expert and a supervisor combines the selected results t o  a new starting
point.

This supervisor also selects the experts that can work on the problem in
the next round. This selection is a reactive planning task. We outline which
information the supervisor can use t o  fulfill this task and how this information
is processed to  result in a plan or t o  revise a plan. We also show that the use
of  planning for the assignment of  experts t o  the team allows the system to  solve
many different examples in  an acceptable time with the same start configuration
and without any consultation of  the user.

Plans are always subject to change

Shin’a’in proverb

1 Introduct ion

A main problem of automated theorem proving is the immense search space that even
for small problems a theorem prover has to  deal with. Research for solutions to this
problem centers on  two directions, the use of  distr ibuted provers and the  use of knowl-
edge to guide the prover through the search space. Although this guidance is used



quite some time in provers by means of heuristics, only in the last few years better 
concepts of guidance, namely planning, find their way into proving systems. 

Both, distributed provers and provers using planning have to deal with the same prob­
lem: the inability of finding a priori appropriate subtasks for a proof problem. Only 
if very much about a proof problem is known, such subtasks can be determined. But 
what when the knowledge about the proof problem in addition to the input is vague? 

To deal with this problem we developed the team work method (see [De93], [AD93]) 
for the distribution of problem solving tasks. It is applicable where the descriptions of 
the tasks show no obvious ways for distribution. The general idea of team work is to 
let a team of several so called experts work independently on the proof problem. They 
differ in the heuristics they use to determine the next step to do. After a given amount 
of tiine the experts stop their work and for each expert a referee assesses the work of 
the expert and reports a general assessment and a few good results to a supervisor. 
This supervisor collects the reports, generates based on these reports a new starting 
point for the experts and selects experts and referees fdr the next working round. We 
call the phase when the referees and the supervisor work a team meeting. 

Structure and behaviour of our teams lead to a system that uses both competition and 
cooperation between its components (mainly the experts) to solve given problems. The 
experts compete with each other in order to stay in the team. But with the help of the 
referees they also cooperate, because their best results are used to form a new starting 
point for the work of the team. 

In [AD93] we mainly concentrated on the general aspects and the theory of this ap­
proach and showed that for many examples there exist combinations of experts that 
allow big speed-ups. In [DF94] we designed powerful experts and demonstrated that 
we are even able to solve examples using team work that could not be solved by any 
of our experts working alone. But the question remains how to choose automatically 
good teams for a given example, so that in general different examples can be solved in 
an acceptable time. The solution to this problem is the supervisor. During the team 
meetings he selects the members of the team for the next round. 

We see this process of creating a new team in each team meeting as a kind of reactive 
planning in which the supervisor uses general knowledge about the experts, the referees 
and their relationships, dependencies and incompatibilities (the long-term memory) in 
combination with the results of the experts on the given problem so far (the short-term 
memory), to determine the team members. He selects not only the team members of 
the next round but also can make assignments for further rounds provided that the 
selected team comes up with the expected results. Otherwise the behaviour of the 
selected team is used to find better suited experts. This can be seen as replanning or 
plan revision. 

By planning the team we contribute to the problem of finding subtasks for a proof 
problem. If subtasks can be detected, they can be assigned to experts that are capable 
to prove them. If no subtasks can be found, then the supervisor tries several experts 
and adjusts the whole system more and more to the given problem. 

Using reactive planning by the supervisor we were able to automatically solve most 
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we are even able to solve examples using team work that could not be solved by any
of  our experts working alone. Bu t  the question remains how to  choose automatically
good teams for a given example, so that in  general different examples can be solved in
an acceptable time. The solution to  this problem is the supervisor. During the team
meetings he selects the members of the team for the next round.
We see this process of creating a new team in  each team meeting as a kind of reactive
planning in  which the supervisor uses general knowledge about the experts, the referees
and their relationships, dependencies and incompatibilities (the long-term memory) in
combination with the results of the experts on the given problem so far (the short-term
memory), to determine the team members. He selects not only the team members of
the next round but also can make assignments for further rounds provided that the
selected team comes up with the expected results. Otherwise the behaviour of the
selected team is used to find better suited experts. This can be seen as replanning or
plan revision.

By planning the team we contribute to the problem of finding subtasks for a proof
problem. If subtasks can be detected, they can be assigned to experts that are capable
to prove them. If no subtasks can be found, then the supervisor tries several experts
and adjusts the whole system more and more to  the given problem.
Using reactive planning by the supervisor we were able to automatically solve most
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of the examples of [DF94] and [AD93] without any interference by the user: no team 
selection, no parameter adjustment by the user was necessary, just planning using 
general but vague knowledge was enough (see section 5). The knowledge-based reactive 
planning approach used by the supervisor of a team presented in this paper allows for 
a much easier extension of the system to new domains than the auto mode of Otter 
(see [Mc94])does. Here the code must be changed in order to deal with new domains. 
This auto mode was, like team work, designed to provide a fully automatic theorem 
prover to users that do not want to learn all about the tricks of a prover in order to 
work with it. 

Our paper is organized as follows: After this introduction we will give a brief survey of 
equational deduction by completion which is the task we want to improve using team 
work. In section 3 we take a deeper look on the team work method and it's use for 
distributing automated theorem proving. In section 4 we concentrate on the tasks of 
the supervisor in a team and show how we represent the knowledge he needs and how 
he can use this knowledge to plan our distributed proof process. In section 5 we report 
on our experiences and discuss how the supervisor guides the search for a proof. In 
section 6 we relate our work to other works in the field of planning in AI. Finally in 
section 7, we give a conclusion. 

Automated theorem proving and completion 

Because this paper is mainly aimed to analyze and describe the planning aspect of team 
work done by the supervisor, we only give a very brief introduction into automated 
theorem proving, equational theorem proving and the completion method for equc:1tional 
proving. For more details we refer to [AD93], [CL73], [HR87] and [BDP89]. 

Theorem proving means solving the following problem: 

Given: A set A of axioms and a theorem T to prove. 
Question: Is T a logical consequence of A ? 

In equational theorem proving A = {Si = ti- i=l,... ,n} is a set of (all-quantified) 
equations and T is an equation u = v, too. 

All successful methods for automated theorem proving, if equality is involved, are based 
on two kinds of inference rules: generation rules and contraction rules. The generation 
inference rules add new facts to the data base. These facts are derived either from the 
axioms alone (as in the case of equational theorem proving by completion, i.e. the 
critical pair generation) or from both, the axioms and the theorem T (as in the case 
of resolution and paramodulation). The contraction inference rules change or delete 
facts from the data base. A well known contraction inference is the reduction (or 
demodulation) that uses an equation I = r as rule 1-+ r in order to exchange instances 
of I in a fact by the appropriate instance of r. Then a fact is in normal form, if no 
reductions with any equation of the data base is possible. 

Fro~ a theoretical point of view we need for an automated theorem praver, besides 
the inference rules, fairness criteria for the use of the inference rules. These criteria 
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theorem proving, equational theorem proving and the completion method for equational
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All successful methods for automated theorem proving, i f  equality is involved, are based
on  two kinds of  inference rules : generation rules and contraction rules. The generation
inference rules add new facts to  the data base. These facts are derived either from the
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the inference rules, fairness criteria for the use of the inference rules. These criteria

3



3 

guarantee that each application of an inference rule that is possible indeed will at some 
time be made. But for challenging examples there are many possible inferences and 
a systelllatic application results both in enorlllOUS run tillles and the need of much 
(memory) space. For such examples the prover very often has an agenda of 50,000, 
100,000 or even more inference rule applications. 

Therefore implementations of automated theorem provers use strategies and heuristics 
to select the next inference rule to apply and the facts these rules should work on. A 
strategy guarantees theoretical completeness whereas for heuristics it is possible that 
the prover will not find a proof even if there is one and enough time and space are 
provided. Many theorem provers allow the user to choose between various strategies 
and heuristics. But two problems remain. First, for a given problem there may be no 
appropriate strategy or heuristic implemented in the system. Second, even if there is 
a good one implemented, how does the user know which one is good ? 

We tackled both problems with our team work method as we will demonstrate in the 
next section. 

The Team work method 

The team work method is inspired by project teams in business companies. Due to 
their temporary existence they allow an exact tuning to the problem they have to solve. 
This tuning is achieved by the supervisor of the team who chooses always the team he 
thinks is best suited for the current status of the solution of the given problem. 

So one major task of the supervisor in a system based on the team work method is a 
planned selection of the team members. This planning must also. allow a fast reaction 
to problems with the selected teams or when unexpected breakthroughs occur. We will 
discuss this task of the supervisor in more detail in the next section. In this section we 
will look at the other components of a team, the experts and referees, and their tasks 
and how they compete and cooperate to solve a given problem. 

Experts are those components that work on the problem solution. They have to gener­
ate new facts and goals. Therefore for each expert there has to be a processor. If there 
are more experts than processors (which is usually the case) then the experts have to 
compete with each other in order to get a processor for the next working period. Each 
expert uses other methods to gain new· data and represents a different view on the 
problem than his colleagues. 

In automated theorem proving one achieves these distinctions by using different selec­
tion strategies and heuristics for the next inference step in the experts. There are many 
many criteria that can be used to get different heuristics. In our team work completion 
system we use, beside others, heuristics that 

- focus on parts of the set of known facts, 

- focus on statistical properties of the facts (for example the number of symbols), 
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guarantee that-each application of an inference rule that is possible indeed will at some
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the prover will not find a proof even i f  there is one and enough time and space are
provided. Many theorem provers allow the user to choose between various strategies
and heuristics. But two problems remain. First, for a given problem there may be no
appropriate strategy or heuristic implemented in  the system. Second, even i f  there is
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thinks is best suited for the current status of the solution of the given problem.
So one major task of the supervisor in a system based on the team work method is a
planned selection of  the team members. This  planning must also, allow a fast reaction
to  problems with the selected teams or when unexpected breakthroughs occur. We will
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and how they compete and cooperate to  solve a given problem.

Experts are those components that work on the problem solution. They have to  gener-
ate new facts and goals. Therefore for each expert there has to be a processor. If there
are more experts than processors (which is usually the case) then the experts have to
compete with each other in  order to  get a processor for the next working period. Each
expert uses other methods to gain new data and represents a different view on the
problem than his colleagues.
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t ion strategies and heuristics for the next inference step in the experts. There are many
many criteria that can be used to  get different heuristics. In  our team work completion
system we use, beside others, heuristics that

- focus on parts of the set of known facts,

- focus on statistical properties of the facts (for example the number of symbols),



- focus on special properties of the method used by the experts, i.e. completion, 

- focus on the goal to prove. 

Experts compete for processors, but a characteristic of a project team is also that 
the members of the team cooperate with each other. As a result of this cooperation, 
problems can be solved much faster than by a team member, i.e. an expert, alone. A 
good team is able to solve a problem faster than an expert alone even if we consider as 
time for finding the solution the sum of the times needed by all members (instead of 
time you can also be interested in the costs, but you will make the same observation). 
So cooperation leads to synergetic effects. 

The team work method achieves cooperation between the experts by using referees and 
team meetings. After certain periods of time (the period length is determined by the 
supervisor) in which each expert works on the problem independently, a team meeting 
takes place. Before the meeting, each expert and his work so far is evaluated by a 
referee. The tasks of the referees are to compute a measure for the success of their 
experts and to select good results of the experts. The measure of an expert is used by 
the supervisor to determine the team members of the next round. The selected results 
are used to generate a new data base of facts and goals that is the starting point for the 
next round. Note that during a team meeting the main work is done by the supervisor. 
All processors, but the one running the supervisor, are most of the meeting idle. 

The main problem in designing referees is how to compute measures for the overall 
behaviour of an expert on a problem and for the usefulness of generated results. For 
both measures there are statistical criteria that have proven to be quite successful in 
our application, automated theorem proving. Our different referees use a weighted sum 
of the following numbers (and some more, specific to the inference rule system used) 
to measure an expert (different referees are using different weights): 

- the size of the data base, 

- the number of contraction inferences that were performed, split into the number 
of contractions of facts and the number of contractions of goals, 

- the number of potential inferences, 

- the quotient of the average weight of the last few performed inferences and the 
average weight of all performed inferences. 

The last number indicates whether the heuristic used by the expert is getting better 
at the moment (quotient smaller than 1) or getting worse (quotient larger than 1). 

Note that during a proof attempt it is often necessary to change the referee of an 
expert. Whereas at the beginning of an attempt one expects a growing size of the data 
base and is therefore more interested in experts that have performed many contraction 
inferences, later in .a proof one want to give such experts a good measure that can keep 
the size of their data bases stable or even manage to shrink it. 
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In order to select good results we use similar statistical criteria, but compute them 
for one fact, for example the number of contractions performed with this fact. Also 
we give the referees a maximal number of facts that can be selected and a minimal 
measure that each selected fact must at least achieve. So experts that only produce 
bad results can not add even some of their results to the new starting data base. By 
this we avoid blowing up the search space with unnecessary results. 

Before we can concentrate on the planning aspects of the supervisor, we have to describe 
how the new starting data base is constructed. In order to guarantee completeness of 
our prover using the team work method we use the data base of the expert with the 
best overall measure as basis. Then we add the selected results of the other experts to 
this basis. This way, the whole progress of one expert (the best one !) is part of the 
new data base, but the good results of the other experts can improve this data base 
significantly thus leading much faster to a solution. 

Selection of experts and referees by planning 

As in the case of human project teams, systems based on the team work method rely 
on a good use of the given resources, i.e. the processors. The supervisor is responsible 
for the future assignment of these resources. In order to find such an assignment he 
has to use planning. 

The main problem one has to face if one wants to use planning in theorem proving 
is a general vagueness of all information one can use. In contrast to areas like the 
blocks world or even movement planning for robots, there are no operators with fixed 
pre~ and postconditions that can be put together in order to obtain an executable 
plan. In theorem proving the only candidates for such operators are the inference rules 
themselves and using them would lead back to the initial proof problem. 

Instead one has to use planning on an abstract level that allows an easy search for a 
plan to a given problem. But such a plan may not be executable. By executable we 
mean that all preconditions a step of a plan needs are fulfilled when this step is done 
on the level of the inferences. A step may not be executable, because the outcome of 
prior steps delivered not the expected results. In general, one can say that the more 
knowledge about a problem is available the better a plan can be constructed and the 
more reliable this plan is during execution. The known planning approaches to theorem 
proving, for example [Bu88] or [SD93] (see section 6), require a lot of very concrete 
knowledge to be able to operate. 

The abstraction level that is provided by the experts and referees of team work is much 
higher than the level used by the other approaches. This means that the information 
we have to a given problem is very vague. Therefore we have always to expect that 
a generated plan is wrong and we have to deal with this problem. Also one can not 
do a complete planning before doing any inference steps in the prover, because the 
more future steps one plans the more vague is the information about the outcome 
of these steps. A main reason for the vagueness of the used information is that, as 
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In order to select good results we use similar statistical criteria, but compute them
for one fact, for example the number of contractions performed with this fact. Also
we give the referees a maximal number of facts that can be selected and a minimal
measure that each selected fact must at least achieve. So experts that only produce
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this we avoid blowing up the search space with unnecessary results.
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how the new starting data base is constructed. In order to  guarantee completeness of
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blocks world or even movement planning for robots, there are no operators with fixed
pre- and postconditions that can be put together in order to  obtain an executable
plan. In theorem proving the only candidates for such operators are the inference rules
themselves and using them would lead back to  the initial  proof problem.

Instead one has to use planning on an abstract level that allows an easy search for a
plan to a given problem. But  such a plan may not be executable. By  executable we
mean that all preconditions a step of a plan needs are fulfilled when this step is done
on the level of  the inferences. A step may not be  executable, because the outcome of
prior steps delivered not the expected results. In general, one can say that the more
knowledge about a problem is available the better a plan can be constructed and the
more reliable this plan is during execution. The known planning approaches to  theorem
proving, for example [Bu88] or [SD93] (see section 6), require a lot of very concrete
knowledge to be able to operate.

The abstraction level that is provided by the experts and referees of team work is much
higher than the level used by the other approaches. This means that the information
we have to a given problem is very vague. Therefore we have always to expect that
a generated plan is wrong and we have to  deal with this problem. Also one can not
do a complete planning before doing any inference steps in  the prover, because the
more future steps one plans the more vague is the information about the outcome
of these steps. A main reason for the vagueness of the used information is that, as



already stated, in most cases one can not detect appropriate subproblems to a given 
proof problem a priori (the other approaches rely heavily on the detection of such 
subproblems). 

Using team work we have to face a second problem when doing planning. The com­
ponent responsible for planning is the supervisor, the component that represents the 
bottleneck of our distributed system. Therefore we have to do the planning in a cer­
tain, but varying, time limit that is small in contrast to the time of a working period. 
We hope to deliver better results with increasing planning time, but this can not be 
guaranteed (see later in this section). 

Our solutions to these problems are first team work itself that allows in form of the 
experts to follow several promising directions at once, thus allowing some vagueness 
in the information used by the system. The referees enable the system to determine 
which of the directions is the most promising one and which of the other directions 
can provide good auxiliary results. As general planning approach we use ideas from 
planning reactive behavior (see [Mc90], [Be9l]). These ideas, combining a long-term 
memory with knowledge about earlier proof attempts in a domain of interest and 
a short-term memory of the behaviour of experts on the actual problem, allow for 
adequate reactions to problems and unsuccessful plans and make replanning easier. 
The second problem is solved by implementing our planning approach as anytime 
algorithm ·(see [BD88]) that allows to stop with planning at any a priori given time. 

The main concept that is used by the supervisor for planning is the domain of a given 
example. As in other proof planning systems, a domain is a collection of information 
about a set of proof examples one is (or was) interested in. In our system a domain 
is a collection of facts (defining the domain), consequences of these facts, methods 
useful for these facts and other information. The following example shows the domain 
description for the domain "ring". 

domainname: ring
 
signature: ~:2 , 0:0 , -:1 , *:2
 
equations: x~O = x ; x+(-x) = 0
 

(x~y)~z = x~(y~z) ; x+y = y~x 

(x*y)*z = x*(y*z) ; (x*y)+(x*z) = x*(y~z) 

(x*y)~(z*y) = (x+z)*y 
consequences: O+x = x ; (-x)~x = 0 
starting team: ADD-WEIGHT; ADD-RWEIGHT 
middle team: ADD-WEIGHT; ADD-RWEIGHT 
end team: ADD-WEIGHT; GOAL-SIM 
superior domain: group 
speeializ~d domains: boolean ring 
similar domains: non-associative ring 

Before we can go into detail how domains are used for planning we have to show how 
domains can be detected in order to be of any use. There are several possibilities how 

. to determine weather a given example belongs to a domain or not. They differ in the 
amount of deduction used and therefore in the chances that a domain is detected. 
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already stated, in most cases one can not detect appropriate subproblems to a given
proof problem a priori (the other approaches rely heavily on the detection of such
subproblems).
Using team work we have to  face a second problem when doing planning. The com-
ponent responsible for planning is the supervisor, the component that represents the
bottleneck of  our distributed system. Therefore we have to do the planning in a cer-
tain, but varying, t ime l imi t  that is small in  contrast to  the time of a working period.
We hope to deliver better results with increasing planning time, but this can not be
guaranteed (see later in  this section).
Our solutions to these problems are first team work itself that allows in form of the
experts to follow several promising directions at once, thus allowing some vagueness
in  the information used by the system. The referees enable the system to  determine
which of the directions is the most promising one and which of the other directions
can provide good auxiliary results. As general planning approach we use ideas from
planning reactive behavior (see [Mc90 ] ,  [Be91}).  These ideas, combining a long-term
memory wi th knowledge about earlier proof attempts in  a domain of interest and
a short-term memory of the behaviour of experts on the actual problem, allow for
adequate reactions to problems and unsuccessful plans and make replanning easier.
The second problem is solved by implementing our planning approach as anytime
algorithm (see [BD88]) that allows to stop with planning at any a priori given time.

The main concept that is used by the supervisor for planning is the domain of a given
example. As in other proof planning systems, a domain is a collection of information
about a set of proof examples one is (or was) interested in. In our system a domain
is a collection of facts (defining the domain), consequences of these facts, methods
useful for these facts and other information. The following example shows the domain
description for the domain "ring”.

domainname: ring
signature: + :2 ,0 :0 , - : 1 ,  *:2
equations: x+0 =x ;  x+(-x) = 0

(x+y)+z  = x+(y+2) ; x+y = y+x
(x*y)*z = x*(y*z) ; (x*y)+(x*z) = x*(y+2)
(x*y)+(z*y) = (x+2)*y

consequences: 0+x =x ;  (-x)+x = 0
start ing team: ADD-WEIGHT ; ADD-RWEIGHT
middle team: ADD-WEIGHT ; ADD-RWEIGHT
end team: ADD-WEIGHT ; GOAL-SIM
superior domain: group
specialized domains: boolean ring
similar domains: non-associative ring

Before we can go into detail how domains are used for planning we have to show how
domains can be detected in  order to be of any use. There are several possibilities how

° to determine weather a given example belongs to a domain or not. They differ in  the
amount of deduction used and therefore in  the chances that a domain is detected.



If one wants to use as little deduction as possible then one should first try to find a 
match E from the signature of the domain (slot signature) to the signature of the 
example and then test for all facts of equations instantiated by E, if they are in the 
facts (Le equations) that describe the example (up to renaming of variables). In practise 
this method has the problem that other equations of the example may reduce equations 
that are in equations. Then they can not be detected by the method although the 
example is in the domain. 

The other extreme is to find a signature match E such that one can prove for all facts 
s=t in equations that E(s) = E(t) is an equational consequence of the set E that defines 
the example. Instead to show one goal one would have to show many of them which 
is very difficult, because there may be domains to which an example does, not belong 
(meaning that one has to prove that an equation is not a consequence of E which can 
lead to an infinite computation). 

We have chosen a method between those two extremes. We check, if there is a signature 
match E such that for all instantiated elements of equations the normal forms of 
these equations are either identical or subsumed by an equations of the example. This 
overcomes the problems of the first method, but is also guaranteed to be decidable. 
Testing for domains is done in team work by a so-called "domain detection specialist" 
whose only task is to check many domain descriptions and to report those domains for 
which such a match can be found to the supervisor. In addition, this specialist can also 
report the equations of the slot consequences, instantiated by E, to the supervisor 
(or a referee's selection of these equations). 

Using a domain detection specialist as member of the team of the first working period 
the supervisor can take advantage of the other information he has about the detected 
domains. I 

During the first team meeting the planning task of the supervisor is to select a plan 
skeleton. A plan skeleton is the central part of the description of a domain of the 
supervisor. It describes three good teams to use for problems of the domain. These 
teams should be used in the three different phases we have observed in many proofs. 
The starting phase is characterized by a growing number offacts (slot starting team). 
In the middle phase the number of facts both decreases and then increases, again (slot 
middle team). In the end phase, the proof is completed with a few further inferences 
(slot en,d team). We developed special experts for the end phase that use criteria that 
are based on similarities between the goal and the facts (see [DF94]). It is obvious that 
it is not easy to determine in which phase a proof attempt is. Especially the detection 
of the middle phase is very difficult. Currently we define the start of the middle phase 
as the team meeting in which most of the members of the starting team (that are not 
also members of the middle team) either are not member of the actual team anymore 
or have a measure that is below a predefined percentage of the best expert. 

In the first team meeting the supervisor has to determine which of the detected domains 
and thus which of the plan skeletons he will use. It is very seldom that exactly one 
domain is detected. For example, if the domain "ring" is detected then also the domain 
"group" can be found, because it is part of the domain "ring". Even worse, a given 
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these equations are either identical or subsumed by  an equations of the example. This
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which such a match can be found to  the supervisor. In  addition, this specialist can also
report the equations of the slot consequences, instantiated by X,  to the supervisor
(or a referee’s selection of these equations).
Using a domain detection specialist as member of the team of the first working period
the supervisor can take advantage of the other information he has about the detected
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During the first team meeting the planning task of the supervisor is to select a plan
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supervisor. It describes three good teams to use for problems of the domain. These
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“group” can be found, because i t  is part of the domain r ing”.  Even worse, a given



proof problem can involve different domains that have no equations in common. 

The supervisor grounds his decision mainly on the hierarchical information he has in 
the domain descriptions, in the slots superior domain, specialized domains and 
similar domains. Candidates for the domain the supervisor will concentrate on are 
all detected domains that are no superior domain to another detected domain. From 
these candidates the supervisor also eliminates those domains that are similar domains 
to a superior domain of another candidate. If we then have more than one domain 
as candidate left, we have no further knowledge available and therefore the supervisor 
chooses one random domain out of the candidates. The experts of the starting team 
of this domain will be members of the next working team. 

If there are more processors available than there are experts in starting team, the 
supervisor will use also the starting teams of other detected domains. If the chosen 
domain has specialized domains, then a domain detection expert for these domains will 
also be a member of the team (if there are processors left, after the starting team of the 
detected domain is appointed to processors). If there are even more processors avail­
able, the supervisor will select experts that are known to cooperate well with already 
selected experts (see later). The supervisor stores all information he has received from 
referees and all decisions he has made in a file for future use (we have to use a file, 
because the processor that runs the supervisor can change during a proof attempt). 

In every further team meeting the supervisor has to perform the following actions after 
he has received the reports of the referees: 

1.	 Compute the time he has for selecting a new team. 

2.	 Determine, whether the used plan skeleton is still good and whether the phase 
should be changed. If a change of the plan skeleton is necessary, a new skeleton 
and the appropriate phase has to be selected or the supervisor can decide to work 
without a domain (and a skeleton). 

3. Choose the members of the next team. 

4.	 Compute the length of the next working period. 

The first task is easy, because we want the periods the supervisor is active to be very 
short. Therefore we do not allow the supervisor to use more time than one percent 
of the length of the last working period. There are exceptions dealing with very short 
working periods (less than 5 seconds). 

We have given the supervisor two reasons when to look for further domains and there­
fore for a different plan skeleton. The first one is that a new domain is detected by a 
domain detection expert. If this detected domain is a specialization of the already used 
one, the supervisor immediately switches to the plan skeleton for this new domain. If 
the new domain is a superior domain to the already used one, then no change of plan is 
necessary. In all other cases a little more computation is needed to determine, whether 
a change should be made or not. 
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proof problem can involve different domains that have no equations in common.
The supervisor grounds his decision mainly on the hierarchical information he has i n
the domain descriptions, in  the slots superior domain, specialized domains and
simi lar  domains. Candidates for the domain the supervisor will concentrate on  are
all detected domains that are no superior domain to  another detected domain. From
these candidates the supervisor also eliminates those domains that are similar domains
to a superior domain of another candidate. If we then have more than one domain
as candidate left, we have no further knowledge available and therefore the supervisor
chooses one random domain out of the candidates. The experts of the starting team
of this domain will  be members of the next working team.

If there are more processors available than there are experts in start ing team, the
supervisor will use also the starting teams of other detected domains. If the chosen
domain has specialized domains, then a domain detection expert for these domains will
also be a member of the team (if  there are processors left, after the starting team of the
detected domain is appointed to processors). If there are even more processors avail-
able, the supervisor will select experts that are known to  cooperate well with already
selected experts (see later). The supervisor stores all information he has received from
referees and all decisions he has made in  a file for future use (we have to use a file,
because the processor that runs the supervisor can change during a proof attempt).
In  every further team meeting the supervisor has to  perform the following actions after
he has received the reports of the referees :
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2. Determine, whether the used plan skeleton is st i l l  good and whether the phase
should be changed. I f  a change of the plan skeleton is necessary, a new skeleton
and the appropriate phase has to  be selected or the supervisor can decide to work
without a domain (and a skeleton).

3. Choose the members of  the next team.

4. Compute the length of the next working period.

The first task is easy, because we want the periods the supervisor is active to be very
short. Therefore we do not allow the supervisor to use more time than one percent
of the length of the last working period. There are exceptions dealing with very short
working periods (less than 5 seconds).
We have given the supervisor two reasons when to look for further domains and there-
fore for a different plan skeleton. The first one is that a new domain is detected by a
domain detection expert. If this detected domain is a specialization of the already used
one, the supervisor immediately switches to  the plan skeleton for this new domain. If
the new domain is a superior domain to  the already used one, then no change of  plan is
necessary. In  all other cases a little more computation is needed to  determine, whether
a change should be made or not.



This computation is similar to the one made, when the second reason for domain 
change can be observed, namely that the experts chosen due to the plan skeleton are 
much worse than the best experts of the last team (according to the measures of their 
referees). For the decision which domain will be best one and therefore the further 
base of the planning process we rate the detected domains according to the following 
criterion: 

The supervisor sums up the measures of the experts of the teams of the plan 
skeletons of the domains. Each measure is weighted by 1 divided by the number 
of working periods since the measure was given. Therefore older information 
gets less credit. The domain with the best sum will be selected, if a certain 
threshold is reached. Otherwise the supervisor will use no plan skeleton and 
he will choose experts as we will describe for point 3 without use of domain in­
formation. If an expert was never member of a team during the proof attempt, 
he will get a measure of zero. 

As the next step, the members of the team have to be selected. The best experts of 
the last working period and the members of the team of the current phase of the plan 
skeleton will be selected, with the exception that a member of the plan skeleton is 
not selected if his performance in the last working period has been much worse than 
the performance of the best expert. If there remain processors without an expert, the 
supervisor uses the following routine to find experts for them. If no expert of the plan 
skeleton was best expert, then it is possible that the proof attempt has reached another 
phase. Therefore the experts of the next phase of the skeleton get places in the team. 
If they perform well in the next working phase, the supervisor will assume that the 
next phase is reached. 

Depending on the amount of time left for the meeting, weights for the members of the 
following groups of experts are computed (when they are not already in the teamf 

- the experts of the last team, 

- the experts that work well together with the best expert of the last working 
period, 

- the experts that work well together with the experts of the current phase of the 
plan skeleton, 

- the experts that are suggested by other detected domains, 

- all other experts. 

In order to find the experts of these groups the supervisor needs information about 
experts. This information also includes data that is needed to compute the weight of 
the expert. Again we have chosen a frame representation for this information. The 
following is an example for such a frame. 
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This computation is similar to  the one made, when the second reason for domain
change can be observed, namely that the experts chosen due to  the plan skeleton are
much worse than the best experts of the last team (according to the measures of their
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The supervisor sums up the measures of the experts of the teams of the plan
skeletons of  the domains. Each measure is weighted by  1 divided by  the number
of working periods since the measure was given. Therefore older information
gets less credit. The domain with the best sum will be selected, i f  a certain
threshold is reached. Otherwise the supervisor will use no plan skeleton and
he will  choose experts as we will describe for point 3 without use of domain in-
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following is an  example for such a frame.
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expertname: ADD-WEIGHT 
robustness: 0.8 
knowledge involved: 0.1 
proof phase: start: 0.6 

middle: 0.5 
end: 0.5 

referees: STATISTIC-I, start 
STATISTIC-4, middle 
STATISTIC-6, end 

domains: all 
similar experts: ADD-FWEIGHT-1 ; ADD-RWEIGHT 
cooperative experts: GOAL-SIM ; GOAL-MATCH 
impossible experts: none 

The experts mentioned in cooperative experts are those we referred to as working 
well together with the expert described (in our example ADD-WEIGHT). All the other 
information is needed to determine a weight for this expert. 

The computation of the weight of an expert according to the status of a proof attempt 
depends on the time the supervisor has left, again. The more time is available the 
more criteria are taken into account.. These criteria are, in descending order: 

- How good is the expert rated with respect to the detected domains and the phase 
of the proof ? 

- How good were the results of the expert in earlier phases of this proof attempt? 

- How good does the expert cooperate with the already chosen team members? 

- How specialized is the expert ? 

- How good is the robustness of the expert for the current proof phase? 

Each criterion will lead to a measure between -1 (bad) and 1 (good) and the weight 
of the expert is a weighted sum of these measures. If an expert that has never been 
member of a team has to be compared with experts that have been members, we use 
adjusted weights for the other criteria. Let us now take a closer look at the criteria. 

The rating of the suitability of an expert for a domain takes into account, whether 
the expert is member of the team of the plan skeleton of the domain for the current 
phase and whether the domain is in the domain slot of the expert. If this is the case 
for all detected domains we would get a measure of 1. Note that experts that are not 
members of a plan skeleton of a domain may have the domain in their domain slot. 

The measure that represents the history of the expert on the current proof attempt is 
computed as the mean value of the comparisons of the expert with the best experts of 
the working phases when the expert was member of the team. We get the comparison 
by dividing the result of the expert by the result of the best expert. 
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Each criterion will lead to a measure between -1 (bad) and 1 (good) and the weight
of the expert is a weighted sum of these measures. If an expert that has never been
member of a team has to  be compared with experts that have been members, we use
adjusted weights for the other criteria. Let us now take a closer look at the criteria.
The rating of the suitability of an expert for a domain takes into account, whether
the expert is member of the team of the plan skeleton of the domain for the current
phase and whether the domain is in the domain slot of the expert. If this is the case
for all detected domains we would get a measure of 1. Note that experts that are not
members of a plan skeleton of a domain may have the domain in their domain slot.
The measure that represents the history of the expert on  the current proof attempt is
computed as the mean value of the comparisons of the expert with the best experts of
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The measure for cooperation uses the slots similar experts, cooperative experts 
and impossible experts. For each already chosen expert we add 1, if the chosen 
expert is in cooperative experts, we add -1, if the chosen expert is in impossible 
experts and we add -0.1, if the chosen expert is similar to the expert we check at the 
moment. We add a small negative number, because this way the more similar experts 
we have in a team the more unlikely it would be to add another similar one. The sum 
is then divided by the number of chosen experts that are mentioned in the three slots. 

If at least one domain was detected, we use the value of knowledge involved as 
indication for the specialization of the expert. 

Finally, we multiply robustness with the appropriate value of proof phase to get a 
measure of the robustness of the expert. 

If we have n free processors, the supervisor will choose the n experts with the highest 
measure. Note that the more time the supervisor has the more experts can be examined 
and the more knowledge can be used to come to a decision. But there is no guarantee 
that this decision will really improve over the time, because of the vagueness of the 
information we use. 

Let us now take a look at point 4 of the actions the supervisor has to perform during 
a team meeting, the computation of the length of the next working period. If the plan 
has been successful so far, that means that the experts of the chosen plan skeleton or 
all experts of the last round have had good measures, then the lengths of the working 
periods increase linearly. When most of the experts did not have the time to perform 
more than 10 inference steps, the supervisor will use an exponential growing length. 

If most of the experts of the next team are new, then it is difficult to tell whether 
the team will be good or bad. Therefore the length of the next working period will 
be shorter. How short depends on the number of facts that constitute the current 
problem description. The more facts the more time is needed to perform an inference 
step. In order to get useful measures from the referees, the experts have to perform 
several inference steps in the working period. If the team was successful, then it will 
get more time the next round, else other experts will be tried out. 

Experiences 

In the last section we described how the supervisor plans a proof attempt and reacts 
on the measures and results that he gets from the referees. In this section we will 
demonstrate that this planning enhances the performance of the whole system. 

In [AD93] and [DF94] we showed by experiments that team work, without planning by 
the supervisor, can reduce the run time of a system on a proof problem dramatically 
compared to the run times of the used experts, when working alone. But these results 
have a drawback. We selected the team members of the teams. And these teams 
changed from example to example. 

It is well known that all automated theorem provers have many parameters that can be 
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adjusted to a given proof problem. Our important parameter was the team members. 
But this requires that the user of a theorem prover has much knowledge about the 
prover and its parameters, so that he can plan his proof attempts with the prover. But 
we want a system which can solve many, very different examples without the support 
of an user in an acceptable time. 

We demonstrate that team work with planning enables us to build such a system by 
reporting results with examples from four different domains: propositional calculus 
(pll to 4), lattice ordered groups (lat1 to 17), boolean rings (boo15b) and rings (lusk6). 
For the descriptions of these examples see [DF94] and [AD93] or the appendix of this 
paper. In order to demonstrate what examples are in which domain we changed the 
names, but stated the original ones in parenthesis. We ·added the last two examples to 
make the detection of domains more difficult. The four domains provide a wide range 
of equational problems. 

Table 1 documents our results. Besides the run times of a team using planning we 
also give the run times of the best team consisting of two experts we were able to find, 
the two experts that form this best team and the run time of the best expert working 
alone on the problem. We have chosen to use only two processors because with small 
resources a good use of them is very important. In order to allow a better comparison 
we restricted also the best user selected teams to two processors. 

The team runs using planning were always started with the same starting team and 
the same system configuration. Besides the input of equations, a reduction ordering 
and the goal of an example and the start command no interaction between system and 
user took place. The alterations in the composition of the team were only effected by 
the actions described in section 4. The system configuration specially includes some 
basic data for computing the lengths of the working periods which play an important 
part in the run of a proof. Note that for the times of the best teams also the lengths 
of the several periods have been adapted to the specific examples. 

The main observation in table 1 is that the team with planning needs a little more time 
than the best team for most of the examples but still can solve also those examples that 
no single expert can solve. It is clear that using planning we have to expect a certain 
overhead. Our analysis of the runs using our proof extraction and analysis tool (see 
[DS94]) showed that not the time for planning is responsible for the longer run times 
but the need to tryout experts and the replanning that is involved when adjusting the 
team to a problem. 

If we take a look at the experts that constitute the best teams it is quite obvious 
that even in one domain very different teams were needed. Especially in the domain 
propositional calculus for each example a different team was best. Therefore it can not 
be expected that the first plan to a domain always succeeds. Instead the reactive part 
of the system must detect bad experts and exchange them. A~ld these bad experts in 
most cases do not contribute to finding a proof but slow the system down. 

Interestingly, there are some examples (pll, p14, bool5b, lat7, lat8, latlO, latll) for 
which the team with planning needs less time than the best team (which lets one ask 
why we call it the best team). While the run times for the lat examples are so short 
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example team with 
planning 

best team best team 
members 

best sequential 
expert 

pH 29.91 35.07 MaxWeight, GP-in-Goal 40.99 
pl2 50.18 14.21 AddFWeight, GTWeight 45.02 
pl3 202.89 72.19 Goal-in-GP, AddRWeight 297.16 
pl4 84.86 96.47 Goal-in-GP, GP-in-Goal -

l=;b=o:::;:o=;;:15=b==~=====5=:=0=:=.1~1=:=1=::::::==:5:::::=8.=:=86:::=1 Goal-Ill-GP, AddWelght 1 -I 
Ilusk6 500.08 1 307.96 1 AddWeight, AddRWeight I 3019.00 I 

latl (monola) 0.35 0.05 Occnest, AddWeight 0.05 
lat2 (monolb) 0.36 0.05 Occnest, MaxWeight 0.05 
lat3 (mono2a) 0.33 0.04 Occnest, AddWeight 0.03 
lat4 (mono2b) 0.33 0.04 Occnest, AddWeight 0.03 
lat5 (pIa) 0.71 0.28 Occnest, MaxWeight 0.27 
lat6 (plb) 0.68 0.47 Occnest, AddWeight 0.28 
lat7 (p2a) 2.46 5.41 AddRWeight, Occnest 79.52 
lat8 (p3a) 3.04 4.23 Occnest, AddWeight 4.14 
lat9 (p3b) 2.94 2.62 Occnest, AddWeight 2.55 
latlO (p4a) 2.02 2.46 Occnest, AddWeight 1.84 
latH (p4b) 1.93 2.06 Occnest, AddWeight 1.71 
latl2 (p6a) 0.84 0.40 Occnest, MaxWeight 0.39 
latl3 (p6b) 0.58 0.16 Occnest, MaxWeight 0.16 
latl4 (p8b) 93.54 56.84 MaxRWeight, Goal-in-GP -

lat15 (p9a) 22.58 8.66 Occnest, AddWeight 19.57 
latl6 (p9b) 23.95 8.44 AddWeight, Occnest 50.95 
lat17 (plO) 37.94 25.20 MaxRWeight, Goal-in-GP -

Table 1: run-time comparison team with planning vs best team and best sequential 
expert (in seconds) 
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example team with | best team best team | best sequential
planning members expert

pi l  29.91 35.07 MaxWeight, CP-in-Goal 40.99
pl2 50.18 14.21 | AddFWeight, GTWeight 45.02
pl3 202.89 72.19 | Goal-in-CP, AddRWeight 297.16
pl4 84.86 96.47 | Goal-in-CP, CP-in-Goal —

| bool5b | 50.11 | 58.86 | Goal-in-CP, AddWeight | —
[ Tusk6 ] 500.08 | 307.96 | AddWeight, AddRWeight| 3019.00 |

latl (monola) 0.35 0.05 Occnest, AddWeight 0.05
lat2 (monolb) 0.36 0.05 Occnest, MaxWeight 0.05
lat3 (mono2a) 0.33 0.04 Occnest, AddWeight 0.03
lat4 (mono2b) 0.33 0.04 Occnest, AddWeight 0.03
lat5 (pla) 0.71 0.28 Occnest, MaxWeight | 0.27
lat6 (p1b) 0.68 0.47 Occnest, AddWeight 0.28
lat7 (p2a) 2.46 5.41 AddRWeight, Occnest 79.52
lat8 (p3a) 3.04 4.23 Occnest, AddWeight 4.14
lat9 (p3b) 2.94 2.62 Occnest, AddWeight 2.55
lat10 (pda) 2.02 2.46 Occnest, AddWeight 1.84
lat11 (p4b) 1.93 2.06 Occnest, AddWeight 1.71
lat12 (p6a) 0.84 0.40 Occnest, MaxWeight 0.39
lat13 (p6b) 0.58 0.16 Occnest, Max Weight 0.16

| 1at14 (p8b) 93.54 56.84 | MaxRWeight, Goal-in-CP —
lat15 (p9a) 22.58 8.66 Occnest, AddWeight 19.57
lat16 (p9b) 23.95 8.44 AddWeight, Occnest 50.95
lat17 (p10) 37.94 25.20 | MaxRWeight, Goal-in-CP —

Table 1: run-time comparison team wi th  planning vs best team and best sequential
expert ( in seconds)
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6 

that this would not be significant, the other three examples proved to be interesting. 
Our analysis (and later experiments) showed that the better run times of the team with 
planning were due to the fact that experts that were not members of the best team 
-but chosen by the supervisor in the run using planning- provided results necessary for 
the proof a little earlier than the members of the best team. But they were not able 
to produce enough results to form with one of the members of the best team a better 
team (of two experts, which is why the term best team for the third and fourth row 
is correct). Using a team with three experts we were able to obtain a better run time 
than the team with planning. 

So, in these examples planning allowed us a better use of the resources. But in general 
we have to expect that a change of the initial plan is necessary for many examples and 
that in some working periods some experts do not contribute to a proof. 

If we compare the team using planning with the best sequential experts for an example 
we can observe that for small, easy examples the best sequential expert finds a proof 
faster. But for harder examples the team with planning clearly outperforms the best 
sequential expert and it still finds proofs when no sequential expert can. If we would 
compare our team using planning with a fixed sequential expert there would be much 
more examples for which this expert would find no proof. So the synergetic effect of 
team work can also be observed when the team uses planning. 

Finally we have to point out that in section 4 two ways of using a detected domain has 
been described: first in order to add known consequences, second for planning purposes 
of the supervisor. In all the examples listed in table 1 a domain was only used in the 
second way, in order to emphasize the planning aspect of a domain. (It is obvious that 
adding suited results will extremely reduce the run time of the prover.) 

Related Work 

The work presented here is related to three areas of artificial intelligence, namely 
automated theorem proving, planning and distributed artificial intelligence (DAI). The 
first work that is related to the first two areas is due to A. Bundy (see [Bu88]), who 
invented the term proof planning. He concentrated on inductive theorem proving and 
used a STRIPS-like (see [FHN81]) planning approach. He invented so called tactics 
that are similar to the operators that can be defined in STRIPS. A proof attempt 
consists of two phases, a planning phase, where on a meta-Ievel a proof is constructed 
using the tactics, and a proof phase, where the selected tactics are evaluated on the 
level of inference rules. 

The problem of this approach is that the domains of the proof problems have to be 
understood very well, so that it will be possible to find appropriate subproblems to a 
proof problem. In equational or first-order theorem proving this is not the case as we 
stated in the introduction. The information about domains we have accessible is much 
too vague to allow the use of Bundy's approach. 

In the area of planning we were inspired by the works of McDermott and Beetz on 
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than the team with planning.
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we have to  expect that a change of the initial  plan is necessary for many examples and
that in some working periods some experts do not contribute to a proof.
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6 Related Work
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first work that is related to the first two areas is due to A. Bundy (see [Bu88]), who
invented the term proof  planning. He concentrated on inductive theorem proving and
used a STRIPS-like (see [FHN81]) planning approach. He invented so called tactics
that are similar to the operators that can be defined in  STRIPS. A proof attempt
consists of two phases, a planning phase, where on  a meta-level a proof is constructed
using the tactics, and a proof phase, where the selected tactics are evaluated on the
level of inference rules.
The problem of this approach is that the domains of the proof problems have to be
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stated in the introduction. The information about domains we have accessible is  much
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7 

planning reactive behaviour (see [Mc90], [Be9lD. Here planning was intended to help 
a robot navigate through an area and perform certain tasks with limited time available 
for planning. This limitation is also an important point of our approach. Now, robot 
control and automated theorem proving are very different areas, but, as stated before, 
both involve the necessity to deal with vague information. By use of several experts 
we have the possibility to choose the situation we want to continue on, which is not 
possible for only one robot. 

In the areas of planning and distributed AI the research mainly concentrates on plan­
ning for autonomous agents, i.e. systems without a central control (see for example 
[DL87D, or oh central planning of tasks that require coordination, because there are 
dependencies between the actions of the agents (for example plans for several robots, 
see [R082D. As the supervisor is the central control of the team and theorem proving 
using team work is a task where no dependencies occur, we have ea~y solutions to most 
of the problems addressed in these papers. 

Conclusion and Future Work 

We have presented a distributed theorem proving method where planning of the as­
signments of agents to the processors allows us to improve significantly the number of 
theorems that can be proved without the user fiddling with parameters of the prover. 
Although the run times of th~ version of our prover using planning are slower than 
the run times of the best known teams for the problems we were able to prove ex­
amples from different domains to which none of our sequential provers could find a 
solution thus still showing synergetic effects. Further, reactive planning enables us to 
prove examples from one domain where the best known teams differ from example to 
example. 

Our approach to proof planning allows us to deal with knowledge about domains that 
is vague and can even be contradictory. This is due to the competition of the experts 
in the teams. So far, all other approaches to proof planning require exact and often 
total knowledge about a domain of interest. in order to achieve satisfactory results. 
Furthermore, the addition of new domains to our system is easy because of the explicit 
representation of the knowledge about a domain by frames. 

The detection of subproblems and the use of special methods to solve them that are 
a characteristic of other approaches can also be integrated in our approach without 
loosing the ability to deal with vague information. This is one direction in which we 
want to investigate in the future. 

Other topics of future research are to automate the generation of domain informa­
tion by learning from examples for the domain and the improvement of planning by 
not only selecting known experts but also by generating new experts using parameter 
adjustments of generic experts. 
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Appendix: Input equations for the examples 

The domain	 propositional calculus 

These examples are based on a set of axioms for tautologies in propositional calculus 
given by Frege (see [Ta56]). All examples have the following set of defining equations 
and use an LPO with precedence C >- N >- T >- Ap >- Aq >- Ar as reduction ordering. 

EQUATIONS	 C (T,x) = x
 
C (p,C (q,p)) = T
 
C (C (p,C (q,r)),C (C (p,q),C (p,r))) = T
 
C (C (p,C (q,r)),C (q,C(p,r))) = T
 
C (C (p,q), C (N (q),N (p))) = T
 
C (N (N (p)), p) = T
 
C (p, N (N (p))) = T
 

The task is to prove the following goals: 

pll C (C (Ap,Aq),C (C (Aq,Ar),C (Ap,Ar))) = T 
pl2 C (C (N (Ap),Ap),Ap) = T 
p13 C (Ap, C (N (Ap), Aq)) = T 
pl4 C (C (N(Ap),N(Aq)),C (Aq,Ap)) = T 

The example bool5b 

This example states that in a Boolean Ring the associativity axioms are redundant. As 
reduction ordering we did not use the Knuth-Bendix ordering (with which this example 
is easy to prove), but an LPO with precedence n >- a >- 0 >- 1 >- °>- xo >- xl >- x2. 

EQUATIONS	 0 (x,y) = 0 (y,x)
 
a (x,y) = a (y,x)
 
a (x,o (y,z)) = 0 (a (x,y),a (x,z))
 
o (x,a (y,z)) = a (0 (x,y),o (x,z)) 
o (x,O) = x
 
a (x,l) = x
 
a (x,n (x)) = °
 
o (x,n (x)) = 1
 

CONCLUSION a(a(xO,x1),x2) = a(xO,a(x1,x2))
 

The example lusk6 

This examples states that a ring where x3 = x holds is commutative. It is the most 
difficult example mentioned in [L085]. Note that we do not use a special handling of 
the AC theory in our prover. The used ordering is an KBO with f:5 >- j:4 >- g:3 >- 0:1 
>- b:1 >- a:1 (weights of the symbols are given behind the :-sign, weights of variables 
are 1). 
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Appendix: Input equations for the examples

The domain propositional calculus

These examples are based on a set of axioms for tautologies in  propositional calculus
given by Frege (see [Ta56]). All  examples have the following set of defining equations
and use an LPO with precedence C > N > T > Ap  > Aq  > Ar  as reduction ordering.
EQUATIONS C (Tx)  =x

C(p ,C (ap )=T
C (C (p,C (q,r)),C (C (p,a),C (pr)))  = T
C (C (p,C (q,r)),C (a,C (p,r))) = T
C (C (p,q), C (N  (q),N (p))) = T
C (N  (N  (p)), p) = T
Cle, N(N(p )=T

The task is to prove the following goals:

pll : C(C  (Ap,Aq),C (C (Aq,Ar),C (Ap,Ar)))= T
pl2 : C (C  (N  (Ap) ,Ap) ,Ap)= T
pl3 : C(Ap ,C (N (Ap), Aq)) = T
pl4 : C(C (N(Ap),N(Aq)),C (Aq,Ap))= T

The example bool5b

This example states that in  a Boolean Ring the associativity axioms are redundant. As
reduction ordering we  d id  not use the Knuth-Bendix ordering (with which th is  example
is easy to  prove), but an LPO with precedencen > a > o>  1 > 0 >» x0 > x1  > x2.

EQUATIONS o (x,y) = o (y,x)
a (x,y) = a (yx)
a (x0  (v,2)) = o (a  (x,y),a  (x,2))
o (x,a (y,2)) = a (0 (x,y),0 (x,2))
o(x,0) =x
a (x,1) =x
a (x,n (x)) = 0
o (x,n (x)) = 1

CONCLUSION a(a(x0,x1),x2) = a(x0,a(x1,x2))

The example lusk6

This examples states that a ring where x® = x holds is commutative. It is the most
difficult example mentioned in [LO85]. Note that we do not use a special handling of
the AC theory in our prover. The used ordering is an KBO  with f:5 > j:4 > g:3 > 0:1
> b : l  > a: l  (weights of the symbols are given behind the :-sign, weights of variables
are 1 ) .
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EQUATIONS j (O,x) = x 
j (x,O) = x
 
j (g (x),x) = 0
 
j (x,g (x)) = 0
 
j (j (x,y),z) = j (x,j (y,z))
 
j (x,y) = j(y,x)
 
f (f (x,y),z) = f (x,f (y,z))
 
f (x,j (y,z)) = j (f (x,y),f (x,z))
 
f (j (x,y),z) = j (f (x,z),f (y,z))
 
f (f(x,x),x) = x
 

CONCLUSION f (a,b) = f (b,a) 

The domain lattice ordered groups 

All examples of this domain have the following set of defining equations and use an 
LPO with precedence i >- f>- n >- u >- 1 >- a >- b >- c as reduction ordering. 

EQUATIONS	 n (x,y) = n (y,x)
 
u (x,y) = u (y,x)
 
n (x,n (y,z)) = n (n (x,y),z)
 
u (x,u (y,z)) = u (u (x,y),z)
 
u (x,x) = x
 
n (x,x) = x
 
u (x,n (x,y)) = x
 
n (x,u (x,y)) = x
 
f (x,f (y,z)) = f (f (x,y),z)
 
f (l,x) = x
 
f (i (x),x) = 1
 
f (x,u (y,z)) = u (f (x,y),f (x,z))
 
f (x,n (y,z)) = n (f (x,y),f (x,z))
 
f (u (y,z),x) = u (f (y,x),f(z,x))
 
f (n (y,z),x) = n (f(y,x),f (z,x))
 

Since most of the goals to prove are conditional equations we listed in the following 
the additional equations and the conclusion we have to prove for all the examples of 
Table 1. 
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EQUATIONS j (0,x) = x
j (x,0) = x
j ( g  ( x ) , x )  =0
j (x,g (x)) = 0
iG  (x,y),z) = i  (xi (y,z))
j (x,y) = j(y,x)
f (f (x,y),z) = f (x,f (y,z))
f (x,j (v,2)) = 3 (f (x,y);£ (x,2))
f (j (x,y);z) = j (f  (x,z),f (y,z))
f (f(x,x),x) = x

CONCLUSION f (a,b) = f (b,a)

The domain lattice ordered groups

Al l  examples of  th is  domain have the following set o f  defining equations and use an
LPO with precedencei > f > n > u > 1 > a > b > c as reduction ordering.
EQUATIONS n (x,y) =n  (yx)

u (x,y) = u (yx)
n (xn (v,2)) = n (n (x,y),2)
u (x,u (y,2)) = u (u  (x,y);7)
u (x,x) = x
n (x,x) = x
u (x,n (x,y)) = x
n (x ,u  (x ,y ) )  = x
f (x f  (y,2)) = £ (f  (x,y),2)
f ( l x )=x
f ( i  (x ) ,x )  = 1
f (x ,u  (v,2)) = u (f  (x,y) , f  (x,2))
f (xn (v2)  =n  ( f  (x ,y ) , f  (x ,z) )
f (u (y,z),x) = u (f (y,x),f (z,x))
f (n  (y,z),x) = n (£.(y,x),f (z,x))

Since most of the goals to prove are conditional equations we listed in  the following
the additional equations and the conclusion we have to prove for all the examples of
Table 1 .
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EQUATIONS 
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EQUATIONS 
CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 

lat9 
CONCLUSION 
EQUATIONS 

latlO 
CONCLUSION 
EQUATIONS 

latH 
CONCLUSION 
EQUATIONS 

lat12 
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lat14 

CONCLUSION 
EQUATIO~S 

CONCLUSION 
EQUATIONS 
CONCLUSION 
EQUATIONS 

latl5 
CONCLUSION 
EQUATIONS 

lat16 
CONCLUSION 
EQUATIONS 

lat17 
CONCLUSION 
CONCLUSION 

u (a,b) = b 
u (f (a,e),f (b,e)) = f (b,e) 
n (a,b) = a 
n (f (a,e),f (b,e)) = f (a,e) 
u (a,b) = b 
u (f (e,a),£ (e,b)) = £ (e,b) 
n (a,b) = a 
n (£ (e,a),£ (e,b)) = £ (e,a) 
u (a,b) = b 
u (£ (i (e),£ (a,e)),£ (i (e),£ (b,e))) = £ (i (e),£ (b,e)) 
n (a,b) = a 
n (£ (i (e),£ (a,e)),£ (i (e),f (b,e))) = f (i (e),£ (a,e)) 
u (i (a),i (b)) = i (b) 
u (a,b) = a 
u (a,b) = b 
u (e,d) = d 
u (£ (a,e),£ (b,d)) = £ (b,d) 
n (a,b) = a 
n (e,d) = e 
n (£ (a,e),£ (b,d)) = £ (a,e) 
u (l,a) = a 
u (l,b) = b 
u (1,£ (a,b)) = £ (a,b) 
n (l,a) = 1 
n (l,b) = 1 
n (1,£ (a,b)) = 1 
u (l,b) = b 
u (l,f (i (a),f (b,a))) = f (i (a),f (b,a)) 
n (l,b) = 1 
n (1,£ (i (a),£ (b,a))) = 1 
n (l,a) = 1 
n (l,b) = 1 
n (l,e) = 1 
n (n (a,£ (b,e)),£ (n (a,b),n (a,e))) = n (a,£ (b,e)) 
u (l,a) = a 
u (l,b) = b 
u (l,e) = e 
n (a,b) = 1 
n (a,f (b,e)) = n (a,e) 
n (l,a) = 1 
n(l,b) = 1 
n (l,e) = 1 
n (a,b) = 1 
n (a,f (b,e)) = n (a,e) 
i (u (a,b)) = n (i (a),i (b)) 
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l a t l

lat2

lat3

lat4

lat5

la t6

lat7

lat8

lat9

lat10

la t11

lat12

lat13

lat14

lat15

lat16

lat17

EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS
CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
EQUATIONS

CONCLUSION
CONCLUSION

u (a,b) = b
u ( f  (a,c),f (bye) = f (b,c)
n (a,b) = a
n (f (a,c),f (b,c)) = f  (a,c)
u (a,b) = b
u (f (c,a),f (c,b)) = f (c,b)
n (ab) =a

n ( f  ( ca)f (6b )  = £ (0,2)
u (a,b) = b
uue  L t  (a,c)),f ( i  (c),f (b,c))) = ( i  ( c ) f  (b,c))

n (f ( i  (c),f  (a,c)),f ( i  (c),f (b,c))) = f ( i  (c),f (a,c))
u i  ( 0  (5 )  = 10 )
u (a ,b)=
u (a,b) =
u (c,d) =
u ( f  (a,c),f (bd)  = f (b,d)
n (a,b) = a
n (c,d) =
n ( f  (a,c),f (b,d)) = f (a,c)
u ( l a )=a
u ( l , b )=b
u (1,f (a,b)) = f (a,b)
n ( l a )  = 1
n (1,b) =
n (1,f (a,b)) = 1
u (1,b) = b
u (1 , f  ( i  ( a ) . f  ( b ,a ) ) )  = f ( i  ( a ) . f  ( b ,a ) )
n ( l b )=1
n (1,f ( i  (a),f (b,a))) =
n ( la )  =1
n ( l b )  = 1
n ( l , c )=1
n i  ME  (b,c)),f( n  (a,b),n (a,c))) = n (a f  (b,c))

u (1,b) = b
ul( l , ‚c)=c
n (a,b) = 1
n (a f  (b ,c )  = n (a0)
n ( l a )=1
n (1,b) =1
n (lec) = 1
n (a,b) = 1
n (a f  (b,c)) = n (a,c)
i (u ( a ,b )= n (i (a),i (b))
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