Fachbereich Informatik

Universitat Kaiserslautern

Postfach 3049

SEKI - REPORT

D-67663 Kaiserslautern

A Reduction Ordering for
Higher-Order Terms

Jirgen Avenhaus, Carlos Loria-Saenz,
Joachim Steinbach

SEKI Report SR-95-03 (SFB)







A Reduction Ordering for
Higher-Order Terms

Jirgen Avenhaus, Carlos Loria-Séenz,
Joachim Steinbach

SEKI Report SR-95-03 (SFB)






A Reduction Ordering for Higher-Order Terms

Jiirgen Avenhaus!, Carlos Loria-Saenz?, and Joachim Steinbach3

1 Universitat Kaiserslautern
Fachbereich Informatik, Postfach 3049
67653 Kaiserslautern (Germany)

2 Instituto Tecnologico de Costa Rica
Departamento de Computaction
Apartado 159-7050 Cartago (Costa Rica)
3 Technische Universitit Minchen

Institut fur Informatik
80290 Minchen (Germany)

Abstract. We investigate one of the classical problems of the theory of
term rewriting, namely termination. We present an ordering for compar-
ing higher-order terms that can be utilized for testing termination and
decreasingness of higher-order conditional term rewriting systems. The
ordering relies on a first-order interpretation of higher-order terms and
a suitable extension of the RPO.

1 Motivation

Term rewriting systems (TRSs) can be considered as a powerful theoretical
model for reasoning about functional and logic programming in an abstract way,
independently of a particular programming language. In such an approach to
computer programming, logic and functional programs are represented by means
of executable specifications essentially consisting of conditional equations. The
operational semantics of these specifications is defined by term rewriting and
equation solving, respectively. The extension of first-order logic to higher-order
logic by means of (universally quantified) conditional equations enormously in-
creases the expressive power of the specifications and permits an efficient oper-
ationalization.

Equations on terms specify (pure) term replacement criteria that can be per-
formed on formulae or expressions. However, equations are ambiguous since they
can be used in two different directions. Rewriting rules are directed equations
which can be applied only in one direction by imposing some orientation on
the terms in the equation. Such an orientation should imply that the repeated
replacement of subterms in a given expression using the rules eventually stops
yielding a simplest term or normal form unable to be further simplified. If equa-
tions represent, for instance, axioms of a theory (i.e. facts about some abstract
entity) oriented replacement can be used to prove equality of formulae or ex-
pressions. In other words, to solve the so-called word problem of the equational
theory we only need to reduce expressions to a common normal form. In the case
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that equations describe an equational (logic or functional) program, oriented
replacement can be used for giving semantic values to expressions, i.e. for com-
puting. The normal form of an expression represents its semantic value. Under
these conditions, one of the fundamental problems associated with TRSs is the
following one: Are the rules really simplifying, i.e. does rewriting always lead to
a normal form after a finite sequence of rule applications?

The theory of first-order term rewriting offers different alternatives to solve
this problem, i.e. to guarantee termination (see, for example, [Der87]). For intro-
ductions to TRSs see, for example, [DJ90, AM90]. See also [DO90] for a survey
on conditional rewriting systems.

In [Lor93], criteria for testing confluence and termination of some classes of
higher-order conditional TRSs (HCTRSs) have been developed (see also [AL94]).
HCTRSs naturally extend (unconditional) HTRSs as defined in [Nip91]. [Lor93]
follows the approach of [Nip91] by combining term rewriting and the A-calculus.
For the M-calculus the reader is referred to [HS86].

Ezample 1. In order to illustrate how both computational paradigms — A-calculus
and TRSs - interact, let us consider an algebraic specification of the addition
(+) on natural numbers (nat):

0+y — vy (1)
s(z)+y — s(z+y) (2)

where as usual s: nat — nat is the successor function, 0: — nat and +:
(nat,nat) — nat. A higher-order expression like

Az.(z+z) (3)

can be used for ‘locally’ specifying the double function and so we could compute,
for instance,
‘ (Az.(z+2))s(0)
—p s(0)+5(0)
—r $(0+s(0))
—r s%(0) o

Note that the R-reductions reduce the + operator. The F-reduction repre-
sents the parameter-passing mechanism of programming languages.

In addition to local declarations like Az.(z+z) in Example 1, rewriting be-
comes more interesting when we permit specifying higher-order rules like the
following ones

fold([].X,z) — =z (4)
fold(z::LY,z) — fold(L,Y.Y(z.z)) (5)
In the approach of [Nip91] to higher-order rewriting the dynamical parameter-

passing (i.e. S-reduction) has priority over term rewriting using rules. In fact, one
can consider fB-reduction as part of the substitution operation. This represents
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the first characteristic of the combination of higher-order and term rewriting
used in [Nip91]. The second characteristic is that terms can only be rewritten
if they are in #n-long form. This decision does not represent any computational
restriction and it simplifies much of the technical work. Thus, an expression like

fold([1,2],Azy.(2+y).0) (6)

will be reduced by proceeding in the following way: The expression is in f-normal
form, hence a rule can be applied. Using rule (5),

fold([2], Azy.(x+y).(Azy.(z+y) 0 1)). (7)
can be produced. Now we apply B-normalization yielding
fold([2], Azy.(z+y).(04+1)). (8)

As in this example, f-normalization is already performed after having applied
the term rewriting indicated by the selected rule. Repeating this process, first
using rule (5) followed by rule (4), we yield the algebraic term

(0+1)+2 ' (9)

which could further reduced to s3(0) after translating 1 to s(0) and 2 to s(s(0))
and using rules (1) and (2). In other words, the term in (6) denotes the compu-
tation of the sum of all the elements contained in the list [1,2].

In order to verify termination of HCTRSs, higher-order terms must be com-
pared, in some way. We develop a method for performing that task which is based
on suitable extensions of first-order techniques. More specifically, we construct
an ordering called HPO (for higher-order path ordering) by means of an extension
of the recursive path ordering RPO ([Der82]) so that non-algebraic terms can also
be compared. Termination and decreasingness of HCTRSs are then achieved as
usual in the first-order case: the associated rewrite relation is required to be in-
cluded in this ordering guaranteeing some kinds of monotonicity properties wrt.
term structure and substitutions.

Our method is essentially based on a first-order interpretation of higher-order
terms in Fn-long form. Therefore, some of the principal properties and proof-
techniques existing in the first-order case can also be used for the HPO. This is
true, for instance, for well-foundedness. As we will see, the definition of the HPO
looks like the standard definition of the RPO. In fact, they coincide on algebraic
terms. Thus, the remaining properties making the HPO a quasi-ordering can be
obtained by appropriately extending the corresponding proofs for simplification
orderings. The HPQ is based on a precedence > (i.e. a quasi-ordering over the
set of operators F) and the term interpretation makes use of an appropriate
extension of it. This extension, called ¢ includes new constants like binders
AZ, (which will be treated as unary operators). We also define a congruence
~ypo Such that Zo0 (ie. ~ 0 Uypo ) becomes a quasi-ordering over T(F,V).

HPO
In order to illustrate the main ideas, let us consider the terms

s = map(Az.g(h(z)).y:L) and (10)
= g(h(y))::map(Az.f(h(z)).L). (11)
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We explain how to prove s iypq t using the rules defining the HPO which will be
exposed later. First of all, suppose a precedence - to be given satisfying

map > :: and g~f. (12)
Using this and proceeding as in a typical RPO-comparison, we have to prove

s ppo 8(h(y)) and (13)

s map(Az.f(h(z)),L) (14)

PO

in order to show s >4 t. In the first case, we make use of an ezfended sub-
term property of the HPO: g(h(y)) is not exactly a subterm of s but it can be
constructed using f-reduction and proper subterms of s:

(Az.g(h(z))y)ls = &(h(v))- (15)
This proves (13). For (14), the multisets of direct subterms must be compared:
vte {Az f(h(z)),L}: 3se {rz.g(h(z)),y::L}: s ppo 1 (16)

which is true since

Az.g(h(z)) ~ypo Az-f(h(z)) and (17)
vyl dgpo L- (18)

For (17), note that the A-binders are the same and g(h(z)) ~,p, f(h(z)) because
g ~ f. The relation (18) is a consequence of the property that the HPO is an
extension of the (modified) subterm ordering. Therefore, s ., ¢ holds.

The paper is organized as follows. In the following section, some necessary
notations about terms, substitutions, reductions, patterns and orderings are pre-
sented. Subsequently, an extension of the signature (integrating A-binders as
unary operators) and the term algebra together with an appropriate precedence
extension are introduced. Section 4 deals with the presentation of a general-
ized subterm ordering since the original subterm ordering is not sufficient for
A-expressions {see (13) and (15)). The definition as well as the main properties
(e.g., the well-foundedness) of the new ordering HPO for higher-order terms are
contained in Section 5. Although the HPO is not compatible with substitutions
in general, we show that this property holds for a great class of HCTRSs oc-
curring in practice (see Subsection 5.3). This provides a useful syntactic test for
verifying termination and decreasingness as presented in Section 6.

This report is mainly a polished version of Chapter 6 in [Lor93], with some
extensions (see Section 7). For related work, see Section 8. Proofs of all results
can be found in the appendix.

[e 2NN

2 Preliminaries

First of all, we give some elementary notations which are necessary for defining

our ordering. Unless otherwise specified, we use the notations of [Nip91] and
[AL94].



2.1 Terms

A signature sig is a triple (B, F,V) where B is a set of basic types, F is a family
of sets of function symbols (also called operators) and V is a family of sets of
variables, both families based on B. An atom is either a constant or a variable.
The set T(F,V) of terms over sig is defined as usual. Additionally, AZ,.t denotes
Az1.(Azg.(- - (Azn.t) - - +)) whereas f(2,) denotes f(t1,...,t,). The sets FVar(t)
and BVar(t) stand for the set of free variables and the set of bound variables of
a term ¢, respectively.

2.2 Substitutions

A (well-typed) substitution o is a mapping from V into T(F,V) such that zo and
z have the same type for each z €V and only for a finite subset of V 20 # 2
holds. The domain of o, denoted by Dom(o) = {z€V | zo £ z} is such a set. A
substitution o has a property P on terms if zo satisfies P for every z € Dom(o).

2.3 Reductions

We recapitulate the standard reductions and the corresponding equalities (con-
versions) of the typed A-calculus.

As well-known, the «-conversion is used to rename bound variables. Thus,
terms only differing in bound variables are a-equivalent.

The f-reduction represents the parameter-passing mechanism of program-
ming languages: bound variables in expressions (i.e. formal parameters of func-
tions) are replaced within the scope by their binding values (i.e. actual parame-
ters) permitting computation to take place:

Jp&ePos(s): sp = (Mx.s1)s2 and

s—pt if {t = s[{z—s2}s1]p

The position p used for the reduction is called a redez. One can show that —4 is
confluent and terminating (see [HS86]). A term t is in S-normal form (3-nf) iff

t= 25 Fty .. by (19)

for some p,m > 0 such that m is less than or equal to the arity of F and such
that the t; are in G-nf. A term AZ;.Fty .. .1, in S-nf is called rigid if F is either
a bound variable or an operator. Otherwise, it is called flezible.

The n-reduction, finally, is used to represent equality of functions in the
mathematical sense, i.e. f =, Az.f(z).

Ezample 2. f((Azy.g(z.y))a) —o f((Azz.g(z,2))a)
—g f(Az.g(a,2))
= f(Az.gaz)
—y f(ga) .o



A very useful representation of terms in S-nf is the so-called 879-long form.
To obtain it, terms in B-nf will recursively be completed by adding new variables
and A-abstractions using ,«— (i.e. the inverse of —,)) to preserve the type of the
original term.

Definition 1 (87-Long Form) Lett be a term such thattly = AT, Fty .. .15,
The Bn-long form T of t is recursively defined by '

t ift is a first-order atom
AZ1 . ZpZmgt -0 F(0, . tmy Tty - -2 Zn)  otherwise
where
- F(rn,. . Ty Tm41,- - Tn) =T and
~ Tm4l,. .., Tn are new variables such that VEE[l,n — m]: Tpyr: — Togk
A term t is in Bn-long form if t =4 t. o

Let T (FV) = {t e T(F,V) | t in Bn-long form}. A substitution ¢ is in G-
long form if xo &€ Tg(F,V) for all z € Dom(a).

For example, let t be (map X) where map: (1 — 73, list(n)) — list(m) is an
operator and X: 1, — 75 a second order variable. Then ¢t = AL.map(Az.X(z).L)
since X = Az.X(z) and L = L. In this case, L: — list(r;) and z: — 71 are
the newly generated variables. Note that ?—‘g, t. This example Hlustrates that
terms in @n-long form possess a nearly algebraic structure where A-binders are
unary operators and bound variables are constants. Assuming that terms are in
this special form will significantly simplify several technical problems associated
with extending algebraic results to the higher-order case.

2.4 Patterns

A term t in S-nf is a (well-typed higher-order) pattern if every free occurrence
of a variable X in ¢ is a subterm of the form X (Z;,) such that Z;; is n-equivalent
to a list of distinct bound variables in BVar(t).

For example, the terms Az f(Ay. X (y,z).a) and map(X,L) are patterns whereas
Y (a) and Azy.Z(z,z,y) are not patterns.

2.5 Orderings

The proper subterm relation 1> is defined as s > ¢t iff Ip # A: s, =¢. On terms
in Bn-long form we define s >y t iff s & ¢ and ¢ is of basic type and not a bound
variable in s. In the sequel, >, will be used as the proper subterm relation, only.
Thus, for simplicity, > will be used instead of >;.

Definition 2 (Recursive Path Ordering, [Der82]) Let > be a gquasi-pre-
cedence on F and s,t be two terms. Then the recursive path ordering RPO s
defined as



s mpo tiff (1) Args(s) ¥2, {t} or
(2) Head(s) > Head(t) A {s} %o Args(t) or
(3) Head(s) ~ Head(t) A Args(s) 5O, Args(t)
where Head(t) and Args(t) denote the leading operator and the multiset of the
arguments of t, respectively. o and f.«o stand for the multiset extension of
rpo And Zgpo, respectively. o

3 Relations on Extended Terms

We assume that in every context the bound variables occurring in any term are
contained in the set X (X C V). More formally, V = X U Vg where

XNVe=0
VtET(FV): BVar(t}C X A FVar(t)NX =0.

In addition, we assume by a-conversion that no z € X is used more than once
for A-abstraction in any term ¢.

Definition 3 (Extended Symbols) The set of extended symbols Fy is de-
fined as Fo = FUX UK where K = U5 onzex {ATm} is the set of all valid
A-binders. o

Note that T(F Vo) is a set of first-order terms. Any t € Tg,(F,V) can be iden-
tified with some term in 7(FqVo). By this identification 7p,(F,V) C T(F Vo)
holds.

Our intention is to establish a one-to-one correspondence between terms in
On-long form and ‘algebraic’ terms built using operators in Fy and variables in
V. Thus, for instance, we identify Az.g{h(z)) with Az(g(h(z))) where Az is a
unary operaﬁor in K and the bound variable z is considered as a constant. These
terms are called eztended terms.

First of all, an extension of quasi-orderings on F to Fy for constructing the
HPO is needed.

Definition 4 (o) Given a quasi-ordering > over F, we extend it to a relation
7o over Fo as follows:
f2og ff —frgor

—feF and g€ KUX or

- fgeX and f=, g or

- =A%y, g = Ay and T =7 Um
where Ty, =r Um Uf 2; and y; have the same type for every i€[1, m]. We assume
that precedences over F respect arities and types of operators, i.e. f ~ g and
f:(r1,...,7) — 7 implies g (Tx(1),. .-, Tr(n)) — T where T is any permutation
of {1,...,n}. As usual, we also define the strict part of >0 as ¢ g iff (f 20 g)
and (g Zo f) and the associated equivalence relation as f ~o g iff (f o g) and

(8 Zof) °



Note that the elements of K are minimal symbols wrt. 7o as well as A-
binders and higher-order variables will be comparable only if they are =,-equal. -
Furthermore, f ~p g implies f and g to have the same arity.

Proposition 1 (Well-Foundedness of >¢) Let > be a quasi-ordering over
F. Then )
1. 7o ts a quasi-ordering over Fo.

2. »¢ 1s well-founded over Fo iff > is well-founded over F. o

Now, we construct the congruence ~po OVer terms built using symbols in
Fo and generated by ~q. First, we need an auxiliary definition.

Definition 5 (Type-Respecting Permutation) A permutation m of the set

{1,...,m} is a type-respecting permutation of a list of m terms t,, if t; and
tx(:) have the same type for each i€[1,m]. o
Definition 6 (~ Let ~ ., be the minimal congruence on ezlended terms in

T(Fo,Vo) such that
f(5m) ~po 8(tm) f f~ag and si ~0 txg) B
for every i€[1, m], where w is any type-respecting permutation of (Im). o

Note that Az(f(h(z))) ~,., Ay(g(h(y))) holds if f ~ g (which implies f ~; g)

and z =, y (which implies Az~ Ay). has the following property.

~~
HPO HPO

Lemma 1l {Compatibility of ~HPO). Ifo ~Po o’ and s ~po ! then so ~Hpota’

for all substitutions o and o' of basic type* and all 5,t in Bn-long form. o

4 Generalized Subterm Ordering

For constructing the HPO a generalization of the subterm relation > is needed. In
order to motivate the main ideas let us first discuss the definition of the RPO (see
Definition 2). Only for the purpose of illustration let us define the relation >,
as
f(‘t:) Dex ti

for every i€[1,n]. Note that the RPO-schema ‘decomposes’ the problems using
Dez- Our aim essentially consists of obtaining a suitable generalization of ., on
terms in @n-long form (equivalently on extended terms). Thus, for instance, not
only the comparison f(Az.g(z),a) ., a should hold, but also f(Az.g(z),a) >.. &(a).
In the latter case, the term g(a) is obtained by combining the direct subterms
Az.g(z) and a, and by applying (first-order) S-reduction. For constructing ..
we will introduce two auxiliary relations (>¢ and >;) which help us showing
that >, is a well-founded ordering.

Once we have defined .., we will present the HPO following almost the same
RPO-schema exposed above.

* That is, z is of basic type for every z € Dom(s).
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Definition 7 (>.;) Let 1> be the subterm relation on T(Fo Vo). The relation
>0 on ertended terms is defined as

f(:S—n) Dot

iff feF and Ji€[l, n]: s; = ATr.s’, m>0 and t = s’ where Dom(r) C {z} |
1 < k < m, zi first-order} and for all z €Dom(r): z7 I's; for some j # i, z7
not below a free variable. Now, b1 1s the union of Do UD, i.e.

>y = (I>U>0)+ and

Der = DY o

Ezample3.  f(Azy.g(z,Az.5(h(y.2))).a.b) >1 g(a,Az.s(h(b,2)))
>; s(h(b,a))
> h(b,a)
Thus, f(Azy.g(z.Az.5(h(y.2))).a,b) >.; h(b.a). o

Obviously, the definition of ., makes sense only if it is a well-founded
ordering.

Lemma?2 (Basic Properties of >.;).
]. > C Dl C [>e.r

2. Dey is globally finite.
3. 5Dt tmplies so >o; to for every o of basic type. o

.

5 The Higher-Order Path Ordering

This section deals with the introduction of the ordering HPO for comparing
higher-order terms. Although the definition is apparently different from the
RPO, a careful observation shows that the HPQO is essentially based on the RPO:
A-binders are treated as unary operators and higher-order as well as bound vari-
ables are considered as constants. Thus, in the definition of the HPQ, we implicitly
interpret terms in Bn-long form in 7{F,V) as first-order terms in 7(Fo, Vo), i.e.
any term of the form AZ,,.t will be considered as AZ,(t) where AZ,, represents
a unary operator in K.

5.1 Definition

Definition 8 (HPO) Let > be a quasi-precedence on F. The higher-order path
ordering HPO over terms s,t in T(Fo, Vo) is defined as
s ppo t U (1) 35" sDer s’ Zypo t oT
(2) Head(s) Zo Head(t) A Vt': tD>1t' ~» s ypq t' and
(2.1) Head(s) »o¢ Head(t) or
(2.2) Head(s) ~o Head(t) A Args(s) %o Args(t) o
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Note that the restriction of the HPO to algebraic terms coincides with the
RPO. In such a case, [>.» plays the role of the subterm property. Thus, (1) of
Definition 8 is an extended subterm property as explained in Section 4. Note
also that C Dexr C >Hp()’

Ezample 4. Consider the following HCTRS. We will prove its termination using

the HPO based on the precedence map > ::, d > s, doublelist > map, d.
1: d(0) — 0
2: d(s(z)) — s(s(d(2)))
3: map(Az.X(z).[]) — []
— X(y):map(Az.X(x),L)
— map(Az.d(z),L)

4: map(iz.X(z),y::L)
5: doublelist(L)

The comparisons proceed as follows:

1: d(0) >ppo O by (1) since d(0) >,z 0.

2: d(s(z)) *ppo s(s(d(z))) using (2.1) first and then (2.2).

3: map(Az.X(2).[]) *meo [ by (1).

4: First, map(Az.X(z),y::L) 3po X (¥) by (1). Further, map(Az. X (x).y::L) mpg
map(Az.X(z).L) by (2.2). So, map(Ae. X (z).y::L)sppo X (y)::map(Az. X (z),L)
by (2.2).

5: doublelist(L) >pq Az.d(x) by (2.1) using doublelist o Az, d, z and doublelist(L)
o L by (1). By (2.1), we get doublelist(L) sppq map(Az.d(z).L).

5.2 Well-Foundedness

Now, we prove the main result of this paper, namely, that EHPQ is a well-founded
quasi-ordering. We presuppose that an arbitrary but fixed precedence > is used
to generate the HPO. Furthermore, - is extended to a precedence 7o on Fg, as
indicated in Definition 4.

Theorem 1 (Compatibility pf ~po and peg) If s ~Nipo t Dex W then s De,

v ~po W for some v. o
Proposition 2 (Technical Property) For every s,t and every o of bastc type:
1. If to ezt then 't t! AN to=t"

2. s pg t implies so dppg to o

Theorem 2 (Quasi-Ordering Properties of the HPQO)

1. If s »gpo t ~ypo ¥ then s dppo W
2. If s ~po bt “Rpo W then s oo w
3. If 8 dpo t Pupo W then s oo w (i.e. the HPO is transitive) o

By means of the next result we achieve well-foundedness and compatibility
of the HPO wrt. the term structure.
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Theorem 3 (Simplification Properties of the HPO) Let s and t € T5,(F,V)
such that s and t are of the same basic type and 5 >ypq t. Then

1Ay, ticy ttig, o t) 1w implies f(ty, .. tio1, 8,01, . tn) Sppe W
and
2. C[s] *ppg Clt] for every well-typed context C[.]. o

Corollary 1 (Well-Foundedness of the HPO) The relation =5 is a quasi-
ordering over terms in fn-long form in T(F,V) such that its strict part >, is
well-founded and properly contatns >. S

5.3 Stability
Our next aim is to prove that the HPO is — in a restrictive form - compatible
wrt. substitutions. For this purpose we first need some auxiliary results.
Proposition 3 (~,,, and Flexible Patterns)

1. X(3,)Dest iﬁ $iDest for some it ort = X(57)

2. X(Wr) Zupo ijf X(wg) ~po bt OT Wi ~ypg t for some j whenever Wi are
bound variables in X.

3. X(w%) ~po X(wr) implies X (vk)ols ~po X(Wr)ols whenever U, wy, are
bound variables in X for every o 'in Bn-long form. ©

Lemma3. Let s be a basic pattern, t € Tg,(F,V) and ¢ a substilution in Bn-long
form. If sDept then so|>epto]. o

For the next lemma we need the homeomorphic embedding %,,, on 7(Fo,V%).
Note that g C ypo o0 T F,V) since D> C ypo and the HPOis closed under
contexts by Theorem 3.

Lemmad4. Lett = f(f,), fEF and t,0 in On-long form. Ifto| >yt thentt>) s
and so| dpyg t' for some s. o

Ezample 5. Let t = f(Av.G(v),H(z)).

1. Assume o = {G — Av.a, H — Av.h(z,b)}. Then to] = f(Av.a,h{z.,b)) >, a =
t'. We may choose s = G(v). Then we have t{>; s and so| =a=1t'.

2. Assume ¢ = {H — Av.h(z,b)}. Then to| = f(Av.G(v),h(z,b))>1 G(b) = t'.
We may choose s = G(H(z)). Then we have ¢>; s and so| = G(h(z,b)) ey
Gb)=1. o

By means of these results, we are able to prove

Theorem 4 (Compatibility wrt. Substitutions) Let s be a basic rigid pat-
tern, o, s, teTp,,(}'V) Then

S ~p zmp?zes so| ~hro to]
2.5 dqpo t implies 50| pp tol o

In this form we have obtained the necessary properties which ensures that
the HPO can be used as a reduction ordering. The next and final step consists
of appropriately embedding the rewrite relation into this ordering.
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6 A Test for Decreasingness

Using the results of the previous sections, we are able to postulate a sufficient
test for termination and decreasingness of HCTRSs.

Theorem 5 (Termination and Decreasingness) Let R be an HCTRS. Then

1. R 1s terminating if | 3y v for each rule l—r if C in R.
2. R is decreasing if | >ypq s for every s in {r} U{u,v | u=v € C} for each
rule l—r if C in R. o

Example 4 of Section 5 exhibits an HCTRS whose decreasingness can be
verified using this criterion.

FEzample 6. As another example, let R be given by
1. split(P.[1.L1.L2) — pair(Ly,Ly)
2: split(P,z::L,Ly,L2) — split(P,L,z::L1,Ly) if P(z) — true
3: split(P,z::L,Ly,Lz) — split(P,L,Ly,x::Ly) if P(x) — false
4: partition(z,L) — split(Ay.(z < y).L.[1.[])

We can verify that R is decreasing wrt. the HPO based on the precedence
partition = <, split, [] and split > pair, true, false. ©

7 Extensions

The construction so far is based on the classical recursive path ordering and so
shares the restricted power of the RPO. There are other insufficiencies concerning
the arguments of higher-order variables in right-hand sides of rewrite rules. In
this section, we will demonstrate these problems by examples and propose ideas
for solutions.

FEzample 7. Let
R: fold(F.y[) — v
fold(F,y,z :: I) — fold(F,F(y.2).0)

Here the HPO fails to orient the second rule because in the right-hand side
the second argument of F is greater than that in the left-hand side. But R is
terminating due to the fact that the third argument becomes smaller in each
rewrite step. The solution to this problem is to allow a status stet(f) for all
fe F. This is well-known for reduction orderings on first-order terms, see [Der87,
Ste94]. For R, we may choose stai(f) = right-to-left. o

Let HPOS denote the obvious modification of the HPO with status. Then we
have

Theorem 6 Each HPOS is a reduction ordering. o
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The next example shows that the extended subterm relation >.; may be too
weak.

Fzample 8. Let

R: dapply(F,G,2) — F(G(z))
The HPO is unable to orient this rule because, roughly speaking, >¢ does not al-
low iterated application of evaluation of subterms: We have dapply(F,G,2) > F(2)
but not dapply(F,G,z) >¢ F(G(z)). We may extend t>p in this direction and so
construct a more powerful HPQO. This allows to prove the termination of R. ¢

The next example shows that it is necessary to extend [>( even more.

Ezample 9. Let
R: dmap(F.G.[]) — [
dmap(F.G.z :: 1) — G(z) :: dmap(F.F(G),])

The relation g is restricted in that f(37)D>ot, t = soT, s; = AT,.s50 only if
is a variable of basic type for all £ € Dom(7). In the second rule of R we have
F =, AXv.F(X,v), where X =, Au.X(u). We need dmap(F,G,z :: I) > F(G) for
orienting this rule with the HPQO. But, for this we need X7 = Au.G(u) and X
is not of basic type. We did not succeed up to now to extend the HPO in this
direction. Notice that F has an argument of non-basic type, so dmap(F,G,z :: [)
is not ‘simple’ in the terminology of [LP95]: The approach in [LP95] is unable
to deal with this case, too. J

8 Related Work

To our knowledge, there are two approaches to prove termination of higher-order
rewriting systems, [LP95] and [vdP94]. Our approach dates back to [Lor93].

The approach of [LP95] is similar to ours, the main difference being that it
uses the more general construction of [DH93] to construct reduction orderings
based on the RPO-schema. In that paper it is proposed to replace comparing f
and g in s = f(3;) and ¢ = g(t,m) of (2) in the definition of the HPO by comparing
weights of s and t, the weight of a term being defined by weights of the function
symbols f€ 7. This seems to be more flexible in handling arguments of higher-
order variables F. On the other side, the approach needs to show sometimes that
g(tm) dominates F. For that the sufficient condition ¢; = F, for some 1, is used.
So f(Au.g(F(u)).z) — F(z) causes some problems. This causes no problem to our
approach. So none of the two approaches seems to subsume the other one.

The paper [vdP94] uses semantic arguments to construct reduction orderings
in that the f € F are interpreted as strict monotone functions in a sig-algebra
equipped with a well-founded ordering. So it can be seen as an extension of the
polynomial orderings on first-order terms. This approach is quite different from
the syntactic orderings used in this paper. So we do not comment in detail on
that.
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A Proofs

Proposition 1 (Well-Foundedness of >q) Let » be a quasi-ordering over
F. Then

1. 7o is a quasi-ordering over Fp.

2. o is well-founded over Fy iff > is well-founded over F. o
Proof. straightforward by using the corresponding definitions 0
Lemma 1 (.Co‘mpatibility of ~HPQ) Ifo~,. o and‘s ~Hp?t then so ~ , to’
for all substitutions o and o' of basic type and all s,t in Bn-long form. o

Proof. By induction on (s,t) using (&>, )iez- If s ~wpo and s = f(5;) and
t = g(tm) then f ~o g and Vi € [1,m]: s; ~wpo tx(i) for a type-respecting
permutation 7 of (). By induction, we get s;o ~po t,,(,-)a'. Since ¢ and ¢’ are
of basic tyge, so = f(5,7) and to’ = g(t,,0’) hold. By definition of ~po e et
50 ~po to'. ]
Lemma 2 (Basic Properties of >..)

1~ > C Dl C Dez

2. Der ts globally finite.

8. syt implies so >og to for every o of basic type. o

Proof. 1. It follows directly from the corresponding definitions.

2. 1 is finitely branching, i.e. for any s there are only finitely many ¢ with
sp1t. So, Beg 1s globally finite by Konig’s lemma.

3. obvious by using the corresponding definitions 0

Theorem 1 (Compatibility of ~4po and D.z) If s ~po L Der W then s ey

U ~po W for some v. o

Proof. 1. We first prove: If s ~Npo tD1W then sty v ~wpo W Assume s = f(55)

and t = g(t,), so f ~¢ g and Sx(i) ~ypg Ui for some permutation 7.
If w = ¢; for some i, then we may choose v = sz(s). So assume w = o7,
ti = ATy 1o and z;7 < tg. Then sx(;) = AYm.50 and so ~po t0- Define o by

Y;0 = sglp if ;7 = txlp and choose v = spo. Then s>y v ~4po W

2. We now prove the claim of the theorem by induction on >.,. Assume s ~Po

tDer w' 1 w. By induction hypothesis we have s>, v/ ~iro w' >, w, and

by part 1. we have v/ > v ~po Y- This gives s D>ey v ~hpo W- O
Proposition 2 (Technical Propérty) For every s,t and every o of basic type:

1. If toept” then 3t t Dot N to=t"
2. 5 Jppo t implies 5o xppq to o
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Proof. 1. It is simple from the definition of [>.;.
2. By induction on (s,t) using (Pez,>er). Consider the cases on s »py ¢
according to the definition of the HPO.
— If speg s’ ~hro t, then so>.s s'c by Lemma 1 and Lemma 2. Thus,
80 ppg tO.
- Hs=1E5), t =g(tn), f Zo g and s »ppq t' for each ¢/ such that t>e, ¢’
and either
(8) f3o g or
(b) f~o gand {s;}]-, %o {ti}ie:
From s 3ppo t', we get so Ipo t'o for every t’' such that ¢t >, t'. And
if to et then we can find ¢ such that t>..t' and t'c = ¢, by 1. It
follows
to Dert” implies so dypy 17 (20)

That directly implies, so >, to, in case f o g. Hence, suppose
f ~¢ g. Hence, we have {s;}}., >po {%:i}’=;. By induction, we get
{sio},; 0 {tio}?_,. That and (20) yield so >, to. O

Theorem 2 (Quasi-Ordering Properties of the HPO)
LIf s mpg t ~wpo W then s >ypg W

2. If s ~po ¢ RPo W then s dppo w

3. If 5 ypo t ppo W then s dypo w (i.e. the HPO is transitive) o

Proof. We only prove part 1. The proofs of the remaining cases can analogously
be performed. We proceed by induction on (s,t, w) using (I>ez, ez, Deg )iex- Let
us consider the cases on s po t according to the definition of the HPO. In each
case, we assume s = f(35),t = g(,), w = h(w,) and g ~o h and for each
ie[l,n]

ti ~Npo Wr(d) (21)

for an arbitrary type-respecting permutation = of (Z,). From (21)
{ti }?=1 NHpo {wi}?zl (22)
compared as multisets. Now, to the cases:

— SDez 8 ~, t~ __w. Then s>es s ~,  wand hence s hpo W-

HPO © “HPO HPO
- f>o gand
V' t>est’ implies s sppg . (23)
We first have f 2o h. Also, if ¢ ~wpo WPes w’ then tD>.p v ~NiPo w' by
Theorem 1. Hence, by induction
Vuw': w>e w implies s sppq ' (24)

And, if f =¢ h then

(s} Qo ity ~po {widis (25)
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Again by induction {s;}/%, >0 {w;}?=;. From that and (24), we get
S >ppo W as required. a

Theorem 3 (Simplification Properties of the HPO) Lets andt € 7g,{FV)
such that s and t are of the same basic type and s ppg t. Then

1. f(tl,...,t,'..l,t,t,'_..l,...,tn)[>1’w implies f(ty,...,ti=1,8,..,ti+1,1n) *po W
and
2. C[s] qpo Clt] for every well-typed context C[.]. o

Proof. 1. Let s,w be given. We prove the claim by induction on t using ...

There are three cases:

(a) w =t;: We have f(t;,...,ti~1,5,tit1,...,tn) 1 w and the claim holds
by D1 C ppg-

(b) w = t: We have f(t1,...,ti_1,5,tig1,...,ta) > s dppy t>1w, therefore
f(tl, o ticy, 8,4, .,tn) ipo W-

(c) t; = AZmt’ and w = t'T, where z;7 J 5, or i < t: We define ¢
by zxo = zi7 if not ¢t > zp7 and zxo = s otherwise. If t > zp7 then
Ty0 ppo TkT and the induction hypothesis gives t'c xp, t'7. We have

f(tla" -1ti—1vsati+11-~'ytn) heo W-

2. By 1. we have f(t1,...,ti—1, 8, tig1, ... ln) o v Whenever
f(t1,.. ., tic1,t,tiv1, . - -, ta) D>1 v. This gives C[s] »py v Whenever C[t] > v.
- Now by (2.2) of Definition 8 we get C[s] wpo CI[t]- )

Corollary 1 (Well-Foundedness of the HPQ) The relation 2, is a quasi-
ordering over terms in Bn-long form in T(F,V) such that its strict part >4 is
well-founded and properly contains r>. o

Proof. By the previous results, the HPO is a simplification ordering on 7{F Vo)
and hence terminating. O

Proposition 3 (~,,, and Flexible Patterns)

1. X(3r)Pest iff 5iegt for somei ort = X(5,)

2. X(Wx) Zypo t ff X (W) t or w; t for some j whenever W are
bound variables in X.

3. X(¥%) “tro X(’EE) implies X(v_k?alﬁ ~po X (WE)olg whenever T, Wy are
bound variables in X for every o in fn-long form. o

“HpPo “HrPo

Proof. Use the corresponding definitions. ]

Definition 9 Let s be a basic rigid patiern.
1. Ai(s) is defined as follows:

Ao(s) = {t]|s>1t}
Aiz1(s) = {t | ue Ai(s),udov >t} U Ai(s)
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2. o€ Ai(s) if VeeDom(o): z€BVar(s), ¢ first-order and zo € A(s). o

Fact 1 Let s be a basic rigid pattern, t € Tp(FV). Ift € A;(s), 1 > 0, then there
are u, T such that s> u, t = ur and 7 € A;_1(s). Furthermore, if t = f(,) then
u = f(m), fe FoUVy.

Proof. Let s be fixed. We perform induction on ey

l.s Eezv = g(m)D vy = tv gej:cUVo.

By induction hypothesis we have w = g(wy,), s> w, 7 € 4;_1(s) and v =

wr’. Sot = v; = w;T’.

(a) If w; = z€ X then 27’ = ug = f(¥n) € Ai—1(s). By induction hypothesis
there are u = f(uy), 7'/ € A;—2(s) such that up = ur” and s> u. We have
t=urfor r = 7Ur and T€ 4;-1(s).

(b) If w; ¢ X then w; = f(Un). Choosing u = f(¥;) and 7 = 7/ we have
sPwpuandt=ur.

2. sPer v = g(Um)D1t, vj = ATrm.vp, t = voT1. So v € A;_1(s). By induction
hypothesis we have sp>w = g(Wn) and vg = wr’, ™ € A;_3(s). Choose
u=wand 7 =7Ur. Then spw=vand t = vor; = wr'ty = wr = ur, so
s u and ¢t = ur. Furthermore, we have € 4,_1(s). O

Lemma 3 Let s be a basic pattern, t €Tp(FV) and o a substitution in fn-long
form. If sp>ezt then so| Desto]. o

Proof. Let s be fixed and sP., t = f(I,), fe FoUVy and t € A;(s). By Fact 1 we
have u and 7 such that s> u, t = ur and 7€ 4;_;(s). We perform induction on
(z,>). ‘

Let s>z v>1t and v = f(75), vE Ai(s).

1. i = 0: Since s is a pattern, t € X, v cannot be a subterm of a flexible term.
So so|>wvol and f€ Fo. If t = v; then vo| = f(Thol)>to] and hence
$0| ez to].

2. > 0: We have s> w and 7€ A;_1(s) such that v = wr. If fe Fy and t = v;
then so| B, vo| >to| as above. Also, if f€ Fy and v; = AT .v0, v = v,
then so| P, vol > to| as above. So assume f = F € Vg and ¢ = v;. Then
w = F(W;) and £ = v; = w;7. As in the proof of Fact 1, there is u and
7' € A;_5(s) such that ¢ = ur’ and s> u. By induction hypothesis we now
have so| > to]. O

Ezample 10. Let s = f(Azy f(Az.G(x1,22).21).t) where t = h(Az3.H(z3),a). Then
sty = f(Az2.G(t,x2).t) D12 = G(tt)>1 t3 = t >y 4 = H(a). We may choose

uy = f(Az2.G(z1,22).21) n = {z, — t}
ug = G(z1,22) s = {21 1, z2 — 1}
uz = h(Az3.H(z3),a) r3=10

ug = H(zs) 74 = {23 — a}
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The reader may verify that s> u; and ¢; = w;n, 7 € Ao(s) and so| >y t;0] for
ie[1,4] hold. o

Lemma 4 Lett = f(1,), fEF and t,o in fn-long form. Ifto|>1t' thentys
and so| Sgyg 1’ for some s. ’ o

Proof. Let u =to], so u = f(uy;) and u; = t;0].

1. ¢/ = u; for some i: Choose s =t¢;. Then t1>; s and so| = tjo]l = u; = ¢t'.
2. u; = AT .uq, ' = uo7 for some ¢ where Dom(r) C {T} and 27 < u; for
some j # t if € Dom(r). Then t = AT, .tg and up = too ], so t' = to7].
{a) up = tpo| contains no zx: Then too| = tga7| = uor = ¢'. Choose s = 1.
Then t >y s and so]l = ¢
(b) Assume zp7’ =t;, so zxr'o| = u; D> zpr. Choose s = to7'. We have
ug(1’ 0 al) Sy uoT. This gives so| = (toT'0)l = uo(7' 0 0]) g w07 =
.

Theorem 4 (Compatibility wrt. Substitutions) Let s be a basic rigid pat-
tern, o,s,t €T3 F,V). Then

S ~po t tmplies so| ~ . to|
2.5 po t implies sol| ppo tol o
Proof. Assertion 1. is easily proved by induction on {>. We prove assertion 2. by
induction using (*ypq » po Nez -

1. s po taccording (1) in Definition 8. Then s>, s’ ~upo b1 SO SO Der s'ol
by Lemma 3 and s'0| yp, tol by induction hypothesis. So so| ypo tol.
2. 5 ypo t according to (2) in Definition 8. Then f 2o g, where s = 1(57),
t = g(tn) and s 5py ¢ Whenever t Dot
By induction hypothesis we have so| >y p, t'cl whenever t1>; 1. Now
Lemma 3 gives sa| dypo to Whenever tal > to.

If f -9 g, then so| o tol by (2.1) in Definition 8.

If f ~g g then {5} o {tm}. So si Zppo tj: forall ¢ and s; >ppq tj; for
one €[, n].

If s; is flexible, then s;o| Z,,04 tj;0l by Proposition 1. If s; is rigid, then
5:0) Zypo tj;ol by induction hypothesis.

So {snol} o {tmo]} and therefore so| dypo tol by (2.2) in Definition
8. a0

Theorem 5 (Termination and Decreasingness) Let R be an HCTRS. Then
1. R is terminating if 1 3ypq 7 for each rule l—r f C in R.

2. R is decreasing if 1 yppo s for every s in {r}U{u,v | u=v € C} for each

rule I--r if C in R. o

Proof. A direct consequence of the properties of the HPO and the restrictions on
rule systems which guarantees that s >ypo t whenever s— gt for every s and ¢
in Br-long form. |
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