
UW
8IND|SISSIDX £99/9-A

6v0€ YYPD
H

SO
d

W
S{NDISI3SIDY JD

H
SISAIU

N
MHDUMOJU| YH

S@
L8qU

YD
D

Joachim Steinbach

SEKI Report SR-95-03 (SFB)

0£©=onQ
V

©=o©=20as

Jirgen Avenhaus, Carlos Loria-Saenz,

Sad

ES&h
=fut
©a]Sat

®
)=Q«

p
d

a[3]
|9Qel<

11O
ddel - IA

S

A Reduction Ordering for
Higher-Order Terms

Jürgen Avenhaus, Carlos Loria-Sienz,
Joachim Steinbach

SEKI Report SR-95-03 (SFB)

1

A Reduction Ordering for Higher-Order Terms
'.

Jiirgen Avenhaus1 , Carlos Loria-Saenz 2 , and Joachim Steinbach3

1 Universitat Kaiserslautern

Fachbereich Informatik, Postfach 3049

67653 Kaiserslautern (Germany)

2 Instituto Tecnologico de Costa Rica

Departamento de Computaction

Apartado 159-7050 Cartago (Costa Rica)

3 Technische Universitat Miinchen

Institut fiir Informatik

80290 Miinchen (Germany)

Abstract. We investigate one of the classical problems of the theory of
term rewriting, namely termination. We present an ordering for compar­
ing higher-order terms that can be utilized for testing termination and
decreasingness of higher-order conditional term rewriting systems. The
ordering relies on a first-order interpretation of higher-order terms and
a suitable extension of the RPO.

Motivation

Term rewriting systems (TRSs) can be considered as a powerful theoretical
model for reasoning about functional and logic programming in an abstract way,
independently of a particular programming language. In such an approach to
computer programming, logic and functional programs are represented by means
of executable specifications essentially consisting of conditional equations. The
operational semantics of these specifications is defined by term rewriting and
equation solving, respectively. The extension of first-order logic to higher-order
logic by means of (universally quantified) conditional equations enormously in­
creases the expressive power of the specifications and permits an efficient oper­
ationalization.

Equations on terms specify (pure) term replacement criteria that can be per­
formed on formulae or expressions. However, equations are ambiguous since they
can be used in two different directions. Rewriting rules are directed equations
which can be applied only in one direction by imposing some orientation on
the terms in the equation. Such an orientation should imply that the repeated
replacement of subterms in a given expression using the rules eventually stops
yielding a simplest term or normal form unable to be further simplified. If equa­
tions represent, for instance, axioms of a theory (i.e. facts about some abstract
entity) oriented replacement can be used to prove equality of formulae or ex­
pressions. In other words, to solve the so-called word problem of the equational
theory we only need to reduce expressions to a common normal form. In the case

A Reduction Ordering for Higher-Order Terms

Jürgen Avenhaus!, Carlos Loria-Säenz?, and Joachim Steinbach?

1 Universität Kaiserslautern
Fachbereich Informatik, Postfach 3049

67653 Kaiserslautern (Germany)
? Instituto Tecnologico de Costa Rica

Departamento de Computaction
Apartado 159-7050 Cartago (Costa Rica)

3 Technische Universität München
Institut für Informatik

80290 München (Germany)

Abstract. We investigate one o f the classical problems of the theory of
term rewriting, namely termination. We present an ordering for compar-
ing higher-order terms tha t can be utilized for testing termination and
decreasingness o f higher-order conditional term rewriting systems. The
ordering relies on a first-order interpretation of higher-order terms and
a suitable extension of the RPO.

1 Motivation

Term rewriting systems (TRSs) can be considered as a powerful theoretical
model for reasoning about functional and logic programming in an abstract way,
independently of a particular programming language. In such an approach to
computer programming, logic and functional programs are represented by means
of executable specifications essentially consisting of conditional equations. The
operational semantics of these specifications is defined by term rewrit ing and
equation solving, respectively. The extension of first-order logic to higher-order
logic by means of (universally quantified) conditional equations enormously in-
creases the expressive power o f the specifications and permits an efficient oper-
ationalization.

Equations on terms specify (pure) term replacement criteria that can be per-
formed on formulae or expressions. However, equations are ambiguous since they
can be used i n two different directions. Rewriting rules are directed equations
which can be applied only i n one direction by imposing some orientation on
the terms in the equation. Such an orientation should imply that the repeated
replacement of subterms in a given expression using the rules eventually stops
yielding a simplest term or normal form unable to be further simplified. I f equa-
tions represent, for instance, axioms of a theory (i.e. facts about some abstract
entity) oriented replacement can be used to prove equality of formulae or ex-
pressions. In other words, to solve the so-called word problem of the equational
theory we only need to reduce expressions to a common normal form. I n the case

2

that equations describe an equational (logic or functional) program, oriented
replacement can be used for giving semantic values to expressions, i.e. for com­
puting. The normal form of an expression represents its semantic value. Under
these conditions, one of the fundamental problems associated with TRSs is the
following one: Are the rules really simplifying, i.e. does rewriting always lead t.o
a normal form after a finite sequence of rule applications?

The theory of first-order term rewriting offers different alternatives t.o sol ve
this problem, i.e. to guarantee termination (see, for example, [Der87]). For intro­
ductions to TRSs see, for example, [DJ90, AM90]. See also [D090] for a survey
on conditional rewriting systems.

In [Lor93], criteria for testing confluence and termination of some classes of
higher-order conditional TRSs (HCTRSs) have been developed (see also [AL94]).
HCTRSs naturally extend (unconditional) HTRSs as defined in [Nip91]. [Lor93]
follows the approach of [Nip91] by combining term rewriting and the A-calculus.
For the A-calculus the reader is referred to [HS86].

Example 1. In order to illustrate how both computational paradigms - A-calculus
and TRSs - interact, let us consider an algebraic specification of the addition
(+) on natural numbers (nat):

O+y -+ y (1)

5(X)+y -+ 5(X+Y) (2)

where as usual 5: nat -+ nat is the successor function, 0: -+ nat and +:
(nat, nat) -+ nat. A higher-order expression like

AX.(X+X) (3)

can be used for 'locally' specifying the double function and so we could compute.
for instance,

(AX.(X+X))5(0)
-+(3 5(0)+5(0)
-+R s(O+s(O))
-+R 5 2(0) o

Note that the R-reductions reduce the + operator. The ,a-reduction repre­
sents the parameter-passing mechanism of programming languages.

In addition to local declarations like Ax.(x+x) in Example 1, rewriting be­
comes more interesting when we permit specifying higher-order rules like the
following ones

fold(D,X,z) -+ z (4)

fold(x::L,Y,z) -+ fold(L,Y,Y(z,x)) (.5)

In the approach of [Nip91] to higher-order rewriting the dynamical parameter­
passing (i.e. ,a-reduction) has priority over term rewriting using rules. In fact, one
can consider ,a-reduction as part of the substitution operation. This represents

2

that equations describe an equational (logic or functional) program, oriented
replacement can be used for giving semantic values to expressions, i.e. for com-
puting. The normal form of an expression represents its semantic value. Under
these conditions, one of the fundamental problems associated with TRSs is the
following one: Are the rules really simplifying, i.e. does rewrit ing always lead to
a normal form after a finite sequence of rule applications?

The theory o f first-order term rewriting offers different alternatives to solve
this problem, i.e. to guarantee termination (see, for example, [Der87]). For intro-
ductions to TRSs see, for example, [DJ90, AM90]. See also [DO90] for a survey
on conditional rewrit ing systems.

In [Lor93], criteria for testing confluence and termination of some classes of
higher-order conditional TRSs (HCTRSs) have been developed (see also [AL94]).
HCTRSs naturally extend (unconditional) HTRSs as defined in [Nip91]. [Lor93]
follows the approach of [Nip91] by combining term rewriting and the A-calculus.
For the A-calculus the reader is referred to [HS86].

Ezample 1. In order to i l lustrate how both computational paradigms — A-calculus
and TRSs — interact, let us consider an algebraic specification of the addition
(+) on natural numbers (nat):

0+y — y (1)
s (z)+y — s (z+y) (2)

where as usual s : nat — nat is the successor function, 0 : — nat and + :
(nat, nat) — nat. A higher-order expression like

Az. (z+z) (3)

can be used for ‘locally’ specifying the double function and so we could compute,
for instance,

(Az.(z+z))s(0)
—g 5(0)+5(0)
—r s(0+s(0))
—R s%(0) °

Note that the R-reductions reduce the + operator. The S-reduction repre-
sents the parameter-passing mechanism of programming languages.

In addi t ion t o local declarat ions like Az.(z+z) i n Example 1, rewriting be-
comes more interesting when we permit specifying higher-order rules like the
following ones

f o l d (.X ,2) — =z (4)
fold(z::L\Y,z) — fold(L.Y .Y(z.z)) (5)

In the approach of [Nip91] to higher-order rewriting the dynamical parameter-
passing (i.e. S-reduction) has pr ior i ty over term rewriting using rules. I n fact, one
can consider S-reduction as part of the substitution operation. This represents

3

the first characteristic of the combination of higher-order and term rewntmg
used in [Nip91]. The second characteristic is that terms can only be rewritten
if they are in pry-long form. This decision does not represent any computational
restriction and it simplifies much of the technical work. Thus, an expression like

fold([1.2].>'xy.(x+y),0) (6)

will be reduced by proceeding in the following way: The expression is in ,B-normal
form, hence a rule can be applied. Using rule (5),

fold([2],>.xy.(x+y).(>.xy.(x+y) 0 1)). (7)

can be produced. Now we apply ,B-normalizatioI:l yielding

fold([2], >.xy.(x+y),(0+1)). (8)

As in this example, ,B-normalization is already performed after having applied
the term rewriting indicated by the selected rule. Repeating this process, first
using rule (5) followed by rule (4), we yield the algebraic term

(0+1)+2 (9)

which could further reduced to 53(0) after translating 1 to 5(0) and 2 to 5(5(0)
and using rules (1) and (2). In other words, the term in (6) denotes the compue

tation of the sum of all the elements contained in the list [1,2].
In order to verify termination of HCTRSs, higher-order terms must be com­

pared, in some way. We develop a method for performing that task which is based
on suitable extensions of first-order techniques. More specifically, we construct
an ordering called HPO (for higher-order path ordering) by means of an extension
of the recursive path ordering RPO ([Der82]) so that non-algebraic terms can also
be compared. Termination and decreasingness of HCTRSs are then achieved as
usual in the first-order case: the associated rewrite relation is required to be in­
cluded in this ordering guaranteeing some kinds of monotonicity properties wrt.
term structure and substitutions.

Our method is essentially based on a first-order interpretation of higher-order
terms in ,B7]-long form. Therefore, some of the principal properties and proof­
techniques existing in the first-order case can also be used for the HPO. This is
true, for instance, for well-foundedness. As we will see, the definition of the HPO
looks like the standard definition of the RPO. In fact, they coincide on algebraic
terms. Thus, the remaining properties making the HPO a quasi-ordering can be
obtained by appropriately extending the corresponding proofs for simplification
orderings. The HPO is based on a precedence ~ (i.e. a quasi-ordering over the
set of operators F) and the term interpretation makes use of an appropriate
extension of it. This extension, called ~o includes new constants like binders
>'xm (which will be treated as unary operators). We also define a congruence
"'HPO such that ~po (i.e. "'HPO U ~po) becomes a quasi-ordering over T(F, V).

In order to illustrate the main ideas, let us consider the terms

s == map(>.x.g(h(x)),y::L) and (l0)

t == g(h(y))::map(>.x.f(h(x)),L). (11)

3

the first characteristic of the combination of higher-order and term rewriting
used in [Nip91]. The second characteristic is that terms can only be rewritten
i f they are in Sn-long form. This decision does not represent any computational
restriction and i t simplifies much of the technical work. Thus, an expression like

fold([1,2],Azy.(z+y).0) (6)
wi l l be reduced by proceeding i n the following way: The expression is in -normal
form, hence a rule can be applied. Using rule (5),

fold([2]. Azy . (z+y) . (Azy . (z+y) 0 1)). (7)
can be produced. Now we apply S-normalization yielding

fold([2], Azy.(z+y).(0+1)). (8)

As i n this example, S-normalization is already performed after having applied
the term rewriting indicated by the selected rule. Repeating this process, first
using rule (5) followed by rule (4), we yield the algebraic term

(0+1)+2 (9)

which could further reduced t o s3(0) after t ranslat ing 1 to s(0) and 2 to s(s(0))
and using rules (1) and (2). I n other words, the term in (6) denotes the compu:
tat ion of the sum of all the elements contained in the l ist [1,2].

I n order to verify termination of HCTRSs, higher-order terms must be com-
pared, i n some way. We develop a method for performing that task which is based
on suitable extensions of first-order techniques. More specifically, we construct
an ordering called HPO (for higher-order path ordering) by means of an extension
of the recursive path ordering RPO ([Der82]) so that non-algebraic terms can also
be compared. Termination and decreasingness of HCTRSs are then achieved as
usual i n the first-order case: the associated rewrite relation is required to be in-
cluded in this ordering guaranteeing some kinds of monotonicity properties wrt.
term structure and substitutions.

Our method is essentially based ona first-order interpretation of higher-order
terms in fn- long form. Therefore, some of the principal properties and proof-
techniques existing in the first-order case can also be used for the HPO. This is
true, for instance, for well-foundedness. As we will see, the definition of the HPO
looks l ike the standard definition of the RPO. In fact, they coincide on algebraic
terms. Thus, the remaining properties making the HPO a quasi-ordering can be
obtained by appropriately extending the corresponding proofs for simplification
orderings. The HPO is based on a precedence > (i.e. a quasi-ordering over the
set of operators F) and the term interpretation makes use of an appropriate
extension of i t . This extension, called > includes new constants like binders
AZ, (which will be treated as unary operators). We also define a congruence
po Such that 230g (i.e. spa U po) becomes a quasi-ordering over T(FV).

In order to il lustrate the main ideas, let us consider the terms

s = map(Az.g(h(z)).y::L) and (10)
t = g(h(y))::map(Az.f(h(z)).L). (11)

4

2

We explain how to prove s ~po t using the rules defining the HPO which will be
exposed later. First of all, suppose a precedence;::; to be given satisfying

map >-:: and g"-' f. (12)

Using this and proceeding as in a typical RPO-comparison, we have to prove

s ~po g(h(y» and (13)

s ~po map(Ax.f(h(x»,L) (14)

in order to show s ~po t. In the first case, we make use of an extended $ub­
term property of the HPO g(h(y» is not exactly a subterm of s but it can be
constructed using ,a-reduction and proper subterms of s:

(h.g(h(x»y)lj3 == g(h(y». (15)

This proves (13). For (14), the multisets of direct subterms must be compared:

VtE {Ax.f(h(x», L}: 3sE {Ax.g(h(x», y::L}: s ~po (16)

which is true since

g f. The relation (18) is a consequence of the property that the HPO is an

Ax.g(h(x» "-'HPO Ax.f(h(x» and

y::L ~po L.

(17)

(IS)

For (17), note
"-'

that the A-binders are the same and g(h(x» "-'HPO f(h(x» because

extension of the (modified) subterm ordering. Therefore, s ~po t holds.
The paper is organized as follows. In the following section, some necessary

notations about terms, substitutions, reductions, patterns and orderings are pre­
sented. Subsequently, an extension of the signature (integrating A-binders as
unary operators) and the term algebra together with an appropriate precedence
extension are introduced. Section 4 deals with the presentation of a general­
ized subterm ordering since the original subterm ordering is not sufficient for
A-expressions (see (13) and (15)). The definition as well as the main properties
(e.g., the well-foundedness) of the new ordering HPO for higher-order terms are
contained in Section 5. Although the HPO is not compatible with substitutions
in general, we show that this property holds for a great class of HCTRSs oc­
curring in practice (see Subsection 5.3). This provides a useful syntactic test for
verifying termination and decreasingness as presented in Section 6.

This report is mainly a polished version of Chapter 6 in [Lor93], with some
extensions (see Section 7). For related work, see Section 8. Proofs of all results
can be found in the appendix.

Preliminaries

First of all, we give some elementary notations which are necessary for defining
our ordering. Unless otherwise specified, we use the notations of [Nip91] and
[AL94].

4

We explain how to prove s pp, t using the rules defining the HPO which will be
exposed later. First of al l , suppose a precedence > to be given satisfying

map > : and gef. (12)

Using this and proceeding as in a typical RPO-comparison, we have to prove

S Miro g(h(y)) and (13)
S po Map(Az.f(h(z)).L) (14)

in order to show s >ypg t . In the first case, we make use of an extended sub-
term property of the HPO: g(h(y)) is not exactly a subterm of s bu t i t can be
constructed using S-reduction and proper subterms of s:

(Az.g(h(z))y)ls = sCh(y))- (15)
This proves (13). For (14), the multisets of direct subterms must be compared:

Vie {Az f(h(z)), L}: I se {rz.g(h(z)),y::L}: 5s po 1 (16)
which is true since

Az.g(h(z)) po Az-f(h(z)) and (17)
y :L po L . (18)

For (17), note that the A-binders are the same and g(h(2)) pp f(h(2)) because
g ~ f . The relation (18) is a consequence of the property that the HPO is an
extension of the (modified) subterm ordering. Therefore, s 5p, t holds.

The paper is organized as follows. In the following section, some necessary
notations about terms, substitutions, reductions, patterns and orderings are pre-
sented. Subsequently, an extension of the signature (integrating A-binders as
unary operators) and the term algebra together w i th an appropriate precedence
extension are Introduced. Section 4 deals wi th the presentation o f a general-
ized subterm ordering since the original subterm ordering is not sufficient for
A-expressions (see (13) and (15)). The definition as well as the main properties
(e.g., the well-foundedness) of the new ordering HPO for higher-order terms are
contained i n Sect ion 5 . Although the HPO is no t compatible w i t h subst i tu t ions
i n general, we show that this property holds for a great class of HCTRSs oc-
curring in practice (see Subsection 5.3). This provides a useful syntactic test for
verifying termination and decreasingness as presented in Section 6.

This report is mainly a polished version of Chapter 6 in [Lor93], with some
extensions (see Section 7). For related work, see Section 8. Proofs of all results
can be found i n the appendix.

2 Preliminaries

First of all, we give some elementary notations which are necessary for defining
our ordering. Unless otherwise specified, we use the notations of [Nip91] and
[AL94].

5

2.1 Terms

A signature sig is a triple (B, F, V) where B is a set of basic types, F is a family
of sets of function symbols (also called operators) and V is a family of sets of
variables, both families based on B. An atom is either a constant or a variable.
The set T(:F,V) of terms over sig is defined as usual. Additionally, >.xn.t denotes
hd>'X2.(-·· (>.xn.t) .. .)) whereas f(t n) denotes f(tl,"" tn). The sets FVar(t)
and BVar(t) stand for the set of free variables and the set of bound variables of
a term t, respectively.

2.2 Substitutions

A (well-typed) substitution (J" is a mapping from V into T(:F,V) such that X(J" and
x have the same type for each x E V and only for a finite subset of V X(J" t x
holds. The domain of (J", denoted by Dom((J") == {x E V I X(J" '¥ x} is such a set. A
substitution (J" has a property P on terms if X(J" satisfies P for every x E Dom((J").

2.3 Reductions

We recapitulate the standard reductions and the corresponding equalities (con­
versions) of the typed >.-calculus.

As well-known, the a-conversion is used to rename bound variables. Thus,
terms only differing in bound variables are a-equivalent.

The ,B-reduction represents the parameter-passing mechanism of program­
ming languages: bound variables in expressions (i.e. formal parameters of func­
tions) are replaced within the scope by their binding values (i.e. actual parame­
ters) permitting computation to take place:

The position p used for the reduction is called a redex. One can show that ->(3 is
confluent and terminating (see [HS86]). A term t is in ,B-normal form (,B-nf) iff

t == >,xp.Ft l .. .t m	 (19)

for some p, m ~ 0 such that m is less than or equal to the arity of F and such
that the t; are in ,B-nf. A term >'Xp.Ftl ... t m in ,B-nf is called rigid if F is either
a bound variable or an operator. Otherwise, it is called flexible.

The 7J-reduction, finally, is used to represent equality of functions in the
mathematical sense, i.e. f =1/ >.x.f(x).

Example 2. f«>.xy.g(x,y))a) ->01	 f«>.xz .g(x,z))a)
f(>.z .g(a,z))
f(>.z .gaz)
f(ga) o

2 .1 Terms

A signature sig is a triple (B , F ,V) where B is a set of basic types, F is a family
of sets of function symbols (also called operators) and V is a family of sets of
variables, both families based on B . An atom is either a constant or a variable.
The set T(F,V) of terms over sig is defined as usual. Additionally, AZ;.t denotes
Azy.(Aza.(---(Az,.t)---)) whereas f(£„) denotes f (t1, . . . , t ,) . The sets FVar(t)
and BVar(t) stand for the set of free variables and the set of bound variables of
a term t, respectively.

2 .2 Subst i tut ions

A (well-typed) substitution o is a mapping from V into T(FV) such that zo and
z have the same type for each z € V and only for a finite subset of V zo £ x
holds. The domain of o , denoted by Dom(o) = { zEV | zo £ x } is such a set. A
substitution o has a property P on terms if zo satisfies P for every z € Dom(o).

2 .3 Reductions

We recapitulate the standard reductions and the corresponding equalities (con-
versions) of the typed A-calculus.

As wel l-known,the a-conversion i s used t o rename bound variables. Thus ,
terms only differing i n bound variables are a-equivalent.

The B-reduction represents the parameter-passing mechanism o f program-
ming languages: bound variables in expressions (i.e. formal parameters of func-
tions) are replaced within the scope by their binding values (i.e. actual parame-
ters) permit t ing computation to take place:

Ip€ePos(s): sp = (Ax.sı)s2 and
sp t i f { 5 = s{{z—s52}s1ıh

The position p used for the reduction is called a redez. One can show that —g is
confluent and terminating (see [HS86]). A term t is in S-normal form (ß-nf) iff

t = 255.Fty.. tp, (19)

for some p ,m > 0 such that m is less than or equal to the arity of F and such
that the ¢ ; are in S-nf. A term AZ;.Ft; . . . tm in G-nf is called rigid if F is either
a bound variable or an operator. Otherwise, i t is called flexible.

The n-reduction, finally, is used to represent equality of functions in the
mathematical sense, i.e. f = , Az.f(z).

Ezample 2. f((Azy.g(z.x))a) —a f((Azz.g(z,2))a)
—p f0eg,2)
= f(Az.gaz)

—y f(ga) ES

6

A very useful representation of terms in {3-nf is the so-called (37)-long form.
To obtain it, terms in (3-nfwill recursively be completed by adding new variables
and A-abstractions using 1) <- (i.e. the inverse of -->1) to preserve the type of the
original term.

Definition 1 ({37J-Long Form) Let t be a term such that t!,a == AXp.Ft) ... tm .
The {37J-long form t of t is recursively defined by ,

t ---­ - ift is a first-order atom
{ AX) ... XpXm+1 ..-.. ... Xn . F(t 1, ... , tm , Xm+1, ... , xn) otherwise

where

- F:(T1, ,Tm ,Tm+1, ... ,Tn)-->T' and
- Xm +l, , Xn are new variables such that Vk E [1, n - m]: Xm+k: --> Tm+k

A term t is in (37)-long form if t =Q t. o

Let T,ar/...:FY) = {t ET(F,V) I t in {37J-long form}. A substitution (J" is in (31)­
long form if X(J" E T,ar/... FY) for all x EVom((J").

For example, let t be (map X) where map: (T1 --> T2, list(TI) --> list(T2) is an
operator and X: T1 --> T2 a second order variable. Then t == AL.map(Az.X(z),L)
since X == AZ.X(Z) and Z == L. In this case, L: --> list(TI) and z; -+ T) are
the newly generated variables. Note that t ~. t. This example illustrates that
terms in (37)-long form possess a nearly algebraic structure where A-binders are
unary operators and bound variables are constants. Assuming that terms are in
this special form will significantly simplify several technical problems associated
with extending algebraic results to the higher-order case.

2.4 Patterns

A term t in (3-nf is a (well-typed higher-order) pattern if every free occurrence
of a variable X in t is a subterm of the form X(x n) such that X n is 1)-equivalent
to a list of distinct bound variables in BVar(t).

For example, the terms AX.f(Ay.X(y,x),a) and map(X ,L) are patterns whereas
Y(a) and ,\xy.Z(x,x,y) are not patterns.

2.5 Orderings

The proper subterm relation I> is defined as s I> t iff 3p i A: s~ == t. On terms
in (37J-long form we define s 1>6 t iff s I> t and t is of basic type and not a bound
variable in s. In the sequel, 1>6 will be used as the proper subterm relation, only.
Thus, for simplicity, I> will be used instead of [>6.

Definition 2 (Recursive Path Ordering, [Der82]) Let ;:::; be a quasi-pre­
cedence on F and s, t be two terms. Then the recursive path ordering RPO is
defined as

A very useful representation of terms in f-nf is the so-called 87n-long form.
To obtain i t , terms i n S-nf will recursively be completed by adding new variables
and A-abstractions using „ + (i.e. the inverse of —,) to preserve the type of the
original term.

Definition 1 (fn-Long Form) Le t t be a term such tha t t lg = AT, . F t1 . . tm .

The Bn-long form T o ft is recursively defined by

t i f t is a first-order atom
AD. ZpTmgt Za FE. Tm, mals.) Zn) otherwise

where

- k(n, .,Tmy Tm41 , . - - , Tn) — 7 and
~ Zm4 l , . . . , Ln are new variables such that VkE[1,n-— m l : Zm+k ! = Tmt

A term t is in Bn-long form if T =a t. °

Let T (FV) = {te T(F,V) | t in Bry-long form}. A substitution ¢ is i n Sy-
long form i f zo € Tg,(F,V) for all z € Dom(g).

For example, let t be (map X) where map: (r — 72 , l ist(n1)) — list(m2) is an
operator and X : ry — 13 a second order variable. Then t= AL.map(Az.X(z2).L)
since X = Az.X(z) and L = L . In this case, L : — l ist(r ;) and z: — 1 are
the newly generated variables. Note that T= , t . This example illustrates that
terms in fn- long form possess a nearly algebraic structure where A-binders are
unary operators and bound variables are constants. Assuming that terms are i n
this special form wil l significantly simplify several technical problems associated
with extending algebraic results to the higher-order case.

2 .4 Pat terns

A term t in S-nf is a (well-typed higher-order) pattern i f every free occurrence
of a variable X in t is a subterm of the form X(7*„) such that 77 is n-equivalent
to a list of distinct bound variables in BVar(t).

For example, the terms Az .f(Ay.X (y,z),a) and map(X,L) are patterns whereas
Y (a) and Azy .Z (z , z , y) are not patterns.

2.5 Orderings

The proper subterm relation > is defined as s > t iff 3p # A: sl, = t . On terms
i n Bn-long form we define s > ; ¢ iff s > € and t is of basic type and not a bound
variable in s. In the sequel, > , wi l l be used as the proper subterm relation, only.
Thus, for simplicity, > will be used instead of [>.

Definition 2 (Recursive Path Ordering, [Der82]) Let > be a quasi-pre-
cedence on F and s , t be two terms. Then the recursive path ordering RPO is
defined as

7

s ~po t iff (l) Args(s) ~o {t} or

(2) 1tead(s) >-1tead(t) /\ {s} ~o Args(t) or

(3) 1tead(s) '" 1tead(t) 1\ Args(s) ~o Args(t)
where 1tead(t) and Args(t) denote the leading operator and the multiset of the

arguments of t, respectively. ~o and ~~o stand for the mu/tiset extension of

1lpo and ~po' respectively. 0

3 Relations on Extended Terms

We assume that in every context the bound variables occurring in any term are
contained in the set X (X C V). More formally, V = X U V o where

X n Vo =0
"It ET(F,V): BVar(t) C X 1\ FVar(t) n X =0.

In addition, we assume by a-conversion that no x E X is used more than once
for A-abstraction in any term t.

Definition 3 (Extended Symbols) The set of extended symbols F o is de­
fined as F 0 =F U X u K where K =Um>Ol\xEX {Axm } is the set of all valid
A-binders. 0

Note that T(Fo,vo) is a set of first-order terms. Any t ETf3J.:F,V) can be iden­
tified with some term in T(Fo,vo). By this identification Tf3r/..F,v).~ T(Fo,vo)
holds.

Our intention is to establish a one-to-one correspondence between terms in
,81J-long form and 'algebraic' terms built using operators in Fo and variables in
V. Thus, for instance, we identify h.g(h(x)) with h(g(h(x») where AX is a
unary operator in K and the bound variable x is considered as a constant. These
terms are called extended terms.

First of all, an extension of quasi-orderings on F to F 0 for constructing the
HPO is needed.

Definition 4 (to) Given a quasi-ordering;:: over F, we extend it to a relation
;::0 over F 0 as follows:

f 2:,0 g iff - f;:: g or
- f E F and g E KUX or
- f, g E X and f =r g or
- f =AXm , g =AYm and Xm =r Ym

where Xm =r Ym iff Xi and Yi have the same type for every i E [1, m]. We assume
that precedences over F respect arities and types of operators, i. e. f '" g and
f; (71, , 7 n) -+ 7 implies g: (7"(1)' ... , 7 ..(n) -+ 7 .where 7r is any permutation
of{l, , n}. As usual, we also define the strict part of;::o as f >-0 g iff (f;::o g)
and (g to f) and the associated equivalence relation as f "'0 g iff (f;::o g) and
(g b f). 0

Ss po t Wf (1) Args(s) SS { t } or
(2) Head(s) > Head(t) A {s} 2 Args(t) or
(3) Head(s) ~ Head(t) A Args(s) sO, Args(t)

where Head(t) and Args(t) denote the leading operator and the multiset of the
arguments of t , respectively. 2 and x8 stand for the multiset extension of
po and Zppo, respectively. °

3 Relations on Extended Terms

We assume that i n every context the bound variables occurring in any term are
contained in the set X (X CV) . More formally, V = X UV , where

XNVe=0

VEET(FV): BVar(t) CX A FVar(t)NAX =0 .

In addition, we assume by a-conversion that no £ € A’ is used more than once
for A-abstraction i n any term €.

Definition 3 (Extended Symbols) The set of extended symbols Fo is de-
fined as Fo = FUX UK where K = Upm>onzex {17m} is the set of a l l valid
A-binders. ©

Note that T(FVo) is a set of first-order terms. Any t € Tg,{F,V) can be iden-
tified with some term in 7(Fo,Vo). By this identification Tp,(F,V) C T(FoVo)
holds.

Our intention is to establish a one-to-one correspondence between terms in
Bn-long form and ‘algebraic’ terms built using operators in Fo and variables in
V. Thus, for instance, we identify Az.g(h(z)) with Az(g(h(z))) where Az is a
unary operator in X and the bound variable x is considered as a constant. These
terms are called extended terms.

First of all, an extension of quasi-orderings on F to Fo for constructing the
HPO is needed.

Definition 4 (=o) Given a quasi-ordering © over F , we extend it to a relation
Zo over Fo as follows:

f 2og f f —f rgo r
—feF and ge KUX or
- f ,g€eX and f= , g or
—- f = AT, g = Mm and Thy = , Um

where Tp; = r Ym f x : and y; have the same type for every i € [l ,m] . We assume
that precedences over F respect arities and types of operators, Le. f ~ g and
f: (11 , . . . , 7) — 7 implies g: (Tur) , ++, Tr(n)) — T where x is any permutation
of {1,...,n}. As usual, we also define the strict part of 09 as f o g iff (f 0 g)
and (g Zo f) and the associated equivalence relation as f ~o g iff (f o g) and
(8 Zo 1) o

8

Note that the elements of K are minimal symbols wrt. to as well as A­
binders and higher-order variables will be comparable only if they are =r-equal.
Furthermore, f "'0 g implies f and g to have the same arity.

Proposition 1 (Well-Foundedness of >-0) Let t be a quasi-ordering over
:F. Then

1. to is a quasi-ordering over F o.
2. >-0 is well-founded over F o iff >- is well-founded over F. 0

Now, we construct the congruence "'HPO over terms built using symbols in
F 0 and generated by "'0. First, we need an auxiliary definition.

Definition 5 (Type-Respecting Permutation) A permutation 1r of the set
{I, ... , m} is a type-respecting permutation of a list of m terms tm if ti and
t"(i) have the same type for each i E [1, m]. 0

Definition 6 ("'HPd Let "'HPO be the minimal congruence on extended terms in
T(Fo,vo) such that

f(sm) "'HPO g(tm) iff f "'0 g and Si "'HPO t"(i)
for every i E [1, m], where 1r is any type-respecting permutation of (t m). 0

Note that Ax(f(h(x))) "'tJPo Ay(g(h(y))) holds iff '" g (which implies f "'0 g)
and x =~ y (which implies Ax "'HPO AY). "'HPO has the following property.

Lemma 1 (Compatibility of "'HPO)' If U "'HPO u' and s "'HPO t then su "'HPO tu'
for all substitutions u and u' of basic type4 and all s, t in /37]-long form. 0

4 Generalized Subterm Ordering

For constructing the HPO a generalization of the subterm relation [> is needed. In
order to motivate the main ideas let us first discuss the definition of the RPO (see
Definition 2). Only for the purpose of illustration let us define the relation [>ex

as
f(in) [> ex ti

for every i E [1, n]. Note that the RPO-schema 'decomposes' the problems using
[> ex' Our aim essentially consists of obtaining a suitable generalization of [> ex on
terms in /37]-long form (equivalently on extended terms). Thus, for instance, not
only the comparison f(AX .g(x),a) I>ex a should hold, but also f(AX .g(x),a) I>ex g(a).
In the latter case, the term g(a) is obtained by combining the direct subterms
AX.g(X) and a, and by applying (first-order) /3-reduction. For constructing [>ex

we will introduce two auxiliary relations (1)0 and I> 1) which help us showing
that [>ex is a well-founded ordering.

Once we have defined I>ex, we will present the HPOfollowing almost the same
RPO-schema exposed above.

4 That is, x is of basic type for every x E 'Dom(0").

Note that t he elements of X are minimal symbols w r t . >¢ as well as A-
binders and higher-order variables wi l l be comparable only i f they are =,-equal. -
Furthermore, f ~o g implies f and g to have the same arity.

Proposit ion 1 (Well-Foundedness o f >09) Let > be a quasi-ordering over
F . Then
1. 7g is a quasi-ordering over Fo .
2. »¢ is well-founded over Fo iff > is well-founded over F . °

Now, we construct the congruence po Over terms bui l t using symbols i n
Fo and generated by —o9. First, we need an auxil iary definition.

Definition 5 (Type-Respecting Permutation) A permutation m of the sel
{ 1 , . . . ,m } is a type-respecting permutation of a list of m terms tm if t ; and
tx(i) have the same type for each i € [l ,m] . °

Definition 6 (~,,) Let 4 be the minimal congruence on extended terms in
T(Fo,Vo) such that

(5m) "po g (tm) f f f g g and S i " po 210)

for every i € [1 , m] , where x is any type-respecting permutation of (tm). °

Note that Az(f(h(z))) po Ay(g(h(y))) holds i f f ~ g (which implies f —o g)
and x = ; y (which implies Az po Ay). po has the following property.

Lemma 1 (Compatibility o f ~p0)" I fo po oc’ and s po? then so po t o ’
for all substitutions o and o' of basic type* and all s,t in Bn-long form. ©

4 Generalized Subterm Ordering

For constructing the HPOa generalization of the subterm relation > is needed. In
order to motivate the main ideas let us first discuss the definition of the RPO (see
Definition 2). Only for the purpose of illustration let us define the relation Dex

as
(tn) Dex l i

for every ¢€ [1 ,n] . Note that the RPO-schema ‘decomposes’ the problems using
Dez Our aim essentially consists of obtaining a suitable generalization of > , on
terms in fn-long form (equivalently on extended terms). Thus, for instance, not
only the comparison f(Az.g(z),a) Dez a should hold, but also f(Az.g(z).a) >ex g(a).
In the latter case, the term g(a) is obtained by combining the direct subterms
Az.g(z) and a, and by applying (first-order) S-reduction. For constructing Der

we will introduce two auxiliary relations (>9 and [>;) which help us showing
that > ; is a well-founded ordering.

Once we have defined >2 , , we will present the HPO following almost the same
RPO-schema exposed above.

* That is, z is of basic type for every z € Dom(o).

9

Definition 7 ([>ex) Let [> be the subterm relation on T(Fo,vo). The relation
[>0 on extended terms is defined as

f(sn) [>0 t

iff fEF and 3iE[1,n]: Si == ..\xm.s', m>O and t == s'r where Dom(r) ~ {Xk I
1 :::; k :::; m, X"k first-order} and for all x E Dom(r): xr :::1 Sj for some j ::J- i, xr
not below a free variable. Now, [>1 is the union of [>oU [>, i.e.

t>1 = (t> U t>o)+ and

Example 3. f(..\xy.g(x,..\z.s(h(y,z))),a,b) [>1 g(a,..\z .s(h(b, z»)
[>1 s(h(b,a»
[> h(b,a)

Thus, f(..\xy,g(x,..\z.s(h(y,z))),a,b) [>ex h(b,a). o

Obviously, the definition of t>ex makes sense only if it IS a well-founded
ordering.

Lemma 2 (Basic Properties of t>ex).

1. [> C [> 1 C [> ex

2. t> ex is globally finite.
3. s [>ex t implies so- [>ex to- for every 0- of basic type. o

5 The Higher-Order Path Ordering

This section deals with the introduction of the ordering HPO for comparing
higher-order terms. Although the definition is apparently different from the
RPO, a careful observation shows that the HPO is essentially based on the RPO
..\-binders are treated as unary operators and higher-order as well as bound vari­
ables are considered as constants. Thus, in the definition ofthe HPO, we implicitly
interpret terms in .Bry-long form in T(:F,V) as first-order terms in T(Fo,vo) , i.e.
any term of the form ..\xm.t will be considered as ..\xm(t) where ..\xm represents
a unary operator in K.

5.1 Definition

Definition 8 (HPO) Let ~ be a quasi-precedence on F. The higher-order path
ordering HPO over terms s, t in T(Fo,vo) is defined as

S >rtpo t iff (1) 3s': s [>ex s' ~po t or
(2) 1iead(s) ~o 1iead(t) 1\ Vt': t t>1 t' """ s >rtpo t' and

(2.1) 1iead(s) >-0 1iead(t) or

(2.2) 1iead(s) "":'0 1iead(t) 1\ Args(s) ~o Args(t) o

9

Definition 7 (>.7) Let > be the subterm relation on T(FoVo). The relation
Do on extended terms is defined as

(5) Do t

iff f €F and J i € [l , n) : 8; = ATs’ , m>0 and t = sr where Dom(r) C {xx |
1 < k £m, z i first-order} and for a l l z€Dom(r) : zT I s ; for some j # i , zT

not below a free variable. Now, > , is the union of Do UD, Le.
> = (>UDo) t and

Der = Dt Oo

Ezample3. f(Azy.g(z.Az.s(h(y.2))).a.b) >1 g(a,Az.s(h(b.2)))
> ; s(h(b,a))
> h(b,a)

Thus, f(Azy.g(z,Az.s(h(y.2))),a,b) Dex h(b,a). °

Obviously, the definition of p>., makes sense only i f i t is a well-founded
ordering.

Lemma2 (Basic Properties of Dez).
1 . Bb CP1C Der
2. Dex is globally finite.
3. sex t implies so eg t o for every o of basic type. o

5 The Higher-Order Path Ordering

This section deals with the introduction of the ordering HPO for comparing
higher-order terms. Although the definition is apparently different from the
RPO, a careful observation shows that the HPO is essentially based on the RPO:
A-binders are treated as unary operators and higher-order as well as bound vari-
ables are considered as constants. Thus, in the definition of the HPQ, we implicitly
interpret terms i n Bn-long form in 7(F,V) as first-order terms in T(Fp,Vo), i.e.
any term of the form AZ,;.t will be considered as AZ;(t) where AT, represents
a unary operator in X .

5 .1 Definition

Definition 8 (HPO) Let > be a quasi-precedence on F . The higher-order path
ordering HPO over terms s , t i n T(Fo, Vo) is defined as

S mpo t Uf (1) 35: sDexs Zupo t o r
(2) Head(s) Zo Head(t) A Vt": tD1 t — S dp t ' and

(2.1) Head(s) >o Head(t) o r

(2.2) Head(s) ~o Head(t) A Args(s) 2 Args(t) ©

10

Note that the restriction of the HPO to algebraic terms coincides with the
RPO. In such a case, C>ex plays the role of the subterm property. Thus, (1) of
Definition 8 is an extended subterm property as explained in Section 4. Note
also that l> ~ l>ex ~ ~po' '

Example 4. Consider the following HCTRS. We will prove its termination using
the HPO based on the precedence map >- ::, d >- 5, doublelist >- map, d.

I:	 d(O) -+ 0
2: d(s(x» sesed(x»)
3: map(AX .X(x),1]) -+ I]
4:	 map(Ax.X(x),y::L) -+ X(y)::map(Ax.X(x),L)
5: doublelist(L) -+ map(h.d(x),L)

The comparisons proceed as follows:

1: d(O) ~po 0 by (1) since d(O) l>ex O.
2: d(s(x» ~po s(s(d(x») using (2.1) first and then (2.2).
3: map(.Ax.x(x).1J) >rJpo IJ by (1).
4:	 First, map(Ax.X(x),y::L) >rJpo X(y) by (1). Further, map(Ax.X(x),y::L) >tJpo

map(.Ax.X(x),L) by (2.2). So, map(Ax.X(x),y::L)>rJpoX(y)::map(Ax.X(x),L)
by (2.2).

5: doublelist(L) >rJpo AX .d(x) by (2.1) using doublelist >-0 AX, d, x and doublelist(L)
>tJpo L by (1). By (2.1), we get doublelist(L) >rJpo map(..\x.d(x),L). 0

5.2 Well-Foundedness

Now, we prove the main result of this paper, namely, that ~PQ is a well-founded
quasi-ordering. We presuppose that an arbitrary but fixed precedence ~ is used
to generate the HPO. Furthermore, ~ is extended to a precedence ~o on :F0, as
indicated in Definition 4.

Theorem 1 (Compatibility ()f ""'HPO and l>ex) If S ""'HPO t l>ex w then s C>er

V ""'HPO W for some v. 0

Proposition 2 (Technical Property) For every s, t and every 0' of basic type:

1. If tUC>ext" then 3t': tl>ext' 1\ tlu == t"
2. S >rJpo t implies sO' >rJpo tu	 0

Theorem 2 (Quasi-Ordering Properties of the HPO)

1. If S >rJpo t "'HPO w then S >tJpo W

2. If S ""'HPO t ~po w then S >rJpo W

3. If S ~po t ~po W then s >rJpo W (i. e. the HPO is transitive) 0

By means of the next result we achieve well-foundedness and compatibility
of the HPO wrt. the term structure.

10

Note that t he restriction of the HPO to algebraic terms co inc ides w i t h t he
RPO. In such a case, > .» plays the role of the subterm property. Thus , (1) o f
Definition 8 is an extended subterm property as explained i n Section 4. Note
also tha t > C Dex C Po :

Ezample 4. Consider the following HCTRS. We will prove i t s termination using
the HPO based on the precedence map > ::, d > s, doublelist > map, d.

1: d(0) — 0
2: d(s(z)) — s(s(d(z)))
3: map(Az.X(2)[]) — [

— X(y) :map(Az.X(z) ,L)
map(Az.d(z),L)

4: map(Az.X(z),y::L)
5: doublelist(L)

The comparisons proceed as follows:

1 : d(0) po 0 by (1) since d(0) > . 0.
2: d(s(x)) >po s(s(d(z))) using (2.1) first and then (2.2).
3: map(Az.X(2).[) >po 0 by (1).
4 : F i rs t , map(Az .X(z) ,y : :L) po X (y) by (1) . Further, map(Az .X(x) .y : :L) po

map(Az.X(z).L) by (2.2). So, map (Az .X (z) . y : : L)ype X (v)::map(Az.X(z),L)
by (2.2).

5: doublelist(L) po Az.d(x) by (2.1) using doublelist >o Az, d, x and doublelist(L)
po L by (1). By (2.1), we get doublelist(L) ype map(Az.d(z).L). ©

5.2 Well-Foundedness

Now, we prove the main result of this paper, namely, that 2,5, is a well-founded
quasi-ordering. We presuppose that an arbitrary bu t fixed precedence > is used
to generate the HPO. Furthermore, > is extended to a precedence 79 on Fo , as
indicated i n Definition 4.

Theorem 1 (Compatibility o f po and >ez) I f s po t Der W then s Der
U po W for some v. ©

Proposit ion 2 (Technical Property) For every s , t and every o of basic type:
1. If t o Dex ” then I t : to t ! A o= t "
2. 5 po t implies so ppg t o ©

Theorem 2 (Quasi-Ordering Properties of the HPO)
1. I f s po t ~wpo ¥ then s po Ww

2 If s po t r o then s po w
3. I f s po t po W then s po w (i.e. the HPO is transitive) °

By means of the next result we achieve well-foundedness and compatibility
of the HPO wrt. the term structure.

11

Theorem 3 (Simplification Properties of the HPO) Let sand t E Tf3J..:F, V)
such that sand t are of the same basic type and s ~po t. Then

1.	 f(t1, ... ,ti_1,t,ti+1, ... ,tn)l>lW implies f(t 1, ... ,ti-l,S,ti+1, ... ,tn) >-HPO w
and

2.	 C[s] ~po C[t] for every well-typed context C[.]. 0

Corollary 1 (Well-Foundedness of the HPO) The relation ~po is a quasi­
ordering over terms in f3TJ-long form in T(.r, V) such that its strict part ~po zs
well-founded and properly contains 1>. <>

5.3 Stability

Our next aim is to prove that the HPO is - in a restrictive form - compatible
wrt. substitutions. For this purpose we first need some auxiliary results.

Proposition 3 (~HPO and Flexible Patterns)

1.	 X(sn) ~ex t iff Si ~ex t for some i or t == X(Sn)
2.	 X(Wk) ~po t iff X(Wk) ~HPO t or Wj ~HPO t for some j whenever Wk are

bound variables in X.
3.	 X(Vk) ~HPO X(Wk) implies X(vk)a-lf3 ~HPO X(wk)a-lf3 whenever Vb Wk are

bound variables in X for every a-in f3TJ-long form. <>

Lemma 3. Let s bea basic pattern, t ETf3J...r,V) and a- a substitution in f3TJ-long
form. If s I>ex t then sa-ll>ex ta-1. <>

For the next lemma we need the homeomorphic embedding ~MB on T(:Fa, Vo).
Note that ~MB ~ ~po on Tf3.,.,(.r,V) since I> ~ ~po and the HPO is closed under
contexts by Theorem 3.

Lemma 4. Let t == f(t n), fE:F and t, a- in f3TJ-long form. Ifta-ll>1 t' then t 1>1 s
and sa-1 ~MB t' for some s. 0

ExampleS. Let t == f(AV.G(v).H(x».
1.	 Assume a- = {G +- Av.a, H +- Av.h(x.b)}. Then ta-l == f(Av.a,h(x,b» 1>1 a ==

t'. We may choose s == G(v). Then we have t 1>1 s and sa-1 == a == t'.
2. Assume	 a- = {H +- Av.h(x,b)}. Then ta-l == f('\v.G(v),h(x,b»1>1 G(b) == t'.

We may choose s == G(H(x». Then we have t 1>1 s and sa-1 == G(h(x,b» ~MB

G(b) == t'. <>

By means of these results, we are able to prove

Theorem 4 (Compatibility wrt. Substitutions) Let s be a basic rigid pat­
tern, a-,s,tETf3J..:F.iV). Then
1.	 s ~HPO t zmp zes sa-1 ":"HPO ta-1
2.	 s ~po t implies sa-l ~po ta-l <>

In this form we have obtained the necessary properties which ensures that
the HPO can be used as a reduction ordering. The next and final step consists
of appropriately embedding the rewrite relation into this ordering.

11

Theorem 3 (Simplification Properties of the HPO) Let s andt € Tp,(F,V)
such that s andt are of the same basic type and s xp t . Then

Lof ty , t i c , t i g , o ta) Daw implies f(tz,...,tir-1,S,ti+1, 80) Sppo W

and
2. C[s] po Clt] for every well-typed context C[.]. °

Corollary 1 (Well-Foundedness o f the HPO) The relation > po 1s a quasi-
ordering over terms i n fn-long form i n T(FV) such that its striet part pq is
well-founded and properly contains p>. S

5.3 Stability

Our next aim is to prove that the HPO is — i n a restrictive form — compatible
wrt . substitutions. For this purpose we first need some auxiliary results.

Proposition 3 (pn and Flexible Patterns)
1. X(Sn)Dezt 7 si Des t for some t o r t = X(57)
2. X(Wk)Zp t Hf X(wr) po } OT Wj Spo t for somej wheneverWr are

bound variables in X .
3. X(v&)~(PO X(wx) implies X(wk)olp ~HPO X(Wr)olg whenever Ty, wy, are

bound variables i n X for every o i n Pn-long form. °

Lemma 3 . Le t s bea basic pattern, t € Tp,(FV) and o a substitution i n Bn-long
form. I f sep t then so|D>exto] . °

For the next lemma we need the homeomorphic embedding up on 7(Fo,Vs).
Note that Sys © po on Tp,(FV) since > C po and the HPO is closed under
contexts by Theorem 3.

Lemma4. Le t t = f(t„), fEF and t , o in Bn-long form. I f t a |>1 t ' then t s
and so l mg t ' for some s. °

Ezample 5. Let t = f(Av.G(v),H(z)).
1. Assume 0 = {G — Av.a, H — Av.h(z,b)}. Then t o] = f(Av.a,h(z,b)) >1 a =

t ' . We may choose s = G(v). Then we have t > ; s and so | =a= € .
2. Assume 0 = {H — Av.h(z.,b)}. Then t o | = f(Av.G(v).h(z,b))>1 G (b)= ¢ ' .

We may choose s = G(H(z)). Then we have t > , s and sa | = G(h(z,b)) Eve
Gb)= t .

By means of these results, we are able to prove

Theorem 4 (Compatibility wr t . Subst i tut ions) Le t s be a basic rigid pat-
tern, 7 ,8 ‚ tE Tg FV). Then

s 1 "implies so po to l
2. 5 po t implies sol >po© tol ©

I n this form we have obtained the necessary properties which ensures that
the HPO can be used as a reduction ordering. The next and final step consists
of appropriately embedding the rewrite relation into this ordering.

12

6 A Test for Decreasingness

Using the results of the previous sections, we are able to postulate a sufficient
test for termination and decreasingness of HCTRSs.

Theorem 5 (Termination and Decreasingness) Let1?. be an HCTRS. Then

1.	 n is. terminating if I ~po l' for each rule 1-+1' if C in n.
2.	 n is decreasing if I ~po s for every s in {r} U {u, v I u = v E C} for each

rule 1-+1' if C in n. 0

Example 4 of Section 5 exhibits an HCTRS whose decreasingness can be
verified using this criterion.

Example 6. As another example, let n be given by

L split(P.D.L 1 ,L2) -+ pair(L 1 ,L2)
2:	 split(P,x::L,L1 .L2) -+ split(P,L,x::L 1 .L2) if P(x) -+ true
3:	 split(P,x::L,L1 ,L2) -+ split(P,L,L1 ,x::L2) if P(x) -+ false
4: partition(x.L) -+ split(>.y.(x:$ y).L,IJ,IJ)

We can verify that n is decreasing wrt. the HPO based on the precedence
partition >-:$, split, 0 and split >- pair, true, false. 0

7 Extensions

The construction so far is based on the classical recursive path ordering and so
shares the restricted power of the RPO. There are other insufficiencies concerning
the arguments of higher-order variables in right-hand sides of rewrite rules. In
this section, we will demonstrate these problems by examples and propose ideas
for solutions.

Example 7. Let
n: fold(F,y,O) --. y

fold(F.y,z :: I) -+ fold(F,F(y,z),/)
Here the HPO fails to orient the second rule because in the right-hand side
the second argument of F is greater than that in the left-hand side. But n is
terminating due to the fact that the third argument becomes smaller in each
rewrite step. The solution to this problem is to allow a status stat(f) for aIJ
fE.:F. This is well-known for reduction orderings on first-order terms, see [Der87,
Ste94]. For n, we may choose stat(f) = right-to-Ieft. 0

Let HPOS denote the obvious modification of the HPO with status. Then we
have

Theorem 6 Each HPOS is a reduction ordering.	 o

12

6 A Test for Decreasingness

Using the results of the previous sections, we are able to postulate a sufficient
test for termination and decreasingness of HCTRSs.

Theorem 5 (Termination and Decreasingness) Le tR be an HCTRS. Then
1. R is terminating i f | x , r for each rule l - r i f C i n R .
2. R is decreasing if | py 5 for every s i n { r }U {u , v | u = v € C } for each

rule I—r i f C in R . °

Example 4 of Section 5 exhibits an HCTRS whose decreasingness can be
verified using this criterion.

Example 6. As another example, let R be given by

1 . split(P,D.L1,.L2) — pair(L1,L2)
2: split(P,z::L,L1,L2) — split(P,L,@::L1,L2) i f P (x) — true
3: split(P,z::L,Ly,Ly) — split(P,L,Li,@::L2) i f P(x) — false
4: partition(z,L) — split(Ay.(z < y).L.[1.[])

We can verify that R is decreasing wrt . the HPO based on the precedence
partition > < , sp l i t ,[] and split > pair, true, false. 0

7 Extensions

The construction so far is based on the classical recursive path ordering and so
shares the restricted power o f the RPO. There are other insufficiencies concerning
the arguments of higher-order variables in right-hand sides of rewrite rules. In
this section, we will demonstrate these problems by examples and propose ideas
for solutions.

Ezample 7. Let
R: fold(Fy.[) — v

fold(F.y.z :: I) — fold(F,F(y.2).l)
Here the HPO fails to orient the second rule because in the right-hand side
the second argument of F is greater than that in the left-hand side. But R is
terminating due to the fact that the third argument becomes smaller in each
rewrite step. The solution to this problem is to allow a status staf(f) for all
f e F . This is well-known for reduction orderings on first-order terms, see [Der87,
Ste94]. For R , we may choose stat(f) = right-to-left. °

Let HPOS denote the obvious modification of the HPO w i th status. Then we
have

Theorem 6 Each HPOS is a reduction ordering. ©

13

The next example shows that the extended subterm relation I>ex may be too
weak.

Example 8. Let
R: dapply(F,G,z) -> F(G(z))

The HPO is unable to orient this rule because, roughly speaking, 1>0 does not al­
low iterated application of evaluation of subterms: We have dapply(F,G,z) 1>0 F(z)
but not dapply(F,G,z) 1>0 F(G(z». We may extend 1>0 in this direction and so
construct a more powerful HPO. This allows to prove the termination of R. 0

The next example shows that it is necessary to extend 1>0 even more.

Example 9. Let
R: dmap(F,G,O) -> 0

dmap(F,G,z :: I) -> G(z):: dmap(F,F(G),l)
The relation 1>0 is restricted in that f(sn) 1>0 t, t == SOT, Si == AXn.SO only if x

is a variable of basic type for all x E Vom(T). In the second rule of n we have
F =TJ AXv.F(X,v), where X =TJ AU.X(U). We need dmap(F,G,z :: I) 1>0 F(G) for
orienting this rule with the HPO. But, for this we need XT == AU.G(U) and X
is not of basic type. We did not succeed up to now to extend the HPO in this
direction. Notice that F has an argument of non-basic type, so dmap(F,G,z :: I)
is not 'simple' in the terminology of [LP95]: The approach in [LP95] is unable
to deal with this case, too. 0

8 Related Work

To our knowledge, there are two approaches to prove termination of higher-order
rewriting systems, [LP95] and [vdP94]. Our approach dates back to [Lor93].

The approach of [LP95] is similar to ours, the main difference being that it
uses the more general construction of [DH93] to construct reduction orderings
based on the RPO-schema. In that paper it is proposed to replace comparing f
and g in S == f(sn) and t == g(tm) of (2) in the definition of the HPO by comparing
weights of sand t, the weight of a term being defined by weights of the function
symbols f E:F. This seems to be more flexible in handling arguments of higher­
order variables F. On the other side, the approach needs to show sometimes that
g(tm) dominates F. For that the sufficient condition ti == F, for some i, is used.
So f(Au.g(F(u»,z) -> F(z) causes some problems. This causes no problem to our
approach. So none of the two approaches seems to subsume the other one.

The paper [vdP94] uses semantic arguments to construct reduction orderings
in that the f E :F are interpreted as strict monotone functions in a sig-algebra
equipped with a well-founded ordering. So it can be seen as an extension of the
polynomial orderings on first-order terms. ,This approach is quite different from
the syntactic orderings used in this paper. So we do not comment in detail on
that.

13

The next example shows that the extended subterm relat ion > . may be t oo
weak.

Ezample 8. Let
R: dapply(F,G,2) — F(G(z))

The HPQ is unable to orient this rule because, roughly speaking, >o does not al-
low iterated application of evaluation of subterms: We have dapply(F,G,z) >¢ F(z)
but not dapply(F,G,z) >o F(G(2)). We may extend po in th is direction and so
construct a more powerful HPO. This allows to prove the termination of R . ©

The next example shows that i t is necessary to extend [> even more.

Ezample 9. Let
R: dmap(F.G.[I1) — [I

dmap(F.G.z :: I) — G(z) :: dmap(F,F(G).)
The relation pg is restricted i n that f(3;) Do t , t = soT , S i = ATy.s0 only i f =
is a variable of basic type for all z € Dom(7). In the second rule of R we have
F = , AXv.F(X,v), where X = , Au.X(u). We need dmap(F,G,z :: I) >o F(G) for
orienting this rule with the HPO. But, for this we need X r = Au.G(u) and X
is not of basic type. We d id not succeed up to now to extend the HPO in this
direction. Notice that F has an argument of non-basic type, so dmap(F,G,z :: I)
is not ‘simple’ i n the terminology of [LP95]: The approach i n [LP95] is unable
to deal with this case, too. ©

8 Related Work

To our knowledge, there are two approaches to prove termination of higher-order
rewriting systems, [LP95] and [vdP94]. Our approach dates back to [Lor93].

The approach of [LP95] is similar to ours, the main difference being that i t
uses the more general construction of [DH93] to construct reduction orderings
based on the RPO-schema. In that paper i t is proposed to replace comparing f
and g i n s = f(3;) and t = g(t) of (2) in the definition of the HPO by comparing
weights of s and t , the weight of a term being defined by weights of the function
symbols f € 7 . This seems to be more flexible in handling arguments of higher-
order variables F. On the other side, the approach needs to show sometimes that
g(tm) dominates F. For that the sufficient condition ¢ ; = F, for some i , is used.
So f(Au.g(F(u)),z) — F(z) causes some problems. This causes no prob lem to ou r
approach. So none of the two approaches seems to subsume the other one.

The paper [vdP94] uses semantic arguments to construct reduction orderings
i n that the fE F are interpreted as strict monotone functions in a sig-algebra
equipped with a well-founded ordering. So i t can be seen as an extension of the
polynomial orderings on first-order terms. This approach is quite different from
the syntactic orderings used in this paper. So we do not comment i n detail on
that.

14

References

[AL94] Jiirgen Avenhaus and Carlos Loria-Sa.enz. Higher-order conditional rewntlllg
and narrowing. In J.-P. Jouannaud, editor, Proc. First International Con­
ference on Constraints in Computational Logics, volume 845 of LNCS, pages
269-284, Miinchen (Germany), 1994.

[AM90] Jiirgen Avenhaus and Klaus E. Madlener. Term rewntmg and equational.
reasoning. In R.B. Banerji, editor, Formal Techniques in Artificial Intelligence
- A Sourcebook, Studies in Computer Science and Artificial Intelligence 6, pages
1-43. Elsevier Science Publishers, B.V. (North-Holland), Amsterdam, 1990.

[Der82] Nachum Dershowitz. Orderings for term rewriting systems. JTCS, 17(3):279­
301, March 1982.

[Der87] Nachum Dershowitz. Termination of rewriting. JSC, 3:69-116, Febru­
ary / April 1987. see also Corrigendum - Termination of rewriting (JSC,. 4:409­
410, 1987) and 1st RTA, volume 202 of LNCS, pages 180-224, Dijon (France).
May 1985.

[DH93] Nachum Dershowitz and Charles Hoot. Topics in termination. In C. IGrcltner.
editor, 5th RTA, volume 690 of LNCS, pages 198-212, Montreal (Canada), June
1993.

[DJ90]	 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems, volume B of
Handbook of Theoretical Computer Science, chapter 6, pages 243-320. Elsevier
Science Publisher B.V., 1990.

[D090] Nachum Dershowitz and Mitsohiro Okada. A rationale for conditional equa­
tional programming. Theoretical Computer Science, 75:111-138, 1990.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators and
A-calculus. Cambridge University Press, 1986.

[Lor93] Carlos Loria-Sa.enz. A theoretical framewo"k for reasoning about program COll­

struction based on extensions of rewrite systems. PhD Thesis, Fachbereiclt
Informatik, Universitiit Kaiserslautern (Germany), December 1993.

[LP95]	 Olav Lysne and Javier Piris. A termination ordering for higher order rewrite
systems. 6th RTA, Kaiserslautern Germany, April 1995, to appear.

[LS92]	 Carlos Loria-Saenz and Joachim Steinbach. Termination of combined (rewrite
and 'x-calculus) systems. In M. Rusinowitch and J.1. Remy, editors, 3rd CTRS,
volume 656 of LNCS, pages 143-147, Pont-a.-Mousson (France), July .1992.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proc. 6th LICS, pages 342-349,
Amsterdam (The Netherlands), 1991. IEEE Computer Society Press.

[Ste94] Joachim Steinbach. Termination of Rewriting - Extensions, Comparison and
Automatic Generation of Simplification Orderings. PhD Thesis, Fachbereich
Informatik, Universitiit Kaiserslautern (Germany), January 1994.

[vdP94] .laco van de Po!' Termination proof for higher-order rewrite systems. In Proc.
1st International Workshop' on Higher-Order Algebra, pages 305-325, Amster­
dam (The Netherlands), 1994.

14

References

[AL94] Jürgen Avenhaus and Carlos Lorfa-Säenz. Higher-order conditional rewri t ing
and narrowing. In J.-P. Jouannaud, editor, Proc. First In ternat ional Con-
ferenceon Constraints i n Computational Logics, volume 845 of LNCS, pages
269-284, Miinchen (Germany), 1994.

[AM90] Jürgen Avenhaus and Klaus E. Madlener. Term rewriting and equational.
reasoning. In R.B. Banerji, editor, Formal Techniques in Artificial Intell igence
— A Sourcebook, Studies in Computer Science and Artificial Intelligence 6, pages
1-43. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1990.

[Der82] Nachum Dershowitz. Orderings for term rewriting systems. JTCS, 17(3) :279-
301, March 1982.

[Der87] Nachum Dershowitz. Termination of rewriting. JSC, 3:69-116, Febru-
ary/April 1987. see also Corrigendum - Termination of rewriting (JSC; 4:409-
410, 1987) and 1st RTA, volume 202 o f LNCS, pages 180-224, Di jon (France),
May 1985.

[DH93] Nachum Dershowitz and Charles Hoot. Topics in termination. I n C. Kirchner,
editor, 5th RTA, volume 690 o f LNCS, pages 198-212, Montreal (Canada), June
1993.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems, volume B o f
Handbook of Theoretical Computer Science, chapter 6, pages 243-320. Elsevier
Science Publisher B .V . , 1990.

[DO90] Nachum Dershowitz and Mitsohiro Okada. A rationale for conditional equa-
tional programming. Theoretical Computer Science, 75:111-138, 1990.

[HS86) J. Roger Hindley and Jonathan P. Seldin. Introduction to combinators and
A-calculus. Cambridge University Press, 1986.

[Lor93] Carlos Loria-Sdenz. A theoretical framework for reasoning about program con -
struct ion based on extensions of rewrite systems. PhD Thesis, Fachbereich
Informatik, Universitit Kaiserslautern (Germany), December 1993.

[LP95] Olav Lysne and Javier Piris. A termination ordering for higher order rewrite
systems. 6th RTA, Kaiserslautern Germany, April 1995, to appear.

[LS92] Carlos Loria-Sdenz and Joachim Steinbach. Termination of combined (rewrite
and A-calculus) systems. In M . Rusinowitch and J.L. Rémy, editors, 3rd CTRS,
volume 656 of LNCS, pages 143-147, Pont-a-Mousson (France), July 1992.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proc. 6th LICS, pages 342-349,
Amsterdam (The Netherlands), 1991. IEEE Computer Society Press.

[Ste94] Joachim Steinbach. Termination of Rewriting - Extensions, Comparison and
Automat i c Generat ion of Simplification Orderings. PhD Thesis, Fachbereich
Informatik, Universitat Kaiserslautern (Germany), January 1994.

[vdP94] Jaco van de Pol. Termination proof for higher-order rewrite systems. I n Proc.
1st Internat ional Workshop on Higher-Order Algebra, pages 305-325, Amster-
dam (The Netherlands), 1994.

15

A Proofs

Proposition 1 (Well-Foundedness of >-0) Let >- be a quasi-ordering over
F. Then

1.	 ;:0 is a quasi-ordering over Fa.
2.	 >-0 is well-founded over Fa iff >- is well-founded over F. 0

Proof. straightforward by using the corresponding definitions	 o

Lemma 1 (Compatibility of "'HPJ If u "'HPO u' and s "'HP t then su "'HPO tu'
for all substitutions u and u' of basic type and all s, t in {3TJ-9ong form. 0

Proof. By induction on (s, t) using ([> 1 [>)Iex. If S "'HPO t and S == f(sm) and
t == g(tm) then f "'a g and Vi E [1, m]: Si "'HPO t ...(i) for a type-respecting
permutation 7r of (tm). By induction, we get SiU "'HPO t"(i)U'. Since u and u' are

of basic type, su == f(smu) and tu' == g(tmu') hold. By definition of "'HPO' we get
su "'HPO tu'. 0

Lemma 2 (Basic Properties of [>ex)

1.	 [> C [>1 C [>ex

2.	 [> ex is globally finite.
3.	 S [>ex t implies su [>ex tu for every u of basic type. o

Proof. 1. It follows directly from the corresponding definitions.
2.	 [> 1 is finitely branching, i.e. for any S there are only finitely many t with

S [>1 t. So, [>ex is globally finite by Konig's lemma.
3. obvious by using the corresponding definitions	 0

Theorem 1 (Compatibility of "'HPO and [>ex) If S "'HPO t [>ex w then S [>ex

v "'HPO w for some v. 0

Proof. 1. We first prove: If S "'HPO t [>1 w then S [>1 V "'HPO w. Assume S == f(sn)

and t == g(tn), so f "'a g and S1r(i) "'HP ti for some permutation 7r.

If w == ti for some i, then we may c~oose v == S".(i). So assume w == toT,
ti == .xxm.to and XjT ~ tic· Then S1r(i) == .xYm.SO and So "'HPO to. Define u by
YjU == Sk~ if XjT == tk~ and choose v == sou. Then S [>1 v "'HPO W.

2.	 We now prove the claim of the theorem by induction on [>ex' Assume S "'HPO

t ~ex w' [>1 W. By induction hypothesis we have S [>ex v' "'HPO W' [>1 w, and
by part 1. we have v' [>1 v "'HPO w. This gives S [>ex v "'HPO W. 0

Proposition 2 (Technical Prop~rty) For every s, t and every u a/basic type:

1.	 If tu [>ex t" then 3t':t [>ex t' 1\ t'u == t"
2.	 S >rJpo t implies su >rJpo tu 0

15

A Proofs

Proposit ion 1 (Well-Foundedness of >o) Let > be a quasi-ordering over
F . Then
1. Zo is a quasi-ordering over Fo.
2. »q ts well-founded over Fo iff > is well-founded over F . °

Proof. straightforward by using the corresponding definitions D

Lemma 1 (Compatibility o f 0) If 0 ~ 00" and s na t then so ~ to’!
for a l l substitutions o and o ’ of basic type and al l s , t in Bi-long form. °

Proof. By induction on (s,t) using (>,D>)iez. If s ~,,, t and s = (57) andHPO
t = g(tm) then f ~o g and Vi € [1 ,m] : & i t a i) for a type-respecting“tro
permutation = of (£,,). By induction, we get s ;o po t xG)0 ' . Since g and 0 ’ are
of basic type, so = f(377) and to ’ = g(tmo’) hold. By definition of po We get
ST “po to ’ .

Lemma 2 (Basic Properties of > .)
1 . > C D1 C Dex

2. Dex ts globally finite.
3. sep t implies so Deg t o for every o of basic type. ©

Proof. 1. I t follows directly from the corresponding definitions.
2. > is finitely branching, i.e. for any s there are only finitely many t w i t h

sp1 t . So, Deg is globally finite by König ’s lemma.
3. obvious by using the corresponding definitions 0

Theorem 1 (Compatibility o f po and >ez) If s po | Dez W then s Dez

U Spa W for some v . °

Proof. 1. We first prove: If s ~po tP1w then spy v po WW: Assume s = (5)
and t = g(%,), so f —o g and Sx(i) "po bi for some permutation 7 .

I f w = t ; for some 7, then we may choose v = s„(;). So assume w = t o r ,
t i = AT;tg and z ;7 J t i . Then s r) = Mm.So and sg po to: Define ¢ by
y jo = sip i f z ; 7 = til, and choose v = spo . Then spy v po W-

2. We now prove the claim of the theorem by induction on Dex . Assume s po
t Der W > , w. By induction hypothesis we have s >. v/ po w ’ > , w, and
by part 1. we have v’>1 v po W- This gives sez v ~po W- 0

Proposition 2 (Technical Property) For every s , t and every o of basic type:
1. If to Dex then Jt : t p t ! N t o= t "
2. s jpg t implies so po to °

16

Proof 1. It is simple from the definition of I>ex.

2.	 By induction on (s, t) using (I>ex, I>ex). Consider the cases on s ~HPO t
according to the definition of the HPO.

-	 If s I>ex s' "'HPO t, then ser I>ex s' er by Lemma 1 and Lemma 2. Thus,
ser >rJpo ter.
If s == f(sm), t == g(t n), f;:o g and s >rJpo t' for each t' such that t I>ex t'
and either
(a)f>-ogor

(b) f "'0 g and {sdi';"l ~o {td?=l
From s >rJpo t', we get ser >rJpo t' er for every t' such that t I> ex t'. And
if ter I> ex t" then we can find t" such that t I>ex t' and t' er == t", by 1. It
follows

ter I>ex t" implies ser 1:Ipo t"	 (20)

That directly implies, ser >-HPO ter, in case f >-0 g. Hence, suppose

f	 "'0 g. Hence, we have {sd?=l >-~o {td?=l. By induction, we get

{Sier}?=l ~o {tier}?=l· That and (20) yield ser ~po ter. 0

Theorem 2 (Quasi-Ordering Properties of the HPO)

1.	 If s ~po t "'HPO w then s 1:Ipo w
2.	 If S "'HPO t >rJpo w then s >rJpo w
3.	 If s >rJpo t >rJpo w then s >rJpo w (i.e. the HPO is transitive) o

Proof. We only prove part 1. The proofs of the remaining cases can analogously
be performed. We proceed by induction on (s, t, w) using (I>ex, I>ex, I> ex)lex. Let
us consider the cases on s >rJpo t according to the definition of the HPO. In each

case, we assume s == f(sm), t == g(tn), W == hewn) and g "'0 h and for each
iE [1, n]

ti	 "'HPO W,,(i) (21)

for an arbitrary type-respecting permutation 7r of (tn). From (21)

{tdi'=l "'HPO {Wdi'=l	 (22)

compared as multisets. Now, to the cases:

- s I>ex s' HPO t "'HPO w. Then s I>e~ s' "'HPO w and hence s ~po w.

- f;:o g and

u	 , ,. 1· ,
v t: t I>ex t lmp les s ~po t.	 (23)

We first have f ;:0 h. Also, if t "'HPO w I>ex w' then t I> V W ' byex "'HPO
Theorem 1. Hence, by induction

If w': w I>ex w' implies s >rJpo w l	 (24)

And, if f >-0 h then

(25)

16

Proof. 1 . I t i s s imp le from the definition o f Dex.
2 . By induc t ion on (s , t) us i ng (Pes , Dex) . Cons ider t he cases on s >yupo !

according to the definition of the HPO.
— I f spe r s ’ po t , then so >ex sc by Lemma 1 and Lemma 2. Thus,

$0 ppg tO.
- Hs = (8) , t = g (r) , f Zo g and s po f t for each ft’ such t ha t t > . €

and either
(a) f o g or
(b) f ~o g and { s ; }] - , oo {621
From s ppg t ' , we get so po t ' o for every ft’ such tha t t > . t ' . And
i f t o >ex t then we can find ¢ such that t > . t ' and t ' c = " , by 1. I t
fol lows

t o e r t ” implies so po 1 ” (20)

That directly implies, so > , t o , i n case f =o g. Hence, suppose

f ~¢ g. Hence, we have { s ; } } . , >po {%:}’=;. By induction, we get

{s ic} , 2 {t io}?_,. That and (20) yield so > , to. 0

Theorem 2 (Quasi-Ordering Properties of the HPO)
1. If s mpg t po W then Ss po Ww

2. If s po * po W then s po W

3. If 5s po t po W then s po w (i e . the HPO is transitive) ©

Proof. We only prove part 1. The proofs of the remaining cases can analogously
be performed. We proceed by induction on (s,t, w) using (Dex, Dez , Dex) i ex . Let
us consider the cases on s po t according to the definition of the HPO. I n each
case, we assume s = f(3,),t = g f) , w = h(w,) and g ~o h and for each
i e [l , n]

t i ~Nypo Wr i) (21)

for an arbitrary type-respecting permutation 7 of (Z,). From (21)

{ t i He t “~Hpro {w i i (22)

compared as multisets. Now, to the cases:

— SDez 8 ~._ tt ~ __w. Then sess ~ , wand hence s po W-
HPO © “HPO HPO

— fo gand
Vit’: t es t ’ implies s po U. (23)

We first have f =o h. Also, i f t po Wes w’ then t v po w'’ by
Theorem 1. Hence, by induction

Vu we , w implies s po WW. (24)

And , i f f =¢ h then

{ s i } 80 { t i e r ~po {w ik is (25)

17

eAgain by induction {Si }?;l {W;}f=l' From that and (24), we get>-'HPO

s 1:tpo W as required.	 o

Theorem 3 (Simplification Properties of the HPO) Let sand t E TI3J..F,v)
such that sand t are of the same basic type and s >rJpo t. Then

1.	 f(tl, ... ,ti_l,t,ti+l, ... ,tn)[>lW implies f(tl, ... ,ti_l,S, ... ,ti+l,tn) ~po W
and

2.	 C[s] >rJpo C[t] for every well-typed context C[.]. 0

Proof. 1. Let s, W be given. We prove the claim by induction on t using [>ex.
There are three cases:
(a)	 w == tj: We have f(tl,"" ti-l, s, ti+l"'" tn) [>1 wand the claim holds

by [> 1 ~ >rJpo .
(b)	 w == t: We have f(t l , , ti-l, s, ti+l,"" tn) [> S ?rJpo t [>1 w, therefore

f(tl, ... ,ti_l,s,ti+l, ,tn) 1:tpo w.
(c)	 tj == >.xmt' and w == t'T, where XkT :::! tjk or XkT :::! t: We define <r

by Xk<r == XkT if not t t: XkT and Xk<r == s otherwise. If t t: XkT then
Xk<r >rJpo Xk T and the induction hypothesis gives t'<r >rJpo t'T. We have
f(tl, ... , ti-l, s, ti+l, ... , tn) >rJpo w.

2.	 By 1. we havef(tl, ,ti_l,S,ti+l, ... ,tn) >rJpo v whenever
f(t l , ... , ti-l, t, ti+l, , tn) [>1 V. This gives C[s] 1:tpo v whenever C[t] [>1 V.

, Now by (2.2) of Definition 8 we get C[s] 1:tpo C[t]. 0

Corollary 1 (Well-Foundedness of the HPO) The relation ~po is a quasi­
ordering over terms in f3ry-long form in T(;::V) such that its strict part ~po zs
well-founded and properly contains [>. 0

Proof. By the previous results, the HPO is a simplification ordering on T(Fo,vo)
and h~nce terminating. 0

Proposition 3 (~HPO and Flexible Patterns)

1.	 X(sn) t:ex t iff Si t:ex t for some i or t == X(sn)
2.	 X(Wk) ~po t iff X(Wk) ~HPO t or Wj ~HPO t for some j whenever Wk are

bound variables in X.
3.	 X(Vk) ~HPO X(Wk) implies X(vk)<rll3 ~HPO X(wk)<rll3 whenever Vk, Wk are

bound variables in X for every <r in f3ry-long form. 0

Proof. Use the corresponding definitions.	 o

Definition 9 Let s be a basic rigid pattern.

1.	 Lli(s) is defined as follows:

Llo(s) == {t I s[>t}

Lli+l(s) == {t I uE Lli(s), u [>0 v [>t} U Lli(s)

17

Again by induction {s;}/2; No {wi} . From that and (24), we get
S po W as required. a

Theorem 3 (Simplification Properties of the HPO) Lets and t € Tp,{F,V)
such that s andt are of the same basic type and s pg t . Then

1. f (t 1 , oy t i c , t t i g , sen tn) D1 Ww implies f (t y , . . . , t i =1 ,8 , . . , t i t 1 , t n) po W

and
2. Cs] po CI] for every well-typed context C[.]. 0

Proof. 1. Let s ,w be given. We prove the claim by induction on £ using Dez .

There are three cases:
(a) w = t ; : We have f (t y , . . . , t i - 1 , 8 , t i +1 , . . . , t a)1 w and the claim holds

by >1C po

(b) w = t : We have f (t 1 , . . . , t i _1 ,8 , t i 41 , . . . , t a)D> S >ypo tD1w, therefore
f (t y , . . t i c , S i t i 41 , - - t n) po W-

(¢) t j = ATmt’ and w = t ' r , where z ;7 d tj, or zT < t : We define o
by 2x0 = zT i f not t > 2x7 and zo = s otherwise. I f t > zp7 then
Tro po Tk T and the induct ion hypothesis gives t'oc xp U r . We have
f (t , ... t i c1 , 8, t i e r , +31 bn) “eo W-

2. By 1. we have f (t 1 , . . . , t i c1 ,8, t i t1, . . 1 tn) hpo ¥ Whenever
f (t1 , . . . , t i—1, t , t i41, . . - , tn) D>1 v. Th is gives C[s] x , v whenever C[t] > ; v.

‚ Now by (2.2) of Definition 8 we get C[s] po CIt]- 0

Corollary 1 (Well-Foundedness of the HPQ) The relation 2 , is a quasi-
ordering over terms i n Bn-long form i n T(F,V) such that ils strict part > , is
well-founded and properly contains > . ©

Proof. By the previous results, the HPO is a simplification ordering on 7(FgVo)
and hence terminating. a

Proposition 3 (~,,, and Flexible Patterns)
1. X(33) Pe r t iff s i Dex for some i o r t = X(5;)
2. X (wx) ipo t iff X (WE) ~ypo t OT Wj ~ypo t for somej wheneverWi are

bound variables i n X.
3. X(@F) po X(wr) implies X(wk)olg no X(Wk)olg whenever Ug ,Wy are

bound variables t n X for every o i n Pn-long form. °

Proof. Use the corresponding definitions. Od

Definition 9 Let s be a basic rigid pattern.

1. A;(s) is defined as follows:
Ag(s) = { t | sp t }
Aip1(s) = {t | ue Ai(s), uo v > t } U A ls)

18

2.	 uELl;(s) if'r/xEVom(u): xEBVar(s), x first-order and xUELli(s). 0

Fact 1 Let s be a basic rigid pattern, tET[3J:F,v). IftELli(s), i> 0, then there
are U,T such that sl>u, t == UT and TELli_1(S). Furthermore, ift == f(t n) .then
U == f(u n), fE:FaUVa.

Proof. Let s be fixed. We perform induction on I>ex.

1.	 s 12: ex V := g(vm)I>Vj == t, gE:FoUVo.
By induction hypothesi~ we have W == g(wm), Sl>W, T'ELli_ 1(S) and v ==
WT'. SO t == vi == WiT'.
(a)	 If wi == xEX then XT' == Ua == f(u n)ELl;_l(S), By induction hypothesis

there are U == f(u n), T"ELl;_2(S) such that Uo == UT" and 81> u. We have
t == UT for T = T'UT and TELli_1(S).

(b)	 If wi f/. X then wi == f(um). Choosing U == f(u m) and T = T' we have
sl2:wl>u and t == UT.

2.	 sl2:exv == g(Vm)l>lt, Vi == AXm.Va, t == VaT1. So vELli_1(S). By induction
hypothesis we have sl>w == g(wm) and Va == WT', T' E Lli-2(S). Choose
U == wand T = T'UT1' Then sI> W == U and t == VaT1 == WT'T1 == WT == UT, so
sI> U and t == UT. Furthermore, we have TELli_1(S). 0

Lemma 3 Let s be a basic pattern, tET[3J:F,v) and u a substitution in f31]-long
form. If s I> ex t then su11>ex tu1. 0

Proof. Let s be fixed and s ~ex t == f(tn), fE :FoUVa and t E Lli(s). By Fact 1 we
have U and T such that sI> u, t == UT and TE Ll;_l(S). We perform induction on
(i,I».
Let s ~ex V I> 1 t and v == f(vn), v E Lli(s).

1.	 i = 0: Since s is a pattern, t f/. X, v cannot be a subterm of a flexible term.
So su11> vu1 and f E :Fa. If t == Vi then vu1 == f(vnu1) I> tu1 and hence
su11>ex tu1.

2.	 i > 0: We have 8 I> wand TE Lli-1(S) such that v == WT. If fE:Fa and t == Vj
then su1 12: ex vu11> tu1 as above. Also, if f E :Fa and Vj == AXm .Va, v == VOTO,
then su1 12: ex vu11> tu1 as above. So assume f = FE Va and t == Vj. Then
W == F(wn) and t == Vj == WjT. As in the proof of Fact 1, there is U and
T' E Lli-2(S) such that t == UT' and sI> u. By induction hypothesis we now
have su11>ex tu1. 0

Example 10. Let S == f(AX1.f(Ax2.G(X1,X2),xd,t) where t == h(Axa.H(xa),a).Then
s 1>1 t1 == f(AX2.G(t,X2),t) 1>1 t2 == G(t,t) 1>1 ta == t 1>1 t4 == H(a). We may choose

U1 == f(.AX2.G(X1,X2),xd T1 = {Xl +- t}

U2 == G(X1,X2) T2 = {Xl +- t, X2 +- t}

Ua == h(Axa.H(Xa),a) Ta = 0

U4 == H(xa) T4 = {xa +- a}

18

2. oc€Ai(s) if Yz€Dom(o): z€BVar(s), z first-order and zo € A;(s). °

Fact 1 Le ts be a basic rigid pattern, t Ee Tp,(FV) . I f t € Ai(s), i > 0, then there
are u ,T such that s>u , t = u r and TE A;_1(s). Furthermore, i f t = f(t„) then
u = (7s), f e FoUVo-

Proof. Let s be fixed. We perform induction on Bz .

1. sD v =g(Tm)Dvj = t , g€FoUVo.
By induction hypothesis we have w = g(Wm), sb w, 7 € 4,_1(s) and v =
wr’ . Sot =v ; = wT ’ .

(a) If wj = z€X then 7 ’ = ug = f (¥n)€ Ai-1(s). By induction hypothesis
there are u = (uy), 7” € Ai—2(s) such that ug = ur” and s> u. We have
t = u r for 7 = U t and r € 4 ; -1 (s) .

(b) If w; ¢ X then w; = f(ur). Choosing u = (ur) and 7 = 7 ’ we have
sPwpuand t=u r .

2. sPe rv = g(Tm)D1t, vj = ATm.vp, t = vor ı . So v € A;—1(s). By induction
hypothesis we have s>w = g(Wm) and vo = w r ’ , ™ € A;_3(s). Choose
u=wand 7 =7Un . Then s>w= u and t = vor, = wr 'n = w r = u r , so
sp u and t = u r . Furthermore, we have 7€ 4 ;_ (s) . a

Lemma 3 Lets be a basic pattern, t € Tg,(FV) and o a substitution in fn-long
form. I f sp. t then so |Dex to l . ©

Proof. Let s be fixed and sD . t = f(I,), f € FoUVo and t € A;(s). By Fact 1 we
have u and 7 such that s>u , t = u r and 7€ 4 ;_ ; (s) . We perform induction on
(2,0). ;

Let sD . vD>;t and v = f(T), vE€ Arjls).

1. i = 0: Since s is a pattern, t&€X, v cannot be a subterm of a flexible term.
So so |> vo] and f € Fo . I f t = v; then vo | = (01) > to] and hence
SO| Dez t o] .

2. i > 0: We have sp w and 7€ 4;_;(s) such that v = wr . I f f e Fo and t = v;
then so | D>. vo] > t o] as above. Also, i f f € Fo and v; = AT7, v0 , v = voT0,
then so} > . vo l > to] as above. So assume f = FE Vg and t = v; . Then
w = F(Wr) and t = v; = w ; r . As in the proof of Fact 1, there is u and
7 ' € A;_5(s) such that £ = u r ’ and sp u . By induction hypothesis we now
have so| > ; to]. a

Ezample 10. Let s = f(Az, f(Az2.G(21,22),21).t) wheret = h (Az3 .H (z3) , 2) .Then
sD ty = f(A22.G(t,22).t) D>1t2 = G(t,t)D>1t3 = t y t4 = H(a). We may choose

u = f (Az2 .G(z1 ,22) . 21) TT = { z ı +— t }
Uz = G(z1 . z2) Tg = { z ı “ 1 ,2 — t }

us = h(Az3.H(z3),a) 3=0
ug = H(zs) 74 = {z3 — a}

19

The reader may verify that S [> Uj and tj == Uj Tj, Tj E .do(s) and so-! [> ex tj o-! for
iE[1,4] hold. <>

Lemma 4 Let t == f(tn), f E:F and t, 0- in f3TJ-Iong form. If to-! [> 1 t' then t [> 1 S

and so-! ~MB t' for some s. <>

Proof. Let U == to-!, so U == f(un) and Uj == tjo-!.
l1.	 t' == Uj for some i: Choose s == tj. Then t [>1 s and so-! == tjo-! == Uj == t .

2.	 Uj == >'xm.uo, t l == uor for some i where 'Dom(r) s:;; {xm} and XT Sl Uj for
some j f. i if xE'Dom(T). Then t == >'xm.to and Uo == too-!, so t l == toT!.

l(a)	 Uo == too-! contains no Xk: Then too-! == too-r! == UOT == t . Choose s == to.
Then t [>1 sand so-! == t'

(b)	 Assume Xkr' == tj, so XkT'o-! == Uj 12: XkT. Choose s == toT'. We have
l

t
uo(r' 0 0- l) ~MB uor. This gives so-! == (toT'o-)! == Uo(r 0 0- 1) ~MB UOT ==

l
. 0

Theorem 4 (Compatibility wrt. Substitutions) Let s be a basic rigid pat­
tern, 0-, s, t ETprf.,F,Y). Then
1.	 s ""HPO t zmplzes so-! ""HPO to-!
2. s >ripo t implies so-! >ripo to-! <>

Proof. Assertion 1. is easily proved by induction on [>. We prove assertion 2. by
induction using (>rJpo ' >rJpo)lex.

1.	 s ~po t according (1) in Defini tion 8. Then s [> ex s' ""HPO t, so so-! [> ex S' o-!
by Lemma 3 and Sio-! >ripo to-! by induction hypothesis. So so-! >ripo to- 1.

2.	 s ~po t according to (2) in Definition 8. Then f to g, where s == f(sn),
t == g(tm) and s ~po t' whenever t [>extl.
By induction hypothesis we have so-! >-HPO t'o-! whenever t [> 1 t l Now
Lemma.3 gives sed >ripo to whenever to-! [>1 to·
If f >-0 g, then so-! >ripo to-! by (2.1) in Definition 8.

If f ~o g then {sn} ~o {tm}. So Sj ~po tj; for all i and Sj >ripo tj; for

oneiE[l,n].

If Sj is flexible, then Sjo-! ~po tjio-! by Proposition 1. If Sj is rigid, then

Sjo-! ~po tj;o-! by induction hypothesis.

So {sno-!} ~o {tmo-L} and therefore so-l >rJpo to-! by (2.2) in Definition
8.	 0

Theorem 5 (Termination and Decreasingness) Letn be an HCTRS. Then
1.	 n is terminating if I ~po r for each rule l->r if C in n.
2.	 n is decreasing if I ~po S for every S in {r} U {u, v IU = v E C} for each

rule l->r if C in n. <>

Proof. A direct consequence of the properties of the HPO and the restrictions on
rule systems which guarantees that s ~po t whenever s---Rt for every sand t
in f317-long form. 0

19

The reader may verify that s> uw; and t ; = uw7;, 7; € 4o(s) and so| Dex t o } for
ze [1,4] hold. En

Lemma 4 Let t = f(£,), fEF and t , o in By-long form. I f t o }>1 t t hen t ys
and so | ggg t ' for some s. ‘ °

Proof. Let u = t o] , so u = f(u,) and u ; =t;0].

1. U’ = uw; for some i : Choose s = ¢;. Then t >1 5 and so] = t o l =u ; = U.
2. u; = ATq.uq, € = wor for some £ where Dom(r) C {tm} and z r < u; for

somej # i if 2€Dom(r) . Then t = AZ tp and up = too] , so ’ = tor].
(a) up = tpo | contains no z i : Then too] = t oo r | = wor = t ' . Choose s = to.

Then t > ; s and sol = ¢
(b) Assume zp7 ’ = t ; , so zp r 'o l = u; > z r . Choose s = t o r ‘ . We have

ug(1' 00) gmp oT . This gives so| = (to7'0)| = uo (7 '00|) yg oT =
U.

Theorem 4 (Compatibility wr t . Subst i tut ions) Le t s be a basic r ig id pat-
tern, 0 , 8 , t € Ta{F,V). Then

8 po? implies so l po t od
2. 5s po t implies so| po tol °

Proof. Assertion 1. is easily proved by induction on > . We prove assertion 2. by
induction using (po ‚ po Jez-
1. s po t according (1) i n Definition 8. Then s >ex $ ’ po br SO ST Dez sol

by Lemma 3 and s ’ 7 } po t o l by induct ion hypothesis. So so| yp tol.
2. 5 po t according to (2) in Definition 8. Then f Xo g, where s = (57),

t = g(t) and s po t ' whenever tD> o t .
By induction hypothesis we have so | >ypo Yo) whenever tD>;, 1 . Now
Lemma 3 gives s¢ | ppg to whenever to| > 1g.
I f f >09 g, then so| po to l by (2.1) in Definition 8.
If f ~¢ g then {57} NOB {tm}. So si Xupo t i : forall and si pq t j ; for
one 1€[1, n].
If 5 ; is flexible, then s ig Zupg t j ; 0 l by Proposition 1. I f s; is rigid, then
87 } Zupo t i ; o l by induction hypothesis.

So {snol} NON {tmol} and therefore so] po to l by (2.2) inDefinition
8. a

Theorem 5 (Termination and Decreasingness) Let R be an HCTRS. Then
1. R is te rm ina t ing if | po v for each rule I r if C in R.
2. R is decreasing if | oppo s for every s i n {r} U {u , v | u =v € C } for each

rule l r i f C in R . °

Proof. A direct consequence of the properties of the HPO and the restrictions on
rule systems which guarantees that s > , ¢ whenever s—gt for every s and ¢
i n Bn-long form. a

	BB_0003.jpg
	SR-1995-03-1.png

