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Chapter 1

Overview: Towards a
Reconstructive Approach for
Presenting Proofs

Over the past thirty years there have been significant achievements in the field of auto-
mated theorem proving with respect to the reasoning power of the inference engines.
Although some effort has also been spent to facilitate more user friendliness of the de-
duction systems, most of them failed to benefit from more recent developments in the
related fields of artificial intelligence (AI), such as natural language generation and user
modeling. In particular, no model is available which accounts both for human deductive
activities and for human proof presentation. In this thesis, a reconstructive architecture is
suggested which substantially abstracts, reorganizes and finally translates machine-found
proofs into natural language. Both the procedures and the intermediate representations
of our architecture find their basis in computational models for informal mathematical
reasoning and for proof presentation. User modeling is not incorporated into the current
theory, although we plan to do so later.

1.1 Why Proof Presentation?

Let us motivate the need of appropriate proof presentation techniques with the help of a
simple example: the example is taken from [Lin90], which is a formulation of part of the
subgroup criterion as discussed in [Deu7l]. This is the problem:

Problem

Let G be a group, S C G, iffor all x,y in S, y*z~
S its inverse is also in S.

Most existing automated theorem provers work with very machine oriented formal-
isms-like resolution and without appropriate proof presentation techniques, users of such
systems are directly confronted with proofs that are represented in such machine-oriented

! is also in S, then for every a in

3
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The set of initiai clauses:

Cl={+(@u*xu"!=c¢)} C2 ={+(e*xw=w)}
C3={-(z€5),~(ye€S),~(z+xy™ = 2),+(z € 5)}
C4 = {+(a € 5)} C5={—(a"t € )}

The resolution steps:
C3,48 C3,1:. addRl: {—(x€85),~(y€S),~(x*xy~t=13z),-(y €S),~(z+y "1 =2),+(z €85)}
RL,1& C4,1: addR2: {—(y€S),—(axy l=32),—(y €S),~(zxy ! =2 ,+(z €9)}
R2,1 & C4,1: add R3: {-(axa~!=3z),—(y' €S),—(z*y ! =27, +(z' €8S)}
R3,2& C4,1: add R4: {—-(a*xa"l=32),~(zxa"! =7'),+(z €9)}
R4,1& C1,1: add R5: {—(exa~!=2'),+(z' €9)}
R5,1& C2,1: add R6: {+(a~!€S)}

36,1 & C5,1: add R7: O

Figure 1.1: The Resolution Proof

NNo S;D Formula . Reason
Definitions

1. 51 P VeuruTl=e (L-Def-Inverse)

2. ;2 F VYyexu=u (L-Def-Unit)
The Proof

3.3 P Voy:z €ESAYyESAzxy l=z32€8 (Hyp)

4. 4 F a€S (Hyp)

5 ;3 F Vy.a€SAyESAaxy t=2=2€S8 (VE 3)

6. 3 F V.,aeSAaeSAaxal=z=z2€8 (VE 5)

7. 3 F acSAaeESANaxa=e=>e€ S (VE 6)

8. 1 Foaxa~l=e (VE 1)

9. 4 F a€eSAaeS (A1 4 4)

10. 134 F aeSAaeSAaxal=e (A9 8)

11. 13,4 F oe€S (=E 10 7)

12. 2 F oexal=al (VE 2)

13. ;3 b Vy.e€SAyeSAexyt=z2€S (VE 3)

14. ;3 F V.eeSAaeSAexal=z2=22z€8 (VE 13)

15. ;3 F eeSAaeShexal=al=a"les (VE 14)

16. 1,2;3,4 F ecSAacSAexal=qg! (AI'11 4 12)

17. 1,2;34 F ateS (=E 16 15)

18. 1,2;3 F aeS=a'les (=117)

19. 1,2:3 F VzeS=zl¢S (VI 18)

Figure 1.2: The ND Proof

formalisms. Figure 1.1 is the resolution proof given for the problem in [Lin90].

Although it has become a standard representation within the automated reasoning
community, a resolution proof is difficult to follow even for professional mathematicians.
Hence techniques have been developed that transform proofs from a machine-oriented
formalism into so called natural deduction (ND) proofs. Figure 1.2 is an ND proof for
the same problem in Figure 1.1, that can be obtained from the resolution proof by the
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NNo S;D Formula Reason
Definitions

1. ;1 F Vyu*xul=e (Def-Inverse)

2. ;2 F Veexu=u (Def-Unit)
The Proof

3. ;3 F Vey.2€ESAYyESAz*xy l=z2€ 8 (Hyp)

4. 4 F aeg$ (Hyp)

5. 1 F axa"l=e (Def-Inverse)

6. 134 Foe€S§ (34 4 5)

7. % F exal=gqa! (Def-Unit)

8. 1,234 F alesS (36 4 7)

9. 1,2;3 F aeS=ales (=18)

10. 1,2;3 F YzeS=zleS (VI 9)

Figure 1.3: The Assertion Level Proof

Proof:

Let a be in S. According to the definition of inverse element, a * a™! = e. According to

our hypothesis, ein S. exa™! = a™! according to the definition of unit. Again according

to our hypothesis, a~! is in S.

Figure 1.4: The Natural Language Proof

transformation mechanism described in [Lin90].

Note that the quality of machine-translated ND proofs is normally by far not as
good as that of the proof in Figure 1.2. Machine-translated proofs can contain hundreds
of lines for relatively simple problems. Even neatly written ND proofs, however, are at a
level much lower than proofs typically found in a mathematical textbook, although each
single step is simple to follow now. The main reason is ND proof lines are exclusively
justified by ND inference rules that stand for some simple syntactical manipulations.

In other words, the ND proofs are still far to close to some machine level and hence
a new intermediate representation called ND style proofs at the assertion level is intro-
duced in this thesis, which contains more meaningful justifications. These are intuitively
understood as the application of a definition or a theorem. The ND proof in Figure 1.2
can now be abstracted to the assertion level, as given in Figure 1.3. For example line
5 is justified by the application of the definition of “inverse”. Line 6 is now justified by
applying the hypothesis given in line 3, using line 4 and 5 as premises. This derivation
requires five steps in the original ND proof. The abstraction and subsequent reduction
“of the size of the proof in this example is not as significant as it is often the case, since
the definitions (of inverse and of unit) are deliberately simplified for the convenience of
discussion. An example will be shown in this theis where an ND proof of 134 hnes is
abstracted to a proof of only 16 lines.

If a user wishes to share his proof with his colleagues, the best way is commonly
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via a proof in natural language. In order to achieve this, appropriate text planning
techniques and futher structuring and reductions must be applied. Figure 1.4 is a possible
verbalization of the assertion level proof in Figure 1.3.

In short, in order to make automated reasoning systems really useful in a
machine-assisted proof development environment like for example the Q-MKRP system
[HKK*92b], appropriate proof presentation techniques are necessary.

1.2 Identifying the Problem

Viewing automated theorem provers as a special kind of expert systems, the problem we
are confronted with is very similar to that of the explanation component of an expert
system, i.e. of ways of explaining the line of reasoning of the system to an end-user.
Methods of various kinds are devised to augment, to prune, or even to transform the trace
of reasoning that is obtained inside of the system [Sho76, WS89]. In particular it has also
been investigated how domain models can help to explain rules and how explanations
can be given at different levels. Explanations produced this way are in general tightly
bound with the authentic movement of an expert system from the initial data to the
conclusion. Although such explanations are apparently appropriate for system developers
or knowledge engineers, they do not meet the requirement of a typical end-user. Instead
of the original, often obscure line of reasoning, most end-users are more interested in a
convincing line of reasoning supporting the conclusion reached by the expert system. In
the light of this observation, a new, so-called reconstructive paradigm for explanation
has emerged in recent years [WT92]. The central idea of this approach is that a distinct
knowledge base should be used to reconstruct a new solution based on the original one.
In other words, explanation is now viewed as a problem solving process in its own right.
By using more general structures and more idealized methods in the knowledge base for
explanation, a more user oriented explanation can be generated.

A parallel development can be observed in the explanation mode of an automated
reasoning system as well: Most earlier systems produce only a trace of protocols [OS91,
McC90]. In contrast to the situation for expert systems, in general there is an additional
hurdle for understanding these protocols: Not only can the lines of reasoning be unnatural
and obscure, the formalism in which the proofs are encoded is usually extremely machine-
oriented. As a consequence, such primitive explanations are only useful for the system
developers themselves. To change this situation, a reconstructive approach for explanation
has been pursued in this field as well, by transforming proofs from machine-oriented
formalisms into more natural formalisms [And80, Mil83, Pfe87, Lin90]. As the target
formalism, usually a variation of the natural deduction (ND) proof first proposed by G.
Gentzen [Gen35] is chosen. Since there is no one-to-one relationship between machine-
oriented proofs and natural deduction proofs, the transformation process virtually involves
a reproving of the theorem, however by maximally utilizing the information contained in
the original proof. Heuristics of various kinds are developed to improve the quality of
the target ND proof. For instance, C. Lingenfelder utilizes the topological structures of
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the refutation graph both to produce more direct proofs as well as to avoid redundancy
(by inserting lemmata [Lin90]). Another technique for inserting lemmas is reported in
[PN90].

Until now the reconstruction stops here and the resulting ND proofs are passed over
to a presentation component, which works primarily by ordering, pruning and augment-
ation. The first attempt of transforming natural deduction proofs into natural language
was made by D. Chester [Che76]. His system EXPOUND is usually characterized as an
example of direct translation: Although a sophisticated linearization is applied on the in-
put ND proofs, the steps are translated locally in a template driven way. Equipped with
more advanced techniques developed in the field of natural language generation, a more
coherent translation was obtained by the MUMBLE system of D. McDonald [McD83],
in particular, emphasis was laid on the generation of utterances highlighting important
global structures of the proofs, as well as utterances mediating between subproofs. A
more recent attempt can be found in THINKER [EP93], where different styles of explain-
ing ND proofs are exploited. In short, it was believed that ND proofs can be adequately
presented by resorting solely to ordering, pruning, and augmentation.

All these systems suffer from the same problem: The derivations they convey are
exclusively at the level of inference rules of the ND calculus. In contrast to informal proofs
found in standard mathematical textbooks, such proofs are composed of derivations fa-
miliar from elementary logic, where each detail is presented and the focus of attention
1s on syntactic manipulations rather than on the underlying semantic ideas. As a con-
sequence, natural language proofs thus produced contain too many minute details, which
submerge the central line of reasoning. This would be tolerable for the usual toy examples
containing less than a dozen of proof lines, however the results are intolerable, when these
systems are assigned the task of presenting realistic ND proofs containing hundreds of
lines, as is the general case for non-trivial proofs.

1.3 Contributions

The main aim of this thesis is to find a way out of the difficulties discussed in the previous
section by carrying the reconstructive approach a step further using a new target proof
formalism. The main contributions of this thesis can be summarized briefly as:

o A framework for informal mathematical reasoning, cast as an interleaving process
of planning and verification.

e The definition of new intermediate representation for proof presentation, based on
deductive operators used in informal mathematics, ¢alled assertion level operators.

e A procedure reconstructing assertion level proofs from machine-generated ND proofs.
This procedure substantially shortens the input ND proofs by abstracting ND proof
segments to atomic assertion level derivations.
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o A computational model for presenting assertion level proofs, as a first attempt to
integrate standard hierarchical planning and unplanned local organization. The
hierarchical planning is schema-based.

e The identification of various reference forms for intermediate conclusions and infer-
ence methods, as well as a salience based treatment. A very natural segmentation
of the discourse into an attentional hierarchy is given as a consequence of the dis-
tinction between planned and unplanned activities.

Below is an example. Given as input an ND proof of 134 lines, our system produces
the following proof:

“Let F be a group and U be a subgroup of F' and 1 be a unit element of F
and 1y be a unit element of U. According to the definition of unit element
ly € U. Therefore there is an X, X € U. Now suppose that u; is such an
X. According to the definition of unit element u; * 1y = u;. Since U is a
subgroup of FF U C F. Therefore u; € F. Similarly 1y € F since ly € U.
Since F' is a group F is a semigroup. Since u; * ly = uy 1y is a solution of
the equation uy * X = u;. Since 1 is a unit element of F' u; * 1 = wuy. Since
1 is a unit element of F' 1 € F. Since u; € F 1 is a solution of the equation
uy * X = uy. Since F is a group 1y = 1 by the uniqueness of solution. This
conclusion is independent of the choice of the element u;.”

1.4 Overview

This thesis is divided into three parts. Part I presents computational model for informal
mathematical reasoning. Apart from the natural deduction inference rules that reflects
the primitive human deductive activity, such a model should incorporate more powerful
reasoning procedures involved in standard mathematical practice. In particular, reasoning
procedures producing proof segments allowing for atomic justifications in the presentation
process must be identified. By carefully analysing proofs in mathematical textbooks;
and also based on previous studies carried out on informal mathematical reasoning, our
study has concentrated on a procedure which derives results that, intuitively speaking,
follow by applying a previous result, a theorem or a definition (collectively called an
assertion). Closely related to the concept of the application of an assertion, we also
elaborate on domain-specific, logically compound inference rules carrying out the same
task. A derivation based on the application of an assertion or a corresponding compound
inference rule is called a step at the assertion level . The main contribution of part I is
to define ND style proofs at the assertion level, which thenserves as the target formalism
for the reconstruction.

The presentation of an ND style proof at the assertion level is handled by a compu-
tational model for human proof presentation that is abtained in Part II. In this theory,
the process of proof presentation is cast as the combination of knowledge based top-down
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Figure 1.5: A Birds Eye’s View of Proof Presentation

planning and focus-guided bottom-up presentation. The distinction between top-down
planning and bottom-up presentation leads to a very natural segmentation of the proof
discourse, that is necessary for a theory addressing problems concerning reference forms.

Part I and Part II together form a coherent theory that accounts for a fairly wide
spectrum of human theorem proving and human proof presentation, as illustrated on the
left hand side in Figure 1.5. Although in a more full fledged theory, these two cognitive
processes should be structured such that they may produce and consume intermediate
data in an incremental way, for our purpose, it suffices to model this activity as a relatively
independent two-stage process. Note in particular, ND style proofs at the assertion level
are supposed to be an appropriate approximation of the product of the human deductive
apparatus. In the sequel, these proofs are referred to as detailed natural proofs (DNP),
as opposed to proofs that have already undergone a presentation process, such that they
are usually rearranged and pruned.

Part III gives an overview a prototype of a proof presentation system called PRO-
VERB (Proof Verbalization) , based on the two computational theories. It is embedded
into an interactive proof development environment that is called Q-MKRP [HKK+92b],
a system under development at the University of Saarbriicken. A proof and presentation
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cycle in Q-MKRP can be roughly outlined as follows: A resolution based theorem prover
is first invoked to solve a mathematical problem. The resulting clausal proof is translated
in several steps into an ND style proof at the assertion level. At this point, a presenta-
tion component will take over the control and generate a sequence of so called preverbal
messages, from which a proof in natural language can be produced by an appropriate
grammatical treatment. Due to the additional intermediate representation at the asser-
tion level, we are able to generate appropriate proofs in natural language for a broad class
of natural deduction proofs. This process is illustrated on the right hand side of Figure
1.5, where dotted lines are used to connect components in our system and their duals in
the model of human proof searching and presentation.
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Chapter 2

Introduction

Part I concentrates on a computational model for informal mathematical reasoning, whose
aim is to come up with a precise description of the detailed natural proof. As is widely
documented, many cognitive processes for solving problems can be modelled within a
computational framework of planning [NRL89, New90|. Following this well pursued ap-
proach in the field of artificial intelligence, some plan-based theories on deduction have
also recently emerged [Bun88, Hut90]. In this thesis, the cognitive process of finding
mathematical proofs is cast as an interleaving process of planning and verification. From
this perspective, a theory of human theorem proving consists primarily of the specification
of the plan operators at the disposal of a human reasoner, as well as his planning or search
strategies.

Because the main concern of this work is a precise description of the output of the
human deductive apparatus, our emphasis is mainly on the plan operators. Even here
we want to restrict ourselves: Instead of providing a complete description of all possible
ways primitive operators can be combined into compound operators, we are interested
basically only in primitive operators, and those compound operators lending themselves
to atomic justifications in the presentation process.

2.1 Previous Work

In this chapter, we first give a brief summary of traditional theories on natural logics and
mental reasoning as developed by psychologists and logicians. Subsequently, we report our
preliminary empirical study on compound proof structures allowing atomic justifications.
Finally, we sketch in an informal way an extension of the traditional framework of mental
reasoning, to account for such compound structures.

One of the main streams of psychological theories about mental reasoning has been
based on the hypothesis of the existence of a so called mental logic or natural logic. The
word “natural”, nevertheless, was first used by the logician Gerhard Gentzen for his logic
motivated by the desire “to set up a formal system that came as close as possible to
actual reasoning” [Gen35]. More recently, natural logics (also called mental logics) are

15
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often studied by cognitive psychologists, as an internal structure that is responsible for
the human reasoning competence [Bra78, Lak70, Rip83]. From this point of view, a model
for deductive reasoning is believed to contain mainly two components:

1. A logical component containing a repertoire of a deductive vocabulary available to
a human being, i.e. a natural logic in form of a set of inference schemata, where
the patterns of the premises and of the conclusion are specified in terms of formula
schemata.

2. A performance component that contains mainly heuristics and programs responsible
for putting inference rules together to form arguments or proofs.

More recently, Johnson-Laird and his colleagues developed a theory using mental
models to account for human daily reasoning [JL83, JLB90].

2.2 The Main Phenomena

Since we mainly concentrate on the kind of reasoning as encountered in mathematics, we
shall nevertheless basically follow the logic based approach. According to such theories, we
may predict that the proofs found by the human deductive apparatus can be represented
as an ordered graph, where each node contains an intermediate conclusion, whereas the
links stand for justifications connecting an intermediate conclusion with its premises.
Furthermore, we may predict that the justifications are restricted to the application of
primitive operators, i.e. , to the rules of inference in the natural logic. In short, a DNP
can be appropriately approximated by a natural deduction (ND) style proof. ‘
In order to gain more reliable experience with DNPs, in particular to identify proof
structures allowing atomic justifications, the author encoded a number of theorems from
different sources into predicate logic. Then the author tried to formulate detailed natural
proofs (DNPs) out of the original proofs, by filling back in all reasoning steps that have
been omitted in the presentation process. At the same time, it is tried to make explicit the
justification for each presented step. This procedure is carried out on six proofs and some
exercises in chapter 1 in [Deu7l], a mathematical textbook for undergraduates, and some
examples discussed in the context of proof planning (two examples about homomorph-
ism in [HKK*92b] and four diagonalization examples in [HKK94]). The same procedure
was later repeated on some non-mathematical examples as well (two Portia examples in
[Smu78] and the steam-roller example in [Sti86]. To our surprise, only a small amount of
the presented steps are justified by inference rules of Gentzen’s natural deduction calcu-
lus. Most of them are however justified as the application of an axiom, a definition, or a
theorem. On the account that mathematical axioms, definitions and theorems are asser:
tions taken as true in a given mathematical context, these justifications will henceforth
be collectively called the application of an assertion. Besides the examples mentioned
above, the characterization of the application of an assertion to be defined in this thesis is
checked against numerous proofs in chapter 3 to chapter 5 in [SM77], where applications
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of certain assertions are explicitly given as justifications. Although not strictly following
the standard of psychological empirical studies, this investigation is referred to as our
preliminary empirical studies in this work.

Now there are two possible ways for explaining this phenomenon. Firstly we may
assume that this phenomenon can be fully ascribed to the presentation process: complex
proof segments with certain structural features are always presented as an atomic step,
using a justification called the application of a particular assertion. As second alternative
however, we may assume a strong correspondence between proof time structure (i.e. proof
segments as produced at the time of search by specific reasoning procedures) and atomic
steps justified in the presentation process. Since there is enough evidence that mathem-
aticians do plan and verify proofs in terms of the application of definitions or theorems,
and in particular, formulate complex search strategies in terms of them, we opt for the
second explanation.

One fact supporting this is that domain-specific inference rules at the assertion level
are widely employed in various theorem proving systems working on natural deduction
style proofs. An example is the system EXCHECK [SGBM75, Bla8l], a system aimed
at supporting informal mathematical reasoning. In the system IMPS [FGT92, FGT93],
new assertion level inference rules called macetes are generated from every definition
or theorem in the knowledge base to accelerate the proof search. Although macetes
cover only a small part of the ways a human mathematician usually applies an assertion,
they relieve the user of a substantial part of applying elementary inference rules. In the
system MUSCADET [Pas93], the user may formulate meta-rules to generate assertion
level inference rules. In the proof development environment §-MKRP [HKK+92b], the
user can also choose to apply an assertion, apart from the choice of particular natural
deduction inference rules.

Once we decide to account for assertion level steps as a phenomenon of reasoning,
we are faced with two possibilities again. An assertion level step is either an element-
ary step in DNP, or a complex proof segment satisfying certain structural constraints.
Both cases are possible. Concretely, to account for assertion level reasoning activities,
we extend traditional computational models in two ways. Firstly, we add a procedure
applying assertions by carrying out a logic level proof conforming to certain structural
constraints. Logic level proof segments thus produced are called the natural ezpansion
for the corresponding assertion level steps. For instance, given the definition of a subset,

Veo UCF&®V,zoeU=>ze F

the natural expansion of the assertion level step deriving a; € F from U; C F; and a; € U,
is the logic level proof in Figure 2.1 (i.e. a rather long and tedious proof segment that
establishes a fact that would be called “trivial” and hence omitted in a human proof).

Secondly, we assume that there is some mechanism for the acquisition of assertion
level inference rules. The total sum of inference rules at the disposal of a reasoner is
the union of those in natural logic and those acquired. In the sequel, this set of rules is
referred to as the natural calculus. As will become clear in Part III, only the acquired
rules are then used to abstract an ND proofs to an assertion level proof.
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VD, ay € Uy

Figure 2.1: An Example of a natural expansion

2.3 Structure of Part 1

In chapters 3 to 8, we proceed gradually to our goal: the notion of an extensible natural
calculus. The chapters are organized as follows: Chapter 3 provides an overall structure
of the computational model. Chapter 4 to 7 are each dedicated to one aspect related to
the building up of assertional operators: Chapter 4 lays the foundation by specifying a set
of primitive inference rules accommodated in this model. Chapter 5 then introduces an
operator that generates rules from existing rules by a generalized contraposition. Chapter
6 is devoted to our central topic, namely a procedure drawing conclusions by applying
an assertion. Finally, Chapter 7 defines the set of compound inference rules at the asser-
tion level, which can be acquired by chunking and parameterization. Related works and
possible applications of the natural calculus are discussed finally in Chapter 8.




Chapter 3

A Framework for the
Computational Model

In this chapter, first a general setting of a computational theory accounting for informal
mathematical reasoning is set up, as opposed to theories accounting for human daily reas-
oning. Besides its original motivation to serve the proof presentation process, it is also
seen as a first response to Alan Bundy’s call for a science of reasoning [Bun90]. This frame-
work is currently realized in a proof development environment Q-MKRP[HKK*92b], and
is deliberately more widely laid out would needed for the proof transformation process
alone. In later chapters, however, only those parts that are necessary for our purpose are
elaborated upon.

Statically, a reasoner is cast as a knowledge based system, in accordance with the
classical view in artificial intelligence. His reasoning competence is exclusively ascribed
to his declarative knowledge of various sorts and a set of special purpose reasoning pro-
cedures. In this first draft of our theory, declarative knowledge includes rules of infer-
ence, assertions, and a collection of proof schemata, as well as diverse kinds of metalevel
knowledge. Since it is the combination of chunks of declarative knowledge and reasoning
procedures that constitute the operators to solve various reasoning tasks, these combina-
tions correspond to the notion of tactics in earlier literatures [CAB*86, Bun88]. Attached
with specifications, which serve as an assessment help in the planning process for a proof,
these operators are referred to as methods. The total amount of methods constitutes the
basic reasoning repertoire at the disposal of a human reasoner.

Dynamically, the entire process from the initial analysis of a problem up to the
completion of a proof is assumed to be an interleaving process of metalevel planning and
object level verification. As a central representational structure there is a proof tree, which
records the current state of the development.

After setting up a general framework for our computational theory in section 3.1,
there is an excursion to the notion of method in section 3.2, and a brief description of
the dynamic behavior of the interleaving process as a whole in Section 3.3. Readers only
interested in proof presentation can skip over these last two sections.

19
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3.1 A Static Description of the Computational Model

As usual we assume the existence of a long term memory (LTM) and a short term or
working memory (WM) |, where the latter can be intuitively viewed as the focused part
of the entire memory space. It contains only those objects a human being is attending to
at present, and it is supposed to be limited in space.

In this section, first the mental objects accommodated in our computational model
are categorized, together with the corresponding procedures operating on them.

3.1.1 The Proof Tree

As a theory conceiving theorem proving as an interleaving process of planning and verific-
ation, a mental representational structure called a proof tree is used to uniformly accom-
modate notions like proof sketches, proof plans and finally, proofs themselves. Formally,
a proof tree is an ordered tree where each node is labeled by a frame consisting of four
slots, represented as:

<Label, A F Derived-Formula, method>

This means that the derived formula is (can or might be, respectively) derived from
its children using the indicated method. A stands for the set of hypothesis the derived
formula depends on. All of the last two slots of a node may have the value “unknown”,
indicating a proof sketch node. The method slot may also have entry “plan”, indicating
subgoals not yet achieved. Instead of drawing nodes and links explicitly, an extension of
the tree structure originally employed by G. Gentzen is adopted for our notion of proof
tree. Note that A is normally omitted in this format since it is simply the leaves of the
subtree rooted by the corresponding node. The labels are sometimes also omitted. Figure
3.1 is a possible snapshot of the proof tree during the process of proving that the converse
relation of a binary relation p is symmetric, if p is symmetric.

[Conv], [Sym)]

1 , C , g
0]+ symmetncp) "2 (Convly [Sym]

1
[2] : Vey (z,y) € converse(p) = (y,z) € converse(p)p o

‘ S
[3] : symmetric(converse(p)) ™

Figure 3.1: An Example of the Proof Tree

Every bar in Figure 3.1 represents a derivation. Nodes separated by commas above
a bar are the premises, the node under the bar is called the conclusion. The method slot
of the conclusion is put besides the bar. Node [Conv] and [Sym] contain the definitions
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for converse and for symmetry. Their derived formulas are given separately in 3.1 and 3.2
as follows.
Derived-Formula for [Conv]:

Vs Yoy (2,y) € converse(o) & (y,z) € o (3.1)
Derived-Formula for [Sym)]:
Y, symmetric(c) & Y, (z,y) €0 = (y,z) €0 (3.2)

Note that one duplication is made of each of them to represent the proof as a tree.
The method slot node 1 and 2 is “plan”, indicating that they still pending goals. Node
3, in contrast, is justified by applying the definition of symmetry on node 2.

3.1.2 Declarative Knowledge

The following is a listing of the different kinds of declarative knowledge accommodated
in our model:

e rules of inference, including a kernel of rules supposedly innate to human beings,
usually referred to as the natural logic [Bra78, Rip83].

e mathematical formulas collectively called assertions, including axioms, definitions,
and theorems, interrelated in a certain conceptual structure [Ker91]. /

e proof schemata, being partial proofs containing metavariables, mainly evolving from
proofs previously found.

e metalevel declarative knowledge, specifying possible manipulations at the object
level knowledge, in particular proof schemata [HKK92a, Mel93].

Clearly, our theory is a logic based one, built on top of the central hypothesis of the
existence of a natural logic. Although there are psychological investigations which argue
against this as a general hypothesis [JL83, JLB90]|, there are others who argue that it is
. appropriate to assume at least, that the major mode of human mathematical reasoning
is based on a logic somewhere situated in the mind.

3.1.3 Procedural Knowledge
Procedures of diverse varieties are incorporated into our computational model:
e Special purpose reasoning procedures:

— Knowledge interpreters for each type of declarative knowledge mentioned
above; :
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— An open-ended set of special purpose object level reasoning procedures. The
knowledge needed is interwoven into their algorithms;

Procedures of this type are usually based on a fixed algorithm; neither planning nor
heuristic search is involved. These procedures are called as “basic tools” by proced-
ures constructing proofs by planning. They correspond to the so-called “effective
procedures” discussed by cognitive psychologists (see e.g. [JL83)).

e Autonomous procedures responsible for more complex tasks, such as proof planning
or proof checking. Usually, they are animated by relevant intentions, and handle by
planning, heuristic searching to fulfill the intentions. It has to be admitted that not
much is known yet about these procedures.

e Procedures not involved in the planning process per se, but partially responsible for
the increase of the reasoning repertoire. In this work, three of them are addressed:
a procedure generates inference rules from existing rules by contraposition, and
two generates rules of inference or proof schemata by abstracting from frequently
occurring proof segments. The latter two behave similar to perceptive procedures
in a theory of general cognition [New90].

e Other procedures, such as the procedure responsible for the comprehension of defin-
itions or problems, as well as bookkeeping procedures (see [Rip83, New90]) moving
objects of various data type out of or into memory spaces, and bookkeeping pro-
cedures, widely ignored in this study.

As we will see, the inference rules and the assertions, together with their interpreters
play a central rule in reconstructing more natural proofs. Before describing them in
details, however, an excursion is made in the rest of this chapter into a notion called
method. Though rather irrelevant to the issue of the extensible calculus, this notion is
central to a theory viewing informal mathematical reasoning as a planning process. A
brief description of the dynamic behavior of such a planning process is also given. Users
only interested in proof presentation can jump directly to Chapter 4, which introduces
the cognitive elementary rules of the natural logic. Chapter 5 proceeds with the first rule
generator producing a new rule by contraposition. In Chapter 6 and 7, a procedure that
applies assertions and an operator that generates assertion level rules are addressed.

3.2 Methods: The Basic Plan Operators

The concept of a method is central to the reasoning process for proof planing, since.
methods are the basic units which are planned and executed. The notation of methods is
adopted from Alan Bundy, as an extension to the notion of tactics. Intuitively, methods
are mathematical problem solving knowledge a system possesses. Apart from general
purpose problem solving procedures, in our theory they are in particular designed to
capture domain-specific problem solving knowledge, accumulated from past experience.
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Viewed within a traditional planning framework, methods play the role of operators.
The collection of methods constitutes the basic reasoning repertoire, that is constantly
adapted and enriched, as experiences are collected. In the following subsections, first a
general definition of the structure of a method is provided, and our definition is compared
with similar concepts already introduced in the literature. Then three types of specific
methods that we have been able to identify thus far are discussed. In the last subsection,
it is illustrated how new methods can be constructed.

3.2.1 General Concepts and Classifications

In our computational model, every method has the following slots:

e Rating: A function indicating whether the method is total or partial. It evaluates
the appropriateness of applying this method under given circumstances.

e Precondition: The preconditions of the problems a method is intended to solve.
e Postcondition: The effect the method will end up with.

o Declarative content: A piece of declarative knowledge. Currently only three types
of object level declarative knowledge are dealt with: the natural deduction inference
rules, the assertions (being facts that are either assumed or proved previously), and
proof schemata.

o Procedural content: Either a standard procedure interpreting the piece of declarative
knowledge, or a special purpose inference procedure devised for a specific type of
problem.

Viewed within a planning framework, the precondition and the postcondition slots
together constitute the logical part of the specification of a method, which are both
constraints on the partial proof tree. In other words, by these two conditions it is specified
whether a method is applicable in a particular proof state or not. If several applicable
methods are found the rating procedure should estimate how promising each one is. This
concept will not be elaborated upon here, although for real planning tasks this rating may
be crucial. For details the reader is referred to [SD93].

Tt is assumed here, that the planner exclusively consults the specification while plan-
ning a proof. The declarative content and the procedural content slots play the role of
a so-called tactic in systems like Nuprl [CAB*86] or Bundy’s framework for proof plan-
ning [Bun90]. Concretely, the declarative content can be an arbitrary piece of declarative
knowledge, and the procedural content a Lisp procedure of the following format:

interpreter(DeclContent ProofTree &optional other-information)

In other words, it is an interpreter which takes as input a piece of declarative knowledge,
a pointer to the current proof tree, and optionally other information, and produces a
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subproof tree that can be integrated into the current partial proof tree. From a logical
point of view, the precondition, the postcondition and the declarative content slot together

constitute the declarative part of a method. These different partitions are illustrated in
figure 3.2.

Method

Rating -
pl

Specification <C Precondition
AN

\ N
Postcondition <—-> Declarative Part

]

'

P Declarative Content

Tactic

fa. Procedural Content -+ Procedural Part ~

Figure 3.2: The Structure of Methods

Generalizing the concept of a tactic from a procedure (in Bundy’s framework) to a
pair containing both a procedure and a piece of declarative knowledge is important, since
it is now possible to formulate metamethods adapting the declarative part of existing
methods to suit the problem at hand and thus come up with novel methods [HKK92a,
Mel93]. '

While the power of the special purpose tactics of Bundy rests on the procedural
part (the declarative content is empty), the three types of object level methods to be
introduced in the next subsection are supported by interpreters, which are standard and
simple. Thus our framework is cast so general that it accommodates both a small set
of general purpose procedures which operate by interpreting pieces of domain-specific
declarative knowledge, and an open-ended set of special purpose reasoning procedures,
in which knowledge needed is already implicitly incorporated. This thesis concentrates
mainly on three types of general purpose methods at the object level.



3.2. METHODS: THE BASIC PLAN OPERATORS 25

3.2.2 Three General Types of Object Level Methods

Within the framework set up so far, three types of object level methods are to be intro-
duced, each handled in a paragraph below. Technically, each type of method is primarily
defined by coupling one standard interpreter with chunks of declarative knowledge of one
type of object level knowledge. In the sequel, these methods are referred to as methods
applying a piece of declarative knowledge. To each type of method, also some plausible
pre- and postconditions are suggested. The first two types, the application of inference
rules and the application of assertions, are cognitively primitive. Their naturalness must
be emphasized, which in effect allows us to formulate proof schemata, the third type of
object level knowledge, in a quite intuitive way.

The Methods Applying Rules of Inference

First there is a procedure that applies rules of inference. By inference rules we mean both
the elementary rules in the natural logic and compound rules acquired during a reasoning
process (compare Chapter 4 and 7).

Now let us turn to the notion of an application of such rules of inference, and their
role in the entire process of proof search. It is assumed in this theory that the application
of a rule of inference is carried out by a general purpose interpreter which mainly matches
formula schemata in rules against formulas contained in support nodes. As a Lisp function,
it has the format:

rule-interpreter(rule proof-tree &optional other-information)

Technically speaking, given a rule of inference of the form:

P,...,P,

3.3
5 3:3)
the rule interpreter allows the derivation of Q' from P/,..., P!, where Q' and P/, ..., P!
are the corresponding instances of ) and Pi,...,P,. Usually, the argument “other-

information” points out a set of nodes in the proof tree serving as the support nodes. For
rules where the instantiation cannot be determined by the matching alone (for example
the “vD” rule, the instantiation of the universal quantifier), additional information must
be provided in the argument “other-information”. Now for every rule of inference, there
is a method which applies it, since the definition above fully specifies the ability of such
methods, and yet is simple enough to be checked without undue efforts. It is plausible
to assume that it may be instantiated for every particular rule of inference, and serve as
specification in the corresponding methods.

Methods Applying Assertions

The second type of important object level knowledge is also common in standard math-
ematical practice. It concerns objects such as axioms, definitions, lemmas and theorems,
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and even intermediate results achieved during proof search. They are, in our theory,
collectively called assertions. Moreover, assertions are normally also interrelated in com-
plex conceptual structures [Ker91]. The notion of the application of an assertion, though
normally not defined precisely, bears a central role both in the search for proof and in
proof documentation. One prima facie evidence is that proofs found by mathematicians
are almost exclusively presented in terms of the applications of some assertions.

Let us first illustrate this concept by examining a concrete example of the application
of assertions. Given an assertion defining the notion of subset:

Vs51,5.:5et 91 C 52 & VeElement T € 51 = T € Sy
We may derive
e a €5, from a € 5] and S] C 55;
o S! ¢ S fromac S anda¢ S
® VeElement T € S| =z € S} from 5] C 5.

and so on; by applying this definition.

Although introspection seems impossible to reveal the internal structure of the in-
terpreter applying assertions, every application of an assertion can be associated with a
proof segment justified by the natural deduction rules only, as is shown in Chapter 6. This
proof segment is referred to as its natural ezpansion. A procedure that applies assertions
by constructing natural expansions can be found in Chapter 6.

The reasoning ability of a method applying a certain assertion can be captured by a
finite set of compound inference rules (Chapter 7). However, it is not plausible to suggest
that the planning decisions are based on this information. As a means of assessment, it
is apparently too complicated and time consuming. The kind of partial method which
seems to be a viable approximation is defined in the following pattern:

Suppose A is an arbitrary assertion, the following is one possible method applying A:

Method: application-A j
rating rating-application- A
pre exlineset LV instance-subformula-neg(formula(l), A)

ost exline n justification{n)=application-A A
P instance-subformula-neg(formula(n),A)
dec-cont | A
proc assertion-interpreter

|

Here the predicate instance-subformula-neg(l, A) checks if [ is either a subformula of
A, an instance thereof, or, thirdly, a negation of the first two cases.
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Methods Applying Proof Schemata

The third type of methods is tied to a more novel kind of knowledge structure called
proof schema, and an interpreter instantiating it. These notions are introduced in order
to partially account for the well-observed phenomenon, that people benefit from their
successful and unsuccessful experiences. In other words, with the accumulation of exper-
ience, the reasoning ability of a reasoner also evolves. In our theory, this is simulated by
the evolution of the collection of proof schemata at the disposal of a reasoner.

Intuitively, proof schemata are proofs or abstract proofs which provide a possible
solutions to a reasoning problem. At the very beginning, a proof schema is usually a
complete or partial proof found by a reasoning subject for a previous problem. A (partial)
specification of the corresponding problem serves as the pre- and postcondition of the
method. Undergoing metalevel manipulations, proof schemata also provide solutions to
novel problems. These manipulated proof schemata may contain metavariables, which
are instantiated by concrete formulas by the procedure applying the proof schemata.
Technically, for now, it suffices to understand proof schemata as proof trees containing
metalevel variables.

The following method hom1 is a very simple example of a method applying a proof
schema. It represents the following proof idea: If f is a given function, P a defined
predicate and the goal is to prove P(f(c)), then show P(c) and use this to show P(f(c)).
The very idea is that f is a homomorphism for the property P and that f can be eliminated
(compare [Bun88] for his “ripple-out” tactic).

Method: homi
rating rating-homl
pre (exline 1) A (exline 2)
post (exline 4)
1. 1, b+ V. Formulas (Hyp)
2. 2; + VY P(z) < Formula (Hyp)
dec-cont | " 15 1 pre) | (PLAN)
4. 1.2 F P(f(c) (PLAN 3)
proc schema-interpreter

The specification of this method means that hom1 can be applied if the lines 1 and
2 exist in the partial proof under construction and line 4 is an open goal. In this case,
the schema-interpreter will insert line 3 into the partial proof, as well as adapt the
justification of line 4, indicating that 3 is a subgoal.

The formulas in line 1 and 2 are properties of the function f and the predicate P
(e.g. their definitions). Both f and P are metavariables standing for (function/predicate)
constants of the object logic.

For example, to prove that the converse relation of a binary relation p is symmetric
(formally: symmetric(converse(p))), the method homl can be applied by substituting
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converse, symmetric, and p for the metavariables f, P, and ¢, respectively. The resulting
proof fragment is listed below:

L. 1, F VoV¥zy (z,y) € converse(o) & (y,z) €0 (Hyp)

2. 2; F VY, symmetric(o) @V y (z,y) €0 = (y,z) €0 . (Hyp)

3. 1,2; F symmetric(p) (PLAN)
4. 1,2; F symmetric(converse(p)) (PLAN 3)

3.2.3 Mechanisms for Constructing Methods

Our theory is also devised to account for the evolution of the reasoner’s basic reasoning
repertoire. This is achieved by the assumption of metamethods and automatic learning
procedures. Note that, while the methods cause changes in the current partial proof, me-
tamethods enrich the knowledge base by adding new methods. Metamethods are usually
invoked by the intention to solve a specific problem, and their application requires con-
centration and effort, as opposed to those more perceptual procedures, like remembering
a proof or a rule.

The Combination of Methods

In this subsection, the automatic part of method construction is briefly described. These
activities are very similar to those called learning during problem solving described in
cognitive models in general, and in frameworks for problem solving in particular, for a
comprehensive survey, readers are referred to [Van89].

The most simple form of learning is similar to the process called compounding iden-
tified in a problem solving process. There, the compounding process puts two or more
existing operators into a sequence. A mechanism called chunking is proposed in [NR81],
which combines compounding with the tuning process adapting the heuristic knowledge
associated with the operators. In our framework, chunking can be viewed as compounding
instantiated methods, adding information about the instantiation into pre- and postcon-
dition.

Methods in our theory may be combined similarly, yet in a somewhat more com-

plicated way. We are not going to go into details here, interested readers are referred to
[HKK92a).

Metamethods

As already mentioned, our theory is also devised to account for the evolution of a reasoner’s
basic reasoning repertoire. In addition to those procedures merely remembering useful
information, this is achieved mainly through the existence of metamethods manipulating
proof schemata. When a reasoner is confronted with a novel yet similar problem, proof
schemata evolving from previously successfully found proofs are modified to cope with
the new problem. This is also the advice G. Pdlya gives in his survey to problem solving
[Pol45].
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As opposed to methods, metamethods are thought to be very general and problem
independent. As a consequence of this it is hoped that meta-metamethods and a whole
hierarchy of metalevels are not necessary.

Currently two groups of metamethods have been identified. Guided by heuristic
knowledge of different kinds, they will

e generalize existing methods built upon a proof schema, or,

o reformulate existing methods built upon a proof schema, to suit new problems.

The second kind of metamethod consists of a concrete mapping stated in the declar-
ative content and an interpreter for mappings, which applies a mapping in a controlled
way to the logical content of the method to be reformulated. In particular there are strict .
constraints on mappings to be applied on proof schemata that prohibit the formation of
syntactically ill-formed formulas. For details see [HKK92a]. A discussion of reformula-
tions can also be found in [FGT92]. Below, our approach to metamethods will only be
illustrated with a generalization example.

In section 3.2.2 the method hom1 is introduced, which simplifies a problem by gen-
erating an intermediate goal, where a unary function symbol is eliminated. Suppose we
are facing the problem of proving that the union of two symmetric relations is itself a
symmetric relation. What we need is a variant of hom1, which is able to handle a binary
function symbol (i.e. “union”) in a similar way.

In the following, it is illustrated how to use the metamethod add-argument to obtain
a binary version hom2 from the unary version homi.

Metamethod: add~argument
rating meta-add-argument-rating
pre exmethod M subterm( f(z),post(M))
post goal=post(proc-add-argument(c,M))
dec-cont | & = {f(z) — g(z,y)}

L proé proc-add-argument

This metamethod is supposed to add an argument to a key function f used in a
method, and this modified function is called g. Note that the precondition states that
there is indeed such a function in M. In order to ensure that f is important in M, it is required
that f occurs in the postcondition of M. Based on the mapping given as the declarative
content, the procedure add-argument modifies the proof schema in M by primarily carrying
out the following three actions:

e replace all occurrences of terms f(z) by g(z,y) and modify the corresponding quan-
tifications,
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e replace all occurrences of terms f(c) by g(c,d) (d has to be a new metavariable
standing for a constant),

e if ¢ occurs in a proof line, but not in a term f(c), a copy of this line will be inserted
into the proof schema, replacing ¢ by d (in the example below, line 4 is copied from

3).

As a crucial advantage of separating the procedural and the declarative knowledge
in methods, the procedural content of M can be taken over for the new method.
If we apply add-argument to homl, we obtain the new method hom2.

Method: nom2
rating rating-homl
pre (exline 1) (exline 2)
post (exline 5)
1. 1; F Vgu Formula, (Hyp)
2. 2, F V; P(z) < Formula (Hyp)
dec-cont | 3. 1,2; + P(c) (PLAN)
4. 12; F P(d) (PLAN)
5. 1,2; + P(g(e,d)) (PLAN 3,4)
proc schema~-interpreter B

As illustrated in this example, the information of a metamethod is largely encoded
as a procedure. It is hoped, however, that this is not a real drawback, since metamethods
are devised in a domain independent way, and hopefully no meta-metamethods are needed
that would have to reformulate the procedural representation of a metamethod.

3.3 A Dynamic Description of the Computational
Model

Since our emphasis is laid more on the static part of the theory, and since not much
is yet known about the dynamic behavior, this discussion is tentative and aimed to be
suggestive. The basic assumption is, that there is an autonomous procedure responsible
for the planning process. The task of this procedure is to analyze the problem, and on the
ground of the information contained in methods, to recursively break down the problem
into subproblems, and call methods sequentially to solve the subproblems. Since most
methods are partial, some of the thus planned proof steps have to be verified subsequently.
The current state of such a dynamic development is always reflected in the current proof
tree. The planning mode and the verification mode may converge, when the methods
employed are complete. Whenever an existing plan fails, a replanning phase usually
begins.
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There are also metalevel activities. In our theory, a procedure or method is at the
metalevel if it causes changes in the knowledge base, rather than the proof tree. Me-
tamethods are usually invoked by the intention to solve a specific problem, and their
application require concentration and effort, as opposed to those more perceptual proced-
ures, like the remembrance of a proof or of a rule [HKK92a).

The acquisition of all the three kinds of declarative knowledge can be accounted for:
In the first case it is fairly simple. If a particular subproof is carried out repeatedly, its
input-output specification may be put together into a new acquired rule of inference and
remembered. Second, new axioms and definitions are constantly incorporated into the
conceptual structure of a reasoner, as well as proved theorems [Ker91]. Third, the initial
proof schemata are simply proofs of some problems learned by the reasoner, by reading
mathematical text books, for instance, or by being taught. The problem specifications
can be taken over as the initial methods. Afterwards, new tactics and methods are
accumulated, built by metamethods in the attempts to deal with novel problems.






Chapter 4

Cognitively Elementary Inference

Rules.

Let us start our approach toward the assertion level inference rules by first introducing
a set of cognitively elementary inference rules in this chapter. They play the role of the
natural logic studied in cognitive psychology, and are cognitive elementary in the sense
that they are assumed to be the elementary internal structure explaining human reasoning
competence. The set of elementary inference rules we choose are basically those identified
by G. Gentzen in 1930, which comprise his natural deduction calculus [Gen35]. His work
is supported once again by our empirical studies of a mathematical textbook showing that
the main part of the cognitively elementary rules with respect to logic-based deductive
reasoning already had been suggested by him. We basically adopt his calculus NK, plus
a pair of symmetric rules handling the connector V (VD1 and VD?2), identified in our
empirical study. Because standard many sorted first order logic [Wal87] is assumed as our
working language, extensions are also made to handle sorts. The collection of elementary
rules adopted into this model is listed in Table 4.1.

Every figure in Table 4.1 represents an inference rule. Formula schemata (formulas
containing metavariables) separated by commas above the bar represent preconditions
(also called reasons). Metavariables F', G and H can be substituted by any formula,
V2:5F%, Je:sFy by any formula with ¥ or d as the top symbol, where “z : §” denotes the
corresponding bound variable of sort S. F,.s denotes the formula achieved by replacing
all occurrences of the bound variable “z” in F, by an individual constant “a” of sort “S”.
The metavariable “a” in VD can be substituted by an arbitrary term. For rule VI and
CHOICE, in addition, the following variable conditions must be checked respectively:

o The variable condition for VI: metavariable “a” (Eigenvariable in [Gen35]) may not

occur in Vg.sF; or in any formula in the assumption set A.
A

e The variable condition for CHOICE: metavariable “a” may not occur in H, or in
any formula in the assumption set A.

33
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Structural Gentzen Rules:

HYPothesi LFFG DEDucti
A’FF’F 0 CS'I.S, A’FI—:>G uc ZOTL,
A dpsiFz, A FusoF H, Subsort(S2,51) CHOICE
AFH ’
AFFVG, AFFH AGHH AGFL A-G L
E — 7 P - 7 77
A+ H CASE, AF-G "V Ara P
Non-Structural Gentzen Rules
A& F, AI—GM AFF I AFG I AF F.s I AF F,s .
AFFAG 7 AFFVG Y AFFVG Y AFV.sF, AF3.gF.
AI—F/\GAD AE—F/\GAD AFPVQ, AF——wPV
AFF b AFG 2 AFQ L
AFPVQ, AF=Q A+FF, AFF=G AF VY, .gF,
D D — = typ
AFD VD, AFG R AF Fos
ARF, AFoF A|—LL AF —~(=F)
AL ’ AFD AFF

Table 4.1: Elementary Inference Rules

In the examples, we also adopt the following standard relativization:
VegP <= ¥, S5(z) = P

5P < 3, 5(z) AP

In connection with this, below are three additional rules frequéntly used for the handling
of sorts:

AFV.sP, AF S(a)VD’ AF Se)AP,
AF P, ' AF3.5P;

AF 3sFs, A, S(@)AFFQ
AFQ

!
b

CHOICFE'
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To enhance the naturalness, the application condition for inference rules are slightly
extended. In the traditional natural deduction systems, to apply a rule

for each precondition P;, a previous proof node must be found, whose derived formula F
is the corresponding instance of P;. Based on our empirical study we have extended it in
the following two ways:

1. for each premise P;, a previous proof node with a derived formula F of the form
..AP!A... must be found, where P/ is the corresponding instance of P,. With this
extension, the first proof below can be simplified to the second proof.

PIAPQ/\D P =Q

P, ’ ' P AP, P = Q
= D;
Q Q@

2. for each premise P; of the form A = B, a previous proof node with a derived formula
B’ must be found, which is derived from a node containing as derived formula A’.
A" and B’ are the corresponding instances of A and B. With this extension, the
first proof below can be simplified to the second proof.

A
: A
5 =1, (A=B)=C S (A= B)=C
A=B 7 =D B’ D
% ’ % =

One thing that is worth mentioning is that the naturalness of the deduction system,
with respect to formal reasoning, is largely due to the inference rules under the category
of structural rules, where the usual ways of mathematical reasoning are simulated. For
example, assumptions are introduced or discharged, problems are divided into cases, etc.
The non-structural rules, deal mostly with syntactical manipulations of logical connectives
and quantifiers and are rarely found in detailed natural proofs (DNPs).

In traditional theories aimed to account for human deduction, there is a contro-
versy about the origin of such elementary rules [Bra78, Lak87]. It would certainly be
an oversimplification to claim that all the rules listed in this chapter are innate. While
the non-structural ones are similar to those included in the natural calculus set up by
cognitive psychologists [Bra78] (see also Section 8.1) and are therefore more likely to be
innate, the structural ones require probably a general training in logic based reasoning,
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such as the training provided in mathematical courses. From the perspective of cogni-
tion, therefore, these are the rules assumed for everyone with a formal training. From a
computational perspective, they are elementary in the sense that they are not generated
by any operators or procedures.



Chapter 5

Deriving Associated Rules

In this chapter the first of the two operators that are used to generate inference rules is
introduced. After a formal definition, some examples will be given. The operator can be
viewed as a generalization of the traditional notion of contraposition and is specified by
the following schema:

If r is a rule in working memory and if it is of the form

_ Ai‘pl,,A}"pn
"= AlFgq

(5.1)

then r’ (of the form below) is called a rule associated with R and can be generated by
this operator by contraposition:

7"

AFp, ., AFpi o, A piy, A pp, A g

N (5.2)

This implies, intuitively, that the rule r and its associated rules are memorized more or
less as one unit of the form

{p17 very Py -ﬁq} }— L

which means that at least one element of the set {p1,...,pn, ~¢} must be false. This
derivation, in addition, is carried out in conjunction with the cancellation of negation.
This means if p; is of the form —p!, then the conclusion schema in 5.2 will be p;, instead
of —=—p!. The same holds for formula schema —¢ in 5.2.

Let us now examine some of the rules generated by this operator. The two pairs of
rules in 5.3 and 5.4 that were identified in our empirical studies on DNPs can be derived
from rule = D and rule AD, respectively.

AlFa,AF—b
At =(a=b)

ArFa=bAF-b
A+ —a

= Di, = D) (5.3)
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aroF o 26 LD 5.4
AF=(FAG) ! AF—(FAG) 2 (5.4)

Below is a rule associated with V.D:

-P,
-V P

VD'

The elementary inference rules introduced in Chapter 3, together with their asso-
ciated rules, are called the rules at the logic level, as opposed to rules generated by the
operator to be introduced in the Chapter 7, which will be referred to as being at the
assertion level.

Although not really effecting the final logical power of the natural calculus, it is
worthwhile to point out the existence of various other ways to account for logic level
rules generated by this operator, and compare them with the solution we choose from
a cognitive perspective. First, to account for the logic level inference rules like those in
5.3 and 5.4, we could simply include them into the set of elementary rules. However,
it is firstly quite counter-intuitive to assume a large set of interrelated inference rules
as cognitive elementary. The second argument against this solution is that elementary
rules and associated rules actually differ in several ways: While the elementary rules
are more central, rules associated with them play a comparatively secondary role. In
addition, more mental effort is needed to carry out deductions justified by the associated
rules. A second proposal seems more plausible, at least at first sight. We may loosen the
application condition of inference rules so that an inference rule already has the deductive
ability now ascribed to rules associated with it, without assuming the explicit existence
- of the latter. This solution nevertheless also brings a drawback with it.” That is, that
the rule applications must now involve search, besides matching, though only in a small
space. Based on the above argument, it seems adequate to grant the reasoner the ability
of generating associated rules.

Note that this rule generating operator may both be applied to inference rules at the
logic level and to domain-specific rules. For instance, given the domain-specific inference
rule used in the example in Chapter T7:

UCF,acU

7 where “U”, “F” and “a” are metavariables for object constant
ac

there are two associated rules which can be generated:

UCF,a¢F ac€lUag¢F
ag¢ U UgF
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In the rest of this chapter, two important properties of this operator useful in sub-
sequent chapters are to be shown. Before doing that, some new notation first. If an
inference rule r can be derived from another rule r’, then we say that r and r’ are associ-
ated with each other. Now, let R be an arbitrary set of inference rules, and let Assoc(R)
stands for the set of rules associated with at least one rule in R, then:

Assoc(R1 U R2) = Assoc(R1) U Assoc(R2) (5.5)

Assoc(Assoc(R)) € RU Assoc(R) (5.6)

While 5.5 is quite self-evident, 5.6 can also be proved easily by the cancellation of
negation. Suppose

ptb b Assoc(Assoc(R)),

q

then without loss of generality,

/
r’ =ME Assoc(R),

Py

where ¢’ equals ¢”, if ¢ is in form of —¢'; otherwise ¢’ equals —g. The same holds for pj.
Now there are two cases:
either

rzplv"'vpneR

q

which proves our goal, or, again without loss of generality,

q.P1,P3,- -3 Pn
5

€ER

where p}, is defined similarly as ¢’, this means
r € Assoc(R)

which also proves our goal.






Chapter 6

A Procedure for Applying
Assertions

In this chapter, a reasoning procedure central to our model will be introduced, that is,
a procedure drawing conclusions by applying assertions. Before going into details, it is
worthwhile to pause briefly to clarify the actual situation and the simplifications we have
made. Let us first consider the situations within which the procedure under concern may
be called. The first case usually occurs during the active proof construction, as already
indicated in the introduction. It may as well be called under a more passive circumstance.
For instance, during the reading of a mathematical text book, if a reader can not follow
an assertion level reasoning step by resorting to a corresponding inference rule acquired
previously, it is normal that he comes back to the assertion itself and checks this step by
reading the assertion again. This checking process is always accompanied by a reasoning
process at the logic level. This logic level proof segment, as already indicated, is called a
natural expansion (NE) of the corresponding assertion level step.

Although it is possible that the applications of assertions under the two different
circumstances are actually carried out by two procedures different from each other in their
run-time behavior, a central assumption is made that both of them work by constructing a
logic level proof. These logic level proof segments called natural expansions exhibit certain
syntactical features. What is provided in this chapter is therefore simply an input-output
relation of the procedure. This input-output relation is deduced in Section 6.1 from
properties identified in the natural expansions, which appear to characterize thém. Only
a tentative psychological run-time depiction is attempted in Section 6.2.

6.1 A Characterization of Natural Expansions

In this section, structural constraints of syntactic nature on natural expansions will be
employed to define the input-output relation of this primitive reasoning procedure. Even
intuitively it is obvious that not all logic level proof segments, in which an assertion
is in some way involved, embody an application of this assertion. A trivial example
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will illustrate this: suppose A is an assertion, B a second arbitrary formula, the valid
derivation of A A B does not go in line with our intuition of applying A, no matter what
formula A is. : * ,

Along with the reconstruction of DNPs discussed in Section 2.2, we have also ex-
panded the reasoning steps at the assertion level to prove segments at the logic level, as
natural as possible, with the hope that they will be the natural expansions. Now the
characterizations identified thus far will be introduced in two steps in the following two
subsections.

6.1.1 Composition and Decomposition Constraints

Before discussing the characteristics in more formal terms, let us first return to the subset
example again, used at the outset (compare Section 2.2).

Example 1

In Section 2.2, a proof segment at the logic level is given serving as the NE of a
reasoning step at the assertion level, i.e., the derivation of a; € F) from U; C Fj and
ay € Uy by applying the following assertion:

VF,UUCF(I)VI..Z'EU#LEEF

The NEs are represented as proof trees, a formalism proposed by Gentzen [Gen35].
The NE of our example is repeated in Figure 6.1 for convenience.

A:Vrpp UCF &Y, zelU=zeF
VD[1]
UyCFieVeeelUi=ee ly

& D[, UiC Fi
ULCcCFh=>V,zelU; =2 B

VexelUi=ze R

=D[3]

VD[4], a1 € Ui
-= D[5]

ay €Uy = a) € Fy

a; € Fy

Figure 6.1: An Example of a Natural Expansion

Some informal explanations first: In this formalism, every bar represents a reasoning
step. The formulas above it, disconnected by commas, and the formula under it are the
premises and the conclusion of this step, respectively. It can therefore be concluded that
the leaves and the root of such a proof tree are the preconditions and the conclusion of
the entire proof segment. Note also, that the steps are numbered, and numbers are put
in a pair of square parenthesis. The following properties can be observed in the proof in
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Figure 6.1:

1. At every step, there is exactly one premise depending on the assertion A being
applied (the subset definition in this example). This means that there is a certain
linear quality in the proof, along the main branch from the leaf labeled A to the
root.

2. The premise depending on the assertion being applied, in addition, plays a special
role in each step, in that all other premises (if there is any, such as in step 3 and
5), and the conclusion of this step are all either a subformula, or an specialization
thereof ( F, is an specialization of both V, F and 3, F;). This is henceforth referred
to as the subformula property.

So the first observation in our empirical studies are that the NE of the application
of an assertion is basically a linear sequence of decompositions. This is, however, not
the whole cake. In other examples, there is also a composition process producing the
other premises (if there are any) required by the linear decomposition along the main
branch. For instance, to apply an assertion of the form V, P, A @, = R,, a composition
of P, A@, from the two separate premises P, and (), has to be performed before deducing
R,. Let us now formalize the concepts of decomposition and composition, necessary for
the formulation of the constraints.

Definition 6.1 An inference rule of the form AFAAL Z}r_l’ . OF Py 1s a decom-

position tule with respect to formula schema A, if all applications of it, written as

! ! /
ok 4, AZ I}—)LQ’ Ok P”, satisfy the following condition: Pj,..., P’ and @’ are all

either
1. a proper subformula of A’, or
2. a specialization of A’ or of one of its proper subformula, or,

3. a negation of one of the first two cases.

Under this definition, VD, = D, VD are the only elementary decomposition rules
(see Chapter 4).

Definition 6.2 An inference rule of the form is called a composition

AFP,....AFP,
@

AT
/ /
rule if all applications of it, written as ok PlA" |_ &2,& i , satisfy the following condition:

P|,...P] are all either

1. a proper subformula of ¢)’, or

2. a specialization of @)’ or of one of its proper subformula, or,
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3. a negation of one of the first two cases.

Now we again introduce some new terminologies. In a logic level proof tree serving
as an NE of the application of an assertion A, the conclusion formula of the root is called
the conclusion of the application, and all the leaves except for the assertion A itself, are
called the premises of the application. Now the complete constraints observed during our
preliminary empirical studies are stated in more formal terms in Table 6.1.

Composition and Decomposition Constraints

A logic level proof tree serves as an NE of the application of an assertion A, if it
satisfies the following constraints:

1. quasi-linearity property: At every proof step, there is at most one premise
depending on A.

It can easily be concluded that all proof nodes depending on A together form
a branch in the proof tree, from the assertion A to the root. The branch
is called the main bdranch. Nodes along this branch are now called the main
intermediate conclusions. The general structure of a proof tree is illustrated in
Figure 6.2, where the main branch is the branch from A to A,. The formula
A, Aq, ..., A, denote the main intermediate conclusions, and P;q,..., P, are
the main preconditions for the decomposition step from A; to A;1;. In other
words, the main intermediate conclusions are the only intermediate conclusions
depending on A. Furthermore, exactly one of their premises depends on A.
We are referring to this linear order when we later talk about the previous or
subsequent main intermediate conclusions.

S

decomposition property: Main intermediate conclusions are justified by de-
composition rules Ry, ..., R, with respect to the previous main intermediate
conclusion. The inference along the main branch is therefore a linear process
of decomposition of the assertion A.

3. composition property: Other intermediate conclusions are justified by compos-
ition rules with respect to the corresponding intermediate conclusion.

Table 6.1: Composition and Decomposition Constraints

Some very desirable properties can be derived from the constraints above. First,
the derived formula of all proof lines is a subformula of the assertion being applied, a
specialization thereof, or, in the third case, the negation of one of the first two cases.
We will come back to this in Section 6.2. Secondly, if we construct schemata of proof
trees by replacing by metavariables all the constant symbols in a proof tree, not originally
occurring in the assertion being applied, the total number of the possible tree schemata
is finite. This can be proved by the definitions of composition and decomposition rules.
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Py
A, ——, .. Pome
0,1 R1
Ay
R, Py yoooy Pim
A_l Y Jd ? [} Pm
Rn—a Pn— Yty vy o
An ' b Pn—lm -
1y Mn—1 R
Ay, "
Figure 6.2:

The constants for objects a;, Uy and Fj in Figure 6.1, for instance, can be abstracted to
metavariables a, U and F.

6.1.2 Rewriting towards more Natural Formulas

Unfortunately the composition and decomposition characteristics alone are still not
enough to cover all the cases encountered in our empirical studies. An exception is shown
in the following example:

Example 2

Suppose we have an assertion of the form AV B = (. Although the derivation
of =B from —C fits fully our intuition of its application, the most natural tree we have
constructed in Figure 6.3 does not satisfy the composition and decomposition constraints.
One of the “main intermediate conclusions”, namely =A A —B, is justified by a rule
-(AV B)
~AA-B’
rule.

The explanation we have come up with for this phenomenon rests upon the following
observation: for formulas of some special patterns there are some other formulas that are
logically equivalent but they seem to be more natural for a human being. Once a less
natural formula is derived during a proof process as an intermediate conclusion, it is often
transformed automatically and implicitly into its more natural equivalent, before the proof
proceeds. This is especially likely when motivated by the need of a further composition
or decomposition. Therefore, the constraints listed in the previous subsection should be
extended to allow this kind of inferences on intermediate conclusions. ,

The naturalness of a formula is ascribed to the naturalness of it verbalization. This is

which is neither included as a logic level inference rule nor a decomposition
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AV B=C, -C
-(AV B)
-AA-B

-B

Figure 6.3:

called the principle of linguistic parsimony by cognitive psychologist studying human daily
casual reasoning [JL83]. Table 6.2 is a list of such rewriting inference rules we have found.
The first three of them are quite obvious whereas the last three might be controversial. The
negation of the compound expressions in the first two pairs, for instance, are found difficult
to verbalize in an efficient and straightforward manner. Compared with composition and
decomposition constraints discussed in the last subsection, more empirical studies are
needed to collect a more complete set of rewriting inference rules. From the perspective
of a cognitive theory, we are also still confronted with the problem of explaining the origin
and the nature of these rules.

LessNatural | MoreNatural | Natural Rewriting Rule
~(AVB) |-an-p |2AVYB)
—AAN-B
-AV-B
_I_|A
——A A I
AN-B
-V, Py
-V, PJ: 3:x: _‘Px az "".Pz;
. ﬂ31: PI
"‘az:P:c Jv:z:_‘Pz V, ~P, J

Table 6.2: Rewriting Rules
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6.2 A Tentative Description of the Run-time Beha-
vior

What we have proposed thus far is essentially a combination of constraints, which appear
to characterize the set of deductions falling under the intuitive concept of the application of
an assertion. A precise and detailed run-time description of the procedures is nevertheless
still beyond our present knowledge and far beyond the scope of this thesis. We are going,
all the same, to at least provide some rough ideas of the possible run-time behavior, based
primarily on introspection.

As indicated at the outset of this chapter, the application of an assertion by resort-
ing to a logic level NE may happen during both active proof constructions or passive
proof checking. In fact, whenever the corresponding assertion level rule does not reside
within working memory and is therefore not at the disposal of the autonomous reasoning
procedures, a logic level proof segment is usually constructed, with variation in degrees
of detail and explicitness. Let us illustrate this by Schubert’s well known steam-roller
problem [Sti86], under the circumstance of proof checking.

Example 3

The entire problem is given in natural language:

Wolves, fozes, birds, caterpillars, and snails are animals, and there are some of each
of them. Also there are grains, and grains are plants. Every animal either likes to eat all
plants or all animals much smaller than itself that like to eat some plants. Caterpillar
and snails are much smaller than birds, which are much smaller than fozes, which in turn
are much smaller than wolves. Wolves do not like to eat fozes or grains, while birds like
to eat caterpillars and snails like to eat some plants. Therefore there is an animal that
likes to eat a grain-eating animal.

The following is the axiomatization of the third sentence above, where the predicate
“E” stands for “eats”, “a”, “a’, and “p”, “p’” are variables of sorts animal and plant
respectively: '

Axiom
va:animul (vp:plant E(ayp) v (Va':animal a, <aA Ep’:plant E(GI,PI) = E(a, al))) (61)

Suppose the derivation of F(ay,p;) from aj < a1, E(a},p}) and ~E(ay, a}) is claimed
to be justified by applying axiom 6.1. And suppose further that the corresponding asser-
tion level inference rule

a,1<a1’ E(allvpll)a —'E(alvall)
E(alapl)

where a1, aj, and p;, p| are metavariables, is either not yet acquired at all or not resid-
ing in working memory. The logic level proof in Figure 6.4 may then be constructed,

(6.2)
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where variables and constants a,a’, a1, a} and p, p;,p’, P{ have the sort animal and plant,
respectively.

a} < a1, E(ay,p1), —~E(a1,07)

= D'
Yap E(a,p) V (Yo ¢’ < a A3y E(e',p') = E(a,d’)) 5 ~(a} < a1 A3y E(a,p') = E{a1,ay)
vD, vD!
Vo E’(a.;,p) V (Var a’ < aq A BP: E(a’,pl) = E(al,a')) =V, (a.’ <al A Elp: E(a',p/) = E(al,a')
vD
Vp E(a1,p)
vD
E{a1,p1)

Figure 6.4: NE for one Step in Steam Roller Example

Note that the rule = D’ and VD' used in step 4 and 5 are associated with rule = D
and rule VD respectively.

Most importantly, by no means do we claim that this logic level NE is actually car-
ried out in run-time by literally writing down the proof above. This proof is much more
often or even exclusively followed by reading the assertion being applied by pointing to
the corresponding subformula, whose specialization or negation thereof is the intermediate
conclusion at this point. It can easily be performed since all the intermediate conclusions
of the expanded proof are either specializations of subformulas of the assertion or neg-
ations thereof, as is proved in Section 6.1. The process is made still easier, since it can
be performed in a quasi-linear way, i.e., along the main branch, on the ground that in
most of the practical cases, proofs to establish main premises in a composition manner
(represented by subtrees rooted at a main premise) are quite simple. We might even
predict the order of steps performed by this implicit reasoning process underlying the
check of an assertion level step. A plausible conjecture is that, given the general schema
of proof trees in Figure 6.2, the implicit human reasoning proceeds in the following order:
the composition of the main preconditions P ,,..., P/, , the decomposition from A to
Ay; the composition of the preconditions F;,,...,F; , , the decomposition from 4; to
A,; and so forth. Figure 6.4 is an example. To provide a really procedural description of
the application of an assertion is a subject of future research. For more discussion, see
Chapter 8.

Before leaving this chapter, now there is the question if the procedure defined above
really covers all the cases a human being will intuitively accept as the application of some
assertion? This, is obviously an empirical issue. What we may claim is only, that all the
reasoning carried out by this procedure seems to be fully in accord with our intuition.
No claims can be made nonetheless vice versa, since very possibly our intuitive notion
is not all-or-none. For instance, while one may think the derivation of a € FFVb € F
froma € UV b € U and U C F is an application of the subset definition, we might as
well accept this as a compound process involving first a splitting into two cases and then
applying the subset definition twice. Our hope is therefore, that we have at least captured
the main part of this notion, although it might have a hazy border.

smy?



Chapter 7

Compound Inference Rules at the
Assertion Level

In this chapter a structured collection of inference rule schemata at the assertion level is
introduced, which on the one hand cover the complete set of inferences carried out by the
procedure described in the last chapter, and on the other hand, really have the chance to
enter working memory and thus become available to a reasoner. In Section 7.1, possible
ways of acquiring assertion level rules are illustrated. Then in Section 7.2, a compact
but logically complete tree structure is sét up to organize the rule schemata. Examples
concerning different types of assertions are used to illustrate this tree structure in Section
7.3. Finally, the cognitive import of this tree structure is then elaborated on in Section
7.4.

7.1 Learning Rules by Chunking and Parameteriz-
ation

Our computational model postulates two ways for acquiring new assertion level rules.
First, since there is evidence that premise-conclusion patterns of repeated actions will
be remembered as new operators, we believe that patterns of repeated applications of an
assertion may be remembered as new rules. Similar phenomena are called in other systems
the learning of macro-operators [FHNT72], or chunking [New90]. As argued in [RL86,
Die92], the latter is also be very similar to ezplanation-based learning. On account of this,
domain-specific rules are also referred to as compound rules or macro-rules. Secondly, new
assertion level rules may also generated as rules associated to assertion level rules already
residing in working memory (see Chapter 5). We continue with our subset example to
illustrate this.

Example 1 (continued from page 42)

Suppose that the assertion application procedure has just constructed a proof tree
as given in Figure 6.1. Our assumption is that possibly the reasoner learns the following
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inference rule schema as well, apart from merely drawing a concrete conclusion a; € F|
from premises a, € Uy and U; C Fy:

acUUCF
a e F
where a, U and F are metavariables for object terms. More generally, hand in hand
with deductive steps supported by proof trees represented in Figure 6.2, a corresponding
inference rule taking the form of 7.2 may be acquired.

(7.1)

Pl,...,P.
A,

where P}, ..., P! are formula schemata obtained from Py,..., P, (the formulas attached
to the leaves, except the assertion A4 itself) and Al is the formula schemata obtained from
A, attached to the root. The formula schemata are obtained from the corresponding for-
mulas by replacing constant symbols not originally occurring in .A by new metavariables.
This is called parameterization. Obviously, these constant symbols must occur in formulas
serving as premises, such as @ € U and U C F in our example.

This learning process can be viewed as-a special case of chunking and variablization
[New90]. It can also be viewed as a special form of explanation-based generalization
[MKKC86, RL86, Die92]. See Chapter 8 for details.

Once a new domain-specific rule is derived as described above, it may be used to
generate other assertion level rules associated with it. As will be discussed in Section 7.4,
there are surely other ways of generating assertion level rules, although it seems reasonable
to assume that they are all logically equivalent.

(7.2)

7.2 A Structured Representation

In this section, firstly the set of assertion level inference rules will be pinned down, which
enter the working memory either by chunking and parameterization, or as rules associated
with existing ones. It will be shown as well, that for each assertion, the total sum of the
corresponding inference rule schemata is finite.

Let us first consider assertion level rules generated by chunking and parameterization.
Based on the discussion of the last section, there is obviously a one-to-one correspondence
between assertion level inference rules and tree schemata, achievable by parameterization.
Because there is a subtree relation between such tree schemata, it will be shown that the
set of maximal tree schemata can be used to represent the complete set of rules learnable
this way. Some further terminologies again. Let A be an assertion and B a set of logic
level inference rules. Now let R(A,B) designate the set of inference rules acquired by
chunking and parameterizing NEs using exclusively logical level rules in B. It is especially
interesting to examine the set of proof tree schemata designated by Tree( A, B) such that
for all 7 € R(A, B), there is a tree schema t € Tree( A, B), such that r can be accounted for
by a subtree of t. Rule r is called terminal if it is accounted for by a tree t € Tree( A, B),
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rather than a proper subtree. Apparently Tree(A,B) is unique. Below is a constructive
definition:

i) Start with the tree in Figure 7.1(a), which corresponds to the rule z—,

i1) If there is a tree ¢ in the form of Figure 7.1(b), and

-r= A*’“LA*Z:{'Q“’N‘P = € B is a decomposition rule with respect to a, now if there
exists a substitution o, such that A’ = aco, then extend ¢ to a tree t’ of the
form of Figure 7.1(c).

AFP
- I 2

7.1.(c))
AFP . AFP!

iii) If there is a tree ¢ of the form of Figure 7.1(b), and r = —%5—= € Bis a

composition rule with respect to ¢}, now if there exists a substitution o, such that
P = Qo, then extend t to a tree t’ of the form of Figure 7.1(d).

is a natural rewriting rule, a similar extension is made (n=0 in Figure

P,...,Po
A, ... P, ... A, ... P, ... A, ... P T

|

Figure 7.1: Construction of Tree Schemata

Some explanations: 1) initializes a tree with only one node, corresponding to the
initial inference rule 1, ii) and iii) extend existing trees by decomposing the root or the
leaves.

The informations contained in this set is in fact rather redundant, since many rules
accounted for by one tree schema are often associated to rules accounted for by another
tree schema, in the way described in Chapter 5. This reflects the fact that a rule can either
be acquired directly, in a reasoning-and-abstraction manner, or it can be derived as an
associated rule of another acquired rule. Let us illustrated this by continuing Example 1.

Example 1 (Continued)

. a1 € U, U, CH . .-
With a rule <7 already acquired from the subset definition, supported
a1 1
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by the natural expansion (NE) illustrated in Figure 6.1, it is only natural for a human to
be able to apply the following associated rule:

al € Ul,a1 $F1
U, ¢ Fy

This, however, has as a matter of fact a corresponding NVE' of its own:

01€U1,21¢F1
Ve UCF &V,zeeU=>zr e F —(ay €Uy = ay € Fy)
ULhCheVseelUi=zeFR "~VooeUi=>z€FR
N

Figure 7.2: A Rule Applying Definition of Subset

e _ cl,c2,b1
In general, if Fig 7.3.a is the corresponding tree schema for a rule T

b1, —b2, cl

—c2

, acquired

from an assertion A, the corresponding tree schema for the associated rule can

be constructed, using the associated logic level rules, as shown in Figure 7.3.b.

cl,e2,... b1,—b2,...
A Cn A " —=Bm
AT A’ -B1
Bl -C1
- ’615
Bm,bl,. .. -Cn
b2 =2

(a) " (b)

Figure 7.3: Natural Expansion for Associated Rules

This argument leads exactly to the following property, that makes a more succinct

representation possible:

R(A, Assoc(B) U B) = R(A,B) U Assoc(R(A, B)) (7.3)
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where B is an arbitrary set of logic level inference rules. A natural corollary is obtained
in conjunction with properties 5.5 and 5.6:

Assoc(R(A,B U Assoc(B))) C R(A,B U Assoc(B)) (7.4)

From a static perspective, this means if all rules associated with elementary rules
are already at the disposal of the assertion application procedure discussed in the last
chapter, the derivation of associated rules will not bring rules really new at the assertion
level. Finally, let Rules(.A) designate the complete set of inference rules acquirable from
an assertion A, either by chunking and parameterization or as an associated rule. If Fle
stands for the set of cognitively elementary inference rules available to a reasoner, then

Rules(A) =R(A,(Ele U Assoc(Ele))) U Assoc(R(A, Ele U Assoc(Ele)))
=R(A, Ele U Assoc(Ele)) by 7.4
=R(A, Ele) U Assoc(R(A, Ele)) by 7.3

Now we have isolated a subset of the rules, which can be represented by Tree(A, Ele)
in a very compact way that also plays an epistemologically more central role. Thanks
to the compactness of the tree form, for almost all intuitively meaningful assertions,
Tree( A, Ele) consists usually of only one or two trees. The special cognitive import of
these kernel rules will be discussed in Section 7.4. Note that some logical redundancy
still remain® in this representation, since there are elementary rules associated with each
other. Within the elementary rules we have proposed, for instance, the two VD rules
below

AFPVQ,AF =P AFPVQ,AF-Q
AFQ ’ AFP

are associated with each other.
Now let us finish the discussion of the subset example used throughout Part I by
showing its Tree(4, N'K), and a listing of some of the rules contained in Rules(A).

Example 1 (Continued) :

As shown in Figure 7.4, two tree schemata are needed since the equivalence < is
understood as the short hand of the conjunction of two implications and therefore can be
decomposed in two different ways. The subset definition is repeated below:

VﬂuUCF©VE$€U=>$EF

Table 7.1 is a list of some of the rules in Rules(A). Note that, as we argued above,
every subtree containing the subset definition as a leaf corresponds to a rule of inference,
if we take the other leaves as preconditions and the root as the conclusion. In other words,
only subtrees rooted along the path from the leave which is the assertion being applied
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ANVNepg UCF &VoyoelU=ze F
a):hCFieV.zeli=>zeF
Bl:hCcFi=>VozelU =zeF '’
le] :VozelU =z Ry
[d:ay €elUs = a1 € Fy
[e] 1 a; € Fy

U, C Fy

’ aleUl

a: Tree Schema 1 for the Subset Definition

AVep UCF &V, 2€eU=z€eF

@l:UicFievVzeli=zeF, acelUi=a €F

Bl:(VezelUi=ze )= CF ' VoeelUy=>zeFy’
le]: Uy C F1

b: Tree Schema 2 for the Subset Definition

Figure 7.4: Tree Schema for the Subset Definition .

to the root, called the main branch, are of interest. Figure 7.4.a has five such nodes and
Figure 7.4.b has three, namely the length of the main branch. Nodes along the main
branch are numbered in Figure 7.4.a and Figure 7.4.b for convenience. Each such subtree
represents a rule of inference, directly, and associate rules indirectly.

For instance, rule (1) is directly represented by Figure 7.4.a itself and (2), (3) are
associated with rule (1). Rule (4) is represented by a subtree rooted at node [c] in
Figure 7.4.a. Rule (5) is represented by the proof tree in Figure 7.4.b itself, which has
no associated rules because of its variable condition. Rule (6), the associated rule of
the terminal rule (7), is non-terminal (compare the definition for terminal rules at the
beginning of this section).

7.3 Examples

Knowledge represented in a logic based language can usually be conceived of as a system
of assertions. :According to the theory proposed in this thesis, these assertions should
directly increase the deductive power of a reasoner. To enhance the modularity, assertions
are usually grouped together into theories. Theories, in turn, form a hierarchical structure
reflecting the dependency relations [Ker91]. Below, concrete examples of assertion level
inference rules in several different theories are provided to demonstrate the growth of a
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No. | Inference Rule Derivation(Tree or Association)
AFa €el,AFU; CF
(1) 4 - - . Tree in Figure 7.4.a
A |" ai € F1
Al F,AFU, CF
(2) a ¢ ! . Associated with (1)
A = ai $ U1
AbaelU,AF F
(3) GIA - 2/1 7 FTI £h Associated with (1)

“L AFU CF
AFY,zelh =€ R
AraelUi=a €l
AFUL CFH
where a; does not occur in A Tree in Figure 7.4.b.
ArY,zelUi =22z F
AFUL CH
ArU & F
Ar-V,zelU;=>zeF

subtree in Figure 7.4.a., rooted at node [c]

Subtree in Figure 7.4.b., rooted at node [c]

Associated with (5)

Table 7.1: Some Inference Rules Associated with the Subset Definition

natural calculus, hand in hand with the growth of a knowledge base.

7.3.1 Assertions at the Logic Level

The growth of the natural calculus can best be observed in mathematical reasoning. Math-
ematical theories are in general set up hierarchically. Even within one theory, subordinate
theorems and lemmas are first proved, thus paving the route leading to a main theorem.
In terms of our computational model, this means that along with the development of a
mathematical theory, a mathematician working with it is constantly equipped with new,
more abstract means of drawing conclusions, i.e., the application of intermediate theor-
ems. To prove a theorem in group theory, for instance, a human may use some theorems
of set theory.

On the bottom of the hierarchy of mathematical knowledge, a layer of assertions
pertaining directly to logic per se can normally be found. To extend their reasoning
repertoire beyond the elementary inference rules directly supported by a calculus like
that of Gentzen, mathematicians first prove some new assertions.

For example, once the formula

3, V3 Qe 3, PV,

is proved as a theorem, the following two inference rules may be added to the collection
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of inference rules at the disposal of a reasoner:

3, P,v3, Q. 3 P.VQ,
3, P,VQ, 3 P.V3: Q.

Some more examples of logic level assertions are given in Table 7.2.

Logic Tautologies Inference Rules
Yy Py = 3, -P. Ve Fr 73 2P
z iz z z az _1P$’ vz Px
Ve Py P,
~Vg Pz: —'Vz ""Px
—7
-P, = -V, P,
-V, P,
Vo Py A Qe PoAY, Q, | 2 iz NG
z L'z z z L'z z Yz \7/1; Pz s
Ve PpV @y
Ve PoVY, Qe =V PV Q, | ——m———, - -
? @ P,V Q.
32: Px A Q:x:
F PeAQe= PeAZ Qe | —5 5

Table 7.2: Some Logic Level Assertions

Note that this splitting of inference rules into elementary rules and compound rules
might resolve a problem troubling cognitive psychologists designing natural logics [BraT78].
To cover their empirical data, their natural logics have to be enriched by inference rules
which are by nature obviously compound. In our model, these data can be explained
by assuming a knowledge base containing assertional knowledge. It is nevertheless worth
noting that it is difficult to set up a criterion to distinguish the elementary rules from
logic level rules derived from logic theorems, the border between the two may again be
hazy.

7.3.2 Assertions at the Epistemological Level

There is an epistemological level in concept description languages like for example the
KL-ONE family [Bra79)], that provides a hopefully adequate basis for the construction of
conceptual level objects. In a logic based representation language, these are all hidden
implicitly in the way of encoding concepts as well as the various relations among them
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into logical formulas [Hay79]. The usual reasoning inherent to these concept constructing
primitives can consequently be carried out by applying the corresponding assertions.

As mentioned in previously, many sorted first order logic is assumed as our working
language. In principle, however, the results reported in this thesis can be extended to
higher order logic. In this section, let us suppose the full power of higher order logic and
let us look at some simple.examples. Furthermore, let the two predicates Property(A, P)
and Subsume(A, B) mean that P is a property of concept A and concept A subsumes
concept B. A possible axiomatization may be:

Va,p Property(A, P) & (¥, A(z) = P(z))
Va,p Subsume(A, B) = (V, B(z) = A(z))

Now the well known inheritance relation can be expressed by the following assertion
derivable from the two axioms above:

Va,B,ps (Property(A, P) A Subsume(A, B) A B(z)) = P(z)
which enables us to apply a new inference rule:

Property(A, P), Subsume(A, B), B(z)
P(z)

Another form of inheritance might be neatly captured by an assertion as well:
Va5 p (Property(A, P) A Subsume(A, B)) = Property(B, P)

which would account for the derivation of “all students are mortal” from “all human
beings are mortal” and “all students are human beings”.

7.3.3 A Non-Mathematical Example

Thus far, examples of logical assertions are discussed, fundamental for mathematical
reasoning. Moreover, the subset example used throughout Part I is considered typical
for mathematical reasoning. Schubert’s steam-roller problem below should illustrate that
similar observations can be made in common sense reasoning as well, provided that logic
is used as the representation language.

Example 3 (continued from page 47) The encoding of one of its axioms is repeated below
(E stands for Eats).

va:animal (Vp:plantE(aap) \4 (va’:anz’mal a'/ <aA Elp’:plant E(alap/) = E(a7 a’)))

Although Tree(A, NK)) consists of two trees in this case, due to the redundancy of the
two symmetric VD rules, only one is shown in Figure 7.5. Since the two VD rules are
associated with each other, this tree is complete by itself, see [Hua9l]. Some inference
rules are listed in Table 7.3 (some metavariables are renamed to improve the readability).
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No. | Inference Rules Derivation(Tree or Association)
(1) ar ﬂE(Z Izz);(lafa?)’ Eldp) Tree in Figure 7.5.

(2) ard <Z’fg/(’alj,;’)—ﬂ(a’ @) Associated to (1)

(3) LF % EA(G,:p;’(ZI’ :,)a’ Ble',p) Subtree in Figure 7.5.

(4) ard Za}: Evz()a;?;),,p—)rE(a, 7) Associated to (3)

Table 7.3: Some Inference Rules for the Steam-Roller Axiom

Yo (VpE(a,p)V (Vo o/ <a ATy E(d,p) = E(a,a’))) ~E{(ay,p2)

Vo E(a1,p)V (Yar @' < a1 A3y E(d',p') = E(a1,0')) =V, E(a1,p) E(a},p1)
Yo o' < ay A3y E(d,p') = E(a1,a") fL<a, 3, E(ay, p)
aj; < a1 A3y E(al,p') = E(ay,a}) Td <ai A 3, E(a},p")
E(a1,a})

Figure 7.5: Tree Schema for the Steam-Roller Example

7.4 Cognitive Status of Assertion Level Inference
Rules

Do some of the assertion level rules possess a more significant cognitive status? Are rules
in reality stored as an unorganized congregation, or does the tree form structure suggested
in Section 7.2 have a cognitive import? :

If restricted to the chunking and parameterization view of rule acquisition, most of
the answers for the above questions might be negative. As already indicated, however,
there is at least one other procedure that introduces inference rules into the working
memory: the one carrying out the task of comprehending assertions. The effect of the
understanding of an assertion must include the introduction of at least some of the corres-
ponding rules, on the ground that a natural expansion is not always involved at assertion
level reasoning, even when an assertion is applied by a reasoner for the first time in a
context. It is therefore a plausible conjecture that the understanding process of assertions
partially constructs tree schemata containing metavariables later appearing in assertion
level inference rules. On the ground that only elementary rules are residing permanently
in working memory, (in contrast to associated rules), it can be concluded further that rules
accounted for by trees in Tree(A, Ele) have a chance to be learned first in this compre-
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hension process, since the elementary rules alone are involved in their NEs. Furthermore,
since NEs of rules accounted for by subtrees are part of the NEs of the terminal rules, there
is really a reason to assume a structure similar to Tree(.A, Ele). Based on the discussion
above the division of assertion level rules into those accounted for by Tree(A, Ele), and
the associated rules is not only for the sake of mathematical clarity. Although no precise
prediction is possible up to now, it is very likely that the first group of rules are acquired
during the comprehension process, while members of the latter are derived form members
of the former, when motivated during a reasoning process.

Very likely it is an over-generalization to claim that the comprehension process will
always result in the memorization of Tree(A, Ele), since the situation can be more com-
plicated sometimes. Take the Tree(.A, Ele) of the two assertions in Figure 7.6 for instance,
both of them consist of two trees. What is special here is that in both cases, the two trees
have a common subtree. It is possible that these common subtrees have a better chance
to be memorized, while a derivation of the terminal rules needs to be motivated.

Tree( A, NK) for PVQ = R Tree(A,NK) for P= QAR
bvo o P= QAR,P
Q=R 574 QAR
R Q
Q P=QARP
PVQ=R o SR
R R

Figure 7.6: Possible Common Subtrees







Chapter 8

Related Work and Conclusion

8.1 Related Work

There are two sorts of related works: theories dealing with issues such as natural logics
or mental reasoning, and Al applications where these concepts play or will play a major
role.

Our set of cognitively elementary inference rules originates directly from the long
tradition of the study on natural logics, carried out both by logicians and later by cognitive
psychologists. The word natural was first used by G. Gentzen [Gen35| to describe his logic.
He studied the ways in which mathematical inferences are drawn and decided to design
a calculus containing a relatively large number of inference rules which come as close
as possible to actual reasoning, and thus took an important departure from the calculi
in Hilbert’s tradition. And more recently, natural logic became an active research topic
of cognitive scientists, aiming at discovering internal structures that could account for
human reasoning competence. Granted the problems that arise from the assumption of a
mental logic [J1.83, HHNT86, Lak87|, it remains an appealing proposal. Various versions
of natural logics are consequently developed for this purpose. While Gentzen’s logic can
be seen as aiming at a characterization of human formal reasoning, with mathematics
as a typical example; the second group of natural logics is either designed to capture
the nature of casual daily reasoning [WJL72, JL83], reasoning with English connectives
[Bra78] or to serve as a semantic interpretation of natural languages [Lak70]. Since we
are primarily interested in logic based reasoning, our set of elementary inference rules is
essentially adopted from Gentzen.

There are no doubt problems when theories based on a natural logic are used to
explain phenomena observed in everyday reasoning tasks. To overcome this difficulty,
Johnson-Laird and his colleagues developed a theory using mental models as its internal
structure [JL83, JLB90]. In their theory, reasoning is performed as the search for altern-
ative models. A slightly enhanced version of a mental model is recently used in another
theory called verbal reasoning, where the central processes are fundamentally of linguistic
nature (encoding premises and conclusions into mental models) [Pol92]. Although this
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more semantically oriented theory is evidently gaining importance, its role in mathemat-
ical reasoning is presently still unclear.

The central issue of Part I, namely the characterization of reasoning intuitively under-
stood as the application of assertions, is closely related to one of Johnson-Laird’s effective
procedures [JL83], accounting for spontaneous daily reasoning. In spite of the difference
of task domains and the basic theoretical assumptions, both studies are confronted with
a similar problem and have opted for a similar solution. Given a set of premises, the
problem that Johnson-Laird confronts as a cognitive psychologist is how to explain that
only a small subset of all the valid conclusions are actually drawn by a human being under
ordinary circumstances. We, on the other hand, try to delineate a subset of all the valid
inferences intuitively understood as the application of an assertion, given an assertion
and some other premises. To this end, both approaches have tried to find constraints
that appear to characterize the appropriate subset. The composition and decomposition
constraints proposed here are of purely syntactical nature. In contrast, Johnson-Laird’s
characterization is more of a semantic nature and it may be more superior as a psycholo-
gical explanation. He first proposed a measure of the information content of formulas, and
then postulates that no conclusion contains less semantic information than the premises
on which it is based or fails to express that information more parsimoniously. This, es-
tablishes to a greater extent the meaningfulness of the conclusions drawn. Unfortunately,
his measure can neither be extended to predicate logic [JL83, Hin73], nor his criterion can
split deductions into units called the applications of single assertions. Comparing the two
approaches mathematically, within the realm of propositional logic, the set of meaning-
ful reasoning carried out by Johnson-Laird’s procedure is in general more complex, that
i, involving more than one application of an assertion. Finally, we want to point out
another difference with respect to the general theoretical assumptions. While our discus-
sion is entirely built on top of the assumption of the existence of mental inference rule
schemata as an internal structure responsible for deductive competence, this assumption
is disputed by Johnson-Laird in general. Despite of his success in explaining daily casual
reasoning by means of other internal representations, we believe it remains an appropriate
assumption with respect to formal deductive reasoning, where the individuals are usually
assumed to have received training in logic. Furthermore, our framework makes possible
the accommodation of the compound rules,which help to explain some other observations
(see Section 7.4).

Ideas similar to our assertion level reasoning can also be found in several implemented
systems. The first such system is EXCHECK, which interprets and checks proofs given
by the user in an informal way [SGBMT75). No effort was made nevertheless to delineate
this notion precisely and a stronger mechanism is used to check justifications given as the
application of an assertion. So-called macetes can be generated from proved theorems
in IMPS [FGT93|, which however covers only a part of the reasoning our procedure in
Chapter 6 tries to cover. In addition, frequently a user is forced to split a definition
or theorem so that desirable macetes can be built from parts of them satisfying certain
syntactic properties. Since macetes are automatically generated for proof search, this
restriction is appropriate to cut the search space. In the system MUSCADET [Pas93],
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the choice of desirable assertion level inference rules for the proof context at hand is
encoded in the so-called metarules.

Although the concept of a tactic or a proof plan is gaining influence rapidly, the
learning process during proof planning has hitherto not been studied in depth. However,
learning of plan scripts or plan schemata has been investigated intensively in the field
of machine learning, with interesting results on both similarity based learning and case
based learning [M0090]. The acquisition of assertion level rules resembles more another
sort of learning attacked in the literature: building new macros from frequently used
operator sequences. In the cognitive architecture SOAR, such macro-building is called
chunking[New90]. In addition, the chunks constructed are variablized. As described in
[RL86, Die92], this kind of macro-building is closely related to explanation-based gen-
eralization , [MKKCB86], where proof trees serving as explanations are variablized, and
intermediate steps are cast away.

8.2 Conclusion and Future Work

Part I deals with issues concerning natural logic and cognitive models for informal logic
based deduction. Different from similar research carried out in cognitive psychology, where
psychological explanations are the main concern, our study is directly motivated by the
practical need of presenting proofs or arguments found by machines to a human user in an
appropriate way. By analyzing the blueprint of the entire transformation process, we have
isolated explicitly an intermediate representation, called detailed natural proofs (DNP)
that possesses the quality of a mathematical abstraction of the actual output of the human
deductive apparatus. In order to find a formalism suitable for the encoding of DNPs,
preliminary empirical studies on human mathematical proofs are carried out, leading to
a new computational model for informal logic based reasoning. The main contribution
is the identification of a primitive procedure carrying out the application of assertions,
which is added to the traditional models. Hand in hand with this procedure, secondly, an
operator is added to account for the acquisition of logically compound inference rules at
the assertion level. The extensible set of inference rules, including cognitively elementary
inference rules and acquired compound rules alike, is called the extensible natural calculus.

According to this model therefore, the output of a reasoning process (DNPs) are
proofs consisting of a sequence of proof steps each justified either by an inference rule, or
by the application of an assertion. Since the latter will be presented in the same way as
a step achieved by applying an assertion level rule, no distinction needs to be made for
our purpose. In part III it will be shown, that the extensible natural calculus alone can
be used to reconstruct DNPs from machine found proofs.

The topic of informal logic based reasoning is so rich that our study only indicates
a beginning. Among the issues to be addressed in the future, we want to mention first
that we need a more semantic oriented, explanation for our decomposition and compos-"
ition constraints, probably along the line of Johnson-Laird. Secondly, refinements with
respect to run-time behavior must be made. In particular, a model has to be constructed
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accounting for human proof comprehension, which provides predictions about whether an
assertion level step will be understood by resorting to the assertion application procedure,
or by matching against an assertion level inference rule acquired in a previous context.
This information will provide more guidance to the decision making procedures in the text
planners to be addressed in Part II. Finally, it would certainly be interesting to integrate
results on proof planning into such a model [Bun88|, and thereby provide new means for
structuring DNPs.

Finally, we hope this model may be extended to the sort of reasoning that is beyond
the realm of first order predicate logic. An important future research topic is therefore
to examine the ideas presented in this paper in domains covered by logics of stronger

expressive power, for instance modal logics or logics with sort structures [Pri67, RUT1,
GG84, SS89, Wei93], as well as logics of higher order [And86].
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A Computational Model for Human
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Chapter 9

Introduction

Part IT presents a computational theory simulating the human proof presentation process.
_Although the psychological reality is not our main concern, the theory is also aimed at
shedding some light on the possible mechanisms underlying this human cognitive ability.
Secondly this theory serves also a more practical goal, namely, the construction of a proof
presentation system which is expected to behave in certain important aspects like real
mathematical writers. In fact, an implementation of this theory is used as a module in
the system PROVERB, to be discussed in Part III. After a short discussion of previous
work, the scope of the cognitive activities to be covered by this model is delimited. Then
we provide a brief blueprint of this model.

9.1 Previous Work

The past two decades have witnessed a proliferation of different techniques for generating
connected texts in natural language. The rapidly growing field of NL generation is rep-
resented among others in the recent proceedings of the International Natural Language
‘Generation Workshops [Kem87, PSM91, MMN90, DHRS92] and the European Workshops
on Natural Language Generation [Z588, DMZ90]. Below, only three theories directly rel-
evant to this work are sketched.

9.1.1 A Psycho-linguistic Model for Speech

The overall structure of our computational model is borrowed directly from the psycho-
linguistic model for speakers proposed by Levelt [Lev89|. In this model, speech is taken
as a goal directed activity, producing a sequence of utterances to achieve a certain illoc-
utionary goal. The utterances thus produced are called speech acts. According to this
model, a human speaker can be conceived of as a conceptualizer, a formulator, and an
articulator. , )

The conceptualizer, in turn, can be divided into a macroplanner and a microplan-
ner, working together in an incremental way. Macroplanning basically selects information
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to be expressed, to fulfill some illocutionary intentions, which are special communicative
intentions. The output of this phase is assumed to be an ordered sequence of speech
act intentions (sometimes shortened to speech acts (SA) as well), being messages spe-
cified for the intended mood (declarative, interrogative, imperative) and the content. The
microplanning phase is responsible for semantic and syntactic decisions, delivering a se-
quence of preverbal messages (PM). For an overview of the conceptualizer, see Figure 9.1.
The preverbal messages are passed over to the formulator, which performs grammatical
and phonological encodings. Finally, natural language utterances are produced by the
articulator. -

Communicative
Intentions

Illocutionary

Macro- | . < SAl, SA2...>
Planning

Intentions

Micro-

-/ . — <PMILPM2,..>
Planning

Figure 9.1: From Intention to Preverbal Message ([Lev89])

9.1.2 Schema-Based NL Generation

Mainly two approaches have been pursued for macroplanning in systems that generate
coherent multi-sentential text. The first approach relies on script-like structures called
schemata. For instance, this technique was used to describe complex objects [McK85,
Par88]. Schemata are also used to react to object-related misconceptions [McC87).

The schema-based approach finds its basis in the linguistic discussion about rhetor-
ical predicates [She26, GriT5b], categorizing the functions of clauses in texts. A further
hypothesis is that standard patterns combining rhetorical predicates can be identified. For
example, based on her analysis McKeown found that speakers often identify an object or
an event among others by:

o identifying the object as a member of some subclass,

e providing constituency or attributive information about the object,

| © Providing constituency or attribulive information sbowt Hhe o, —
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e amplifying the attributives provided
e providing more particular illustrations

Figure 9.2 is the corresponding schema in [McK85], with a sample text generated.

Identification Schema

Identification (class & attribute/function)
analogy/Constituency/Attributive/Renaming/Amplification*
Particular-illustration/Evidence+
Amplification/Analogy/Attributive

Particular illustration/Evidence

Example
“Eltville (Germany) 1) An important wine. village of the Rheingau region. 2)
The vineyards make wines that are emphatically of the Rheingau style, 3) with a
considerable weight for a white wine. 4) Taubenberg, Sonnenberg and Langenstuck
are among vineyards of note.”

Example Classification
1. Identification (class & attribute)
2. Attributive
3. Amplification

4. Particular illustration

Figure 9.2: The Identification Schema
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Note that “{}” and “/” indicate optionality and alternative respectively, and that
the “4+” and “*” indicate the object can appear 1 or more time and 0 or more times,
respectively. Since schemata usually contain both options as well as alternatives, the
TEXT system of McKeown further employs a focus mechanism to help matching schemata

against available knowledge.

9.1.3 RST-Based NL Generation

The main drawback of schema-based planning is its inflexibility. There is a second draw-
back of this approach if applied to dialog systems: since the rhetorical predicates are
compiled into compound schemata, the intentional relation among parts of a schema has
been lost. As a consequence, if an intended effect on the hearer is not achieved, there
is no way to allocate the failure. In order to overcome this difficulty, several dialog sys-
tems have been developed based on the rhetorical structure theory (RST) [Moo89. Rei91].
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This theory has also been used to model the effect pragmatic concern may have on the
generation of texts [Hov90].

Rhetorical structure theory (RST) [MT87] is a descriptive theory about the organ-
ization of natural language texts. Relations are identified which connect parts of texts of
various sizes (clauses, sentences or sequences of sentences). An RST relation consists of
two parts: a nucleus (N) and a satellite (S). The nucleus is more essential to the purpose
of the writer. Each RST relation must also specify constraints both on the entities being
related, as well as on their combination. The associated effect which a speaker intends to

achieve on the hearer is also of central importance. Figure 9.3 is a sample RST relation
used in [Moo89].

name: MOTIVATION

constraints on N: present an action in which Hearer is the actor, unrealized with
respect to the context of N.

constraints on S: none

constraints on N + S combination: Comprehending S increases Hearer’s desire
to perform action presented in N.

effect: Hearer’s desire to perform action presented in N is increased.

Figure 9.3: RST Relation - Motivation

In RST-based text planners the RST theory is operationalized by mapping rhetorical
relations identified into corresponding plan operators. Figure 9.4 is the corresponding plan
operator constructed from this rhetorical relation. The effect slot contains the goal this
operator is designed to achieve. The constraints slot contains the applicability condition
of the operator. It also specifies the content to be found by the planner and to be included
in the text. More concretely, a set of goals must be found such that the actis a step toward
them. If some such goals are found, the execution of this plan operator will post one or
more MOTIVATION subgoals. These goals must be achieved by applying other operators.
The operator MOTIVATION is an example of high level operators relating the speaker’s
goals with rhetorical means. There are also operators which achieve individual rhetorical
relations, either by expanding them to lower level relations, or by using primitive speech
acts.

9.2 The Scope of this Work

Proof presentation may serve very different purpose. For instance, a reasoner may decide
to present a proof in a very detailed way, if he is doing a mathematical examination.



9.3. THE OVERVIEW OF OUR MODEL 71

Effect: (PERSUADED Thearer (GOAL ?hearer (DO Thearer 7act)))

CONSTRAINTS: (AND (GOAL ?speaker 7goal)
(STEP ?act 7goal)
(GOAL 7hearer ?goal))

NUCLEUS: (FORALL ?goal (MOTIVATION 7act ?goal))
SATELLITES: nil

English Translation:
To achieve the state in which the hearer is persuaded to do an act,
IF the act is a step in achieving some goal(s),
that the hearer shares,
THEN motivate the act in terms of those goal(s)

Figure 9.4: Plan Operator for Persuading User to Do an Act

Under time pressure, it is often irrelevant in which specific order the proof is presented.
In contrast, adequate ordering of parts of a proof may play an important role for a lecturer,
whose aim is to achieve certain educational goals.

This theory is not going to cover proof presentation under all these circumstances.
The circumstance considered here is this: once a reasoner has completed the proof of a
problem, he writes it down neatly both as a documentation for himself, and to commu-
nicate with others. Qur theory does not cover the whole spectrum of all possible present-
ations. Within the psycho-linguistic model of a human speaker proposed by Levelt, our
theory covers first the entire macroplanner for proof presentation. Among the topics con-
cerning the microplanner, only the reference choice is extensively dealt with, with the
help of a discourse theory. Other topics such as paragraph planning, sentence planning
and lexical choice are treated in a simplistic way to support a running system. The for-
mulator is not treated at all. In the system PROVERB, its task is carried out by a tactic
component based on the TAG formalism [Kil94].

9.3 The Overview of Our Model

The overall structure of our computational model for proof presentation is illustrated in
Figure 9.5. Note that the speech acts (SAs) are called proof communicative acts (PCAs) in
our domain of application. Below, the components and the intermediate representations
are briefly sketched out.
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Figure 9.5: Architecture

Input

As shown in Figure 9.5, the presentation model requires as input a natural deduction
(ND) style proof at the assertion level. As discussed in Part I, it is a proof tree containing
mostly assertion level justifications. An assertion level justification is the application of
either a definition, a theorem, or a previously proved lemma. Within the entire process of
proof searching and proof presentation, ND style proofs at the assertion level are supposed
to be the output of the human deductive apparatus. Figure 9.6 is an example of a possible
input proof, where labels of some nodes are omitted.

sgr(U, F) u(U, 1y, *)
uy € U, —————Dsubgr UCF,———Du
u(ug, 1y, *),u; €U UCF el gr(F, x)
Dy, Ds, Ds, Dg,
2] : wp*ly =uy Bl: wmeF [4: 1, €F segr{F, *)

Tsol

[1] : Solution(ui, u1, lu, F, *)
Figure 9.6: An Example Input Proof

The predicates “segr”, “sgr”, “gr”, and “u” stand for “semigroup”, “subgroup”, “group”
and “unit element” respectively. “Solution(a, b, ¢, F,*)” should be read as “c is a solution

of the equation a*z = bin F.” The justifications “Du”, “Dsubgr”, “Ds”, “Dg”, and “Tsol”
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stand for “the definition of unit element”, “the definition of subgroup”, “the definition of
subset”, “the definition of group”, and “the theorem about solution”, respectively.

Apart from the reasoning steps, the proof is augmented by additional information
about the proof searching process, in particular an ordered list of nodes, as the subproof
structure of the proof. For instance, the proof in Figure 9.6 is associated with the following
list:

(2], 3], 4], [1]

indicating that subtrees rooted at the nodes [2], [3], [4], and [1] have been planned as
subproofs, and are proved in the above order.

The Proof Discourse History

The dynamic unfolding of a proof discourse is represented in the proof discourse history
(PDH). This consists of both an internal discourse semantic representation of the text
generated thus far, as well as a plan constructed for further presentation. In essence, the
former can be conceived as a tree structure reflecting the current state of the ongoing
proof.

A Two-Stage Process

As in the model proposed by Levelt, this theory also distinguishes between the macro-
and microplanning stages.

Macroplanning

The macroplanner basically elaborates on communicative goals, selects and orders pieces
of information to fulfill these goals. The output is an ordered sequence of proof commu-
nicative acts intentions, shortened to proof communicative acts (PCAs) in the sequel.
Compared with the model of Levelt, PCAs are speech acts in our domain of application.
Because our microplanning is restricted to the treatment of reference choices, our PCAs
look very similar to preverbal messages (PM), with the reference form information still
missing. Below is an example of a PCA (the corresponding PM and a verbalization can
be found at the end of this chapter):

(Derive Reasons: ((ELE a U){(SUBSET U F))
Conclusion: (ELE a F)
Justification: (Def-Subset))

The overall framework of our macroplanner can be viewed as a schema-based hier-
archical planner. On the one hand, the overall mechanism is very much like the planners
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in RST-based generators. On the other hand, many of our plan operators contain: com-
plex compiled schemata similar to those used in the schema-based approach, because the
presentation of many complex proof structures is highly standardized. \

As the second important feature, RST-based top-down planning is enhanced by a
focus guided bottom-up presentation.. This reflects the observation that language can
be both planned and unplanned [Och79, Sib90]. Our theory is therefore a first attempt
to integrate hierarchical planning and unplanned organization in a uniform framework.
The top-down planning is usually based on explicit presentation knowledge associated
with the global structure of the current subproof to be presented. Characteristically, top-
down planning requires global information, and involves usually splitting of presentation
goals into subgoals. As a consequence, top-down planning is accompanied by global
updates of the attentional structure, since it requires both effort and concentration. In
contrast, bottom-up presentation is devised to simulate stepwise presentation based on
local information. In this mode, the local attention is guided to a next proof node by
semantic objects in the local focus. Here, only one node is picked out for presentation,
and no explicit subgoal is posted. Both kinds of top-down and bottom-up presentation
knowledge are encoded as presentation operators.

Microplanning

Our microplanner is restricted to the treatment of the reference choices for the inference
methods and for the previously presented intermediate conclusions. While the former
depends on static preferences relating to the domain knowledge, the latter is very similar
to subsequent references, and therefore sensitive to the context, in particular to its seg-
mentation into an attentional hierarchy. Such a segmentation can be obtained for free in
our model by distinguishing between the top-down planning and the bottom-up presenta-
tion. While every top-down planning step creates new attentional spaces by posting new
subgoals, subsequent bottom-up presentation steps constitute an elementary attentional
unit. :

Output

The output of the model is a sequence of so called preverbal messages, each being a
complete specification for one natural language sentence. Below is an example.

(Derive Reasons: ((((ELE a U) explicit))
((SUBSET U F) omit))
Conclusion: (ELE a E)
Method: (Def-Subset omit))

" With the help of a dictionary, the tactical component of PROVERB produces the
utterance: , ' :

“Since a is an element of U, a is an element of F.”
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The Natural Language Proof

(I)Let F be a group and let U be a subgroup of # and let I be a unit
element of F' and let 1y be a unit element of U. (2)According to the
definition of unit element, ly € U. (3)Therefore there is an X, X € U.
(4)Now suppose that uy is such an X. (5)According to the definition
of unit element, u; * ly = u;. (6)Since U is a subgroup of F, U C F.
(T)Therefore 1y € F. (8)Similarly u; € F, since u; € U. (9)Since F is a
group, F is a semigroup. (10)Since u; * 1y = uy, 1y is a solution of the
equation u; * X = u;. (11)Since 1 is a unit element of F, u; * 1 = u,.
(12)Since 1 is a unit element of F, 1 € F. (13)Since u; € F, 1 is a
solution of the equation u; * X = u;. (14)Since F is a group, ly =1
by the uniqueness of solution. (15)This conclusion is independent of the
__choice of the element u.

Figure 9.7: A NL Proof Generated by PROVERB

9.4 Structure of Part 11

The following chapter describes the proof discourse history (PDH), its segmentation into
an attentional hierarchy, as well as the proof communicative acts (PCAs) incorporated into
our model. Chapter 11 and Chapter 12 are devoted to the macroplanner and microplanner,
respectively. This computational model is implemented in the system PROVERB to be
introduced in Part III, Chapter 13 and finally an outline of future work can be found in

Chapter 14.
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Chapter 10

The Presentation History and the
Proof Communicative Acts

10.1 The Basic Structure of the Presentation His-

tory

In our computational theory of proof prescntation, a presentation history is the cent-
ral data structure reflecting the dynamic development of the presentation process. The
writer’s presentation history is the total sum of the information about the argumentative
discourse he is currently involved in. Concretely the presentation history comprises the
following items:

I

The name ol the proof.

. The hypothcesis of the proof.

The conclusion of the proof.

4. The lnearized sequence of preverbal messages PMs generated thus far in the dis-

COUrse

. A proof discourse model: a model of that part of the proof which the writer believes

is already conveyed to the reader. This part corresponds to what usually is called
a discourse record or discourse history. In our theory, this model is represented as
a partial proof tree similar to that introduced in Chapter 3, containing conveyed
intermediate conclusions together with the justification relations.

The rest part of the proof which has not been presented yet. Since this part of the
prool and the part covered in the prool discourse model together constitute an entire
prool of the problem, they are implemented as two disjoint parts of one proof tree,
with nodes labelled as conveyed or unconveyed, respectively. Note that upon the
completion of the presentation the prool model is not necessarily the original input

—



78 CHAPTER 10. PRESENTATION HISTORY AND PCAS

proof, since it is affected by both reordering and simplification of the presentation
process.

7. A stack of planned presentation activities, waiting to be executed. In this model,
this stack is not kept explicilly, but simply realized with the help of the recursion
management mechanism of the Common Lisp language. Planned activities are only
shared partially by the reader, depending on the explicitness of how the goals are
articulated. In other words, il goals to be proved arc explicitly conveyed, the reader
is expected to be aware of these pending goals. [n the current version of our theory,
this sharedness is not represented.

Before proceeding, let us compare our proof discourse history and theorics concerning
discourse history in general. While the other items are specilic for argumentative texts, the
notion of a discourse model is well studied for discourses in gencral. The discourse model
is usually assumed to be the writer’s record of what he believes to be shared knowledge
about the content of the discourse as it evolves. More precisely, it contains primarily
entities introduced by the interlocutors (in our case, the reader is not expected to make any
utterances actively), and the predications made about these entities. A further assumption
is that the predications about a specific entity are grouped together and stored under the
address of that entity in the discourse model [Rei91, Dal92]. Since our compuiational
model handles mainly decisions involving wholc assertions as clementary elements, our
discourse model is not specified at the level of semantic elements and the relations holding
among them. On the contrary, the proof discourse history contains primarily a proof tree,
being a set of intermediate conclusions connected by the justification relation. As will be
shown, the decisions about the way of unfolding an ongoing partial prool and the way n
which the steps are to be conveyed are sensitive Lo the history of the up to now presented
partial proof.

10.2 The Attentional Status of Constituents in the
Presentation Model

Apparently both writer and reader are resource-bounded, which determines the limitedness
of their attentional span. During the process of the presentation of a particular proofl, the
writer’s attention is usually focused on a small portion of the prool. This focusing process
is then followed by the reader during successful communication, as far as the conveyed
part of the proof is concerned. It is this shared part of the focus structure which is to
be dealt with in this section. In Chapter 12, it will be jllusirated how this attentional
structure plays a crucial role in deciding reference forms in PCAs.

10.2.1 Previous Work

The existence of such focused context spaces is not only intuitively plausible (since our
working memory is assumed to be limited [Pos89, LNTT7]), but is also evidenced by the
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study of surface linguistic cue phrases and anaphora [Rei85, GS86).

All existing theories agree that the change of focus status. does not happen only
in terms ol a single utterance, but also in terms of larger granularity. These discourse
spaces can contain subordinate discourse spaces and thus form an attentional hierarchy
[Rei85, GS86]. Any theory modelling the dynamic shifting of the focus of attention must
therefore specify the basic units of attention, usually called discourse spaces, the bound-
aries between discourse spaces, the relationship between them, as well as the mechanism
which accounts for the dynamic shifting of attention. Déspite the intuitiveness of these
notions, the scgmentation of discourses has proved to be fairly difficult. To pin down the
boundary between discourse spaces, different computational linguistic theories about dis-
courses associate diverse non-linguistic structures with the attentional structure. While
(irosz and Sidner [(GS86] assume that the attentional structure is determined by the in-
tentional structure, which, in turn, usually directly correlates to the subgoal structures
inherent to the task domain, Scha and Polani’s theory appeals to commonalities among
semantic structures of non-overlapping portions of text [SP88].

Apart from this hierarchy of the global focus, the existence of a mechanism of the
local focus is also geunerally assumed to reflect the shifting of the focus from one utterance
to the next. The task of such a mechanism is primarily to determine the relative value
of salience of individual elements in the discourse spaces [Rei85]. The objects in the
utterance produced last, being in effect the most highlighted elements in the focused
space are called the focal centers.

10.2.2 Global Focus

The change of the {ocus status does not only happen in terms of single derivation steps,
that is nodes in a prool tree, but also in terms of larger granularity. Besides the evidence
supporting global focus movement in general, its existence is also evidenced by phenomena
concerning special subsequent references in argumentative texts [Hua90].

Our segmentation of the proof discourse model directly follows Grosz and Sidner
[GS86] by postulating a correlation between the attentional structure and the intentional
structure. As outlined previously, the presentation of a proof is generally a combination
of top-down planning and bottom-up presentation. While the former requires efforts and
concentration, the latter happens usually in a. more spontaneous way. As to be expected,
the local focus is updated by cach single utterance, while there are larger attentional
units associaled with subgoals created during the planning process. Technically, the
intermediate conclusions contributing to the proof of a subgoal constitute an intentional
unit, called a proof unil. A proof unit is intuitively a subproof upon which a writer
once concenfrates during this presentation process. Actually, they are special cases of
discourse spaces. There is a one-to-one correlation between the subgoal hierarchy and the
attentional hicrarchy.

Indirectly, there are also correlations between proof units and other intrinsic struc-
tures in proofs. The planning process, as will be shown in Chapter 11, is strongly influ-
enced by the proof-time subgoal structure and constrained by other proof communicative
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norms, many of them associated with various structures inherent to the proof under
presentation. Consequently, there is also an indirect correlation between the attentional
hierarchy and both the proof-time subgoal structure and logical structure associated with
the structural ND rules (compare Chapter 4). In other words, a proof unit is usually one
of the following:

1. asubproof resulting from the application of those inference methods that are crucial
to the success of achieving a particular proof;

2. a subproof consisting of nodes grouped together by shared common assumptions,

3. a subproof rooted at a node derived by a structural natural deduction rule.

Note that the three structures above may overlap.

Dynamically, a unit is created when the corresponding subgoal is posted by the
planning procedure, and it usually fades out after the establishment of its proof, with the
exception of the root, which will remain eminent in the outer unit. Elements of such a
closed unit may be reactivated again, when it is referred to later {rom the other part of
the proof. Adapting the theory of Reichman for our purpose [Rei85], we assuine thal each
unit may have one of the following status:

¢ a unit is said to be open, if the root of the unit is still awaiting to be conveyed.

— The active proof unit is the innermost proof unit containing the local focus.
There is exactly one active proof unit at any moment. The root of the active
proof unit is called the current task.

— The controlling proof unit is the innermost proof unit containing the active
unit. Therefore, there is exactly one controlling proof unit at a fime, except
when the active proof unit is the outerinost proof unit.

— precontrol proof units are proof units containing the controlling proof unit.
o Closed units are proof units containing only conveyed proof nodes.

The roots of open units are also called the pending goals, reflecting the one-to-one
correspondence between the goal hierarchy and the attentional hierarchy.

Example 4

Figure 10.1 is an example of a proof discourse model with five proof units. The part
of proof still awaiting presentation is omitted, indicated by the dotted links. Suppose that
the nodes in proof unit U2 are all conveyed, and nodes 10, 11 and 12 are also conveyed.
Furthermore, suppose 10 is the last conveyed intermediate conclusion. According to the
discussion above, U4 is the active unit with node 9 as the current task. U3 and U1 are
the controlling and precontrol unit, respectively. U2, clearly, is closed. U5 is another open
unit whose presentation has not started yet.
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Figure 10.1: An Example of a Proof Discourse Model

10.2.3 Local Focus

At every moment during the presentation of a single proof unit, the intermediate con-
clusions already conveyed have a differing prominence. The most eminent intermediate
conclusion is usually the one just proved, since more complex structures like the theme
structure (see section 3.3 in [Lev89]) are not considered in this theory, all semantic ele-
ments mentioned in the most eminent intermediate conclusion are the most eminent ele-
ments. The most eminent elements in the active discourse space are usually also called
the focal centers [GJWS83]. The only focal centers considered in our theory are the last
proved intermediate conclusion, and the semantic objects mentioned in it. In the sequel
the last proved intermediate conclusion will be called the current local focus, or local focus
shortly. In lxample 4, if node 10 contains the conclusion which reads “a is an element of
517, this assertion will be the local focus. The semantic objects “a” and “S;”, together
with the assertion itself, are the focal centers.

Apart from the current local focus, a value must be dynamically assigned to all
elements in the open prool units, reflecting their relative level of prominence. As will be
seen in Chapter 12, these values affect decisions on reference forms to previous conclusions.
The focal centers are also used to determine the order of the presentation for subproofs.
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10.3 Primitives Updating Proof Discourse History

The presentation history is updated primarily on two occasions: either as the side-effect of
the production of an utterance, or when the presentation plan is elaborated. To achieve a
more flexible architecture, these updates are not encoded as implicit side-effects of PCAs
or planning operators. In contrast, a small set of primitives will be devised to carry out
the updates.

Below, we briefly describe several most important primitive operations responsible
for the update of PDH:

e (Set-Conveyed :Conclusion nodel
:Reasons list-of-nodes-1
:Justification just)

marks nodel as already conveyed and updates its reasons and justification slot
correspondingly. Here just may be an inference method as described in Part 1, or
a more informal one such as “Simplify” or “By similarity”. Tn the latter cases, the
new reasons usually differ from the original ones in the input proof. If no change
needs to be made, the parameter Reasons and Justification can be omitted.

e (Open-Unit node) creates a new proof unit rooted by node and makes it the active
unit. It pushes this active unit on the attentional stack and updaies the status of
the other existing open units.

e (Close-Unit node) marks the attentional unit rooted by node as closed, pops the
attentional stack and returns to the controlling unit.

e (Set-Local-Focus node) marks the node as the current local focus.

10.4 Primitive Proof Communicative Acts

As illustrated in Chapter 9, proof communicative acts are simply speech acts in our
domain. As will be discussed in Chapter 12, certain slots in PCAs must undergo reference
choices, resulting in preverbal messages (PM).

Although the varieties of utterances appearing in an argumentative texts might be
unlimited, at least some major classes of them can be distinguished, from a functional
perspective. Currently, thirteen PCAs are identified in this theory. As suggested by the
name, proof communicative acts can be specified by the their natural language realizalions
and by the communicative goals they are supposed to fulfill. By natural language real-
izations, the natural language utterances a corresponding preverbal message brings forth
is meant. The communicative goals are specified in terms of the changes of the PDIH of
the writer, which should be followed by the reader. These goals are only illustrated in an
informal way, since no formal planning at the level of PCA is considered.
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In our theory, cvery PCA has as goal a combination of the following subgoals:

1. Conveying steps of derivations, and thereby convert some unconveyed nodes into
conveyed nodes.

2. Guiding the attention ol the reader, bringing about an update of the global atten-
tional structure. I'hese PCAs sometimes also convey a partial plan for the further
presentation. Effects of this group of PCAs include:

(a) creating new proof units, setting up partially premises and the goal of the new
unit,,

(b) close the current unit,
(¢) reallocate the attention of the reader from one proof unit to another.
The second group of PCAs are called meta-technical utterances (MTU) in [Zuk86).
Discussed within a tutoring context, her MTUs cover a broader type of text than our

PCAs do. A model which simulates user’s reaction to utterances is employed to motivate
the generation of MTUs.

PCAs Conveying a Derivation

There are several PCAs informing the derivation of a new inlermediate conclusion from
existing ones. Derive is the simplest one:

(Derive Reasons: list-of-nodes
Intermediate-Results: list-of-nodes
Derived-Formula: node
Method: method)

This PCA has a name and four slots:

e Reasons is a list of proof nodes (cach containing a formula) serving as the premises
in this step of derivation,

Intermediate-Results is also a list of nodes, being intermediate results used in
the derivation ol the derive-formula, which are to be mentioned explicitly,

Derived-Formula contains a proof node, being the conclusion of this derivation,

e Method contains the inference method used in this derivation, being either an ND
inference rule or an assertion (usually a definition or a theorem).
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Concretely, suppose the PCA

(Derive Reasons: (nodel node2)
Intermediate-Results: nil
Derived-Formula: node3
Method: def-subset)

is generated, where the formulas attached to nodel, node2 and node3 area € S,, S; C S,
and a € 5; respectively. Depending on the reference decisions made, different PMs bring
forth different verbalizations. The most complete version might be:

“Because a is an element of S; and Sy is a subset of Sy, according Lo the
definition of subset, a is an element of S,.”

Both slots Reasons and Method can be omitted, resulting in the verbalization:
“Therefore, according (o the definition of subset, a is an element of S,.”

or
“Because a is an element of S and Sy is a subset of Sz, @ is an element of S,.”

Note that not only different PMs enforce a variation of the realization, the same PM
may also allow for multiple realizations. For details, the reader is referred to Appendix B.

Independent of the concrete verbalizations, the following accompanying update activ-
ity in the PDH of the writer should be shared by the rcader: '

(Set-Conveyed :Conclusion node3
:Reasons (nodel node2)
:Justification def-subset)
(Set-Local-Focus node3)

There are four additional PCAs belonging {o this group: Assume, Axiom-
Instantiation, Reformulate, and Similar, see Appendix B.

PCAs Creating New Proof Units

New proof units are created under assorted circumstances, covered by different PCAs.
Firstly, a PCA may create new units by setting up new subgoals:

(Split-Goal Goal: node,
Subgoals: list-of-nodes)
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For instance, if node contains the formula ¢ € S;, and 1list-of-nodes has two elements
containing a € Sy and 57 C 5, respectively, the corresponding PM produces the following
natural language utlterance:

“To prove that ¢ is an clement.of S, we will show that a is an element of S;
and that Sy is a subset of 537

The accompanying update in PDH shared by the reader is performed by the program
helow:

(mapcar #’open-unit list-of-nodes)

Secondly, there are PCAs creating new proofl units by establishing the hypothesis as well,
apart from initialing new subgoals. I'wo major cases are illustrated below, both directly
related to a structural natural deduction rule (see Chapter 4). In connection with the
C'ASE rule, the writer may set up two cases after proving AV B, with A and B as the
hypothesis respectively by the following PCA:

(Begin-Cases Goal: Formula
Assumptious: (A B))

In this case, the verbalization
“T'o prove Formula, let us consider the two cases by assuming A and B.”

will be generated. 'This PCA is intended to bring about a change in the readers discourse
model as illustrated i IMigure 10.2, where two new proof units U3 and U4 are created,
with the pending goals of showing Formula-1 under the hypothesis A and B, respectively.
While normal links represent justification relations, the dotted links indicated not yet
presented derivations.

It is interesting to note that the establishment of the pending goals in the PDH of
the writer should be more ascribed to the planning process than to the generation of the
PCA above. This PCA is inlended to bring about this change of PDH on the side of the
reader.

A similar situation can be observed when a new pending goal is set up after proving
3, P, with P, as the new hypothesis. The corresponding PCA is

(Begin-Assume-Choice-1 z,a)

with the natural langnage realization:

“Let a he such an 2.”

There are lour further PCAs in this group: Begin-Assume-Choice-2, Case-First,
New-lemma, Proof-By-Contradiction.
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Figure 10.2: PCA-Begin-Case

PCAs Closing Proof Units and Reallocate the Attention
The PCA Case-Second first closes the active unit. Then it shilts the attention to a new

unit. An example is, after the root of U3 in Figure [0.2 has been conveyed, the PCA
(Case-Second)

will close U3 and make U4 the active proof unit by generating the sentence:
“Now let us consider the second case.”

Note that, if U4 is not set up as a unit in advance, Case-Second augmented with an
argument B can be used to create it, with the verbalization below:

“Now let us consider the second case by assuming B.”

There is another PCA in this group, namely End-Assume-Choice.



Chapter 11

Generating Proof Communicative
Acts

This chapter concentrates on the macroplanning process. As sketched out in Chapter 9,
the macroplanner has to choose pieces of relative information which are instrumental to
the illocutionary goal, and use them to produce a sequence of speech acts. In our case,
the illocutionary goal is mainly to convince a reader of the validity of a particular proof.
Given this goal, the presentation procedure plans a sequence of PCAs to achieve it.

As briefly sketched out in Section 9.1, most current NL generation systems work
under the hypothesis that language generation is planned behavior and therefore adopt
a hierarchical planning approach [Hov88, M0089, Dal92, Rei91]. Nevertheless some psy-
chological theorics indicate that Janguage has an unplanned, spontaneous aspect [Och79]
as well. Based on this observation, researchers have also exploited organizing text with
respect 1o some local relation. Sibun [Sib90] implemented a system for generating de-
scriptions of objecls with a strong domain structure, such as houses, chips and families.
Once a discourse is started, local structures suggest the next objects available. Instead
of planning globally, short-range strategies are employed to organize a short segment of
text.

11.1 A Combination of Top-Down Planning and
Bottom-up Presentation

In our model, an attempt is made to integrate the standard hierarchical planning and the
unplanned local organization in a complementary way. Technically, the macroplanning is
cast as the combination of lop-down planning and focus-guided bottom-up presentation.
[n the top-down planning mode, the task of presenting a particular proof is split into
subtasks of presenting subproofs, and PCAs are chosen both to present primitive tasks
and to mediate between subtasks. While the overall planning mechanism follows the RST
based planning approach [Moo89, Rei91], the planning operators more closely resemble
the schemata in schema-based planning [McK85]. The way a task is split depends mainly
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on the global structure of a proof. The recognition of such patterns requires both effort
and concentration. The subgoals are therefore also explicitly posted. The bottom-up
presentation mode is devised to simulate the unplanned phenomena, where the next node
to be presented is picked out under the guidance of the mechanism of the local focus in
a more spontancous way. It is called bottom-up since one new intermediate conclusion
is chosen and presented, using already presented intermediate conclusions as its logical
premises. The bottom-up presentation procedure takes over the control when no global
communicative knowledge is applicable.

‘The presentation knowledge for both modes is uniformly encoded as presentation op-
erators, similar to the plan operators in other generation systems [Hov88, Moo89, Dal92,
Rei91]. In general, presentation operators map an original presentation task into a se-
quence of subtasks and finally into a sequence of PCAs. Clearly, these mappings are not
arbitrary, but constrained by eommunicative norms, including general communicative
norms and communicative norms specific for argumentative texts, especially for mathem-
atical proofs. Embodying such communicative norms, presentation operators ensure the
coherence of the texts produced. Some operators are sensitive to prool-time information,
primarily the subgoal hierarchy as well as the order in which these subgoals are created
ot satisfied. Others work entirely starting from the resulting proof.

The global style of a piece of text produced has to be determined by committing
to a global rhetorical strategy, since the diversity of the existing proof texts indicates
the flexibility of such communicative norms. In other words, the presentation operators
represent only the general constraints or strong tendencies motivating to act in a certain
way. In many cases, the choice of operators is by no means unique. On the contrary, the
choice is strongly influenced by various pragmatic aspects, such as the knowledge level
of the addressee, the writer’s goal to apply a specific educational strategy, or the goal
to emphasize a mathematically interesting part of proof. In other works, such pragmatic
aspects of a conversation are first mapped onto a group of rhetorical goals, which are
associated with thetorical strategies, see [Ilov90]. The extra level of rhetorical goals is
meaningful, because one rhetorical goal can fulfill different interpersonal goals. A simple
treatment is adopted in this theory, where each interpersonal goal is associated directly
with a rhetorical strategy, which essentially enforces a partial order on the set of presenta-
lion operators in every concrete situation. In other words, in a concrete circumsiance the
presentation operators are given different priorities by a rhetorical strategy. In Section
11.5, a presentation example will be shown with a very simple strategy which practically
enforces a fixed partial order.

Based on the discussion above, the process of macroplanning can be sketched out
below. A procedure Present always receives the control alter initialization. [t takes
as input a subproof and iterates until its presentation finishes. Initially, Present takes
the entire proof as input. Kach loop tries first to find a suitable top-down presentation
operator and executes it. The execution of a top-down planning operator may lead to
more than one recursive call to Present itsell. In other words, the hicrarchical planning
is realized by recursive calls top-down planning operators. Otherwise, if no top-down
operator is applicable, the control is passed on 1o the procedure bottom-up-present,
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which prescats the derivation of one new intermediate conclusion. This process is captured
by the progran segment below.

(defun Present (task); task is a subproof to be presented
(open-unit task)
(loop until finished
(if (top-down planning possible)
(choose and apply a top-down operator)  ;then
(choose and apply a bottom-up operator)) ;else
(close-unit task)))

In case more than one applicable operator is found, the most appropriate one is
chosen by comparing the global style set by a user (compare Chapter 13), and the stylistic
features of operators (compare Section 11.2). Note that the creation of new attentional
units is directly associated with the planning of explicitly posted goals. Note also, the
treatment, of possible failures in applying operators is omitted here. Below, the general
structure of presentation operators is described. Section 11.3 and 11.4 then deal with
the top-down presentation operators and the focus-guided bottom-up presentation. In
Section 11.5, the macroplanning process is illustrated with the help of an example.

11.2 General Structure of Presentation Operators

Belore introducing the concrete presentation operators, this section first lays down the
general structure for both top-down and bottom-up presentation operators.

The General Structure
All presentation operators have the {ollowing four slots:

e The proof slot contains a proof schema, which characterizes the syntactical structure
of a proof, which this operatlor is designed for. It plays the role of the goal slot in the
traditional planning framework. In the planning process, the metavariables involved
in the prool schema will be matched against a concrete subproof being the current
task.

e 'T'he applicability Condition slot contains a predicate, being the applicable condition
of this operator.

e The acls slot contains a Lisp style program which carries out essentially a sequence
ol presentation tasks. They are either PCAs, or recursive goals for subproofs.

o The fealures: a list of features are attached to each operator, to help to select the
best of a sel of applicable operators.
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Primitive Predicates for the Applicability Conditions

The following is a list of primitive predicates used to specily applicabilily conditions.

(task-p node): is the node the root of the subproofl which is the current goal?
(local-focus~-p node): is the nede the local focus?
(conveyed-p list-of-nodes): is list-of-nodes a list of already conveyed nodes?

(not-conveyed-p list-of-nodes): is list-of-nodes a list of still unconveyed
nodes?

(assertion-p M): is the inference method M an assertion?

(axiom-in-KB-p node): is the formula contained in node an axiom in the math-
ematical knowledge base?

(in-unit-p unit node): is node within the attention proof unit unit?
(in-subproof-p nodel node2): is node2 within the subproof rooted by nodet?

(reformulation-p M): is the inference method M a reformulation method (defined
in Section 11.4.2)?

Features of Operators

A list of features is attached to each operator, to help to single out the best one from
the set of applicable operators. Currently one can be chosen [rom each of the four groups
below:

the features top-down and bottom-up indicate if the corresponding operator should
be used for top-down planning or bottom-up presentation;

the features compulsory, specific, and general indicate the specificity of the operators
with respect to the types of proofs segments they are devised to present;

the features, implicitly and explicitly make sense only for top-down operators, re-
flecting the explicitness the top-down splitting of the prool to be presented i1s made
in the verbalization;

the features detailed and abstract reflect if the corresponding operator gives a de-
tailed account of the proof, or only a simplified version.

The last two groups of features are stylistic, indicating the styles of the text the cor-

responding operators produce. The global style of the text produced bas to be determined
by committing to a global rhetorical strategy, represented as an ordered list of features
(compare Chapter 13).
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11.3 Top-Down Presentation Operators

"This sections elaborates on the communicative norms concerning how goals may be ex-
panded to subgoals, or more precisely, how a proof to be presented may be split into
subproofls, as well as how the hierarchically structured subproofs can be mapped onto
some limear order for presentation. In contrast with operators employed in RST-based
planners which split goals according to the rhetorical structures, our operators encode
standard pattern for presenting proofs into schemata, which contain subgoals. This body
of knowledge, as we have mentioned above, contains primarily constraints or strong tend-
encies motivating to act in a specific way. In our model, these constraints and tendencies
are encoded in the form of presentation operators. The interpersonal goals are influential
in choosing among presentation operators, and thereby determine the overall style of the
proof. The top-down presentation operators are roughly divided into two categories:

e those containing complex schemata for the presentation of proofs of a specific pat-
tern,

e thosc embodying general presentation norms, concerning splitting proofs and order-
ing subgoals. ‘

11.3.1 Proof Structure Operators

This section introduces top-down planning operators devised for proof segments with a to
specific structure. The first is associated with proofs containing cases. A corresponding -
schema of such a proof tree is shown in Figure 11.1.

F+F GFG

9 . k)

TLabely : ANV FV G ?Labely : A, F V- Q TLabels: NG+ Q
TLabely : A F Q

CASE

Figure 11.1: A Schema Involving Cases

In two circumstances a writer may recognize that he is confronted with a proof
segment containing cases. First, when the subproofin 11.1 is the current presentation task,
tested by (task ?Labely)'. Second, when the disjunction F'V G has just been presented in
the bottom-up mode, tested by (local-focus ?Labely). No matter in which order the three
subtrees are proved at the time the proof was created, there is a communicative norm
motivating the wriler to first try to present the part leading to F'V GG, and then present
the proofs of the two cases. Besides this presentation order, this piece of communication
norm contains also knowledge aboul the PCAs used to mediate between parts of proofs.
This procedure is exactly captured by the presentation operator below.

'Labels stand for the corresponding nodes
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Case-Implicit
e Proof: as given in Figure 11.1

o Applicability Condition: ((task ?Labely) V (local-focus ? Labely))
A (not-conveyed (?Labely ?Labels))

o Acts:

(if (not-conveyed ?Labely)

(present ?Labely)) ;subgoal 1
(Case-First F)
(present ?Labely) ;subgoal 2
(Case-Second ()
(present ?Labels) ;subgoal 3

(set-convayed ?Labely))

o features: (top-down compulsory implicit)

The application of this operator posts three new subgoals. The entire verbalization
is of the pattern below:

<Verbalization subproof ?Labely >
“First, let us consider the first case by assuming I.”
<Verbalization subproof 7Label, >
“Next, we consider the second case by assuming G.”
<Verbalization subproof ?Label; >

Note that it has the feature value “implicit” since the splitting into three subgoals
is not made explicit. To achieve a certain educational effect, the writer might decide
to present the proof in a more explicit way by indicating the splitting explicitly at the

beginning. This can be achieved by adding the PCA below to the beginning of the ACTs
slot.

(Subgoal Label,
(?Labely ?Labely ?Labels))

It brings forth the verbalization:
“To prove @, let us first prove F'V (7, and consider the two cascs separately.”

This explicit version is realized in the presentation operator below.
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Case-Explicit
e Prool: as given in Figure 11.1.

e Applicable Condition: ((task ? Labely) V (local-focus 7 Labely))
A {not-conveyed (? Label,, ? Labels))

o Acts:

(cond ((not-conveyed 7Labely) ;5 ;first case
(Subgoal Label; (7Labely?Labely ?Labels))
(Present ?Labely))
(T (Subgoal 7Label; (7Labely, ?Labels)))) ;;;second case
(Case-First, P)
(present ?Label,)
(Case~Second, Q)
(present ?Labely)
(Set-Conveyed ?Label;))

e Features: (top-down compulsory explicit)

A careful reader might at this point ask why the two operators above are not com-
bined into one, by combining the two programs in the slot “Acts”. The answer is that
this modularization is determined by our design decision to keep the more stylistic choices
sepatrated from general conslrainls guaranteeing the minimal coherence of the text pro-
duced. While the latter is hardwired into the operators as their applicable conditions, the
fortner 1s encoded as a list of features. The main aim is to realize stylistic commitments
in terms ol choices of presentation operators.

The two presentation operators introduced so far encode communicative norms as-
sociated with proof nodes justified by the so-called structural rules of our ND calculus
(compare Chapter 4). There are further ten operators of this group: Assume-Choice,
Case-Complementary, Choice-Explicit-1, Choice-Explicit-2, Deduction-Top-Down,
Derive-Choice-1, Indirect-Proof-Explicit, Indirect-Proof-Implicit, Lemna.

Communicatlive norms are also found associated with proofs justified by the applic-
ation ol a specific definition or theorem (collectively called an assertion). In particular,
it is usual for a writer to prescent the derivation of the premises required by a certain
assertion in the order in which they are formulated in the assertion itself. For instance, if
R is proved as an equivalent relation through its identity, associativity, and transitivity
according to the definition of equivalent relation, where these three conditions are spe-
cified in the above order, a writer will usually present the subproofs following this order.
Below is the implicit version of the corresponding presentation operator.
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Assertion-Implicit

?Labely : subproofy, ..., Label, : subproof, oM
?Label, 1y : A Q '

Proof:

Applicability Condition: ((J; local-focus ?Label;) v (task ? Label, 1))
A(3; (not-conveyed 7 Label;)) A (assertion ?M)

o Acts:

(order the ?label; in an order intrimsic to M)
(go through the above ordered list
(if (not-conveyed ?Label;)
(present Label;)))

Features: (top-down compulsory implicit detailed)

11.3.2 Ordering and Splitting Operators

The operators discussed so far contain both ordering and presentation constraints. As
we have seen, they embody largely communication schemata concerning proofs exhibiting
particular logical structures. The presentation operators below, in contrast, perform a
simple task according to some general text organization principle, they either

e enforce an order on subproofs in the proof to be presented, or

e split the task of presenting a proof with ordered subproofs into subtasks.

Usually, the invocation of an ordering operator is followed by the invocation of a
splitting operator. Below, first a splitting operator is introduced.

Split-Top-Down-Implicit
¢ Proof: a proof P with Py,..., P, as ordered subgoals in the subgoal hierarchy.
o Applicability Condition: (task P)
o Acts:
(for i:=1 ton

(if (not-conveyed P;)
(present F;)))

e Features: (top-down general implicit detailed)
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The ordering operators to be introduced below embody the following three ordering
principles:
e the minimal load principle,
o the local focus principle,
e the proof time order principle.

Let us now examine the ordering operators in turn. First a general ordering strategy
called minimal load principle is introduced, which is discussed also in a broader con-
text ([Lev89, pp. 143]). This principle predicates that a writer usually presents shorter
branches before longer ones. The argument of Levelt is rather simple: When one branch
is chosen to be described first, the writer has to have the choice node flagged in memory
for return. If he follows the shorter branch [lirst, the duration of the load will be shorter.
The corresponding presentation operator is given below:

Order-Minimal-Load

. _P'roof: a prool P with Py, ..., P, as unordered subproofs.

o Applicability Condition: (task P)

e Acts: (order the subgoals reverse to the size of the subproofs)

o leatures: (top-down general implicit)

The next ordering strategy is the so-called focus principle. Roughly, this heuristics

works on the basis of two tendencies observable in human proof presentation process.
Iirstly there is a tendency to use the last derived intermediate conclusion directly for

further derivation, before opening another line of deduction. For instance, assume the
current lask is to present a proof of the form in Figure 11.2.

(9), (10 (6), " (7)

Figure 11.2: Focused Splitting of Proofs
L]
Assume that subtree rooted by node (2) and (3) are subproofs, node (7) is conveyed and
node (6) is the last conveyed node (local focus), the presentation procedure will create
two subtask for presenting the two subproots, and reverse the order of the subproofs. The
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subproof rooted by node (2) is chosen as the first to be presented, since the local focus
can be used to derive node (4) directly, but not node (3), which needs also unconveyed
node (8).

The second tendency covered by the focused principle can be stated as follows: After
proving a property concerning a particular semantic object, the writer usually tries to
derive other properties of the same object, as far as they are useful in the current proof,
before turning to properties of other semantic objects. The function focus-select will be
elaborated upon in section 11.4. It chooses a node maximally overlapping with scimantic
objects in local focus and introducing minimal novel objects. Recall that the semantic
objects mentioned in the local focus are called the focal centers. Built on top of this
function, the function focus-select-unit accepts a collection of subproofs {/ and a
proof node P, and returns one subproof U; in U, which should be chosen as the first
subproof to be presented. An order for an entire collection of subproofs can be computed
by repeated calling this function.

(defun focus-select-unit (/: set of proof units, /’: proof node)
(antil (P is exclusively in one U; € U)
(setq P (focus-select P)))
(return U;))

Below is the focus based ordering operator itself:

Order-Focus
e Proof: a proof P with Py,..., P, as unordered subproofs.
o Applicability Condition: (task P)

o Acts: (order the subproofs by repeatedly applying function focus-select-unit starting
from the local focus)

o Features: (top-down general)

The proof-time order principle says that very often a writer will present subprools in
the same order as they arc planned and derived in proof-time. This principle is encoded
in our last ordering operator below.

Order-Proof-Time
e Proof: a proof P with Pi,..., P, as unordered subproofs.
o Applicability Condition: (task P)

o Acts: (order the subproofs according to the proof-time order)
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e features: (top-down specific)

Note thal the ordering operators as describe above are often simultaneously ap-
plicable. Therelore, we have implemented an additional ordering and splitting operator
called Prool-Time-Structure-lmplicit, which virtually enforces a priority among the or-
dering principles in the order as listed below (for details see Appendix C):

e the proof lime order principle,
o the local focus principle,

e the minimal load principle.

11.4 Bottom-Up Presentation

The botlom-up presenlalion process simulates the unplanned part in proof presentation.
Continuing from the last presented intermediate conclusion, it follows the local derivation
relation to find a next proof node to be presented. In this sense, it very similar to the
local organization techniques used in [Sib90].

The bottom-up presentation differs from the top-down planning process primarily in
two ways. In the first place, instead of breaking a presentation task into some subtasks
according to some explicit communicative knowledge, the writer simply picks out a next
node in a bottom-up manner here, starting from the intermediate conclusions recently
presented. Although this in fact divides the presentation task into two subtasks, this
is not explicitly planned and thus does not create new proof units, since only a local
shift of attention takes place. In the second place, a writer usually does not deliberate
on choices in the bottom-ip presentation mode, rather, his attention is more guided
by the mechanism of local focus in an automatic manner to the next node via a local
derivation relation. Section 11.4.1 first introduces the bottom-up presentation procedure
itselfl, together with the mechanism of local focus. Then, Section 11.4.2 elaborates on the
bottom-up presentalion operators.

For implementation reasons, the presentation of primitive proofs (proofs of height
one) is handled uniformly as part of bottom-up presentation.

11.4.1 The Local Focus Mechanism and the Bottom-Up Present-
ation Procedure

The node Lo be presented next is suggested by the mechanism of local focus. Although
logically any node having the local focus as one of the premises could be chosen for the
next step, usually the one with the greatest semantic overlapping with the focal centers is
preferred. As mentioned above, focal centers are semantic objects mentioned in the proof
node which is the local focus. This is based on the observation that if a mathematician
has proved a property concerning a particular semantic object, one will tend to continue
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to talk about this object, or an object relating to it, before turning to totally new objects.
Let us examine the situation when the prool in Figure 11.3 is awaiting presentation.

[1]: P(a,b) [1]: P(a,b), [2): S(c)
8]: Qa,b)’ [4] : R(b,c)
[5] : Q((L, b) A R(b, (:.)

Figure 11.3: Local Focus Guided Presentation

Assume that node [1] is the local focus, the set {a,b} is the focal center, [2] is a
previously presented node and node [5] is the current task. [3] is chosen as the next node
to be presented, since it does not (re)introduce any new semantic element and its overlap
with the focal center ({a,b}) is larger than the overlap of [4] with the focal centers ({b}).
This choice is made by the function focus~-select sketched out below. It takes as input
a node task, and returns a node within the subproof rooted by task which satisfies the
following condition:

e It uses the local focus as a direct premise.
e All its premises are already conveyed.

e It introduces least new semantic elements or has the greatest overlapping with the
local focus.

(Defun focus-select (task)
(let M be a set containing all nodes under task having only

conveyed premises (including the local focus)

(if (empty M)
(add all nodes under task to M having either only

conveyed premises, or no premises)

(choose one element in M introducing least new element or

having greatest overlapping with the focal center)))

This mechanism has a severe restriction, because all semantic objects ({a, b} in the
example above) which are focal centers are given the same salience value. A refinement
1s apparently necded.

Now we are prepared to formulate the bottom-up presentation procedure itsell. First
a node is chosen to be derived in the next step, denoted as the next-node. In the situation
illustrated in Figure 11.3, node [3] will be next~node. Then a bottom-up presentation
operator will be chosen and carried out.
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(defun nl=bu-presentation ()
(cﬁoose a next-node to be presented by calling
focus-select)
(choose and apply a bottom-up presentation operator))

11.4.2 Bottom-Up Presentation Operators

This section surveys the bottom-up presentation operators. The node suggested by the
local Tocus to be presented next is designaled as next-node. The most frequently used
bottom-up operator is certainly the one which presents one step of the application of an
assertion or of a nonstructural rule of natural deduction. It is given below:

Derive-Bottom-Up

?Node,,. .., 7 Node, oM

?N()(len+]

Proof:

Applicability Condition: (eq next-node ?Node,41) A (conveyed (?Nodey,. . .,? Node,,))
e Acts:

(Derive Derived-Formula: ?Nodeyyq
Reasons: ( ?Nodey, --, ?Nodey)
Method: 7M)))

Features: (bottom-up general explicit detailed)

The precondition says, a node Node,, can be chosen as the next to be presented,
if all the predecessors it needs are already conveyed, and it is suggested by the focus
mechanism as the next node. The unique PCA generated by this presentation operator
is specified in the acts slot.

The question might arise whether this can also be modeled in terms of top-down
planning by adding:

e an operalor that splits a proof of n nodes into a proof of one node and a proof of
(n-1) nodes with the help of local focus, and

e an operator that present a primitive proof containing one node.

It would not only be quite counterintuitive, but also lead to the consequence that
every sub-prooftree in the prool discourse would be an attentional unit. This would
make the attentional hierarchy useless, and an adequate reference choice for previously
presented intermediate conclusions impossible.



100 CHAPTER 11. GENERATING PROOF COMMUNICATIVE ACTS

A more special bottom-up operator is devised to present the instantiation of an axiom
in the database. Since such nodes do not need any predecessors for their derivation, the
next-node is used as the unique applicable condition.

Axiom-Instantiation

¢ Proof: Hyp,

?Node
o Applicability Condition: (eq next-node ? Node) A (axiom-in-KB ?Node)
o Act: (Axiom-Instantiation, Formulas: ? Node)

o Features: (bottom-up compulsory explicit detailed)

Moreover, there are presentation operators presenting an entire subproof as the next
step. Three of them will be discussed below.

If a subproof is considered as trivial, the writer may decide to present this subproof
as a single derivation, omitting the intermediate nodes in the subproof. Since our theory
assumes that bottom-up presentation is guided by the focus mechanism, it is requived as
the applicable condition that the next-node determined by the focus mechanism is in
this subtree and the root of the subproof in the active unit. The presentation activity
discussed above is captured in the presentation operator Simplify-Bottom-Up.

Simplify-Bottom-Up
?Nodeq, ..., Node,

¢ Proof:

?Noden41

o Applicability Condition: (in-unit active-unit ?Node, 1) A (in-subproof next-node Node, )
AVi=1 to n (conveyed ? Node;) A (simple-proof ?Node,, )

o Acts:

(Derive Derived-Formula: ?Node, 1,
Reasons: ? Nodey,...,7 Node,)

s Features (bottom-up general explicit abstract)

Note that the simplicity of a proof is currently judged by a heuristic function which
takes both number of nodes and the type of the derivations in the proof into account. In
PROVERB currently, a subproof is deemed to be simple if:

e if it does not contain justifications that apply a definition or a theorem in the current
theory,
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e its size is small enough so that the intermediate steps can be omitted, this size is
calculated with respect to the size of the entire proof, and

e its size is large enough so that it can be considered a subproof.

The utlerance produced is identical to that produced by the operator Derive-
Bottom-Up.

Another case where a writer may decide to omit the intermediate nodes in a subproof
to be presented is when it is deemed as similar to another subproof just undergone
presentation. The application condition of this presentation operator resembles that of
the operator Simplify-Bottom-Up. The similarity is currently judged by a rather primitive
heuristic function, which considers two subproofs as similar, if

o they have identical proof structure with respect to the methods involved, and
e their premises overlap.
Apparently, it has to be refined when more experience is gathered.

Similar-Proof-Bottom-Up

?Node, ,..., TNode,

¢ Proof:
?Noden+1

e Applicability Condition: (in-unit current-unit ? Node,11) A (in-subtree next-node Node,,11)
A¥i=1 to n (conveyed Label;) A (a subproof considered similar to the one rooted by ? Nodey
has just been presented.)

o Acts:

(Similar Derived-Formula: Node,i1,
Reasons: ? Nodey ,..., 7 Nodey))

¢ Features (bottom-up specific explicit abstract)

A sentence of the format “Similarly, since ?Nodey ,..., ?Node,, Node,,;.” may be
generated, although a compound proof is needed to perform this derivation.

Finally, we look at a presentation operator called Reformulation-Implicit-1, aimed
at simulating presentation behaviour concerning proof steps usually characterized as syn-
tactic reformulations. A classical example is an application of the so-called DeMorgan
rule:

=(AV B)
-AAN-B

I
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or the propagation of negation through the quantifiers, for example, by applying the rule
of inference:
-V, F(z)

3.-F ()
Reformulation steps are usually simple, and therefore are often omitted. Taken for
granted that a writer is confronted with the task of presenting a proof of the pattern
shown in Figure 11.4, where 7M,,...,7M,, are reformulating methods. At least three

P,..., P,

™,
Qe
. ° 2
M,
Q.

Figure 11.4: Reformulations

simplified patterns have been identified.

1. if 7Q),, is assessed as important in this proof, the writer may decide to mention il
explicitly, and omit all reformulating steps. Currently, ?Q,, is judged as important
if it is used as premise by an application of an assertion, or by a structural ND rule.

2. if there are too many reformulating steps (determined ad hoc in the current imple-
mentation), the writer might choose to explicitly mention both 7¢)y and ?(Q),, while
omitting the other intermediate reformulating steps.

3. otherwise the writer may explicitly mention 7(},, and omit 7Q2, 7Q.

These presentation conventions are captured in the presentation operalor below.

Reformulation-Implicit-1

e Proof: proof as in Figure 11.4

¢ Applicability Condition: (in-unit ?Q), current-unit) A (eq next-node 7Q))) AVi=1 1o m
(conveyed 7P, )AVi=1 to n (reformulation ?M;)

o ACTS:
(cond ((important ?¢},) ;;;case 1
(Derive Derived-Formula: 70Q),
Reasons: 7P, ---, P,
Method: 7My))
((> n 4) ;;;case 2

(Derive Derived-Formula: ?¢)q
Reasons: *P;, -+, 1P,
Method: 7M;)

(Reformulate Derived-Formula: 7Q),))
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(T (Derive Derived-Formula: ?7(}; ;;;case 3
Reasons: 7P, ---, 1P,
Method: 7M;))

o features (bottom-up compulsory explicit abstract)

Before closing this section, we want to point out two important properties of the
collection of presentation operators introduced up to now. First, it is complete in the sense
that for every proof, there is always a sequence of applicable operators which accomplishes
the task of presenting the given proof. Secondly, it is indeterministic in the sense that
there is normally more than one such sequence of applicable operators. A writer may
however single out one sequence of operators by adhering to a particular style appropriate
for his purpose.

11.5 A Presentation Example

In this section, the entire macroplanning process is illustrated with the help of an example.
This will be done by taking several snapshots of the presentation process as it is implemen-
ted in the presentation module of the system PROVERB. The input of the presentation
module is an ND style proof at the assertion level, abstracted from a machine-generated
ND proof, to be described in Part III. The assertion level proof to be presented given
below is represented in a linearized version of ND proofs, introduced in [And80Q]. In this
formalism, every proof is a sequence of proof lines, each of them is of the form:

Label A+ Derived-Formula Justification{reason-pointers)

where Justification is either a rule of inference in /'K, or an assertion, which justifies the
derivation of the Derived-Formula using formulas in lines pointed to by reason-pointers
as the premises. A is a finite set of formulas, hypotheses upon which the derived formula
depends, and it can be ignored for our purpose. The proof to be presented is a machine
generated proof for a theorem taken from a textbook about semigroup and automata

[DeuTl].

Satz 1.9 in [Deu7l]:

Let F be a group and U a subgroup of F, if 1 and 1y are unit elements of F' and U
respectively, then 1 = 1y.

The definitions of semigroup, group, and unit are obvious. solution(a,b,c, F,x*)
should be read as “c is a solution of the equation axz = b in F.”

 should be read as “cis a solution of the equationaxz=bin F.”
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Abstracted Proof about Unit Element of Subgroups

NNo S;D Formula Reason
Definitions
1. ;1 F YvrUCFoVozelUszeF (Def-Subset)
2. ;2 F o Vi,Fe unit(F, 1, %) & semigroup(F,«x) A1 € (Def-Semigroup*Unit)
FAVN; feEF1xf=fxl=f)
3. ;3 B Vpa group(F,x) & (Def-Group)

semnigroup(F, *) A (31 unit(F, 1, *)A (V¢ f €
F=>3f~1 f—IEF/\f—l*fzzl))

4. 4 F Yy, Fx subgroup(U, F,*) & (Def-Subgroup)
: semigroup(F,+) AU C F A group(U, *)
5 5 F Vyg,zFs solution(f, g, z, F,*) & (Def-Solution)
semigroup(F,*)A f,g,z € FAf*z =g
6. ;6 F Vyg.zy Fe group(F, +) A solution(f, g,z, F,*) A (Th-solution)
solution(f, g,y, F,*) >z =y
The Proof
7. 1 F group(F,x) A subgroup(U, F,*) A unit(F,1,%¥) A (Hyp)
unit(U, 1y, *)
8. 47 F UCF (Def-Subgroup 7)
9. 27 F lpelU (Def-Semigroup*Unit 7) .
10. 27 F o3, zeU 39
11. ;11 Fowel (Hyp)
12, ;7,11 Foupxlyp=u (Def-Semigroup*Unit 7 11)
13. 1,4,7.11 F uwEF (Def-Subset 8 11)
14. 1,2,4;7 F lyeF (Def-Subset 8 9)
15. 3,7 F  semigroup(F, *) (Def-Group 7)
16. 1,2,34,5;7,11 F  solution(uy, uy, 1y, F, *) (Def-Solution 15 13 14 12)
17. 1,2,4;7,11 Fougxl=1uy (Def-Semigroup*Unit 7 13)
18. 2,7 F 1eF (Def-Semigroup*Unit 7)
19, 1,2,3,4,7,11 F  solution(uy, uy, 1, F, %) (Def-Solution 15 13 18 17)
20. 6,1,2,34,5;7,11 - 1=1y (Th-Solution 7 16 19)
21. 1,2,34567 +F 1=1y (Choice 10 20)
22. 1,2,3,4,5,6; F group(F, ) A subgroup(U, F,*) Aunit(F,1,*) A (Ded 7 21)

unit(U, 1y, *) = 1= 1y

The corresponding proof tree is shown in Figure 11.5°. Children of nodes are given
in the order as they will be presented. The circles denote nodes which are first derived
at this place, and nodes in the form of small boxes are copies of some previously derived
nodes, which are used as premises again. The big boxes represent the attentional units
called proof units, created during the presentation process. Apparently, the proof units
form a hierarchy. The output proof in English is repeated in Figure 11.6.

As will be discussed in Chapter 13, heuristics are employed to simulate subtrees in
the input proof as possible conceptual subproofs during proof time. In this example, the
system also commits itself to a standard rhetorical strategy specified as an ordered list of
features. The information useful for our purpose after initialization is listed below (the

2Multiple copies of proof lines in the linearized version are needed to construct a proof tree. We will
continue to used this standard notion, although it is technically a DAG (directed acyclic graph).




11.5. A PRESENTATION EXAMPLE 105
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Figure 11.5: Proof Tree for Satz 1.9

The Natural Language Proof

1) Let F' be a group and U be a subgroup of F and 1 be a unit element
of F' and 1y be a unit element of U. (2) According to the definition of

'~ unit element 1y € U. (3) Therefore there is an X, X € U. (4) Now
suppose that u; is such an X. (5) According to the definition of unit
element uy * Iy = wu;. (6) Since U is a subgroup of F U C F. (7)
Therefore u; € F. (8) Similarly 1y € F since 1y € U. (9) Since F is a
group F is a semigroup. (10) Since u; * 1y = uy 1y is a solution of the
equation u; * X = uy. (11) Since 1 is a unit element of F uy * 1 = u;.
(12) Since 1 is a unit element of F' 1 € F. (13) Since u; € F 1 is a
solution of the equation uq * X = u;. (14) Since F' is a group 1y =1
by the uniqueness of solution. (15) This conclusion is independent of the
choice of the element u,.

Figure 11.6: A NL Proof Generated by PROVERB

global style of the text can be influenced by permuting the list of styles, compare Section
9.3): (

Initialization

e Proof-time-subproofs: (10,16,19,20,21,22)
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o Task-Stack:(22)
o Style: (compulsory specific general implicit explicit abstract detailed)

The text planning process is illustrated by examining the sequence of plan operators
invoked as well as the actions they take. Actually, in connection with every execution of
presentation operators, the following items are shown:

o OP: records the name of the presentation operator invoked.

.o PCA, PM, and NL: there can be more than one group of these three items, recording
the proof communicative acts decided upon by the current presentation operator,
the corresponding preverbal messages produced in the microplanning stage (to be
discussed in Section 12.5), as well as the final wording in natural language. These
actions are carried out immediately after the current presentation operator is in-
voked. If a PM item is identical to the corresponding PCA item, the former is
omitted. Other PCAs must be incorporated into units around other presentation
operators (see the items Pre and Post).

e Nodes-Conveyed: a list of proof nodes conveyed with the execution of this present-
ation operator.

e Pre and Post: due to the recursive nature of the presentation process, however,
some of the actions decided upon by one operator have to be put into items of other
operators. These two items are devised to accommodate such actions, as well as
other bookkeeping actions.

e Task-Stack: it is maintained for the convenience of the discussion, although this
task is carried out by the recursion handling mechanism of Common Lisp.

Normally, finished proofs end with a proof line justified by the DEDuction rule
of NK, discharging the hypothesis by constructing an implication as the final theorem
(compare Chapter 4). If the proof is achieved as a proof by contradiction, the last line will
be justified instead by one of the rules for indirect proof. Therefore, normally the top-
down planning operator Deduction is applied at the very beginning, which establishes
first the assumption for the entire proof (line 7). This is recorded as the first step below.

Step 1
e OP: Deduction, top-down
e PCA:

(Derive Derived-Formula: group(F,*) A subgroup(U,F,x)
A unit(F,1,%) A unit(U, ly, *)
Method: Hyp)
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e NL: “Let F be a group and U a subgroup of F' and 1 be a unit element of F' and
1y a unit element of U.”

e Nodes-Conveyed: 7
o Task-stack: (21)

As the second Step , the planner finds there are two top-down applicable present-
ation operators: Choice-Explicit-2 and its implicit counterpart Choice-Implicit-2.
Since the planer has committed to an explicit rhetorical strategy, it chooses the explicit
one. Choice-Explicit-2 does currently nothing more than pushing two subgoals into the
presentation stack, namely, node 10 and 20. This recorded as the second step:

Step 2:
e OP: Choice-ExpliCit-2, top-down
o Task-stack: (10,20,21)

Now the current task is the presentation of subproof rooted by node 10, and there
is no applicable top-down operators. At this moment, the system enters the bottom-up
mode, choosing the next node to be presented guided by the local focus mechanism. It is
node 9 that the function focus-select suggests as the next node. In this case, it is fairly
trivial since node 9 is both the only one depending on the local focus (node 7), which the
current task (node 10) depends on, see Section 11.4. This bottom-up presentation step is
recorded in Step.3. A more complicated case for choosing the next node guided by the
local focus can be found in Step 7, see Appendix A.

Step 3:

e Pre: (open-unit 10)(next-node 9)

OP: Derive-Bottom-Up
¢ PCA:
(Derive Derived-Formula: 1y €U

Reasons: unit(ly, U, *)
Method: Def-Semigroup*Unit)

e PM:

(Derive Derived-Formula: 1y U
Method: Def-Semigroup*Unit)
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e NL: “According to the definition of unit element, 1y € U.”
e Nodes-Conveyed: 9
o Task-stack: (10, 20, 21)

Let us now jump over one bottom-up presentation step and consider Step 5. Up to
now, sentence 1 to 3 in Figure 9.7 are already uttered, the current task is node 20. At
this point, no communicative knowledge specific to the proof structure is at the disposal
of the planner. Since the subproofs rooted at nodes 16 and 19 are initialized as subgoals
at the proof time, nevertheless, and since the presentation process is accompanied by a
verification process, the planner may decide to present the two subproofs exactly accord-
ing to the order in which they are proved. In our system, however, since normally no
information about the proof time order is available, a focus based heuristic is used to
single out one unit to undergo the presentation process first. This heuristics 1s similar to
that used in bottom-up presentation in section 11.3. In this case, the unit rooted at node
16 is chosen as the first because the function Focus-Select suggests that node 12 should
be presented next, and node 12 belongs to the unit rooted at node 16 exclusively. Note
that purely logically both node 12 and node 8 could be picked out as the next node. But
the function focus-select chooses 12 because it states u; » ly = uq, a property of the
semantic object u; introduced in sentence 4, while node 8 states U C F, having nothing
to do with u;. Although this operator does not produce any PCA, it adds two subgoals
to the task stack, namely, node 16 and 19.

Step 5:
e Pre:

~ PCA: (Begin-Assume-Choice-1, uy, z), OP: 2.
~ NL: “Now suppose that u; is such an z.”

— (node-closed 11)
. OP: Proof-Time-Structure-Implicit, top-down
o Task-stack: (16,19,20,21)

Step 6 is again a bottom-up step guided by the focus mechanism, which conveys the
node 12.
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Step 6:
e Pre: (open-unit 16)(next-node 12)
e OP: Derive, bottom-up
e PCA:

(Derive Derived-Formula: wui*ly =u;
Reasons: (unit(ly,U,*), uy €U)
Method: Def-Semigroup*Unit)

e PM:

(Derive Derived-Formula: wuyx* ly = ug
Method: Def-Semigroup*Unit)

e NL: “According to the definition of unit element, u, * 1y = u,.”
¢ Nodes-Conveyed: 12
o Task-stack: (16,19,20,21)

This example will be continued in the next chapter, where choices of reference forms
will be determined in the PCAs to produce preverbal messages.







Chapter 12

Reference Choices in PCAs

In most NI generation systems, the more global macroplanning is followed by a micro-
planning phase responsible for paragraph and sentence level organization. Since it is out of
the scope of this work, this stage of planning is restricted to the treatment of the reference
choices in PCA. Since most mathematical proofs can be organized in one paragraph, and
since in most cases the PCAs employed can be realized in a single sentence, the quality
of the text generated will not be significantly affected.

By reference choice the explicitness of the verbalization of certain entities in
some PCAs is meant. Concretely, such decisions must be made for both intermedi-
ate conclusions used as premises, as well as the inference method in the PCA Derive,
reformulate, similar-assume-derive, and similar-derive. Since the effect is very
similar, the discussion in this chapter will be mostly based on the PCA Derive.

As an example, let us look at a PCA generated in the example discussed in Section
11.5:

(Derive Derived-Formula: u* ly = u
Reasons: (unit(ly,U,*), u €l)
Method: Def-Semigroup*unit)

Figure 12.1: An Ixample PCA

Here, Dertved-Formula is filled by a new intermediate conclusion the current PCA
aims to convey, which is derivable by applying the filler of Method, with the filler of
Reasons as premises. While the new intermediate conclusion to be conveyed will usually
be handed over unchanged to the linguistic component, there are alternative choices for
referring to both the feasons and the inference Method. Depending on the discourse
history, the following are some of the possible verbalizations:

Verbalization 1 (inference method omitted):

“Since 1, is the unit element of U, and w« is an element of U, u* 1y = u.”

111
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Verbalization 2 (reasons omitted):
“According to the definition of unit element, u * 1y = u.”

As will be illustrated below, the reference choices laced here have much in common
with ‘the decisions on referring expressions in more general {rameworks [Rei85, (GS86,
Dal88]. It must be pointed out nevertheless, that in our case it is not restricted to noun
phrases, as the term referring expression is linguistically defined. As shown in the example
above, what in concern can also be a subordinate clause.

Usually, the writer will try to sail a middic course while making reference choices,
avoiding neither to be over-informative nov under-informative. ln other words, a co-
operative writer will choose a referring expression informative enough for an addressee to
deduce the object referred to. This requirement is first stated in the cooperative principle
of Grice [GriTha, Lev89]. In the following sections, we will first provide a classification of
the referring expressions both for reasons and methods, and then discuss mechanisms for
making corresponding decisions.

12.1 A Classification of Reference Forms

This section presents a classification of the possible forms with which mathernaticians refer
to intermediate conclusions previously proved (called reasons) or to methods of inference.
The classification is based on the careful analysis of proofs presented in mathematical
textbooks.

12.1.1 Reference Forms for Reasons

The following three reference forms reasons have been identified in naturally occurring
proofs:

1. The omit form: where a reason is not mentioned at all.

For instance, if the omit form is adopted for the first rcason in the PCA given in
Figure 12.1, the sentence may be produced:

“Since u ts an element in U/, w * [y = w.”

2. The ezplicit form: where a reason is literally repeated.

If this form is adopted for both reasons in the PCA given in Figure 12.1, it may
yield the sentence:

“Since u is an clement in U and 1;r is the unit element of U, ux 1y = w.”
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3. The implicit form: By an implicit form it is meant that although nothing is said
directly as to a rcason, an implicit hint to the reason is nevertheless given in other
componeuts of the PCA. That is, in the verbalization of either the inference rule,
or the conclusion.

For example, in the verbalization below the first reason of the PCA in Figure 12.1,
“since 1y is the unit-element of U” is hinted at by the inference method which reads
“by the definition of unit”: .

“Since u is an element in U, u * 1y = u by the definition of unit.”

Note that although an identical surface structure will be chosen for omit and implicit
forms, the existence of an implicit hint in the other part of the verbalization affects
understanding of a reader.

12.1.2 Reference Forms for Methods

Besides choosing referring expressions for reasons, the microplanner must select referring
expressions for the method of inference in PCAs. Below are the three reference forms
identified, which are analogous to the corresponding cases for reasons:

1. the explicil form: this is the casc where a writer may decide to indicate explicitly
which inference rule he is using.

For instance, explicit translations of domain-specific rules could look like:
“hy the definition of unit element”, or “by the uniqueness of solution.”

Structural NI rules have usually standard verbalizations (compare appendix B).
2. the omil form: in this case a word such as “thus” or “therefore” will be used.

3. The wmplicit form: Similar to the implicit form for reasons, an implicit hint to a
domain-specific inlerence method can be given in the verbalization of either the
reasons, or the conclusion.

12.2 Making Reference Choices for Reasons

Because reasons are intermediate conclusions proved previously in context, the prob-
lem of choosing reference forms for reasons in an argumentative discourse has much
in common with the problem of choosing anaphoric referring expressions in natural
language generation n general. A number of theories have been put forward to ac-
count for the phenomenon of pronominalization, which is usually ascribed to the fo-
cus mechanism. TFor this purpose, concepts like activatedness, foregroundness and con-
sciousness are introduced [Kan77, Cha75, Cha76, Kun77]. More recently, the shift of
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focus has been further investigated in the light of a more structured Aow of discourse
[Gro77, Sid79, Rei85, GS86, Dal88, Web89]. The issue ol salience is also studied in
a broader framework in [Pat93, PC93]. Apart from salience, it is also shown that re-
ferring expressions are strongly influenced by other aspects of human preference. For
example, easily perceivable attributes and basic-level attributes values are preferred
[DH91, Dal92, RD92].

Common to all discourse based theories, the update of the focus status is tightly
coupled to the factoring of the flux, of text into segments. As discussed in Chapter
10, different approaches have been suggested to answer the question as {o where the
segment boundaries lie. We basically follow the approach of Grosz and Sidner [GS86]
in that a direct correspondence between the plan hierarchy and the attentional spaces is
assumed, since it best reflects the dynamic flow of attention. In this way, the discourse is
very naturally segmented into attentional spaces (called proof unit), where each space is
initiated with the application of a top-down planning operator introduced in section 11.3.
Because the top-down planning is supplemented by an unplanned bottom-up presentation,
the elementary proof units contains usually a sequence of simple derivations.

With the segmentation problem settled, the decisions on referring expressions in
our theory largely follows the approach of Reichinan. Reichman handles the reference
problem in a more general framework of her discourse grammar (see [Rei85. Chapter
5]). Based on empirical data, Reichman argues that the choice of referring expressions is
constrained both by the status of the discourse space and by the object’s level of focus
within this space. In her theory, there are seven status assignments a discourse space may
have at any given time. Within a discourse space, four levels of focus can be assigned
to individual objects: high, medium, low, or zero, since there are four major ways of
referring to an object using English: by using a pronoun, by name, by a description, or
implicitly. Thirteen rules are formulated to assign level of focus to objects when they are
activated, either with the initialization of a discourse unit or when they are added to the
active unit. Four further rules reassign the level of focus on reentrance of a suspended
discourse space. Based on the status assignment of discourse spaces, as well as the level
of focus of individual objects, four rules are formulated constraining adequate referring
expressions.

In short, Reichman takes into account both the foreground and background status of
proof spaces and the level of focus of individual intermediate conclusion. As a simplific-
ation for argumentative discourse, the notions of structural distance and lextual distance
are introduced.

The structural distance of a reason reflects the foreground and background character
of the innermost proof unit containing it. Intuitively, reasons that may still remain in the
focus of attention at the current point from the structural perspective will be considered
as structurally close. Otherwise they will be considered as struclurally distant. 1f a reason,
for instance, is last mentioned or proved in the active proof unit, which is the proof unit
a human writer is currently working on, il is more likely that this reason should still
remain in his focus of attention. On the other hand, if the reason is in a closed unit
and is not the root, it is very likely that the reason has already been moved out of the
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writer’s focus of attention. It is found that the proof structure has a strong influence
on the reference forims. Although the notion of foreground and backgroundness might
actually be a continuum, our theory only distinguishes between reasons residing in proof
units which are structurally close or structurally distant. Rules assigning this structural
distance ave given in [Migure [2.2.

Assignment of Contextual Status for Reasons
1. Reasons in the aclive prool unit are structurally close.
2. Reasons in the controlling proof unit are structurally close.
3. Reasons in closed units:

(a) reasons that are root nodes of closed proof units immediate subordinate
to the active unit are structurally close.

(b) Other reasons in closed proof units are structurally distant.

—

. Reasons in precontrol proof units are structurally distant.

Figure 12.2: Contextual Status for Reasons

Note that the rules are specified with respect to the innermost proof unit containing
a proof node. Rule 3 means that only the conclusions of closed subordinated subproofs
still remain in the focus of attention. In addition, as a special treatment, premises of the
theorem will be defined as both structurally and textually distant, if they are not repeated
at the beginning of the proof.

The textual distance is used as an approximation to the level of focus of the reason.
In geuneral, the level ol [ocus of an object is cstablished when it is activated, and decreases
with the flow of discourse. In Reichman’s theory, although four levels of focus can be
established upon activation, only one is used in the formulation of the four reference
rules. In other words, it suffices to track the status high alone. Based on the discussion
above, only two values are employed to denote the level of focus of individual intermediate
conclusions, depending solely on the textual distance between the last mentioning of a
reason and the current sentence where the reason is referenced to. There is another
practical reason supporting a two-valued solution: although three ways of reference for
reasons are identified, il is still unclear whether the implicit form and the omit form
(compare Section 12.1) actually establish different levels of focus. Currently, we assume
they do not. On account of the discussion above, the two levels of focus are called teztually
close and textually distant.

[n summary, we assume that each intermediate conclusion is put into high focus when
1t 1s presented as a newly derived resull or cited as a reason supporting the derivation of
a further intermediate result. This level of focus decreases, either when a proof unit is
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moved out of the foreground of discussion, or with the increase of textual distance. On
account of the above, the four reference rules used in our computational model are given

in Figure 12.3.

Choices for Referring Expressions for Reasons

1. If a reason is both structurally and textually close, it will be omitted. As a
special treatment for the hypothesis of the entire problem, the omit orm will
also be chosen for nodes structurally close but textually distant, which have
still not been used as a reason.

2. If areason is structurally close but textually distant, first try to find an implicit
form, if not possible, use an explicit form.

3. If a reason is structurally distant but textually close, first try to {find an implicit
form, if not possible, omit it.

4. An explicit form will be used for reasons that are both structurally and tex-
tually distant.

Figure 12.3: Reference Rules [or Reasons

Note that the result of applying rule 2 and rule 3 depends on the fact that an implicit
form is available, which often interacts with the verbalization of the rest of the PCA. In
particular, it interacts with the reference choices for inference methods. In PROVERB
as it currently stands, this is realized by associating a new word with the verbalization
of every predicate, function, and assertion. For instance, suppose the verbalization of
unit(F,1,*) as a reason is “since 1 is an unit element of F”, and the verbalization of the
definition of unit element as an inference method is “by the definition of the unit element”.
Both the predicate unit and the definition are associated with the same keyword “unit”.
Therefore, PROVERB assumes that the verbalization of the reason unit(I°,1,+) and the
verbalization of the definition of unit element hint at each other. Distance is currently
calculated in an ad hoc way by counting the PCAs uttered after the corresponding reason
was last explicitly mentioned.

12.3 Making Reference Choices for Inference Meth-
ods

Like the reference to a reason, the explicitness or implicitness of referting to an inference
method at a particular point depends on whether the particular method can bhe casily
called into the foreground of the focus of attention. In contrast to references o reasons,
this is evidently irrelevant to the particular discourse structure concerned. Actually it is
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less concerned with the proof context than with the user’s familiarity with the particular
inference method. This referring behavior remains the same throughout a whole discourse,
similar to the referring behavior relating to the so-called canounical salience [Pat93]. In
the case of applications of definitions or theorems, it depends on the reader’s familiarity
witl the corresponding definition or theorem. This is found to be sensitive to the global
hierarchy of the mathematical theories [Ker91, SK93]. As it currently stands, PROVERB
distinguishes ouly between assertions in the underlying theories and assertions belonging
to the current thcory. The reference choice rules for inference methods incorporated in
our computational model are listed in Figure 12.4.

rl‘\

Choices for Referring Expressions for Methods

1. Reference Choices for ND Inference Rules

(a) All non-structural ND rules will be omitted (In the case of PCA DERIVE,
a word like “thus”; “hence”, etc. will be used), because the readers are
supposed to be familiar with the elementary logic.

(b) All structural ND rule will be explicitly given. Although they are also
familiar to the rcaders, they provide land marks for the overall proof
structurc.

2. Reference Choices for Applications of Assertions

Readers are assumed (o be familiar with definitions and theorems of the “un-
derlying theories” upon which our current theory is based. For example, when
we are reasoning about properties of group theory we assume that the users
are familiar with basic set theory and the omit form should be chosen for the
application of definitions or theorems of basic set theory:

(a) Applications of definitions and theorems of underlying theories will be
omitted.

(b) For applications of definitions or theorems of the current theory, try first
to find an'implicit form. If impossible, an explicit indication will be given.

—

IYigure 12.4: Reference Rules for Methods

12.4 An Integrated Algorithm for Reference Choices

As illustrated above, reference choices for rcasons and for methods interact with each
other. Tlis section describes an algorithm combining the reference choice rules for reason
and the reference choice rules for methods, to produce preverbal messages from PCAs. As
such, the main task is to utilize the interaction between the two sets of reference rules to




118 CHAPTER 12. REFERENCE CHOICES

eliminate the indeterminacy in both of the rule sets. The indeterminacy lies in rule 1 and
2 in Figure 12.3 and in rule 2(b) in Figure 12.4, which need information on decisions made
by the other set of rules. In other words, decisions in one rule set may help to narrow the
alternatives in the other set. In PROVERB as it currently stands, the reference choice
for the inference method is first made. While doing so, PROVERB looks ahcad and takes
the possible reference choices for reasons into account. 1[ still no unique choice can be
made, the decision is made according to a predctermined order. Concretely, the explicit
form will be chosen for rule 2(b) in Figure 12.4. Below is the current, algorithm.

(defun nl=reference-form-method
;; ;determine the reference forms for
the inference method in the current PCA
(cond ((method is structural ND rule) ;;;first case
(choose "explicit"))
((method is non-structure ND rule) ;;;8econd case
(choose "omit"))
((method applies a definition or a theorem in underlying
theories) ;3;third case
(choose "omit"))
((method applies a definition or a theorem in the
theory) ;;;fourth case
((if (the method is hinted at by the conclusion or one of the
explicit reasons) ;;;look ahead for choices for reasons
(choose "implicit")
(choose "explicit"))))))

(defun nl=reference-forms ()
;3 ;determine the reference forms for reasons
;;;and the method in the current PCA
(nl=reference-form-method)
(nl=reference-form-reasons))

Note that, after the reference form of the method is already determined, a unique
reference form can always be singled out for the reasons. This algorithm handles success-
fully the special kind of references addressed in this chapter. It should be extended to
handle other referring expressions more widely discussed, such as subsequent references
to semantic objects, sentential anaphora and event anaphora.

12.5 A Presentation Example {(Continued)

Now we continue with the subgroup example introduced in Section 11.5 and illustrate
how PROVERB decides on reference forms and thercby generates preverbal messages

from PCAs.
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Let us examine the gencration of preverbal messages in the Step 3 (pp. 107) and
Step 6 (pp. 109) listed in Section 11.5. The PCA in Step 3 aims to convey that derivation
of proof node 9 (1 € U) rom a part of node 7 (unit(1y,U, *)) can be justified by the
application of the definition of the unit element in semigroups. The current unit is U3. U2
and Ul are the controlling and precontrol unit, respectively, see Figure 11.5. Since node
7 is in the controlling unit and is mentioned last only two steps previously, it is therefore
judged as both structurally and textually close. Rule 1 in Figure 12.3 matches and the
omil form is chosen. Since the definition of the unit element resides in the current theory
as mentioned in the initialization, Rule 2(b) in Figure 12.4 suggests the application of
the definition be referred to either implicitly or explicitly. Because the implicit option is
ruled out by the omit form for reasons, the explicit formn is chosen. Therefore, from the
PCA

(Derive Derived-Formula: 1y €U
Reasons: unit(ly, U, *)
Method: Def-Semigroup*Unit)

the PM below is generated:

(Derive Derived-Formula: l, €U
Method: Def-Semigroup*Unit)

Now we jump to Step 6. Here, a PCA is generated to convey that node 12 (uy 1y =
uy) can be derived from part of node 7 (unit(ly, U,*)) and node 11 (u, € U) by applying
the delinition of the unit element. U5 is now the current unit, with U4 and U2 as
controlling and precontrol units. U3 is the unique closed unit. Reason node 7 is now
structurally distant but still texually close, and node 11 is in the current unit and is the
node last, conveyed, therefore, both 7 and 11 are omitted. T he reference form for the
definition of unit clement is decided upon as above. In short, from the PCA

(Derive Derived-Formula: u,;* ly = uy
Reasons: (unit(ly,U,x), uy €U)
Method: Def-unit)

the PM below is generated:
(Derive Derived-Formula: u; * ly = u

Method: Def-Semigroup*Unit)

The 15 preverbal messages generated by PROVERB for our example is listed (in
machine format) below.




120 CHAPTER 12. REFERENCE CHOICES

1. (Derive, Method: "hyp" ,
Derived-Formula: ((GROUP F *) (SUBGROUP U F x*)
(UNIT F 1 *) (UNIT U 1U)))
2. (Derive, Method: "Def-Semigroup*Unit" ,
Derived-Formula: ((ELE 1U U)))
(Derive, Derived-Formula: ((EXISTS [X].(ELE X U))))
4. (Begin-Assume-Choice, Parameters: (X U) ,
Derived-Formula: ((ELE U1 U)))
5. (Derive, Method: "Def-Semigroup*Unit" ,
Derived-Formula: ((== (APPLY * U1 1U) U1)))
6. (Derive, Reasons: ((SUBGROUP U F x*))
Derived-Formula: ((SUBSET U F))) ‘
7. (Derive, Derived-Formula: ((ELE Ul F)))
8. (Similar, Reasons: ((ELE 1U U)),
Derived-Formula: ((ELE 1U F)))
9. (Derive, Reasons: ((GROUP F %)),
Derived-Formula: ((SEMIGROUP F *)))
10. (Derive, Reasons: ((== (APPLY * U1 1U) ©)) ,
Derived-Formula: ((SOLUTION U1 Ul iU F *)))
11. (Derive, Reasons: ((UNIT F 1 %)),
Derived-Formula: ((== (APPLY * U1 1) U1)))
12. (Derive, Reasons: ((UNIT F 1 %)),
Derived-Formula: ((ELE 1 F)))
13. (Derive, Reasons: ((ELE Ul F)),
Derived-Formula: ((SOLUTION U1 U1 1 F *)))
14 (Derive, Method: "Th-solution",
Derived-Formula: ((== 1U 1)))
15. (End-Assume-Choice, Parameters: (U),
Derived-Formula: ((== 1U 1)))

w

A sentence in English is generated from each PMs above by the surface generator

TAG-GEN. The text as generated follows.
The Natural Language Proof

(1) Let F' be a group and U be a subgroup of F' and 1 be a unit element of I’ and
1y be a unit element of U. (2) According to the definition of unit element 1y € U/. (3)
Therefore there is an X, X € U. (4) Now suppose that u; is such an X. (5) According
to the definition of unit element u; * ly = w;. (6) Since U is a subgroup of I' U C F.
(7) Therefore u, € F. (8) Similarly 1y € F since Iy € U. (9) Since F is a group F is
a semigroup. (10) Since uy * Ly = uy 1y is a solution of the equation u; * X = uy. (11)
Since 1 is a unit element of F uy x 1 = uy. (12) Since | is a unit clement of /71 € F.
(13) Since u; € F' 1 is a solution of the equation uy * X = uy. (14) Since /' is a group
ly = 1 by the uniqueness of solution. (15) This conclusion is independent of the choice
of the element u;.
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Chapter 13

The System PROVERB

13.1 Introduction and System Architecture

Based on the computational theories discussed in Part 1 and Part II, we have implemented
a prolotype of a prool presentation system called PROVERB. It is implemented in Allegro
Common Lisp with CLOS, on top of KEIM a tool kit for constructing deduction systems
[Nes92]. Although usable as a stand-alone system taking ND proofs as inputs, we have
first experimented with it within Q-MKRP, an interactive environment for developing
proofs. A detailed overview of the prool and presentation cycle in -MKRP is illustrated
in Figure 13.1. The components within the dotted box are the main contributions of this
thesis. Besides constructing a proofl with predefined methods, a user of §-MKRP has also
the possibility of calling an automated theorem prover to fill a remaining gap in the proof
he is working on [HKK*92b]. Currently, the resolution based theorem prover MKRP
is the only automated theorem prover {ully integrated. The refutation graph delivered
by MIKXRD is translated itnto NI proofls al the logic level, according to a mechanism
reported in [Lin89, Lin90]). During this translation, emphasis is laid on the production
ol more natural proofs by avoiding indirect proofs and by globally structuring the proof.
In this sense, it may be viewed as the first step of the reconstruction. Starting from
a logic level prool the reconstruction is carried out one step further by abstracting it
to the assertion level defined in Part 1. Based on the computational model presented in
Part 1, a lincarized list of preverbal messages is generated by a text planner. Finally, the
preverbal messages are translated in a template-driven manner into syntactic and semantic
descripiions accepted by Tag-Gen, a front generator based on an extended TAG formalism
[Kil941. KF93]. In the next Section, we first discuss an algorithm which reconstructs an
assertion level prool based on a logic level ND proof. Since the presentation of a logic
level proof exactly follows the computational model discussed in Part 11, we only illustrate
this process with the help of an example in Section 13.3. In Section 13.4, the interface to
Tag-Gen is bricfly described.

123
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Problem Proof in English
il
ATP Tag-Gen-7
'
Refutation Graph Syntactic Semantic Descriptions

Transformation | Tag Interface
ND Proof yMcssagas
Abstraction Text Planner '

N

Assertion Level Proof

Computational Model

for Informal Mathematical
Reasoning

___________________________________________________________________________________________

Figure 13.1: The Proof Presentation Cycle

13.2 The Abstraction Module

As sketched out in Chapter 1, a second reconstruction abstracting ND proofs to the
assertion level is necessary, to provide the presentation module with more natural in-
puts. This section is devoted to such an abstraction procedure, with the help of the trec
structure representing assertion level inference rules introduced in Chapter 7. Embedded
in Q~-MKRP, an interactive proof development environment [HKK*92b], the input N1
proofs are represented in a linearized version, introduced in [And80]. In this formalism,
every proof is a sequence of proof lines, each of them is of the form:

Label A Derived-Formula Mcthod(reason-pointers)

where Method is restricted to a rule of inference in N, which justifies the derivation of the
derived formula using formulas in lines pointed to by reason-pointers as the preconditions.
A is a finite set of formulas, being hypothesis on which the derived formula depends. We
want to point out that although the linear format may not be suitable for some purposes,
a linearization is required by the translation into natural language.

As argued above, in order to produce natural langnage proofs comparable with proofs
found in typical mathematical textbooks, we should first try to replace as much complex
proof units as possible by atomic assertion level steps. One straightforward procedure
would be going through the entire input proof, and test for every proof line, if i, can also
be justified by the application ol an assertion. As candidates for such assertions all formu-
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las valid at this point of proof musi be considered. To test the applicability of a particular
assertion, we have to test for every compound rule associated with this assertion (com-
pare Chapter T), and {o search the entire previous prool context for potential premises.
Apparently, the above sketched procedure effectively reproves the problem based on the
input proof. Although this procedure may find better prools, 1t is very search intensive
and can casily get lost in a combinalorially explosive search. Another extreme is a strict
abstraction of the input NI prool by simply replacing all subproofs satisfying the decom-
position and composition constraint (see section 6.1.1) by a atomic assertion level step.
This approach, however, has a severe drawback as well. Since automated theorem provers
usually work in a manner fundamentally different to that of human beings, the input ND
proofs arc often quite twisted so that not many units satisfying this constraint can be
found. To reconcile the cfficiency and the quality requirement, we employ an algorithm
‘that mainly abstracts an existing proof as it is proved, but utilizes the assertion level in-
ference rules instead of the decomposition and composition constraint. In fact, the global
structure is taken over from the first approach: we go through the entire input proof,
and test for every proof line, if it can also be justified by the application of an assertion.
However, only definitions and theorems contributing to its proof, namely those in 4\, are
taken as candidates of applicable assertions. And only proof lines transitively reachable
via the reason-pointers are considered as potential premises.

Algorithm:

L. go through the entire proof recursively starting from the conclusion, which is the
root of the corresponding proof tress,

(a) choose as the set of assertions AS the set of hypothesis A of the current line

(b) among the lines transitively rcachable via the reason-pointers starting from
the current line, test if there exist lines pq,...,p,, from which the derived
formula F' of the current line can be derived by applying an assertion A in
AS. This is done by finding a subtree in Tree( A, NK), so that the derivation
is justified by a rule represented by this subtree. In this case, replace the rule
of inference R in this line by a label standing for A as the new justification,
and update reason-pointers so that they point to py, ..., p,. Recursively do 1.
for p1,..., Pa-

2. delete all lines, which are no more involved in the reason hierarchy starting from
the conclusion of the entire proof, along the reason-pointers.

A refinement is also made to tackle the situation where more than one applicable
assertion level rule is lound. In the current implementation, the one that deletes most
lines is chosen. Although locally optimal choices do not always lead to a globally optimal
choice, it turns out to be tolerable since such cases rarely occur. The search for a subtree
in Tree( A, NK) is signilicantly accelerated by the subformula rclation among nodes in
the tree schemata (sec 6.1.1).
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Despite its simplicity, the current algorithm substantially shortens input NI proofs
of a broad class. Most significant reduction is observed with input proofs which are
essentially direct proofs, but containing machine-generated detours and redundancies. At
the end of this section, we show an example where a machine-gencrated ND proof with
134 lines is abstracted {o a proof of 15 lines. The algorithm also works well on neatly
structured ND proofs. In these cases, the reduction factor depends on the average depth
of the terms in the definitions and theorems involved in the proof. Since mathematicians
usually avoid using both too trivial and too complicated definitions and theorems, a
stable reduction factor (about two thirds in length) is normally achieved. The algorithm
performs very poorly on machine-generated proofs which are mainly indirect, i.c., in most
of the lines only contradiction is derived. Despite of a reduction factor of about one third
in length, the remaining proof lines are still largely at the level of calculus rules and the
proof is therefore still too tedious.

Let us look at the example bélow, abstracted from an input prool of 134 lines,
generated in the proof development environment :-MKRP. Eleven of the remaining
fifteen steps (from line 8 to line 21) are at the assertion level. The rest is justified by ND
rules of more structural import: they introduce new temporary hypothesis or discharge
them, or split a problem into cases. These steps will usually be presented explicitly later.
Many trivial steps instantiating quantifiers or manipulating logical connectives are largely
abstracted to assertion level steps. For instance, a proofl segment with four extra lines,
being the linearized version of the proof tree in Figure 2.1 as the matter of fact, is needed
even in a neatly written input ND proof to achieve step 7 from step 2 and 5. Most
importantly, the replacement is not restricted to natural expansions, but includes other
logically equivalent compound segments. [f we replace the assertion level steps in the
proof below by their natural expansions correspondingly, the result is a logic level proof
of 43 lines, in contrast to the input proof of 134 lines.

Satz 1.9 in [DeuTl]:

Let F' be a group and U a subgroup of /', if 1 and 1y are unil elements of F' and U
respectively, then 1 = 1p.

The definitions of semigroup, group, and unii are obvious. solution(a,b,c, F,*)
should be read as “c is a solution of the equation ax 2z =bm [.”

Abstracted Proof about Unit Element of Subgroups

NNo §;D Formula Reason
Definitions
1. ;1 F YyrUCPF &V, zelUzell (Def-Subsct)
2. ;2 F o Ve unit(F, 1, %) & semigroup(F,*) A 1 € (Def-Semigroup* Unit)
FAN; fEF=1+f=fx1=[)
3. ;3 b Vg group(F,*) & (Def-Group)

semigroup(F,*) A (3; unit(J", 1L, x)A(Vy f €
F=3a f[fTeFPA " xf=1))

4. ;4 b Yy p subgroup(U, IF*) & (Def-Subgroup)
semigroup(F,x) AU C I A group(U, *)
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5. 5 Fo Vg pa solution(f, g, 2, F x) < (Def-Solution)
semigroup(F, YA [,g, 2 € FA fxxz =g
6. 6 Fo VYygzy,rx group(l,*) A solution(f, g,z, F,*) A (Th-solution)
solution(f,g,y, F,¥x) > 2=y
The Proof
7. 37 F o group(f, #) A subgroup(U, F,+) Aunit(F, 1, +) A (Hyp)
unit(U, g, x)
8. 47 F UCF (Def-Subgroup 7)
9. 247 F g el (Def-Semigroup*Unit 7)
10. 27 b3z elU (39
1. ;11 Fouy el (Hyp)
12. 27,11 Foour kLl = (Def-Semigroup*Unit 7 11)
13. 147,11 Fou el (Def-Subset 8 11)
4. 1,247 F o luel {(Def-Subset 8 9)
5. 37 F semigroup(F, x) (Def-Group 7)
16, 1,2,34.5:7,11  F  solution(uy,uy, ly, F, *) (Def-Solution 15 13 14 12)
17, 1,2457,11 Fowxl =y (Def-Semigroup*Unit 7 13)
18. 2,7 FolefF (Def-Semigroup*Unit 7)
19. 1,2,3,4;7,11 F o solution(wy,uy, 1, F, %) (Def-Solution 15 13 18 17)
20. 6,123,457 F 1=1y (Th-Solution 7 16 19)
21. 1,2,3,4,5,6;7 Fol=1y (Choice 10 20)
22. 1,2,3,4,5,6; + (Ded 7 21)

group(F, x) A subgroup(U, I', ¥) A unit(F, 1, *) A
unit(U, ]U, *) =1=1y .

13.3 The Text Planner
The text planner of PROVERB expects as input the following:
e An ND style proof at the assertion level, such as the one listed in the last section.

¢ An ordered list of nodes indicating that the subproofs rooted at these nodes are
subgoals when the proof was constructed.

o A list of features, with (compulsory specific general implicit explicit abstract de-
tailed) as default. While (compulsory specific general) is a fixed order, the ordering
of other features influences the global style of the text produced (compare 11.2).

Because several important presentation operators plan in terms of the subgoal struc-
ture formed during the proof construction time, PROVERB also accepts a list of nodes
which are roots of proof units. Intuitively, proof units are subproofs whose conclusions are
once posed explicitly as a subgoal-during proof time. Thirdly, an ordered list of features
is used to influence the overall style of the text produced. In the default case, a more
implicit and abstract style is chosen. Usually, the sublist (compulsory specific general)
should be included in each style. See Chapter 11 for further details of stylistic features.

Since it is simply an immplementation of the computational model introduced in Part
I1, only two extra heuristic procedures are described here.
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13.3.1 Heuristics Simulating Proof Time Subgoal Structure

Up to now, only part of the proof time subproofl structure can be reconstructed in
the transformation from refutation proofs to ND proofs [Lin90]. To relieve the user
from always specifying the set of proof unils manually as a parameter to the function
nl~presentation, heuristics are devised to simulate it, by structuring underlying math-
ematical theories into a hierarchy, where each theories is supported by its immediate
subordinate theories. In general, we assume that definitions and theorems at a higher
level in the hierarchy are more likely to play an important role in {he proof process. As
a first approximation, therefore, we assume that the subproofs rooted at nodes that are
obtained from applying an assertion in the current theory. In the current system, the user
is given the opportunity to define a theory by giving a list of assertions.

As the second type of plausible candidates, we also assume units involved in the
application of structural natural deduction rules, since they determine the logical structure
of the proofs. Concretely the current system employs the heuristics below:

Delineation of Proof Unit:

1. Every subtree in a proof tree rooted at a node derived by an inference rule which
applies a definition or theorem of the current level is a proof unit.

i ?Labely : AF -G )
2. In subproofs of the form DEDuction, mark both of the subtrees

?Labely : N, F = 0
rooted at 7Label; and ?Label, as proof units.

at ?7Label, and 7Label, as proof units.

4. In subproofs of the form
Labely : A FV G, TLabely: A F - H, TLabely: A, G H

?Labely A+ H

trees rooted at 7Label;, ?Label,, 7 Labels, and ?Labely as proof units.

CASE, mark the sub-

5. In subproofs of the form

Labely : A3, 1"z, Labely: ANF, F H
Labely : A+ H
Labely, and Labels as proof units.

CHOICE, mark the subtrees rooted at Label;,

Note that proof unit structures related to the structural natural deduction rules are
rarely used in the presentation process, since the structures duplicate with structures
suggested by the top-down presentation operators relating to the corresponding prool
structure, compare Section 11.3.
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13.3.2 Combining Proof Communication Acts

Successive PCAs are sometimes combined in more powerful PCAs to produce more com-
pacl text. In PROVERB as i, currenily sfands, two PCAs will only be combined if they
are of the same type and share both the Reason slot and Method slot. The mechanism
combining PCAs needs much more investigation and refinement.

13.4 The Integration of TAG-GEN as the Linguistic
Component

To test the power of our computational model for proofl presentation, in particular the
appropriatencss of the assertion level proof as an intermediate representation, TAG-GEN
[Kil94, KF93] has been integrated as a linguistic component. TAG-GEN i1s a TAG-based
syntactic generator that works in a parallel incremental way. Although developed as the
surface generator for the multimodal presentation system WIP [WAB*92, WAF*93], it is
aimed 1o suil a broad range of applications.

In particular, it fulfills the following requirements [Kil94]:

e incremental generation by utilizing parallelism,
e verbalization single utterances of varying size (sentences, phrases, words),
e accepling stylistic parameters to generate utterances of adequate styles,

e domain-independence with the help of declarative knowledge bases and flexible in-
* terfaces,

e multi-lingual output (currently English and German),

Our experience shows, that even with a simple translation mechanism, texts gen-
crated are of acceplable quality. Currently, preverbal messages are translated into a
syntactic-semantic description language required by TAG-GEN in a template-driven way.
The dictionary contains syntactic-semantic schemata both for PCAs and for predicate
and [unction symbols of the first order predicate logic. For instance, below is the second
preverbal message listed in Section 12.5.

(Derive, Method: "Def-semigroup*unit" ,
Derived-Formula: ((ELE EU U)))
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The corresponding tag-input generated is listed below.

(ADD~UTT-PAR :IDENTIFIER ’|uttpar3064})
(ADD-VP :HEAD "{\dcd $\in$}" :IDENTIFIER ’ |vp3067|
:REGENT ’ [uttpar3064|
:MOOD ’INDICATIVE :FOCUS ’|mod-vp3066])
(ADD-NP :HEAD "EU" :CAT ’NAME :GENDER ’NTR :SPECIFIER ’NONE
: IDENTIFIER ’ |np3068| :REGENT °|vp3067])
(ADD~NP :HEAD "U" :CAT ’NAME :GENDER ’NTR :SPECIFIER ’NONE
:FUNC ’PATIENT :REGENT ’|vp30671)
(ADD-PP :HEAD "according to" :REGENT ’|vp3067]|
:RELATION-IDENT ’ |mod-vp3066 |
:FUNC ’OPTIONAL :IDENTIFIER ' |pp30691)
(ADD-NP :HEAD "definition" :REGENT ’|pp30691|
:RELATION-IDENT ’ |mod-pp-13073]
:FUNC ’PREPOBJECT :IDENTIFIER ’|np3072])
(ADD-PP :HEAD "of" :REGENT ’|np3072|
:RELATION-IDENT ’ [mod-pp-23075| :IDENTIFIER ’|pp30711)
(ADD-NP :HEAD "unit element" :CAT ’NAME :GENDER ’NTR
:SPECIFIER ’'NONE :REGENT ’|pp3071|
:RELATION-IDENT °’ |mod-pp-23074| :FUNC ’PREPOBJECT)

The sentence produced by TAG-GEN is:
“According to the definition of unit element Ey € U.”
Note that the somewhat tedious syntax is determined by the incremental feature of

Tag-Gen. The entire natural language Proof Generated by PROVERB for the subproof
example discussed in Section 11.5 and Section 12.5 is given in Figure 9.7.




Chapter 14

Conclusion and Future
Improvements

14.1 Conclusion

This thesis is centered around a reconstructive architecture for presenting machine-
discovered proofs. This architecture finds its basis in two closely related computational
theories: one aboul informal mathematical reasoning, and one about human proof present-
alion. The power of our architecture is derived to a great extent from the intermediate
representation, namely, natural deduction (ND) style proofs at the assertion level. In
contrast o original NI proofs, where the focus of attention is on syntactic manipula-
tions, proofs reconstructed at the asscrtion level contain mostly inferences in terms of
semantically meaningful operators, which apply a definition or a theorem valid in the
contexl.

The computational model for inforinal mathematical reasoning is cast as an inter-
leaving process of planning and verification, with the emphasis on more semantically
meanmingful plan operators that go beyond the level of primitive inference rules. By ana-
lyzing derivations involved in prools in mathematical textbooks, we arrive at a formal
definition of the intuitive notion of the application of a definition or a theorem, in terms
of the structural characteristics exhibiled in the corresponding natural deduction proofs.
Definitions and theorems are collectively called assertions. Furthermore, the acquisition
ol compound inference rules at the assertion level is also described, leading to the notion
ol a natural calculus. With the help of a tree structure which represents compound infer-
ence rules in a compact way, machine-found ND proofs can be abstracted to the assertion
level. The resulting prool is substantially shorter, and the remaining steps resemble the
steps found in a typical mathematical textbook.

The presentation process itself is addressed in a computational model for human
prool presentation, with a proof at the assertion level as the starting point. The most
important, feature of this model is that hierarchical planning and unplanned spontaneous
presentalion are integrated in the same framework in a complementary way. The top-down
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hierarchical planning views language generation as planned behavior. Based on explicit
communicative knowledge encoded as schemalta, it splits a presentation task into sublasks.
Although our overall planning mechanisimn has much in common with the hierarchical
planning pursued by RST-based text planners, the planning opcrators contain mostly
complex presentation schemata associated with various proofl structures. 'The bottom-
up process aims at simulating the unplanned part of the proof presentation, where a still
unpresented proof node is chosen as the next to be presented using only the local derivation
relations. Since often more than one node is available via the local derivation relation, the
local focus mechanism is employed to single out, one of the candidates having the strongest
semantic link with the focal centers. The reference choices affect significantly the quality
of the text generated. By carefully analyzing proofs in mathematical textbooks, various
forms for referring to inference methods and intermediate conclusions are identified. A
discourse theory is designed to handle the reference choices. 1t benefits from a very
natural segmentation of the discourse into an allentional hierarchy as the result of the
distinction between the planned and the unplanned part of presentation.

Our theory for human proof presentation and a tractable algorithm lor reconstruct-
ing assertion level proofs from logic level ND prools is implemented in a prototypical
system called PROVERB. It takes as input a natural deduction style prool and trans-
lates the proof in several steps into natural language. Currently, PROVERD is tested as
an explanation component in a proof developrment environment called &-MKRP. The
experience with this system demonstrates,, that acceptable natural language proofs can
be produced for a wide range of ND proofs.

14.2 Future Improvements

Because the theories presented in this dissertation are intended 1o cover the entire spec-
trum of the presentation process, as well as a part of the proof construction process per se,
refinements are necessary almost everywhere. Firstly, the reconstruction of prools at the
assertion level is only the first step toward presenting prools beyond the level familiar (rom
elementary logic. There is no doubt that proofs are often presented by mathematician
at an even higher level of abstraction, sincc an expansion factor ol 10 to 20 is repor-
ted when using systems like AUTOMATH [dB80] (i.e. the mechanical proofs are about
10 to 20 times longer than the corresponding human proof, whereas our “compression
factor factor” is about 3 to 5 for neatly written NI proofs). liven more radical expan-
sion factors (about 5,000 to 10,000) are conjectured by experts for harder mathematical
problems, where only the top level prool schema is recorded and uscd for communication
among mathematicians. To achieve a similar factor of reduction in the proof presentation,
a plan recognition mechanism must be incorporaled into the recounstruction architecture.
The plan recognition in turn, must be based on a much deeper understanding of the
cognitive process of informal mathematical rcasoning.

In order to produce a coherent and flexible proofl text, much refinement is necessary
in the presentation model as well. First, since many presentation operators generale a




11.2. FUTURE IMPROVEMENTS : 133

complex scheme of PCAs, the resulting text mmay contain redundancies. Although a simple
mechanisin is integrated to combine successive PCAs, a more thorough solution might be
to permit planning directly in terms of a single rhetorical relation or a single PCA, similar
to the situation in RST-based planners. This might also help in the generation of cue
words signalling the shift of global {ocus, which is currently lacking. Second, formulas
are currently translated recursively in a template driven manner. If we examine proofs
found in mathematical text books, the translations are normally more flexible. This
problem is by no means simple, since the task of translation of a simple conjunctive
formula is analogous to the description of a complex object [Par88]. According to our
experience, the naturalness of the linal verbalization relies heavily on the naturalness of
the ontology chosen [GN87, 1.LGY0] as well as the standard translation associated with
Lypical ontological structures. Third, closely related to the reconstruction at the plan
level mentioned above, communicative norms concerning proof: plan structures must be
identified and encoded. Fourth, the current architecture normally generates only proofs in
pure text that may contain formulas. A more advanced system must be able to generate
formated text [AllvM91], as well as to include material in other modes as well, for instance,
equations or even graphs separated from the text. To achieve this, assorted problems
addressed in recent multimedia planners [WAB192, FM90b, FM90a] must be investigated
for mathematical application. In particular, it should be studied how material in different
mode can be allocated [AHIvM93]. Finally, proof presentation techniques are useful for
tutoring systems. To provide a learning environment more flexible than mathematical
textbooks, user modeling should be incorporated to tailor presentation for individual
users.
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Appendix A

A Complete Example

Below is the complete presentation trace of the subset example used throughout Part II.
The assertion level prool is repeated below [or convenience.

Satz 1.9 in [DeuTl]: )
Let I be a group and U a subgroup of J'| if 1 and 1y are unit elements of F' and U
respectively, then 1 = ly.

The definitions of semigroup, group, and unit are obvious. solution(a,b,c, F,x)
should be read as “c is a solution of the equation a *z = b in F.”

Abstracted Proof about Unit Element of Subgroups

NNo S:ID Formula Reason
Definitions
1.l F YyprUCFoV,zelU=zeF (Def-Subset)
2. ;2 F oYy pw unil(F, 1 %) © semigroup(F,x) A1 € (Def-Semigroup*Unit)
PANy fEF=1xf=[x1=])
3. 3 F o Vi group(F,x) & (Def-Group)

semigroup(F, ) A (3, unit(F,1,x) A (Vs f €
F=3a ffteFAf~txf=1))

4., A F Yy . subgroup(U, F, x) & (Def-Subgroup)
semigroup(F,*) AU C F A group(U, )

5 B F o Vygemx solution(f, g,2, F, %) & (Def-Solution)
semigroup(F,#*) A f,g,2e € FAfxz =g

6. ;6 F o Yygey.0x group(F, *) A solution(f,g,z, F,*) A (Th-solution)

solulion(f,q,y, F.x) >z =y
The Proof

7057 F o group(F, ) A subgroup(U, F,x) Aunit(F,1, ) A (Hyp)
unit(U, 1y, *)
8. A7 FUCF (Def-Subgroup’ 7)
9. T Folg el (Def-Semigroup*Unit 7)
10. 27 F o3, zel (319
tL 5t Fouet (Hyp)
12. 2;7,11 Fourrly = (Def-Semigroup*Unit 7 11)
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Figure A.1: Proof Tree for Satz 1.9

» q
[CEcEok

13. 1,4;,7,11 Fou el (Def-Subset 8 11)

14. 1,2,4;7 F 1lyeF (Def-Subset 8 9)

15. 3;7 F semigroup(F, *) (Def-Group 7)

16. 1,2,34,5;711 F  solution(u;,uy, 1y, F, %) (Def-Solution 15 13 14 12)
17. 1,24:;7,11 Foupxl =y (Def-Semigroup*Unit. 7 13)
18. ;7 F leF (Def-Semigroup*Unit 7)
19. 1,2,3,4;7,11 F solution(uy, uy, 1, F, %) (Del-Solution 15 13 18 17)
20. 6,1,2,345;7,11 + =1y (Th-Solution 7 16 19)

21. 1,2,3,45,6;7 F o 1=1y (Chotee 10 20)

22. 1,2,3,4,5,6; F group(F,*) A subgroup(U, F,x) Aunit(F, 1,x) A (Ded T 21)

unit(U, ly,*) = 1= ly

Presentation Trace 1:
Initialization:

e Level of theories: definitions and proved theories are divided into several levels of
theories, numbers below are line numbers in the proof above.
— Set-Theory: 1
— Group-Theory: 2, 3, 4

— Current-Theory: 5, 6
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e Prool-time-subgoals: (10,16,19,20,21,22)

e Task-Stack:(22)

l.

I3

Notice, the numbering is the numbering of steps as used in Section 11.5

OP: Preprocessor
PCA:

(Derive Derived-Formula: group(F,*) A subgroup(U, F,x)
A wnit(F, 1, %) A unit(U, Ly, *)
Method: Hyp)

NL: “Let £ be a group and U be a subgroup of F' and 1 be a unit element of
I and 1y be a unit element of U.”

Nodes-Conveyed: 7
Task-stack: (21)

OP: Choice-Explicit-2
Task-stack: (10,20,21)

Pre: (open-unil 10)(next-node 9)
QP: Derive-Bottom-Up
PCA:

(Derive Derived-Formula: 1y €U
Reasons: wnut(ly,U, *),
Method: Def-Semigroup*Unit)

PM:

(Derive Derived-Formula: 1y €U
Method: Def-Semigroup*Unit)

NL: “According to the definition of unit element, 1y € U.”
Nodes-Conveyed: 9

Task-stack: (10, 20, 21)

Pre: (next-node 10)

OP: Derive-Bottom-Up

PCA:
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(Derive Derived-Formula: 3, x €U/
Reasons: ly €U
Method: dI)

PM: (Derive Derived-Formula: 3, z € U/)
NL: “Therefore there is an X, X € U.”
Nodes-Conveyed: 10

post (close-unit 10)

Task-stack: (20, 21)

Pre:
— PCA: (Begin-Assume-Choice-1, u, T)

— NL: “Now suppose that u; is such an X.”
~ (Nodes-Conveyed: 11)

OP: Proof-Time-Structure-Implicit
Task-stack: (16,19,20,21)

Pre: (open-unit 16)(next-node 12)
OP: Derive-Bottom-Up

PCA:
(Derive Derived-Formula: u_l *ly = u-l
Reasons: (unit(ly,U,x), ul €U)
Method: Def-Unit)
PM:

(Derive Derived-Formula: u_l * ly = u-l
Method: Def-Unit)

2

NL: “According to the definition of unit element, vy * ly = Uy
Nodes-Conveyed: 12
Task-stack: (16,19,20,21)

Pre: (next-node 8)
OP: Derive-Bottom-Up
PCA:




o

9.

(Derive Derived-Formula: U CF
Reasons: subgroup(U, F,*)
Method: Def-Subgroup)

PM:
(Derive Derived-Formula: U CF
Reasons: subgroup(U, F,x))

NL: “Since U is a subgroup of #, U C F.”
Nodes-Conveyed: 8
Task-stack: (16,19,20,21)

Pre: (next-node [3)
OP: Derive-Bottom-Up
PCA:
(Derive Derived-Formula: u_l €F

Reasons: u_l €U, U CF
Method: Def-Subset)

PM: (Derive Derived-Formula: u; €F)
NL: “Therefore u; € F.”
Nodes-Counveyed: 13

Task-stack: (16,19,20,21)

Pre: (next-node 14)

OP: Similar-Bottem-Up

PCA:

(Similar-Assume-Derive Derived-Formula: 1y €F
Reasons: 1y €U, U CF
Methods:Def-Subset)

PM:

(Similar-Assume-Derive Derived-Formula: 1y €F
Reason: ly €U)

NL: “Similarly 1y € I, since Iy € U.”
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o Nodes-Conveyed: 14
e Task-stack: (16,19,20,21)

10. e Pre: (next-node 15)
e OP: Derive-Bottom-Up
e PCA:

(Derive Derived-Formula: semigroup(F,x)
Reasons: group(F,x)
Methods:Def-Group)

e PM:

(Derive Derived-Formula: semigroup(F,x)
Reasons: group(F,x))

e NL: “Since F is a group, F'is a semigroup.”
e Nodes-Conveyed: 15
e Task-stack: (16,19,20,21)

11. e Pre: (next-node 16)
e OP: Derive-Bottom-Up
e PCA:

(Derive Derived-Formula: solution(u-l,u.l,ly, F,*)
Reasons: Nodel12, Nodel3, Nodel4, Nodelb
Methods:Def-Solution)

e PM:

(Derive Derived-Formula: solution(u-l,u.l, 1y, FF, %)
Reasons: Nodel2)

il

e NL: “Since u; * ly = uy, 1y is a solution of the equation uy * X = uy.’
e Nodes-Conveyed: 16

e post (close-unit 16)

e Task-stack: (19,20,21)

12. e Pre: (open-unit 19)(next-node 17)
e OP: Derive-Bottom-Up
e PCA:



13.

14.

(Derive Derived-Formula: u.l * | = u_1
Reasons: unit(l,1,*)
Methods :Def-Unit)

PM:

(Derive Derived-Formula: u.l *1 = u_l
Reasons: unit(F,1,x*)

NL: “Since | is a unit element of F', uy *1 = u,.”

Nodes-Conveyed: 17
Task-stack: (19,20,21)

Pre: (next-node 18)
OP: Derive-Bottom-Up
PCA:

(Derive Derived-Formula: | €F
Reasons: unit(F,1,%),
Methods :Def-Unit)

PM:

(Derive Derived-Formula: 1 €F
Reasons: unit(F,1,%))

NL: “Since 1 is a unit element of F', 1 € F.”
Nodes-Conveyed: 18

Task-stack: (19,20,21)

Pre: (next-node 19)

OP: Derive-Bottom-Up

PCA:

(Derive Derived-Formula: solution(u-l,u-l,1, F,*)
Reasons: Nodel3, Nodel7, Nodel8, Nodelb

Methods:Def-Solution)

PM:

(Derive Derived-Formula: solution(u_-1l,u_l,1, F, )

Reasons: Nodel3)
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w

15.

APPENDIX A. A COMPLETE EXAMPLE

o NL: “Since uy € F, 1 is a solution of the equation uy ¥ X = u;.”
e Nodes-Conveyed: 19

® post: (close-unit 19)

o Task-stack: (20,21)

e Pre: (next-node 20)
e OP: Derive-Bottom-Up
o PCA:

(Derive Derived-Formula: 1 = Iy
Reasons: Nodel6, Nodel9, Node7
Methods:Th~Solution)

e PM:

(Derive Derived-Formula: | = Iy
Reasons: Node7
Methods:Th-Solution)

o NL: “Since F'is a group, 1y = 1 by the uniqueness of solution.”

e Nodes-Conveyed: 20

e post:
— PCA: (End-Assume-Choice-1 uy)
— NL: “This conclusion is independent of the choice of the element w,.”
— (close-unit 20)(set-conveyed 21,22)

o Task-stack: ()

List of PM’s

. (Derive, Method: "hyp" ,

Derived-Formula: ((GROUP F *) (SUBGROUP U F =*)
(UNIT F 1 %) (UNIT U 1U0)))
(Derive, Method: "Def-Semigroup*Unit" ,
Derived-Formula: ((ELE 1U U)))

. (Derive, Derived-Formula: ((EXISTS [X].(ELE X U))))

(Begin-Assume-Choice, Parameters: (X U) ,
Derived-Formula: ((ELE U1 U)))

. (Derive, Method: "Def-Semigroup*Unit" ,

Derived-Formula: ({(== (APPLY * U1l 1U) U1)))

. (Derive, Reasons: ((SUBGROUP U F x))
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Derived-Formula: ((SUBSET U F)))
7. (Derive, Derived-Formula: ((ELE Ul F)))
8. (Similar, Reasons: ((ELE 1U U)),
Derived-Formula: ((ELE 1U F)))
9. (Derive, Reasons: ((GROUP F %)),
Derived-Formula: ((SEMIGRODUP F *)))
10. (Derive, Reasons: ((== (APPLY * Ul 1U) U)) ,
Derived-Formula: ((SOLUTION U1 U1 iU F *)))
11. (Derive, Reasons: ((UNIT F 1 *)),
Derived~Formula: ((== (APPLY * Ul 1) U1)))
12. (Derive, Reasomns: ((UNIT F 1 x)),
' Derived-Formula: ((ELE 1 F)))
13. (Derive, Reasons: ((ELE U1l F)),
Derived-Formula: ((SOLUTION U1 U1 1 F *)))
14 (Derive, Method: "Th-solution",
Derived-Formula: ((== 1U 1)))
15. (End-Assume-Choice, Parameters: (U),
Derived-Formula: ((== 1U 1)))

The Natural Language Proof

(1) Let I be a group and U be a subgroup of F' and 1 be a unit element of F' and
lyy be a unit element of U. (2) According to the definition of unit element 1y € U. (3)
Therefore there i1s an X, X € U. (4) Now suppose that u; is such an X. (5) According
to the definition of unit element u; * Iy = u;. (6) Since U is a subgroup of F U C F.
(7) Therefore u; € F. (8) Similarly 1y € I since 1y € U. (9) Since F' is a group F is
a semigroup. (10) Since uy * 1y = uy 1y is a solution of the equation u, * X = u;. (11)
Since 1 is a unit element of & u; * 1 = u;. (12) Since 1 is a unit element of ' 1 € F.
(13) Since uy € I 1 is a solution of the equation uq * X = u;. (14) Since F is a group
ly = 1 by the uniqueness of solution. (15) This conclusion is independent of the choice
of the element u,.







Appendix B
A Library of PCAs

This appendix is a complete listing of the PCAs employed in our system. To form a PM,
slots Reasons, Intermediate-Formulas and Method of a PCA should be augmented by one
of the three status: explicit, implicit or omit. To use Tag-Gen as the surface generator, a
dictionary is employed mapping patterns of PMs into corresponding syntactic structure.
Therefore, what can be found below is a listing of possible patterns of PMs, each associated
with one or more verbalizations. Note that, only the slots with explicit status are included.

1. (Assume-1 Formulas)
Suppose Formulas!
2. (Axiom-Instantiation-1 Formulas)
Let Formulas, Now suppose that Formulas
3. (Begin-Assume-Choice-1 «, b)
Let b be such an a
4. (Begin-Assume-Choice-2 Formula)
Suppose that Formula,
5. (Begin-Cases)

(a) (Begin-Cases)
Let us consider the following two cases?.
(b) (Begin-Cases Goal: Formaula-1
Assumptions: (Assumption-1 Assumption-2))
To prove Formulay, let us consider the cases that Assumption-1 and the case
that Assumption-2

n verbalizations, the formulas stand for their verbalizations
?he case rule in Q-MKRP currently handles just two cases, compare Chapter 4. This PCA can be
generalized Lo handle n cases in a straightforward way.
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6. (Case-First)
(a) (Case-First)

Let us first consider the first the case.
(b) (Case-First Formula)

First, let us consider the first case by assuming Formula

7. (Case-Second)
(a) (Case-Second)

Next let us consider the second case.
(b) (Case-Second Formula)
Next, we consider the second case by assuming Formula

8. Derive:

(a) (Derive Derived-Formula: Formula-1
Intermediate-Formulas: List-of-formulas
Method: Assertion-as-formula

Therefore, since (because) List-of-formulas and Assertion-as-formula,
Formula-1.

(b} (Derive Derived-Formula: Formule- 1)
Clearly (thus, hence), Formula-1

(¢) (Derive Derived-Formula: Formula-1

Intermediate-Formulas: List-of-formulas
Method: name-of-assertion

Since (because) List-of-formulas, according to name-of-assertion, Formula-1.
(d) (Derive Derived-Formula: Formula-{

Reasons: List-of-formulas
Method: name-of-assertion)

Since (because) List-of-formulas, according (by) to name-of-assertion,
Formula-1.

(e) (Derive Derived-Formula: Formula-1
Reasons: List-of-formulas-1
Intermediate-Formulas: List-of-formulas-2)

Since list-of-formulas-1, this means list-of-formulas-2 and therefore formula-1.
(f) (Derive Derived-Formula: 1) ‘
This 1s a contradiction. This leads to a contradiction.

9. (End-Assume-Choice-1 a)

This conclusion is independent of the choice of the element a.
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10. (Proof-By-Contradiction-1)

We prove by contradiction.

11. (New-Lemma Formula)

Let’s first prove Formula as a lemma.
12. Reformulate

(a) (Reformulate Derived-Formula: Formula-1
Reasons: List-of-Formulas)

Since Formula-1, in other words, List-of-Formulas;
(b) (Reformulate Derived-Formula: Formula-1)
In other words, Formula-1.

13. Similarly

(a) (Similar-Assume-Derive Assumption: Formula-1
Derived-Formula: Formula-2
Intermediate-Formulas: Formula-list)

Similarly, we derive Formula-List by assuming Formula-1, which leads to
Formula-2.
(b) (Similar-Derive Derived-Formula: formula
Reasons: Formula-List)

Similarly, since Formula-List, formula.
14. (Split-goal Goal: Formula-1
Subgoals: List-of-Formulas)

To prove FFormula-1, Let’s first show that List-of-formulas.






Appendix C

A Library of Presentation
Operators

C.1 Top-Down Planning Operators

Assertion-Implicit

?Labely : subproofy,...,7 Label, : subproof, oM
-?Label,yy : AFQ '

e Proof:

o Applicability Condition: ((3; local-focus ?Label;) V (task ?Label, 1))
A(3; (not-conveyed ? Label;)) A (assertion ?M)

e Acts:

(order the ?label; in an order intrinsic to M)
(go through the above ordered list
(if (not-conveyed ?Label;)
(present Label;)))

e [Peatures: (top-down compulsory implicit detailed)

One of the focus guided top-down operators, implicit style. The explicit version of
this operator s omitted here.

Assume-Choice

?Labely: P, + P,

?Labelz : A - H:IIPJ}) HZ/Pa

?Labels : A\, P, F R
o Proof: Choice
?Labely : A R

151
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o Applicability Condition: (task ?Label;) A
(conveyed ?Label;) A (not-conveyed ?Labely)

o Acts:

(if (local-focus ?Label;)
(Begin-Assume-Choice-1, z, a)
(Begin-Assume-Choice-2, ?Labely))

(mark-conveyed ?Labely)

(Present ?Labels)

(End-Assume-Choice-1 a)

(mark-conveyed Label;))

¢ Features: (top-down compulsory explicit detailed)

Explicit choice operator, when it is reached in a top-down way, but Label, is already
conveyed.

Case-Explicit
¢ Proof: as given in Figure 11.1.

o Applicable Condition: ((task ?Label;) V (local-focus ?Labely))
A (not-conveyed (? Labely, ?Labels))

o Acts:

(cond ((not-conveyed ?Labely) ;;:first case
(Subgoal Label; (?Labely?Labely ?Labels))
(Present ?Labely))
(T (Subgoal ?Label; (?Labely, ?Labely)))) ;;;second case
(Case-First, P)
(present ?Labely)
(Case-Second, Q)
(present ?Label3)
(set-conveyed ?Label;))

e Features: (top-down compulsory explicit)

Below is the implicit due of the operator above.

Case-Implicit
e Proof: as given in Figure 11.1

o Applicability Condition: ((task ?Labely) V (local-focus 7 Labely))
A (not-conveyed (?Labely ? Labels))

o Acts:
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(if (not-conveyed ?Labely) ;;;Labels stand for
(present ?Labely)) ;; ;the corresponding nodes

(Case-First F)

(present ?Label,)

(Case-Second ()

(present ?Labelsy)

(set-conveyed ?Labely))

o features: (top-down compulsory implicit)

Case-Complementary

?Labels : P+ P ?Labelg : -P F —~P

?Labely : A+ PV ~P; i ; -
2 Labels : A, PFQ  ?Labely: 5>, -PF Q
¢ Proof: Case

7Labely : AFQ

o Applicability Condition: (ltask ?Label,) Vv
(unconveyed ?Labels, ? Labely)

e Acts:

(mark-conveyed ?Label,)
(Case-First Labels)
(Present ?Labels)
(Case-Second Labelg)
(Present ?Labely)
(mark-conveyed ?Label,)

e Features: (top-down compulsory explicit detailed)

The case rule is notl explicitly conveyed, if the two cases are complementary

The communication norm relating to the structural Gentzen rule Choice is encoded
in the following two presentation operators.
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Choice-Explicit-1

?Labely : P, P,

?Labely : AV 3, P,

TLabels : NP, F R

o Proof: Choice

?Labely : A+ R

o Applicability Condition:(task ?Labely) V (father ?Label;, local-focus)
A not-conveyed(? Labels)

o Acts:

(if (not-conveyed ?Labels)
(present 7Labely))
(Begin-~Assume-Choice a,z)

(present ?Labels)
(End-Assume-Choice-1 a)
(mark-conveyed ?Label;)

o Features: (top-down compulsory explicit detailed)

Explicit choice operator, when the proof is reached in a bottom-up way.

Choice-Explicit-2

TLabely : P, - P,
?Labely : A - 3. P,

?Labels : NP, F R

e Proof: Choice

1Label; : AR

e Applicability Condition:(not-conveyed (?Labely ?Labels)) A (task ? Labely)

e Acts:

(Present ?Label;)
(Begin-Assume-Choice a,z)
(mark-conveyed ?Labely)
(present ?Labels)
(End-Assume-Choice-1 a)

¢ Features: (top-down compulsory explicit detailed)

Explicit choice operator, when the proof is reached in a top-down way. The implicit
counterpart of the operators above is omitted.
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Deduction-Top-Down

?Labely : AP P, Hyp

TLabel, : APV Q
Proof: DED
tLabelpy :AF P = Q

Applicability Condition: (task ?Label, 1) AJ; (not-conveyed ? Label;)

e Acts:

(Derive Derive-Formula P)
(present 7Label,)
(set-conveyed ?Label, ;)

Features: (top-down compulsory implicit detailed)

Top-down planning by first establish the assumption

Below, we going to examine communications norms for some other proof structures.
The following presentation operator captures the way indirect proof is normally presented.
The PCAs (Proof-By-Contradiction-1) and (Assume-1 ?Label;) will generate “We prove
by contradiction.” and “Let us assume —~P.”.

Indirect-Proof-Explicit

?Labels : =P - =P

?Labely : A,~PFL
Proof: 1P
?Label; : A+ P

Applicability Condition: (not-conveyed ?Labels) A (task ?Labely)

o Acts:

(Proof-By-Contradiction-1)
(Assume-1, Formulas: ?Label3)
(set~conveyed ?Labels)
(present 7Labely)

(present ?Labely)

Features: (top-down compulsory explicit detailed)

The implicit dual of the operator above is below.
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Indirect-Proof-Implicit

7Labels : =P+ —P

?Labely : A, -PFL
?Labely : A+ P

Proof:

Applicability Condition: (not-conveyed ? Labels) A (task ?Labely)
o Acts:

(Proof-By-Contradiction-1)
(Assume-1, Formulas: ?Label3)
(set-conveyed ?Labels)
(present ?Label;)
(set-conveyed ?Label;)

Features: (top-down compulsory implicit detailed) .

Lemma

e Applicability Condition: (not-conveyed ?Label;) A (in-unit active-unit ?Label;) A
(important-subproof ?Label;)

o Acts:

(New-Lemma ?Labely)
(present ?Labely)

o Feature: (top-down specific explicit detailed)

Establishes a new lemma as a subgoal, and sets out to present it.

Apart from the presentation norms, the presentation process is also strongly influ-
enced by the proof searching process per se, in particular the subgoal structure. For
example, given the proof in Fig. C.1, where node A, B2 are once subgoals for the proof
planer. The presentation process, preferring an implicit style, might determine to present
the task-1, task-2 and the task-3 subsequently.

More generally, suppose S is a proof with subproofs Sy, ..., S,, whose roots were all
once a subgoal for the proof planning process. The presentation process will travel the sub-
goal structure in an an appropriate order and makes them the presentation goals in turn.
The ordering of the subgoals is determined in the operator Proof-Time-Structure-
Implicit by applying the three ordering principles described in Chapter 12 in the following
order:

e the proof time order principle,

e the local focus principle,
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Figure C.1: A subgoal example

o the minimal load principle.

The following-is the corresponding presentation operator based on proof time struc-
ture.

Proof-Time-Structure-Implicit
e Proof: a proof P with P,..., P, as partially ordered subgoals in the subgoal hierarchy.
o Applicability Condition: (task P)
o Acts:

(cond ((the proof time order of subproofs of P ;ordering
is important and available) ;case 1
(order the subgoals using proof time information))
((if the subgoals are still not totally ordered) ;case 2
(order the subgoals using the focus principle))
((if the subgoals are still not totally ordered) ;case 3
(order the subgoals using the minimal load principle)))
(for i from 1 to n (if (not presented P;) ;presenting
(present P;)))

o Features: (top-down general implicit detailed)

Divide into subproofs according to proof time structure, focus principle, minimal
load principle.

Split-Top-Down-Implicit
e Proof: a proof P with Py,..., P, as ordered subgoals in the subgoal hierarchy.

e Applicability Condition: (task P)
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o Acts:
(for i:=1 to n

(if (not-conveyed F;)
(present P;)))

o Features: (top-down general implicit detailed)

Order-Minimal-Load
e Proof: a proof P with Py,..., P, as unordered subproofs.
¢ Applicability Condition: (task P)
o Acts: (order the subgoals reverse to the. size of the subproofs)
o Features: (top-down general implicit)

Order subproofs according to minimal load principle.

Order-Focus
e Proof: a proc;f P with Py,..., P, as unordered subproofs.
o Applicability Condition: (task P)

e Acts: (order the subproofs by repeatedly applying function focus-select-unit starting
from the local focus)

o Features: (top-down general)

.

(def focus-select-unit (U: set of units, P: an assertion)
(until (P is exclusively in in one U; € U)
(setq P (Focus-Select P)))
(return U)))

Order-Proof-Time
e Proof: a proof P with Py,..., P, as unordered subproofs.
¢ Applicability Condition: (task P)
e Acts: (order the subproofs according to the proof-time order)

o features: (top-down specific)
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C.2 Bottom-Up Operators

Axiom-Instantiation

e Proof:

Hyp,
?Node yP

e Applicability Condition: (eq next-node ?Node) A (axiom-in-KB ?Node)
o Act: (Axiom-Instantiation, Formulas: ? Node)
o Features: (bottom-up compulsory explicit detailed)

Instantiate a axiom schema in first order logic.

Derive-Bottom-Up

?Nodey,...,?Node, oM
?Node, 41 '

¢ Proof:

o Applicability Condition: (eq next-node ?Node,t1) A (conveyed (?Node;,. . .,? Node,,))

o Acts:

(Derive Derived-Formula: ?Node,;
Reasons: ( ?Nodey,---, ?Node,)
Method: ?M)))

o Features: (bottom-up general explicit detailed)

Deduction

TLabel; : AP Q D
?Labely : AF P = Q

ED

o Proof:

o Applicability Condition: (eq next-node ?Labely) A (conveyed ?Labely)
e Acts:

(mark-conveyed “Labely)

e [eature: (bottom-up compulsory implicit)

Deduction rule in bottom-up manner, no speech act is needed.

Reformulation-Implicit-1

e Proof: proof as in Figure 11.4

159
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o Applicability Condition: (in-unit 7Q, current-unit) A (eq next-node ?Q;)) AVi=1 to m
(conveyed ? P, )AViz) 4o n (reformulation ?M;)

o ACTS:

(cond ((important 7Q,) ;;;case 1
(Derive Derived-Formula: 7@,
Reasons: 7P, -+, 1P,
Method: 7M;))
((>n 4) ;;;case 2
(Derive Derived-Formula: ?Q),
Reasons: 7P, ---, 1P,
Method: ?M;)
(Reformulate Derived-Formula: 7¢),))

(T (Derive Derived-Formula: 7(); ;;;case 3
Reasons: 7P, ---, 1P,
Method: TM;))

e features (bottom-up compulsory explicit abstract)

Similar-Assume-Bottom-Up

¢ Proof:

?Labely : Pi,...,(?Label;: A+ A Hyp),...Label,: P,

?Label,py: AFQ

o Applicability Condition: (in-unit current-unit ?Labely) AV 4o (i-1),(i+1) to n (cOnveyed
Label;) A (eq next-node Label;)A a subproof considered similar to the onc rooted by
?Label; was just presented.

e Acts:

(setq inter important-intermediate-formulas)

(Assume-Derive-Similar Assumption: A,
Derived-Formula: (),
Intermediate-Formula: inter))

e Features: (bottom-up specific explicit abstract)

In the current implementation, the detection of similarities is carried out by a beur-
istic function, no important intermediate results is chosen.
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Similar-Proof-Bottom-Up

?Nodey, ..., Node,

e Proof:

?Nodenyy

Applicability Condition: (in-unit current-unit ? Node,41) A (in-subtree next-node Node,.1)
AVi=1 1o n (conveyed Label;) A (a subproof considered similar to the one rooted by ? Node,
was just presented.)

o Acts:

(Similar Derived-Formula: Node,41,
Reasons: ? Nodey,...,?7 Node,))

Features (bottom-up specific explicit abstract)

Simplify-Bottom-Up

?Nodey,. .., Node,,

e Proof:

?Nod€n+1

¢ Applicability Condition: (in-unit active-unit ?Node, ) A (in-subproof next-node Node,, ;1)
AVi=1 to n (conveyed ?Node;) A (simple-proof 7 Node, 1)

e Acts:

(Derive Derived-Formula: ?Nodep;,
Reasons: ? Node;,...,? Node,)
e Features (bottom-up general explicit abstract)

The simplicity of a proof is currently judged by a heuristic function which takes both
number of nodes and the type of the nodes in the proof into account.
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