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Abstract

The static or dynamic analysis of configurable software systems imposes significant
challenges regarding complexity and computation time due to the software systems’
large configuration spaces. These are aggravated by the evolution of software
systems: developers frequently produce new revisions, adapting and modifying the
system. Thereby, analysis results can quickly become out of date or are difficult
to interpret. For example, debugging configuration-specific performance bugs is
difficult by itself, but it becomes even more challenging in an evolving system.
A helpful analysis tool should provide not only accurate configuration-specific
performance measurements but also put them into the development context of the
project. Through the development context, results are attributed to a more specific
scope or developer and, by that, can be easier interpreted. The key problem is that
current analyses, even when specialized for configurable software systems, cannot
contextualize their findings within the development context of the software project
in question. To address this problem, we need to empower program analyses to
incorporate variability information. That is, we enable them to integrate information
about the configurability of the system as well as the evolutionary context.

To achieve a better integration, we propose a unified abstraction of code regions
that provides variability information to existing program analyses. That is, we
map information about configuration variability as well as evolutionary variability
onto a low-level intermediate program representation on which existing program
analyses operate and provide variability information through a uniform interface.
This has two main advantages: (1) by decoupling program analysis semantics from
variability information, individual program analyses as well as the different types
of variability information become reusable; (2) by mapping variability information
onto the program representation used by existing program analyses, we make the
analyses and their results extendable with variability information without requiring
changes to the analysis. This way, we enable existing program analyses to relate
and interpret their results in the context of variability. Through a product-line-based
design, we make both variability information and analyses reusable and freely
combinable, helping researchers to incorporate variability information into their
work (e.g., to contextualize their analysis results with evolutionary information).

In this thesis, we demonstrate the applicability of a uniform abstraction of code
regions by addressing two novel research problems: First, we combine evolutionary
information, mined from software repositories, with an inter-procedural data-flow
analysis to determine how evolutionary changes interact within a software project,
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revealing new and interesting connections between changes and developers. Further-
more, our work shows that existing program analysis results can be contextualized
in the socio-technical context of a software project through the provided evolutionary
information. Second, we combine different automated localization approaches that
detect configuration-specific code with state-of-practice performance profilers to en-
able configuration-aware performance profiling. Our results show that this enables
performance profilers to attribute performance regressions directly to configuration
options without introducing unnecessary overhead.

In summary, this thesis bridges the gap between variability information and
precise program analysis. Through the unified abstraction of code regions, we
enable the free combination of variability information with state-of-the-art program
analyses, laying the foundation for more variability-focused program analyses and,
by that, a better understanding of the evolution of configurable software systems.

Zusammenfassung

Die statische oder dynamische Analyse von konfigurierbaren Softwaresystemen
stellt durch die großen Konfigurationsräume von Softwaresystemen Herausforde-
rungen im Bezug auf Komplexität und Rechenzeit dar. Durch die Evolution von
Softwaresystemen wird dies noch verschärft: Die Entwickler erstellen ständig neue
Revisionen, wodurch das System anpassen und modifizieren wird. Aufgrund des-
sen können Analyseergebnisse schnell veralten oder schwer zu interpretieren sein.
Zum Beispiel ist das Debuggen von konfigurationsbezogenen Performanceregres-
sionen an sich schon schwierig, wird aber in einem sich entwickelnden System
noch schwieriger. Daher sollte ein hilfreiches Analysewerkzeug nicht nur genaue
konfigurationsbezogene Performanceregressionen liefern, sondern diese auch in
den Entwicklungskontext des Projekts einordnen. Durch den Entwicklungskontext
werden die Ergebnisse einem spezifischeren Bereich oder einer Person zugeord-
net und lassen sich so leichter interpretieren. Das Hauptproblem hierbei ist, dass
gegenwärtige Analysen, selbst wenn sie auf konfigurierbare Softwaresysteme spezia-
lisiert sind, ihre Ergebnisse nicht in den Entwicklungskontext des Softwareprojekts
einordnen können. Um dieses Problem zu lösen, müssen wir Programmanalysen
die Integration von Variabilitätsinformationen—das heißt Informationen über die
Konfigurierbarkeit des Systems und den evolutionären Kontext—erleichtern.

Um die Integration zu erleichtern, schlagen wir eine einheitliche Abstraktion
durch Coderegionen vor, welche die Variabilitätsinformationen für bestehende
Programmanalysen bereitstellt. Das heißt, wir bilden Informationen über Konfi-
gurationsvariabilität sowie über evolutionäre Variabilität auf eine Low-Level-Zwi-
schenprogrammrepräsentation ab, auf der bestehende Programmanalysen bereits
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arbeiten, und stellen Variabilitätsinformationen über eine einheitliche Schnittstelle
bereit. Dadurch haben wir zwei Vorteile: (1) Durch die Entkopplung der Analysese-
mantik von der Variabilitätsinformation werden sowohl die Analysen als auch die
verschiedenen Arten von Variabilitätsinformationen wiederverwendbar; (2) durch
die Abbildung von Variabilitätsinformationen auf die Programmrepräsentation, die
von bestehenden Programmanalysen verwendet wird, machen wir die Analysen
und ihre Ergebnisse mit Variabilitätsinformationen erweiterbar, ohne dabei die
Analyse verändern zu müssen. Das heißt, wir ermöglichen es Analyseergebnisse
auch im Kontext von Variabilität mit dieser in Beziehung zu setzen und zu inter-
pretieren. Durch ein produktlinienbasiertes Design sorgt unsere Abstraktion dafür,
dass sowohl Variabilitätsinformationen als auch Analysen wiederverwendbar und
frei kombinierbar werden. Auf diese Weise ermöglichen wir es Forschern, Variabili-
tätsinformationen in ihre Arbeit einzubeziehen (z. B. um ihre Analyseergebnisse mit
evolutionären Informationen zu kontextualisieren).

In dieser Arbeit demonstrieren wir die Anwendbarkeit unserer einheitlichen
Coderegionen-Abstraktion, an zwei bisher ungelöste Forschungsproblemen. Erstens
verwenden wir evolutionäre Informationen aus Software-Repositories zusammen
mit einer inter-prozeduralen Datenflussanalyse, um festzustellen, wie evolutionäre
Änderungen innerhalb eines Softwareprojekts interagieren, wodurch neue und inter-
essante Verbindungen zwischen Änderungen und Entwicklern aufgedeckt werden.
Unsere Arbeit zeigt außerdem, dass bestehende Analyseergebnisse durch das Bereit-
gestellen von evolutionären Informationen mithilfe des sozio-technischen Kontexts
eines Softwareprojekts kontextualisiert werden können. Zweitens kombinieren wir
verschiedene Lokalisierungsansätze, die konfigurationsspezifischen Code erkennen,
mit aktuellen Performance-Profilern, um ein konfigurationsbezogenes Performance-
Profiling zu ermöglichen. Unsere Ergebnisse zeigen, dass dies Performance-Profiler
in die Lage versetzt, Performanceregressionen direkt den Konfigurationsoptionen
zuzuordnen, ohne unnötigen Mehraufwand zu verursachen.

Zusammenfassend lässt sich sagen, dass diese Arbeit die Lücke zwischen Variabi-
litätsinformationen und präziser Programmanalyse schließt. Durch die einheitliche
Abstraktion mithilfe von Coderegionen ermöglichen wir die freie Kombination von
Variabilitätsinformationen mit modernsten Programmanalysen und legen so den
Grundstein für variabilitätsorientierte Programmanalysen und damit auch für ein
besseres Verständnis der Entwicklung konfigurierbarer Softwaresysteme.
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Missing a train is only painful if you run after it!
Likewise, not matching the idea of success others expect from you

is only painful if that’s what you are seeking.

— Nassim Nicholas Taleb [225]
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1
Introduction

Over the last decades, the complexity of modern software systems has been growing
rapidly. On the one hand, software projects become increasingly more configurable
to better adapt to different use cases and user needs. On the other hand, due to the
growing number of developers and project sizes, understanding the evolution and
socio-technical context of a project becomes not only more difficult but also more
important, as with a growing number of developers, handling of social interactions
in a project can become more complicated and slow down development [108, 128,
157]. Both sides, configuration variability (space) and evolutionary variability (time)
pose substantial challenges when conducting static and dynamic program analyses
on configurable software systems over time.

Configuration variability arises from deliberate design and implementation choices
of developers, where parts of the system are variable in that they can be enabled,
disabled, or configured. Developers have a diverse arsenal of techniques at their
disposal to realize this configuration variability, such as preprocessor directives
(#ifdef), template meta-programming, command-line parameters, or configura-
tion files. In general, configuration options make software systems flexible in that
users can adapt and optimize the configurable software system for their use case,
for example, by disabling unwanted functionality or tuning the system to specific
workloads. However, with ever-increasing numbers of configuration options [252],
users and developers get easily confused. Xu et al. [252] report that up to 48.5% of
configuration issues arise from users difficulties in finding the right configuration
options or setting the right values, advocating for leaner configurable systems (e.g.,
they show that an exemplary project could remove 51.9% of its configuration options
with only a small impact on existing users). The core problem with a rising number
of configuration options is the combinatorial explosion of the configuration space [7,
228]. Adding one Boolean option to a configuration space already doubles the
number of possible configurations (i.e., the size of the configuration space). This
results in costs as code becomes harder to adapt and extend, makes maintenance
more expensive and difficult, and puts an additional burden on program analysis
tools (as they need to incorporate the variability into their analysis).

Over the last decade, many research projects worked on overcoming these chal-
lenges. Most important with regard to software analyses was the conceptual combi-
nation of standard program analyses with variability information [232]. Brabrand
et al. [28] proposed a way to automatically turn standard data-flow analyses into

1
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feature-sensitive (i.e., configuration-sensitive) ones that are able to analyze all valid
configurations at once. With SPLLIFT, Bodden et al. [25] showed a conceptual way
to lift a generic IFDS analysis to automatically analyze software product lines by
transforming the analysis into an IDE analysis that additionally tracks variability
information on the edge domain of the analysis [145, 194]. The key idea behind these
approaches—following early ideas of Czarnecki and Pietroszek [45]—is to tackle
the combinatorial explosion arising from the configuration space by making the
analysis itself variability-aware. Variability-aware analyses [232] and variational data
structures [246] exploit the commonalities between different configurations to reduce
analysis time, enriching the specific analysis problem with information about the
configuration space to analyze the whole configuration space at once. For example,
Kästner et al. [118] developed a variability-aware type checker for #ifdef-based
C product lines that is able to type-check all variants simultaneously [117, 230].
Rhein et al. [194] demonstrated not only that variability-aware analyses scale to
real-world software projects but, more importantly, that they outperform existing
non-variability-aware analyses by orders of magnitude. Furthermore, Apel et al.
[11] demonstrated that their variability-aware model checker outperformed various
sampling-based approaches in terms of detection efficiency. Overall, in previous re-
search, many approaches have tackled configuration variability by making standard
software analyses variability-aware [232].

However, variability in software projects does not only arise from the configuration
space but also from their development over time (i.e., from the evolution of the
project). Software projects get developed in code chunks, where every new chunk
adds, removes, or changes code from the project. These code changes, some small
others large, adapt the behavior of the software project over time (e.g., by adding
new features, fixing a bug, or refactoring). Understanding how these changes
are produced, interact, and together give rise to a functioning software project
is important to improve software development overall [155], independent of the
specific goal (e.g., to analyze the impact of a change [141] or finding out how
developers interact [107]). However, to analyze the evolution of a software project,
one requires data about the changes themselves, the developers that produced them,
and the context of the project. An important technique to gather these project data
is repository mining [46], where one extracts, models, and analyzes data available in
the project’s resources [48], such as the version control system [107, 255], mailing
lists [23, 161, 177, 211], issue tracking systems [175, 178], or pull requests [236]. For
example, the version history of a software project contains detailed information
on code changes, including the ordering in which they appeared and who wrote
the code. Important to note, the mined data gives us not only access to the code
changes but also enables analyses of the socio-technical context of a software project.
Understanding this socio-technical context is highly important to understand how
projects evolve [23, 24, 31, 93, 94, 106], as primarily the developers working on the
project shape its evolution. For example, Joblin et al. [106] use developer networks,
mined from software repositories and corresponding code artifacts, to extract the
hierarchies and organizational structures of open-source communities.
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Obtaining a deep understanding of how software projects evolve and how the
people involved interact is vital to steer and improve software development overall,
including configurable software systems. However, in configurable software systems,
the variability introduced through evolution needs to be understood alongside the
variability introduced by configurability [34, 182, 183, 233]. So, for configurable
systems, software evolution comes with the additional burden that a change in the
time dimension (i.e., a change to the source code) can have influences across the
whole space dimension (i.e., potentially affecting multiple configurations) and on
the structure of the space dimension itself (i.e., adapting in what ways the system
can be configured). That is, a change can have a potential impact on all, a few, or
only one configuration(s). The problem lies in the fact that developers do not know
which configurations are affected, or change the structure of the configuration space
(e.g., adding a new feature or allowing two features to be enabled in parallel), which
invalidates previous assumptions about the configuration space. Conceptually, the
evolutionary steps (i.e., code changes) form an additional time dimension to the
already complex configuration space of a project.

The discussion so far illustrates that analyzing the evolution and socio-technical
context of configurable software systems is difficult but important. For example,
debugging configuration-specific performance bugs is difficult by itself [252], but
it becomes even more challenging in an evolving system where the changes and
goals from another team influence how the bug can be addressed. For this task, a
helpful analysis should provide not only accurate configuration-specific performance
measurements but also put them into the development context of the project (i.e.,
relating them to a change set or the involved developers), so that the developer
working on the performance bug knows directly whom to consult with and can
fix the bug quicker. To achieve that, a program analysis needs to take variability
information from both the configuration space and evolutionary context into account
and correctly attribute it to the analysis results.

A key problem that we identified in this dissertation project is that, even when
retrofitted for configurable software systems, current program analyses cannot
contextualize their inner working and findings within the development context of
the software project (i.e., relating their results to specific changes and developers).
This stems from the fact that additional information about configuration variability
and evolutionary variability is not easily accessible by state-of-the-art program
analyses. To address this problem, we need an automated and unified way for program
analyses to access variability information about configurable software systems together
with information about their development context. Through the provided variability
information, we enable program analyses to incorporate configuration knowledge
into their findings and contextualize these findings in the socio-technical context of
the software project.
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1.1 Contributions

The goal of this thesis is to empower program analysis to incorporate evolutionary
as well as configuration-specific information and to contextualize their existing
analysis results with this additional information. To achieve this goal, we propose an
abstraction of code regions that uniformly represent different types of variability and make
them accessible to the program analysis. The two central ideas behind the uniform code-
region abstraction are: (1) decoupling and automating the extraction of different
types of variability information, to make both analyses and variability information
freely combinable and reusable; (2) presenting the gathered variability information to
state-of-the-art program analyses, so that an analysis can directly use the information
and interpret its results in the corresponding context (e.g., evolutionary information
from the repository).

For this purpose, we built a reusable extraction procedure that gathers variability
information from feature models and software repositories. We then map the gath-
ered information onto a low-level intermediate program representation, on which
the analysis operates. That is, we map evolutionary data, mined from software
repositories, as well as configuration-specific information, extracted from feature
models and code, directly onto the program representation, making them accessible
for a wide range of program analyses. The uniform code-region abstraction acts as
the glue between variability information and program analyses, by providing the
mapping between variability and intermediate program representation. Important
to note, this relation is the key to reusability and adaptability. Since existing analyses
operate on the intermediate program representation, they can now directly access
variability information and utilize it throughout the analysis. Furthermore, even
without modification of the analysis, existing analysis results can be interpreted in
the context of variability information (e.g., by mapping the detected SQL injection
through the abstraction to the developers involved).

The uniform abstraction of code regions enables static and dynamic program
analyses either to integrate evolutionary and configuration-specific information
into their inner workings directly or to contextualize analysis results with it. We
demonstrate the usefulness and applicability of our uniform code-region abstraction
by applying it to two unsolved research problems: First, we developed SEAL, the
first integrated approach that combines low-level program analysis with high-level
repository information. For this purpose, we mine repository information (time
dimension) from the development history of a given project and present it through
our uniform code-region abstraction to state-of-the-art program analysis. Using
this information, the analysis is able to infer how developers interact. We evalu-
ated SEAL on a diverse set of 13 real-world open-source projects and found that
data-flow analysis can reveal new links between developers that could not be dis-
covered with existing approaches. In this context, we demonstrated how repository
information can be used to put already existing program analysis results into a
socio-technical context. Second, we developed Walrus, the first analysis framework
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that integrates compile-time and load-time configurability detection approaches
with state-of-practice performance profilers. For this purpose, we implemented
different approaches to locate configuration-specific code (space dimension), which
is provided via our uniform code-region abstraction to a dynamic-analysis inter-
face inside Walrus. Based on the detected code regions, Walrus is able to weave
in profiler-specific measurement code around code regions to contextualize the
performance profiler’s measurements with configuration knowledge. This way,
we were able to plug together configuration-specific performance profilers using
state-of-practice performance profilers without a significant amount of overhead. We
evaluated Walrus on 18 subject systems, demonstrating that configuration-sensitive
state-of-practice profilers are able to detect configuration-specific performance re-
gressions.

Through solving the two research problems of putting analysis results into an
evolutionary context and making state-of-practice profilers configuration sensitive,
we demonstrate the applicability of our code-region abstraction to different types
of variability. Both static and dynamic analyses can profit from having a uniform
interface to query additional information about variability. Figure 1.1 depicts an
overview of our contributions. Through an uniform code-region abstraction, we
bridged the gap between high-level variability information and low-level program
analyses, making it easier for analyses to integrate variability information. Overall,
we see our uniform code-region abstraction as a first step to make variability better
analyzable by program analyses, laying the foundation for better studying and
understanding the evolution of configurable software systems.

configuration
information

evolutionary 

information

reuse ❖ Configuration-Aware Performance Profilers
❖ Configuration-Specific Performance Measurements
❖ Configuration-Focuses Performance Observability

❖ Central-Code Localization
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❖ Variability Information Decoupling
❖ Reusable and Combinable Analysis
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Code-Region Abstraction Chapter 3

SEAL Chapter 4 Walrus
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Figure 1.1: Overview of our contributions.

In summary, we have made the following contributions in this thesis:

1. We have developed a uniform code-region abstraction that integrates both
time and configuration-space variability into static and dynamic program
analyses in a flexible and reusable way. The uniform code-region abstraction
bridges the gap between program analyses and variability information by
decoupling the concrete analysis semantics from the variability information
and by providing a uniform interface through which the additional information
can be queried. The key benefit is that program analyses, even already existing
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ones, can simply incorporate variability information or contextualize their
findings with it. Furthermore, program analyses that use our abstraction can
automatically include different types of variability and, by that, be reused
in different contexts and settings. We have demonstrated the merits of our
uniform code-region abstraction by addressing two distinct research problems
that require different types of analyses as well as different types of variability:
(1) we integrate evolutionary repository information into an inter-procedural
data-flow analysis to infer previously hidden developer links through data-
flow dependencies and, (2) we integrate configurability information, using the
same data-flow analysis, into state-of-practice performance profiler, to collect
configuration-specific profiling data.

2. To analyze and contextualize analysis results with evolutionary data gathered
from software repositories, we developed SEAL, an approach that combines
high-level program analysis with data-flow analysis. SEAL uses our uniform
code-region abstraction to encode change data, mined from a software reposi-
tory, into LLVM’s intermediate representation, enabling a program analysis
to directly access and reason about change data. We used SEAL to analyze
how commits and their authors interact at a data-flow level, finding new and
previously hidden interactions between developers. Furthermore, we have
demonstrated how SEAL can be used to further contextualize the results of
other analyses with socio-technical information (e.g., to infer authors that are
related via data flow to a detected SQL injection). This way, SEAL bridges the
gap between high-level repository information and precise program analyses,
enabling more detailed socio-technical reasoning.

3. We have developed Walrus, an approach that enables dynamic analyses,
such as performance profiling, for configurable software systems. Walrus

utilizes the configuration-specific information modeled with our uniform
code-region abstraction to instrument a configurable software system during
compile-time with dynamic analysis hooks. Walrus is able to weave different
types of measurement code from state-of-practice performance profilers into a
software system to gather configuration-specific performance measurements.
Through Walrus, we have made three state-of-practice profilers configuration
sensitive. This way, we have been able to detect 108 configuration-specific
performance regressions in 16 synthetic case studies and two real-world open-
source projects. Walrus bridges the gap between high-level configurability
information and state-of-practice performance profilers, connecting a decade
of configurability research with modern performance analysis tools.

1.2 Outline

In Chapter 2 (Background), we lay the foundation for this thesis and introduce
the two dimensions of configurability (space) and software evolution (time). For
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each dimension, we introduce the respective foundational concepts and present
the current state of the art. Furthermore, we introduce core concepts about static
and dynamic program analysis, with a focus on whole-program inter-procedural
static program analysis as well as on performance analysis. In Chapter 3 (Uniform
Code-Region Abstraction), we introduce the backbone of the thesis, the uniform
code-region abstraction that bridges the gap between different types of high-level
project information and low-level program analyses. For this purpose, we first
give an overview of our design and how it enables reusable program analyses.
Second, we lay out a formal description of our abstraction and how it integrates
high-level information into program analysis. Third, we provide an overview of the
implementation that we built using the compiler framework LLVM. In Chapter 4

(Commit Interactions), we apply our uniform code-region abstraction to software
evolution and analyze the interactions between code authors at a data-flow level,
utilizing a custom code-region-based inter-procedural data-flow analysis. This way,
we bridge the gap between state-of-the-art software repository analysis and program
analyses, enabling detailed and precise socio-technical analyses. In Chapter 5 (Feature
Performance Analysis), we apply our uniform code-region abstraction to variability,
making state-of-practice performance profilers configuration aware, so that they
can be used for variability-focuses performance analyses. We not only demonstrate
that our uniform code-region abstraction can be applied to another use case but,
more specifically, that our abstractions enables reuse, as we profit from the analyses
that we developed in Chapter 4. In Chapter 6 (Conclusion and Future Work), we
conclude this thesis by providing a discussion of our research and highlighting
important problems that we identified and overcame during this dissertation. Then
we conclude this dissertation and outline future work.





2
Background

In this thesis, we introduce a combined analysis abstraction that enables static
and dynamic analyses to process evolutionary data along with information about
the configuration space of a software system. With regard to this context, this
chapter lays the foundations for our work and introduces key concepts. First, we
introduce configurable software systems and their implementation techniques in
detail. Second, we explain important building blocks of software evolution and
contextualize our work to current research that focuses on understanding software
evolution. Next, we give a concise introduction of the important aspects of the
compiler infrastructure, which we later use in Chapter 4 and Chapter 5 to realize
our analysis abstraction in practice. Last, we introduce static and dynamic analyses in
the context of compiler assisted program analysis, focusing on important theoretical
foundations as well as practical implementations thereof.

2.1 Configurable Software Systems

The key aspect of a configurable software system is that parts of its functionality are
separated out and made selectable with configuration decisions. These separated
out parts that encapsulate a certain functionality are referred to as software features
in the literature [7, 43]. A configurable software system consists of a base system,
which builds the core of the software project and is always executed, and variable
parts that can be selected or tuned. Through this variability, users of the system can
tailor it to their specific needs, for example, by selecting a specific database back-end
or by removing functionality that is not needed in their use case, to improve the
system’s performance.

In what follows, we explain core concepts of configurable software systems in
detail. We show how configurable software systems model their variability with
features, through abstracting functionality into variable chunks that can be enabled
or disabled. Further, we introduce core concepts and definitions about a configurable
software system’s configuration space, a space that represents all the different
configurations. Afterwards, we highlight two important conceptual aspects by
which variability in configurable software system differs. Here, we focus on binding
time, which defines when a configuration decision is made, and implementation
techniques, which defines how variability can be encoded in configurable software

9
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systems. Both are relevant in the context of program analysis as they influence how
and by which means a configurable software system can be analyzed.

2.1.1 Configuration Options

The central idea behind configurable software systems is to enable users to select,
adapt, and tune system functionality. This is realized by making certain parts of the
system variable or tuneable, and providing the user means to control this variability.
Commonly, a configuration interface is exposed to the user through which the user
passes information on how the system should be configured, such as command-line
options or a configuration file. In general, we refer to the configuration possibilities
of a configurable system as configuration options. This means, a configurable software
system exposes through a configuration interface a set of configuration options for
which a user can specify specific values to adapt the system’s behavior.

Each configurable software system S has a set of configuration options C, which
control the variable parts of the system, meaning, they allow users to enable, disable,
or tune the system’s functionality.

Definition 1. C is the set of configuration options c ∈ C for a given configurable
software system S .

Configuration options are subdivided into two categories, boolean and numeric
options. Each configuration option c has a value, which is enabled/disabled for
boolean options or a specific numeric value for numeric options, and a default value
that determines the options value in case none is given by the user.

Often, configuration options correspond to specific user-observable functionalities
and are also referred to as software features, a term that is also commonly used in
software product lines to refer to these functionalities [7]. Simply put, software prod-
uct lines are configurable software systems that follow specific design approaches,
for example, stepwise refinement [250] or program families [181]. However, not
every configurable software system is a software product line, as they follow other
design processes or are just built in an ad-hoc manner by making previously not
variable parts configurable. For our work however, this distinction between soft-
ware product lines and configurable software systems is not important, so we treat
concepts, such as configuration options and features, synonymous.

Configuration model. Configurable systems offer a wide range of different con-
figuration options, which from the outside seem to be freely selectable by a user.
However, configuration options often depend on each other, for example, option
"A" requires option "B" or two options are mutually exclusive, so only one can
be selected. Configuration models, also referred to as feature models, model and
document a system’s configuration options and the relationships between them [7].
Based on this configuration model, we then can infer which selections of options
are valid and which ones are not.



2.1 Configurable Software Systems 11

Figure 2.1: Excerpt of the configuration model from the project XZ, depicted as a configura-
tion diagram.

In more detail, conceptually the configuration model consists of a list of configu-
ration options and a set of relationships between them, where the relationships are
encoded using propositional logical formulas. However, to ease understandability,
configuration models are often encoded as configuration diagrams, also referred
to as feature diagrams. A configuration diagram is a tree, where most of the rela-
tionships between options can be directly expressed by the edges between them.
An edge between two configuration options encodes a parent-child relationship,
indicating that child only makes sense in the context of option parent. In addition,
the edges encode whether the child is optional or mandatory, by that encoding
whether a parent =⇒(implies) child. Abstract configuration options (tree nodes)
are used to group options together and encode semantics for groups (or) and
alternative groups (xor) (i.e., to choose one option from this set of alternatives). The
leftover relationships that cannot be directly expressed in the tree are attached as
propositional logical formulas, referred to as cross-tree constraints.

The visualization of the configuration diagram depicts configuration options
and the relationships between them. Configuration options are represented as
boxes, where the color indicates if the configuration option is concrete or abstract.
Connections between the configuration options then indicate their relationships
(e.g., if it is mandatory or optional). Take for example the partial configuration
model from the project XZ1 shown in Figure 2.1. XZ as the root node offers the user
the option to configure either compress or decompress, indicated by the alternative
group arc below XZ. Should the user choose compress, it is then mandatory to also
select a value for the level option, indicating how much effort should be spent
compressing the input. Interesting to note here, level is actually a numeric option,
with a value range of 0–9, which, in this case, is encoded by 10 binary configuration
options, where each indicates a value in the value space. This is a common procedure
to remove or reduce the number of numeric options in a configuration model, as
some approaches have difficulties handling numeric options [113, 152, 212].

1 https://tukaani.org/xz/ (Last accessed: July 26, 2023)

https://tukaani.org/xz/
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2.1.2 Configurations

Configurable software systems, similar to software product lines, offer a wide
range of functionalities to their users that can be combined and tuned. Combining
and adjusting the different functionalities are the key to making software systems
adaptable and flexible for users and enable them to employ the system in varying
use cases. However, the large configuration space that arises from these combination
possibilities makes configurable software systems difficult to reason about by users
and developers [144, 228, 252]. In what follows, we introduce the core concepts and
describe how the configuration space arises from the combinatorics between the
different functionalities.

To use a configurable software system, the user needs to provide a configuration,
that is, the user needs to define which functionalities should be used or how they
should be parameterized. This configuration is produced by selecting, directly or
indirectly, values for each configuration option. The user either specifies the value
directly, for example, by selecting a boolean option or choosing a numeric value, or
implicitly selects the default value that was defined by the developers. Through the
set of selected values, it is now specified how the variable parts of the configurable
software system should behave. We define a configuration as:

Definition 2. A configuration is a set of selected values for all configuration options
of a given configurable software system.

Based on the previous definition, we define the configuration space of a config-
urable software system as the set of all configurations (i.e., the set of all possible
combinations of all configuration options). The configuration space of a configurable
software system can quickly become excessively large. For example, a configurable
system with only 10 binary configuration options already has 1024 configurations
and real-world systems, such as the Linux kernel2, have exponentially more [144,
228]. In literature this is often referred to as combinatorial explosion [7, 252], indi-
cating that these large configuration spaces are difficult to deal with. Especially, Xu
et al. [252] point out that a large part of the configuration options are used only by
a very few users or not used at all. In their work, they showcase that exemplary
projects could remove up to 51.9% of their configuration options without impacting
their users. Considering the exponential growth of the configuration space, this
would reduce a project’s configuration complexity drastically, and likely lead to
fewer bugs.

Configuration spaces, in more detail, are comprised out of two disjoint subsets:
the set of valid configurations and the set of invalid configurations. Whether a
configuration is valid, is determined by the configuration model, as this is where all
relationships between configuration options are encoded.

Next, to conceptualize a configurable software system configured in a specific
state, we define a system variant. A variant is the result of applying a valid configu-

2 https://www.kernel.org/ (Last accessed: September 25, 2023)

https://www.kernel.org/
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ration to the variable code base (i.e., the results of resolving the variability of the
system by selecting the parts specified in the configuration). More formally put:

Definition 3. A variant denotes the intentional variations in a configurable software
system that exist alongside each other in the space dimension [7].

How the configuration is applied to the code base to produce a variant depends
on the kind of variability and the technique they are implemented with. Important
to consider here is the binding time (i.e., when the variability is resolved) and the
implementation technique used (e.g., an external generator, C++ template meta-
programming, or conditionals that are evaluated at run time).

Important to note, this definition is central to this thesis as it defines one of the
two major dimensions we address in our work: the space dimension. The space
dimension conceptually represents the configurability of a software project and the
variability that is introduced by the project’s configuration options. In what follows,
we highlight different kinds of variability more fine-grained and discuss common
techniques used to implement configurability in real-world software projects.

2.1.3 Binding Times

One key aspect where variability encodings differ is their binding time. This means,
the binding time of a configuration option defines when the variability is resolved
and, by that, when a user or developer can decide on it. We divide configuration
options into two broad categories: statically bound and dynamically bound. Where
statically bound configuration options are decided upon early at compile time or
build time, dynamically bound configuration options are decided upon later, either
during startup of the program, called load-time configuration options, or during the
execution of the program, called runtime configuration options [198]. As our work
focuses on compile-time variability and load-time variability, we introduce these
two forms in more detail.

Compile-time variability. Compile-time variability, also referred to as static
variability, is decided before or during compile time [7]. A clear advantage of
compile-time variability is the optimization potential. By deciding early on configu-
ration decisions, we give the build process and the compiler additional information
to optimize the final software product. This includes explicit optimizations, where
developers decide to remove unnecessary code, as well as, implicit ones where com-
piler optimizations can produce more efficient code due to the extra information.

Load-time variability. Load-time variability, also referred to as dynamic vari-
ability, is decided after compilation when the program is started [7]. A general
advantage of load-time variability is the configuration flexibility of the software
product, meaning the product can be reconfigured without recompiling the sys-
tem, often with little more than toggling a switch in a configuration file. However,
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load-time variability can also entail a drawback with regard to performance and
missed optimizations. By delaying the decision until after compile time, for example,
optimizing the product by removing unnecessary functionality is not possible.

An important distinction we want to highlight between compile-time and load-
time variability is that with load-time variability all variable parts are still contained
in the final software product, where in the case of compile-time variability deselected
parts get excluded from the final product. This distinction is especially important
with regard to static and dynamic analyses. Dynamic analyses have drawbacks
when analyzing compile-time variability. At the point in time when the dynamic
analysis runs, the variability already has been resolved and deselected options are
no longer present in the final product, so only one specific variant is analyzed. Often,
this problem is resolved by running the analysis multiple times for all variants of
interest, which is expensive and limits reuse of analysis results across configurations,
or by creating a specialized version of the program where compile-time variability
is encoded as load-time variability, often referred to as 150% program [195].

2.1.4 Implementation Techniques

To build configurable software systems, developers use different techniques and
mechanisms to encode variability (i.e., they use different implementation strategies to
encode choices, so that users of the system and developers can select the functionality
they want). So, where binding times specify when a configuration choice is made, the
implementation technique specifies how the variability is encoded into the program.

For example, build-system decisions are a technique where, depending on a
choice, different files are selected for compilation or preprocessor options are used
to select configuration-dependent code blocks. An often more developer-focused
implementation technique uses template meta-programming3 to select configuration
specific code [76]. For example, choosing between different SAT solver implementa-
tions based on a configuration option or optimizing an algorithm by the choice of
usage-specific tuning knobs (i.e., low-level configuration options for fine-tuning).
Another technique to encode high-level user facing configuration options as well as
low-level tuning knobs is by using configuration variables. Configuration variables
are regular program variables except for the conceptual difference that they carry
the configuration choice that is designed to enable or disable certain functionality.
In what follows, we give a brief introduction into each technique and explain the
mechanisms that are used to implement them.

Preprocessor directives. A common way to implement configurable software sys-
tems are C preprocessor directives. Before compilation, the preprocessor processes
the source code and does text transformations based on preprocessor directives,

3 In C++, templates are a language specific way of expressing generic types and functions. The template
itself is the generic implementation and gets instantiated by the compiler for a concrete type, generating
the concrete implementation.
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1 static void uncompress(lzma_stream *strm, FILE *file, const char *filename) {

2 lzma_ret ret;

3

4 // Initialize the decoder

5 #ifdef LZMADEC

6 ret = lzma_alone_decoder(strm, UINT64_MAX);

7 #else

8 ret = lzma_stream_decoder(strm, UINT64_MAX, LZMA_CONCATENATED);

9 #endif

Figure 2.2: Preprocessor example from the project XZ, where an #ifdef directive is used at
compile time to select between two different decoder implementations based on
the configuration option LZMADEC.

such as #ifdef or #define. Important to note, the C preprocessor is only a text
processor that does text replacement without any understanding of the language
syntax that it’s manipulating, which makes it difficult and error-prone to use. In
Figure 2.2, we show an example of a preprocessor directive (#ifdef LZMADEC) used
in the compression tool XZ to select the correct decoder implementation. Based
on the preprocessor variable LZMADEC that encodes if the LZMA stream decoder is
available, the preprocessor will weave in either Line 6 or Line 8.

The C preprocessor is a common tool to build compile-time variability into
software systems, since preprocessor directives enable developers to do complicated
source code rewriting to weave in configuration specific code snippets. These
#ifdef-based configurable software systems are regarded as cumbersome and
problematic, often referred to as ”#ifdef hell” [136, 222]. Due to the complicated
rewriting patterns, code becomes difficult to understand and error-prone, as it is not
clear for developers what final rewritten source code is produced in the different
cases. Overall, #ifdef-based configurable software systems incur high maintenance
costs [63]. Still they are a common and widespread way of encoding variability
into a software project, even though approaches that aimed at improving these
shortcomings could not catch on [64, 118, 146].

To tackle the challenges posed by the preprocessor and analyze #ifdef-based
configurable software systems, many tools have been developed over the years.
For example, SuperC [71] a variability-aware parser, TypeChef [118] a variability-
aware type checker, cppstats [144, 146] a tool for extracting compile-time variability
information, or Morpheus [145] a variability-aware refactoring engine.

Template meta-programming. In C++, templates are a language mechanism to
write generic code. The template class or function defines template parameters,
which can be types or compile-time values, that act as placeholders in the generic
implementation. At the usage point of the template, the compiler instantiates
a concrete implementation of the generic template code, meaning, the compiler
generates a concrete implementation by replacing the generic parameters with
concrete types or values determined at the usage point. From a design point of
view, template parameters are often used to specify extension points in the generic
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1 /** \brief Implementation of an hp-adaptive discrete

2 * function space using product Legendre polynomials

3 *
4 * \tparam FunctionSpace a Dune::Fem::FunctionSpace

5 * \tparam GridPart a Dune::Fem::GridPart

6 * \tparam order maximum polynomial order per coordinate

7 * \tparam Storage for certain caching features

8 *
9 * \ingroup DiscreteFunctionSpace_Implementation_Legendre

10 */

11 template< class FunctionSpace, class GridPart, int order, class Storage >

12 class LegendreDiscontinuousGalerkinSpace;

Figure 2.3: Template meta-programming example from the project dune. The project’s
documentation above the class declaration describes what can be configured, for
example, with the template parameter Storage a class can be provided that is
used internally for caching.

code where functionality should be injected, for example, with policy classes or type
traits. Therefore, templates are a common way to encode compile-time variability in
C++ projects.

There are many large software projects that make heavy use of template meta-
programming to write generic code that can be configured for different use cases.
For example, dune

4 [16], a framework for solving partial differential equations.
Figure 2.3 depicts a class from dune that can be configured with different func-
tion spaces or specific storage classes. As described by the documentation, the
specified storage class is used internally for caching. Using template parame-
ters to weave in additional functionality or provide optimization opportunities
is a common implementation strategy [43, 238]. In our example, the configura-
tion parameter Storage enables the user of the dune framework to optimize the
LegendreDiscontinuousGalerkinSpace with a caching implementation that is opti-
mized with regard to a specific use case.

Compared to a C preprocessor based encoding, templates have the advantage
to be part of the C++ programming language. This means, they not only adhere to
more fine-grained language rules with regard to syntax and semantics but, most
importantly, they are part of the type system. By being included in the type system,
the compiler cannot only type check the code but also produce more accurate error
messages. However, they still have drawbacks. Similar to #ifdef-based configurable
software systems, template-based ones can become very complicated to understand
and reason about.

Nonetheless, templates are highly used in C++ to build configurable software
systems. Foundational work in utilizing template meta-programming for the design
of configurable software systems—software product lines to be specific—has been
done by Czarnecki and Eisenecker [43, 44].

4 https://www.dune-project.org/ (Last accessed: June 26, 2023)

https://www.dune-project.org/
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1 case ’L’:

2 if (compat) {

3 license();

4 exit(0);

5 }

6 control->compression_level = strtol(optarg, &endptr, 10);

7 if (control->compression_level < 1 control->compression_level > 9)

8 failure("Invalid compression level (must be 1-9)\n");

Figure 2.4: Example from the project lrzip, where in Line Line 6 the configuration variable
compression_level is set to the value parsed from command line argument ’L’.

Larger template-based configurable systems, such as dune, that have many differ-
ent configuration possibilities are complex to understand for users and developers.
To address this, Grebhahn et al. [76] introduced a lightweight semi-automatic
approach that extracts variability information from the project and presents the
discovered variability to the user as a configuration diagram. Furthermore, through
the extracted information it becomes easier to locate the part in a code base that
implement template variability.

Configuration variables. Another very common implementation technique that is
often used to encode load-time configuration options are configuration variables (i.e.,
program variables that carry the information about the configuration choice during
the execution of the program). Initially, the configuration value is loaded at program
start, by parsing it from command line flags or loading it from a configuration file.
Then, the configuration value is stored in the configuration variable which represents
the configuration option throughout the program and is referenced whenever the
value is needed elsewhere in the program. Configuration variables are often grouped
together in a configuration context object, which is passed to all parts of the code
base or is accessible as a global variable. One key drawback is that it can be difficult
to reason about where configuration options have impact in a large code base, as
all configuration variables are often accessible with the configuration context object
from anywhere.

Figure 2.4 depicts the configuration variable compression_level from the com-
pression tool lrzip

5, which is used to control how much effort is spent to compress
the input. At the start of lrzip, the configuration value is parsed from the command
line and stored in the configuration variable compression_level (Line 6). In lrzip,
configuration variables are grouped together by a struct lrzip_control, which
is accessible in the whole code base through the global variable control. So, as
noted earlier, determining all places that are directly or indirectly influenced by a
configuration variable is difficult for a developer.

To address this issue, Lillack et al. [147] developed Lotrack, an approach that
uses a taint analysis to determine which parts of a program are directly or indirectly

5 https://github.com/ckolivas/lrzip (Last accessed: December 26, 2022)

https://github.com/ckolivas/lrzip
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controlled by a configuration variable. Through Lotrack, one can locate load-time
configuration-specific code.

2.1.5 Feature Interactions

As previously mentioned, large configuration spaces make analyzing configurable
software systems difficult, as standard analyses often need to analyze each variant
for itself. A standard technique to mitigate this issue is sampling [112, 152, 202,
212]. The sampling technique selects a representative subset of the configuration
space and only then is the subset analyzed. The idea is to reduce the number of
variants to analyze, while still covering the configuration space with regard to the
effect the analysis wants to observe. However, even specialized sampling techniques,
such as feature-wise sampling [213] or distance-based sampling [113], that where
devised for configurable software systems, cannot guarantee that the sample set
contains all effects the analysis wants to observe. The reason that makes selecting a
subset difficult are potential interactions between different features, that is, enabling
a feature might alter or influence the behavior of another feature. So, an effect or
analysis finding may only be visible if a specific set of configuration options are
selected or deselected, activating the respective features. Apel et al. [7] define a
feature interaction and the problem to detect and manage them as follows:

Definition 4. A feature interaction between two or more features is an emergent
behavior that cannot be easily deduced from the behaviors associated with the
individual features involved.

An inadvertent feature interaction occurs when a feature influences the behavior of
another feature in an unexpected way (. . . ).

The feature-interaction problem is to detect, manage, and resolve (inadvertent)
feature interactions among features. [7]

Following this definition, it becomes clear that a feature interaction can poten-
tially be between any number of features of a configurable system, where higher
interactions that affect multiple features at the same time, are less probable but still
cannot be excluded [125]. Previous research has shown that feature interactions
cause a wide range of problems and affect different fields [5, 6, 8]. For example, the
null-pointer dereference in the Linux Kernel that was fixed by commit 6252547b8a76

only occurred when TWL4030_CORE was enabled but OF_IRQ was disabled [1].
Kolesnikov et al. [124] give another example in mbedTLS, where the choices of
block cipher mode and hash function interact and can have a negative impact on
performance. Hence, finding and analyzing feature interactions is important to
detect such problems.

Depending on the way how features interact, there is often no way of determining
a feature interaction up front without running the actual analysis on the specific

6 https://github.com/torvalds/linux/commit/6252547b8a7acced581b649af4ebf6d65f63a34b (Last
accessed: October 5, 2023)

https://github.com/torvalds/linux/commit/6252547b8a7acced581b649af4ebf6d65f63a34b
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configuration that includes the interacting features. From previous work, we know
that features can interact with each other in a multitude of ways and that feature
interactions appear in many domains [6]. Furthermore, it is not always clear how to
categorize them: effect (good vs bad), intention (intended vs unintended), or context
(design vs implementation) [6]. With regard to program analysis, we group feature
interactions into three categories: structural interactions, program-flow interactions,
or non-functional-property (NFP) interactions. This way, we differentiate feature
interactions by the type of analysis that is used to detect them.

Structural feature interactions. The commonality of structural feature inter-
actions [9] is that the same code is shared between multiple features. Feature
interactions that emerge through a structural overlap of feature code are often the
simplest to detect, as they are encoded directly. For example, nested #ifdef blocks,
where one feature block is nested or overlaps with another block.

Structural feature interactions arise from the fact that features are often crosscut-
ting concerns [10, 43, 144] (i.e., the implementation of the feature is spread over the
code base). In general, the design principle of separation of concerns aims to program
code into separated parts [55, 180, 190]. The goal is to produce modular code, where
each modular unit implements a specific concern, for example, a specific task or al-
gorithmic approach, but is separated from the rest of the program by a well-defined
API. This way, the details that are needed to implement the modular unit are hidden
from the rest of the program to encapsulate complexities. However, as Kiczales
et al. [121] note, some concerns cannot easily be represented through procedural or
object-oriented programming techniques, leading to "tangled" code that is scattered
all around the code base. These concerns are referred to as crosscutting concerns,
where the term crosscutting describes the structural relationship between the repre-
sentation of two or multiple concerns [7]. The shortcoming of not allowing a clear
separation between concerns of classical procedural or object-oriented program-
ming languages is referred to as the tyranny of the dominant decomposition [227]. The
consequence of this is that many feature implementations cannot be implemented
in separation and, by that, are scattered throughout the code base. In the presence
of multiple features this can lead to crosscutting features, which leads to structural
feature interactions.

Program-flow feature interactions. Compared to structural feature interactions,
program-flow based ones are non-local, meaning that the execution of one feature
modifies the program state in a way that later influences other features. These
interactions happen through control or data-flow connections between the features.
For example, the execution of one feature might permutate previously sorted data
that is later passed as input to another feature which then behaves differently
because it expected the data to be sorted. From a source code perspective, there
might be no overlap or syntactic relation between the two features, but still enabling
one causes a bug in the second one because of data dependencies between them.
Detecting program-flow interactions requires more elaborate program analysis
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compared to structural ones, as they need to model and analyze the control or
data flow of a program. For example, Kolesnikov et al. [124] demonstrated that
control-flow dependencies between features can be used as a predictor for feature
performance interactions. However, their findings also indicate that control flow
alone is not enough to reliably predict feature performance interactions and they
hypothesize that data-flow dependencies could improve prediction accuracy.

NFP feature interactions. Non-functional properties of software systems, such as
performance, binary size, or memory consumption [216], are important to users in
various application scenarios. Non-functional properties are especially important in
the domain of embedded or real-time systems where the application is constrained
by limited amounts of memory or hard time requirements [91, 92]. Similar to
functionality, the NFPs of a configurable software system are also influenced by the
feature selection and are impacted by feature interactions. Detecting NFP feature
interactions can be challenging, as there might not be any direct connection in the
program between the involved features. For example, enabling a feature might lead
to worse performance of another feature because the data that was loaded by the
first feature displaced data from the cache that is later needed by another feature,
resulting in more cache misses and longer latencies for the second feature. This
means, detecting NFP feature interactions typically requires a dynamic analysis that
measures the NFP for all variants. In general, performance is an important NFP for
software systems, including configurable ones. We highlight these performance-
specific feature interactions in Section 2.3.7.3 in detail, where we focus on the
performance analysis of configurable software systems.

There exist various forms of inadvertent feature interactions, resulting from different
implementation techniques, properties, or objectives. Overall, these inadvertent
feature interactions pose a challenge to developers and users that encounter them,
as well as, to the analyses that aim to identify them. In our work, we do not focus
on a specific technique or objective but treat configuration variability uniformly,
represented by the space dimension, and aim to integrate this type variability
information into program analysis.

2.2 Software Evolution

With an ever-changing environment and new user demands, modern software
projects are forced to constantly evolve and adapt. To facilitate that, modern devel-
opment practices have changed, from the traditional waterfall model [200] to agile
software development practices [36, 150], such as extreme programming [18]. The
new agile processes center around iterative and incremental development, which
makes it easier to incorporate changing needs of the customer, even late in the devel-
opment cycle. However, these new processes also pose new challenges, for example,
how do developers from large and distributed teams coordinate in agile develop-
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ment processes [224]. Solving these challenges to improve development practices
and furthering the understanding of software evolution is important. As Mens and
Demeyer [155] put it: ”The ability to evolve software rapidly and reliably is a major
challenge for software engineering.”. However, to understand and improve these
processes it is essential to analyze the evolution of existing software projects and find
new methods that allow us to better understand how software is developed (e.g., we
need to better understand how new changes interact with existing code). Another
key aspect that needs to be incorporated into the big picture is the socio-technical
context around software projects. Modern software projects are developed in a
highly collaborative manner [155], meaning they are developed by many individual
developers. So, incorporating the human factor into the understanding of a software
project evolution is key to get a better understanding.

In what follows, we give an overview of modern version control systems and how
they enable the development of constantly evolving software systems. We explain
the crucial role of repository mining in the research process to extract and reason
about these evolving software systems. Next, we highlight key aspects to understand
the socio-technical context around a software project, which is important to consider
when aiming to understand the evolution of a software system, as the developers
of the system are the drivers of software evolution. Afterwards, we contextualize
software evolution with regard to configurable software systems, as analyzing them
poses additional challenges because the evolutionary changes impact the systems’
configurations differently and can also influence the configuration space itself.

2.2.1 Version Control Systems

The goal of version control systems is to manage, store, and orchestrate different
states of a software project, to enable developers to work simultaneously on a
software project. As software projects are developed incrementally [155] by multiple
developers, version control systems need to orchestrate the different project states
that arise through the many changes. Furthermore, version control systems need to
preserve older project states, so that developers can look back and reason about the
changes made. Hence, a central concept of version control systems is the revision,
which specifies a software project’s state at a specific point in time, with regard
to one or multiple previous states. Thereby, revisions create an order or partial
order between different project states. Note, for version control system that are only
partially ordered, we can create an order by linearizing the revisions through their
timestamps [103].

Definition 5. A revision is the ordered variation of a software system along the time
dimension [7].

Important to note, this definition is central to this thesis as it defines the second
major dimension we address in our work: the time dimension. In general, version
control systems manage the revisions of a software project over time and provide
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Code Blame

1 int main(int argc, char *argv[]) {

2 if (argv[argc] == "eel" &&

3 argv[argc + 1] == "heel") {

4 puts("It’s a moray!");

5 return 42;

6 }

7 return 0;

8 }
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Figure 2.5: Overview of important git-specific terminology.

functionalities to work with them. For example, they can compute the textual
difference between two revisions or provide a way to bring the software project into
the specific state that is described by a revision.

git
7 is a version control system that has gained wide acceptance over the last

decade8 [53]. In what follows, we introduce git-specific terminology that we later
use and relate them to central theoretical concepts, as our practical implementation
is closely tied to git. Figure 2.5 depicts the git-specific terms and visualizes their
relation to each other.

Commit. In git, a commit represents a revision of the software system. Concep-
tually, a commit is a set of changes. The changes encoded in the commit specify
how a revision can be produced based on the previous commits (i.e., they specify
how the previous states of the system need to be transformed). In detail, each
commit is comprised of one or multiple hunks, where each hunk represents the
changes made to a separate part of a file (i.e., it describes the differences to the
previous state of that specific part). Applied together, all hunks describe how all
files need to be transformed on a textual level. In addition to the changes, commits
also encode meta-data, such as author (i.e., the person who wrote the change),
authoring timestamp, or committer (i.e., the person who committed the change).
These meta-data are important for analyses as they associate a change set with the
developers that work on it and can, therefore, be used to embed changes into the
socio-technical context of a software project.

7 https://git-scm.com/ (Last accessed: July 3, 2023)
8 https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems

(Last accessed: May 16, 2023)

https://git-scm.com/
https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
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Commit history. All commits together form the history of a software project.
Each commit describes the changes with regard to the previous commit, referred to
as parents. This way, the parent relationship explicitly encodes the ordering between
the different revisions, that is, it specifies in which order the changes need to be
applied to produce a specific revision. This explicitly captured history is valuable
for understanding the evolution of a software project, as we can post-hoc retrace the
different revisions of the software project and see how it evolved over time.

Blame. Technically, git-blame is a git command that annotates at a given revision
each line in a file with the commit that last modified it. Conceptually, the blame view
collapses the creation history of a file and visualizes for a revision what changes in
the history of the software project produce a specific line in a file. From a software
evolution standpoint, this shows us for a revision which parts of a commit did
survive over the evolution of the software project and are still relevant.

Overall, version control systems are a rich data source for the analysis for software
projects, as they preserve important details about the evolutionary steps of a software
project (i.e., they track all textual code changes, the order in which they were made
as well as when and by whom the changes were made).

2.2.2 Repository Mining

Software repository mining focuses on gathering, modeling, and studying the data
and software artifacts produced by developers during the software development
process [46, 48]. Conceptually, the mined data enables us to connect the technical
changes made over time to a project’s developers, enabling us to reason about how
the software project evolved.

A project’s revisions (i.e., the source code changes) are especially important for
evolutionary and socio-technical analyses because they encode the history of the
software project and closely tie developers to the produced code. Kagdi et al. [110]
state that source code changes are the fundamental unit of software evolution.
Bird et al. [22] also describe that git offers a wide range of useful data but also
point out potential pitfalls that can be encountered when mining data from git

repositories, such as that histories can be edited by developers afterwards. However,
by incorporating the historical data encoded in the revisions, one can analyze how a
software project evolved over time. For example, Xie et al. [251] investigated several
evolutionary patterns (law’s) in seven long-lived software projects and analyzed the
distribution of software changes and growth rate of development and maintenance
branches. They could confirm many proposed patterns and, furthermore found
that a high percentage of changes are concentrated on a small percentage of code,
describing these regions of code as "change hot spots". Kagdi et al. [110] further
mention that current version control systems do not provide information about code
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semantics, so most of the analyses only use syntactical information when reasoning
about changes. A shortcoming that we address with SEAL (see Chapter 4).

An important application where the mined data can also help to better understand
how software evolves is social-network analysis. The data extracted from software
projects provides a way to connect source-code changes with the developers that
produced them and, by that, enables us to analyze social interactions between
developers that arise from the technical work. These connections, based on the
mined data, let us then reason about the socio-technical context in which the
software project evolves and how this social-technical context evolves over time.

2.2.3 Socio-Technical Context

Modern software systems are developed in a highly collaborative manner [155] by
many individual developers, which all need to organize and work together to realize
the system. To further improve development processes, we need to understand
the social factors of how developers interact and how they work together to build
successful software systems. However, we should not consider the social factors
in isolation but together with the technical artifacts of the software system, as
both together form the software project. Studying social factors together with
technical artifacts is difficult, especially for open-source projects where hierarchies
and organizational structures are often not explicit, but also necessary to get a better
understanding how successful software systems are developed [226].

The overall goal is to reach socio-technical congruence, a state where the social
and the technical sides interact properly [32]. According to Herbsleb and Grinter
[95], socio-technical congruence is essential for project success. However, to build
socio-technical congruent development processes, we first need to study and analyze
the technical and social evolution software projects.

A key problem for socio-technical congruence is to determine when developers
should coordinate between each other, meaning, when do technical dependencies
and requirements need social interplay between developers [32]. Code changes of
one developer can impact the code of other developers, for example, adding a new
method to an interface that now needs to be fulfilled by all classes implementing
it requires other developers to adapt their code. In many real-world scenarios
determining these dependencies and interactions is difficult, so overall the question
arises: ”When should two developers coordinate?”.

Answering such questions is difficult and requires detailed data about the evo-
lution of the technical and social side of a software system. To gather the data,
repository mining is an important building block for socio-technical research, as it
extracts valuable data from the development history of the project.

For example, to better understand how developers coordinate, work by Joblin
et al. [105] investigated the communication structures between developers in 18 large
open-source projects. They analyzed how the communication structure changes
when projects evolve and grow over time. An important building block in their



2.2 Software Evolution 25

analysis is the function-level semantic coupling data. They computed this coupling
data by first extracting source code and comments from the repositories’ code base
and then processing it further with text mining techniques to extract the semantic
connections between developers. Their work showed that organizational structures
of large projects adapt to balance the costs and benefits of developer coordination.

Another example, where data mined from software repositories is utilized by
socio-technical research, is to reverse engineer organizational structures for open-
source projects. Determining and analyzing the organizational structure of a software
system is important because, following conway’s law [39, 132] and the mirroring
hypothesis [37], a projects organizational structure influences the technical struc-
ture of the software project. However, open-source projects often lack an explicit
organizational structure. So, to further study these, one has to first reverse engineer
them from available data sources. To infer organizational structures of open-source
projects, recent work by Joblin et al. [106] uses repository mining approaches to
discover communication links between developers and, based on these, identify the
organizational structures. A key data source for their work is e-mail communication
extracted from mailing lists and issue data mined from GitHub. Based on the mined
data, their network approach helped to uncover that open-source projects have
hybrid organizational structures with hierarchical and non-hierarchical parts.

Factoring in the socio-technical context is necessary to obtain a holistic under-
standing of the evolution of a software system, especially for configurable software
systems. However, socio-technical reasoning about configurable software systems
is currently still difficult. Current approaches often analyze the evolution and
socio-technical context of configurable software systems without incorporating the
variability that arises from the configuration space.

2.2.4 Evolution of Configurable Software Systems

As previously discussed, understanding the evolution of software systems and the
socio-technical context they are developed in is important to improve development
processes (e.g., to improve coordination requirements [97]). However, this becomes
more difficult for configurable software systems, as alongside the evolutionary
dimension, which adds variability over time, there is also the spacial dimension
(i.e., the variability introduced by the configurability of the system). As both of
these dimensions interact [233], investigating one without incorporating the other
cannot lead to a complete picture. So, only a joint approach that incorporates
both evolutionary variability and configuration variability is suited to analyze how
configurable software systems evolve.

In what follows, we relate software evolution to configurable software systems and
describe the peculiarities that arise through this in detail. We introduce the central
concept of a software version that combines the configuration space of a configurable
software system with a specific revision from the system’s development history.
We explain why the influence of the evolution on the configuration space makes
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analyzing the evolution of configurable software systems particularly challenging.
Furthermore, we highlight recent research that aims at understanding the evolution
of configurable software systems.

We define a version as the combination of a variant together with a revision.

Definition 6. A version of a configurable software system is comprised of a revision
(time dimension) and a variant (space dimension) [7].

This way, we introduce a term that unifies both time and space dimension. Put
differently, a version is the result of applying a valid configuration on a variable code
base at a specific point in time. The combination of both dimensions is necessary
as only together we can make precise assessments. Analzying a revision of a
configurable software system, without incorporating configurability, can give a
distorted picture of the project’s state. On the other side, analyzing a configurable
software system without specifying at which point in time (revision) the project
was analyzed, makes the results difficult to interpret, as they might only be valid
in a specific time range. Hence, we unify both dimensions into a version of the
configuration software system.

Analzying the entire version space of a configurable software system is chal-
lenging and extremely computationally expensive. To conceptually get a full pic-
ture, the already potentially very large configuration space would need to be
analyzed at every revision. Meaning, we would get a worst case estimate of
numberOf(revisions) ∗ largest(configuration space) configurations to evaluate. That
is why analyses need to carefully evaluate which kinds of information to incorporate
and how to incorporate it, as for many interesting questions, fully exploring the
version space is not necessary.

Combining the space dimension with the revisions gives us more than just multi-
plying existing analyses along the time dimension. Adding revisions builds a bridge
to the evolutionary information that is present in software repositories. Research
on software evolution already has demonstrated that incorporating evolutionary
information, such as change histories and socio-technical information, can provide
benefits for understanding software projects. So, by focusing our analyses on versions
we enable the incorporation of evolutionary information into existing analyses that
target configurable software systems.

However, accessing and incorporating all this additional information into analyses
is a further burden for analysis developers, consuming time and adding analysis
complexity. Among other things, we try to address this problem of incorporating
both time and space variability into existing analyses with our unified region
abstraction, which we introduce in Chapter 3.

Work in the recent years suggests there is an interest in combining both dimen-
sions to analyze configurable software systems. For example, Hunsen et al. [97]
investigate socio-technical congruence in open-source software projects, by assessing
the alignment of collaboration and communication through coordination require-
ments. To determine coordination requirements, they use the coupling of different
abstraction levels of source-code artifacts. Among other things, they analyze coordi-
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nation requirements arising from features. Important to note, their study focuses
only on compile-time variability implemented through preprocessor directives.
Having a more uniform access to variability information can enable such studies to
consider all kinds of binding times and implementation techniques. Furthermore,
having a combined access to the socio-technical context of the code base and feature
information would probably have made it easier to relate the detected feature code
to the developer information.

In addition, recent work by Mühlbauer et al. [163, 164] started to jointly ana-
lyze the version space of configurable systems. Initially, they developed an active
sampling approach to detect performance changes, especially regression, in the
performance history of configurable software systems [163]. Their approach analyzes
the performance of specific revisions, sampled with an adaptive sampling approach
to minimize the amount of measurements needed, to build up the performance his-
tory of a configurable software system in retrospect. With their work they only need
a small set of measurements to determine important performance change points
along the time dimension of a configurable software system. In follow-up work,
Mühlbauer et al. [164] extended their approach to also include the space dimension,
enabling them to detect version specific performance changes. However, currently
their approach is black-box based and does not enable developers to analyze the
detected performance changes alongside the changing code. Again, a uniform inter-
face to access variant and revision specific information can help here by determining
the affected configuration specific code and putting the measured results into the
socio-technical context by connecting them to the involved developers.

These examples not only demonstrate the potential and interest in version focused
analyses, but also show that a uniform abstraction to access variability information
from both dimensions could ease the development of such analyses. However, in
the end we need a unified way of connecting all these different types of data.

2.3 Compiler-Aided Program Analysis

Program analyses are vital tools to better understand and reason about programs.
The goal is to develop a program—the analysis—that reasons about the behavior of
given input programs, for example, to optimize the input program, find flaws, or
reason about a specific property. Program analyses are divided up into two broad
categories: static analyses and dynamic analyses. Where static analyses reason about
the behavior of a program without actually running it, dynamic analyses are executed
at run time together with the target program, either woven into the program as
instrumentation code or alongside it.

Static analyses take a program in an abstract representation as input and try
to determine properties about the program behavior. Important to note, all non-
trivial behavior properties are mathematically undecidable, following from Rice’s
theorem [196] and the halting problem [237]. This means, sound static analyses
need to overapproximate, for example, at points where runtime specific information
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is needed, computing a solution would take long, or where potentially no solu-
tion could be computed. Compared to static analyses, dynamic analyses are not
constrained by undecidability, as they follow actual execution traces, but they are
limited by the number of traces that can be produced. Dynamic analyses cannot
reason about the unexecuted parts of a program, so the number of traces and the
information contained within them, limits what they can prove. This can be espe-
cially problematic for configurable software systems, where currently disabled parts
are not visible to the dynamic analysis. Furthermore, dynamic analysis can alter
the behavior of the target program by observing it—similar to the observer effect
in physics. For example, performance measurements perturb the analyzed target
program by competing for or influencing system resources, such as CPU or cache
memory. We discuss a more detailed example of such effect in Section 2.3.7.

In what follows, we give a brief introduction into the large area of program
analyses. Initially, we focus on important theoretical concepts and frameworks on
which our later work builds. Next, we introduce the LLVM compiler infrastructure,
a versatile compiler framework that offers building blocks to assemble program
analyses. Afterwards, we highlight PhASAR, a LLVM-based analysis framework,
through which we implement advanced inter-procedural program analyses. In the
end, we give a brief overview of performance analysis, an area of program analysis
that is concerned with measuring and understanding the performance of programs.

2.3.1 Data-Flow Analysis

The goal of a static data-flow analysis is to compute dynamic properties of a pro-
gram by only analyzing its representation (e.g., source code) and without actually
executing it. Therefore, the data-flow analysis utilizes data-dependencies and flow
information to compute the properties for each program component that are guar-
anteed to hold at a point on all possible program executions. Common applications
that use information computed by data-flow analyses are compiler optimizations,
for example, to compute which variables could still be read (liveness analysis), or
security-focused analyses that, for example, want to guarantee that a specific data
value cannot be read by the user.

Data-flow analyses take as an input a representation of a program, usually a set
of functions where each function is represented as an intra-procedural control-flow
graph, and analyze each function. An intra-procedural Control-Flow Graph (CFG)
is a representation that depicts a function of a program as a graph, where each
node is either an instruction or a block of instructions (called basic block) that are
executed in sequence, and the directed edges between the nodes indicate where
the execution can continue after the execution of the current node. To analyze a
program, a data-flow analysis defines the analysis lattice, an abstract structure of the
information that the analysis wants to track, as well as, a set of data-flow equations
that specify the analysis semantics. In short, a complete analysis lattice is a partial
order (S, v) where a least upper bound (t) and greatest lower bound (u) exist
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for each subset of the lattice [162]. So, the lattice describes the different states the
analysis properties can be in. Commonly, the largest element of the lattice is referred
to as the top (>) and the smallest one as the bottom (⊥). The transfer function specifies
how the desired properties for a given node in the CFG are computed and the join
function describe how analysis properties from multiple nodes should be combined.
A data-flow solving algorithm then computes the data-flow properties that hold at
each node in the graph, by iteratively applying the data-flow equations until a fix
point is reached. Note that, to guarantee termination for a given data-flow analysis,
the transfer function needs to be monotonic and the height of the lattice finite.

Taint analysis. A taint analysis is a specific form of data-flow analysis that aims
to determine if and which parts of a program depend on specified data sources.
Conceptually, the analysis defines data sources and taints every part of the program
that uses data produced by a source (i.e., the analysis marks every part of the
program that is dependent on the data source). This way, the analysis determines if
specified parts of the program, called sinks, that should not be able to access data
from a source could do so. Taint analyses are often employed in the security context,
for example, to detect if sensitive information could be leaked to the user [13, 27,
142, 204]. In such an analysis, the variables containing the sensitive information
are defined as taint sources and the functions that can give information to the user
are defined as sinks. Then, if no taint can reach a sink, it is not possible to leak the
sensitive information, within the bounds of the analysis specification. For example,
to check that a server’s private key cannot be leaked, the analysis would define
the variable containing the key data as a source and all functions that send data to
the user as sinks. The taint analysis then taints all values that stem from a source
variable. If one of these tainted values is passed to a function marked as sink, the
analysis would report this as a potential way to leak sensitive information.

Another application of a taint analysis in the context of variability is to determine
which parts of a program are related to configuration options. Developed by Lillack
et al. [147], the tool Lotrack uses a taint analysis to infer which statements of a
configurable software system are controlled by which configuration options (i.e.,
which statements can only be executed if at least these configurations options are
set). To compute this information, Lillack et al. [147] define read operations that
load configuration options as taint sources and then use the taint analysis to taint
all control-flow decisions (sinks) in the program that depend on the loaded options.
This way, they can compute which parts of a configurable software system can only
be executed given a set of configuration options. We later use such a taint analysis
in Section 5.2.2 to infer load-time dependent code.

2.3.2 Inter-Procedural Analysis

We previously simplified that a data-flow analysis represents a program as a set
of functions and analyzes each function separately, by that describing how intra-
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procedural analyses work. However, only analyzing each function for itself limits
the precision of the analysis and what claims it can make, as the analysis does
not consider the interactions between functions and, therefore is required to over-
approximate at call-sites. Inter-procedural analyses overcome this shortcoming by
additionally modeling call relations between functions, creating and then analyzing
a more holistic representation of the program.

Compared to intra-procedural analyses, inter-procedural analyses analyze the
program represented as an inter-procedural control-flow graph. The inter-procedural
control-flow graph is created by introducing additional graph edges between call
sites and the called functions (i.e., the different functions in the CFG get intercon-
nected). Each graph node representing a call site is split into two artifical nodes,
one representing the analysis state before the call the other after the call. We then
introduce an edge that maps the local analysis context before the call to the called
function and another edge that maps back the analysis context from the return of
the called function to the node that represents the state after the call. By these trans-
formations, the resulting inter-procedural control-flow graph models inter-function
relationships and enables our analysis to analyze the program as a whole. Important
to note, these transformations only encode static call relationships precisely without
overapproximation. With static, compared to dynamic, call relationships we refer
to function calls that can be determined at compile-time, either because they are
static in the first place or because they can be devirtualized (i.e., we do not need to
determine the callee dynamically). Dynamic call relationships, introduced by virtual
calls or function pointers, need to be modeled with a set of functions that could
be potentially called (i.e., we need to add graph edges to each function that could
be called and merge the resulting analysis states of all these functions afterwards).
The resulting overapproximation can be reduced by helper analyses that provide
more accurate call graphs. However, in general inter-procedural analyses enable
the reasoning about properties that span over multiple functions and, by that, can
generate results that intra-procedural ones cannot infer. For example, a taint analysis
needs to be inter-procedural to detect a flow if source and sink are in different
functions.

Inter-procedural data-flow analyses can have different properties that impact their
precision, most importantly: context sensitivity, field sensitivity, and flow sensitivity.

Context sensitivity. Up to now, even with inter-procedural control-flow informa-
tion, the analysis analyzes each function only in a generic sense, that is, the analysis
aggregates the analysis states of all incoming call edges, analyzes the function, and
then propagates the information back to all call sites. This introduces an additional
amount of overapproximation as generalized analysis results of a function represent
the analysis state that is valid for all call sites. However, given a specific analysis
context more precise results could be possible.

The idea behind context sensitivity is to produce call-site specific analysis results
for function calls, which only need to be valid for the given calling context (i.e.,
they only need to be valid for the specific call instruction that is analyzed). By
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contextualizing the analysis of a function with a specific call site, the analysis can
then analyze the function for the specific analysis context that holds at the call site,
which reduces the overapproximation introduced by spuriously propagating the
functions’ analysis results to all potential call sites. Conceptually, this can be thought
of as cloning the function for each call site and analyzing each clone separately.
However, as cloning and analyzing each function multiple times would introduce a
considerable amount of analysis overhead, modern approaches use techniques, such
as call strings or the functional approach [210], to implement context sensitivity
more efficiently by computing reusable function summaries.

Field sensitivity. Another source of overapproximation are record types, such
as structs or classes, or arrays. A record type is a collection of fields, where each
field for itself has a name, its own type, and location in the memory of the record
type [184]. Hence, when a variable of a record type is created in memory, different
parts of the allocated memory belong to different fields. Which raises the question:
How should an analysis model such a variable? Field-insensitive analyses merge
the different fields of each record and treat all fields together as one variable. This
means that all fields of a record share a possibly overapproximated common value
of the lattice. However, by that the analysis cannot differentiate between different
fields, which leads to overapproximation.

To address this issue, field-sensitive analysis instead uses specialized lattices
that keep different abstract values for the different field names [162] or encode the
additional information into the data-flow domain. The later is common, for example,
in the IDE framework, which we explain afterwards in Section 2.3.3. An approach to
implement field-sensitivity that works well in practice is to distinguish fields by their
access path and propagate lattice values for each of these field access paths [116].
This means, the analysis tracks for records, which potentially have other record
types as fields, the path through which fields and subfields are accessed and persists
this information in the analysis state. However, as loops or recursion can introduce
an unlimited amount of field indirections and analyses need a finite field access path
in order to terminate, modelling the complete field access path is not always feasible.
Hence, techniques, such as k-limiting, bound the depth of the field access path to a
predefined constant k (i.e., they only provide field-sensitivity up to k indirections
and afterwards overapproximate). However, practical evaluations of k-limiting show
that this is often not a problem, as even k = 3 enables analyses to model most of the
field accesses [51, 205]. Furthermore, recent research has shown that synchronized
pushdown systems9 are an efficient replacement for k-limiting, providing the same
precision as k = ∞ while being as efficient to compute as k = 1 [220, 221].

Flow sensitivity. Another important property of data-flow analysis is flow sensi-
tivity. Flow-insensitive analyses ignore the order of statements in a program and

9 Synchronized pushdown systems are a context-, flow-, and field-sensitive approach to solve data-
flow problems. That is, synchronized pushdown systems solve two CFL-reachability problems syn-
chronously: one for context-sensitivity, and one for field-sensitivity, where both are flow sensitive.
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compute an overall solution for the program. This means, they only compute infor-
mation that holds for the entire program and cannot reason about specific points.
Flow-sensitive analyses incorporate the information contained in the program’s CFG

into the analysis, meaning, they take the statement order of a program into account
and differentiate analysis states at different program points. For example, where
a flow-insensitive taint analysis determines that a program variable is tainted, a
flow-sensitive analysis can differentiate for a given location in the program whether
the variable is tainted at this point.

Context, field, and flow sensitivity are important properties for our inter-procedural
analysis that we introduce later in Section 4.2.3, as they reduce overapproximation
and thereby produce more accurate results.

2.3.3 Inter-Procedural Distributive Environments

Up to now, we have discussed general program-analysis concepts. In what fol-
lows, we give a short introduction to the conceptual Inter-Procedural Distributive
Environments (IDE) framework [192, 201], which we later use to implement our
inter-procedural data-flow analysis (see Section 4.2.3).

IDE is an algorithmic framework that pursues the functional approach [210] to
implement fully context- and flow-sensitive, inter-procedural data-flow analyses.
This is done by transforming the data-flow problem into an efficiently solvable
graph reachability problem, by constructing a so called exploded super-graph (ESG)
that describes which data-flow facts hold at which statement. So, to check whether a
property of interest holds at a certain point in a given program, we need to determine
if the corresponding ESG node is reachable from a special tautological node Λ. We
construct such an ESG by replacing each node in the program’s inter-procedural
control-flow graph with a bipartite graph representation of the corresponding flow
function. A flow function in IDE encodes the effect an instruction has on a data-
flow fact, based on the instruction’s semantics. Then, if a node (I, d) in the ESG
is reachable from Λ, the data-flow fact d holds at instruction I, meaning there is a
potential connection (e.g., a data flow) from d to I.

In addition, to the data-flow semantics that are encoded in the flow functions, the
ESG’s edges are annotated with lambda functions to specify additional computa-
tions. These so-called edge functions allow to encode a value computation problem
that is solved when performing the reachability check from above. This means,
IDE determines a value of the edge domain by successively executing the composi-
tion of the edge functions alongside the data-flow path, encoded through the flow
functions. It is crucial to understand that the data flow and the value computation
problem are decoupled in the sense that the flow functions encode the semantics of
how data is passed between instructions, the edge functions encode the additional
value computation problem that we want to solve (e.g., the lambda functions could
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encode which feature taints are propagated along the ESG edges in an analysis
similar to Lotrack [147]).

Important to note, the runtime complexity of IDE is O(|N| · |D|3), where |N| is
the number of nodes in the inter-procedural control-flow graph and |D| is the size
of the data-flow domain D [192, 201]. Thus, analysis efficiency highly depends on
the size of the underlying data-flow domain. The computations that can be specified
along an ESG’s edges operate on a separate value domain V. The value domain V
can even be infinite and does not affect the algorithm’s complexity, as long as all
operations on edge functions, such as composition and join, can be performed in
constant time.

2.3.4 Compiler Infrastructure

After conceptually introducing inter-procedural data-flow analysis and IDE, in the
following we focus on the technology stack that we use to implement such analyses,
which are then able to analyze real-world software projects.

Analzying real-world software projects is a difficult but necessary task for un-
derstanding the evolution of configurable software systems: It is difficult because
commonly used high-level programming languages introduce a multitude of com-
plexities into the analysis process (e.g., parsing the context-sensitive language
grammar of C++). But it is also necessary, as understanding the evolution of con-
figurable software system is only possible by observing how these configurable
software systems evolve in the real world. To address these problems, we build on
existing compiler technology and research that strips away many of the complexities
by introducing a general language-independent abstraction that is easier to model
in our analyses. Specifically, we selected the LLVM [134] compiler framework, as it
not only offers such an abstraction but also offers a variety of helper analyses and
tooling to implement our analyses.

In what follows, we give a brief overview of LLVM and its core components
that we later build upon. We highlight the C/C++ front end Clang and LLVM’s
intermediate representation (LLVM-IR), as the general abstraction that LLVM offers.
Furthermore, we give a short introduction to LLVM’s analysis infrastructure that
offers a variety of helper analyses.

LLVM offers a wide range of reusable tools, data structures, and utilities, for
building compilers. Conceptually, a compiler built with LLVM is decoupled into
three parts: a language-specific front end, a shared optimizer, and architecture
specific back-ends. For example, the C/C++ compiler Clang focuses primarily on
parsing and mapping the high-level language to LLVM’s internal representation. For
optimization and code generation, Clang simply reuses the analyses, optimizations,
and back-ends provided by LLVM and composes them together into a complete
compiler. This composability is enabled by LLVM’s intermediate representation.
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Intermediate representation. LLVM-IR is the central abstraction for representing
a program in LLVM. It separates out language and architecture specific parts,
allowing the core parts of LLVM to be independent and, therefore reusable. Thereby,
LLVM-IR decouples the core part of the compiler infrastructure from the language-
specific front ends and architecture-specific back-ends. Through this design, LLVM-
IR enables reusable analyses, optimizations, and even back-ends, as all of these only
depend on a common intermediate representation.

On the top level, a LLVM-IR module is comprised out of functions, global vari-
ables, and meta data. Each function is represented as a sequence of basic blocks,
which themselves are linear sequences of instructions, implicitly defining the first
basic block as the entry node to the function. This way, LLVM-IR represents a
function as the linearized form of the corresponding CFG. Important to emphasize
about LLVM-IR, is its meta data design. LLVM-IR allows one to attach meta-data
references to functions and instructions, which enables developers to attach and
persist custom information (e.g., additional data needed for an analysis). From a
design perspective, LLVM’s meta data format offers free extensibility but also allows
developers to break the language independence. However, as described later in
detail, it enables us to encode variability information into LLVM-IR.

Intermediate-code generation. To generate LLVM-IR, Clang first preprocesses
and parses an input file into an Abstract Syntax Tree (AST). An AST is a tree-
structured representation of the source code, where the tree nodes represent specific
parts of the program, such as types, declarations, statements, or literals. Important to
note, Clang’s AST nodes can be extended with additional information, for example,
by custom C/C++ attributes that allow us to annotate the source code with custom
information. The information attached to AST nodes, can then later be used during
the generation of LLVM-IR (e.g., to pass on additional information as meta data to
LLVM-IR-based analyses).

The next step after parsing the source code into an AST is lowering it into a
LLVM-IR module. This code generation process translates each AST node into a set
of equivalent functions, basic blocks, and instructions, representing the translation
unit. The transition from AST to LLVM-IR marks an important extension point for
our work, as it enables us to extend the generated LLVM-IR with custom information
that is only accessible at the source code level.

After the generation process finishes, we have a language-independent represen-
tation of our program in LLVM-IR that can now be further processed (e.g., by a
static analysis). Language independence is important here, as it not only allows us
to target multiple languages but, more importantly, because it allows us to analyze
the program in a simpler representation, exonerating the analysis from dealing with
the complicated language rules.

Analysis infrastructure. The analysis infrastructure that is part of the LLVM
framework is a vital building block in assembling larger analyses and extracting
additional information. From a design perspective, each analysis or optimization is
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implemented in a separate compiler pass, that is, a modular component that takes
LLVM-IR as input and either analyzes it to provide information about the IR or
transforms it (e.g., a pass can optimize specific code patterns or add instrumentation
code). Through the analysis infrastructure, each pass can requests other passes
to gain access to the information they provide. This design enables us to reuse
and compose different helper analyses into larger and more complex analyses.
Understanding this design concept is important, as we utilize it later on to implement
our own analyses, so they can be queried and reused.

2.3.5 Whole-Program Analysis

In Section 2.3.2, we explained inter-procedural analyses and the benefits that can
be gained from analyzing the interactions between functions. Ideally, we want to
run such analyses over the program as a whole to get the most accurate picture.
However, this entails additional difficulties in practice, as in languages, such as C or
C++, each source file is compiled on its own into an object file and only later, are these
linked together into the final program. Hence, to run LLVM-based whole-program
analyses, we need to first produce a combined LLVM-IR file.

One-way to build such a whole-program IR file, is to hook into the build process
with Whole Program LLVM (WLLVM10) as a compiler wrapper. During build,
WLLVM invokes Clang and, in addition to the normal object file, also calls a
bitcode compiler that generates an LLVM-IR bitcode file and embeds the location
of the bitcode file in the original object file. After the project is compiled, we use
WLLVM to generate a whole-program bitcode file by linking the referenced bitcode
files together. This way, the generated whole-program contains all LLVM-IR code of
the complete program and enables us to run a whole-program analysis.

Another way through which we can automatically merge all LLVM-IR files to-
gether and run a whole-program analysis is by running our analyses during the
link-time optimization stage. Link-Time Optimizations (LTOs), put more generally, are
optimizations and analyses that the compiler performs at link-time (i.e., when all
processed source files have been linked together). For this purpose, the compiler
needs to preserve its internal representation until link-time. To do that, the compiler
produces IR files instead of object files and implements linking for its internal
representation to merge the IR files together before running LTO passes. So, through
LLVM’s pass-based analysis infrastructure, we can run our inter-procedural analyses
over the whole program, by putting our analyses passes into Clang’s LTO stage.

In general, both forms of enabling whole-program analysis are useful. WLLVM
for cases where we want to extract analysis information from the program without
adapting the compilation process. LTO for cases where want to utilize the results of
our analysis during compilation, for example, to feed information to a transforma-
tion pass that inserts instrumentations to measure the performance of a program.

10 https://github.com/travitch/whole-program-llvm (Last accessed: May 13, 2023)

https://github.com/travitch/whole-program-llvm
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Important to note, from a practical perspective neither of the approaches can guar-
antee that we analyze the whole program as dynamic components are not accessible
during link time (e.g., the implementation of functions from dynamic libraries are
determined at the start of program). Nonetheless, merging all statically available
parts together and running an inter-procedural analysis gives us quite accurate
results in practice.

2.3.6 Phasar

In the previous sections, we explained how inter-procedural analyses can analyze
whole programs and how LLVM’s analysis pipeline works to build reusable analyses.
However, in practice LLVM is not well-equipped to run inter-procedural analyses.
Due to the runtime constraints an industrial compiler needs to fulfill, most of the
provided analyses and data structures, such as points-to analyses and CFGs, are intra
procedural only and, therefore, they are not well suited to build inter-procedural
analyses. However, the abstraction provided by LLVM, especially, LLVM-IR, are very
suitable for program analysis and could enable inter-procedural analysis. To fill this
gap, Schubert et al. [208] developed PhASAR11, a modern static-analysis framework
built on top of LLVM that enables users to build inter-procedural analyses that work
on LLVM-IR.

PhASAR extends LLVM in multiple ways: It provides abstractions for common
analysis problem formats, such as monotonic or IDE (see Section 2.3.3), and corre-
sponding solvers that can solve these general analysis problems. PhASAR provides
data structures and helper analyses, such as inter-procedural control-flow graphs,
type hierarchy, call graphs, and points-to information. Furthermore, PhASAR also
provides additional capabilities for debugging and reasoning about inter-procedural
analyses, such as path tracing and graph representations of analysis results.

Most importantly, PhASAR enables us to express IDE problems and solve them
automatically through the integrated IDESolver. This means, through PhASAR’s
problem abstraction, we encode the data-flow semantics into flow functions and
encode a value computation problem as edge functions. The IDESolver then takes
the problem description and computes all potential flows and, in addition, solves
the value computation problem. How we encode our generic data-flow analysis
with PhASAR is presented in Section 3.3 in detail, and the concrete applications for
time and space variability in Chapter 4 and Chapter 5 respectively.

2.3.7 Performance Analysis

With ever more increasing computing needs and the decline of Moore’s law [59]—i.e.,
putting more transistors on a computer chip becomes more and more difficult—
hardware-driven performance improvements slow down as semiconductor minia-

11 https://github.com/secure-software-engineering/phasar (Last accessed: April 11, 2023)

https://github.com/secure-software-engineering/phasar
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turization becomes harder. Leiserson et al. [138] argue, if hardware improvements
do not give us the performance we need, software improvements need to drive
the performance gains in the future. However, to be able to make software faster,
we need to understand its performance characteristics. This means, we need to
find where in the program time is spent, locate hot-spots, and optimize the code to
improve the overall performance. Finding and focusing on performance hot-spots is
important, as optimizing program code is time-consuming and only yields worth-
while payoffs when parts in a program are optimized that make up most of the
computing time [218, 219].

To detect these hot-spots and infer performance bottlenecks, researchers and prac-
titioners have developed a wide range of methodologies, techniques, and tools [15,
77, 78], summarized under the term performance analysis. Hence, performance anal-
ysis is the process of evaluating the performance of a software system at different
levels of abstraction, utilizing various tools and techniques.

Overall, performance analysis is a difficult and crosscutting endeavor, as it de-
pends on various factors throughout the hardware and software stack, such as CPU
type [15, 78], instruction set [15, 78], operating system and kernel [78], support
libraries [191, 197], and configurability [83]. Furthermore, even if a software system
could be analyzed and optimized, performance is not a constant non-functional
property of the system. Over time, as the system evolves, its performance charac-
teristics change and potentially degrade, introducing performance regressions. This
means, the evolution of the software system can worsen the performance of the
software system, for example, by nullifying previous performance optimizations
or introducing new bottlenecks. So, performance analysis should be a continuous
process that tracks the performance of the system over time, ensuring that it stays
within its performance goals [49, 100, 127].

In what follows, we give a brief introduction to performance measurements and
profiling in general and, afterwards we contextualize performance profiling to both
evolutionary variability (time) and configuration variability (space).

2.3.7.1 Performance Measurements

To extract the necessary information for performance analysis, we need to measure
how the software system performs (i.e., we need to observe how the system is
executed). Performance measurements are a form of dynamic program analysis
that measures various non-functional properties of a software system. Typically,
performance measurements are done through a tool (i.e., a performance profiler) that
observes the system under measurement (i.e., the program) and the environment
it is running in, to extract information about the system’s execution behavior.
Performance profilers work either with or without modification of the system
under measurement. For example, instrumentation-based profilers inject specific
measurement code into the system under measurement, where sampling profilers
only query the current execution state of the program through a kernel API.
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When measuring a software system, we differentiate what is measured (i.e., the
metric) and how it is measured (i.e., the performance measurement technique used
to derive the metric). Furthermore, we differentiate performance measurement tech-
niques between black box and white box and divide them into different strategies [84,
114, 125, 212, 240, 247].

Performance metrics. To understand the performance of a software system, we
need to collect data about the execution behavior of the system, aggregate this data
into an interpretable form, and then reason about it.

So, in the process, we first need to select what kind of data we want to gather.
For example, cache misses, to determine memory bottlenecks, IO operations, to
infer network bound issues, or time measurements, to reason about where time is
spent in a program. To collect this data, the operating system kernel provides a
wide range of different internal counters and inspection capabilities through kernel
APIs [78, 81]. For example, cache misses stem from a hardware source (CPU), and
IO operations are implemented as a software counter in the kernel, which counts
how many operations took place. Furthermore, measurement tools and libraries,
such as XRay

12 or likwid
13, provide additional capabilities for analyzing where

time is spent inside a program.
After deciding on what kind of data should be collected, we need to specify how

we retrieve it. For this purpose, we define a measurement and metric, following the
definition from Kounev et al. [126].

Definition 7. A measurement is the assignment of values to objects or events by
applying a given set of rules or a procedure referred to as a measurement pro-
cess. [126]

Definition 8. A metric is a value derived from some fundamental measurement
comprising one or more measures. In the context of benchmarking, metrics are
used to characterize different properties of the system under test (SUT), such as
performance, reliability, or security. [126]

In more general terms, a measurement is the reading and storing of a value of
interest, for example, reading the cache-miss counter (i.e., the generation of a data
point from the system under measurement). Then a metric is either the direct
value that was captured through the measurement or an aggregated form of one or
multiple values. For example, the raw value of the cache miss counter, cache misses
per second, or cache misses per user. More high-level metrics are usually derived
using some form of statistical process.

Black box vs. white box. We differentiate performance measurement techniques
by the information that is available to the analysis and whether the system under
measurement needs to be modified. A black-box analysis treats the system under

12 https://llvm.org/docs/XRay.html (Last accessed: June 27, 2023)
13 https://github.com/RRZE-HPC/likwid (Last accessed: June 27, 2023)

https://llvm.org/docs/XRay.html
https://github.com/RRZE-HPC/likwid
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measurement as a "black box", meaning, it does not incorporate system-specific
information into the analysis or modify the program. Black-box analyses have the
advantage that they are often easy to set up. Furthermore, black-box analyses are
suitable to be implemented with low-overhead [29, 77, 78], therefore most black-box
analyses do not perturb the system under measurement particularly strong. White-
box analyses on the other side, incorporate information about the software system,
such as its source code, into the analysis and are allowed to also modify the system.
For example, a white-box performance profiler can insert custom measurement code
during the compilation of the software system, which later gets executed as part of
the system under measurement. Important to note, the difference between black-box
and white-box profilers is not strict. Many techniques fit into the middle between
the two extremes, often referred to as gray-box profilers, where they incorporate
only a bit of information about the system or only do slight modifications.

Measurement strategies. We divide performance measurement techniques by
when and how they collect their measurement data into three fundamental strate-
gies [126]. Each strategy collects measurement data differently, however, all strategies
are defined around events (i.e., they are defined around specific triggers that notify
the strategy to do a measurement). For example, the call of a specific function,
the reaching of a predefined location (tracepoint) during execution, or a specific
amount of time passed. There exists a wide range of different event sources that can
be used by all measurement strategies. For example, the operating system offers
access to hardware events (e.g., branch-misses), as well as, software events (e.g.,
page faults). Furthermore, there exist libraries and tools to create static and dynamic
tracepoints (i.e., a specified point in the program where) if the execution reaches
the tracepoint, an event is triggered. Next, we highlight the three fundamental
performance measurement strategies.

Event-driven strategies record their measurements every time one of the specified
events occurs (e.g., they count the number of branch-misses). In general, event-
driven strategies do not require modifications to count the number of events that
occurred. For example, a black-box profiler can count the number of cache misses
during a program run without instrumenting the program. However, sometimes
a white-box profiler is necessary to instrument the system under measurement to
record specific events, such as the amount of requests to an API.

Tracing strategies, compared to event-driven ones, collect more data when an
event occurs to provide context about the system. For example, a tracing strategy
might additionally store the username for each API request—the API has predefined
static tracepoints for profiling—to analyze the load produced by different users.

Sampling strategies are driven by an internal timer that initiates a measurement
every x-seconds, often specified in Hz (e.g., common sampling frequencies are
97 Hz or 997 Hz [78]). Compared to the previous two strategies, sampling has the
advantage that the produced measurement overhead is based on the sampling
frequency instead of the event frequency. However, this also incurs the drawback
that some events/program states might be missed. So, in the end, measurement
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data derived through a sampling strategy is only a statistical approximation, where
overhead and approximation precision form a trade-off [126].

Important to note, the choice between different strategies and tools for performance
measurements is always a trade-off between precision, cost, and applicability [78].
As a general rule of thumb, performance profilers that enable precise measurements,
such as measuring the execution time of a function in microseconds, require spe-
cialized instrumentation code and a more fine-grained control of the system under
measurement and, by that, produce more overhead. For comparison, low-overhead
strategies, such as sampling, often induce relatively little overhead but also give
rough estimates about the time spent within a specific function. Furthermore, as
with any observational technique, performance profilers perturb the system under
measurement. For example, instrumentation code woven into the system influences
the processor cache and, by that, influences the performance of subsequent code.
So, depending on which metrics should be measured a measurement technique
should be selected that reduces the influence on the system under measurement.
However, how exactly the measurement technique influences the system under
measurement must always be examined for the specific application scenario and
needs to be controlled [77, 78, 126].

Profiling vs. tracing. The term performance profiling is often used loosely referring
to the general process of measuring and analyzing the performance of a software
system. However, a more precise definition of the term differentiates performance
profiling from tracing [78, 81, 126]. Performance profiling collects the relative amount
of time the system under measurement was in a specific state, by storing the number
of times an event occurred into the performance profile [126]. For example, the
relative amount of time spent executing each function, collected through sampling
the call stack at 97 Hz and storing the function name that currently is on top of
the call stack, to infer proportionally in which function execution time was spent.
Compared to profiling, tracing produces an ordered list of the events that occurred
during the execution of the system under measurement [126]. This way, we get
more information about the system under measurement and enable a more precise
evaluation of the measurement data. For example, where in the previous example
we only knew the relative amount of time that was spent within a function, tracing
can give us the exact amount of time in case we collect timestamps at each function
entry and exit event.

However, as differentiating between profiling and tracing is often not important
for our work, we use the term performance profiling mostly in the more general
sense. In the cases where it is important, we highlight the differences and make
them clear to the reader.
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2.3.7.2 Performance Histories

Similar to functional properties, software evolution also has an impact on non-
functional properties, such as performance. Every code change to a software system
might also influence its performance characteristics, sometimes in unanticipated
ways [34]. For example, an addition, such as a small extra check, to a function
that is called very frequently can have drastic impacts on performance. Hence,
to prevent undesired side effects, we want to detect performance degradations as
early as possible. However, not all changes create an immediate effect, sometimes
performance degrades over time through many changes that all have a slight
performance impact [50]. Therefore, understanding the performance characteristics
of a software system should always require a historical component, where the current
performance is analyzed with regard to previous observations. This means, constant
performance monitoring of performance critical software systems is essential to
detect performance regressions.

After an overall performance regression is discovered, we need to track it down
to either a specific set of changes that introduced it, or to a specific part of the
software system that has become a new hot-spot. To detect the evolved changes,
we detect points in the performance history of the system where the performance
degrades, referred to as change points (i.e., we search for changes in the performance
history where a specified set of performance metrics becomes worse than a given
threshold). However, even when such historical performance data does not exist,
change points can still be found afterwards. For example, Mühlbauer et al. [163]
presented a sampling approach that uses a bisection technique based on gaussian
process models, to retroactively determine performance change points. Daly [49]
reports that improvements to the performance testing environment of MongoDB
allowed them to detect performance regressions earlier in the development process
and with more precision, which increased the productivity of developers and lead
to a more performant product.

After noticing a large change or detecting a new emerging hot-spot, we can use
standard performance profiling techniques to locate hot code parts and improve
them. In summary, we notice the importance of detecting performance regressions
early, which is made easier through the collection of performance history.

2.3.7.3 Performance Profiling of Configurable Software Systems

Each variant of a configurable software system can potentially have different per-
formance characteristics. For example, Jamshidi and Casale [99] report that the
throughput of Apache Storm’s worst configuration is 480 times slower than the best
configuration [99, 130]. That is, setting Apache Storm’s configuration options to the
wrong values can lead a significant performance loss. A recent empirical study by
Kaltenecker et al. [114] found that the majority of performance changes affects only
a few variants. So, to get an overall picture that encompasses the performance of
all configurations, we would need to profile all variants, or at least a representative
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sample. Another peculiarity about the performance analysis of configurable software
system is that from a usual performance trace or sample (previously explained in
Section 2.3.7.1), we do not know how the measured performance data is related to
the different features. This means, we have no direct way of mapping the measured
performance metric to a feature’s implementation and, by that, reason about the
influence a feature has on performance characteristics of the measured variant.
Summed up, the performance analysis of configurable software systems poses two
additional problems (1) "How do we describe the performance of the overall sys-
tem?" (overall performance) and (2) "How can we relate performance characteristics
to individual features and interactions thereof?" (feature relation).

Overall performance. To better represent the overall performance of a config-
urable software system and address problem (1), Siegmund et al. [212] introduced
performance influence models. Performance-influence models are useful and a establish
way to describe the performance influences of configurable software system, which
is why, we later also employ them in the evaluation of our configuration-aware
profilers in Chapter 5. Performance-influence model represent a possible solution
for detecting performance issues of configurable software systems [212, 213]. In
addition to quantify the influence of configuration options on performance, they
can be used also to find unexpected interactions among options [216].

In essence, performance-influence models are typically a prediction function
whose terms are the configuration options and interactions thereof together with
a weight that depicts the option’s performance influence. Take, for example, con-
figurable software system with two configuration options: compression ( ) and
encryption ( ). After measuring all configurations, we create a performance model
(Π) of the example system, where c refers to a configuration (i.e., a set of selected
values for all configuration options).

Π( , ) = 10s + 3s · + 5s · + 1.3s · ·
Hence, the configuration where both configuration options are enabled would take

19.3s, the one where is disabled only 13s.
Similar to other program analyses, feature interactions make performance pre-

diction and analysis difficult because even a small and alleged change in the set of
selected features can have a profound effect on the performance characteristics of
the whole software system. Remember the example from before, where enabling a
feature can influence the cache state and, by that, alter the performance of another
feature. The central point is that cross-configuration performance predictions might
be wrong. A model might predict performance quite well on average but still pro-
duce wrong values of some configurations that contain unseen performance feature
interactions. Hence, similar to general feature interactions, profiling the NFPs of a
configurable software system is subject to the same trade-offs as regular program
analysis where analyzing more variants produces more precise results but also
incurs more cost. However, in practice sampling strategies, such as distance-based
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sampling [113], work well in selecting a reasonably small set of variants for building
performance influence models.

Feature relation. The second problem (2) one encounters when analyzing the
performance of a configurable software system is that off-the-shelf performance
profilers cannot relate their measurements to features. However, performance influ-
ence models alone do not enable developers to attribute the learned performance
influences to source code. As a first step, Weber et al. [247] propose a joined ap-
proach that combines white-box performance measurements, taken at function-level
granularity, with the learning of performance influence models. They demonstrate
that performance influence models at a method level can accurately pinpoint the
influences different configuration options have on a function’s execution time. Fur-
thermore, to address the problem of attributing performance measurements to the
feature code, Velez et al. [240] developed ConfigCrusher, a white-box analysis
tools for collecting feature-specific time measurements. They later extended their
work to Comprex, by adding a dynamic-analysis to locate feature-specific code with
more precision [241]. Later in Chapter 5, we generalize this work by providing a
flexible way to make performance profilers feature aware.

Important to note, challenges introduced by evolution (time) (see Section 2.3.7.2)
and configurability (space) are not independent [233]. An empirical study exploring
190 releases from 12 real-world configurable software system, done by Kaltenecker
et al. [114], found performance changes in nearly all releases. Furthermore, their
study shows that the majority of performance changes often affects only a small
subset of the configuration space, which means they could easily be missed, even by
a good sampling strategy. This indicates that performance analyses should always
incorporate the evolution and the configurability of the system under measurement.
In their work, Mühlbauer et al. [164] demonstrate the feasibility of such a combined
approach that can detect configuration-dependent performance changes.

In summary, analyzing the performance characteristics of configurable software
systems poses additional challenges, due to the large amount of variants and
potential interactions between features. Hence, special modeling approaches, such
as performance-influence models [212], or adapted profiling techniques, such as
ConfigCrusher [240] or Comprex [241], are necessary to reason about the overall
performance characteristics of a configurable software system.





3
A Uniform Code-Region
Abstraction

This chapter presents the overarching idea behind this thesis and introduces its cen-
terpiece, the uniform abstraction of code regions. The goal of the uniform abstraction
of code regions is to bridge the gap between different types of variability informa-
tion and state-of-the-art program analysis, making both variability information and
analyses reusable and freely combinable. To achieve this, we decouple variability
through the abstraction from the concrete program analysis and its semantics, and
separate the different parts into combinable components. The design of variabil-
ity information and program analysis components follows the product-line idea,
where through a configuration process analyses can be automatically combined
with different types of variability information.

In what follows, we first lay out how building more reusable variability-focused
analyses could improve variability research. Then, we give an in-depth explanation
how our code-region abstraction is comprised and how it can be used to make
variability-focused analyses more general and reusable. Therefore, we demonstrate
how we lift a static as well as a dynamic program analysis to code regions, to
compute multiple kinds of interactions between different types of variability. After
the theoretical foundations, we explain how we built our code-region abstraction
into the compiler framework LLVM to apply variability-focused program analyses to
real-world configurable software systems. Then, we describe two research problems
that we could address through our analyses and how we benefitted from the reusable
analysis structure that we built through our code-region abstraction. Last, we give
an outlook how our abstraction could be generalized to more use cases, making the
abstraction even more uniform.

3.1 Introduction

Both, time and space variability should be analyzed in unison to better reason about
the evolution of real-world configurable software systems [233]. Up to now, research
has mostly focused either on one of the two types of variability or only considered
both types of variability together in an ad-hoc way through black-box analyses.
Initial work in this direction using a black-box analysis already produced interesting
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results. For example, the work from Mühlbauer et al. [164] showed how to identify
configuration-specific performance changes in the history of configurable software
systems. Furthermore, works from Velez et al. [240] and Weber et al. [247], already
show that applying white-box analyses to specific types of variability, space in their
case, leads to interesting new insights (e.g., that models built through white-box per-
formance analyses can identify performance-relevant methods whose performance
depends on configuration options). From other domains we also know that employ-
ing white-box analyses can lead to interesting insights. For example, detecting SQL
injections vulnerabilities through white-box analysis, in the security domain [69].
Nonetheless, developing such analyses is time-consuming and seldomly reusable,
which incurs higher research cost. What is currently missing in the variability
domain, is the widespread use of white-box analysis that target the evolution of
configurable software system. Hence, one would expect that similar insights could
be gained by applying white-box analysis on time and space variability. However,
this research direction is currently not often explored due to the challenges that
white-box analysis entails [208]. We identified two major challenges that currently
hinder a wider use of white-box analyses: (1) It is difficult to access variability
information in white-box analyses, as it requires a precise mapping of the variability
information onto the source code; (2) Building and employing precise white-box
analyses that are capable of analyzing real-world software projects is difficult and
time-consuming. To address these two challenges, we devised a uniform abstraction
that maps variability information into an analysis framework, and built a universal
and reusable white-box analysis that can analyze different types of variability.

(1) Accessing Variability Information (2) Building Reusable Analyses

Mapping Variability 
Information to Code Reusable AnalysisDecoupled 

Variability Information

produces enables

Figure 3.1: Overview of the two major challenges and how they are divided up into three
concrete problems that we address in this chapter.

Our goal is to simplify the use of precise white-box analyses to analyze both
time and space variability, each for themselves or even together. However, to enable
precise and reusable white-box analyses, we need to address three concrete problems
(depicted in Figure 3.1). First, we need to decouple variability information and its
representation from the concrete analysis, making it easier to develop new analyses
or reuse existing ones to investigate variability. In addition, the decoupling also
needs to ensure that both types of variability can be represented simultaneously
alongside each other to enable analyses to analyze both in unison. Second, we need
a precise and automated way to map the externally provided variability information
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into a representation that is usable by an analysis. Third, we need to enable the
building of reusable analyses that can reason about different types of variability
only through a simple but uniform API. By providing a solution to all of these three
problems, we facilitate the easier use of precise white-box analysis in the domain of
variability. In what follows, we explore these problems in more detail and explain
how we address them.

Uniformly representing variability. To enable the building of reusable and
flexible analyses, we need a way to decouple the what, the specific variability
information we want to analyze, from the how, the concrete analysis semantics. This
decoupling is necessary because, as soon as the analysis semantics are intermixed
with the specific information, the analysis is no longer reusable. This means, we
need to introduce an abstraction that presents the variability information uniformly
to the analysis. In Section 3.2, we present such a uniform abstraction by introducing
the concept of code regions and explain how domain-specific commonalities can be
used to unify both variability dimensions. Furthermore, in Section 3.4 we explain
the technical details that were necessary to implement the abstraction within LLVM,
enabling us to target real-world software projects with our analyses.

Tracing variability information. To analyze variability through a uniform ab-
straction, we need concrete ways to extract and unify the different types of variability
information. This requires two important steps: First, having a precise way of map-
ping the variability information into the intermediate representation that is used
by the analysis. Conceptually, this step is simple. We need to attach the additional
variability information to the intermediate representation. However, from a practical
point of view, this step is difficult. It requires that we modify the transformation
process from source code to intermediate representation and precisely track which
parts of the intermediate representation are related to variability information. Sec-
ond, as variability information can have structural properties (e.g., this block of code
is controlled by a specific configuration option, that can be relevant for an analysis,
we want to preserve them). For this purpose, we model structurally connected parts
of the code that carry the same information as code regions (see Section 3.2). How
both of these steps can be realized in practice is shown in Section 3.4.4.

Reusable analysis. To get the precise analyses results, a white-box analysis
should often be some or all of the following: context sensitive, field sensitive,
inter-procedural, alias aware, and flow sensitive. However, building such a precise
inter-procedural static analysis that can analyze real-world software projects is a
difficult and time-consuming task, often too expensive to build for answering a
single research question. The extensive amount of work becomes only viable if the
analysis itself is so generic that it can be employed in multiple research scenarios.
To achieve this for variability-focused analyses, we decouple the concrete variability
information for the actual analysis through our uniform abstraction and implement
a reusable data-flow analysis based on it. More details about the practical analysis
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interface to the uniform abstraction are presented in Section 3.4.5, and how we use
this interface to lift data-flow analysis to our uniform abstraction in Section 3.3.

Our goal is to devise the foundation for reusable variability-focused white-box
program analysis. We achieve this by our uniform code region abstraction that
integrates both types of variability into an intermediate representation suited for
inter-procedural white-box program analysis but, at the same time, decouples the
concrete variability information from the program analysis to enable reusability.

3.2 Code-Region Abstraction

The first key challenge is to introduce an abstraction to unify different types of
variability. What we currently observe is that approaches analyzing variability do
this in an ad-hoc manner, where they build custom variability mappings for their
type of variability together with a custom program analysis. This way, they spend
a lot of time and effort in developing their approach and often cannot employ
state-of-the-art program analysis techniques to tune and optimize the precision of
the analysis. What was missed up to now is that treating, modeling, and analyzing
different types of variability as a single domain would enable us to build more
reusable program analyses that target different types of variability. The idea is
that, by exploiting domain commonalities, we can build more flexible and reusable
analyses, and overall, reduce the burden of analyzing different types of variability.

Going back to the ideas behind domain-driven design [62], we notice that what
is currently missing in the design of many analysis tools is a domain layer that
decouples analyses (infrastructure) from the concrete application scenario (e.g.,
building an analysis to detect feature interactions [12, 125]). The idea behind domain-
driven design is to isolate the different responsibilities by separating them into
different layers, where each layer only interacts with the one above or below it. The
infrastructure layer encapsulates all the technical capabilities that are needed; In
our case it should contain the existing program analyses. The domain layer models
the business logic (i.e., the domain specific part). This is the layer that is currently
missing in analyses and which we want to add, to enable more reusable program
analyses. The application layer then only defines what the software should do,
which means in our case what variabilities should be analyzed and how should
they be analyzed (with which analysis). The original definition of a domain layer
does at first not apply cleanly to our use case, as we do not want to treat the
domain layer as just business logic. However, if we combine the idea of a domain-
specific separation layer, between the infrastructure and the application, together
with domain engineering [7], we get a product line for variability-focused program
analysis. So, in our case, the domain layer provides a uniform variability abstraction,
that is, it provides uniform access to different types of variability, and domain-
specific adapters to program analyses from the infrastructure layer. This way, through
the application layer—which can be practically seen as application engineering
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from product-line engineering [7]—we can analyze different types of variability by
selecting domain-specific components from the domain layer.

So, what we need is a domain layer with a uniform abstraction, fulfilling these two
complementary roles: (1) Presenting different types of variability information in a
uniform way; (2) Decoupling the variability information from the concrete analyses.

We devise such an abstraction with code regions. In a nutshell, code regions provide
a uniform way of representing domain-specific variability information, together
with structural information, as an abstract interface to program analyses.

In our design (depicted in Figure 3.2), we treat variability information as domain
specific and isolate this information into the domain layer. This way, we conceptually
gain a separation from program analyses (the infrastructure layer) and the concrete
application scenario (the application layer) (e.g., detecting feature interactions [12,
125]). To uniformly separate the information in the domain layer from the other
two layers we use code regions (i.e., connected pieces of code that carry the same
domain-specific information). On the one side, code regions unify different kinds
of variability by aggregating domain-specific variability information. On the other
side, code regions define an interface for program analyses through which we
can connect existing program analyses to the domain layer. This way, an existing
program analysis that is lifted to code regions can automatically be applied to
different types of variability. To visualize this, we depict code regions in Figure 3.2
as a connecting piece between variability as well as program analyses. Therefore,
code regions act as link between a concrete analysis and domain-specific variability
information. So that in the end, using a program analysis on variability (i.e., asking
a question about variability that is solved by a program analysis) translates to,
selecting the right components from the domain layer (code-region-based analysis +
variability information).

Figure 3.2 depicts two example applications that we built using the domain-driven
layered design around code regions. Application scenario 1 and 2 can both select to
their needs specific program analyses and variabilities from the domain layer and
piece them together to solve their problem, since code regions make analyses and
variability freely combinable. The analysis framework then automatically integrates
them to solve our concrete problems. Details to both of these applications that we
built are later described in Section 3.5.

To build up the information in the domain layer, we introduce domain-specific
variability information, on a fine-grained level, as tags to the instructions of a
program. Based on this tagging information, we then employ a detection approach
that groups instructions with the same tags into code regions (i.e., a code region
is a connected part of the program’s code that represent the same domain-specific
information). Now, to decouple program analysis from the concrete variability
information, we introduce an analysis interface for code regions, so that an analysis
can access only information offered by a code region and does not have direct
access to the specific variability information. The crucial part here is to decouple
the analysis semantics from the specific variability information. How we split the
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Figure 3.2: Design overview of the uniform code-region abstraction. The layered architec-
ture, following domain-driven design principles, isolates the domain-specific
variability information through the code regions into the domain layer. This
separates variability from technical details, such as program analyses or language
parsers, and from the concrete application scenario that should be addressed.

analysis semantics into analysis specific and variability specific, and by that, lift
program analysis to code regions is presented in detail in Section 3.3.

In what follows, we define our uniform code-region abstraction, to which we
refer to as just code regions from now on. First, we introduce how we represent
a program and how the core code-region abstraction is connected to the program
representation. Then, we present a uniform technique that computes code regions
from domain-specific tags, adding structural information to the code regions in the
process. Afterwards, we extend our view on code regions by the program history and
describe the analysis interface, which we later use for developing code-region-based
static and dynamic analyses.

3.2.1 Program Representation

As introduced in Section 2.3.1, a program p is a collection of functions f1, . . . , fn ∈ p,
where each function is represented as a CFG. To model code regions more precisely
than at the level of basic blocks, we now transform this basic-block-based graph
representation into an instruction-based graph representation. This way, we can
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later attribute variability at instruction granularity, which can be important for very
fine-grained types of variability, such as revisions, which can impact only a few or
even a single instruction.

So, we now represent each function f as a triple that consists of each a single entry
and exit instruction (referred to as EntryI f and ExitI f ) as well as a set of instructions
that make up the function, which can be accessed through insts( f ). We model
the ordering of instructions with the function next(i), which maps an instruction
i to the set of successor instructions, and pred(i), which maps an instruction i to
the set of predecessor instructions. This allows us to abstract from the conceptual
program representation and execution order as well as from the concrete program
representation. For example, our implementation of next for LLVM-IR maps the
control-flow changing instruction at the end of a basic block to the first instruction
of the basic block’s successors. For all other instructions, next returns the following
instruction in the basic block. Important to note, we are not interested in any specific
instruction sequence as long as the ordering is correct and, therefore, our next
function does not model these relationships and only assume a sequential execution
order. However, one could adapt next to precisely model ordering semantics in cases
where it is important and still use our abstraction. By defining next, we can then use
a standard way to represent a function f as a graph composed out of instructions.

Definition 9. An instGraph( f ) of a function f is a tuple of vertices and edges, where
each vertex is an instruction of f , and where we draw an edge (i, i′) between two
instructions i and i′ if i′ can be executed next after i.

instGraph( f ) =
(

insts( f ),
{
(i, i′) | i, i′ ∈ insts( f ) ∧ i′ ∈ next(i)

} )
Based on the program representation of instGraphs, we define in the following

our uniform code-region abstraction that combines the program representation with
variability information.

3.2.2 Variability Tagging

In addition to the program representation, we need to define the mapping function
that introduces the variability-specific information. For this purpose, we require
one commonality from all supported types of variability: to be analyzable, all
types of variability in the end need be attributable to a valid code fragment during
compilation. This is a restriction that is technically necessary and fulfilled by many
variabilities, at least partially. For example, the only limit we discovered up until
now is for compile-time variability, where alternatives cannot be present in the
program at the same time as the analyses require a valid program (e.g., an #ifdef

with mutually exclusive then and else parts). However, this can theoretical be
overcome by compiling and running the analysis multiple times and did not cause
any issues for us in practice. To use our uniform abstraction, there are two specific
concretization points that need to be defined to apply the uniform code-region
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abstraction to a specific instance of variability: (1) a set of domain-specific tags that
represent the variability information (2) a tagging function that relates the concrete
variability information to instructions.

So, for each program p, we define a set of tags T that models the variability
specific information and a mapping function tags(i) that tags each instruction i with
the variability specific information that relates to it. For this purpose, we define T
as follows:

Definition 10. Let T be a generic set of domain-specific tags t ∈ T that carry
variability information.

Important to note, from the point of view of the uniform code-region abstraction, T
is only seen as a set of tags. In a concrete instance where the abstraction is applied,
the tags are then mapped to variability information. For example, in the case of
time variability, we can define the set of tags to be the set of revisions and then
tag each instruction with the revision that introduced the instruction. However,
the uniform abstraction does not consider the specific meaning or semantics of the
tags, just whether they are present or not. Next, we define the abstract mapping
function tags(i) that relates instructions to the specific set of tags. It is important to
note that the issues of determining how a specific tag is related to (@) an instruction
i is defined by the concrete instance.

Definition 11. Let tags(i) be a function that maps an instruction i to the set of
domain-specific variability tags that relate (@) to the instruction i.

tags(i) = { t | t ∈ T ∧ t @ i }

After conceptually defining the two concretization points T and tags, we can
now define our uniform code-region abstraction around them. This way, a concrete
instance only needs to supply the two concretization points to automatically reuse
everything built around the uniform abstraction of code regions.

3.2.3 Aggregation Into Regions

Mapping variability information into an analyzable representation, by tagging the
instructions of a program with the various kinds of variability information, is an
important first step. However, this is not enough to analyze all facets of variability,
as it does not explicitly represent the structural information of specific types of
variability. For example, some parts of a program are only executable if a specific
configuration option is turned on, that is, the configuration option controls whether a
group of adjacent instructions is executed. To automatically expose this information
and enable program analyses to capture and reason about it, we need to compute
structural information by grouping together instructions that are adjacent and carry
the same variability information.

We achieve this grouping of instructions that are associated with the same vari-
ability tags through graph clustering. From the graph-based program representation
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presented in Section 3.2.1, we see that groups of instructions that have the same
variability tags form clusters in the graph (i.e., adjacent instructions with the same
variability tags induce a sub-graph in a function’s instGraph). We exploit this fact
and define the core of our uniform abstraction, the code region, as a graph together
with a set of tags that apply to all instructions in the graph. Through this,

Definition 12. A code region is a tuple consisting of a graph, which is comprised
out of instructions as vertices and edges between instructions, and a set of tags
(Tags) that are attached to all instructions in the code region. Where V is the set of
all instructions, E is the set of all edges between instructions, and P denotes the
powerset. We can therefore define the set of all code regions as follows.

CR ⊆
(
P(V), P(E)

)
×P(T )

This way, the problem of detecting a code region is equal to finding sub-graphs in
the instGraph of a function, where all instructions in the graph carry the same tags.
In our case, the problem is simplified by the fact that we can remove all vertices
that do not carry these tags and related edges from the graph and the leftover
components are the code regions. To access the information in a code region, we
introduce mapping functions for each item of the code region.

Definition 13. Let vertices, edges, and tagsCR be functions that map a code region
to the set of elements (instructions, edges, tags), that are part of the region.

vertices : CR → { I }
edges : CR → { (I , I) }
tagsCR : CR → { T }

With computeCRTag( f , t), we compute all code regions for tag t in function f ,
by removing all instructions (and related edges) that are not tagged by t from
f ’s instGraph. The leftover components of the graph now correspond to the code
regions, as they are connected groups of instructions that are all tagged with t.
Computing the graph’s components is a standard graph problem, which we solve by
the well-known standard algorithm by Hopcroft and Tarjan [96].

Definition 14. The function computeCRTag( f , t) computes the set of code regions
associated with the tag t ∈ T by removing (�) all vertices from the instGraph of
f ∈ p that are not tagged by t as well as the related edges.

computeCRTag( f , t) ={
( g, {t} )

∣∣∣∣ g ∈ components
(

instGraph( f )�

{
i
∣∣ i ∈ insts( f ) ∧ t /∈ tags(i)

} ) }
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Important to note, this is only the theoretical approach to detect code regions, in
practice we implemented an algorithm that does not need to modify the graph. We
present how this algorithm works in detail in Section 3.4.4.

Now, to compute all code regions for a function f , we first compute all code
regions for each tag and then merge the resulting sets together.

Definition 15. The function computeCRFunction( f ) computes all code regions for a
given function f , by computing the code regions for each tag t ∈ T .

computeCRFunction( f ) =
⋃

t∈T
computeCRTag( f , t)

Figure 3.3 shows an example for the code region detection process, where we first
tag each instruction of a function with its corresponding tags. Then, for each tag, we
compute sub-graphs that carry the same tag and construct a code region for each
sub-graph by attaching the tag information. In the end, as depicted in Figure 3.3, we
know which parts of a function are related to the variability information represented
in the tags.

computeCRFunction( f )

Initial instGraph( f ) Tagged instGraph( f ) Detected regions

CR

CR

Figure 3.3: To compute the code regions for a function, first we annotate each instruction
(depicted as blocks) with its corresponding tags through tags (indicated by
color). Next, computeCRFunction( f ) computes all connected components that carry
the same tags, one tag at a time, and groups them into code regions.

Furthermore, as an optimization step to reduce the amount of code regions, we
can merge together all regions that span the same sub-graph by merging their tag
sets together. Important to note, finding code regions covering the same sub-graph
and merging them is not equal to the NP-complete problem of finding isomorphic
graphs [40], as in our case we do not need to match vertices. We know the vertices
involved in both regions and as the edges are code region independently defined by
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next, determining if two regions span the same sub graph can be done by comparing
their vertices (i.e., iff two regions have exactly the same set of vertices) they describe
the same sub graph.

Based on the definitions above, we can now compute all code regions for a given
program P with computeCR, by first computing the code regions for each function
and then merging them together.

Definition 16. With computeCRProgram(p), we compute all code regions for a given
program p, by computing the code regions for each function f ∈ p.

computeCRProgram(p) =
⋃
f∈p

computeCRFunction( f )

Through the generic detection approach presented in this section, we can au-
tomatically compute code regions that also represent structural information, in
addition to the variability information that is tagged onto the instructions. So, code
regions present a uniform abstraction that enables us to model different types of
variability uniformly on a given intermediate representation (e.g., LLVM-IR), by
attaching variability in a uniform and structured way to the program representation.

3.2.4 Program History

Up to now, we treated a program p as a single and fixed entity, however, this
view leaves out the history through which the program was developed. As we
mention in Section 2.2, programs evolve and are produced over time through a
sequence of changes, where each change produces a new revision of the program
(see Section 2.2.1). So, referring to a program as just p is imprecise, as we do not
specify which revision of the program we are analyzing.

To address this issue, we define the relationRP that associates a revision identifier
to each program revision.

Definition 17. LetRP be the relation that defines all program revisions of a software
project where p1, p2, . . . , pn ∈ P is the set of programs and r1, r2, . . . , rn ∈ R is the
set of revisions (e.g., the commits contained in the software project’s repository).

RP : R → P
RP = (r1, p1), (r2, p2), . . . , (rn, pn)

As a shorthand, we introduce a revision specifier prev for a program p that
specifies the revision of the program.

Definition 18. Let prev refer to the program at revision rev.

prev ≡ RP (rev)

Based on the revision relation, we can compute the code regions for multiple
program revisions through computeCR(revs).



56 A Uniform Code-Region Abstraction

Definition 19. With computeCR(revs), we compute all code regions for the specified
revisions in revs ⊆ R, by computing the revision-specific code regions for each
program revision prev with rev ∈ revs.

computeCR(revs) =
⋃

rev∈ revs
computeCRProgram(prev)

Thereby, a code region c ∈ CR detected in program pf4 is revision specific to
program p at revision f4.

Important to note, the revision we attach to a program p to represent it at a
specific point in its development time comes from the time dimension. However,
it is not the same as modeling revisions directly as variability with code regions.
Whereas the revisions attached through the revision specifier states what "revision"
of a program we analyse, revisions modeled through code regions would indicate
what change introduced a specific piece of code (i.e., which parts of the code base
were added in which revision).

By explicitly stating the exact revision of the program we analyze through the
revision specifier, we can identify code regions and also analyze results more
precisely. This precision then enables us to analyze multiple different revisions of a
program and relate the results to each other. For clarity purposes, we explicitly state
revision for programs or code regions only in the cases where they are needed and
leave them off otherwise.

3.2.5 Code Regions as a Uniform Analysis Interface

To build static and dynamic program analyses that are reusable and, thereby, capable
of analyzing different types of variability, we need to connect variability information
with the analysis conceptually. In our case, this means we need to connect our
uniform abstraction of code regions with the analysis (i.e., we need to enable the
analysis to access variability information in a uniform way). Depending on the
analysis, we identified two key information requirements: (1) uniform access to the
variability information and (2) uniform access to the structural information.

Encapsulating variability. To enable uniform access to the variability informa-
tion contained in the code regions, we introduce code-region taints as an additional
separation that connects code regions and the analysis’ semantics. Code-region
taints decouple the variability focused part of the analysis’ semantics and allow an
analysis implementer to specify the rest in a generic way.

Simply put, a code-region taint can be seen as a unique identifier for a code region
that is used directly in the analysis state to refer to the code region. The code-region
taint encapsulates the variability-specific part of the analysis by providing additional
operations that are needed to express the analysis semantics (e.g., expressing equality
between two code regions). These operations are implemented through the code
region interface. Important to note, this does not break the abstraction between
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analysis and variability information, as the code-region taint implementation can
only make use of the information provided by the uniform code region and cannot
access the concrete variability information. This means, the implementation can, for
example, check if the code region referred to by one code-region taint has the same
tags as the one referred to by the other code-region taint, but not what specific tags
are attached.

For example, sets of code-region taints can be used as values in the analysis
lattice to represent the variability information that holds at a specific point in the
analysis. The analysis implementer expresses the semantics in a generic way, for
example, that two lattices should be merged by the join function through a set
union. To compute this set union now requires a definition for equality on the lattice
values. Comparing generic lattices values, such as bottom, top, or sets can be handled
in a generic way. The equality check between two code-region taints is specified
by the code-region taint implementation and not by the analysis itself. This way,
the variability-specific part is fully encapsulated in the code-region taint equality.
Understanding this separation is crucial: where the analysis-specific how (i.e., the
join-semantics are expressed by the set union) the variability-specific how is defined
through the code-region taint equality.

Structural boundary. With regards to structural information, we identified two
important information requirements. First, analyses need a way to determine if
parts of the analysis representation are contained within a given code region. For
that, we defined a query function contains that checks if a given instruction is part
of a code region.

Definition 20. The function contains(i, r) checks if a given instruction i is part of the
code region r.

contains(i, r) = i ∈ vertices(r)

Second, we found that analyses, especially dynamic ones that need to insert code
around a code region, require access to the entry and exit instructions of a code
region. We query this information with the functions entries and exits.

Definition 21. The function entries(r) computes the set of instructions through
which the region r can be entered.

entries(r) =
{

i | ¬ contains
(

pred(i), r
)
∧ i ∈ vertices(r)

}
Definition 22. The function exits(r) computes the set of instructions through which
the region r can be left.

exits(r) =
{

i | ¬ contains
(

next(i), r
)
∧ i ∈ vertices(r)

}
Through the code-region analysis interface presented above, we are now able to

conceptualize static and dynamic program analyses that, from the perspective of
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the analysis, are only defined against our uniform abstraction of code regions. In
the following Section 3.3, we describe in detail how we lift a data-flow analysis
through this interface to code regions, to make the analysis uniformly applicable to
different types of variability. Furthermore, we highlight important technical parts of
the code-region analysis interface in Section 3.4.5.

3.3 Lifting Program Analysis to Code Regions

Our overall goal is to better connect variability information with program analysis
and ease the process of building and analyzing different kinds of variability. In the
previous section, we showed how our uniform abstraction of code regions enables
us to generalize over different types of variability. Building upon our code-region
abstraction and the analysis interface introduce in Section 3.2.5, we demonstrate
in the following how we make program analyses domain-specific by lifting them
to code regions, so that the in the end, an analysis can be applied automatically to
different types of variability.

As the general field of program analysis is quite large and diverse, we focus
our demonstration on the family of interaction analyses. From previous research
we know that determining and analyzing different types of interactions between
features—analyzing interactions in the space dimension—lead to valuable insights [6,
12, 125]. However, this has not been applied in the same granularity to other types
for variability, such as time variability. Therefore, we expect that lifting interaction
analyses to code regions and then applying it to various kinds of variability will
lead to new insights.

Another reason why we select the family of interaction analyses is that they offer
a diverse set of application possibilities that can all be generalized under the concept
of an interaction. This generality offers us, additionally to the reuse between different
types of variability, the applicability to a diverse set of application scenarios. Take
for example, feature interactions, as introduced in Section 2.1.5. Feature interactions
can be caused through multiple means, for example, through control or data-flow
interactions, or indirectly influencing the non-functional-properties of other features.

From an abstract point of view, interactions are composed out of two components:
what is interacting and how is it interacting. In our context, we are interested in how
different types of variability interact, so what can refer to: configuration options,
variants, revisions, or versions. To simplify the handling of all these different
variability concepts, we condense them into code regions. This way, from an analysis
point of view, interactions are defined between code regions. What is left now, is to
define the how, which is specified and computed by a program analysis.

In general, we identified three important groups of interaction mechanisms how
code regions can interact that have been investigated in the past: (1) structural
interactions (i.e., interactions where variability related code structurally overlaps);
(2) control-flow or data-flow interactions (i.e., interactions where variability related
code parts affect each other through control-flow or data-flow); (3) non-functional-
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property (NFP) interactions (i.e., indirect interactions between variability that are
observed through their effect on non-functional properties). Finding these different
interaction types requires different program analyses. Where structural and data-flow
interactions can be analyzed through static analyses, NFP interactions often require
dynamic analyses.

However, finding the same type of interaction for different types of variability
does not require a different analysis, because the underlying analysis problem is still
the same. By design, if we implement an analysis against our uniform code-region
analysis interface, we separate the analysis semantics—interaction semantics—from
the concrete type of variability, and can automatically apply the analysis to various
kinds of variability. This means that, put together, code regions enable a uniform
way to compute different types of interactions between different types of variability
by providing a link between the what and the how.

By separating the specific interaction semantics into an interaction relation (f),
we generalize interactions to code regions through the concept of a code-region
interaction. So, where the code region unifies and decouples the variability from the
analysis, the interaction relation stands in for the concrete interaction semantics.

Definition 23. A code-region interaction is a tuple consisting of an interaction relation
f ∈6, where6 = P(CR× CR) is the set of all interaction relations, a code region
r ∈ CR, and the set of code regions which interact with r throughf.

CRI :
(
6, CR, P(CR)

)
Similar to code regions, we define the following accessor functions for each value in
a code-region interaction.

Definition 24. Let relation, baseRegion, and interactingRegions be functions that
map a code-region interaction to the elements that are part of the interaction, and
let CRI be the set of all code-region interactions.

relation : CRI →6
baseRegion : CRI → CR

interactingRegions : CRI → P(CR)

Furthermore, using interaction relations, we define the function interactingCR
to compute all regions that interact with a given code region through a concrete
interaction relation f.

Definition 25. The function interactingCR(f, rb, revs) computes the set of all
regions that interact with rb ∈ CR with regard to a concrete interaction relation
f ∈6.

interactingCR(f, rb, revs) =
{

r
∣∣ r ∈ computeCR(revs)
∧ rb 6= r

∧ r f rb
}
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For a given software project P , we compute all CRIs that are present in one of the
specified revisions revs ⊆ R through the function computeAllCRInteractions. This
means, we compute through an analysis, which implementsf, for each revision in
revs all interactions between code regions in prev.

Definition 26. The function computeAllCRInteractions computes the set of all CRIs
that are present in the software program at one of the specified revisions revs ⊆ R,
regarding the concrete interaction relationf ∈6.

computeAllCRInteractions(f, revs) ={ (
f, rb, interactingCR(f, rb, revs)

) ∣∣∣
rb ∈ computeCR(revs)

∧
∣∣ interactingCR(f, rb, revs)

∣∣ > 0
}

Practically, this means running a potentially expensive static or dynamic program
analysis multiple times that computes the necessary information to determine
whether code regions interact.

In what follows, we introduce three concrete interaction relations, corresponding
to the three interaction types described above. We then conceptually highlight how
we can lift a static and a dynamic program analysis to code regions, to find these
interactions. Later in Section 3.5, we describe two concrete research problems that we
could solve through code-region interactions and our code-region-based static and
dynamic analyses, demonstrating the applicability of our code region abstractions.

3.3.1 Static Analysis

Statically determining interactions between different types of variability can be
beneficial in many ways. For example, structural interactions of feature code indicate
that the implementation of a feature needs to be adapted if another feature is present,
which implies that these features should also be tested together. Another example
can be made for time variability. Even a small change to a code base can have wide-
reaching impact on correctness or performance [83, 203]. For example, a performance
bug1 affecting firefox’s search-bar autocompletion could be fixed with a two line
patch that altered the chunksize and timeout of the search bar [83]. So, to better
grasp where a change might have impact on a code base, we can use a data-flow
analysis to determine data-flow interactions that indicate which parts of a code base
are connected to the changed code via data flow.

To address such problems, we model structural and data-flow interactions through
our code region abstraction and describe how static analyses are able to determine
these interactions.

1 https://bugzilla.mozilla.org/show_bug.cgi?id=415489 (Last accessed: June 30, 2023)

https://bugzilla.mozilla.org/show_bug.cgi?id=415489
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Structural interactions. We introduced structural interactions as interactions that
arise from the code structure itself (e.g., through nested feature code). At the core of
such a structural interaction is that code from two different implementation overlaps
(i.e., is shared between the two implementations). For example, code implementing
one feature overlaps with the code from another feature, that is, the two features
share common parts that are attributed to both features. With regard to code regions,
this means that code that is contained in one code region, is also part of at least
another (i.e., there is an overlap of the instructions contained in one code region
with the instructions contained in another). Therefore, we define the interaction
relation } for structural code-region interactions based on the structural overlap
between code regions.

Definition 27. r1 } r2 is the structural interaction relation that holds when at least
one instruction that is part of r1 is also part of r2.

r1 } r2 = ∃i∈ r1 ∃i′ ∈ r2 i = i′

In practice, finding overlappings between code regions is straightforward and
computationally inexpensive. With a simple intra-procedural analysis that does a
linear scan over the instructions of r1 and r2, we can determine if they have at least
one in common. Therefore, even a naive implementation that compares all code
regions against each other has a quadratic worst case complexity O(n2), where n is
the number of code regions.

Even if structural code-region interactions are only local and easy to detect, they
still can give us valuable information about crosscutting features, which occur often
in software systems [10, 43, 144]. For example, similar to Fischer et al. [68] that
predict structural feature interactions, the computed interaction information could
be used to guide analysis approaches that want to cover probable feature interactions
only, as they do not want to pay the computation cost to cover all potential ones.
Furthermore, they could be used in combination with other interactions types to
define more specific interaction cases.

Data-flow interactions. Compared to structural interactions, data-flow inter-
actions have two benefits: (1) Data-flow interactions explicitly encode data rela-
tionships, that is, they only infer relationships in cases where data, produced by
one part of the program, is actually used in another. This helps to reduce spurious
interactions. (2) Data-flow interactions allow us to identify non-local relationships,
or even program-wide relationships if an inter-procedural analysis is used.

Data-flow analysis has been used for a long time (e.g., in compilers or for security
analysis) to determine if specific parts of a program can pass information to another.
For example, polyhedral compiler optimizations use data-flow information to extract
data-dependencies (i.e., read/write orderings) [79, 244], or in security, where data-
flow analysis determines whether secrets or private information could be leaked to
an attacker [67, 204].

However, applying precise data-flow analysis to reason about different types of
variability has long been burdensome. To ease the application of data-flow analysis
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to variability, we demonstrate how to conceptually lift a data-flow analysis to code
regions, and by that to various kinds of variability.

We define interaction relation  for data-flow code-region interactions based
on the data-flow relationships (DF) between instructions of one region with the
instructions of another.

Definition 28. r1  r2 is the data-flow interaction relation that holds when the
data produced by at least one instruction i that is part of r1 flows as input to an
instruction i′ that is part of r2.

r1  r2 = ∃i∈ r1 ∃i′ ∈ r2 DF(i, i′)

It is crucial to understand that this definition utilizes the underlying program
representation—in the form of instructions—to link variability information to data-
flow analysis results. This means, we can now use any data-flow analysis to compute
data-flow interactions between different types of variability. Initially, we compute
the data-flow relationships between instructions through the data-flow analysis.
Then, we use the analysis results, the interaction relation (see Definition 28), and
the function computeAllCRInteractions (see Definition 26), to compute all data-flow
interactions between code regions. This way, choosing or optimizing the precision
with which data-flow-based variability interactions are computed becomes solely a
program analysis optimization problem.

3.3.2 Dynamic Analysis

Dynamically determining interactions between different types of variability can
become necessary in cases where static analyses introduce too much overapprox-
imation or when we want to reason about runtime properties of a configurable
software system that can be observed only during execution.

To demonstrate the applicability of our code-region interactions to dynamic
analyses, we focus in our work on the analysis of non-functional properties, which
is a research area that has gained a lot of traction over the last 10 years in the
area of variability research. The analysis of non-functional properties, such as,
performance, memory consumption, or binary size, of configurable software systems
and software product lines focuses on determining and understand the effect
variability can have on the NFPs [215, 216]. Even after many years, there are
still unsolved problems, especially in the area of white-box program analysis.
Notable exceptions are ConfigCrusher [240], Comprex [241], and the work of
Weber et al. [247]. However, the authors indicate open problems, such as scalability
or interpretability issues, which shows that there are existing difficulties that should
be addressed. This stems from the fact that combining dynamic white-box analyses
with variability is inherently difficult. We aim to ease further research in this
direction by unifying these dynamic analyses to measure NFPs with our code
regions. Therefore, we introduce NFP interactions to model interactions of non-
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functional-properties not only for software product lines but generally for different
types of variability.

NFP interactions. Configurable software system have many NFPs, such as per-
formance, that are of interest in a variety of use cases. Furthermore, there are many
approaches, techniques, tools to determine those NFPs. For our work, all those
can be conceptually grouped together into either a direct dynamic analysis or a
dynamic analysis coupled with a statistical evaluation, as our interaction relation
only connects our interactions to an effect determined by the approach. Hence, it
is only important in the end that the approach can infer a relationship between
different code regions, that is, infer a relation between different variabilities. Take for
example, feature-related performance measurements, where we want to identify the
features involved in a performance regression. In this case, it is not important for our
interaction abstraction which tool is used for performance measurements or which
statistical test is used to determine whether the measured change is significant, just
that there is a way of determining an effect between different versions.

However, apart from the inessential differences between the approaches, analyzing
NFP interactions introduces two difficulties compared to structural or data-flow
interactions: (1) It depends on the specific analysis whether the NFP interaction
has a direction or not (e.g., many statistical evaluations of performance data pro-
vide a correlation but have no information about who influences whom). (2) NFP
interactions might only be observable between different revisions of a program
(e.g., a performance regression is usually a decrease in performance compared to a
previous revision of the same program).

Difficulty (1) means that it depends on the particular analysis and evaluation
whether a direction can be inferred. Therefore, to model cases with and without
direction, we define the NFP interaction relation without a specific direction and
defer the interpretation of directionality to the concrete analysis semantics. This
means, in cases where the analysis cannot infer a direction the relation is com-
mutative, and by that, a code-region interaction between r1 and r2 is equivalent to
an interaction between r2 and r1. We address difficulty (2) by using the revision
specifier (see Section 3.2.4) to contextualize the code regions that are involved in
an interaction relation. This way, we explicitly model the revision and can infer
interactions between different program revisions.

We define interaction relation⇒ for NFP code-region interactions based on the
effect that is observed on the non-functional property by the analysis or evaluation.

Definition 29. r1 ⇒ r2 is the NFP interaction relation that holds when the under-
lying analysis measured an effect between r1 and r2.

r1 ⇒ r2 = Effect(r1, r2)

It is important to note that we define ⇒ quite loosely on purposes to cover a
wide range of dynamic analysis and evaluation methods. Nevertheless, a specific
dynamic analysis can always use a more strict definition of⇒ to be able to make
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more precise statements. For example, determining if there is an Effect between
two regions, could be done measuring the runtime of each region with a dynamic
analyses and determining if more runtime is spent in region r1 as in region r2. But
also more elaborate, like using causal analysis to determine if executing region r1

causes a performance regression of region r2, similar to the work on feature causality
by Dubslaff et al. [56], however, with the extension to code region granularity instead
of features. Important to define Effect is that the dynamic analysis and evaluation
can attribute their results to regions (e.g., through a unique ID in practice).

3.4 Code Regions in LLVM

In the previous sections: We defined our code-region abstraction around domain-
specific tags to represent variability; We conceptualized how to detect these code
regions in a program representation; We showed how various static and dynamic
analyses can be used to find interactions between different types of variability. Now,
we describe how these concepts and ideas can be implemented and used in practice.

Based on our definitions, we implemented code regions as an extension to LLVM.
In what follows, we give a brief overview of how we integrated our code regions
into LLVM and highlight important practical details on how we use them to encode
variability information. Next, we explain how code regions can be automatically
detected within the compiler and highlight peculiarities that arise when detecting
code regions at later stages in the compiler pipeline. Last, we depict how domain-
specific static and dynamic analyses that are based on code regions fit into the
LLVM framework.

3.4.1 Overview

On a high-level, the implementation of our domain-specific analysis framework
is divided into two parts: the language-dependent front-end extensions and a
language-independent analysis layer. The front-end extensions to Clang load,
process, and encode the variability-specific information into LLVM’s intermediate
representation. Afterwards, region-detection passes convert the variability-specific
information into code regions, which then can be freely used by code-region-specific
analysis passes. Figure 3.4 gives an overview of the complete compilation setup and
highlights the variability specific parts.

Front-end extensions. For each type of variability, we implemented a thin front-
end extension to map the variability-information into LLVM-IR. We kept the
language-specific front-end extension small, so that the core part of our frame-
work is language independent and can be used with other languages. We map
space variability information by annotating which variables encode configuration
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Figure 3.4: Overview of our compiler-based variability analysis pipeline.

options into the LLVM-IR (see Section 5.2.2). For time variability, we map repository
information in the form of revisions into the IR (see Section 4.3.1).

Analysis pipeline. Following LLVM’s design, we implemented region detections
and all our analyses as LLVM passes, so that they can be freely applied in different
stages of the analysis pipeline. This is especially useful to enable whole-program
analysis, as both the region detection and analysis can be used during LTO for
whole-program analysis. Furthermore, this design automatically decouples analyses
from the specific code region type that is used. The detection pass that processes the
variability information added to LLVM-IR is the only component that is variability
specific. The analysis passes that are executed afterwards are implemented only
based on the code region interface and process the code regions that were detected
before. In Section 3.4.5, we describe in more detail how static and dynamic analyses
are implemented in LLVM’s pass infrastructure.

3.4.2 Encoding Variability Information into LLVM-IR

The first step, to make variability accessible in the compiler, is extracting it from an
external variability source and attaching it to the compiler’s internal representation.
Conceptually, this represents the tagging function introduced in Definition 11. In
order to achieve that, we need to modify the compiler front-end to take in the
external variability source, extract its information, and encode it, by attaching it to
the correct instructions during the lowering from the source language to LLVM-IR.
We explain how this process works in detail for the different types of variability
later in Section 4.3.1 and Section 5.2.2.

To ease the development of different variability types, we split the variability-
specific implementation into a variability provider and added an annotation factory
to annotate instructions with variability-specific meta-data. The annotation factory
removes the complexities that arise from the LLVM-IR construction process by
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removing the details of how meta-data is attached. This means, the annotation
factory separates the where and how meta-data is attached in the compiler from
the when and what, provided by the concrete variability provider. The variability
provider tracks during lowering from AST to LLVM-IR the variability information
and provides this information in the form of meta-data when queried by the
annotation factory. Through that design, the variability provider can focus only on
the two important parts: variability extraction and variability encoding.

After implementing this variability-specific lowering step, we now have LLVM-IR
that is enriched with variability information. However, this information is currently
unstructured and not easily accessible by program analysis. We solve both these
issues in the next step of the pipeline, where we extract code regions from the
annotated variability information.

3.4.3 A Domain-Specific View on LLVM-IR

We introduced code regions in Section 3.2 to provide a domain-specific view on a
program, by abstracting away variability information behind an uniform interface. In
Definition 12, we define code regions on a conceptual program representation. How-
ever, to apply our uniform abstraction of code regions to actual program analyses
and use these analyses on real-world programs, we need a concrete implementation
of our abstraction.

We implemented our code-region abstraction in the compiler framework LLVM as
a lightweight overlay to LLVM-IR. The code-region overlay adds the interface type
llvm::IRegion for a code region and handles generic implementation details, such
as indicating where in the LLVM-IR the region is (i.e., which instructions belong
to the region). All variability-specific details, are implemented in separated classes
under the llvm::IRegion interface type. We chose a lightweight overlay compared
to adding special instructions or other constructs, as modifying LLVM-IR would
introduce many unnecessary complexities. Furthermore, conceptually we want
to present variability information alongside the program representation, without
influencing the LLVM-IR semantics, as this would affect existing program analyses
and by that, make them less reusable. Important to note, the code regions introduced
in this section should not be confused with a llvm::Region, which represents a
part of a CFG with one entry and exit node. Our code regions offer a much more
fine-grained and detailed view on the code, as they are not restricted to basic blocks
in the CFG but work on instruction granularity and, besides that, they are not limited
by the amount of entry and exit nodes, allowing them to have more precise borders.

From a design perspective, code regions can be seen like a view of a database. The
view presents the same information that is already present in database tables but
adds additional contextual information by aggregating or filtering out unnecessary
information. Conceptually, the same applies to code regions as they present the same
LLVM-IR but add contextual variability information, by aggregating variability-
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related code and present it to analyses, hiding all the unnecessary non-variability-
related parts.

At the level of the code region interface type llvm::IRegion, we implemented
accessor methods to LLVM-IR, such as iterators, and the interface methods presented
in Section 3.2.5. From both our practical implementations, we learned that the
original designed interface is enough to implement our analyses presented in
Chapter 4 and Chapter 5, indicating the abstraction works quite well. However,
further extending it would also be an option, as long as the extensions keep the
theoretical separation of program representation and variability information.

Code regions provide a central uniform interface for representing variability
information to analyses passes. Next, we explain how we extract code regions
during program compilation in LLVM’s optimizer through special analysis passes.

3.4.4 Detecting Code Regions

As described in Section 3.2.3, detecting code regions is a straightforward process
where we group together adjacent instructions that carry the same variability
information. This works well in theory and most often also in practice. However, in
some whole-program analysis scenarios, we encounter problems where compiler
optimizations can delete variability information before we could analyze it. In order
to solve this, we need to introduce an additional information-preservation step for
whole-program analyses.

We implement the region detection, as introduced in Section 3.2.3, with a reusable
generic function that implements the core of the detection algorithm. Algorithm 1

depicts the implementation of the computeCRTag( f , t) function (see Definition 14),
which takes as an input a function f and the tag t, for which code regions should
be detected. In short, we walk over each basic block in a function’s CFG and create
potentially incomplete code regions for all connected instructions that carry the
tag t. Afterwards, we join code regions that are connected, meaning, we join code
regions where the end of one region is connected through a control-flow edge of the
corresponding basic block to another region. We then apply this generic function in
multiple LLVM analysis passes, creating a separate pass for each type of code region
we want to support (i.e., for each type of variability). By separating the detection
logic into a generic function, we share the commonalities of detecting code regions,
and by, building a separate LLVM analysis pass for each code region type we enable
users to individually select the variability they need on the application layer.

Other analysis passes can access code regions by adding a code-region detection
pass into the pass pipeline. As depicted in Figure 3.4, a code region detection pass
can be inserted into the compiler pipeline at different stages: either during the
normal optimization stage, or during LTO. We found that inserting code-region
detection passes before compiler optimizations and directly before that analysis
works best, as currently detected code regions do not dynamically update when the
underlying LLVM-IR changes.
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Algorithm 1: In practice, the code-region detection algorithm is comprised
out of two steps. First, we compute partial code regions for each basic block
by iterating over the block and forming a code region for each connected
block of instructions that carry the specified tag t ∈ T . This step is necessary,
as LLVM-IR is structured around basic blocks compared to our instGraph.
Second, we combine partial code regions, should they be adjacent. This
means, should the underlying basic blocks fulfill a predecessor-successor
relationship and should the predecessor/successor code regions start/end
with the first/last instruction of the underlying basic blocks.

Parameters : f ∈ p, t ∈ T
Result: detectedRegions

1 Function computeCRTag( f , t):
. First, detect partial regions per basic block.

2 partialBBMap← ∅;
3 for bb ∈ getBasicBlocks(f) do
4 taggedInsts← ∅;
5 for i ∈ getInstructionsInSequence(bb) do
6 if t ∈ tags(i) then . expand current region

7 append (i, taggedInsts);
8 continue;
9 else . complete region

10 newRegion = CodeRegion(taggedInsts, t);
11 append (newRegion, partialBBMap[bb]);
12 taggedInsts← ∅;
13 end
14 end
15 newRegion = CodeRegion(taggedInsts, t);
16 append (newRegion, partialBBMap[bb]);
17 end

. Second, merge partial regions, when adjacent to other region.

18 for bb ∈ getBasicBlocks(f) do
19 partialCRs← partialBBMap[bb];
20 for partialCR ∈ partialCRs do
21 if startsAtFirstInst(partialCR, bb) then
22 for pred ∈ pred(bb) do
23 for predPCR ∈ partialBBMap[pred] do
24 if endsAtLastInst(predPCR, pred) then
25 combinedCR = combine(partialCR, predPCR);
26 replace (partialCR, combinedCR, partialBBMap[bb]);
27 replace (predPCR, combinedCR, partialBBMap[pred]);
28 end
29 end
30 end
31 end
32 end
33 end
34 detectedRegions← removeDuplicates(concat(values(partialBBMap)));
35 return detectedRegions
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As mentioned above, this setup does not work by default for some whole-program
analysis scenarios. To be precise, it does not work in scenarios that: require compiler
optimizations, want to run code transformations based on the analysis results, and
need to produce an executable binary after the analysis. Unfortunately, this is exactly
the case for dynamic analysis, such as the instrumentation-based performance
profilers presented later in Chapter 5. Usually, the problem of compiler optimizations
can be circumvented by running the analysis before any optimizations are applied
to the IR. However, this is not possible for whole-program analyses that need to
produce an executable binary. As described in Section 2.3.5, there are two ways to
build whole-program analyses: either by using tools such as WLLVM that produce
a whole program bitcode file, or by running the analysis during LTO. In the specific
case described above, we cannot use WLLVM and need to run our analysis and
the code transformation during LTO. The problem of loosing variability information
that is tagged to LLVM-IR, now arises when optimizations transform the IR before
every module is linked into a whole-program module and processed during LTO.
We solve this problem in two ways. First, we patch a few central LLVM-IR rewriting
functions in LLVM to preserve variability information encoded into the meta-data
by attaching the meta-data to the newly generated replacement instructions. Second,
we run a lightweight intra-procedural pre-analysis of the actual whole-program
analysis. We persist the intermediate results of the pre-analysis and then later feed
this information into the actual whole-program analysis. For example, in the case of
a taint analysis, we persist the generated taints as meta-data and reintroduce these
taints again later during the whole-program taint analysis. This way, we can support
even specific dynamic analyses that require a static whole-program analysis to setup
the instrumentations for the dynamic analysis.

We implemented the conceptual code-region detection described in Section 3.2.3
in LLVM, demonstrating that detecting code regions works also in practice.

3.4.5 Static and Dynamic Analysis

Building precise static and dynamic analyses, such as inter-procedural data-flow
analyses or instrumentation-based performance profilers, is difficult due to the al-
gorithmic complexity and implementation efforts required [208]. However, adapting
an existing program analysis to a code-region-based domain-specific analysis and
provide it to LLVM is straightforward.

First, we integrate all analyses into the LLVM pass pipeline, by wrapping the
analysis implementations into LLVM passes, which makes them easier usable. Next,
to lift analysis to code regions, we have three options: (1) Map the results of an
existing analysis to code regions; (2) Adapt an existing analysis to interface with
code regions; (3) Develop a new analysis that is tailored around code regions. (1)
Mapping analysis results to code regions works well in all cases where the analysis
semantics are only based the program and do not depend on variability information.
For example, we can run a standard data-flow analysis that works on instructions
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and then map the produced results, which define data-flows between instructions,
to code regions by finding the code region that contains the instruction. (2) We
can adapt an existing analysis to integrate code regions by specializing an analysis
problem to code regions. For example, an existing taint analysis could be modified
to treat code regions as sources or sinks, to detect what gets influenced by a code
region (i.e, being tainted) or if tainted values reach a specific code region. (3) Writing
a specialized analysis is normally only required when variability information is
deeply intertwined with the analysis semantics and can not easily be separated out.
In our work, we did not encounter a case where it was strictly necessary to write a
new analysis.

In general, program analyses often require additional helper analyses, for example,
to compute pointer-aliasing information or a call graph. Through the LLVM analysis
infrastructure, such helper passes can be required, and as code-region-based analyses
passes fit natively into the analysis infrastructure, they also can be added and reused
to build more elaborate program analysis. In what follows, we highlight conceptually
how static and dynamic analyses can connect to code regions.

Analysis passes (static analysis). Using the static program analyses that LLVM
provides or adapting them to code regions is in many cases straightforward, as all
of them are based on LLVM-IR. However, by default LLVM does not offer advanced
inter-procedural program analyses or many utilities to build such analyses. To
compensate for this disadvantage, we integrated PhASAR, a LLVM-based framework
for writing inter-procedural static analyses, into our variability-focused analysis
framework. Similar to analyses provided by LLVM, we can adapt PhASAR-based
analyses to code regions as they all work on LLVM-IR. Meaning, developers can
not only use analyses provided by PhASAR but also use PhASAR to develop
new inter-procedural analyses that can afterwards be lifted to code regions. For
example, together with the PhASAR developers, we added a new customizable
inter-procedural data-flow analysis that determines potential data-flows between
all instructions. Afterwards, we then lifted this analysis to code regions in our
framework. We demonstrate this analysis later in Section 4.2.3 in detail.

Transformation passes (dynamic analysis). In general, variability-focused dy-
namic analyses require users to build a transformation pass that injects the dynamic
analysis or specific anchor points, to which the dynamic analysis later attaches,
during compilation into the produced binary. For this purpose, we implemented
the entries (see Definition 21) and exits (see Definition 22) functions in the code
region interface, which enable us to instrument variability specific code around code
regions (e.g., to insert instrumentation code or anchor points around a code region).
Important to note, transformation passes that insert dynamic analyses often require
additional static helper analyses that compute where the dynamic analysis code
should be placed. As noted above, we can integrate such static analysis, especially
the ones that already work with code regions, through LLVM’s pass pipeline.
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3.5 Code-Region Analysis Applied to Variability

In what follows, we give an overview of the two research applications that we use to
demonstrate that our code-region abstraction enables us to analyze time variability,
arising from software evolution, and space variability, introduced by configuration
options, equally. The goal of the research applications is to demonstrate that our
uniform abstraction of code regions enables novel applications for program analyses
that target different types of variability, where code regions provide the glue between
different types of variability and reusable white-box program analyses. We do
this, by applying our code-region abstraction to two novel research problems,
targeting different types of variability and requiring different program analyses to
be answered.

In the first research application, presented in Chapter 4, we combine repository
mining with static program analysis to uncover new and interesting connections
between developers. In the second research application, presented in Chapter 5,
we make state-of-practice performance profilers configuration-aware to facilitate
performance analysis. In what follows, we give a brief introduction to both research
applications and describe how they demonstrate the applicability of our uniform
code-region abstraction. Afterwards, in the following chapters, we present each
research application in full detail and highlight throughout the application how
specific parts relate to the code-region abstraction.

Data-flow interactions between revisions. Repository-mining approaches an-
alyze code typically at file, textual, or syntactical level and thus miss important
connections that are encoded in the underlying program semantics. For example,
socio-technical approaches that try to determine which developers should coordi-
nate, use co-change information only on a file or function level to infer connections
between developers [105], leaving out valuable information. In the end, many repos-
itory mining approaches do not use and, by that, do not profit from the information
that is encoded in the underlying program semantics because this information is
not easily accessible to them.

To solve this, we built a bridge between repository mining and program analysis.
We introduce commit-based code regions that model which parts of a code base have
been introduced by a specific revision. We then use the data-flow interaction concept
described in Section 3.3.1 and a novel code-region-based data-flow analysis, to
determine which revisions interact through data flow. These data-flow interactions
give us a better understanding of how code changes, introduced by a revision,
interact throughout the code base and through the link from commit to the commits’s
author, also how code from different authors interacts. This way, we use our code-
region abstraction to integrate static program analysis with repository mining.

With the first research application, we demonstrate three central points: (1) How
time variability can be modeled with code regions; (2) How a generic static data-flow
analysis can be built using our uniform code-region abstraction; (3) How code-region
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interactions that arise from the analysis results can help to gain new insights, in
this particular case, we showed how a data-flow analysis can uncover previously
unrecognized interactions between developers.

Configuration-aware performance analysis. Research has shown that a signifi-
cant number of performance bugs are caused by configuration errors [83]. However,
reasoning about performance bugs in configurable software systems is difficult
because state-of-practice profilers do not take the configurability of the system into
account. Therefore, they have to measure all potentially impacted variants, which is
difficult for large configuration spaces that arise from the combinatorial explosion.
Furthermore, from the collected performance profiles, it is not clear which parts
of the measured execution time is related to which configuration choice, making
it hard for developers to judge whether and by how much specific configuration
options influence the performance of a configurable software system.

We tackle this problem by introducing Walrus, a dynamic analysis frame-
work to make state-of-practice performance profilers configuration-aware, which is
built through our code-region abstraction. We model compile-time and load-time
configuration-dependent code as code regions. For localizing load-time configurable
code, we reuse the analysis developed in the previous research application to de-
termine which configuration options have data-flow interactions with control-flow
decisions in a program. After the localization phase, we make the time spent within
these configuration-specific code regions measurable by weaving in performance
measurement code. This way, we enable configuration-aware performance analysis
with state-of-practice performance profilers.

With the second research application, we demonstrate three central points: (1)
How space variability can be modeled as code regions; (2) How a code-region-based
data-flow analysis, developed in the previous application, can be reused to localize
configuration-dependent code; (3) How we can enable code-region-based dynamic
analyses, in the form of performance profilers, to measure the execution time spend
within a code region.

Taken together, the two practical research applications, where we applied our
code-region abstraction to novel research problems, demonstrate that our uniform
code-region abstraction is a valuable link between different types of variability
and white-box program analyses. Overall, they demonstrate that multiple types of
variability are uniformly represented by code regions and that code regions can be
analyzed by static as well as dynamic program analyses.

3.6 Related Work

In what follows, we give an overview of different works that relate domain-specific
information, in general, and variability information, in particular, to code regions.
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Configuration-dependent code regions. In their work about feature interaction
faults, Garvin and Cohen [70] investigate through an exploratory study if real-
world faults fit their new definition of interaction faults. During the construction
of their definition, they introduce the notion of a variability region, meaning a
maximal set of basic blocks that have the same configuration dependence. That is,
if one is executed under a given configuration the others are too, except for non-
configuration reasons [70]. Their work is connected to others that analyze #ifdef

variability and presence conditions [7, 19, 193], as preprocessor directives explicitly
define a region of code that gets included in a program when a specific presence
condition is fulfilled. Velez et al. [240, 241] also introduce configuration-dependent
code regions to model the code that is controlled by load-time configuration options.
Both variability regions and configuration-dependent code regions are closely related
to configuration-dependent code regions that we introduce later in Chapter 5, and
could be expressed with our code regions definition—with the restriction that
both parts of preprocessor region cannot be modeled at the same time. However,
structurally our code region definition allows regions to be more fine-grained, as they
are defined on an instruction level compared to a basic blocks. Furthermore, where
their work introduced code regions, just as a means of aggregating configuration-
dependent code, our code-region abstraction incorporates a connection to program
analyses and uniformly represents different types of variability.

Variability-aware program analysis. With SPLLIFT, Bodden et al. [25] demon-
strated how existing IFDS-based program analyses can be made software-product-
line aware by lifting them to IDE, encoding the variability from the product line
into the edge domain. Through their lifting process, conventional program analyses
can be reused on software product lines, analyzing the whole product line at once.
Compared to their work, our work focuses on analyzing different types of variability
by combining and reusing existing program analyses. So, where their works makes
existing analyses variability-aware, we apply existing analyses to the domain of
variability to better understand and reason about the implications variability has on
configurable software systems (e.g., by finding data-flow-based feature interactions).

Polyhedral optimizations. Another type of region that is used in the context
of LLVM for polyhedral optimizations are static control parts (SCoPs) [17, 79]. A
SCoP is the polyhedral representation of a static control-flow region that consists of
nests of counting loops (i.e., for loops). Furthermore, the loop bounds and memory
accesses inside a SCoP must be linearly affine expressions. Compared to code
regions, SCoPs do not carry different types of domain specific information but only
focus on polyhedral information. More important, SCoPs differ structurally from our
code regions as their granularity is based on basic blocks, and they require a single
entry and exit block. Furthermore, SCoPs constrain the control-flow structures that
can be part of a SCoP to counting loops and if statements, and the memory accesses
to affine expressions. These restrictions are important for polyhedral optimizations,
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however, using SCoPs instead of code regions for our variability abstraction would
constraint our use cases too much.

Architectural conformance. Architecture conformance checking is the process
of verifying that the implemented architecture of a software system follows the
architecture defined in the architecture description (e.g., checking that in a layered
architecture each layer only access the ones above or below it). To achieve this,
tools, such as SAVE [57], ArchJava [2] or ConQAT [54], take a source-code model,
an architecture model, and a mapping between the two and check if the specified
architecture is correctly represented in the source code [123]. Important in our
context, architectural conformance checking requires a mapping between source-
code artifacts and the architecture model. This is related to our work, as source-code
artifacts often refer to specific regions in the code. However, their work differs from
ours as conformance tools work on the source-code level compare to code regions,
which are defined on a low-level program representation, suited for inter-procedural
program analysis. Nonetheless, as we highlight in Section 3.7 in detail, architecture
conformance checking could profit from our work by integrating new state-of-the-art
inter-procedural program analyses.

Requirements tracing. Requirements tracing is the process of tracking require-
ments, starting from the requirement description and tracking, through various
artifacts up to the source code that implement the requirements, how the initial
requirements where realized in the software product [35]. Precisely mapped re-
quirement information helps developers to implement tasks faster and with fewer
bugs [149], as well as with bug localization [187]. To achieve a precise connec-
tion between requirements and source code, similar to architecture conformance
checking, requirements tracing approaches need a way to map requirements to
code artifacts and keep them up to date throughout the evolution of the software
system. Lian et al. [143] combine architecture information, requirements tracing,
and source code information to provide round-trip traceability between source code
and requirements (i.e., quality concerns) and visualizations that depict how those
requirements are woven into the code [158, 159]. Rahimi and Cleland-Huang [186]
propose a solution for evolving mappings between requirements and source code
to keep source code mappings up to date. They introduce 24 change scenarios,
based on high-level change patterns that they mined from open-source projects,
and combine them with a link evolution heuristic to update the requirements links.
So, when their tool detects a scenario in a change, it can use the link evolution
heuristic to automatically update the requirements links, keeping them up to date.
Furthermore, Kuang et al. [131] demonstrate that, in addition to call dependencies,
data dependencies are important for requirements traceability, complementing the
information provided through call dependencies. Due to the mapping of information
to source code parts, such works are related to code regions, which could be used
to combine requirements tracing with program analyses.
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Coverage information. Coverage data is used, in addition to tracking test cover-
age at different levels [115], in a wide range of applications, such as coverage-guided
fuzzing [167], test generation [60, 189], and test case selection [3, 21, 87, 199]. The key
benefit of coverage data lies in the fact that it provides a mapping between dynamic
execution traces and source code, that is, a mapping from execution traces to a
more high-level and comprehensible abstraction, the source code [89]. Afterwards,
repository change information can be used to select a subset of the test to cover
a change [3]. There are two important parallels between coverage tracing and our
work. First, the coverage data introduces a mapping similar to our code-region
information mapping from source code to analysis information. Second, similar
to code regions, coverage data also decomposes code into blocks. For example,
structure-based criteria [253], such as control-flow coverage, track execution on a
basic block level [188], or on an even more fine-grained level for statement or path
coverage [33]. Hence, coverage data could be seen as a specialization of our general
code-region abstraction to another domain.

3.7 Further Applications

During the implementation and work on variability-specific code regions, we real-
ized that by abstracting away program analyses from domain-specific information,
analyses could be applied to many other use cases and domains. In what follows,
we highlight various use cases that could be modeled through our code-region
abstraction and, by that, analyzed through our generalized analyses.

Performance-relevant code. A straightforward application of code regions would
be to model performance relevant code (i.e., performance hot spots). The information
extracted from a performance profile, for example, produced through LLVM’s
profile-guided optimization infrastructure, could be used to represent hot-code parts
as code regions. This way, existing code-region-based analyses could be used to
better reason about the interplay between performance relevant code and variability.
For example, to determine which features interact with a performance-relevant code
region through data flow.

Security. Code regions could also be applied to the security domain. Many
security analyses, for example, use taint analyses to determine if a private key could
be leaked to the user, are highly specific to their use case. However, by introducing
two domain-specific security regions—one to mark private data locations and one
for user facing APIs—, code-region-based analyses could compute whether a private
key could be leaked, without being overly specific. This way, analyses implemented
against the uniform code-region interface could be shared. Furthermore, combined
analyses that target security in the context of variability could be devised to get a
more detailed picture. For example, a code-region-based analysis could analyze the
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interplay between private leaks and feature code, in a single analysis run instead of
two separate analyses.

Architectural abstractions. Another domain that could be modeled through
code regions are architectural abstractions. In general, architectural abstractions are
connected pieces of code, even when the abstractions itself is spread all over the code
base. For example, in a layer architecture [62] each layer is responsible for specific
tasks and communicates only with adjacent layers through a defined API. The main
purpose of a layered architecture is to introduce separation of concerns, so that
each layer can be changed independently. However, such designs can suffer from
architectural decay as the software project evolves [74, 229], which compromises the
design goals and introduces bugs [135, 160]. For example, we could analyze such
architectural decay through data-flow analyses that detect when non-connected
layers interact. For that, we only need to provide a mapping that encodes layer
information to LLVM-IR, creating architecture-specific code regions.

Jupyter code cells. An application-specific use case are jupyter code cells. In
jupyter

2 notebooks, code is divided into multiple cells, where each cell can be
executed independently an often represents a semantically related piece of code.
These code cells could be mapped into LLVM-IR as a code region for further analysis.
For example, it could be interesting to employ data-flow analyses on these code
cells, to determine which cells need to be reevaluated after a change, or detect with
which external software components a cells interacts. Venkatesh et al. [243] already
showed that their static-analysis-based approach HeaderGen can automatically
generate headers for jupyter code cells that describe, based-on a taxonomy, what
the specific cell is meant to do.

In general, as jupyter code cells have grown in popularity over the last years,
it seems promising to extend existing analysis capabilities to them. Through our
code-region abstraction, this should be simple. By representing a code cell as a code
regions, we can automatically apply all existing static or dynamic analyses that
work for code regions to jupyter code cells.

Overall, we found that many high-level concepts map relatively cleanly to our
code-region definition. We attribute this to the fact that, in the end, all information
that should be analyzed either by static or dynamic white-box analyses needs to
relate to specific pieces of code. We find that extending our work into these direction
looks promising from an analysis point of view for all users that want to apply
precise static and dynamic analyses, without paying the cost of building their
customized analyses. With our underlying framework, users only need to provide
a mapping function from high-level conceptual information to code, that is, they
need to provide the mapping functions tags (see Definition 11). Afterwards, our

2 https://jupyter.org/ (Last accessed: May 13, 2023)

https://jupyter.org/
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framework constructs domain-specific code regions using this function, and by that,
the users get access to a wide range of static and dynamic program analyses.

3.8 Summary

This chapter presented our uniform abstraction of code regions that enables us to
analyze domain-specific information with static and dynamic analyses in a reusable
way. Initially, we identified two major challenges that hinder the wider adoption
of variability-focused white-box analyses: (1) Accessing variability information
is difficult for white-box analyses; (2) Building real-world white-box analyses is
difficult and time-consuming.

To solve these challenges, we addressed three problems with our uniform code-
region abstraction. First, through our uniform code-region abstraction, we decoupled
variability from the actual analysis, showing that the analysis semantics can be split
into an analysis-specific and a variability-specific part. Second, we demonstrated
that the detection of code regions can be realized in a generic way, so that it can be
reused for different types of variability and other domain-specific concepts. Third,
we showed how interactions can be lifted to code regions and how reusable program
analyses can be built solely based on our uniform code-region abstraction, to
compute different kinds of code-region interactions. In the end, code regions that are
constructed in a generic way from domain-specific tags present a uniform interface
to white-box analyses, enabling the analyses to access variability information easily.
Furthermore, through the separation of analysis semantics from domain semantics
and the uniform code-region interface, analyses are better reusable. Through this
reusability, it becomes more viable to spend the time and effort required to develop
such analyses, as they can be applied to multiple problems afterwards.

Through our uniform abstraction of code regions, we can now model and analyze
different types of variability in concert with reusable white-box program analyses.
In the following two chapters, we demonstrate how our uniform abstraction of code
regions enabled us to tackle new and interesting research problems and highlight
how code regions enabled us to reuse analyses between the two.





4
Integrating Program Analysis and
Repository Mining

This chapter shares material with the following publications [203]

Understanding software evolution and the socio-technical context of software
projects is important for improving development processes and the communi-
ties that form around software projects [104, 105, 107, 254]. As we have shown
in Section 2.2, the techniques used to reason about this problem domain extract
information from various project related sources, where, among other things, one
prominent information source is data mined from software repositories. The prob-
lem with many of the currently used extraction techniques is that they do not
incorporate program semantics, such as data-flow relationships, which leads to
unnecessary overapproximation and spurious connections between developers [85].
This problem can be solved by incorporating repository information into existing
semantic-aware program analyses, since analyses, such as inter-procedural data-
flow analyses, already model program semantics quite well. So, by incorporating
repository information into these analyses, we can harness the analyses semantic
handling and extract program-semantic-aware repository information.

The approach presented in this chapter, demonstrates how we can gather semantic-
aware repository information with state-of-the-art inter-procedural program analy-
sis, by using the code-region abstraction introduced in the previous chapter. There-
fore, complementary to this chapter’s main contribution of enhancing information
gathering for evolutionary and socio-technical analyses, this chapter demonstrates
also the applicability of code regions to evolutionary variability (time) as well as to
static analysis.

In what follows, we portray the gap between current repository mining approaches
and program analysis in more detail and demonstrate how modern state-of-the-art
program analysis can provide additional information to existing evolutionary and
socio-technical techniques.

4.1 Introduction

Software systems are among the most complex human-made systems today. To
understand the inner workings and external qualities of complex software systems,

79
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Source Code

Repository Analysis
(High-Level)

Program Analysis
(Low-Level)

Control-Flow

Graph

c1

c2

Revision 1 Revision 2

c1

Alice Bob

c2

Data-Flow Dependency

Figure 4.1: Combining low-level program analysis with high-level repository analyses: Alice
makes a change c1 to a source code file creating revision 1. Later, Bob modifies the
same file at a different location with c2 creating revision 2. A typical repository
analysis cannot find a connection between c1 and c2, except that both modified
the same, possibly very large, file. If we map the changes of Alice and Bob onto
the corresponding control-flow graph and run a data-flow analysis, we discover
a data-flow dependency (red) from c2 to c1.

researchers and developers have devised a variety of program analysis techniques
to extract relevant information, including bug finders, program verifiers, and code
metric tools.

The rise of open-source software has triggered the development of repository
mining techniques that extract organizational information from software repositories.
For example, researchers have investigated how code changes evolve on different
platforms [245] or analyzed the characteristics of uncompilable code [90]. Other
approaches analyze the socio-technical interaction around a software project to
better understand how developers collaborate [41, 101, 104, 105].

Such high-level repository mining approaches analyze code typically at file, textual,
or syntactical level and thus miss important information that is only encoded
in the underlying program semantics. Information on the program semantics is
often only accessible by low-level static program analysis techniques such as data-
flow analyses. While high-level repository analyses are sufficient to get good first
results, information that is hidden in the program’s semantics (e.g., information on
data-flow) is overlooked. This insufficiency precludes important use cases such as
attributing bugs and security vulnerabilities directly to the commits/developers
that introduced or know best how to fix them. For illustration, let us consider the
example in Figure 4.1: Alice commits a change c1, later Bob also changes the same
file with commit c2. With a purely textual or syntactical repository analysis, no
connection between the two changes can be inferred, except that both change the
same file. By mapping the change to a control-flow graph, we can leverage powerful
program analysis techniques to detect previously hidden data dependencies between
the changes and, in turn, infer that c2 could be related to a bug in c1.
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Our central hypothesis is that a combination of low-level program analysis (in
particular, data-flow analysis) with high-level repository information empowers us
to answer practically- and scientifically-relevant questions that neither can answer
alone. Many questions are difficult to answer solely based on data from a high-level
repository analysis, for example, “Which developers are affected by a change?” or
“Which portion of a code base is influenced by a particular change?”. The underlying
problem is that repository analyses often do not have precise data-flow information
at their disposal, if at all, or try to include this information in an ad-hoc manner,
making it difficult to apply them to a wide range of practical settings. Conversely,
state-of-the-art program analysis techniques and tools do not have organizational
information (e.g., about versions or developers) at their disposal. This problem is
hard to solve by just combining different tools, because the high-level information
needs to map correctly to the program operational semantics and a fairly low-
level program representation. We seek to integrate high-level repository information
with low-level information in a principled way and make the combined information
available for interpretation.

For this purpose, we have developed SEAL, a parameterizable approach that com-
bines change information from a project’s history with information on the program
semantics computed by an inter-procedural, flow- and context-sensitive data-flow
analysis. SEAL’s integrated approach allows us to precisely analyze data-flow inter-
actions between commits—a previously infeasible endeavor. More generally, SEAL
establishes a mapping from a high-level information source (in our case, commit
information) to an intermediate program representation that is suited for writing
precise, low-level program analyses, conceptually decoupling the information source
from the actual analysis. SEAL defines a general and parameterizable relation be-
tween data flows and high-level information and allows us, for the first time, to
embed statements on the program semantics into the socio-technical context of a
software project.

We implemented SEAL on top of LLVM [134] and PhASAR [208] in the form
of a parameterizable framework that adds commit information to the compiler’s
intermediate representation (LLVM-IR) and combines it with an inter-procedural
data-flow analysis to determine which commits interact with each other at the level
of data-flow. We designed SEAL to be modular and reusable to enable the commit
information to be used by different static program analyses that target LLVM-IR.

By means of a diverse set of 13 open-source projects, we demonstrate the practi-
cality of SEAL. Specifically, we apply it to four relevant software analysis problems
and demonstrate how a combination of commit and data-flow information can be
leveraged to solve these problems: (1) We use SEAL to detect potentially impactful
changes that modify central code (i.e., code which interacts with lots of other code)
in a software project. (2) We demonstrate the applicability of SEAL to socio-technical
analyses by analyzing the socio-technical structure that arises from interactions
among authors via commits. (3) We apply our approach to analyze which authors
could be affected by a change. (4) Furthermore, we discuss how data generated by
SEAL can be used to enrich existing data-flow analyses by making them change-
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aware and putting their results into a socio-technical context without paying the full
costs for follow-up analyses.
In summary, we make the following contributions:

• A novel approach, called SEAL, that combines high-level repository mining and
precise low-level program analysis.

• An open-source implementation of SEAL built on top of LLVM [134] and
PhASAR [208] as well as a modified implementation of Clang that allows one
to inject repository change information during compilation, which is integrated
with PhASAR, allowing for precise data-flow analyses.

• An evaluation consisting of four different studies, three that demonstrate the
applicability of SEAL, evaluated on 13 open-source projects, and a showcase of
how SEAL can be used to make existing data-flow analyses change-aware.

All results and a replication package are publicly available.1 Our implementation and
additional evaluation tools are open source and available on our project website.2

4.2 SEAL at a Glance

In this section, we provide an overview of SEAL and show how mapping repository
information onto a compiler IR enables SEAL to combine high-level data with a
specialized data-flow analysis. We define the concept of commit interactions, an
abstraction that merges both kinds of information and enables us to reason about
how data flows connect seemingly unrelated commits. Then, we describe in detail
how SEAL can compute these commit interactions using the mapped repository
information and a static taint analysis.

4.2.1 Code Annotation

In a preparation step, we map information from the version control system into
a representation on which we later conduct the program analysis. As program
representation, we use the compiler’s intermediate representation (IR), which is a
common abstraction used in modern compilers and static analysis tools. Through
that mapping, we integrate the information needed for the variability tagging
described in Section 3.2.2 into the intermediate representation. It is important to
note that SEAL and the definitions in Section 4.2.2 are based on, but not restricted
to, a given IR. A key mechanism of our approach is that, during the construction
of the IR, we add information to the specific IR instructions that relate them to the

1 Supplementary Website: https://se-sic.github.io/paper-SEAL/ and on Zenodo: https://doi.

org/10.5281/zenodo.7595363 (Last accessed: July 26, 2023)
2 https://vara.readthedocs.io/en/vara-dev/ (Last accessed: July 26, 2023)

https://se-sic.github.io/paper-SEAL/
https://doi.org/10.5281/zenodo.7595363
https://doi.org/10.5281/zenodo.7595363
https://vara.readthedocs.io/en/vara-dev/
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1 int main() {

2 int i = 20;

3 int j = 22;

4 return i + j;

5 }

. 3e8882e

. ea8426c

. c4d9b1a

. 0872f49

. 3e8882e

(a) Running example C program. The column on the right-hand side shows the hashes of the commits
that modified the line last.

1 define dso_local i32 @main() #0 {

2 entry:

3 %retval = alloca i32, align 4, !Commit !3

4 %i = alloca i32, align 4, !Commit !9

5 %j = alloca i32, align 4, !Commit !5

6 store i32 0, i32* %retval, align 4, !Commit !3

7 store i32 20, i32* %i, align 4, !Commit !9

8 store i32 22, i32* %j, align 4, !Commit !5

9 %0 = load i32, i32* %i, align 4, !Commit !7

10 %1 = load i32, i32* %j, align 4, !Commit !7

11 %add = add nsw i32 %0, %1, !Commit !7

12 ret i32 %add, !Commit !7

13 }

. 3e8882e

. ea8426c

. c4d9b1a

. 3e8882e

. ea8426c

. c4d9b1a

. 0872f49

. 0872f49

. 0872f49

. 0872f49

(b) LLVM-IR representation of the running example of Figure (a). For simplicity, we depict the
meta-data nodes that contain the commit information as triangles (.) on the right-hand side.

Figure 4.2: Running example: commit information at source-code level and its mapping to
the IR.

commit that introduced the corresponding code. The compiler determines the last
change for each source-code line by accessing repository meta-data (e.g., git-blame3)
and then annotates the commit hash to the respective instruction.

Figure 4.2a lists a C program that serves as our running example. The hash of
the commit that introduced each source-code line is shown on the right (.). During
compilation, SEAL adds this information to the IR, as shown in Figure 4.2b. Each of
the IR instructions is annotated by its corresponding commit hash (right side).

4.2.2 Commit Interactions

We devise a formal framework that serves as a basis for SEAL, building on our
uniform abstraction of code regions introduced in Chapter 3. In particular, the
formal framework defines the abstract structure of commit interactions and commit-
interaction paths, based on a given relationship between program elements, data
flows, in our case.

Simplified from Section 3.2.1, a program p is a composition of instructions
i1, . . . , in ∈ p stemming from a sequence of commits c1, . . . , cm ∈ R, where
R is the set of all commits from the repository (see Section 3.2.4). Note, as the work

3 Git-blame is a versioning system mechanism that annotates each line in a file with the commit that
last modified it.
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presented in this chapter targets git repositories, we refer to the revisions from a
repository as commits.

Definition 30. Let base be a function that maps an IR instruction i ∈ p to the
corresponding base commit c ∈ R, which gets attached during compilation.

The base commit represents the initial commit that introduced the source line in
question to the code base, as illustrated on the right-hand side of Figure 4.2b.
Furthermore, base is SEAL’s concretization of the abstract tags functions defined
in Definition 11, supplying the variability information. For SEAL, the encoded
variability that is mapped to instructions is time variability from the repository,
meaning the set of variability tags T is given by R, the set of commits. This way,
adjacent instructions that where introduced by the same commit, form a code region.

Next, we define interactions between commits through interactions between
commit-based code regions. We utilize the relation  (relates to), introduced in
Definition 28, to represent data-flow interactions. In general, our framework abstracts
from any concrete relationship and does not require specific properties of the relation
 . However, in a concrete instantiation, certain properties can be defined by the user
to express desired analysis semantics. In our case, we require to be transitive and
not symmetric because the effects of data-flow interactions are directional, meaning,
a write to a variable does only affect subsequent reads and not preceding ones.

Once we created a fixed mapping from commit information to IR and computed
the interactions for our program through a code-region-based data-flow analysis,
we can investigate interactions between commits derived from interactions between
code regions.

Definition 31. The constructor CI for a commit interaction is a function that maps
a pair of instructions, whose corresponding code regions r1, r2 ∈ CR interact with
respect to  , to a pair of commits. Note, based on our definition of tags (see
Definition 30), the set returned by tagsCR does only contain one element, hence,
c ∈ tagsCR(r) extracts exactly that element.

CI(i1, i2) =
(

c1, c2
)

if r1, r2 ∈ CR
∧ c1 6= c2

∧ r1  r2

∧ c1 ∈ tagsCR(r1) ∧ c2 ∈ tagsCR(r2)

∧ i1 ∈ vertices(r1) ∧ i2 ∈ vertices(r2)

Intuitively, two commits interact when code added by the first commit interacts with
code from the second commit. In our example, we obtain the commit interaction
( ea8426c , 0872f49 ), for the pair ( alloca : 4, load : 9 ) of instructions. That is, code
changes from ea8426c interact with changes introduced by 0872f49. Important to
note, the heavy lifting here is done by the code-region abstraction and the code-
region-based program analysis in the background. First, we detect the code regions,
based on the implementation for tags. Second, the data-flow interaction relation
(see Definition 28) combines the code regions with a data-flow analysis, that is, it



4.2 SEAL at a Glance 85

enables a mapping between the analysis results and code regions. Hence, to define
commit interactions, we now have to only interpret the code-region-based results in
relation to commits.

To further aggregate information from commit interactions and add a context-
specific meaning, we group commit interactions for every instruction into a commit-
interaction path.

Definition 32. The constructor CIP for a commit-interaction path takes an instruction
i ∈ I and outputs, given the program revision rev ∈ R, a tuple whose first element
is the base commit for i; the second element is the set of all commits that interact
with the base commit of i, except the base commit itself. Again note, as the set
returned by tags (see Definition 30) has at most one element, there can only be one
commit-based code region that contains i.

CIP(i) =
(

tagsCR
(
baseRegion(cri)

)
,
⋃{

tagsCR(r)
∣∣ r ∈ interactingRegions(cri)

})
if contains

(
i, baseRegion(cri)

)
∧ cri ∈ computeAllCRInteractions

(
 , {rev}

)
A commit-interaction path is a code-region interaction where the interaction relation
is fixed to  and commits from the commit-based code regions are extracted.
This way, a commit-interaction path aggregates multiple commit interactions based
on a given target instruction i. All commits, except the base commit of the target
instruction i, belonging to the interaction set of i are merged into a single set.
For the ret instruction in Line 12 from Figure 4.2b, we obtain the corresponding
CIP(ret : 12) =

(
0872f49 , { c4d9b1a, ea8426c }

)
, which indicates that two commits,

c4d9b1a and ea8426c, interact with the base commit 0872f49 at instruction ret.

4.2.3 Computing Commit Interactions

For computing commit interactions, we have implemented a flow- and context-
sensitive, alias-aware, inter-procedural taint analysis based on Interprocedural Dis-
tributive Environments (IDE) [192, 201].

IDE is an algorithmic framework to implement data-flow analysis. To check
whether a property of interest holds at a certain point in a program, IDE con-
structs a so-called exploded super-graph (ESG). An ESG is constructed by replacing
each node in the program’s inter-procedural control-flow graph with a bipartite
graph representation of the corresponding flow function. Flow functions for identity
(id), generating (gen) and removing (kill) data-flow facts are distributive and can be
represented as bipartite graphs as Figure 4.3 shows. Thus, all gen/kill-problems
such as uninitialized variables, available expressions, reaching definitions and taint
analysis can be expressed in IDE. If a node (i, d) in the ESG is reachable from a
special tautological node Λ, the data-flow fact d (∈ D, the data-flow fact domain)
holds at instruction i (∈ I, the set of program instructions). In addition, ESG edges
can be annotated with lambda functions to specify value computations that are
solved over a separate value domain V. These so-called edge functions allow one to
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Figure 4.3: Distributive flow functions and their bipartite graph representations.

encode an additional value computation problem that is solved while performing
a reachability check. The runtime of IDE is O(|N| · |D|3) [201], where |N| is the
number of nodes in the inter-procedural control-flow graph and |D| is the size of
the data-flow domain D. Thus, the analysis efficiency highly depends on the size of
the underlying data-flow domain. The value domain V can even be infinite and does
not affect the algorithm’s complexity. Rather than encoding a linear-constant propa-
gation using flow functions that operate on the data-flow fact domain D := 〈v, c〉,
with v ∈ V the set of program variables and c ∈ Z that comprises tuples of program
variables and their constant integer values, a linear-constant propagation can be
instead encoded much more efficiently using D := V and V := Z. This enables the
IDE framework to propagate only constant program variables as data-flow facts
while computing their constant values on the separate edge function domain. The
effect of a set of instructions can be summarized by composing flow (and edge)
functions. The composition h = g ◦ f of two flow functions f and g, called jump
function, can be obtained by combining their bipartite graph representations. h can
be produced by merging the nodes of g with the corresponding nodes of the domain
of f . Once a summary for a complete procedure pr has been constructed, it can be
(re)applied in each subsequent context where the procedure pr is called. Figure 4.4
shows an excerpt of a program and its respective ESG for the taint analysis that
SEAL uses to compute commit interactions.

Taint analysis is a parameterizable analysis that tracks values that have been
tainted by one or more sources through the program and that reports potential leaks
if a tainted value reaches a sink. Sources and sinks may comprise functions and
instructions. The taint analysis T that we use in our experiments tracks data flows
between the instructions of a given target program. It treats all variable declarations
as sources and propagates these variables through the program. As we are interested
in all instructions that interact with tainted variables, our set of sinks is empty. We
then lift the data flows (i.e., the interactions of instructions with each other) to their
respective code regions through the data-flow relation (see Definition 28), where
T implements the analysis behind the data-flow access function DF. This way, we
can determine code-region interactions (see Section 3.3.1), and by that, commit
interactions (see Section 4.2.2).



4.2 SEAL at a Glance 87
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Figure 4.4: Excerpt of the exploded super-graph for analysis T conducted on the pro-
gram shown in Figure 4.2b. Identity edge functions (λx.x) have been omit-
ted. Solid arrows (→) indicate individual flow (and edge) functions. The two-
headed arrow (�) indicates a single jump function j that summarized the ef-
fects of the complete function on %0; the remaining jump functions have been
omitted to avoid cluttering. The jump function j specifies the value computa-
tion problem j = {0872f49} ∪ {c4d9b1a} ∪ {c4d9b1a} ∪∅ and evaluates to %0
 {0872f49, c4d9b1a}. Note, for clarity, we did not directly depict the indirec-
tion introduced by code-region taints here but show only the concrete commit
values attached to the underlying code regions.

We define the relevant intra-procedural (normal) flow and edge functions, which
utilize code-region taints (see Section 3.3.1) to access commit information indirectly
and decouple the analysis semantics from the concrete variability semantics, formally
in Figure 4.5 and Figure 4.6. For the sake of brevity, we omit a formal description for
inter-procedural (i.e., call, return, call-to-return) flow and edge functions and describe
them only informally. The call and return flow functions map actual parameters
onto the formal parameters at a call site, and vice versa at a callee’s exit instructions
(return or throw instructions). The call-to-return flow function generates flow facts
for calls to heap-allocating functions, such as, malloc() or operator new(), and
propagates all data-flow facts alongside a call site that are not involved in the
function call under analysis. The call and return edge function implementations are
realized as identity, and the call-to-return edge function implementation forwards to
the normal edge function implementation.

The analysis T, starting at the program’s entry point main, taints the target
program’s variables (e.g., alloca instructions, see Figure 4.2b) as they occur and
propagates them as data-flow facts through the program. When analyzing libraries,
the analysis treats every publicly accessible function as an entry point. Each tainted
variable (i.e., data-flow fact) is associated with a set of code-region taints that is
encoded in lambda calculus using IDE’s edge functions. Initially, it contains only a
data-flow fact’s code-region taint, meaning the code-region taint that represents the
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Ji : alloca xK(d) ,

{d, x} i f d = Λ

{d} otherwise

Ji : y = load xK(d) ,

{y, x} ∪ pts(x) i f d ∈ pts(x)

{d} otherwise

Ji : store x yK(d) ,


{x, y} ∪ pts(y) ∪ pts(x) i f d ∈ pts(x)

{i} i f d = y ∨ d ∈ pts(y)

{d} otherwise

Ji : inst ojK(d) ,

{d, i} i f d = oj

{d} otherwise

Figure 4.5: T’s normal flow functions. Each type of instruction that is important to the
analysis is associated with its respective distributive flow function that specifies
the ESG edge that needs to be constructed. Function pts() returns the points-to
set of a given value. We assume that x ∈ pts(x) always holds.

Ji : alloca xK(d1, d2) ,

λx.{getTaint(i)} i f d1 = Λ ∧ d2 = x

λx.x otherwise

Ji : store x yK(d1, d2) ,



λx.{getTaint(i)} i f x = C ∧ d1 = d2 ∧ d1 ∈ pts(y)

λx.x ∪ getTaint(i) i f d1 ∈ pts(x) ∧ d2 ∈ pts(y)

λx.∅ i f d1 = d2 ∧ d1 ∈ pts(y)

λx.x otherwise

Ji : inst ojK(d1, d2) ,



λx.x ∪ getTaint(i) i f (d1 = Λ ∧ d2 = ojn0
) ∨

(ojn0
= d1 ∧ d1 = d2) ∨

(ojn0
= d1 ∧ i = d2)

λx.x otherwise

Figure 4.6: T’s normal edge functions that specify a computation along the ESG edge d1 → d2
for a given instruction and data-flow facts d1, d2. C represents a constant literal.
The function getTaint(i) returns the code-region taint for a given instruction
i, meaning, it looks up the instructions code region and converts the region to
a code-region taint. The function pts() retrieves the points-to set for a given
variable. We assume that x ∈ pts(x) always holds.
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code region the data-flow fact is in. Whenever an instruction i interacts with one
of the data-flow facts d, the code-region taint corresponding to i is added to d’s
associated set of code-region taints. A set of code-region taints of a data-flow fact
d can be overwritten if it is used as a target of a store instruction. In this case, all
elements of d are removed and the code-region taint of the store instruction itself
as well as all elements of the set whose associated data-flow fact is to be stored are
added. An excerpt of the exploded super-graph for our taint analysis T conducted
on the program from Figure 4.2b is shown in Figure 4.4.

In the context of our general definitions from Section 3.3.1, T computes the
information represented by DF (data flows) in the data-flow relation ( ).

4.2.3.1 Indirect Function Calls

Our IDE-based taint analysis can “see” through indirect call sites [201]. The IDE
algorithm is guided through the program with help of an inter-procedural control-
flow graph which includes call-graph information. We use a call-graph algorithm
that resolves indirect calls to function pointers or virtual functions using points-to
information computed by a scalable (inter-procedural) Andersen-Style [4] points-to
analysis. There is no difference between C and C++ according to the analysis. Calls
to function pointers are resolved by computing the points-to set of the respective
function pointer. Calls to virtual functions are resolved by computing the points-to
set of the respective receiver object to find the corresponding virtual function table
for statically determining potential callee targets.

4.2.3.2 Soundness and Completeness

Our taint analysis presented in Section 4.2.3 is unsound. This has good reasons:
Implementing an analysis that computes a more complex semantic property on
realistic C/C++ programs in a sound manner and in an inter-procedural (i.e., whole
program) setting is virtually impossible or would introduce so much imprecision
that it renders the analysis results unusable [148]. Instead, our analysis aims at
soundiness [148], a well-known term in static analysis. Soundy analyses apply sensible
underapproximations to compute meaningful results in an inter-procedural analysis
setting and are widely accepted in the static analysis community [148, 234]. A
soundy analysis, for instance, would sanely assume that system calls and calls to
libC behave as expected: calls to such functions are not analyzed and instead, a
summary that models their effects is consulted when they have a relevant effect on
the client analysis. This is also why all static analyses used for compiler optimization
that aim at computing more complex properties are intra-procedural only.

With respect to completeness, our taint analysis is set up to analyze all functions
whose definitions are available. The call targets of system calls and calls to libC
are typically available only as declarations or are modeled as intrinsic functions
by the LLVM framework. LLVM represents specific low-level functions, such as
memcpy or memset as intrinsic functions for which there are no definitions. Instead,
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Figure 4.7: Overview of the full build and commit-analysis pipeline. WLLVM injects Vlang

into the project’s compilation process to generate LLVM-IR files, containing com-
mit meta-data for every translation unit. Then, all LLVM-IR files are combined
into one whole-program file, which is subsequently analyzed to compute commit
interactions.

these function declarations are used to describe only semantics. So, it is up to the
code generator to replace them with a software or hardware implementation when
generating machine code for the desired target architecture. Our taint analysis
hence models function calls to the system and libC by applying summaries that
describe their effects on points-to, call-graph, and data-flow information. All other
call sites, for which the corresponding call targets are available only as declarations,
are soundily [148] modeled using the identity transformation.

4.3 Implementation

In this section, we explain how we instantiated SEAL on top of Clang and LLVM,
creating Vlang

4 as a modified version of Clang. In what follows, we provide an
overview of the full commit-analysis pipeline and how we compile and analyze real-
world projects, with the help of Vlang and the analysis framework PhASAR [208].

4.3.1 Lowering Commit Information to LLVM-IR

The first step of our analysis pipeline is the lowering step from an AST to LLVM-
IR, in which we enrich LLVM-IR with commit meta-data. During the compilation
of a translation unit, Vlang computes for each AST node the last commit that
modified the related code and adds it as meta-data to the corresponding generated

4 https://github.com/se-sic/vara-llvm-project/ (Last accessed: July 26, 2023)

https://github.com/se-sic/vara-llvm-project/
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IR instructions. When lowering an instruction, Vlang queries our framework for
relevant commit information, providing a corresponding file, line number, and line
offset from the AST node’s expansion location (i.e., the location in the file before
macro expansion). The framework then computes the blame of the file using the
library libgit2

5. It is important to note that the method for identifying last modifying
commits can be configured by the user. In our study, we use git blame. Then, Vlang

generates a commit meta-data object based on the line number’s commit hash and
the commit meta-data returned back to Vlang and attaches it to the instruction.

For illustration, consider our example of Figure 4.2a: On the right, we show
commit hashes per code line. During compilation, Vlang creates an AST and lowers
it to LLVM-IR. Figure 4.2b shows the LLVM-IR output after lowering. Let us start
with the first statement in Line 3. During lowering, Vlang creates two instructions
for this statement: one allocation for the stack variable (alloca in Line 4 of Figure 4.2b)
and one to initialize it to 20 (store in Line 7). As one can see, Vlang added commit
meta-data to both of these instructions referenced by the meta-data tag !Commit and
an identifier ID. The ID !9 points to the meta-data section of the file containing the
commit hash. For the sake of simplicity, we leave out the actual meta-data nodes
and depict the hash on the right-hand side of Figure 4.2b.

After Vlang has processed the input file, all generated LLVM-IR that is related to
commits from the project’s git repository is tagged with the corresponding commit
meta-data. The enriched LLVM-IR serves as input to our data-flow analysis.

4.3.2 Creating a Whole-Program Bitcode File

A precise commit-interaction analysis requires the data-flow analysis to be inter-
procedural (i.e., whole program and context sensitive [217]). Analyzing every com-
pilation unit in separate bitcode file leads to approximations whenever callees of a
call site are defined in another translation unit. We thus implemented our analysis to
be whole program. To create a whole-program bitcode file from the project’s source
code, we inject our tool Vlang into the build process. This enables us to reuse the
existing build scripts by using Whole Program LLVM (described in Section 2.3.5) as
a compiler wrapper, which invokes Vlang and generates and links bitcode files.

4.3.3 Taint Analysis for Commit Interactions

We implement our taint analysis T as an IDE [201] analysis in the PhASAR [208]
framework that we integrated into our code region extension to LLVM (see Sec-
tion 3.4.5). As described in Section 2.3.6, PhASAR has been built on top of LLVM
and provides, among others, a generic IDE solver implementation, and all required
infrastructure (e.g., control-flow analysis) to solve concrete client data-flow analysis
problems, which makes PhASAR the best choice to implement T.

5 https://github.com/libgit2/libgit2/ (Last accessed: July 26, 2023)

https://github.com/libgit2/libgit2/
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PhASAR’s generic IDE [201] solver operates on a problem interface type whose
implementations correspond to concrete data-flow analysis problems. The interface
mainly comprises flow and edge function factories that are queried by the data-flow
solver to construct the exploded super-graph and solve the value computation
problems that are specified along the edges. We implemented these flow and edge
functions factories according to our descriptions in Section 4.2.3.

4.3.4 Data Overview

SEAL aims to be extendable, and the results shall be integrateable into existing
study setups and tools. For this purpose, SEAL has a four layered design, where
at each layer the relevant information can be extracted for use by external tools. In
what follows, we give a short overview of the data that is produced by each layer
and describe how other tools can access it.

AST-level commit information. In the preparation step, before data-flow analy-
sis, SEAL’s compiler extension Vlang makes commit information accessible through
LLVM’s AST. The commit data is provided by a general abstraction in Vlang that
offers an interface to map AST nodes to commit hashes. Through this interface, tools
have an easy way to query commit information related to a particular AST node
(e.g., to combine commit information with error messages).

LLVM-IR with commit information. During LLVM-IR code generation, Vlang

attaches commit information provided by the AST interface to the generated LLVM-
IR information in form of as meta-data. This way, commit information is attached
to LLVM’s internal representation and can be queried, like any other meta data,
through the usual framework API (e.g., to attribute LLVM’s warnings about missed
optimizations with author information).

Data-flow based commit interactions. After commit interactions have been
computed, they can be accessed within LLVM’s analysis infrastructure, enabling
other analyses to query this information. As described later in Section 4.4.2, this
enables other analyses to attach socio-technical information to their analysis re-
sults (e.g., an analysis that detected a SQL injection can automatically determine
developers that interact with the vulnerable code and include them in the resolving
process). In addition, these raw commit-interaction data can also be exported into a
yaml file for further analysis.

Aggregated socio-technical information. To ease the analysis of data-flow-based
commit interactions, SEAL provides different graph aggregations of the raw commit
interaction data, including: commit, author, and commit-author graphs, which we
use in Section 4.4.1. With these graphs, existing approaches have a straight forward
way integrated the data-flow based commit information.
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4.4 Commit Interactions: Applications

To illustrate the merits and potential of SEAL, we discuss research problems from
different domains that can be addressed only by a combination of high-level repos-
itory information and low-level data-flow information. More importantly, some
problems can be analyzed only if the high-level information is already available dur-
ing analysis. We will use these problems in the next section to evaluate SEAL from
two angles: qualitatively, using scenarios we found in real-world software projects
demonstrating how the questions can be answered using SEAL, and quantitatively,
using a number of real-world case studies demonstrating that our approach is
indeed practical.

4.4.1 Commit Interaction Graph Analysis

First, we address three problems related to the field of repository mining and
similar areas of research that are hard to approach using only high-level or low-
level information, but become much more tangible when combining these two.
For our evaluation, we aggregate commit interactions in a commit interaction graph.
Not only does a graph representation come very naturally, because of the data-
flow relation that is used to compute commit interactions, but it also allows us to
use methods from graph theory to reason about commit interactions. We can also
apply transformations to the graph to access different kinds of information (e.g.,
information about commit authors).

Central code. With commit interactions, we are able to quantify the impact of the
changes made by a commit on the program’s data-flow dependency structure. This
is related to the area of change impact analysis where researchers have developed a
multitude of techniques on how to estimate the impact of a change on a software
project, using either high-level information or dependency information [137, 141].
While there are approaches that use both [73, 85, 88, 109], with SEAL, we can combine
both kinds of information at the same time in a joint analysis.

Previously, Zimmermann and Nagappan [254] used dependency graphs to iden-
tify central program units in a software project and highlight their role as a proxy
for defect-prone code. In a similar fashion, Ferreira et al. [66] investigated how
interactions between functions in the presence of preprocessor directives relate to
the occurrence of vulnerabilities. With commit interactions, we can identify code
locations that are central in the dependency structure of the software system under
analysis at a much finer granularity and, in addition, link them to commit meta-data
(e.g., when or by whom the code was introduced). Changes to such central code
are interesting because their effect on the data that flows through the program is
likely very high. For example, the function int align(int i) from the audio codec
opus—one of the subject projects of our evaluation in Section 4.5— calculates how
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112 /* Make sure everything is properly aligned. */

113 static OPUS_INLINE int align(int i)

114 {

115 struct foo {char c; union { void* p; opus_int32 i; opus_val32 v; } u;};

116

117 int alignment = offsetof(struct foo, u);

118

119 /* Optimizing compilers should optimize div and multiply into and

120 for all sensible alignment values. */

121 return ((i + alignment - 1) / alignment) * alignment;

122 }

Figure 4.8: The function align in file src/opus_private.h from opus revision 348e694.

much memory an object of size i needs when it is stored with proper memory
alignment (Figure 4.8). The function receives the size of the object via the parameter
i. That parameter is then used to calculate the size with alignment which is then
returned from the function, meaning that there is a data flow from the parameter to
the return value. As a consequence, there are also data flows between values passed
to the function and usages of its return value. Also, the function is widely used
throughout opus with 67 usages across 8 of 22 source files which causes it to have
many data flow connections to many different locations in the system. So it is fair to
say that this function is indeed central. To show how commit interactions can be
used to identify such central code, we formulate the following problem:

P1 Which fraction of commits affects central code?

It is important to reiterate at this point that this problem, while being interesting in
itself, serves here as a showcase of demonstrating SEAL’s ability to address this and
similar problems in practice and research in a more systematic and efficient way
to what is possible so far. Before we measure the centrality of the code introduced
by a commit, we first define how we represent commit interactions in a commit
interaction graph.

Definition 33. The commit interaction graph of a program is a directed graph with
commits as nodes and interactions among commits as directed edges:

CIG =
(
C ′, CI

)
In this definition, CI refers to the set of all commit interactions of a program and
C ′ ⊆ R is the set of commits that participate at least in one commit interaction,
that is, C ′ = { c1, c2 | (c1, c2) ∈ CI }. Note that this graph may contain multi-edges
since there may be commit interactions that originate from different code regions
but have the same base commits.

With commit interactions represented in a graph, we can now employ methods
from graph theory to identify commits affecting central code. We identify such
commits by identifying central nodes in the commit interaction graph using the
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(a) A line belonging to central code is
changed (green) resulting in many
changed interactions (dashed ar-
rows).
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(b) Introduced code (green) that inter-
acts with central code but only adds
one new interaction (dashed arrow).

Figure 4.9: The influence of changes related to central code on commit interactions. The col-
ored boxes represent different commits and arrows denote commit interactions.

node degrees of the commits. We use the node degree to measure centrality since
it relates to our definition of central code quite well; other centrality measures are
possible as well. A high node degree means that a commit participates in interactions
with many other commits which is an indicator that the code introduced by that
commit is central in the dependency structure of the software system under analysis.
We are particularly interested in commits that introduce a relatively small change,
since such commits are more easily overlooked than very large commits. This does
not mean, however, that large commits cannot introduce central code. In fact, just
because of their size, we expect large commits to be very likely to introduce, at
least, some central code. For our example from opus, each usage of function align

produces incoming interactions (size of the object) and outgoing interactions (size
with alignment), and thus, commits associated with that function have a high node
degree. Therefore, any—even small—change to align that affects its return value
affects every location the function is used at. At the same time, the function itself
and consequently any commit that touches only that functions is only few lines
long. This scenario is illustrated in Figure 4.9a, where a small change to central code
introduces many outgoing interactions with other commits. In Figure 4.9b, new
code is introduced that is not central by itself, but merely interacts with central code.
In this case, only few interactions are attributed to the new commit. This scenario
illustrates that commits touching central code can have a large effect on the rest of a
software project and, if such commits can be detected, this information might guide
testing and review efforts on these critical changes to the code base. SEAL helps to
identify such cases.

Author interactions. Commits consist not only of code changes, but they also
contain meta-data, such as when or by which author a commit was created. From
these data, SEAL can extract information about socio-technical interactions in a soft-
ware project. Socio-technical interactions are often analyzed using communication
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or collaboration relationships between developers at the file or function level and
may also include dependencies between artifacts [75, 101, 104, 105, 154]. However,
indirect dependencies are missed this way, which may still be relevant to properly
characterize certain aspects of the socio-technical interactions in a project (e.g.,
classifying the roles of developers).

For example, consider the function ssh_handle_packets from libssh in Fig-
ure 4.10. In this function, a context object, which is returned by ssh_poll_get_ctx,
is passed to ssh_poll_ctx_dopoll, creating an indirect dependency between the
two functions. This indirect dependency is interesting because information carried
by the context object could be relevant for the computation in ssh_poll_ctx_dopoll.
Thus, if a developer modifies the context object in ssh_poll_get_ctx he/she also
indirectly influences the function ssh_poll_ctx_dopoll but might not be aware of
that. With SEAL, we can incorporate such indirect dependencies in socio-technical
analyses that can only be detected with a data-flow analysis and, thus, uncover
hidden dependencies between developers. We formulate the following problem
to demonstrate that SEAL’s information on commit interactions are useful for
answering socio-technical questions about a software project:

P2 Which authors interact via commit interactions and what are the charac-
teristics of the arising socio-technical structure?

By lifting SEAL’s commit interaction graph to author information, we can easily
identify which authors interact with each other indirectly via data flow. For this
purpose, we project on the commit interaction graph such that the authors of the
commits become nodes and interactions between authors become directed edges.
This projection can be implemented with vertex identification, that is, all nodes
whose commits have the same author are identified with each other. The remaining
edges then represent interactions between authors at a data-flow level. With this
information, we can not only see which authors interact with each other, but also
which authors interact with especially many (or few) other authors, for example, to
determine an author’s role in a software project [42, 104].

Commit–author interactions. A commit can interact with commits from one
(Figure 4.11a) or multiple authors (Figure 4.11b). The fact that a high number of
authors participate in interactions for a commit suggests that the author needs to
be familiar with code from many different developers rather than with their own
code or the code of only few developers. This again may have implications for the
bug-proneness of the associated source code [98] and emerging coordination require-
ments between authors [97]. Another example where commit–author interaction
data is useful is to select potential candidates for code review by determining which
authors’ code is affected by the commit to be reviewed. To collect this information,
we need both, commit interaction data (data flow) and commit meta-data (author
names). We demonstrate that with SEAL, we indeed can combine these, addressing
the following problem:
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1 int ssh_handle_packets(ssh_session session, int timeout) {

2 ssh_poll_handle spoll;

3 ssh_poll_ctx ctx;

4 ...

5 spoll = ssh_socket_get_poll_handle(session->socket);

6 ssh_poll_add_events(spoll, POLLIN);

7 ctx = ssh_poll_get_ctx(spoll);

8 ...

9 int rc = ssh_poll_ctx_dopoll( ctx , tm);

10 ...

11 return rc;

12 }

Figure 4.10: Shortened version of function ssh_handle_packets from libssh. The con-
text object ctx returned by ssh_poll_get_ctx in line 7 is passed to
ssh_poll_ctx_dopoll in line 9 creating an indirect data flow between the two
functions. SEAL can detect such indirect connections.

Commit in
question

(a) A commit (right) interacts with many
commits authored by a single developer.

Commit in
question

(b) A commit (right) interacts with many
commits authored by many developers.

Figure 4.11: Code from a commit can interact with code authored by one or multiple
developers.

P3 How many authors interact via commit interactions?

To address this problem, we combine commit and author interaction graphs. The
resulting graph contains all commits and authors as nodes, and a directed edge
from a commit c1 to an author a if and only if there is an edge (c1, c2) in the
program’s commit interaction graph and a is the author of commit c2. Note that this
graph can also be constructed directly from information contained in the commit
interaction graph. The outgoing node degree of commit nodes gives us the number
of interacting authors, this way showing whether a commit interacts with many or
only a few authors.
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4.4.2 Socio-Technical Data-Flow Analysis

Data-flow analysis is typically not concerned with commit or socio-technical infor-
mation, but it can highly benefit from this additional information. Firstly, computing
commit interactions helps solve a multitude of additional data-flow problems with
virtually no additional overhead compared to computing commit interactions only.
Secondly, combining information on commit interactions computed by SEAL with
information of a client data-flow analysis provides new insights that were previously
locked away. As an example, taint analysis is frequently used to detect code injection
vulnerabilities, such as SQL injections, but it can report only the detected potential
security issues, it cannot attribute its findings to a specific project version, author(s),
or development team.

As described in Section 4.2.3, our commit interaction analysis T needs to exhaus-
tively compute the precise, full exploded supergraph using IDE [201] to generate
the commit data. It propagates all variables of a given target program and therefore
computes all data flows for all program variables. Thus, T also solves all data-flow
problems that are concerned with data flows of program variables. All variations
of taint analysis—for any given set of sources and sinks—can therefore be directly
answered using the exploded supergraph that has already been constructed for T.
Reusing the parts of a previously computed exploded supergraph for a new analysis
is beneficial since IDE’s [201] runtime complexity is O(|N| · |D|3).

More importantly, a taint analysis that is set up to detect SQL injections, for
example, cannot only be solved on T’s exploded supergraph, but, in contrast to a
traditional data-flow analysis, also access commit information. SEAL allows one to
compose different data-flow analyses with commit information and, for the first time,
allows us to embed statements obtained by program analysis into the socio-technical
context of a software project. To demonstrate that augmenting client data-flow
analysis results with information on commit interactions indeed provides novel
insights, we formulate the following problem:

P4 Can commit information be utilized to gain additional insights from
traditional data-flow analyses by making them change-aware?

To showcase how SEAL can be used to enrich existing data-flow analyses, we employ
an existing taint analysis from PhASAR. We parameterize the taint analysis for
detecting SQL injection vulnerabilities, and we enrich it with commit information.
For an example, consider Figure 4.12, which depicts a program snippet that is
vulnerable to SQL injection attacks. Any user input is considered as tainted and
must be sanitized by a call to function sanitizeSQLString before it is sent to the
SQL database server using the sink function executeQuery. By allowing the taint
analysis to exchange information with the commit analysis T, SEAL can attribute
the findings directly to the commits, authors, as well as development teams that are
involved in the critical data flows (and potential security vulnerabilities) as reported
by the taint analysis. This allows one to determine which commit introduced a
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1 string sanitize(const string &s) {

2 if (in_test_mode) { return s; }

3 return sanitizeSQLString(s);

4 }

5 int main(int argc, char **argv) {

6 . . .
9 string input = argv[1];

10 string sani = sanitize(input);

11 auto *res = stmt–>executeQuery(q + sani);

12 . . .
16 }

. de8781b

. ea8426c

. de8781b

. de8781b

. c4d9b1a

. 0872f49

. 5341f7b

. 5341f7b

. c4d9b1a

Figure 4.12: A program that is vulnerable to SQL injections. Each . indicates the commit
that last modified each line. The complete code example is shown later in
Figure 4.21.

potential vulnerability, which authors worked on the code that caused the data
flows involved, and also helps proposing developers that shall look into and handle
the reported issue. A further illustration of how commit data can help to find code
authors related to an SQL injection vulnerability is given in Section 4.7.2. In practice,
static analysis—especially if conducted in a whole program manner—produces lots
of potential findings, many of which may be false positives [20, 86], such that it has
become a real challenge to prioritize and check them. It is important to note that
SEAL cannot determine per se whether a finding is a true or false positive with
respect to the original analysis’ semantics. But with socio-technical information, one
can contextualize the results to assess their likelihood, and SEAL helps to prioritize
and distribute them by providing socio-technical context information. For example,
findings that concern multiple people are potentially more complex and could
therefore be processed later, or findings could be filtered to involve developers only
from a specific team, so that people who potentially understand the issue better can
look at it.

4.5 SEAL in Action

To demonstrate SEAL’s merits and potential, we apply it to investigate the problems
presented in Section 4.4. Again, our goal is not to evaluate these problems in full
detail, as this would surely require an entire research paper on its own. Instead, we
aim at demonstrating that, with SEAL, we are indeed able to tackle such problems
in a way that was hard to achieve without it.

Experimental setup. We use PhASAR in its most precise configuration for our
analysis T. It uses a call graph based on points-to information computed by an
Andersen-style [4] pointer analysis to resolve indirect call sites and it provides our
client taint analysis with control-flow, type-hierarchy, and points-to information.
Note that this setting aims at soundyness. Soundy analyses, introduced by Livshits et
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Table 4.1: Subject Projects. Metrics for bison, grep, and gzip include submodules.

Domain LOC Commits Authors Revision

bison Parser 591 687 26 281 253 849ba01b8b

brotli Compression 34 833 1 030 87 ce222e317e

curl Web tools 195 685 26 949 871 1803be5746

grep UNIX utils 619 598 23 794 262 70517057c9

gzip Compression 622 480 22 193 242 7d3a3c0a12

htop UNIX utils 25 775 2 243 156 44d1200ca4

libpng File format 74 571 4 098 58 a37d483651

libssh Protocol 95 235 5 126 115 cd15043656

libtiff File format 88 561 3 470 45 1373f8dacb

lrzip Compression 19 215 935 25 465afe830f

lz4 Compression 18 813 2 541 130 bdc9d3b0c1

opus Codec 70 267 4 077 107 7b05f44f4b

xz Compression 38 441 1 298 22 e7da44d515

al. [148], use sensible under-approximations to cope with hard-to-analyze language
features that would otherwise produce unduly imprecise results.

We selected 13 open-source C/C++ projects from a diverse set of application
domains and with different sizes to increase external validity. Table 4.1 lists these
projects along with relevant information. It also lists the revisions that we used for
our analysis.

4.5.1 Commit Interaction Graph Analysis

In the first part of our evaluation, we address the problems P1–P3 of Section 4.4: (1)
quantitatively using our subject projects and (2) qualitatively highlighting interesting
insights we obtained.

Central code. P1 is concered with the fraction of commits that affects code that
is central in the dependency structure of a program. Thereby, we are interested in
commits that introduce a relatively small change (see Section 4.4).

As an example, Figure 4.13 depicts a scatterplot of the two relevant variables—
commit size and node degree in the commit interaction graph—for opus and
htop.6 The horizontal line denotes the 20-percentile and the vertical line the 80-
percentile respectively, putting small commits with a high node degree in the upper

6 The plot excludes a few very large commits that can be considered outliers (e.g., import from the
old repository, large-scale code reformatting, etc.). We excluded outliers using Tukey’s fence (k = 3),
which removes data points that lie more than k times the interquartile range above or below the first
or third quartile.
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left quadrant. The marginal distributions show that most commits are relatively
small and have a low node degree. While the distribution of the commit size has a
similar shape for all of our subject projects, there are some differences when it comes
to node degrees. For example, for opus, we have three clusters: the biggest cluster
consists of commits with a low node degree (below 400), followed by a smaller
cluster with medium-sized node degrees (400–800), and an even smaller one where
the commits have very high node degrees (above 800). It is this latter cluster that is
relevant to identify small commits with central code.

(a) opus (b) htop (c) libtiff

Figure 4.13: Number of insertions vs. node degree for commits including kernel density
estimations.

As an example for a change to central code, we qualitatively inspect commit
348e694 from opus (marked in Figure 4.13a). This commit has a very high node
degree but touches only one line that belongs to the function int align(int i),
which we already established to play a central role in the program’s data flow in
Section 4.4. This demonstrates how even a small change can have a huge influence
on the data that flows through a program, also showing that blame interactions
carry different information than code churn.

A second example is commit 5e4b182 from htop. This commit refactors functions
that are intended to replace C’s memory allocation functions and shows a very high

112 /* Make sure everything is properly aligned. */

113 static OPUS_INLINE int align(int i)

114 {

115 struct foo {char c; union { void* p; opus_int32 i; opus_val32 v; } u

;};

116

117 - int alignment = offsetof(struct foo, u);

117 + unsigned int alignment = offsetof(struct foo, u);

118

119 /* Optimizing compilers should optimize div and multiply into and

120 for all sensible alignment values. */

121 return ((i + alignment - 1) / alignment) * alignment;

122 }

Figure 4.14: Commit 348e694 from opus changes only a single line in the function align.
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node degree. These functions were initially introduced back in commit a1f7f28,
and its successor commit b54d2dd replaced all occurrences of the original memory
allocation functions in htop with the new substitutes contributing to their central
role in the project. Commit b54d2dd also has a high node degree, but it is much
larger and it touches 42 different files. This example matches the scenario described
in Figure 4.9a that we used to motivate our notion of central code: Commit 5e4b182
modifies central code and, thus, affects many commit interactions despite being
relatively small.

Investigating P1 demonstrates that, with SEAL, one can gain deep insights into
the structure of a software project by combining high-level repository information
and low-level data-flow information into novel software metrics (e.g., estimating the
importance of a change).

Author interactions. P2 is concerned with the socio-technical structure of a
software project demonstrating how meta-data associated with commits can be
utilized with SEAL. In particular, we investigate how developers interact with each
other at a data-flow level.

As an example, Figure 4.15 shows for each author of opus, libssh, and libtiff

(blue dots) the number of surviving commits (commits that occur in the commit
interaction graph) and the number of other authors his/her commits interact with
at a data-flow level. It is immediately apparent that, in opus, there is one main
developer who authored the vast majority of commits and hence, interacts with code
from all other authors. All other authors submitted only comparatively few commits
to the project. This pattern can be observed in many of our subject projects, especially
the smaller ones. One notable exception to this pattern is libtiff (Figure 4.15c)
which has more authors that contributed a larger number of commits. Interestingly,
despite this inequality in the distribution of number of commits, the number of
interacting authors is more evenly distributed. That is, there are authors who
introduce interactions to code from many other authors with only a few commits,
whereas the other authors’ code interacts with only very few other authors. Such
information is useful to identify which authors contributed to central or only
peripheral parts of a project [104], which is interesting since changes to central code
can have a bigger impact on the project.

SEAL is able to identify interactions between authors that cannot be detected by
purely textual or syntactical approaches, which are commonly used when analyzing
socio-technical aspects of software projects [75, 101, 104, 105]. Figure 4.16 shows the
difference between author interactions computed by a file-based approach, where
one considers two commits interacting if they edit the same file (co-edits), and
CI-based author interactions as computed by SEAL. We notice that SEAL identifies
fewer interactions as compared to the file-based approach, which is apparent in the
negative range of the y-axis (orange). This result is in line with recent findings that
a file-based approach reports many spurious links that using a more precise static
analysis can avoid [85]. In addition to removing spurious interactions, for almost all
of our subject projects, SEAL also finds unknown interactions between authors that
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(a) opus (b) libssh (c) libtiff

Figure 4.15: Number of commits vs. number of interacting authors for authors, including
kernel density estimations.

the file-based approach could not detect, especially in larger projects. This includes
interactions across files and among distant code fragments that are connected via
data flow.

As an example, let us consider the author of commit 3659e8c of libssh. This
author contributed only one commit affecting source code to the project, which
happens to implement asynchronous socket handling and, according to the commit
message, ”is intended as a ground work for making libssh asynchronous“. The
implementation is mostly restricted to a single file so approaches based on file-
or function-level co-edits can only ever find author interactions within that file.
However, since socket handling is a very integral part to libssh this commit actually
interacts with code from all over the code base written by many different authors
(we consider this a central commit according to P1). Some of the interactions even
originate from indirect dependencies that can only be detected with a precise data-
flow analysis. Indeed, the indirect dependency in the function ssh_handle_packets

as described in Section 4.4 involves the commit in this example. With SEAL, we not
only detect this case, indeed, we find 50 additional authors that interact with code
from the author in question, indirectly, via data flow.

Another common approach for calculating interactions between authors relies
on call relations between functions. Figure 4.16 compares SEAL to an analysis that
extract call-graph data directly from LLVM (i.e., that establishes a link between
two authors if a function where one contributed code to calles another where the
other author contributed code to). It is important to note that both the call-based
approach and SEAL report less author interactions than the file-based approach. This
is further evidence that the links inferred by the file-based approach are spurious.
Furthermore, the CI-based approach finds considerably more links than the call-
graph-based approach, especially for larger projects. This is because SEAL also
considers indirect dependencies that can propagate across functions that are not
connected via a call-relation. We refer the reader to Section 4.7.1 for a detailed
example illustrating the role of indirect dependencies.
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Figure 4.16: Changes between CI-based and file-based author interactions. Each column
represents an individual author. Orange boxes depict links to other authors that
are produced by the file-based approach but are not inferred by CI, as there
exists no data-flow indicating a connection between the two authors. Blue boxes
depict additional links that CI discovers through data-flow information that a
file-based approach does not.

Commit–author interactions. P3 is concerned with identifying which other
authors’ code a commit affects via data flow. To address this problem, we need both
commit interactions and author information. Figure 4.18 shows for each commit its
number of interacting authors, normalized by the number of distinct authors per
subject project that have, at least, one commit participating in a commit interaction.
The violin plot visualizes the associated probability density. There are significant
differences across projects. An extreme is xz: All surviving commits are from
the same author and, hence, every commit interacts with commits from that one
author. For other projects with few authors, such as gzip and lrzip, most commits
interact only with code from few other authors. As projects grow and gain more
contributors, most commits tend to interact with more authors (relative to the total
number of authors of a project), as can be observed, for example, for bison and
lz4. However, we do not only observe differences between projects of different size,
but also between projects of similar size and a similar number of contributors. For
example, while for opus most commits interact with about half of the authors, the
results for libssh show two groups of commits—one where commits interact with
comparatively few authors, and one where commits interact with comparatively
many authors. There could be various reasons for such differences and they cannot
all be explained by commit interactions alone. For example, the roles of the authors
in a project can influence with which authors their commits interact [104], and the
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Figure 4.17: Changes between CI-based and call-graph-based author interactions. Each
column represents an individual author. Orange boxes depict links to other
authors that are produced by the call-graph-based approach, but not by the
CI based approach, as there is no data flow indicating a connection between
the two authors. Blue boxes depict additional links that CI discovers through
data-flow information that a call-graph-based approach does not.

architecture of a project could also be of relevance. The crucial point is that, with
SEAL, we are able to study these kinds of socio-technical problems in the first place.

4.5.2 Socio-Technical Data-Flow Analysis

To illustrate that making a data-flow analysis change-aware provides additional
insights, let us apply SEAL’s augmented taint analysis (Section 4.4.2) on the program
shown in Figure 4.12. The taint analysis will reveal an SQL injection vulnerability
in Line 11. The analysis is able to detect the undesired data flow by checking the
data-flow information for variable argv already computed by the commit analysis.
The data-flow path that causes the potential SQL injection vulnerability comprises
the following sequence of instructions: p = i9 → icallsite

10 → i2 → iretsite
10 → i11.

Besides being able to answer data-flow queries directly, the taint analysis is able
to access any information on commit interactions at any point in the program. For
example, the analysis can query the commit that generated an instruction with
base(i). It can therefore determine that the commit base(i3) does—contrary to the
intended semantics of sanitize—circumvent the sanitization of variable s. Or, using
CIP(i), the analysis can determine all commits—and thus all authors—involved
in the disallowed data-flow path. This is highly interesting in actual software
development practice, since the findings of any data-flow analysis can now be
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Figure 4.18: Number of distinct authors each commit interacts with, normalized by the
number of authors per project. Violins show the associated probability densities.

associated with the commits and developers that have been involved in the code
for which an issue has been found. Combining commit and data-flow information
opens up a multitude of useful scenarios: The taint analysis, in our example, is able
to compute CIP(i13), and it can therefore report that the authors of the commits
3e8882e and ea8426c have been working on the code between which the undesired
data flow has been found. It can report the potential SQL injection directly to these
authors. Since the commit information is data-flow sensitive, the taint analysis can
relate commits and their corresponding authors to the SQL injection even when
they did not touch the part of the code that executes the SQL statement directly.
Furthermore, the analysis is able to issue that commit ea8426c and its respective
author (knowingly or unknowingly) introduced the vulnerability by only sanitizing
the input when the test switch is disabled. This ability has a huge potential for
addressing a large number of interesting follow-up research questions.

4.6 Threats to Validity

Internal validity: Lowering commit information to LLVM-IR is complex due
to the inherent technical complexity and, therefore, might introduce errors in our
commit mapping. So, to validate the correctness of our commit meta-data mapping,
we devised a validation procedure based on LLVM’s debug meta-data that allows
us to validate the lowered information. The validation procedure additionally
computes the commit information on the fly, based on debug meta-data, and
compares these to the annotated commit meta-data from our lowering strategy. This
way, we guarantee that our meta-data are, at least, as precise as if we had used
LLVM debug information. Note that using LLVM debug information in general
(and not only for evaluation) would constrain our approach to only being usable
with debug builds, so, building our own lowering strategy is necessary to support
release builds.



4.7 Discussion 107

We use git blame to determine the last modifying commit, which only offers
line-based precision. For what we have seen, this does not distort the overall pic-
ture, as we were still able to locate many interesting cases in our subject projects,
demonstrating the principle merits and potential of SEAL. Nevertheless, to open up
our framework for further improvements, we have set up it in a way that it enables
users to exchange the commit querying functionality.

Another source that may introduce imprecision in our mapping are compiler
optimizations. For certain code transformations, it is not clear how the commit meta-
data should be handled, for example, when the common-subexpression-elimination
pass removes code where two subexpressions originate from code added by different
commits. To circumvent the influence of compiler optimization, we run our analysis
passes before all optimization passes. A more general but laborious solution would
be to modify all optimizations passes to preserve and update commit meta-data,
but running our analysis first renders this unnecessary, producing the same results.

External validity: In our evaluation, we test our approach on several relevant
problems and scenarios with the goal to cover a wide range of different use cases,
which we evaluated on different real-world projects, varying in size, age, and
maturity. We selected 13 common C/C++ open source projects from different ap-
plication domains and analyzed them qualitatively and quantitatively. Our results
revealed many interesting events in the analyzed real-world software projects , which
demonstrates the potential of our approach and shows that combining repository
information with precise data-flow analysis can uncover previously unobservable
interactions.

Since our approach and a large part of our implementation is language inde-
pendent, we see no principle roadblock for using SEAL on projects written in
languages close to C/C++, such as Rust, Go, or Swift, which already have mature
LLVM front-ends.

4.7 Discussion

In the following, we illustrate the advantages of determining commit interactions
based on data flow, highlight key strengths of SEAL, and discuss potential limi-
tations. Furthermore, we lay out potential applications of SEAL and discuss how
existing study setups and tools could benefit from data-flow based CI.

4.7.1 Data-Flow-Based Commit Interactions

Example. SEAL leverages a data-flow analysis to determine which commits
interact, and by that, which code written by one developer influences the code of
other developers. In Section 4.5.1, we demonstrated that SEAL can identify small
but central changes to a code base by using information on data flow. We also
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1 int DataService::process() {

2 int data = loadDataFromFile();

3 return compute(data);

4 }

. f2f294b

. f2f294b

. f2f294b

. f2f294b

Sven

Sven

Sven

Sven

(a) Data processing service written by the back-end developer Sven.
File: Service.cpp

1 int loadDataFromFile() {

2 return 10;

3 }

4

5 int loadDataFromDatabase() {

6 return 21;

7 }

. 9209cff

. 9209cff

. 9209cff

. 9209cff

. ffb0fb5

. ffb0fb5

. ffb0fb5

Eric

Eric

Eric

Eric

Ada

Ada

Ada

(b) Loading utilities to access user data written by Eric and database developer Ada.
File: UserData.cpp

1 int compute(int Val) {

2 return Val + someComplexComputation();

3 }

. 28f1624

. 28f1624

. 28f1624

Leonie

Leonie

Leonie

(c) Conceptual implementation of a heavy computation step built by Leonie.
File: Compute.cpp

Figure 4.19: Conceptual example of a software project with multiple authors and files.

showed that, by lifting SEAL’s commit interaction graph to author information,
we can build an author-interaction graph that establishes interactions based on
data-flow relationships between their code. Author interactions hint at coordination
requirements between authors [30, 31, 133] in that when one author’s code consumes
data produced by another author, the two should coordinate. Compared to existing
approaches to compute coordination requirements, such as file-based [105] or call-
graph-based approaches [151], considering data flow has two clear benefits: First,
using data-flow information spurious connections can be excluded (if there is no
data flow between two code parts, they do not influence each other). Second, data
flows, especially inter-procedural data flows, reveal dependencies between code that
current approaches cannot find.

For illustration, let us highlight conceptual differences in the data produced by
existing approaches and data-flow-based commit interactions on a exemplary study
in which we want to determine coordination requirements between developers
based on code dependencies. Consider the example code in Figure 4.19: A data
processing service consisting of the service itself (Figure 4.19a), a user-data access
layer (Figure 4.19b), and a computation worker (Figure 4.19c). Like in the real
world, the different parts of the code base are implemented by different developers
(names shown on the right). To demonstrate key differences in the data produced,
we compare the interactions computed by SEAL against the two commonly used
approaches for computing artifact coupling, file-based and call-graph-based, which
we did also use in our evaluation (Section 4.5.1). The coordination graphs computed
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by the different approaches are depicted in Figure 4.20. When comparing the file-
based graph (Figure 4.20a) to the other two, we notice that link 1 between Eric and
Ada is included only in the file-based graph. The point is that link 1 is actually
spurious as, at the code level, there is no coordination requirement between the two
functions in the file. The reason is that the file-based approach over-approximates
by considering everything in a file as related without taking program semantics into
account [85]. A programmer can easily see that these two functions are alternatives
and, therefore, Eric and Ada can work independently. Furthermore, the file-based
graph, compared to the other two graphs, does not contain the links, such as the one
between Sven and Leonie and between Sven and Eric. This is due to the limitation
of not considering dependencies across files.

When we compare the call-graph-based graph with SEAL, we notice that SEAL
inverts the direction of link 2 and finds two additional links (3, 4). SEAL inverts the
direction of link 2 because, from a data-flow perspective. Sven’s code consumes data
produced only by Eric but does not supply input to Eric’s code7. When we consider
link 3, we see a bidirectional connection between Sven and Leonie, capturing the
fact that data from Sven are used as an input to the code of Leonie and vice versa.
SEAL differentiates between a function call with and without data. In contrast,
when using a call-graph approach, we find only that there is a connection between
Sven and Leonie and between Sven and Eric. With SEAL however, we now know
that Eric’s code does not depend on Sven’s code, since no input is passed to Eric’s
implementation, but Leonie’s code does depend on Sven’s code as her code works
on input provided by Sven.

Many studies treat collaboration links between developers as undirected [151], or
cannot infer a direction in links between artifacts, such as in co-changes retrieved
from files that are commonly committed within one commit [120]. With SEAL,
we obtain information about the direction that is based on the underlying data
flows. This code-based directionality adds additional value, compared to temporal
directionality [107], as it encodes who is using whose code. Parts of this information
is also present in call graphs, we can infer only who is calling whose code but not, for
instance, which data are passed to the function and how the returned data are used.
Ignore this information, we would not be able to notice indirect data dependencies,
such as the one between Eric and Leonie that produces link 4. This link arises from
the fact that Sven forwards data computed by Eric’s loading function to Leonie’s
compute implementation. This information hints at an important coordination
requirement that should not be missed as when Eric adapts what user data are
loaded, Leonie’s implementation needs to handle it. Hence, coordination between
Eric and Leonie is important before Eric makes a change. This kind of coordination
requirement is found only with SEAL and can be found only by utilizing a whole-
program inter-procedural data-flow analysis.

7 This is in itself is neither a drawback nor an advantage of SEAL compared to the call-graph-based
approaches as the meaning of directionality depends on the use case and follows from the actual
research question (e.g., where determining a link between to artifacts does not require directionality, a
link between developers does if we want to determine who is using whose code).
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Figure 4.20: Coordination requirements between authors as determined by different artifact
coupling approaches.

Integration of SEAL into other research. A good example for illustrating SEAL’s
merits arises from the work from Mauerer et al. [151]: In a large-scale empirical
study, they explore the relationship between software quality metrics and socio-
technical congruence by analyzing the alignment of social communication structures
with technical dependencies. Important for our discussion is that they determine
these dependencies by extracting them from the version control system: two artifacts
are related when they appear in the same commit, and two artifacts are dependent
when they have static language-level dependencies, such as call-graph connections
and type references. As explained in our example above, data flows carry additional
information compared to file or call-graph-based approaches and thus enrich the
artifact dependency networks of Mauerer et al. [151].

SEAL can not only help to determine artifact relationships, but with our author-
interaction graph, approaches that analyze developer communities [107] or or-
ganizational structures [106] can profit from detailed data-flow based interaction
data, such as, the work from Joblin et al. [107], who mine developer communities
based on commit information and source-code structure. Specifically, they use a
function-based and a committer-author-based approach to determine related au-
thors. This way, they potentially miss important non-local links between developers,
as conceptually shown in our example. With SEAL, they are able to extend their
information on developers with data-flow-based author interactions and expand
their author network as well as remove potential spurious links.

Another example in which SEAL’s commit interactions can be beneficial is in
coordinating bug fixes or semantic code changes in large code bases or ecosystems.
It has been reported that, for large industry code bases, even small code changes can
cause severe bugs in other parts of the code [249] (e.g., a pointer can now be null,
an integer variable can now have values larger than x, or a list that was previously
sorted is now unsorted). As preventing changes is not an option (applying a bug
fix that patches a vulnerability can not be delayed indefinitely), developers need to
find ways to coordinate and let others know about the change. With with commit-
author interaction data produced by SEAL, we can easily figure out who’s code
could be affected by a change. Think about link 4 from Eric to Leonie that SEAL
found because data produced by Eric is passed via Sven to Leonie’s code. With this
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information, Eric can proactively contact Leonie to look at his proposed change to
determine that her code works well with it.

4.7.2 Socio-Technical Data-Flow Analysis

Example. Interpreting or acting on program analysis findings is a difficult task,
especially in larger software projects [20]. One reason is that common program
analysis tools focus on technical aspects, showing what is wrong in the code or
highlighting conceptual problems [165, 166]. Typically, program analysis tools do
not put their findings into a socio-technical context, ignoring the social structure
around the code. Manually fitting this information post-hoc onto the analysis results
is cumbersome and difficult, once because developers do not have this information
in their heads but also because tools such as git blame provide only raw information
that is not contextualized with regard to the analysis semantics. With SEAL, we
build a bridge and automatically attach socio-technical information onto low-level
analysis findings.

Consider the example in Figure 4.21 (see Section 4.4.2), where a program analysis
tool, such as PhASAR, identified an SQL injection. After the tool analyzed the code,

1 string sanitize(const string &s) {

2 if (in_test_mode) { return s; }

3 return sanitizeSQLString(s);

4 }

5 int main(int argc, char **argv) {

6 auto *con = driver–>connect(/* credentials */);

7 auto *smt = con–>createStatement();
8 string q = "SELECT name FROM students where id=";

9 string input = argv[1];

10 string sani = sanitize(input);

11 auto *res = stmt–>executeQuery(q + sani);

12 if (!res–>rowsCount()) cout << "no records\n";

13 while (res–>next()) cout << res–>getString("name");
14 delete stmt; delete res; delete con;

15 return 0;

16 }

. de8781b

. ea8426c

. de8781b

. de8781b

. c4d9b1a

. 3e8882e

. 3e8882e

. 3e8882e
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Figure 4.21: A program that is vulnerable to SQL injections. Each . indicates the commit
that last modified each line and right next to it, is the name of the commits
author.

it reports that there is a possible SQL injection vulnerability at Line 11, arising from
a data flow from variable sani (Line 10), which contains unsanitized user input.
Following this report, an engineer from the company’s security team can investigate
the problem and finds that the recent change 5341f7b, depicted in Figure 4.22,
introduced the offending variable in Line 10. Based on this information, Leonie can
be contacted by the security engineer and asked to fix the SQL injection. However,
this initial conclusion is wrong! Leonie’s code did not introduce the SQL injection,
since the actual problem is in the implementation of sanitize, where unsanitized



112 Integrating Program Analysis and Repository Mining

10 + string sani = sanitize(input);

11 + auto *res = stmt–>executeQuery(q + sani);

12 - auto *res = stmt–>executeQuery(q + input);

Figure 4.22: Commit 5341f7b in which Leonie wants to prevent SQL injections by adding a
call to sanitize.

(SQL Injection) Danger: possible SQL injection detected

~/application/src/main.cpp:31
Vulnerable Function: main(int argc, char **argv)
      10:    string sani = sanitize(input);
    > 11:    auto *res = stmt –> executeQuery(q + sani);

Code Author: 
  Leonie
Possibly related Authors:
  - Eric
  - Sven
  - Alex

Figure 4.23: A socio-technical bug report, linking the author of the vulnerable code and
possibly related authors that interact through data flow with the vulnerable
code location to a found SQL injection.

data is leaked when running in test mode. This is likely found out only later when
she starts digging into her code and the implementation of sanitze and refers the
problem back to the security engineer.

Missattributions like this arise due to missing information and cost valuable
developer time. From the point of the security engineer, the tool report was plausible,
and Leonie’s change seemed related, so the ticket was forwarded to her. With
SEAL, this scenario could have worked out differently, if the tool’s initial report
would be combined with socio-technical information, obtained by SEAL’s data-flow
analysis. By attaching the commit-interaction path of the offending call instruction
for executeQuery, which contains all commits that had influence on the data flowing
into the call, we can determine all authors that are involved. Figure 4.23 depicts an
exemplary error message, where the SQL injection tool’s finding is contextualized
with socio-technical information. So, in our example, the security engineer would
see the report about the SQL injection, together with the information that the two
developers Leonie and Eric are involved. The security engineer would then assign
both the ticket and involve Eric from the beginning.

Integration of SEAL to other research. Inspired by our example, a number of
existing program analysis tools qualify to be extended with additional socio-technical
information. For example, Bessey et al. present an extensive experience report [20]
that details on how industrial-grade static analyzers are used to find bugs in the real
world and how these tools are perceived by companies and software developers:
When confronted with analysis findings, developers tend to get emotional; At the
end, it is their code that is supposedly flawed. Experience shows that the more peers
are involved in discussing and dealing with analysis findings, the more likely it is
that someone can diagnose an error (or identify a reported error as a false positive),
report on experiences of similar errors, and eventually fix it [20]. SEAL provides

7 https://www.praetorian.com/blog/introducing-gokart/ (Last accessed: July 1, 2023)

https://www.praetorian.com/blog/introducing-gokart/
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this additional socio-technical information. For instance, it reports the set of authors
involved in a given analysis finding, which makes it easier to assign errors to the
relevant developers.

Furthermore, the information produced by program analysis tools can be fil-
tered according to the attached socio-technical information (e.g., an analysis tool
used within an integrated development environment could show only the findings
that actually have a socio-technical connection to the developer using it). In this
vein, Harman and O’Hearn report on the difficulty of making bug reports more
actionable [86]. In particular, they debunk the implicit assumption that analysis and
testing technology that follow the ”ROFL“ (Report Only Failure List) strategy is
enough to get engineers to fix reported bugs. Software developers, however, are
never short on lists of bug, fail, and failure reports that need to be taken care of.
Any additional piece of information that helps developers prioritize their work
are helpful. The report of Harman and O’Hearn underlines the importance of the
following information to find and prioritize bugs: (i) relevance, the developer to
whom the bug report is sent is one of the set of suitable people to fix the bug; (ii)
context, the bug can be understood effectively; (iii) timeliness, the information arrives
in time to allow, an effective bug fix; and (iv) debug payload, the information provided
by the tool makes the fix process efficient (reproduced from [86]). SEAL helps to
deliver such information.

The socio-technical interaction provided by SEAL may benefit scheduling code
reviews (e.g., developers with a lot of data dependencies to the changed code can be
suggested as reviewers) as the changes could potentially interact with their code and
introduce bugs. In 2008, a Debian developer accidentally broke a random number
generator in a particular version of OpenSSL with what was thought to be a fix8.
This shows that—in practice—it can be quite difficult to assign suitable reviewers
for a given pull-request. With help of information as computed by SEAL, this could
possibly have been avoided by allowing peers that are familiar with this complex
part of OpenSSL’s code base to intervene.

4.7.3 Limitations

A bottleneck of using SEAL is clearly the computational cost of the underlying
data-flow analysis. Table 4.2 depicts the overhead generated by SEAL for the projects
of our study (see Section 4.5.1). We see that, for the average project, computing
the blame data adds roughly two minutes. Interesting to note, computing blame
information correlates with the history length of a project (ρpearson = 0.75 and
ρspearman = 0.90, depicted in Figure 4.24), so project with longer histories should

8 https://en.wikinews.org/wiki/Predictable_random_number_generator_discovered_in_the_

Debian_version_of_OpenSSL (Last accessed: Sept 28, 2023)

https://en.wikinews.org/wiki/Predictable_random_number_generator_discovered_in_the_Debian_version_of_OpenSSL
https://en.wikinews.org/wiki/Predictable_random_number_generator_discovered_in_the_Debian_version_of_OpenSSL
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Table 4.2: Blame-annotation overhead (tBlame) and analysis time (tAnalysis) measurements
in seconds. These measurements are further contextualized with history size
(tBlame/Commit) and project size (tAnalysis/LOC).

LOC Commits tBlame
tBlame

Commit
tBlame
LOC tAnalysis

tAnalysis
LOC

bison 591 687 26 281 293.82 1.34 0.06 14 849.20 0.03

brotli 34 833 1 030 17.68 0.62 0.02 614.95 0.02

curl 195 685 26 949 939.42 6.83 0.94 47 639.50 0.24

grep 619 598 23 794 233.14 1.09 0.04 669.76 0.00

gzip 622 480 22 193 139.03 0.43 0.02 70.75 0.00

htop 25 775 2 243 36.78 1.15 0.10 313.90 0.01

libpng 74 571 4 098 43.93 0.31 0.02 559.62 0.01

libssh 95 235 5 126 38.74 0.65 0.03 13 469.70 0.14

libtiff 88 561 3 470 15.48 0.32 0.01 6 005.81 0.07

lrzip 19 215 935 1.27 0.03 0.00 593.82 0.03

lz4 18 813 2 541 4.08 0.01 0.00 1 404.06 0.07

opus 70 267 4 077 84.02 3.48 0.20 10 379.50 0.15

xz 38 441 1 298 20.73 1.44 0.05 9.18 0.00

expect a bit more overhead9. Overall, we can see that for nearly all projects the
analysis time dominates the overhead. As described in Section 4.2.3, we tuned
SEAL’s analysis to be as precise as practically feasible. Specifically, we made our
analysis context-sensitive, alias-aware, and inter-procedural. From our point of
view, this is not too problematic since SEAL is designed to run once to capture a
full and precise picture of a given software project. Nevertheless, the underlying
data-flow analysis is highly configurable in the sense that PhASAR allows one to
select different helper analyses and to change each analysis’ parameters to trade off
precision and performance. For instance, PhASAR allows its users to choose a less
precise but faster points-to analysis. Similarly, one can choose a call-graph algorithm
that underapproximates information and does not resolve indirect function calls
instead of the one we chose. SEAL’s call-graph algorithm more expensively tries to
identify potential call targets at indirect function calls to improve analysis precision,
using points-to information and type hierarchies. Especially C++ developers seem
to minimize the amount of indirect jumps [207] such that underapproximating
call-graph algorithms may still provide enough precision for a users needs. Through
these tuning knobs, users can reduce the analysis time if (slightly) less precise results
are acceptable for their setting.

9 For the history-length correlation, we observed only curl as an outlier, which took particularly long to
compute it’s blame data. A manual inspection of the project revealed that many files in curl contain
very old code (committed pre 2007), which combined with the number of commits in the history,
means that the blame computation often needs to traverse a very large part of the history.
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Figure 4.24: Visualization of the data presented
in Table 4.2. For all projects except
curl, we see a linear trend between
the number of commits a project has
and the time it takes to compute the
blame information.

Another limitation of SEAL is that the granularity of commit data are currently
line-based, which is the common granularity used by git and other tools that work
on git data. Previous work already demonstrated for different use cases [72, 140]
that a syntax-based approach could, with a additional cost, improve the precision.
With token-based blame information, as proposed by Germán et al. [72], SEAL could
be even more precise.

Commit interactions based on data-flow dependencies provide a new way to
infer dependencies between developers that is based on how their code interacts.
However, there might be other kinds of dependencies that give rise to coordination
requirements or are otherwise of interest. For example, external communication
via file system or network, interactions through non-functional properties, side
channels, and operating system level functionality could also require coordination
between developers. Therefore, even if we can include data-flow dependencies
with SEAL, we should still keep broadening the scope and exploring new kinds of
information that is currently not available to determine developer interactions.

4.8 Related Work

SEAL can be applied to different areas since many techniques can profit from either
incorporating repository information or detailed low-level program information. So,
we discuss work that is directly related to our evaluation and we put our work in
context to related areas that can benefit from our commit analysis.

Code complexity metrics. Over the last decades, various code complexity metrics
have been proposed [65]. Tornhill [235] discusses multiple software metrics and
analysis approaches that are used in companies on real world software projects to
drive decision making and help with software maintenance. Software metrics help
developers to focus on important code regions and maximize their improvement
efforts. In their systematic mapping study, Varela et al. [239] categorized almost 300

different source code metrics from 226 studies into programming paradigms for
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which they are used.They compare how and from which systems the metrics are
extracted and rank them by the number of occurrences in studies.

A close look at Tornhill [235] and Varela et al. [239] reveals that nearly all common
software metrics rely only on syntactical information. Very few software metrics go
beyond syntax and, even if they do, they mostly consider information that is simple
to obtain, like inheritance relationships. We see a potential for improvement here
by incorporating more combined analysis approaches, such as commit interactions,
especially when the analyses incorporate change information as well, which can
help to refine results by putting them into a historical context.

Bug prediction. Bug prediction focuses on identifying and predicting potentially
buggy code locations. D’Ambros et al. [47] compare a wide range of different bug
prediction approaches. Many of the approaches focus on high-level information,
such as change metrics (e.g., number of revisions), source code metrics (e.g., depth
of inheritance tree), and code churn, and do not incorporate lower-level information,
such as data flow, which can be used to approximate the program semantics. Khatri
and Singh [119] performed a SWOT analysis on cross-project defect prediction
(CPDP), analyzing a wide range of approaches. Interestingly, one key opportunity for
improvement of CPDP that they highlight is the integration of more process metrics,
such as number of developers working on a module. Our work can enable CPDP
approaches to integrate process metrics that also incorporate low-level interactions
between code changes or authors.

Program analysis. Program analysis techniques have been used successfully
to prove specific properties about a program [61] and to detect bugs [172]. Pro-
gram analysis tools, such as SpotBugs or clang-tidy, build on these techniques
to catch bugs early in the development cycle. However, typical program analysis
techniques, including srcML, analyze only one specific version of a program and do
not incorporate version control information, which precludes detecting evolutionary
problems, for example, detecting architectural decay by measuring the gradual dete-
rioration of the coupling between classes. In addition, one could also extend already
existing regression analyses by incorporating version control information directly
into the analysis semantics. By utilizing both high-level repository information and
data-flow information in a joined analysis, one could bridge this gap.

Socio-technical software analytics. In a special issue about software analytics,
Menzies and Zimmermann highlight the importance of using analytical methods
that incorporate data from real-world software projects to reason about software
development processes [156]. They predict that the field will develop and benefit
from more and different data sources. In the same vein, in a meta-analysis on
socio-technical software-engineering research, Storey et al. [223] examine a wide
range of publications to determine the current state of the art and areas for further
improvement. They highlight that many research papers employ a data-driven
approach. So far the used data sources (e.g., issue, bug, or commits) often do not
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incorporate low-level dependency information as provided by data-flow analysis.
For example, the state of the art in socio-technical analyses is to use function-level
semantic coupling [105] or fine-grained co-edits [75] to represent interdependencies
between software artifacts. Our work tries to address this shortcoming by providing
a conceptual framework that combines the existing data sources with program
semantics. This information could then be used to discover previously hidden socio-
technical connections and coupling between developers that are invisible when only
looking at syntactical information.

Software repository mining. Software repository mining focuses on gathering,
modeling, and studying the data and software artifacts produced by developers
during the software development process [48]. Kagdi et al. [110] state that source
code changes are the fundamental unit of software evolution but also mention that
current version control systems do not provide information about code semantics.
This moved the initial focus of the research area to consider mostly change meta-
data; a shortcoming which we address with SEAL.

Change impact analysis. The goal of change-impact analysis is to determine the
consequences of a change using dependency analysis techniques, such as data-flow
or control-flow analyses [26].

In a survey, Li et al. [141] analyze 23 different code-based change-impact analyses
and built a framework to compare them. The authors state that many approaches
use traditional program analysis techniques. They further highlight that useful
information for improving change-impact analysis can be obtained with repository
mining techniques. For example, Kagdi et al. [111] ran their conceptual coupling
analysis on the current and previous version of source code to improve their
analysis precision. Lehnert [137] lists only few approaches that combine repository
mining with traditional program analysis. For example, Kagdi and Maletic [109] use
high-level information and dependency information separately and look whether
predictions based on either of these two agree. Conceptually SEAL is able to improve
existing change-impact analysis approaches as we combine syntactic and semantic
information into one joint analysis.

In a user study, Hanam et al. [85] have shown that semantic relations computed
by static analysis helped users in completing code review tasks faster compared
to using only syntactic relations. Their approach uses abstract interpretation in
combination with an AST-based diff to extract semantic relations from JavaScript

projects to reduce unwanted ”noise“ in purely syntactic relations. In contrast to their
approach, SEAL has information about all commits available during the analysis,
allowing for even more control in determining which interactions are noise and
which are not. Still, the results of Hanam et al. support our claims that combining
static analysis with change information can be beneficial for change impact analysis.

AST-based analysis. There are tools that combine repository information with
syntax information. With such light-weight syntax-based repository mining tools,



118 Integrating Program Analysis and Repository Mining

most notably Boa [58], researchers can gather repository metrics and high-level
code information about a wide range of different software projects. However, those
do not model language semantics and do not allow us to attribute socio-technical
information to the results of other more sophisticated program analyses.

Some research in this direction builds on srcML, ”an infrastructure for the
exploration, analysis, and manipulation of source code“ [38]. srcML has been used,
among other things, for type checking [170], program slicing [171], and pointer
analysis [256]. However, srcML only provides an AST-based view on the code, and
does not come with support for more sophisticated analyses, such as a data-flow
analysis. The reason is that, srcML by itself does not model language semantics. For
example, srcML does not run the preprocessor or model C/C++ language feature,
such as, overload resolution or template instantiation, which are important to infer
semantics. That’s why we built SEAL on top of Clang and LLVM, a industry
strength compiler framework, enabling us to combining program analysis with
repository mining. In any case, syntax analysis is less precise than a data-flow
analysis in determining dependencies between program parts.

Variability-aware analysis. Variability-aware analysis aims at efficiently analyzing
variant-rich software systems [232]. The key is that, instead of analyzing all variants
individually, a variational program representation (i.e., a program representation
that retains all points of variability) is analyzed [246]. The goal is to save analysis
effort by efficiently reusing analysis results across variants [194]. Variability-aware
analysis is related to SEAL’s approach in that it incorporates multiple variants of
a software system (possibly generated by different variability implementation or
configuration mechanisms) in a program analysis run. In contrast to SEAL, the goal
is performance; incorporating historical and socio-technical repository information
is not in scope.

4.9 Summary

In what follows, we contextualize the contributions of the work presented in this
chapter to the field of repository mining and socio-technical program analysis, and
with regard to general contribution that it makes to our overall thesis.

State-of-the-art software repository analyses often do not have precise information
about a program’s operational semantics at their disposal, if at all, or they try
to include selected information in an ad-hoc manner. On the flip side, program
analyses such as data-flow analysis do not have access to repository information,
which restricts the interpretability of their results by excluding the socio-technical
context of the software project.

SEAL bridges this gap by conceptually mapping repository specific information
into the compiler’s internal representation. The mapped information can be used by
specialized data-flow analyses to infer relationships between commits (i.e., determine
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commit interactions) or by existing data-flow analyses to augment their results with
repository information.

In an evaluation on 13 open-source projects, we have demonstrated that SEAL
and the generated data-flow-aware repository information can be utilized to answer
relevant questions in research and practice.

Contribution to the field of repository analysis. The first part of our evaluation
shows that, with SEAL, we can obtain new insights that could not have be found with
existing methods that do not integrate both repository information and data-flow
information. Our qualitative analysis has uncovered interesting cases, for example,
where textually small changes have a far-reaching impact, which could only be
pinned down by considering data flows.

SEAL introduces a new method to the field of repository analysis for extracting
repository information that is connected to a program’s operational semantics, by
incorporating data-flow information. This way, we get through commit interactions
a combined form of information that simultaneously represents program semantics
and the development history of a software project.

Contribution to the field of socio-technical analysis. The second part of the
evaluation, demonstrates how repository information computed by SEAL can be
utilized to augment existing program analyses. This allows us to put the analysis
results into a socio-technical context for further interpretation, for example, by
relating SQL injection vulnerability directly to the involved developers. We expect
that the newly gained data-flow-based repository information will present useful
to a multiple of socio-technical analyses that want to incorporate a program’s
operational semantics.

Our evaluation demonstrates SEAL can be used to track down previously hidden
interactions and to augment existing analyses with socio-technical information,
which enables us to gain insights that could previously not be tracked down.

General contribution to this thesis. The work presented in this chapter employs
code regions to find data-flow-based commits interactions. The application shows
that evolutionary variability (time), encoded through commits, can be modeled
through code regions (see Section 4.2.2). Furthermore, in Section 4.2.3 we demon-
strated how an inter-procedural alias-aware context and flow-sensitive data-flow
analysis can be integrated into uniform code-region abstraction, laying the analyti-
cal foundation for determining commit interactions. Taken together, code regions
worked as a bridge between the variability information and program analysis, which
enabled us to gain new insights into the field of repository analysis.





5
White-Box Performance Analysis
of Configurable Software Systems

Detecting and reasoning about performance bugs is difficult, especially, in con-
figurable software systems [34, 83, 252], as analyzing these systems is impeded
by the combinatorial explosion and potential interactions between configuration
options (see Section 2.1.2). The large number of configurations makes it difficult to
measure non-functional properties, such as performance, and also hard to attribute
the measured properties to configuration choices. As discussed in Section 2.3.7.3, ex-
isting approaches tackle this problem either through sampling in combination with
black-box performance analysis, or white-box analyzes that localize configuration-
dependent code. Black-box approaches correlate the measured performance to
configuration options, with the drawback of not being able to attribute the measure-
ments to source code. In comparison, configuration-focused white-box performance
analyses locate first configuration-dependent code and then measure it. However,
current configuration-focused white-box analyses produce too much overhead [240]
and are not flexible with regard to how they measure performance and what metrics
they can collect. Industry-strength state-of-practice performance profilers, on the
other hand provide a wide range of performance measurement techniques, some
that only produce very low overhead [78]. However, these profilers do not incor-
porate configuration knowledge and, by that, are difficult to use on configurable
software systems.

The underlying problem is that state-of-practice performance profilers cannot
make use of the configuration knowledge that is available to configuration-focused
white-box analyses. We solve this problem by integrating configuration knowledge
from localization approaches into state-of-practice performance profilers, making
profilers configuration aware. This means, we enable state-of-practice performance
profilers to attribute their measurements to configuration options by weaving in
measurement code at configuration-dependent code locations.

The approach presented in this chapter, demonstrates how we can integrate
configuration knowledge conceptually with state-of-practice profilers using the
code-region abstraction introduced in Chapter 3. Our evaluation of 108 performance
regressions on 16 synthetic subject systems and two real-world subject systems used
in High-Performance Computing (HPC), shows that configuration-aware perfor-
mance profilers are able to identify configuration-specific performance regressions.
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In addition, configuration-aware performance profilers do not produce significantly
more overhead than existing approaches, which shows that configuration-sensitive
profiling is feasible. Complementary to this chapter’s main contribution of making
state-of-practice profilers configuration aware, this chapter also demonstrates the
applicability of code regions to configuration variability (space) as well as a dy-
namic analysis. Furthermore, this chapter also demonstrates how code regions make
program analyses reusable, by using the taint analysis introduced in Chapter 4.

In what follows, we highlight the gap between current localization approaches
and performance profiling in more detail. Afterwards, we demonstrate how state-
of-practice performance profilers can be made configuration aware by integrating
configuration knowledge from localization approaches, creating configuration-
sensitive state-of-practice profilers—the best of both worlds.

5.1 Introduction

Performance bugs can cause significant performance degradations [14] that not
only impact user experience [82, 102] but are also hard to detect and fix [14, 52].
Research has shown that a significant number of performance bugs are caused
by configuration errors [83]. Configurability adds another layer of complexity to
software systems, increasing the complex process of debugging and understanding
performance issues even further [252]. That is, performance regression may manifest
only for some configurations since buggy or inefficient code may only be executed,
if the corresponding configuration option guarding that code region is activated [49]
(e.g., see Section 2.1.4). Due to the resulting complex control-flow and data-flow
dependencies among the code involved, developers often fail to understand the root
cause of the performance problems they observe [242]. Hence, both practitioners
and researchers would benefit from means to ease performance debugging of
configurable software systems.

In practice, developers often address performance issues by employing state-of-
practice performance profiling tools, which enable them to precisely drill down into
performance issues. Profiling tools such as XRay and eBPF are highly optimized
and tuned to produce precise measurements without causing too much overhead
or distortion in the system under measurement. A key problem is that state-of-
practice tools are oblivious to the fact that almost all practical software systems
are highly configurable [114]. As a workaround, developers concentrate only on a
small set of default or notorious configurations, likely missing configuration-specific
regressions [114]. Alternatively, developers can retrofit configurability by applying
profiling tools to as many as possible different configurations of the software in
question, which entails high profiling costs. Fundamentally, profiling tools lack, a
deep understanding of variability in a system’s source code, such that they often
break down due to the combinatorial explosion of the configuration space or miss
important interactions among configuration options [125]. For example, by only
sampling a set of variants to profile or by choosing potential variants through
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developer knowledge. This makes the performance debugging process ultimately
cumbersome, time-consuming, and likely leads to undiagnosed or misdiagnosed
performance problems.

In academia, a multitude of approaches have been proposed to locate configuration-
dependent code [147] and to incorporate configurability into the performance mea-
surement process [240]. For example, ConfigCrusher [240] measures configuration-
specific performance, using Lotrack [147] to locate configuration-dependent code.
While demonstrating the principle ability to analyze performance in the presence
of configurability, these approaches have limits when being used on real-world
code bases, either because their profiling infrastructure or measurement code pro-
duces too much overhead or they do not scale down to the fine granularity of
configuration-specific code [240, 247]. Some approaches try to tackle these prob-
lems by expanding the measured scope, meaning, they do fewer coarse-grained
measurements, thereby losing accuracy, though [240]. Other approaches employ
additional dynamic analyses, increasing setup complexity and the overall measure-
ment overhead [241], as compared to standard profilers. In summary, state-of-the-art
analysis approaches are not as mature as industrial-strength performance profilers,
lack flexibility, produce too much profiling overhead, and are difficult to use in
production environments.

Given the availability of industrial-strength profilers and the progress that has
been made in research, there is a promising middle ground that has not yet been
explored so far: integrating configuration-aware analysis with state-of-practice pro-
filers. This way, the analysis can utilize the optimized low-overhead measurements
of profilers together with the profilers’ ecosystem. Ideally, such an integration should
neither focus on a specific analysis approach nor work only with one kind of profiler.
Instead, an integration should provide a general and easy-to-use interface for making
a given performance profiler configuration-aware. To achieve this goal, we propose
Walrus, a configuration-aware analysis framework that combines state-of-the-art lo-
calization approaches to detect configuration-dependent code with state-of-practice
profilers. Walrus builds on top of LLVM, introducing a configuration-specific ab-
straction into the LLVM compiler infrastructure that associates configuration options
to corresponding code regions. That is, Walrus automatically determines which
code regions depend on which configuration options (i.e., which regions are selec-
tively executed depending on the values chosen for the corresponding configuration
options). This abstraction enables for the first time analysis or optimization passes
to access configuration-related information during compile time. To demonstrate its
practicability, we built Wlang, an extension of the Clang compiler that can auto-
matically insert configuration-aware measurement code on top of Walrus. Walrus

offers a generic instrumentation interface to automatically add measurement code
to configuration-specific sections of a program or to encode configuration-related
information into the binary for later use. Making use of this interface, Walrus

already provides a range of low-level instrumentations that make different state-
of-practice performance profilers configuration aware including XRay and eBPF.
Combining existing (academic) approaches for locating configuration-specific code
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with state-of-practice performance profilers has not been possible up to this point.
Walrus is the first approach to make load-time and compile-time configuration op-
tions and their affected code regions traceable within the compiler to inject tailored
measurement code at a fine grain.

In a series of experiments involving compile-time and load-time configurability,
we demonstrate that a state-of-the-art configuration-aware program analysis built on
top of Walrus can identify real-world performance regressions in configurable soft-
ware systems, without making compromises on measurement granularity by over
approximating configuration dependent code regions. We show how the integration
of state-of-practice profiling tools plugged into Walrus only produces a reason-
able measurement overhead and, by that, enables configuration-aware performance
measurements.
The primary contributions of this chapter are:

• Walrus, an extension of LLVM that makes the compiler infrastructure configuration-
aware, enabling it to detect and model configuration-specific code regions;

• Wlang, an extension of Clang built with Walrus that can automatically insert
custom measurement code for performance profiling configuration-dependent
code regions;

• A plug-in mechanism for state-of-practice performance measurement tools that
enable them to analyze configuration-dependent code regions.

• An evaluation that demonstrates the feasibility and applicability of configuration-
aware performance measurement with Walrus.

5.2 Walrus at a Glance

The main reason why performance debugging of configurable software systems is
so difficult is that configuration-dependent code (i.e., code that gets only included
or executed in the binary depending on the used configuration) shows up in
performance profiles only under certain configurations. So, finding performance
bugs requires knowledge under which configurations these bugs manifest. Worse,
even when executing a configuration that enables the configuration-specific code, it
is not clear which part of the performance profile can be attributed to the chosen
configuration option and which is not. That is, we now observe the execution time
of the code but we cannot directly trace this information to the corresponding
configuration option.

This attribution problem arises from a loss of tracing information: At the source-
code level, we know which part of the code is controlled by a configuration option,
however, after compilation, this information is no longer directly present in the
binary and, therefore, cannot be utilized by performance profilers to attribute the
measured performance post hoc to the corresponding configuration option.
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1 struct Config {

2 bool UseEncryption;

3 bool UseCompression;

4 } currentConfig;

5

6 void loadConfigFromFile() {

7 currentConfig.UseCompression = false;

8 currentConfig.UseEncryption = true;

9 }

10

11 void sendPackage(PackageData Data) {

12 if (currentConfig.UseCompression) {

13 Data = compress(Data);

14 }

15 if (currentConfig.UseEncryption) {

16 if (not currentConfig.UseCompression) {

17 // Only add padding for uncompressed data

18 Data = addPadding(Data)

19 }

20 Data = encrypt(Data);

21 }

22 send(Data);

23 }

1

2

3
t
1

t
2

t
3

Figure 5.1: Running example of a load-time configurable C++ program. The example has a
global configuration variable 1 that stores the configruation value of two options
encryption ( ) and compression ( ). Both options get initialized during program
start in function loadConfigFromFile 2 . Function sendPackage is composed of
three configurable code sections, each controlled by a different combination of
configuration variables. For example, Line 18 is executed only if UseEncryption
is enabled and UseCompression is disabled.

Take, for example, the function compress 3 in Figure 5.1, which is executed only
if the configuration option useCompression is enabled. As a consequence, function
compress shows up in performance profiles only under certain conditions and, even
if it appears, developers cannot identify which part of the profile is configuration
specific and how much time is spent in the configuration-specific parts.

The goal of Walrus is to enable the performance analysis of configurable software
systems by solving the attribution problem. Walrus detects configuration-specific
code and preserves this information during compilation to later empower state-
of-practice performance profilers in analyzing configurable software systems in a
configuration-aware manner, that is, making time spent in configuration-specific
parts of the code distinguishable in the performance profile. Walrus achieves
that by (1) extending the compilation pipeline with different analyses to detect
configuration-specific code regions and (2) with custom instrumentation passes that
model and map this information into the binary.

An overview of the compilation pipeline with Walrus is depicted in Figure 5.2.
In short, Walrus takes in configurability information from the developer, utilizes
different localization approaches to detect configuration-dependent code, and then
weaves in profiler-specific instrumentations around the detected code.
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Figure 5.2: Overview of a configuration-aware profiling setup with Walrus. As part of
the normal compilation process, Walrus incorporates configuration-specific
information into the compiler intermediate representation. Based on that infor-
mation, Walrus adds profiler-specific instrumentation code into the produced
binary, enabling existing state-of-practice profiling tools to make their profiles
configuration aware.

5.2.1 Concept of Configuration-Dependent Regions

There is a multitude of localization approaches available that are able to determine
different kinds of configuration-dependent code, all of which could be used to
contextualize the performance of a configurable system. So, to support the perfor-
mance measurements of different kinds of configurability, we designed Walrus

to be independent of the actual localization strategy used. To this end, we define
configuration-dependent regions, based on our code-region abstraction introduced
in Chapter 3, that represent configuration-dependent code blocks.

Each program p (see Section 3.2.1) has a set of configuration options C (see
Definition 1). For example, in the case of static variability with #ifdefs, these are
macros, in the case of load-time variability program variables encode the state of
the configuration option. Which variables model configuration options are initially
specified by the developer and are given as input to Walrus. Walrus requires
as input a function that relates instructions to the specific set of configuration
options that influence it—the function tags that we introduced in Definition 11.
For Walrus the set of domain-specific tags T is the set of configuration options
C. It is important to note that the issues of determining how an instruction i is
influenced ( 7→) by a configuration option is defined by the localization approach and
is not central to Walrus. On the practical side, this information is added through a
localization approach, such as, the ones we described earlier in Section 2.1.4. We
define confOptions as the Walrus specific tags function.
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…
%b = load i1, i1* @UseCompression
%8 = zext i1 %b to i8
%9 = trunc i8 %8 to i1
br i1 %9, label b2, label b3

b1

T F

%b2 = load i1, i1* @UseEncryption
%10 = zext i1 %b2 to i8
%11 = trunc i8 %12 to i1
br i1 %11, label b4, label b7

T F

call void @compress(%PackageData) 
br label b3

…
%b3 = load i1, i1* @UseCompression
%12 = zext i1 %b to i8
%13 = trunc i8 %8 to i1
br i1 %13, label b6, label b5

T F

call void @addPadding(%PackageData) 
br label b6

call void @encrypt(%PackageData) 
br label b7

…
call void @send(%PackageData)
…
ret void

t1

t2

t3

b2

b3

b5

b7

b4

b6

Figure 5.3: Reduced control-flow graph for function sendPackage from Figure 5.1. The code
inside the graph nodes are exemplary code snippets from the compilers internal
representation that are related to configuration variables. The three configuration
dependent terminators are labeled as t1 (red), t2 (yellow), t3 (orange), and the
resulting configuration-dependent regions are colored respectively.

Definition 34. Let confOptions(i) be a function that maps an instruction i to the set
of configuration options that influence ( 7→) the execution of i.

confOptions(i) = { c | c ∈ C ∧ c 7→ i }

Based on these foundations, we now define configuration-dependent region (ab-
breviated in the following with CDR), as Walrus’s specific type of code region that
focuses on configuration options. We define a configuration-dependent region as
a code region where T = C. Hence, we can compute all configuration-dependent
regions for a function f through computeCRTag (see Definition 14).

CDR is based on our code-region abstraction but focuses on configuration-
dependent code. Hence, CDR is an overarching abstraction for configuration vari-
ability (space dimension) that enables us to model different kinds configuration-
dependent code uniformly on a compiler-internal intermediate representation (e.g.,
LLVM-IR), so we can later instrument the detected code regions. In what follows,
we explain in detail how CDR can be used to find load-time-based configuration-
dependent regions, as well as, compile-time-based configuration-dependent regions.



128 White-Box Performance Analysis of Configurable Software Systems

5.2.2 Load-Time Configuration-Dependent Regions

Walrus models configurability in the compiler by implementing configuration-
dependent regions as an abstraction over the compiler internal code representation, to
make configuration-specific code measurable. In what follows, we demonstrate a
concrete way to integrate a load-time configurability localization approach, similar
to Lotrack [147], into Walrus, utilizing our previously introduced CDR abstraction.

To determine all load-time configuration-dependent regions, that is, all load-
time configurable parts of a program, Walrus initially determines all control-flow
decisions that depend on configuration options by running a specialized taint
analysis—for this, we reuse the analysis from Chapter 4. Next, all instructions that
are dominated by these control-flow decisions are marked as dependent on the
configuration options. This way, we introduce function confOptions and provide a
mapping from instructions to configuration options.

Initially, the user specifies all relevant program variables v that represent a con-
figuration option c, which implicitly defines the set VC of all variables that encode
configuration options.

Definition 35. Let option(v) be a function that that maps a given program variable
v ∈ VC to the corresponding configuration option c ∈ C.

Next, to determine configuration-dependent code, we need to determine all ter-
minator instructions t, whose control-flow decision depends on a configuration
variable v. A terminator instruction terminates a basic block, which is a sequence of
instructions, and either diverts control-flow to another point where the execution
continues—the important case—or marks a block unreachable1. Hence, by determin-
ing all terminators that depend on a configuration variable, we find all control-flow
decision points that can be influenced by a configuration option. That is, we find all
terminators where a configuration option could influence a control-flow decision.
For example, t1 in Figure 5.3 is tainted by the analysis with UseCompression, since
its computation depends on the configuration variable UseCompression.

To find these terminators, we reuse the taint analysis that was already introduced
in Section 4.2.3 and our code-region abstraction. First, we define two additional
helper code regions: one for user-specified program variables VC and one for termi-
nator instructions. For program variables, we define tags to map the user-provided
mapping information onto instructions and T = VC . For terminator instructions,
we define tags to determine whether an instruction is a terminator and extend T
with τ, a element whose presence indicates a terminator. Second, we reuse our taint
analysis from Section 4.2.3 through the data-flow interaction relation (see Defini-
tion 28). Next, we compute all interactions between the two helper regions through
computeAllCRInteractions, extract the ones where baseRegion (see Definition 24) is a
terminator region, and map the interacting code regions to their tags.

1 For more details, see LLVM’s terminator description https://llvm.org/docs/LangRef.html#

terminator-instructions. (Last accessed: October 13, 2023)

https://llvm.org/docs/LangRef.html#terminator-instructions
https://llvm.org/docs/LangRef.html#terminator-instructions
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Definition 36. Let influencingOptions(t) be a function that maps, for a given program
revision rev ∈ R, the given terminator instruction t to the set of configuration
options that influence it.

influencingOptions(t) =
{

option(vc) |

cri ∈ computeAllCRInteractions
(
 , {rev}

)
∧ contains

(
t, baseRegion(cri)

)
∧ Γ = interactingRegions(cri)

∧ vc ∈
⋃

ir ∈ Γ

tagsCR(ir) ∩ VC
}

This way, we find for each terminator instructions the set of configuration options
that influence it. We simplify our static analysis problem of finding terminator
instructions that are influenced by configuration options by encoding the problem
into our code-region abstraction and using an already established program analysis.
Furthermore, based on Definition 36, we can now define the set of all load-time
configuration-dependent terminators ΓC .

Definition 37. Let ΓC ⊆ Γ be the set of all terminator instructions t ∈ Γ whose
control-flow decision depends on at least one configuration option c ∈ C.

ΓC =
{
t
∣∣ | influencingOptions(t) | > 0 , t ∈ Γ

}
After the analysis found all configuration-dependent control-flow decisions, we can
determine all configuration-dependent instructions by finding all basic blocks that
are conditionally executed by a terminator t ∈ ΓC .

First, we determine the set of all basic blocks that are dominated2 (�), but not
post-dominated (≫), by t’s basic block bt. Second, we mark every instruction inside
the found basic blocks as depending on the configuration options t is influenced
by (influencingOptions(t)). Algorithm 2 depicts how the configuration map (i.e., a
mapping from instructions to configuration options) is built in detail. This way, we
establish a mapping from instruction to a set of configuration options that influence
whether and how an instruction is executed and, by that, we define the tags function
confOptions for load-time configuration-dependent code regions.

Example: In Figure 5.3, we show the simplified control-flow graph of sendPackage
from Figure 5.1. In the graph, we see three marked control-flow decisions t1-3,
which depend on different configuration variables. We detect these configuration-
dependent control-flow decision by running a precise taint analysis that tracks
the data flows starting at configuration variables to control-flow decisions t ∈ Γ.
After finding all configuration-dependent terminators ΓC , we determine for each
terminator t ∈ ΓC all basic blocks, which can be reachable only through t, and mark
all their instructions as dependent on the corresponding configuration options.

2 A basic block ba dominates (�) bb if every path which passes through bb must also pass through
ba [185].
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Algorithm 2: Builds a configuration map by iterating over all control-flow
decisions whose computation is dependent on a configuration option and
marking instructions that get dependently executed with the corresponding
configuration options. The resulting map then relates instructions to the set
of configuration options that control its execution.

Data: ΓC

Result: ConfMap
1 for t ∈ ΓC do
2 bt ← getBB(t);
3 BBQueue← successors(bt);
4 while b ∈ BBQueue do

. Check that b is dominated by bt

. but not also post dominated

5 if bt � b ∧ ¬ bt≫ b then
6 for i ∈ instructions(b) do
7 ConfMap[i] = influencingOptions(t) ∪ ConfMap[i]
8 end
9 BBQueue← successors(b);

10 end
11 end
12 end

With the computed information, we have the data for confOptions. Combin-
ing this with our code-region abstraction, we can now determine all load-time
configuration-dependent code regions. This demonstrates how we can integrate an
existing localization approach, inspired by Lotrack [147], to detect configuration-
dependent regions and, by that, handle load-time variability with Walrus.

5.2.3 Compile-Time Configuration-Dependent Regions

Similar to load-time configuration options, compile-time configuration options often
have a high performance impact. So, to make their impact measurable, Walrus needs
to locate compile-time configuration code and instrument it. There are two com-
monly used implementation techniques to implement compile-time configurability:
preprocessor annotations, in the form of #ifdefs, and template meta-programming,
where especially the latter one is heavily employed in HPC frameworks, such as
dune or HyTeG3. In what follows, we highlight how both these techniques can be
integrated into Walrus’s CDR abstraction.

To conceptually handle preprocessor-based configurability, we need to create a
specialized confOptions implementation that preserves preprocessor directives and
maps them into the compiler IR. We create this specialized confOptions function

3 https://i10git.cs.fau.de/hyteg/hyteg (Last accessed: October 7, 2023)

https://i10git.cs.fau.de/hyteg/hyteg
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by attaching preprocessor information, more specifically the configuration options
used in the #ifdefs condition, and attach it as meta-data onto the compiler IR.
Hence, when constructing the configuration-dependent regions, a function call to
confOptions is nothing more than accessing the meta-data attached to an instruction.
Note that this limits the localization approach to model code that can be simultane-
ously present in the program (i.e., it excludes alternative code sections for #ifdefs).
As an alternative, we can map compile-time variability to load-time variability
with the approach introduced by Rhein et al. [195], and afterwards applying our
previously explained approach to handle load-time configuration options.

Template meta-programming uses templates (i.e., classes and functions that can
be parameterized with types) to generate specialized classes and functions (see
Section 2.1.4). Simply put, for a template class parameterized with a type T, during
compilation, the compiler will generate a concrete version of the class and weaves in
T’s code. To handle such template based configurability, we implemented a special
language annotations that enable developers to encode which parts of the code are
special building blocks that are destined to be configured into template code. We
then map the configurability information added by the annotations as meta-data
data to the compiler IR, similar to information provided by #ifdefs. This way,
we can use the same mapping function confOptions as with preprocessor based
configurability to integrate this information into our CDR abstraction. Conceptually,
this unifies both implementation techniques, as, in the end, it does not matter if the
generated IR code was woven in with template meta-programming or included by a
preprocessor macro.

By providing a confOptions implementation that embeds #ifdefs and template
based configurability information into our CDR abstraction, we enable Walrus to
locate compile-time configurable code. Up to now, we have shown how Walrus

can locate and model compile-time and load-time configurable code. In the next
step, we are going to use the detected configuration-dependent regions to weave
in measurement code for measuring the time it takes to execute configuration-
dependent code.

5.3 Making Profilers Configuration-Aware

Walrus enables developers to attribute performance measurements to configuration
options. Using localization approaches discussed in Section 5.2, Walrus knows where
configuration-dependent code is. In what follows, we describe how Walrus uses this
information to weave in profiler-specific measurement code around configuration-
dependent regions to enable configuration-specific performance measurements.
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5.3.1 Profiler Interfaces

Tracking down configuration-related performance regressions is difficult and may
require different kinds of profilers, depending on the specific problem at hand.
Profilers can be classified according to how and what metrics they target (e.g.,
instrumentation-based profilers vs. sampling-based profilers or CPU profiling vs.
memory profiling). So, to maintain this flexibility and still attribute a profilers
measurements to configuration options, Walrus needs to support a wide range
of different profilers. For this purpose, Walrus offers an instrumentation interface
through which profiler-specific adapters can be implemented.

In general, Walrus offers two different mechanisms for plugging a profiler: by
injection and by interpretation.

5.3.1.1 By Injection

Walrus can inject profiler-specific instrumentation code around configuration-de-
pendent regions to be executed when the configuration-dependent region is entered
or exited. For a profiling tool, a developer implements the instrumentation code in
the form of light-weight adapter code that connects configurability-information with
the profiler’s measurement interface, through Walrus’s instrumentation interface.
Walrus then weaves the custom adapter instrumentations into the program during
compilation, wrapping the configuration-dependent regions with measurement
code. This way, the profiler has control over what information is collected but addi-
tionally has access to configuration information (e.g., what configuration options
influence the execution of this code region), to attribute the collected measurements
to configuration options.

Walrus’s generic tracing interface offers instrumentation hooks that provide
access to the aggregated configuration-specific information. Specifically, Walrus

offers four instrumentation hooks: initialize and finalize can be used to set up
background workers or for cleaning up at program start and end; region_enter
and region_exit are hooks that are called every time a configuration-dependent
region is entered or exited.4

1 /* Walrus’s tracing interface */

2 void initialize();

3 void finalize();

4 void region_enter(CDRegion *Region);

5 void region_exit(CDRegion *Region);

To illustrate how the injected instrument hooks work, let us look at a simple
example that logs the configuration options every time when configuration-related
code is executed. The logger would implement initialize to setup the global
logger and finalize to flush out log messages that have not yet been persisted.

4 The actual names of the functions injected into the binary are renamed and uniquified to prevent
collisions with user code.
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In addition, region_enter/region_exit handle the sending of log messages when
configuration-specific code is executed, for example:

1 void region_enter(CDRegion *Region) {

2 logger.log("Executing {0} specific code.",

3 Region–>configurationOptions());
4 }

Through the configuration information provided by Walrus, the logger can attribute
the printed log message to configuration options.

In general, Walrus’s injection feature is the preferred way of instrumenting code
for event-based profilers such as XRay

5 and for measurement tools that require a
more elaborated background setup (e.g., distributed tracing tool [179]).

5.3.1.2 By Interpretation

An alternative way to link measurements to configuration information is to make
the profilers’ existing measurements interpretable in a configuration-aware way: by
guiding the profiler to measure only code that relates to a specific configuration
option or by relating parts of the binary to a configuration option. Walrus supports
such use cases by persisting configuration-specific information in the binary, which
can be accessed later by the profiler to tune or relate its measurements to configu-
ration options (e.g., a profiler could only consider measurements that were done
while code from a specific configuration option was active).

Making profilers configuration aware by interpretation is especially useful for
black-box profilers, which already can measure programs with low overhead but
lack interpretability. By persisting configurability information in the binary, Walrus

can turn black-box profilers into configuration-aware gray-box profilers. Take, for
example, the eBPF-based profiler bpftrace. Walrus is able to map information
about configuration options into the binary (e.g., the addresses in the binary where
configuration-dependent code resides). bpftrace profiling scripts can use this
information to execute measurement code only for regions that relate to a specific
configuration option.

To insert configuration information, Walrus offers in its instrumentation interface
generic interpretation hooks to persist arbitrary information in the static section of
the binary, allowing the profiling tool to store configuration-related information in a
profiler-specific way (see Figure 5.2) and access it afterwards during runtime.

As an example of how interpretation works, consider Walrus’s support for
statically-defined tracing (SDT) probes6. SDT probes, insert nop instructions as an-
chor points and then persist the addresses of these anchors together with additional
information into the static section of the binary.

Figure 5.4 illustrates how the additional information is connected to the configu-
ration-dependent region. In the lower part of Figure 5.4, Location stores the address

5 https://llvm.org/docs/XRay.html (Last accessed: July 27, 2023)
6 For convenience, Walrus already provides a number of common abstractions, such as SDT probes

that persist configuration-related information into binary. SDT probes are placed into the binary and
allow tracing tools, such as DTrace, to attach measurement code.

https://llvm.org/docs/XRay.html
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.note.stapsdt
  …
  stapsdt      0x00000059       NT_STAPSDT (SystemTap probe descriptors)
    Provider: walrus
    Name: CR_begin_1729382256910270467
    Location: 0x0000000000225d57, Base: 0x0000000000207e00, Semaphore: …
    Arguments: 8@$1729382256910270467 8@-80(%rbp)
  … Configurability Information

   CDR

225d4c:  8a 45 db               mov    -0x25(%rbp),%al
225d4f:  48 c7 45 b0 40 70 20   movq   $0x207040,-0x50(%rbp)
225d56:  00
225d57:  90                     nop
225d58:  a8 01                  test   $0x1,%al
225d5a:  74 15                  je     225d71 <main+0x171>
225d5c:  bf 05 00 00 00         mov    $0x5,%edi
225d61:  e8 7a 00 00 00         call   225de0 <_ZN5fpcsc14sleep_for_secsEj>
225d66:  48 c7 45 c0 40 70 20   movq   $0x207040,-0x40(%rbp)

Figure 5.4: Software-defined tracing probe relating configuration-specific information to the
code generated for a configuration-dependent region. The injected nop instruction
serves as an anchor point for additional information that can later be inserted
into the note section of the binary (e.g., which configuration options influence
this configuration-dependent region).

of the nop, relating the entry to a location in the binary, and Arguments stores a
pointer to the configuration-related information (e.g., containing a list of configu-
ration options that influence the Location). This way, profilers such as bpftrace

can add measurement code at runtime exclusively for anchor points that relate to a
specific set of configuration option.

5.3.2 Application Scenarios

To illustrate the merits and flexibility of Walrus, we showcase three profiling sce-
narios and how Walrus enables configuration-aware profiling in each scenario.
We vary how configuration-specific information is incorporated: (1) full profiler
reuse, (2) configuration-specific information as an addon, (3) and custom profiler.
We use several well-known profilers that employ different commonly used profiling
approaches for each scenario, demonstrating how Walrus enables these profil-
ers to incorporate configuration-aware information. Specifically, we implemented
configuration-aware versions of eBPF-based tools7 for trace profiling [77, 78], and
LLVM’s XRay profiler, as a commonly used instrumentation-based profiler. Further-
more, motivated by previous work [174, 212, 247], we demonstrate how Walrus

can generate performance-influence-model traces from a program execution, that
is, a trace specific performance-influence model (see Section 2.3.7.3) that captures

7 https://ebpf.io/ (Last accessed: July 27, 2023)

https://ebpf.io/
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the individual performance influences of configuration options and the interactions
thereof for a single program execution.

Full profiler reuse. To illustrate how measurement code of eBPF-based profilers
make use of Walrus-inserted SDT probes, we list a one-line code snippet that
attaches a measurement probe to every configuration-dependent region printing a
message, every time a configuration-dependent region is entered.

bpftrace -e ’usdt : ./ binary : walrus : cdr_enter_* { printf ("Entered CDRegion %s\n" , str (arg1 ) ) ; } ’

As an alternative, bpftrace can also attach code only to regions of a single configu-
ration option8.

bpftrace -e ’usdt : ./ binary : walrus : cdr_enter_encryption_* { printf ("Exec . Encryption Code\n") ; } ’

This way any eBPF-based performance tool can be applied in a configurations-
specific way. That is, Walrus enables through SDT probes a wide range of per-
formance profilers that can target different types of performance metrics, such
as CPU time, memory consumption, or network utilization [77], to attribute their
measurements to configuration options.

Configuration-specific information as add-on. Compared to the previous pro-
filing scenario, where we could directly use an existing profiler, here we use only
core components of the profiler and collect additional performance measurements
using LLVM’s XRay, which we subsequently merge into the profilers results. To
this end, Walrus instruments additional measurement code around configuration-
dependent regions to measure their execution time, in addition to XRay’s function-
level instrumentation. Subsequently, we merge the profiling data collected by XRay

with the one collected through the additional instrumentation. This produces a
performance profile that contains both function-level and configuration-specific
measurements data. Figure 5.5 visualizes a merged profile. The correct ordering and
interleaving of measurements is guaranteed, as the instrumentation that Walrus

injects uses XRay’s internal timestamp clock. Through a combined profile, develop-
ers can reason about the performance influence of configuration options alongside
standard function-level information, for instance, determining how much time is
spent in configuration-specific section of a function. This profiling scenario shows
that Walrus can extend even more technically complicated cases, by reusing central
components of a profiler to later incorporate configuration-specific information.

Custom profiler. To illustrate the third use case, we have developed a custom
configuration-option profiler following state-of-the-art proposals from the litera-
ture [212, 241, 247]. We refer to this custom profiler as performance-influence model

8 Conceptualized one-liner for option specific measurements, the actual implementation uses a helper
script that calculates the option-specific SDT probes.
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                                        sendPackage(...)
 Options[      ]

 compress(...)

 doCompression(...)

Time attributed to configuration option

XRay

Walrus

Figure 5.5: Visualization of an interleaved stack trace as an icicle chart that contains function
level (XRay) and configuration level (Walrus) measurements. The stack grows
top to bottom and the x-axis indicates the time spent.

tracer (PIM tracer), as for a single execution, the profiler collects a trace that
represents the performance influences of different configuration-options as a per-
formance-influence model (see Section 2.3.7.3). The idea is to build a dynamic
configuration-option stack (i.e., in whose configuration-dependent region context
we currently are) by tracking entries and exits of configuration-dependent code
regions, measure the execution time of each configuration-dependent region, and
accumulate the total time spent under the influence of a set of configuration option.
For example, function compress (see Figure 5.1) is called inside a configuration-
dependent region that is enabled by option in sendPackage. Now, when function
compress contains itself a configuration-dependent region enabled by option the
measurement needs to be attributed to both and .

Walrus supports this use case by adding the core logic of the profiler, which tracks
the current program state, directly into the program and by inserting instrumentation
code around each configuration-dependent region (see Section 5.3.1.1). This way, PIM
tracer captures configuration-specific performance data on the fly, and produces
a PIM trace for each execution. The collected PIM traces can be used for direct
analysis or to generate a global performance-influence model that represents the
whole system by merging multiple traces from different configurations together [212,
241, 247]. This profiling scenario illustrates that Walrus can even be used for very
specialized tasks, where a custom profiler is needed to capture configuration-
specific information. Furthermore, through such a custom approach, Walrus can
also enable measurement libraries, such as likwid

9, by automatically injecting their
measurement functions.

5.4 Evaluation

In this section, we demonstrate that configuration-aware state-of-practice perfor-
mance profilers, enhanced through Walrus, are able to identify configuration-
specific performance regressions even in real-world settings without inducing signif-
icantly more overhead than currently used industry-strength profilers. We demon-
strate Walrus’s applicability by correctly identifying 108 configuration-dependent

9 https://github.com/RRZE-HPC/likwid (Last accessed: July 27, 2023)

https://github.com/RRZE-HPC/likwid
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performance regressions using three state-of-practice profilers in a set of synthetic
and real-world subject systems. We evaluate the overhead of configuration aware-
ness on performance profiling by analyzing the measurement overhead caused by
state-of-practice profilers, which are attached through Walrus.

5.4.1 Research Questions

Applicability. To demonstrate the applicability and flexibility of Walrus, we
investigate several configuration-related performance regressions collected from a
real-world HPC project and synthetic subject systems, utilizing different state-of-
practice performance profiling tools. This leads us to our first research question:

RQ1 How exact are configuration-aware performance profilers in identifying
configuration-related performance regressions?

Impact of configuration awareness. There is always a trade-off between accuracy
and overhead when measuring the performance of a program. Measurements that
aim at accuracy produce more overhead, which again can perturb the system
and distort the measurements. Existing state-of-practice profilers navigate this
trade-off space pursuing different strategies, with which developers can choose
among different levels of accuracy. State-of-the-art configuration-aware performance
analysis tools cannot navigate this trade-off space well. With Walrus, we aim at
bridging the gap between configuration-aware performance analysis and state-of-
practice performance profiling tools. To understand the performance impact of using
configuration-aware state-of-practice performance measurement tools, we analyze
the generated overhead of different Walrus-enabled profilers, which leads us to our
second research question:

RQ2 How much overhead is introduced by configuration-aware state-of-practice
performance profilers, compared to their ability to attribute performance
regressions?

By answering these two research questions, we aim at demonstrating that state-
of-practice profilers can be indeed empowered by Walrus to detect configuration-
specific performance problems.

5.4.2 Experiment Setup

We address our two research questions by means of three state-of-practice profilers,
plugged into Walrus and applied on 16 synthetic case studies and two real-world
open source projects. For each subject system, we introduce multiple configuration-
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Figure 5.6: Overview of our evaluation setup. For each configuration in each subject system,
synthetic and real world, we first measure whether a regression is detectable in
the configuration to establish the ground truth. To answer RQ1, we compare for
each configuration-aware profiler whether it can also discover the regression. For
answering RQ2, we measure the time it took to execute the system without and
with instrumentation to determine the profiling overhead.

specific performance regressions and use the Walrus-enabled profilers to detect
them, examining the accuracy with which the configuration-aware state-of-practice
profilers can attribute the regression to configuration options and how much over-
head they produce in the process. Figure 5.6 provides an overview of our evaluation
setup. In what follows, we provide details on the profiling tools, subject systems,
and regressions we use in our measurement setup, and our evaluation environment.

State-of-practice profilers. We selected a diverse set of state-of-practice profilers
that utilize different implementation and measurement strategies together with a
measurement approach, motivated by previous work. Specifically, following our
application scenarios from Section 5.3.2, we selected three profiling technologies: (1)
eBPF, Linux’s new performance and measurement infrastructure that supports a
wide range of profiling strategies, (2) XRay, a popular LLVM-based instrumentation
profiler that instruments code at function level, and (3) PIM tracer, a custom
trace profiler that generates traces for building performance-influence models (see
Section 5.3.2). For our XRay scenario, we only report the configuration-specific
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overhead and time measurements, to make the collected data comparable to the
other scenarios. Since eBPF supports a whole range of profiling strategies, we select
tracing setup that is similar to the other profilers and measures the time it took
to execute a configuration-dependent region. As a baseline, we use an established
black-box measurement strategy that measures all configurations in a brute-force
manner, to determine which configurations and configuration options are affected
by a performance regression [80, 212, 214]. Compared to Walrus-enabled profilers
that can attribute performance measurements form a single execution, a brute-
force approach solves the attribution problem by executing all configurations and
calculating a performance-influence model (see Section 2.3.7.3), which is often
infeasible in practice [114, 212]. Overall, we employ three profiling approaches in
total, to demonstrate the applicability of Walrus.

Subject-systems selection. Overall, we selected a set of 18 subject systems, which
differ in their size and application domain but, more importantly, in the way how
they implement configurability. Table 5.1 lists all our subject systems. We divide them
into synthetic subjects, which demonstrate a potentially problematic case (i.e., they
stress the profiler or detection strategy), and real-world subject systems. Section 5.4.3
introduces the synthetic subject systems in detail. In addition, to show Walrus’s
applicability to real-world profiling use cases, we use the highly-configurable real-
world subject systems dune and HyTeG. The dune framework is used for solving
partial differential equations. dune uses compile-time configurability to enable its
users optimize their solutions by providing different solvers, preconditioner, or
grid types. The HyTeG (Hybrid Tetrahedral Grids) framework is used for large
scale high performance finite element simulations [231]. Both dune and HyTeG are
used in performance critical HPC applications, where their performance is often
analyzed with various different profilers. Hence, due to their performance focus
and high configurability, they are ideal real-world use case for configuration-aware
performance profiling.

Performance regressions. We collected a set of patches that introduce a per-
formance regression for each subject system. For our synthetic subject systems,
we designed each regression to target a specific configuration-specific location by
injecting slow-down code that introduces a controlled delay. For our real-world
subject system dune, we designed performance regressions that regress code related
to user-facing configuration options (i.e., solvers, preconditioners, and grid types).

Evaluation environment. We conducted all experiments on a compute cluster
in an isolated and controlled environment to reduce the confounding factors that
could influence our measurements. Each compute node consists of an AMD EPYC
72F3@3.70GHz CPU with 8-Cores and 256GB main memory, running a minimal
Debian 11. We measured each analysis run 30 times and computed the mean run
times to further reduce the influence of measurement fluctuations.
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Table 5.1: List of selected subject system, showing for each system: the size of the configura-
tion space |P(C)|, the number of regressions R, the systems size in lines of code
(LOC), and the configuration mechanisms used in its implementation.

Subject System |P(C)| R LOC Conf. Mechanism

Real World
Dune 10 7 199 069 Compile Time

HyTeG 12 5 1 074 886 Compile Time

Sy
nt

he
ti

c

Static
Analysis

Field Sensitivity 5 2 499 Load Time

Flow Sensitivity 6 1 70 Load Time

Context Sensitivity 8 2 73 Load Time

Whole Program 8 3 125 Load Time

Implementation
Pattern

CRTP 8 34 223 Compile Time

Policies 12 12 193 Compile Time

TemplateSpecialization 9 12 170 Compile Time

TraitBased 16 13 253 Compile Time

Runtime 5 2 499 Load Time

Combined 5 2 499 Compile/Load Time

Template 5 2 976 Compile Time

Template2 5 2 497 Compile Time

Dynamic
Analysis

Dynamic Dispatch 6 4 128 Load Time

Recursion 4 2 71 Load Time

Hot Loop Code 4 1 76 Load Time

Configurability Option Interaction 8 2 56 Load Time

5.4.3 Synthetic Subject Systems

We primarily structure our evaluation around a set of 16 synthetic subject systems.
Real-world subject systems have the advantage that they provide a realistic basis
for our evaluation. However, from a selection of real-world systems, one cannot
be sure that all analytical edge cases are covered. Hence, we designed 16 synthetic
subject systems, to ensure that Walrus can handle a wide variety of implementation
strategies and know edge cases. Table 5.1 gives a detailed overview of our synthetic
subject systems. We devised all our synthetic subject systems in an informed way:
by collecting edge cases from literature, by gathering implementation patterns and
strategies from known open-source projects, and by investigating problem cases of
state-of-practice profilers. Overall, we divide our synthetic subject systems into four
categories, based on the area of edge cases they target:

Static analysis. In the static analysis category, we encode important static analysis
properties into small synthetic programs. As introduced in Section 2.3.2, analysis
properties, such as context sensitivity or field sensitivity impact what a static analysis
can find. The synthetic subject systems in the static analysis category ensure that
the taint analysis T (introduced in Section 4.2.3), which we utilized for detecting
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configuration-dependent code in Walrus (see Section 5.2.2), has the right analysis
properties to correctly located configuration-dependent regions.

Implementation pattern. Complementary to the static analysis synthetic subject
systems, we built synthetic subject systems that utilize different compile-time im-
plementation patterns, to ensure that our localization strategy can correctly handle
compile-time variability. Evaluating different compile-time implementation patterns
is important, since the compile-time localization approach presented in Section 5.2.3
is different from the localization approach for load-time variability. Most notably,
compile-time variability is already detected in the compiler front-end and does
not employ a static analysis afterwards to detect configuration-dependent regions.
Furthermore, as both compile-time and load-time implementation patterns differ
with regard to the language mechanism used to implement them (see Section 2.1.4)
and produce differently scattered configuration-dependent code, we should ensure
that both types are included in our evaluation. To collect a set of common imple-
mentation patterns for compile-time variability, we analyzed our real-world subject
system and additional projects on github, and collected additional patterns from
literature [169, 176, 238].

Dynamic analysis. In the third category, we focus on edge cases that arise from
the dynamic execution behavior of a program and can impact the correctness,
accuracy, and overhead of dynamic analyses (e.g., they can influence the accuracy
and overhead of performance profilers). Edge cases in this category include, for
example, dynamic dispatch and recursion, that can require special handling from a
dynamic analysis to correctly attributed the measured information, and synthetic
subject systems, such as "Hot Loop Code", that require frequent measurements
inside a hot region of code, likely producing significantly more overhead. Through
the analysis of such synthetic subject systems, we guarantee that know edge cases
for performance profilers, such as the ones introduced in Section 5.3.2, are included
in our evaluation.

Configurability. The fourth category focuses on edges cases that arise from the
configurability of software systems. To identify such edge cases, we searched the
recent literature that focuses on the problematic cases in the analysis of configurable
software systems [124, 153, 212]. We found that interactions between configuration
options are a prevalent problem when analyzing configurable software system
(see Section 2.1.5). Based on the gathered information, we devised a synthetic
subject system that focuses on different configuration interaction patterns, varying
how configuration-dependent code interacts. For example, we included different
levels of interactions that arise from differently entangled and nested configuration-
dependent code (i.e., we vary how code interacts).

Taken together, our collection of synthetic subject systems ensures that known edge
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cases are included in our evaluation and, by that, our evaluation can demonstrate
that Walrus is able to conceptually handle such edge cases.

5.4.4 Applicability (RQ1)

The goal of RQ1 is to show the applicability of configuration-specific performance
measurements to detect performance regressions in a variety of software systems.

Operationalization. To answer RQ1, we show that configuration-specific per-
formance regressions can be correctly identified by Walrus-enabled configuration-
aware state-of-practice performance profilers. We set up 108 configuration-specific
performance regressions in 18 different subject systems. Based on each performance
regression, we created a patch file that introduces the regression into the system in a
controlled way. We created a regression baseline that indicates which configurations
are affected, by running a black-box performance profiler exhaustively over the
whole configuration space [114, 125, 247]. The black-box profiler measures the total
execution time of a given configuration 30 times before and after the regression was
introduced. We consider a regression between the original code and the patched
one as significant based on the student’s t-test (T-test). Furthermore, we choose
100ms as baseline-regression sensitivity threshold to prevent miss detection (i.e., we
only consider regressions that are larger than 100ms). This way, we obtain a stable
baseline set of configuration-specific regressions spanning 18 subject systems, for
which we know in which configuration a profiler should detect a regression.

We compile each subject system with Wlang, once for each profiler (see Sec-
tion 5.3.2), and we add the profiler-specific information and instrumentation code.
Next, we profile each binary with each profiler, using a standard workload for the
system that was pointed out by the developers or extracted from previous work. For
our experiments, we do not vary workloads, as workloads do not directly affect the
profiler or instrumented measurement code (see Section 5.5). For each configuration-
aware profiler and configuration, we determine whether there was a performance
regression in the same way as with our black-box analysis by applying a U-test,
except that only the configuration-option-specific measurements are considered.
To reduce the impact of measurement noise, we also define a sensitivity threshold
of 100ms and 1% for configuration-option regressions. That is, we only consider a
configuration option as regressing when the time different between the old and new
measurements is significant and larger than our sensitivity threshold. Afterwards,
we compare the profiler detected regression with the baseline confirmed regressions,
computing classification precision and recall. This way, we determine how precise
configurability-aware state-of-practice profiler can identify performance regressions
by only measuring a single configuration and correctly attributing the profiler’s
measurements to configuration-specific code.
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Results. Table 5.2 shows the results for all profilers, regressions, and subject
systems, where Figure 5.7 shows the distributions for precision and recall. Each
data point denotes the precision/recall a profiler achieved for a regression in a
subject system. Precision indicates the portion of configurations that where correctly
identified as regressing, and recall indicates the portion of regressed configuration
that where correctly identified. Note that, for each regression and subject system,
a profiler determines for each configuration whether it has regressed only based
on the configuration-specific measurements (that were collected for this specific
configuration), compared to the black-box baseline (where the measurements of all
configurations are combined).

With regard to precision, for all three configuration-specific profilers we obtain a
similar picture. In most cases, the profilers correctly identified regressing config-
urations, however, some configuration where incorrectly identified as regressing
(false positives). Most notably are our two real-world subject systems dune and
HyTeG, where multiple configurations where wrongly detected as regressing. A
manual inspection of the miss-predictions showed that most of them are caused by
between-experiment-run noise that is slightly above the chosen thresholds. Overall,
for all the three profilers the mean precision was in the range of 0.95 to 0.96.

Figure 5.7 shows with regard to recall an even better picture. All three profilers
were able to correctly identify nearly all regressing configurations for all subject
system, based only on the configuration-specific performance measurements. The
only significant exception where many regressions are missed is the eBPF profiler
when analyzing dune. An in depth analysis of the measurement process showed
that eBPF drops many measurements when analyzing dune, as the frequency with
which measurements are produced is too high for some configuration-dependent
code regions. Internally, eBPF uses a non-blocking ring buffer to store measurement
events which have not been persisted to file yet. So, if the frequency with which
new measurements are produced exceeds the speed in which measurements are
persisted for too long, measurement events are dropped from the ring buffer. This
is different from the other two profilers where the main thread and the collection of
new measurements is blocked, should the internal ring buffer be full. Overall, for
all the three profilers the mean recall was in the range of 0.97 to 1.00.

By analyzing the distribution of precision and recall over different subject systems,
we observe that most of the subject systems could be correctly instrumented and
analyzed. Hence, as most of the regressions could correctly be located with different
profilers, we conclude that Walrus was able to accurately locate configuration-
specific code and weave in measurement code of each profiler and, by that, solve
the attribution problem. This way, the Walrus-enabled profilers were then able to
correctly measure configuration-specific performance regressions.

Answer RQ1 Our experiments show that Walrus-enabled profilers are ca-
pable of correctly identifying configuration-specific performance
regressions through configuration-specific measurements.
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Figure 5.7: Comparison of precision and recall between different configuration-specific
performance profiling approaches on multiple subject systems. Each data point
(x) denotes the precision/recall value a profiler achieved for a regression in a
subject system (i.e., how accurate the profiler could determine if a configuration
of the subject system regressed based on configuration-specific measurements).
The violin plots (precision left/recall right) visualize the likelihood for each
profiler that a specific precision/recall value was observed. This way, visualizing
how much precision/recall depend on the subject system, to show the subject
system’s influences on the profiler.

5.4.5 Impact of Configuration Awareness (RQ2)

In order to enable users to profile programs without too much overhead, state-of-
practice performance profilers often employ several tricks and low-level optimiza-
tions to reduce the measurement overhead and the impact measurement code has
on the measured code. For example, eBPF-based profilers move measurement code
and data aggregation into the kernel context, this way significantly reducing the
overhead and the number of context switches when performing measurements. With
RQ2, we aim at demonstrating that Walrus does not hinder profilers to use these
tricks and optimizations, and enables configuration-specific performance profiling
with a reasonable amount of overhead. That is, we expect the configuration-specific
profiling overhead to be at least of the same magnitude as non-configuration-specific
profilers [15, 168, 173, 248].

Operationalization. To answer RQ2, we measure the side effects that different
instrumentations have on the system under measurement. For this purpose, we
instrument 18 configurable subject systems with three different profiling strategies
using Walrus, producing differently instrumented system variants. In addition, we
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include a baseline variant by compiling the program without any instrumentations.
Each of the different variants are then executed—profiling the target system—and
additionally profiled by an external low-overhead black-box measurement tool.10

The external profiling tool measures the memory consumption and the time it took
to execute the white-box profiling run.

In our experiment setup, the part that varies across the variants is only the inserted
measurement code. Hence, deviations in the execution time or memory footprint
can be attributed to the chosen profiling technology. For both time and memory, we
report the relative amount compared to the unmodified baseline.

Results. Table 5.2 depicts the results of our overhead measurements. Each cell is
colored with a gray-scale color gradient that visualizes the overhead intensity.

With regard to time overhead, we observe that smaller synthetic subject systems
show no impact from the profiler measurements (i.e., for most synthetic systems the
measurement overhead is negligible and often below the measurement variance).
For both real-world subject systems, our measurements show an overhead in the
range from 8.71% to 18.95%, varying with subject system and profiler. Note that the
overhead measurements show only the additional overhead introduced to the normal
execution of the program through configuration-specific profiling. That is, time spent
in parallel running measurement threads is not counted as overhead. Furthermore, a
profiling run that produces additional measurements, such as function-based XRay

measurements, and additional configuration-specific measurements would produce
more overhead.

With regard to memory overhead, we observe a relatively uniform overhead
between profilers and subject systems. The absolute memory overhead is relatively
constant with ∼0.5 MB and does not vary much between subject systems. The only
exception is HyTeG, where the measurement overhead is larger (∼6.6 MB) but still
reasonably low.

Overall, configuration-specific performance measurements, independent of the
evaluated profiling scenario, stayed in a reasonable overhead range for both time
and memory. Hence, we can conclude that state-of-practice performance profiler can
be used in a configuration-specific way, as they introduce only a reasonable amount
of overhead compared to regular profiler usages [15, 168, 173, 248].

Answer RQ2 Our experiments show that Walrus-enabled profilers produce
a reasonable amount of overhead that is of the same magnitude
with existing profilers.

10 We utilize the low-overhead time command from GNU time.
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5.5 Threats to Validity

Internal validity: A threat to internal validity arises from the selection of our
performance regressions, as they might not be suitable for the selected profilers
to detect. We address this in two ways: We select regressions that were verifiably
located in configuration-specific code and we ensure through our black-box baseline
that a regression is at least detectable through measurement approaches used in
previous work [114].

The precision of performance measurements can be impacted by various exter-
nal sources, such as CPU frequency fluctuation, OS-level interferences from other
processes, or interferences from other users. To reduce such inaccuracies in our mea-
surements, we set up an isolated and controlled measurement setup, as suggested by
the literature [126]. Through our cluster setup, we prevent external interferences and
isolate our measurement job. Furthermore, we set up a minimal OS that executes
only our jobs, controls CPU frequencies, and repeat all our measurements 30 times.

Another thread to internal validity arises from our regression baseline, as our
baseline could wrongfully identify a configuration as regression without an actual
regression. We address this threat, as described before by reducing measurement
noise and by adding a sensitivity threshold of 100ms. We choose this threshold
value in an informed way by selecting a value that is smaller than any of our
introduced regressions (i.e., smaller than 130ms) but larger than our measurement
variance. Furthermore, a lightweight sensitivity analysis showed that threshold
values from 30ms to 120ms produce nearly identical evaluation results overall
(± 0.01 precision/recall).

External validity: Our evaluation depends on detecting configuration-specific
code. Hence our results might differ for other configurable systems. To minimize this
threat, we use established localization techniques proposed in the literature [147]
and evaluated Walrus on a real-world subject system used in high-performance
computing as well as several synthetic subject systems. We focused on 16 synthetic
case studies that contain adversarial analysis and implementation patterns, as we
cannot guarantee that known special cases are present in the real-world subject
system. Overall, our results show that configuration-aware profiler, enabled by
Walrus, can correctly identify configuration-dependent performance regressions.

Furthermore, our evaluation depends on the selection of state-of-practice per-
formance profilers, as profilers vary in precision, implementation technique, and
produce different amounts of overhead. Hence, we cannot generalize our results to
all profilers. However, our evaluation demonstrates that Walrus is able to make
state-of-practice profilers configuration aware with reasonable additional overhead,
even when the profilers use different implementation and measurement techniques.
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5.6 Discussion

In this section, we illustrate the advantages of combining state-of-practice profilers
through Walrus with configuration knowledge along with potential limitations.

5.6.1 Configuration-Aware Performance Analysis

Configuration-wise profiling. In order to determine the performance impact
of individual configuration options, previous configuration-focused performance-
analysis approaches have either used state-of-practice black-box profilers, with the
disadvantage of requiring measurements for a large set of configurations [114, 213],
or white-box localization approaches together with handwritten measurement code
on a few configurations [240, 241]. Walrus combines the best of both worlds, inte-
grating state-of-practice white-box profilers with white-box localization approaches
(i.e., Walrus solves the attribution problem and relays this information to the pro-
filer). Our evaluation of RQ1 shows that precise configuration-specific performance
measurements can be extracted directly from the execution of a configuration and
used to detect configuration-specific performance regressions.

Profiler reuse. Configurability in software system is orthogonal to performance
analysis, as all performance aspects can be influenced by configuration choices.
Furthermore, as profiling different performance aspects or in special environments
requires different state-of-practice performance profilers, conceptually combining
configurability with different profilers is important.

In our evaluation, we demonstrate that Walrus is able to conceptually and
practically combine state-of-practice profilers with configuration information. By
decoupling the concrete profilers through lightweight adapter code from the local-
ization approaches, Walrus is able to support a wide range of different profilers
and profiling scenarios (see Section 5.3.2) together with different implementation
strategies for configurability. Furthermore, RQ2 shows that Walrus enabled profil-
ers do not produce unreasonable amount of additional overhead. This way, Walrus

gives users the freedom to select the best profiler for their use case but also enables
them to contextualize the profilers measurements with regard to configurability.

5.6.2 Limitations

External performance regressions. Walrus currently focuses on attributing
program-specific configuration options and does not instrument operating system
code. Hence, in a standard setup, Walrus cannot attribute OS-specific configuration
options to performance regressions.
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Short-circuiting alternatives. Logical OR expressions (e.g., a || b) in condi-
tionals short-circuit. When the first part of the condition is true, the other one does
not get evaluated. In such a case, we cannot unambiguously identify through static
analysis to which configuration options a measurement should be attributed. In
general, a single execution of such a conditional cannot determine, without tracking
the actual values of the configuration options through an additional dynamic analy-
sis, which configuration options where involved in executing the controlled block.
This currently limits Walrus to attribute the performance measurements related to
such conditionals to specific configuration options.

Implicit flows. Walrus’s load-time location approach currently does not handle
implicit flows, which would model indirect dependence on configuration options
[122]. This practically limits us in detecting performance regressions that arise in a
part of the program that is indirectly influenced by a configuration option. However,
this is only a practical limitation of our current load-time location implementation
and does not influence the core approach behind Walrus, as Walrus is agnostic to
the concrete localization approach used.

Dynamic Language Features Currently, Walrus does not handle dynamic pro-
gram features, such as exceptions and reflection, explicitly. This is a practical limita-
tion of Walrus’s implementation that could be improved in the future by adding
logic to the dynamic analysis side (i.e., the profilers) but this was not necessary for
our synthetic subject systems and our real-world subject system dune.

5.7 Related Work

Configuration-dependent code localization. There already exists a large body
of work from the recent years that introduces varying approaches to localize and
analyze configuration-dependent code. Compile-time configurability can be an-
alyzed through tools, such as TypeChef [118], SuperC [71], cppstats [144, 146],
or Morpheus [145]. With Lotrack, Lillack et al. [147] demonstrate a localization
approach that tracks load-time configuration options within Android apps. Wal-
rus’s localization approach is conceptually modeled after Lotrack, using a similar
taint analysis. The work from Rhein et al. [195] unifies both compile and load-time
configurability by encoding compile-time configuration options into load-time con-
figuration options, creating a 150% program. Furthermore, work from Garvin and
Cohen [70] analyzes interaction faults and their dependence on feature-dependent
specific code regions. Their work introduces the term variability region, a similar
abstraction to our configuration-dependent regions.

With Walrus, we build and incorporate previous research, introducing a common
abstraction for compile and load-time configurability with the goal of making
configuration-dependent code accessible in the compiler, enabling configuration-
aware performance analyzes.
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Configuration-aware performance analysis. The area of configuration-aware
performance analysis is conceptually subdivided into black-box and white-box
approaches, where only the later take into account the source code of a program.
Previous work from Siegmund et al. [212] learned performance-influence models
based on black-box measurements, which was later extended to white-box profilers
by Weber et al. [247]. Furthermore, Velez et al. [240] developed ConfigCrusher, an
approach that utilizes a static data-flow analysis to run white-box performance mea-
surements for building performance-influence models. Walrus’s approach is in the
same vain but tries to solve the problem of measurement overhead not by relaxing
a regions scope but by utilizing state-of-practice performance profilers. Comprex,
another white-box approach to build performance-influence models, utilizes a dy-
namic taint analysis with the goal of reducing measurement cost. ConfProf [84],
an iterative white-box performance profiling approach, automatically determines
configuration-dependent performance-critical code regions and the most influen-
tial configuration options. Walrus differs as our goal is to measure all specified
configuration-options and enhance existing state-of-practice performance profilers
to visualize their information in a configuration-aware manner. Hence, a developer
selects the configuration options to analyze and the performance tool that should
be used for the analysis. So, where ConfProf aims at a specific use case, Walrus

is flexible by enabling a multitude of different profilers. Furthermore, Chen et al.
[34] detect inconsistent configuration-specific regressions in software histories. They
demonstrate that configuration-specific performance influences change throughout
the development of the software system, an interesting approach that starts to
combine the revision history of a project with configurations-focused performance
analysis. Our evaluation shows that Walrus can enable profiler to detect regressions
between two revisions. That is, through Walrus, state-of-practice profilers can now
be combined with their approach to build full historical analyses.

Reducing measurement overhead. Another approach to reduce the measurement
cost of configuration-aware performance profiling, called Performance-Detective,
was proposed by Schmid et al. [206]. Performance-Detective improves the ex-
periment design by deducing insights about program parameters (i.e., configu-
ration options, avoiding unnecessary measurements and repressions). So, where
Walrus focuses on reducing measurement overhead by enabling state-of-practice
performance profilers, their work focuses on overall reducing measurement cost by
selecting a better experiment setup.

5.8 Summary

In what follows, we contextualize the contributions of the work presented in this
chapter to the field of configurable software systems, and with regard to the general
contribution that is makes to our overall thesis.
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State-of-the-art performance profilers have the drawback that they cannot incorpo-
rate configuration knowledge. This means, they cannot attribute their measurements
to configuration choices. Hence, detecting performance bugs in configurable soft-
ware system difficult, as developers have no direct information about which and how
configuration options are involved in a performance bug.

Walrus resolves this problem by detecting configuration-dependent code and
passing configuration knowledge through its instrumentation interface onto pro-
filers. This way, profilers can use configuration knowledge to collect and interpret
their measurement data, enabling configuration-aware performance measurements.

Through our evaluation that analyzed the two real-world subject systems used in
high-performance computing (dune and HyTeG) and 16 additional synthetic subject
systems, we have demonstrated that Walrus can enable three state-of-practice
profilers to detect configuration-specific performance regressions.

Contribution to the field of configurable software systems. Our evaluation
demonstrates that, with Walrus, we can analyze the performance of config-
urable software systems using state-of-practice performance profilers. Our results
show that through Walrus multiple performance profilers where able to iden-
tify configuration-specific performance regressions with reasonable amounts of
overhead. This demonstrates that Walrus can combined different state-of-the-art
configurability localization approaches with state-of-practice performance profilers,
enabling configuration-specific performance analysis.

Walrus introduces a new way of empowering industry-strength performance
profilers with configuration knowledge. This way, we make a step into the direction
of better understanding the performance landscape of configurable software systems.

General contribution to this thesis. The work presented in this chapter employs
code regions in two different ways. First, to reuse an already existing static taint
analysis to detect terminator instructions that are influenced by configuration vari-
ables (Section 5.2.2). This application shows how code regions enable the reuse of
advanced program analyzes that initially targeted a different problem. Second, to
model configuration-dependent code in a program (Section 5.2.1). This application
shows that configuration variability (space), encoded through configuration options,
can be modeled through code regions. Afterwards, in Section 5.3, we demonstrate
how code regions enable dynamic analyses—performance profilers in our case—to
capture code region-specific runtime information.





6
Concluding Remarks

In the following, we conclude this dissertation. Afterwards, as the research presented
in this dissertation lays the foundation for better integrating state-of-the-art program
analysis into variability research, we outline future research directions and ideas
that can now be realized through our work.

6.1 Summary of Contributions

Over the last decades, the complexity of modern software systems has been growing
rapidly through faster development, larger teams, and more configurability. As
software systems become ever more prominent in everyday lives and society, we
expect this trend to accelerate in the future. However, analyzing and understanding
the evolution of software systems in the context of configurability is difficult, not
only because time and space dimensions interact and influence each other, but also
because state-of-the-art program analyses cannot be easily applied to such systems.

To improve the current situation, we developed a conceptual abstraction of code
regions that unifies variability information from both dimensions and that presents
it to state-of-the-art program analyses. Code regions decouple domain-specific
variability information from the program analysis through a uniform interface and
separate the analysis semantics from the variability semantics. We developed a
practical implementation of our uniform abstraction of code regions that is able to
apply advanced state-of-the-art program analyses to solve previously challenging
research problems. Through the innovation of abstracting variability information
and combining it with state-of-the-art program analyses, we were able to make
contributions to different research fields. In particular, the research presented in
this dissertation made the following contributions to the fields of socio-technical
analysis, software repository mining, the analysis of configurable software systems,
and program analysis in general:

Software repository mining. State-of-the-art software repository analyses often
do not have precise information about a program’s operational semantics at their
disposal. However, such information is essential for understanding how software
behaves, for example, to infer developer connections or understand the impact of
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code changes. To provide such information and to bridge the gap between repository
information and program semantics, we have developed SEAL.

With SEAL, we have presented an approach that combines historical development
data, mined from software repositories, with a program’s operational semantics.
This way, we can now, for example, infer previously hidden connections between
developers. The combination of high-level information from software repositories
with low-level program semantics opens up new research avenues to understand
software evolution, by incorporating the inner workings of a program. Our work
contributes to the field of software repository mining by introducing a new method
to extract a new kind of data from software repositories that combines repository
information with a program’s operational semantics.

Socio-technical analysis. Results from state-of-the-art program analyses can be
hard to interpret and act upon, especially in a development context that encompasses
several teams and a many developers, as understanding the results or building a
needed fix can require the involvement of multiple different developers. Hence, it
is important to incorporate the socio-technical context of a software project into
analysis findings. However, combining both is a non-trivial task, as socio-technical
information is not present on the abstraction level that program analyses typically
operate on.

To address this shortcoming, we have built SEAL in such a way that the computed
repository information can be freely attributed to existing analyses results. This
way, the analysis can automatically be contextualized with socio-technical infor-
mation extracted from the project repository. Our work contributes to the field of
socio-technical analysis by providing a new information source that incorporates
a program’s operational semantics into analyses, but also by enabling program
analyses to contextualize their results with socio-technical information.

Configurable software systems. The configurability of modern software systems
can lead hard to diagnose and resolve performance bugs. A major reason for the
difficulties in debugging configuration-related performance bugs is the inability
of current state-of-practice performance profilers to account for configurability
explicitly. That is, state-of-practice profilers cannot attribute their measurements
to configuration choices and leave it up to the developer to contextualize the
measurements with configuration knowledge.

To bridge this gap, we have developed Walrus, a code region-based dynamic
analysis framework that automatically combines configuration knowledge with
state-of-practice performance profilers. Embedded into a modern compiler, Walrus

detects configuration-dependent code and weaves profiler-specific measurement
code into it, to contextualize the performance profiler’s measurements with con-
figuration knowledge. Our work contributes to the field of configurable software
systems by conceptually combining compile-time and load-time configurability with
state-of-practice performance analysis tools. This way, bringing together a decade of
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configurability localization research with modern industrial strength performance
analysis tools.

Program analysis. Advancements in the area of program analysis often do not
get carried over to users in the wider research community quickly. This is due to
the inherent theoretical and practical complexities modern program analysis entail.
As a result, software engineering researchers cannot capitalize on the most modern
analysis techniques.

Through our abstraction of code regions and the integration of state-of-the-art
program analyses frameworks, such as PhASAR, we enable high-level research ap-
proaches to leverage novel and up-to-date program analyses. Furthermore, through
the decoupling between domain-specific variability information and analyses, we
make analyses freely combinable and reusable, by that, reducing the burden on
software engineering researchers. This way, we make a small step into the direc-
tion of better integrating modern state-of-the-art program analysis into software
engineering research.

The conceptual abstraction of code regions that we developed through this disser-
tation enables reusable and combinable program analysis that can be applied to
variability but also potentially to a multitude of other domain-specific concepts.
Through our work, we are now able to analyze different types of variability in
concert with state-of-the-art program analyses.

6.2 Future Work

The work presented in this dissertation lays the foundation for a static- and dynamic-
analysis-driven investigation of different types of variability and more program-
analysis-driven research, in general. In what follows, we lay out the four most
promising directions in which our work could be extended.

6.2.1 Extending Code Regions to Other Domains

Code regions abstract from specific high-level information, variability information
in our case. Throughout our work, it became clear that code regions are also suitable
to represent information from other domains in a uniform way. For example, for
architectural analysis we can model architectural abstracting as code regions, or
for security we can implement common information leakage analysis by modeling
private data locations as well as user facing APIs as code regions. We give a more
detailed overview of potential information that could be modeled through code
regions in Section 3.7. When looking into additional applications of code regions,
we noticed that there are two categories of additional code regions that could be
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conceived: Primary code regions that are in the direct focus of an investigation,
for example, security-critical regions that indicate where private data are stored.
But there are also complementary code regions that inject relevant information into
the analysis (i.e., code regions that, when combined with primary code regions,
enhance the statements one can make). Take, for example, test-specific coverage data,
modeled as a code region. This additional information could be valuable to many
analyses and complement the interpretation of their results. Clearly, what defines a
primary or complementary code region depends on the research question one wants
to address. However, seen from a pragmatic point of view, adding complementary
code regions for information that is already present or can be integrated easily into
LLVM could be beneficial for multiple research questions. As by adding a new type
of code region, multiple new questions can be addressed through the combinatorics
with other code regions and different analyses (i.e., as multiple different types of
code regions can be used simultaneously in integrated analyses, adding a new one
enables other approaches to incorporate them). In general, code regions counteract
the loss of domain-specific information, which is incurred during the lowering to an
intermediate representation, by preserving or recovering the lost information and
relating it to the intermediate representation.

6.2.2 Enhancing Code-Region Interactions Through Data-
Flow Path Information

In Section 3.3, we introduced code-region interactions capturing when two code
regions affect each other with regard to a specific interaction relation. In Chapter 4,
we applied code regions to capture data-flow-based commit interactions that encode
if there is a data flow from code belonging to one commit to code belonging to
another. What is currently missing in this picture is the data-flow path that actually
connects the two commits or, described from an analysis point of view, the data-flow
path that connects the specific instructions inside the commit-based code regions.
Data-flow path information can be highly valuable to understand of why certain
interactions happen and, furthermore, to understand what lies on the path.

Gaining an understanding why an interaction happens is valuable in many cases.
For example, if an interaction is unexpected, path information helps to find the loca-
tion in a program that cause the interaction (e.g., if two developers from previously
unconnected teams now have a connection, path information can be used to locate
the code that causes this interaction).

Furthermore, determining what lies on the data-flow path of a specific interaction
can be used to infer additional information about an interaction. For example,
through the data-flow path, one can collect all configuration options from the
configuration-dependent code regions that are on the path. In another example that
uses architecture code regions (i.e., regions that encode to which architectural layer a
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specific piece of code belongs), one can collect in which sequence architectural code
regions lie on the path and from that infer if an architectural violation occurred.

By extending code-region interactions with path information, we can infer more
information about why interactions happen and what lies on the paths of an in-
teraction, enabling researchers to investigate a variety of new questions about the
evolution of configurable software systems through code regions.

6.2.3 Analyzing Code Regions in a Historical Context

Currently, code regions and information derived from them, such as commit inter-
actions, are computed for a specific revision of a software system. However, up to
now, they have not been analyzed in the historical context of the software system,
meaning, how they themselves change over time. The historical context opens up
two research problems: First, we need to analyze how the information derived from
code regions, such as commit interactions, changes over time, as understanding
changes in such data could contain valuable information. Second, we need to find a
way to trace code regions over time to understand how specific regions change (i.e.,
we need to identify the same region in multiple revisions).

With regard to the first problem, we have seen that, from a data-flow perspective,
code changes can have varying effects on the rest of the software system. However,
until now, we have only analyzed these changes in isolation, that is, we only
have analyzed a specific revision without considering the order in which they are
developed. This gives us a snapshot view on the system, but it does not tell us how
the system evolved into this state. Take, for example, central code, where we can
locate changes for a revision that modify or affect code that currently is central in
the data-flow dependency structure of the system. What we do not know is how and
when the code became central. For example, was a function introduced as central
code or did changes to the system that used the function let it become central over
time? We expect that change patterns in the history of configurable software systems
can be used as valuable signals to determine new metrics for assessing the potential
impact a change could have (e.g., to determine fault-prone artifacts or improve
maintenance efficiency [129]).

For the second problem, to be able to trace code regions over multiple revisions,
we need to find a way to uniquely identify a code region. Being able to trace code
regions through multiple revisions would enable us to analyze how a region changes
over time, which allows analyses of various kinds to better incorporate software
evolution, for example, detecting when the set of configuration options that con-
trol a configuration-dependent region change, or comparing the time spent in a
configuration-dependent region with the previous time spent in the same region.
Currently, we have no reliable way of matching a code region to it’s counterpart in a
previous revision. Note, due to the fact that practical programming languages have
no inherent concept of program revisions, such a matching will be a heuristic [209].
Even for language concepts such as function names there is no guarantee that a
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function with the same name in another revision identifies the same function [139].
For many practical purposes matching function through their name is good enough.
Developing a similar heuristic to match code region from different revisions would
enable us to analyze how code regions change over time. For example, we are
currently limited to compare the time spent on a configuration-option level in-
stead of a region level, which would be interesting as we would be able to locate
configuration-specific performance regression more precisely.

Overall, we expect that considering code regions and the information derived
from them in the historical context of a software system can provide new and unique
insights into the evolution of configurable software systems.

6.2.4 Applying Commit-Interaction Data to Socio-Technical
Network Analysis

Our work introduces the new concept of commit interactions to analyze the de-
pendencies between code changes and their developers. We have shown that we
can infer interesting new connections between developers that previous state-of-
the-art approaches (e.g., Joblin et al. [105] or Mauerer et al. [151]) that are based
on co-occuring changes or call-graph interactions where not able to find. Current
approaches in socio-technical network analyses base their coupling metrics on co-
changes, determined on a file or function level, or on semantic coupling between
words, and do not incorporate data-flow information [75, 101, 104, 105, 154]. How-
ever, we did dig deeper into the facts that can be gained from commit interactions
for socio-technical network analyses. We argue that data-flow-based commit interac-
tions carry valuable information for state-of-the-art approaches. However, it needs
to be determined experimentally whether and how much valuable information is
carried in this new type of interactions. Furthermore, the value gained depends on
the specific socio-technical approach, meaning, for some approaches the additionally
discovered developer interactions might be highly relevant, where for others they do
not provide relevant additional information. For example, we expect that commit in-
teractions can inform socio-technical congruence studies [106, 107, 151] by revealing
previously hidden developer connections. Overall, more research in this direction is
required to understand the value of data-flow-based commit interactions.
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