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Abstract

Motivation: Bloom filters are a popular data structure that allows rapid searches in large sequence datasets. So far,
all tools work with nucleotide sequences; however, protein sequences are conserved over longer evolutionary
distances, and only mutations on the protein level may have any functional significance.

Results: We present MetaProFi, a Bloom filter-based tool that, for the first time, offers the functionality to build
indexes of amino acid sequences and query them with both amino acid and nucleotide sequences, thus bringing se-
quence comparison to the biologically relevant protein level. MetaProFi implements additional efficient engineering
solutions, such as a shared memory system, chunked data storage and efficient compression. In addition to its con-
ceptual novelty, MetaProFi demonstrates state-of-the-art performance and excellent memory consumption-to-speed
ratio when applied to various large datasets.

Availability and implementation: Source code in Python is available at https://github.com/kalininalab/metaprofi.
Contact: olga.kalinina@helmholtz-hips.de

1 Introduction

With the technological advancement in the field of next-generation
sequencing (NGS) over the past decade, there is a rapid growth in
the amount of available biological sequencing data in public data-
bases e.g. European Nucleotide Archive (ENA) (Leinonen et al.,
2011a), and Sequence Read Archive (SRA) (Leinonen et al.,
2011b). NGS data have become an invaluable resource in various
fields of life science research. As the size of the databases reached
the petabyte scale, it has become difficult to support online
searches in these databases. As great power comes with great re-
sponsibility, the requirement for tools to process, store and query
large collections of sequence data without high memory and stor-
age requirements constitutes a computational challenge. Analyzing
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these abundant data will lead to opportunities for great scientific
discoveries.

To reduce the required time and memory, a probabilistic data
structure can be used to summarize and deliver fast approximate
answers. Probabilistic membership data structures aid in determin-
ing whether an item/element is present or not. Several such data
structures are already available, e.g. Bloom filter, Cuckoo filter,
Quotient filter, etc. These data structures differ in their ability to
offer approximation or definite answers. Many of these data struc-
tures are predominantly used in streaming applications and database
lookups before performing any expensive operations. These data
structures guarantee zero false negatives, thus if such a data struc-
ture returns an answer of a non-existent key, then the database
fetch/read is not required, saving time.
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In the last few years, several tools utilizing Bloom filter data
structures for storing and querying large sequence datasets
became available: SBT (Solomon and Kingsford, 2016), HowDeSBT
(Harris and Medvedev, 2020), BIGSI (Bradley ez al., 2019), COBS
(Bingmann et al., 2019), DREAM-Yara (Dadi et al., 2018), Rambo
(Gupta et al., 2021), kmtricks (Lemane et al., 2021) and others.
Other tools utilize other variants of probabilistic data structures:
Squeakr (Pandey et al., 2018a) in combination with Mantis (Pandey
et al., 2018b), BCALM2 (Chikhi et al., 2016) in combination with
REINDEER (Marchet et al., 2020). Custom indexes are built either
of the raw sequencing data or of the data from curated databases
and later allow the sequences of interest to be queried against these
custom indexes to find which samples in the index contain the query
sequence. Although several tools are available, none of them sup-
ports amino acid sequence indexing, creating a major gap in the
field. MetaProFi bridges this gap by proposing the first data struc-
ture that can not only store both amino acid and nucleotide se-
quence data but also allows for querying amino acid-based indices
with nucleotide queries, internally performing a six-frame transla-
tion of the query. A better conservation of protein sequence makes
MetaProFi more robust in detecting non-identical, but closely
related sequences, which, in combination with the possibility of
querying for non-perfectly identical sequences, ensures its larger
flexibility.

To this end, we introduce MetaProFi, a first-of-its-kind tool for
indexing amino acid sequences that also supports nucleotide se-
quence indexing, using Bloom filters as the underlying data struc-
ture. Bloom filter (Fig. 1) is a probabilistic set-membership data
structure that stores the presence or absence of items/elements in a
bit vector and can be queried for presence or absence. Bloom filters
guarantee zero false negatives. The bit vector is filled with binary
values where zero indicates absence and one indicates presence: we
start by filling the bit vector with zeros; for each given string, we
apply h hash functions and use the return value of hashing as an
index in the bit vector to flip the zero in the corresponding index
position to one. Collisions (returning the same hash value for differ-
ent strings) can be avoided by using large Bloom filters and perfect
hash functions, but in a realistic setting, this is not possible, thus
false positives arise. Their number can be reduced by increasing the
size of the Bloom filter and manipulating the number of hash func-
tions used.

MetaProFi combines the power of a variant of Bloom filter data
structure which we call packed Bloom filter (see Section 2) with data
chunking and compression to construct the Bloom filter matrix effi-
ciently to index all the observed k-mers (presence/absence) for fast
queries with reduced memory, storage and runtime requirements.

The novel features of MetaProFi include (i) indexing support for
both nucleotide and amino acid sequences; (ii) a possibility for
querying amino acid sequence index using nucleotide sequences; (iii)
a seamless update of previously built indexes with new data/
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Fig. 1. Bloom filter data structure: two hash functions are applied to each of the
three strings and the return values of hashing are used as an index in the bit vector
to flip the zero in the corresponding index position to one

samples; (iv) considerable storage reduction compared to the state-
of-the-art tools.

MetaProFi serves various applications: one can index all the
sequences available in UniProtKB (The UniProt Consortium, 2021)
in a protein-based index. One of the possible applications of such an
index would be a fast alignment-free sequence search that can be
used, for example, to find resistance-associated genes directly from
metagenomics data. MetaProFi allows exact query search expecting
every k-mer in the query sequence to be present, and also supports
approximate search using a threshold (T) when only the fraction of
k-mers larger than T have to be found. As a proof of concept, we
have constructed a MetaProFi index for UniProtKB bacterial
sequences (amino acids) on two different levels (organism level and
sequence level), for the Tara Oceans (Karsenti et al., 2011) dataset
containing nucleotide metagenomic sequencing data collected across
all oceans. Additionally, we used the dataset described in Harris and
Medvedev (2020) which consists of 2585 human RNA-seq experi-
ment results comprising blood, brain and breast samples to demon-
strate the storage, memory, run time, scalability and query
performance.

2 Materials and methods

MetaProFi is developed in Python and is parallelized to take advan-
tage of all the available CPU cores on today’s modern computing
systems in order to achieve the best performance. MetaProFi accepts
both FASTA and FASTQ formats and uses pyfastx (Du et al., 2021)
Python library for parsing the files efficiently.

2.1 Construction of chunked Bloom filter matrix
MetaProFi builds Bloom filters in the form of a matrix directly, un-
like other tools that construct individual Bloom filters for each sam-
ple first and then construct a matrix (and/or other forms) for
indexing. The rows in the matrix represent hash indexes while each
column represents a Bloom filter of length 2 of a sample. Since we
cannot construct large matrices in memory, MetaProFi splits the
number of input samples (Y) into N batches of small samples. N is
estimated based on the Bloom filter size 71, the number of samples in
the input, and a user-defined maximum memory usage threshold.

In the matrix, MetaProFi uses an 8-bit unsigned integer (UINT8)
data type to store bits for eight k-mers by applying bit manipulations
to a UINTS8 integer (a packed Bloom filter). Once all k-mers in a
batch of samples are hashed and the respective bits are flipped in the
Bloom filter matrix, MetaProFi applies data chunking using the
Zarr library (Miles et al., 2022) and compression (Zstandard algo-
rithm, https://github.com/facebook/zstd) techniques to reduce the
storage requirements. This means that the Bloom filters from all
samples of the batch are chunked into C pieces that are compressed
and written to the hard drive. C is calculated in such a way that the
portion of the full Bloom filter matrix corresponding to 7/C k-mers
in all Y samples can be loaded to memory.

By applying compression on each chunk, we achieve a remark-
ably better compression ratio (Table 2) than when compressing indi-
vidual Bloom filters and through this, we offer a significant storage
reduction. This process is repeated for all N sample batches. Using
the Zarr library to store the chunks on disk ensures that the chunks
from all samples that correspond to the same set of Bloom filter
rows are stored in such a way that they can be assessed and loaded
to memory simultaneously, and the whole bit vector corresponding
to a single hash value in all Y samples can be extracted.

MetaProFi utilizes POSIX shared memory as the matrix back-
end, and this enables MetaProFi to efficiently access the matrix
through multiple processes. Using POSIX shared memory allows us
a zero-copy data transfer between multiple processes, at the same
time achieving a significant reduction in the Bloom filter construc-
tion time.

2.2 Index construction for the full Bloom filter matrix
Since MetaProFi’s Bloom filter matrix is stored in batches and
chunks, direct queries for a large number of k-mers need to
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Fig. 2 Overview of MetaProFi pipeline: (a) Chunked Bloom filter matrix construction, (b) Index construction and (c) Search/query pipeline

enumerate all chunks and likely will be slow. So, we build a dedi-
cated efficient index structure (Fig. 2b) for the Bloom filter matrix
such that querying every k-mer has a constant time cost (Bradley
et al., 2019) independent of the number of batches.

The indexing data structure is an array of size m (size of the
Bloom filter), where each cell in the array corresponds to a row [or,
equivalently, a bit-slice (Bradley et al., 2019)] across all samples
(columns) from the Bloom filter matrix. To construct this index
MetaProFi re-creates a POSIX shared memory matrix of size X x Y,
where Y is equal to the total number of samples in the Bloom filter
matrix and X =/C is the number of rows that can be read into the
memory without crossing the maximum memory limit set in the con-
figuration file. MetaProFi reads X rows from each chunk spanning
all N sample batches, on the fly unpacks the UINT8 packed Bloom
filter to individual bits and writes the several unpacked bits of X
rows and Y/N samples corresponding to a batch to the shared mem-
ory matrix in parallel. Once again to benefit from data chunking
and compression, MetaProFi applies this technique to these X rows
and distributes the compressed chunks to multiple processes which
are then written to the disk. MetaProFi repeats the procedure until
all rows from the Bloom filter matrix are indexed. MetaProFi also
supports updates to the index for adding new samples.

2.3 FAQIndexing for FASTA/FASTQ files

MetaProFi can build the Bloom filter matrix either using a collection
of FASTA/FASTQ files where each file is a single sample or using a
single FASTA/FASTQ file where every sequence is treated as a sam-
ple. In the latter case, to accelerate the construction of the
MetaProFi Bloom filter matrix, we introduce a dedicated indexing
data structure. We refer to this as FAQIndex (FASTA/FASTQ index)
hereafter. Inspired by pyfastx (Du et al., 2021), we have imple-
mented an LMDB (Lightning Memory-Mapped Database) (https:/
Imdb.readthedocs.io/en/release/) based indexing for FASTA/FASTQ
(compressed and uncompressed) files. We used LMDB as a storage
backend for its fast querying in addition to the capability to effi-
ciently share the same database with multiple processes. The
FAQIndex contains six columns: the sequence number, name of the
sequence, sequence start offset, byte length of the sequence and the
number of bases in the sequence. This FAQIndex requires less stor-
age compared to pyfastx’s index as we do not store additional

information, such as sequence type and read parameters. Every row
in our FAQIndex is serialized and then compressed for reducing the
storage requirements.

2.4 Querying/searching the MetaProFi index

MetaProFi accepts both raw sequence and FASTA/FASTQ files as
inputs for querying the index (Fig. 2¢). When a multi-sequence file is
used for querying, MetaProFi automatically constructs a small
FAQIndex of the file for distributing the query sequences to multiple
cores/processes. MetaProFi collects the hashes of each k-mer from
every sequence in parallel processes. The MetaProFi index is queried
with these hash values and bit-slices corresponding to each k-mer
are retrieved.

MetaProFi allows exact query search where every k-mer in the
query sequence is expected to be present in a sample and also sup-
ports approximate search using a threshold (T) when only a fraction
of k-mers larger than T have to be found. In addition to querying
with an amino acid sequence against an index built using amino
acid samples and a nucleotide sequence against a nucleotide index,
MetaProFi allows querying an amino acid index using nucleotide
sequences (e.g. metagenomic reads, contigs or assembled genomes)
directly. To this end, MetaProFi performs a six-frame translation of
the nucleotide sequences and uses all six translated sequences as
queries to search the amino acid index. This is not expected to create
any false-positive hits, since in the five non-biological frames a stop
codon is expected to occur approximately every 21 codons, and
hence not more than 10 consecutive k-mers can be matched in a
spurious translation frame.

2.5 False-positive rate

Bloom filters belong to the class of probabilistic data structures with
a zero false-negative rate, and they are prone to false positives by de-
sign. However, the false-positive rate of the Bloom filters can be
controlled by increasing the size of the Bloom filter and the number
of hash functions used. As discussed in Bradley ez al. (2019), one
can also calculate the false-positive rate of the query, which depends
on (i) the number of samples in a dataset, (ii) the size of the k-mer,
(iii) the maximum number of acceptable false discoveries per query
and (iv) the shortest length of the query sequence to be supported.
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Using these parameters, a false-positive rate per query can be calcu-
lated. The exact formulation for the false-positive rate calculation is
presented, for example, in Bradley ez al. (2019).

2.6 Computing setup

Performance evaluations were done on a Dell server with the follow-
ing configuration: AMD EPYC 7702 2.0 GHz CPU with 1.5 TB
RAM, Intel SSD DC P4610 3.2 TB (2.9 TiB) and CentOS 7 (kernel
3.10.0-1160.24.1.el7.x86_64) operating system. MetaProFi was
allocated with 64 cores, and 60 GiB RAM for all its experiments,
and the same for other tools wherever possible during benchmark-
ing. All input files were stored on a non-RAID NVMe NFS file sys-
tem, and outputs were stored on the Intel SSD DC P4610 3.2 TB
disk.

2.7 UniProtKB dataset indexing

Two types of MetaProFi indexes (one at the organism level and one
at the sequence level) were constructed for all bacterial sequences in
the UniProtKB (Swiss-Prot and TrEMBL) database downloaded in
July 2021 with a total size of 64 GiB. The entire Swiss-Prot and
TrEMBL datasets were downloaded from UniProt’s FTP site and the
accession ids for all the bacterial sequences were downloaded by
performing a search with ‘taxonomy: bacteria’ on UniProt’s search
interface.

Three parameters define the architecture of Bloom filters in
MetaProFi: m, b and k, where m is Bloom filter size, 4 is the number
of hash functions to be applied on every k-mer and k is the size of
the k-mer. In MetaProFi, for organism-level indexing, we used the
following parameters: 7 =600 000 000; h=2; k=11. With these
parameters, the false-positive rate was 0.47, while the false-positive
rate per query is 107° if the query sequence size is of a minimum of
35 characters. For sequence-level indexing of the UniProtKB bacter-
ial dataset, we used the same Bloom filter parameters with one
change, m =600 000; and with these parameters, the false-positive
rate was 0.0156 and the per query false-positive rate is 10~ if the
query sequence size is of a minimum of 34 characters.

2.8 Tara Oceans dataset indexing

MetaProFi is mainly developed to fill the technology gap of amino
acid sequence indexing, but for benchmarking purposes, nucleotide
sequence indexing support is also added. With this feature, we
downloaded 4 TiB of compressed Tara Oceans dataset (study acces-
sion: PRJEB1787) from the ENA archive consisting of 249 samples
containing 495 FASTQ files. For MetaProFi indexing of the Tara
Oceans dataset, we used the following Bloom filter parameters:
m =40 000 000 000; » = 1; k= 31. With these parameters, the false-
positives rate was 0.3782 and the false-positive rate per query k-mer
is 107° if the query sequence size is of a minimum of 50 characters.
Since we wanted to benchmark MetaProFi’s performance with other
tools which do not provide an option to change the number of hash
functions used, we set MetaProFi to use only one hash function.

We compared MetaProFi’s performance with kmtricks (v1.1.1),
and kmtricks was run using the same Bloom filter parameters as
above and without filtering k-mers that appear only once. Further,
kmtricks was run in the ‘hash: bft: bin> mode which only performs
the Bloom filter matrix construction instead of the k-mer counting.
We chose other parameters (number of cores, k-mer length) to
match those of MetaProFi for a fair comparison. For kmtricks in
combination with HowDeSBT, we used only 1% of bits to be con-
sidered from all Bloom filters during clustering and indexing, since
the value recommended by the HowDeSBT tutorial (https:/github.
com/medvedevgroup/HowDeSBT/tree/master/tutorial) lead to pro-
hibitively long runtimes.

For evaluating query performance, we randomly selected 1000
reads from the 495 FASTQ files of the Tara Oceans dataset and
used them for querying.

2.9 Human RNA-seq dataset indexing

For benchmarking, we also used a human RNA-seq dataset consist-
ing of 2585 samples (2.7 TiB) that were also used in Harris and
Medvedev (2020). We downloaded this dataset from the SRA using
the parallel-fastq-dump (https://github.com/rvalieris/parallel-fastq-
dump) tool, accession numbers were obtained from Harris and
Medvedev (2020).

We divided this experiment into two sets. First, a subset of 650
samples (referred to as RNA-seq-mini hereafter) was randomly
selected for building a small index to compare the performance of
several tools: HowDeSBT (v2.00.02 20191014), kmtricks (v1.1.1),
COBS (v0.1.2), Squeakr (v1.0) in combination with Mantis (v0.2.0)
and MetaProFi. Second, all 2585 samples (referred to as RNA-seq
hereafter) were indexed using both COBS (v0.1.2) and MetaProFi.

For the RNA-seq-mini dataset, we chose the following Bloom fil-
ter parameters: 72 =2 000 000 000; » = 1; k =21. With these param-
eters, the false-positive rate was 0.09 and the false-positive rate per
query is 10~° with a minimum query size of 31 characters. To level
the comparison and consistency between all tools, we first con-
structed compacted De Bruijn Graphs (DBGs) for all 650 samples
using BCALM2 (v2.2.3) (Chikhi et al., 2016), while removing all k-
mers that appear only once and then used this as input to all the
tools for the benchmark. For Mantis, we built Squeakr input files
and also made sure to remove all k-mers that appear only once. It
must be noted that MetaProFi does not require these pre-processing
steps. During the execution of all tools, we made sure that none of
them repeats the removal of k-mers that appear only once step.
Also, we ran kmtricks in the ‘hash: bft: bin> mode which will only
perform the Bloom filter matrix construction instead of the k-mer
counting. We chose other parameters (number of cores, k-mer
length) to match those of MetaProFi for a fair comparison. For
HowDeSBT and kmtricks in combination with HowDeSBT, we
used only 1% of bits to be considered from all Bloom filters during
clustering and indexing, since the value recommended by the
HowDeSBT tutorial (https://github.com/medvedevgroup/HowDeSB
T/tree/master/tutorial) lead to prohibitively long runtimes.

For the RNA-seq dataset, we obtained the Bloom filter parame-
ters from (Marchet et al., 2020). Bloom filter parameters were the
following 7 =2 000 000 000; »=1; k=21. This dataset was used
as it is without applying any k-mer filtering.

For evaluating query performance, we downloaded a FASTA file
comprising 70 866 transcripts, following (Marchet et al., 2020). We
then extracted the first 1000 transcripts using pyfastx (Du et al.,
2021) and used it for querying both RNA-seq and RNA-seq-mini
indexes of all tools. RAM utilization was monitored through the
Linux command-line utility atop (via the command atop -mp).

3 Results

MetaProFi allows the indexing of large numbers of samples/data-
sets. MetaProFi (Fig. 2) combines the power of a probabilistic data
structure with data chunking and compression to store large Bloom
filters and to create indexes for fast querying. The key methodo-
logical novelty of MetaProfi is its ability to index amino acid
sequences and enable the querying of amino acid sequence index
using nucleotide sequences. This allows disregarding synonymous
mutations and focusing directly on sequence variants that impact
the protein sequence and hence may impact the corresponding pro-
tein functions. Moreover, more efficient exact sequence searches are
possible also for non-exactly matching strains that contain only si-
lent mutations. Additionally, since protein sequence homology is de-
tectable across longer evolutionary distances, homologous
sequences can be detected on the level where nucleotide-level simi-
larity fails.

3.1 MetaProFi performance

To evaluate the performance of MetaProFi, we used UniProtKB,
Tara Oceans and human RNA-seq and RNA-seq-mini datasets (see
Section 2 for details) for the index construction. For UniProtKB,
two types of indexes were created: one at the organism level and the
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other at the sequence level. Since no other tool is available to per-
form amino acid k-mer indexing we added support for nucleotide
indexing to MetaProFi to enable comparison against other tools and
we indexed the Tara Oceans and the RNA-seq datasets for bench-
marking purposes.

3.1.1 UniProtKB dataset indexing

For UniProtKB organism-level indexing, the dataset was constructed
by extracting individual bacterial sequences using their accession ids
with criteria on the minimum length of the sequence (k=11) and
then grouping them by their organism’s name (OS field value in the
fasta header) to obtain 100 384 uncompressed individual fasta files
containing a total of 46 511 863,142 k-mers. MetaProFi constructs
the Bloom filter matrix in 38.05 min and the index in 971 min using
under 60 GiB of RAM and under 135 GiB of disk space (Table 1).
Storage size is directly proportional to the size of the Bloom filter
and the number of samples in the dataset: if MetaProFi had used a
regular Bloom filter, it would require 6.85 TiB (size of the Bloom fil-
ter times number of fasta files/samples, i.e. 600 000 000 x
100 384 =60 230 400 000 000 bits, which is equal to 6.85 TiB) disk
space for storing the uncompressed Bloom filter matrix. With
MetaProFi’s optimizations and techniques, we provide a 50-fold
compression and can construct Bloom filter matrices for a large
number of datasets or use very large Bloom filters that have a low
false-positive rate, while still storing them efficiently.

To demonstrate MetaProFi’s scalability we used all the bacterial
sequences that were extracted from the UniProtKB dataset, 334 984
sequences from Swiss-Prot and 151 450 171 sequences from
TrEMBL. We monitored the construction of the FAQIndex (see
Section 2.3) for the compressed UniProtKB bacterial input dataset of
size 32 GiB during the Bloom filter matrix build step. MetaProFi’s
FAQIndexing tool took 17 min to construct the FAQIndex and used
11 GiB of storage and a maximum of 1 GiB RAM. Using LMDB as

Table 1. MetaProFi indexing results for UniProtKB bacterial dataset

Time (min) RAM (GiB) CPU cores Disk (GiB)

Organism level

Bloom filter matrix 38.05 <60 64 139

MetaProFi index 971 <60 64 135
Sequence level

Bloom filter matrix 65.38 <60 64 232

MetaProFi index 1357 <60 64 210

Table 2. RNA-seg-mini dataset benchmark comparisons

the underlying database reduces the RAM consumption, as we do
not retain data in memory and write the data for every sequence to
the disk as soon as they are populated. Using the FAQIndex of the
UniProtKB bacterial input dataset (151 785 155 sequences), we cre-
ated a sequence-level MetaProFi index. The Bloom filter matrix and
index construction time are comparable with the organism-level
case. The disk requirements are twice as large, and RAM consump-
tion is comparable (Table 1). These results show that MetaProFi is
scalable to hundreds of millions of samples.

3.1.2 RNA-seq-mini dataset indexing

We created a subset of 650 samples out of 2585 samples of the
RNA-seq dataset to benchmark MetaProFi’s performance with
other tools such as HowDeSBT, kmtricks in combination with
HowDeSBT, COBS and Squeakr in combination with Mantis. We
first built the compacted DBGs for all 650 samples (while removing
k-mers that were present only once) and then used them as the input
(see Section 2 for details). From the results (Table 2), we can see that
COBS has the best total runtime followed by MetaProFi, whereas
the total disk consumption of MetaProFi is the smallest.

We also benchmarked the query performance of all these tools,
for which we downloaded a fasta file from RefSeq (O’Leary et al.,
2016) comprising 70 866 human transcripts from RefSeq, as
reported in Marchet ez al. (2020). We extracted the first 1000 tran-
scripts and used them for querying. The results show that
HowDeSBT is faster when performing exact querying (T=100%)
(exact), whereas MetaProFi is equally fast in both exact and ap-
proximate (T=75%) searches and requires a very low amount of
memory (Table 3).

3.1.3 RNA-seq dataset indexing
We built a full index with all the samples (2585 samples;
6 432 932 578 661 k-mers, k=21) from the human RNA-seq
experiments obtained from the SRA (Leinonen et al., 2011b) using
MetaProFi and COBS. MetaProFi takes about 20% longer time
than COBS and requires around 30% less storage (Table 4). We did
not attempt to build the index with other tools as they were found
to be prohibitively slow for the small RNA-seq-mini dataset.

We then used this index for querying 1000 transcripts (Table 5).
MetaProFi was 6-7 times faster than COBS and required much less
memory as well.

Tool RAM (GiB) CPU cores Disk BF Disk index Disk total Time BF Time index Total time
(GiB) (GiB) (GiB) (min) (min) (min)
HowDeSBT 2.4 64 152 4.4 168.4 51.94 93.1 145.1
kmtricks + HowDeSBT 286.39+4 64 156 4.4 308 +12 54.49 383.9 438.39
MetaProFi 12 64 8.2 9.4 17.6 4.37 20.42 24.79
COBS 12 64 - 51 54 - 8.59 8.59
Squeakr + MANTIS 7.3+49 64 28 14 42 145.22 33.27 178.49

BF, Bloom filter; Disk total, total storage used for BF, index and intermediate files; Time total, total time for constructing BF and index; —, N/A. Bold face indi-

cates the best performing tool.

Table 3. Query performance benchmark of 1000 transcripts

Tool RAM (GiB) CPU cores Time (s) (T=100%) Time (s) (T=75%)
HowDeSBT 0.61 - 22 558
kmtricks + HowDeSBT 0.64 20 2952 2957
MetaProFi 1.9 20 29 33

COBS 251 20 234 228
Squeakr + MANTIS 14 - 37 -

Bold face indicates the best performing tool.
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Table 4. RNA-seq dataset benchmark comparisons

Tool RAM (GiB) CPUcores Disk BF (GiB) Disk index Disk total (GiB)  Time BF (min) Time index Total time (min)
(GiB) (min)
MetaProFi 59 64 295 333 628 1108 127 1235
COBS 69.4 64 N/A 935 996 N/A 1000 1000
Bold face indicates the best performing tool.
Table 5. Query performance benchmark of 1000 transcripts
Tool RAM (GiB) CPU cores Time (s) (T=100) Time (s) (T=75)
MetaProFi 3.4 64 43 48
COBS 92.5 64 290 290

Bold face indicates the best performing tool.

Table 6. Tara Oceans dataset benchmark comparisons of MetaProFi and kmtricks

Tool RAM (GiB) CPU cores Disk BF Disk index Disk total Time BF Time index Time total
(GiB) (GiB) (GiB) (min) (min) (min)

MetaProFi 68 64 643 750 1393 2642 279 2921

kmtricks + HowDeSBT 47 64 1228.8 >3907 2344 + 3907 865 >7217% >8082%

BF, Bloom filter; disk total, total storage used for BF, index and intermediate files; Time total, total time used to construct BF and index.

Bold face indicates the best performing tool.
“Terminated after 120 h, data reported as it is at the time of termination.

3.1.4 Tara Oceans dataset indexing

To compare MetaProFi with the state-of-the-art tools, we used
kmtricks (Lemane et al., 2021), a k-mer counting tool that allows
building Bloom filters that can be used for constructing a k-mer index
using a variant of HowDeSBT (Harris and Medvedev, 2020) imple-
mented in its package. We applied both tools to the Tara Oceans data-
set which contains a total of 3 431 551 187 218 k-mers (k= 31).

During Bloom filter construction kmtricks was 2-3 times faster
than MetaProFi while consuming 2-3 times more storage than
MetaProFi (Table 6). After 120 h the kmtricks + HowDeSBT index
construction (1% of bits were considered from each filter) was termi-
nated, and we report only the numbers we observed up until the ter-
mination without any extrapolation (we assume that the computation
might have taken several more days as only less than half of the Bloom
filters were indexed). On the other hand, we can see that MetaProFi
required only 4.65 h to build an index. This shows that MetaProFi can
index datasets containing trillions of k-mers in a reasonable amount of
time yet only requiring low amounts of memory and storage.

To demonstrate MetaProFi’s query performance, we randomly
selected 1000 reads from the 495 FASTQ files of the Tara Oceans dataset
used for constructing the index. These 1000 reads were queried against
the Tara Oceans MetaProFi index using exact search (T=100%) and
approximate search (T'=75%). The query run times were 164 s for the
exact search (T=100%) and 166s for the approximate search
(T=75%). We observed a peak memory usage of 14.3 GiB. We were
unable to compare the query results with the kmtricks + HowDeSBT
setup as the index construction had to be terminated after 120 h.

From our benchmarking results, we can see that MetaProFi
reduces the amount of disk usage even for very large Bloom filters,
compared to the state-of-the-art tools, constructs index in little time,
and performs better during querying.

4 Discussion

MetaProFi for the first time presents a possibility to index directly
protein sequences, which makes calling variants in coding sequences a
much easier task. In addition, it comprises a mode of usage centered
around nucleotide sequences, which makes it possible to compare it to

other tools in the field. In these comparisons, MetaProFi demon-
strated state-of-the-art performance with the best runtime/memory
ratio. MetaProFi was able to build k-mer indexes rapidly for multiple
datasets of different sizes demonstrating it can scale in any direction.

Nevertheless, the most important feature of MetaProFi, which
makes it stand out among other tools, is that it can build indexes for
amino acid sequences and enables querying of an amino acid index
using nucleotide sequences. This approach was taken with an
intended goal in mind: to most efficiently store and query sequence
data coming from metagenome samples, primarily bacterial metage-
nomes. Storing protein data makes the search more flexible and
offers many advantages, while the only disadvantage is that the in-
formation in non-coding regions is lost. In this scenario, we consider
this a little loss, since bacterial genomes contain comparatively little
non-coding sequence, and a lot of important markers are detected at
the protein level, e.g. markers of antibiotic resistance. Potential
advantages include, for example, the possibility to conduct very fast
and efficient searches with the k-mer presence threshold T=100%
for closely related, but not identical DNA sequences that contain no
missense mutations at the protein level. On the other hand, remote
homologs can be detected in cases, when the sequence similarity on
the DNA level drops but is still detectable at the protein level.

While other state-of-the-art tools do not typically offer the function-
ality to store amino acid-based indexes, the change of the code to allow
it would not be a large one per se, although would require numerous
adjustments. However, the option to query an amino acid-based index
with a nucleotide query is a non-trivial one and is unique to MetaProFi.

To conclude, we developed MetaProFi, a first-of-its-kind amino
acid k-mer indexing tool with added support for indexing nucleotide
sequences that efficiently builds indexes from tens of samples to
hundreds of millions of samples with reduced memory, storage and
runtime than its predecessors. Through our proof-of-concept index
construction for multiple datasets, we demonstrated that we could
grow our index horizontally (samples) or vertically (Bloom filter
size), and yet it requires very little storage and memory without
compromising the performance both for index building and query-
ing tasks. MetaProFi can be further developed to support distributed
computing infrastructure in addition to the current single system-
specific deployment setup.
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