
U
N

IV
E

R
S

IT
Ä

T
D

E
S

S
A

A
R

L
A

N
D

ES

E
"l— —._
Ea «%
m5 “.?am a
In : --
ua : 5_{ ___“

äm_>-‘f :
um?- fa .mflqä1 :32
wer-an : ;«a: .UJmau-

S
E

K
I—

R
E

P
O

R
T

IS
S

N
1

4
-3

7
-4

4
4

7

An Approach to Assertion Application via:
Generalised Resolution

Quer-c Bao V0.1, Christoph Bsfmz-n1111-1131“-1 and Serge
Autexier”

1"FR, Informatik,. “Universität “des Saarlandes; 6-6041
“Saarbrücken, Germany

{bao ,chr i s}@ags .un i - sbude
2lZl'FflE-CI' GmbH, 661-23 “Saarbrücken, Germany

autexierüdfki.de

'SEKI Report iSR—2003-01

Editor of SEKI series:
Claus—Peter Wirth
FB Informatik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
E-mail: cpCQags . uni - sb . de
WWW: http://www.ags.uni-sb.de/"cp/welcome‚html

An Approach to Assertion Application via Generalised
Resolution

Quoc Bao Vol, Christoph Benzmiiller1 and Serge Autexierli2
1FR Informatik, Universität-des Saarlandes, 66041 Saarbrücken, Germany

{bao,chris}@ags.uni-sb.de
2DFKI GmbH, 66123 Saarbrücken, Germany

autexier©dfki.de

July 22, 2003

Abstract

In this paper we address assertion retrieval and application in theorem proving sys-
tems or proof planning systems for classical first-order logic. Due to Huang the notion
of assertion comprises mathematical knowledge such as definitions, theorems, and ax-
ioms. We propose a distributed mediator module between a mathematical knowledge
base KB and a theorem proving system TP which is independent of the particular
proof representation format of TP and which applies generalised resolution in order
to analyze the logical consequences of arbitrary assertions for a proof context at hand.

Our approach is applicable also to the assumptions which are dynamically created
during a proof search process. It therefore realises a crucial first step towards full
automation of assertion level reasoning. We discuss the benefits and connection of
our approach to proof planning and motivate an application in a project aiming at a
tutorial dialogue system for mathematics.

1 Introduction

Mathematical assistant systems provide users with tools that support them in construct-
ing proofs. Thereby it is an important issue that the constructed proof fragments are
presented in a format that is easy to understand for human users. This is the central prob-
lem of proof presentation and explanation. On the other hand, sophisticated proofs for
real mathematical problems have now been constructed in mathematical aSsistant systems
“(either automatically or interactively) at different levels of granularityl. In some of the
employed approaches, most low level logical operations are abstracted away and mainly
domain specific mathematical knowledge is used to guide the construction of the proofs.

1There is a ongoing debate whether level of abstraction, level of detail, or level of granularity is the
most appropriate notion to use. In this paper we will use the term level of granularity, since we address
abstraction on 10gical derivations and proof Operators and not, for instance, abstraction of the object
representation language.

The area is known as proof planning and such domain specific mathematical knowledge
comes in as the strategies or proof methods which are made available to the proof planner
(cf. [9] and [17, 21, 20] and the references therein). ‘

The assertion level introduced by Huang [16] is argued to be just the right level to which
machine generated proofs should be transformed before being presented to (human) users.
In this paper we argue further that the assertion level can also serve as one of those levels
of granularity on which knowledge-based proof planning should be based. This viewpoint is
also taken by Autexier [3], which provides a proof representation framework subsuming the
assertion level. However, proof automation of the framework, i.e. the heuristically guided
choice of the assertions to apply, is still a challenge and not tackled in this paper.

Huang [16] achieves proofs at the assertion level by reconstructing machine generated
proofs. This process basically involves clustering several proof steps of the input proof into
segments. >From the outside, each segment can be viewed as one (assertion level) proof
step. While this partly solves the problem of proof presentation as each assertion level proof
step can be mapped naturally to single statements of the natural language presentation of
the proof, i t has not been investigated yet how the proof planning process may directly
benefit from such a representation level. We are convinced that by planning directly on
the assertion level it will be possible to overcome at least some of the identified limita-
tions and problems of proof planning (see [5, 10])-— in particular, those, that are caused
by an unfortunate intertwining of proof planning and calculus level theorem proving. The
perspective we therefore motivate in this paper is to consider the assertion level as a well
chosen borderline between proof planning and machine oriented methods. Determining
the logical consequences of assertions in a proof context is the task of machine oriented
methods (in our case generalised resolution). The tasks on top of this level — for instance,
a domain-dependent collection of the initial assertions to be considered, the heuristic se-
lection of the most promising among the computed logical consequences, the introduction,
constraining and handling of meta—variables, etc. — belong to the scope of domain specific
proof planning.

In summary, instead of reconstructing natural deduction (ND) proofs to obtain assertion
level proofs as suggested by Huang, we propose to directly plan for proofs at the assertion
level. This should improve the quality of the resulting proof plans and also facilitate better
user interaction. In contrast to tactical theorem proving, we do not want each assertion
associated with a particular tactic but aim at one general module which works for arbitrary
assertions and computes their consequences in arbitrary proof contexts. These consequences
are then suggested to the user and/ or the automated prover. Note that this is different
from proposing intermediate subgoals and then verifying them with the help of tactics as
done by systems like MIZAR (http://www.mizar.org/).

The development of our ideas revolves around the mathematical assistant system OMEGA [27]
and the current initiative in this project to rebuild the system on top of the proof represen-
tation framework in [3]. We furthermore employ OMEGA’s agent-based search mechanism
OANTS [7] for a distributed modeling of our framework and we motivatean application of
the approach in a project aiming at a tutorial dialogue system for mathematics.

2 Proof planning at the assertion level

A brief review on the assertion level.

This part is reproduced from [16] for completeness. Consider the problem of presenting
machine generated proofs. Assume that the target formalism is natural deduction which is
a common practice for many existing proof transformation systems. In contrast to proofs

_ found in mathematical textbooks, proofs constructed by these systems are composed of
derivations from elementary logic, where the focus of attention is on syntactic manipulations
rather than on the underlying semantical ideas. The problem seems to come from the lack
of intermediate structures in ND proofs that allow atomic justifications at a higher level of
abstraction. Huang then went on to introduce the following three levels of justifications:

o Logic level justifications are simply verbalizations of the ND inference rules, such as
the rule of Modus Ponens. -

. .“ Assertion level justifications account for derivations in terms of the application of an
axiom, a definition or a theorem (collectively called an assertion). For instance, an
extract from a textbook proof may read:

“since e is a member of the set A, and A is a subset of B , according to the
definition of subset, e is a member of B”.

0 Proof level justifications are at a yet higher level. For instance, a proof can be sup-
pressed by resorting to its similarity to a previous proof.

Assertion level and proof planning.

Scrutinizing the above example for the assertion level justifications, it seems just the right
level for proof plans to be carried out. Rather than having to work around with ND
inference rules, the proof planner simply goes straight to the intended conclusion, viz. e
is a member of B , from the given premises, viz. e is a member of A and A g B, and the
assertion, viz. the definition of subset. This would in the first place save the proof planner
from exploding its own search space. Furthermore, it should fi t better to the structural
mechanisms of other high level proof methods such as analogy, induction, diagonalization,
etc. and in particular island proof planning, cf. [19]. It should also fit well to the framework
of incremental proof planning proposed by Gerberding and Pientka [15] in which assertion
application can be considered as a special form of meta—rules.

Now let’s consider an assertion A . As pointed out by Huang, there may be several ways
in which this assertion can be used depending on the proof situation to which this assertion
is introduced. For instance, let A be the assertion from our running example:

V31, 5-2 : Set.(51 _C_ 82 <i> Va: :Element.(1: € $1 => 3: E 82))

This assertion allows us to derive: (1) a E V from a E U and U __C_ V, (2) U @ V from
a E U and a € V, (3) Va: : Element.(:r E U => a: E V) from U g V, (4) etc.

A theorem prover / proof planner that operates on the calculus level can only achieve such
conclusions after a number of proof steps to eliminate the quantifiers and other connectives

such as implication and conjunction. On the other hand, most human mathematicians
would be satisfied having those conclusions derived in one step from the assertion.

Huang [16] overcomes this problem by introducing different inference rules to allow
all possible applications of such an assertion. These inference rules are called assertion
level inference rules or macro-rules by their nature of being “pseudo inference rules” which
actually stand for sequences of more elementary inference rules, called compound proof
segments. While the more elementary rules (of ND) are chunked into macro—rules (at
the assertion level), this in turn potentially introduces an exploded set of inference rules.
Therefore, it may not work too well for a proof search mechanism that is required to be
efficient. For instance, for the above assertion from our running example, at least seven (7)
different macro-rules can be generated (cf. [16].)

Formalization of the problem.

We take as the starting point for our approach the proof development environment OMEGA
[27] whose core consists of a proof planner together with a hierarchical plan data structure
('P’DS). The proof format in OMEGA is based on the natural deduction calculus. A lin-
earised version of ND proofs as introduced by Andrews [1] is employed. In this formalism
[17], an ND proof is a sequence of proof lines , each of them is of the form:

Label A l- derived-formula (Rule premise-lines)

where Rule is a rule of inference in ND or a method, which justifies the derived-formula
using the knowledge from in the premise-lines. Rule and premise-lines together are called
the justification of a line. A is a finite set of formulae which are the hypotheses the derived
formula depends on. ‘

A problem of proof planning consists of a theorem and the assumptions to be used to
prove the theorem. A proof planner operates on a set of methods to be used to construct
a proof plan. The theorem and assumptions are expressed as deduction lines in a ’PDS
where all the assumptions are marked as closed and the theorem is marked as open. The
proof planner then uses the methods to come up with actions to update the ’PDS. The
aim of the proof planning process is to reach a closed PDS , that is one without open lines.

_ As application of lemmata lies at heart of most (non-trivial) mathematical proofs, i t is
important that this issue be addressed in a realization of any proof planner.

In OMEGA, a proof planning process starts with a task, a data structure designed to
encapsulate a complete (sub-)problem. Formally, a task is a pair (SPLOM, Lope”) consisting
of an open line of the PDS, Lopen, and a set of lines from the ’PDS, SPLom. Lope” is
called the task line whose formula is called task formula. Members of SPLopen are called the
support lines or supports for the task line Lope".

Now consider the situation in which the prover is confronting a list of tasks, called an
agenda in the OMEGA system, that i t needs to solve in order to prove the intended theorem.
Among the available strategies/ methods, the prover could possibly ponder whether there
is a definition / axiom or some previously proved result which it can use in the current proof
situation to (i) either obtain further closed lines serving as intermediate steps for solving
one of the tasks; (ii) or reduce a goal task (on some open line) to some subtasks which can
be resolved by further proof steps.

Lhnw) I 'YOÜC) |l a lmlaz l
(gnaw/05 (.06 «pa—[5 [51 é2__| $$$; Z:
(WWWa we «be— («p/WW sag $9— „—
(cp A we we we (so v w)E «39 we L (5 x) J 5 (fl

—'| _ $— 3 0(3k0)(WE we (cp => We 99 we (%c “Ska/3:5—_, e e __
(cp) LP (33936 QÖiSko/m-Je

(*) sko is a Skolem term.

Figure 1: Analyzing signed formulae

It now boils down to the question of how tasks and assertions are to be handled without
having to generate all the possible macro-rules as suggested by Huang. And we, of course
don’t want to sacrifice any possible outcomelfrom applications of assertions.

We follow a representation framework employed by Wallen [29] and Autexier [3] using
the concept of polarities and uniform notation (cf. [12, 13, 29]) to represent the formulae

, the, proof planner has to deal with.

Signed formulae:

Each formula is assigned a polarity which is either positive (EB) or negative (e) . A set of
formulae P is assigned a polarity p iif each member of F is assigned p . The polarity (9 , (SD)
of a signed formula is just another representation of of the succedent/ antecedent made by
Gentzen [14] wrt. the sequent calculus. In the sequent calculus, all formulae which occur in
the antecedent would be annotated with negative (9) polarity while formulae occurring in
the succedent are of positive (EB) polarity. In the linearised version of the Natural Deduction
calculus employed by OMEGA, if a deduction line A I- cp is marked closed (in a ’PDS) then A
is assigned @ and (‚0 e . If A l- (,0 is marked Open then A is assigned 6 and go EB. Intuitively,
a signed formula we is something the prover wishes to prove while (‚09 is something given.

We introduce further notations for technical considerations:

(i) form(c,0p) dzef cp and polarityfipp) dzef p; and . _
(ii) the operator —— : {ae} ——> {e , EB} such that —e == EB and —9 = e .

Signed formula trees: Using the rules from Fig. 1, a signed formula can be represented
in the form of a tree whose sub—trees represent its signed sub-formula, these trees are called
signed formula trees, or SFTS. In such a tree, each node has a natural interpretation as a
signed formula, and we shall speak of nodes and signed formulae as if they were one and
the same (e.g., a “node” (cp V @@ is one labelled with (cp V @@ and having arcs to nodes
999 and t he .)

Example:2

The following is the signed formula tree of the formula A given as V5,,S,(Sl g 8'2 <=? Vz(:c €
81 => x E 52)). Thereby we assume that assumptions are initially assigned with the polarity
e . (In our tree F abbreviates the formula Vm(x € 51 => ac € 82)).

2We choose to suppress all references to sorts for the sake of readability.

(V31,32(Sl Q 52 <=> Vs.:(fli € 51 = 37 € Sz)))(e'y,81,52)

(aggeme

(S1 ; Sämé/ 4\(1‘«" => 31 _C_ 32)?5
/ \ \

(31 9 52w (Flax) (Flfim) (31 € Szle

(33 E 81 => .’L' E SQ)? (Sk0(81 , 82) E S] # Sk0(51 ,82) € 32);?

/ \ /
(x e 5069 (a: e 52)6 (8k0(S1,32) e 809 (sko(Sl, S2) e 32)@

Now we can go back to our problem. Assume that a task (SPmLopen) together with
an assertion A are currently under consideration. As the goal is to come up with a desir-
able conclusion derivable from the assertion A (relative to (SPLOM, Lawn», the following
computational process revolves around the signed formula tree of ‚A, called 7:4. Using
unification-based algorithms we unify the signed atoms at the leaves of the signed formula
trees from the task (S PLOW, Lope”) with the (signed) atoms at the leaf nodes of TA.

Secondly‚ we will need the following notation to talk about the interrelations between
formulae: Given a signed formula 90",

. if an oz-rule is applicable to (p” then its children are said to be directly a-relateal, e.g.
the two sub-formulae 909 and we of (cp V WEB are cm;-related; .

. if a ß-rule is applicable to go? then its children are said to be directly ,B-related, e.g.
the two sub-formulae (p63 and $99 of (cp /\ @@ are ß—related; '

A signed formula cp is a (resp. ß) -related to 2/) if and only if either 99 or one of its
ancestors is directly (1 (resp." ß) —related to 112.3

s—unifiable and complementary:

Two nodes go” and W are s-um’fiable iff p # q and go and @ are unifiable. cp? and (pg are
complementary iff p # q.

NOTATION: We will liberally use the notions applicable to logical formulae and apply them
to signed formulae by absorbing them through the polarities of signed formulae. E.g.,
given a signed formula 7' and a substitution 9, we write 76 to denote the signed formula
(form(7.)6)polarity(r) _

We also observe that it is possible to reconstruct formulae from an SFT in such a way
that the semantics is preserved. And because all information is conveyed from a node to
its children, it is possible to reconstruct a formula from the leaf nodes of its SFT together

3Note that the notions of a and fi-related formulae are more general than the notions of conjunction
and disjunction as the a (resp. ‚B)-relations can refer to both conjunctions and disjunctions depending on
whether they occur in the antecedent or the succedent of a sequent.

with the a and [3 -relations between the subtrees without having to trace back through all
of the internal nodes.

Now we come up with the algorithm for manipulating SFTs in order to obtain desirable
conclusions from an assertion (in relation to other given assumptions or open goal tasks).
The idea generalises Robinson’s resolution principle [25] and in particular reminds to path
resolution [23] and the connection graph principle [18, 2, 8]. In much the same way that an
arbitrary formula can be reduced to the normal form which contains a set of clauses, i.e.
disjunctions of literals, we observe that a given signed formula tree can be reduced to a set
of SFTs whose members don’t have any a-related pair of sub-formulae.

As with resolution, the idea is to replace a literal in a clause (correspondingly, a leaf
node of an SFT) by the information entailed by it that comes from another clause (cor-
respondingly, another SFT). However, unlike resolution theorem proving formalism where
the focus is on a refutation procedure in order to establish the unsatisfiability of a set of
formulae, our focus of attention is on the derivation of new formulae (be it new assumptions
or new subgoals) from the existing ones. Therefore, we won’t transform every signed for-
mula (or equivalently, SFT) to the normal form which contains only fi-related subtrees as
in resolution theorem proving, but rather we delay that until as late as possible. The idea
is: instead of normalizing all formulae to the normal form, we just need to take out from
the formulae to be resolved the relevant parts when resolution is carried out. For instance,
consider a set of formulae S = {(A /\ B) V (C /\ D), --:A V B}, we can just take out the
relevant formula A V (C /\ D) from (A A B) V (C A D) and resolve it using -A V E. This
result in the following new set of formulae: 5" = {(A /\ B) V (C A D), —nA V E, (C /\ D) V E}.

Now we can go back to the more sophisticated representation of SFTs. >From the
above example with resolution, i t is important to know how the so-called relevant parts
can be computed. While it is not so clear how this can be done with logical formulae, it is
interesting that SFTs contain structures supporting such Operations: Instead of resolving
complementary pairs of literals from clauses, we resolve s—unifiable pairs of leaf nodes (or,
atomic signed formulae) from SFTs. We therefore term our inference principle generalised
resolution, or GR.

We observe that in addition to the leaf nodes of SFTs on which we perform GR, the
structure of SFTs, i.e. the internal nodes and links between nodes, also plays an important
part in GR inferences.4

The algorithm:

The following algorithm takes as input two SFTs 7'1 and 72 with T1 being updated by the
information from 7'2 by performing resolution on the two leaf nodes 771 and 172 from 7'1 and
72, resp., under the substitution €.

GR(71: SFT, m: leaf_node; 7'2: SFT, n2: leaf_node; 9: substitution)

begin

4Given a pair of s—unifiable leaf nodes go" and xp“? on two SFTs 71 and 7;, respectively: the results of
resolving cp? on 1'1 by 1/2”? from 72 and resolving gb“? on 1'2 by go” from 71 , in general lead to two syntactically
different, albeit logically equivalent, SFTs. .

If 7716 and 1126 are complementary then
P

P
P

9.

else

. Instantiate all variables in 71 and "rg with the substitution 9;

For 11 = 1, 2, prune all (gr-related subtrees wrt. 17,- on Ti;

Replace the leaf node 772 in 72 by (J_)9 (resp. (TFE) if polarityüyg) = e (resp. EB);

Replace the formula at each ancestor of 772 in 72 with a question mark (?) while retaining
the polarity and the rule originally applied there;

Reconstruct the formulae at the internal nodes of 72 currently marked (?) using the for-
mula(e) from their child(ren) and the polarity/ rule at those nodes;

Replace the formula at each ancestor of m in "rl with a question mark (?) while retaining
the polarity and the rule originally applied there;

If polarityhg) = polarity(n1) then: Replace the leaf node 171 on 7-1 by 7'2
else: Replace the leaf node m on T1 by —1 f orm(72)p°‘“my("1);

Reconstruct the formulae at the internal nodes of 7'1 currently marked (?) using the for-
mula(e) from their child(ren) and the polarity /rule at those nodes;

Return the new 7'1;

{ Do nothing }
end;

All the above Operations should be clear except the reconstruction of the SFTs. Consider
an internal node T = ((p)? of an SFT. After a subtree of T is modified during the execution
of GEO, the formula at T, viz. cp, is replaced by a question mark (?). Once all children of
T have been reconstructed, we can proceed to reconstruct the formula at 7':

l .

2.

3.

4.

Special treatment is due when at least one of 7’s children is (.L)6 or (T)$:

(a) Case r = ‚B: let 'u be the other child of 7'. If polarz’tyh') :polam'tyw) then 7 and v are
collapsed into one node; otherwise, (?) is replaced by —. f orm(v).

(b) otherwise: the question mark (?) is replaced by (.L)6 or (T)EB depending on palam’ty(r).

Case r = oz:

o Case a2 = 72/52: the question mark (?) is replaced by —-. f o'rm(a1).
o Case (12 75 mil: the question mark (?) is replaced by form(a1) /_ form(a2) if p = e ,

and by form(a1) V form(a2), otherwise.

Case 7" = ß : similar to the second case above and according to the table for ‚B-rule.

Case r = ('y, a:): Attention must be taken to avoid clash of variables. If a: is a bound variable
in f orm('m($)) then it must be renamed to a variable name that does not clash with any
other variable in form(70(:c)). Then, (?) is replaced by fOTm(70($)) if p = e , and by
Emform('yo(a:)), otherwise.

5. Case r = (6,33): the question mark (?) is replaced by form(60(r, sko)).

Correctness of algorithm GR together with other related results are established in the
Appendix.

Now we are in the position to apply GR on the assertion .A and all the relevant formulae
coming from an agenda D . We are fortunate not having to perform proof search, we only
have to find out derivable information (which can be new assumptions, i.e. closed lines, or
new subgoals, i.e. open lines) from A using the information provided in D . That is, we
have to resolve the leaf nodes of 7:4 by the s-unifiable leaf nodes on other SFTs. To simplify
the presentation, we assume that our algorithm takes as input the SFT of A, viz. 7:4, and
a set of SFTs representing the current reasoning context RC so that we don’t have to worry
about other details such as closed / open lines, assumptions, goals, etc. The algorithm also
employs the on-the—fly skolemz‘zatz’on whenever generalised resolution is performed.

Assertion ApplicationÜ'A: SFT; 'RL’: set__of__SFTs)

begin

1. All_results (— @;

2.. Processed <— 0;

3. For each leaf node 3 of TA do:

While there is a leaf node t of an SFT r 6 RC U {TA} such that s and t are s-unifiable
and (s, t , 6) € Processed do:

(a,) GTA (— 7:4; { Create a working copy of 7:4 }
(b) p <— polarity(root(r));
(c) Repeat:

i. current_resolved <— 3;
ii. current_resolver +- t;

iii. 9 <— mgu(form(s) , form(t)) ;
iv. Processed +— Processed U { (s , t , a) } ;
v . Repeat: .

A . r <— G'R(C7-A‚ current_ resolved, 7', current_ resolver, 0);

B. If there is a s-unifiable pair of leaf nodes 3’ and t’ from GTA and r , respec-
tively, then
- current_resolved <— s’;
— current_resolver <— t’;
—— a +— mgu(f0rm(s'),form(t’));
— € <- 90 ;
— Processed <— Processed U {(s’, t’, a)};
else
— current_resolved <— nil;
- current_resolver <— m'l;

until current_resol'ued = nil;

10

vi. p = @ and polarity(root(7)) = 6 then
‘ GTA <— Negateh);
else

GTA <— 7’;

until there is not any further s—unifiable pair of leaf nodes from 07;, and any SFT
in RC U {724}; '

(d) All_results (— All_results U {form(root(C7-A))};

4. Return All__'results;

end;

In the above algorithm, the function N egate(7) adds a parent to the root node of the
SFT fr. The formula and the polarity at the root node of the new tree are the negations of
the formula and the polarity at the root node of _7'. We have to carry out that operation
because we do not want the outcome of applying an assertion to an open line, i.e. a goal,
to be a closed line. For instance, applying the assertion A => B to a goal B® should result
in a new subgoal A© rather than a conclusion (—IA)9.

Example (Forward Reasoning):i

Let the following deduction lines be marked closed in the input task:

(1) l— A g B; and
(2) l— e E A.
By applying the first tree A g B6 to GTA which isthe same as 711 for the. moment, we

obtain the following updated SF T for 0734 (under the substitution 6 = {31 I—> A, $2 I—> B })

(was A =>a: e B))?
(xeAimeB)?

(a: e ‚Ab/@ (}‘6 B)@

Figure 2: The SFT for (‘s/Aa: E A => &: E B))6

By applying the second tree 6 € A9 to the resulting GTA, we obtain as updated SFT
for on (under the substitution 61 = {a: »—-> e}) the tree e € B6 which is translated back to
the OMEGA-proof format as a (closed) deduction line (3) l- e E B. This is also is also the
desirable logical consequence of assertion ‚A for lines (1) and (2).

Example (Resolve internal nodes):

To see the necessity of the inner iteration, we re-run our example with another task con-
sisting of the following closed deduction line: (4) l- V,,(3: E A => &: € B). This assumption
results in the SFT depicted in Figure 2. Applying this tree to 7:4 and assuming that we

l l

unify first the two nodes (sko(Sl, $2) € 309 (on TA) and (a: G AW on the above SFT we
obtain the updated C734 below (under the substitution 9 = {3: +—+ sko(Sl, 32), $1 +—> A}).

("‘SkO(Sl, SQ) € B => A Q SQ)?

("1.9190(31, .92) € B)? (A Q 52)6

(Sk0(81 , SQ) E B)G

Notice how the a-related branches on the SF T and the nodes labelled with the a and
’y and 6-rules are pruned away by GR().

Now we try to unify a leaf node on this tree to some leaf node on 711 again which is
achievable through the unification on the two nodes (3190(81, 32) E B)“3 on the above SFT
and (sk0(Sl, 32) E 52)@ (on 7:4).

The updated GTA now becomes the tree displayed to the right (under the substitution
91 = {SQ H B})5 .

bAQBäA ; fi)
/ \

(““A S B)? (A-

%

(A g-B)@

This tree translates into the desirable logical consequence of assertion A for line (4) and
the closed line (5) I- A Q B is obtained.

Example (Sidewards Reasoning):

We now consider an example in which a goal line (i.e. an open line from the input task) and
a closed line is applied. Assume that our current task consists of an open line (6) l- 6 € B
and a closed line (7) l- A Q B, which correspond to the two singleton trees (6 E B)e and
(A Q B)9 respectively.

Applying the former to 7:4 by unifying it to the leaf node (a: E Sg)e, we obtain the
following SFT:

(V51 (31 Q B => _lE € 31))?

(81g B => "'6 E 81)?

(81 Q B)® (“'16 E 51 ') ?

(E € SÜEB

5Note that the root node of the computed SFT is: (A Q B)6 has a different polarity from that of the
node it is going to replace, viz. (sko(Sl , 52) E 52W, on the SFT 7:4. Therefore, we replace that node with
(-wA Q B)6 instead.

12

Then we can apply (A g B)9 to this SFT by unifying it to the node (81 g B)@, the
resulting tree is:

(fie € A)“e
l

(€ E A)6

This corresponds to a new open line (8) l- 6 € A, which is the desirable consequence of
assertion A for lines (6) and (7). ' —

3 Concurrent. search for applicable assertions

In this section we propose .a module called M which models assertion application as dis—
tributed search processes in the OANTS approach [7]. This agent based formalism is the
driving force behind a distributed proof search approach in OMEGA. It enables the distri-
bution of proof search among groups of reasoning agents. -

First we briefly sketch the general application scenario that motivates our approach.
We assume a scenario where a theorem prover TP is connected to a mathematical knowl-
edge base K B. TP is currently focusing a proof task T = (SPLOW, Lopen) and candidate
assertions {B,-} are determined in KB and handed over to our assertion module M. The
task of M is to compute wrt. proof task T all possible logical consequences of the available
assertions Bi.

We propose to create for each assertion B,- one associated instance AGB, of a generic
assertion agent AG. The generic assertion agent AG is based on the algorithm Assertion-
Application provided in this paper. Note that this algorithm only depends on the SFT of
the focused assertion and a further set of SFTs for the proof context, and both are specified
as parameters of AssertionApplz’catz’on. Each assertion agent instance AGE, computes and
suggests the logical consequences of B, in proof context T to our module M which passes
them further to T P .

(Vsl(51 _C_ MC) => "A € 51))?

(51 € 80(0) i? “"A € 31)?

(SI 9 M69 (>?! € 80ae

(A € Sl)@

Depending on the size of the knowledge base KB there could be too many applicable
assertions passed to M and also too many ways an assertion can be applied to be handled in
practice (recall the remark above about the number of possible ND inference rules associated
with the assertion of our running example). For instance, going back to our running example
again, let our current task be ({A l- A g B; A l- B g C; } , A 6 (3 (0)) . The assertion
IA is applicable in this situation and the outcome of applying our algorithm to this Open
line is the SFT displayed at the top right corner of this paragraph.

13

As the root node is non-empty and the input trees include an Open line, we have to
reproduce the root node to have polarity EB, which is (fiV31(Sl (_; 50(0) => -:A E 51))?
This corresponds to a new Open line: A I- 331(81 g 50(0) A A E 51) which is, even though
logically correct, not a very useful subgoal to be pursued.6

We sum up the above argument by claiming that restricted application of assertion is
necessary. One possible and simple restriction is to impose prerequisite(s), such as simple
syntactical criteria or domain restrictions, when selecting the candidate assertions that are
passed from K B to M. These kind of specific constraints can be realized provided the
constraints are encoded in the assertion specification. For instance, regarding our running
example, a simple but useful heuristic to prove the membership of an object wrt. a set S
using the subset definition is that the task includes a closed line stating that S is a superset
of some other Set. It is such a heuristically constrained version of assertion application that
we are currently employing in the OMEGA system.

Proof planning, however, has developed more sophisticated ways to guide and constrain
possible instantiations and applications of assertions. The investigation on how some of
these techniques can optimally be employed on top of our assertion application module M
in order to better constrain the search for potential assertion candidates is further work.

Example.

We present a proof constructed in the OMEGA system using assertion agents. The initial
PDS formulating the problem is as follows:

1. 1; l- symmetric(A) Hyp J
2. 2; l- » symmetric(B) Hyp J
THM 1,2; l- symmetric(A F) B) (?)

' I n the above P'DS , the lines marked with J are the closed lines and the open line is
marked with the question mark (?).

The following proof (produced interactively in OMEGA) for the above problem uses the
definition of the symmetric relation, viz. (Sym—Def): VRsymmetric(R) <=;— (VW (:13, y) E R =>
(31,33) 6 R), and the definition of intersection (on sets), viz. (Pl-Def): V31,52Vx$ € 81032 ©
:1: € 5'1 /\ as E 52. The successive order of the constructed proof lines is: (1.; 2.; THM; 3.;
4.; 8.; 5.; 6.; 7.;)

1. 1; l- symmetric(A) (Hyp) J
2 2; l- symmetric(B) (Hyp) J
3 1,2; l— V$‚y(cc,'y) E A => (gm) 6 A (aa(Sym-Def) 1) J
4 1,2; l- Vx,y(a:,y) E B => (y,:c) E B (aa(Sym-Def) 2) J
5 5 : |— (C1,C2> E A A (01762) E B (Hyp) J
6 1,2,5; t- (02,c1) E A (aa([3]) 5) J
7. 1,2,5; I- (62,61) E B - (aa([4]) 5) J
8. 1,2; I— V$‚y(a:,y) E A 0 B => (y,:c) € A n B (ham-Def) 5,6,7) J

TH 1,2; l- symmetric(A n B) (aa(Sym—Def) 8) J

6In fact, Huang’s [16] framework fails to produce the above inference step. This poses a serious question
about the completeness of his approach due to Huang’s proposal of replacing the natural deduction inference
rules altogether by the generated macro rules whenever an assertion is applicable.

14

[Hyp] indicates that the given proof line is a given hypothesis. The scopes of the
hypotheses are rendered by the antecedents of the proof lines, i.e. those on the left of |-).
Rules denoted by aa (asse r t ion) indicate the application of a s se r t ion . In particular, on
line (6), the a s se r t i on is [3] which indicates that the succedent of the sequent on line (3)
has been added to the current mathematical database and now serves as a normal assertion.
Similar remark can be made for line (7) (and the assertion introduced on line (4)).

While the above proof may bequ i t e intuitive to a mathematician, the proof step on
line (8) may be too hard to understand for a student who is trying to learn mathematics
(see the Application described below). Observe that the assertion agent has carried out
the application of Sym-Def together with D—Introduction and V—introduction in that single
proof step. However, the OMEGA system iscapable of expanding complex proof steps to
yield sub-proofs at lower levels of abstraction. This again emphasises the expressive power
of our machinery. - '

An application: The DIALOG project.

We are currently experimenting the assertion agent modules described above in the setting
of an intelligent tutoring system for mathematics developed within the DIALOG project
[4]. The simple proof steps to be presented to the students are automatically generated
by the proof assistant system OMEGA. The assertion agents assists the OMEGA system to
produce these assertion-level proof steps. We want to stress that the student model may
be updated during a tutoring session, hence the set of relevant assertions may dynamically
change during an interactive session.

It is easy to motivate the design of our assertion application module for this scenario. Its
capabilities for assertion application for a dynamically varying set of assertions are crucial
for the project. It is also essential that reasoning is facilitated at a human oriented level
of granularity, since we do not want the user to puzzle around with the peculiarities of, for
instance, logical derivations in sequent or natural deduction calculus.

4 Related Work

Autexier [3], which himself employs ideas from [29, 26], suggests a proof representation and
manipulation framework based on the uniform notation idea, while we here only employ it
at the heart of an assertion mediator module which can be coupled with arbitrary proof
systems.

The generalised resolution algorithm we propose also reminds to ideas employed in
the connection graph method [18, 2, 8] and the clause graph method in [24]. However,
since it is a crucial concern for us not to break down the structure of the assertions we
operate with tree or graph structures generated for arbitrary formulas instead of just clause
sets. Works in the literature of automated reasoning that are more closely related to our
generalised resolution inference method include Non-clausal (NC)-Resolution introduced by
Neil Murray [22] and Nested Resolution introduced by Traugott [28]. Both frameworks also
employ the notion of polarity to recognise the unifiable occurrences of atomic formulas in
the theory to be resolved. The resolved pair of literals are then simplified away from the
formulae containing them. The resolvent is the disjunction of the two simplified formulae.

15

In their approaches, the structures of the formulae are clearly broken after a sequence of
resolution steps.

Benzmiiller et al. [6] motivate and also present a mediator between mathematical knowl-
edge bases and theorem provers. A main difference of the approach here is that assertion
agents are uniformly modeled; their individual behaviour is only determined by the par-
ticular assertion and the proof context they are instantiated with. Further related work is
described in [11].

5 Conclusion and Future Work

We argued that the assertion level introduced by Huang [16] is one of the more interesting
abstract levels where proof planning should be carried out . Therefore, i t is necessary that
the proof planner at the assertion level be equipped with an adequate infrastructure to be
able to take full advantage of the inferences offered by the assertions. We went on to develop
a framework for extracting important information from assertions in accordance to the
reasoning context (i.e. the proof situation) in which the assertion is invoked. We describe
a distributed modelling for our'framework which serves as an assistant for proof search in
OMEGA. This mechanism also reflects the cognitive process human agents employ when
performing theorem proving: A skilled mathematician would in general accept conclusions
emerged from algorithm AssertiOnApplicotionO as a trivial or obvious step and normally
not require a detailed (i.e. logic level) explanation of such steps. The research bears
immediate fruit through our application in the DIALOG project aiming at building an
intelligent mathematical tutoring system. The realization of natural language dialog in
such a project should take full advantage of the assertion level proofs developed by our
formalism.

Future work includes: (i) We want to investigate whether our approach scales to higher-
order contexts. Additional problems have to be addressed, such as undecidability of higher-
order unification, primitive substitution, etc. In higher-order contexts our distributed mod-
eling will gain impact, since this will provide a flexible basis, for instance, to model iterative
deepening over constraints such as a maximal unification depth. (ii) Equational reasoning
is not yet addressed in our framework and needs to be investigated. In particular adapting
our framework to (extensional) equational reasoning within higher-order logic contexts is a
challenge. (iii) We propose to fully integrate automated proof planning with our approach
to assertion level reasoning.

References

[1] P. Andrews. Transforming matings into natural deduction proofs. In W. Bibel and
R. A. Kowalski, editors, Proc. 5th CADE, pages 281—292. Springer-Verlag, 1980.

[2] P. B. Andrews. Theorem proving via general matings. Journal of the ACM, 28(2):193——
214,1981.

- [3] S. Autexier. A proof-planning framework with explicit abstractions based on indexed
formulas. Electronic Notes in Theoretical Computer Science, 58(2), 2001.

16

[4] C. Benzmiiller et at. Tutorial dialogs on mathematical proofs. In Proceedings of IJCAI—
03 Workshop on Knowledge Representation and. Automated Reasoning for E—Learning
Systems, 2003.

[5] C. Benzmiiller, A. Meier, E. Melis, M. Pollet, and V. Sorge. Proof planning: A fresh
start? In Proceedings of the IJCAR 2001 Workshop: Future Directions in Automated
Reasoning, pages 25—37, Siena, Italy, 2001.

[6] C. Benzmiiller, A. Meier, and V . Sorge. Bridging theorem proving and mathematical
knowledge retrieval. In Festschrift in Honour of Jörg Siekmann, 2002.

[7] C. Benzmiiller and V. Sorge. Oants — an open approach at combining interactive
and automated theorem proving. In M. Kerber and M. Kohlhase, editors, Symbolic
Computation and Automated Reasoning, pages 81-97. A.K.Peters, 2000.

[8] W. Bibel. Matings in matrices. Communications of the ACM, 26:844—852, 1983.

[9] A. Bundy. The use of explicit plans to guide inductive proofs. In Proc. CADE, pages
111—120, 1988.

[10] A. Bundy. A critique of proof planning. In A. C . Kakas and F. Sadri, editors, Com-
putational Logic. Logic Programming and Beyond, volume 2408 of Lecture Notes in
Computer Science. Springer, 2002.

[11] I. Dahn, A. Haida, T . Honigmann, and C. Wernhard. Using mathematica and auto-
mated theorem provers to access a mathematical library. In Proceedings of the CADE-
15 Workshop on Integration of Deductiue Systems, 1998.

[12] M. Fitting. Tableau methods of proof for modal logic. Notre Dame Journal of Formal
Logic, 13:237—247, 1972.

[13] M. Fitting. First Order Logic and Automated Theorem Proving. Springer, 1990.

[14] .G. Gentzen. Untersuchungen über das logische schliessen. Mathematische Zeitschrift,
39(176—210):405-—431, 1935. '

[15] S. Gerberding and B. Pientka. Structured incremental proof planning. In _KI - Kun-
stliche Intelligenz, pages 63—74. Springer-Verlag, 1997.

[16] X. Huang. Reconstructing proofs at the assertion level. In A. Bundy, editor, Proc.
12th Conference on Automated Deduction, pages 738—752. Springer-Verlag, 1994.

17 X . Huan , M. Kerber, J . Richts, and A . Sehn. Planning mathematical proofs withg
methods. J. Information Processing and Cybernetics, EIK, 30(5-6):277-291, 1994.

[18] R. Kowalski. A proof procedure using connection graphs. J. ACM, 22(4):572—595,
1975.

[19] E. Melis. Island planning and refinement. Tech. report, Saarland University, 1996.

[20] E. Melis and A. Meier. Proof planning with multiple strategies. In Proc. CL-2000,
volume 1861, pages 644—653, 2000.

17

[21] E. Melis and J . Siekmann. Knowledge—based proof planning. AIJ, 115(1):65—105, 1999.

[22] N. V. Murray. Completely non—clausal theorem proving. AIJ, 18(1):67—85, 1982.

[23] N. V. Murray and E. Rosenthal. Inference with path resolution and semantic graphs.
Journal of the ACM (JACM), 34(2):225—254, 1987.

[24] H. J. Ohlbach and J. H. Siekmann. The Markgraf Karl refutation procedure. In
J . L. Lassez and G . Plotkin, editors, Computational Logic, Essays in Honor of Alan
Robinson, pages 41—112. MIT Press, 1991.

[25] J. A. Robinson. A machine-oriented logic based on resolution principle. Journal of the
ACM, 12(1):23—41, 1965.

[26] K. Schiitte. Proof Theory. Springer Verlag, 1977.

[27] J. Siekmann et al. Proof development with OMEGA. In A. Voronkov, editor, Proc.
18th CADE, LNAI 2392, pages 144—149, COpenhagen, Denmark, 2002.

[28] J. Traugott. Nested resolution. In Jörg Siekmann, editor, Proc. 8th CADE, number
2392 in LNAI, pages 394—402, Copenhagen, Denmark, 1986. Springer.

[29] L. Wallen. Automated proof search in non-classical logics: eficient matrix proof methods
for modal and intuitionistic logics. MIT Press series in AI, 1990.

Appendix

We introduce some notations which will be used in the establishments of the results pre—
sented in the following.

Model theory

We define the first-order language for the syntax of the calculus of interest in the standard
way, cf. e."g. [13]. Let [I be a first-order language, a (set-theoretic) structure for 13 is a pair
(D, i) where D is a non—empty set, the domain of the structure, and i an interpretation of
C in D. The satisfaction relation [2 between the set of structures and the Wffs from L', is
also defined as usual.

For a structure M, we define:

Ml=soe i fTMl=s0

and
Ml=so$ i fbEso

The following is an immediate corollary of the above definitions:

18

Corollary 1 Let M be a structure.

1. Exactly one ofM l= be or M |= be .

2. Ml=aifiMl=a1andMl=a2.
3. M|=flifiM|=fil orM|=62.

4 . M y: (m) w for every c e‘ D, M |= 70(x)[c/:c].
5. M l: (6,27) ifi for some c E D, M }: 60(c). In particular, the constant sko chosen by

the (ö, az)-rule above is one of those constants c.

Notations

Let an SFT r be given and 77' a node of r , if the rule that is applied to n is an a (resp. ß,
% ö)—rule then n is said to be of type or (resp. ‚8, 'y, 5).

We warn the reader that we will systematically abuse our notation:

1. We will refer to an SFT as its root node and vice versa. Hence, we will be able to e. g.
talk about the leaf node of a signed formula.

2. We shall also adOpt the following practice of using the names of types to denote the
formulae they are applied to (possibly with the reference to the formulae). That is:

. If (‚0 is a signed formula of type a: then we also refer to cp as oz(<,o) and its child(ren)
as a1(<,o) and (12(90).

. If cp is a signed formula of type ‚8 then we also refer to go as ß(<p) and its children
as W90) and [32(90)-

. If cp is a signed formula of type (f)/‚az) then we also refer to go as 7(cp, a:) and its
child as 700,0, a:). .

0 If (‚a is a signed formula of type (6, ac) then we also refer to cp as 6(go,x) and its
child as (Map, sko).

Soundness of algorithm GR

Theorem 1 (Soundness of GR) Let two SFTs 7‘1 and 72 be given. For any structure M and
any substitution 6’, if M is a model of {716,726} then M is a model of GR(7'1,771,7'2, 772, €),
for any pair of leaf nodes 771 of TI and 772 of 7'2.

The theorem is vacuously true in case 771 and 772 are not (El-complementary. Thus we
only consider the case when they are 6—complementary. We will also assume that the only
connectives we have to deal with are negation (a), conjunction (wedge) and disjunction
(uee) together with the first-order quantifiers (V and El)to simplify the presentation. We
first show the following lemma:

19

Lemma 1 Let T be an arbitrary SF T and g a singleton SFT (216. g itself is the only node
of g}. For any structure M - and any substitution 6, if M is a model of {T6,g6}, M is a
model of GR(r, n, g, g, 6), for any leaf node n of T .

Proof: By induction on the structure of T .

Base case: T is a singleton SFT with the only node being 7 itself. r and g are 6-
complementary. In other words, the set of models of { r6 ,§6} is empty. Therefore, the
lemma is vacuously true.

I nductiue case:

1. Case 7 is of type as:

(a) Case a2(r) = nil, i.e. T has only one child 011(7): I Obviously, form(r) =
form(a(r)) = -w(form(o:1(r))) and polarity(a1(r)) = —polarity(a(r)).

”For any structure M:

M is a model of {719,q9}
iff M is a model of {or(r)6,§6}
iif M is a model of {a1(r)6, g6} (from Corollary 1).

Then, M is a model of GR(a1(r), mg, ; , 6) (inductive hypothesis). Therefore,
M is a model of GR(r, 77, g, g, 6) .
The justification for the last step in the above proof is based on the reconstruction
of the root node GR(r, n, g, g, 6) from its only child
GR(a1(r), n, g, g, 6) and from Corollary 1.

(b) Case 052(7) # nil:
For any structure M: .

M is a model of {T6, g6}
iff Mi s a model of {or(r)6,c6}
ifi' M is a model of {a1(r)6, <6} and M is a model of {a2(r)6, (6 } (from Corol-

lary 1). _ .
o Case n is a leaf node of a1('r): M is a model of GR(a1(r), n, g, g, 6) (inductive

hypothesis) and M is a model of {a2(r)6, <6}.
0 Case n is a leaf node of a2(r): M is a model of {a1(r)6,§6} and M is a

model of GR(oz2(r),n,g, g, 6) (inductive hypothesis).

Therefore, M is a model of GR(r, n, g, <, 6) (from the reconstruction of GR(a(r), n, q,;
from GR(a1(r), n, c, c, 6) and GR(a2(r), n, g, g, 6)).

2. Case 7 is of type ß:

For any structure M:

M is a model of {T6, (6 }

iff M is a model of {6(r)6,g6} _
iff M is a model of {61(r)6, q6} or M is a model of {62(r)6, <6} (from Corollary 1).

20

o Case 77 is a leaf node of 761(7) : then, M is a model of GR(,61(T), 77, g, c, 6) (in-
ductive hypothesis). Therefore, M is a model of GR(6(T),77,§,§,6), from the
reconstruction of 76(7)6 from GR(61(7‘), 77, (‚g , 6) and 62(T)6;

0 Case 77 is a leaf node of 62(7): similar to the preceding case, M is a model of
GR(5(T) ,U ,9< ,9) - '

3. Case ’T is of type (')/‚x):
For any structure M:

M is a model of {T6, (6}

iff M is a model of {’)/(T, 3:)6, (6}

iff M is a model of {f)/OU", 1:)6, g6} (from Corollary 1).

o Case 3:6 = a: or 3:6 = y for some free variable y: a: (resp. y) is a free variable
in ’Yo(T‚$)9 and f “0Tm(’Y(T‚ 33)) = V$(f01‘m(70(7‚$))) (feSP- form('y(7',x)) =
Va:(form('yo(7,x))[y/zc])). Thus, every model of GR(’70(T,$),7],C,C, 6) is also a
model of GR(7(T,2:),77,<,§,6) (which is essentially GR(7',77,§, c, 6)). But from
the inductive hypothesis, the structure M is a model of GR(’)’0(T, x), 77, q, q, 6).

o Case 1:6 = c for some c 6 D: straightforwardly, 7(7', 2:)6 = 70 (T, a:)9 and from the
reconstruction of GR(’7/(T, a:), 77, g, g, 6) from GR(70(7',:1:), 77, g, g, 6), M is a model
of GR(’7(T, as), 77, g, g, 6) (inductive hypothesis).

4. Case T is of type (6, a:):
For any structure M:

M is a model of {T6, g6}
iff M is a model of {6(7, as)6, g6}
iff M is a model of {60(7', sko)6, g6} (from Corollary 1).

Then, as 6(T,:r)6 = 60(7", sko)6 and from the reconstruction of GR(6(T,9:), 77,996)
from GR(50(T, sko), 77, q, q, 6), M is a model of GR(5(T, a:), 77, g, g, 6) (inductive hypoth-
esis).

Proof: (of theorem 1)
As with the above lemma, we prove by induction on the structure of 7'1. First, we observe

that for an arbitrary SFT 72 and any substitution 6, if the structure M is a model of 726
then M is also a model of the SFT obtained by (i) instantiating 7'2 according to 6, then
(ii) removing a leaf node of 7;, and then (iii) reconstructing its internal nodes in the way
described in algorithm GR. That result is essentially what has been shown in Lemma 1.
Base case: 71 is a singleton SFT with the only node being T1 itself, i.e. 71 = 771. The
theorem holds by the above observation and from the fact that M is a model of 90” if and
only if M is a model of (mm—P for any formula cp and any polarity p. Thus it doesn’t matter
whether 771 is replaced by 7'26 or (w f orm(7'26))"0’“"“y(729), the theorem should always hold.

21

Inductive case: The proof of the inductive case proceeds in the similar way to that for
Lemma 1 . Le. we consider different cases on the type of the root node of TI. In particular,
the same argument works for all four different types of the root node of 71, except for the
7 and 6—types where special care must be taken for possible clashes of variables during the
reconstruction process. B

When (classical) resolution on a pair of clauses (I) and \If is performed, no ordering
between (I) and \II is necessary. The situation is slightly different for generalized resolu-
tion: GR(71, 771, 72, 772, 0) and GR(r2, 772, T1, 771, €) generally output two syntactically different
SFTs. So, i t is important that they be still logically equivalent. This is a straightforward
corollary of the above theorem:

Corollary 2 Let two SFTs 7'1 and 7'2 be given. For any structure M and any substitution
9, M is a model of GR(T1,n1,r2,n2, €) if and only if M is a model of GR(7'2,772,r1,n1,9),
for any pair of leaf nodes 171 of 7'1 and 772 of 72.

PrOof: First, we observe that: If M is a model of GR(rl , 771, T2, 172, 9) then

. M is a model of GR(r1,n1, comp(n1),comp(n1),6); and

o M is a model of GR(7'2, 772, comp(n2), comp(n2), €).

where, given a signed formula 7', comp(r) returns the complementary signed formula of r .
The above observation is immediate from Lemma 1.

Now, to prove that if M is a model of GR(rl,n1,r2,n2,6) then M is a model of
GR(72, 772, TI, n1, 6), we can proceed by induction on the structure of T2 with the base case
follows from the above observation. Similarly, the inverse direction is proved by induction
on the structure of 7'1. E]

A further remark on algorithm 0R0:

REMARK: Line (2) of algorithm GR() is inessential to the generalized resolution framework
presented in this paper, i.e. it can be removed without affecting the correctness of algorithm
GR(). This is a form of the inference rules Weakening well known in sequent calculi. This,
however, brings out another advantage from the chosen representation: The redundancy
that is apparent in the generalized resolution framework without Weakening can be easily
eliminated by this line Which effectively prunes all the subtrees that are taz-related to the
resulted resolvent, i.e. the redundant ones.

Resolving a pair of complementary non-atomic formulae

Observe that the framework presented so far in this paper could have been described for
this general setting without any modification on the algorithm or the theorems. That will
come with a price however. A large number of internal nodes will potentially explode the
search space. Moreover, unification on internal nodes is more complex than unification on

22

the leaf nodes only. Nevertheless, we will show that the framework we have proposed is
suflicient to achieve such general steps of resolution, even though it could require more than
one step of resolution on the leaf nodes.

Theorem 2 Let SF Ts 7'1 and r2 be given. If m and 772 are two nodes of 71 and 7'2, respec-
tively, and 6 is a substitution such that 771 and 772 are 6-complementary then the resolution
of T1 and 72 over 771 and 772 can be achieved by repeatedly applying GEO on T1 and T2 and
their resulting resolvents a finite number of times.

Proof: By induction on the structure of 771:

Base case: Trivial as 771 and 772 are the leaf nodes of r] and r2.

Inductive case:

1. Case 771 is of type or:-

(a) Case a2(n1) = nil: 771 is of the form (mo)? for some polarity p. As '01 and
772 are 6—complementary, 772 must be of the form (pi/2)"? so that (,06 = d6. ‘
Hence, a1(n1) : ((p)—p and 0:1(772) : (1/1)? Obviously, a1(n1) and 051(712) are
also 6-complementary. From the inductive hypothesis, we can resolve them after
repeatedly applying GR() on 7'1 and 72- and their resulting resolvents k times.
Therefore, the resolution of T1 and 72 over 771 and 772 can also be achieved after
h applications of CEO on T1 and 7'2 and their resulting resolvents.

(b) Case (12(771) # nil:

o Case polarity(n1) = e : 771 is of the form (901 /\ gage. Then 772 must be of
the form (ibl /\ %)9 so that (ml? = $16 and 9026 = $26. Therefore, from the
inductive hypothesis, a1(n1) and (x1072) are resolved after k applications of
GR() on 71 and 72 and their resulting resolvents; and a2(n1) and a2(n2) are
resolved after l applications of GEO on T1 and 7'2 and their resulting resol-
vents. As a consequence, 771 and 772 can be resolved after h +l applications
of CEO on T1 and 7'2 and their resulting resolvents.

o Case polarity(n1) = EB is also similar.

2. Case 171 is of type 5: similar to the case 771 is of type a: and 02(711) % nil.

3. Case 771 is of type (7,33): 771 is of the form (Qx<I>(:c))p where Q E {V,EJ}. Then n2
must be of the form (Qy\IJ(y))"P so that @(m)(6 o {a: |_} y}) = \I l(y)6. Therefore, from
the inductive hypothesis, 70(771, as) and 60(02, sko) are resolved (under the substitution
6’ = 6 o {3: +—> sko}) after k applications of GR() on 7'1 and 72 and their resulting
resolvents. As a consequence, 771 and 772 can be resolved after 1: applications of GR()
on T1 and 7'2 and their resulting resolvents.

4. Case 771 is of type (6, a:): is symmetric to the preceding case, i.e. n1 is replaced by 712
and vice versa in the above argument.

