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Abstract

This document reports on the research progress made in all work task of the CALCULEMUS IHP Training
Network HPRN-CT-2000-00102 after the first half of the 48 months funding period.

The objectives of the CALCULEMUS Network are:

1. outline the design of a new generation of mathematical software systems and computer-aided verifi-
cation tools;

2. the training of young researchers in the broad field of mechanical reasoning and formal methods;
3. the dissemination of the results both in industry and in academia; and

4. the cross-fertilisation and amalgamation of the automated theorem proving (ATP/DS), computer al-
gebra (CAS), term rewriting systems (TRS) interactive proof development systems (ITP) and soft-
ware engineering (SE) research communities.

The work tasks of the Network are:

Task 1.1: Mathematical Frameworks

Task 1.2: Definition of Mathematical Service

Task 2.1: Integration of CASs and DSs via Protocols

Task 2.2: Enhancing the Reasoning Power of Computer Algebra Systems
Task 2.3: Enhancing the Computation Power of Deductions Systems
Task 3.1: Automated Support to Writing Mathematical Publications

Task 3.2: Support to the Development of an Industrial-Strength Application of Formal Methods to Pro-
gram Verification

Task 3.3: Support to the Solution of Undergraduate Exam in Calculus and Economics
Task 3.4: Modelling of Existing Systems as Mathematical Services

Task 3.5: Challenge Mathematical Problems
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Introduction

The main research objective of the CALCULEMUS Network is to foster the integration of deduction systems
(DS) and computer algebra systems (CAS) both at a conceptual and at a practical level. The point of origin
for this kind of research is a landscape of heterogeneous approaches and systems on both sides of the
spectrum, where the diversity on the DSs side is probably greater than on the side of CASs.

Since its start in September 2000 the CALCULEMUS Network has contributed to the convergence of DSs
and CASs through its research on unifying frameworks for encoding and combining computation and
deduction, the identification of the architectural requirements for a new generation of reasoning systems
with combined reasoning and computational power, and the prototypical implementation and application
of the improved systems. However, a single predominant theoretical framework is currently not possible.
Such an approach would particularly involve predominant solutions to the still rather diverging systems at
both sides of the spectrum between DSs and CASs.! Therefore a strong line of research in the Network
focuses on the modelling and integration of CASs and DSs at the systems layer. In this research direction,
significant progress has been made and several systems of project partners and other research institutes
have been connected in order to form networks of cooperating mathematical service systems. The benefits
and impacté of such integrations have been investigated in prototypical case studies.

The researchers of the CALCULEMUS Network also fostered the Mathematical Knowledge Management
(MKM, EU MKMNET IST-2001-37057) research initiative; see [73, 19]. This relatively young line of
research adopts a broader perspective on the future of mathematics (research and publication practice, ed-
ucation, and knowledge maintenance) in the 21st century. A significant amount of CALCULEMUS research
is MKM relevant and is currently being taken up in this community in order to adopt and integrate it into
the broader MKM perspective.

The extensive research activities of the CALCULEMUS Network are furthermore shown inter alia by three
special issues of the Journal of Symbolic Computation [226, 9, 176] and the following international events:
CALCULEMUS Symposium 2000 in St. Andrews, Scotland [150, 226], CALCULEMUS Symposium 2001 in
Siena, Italy [176], CALCULEMUS Symposium 2002 in Marseilles, France [87,99], CALCULEMUS Autumn
School 2002 in Pisa, Italy [38, 39, 40, 277]

In the following paragraphs we sketch the highlights of our research in the different work tasks; for more
detailed reports to all tasks we refer to [37].

Task 1.1: Mathematical Frameworks TUE and Nijmegen University investigated type theory for the
purpose of formalising mathematics: Barendregt and Geuvers [34] give an overview of type theory, how it
is used to represent logic and mathematics and what issues and choices come up. Type theory (encoded in
OPENMATH) as a way for communicating mathematics is proposed in [33] and in [96] it is shown how a
proof presentation can be generated from a formalised proof in type theory. This paper argues that ‘formal
contexts’ in Coq can be used as a basis for interactive mathematical documents. This topic is also treated in
[214]. An in-depth discussion of the various ways to treat computations in theorem provers is given in [32]
and further related work is presented in [54].

The Network has also studied other approaches to theorem proving and their capacities to integrate com-
putations (see also [265]). This includes proof planning, as developed and employed by the nodes USAAR
and UED. In the QMEGA system [238], at USAAR, symbolic calculations can be integrated into proof
planning in two ways: (i) to guide the proof planner and to prune the search space by computing hints with
control rules and (ii) to shorten and simplify the proofs by calling a CAS within the application of a method
to solve equations. As a side-effect both cases can restrict possible instantiations of meta-variables. These
approaches are discussed in [105, 243, 194, 239].

An investigation into the use of deduction for the implementation of correct computations within computer

The Network is therefore also striving towards the definition of a uniform theoretical framework for DSs; see, for instance, [24]
for some preliminary work.
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algebra system was considered at UGE and is presented in [3].

The THEOREMA system, developed at RISC, aims at providing one mathematical framework encompassing
all aspects of algorithmic mathematics, notably the aspects of proving, computing, and solving; see [72, 67, -
68].

In [153, 154] it is critically argued by UBIR that aspects of mathematical concepts, including procedural
knowledge, are hard to reconstruct from the formalisation in deduction systems. This work points to
limitations of the flexibility of mathematical representations which apply to all our current approaches.

Task 1.2: Definition of Mathematical Service The primary goal of this Task is the enhancement of ex-
isting computer algebra systems and deductive systems by turning them into open systems capable of using
and/or providing mathematical services. After a preliminary analysis of the state-of-the-art of reasoning
systems, it was decided to tackle the problem, in parallel, by a top-down and a bottom-up approach.

In the top-down approach, new infrastructures (both at the conceptual, specification, and architectural level)
for the seamless integration of mathematical services have been investigated. This was intended not only
for current systems, but also and in particular for future implementations. To this extent particular emphasis
was on the definition of frameworks (languages, protocols, semantic specifications, architectural schemata)
suitable for making mathematical services accessible over the web. The relevant top-down approaches are:
OMRS (Open Mechanised Reasoning Systems) developed by UGE and ITC-IRST [5], LBA (Logic Broker
Architecture) developed by UGE [17, 18], MathWeb-SB (MathWeb Software Bus) developed by USAAR
[278], MathBroker developed by RISC [186]. These networks can themselves be coupled again as, for
instance, exemplarily investigated in [276].

In the bottom-up approach, we have investigated how complex mathematical services can be built out
of simpler ones. A particular emphasis has been devoted to decision procedures, and in particular to the
integration of procedures specific for solving mathematical problems with deductive procedures. Examples
for bottom up approaches are CCR (Constraint Contextual Rewriting) developed by UGE and MathSat
[129, 22,21, 20, 23], developed by ITC-IRST.

In Task 1.2 the CALCULEMUS network also closely cooperates with the EU project MONET (project
number IST-2001-34145) and a joint workshop? has been organised by O. Caprotti in November 2002 at
RISC. In MONET special ontologies comprising mathematical problems, queries and services have been
defined and investigated.

Task 2.1: Integration of CASs and DSs via Protocols Cooperation among several software systems
can be achieved with indirect, unidirectional and bidirectional communication. The goal of this task is to
investigate how protocols can be defined to provide a semantics as well as soundness results for systems
exchanging mathematical information. This definition hints at several other tasks in the Network dealing
with very similar problems. This is for example true when defining a context for a computation and is
partly covered in Task 1. Unidirectional and bidirectional communication protocols are designed when
coupling directly different modules. Although there are no direct links between the services with indirect
communication, interaction is possible when systems can communicate with a common user interface,
central unit, mediator or evaluator. This approach, which is partly based on a joint work with ITC-IRST
on OMSCS (Open Mechanised Symbolic Computation Systems), has been investigated within the KOMET
system at UKA see [86, 164, 119, 88].

A semantics can be provided by at least three approaches: (a) define a mathematical software bus, (b) define
a context from which a semantic can be derived, (c) formulate the problem as a knowledge representation
paradigm.

These approaches are shared by several of the partners. Indeed, they lead to introduce multi-agent systems,
contexts, and ontologies to just quote a few features (see for instance the LBA and the MathWeb-SB).

2See www . esblurock . com/ “ocaprott/mathbrokerWsS.html.
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Task 2.2: Enhancing the Reasoning Power of Computer Algebra Systems Enhancement of CAS with
reasoning power can be attempted at different levels: (a) enhancement of CAS on the System Level, (b)
enhancement of CAS on the Theory Level, and (c) enhancement of CAS on the User Level.

Direction (a) can be achieved by adding additional reasoning capabilities, i.e., logical inference systems,
to algorithms built into the CAS. The Constraint Contextual Rewriting (CCR) framework developed by
UGE can be used in order to integrate the evaluation mechanism of the CAS MAPLE with an appropriate
decision procedure for checking side-conditions, see [3] and [14].

Direction (b) can be achieved by adding proven knowledge about CAS functions to the CAS knowledge
base. The HR system, developed at UED, has been used to conjecture properties of functions available
in the MAPLE algorithm library from empirical patterns detected in computational data produced by the
CAS [108].

Direction (c) can be achieved by giving the CAS user the possibility to prove mathematical statements
using proof techniques from logic within the CAS in addition to the computing facilities that each CAS
offers. In the framework of the CALCULEMUS Network, the work of RISC represents this aspect of CAS
enhancement: The THEOREMA system, see [75], is an add-on package for the widespread and popular
CAS Mathematica where the user formulates mathematical theorems and proves them entirely within the
Mathematica environment.

Task 2.3: Enhancing the Computation Power of Deductions Systems UED investigated the combina-
tion of the proof-planner AClam [228] with other systems for computationally costly tasks. This includes
(a) an implementation of the GS flexible decision procedure system framework in (Teyjus) LambdaProlog
and within the AClam proof planning system [83] and (b) the integration of the AClam proof-planner into
the MathWeb-SB system [114].

UED also investigated the combination of systems to discover attacks to security protocols [244, 245]. This
work makes use of computational power in that it generates a large number of clauses in its processing.

Further relevant work has been done in the AClam proof-planner to construct very large and modular
proof-plans for complicated real analysis theorems [131, 179, 180].

The 2MEGA proof planner at USAAR has been coupled with different CASs via MathWeb-SB, see [243,
194, 239]. The 2ANTS approach to integrate CASs into mathematical assistant systems is sketched in [44,
43, 49, 50]. This work proposes an agent-based modelling of inference rules and external systems at a very
basic level within theorem provers.

Finally, work done at UBIR and UGE which render techniques from automated reasoning highly efficient
by using enhanced computational power are presented in [139, 140, 141] and [20, 23, 6]. Further relevant
work is given in [225].

Task 3.1: Automated Support to Writing Mathematical Publications Typically, a mathematical pub-
lication contains the following ingredients: natural language text, mathematical formulae, formal text (i.e.
definitions and theorems), proofs, examples (typically with computations), and graphics (tables, drawings,
sketches, etc.). In the optimal case, a software system for supporting mathematical publications would
support all these facets of mathematical publications. Several systems and languages have been used for
case studies in this area:

(a) The MIZAR approach (at UWB) is based on two kinds of software which automate the process of
writing formal mathematical papers: (i) software used to prepare an article as a formal text whose correct-
ness is computer verified and (ii) the software for automatic (or semi-automatic) translation into natural
language (particularly English); this includes also the software for translation into XMI -based formats.
The cooperation with other CALCULEMUS sites includes development of the MIZAR Mathematical Li-
brary (MML) and also the above mentioned translation into XML formats. Relevant publications are
[199, 126, 29, 30, 31].
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(b) THEOREMA is a prototypical software system designed to give computer-support to the working math-
ematician during all phases of mathematical activity. Several features qualify THEOREMA as a powerful
system for creating mathematical publications entirely inside the system. “Classical’” mathematical docu-
ments can be written that are intended mainly for printout, as for instance the thesis [268] or the conference
papers [260], [267], and [269]. In the case studies, however, emphasis has been put on using the THE-
OREMA system for developing interactive lecture notes for university mathematics courses. Mostly since
the THEOREMA language is very similar to the language used in “ordinary mathematics” the system is
highly suitable for this approach, both in illustrating computation-based courses as well as in supporting
proof-oriented courses.

(c) The OMDoOC [157] content markup scheme which has been developed at USAAR, supports authors
with writing formal mathematical documents including articles, textbooks, interactive books and courses.
OMDoc allows to capture the semantics and structure of these documents. Various tools are available to
transform OMDOC documents into other formats for presentation purposes (using, e.g., MathML) or to
support inter-system communication (e.g., by transformation into the logic of a theorem prover).

(d) TUE has developed the MATHDOX tool supporting interactive mathematical documents. MATHDOX
is based on DOCBOOK but also has similarities to OMDoOC.

Task 3.2: Support to the Development of an Industrial-Strength Application of Formal Methods to
Program Verification In addition to formal methods, which is undoubtedly the most important applica-
tion area for our research, we have identified the education sector as another interesting application for DSs
and CASs. Actually the systems THEOREMA (RISC) and ACTIVEMATH [197] (USAAR), which make
use of tools and approaches developed in the CALCULEMUS Network, are already employed in education
practice. Another example is the MATHDOX tool developed at TUE since the next version of the interactive
textbook Algebra Interactive! [104] will appear in this format.

Formal method applications currently pursued in the Network include (a) an approach to support the veri-
fication of hybrid systems with the help of mathematical services in MathWeb-SB [42, 41] — cooperation
of UGE, USAAR, UED, (b) the investigation whether specialised reasoning tools within the MathWeb-SB
can fruitfully support the formal verification of information flow properties and error detection in security
protocols [23] — cooperation of UGE, USAAR, UED, ITC-IRST, and (c) the application of proof plan-
ning in first-order linear temporal logic (FOLTL) to feature interactions as they arise in large telephone
networks [100] — at UED.

Task 3.3: Support to the Solution of Undergraduate Exam in Calculus and Economics In this Task
we focus on simple, mathematics education oriented problems with a strong emphasis on the particular
way the problems are solved, how interaction with the user is supported and how the solution is presented.
We analyse whether our systems can be employed in a user friendly and adequate way and whether the
interaction and maths presentation capabilities of the systems are appropriate.

A task relevant case pursued at Nijmegen University compares how the problem of proving the irrationality
of v/2, which involves computations, can be proved in fifteen different theorem proving environments
(including systems of the CALCULEMUS Network) [265, 263, 240, 48, 239].

Among the case studies that are currently being started at USAAR are exercises from the German Bun-
deswettbewerb Mathematik and Calculus exercises being encoded and investigated in the ACTIVEMATH
project. Empirical studies at USAAR investigates the phenomena of natural language dialog with mathe-
matical assistant systems on proof exercises in naive set theory.

Task 3.4: Modelling of Existing Systems as Mathematical Services The work in this Task so far has
concentrated both on developing the required infrastructure (languages, protocols, semantic specifications,
architectural schemata) for making existing systems inter-operate, and on studying extensions and enhance-
ments of the reasoning capabilities of some existing tools. The relevant contributions are: (1) MathSat
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framework developed at ITC-IRST [22, 21], (ii) the RDL (Rewrite and Decision procedure Laboratory),
(iii) the LBA [17, 18, 276] developed by UGE, (iv) the modelling of existing systems, for instance, AClam
developed at UED [228], as mathematical services in MathWeb-SB developed at USAAR [114].

Further work at USAAR concentrates on the mediation of mathematical knowledge between the mathemat-
ical knowledge base MBASE, which has been integrated to the MathWeb-SB, and mathematical assistant
systems such as QMEGA [122, 48, 47].

Task 3.5: Challenge Mathematical Problems During the work on the above tasks some challenging
mathematical problems had to be tackled already, in order to have non-trivial working examples. Some
of the examples were done either by single partner nodes or in collaboration between some of the nodes.
The examples include: (i) Fundamental Theorem of Algebra [125, 124], (ii) Involutive Bases [89, 85],
(iii) Exploration in Finite Algebra, (iv) The Residue Class Domain [192, 195, 193, 194], (v) Proving with
Invariants [196], (vi) The Jordan curve theorem for special polygons, (vii) Continuous lattices [163], (viii)
Order sorted algebras [257, 253, 256], (ix) Proofs in Homological Algebra, (x) Proofs in Graph Theory,
(xi) Exploration in Zariski Spaces. Further related work is given in [45, 46].

10



Task 1.1: Mathematical Frameworks

TASK LEADER: TUE
SCIENTISTS IN CHARGE: ARJEH COHEN, HENK BARENDREGT, HERMAN GEUVERS, FREEK WIEDEJK

RESEARCH TEAM: USAAR, UKA, RISC, TUE, UBIR

1.1.a Overview

Theorem provers are notably good at reasoning and less appropriate for computation. The reason is that
to preserve the soundness of the logic of the theorem prover, one can only allow computations that are
“correct”: simplifying V2% to z in a real number expression may speed up computation, but combined
with the reasoning facilities of a theorem prover, it also allows to derive 1 = —1, which is obviously
undesirable. In a computer algebra system, the user is left responsible for checking the side conditions
under which the output is valid, but for a theorem prover system, this is not good enough: the whole point of
theorem provers is that they prevent the deriving of invalid statements. So it seems that (fast) computation
and (correct) reasoning are antipodes and to a certain extent that is true: if one holds no responsibility
for correctness, it will in general be easier to write fast algorithms that suffice for most cases. On the
other hand, if one disallows fancy computations and restricts oneself to simple (user-guided) equational
reasoning, it is easier to preserve correctness. But of course there is room for improvement on both sides
of this spectrum. Computer algebra systems can be made “aware” of side conditions under which certain
algorithms are correct and theorem provers may be enhanced by (user-defined, proven correct) computation
facilities.

In Section 1.1.b type theory is introduced as a formalism which is expressive enough to include com-
putations via inductive data types and reflection within the formalism itself. The computations provided
by external systems can be used to justify proof steps and for the introduction of witness terms in proof
planning; this is described in Section 1.1.c. The use of deduction for the implementation of correct com-
putations within computer algebra systems and the THEOREMA system, developed at RISC are presented
in Section 1.1.d.

In Section 1.1.e it is argued that aspects of mathematical concepts, including procedural knowledge, are
hard to reconstruct from the formalization in deduction systems.

1.1.b Computation using Type Theory

The Type Theory of Coq

We have made several investigations into the use of type theory as a basis for formalizing mathematics. This
work has been carried out at Nijmegen University (NL) which is a sub-site of EUT. These investigations
have been of a theoretical nature, but we have also done practical experiments by doing large formalizations
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in the type theoretic theorem prover Coq (this is part of Task 3.5) and by improving the computation
capacities of type theoretic theorem provers like Coq (this is part of Task 2.3). In this Section we focus on
the theoretical investigations we have made into the application of type theory for formalizing mathematics.
An important focus is on the way type theory deals with computations, which will be discussed in more
detail in the Section 1.1.b. Here, we first explain the basic relevant ideas of type theory.

In type theory one interprets formulas and proofs via the well-known ‘formulas-as-types’ and ‘proofs-as-
terms’ embedding, originally due to Curry, Howard and De Bruijn. Under this interpretation, a formula is
viewed as the type of its proofs. Hence, a statement in type theory of the form

M:A
can be read in the following two ways:

e M is an element of the set denoted by A,

e M is a proof of the formula denoted by A.

In the case that M denotes a proof, it is actually a term notation for a natural deduction style derivation.
The main consequences of this approach towards theorem proving are that

e Proof checking is Type checking,

o Interactive Theorem Proving is the interactive construction of a term of a given type.

The Proof Assistant Coq is an interactive theorem prover based on type theory: the implemented typed A-
calculus is the Calculus of Inductive Constructions, CIC: a version of constructive higher order logic with
powerful inductive types. The system Coq provides the user with powerful tactics to interactively construct
a proof term. In this construction process, the system guarantees the type correctness. An important
distinction to be made — which is a basic philosophy behind type theoretic provers like Coq — is the one
between

e Checking an alleged proof: this is easy, comparable with checking the syntactic correctness of a
computer program,

e Constructing a proof for a given formula: this is hard (undecidable in general), comparable with
constructing a program that satisfies a given specification:

In type theoretic provers, the first task is performed by a fype checking algorithm, the second task is
performed interactively with the user.

An important issue in (automated) theorem proving in general is the question of correctness of the imple-
mented system. Or, phrased differently: how can we be sure that a formula that has been proved (interac-
tively) by the Proof Assistant (PA) is really true? We may sometimes not be convinced that all the powerful
tactics that a PA provides are sound and it occasionally turns out that a PA contains a bug. In type theoretic
PAs, this issue of reliability is solved to some extent, because the PA also provides a proof term that can be
type checked by the user, using his own — relatively easy to write — type checking algorithm. The feature of
having proof terms that can be checked independently by a relatively small and easy algorithm, is known
as the De Bruijn criterion, named after the founding father of the Automath project. In this project the first
PAs based on type theory were implemented (in fact they were proof checkers instead of proof assistants).

Another important feature of type theoretic theorem provers is the so-called Poincaré’s principle, which
states that propositions which can be verified by a computation are easy; i.e., no proof is required. This
principle is incorporated in CIC through the so-called conversion rule: types (and propositions) that are
computationally equal (convertible) are not distinguished. This means that if we have an algorithm (inside
type theory) that computes a function, say plus that computes addition, then plus(1, 1) = 2 does not require
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a proof, because this is just computationally equal to 2 = 2, which holds by reflection. We come back to
this below.

The actual formalization of mathematics in type theory proceeds by building up a context of results. Such
a context consists of the following items. (z is a variable and a and A are general expressions)

e r: A with a data type A. This denotes a declaration of the variable z to be of type A.
e 1 : A with a propositional type A. This denotes the assumption (‘named’ z) of A.
e z:=a:Awithadata type A. This introduces a definition of x as a, where a is of type A.

e 1 := a: A with a propositional type A. This introduces a reference ‘named’ z to the lemma A. Here
a is a proof of A.

The first two are called variable declarations and the second two are called definitions. Note that a reference
to a lemma is made by introducing an abbreviation (definition) of the proof term. These declarations and
definitions can also be made ‘locally’ (e.g., under the scope of other binders).

In the reporting period we have made several investigations into type theory for the purpose of formalizing
mathematics. These have been laid down in the following publications. [34] gives an overview of type
theory, how it is used to represent logic and mathematics and what issues and choices come up. [33]
proposes type theory (encoded in OPENMATH) as a way for communicating mathematics. [96] shows
how from a formalized proof in type theory a proof presentation can be generated. It argues that ‘formal
contexts’ in Coq can be used as a basis for interactive mathematical documents. This topic is also treated
in [214].

Apart from trying to improve the type theoretic approach, we have also studied other approaches to theorem
proving. This was done by the “Fifteen provers of the world” project of Freek Wiedijk, who compares
fifteen theorem provers by studying how they (formalize and) prove the irrationality of V2. See [265] for
a preliminary comparison. It turns out that “proof style” is an important distinguishing feature in theorem
provers. A theorem prover like Coq has a “procedural” proof style: the user types in “tactics” that guide
the proof engine in constructing the proof. A theorem prover like MIZAR has a “declarative” proof style:
the user types in the reasoning pretty much in the style of an ordinary mathematical paper and the system
gives a warning if it can’t fill the gaps. The second is closer to ordinary mathematics. In [262] the two
declarative proof styles of MIZAR and Isar are compared. In [264] it is shown how a declarative proof
style can be programmed on top of the procedural proof style system Hol-light.

Computation in Coq

Type theory presents a powerful formal system that not only captures the notion of proof (via the so called
‘propositions-as-types embedding’, where types are viewed as propositions and terms as proofs), but also
the notion of computation, via the inclusion of functional programs written in typed A-calculus. There are
three notions of computation: -, t- and d-reduction. The first is the well-known S-rule from A-calculus,
(Az : AM)N —p M[N/z]. The :-reduction captures primitive and higher order primitive recursion,
which arise from the inductive types that are definable in CIC (e.g., natural numbers, lists, trees but also
much more expressive types). The d-reduction deals with unfolding of definitions: if z := a : A then
M(z) -5 M(a). '

We have already mentioned two important features of type theory (CIC):

e The decidability of type checking (D proof checking)

o The Poincaré principle: computations do not require a proof.

13
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These imply that not all computations can be formalized in CIC: If f is a function (algorithm) on the natural
numbers, then ‘reflexivity’ is a proof of f(0) = 0 if and only if the computation of f on 0 yields 0. In
CIC, all computations terminate and are deterministic, due to the fact that for defining functions there is a
fixed scheme that uses syntactic restrictions to prevent non-termination. The ‘fixed scheme’ for functions
forces a user to define all functions by structural recursion, which is often felt as a limitation. Several
proposals have been made to alleviate the restrictions posed by the structural recursion (without giving up
the decidability of type checking). The ‘Bove-Capretta’ approach of [54], jointly developed in Nijmegen
(Capretta) and Gothenburg (Bove) has been very successful as it succeeds in taking apart the definition of
a function, which is done very much in a functional programming style, and the proof that it terminates,
which can be postponed until later. It also provides a way of dealing with partial functions.

In computer algebra systems, computation is used to solve problems, not to write down ‘executable func-
tions’. In type theory, notably in CIC, we can also use the computing power of the system itself to solve
problems. This is done most successfully using the so called reflection approach.

Reflection is the method of ‘reflecting’ part of the meta language in the object language. Then meta theo-
retic results can be used to prove results from the object language. Reflection is also called internalization
or the two level approach: the meta language level is internalized in the object language. It should be
stressed that reflection does not extend the logic of the theorem prover, so there is no possible consistency
problem. It just enhances the reasoning by providing new tactics. The computations that are carried out by
these tactics are mainly ‘autarkic’, i.e., they are carried within the system itself. [32] contains an in-depth
discussion of the various ways one can treat computations in theorem provers.

The reflection method can be applied quite generally in situations where one has a specific class of problems
with a decision function. It is not restricted to the theorem prover Coq. If the theorem prover allows (A)
user defined (inductive) data types, (B) writing executable functions over these data types and (C) user
defined tactics in the meta language, then the reflection method can be applied. The classes of problems
that it can be applied to are those where (1) there is a syntactic encoding of the class of problems as a
data type, say via the type Problem, with (2) a decoding function [—] : Problem — Prop (where Prop
is the collection of propositions in the language of our theorem prover), (3) there is a decision function
Dec : Problem — {0,1} such that (4) one can prove Vp : Problem((Dec(p) = 1) — [p]). Now, if the
goal is to verify whether a problem P from the class of problems holds, one has to find a p : Problem such
that [p] = P. Then Dec(p) (together with the proof of (4)) yields either a proof of P (if Dec(p) = 1)
or it ‘fails’ (if Dec(p) = 0 we obtain no information about P). Note that if Dec is complete, i.e., if
Vp : Problem((Dec(p) = 1) « [p]), then Dec(p) = 0 yields a proof of —=P. The construction of p
(the syntactic encoding) from P (the original problem) can be done in the implementation language of the
theorem prover. Therefore it is convenient that the user has access to this implementation language; this is
condition (C) above. If the user has no access to the meta language, the reflection method still works, but
the user has to construct the encoding p himself, which is very cumbersome.

The reflection method turns out very useful in practice. We list the use we have made of it, also in large
formalizations.

e In the proof of the Fundamental Theorem of Algebra (FTA), form alized in Coq, we have imple-
mented and used a tactic called “Rational”, which solves equations between rational expressions,
like % *y = +. To implement it, we have defined a syntactic type of rational expressions and an

interpretation function to any field. An extra complication here is that the interpretation function is
partial (the syntactic expression (1—) does not have a value).

e Based on the FTA work, Luis Cruz-Filipe has proved the Fundamental Theorem of Calculus FTC. In
the formalization, a tactic for computing derivativgs and a tactic for checking continuity have been
implemented, both using the reflection method. See [111].

e We are working on a tactic that proves statements from primitive recursive arithmetic by replacing
them with a computation (of the associated primitive recursive function), using the reflection method.
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1.1.c Symbolic Computations in Proof Planning

In the context of this work package we developed a method that enables the use of symbolic computations
in deduction, more precisely in proof planning, without sacrificing the correctness of the overall proofs that
are constructed. The work was carried out by researchers at nodes in Saarbriicken and Birmingham using
the XMEGA system [238, 239].

We will first give a brief introduction to proof planning and its particularities in the {MEGA system, and
then explain the two different methods we have developed to integrate computer algebra.

Multi-Strategy Proof Planning

Proof planning, developed in Edinburgh by Alan Bundy [81], considers mathematical theorems as planning
problems where an initial partial plan is composed of the proof assumptions and the theorem as open goal.
A proof plan is then constructed with the help of abstract planning steps, called methods, that are essentially
partial specifications of tactics known from tactical theorem proving. In order to ensure correctness, proof
plans have to be executed to generate a sound calculus level proof.

In the IMEGA system [238], the traditional proof planning approach is enriched by incorporating mathe-
matical knowledge into the planning process (see [198] for details). That is, methods can encode general
proving steps as well as knowledge particular to a mathematical domain. Moreover, control rules provide
the possibility to introduce mathematical knowledge on how to proceed in the proof planning process by
specifying how to traverse the search space. Depending on the mathematical domain or proof situation
they can influence the planners behavior at choice points (€.g., which goal to tackle next or which method
to apply next).

Symbolic calculations can be integrated into proof planning in two ways: (1) To guide the proof planner
and to prune the search space by computing hints with control rules. (2) To shorten and simplify the proofs
by calling a CAS within the application of a method to solve equations. As side-effect both cases can
restrict possible instantiations of meta-variables®.

Employing Computer Algebra in Control Rules

Computations of a CAS can be employed in control rules to influence the course of the planning process
by prefering applicable methods or to compute a proper substitution for a needed witness term. In the latter
case a control rule is triggered after the decomposition of an existentially quantified goal which results in
the introduction of a meta-variable as substitute for the actual witness term. After an existential quantifier
is eliminated, the control rule computes a hint with respect to the remaining goal that is used as a restriction
for the introduced meta-variable. If hints can be computed, the meta-variables are instantiated before the
proof planning proceeds. However, the instantiations suggested by select-instance are treated as a
hint by the proof planner; that is, they have to be verified during the subsequent proof planning process. In
case the proving attempt fails for a particular instantiation, the proof planner backtracks and tries to find an
appropriate instantiation by crude search.

Examples of its use are given in the case study for proof planning in the residue class domain [194], which
is described in more detail in the report for Task 3.5. There, for instance, it is necessary to show the
existence of a unit element e in a given algebraic structure (S, o). The control rule supplies a hint as to
what e might be. To obtain suitable hints, the control rule sends corresponding queries to the CAS GAP
and MAPLE.

*Meta-variables are place-holders for terms whose actual form is computed at a later stage in the proof search.
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Employing Computer Algebra in Methods

The way we use CAS computation in methods is an extension of previous work, in particular [152], that
presents the integration of computer algebra into proof planning, and [243], that exemplifies how the cor-
rectness of certain limited computations of a large-scale CAS can be guaranteed within the proof planning
framework. It is based on the idea to separate computation and verification and can thereby exploit the
fact that many elaborate symbolic computations are trivially checked. In proof planning the separation is
realized by using a powerful computer algebra system during the planning process to do non-trivial sym-
bolic computations. Results of these computations are checked during the refinement of a proof plan to a
calculus level proof using a small, self-tailored system that gives us protocol information on its calculation.
This protocol can be easily expanded into a checkable low-level calculus proof ensuring the correctness of
the computation.

An example of the use of calculations, is realized within the Solve-Equation method in the residue
class case study. Its purpose is to justify an equational goal using MAPLE and, if necessary, to instantiate
meta-variables. In detail, it works as follows: If an open goal is an equation, MAPLE’s function solve
is applied to check whether the equality actually holds. Any meta-variables contained in the equation are
considered as the variables the equation is to be solved for and they are supplied as additional arguments
for solve. In case the equation involves modulo functions with the same factor on both sides, MAPLE’s
function msolve is used instead of solve. If MAPLE can solve the equation, the method is applied and
possible meta-variables are instantiated accordingly. The computation is then considered correct for the
rest of the proof planning process. However, once the proof plan is executed MAPLE’s computation is -
expanded into low level logic derivations to check its correctness. This is done with the help of a small,
self-tailored CAS that provides detailed information on its computations in order to construct the expansion
[243].

1.1.d Extending Symbolic Computation with Deduction

Theorema

The THEOREMA system, developed at RISC under the direction of B. Buchberger, see [75, 70, 72, 67,
68], aims at providing one mathematical framework encompassing all aspects of algorithmic mathematics,
notably the aspects of proving, computing, and solving. A detailed description of the THEOREMA system
will be given in report for Task 2.2.

The system architecture bases on an existing Computer Algebra System (CAS), in the concrete case Math-
ematica, see [188], and extends it with proving facilities implemented in the native programming language
of the CAS. In principle, any CAS offering programming facilities could be used as starting point. The main
advantages of Mathematica lie in the elegant pattern-matching oriented programming style and in the pow-
erful programmable user front-end. The Mathematica user front-end is—though highly sophisticated—in
its nature command-line oriented, i.e. the user enters a command to the system and the system displays the
result of evaluating the command. Mathematica comes as a huge library of algorithms mainly for computer
algebra related areas based on exact representation of integers, rational numbers, and algebraic numbers,
and on polynomial and rational function arithmetic.

The philosophy in Theorema is to provide a uniform mathematical environment offering essentially three
commands reflecting the three central mathematical activities:

e Prove for proving formulae w.r.t. to some knowledge base,
e Compute for computing normal forms of given expression w.r.t. to some knowledge base, and

e Solve for finding terms satisfying certain properties w.r.t. to some knowledge base.
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For the Prove command, methods from automated deduction need to be implemented from the scratch.
We mainly emphasize on automated proving methods that generate proofs in a human readable and—more
importantly—human understandable style. For a detailed description of the current proving capabilities of
THEOREMA we refer to the report on Task 2.2. The Compute command mainly bases on the underlying
rewrite engine provided by the Mathematica system. It can also be seen as one main interface, through
which the powerful collection of computational algorithms in the Mathematica kernel can be made avail-
able in THEOREMA. The Solve command is not yet far investigated. Some algorithms for solving special
types of equations are available in Mathematica, but other methods, notably constraint solvers for various
domains available among the Calculemus nodes, shall be incorporated at this stage.

Proving, computing, and solving will be organized in such a way, that not only these three commands are
available at the top-level, but an interaction between them can seamlessly be integrated into the system. It
can be observed e.g. in proving, that an alternation of phases of proving, computing, and solving is a fruitful
strategy for automated proof generation. This paradigm, called “PCS”, was invented in [60] for proofs in
elementary analysis. It is, however, the design guideline, which many of the proving methods developed in
the frame of THEOREMA follow, notably the set theory prover described in [268]. Analogously, computing
will employ phases of proving and solving and solving will integrate phases of proving and computing. It
is a challenging task for the system design to setup the components so that all these interactions are easily
possible on a correct and sound logical basis.

Constraint Contextual Rewriting in MAPLE

UGE and UKA have jointly worked at the reconstruction of MAPLE’s symbolic evaluator and its assume
facility, introduced [261] to solve inconsistencies arising from rules like vz2 = z. This rule is wrong
unless z denotes a real number and z > 0. Removing the rule makes the simplifier correct, but also less
powerful. The assume facility provides a way out of the dilemma: it maintains a context which enables
the user to specify properties of terms, and the rule is applied to an expression va? only if @ > 0 can be
derived from the context. Thus, due to the addition of the assume facility, MAPLE’s symbolic evaluator
is a complex mathematical service resulting from the combination of specialized reasoning modules: the
evaluator, the property reasoner, a solver for linear programming problems, and a general solver.

The notion of context plays also a key role in Constraint Contextual Rewriting (CCR, for short) [14] (cf.
Section 1.2.f). CCR is a powerful form of conditional rewriting which incorporates the services provided by
a decision procedure. In CCR contextual information is stored and manipulated by the decision procedure
whose interface functionalities are neatly specified in an abstract way.

The generality of the integration schema employed in CCR promotes its reuse. Indeed, we have shown that
MAPLE’s evaluation process can be recast in CCR as a set of cooperating reasoning specialists with neatly
specified interfaces. This is not just an academic exercise:

o A fault that causes MAPLE to return wrong results with some contexts was discovered during the
analysis of the assume facility. The reason for this is that the facility is based on the assumptions
that one of its modules, namely the solver, is complete in the sense that it uses all the available
assumptions in the context. This is not the case.

e CCR provides a solution to this problem, at least if the context contains only linear equalities and
inequalities, by integrating linear arithmetic more tightly with simplification than the present imple-
mentation in the assume facility does.

o Only a certain class of lemmas about functions is amenable to the assume facility. It has been shown

that augmentation can be used to extend this class.

This leads also to the observation that properties of user-defined functions should be declared rather than
programmed. Last but not least, Weibel and Gonnet’s property reasoner has been made available to the
automated reasoning community.
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The results of this work have been published in [3].

1.1.e Design of Mathematical Concepts

It is one of the deep mathematical insights that foundational systems like first-order logic or set theory can
be used to construct large parts of existing mathematics and formal reasoning. Unfortunately, this insight
has been used in the field of automated theorem proving as an argument to disregard the need for a di-
verse variety of representations. While design issues play a major role in the formation of mathematical
concepts, the theorem proving community has largely neglected them. We argue that this leads not only to
problems in human computer interaction, but that it causes severe problems at the core of reasoning sys-
tems, namely at their representation and reasoning capabilities. In order to improve applicability, theorem
proving systems need to take care about the representations used by mathematicians.

Donald Norman gives a fascinating introduction into “The Design of Everyday Things.” His insights are of
a very general nature and we argue that principles for good design hold in mathematics as well. The design
of concepts in mathematics takes a lot of the burden on getting things right from the human user by the use
of appropriate representations. The different representations are used to keep information together, hide
unimportant details, and allow to concentrate on the important parts. Sometimes the right representation is
the key step in the process of problem solving. If one were to use a foundational system directly, however,
everything would have to be expressed explicitly in a uniform representation, which offers no or only little
structural support.

To exemplify this, we will take a closer look at multiplication tables.

o|d - dy
dy|cin - cCim
dnlCn1 - Cnn

The information accessible from the table is that it is a binary operation, it is discrete and defined on a finite
domain. Domain and range are directly given. The table has its own notion of well-formedness, that is, all
d; have to occur and have to be different, the table must be fully filled. In the design we find natural and
cultural constraints. Multiplication tables are designed in a way that their structure puts “information in
the world” that makes it difficult to violate well-formedness. An under-specification would leave a hole in
the structure, it is impossible to enter more than one entry per field. Furthermore, although the order of the
d; in the columns and rows could in principle be different, cultural conventions prevent that. This in turn
makes particular reasoning methods possible which are connected to the representation. For instance, the
commutativity of o is checked by verifying that the table is symmetric with respect to the diagonal.

This work has been carried out in collaboration of the nodes in Birmingham and Saarbriicken. It particularly
involved the YVR Martin Pollet. The results where published in [153, 154].
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TASK LEADER: ITC-IRST

SCIENTISTS IN CHARGE: FAUSTO GIUNCHIGLIA, ROBERTO SEBASTIANI, MARCO BOZZANO, ALESSAN-
DRO CIMATTI

RESEARCH TEAM: USAAR, UED, UKA, RISC, ITC-IRST, UGE

1.2.a Overview

Broadly speaking, a mathematical service is a set of implementations running on a particular machine
which accomplishes some mathematical task. An implementation is a particular realization of an algo-
rithm as executable software, possibly with additional constraints on the input and additional possibilities
for the output. Mathematical services are traditionally subdivided into those providing proving, solving
or computing capabilities [58]. E.g., Deduction Systems (DSs) mostly provide proving services, whilst
Computer Algebra Systems (CASs) mostly provide solving and/or computing services. *

The primary goal of this task is the enhancement of existing computer algebra systems and deductive sys-
tems, with the aim of turning them into open systems capable of using and/or providing mathematical
services. Since we aim at providing a definition encompassing the complexity of state-of-the-art systems
(with issues ranging over from the very theoretical ones at the mathematical level to the very technolog-
ical ones at the communication level) we found it convenient to pursue a variety of different approaches
(classified in bottom-up and top-down, as stated below).

In particular, the support of communication and interaction between these categories of mathematical ser-
vices is required for tackling real problems in mathematics. Thus, a key goal of this task is to find common
frameworks for defining mathematical services and description formats that abstract from the particulari-
ties of an implementation and focus on the actual problem being solved. To this aim, it is also important to
identify the architectural and functional requirements (e.g, communication protocols for networked math-
ematical services) for turning existing systems, like CASs and DSs, into open systems capable of using
and/or delivering mathematical services.

We summarize below the contributions relevant for task 1.2. The contributions are detailed in the remainder
of this report. After a preliminary analysis of the state-of-the-art reasoning systems, it was decided to
tackle the problem in parallel by a top-down and a bottom-up approach. In the top-down approach, new
infrastructures (both at the conceptual, specification, and architectural level) for the seamless integration
of mathematical services have been investigated. This was intended not only for current systems, but also
and in particular for future implementations. To this extent, a particular emphasis has been devoted to the

“4Notice that the meaning of the terms “proving”, “solving” and “computing” is not universally stated and may be different among
the different scientific communities. E.g., in the SAT community SAT tools are commonly called “solvers”, whilst in our sense they
provide proving services.
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definition of frameworks (languages, protocols, semantic specifications, architectural schemata) suitable
for making mathematical services accessible over the web.

The relevant contributions are:

e OMRS (Open Mechanized Reasoning Systems), developed by UGE and ITC-IRST, is a specifica-

tion framework for logical services. An OMRS specification consists of three layers: the logic layer
(specifying the assertions manipulated by the system and the elementary deductions upon them),
the control layer (specifying the inference strategies), and the interaction layer (specifying the inter-
action of the system with the environment). Notice that this layering allows for an additional and
complementary way to structure the specifications with respect to the standard approach based on
modularity. As a consequence, OMRS specifications are therefore more structured than conventional
specifications. This domain-specific feature of the OMRS specification framework is fundamental to
cope with the complexity of functionalities provided by state-of-the-art implementations.

LBA (Logic Broker Architecture), developed by UNIGE, is an architecture which provides the re-
quired infrastructure for making mechanized reasoning systems interoperate. In the LBA each mech-
anized reasoning system is seen as an entity providing and/or requiring a set of mathematical ser-
vices. The LBA provides location transparency, a way to forward requests for logical services to
appropriate reasoning systems via a simple registration/subscription mechanism, and a translation
mechanism ensuring the transparent and provably sound exchange of logical services.

MathWeb-SB (MathWeb Software Bus) [278] connects a wide range of reasoning systems (math-
ematical services), such as ATPs, (semi-) automated proof assistants, Computer Algebra Systems
(CASs), model generators (MGs), constraint solvers (CSs), human interaction units, and automated
concept formation systems, by a common mathematical software bus. Reasoning systems integrated
in the MathWeb-SB can therefore offer new services to the pool of services, and can in turn use all
services offered by other systems.

MathBroker, developed by RISC, is a software framework for brokering mathematical services
that are distributed among networked servers. The foundation of this framework is a language for
describing the mathematical problems solved by the services. Servers register their problem solving
capabilities with a ’semantic broker” to which clients submit corresponding task descriptions.

In the bottom-up approach, we have investigated how complex mathematical services can be built out
of simpler ones. A particular emphasis has been devoted to decision procedures, and in particular to
the integration of procedures specific for solving mathematical problems with procedures with deductive
power. We provided formal modeling of the following integration schemata:

20

e CCR (Constraint Contextual Rewriting), developed by UNIGE, is a generalized form of rewriting

that allows for the effective and plug & play integration of decision procedures in formula simplifica-
tion. CCR is a generalization of (contextual) rewriting that incorporates the functionalities provided
by a decision procedure. The services of the decision procedure are characterized abstractly (i.e.,
independently of the theory decided by the decision procedure) and the notation CCR(X) (by anal-
ogy with the CLP(X) notation) is used to stress this fact. By using CCR(X) as a reference model,
the problem of the integration of decision procedures in formula simplification is reduced to the
implementation of a decision procedure for the fragment of choice.

MathSat [129, 22, 21], developed by ITC-IRST, introduces a formal framework, a generalized al-
gorithm and architecture for integrating boolean reasoners and mathematical solvers so that they can
efficiently solve boolean combinations of boolean and mathematical propositions. Many techniques
are described to optimize this integration. Moreover, the MathSAT framework evidences the main
requirements boolean reasoners and mathematical solvers must fulfill in order to be integrated cor-
rectly and to achieve the maximum benefits from their integration. The MathSat procedure [20, 23]
is ITC-IRST implementation of an integrated procedure based on the MathSat framework.
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e M\Clam is a proof planning system which has been integrated into the MathWeb-SB framework. As
aresult, AClam can now use reasoning services provided by existing systems in MathWeb-SB, and,
in turn, provide new reasoning services to them.

In Task 1.2 the CALCULEMUS network also closely cooperates with the EU project MONET (project
number IST-2001-34145) and a joint workshop® has been organised by O. Caprotti in November 2002 at
RISC. In MONET special ontologies comprising mathematical problems, queries and services have been
defined and investigated.

1.2.b The OMRS Specification Framework

The Open Mechanized Reasoning Systems (OMRS) project has the objective of designing a formal frame-
work for the specification of state-of-the-art provers. The starting point of the OMRS approach is to struc-
ture the specification of a system in a logic component, a control component, and an interaction component,
thereby suggesting the following equation:

OMRS = LOGIC + CONTROL + INTERACTION

Preliminary but significant results have been obtained in the application of the OMRS framework for sup-
porting (i) the definition and the development of provers as open architectures usable in a ’plug-and-play”
fashion, and (ii) the design and development of proof-checkable and customizable reasoning systems.

Starting from the consideration that any reasoning system, as such, performs deductions within some
logic(s), guided by some (more or less complex) heuristics, and exhibits some interaction capabilities,
an OMRS specification of a reasoning system is structured in a logic component, a control component,
and an interaction component. The logic component provides a description of the assertions manipulated
by the system and the elementary deductions upon them; the control component allows for the specifica-
tion of the strategies guiding the construction of complex deductions out of the elementary ones; finally
the interaction component specifies how the system interacts with the external world (including human
users and other provers). Crisply separating the concerns of the three layers, results in clearer and better
specifications. This is an important issue as it allows us to cope with the complexity of existing systems.

UNIGE (together with ITC-IRST) has contributed to the definition of the control layer of the OMRS spec-
ification framework [5]. This key idea of the approach is to specify the control layer by

(i) adding control knowledge to the data structures representing the logic by means of annotations; this
leads naturally to an extended notion of inference which accounts for the simultaneous manipulation
of logic and control information;

(ii) specifying proof strategies via tactics, i.e., expressions denoting sets of admissible derivations.

1.2.c The LBA Architecture

UNIGE has both designed the conceptual model of the LBA [17, 18] and developed two prototype imple-
mentations of the LBA: one based on CORBA and - recently — one based on XML. Moreover, a bridge
between LBA and MathWeb has been defined [276].

The Logic Broker Architecture (LBA) addresses the problems arising from the integration of different
reasoning systems. In particular, interconnection of two different reasoners can lead to unsound resulits,
because of differences in the underlying semantics. The LBA architecture addresses this problem by means

5See www . esblurock . com/ “ocaprott/mathbrokerWS.html.
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Figure 1: The Logic Broker Architecture. A client C wants to prove a formula; it subscribes its query to
the Logic Broker (LB), waiting for a result. LB tries to find in the database (DB) a server matching the
requested service and provide to C the service pointer.

of a diversification between the logic layer and the communication layer. A reasoning theory can be thought
of as composed of a sequent system and some inference rules, which respectively model assertions and
inference steps. Before instantiating a communication, a client sends to the Logic Broker a pair containing
its set of inference rules and the service requested. The broker then tries to make a match between client
query and services registered in its own database. If there is a positive result, then the Logic Broker
provides the connection between the objects. The architecture can be seen from the point of view of the
client like a library of functions, which can be easily integrated into the local environment, without any
overhead coming from network connections. Note that the client doesn’t ask about a specific server, but
calls a service like simplify an equation, solve a set of constraints, etc. As a result, the same client
can receive many solutions coming from different servers and it can apply some policies to decide which is
the best for its computation. This level of decision can be shifted to the broker, asking for the first solution,
or for the complete list of them.

One of the main goals of LBA is to use only consolidate standards, which can be easily implemented in
the most common development environments. Due to this, the new version of LBA supports two main
technologies, namely CORBA and XML. CORBA comes out from the tradition of LBA, guarantees the
possibility to share and distribute not only results, but also parts of the proof or parts of the strategy, when
this is possible. XML ensures the possibility to communicate with a large variety of web services and to
interpolate data very fast. LBA also uses a standard for sharing mathematical documents, namely OPEN-
MATH. Thanks to the extremely open design, OPENMATH can be used to describe a huge variety of math-
ematical knowledge.: Everything is regulated by the agreement of the Content Dictionaries, which contain
the classifications of mathematical symbols. Each client/server has its own phrase-book that translates the
local language into the common layer OPENMATH.

1.2.d The MathWeb Software Bus

Specification of Automated Theorem Provers

In [10], Armando, Kohlhase, and Ranise presented a first taxonomy of possible states for automated reason-
ing systems. J. Zimmer adapted this taxonomy to the special case of Automated Theorem Provers (ATPs)
and extended it by states which describe errors, timeouts and situations where the search is exhausted for
some reason. First results of this work are described in an informal note [275]. The current state of our
taxonomy can also be seen in Figure 2.

J. Zimmer extended all first order ATP services in the MathWeb-SB such that the prove service always
returns one of the valid ATP states. Furthermore, all first-order ATPs in the MathWeb-SB now accept
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state | For input formula F ATP has

proof found a proof for '

counter-proof found a proof for - F.

valid determined that F' is valid by some method
unsatisfiable | determined that F is unsatisfiable (:<=> —F valid)
satisfiable determined that F is satisfiable (has a model)
counter-sat determined —F’ is satisfiable (has a model)

successful successfully terminated but couldn’t determine one of the above
error detected an error (e.g., incorrect problem description)
syntax-error detected a syntax error in F'

timeout used up a given time resource and is not yet determined
incomplete the prover could not go on with the search (e.g. SoS empty)
unsuccessful been unsuccessful for some reason

determined determined one of the above (this will never be used)
undetermined not determined any state

Figure 2: Valid states of MathWeb ATPs, where the formula F' is logically equivalent to the given problem
description (set of assumptions + conclusion).

[ Name | IntegerSort |
Context Sort
Types
Input xs: ListOf Integer;
Output ys: ListOf Integer;
InConstraints le(length(xs), 100);

OutConstraints before(x. y, ¥s) <= ge(x,y )

(X, ¥8) <« in(x, xs):

ConcDescriptions
TextDescriptions | sort list of at most 100 integers

Figure 3: A LARKS description of a sorting service for integers.

problem descriptions in the standard languages TPTP and OMDoC. The described work forms a crucial
step towards the definition of a uniform first-order theorem proving service that is independent of concrete
implementations.

Capability Description Languages for Mathematical Services

In the context of a further agentification of the MathWeb-SB, J. Zimmer investigated the possible use of
existing frameworks for the description of mathematical services. MathWeb agents should offer abstract
mathematical services that are described in a service description language. Service descriptions should
describe the valid input and output parameters of a service, as well as the semantics, i.e., the mathematical
task a service performs (e.g. proof of a theorem or factorization of a polynomial). Since the latter is
closely related to the definition of web services, we studied a possible use of frameworks developed in the
semantic web community, such as RDF [55], UDDI, and WSDL [103], and of languages developed in the
information agents community, such as the capability description language LARKS [247] (a Language for
Advertisement and Request for Knowledge Sharing).

LARKS is expressive, easy to use, and capable of supporting inferences in capability descriptions. It also
incorporates application domain knowledge in agent advertisements and requests. Domain-specific knowl-
edge is specified as local ontologies in the concept language ITL. Figure 3 shows the LARKS description
of a sorting service for lists of integers. The slots of the description in Figure 3 have the following meaning:
Name The name of capability description for human consumption.

Context of keywords denoting the domain of the description.

Types slot allows to define type abbreviations using the existing primitive types.
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Input (Output) slot contains the specification of the input (output) parameters of the service.

InConstraints and OutConstraints slots contain constraints on the input and output variables.
These constraints are expressed in Horn clauses and describe the actual functionality of the service.
In the example, the constraints say that the output list ys contains at least the elements of xs in a
sorted order.

ConcDescriptions cancontain optional descriptions of concepts in the ontology description language
ITL.

TextDescription describes the capability and the meaning of the content of the other slots in natural

language.

Using this and the taxonomy of states described above, we can, for instance, specify the first-order theorem
proving service as it is offered by the MathWeb-SB.

[ Name | proveFOP
Context ProofTheory
Types
Input 1: FOConjecture;

format: String;
replyWith: (state: ATPState, host: String,
time: (user: Real, real: Real, sys: Real));

Output atp_result: (state: ATPState, host: String,
time: (user: Real, real: Real, sys: Real));
InConstraints default(format,”tptp”);

default(reply With, record(pair(state, ")),
default(time, 120);

OutConstraints
ConcDescriptions
TextDescriptions | Try to determine the logical status of a first order problem.

This description does not contain much explicit knowledge about the semantics of the service. This is due
to the fact that most of the semantics is hidden in the definition of the ATPStates in section 1.2.d. This
raises a crucial question that has to be answered in the context of the definition of mathematical service,
namely what knowledge should be located in the definition of the ontology and what knowledge should
explicitly be given in the service descriptions themselves.

1.2.e The MathBroker Web Framework

At RISC the work on Task 1.2 has mainly been devoted to the definition of a language that describes the
mathematical problems solved by the services [186]. This language has to serve as a foundation for a
framework for brokering mathematical services distributed among networked servers, as such it extends
WSDL, the web service description language. Servers register their problem solving capabilities expressed
in this language with a “semantic broker” to which clients submit corresponding problem descriptions.
The broker (possibly in cooperation with a deduction system) determines the suitable services and returns
them to the client for invocation. This mechanism thus hides from the client the actual implementation
of mathematical services and focuses on the semantical aspects carried out. The overall design of the
description language is structured in layers which proceed from an abstract view, namely the problem
addressed by the mathematical service, all the way down to the hostname-port address of the service, as
depicted in Figure 4.

On top of this, a run-time system accepts the descriptions of compound tasks and coordinates the invocation
of the services offered by the broker. This mechanism thus hides from the client the coordination of math-
ematical services. Embedded into XML-documents and interpreted by browser applets, such descriptions
may act as interactive hypermedia interfaces for distributed mathematical applications.
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proving
solving
Problem Class computing
simplifying

name
input
Problem output

1/0 conditions

ABSTRACT DESCRIPTION

name
Algorithm complexity
/O conditions

name

1O restrictions
Implementation software system

programming language

name
Service host-port address
communication protocol

l PHYSICAL DESCRIPTION

Figure 4: Mathematical service description language layers

The mathematical service description language has been presented at the International Congress of Math-
ematical Software, in Beijing [98] and at the MathML International Conference 2002, in Chicago [97].
Since application areas arising from the work of the Calculemus partners [87] are the prime candidates ex-
amples where we intend to apply the mathematical service description language, we organized a workshop
at RISC [187], on November 11-12, 2002 on the topic of Mathematical Web Services to follow up on the
informal meetings that took place in Marseille (July 2002) and in Pisa (September 2002).

1.2.f The CCR Rewriting Framework

The effective integration of decision procedures in formula simplification constitutes one of the key in-
gredients in many state-of-the-art automated reasoning systems. In many cases the interplay between the
reasoning modules is so tight and complicated that providing an accurate description of the integration is
a challenge. As a matter of fact, the descriptions available in literature are given by examples or in in-
formal ways with design decision often intermixed with implementation details. As a consequence, most
of the existing integration schemas are difficult to grasp, making it very difficult any attempt to modify,
extend, reuse, and reason about. The goal of the CCR Project is the integration of reasoning specialists in
simplifiers.

This goal can be achieved in two ways. Firstly, (in many cases) the integration of decision procedure
in verification systems is performed by means of a tight cooperation between a rewriting engine and a
decision procedure. Making this cooperation effective is a daunting task and it requires sophisticated
techniques. The difficulties lie in both formalizing and proving the desired properties (e.g., termination) of
the designed integration schema. Second, the decision procedure can be extended by means of a lemma
speculation mechanism in such a way that it is capable of tackling problems falling outside the scope it
has been originally designed for. Devising sound, terminating, complete (at least for certain subclasses of
formulae), and efficient mechanisms to extend decision procedure is a very difficult task.

Constraint Contextual Rewriting [6, 15] is a new form of contextual rewriting, based on the integration of
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a linear arithmetic decision procedure in the rewriting activity of the Boyer and Moore prover, where the
decision procedure is allowed to access and modify the rewriting context. Under the assumption that certain
interface functionalities (satisfying some abstract properties) are provided by the decision procedure DP,
CCR enjoys the following properties (which have been formally stated and proved): it is parametric in DP,
it is sound, and it is terminating. The formalization of CCR relies on the notion of Contextual Reduction
System (CRS), which generalizes the standard notion of an abstract reduction system. Informally, a CRS
is defined by a set of ternary relations together with a set of inference rules that define the relations by
(mutual) induction. The concept of CRS is the starting point for formally specifying and reasoning about
integration schemas between rewriting and decision procedures.

CCR is at the core of the simplifier of RDL [6] (cf. Task 3.4), a fully automatic theorem prover for the
quantifier-free fragment of first-order logic with equality.

1.2.g The MathSat Framework

Motivations and Goals

Many real-world problems require the ability of reasoning efficiently on formulae which are boolean com-
binations of boolean and unquantified mathematical propositions, on integer or real variables. (Notewor-
thy examples come from the domains of compilers design [224], temporal reasoning [4], resource plan-
ning [272], automated verification of systems with numerical data [102] or of timed and hybrid systems
[200, 23], software and protocol design and verification [121, 246).) This ability requires an efficient
combination of boolean reasoning and mathematical solving capabilities.

From the viewpoint of boolean reasoning (SAT), in the last years we have witnessed an impressive advance
in the efficiency of SAT techniques, which has allowed to solve previously intractable problems. Unfor-
tunately, simple boolean expressions are not expressive enough for representing most of the real-world
domains listed above.

From the viewpoint of mathematical solving, in the last years also mathematical solvers like computer-
algebra systems and constraint solvers have very much improved both in expressivity and in efficiency,
being able to solve classes of problems which were previously unsolvable or intractable. Unfortunately,
mathematical solvers cannot handle efficiently problems involving heavy boolean search —or do not handle
them at all— so that most of the real-world domains above are out of their reach too.

MathSat

MathSat [129, 22, 21] is a general framework proposed by ITC-IRST for efficiently integrating boolean rea-
soning and mathematical solving tools. MathSat consists of a formal framework, a generalized algorithm
and architecture for integrating boolean reasoners and mathematical solvers so that they can efficiently
solve boolean combinations of boolean and mathematical propositions. The basic idea underlying the
MathSat approach is to decompose the search into two orthogonal components, namely, one purely propo-
sitional component and one “’boolean-free”” domain-specific component (e.g., a mathematical component).
The fist component is based on a SAT solver, typically a (modified) Davis Putnam Longemann Loveland
(DPLL) procedure. (The DPLL procedure has been shown to be preferable to alternative approaches pro-
posed in the literature, such as , e.g., the ones based on Disjunctive Normal Form (DNF), Tableau Search
Graph, or (Ordered) Binary Decision Diagrams (OBDDs).)

MathSat describes many techniques to optimize the integration, and highlights the main requirements SAT
tools and mathematical solvers must fulfill in order to be integrated correctly and to achieve the maxi-
mum benefits from their integration. Specifically, a suitable SAT tool complies with the following crucial
requirements:
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e generation of complete collections of boolean assignments;

e generation of non-redundant collections of boolean assignments;
e lazy (i.e., one at a time) generation of boolean assignments;

e optimal space performance;

e good integration with the mathematical solver component (e.g., it allows for several run-time search
optimizations).

A suitable mathematical solver complies with the following crucial requirements:

® be incremental, that is, be able of reusing the computation of previous calls on sub-problems without
restarting from scratch;

e be able to provide failure information which can drive the boolean reasoner in pruning its search.

The ultimate goal of the MathSat framework is to develop tools able to handle real-world problems in
complex domains like those described above. From the viewpoint of boolean reasoning, SAT tools can be
extended in such a way they can handle also mathematical concepts and operators. From the viewpoint of
mathematical solving, computer algebra systems and constraint solvers can be enriched by very efficient
boolean reasoning capabilities.

Modeling Systems within the MathSat Framework

As evidenced in [22, 21], a significant amount of existing procedure used in various application domains
can be modeled within the MathSat framework. These procedures either are purely symbolic or combine
symbolic and numeric techniques. This will be discussed with more details in Task 3.4.

The MathSat Procedure

The MathSat solver [20, 23], developed by ITC-IRST, is a state-of-the-art solver based on the MathSat
framework, able to reason on boolean combinations of linear arithmetic formulas. The efficiency of Math-
Sat is due both to the tight integration of the boolean and mathematical solving subroutines, and to the
layered structure of the mathematical decider, which is organized into levels dealing with subclasses of
formulas of increasing complexity. This will be discussed with more details in Task 2.3.

Applications

The MathSat solver has been used to address verification problems in different domains, e.g., in temporal
reasoning [20] and timed systems [23]. In particular, the verification of timed systems is a very important
and challenging problem, in that it combines the challenge of handling finite-state variables, which is
typically encoded as a boolean deduction problem, with the problems related to time elapsing, which are
encoded into mathematical constraints on real variables representing absolute time and clocks. This will
be discussed with more details in Task 3.2.

1.2.h The AClam Proof Planning System

During his stay as a young visiting researcher (Y VR) in Edinburgh, J. Zimmer integrated the proof planning
system AClam into the MathWeb-SB [114]. Due to this integration, AClam can not only use the services
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Name | ripple

Context Rewrite Theory

Types

Input omdoc: OMDoc;

Output result: OMDoc

InConstraints elements(omdoc, Elements), lemmas(Elements, RewRules)

member(sequent(-), Elements),

not(RewRules = nil).

OutConstraints clements(result, [Sequent]).

not( member(Rule, RewRules), applicable{Rule. goal(SequenD)).
TextDescriptions | Tries toreduce the difference between the goal of the given
OMDOC sequent and one of its hypotheses using AClams
step_case method and the rewrites given as lemmas

in the OMDoC.

Figure 5: The rippling service offered by AClam

of any reasoning specialist already integrated in the MathWeb-SB, such as the CAS MAPLE, but can also
offer its theorem proving expertise to other systems in the MathWeb-SB. First, A\Clam offers an inductive
theorem proving service to the MathWeb-SB which takes a problem description formulated in OMDoC
as an input and runs AClam on the given problem. Second, the rippling heuristics of AClam [241] is
offered as a service that takes a set of rewrite rules and a proof planning sequent as an input and applies the
rippling method of AClam with the given rewrites. The two services offered by AClam are new examples
for mathematical services offered by the MathWeb-SB that have not been described formally until now.

However, we tried to use the description language LARKS described in Section 1.2.d to give a first char-
acterization of the rippling service offered by A\Clam (see figure 5).

1.2.i Discussion

There is a growing interest in combining the reasoning and computational capabilities of heterogeneous
systems, like deductive systems and computer algebra systems. In fact, state-of-the-art tools are the result
of many man-years of careful development and engineering, and usually they provide a high degree of
sophistication in their respective domain. However, they often perform poorly when applied outside the
domain they have been designed for.

We have investigated two complementary approaches to pursue the above goal. On the one hand, we have
explored the possibility of enhancing the capabilities of existing systems (see Sections 1.2.f, 3.4.b and
1.2.h). On the other hand, we have studied the possibility of integrating existing systems by means of a
suitable infrastructure providing service exchange (see Sections 1.2.b, 3.4.d, 1.2.d and 1.2.e). A particular
emphasis has been devoted to the definition of frameworks suitable for making mathematical services
accessible over the web.

Unfortunately service integration between different systems is not an easy task. The main difficulty is
that most of the existing reasoning systems are conceived and built as stand-alone systems to be used by
humans users. Moreover, if the logical services provided by the component reasoning systems are not
interfaced in a proper way, then the logical services provided by the compound systems may be unsound.
This is something which must be carefully avoided, particularly in all the application domains where the
correctness is of paramount importance as, €.g., in the formal verification of safety or security critical
systems.

For this purpose, a reasonable amount of work has been devoted to the identification of the infrastructure
(i.e., languages, protocols, semantic specifications and architectural schemata) needed to implement service
exchange, and to the investigation of the requirements that the infrastructure should satisfy. During the
workshop on Mathematical Web Services [187] organized by RISC in November 2002, a joint discussion
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has developed between partners of the CALCULEMUS project and partners of the MONET [201] project.
As a result of the discussion, the following preliminary list of requirements for web-based mathematical
services has been singled out:

e mathematical services are similar to web services, in that: each service is described by XML-based
meta-information; information is published, it can be discovered and queried; clients use information
to find appropriate services and connect to them;

e this process should be based on existing web technologies and standards as much as possible;

e each service description can be decomposed into multiple parts describing different facets of the
service, each facet may have multiple formalization levels, from informal text for human readers up
to formal statements that are machine-understandable and thus have a precise semantics;

o descriptions and facets may be organized into different (multiple) taxonomies such that a coarse
pruning of the search process is possible in the discovery process;

e when querying, the client specifies whatever information is available (e.g., simple or multiple taxon-
omy concepts, formal behavior description); the broker can return results with different degrees of
confidence.

This list will be furtherly discussed and taken as a starting point for future work on this task.
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Task 2.1: Integration of CASs and DSs
via Protocols

TASK LEADER: UKA
SCIENTISTS IN CHARGE: JACQUES CALMET
RESEARCH TEAM: USAAR, UKA, TUE, ITC-IRST

2.1.a Overview

The main goal of this task is to provide a semantics to interacting mathematical services. A first trivial
remark is that this problem has been and still is investigated through several approaches. It is enough to
query the web with the two key-words: semantics and mathamatics to be flooded by informations. One
may quote SGML, XML, OPENMATH, MathML, SMPS and many others. Some references on such works
are provided elsewhere in this report.

To provide interfaces between existing mathematical services requires an open software architecture. Among
the aspects that must be further investigated are messaging and communication facilities, information mod-
eling, infrastructure, mathematical service modeling application and knowledge base integration, develop-
ment and management tools. Some of these requirements are not specific to mathematical knowledge and
have been studied in very different applications, for example an Information Bus and Enterprise Toolkit in
manufacturing, construction, and banking sectors [249].

When this project was initialized, there was a lack of software environments, languages and standards for
interfaces between systems for mathematical computation. The reasons are manyfold:

1. CAS and TPS are designed, implemented and validated as stand-alone systems,

2. many systems are copyrighted and allow neither communication nor external access to internal meth-
ods,

3. they do not provide interfacing,

4. a CAS is never semantically sound. Thus, to provide a semantics is a required goal when interfacing
any computing modules.

The solution has been to link mathematical services through networking methodologies such as communi-
cation languages, information exchange, and common knowledge representation.

A communication language defines how mathematical information can be exchanged among services. It
must be recognized by each system in order to translate the information into their internal representation.
Appropriate languages can either be the input language or internal encoding of one of the involved systems
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or standardized communication languages. Along these lines several communication languages for inter-
faces between software systems exchanging mathematical information have been developed. The better
known is most probably OPENMATH.

Cooperation among several software systems can be achieved with indirect, unidirectional and bidirectional
communication. The goal of this task is to investigate how protocols can be defined to provide a semantic
meaning and soundness to systems exchanging mathematical information. This definition ought to give
a hint why several other tasks in the network are in fact dealing with very similar problems. This is for
example true when defining a context for a computation and is partly covered in task 1. Unidirectional and
bidirectional communication protocols are designed when coupling directly different modules. Although
there are no direct links between the services with indirect communication, interaction is possible when
systems can communicate with a common user interface, central unit, mediator or evaluator. This approach
has been investigated within the KOMET system.

A simplifying introduction is to say that a semantic can be provided through at least 3 approaches that are
shortly described here under.

1. Define a mathematical software bus,
2. define a context from which a semantic can be derived,

3. formulate the problem as a knowledge representation paradigm.

These approaches are shared by several of the partners. Indeed, they lead to introduce multi-agent systems,
contexts, ontologies to just quote a few features. References on Logic Broker, MathWeb-SB, OPENMATH
and similar works are given throughout this midterm report.

2.1.b Open Mechanized Symbolic Computation Systems

A preliminary introduction to our work is given in [86]. The mathematical software bus and the context
approaches are based on a joint work ([51]) with IRST on OMSCS (Open Mechanized Symbolic Compu-
tation Systems) which is a generalization of OMRS introduced by Giunchiglia and Talcott. We outline first
OMSCS.

OMSCS A symbolic mathematical service is a software able to conduct useful and semantically mean-
ingful two-way interactions with the environment. A symbolic mathematical service should be structurally
organized as an OPEN ARCHITECTURE able to provide services like, e.g., proving that a formula is a the-
orem, or computing a definite symbolic integral, and to be able, if and when necessary, to rely on similar
services provided by other tools. The Open Mechanized Reasoning System (OMRS) architecture was in-
troduced [128] as a means to specify and implement reasoning systems (e.g., theorem provers) as logical
services. In [90], this approach has been recast for the domain of symbolic computer algebra systems.
OMSCS is the result of recasting together the two approaches.

The OMSCS Framework The specification of a service must be performed at various levels. At the
object level, it is necessary to define formally the objects involved in the service, and the basic operations
upon them. E.g., for a theorem prover, one must define the kind of assertions it manipulates, and the basic
inference rules that can be applied upon them. Then, the control level provides a means to define the
implementation of the computational capabilities defined at the object level, and to combine them. The
control level must include some sort of “programming language” which is used to describe a strategy in
the applications of modules implementing basic operations, therefore to actually define the behavior of the
complex system implementing the service. Finally, the way the service is perceived by the environment,
e.g., the naming of services and the protocols implementing them, is defined within the interaction level.
This leads to the following architectural structure for reasoning and algorithmic services:
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Reasoning Theory = Sequents + Rules
Reasoning System = Reasoning Theory + Control
Logical Service = Reasoning System + Interaction
Computation Theory = Objects + Algorithms
Computation System = Computation Theory + Control
Algorithmic Service = Computation System + Interaction

We synthesize these definitions into that of Symbolic Mathematical Service.

Symbolic Computation Theory Symbolic Entities + Operations
Symbolic Computation System Symbolic Computation Theory + Control
Symbolic Mathematical Service =  Symbolic Computation System + Interaction

The interaction level of OMRS is for instance illustrated by the Logic Broker Architecture of Alessandro
Armando et al. (see reference in Task 1).

Mathematical software bus The concept was introduced a few years ago by Richard Zippel and also in
[91]. This work is still in progress. Our approach mostly consists in formalizing further OMSCS. We plan
to extend it to interval arithmetic seen as a constraint programming problem.

Schemata and context Task one reports on some works conducted on defining a context, including
one in collaboration with UGE (Constraint Contextual Rewriting in MAPLE by Ballarin and Alessandro,
reference in task 1). We report here on a slightly different approach inspired directly by OMSCS and a
schemata representation of algebraic algorithms. Schemata are nowadays found in several approaches such
as MathML. We proposed several years ago to express algorithms as schemata.

The starting point is to consider that we compute with operators defined on given domain (types) that have
specific properties (specifications). We call the triplet operator, domain, properties an abstract computa-
tional structure (ACS). Setting our approach in the framework of knowledge representation, a mathematical
knowledge base consists of type schemata, algorithm schemata, algebraic algorithms, theorems, symbol ta-
bles, and normal forms. A schemata is a representation paradigm used in artificial intelligence. We adopt
the specification language FORMAL-X ([95]) to represent the mathematical knowledge. It is well-suited to
specify mathematical domains of computations. An algebraic specification introduces constants, operators
and properties in their intended interpretation, and enables the reuse of subspecifications within a specifi-
cation in accordance with the dependencies between particular specification modules of an ACS. It is based
upon category theory. The next step is to define types, equations and algorithms through schemata’s. A
more detailed presentation and suitable references are found in [92].

A type schema represents such a module and consists of:

e Name, a unique identifier

e Based-on, a list of inherited ACS

e Parameters, a list of ACS which are parameters
e Sorts, a list of new sorts

e Operators, declarations of new operators

InitialProps, initial properties.

These definitions build a based-on hierarchy of the mathematical domains of computation. One defines also
an equation schemata Algorithms are also represented in terms of schemata. They allow the representation
of meta-knowledge like:
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o Name, a unique identifier of the schema with variable bindings
e Signature, describes the types of input and output

e Constraints, imposed on domain and range

e Definition, mathematical description of the output

o Subalgs, list of subalgorithms describing the embedded subtasks
e Theorems, describing properties of the algorithm

e Function, name of the corresponding executable algebraic function to compute the output.

Similarly to type and equation schemata, algorithm schemata build a hierarchy of specialized versions, and
specializations inherit definitions and theorems from more general algorithms. New properties of algo-
rithms can be derived then by a possibly coupled theorem prover. The concepts of specification language
and schemata representation are at the of the CALVIN system.

A consequence of such an approach is to enable to define a context for a computation. This methodology is
valid both when a CAS stands alone and when it is coupled to a TP. A context aims at making available the
mathematical knowledge hidden in algebraic algorithms and in computational procedures. It is a methodol-
ogy to improve the semantical soundness of symbolic computations. Although this is not straightforward to
see, both FORMAL-Y and OMSCS are closely related to the formulation of specifications through category
theory. To stay as close as possible to OMSCS, we subdivide a context into three levels.

Similarly to type and equation schemata, algorithm schemata build a hierarchy of specialized versions, and
specializations inherit definitions and theorems from more general algorithms. New properties of algo-
rithms can be derived then by a possibly coupled theorem prover. The concepts of specification language
and schemata representation are at the origin of an experimental CAS called CALVIN that was designed by
students.

A consequence of such an approach is to enable to define a context for a computation. A context aims at
making available the mathematical knowledge hidden in algebraic algorithms and in computational pro-
cedures. Although this is not straightforward to see, both FORMAL-X and OMSCS are closely related
to the formulation of specifications through category theory. To stay as close as possible to OMSCS, we
subdivide a context into three levels.

o The object level context collects the set of specifications linked to an operator and to its domain of
definition. More generally, the goal is to access all of the information and knowledge that is either
explicitly or implicitly available in the schemata representation of algebraic algorithms.

o At the control level the context is partly static and partly dynamic. The static part arises from the
hierarchical organization of the object level schemata into equational schemata. At the root of this
graphical hierarchy lies the “‘simplify” function. This generates thus a dynamical component that is
associated to the simplification process.

o To define the interaction level part of context is still an open problem. A possible track is that the
schemata approach leads to a concept of protocol to exchange mathematical knowledge and to check
its soundness.

Mathematical Knowledge Our approach is based upon KOMET (Karlsruhe Open Mediator Technology),
a system under development since 1994 [93]. Integrating data and knowledge from multiple heterogeneous
sources (each one possibly with a different underlying data model) is not only an important aspect of au-
tomated reasoning but also of retrieval systems, in the widest sense, whose queries can span such multiple
sources. One such source can be a CAS or a DS. A mediator integrates different sources on a semantic
level by providing an integrated view spanning heterogeneous information sources. Different languages for
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building mediatory information systems have been proposed. We have selected (and extended) the Gen-
eralized Annotated Logic of M. Kifer and V.S. Subrahmanian [155]. We focus on some implementational
details involving the embedding of Mathematica into our Mediator Architecture. First, the basic underlying
mediator architecture is described. Then, some steps of the integration process are sketched.

The Mediator Architecture The basic architecture consists of MEDIATORS converting queries from
a common format into more specialized queries, which are subsequently converted by TRANSLATORS
(WRAPPERS) into the query language of the requested knowledge sources.

Such a translator must exist for each mediator-knowledge source combination. A translator also includes
other functionalities for utilizing the knowledge source for the mediator such as caching extracted infor-

mation or managing remote procedure calls.

View 1 View 2

\ /

Mediator Schema

KS1 KS2 KS3

Figure 6: Bottom-up Integration of Heterogeneous Information Sources

The KOMET approach differs from other approaches in that the mediator is knowledge-based, i.e., a declar-
ative rule based language for expressing the mediatory knowledge is being used.

Syntax and Semantics We sketch here the basic theory behind our approach to mediated systems. More
detailed accounts are available in [93].

A domain D is an abstraction of databases and software packages and consists of three components:

1. a set ¥ whose elements may be thought of as the data-objects that are being manipulated by the
package in question,

2. aset { of functions on ¥ — these functions take objects in X as input, and return, as output, objects
from their range (which needs to be specified). The functions in { may be thought of as the predefined
functions that have been implemented in the software package being considered,

3. a set of relations on the data-objects in £ — intuitively, these relations may be thought of as the
predefined relations in the domain, D.

A constraint = over D is a first order formula where the symbols are interpreted over D. = is either
true or false in D, in which case it Z is sait to be solvable, or respectively unsolvable in D, where the
reference to D will be eliminated if it is clear from context. The key idea behind a mediated system is
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that constraints provide the link to external sources, whether they are databases, object bases, or other
knowledge sources. In particular, the full-fledged language involves annotations of predicate symbols
according to GAP. Basically, an annotation corresponds to a multi-valued truth value from a complete
lattice of truth values. A more detailed description is given in [155]. The annotations play an important
role in resolving attribute value inconsistencies.

Embedding Mathematica into a Mediator Architecture MathLink is used to link Mathematica to
KOMET. In contrast to the usual formalization of constraint domains (consisting of relations and func-
tions), our approach relies on the more powerful concept of representing the functionality of the informa-
tion source only as a set of relations, but where for each relation one or more modes are given. Intuitively,
a mode describes the permitted binding patterns for the evaluation of a given relation. Note, that this is not
a limitation, since functions can be represented as relations with appropriate modes. A relation mode is
a tuple of argument modes, which specify the binding type of each argument required for the evaluation.
The possible argument types are listed in the following table.

[ Argumentmode | before | after |
+ ground ground
arbitrary | ground
? arbitrary | arbitrary
“+” means that the argument must be ground before testing the constraint predicates, “—”’ means that the

argument must be ground after calling the external function, and “?” means that the variable instantiation
is arbitrary.

The use of modes implicitly imposes a certain order of evaluation on the constraint set and thus controls the
data flow during the evaluation. With this approach, specific functionality of the CAS can be adequately
introduced to the mediator. The proper modes ensure valid usage of the CAS functions. Consider as an
illustrating example the interoperation between a relational database containing the coefficients of polyno-
mials a; X2 + ag over integers and Mathematica providing useful routines such as factoring polynomials.
In spite of the task itself being rather simple, if not trivial, the example demonstrates how the mediator
language can be used to interface the mediator to a CAS in a declarative manner:

Coeff(Ao, A1) ¢« Oracle::Polynomials( Ao, 4;)
Factorized_Poly(X) <« Mathematica::Factor(X),
Mathematica::Plus(X, Ao, Z),
Mathematica::Times(Z, A:, Z),
Mathematica::Power(Z, X, 2),
Coeff(Ao, A1)

with modes Polynomials(+, +), Factor(+), Plus(—, +, +) and Times(—, +, +). When issuing a query
Factorized poly(X), the translator receives repeatedly an expression

Factor(Plus(Ag, Times(A;, Power(X, 2))))

with tuples (Ag,A;) from the Oracle database, which will result in the following set of MathLink function
calls:

link = MLStart(’math -noinit -mathlink’);
MLPutFunction(link, 'Factor’,1);
MLPutFunction(link, 'Plus’,2);
MLPutFunction(link, 'Times"’, 2);
MLPutFunction(link, 'Power, 2) ;

MLPutSymbol (1link, A0) ;

35



Task 2.1: Integration of CASs and DSs via Protocols

MLPutSymbol (1link,Al) ;
MLPutSymbol (link, X) ;
MLPutInteger(link, 2);
MLEndPacket (1ink) ;

It is exactly the purpose of the translator to generate a sequence of those MathLink function calls. We could
support the OPENMATH interface as well.

This is only a sketch of how we can use a general purpose multiagent query system to interface a CAS to
_ any other system.

An important feature of KOMET s that it introduces, after wrapping the query, a semantically sound rep-
resentation of the information. Recent work has been devoted to extend such capabilities New operations
on lattices where truth valued are defined have been defined. Composite distributive lattices as annotation
domains for mediators provide such an extension. [94].

Another piece of work deals with the validation of queries. In this context, a query is a mathematical "re-
quest”. But, very generally, we investigate whether a query is syntactically valid ([181]). It was straight-
forward to apply this validation into KOMET and the result is a system to validate web queries described
in this paper. The dissertation thesis of Peter Kullmann “Wissensrepraesentation und Anfragebearbeitung
in einer logikbasierten Mediatorumgebung” ([164]) looks at the optimization of queries in the context of
KOMET and of logic programming. This leads to the general question of security in multiagent systems
and in distributed computing ([119]).

Finally, KOMET enables to test some ideas related to ontologies. Indeed, ontologies arise directly from the
definition of a context. Structuring ontologies by defining them as clusters of classes of knowledge led to a
demonstration system called MASTER-Web ([88]).
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2.2.a Overview

Computer Algebra Systems (CAS) and Deduction Systems (DS) as they are available these days are typ-
ically designed as stand-alone systems, i.e. they expect the user to solve problems entirely inside one
system. Mathematical practice, however, shows that “doing mathematics” is characterized many times
by an interplay between computing, proving, and also solving, which neither CAS nor DS in todays state
encompass.

State-of-the-art CAS can perform impressive algebraic or numeric computations with comparably low
effort, they can simplify algebraic expressions, solve huge classes of equations, visualize mathematical
objects, and they offer text-processing capabilities to different extents, which makes them heavily used in
engineering and maths education. The question of correctness of the manipulations carried out by a CAS
is, however, left without answer because the reasoning power of typical CAS is still very limited.

Unfortunately, this prohibits CAS from being used by a larger community of mathematicians for many
more application areas. The limitations regarding the reasoning power of CAS are manifold:

e A typical CAS consists of a collection of algorithms that perform computations involving mathe-
matical objects and an interface that allows easy access to these algorithms. The user manual of the
CAS usually contains a (semi-) formal specification of each algorithm that gives the user an idea of
which properties the output of an algorithm is supposed to fulfill with respect to the input. Now,
given some algorithm A and appropriate input I, a CAS user would usually expect that the result
of calling A with input [ fulfills the output property stated in the specification. One characterizing
feature that makes CAS very popular and heavily used especially in engineering and education is
their capability to work with parametrized input. Intuitively, if the input to some algorithm depends
on the parameter p, the user would expect the result to fulfill the output property for all values of p.
There are numerous examples for computations performed by CAS, which are in fact not correct for
all values of parameters, one of the easiest examples being the following: Given the equation az = b,
find solutions for z with parameters a and b. Most of the CAS available today will give z — b/a as
the unique solution of the equation. In fact, this is not correct for all parameter values, consider e.g.
a=0andb=1.

e The correctness of most mathematical algorithms requires some properties of the input or of inter-
mediate results that appear during the computation. Simple cases of testing such properties may only
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require e.g. testing numbers to be non-zero, which can easily be maintained again through compu-
tation. In some cases, powerful mathematical theorems are available in order to reduce checking a
non-trivial property to comparably simple computations, e.g. checking whether a system of linear
equations has a solution reduces to checking the determinant of the system to be non-zero. In gen-
eral, however, checking properties of mathematical objects requires proving, e.g. the computation of
the definite integral of an arbitrary function f by a certain algorithm might depend on continuity of
f in some domain. Proving mathematical properties based on logical inference techniques is still
beyond of what can be done in standard CAS.

e One central task of mathematics — in particular the branch of algorithmic mathematics — can be
seen in developing algorithms in order to perform computations. The basis for each algorithm is
always some mathematical theorem that guarantees the correctness of the algorithm. In many cases,
the improvement of algorithms is then based on the development of “stronger” theorems that can
be used to make algorithms perform more efficiently. A computer-aided approach to algorithmic
mathematics therefore needs computer-support in both computing and also in proving mathematical
theorems. Todays CAS provide algorithms for doing computations in various mathematical fields and
they usually provide programming languages, which allow the implementation of new algorithms.
The development of the mathematical theory behind the algorithms, however, is only supported
poorly, if at all, in the CAS.

The aim of Task 2.2 is to enhance CAS with reasoning power, which can be attempted at different levels.
We will briefly explain the possible directions into which CAS enhancements can be pursued.

Enhancement of CAS on the System Level

Enhancement on the system level can be achieved by adding reasoning capabilities to algorithms built
into the CAS. Checking side-conditions on parameters in computer algebra algorithms is a typical example,
where current CAS perform comparably poor. In the frame of the Calculemus network, the work of UNIGE
contributes to this aspect of CAS enhancement: the Constraint Contextual Rewriting (CCR) framework
developed by UNIGE can be used in order to integrate the evaluation mechanism of (the CAS) MAPLE,
see [185] with an appropriate decision procedure for checking side-conditions, see [3] and [14].

In the concrete case, MAPLE’s assume-facility has been used to link an enhanced decision procedure to the
standard evaluation process of MAPLE. The assume command allows the MAPLE user to state certain
facts about objects occurring as input to some algorithm from the MAPLE algorithm library. In the process
of checking conditions during the execution of the algorithm, the evaluation procedure has access to all
additional facts stated through assume. Of-course, checking a condition ¢ using additional facts ¢ needs
more than just checking whether ¢ is contained in ®. It finally requires reasoning whether ¢ can be inferred
from ®. In standard MAPLE, only weak reasoning techniques are applied for this purpose. Using CCR, a
decision procedure increases the reasoning power when checking conditions during a computation.

This integration of reasoning and computation facilities increases the reliability of computations, because,
through the more powerful reasoning engine, formulae of much more complicated nature can be handled
when checking underlying conditions during computation. Computations involving parameters should
particularly benefit from this improvement. It should be noted, however, that this approach needs access to
the internals of the CAS since the evaluation procedure and, thus, the mechanism how to check for side-
conditions, is normally hidden from the CAS user. Other CAS, e.g. Mathematica, see [188], offer similar
mechanisms to pass additional assumptions when calling internal algorithms, but, due to the commercial
nature of Mathematica, there is no way to get access to the internal evaluation procedure in order to enhance
the reasoning capabilities in a similar manner. Another drawback lies in the fact that not all algorithms in
MAPLE’s library take into account additional knowledge given through assume, so the user never knows
whether assumed facts were regarded properly during a computation or not.
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Enhancement of CAS on the Theory Level

Enhancement on the theory level can be achieved by adding proved knowledge about CAS functions to the
CAS knowledge base. This knowledge can then be used by the CAS and can lead to simplified computa-
tions. In the frame of the Calculemus network, the work of UED represents this aspect of CAS enhance-
ment: The HR system, developed at UED, has been used to conjecture properties of functions available
in the MAPLE algorithm library from empirical patterns detected in computational data produced by the
CAS. HR has some built-in abilities to prevent the generation of conjectures that are trivially true in the
first place. For more sophisticated reasoning it invokes a third party automated theorem prover, in the con-
crete case OTTER, and tries to prove the conjecture from first principles, i.e. the definitions of the functions
involved. For an attempt to disprove a conjecture, the user can supply a set of objects that can be tried as
counterexamples. The CAS is then used to calculate function values and HR checks, whether any of the
tested values breaks the conjecture. For more advanced counterexample construction in algebraic domains,
HR can call the MACE model generator.

This approach has been tested firstly in the area of number theory, see [108]. Given the number theoretic
MAPLE functions isprime (n), which checks whether n is a prime number, tau (n), which returns the
number of divisors of n, and sigma (n), which gives the sum-of all divisors of n, HR conjectures 137
properties involving i sprime, tau and sigma. After a first round, only 22 conjectures remained that
could neither be proved by OTTER nor disproved by MACE. Among those 22 formulae, one could identify
some interesting properties, such as e.g. if sigma (n) is prime then tau (n) is prime. Different strategies
for continuation can be considered at this point:

e As done in [108], one can find a generalized theorem and prove it by hand. Adding the proved
theorem as an axiom further reduced the number of unsolved conjectures to 10 in a subsequent
round.

e Alternatively, as a challenge for DS, one can try to apply probably more powerful specialized theorem
provers in order to automatically prove the conjecture.

Any proven knowledge about tau(n) and sigma (n) can then be added to the knowledge base of the
CAS, either by improving the internal algorithms in case they are accessible or by adding the knowledge on
the user level. In general, improved performance of the CAS can be expected from adding more knowledge
about the functions available in the CAS.

Enhancement of CAS on the User Level

Enhancement on the user level can be achieved by giving the CAS user the possibility to actually prove
mathematical statements using prove techniques from logic within the CAS in addition to the computing
facilities that each CAS offers. In the frame of the Calculemus network, the work of RISC represents this
aspect of CAS enhancement: The THEOREMA system, see [75], is an add-on package for the widespread
popular CAS Mathematica that allows the user to formulate mathematical theorems and prove them entirely
within the Mathematica environment.

THEOREMA is implemented in Mathematica’s native programming language, which is based on pattern
matching and rewriting. Since the release of Mathematica 3.0 in 1996, Mathematica can handle two-
dimensional input and output containing arbitrary characters known from traditional mathematics and its
programming language even allows to access and enhance input and output facilities in the Mathematica
user front end. These are the key features that qualify the Mathematica system as a basis for building
up a software system providing computer-support through the entire cycle of mathematical activity. The
overall design goal of the THEOREMA system is to support the working mathematician in all phases of
mathematical activity in a human-like style, both in input and output. THEOREMA allows to

e enter mathematical formulae in traditional mathematical fashion,
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e structure formulae into definitions, axioms, lemmata, theorems, etc. which can be organized in nested
theories, and, most importantly,

e prove mathematical theorems with respect to a given knowledge base,
e compute (simplify) mathematical terms or formulae with respect to a given knowledge base, and

e solve mathematical formulae with respect to a given knowledge base.

The THEOREMA system is a multi-method system, i.e. it provides different (specialized) proving / comput-
ing / solving methods for different purposes. Concerning the aspect of proving, it distinguishes two classes
of provers, black-box provers and white-box provers. Black-box provers typically transform the original
prove problem into some other problem, for which solution algorithms already exist. As an example, the
Grobner basis prover transforms a prove problem given as universally quantified boolean combination of
polynomial equations over the complex numbers into the problem of deciding whether a system of poly-
nomial equations has a solution, which can be done by testing the Grébner basis of the system to be {1}.
Another category of black-box provers is offered in the THEOREMA-system through linking existing ex-
ternal automated provers, e.g. OTTER. Black-box provers usually tell the user whether some mathematical
statement is true or false but do not provide evidence why this is so.

White-box provers, on the other hand, try to obtain a mathematical proof in a style like a formally well-
trained mathematician would write up the proof. Evidence for thruth or falsity of the statement under
consideration is given by listing a sequence of logical inference steps, which show why the statement
follows logically from the assumptions. In this class, THEOREMA provides general provers for first order
predicate logic, proving by case distinction, proving equalities by simplification or equational proving and
theory specific provers for induction on natural numbers, tuple induction, or set theory. These general and
theory specific provers are designed in a modular structure so that they can be combined to more powerful
provers.

For milestone 2.1 we decided to go towards enhancement on the user level, i.e. to embed reasoning fa-
cilities into an existing CAS by implementing various general and special theorem provers that interact
with the algebraic algorithms available in the CAS. The THEOREMA system, developed at RISC on top of
Mathematica, is surely the most advanced system propagating this approach. We will give a more thorough
description of this system below.

2.2.b The THEOREMA System

In this section, we will give a brief description of the distinctive features of the THEOREMA system. We
will emphasize on THEOREMA s proving capabilities and base the presentation of individual system com-
ponents on typical examples. During the first example in Section 2.2.b, we will also explain the THEOREMA
user interface, which allows input and output of mathematical text in a comfortable and easy-to-read form.
In Sections 2.2.b to 2.2.b we will describe latest developments that have been added to the system in the
frame of the Calculemus project. In order to make this presentation self-contained, we give an overview on
the most important aspects of THEOREMA in Section 2.2.b. In particular, the issue of integrating proving
capabilities with computing capabilities available from the underlying Mathematica system will be dis-
cussed in this concluding section. For an overview on the system philosophy behind THEOREMA, we refer
to [62], [67], [68], [146], [144], [145].

The PCS Paradigm for Automated Theorem Proving

For a quick summary, the level of quality in automated theorem proving which we achieved in the first phase
is best documented by our examples from elementary analysis: With our new proof strategies, notably the
“PCS” (= “proving, solving, computing”) strategy, we manage to generate proofs of the typical theorems
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in elementary analysis (on the notion of limit, continuity, etc.) completely automatically and with almost
no superfluous branches in the search space. Also, the proofs generated have a couple of distinctive quality
features:

e The proofs are structurally simple and clear and resemble the proofs generated by humans.

o The proofs contain intermediate explanatory text in natural language. (At the moment, English and
Japanese are the choices.)

e When browsing a proof on the screen, the level of proof details shown can be controlled by the
user. Also, various auxiliary information, e.g. on the definitions used, can be made visible in pop-up
windows.

e The proofs generated show the terms constructed in the proof of existential subgoals explicitly and
thus, mathematically, are more telling than the usual proofs shown in math textbooks.

In the automated theorem proving community, the automated generation of proofs in elementary analysis
is considered to be an important benchmark problem and, so far, was beyond the capabilities of theorem
proving systems. Thus, we think that being able to produce such proofs completely automatically and with
distinctive quality features is a good documentation of the progress that has been achieved.

We now show one typical example in all details, namely the proof of the theorem that the limit of the sum
of two sequences is the sum of the limits of the individual sequences.

The THEOREMA system is implemented on top of the well-known CAS Mathematica, using the high-level
programming language available in Mathematica. The THEOREMA system can therefore access all compo-
nents of Mathematica, most importantly its powerful user-interface. Since the release of Mathematica 3.0
in 1996, the Mathematica front-end supports traditional mathematical input and output in two-dimensional
form containing also special characters commonly used in mathematical texts. Through its programming
language, it allows even customization of the input parser and the typesetting of mathematical expressions,
i.e. we can extend the class of expressions recognized by standard Mathematica with arbitrary expressions
that seem convenient for a software system supporting the entire mathematical problem solving process.
As for supporting reasoning, one will need the possibility to enter structured mathematical knowledge into
the system.

Structured mathematical knowledge is more than just formulae and terms. In usual mathematical texts,
mathematical knowledge is presented in the form of definitions, axioms, theorems, lemmata, and the like,
which enrich a pure formula with additional information like a description of the symbols occuring in the
formula, conditions for the variables, under which the formula holds, labels for referencing the formula
later in a proof or a computation. This additional information is commonly given in natural language.
The THEOREMA formal text language gives a formal frame for structuring mathematical information in
this way. Each structural entity is called an environment, inside an environment there is the possibility to
declare certain symbols as variables, put conditions on variables, or assign names to formulae. For later
reference each environment also has a name. Let us now consider the definition of the convergence of a
sequence and the theorem that the sum of two convergent sequences converges, which would appear in
conventional mathematical texts as follows:

Definition 1 (convergence) For any sequence f and any a, we say f converges to a if and only if for all
€ > 0 there exists an N such that for alln > N

|fn—al <e

We call f convergent if and only if there exists an a such that f converges to a.

Theorem 1 (convergence of sum) For any two convergent sequences f and g the sum-sequence f + g
converges.
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We analyze the ingredients of these two entities and discuss their representation in the THEOREMA formal
text language:

o Keywords (Definition, Theorem) indicate the “type” of mathematical knowledge, labels are intro-
duced for later reference. The THEOREMA formal text language provides various keywords for
mathematical environments, such as Definition, Theorem, Lemma, Proposition, Theory, etc.

e In the traditional definition, a phrase such as “For any sequence f and any a” tells that in the sub-
sequent formulae any free occurences of f and a are to be understood universally quantified. The
THEOREMA formal text language provides the construct any [ . . . ] for this purpose.

¢ Conditions may be put on some of the universally quantified variables. The THEOREMA formal text
language provides the constructwith[. . .] for easy reading.

o Superfluous natural language ingredients, such as “For”, “we say”, and “we call”, do not have a
counter-part in THEOREMA since they can be omitted.

o f converges to a if and only if ... is a definition for a new binary predicate; e.g. converges(f, a).
Alternatively, we could invent some infix notation, e.g. f — a, for converges|[f, a].

e For the core of a mathematical environment, i.e. the formula itself, THEOREMA provides a concrete
natural syntax for higher order predicate logic. Input of formulae in natural syntax (special symbols
like V, 3, sub- and superscripts, under- and overscripts and the like) are supported by the standard
Mathematica front end, special definitions for the concrete syntax have been added in the frame of
THEOREMA.

e Definitions of new predicates can be written in predicate logic in the form lhs :&> Ths.

e the phrase “for all € > 0 there exists an [V such that for all n > N: |f, — a|] < €” can be written in
pure predicate logic in the form

V3 V |fn—a|l<e
e>0 N n>N

Depending on the taste of the author, this form might be used even in traditional text instead of the
natural language formulation for quantified formulae.

e Following the same rules, we could write the second part of the definition as
convergent[f] :<> 3 converges|f, a]
a

e A THEOREMA environment may contain more than one formula, each formula can optionally be
given a label. If no label is given explicitely, formulae are labeled using ascending numbers.

e As soon as an environment keyword with label 1abel has been entered in a THEOREMA session,
its contents can be accessed through keyword[label].

In THEOREMA, Definition 1 and Theorem 1 can be entered as shown below®:
Definit-ion[" convergence”, any[f, a],

converges(f, a] 1= ¥ r::]: W |f, —al «<e "fconvergestoa"
€ n
&0 2l ]
convergent[f] & 3 converges(f, a] "f convergent”
a

6We will provide screenshots from a THEOREMA session in the first examples to show the real appearance in the Mathematica
front-end. In later examples, we will show THEOREMA-environments typeset in IATEX.
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t[f
Theorem[" convergence of sum”, any[f, g, with[ J;"" \ { senvergenl] ]
' L convergent[g]

convergent[f + g]]

Of course, we cannot prove Theorem “‘convergence of sum” if nothing is known about the notions appearing
in the definition and the theorem. It is interesting to note that the following knowledge is sufficient for the

proof:

Definition[*‘'sum of sequences”, any[ f, g, n],
(f+9)n="Fatgn]

Lemma[“distance of sum”, any[z, y, 2, t, d, €],
z+y)—(z+t)|<d+e<|z—z|<dA|ly—t| <€ ]

Lemma[“max greater”, any[m, M1, M 2],
m > max[M1,M2] = (m > M1Am > M2) ]

The first formula defines the sum of sequences component-wise. The second formula, essentially, for-
mulates continuity of addition on real numbers. The third formula formulates an easy property of the
maximum function, which also could be considered as part of the definition of the maximum function.

In THEOREMA, we now have the possibility to combine knowledge to “theories”. In fact, the “Theory”
construct is recursive and, thus, we can build up arbitrarily nested hierarchies of knowledge bases. In our
example, we combine the individual formulae of the knowledge base to one theory called *“convergence”.

Theory[“convergence”,
Definition[*‘convergence”]
Definition[“‘sum of sequences’]
Lemma[“‘distance of sum”]
Lemma[*“max grater”]

]

The only thing we have to do now for the automated generation of a proof of the theorem is to call one of
the THEOREMA provers, in this case the “PCS” prover, and ask it to prove the Theorem[*‘convergence of
sum”] using the knowledge base Theory[“convergence”]:

Prove|[ Proposition[“convergence of sum”], using—Theory[“convergence”], by —PCS ]

After a few seconds, the proof shown in Figures 7 to 9 will appear in an extra notebook. Note that the
entire proof text, including the explanatory comments in English, is produced fully automatically without
any user interaction.

In order to obtain a quick impression about the typical achievements we made in the first phase of the
project, it is worthwhile to study this proof in detail’. Some comments on the most important phases in the
proof are:

o The proof starts with a “Prove” phase, in which THEOREMA structures the proof applying basic
inference rules of predicate logic, see (1) and (2).

Then it applies the definition of convergent in a rewriting style (“Compute” phase), see (3) and (6).

Then again, basic inference rules of predicate logic are applied, see (4) and (7).

Now it comes to a crucial phase, in which it applies Skolemization, see (5) and (8). This will be im-
portant for being able, later, to “construct” the final solving terms. Note that we apply Skolemization

"To shorten the proof we compressed the two parts of Definition[*‘convergence”] into only one formula, which does not essentially
change the proof!
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Prove:

(Theorem {convergence of sum)) lE\f convergent|f + g,
-

convergent[f] )’\; oenvergent[q]

under the assumptdons:

(Definidon (convergence): f convergent) \[f convergent[f] « 3 ¥ 3 ¥ ({f, -a} <e)
- 2

{ Definidon (sum of sequences)) i Y ((f+8), :=f,4+3,),

cgen i1

(Lermma (distance of sum)) ¥t Ur-Fleynlz-tled= {{x+z)-iy+)}<y+d), |
x.y.2.8.0.y i

(Lernrna (max greater)) 3 (memast[MI, M2) =meMInm:M2Z).
@ MY NE

We assume

(1)  convergent[fp]acoroergent|{oal,
and show

(2) convergent[fa+gal.

Formula (1.1), by (Definition (convergence): f convergent), implies:

By (3) we can take appropriate values such that:

(4) Y3 ¥ {fp, -dpt«=).
e N n
&0 n=N

By (4), we can take an appropriate Skolem function such that ]

5y ¥ ¥ (| fp,-apl <=l,
€ n
20 nelp [€]

Formula (1.2), by (Definition (convergence): f convergent), implies: 1

Ugo, -2t <e).

Figure 7: Proof “Convergence of Sum” (part 1)
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Formula (2), using { Definiion (convergence): { convergent), is implied by:

® 3
a

@

A3y ({(fp+apl,-2l<e).
N n

€; n=N

¥
L=}

We have to find a*** such that

10y v |\= >02 37 (aeN=|(L+go),-a"" | < e)j.

(3

Formula (10), using (Definton (s of sequences)), is implied by:

(11} Zle-;[l:-’?: n=N={(fo,+To,) —a."”‘Hs)).

Formule (11}, using (L eruma {distance of swn)), 1s irnplied by:

(12) 3 viesxl= 3 3I¥vneN={l,-Fleynlgo,-tl<d
L.y € N n
et zattt ' atlzE

We have to find a***, t*, and y* such that

(13)
I N\yler0s 3 (vee=e) Ay eNe Lo, =¥ b <y Aigo, -t h< 8]

(v'+ " =a
& ! w00

Using (5) and (8) we can partally solve (13). By taking ¥* « ap and t* « &, , formula (13) is implied by

i14)

]
m

aar Ao o " .
(2p+ @ =) Ay [esln YA Y (eNs o, 20t < fﬁ{gan—a;}<é)J).

‘e L L4

We can pardally solve (14). By taking a*** « ap + 2; , formula {14) is implied by

(1s) (=0 = 3, wedea Ay meNaifo, -2l cvalgo, -2l a1
We assume

(16) ep» 00,
and show

(1?) v % . ([",y’-q- d=ep) fi'"“,\:' meN={fo,-apl=<wvilgo,-asl = 6:]] :

Figure 8: Proof “Convergence of Sum” (part 2)
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We have to find y*, 6%, and N*** such that
(18) (v"+4" =2p) ,f\';;" (n =W = |fp,-3pt <y Adgdo, - 21t <d").
Formula (18}, using (8], is imphed by:
(' + 8 =) Ay (RN 28 = 0AR 2N (S A i fa, - 20t < %),
which, using (5}, is implied by:
(8 =) AV (RN 2t > 008 >0 Ny W) An N [6']),
which, using (Lemuna (max greater]), is implied by:
(19 v+ 5" =ep) ;’\:’ e N 2yt s OAS » 040 e nax[Na (¥ ], Np[6*]1).

Formula (19) is implied by

@) 8 =e) Syt 2080 Ay e N e e menNg (¥ ], N2 161D

Partially solving it, formula (20} is implied by

(21) (3 + 8 =ep) AT 2 0AS = 0A N smax[Ng [y" ], My [67]]). i

Now,
(" +d" =ead Ay =0 AG = 1 _ 1
can be solved for y* and 6* by a call to Collins cad-method yielding & sample solution 11

€ E
Y"";a‘; t

Furthermore, we can immediately solve i

N = max[Na [v"], N; [6°]]

for N*** by taking i
£ T £ £

N «max[h‘o[—{—], N;[To]]

Hence formula (21) is solved, and we are done.

Figure 9: Proof “Convergence of Sum” (part 3)
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only “in small doses” and not in the general way like this is done in resolution. This is crucial for
keeping the proofs “natural”.

e Now the definition of convergent is applied to the goal, see (9). This is a rewriting (“Compute”) step.

e Now we come to a “Solve” phase, i.e. we have to construct a suitable a, see (10). Note that, by
the introduction of a “find” constant (constants with asterisks), we can continue to work on the
“outermost” symbols of formulae.

e Now we apply the definition of the sum of sequences, see (11), a “Compute” step.

e The next step is again crucial in our method: Matching the goal with the proposition on the continu-
ity of addition is not directly possible. Instead we apply a new proof rule (which we call “semantic
matching”) which forces a match to be possible on the expense of introducing new existential quanti-
fiers (for ¢, y and 7, §, respectively), see (12). By this, we again arrive at as “Solve” situation, which
we again handle by solve constants, see (13).

e By unification using formulae from the knowledge base, we can instantiate some of the solve con-
stants, see (14). :

e Part of the goal formula is easy enough to read off from it the instantiation for the remaining solve
constant, see (15). Note that, by this, the proof by itself constructs the value to which the sum
sequence converges!

o After a standard “Proof” step, see (16) and (17), we again enter a “Solve” phase, in which we
introduce solve constants for 7, ¢, and N, see (18).

e (18) is now transformed by a couple of rewriting steps (“Compute” steps), using the skolemized (!)
assumptions into a pure solve problem, see (20).

e This solve problem, in fact, is neatly decomposed into a part which can be handled by pure predicate
logic and a part which is a solve problem with all constants over the real numbers (!), see (20). This
is essential: Summarizing, what happened in the proof, was a reduction of the proof problem that
contained variables over functions to a solve problem over the real numbers.

e Now we can call any of the powerful methods of computer algebra for solving constraints over the
reals and we are done! (In the particular example, a relatively simple constraint solver would be
sufficient, in more complicated examples the full potential of current constraint solvers is helpful.)

e Note that we do not show a trace of the constraint solver because, in an “exploration round” on
the notion of convergence, it is absolutely “uninteresting” to see parts of the proof that refer to
the earlier “exploration round” of proving and solving over the real numbers! We think it is of
utmost importance for understanding the significance of formal proving to formulate the notion of
“importance or unimportance of details” relative to a given exploration round.

e Note also that the proof does not only stop with saying that the final proof situation (which, actually,
is a solve problem) can be handled (in this case, by a call to a black-box constraint solver) but,
rather, it exhibits the solving term, which contains mathematically and didactically highly relevant
and interesting information: In our case, the final solving term for N*** tells us a “method” how,
if we know a “method” for finding the appropriate N's for given es for the input sequences, we also
can find an appropriate N for given es for the sum of the input sequences! In other words, the proof
is not only a guarantee for the truth of the proposition but can also be considered as a “program
synthesis” algorithm for constructing “methods” from “methods”. Note also that the term assigned
to N*** is an algorithm (!) if, in concrete cases of input sequences f and g we know algorithms Ny
and N;. All this interesting information on the solving terms, usually, is not produced in math text
books although it would have enormous value for “constructive analysis” and also for the didactics
of understanding the notion of convergence and its interaction with operations on sequences!
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The Set Theory Prover

The THEOREMA set theory prover is a special prover available for proving theorems involving language
constructs from set theory. The THEOREMA language provides syntax for various language constructs from
set theory and some semantical knowledge for finite sets, which allows doing computations involving finite
sets. Before we go into details on the set theory prover, we show some THEOREMA computations using
semantics for sets from the THEOREMA language. Consider the definitions

Definition[“reflexivity”, any[ A, ~],

is-reflexiveg[~] & V z~z ]
TEA

Definition[“relation sets”, any[z, A, ~],
classg ~[z] :={a€ A|a~ z} “class”
factor-set [A] := {classs ~[z] | } “factor-set”
z€A

introducing the notions of reflexivity on A for some binary relation ~, the notion of the class (w.rt. A
and ~) of z, and the notion of the factor set (with respect to ~) of some set A, respectively. Using built-
in knowledge about numbers available through Mathematica and built-in semantics for quantifiers and
sets available from THEOREMA we can compute e.g. the class of 6 (with respect to {1,2,...,7} and the
divisibility relation ““|”’) and the factor set of {1,2, ..., 7} (with respect to the divisibility relation “|”). In a
THEOREMA session, these computations appear as

Compute]class 6], using—Definition[“relation sets”],

| },|[

i=1,...,7
built-in— { Built-in[“Numbers”], Built-in[“Quantifiers”], Built-in[*“Sets”])]

{1,2,3,6}

Computel[factor-set][{ | }], using—Definition[“relation sets™],
=105

built-in— (Built-in[“Numbers”], Built-in[*“Quantifiers”], Built-in[*“Sets”])]
{{1},{1,2},{1,3},{1,5},{1,7},{1,2,4},{1,2,3,6} }

After some more computations, one might conjecture the following lemma:

Lemma[“factor set covers”, any[ A, ~], with[is-reflexive 4 [~]]
{J factor-set..[A] D A ]

The set theory prover can generate a proof of Lemmal““factor set covers™] fully automatically®.

Prove:
V (is-reflexive4[~] = Ufactor-set.[A] D A)

(Lemma (factor set covers)) -

under the assumptions:

(Definition (reflexivity)) V (is-reﬂexiveA[fv] & V(rzed=z~ :r)),
A 0

~
)

(Definition (relation sets): class)  V (classA,N[x] ={ala€dNna~ x}),
a

e

(Def.(relation sets):factor-set) V (factor-set~ [A] := {classa ~[z]| = € A})

~
)

8In a THEOREMA session, the proof would appear in a separate window as already shown in Figures 7 to 9. We try to imitate its
appearance as closely as possible in IATEX.
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We assume

(1) is-reflexives, [~o],

and show

(2) | factor-set.,[Ao] D Ao.

Formula (2), using (Definition (relation sets): factor-set), is implied by:

U {class ag,~o[z]| T € Ao} D Ao,

which, using (Definition (relation sets): class), is implied by:

3) U{{a| ae€ ‘40/\a~01‘}| S Ao} D Ay.

Formula (1), by (Definition (reflexivity)), implies:

4 Vv (.’E € Ay > Z‘Noilf).

For proving (3) we choose
(5) z1o € Ao,
and show:

6) z1o€ U{{a] a € AgAa~oz}| z € Ao}.

In order to show (6) we have to show

9) Jzripgez2Nnz2E€ {{a| a € Ao /\a~0z}| CL'EA()}.
2 a T

In order to solve (9) we have to find £2™ such that

(10) z1, € z2* /\il (:c € Ao A (z?* = {a¢|l a € Ag /\a~0:1:})).

Since (5) matches a part of (10) we try to instantiate, i.e. let know z := z1g.

Thus, by (10), we choose 2™ := {a| a € Ag A a~ozlo}.
a

Now, it suffices to show

(12) z1o € AgAzlo € {a] a € Ag Aa~ozlo}.

We prove the individual conjunctive parts of (12):
Proof of (12.1) z1g € Ap:
Formula (12.1) is true because it is identical to (5).

Proof of (12.2) 210 € {a] a € Ag Aa~ozlo}:
a

In order to prove (12.2) we have to show:

(13) 19 € Ag AN zlg~pzlp.

Formula (13), using (4), is implied by:

(14) zi1o € Ap.

Formula (14) is true because it is identical to (5). a

We briefly comment on the essential steps in the proof:
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e The proof starts with a “Prove” phase, in which the universally quantified implication in the proof
goal is reduced by natural deduction inference rules, see (1) and (2).

¢ In a “Compute” phase, the goal and the knowledge base are rewritten using the definitions in the
knowledge base, see (3) and (4).

e The prover switches back again to a “Proof” phase, but now special inference rules for set theory are
applied in order to eliminate set theoretic operators (“2” and “(J”) in the goal, see (5), (6), and (9).

o The existential goal (9) has the special structure 3 z1g € 2 A 22 € {T,| P.}, which is always the
T

T2

case after reducing a goal of the form 21 € (J{T;| P:}. Therefore we enter a set theory specific
T

“Solve” phase, in which the existential quantifier is eliminated by introducing the solve constant 2%,
and the expansion of the inner membership £2* € {T| P} introduces another existential quantifier
x

(for z), see (10).

e The existential subformula in (10) in solved for z by unification with formulae in the knowledge
base. In fact, in this example matching is sufficient, but we provide unification in this step for the
general case. Having solved for z, the solve constant 2* can be instantiated from the equational
subformula z2* = ... in (10), reducing the solve problem (10) again to a proof problem, see (12).

e The goal (12) is split using general predicate logic, subgoal (12.1) is trivially true, and subgoal (12.2)
is handled first by a set theory specific prove rule, see (13).

o Finally, the goal (13) is proved by simple rewriting using implications from the knowledge base in a
final “Compute” phase, see (14).

Another feature worth mentioning, though not appearing in the above proof, is the set theory specific
“Compute” phase. In this phase, semantics for set theory specific language constructs available from
the THEOREMA language is applied for rewriting. In particular, finite sets are computed to a canonic
representation in exactly the same way as it is done in computations on the top-level when using Compute
as shown at the beginning of this section. Moreover, built-in knowledge about certain numbers and number
sets can be applied for simplification purposes, €.g. the fact that 6 € N holds when interpreting ‘6’ as the
built-in natural number six and ‘N’ as the built-in set of natural numbers. For details on the set theory
prover, we refer to [268], [271], [270], and [267], an extensive case study of using the prover is given in
[269].

The Equational Prover

The Theorema equational prover is a prover for unit equality problems. It consists of two parts - the prover
kernel and the proof presenter. The kernel is an implementation of the unfailing completion procedure, see
[26], with extensions to handle existential goals and using various simplifiers. The prover can be run on
problems which are in purely equational form. All the equalities in the knowledge base of the problem are
universally closed and each variable in the goal is either universally or existentially quantified. Handling of
existential goals in the “Solve” phase is based on unification. The unification procedure has been extended
in order to support special language constructs (flexible arity symbols, i.e. function and predicate symbols
that can be applied to a flexible number of arguments, and sequence variables, i.e. variables that can
be substituted by zero or an arbitrary number of terms) available in THEOREMA. It has been shown that
unfailing completion remains a refutationally complete proving method if sequence variables occur in terms
only in the last argument position, see [169]. The proof presenter is based on the Proof Communication
Language — PCL, see [115]. We give again one example to illustrate the method (variables with overbar
are sequence variables).

Prove:
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(Proposition (goal)) 3 (sort[(1,3,2,4)] = (),

under the assumptions:
(Axiom 1) sort[()] = (),
(Axiom 2) V (insert[n, ()] = (n)),

(Axiom 3) V (prepend|z, (§)] = (z,7)).

T,Y

(Axiom 4) VY (sort[(z,)] = insert[z, sort[(7)]]),
2.9

(Axiom5) V¥ (insert[n, (m, )] = prepend[max[m, n], insert[min[n, m], (z)]]),

To prove (Proposition (goal)), we have to find £* such that
(1) sort[(1,3,2,4)] = (z*).

We choose
Z* = Sequence[4, 3,2, 1]

and show that the equality (1) holds for this value (assuming that the built-in simplification/decomposition
is sound):

(Theorem) sort[(1,3,2,4)] = (4,3,2,1).
Proof.

sort[(1,3,2,4)] = (4,3,2,1)
if and only if (by (Axiom 4) LR )
insert[1, insert[3, insert[2, insert[4, sort[(}]]]]] = (4, 3,2, 1)
if and only if (by (Axiom 1) LR, (Axiom 2) LR )
insert[1, insert[3, insert[2, (4)]]] = (4,3,2,1)
if and only if (by (Axiom 5) LR )
insert[1, insert[3, prepend[max|[4, 2], insert{min[2, 4], ()]]]] = (4,3,2,1)
if and only if (by (Axiom 2) LR, (Axiom 3) LR )
insert[1, insert[3, (max[4, 2], min[2, 4])]] = (4, 3,2,1)

if and only if (by (Axiom 5) LR, (Axiom 5) LR, (Axiom 2) LR, (Axiom 3) LR, (Axiom 3) LR, (Axiom 5)
LR, (Axiom 5) LR, (Axiom 5) LR, (Axiom 2) LR, (Axiom 3) LR, (Axiom 3) LR, (Axiom 3) LR)

(max[max|[max[4, 2], 3], 1], max[max[min[2, 4], min[3, max[4, 2]]],

min[1, max[max[4, 2], 3]]], max[min[min(3, max[4, 2]], min[2, 4]],
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min[min[1, max[max[4, 2], 3]], max[min[2, 4], min[3, max[4, 2]]]]], min[min[min[1,
max[max[4, 2], 3]], max[min[2, 4], min[3, max[4, 2]]]], min[min[3, max[4, 2]], min[2, 4]]])

=(4,3,2,1)

if and only if (by the built-in simplification/decomposition)

(4» 3,2, 1> = (4’3a 2, 1)

which, by reflexivity of equality, concludes the proof. a

The proof has an existential goal, thus, it starts with a “Solve” phase, where a solve constant Z* is
introduced for the sequence variable z, see (1).

The solve constant is instantiated by unification. Note, that in this case sequence unification is
applied. The solve problem is reduced to an equational proof problem, see (Theorem).

The prover enters a “Compute” phase, in which it tries to prove the equality by rewriting the goal
equality using equalities from the knowledge base.

After having applied all possible rewrite steps, the remaining equality is simplified using built-in
semantic knowledge. In the concrete case, the prover has been given access to available Mathemat-
ica functions Min and Max in order to simplify terms containing min and max. This is achieved
through a Built-in environment

Built-in[“Mathematica MinMax”,
min — Min ]
max — Max

in the prover’s knowledge base, which tells the prover to interpret min as Mathematica’s Min and
max as Mathematica’s Max. By this, max[max[max[4, 2], 3], 1] simplifies to 4 etc.

The goal is reduced to a simple equality with identical left hand side and right hand side, thus the
proof is finished.

For details on the equational prover, we refer to [169], [170], [168], [171], and [167].

Logicographic Symbols

We present the idea of logicographic symbols by using the theory showing the correctness of merge-sort.

Algorithm[“stmg”, any[ X ],

X < |X|<1

stmg[X] := {mg[stmg[lsp[X]],Stmg[rsp[X]]] <= otherwise ]

Algorithm[“mg”, any[X, Y, a,b, T, 7],
mg[(),Y]:=Y

a~— mg[(Z),(b,§)] <=a>b

mg([(a, Z), (b,7)] := {b — mg[(a, &), (§)] < otherwise

Definition[“istv”, any[ X, Y],
istv[X, Y] & ist[X] A ipm[X, Y] ]

Lemma[“mg”, any[ A, B],
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i Isp[X] left split of X

T_ rsp[X] right split of X

¥ mg[X,Y] the result of merging two tuples X and Y
By  stmg[X] the result of sorting X by merging

X

>;§ ipm[X,Y] X is a permuted version of Y

& istX] X is a sorted tuple

X

% istv[X,Y] X s a sorted version of Y

Figure 10: Logicographic Symbols for the Merge-Sort Theory

ist{A] A ist[B] = istimg[A, B]] ]

Lemma[“mgé”, any[A, B],
ipm(mg[4, B], A < B] ]

In the THEOREMA notation, *()’, “(z, X)’, ‘z — X, ‘X < Y stand for ‘empty tuple’, ‘a tuple with the
first element z and a finite sequence X of elements’, ‘tuple X with element z prepended’, ‘the concatena-
tion of tuple X and tuple Y’ respectively. With the additional explanation in Figure 10 (for the moment
ignore the leftmost column), the meaning of the above formal text should be self-explanatory. For example,
the definition of ‘stmg’ describes the algorithm of merge-sort: If the length of the argument tuple ‘X" is
less than or equal to 1, then the result is ‘X ’. Otherwise, ‘X’ splits into ‘Isp[X]” and ‘rsp[X]’, then each
of these tuples is sorted by a recursive call of ‘stmg’ and, finally, the two sorted parts are merged by ‘mg’.

With the definitions above, the correctness of merge-sort can be formalized as follows:

Proposition[“‘Correctness of Merge Sort”, any[A],
istv[stmg[A], A] ]

This proposition states that for any tuple ‘A’, after application of the algorithm ‘sorted by merging’, the
resulting tuple ‘stmg[A]’ is a sorted version of ‘A’. It will be possible to prove this theorem automatically
by one of the THEOREMA provers.

Of course, one could be happy with the above formal text from a strictly formal point of view. However,
it is difficult to grasp the intuition behind the algorithm in the formal way. So we will now demonstrate
how, by the introduction of new “logicographic” symbols in two-dimensional notation, the above formulae
become easier to understand.

Figure 10 shows a possible choice of logicographic symbols for the merge-sort theory. Of course the user
has complete freedom in designing new symbols for the various notions. With these logicographic symbols,
the above formal text can now be written in the way shown in Figure 11. The expressions are represented in
a nested 2-dimensional syntax with dark gray and light gray coloring for indicating the syntactical structure.
(The users can change the coloring by writing an appropriate M athematica function).

Using Logicographic Symbols

Since logicographic symbols can be evaluated and they are just a different way of writing the correspond-
ing THEOREMA (function or predicate) constants, they can be used in all contexts in which function and
predicate constants appear in THEOREMA (e.g. in Definition[. .. ], Prove[. .. ], etc.) Namely, when formulae
containing logicographic symbols are evaluated, this causes the same effect as executing the formula with
all logicographic symbols replaced by their internal constants. As we saw in Figure 11, we can compose
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Algorithm["stmg" , any [X],

e X} =1

« otherwise

e« az b

14

« otherwise

Definition|["istv", any([X, Y],

Lemma["mg" , any[A, B],

}i

Figure 11: Formalized Merge-Sort Theory with Logicographic Symbols

arbitrary knowledge bases using logicographic symbols.

The logicographic presentation can be used for displaying formal proofs. Note that the above logico-
graphic symbols may appear with various different argument terms at different places within the text. One
could control which expressions should be displayed with logicographic symbols by specifying the option
Notation in the option ShowOptions of the THEOREMA Prove command. For example,

Prove[ Proposition[“‘Correctness of Merge Sort™],

using — Theory[“Merge Sort”’], by — CourseOfValueProver,
ShowOptions — {Notation — LogicographicNotation[“Merge Sort”]} ]

The following proof sketch shows the correctness of merge-sort which demonstrates the positive effect of
logicographic symbols on making proofs easier to understand.

Prove:

We use course of value induction on A. Let now Ag be
arbitrary but fixed and assume

(ind-hyp) Y
1at<{ 4t

and show
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We prove (G) by case distinction using (Algorithm: stmg).

Case |Ao| < 1: We have to prove

These are true, because (properties of sorted tuples) and
(reflexivity of perm).
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Case | Ao| £ 1: We have to prove

We prove (G2): We know (C1) by (Lemma:mg2), (C2) by
(properties of permutation), (C3) by (properties of split-
ting),

(G1)

(K)

(K1)

(C3)

(K2)

Hence, by (C1), (C2), (C3) and (transitivity of permuta-
tion), (G2) is proved.

We prove (G1): By (Lemma: mg) and (K1),

For details on logicographic symbols, we refer to [204], [205], [207], [206], and [65].

Focus Windows

The “focus windows presentation” a new technique for presenting proofs, in particular proofs generated by
automated theorem proving systems like THEOREMA. We call this technique “focus windows” technique
because with this technique, in each proof step, all the relevant formulae are collected in one window (the
“focus window”) so that the reader can focus on them. The sequence of focus windows alternates between
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ATy
8 A Aiteritic :
‘Iree reoresentation 3
SRS T g ey e
EEEEEEEREXK 8= Tianstormaiion Windos
[ 2
Current goal: ]
i3) [j{{a}ee;ﬂpﬂa ~;)X}|Jf€Aa}E'Aﬂ ]
1 Cumrent goal: j
(3) [J{«s"l 2z lghad g x} X »:A;} Ay ] Assumptions: ]
(1) 3‘3-1.'31;1.&:’.'1‘\'?':[“( Lep ] j
(Defiidon (reflexdivity)) v (1s-reflex;ve,.[ ] e vixeAd=saa ;r)) ]
Assumptions. ] et ¢ ¥
0 1e-re-x'lexivc-% Pve ) ] New assumpdons: ]
(Defition (reflexmity)) v [is-reflemvenl i = y (Kehai.xi] ] ® T by maaam) ]
4 All assumptions ]J All sssumptions JJ

Figure 12: Attention window and transformation window (part 1)

“attention windows” and “transformation windows”. In an attention window, exactly those formulae are
displayed — and highlighted — that are relevant for the next proof step. In the subsequent transformation
window, in addition to the highlighted formulae, the formulae are displayed that are added as a goal or
additional knowledge. Also, a standard natural language text is presented that briefly characterizes the
proof technique used.

Focus windows presentations are intended for interactive presentation of proofs on a computer screen.
Their benefit is based on facilities available in today’s windowing systems such as “multiple windows” and
“mouse clicking”. Therefore, it is difficult to demonstrate the advantages of this type of proof presentation
on paper. We show parts of the proof of Lemma[*“factor set covers”] from Section 2.2.b using the focus
windows presentation. Note that the proof object used is the same as for linear proof presentation, meaning
the formulae and their labels are the same as in Section 2.2.b.

The presentation starts with a transformation window showing the proof goal and the complete knowledge
base. After clicking the “Next” button in the navigation panel on the bottom of the window, an atten-
tion window shows only the proof goal, because the proof will proceed by reducing the goal. Clicking
“Next” several times presents the attention window shown in Figure 12. The top of the window shows
a tree representation of the proof with a “J” indicating the current position®. Then the current goal (3)
is displayed, followed by two assumptions (1) and (Definition (reflexivity)) from the current knowledge
base, i.e. attention for the next proof step has to be paid just to these formulae. Clicking “Next” brings up
the transformation window shown in Figure 12, which contains the same items as the preceding attention
window plus the new assumption (4) obtained by rewriting (3) using (Definition (reflexivity)).

In the final phase of the proof, we need to reduce the goal using an implication from the knowledge base.
The attention and transformation window for this step are shown in Figure 13. In the attention window
only the goal (13) and the known implication (4) are shown, clicking “Next” brings up the reduced goal
(14) in the transformation window. In particular in longer proofs, this type of presentation is advantageous,
because it always keeps the focus on just those parts of the proof that are relevant for just the current or the
next step. For details on the focus window presentation technique see [220], [218], and [221].

9The cell brackets at the right margin are a feature offered by the Marhematica notebook front end. Clicking cell brackets
opens/closes cells so that their contents is displayed/hidden. By default, the cell showing the tree representation is closed.
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Figure 13: Attention window and transformation window (part 2)

Theorema: An Introduction to the System
Integrating Proving and Computing

The integration of proving and computing in one frame is a challenge for the logic and the language of
a system. Pure computation systems, such as Mathematica MAPLE or others, contain a huge database
of mathematical knowledge, which is applied implicitly in each computation. In a proving system, on
the other hand, the user needs explicit control over the knowledge base that is used to obtain a proof. A
system that combines proving and computing needs to resolve this conflict between implicit and explicit
knowledge, see also [61], [62] for more background on this issue.

Thus, in the THEOREMA system, we decided to design the language in such a way, that there is a clear
separation between the implementation of syntax and semantics of the language. The syntax of expres-
sions is pre-defined by the THEOREMA expression language but there is no hidden implicit semantics of
THEOREMA expressions. Of course, we offer the usual semantics, even in the form of algorithms, wherever
possible but it must always be applied explicitly!

We try to illustrate the critical issue in the system design again in one example: Consider the expression
2 + 7. For serving as a computation system, the system must have knowledge about the symbols involved
in the expression, 1.e. “2”, “+”, and “7”. Since THEOREMA is built on top of Mathematica, it would be
convenient to use the knowledge built into Mathematica, that is “2”” and “7” are natural numbers and “+”

is the well-known addition. On the other hand, we want to prove formulae suchas Vz +y =y +z
Ty

(commutativity of “+"), where, of course, we do not want to use the built-in interpretation of “+”, because
the built-in addition is already assumed to be commutative. The same kind of conflict arises with all
semantics that we implement for the THEOREMA language. Thus, we decided to hide all semantics on the
top level and instead force the user to enter Compute[2+7, built-in — Built-in[*“Operators”][+]] in order
to compute “2+7” using the built-in operator “+”. A detailed explanation of this issue is given in [80] and
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[74].

Built-in[“Operators™] is a THEOREMA pre-defined collection of translations of frequently used operator
symbols (‘+’°, ‘*’, ‘<’, etc.) to available Mathematica operations (‘Plus’, ‘Times’, ‘LessEqual’, etc.). Var-
ious pre-defined Built-in[...] collections are available, moreover, there is the possibility for user-defined
translations, as it has already been demonstrated in the example of the equational prover in Section 2.2.b,
when translating ‘min’ and ‘max’ to the Mathematica functions ‘Min’ and ‘Max’. Through this mecha-
nism, the entire algorithm library of Mathematica is available for doing computations in THEOREMA.

Prove Strategies

All the provers of the THEOREMA system work on proof situations. A proof situation ({assumptions}, goal)
consists of a collection of assumptions and a goal formula. In one proof step a prover carries out a proof
deduction step that reduces a given proof situation to hopefully simpler proof situations. For instance,
the rule “For proving A A B we prove A and we prove B” is represented as a rewrite rule which trans-
forms the proof situation ({assumptions}, A A'B) into the two proof situations ({assumptions}, A) and
({assumptions}, B). Most of the rules will, in fact, produce only one proof situation, however some of
the rules produce several proof situations connected by AND (as above), and some rules will produce proof
alternatives connected by OR. Some rules are terminal — like “the goal is among the assumptions” — and
produce final proof steps.

The proof is represented internally as an AND-OR tree, called proof-object, whose nodes contain annota-
tions documenting the proof steps. These annotations are used later to produce a human readable proof.
Final proof steps are the leaves of the tree. The management of the proof-object is done by a control mech-
anism which also allows to combine several provers — e.g. simplification and induction —, for the details we
refer to [251], [252], [250], and [258].

As a meta-strategy, THEOREMA provides the cascade. Intuitively, the idea is that, given a goal G and a
knowledge base K, we let a given prover P try to find a proof. If P succeeds, we stop and present the
proof. If not, we let a “failure analyzer’” analyze the proof attempt and conjecture a lemma L, which could
be strong enough to allow P to prove G from K |J L. Now we let P try to prove L from K. If this
succeeds we let P try, again, to prove G but this time under the assumption K | J L. Otherwise we let the
failure analyzer work on the failing proof. In other words, given a prover P and a “‘conjecture from failure
generator” C, the recursive “cascade” may result in a much stronger prover that, in fact, does not only
prove more theorems than P but, on the way of proving a goal from a knowledge base, gradually extends
the knowledge base by “useful” lemmas. For details see [59], [8], and [72].

Proof Presentation and Proof Simplification

One of the goals of the THEOREMA system is to produce proofs in a natural style, i.e. in a style that would
typically be used by a human mathematician. In Figures 7 to 9 we already showed an example of a proof
generated by one of the THEOREMA provers. Many more examples can be found in the various publications
on THEOREMA see for example [74], [70], [76], or [72], see also http: //www. theorema.org.

For achieving the goal of producing natural-style proofs, the generation of a proof is split into two phases:

e the generation of an abstract proof object and

o the generation of the written presentation of the proof.
In the first phase, as already described in Section 2.2.b, a proof is generated by application of inference
rules. The process of searching for a successful proof is stored in an internal tree structure, the proof

object. Each node in the proof object represents one deduction step, with which a textual representation is
associated. Once the proof object is generated, the written proof presentation is generated by processing
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the individual nodes of the proof object. Note that the textual presentation of the proof is not part of the
proof object. Thus, proofs can be produced in different languages from one and the same proof object. See
for instance [250], [8], and [59].

Depending on the purpose, the proof object can be presented in different ways:

e the entire proof object including all failing branches,
e only the succeeding branch,
e only steps that actually contribute to the successful proof,

e or only the information, whether the proof succeeded or not.

This process of proof simplification is a natural strategy, also applied by human provers: In a first attempt
one tries to find a crude version of a proof, which might still be unnecessarily complicated. Then, in a
second step, one works on the proof found and tries to simplify it in various ways.

In [258] the currently available simplification mechanisms are explained. We also started to work on more
sophisticated techniques for proof simplification, for example extracting similar proof parts from various
parallel branches of the proof. Such proof simplification strategies that work, as post-processors, on the
proof objects generated by our provers, are currently implemented in the ongoing PhD thesis [219], for first
results see [222].

General and Special Internal Provers

In the first phase of the project, several general and special prove methods have been implemented:

Propositional Logic Prover for proving formulae in propositional logic using inference rules in natural
deduction style. This prover is based on a set of rules which are similar to the ones used in sequent
calculus, some examples are below:

({4,-4,...},G) — Proved

({4,A= B,...},G) — ({A,B,.. },G)
<{...},GOVG1V...VGn> s & <{_'Gl7...,_\Gn,‘..},Go>
(

{AVB,..},G) — ({4,...},G)
AND
({B,..},G)

{4=G,...},G) — ({...},L,4)
OR
{~4,...},G)
As a general strategy, the prover will try to move the negation symbol inside the formulae and to

split the assumptions and the goal until a final proof situation is found. Some examples of the
propositional proofs are given in [74].

Predicate Logic Prover for proving formulae in first order predicate logic using inference rules in natural
deduction style. This prover uses the rules of the propositional prover intermixed in a convenient
way with new rules for predicate logic. Some example of such rules are listed below:

({--1.Y Plal) — ({...), Plao)
(3 Plal- 1,6) — ({Plao),---},0)

({Pla) = Q[a],Z’ P[z],...},G) — ({Q[a],\zf Plg);s:: }+G)

59



Task 2.2: Enhancing the Reasoning Power of Computer Algebra Systems

Rules as above are “simplifying rules” because they simplify the proof situation. Such rules are used
also in the PCS prover (described in the sequel) in the “proving” phase.

However, one also needs rules, which “complicate” the proof situation either by adding new assump-
tions, either by creating several branches. An example of an applications of such rules is:

({v Ple) = Qlal, Plal, . },G) — ({Qla].V Plz] = Qla], Pld], ... },G)

which corresponds to forward reasoning. By backward reasoning one replaces the current goal by
using an universal assumption, but in order to insure completeness of the prover one usually has to
follow several alternatives.

The usage of such rules has to be done following a certain proof search strategy in order to insure
completeness and efficiency of the prover. One such strategy is defined by the PCS prover (described
later), which uses special universal assumptions (implications, equivalences, equalities) as rewrite
rules.

In order to approach proof problems having universal assumptions, we have also implemented a
level saturation strategy for predicate logic proving, which is applicable both in forward mode and
in backward mode or combined, see [158]. For instance, in forward mode, after all the “simplifying
rules” have been exhausted, in one proof step all possible new assumptions are produced based on
existing ground literals and universal assumptions, using a general forward inference rule. Then the
simplifying rules are applied again, etc. This strategy produces proofs for proof problems that can
be solved using ground assumptions.

In dual fashion, the backward mode consists in replacing the goal at each cycle with all possible al-
ternatives that are determined by the universal assumptions. Combining the two strategies efficiently
produces proofs for problems having ground goals or simple existential goals.

However, this is not sufficient, for instance, for problems containing formulae with alternating quan-
tifiers. Currently we are implementing a strategy, which uses the analysis of the relationship between
the existential goals and the universal assumptions in order to make the appropriate instantiations
that allow then the application of simpler rules. Preliminary experiments show that this method
can produce proofs for a large class of problems, especially when it is combined with the use of
metavariables, see [147], [159], [142], [143].

Induction Provers for various domains, e.g. natural numbers or tuples, proving universally quantified
formulae in the respective domain by induction. The induction provers implement the induction
scheme for the respective domain depending on the inductive structure of the domain. General
induction provers, which infer the inductive structure of the underlying domain from the functor
definition (see [266] and [8]) of the domain will be implemented in future versions of the system.
Some first experiments have been done in the frame of the PhD Thesis [250], for examples see also
[74]. Recently, extensive case studies in the domain of tuples have been carried out by a Calculemus
YVR, see [110], [109].

Simplifier Prover for proving equalities by simplification. This prover applies term-simplification on both
sides of equalities. Various options can be used to adjust the behavior of the prover with respect to
properties of the operators involved (commutative operators, associative operators, etc.).

Case Distinction Prover for proving formulae involving predicates or functions defined by case distinc-
tion. This prover is rarely used as stand-alone prover, but is normally used in combination with the
other provers, see [258] and [252].

All provers mentioned above are so-called White-Box-Provers in the sense that they produce proofs in
human readable style that can be checked easily by a human mathematician by applying basic inference
rules. However, many powerful proof methods have been developed over the years, which are based on
applying powerful algorithms from computer algebra as “black boxes” that, however, can be used only in
special theories applying special mathematical knowledge to a transformed prove problem. We put some
effort into integrating these sophisticated, known methods into the current version of THEOREMA. By now,
the following methods have been implemented:
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Grobner Bases Prover for proving boolean combinations of multivariate polynomial equations using the
Grobner bases method. The class of formulae decidable by this prover includes also the important
class of geometrical theorems in cartesian coordinates formulation, see [63] and [64]. In the thesis
[230] this prover is also supplied with an interactive graphical input tool. Also, in this thesis, other
algebraic methods for geometrical theorem proving, in particular Wu’s method and the area method,
are re-implemented in the frame of THEOREMA with a perspective to study the interaction with these
method with our predicate logic provers, see [231], [229].

Paule-Schorn Prover for proving combinatorial identities based on a method developed by P. Paule and
M. Schorn. This method was completely invented and implemented in Mathematica already in [215],
and was integrated into the language and logic frame of THEOREMA, see [70], as a model for the
potential of THEOREMA to integrate smoothly various algebraic methods developed by other groups
in the Calculemus community.

Resolution Prover for proving formulae in first order predicate logic by resolution. Highly sophisticated
resolution provers are available from various research groups around the world. Therefore, at first
sight, it seems to be appropriate not to devote effort into developing a new resolution prover in the
frame of THEOREMA. In fact, we established links to existing resolution provers, see next section.
However, we decided to embark also on the implementation of resolution within THEOREMA, see
[169], because we want to combine the essential components of resoulution, notably unification and
equational paramodulation, with our natural deduction style theorem provers. Fundamental research
work in related topics has been done in [166] and [165].

The PCS Prove Strategy

Since, of course, most proofs can not be done by applying just one method, each THEOREMA-prover is
a certain combination of the above components. The system provides a mechanism to combine prover
components to a new prover in a simple way by just describing, which method to be applied under what
circumstances. For instance, the PCS-provers combine Prove, Compute, and Solve phases, which results
in very natural proofs for theorems of type “for all € exists §” as they appear often, for example, in analysis.
See [79], [66], and [60] for an overview and [258] for a detailed description of the PCS approach, which is
applied, in a similar way, also in [268]. The PCS approach resulted in the automatic generation of natural-
style proofs for many theorems of elementary analysis, which so far has still been a challenge for theorem
provers.

In the case of the analysis proofs, the “Prove” and the “Compute” phase reduce the proof problem to a solve
problem over the real numbers, which then can be solved by calling one of the existing computer algebra
methods for constraint solving, e.g. Collins’ algorithm. This opens the possibility to establish a strong link
between theorem proving and computer algebra.

User Interaction

The feasibility of computer-supported theorem proving depends drastically on the possibility of reasonable
user interaction. We believe that the most important type of interaction is by composing the appropriate
knowledge base for a particular prove problem. The importance of this possibility is often underestimated.
In THEOREMA, we put particular emphasis on convenient knowledge base management, which is possible
by our formal text tools, see [69]. More research will be done in the ongoing PhD thesis [259].

However, we also investigated and implemented possibilities for user interaction during the generation of
proofs, which is particularly useful also for applications of THEOREMA in didactics, see [162], [161], [8],
and [223].
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External Provers

The provers described in Section 2.2.b implemented in the frame of THEOREMA in the Mathematica pro-
gramming language are the so-called internal provers. Since THEOREMA wants to serve as an integrative
tool for all phases of mathematical work, the system should offer a big variety of proving methods from dif-
ferent fields of mathematics. Due to the fact that some of those proving methods are already available, the
system also provides interfaces to existing external provers developed outside THEOREMA. The MathLink
protocol provided by Mathematica to communicate with external programs is used to exchange data with
external provers running as external programs. At the moment THEOREMA provides interfaces to OTTER,
EQP, Gandalf, BLIKSEM, and a model searcher Mace. Details on interfacing to external provers are given
in [172].

Moreover, an interface to the quantifier elimination package QEPCAD, originally developed by Hoon
Hong, has been implemented, which offers a sophisticated method to solve constraints over the real num-
bers. Using this interface, THEOREMA provides quantifier elimination as a special *“solving-technique”
on the top-level (i.e. in a user-request to solve a set of constraints over the reals) as well as it can also be
applied as a black box during the solve-phase in the PCS provers, see Section 2.2.b, see [63].

2.2.c Discussion

Mathematical software systems that should give computer-support in the entire spectrum of mathematical
activity must combine the strengths of both Computer Algebra Systems (CAS) and Deduction Systems
(DS). Most of today’s CAS provide huge algorithm libraries for performing heavy computations involving
complicated mathematical data. Moreover, most CAS provide facilities for graphical representation of
data, a programming language for implementing user extensions, and a comfortable user interface. DS,
on the other hand, put their emphasis on formal rigor and on the logical correctness of manipulations they
perform.

Different approaches can be taken in order to combine the powers of CAS and DS. In this section, we
report on the possibilities to enhance CAS with reasoning power, i.e. to embed DS into CAS. In the frame
of the Calculemus project, several levels of enhancement have been explored. Mainly, we distinguish
enhancement on the system level, enhancement on the theory level, and enhancement on the user level. For
milestone 2.1 and for future development in Task 2.2, we decided to focus on user level enhancement, which
aims at an implementation of general and special theorem proving facilities on top of an existing CAS using
the programming language provided by the CAS. THEOREMA developed at RISC, is an example of such
a system. The THEOREMA system is presented in detail as a prototype of a CAS enhanced with deductive
power representing milestone 2.1 of the project.
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TASK LEADER: UED
SCIENTISTS IN CHARGE: ALAN BUNDY, SIMON COLTON, EWEN MACLEAN
RESEARCH TEAM: UED, ITC-IRST, UGE, UBIR

2.3.a Overview

This report introduces six pieces of research which make use of enhanced computational power. We de-
scribe two systems which combine the proof-planner AClam [228] with other systems and perform com-
putationally costly tasks. We give an overview of work done in combining systems to discover attacks
to security protocols. This work makes use of computational power in that it generates a large number
of clauses in its process. We give a brief description of work done in the AClam proof-planner to con-
struct very large and modular proof-plans for complicated real analysis theorems. Finally we introduce two
pieces of work done outside Edinburgh which render techniques from automated reasoning highly efficient
by using enhanced computational power.

2.3.b Integrating MathWeb and \Clam

The work of Jirgen Zimmer and Louise Dennis incorporates the AClam proof-planner into the MathWeb
system. Here the services offered by A\Clam to MathWeb are described, and the services used by A\Clam
that MathWeb offers. A\Clam offers two services to MathWeb:

planProblem This service takes an OMDOC document, containing a single conjecture, as an argu-
ment. The service starts the AClam proof planning mechanism on the conjecture. In the current
implementation, the service expects the conjecture to be about natural number arithmetic. A pro-
posed extension of the service allows clients to also provide the theory in which the conjecture is
defined. Client applications using the planProblem service can use optional arguments to deter-
mine which proof strategy (compound method) AClam should use for the planning attempt, and to
give a time limit in seconds. In the current implementation, the service simply returns the OPEN-
MATH symbol zrue if AClam could find a proof plan within the given time limit, and false if no
proof plan could be found.

ripple AClam offers its rippling mechanism as a separate service to MathWeb. The service is given a
single input formatted using the OMDOC standard. The OMDOC must contain a non-empty set of
rewrite rules, formalised as lemmas, and a goal sequent H I ¢ as a conjecture. The ripple service
tries to reduce the difference between ¢ and the best suitable hypothesis in H using the rewrite rules.
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The ripple service also tries to apply fertilisation to reduce the goal ¢ to the trivial goal true. As a
result, the service ripple returns an OMDOC which contains the resulting proof planning goal as
asequent H F ¢'.

Experiments have also been done in AClam using MathWeb services. In particular experiments have
been done using MAPLE through the MathWeb interface. The results of the combined system have been
compared against the CLAM-Lite system as developed by Toby Walsh. Interestingly one theorem for
which the combined system found a proof-plan, could not be planned in Clam-Lite. The theorem is:

o Fib(i) = Fib(n +2) — 1

In order to complete the proof for this theorem, some term rearrangement needs to be done which can be
performed easily by MAPLE. Walsh argues that the simplicity of the planning mechanism in Clam-Lite
prevents a proof-plan being yielded for this theorem.

The results of the work confirm the main thesis of the research which is that it is a better choice to combine
existing deduction systems via protocols instead of re-implementing them on top of a Computer Algebra
System.

2.3.c Implementation of the GS System into the AClam Proof Plan-
ning System

Predrag Jani¢ié¢ and Alan Bundy have implemented the GS framework in (Teyjus) LambdaProlog and within
the AClam proof planning system [242]'°. All GS macro inference rules are implemented as methods and
all combination/augmentation schemes are implemented as compound methods. These methods add new
power to the AClam system. The GS framework has been reformulated as a backward reasoning system
(in the original version, it is a proof by refutation system [83]).

A number of conjectures belonging to combinations of decidable theories can be proved by the GS methods
in only seconds. It is believed that further development of Teyjus LambdaProlog will increase the efficiency
and robustness of their implementation of GS framework.

A detailed account of this work is given in the paper (this paper will be submitted to a major automated
reasoning conference):

Predrag Jani¢i¢, Alan Bundy: Implementation of the GS Framework for Using Decision Procedures within
the AClam Proof-Planning System

There are plans to work on further refinements and improvements of the presented implementation. This
includes adding support for new underlying theories, working on improving their efficiency, and also work-
ing on automatic and semi-automatic synthesis of decision procedures.

As a part of the work on using decision procedures in theorem proving, and as a powerful extension of
the GS framework [83] the problem of automatic and semi-automatic synthesis of decision procedures has
been tackled. This work is based on Alan Bundy’s programme published in [82].

Decision procedures are often vital in theorem proving [83]. In order to have decision procedures usable in
a theorem prover it is often necessary to have them implemented not only efficiently, but also flexibly. The
implementation should also be such that can be verified in some formal way. In addition, it is important
to have decision procedures for new theories, arising from some specific examples. For all these reasons,
it can be fruitful if the process of synthesising and implementing decision procedures can be automated.
It would also utilise avoiding human mistakes in implementing decision procedures. All routine steps in

10)Clam is a tool for automated theorem proving in higher order theories. In particular, AClam specialises in proof using
induction based on the rippling heuristic. AClam is a higher-order version of Clam. As Clam, AClam also uses proof planning
to guide the search for a proof.
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these tasks should be automated. Since most of the steps in different decision procedures can be described
via rewriting, object level proofs can be relatively easily derived from the sequence of methods applied.

As discussed in [82], most steps of many decision procedures can be described via sets of rewrite rules.
Specific subsets of rewrite rules are organised into methods, while methods are organized into compound
methods (or decision procedures themselves). Due to its importance in software and hardware verification,
the work focuses on linear arithmetic. As it is interesting and non-trivial, the Fourier/Motzkin procedure is
used as an illustrating example.

The following method generators have been implemented: generators for remove methods, stratify meth-
ods, thin methods, left-assoc (for more details see [82]) and absorb methods. These generators can take
a given BACKUS-NAUR form (BNF), transform it into another one, and build a method which uses some
available rewrite rules such that each input formula (which belongs to the first BNF) will be transformed
into a formula which belongs to the second BNF. On the set of all these generators, a (heuristically guided)
search for a sequence of methods can be performed, which goes from the starting BNF to a trivial BNF
(consisting of only T and L), hence, giving a decision procedure.

Their first target theory was ground arithmetic. All the necessary rewrite rules were available. Their system
synthesised the decision procedures for this theory completely automatically in around 10 seconds of CPU
time. While a decision procedure for ground arithmetic can be also obtained by exhaustive application
of all rewrite rules, their system gives a procedure which uses them only in steps and giving a structured
proofs (easily understandable to a human).

Their second target theory was (quantified) linear arithmetic. For this theory three more method generators
needed to be implemented: one for adjusting the innermost quantifier, one for isolating a variable, and one
for removing a variable (cross-multiply and add step). Their system automatically synthesised a decision
procedure for linear arithmetic in around 20 seconds of CPU time.

For most of used conditional rewrite rules, the above procedure can be used in order to prove that their
conditions cover all possible cases.

This approach gives decision procedures in some cases, but also a high-level way of understanding syntac-
tical transformations and formula rewriting.

2.3.d Discovering Security Protocol Attacks by Finding Counterex-
amples to Inductive Conjectures

Graham Steel has implemented a system which can be used to find counterexamples to universally quanti-
fied conjectures in first order logic, and has applied the work to automatically detecting attacks to security
protocols.

Cryptographic protocols are used in distributed systems to allow agents to communicate securely. Assumed
to be in the system is a spy, who can see all the traffic in the network and may send malicious messages in
order to try and impersonate users and gain access to secrets.

The method chosen in this work to tackle this problem is proof by consistency which is a technique-for
automating inductive proof. Recent versions have been proven to detect non-theorems in a finite amount of
time- in other words they are refutation complete. Comon and Nieuwenhuis have proved that all previous
techniques for proof by consistency can be generalised to a new form which they call an I-Axiomatisation,
as defined in definition 1, which provides an easy separation between the inductive completion and incon-
sistency detection. The crucial result of the theory is given by theorem 1.

Definition 1 A set of first-order formulae A is an I-Axiomatisation of I if

1. A is a set of purely universally quantified formulae
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Inputs:
Problem file
I-Axiomatisation file
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Figure 14: System operation

2. I is the only Herbrand model of E U A up to isomorphism.
An I-Axiomatisation is normal if A = s # t for all pairs of distinct normal terms s and t

Theorem 1 Let A be a normal I-Axiomatisation, and Cy,C1, ... be a fair induction derivation. Then
I = Co iff AU {c} is consistent for all clauses c in | J; C;.

Figure 14 illustrates the operation of the system. The input is an inductive problem in Saturate for-
mat and a normal I-Axiomatisation (see Definition 1, above). The version of Saturate customised by
Nieuwenhuis for implicit induction (the right hand box in the diagram) gets the problem file only, and
proceeds to pursue inductive completion, i.e. to derive a fair induction derivation. Every non-redundant
clause generated is passed via the server to the refutation control program (the leftmost box). For every
new clause received, this program generates a problem file containing the I-Axiomatisation and the new
clause, and spawns a standard version of Saturate to check the consistency of the file. Crucially, these
spawned Saturates are not given the original axioms — only the I-Axioms are required, by Theorem 1.
This means that almost all of the search for an inconsistency is done by the prover designed for inductive
problems and the spawned Saturates are just used to check for inconsistencies between the new clauses
and the I-Axiomatisation. This should lead to a false conjecture being refuted after fewer inference steps
have been attempted than if the conjecture had been given to a standard first-order prover together with all
the axioms and I-Axioms

The system has been applied to cryptographic protocol problems using a first-order version of the higher
order formalism used by Paulson in Isabelle/HOL. Preliminary results include rediscovering several known
attacks. The problem that Paulson encountered when proving properties of the protocol interactively was
that it was very hard to tell, even for an expert, whether the reason for a proof not succeeding was a false
conjecture. By applying the counterexample finder developed in the work presented here, attacks can be
automatically detected and presented [244, 245].
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2.3.e Proof Planning Non-Standard Analysis

Ewen Maclean has been using AC'lam to automatically construct proof-plans for real analysis proofs using
non-standard analysis [131, 179]. The latest work incorporates induction in constructing proof-plans for
such theorems as the Intermediate Value Theorem and Rolle’s Theorem [180]. This technique is illustrated
here by means of presenting an outling of a proof-plan for an example theorem; namely the Intermediate
Value Theorem.

Intermediate Value Theorem in non-standard analysis is expressed as follows:

f:R->R

a,b,c: R
‘v’z,yE*R.aSzgg/\agyg’I;/\xxy—é*f(x)z*f(y) (1)

a<b
fla) <e< f(b)
FIzeRa<z<b—o f(zx)=c

In order to establish a witness for the existential in the conclusion, the notion of a partition is introduced. A
sequence {[a;, b;]} of partitions is generated, starting from the initial interval [a, b], which are guaranteed

to contain the point z. A recursive function is defined to construct this sequence, characterised by the
illustration in figure 15. Now conjectures can be stated representing properties about this recursive function

f

Figure 15: The sequence of partitions

which ascertain that the point z lies inside any interval in the sequence. These lemmas are proved using
induction, and the proof-plans for these proofs take advantage of the existing expertise in proof planning
for induction; in particular, exploiting the rippling mechanism in AClam. Once the conjectures have been
established as theorems they are generalised, and added as hypotheses to the initial theorem. The variables
@ are introduced and ¢, and add the following hypotheses:
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From this it can be determined using non-standard analysis that there exists just one real in the infinitesimal
neighbourhood of 6, say z, and that there is just one real in the infinitesimal neighbourhood of * f(6),
namely c. Then the result * f(Z) ~ € 'is deduced, which reduces easily to f(z) = c establishing the validity
of the theorem by finding a witness for the existentially quantified real z.

This technique has been extended to other examples such as Rolle’s Theorem and the Mean Value Theorem.
Also proof-plans can be automatically generated to account for higher order meta-theorems about the
technique.

2.3.e Integration of Computer Algebray Systems into (2MEGA

Integration of computer algebra systems into the proof planner of the MEGA system is work that has
already begun before the start of the Calculemus project and is mainly undertaken by Volker Sorge [151,
152, 243]. The main achievements are an integration of certain complex computations from large-scale
computer algebra systems that guarantees correctness of the computations by justifying them with machine-
checkable logical calculus proofs. These justifications are computed with a small. self-tailored system that
gives protocol information on its calculations. More details on this are given in section 1.1.c of this report.

Technically the integration is achieved with the Sapper interface that can generically connect arbitrary
computer algebra systems to §MEGA. The interface contains bridging functionality to various systems but
also takes care of collecting and processing protocol information to construct correctness proofs. During
the Calculemus project the interface has been connected to the MathWeb software bus and it has been
extended and now integrates several CAS, such as MAPLE, GAP, and MAGMA.

Besides the described integratio technique we have devised additional techniquues to employ symbolic com-
putations in proof planning, in particular to enable the use CAS in control rules and for multi-strategy proof
planning. An account of these techniques can also be found under task 1.1.

The enhanced proof planner of QMEGA has been successfully applied in several case studies; for details
see the report on task 3.5 of the project.

2.3.f LearnQ2matic - Enhancing Proof Planning by a Machine Learn-
ing Algorithm

Introduction We devised a framework within which a proof planning system [81] can learn frequently
occurring patterns of reasoning automatically from a number of typical examples, and then use them in
proving new theorems. The availability of such patterns, captured as proof methods in a proof planning
system, reduces search and proof length. We implemented this learning framework for the proof planner
(IMEGA [238], and call our system LEARNSIMATIC. The entire process of learning and using new proof
methods in LEARNSQIMATIC consists of the following steps:

L. The user chooses informative examples and gives them to QMEGA to be automatically proved. Traces
of these proofs are stored.

2. Proof traces of typical examples are given to the learning mechanism which automatically learns
so-called method outlines.

3. Method outlines are automatically enriched by adding to them additional information and performing
search for information that cannot be reconstructed in order to get fully fleshed proof methods that
{IMEGA can use in proofs of new theorems.
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Learning and Using Learnt Methods The methods we aim to learn are complex and are beyond the
complexity that can typically be tackled in the field of machine learning. Therefore, we simplify the
problem and aim to learn method outlines, which are expressed in the following language L, where P is a
set of known identifiers of primitive methods used in a method that is being learnt:

o foranyp € P,letp € L, o forany/ € Landn € N, leti™ € L,

o foranyly,ly € L let[ly,l2] € L, e forany list such that all [; € list are

alsol; € L,let T'(list) € L.
o foranyly,l; € L, let[l;|l2] € L,

o foranyl € L,letl* € L,

“[” and “]” are auxiliary symbols used to separate subexpressions, “,” denotes a sequence, ““|” denotes
a disjunction, “x” denotes a repetition of a subexpression any number of times (including 0), n a fixed
number of times, and T is a constructor for a branching point (list is a list of branches), i.e., for proofs
which are not sequences but branch into a tree. For more information on the choice of this language, the
reader is referred to [139].

Here is an example from group theory of a simplify method outline which applies the associativity left
method several times, and then reduces the theorem by applying appropriate inverse methods and after-
wards an identity method: [assoc-1*, [inv-r|inv-1], id-1].

Learning Technique Our learning technique considers some typically small number of positive exam-
ples which are represented in terms of sequences of identifiers for primitive methods (e.g., assoc-1, inv-r),
and generalises them so that the learnt pattern is in language L (e.g., simplify given above). The pattern is
of smallest size with respect to a defined heuristic measure of size, which essentially counts the number of
primitives in an expression. The pattern is also most specific (or equivalently, least general) with respect to
the definition of specificity spec. spec is measured in terms of the number of nestings for each part of the
generalisation. Again, this is a heuristic measure. We take both, the size (first) and the specificity (second),
in account when selecting the appropriate generalisation. If the generalisations considered have the same
rating according to the two measures, then we return all of them.

The algorithm is based on the generalisation of the simultaneous compression of well-chosen examples.
Here is an abstract description of the learning algorithm, but the detailed steps with examples of how they
are applied can be found in [139]:

1. Split every example trace into sublists of all possible lengths.

2. If there is any branching in the examples, then recursively repeat this algorithm on every element of
the list of branches.

3. For each sublist in each example find consecutive repetitions, i.e. patterns, and compress them using
exponent representation.

4. Find compressed patterns that match in all examples.

5. If there are no matches in the previous step, then generalise the examples by joining them disjunc-
tively.

6. For every match, generalise different exponents to a Kleene star, and the same exponents to a con-
stant.

7. For every matching pattern in all examples, repeat the algorithm on both sides of the pattern.

8. Choose the generalisations with the smallest size and largest specificity.
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For instance, the three sequences of method outlines
lassoc-l,assoc-1,inv-r,id-1), [assoc-l,inv-1,id-], [assoc-lassoc-lassoc-1,inv-r,id-I]
will be generalised to the simplify method

lassoc-1™, [inv-r| inv-1],id-1].

The learning algorithm is implemented in SML of NJ v.110. Its inputs are the sequences of methods
extracted from proofs that were constructed in {2MEGA. Its output are method outlines which are passed
back to !MEGA. The algorithm was tested on several examples of proofs and it successfully produced the
required method outlines. Properties of our learning algorithm are discussed in [139].

There are some disadvantages to our technique, mostly related to the run time of the algorithm relative to
the length of the examples considered for learning. The algorithm can deal with relatively small examples,
which we encounter in our application domain, in an optimal way. The complexity of the algorithm is
exponential in the worst case. Hence, we use some heuristics for large and badly behaved examples.

Using learnt methods From a learnt outline a learnt method can automatically be generated. The learnt
method is applicable if some instantiation of the method outline, i.e., a sequence of methods, is applicable.
Since methods are planning operators with pre- and postconditions, these conditions must be checked for
the methods of the method outline. The complex structure of methods does not allow the precondition of a
subsequent method of the learnt outline to be tested, without the instantiated postconditions of the previous
methods. That is, the methods of an outline have to be applied to the current proof situation.

The applicability test performs a depth first search on the learnt outline. Besides the choice points from the
operators of the outline language, i.e., disjunctions and number of repetitions for the Kleene operator, there
can be more than one goal where a method of the learnt outline can be applied. Additionally, for methods
containing parameters, an instantiation has to be chosen. The parameters of a method are instantiated by
control rules that guide the proof search. Every control rule that gives an instantiation of parameters for the
current method is evaluated and the resulting possibilities for parameters are added to the search space.

The application test is performed as the precondition of the learnt method. The application of a learnt
method for which the test was successful will introduce the open nodes and hypotheses generated during
the applicability test as postcondition of the learnt method to the current proof.

Dissemination/Availability In order to evaluate our approach, we carried out an empirical study in
different problem domains on a number of theorems. A demonstration of LEARNIMATIC implemen-
tation can be found on the following web page: http://www.cs.bham.ac.uk/ “mmk/demos/
LearnOmatic/. Further information, also with links to papers with more comprehensive references
can be found on http://www.cs.bham.ac.uk/ “mmk/projects/CALCULEMUS/.

This work has been carried out in collaboration of the nodes in Birmingham and Saarbriicken. It particularly
involved the YVR Martin Pollet. The results where published in [139, 140, 141].

2.3.g The MathSat Procedure

The MathSat solver [20, 23], developed by ITC-IRST, is a state-of-the-art solver based on the MathSat
framework, able to reason on boolean combinations of linear arithmetic formulas. The efficiency of Math-
Sat is due both to the tight integration of the boolean and mathematical solving subroutines, and to the
layered structure of the mathematical decider, which is organized into levels dealing with subclasses of
formulas of increasing complexity.
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Figure 16: The layered structure of MathSat

The MathSat solver is based on a highly layered structure (see figure 16). The goal of the solver is to
decide about the satisfiability of an input formula including both boolean and mathematical atoms. The
first layer deals with the boolean component and is implemented as a DPLL procedure, as described in
the previous section. The basic idea is that of performing a boolean abstraction of the mathematical atoms
(i.e., assigning a new propositional symbol to every different mathematical atom in the original formula),
and use the DPLL subroutine for generating (one by one) a complete collection of boolean assignments
possibly satisfying the input formula. Despite the abstraction, the boolean phase is already capable of
cutting a large part of the search space consisting of unsatisfiable assignments.

The role of the mathematical solving component is that of checking whether the assignments produced by
the DPLL procedure are consistent or not, by taking into account the actual mathematical atoms which
correspond to the artificially introduced propositional symbols. The mathematical component is in turn
organized into different layers of increasing complexity. The layered structure allows for early detection
of inconsistencies, thus greatly improving the overall performance of the algorithm. The idea is that sim-
pler subclasses of mathematical formulas can be dealt with by specialized, faster satisfiability procedures,
whereas more complex satisfiability procedures should be called only if needed.

The current MathSat implementation is able to deal with (a subset of) linear mathematical formulas with
equality, disequality and comparison operators. The layers corresponding to the current MathSat imple-
mentation are the following:

o the first layer consider equality constraints, performing equality propagation, building equality-
driven clusters of variables and detecting equality-driven unsatisfiabilities;

e the second layer handles also inequalities of the kind v; — vy op ¢, with op being a comparison
operator, by using a variant of the Bellman-Ford minimal path algorithm;

o the third layer also consider general inequalities, except for negated equalities, using a standard
simplex algorithm.

e the last layer considers also negated equalities.

A number of optimization techniques are added to improve the performance of the MathSat solver. In
particular, early pruning strategies allows for the early detection of inconsistencies, and learning strategies
are used for theory-dependent, run-time tuning of the MathSat procedure.

2.3.h RDL, Rewrite and Decision Procedure Laboratory

RDL [6] simplifies clauses in a quantifier-free first-order logic with equality using a tight integration be-
tween rewriting and decision procedures. If, on the one hand, the integration of rewriting with decision
procedures is considered to be the key ingredient for the success of state-of-the-art verification systems,
such as ACL2 [149], STEP [118], Tecton [148], and Simplify [116], on the other hand, obtaining a princi-
pled and effective integration is notoriously difficult. This is due to the following reasons:
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e there are no formal accounts of the incorporation of decision procedures in rewriting. This makes it

difficult to reason about basic properties such as soundness and termination of the implementation
of the proposed schema.

Secondly, most integration schemas are targeted to a given decision procedure and they do not allow
to easily plug new decision procedures in the rewriting activity.

Thirdly, only a tiny portion of the proof obligations arising in many practical verification efforts falls
exactly into the theory decided by the available decision procedure.

RDL solves the problems above as follows:

. RDL is based on CCR (Constraint Contextual Rewriting) [11, 12], a formally specified integration

schema between (ordered) conditional rewriting and a satisfiability decision procedure [210]. RDL
inherits the properties of soundness [11] and termination [12] of CCR. It is also fully automatic.

. RDL is an open system which can be modularly extended with new decision procedures provided

these offer certain interface functionalities (see [12] for details).

In its current version, RDL offers ‘plug-and-play’ decision procedures for the theories of Universal
Presburger Arithmetics over the Integers (UPAI), Universal Theory of Equality (UTE), and UPAI
extended with uninterpreted function symbols [237].

. RDL implements instances of a generic extension schema for decision procedures [13]. The key

ingredient of such a schema is a lemma speculation mechanism which ‘reduces’ the validity problem
of a given theory to the validity problem of one of its sub-theories for which a decision procedure is
available. The proposed mechanism is capable of generating lemmas which are entailed by the union
of the theory decided by the available decision procedure and the facts stored in the current context.
Three instances of the extension schema lifting a decision procedure for UPAI are available. First,
augmentation copes with user-defined functions whose properties can be expressed by conditional
lemmas. Second, affinization is a mechanism for the ‘on-the-fly’ generation of lemmas to handle
a significant class of formulae in the theory of Universal Arithmetic over Integers (UAI). Third, a
combination of augmentation and affinization puts together the flexibility of the former with the
automation of the latter. Finally, RDL can be extended with new lemma speculation mechanisms
provided these meet certain requirements (see [13] for details).

Since extensions of quantifier-free first-order logic with equality are useful in practically all verification
efforts, RDL can be seen as an open reasoning module which can be integrated in larger verification sys-
tems. In fact, most state-of-the-art verification systems feature similar components, e.g. ACL2’s simplifier,
STEP validity checker, Tecton’s integration of contextual rewriting and a decision procedure for UPAI, and
Simplify developed within the Extended Static Checking project.

RDL is available via the Constraint Contextual Rewriting Project Home Page at http://www.mrg.
dist.unige.it/ccr.
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TASK LEADER: RISC
SCIENTISTS IN CHARGE: BRUNO BUCHBERGER, WOLFGANG WINDSTEIGER, TUDOR JEBELAN

RESEARCH TEAM: USAAR, RISC, UWB

3.1.a Overview

The general goal in the frame of Task 3.1 is to use the developed prototype systems during the process of
writing mathematical publications. Typically, a mathematical publication contains the following ingredi-
ents:

¢ natural language text,

e mathematical formulae,

o formal text, i.e. definitions and theorems,

e proofs,

o examples, typically with computations,

e graphics, tables, drawings, sketches, etc.

In the optimal case, a software system for supporting mathematical publications would support all the
facets of mathematical publications listed above. Several systems and languages have been used for case
studies in this area.

3.1.b MIZAR

MIZzAR approach to this task is based on two kinds of software which automate the process of writing
formal mathematical papers:

e software used to prepare an article as a formal text whose correctness is computer verified and

e the software for automatic (or semi-automatic) translation into the natural language (particularly
English); this includes also the software for translation into XML-based formats.
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The cooperation with other Calculemus sites includes development of the Mizar Mathematical Library
(MML) and also the above mentioned translation into XML formats. The main partners are: USAAR, UED
and Charles University (ChU) in Prague. The Young Visiting Researches involved in the work are: Josef
Urban (ChU), Markus Moschner (USAAR) and Hazel Duncan (UED). Quite intensive cooperation with
TUE has been realized using other funds. It includes the visits of Freek Wiedijk, Femke van Raamsdonk
and Dan Synek.

Mizar Mathematical Library

In order to write a new article one uses the knowledge stored in the MIZAR database. Currently, it contains
33186 theorems, 6448 definitions, and 680 schemes. The database is based on previously submitted articles
which are stored in the Mizar Mathematical Library (MML). At the moment, in the library there are 755
articles. The only acceptable way to increase the database is to provide a new article. Moreover, all
changes of the database are processed by modifying the articles already stored. Because of the size of
the database specific software for searching through its contents is provided (MML Query, http://
megrez .mizar.org/mmlguery/three.html). Additionally, MIZAR mode for Emacs created by
Josef Urban includes tools for searching in the MML.

The contents of the MML is revised quite often. There are two main reasons for that: finding a better way
of formalization and steady development of the MIZAR software. The revisions enable writing articles in
more concise and transparent way. Taking into account their scope the revisions may be classified as:

e revisions that improve the quality of the MML without changing the database or
e deeper revisions during which not only the revised article is changed, but also other articles depend-

ing on it.

On the other hand, we can classify the revisions according to the size of changes done. There are two
extreme cases:

e huge systematic revisions (e.g. changing the type Element of REALtothetype real number,
where practically the whole MML is involved (this kind of revisions is usually carried out automati-
cally by specific software) or

e small ad hoc revisions changing and, as a rule, generalizing only one theorem, always done by hand.

Rarely, so-called restructuring of the MML is performed. It concerns moving some of the information from
one article to another.

The basic concepts of set theory are quite well developed in the MML. This includes:

e the theory of boolean operations on sets (XBOOLE_0'!, XBOOLE_1)

e infinite operations on sets (ZFMISC_1),

e binary relations (RELAT_1, RELAT2),

e set families (SETFAM_1),

e enumerable sets (ENUMSET1),

e functions (FUNCT_1, FUNCT_2),

e ordinal and cardinal numbers (ORDINAL1, ORDINAL2, CARD_1, CARD_2).

1 This is an example of Mizar article identifier. A full list of MIZAR articles can be found at http: //mizar.uwb.edu.pl/
JFM/mmlident .html

74



CALCULEMUS Midterm Report

Also the beginnings of classical mathematics are already done. This includes:

e real numbers,

e complex numbers,

e trigonometry,

e real functions,

o differential and integral calculus,

e sequences and series.

An example of a recent achievement is the proof of Fundamental Theorem of Algebra by Robert Milewski
[199].

In the modern mathematics the most developed fields are:

e general topology,

o lattice theory (that is partially caused by one of the attacks to formalize contemporary mathematics,
(126])),

e category theory; two approaches to this theory were investigated: one in which a category is a
quintuple
< O, M,dom, cod, comp >

the second approach closer to homological algebra in which a category is presented as a triple

<0, {hOm(Ol, 02)}01,02607 {®01,02,03}01,02,03€O >
where ®o, 0,.05 : hom(o1,02) X hom(oz,03) — hom(o;, 03).

e the theory of vector spaces (real spaces as well as vector spaces over arbitrary fields — actually a
specific part of the theory of modules over rings); it includes Hahn-Banach theorems,

e group theory, e.g. Frattini subgroup and solvable groups are already defined.

A serious effort has been made in the theory of Random Access Turing Machines (RATM). It includes both
RATMs working on specific data types (integers, finite sequences of integers) and generic ones (RATMs
over an arbitrary ring).

The MML consists mostly of ’primary’ information i.e. articles which apart from main theorems include
also lemmas related to various fields of mathematics. It is the reason why the knowledge related to the same
topic is dispersed. Recently, some effort has been made to develop ’secondary’ information approach and
organize the most useful theorems into theories. As yet, the idea has been applied in articles XBOOLE_Q,
XBOOLE._1 devoted to the basic properties of boolean operations on sets. In the nearest future the same
will be done with elementary theory of real numbers. It is the basis of what we call The Encyclopedia of
Mathematics in Mizar (EMM).

Writing an article
A new article is prepared as a plain text file using any ASCII editor. However, GNU Emacs is preferable
since all MIZAR distributions provide a special mode which facilitates the process of writing MIZAR ar-

ticles. A MIZAR article is written by step-wise refinement approach. It usually starts with a proof plan
and then, after getting report on errors, the gaps in the reasoning are filled. Every article consists of two
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parts: the environment declaration and the proper text. They are processed by separate programs. The first
part is processed by ACCOMMODATOR that communicates with the database and prepares local environ-
ment for the article. The author declares which resources from the database are needed. The directives
that control this process may be divided into three categories: lexical directives which are used to prepare
lexical environment of the article - used symbols, library directives related to previously stored articles and
requirements directives which enable using built-in information related to particular mathematical objects
(sets, numbers). There are also some utilities which assist the preparation of the environment declaration.
Some of them are:

e FINDVOC - informs in which vocabulary a particular symbol has been introduced
e CONSTR - shows which constructors are necessary to use a specific resource from the database (e.g.

a theorem).

The proper text of an article is processed by a program called VERIFIER. Its most important logical modules
are REASONER, CHECKER and SCHEMATIZER.

e REASONER The main role of this module is to check whether the structure of the proof is correct with
respect to the formula being proved. We say that a proof ’fits’ a formula if it is created according
to tactics determined by the structure of the formula. Apart from checking the fitness of formulae
REASONER computes also the result of diffused reasoning and generates formulae corresponding to
generic words used in Mizar (e.g., uniqueness, existence (correctness conditions of functor
definitions), symmetry (a default property of some predicates), thesis (the current goal in the
proof)). It also generates definitional theorems.

e CHECKER It is a shortcut for *inference checker’. It checks whether a reference provided in a straight-
forward justification makes an inference obvious for the system.

e SCHEMATIZER This module enables the use of so-called ’schemes’ that are theorems with second-
order free variables.

All parts of the system are under steady development. Let us list the work in progress:

e new requirements that introduce to the system more elements of computer algebra
o automation of the use of definitional expansions in CHECKER (now it is only done in REASONER)

e new implementation of attributes (static reconstruction of arguments of adjectives); it will en-
able removing some peculiarities of the system (e.g. non-clusterable attributes) and will make the
CHECKER stronger.

e new semantics for SCHEMATIZER with the goal to make it more transparent

e introducing the concept of “structure loci’ that will make obvious facts like ’if a topological group is
compact then the topological space of it is compact’.

Enhancing an Article

A collection of so-called 'enhancers’ plays a special role in the MIZAR system. These are utilities that are
used to make articles better in quality and usually more concise. They are used in various ways:

e by the author to enhance his articles,

e after a revision to make use of newly introduced changes to the MML or MIZAR itself, and
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e in the referee process.
The most important of them are:

e IRRVOC - finds unnecessary vocabulary names in a vocabulary directive

e IRRTHS - reports irrelevant article names in theorem and schemes directives

e RELPREM - finds unnecessary references in a justification

e RELINFER - finds consecutive proof steps that may be done in one step

e RELITERS - indicates two consecutive steps in iterative equalities that can be done in one step
e TRIVDEMO - reports when a proof can be substituted by a straightforward justification

e CHKLAB - finds labels that are not referred to

e INACC - shows superfluous fragments of the text.

The output of the above utilities is marked as errors in the text of an article and the author corrects these
errors by hand. For the sake of revisions an automatic version of the utilities are also maintained.

Publishing an Article

Formalized Mathematics (a computer assisted approach) (FM), ISSN 1426-2630, publishes the contents
of MIZAR articles submitted to the MML. All atricles published in FM are in English. The translation of
MIZAR texts into English is made automatically. The material published concerns the surface part of Mizar
articles. Proofs forming the inner parts are not yet translated, but other elements - theorems, definitions,
schemes, and reservations and global sets if necessary - are.

An electronic extension of FM, Journal of Formalized Mathematics, is available from URL address http:
//mizar.uwb.edu.pl/JFM/. In contrast to the paper edition, the electronic extension is dynamic
and can follow changes in the MIZAR system and in the MML as well as reflect the improvements to the
translation process. As a result, there are translations of MIZAR articles updated according to their current
state in the MML.

The process of translation is mechanized, but the final result may be improved by author-editor interaction.
The goal of the interaction is to optimize the translation patterns for new MIZAR formats from the article
being translated.

The process of translation is performed in several steps. First, a MIZAR article is parsed and stored in
some abstract form. Next, the analyzing rules are applied to enrich the abstract form by some statistic
information. After that, translation patterns for formulae and formats are used. Finally, the filling text, the
summary, and the section titles are added.

These steps and the management of translation patterns are realized by the following programs listed in
Table 1.

In Table 1, $1 stands for the name of MIZAR article, $2 stands for the name of a database file “$2.frd”
with translation patterns, and $3 stands for the name of a list of MIZAR articles (usually a code for the
journal issue) in the file “$3.1ar”. The question marks in “$1.7” and “+.?” stand for the section number of
the MIZAR article and * indicates the names of MIZAR articles from the list in file $3.lar. ACCOM($1),
PREL($1), and PREL stand for MIZAR internal format files created by the ACCOMMODATOR or available
from MIZAR directories.

The contents of the files are as follows:
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Program param. input files output files

accom $1 $1.miz, PREL ACCOM($1)

fmparse $1 $1.miz, ACCOM($1) $1.fma, $1.nfr

newfmfrm | $1 -1$2 $2.frd, ACCOM($1), PREL($1) $1.fmn, $1.fmd

addfmfrm | $1-1$2 $2.frd, $1.fmn $2.$-$

fmfrm $1-1$2 $2.frd, $1.nfr, $1.fmn, ACCOM($1) $1.fmf, $1.fmz

resvar $1 $1.miz, ACCOM($1) $1.ire

fmnotats $1 PREL($1) $1.fms

fmanalyz | $1 $1.fma, $1.fmf, $1.ire, ACCOM($1) $1.2

jformath $3 [/d|/f] | [formath.set,] $3.1ar, *.bnt, .fms, *.? $3.tex

latex $3 $3.tex, *.?, formath.cls, foml1O.clo, | $3.dvi, $3.aux
mizarfrm.tex [, *.bbl]

Table 1: Management of translation patterns

$1.fma - an abstract description of the surface part of article $1.miz (reservations, definitions, theorems,
schemes, and global sets).

$1.nfr - new formats introduced in article $1.miz.

$1.fmd - generated translation patterns (with identification) of old formats existing in $2.frd which are used
in definitions in article $1.miz.

$1.fmn - generated (or re-edited by the editor or the author of an article) translation patterns (with identifi-
cation) of new formats from article $1.miz (not yet introduced into $2.frd).

$2.frd - database file of translation patterns (with identification).

$1.fmf - translation patterns (without identification) of formats ordered according to $1.frm from AC-
COM($1) and $1.nfr.

$1.fmz - format identifications ordered according to $1.frm from ACCOM($1) and $1.nfr.
$1.ire - information for reserved variables if they are used in elements translated.

$1.fms - (signature) list of articles introducing notation (constructors) used in translated elements from
article $1.miz.

$1.2, .2 - final IATEX input including a translation of the section nr ? from article $1.miz (or *.miz).
$3.1ar - list of article names.

$1.bnt - bibliographic notes of the article, the summary, and the section titles.

formath.set - basic information of the publication issue.

formath.cls, fom10.clo, mizarfrm.tex - IsTEX style files.

We plan to change the internal format used by the translator (*.fma files) to the XML-based format. As a
result of cooperation within the Calculemus project variants of MIZAR utilities have been designed to work
with the XML version of the database. Also, the translation of the MML into OMDOC style is in progress.

3.1.c THEOREMA

THEOREMA is a prototype software system designed to give computer-support to the working mathemati-
cian during all phases of mathematical activity. The aspect of automated generation of mathematical proofs
in THEOREMA has already been described in Task 2.2. In this section, we want to describe facilities offered
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in the THEOREMA system that make the system feasible for writing entire mathematical publications inside
the system.

THEOREMA is implemented on top of the well-known computer algebra system Mathematica, see [188],
in the high-level programming language that is provided by Mathematica and it is designed currently as
an add-on package to Mathematica. This has the implication that Mathematica is needed in order to run
THEOREMA, but, on the other hand, THEOREMA can share the highly sophisticated user front-end from
Mathematica. Moreover, it runs on all hardware environments on that Mathematica is supported, which
ranges from Windows 95/NT over virtually all Unix environments to also Macintosh computers. The Math-
ematica notebook front-end is an almost perfect environment for composing mathematical texts allowing
to mix input, output, graphics, and structured text in one type of document. Special mathematical notation
is supported in all categories, even in the input to the system. The user front-end is highly configurable and
through the Mathematica programming language we even have access to manipulate the input parser. This
particularly nice feature made it possible to implement the entire THEOREMA mathematical language on
top of Mathematica by appropriate modifications to the Mathematica input parser.

The style of using THEOREMA is, thus, very similar to the way of communicating with Mathematica.
The Mathematica front-end is an interactive environment that accepts user-input typically in form of com-
mands written into input cells that can be sent to the Mathematica kernel for evaluation. After loading the
THEOREMA package during a standard Mathematica session, the basic user mode is a “command-process-
answer” loop, in which the user enters a command in the Mathematica notebook front-end, THEOREMA
processes the command and provides the answer for the user within the Mathematica notebook front-end
again. Depending on the type of command, the THEOREMA system answer can be the result of a computa-
tion in a Mathematica output cell or a natural language representation of a proof generated by the system in
a separate window, i.e. a separate Mathematica notebook. Some THEOREMA commands, when they are of
an administrative nature, do not produce visible output but they only manipulate the internal system state,
on which the following interactions may depend.

The THEOREMA system, basically, consists of a language for mathematics, in which all the commands
can be formulated. Furthermore, it contains methods for processing different types of commands given
by the user. The entire system is implemented as extensions of the Mathematica kernel written in the
Mathematica programming language, thus being fully portable across all imaginable hardware platforms.
Except for above mentioned administrative commands, the basic commands supported by the THEOREMA
system are Prove, Compute, and Solve. When formulating statements having some mathematical
content, the highly sophisticated language of mathematics developed over the last centuries — the language
of predicate logic — can be used both in input and in system output including all two-dimensional features
such as superscripts, indices, writing something on top of another or below, using special mathematical
characters like the set braces, logical quantifiers, the integral sign, or the summation sign. In addition to
this, we developed a small language, the THEOREMA formal text language, for organizing mathematical
knowledge into hierarchically structured definitions, propositions, theorems, knowledge bases, etc. that can
be passed as arguments in the calls to Prove, Compute, or Solve. A description of the formal text language
has already been given in the report on Task 2.2 of this document, all details can be found in [268].

From the Mathematica notebook front-end we inherit additional text-processing facilities, which are nec-
essary, because a mathematical publication does not solely consist of mathematical formulae. For this pur-
pose, a notebook can contain text cells, which allow formatting of natural text like standard text-processors,
e.g. different fonts, font sizes, and font faces, inlined and displayed mathematical formulae, structuring into
sections and subsections, automatic numbering and cross-referencing, hyperlinks, importing pictures or
drawings, etc. The Mathematica front-end also serves as a WY SIWY G-editor for notebooks that contains
several tools supporting document creation (keyboard shortcuts for editing commands and input palettes).
The appearance of notebooks can be customized through style sheets, which determine the behavior and
the formatting of each cell type.

These features qualify THEOREMA as a powerful system for creating mathematical publications entirely
inside the system. “Classical” mathematical documents can be written that are intended mainly for printout,
as for instance the thesis [268] or the conference papers [266], [267], and [269]. In the remainder of
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this section, we will report on two case studies using THEOREMA to develop interactive lecture notes.
The Calculemus node RISC is very active in the maths curriculum at the University of Linz and offers
two mandatory courses for first-year students. Both, “Algorithmic Methods” and “Predicate Logic as a
Working Language”, provide computer-support for students through interctive course material based on
THEOREMA.

Theorema in Algorithmic Methods

The lecture “Algorithmic Methods” focuses on the interplay between mathematical knowledge and math-
ematical algorithms, concretely on the transformation of mathematical knowledge into algorithms. The
approach chosen is to show that many times mathematical knowledge is already an algorithm without any
need of further translation. The course material available for students is written entirely in THEOREMA and
it is available in electronic form for the students. Mathematica and THEOREMA are installed on laptops
that can be used by the students during their first year of study.

The emphasis of the course is being put on the mathematical representation of mathematical objects suit-
able for performing computations. Mathematical data-structures, such as polynomials or matrices, are
presented in an algorithmic form, such that their definitions can immediately serve as algorithms for do-
main operations. Using this approach, we do not need to translate mathematical definitions into their
representation in some programming language, and mathematical statements can be used as executable
algorithms.

In the THEOREMA language, Functors are available for this type of algorithmic construction of mathemat-
ical domains, see [266]. Roughly speaking, a functor defines, how new operations on objects of a new
domain are defined in terms of known operations in known domains. The THEOREMA language seman-
tics provides algorithmic definitions for basic operations on numbers, tuples, and sets. For arithmetic on
numbers we access the available operations from Mathematica, thus we have all kinds of numbers avail-
able that Mathematica can deal with. Tuples are represented as Mathematica lists, basic tuple operations
are implemented based on list operations available in Mathematica. For basic operations on finite sets we
implemented our own semantics, based again on list operations available in Mathematica. Using functors
we can then build up new mathematical domains from the basic domains numbers, tuples, and sets.

An Example: Algorithms using Polynomials

As an example, we demonstrate the definition of univariate polynomials over some field K and an algorithm
for polynomial interpolation written in THEOREMA. The functor definition of the domain of univariate
polynomials over K in THEOREMA is shown in Figure 3.1.c.

The polynomial functor given in Figure 3.1.c defines, for any K, Poly[ K] to be such a domain P, such
that, for any p, g, n, a

e pisan element of P iff p is a tuple and each component of p is in K,

e the 0 in P is the tuple consisting of the 0 in K,

e the I in P is the tuple consisting of the 1 in K,

e the z in P is the tuple consisting of the 0 in K and the | in K,

e the degree in P of p is defined via some case distinction (note the special language construct & P;

denoting the 1 such that P;), 7
o the canonic form in P of p is p without trailing zeros,

e the sum in P of p and q is the canonic form of the component-wise sum in K of p and g,
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Definition[* Polynomial Domain”, any[ K],
Poly[K] := Functor [P, any[p, ¢, 7, a],

€ & is-tuple[p] AV € |p;
el & isuplepl A Y € pl
0 :=(0)
P K
1:=(1)
P K
z :=(0,1)
P K 'K
0 <~ v pj = 0
deg [p] := J=1,-lpl K
& 1 ( & p#A0A v pj=0)—1 <« otherwise
=1,...,|p| K j=i+1,...,|p| K

0 < otherwise
K _-l ]
canonic [p] := (p; |

P

(2
{pn+1 « n>0An<degp)

i=1,...,deg[p]+1
P

+ ¢ := canonic |{coef [p,i]+ coef [q,1
qu P [<P[p]KP[q]

1=0,...,Maximum([deg[p],deg|q]]
P P
— g := canonic |{coef [p,1]— coef [q,1
qu P [< P [p ]K P [q ]i=0,...,Maximurln[deg[p],deg[q]] )]
P P

P e 1=0,...,deg[p]+deg[q]
P P

Figure 17: Functor definition for the domain of univariate polynomials
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o the differencein Pof pandqis...,

e the product xin Pofpandgqis...,

e the product - in P of a constant a and p is the tuple containing the product in K of a with each
component of p, and

e the division / in P of p by a constant a is the tuple containing the quotient in K of each component
of p with a.

Computations with polynomials can now immediately be performed with the Compute command of THE-
OREMA'2. Knowledge, which should be available throughout the session, can be put to a global knowledge
base using the command Use.

In[1]:= Use[(Built-in["Tuples”], Built-in["Quantifiers”],Built-in[" Connectives”],
Built-in[”Numbers”],Built-in["NumberDomains”],Definition[”PolynomialDomain”])]

42 1 1
In[2]:= Compute[(g, g,o, §>Pol—i:[Q] (O, 5)]
4 9 1
out(2]= (=,—,0,=
uel2l= (3, 7500:3)
4 2 1 1 2 8
In[3]:= C -, 2,0,= 0, —, —, =
nl3] °mpute[<3’5 3/poric) 30" 13 7>]
out (3]= (0 2 71 2164 59 2 8>
u = N ERE ) Eraed e ) e % A
457 325713657 126 39’ 21
1 2 8
In[4]:= Compute [7P0])-,[Q] (0, T 7)]
out[4]= (0 T 8)
u = Y S 3/ )
30713

2 8
In[5]:= Compute[(ﬂ,i,— 7) / 7]
Poly[Q]

1 2
310" 51 )
Having given the algorithmic definition of univariate polynomials as one of the fundamental data structure
for algorithmic mathematics, we can then use polynomial arithmetic when discussing algorithms for poly-
nomial interpolation. The algorithm for Lagrange interpolation, as an example, computes the interpolating
polynomial for (tuples) z, a of degree n over some field K as a certain linear combination of Lagrange
basis polynomials. What we need for being able to compute the interpolation polynomial is the algorithm

out[5]= (0

Algorithm[“Lagrange Interpolation”, any[z, a, n, K1,

Lagrangelnterpolation[z, a,n, K] := pf[Zpoly[K] a; : Ly [x,n,K]] ]
J=lysn

Poly[K
and the definition of the Lagrange basis polynomials L;.
Definition[*“Lagrange Basis Polynomial”, any[z, n, j, k],
Ljlz,n, K] = (]] z = (z) / e (z;- z;
J 1
o ( praiged i (Poly[K] Poly(K] ))Po 1K) i=;,f’f,n ( Tk ) ]
i#j i#j
After adding Algorithm[“Lagrange Interpolation”] and Definition[“Lagrange Basis Polynomial] to the
global knowledge base we can immediately compute the interpolation polynomial in concrete examples.
In[6]:= UseAlso[Algorithm[“Lagrangelnterpolation’], Definition[“LagrangeBasisPolynomial”]]
In[7):= Compute[Lagrangelnterpolation((1,2,3,4,5),(3,1,5,2,6),5,Q]]

—1093 443 —161 9
out[7]= pf[(51, = )]
ue(71= pi[( 2 '8 12 '8

121y a Mathematica/THEOREMA session lines preceded by ‘In[i ] : =" denote input to the system, lines preceded by ‘Out [i]=’
show the corresponding output.
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This means: the polynomial function of degree 5 over QQ, which evaluates at 1 to 3,at2to 1,at 3to 5, at 4

to 2, and at 5 to 6, is the polynomial function (pf) associated to the polynomial (51, _11293, %, %261, %),

ie 51— 10937 4 #4352 16143 4 344 We now use the Mathematica command Plot for visualization:

1093 443 161 9
In(8]:= Plot [51 — Yx + sz - TQ—XB + §x4, {x,1,5}, GridLines — Automatic];
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The correctness of this interpolation method could now be formulated in the same language as

Theorem[*“Correctness of Lagrange Interpolation”, any[z, a, n, K],

_ 1V Lagrangelnterpolation(z, a,n, K][z;] = a; ]

=1,...,n
and it could be proven automatically by an appropriate THEOREMA prover using the same knowledge
in the knowledge base as it was needed for computing'®! Further lessons in this lecture cover Gaussian
elimination for systems of linear equations, Groebner bases for solving systems of polynomial equations,
and Newton’s method for arbitrary systems of equations.

Theorema in Predicate Logic as a Working Language

“Predicate Logic as Working Language” is a course which was taught by B. Buchberger for the first time in
the summer semester 2002 for undergraduate students of mathematics. The course evolved from [77], the
course “Thinking, Speaking, Writing”, and the course “Mathematics for Computer Science: Algorithmic
and Nonalgorithmic Aspects”, which B. Buchberger taught various times in the period 1980 - 2002 for
computer science and math students at both the undergraduate and graduate level. The course “Predicate
Logic as a Working Language” differs from the earlier courses by being completely written in the THE-
OREMA language. For each of the elementary and more advanced language constructs of predicate logic,
first, the syntax in many notational variants, including natural language syntax, is explained. The external
two-dimensional THEOREMA syntax is used as a reference standard and the internal THEOREMA syntax (a
linear syntax of nested terms) is used as a means for clarifying standard parsing. Then, the inference rules
for the language constructs are explained in detail accompanied by lots of examples. In addition, various
practical strategies are supplied for inventing proofs by combining inference rules. Also, various ways of
structuring and presenting proofs are given. The various rules and strategies are trained by examples and
exercises. Also, it is shown how most of these techniques are used in the THEOREMA system for gener-
ating proofs in a completely automated way. It is shown how the typical THEOREMA provers imitate the
heuristics for finding proofs given to the students during the course.

In addition to introducing inference rules and strategies for proving, inference rules and strategies for
solving and simplifying formulae and terms are given. Thus, predicate logic is presented as a uniform
frame for proving, solving, and simplifying. During the course, “reasoning” is developed more and more
as a network and an interaction of proving, solving, and simplifying steps.

3proving mathematical theorems is. however, not in the scope of the lecture.
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Computing is viewed as a special case of simplifying (namely, simplifying ground terms to canonical
forms). In this way, it becomes clear that predicate logic contains a universal programming language as a
natural sublanguage. Basically, this sublanguage consists of conditional terms and quantifier expressions
with bounded ranges. In this part of the language, “sequence variables” play an important practical role.
Sequence variables are variables, for which an arbitrary finite number of terms can be substituted. This is in
contrast to the ordinary variables of predicate logic for which we can only substitute exactly one term. By
having a programming language within predicate logic, algorithmic mathematics can be presented in the
same language frame as nonalgorithmic mathematics. Thus, in particular, algorithm verification is just a
special case of proving within predicate logic. Also, the correctness proofs of algorithms and the execution
of algorithms on concrete data can be done in the same language frame, namely the THEOREMA version
of predicate logic. ’

Particular emphasis is also given to the reasoning techniques for introducing new concepts by definitions
of various kinds and for extending the language by special quantifiers which are meaningful only in special
theories as, for example, the sum and product quantifier, the set quantifiers, or the limit, derivation, and
integration quantifiers. Using definitions, a layered build-up of mathematics is explained and the tech-
nique of “theory exploration” (the systematic exploration of the properties of new concepts introduced by
definitions) is introduced. It is shown how typical proofs in the exploration of theories that result from a
given theory by introducing new concepts by definitions proceed in the three steps of unfolding definitions,
working in the given theory, and folding formulae by using definitions backwards.

Finally, it is shown how the general reasoning rules for predicate logic, i.e. the rules valid in the empty
theory, can be gradually augmented by special reasoning rules and strategies, i.e. rules and strategies that
are valid only in special theories. As examples, reasoning rules for set theory and for inductive theories are
provided.

A first version of lecture notes for this course was distributed to the students and the students were also
given the opportunity to experiment with the THEOREMA system. However, significant additional work
will be necessary for a complete and polished version of the lectures notes. In the math curriculum at the
University of Linz, this new course is scheduled for the second semester. In the course evaluation, some
students said that they would appreciate to get these fundamental techniques for exact reasoning right at the
beginning of their study in a concentrated form. However, it is clear that this would entail radical changes
in the structure of the math curriculum. Also, one may argue that it is necessary for the students to get some
first acquaintance with the contents and style of university mathematics before they can really appreciate
the techniques presented in this practical predicate logic course.

3.1.d The OMDocC Markup Language for Open Mathematical Doc-
uments on the Web

Mathematical texts are usually very carefully designed to give them a structure that supports understanding
of the complex nature of the objects discussed and the argumentations about them. The OMDOC con-
tent markup scheme [157], which has been developed by Michael Kohlhase at USAAR, supports authors
with writing formal mathematical documents including articles, textbooks, interactive books, and courses.
OMDoc allows to capture the semantics and structure of these documents. Various tools, such as XSL
transformation, are available to transform OMDOC documents into other formats for presentation purposes
(using, e.g., MathML) or to support inter-system communication (e.g., by transformation into the logic of
a theorem prover).
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3.2.a Overview

The primary goal in this work task is to investigate and emphasize the relevance of the methods and math-
ematical service tools developed by the Calculemus Network for the application of formal methods to
program verification. While formal methods is undoubtedly a very prospectous application area for our
research, we have, in addition, identified the education sector as another interesting area where our con-
tributions may have an impact. To stay abreast of changes we propose a respective amplification of the
definition of research task 3.2 in the yearly report for 2002.

We briefly sketch some applications in the formal methods and education area.

Formal Methods Applications

¢ In a cooperation between Saarland University, the semi-industrial German Research Centre for Arti-
ficial Intelligence (DFKI), and the University of Edinburgh an approach to support the verification of
hybrid systems with the help of mathematical services in MathWeb is currently being developed and
analyzed [42, 41]. An internship of a young visiting researcher of the network in a major interna-
tional communication systems company is currently being accomplished with the aim to investigate
the relevance of this verification approach for practical applications.

e In a cooperation with the DFKI in Saarbriicken, University of Genua, and Saarland University we
investigate whether specialized reasoning tools within the MathWeb-sb can fruitfully support the
formal verification of information flow properties. Information flow properties can be used to express
confidentiality and integrity requirements of systems.

e A similar topic has been investigated in a cooperation between the University of Edinburgh and the
University of Genoa. It concerns error dedection in security protocols.
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e At ITC-IRST in Trento a symbolic verification technique that extends Bounded Model Checking is
investigated and MathSat is employed in this context. Another topic is error detection in security
protocols with SAT-based model checking.

e University of Edinburgh tries to apply proof planning in first order linear temporal logic (FOLTL) to
feature interactions as they arise in large telephone networks.

Education systems related activities

e The Theorema system, which has been presented in Task 3.1, is employed in education practice
already at University of Linz.

e ACTIVEMATH [197] is a learning environment for mathematics being developed mainly at the DFKI
in Saarbriicken and partly at the University of Saarbriicken. The goal of the project’s research and
development is a web-based interactive learning system (for mathematics) that uses instruction as
well as constructivist elements. The project provides an architecture, basic knowledge represen-
tations, and techniques for new-generation on-line interactive mathematics documents (textbooks,
courses, tutorials) and e-learning. The ACTIVEMATH system, which makes or wants to make use of
mathematcial services and techniques developed in the network, is already prototypically applied in
lectures at Saarland University.

ACTIVEMATH cooperates with external systems, such as proof planning systems or computer alge-
bra systems. They can be called in order to support a user in exercise problem solving or to check
the correctness of a solution. External systems can also be used to present examples. In particular,
the knowledge acquired for automated proof planning can be used to explicitly teach mathematical
methods and control knowledge. At present, ACTIVEMATH rather concentrates on employing ex-
ternal systems individually and independent from each other. However, it will clearly benefit from
the research of the network on the integration of systems for deduction and computation, since many
exercises do require such an interplay.

A subset of the above applications will now be discussed in more detail.

3.2.b Hybrid System Verification

Hybrid systems are heterogenous dynamical systems characterized by interacting continuous and discrete
dynamics. The enormous presence of hybrid systems in safety critical applications, such as automated
highway systems [138], air traffic management systems [178], embedded automotive controllers [28], and
chemical processes [120], increasingly calls for safety guarantees. Since traditional program verification
methods allow at best to approximate continuously changing environments by discrete sampling, special
verification methods for hybrid systems, such as [132, 133, 134], have been developed. A frequently
employed method is to model hybrid systems by hybrid automata. A hybrid automaton is a closed system
with a built-in control structure determining when and how the system switches between its various discrete
states. Thereby the continuous behaviour in each discrete state is governed by a differential equation.
The verification method we will employ in our work is the deduction-based model checking approach for
hybrid systems described in [212]. Given a specification of a hybrid system H (a hybrid automaton) and a
safety property ® the approach generates a second order formula [®] g such that the validity of the latter
guarantees that property ® is valid for H. To support the validation of [®] g this method eliminates second
order location predicates in [®]y one by one in order to transform [®] g into an equivalent first order
formula U, if possible. With the validation of ¥ the verification approach terminates.

For the above deduction-based model checking approach we have identified the following mathematical
subtasks: (1) The solution of sets of differential equations, (2) checking subsumption between sets of
constraints, and (3) checking consistency of sets of constraints.
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In general, solving these tasks is feasible in case of linear constraints and linear differential equations. Our
aim, however, is to widen the spectrum of the approach, for instance, by allowing also non-linear con-
straints and differential equations. Mathematical tasks like (1) — (3) may also be relevant for other hybrid
system verification approaches. For instance, [135] employed the computer algebra system MATHEMAT-
ICA to solve linear constraints. MATHEMATICA was later replaced by a more efficient implementation of
a specialized constraint solving algorithm [136]. However, multiple implementations of the same kind of
mathematical services in different verification systems could and should best be avoided, especially if their
realization is complex and challenging, such as in our context.

We propose to model existing reasoning systems, such as computer algebra systems and constraint solvers,
as mathematical services and to provide them in a network of mathematical tools in a way that they can
reasonably support subtasks as they may occur in formal methods applications. The motivation is to make
it simpler to implement and test verification approaches by out-sourcing complex but precisely identifiable
mathematical subtasks for which specialized reasoners do already exist. Allowedly, in case a verification
approach later turns out to be successful (see for instance [136]) it may be reasonable from efficiency as-
pects and also from concession aspects to replace the connections to mathematical services again by fast re-
implementations of the particularly needed algorithms. However, starting with the latter may dramatically
slow down a quick development and implementation of new verification environments. This is particularly
true in case the automation of the mathematical subtasks is already on the edge of current research, such
as given in our case. This motivates our proposal to build up a network of mathematical reasoning services
for formal methods. The more services will be appropriately added to such a network the more likely it
will be that also other verification approaches can directly employ them (in early development stages) for
the same purpose.

We summarize the deductive model checking approach described in [212] and identify the subtasks we
want to model as mathematical service requests.

Modelling of Hybrid Systems Hybrid systems are modelled as hybrid automata, which are presented as
finite graphs whose nodes correspond to global states (locations). An example of an hybrid automaton is
given in Fig. 18.

The local reachability theory is a logical representation of all immediate future states that can be reached
from a given state. For instance, the local reachability theory for state Two of the automaton in Fig. 18 is
given as the first order formula

y>3A
Vr,y.Two(z,y) = { V66 >0Ay—25>5— Two(z + 6,y —25) A
y =5 — Three(0,y)

Here the possible immediate state transitions are characterized by the conjunct y = 5 — Three(0,y).
In our example, Three(0,y) is the only potential immediate future location of Two(z,y) andy = 5 is a
guard for the transition from Two to T hree. In case of a transition data variable z is re-initialized with 0.
The first conjunct tells us that any valid state Two(z, y) has to satisfy the location invariant y > 5. Finally,
the second conjunct characterizes the potential timed successors, i.e., the change of the data variables z
and y in case no transition to a successor state occurs. Similarly, an inevitability theory is introduced which
characterizes all states that are inevitable.

For the construction of local reachability theory for L it is generally required to solve the differential
equations characterizing the timed successors of L. In our example we only consider very simple linear
differential equations like £ = 1 and §y = —2 in state Two. They express that the value of z continuously
increases over time with slope 1 and that the value of y continuously decreases over time with slope 2.
The corresponding solutions for the differential equations are z(§) = é + c and y(6) = —24 + d. Note
that respective information is required for the formulation of the formulaVé § > 0Ay — 20 > 5 —
Two(z + 4,y — 28) characterizing the timed successors. If we extend the approach to handle also sets of
non-linear differential equations, such as {z = z + y,y = 3} or {z = Vz + 3,y = 1,% = y * z}, the
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Figure 18: Water level monitor: the water level in a tank 1s controlled through a monitor, which contin-
uously senses the water level and turns a pump on and off. We wish to keep the water level (denoted by
the data variable y) always between 1 and 12. The figure describes the monitor that signals whenever
the water level passes 5 and 10 inches. z is the clock of the system that describes the delay of the pump
start-up/shutdown. We have to prove the ICTL property AG(1 <y Ay < 12).

construction of the timed successor formulas can become a complicated task. Thus, the follwoing relevant
mathematical tasks can be identified:

Mathematical service 1: Solving of differential equations To support the construction of the timed
successor formulas we propose to identify suitable mathematical service systems for solving sets of differ-
ential equations. Our interest is to widen the current spectrum of the approach, for instance, by extending
it to non-linear differential equations or second derivatives in the specification of hybrid systems.

Proving Properties of Hybrid Systems Properties of hybrid systems are described by formulas of the
Integrator Computation Tree Logic ICTL [2]. Here we avoid a formal introduction to /CTL.

An example property for our hybrid in Fig. 18 is that for all reachable states holds that 1 < y Ay < 12.
With the help of the ICTL always operator AG this can be formalized as ® = AG(1 <y Ay <12).

In the context of our work we are interested in extending the definition of /CTL formulas such that they may
also contain mathematical concepts such as /T, sin(T), cos(T), tan(T'), cotan(T), and T; 72. Given a
hybrid system H, e.g the system described in Fig 18, and a property & € ICTL,e.g. ® = AG(1 <
y Ay < 12). We are interested to analyse the validity of & for H. ¢ = {¢ | H, (L, ¢) = ®} describes
the set of all valuations ¢ where property @ is true. Suppose d; can be described by a (finite) characteristic
constraint formula [®] ’;I € CF. Intuitively a characteristic constraint formula describes the necessary and
sufficient conditions on the data variables such that ® holds for L in H. Checking whether H, (L, ¢) = ®
holds can be reformulated as to checking whether ¢([ <I>]f1) is valid. Generally, it is not possible to find
a characteristic constraint formula. Instead of attempting to construct [®]% directly, it is described first
as a formula of the second order predicate calculus. Then the elimination approach tries to simplify this
description to a first order constraint formula step by step, if possible.

In our example we are interested to verify property ® = AG(1 < y A y < 12) for automaton H sketched
in Fig. 18. This means we want to verify that H, (Zero, ¢) = AG(1 < y Ay < 12) for all initial states
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(Zero, ¢) and this reduces to checking whether ¢([AG(1 < y Ay < 12)]%7°) for all ¢. According to
our approach [AG(1 < y Ay < 12)]4¢ is given as the following second order formula:

Zero(z,1)

y <10
Vr,y Zero(z,y) — V66 >0Ay+6 <10 Zero(z + 4,y + 6)
y =10 - One(0,y)

V68 >0Az+8 <2— Three(z + 4,y — 26)
z =2 — Zero(z,y)

Vz,y Three(z,y) —

z<2
Vz,y One(z,y) — V66 >0Axz+6<2— One(z+46,y+96)
3 z =2 — Two(z,y)
Zero y2>5
One Vz,y Two(z,y) — V662>0Ay—28 >5— Two(z + 4,y — 26)
Two y =5 — Three(0,y)
Three { <2

Ve,y Zero(z,y) — 1<yAy<L12
Vz,y One(z,y) - 1<yAny<12
Vz,y Two(z,y) - 1<yny<12
Vz,y Three(z,y) — 1<yAy<12

Here Zero(z, 1) characterizes the initial state. The next four conjuncts specify the reachability theory for
H composed from the local reachability theories for all states as described before. The last four conjuncts
finally guarantee the validity of property (1 < y A y < 12) within all (reachable) states. This formula is
equivalent to

Zero(z,1)

V66 >0Ay+0 <10 — Zero(z + 6,y +9)
y =10 — One(0,y)

y<10A1<yAy<L12
Vz,y Zero(z,y) —

3 r<2A1<yAny<12
Zero Vz,y One(z,y) — V66>0Az+6<2— One(z+4,y+9)
One z =22 Two(z,y)

Three Vz,y Two(z,y) Vé66>0Ay—26>5— Two(z + 4,y — 26)
y =5 — Three(0,y)
{ T <2AN1<yAy <12

Two {yZS/\lSy/\ySH
_)

Y66 >0ANz+6 <2 Three(z + 6,y — 26)
z=2— Zero(z,y)

Vz,y Three(z,y) —

where we have exactly one location predicate for each state.

The Elimination Approach The remaining problem consists in proving the validity of the second order
formula [AG(1 < yAy < 12) ,Zf”’ above. The elimination approach proposes a stepwise transformation
of these kinds of formulas to equivalent first order statements. This is done by a one by one elimination
of location predicates in [AG(1 < y Ay < 12)]%¢™ based on the elimination theorem [213]. General
applications of the elimination theorem require the evaluation of a greatest fixpoint for the location variable
to be evaluated. For special applications, however, the elimination theorem can be refined by a much
simpler simplification lemma which does not require such complicated computations. The special cases
are those where a state L does not have direct edge transitions to itself, such as given for our automaton H.
If we can validate [AG(1 < y Ay < 12)]457° we are done. Thus it remains to prove

Zero(z,1)
3 y<10A1<yAny <12
Zero Vz,y Zero(z,y) — V66 2>0ANy+6<10—> Zero(z+ 46,y + )
z =10 — Zero(2,1)

Since we now face a self-loop the simplification lemma is no longer applicable and we have to proceed
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with the elimination theorem where a greatest fixpoint evaluation is generally required. In our special case
the self-loop is directly subsumed by the initial state. In order to generally detect and evaluate fixpoints,
however, we are interested to check whether a current iterative in the fixpoint computation is already
subsumed by a previous iterative. The iterations thereby are typically growing compounds of first order

constraint formulas like
y<1I0A1<yAy<12

which is also the final greatest fixpoint to be evaluated in our example. As this constraint formula is
consistent the deductive model checking approach tells us that property ¢ is indeed valid for H, hence, we
are done.

Thus, we can identify the following two mathematical tasks:

Mathematical service 2: Subsumption of sets of constraints To support the fixpoint computations we
are interested in subsumption checks for sets (or conjunctions) of constraints.

Mathematical service 3: Solving sets of constraints We are interested in the consistency of sets of
constraints generated by the approach. Note that both tasks are relatively trivial in case of linear constraints.
However, just as for the differential equations our interests is to widen the spectrum of the approach by, for
instance, including non-linear constraints in the specification of hybrid systems. The challenge, however,
will extend the elimination approach to handle also non-linear cases. This in turn poses a challenge for the
requested mathematical services. Their strengths and weaknesses will determine how far we can go.

3.2.c Verification of Information Flow Properties

Being able to construct systems that are reliable even if they operate in hostile environments is of critical
importance. When engineering secure systems one has to take into account that there are malicious pro-
grams like computer viruses or Trojan horses. Moreover, bugs in (otherwise non-malicious) programs may
have similar devastating consequences. In order to ensure that critical systems indeed are secure the ap-
plication of formal methods during their developmeént appears most appropriate. This means that security
requirements have to be specified formally in a way that they can be verified with mathematical rigour.

A very elegant approach to specify security requirements is to use information flow properties. Following
this approach, e.g., the requirement that a particular input given to the system must not be leaked to some
user is specified by the requirement that the actions of the system at the interface to that user do not
depend on the confidentia] input. Various different ways to specify information flow properties have been
proposed over the last 20 years. The approach that we follow has been proposed in [182]. The core of this
approach is a framework (called MAKS) for the representation of information flow properties. In MAKS
an information flow property is specified by a pair consisting of a view (specifying where information
flow is restricted) and a security predicate (defining what restricted information flow means). Security
predicates are assembled from so-called basic security properties, which are very primitive information
flow properties. This modular representation of information flow properties has motivated the name of the
framework, i.e. Modular Assembly Kit for Security Properties, which we abbreviate by MAKS.

Techniques that simplify the verification of information flow properties have been suggested in [183].
These so called unwinding results reduce the task to verify complex information flow properties to the task
of verifying simpler local verification conditions, the unwinding conditions. Finding ways to automate the
verification of these local conditions has been the object of our investigations. In the following, we will
illustrate the techniques that we have developed using a simple example and will compare the advantages
and disadvantages of different approaches.

We proceed as follows: Firstly, we specify the example system as an event system. Secondly, we specify
the information flow property that shall be verified. Thirdly, we specify an unwinding relation, i.e. a binary
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Figure 19: A simple security example

relation between states. This is a necessary prerequisite for verifying unwinding conditions. Fourthly, we
state the instantiated unwinding conditions, i.e. the theorems that we have proved. After this we are ready
to elaborate on the actual verification effort and our experiences made with different approaches and tools.

System Specification We consider a very simple system with only 8 different states, i.e. 51, ..., ss. The
set S of states is specified by a predicate is-in-S (see below). For our example system, there are only three
events (events model atomic actions), i.e. l1, [ and h. The set E of events is specified by a predicate
is-in-E.

In the following, we assume that the three names for events and the eight names for states all refer to
different objects, i.e. I; # la,l1 # h,lo # hand s; # s; if ¢ # 7 hold.

Ve.is-in-E(e) < (e=lhve=IlaVe=h)
Vs.is-in-S(s) <& (s=81Vs=8Vs=83Vs=sy 2)
Vs=585Vs=8Vs=s57Vs=ssg)

The possible transitions for the example system are viewed in Figure 19. Note that each transition involves
a starting state s, an event e that causes the transition,.and a resulting state s’. The transition relation is
specified by a predicate is-in-T.

Vs, s' e.is-in-T(s,e,8') < [(e=h A ((s=s1N 8 =s5)V(s=82N s =s6)
V(is=s3 ANs'=s7)V(s=s4N s =3s3)))V
(e=l1 A ((s=8s1N 8 =58)V(s=83N 8 =34) 3)
V(is=s5 Ns=sg)V(s=8s7N s =3s3)))V
(e=lb AN ((s=81 N s =353)V(s=82N 8 =34)
V(is=s5 ANs =s1)V(s=56NA s =s3)))]

Specification of Security Property The specification of a security property involves that all events are
associated with security domains. For our simple example system, we assume only two security domains,
i.e. H (for high) and L (for low). The security requirement is that no information shall flow from high
to low. This can be read as the confidentiality requirement: information in the high domain must not be
obtainable for the low domain. The association of events with security domains is specified by a function

dom.
Vedom(le)=H & e=h

€)
Ve.dom(e) =L & (e=l1Ve=I,) 4)
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Besides the association of events with security domains, the specification of security properties involves
two further tasks. These are

e specification of a flow policy, saying where flow of information is allowed/ forbidden

e specification of a security predicate, defining when a restriction to the flow of information is satisfied

For our simple example, the flow policy simply says that there should not be any information fiow from H
to L.

As security predicate we choose BSD. This basic security predicate is formally defined, e.g, in [184].
However, this definition is not required here because, according to a result in [183], BSD is implied by the
two conditions Irf and osc that will be defined further in the text. Hence, what we have to do during proof
search is: we have to verify these two conditions.

Specification of Unwinding Relation The unwinding relation x is a binary relation between states. This
relation is specified as follows.

Vs,s'. (x(s,8') © ((s=s5As =s1)V(s=s6N8 =52) 5
V(s=s7As"'=353)V(s=s5As =s4))) ©)

The unwinding relation is an auxiliary object that is used as a parameter of the conditions lrf and osc below.

Unwinding Conditions The two unwinding conditions Irf and osc imply that BSD holds. These condi-
tions can be specified as follows:

Ifp st Vs, e, s'.((dom(e) = H A is-in-T(s,e,s")) = x(s',s))
OSCE ST, x & Vs, e, s',u,u’.((dom(e) = L A is-in-T(s, e, ")) A x(u,s)) (6)
= Ju'.(is-in-T(u,e,u’) A x(u',s"))

Overall Proof Obligation Using the previous definitions, we want to prove the following theorem:

(2) A (3) A (4) A (5) A (6) F Irf A osc (7)

The General Case Some remarks in order to avoid that misunderstandings arise from the simplicity of
this example.

e We have fixed the unwinding relation. In the general case, the unwinding relation is not given.
Thus, to find an unwinding relation for which the unwinding conditions hold is a subtask in proof
construction.

e The example system is finite. The theory of security that we use can also be used for infinite systems.
We make this simplification here, in order to set up a simple starting point.

o There are other basic security predicates than BSD in the theory. The corresponding unwinding
conditions differ from the ones for BSD. However, they are still quite similar. So if we succeed for
BSD, there is a good chance that this will extend to other basic security predicates.

Employing SAT or QBF solver to tackle the problem As part of the Calculemus initiative we want
to investigate whether specialized and powerful tools for testing the satisfiability of quantified boolean
formulae (QBF) can be employed as mathematical services to support the verification of information flow
properties as the ones sketched above.
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Mathematical Service 1 & 2 Among the systems we want to employ are the SAT solver Chaff, which is
suited for solving large real world SAT instances, and the QBF-solver QuUBE (version 1.3).

Mathematical Service 3 We have to to provide appropriate transformation services in order to map
information flow properties specified in first order predicate logic as illustrated above to the respective
input format requested by the SAT and QBF solvers we want to employ.

As part of the project we also want to explore the differences between the SAT the QBF approach. Ideally
this analysis leads to a strategy that chooses the best approach and an optimal encoding for the problem at
hand.

The SAT and QBF encoding of the above example For a proper encoding into a SAT or QBF problem
we have to transform the original problem formulation into a boolean formulation. As a preliminary step
we must provide binary encodings for events and states.

For the events we choose the following encoding: [h] = 00, [l;] = 01, and [l5] = 10. For the states the
following encoding is particularly convenient: [s;] = (i — 1), fori = 1,...,8, where n; is the binary
representation of the number n. For instance, [s1] = 000 and [s3] = 010.

We now provide new encodings for the formulae (3), (5), and (6) defined before. This can be done by
replacing each variable of “sort” event, say e, with two boolean variables, say eg and ey, and each variable
of “sort” state, say s, with three boolean variables, say sg, s1, and s3.

The transition relation then becomes:

—eg A —e; A =g A sj A s168] A spe3s)
\%
is-in-T(so, S1,52, €0, €1,50,51,55) = | —€o A e A=sy Ash Asgersy Asi4s)
\Y
eo A e A —sy A sy Asgersy A saers)
The unwiding relation becomes:
! ! ! p— ! ! !
X (S0, 51,52, 50,81, Sp) = (So A 7Sy A S1438) A S24985)
To prove the unwinding conditions, say (6.1) and (6.2), by means of a SAT-solver we turn them into

satisfiability problems by reasoning by refutation. For instance, the validity of (6.1) is equivalent to the
unsatisfiability of its negation which, after some obvious simplifications, is:

3s, 8" .(is-in-T(s, h,s') A= x (s, 5)) (8)
The boolean encoding of (8) is:

Jsg,S1,52,80,51,55.  (TSp A Sy AS143s) Asaersy A

(sh A S0 A S} 438; A Sh6583)) ©)
From the unsatisfiability of (9) we can readily conclude the validity of (6.1).
As above, the validity of (6.2) is equivalent to the unsatisfiability of its negation which is:
3s,s',u. ((dom(e) = L Ais-in-T(s,e,s")) N x(s,u) A (10)

Vu'.(~(dom(e) = L Ais-in-T(u,e,u’)) V = x (s',u')))
Where L =13, 15.

This can be encoded into a boolean formula as in the previous case with the only additional difficulty due
to the replacement of the subformula

Vu'.(=(dom(e) = L A is-in-T(u,e,u")) V- x (s',u')) (11)

93



Task 3.2: Support to the Development of an Industrial-Strength Application

with the corresponding expansion. The resulting boolean formula can be fed to a SAT-solver to decide its
unsatisfiability.

To underline differences between SAT and QBF encoding, we have to investigate the quantifiers rule into
the encoding. SAT-encodings require that all variables involved must be existential quantified. When we
encounter a universal one, we have to unfold it, using a ground instantiation. This easily explains the
exponential growing of the space involved into the computation. Using QBF-encoding, we can maintain
universal quantifiers, declaring them in the head of the Q-dimacs format(a variant of dimacs). The main
advantages are the limitation in the growing and an easier encoding.

Moreover, our strategy works with the quantifier list, trying to reduce the number involved into the PNF.
Every time we encounter as last quantifier close to the formula, a universal one, we purge all its instances
into the PNF, reducing the number of variables. In the best case, we can reduce the PNF to a SAT-problem,
where all involved variables are existential quantified. Looking at the previous example, the strategy results
with a SAT-encoding, due to the elimination of the universal quantifier over u'.

Solving the problem with Chaff and QuBE As back-engines we choose state of the art solver in their
fields. For SAT we employ Chaff 1* and for QBF our choice was QuBE 3. We start encoding the problem
into a Q-dimacs format, if the quantifier elimination results with only existential quantifiers, we convert it
into a dimacs format. After the computation with the convenient solver, we parse the output, showing the
path that satisfies the negation of the formula. Note that the solver returns only variables instantiated to
true, all the others are intended to false.

3.2.d Error Detection in Security Protocols

A related topic has been investigated in a cooperation between the University of Edinburgh and the Uni-
versity of Genoa. It concerns the use of deduction/computation techniques to tackle the verification of
industrial-strengths applications.

In particular, a procedure for error detection in security protocols has been studied and developed. The idea
of this approach is to encode security protocol problems into propositional logic which can be effectively
used to find attacks to protocols by exploiting the computational power of state-of-the-art SAT-Solvers
(e.g. Chaff, SIM, etc.). While the approach is quite successful in finding attacks in security protocols,
if the analyzed security protocol is not affected by an attack, the procedure may not terminate. Hence,
it has been started a study on how to extend the approach from falsification to verification. By security
protocol falsification we mean the problem to prove that the analyzed security protocol does not satisfy the
specified security property (e.g. secrecy, authentication, etc.) by returning the appropriate counter-example.
Viceversa, with security protocol verification we mean the problem of proving that the analyzed security
protocol satisfies the specified security property.

Notice that the security protocol verification problem is undecidable in the general case. Therefore, as-
sumptions about the security protocols have been identified in order to ensure termination. However, the
related work done in this domain is often characterized by strong assumptions that make the results appli-
cable only to restricted class of protocols. Our aim is to extend and integrate the ideas/techniques proposed
in the related work and to adapt it to our approach based on the reduction of the security problems to
propositional satisfiability.

‘“http: //www.ee.princeton.edu/ chaff/
15http: //www.mrg.dist.unige.it/star/qube/
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3.2.e Bounded Model Checking for Timed System

ITC-IRST has successfully used the MathSat solver to solve verification problems for timed systems [23].
The verification of timed systems is a very important and challenging problem, in that it combines the chal-
lenge of handling finite-state variables, which is typically encoded as a boolean deduction problem, with
the problems related to time elapsing, which are encoded into mathematical constraints on real variables.
In fact, a state can be seen as an assignment to propositional variables and to real variables, representing
absolute time and clocks.

The approach extends the Bounded Model Checking (BMC) [52] technique for the verification of timed
systems, and is based on the following ingredients. First, a BMC problem for timed systems is reduced
to the satisfiability of a mathematical formula, i.e., a boolean combination of propositional variables and
linear mathematical relations over real variables (used to represent clocks). Then, the MathSat procedure
described in the previous sections is used to check the satisfiability of the resulting formula.

The approach is rather general, since it allows to express specifications in full Linear Temporal Logic (LTL),
such as fairness properties. Furthermore, the approach is fully symbolic: it allows one to tackle the digital
component of timed systems with symbolic technologies as in the untimed case, while the timed component
is tackled by means of specialized mathematical constraint solvers. Finally, the mathematical formulas
generated are polynomial with respect to the size of the representation of the input system and the maximum
path length k, and are solved by a solver requiring a polynomial amount of memory. The experimental
analysis performed in [23] confirms the potential of the approach and shows that, with a proper tuning,
MathSat can overperform traditional approaches based on Difference Bound Matrices (DBMs), Difference
Decision Diagrams (DDDs), or Clock Difference Diagrams (CDDs).

3.2.f Proof Planning in First-Order Linear Temporal Logic

University of Edinburgh has investigated the combination of proof planning and reasoning in first-order
temporal logics, in particular the linear, discrete time variant (FOLTL). The original claims of the project
were that (a) there are examples of problems which naturally fit into FOLTL, (b) Proof Planning can help.

During these years, a theoretical framework has been devised, consisting of a family of labelled sequent
calculi, sound and complete for a wide range of first-order modal logics, which can be extended to FOLTL,
obviously losing completeness but keeping some of the benefits. See [101] for more details.

On the practical side, the problem of Feature Interactions in telecommunication systems (FI) is currently
being addressed; an example has been mechanized (see [100]) and a full set of FI test cases is under
examination.

As far the above items are concerned, (a) is confirmed by the FI test case and as well by some other
publications (e.g., [1] and [273]); (b) is the object of the current study.
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Undergraduate Exam in Calculus and
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TASK LEADER: USAAR
SCIENTISTS IN CHARGE: JORG SIEKMANN, CHRISTOPH BENZMULLER
RESEARCH TEAM: USAAR, UED

3.3.a Overview

The aim of this task is to apply systems and approaches developed in the network to mathematical problems
as they arise in maths education. Our initial proposal was to choose problems as they occur in exams (e.g.
Harvard) in calculus and economics.

We propose to slightly modify the definition of the problem domain to be considered in this task. Instead of
strictly sticking to the proposal of considering Harvard calculus and economics exams we propose to leave
the choice of problems more flexible. A constraint, however, should be that the problems considered in
this task are rather at math exam level than on math research level. Calculus remains, of course, a problem
domain of interest.

The research question in this task is not whether the approaches and systems developed in the calculemus
network are capable of solving challenging and probably open mathematical problems. This is the aim of
the Task 3.5 and there we actually illustrate how ehallenging theorems such as the fundamental theorem of
algebra and the fundamental theorem of analysis are attacked.

In this task we rather more focus on much simpler and maths education oriented problems with a strong
emphasis on the particular way the problems are solved, how interaction with the user is supported and
how the solution is presented. We want to analyze whether our systems can be employed in a user friendly
and adequate way and whether the interaction and maths presentation capabilities of the systems are ap-
propriate.

Different task relevant case studies have been completed, are currently carried out, or are planned for the
near future. Amongst them are:

e Irrationality of /2

o Exercises from the German Bundeswettbewerb Mathematik

e Calculus examples from [36] currently investigated in the ACTIVEMATH project [197]. ACTIVE-
MATH is a web-based maths learning environment that currently encodes various parts of mathemat-
ical textbooks in order to make them available for online education purposes. The ACTIVEMATH
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project wants to gradually improve its integaration and usage of computer algebra systems and deduc-
tion systems to support interactive exercises where the students can measure their learning progress.
It thus appears useful to coordinate the exercise investigated in this project with the exercises to be
investigated within ACTIVEMATH, since both parties may benefit from each others experience and
preparatory work.

3.3.b Irrationality of /2

Henk Barendregt and Freek Wiedeijk at Nijmegen University proposed this case study, in which the inte-
gration of computation and deduction plays an important role. The idea is to compare the most prominent
state-of-the-art systems with respect to a variety of criteria such as whether they support the de Bruijn prin-
ciple (provide proof objects), the Poincare principle (capable of proving correctness of calculations auto-
matically), facilitate a user-oriented interaction style, etc. The results of this case are reported in [265, 263].
In this case study also the systems Omega, Theorema, Coq, and Mizar developed by the partners in the Cal-
culemus network particated and demonstrated their capabilities. Further information on the Omega solution
on this case study, for instance, is available in [240, 48, 239].

3.3.c Exercises from the German Bundeswettbewerb Mathematik

Saarland University has begun to investigate examples from the German Bundeswettbewerb Mathematik'®
for high school maths students. These examples are very attractive since they typically have an elementary
and elegant solution, which is often rather tricky to find. The motivation of these examples is to get students
engaged in small, but interesting and challenging problems in order to stimulate their general interest for
mathematics. The examples, which are usually formulated in natural language, can typically be formalized
in various ways. Which formalisation may lead to the most elegant solution is often not easy to determine at
the beginning. An important issue for tackling these problems is to provide an adequate system framework
that is capable of supporting all relevant aspects including, for instance, playing with representations, acces
to strong mathematical knowledge base, investigations of vague ideas at a rather abstract formalisation
level, access to possibly integrated deduction and computation systems, and facilities to check a proof
attempt at calculus level.

The following is an example exercise 7.

Problem: Given 51 points in a sqare with a side length of 7. Prove that there exists a unit circle containing
at least 3 of them.

Solution: We cover the square with 25 smaller sqares of side length 7/5. By application of the pigeonhole
principle, one of them contains at least 3 points. Since the diagonal of the small quares are 7/5 * sqrt(2) <
2, we can cover it with a unit circle. QED.

This example shows that we need to apply several lemmas from a knowledge base, including (a) pigeonhole
principle, (b) it is possible to cover a square of side length a with n? smaller sqares of side length a/n
(alternatively, we can use a more general version for rectangles), (c) for a square of side length a, there
is a smallest circle covering it. It has a radius of a/2 * sqrt(2). Also, we need to verify the inequality
1.4 < sqrt(2).

Although the examples of the Bundeswettbewerb are still rather simple they nevertheless require quite
heterogeneous system support to be solved in a adequate way (from the perspective of a maths education
system). Similar to the “Irrationality of v/2” example they are also well suited to illustrate the functioning
and working principles of our systems to high school scholars and maths students since they lie in the scope
of their mathematical capabilities (at least when working with paper).

16See http: //www.bundeswet tbewerb-mathematik.de/
17See also http: //www.oliver- faulhaber.de/mathematik/bwm70.htm\#BWM722
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3.3.d Discussion

The intention of this task is to examine whether our systems and approaches can attack education oriented
examples and present the respective results in a human oriented way. We are particularly interested in
examples where a variety of requirements come into play, among them also the integration computation and
deduction. While the work in the task has just begun, we can already conclude from the case studies on the
Irrationality of +/2 that in particular the issue of providing adequate maths formalization and representation
facilities are not sufficiently solved yet. While the systems participating in this case study showed that they
are indeed capable of tackling the problem sufficiently in case they are orchestrated by experts of these
systems, we claim that no novice student user would easily be able to come up with similar solutions if
he/she is not first given a detailed introduction to the pecularities of the system they use and its mathematical
knowledge representation facilities. Hence, there is a challenge to attack the gap between the elegance and
beauty informal maths often shows and the low level formalization tricks typically required in current
systems.
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TASK LEADER: ITC-IRST

SCIENTISTS IN CHARGE: FAUSTO GIUNCHIGLIA, ROBERTO SEBASTIANI, MARCO BOZZANO, ALESSAN-
DRO CIMATTI

RESEARCH TEAM: ITC-IRST, UWB, UGE

3.4.a Overview

The primary goal of this task is to investigate the possibility of modeling existing computer algebra systems
and deductive systems as mathematical services. The work done so far has concentrated both on develop-
ing the required infrastructure (languages, protocols, semantic specifications, architectural schemata) for
making existing systems interoperate, and on studying extensions and enhancements of the reasoning ca-
pabilities of some existing tools. The relevant contributions are:

o the MathSat framework developed at ITC-IRST [22, 21]. As previously said in task 1.2, the MathSat
framework introduces a formal framework, a generalized algorithm and architecture for integrating
boolean reasoners and mathematical solvers so that they can efficiently solve boolean combinations
of boolean and mathematical propositions. Many techniques are described to optimize this integra-
tion. Moreover, the MathSat framework evidences the main requirements boolean reasoners and
mathematical solvers must fulfill in order to achieve the maximum benefits from their integration.
The MathSat procedure [20, 23] is ITC-IRST implementation of an integrated procedure based on
the MathSat framework.

e RDL (Rewrite and Decision procedure Laboratory), developed by UNIGE, is a system for formula
simplification developed within the Constraint Contextual Rewriting Project. The system allows for
experimenting with the integration of decision procedures and conditional rewriting.

e LBA (Logic Broker Architecture), developed by UNIGE, is an architecture which provides the
required infrastructure for making mechanized reasoning systems interoperate. In the LBA each
mechanized reasoning system is seen as an entity providing and/or requiring a set of mathematical
services. The LBA provides location transparency, a way to forward requests for logical services
to appropriate reasoning systems via a simple registration/subscription mechanism, and a translation
mechanism ensuring the transparent and provably sound exchange of logical services.

o Within the MathWeb-SB architecture, developed by USAAR, the generalisation algorithm for the
learning of methods learning (described in task 2.3) has been added to the pool of mathematical
services. Furthermore the proof planning system AClam, developed at UED, has been integrated
into the MathWeb-SB framework. As a result, A\Clam can now use reasoning services provided by
existing systems in MathWeb-SB, and provide new reasoning services to them.



Task 3.4: Modelling of Existing Systems as Mathematical Services

In the remainder of this report we discuss these contributjons in more detail.

3.4.b The MathSat Framework

As pointed out in [22, 21], a significant number of existing procedures used in various application domains
can be modeled within the MathSat framework. These procedures either are purely symbolic or combine
symbolic and numeric techniques. We briefly recall some of them.

Omega [224] is a symbolic+numeric procedure used for dependence analysis of software. It is an integer
programming algorithm based on Fourier-Motzkin variable elimination method. It handles boolean
combinations of linear constraints by pre-computing the DNF of the input formula.

PtautEq [7] is a purely symbolic procedure which handles boolean combinations of boolean variables
and equalities between first-order variables, which was embedded in the GETFOL [127] system. It
combines a variant of DPLL boolean solver [113, 112] with an ad-hoc solver for sets of equalities.

SMV+QUAD-CLP [102] is an incomplete symbolic+numeric procedure integrating Ordered Binary De-
cision Diagrams, OBDDs [57], with a quadratic constraint solver to verify transition systems with
integer data values. It performs a form of intermediate assignment checking.

TSAT [4] is an optimized symbolic+numeric procedure for temporal reasoning able to handle sets of
disjunctive temporal constraints. It integrates DPLL with a simplex LP tool, adding some form of
forward checking and (static) learning.

LPSAT [272] is an optimized symbolic+numeric procedure for math-formulae over linear real constraints,
used to solve problems in the domain of resource planning. It accepts only formulae with positive
mathematical constraints. LPSAT integrates DPLL with an incremental simplex LP tool, and per-
forms backjumping and learning.

DDD’s [200] are OBDD-like data structures handling boolean combinations of temporal constraints in
the form (x — z < 3), which are used to verify timed systems. They combine OBDDs with an
incremental version of Belman-Ford algorithm.

ICS [121] is a mostly symbolic decision procedure for combined theories, including theory of arrays,
bitvectors, lists and inductive datatypes, linear arithmetic over the integers. Very recently (2002) it
has been integrated with the DPLL solver CHAFF [203].

CVC [246)] is a symbolic+numeric decision procedure for combined theories, including theory of arrays,
inductive datatypes, linear arithmetic over the reals. It combines, among others, the DPLL solver
CHAFF with a Fourier-Motzkin procedure.

3.4.c The CCR Framework

The generality of Constraint Contextual Rewriting (CCR) is witnessed by the number of state-of-the-art
systems whose simplification mechanisms can be seen as instances of CCR. These systems range from
automated theorem provers (such as NQTHM, Tecton, and SPIKE) to computer algebra systems (such as
MAPLE). In particular:

NQTHM. The simplifier of NQTHM can be seen as an engineered version of CCR(LA), where LA is a

decision procedure for Universal Presburger Arithmetics over the Integers (UPAI). Details can be
found in [11].
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Figure 20: The Logic Broker Architecture. A client C wants to prove a formula; it subscribes its query to
the Logic Broker (LB), waiting for a result. LB tries to find in the database (DB) a server matching the
requested service and provide to C the service pointer.

Tecton. The simplifier of Tecton can be seen as CCR(LA+EQ), where LA+EQ is a decision procedure for
the combination of UPAI and the Universal Theory of Equality (UTE). Details can be found in [11].

SPIKE. The simplifier of SPIKE can be seen as an extension of CCR(LA+EQ). The extension is here
needed to allow the decision procedure to use induction hypotheses during proof by implicit induc-
tion. Details can be found in [16].

MAPLE. MAPLE’s evaluation process can be seen as CCR(SR) where SR is a specialised reasoning module
reproducing the functionalties of MAPLE’s property reasoner and solver. Details can be found in [3].

3.4.d The LBA Architecture

UNIGE has both designed the conceptual model of the LBA [17, 18] and developed two prototype imple-
mentations of the LBA: one based on CORBA and - recently — one based on XML. Moreover, a bridge
between LBA and MathWeb has been defined [276].

The Logic Broker Architecture (LBA) addresses the problems arising from the integration of different
reasoning systems. In particular, interconnection of two different reasoners can lead to unsound results,
because of differences in the underlying semantics. The LBA architecture addresses this problem by means
of a diversification between the logic layer and the communication layer. A reasoning theory can be thought
of as composed of a sequent system and some inference rules, which respectively model assertions and
inference steps. Before instantiating a communication, a client sends to the Logic Broker a pair containing
its set of inference rules and the service requested. The broker then tries to make a match between client
query and services registered in its own database. If there is a positive result, then the Logic Broker
provides the connection between the objects. The architecture can be seen from the point of view of the
client like a library of functions, which can be easily integrated into the local environment, without any
overhead coming from network connections. Note that the client does not ask about a specific server, but
calls a service like simplify an equation, solve a set of constraints, etc. As a result, the same client
can receive many solutions coming from different servers and it can apply some policies to decide which is
the best for its computation. This level of decision can be shifted to the broker, asking for the first solution,
or for the complete list of them.

One of the main goals of LBA is to use only consolidate standards, which can be easily implemented in
the most common development environments. Due to this, the new version of LBA supports two main
technologies, namely CORBA and XML. CORBA comes out from the tradition of LBA, guarantees the
possibility to share and distribute not only results, but also parts of the proof or parts of the strategy, when
this is possible. XML ensures the possibility to communicate with a large variety of web services and to
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Name —[ ripple

Context Rewrite Theory

Types

Input omdoc: OMDoc;

Output result: OMDoc

InConstraints elements(omdoc, Elements), lemmas(Elements, RewRules)

member(sequent(-), Elements),

not(RewRules = nil).

OutConstraints elements(result, [Sequent]).

not( member(Rule. RewRules), applicable(Rule. goal(Sequent)).
TextDescriptions | Tries to reduce the difference between the goal of the given
OMDoOC sequent and one of its hypotheses using LClams
step_case method and the rewrites given as lemmas

in the OMDoC.

Figure 21: The rippling service offered by AClam

interpolate data very fast. LBA also uses a standard for sharing mathematical documents, namely OPEN-
MATH. Thanks to the extremely open design, OPENMATH can be used to describe a huge variety of math-
ematical knowledge. Everything is regulated by the agreement of the Content Dictionaries, which contain
the classifications of mathematical symbols. Each client/server has its own phrase-book that translates the
local language into the common layer OPENMATH.

3.4.e The MathWeb Software Bus

The architecture of MathWeb-SBhas been introduced in task 1.2. In this section we describe the integration
of existing systems within this framework.

The AClam Proof Planning System During his stay as a young visiting researcher (YVR) in Edin-
burgh, J. Zimmer integrated the proof planning system AClam into the MathWeb-SB [114]. Due to this
integration, AClam can not only use the services of any reasoning specialist already integrated in the Math-
Web-SB, such as the CAS MAPLE, but can also offer its theorem proving expertise to other systems in the
MathWeb-SB. First, A\Clam offers an inductive theorem proving service to the MathWeb-SB which takes
a problem description formulated in OMDOC as an input and runs AClam on the given problem. Second,
the rippling heuristics of AClam [241] is offered as a service that takes a set of rewrite rules and a proof
planning sequent as an input and applies the rippling method of AClam with the given rewrites. The two
services offered by AClam are new examples for mathematical services offered by the MathWeb-SB that
have not been formally specified until now.

However, we tried to use the description language LARKS described in section 1.2.d to give a first charac-
terization of the rippling service offered by AClam (see figure 21).

Generalisation Algorithm of Learn{2matic The application of learning techniques to proof planning
has been described in task 2.3. LEARNQMATIC is a hybrid system consisting of the implementation of
a generalisation algorithm as computational component and the proof planner QMEGA. The generalisa-
tion algorithm has been integrated as an extremely specialized and new kind of mathematical service into
MathWeb-SB. The generalisation algorithm accepts arbitrary sequences of objects in OMDOC syntax and
returns a generalised description.
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3.4.f Discussion

In this document we have reported the current status of the research about modeling existing systems as
mathematical services. In particular, the work done so far has concentrated both on developing the required
infrastructure (languages, protocols, semantic specifications, architectural schemata) for making existing
systems interoperate, with an emphasis on the infrastructure for mathematical web services (see Section
3.4.d), and on studying extensions and enhancements of existing systems (see Sections 3.4.b and 2.3.h).

We expect a positive impact on these research direction to come from the work being done in the context
of task 1.2, which concerns the definition of mathematical service.

103



Task 3.5: Challenge Mathematical
Problems

TASK LEADER: UKA
SCIENTISTS IN CHARGE: JACQUES CALMET, VOLKER SORGE
RESEARCH TEAM: USAAR, UED, UKA, TUE, UWB, UBIR

3.5.a Overview

One of the obvious challenging mathematical problems relevant to this network is probably to answer the
question “What are the limits of (artificial or natural) intelligence?”. This simple, apparently philosophical
question leads in fact to very difficult mathematical problems such as the decidability of the Mandelbrot
set. A brief description can be found in the January 2000 issue of the "Gazette des Mathematiciens”
published by the SMF, the French Mathematical Society. The paper of Smale proposes some challenging
mathematical problems for the 21st century. The quest for mathematical challenges is to be found in any
field. For instance, Jean E. Taylor introduces those for material science in the January 2003 issue of the
Bulletin of the AMS (Vol. 40, No. 1).

To provide a definition of a challenge mathematical problem that can be accepted by all partners is almost
impossible. However, if we introduce the word mechanized” in front of mathematical, we can then open
a few tracks along the following directions (see [174]):

1. Mechanize new areas of Mathematics such as algebraic topology or even Grothendieck’s theory
when also including geometry. Symbolic integration is a well-known example where a problem in
Analysis was turned into an algebraic problem,

2. Devise new proofs techniques for domains where the amount of computation, not the theoretical
difficulties is the challenge. An example is to prove some theorems on p-groups that would take a
lifetime by hand calculation,

3. Identify and master new representation of mathematical objects. This is well understood when de-
signing usual algebraic algorithms for CASs. A certainly challenging task is to investigate how
algebraic fields could be introduced in mechanizing algebraic geometry problems,

4. Space and time complexity issues when designing proofs and algorithms. A prototypical example is
the factorization of integer numbers. Other examples arise when trying to improve doubly exponen-
tial algorithms such as Groebner bases or when dealing with parameters which leads to constraint
programming (see [27]).
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An Example in Group Theory

A test problem is as follows, where the word suitable is used to avoid a too long presentation of the problem:

Given a “suitable” infinite collection of p-groups, give a formula for the least n such that the
i-th group in the collection can be embedded in Sy, not in sp_1.

This is, according to the experts, a very long term project even when using DSs and CASs. However, when
analyzing the problem, it is possible to identify sub-problems. Many of them are purely computational
ones. For instance, one must compute determinants of matrices. Depending on the size of these matrices,
a very thorough management of the computation is required. There are deduction problems as well. One
of them is supposed to be simple and can be seen as a test of feasability.

Can we prove, by machine, that every subgroup of @2, the quaternion group of order 2™, is
normal?

3.5.b Preliminary Work

During the work on other tasks some challenging mathematical problems had to be tackled already, in order
to have non-trivial working examples. Here we briefly summarize that work that has been done so far in
this respect. Some of the examples were done either by single partner nodes or in collaboration between
some of the nodes.

Fundamental Theorem of Algebra:

At the Calculemus meeting in Eindhoven, Henk Barendregt has put as a “challenge problem” to formal-
ize the Fundamental Theorem of Algebra in a theorem prover. (Every non-constant polynomial f(z) =
an2"+an_12""1 +... 4 a1z + ag over the complex numbers has a root, i.e. a z € C such that f(z) = 0.)
Consequently, this task has been taken up by the Mizar group and the research group of Barendregt at Ni-
Jjmeen Nijmegen (subsite of EUT). In Nijmegen a constructive formalization of the Fundamental Theorem
of Algebra in Coq has been made. We report on that development and its present continuations.

Formalizing a Constructive Proof of the Fundamental Theorem of Algebra in Coq

This work has been done by Herman Geuvers, Freek Wiedijk, Jan Zwanenburg, Randy Pollack, Milad
Niqui, and Henk Barendregt from the University of Nijmegen, NL. It was called the FTA project. The
motivations for starting this project were the following

o Formalize a large piece of real mathematics. See whether it can be done and which problems arise.

e Create a library for basic constructive algebra and analysis, to be used by others. Often, a formaliza-
tion is only used by the person that created it (or is not used further at all!), whereas one of the goals
of formalizing mathematics is to create a joint repository of mathematics.

e Investigate the current limitations of theorem provers, notably Coq, and the type theoretic approach
towards theorem proving.

e Manage this project. Work with a group of people on one theory/proof-development. Initially, we
distinguished the following three sequential/parallel phases:
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Mathematical proof | I#TEX document (the mathematical proof
with lots of details filled in)

Theory development | Coq file
(just definitions and statements of lemmas)

Proof development Coq file (formal proofs filled in)

The goal is to keep these phases consistent, so the theory/proof development process proceeds in a
“literate programming” style: by working (in parallel) on three documents, one creates a complete
formal development of FTA, together with a documentation, which consists of the ISTEX document
(the high level specification) and the theory development (the low level specification, containing all
the precise definitions and names of lemmas etc.) We note here that it is not trivial to keep these
phases consistent (and in fact we did not maintain them till the end): a lemma in the ISTgX version
may be just wrong, a definition may be incomplete or the ‘basic properties’ that one thinks one needs
(say about fields) are just not the ones that one really needs.

¢ Constructive proof. We view a real number as a (potentially) infinite object. So the equality on them
is undecidable and one can not define functions by cases. A positive aspect is that we are actually
proving the correctness of a root-finding algorithm. Details of the proof can be found in [125].

We did not proceed by constructing the reals in Coq, but by axiomatic reasoning. So we have defined the
axioms of the real numbers in Coq. As a matter of fact, we have proceeded even more generally by first
defining an algebraic hierarchy (semi-groups, monoids, groups, rings, fields, ordered fields); see [124].
The advantages of this approach are: reuse of proven results and reuse of notation. (The reals and complex
numbers are fields and the polynomials form a ring.) Then we have defined R to be an (arbitrary) Cauchy-
complete Archimedean ordered field and given such an R, we define C := R x R. To make sure that our
axioms for R make sense, a concrete instantiation for R has been constructed by Niqui.

Completely formalized in the theorem prover Cog, the proof and theory development amounts to the fol-
lowing. This is the size of our input files (definitions, lemmas, tactic scripts)

Sets and Basics 41 kb
Algebra (upto Ordered Fields) 165 kb
Reals 52 kb
Polynomials 113 kb
Real-valued functions / Basic Analysis 30 kb
Complex numbers 98 kb
FTA proof 70 kb
Construction of R (Niqui) 309 kb
Rational Tactic 49 kb

To modularize the proof and in order to create a real “library”, we have first defined an algebraic hierarchy
in the FTA project. In proving FTA, we have to deal with real numbers, complex numbers and polynomials
and many of the properties we use are generic and algebraic. To be able to reuse results (also for future
developments) we have defined a hierarchy of algebraic structures. The basic level consists of construc-
tive setoids, (A, #.4,=4), with A : Set, # 4 an apartness and =4 an equivalence relation. (Classically,
apartness is just the negation of equality, but constructively, apartness is more ‘primitive’ than equality and
equality is usually defined as the negation of apartness. To understand this, think of two reals z and y as
(infinite) Cauchy sequences: we may determine in a finite amount of time whether z#y, but we can in
general never know in a finite amount of time that z = y.) On the next level we have semi-groups, (S, +),
with S a setoid and + an associative binary operation on S.

Inside the algebraic hierarchy we have ‘inheritance via coercions’. We have the following coercions.
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OrdField >-> Field >-> Ring >-> Group
Group >-> Monoid >-> Semi_grp >-> Setoid

This means that all properties of groups are inherited by rings, fields, etc. Also notation is inherited:
x [+]y denotes the addition of x and y for x,y:G from any semi-group (or monoid, group, ring,...) G.
The coercions must form a tree, so there is no real multiple inheritance, e.g. it is not possible to define rings
in such a way that it inherits both from its additive group and its multiplicative monoid.
In the proof of FTA we needed proofs of equalities between rational expressions such as
1 1 2z
+ —

r+y z-y x2-y2

These are obtained by ‘partial reflection’. Following the reflection method: we define [-] : E — R with
E the type of rational expressions. So E contains a constructor erecip : E -> E
But in the case of rational expressions, the [—] can not be total, so we have a so-called ‘partial reflection’.

The axioms for real numbers are (apart from the fact that the reals form a constructive ordered field)

e All Cauchy sequences have a limit:

SeqLim : (Xg:nat—F.Cauchyg) — F

CauchyProp : Vg:mat—F.(Cauchyg) —
Ve:Fso.3N:NVm > N.(|gm — (SeqLim g)| < €)

e Axiom of Archimedes: (there are no non-standard elements)

Vz:F.3n:N(n > )

The axiom of Archimedes proves that ‘e-Cauchy sequences’ and ‘%-Cauchy sequences’ coincide (similar
for limits):
Viz: g : nat — F is a z-Cauchy sequence if

1
:N. N > — B
VE:N.3N:NVm > N(|gm gN|<k+1)

To be sure that our axioms can be satisfied, we have also constructed a real Number structure via the
standard tehnique of taking the Cauchy sequences of rational numbers and defining an appropriate apartness
on them. It turns out (as was to be expected) that real number structures are categorical: Any two real
numbers tructures are isomorphic. This fact has be proved within Coq.

In conclusion we have found that real mathematics, involving both a bit of algebra and a bit of analysis
can be formalized completely within a theorem prover (Coq). Setting up a basic library and some good
proof automation procedures is a substantial part of the work. An important issue remains how to present
the development (and the proof). In the formalization process, the connection with the ISTEX file has been
abandoned. We believe that it is essential to provide a system in which one can write the formalization
and the documentation. We have attempted to extract an algorithm from the proof, but that turned out to
be very difficult, because all the coercions get cluttered up in the extracted program. This will be further
investigated. It should be noted that computationally, the behaviour of the root-finding algorithm depends
mainly on the representation of the reals.

Involutive Bases
Involutive bases are a special kind of Grébner bases with additional combinatorial properties that make

them very useful for many applications (see [89]). They exist in many polynomial algebras (also non-
commutative ones) including ordinary polynomials and linear differential or difference operators. They are
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thus a possible approach to investigate symbolic solutions to system of (partial) differential equations. An
INTAS project coordinated by UKA was devoted to this topic. It terminated in April 2002 (see [85]) and
some of the results obtained by UKA are also relevant for Calculemus. On the theoretical side, numerous
results on the relations between different kinds of involutive bases, Grbner bases and characteristic sets
have been obtained both-for ordinary and for differential ideals. Several characterisation theorems for
involutive bases have been proved and the computation of (differential) dimension polynomials has been
studied. We have thoroughly investigated the homological approach to involution via Spencer cohomology.
An algebraic algorithm for the geometric completion to involution was developed (including a constructive
solution of the problem of delta-regularity.

Exploration in Finite Algebra

This work was a case study on combining proof planning with computer algebra systems. Its goal was to
show that various human-oriented proving techniques can be realized with a multi-strategy proof planner
and that the search space of the proof planner can be drastically reduced by employing computations of
computer algebra systems during the planning process.

The case study essentially consisted of three parts: (1) To implement a set of proof planning strategies that
realize different proof techniques for the residue class domain. Thereby we were interested in examin-
ing basic algebraic properties of given residue class structures to classify them into terms of the algebraic
structure they form. Furthermore, structures of the same type and cardinality are then classified into sets of
isomorphic structures. The implemented proof planning strategies employ to a varying degree the compu-
tations of CASs to ease the planning process. (2) To test the effectiveness of the implemented machinery
we conducted a large number of experiments by automatically and systematically classifying residue class
structures in terms of their basic algebraic properties and into different isomorphism classes. And (3) to
verify the usefulness of the combination of proof planning and computer algebra we also compared our ap-
proach with alternative techniques. In particular, we experimented with substituting computer algebra by
model generation and by proving theorems with a first order equational theorem prover instead of a proof
planner. The former turned out to be quite effective and can fruitfully complement the use of computer
algebra. The latter proved to be applicable for constructing most of the required proofs but is less robust in
a large case study than our combined proof planning and computer algebra approach.

The case study was conducted in the Y MEGA system, using its proof planner Multi and the CAS MAPLE [227]
and GAP [123]. Major parts of the work has been carried out in collaboration of the Saarbriicken and Birm-
ingham nodes and have involved the YVR Martin Pollet. Part (1) and (2) of the case study were reported
in [195] and [193], where the former was concerned with proofs of simple algebraic properties and the
latter with the isomorphism proofs. An extensive report on both, including a detailed presentation of the
constructed proofs has also been published in [192]. Part (3) of the case study has been presented in [194].

The Residue Class Domain

We define a residue class set over the integers as the set of all congruence classes modulo an integer
n, i.e., Zn, or as an arbitrary subset of Z,. More concretely, we are dealing with sets of the form
Z3,Z5,Z3\{13},Z5\{0s}, {16, 36,56}, etc. where 15 denotes the congruence class of 1 modulo 6. If
c is an integer we also write cl,(c) for the congruence class of ¢ modulo n. A binary operation o on a
residue class set is given in A-function notation, and o can be of the form Azry.z, Azy.y, Azy.c where cis a
constant congruence class (e.g., 13), ATy. z+y, ATy.z*y, Ary.z—y, where +, ¥, = denote addition, multi-
plication, and subtraction of congruence classes over the integers, respectively. Furthermore, o can be any
combination of the basic operations with respect to a common modulo factor, e.g., Azy. (z+13) = (y+23).
We often abbreviate the operations Azy. z+y, Azy.z*y and Azy.z—y by +, ¥ and —, respectively.

For a single structure (RSy,, o) we are interested in what kind of algebraic structure it forms, i.e. whether
it is a group, a monoid, a semigroup, etc., by showing simple algebraic properties such as associativ-
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ity, existence of inverses, and so on. For two given structures (RS2, 0') and (RS2, 0%) we examine
whether or not they are isomorphic; that is, we determine whether or not there is a function h:(RS},o!) —
(RS2, 0?) such that h is injective, surjective, and homomorphic.'® Both for showing simple properties

and isomorphism/non-isomorphism proofs we employ proof planning guided by computer algebra compu-
tation. In particular for isomorphism and non-isomorphism proofs, the appropriate guidance is crucial for

Success.

Checking Simple Properties

First, we are interested in classifying residue class sets over the integers together with given binary op-
erations in terms of what algebraic structure they form. We automatically classify structures of the form
(RS,,0) in terms of magma (also called groupoid), semi-group, monoid, quasi-group, loop, group, and
whether or not they are Abelian. The classification is done by first checking successively if the properties:
closure, associativity, existence of the unit element, existence of inverse elements, and the quasi-group ax-
iom (i.e., that for each two elements a,b € RS, there exist elements z,y € RS,, such thata oz = b and
y o a = b) hold and then constructing and discharging an appropriate proof obligation. The properties are
checked mainly with GAP and proofs for the constructed obligations are planned with Multi. For instance,
GAP is used to check whether a given structure contains a unit element; depending on the result, a proof
obligation is constructed stating there exists or there does not exist a unit element in the structure. Multi
then tries to produce a proof plan for this statement. If it succeeds the next property is checked; if it fails
Multi tries to prove the negation. For discharging proof obligations we have implemented three different
proving techniques with strategies in Multi, which use symbolic computations to a varying degree.

Exhaustive case analysis. This technique is possible since we are in a finite domain and can always
enumerate all occurring cases. The planning process usually starts with the expansion of defined concepts
such as unit, associative, etc. For resulting universally quantified goals ranging over a residue class a
case split on all elements of the structure is performed. For existentially quantified goals all possible
instantiations for the quantified variable are successively checked. The latter is done by introducing a meta-
variable that is bound successively to the different elements of the residue class set. Here the search space
can be reduced by computing the (probably) correct instantiation immediately as a hint with a computer
algebra system. For instance, when showing that for each element in the structure there indeed exists an
inverse, GAP can compute the respective inverses. When the subsequent subgoals cannot be proved, Multi
backtracks to the instantiation of the meta-variable and chooses the next element. After the quantifiers are
eliminated, the statements about residue classes are transformed to statements about integers which can be
solved by numerical simplifications.

Equational reasoning. This approach tries to construct the proofs by using as much as possible general
equation solving. Problems are decomposed to the level of equations on integers; universally quantified
variables are replaced by constants and existentially quantified variables by meta-variables. The prop-
erty then holds, when all equations can be solved by the CAS MAPLE to check the universal validity of
the equation or, in case the equation contains meta-variables, if there is an instantiation of these meta-
variables, such that the equation is universally valid. For instance, the equation for the inverse element
cln(c)+cln(mv) = 0, containing congruence classes (where c is a constant and muv is a meta-variable) is
reduced to the corresponding equation on integers (¢ + mv) modn = 0modn before MAPLE returns a
general solution for mwv.

Applying known theorems. For this technique the planner uses theorems from (JMEGA’s knowledge-base
to reduce a given problem. This strategy does not depend on the support of a computer algebra system.
Moreover, the theorems are applied to statements about residue class structures directly; a reduction to
statements about integers is not necessary.

] - : o
»8Observc that we avoid confusion between indices and modulo factors by writing indices as superscripts, except in indexed
variables such as x;, y; as they are clearly distinct from congruence classes of the form cli(x).
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Techniques for Isomorphism Proofs

In order to prove that two given structures are isomorphic the proof planner can reuse the three strategies
developed for checking simple algebraic properties. But unlike those proofs that could be solved in most
cases within one strategy, for isomorphism proofs different subproofs can be solved by different strategies.

Exhaustive case analysis. When constructing an isomorphism proof we have to search for a bijective
homomorphism h among all existing mappings between the two residue class structures involved. The
mapping h is represented as a pointwise defined function, where the image of each element of the domain
is explicitely specified as an element of the codomain. The search can be abbreviated by computing a
pointwise isomorphism with MAPLE.

As an example consider the proof that (Zs, +) and (Zs, Azy.z+y+1,) are isomorphic. There exist 4
possible pointwise functions h : Zo — Z,. MAPLE computes as function h(02) = 15, h(12) = 0, which
is used to subsequently show the properties injectivity, surjectivity, and homomorphy with an exhaustive
case analysis. Each of the subproofs has the complexity n? where n is the cardinality of the structures
involved.!® However, if no suitable hint can be computed there are n” pointwise defined functions to
check. This becomes infeasible already for relatively small 7.

Equational reasoning. Isomorphism proofs can often be simplified by computing a polynomial that in-
terpolates the pointwise defined isomorphic mapping. If an interpolation polynomial can be computed it
is introduced into the proof instead of the pointwise mapping. For the construction of the interpolation
polynomial from a given pointwise function we employ again MAPLE.

For the example problem that (Z, +) is isomorphic to (Zs, Azy.z+y+12) the corresponding pointwise
isomorphism mapping is h(0z) = 12,h(12) = 0. MAPLE computes the interpolation polynomial
z — (z + 1 mod 2) which is introduced into the proof. Multi now has a chance to find the subproofs
for surjectivity and the homomorphism property by equational reasoning, i.e. by reducing these two sub-
problems to equations, which might be solvable by MAPLE. However, in the subproof for injectivity we
have to show for each two distinct elements that their images differ, which cannot be concluded by equa-
tional reasoning.

Applying known theorems. Like for the proofs of simple algebraic properties this strategy can be applied
to the overall problem directly. Moreover, it can also be applied during the proof of one of the injectivity,
surjectivity, or homomorphy subgoals. In particular, it is used to exploit the simple mathematical fact that
in finite domains surjectivity implies injectivity and vice versa. Usually Multi proves first the surjectivity
subgoal; then the injectivity subgoal is shown by applying the following theorem: A surjective mapping
between two finite sets with the same cardinaliry is injective.

Techniques for Non-Isomorphism Proofs

In our previous work [193, 194], we have implemented several proof techniques for the proof planner Multi
to show that two structures are not isomorphic. These require varying degrees of guidance from computer
algebra or model generation:

Testing all possible functions h. Essentially this corresponds to a case split on all possible instantiations
for the mapping h and showing in each case that h is not an isomorphism. While this technique does not
require any guidance for Multi, for two structures whose sets have cardinality n, Multi has to consider n™
possible functions, which becomes infeasible even for relatively small n.

Proof by contradiction. The idea of this technique is to find a pair of distinct elements in one structure that
is always mapped to the same image under each homomorphism h. This shows that there exists no injective
h and therefore no isomorphism. For this technique, a prospective pair of elements can be computed

19The proof of each of these properties results in formulas with two nested quantifications ranging over sets of cafdinality n. This
results into n2 possible cases.
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either with the computer algebra system MAPLE or, more reliably, with the SEM model generator [274].
However, even with this guidance, the subsequent proof process is essentially equational theorem proving,
and success is not guaranteed.

Using predefined invariants. An intuitive way to show non-isomorphism is to find an invariant property
of one structure that the other structure does not exhibit. We have already implemented a proof planning
approach for the following predefined invariants: (1) the structures involved are of different cardinality; (2)
the structures form different algebraic entities; e.g., one structure is a group while the other is a semigroup;
(3) one of the structures contains an element of some order k and no element in the other structure has order
k. For structures without a unit element, we can similarly use the order of traces of elements. Multi checks
these invariants in this order. To compute both orders and traces of elements, Multi uses the computer
algebra system GAP. In the automatic exploration of the residue class domain (see [194]) we usually start
with sets of similar algebraic structures of the same cardinality (e.g., quasigroups of order 5). Hence
invariant (3) is the only one of relevance, and the predefined criteria are often not sufficient to successfully
construct a non-isomorphism proof.

Evaluation

For assessing the effectiveness of the combination of proof planning and computer algebra we compared
our approach with alternative techniques. In particular, we experimented with (1) substituting computer
algebra by model generation and (2) by proving theorems with a first order equational theorem prover
instead of a proof planner.

For (1) we employed the model generator SEM [274] and substituted its computations for all computer
algebra computation in the proof planning process. It turned out that in general both approaches are equally
robust and do not outperform each other. In fact, the approaches complement each other in some respects:
For instance for guiding the non-isomorphism proofs, MAPLE was less effective since it not always returned
all possible solutions to a homomorphism equation system. SEM on the other hand provided the necessary
answers.

The experiments (2) were performed by using the theorem prover Waldmeister [137]. It proved to be
applicable for constructing most of the required proofs (except for isomorphism problems) but is less
robust in a large case study than the combined proof planning and computer algebra approach. While the
theorem prover has a clear advantage with respect to runtime, producing solutions much faster than the
proof planner, it could find proofs for all stated problems. In particular, if structures with larger cardinality
were involved the likelihood of failure would grow. Moreover, the problem formulation was rather intricate
and unintuitive.

Proving with Invariants

In the case study presented in section 3.5.b it turned out that the most difficult problem was to show that
two given structures are non-isomorphic. The proof attempts often failed because the proof planner did not
get the appropriate guidance from a computer algebra system or a model generator, which was necessary
for the more advanced proving techniques. To overcome this dilemma we generalize the technique of using
invariant properties to show non-isomorphism: Given two structures, we construct an appropriate, bespoke
discriminant (i.e., an invariant property that only one of the structures exhibits) to show that the structures
are not isomorphic. More formally, for two structures S* and S? we want to find a property P such that
P(S8') A =P(S?) holds.

For example, consider the pairwise non-isomorphic quasigroups S*, 52, S® given with their respective
multiplication tables in Fig. 22. When comparing the tables of S! and S2, one discriminant is fairly
obvious: while S? has only 05 on the main diagonal, all elements on the main diagonal of S? are distinct.
Thus, the invariant property we can use is 3z.Vy.z = y o y. Things become less obvious when we
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St =(Zs,-) 8% = (Zs, Azy. (25%2)+y)  S® = (Zs, Azy. (3s%2)+y)
10g 15 25 35 45 S2|05 15 25 35 45 53105 15 25 35 45
0|05 35 3 25 15 005 1o % 3s % 0005 12 % 3 %

15|15 05 45 35 25 15|25 35 45 05 15 15|35 45 O 15 25

25|25 15 05 45 35 25|45 05 15 25 35 25|15 25 35 45 Os

35(35 25 15 05 45 35|15 25 35 45 Os 35145 05 15 25 35

215 215 35 25 15 Og 45|35 45 05 15 25 45 (25 35 45 05 15

Figure 22: Some quasigroup multiplication tables
compare the multiplication tables of S? and S3. Here, one invariant of S, which does not hold for 52, is
Ve.Vy. (roxz =y) = (yoy = z).

The generalized proof procedure is as follows: given two structures S* and S? we have to:

1. find an appropriate discriminant P,

2. show that P(S?) holds,

3. show that ~P(S?) holds, and finally

4. show that VX.VY.P(X)A=P(Y) = X # Y holds %.

The single proof parts combine to give the following, sketched formal proof:

? ? ?
L@ E L (4)
P(51) —P(5) VX.VY.P(X)A-P(Y)=> X £Y
P A=P(S) "0 TRE)A-PE) = 5 45 LamSL S
S1 A Sy ModusPonens

The proof strategy is realized in Multi with the help of various external systems: To automatically detect the
discriminant P we employ the HR system [107]. HR performs automated theory formation by inventing
concepts, making conjectures, proving theorems, and finding counterexamples. The main functionality
used for the application for finding discriminants discussed here is concept formation, which is achieved
by using production rules which take one (or two) old concepts as input and return a new concept.

Discriminants computed by HR are translated into appropriate concepts and provided to the proof planner.
The remainder of the proof is subsequently constructed as follows: Subproofs (2) and (3) are planned with
Multi possibly using the support of a computer algebra system. The latter depends on the actual strategy
Multi choses.

Subproof (4) on the other hand is contributed by first-order automated theorem provers (ATPs), which are
called via the TRAMP-system [191], an interface and transformation system. It transforms a given problem
into the input formats of connected ATPs and runs these systems concurrently. Output of the ATPs is then
translated back into natural deduction (ND) proofs and inserted as proof for the original subproblem. For
our work we employed first order resolution provers OTTER, BLIKSEM, and SPASS.

This work has been carried out in collaboration of the nodes in Birmingham, Edinburgh, and Saarbriicken.
It particularly involved the YVR Simon Colton, the author of the HR system. The results where published
in [196].

20While step 4 is fairly obvious for a human mathematician, it is crucial for a formal proof.
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The Jordan Curve Theorem for Special Polygons

The proof of Jordan curve theorem for special polygons is the first part of the formalization of general
Jordan curve theorem for simple closed curves:

Jordan curve theorem
The theorem that states that every simple closed curve divides a plane into two parts and is
the common boundary between them. (see [217]).

This theorem seems quite obvious, however it is common knowledge that it is very difficult to prove it
rigorously. M1zAR formalization follows the script [248] by Y. Nakamura and Y. Takeuchi. The work
actually started in 1992 with the article [208] by Y. Nakamura and J. Kotowicz in which the Jordan property
was introduced. That article was preceded by several other articles in which Euclidean spaces and special
polygonal arcs were defined. A polygonal curve is called special if its line segments are parallel to the
axes. Another useful concept of so-called Go-boards was also defined before the submission of [208]. By
a Go-board the authors ment a matrix of points of the plane as below

(T1,91) --- (T1,9n)

(mn;yl) . (xnv.yn)

with the property that ordinates of points in the same column are equal as well as abscissae of points in
rows and, moreover, z; < z; and y; < y; for i < j. Using the techniques of Go-boards the following
theorem was proved in [163]:

Every two special arcs lying in a rectangle R such that the first arc joins the upper and lower
sides of R and the second arc joins the left and right sides of R have a non empty intersection.

Together with several subsequent articles devoted to further development of the theory of Go-boards, the
above lemma made it possible to complete the first part of the Jordan theorem (saying that the complement
of the curve is the union of two components) in [209]. Later, the second part (stating that these components
are different) was proved in [255], and finally, the complete theorem was proved in [160].

The preliminary work on the proof of general Jordan curve theorem started with defining the external (so-
called Cages) and internal (so-called Spans) approximation of the curve by special polygons in [84] and
[254] respectively. Recently, we work on proofs of lemmas left to complete the whole proof. 74 articles
devoted to this theorem have been collected so far, which makes about 10% of the Mizar Mathematical
Library. However, some of the articles contain suplementary theory, only indirectly relevant to the proof.

Continuous Lattices

One of the largest concentrated efforts in developing MML has been the formalization of A Compendium of
Continuous Lattices by G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott [126]
in its entirety. This project started in 1996. The effort was originally motivated by the question of whether
or not the MIZAR system was sufficiently developed for the task of expressing advanced mathematics?!.
The current state of the formalization—57 MIZAR articles written by 16 authors—indicates that in principle
the M1ZAR system has successfully met the challenge.

More detailed reports on the project may be found in [29], [30], and [31].

The formalization was divided into two series of MIZAR articles:

YELLOW: articles bridging the gap between the contents of MML and the knowledge assumed in [126],

21The above question was raised at the 2nd QED Workshop held in Warsaw in 1995 http: //www-unix.mcs.anl.gov/ged
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WAYBEL?: articles formalizing the main course of [126].

No formalization of examples and exercises were done unless some item in the main text depends on it.
This was meant to reduce the workload as none of the participants specialized in continuous lattices.

The formalization is as close as possible to [126], but provisions were made for some MIZAR peculiarities
such as built-in concepts and mechanisms, reuse of MML, and the like.

Whenever possible, the formalization was more general than [126].

[126] Formalized The de Bruijn factor

Characters (bytes) 327,929 3,098,460 9.44
Compressed 100,839 566,720 5.62
Tokens (words) 55,142 808,020 14.65

Table 2: The de Bruijn factors

The book [126] contains 334 pages divided into 8 chapters covering a total of 715 items. Of these, 254 items
are examples and exercises which we did not plan to cover. By the end of April 2002, the formalization
covered 231 items which is slightly more than 50% of the work originally planned. On average, an article
in the WAYBEL series covers 7 items, varying from 1 to 18 with a median of 5.

1996 1997 1998 1999 2000 2001 Total

YELLOW 8 1 5 3 1 4 22
WAYBEL 10 6 8 4 5 2 35
All 18 7 13 7 6 6 57

Table 3: Articles over the years

Table 3 summarizes the number of articles submitted to MML from this project. The YELLOW series
constitutes 38.6% of the articles, much less than originally anticipated. However, this may change in the
near future as we are approaching the part of [126] which is poorly covered in MML.

Order Sorted Algebras

The theory of order sorted algebras (a concept originally introduced by Joseph Goguen) was developed
in MI1ZAR by Josef Urban from Charles University (Prague) during his visit to University of Bialystok as
YVR of CALCULEMUS. This work consists of 5 MIZAR articles covering basic concepts of the theory.
The notion of a signature of an order sorted algebra introduced in [257] is a 5-tuple < C,0,&,a,p >,
where C is the set of sort symbols, O is the set of operation symbols, £ is an equivalence relation of
O,p:0 = Canda : O — C* (C* denotes the free monoid generated by C). Order sorted algebra
was defined using the structure of a many-sorted algebra previously introduced in [253]. A many sorted
algebra (over a given signature) is a 2-tuple of the form < S,x >, where S is a function which assigns
some sort to any sort symbol and  is the characteristic of the algebra which assigns some operation given
by the signature to every operation symbol. The development of the theory of many sorted algebras covers
the concepts of subalgebras, quotient algebras and homomorphisms between algebras. Eventually, free
order sorted algebras were defined in [256].

3.5.c Ongoing and Future Work

In the remainder of the project we intend to tackle the following challenging problems and anticipate the
following collaborations.

22The way below relation is the key concept in continuous lattices, see [126, p. 38].
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Involutive Bases

A work in progress is to investigate the impact of involutive techniques in field theory, a domain of Physics.
Most if not all physical systems are represented by systems of partial differential equations. Among such
systems are the well-known Yang-Mills or Einstein equations for instance. Without aiming at doing better
than what the very many expert physicists of string theory are doing, it is possible to study whether some
systems are integrable or not. What is challenging is to solve symbolically over- or under-determined
systems of polynomial or differential equations or in simpler terms to extend the concept of Groebner bases
to such systems. This is an old well-known problem that was much earlier investigated by Cartan and his
co-workers before being put aside. The need to design constructive methods in mechanized mathematics
was at the origin of a revival. But, we still need to find out the proper representations in which to better
formulate involutive bases. Again in very simple words, we are in a situation where we can get some
information on local solutions of non-linear systems and we aim at extending them to some kind of non-
local neighborhood.

Proofs in Homological Algebra

In the course of the Calculemus project the Basic Perturbation Lemma was identified as an interesting
challenge problem, since its field is the Algebraic Topology and the role of the infinity in this field. In
the particular case in which the application domain of a symbolic computation system is Homological Al-
gebra or Algebraic Topology the analysis of the correctness of its algorithms, using as a tool an ATP, is
particularly complex, due to the need of using infinite data structures and, then, higher-order functional
programming [235], [233]. This specific situation implies that there is a deep semantic gap between the
proofs which appear in the standard literature on Algebraic Topology and the semantics of the implemen-
tation language used to build the symbolic computation system. Our aim is to bridge this gap by using ATP
technology.

Kenzo (Sergeraert et al. [117]) is a Common Lisp symbolic computation system for Algebraic Topol-
ogy. Kenzo has computed homology groups unknown until its construction [233]. Hence, the following
objective defines an interesting research task.

Goal 1. Give a proof of the Kenzo correctness.

This goal being very complex (due both to the size and conceptual complexities of Kenzo), we derive the
following sequence of subgoals.

Subgoal 1.1. Verify and establish formal models for Kenzo fragments.
Subgoal 1.1.1. Give automated certified versions of some central parts of the program.

Since the Basic Perturbation Lemma (BPL) is the most important tool in algorithmic homological algebra,
this is sensible to state as a first task:

Subgoal 1.1.1.1. Give a certified version of the BPL implementation used in Kenzo.

Here, it is necessary to choose a theorem prover to make the automated proof of correctness. Due to the
previous work done in Isabelle [211] about algebraic structures and its expresiveness, this has been our
choice. But linking Common Lisp (the Kenzo implementation programming language) and Isabelle seems
difficult from a technical point of view. So, we prefer starting with a BPL implementation in ML (the
Isabelle implementation programming language).

Subgoal 1.1.1.1.1. Implement in ML a certified version of the BPL algorithm.

Termination problems cause difficulties to the automated proving process, so in a first step, we intended to
give an Isabelle automated proof of the BPL theorem. This is the problem tackled in this extended abstract.

Subgoal 1.1.1.1.1.1. Give an Isabelle automated proof of the BPL theorem.

In the following definitions, some notions of homological algebra are briefly introduced (for details, see
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[173] for instance).

Definition 2. A graded group C, is a family of abelian groups indexed by the integer numbers: C, =
{Cn}nez, with each C,, an abelian group. A graded group morphism f : A. — B, of degree k (€ Z)
between two graded groups A, and B, is a family of group homomorphisms: f = {fn}nez, with f, :
An — By group homomorphism Vn € Z. A chain complex is a pair (C.,dc, ), where C, is a graded
group, and dg, (the differential map) is a graded group homomorphism d¢, : C. — C, of degree -1
such that do, dc, = 0. A chain complex homomorphism f : (A.,da,) — (B.,dp,) between two chain
complexes (A.,d4,) and (B,,dp, ) is a graded group homomorphism f : A, — B. (degree 0) such that
fda, =dB,f.

Definition 3. A reduction D, = C, between two chain complexes is a triple (f, g, h) where: (a) The
components f and g are chain complex morphisms f : D, = C, and g : C, — D.; (b) The component h
is a homotopy operator on D,, that is to say: a graded group homomorphism h : D, — D, of degree +1;
(c) The following relations are satisfied: (1) fg = id¢,; (2) gf + dp,h + hdp, = idp,; (3) fh = 0; (4)
hg = 0;(5) hh = 0.

Definition 4. Let D, be a chain complex. A perturbation of the differential dp, is a morphism of graded
groups ép, : D. — D, (degree -1) such that dp, + dp, is a differential for the underlying graded
group of D,. A perturbation dp, of dp, satisfies the nilpotency condition, with respect to a reduction
(f,g,h) : D. = C., if the composition dp, o h is pointwise nilpotent, that is, (6p, © h)™(z) = 0 for an
n € N depending on each z in D,.

Theorem 5. Basic Perturbation Lemma — Let (f,g,h) : D, = C, be a chain complex reduction
and ép, : D. — D, a perturbation of the differential dp, satisfying the nilpotency condition with
respect to the reduction (f, g, k). Then a new reduction (f',g',h') : D. = C. can be obtained where
the underlying graded groups of D, and D, (resp. C, and C.) are the same, but the differentials are
perturbed: dp;, = dp, +dp,,dc, = dc, + dc,, and ¢, = f@dp.g; f' = f¢; ¢’ = (1 - hedp,)g;
h' = h¢, where ¢ = >_o2 (=1)*(6p, © h)".

The BPL is a central result in algorithmic homological algebra (in particular, it has been intensively used
in the symbolic computation systems EAT [234] and Kenzo [117]). It first appeared in [236] and it was
rewritten in modern terms in [56]. Since then, plenty of proofs have been described in literature (see, for
instance, [130], [35], [232]). '

Work on this project is currently under way at the Universidad de La Rioja (Dr. Julio Rubio and Jesus
Aransay) in collaboration with Dr. Clemens Ballarin at TU Miinchen, where the formalization of proofs of
some auxiliary lemmas in the theorem provet Isabelle has been completed. -

Proofs in Graph Theory

The goal of this case study is to generate non-isomorphism proofs in graph theory, i.e. to show that two
given graphs are not isomorphic. To answer this question there exist currently elaborate computational
techniques as, for instance, implemented in the Nauty system [190]. Unfortunately, these systems usually
only give an answer but no detailed justifications why the two graphs are not isomorphic. However, a
working mathematician might be interested in more insights into the problem, not only to check the cor-
rectness, but also to put the additional information to further use. To further this end we want to employ the
technique we have developed for task 1.1 during the integration of computer algebra into proof planning as
well as the mechanisms implemented for the case study described in section 3.5.b.

The overall idea is to prove that two given graphs I'; and I'2 are not isomorphic, by showing that there
respective automorphism groups are not isomorphic. So far we have defined a set of eight problems in
permutation groups that will part of the more general solution:

In computational permutation group theory, a group G is specified by a list of generating permutations
A = [a1,az,...,ak], where A consists of permutations of the points 2 := {1,2,...,n}, i.e. the elements
of A belong to the symmetric group Sym,,. We often write G = (A) to denote that G is generated by A.
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We let our permutation act on points from the right.

1. Membership The first question is how to prove that a permutation g belongs to the group G. We
define a word in A to be an expression of the form

e O 7 €m

Gy Gy~ Gy,
where the indices i; are in the range 1,...,k and the exponents e; are integers. It is now easily
shown that a permutation g € Sym,, is an element of G if, and only if, it can be expressed as a word

in A.

2. Subgroup Suppose H is another permutation group with generating set B and that we wish to prove
that H is a subgroup of G. From the definition of a generating set it follows that H is a subgroup of
G if, and only if, every element of B is contained in G.

3. Orbit The orbit of z under the action of G is zG = {zg : g € G}. We wish to determine an orbit
containing a given point of 1.

4. Schreier tree Stabiliser subgroups are of fundamental importance to both theoretical and computa-
tional permutation group theory. The stabiliser subgroup in G of z is

G:={9€G:zg=rzx}

It is not immediately clear how to compute with this subgroup, for, although the definition gives us a
test for whether g is an element of G, it does not give us a generating set.

The following Orbit Lemma establishes a one-to-one correspondence between the orbit of a point
and the set of cosets of its stabiliser.

Ify € G, then {g € G : g = y} is a coset of G. In particular, |zG| = |G|/|G|.

Suppose that for every element y of the orbit zG, we choose t(y) € G with the property that
rt(y) = y. Then it follows immediately from the Orbit Lemma that all such t(y) form a set of
coset representatives for G, in G. It would be inefficient to store all the elements ¢(y), so instead we
construct a Schreier tree rooted at z. That is, a subgraph 7~ of the orbit graph G containing z which is
a tree (when we view the edges as being undirected) with root z. For every y € X, there is a unique
minimal path in 7 from z to y (again, disregarding the fact that the labeled edges are directed).

5. Stabiliser Now that we have a set of coset representatives for G, we can use it to compute a gener-
ating set for the stabiliser of z in G. This query is based upon Schreier’s lemma:

Suppose G is a group with generating set A, and H is a subgroup of G. If U is a set of
coset representatives for H in G, and the function t : G — U maps an element g of G to
the representative of H g, then a generating set for H is given by

{uat(ua)™' :u€eU,ac A}.

Observe that for z € Q and H = Gg, the function t : G — U does not depend on the choice of
element in a coset Hg, so the map ¢ :  — G given by t(zg) = t(g), is well defined. This indicates
how to apply Schreier’s Lemma to permutation groups.

6. Base Now that we have a stabiliser of a subgroup, we can repeat the process to form a chain of

subgroups. A base for G is a finite sequence B = [z1, ..., z] of distinct points in {2 such that
Gx1,12,.4.,zk = 1
Hence, the only element of G which fixes all of the points z1,z2, ...,z is the identity. Clearly

every permutation group has a base, but not all bases for a given group are of the same length. If we
writt G) = G4, z,.. 2., then we have a chain of stabilisers

G=G9 360 3« > G > gk =1,

117



Task 3.5: Challenge Mathematical Problems

We often require that a base has the additional property that G(*) # G(i+1),

A base can be constructed by starting with B = [z;], and recursively choosing a letter z; in a
nontrivial G, ... z,_,-orbit and appending it to B. The construction is finished when G, ., = 1.

.....

7. Non-membership Here we deal with the complementary query to the first one treated: Prove that
the permutation g does not belong to G. Given a base B = [z, ...,z;] of G, we have a chain of
subgroups

G=GO>gl >...>qgk-1 > gk =1
and sets U() consisting of coset representatives for G(+1) in G(Y). For we can take G =
Gqy,..zi, and U () = ¢(G™) the set of Schreier elements corresponding to a Schreier tree for
G rooted at z;_1.
An element g of G is contained in exactly one coset of G() in G(9), s0 g = hyuo for some unique h,
in GM) and ug in U(®). By induction, we can show that ¢ = uguk_1 - - - ujuo where each u; € U
is uniquely determined by g. This process, called sifting an element, gives a canonical form for the
elements of G and underpins most of the more advanced applications of stabiliser chains.
On the other hand, if g is not in G, then sifting fails because at some stage we get that z;h;_, is not
in the orbit ziG(i—l), and so h;_; is notin G=1) This gives us our proof of non-membership.

8. Order The order of a permutation group can now be effectively computed. We use the following
Order Lemma:

Suppose G is a permutation group and B = [z, ..., x}] is a base for G. Then
k
6] = J[lectD].
=1

We have currently implemented specialized algorithms in the computer algebra system Gap to compute
the necessary information for the above problems. These computations are now employed in the proof
planner of MEGA to derive the necessary proofs for the problems. From this we will work towards non-
isomorphism proofs for automorphism groups, which will eventually lead up to the full non-isomorphism
proofs for graphs.

The work will be jointly carried out by the nodes in Birmingham, Eindhoven, and Saarbriicken. Thereby the
Eindhoven node is responsible for generating the certificates in the computer algebra system Gap, whereas
the Birmingham and the Saarbriicken node will be jointly responsible for an adequate formalisation of the
problems in an intuitive logical formalism in MEGA, and the proof planning including computer algebra
computations. Currently the work involves the Y VR Martin Pollet.

Exploration in Zariski Spaces

Zariski Spaces were introduced in 1998 in [189]. As they are a fairly new and barely researched domain,
they offer the opportunity to apply some of the techniques developed in the Calculemus Network to un-
charted mathematical territory.

Before defining a Zariski Space, we first recall the definition of a Zariski Topology of a ring. Let R be
a commutative ring with unity, and let specR denote the collection of prime ideals of R. Now for each
(possibly empty) subset A of R, the variety of A is given by

V(A) = {P € specR: A C P}.

It is easily shown that the collection of all such varieties constitutes (the closed sets of) a topology on
specR, called the Zariski Topology of R, which we denote by ((R). Furthermore, every topology is clearly
a semiring, if one takes the operations of addition and multiplication to be set-theoretic intersection and
union, respectively.
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Now let M be an R-module, and more or less repeat the above process. That is to say, let specM denote
the collection of all prime submodules of M, and for each subset B of M, let the variety of B be given by

V(B) = {P € specM : B C P}.

Finally, let {(M) represent the collection of all varieties of subsets of M. Then one can show that (M)
is closed with respect to intersections, but not unions, and therefore does not in general form a topology.
However, it does form a semimodule over the semiring {(R), where the additive operation in ( (M) is taken
to be intersection, and scalar multiplication is given by V(A)V (B) = V(RAB). We call this semimodule
¢(M) the Zariski Space of M.

We plan to transfer techniques developed for the residue class domain to Zariski Spaces. In particular
we intend to perform a classification of concrete, small Zariski spaces, for instance over integer modules
automatically using the proof planner Multi, computer algebra systems like Singular and MacAulay?2, the
mode] generator SEM and the HR concept formation system.

The work will be jointly carried out by the Birmingham and the Edinburgh node. Since one of the authors
of the original Zariski Spaces paper, R. L. McCasland, is now a research fellow with the Edinburgh node,
we have the unique opportunity to exploit his indepth knowledge and mathematical know-how for our
experiments.

Jordan Curve Theorem

The work on the MIZAR formalization of Jordan curve theorem is quite advanced. Only some technical
lemmas remain to be proved and we hope to complete the proof for arbitrary simple closed curves during
the first part of the year 2003.

Continuous Lattices

We intend to formalize in MIZAR a substantial part of the remaining theory in A Compendium of Contin-
uous Lattices, [126]. Although the formalization already includes 57 MIZAR articles, there is still a lot of
work to do.

As the first step we will concentrate on the theory of function spaces (spaces of continuous functions
equipped with the Scott topology) which seems to be the most difficult topic on the project research frontier.
It deals with categorial properties unifying the lattice aspects of function spaces with topological ones.
Namely, we must address lattice and topological products, top-lattices of maps preserving some lattice
properties and top-lattices of continuous topological maps, and correspondence between them in this topic.
It is well advanced, but still some theorems are waiting.

As the second step we will formalize the proof of equivalence of Lawson topology and lim-inf topology. It
is required by the theory from Chapter V. This will cover Chapter III. Also, the formalization of Chapters
IV and V is started. However, the theory from Chapter V depends on the theorems from the first and second
step. It needs equivalence of Lawson and lim-inf topologies and formalized results cannot be submitted yet
to the MML. For Chapter IV there were and still are several formalizations required to fill the gaps between
knowledge assumed in [126] and the state of the Mizar Mathematical Library.

We expect a new edition of the monograph which is supposed to be published by Cambridge University
Press in March 2003 as ’Continuous Lattices and Domains’. Therefore, our work will also include a
revision of Mizar Mathematical Library according to the new approach presented in the new edition. We
seek partners in the Calculemus project to cooperate within all the above fields.
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1 Abstracts

In the following paper the report on the topic ” Generation that Exploits Corpus-
Based Statistical Knowledge” is summarized which was presented for a seminar
in University of Saarbruecken by Alexander Malkis on the 18th of March, 2003.

2 Introduction: different approaches for language
generation

The aim is to create a general-purpose, domain-independent natural language
generation algorithm. There exist two main development approaches for this
problem.

The first approach requires inputs with a daunting amount of linguistic de-
tail: part-of-speech, number, gender, definiteness, tense, sentence organization,
sub-categorization structure, semantic relations, ... Basically, we need a strict
definition of English in the form which is usable for a computer. This knowledge
is hard to get and use.

The second approach is based on template-based methods which sidestep
linguistic decision-making. For example, by using the template:
<obj-name>’s <attribute> is <value>
a typical result from a database query on the type of food a menu serves would
look like:

((:obj-type venue) (:obj-name Top_of_the Mark) (:attribute food-type)
(:attrib-value American))

which could produce the sentence: “Top of the Mark’s food type is American”.
Templates avoid the need for detailed linguistic information, but they only work
in very controlled or limited situations. They cannot provide expressiveness,
flexibility, or scalability that many real domains need.

3 Introduction: desirable solution

A desirable solution is a generator that abstracts away from templates enough
to provide the needed flexibility, scalability, and yet still requires only mini-



mal semantic input and maintains reasonable efficiency. The generator would
take on responsibility of finding an appropriate linguistic realization for an un-
derspecified semantic input (for example overcome the hardness of determining
from a Japanese text the number or gender of a noun phrase).

(Knight and Hatzivassiloglou, 1995) suggested overcoming this knowledge
acquision bottleneck by tapping the vast knowledge inherent in English text
corpora (in the tested implementation two years of Wall Street Journal were
used). This knowledge, in the form of word-pair frequencies, could be applied
to a set of semantically related sentences to help sort good sentences from bad
ones by extracting the best path in the word lattice (a set transition diagram
with links labeled by English words), which helps pack the sentences efficiently.

The system is organized the following way:

meaning

{

’ symbolic generator I

l

word lattice of possible renderings
al

statistical extractorJ +corpus

{
English string

+lexicon
+grammar

4 Introduction: “Nitrogen”: from meaning to
word lattices

Nitrogen describes a generation system that computes word lattices from a
meaning representation, performing sentence realization and some components
of sentence planning - namely, mapping domain concepts to content words and
to some extent, mapping semantic relations to grammatical ones.

It contributes:

¢ a flexible input representation;

e anew grammar formalism for defining the mapping of meanings onto word
lattices;

e a new algorithm to do this mapping;

o a large grammar, lexicon, and morphology addressing linguistic phenom-
ena such as knowledge acquisition bottlenecks and underspecified/ambiguous
input.

5 AMR: abstract meaning representation

An AMR is a labeled directed graph (or feature structure) of a special form.
The most basic AMR is of the form (label / concept), e.g.



(m1 / |dog<canid|).
This AMR means that m1 is an instance of the concept dog. It can represent
“the dog(s)”, “(a) dog”, “dogs”. A concept can be modified using keywords:
(m2 / |dog<canid| :quant plural)
narrows the meaning to “dogs” or “the dogs”.
The concepts can be associated with each other in a nested fashion to form
more complex meanings. The following roles on different representation levels
can are used:

semantic :agent, :patient, :sayer, :sensor,...

deep syntactic :obliquel (deep subject), :oblique2 (deep object) , :oblique3
(indirect object)

syntactic :subject, :direct-object, :indirect-object,...

Below is an example of a slightly more complex meaning. The root concept is
eating and it has an agent and a patient, which are dogs and a bone (or bones),
respectively:
(m3 / |eat, take in]

:agent (m4 / |dog<canid| :quant plural)

:patient (m5 / |os,bone|))
Possible output includes “The dogs ate the bone”, “Dogs will eat a bone”, “The
dogs eat bones”, “ Dogs eat bone”, “The bones were eaten by dogs”,...

6 Lexical Knowledge

Nitrogen must find words for concepts in an AMR. The lexicon is used, which
is a list of 110 000 tuples of the form:
(<word> <part-of-speech> <rank> <concept>)

Examples:
(("eat" VERB 1 |eat,take in|)
("eat" VERB 2 |eat>eat lunch|)

("take in" VERB 14 |eat,take in|)...)

The lexicon is relatively simple. It contains no other information about features
like transitivity, subcategorization, gradability, countability, etc. Instead, the
statistical post-processor ranks different grammatical realizations according to
their likelihood. A policy of rejecting the words whose primary sense is not the
given concept when better words are available is adopted. For example, take the
sentence “I cannot |sell<cozen| their trust” and assume that the lexicon allows
|sell<cozen| to be expressed only through “betray” and “sell”:
("betray" VERB 2 |sell<cozenl)
("sell" VERB 6 |sell<cozen|)
So the word ”betray” is used. Besides, the ambiguity during natural language
translation is preserved. For example, for

(m6 / *OR* |sell<cozen| |cheat on| |bewray| |betray,fail| |rat on|)
the word “betray” is generated, because it is the only word that expresses most
of the concepts. If no words found, that can express all or several concepts,
then the ambiguity is preserved in word lattices. This technique reduces the
complexity of the final word lattices.



7 Morphological Knowledge

The lexicon contains words in their root form, so morphological inflections must
be generated. The system also performs derivational morphology (adjective —
noun, noun — verb). Both kinds are merged into a single, concise knowledge
base. Here is a portion of the table for pluralizing nouns:
("-child" "children")
("-person" "people" "persons")
("-a" "as" "ae") ; formulas/formulae
("-x" "xes" "xen") ; boxes/boxen
("-man" "mans" "men") ;humans/footmen
("-Co" "os" "oes") ;-[consonant]o

;potatoes/photos
Remark that all possibilities (“photoes” and “potatos”) are generated; how-
ever, the statistical extractor has already a strong preference for “photos” and
“potatoes” over “photoes” and “potatos”, so no huge exception list is required.
Meaning shifts during derivation (“depart” — “departure” /”department”) are
infrequent and are corrected in the morphology tables.

8 Generation algorithm

And AMR is transformed into word lattices by keyword-based grammar rules

described later.
The top-level-keywords of an AMR are used to match it with a rule (or
rules). A matching rule proceeds according to the following algorithm:

1. split the AMR apart
2. associate a sub-AMR with each keyword

3. lump the relations left over into a sub-AMR. under the :rest role using
the same root as the original AMR

4. if no sub-AMRs are present, then apply the instance rule
if any sub-AMRs are present, then

(a) go into recursion for sub-AMRs

(b) concatenate received lattices

The instance rule uses lexical and morphological knowledge to build initial word
lattices associated with a concept when the recursion bottoms out. Then the
instance rule builds build basic noun and verb groups, as well as other syntactic
categories from these.

The rhs of a matching rule specifies the needed syntactic category for each
sub-lattice, the surface order of the concatenation as well as the syntactic cate-
gory for the new resulting lattice.

Upon emerging from the top-level rule, the lattice with the desired syntactic
category (usually sentence) is selected and handed to the statistical extractor
for ranking.



9 The instance rule

This rule is applied to every concept in the AMR and builds initial word lat-
tices for each lexical item and for basic noun and verb groups. The relational
keywords that apply at the instance level are :polarity, :quant, :tense, :modal.
In case where a meaning is underspecified and doesn’t include these keywords,
the instance rule uses the recasting mechanism (described below) to add some.
If not specified, the system assumes positive polarity, both singular and plural
quantities, all possible time frames (which can be coarsely specified as past,
present or future) and no modality.

Why does the system generate both quantities? First of all, Japanese nouns
are often ambiguous with respect to number, so generating both singular and
plural possibilities and allowing the statistical extractor to choose the best one
results in better translation quality than rigidly choosing a single default. Then,
there are many instances in English when the number of a noun is dictated more
by usage convention or grammatical constraint than by semantic content (e.g.:
“The company has (a plan/plans) to establish itself in February.” or “The child
won'’t eat any carrots”).

The instance rule is factored into several subinstance rules with three main
categories: nouns, verbs and miscellaneous. The noun instance rules are sub-
divided into rules with respect to number and the verb instance rules - with
respect to modality and tense.

When the polarity is applied to nouns or adjectives, the result is “non-”
prepended to the word (which may sound awkward, e.g. “non-happy”). Nega-
tive polarity is usually most fluently expressed in verbs, e.g. “does not eat”.

10 Grammar Formalism

The rules map semantic and syntactic roles to grammatical word lattices. These
roles include:

semantic :agent, :patient, :domain, :range, :source, :spatial-locating, :temporal-
locating, :accompanier

deep syntactic :obliquel (deep subject) , :oblique2 (deep object), :oblique3
(direct object), :adjunct

shallow syntactic :subject, :object, :mod (modifier), :tense, :quant, :definite-
ness

A simplified version applying to :agent, :patient roles is:
((x1 :agent) (x2 :patient) (x3 :rest) -
(s (seq (x1 np nom-pro) (x3 v-tensed) (x2 np acc-pro)))
(s (seq (x2 np nom-pro) (x3 v-passive) (wrd "by") (x1 np acc-pro)))
(np (seq (x3 np acc-pro nom-pro) (wrd "of") (x2 np acc-pro)
(wrd "by") (x1 np acc-pro)))
(s-ger (seq...))
(inf (seq ...))).
The lhs is used to match an AMR with agent and patient roles at the top level.
The :rest keyword serves as a catch-all for other roles that appear at the top
level. The rhs specifies two ways to build a sentence - one an active voice and



the other passive, and possibilities to build another parts of speech - here a noun
phrase (“the consumption of the bone by the dog”). If we apply this rules to
the AMR
(m7 / leat,take inl|

:time present

:agent (d/ |dog,canidl :quant plural)

:patient (b / los,bone| :quant sing))
then we get the following lattices (not all are included):
(8 (or (seq (or (wrd "the") (wrd "*empty*")) (wrd "dog") (wrd "+plural")
(wrd "may") (wrd "eat") (or (wrd "the") (wrd "a") (wrd "an") (wrd "*empty*"
(wrd "bone"))
(seq (or (wrd "the") (wrd "a") (wrd "an") (wrd "*empty*")) (wrd "bone")
(wrd "may") (wrd "be") (or (wrd "being") (wrd "xempty*")) (wrd "eat")
(wrd "+pastp") (wrd "by") (or (wrd "the") (wrd "*empty*")) (wrd "dog")
(wrd "+plural"))))
(NP (seq (or (wrd "the") (wrd "a") (wrd "an") (wrd "*empty*")) (wrd
"possibility") (wrd "of") (or (wrd "the") (wrd "a") (wrd "an") (wrd
"sempty*")) (wrd "consumption") (wrd "of") (or (wrd "the") (wrd "a")
(wrd "an") (wrd "*empty*")) (wrd "bone") (wrd "by") (or (wrd "the")
(wrd "*empty*")) (wrd "dog") (wrd "+plural")))
(S-GER ...) (INF ...)

The algorithm avoids combinatorial explosion in the number of rules (:rest
handy mechanism decouples handy combinations). All realizations, good and
bad ones, are generated, allowing the statistical extractor to choose the best
one, so purposeful overgeneration becomes a strength.

11 Recasting mechanism

The recasting mechanism enables the generator to transforms one semantic
representation into another one (such as deep to shallow, or instance to sub-
instance) and accept as input a specification anywhere along this spectrum
(recast-and-recycle).

One area where recasting is used is the :domain rule. Take, for example,
the sentence “It is necessary that the dog eat”. Sometimes it’s convenient to
represent it as
(m8 / |obligatory<necessary]

:domain (m9 / |eat, take in|
:agent (m10 / |dog,canid|)))
and at other times as
(m11 / |have the quality of being|
:domain (m12 / leat,take in|
:agent (d / |dog, canidl))

:range(m13 / |obligatory<necessary)).

Both are accepted and the first is automatically recast to the second according
to the transformation rule (1—2):

((x1 :rest) (x2: domain) =

(? (x1 (:new (/ lhave the quality of being|) (:domain x2) (:range
x1)) 7).



In order to encode “The dog is required to eat” or “The dog must eat”, the
word lattice for |obligatory<necessary| should be inserted within the lattice
for m9 or m12 - but the formalism can only concatenate lattices. So we need to
recast to a representation
(m14 / |eat, take inl|

:modal (m15 / |obligatory<necessaryl)

ragent (m16 / |dog,canid|)).
This is done via the transformation rule (2—3):
((x1 :rest) (x2 :domain) (x3 :range) =+
(? (x2 (:add (:modal (x3 (:add (:extra x1))))) 7))
(s (seq (x2 np nom-pro) (x1 v-tensed)

(x3 adj np acc-pro)))

(s (seq (wrd "it") (x1 v-tensed)

(x3 adj np acc-pro) (wrd "that") (x2 s))) ...).

One can get to know the exact meaning of the keywords “add” or “new” from
[?].

The recasting mechanism allows to nest modals within modals up to any
depth, as well as to attach polarity and tense at any level. As an example “It is
not possible that it is required that you are permitted to go” can be also stated
as “It cannot be required that you be permitted to go”, or “It is not possible
that you must be permitted to go”, or “You cannot have to be permitted to go”.
This is done by a grammar rule expressing the most nested modal concepts as
a modal verb, and the remaining modal concepts as a combination of regular
verbs or adjective phrases.

The Nitrogen’s grammar rules includes a fairly complete model of obligation,
possibility, permission, negation, tense and all of their interactions.

12 Extractor: from word lattice to an English
string

The statistical extractor uses a database containing bigram and unigram scores;
gathered from a collection of English texts. Here is the algorithm:

1. For each sentence w;...w, (where wy,...,w, are its words) approximate its
“probability”:

P(wiws...wn) 1= P(w1|START) - P(wa|w1) - ... - P(wp|wn—1) - P(END|wy,)
2. Smooth: if for some word w; we have that on all the paths through w; in

the lattice the bigrams with the previous or next words score zero, then
use unigram scores for w; instead of bigram scores;

3. Choose the sentence with the biggest probability.

13 Example 1

Let’s go over to the first example and try to form the best sentence for an AMR
(A / |workable|
:DOMAIN (A2 / [|sell<cozen|



:AGENT I
:PATIENT (T / |trust,reliancel
:GPI THEY))
:POLARITY NEGATIVE)

Here GPI means General Possession Inverse. Symbolic generation for this input
produces a word lattice containing 270 nodes, 592 arcs and 155 764 distinct
paths. The top 10 paths selected by the statistical extractor are:

I cannot betray their trust.

I will not be able to betray their trust.

I am not able to betray their trust.

I are not able to betray their trust.

I is not able to betray their trust.

I cannot betray the trust of them.

I cannot betray trust of them.

I cannot betray a trust of them.

I cannot betray trusts of them.

I will not be able to betray the trust of them.

14 Observed behavior: Example 1

The statistical extractor inherently prefers common words and combinations.
When a subject and a verb are contiguous, it automatically prefers the verb
conjugation that agrees with the subject. When a determiner and its head
noun are contiguous, it automatically prefers the most grammatical combina-
tion (not “a trusts” or “an trust”). Why do “I is”, “a trust” nevertheless occur?
Here are some corpus counts:

a trust 294 an trust 0  the trust 1355

a trusts 2 an trusts 0 the trusts 115

Iam 2797 I are 47 Tis 14
Note that the secondary preference for “I are” over “I is” makes sense for sen-
tences like ”John and I are...”. Also note the apparent preference for the singular
form of “trust” over the plural form, a subtle reflection of the most common
meaning of the word “trust”. A heuristic for preferring shorter phrases accounts
for the preference of sentence 1 over sentence 2 as well as for the preference of
“their trust(s)” over “trust(s) of them”. Most common words are also preferred.
For the concept |trust, reliancel, the generator’s preference is predicted by
the unigram counts:

reliance 567 reliances 0  trust 6100 trusts 1083

15 Example 2

Consider another input:
(A / |admire<look|
:AGENT (V / |visitor]
:AGENT-OF (C / |arrive,get|
:DESTINATION (J / |NIHON|)))
:PATIENT (M / "Mount Fuji"))



Lattice stats: 245 nodes, 659 arcs, 11664000 paths. Top 10 paths extracted:
Visitors who came in Japan admire Mount Fuji.
Visitors who came in Japan admires Mount Fuji.
Visitors who arrived in Japan admire Mount Fuji.
Visitors who arrived in Japan admires Mount Fuji.
Visitors who came to Japan admires Mount Fuji.

A visitor who came in Japan admire Mount Fuji.

The visitor who came in Japan admire Mount Fuji.
Visitors who came to Japan admires Mount Fuji.

A visitor who came in Japan admires Mount Fuji.

The visitor who came in. Japan admires Mount Fuji.
Mount Fuji is admired by a visitor who came in Japan.

16 Observed behavior: Example 2

First of all, the first top two sentences not correct. Then, for the concept
|visitor|, it’s easy to guess that “visitor” occurs more frequent than “visitant”.
However, the choice between singular and plural forms for “visitor” results in
a decision opposite to one made for “trust” above: “visitor” scores 575 and
“visitors” scores 1083. In choosing between forms of “come” and “arrive”, the
generator prefers the more common word “come” and its derived forms. For
relative pronouns, the extractor is given a choice between “that”, “which” and
“who” and nicely picks “who” in this case, though it has no symbolic knowledge
of the grammatical constraint that “who” is only used to refer to people:

visitor who 9 visitors who 20

visitor which 0  visitors which 0

visitor that 9 visitors that 14
In the wide variety of choices for verb tense, past tense is chosen :

who came 383 who arrived 86
who come 142 who arrive 15
who comes 89 who arrives 11

A notable error of the generator is in choosing the preposition “in” between
“come” and “Japan”. However, “in Japan” is so much stronger than “to Japan”
when compared with “came to” versus “came in” that “in” wins:

in Japan _ came to

to Japan = came in

in Japan 5413 to Japan 1196

came to 2443 arrived in 544

came in 1498 arrived to 35

came into 244 arrived into 0
The problem here is that bigrams cannot capture dependencies that exist be-
tween more than two words. A look at trigrams (currently not used by the
system) shows that this dependency does indeed exist:

came to Japan 7 arrived to Japan 0
came into Japan 1 arrived into Japan 0
came in Japan 0 arrived in Japan 4



In choosing the person for the root verb “admire”, all relevant bigrams are zero
(i.e. “Japan admire(s)”, “admire(s) Mount” ), so the decision essentially defaults
to unigrams:

admire 212, admired 211, admires 107
Here the generator accidentally got lucky in its choice because if there had
been non-zero bigrams, then they would have most likely caused the generator
to make the wrong choice, by choosing a third person singular conjugation to
agree with the contiguous word “Japan” (“Japan admires”) rather than a third
person plural conjugation to agree with the true subject “visitors”.
Note the general weakness of the extractor to weight the bigrams between the
verb and the word previous to it the same as it does the bigrams between the verb
and the word that follows, although the former dependency is more important
in choosing grammatical output. For example, in ”visitors admire(s) Mount”,
both bigrams ”visitors admire(s)” and ”admire(s) Mount” weight equally.

17 Discussion

The strength of the current implementation of generator and extractor is in its
simplicity and robustness. A scalable and efficient solution is reached. Yet there
are also inherent limitations. One is that dependencies between non-contiguous
words cannot be captured, nor can dependencies between more than two (or
three in a modified system) items. As a result, long-distance agreement cannot
be realized at all. The authors plan to overcome this difficulty through some kind
of a syntactic bracketing. The other problem, the sparseness problem, is related
to the corpus size: many reasonable bigrams have zero scores, which causes
smoothing relative to unigram counts which may produce not very grammatical
constructs. Even many individual words may not appear in corpus at all. The
authors also noticed that the straightforward bigrams prefer sequences of simple
words like “was”, “the”, “of”, to more concise renditions of a meaning.

Some part of the problems can be solved by switching over to trigrams in
order to capture the dependencies between three contiguous words. However,
the experiments show that is poses more problems than it solves. A subtle
disadvantage of trigrams is that many linguistic dependencies are only unary or
binary relationships, so a trigram-system would not represent them efficiently.
Then, trigrams exponentially increase the amount of data that must be stored
and require more extensive smoothing to prevent more zero scores.
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Abstract. The representation of knowledge for a mathematical proof assistant is generally used exclu-
sively for the purpose of proving theorems. Aiming at a broader scope, we examine the use of mathe-
matical knowledge in a mathematical tutoring system with flexible natural language dialog. Based on
an analysis of a corpus of dialogs we collected with a simulated tutoring system for teaching proofs in
naive set theory, we identify several interesting problems which lead to requirements for mathemati-
cal knowledge representation. This includes resolving reference between natural language expressions
and mathematical formulas, determining the semantic role of mathematical formulas in context, and
determining the contribution of inference steps specified by the user.

1 Introduction

In a mathematical proof assistant (MPA), knowledge representation (if any) is used for the purpose of prov-
ing theorems. State-of-the-art MPAs such as COQ, NUPRL, MIZAR, ISABELLE-HOL, Pvs and f2MEGA
usually provide a combination of proof automation and facilities for user interaction and most of them are
connected to a structured mathematical knowledge base. In spite of their common purpose (proving theo-
rems), the heterogeneity of MPAs (they are based on different logics, calculi, semantics, representations of
proofs, etc.) poses a challenge for the communication of mathematical knowledge between them, and most
importantly, a common ontology and semantics are missing. Some of these issues are currently investigated
in the Mathematical Knowledge Management research initiative [4]. However, appropriate knowledge rep-
resentation in MPAs to support the search for a proof is only one of the issues to be addressed in the future
of computer-aided mathematics, and in computer-aided mathematical education in particular.

Among the challenges involved in human-oriented automated proving is the coupling of MPAs with
natural language processing. This in turn gives rise to additional requirements on knowledge representation.
For example, it has been shown in [9] that the mathematical domain representation as used for proof
search and proof planning is not sufficient for the purpose of proof presentation. Some methods for more
natural references to rules have been demonstrated in [16]. In this paper, we present further requirements
on mathematical knowledge representation for the purpose of handling flexible natural language dialog in
a mathematical tutoring system. Our discussion is based on data we collected through experiments with a
simulated tutoring dialog system for teaching proofs in naive set theory.

Some state-of-the-art tutorial systems allow limited dialog, where the input is either menu-based or
requires exact wording [24,2, 13]. This contrasts with Moore’s empirical findings showing that flexible
natural language dialog is needed to support active learning [23]. The latter approach is taken for example
in the CIRCSIM-Tutor project [22] which aims to build a natural language-based tutoring system for first-
year medical students to learn about the reflex control of blood pressure.

The goal of our project is to develop a mathematical tutoring system with flexible natural language
dialog to support mathematical problem solving. We employ a modular approach keeping a strict separation
between the different kinds of knowledge involved in the processing. The design of the system components
is informed by the analysis of a corpus of tutorial dialog data we collected in an experiment.

The outline of this paper is as follows. We first present the aims of our project, illustrate the current
application scenario and motivate the choice of the mathematical domain. The modeling of static and
dynamic knowledge within this domain is our first contribution. Next, we describe an experiment in which
we collected a corpus of natural language tutorial dialogs in the chosen mathematical domain. On the basis
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of the analysis of our corpus we then present the key requirements and challenges for the representation of
mathematical knowledge and the design of a mathematical reasoning tool.

2 The DIALOG Project

The goal of the DIALOG project ! [25] is (i) to empirically investigate the use of flexible natural language
dialog in tutoring mathematics, and (ii) to develop an experimental prototype system gradually embodying
the empirical findings. The experimental system will engage in a dialog in written natural language (and
later also in multimodal forms of communication based on diagrams, spoken language and animated math-
ematical function displays) to help a student understand and construct mathematical proofs. The overall
scenario for the system is illustrated in Figure 1. We describe its components below.

Learning Environment In our scenario, the student takes an interactive course in some field of mathematics
within a web-based learning environment. We use ACTIVEMATH [19,21], a generic web-based learning
system that dynamically generates interactive (mathematical) courses adapted to the student’s goals, pref-
erences, capabilities, and knowledge. It enables a student to select the material he/she wants to study and
to review his/her knowledge about the subject matter. After finishing a learning unit the student may opt
for an interactive exercise session to actively apply what he/she has learned. It is primarily the interactive
exercises that we aim to enrich with the possibility of flexible tutoring dialog using natural language. The
features of ACTIVEMATH include: user modeling and monitoring facilities; user-adapted content selection,
sequencing, and presentation; support of active and exploratory learning by external tools; use of (math-
ematical) problem solving methods, and re-usability of the encoded content as well as inter-operability
between systems. ACTIVEMATH maintains a dynamically updated student model (SM) containing infor-
mation about the axioms, definitions, theorems (hence the assertions) and the proof techniques the student
has studied and mastered so far.? This information will be used also by the tutoring dialog system. In ad-
dition, we also assume an idealized student model (ISM) set up by the author of the learning unit, which
specifies the mathematical material a student ideally should know after studying the unit.

! The DIALOG project is part of the Collaborative Research Center on Resource-Adaptive Cognitive Processes
(SFB 378) at University of the Saarland [26].

2 ACTIVEMATH keeps track of what material the student has studied and for how long [20]. It also lets the student
skip material he is confident to know well already.



Mathematical Proof Assistant The MPA is used for the problem-solving in the mathematical domain un-
derlying the dialogs. This involves the verification (or falsification) of user specified inference steps and
checking whether the application of an inference step leads to a proof state from which a complete proof
can be obtained. Mathematical tutorial dialogs thus require (i) stepwise interactive as well as (ii) automated
proof construction at a human-oriented level of abstraction. Ideally, these are provided by the MPA.

In addition, it should be possible to control the proof strategy used by the MPA (depending on the target
of the tutorial session), and the proof(s) constructed by the MPA should only exploit the mathematical
knowledge that the student possesses, that is, it should be possible to control the mathematical knowledge
used in the proof(s) in accordance to the respective SM and ISM.

The f2MEGA system [29] with its advanced proof presentation and proof planning facilities provides an
adequate starting point for integrating an MPA in our scenario.

Proof Manager 1In the course of the interactive tutorial session, the user may explore alternative proofs,
or make various attempts at constructing a valid proof, involving both valid and invalid inference steps. In
addition, tutoring may require the possibility to compare the problem-solving attempts made by the user
with target “master” proofs. The student’s problem-solving attempts with respect to the proof space need
to be monitored for the sake of managing the dialog flow. It is the task of the proof manager in our scenario
to provide this interface and additional book-keeping between the MPA and the dialog manager.

Dialog Manager When the student enters a tutorial dialog session, the interaction is handled by the dialog
manager. We employ the Information-State (IS) Update approach to dialog management developed in the
TRINDI and SIRIDUS projects [28,27]. The IS is a centrally maintained data structure which contains a
representation of the information accumulated as the dialog progresses, including (i) “private” information
of the system, and (ii) the information considered to be “shared” between the system and the user. A dialog
is modeled as a sequence of dialog moves each of which is a transition from one information state to the
next one. The system interprets each user’s utterance with respect to the current IS, and then computes a
transition to a new IS. When it is the system’s turn, the next move is selected according to the IS at that
point, the corresponding utterance is produced, and again the IS is updated. The dialog manager relies on
the input analysis and output generation modules to exchange data between the user and the system; it
further relies on the proof-manager to monitor the mathematical problem-solving and to access the MPA.

Knowledge Resources The static knowledge in our scenario comprises linguistic resources, dialog re-
sources, pedagogical knowledge, and mathematical knowledge. The dynamic knowledge includes the SM
and ISM mentioned above, as well as the information state maintained by the dialog manager.

The linguistic resources include the grammar and the lexicon used for analyzing the natural language
input and generating the output. We combine the use of generic, domain independent resources with re-
sources specific to the particular area of mathematics being taught.

The static dialog resources include (i) dialog move selection rules (i.e., rules that determine what dialog
move the system will make next, given the current information state and a communicative goal), and (ii)
dialog information-state update rules (i.e., rules that dynamically change the information state depending
on the dialog moves the user or the system have successfully made). We distinguish between domain
independent, generic dialog moves, such as meta-communication moves (used for, e.g., clarification and
correction), and domain-specific ones, such as various kinds of hinting moves [11,31], which may be
further specialized for tutoring in the matematics domain.

The pedagogical knowledge specifies generic and domain-specific teaching strategies. This includes
the specification of the didactic versus socratic teaching methods. Also the hinting dialog moves mentioned
above are derived from the pedagogical knowledge.

Finally, the static mathematical knowledge consists of assertions (i.e., axioms, lemmata, theorems),
domain dependent proof rules and methods, corresponding diagrammatic illustrations as well as selected
completed master proofs. This mathematical knowledge is typically highly structured into mathematical
sub-domains and it usually forms a dependency/inheritance graph. Examples of systems maintaining struc-
tured corpora of formalized mathematics are MIZAR with its mathematical library [5], NuPrl’s knowledge
base [3] and the MBase system [18], which is the system of choice in our project. An essential requirement



in our scenario is that the mathematical knowledge is shared between the learning environment, the DIA-
LOG system, and the mathematical assistant. One problem in many current proof systems is to guarantee
consistent handling and data flow between the declarative and the procedural view of assertions. In [32],
we suggest a solution that uses declarative entries in the mathematical knowledge base to automatically
generate all potential procedural views from these declarative entries for each given proof context.

We already mentioned that there may be a limited number of fixed master proofs for the proof exer-
cises to be employed in guiding the tutorial session. These can be statically maintained in the mathematical
knowledge base. Generally, however, there are infinitely many variants of proofs for a mathematical theo-
rem and a significant number of these proofs is acceptable for being tutored relative to the knowledge and
capabilities of the student. We therefore couple the static modeling of a well chosen set of master proofs
with the dynamical verification of single inference steps and the dynamic generation of proofs by the MPA.

The SM (and the ISM) refer to the mathematical knowledge base in the sense that they maintain, for
each student, a view on this knowledge base, separating the known from the unknown content. An addi-
tional teacher model could provide information such as a specification of the dominant and the subdominant
mathematical concepts of a learning unit. Note that the structure imposed by the latter information is likely
to differ from the hierarchical structure of the knowledge base itself [30].

Our Current Domain of Choice: Naive Set Theory For the first phase of the project we chose naive set
theory as the mathematical domain of interest. We integrated a course on naive set theory into ACTIVE-
MATH. Basic notions (e.g., set) and definitions (e.g., subset), or set operations, (e.g., union, intersection,
set complement, power set) are structurally represented in this course. Typical examples are presented af-
ter each definition, for the student to get a good intuition about the more abstract concepts. Students are
also exposed to Venn diagrams which provide an intuitive understanding of set operations. Throughout the
course, the student is continuously introduced to the more important properties of this domain, for example,
laws of commutativity, associativity, distributivity, or de Morgan laws.

The Naive Set Theory domain has several advantages: (i) The problems in this domain are almost al-
ways automatically provable [6, 7]. (ii) The domain is not too complex for the intended users (i.e., first year
students). (iii) Simple problems are typically even decidable, so that wrong proof steps can be detected by
the generation of counterexamples with a model generator [6]. (iv) The domain provides interesting oppor-
tunities for multi-modal interaction using the Venn and Spider diagrams.? (Sound and complete inference
systems exist for the representation layer of Spider diagrams; cf. [14] and the references therein.)

The disadvantages of this domain are: (i) Its modeling is built directly on predicate logic without higher-
level concepts and fields of mathematics on many intermediate layers between the base logic and the
domain itself. Hence, there are no hierarchical dependencies on other mathematical sub-domains, such
as real numbers, continuous functions, Abelian groups, etc. (ii) Consequently, the hierarchical expansion
depth of proof plans and proofs is also relatively low. Although this raised some initial doubts about the
suitability the naive set theory domain, the experiment described in the next section revealed that even
such a relatively simple mathematical domain has sufficient complexity to allow meaningful tutorial dialog
sessions. We shall, however, also consider more complex mathematical domains in future experiments.

3 Empirical Study

We conducted a Wizard-of-Oz (WOz) experiment in order to collect a corpus of tutorial dialogs in the naive
set theory domain. We implemented a tool to support the experiment and collect the dialog data on-line [10].

In a WOz experiment, the subject interacts through an interface with a human “wizard” simulating
the behavior of a system [8]. The WOz methodology is commonly used to investigate human-computer
interaction in systems under development. One of the reasons for using a WOz setting rather than a human
tutor is that it has been observed that humans interact differently with computers than with other humans.
Another reason is that the tutor should follow the specific algorithm(s), which we are implementing in our
system. In this way the dialog data we collect (i) represents the users’ behavior in interactions following
these algorithms and (ii) provides early feedback on the algorithms. In subsequent experiments in the

3 These aspects are, however, not subject of this paper and will be considered in later experiments.
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Fig. 2. Declarative, procedural, and diagrammatic knowledge in the domain of naive set theory.

project, implemented components can substitute for some of the tasks now carried out by the wizard, while
preserving the overall experimental setup.

We invited 24 subjects to participate in the experiment. They were students with educational back-
ground in humanities (e.g., law, economy, various languages, psychology) or sciences (e.g., biology, chem-
istry, computer science, computational linguistics). Their prior mathematical knowledge ranged from little
to fair.

For each subject, the experiment consisted of the following phases (each of which had a fixed maximum
duration): (1) Preparation and pre-test: First, the subject filled in a background questionnaire. Then he/she
studied written lesson material, explaining basic concepts and providing a collection of six lemmata about
properties of sets and eleven lemmata about properties of powersets.*. Finally he/she was asked to prove
(on paper) the theorem K (A) € P(K (AN B)). (2) Tutoring session: The subject was asked to evaluate
a tutoring system with natural language dialog capabilities. He/She was given three theorems to prove:
The theorem K((A U B) N (C U D)) = (K(A) N K(B)) U (K(C) N K(D)) was used first to let the subject
familiarize himself/herself with the system’s interface. Then two more complex theorems were presented
(in different order to different subjects): (a) ANB € P((AUC) N (B UC)) (b) Wenn A C K(B), dann
B C K(A). The interface enabled the subject to type text or insert mathematical symbols by clicking on
buttons; it also displayed the complete dialog with both the tutor’s and the subject’s utterances. The subject
was instructed to enter partial steps of a proof rather than the complete proof as a whole, in order to
enable a dialog with the system. (3) Post-test and evaluation questionnaire: The subject was-asked to write -
down (on paper) a proof for one more theorem.> To conclude the experiment, he/she was asked to fill in a
questionnaire addressing various aspects of the system and its usability.

The tutor-wizard’s task was to respond to the student’s utterances following a given algorithm. The
wizard first classified the completeness, accuracy, and relevance of the subject’s utterance with respect
to a valid proof of the theorem at hand. Then, the wizard decided what dialog moves to make next and
verbalized them. Depending on the tutoring strategy employed by the wizard for a given subject, the dialog
move options included informing the subject about completeness, accuracy, and relevance of the utterance,
giving hints on how to proceed further, explaining a step under consideration, prompting for the next step,
or entering into a clarification dialog. The wizard was free to mix text with formulas [11].

4 A Preliminary Analysis of the Test Dialogs

In this section, we examine the issues involved in the natural language analysis of the dialog utterances
containing mathematical expressions and the role of mathematical domain knowledge. Examples of dialog

* In the first experiment the lesson material was still presented on paper, not through the ACTIVEMATH system.
5 The comparison of the student’s performance of the pre-test and post- test proofs serve to evaluate their learning
gain from the tutoring session.
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utterances that illustrate the phenomena addressed by the analysis below are shown in Figure 3 (the original
German versions of utterances are presented together with their English translation).

We have identified the following three major aspects of the domain-specific knowledge analysis: (1)
Identification and resolution of natural language references to terms and concepts of the domain; (2) Se-
mantic role of formal expressions (mostly formulas) in the current dialogue; (3) Evaluation of the inference
step(s) proposed by the student with respect to the considered master proof(s).

Unlike the third issue, which is specific to our domain of application: mathematical proofs, the first
two issues are more generally applicable to analysis of natural language in the context of mathematics. We
consider these issues in turn.

4.1 References in Natural Language Expressions

Interacting with our system students should be able to input both natural language text and formal mathe-
matical expressions. In order to build appropriate semantics, it is essential to establish refernces between
the formal domain concepts in the mathematical data base, the symbols in the formulas, and the corre-
sponding natural language expressions. In particular, natural language descriptions may refer to several
kinds of domain concepts (in the following, numbers refer to the example utterances in Figure 3):

— Domain objects have known denominations, which are frequently referred to within text portions, e.g.,
“power set” as a natural language expression has the same denotation as the predicate P in a formal
expression about sets. An expression may be ambiguous between generic reference to a domain object
as a type vs. specific reference to a particular instance (or: token) of that type. Generic and specific
references may even appear within the same utterance (cf. (1), where “Potenzmenge” (powerset) is
used as a generic reference, whereas A N B is a specific reference to a subset of a specific instance of
the power set).

Sometimes, the scope of reference is determined jointly by a natural language expression and a mathe-
matical formula. For example, in (2), the right-hand side of the equation clarifies the scope for anchor-
ing the referring expression “both complements”.

— Domain relations comprise propositional logic junctors, logical derivation, and justifications. The in-

terpretation of descriptions in which these relations appear is problematic because of, inter alia, ambi-
guities concerning the scope. For instance, “A and B implies C” has two structurally different inter-
pretations; (7) is an aggregated (or: abbreviated) description of two subset relations where the subsets
share a common superset. Similarly, in (6), the comma is meant to be interpreted as logical “and”
followed by the expression that constitutes the logical consequence. The natural language connective
“and” itself poses ambiguities in that it may mean a “logical and” as well as a consequent of a “logical
derivation”.
Another issue concerns reference to mathematical relations which may be imprecise in the sense that
the natural language formulation fits several relations (e.g., within the domain of mathematical sets,
“must be in” in (4) can be interpreted as “‘element” or ““subset”; and “‘both sets together” in (5) as union
or intersection).

— Variables appear (ideally) in an identical form within the text and the formulas. However, ambiguities
arise here as well, since an identifier in the text may refer to variables in different formulas (e.g., A may
refer to a variable used in an axiom or to a variable in an expression instantiating that axiom, as in (3)).
From an interpretation point of view, this means that an identifier of a variable should be treated as a
referring expression, similar to a nominal group. In cases where there are two occurrences of the same
identifier (form), it should be resolved whether they co-refer or not (e.g., in (3), the two occurrences of
Ain“K(A) = theterm K(AU B)” do not co-refer).

— Domain rules (axioms) are associated with known denominations, similarly to domain objects as dis-
cussed above. Problems of ambiguity arise here due to duality (e.g., distributivity) or due to imprecision
in formulation (e.g., “‘de Morgan rules” in (5)).

— Descriptions of domain operations, such as application of an inference rule, are often described infor-
mally (e.g., “to split” an expression-as in (9)). A challenge for the natural language analysis lies in the
large number of unexpected synonyms, especially uncommon in mathematical usage, where some of
them have a metaphoric flavor.



Not unexpectedly, the most prominent problems handling references to domain concepts are the many
forms of ambiguities. We need to investigate how the proof state contributes to resolving these ambiguities.
In unclear cases, a clarification sub-dialog can be initiated by the system to prompt the student to formulate
more precise descriptions.

4.2 The Role of Formal Expressions

The mathematical formulas within an utterance may vary according to their contextual embedding. In most
cases, however, the intended meaning is explicitly indicated in the text. In general, there are at least the
following possibilities (again, numbers refer to the example utterances in Figure 3):

— References were typically introduced as variables to refer to subexpressions, in order to ease multiple
references in the text. (e.g., in (3), K (A) is used as a variable in the de Morgan rule, and is subsequently
substituted by K (A U B) when the rule is applied. The opposite case is also possible, i.e. a simpler
expression can be introduced as a variable to substitute a complex expression).

— Assumptions occured as explicit statements that the truth of a logical formula was assumed.

— Assertions , in the form of mathematical expressions, may appear without a textual embedding. These
expressions may be theorems or simple corollaries of theorems, or they may be justified by the context
of the current state of the proof (provided the assertions are correct). In both cases, their relevance and
truth depends on the current state of the proof.

- Logical consequences are similar to assertions in that they (implicitly) constitute derivations and are
usually expressed by natural language phrases such as*“follows from”, “implies”, or simply by “=".

— Descriptions of goal occurred in natural language as an abstract form of a formal expression. They
typically served to indicate the purpose of building a new expression from expressions introduced

earlier; see (8).

In all cases, ambiguities may arise when parentheses are required in a mathematical formula, but are
omitted or misplaced by the student. Potentially, interpretation may be impossible as a result. A clarification
sub-dialog would be initiated in such cases to address the syntactically invalid formula.

4.3 Inference Steps

The major task of a student in our tutorial session on proving elementary facts of set theory is the speci-
fication of inference steps. The specified inference steps need to be checked and classified in order for a
tutorial strategy to be decided upon. The classification has two dimensions: (1) correctness of the inference,
and (2) relevance for the proof at hand.

Correctness of expressions: The first task in checking a proposed inference step is to verify its cor-
rectness. Students may make mistakes or produce expressions that are otherwise confused and thus need
to be classified as partially incorrect or wrong. A particular important issue in dealing with mistakes is
the identification of near misses (as in the legendary “bridge” cases of Patrick Winston [33] ). They are
treated differently in the tutorial context than severe errors that show a misconception or a complete lack of
understanding. We interpret an inference as a “near miss” if the expression inferred differs from the correct
one in a single element only. The incorrect element may be a variable or a constant; in particular, a typing
mistake. It may also be an operator, but the correct operator and the incorrect one must be conceptually
related. Examples of commonly confused conceptually related operations in our domain include the use of
“="instead of “C” (too specific relation) or “€” instead of “C” (sort incompatibility on similar relations).

Relevance of expressions: For a correct inference step, its potential contribution to the proof at hand
needs to be determined. In order for an inference to be considered relevant, that is, beneficial for making
progress toward solving the given problem, it needs to be an inference step in the proof to be taught.
Depending on the previous proof steps, the student may have committed himself/herself to one or another
proof out of the set of potential solution paths known to the system. In case an inference step is incompatible
with the priorly followed proof path, the intention of the student to revise his proof strategy is checked (see
utterance (9) in Figure 3).



The granularity of the inference steps suggested by the students has been at the assertion level (cases
where the partial assertion level [15] becomes relevant never occurred in our experiment.) However, cer-
tain “‘easy” assertion level steps were often combined with other inference rules (e.g., a step involving a
relatively easy concept of commutativity was often performed together with some other operation.) On the
other hand, students also produced more compound inferences which would normally require a few asser-
tion level steps as in (6) in Figure 3). In such a cases, the student is asked to explain his/her reasoning in
more detail in order to confirm his/her understanding.

5 Consequences for logical systems

To adequately support tutorial dialog, the mathematical assistant must be based on a flexible logical sys-
tem. The non-standard requirements for such system comprise: (1) dedicated static knowledge sources, (2)
dynamic handling of domain-specific information, and (3) non-standard proof handling capabilities. We
consider them in turn.

Static knowledge sources

— Representation of domain entities Knowledge about domain entities needs to be organized in such a
way that not only proof-relevant details, but also domain-relevant commonalities are captured. This can
be achieved by adding additional hierarchical and association links in the representation of mathemat-
ical theories. Hierarchical relations are needed to capture generalizations, such as “de Morgan rule”
which specializes into the well-known two variants. Associations can be used to capture conceptual
similarities among relations, such as “€” and “C”, which students tend to confuse, as the experiments
have demonstrated.

— Representation of master proofs There are typically several ways of proving a theorem—even for the
simple tasks investigated in our experiments. Conceptually distinct variants of the master proofs rel-
evant for the tutorial goal need to be determined a priori.® Moreover, the master proofs need to be
represented in a way that allows minor variations, for example, a different order of steps and symmet-
rical variants within a single proof representation.

Dynamic handling of information

— Proof status In the course of a tutorial session, evidence needs to be maintained about the relevance of
the set of master proofs in view of the proof strategy adopted by the student. This means focusing on
a reduced set when the student has committed himself to one or another strategy, as well as keeping
track of which steps the student has already accomplished and which ones still need to be addressed.

— Discourse memory A major task for tutorial dialogs in natural language is maintaining evidence about
instances of domain entities:which are introduced and later referred to in the course of a tutorial ses-
sion. Within the linguistic modules, this information is captured in a discourse memory (as part of the
information state maintained by the dialog manager). There exist various models for the management
of entities in the discourse memory (using a simple ordered list, a stack, or a cache model). The ac-
tive part of the discourse memory is accessed in the process of reference resolution. For the tutorial
dialogs, specificities of mathematical formulas need to be incorporated to complement linguistically
motivated criteria for introducing entities into the discourse memory. In particular, the information
conveyed in the form of mathematical formulas is cognitively present, however, not linguistically ex-
pressed. As previously pointed out, accurate identification of composite subexpressions provides the
scope for interpreting the referring expression “both complements” in utterance (2).

Proof handling Another central task for a tutorial session is the interpretation of student actions in view of
the tutorial goal. In our domain, this means the interpretation of suggestions for inference steps in view of
the focused set of master proofs in the given state. Since the inference step suggested may be ambiguous and

¢ By conceptually distinct, we mean application of different assertions, that is, assertions which are not just symmet-
rical variants of one another.



inaccurate, the emphasis is on a preference to resolve ambiguities. On the other hand, as part of ensuring
that the student is aware of the correct proof steps, the tutor must strike a balance between performing
extensive reasoning based on assumed student’s knowledge, versus initiating a clarification subdialog with
the student.

6 Conclusions for Future Research

We presented the overall framework of the DIALOG project which aims at the development of a mathemati-
cal tutoring system with flexible dialog. We concentrated in particular on the requirements such application
poses on the representation of different kinds of knowledge. We reported on a WOz experiment in which
we collected a corpus of tutorial dialogs with 24 subjects on several problems in naive set theory. As part
of the experiment preparations, we developed an initial algorithm for selecting the system’s dialog move
based on an evaluation of the student’s turn and the adopted tutoring strategy [11, 31]. The collected corpus
let us evaluati these preliminary specifications and further develop them. The analysis of the dialogs also
revealed that even a relatively simple mathematical domain has sufficient complexity for meaningful tuto-
rial dialog sessions. In future experiments, we will extend this methodology to more complex mathematical
domains which can be expected to lead to more complex dialogs and linguistic phenomena.

The corpus also enabled us to establish the relevant and significant features of tutorial dialogs in the
mathematical domain and to investigate the relationships between different knowledge sources in our sce-
nario. In particular, we concentrated on the use of the mathematical domain knowledge in dialog interpre-
tation and management, and in the underlying mathematical proof assistant system. We identified cases of
the use of natural language which pose interesting challenges for the processing of domain-specific knowl-
edge and for the interface between the dialog manager and the MPA. These include the natural language
references to logical concepts, the embedding of formal expressions within natural language ones, and
the way inference steps are described in natural language, all of these are now being implemented in our
representation language.

In the next stages of the project, we will continue to investigate the interaction between various compo-
nents in our system architecture and the demands on user modeling that emerge in this setting and gradually
implement the still missing system components.
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