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The idea of tactical theorem proving as a way to program proof strategies interactively
dates back to the end of the 70s’ when the Edinburgh LCF-project [GMW79] proposed its
approach in which the user interacts with the prover through a programming language ML
which operates in a sound way on logical formulas, rules etc. as ML data. Extensions of the
underlying logic resulted in Cambridge LCF}; in the 80s’ Gordon implemented the Higher-
Order-Logic HOL [Gor88] based on Cambridge LCF. Later on, further approaches based on
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Abstract

Research on automated and interactive theorem proving aims at the mechanization

of logical reasoning. Aside from the development of logic calculi it became rapidly
apparent that the organization of proof search on top of the calculi is an essential
task in the design of powerful theorem proving systems. Different paradigms of how
to organize proof search have emerged in that area of research, the most prominent
representatives are generally described by the buzzwords: automated theorem proving,
tactical theorem proving and proof planning. Despite their paradigmatic differences,
all approaches share a common goal: to find a proof for a given conjecture.

In this paper we start with a rational reconstruction of proof search paradigms
in the area of proof planning and tactical theorem proving. Guided by similarities
between software engineering and proof construction we develop a uniform view that
accommodates the various proof search methodologies and eases their comparison.
Based on this view, we propose a unified framework that enables the combination of
different methodologies for proof construction to take advantage of their individual
virtues within specific phases of a proof construction.

Introduction
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tactical theorem proving followed: the KIV-system [HRS90], A-prolog [FM88§|, and OYS-
TER [Bun88| only to mention some of them. In [Bun88|, Bundy addressed the problem of
dynamically combining tactics to complex proof strategies which resulted in the paradigm
of proof planning. The idea was to add declarative specifications (pre-/postconditions) to
tactics resulting in so-called methods. This enables one to reason about the behaviors of
tactics and to plan complex sequences of tactic applications. In the area of program synthe-
sis, Kraan et al. [KBB93] introduced middle-out reasoning to propagate constraints arising
from speculated intermediate goals towards the original goal. Melis [MS99] generalized such
an approach to the notion of island planning. To obtain a more efficient planning process,
Richardson and Smaill [RS01] introduced the notion of methodicals as a programming lan-
guage on top of methods. In parallel the Omega group developed a different implementation
of proof planning. Starting with methods basically as fixed proof tree patterns [KRS94],
their notion of methods evolved to a kind of generalized tactic allowing to construct a proof
tree from arbitrary directions and using various non-tactical sub-provers [BCF*97]. To
cope with the search space arising from this flexibility, Sorge [BS00] introduced O-ants as
an blackboard-based approach to propagate constraints by method applications towards
different directions in parallel.

The large amount of competing and non-related approaches makes it difficult to get a
unified view on how the various aspects of tactical theorem proving and proof planning
influences the efficiency and also the effectiveness of proof search. Rippling [BSvH*93]
as a prime example for proof planning, for instance, has also been implemented using
a tactical theorem proving approach [Hut97]. So what are the differences between the
different approaches from a proof search perspective. Are there fundamental differences
which makes one approach superior to others in some domains?

Interactive theorem proving bears a strong resemblance to formal program development.
The theorem to be proven relates to a formal requirement specification. The resulting for-
mal proof corresponds to the running program satisfying the requirement specification. In
between there are various layers of abstractions in which given requirements are step by
step replaced by constructive solutions satisfying the requirements. In algebraic specifica-
tions the formal notion of refinement constitutes the bonding between the layers. Basic
operations of one layer have to be implemented in terms of operations of the next layer be-
low. Analogously, tactics can be considered as an implementation of complex proof search
operators specified by the pre- and postconditions of the corresponding method. Based on
such specification we may construct even more complex search operators which define again
the basic building blocks of the next layer.

Driven by this analogy to formal software development, we will analyze existing ap-
proaches on proof planning and tactical theorem proving to come up with a unified view
on these approaches. In particular we are interested in the principle representational and
organizational concepts of these paradigms and present an attempt at a uniform perspective
and landscape. This landscape supports the localization of the different paradigms as well
as the requirement analysis of the key structures of a system framework that shall support
the integration of the different approaches based on traditional theorem proving, tactical
theorem proving, and proof planning.



2 Proof Search Using Tactics and Proof Planning

The ultimate goal of a proof search is to obtain a formal proof of the given theorem.
Following the lines of tactical theorem proving [GMWT79, Pau87|, we consider a formal
(tactical) proof as a directed acyclic graph. Each node N of the graph is labeled with a
formula ¢n. The graph has a single bottom-level (or dually top-level) node labeled with the
theorem to be proven. Given a node N its immediate predessor (dually successor) nodes
Ni, ..., Ni represent the conditions necessary to infer the formula associated to N, i.e.,
w is an instance of an inference rule of the proof calculus used to construct the
proof graph. A proof graph is closed iff all leaves N of the graph are closed, i.e., labeled
with true. In contrast to traditional approaches, we define proofs as graphs 1nstead of trees
which allows us to make explicit the multiple use of intermediate proof goals. A partial
proof refers to a fragment of a proof graph and is usually a collection of non-closed and
unconnected proof graphs.

Proof search is the process to construct a closed proof graph. In interactive theorem
proving this is usually done by collecting more and more constraints about the desired
(closed) proof graph. In principle, there are two different types of constraints to refine the
partial proof:

Graph constraints speculate about the existence or the form of particular subgraphs
or individual nodes. This corresponds to the speculation of a lemma or an intermediate
subgoal. For instance in inductive theorem proving, heuristics are successfully used that
propose an intermediate goal of the form P(z) — ¥(P(z)) when proving an induction
step P(z) — P(s(z)), because this form enables the application of the given P(z) on the
transformed goal W(P(z)). In other words we are only interested in proof graphs which
contain a node labeled with an instance of P(z) — ¥ (P(x)).

Operational constraints speculate about the way how an actual proof sketch will be
expanded. A classic example of operational constraints is the refinement of proof sketches
using tactics as they are defined in the LCF-framework [Pau87|. Tactics are basic, primitive
operations on proof sketches implementing the application of an individual inference rule.
Tacticals allow one to combine tactics and tacticals to more complex programs. Thus,
deciding which tactic(s) to use to expand a node represents an operational constraint. For
example, the decision to expand a proof node by using a simplification tactic, which unfolds
definitions, is a well-known instance of such an operational constraint.

2.1 Abstract Proof Graphs

Given a partial proof, graph constraints postulate the existence of a node (or a subgraph) in
the proof graph under development satisfying, for instance, a specific pattern. How can we
make use of such speculated intermediate goals when expanding the partial proof? A well-
known approach is generate and test. Independently of the given constraints the partial
proof is expanded. Only if the generated subgraph (or a particular node of it) satisfies the
graph constraints it will be permanently added to the graph, otherwise backtracking will
remove the added parts from the outline. Consider the example of proving the induction
step: tactics may transform the task P(z) — P(s(z)) but only if their result satisfies the
pattern P(z) — W(P(z)) the generated subgraph is permanently added to the proof outline.



Notice, that in this case we do not need a declarative description of the test pattern but we
only need an oracle (program) to decide whether the conditions are satisfied. The drawback
of generate-and-test is that the test conditions do not influence the generation process.

In order to support a closer interlocking of the proof generating search process and the
selecting test conditions, we need a declarative description of the intermediate goals (instead
of a simple test program) to estimate and react on the distance between the actual node and
the desired goals. As a result, various abstractions on formulas (see [Pla81] for an overview)
were proposed in the past to formulate intermediate goals. Most of these abstractions are
either formula patterns involving higher-order variables (like ¥ in the example above) or
homomorphic extensions on abstractions of the signature (like mapping different predicate
symbols into one symbol, or ignoring specific argument positions of functions). The problem
lasts of how to search for a proof on an abstract level. Ideally we would like to abstract the
inference rules giving birth to a inference machine on the abstract level. This would allow
us to search for an abstract proof based on the declarative graph constraints (formulated
as abstracted formulas). However, it turned out that in practice abstractions on (usual)
formulas are of limited use [Pla81]. In particular, the claim for Pl-abstractions [GW92]
restricts possible abstractions to homomorphic extensions of abstractions on the signature
which are of minor help in proof search. Rippling was a first successful example of using
abstractions on proof datastructures to search for an inductive proof (see [BSvH*93, Hut00]
for details). However, in this setting the abstraction is no longer a function on terms
but a function on terms plus additional context information (i.e., a skeleton denoting the
unchangeable parts of a term). In the meantime more abstractions on such enriched proof
datastructures have been developed as a basis for proof search on an abstract level (e.g.
[AH97, Hut00]).

Summing up, using graph constraints imposes the notion of an abstract proof graph, the
nodes of which are labeled with abstractions of formulas (possibly plus additional context
information). We distinguish two approaches: generate and test will expand the proof
graph on the concrete level, abstract the resulting formula and compare it with the given
abstract goal. Abstract reasoning will operate on an abstract partial proof and will refine
the abstract proof graph to a concrete proof graph later-on.

2.2 Stepwise Refinement

Given the notion of an abstract partial proof, the problem arises how to map such an
abstract object to a corresponding concrete partial proof graph. To simplify matters we
restrict ourselves in the following to mappings that preserve the structure of an abstract
proof graph /outline. In other words we demand the existence of functions abs and ref such
that ref maps each node N of the abstract graph into a node of the concrete graph such
that abs(¢res(nv)) = ¢(N) holds. Furthermore, if M is a sub-node of a node N then ref (M)
is also a sub-node of ref(N). Intuitively, these conditions guarantee that we can use the
abstract problem decomposition (encoded into the abstract proof graph) without changes
to structure the proof of the next proof layer. While this property holds using abstractions
like those mentioned above, there are more general approaches to change the representation
level of proof search that violates the property. We will return to this issue later-on.

If we stick to this structure preserving refinement of abstract proof layers then we can
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Figure 1: Proof layers connected via abstractions and refinements

map each abstract proof constructor, which is an instance of an abstract inference rule, to
a subgraph of the next proof layer. To implement such a refinement, we are interested in a
uniform approach which tells us how to refine abstract inference rules in general. At first
we may use again a general generate-and-test approach to extend a node in the concrete
proof graph until its abstraction is equal to the instance of the abstract proof step. To
realize an informed search, knowledge about possible refinements of abstract proof steps
can be encoded into operational constraints. For instance, we can associate a tactic to an
individual abstract inference rule which will implement the refinement of an abstract proof
step. This corresponds closely to the notion of a module in formal software development:
the abstract inference rule is an atomic operation on the abstract level that is implemented
in terms of operations on the concrete level during the refinement process. Methods, as
they are introduced in [Bun88], are special cases of virtual modules of an approach of proof
search by stepwise refinements: pre- and postconditions specify the abstract inference rule
while the associated tactic denotes its implementation.

2.3 Implementing Abstract Constructors

Organizing proof search in layers of more and more abstract layers, the main task is to
compute appropriate implementations of the (instances of the) abstract constructors of
each layer. Tactics are a classical way to describe such implementations: Given a fixed
abstraction layer, a set of tactic represent the constructors of this layer. Tacticals are
used to combine these constructors to more complex tactics which are used to provide an
implementation of the constructor tactics in the above proof layer.

Classical LCF Tactics operate on an open problem and translate this problem using the
given inference rules of the calculus into a (possibly empty) set of new problems. Tracing
the used inference rules and the intermediate sets of problems, we can say that a tactic will
expand a graph node into a partial proof. Since tactics are deterministic, each tactic T has
a characteristic (partial) function expr which maps proof nodes to partial proofs such that
each proof node NV is mapped to the partial proof expr(N) that results from the application
of the tactic to the node. As a consequence, LCF tactics will only construct proof graphs
top-down.



However, suppose we know about graph constraints which restrict the outline of the
subgraph to be generated. Since we like to avoid a generate-and-test approach, we have to
propagate these constraints towards the choice points of the tactic (like, for instance, the use
of ORELSE in LCF) which corresponds to a bottom-up approach. In other words, knowing
constraints about the leaves Ny, ..., Ny of ezpr(N) we have to deduce knowledge about
the tactic T to be used and the (speculated) node N which will be expanded. Consider
N, Ni,... Ny as the interface of the subgraph resulting from an application of a tactic
T. Then the generalized problem is to deduce knowledge about this subgraph from given
constraints on the interface. This gave rise to the notion of methods as introduced by
[BCF*97]. Roughly speaking, these methods are generalized tactics that compute proof
graphs or partial proofs from a subset of their interfaces which allows one to mix top-down
and bottom-up approaches. In the same way tacticals are used to construct complex tactics
from simple tactics, methodicals [RS01] are introduced to combine methods to even more
complex methods with the help of usual programming language operators.

2.4 Some Nontrivial Examples

In the area of diagrammatic reasoning we find examples for horizontal proof systems work-
ing on representations different from predicate logic. A prominent example are Spider
Diagrams, which extend the well known Venn diagrams and Euler circles supporting rea-
soning about sets (cf. [HMT*01] and the references therein). Soundness (and often also
completeness) are directly guaranteed for the operators at this layer. In this case there is
no need to provide another soundness criterion via refinement, for instance, to a predicate
logic representation layer, even though very natural and intuitive refinement mapping may
exists.

Jamnik’s DIAMOND system [JamO01] is an example for diagrammatic reasoning system
that links two different representation frameworks. DIAMOND constructs proofs within a
diagrammatic representation framework for the specific domain of natural number arith-
metic and it verifies the diagrammatic proofs via refinement to schematic proofs given in a
predicate logic representation framework. Another proof system that links a diagrammatic
representation layer with sentential logic representations is Hyperproof [BE94].

A common aspect of most diagrammatic reasoning systems is that they are exclusively
designed for specific mathematical domains. This contrasts with universal demand and
pretension of systems designed for predicate logic. Our framework, however, provides a way
to combine these approaches by employing a predicate logic based system at the bottom
layer and providing refinements from diagrammatic reasoning systems to the latter (but
probably also between different diagrammatic reasoning systems, if possible).

3 An Attempt at a Unified Framework

In this section we attempt at a unified framework comprising the heterogenous proof search
paradigms sketched before. Our proposal is preliminary in the sense that further extensions
of our view are possible and necessary. For instance, in the discussion in Sec. 4 we will
address operators, such as Ireland’s proof critics [Ire92], that work globally on the proof



data structure instead of just locally. For the moment we restrict our development to the
latter in order to avoid confusions.

Our framework is separated in a horizontal and a vertical axis. The horizontal axis
addresses proof search with a given set of basic proof operators defined on proof nodes, which
we will call proof constructors (PC). Associating proof constructors with a specification of an
application direction (they can be specified via procedural or declarative means) turns them
into proof constructor applications (PCA ). Proof construction is realized as composition of
proof constructor applications. Specifications of such compositions are possible in a static
manner by exploiting a procedural programming language (which gives us LCF style tactics)
or declaratively as a dynamic search process (which gives us declarative proof planning).
In the latter case the presupposed declarative descriptions of the PCAs are exploited to
dynamically chain them in the search space. Specifications of compositions of PCAs are
abbreviated as CPCAs in the remainder. A horizontal proof system consists of a set of
PCAs and a proof search or proof construction framework given in form of a CPCA.

The vertical axis addresses the aspect of abstraction and refinement of proof constructors
(and thus proofs) from one representational layer to another one. We do not necessarily
enforce a real change of representation between two vertical layers and explicitly allow the
abstraction and refinement mappings abs and ref to be the identity function (¢rivial change
of representation). This way our framework supports the construction and integration of
new abstract (less granular) proof constructors that encapsulate larger proof pattern via one
or several vertical moves in the hierarchy with respect to the trivial change of representation.

3.1 The Horizontal Axis

We now introduce the concepts for horizontal proof systems. A basic ingredient is the object
language that we employ to model the objects in the domain of interest. With the help of
the object language we introduce proof lines. Next, Proof graphs are defined as an abstract
datatype with proof nodes and proof constructors as basic building blocks.

Proof Constructor A proof constructor N = [P,C,T,S] consists of non-empty lists
P = (P,...,P,) and C = (Cy,...,C;) of schematic variables P}, Cy representing premise
nodes and conclusion nodes respectively, some possibly empty parameter list T, and some
possibly empty set of application conditions S. A proof constructor /N is usually repre-
sented as

Py ouny By lus side-
b2 N(T) P
Chis 05 505 ( conditions

Examples for proof constructors (PCs) are:

P, P with the side-condition that P;, P, and C are of
@ ModusBarbara forms A = B, B = C, and A = C respectively.

where P is the sub-formula in C at position 7
L Proof ByPointing(m) and PL is the list of all formulas that arise as
o )
subgoals when decomposing C' down to P.



where P < C with respect to some simplifica-
tion ordering <.

P o . An example for a special version of Simplify
C Simplify(<) is arithmetical simplification (i.e., we choose a
particular ordering <,;;» and probably employ

a computer algebra system to realize <grisp).
P P with side-condition that there exists comple-
lC 2 Besolution mentary literals L; (in clause P;) and L, (in

clause P,), and a substitution ¢ such that ...

We want to remark that even in presence of a formal notion of semantics for the un-
derlying object language we do not presuppose that PCs actually fulfill a direct soundness
criterion. The reason is that we aim at a flexible approach that even supports unsound
reasoning at a higher proof layer provided that soundness can be addressed indirectly via
refinement to a lower layer.

OMEGA is an example for system that operates with (some) unsound operators at
higher proof layers, while it provides a sound bottom layer and a respective refinement
mechanism. The main issue at the higher proof layers in OMEGA concerns the adequacy of
- the new operators content, their amplitude of prescinded granularity, and their (typically
domain-specific) proof search qualification. For some OMEGA operators it is even impossible
to establish soundness directly. For instance the computer algebra system X used within
Stmpli fy(<orith) Backward t0 perform the simplification step may be partially incorrect (e.g.,
by neglecting some side-conditions). Thus, instead of trusting X, OMEGA provides facilities
to refine (some of the) computations of X to the sound and verifiable bottom layer; see
[Sor00] for details. The same is possible via TRAMP [Mei00] for traditional ATPs employed
within abstract proof operators.

In order to be able to apply PCs we have to provide additional information. For instance,
we have to specify application directions for the PCs (forward, backward, and sideward or
mixed). We also need to say how concrete instantiations of the schematic proof node
variables can be determined. This motivates the following definition of proof constructor
applications.

Proof Constructor Application (PCA) A proof constructor application PCA =
(PC,OP) combines a proof constructor PC with an operator (function) OP that realizes
a particular application direction of PC, i.e., OP constitutes how to compute from given
proof node instantiations for schematic proof node variables K C P U C the instantiations
of the schematic variables (PUC) \ K.

The operation OP of a PCA can be specified in a pure procedural manner (see LCF-
tactics) or by declarative means (see methods in Clam and OMEGA). In case pure pro-
cedural constructs are employed we speak of a procedural proof constructor applications

(PPCA).

Declarative specifications of PC As presuppose a suitable declarative description frame-
work, for instance, based on a higher-order language, together with respective support



facilities such as a pattern matching. However, even in the presence of such a declarative
description framework often not all aspects of an OP can be described fully declaratively.
As a consequence a mixture of declarative and procedural constructs is employed. In the
following we will call specifications of PC' As that contain declarative parts as declarative
proof constructor applications (DPCA).

We motivate and illustrate the notions DPCA and PPCA by examples:

Assuming that a respective specification language (see for instance Clam or OMEGA)
is available we can model forward application of Modus Barbara purely declaratively as
DPCA, for instance, as follows

PP:A=B P?:B=C

o ASC ModusBarbararorward

© and @ encode the application direction; we assume that O P works from instantiations of
the nodes P, , (indicated by ©) in direction of node C (indicated by ®). Terms like A = C,
with A and C being schematic variables, are constructs of our declarative description
framework and specify structural requirements. Pattern matching is the mechanism that
supports the determination of possible proof nodes matching the structural restrictions for
P, 5 and the resulting information is employed to compute an instance for C. Note that we
could alternatively specify ModusBarbarageryara also purely procedural by expressing the
above criteria directly in a programming language.

Backward application of Simplify(<.rin) is an example of a PC A where a procedural
modeling as PPC A is indicated:

Input: instance C for C

Body: if C contains arithmetic expressions A; then use computer
algebra system X to simplify the A; to simplified expressions A
with respect to <,rin else do nothing

Output: Instance for P computed by replacing the A; by Af in
C respectively

Procedural specifications of PC As are, of course, always possible (since the employed pro-
gramming languages are usually Turing complete) while declarative specifications heavily
depend on the facilities and capabilities offered by the employed reasoning framework.

An example for a DPC A where declarative and procedural parts are mixed is

Pe: A PL®:y,...

0 X(A) Proof ByPointing(r)

where we assume that A represents the formula we put the focus on and X is a higher-order
variable denoting the surrounding context of C. An additional side-condition for X and 7
is that X has to match with a term AY.C in which variable Y occurs exactly once (in the
B-normalized) formula C, namely at position 7. Thus, when providing A the surrounding
context X of A in C is determined by matching and also the respective position 7 can be
inferred. The only missing information concerns the determination of the q,...,,, i.e., the
subformulas in C that arise as subgoals when decomposing C down to P beta-related to
the subformula position we are pointing at. The determination of these subformulas can
hardly be expressed by declarative but easily by procedural means.
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Composition of PC Applications are specifications of complex proof search behaviors
by an howsoever composition of PCAs. As before for PC As we distinguish between pro-
cedural composition of PCAs (CPCA) that follows the ideas of tacticals [GMW79, Pau87,
SAHO01] and methodicals [RS01], and declarative composition of DPCAs (SDPCA) that
follows the idea of searching for sequences of DPCAs by exploiting their declarative de-
scriptions.

Declarative Compositions are search strategies over given DPCAs. Typical examples for
such strategies are iterative deepening search, best-first search wrt. some heuristic weight-
ing, or a Set-Of-Support Strategy. Even search strategies induced by ordering constraints
as used in superposition calculus [BGLS92] fall in that category. Each of these declarative
search strategies can be described symbolically by their name and a list of parameters to
that strategy. A parameter that is shared among these strategies is the set of proof con-
structors C. This results in a language for declarative proof search strategies, as for example
(we assume a language “Parameters” for expressions describing parameters):

Search Strategies over DPCAs: SDPCA := Best-First(C, Parameters)
| IDA*(C,Parameters) | ...

Procedural Compositions are specifications of complex operational proof search behav-
iors. They are described using a specific language tailored to the needs arising during the
design of proof search behaviors. In the following we sketch an example procedural com-
position language £(C) that is parameterized over a set C of proof constructor applications
(PCA).

For the PCAs we assume that they can be invoked in some given proof situation possibly
together with a specification how they shall be applied. The application of these PCAs
can either fail, leaving the proof unchanged or succeed and return the new proof. The
success and failure semantics of PCAs is subsequently used to define a semantics for £(C)
in continuation passing style [Rey93].

The language £(C) consists of compound expressions over C denoted by CPCA. Thereby
we assume a language “Test” for expressions describing boolean tests, a language “Var” for
variables, a language “Compute” for expressions describing computations, and a language
“Parameters” for expressions describing parameters are given:

Compound PCA: CPCA := C | CPCA;CPCA | CPCA | CPCA (1)

| if Test then CPCA else CPCA fi (2)

| while Test do CPCA od (3)

| let Var = Compute in CPCA tel (4)

| NAMED-CPCA(Parameters) (5)

| SDPCA (6)

Thereby “” in (1) denotes sequential composition and “||” denotes parallel composition.

In both cases the compound expression fails if either the first or second compound fails.
In (2) conditional branching is included which fails if the compound of the taken branch
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fails. Loops can be specified and a loop expression fails if at some stage the compound
expression in the body of the loop fails (3). Local variables can be declared by a standard
let operator and that expression fails if the contained compound fails (4). Finally, calls to
named compounds can occur in compound expressions (5). Named compounds are analo-
gous to standard named functions in functional programming languages. Thus, aside the
definition of CPCAs the language shall support the definition of named CPCAs:

Named CPCAs := defproc NAMED-CPCA({Var}*) = CPCA

Finally, in order to support the combination of procedural and declarative proof search
descriptions, we integrate the search strategy language SDPCA into the language for
CPCAs (6).

Now, pure tactics in the LCF tradition [GMW79, Pau87, SAHO1] can be viewed as
a subset of the above language, where named CPCAs are defined from procedural PCAs
only. We denote this sub-language of £(C) by L(C),p. Furthermore, the methodical ex-
pressions [RS01] can be viewed as a subset of the above language without the definition
of named CPCAs and where the allowed CPCAs are those defined from declarative proof
constructor applications (DPCA) only. We denote this sub-language of L(C) by £(C),p.

3.2 The Vertical Axis

The vertical axis is concerned with the relationship between proof constructors from an
upper proof layer and proof constructors from a lower proof layer. More specifically it
consists of the specification how a proof constructor from an upper proof layer can be
implemented by proof constructors from a lower proof layer. Again, by exploiting the
analogy to formal software development, this means that implementations must be defined
for each constructor of an abstract datatype. In our setting, we have an upper set of proof
constructors C, and a lower set of proof constructors C;. The implementation of a PC from
C, is described by a compound PCA in £(C;). However, analogously to signature morphisms
in refinements of specifications, abstraction and refinement mappings abs and ref that link
formulas on the lower proof layer and formulas on the abstract proof layer belong to the
definition of a proof constructor refinement. Thus, we define refinements by

REFINEMENT = (C.,L(C)),c)

With this notion we can classify existing refinements used in the various proof planning
systems, such as Clam, AClam, QMEGA, and Q-ANTS. In Clam and AClam the refinement
is not assigned to a proof constructor, but to a declarative proof constructor application
(DPCA); this also holds for the QMEGA proof methods. Thus, implementations must be
defined for all DPCAs, even if they belong to the same proof constructor PC. However, once
a proof constructor is applied, its refinement is independent of the way how the application
has been achieved, as it is for example done in Q-ANTS. For that reason we refrained from
assigning refinements to DPCAs and defined refinements for the underlying PCs only.

However, there are further differences in the refinement notions used in the proof plan-
ning systems: The refinement represented by methods in Clam, the ancestor of all proof



12

planning systems, assigns a call to a named pure LCF tactic to an abstract proof construc-
tor, and the abstraction and refinement function abs and ref are the identity function.

Clam-REFINEMENT := (C,, NAMED-PCA(Parameters), Id)

where NAMED-PCA is defined by defproc NAMED-PCA(varlist) = L(C;),p.

In AClam the implementation is extended by also allowing methodical expressions in
method refinements, while the abstraction function is still the identity.

AClam-REFINEMENT := (C,, {NAMED-PCA(Parameters) | £(C;),p},!d)

Finally, in QMEGA and 2-ANTS the refinement of a method can be viewed as a partial
proof build from declarative proof constructor applications (DPCA) wrt. C;. The admissi-
ble expressions for the implementation are thereby sequential and parallel composition of
DPCAs. We denote that language by £(C;) o which is defined by £(C}),;q :== DPCA € C; |
L(C)ya; L(C)ya | L(C)ia || £(C)1a- The Qmega notion of a refinement is then

Qmega/Q-ANTS-REFINEMENT := (C,, £L(C),q,|d)

Note that none of these systems exploits the possibility of a real (i.e.,non-trivial) change of
representation. One theorem proving system that exploits this possibility is the ABSFOL
system [GSVW93]. The ABSFOL system is an extension of the GETFOL theorem prover
that supports the declarative definition of abstraction functions and provides the infrastruc-
ture to use the abstractions during interactive theorem proving with GETFOL. It allows
the user to choose an abstraction, abstract a given problem, prove the abstracted prob-
lem using GETFOL, and allows to generate a partial proof for the original problem using
the abstract proof. Thus, the abstraction function in an ABSFOL-refinement is actually a
non-trivial mapping.

Now that we have defined refinements, we can classify the proof planning approach to
proof search. Indeed, proof planning can be classified as a specific search strategy over
DPCAs that takes as parameters not only DPCAs and heuristic knowledge to control the
search, but also the refinements of the respective PCs. It is included into the proof planning
strategy that it can intertwine horizontal proof construction steps with DPCAs and vertical
refinement steps.

4 Conclusions & Future Work

In this paper we presented a rational reconstruction of various proof search paradigms
developed in interactive theorem proving. Exploiting the analogy between interactive proof
construction on the one hand and formal software development on the other hand, we
identified the key concepts of the different approaches: Proof constructors, declarative &
procedural proof constructor applications and their composition, and refinement of proof
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constructors. These concepts allow to define a landscape that supports the localization of
the different approaches and thus allows for a uniform perspective. The gained insights are
then used to sketch a framework that supports the integration of the different approaches
for the benefit to support the combination of their virtues. The framework is build upon the
identified key concepts, a language that accommodates both the procedural and declarative
design of proof search techniques, and a representation of proofs as a hierarchy of proof
graphs, each proof graph belonging to an explicit proof layer.

In Appendix A! we present a formalization of hierarchically interlocked proof graphs.
The definitions are adapted from [CS00, Fie0l] and extend those definitions in order to
accommodate representational abstraction and refinements.

Future work includes to improve on the level of sophistication of our framework and
to deepen the investigation and classification of existing reasoning systems. An interesting
question also is how globally operating proof operators such as Ireland’s proof critics [Ire92]
or the control rules in OMEGA can be integrated in our framework. These operators do not
just locally operate on a selected branch or part in the proof graph but globally change the
structure of it. Therefore they complicate, for instance, a notion of backtracking when being
integrated with other locally working operators in a single horizontal proof system (this is
the reason why control rules and proof methods are clearly separated in OMEGA). One way
to explain them in our framework is via the following complex change of representation:
Assume that a set of purely locally working operations is defining a horizontal proof system
at layer z. We consider an upper layer z + 1, where instead of proof graphs over proof
nodes, networks of proof graphs (i.e., proof graphs whose nodes consist of lower layer proof
graphs) are maintained. This way we can model on layer z + 1 local operators that would
be of global nature at layer xz. We can also trivially lift the local operators from layer
z into respective local operators at layer z + 1. We thereby obtain a purely local proof
system at layer z+1, with the drawback that a rather complex proof datastructure is being
manipulated.
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A Hierarchical Proof Graph Representation

Definition 1 (Hierarchical Proof Constructors) Let (C;);c; be a family of sets of proof
constructors, such that there is a partial order over the C; with exactly one smallest element.
Then (C;)ic1 are hierarchical proof constructors.

Definition 2 (Justifications) Let (C;)ic; be hierarchical proof constructors. A justifica-
tion of proof layer i is a 3-tuple J = (PC(P), N), where PC(P) is the application of some
proof constructor PC from C; with parameters P, and N 1is a list of proof nodes of proof
layer 1.

Definition 3 (Abstractions & Refinements) Let (abs));je; a family of abstractions
from i to j. Then a representational abstraction of proof layer ¢ to proof layer j is a
pair A = (abs{:,.]V) such that i < j and where N is a list of proof nodes wrt. proof layer j,
called abstraction nodes. A representational refinement of proof layer j to proof layer 7 is
a pair R = (abs), N) such that j < i and where N is a list of proof nodes wrt. proof layer
¢ called refinement nodes.

Definition 4 (Proof Nodes) A proof node of proof layer i is a 5-tuple N = (¢, J, A, R),
where ¢ is a proof object, J a set of justifications of proof layer i, A an abstraction from i
to j, and R a refinement from i to j. We say that N is an open goal, if J =0. If A or R
are empty, we denote it by L. We say that each justificiation J from J justifies N. If N is
justified by a justification without successor nodes, then N is a hypothesis in proof layer :.
The set of support nodes of N is the transitive closure of all successor nodes of N.

Definition 5 (Refining Proof Nodes) Given a set of proof nodes N and N € N. We
denote by NY the refining proof nodes of N composed of all proof nodes N' € N, such that
N is an abstraction node of N'.

Definition 6 (Proof Graphs) Let N be a set of proof nodes, S C N proof nodes and
N € N a proof node of proof layer i. N is a proof graph of N from S wrt. proof layer i if,
and only if, one of the following holds:

1. NeS.
2. Let N = (p,J, A, R).

(a) For all J = (PC(P),N) from J and each N' € N there must be set N C N that
is a proof graph of N' from S,

(b) If A = (abs’, N), then for each N' € N there must be a set N C N that is a
proof graph of N' from S

Since N' C N this clearly defines an acyclic graph.

Definition 7 (Refinement ProoiGEphs) Let N be a set of proof nodes, N € N a proof
node of proof layer i and J = (PC(P), N) a justification of N. Let NY be the refining proof
nodes of N and R := U(:p,(abs{,ﬁ’),A,R)eN N the refinement nodes of the proof nodes in N.
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Then N is a refinement proof graph of J if, and only if, for each N' = (go’,_fl,A’,R’)
from NN N is a proof graph of (¢',J', L, R') from R.

Definition 8 (Hierarchical Proof Graph) Let C := (C;)¢ ; be hierarchical proof con-
structors with smallest element Cy. A hierarchical proof graph wrt. C is a 3-tuple P :=
(p,C,N,C) where N is a set of proof nodes, C = (g, J, A, L) is a proof node of proof layer
0, C € N. The open goals of P are all proof nodes with an empty justification.

Let H be the hypotheses within the support nodes of C. Then the hierarchical proof graph
is closed if, and only if, N is a proof graph of C from H.






