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Abstract: Silver nanoparticles (Ag NPs) represent one of the most widely employed metal-based
engineered nanomaterials with a broad range of applications in different areas of science. Plant
extracts (PEs) serve as green reducing and coating agents and can be exploited for the generation
of Ag NPs. In this study, the phytochemical composition of ethanolic extract of black currant (Ribes
nigrum) leaves was determined. The main components of extract include quercetin rutinoside,
quercetin hexoside, quercetin glucuronide, quercetin malonylglucoside and quercitrin. The extract
was subsequently employed for the green synthesis of Ag NPs. Consequently, R. nigrum leaf extract
and Ag NPs were evaluated for potential antibacterial activities against Gram-negative bacteria
(Escherichia coli ATCC 25922 and kanamycin-resistant E. coli pARG-25 strains). Intriguingly, the
plant extract did not show any antibacterial effect, whilst Ag NPs demonstrated significant activity
against tested bacteria. Biogenic Ag NPs affect the ATPase activity and energy-dependent H+-
fluxes in both strains of E. coli, even in the presence of N,N′-dicyclohexylcarbodiimide (DCCD).
Thus, the antibacterial activity of the investigated Ag NPs can be explained by their impact on the
membrane-associated properties of bacteria.

Keywords: silver nanoparticles; Ribes nigrum; natural products; phytochemical investigation; antimi-
crobial

1. Introduction

The emergence of antibiotic resistance is a serious challenge for both human and veteri-
nary medicine. Several mechanisms of antibiotic-resistance development are known [1–3].
Although there are some approaches to overcome this threat, no final solution is found
yet. The antibacterial properties of silver date back to ancient times [4]. Silver (posi-
tively charged silver ions (Ag+), when dissolved in aqueous environment) provides strong
antimicrobial activity against a wide spectrum of microorganisms. Silver ions serve as
multifunctional agents which, for instance, can produce pores in bacterial cell walls through
interaction with the peptidoglycan components [5]. The other mechanism of antimicrobial
action of silver cations involves its ability to penetrate the bacterial cell membrane, which
leads to the inhibition of cellular respiration and, consequently, the generation of the re-
active oxygen species (ROS). Moreover, Ag+ is highly toxic to microorganisms due to its
ability to disrupt not only DNA but also their replication cycle [5].
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There are different approaches for generating Ag nanoparticles (Ag NPs) such as
physical (grinding), chemical and biological methods. All these methods have their specific
advantages and disadvantages. Although the physical methods produce very stable and
small Ag NPs in high concentrations, this process is associated with several disadvantages,
such as consumption of energy, wear and tear of grinding balls and bowl, contamination
of the nanoparticles, etc. The chemical methods of Ag NPs generation are highly harmful
to the environment. Biological methods provide several advantages, such as low cost
and ease of implementation. The process is considered green, environmentally and eco-
friendly [6–9]. Natural products, especially those of plant origin, provide reducing as well
as coating characteristics which can be utilized for the generation and stabilization of metal
nanoparticles [7,9–13].

Recent years have witnessed a considerable interest in the application of green Ag
NPs in food packaging, textiles, cosmetics and the biomedical-related product industry
(wound dressing components, implants) [7,14–16]. Ag NPs provide antimicrobial, anti-
cancer, antioxidant, anti-inflammatory, wound healing and antimalarial activities [17]. The
other major applications of silver nanoparticles include diagnostic (as biological tags in
biosensors, assays, and quantitative detection), conductive (in conductive inks, pastes,
and fillers), optical (metal-enhanced fluorescence and surface-enhanced Raman scattering),
and household (pesticides and wastewater treatment) [17]. Ag NP produced from the leaf
extract of Vitex negundo was reported to arrest HCT-15 cells at G0/G1 and G2/M phases
and thereby serve as a potential antitumor agent against human colon cancer cell line
HCT15. Another antiproliferative mechanism of Ag NPs against colon cancer cell lines
involves the reduction of DNA synthesis by arresting G0/G1 phase, ultimately triggering
apoptosis [18,19]. In addition, the secondary metabolites present in natural products not
only provide biological activities but also reduce the side effects of the synthesized Ag
NPs and make them more amenable for medical applications [7,20]. Furthermore, several
natural products, such as water-soluble polyphenolic substances, serve as chelating agents
which adsorb easily at the surface of NPs, enhance their stability and protect them from
aggregation [7,21].

Ribes nigrum L. (black currant) is a deciduous shrub, which belongs to the family
Grossulariaceae and is extensively consumed throughout the world for the dietary man-
agement of various diseases [22,23]. The efficacy of this particular natural product in the
management of various diseases is associated with the presence of a broad spectrum of bio-
logically active components, including strong antioxidants and reducing agents. The leaves
of R. nigrum are frequently employed in European traditional medicine for the prophylaxis
and treatment of various deviations in human metabolism [22,23]. Black currant leaf infu-
sions have been utilized for the efficient removal of toxins from the body and the regulation
of kidney function. Its extracts are used as diaphoretic and diuretic agents and for treating
inflammatory disorders, such as rheumatic disease [24]. Proanthocyanidins isolated from
leaves of R. nigrum are reported to exhibit excellent in vivo anti-inflammatory activity in
rat models [25]. The phytochemical analysis of blackcurrant fruit methanolic extracts by
HPLC has revealed the presence of antioxidant components, such as epigallocatechin (EGC)
and epigallocatechin–3–gallate (EGCG) [26]. The phytochemical composition of fruits of R.
nigrum has been extensively studied and described in the literature [27]. Intriguingly, the
content of active phenolic compounds, which are mainly responsible for antioxidant and
other biological activities of this plant are much higher in leaf extracts than in fruits [24].
Staszowska-Karkut and Materska [24] have recently reported the presence of 19 phenolic
compounds in the leaves of R. nigrum. The aqueous–alcoholic leaf extract of R. nigrum is
reported to provide antimicrobial activity, which is lower than fruit extract [27]. There is
no literature concerning the acute toxicity, genotoxicity, reproductive and developmental
toxicity or carcinogenicity of this plant extract [28]. Literature reveals several reports on the
green synthesis of Ag NPs using R. nigrum fruit or pomace extracts [29,30]; however, there
is no literature about the utilization of leaf extracts.
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The current study is mainly focused on the understanding of the underlying mech-
anisms of antibacterial activities of Ag NPs, produced by the leaf extracts of R. nigrum
harvested from high-altitude Armenian landscape against Escherichia coli strains (including
drug-resistant ones).

2. Results
2.1. The Total Phenolic-Flavonoid Composition of R. nigrum Extracts

The total flavonoid and phenol contents in R. nigrum extracts were estimated from the
calibration curve of quercetin and gallic acid, respectively. The total flavonoid and phenolic
contents of 35.42 ± 1.52 mg quercetin equivalent (QE)/g DW) and 84.1 ± 1.6 mg gallic acid
equivalent (GAE)/g DW) were quantified, respectively. The presence of high flavonoid
and phenolic content in the R. nigrum extract indicates its potential as a reducing agent.

2.2. Identification of Major Polyphenols in R. nigrum Extract

The HPLC results have revealed the presence of about 30 major constituents com-
prising mainly of flavan-3-ols, flavonols, hydroxycinnamates, lignans, naphthols and
furanocoumarins (Figure 1). Each compound was assigned to one of the above-mentioned
groups by the careful analysis of its UV–Vis spectrum. Finally, the compounds were iden-
tified based on the full scan MS, MS2 spectra, obtained for major m/z signals recorded in
negative ion mode, retention time, and bibliography (Table 1).
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Table 1. Phytochemicals tentatively identified by LC-Q-Orbitrap-HRMS in R. nigrum extract.

No. RT
(min)

Tentative
Identification

Molecular
Formula

Molecular
Weight

Λmax
(nm)

Theoretical
(m/z)

Observed
(m/z)

Mass Error
(ppm)

Fragments
(m/z)

1. 5.96 B-typeprocyanidin
dimer C30H26O12 578.14243 279 577.13460 577.13547 −1.49

125.02;
289.07;
407.08

2. 6.23 (epi)Gallocatechin C15H14O7 306.07396 272 305.06613 305.06659 −1.49
125.02;
137.02;
167.03

3. 6.92 B-typeprocyanidin
dimer C30H26O12 578.14243 281 577.13460 577.13533 −1.25

125.02;
289.07;
407.08

4. 7.28 Caffeoylquinic acid C16H18O9 354.09509 325 353.08726 353.08772 −1.29 191.05

5. 7.54 (+)-Catechin C15H14O6 290.07904 279 289.07122 289.07171 −1.69
109.03;
123.04;
125.02;
151.04

6. 8.40 B-typeprocyanidin
dimer C30H26O12 578.14243 279 577.13461 577.13531 −1.21

125.02;
289.07;
407.08

7. 9.30 (-)-Epicatechin C15H14O6 290.07904 279 289.07122 289.07163 −1.41
109.03;
123.04;
125.02;
151.04

8. 9.93 A-typeprocyanidin
trimer C45H36O18 864.19017 279 863.18235 863.18375 −1.62

289.07;
451.10;
573.10;
711.13

9. 10.42 Rhamnetin
glucoside C22H22O12 478.11113 366 477.10331 477.10395 −1.34 315.05

10. 10.55 A-typeprocyanidin
tetramer C60H50O24 1154.26921 279 1153.26139 1153.26251 −0.97

575.12;
865.20;
1001.21

11. 11.53 Lariciresinol
glucoside C26H34O11 522.21012 280 521.20229 521.20294 −1.24 359.15

12. 12.48 Quercetin
rutinoside C27H30O16 610.15339 354 609.14557 609.14633 −1.25 301.03

13. 12.95 Coumaric acid
derivative C25H28O13 536.15299 311 535.14517 535.14578 −1.13 147.04;

163.04
14. 13.25 Quercetin hexoside C21H20O12 464.09548 354 463.08766 463.08829 −1.38 300.03;

301.03

15. 13.40 Quercetin
glucuronide C21H18O13 478.07474 354 477.06692 477.06729 −0.76

151.00;
178.99;
301.03

16. 13.50 Epicatechin gallate C22H18O10 442.09000 279 441.08218 441.08274 −1.27 169.01;
289.07

17. 14.36 Quercetin
pentoside C20H18O11 434.08492 354 433.07709 433.07765 −1.28 300.03;

301.03

18. 14.49 Quercetin malonyl
glucoside C24H22O15 550.09588 354 549.08805 549.08885 −1.45 301.03

19. 14.77 Quercetin
pentoside C20H18O11 434.08492 351 433.07709 433.07752 −0.98 300.03;

301.03
20. 15.09 Quercetin

pentoside C20H18O11 434.08492 347 433.07709 433.07755 −1.05 300.03;
301.03

21. 15.47 Quercitrin C21H20O11 448.10057 349 447.09274 447.09332 −1.29 300.03;
301.03

22. 15.59 B-type galloylated
procyanidin dimer C37H30O16 730.15339 279 729.14557 729.14679 −1.69 289.07;

407.08

23. 16.60 Coumaric acid
derivative C20H28O9 412.17334 334 411.16551 411.16622 −1.71 145.03;

163.04

24. 17.15 Coumaric acid
derivative C20H28O9 412.17334 310 411.16551 411.16616 −1.57

119.05;
145.03;
163.04

25. 17.33
B-type

digalloylated
procyanidin dimer

C44H34O20 882.16435 278 881.15653 881.15809 −1.78 287.06;
407.08;729.15

26. 19.54 Musizin glucoside C19H22O8 378.13147 334 377.12365 377.12408 −1.17 215.07
27. 20.73 Marmesin

glucoside C20H24O9 408.14204 336 407.13421 407.13468 −1.17 230.06;
245.08

29. 22.42 Musizin acetyl
glucoside C21H24O9 420.14204 334 419.13421 419.13471 −1.187 215.07

30. 23.30 Marmesin acetyl
glucoside C22H26O10 450.1526 337 449.14478 449.14526 −1.097 245.08

Compounds 4, 7, 14, 24 and 25 were classified as hydroxycinnamic acids derivatives.
Compounds 4 and 7 provided pseudo-molecular ions at m/z 353.08772 (C16H17O9). The
further MS2 fragmentation spectra revealed the identity of these two compounds as caffeoyl
quinic acid isomers. In the case of compounds 14, 24 and 25, it was not possible to assign
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any particular structure but the presence of ion at m/z 163.03952 (C9H7O3) in MS2 spectra
hinted at the presence of coumaric acid derivatives.

Compounds 10, 13, 15, 16 and 18–22 were classified as flavonols. Compound 10
provided the base peak ion in MS spectrum at m/z 477.10395 (C22H21O12) followed by
the cleavage of hexose moiety (−162 amu) in MS2 spectrum. Thus, compound 10 may
tentatively be assigned as rhamnetin glucoside. Compounds 13, 15, 16 and 18–22 yielded
the same fragmentation ion at m/z 301.0348 (C15H9O7), suggesting the presence of quercetin
derivatives. Compounds 18, 20 and 21 generated the same pseudo-molecular ion [M−H]−

at m/z 433.07765 (C20H17O11) which in MS2 were shown to lose 132 amu corresponding to
pentose moiety. Thus, these compounds were assigned as quercetin pentoside isomers. In
the case of other quercetin derivatives, according to the MS and MS2 spectra the loss of
rhamnose-glucose (−308 amu), hexose (−162 amu), glucuronide (−176 amu), malonyl hex-
ose (−248 amu) and rhamnose (−146 amu) moieties were observed for compounds 13, 15,
16, 19 and 22, respectively. Thus, these compounds were tentatively identified as quercetin
rutinoside, quercetin hexoside, quercetin glucuronide, quercetin malonylglucoside and
quercitrin, respectively.

Compounds 1–3, 5, 6, 8, 9, 11, 17, 23 and 26 were classified as flavan-3-ols. Intrigu-
ingly, the peaks of compounds 5 and 8, with almost similar precursor ion [M–H]− of
m/z 289.07171 and 289.07163, respectively, were detected at different RT values of 7.54
and 9.30 min. Having the same molecular formula C15H14O6 and fragmentation pattern,
these compounds were proposed to be (+)-catechin and (−)-epicatechin. Peak of com-
pound 2 was obtained [M–H]− ion at m/z 305.06659 (C15H13O7) and has shown to produce
fragment ions at m/z 167.0322 and 125.0248 by retro-Diels-Alder fragmentation, therefore,
compounds like (+)-gallocatechin or (-)-epigallocatechin were expected. Likewise, an epi-
catechingallate (17, C22H18O10) has also been tentatively identified due to the presence of
the deprotonated ion at m/z 441.08274 and the fragment ions which were observed after
the loss of a galloyl residue at m/z 289.07121 [(−)-epicatechin–H]− or as the deprotonated
gallic acid at m/z 169.01491. Compounds 1, 3 and 6 with m/z values of around 577.13
(C30H25O12) were identified as dimers of (epi)catechin. Peaks of compounds 23 and 26
with m/z values of 729.14679 (C37H29O16) and 881.15809 (C44H33O20), with similar MS2
patterns were tentatively identified as galloylated and digalloylated dimeric B-type proan-
thocyanidins, respectively. Compounds 9 and 11 with m/z values of 863.18375 (C45H35O18)
and 1153.26251 (C60H49O24) were tentatively assigned as trimeric and tetrameric A-type
pro-anthocyanidins, respectively.

Compound 12 showed the base peak ion in the MS spectrum at m/z 521.20294 (C26H33O11)
followed by the cleavage of hexose moiety (−162 amu) in MS2 spectrum. Thus, this
compound was classified as a lignan and tentatively assigned as lariciresinol glucoside.

Intriguingly, compounds 27 and 29 classified as naphthols with precursor ionic peaks
at m/z 377.12408 (C19H21O8) and m/z 419.13471 (C21H23O9), respectively, yielded the same
fragmentation ion at m/z215.07082 (C13H11O3), suggesting these compounds as musizin
(nepodin) derivatives. The loss of hexose (−162 amu) and acetyl hexose (−204 amu)
moieties from these compounds has led us to tentatively assign them as musizin glucoside
and musizin acetyl glucoside, respectively.

A similar pattern of fragmentation has also been observed for compounds 28 and 30.
The fragmentation of precursor ions at m/z values of 407.13468 (C20H23O9) and 449.14526
(C22H26O10) for compounds 28 and 30, respectively, have provided the same aglycon ion at
m/z 245.08138 (C14H13O4) due to the loss of hexose and acetyl-hexose moieties. Therefore,
these compounds were tentatively identified as marmesin glucoside and marmesin acetyl
glucoside, respectively.

2.3. Radical Scavenging Capacity of R. nigrum Extract

The potential antioxidant activity of R. nigrum extract was confirmed by DPPH as-
say. The radical scavenging activity of plant extract was compared with that of cate-
chin (IC50 = 12.62 ± 0.8 µg/mL), which is a well-known antioxidant and exhibits excellent
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DPPH scavenging properties. In our study, R. nigrum extract provided an IC50 value of
63.59 ± 1.63 µg/mL (R2 = 0.9462) which clearly indicated that the extract was able to
scavenge 50% of the radicals at the concentration of around 63.59 µg/mL.

2.4. Antioxidant Profiling by HPLC Coupled Post-Column Derivatization

Post-column derivatization of analytes with ABTS reagent was performed during
HPLC analysis of R. nigrum extract. This investigation has allowed us to identify the
specific compounds responsible for the antioxidant activity. As observed in the ABTS
colorimetric tests, the reduction reaction has led to a significant shift in the UV-Visible
spectrum, resulting in ABTS reagent absorption change (discoloration). The presence of
antioxidants in the eluate has provided negative peaks in the chromatogram, recorded after
derivatization at 734 nm (Figure 1B). The profile obtained after derivatization indicates that
almost all of the compounds identified in R. nigrum extract exhibit antioxidant activity. The
highest antioxidant activity was observed for flavan-3-ols, followed by hydroxycinnamates
and flavonols.

2.5. Metal Chelating Capability of R. nigrum Leaf Extract

R. nigrum leaf extract provided 56.53 ± 0.7% of metal chelating activity, whilst the
same concentration of positive control (EDTA) provided 90 ± 0.8%.

2.6. Production of Silver Nanoparticles Using Plant Extract

The phytochemical profiling of R. nigrum leaf extract affirmed the presence of polyphe-
nols whose reducing nature paved the way for the green synthesis of Ag NPs. Experimental
data have shown that the synthesis of nanoparticles occurs in the presence of light. The
formation of Ag NPs was confirmed by exploiting UV–Vis spectroscopy (Figure 2). The
results have indicated the emergence of an absorbance peak at around 445 nm, which is
specific for Ag NPs in the samples (Figure 2) [9].
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In our examination, the color of the reaction mixture changed from light yellow to
brown in the presence of the plant extract after 18 h of incubation (Figure 3). This change
in color affirmed the production of Ag NPs, whilst the change of color from brown to
dark brown or black could indicate the possible oxidation of Ag NPs as a result of the
interaction of Ag NPs with oxygen, leading to the formation of silver oxides as described in
the literature [31] and will be investigated in the follow-up project using X-Ray Diffraction
(XRD). This change in color from brown to dark brown or black may also be due to possible
aggregation [32]. No color change was observed in the absence of plant extract. Since
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photon energy is necessary for the formation of Ag NPs from Ag+ in the presence of plant
extracts, the experiments were performed in the presence of light [33].
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2.7. Characterization of Ag NPs

The biosynthesized Ag NPs were characterized by analytical techniques such as
dynamic light scattering (DLS), zeta potential (ZP), scanning electron microscopy (SEM),
transmission electron microscopy (TEM) analysis and inductively coupled plasma-optical
emission spectrometry (ICP-OES).

Dynamic light scattering (DLS) measures the average size of nanoparticles based
on the method of laser beam diffraction [34]. The results of DLS analysis provide a Z-
average size of nanoparticles as 61.14 ± 0.17 d.nm. Polydispersity index (PDI) indicates the
heterogeneity of a sample based on size [35]. The value of PDI ranges from 0.0 for a very
homogeneous sample to 1.0 for a very heterogeneous sample. In our experiments, this value
ranged from 0.1 to 0.4 for tested samples, which mean that the investigated suspension was
somewhat polydisperse [30]. This relatively high value of PDI was expected as the sample
was only dispersed in aqueous medium and no surfactants were utilized to have a more
practical values when applied in biological testing.

The Z-potential (ZP) values provide information about the nanoparticle surface charge
and the probability of their aggregation [36,37] which in our sample was observed to be
around −19.2 ± 1.02 mV. The obtained ZP value indicated that the investigated NPs were
prone to agglomeration, which may be the reason for further aggregation.

The SEM and TEM were performed to determine the particle size and shapes as
described above. SEM images revealed that Ag NPs range in size from 1 to 50 nm
(Figure 4a,b). TEM image has also confirmed the above-mentioned sizes of the inves-
tigated NPs (Figure 4c,d). Moreover, it affirmed that the particles were spherical in shape
with low agglomeration. EDX revealed a spectral signal in silver region affirming the
presence of Ag NPs [38]. The spectral signals of carbon, oxygen, chlorine, and sulfur
were also observed, which are generally present in biological material (plant extracts of R.
nigrum) [7].
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The total silver content was determined by employing inductively coupled plasma-
optical emission spectrometry (ICP-OES) which provided a value of 83.50± 3.32 µg/mL [39].
Considering the operating principles of ICP-OES, most likely, only small particles may
have been detected, and the large particles may have been discarded by the instrument.

2.8. Effect of Biogenic Ag NPs on Bacterial Growth Rate, FOF1-ATPase Activity, and H+-Fluxes
through the Membrane in Escherichia coli ATCC 25922 and Drug-Resistant E. coli
pARG-25 Strains

Our previous investigations have shown antibacterial activity of biogenic Ag NPs
against different Gram-positive and Gram-negative bacteria [7,9]. Intriguingly, the Gram-
negative bacteria were more susceptible to this agent, perhaps due to the possible interac-
tion of these particles with bacterial cell walls [7,9]. Therefore, in order to investigate the
mechanism of antibacterial activities, two strains of Escherichia coli i.e., ATCC 25922 and
drug-resistant E. coli pARG-25 were employed in this study.

Since the disk-diffusion method revealed an MIC value of 10 µg/mL for Ag NPs, a
similar concentration was employed to investigate the antibacterial mechanisms of biogenic
Ag NPs against E. coli ATCC 25922 and kanamycin resistant E. coli strains. It should be
mentioned that R. nigrum extract did not show any antibacterial effect (Figure 5). At a
concentration of 10 µg/mL, the biogenic Ag NPs decreased the growth rate of E. coli wild
type and drug-resistant strain by ~2.5 and 2.3-fold, respectively, in comparison with control
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cells (without Ag NPs addition) as presented in Figure 5. Thus, the biogenic NPs have
demonstrated excellent antibacterial activity against both tested strains of bacteria.
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resistant E. coli pARG-25 strains.

To understand the mechanisms underlying the antibacterial activity of the biogenic Ag
NPs, H+-translocating FOF1-ATPase activity and H+-fluxes through the bacterial membrane
were determined. In the case of E. coli ATCC 25922, no significant effect of Ag NPs on
the total FOF1-ATPase activity in membrane vesicles was observed, whilst the addition of
the Ag NPs decreased ATPase activity in drug-resistant strain by ~3.4 fold, in comparison
with control (without Ag NPs addition), as shown in Figure 6. Moreover, DCCD-sensitive
ATPase activity in E. coli pARG-25 decreased in the presence of Ag NPs by ~6 fold (Figure 6).
In the case of E. coli ATCC 25922, DCCD-sensitive ATPase activity was observed to be
~1.6-fold lower than control cells (Figure 6).
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Furthermore, biogenic Ag NPs were observed to affect the H+-translocating ATPase
which is closely related to the decrease of ATPase activity as observed in the presence and
absence of DCCD, an inhibitor of H+-translocation systems. Moreover, the FOF1-ATPase
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can be considered a target of Ag NPs responsible for the antimicrobial effect of biogenic Ag
NPs.

The analysis of energy-dependent H+-fluxes through the bacterial membrane demon-
strated that Ag NPs enhanced H+-fluxes in both strains of E. coli by~1.2–1.3 fold (Figure 7).
A decrease in H+-fluxes was observed in the presence of DCCD. Moreover, Ag NPs in-
creased DCCD-sensitive H+-fluxes by ~2 and 1.5-fold in E. coli ATCC 25922 and E. coli
pARG-25, respectively (Figure 7).
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3. Discussion

The leaves of R. nigrum are widely used in European traditional medicine due to the
presence of high content of biologically active phytochemicals including flavonoids and
phenolic compounds. Such active moieties are mostly associated with redox character
responsible for antioxidant activity. The high content of such active metabolites in R. nigrum
extract makes them suitable to serve as reducing agent not only in chemical-based tests, but
also in the biogenesis of silver nanoparticles. Several other scientific publications affirm the
notion that such extract could be employed for the synthesis of Ag NPs [7,10–12,15,28,40].

Phenolic fraction of R. nigrum extract was investigated for the identification of com-
pounds and the results have revealed the presence of around 30 major constituents com-
prising mainly of flavan-3-ols, flavonols, hydroxycinnamates, lignans, naphthols and
furanocoumarins. The literature data also suggest quercetin derivatives as the main compo-
nents of R. nigrum leaf extracts, which constitute around 80% of polyphenolic compounds
on a dry mass basis [41]. The presence of such a variety of active ingredients explains the ex-
cellent antioxidant as well as reducing capacity of R. nigrum extract. Numerous studies have
shown that extracts rich in phenolic content exhibit strong antioxidant activity [7,42–44].
Moreover, the post-column derivatization of analytes with ABTS reagent indicated, that
almost all of the compounds identified in R. nigrum extract exhibit antioxidant activity.

Again, due to the high flavonoid and phenolic content, the R. nigrum leaf extract ex-
presses the metal chelating ability which is important to stabilize the Ag NPs by preventing
their aggregation and agglomeration [45,46]. In our investigations, this capacity was not
strong enough to provide the long-term stability of the nanoparticles and eventually, some
aggregation was observed which also led to a decrease in the activity of biogenic nanopar-
ticles. This tendency for agglomeration was also confirmed by the obtained ZP values
of the investigated samples. The particles have provided excellent antibacterial activities
against both strains of E. coli perhaps due to the relatively small size and round shapes of
nanoparticles and by changing the H+-translocating ATPase activity and energy-dependent
H+-fluxes (Figure 8).
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FOF1-ATPase plays a crucial role in bacterial energetics as it mediates several energy-
dependent processes, including ion transport, and regulation of the enzymatic activity of
the membrane. FOF1-ATPase is directly involved in secondary solute transport systems,
such as K+ uptake, Trk-like or KtrI system forming H+/K+-exchanging pump. The H+/K+-
exchanging pump, therefore, plays a crucial role to provide antibacterial activity [47].

Assuming all of the above-mentioned findings, it is possible to conclude, that the
biogenic Ag NPs provide antibacterial activity via the changes in membrane permeability
as affirmed by another study using chemically synthesized Ag NPs [48].

4. Materials and Methods
4.1. Chemicals and Reagents

Folin–Ciocalteu (FC) reagent, ethanol, gallic acid, 2,2-Diphenyl-1-picrylhydrazyl
(DPPH), EDTA, AgNO3, kanamycin, ampicillin, Mueller–Hinton agar and catechin were
purchased from Sigma-Aldrich GmbH (Taufkirchen, Germany). Colloidal Ag, “Silverton”
was purchased from “Tonus-Les” Lab (Armenia).

4.2. Plant Material Collection, Identification and Extraction

The plant material (R. nigrum L.) was collected from Lori province (Armenia, 1600–
1650 m a.s.l.) during the fruiting period (July 2019). The identification of the plant was
carried out at the Department of Botany and Mycology, Yerevan State University (YSU),
Armenia. Plant samples were deposited at the Herbarium of the Department of Botany
and Mycology, YSU, Armenia. The collected leaves were washed, dried in the shadow at
room temperature and subsequently crushed to obtain the powder, which was stored in
a dry and dark place until use. Plant material was extracted using ethanol, as described
in the European Pharmacopeia [49]. The obtained dried extracts were stored at 4 ◦C until
further use.
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4.3. Determination of Total Phenolic and Flavonoid Content

The total phenolic content of plant extracts was measured exploiting the Folin–Ciocalteu
(FC) reagent employing a calibration curve of gallic acid (GA) (0–250 µg/mL) using a UV-
Vis spectrophotometer (Genesys 10S, Thermo Scientific, Waltham, MA, USA) [13,40,50].

The total flavonoid content of R. nigrum extract was determined employing AlCl3
colorimetric assay utilizing a UV-Vis spectrophotometer (Genesys 10S, Thermo Scientific,
Waltham, MA, USA) [42,51].

4.4. LC-Q-Orbitrap HRMS Analysis

The phytochemical analysis of R. nigrum extract was performed using a Dionex Ulti-
mate 3000 UHPLC system (Thermo Scientific TM, Dionex, San Jose, CA, USA) equipped
with Synergi TM Hydro-RP A (150 × 4.5 mm, 4 µm, Phenomenex) column, held at a
temperature of 30 ◦C as described in the literature [52].

Raw data from high-resolution mass spectrometry was elaborated with Compound
Discoverer (v. 2.1, Thermo, Waltham, MA, USA), which facilitated the peak recognition,
retention times arrangement, profile assignment, and isotope pattern. Major metabolite
identification was based on accurate mass and mass fragmentation pattern spectra against
MS-MS spectra of compounds available on a customized database of different classes of
phytochemicals created on the basis of literature data and implemented in the software.
Raw data from three experimental replicates and a blank sample were processed using a
workflow presented by Kusznierewicz, Mróz, Koss-Mikołajczyk, and Namieśnik [52].

4.5. Post-Column Derivatization with ABTS

Profiles of polyphenols and antioxidants for R. nigrum extract were obtained employ-
ing the HPLC-DAD system (Agilent Technologies, Wilmington, DE, USA) connected with a
Pinnacle PCX Derivatization Instrument (Pickering Laboratories Inc., Mountain View, CA,
USA) and UV–Vis detector (Agilent Technologies, Wilmington, DE, USA). The conditions
of chromatographic separation were the same as in the case of LC-HRMS analysis.

The chromatograms before derivatization were recorded at 270 nm in DAD detector.
The eluate stream from the DAD detector was directed to the post-column derivatization in-
strument. The post-column derivatization with ABTS reagent was carried out according to
methods described in the literature with slight modification [53,54]. A stream of methanolic
ABTS solution (1 mM) was introduced to the stream of eluate at a rate of 0.1 mL/min and
then directed to the reaction loop (1 mL, 130◦C). The antioxidant profiles were recorded in
a UV-Vis detector at 734 nm.

4.6. 2,2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging Assay

Free radical scavenging assay was performed as described by Hambardzumyan
et al. [7]. Catechin was used as a standard.

4.7. Chelating Capability of R. nigrum Leaf Extract

Fe2+ chelating capability (CC) of the R. nigrum leaf extract was determined according
to methods described in the literature [15]. EDTA (1 mg/mL) was used, as a reference
chelating agent.

4.8. Synthesis of Ag NPs Using R. nigrum Extracts

A stock solution of R. nigrum extract was prepared by dissolving 5 mg of plant extract
in 10 mL of Milli-Q water (18.2 MΩ·cm at 25 ◦C) and Ag NPs were synthesized by mixing
the solutions of AgNO3 (10 mM) and plant extract in 1:9 ratio to achieve a final concentration
of 1 mM for AgNO3 [6,55]. A control sample excluding plant extract was also prepared
similarly. The samples were agitated on a shaker (150 rpm) under dark and light (normal
room light) conditions at a temperature of 23 ± 2 ◦C for 18 h.
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4.9. Characterization of Biosynthesized Ag NPs

The optical properties of Ag NPs were characterized by exploiting a UV-Vis spec-
trophotometer (Lambda 35, Perkin Elmer, Waltham, MA, USA) [7]. The physical stability
of the investigated samples was evaluated by the zeta potential (ξ-potential) measurement
and dynamic light scattering (DLS), employing a Zetasizer Nano ZS (Malvern Instruments,
Malvern, UK). The size of biosynthesized Ag NPs was determined by Scanning Electron
Microscopy (SEM-ZEISS-SUPRA 40/gemini column) equipped with Electron Backscatter
Diffraction (EBSD) detector and Energy Dispersive X-ray (EDX) detector -SEM-EDX anal-
ysis. Moreover, the size and shape of Ag NPs were evaluated by transmission electron
microscopy (LEOL JEM-1400 TEM). The total Ag content was determined by inductively
coupled plasma-optical emission spectroscopy (ICP-OES, Horiba JobinYvonUltima 2).

4.10. Antibacterial Activity of Biosynthesized Ag NPs

The antibacterial activity of biosynthesized Ag NPs was evaluated against E. coli
ATCC 25922, and kanamycin-resistant E. coli pARG-25 (Scientific-Production Center “Arm-
Biotechnology”, NAS, Yerevan, Armenia) strains by a disk-diffusion method employing
disks with 6 mm in diameter, as described by Hambardzumyan et al., 2020 [7,48]. The
Mueller–Hinton agar was exploited for the growth of bacteria. The antibacterial activity of
Ag NPs was recorded in terms of Minimum Inhibitory Concentration (MIC). MIC values
were recorded after 18 h of incubation at 37 ◦C. Kanamycin and ampicillin (50 µg/mL) were
used as positive controls. Results were compared to the antibacterial activity of colloidal
Ag, commercially available under the “Silverton” trademark (“Tonus-Les” Lab, Yerevan,
Armenia), and produced by an electrochemical process [48,56].

4.11. Growth Kinetics of E. coli ATCC 25922 and E. coli pAPG-25 Strains under the Influence of
Biosynthesized Ag NPs

The growth kinetics of E. coli ATCC 25922 and E. coli pARG-25 strains were monitored
in the presence of R. nigrum leaf extract. Fresh bacterial strains were isolated from Mueller–
Hinton agar plates and transferred to LB broth (pH 7.5) followed by incubation for 18 h
at 37 ◦C. The antibacterial effect of the extract was monitored at the same concentration
employed to produce Ag NPs i.e., 0.5 mg/mL. Bacterial growth curves were determined
by measuring the turbidity of samples containing bacteria at 565 ± 15 nm every 60 min,
exploiting a densitometer (DEN-1B McFarland, Biosan, Latvia) [57].

The specific growth rate (µ) of bacteria was calculated according to µ = (lnODt −
lnOD0)/t, where OD0 represents the initial value of optical density (OD); ODt represents
the value of OD after 6 h; µ is expressed as h−1 [48].

4.12. Determination of H+-fluxes

The H+-fluxes through the membrane were determined in whole bacterial cells by em-
ploying an appropriate selective electrode (HJ1131B, HANNA Instruments, Portugal. Bac-
terial cells were transferred into the assay medium containing 150 mmol/L Tris-phosphate
buffer (pH 7.5), 0.4 mmol/L MgSO4, 1 mmol/L KCl and 1 mmol/L NaCl followed by the
addition of 11 mmol/L of glucose. The H+-fluxes were expressed in mmol H+ per min per
1010 cells [48,58]. N, N’-dicyclohexylcarbodiimide (DCCD) served as an inhibitor of the
FOF1-ATPase and the bacterial cultures were incubated with 0.2 mmol/L of DCCD for 10
min [58].

In order to understand the possible mechanisms underlying the antibacterial activity
of Ag NPs, the changes in energy-dependent H+-fluxes through the bacterial membrane of
E. coli (both ATCC 25922 and kanamycin-resistant E. coli pARG-25 strains) in the presence
of Ag NPs and R. nigrum leaf extract were investigated.
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4.13. Determination of FOF1-ATPase Activity in Membrane Vesicles in the Presence of Ag NPs
and R. nigrum Leaf Extract

The impact of Ag NPs at the H+-translocating FOF1-ATPase activity was investigated
in E. coli ATCC 25922 and E. coli pARG-25 strains to identify possible targets. ATPase
activity assay was performed in bacterial membrane vesicles, which were obtained by the
Kaback method [48,56]. Bacterial cultures were grown in the presence of R. nigrum leaf
extract and Ag NPs (10 µg/mL). FOF1-ATPase activity was evaluated by quantifying the
amount of inorganic phosphate liberated after adding ATP to membrane vesicles of bacteria.
Inorganic phosphate was detected by Tausski and Shorr method. The membrane vesicles of
bacteria were incubated with 0.2 mmol/L DCCD for 10 min [48,56]. FOF1-ATPase activity
is expressed in nmol Pi µg−1 protein min−1.

5. Conclusions

The leaves of R. nigrum are widely used in European traditional medicine due to
their high content of biologically active compounds. The metabolomic characterization
of phenolic components of R. nigrum leaf extract affirms that it can serve as an excellent
reducing agent due to the presence of large amounts of flavan-3-ols, hydroxycinnamates,
flavonols, quercetin and quercetin derivatives.

Ag NPs synthesized with the use of R. nigrum extract have exhibited excellent antibac-
terial activity possibly due to the relatively small size and round shapes of nanoparticles.
The identified substances can also serve as stabilizers for the synthesized nanoparticles
and enhance their shelf life. We suggest that these biogenic Ag NPs can exhibit enhanced
antibacterial properties through changes in membrane permeability as a result of the impact
of these particles on the H+-translocating ATPase activity, energy-dependent H+-fluxes and
formate hydrogenlyase (FHL) proton-potassium transporter. This phenomenon not only
explains the antibacterial potential of R. nigrum extract-mediated Ag NPs but also suggests
their potential application in biomedicine.
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