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Abstract

Dependency parsing has become very popular among researchers from
all NLP areas, because dependency representations contain very valuable
easy-to-use information. In the last decade a lot of dependency parsers
have been developed, each of them somehow special with its own unique
characteristics. In the course of this thesis I have developed yet another
parser - MDParser. In this work I discuss the main properties of de-
pendency parsers and motivate MDParser’s development. I present the
state of the art in the field of dependency parsing and discuss the short-
comings of the current developments. To my mind the main problem
of the current parsers is that the task of dependency parsing is treated
independently of what happens before and after it. Therefore the prepro-
cessing steps and the embedding in applications are neglected. However,
in practice parsing is rarely done for the sake of parsing itself, but rather
in order to use the results in a follow-up application. Additionally, cur-
rent parsers are accuracy-oriented and focus only on the quality of the
results, neglecting other important properties, especially efficiency. The
design of MDParser tries to counter all these drawbacks.

The evaluation of some NLP technologies is sometimes as difficult as
the task itself. For dependency parsing it was long thought not to be
the case, however, some recent works show that the current evaluation
possibilities are limited. In this thesis I broadly present and discuss both
intrinsic and extrinsic evaluation methodologies for dependency parsing.
Both approaches have numerous disadvantages which I demonstrate in
my work. The attachment scores, which are the most used metric of
the intrinsic evaluation, do not differentiate between different depen-
dency types, are being computed for the same portions of treebanks
since many years, and thus often promote overfitting to this particular
kind of data, which is especially dangerous because the data contains a
certain amount of inconsistencies. The extrinsic evaluation, which eval-
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uates the contribution of parser results to a certain application is also
problematic, because the embedding of parsing into applications requires
a lot of expertise and implementational effort and it is unclear whether
the impact on the result is due to the quality of the results or of the
embedding. In the thesis I propose a methodology to account for those
weaknesses and combine the strengths of both evaluation methodologies.

Finally, I evaluate MDParser and compare it with other state-of-
the-art parsers. The results show that I was able to create the fastest
parser currently available, which is able to process plain text, which
other parsers usually can not and whose results are only slightly behind
the top accuracies in the field. However, I analyse the gap as well as its
impact on applications and demonstrate that it is not decisive.

This thesis contains the descriptions of many experiments which I
have performed in the course of the last three years in order to achieve
the goal of implementing and evaluating MDParser. Many of these ex-
periments were unsuccessful or their results have become obsolete in
the course of my work. However, both types of work were essential for
achieving the final results, because I have learned a lot from most of the
experiments I have done, independently of their success.

One of the central parts of any data-driven parser is its machine
learning component. I have had to adopt MDParser to four different
machine learning approaches in the course of the time in order to keep
up with the current developments. I have started with maximum en-
tropy classification. The first package I have used contained only a very
simple training technique, so I had to replace it soon after I was not
able to achieve satisfactory results. The second package contained the
best possible training method for maximum entropy classifiers, however,
the result still was not satisfying. The main problem was that for linear
classification a lot of features are required and if one is not able to select
good ones for training, then the training is very expensive. Thus I have
given up maximum entropy classification and looked for a linear classi-
fier which supported feature selection. The third attempt was a linear
regression classifier with regularisation. In regularisation a penalty term
is applied to every feature weight, so that only the features with a big
weight remain until the end of the learning. This corresponds to an
implicit feature selection, since many bad features can not surpass the
penalty term and only good ones remain. However, the number of in-
stances was still a problem. That is why I have finally switched to linear
support vector machines. With support vector machines not all feature
vectors are of equal importance. Only so called support vectors, i.e.
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instances of data which are involved into drawing the margin between
the classes, are relevant and weights only for their features are learned.
These numerous changes always required significant code modifications
in the system and a lot of work had to be done from scratch. However, I
was able to better understand the significance and influence of machine
learning on the parser in general, independently of a specific machine
learning approach.

Machine learning for data-driven parsing is usually a very expensive
task from the computational point of view, because there are millions
of instances with millions of features. Even though I have always used
linear classification approaches, i.e. there was no need to explore the
combinations of individual features, it has always been a lengthy process
which required sophisticated hardware. Therefore I have invested a lot of
effort in reducing the complexity of the problem. On the one hand I have
tried to split the problem into subproblems, whose individual solutions
are not as costly as the entire problem. On the other hand I have tried
to reduce the number of features by preselecting the most useful ones
before training a model. Both approaches have become obsolete with the
final machine learning approach which is used in MDParser. The final
strategy which is based on support vector machines contains an implicit
feature selection mechanism and can work with the entire set of features
without any need for prefiltering. Since support vector machines only
require support vectors, which are a small fraction of all vectors, the
computation is no longer expensive.

One of the most important achievements of this thesis is that I show
that the efficiency of dependency parsing is not mainly dependent on
the complexity of the underlying parsing strategy, i.e. the worst-case
number of necessary states when a processing a sentence. Currently
people prefer linear strategies, for instance Nivre’s algorithms over more
complex quadratic ones, as for example Covington’s parsing strategy,
without analysing other properties. I have used profiling technology in
order to compute the exact amount of processing time for every step and
component of the algorithm. It turns out that the overwhelming amount
of time is spent on feature extraction, namely on string concatenations.
However, when processing a sentence with some parsing strategy, the
feature extraction is not always necessary in every state and therefore
it is not enough to simply compare the number of states necessary for
different strategies, but one has to rather compare the number of the
actually required feature extractions. This number is similar for both
Nivre’s and Covington’s parsing strategies, even if they have a different



theoretical complexity. In addition to that, techniques like memoisation,
which allow reusability of features, such that expensive string operations
do not have to be unnecessarily repeated, can be applied easier to Cov-
ington’s algorithm rather then to Nivre’s linear ones and in the end it
can even outperform them.

One more very successful piece of work included the experiments on
the treebanks. Treebanks are supposed to be of a very high quality,
because they are essential for the success of all data-driven approaches
which learn from them. I was able to show that it is in fact not the case
and treebanks contain a considerable amount of erroneous annotation.
Thus some more sophisticated approaches have higher scores partially
because they are better at replicating these inconsistencies and thus
despite the scores their results are objectively not of that much higher
quality. Moreover, the approach I have come up is able not only to detect
inconsistencies, but also corrects them.

Furthermore, treebanks for some languages are very big and learn-
ing curve experiments show that almost the same result can already be
achieved with less amount of data. For other languages the treebanks are
too small and much better results could be achieved if more annotated
data were available. Since annotation of corpora is an expensive pro-
cess, it is important to control it as good as possible. A very interesting
question here, which I have successfully investigated in my work, is what
type of data exactly is useful and should be annotated first, because it
is both more beneficial for the performance and requires less effort to be
annotated.

Finally, I have used various opportunities to participate in shared
tasks for recognising textual entailment in order to apply my parser to
concrete tasks. The first task called PETE was specially designed for
parser evaluation and provided an interesting data set, which required
the parser to correctly recognise a limited set of different dependen-
cies. The other two tasks RTE-6 and RTE-7 were not intended to be
used for parser evaluation, however, I have used their data sets for test-
ing parser performance on real-world data. This work allowed me to
better understand how the embedding of dependency parsing into ap-
plications works. Furthermore, these experiments demonstrate that the
performance of parsers for the standard development data of treebanks
is different to that for real world data sets. I have already stated that a
big shortcoming of the currently predominant evaluation is that the per-
formance of parsers is averaged over all dependency types. Some recent
literature tries to address this fact by limiting the evaluation to a subset
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of dependency types, which are of a particular importance for some task.
I have performed a similar analysis for the task of RTE and present my
findings in this thesis.

A lot of the work presented in this thesis has been published on
various conferences. Thus besides a well-working dependency parser,
there are also seven papers, which have been peer-reviewed and accepted
on different international conferences, which arise from this work.






Zusammenfassung

Dependenzparsing steht unter Wissenschaftlern aus verschiedenen Gebi-
eten der Verarbeitung natiirlicher Sprache hoch im Kurs, weil Dependen-
zstrukturen sehr wertvolle Informationen enthalten, die leicht verwendet
werden kénnen. Im den letzten zehn Jahren wurden viele Dependenz-
parser entwickelt, jeder von ihnen mit speziellen Eigenschaften, die ihn
von anderen Parsern absetzen. Im Zuge der Arbeit an dieser Disser-
tation habe ich einen weiteren Dependenzparser namens MDParser en-
twickelt. In dieser Arbeit erortere ich die wichtigsten Eigenschaften von
Dependenzparsern und motiviere die Entwicklung meines Parsers. Ich
prasentiere den derzeitigen Stand der Wissenschaft auf dem Gebiet des
Dependenzparsing und diskutiere iiber die Nachteile aktueller Entwick-
lungen. Meiner Meinung nach liegt das gréfite Problem aktueller Parser
darin, dass sie die Parsingaufgabe unabhéngig von vorausgehenden oder
nachfolgenden Verarbeitungsschritten bzw. Anforderungen behandeln.
Aus diesem Grund werden die Vorverarbeitungsschritte und das Inte-
grieren der Parser in die Anwendungen vernachléssigt. In der Praxis
jedoch ist Parsing selten eine isolierte Aufgabe, sondern liefert Ergeb-
nisse fiir nachfolgende Anwendungen. Auflerdem konzentrieren sich ak-
tuelle Parser nur auf die Qualitdt der Ergebnisse in Bezug auf bestimmte
Mengen von Trainings- und Evaluationsdaten. Sie vernachlassigen dabei
andere wichtige Eigenschaften, insbesondere Effizienz. Das Design des
MDParsers versucht all diesen Nachteilen entgegenzuwirken.

Die Evaluierung von Technologien in der Verarbeitung natiirlicher
Sprache ist manchmal genauso kompliziert wie die Losung der Aufgaben-
stellung selbst. Fiir Dependenzparsing schien dies lange Zeit nicht so zu
sein, jedoch zeigen einige neuere Arbeiten, dass die derzeitigen Evalua-
tionsmoglichkeiten starke Einschrénkungen aufweisen. In dieser Arbeit
prasentiere und erortere ich sowohl intrinsische als auch die extrinsis-
che Evaluierungsmethoden fiir Dependenzparsing. Beide Ansétze haben
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zahlreiche Nachteile, die ich in dieser Arbeit demonstriere. Attach-
ment Scores sind die am héufigsten benutzte Metrik der intrinsischen
Evaluation. Thr Nachteil besteht darin, dass sie nicht zwischen unter-
schiedlichen Dependenztypen unterscheiden kann und seit Jahren fiir
dieselben Teilmengen einiger Baumbanken berechnet wurde. Auf diese
Weise wurde eine Uberanpassung an diese Art von Daten gefordert, was
insbesondere deswegen problematisch ist, weil diese Daten nicht zu ver-
nachlassigende Fehler enthalten. Die extrinsische Evaluierung, die den
Beitrag der Ergebnisse eines Parsers zur Losung einer Aufgabe bew-
ertet, ist problematisch, weil die Integration von Parsern in Anwendun-
gen hohe Sachkompetenz und Implementierungsaufwand erfordert und
viele Faktoren einen Einfluss auf die Qualitdt des Endergebnis haben,
nicht nur die Qualitdt der Ergebnisse, sondern auch die Qualitdt der
Integration bzw. Anpassung der Ergebnisse an die Anforderungen der
Anwendung. In dieser Arbeit schlage ich eine Methode vor, die diese
Schwéchen berticksichtigt und die Starken beider Methoden kombiniert.

Die Evaluation meines MDParsers schlieft natiirlich den Vergleich
mit anderen Parsern ein. Die Ergebnisse zeigen, dass der MDParser
zur Zeit die schnellste verfiigbare Implementierung eines Dependenz-
parsers darstellt, der in der Lage ist, reinen Text zu verarbeiten, eine
Eigenschaft, die nicht viele Dependenzparser vorhalten. Die Evaluation-
sergebnisse liegen nur minimal hinter anderen Top-Ergebnissen zurtick.
Ich habe diese Differenz und ihren Einfluss auf Anwendungen untersucht
und gezeigt, dass sie fiir die Erflillung spezieller Aufgaben nicht entschei-
dend ist.

In dieser Arbeit beschreibe ich viele Experimente, die ich im Verlauf
der letzten drei Jahre durchgefiihrt habe, mit dem Ziel, MDParser zu
implementieren und zu evaluieren. Viele dieser Experimente waren erfol-
glos oder ihre Ergebnisse sind im Laufe meiner Arbeit tiberholt worden,
weil sehr viele andere Gruppen sténdig neuere Arbeiten zum Dependenz-
parsing veroffentlichen. Aber auch diese Experimente waren unerlasslich,
weil ich aus ihrer Durchfithrung, unabhingig von ihrem Erfolg, sehr viel
gelernt habe, und damit zu den schlussendlichen Ergebnissen dieser Ar-
beit beigetragen haben.

Ein zentraler Teil eines datenbasierten Dependenzparsers ist die
Komponente zum maschinellen Lernen (ML) der statistischen Daten-
modelle. Ich musste im Verlauf der Zeit MDParser an vier unter-
schiedliche Ansétze anpassen, um mit aktuellen Entwicklungen Schritt
zu halten. Ich habe mit einer ML-Softwarebibliothek begonnen, die
auf der Maximum-Entropie-Methode basiert. Die von dieser Biblio-
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thek bereitgestellte, sehr elementare Trainingsmethode, konnte nur sehr
méfige Ergebnisse erzielen, so dass sie kurz darauf ersetzt werden
musste. Die zweite von mir benutzte Bibliothek implementiert zwar die
bestmogliche Trainingsmethode fiir die Maximum-Entropie-Methode,
lieferte aber trotzdem keine zufriedenstellenden Ergebnisse. Das grofite
Problem bestand darin, dass fiir die lineare Klassifikation sehr viele
Features notwendig sind. Wenn man nicht in der Lage ist nur die
besten von ihnen fiir das Training auszuwéhlen, dann ist das Train-
ing sehr berechnungsintensiv. Aus diesem Grund gab ich die Maximum-
Entropie-Methode zugunsten eines linearen Klassifikator auf, der die Fea-
tureauswahl unterstiitzt. Im dritten Versuch habe ich einen linearen
Klassifikator mit Regularisierung genommen. Bei der Regularisierung
wird ein Strafterm auf jedes Featuregewicht angewendet, so dass nur
die Features mit einem sehr groflen Gewicht bis zum Ende des Train-
ings iibrig bleiben. Dies entspricht einer impliziten Featureauswahl, da
schlechte Features durch den Strafterm aussortiert werden und nur die
guten iibrig bleiben. Jedoch fithrt auch bei dieser Art von Klassifikator
die sehr grofle Anzahl an Trainingsdaten immer noch zu Problemen. Aus
diesem Grund habe ich schliellich lineare Support-Vektor-Maschinen
(SVM) eingesetzt. Bei Support-Vektor-Maschinen sind nicht alle Fea-
turevektoren von gleicher Bedeutung. Nur die so genannten Support-
Vektoren, d.h. Trainingsinstanzen die relevant fiir die Abgrenzung zwis-
chen unterschiedlichen Klassen sind, werden benutzt und nur fir diese
Featurevektoren werden Gewichte gelernt. Der mehrfache Wechsel der
ML-Module erforderte stets weitreichende Anderungen im Programm-
code des Systems; vieles musste von Grund auf neu implementiert wer-
den. Allerdings verdeutlichen die auftretenden Probleme die generelle
Bedeutung und den Einfluss des maschinellen Lernens auf den Parser,
unabhéngig von der verwendeten Methode.

Maschinelles Lernen fiir datenbasiertes Parsing bedeutet in der Regel
einen immensen Rechenaufwand, weil es Millionen von Trainingsin-
stanzen mit Millionen von Features gibt. Obwohl ich immer lineare
Klassifizierungsmethoden benutzt habe, so dass es fiir die Klassifikatoren
nicht notwendig war auch Kombinationen von einzelnen Features zu be-
trachten, waren die Trainingsldufe bei hohen Hardwareanforderungen
trotzdem immer langwierig. Aus diesem Grund habe ich viel Aufwand
betrieben um die Komplexitiat des Problems zu reduzieren. Zum einen
habe ich versucht das Problem in kleinere Teilprobleme aufzuteilen,
deren einzelne Losungen weniger kostspielig sind als das Gesamtproblem.
Zum anderen habe ich versucht die Anzahl der Features zu reduzieren,
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indem ich die niitzlichsten bereits vor dem Trainieren eines Modells aus-
gewihlt habe. Durch die endgiiltige Wahl von Support-Vektor Maschi-
nen (SVM) zum Lernen der Modelle wurden diese Anstrengungen aus
zwei Griinden obsolet. Zum einen enthélt die Trainingsphase von SVM
einen impliziten Featureauswahlmechanismus, so dass keine manuelle Vo-
rauswahl notig ist, zum anderen selektieren SVM aus den Trainingsin-
stanzen die besten Support-Vektoren, die nur noch einen Bruchteil der
urspriinglichen Menge ausmachen, was den Rechenaufwand stark re-
duziert.

Eines der wichtigsten Ergebnisse der Arbeit ist, dass ich zeige, dass
die Effizienz des Dependenzparsing nicht iiberwiegend von der Kom-
plexitat der zu Grunde liegenden Parsingstrategie abhangt, die durch
die worst-case Anzahl der benétigten Zusténde fiir die Verarbeitung
eines Satzes bestimmt ist. Zur Zeit werden lineare Strategien, wie die
Algorithmen von Nivre, vor komplexeren quadratischen, wie z.B. der
Parsingstrategie von Covington, bevorzugt. Dabei wird ignoriert, dass
der Worst-case nur selten eintritt und die benotigte Rechenzeit von
tieferliegenden Rechenprozessen dominiert werden kann. Mittels Pro-
filing habe ich die exakte Rechenzeit bestimmt, die fiir jeden Schritt und
jede Komponente des Parsingalgorithmus notwendig ist. Es stellte sich
heraus, dass der {iberwiegende Anteil der Zeit von der Featureextrak-
tion beansprucht wird, genauer gesagt flir die Stringkonkatenationen.
Die Featureextraktion ist allerdings mit einigen Parsingstrategien nicht
in jedem Zustand notwendig; daher ist es nicht ausreichend die An-
zahl der Zustéande zu vergleichen, die verschiedene Strategien bendtigen.
Stattdessen muss die Anzahl der eigentlich notwendigen Featureextrak-
tionen verglichen werden. Diese Zahl ist fiir die Algorithmen von Nivre
als auch fiir die Parsingstrategie von Covington adhnlich, auch wenn sie
unterschiedliche Komplexitdten haben. Aulerdem kénnen Techniken wie
Memoisierung, die die Wiederverwendung von Features erméglichen, so
dass teure Stringoperationen nicht unnétig wiederholt werden miissen,
leichter fiir Covington’s Strategie als fiir Nivre’s lineare Algorithmen
angewendet werden, was dazu fithrt, dass Covington’s Algorithmus trotz
schlechterer worst-case Komplexitit eine bessere Leistung liefert.

Beim Einsatz von Baumbanken bin ich zu sehr interessanten Erkennt-
nissen gelangt, die sich auch in dieser Arbeit wiederfinden. Baumbanken
sollten eigentlich von sehr hoher Qualitit sein, weil sie ausschlaggebend
fiir den Erfolg aller datenbasierten Ansétze sind, deren maschinelle Lern-
verfahren auf ihnen aufbauen. Ich konnte zeigen, dass dies hdufig nicht
der Fall ist und Baumbanken eine bedeutende Menge an fehlerhaften An-
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notationen enthalten. Das hat zur Folge, dass kompliziertere Verfahren
teilweise nur deshalb besser bewertet werden, weil sie diese Inkonsis-
tenzen besser wiederholen kénnen. Die erzielten Ergebnisse sind dann
trotz der besseren Wertung objektiv nicht von viel hoherer Qualitat. Ein
von mir entwickelter Ansatz kann nicht nur die Inkonsistenzen erkennen,
sondern diese auch korrigieren.

Fiir einige Sprachen sind sehr grofle Baumbanken vorhanden, allerd-
ings zeigen Lernkurvenexperimente, dass ein annahernd gleiches Ergeb-
nis schon mit weniger Daten erreicht werden kann. Fiir andere Sprachen
sind Baumbanken zu klein und mit mehr annotierten Daten konnten
viel bessere Ergebnisse erreicht werden. Da die Annotation von Kor-
pora kostspielig ist, ist es wichtig, den Annotationsprozess so gut wie
moglich zu kontrollieren. Daher stellt sich die Frage, welche Art von
Daten niitzlich ist und zuerst annotiert werden sollte, da sie sowohl
mehr Nutzen fiir die Performanz als auch den Gesamtaufwand fiir die
Annotation reduziert. Diese Frage habe ich in meiner Arbeit erfolgreich
untersucht.

Ich habe mehrmals die Gelegenheit ergriffen um mit meinen Systemen
an Shared-Tasks fiir Erkennung von Textual Entailment teilzunehmen.
Dabei war mein Ziel, meinen Parser auf konkrete Aufgaben anzuwen-
den. Die erste Task, PETE, war speziell darauf ausgerichtet, Parser zu
evaluieren und stellte interessante Daten zur Verfiigung, die die Erken-
nung einer begrenzten Anzahl von Dependenzen erforderten. Die beiden
Tasks RTE-6 und RTE-7 waren nicht fiir Parserevaluierung konzipiert,
ich konnte die mitgelieferten Datensétze trotzdem nutzen um den Parser
auf realen Daten zu testen. Diese Aufgaben ermoglichten es mir besser
zu verstehen wie die Integration von Parsern in Anwendungen funk-
tioniert. Dariiberhinaus zeigen diese Experimente, dass sich die Perfor-
manz von Parsern auf den iiblichen Entwicklungsdaten der Baumbanken
von der auf realen Daten deutlich unterscheidet. Ich habe bereits da-
rauf hingewiesen, dass ein grofler Mangel der aktuell vorherrschenden
Evaluierung darin liegt, dass die Performanz der Parser als Mittelwert
iiber alle Dependenztypen berechnet wird. Einige aktuellere Publikatio-
nen gehen auf diese Tatsache ein, in dem sie die Evaluierung auf eine
fiir die anvisierte Aufgabe besonders wichtige Teilmenge von Dependen-
ztypen einschrianken. Ich habe eine dhnliche Analyse fiir die Erken-
nung von Textual Entailment durchgefiihrt und prasentiere im folgenden
meine Ergebnisse.

Viele Teile dieser Arbeit wurden auf verschiedenen Konferenzen
veroffentlicht. Auf diese Weise sind neben einem gut funktionieren-
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den Dependenzparser sieben Papiere entstanden, die auf internationalen
Konferenzen begutachtet und akzeptiert worden sind.
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1

Introduction

Parsing is the process of mapping sentences to their syntactic represen-
tations. These representations can be used by computers for perform-
ing many important natural language processing tasks, such as ques-
tion answering, information extraction, coreference resolution, textual
entailment, machine translation and many others. Dependency parsing
is a parsing technique, which is based on dependency grammars (DGs)
(Hays|, [1964) - a theory of sentence structure. During the last decade the
area of this grammar and methods based on it have been proven very
useful, because of the ability to reliably capture very valuable informa-
tion within a sentence in a very convenient easy-to-use form. Moreover,
compared to other theories of syntax, dependency representations have
a lot of appealing properties, which I am going to present in this work.

A lot of different groups of researchers all over the world have devel-
oped a number of good parsers over the time, e.g. MaltParser, Minipar,
MST Parser, Stanford Parser, Ensemble, Mate-tools or Clear Parser.
Parsers are very complex systems, with many different properties. Each
of these parsers is therefore somehow special and has its own unique char-
acteristics. In this thesis I am presenting yet another new dependency
parser - MDParser (Multilingual Dependency Parser), whose ultimate
goal is to be particularly performance-oriented. In the thesis I will dis-
cuss that most current systems focus on accuracy, neglecting efficiency.
In this work I will focus on efficiency, however, not neglecting accuracy.
I will refer to this combined focus as performance-orientedness. The
focus on efficiency is very important, because a lot of new applications
work with the data from the web or have to be able to do the processing
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online, rather than preprocessing some data offline once, so that it can
be used by an application later. In order to guarantee multilinguality I
have restricted myself to data-driven parsing only without any language
specific modifications to the system and thus I will not elaborate on
rule-based or other hand-crafted dependency parsing approaches.

I will present an overview of important features for parsers and dis-
cuss their properties and effects on the system and its results. In partic-
ular I will describe the choice of properties for MDParser and elaborate
on the differences and provide motivation for my decisions. I will try
to present a decent summary of the progress in the field of dependency
parsing, as well as point out and discuss the trends. Finally, a big por-
tion of my thesis will be dedicated to dependency parser evaluation, a
very important topic, in order to truly understand the quality of different
systems.

A lot of the work presented in this thesis has been published on
various conferences. Thus besides a well-working dependency parser,
there are also seven papers, which have been peer-reviewed and accepted
on different international conferences, which arise from this work.

1.1 State of the Art Dependency Parsing

Dependency parsing enjoys great popularity in the research community.
The huge interest on the topic is very well noticeable, when looking at
some shared tasks (among most renowned are CoNLL-2006, CoNLL-
2007 and CoNLL 2008 tasks (Buchholz and Marsi, 2006)), countless
publications at all major conferences (ACL, COLING) and numerous
PhD works. When so many researchers work on the same topic it be-
comes difficult to generalise about different tendencies in the field, since
many groups develop their own views on different aspects of the area.
Still, I will try to summarise the current state of research, as well as the
trends, of dependency parsing and critically discuss them.

Parsing is seen as a goal in itself This basically means that the
task is seen independently of what is happening before or after it. On the
one hand parsing usually requires preprocessing steps, such as sentence
boundary detection, tokenisation and POS-tagging. Their performance
can have a crucial influence on the quality of parser results. On the
other hand parser results are usually used in follow up applications,
such as coreference resolution modules, for correct translations or for in-
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formation extraction. Not all information is relevant and not all relevant
information is of equal importance for these tasks.

However, the state of the art seems to ignore these aspects. The
necessary preprocessing is usually taken for granted by working with
treebanks, which have all the information available. The usability of the
parser results is usually not considered neither, which is best illustrated
by the predominant evaluation metrics, such as attachment scores, which
treat all dependency relations equally, whereas for applications certain
aspects of the syntactic structure are in general more important than
the others, e.g. semantically meaningful subjects or objects vs. purely
syntactic ones, like determiners or punctuation.

Evaluation metrics are very dull The most spread evaluation met-
rics are the labeled and unlabeled attachment scores (LAS and UAS),
which measure the proportion of correctly recognised dependency rela-
tions with both correct head and label in case of LAS or only correct
head in case of UAS.

These scores do not suffice for a comprehensive evaluation of a parser.
A gold standard dependency treebank is required and there are only few
of them for most languages. This fact has several consequences:

e the parsers are tuned to a specific treebank, which might impair
their performance for other domains.

e the scores do not differentiate between various dependency rela-
tions of different importance.

e meanwhile the parsers achieve very high scores for these specific
treebanks and these scores seem to stagnate lately. This fact sug-
gests that parsers perform very well and that no improvements
are being achieved. However, some recent work (e.g. SemEval-
2 shared task PETE (Yuret et al., 2010)), as well as this thesis,
clearly show that parsing technology is far from being that reliable
when applied to data different from these treebanks and that there
is still a lot of room for improvement.

e treebanks inevitably contain errors (Dickinson and Meurers, 2005)).
Whereas overall these resources are of high quality and the errors
probably do not have a significant effect on the performance, these
wrongly annotated tokens still falsify the evaluation result. There-
fore a natural evaluation (Yuret et all[2010), rather than an eval-
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uation based on artificially tagged data, provides a more realistic
feeling for usefulness of parser results, than attachment scores do.

Parser performance implies only the quality of results When
the performance of a parser is being described, usually only the quality
of the results is provided, e.g. using the above mentioned attachment
scores. The parsing times and the training times for parser models are
considered and provided much more rarely (cf. CoNLL challenges where
the parsing speed is not an issue). Moreover, because of the stagnat-
ing accuracy scores, there are some recent trends to combine different
parsers (Nivre, 2009b)E| in order to achieve better results, i.e. higher
attachment scores. Whereas some of these combinations are based on
parallel architectures, e.g. simultaneous parses with different systems
with a subsequent voting (cf. Ensemble (Surdeanu and Manning}, [2010))),
the “real” improvement (current improvement is around 1-2% in terms
of attachment scores) is expected only when systems are run one after
the other, when one system can use features based on the output of the
previous one (Nivre and McDonald} 2008|). It is obvious that such a
system will have much lower running times. It seems that no trade-off
between speed and accuracy is being made and the quality of the results
is the ultimate goal. Additional properties like the amount of necessary
data for training or memory requirements are not an issue in current
works at all.

Extrinsic evaluation possibilities are limited Due to the above
mentioned disadvantages of current evaluation metrics there is a growing
number of alternative evaluation attempts. Extrinsic evaluation is one
such possibility. The idea is not to measure the performance of a parser
directly, but rather embed it in some NLP task, for which dependency
parsing is beneficial, and then measure the improvement. The bigger
the improvement, the better the parser. The already mentioned PETE
(Yuret et al., |2010) shared task for recognising textual entailment or
parser evaluation for information extraction (Miyao et al., 2009) (Buyko
and Hahn|) are examples of such evaluation. The problem with this
evaluation is that such embedding is not easy to do and requires a high
level of expertise in the task, as well as considerable implementation
effort. Furthermore, the embedding introduces an additional level of
complexity to the evaluation. It becomes not clear whether the impact

1This is an invited talk, last retrieved March 10,2011.
http://stp.lingfil.uu.se/ nivre/docs/Current.pdf
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on the final result is due to the quality of the parser or due to the quality
of the embedding. The embedding might also favour one parser and its
result more than some other, which does not necessarily mean that this
parser is better, since with a different embedding the results could look
different.

Evaluation of individual dependencies is a compromise Both
intrinsic evaluation with attachment scores and extrinsic evaluation with
difficult embeddings have their disadvantages. Some of the recent alter-
natives therefore propose a compromise between both. The idea is to
use attachment scores, because of their robustness, but to apply them
only to a very limited set of dependencies, that one is particularly inter-
ested in, e.g. because they are relevant for one’s application. Examples
for this work are the evaluation of non-local (Bender et al., 2011) and
unbounded (Nivre et al} |[2010) dependencies. This method is a real al-
ternative, since it copes with drawbacks of both intrinsic and extrinsic
evaluation. I will perform a similar evaluation for the task of recognising
textual entailment for the RTE-7 (Bentivogli et al., [2011) shared task
data.

1.2 Contribution of this Thesis

In my description of the state of the art dependency parsing I have
worked out some points of criticism:

e Parsing is treated as an independent task and not together with
applications, for which it is actually being done.

e The quality of results is not measured properly. The evaluation is
being done on the same data for years and the extrinsic evaluation
is difficult and rare.

e Parsing may not be expensive, if it is to be used in follow-up appli-
cations. However, the costs and requirements of parsing are very
often neglected by the community.

In this thesis I provide a comprehensive overview of different parsers
and their properties. I will then introduce a particularly performance-
oriented parser MDParser, which I have implemented in the course of
this work. The performance-orientedness means that it is both fast and
sufficiently accurate for applications, not only accuracy-oriented as most
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of the systems I am going to introduce. Morever it is able to process data
in its plain form, without having to transform it to a specific format and
is in general easy to use. Finally, I will elaborate on the topic of parser
evaluation, which is definitely undervalued in the recent literature. The
most important topics of parser evaluation include approaches on:

e How to avoid tuning to treebank errors.
e How to evaluate a parser only on relevant relations.

e Whether linear or non-linear kernel-based parsers are better qual-
ified for applications.

The goal of this thesis is to enable researchers to reliably select the
parser which suits their goals best, when developing some NLP applica-
tion. For practical applications it should be a considerable improvement
to the currently common practice of looking at the CoNLL rankings or
other WSJ evaluations and choosing the parser with the best score.

1.2.1 Thesis Achievements

The most important successful achievements of this thesis are:

Efficient feature extraction I have used Java profiling technology
in order to analyse how much execution time is spent in each stage of
processing. The main finding was that the overwhelming amount of
spent time accounts for feature extraction. Even though this fact has
already been reported by others in the literature for graph-based parsers
(Bohnet/, [2010)), for transition-based parsers the common understanding
is that the efficiency is mainly dependent on the complexity of the parsing
strategy (Nivre, 2006), i.e. the number of states the parser requires
to parse a sentence in the worst case. However, my experiments have
shown, that this is not true. First, the worst case does not occur in
practice, since human language does not favour constructions which are
hard to parse (Covington) [2000). Therefore the complexity is not very
significant and it makes much more sense just to take some empiric
metrics, like the average number of states per sentence. Second, even a
larger number of states does not matter, if one spends less time per state
than with a strategy with a small number of states, but high costs per
state. Since the costs are mainly dependent on the time spent on feature
extraction the most efficient strategy is thus a strategy, which allows the
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most efficient feature extraction. In this thesis I will demonstrate that
the Covington’s strategy with quadratic complexity, which I found most
suitable for efficient processing, greatly outperforms the usually preferred
Nivre’s algorithms with linear complexity, which are not suitable for
efficient feature extraction.

Error identification and correction Every treebank contains anno-
tation errors, which are harmful for data-driven parsers, which learn to
replicate them. Despite the fact that the quality of annotated resources
is of essential importance for the quality of resources derived from them,
there is not much literature available on this topic. A notable exception
is the group around Detmar Meurers and some publications about their
approach for finding errors called wariation detection (Dickinson and
Meurers, [2003)). I propose a different method, which is complementary
to variation detection and is able to find additional errors. Moreover, it
is not only able to recognise inconsistencies, but also proposes a correc-
tion. The proposed method was published in the proceedings of ACL
2011 (Volokh and Neumann, 2011)).

Embedding and evaluation of dependency parsing for the task
of recognising textual entailment Extrinsic evaluation is an al-
ternative to the usual tests on the held-out data of a treebank using
attachment scores. In order to gain experience in that field I have par-
ticipated into two RTE tasks: PETE and RTE-6 (Bentivogli et al., [2010)).
PETE was a shared task designed specifically for parser evaluation and
contained a small amount of data with different types of dependencies,
which were used to evaluate parsers. RTE-6 did not have the purpose to
evaluate parsers, but it contained a large amount of real-world data with
all kinds of dependencies, which I could use for parser evaluation. The
result of this work is that I was able to build a sensible embedding of
parser results into an RTE system and evaluate numerous parsers with
this system.

Experiments with sentence usefulness Accurate data-driven pars-
ing requires large treebanks with high-quality annotation. Such tree-
banks require a lot of effort, since double or even triple annotation of
large amounts of data is necessary. Therefore resources of sufficient
quality are available only for few languages. Since multilinguality is
very important for NLP tasks, I was interested in investigating how the
problem of insufficient annotated data can be solved. One possibility is
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to speed up the annotation process by annotating those sentences first,
which are most useful for the task and do not annotate those which are
of no use. I will describe an approach how such sentences can be found
automatically.

Investigation of differences between linear and non-linear
kernel-based learners In the recent years accurate parsers have been
slow and fast parsers have been relatively inaccurate. Currently, fast
parsers are based on linear learning methods and are just one percent
behind accuracy-oriented slow parsers, which are based on sophisticated
non-linear kernel-based learners. In this thesis I will show the investiga-
tion whether it is worth suffering the disadvantages of hundred-fold lower
training and parsing times to gain this one percent of accuracy. This
analysis consists out of investigation of results obtained with both ap-
proaches. Therefore I analyse the tokens which are correctly recognised
by one, but not the other approach. I investigate whether these tokens
are just an ordinary random extract of the data or are somehow special,
whether non-linear classification performs better simply due to overfit-
ting the data and whether a more complex approach helps to recognise
more difficult dependencies.

Evaluation of relevant dependencies Finally, I have tried to com-
bine intrinsic and extrinsic evaluation to benefit from their advantages
and avoid their disadvantages. For this goal I have built a framework,
that I am going to describe in details in the main part of the thesis, and
applied it to a small portion of RTE-7 data. Afterwards I performed
parser evaluation with several parsers. This way I have tried to benefit
from the useful properties of attachment scores and to avoid the draw-
backs of extrinsic evaluation that I have encountered in the PETE and
RTE-6 shared tasks.

1.2.2 Trial and Error

In the course of three years of work on this thesis I have investigated
numerous approaches to improve my parser. The overwhelming majority
of these attempts were failures or became obsolete in the course of the
time. Nevertheless, I want to elaborate at least on some of them in
this thesis. Of course they can not be seen as a real contribution since
they brought no improvement and are not part of the current system.
Nevertheless, without having analysed why they have failed and lessons
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learned out of them, I would have never been able to arrive at the final
solution for MDParser.
The most important pieces of such work included:

Experiments with different machine learning packages In the
course of the years I have tried out four different machine learning al-
gorithms: OpenNLP MaxFEnt (Jason Baldridge and Friedman), Mal-
let MaxEnt (McCallum, 2002), L1 regularised logistic regression(Yuan
et al., 2010) (LibLinear package) and finally multiclass support vector
machines by Singer and Crammer (Keerthi et al) |2008b) (LibLinear
package). The final approach delivered the best accuracy and efficiency,
but other algorithms and packages also played an important role during
the development.

Experiments with different parsing strategies There are numer-
ous transition-based parsing algorithms. I have experimented with many
of them, including the most important ones like Nivre’s arc-standard
and arc-eager parsing strategies (Nivrel [2008), but finally decided to
stay with Covington’s fundamental parsing strategy (Covington, {2000).
I then tried to improve Covington’s algorithm with many ideas, most of
which failed. Among such attempts was a divide and conquer modifi-
cation to the algorithm, which later became obsolete because of better
classifiers or additional transition types introduced to the strategy.

Experiments with feature usefulness Many older state of the art
parsers like MST Parser (Mcdonald et al.l |2005) or MaltParser (Nivre
et al., 2006) using LibSVM (Chang and Chih-Jen, 2011 took many
hours or even days to train a model for a larger treebank as the one
for English. Feature engineering was thus an extremely tedious time-
consuming occupation. However, it was indispensable, since only with a
good model good results could be achieved. Most approaches of those
days included training with less time-consuming machine learning strate-
gies, e.g. TiMBL (Daelemans et al., |2002) in case of MaltParser, and
then retraining with the best found features with a more sophisticated
learner. Whereas this method usually worked quite well, a good feature
for one learning algorithm does not necessarily have to be good for a
different approach and thus the models were still not optimal. Addi-
tionally, the less complex algorithms still required some time to train
a model. I have concentrated on a different method, which allowed to
estimate feature usefulness without training a model and spent a lot of
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time on its development. In the end it turned out that newer learning
strategies, which implicitly contain feature selection, outperformed my
approach.

Experiments with splitting Instead of training one classifier for the
whole training data, it is possible to split the training set into parts
and train many classifiers. The requirements are that you know when
to apply which classifier and that there is enough data, so that smaller
pieces of data are still big enough in order to allow accurate training.
Otherwise one can arbitrary divide data in as many pieces as desired.
Training on smaller training sets is done much faster and sometimes
even provides an accuracy boost because data separability is increased.
In MaltParser splitting is done in a such way that the training data is
split according to the value of some feature, e.g. POS tag. This way one
gets one model for verbs, one model for nouns, one model for adjectives
etc. I have initially tried a different approach. The idea was to split the
data purely by size, train the models, estimate the most useful features
with the above-mentioned technique and then train a model for the whole
data without splitting, but only with the estimated useful features. The
reason for why I did not want to use splitting for the final model was that
for many languages the treebank size is not sufficient even if the whole
data is used and splitting can only deteriorate the result. However, since
feature usefulness estimation became obsolete, this way of splitting did
not make sense any longer neither. Thus the final version of MDParser
contains splitting as it is realised in MaltParser.

Experiments with confidence values Parser results are often inac-
curate for out-of-domain data. In some cases it is better not to use parser
results at all, since erroneous parser decisions can mislead the system in
which the parser is embedded. Therefore it is helpful to know how con-
fident the parser is about its decisions, so that only reliable results are
used. I have tried to estimate such confidence values with help of prob-
abilities that I could compute with parser’s model. Unfortunately, often
even a 100% probability for a certain dependency according to parser’s
model leads to erroneous decisions and even though it was much less of-
ten the case than when the probability was lower, e.g. 80%, the results
were still not satisfactory.

I will elaborate on these experiments in more details in the main part
of the thesis.
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1.3 Outline

The thesis consists out of two parts.

In the first part I introduce the fields of dependency grammar and
parsing. I discuss different parser properties and present the most promi-
nent dependency parsers in section I then introduce MDParser, the
dependency parser I have developed in the course of working on this
thesis. I describe its architecture and properties, as well as point out
the differences to MaltParser, on which it is based in section I
conclude the first part by presenting all my experiments in the field of
dependency parsing, both successful and unsuccessful ones and discuss
their contributions in section

In the second part I present the evaluation methodologies available
for dependency parsing, discuss their advantages and disadvantages, as
well as the necessary modifications to account for their shortcomings.
The intrinsic evaluation methodology is covered in section and the
extrinsic approach is described in section Finally, I evaluate MD-
Parser, as well as some other state of the art systems in section [3.3]

Section [4.]] concludes the thesis, summarises its achievements and
addresses the future directions for development, which come short in this
thesis.






2

Dependency Parsing

2.1 Overview

Dependency grammar and dependency parsing have a long tradition.
Most of the ancient linguists assumed some kind of dependency repre-
sentation for their languages, e.g. ancient Greek, Sanskrit, Latin, Arabic
(Nivrel [2005). In medieval Europe and 1900s there were also a lot of
proponents of dependency grammar. Tesniere introduced the notions of
head and dependent in 1959 (Tesnierel [1959). In 1988 Melcuk adopted
dependency grammar to Slavic languages (Mel’cuk, 1988]) and the for-
malism more or less corresponds to what is now used by most dependency
parsers, the main difference being that dependency parsers only produce
one layer of syntactic dependencies, whereas Melcuk also distinguished
among other layers like morphological dependencies. I will describe this
formalism in this section and define exactly what properties I assume.

In the last decades dozens of dependency parsers were developed.
Dependency parsers are complex systems with many different properties,
so I will try to provide an overview of these, discuss their importance
and name corresponding parsers or literature. This is necessary in order
to introduce my own parser later on. This section will thus provide all
necessary terminology and definitions, which will be used to describe the
core of the dissertation in the following parts and is thus essential for
their understanding.
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2.1.1 Dependency Grammar

In this subsection I am going to describe how a dependency representa-
tion looks like and what are its formal properties.

Dependency grammar works only with surface forms of the words in
the sentence, without assuming any phrasal units. This is a very special
property of dependency grammar, since there is no way to treat partic-
ular groupings of words (such as chunks or constituents) in a specific
manner. Even though these surface forms do not necessarily have to be
identical with the word forms we observe in a sentence, I will nonetheless
assume it in this thesis and will refer to these units of the syntactic anal-
ysis simply as words. The only exception will be the special root node
(0). Words are interconnected by special meaningful relations called de-
pendencies and form a structure called dependency structure. Here is
an example of dependency structure:

ROOT OBJ VE

2l Al F l

o Het said: he2 wills now s considers thoser offerss s

Figure 2.1: Dependency structure.

Dependency and dependency structure are central notions for the
theory, therefore it is necessary to list the properties I assume for them
in this work.

2.1.1.1 Dependency Relations

Dependency relations are:
e binary (only defined for pairs of words)

e directed / antisymmetric (A—B # B—A; the direction be-
tween the words is important, furthermore I assume that for any
pair of words a relation only in one direction is allowed at the same
time)

e anti-reflexive (if A— B, then A#B; no word can govern itself)
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e anti-transitive (if A— B and B— C, then -(A— B); dependency
relations are only direct)

e labeled (A _l> B; the relation between two words is typed with the
label 1)

Since dependencies are binary, I will often use the notation used for
pairs - (A,B), which is an abbreviation for A—B. The term I will use
for A is head or parent and B will be called dependent or child. Even
though dependencies are not transitive, it is still sometimes useful to
know whether some element is dominated by another indirectly, i.e. in
several steps. Therefore I will use the notation A i>B and will call B
subordinate of A.

2.1.1.2 Dependency Structures

Here are some properties of dependency structures:

e connectedness (all words should be dominated by at least one
other word)

e single-headiness (all words, except the special 0 word have to
have exactly one head)

e rooted (each sentence has exactly one token whose head is 0)

e acyclicity (there should be no way that A iA’ in other words
there should be no cycle)

e projectivity (if A— B, then all words between A and B have to
be subordinate of A; in terms of the dependency graph as seen in
figure it means that there are no crossing branches)

First four properties guarantee that dependency structures are ac-
tually dependency trees, a data structure that allows very efficient al-
gorithms. The fifth property is very controversial, since non-projective
structures occur in many languages. However, for the sake of efficiency,
most parsers assume projectivity and even for an algorithm, that is de-
signed in such a way that non-projective structures can be captured,
projectivity is often optional, because it affects its complexity. The other
properties, both of dependency relations and structures can as well differ
for different dependency grammar variations, e.g. relations are not an-
tisymmetric in every formalism or words can have more than one head,
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however I will not elaborate on the motivation for it and stay with the
version of dependency grammar described in this section, because it is
most widely-used and most efficient from the computational point of
view.

2.1.1.3 Strengths and Weaknesses

It is crucial to differentiate between the advantages and disadvantages
of a theory and of a certain system based on this theory. Obviously
a good system will always incorporate the benefits, that a theory can
provide, and at the same time try to cope with its weaknesses, however,
it does not necessarily have to be the case. For instance, one of the
main properties of dependency grammars, which explains its popularity
for some languages (e.g. Slavic languages) is its ability to deal with the
free word order in a very easy fashion. However, this property is not
exploited in most of the currently available systems for computational
reasons. On the other hand, some of the points, that are traditionally
considered to be weaknesses of the theory, do not necessarily have to
be weaknesses of a system. For instance coordination structures, that
are considered to be problematic constructions for dependency grammar,
since the theory can not provide a unique solution how to treat them.
However, a system will probably cope with any of the possible ways of
representing them equally well, as long as the representation remains
consistent throughout the whole data.

In this section I will try to answer the question, why dependency
grammar has become so popular recently. To my mind it is best done by
analysing its advantages and disadvantages. Therefore I want to enlarge
on different important phenomena and how good or bad our theory can
handle them.

Strengths Let us start with listing the advantages of the theory:

e Dependency analysis does not require any phrasal (non-terminal)
nodes. It only works with existing surface forms (e.g. word forms)
and tries to find relations between them. This makes the pars-
ing task more straightforward and the algorithms clearer and less
complex.

e Dependency parsing provides an analysis with very useful relations.
First of all the relations are explicit - it is always clear which el-
ement is the head and which element is the dependent. Further-
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more, this relation is also typed, and thus it is not necessary to
guess what kind of dependency is between them, which is a source
for numerous kinds of ambiguity otherwise. Additionally, these re-
lations are very close to semantics (argument structure vs semantic
roles), which is almost always the next step after syntactic analysis
in natural language processing.

e Dependency representations provide structural order, not linear
order. This way discontinuous phrases, and other phenomena typ-
ical for rather word free languages, can be treated elegantly. This
property is almost unique among syntactic theories, which heavily
rely on linear order for their analyses.

e Dependency parsing is very suitable for incremental processing,
since it is possible to process words one by one as soon as they are
encountered. It is not necessary for the analysis to wait until a
certain fragment (e.g. a phrase) is finished.

e Dependency structures on many different description levels of the
language can be constructed. For some languages it is convenient
to have a layer of morphological dependency relations between
words (e.g. I write vs he writes - verb governs the subject syn-
tactically, but is dependent on it morphologically), sometimes it is
useful to have a layer of semantic relations (e.g. it depends on the
weather - syntactically the object of depends is on, and weather is
then the object of the preposition, semantically, however, there is
a direct relation between depends and weather) and yet in other
cases it is sensible to have a discourse-related representation (e.g.
he bought a book and read it - there is a relation between book and
it).

Weaknesses Now let us take a look at some problematic cases for
dependency grammar:

e Dependency grammar does not provide a unique solution for co-
ordination structures. Both parts of a coordination are obviously
equal, however, the theory only offers head-dependent relations.
Especially if one assumes the single-head constraint, then it is un-
clear how to capture this kind of structure in a reasonable manner.

e Dependency grammar offers relations only between individual el-
ements, it does not have a notion of groupings or constituents.
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However it is obvious that some phenomena occur not on the word
level, but on the phrase or sentence level. The probably most
frequent phenomenon is modification, which can occur for single
words as well as for large phrases. In those cases it is impossible
to tell what kind of dependency relation it is just by looking at it
(e.g. I have lived there last year - last year can either only modify
lived or the whole sentence).

e Dependency grammar also does not provide a uniform solution
for auxiliary verbs. It is unclear whether the auxiliary verb should
govern the main verb or the other way around. It is also sometimes
unclear how to deal with numerous auxiliaries occurring at the
same time.

A rough analysis of the strengths and weaknesses of this theory ex-
plains why the theory is so popular and why I have decided to work
with it in my thesis. Dependency grammar allows us efficient parsing
techniques and produces a meaningful output, which can be used for
further tasks. The problem that it is linguistically not always ideal is
unpleasant, but an acceptable compromise.

2.1.2 Dependency Parsing

Parsing is the process of assigning a syntactic analysis to a sentence. In
dependency parsing the analysis is based on the dependency grammar.
There are numerous ways of getting dependency representations. The
most important approaches are rule-based dependency parsing, data-
driven dependency parsing and the derivation of dependencies from a
different syntactic theory.

In the rule-based approach a formal grammar describes the language
which can be parsed and how the structure of its sentences looks like.
A grammar parsing algorithm then is able to determine whether a given
sentence belongs to the language or not. In positive case the derivation
tree is the dependency analysis of the sentence. The main challenge of
this approach is to provide a grammar of sufficient coverage, since it is
difficult to provide enough rules in order to accept all possible sentences
and at the same time avoid introducing ungrammatical structures. An-
other challenge with this approach is disambiguation, since sometimes
the same sentence can have several possible derivations and a mechanism
determining the most probable one is necessary.
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In the data-driven approach the mapping from strings to structures
is induced from the data. A data-driven parsing algorithm then is able
to construct different analyses, score them and select the most probable,
according to what is most reasonable given the data it has seen before.
Thus data-driven parsing can be split in two phases: the training phase,
when the mapping is learned, and the parsing phase, when the mapping
is applied to get the most probable structure. Rule-based parsers have
good accuracies, but only for the sentences which are covered by the
grammar, whereas the data-driven parsers accept any string given and
try to make best out of it. The drawback is that even ungrammatical
sentences get an analysis, but coverage is no longer a problem. For
good accuracies, however, a lot of data is necessary, which is the main
challenge of this approach.

Both approaches are inherently doing the same thing: the parsers are
given rules, apply them and derive a structure. The difference is how
one gets the rules: in the data-driven approach they are induced from
the data and in the grammar-based approach the rules should deduce
the data. The difference is thus as with inductive and deductive rea-
soning. One can simplify it by saying that rule-based systems initially
have perfect accuracy and grow in coverage during their development
and data-driven systems initially have perfect coverage and then grow
in accuracy (Nivre, 2006)).

From the technical point of view the data-driven approach is more
appealing, since the main labour with this approach is the preparation
of the appropriate data, which usually has already been done by some-
one else. In the rule-based approach the developer of the parser has to
develop the set of rules, as well as their weights and priorities manually,
whereas with data-driven approaches it is automatised by machine learn-
ing techniques. Especially, if one desires a multilingual parser it is only
possible with the data-driven approach, since one and the same parser
can work for various languages, provided the data. On the contrary, a
rule-based system needs language-specific grammars for each language,
which is an unmanageable problem.

The third possibility of deriving dependency representations does not
strictly belong to the field of dependency parsing, because the underlying
parsing process is based on a different syntactic theory. However, it is
still relevant, because it allows to derive the same representation. For
example one can derive dependencies from phrase structures by applying
head rules (catherine De Marneffe et al., [2006) or one can derive them
even easier from other deeper formalisms like LFG (Kaplan and Bresnan,
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1995) or HPSG ([Pollard and Sag},[1994), since their analyses contain even
more linguistic information to construct dependency trees out of them
(Zhang and Wangj).

Since we are interested in the efficiency-oriented parsing for applica-
tions, and applications often require multilinguality, I will focus on the
data-driven parsing in this thesis. Therefore I will define the training
and parsing phases for this approach in more details.

Depending on whether the data one wants to learn from is annotated
or not, the learning can be supervised or not supervised, respectively. I
will restrict myself to supervised parsing only because supervised depen-
dency parsing is a mature technology, whereas unsupervised dependency
parsing is still a relatively unexplored area. Therefore it would be to dif-
ficult to perform a reasonable evaluation and meaningful comparison of
my work with other developments.

There are two possibilities how one can proceed in order to produce
dependency representations given the appropriate data: graph-based and
transition approaches.

Algorithms belonging to the category of transition-based parsing
strategies deliver the parse of a sentence after performing a sequence
of actions one after another. The final result should be the set of all de-
pendency relations, required to construct the correct dependency tree.
The module responsible for choosing the best operation in every step is
called oracle. At first, during the training phase, the perfect oracle is
simulated by using the training data, during which the system is driven
by the already given gold standard result. During this phase the system
learns which operation is likely to be chosen in which situation. These
situations depend on the current state of the system and its auxiliary
data structures, and are called configurations. The result is a model,
which is then used to make predictions about the most likely action,
when the gold standard result is unavailable, which happens in the pars-
ing phase. An example for a transition-based parser is again MaltParser.

In graph-based parsing the algorithms construct dependency graphs
for a given sentence, typically by initially assuming edges between all
words and then eliminating all wrong ones until the graph does not be-
come a valid dependency tree with the maximum global score according
to the model. The model is approximated in the training phase by learn-
ing the edge weights from the data. This approach is very different from
the transition-based parsing, since it finds the solution in several global
steps, which involve the information about the entire sentence, whereas
transition-based algorithms use only local information and require a long
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sequence of parser decisions in order to arrive at the final result. MST
Parser is an example for a parser of this class.

2.1.3 Parser Properties

In this section I am going to list all relevant properties which have to
be specified when developing a dependency parser. The variety of these
implementational decisions leads to the sizable number of different sys-
tems in the field. For each property I will provide some sample values
and give an example system or cite the corresponding literature.

Grammar This determines the process how dependencies are derived.
In a rule-based system a dependency grammar is responsible for deduc-
ing the structure. A good example is the MiniPar system for English
(Lin) [1998). In a data-driven system the structure is induced from the
data. There are numerous systems of this kind, most prominent being
MaltParser (Nivre et al.l 2006) and MST Parser (Mcdonald et al., [2005]).
The dependencies can also be derived from a different formalism, e.g. as
in Stanford Parser (Klein and Manning), |2003b)), where dependencies are
extracted out of phrase structures.

Machine Learning This determines what kind of machine learning
approach is used in the system. Only few systems are purely rule-based,
most of them, even if they have an underlying hand-written grammar,
still rely on statistics learned from the data, e.g. for disambiguation. An
example for such system is the parser for German Pro3Gres (Rico Sen-
nrich and Warin), [2009)). As far as the data-driven parsers are concerned,
it is self-evident that they are highly dependent on the machine learning
method. Here, there are again numerous possibilities to choose from.
The field of machine learning is so vast, that I will not be able to give
a comprehensive overview on all available techniques, but I will point
out the main properties of a machine learning approach for dependency
parsing.

multi-class vs binary: Dependency parsing is highly dependent
on multi-class classification. For instance there are usually dozens of
different dependency types and so the system must be able to select
the right one. Most classifiers are binary and can not solve this task
directly. However, with one-versus-one or one-versus-all strategies one
can indirectly construct a multi-class classifier. Classification for the
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one-versus-all case is done by a winner-takes-all strategy, in which the
classifier with the highest output function assigns the class. The classi-
fication of one-versus-one case is done by a max-wins voting strategy, in
which every classifier assigns the instance to one of the two classes, then
the vote for the assigned class is increased by one vote, and finally the
class with most votes determines the instance classification. However,
there are also classifiers, which are able to simultaneously differentiate
between many classes, so that no workaround is necessary.

probabilistic vs non-probabilistic: A probabilistic classifier
computes a probability distribution for a given feature vector. A proba-
bilistic approach might be beneficial, if one wants to fine-tune a system,
e.g. by preferring some important class, even if it does not get the
highest probability, which is often the case when the training data is
imbalanced. It can also be used as a confidence value for classifier’s cer-
tainty about decisions or in order to look up the competing class, i.e.
the class with the second-best probability, which might also be helpful in
certain situations. With a non-probabilistic classifier one does not have
these possibilities, since it merely returns the predicted class.

linear vs kernel-based: Linear classifier identifies the class by a
linear combination of all features in a feature vector, which does not
require a lot of computation. One can visualise its operation as dividing
one class from another by drawing a line between them. Of course this
assumes that such line can be drawn, i.e. that the data is linearly sep-
arable. Usually this is not the case. A kernel-based classifier makes use
of the method called kernel trick (Aizerman et all 1964). According to
this method a linear classifier solves a non-linear problem by mapping
the original observations into a higher-dimensional space, where the lin-
ear classifier is subsequently used. The mapping is achieved by applying
a kernel function to the feature space. Wherever a dot product is used,
it is replaced with the kernel function. This is much more expensive, but
guarantees better separability.

Determinism The understanding of the notion in computer science
is that a deterministic algorithm always produces the same result, i.e.
there is no random component in it. In the field of parsing, however,
the notion usually means something different, namely that the algorithm
does not back up (Aho et al., [1975). Especially due to ambiguities in
the language it is difficult to predict the correct structure right from
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the start, without having to adjust the result in the course of process-
ing. Therefore many parsers allow non-deterministic behaviour, e.g. by
backtracking when there are new indicators, that something done in the
past has gone wrong, or by beam search, i.e. keeping many possible
solutions in memory simultaneously as long as they are plausible. Yet
another variation of non-determinism is reranking or repair, i.e. the
result is changed not during the processing, but afterwards. In case
of reranking an n-best-list of possible parses is required and in case of
repair the result is evaluated by a different model and corrected if nec-
essary. This is different from the technique used by many deterministic
parsers called postprocessing, when situations with uncertain decisions
are postponed for a later point, but if a decision is done it is never re-
vised. An example for parsing with repair is the work by Hall and Novak
(Hall and Novak|). A beam-search-based dependency parser is the system
described by Zhang and Clark (Zhang and Clark, [2008). Among deter-
ministic parsers is the already mentioned MaltParser and the work by
Ytrestol describes a method for non-deterministic dependency parsing
with backtracking (Ytrestgl, [2011)).

Incrementality Real-time applications often require online processing
of the input received so far. Methods, which are able to produce par-
tial structures for an incomplete input and require only one left-to-right
(or right-to-left) pass in order to construct the final analysis are called
incremental. On the contrary to that, parsers which require the input
before the processing are non-incremental. Incremental parsers are rare
because, especially in the deterministic scenario, no reliable structure
can be produced without knowing what input is still to come. However,
in many cases there is no need to wait for the entire sentence to be read
in. The knowledge about few next words, so called lookahead, is already
very helpful and is sufficient for high quality results. The exact size of
the lookahead varies for different languages, but experiments show that
3-4 words are usually enough. An example of a fully non-incremental
parser is MST Parser, since it requires the whole sentence to be read
in order to compute the maximum spinning tree. All state of the art
transition-based parsers use a lookahead.

Language Parsers can be language-specific, language-independent or
language-tuned. Language-specific parsers work only for one language.
MiniPar for instance, which is a grammar-based English parser will not
work for any other language. Language-independent parsers work for
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any language and achieve optimal results for that language without fine-
tuning. Language-tuned parsers work for any language with some default
settings, but the results can be significantly improved if language-specific
adaptations are made. Such fine-tunings include learner’s parameter
optimisation, language-specific feature models or even different parser
strategies. Most data-driven parsers are of this kind. Unfortunately
there are still no truly language-independent parsers, which automati-
cally adopt themselves to the given language and reach an optimal ac-
curacy.

Parsing Strategy Parsing consists out of two steps. In the first step
the rules/models are learned and in the second they are applied in or-
der to get the analysis. There are two fundamental approaches how
the analyses are derived: graph-based and transition-based. Both ap-
proaches then have numerous different algorithms.

There are several prominent transition-based algorithms, which are
very well summarised in a journal article by Nivre (Nivre} 2008). They
can be broadly divided into stack-based algorithms, like Nivre’s arc-
eager and arc-standard algorithms on the one hand and into variations
of Covington’s parsing strategy (Covington, [2000) on the other hand.
Nivre’s algorithm use two stacks, one for partially processed tokens and
one with still to be processed tokens. There are then several possible
operations, which either combine the tokens from the stacks with one
another, move them from the unprocessed stack to the partially pro-
cessed or remove processed tokens. Nivre’s algorithms have linear com-
plexity, because they are able to remove already processed tokens from
the stack and these tokens do not interfere with other words during the
later processing. Covington’s strategy successively compares one token
to all tokens left to it for all words in the sentence and for every word
pair decides whether there is a dependency relation between them or not.
Covington’s parsing strategy has quadratic complexity, because there is
no possibility to ignore already processed words and in the worst case
one word has to be examined together with all other in the sentence.

The graph-based strategies are first of all differentiated into first-
order and second-order ones, where second-order parsers make choices for
an edge depending on already chosen edges, whereas first-order parsers
do not. As already mentioned, according to the graph-based approach
one initially creates edges between all words of the graph before com-
puting the dependency tree. There are techniques to avoid some of these
edges, because they do not occur in the training data. Therefore word
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forms, POS tags and dependency labels can be taken into account in
order to judge whether an edge should be considered at all, when the
global solution is computed. As far as the computation itself is con-
cerned most systems use the maximum spanning tree (MST) (Mcdonald
et all 2005) as the best dependency tree, which can be computed with
Chu-Liu-Edmonds algorithm (Chu and Liul [1965). The idea of this al-
gorithm is to select all edges with the highest scores. If the result is
a tree, then it terminates. Otherwise the result is still a graph with a
cycle in it, so the cycle is removed by contracting the nodes involved in
it into new artificial node. This is repeated until no cycles are left. After
finding an MST on the contracted graph, one can reconstruct an MST
for the original one out of the history of contractions (Georgiadisl, [2003)).

Distributedness In the second half of the 2000s we have seen that
the trend in processor development has moved to multi-core CPUs. At
first the software and programming languages reacted slowly to the new
trend, but at the present day parallel computing can no longer be ig-
nored. Ordinary desktop or even mobile computers usually have 2-4 cores
and we will see devices with 8-16 or more cores very soon (cf. hyper-
threading (Marr et al. 2002))). Additionally, technologies like MapRe-
duce (Dean et al.| |2004) extend the possibilities of parallel computing
to unlimited number of computers, thus allowing to use a lot of pro-
cessors even if the individual devices are not very powerful. Parsing is
an extremely suitable task for parallel computing: one sentence can be
processed independently of the other and even within one sentence a lot
of processing steps can be done in parallel. E.g. feature extraction can
also be parallelised, since feature values are also independent from each
another (Bohnet), [2010). In this work Bohnet reports 1.9 faster feature
extraction with 2 and 3.6 faster extraction with 4 cores. Nevertheless,
most parsers still do not support parallel computing and only make use
of one core.

Architecture Dependency parsing is a complex task which can be
divided into many subtasks. Two major tasks are the creation of a
head-modifier tree skeleton on the one hand and the labeling of the
individual dependencies with their types on the other hand. Both can
be then arbitrary divided into further subtasks. E.g. one subtask is to
find all dependencies going left to right and another one to find those
going right to left. One can differentiate between local and long-distance
dependencies and between projective and non-projective ones. As we
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will later see for the already mentioned splitting technique one can even
differentiate between dependencies for words of different parts of speech.
The architecture of a system is thus a very important point and almost
all parsers are different in this respect. MST Parser for instance does
parsing and labeling independently of each other, whereas MaltParser
can do those two tasks in one step.

Feature Models A central problem in machine learning tasks is the
feature engineering part. One has to find a feature model, which works
best with the machine learning approach one has chosen. The amount of
work and the methods vary greatly for different classification approaches.
For some approaches it is the job of the machine to find a reliable ac-
curate model out of a big space of possibilities. Such approaches are
very time intensive. For some other methods it is the job of the hu-
man developer to provide a good feature set, for which the classifier will
learn a model. The training times are much shorter for these learning
techniques, but still can take a considerable amount of time. With some
machine learning approaches, in addition to finding good individual fea-
tures, one also has to provide good feature combinations, in order to
compensate for the missing feature interaction. For NLP tasks the num-
ber of features is usually very high (Klein and Manning |2003al) and it is
computationally impossible to simply add all potential candidates that
come to one’s mind and let the classifier learn the correct figures.

Good features can significantly boost the accuracy of a parser and a
compact set of features can guarantee good efficiency as well. However,
most of the systems lack automatic feature engineering or feature selec-
tion techniques. Therefore they are usually slow, because the models
include a lot of not so useful features, and an optimal accuracy is usu-
ally achieved only after a very long development period. As an example,
MaltParser’s accuracy for English with the very same algorithm and ma-
chine learning library LibSVM changed from 85.81 LASH in 2007 to up to
90.4 in 2012. Some newer machine learning algorithms, however, implic-
itly perform feature selection and produce much more compact models,
which contain only highly useful features. Examples of such algorithms
are L1 regularised logistic regression (Yuan et al.l [2010) or multi-class
support vector machines by Singer and Crammer (Keerthi et al., [2008b)).
In regularisation a penalty term is applied to every feature weight, so
that only the features with a big weight remain until the end of the learn-

ltaken from http://maltparser.org/conll/conll07/, last retrieved on March 23,2012
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ing. With support vector machines not all feature vectors are of equal
importance. Only so called support vectors, i.e. instances of data which
are involved into drawing the margin between the classes, are relevant
and weights only for their features are learned.

Features can be of many different types. An important differentia-
tion which is often done in the literature is whether the parser, and that
basically means the feature model it is based on, is lexicalised or not. As
the name suggests, lexicalised parsers learn a lexicon and a finite num-
ber of structures associated with the words from this lexicon. This is
sometimes very helpful, because it helps to avoid many of the structural
ambiguities. Lexicalised parsers therefore achieve better accuracies than
those without a lexicon (Klein and Manning, 2003b)). The drawback of
lexicalised parsing is that the lexicon is big and there are thus many
different features based on various word forms. Such models are harder
to optimise and the efficiency of the system drops. On the other hand
unlexicalised models are very compact, because they are based only on
some general structural information, e.g. POS tags, are efficient and
easy to optimise. Besides a lexicon there are many more other sources
for features. One can use morphological information, subcategorisation
and other databases, e.g. containing semantic information. The other
important type of features are structural features. As with the already
mentioned first-order and second-order parsing algorithms, one can de-
fine features which can use the partially constructed structure at any
stage of the processing. These features might use different information
about dependents, governors, siblings and neighbouring words or as well
distance information between tokens of the structure constructed so far.

Projectivity In section [2.1.1.2]1 have already defined the projectivity
constraint for dependency structures. In many languages most structures
satisfy this constraint and even if they do not, it is mainly due to one non-
projective dependency. Non-projective dependencies usually arise due to
irregular word order, which does not cause ungrammatical constructions
in many languages, e.g. Slavic ones, but still is not the preferred vari-
ant. Thus the average number of non-projective dependencies is rather
low, e.g. one in Czech, which is particularly famous for non-projectivity,
the overall number of such dependencies is 1.9% (Hall and Novak) of
the total number of dependencies. Considering their rareness it is often
sensible to restrict oneself only to projective ones without losing much ac-
curacy, but gaining a lot of efficiency. Therefore many parsers are either
only projective or allow non-projectivity only as an option. Fully non-
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projective algorithms, i.e. those which always assume non-projectivity
in the sentence they are parsing, are much more inefficient, since many
more word-pairs have to be investigated, since basically arbitrary word
order is allowed. Therefore there are some intelligent techniques, which
allow more efficient processing of non-projective structures. First ap-
proach is called pseudo-projective parsing (Nivre and Nilsson, [2005)) and
processes the sentence as if it were projective, but then recovers non-
projective dependencies in a post-processing step. The second option is
again to assume projective structures, but then to reorder words during
the processing, if necessary, in order to get the desired non-projective
structures (Nivre, 2009a). The last option is based on the idea that
the default strategy is to assume projectivity, but if there is an indica-
tion that non-projectivity might be involved the parser switches to the
non-projective model (Choi and Palmer} 2011al).

Deepness This concerns the detailedness of the dependency analysis
returned by the parser. The usual practice is to compute only a layer
of syntactic analysis. However, there also some parsers which are able
to deliver morphological analysis and/or a layer of semantic dependen-
cies. The syntactic analysis usually makes use of some tagset in order
to provide types for predicted dependencies. There are different kinds
of tagsets. E.g. for English the most prominent are the CoNLL tagset
(Surdeanu et al.l 2008]) and Stanford tagset (de Marneffe and Manning},
2008). Both tagsets contain around 50 different types each and allow a
quite rich annotation. For other languages there also exist tagsets with
similar number and type of dependency relations. As far as semantic
dependencies are concerned there are also some tagsets based on seman-
tic roles. The data used in the CoNLL 2008 shared task for semantic
role labelling was annotated using PropBank (Palmer et all |2005)) and
NomBank (Meyers et al., 2004)), which were used to annotate verbs and
nouns, respectively. According to these tagsets the semantic arguments
are simply numbered A0,A1,A2 etc. based on the entries in the accord-
ing frames in these frameworks. Some other frameworks, e.g. FrameNet
(Baker et al., [1998)) allow a more detailed semantic annotations with
meaningful labels like agent, patient, goal etc. Depending on how many
layers of annotation a parser is able to produce, one speaks of shallow and
deep parsers. Most parsers, including MST Parser, MaltParser, Minipar,
Ensemble and Stanford Parser are shallow and produce only syntactic
dependencies. The projects called mate-tools and clear parser offer both
a parser (Bohnet|, [2010) (Choi and Palmer} |2011a)) and a semantic role
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labeller (Bjorkelund et al., 2009) (Choi and Palmer [2011b).

2.1.4 Summary

So far I have introduced the formalism of dependency grammar, ex-
plained how one can produce the respective representations by means
of dependency parsing and listed the most important properties of such
systems. For each property I have mentioned the state of the art parsers
associated with it. I will briefly summarise the most important systems
according to their most prominent characteristics before introducing my
own parser MDParser in the next section. I will also assess some of their
properties in a qualitative manner, however, a detailed quantitative eval-
uation will come in a later section dedicated to that.

MaltParser (Nivre et al |2006) is a data-driven transition-based de-
terministic parser. It provides various parsing strategies which support
both projective and non-projective parsing and the grade of incremental-
ity, i.e. the size of the lookahead, can be specified with a formal feature
specification language. It also supports both parsing and labeling in one
step, as well as doing it separately. It does not have a mechanism for au-
tomatic feature engineering, therefore the feature models have to be care-
fully specified and have a big impact on the quality of the results. There
are currently two versions of machine learning strategies supported: Lib-
SVM and Liblinear. I will refer to these as MaltParser(LibSVM) and
MaltParser(Liblinear) in the course of the thesis. LibSVM requires a lot
of time both during the training and testing phase, whereas Liblinear is
very fast during both. MaltParser(LibSVM), however, produces slightly
more accurate results than MaltParser(LibLinear). MaltParser can be
trained for both Stanford and CoNLL dependencies and it only delivers
the syntactic analysis of the input.

MSTParser (Mcdonald et al., [2005) is a graph-based parser. Due to
this fact it is non-deterministic and non-incremental by nature. It does
parsing and labeling separately. The feature models are responsible for a
great portion of its accuracy and therefore a careful feature engineering
is necessary. MST Parser has a very complex machine learning approach
behind it, which requires a lot of time and resources to train the model.
The resulting model is huge and it also takes a lot of time and resources
to apply in the parsing phase. MST Parser can learn both Stanford and
CoNLL dependencies and also produces only the syntactic analysis.
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Stanford Parser (Klein and Manning, [2003b) is a phrase structure
grammar parser. It is able to derive so called Stanford dependencies out
of phrase structures with help of head rules, which identify the head and
the children for all possible PSG constructions. Since Stanford Parser is a
PSG parser it has a completely different training phase. In PSG parsing
one has to first read off all possible rules from the training treebank and
in the second stage learn their probabilities. The starting point for that
in Stanford Parser is the maximum-likelihood estimation and then some
other steps like markovisation or smoothing (Klein and Manning;, 2003b))
are performed to deal with the problem of sparsity. Stanford models
are relatively compact, but because of the two stage processing (first
PSG, then transformation to DG) the overall parsing time is still long.
Stanford Parser is the only system, which is able to work with plain text.
It contains all preprocessing components like sentence splitter, tokeniser,
pos-tagger, which are necessary to transform the plain text input into a
parsable format.

Minipar (Linl |{1998) is a rule-based dependency parser for English. It
is an old parser which has not been developed for a long time, but it
still popular because of its efficiency. Minipar is a chart parser which
constructs all possible parse trees for a sentence and then selects the
best. Additionally, Minipar’s parsing algorithm requires all words to be
initiated with their categories before the processing and thus the parser
is neither deterministic nor incremental. As far as the quality of results is
concerned Minipar performs worse than the state-of-the-art data-driven
parsers. However, because it is rule-based it is able to judge whether
a sentence is grammatical or not, whereas data-driven parsers always
provide some dependency analysis for whatever input sentence given.

Ensemble (Surdeanu and Manning, [2010) is a combination of all pars-
ing algorithms implemented in MaltParser: Nivre’s arc-eager, Nivre’s
arc-standard and Covington’s non-projective model, each with the pars-
ing direction left to right and right to left, plus the default algorithm of
MST Parser: Overall 7 different models. Each individual parser runs in
a separate thread which allows to parse at the time of a single parser,
provided the necessary processing resources. Ensemble is different to
many other experiments of combining different strategies at the learning
time, so that one gets either only one hybrid model or the individual
models at least are enriched with features based on the output of other
models. Ensemble performs the combination after parsing is done, by a
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voting mechanism. Additionally, it has a procedure to guarantee that
the resulting dependency tree is well-formed. Otherwise the system has
the same properties as MaltParser.

Clear Parser (Choi and Palmer] [2011a) is a new parser inspired by
MaltParser. It proposes some modifications which improve both effi-
ciency and accuracy. The efficiency improvement comes from a modi-
fication of Nivre’s parsing strategy. Clear Parser differentiates between
projective and non-projective structures and is able to avoid unnecessary
search for non-projectivity if its model predicts so. For the accuracy
boost the developers use a different training strategy. They do not only
learn on the gold standard training data, but they also produce a variant
of the training data parsed by the parser. Thus the parser is trained both
on gold-standard annotation and automatically parsed trees. This helps
them to create a better model, which allows to reduce the gap between
the training data and what the parser is able to replicate. Otherwise the
parser has the same properties as MaltParser. Besides syntactic analysis
there is also a semantic labelling component.

Mate-tools (Bohnet| [2010) is another new parser, however, inspired
by MST Parser. It proposes a modification for considerably improving
parsing speed by means of optimising the feature extraction procedure,
which accounts for the most time spent on processing. On the one hand
the developers employ a method improving the mapping of feature val-
ues to their indexes, i.e. corresponding unique integers. On the other
hand they make use of several CPU cores, if available, in order to extract
features in parallel. Mate-tools also offers a semantic labelling compo-
nent.

In this summary I have presented the most prominent parsers of the
last years. The older data-driven parsers have had high accuracies as
their top priority and are very slow. The only exception to this is Mini-
par, which is remarkably fast, considering the year of its development.
Despite the fact that it was less accurate, it still enjoys a wide popular-
ity. The probably most widely-used system, however, is Stanford Parser,
despite the fact that it is neither the most accurate one, nor does it al-
low fast processing. In fact Stanford Parser is very slow, because it first
creates phrase structures and it has problems with longer sentences. To
my mind the popularity of the parser arises from the fact that it allows
processing of plain text and the user does not have to search for com-
ponents which have to do that in the desired format, as it is the case



50 2.1. OVERVIEW

with all other systems. The newer developments show that parsing speed
is becoming more important, however the speed improvements are only
admissible if they do not impair accuracy, as it is the case with more
efficient data structures or parallel computing.
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2.2 MDParser

I have presented an overview of the field of dependency parsing, ex-
plained the most important properties and described the most promi-
nent systems which are available for the research community. In this
section I am going to motivate the development of yet another parser
MDParser. MDParser is supposed to be an application-oriented parser.
I will discuss why it was necessary to develop a new parser and why the
other ones are less suitable for this goal.

In the introduction (chapter I have explained that parsing is
often seen as an independent NLP task. The usual setting is a gold-
standard treebank, i.e. a ready-to-parse resource, consisting out of a
well-formed grammatical tokenised text with known sentence boundaries
and annotated with parts of speech. The goal is to replicate as much
of the gold standard annotation as possible for some small portion of
the treebank, which was held out. Therefore it is understandable that
all systems are biased towards accuracy for this specific kind of task
and data, while other properties are often neglected. However, when
developing applications, i.e. natural language processing tasks which
profit from dependency analyses of the data, the setting is absolutely
different. The text is often not well-formed, since extracted from the
web in form of HTML or PDF, all preprocessing steps like sentence
boundary detection, tokenisation and part of speech are usually difficult,
both because of ill-formedness and due to the fact that the data might be
different from what these tools were trained on. It is therefore essential
that the parser does not get misled by an input it does not expect.
Additionally, the size of the data is always much bigger than the few
hundreds of sentences in the development and test sets of the treebanks
and therefore efficiency is very important. At last, since applications
often process the web, multilinguality is also an issue. Therefore it is
beneficial if the parser does not require much data for training to achieve
decent results, because for many languages annotated resources, such as
treebanks, are small. On the other hand applications rarely require full
dependency analyses for their needs and often focus on some partial
structures and thus the global accuracy for all kinds of relations is not
as important as the performance on some specific dependency types.

Let us sum up the requirements for an application-oriented parser:

e Preprocessing of the data is important and should be tailored for
the parser so it gets exactly the kind of input it was trained on.
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e Efficiency is a major issue, because parsing is required for large
amounts of data.

e The size of training data the parser requires should not be too big.

The only well-known state-of-the-art parser which does all the pre-
processing steps is Stanford Parser. However, it is not efficient enough
to work with a lot of data. In fact almost none of the parsers is fast
enough to work with the web. The solution of newer systems to split the
task into several threads and do the computation in parallel is very fruit-
ful, but speeding up the processing by the brute computational power
is not elegant and would lead to very unpleasant properties in case the
computational resources are not available. Therefore I have decided to
create a very fast parser, which is able to work with large amounts of
data, is capable to do all the preprocessing and can be easily used for
many languages. As far as the other properties are concerned, it should
not be inferior to other systems.

When I started the work on this thesis and studied the state of the
art, in order to get an impression what could be the starting point of
my development, the last three parsers from my overview, as well as
MaltParser(Liblinear), had not been yet available. Minipar is a rule-
based system and Stanford Parser is a PSG parser, therefore they did
not qualify. Thus the choice was either to base the new parser on Malt-
Parser(SVM) or MST Parser. Both parsers were very slow and required
hours to train models and minutes to apply them. The low speed of
MST Parser lied in its graph-based nature, since it is costly to search for
an optimal global solution in a non-deterministic and non-incremental
way. Additionally, it required second-order parsing, i.e. information
about already selected edges, in order to achieve good results. The low
speed of MaltParser could be explained with the choice of its machine
learning strategy, SVMs with a quadratic kernel. Otherwise its prop-
erties looked very promising: the decisions are local and the parsing
algorithms are deterministic and require only a small lookahead. There-
fore the decision was to build a transition-based system, which has all
the above application-oriented properties, but is otherwise not inferior
to MaltParser.

2.2.1 Framework for Dependency Parsing

In this subsection I am going to describe the architecture of MDParser,
as well as point out and discuss its differences with MaltParser. Usu-
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ally system descriptions convey the general idea and do not contain all
the technical details. That is why it is very difficult to make sure that
some component is implemented exactly the same way as it is described
somewhere in the literature. This is also true for MaltParser. Despite
the extensive literature on this system, I was not able to find out many
of the implementational decisions. Some of them I could recover directly
from the code, however, many others remained unclear and required
me to come up with my own solutions. Since MDParser proved to be
able to parse sentences within microseconds, the implementational de-
tails become as important as the theoretical description of the system.
Therefore I will always provide as many technical details as possible.

2.2.1.1 General Architecture

First, the parser has to read in the data it is going to work with. Then
there are two possibilities, depending whether the system is run in the
training or parsing mode. In case of training the system has to construct
the training data and eventually learn a model out of it. In case of
parsing the system has to construct the dependency analysis for every
sentence in the data. I will describe both phases separately.

Training Phase In the training phase the system runs a parsing al-
gorithm on the data using an oracle, a component which uses the gold-
standard annotation to select the correct decision in each state of the
processing. FEach state of the algorithm corresponds to the partially built
structure so far, the desired gold-standard structure and a pair of words,
for which the system has to decide whether there is a dependency rela-
tion between them or not. First of all, the system checks whether the
pair of words is permissible, i.e. if a dependency edge is introduced the
structure is still a well-formed tree. If it is not permissible the oracle
proceeds to the next pair of words, otherwise it selects the correct oper-
ation for this parser state. In the training phase it is very easy to do so,
since one can consult the gold standard and check whether a particular
relation for this pair is present or not. Otherwise the oracle selects some
other operation, depending on the algorithm, in order to proceed to the
next pair of words. For all permissible configurations the system applies
the feature model and adds all extracted features into a feature vector
together with the label of the correct operation for this configuration.
Finally, a machine learning approach is applied in order to learn a model
in order to select the correct operation in the parsing phase, when the
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gold standard is not available.

Parsing Phase In the parsing phase the system runs a parsing algo-
rithm on the data using the model learned during the training phase.
In each state of the algorithm the model predicts what operation should
be done next. The system also makes sure that no ill-formed structure
(cf. section is constructed. It is easy to guarantee that for most
of the constraints, so that e.g. no tokens get several heads, no cycles
are introduced and in some cases non-projective edges are not allowed.
However, with many algorithms some tokens might not get a head as-
signed and thus a post-processing step is necessary for them, in order to
make sure that the final result is a well-formed dependency tree, i.e. the
connectedness and single-headness constraints are satisfied.

2.2.1.2 Implementational Details

In this section I am going to provide the technical details of some impor-
tant components of MDParser and discuss the differences between my
implementation and the one of MaltParser.

Oracle is a component, which looks up the correct decision for the
parsing algorithm during the training phase. Usually algorithms have
between three and six possible operations to choose from. Whereas it
is easy to look up, whether for a given pair of words j and ¢ there is a
gold-standard dependency (j,i) or (i,j), it is sometimes not straightfor-
ward which operations to choose in case there is no dependency relation
between two given words. E.g. Nivre’s arc-eager algorithm has two op-
erations for this case: shift and reduce. With shift the parser moves to
a different pair of words, while the previous indexes are still kept on the
stacks, i.e. they are considered partially processed and might become in-
volved in the dependency structure later. With reduce one of the words
is removed from the stacks, since it is considered being already com-
pletely processed, i.e. it already has a head and the oracle knows that
it will not be a dependent for any of the forthcoming words. A similar
situation arises with the version of Covington’s algorithm implemented
in MaltParser. It also has two possible operations in case there is no
dependency for the words j and i. One operation is called no-arc and it
is applied in order to go over to next i, i.e. i-1 in order to eventually find
a head or dependent for j. The other one is called shift and is supposed
to change j to j+1, because the previous j will not be involved in any
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dependency relation with the possible i’s at that stage of processing.

First, it is unclear which one to select first. Second, there are no
descriptions of how the procedure for checking whether a token is par-
tially or completely processed looks like. For the first issue there are
basically two options: a) prefer reduce, i.e. reduce a token as soon as
possible when it becomes completely processed and b) prefer shift, i.e.
reduce a token only when necessary in order to build the desired result
and it is otherwise interfering with the processing. I have chosen the
first option, which decreases the overall number of transitions necessary
to process a sentence. The drawback is that one has to check whether
a token is completely processed every time in order not to accidentally
remove a token which is still involved in the processing. With shift first,
one does not have to worry about it, but the overall number of states
might increase. It is very similar for the Covington’s algorithm with the
two operations shift and no-arc.

The procedure of checking whether a token has been processed or not
depends on the algorithm. For Nivre’s algorithm it is quite easy. Given
a token j, which is potentially to be reduced, one has to check whether
it already has a head. If not, then it has not been completely processed.
Otherwise, one has to check all other not completely processed tokens,
whether they have the token j as their head. If not, the token can be
safely reduced, otherwise one has to keep it. With Covington’s algorithm
it is a little bit more difficult. The algorithm checks for every word j all
words i, left to it whether there is a dependency relation between them.
That means that one can not shift to the next word j+1, unless there
is at least one word i, so that there is a dependency (j,i) or (i,j). That
means that one has to first check whether j has a dependent left to it
and if yes, then shift is not allowed. Otherwise one has to check for all
1’s to the left of j whether they have j as a parent. Only if it is not the
case, then one can safely proceed with j+1.

The latter implementation is probably not as efficient as the one in
MaltParser, which internally uses chart parser like data structures and
does not spend so much time on these checks. However, the oracle is only
used during the training phase and thus does not influence the parsing
speed, so it has not been optimised too much.

Parsing Algorithm In transition-based parsing the goal of the parser
is to find all pairs of words (j,i) for which the dependency relation holds.
The naive strategy would be to examine all possible word pairs in the
sentence. This is inefficient since many of the pairs are impossible, e.g.
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because of the ill-formedness constraints. Therefore there are more clever
ways of restricting the search space without missing any of the desired
relations. I have already presented some of the most popular ones, like
Covington’s or Nivre’s algorithms.

MaltParser contains implementations of almost all prominent algo-
rithms. During the development of MDParser I have also tried many of
them and they are still part of the system, however, I have found out
that Covington’s algorithm has particularly appealing properties and
thus it is the MDParser’s default parsing strategy. There is not much
to say about the implementation, since Covington’s algorithm basically
requires two simple for-loops to go through all desired word pairs and it
is implemented the same way as in MaltParser.

Algorithm 1 Covington’s algorithm

1: for (int j=1; j < sentence.length;j++) do

2 for (int i=j-1;1 >=0;i——) do

3 if (permissible(j,i) || permissible(i,j)) then
4: select correct transition
5
6
7

end if
end for
end for

Permissibility Before consulting an oracle or a model, which transi-
tion is the correct one in a certain configuration, it is sensible to examine
first, whether the given pair of words would violate the well-formedness
constraints for some of the possible operations. Therefore there is a pro-
cedure to check all constraints defined in the sections 2.1.1.1land [2.1.1.2]
Unfortunately there is no description of how they are implemented in
MaltParser and thus I had to provide my own implementations. Per-
missibility check (line 3; algorithm 1) is a quite important part of the
algorithm, since checks for projectivity (algorithm 2) and acyclicity (al-
gorithm 3) are quite complex procedures and have to be performed mil-
lions of times during parsing, even for relatively small data sets. I will
provide my implementation only of these two, since the other ones such
as single-headiness or anti-reflexiveness are self-evident.

The algorithm 2 checks whether the edge between two words with
indexes j and 7 is projective or not. An edge of length 1 is always
projective (lines 1-3). Otherwise one has to check which token has a
smaller index (lines 3-9). Let us assume ¢ is the smaller and j is the
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Algorithm 2 Projectivity check

1: if distance(j,i) == 1) then

2 return true;

3. else

4: int smaller = j;

5: int bigger = i;

6 if (j > i) then

7 smaller = i;

8 bigger = j;

9: end if

10: end if

11: for (int i=bigger-1; i >= 0; i——) do

12: if (i != smaller) then

13: if (1 > smaller && head(i) < smaller) then
14: return false;

15: else if (i < smaller && head(i) > smaller) then
16: return false;

17: end if

18: end if

19: end for

20: return true;

bigger one. Then for every word between ¢ and j (line 10), there should
be no word which has a parent which is smaller than ¢ (lines 12-14) and
for every word between 0 and ¢ there should be no word which has a
head which is bigger than ¢ (lines 14-16).

The algorithm 3 goes through all tokens, for which holds that i is
their subordinate, i.e. 7 is reachable in the tree by following down the
dependency edges. It starts with the current head of i (line 5) and then
its head (line 15) etc. until it reaches the artificial node 0 (lines 9-11).
If any token comes on the stack for the second time, we know there is
a cycle and terminate (lines 12-14). Otherwise, if the token 0 can be
reached, then we know that there is no cycle on the path.

Features In machine learning a feature is a property of a phenomenon
being observed. A good discriminating feature occurs often with one
class and rarely with the other ones, so that it becomes an indicator for
a certain outcome. Features in transition-based parsing are extracted by
applying a set of feature templates in every permissible configuration.



o8 2.2. MDPARSER

Algorithm 3 Acyclicity check

1: int curHead = j;

2: boolean|] possibleEnds = new boolean|sentence.length+1];
3: possibleEndsli] = true;

4: Stack<Integer> toCheck = new Stack<Integer>);
5: toCheck.add(curHead);

6: while (!toCheck.isEmpty() do

7: curHead = toCheck.pop();

8: intCurHeadHead = heads[curHead];

9: if (curHeadHead == 0) then

10: return true;

11: end if

12: if (possibleEnds[curHeadHead]) then

13: return false;

14: else

15: toCheck.add(curHeadHead);

16: possibleEnds[curHead] = true;

17: end if
18: end while
19: return true;

Feature templates are functions, e.g. pos(j), which would return the part-
of-speech tag of the word j, or wf(j), which would return the word form of
the word j. The encoding of the corresponding features might vary, but
usually the values are strings, e.g. a part-of-speech tag of a certain word
(DT,NN,VB etc.), a word form (the, economy,be) or a dependency label
(SBJ, OBJ, ROOT). In order to keep track which feature template is
responsible for which feature the final value in the training data usually
contains indication for both, e.g. “pos(j)=DT”.

In addition to such easy-to-understand feature templates, which have
a clear semantics, there are also artificial feature conjunctions, which
are concatenations of some original feature templates. An example for
a feature conjunction would be “pos(j)=DT#wf(j)=the”. Feature con-
junctions are a means in order to compensate for lack of exploration
of feature space with non-kernel-based machine learning approaches (cf.
the machine learning paragraph in section [2.1.3)).

We can observe that the extraction of features involves a lot of string
operations. First a feature has to be constructed out of the feature
template’s name plus the equality sign plus the feature’s value. For
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feature conjunctions the individual features have to be constructed and
then their values have to be concatenated with the hash symboﬂ Since
for security reasons String is an immutable basic type in Java (this is
a problem specific for a particular programming language, but all other
parsers are also in Java and most machine learning libraries are also
available only in few languages, Java being the most common), each time
you append something a new String is created, the old value is stored the
new value is added, and the old String is thrown away. The longer the
strings the longer the concatenations take, but even for typical feature
lengths of about ten characters a concatenation takes around 0.25-0.3
microseconds with the fastest way of concatenation in Java. I have tried
out three possibilities of concatenation: using '+’ operator (corresponds
to String.concat()), using StringBuilder class and using String.format()
method. The '+’ operator was the fastest one for me in this scenario.
In MaltParser StringBuilder is used.

There is one more important property of features. Some features
are the same for many configurations, because they do not change in
the course of processing, as e.g. word forms or part-of-speech tags. On
the other hand some other features, e.g. based on the partially con-
structed structure, as e.g. dependency labels of some tokens, do change
in the course of processing, usually from being null in the beginning to
some value at a certain point of parsing progress. I will call the first
class static and the second class dynamic features. Since I have already
demonstrated the costs of string operations for features, it is sensible to
avoid constructing static features all over again. I will propose a method
for this in the following section of the thesis.

Alphabet I have explained that features on their surface form are
strings. However, internally machine learning libraries always work with
integers. Sometimes the library itself has the functionality to index all
features and assign each possible value a unique integer and sometimes
they expect the input to already be in the integer format. The packages
LibSVM (Chang and Chih-Jen| 2011) and LibLinear (Fan et al.l |2008])
are of the latter class.

A mapping between string feature values and integers is called alpha-
bet. Both MaltParser and MDParser use Java HashMap class in order
to implement this structure. However, whereas I have used the default
Sun implementation of this class MaltParser uses a specialised Google

21t could be an arbitrary symbol not occurring in the data.
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implementation, which allows a particularly fast retrieval. In addition to
that, I use one flat HashMap for the entire mapping and MaltParser uses
a complex HashMap cascade, where all features are grouped according
to their values, so that e.g. word forms are looked up in one HashMap
and POS tags are stored in a different one. The idea is that the majority
of the features, which are POS-based, require as little time as possible,
which is the case when the HashMap is smaller. I have not experimented
with different implementations of the alphabet, however, my analysis of
the processing times has shown, that it is not a very costly part of the
parsing process and accounts only to few percents of the entire time
spend on the processing and thus its optimisation is not very important.

Models During the learning, the features get weights for each class,
determining how indicative a certain feature is for every possible class. A
positive value increases the probability of a certain class and a negative
value decreases it. The higher the value, the bigger the effect on the
probability distribution. The learned feature weights are then printed
into a file after the training is done. For parsing they are read in into a
two dimensional double-array: one dimension for each feature and one
dimension for each class.

Many learning algorithms, such as L1R-LR or MCSVM_CS from the
LibLinear library end up with zero weights for many features, since the
features either get regularised by a penalty term or they do not belong to
support vectors and are thus not considered. In fact, only few percents
of all features do get a non-zero weight in the end. It is therefore sensible
to eliminate those in order to make the array with the weights smaller,
both for higher access times and lower memory requirement. LibLinear
does not support such compaction and thus the functionality has to be
implemented manually.

MaltParser’s compaction includes removing features with zero
weights, as well as mapping features with the same weights to one entry.
MDParser only removes those with zero weights, since the additional
mapping to equivalence classes decreases efficiency. Eventually, the al-
phabet has to be adopted, since the indexes of features have changed and
many of the original features in the alphabet were removed. Again, as
with the alphabet data structure, I have measured the costs of accessing
the weights array during the parsing phase and have found out that it
is not very costly. In fact retrieving objects from arrays is very cheap
in Java and does not account even for 1% of the entire execution time,
despite the fact that it is done millions of times. Therefore I have not
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put a lot of effort in its compaction.

Feature Vectors For every configuration a lot of features have to be
extracted. These features are then put together in some kind of a data
structure. This collection is usually called feature vector, however, the
underlying data structure should not be necessarily a vector. In fact,
a vector is not the best data structure for parsing purposes, since it
only allows efficient access to its elements, but adding new elements is
expensive. Even though the number of feature templates is constant, the
exact number of features for a particular configuration is still not known
beforehand, because some of the values returned by the templates will
have zero weights and thus will not be included into the feature vector.
Therefore a dynamically expandable collection, such as a list (e.g. the
usual Java ArrayList class), is a better option.

For the training phase the LibLinear package has an additional re-
quirement: all features in the vector have be sorted in ascending order
according to their indexes. Thus the data structure for the feature vec-
tor actually has to be a sorted list. It is important to note, that the
parsing phase does not have the latter requirement and it is thus very
important to differentiate between feature vector types depending on
the phase. Sorting is a very expensive procedure and accounts for a big
portion of execution time. It is important to choose the most efficient
sorting algorithm, such as quicksort implemented in the Java Collection
class. Using less efficient algorithms such as insertion sort degrades the
efficiency by multiple times.

2.2.2 Feature Model

The performance of a transition-based parser relies heavily on its abil-
ity to predict correct transitions. In this subsection I am going to list
all features I have used in MDParser for this task. These features are
only based on word forms, POS tags and dependency labels, because
this information is available in any dependency treebank for any lan-
guage. Some languages contain additional information about lemmas
or different morphological knowledge, but I did not exploit it, since it
is not available for every language and it also would require additional
preprocessing components, which are able to deliver this fine-grained
information, which are also not easy to get.

1. WFJ = returns the word form of the token j.
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10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.
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. PJ = returns the part of speech of the token j.

WFJP1 = returns the word form of the token j+1.

PJP1 = returns the part of speech of the token j+1.
WFJP2 = returns the word form of the token j+2.

PJP2 = returns the part of speech of the token j+2.
WFJP3 = returns the word form of the token j+3.

PJP3 = returns the part of speech of the token j+3.

WFI = returns the word form of the token 1.

PI = returns the part of speech of the token i.

PPP1 = returns the part of speech of the token i+1.
WFHI = returns the word form of the head of the token i.
PHI = returns the part of speech of the head of the token 1.
DEPI = returns the dependency label of the token i.

DEPLDI = returns the dependency label of the left-most dependent
of the token i.

DEPRDI = returns the dependency label of the right-most depen-
dent of the token i.

DEPLDJ = returns the dependency label of the left-most dependent
of the token j.

DIST = returns the distance between the tokens j and ¢ For i=0
the feature returns 0, for the distance 1 the feature returns 1, for
distances 2 or 3 the feature returns 2, for distances 4 or 5 the value
3 is returned, for distances 6, 7, 8 or 9 the value 4 and for all other
distances the value 5 is returned.

MERGE2(PI,PIP1 = returns the concatenation of PI and PIP1 fea-
tures.

MERGE2(WFIL,PI = returns the concatenation of WFI and PI fea-
tures.
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21.

22.

23.

24.

25.

26.

27.

MERGE3(PJP1,PJP2,PJP3 = returns the concatenation of PJP1,
pPJP2 and PJP3 features.

MERGE2(DEPLDJ,PJ = returns the concatenation of DEPLDJ and
pJ features.

MERGE3(PI,DEPRDI,DEPLDI = returns the concatenation of P1, DE-
PRDI and DEPLDI features.

MERGE2(DEPI,WFHI = returns the concatenation of DEPI and
WFHI features.

MERGE3(PHIL,PJP1,PIP1 = returns the concatenation of PHI, PJP1
and PIpP1 features.

MERGE3(WFJ,WFI,PJP3 = returns the concatenation of WFJ, WFI
and pJP3 features.

MERGE3(DIST,PJ,WFJP1 = returns the concatenation of DIST, PJ
and WFJP1 features.

Feature templates 1-13 are lexical (word forms and POS tags), 14~
17 are based on dependency labels and template 18 takes the distance
between two words into account. Templates 19-27 combine the templates
1-18 between each other.

This is a model with a lookahead of 3, which uses a lot of static
features templates (all word form templates and all POS templates are
static by default). Whereas most templates are identical to those used in
MaltParser (1-18 are taken from the MaltParser model), I have modified
some feature conjunctions, so that their values can be reused as often
as possible (e.g. templates 19-21 are static, whereas MaltParser did not
contain static conjunctions at all). In the next section I will provide
more details on feature reusability.
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2.3 Contributions

So far I have introduced the dependency grammar formalism, explained
the notion of dependency parsing and described my implementation of
MDParser and its differences to MaltParser, on which it is based. Now I
will present my experiments in the field of dependency parsing with the
ultimate goal of creating a particularly suitable parser for applications.

The experiments can be divided into two groups: those which failed
and those which succeeded. Of course the latter are more interesting,
however, I have also learned a lot from the experiments which did not
succeed and therefore I will present both.

2.3.1 Trial and Error

In the introduction (section I have already briefly explained what
kind of experiments I have done either without success or which became
obsolete in the course of the years I have spent on this thesis. These
experiments included the work on different machine learning packages,
parsing strategies, feature usefulness, splitting and confidence values. In
this subsection I am going to present them in details.

Machine Learning Packages In order to select the correct operation
in each configuration one has to learn which features are indicative for
which operation. For this task there are numerous machine learning
approaches, which are able to learn adequate feature weights. Whereas
they are often based on different approaches how this task is solved, the
general idea is the same for all of them: learning feature weights is seen
as an optimization of a convex function. The general procedure then
looks as follows:

1. Initialise with some value, e.g. 0.

2. Evaluate the weight (every method has some kind of an objective
function, which reflects how many erroneous/correct predictions
are made with the current weight).

3. Determine the direction of optimisation (since the function is con-
vex, the optimum can be reached by either decreasing or increasing
the initial weight).

4. Step into the predicted direction (this is basically the main part of
the optimisation problem, because the size of the step determines
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the number of iterations required to reach the maximum).

5. Repeat 2-4 until the maximum (i.e. the most optimal weight) is
reached (since the function is convex, the maximum is the point
where the gradient is 0).

The figure [2.2] visualises the optimality function:

The initial feature weight (marked by a green point) is 0 and it is not
optimal. Decreasing the weight would cause even worse results, whereas
increasing the weight at first improves it and after the angular point
it begins to decrease. Therefore it is important to first determine the
direction correctly, advance to the maximum in as few steps as possible
and do not pass by it, since the performance will deteriorate if the weight
becomes too large.

A\ Optimality
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Figure 2.2: Convex optimality function for a feature

Considering this procedure every machine learning approach can be
basically evaluated by the following properties:

e How many iterations are necessary in order to reach the maximum?
e How close to the maximum the algorithm terminates?

e For how many features should the procedure be done in order to
achieve a good overall result?

The first machine learning approach I have tried was the maximum
entropy classifier from the OpenNLP package. Its learning is based on
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the generalised iterative scaling (Darroch and Ratcliff, [1972) method.
According to this method the stationary point of the optimality function
is found by locally approximating the function as being linear. Since it is
obviously not true (as one can see on the graph the function is definitely
not linear, but rather hyperbolic) , and the gradient is not constant (as
it is the case in linear functions) the approximation works only if the
steps are very small. Additionally, the method is run for all features in
the training data, without any feature selection techniques. Therefore a
lot iterations are necessary in order to reach an optimal solution. Due to
time constraints, however, the number of iterations is often limited, e.g.
by 100, and therefore the learning terminates before the optimal solution
is reached. Overall the approach worked relatively fast, compared to
the non-linear machine learning approaches, which were usually used at
that time. However, the results were much lower, because generalised
iterative scaling could not approximate the optimality function well.

My next approach was again a maximum entropy classifier, however,
with a different learning strategy. The strategy was called Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) (Broyden, [1970). L-BFGS is a
quite complex method and is difficult to implement, therefore I could find
only one software package in Java, called Mallet, partiallyﬂ supporting
it. It is superior (faster and more accurate) to other optimisation strate-
gies, such as Generalized Iterative Scaling (Darroch and Ratcliff, {1972)
used in many other machine learning packages. Robert Malouf claimed
that L-BFGS is the best optimization strategy for maximum entropy
models in his comparison of different methods (Malouf, 2002)). This
strategy assumes that the function can be approximated quadratically,
which is a better approximation and provides a better result. However,
this method also optimises all given features and is therefore slow and
terminates often before the optimal result is achieved.

The third algorithm I have tried was LIRLR (L1 regularised logistic
regression) (Yuan et al.|[2010) from the LibLinear (Fan et al.,[2008)) pack-
age. Its main advantage compared to the previous two strategies is the
regularisation. Regularisation is a technique to prevent overfitting by pe-
nalising the model by its complexity, i.e. the number of features. When
regularisation is applied, the penalisation term steadily grows with the
increasing number of features getting a non-zero weight and at a certain
point only very good features, i.e. features with very big weights, are
able to surpass the necessary threshold. This implicit feature selection
helps to considerably reduce the number of features for which a weight

31t does not work for problems with a large number of classes.
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has to be learned. This allowed me to use much larger feature models,
which was too expensive with the maximum entropy classifiers I used
before. The richer models, plus the fact that only a small percentage of
weights had to be learned, resulted in very good results. However, due
to the large initial training data size and quite complex computation
behind this approach, it was not very fast.

Finally, I have experimented with the MCSVM_SC (multi-class sup-
port vector machines by Singer and Crammer) (Keerthi et al., [2008b])
from the same LibLinear package. It is different from most other ap-
proaches, including the three I have tried out before, because it is a
real multi-class classifier. The usual practice is to train binary classi-
fiers and if the problem has several classes, then one vs. one or one vs.
rest strategies are applied in order to combine them. Additionally, it
has similar properties as LIRLR in terms of the number of features for
which a weight has to be learned. Since it is a technique using support
vector machines, the weights are learned only for features in the support
vectors, which are important for differentiating between various classes.
Thus it allows very compact models, very fast training and good results.

Unfortunately, I can not present an overview how exactly the perfor-
mance of the system evolved when the machine learning packages were
changed, because the other components of the system were not constant
neither, but also evolved in the course of the work. The increasing per-
formance of the system had three reasons: a) the choice of the machine
learning strategy had a direct effect on the increased performance, simply
because the machine learning method was able to learn better weights,
b) the change in the machine learning indrectly improved the results,
because the new approach allowed more features to be included in the
data or a more fine-grained set of operations and c) the performance
increased because other properties like the parsing strategy or the ar-
chitecture of the system changed, independently of the properties of the
classifiers I was using. If it were only a) then such a comparison would
make sense, because it would clearly demonstrate the difference of the
ML approaches, however, because of significant changes in b) and ¢) the
comparison is not possible.

Examples for changes of the b) class are that e.g. the number of oper-
ations in the parsing strategy was only three in the beginning (LEFT-ARC,
RIGHT-ARC, SHIFT), because it would minimise the number of binary
classifiers to be learned. With the latest multi-class classifier I could
add the fourth operation (NO-ARC), which had a positive effect on the
performance of the system, because the number of states necessary for
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parsing could be reduced (cf. the oracle section for more details
on different operations). Additionally, the richer feature models using
dependency type features (cf. section features 14-17 in the feature
model) had a positive effect only if the dependency types could be pre-
dicted with a sufficiently high accuracy, which was not the case for the
first machine learning strategies I used, but worked fine with the latest.
An example for the c) class is the efficient feature extraction strategy
that I am going to present in the section It allowed a much better
performance independently of the machine learning strategy.

In general, the accuracies (UAS) evolved from around 80% with the
OpenNLP library, to 84% with Mallet, to 88% with logistic regression
and finally 90% with linear support vector machines. The speed rose
from few sentences per second with the maximum entropy libraries to
around 14 sentences per second with logistic regression and to more than
1200 with support vector machines. However, as I have just discussed,
the changes are not due to the machine learning alone, but also due
to many other details. Especially, the final fast speed of MDParser is
mainly due to the reusability of features and not the machine learning
library itself, since MDParser outperforms MaltParser using the same
machine learning library by a factor of 4. As far as the hardware re-
quirements are concerned, machine learning usually required a special
64Bit machine with a lot of memory in order to run most of the parsers
I have experimented with. MDParser also usually needed such a machine
with at least 20-30 GB of memory for most of its models. However, in
the end I have optimised the final version by compactising the models,
i.e. by adjusting the indexes of features in such a way that they are as
small as possible (e.g. if a feature 100 and a feature 105 have non-zero
weights, but all features in between do not, then I would change the
index of the feature 105 to 101) and by always printing the results of
every single training step to the hard disk. This way there are a lot more
Input/Output operations, but not so much information has to be stored
in memory and therefore the final version could be run on an ordinary
machine with 1 GB whereas all the previous ones could not. However,
this is again not only due to the better properties of the machine learning
library, but also due to the architecture of the system.

Lesson learned: Despite the fact that I had to learn to use three
machine learning approaches, implemented a lot of code to utilise them
and conducted countless experiments on optimising feature models for
different languages, which in the end were not used, I have learned a
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lot from this work. The most important finding was that a very small
percentage of features is responsible for almost the entire performance.
Therefore it is decisive to have some kind of a feature selection method-
ology, because this way the training data is allowed to be bigger and one
can still get much more compact models, since a lot of initial features
will be filtered out.

Parsing Strategies Similarly to MaltParser I have implemented the
support of the most prominent transition-based parsing algorithms: Cov-
ington’s parsing strategy, Nivre’s arc-eager and Nivre’s arc-standard al-
gorithms. I have then experimented a lot with the different strategies
in order to obtain the optimal performance. During the experiments I
have realised that the Covington’s algorithm has particularly appealing
features: it can be made projective/non-projective by changing a sin-
gle parameter of the permissibility function (Nivre’s algorithms are only
projective and require additional techniques for non-projective struc-
tures, as e.g. pseudo-projective parsing), it is very easy to implement
and modify, and it achieves very good accuracies for most languages (es-
pecially because it does not eliminate tokens from the agenda it is less
error-prone to early mistakes, which is one of the main weaknesses of
the transition-based approach). However, it is much less popular than
Nivre’s algorithms because it has quadratic complexity and Nivre’s al-
gorithms are linear. This leads to the fact that the parser requires more
states to process the data, which is responsible for larger training data
with more instances during the training phase and slower processing
during the parsing phase.

I have invested a lot of effort in order to come up with a modified
version, which has a reduced amount of necessary states. In the original
Covington’s algorithm the idea is that for every word j the parser exam-
ines all words ¢ to the left of it in order to determine whether one of them
is j’s head or dependent. For the words in the right end of a sentence
the number of the examined pairs can grow to a quite big value, despite
the fact that for the overwhelming majority of these words there is ab-
solutely no need to look for heads/dependents very far behind. In fact
more than 90% (depending on the language the exact number varies, but
the tendency is the same for all languages) are local, which means that
the distance between a dependent and its head is small (usually not more
than few tokens away), whereas the average sentence length is usually
much higher than 20 (e.g. for English it is 25). One of the observations
was that all dependencies, except for one root word, occurred within one
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clause and if a sentence consisted out of several clauses it did not make
sense to look for heads/modifiers outside of a clause. The algorithm I
have come up with thus parsed all clauses independently of one another
and then combined the individual sentence parts together, determining
which clause is the main one and which ones are relative. The modifica-
tion actually worked very well and could save a lot (25% on average and
up to 50% for long sentences) of unnecessary pair examinations. How-
ever, this strategy introduced an additional error source: namely the
detection of clause boundaries. Clause boundaries are always marked by
punctuation signs, however, sometimes punctuation signs such as com-
mas are also used for other purposes, e.g. enumeration. Therefore I had
to train a model which was able to distinguish between these two classes
of punctuation signs: those which marked clause boundaries and those
which did not. I was able to distinguish between those two classes very
reliably (accuracy higher than 98%). Furthermore, the remaining few
percents which are classified incorrectly can be divided into two classes:
false negatives (a punctuation mark is not classified as a clause boundary
although it is one) and false positives (a punctuation mark is wrongly
classified as a clause boundary). The first error class is harmless, since
it just undoes the benefits of the strategy and makes the search space as
large as it would be in the original Covington’s algorithm, but it does
not affect the accuracy. The only problematic case is the second one,
since an incorrect clause boundary hinders the parser from searching in a
certain part of the sentence, which can result in numerous erroneous de-
cisions. Unfortunately, this error source therefore affected the accuracy
of the parsing algorithm and the time saved by skipping unnecessary
pairs was partially consumed by the prediction of clause boundaries and
thus only provided a 10% efficiency boost.

In the end it turned out that a much better modification to reduce
the number of transitions with the Covington’s parsing strategy is the
version implemented in MaltParser. Whereas the original strategy con-
tained only one shift operation, which altered the index of 7 and moved
over to the next j only after ¢ was decremented to zero, the MaltParser’s
modified strategy contains an additional operation which can be applied
in order to immediately proceed to the next j, independently of the .
The advantage is that no separate model is necessary and therefore this
version is very efficient.

Lesson learned: The experiments with parsing strategies have
helped me to better understand two main properties of parsing algo-



Performance-Oriented Dependency Parsing 71

rithms: the number of states required to parse a sentence and the num-
ber of features required to be extracted in each state. Even though a
smaller amount of states means that the feature extraction has to per-
formed less times as well, it does not help a lot if this reduction of the
number of states is achieved by adding further models with their own
features, which have to be extracted as well. The best possibility to
improve the efficiency of an algorithm is thus to modify the inventory
of available operations, so that less states are necessary to arrive at the
final result and no additional features are required because the same
model is used for processing.

Feature Usefulness Feature models are a major factor for both ac-
curacy and efficiency of a parser. The more features are present in the
training data the better the chance that the learner will find good dis-
criminative features necessary for accurate predictions. However, the
bigger the number of features the more intensive is the training and the
slower the processing. The ideal scenario is thus that the training data
should contain only a relatively small amount of very good features.

Usually the quality of a feature can be assessed only empirically. The
traditional way is to train a model with and without a certain feature
in order to measure its usefulness. Especially with the machine learning
methods which were available few years ago, this is a very time con-
suming process. For a multilingual parser it becomes intractable to try
to optimise the system for many languages under such circumstances.
Therefore a possibility to estimate feature quality prior to training a
model was highly desirable in order to achieve optimal results and effi-
ciency.

I have come up with such strategy, which worked well for the already
mentioned MaxEnt classifiers which did not contain any feature selection.
The observation behind my strategy was that the usual typical features,
like the word forms and POS tags of the potential head /modifier words,
as well as of their surrounding context, are included in any feature model
for any language and are usually useful. The real challenge is to find out
which feature conjunctions, which are essential for any linear classifier,
should be defined, i.e. which features should be combined with which
features and how often. With the initial 20-30 ordinary features, there
are already hundreds of such potential binary combinations and thou-
sands if one also explores trinary ones. These combinations differ across
languages and finding good ones empirically is a very time consuming
task. The approach I have developed only required to train a model
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with the original primary features and the best combinations could be
estimated only with its help without having to train numerous models
by adding them one by one.

The approach was to use the learned weights for the primary features
in the learned model in order to compute which feature contributed how
much to the success or failure of the classification task. A good feature
should contribute a lot towards the correct class and greatly penalise
the wrong ones. Thus one can go through all instances in the train-
ing data with the learned weights and compute the overall contribution
of each individual feature. Additionally, I have come up with a metric
for measuring the difficulty of finding the correct class by analysing the
difference between the scores for different classes in each state. If the
difference between the competing classes is big, then the classification
task is easy, since apparently not many features favoured a wrong class
and penalised the correct one. On the other hand a smaller gap be-
tween different scores indicates that many features did not have correct
weights. The features that were useful in easy cases are not that impor-
tant because all other features were good as well. On the other hand the
features which helped in the difficult cases should be prioritised and the
ones which hindered the classifier by contributing to the wrong classes
should be damped. Thus the score of every feature was also factorised
by their behaviour in difficult cases. The result could then be used in
order to rank the features according to their usefulness and the feature
conjunctions could be then selected considering these values, i.e. by
constructing feature combinations out of the most useful ones.

This approach, however, become obsolete with the newer machine
learning strategies of the LibLinear package. First, the strategies al-
ready contained a methodology for feature selection so that only useful
ones remained after training. Second, the training was much faster,
sometimes only a matter of seconds, so that the traditional empirical
feature engineering was again a reliable option. Third, no intermediate
state, i.e. first training without and then with feature conjunctions, was
necessary and the final model could be trained right away. Therefore,
the final version of MDParser no longer relies on this methodology.

Lesson learned: 1 have always seen the possibility to automati-
cally estimate the quality of features in a non-empiric way as a central
task in dependency parsing. For me it has therefore always been the
top priority to address and solve this problem. Unfortunately, the ap-
proach I have come up with was not the most efficient and successful
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one and was finally outperformed by many others. However, I see it as
an affirmation that it was a very important direction of research and
an essential property for a dependency parser to be able to select good
features only.

Splitting Machine learning is usually a very computationally expen-
sive task if the training data contains millions of instances and hundreds
of thousands features, as it is the case for transition-based dependency
parsing. Even if sufficient computational resources are available it then
takes very long to actually train a model. Therefore it is sometimes sen-
sible to reduce the size of the problem or to split it into many smaller
ones. In MaltParser splitting is done in a such way that the training
data is split according to the value of some feature, e.g. POS tag. This
way one gets one model for verbs, one model for nouns, one model for
adjectives etc. I have initially tried a different approach. The idea was to
split the data purely by size, train the models, estimate the most useful
features with the above-mentioned technique and then train a model for
the whole data without splitting, but only with the estimated useful fea-
tures. There were two reasons for why I did not want to use splitting for
the final model. First, I was afraid that for many languages the treebank
size is not sufficient even if the whole data is used and splitting can only
deteriorate the result. Second, since there is no longer only one model,
but many, for every classification one has to look up which model has to
be used, which takes additional time. However, since feature usefulness
estimation became obsolete, this way of splitting did not make sense any
longer neither. Thus the final version of MDParser contains splitting as
it is realised in MaltParser. Eventually, it also turned out that with the
newer machine learning strategies already very small amounts of data
are sufficient and therefore splitting works fine even for languages with
small treebanks.

The MaltParser version of splitting has two parameters: the mini-
mum size of one piece of training data and the feature according to which
the data is split. The first parameter is necessary, because some feature
values are so rare that it is not possible to train an accurate model for
them. E.g. when splitting according to POS tags some tags like LS (List
item marker), RP (Particle) or EX (Existential there) are not frequent
enough and should not get a separate model. This parameter especially
makes sense when splitting according to some other more diverse feature
values. I have experimented with values of different feature templates,
however, the one also used in MaltParser, namely PJ, worked best.
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Lesson learned: Since learning is expensive for big amounts of
data, which is usually the case for dependency parsing, it was interesting
to learn that a certain reduction of the training data hardly influences
the quality of the results, however, immensely speeds up the processing.
Unfortunately, my idea to work with small pieces of data and then carry
over the findings to the whole data did not succeed for several reasons.
First, the feature usefulness, as I was estimating it, could no longer
be applied. Second, the strategy consisted out of two stages, namely
training for the split data and training of the final model, which is less
efficient than as it is in done in MaltParser, where the models learned
out of the split data are already the final ones. As far as the additional
time for choosing the right model is concerned, it is balanced out by the
fact that one can access the weights in smaller models faster than one
could do it in the one big model before.

Confidence Values Parser results are usually used in some follow-up
applications as an additional source of linguistic information. In general
the quality of the results should be at least as good that the application
performs better using the dependency analyses than without using them.
One can narrow down this quality constraint to individual dependencies:
how likely is the predicted dependency good enough to be beneficial for
the application or maybe is it better not to use the prediction because
it might deteriorate the result? Assuming that correct dependencies are
useful, it is therefore helpful to know how confident the parser is about
its decisions, so that only reliable results are used.

I have tried to estimate such confidence values with help of proba-
bilities that I could compute with parser’s model. Similarly to the idea
about difficult and easy classification cases I have thought that easy cases
should be those which are also more likely to be correct. Unfortunately, I
have found out that the parser’s decisions are sometimes erroneous even
though it had a 100% confidence according to its model. Even though
the tendency that easier instances were less error-prone was there, the
overall result was not satisfactory.

A similar idea of using the probabilities computed with parser’s model
was later reported in (Ytrestgl, |2011), a work about non-deterministic
parsing with backtracking. In this paper the author uses these proba-
bilities not only to select the most probable, but also the second-most
probable decision, which is used in case of backtracking. However, this
strategy is considered to be only a baseline in non-deterministic parsing.
For a meaningful improvement additional adjustments have to be done.



Performance-Oriented Dependency Parsing 75

Lesson learned: In order to validate the quality of results it is
not possible to use the same model which was used to produce them.
Despite the fact that, similarly to feature usefulness, I thought that it is
one of the top priorities for parser to be able to assess its results, so that
the follow-up applications are warned about uncertain results, there is
no system able to do that up to present day.

2.3.2 Achievements

Concluding this part of the thesis I will present all achievements in de-
pendency parsing which arose during my work. Most of these succesful
experiments have been published or are yet to appear on various inter-
national conferences.

Efficient Feature Extraction I was able to show that the traditional
belief that the efficiency of a dependency parser is mainly dependent on
the complexity of the parsing algorithm, and thus the number of transi-
tions the parser requires to construct the dependency analysis, is wrong.
I have used Java profiling technology in order to analyse how much ex-
ecution time is spent in each stage of processing and found out that the
overwhelming amount of time is spent on feature extraction. Since the
bigger number of states does not automatically mean that features have
to be extracted more often as well, since e.g. non-permissible states can
be treated differently from the normal states, one has to actually analyse
how many feature extractions are necessary to construct the dependency
analysis. Some algorithms are more suitable for feature extraction than
the others and in the end that is the main criterion for the efficiency. I
was able to demonstrate that the Covington’s strategy with quadratic
complexity, which I found most suitable for efficient processing, greatly
outperforms the usually preferred Nivre’s algorithms with linear com-
plexity, which are not suitable for efficient feature extraction. I have
published these findings as a paper, which is to appear at KI-2012.

I have already discussed the differences between Covington’s and
Nivre’s parsing strategies and the reason why the first one has quadratic
and the latter have linear complexity, namely because Covington’s strat-
egy does not eliminate fully processed tokens from the agenda. Therefore
Covington’s strategy requires more configurations in order to process a
sentence than Nivre’s algorithms do. However, the configurations of
Covington’s algorithm are of two different types: permissible and non-
permissible. Non-permissible configurations are those pairs of words
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which violate well-formedness constraints and for which there is no need
to construct feature vectors and one can automatically choose the no-
arc operation. Permissible operations allow at least one of left-arc or
right-arc operations and therefore require feature extraction in order to
predict the correct transition. Both configuration types require a permis-
sibility check, however, as my profiling findings have shown it is a very
cheap procedure. The expensive feature extraction is only necessary for
permissible configurations. In practice the amount of permissible con-
figurations is approximately the same as with Nivre’s algorithms, e.g.
for English test data with 1337 sentences 63916 such configurations are
required with Covington’s algorithm, 64137 with arc-eager and 65148
with arc-standard. Of course with Covington’s algorithm one has a lot
of other configurations which also require computation in order to deter-
mine that they are non-permissible, but as I have already mentioned, the
most computationally expensive part of the processing accounts for fea-
ture extraction and we see that all algorithms have a comparable number
of them, despite the theoretical differences in complexity.

Now let us analyse why Covington’s strategy is much more ap-
pealing despite the similar amount of feature extraction steps required
for all algorithms. I am going to exemplify this by analysing the
processing of the following English sentence: FEconomic; newss hads
littley ef fects ong financial; marketss .9 with the following depen-
dency structure: (1,NMOD,2), (2,SBJ,3), (3,RO0T,0), (4,NMOD,5),
(5,0BJ,3), (6, NMOD, 5), (7, NMOD,8), (8, PMOD,6), (9,P,3) (see Sec-
tion 2.1.1. for dependency relation notation). I have used MaltParser,
which has all algorithms implemented, with option ”-m testdata” in or-
der to analyse how many transitions are necessary to parse the data. In
following i will list all transitions to examplify how exactly the parses
look like. Every line corresponds to a configuration, consisting out of
the predicted transition type, e.g. SH=shift, RE=reduce, LA=left-arc
or RA=right-arc, plus the predicted type of the depenedency relation
(applicable only for LA and RA of course), as well as the contents of
both input and buffer stacks (cf. (Nivrel [2008) for more details about
transitions and notation). E.g. with Nivre’s arc-eager strategy it took
16 transitions to parse the example sentence:

SH([0], [1..9]), LA-NMOD([0,1], [2..9]), SH([0], [2..9]), LA-SBJ(]0,2],
[3..9]), RA-ROOT([0], [3..9]), SH([0,3], [4..9]), LA-NMOD(][0,3,4], [5..9]),
RA-OBJ([3], [5..9]), RA-NMOD([0,3,4,6], [7..9]), SH([0,3,4,6,7], [8,9]),
LA—NMOD([Oa?’AaG]? [879})7 RA_PMOD([&SA,G?&’ [9])’ ([ 7Sa ) ]a
[9])7 RE([07374L [9])7 RE([073] 7[9])’ RA'P([07379]7 [])
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With Nivre’s arc-standard 17 transitions were necessary:

SH[0], [1..9], LA-NMODI0,1], [2..9], SH([0], [2..9]), LA-
SBJ([0,2], [3..9]), SH([0], [3..9]), SH([0,3], [4..9]), LA-NMOD(][0,3,4],
[5..9]), SH([0,3], [5..9]), SH([0,3,5], [6..9]), SH([0,3,5,6], [7..9]),
LA-NMOD([0,3,5,6,7], [8,9]), RA-PMOD([0,3,5,6], [8,9]), RA-
NMOD([0,3,5], [6,9]), RA-OBJ([0,3], [5,9]), SH([0], [3,9]), RA-P([0],
3]), RA-ROOT([0], []).

Covington’s algorithm is not stack-based, but uses the indexes j and
i (included in the parantheses), in order to examine a pair of words and
determine whether there should be a dependency relation between them
(RA and LA) or whether one should proceed to the next pair (SH=shift,
which increments j by 1 or NA=no-arc, which decrements ¢ by 1). For
italic typed configurations neihter LA or RA transitions are allowed,
because they violate permissibility constraints. Again, the type of the
dependency relations is also provided for RA and LA transitions.

For Covington’s algorithm there are 33 word pairs examined, how-
ever, 17 of them are not permissible and thus there are only 16 permis-
sible transitions:

SH(0,1), LA-NMOD(1,2), SH(0,2), LA-SBJ(2,3), (1,3), RA-
ROOT(0,3), SH(3,4), LA-NMOD(4,5), RA-OBIJ(3,5), (2,5), (1,5),
(0,5), RA-NMOD(5,6), (4,6), (3,6), (2,6), (1,6), (0,6), SH(6,7), LA-
NMOD(7,8), RA-PMOD(6,8), (5,8), (4,8), (3,8), (2,8), (1,8), (0,8),
NA(8,9), NA(7,9), NA(6,9), (5,9), (4,9), RA P(3,9).

In order to predict what transition should be performed in which
parser state, the parser state is transformed into a feature vector and
according to the previously learned model the best transition is selected.
The algorithms presented in this paper require a similar number of fea-
ture templates in order to achieve similarly competitive performance. In
MaltParser arc-standard default algorithm runs with 21 different tem-
plates, arc-eager with 22 and Covington’s algorithm also uses 22 feature
templates. The templates use address functions and attribute functions
(Nivre, 2006) in order to extract features relevant for the state. E.g.
given the state (3,5) for Covington’s algorithm the function POSTAG
(Right[0]) returns the POS tag of the word with index 5. Similarly, given
some buffer stack for Nivre’s algorithms the function FORM (Input[2])
returns the word form of third-top token on the buffer stack.

During the processing many features are used more than once. E.g.
POSTAG (Right[0]) is the same for configurations (3,9), (6,9), (7,9) and
(8,9). Similarly for Nivre’s algorithm POSTAG (Stack[0]) is the same
when both (4,NMOD,5) and (6,NMOD,5) dependencies are constructed.
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Thus the POS value of the tokens 9 and 5, respectively, can be looked
up only once and the index of this feature can be stored in memory as
long as sentence is processed. This way a lot of time can be saved.

The decisive difference between the algorithms is that many other fea-
tures can only be reused in Covington’s and not in Nivre’s algorithms.
E.g. POSTAG (Left[0]) or POSTAG (Left[1]) is the same for configu-
rations (3,4), (3,5) and (3,9), as well as POSTAG (Right[0]), POSTAG
(Right[1]), POSTAG (Right[2]) etc. is the same for configurations (1,2)
and (0,2). One can basically precompute all values since if Right[0]
= j, then Right[1] is definitely j+1, Right[2] = j+2, Right[3] = j+35.
For Nivre’s algorithms the reusability of features is limited, because one
never knows how the stacks will look like. If Stack[0] is j, then Stack[1]
might be j-1, j-2, j-3 or any other token and it would be too memory
intensive to keep all possibilities in memory until it is clear which one
of them is correct. The reusability of static features considerably im-
proves the performance of an algorithm, since it is no longer necessary
to look up the value of a feature and then its index in a global alpha-
bet so often. Instead, we consult the global mapping only once for all
features which are used many times and store them in a different local
(i.e. valid only within the current sentence) data structure from where
they can be retrieved much faster. E.g. if we are in the configuration
(2,3), then Right[0] = 3 and we know that Right[1] = 4, Right[2] = 5 and
Right[3] = 6, thus POSTAG (Right[0]) = VBD, POSTAG (Right[1]) =
JJ, POSTAG (Right[2]) = NN and POSTAG (Right[3]) = IN. We look
up their indexes in the global alphabet and store them. When we are in
the configuration (0,3) we know that all these features are exactly the
same as in (2,3) and we can reuse the already looked up indexes.

Additionally, in order to compensate for the lack of a kernel, which
creates conjoined features implicitly, one has to add artificial feature
combinations manually. In MaltParser’s feature models for LibLinear
around 40% are feature combinations, which are concatenations of basic
features. E.g. merge2(POSTAG (Right[0]), POSTAG (Right[1]) for con-
figuration (2,3) would return the value VBD JJ and merge3((POSTAG
(Right[0]), POSTAG (Right[1], POSTAG (Right[2])) - VBD JJ NN.

We have seen that for parsing English development data one needs
around 65000 configurations. If there are 40% feature combinations,
which require 1-2 concatenations each, that are around 12 string con-
catenations per configuration and 780,000 overall. Since for security
reasons String is an immutable basic type in Java, each time you ap-
pend something a new String is created, the old value is stored the new
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value is added, and the old String is thrown away. The longer the strings
the longer the concatenations take, but even for typical features length
of 10 characters a concatenation takes around 0.25-0.3 microseconds.
For 780,000 feature combinations it would mean around 0.2 seconds, i.e.
around 20% of the whole execution time if one wants to parse a sentence
in less than 1ms.

Therefore it is even more important that feature combinations
are reused whenever possible, because they contain additional costly
string operations. So instead of using feature combinations like
merge2(POSTAG (Right[0]), POSTAG (Left[0])) and merge2(POSTAG
(Right[1]), POSTAG (Left[1])), which potentially have different val-
ues in any configuration and thus can be used only once, it is bet-
ter to use combinations with reusable values, e.g. merge2(POSTAG
(Right[0]), POSTAG (Right[l])) and merge2(POSTAG (Left[0]),
POSTAG (Left[1])). This way the values returned by these templates
can be reused in configurations (i,j), which share the same j or i, respec-
tively.

It is important to note that even though String operations are expen-
sive in Java there are no alternatives. Tricks like translating features to
integers and substituting concatenation by multiplication do not work
better, since they require an additional mapping from the original String
values to ints and the look up in such large collections is even more ex-
pensive than concatenation. Assuming a HashMap size of one million
(not an unusual number of features for large treebanks) the execution of
a get() method (required to look up the int value for a certain feature
string) takes more than 200 times longer than a concatenation. Even for
smaller alphabets, e.g. with 100000 values, it takes 30-40 times longer.

My implementation of MDParser tries to reuse static features when-
ever possible. Additionally, I have modified the feature models, so that
they contain as many reusable feature combinations as possible. Despite
the worse theoretical complexity, I have shown that in practice the worst
case never occurs and other properties of an algorithm can be much more
important. In particular the suitability of an algorithm for efficient fea-
ture extraction is decisive, since most of the execution time required for
processing is spent on this subtask.

Error Identification and Correction Every treebank contains an-
notation errors, which are harmful for data-driven parsers, which learn to
replicate them. Despite the fact that the quality of annotated resources
is of essential importance for the quality of resources derived from them,
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there is not much literature available on this topic. A notable exception
is the group around Detmar Meurers and some publications about their
approach for finding errors called variation detection (Dickinson and
Meurers), [2003). I propose a different method, which is complementary
to variation detection and is able to find additional errors. Moreover, it
is not only able to recognise inconsistencies, but also proposes a correc-
tion. The proposed method was published in the proceedings of ACL
2011 (Volokh and Neumann) [2011)).

The construction of an annotated corpus involves a lot of work per-
formed by large groups. However, despite the fact that a lot of human
post-editing and automatic quality assurance is done, errors can not be
avoided completely (Dickinson and Meurers| |2005). The quality control
is usually performed manually by developers, often by receiving feed-
back from the community working with the resources. The only work,
that we were able to find, which involved automatic quality control, was
done by the already mentioned group around Detmar Meurers. This
work includes numerous publications concerning finding errors in phrase
structures (Dickinson and Meurers|, [2005) as well as in dependency tree-
banks (Boyd et al.).

The idea behind wariation detection is to find strings, which occur
multiple times in the corpus, but which have varying annotations. This
can obviously have only two reasons: either the strings are ambiguous
and can have different structures, depending on the meaning, or the
annotation is erroneous in at least one of the cases. The idea can be
adapted to dependency structures as well, by analysing the possible de-
pendency relations between same words. Again different dependencies
can be either the result of ambiguity or errors. If the difference between
the different readings is due to the ambiguity, i.e. they are not errors,
then they usually occur many times in the corpus. On the other hand,
if one of the readings is erroneous, then it usually occurs only very few
times. According to these heuristics the method can select error candi-
dates which are then manually evaluated.

I propose a different approach. The idea is to take a dependency
treebank and to train models with different parsers, e.g. 1 took the
state-of-the art graph-based MSTParser and the transition-based Malt-
Parser. Then parse the data, which was used for training, with both
parsers. The idea behind this step is that one basically tries to repro-
duce the gold standard, since parsing the data seen during the training
is very easy (a similar idea in the area of POS tagging is very broadly
described in (van Halteren, 2000))). Indeed both parsers achieve accu-
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racies between 98% and 99% UAS. The reason why the parsers are not
able to achieve 100% is on the one hand the fact that some of the phe-
nomena are too rare and are not captured by their models. On the other
hand, in many other cases parsers do make correct predictions, but the
gold standard they are evaluated against is wrong. I have investigated
the latter case, namely when both parsers predict dependencies different
from the gold standard (I did not consider the correctness of the depen-
dency label). Since MSTParser and MaltParser are based on completely
different parsing approaches they also tend to make different mistakes
(Nivre and Mcdonald, 2008]). Additionally, considering the accuracies of
98-99% the chance that both parsers, which have different foundations,
make an erroneous decision simultaneously is very small and therefore
these cases are the most likely candidates when looking for errors.
Furthermore, I did not perform a manual evaluation of error can-
didates, but tried to automatise the procedure. Therefore I have used
MDParser as the third parser. The exact procedure looks as follows:

1. Automatic detection of error candidates, i.e. cases where two
parsers deliver results different to gold-standard.

2. Substitution of the annotation of the error candidates by the an-
notation proposed by one of the parsers (in our case MSTParser).

3. Parse of the modified corpus with a third parser (MDParser).
4. Evaluation of the results.

5. The modifications are only kept for those cases when the modified
annotation is identical with the one predicted by the third parser
and undone in other cases.

For the English dependency treebank I have identified 6743 error
candidates, which is about 0.7% of all tokens in the corpus. During this
experiment I have found out that the result of MDParser significantly
improves: it is able to correctly recogonise 3535 more dependencies than
before the substitution of the gold standard. 2077 annotations remain
wrong independently of the changes in the gold standard. 1131 of the
relations become wrong with the changed gold standard, whereas they
were correct with the old unchanged version. The changes to the gold
standard when the wrong cases remained wrong and when the correct
cases became wrong are undone. I suggest that the 3535 dependencies
which became correct after the change in gold standard are errors, since
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a) two state of the art parsers deliver a result which differs from the gold
standard and b) a third parser confirms that by delivering exactly the
same result as the proposed change. However, the exact precision of the
approach can probably be computed only by manual investigation of all
corrected dependencies.

So far I have tried to evaluate the precision of the approach for the
identified error candidates. However, it remains unclear how many of
the errors are found and how many errors can be still expected in the
corpus. Therefore I have also attempted to evaluate the recall of the
proposed method. In order to estimate the percentage of errors, which
can be found with this method, I have designed the following experiment.
I have taken sentences of different lengths from the corpus and provided
them with a ”gold standard” annotation which was completely (=100%)
erroneous. I have achieved that by substituting the original annotation
by the annotation of a different sentence of the same length from the
corpus, which did not contain dependency edges which would overlap
with the original annotation. E.g consider the following sentence in the
(slightly simplified) CoNLL format:

1 Not RB 6 SBJ

2 all PDT 1 NMOD

3 those DT 1 NMOD

4 who WP 5 SBJ

5 wrote VBD 1 NMOD

6 oppose VBP 0 ROOT

7 the DT 8 NMOD

8 changes NNS 6 OBJ

9..6P

I substitute its annotation by an annotation chosen from a different
sentence of the same length:

1 Not RB 3 SBJ

2 all PDT 3 NMOD

3 those DT 0 NMOD

4 who WP 3 SBJ

5 wrote VBD 4 NMOD

6 oppose VBP 5 ROOT

7 the DT 6 NMOD

8 changes NNS 7 OBJ

9..3P

This way we know that a well-formed dependency tree was introduced
(since its annotation belonged to a different tree before) to the corpus
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and the exact number of errors (since randomly correct dependencies are
impossible). In case of this example 9 errors are introduced to the corpus.
In the experiment I have introduced sentences of different lengths with
overall 1350 tokens. I have then retrained the models for MSTParser
and MaltParser and have applied the methodology to the data with
these errors. I have then counted how many of these 1350 errors could
be found. The result is that 619 tokens (45.9%) were different from
the erroneous gold-standard. That means that despite the fact that the
training data contained some incorrectly annotated tokens, the parsers
were able to annotate them differently. Therefore I suggest that the
recall of our method is close to the value of 0.459. However, of course it
is unknown whether the randomly introduced errors in this experiment
are similar to those which occur in real treebanks.

The interesting question which naturally arises at this point is
whether the errors found with this method are the same as those found
by the method of variation detection. Therefore I have performed the
following experiment: I have counted the numbers of occurrences for the
dependencies B—A (the word B is the head of the word A) and C—A
(the word C is the head of the word A), where B—A is the dependency
proposed by the parsers and C—A is the dependency proposed by the
gold standard. In order for variation detection to be applicable the fre-
quency counts for both relations must be available and the counts for
the dependency proposed by the parsers should ideally greatly outweigh
the frequency of the gold standard, which would be a great indication
of an error. For the 3535 dependencies that are classified as errors the
variation detection method works only 934 times (39.5%). These are
the cases when the gold standard is obviously wrong and occurs only
few times, most often - once, whereas the parsers propose much more
frequent dependencies. In all other cases the counts suggest that the vari-
ation detection would not work, since both dependencies have frequent
counts or the correct dependency is even outweighed by the incorrect
one.

Finally, I will provide some of the example errors, which I was able to
find with this approach. Therefore I will provide the sentence strings and
briefly compare the gold standard dependency annotation of a certain
dependency within these sentences.

Together, the two stocks wreaked havoc among takeover stock traders,
and caused a 7.3% drop in the DOW Jones Transportation Average,
second in size only to the stock-market crash of Oct. 19 1987.

In this sentence the gold standard suggests the dependency relation
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market—the, whereas the parsers correctly recognise the dependency
crash—the. Both dependencies have very high counts and therefore the
variation detection would not work well in this scenario.

Actually, it was down only a few points at the time.

In this sentence the gold standard suggests points—at, whereas the
parsers predict was—at. The gold standard suggestion occurs only once
whereas the temporal dependency occurs 11 times in the corpus. This is
an example of an error which could be found with the variation detection
as well.

Last October, Mr. Paul paid out $12 million of CenTrust’s cash -
plus a $1.2 million commission - for ”Portrait of a Man as Mars”.

In this sentence the gold standard suggests the dependency rela-
tion $— a, whereas the parsers correctly recognise the dependency
commission— a. The interesting fact is that the relation $—a is ac-
tually much more frequent than commission—a, e.g. as in the sentence
he caught up an additional $1 billion or so. ($—an). So the variation
detection alone would not suffice in this case.

The results show that both approaches are rather complementary and
find different types of errors. However, I have evaluated my approach au-
tomatically, whereas variation detection was always evaluated manually.
Additionally, I have tried to estimate the overall number of errors, which
seems to be over 1% of the total size of a corpus, which is expected to be
of a very high quality. A fact that one has to be aware of when working
with annotated resources and which is one of the important findings of
my work.

Experiments with sentence usefulness Treebanks for some lan-
guages are very big and learning curve experiments show that almost
the same result can already be achieved with less amount of data. For
other languages the treebanks are too small and much better results
could be achieved if more annotated data were available. Since anno-
tation of corpora is an expensive process, it is important to control it
as good as possible. A very interesting question here is what type of
data exactly is useful and should be annotated first, because it is both
more beneficial for the performance and requires less effort to be anno-
tated. In following I will describe a method which allows to measure
the usefulness of the material one wants to annotate and thus helps to
control the process. This approach has been published and is to appear
in KONVENS 2012.

In order to measure whether a sufficient amount of annotated data is
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available for a certain application it is best to look at its learning curve
with increasing size of training data. The following two diagrams show
how dependency parsing performance for English and Finnish (Haveri-
nen et al., [2010) treebanksﬂ looks like depending on the percentage of
the available data used.

Learning Curves
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Figure 2.3: Learning curves for English

Both English and Finnish learning curves are very steep in the begin-
ning when little data is available. However, for English the performance
hardly changes already when 50-60% of data is used, whereas for Finnish
even at 100% the gradient of the curve is still quite big (one interval on
the y-axis for Finnish is 0.10 AS on the contrary to 0.02 for English)
and thus the performance would in all probability profit from additional
annotated data.

For constructing these two diagrams forty models had to be trained
and therefore the parameters used were optimized to speed rather than

4T am particularly grateful to Filip Ginter and Katri Haverinen for providing me
with different versions of the Finnish treebank
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Learning Curves
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Figure 2.4: Learning curves for Finnish

accuracy (e.g. linear classification was used). Therefore the above per-
formance does not represent the state of the art accuracies for these
two languages and serves only the purpose of visualising the necessity of
expanding annotated resources.

I have investigated whether it is possible to measure the usefulness of
annotating and adding a sentence to an existing treebank and whether
this value significantly differs across different sentences. I have ascer-
tained that it is indeed possible and show that a lot of time can be
saved and much better results can be achieved, if one a) does not waste
time on annotating bad sentences and b) concentrates on annotating
good sentences. Finally, I have constructed a statistical model able to
discriminate between those two types and evaluated it.

Since I do not have any knowledge of Finnish language and was not
able to annotate sentences myself, I have left out a portion of annotated
sentences out of treebank and added them in the process as if they were
newly annotated by me.
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A similar work exists in the area of active learning (Mirroshandel and
Nasr, 2011)). The work has exactly the same motivation of selecting only
that material for annotation, which is beneficial for the performance of
one’s system and not wasting the time on the rest. The authors even
propose not to annotate the whole sentence manually, but rather process
the sentence with a parser and only manually overwrite those dependen-
cies which are actually useful. The method of selecting good material
proposed by Mirroshandel and Nasr is different from what I have inves-
tigated. Their idea is that those structures which are most error-prune
require annotation, since obviously the model is missing the knowledge
to process them. They then manually annotate the wrong parts, relearn
the model and hope that the parser has learned to deal with the struc-
tures which went wrong before. Thus the most useful sentence is the
one which contained the most mistakes prior to its manual annotation.
On the other hand sentences which are already parsed correctly are not
useful and do not require annotation. My proposal is that a sentence
is useful and requires annotation if its inclusion to the training data
improves the performance of the parser on the test data. This way the
most useful sentence is the one whose annotation has the biggest positive
effect on the performance of the parser on the test data.

I define usefulness (su) of a sentence (s;) as the influence of a sentence
on the accuracy (acc) of a system for the test data (T'E,,) when added
to the training data (T'R,,) of that system:

su(s;) = acc(TRp+s:;TEy,)-acc(TR,;TE,,) (2.1)

For accuracy I have used the labeled attachment score. In order
to compute a good estimate for sentence usefulness I have used several
training data sets and several test data sets and averaged the change in
accuracies across all experiments. For experiments described here I have
taken the Finnish treebank (6375 sentences) and split it into 2 training
data sets (30% of the whole data each), 2 test data sets (10% each) and
left the remaining 20% (1276 sentences) for experimenting. Thus for
each of these 1276 sentences I have computed the accuracy for all (4)
combinations and averaged over their number:

su(s;) = (acc(TR1+s;;TEq)-acc(TRy;TEY)
+ acc(TRy+s:;TEs)-acc(TRy;TE>)
+ acc(T' Ra+s;;TEq)-acc(T Ro;TE)
+ acc(T Ra+s:;T Ez)-acc(T Ry;TE2)) /4
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In order to test whether the sentence usefulness measure serves its
purpose, namely as a selection criterion for sentences which should be
added to the training data foremost, I have performed several experi-
ments. I have computed accuracies for randomly selected n sentences
and compared it to the accuracies when the best n sentences where se-
lected according to my metric. E.g. when 20 sentences were randomly
added to the training data the accuracy improved by 0.08% LAS on av-
erage, whereas with 20 best sentences the improvement was 0.3% LAS.
For 50 random sentences the improvement was 0.13% LAS, whereas for
the best 50 it was 0.48% LAS.

Having shown that different sentences have different impact on the
accuracy and that it is beneficial to add good ones first, I have inves-
tigated whether it is possible to automatically predict this value using
a statistical classifier. Basically, we are not interested in the exact sen-
tence usefulness decimal value, but we rather want to know whether a
sentence is worth annotating or not. Therefore we can group sentences
into some discrete usefulness classes. The core problem is binary, since
we want to discriminate between good sentences we want to annotate
and the rest. However, the number of good sentences is small and the
rest is big, which makes the problem very imbalanced and the prediction
difficult. Therefore I have experimented with several different divisions
and could achieve the best results when the data is split into four classes
of equal number: 1 being the worst, 2 - being slightly better, 3 - good, 4
- best. Even though that we are still interested only in the class 4, this
partitioning allows us to better optimise the performance of the classi-
fier. In cases when the decision is not very certain, usually the confusion
is only between two classes (Keerthi et al., [2008a)). E.g. when two good
classes (3 and 4) compete, a mistake is not that bad as e.g. in the case
of a good and a bad class (1 and 4), where the risk of making a severe
mistake is much higher. In the simple binary case one would not be able
to differentiate between different types of mistakes that well.

First, I have tried to represent each sentence as a feature vector and
then learn the corresponding classes using linear SVMs. However, either
because I was not able to come up with enough good sentence-level
features or because the size of the training data was not big enough (I
have used 20% of the data left for experimenting, which then again was
randomly split into 90% for training and 10% for testing), the results
were not satisfactory. I have then decided to do the classification on the
word level: for every word in a sentence of class ¢, I have constructed a
feature vector and assigned it the class ¢ in the training phase. E.g. for
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a class 3 sentence of length 10 I have constructed 10 feature vectors, one
for each word, of the class 3. The feature templates which I have used
were:

sentence-level features: length of the sentence, number of punc-
tuation tokens, number of verbs, number of pronouns, number of con-
junctions, number of adverbial modifiers.

word-level features: word form of the current word, word form of
the next word, POS of the current word, POS of the next word, word
length, dependency type, word novelty.

These particular features were selected after some semi-automatic
feature engineering, during which I have tried all kinds of different POS
tags and dependency types as features.

In order to detect punctuation, verbs and pronouns I have simply
used the Finnish POS tags: PUNCT, V and PRON respectively. For
adverbial modifiers and dependency types in general I have parsed every
sentence with MaltParser and used the label predicted by the parser
(not the gold standard that also was available). The novelty of a word
is a binary feature: for the given word form we look whether it already
ever occurred in the training and test data or whether it is new. In the
test phase we would then predict a class for every word in a sentence
and perform a voting procedure in order to infer the sentence usefulness
class for the whole sentence. Given a set of votes , where , the voting
procedure looks like that:

Algorithm 4 Voting procedure for usefulness classes
1. if (4€ V) then

2 weight(1) = count(1)*2 in V
3 weight(2) = count(2) in V

4 weight(3) = count(3) in V

5 weight(4) = count(4) in V
6: return argmaxi(weight(i));
7: else

8 return majority Voting(V);
9: end if

So basically if V does not contain words classified as class 4, I have
simply performed majority voting for the remaining classes. Otherwise
all votes for other classes are counted, whereas the votes for the worst
class are always counted twice in order to avoid a severe mistake when-
ever there is a chance that a sentence might belong to class 1.
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The evaluation of the model was not straightforward. The first metric
which I have tried out was accuracy: the percentage of correctly classified
classes. However, since we are not equally interested in all classes, but
are rather interested in correctly finding the class 4, the metric was not
very helpful.

That is why the second attempt was to compute precision and recall
only for the class 4. However, different mistakes have different impact
on the result. A confusion between class 1 and class 4 is different from a
confusion between classes 3 and 4. Precision and recall metrics are thus
not helpful neither.

The next step was to compute a confusion matrix for all classes and
try to minimise the number of actual instances of 1 and 2 predicted as
4 on the one hand and maximising the number of actual 4 predicted as
4 on the other hand.

In a real-world scenario the number of potential sentences which can
be annotated is infinite and therefore the recall of the method might be
arbitrary low and it will still find enough good candidates to annotate.
It is merely important that the precision is high, so that the sentences
which are annotated are really beneficial for the task. However, in our
experiment the amount of data was small: in 20% of the sentences left for
testing, i.e. 250 sentences, 57 belonged to class 4. Therefore I could not
decrease recall because otherwise not enough sentences would have been
found in order to clearly demonstrate that the approach outperforms the
baseline of selecting sentences randomly.

I have run 10 tests randomly selecting 80% sentences for training and
20% for testing and averaged the performance on the confusion matrix:

In around 16% of all cases actual 1s were classified as 4s. In around
26% of all cases actual 2s were classified as 4s, in around 8% of all cases
actual 3s were classified as 4s and in around 50% of all cases actual 4s
were correctly classified as 4s.

Thus this method allows to select good sentences significantly more
often (namely twice as often) than when doing it randomly. Again, if
there were more data available for testing, it would be possible to tune
the precision at costs of recall, improving the performance even further.
The experiment with gold-standard usefulness classes, suggests that it
is possible to gain accuracy up to four times faster when annotating
sentences proposed by this method compared to random selection.

I suppose that the sentence usefulness is not a constant parameter,
but rather changes with the growing size of the training data. Because of
the limited size of data for experimenting I could not investigate whether
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this metric is still better than random when hundreds or thousands of
sentences are added to the original corpus and/or whether the model
has to be adapted and retrained on the new data, because in the course
of annotation different units might become useful than it was the case
prior to the treebank extension. Most probably the latter case is true
and the model has to be regularly adopted to the changes in the tree-
bank, however, I do not know whether it will be an easier or a harder
task to predict new good candidates for annotation. On the one hand
with the growing size it should become more difficult to find new bene-
ficial sentences for the treebank, but on the other hand with more data
available a more accurate model for prediction can be constructed.

Another interesting point is to analyse what actually makes some
sentences better than other. It was important to make sure that longer
sentences are not always automatically better, simply because they have
more tokens and thus provide more information. So in one of the ex-
periments I have sorted all sentences according to their usefulness and
looked at their length. The result clearly shows that even though the
best sentences are on average slightly longer there is still a huge amount
of long sentences which were not useful. In principle the approach might
be further optimised by not only finding most promising but also short
sentences, which do not require much time to annotate. The figure 5
demonstrates that there are lots of short sentences which are among the
most useful ones and long sentences which are among the most useless
one and that the length of a sentenes is actually quite an irrelevant fea-
ture. Since the time effort depends on the number of tokens one has to
annotate, that is an important finding, because it means that not only
one is able to find good sentences but also those which can be annotated
with less effort.

Unfortunately, I am not a speaker of Finnish and I was not able to
analyse neither the content of the most useful sentences nor their prop-
erties. It would be interesting to find out whether these sentences have
certain linguistic structures or contain specific lexical entries. Neither
could I investigate whether the useful sentences we are able to detect
overlap with those predicted by the approach proposed by the already
mentioned approach by Mirroshandel and Nasr. The approaches are very
different: they work in a bottom-up fashion by optimising the model for
the sentences with poorest performance until the model performs well
for most sentences and we work in a top-down fashion by optimising the
model for sentences which improve the performance for as many other
sentences as possible in the test data. Intuitively, the first and the latter
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Figure 2.5: Sentence length influence

sentence types are not the same and thus it would also be interesting to
combine both approaches.

This work has shown the necessity of extending annotated resources
on the example of Finnish. Since the annotation process is expensive
and tedious I have proposed an approach for selecting only the most
promising sentences for annotation. I have explained a sentence use-
fulness metric and how it can be predicted for new sentences. The ex-
periments show that it is possible to select good sentences significantly
better than simply annotating random sentences. If gold standard values
for sentence significance are used, the accuracy of the parser increases
four times faster than when random sentences are added to the training
data. With the values predicted by my model it is still twice as fast. I
have also discussed some potential problems with the metric if the size
of the initial treebank changes considerably. However, on the other hand
it might become easier to accurately predict good sentences if more data
becomes available.
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Investigation of differences between linear and non-linear
kernel-based learners For some applications the quality of results
is the main priority, whereas for some others there are also requirements
to the speed of the processing. Accuracy and efficiency are thus two main
properties of dependency parsers. A couple of years ago accurate parsing
was slow, and fast parsing was relatively inaccurate. Accurate parsers
like MaltParser or MST Parser required many hours or even days to train
a model from a large treebank, e.g. for English. Applying the parsers
was also a slow process, since the speed was dependent on the number of
training instances. A usual speed of such older parsers like MaltParser
(using LibSVM), MST Parser or Stanford Parser is about 2-4 sentences
per second. With faster machine learning methods, e.g. TiMBL (Daele-
mans et al.| [2002) for MaltParser, the accuracy was 3-4% (depending
on the language) lower, but the training and application of the system
was much less time-intensive. The present day linear classifiers with
good feature models, which contain artificial feature combinations, are
even only around 1% behind the complex kernel-based methods. At the
same time they are much more faster and are able to parse hundreds of
sentences per second. MaltParser, using linear classification approach
(using LibLinear library is able to parse about 9000 tokens per second,
which corresponds to around 400 English sentences of average length
(24.5 tokens)).

Table sums up the performance of MaltParser with two different
machine learning libraries:

LibSVM LibLinear
Accuracy (UAS/LAS) 92.1 /90.4 | 90.9 / 89.3
Training Time 6h21mb51s 5min23s
Parsing Time 371s 3.69s

Table 2.1: MaltParser(LibLinear) vs MaltParser(LibSVM)

The natural question, which arises at this point is whether a gain
of 1.1% accuracy justifies 70 times longer training times and 100 times
longer parsing times.

I have performed a detailed analysis, which has shown that 86.9%
(29015 tokens) of all dependencies are equally recognised by both models
and are correct. 2.9% (968 tokens) are correctly recognised only by
LibSVM model and 1.7% (577 tokens) - only by LibLinear, the rest is
not recognised by neither of both. It is especially interesting whether
the accuracy gain of LibSVM model justifies the hundred-fold decrease
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in efficiency and therefore I have performed a detailed analysis of the
2.9% of dependencies which are only recognised when using LibSVM.
The analysis consisted out of the following steps:

1. Investigation whether these 2.9% are just an ordinary extract of
the data, which contains approximately the same dependencies as
any other sample section of the data.

2. Investigation whether LibSVM performs better simply due to over-
fitting the data.

3. Investigation whether the quadratic kernel of LibSVM, being a
more complex approach, helps to recognise more difficult depen-
dencies better than the simpler linear SVMs.

Therefore I have done the following three experiments:

1. Thave computed the distribution for different dependency types for
the whole data and for the 968 tokens, which are only correctly pro-
cessed by LibSVM, and compared them. Most dependency types
indeed have approximately the same distribution as the entire data.
These dependency types account for 61.8% of the 968 tokens. How-
ever, the rest is quite different and occurs either much more or
much less often, i.e. at least by a factor of 2, than according to
the distribution of the whole data. E.g. the rather unimportant
dependency type P (punctuation) accounts for 11.02% of all de-
pendencies in the English data. In these 968 tokens punctuation
occurs 253 times, i.e. 26.13% of all dependencies. Among other
dependencies which occur with an above-average frequency were
tokens of type COORD (coordination), which occurred 65 times
(6.71%), whereas the average is 2.65%, and APPO (apposition) -
32 times (3.30%), average 1.41%. The above-average of correctly
recognised coordinations, punctuations and appositions gives rise
to the suspicion that LibSVM is particularly suitable for longer
sentences, with relative clauses and appositions, as well as punctu-
ation associated with these phenomena. Indeed, our experiments
showed that whereas the average sentence length of the sentences
in the data is 25.01 words, the average length of the sentences,
which are correctly parsed by LibSVM but not LibLinear is 30.67,
i.e. much longer sentences.
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2. Any treebank contains a certain amount of inconsistency due to
the nature of its creation. I have already shown in the Error Iden-
tification and Correction section that around 1% of all annotations
in the English treebank is erroneous. The idea was to test whether
the number of inconsistencies is higher for the 2.9% of data we are
investigating. After applying the approach to this portion of the
corpus I was able to identify 86 errors (8.3%), which exceeds the
expected average by several times. That means that actually a big
portion of what is recognised as correct by LibSVM and not Lib-
Linear is actually due to the erroneous gold standard. A similar
experiment for LibLinear revealed that it only classified 41 tokens
with erroneous gold standard. Thus LibLinear seems to be able
to generalise better, whereas LibSVM merely replicates the gold
standard, even if it is inconsistent.

3. Whereas many parsers achieve results around 90%, the score is
merely an average over all dependencies. Among them are those
which are rather easy and unimportant for applications, and those
which are difficult and highly relevant for certain tasks. The perfor-
mance of parsers for the latter dependencies is usually much lower.
Examples for such dependencies are non-local dependencies (Ben-
der et al.;|2011) and unbounded dependencies (Nivre et al., 2010).
I have taken the data with non-local dependencies and evaluated
MaltParser (LibSVM) and MaltParser (LibLinear) on it in order
to investigate whether there is some difference between the models
for more difficult phenomena. The result has shown that there is
absolutely no difference between both parsers and they were able
to recognise exactly the same number of demanded annotations.

Apart from accuracy and efficiency machine learning methods might
differ in another important property, namely the amount of required
training data in order to perform well. Therefore we have also performed
an experiment whether LibSVM and LibLinear versions of MaltParser
require different size of training data in order to achieve high accuracy
and thus would influence the choice of the machine learning library for
languages with small dependency treebanks.

Similarly to the Feature Usefulness section I have investigated the
learning curves for LibSVM and LibLinear for various instances of train-
ing data of different size. I have measured the performance of both Lib-
SVM and LibLinear for each version of the training data used. English
treebank is probably a bad example because for both learning approaches
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its size is more than enough. We see that the steepest improvement is
only in the beginning and that with 40% of the data LibSVM’s accuracy
is just 1% lower than with the full corpus. With LibLinear it is very
similar and it is also able to achieve an accuracy just 1% below its top
performance with 40% of the data. Thus LibSVM does not provide any
benefit for languages with much smaller treebanks, since LibLinear does
not require a lot of training data neither.

Learning Curves

LibSVM and LibLinear
0.9200

0.9000
0.8800

0.8600 ==LibSVM

0.8400 LibLinear
0.8200

0.8000
0.7800

LAS

15 35 55 75 95
5 25 45 65 85

Percentage ofthe Treebank Used

Figure 2.6: Learning Curves for LibSVM and LibLinear

The investigation shows that the higher score of LibSVM results from
its better ability to replicate the gold standard. On the one hand one
can therefore better parse longer sentences with more complex syntactic
structure, like appositions and coordinations, on the other hand LibSVM
blindly replicates inconsistencies, which LibLinear does not because of a
more general model. The experiment on ten non-local dependency types
shows no difference between both models. The difference in efficiency
is enormous, both training and application times differ by a factor of
70-100, which would make LibSVM not applicable for a wide range of
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application requiring fast processing (e.g. if processing is done online or
the amount of data is big, for instance data from the web), whatever
accuracy it might have had. Additionally, I have investigated whether
the more complex LibSVM library performs better if less training is
available. The experiments have shown that there is no difference in be-
haviour between LibSVM and LibLinear. I therefore think that parsing
with a linear classifier is a much better option. It works much faster,
trains a more general model which is less tuned to the data with its po-
tential inconsistencies, does not require more data to train and achieves
almost the same results, as our additional experiments with non-local
dependencies have shown.






3

Evaluation

In the first part of my thesis I have presented the formalism of depen-
dency grammar and described the properties of numerous parsers based
on it. This diversity makes it difficult to decide which parser is the most
suitable for one’s needs.

For many NLP tasks, such as machine translation being the extreme
example, the evaluation is at least as complex as the task itself. For de-
pendency parsing for a long time it was not the case. In fact one of the
most advocated advantages of dependency parsing was the facility of its
evaluation. The easiness of dependency parsing evaluation consisted in
that a dependency tree can be represented as a set of individual depen-
dency relations and the percentage of correctly assigned relations could
be thus computed in a very simple fashion. The proportion of correctly
recognised head-modifier dependencies is called unlabeled attachment
score (UAS). Since dependency relations are usually typed, the percent-
age of correctly recognised dependency relations including the type (e.g.
subject relation) is called labeled attachment score (LAS).

Especially in the years 2007-2009, when the CoNLL-X shared tasks in
dependency parsing (Buchholz and Marsi, 2006]) took place, the metric
became predominant in the field. It allowed to compare and rank the
results of different systems for the same data set. The analysis could be
deepened to a comparison of performance for different dependency types,
sentence lengths and further more fine-grained evaluation. I will refer
to the CoNLL-X style evaluation as traditional evaluation, because it is
also the way the phrase structure parsers were evaluated in the decades
before (cf. (Abney et al.l|1991)).
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An alternative evaluation methodology which has become popular in
the recent years is the application-oriented extrinsic evaluation. With
this type of evaluation the parser result is not evaluated directly, but
rather by measuring its contribution to solving some task for which it
was applied. On the contrary to the traditional evaluation, this method-
ology does not involve comparing the ability to recognise some artificial
categories and is very intuitive. I will refer to it as natural evaluation.

In this part of the thesis I am going to discuss the advantages and
drawbacks of both evaluation methodologies, provide the state-of-the-
art works and present my own work on the topic of dependency parser
evaluation.

3.1 Traditional Evaluation

Automatic quantitative evaluation of results is of essential importance
for any NLP task. The development of an NLP system is greatly fa-
cilitated if such evaluation is possible, since in this case the quality of
improvements to the system can be measured in a cheap and fast way.
This is of course also true for parsing. The most influential metric for
parsing, PARSEVAL, was developed in the 1990s for PSG parsers. Ac-
cording to this metric the brackets delimiting constituents are first lined
up. Afterwards the precision and recall of matching brackets are calcu-
lated. Precision is the percentage of correct brackets among all brackets
predicted by the system and recall is the ratio of correct brackets in the
result to the total number of brackets in the gold standard. A metric
called F-score is usually used to combine the recall and precision values
in one, by calculating their harmonic mean:

precision x recall
F — score =

2 x precision * recall (3.1)
A modified version of PARSEVAL also required the brackets to be
labeled correctly, i.e. not only the boundaries but also the phrase types
had to be correct in order to satisfy the requirements for matching the
brackets.
The advantages of the PARSEVAL metric are self-evident:

e It is fully automatic and does not require any manual human eval-
uation.

e [t is easy to compute and the calculation is fast.
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e It delivers a single score which is particularly suitable in order to
compare different systems against one another.

This metric also seemed to qualify for the needs of dependency pars-
ing. In fact it is even easier, since there are no constituents in the
dependency formalism and therefore instead of precision and recall the
accuracy, i.e. simply the percentage of correct decisions, can be taken.
Similarly to PARSEVAL, again both labeled and unlabeled accuracies,
called labeled attachment score (LAS) and unlabeled attachment score
(UAS) are possible:

UAS — correct heads (3.2)
total words

correct heads & correct types

LAS = (3.3)

total words
Additionally, the dependency-based evaluation also neutralised one of
the most prominent disadvantages of PARSEVAL: favouring of minimal
structure (Carroll et al., |1998) and penalising of misattachments (Lin|
1995) more than once. The first is true because constituents of different
lengths contribute equally to the score, whereas it is obvious that shorter
ones are less error-prone. The second is true because a single error can
cause several crossing brackets or missing boundaries. This is not an
issue for dependency parser evaluation, because dependency evaluation
is word-based.

3.1.1 CoNLL Evaluation

In the years 2006-2008 three shared tasks on multilingual dependency
parsing were organised within the scope of the Conference on Compu-
tational Natural Language Learning (CoNLL). In terms of this initia-
tive treebanks for 21 languages were transformed into a uniform format,
which allowed to evaluate one and the same parser over a variety of
languages and a variety of parsers for one and the same data set. The
performance on the test sections of the treebanks released during the
shared tasks has become a de-facto standard when reporting results for
dependency parsers in the literature. Additionally, the CoNLL format
(Buchholz and Marsi, 2006) turned out to be a particularly appealing
representation form and also has become one of the standard represen-
tations.
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The CoNLL parser evaluation embodied all the advantages of PAR-
SEVAL evaluation and introduced the additional benefits of dependency-
based evaluation. Up to the present day it is the most prominent and
popular evaluation methodology and CoNLL scores are reported for any
parser.

A comprehensive overview of the attachment scores for MSTParser
and MaltParser can be found in (Buchholz and Marsi, 2006). However,
the feature models for both parsers have been optimised in the years
that have passed since these shared tasks and thus the current results
are slightly better for these parsers. During my work I have computed
the attachment scores for all parsers mentioned in the Part I of the thesis.
It is important to note that the results I have obtained might differ from
what is reported in the literature, because I might have run the parsers
not with the optimal parameters. Table should give an impression
how different parsers perform and how a CoNLL style evaluation looks
like on the example of parsing the English test set.

Table 3.1: Attachment scores for de-
pendency parsers

UAS LAS
Stanford Parser ! 89.27 86.39
MST Parser 89.6 87.55

MaltParser(LibSVM) 92.1 90.4
MaltParser(LibLinear) | 90.9 89.3

Ensemble 90.2 88.49
Mate-Tools 90.24 89.88
ClearParser 91.18 89.15
MDParser 89.7 87.7

1 Stanford parser uses the Stanford tagset and
was therefore evaluated on a different ver-
sion of the data. The results are therefore
not comparable with the other systems, but
should give an impression about the perfor-
mance of this parser.

According to this evaluation methodology the best parser is the one
with the highest attachment scores.

3.1.2 Criticism

The traditional parser evaluation remains very popular up to the present
day, because of the above mentioned advantages. However, it is not
sufficient for numerous reasons.

First of all, it covers only one aspect of parser quality, namely the ac-
curacy with which it is able to replicate some gold standard. Some other



Performance-Oriented Dependency Parsing 103

important properties like efficiency, size of the data required to train the
system and the usability of the system have not been a subject to eval-
uation. The efficiency evaluation would comprise the assessment of the
training and parsing speed of a parser. The size of the required data is
especially important for multilingual parsers working with resource-poor
languages. Usability of a system involves the availability of preprocess-
ing tools, different possibilities for the output formats, facility of feature
model specifications, as well as the hardware requirements.

Additionally, as far as the accuracy evaluation is concerned, the tra-
dition evaluation is not perfect neither. In fact there are numerous ar-
guments why this kind of evaluation does not truly reflect the quality of
parser’s results:

e the parsers are tuned to a specific treebank, which might impair
their performance for other domains, because they are overfit to
some data and lose their ability to generalise.

e the scores do not differentiate between various dependency rela-
tions of different importance.

e the scores are high (around 90%), suggesting that the results are
very good, however, when used in applications, parser errors are
omnipresent.

As far as another major advantage, namely the facility of parser
comparison, is concerned the methodology also has some drawbacks:

e treebanks contain errors and a higher score when replicating the
treebank might mean that there is not real improvement, but
merely the errors are replicated.

e there are different annotation schemes, which vary in granularity.
Some are easier to produce and some others are more difficult. E.g.
the Stanford scheme is slightly easier than the CoNLL scheme.

e one parser might be better at more important and difficult rela-
tions, but they contribute equally towards the score as some other
easier and less relevant dependencies.

Therefore a parser with a higher score not necessarily is better and
a more detailed analysis is necessary.
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3.1.3 Modified Evaluation

The disadvantages of the usual attachment scores practice lead to the
necessity of a modified evaluation:

1. The problem of attachment scores being the average over many
different relation types must be addressed.

2. The missing 10%, which can not be replicated, must be analysed
and compared in order to determine whether they are common
for different systems or whether the parsers have difficulties with
various pieces of data.

3. The grade of tuning and overfitting of systems to a particular tree-
bank must be assessed.

The first problem is well-known and there are numerous works deal-
ing with it. The proposed solution is to define a set of relations relevant
for one’s needs and to compute attachment scores only over these depen-
dencies. Examples of such work are the evaluation of non-local (long-
distance dependencies, non-dependencies, phrasal modifiers and subtle
arguments) (Bender et al. 2011) and unbounded dependencies (object
extraction from a relative clause, object extraction from a reduced rela-
tive clause, subject extraction from a relative clause, free relatives, object
question , right node raising and subject extraction from an embedded
clause) (Nivre et al|2010). Both papers provide a comprehensive moti-
vation why exactly these types of dependencies are particularly impor-
tant.

However, the two above-mentioned categories of dependencies are not
relevant for one’s needs in general. It is completely dependent on one’s
application what kind of relations are important and it can also be true
that the simplest ones are actually the relevant ones. Therefore to my
mind no ultimate set of useful relations can be defined and that is why
I was rather interested in developing a methodology of determining the
set of relevant dependencies given a certain NLP task.

The notion of relevant or necessary dependencies has also already
been discussed in several works. The basis for these works is the book
by Anderson et al.: Entailment. The logic of relevance and necessity
(Anderson et al., [1992). The general idea is that given some logic for-
mulae and a task, relevant parts are those shared by the formulae, e.g.
atomic units like variables and constants, whereas the necessary parts are
those actually required to solve the task. E.g. for argument validation,
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the information contained in the premises should also occur in the con-
clusion in order to be relevant, but only some of such premises provide
(or take away) support and are necessary in order to decide the valid-
ity. The same idea can be transferred to the information-based textual
tasks: the relevant fragments are those which share the same informa-
tion, whereas the necessary ones are those which are actually required
for task purposes. E.g. in the shared task PETE (Parser Evaluation
using Textual Entailments) (Yuret et al., [2010) a necessary dependency
is a dependency whose correct recognition is a requirement in order to
correctly predict the entailment relation between two texts.

The exact distinction between relevant and necessary dependencies
in a certain application is difficult and depends on how they are used
in order to solve the actual task. However, it is obvious that at least
as far as the evaluation of dependency parsing is concerned, it is very
sensible to discard the irrelevant dependencies. Even though a further
distinction between necessary dependencies and relevant ones would be
a plus, the first step is already a big improvement.

The second point has also been addressed by several works. Es-
pecially the works on the integration of the transition-based and graph
based approaches, as e.g. (Nivre and McDonald, [2008), discuss the differ-
ences between the results of various systems. These analyses have shown
that different parsers perform differently for various parts of speech, de-
pendency types and certain sentence constructions and that is why ba-
sically an integration of both makes sense. The Ensemble (Surdeanu
and Manning, 2010 system shows that even within one approach differ-
ent parsing algorithms lead to different performance and that combining
their strengths significantly improves the overall result. There is also
an interesting article on Deniz Yuret’s webblog (Yuret)lﬂ on the missing
10% problem. His belief is that a certain amount of the errors is due to
inter-annotator disagreement, but does not perform an actual study.

The third point includes the efforts to study the problem of domain
adaptivity for dependency parsing. The CoNLL 2007 shared task in-
cluded two tracks: the multilingual track, which is the ordinary track
where the training and test data for different languages were from the
same resource, and the domain adaptation track, where the test data was
different from what the parser was trained on. In terms of the domain
adaptation track numerous works on the topic of domain adaptivity and
overfitting were published. The finding was that the performance of

Lhttp://denizyuret.blogspot.de/2010/11/next-generation-parser-evaluation.html,
last retrieved May 10,2012.



106 3.1. TRADITIONAL EVALUATION

the systems significantly dropped when they were applied to the out-of-
domain data. The best approaches of that shared task, including those
who achieved the top scores (Dredze et al., 2007)) (Sagael, [2007)), used the
knowledge about the new domain in order to improve the original model.
However, it would be better to have a model which is as general as pos-
sible in the first place before adapting it to a different domain and this
point has not been investigated. To my mind it is due to the fact that
the community is not very aware of a considerable amount of erroneous
annotations in the treebanks, which I have already broadly discussed in
the Part I of the thesis. The overfitting is therefore dangerous, because
a model tuned to such a treebank, might be simply replicating these
€rTors.

This concludes the overview of the traditional evaluation method-
ology and the newer developments which are similar in nature. I will
present my work in this field in section but first I have to introduce
the extrinsic evaluation methodology, which is on the other side of the
spectrum.
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3.2 Natural Evaluation

The traditional evaluation tries to evaluate the performance of a parser
by assessing its ability to produce structures similar to what some gold
standard suggests. However, for many people using parsers this is com-
pletely irrelevant. The parsers are usually used as a preprocessing
step for some application and the only interesting question is there-
fore whether the parser results are beneficial for this task and to what
extent. So instead of evaluating parser results directly the idea is to
measure their contribution to solving some task for which parsing was
applied.

There are numerous works which evaluate parsers in an embedding
task, e.g. by incorporating dependency relations as statistical features
in the task-specific system. Depending on the quality of the parsers the
accuracy improvements, after including such features, will vary. Exam-
ples of this method include parser evaluation for information extraction
(Miyao et al.l 2009)(Buyko and Hahn|)(Miyao et al. 2008) or textual
entailment (Yuret et all [2010]).

I am going to take textual entailment as example in order to discuss
the advantages and disadvantages of the extrinsic evaluation.

3.2.1 Parser Evaluation with RTE

Textual entailment is a relation between text fragments, which states
whether the meaning of one fragment is contained in the other one. The
entailing text fragment is usually called text (T), the entailed fragment
is usually called hypothesis (H), and both are usually referred to as T/H
pair.

First, I will describe the idea of the already mentioned PETE shared
task. The organisers of this task proposed a method for construction of
T/H pairs for subsequent judgment whether T entails H or not. These
pairs are constructed in such a way that the entailment relation can
be predicted properly only in case when the necessary dependency rela-
tions were classified correctly. Here are examples for such dependency
relations:

e subject-verb dependency: ”John kissed Mary.” entails ”John
kissed somebody.”

e verb-object dependency: ”John kissed Mary.” entails ” Mary was
kissed.”
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e noun-modifier dependency: ”The big red boat sank.” entails
”The boat was big.”

These examples show that entailment can be determined only if the
parser correctly determined the subjects, the objects and the noun mod-
ifiers, respectively. This is a very good additional possibility for eval-
uation of parsers, besides the usual evaluation metrics, since in most
cases the main thing in real-word applications is to recognize the pri-
mary units, such as the subject, the predicate, the objects, as well as
their modifiers, rather than the other subordinate relations. Overall this
evaluation methodology offers the following advantages:

e Different dependency relations gain different importance: e.g. sub-
jects and objects are more important than punctuation and deter-
miners.

e The official results of the PETE challengeﬂ show that parsers are
far from being perfect and quite often produce errors which lead
to wrong decisions.

e Different parsers and even different syntactic theories can be com-
pared this way. E.g. it does not matter whether the subject is
represented as SBJ, SUBJ, nsubj or any other specific label in or-
der to match a certain gold standard, it is merely necessary that
the entailment relation is determined correctly.

The T/H pairs used for evaluation were constructed manually and
the organisers have invested a considerable effort in the creation of the
data sets for the task, however, they have managed to provide the groups
only with 32 T/H pairs for development and 301 T/H pairs for testing.
This is definitely not enough in order to test parsers’ performance for
a large variety of dependencies. Due to the fact that the organisers
tried to create only T/H pairs for which syntactic information alone
is sufficient in order to determine the entailment relation, which is a
very difficult task and which did not go smoothly in many cases(because
beyond syntax logic, co-reference and semantics was required), it is very
improbable that sufficiently large data sets will be created with this
methodology.

Here are some of the pairs that require more than only syntax:

2http://spreadsheets.google.com/pub?key=t DUXEL8YSSL7S2vz_Jn_ckQ
&single=true&gid=0&output=html, last retrieved May 18,2012
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(4069 entailment="YES”)

<t>Mr. Sherwood speculated that the leeway that Sea Containers
has means that Temple would have to ”substantially increase their bid
if they’re going to top us.”< /t >

<h>Someone would have to increase the bid.< /h >

(7003 entailment="YES")

< t >After all, if you were going to set up a workshop you had to
have the proper equipment and that was that.< /¢ >

< h >Somebody had to have the equipment.< /h >

(3132.N entailment="YES”)

< t >The first was that America had become — or was in danger of
becoming — a second-rate military power.< /t >

< h >America was in danger.< /h >

— 4069, 7003 and 3132.N are examples for sentences where beyond
syntactical information logic is required. Moreover we are surprised that
sentences of the form ”if A, then B” entail B and a sentence of the form
”A or B”’ entails B, since or in this case means uncertainty.

(4071.N entailment="NO")

< t >Interpublic Group said its television programming operations —
which it expanded earlier this year — agreed to supply more than 4,000
hours of original programming across Europe in 1990.< /t >

< h >Interpublic Group expanded.< /h >

(6034 entailment="YES”)

< t >”0Oh,” said the woman, "I’ve seen that picture already.” < /t >

< h >The woman has seen something.< /h >

— In 4071.N one has to resolve it in it expanded to Interpublic Group.
In 6034 one has to resolve I in I've seen to the woman. Both cases are
examples for the necessity of anaphora resolution, which goes beyond
syntax as well.

(2055 entailment="YES")

< t >The Big Board also added computer capacity to handle huge
surges in trading volume.< /t >

< h >Surges were handled.< /h >

— If something is added in order to do something it does not entail
that this something is thus automatically done. Anyways pure syntax is
not sufficient, since the entailment depends on the verb used in such a
construction.

(3151.N) < ¢t >Most of them are Democrats and nearly all consider
themselves, and are viewed as, liberals.< /t >

< h >Some consider themselves liberal.< /h >
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— One has to know that the semantics of consider themselves as
liberals and consider themselves liberal is the same.

3.2.2 Criticism

Apart from the difficulties of creating appropriate data sets in order to
test applications on them, natural evaluation has some additional draw-
backs. Since it is not the parser accuracy being evaluated, but the NLP
system. Therefore it is important to have a good module for making
use of parser results in order to predict the entailment relation correctly,
and this is not a trivial task. For RTE systems, if T entails H, some
dependency relations of H have to match those occurring in T. How-
ever, sometimes the matching is not straightforward like subject(T) =
”John” and subject(H) = ”John”, but can be trickier like object(T) =
"Mary” and object(H) = ”somebody” or even subject(T)="1" and sub-
ject(H)="woman” (in T = ”Oh,” said the woman, ”I’ve seen that picture
already.”; H = The woman has seen something.). All examples are real
examples from the PETE shared task. Additionally, when applying to
real-world data in most cases synonymy and/or semantic relatedness
becomes important, such as in the following T /H pair:

T = Pet owners were forced to abandon their animals in the midst
of evacuation.

H = People were forced to leave their pets behind when they evacu-
ated New Orleans.

Here the following dependencies have to match: subject(T) = "pet
owners” and subject(H) = "people”, as well as vc(T) = "abandon” and
ve(H) = "leave” and object(T) = ”animals” and object(H) = ”pets”.

Furthermore, the problem with this method is that different T/H
pairs can have completely different levels of difficulty, e.g. as far as
the number of correctly recognised relevant dependencies is concerned,
but they contribute equally to the score. Finally, sometimes the cor-
rect decision is made simply by chance (only two possible classes YES
and NO, with good chances of guessing) despite the wrongly predicted
dependency structure.

My participation in RTE-6 (Volokh et al., [2010) shows that for real-
world textual entailment data of the RTE-6 challenge it is very difficult
to achieve a high f-score using syntactic dependencies, not only because
they might be incorrectly predicted by the parsers, but because the mod-
ule for matching becomes too complex, since all sorts of knowledge, in-
cluding, but not limited to lexical semantics, coreference resolution, logic
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and inference, world and domain knowledge become necessary.

Thus, the natural evaluation is not flawless neither. Even though
different parsers can be easily interchanged in the same system and their
impact on the final result can be compared, this strategy has the follow-
ing drawbacks:

e It is unclear whether the impact is due to parser quality or due
to the quality of the embedding, and what is the relation between
both.

e Depending on the task the embedding might be very difficult, both
timewise and regarding the required level of expertise.

3.2.3 Modified Evaluation

The disadvantages of the extrinsic evaluation lead to the following re-
quirements of a modified evaluation:

e The embedding should be simple and it should not favour any
parser, so that a change in performance could be attributed only
to the quality of the parser results.

e It should be clear whether a low result of the system is due to
the difficulty of the task or simply because the system performs
poorly. Similarly it should be obvious whether a small difference
in the system’s result with parser compared to the result without
parser is due to the fact that parsing does not help solving the task
or because the parsing is too inaccurate in order to contribute to
the solution.

On the contrary to the traditional evaluation which has a lot of propo-
nents and a lot of literature concerning its problems, extrinsic evaluation
is much less studied. The reason for that is the already mentioned disad-
vantage that such embeddings are difficult and time consuming, because
an extrinsic evaluation requires several steps to be done.

First, it must be investigated whether one’s task can profit from
parsing at all. Only then, in case the the latter is true, different parsers
can be applied. Both steps are not trivial, and many studies already end
after the first phase.

The investigation whether parsing is beneficial for one’s application
is usually done via adding some features based on the parser’s output
to the original training data and measuring the difference between the
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new result and the previous performance. However, such features are
sometimes very parser-specific and do not work well if a different parser
is used, even if the parser uses the same representation. The latter is
actually quite rare and since most parsers use different representations
and either an intermediate common representation or a series of parser-
specific solutions are necessary if one wants to compare them.

Attempts to investigate whether dependency parsing is beneficial for
a certain NLP application has been undertaken in almost every area:
e.g. machine translation (Quirk and et all 2006])(Xu et al.,|2009), POS
tagging (Li et al [2011), RTE (Pakray et al., 2011), question answering
(Comas et al., [2010) or relation extraction (Bunescu and Mooney, [2005)).
However, all these works are limited to the first step, i.e. only one parser
is tested. The literature for extrinsic parser evaluation is much more
sparse. E.g. the already mentioned work by Miyao et al.
[2009) (Miyao et al. [2008)) for information extraction, the comparison
of two parsers for question answering (Molla and Hutchinson| 2003) or
investigation of different parser appropriateness in the context of human
robot interaction (Kiibler et al., 2011).

However, all these works show that both ways of comparing parsers
are problematic. If some common representation is chosen to which the
outputs of different systems are transformed in order to guarantee their
comparability, then the extrinsic evaluation becomes a three-step evalu-
ation: a) the parser has to be evaluated b) the embedding of the parser
results has to evaluated c) the transformation of the parser results to the
common representation has to be evaluated. Otherwise, if parser-specific
solutions are done the evaluation also gets an additional uncertainty in it,
namely whether one parser-specific solution is not better than a solution
for another parser, which might distort the results.

This concludes the overview on the extrinsic evaluation. I will now
present my work in the field of parser evaluation, which attempts to cope
with the disadvantages of both evaluation methodologies.
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3.3 MDParser Evaluation

In this part of the thesis I have so far introduced two possible approaches
for dependency parsing, as well as discussed their advantages and disad-
vantages. I have also given an overview of the most prominent works in
this field. In this section I am going to present my work in the field of
dependency parsing evaluation, which mainly had the following objec-
tives:

e [ wanted to experiment with both evaluation methodologies myself,
in order to better understand the difficulties of both from my own
experience.

e [ wanted to evaluate MDParser and compare it with other state of
the art parsers

e [ wanted to develop a methodology which avoids the disadvantages
of the intrinsic and extrinsic evaluation approaches.

In this subsection I am going to evaluate MDParser, both with the
intrinsic and extrinsic evaluation methodologies.

3.3.1 Intrinsic Evaluation

I have already presented an overview of attachment scores for all main
state-of-the art parsers in section (table [3.1]). We see that MD-
Parser is in the lower range segment as far as the accuracy is concerned,
however, it is not the worst performing system. The gap between the
top performing parser MaltParser(LibSVM) and MDParser is 2.4%.

Even though accuracy is not the only important property of a parser
and I will come to this point later, in this subsection I am going to focus
on accuracy and its importance. MDParser has always been inferior
in terms of accuracy to other parsers in the field. Therefore 1 tried
to analyse how significant this gap of few percents is. Therefore I will
compare MDParser with the best performing parser MaltParser.

The main difference between MaltParser(LibSVM) and MDParser is
the machine learning strategy used for training their models and pre-
dicting the transitions. As the name suggests MaltParser(LibSVM) uses
LibSVM and MDParser uses LibLinear machine learning libraries. How-
ever, because there are also other differences between MDParser and
MaltParser, as I have already broadly discussed in section of the
thesis, I thought that in order to compare LibSVM and LibLinear it is
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better to use MaltParser with both libraries and study the differences.
Thus the first step in my investigation of the gap between MDParser
and MaltParser (LibSVM) is to study the differences between both ma-
chine learning strategies, which are mainly responsible for the different
accuracies achieved by the systems.

As already mentioned, MaltParser(LibSVM) achieves a LAS of 90.4
and MaltParser (LibLinear) achieves a LAS of 89.3. A detailed analysis
shows that 86.9% (29015 tokens) of all dependencies are equally recog-
nised by both models and are correct. 2.9% (968 tokens) are correctly
recognised only by LibSVM model and 1.7% (577 tokens) - only by Lib-
Linear, the rest is not recognised by neither of both. I have performed a
detailed analysis of the 2.9% of dependencies which are only recognised
when using LibSVM. The analysis consisted out of the following steps:

1. Investigation whether these 2.9% are just an ordinary extract of
the data, which contains approximately the same dependencies as
any other sample section of the data.

2. Investigation whether LibSVM performs better simply due to over-
fitting the data.

3. Investigation whether quadratic kernel, being a more complex ap-
proach, helps to recognise more difficult dependencies better than
the simpler linear SVMs.

Therefore I have done the following three experiments:

1. Thave computed the distribution for different dependency types for
the whole data and for the 968 tokens, which are only correctly pro-
cessed by LibSVM, and compared them. Most dependency types
indeed have approximately the same distribution as the entire data.
These dependency types account for 61.8% of the 968 tokens. How-
ever, the rest is quite different and occurs either much more or
much less often, i.e. at least by a factor of 2, than according to
the distribution of the whole data. E.g. the rather unimportant
dependency type P (punctuation) accounts for 11.02% of all de-
pendencies in the English data. In these 968 tokens punctuation
occurs 253 times, i.e. 26.13% of all dependencies. Among other
dependencies which occur with an above-average frequency were
tokens of type COORD (coordination), which occurred 65 times
(6.71%), whereas the average is 2.65%, and APPO (apposition) -
32 times (3.30%), average 1.41%. The above-average of correctly
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recognised coordinations, punctuations and appositions gives rise
to the suspicion that LibSVM is particularly suitable for longer
sentences, with relative clauses and appositions, as well as punctu-
ation associated with these phenomena. Indeed, our experiments
showed that whereas the average sentence length of the sentences
in the data is 25.01 words, the average length of the sentences,
which are correctly parsed by LibSVM but not LibLinear is 30.67.

2. Any treebank contains a certain amount of inconsistency due to
the nature of its creation. The already presented work on tree-
bank errors shows that around 1% of all annotations in the English
treebank is erroneous. The idea was to test whether the number
of inconsistencies is higher for the 2.9% of data we are investigat-
ing. After applying their approach to this portion of the corpus we
were able to identify 86 errors (8.3%), which exceeds the expected
average by several times. That means that actually a big portion
of what is recognised as correct by LibSVM and not LibLinear is
actually due to erroneous gold standard. A similar experiment for
LibLinear revealed that it only classified 41 tokens with erroneous
gold standard. Thus LibLinear seems to be able to generalise bet-
ter, whereas LibSVM merely replicates the gold standard, even if
it is inconsistent.

3. Whereas many parsers achieve results around 90%, the score is
merely an average over all dependencies. Among them are those
which are rather easy and unimportant for applications, and those
which are difficult and highly relevant for certain tasks. The per-
formance of parsers for the latter dependencies is usually much
lower. Examples for such dependencies are non-local dependen-
cies and unbounded dependencies. I have taken the data with
non-local dependencies and evaluated MaltParser(LibSVM) and
MaltParser(LibLinear) on it in order to investigate whether there
is some difference between the models for more difficult phenom-
ena. The result has shown that there is absolutely no difference
between both parsers and they were able to recognise exactly the
same number of demanded annotations.

This explains the main difference between MDParser’s and Malt-
Parser’s accuracies. However, there is still a difference of around 1% be-
tween MaltParser (LibLinear) and MDParser, even though both parsers
use the same machine learning strategy. I have experimented with all



116 3.3. MDPARSER EVALUATION

possible parser parameters in order to find the reason for this difference
and was able to determine that my feature model is responsible for that.
The dependency label features 14-17 (see section in MaltParser
are very important and contribute to a big portion (> 1%) of its accuracy,
whereas in MDParser they are merely responsible for a very slight im-
provement (around 0.2%). When MaltParser and MDParser are trained
without these features then the accuracies of both systems are virtually
the same. Unfortunately, I was not able to find out the difference in the
usage of these features and why MDParser can not profit from them as
much as MaltParser does.

Overall, this intrinsic evaluation has shown that a higher score of the
parsers using more sophisticated machine learning techniques is due to
the better ability to replicate the gold standard. However, this does not
really mean a better quality of the results, since they have a more tuned
model and thus also blindly replicate inconsistencies. The results also
exactly the same for ten non-local dependency types. Only a small dif-
ference in accuracy is due to some technical imperfectness of MDParser.

3.3.2 Extrinsic Evaluation

I have undertaken several attempts to extrinsically evaluate MDParser.
First, I have participated in the PETE shared task, which was designed
particularly for the purpose of parser evaluation. I have already intro-
duced the PETE task in section B.2.1]

For the PETE challenge I have built a system which compares the
output of a dependency parser for T and the output for H in order to pre-
dict the entailment relation for a T /H pair. The comparison consists of a
set of rules which are used to judge the similarity of T and H (cf. (Volokh
and Neumann, 2010) for more details). T have used four parsers in order
to construct these results: MDParser, MaltParser(LibSVM), MiniPar
and StanfordParser. Even though I have used a common representation,
to which I was able to transform the results of all parsers I have tried
out, it turned out that the parsers produce different structures and that
my rules favoured the structures of MDParser and MaltParser, which
are the same and which were initially used when the PETE system was
developed. StanfordParser does not only use a different tagset, which
in this case was not very problematic, because of a very limited number
of dependency types which were important for the entailment relation,
but it also assumes a different tree structure (de Marneffe and Manning;,
2008)), which would require a completely different set of rules. MiniPar
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is a rule-based system, also with a different set of dependency relations,
which additionally sometimes constructed either partial or no structures
at all, when the input was not covered by its grammar, e.g. because it
was ungrammatical in some cases. Therefore an automatised evaluation
of all four parsers was impossible within the scope of the challenge.

I have performed a manual evaluation of these four parsers for the
PETE development data (66 T/H pairs):

Accuracy
Minipar 45/66
Stanford Parser | 50/66
MaltParser 51/66
MDParser 50/66

Table 3.2: Parser Comparison for the PETE Development Data

For the test data such manual evaluation was impossible, because
there were too many T/H pairs (301 pairs). Therefore I have restricted
my evaluation to MDParser and MaltParser, for which the entailment
prediction was automatised.

Accuracy
MaltParser | 196/301
MDParser 197/301

Table 3.3: Parser Comparison for the PETE Test Data

The PETE challenge shows that despite the fact that MDParser
achieved an inferior attachment score it is absolutely suitable for the
PETE data and achieves the same results as some other more sophisti-
cated systems.

I have already mentioned in section that despite the effort nei-
ther the quantity nor the quality of the PETE data was satisfactory and
that it was unprobable that bigger and better data sets will be created
with this methodology. In order to avoid the data sparseness problem I
have therefore decided to try out a parser comparison with textual entail-
ment on real-world data. For that purpose I have taken part in RTE-6
challenge (Bentivogli et al., [2010|), which offered a lot of real-world data
with textual entailment annotation, and have applied the approach from
the PETE task in order to compare MaltParser and MDParser. The
resulting ranking of the parsers, as well as the difference between the in-
dividual results, corresponds perfectly both to the LAS/UAS and PETE
comparison between these parsers, which makes the idea of evaluation
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parsers with textual entailment more feasible since the experiment shows
that no artificial syntax-restricted data is necessary.

F-Score
MaltParser 39.81
MDParser 38.26

Table 3.4: Parser Comparison for the RTE-6 Data

RTE-6 task offered large sets of data both for development (around
15,000 T/H pairs) and testing (around 20,000 T/H pairs). Of course,
the real-world data of RTE-6 requires more than syntax in most cases.
However, I have performed an analysis of a big portion of positive T/H
pairs in order to determine what type of knowledge is required in order
to correctly classify them. I have tried to group all instances into three
classes: A - syntax, B - lexical semantics and C - inference.

As an example let us take one hypothesis H; and several different T;
that entail H;. Depending on the type of knowledge required to infer
the entailment relation the Ts can be split into different classes:

H, : People were forced to leave their pets behind when they evacu-
ated New Orleans.

A: T7: Thousands of people were forced to leave their pets behind
when they evacuated New Orleans.

B: T5: Animal rescue officials have been collecting scores of pets and
other animals from the shattered city, while many survivors have told
of their distress at having to leave beloved cats and dogs behind in the
watery city when they fled.

T5: Such emotional scenes were repeated perhaps thousands of times
along the Gulf Coast last week as pet owners were forced to abandon
their animals in the midst of evacuation.

C: Ty: For Elizabeth Finch, the owner of two dogs named Zorra and
Hans Blix, the sight of citizens forced to choose between their pets and
their safety was, like the disaster itself, indicative of broader social rifts.

Ts: The animals are being cared for at a farm north of Louisiana
until they can be reunited with their families, many of whom were told
they would not be able to bring their pets on evacuation buses and
helicopters.

The class A is the easiest one - the relevant information is expressed
with the same words in both T and H. The maximum that should be
done in this case is the analysis of the syntactic structure in order to
determine that the structure of T contains the structure of H and thus
T entails H, cf. T1/H; pair. The class B is a little bit trickier, e.g. the
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words used in Ty and T3 differ from those used in Hy. Thus in order to
correctly recognise the entailment relation one has to know about the
synonymy of the words animals and pets or leave behind and abandon in
addition to the syntactic structure. The class C is the most difficult one.
For that class of T/H pairs one has to use logic inference and/or world
knowledge. For example in order to imply H; from 75 one has to know
that New Orleans is in Louisiana. For the pair Hy /Ty some deeper logic
inference is required in contrast to the rather simple predicate matching
of the A or B classes.

According to my findings around 30% of all positive T/H pairs be-
longed to the class A. Even though this is only a portion of the whole
data it is still considerably more than the PETE task could offer. With
this experiment I could show that picking syntax-based T/H pairs from
real-world data is a better option than trying to artificially construct
such pairs.

3.3.3 Combined Evaluation

Having analysed the strengths and weaknesses of the existing evaluation
methods I have decided to develop an alternative, combining their posi-
tive aspects and avoiding their disadvantages. The following method has
been published and is to appear at an IEEE 2012 workshop EMRITE.

On the one hand I thought that it is essential for the evaluation to be
task-specific, since it is a perfect possibility to find out whether a parser
is suitable for the given task or not. At the same time, I believed that it
is a great idea to restrict the evaluation set of dependencies only to the
important ones. However, to my mind there is no universal set of impor-
tant relations, because for one task one set of relations might be relevant
and for another task it could be a completely different one. Addition-
ally, I wanted to avoid the embedding into a broader NLP application
context, typically done in extrinsic evaluation, since then it becomes dif-
ficult to differentiate between the quality of the dependencies and the
quality of the embedding.

The resulting methodology looks like this:

1. Identify the relevant tokens (words) for the given task (cf. (Yuret
et al.l |2010) with the necessary dependency relations for recognis-
ing textual entailment).

2. Annotate these tokens with the desired dependency relations.

3. Parse the data.
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4. Compare the output of the parsers with the manual annotation.

The proposed methodology is thus a combination of intrinsic and
extrinsic methods. On the one hand it is a task-specific evaluation, how-
ever, instead of embedding the parsers into an application the evaluation
takes place on the level of grammatical relations. Additionally, only the
important tokens are evaluated and therefore the overall score is not dis-
torted by the average for all tokens. The obvious disadvantage is that the
annotation has to be done manually and in theory it requires the knowl-
edge of the dependency grammar representation. However, in practice
the overwhelming majority of dependency relations between the relevant
tokens is of simple nature, since they belong to such easy-to-annotate
types as subjects, objects or modifiers. In any case, from our experience,
since we have done both in our former work, the task of annotation re-
quires much less expertise than the task of embedding of dependency
relations into an NLP system. Furthermore, the annotation process can
be semi-automated, e.g. by initialising the annotation of all identified
tokens with the one proposed by some parser. The actual annotation
process is then reduced to the manual correction of the latter, which is
usually much less work than providing the annotation from scratch.

I have applied this methodology for a small part of RT'E-7 (Bentivogli
et al, 2011) development data. I have processed 100 positive T/H pairs
(from 1136 total). For these 100 pairs I have taken the corresponding
100 hypotheses and applied the algorithm. I took positive pairs, because
they always overlap in meaning, on the contrary to the negative pairs
which sometimes were completely unrelated to each other. Because the
negative pairs account for the overwhelming majority (>95%) it would
have unnecessarily complicated the annotation process, especially be-
cause I could not even annotate all the available positive ones. I did not
apply the strategy to both texts (Ts) and hypotheses (Hs), but rather
only hypotheses, since both T and H of the same T/H pair usually con-
tain very similar dependencies and it would require the double effort in
order to obtain the double amount of approximately identical material.

Furthermore, it is important to note that Hs could not be taken in-
dependently of the T/H pair they occur in, since the set of relevant
tokens in H depends on the particular T. E.g. consider the following H
= ”Christine O. Gregoire has been elected Governor.” This H is entailed
by the following Ts: T; = ”Christine O. Gregoire, the Democratic at-
torney general, last week was declared the winner.”; T, = ”But for now,
Gregoire remains scheduled to take the oath of office, and she insists
she will do so0.”; T3 = "Fifty-eight days after the election, Christine O.
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Gregoire was declared the governor-elect of Washington on Thursday”.

When identifying the relevant tokens in H in combination with T
one does need the information that it was a gubernatorial election. For
T5, in addition to that, the first name becomes irrelevant. In contrast to
that, for T3 all tokens are relevant.

Overall, the analysed 100 hypotheses consisted out of 1058 tokens.
664 (62.8%) of them were marked as relevant. Eventually, the 664 to-
kens were annotated with a manually created gold standard and then
compared with the results produced by MST Parser, MaltParser and
MDParser:

LAS
MST Parser 88.4
MaltParser 85.6
MDParser 85.6

Table 3.5: Parser Comparison for Relevant Dependencies

The relevant dependencies were of the following types:

Dependency Type Count
OPRD 10
NAME 48
LGS 7
M 7
TMP 9
AMOD 3
OBJ 34
DIR 2
SBJ 99
ADV 25
DEP 2
LOC 25
PMOD 88
vVC 36
CONJ 2
SUB 2
PRD 42
COORD 3
MNR 1
ROOT 87
APPO 9
NMOD 123

Table 3.6: Relevant Dependency Types

The evaluation shows some interesting facts. First, the MST Parser
and MaltParser, which achieve almost identical results for the standard
CoNLL test data perform differently for the RTE-7 data or at least for
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the fraction that I have selected. Additionally, the evaluation shows that
MDParser is no longer inferior to other parsers for this task. Thus the
method helped to find a more suitable parser for the task, where the tra-
ditional evaluation would not suffice. Second, the analysis demonstrates
that only half of the data is relevant and requires a correct dependency
analysis. It does not matter how the parser performs for the rest of the
data. As shown in table the relevant relations belong to a very
small subset of all relations present in the data (overall there are more
than 40 different types), which once again emphasises that averaging
parser performances over all tokens is not appropriate. The most impor-
tant ones are the main predicates of the sentence (ROOT, VC or PRD),
as well as subjects, objects, locations and modifiers. These relations
should thus be prioritised.

I have also performed several experiments on the relevant dependen-
cies in the CoNLL test data:

First, I have examined how many dependencies belong to the set of
relevant ones. Only around 73% of all dependencies are of one of the
relevant types, which again confirmed our argument that an average over
all tokens is not appropriate.

Second, I have evaluated the performance of MaltParser and MST-
Parser only for the relevant types and found out that a) MaltParser
performed better (92.5% LAS MaltParser, 91.7% LAS MST Parser,
91.9% LAS MDParser) for the CoNLL data and b) the performance
is higher than the average over all dependencies (it is around 90% for
both parsers). Both points also support our thesis that an evaluation on
a different domain is not transferable to the desired application domain:
a) demonstrates that the traditional CoNLL evaluation on the standard
test data would not help selecting the most appropriate parser for the
task. The point b) additionally demonstrates how the performance of a
parser drops as soon as the domain of the application is not the same as
the one the parser was trained on and that despite the fact that the rel-
evant dependencies even seem to be easier than average, because of the
higher scores for them compared to the overall score over all dependency
types.

The most problematic part about this approach is the determination
of what is a relevant or a necessary token. It is quite easy in case of
the PETE shared task data, where each T/H pair aims at evaluation
of only one necessary dependency relation per T/H pair and the same
words in both T and H are used. However, for real-world Ts and Hs,
selected out of newspaper texts, it is much more difficult, because in
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most cases numerous dependencies expressed with different words are
necessary. However, as I have already introduced the notions of neces-
sity and relevance in section while it is difficult to differentiate
between necessary and relevant tokens, because what is necessary often
depends on the approach for solving a certain task, it is already a big
improvement to discard the irrelevant dependencies from the evaluation,
which is usually not so difficult.

3.3.4 Additional Evaluation

So far, both intrinsic and extrinsic evaluation always consisted of assess-
ing the quality of parser results. Whereas it is definitely an important,
probably even the most important, property of a parser, a decent evalua-
tion involves much more than this. Some other properties like efficiency,
size of the data required to train the system and the usability of the sys-
tem are also very significant, especially for application-oriented parsing.

3.3.4.1 Efficiency

The quality of the result is not the only requirement parsers should meet.
Many other applications, especially those which work with huge amounts
of data or applications where processing has to be done online within
milliseconds, require parsing to be particularly fast in order to be eligible
for use. This has often been neglected, because parsing is usually done
on rather small test sets, where the parsing speed does not play any
role. For MDParser it has always been the top priority to be fast, so
that it can also be used in applications which work with the web. Web
applications, which usually demand processing of thousands of sentences
require fast parsing and the quality of results become secondary.

Here is the overview of the results of different state-of-the art parsers
for the English test data:

Efficiency

MST Parser 0.268 seconds/sentence
MaltParser (LibSVM) 0.265 seconds/sentence
MaltParser (LibLinear) | 0.0025 seconds/sentence

Ensemble 0.01 seconds/sentence
Mate-Tools 0.077 seconds/sentence
Stanford Parser 0.37 seconds/sentence
ClearParser 0.0029 seconds/sentence
MDParser 0.0008 seconds/sentence

Table 3.7: Efficiency Evaluation
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The evaluation shows that MDParser is 4 times faster than the second
best parser MaltParser (LibLinear) and is able to parse a sentence in less
than a millisecond. It is hundredfold faster than most other systems.

For StanfordParser, MSTParser, MaltParser and MDParser I have
used a machine with 2.4 GHz processor with only one core used. The
information about the efficiency of other parsers is taken from the re-
spective literature: Ensemble (Surdeanu and Manning}, |2010) Mate-Tools
(Bohnet| 2010) and ClearParser (Choi and Palmer| [2011a)).

3.3.4.2 Size of the Training Data

Annotated resources are expensive and difficult to create. Therefore, for
many languages with smaller NLP communities resources like treebanks
are rather small. For that reason it is important to know whether a
certain system, which performs well for a language like English would
also perform well for one’s own language, which might not have such a
big amount of annotated data.

In section [2:3.2]1 have already described the experiment I have per-
formed in order to investigate whether LibSVM and LibLinear versions
of MaltParser (and thus also MaltParser (LibSVM) and MDParser) re-
quire different size of training data in order to achieve high accuracy and
thus would influence the choice of the machine learning library for lan-
guages with small dependency treebanks. Figure shows that there
are no difference between the different versions of SVMs.

For this subsection I have also performed such an analysis for MST
Parser, since besides transition-based parsers, which are based on Malt-
Parser, many other graph-based parsers are based on MST Parser. 1
have performed the same evaluation for it, i.e. I have trained 20 mod-
els for different sizes of the treebank. Whereas MaltParser (LibSVM)
or MaltParser (LibLinear) / MDParser are able to achieve the accuracy
merely 1% below their top one already with 40% of the data, MSTParser
requires 55% of the data for that. Thus the SVM-based transition-based
dependency parsers are better suited for processing resource-poor lan-
guages than the graph-based parsers.

In the past, less sophisticated machine learning methods with faster
training usually required much more data than more sophisticated sup-
port vector machines and their usability was thus limited to resource-rich
languages. This evaluation, however, shows that MDParser does not re-
quire more data than other state-of-the-art parsers and is thus suitable
for multilingual dependency parsing.
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3.3.4.3 Usability

The performance of a system is irrelevant if a parser is difficult to use
and/or is not adoptable for one’s own application. The usability of a
system involves the availability of preprocessing tools, different possibil-
ities for the output formats, facility of feature model specifications, as
well as the hardware requirements.

First, let us address the importance of the preprocessing tools. Since
parsing is often treated as an independent task, it is often neglected that
it requires a lot of preprocessing in order to work properly. The necessary
preprocessing steps include: sentence splitting, tokenisation and POS
tagging. The only parser which comes with all these preprocessing tools
is Stanford Parser and thus it is the only parser which can be used for
processing plain text out of the box. All the other parsers would require
additional tools to bring the text into the desired format first. Stanford
Parser is a very popular parser in the community, despite the fact that it
is neither accurate nor fast, compared to the more recent developments.
Thus the fact that it is applicable to plain text in such an easy fashion
shows the importance of this property to the people who use parsers.

Therefore, MDParser also supports all preprocessing steps. For pre-
processing I have chosen components which are multilingual and fast.
E.g. for sentence splitting and tokenisation MorphAdorner (mor) pack-
age is used. It is able to automatically recognise the language used and
process the input accordingly. Since it based on ICU4J (icu)), a set of
libraries designed to work with unicode, it is able to work with an arbi-
trary language, as long as the input is in unicode. As far as POS tagging
is concerned, MorphAdorner unfortunately uses a different set of POS
tags from what is typically used in dependency treebanks. Therefore
I have used a different POS tagger, which has been developed by my
colleague at DFKI Sven Schmeier. Even though it is not as flexible as
MorphAdorner, its models are learned from dependency treebanks and
thus it is guaranteed that for any language for which MDParser is to
be applied it is possible to perform the POS tagging. As far as their
performance is concerned the tools are very accurate and fast. Whereas
sentence splitting and tokenisation are in general relatively inexpensive
tasks, POS tagging might be a bottleneck in a complex system. How-
ever, the POS Tagger used in MDParser is particularly fast because it is
based on fast SVMs (Giménez and Marquez, [2004)).

Plain text is often not in the same format as the system expects it
to be, especially as far as special characters are concerned, which might
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deteriorate the overall performance. A typical user, however, does not
know the requirements of the parser and if he or she should have to
select the preprocessing components, they might not provide the desired
results. A great advantage of integrating all components in one system,
besides the fact that it is simply more convenient for the user, is thus the
guarantee that they produce exactly the output expected by the parser.

The second important issue are the output formats. Before one can
use the result of a parser, the result itself usually has to be read in and
analysed. E.g. for phrase structure parsers the difficulty lies in the rich
bracketing and its interpretation. For dependency parsing the problem
is usually that dependency relations are binary and sometimes a relation
between some important words in a sentence is not direct, but involves
some intermediate tokens. E.g. the relations between two content words
sometimes involve various prepositions, which makes the usage of the
results in applications more difficult, because patterns become more di-
verse. Another problem is that in order to encode the dependency re-
lations only the indexes of the corresponding words are used. In case
one often needs word forms and POS tags of the corresponding words a
lot of lookups might be necessary with this type of representation. For
these reasons many parsers provide their own somehow special output
formats, which sometimes makes it difficult to replace a parser in one’s
application because the output of some new parser would not fit in the
system.

MDParser supports many different output formats which are use-
ful for various reasons. One of its most useful properties is that both
Stanford and CoNLL output formats are supported and thus any system
which had been using some other parser before can be easily tested with
MDParser and the difference in the performance can be measured.

The third point concerns feature model specification. In most sys-
tems feature models can not be changed easily. This has the drawback
that when switching to a new language usually some default model is
used. The only notable exception is MaltParser, which provides a special
feature specification language which allows to define feature models in
an XML file, without having to modify the code.

MDParser does not allow easy feature model specification, i.e. fea-
ture models have to be specified in the code. The reason for that is that
features are often quite arbitrary and a special language can not foresee
what kinds of features a user wants to try out. The feature specification
language of MaltParser is not an exception and has rather limited expres-
sive power, even though a lot of effort has been invested into its creation.
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To my mind, most users use default models anyways and those who wish
to experiment will be very quickly limited by the expressive power of the
specification language. However, a truly user-friendly system definitely
should provide some sort of solution to this problem, since altering of
the feature model without recompilation is doubtlessly a useful feature
of a parser.

Finally, the hardware requirements also differ greatly among different
parsers. MST Parser and MaltParser (LibSVM) require 64 Bit machines
with a lot of memory (usually >4 GB, up to 20-30 GB for large tree-
banks) in order to train and use their models.This might be difficult for
people who want to run the parser on their private computers, which are
usually not so powerful. Especially, if one considers that the parser has
to be additionally embedded into some application which has its own
requirements, then this property becomes even more important. On the
contrary to that LibLinear not only allows fast training and application,
but it also has much more modest requirements so that much less mem-
ory is necessary and it can usually be run on ordinary computers. E.g.
for the very big English training data MDParser only needs 1 GB of
memory.






4

Conclusion

4.1 Summary

In this thesis I have broadly described the state of the art dependency
parsing. I have discussed the major problems with the current situa-
tion, very most that parsing is seen as an independent task, without
considering the preprocessing steps before and usage in applications af-
ter it. I have analysed dependency parsing systems and their properties,
presented the most prominent state-of-the-art parsers and my own de-
velopment - MDParser. I have motivated the creation of yet another de-
pendency parser and described the work I have undertaken in the years
I have been working on the thesis. A lot of this work was unsuccessful
or became obsolete in the course of the years, however, there are also a
considerable amount of successful experiments with interesting results,
which I have presented in this thesis.

Additionally, I have addressed the topic of dependency parsing eval-
uation. Here, I have also described the state of the art and pointed
the one-sidedness of the current evaluation which focuses on the accu-
racy too much and neglects other system properties, which are especially
important for parsers used in applications. I have presented both evalu-
ation methodologies used in the field: the traditional evaluation, which
is used in most cases and reflects the percentage of structure successfully
constructed by a parser, as well the natural evaluation, where the contri-
bution of the parser for solving some task is measured. For this topic I
also present some successful experiments on avoiding the weaknesses and
combining the strengths of both methodologies. I perform a thorough
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comparison of my parser with other state-of-the-art systems.

The goal of the thesis, was to study how to select the most appro-
priate parser for one’s application. I have done an elaborate analysis of
the current situation in the field of dependency parsing, implemented
my own parser, participated in shared tasks and helped people to use
dependency parser results in applications. This experience has clearly
shown to me that the best parser is definitely not the one with the high-
est accuracy, but there is more to it, e.g. the ability to process the plain
text, efficiency and usability. The task-oriented evaluation strategy I
have proposed in this work can also help a lot in achieving this goal.

In the course of the work MDParser developed into a very mature
and usable system. To my best knowledge it is currently the fastest
dependency parser available and by the end of the development it was
almost able to reach the top accuracies of the other systems. It is the
first data-diriven parser since Stanford Parser which is able to process
plain text and does not require any additional preprocessing before it
can be applied. Since Stanford Parser is already quite outdated as far as
both accuracy and efficiency are concerned it is also a great achievement
of this work. Moreover, MDParser does not require as much data as
some other state-of-the-art parsers, its models are compact and do not
require much space and it does not need as much resources to be run as
it was usual for many other systems. When I was able to achieve this
major milestone and create such a fast, but still accurate parser, I have
decided to finish my "PhD project”. However, for time reasons I still
have not explored some important aspects of dependency parsing.

First, MDParser heavily relies on machine learning and, as I have al-
ready mentioned, I have had to replace many machine learning packages
by newer and better ones in the course of the development. For every
learning strategy I have intensively experimented with many languages,
usually including English, German and some other resource-poorer lan-
guages, which always had been a time-consuming work. However, for
the final machine learning strategy I have not yet experimented a lot
with other languages, because otherwise I would risk that my results
become outdated again. That is why I have focused only on English in
this thesis. Of course, multilinguality is of an extreme importance for
application-oriented parsing and therefore it is certainly a shortcoming
of my work, however, on the other hand I do not expect that the results
of MDParser would be different for other languages and the general pic-
ture would change somehow, as it has not been the case neither with all
the other machine learning packages I have tried out in the past.



Performance-Oriented Dependency Parsing 131

Second, I have neglected projectivity in my work. The reason is that I
was always doing application-oriented parsing, i.e. the primary objective
was the correct recognition of dependencies, which are relevant for some
application. However, non-projective dependencies are rare (even for the
languages which have a lot of non-projective the total amount is around
2% and it is much lower for most other languages) and they are even rarer
among the relevant ones. The extrinsic studies which I have performed
confirmed this assumption, since no relevant dependencies were non-
projective in the tasks I have investigated. Therefore, especially for
a language as English, it is usually much more sensible to risk losing
some non-projective dependencies instead of increasing complexity of
the whole system, when one does not only have the highest possible
accuracy in mind. However, a good parser, especially if it is to be used
for many languages, among which certainly also those with a lot of non-
projectivity might occur, should have a decent solution to this problem.

Finally, the recent developments show that parallel computing is
growing in importance, because any machine nowadays has several pro-
cessor cores. Parsing is extremely suitable for parallelisation, because
many tasks are independent from each other and can be done simultane-
ously. Experiments show that a considerable improvement in speed can
be achieved by doing parallel feature extraction or by dividing the input
into pieces, which are then delegated to different CPUs for processing.
Accuracy can also be improved, e.g. by running the system with different
settings (e.g. models, algorithms) in parallel and then combining their
results. Thus, especially since I was interested in fast parsing, the most
obvious thing would be to use parallel computing. However, from the
scientific point of view the acceleration of the processing by the means
of brute computing power is not very interesting. Technically, it is also
a very easy task, since something like splitting the data into pieces and
calling an instance of the parser for each piece is not very challenging
neither. Therefore I have decided not to focus on parallel computing
and/or improving the speed by pure technical means. However, in the
end, application-oriented parsing requires very high efficiency and it is
then does not matter how it is achieved. Thus it is important to make
use of several CPUs if available, which MDParser unfortunately does not
do yet.

These are definitely some of the directions I have to pursue in the
future in order to make MDParser even better.
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