
Graph-based Methods for Large-Scale
Multilingual Knowledge Integration

Gerard de Melo

G
ra

ph
-b

as
ed

M
et

ho
ds

fo
r

La
rg

e-
Sc

al
e

M
ul

ti
lin

gu
al

K
no

w
le

dg
e

In
te

gr
at

io
n

Given that much of our knowledge is expressed in textual form, infor-
mation systems increasingly depend on knowledge about words and
the entities they represent. This book investigates novel methods for
automatically building large repositories of knowledge that capture
semantic relationships between words, names, and entities, in many
different languages. Three major new contributions are presented,
each involving graph algorithms and statistical techniques that com-
bine evidence from multiple sources of information.

The lexical integration method involves learning models that disam-
biguate word meanings based on contextual information in a graph,
thereby providing a means to connect words to the entities that they
denote. The entity integration method combines semantic items from
different sources into a single unified registry of entities by reconciling
equivalence and distinctness information and solving a combinatorial
optimization problem. Finally, the taxonomic integration method adds
a comprehensive and coherent taxonomic hierarchy on top of this
registry, capturing how different entities relate to each other.

Together, these methods can be used to produce a large-scale multi-
lingual knowledge base semantically describing over 5 million entities
and over 16 million natural language words and names in more than
200 different languages.
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Abstract

Given that much of our knowledge is expressed in textual form, inform-

ation systems are increasingly dependent on knowledge about words

and the entities they represent. This thesis investigates novel methods

for automatically building large repositories of knowledge that capture

semantic relationships between words, names, and entities, in many

different languages. Three major contributions are made, each involving

graph algorithms and statistical techniques that combine evidence from

multiple sources of information.

The lexical integration method involves learning models that dis-

ambiguate word meanings based on contextual information in a graph,

thereby providing a means to connect words to the entities that they

denote. The entity integration method combines semantic items from

different sources into a single unified registry of entities by reconciling

equivalence and distinctness information and solving a combinatorial

optimization problem. Finally, the taxonomic integration method adds a

comprehensive and coherent taxonomic hierarchy on top of this registry,

capturing how different entities relate to each other.

Together, these methods can be used to produce a large-scale multi-

lingual knowledge base semantically describing over 5 million entities

and over 16 million natural language words and names in more than

200 different languages.
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Kurzfassung

Da ein großer Teil unseres Wissens in textueller Form vorliegt, sind In-

formationssysteme in zunehmendem Maße auf Wissen über Wörter und

den von ihnen repräsentierten Entitäten angewiesen. Gegenstand dieser

Arbeit sind neue Methoden zur automatischen Erstellung großer multi-

lingualer Wissensbanken, welche semantische Beziehungen zwischen

Wörtern, Namen und Entitäten formal erfassen. In drei Hauptbeiträgen

werden jeweils Indizien aus mehreren Wissensquellen mittels graph-

theoretischer und statistischer Verfahren verknüpft.

Bei der lexikalischen Integration werden statistische Modelle zur Dis-

ambiguierung erlernt, um Wörter mit den von ihnen repräsentierten En-

titäten in Verbindung zu setzen. Bei der Entitäten-Integration werden se-

mantische Einheiten aus verschiedenen Quellen unter Berücksichtigung

von Äquivalenz und Verschiedenheit durch Lösung eines kombinato-

rischen Optimierungsproblems zu einem kohärenten Register von En-

titäten zusammengefasst. Dieses wird schließlich bei der taxonomischen

Integration durch eine umfassende taxonomische Hierarchie ergänzt, in

der Entitäten zueinander in Verbindung gesetzt werden.

Es zeigt sich, dass diese Methoden zusammen zur Induzierung einer

großen multilingualen Wissensbank eingesetzt werden können, welche

über 5 Millionen Entitäten und über 16 Millionen Wörter und Namen in

mehr als 200 Sprachen semantisch beschreibt.
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Summary

Much of our knowledge is expressed in textual form, and it is by

keywords that humans most commonly search for information. In-

formation systems are increasingly facing the challenge of making sense

of words or names of objects, and often rely on background know-

ledge about them. While such knowledge can be encoded manually,

this thesis examines to what extent existing knowledge sources on the

Web and elsewhere can be used to automatically derive much larger

knowledge bases that capture explicit semantic relationships between

words, names, and entities, in many different languages. At an abstract

level, such knowledge bases correspond to labelled graphs with nodes

representing arbitrary entities and arcs representing typed relationships

between them. The problem is approached from three complementary

angles, leading to three novel methods to produce large-scale multilin-

gual knowledge bases. In each case, graph algorithms and statistical

techniques are used to combine and integrate evidence from multiple

existing sources of information.

The lexical integration method considers the task of connecting words

in different languages to the entities that they denote. Translations and

synonyms in a graph are used to determine potential entities corres-

ponding to the meanings of a word. The main challenge is assessing

which ones are likely to be correct, which is tackled by learning statist-

ical disambiguation models. These models operate in a feature space

that reflects local contextual information about a word in the graph.

This strategy allows us to turn an essentially monolingual resource like

the commonly used WordNet database into a much larger multilingual

lexical knowledge base.
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The entity integration method addresses the problem of extending

the range of potential entities that words can refer to by adding large

numbers of further entities from separate sources. Given some prior

knowledge or heuristics that reveal equivalence as well as distinctness

information between entities from one or more knowledge sources, the

aim is to combine the different repositories into a single unified registry

of entities. Semantic duplicates should be unified, while distinct items

should be kept as separate entities. Reconciling conflicting equivalence

and distinctness information can be modelled as a combinatorial optim-

ization task. An algorithm with a logarithmic approximation guarantee

is developed that uses linear programming and region growing to obtain

a consistent registry of entities from over 200 language-specific editions

of Wikipedia.

Finally, the taxonomic integration method adds another layer of or-

ganization to this registry of entities, based on taxonomic relationships

that connect instances to their classes and classes to parent classes. The

central challenge is to combine unreliable and incomplete taxonomic

links into a single comprehensive taxonomic hierarchy, which captures

how entities in the knowledge base relate to each other. We achieve this

by relying on a new Markov chain algorithm.

Together, these methods can be used to produce a large-scale multilin-

gual knowledge base that substantially goes beyond previous resources

by semantically describing over 5 million entities and over 16 million

natural language words and names in more than 200 different languages.



Zusammenfassung

Da ein großer Teil des menschlichen Wissens in textueller Form vorliegt,

und auch die Informationssuche primär durch Suchbegriffe erfolgt,

sind Informationssysteme in zunehmendem Maße darauf angewiesen,

Wörter und andere Begriffe semantisch interpretieren zu können, oft-

mals unter Zuhilfenahme von Hintergrundwissen. Gegenstand dieser

Arbeit ist die Frage, inwiefern große multilinguale Wissendatenban-

ken automatisch anhand existierender Wissensquellen, etwa aus dem

Web, erstellt werden können. Inhalt dieser Wissensbanken sollen unter

anderem explizite semantische Beziehungen zwischen Wörtern, Na-

men und Entitäten sein. Konzeptuell gesehen handelt es sich somit um

Graphen, deren Knoten beliebige Entitäten repräsentieren, und deren

Kanten typisierte Beziehungen zwischen Entitäten wiedergeben.

Dieses Ziel wird aus drei komplementären Blickwinkeln betrachtet,

welche zu drei neuen Methoden zur Erstellung multilingualer Wissens-

banken führen. In jedem dieser Fälle wird auf graphtheoretische und

statistische Verfahren gesetzt, um Indizien aus mehreren Wissensquellen

zu verknüpfen.

Die lexikalische Integrationsmethode setzt sich zum Ziel, Wörter ver-

schiedener Sprachen mit den von ihnen repräsentierten Entitäten zu

verbinden. Potenzielle Kandidaten werden anhand von Übersetzungen

und Synonymen bestimmt. Primäre Herausforderung ist die Beurtei-

lung, welche der möglichen Kandidaten tatsächlich adäquat sind. Der

gewählte Ansatz beruht auf statistischen Modellen zur Disambiguie-

rung, deren Merkmalsräume kontextuelle Eigenschaften eines Wortes

im Graphen wiedergeben. In der Praxis ermöglicht dies die Erweiterung

einer monolingualen lexikalischen Ressource wie das vielfach verwen-

dete WordNet zu einer wesentlich größeren multilingualen Ressource.
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Ziel der Entitäten-Integration ist eine Erweiterung des Repertoires

möglicher semantischer Entitäten, die durch Wörter repräsentiert wer-

den können. Die Grundidee ist, verschiedene existierende Repertoires zu

vereinigen, so dass äquivalente Einheiten verbunden und als verschie-

den bekannte Einheiten klar voneinander abgegrenzt werden. Schwie-

rig wird dies aufgrund der Tatsache, dass sich Informationen über

Äquivalenzen und Nichtäquivalenzen widersprechen können. Die Auf-

lösung derartiger Widersprüche wird als kombinatorisches Optimie-

rungsproblem formalisiert, für das ein Approximationsalgorithmus mit

logarithmischer Approximationsgarantie vorgestellt wird. Der Algorith-

mus verwendet Lineare Programmierung und ein spezielles Regionen-

expansionsverfahren, um aus über 200 sprachspezifischen Versionen

der Enzyklopädie Wikipedia ein unifiziertes Register von Entitäten zu

bilden.

Dieses wird schließlich bei der taxonomischen Integration durch eine

zusätzliche Organisationsform erweitert. Mittels taxonomischer Rela-

tionen werden individuelle Instanzen mit Klassen und Klassen mit

allgemeineren Oberklassen verbunden. Die Herausforderung hierbei

ist die Verknüpfung unvollständiger und unzuverlässiger taxonomi-

scher Einzelbeziehungen zu einer umfassenden kohärenten Hierarchie,

in der alle durch die Wissensbank beschriebenen Entitäten zueinan-

der in Verbindung gesetzt werden. Erreicht wird dies durch einen auf

Markov-Ketten basierenden Algorithmus.

Es zeigt sich, dass diese Methoden in zusammenwirkender Form zur

Induzierung einer großen multilingualen Wissensbank eingesetzt wer-

den können, welche über 5 Millionen Entitäten und über 16 Millionen

Wörter und Namen in mehr als 200 verschiedenen Sprachen seman-

tisch beschreibt, und somit weit über den Rahmen früherer Ressourcen

hinausgeht.
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CHAPTER 1

Introduction

1.1 Motivation

Semantic Knowledge. Information systems are increasingly expected

to have some sort of knowledge about the world. When a user wishes

to obtain a list of art schools in the UK ordered by founding year, the

system should know that the Royal College of Art is an art school located

in London, that London is located in the United Kingdom, and even

seemingly trivial pieces of knowledge like the fact that ‘UK’ refers to

the United Kingdom. Additionally, the system needs to have access to

explicit factual knowledge like the founding year of the Royal College of

Art. For this reason, capturing information in the form of machine-read-

able semantic knowledge bases has been a long-standing goal in computer

science, information science, and knowledge management. Well-known

knowledge bases include WordNet (Fellbaum, 1998), Cyc (Lenat and

Guha, 1989), and more recently DBpedia (Auer et al., 2007), YAGO

(Suchanek et al., 2007), WikiTaxonomy (Ponzetto and Strube, 2008), and

Freebase (Bollacker et al., 2008). At an abstract level, many of these can

be thought of as directed graphs with nodes representing entities and

labelled arcs representing their relationships.

Semantic resources of this sort have the potential to spark new tech-

nological developments in many different fields by allowing us to over-

come the traditional knowledge acquisition bottleneck. WordNet, for

instance, has been cited thousands of times, has given rise to large

1



2 Chapter 1. Introduction

multi-million dollar EU projects (Vossen, 1998; Atserias et al., 2004b;

Tufiş et al., 2004; Vossen et al., 2008), and entire workshops and recurrent

conferences have been dedicated to it (Bhattacharyya et al., 2010). Tasks

that such semantic resources have already been shown to facilitate to

date include query expansion (Gong et al., 2005), semantic search (Milne

et al., 2007; Bast et al., 2007), and question answering (Schlaefer et al.,

2007; Frank et al., 2007) in information retrieval, or machine translation

(Chatterjee et al., 2005), document enrichment (Mihalcea and Csomai,

2007), syntactic parsing (Bikel, 2000; Fujita et al., 2007), and various other

tasks (Harabagiu, 1998) in natural language processing. Additional ap-

plications include database schema matching (Madhavan et al., 2001),

data cleaning (Kedad and Métais, 2002), biomedical data analysis (Rubin

et al., 2006), textual entailment (Bos and Markert, 2005), mobile services

(Becker and Bizer, 2008), Web site navigation (Kobilarov et al., 2009),

visual object recognition (Marszałek and Schmid, 2007), and many more.

Multilingual Knowledge. Much of humanity’s accumulated know-

ledge is expressed as textual data on the Web and elsewhere, and it is by

means of keywords and phrases that humans most commonly search

for information. For an application, these are initially just sequences of

characters. However, if the knowledge base stores information about

human languages and their lexicons (so-called lexical knowledge), these

character sequences can be related to entities described more formally

by the knowledge base and used in various ways.

The knowledge base could capture that, in English, the string ‘UK’

refers to the United Kingdom, and that, in Mandarin, ‘艺术学院’ means

art school. With the increasing degree of Internet penetration all over the

world, the English language represents a constantly decreasing fraction

of the Web. China and the European Union each have greatly surpassed

the US in the number of Internet users, and other regions are expected to

follow. Multilingual knowledge bases address this development by cap-

turing relationships between words and concepts in multiple languages,

thereby making their semantic connections explicit. For example, an ap-

plication could query the database to determine the relationship between

the English word ‘intern’ and the Spanish word ‘becario’ in order to as-

sess to what degree two news headlines are related. Knowing that the

French words ‘étudiant’, ‘élève’, ‘écolier’ are synonymous can aid in query
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expansion. Knowing that ‘lycée’, ‘école’, ‘université’, ‘académie’ are all

specific types of what is called an ‘educational institution’ in English is

helpful for question answering. Similarly, knowing that the French name

‘Royaume-Uni’ refers to the United Kingdom is useful in cross-lingual

information retrieval.

Figure 1.1: Universal index of meaning

Vision. With this in mind, the vision driving this thesis is the goal of

establishing a universal multilingual knowledge base. Such a resource

would include a universal index of meanings, where we envision being

able to look up the meaning of any word or name in any language and

obtain a list of its meanings. This is illustrated in Figure 1.1, where the

English word ‘speaker’ has two different meanings, and other words

sharing one or more of those meanings are connected to the same mean-

ing nodes whenever appropriate. Additionally, the meanings should be

connected to each other in terms of different relations. The most import-

ant of these would be taxonomic relations that relate individual entities

like Stanford University to classes like University, which in turn are

linked to more general classes, in this case Educational institution,

Institution, and so on, as shown in Figure 1.2. Applications can then

more easily assess how different words and entities relate to each other.

For instance, while Stanford University is a university and the École
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Figure 1.2: Hierarchical relations

Nationale Supérieure des Beaux-arts is an art school, both are educa-

tional institutions. A similar relationship can be identified between

a Finnish ‘ammattikorkeakoulu’ and a Danish ‘handelshøjskole’. Unfortu-

nately, existing knowledge bases have not been able to come sufficiently

close to making this vision of a universal multilingual knowledge base

a reality. Projects like EuroWordNet (Vossen, 1998) cover only a limited

number of languages, while knowledge bases like YAGO, DBpedia, and

WikiTaxonomy lack a multilingual taxonomic organization as well as

large numbers of language-specific entities.

Paradigms. In the past, two opposing paradigms for creating lexical

knowledge bases like WordNet and other semantic resources could be

observed.

• Manual compilation: For many years, the dominating approach

was to rely on human labour to manually supply knowledge

to an information system, often by system experts working to-

gether with domain experts. There is a long history of lexico-

graphical practices for compiling dictionaries, thesauri, and lexical
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knowledge bases. Similarly, encyclopedic knowledge has been

encoded manually in expert systems, in general-purpose know-

ledge bases like Cyc (Lenat and Guha, 1989), in ontologies like

the biomedical OBO collection (Smith et al., 2007), and in search

engines like Wolfram Alpha (www.wolframalpha.com).

• Automatic methods: In the past few decades, a separate line of

research has considered the problem from a more empiricist per-

spective, aiming at inducing semantic information automatically

from text using statistical methods (Schütze, 1992; Kilgarriff, 1997).

For example, many projects have investigated creating thesauri

by clustering words with respect to their context, based on the as-

sumption that ‘a word is characterized by the company it keeps’ (Firth,

1957). Examples include Pereira et al. (1993) who developed a

form of hierarchical clustering based on distributional similarity,

Schütze (1998) who proposed using vector spaces capturing more

reliable second-order co-occurrences, and Lin (1998) who used

dependency parse information to model the context. Significant

research efforts have also been put into systems that attempt to har-

vest explicit relationships between words (Hearst, 1992; Snow et al.,

2004; Girju et al., 2006; Tandon and de Melo, 2010) or between en-

tities (Pantel and Pennacchiotti, 2006; Banko et al., 2007; Suchanek

et al., 2009) from text.

Our Strategy. Both paradigms have their advantages and disadvant-

ages. Manual building generally is a cumbersome, slow, and costly

process that tends to lead to small, incomplete resources. At the same

time, unsupervised automatic approaches have not been able to attain a

comparable level of sophistication, giving us larger but generally more

noisy and rather weakly structured knowledge bases. Our work at-

tempts to take a pragmatic middle road, combining the best of both

worlds.

• High quality by relying on manually built resources: Rather

than starting from scratch, we make use of the fact that there

are already many existing, highly curated sources of knowledge,

including lexical databases like WordNet (Fellbaum, 1998) and

machine-readable dictionaries like FreeDict. In recent years, we
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have additionally seen the advent of semi-structured resources

like Wikipedia and Wiktionary that are collaboratively created

by large numbers of users on the Web. Projects like DBpedia

(Auer et al., 2007), YAGO (Suchanek et al., 2007), and Freebase

(Bollacker et al., 2008) have shown that these can be transformed

into machine-readable knowledge bases.

• High coverage by relying on graph-based methods: The land-

scape of existing sources is vast, and apart from a few genuine

lexical knowledge bases, includes many large knowledge sources

that require additional processing to be useful for our purposes.

We rely on graph-based methods to interlink the different know-

ledge sources and induce a single clean and coherent multilingual

knowledge base. Carefully combining over 200 language-specific

editions of Wikipedia as well as information from WordNet and

translation dictionaries allows us create a unified knowledge base

with a very broad coverage surpassing that of previous resources.

1.2 Main Contributions

These key insights lead us to graph-based algorithms and techniques

that start out with multiple existing knowledge sources and heuristic

methods, and then rely on structural and statistical properties of the

input to produce much more valuable integrated knowledge bases.

There are three complementary aspects that we tackle:

• Lexical Integration: One means of producing a large multilingual

lexical knowledge base is taking an existing monolingual know-

ledge base with its corresponding inventory of meanings, and then

using further knowledge sources to incorporate new words into it.

If large numbers of additional words in many different languages

are attached to those meanings, the resulting knowledge base be-

comes multilingual. As the existing monolingual database, we

mainly rely on WordNet (Fellbaum, 1998), which in its original

form describes commonly used English words and their meanings

much like we outlined in our long-term vision, but does not cover

languages other than English.
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In this thesis, we show how WordNet can be expanded to capture

over 1.5 million connections from words in many different lan-

guages to their meanings, greatly surpassing previous attempts at

porting WordNet to other languages in terms of coverage. In terms

of quality, we pursue a machine learning strategy that is much

more sophisticated than previous automatic approaches, which

relied on manually specified heuristic rules. This gives rise to the

first universal version of WordNet that is not limited to a specific

small set of languages.

• Entity Integration: Often, a single existing knowledge source will

not exhaustively describe all the possible meanings we would like

to consider, so we need to augment it with entities corresponding

to further meanings taken from additional knowledge sources.

Given multiple knowledge sources with overlapping inventories

of entities as input, the challenge is to produce a single unified

repository of entities.

We propose an optimization model and an algorithmic framework

to reconcile information about possible equivalences within and

across data sources with information about distinctness of entities.

Unlike most previous work on thesaurus and ontology mapping

as well as record linkage, this framework accounts for distinct-

ness between arbitrary subsets of entities from more than just

two knowledge sources. In addition to having a logarithmic ap-

proximation guarantee for the objective function of the model, the

algorithm is shown to produce even better near-optimal results in

practice. We demonstrate how this framework can be applied to

generate a unified database of entities from over 200 multilingual

editions of Wikipedia.

• Taxonomic Integration: Additionally, we may have different

sources and heuristics identifying taxonomic relationships between

entities. Such links include instance links between individual en-

tities and the classes they are members of, e.g. Paris is an instance

of a City. They also include subclass links that connect classes to

more general parent classes, e.g. City and Geopolitical entity.

We propose an algorithm called Markov Chain Taxonomy In-

duction to integrate an incomplete, unreliable set of individual

taxonomic links into a single, more consistent taxonomy. The



8 Chapter 1. Introduction

experiments indicate that this algorithm is able to yield output

that is of higher quality than its initial noisy input. We show that,

in conjunction with a set of linking heuristics, we can use this

algorithm to create a large multilingual taxonomy of entities. To-

gether with additional information from the lexical integration

step as well as encyclopedic factual knowledge from Wikipedia,

this gives us a large multilingual knowledge base that goes far bey-

ond previous resources by semantically describing over 5 million

entities with over 16 million natural language words and names

in different languages, realizing much of the long-term vision of

a universal multilingual knowledge base outlined earlier. The

resulting UWN/MENTA resource is freely available for download

at http://www.mpi-inf.mpg.de/yago-naga/menta/.

Some results of this thesis have been published in the proceedings of

international conferences and in international journals, including among

others:

• CIKM 2009 (de Melo and Weikum, 2009b)

• ACL 2010 (de Melo and Weikum, 2010d)

• CIKM 2010 (de Melo and Weikum, 2010a) – Best Interdisciplinary

Paper Award

• GWC 2008 (de Melo and Weikum, 2007)

• ICGL 2008 (de Melo and Weikum, 2008b) – Best Paper Award

• LREC 2008 (de Melo and Weikum, 2008c)

• GWC 2010 (de Melo and Weikum, 2010c)

• LREC 2010 (de Melo and Weikum, 2010b)

• Springer Journal Language Resources and Evaluation

(de Melo and Weikum, 2011) – to appear

1.3 Outline

The organization of this thesis reflects these central contributions. Chapter

2 begins by introducing the idea of capturing knowledge in labelled

graphs and formally defines our knowledge representation framework.

Chapter 3 describes how words and other lexical items from different

languages can be integrated into an existing lexical knowledge base.

http://www.mpi-inf.mpg.de/yago-naga/menta/
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Chapter 4 proposes an algorithm that integrates semantic entities from

different lexical knowledge bases, based on information about their

equivalence and distinctness. Chapter 5 investigates how taxonomic

relationships between entities can be integrated to produce more co-

herent knowledge bases, and presents the final large-scale multilingual

knowledge base that we obtain using our methods. Finally, Chapter 6

concludes by discussing the implications of the presented results.





CHAPTER 2

Graph-Based

Knowledge Representation

Representing Knowledge. Since the beginning of computing, people

have sought to make their systems operate on representations of real

world phenomena, from simple Boolean and integer variables to se-

quences of integer codes representing text strings, to identifier strings

that in turn represent people or cities and structured data models rep-

resenting knowledge about such entities.

Users now routinely expect their systems to behave in a way that

seems intelligent in some sense. For example, a word processor is

generally expected to recognize ‘accomodation’ as a misspelling of ‘accom-

modation’. A search engine might be expected to find the Web site of a

‘Used Vehicles Dealer’ when we search for ‘buy used cars’. Increasingly, we

also want our search engines to respond with ‘Brası́lia’ to a query like

‘capital of Brazil’, or to be able to provide a list of Chinese cities sorted by

population size.

Often, knowledge required by an application is encoded explicitly

into the program code or recorded in program-specific data files. At the

same time, there have been endeavours to create resources capturing

knowledge that can be re-used in different contexts, from spell checking

libraries all the way to modern knowledge bases like WordNet (Fell-

baum, 1998), DBpedia (Auer et al., 2007), and YAGO (Suchanek et al.,

2007).

11
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Knowledge Bases. A knowledge base is a database holding machine-

readable representations of knowledge. Some of the well-known know-

ledge base paradigms will be introduced in Section 2.1. In this thesis,

we consider knowledge bases as graphs that represent relationships

between entities, including but not limited to lexical relationships between

natural language words (or names of objects) and their possible mean-

ings, as well as ontological relationships that form a taxonomic hierarchy

of entities. A knowledge base of this form could describe an entity CMU

as having the names ‘CMU’ and ‘Carnegie Mellon University’ in English

and ‘卡内基梅隆大学’ in Chinese. Additionally, it could describe CMU as

an instance of a University, University as a subclass of Educational

institution, Educational institution as a subclass of Institution,

and so on, up to the taxonomy’s most general root node, often called

Entity. This is made more formal in Section 2.2.

2.1 Knowledge Base Paradigms

Before delving into the details of our framework, we survey the spec-

trum of existing knowledge representation paradigms and simultan-

eously clarify their relationship to our framework.

2.1.1 Lexical Knowledge Bases

Lexical knowledge bases are knowledge bases that focus on describing a

particular aspect of the world, the realm of words and their relationships.

We earlier saw examples in Figures 1.1 and 1.2 in Chapter 1 of how words

can be regarded as having certain meanings and meanings can be related

to other meanings.

WordNet. Resulting from research under the direction of George Miller

at Princeton University, WordNet (Fellbaum, 1998) is a well-known lex-

ical database for the English language. WordNet captures information

about English words and their meanings (word senses) as well as se-

mantic relationships between words or word senses. WordNet 3.0 con-

sists of approximately 150,000 terms (words or short expressions) and

around 120,000 so-called synsets. A synset is a set of words that express
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the same concept or meaning, and in our framework will correspond to

a so-called semantic entity.

Relations include word-to-synset relations that connect words with

their possible senses (means in our framework) and vice versa. Addition-

ally, binary relationships between synsets are captured. The hypernymy

relation, for example, in its original form holds between a more specific

term and a more general one, e.g. ‘school’ has ‘educational institution’ as

a hypernym. In WordNet, this relation is expressed at a more abstract

level as a relation between synsets, which will roughly correspond to

the so-called subclass relation in our framework. Similarly, WordNet

provides meronymic relations between synsets that can be reinterpreted

as mereological part/whole relations (partOf) between the entities cor-

responding to the respective synsets.

Thesauri. A thesaurus, according to the ANSI/NISO Z39.19 standard,

is ‘a controlled vocabulary arranged in a known order and structured

so that the various relationships among terms are displayed clearly and

identified by standardized relationship indicators’ (ANSI/NIZO, 2005).

Synonyms are grouped together, whereas homonyms are distinguished.

Well-structured thesauri in this sense can be regarded as WordNet-like

lexical databases and hence can easily be cast into our framework.

In contrast, the kind of thesauri used by laypeople and professional

authors as writing aids tend to be of a somewhat different flavour.

Thesauri of this sort often provide alphabetical or thematically organized

registers of headwords with lists of rather loosely related terms for each

headword rather than synonyms with equivalent meanings. Roget’s

Thesaurus, first published in the 19th century, is the most famous such

resource for the English language, which we examine in further detail

later on in Section 3.5.6 (p. 65).

Etymological Word Networks. Etymology is the study of word ori-

gins. For example, the English word ‘doubtless’ is derived from ‘doubt’,

which comes from Old French ‘douter’, which in turn evolved from

the Latin word ‘dubitare’. Such relationships are often expressed very

verbosely, and even digital standards like TEI P5 (Burnard and Bau-

man, 2009) only define a semi-structured representation of etymological

knowledge. In de Melo and Weikum (2010c), we showed how ety-
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mological and derivational relationships between words can often be

exposed much more clearly using network-like knowledge graphs as

will be defined shortly. Navigating such a graph, one can easily un-

cover interesting connections, e.g. the historical connection between the

English word ‘muscular’ and the German word ‘Fledermaus’ (bats in the

biological sense), shown in Figure 2.1. Recursively parsing the semi-

structured resource Wiktionary, we were able to obtain a graph with

1,000,000 terms, 200,000 etymological links between terms, and 1,700,000

derivational links between terms, freely available for download from

http://www.mpi-inf.mpg.de/˜gdemelo/etymwn/.

Figure 2.1: Excerpt from Etymological WordNet

2.1.2 Formal Knowledge and Data Models

Ontologies. An ontology, from ancient Greek ‘-λογία’ (science) and ‘ὄν-

τος’ (of being), is a theory of what possesses being, i.e. exists, in the

world or in a limited domain. In computational applications, ontolo-

gies provide formal descriptions of entities and are used to support

the sharing and reuse of knowledge by different applications. Gruber

(1993) characterizes an ontology as an ‘explicit specification of a concep-

tualization’ and refers to Genesereth and Nilsson (1987) who define a

http://www.mpi-inf.mpg.de/~gdemelo/etymwn/


2.1. Knowledge Base Paradigms 15

conceptualization as ‘the objects, concepts, and other entities that are

presumed to exist in some area of interest and the relationships that hold

among them’. Still, there is a considerable degree of dissent on what

precisely constitutes an ontology. Traditionally, formal languages like

the Knowledge Interchange Format (KIF) were in common use, aiming at

providing axiomatic descriptions. In recent years, formalisms based on

subject-predicate-object triples like the Web Ontology Language (OWL)

have dominated. Such triples are often regarded as labelled graphs

and for the most part can be cast into our knowledge representation

framework. While our framework does not formally specify any logical

entailments, applications are free to apply additional reasoning on top

of what is explicitly captured in a given graph.

Generally, formal ontologies make use of symbols that represent

entities, classes of entities, or logical constructions. The relationship

between these symbols and what they represent is called the interpreta-

tion. In computational settings, symbols representing entities (or classes)

are often called entity identifiers. While the symbols for logical operations

are normally standardized in advance by frameworks like OWL, the in-

terpretation of most entity identifiers is specific to particular ontologies.

Since these entity identifiers can be chosen arbitrarily, many OWL

ontologies essentially contain nothing more than information of the form:

C87 is a subclass of C34, C34 is a subclass of C0, and so on. Fortunately,

lexical knowledge aids in restricting the range of possible interpretations

of such identifiers. For example, if we assume that the meaning of

means is known a priori (the relation holding between a word and its

meaning) and that entity identifiers for character strings or words are

interpreted in the standard way, then a statement about the English term

‘pupil’ standing in a means relation to C87 reveals that C87 can only refer

to entities that are called ‘pupil’ in the English language. This is still

ambiguous, because ‘pupil’ could refer to the hole in the iris of an eye,

or to students. In a multilingual knowledge base, we may find another

statement expressing that the French term étudiant stands in the same

relation to C87, which reduces or perhaps eliminates the ambiguity.

The Semantic Web. The Semantic Web is a proposal by Tim Berners-

Lee to extend the existing World Wide Web, which consists mainly

of HTML pages for human consumption, with additional machine-
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processable knowledge. Uniform resource identifiers (URIs) are used not

only to refer to traditional Web resources such as Web pages but also to

so-called non-information resources like people, organizations, and other

entities. URIs are entity identifiers that can be used globally, across

individual knowledge sources, in a global shared namespace.

The Resource Description Framework (Hayes, 2004), or RDF for short,

provides a standard model for expressing knowledge about such en-

tities. RDF statements are based on triples consisting of a subject, a

predicate, and an object. For instance, the well-established predicate

dcterms:creator (Nilsson et al., 2008) enables us to express that Le-

onardo da Vinci is the creator of the Mona Lisa. The triple-based formal-

ism means that RDF data can easily be cast into a graph-based know-

ledge base as defined later on, if we allow arbitrary URIs and RDF

literals as nodes and assign additional identifiers to RDF’s so-called

blank (or anonymous) nodes.

Conversely, knowledge bases in our framework can easily be brought

into an RDF form, if so-called reification (Hayes, 2004) is used to capture

the statement weights that we include in our model. Additionally, new

URIs may need to be defined to represent the entities identified by the

nodes and by the arc labels in our framework. In fact, our Lexvo.org

project (de Melo and Weikum, 2008a) has already defined re-usable

global URIs for most of the relevant entities. The term URIs defined by

Lexvo.org also address the problem that, in RDF, string literals currently

may not serve as the subject of a statement, which makes it difficult

to express knowledge about terms. Lexvo.org is part of the emerging

Linked Data Web (Bizer et al., 2009), an effort to create a Web of Data that

makes large amounts of interlinked datasets available using Semantic

Web standards.

Relational Databases. Much of the world’s digital data is stored in

relational databases. The underlying relational model (Codd, 1970) is

based on relations saved in tables consisting of rows and columns. Rows

store records with multiple fields, each associated with a column of the

table. For example, a record could describe a person and the individual

fields could correspond to the first name, last name, employer, address,

and date of birth.
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In general, this model is content-neutral and may be used to store

arbitrary kinds of data. Normally, however, a database schema is not

merely an abstract syntactic template for a set of tables but is derived

from a conceptual analysis of a particular domain and intended to

represent some aspect of the world. Following Codd (1990, p.4), every

row coupled with the corresponding relation name can be regarded as

representing an assertion. Reification (Hayes, 2004) allows us to break

down n-ary relations with n > 2 into binary relations. Relational data

can thus be cast into our framework if care is taken to specify what the

specific entity identifiers are.

For example, assume we have a row about a person with columns

for the person’s last name (stored as a string) and her employer (as a

so-called foreign key referencing rows in another Employer table). We

can assign arbitrary entity identifiers to rows of this table and of the

separate Employer table, and then express as two binary relationships

that Person1234 stands in a hasLastName relationship with a string like

‘Doe’, and in a worksFor relationship with an employer Company123.

Sahoo et al. (2009) provide an extensive survey of techniques to map re-

lational databases to triple- or graph-based representations. Conversely,

knowledge modelled in terms of graphs can easily be stored in a rela-

tional database, e.g. if one wishes to harness the advanced querying

capabilities of relational database management systems.

2.2 Framework

Requirements. The framework adopted in our work is intended to be

generic and flexible enough to capture lexical knowledge as given by

WordNet as well as simple formal knowledge as captured in ontologies

of the more lightweight sort without complex axioms. Knowledge bases

adopting graph- or triple-based representation paradigms generally

assume that our world can be described in terms of discrete entities

and binary relationships between entities. In such frameworks, more

complex descriptions, e.g. in terms of sophisticated first or higher-order

logic rules and axioms, would have to be encoded into node or arc labels

rather than being first class citizens. In Section 5.6.6, we discuss an

extension of our work that is integrated with a more axiomatic formal

ontology.
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Entities and their Relationships. Knowledge bases describing rela-

tionships between entities can quite naturally be regarded as labelled

graphs, as we saw in Figures 1.1 and 1.2 in Chapter 1. In such graphs,

nodes are entity identifiers that refer to arbitrary entities, including in-

dividual entities like CMU, abstract classes and conceptualizations like

University, and words or names used in human languages like ‘univer-

sity’ and ‘Carnegie Mellon University’. It is important to stress that these

entities need not possess any sort of physical existence, e.g. we typically

specify entity identifiers for numbers like 15213 (which happens to be

the ZIP code of Carnegie Mellon), and we could indeed even define an

identifier for Scotty, CMU’s mascot Scottish terrier.

Arcs in such a graph represent statements about entities. Arcs are

given labels like means or instance that reveal to us which specific re-

lationships hold between two entities. Additionally, they are assigned

weights in order to characterize the confidence we have in the corres-

ponding statements. Formally, multiple relations can simultaneously

hold between two entities, so we need to allow multiple arcs between

two nodes, leading to the following definition.

Definition 2.1 (Knowledge Base) A knowledge base is a weighted

labelled multi-digraph G = (V, A, Σ) where:

• V is a set of entity identifiers that constitute the nodes in the graph

• A ⊆ V × V × Σ × R
+
0 is a set of weighted labelled arcs (that may

include multiple arcs between two nodes as well as loops, i.e. arcs

from a node to itself)

• Σ is the labelling alphabet for arcs, i.e. the set of possible arc labels

(which represent relationships between entities)

Semantics. The nodes of the graph are entity identifiers that represent

arbitrary entities, while arc labels r are entity identifiers that represent

arbitrary relations between entities. Specific examples are given below.

An arc a = (u, v, r, w) ∈ V × V × Σ × R
+
0 expresses that the two entities

represented by the nodes u,v are assumed to stand in a relationship

given by r to each other with weight w. A weight of 0 means there is

no evidence for this, and strictly positive values quantify the degree of

confidence in the statement being true.
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Definition 2.2 (Neighbourhood) For brevity, we use the notation

Γi(v, A) = {v′ | ∃l, w : (v′, v, l, w) ∈ A}

to denote the in-neighbourhood, and

Γo(v, A) = {v′ | ∃l, w : (v, v′, l, w) ∈ A}

for the out-neighbourhood of a node, given a set of arcs A.

2.3 Nodes and Entities

2.3.1 Overview

In some frameworks, a distinction is made between individuals and

classes. As described earlier, we accept a very broad definition of en-

tities, that includes both of these categories. More specifically, in the

knowledge bases we describe in the following chapters, the set of nodes

V will generally include the following sets of entity identifiers.

a) T × L: For term nodes representing lexical items (words or expres-

sions, or term entities in general) in a specific language, where T is

the set of NFC-normalized Unicode character strings (Davis and

Dürst, 2008), and L is the set of ISO 639-3 language identifiers.

For instance, the English word ‘school’ would be stored as a tuple

(‘school′, eng).

b) S ×C: For semantic nodes that represent semantic entities (individual

named entities as well as concepts), where S is a set of meaning

(or sense) identifiers as provided e.g. by Princeton WordNet 3.0,

and C is the set of lexical categories (noun, verb, adjective, etc.).

For example, the principal meaning of the English word ‘school’

corresponds to a semantic node (8276720,noun), where the number

is taken from WordNet 3.0’s internally used offsets. This entity

identifier describes schools as educational institutions (as opposed

to schools as buildings, for instance, for which there is a separate

semantic node).

c) Additional semantic nodes based on Wikipedia, representing the

subject of a Wikipedia page, as discussed in Chapter 5. Examples
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include Stanford University representing the well-known uni-

versity, as described by the English Wikipedia, or de:Helmholtzschule

representing a specific school in Germany, as described by the Ger-

man Wikipedia.

2.3.2 Term Entities

Characterization. As term entities or simply terms we consider all

kinds of lexical items, including regular words (e.g. ‘school’, ‘college’),

multi-word expressions (e.g. ‘primary school’, to ‘drop out’), and idiomatic

expressions (e.g. to ‘learn the hard way’). When devising entity identifiers

for terms, different levels of abstraction can be considered. For the term

entities, we choose to consider two homonyms, e.g. the animal noun

‘bear’ and the verb ‘bear’, as the same term entity, because, typically,

one wishes to look up terms in the knowledge base without already

knowing what senses exist. Such distinctions are made only at the level

of semantic entities, not for term entities. In contrast, we do consider

the Italian term ‘burro’, which means ‘butter’, distinct from the Spanish

term ‘burro’, which means ‘donkey’. With this level of abstraction, rela-

tionships between words in different languages correspond directly to

arcs between nodes in the graph.

Normalization. There are a few subtleties of term identity with respect

to string encoding. For multilingual applications, the ISO 10646 / Uni-

code standards offer an appropriate set of characters for encoding words

and expressions from a wide range of writing systems. Unicode allows

storing a character like ‘à’ in either a composed (‘à’) or in a decomposed

form (‘a’ + ‘`’), with even more complex compositions for languages

like Arabic and Vietnamese. To avoid duplicate entity identifiers, we

consider two strings identical if they match after NFC normalization

(Davis and Dürst, 2008) is applied to bring them into a canonical form.

In practice, this means that terms taken from one source can correctly

be identified with terms from another source, and a lookup will not fail

just because of different encoding choices.
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2.3.3 Semantic Entities

Characterization. As semantic entities, we consider all entities that

could correspond to meanings of terms. While, in principle, terms could

also refer to other terms, in practice, the semantic entities we deal with

will be based on WordNet synsets and Wikipedia pages, so the set of

semantic entities will be disjoint from the set of term entities.

Underlying most lexical knowledge bases is the assumption that pos-

sible meanings of a word can be enumerated discretely. While it is clear

that there is no single correct way of drawing the lines, this simplifying

assumption facilitates not only many computational applications but

also underpins much of our human reliance on dictionaries. We do not

require such enumerations to be non-overlapping or exhaustive.

Our framework remains somewhat agnostic as to the precise nature

of word semantics. In most model-theoretic knowledge bases, people

like John Locke or buildings like the Duke University Chapel would be

considered real-world entities, while identifiers like Academic freedom

would be interpreted as referring to some sort of abstract concept. Terms

like ‘Socrates’, ‘Troy’, and ‘Hesperus’ demonstrate that it is not always

obvious in which cases we can consider only physical referents. Even

cities like Cambridge and London have not always had clearly defined

physical boundaries. In our framework, whenever semantic entities are

regarded as having some sort of conceptual aspect, if suffices to interpret

factual relationships (like locatedIn) accordingly (i.e. as applying with

respect to entities of that sort).

Multilingual Generalization. In the EuroWordNet approach (Vossen,

1998), additionally adopted for BalkaNet and other related projects (Tufiş

et al., 2004; Atserias et al., 2004b), each individual wordnet has its own

inventory of semantic entities, and a separate interlingual index (ILI) is

intended to serve as an external language-neutral register of semantic

entities. Whenever possible, entities from the individual wordnets are

linked to the ILI by means of equivalence and near-equivalence relations.

Such a representation can be transformed into one where terms in

different languages are directly connected to the same semantic entity

whenever the respective meaning can be regarded as being realized in

multiple languages. The underlying idea is that two words can often be



22 Chapter 2. Graph-Based Knowledge Representation

thought of as sharing the same sense when they are near-synonymous or

translational equivalents of each other with respect to specific contexts.

Such sharing is in fact one major difference between lexical knowledge

bases like WordNet and conventional dictionaries in the first place: In

WordNet, synonymous terms like ‘bus’ and ‘coach’ in Figure 2.2 are tied

to a single shared semantic entity identifier, while in traditional diction-

aries the respective meanings are listed in distinct, unconnected entries.

What WordNet does for synonymous terms within a language can be

generalized to terms across languages. Figure 2.3 provides an example

of this idea. We see additional words in other languages linked to the

same semantic entities as the English words in Figure 2.2. Additionally,

there are language arcs as dotted lines that link from terms to semantic

entities for languages.

Figure 2.2: Monolingual lexical knowledge

Language-Specific Idiosyncrasies. It must be pointed out that this

principle by no means impels us to neglect language-specific subtleties.

Distinct semantic entities may co-exist whenever semantic differences

persist. For example, if in one language the word for ‘tree’ has a meaning

that includes shrubs, then the semantic entity that embodies this mean-

ing should not be conflated with the semantic entity for the meaning of
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Figure 2.3: Multilingual lexical knowledge

the English word ‘tree’, which generally is not taken to include shrubs.

In a similar vein, if in one language birds and insects are considered

animals and in another they are not, then there are actually distinct

concepts of animals that need to be demarcated. This is similar to how

the vernacular English concept of ‘nuts’ should ideally be distinguished

from the corresponding botanical concept, which is also part of the Eng-

lish language but excludes peanuts and almonds. Chapter 4 addresses

this problem of separating conflated concepts in greater detail.

2.4 Arcs and Statements

In our knowledge base, the set of acceptable arc labels Σ will encompass

the following subsets.

a) {means} × N0 × N0: For arcs representing relationships between

terms and semantic entities corresponding to their meanings, with:

– a value in N0 representing the synset rank of the synset in

WordNet (1 for the first, most relevant sense, 2 for the second,

and so on), or 0 if no rank information is available
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– a value in N0 representing sense frequencies in a corpus, or 1

if no such information is available (cf. Section 3.3.1)

For instance, the English word ‘head’ can mean a specific part of a

body, and at the same time, it can also stand in a means relation to

a semantic entity for people who are in charge of something (as

in ‘the head of the department’). The terms connected to a semantic

entity are referred to as the lexicalizations of the semantic entity.

b) {language}: For arcs from a term to a semantic entity characteriz-

ing the language of that term, e.g. the English word ‘head’ could

be linked to the entity English, and the Maori word ‘pahi’ would

be linked to Maori.

c) {translation} × C × C: For term-to-term arcs that represent

translational equivalence and connect term nodes to other term

nodes corresponding to their translations into other languages,

with source and target lexical categories in C (e.g. noun, verb, etc.,

or most commonly unknown if no such information is available).

For example, the Chinese word ‘教练’ is a translation of the English

word ‘coach’, where both words are nouns. However, translation

arcs do not reveal whether ‘coach’ in this context refers to a sports

trainer or to a wheeled transportation vehicle – the answer is

provided by the means relationships in Figure 2.3.

d) {synonym} × C × C: For arcs representing (near-)synonymy, with

source and target lexical categories in C.

e) {related}: For term-to-term arcs that provide generic indications

of semantic relatedness, e.g. between ‘teach’ and ‘university’.

f) {equals}: For arcs between two nodes representing the same

entity, e.g. sometimes WordNet and Wikipedia both describe the

same entity, and an equals arc can be used to connect the two

respective entity identifiers.

g) {subclass}: For arcs between two semantic nodes u, v when v

denotes a subsuming generalization of the semantic entity associ-

ated with u, e.g. u could denote high schools and v could denote

educational institutions in general. We interpret the subclass re-

lation as slightly broader than the type of formal subsumption

considered in axiomatic ontologies in order to be closer to Word-

Net’s hypernymy relation between synsets. Ontologically, the two
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entities need not be what one would typically consider classes

of instances, e.g. u could also represent common knowledge and v

could represent knowledge in general.

h) {instance}: For arcs between two semantic nodes u, v, when u

refers to a single instance of the type designated by v (its class,

type, or role), e.g. u could refer to the Berkeley Sather Tower and v

could represent towers or buildings.

i) {partOf, opposite, . . . }: Additional semantic relationships de-

rived from WordNet or other sources.

j) {hasGloss}: For arcs from a semantic node to a node consisting

of a human-readable string defining or at least characterizing the

meaning.

k) {locatedIn, bornIn, . . . }: For arcs representing factual knowledge

about entities that can be extracted from Wikipedia.

Different chapters will emphasize different relations. In Chapter 3,

we consider a lexical integration strategy, where new terms are integ-

rated into a knowledge base using the means relation. In Chapter 4, we

integrate entities from different sources and pay special attention to

the equals relation that connects equivalent nodes. In Chapter 5, we

additionally interlink entities that are not equivalent by means of the

taxonomic relations subclass and instance.





CHAPTER 3

Lexical Integration

3.1 Introduction

One way of obtaining a large-scale multilingual knowledge base is

to start out with a monolingual one and integrate large numbers of

additional words in different languages into it by attaching them using

the means relation. This idea, which is sketched in Figure 3.1, will be

pursued in this chapter.

Figure 3.1: Lexical integration strategy (simplified)

Motivation. This chapter will show that one can take a small, essen-

tially monolingual knowledge base and use statistical methods to derive

a large-scale multilingual lexical database that organizes over 800,000

27
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words from over 200 languages in a hierarchically structured semantic

network. This universal wordnet, UWN, provides over 1.5 million dis-

ambiguated links from words to semantic entities, and addresses a large

part of the applications described in Chapter 1.

UWN is bootstrapped from the original Princeton WordNet, a well-

known lexical database for the English language (Fellbaum, 1998) that

we introduced earlier in Section 2.1. As a reminder, WordNet describes

around 150,000 terms (words or short phrases) and about 120,000 se-

mantic entities (“synsets” in the original terminology). It connects terms

to semantic entities reflecting their meanings, thus providing a fairly

comprehensive database of synonymy and polysemy. Additionally, it

interlinks these semantic entities using semantic relationships like hy-

pernymy, which is similar to the subclass relation and hence induces a

hierarchical organization, as well as the meronymy (part/whole) relation,

among others. For instance, ‘university’ and ‘high school’ are hyponyms

of ‘educational institution’ (see also Figure 3.2), and ‘classroom’ is regarded

as a meronym (part) of ‘schoolhouse’. We use the name ‘WordNet’ to refer

to the original version created at Princeton University, in contrast to the

generic term wordnet, which includes other WordNet-like knowledge

bases.

Having lexical knowledge for a given language is an important re-

quirement in many different applications. Fellbaum (1998) has been

cited several thousand times, and recent editions of the Language Re-

sources and Evaluation Conference (LREC) have attracted over 1,000

participants. Similar wordnets do exist for about 50 different languages,

but none of them are nearly as complete as the original English WordNet

– in fact, a large number are small and unmaintained. Moreover, for

many actively used languages, no such lexical databases exist at all.

Our work not only addresses this gap but additionally goes beyond

the notion of monolingual wordnets by constructing an integrated mul-

tilingual wordnet that maps terms (words, phrases) of many languages

to their meanings in the language-independent space of semantic en-

tities (essentially concepts). This allows, for example, finding Greek

generalizations of the German word ‘Hochschule’ (university, college)

or Korean words expressing the opposite of the French word ‘grand’

(big). An application can discover that the Swahili word ‘darasa’ refers to

something that is part of a ‘schoolhouse’: a classroom. Knowledge of this
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Figure 3.2: Semantic relations – A university is a kind of educational
institution, which is a kind of institution, and so on. Additionally, terms in
many languages should be linked to each semantic entity.

sort is useful for query expansion, faceted browsing, opinion mining,

and many other applications. This level of semantic connections and

support for IR and AI tasks can never be reached by a mere translation

dictionary between two languages.

Problem Statement. The input will consist of i) existing, possibly

monolingual lexical knowledge bases like WordNet, and ii) additional

sources like translation dictionaries, thesauri, and parallel corpora,

which provide a significant quantity of simple lexical data, consisting

mostly of translation (or synonym) statements. The output should be

an extended knowledge base, where terms in different languages from

the lexical data sources have been integrated into the knowledge base.

Both input and output can be represented as graphs.

Figure 3.3 illustrates the central challenges. Part (a) depicts the

input coming from monolingual lexical knowledge bases. Arrowed

lines represent means arcs from term nodes to semantic nodes. Part (b)

shows the input graph G0 after adding translation arcs that can be
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derived from bilingual translation dictionaries (each non-arrowed line

represents two reciprocal translation arcs). Part (c) gives the desired

output graph where several words in different languages originally

only linked indirectly via translation arcs have been connected to the

semantic nodes that represent their disambiguated meanings (via dotted

lines), leading to a more multilingual knowledge base. The same is

possible using synonym arcs instead of translation ones, when one is

interested in integrating missing synonyms in the same language into a

lexical database.

Due to the ambiguous nature of words, the central difficulty is de-

termining which semantic entities apply to which translations (or syn-

onyms). For example, a simple English word like ‘class’ has 9 meanings

listed in WordNet, ‘form’ has 23 meanings, and there are examples such

as the word ‘break’, for which 75 different meanings are enumerated.

Contribution. We present a framework that accomplishes this task

using statistical learning techniques. This symbiosis of relying on pre-

existing manually compiled knowledge and automatic statistical tech-

niques turns out to be particularly fruitful. A machine learning approach

can solve the disambiguation challenge with much greater success than

reported in previous studies. Factors that contribute to this include

careful feature engineering, more evidence by considering a single large

multilingual graph and relying on multiple iterations, as well the power

of the learning algorithm to benefit even from weak signals, much better

than typical hand-crafted rules. We show that this approach leads to the

first massively multilingual version of WordNet.

Overview. Our method for building UWN starts with a limited num-

ber of existing (monolingual) lexical knowledge bases to derive a large

set of possible word meanings, represented in a graph G0 of term nodes

and semantic nodes (cf. Section 2.2). This graph is extended by ex-

tracting information from a range of sources including translation dic-

tionaries and thesauri, as well as by applying automatic preprocessing

procedures. Statistical methods are then used to link terms in different

languages to adequate semantic entities by analysing this graph. We

attempt to discern disambiguation information in a series of graph re-

finements. To this end, we construct a rich set of numeric features for
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assessing the validity of candidate arcs being considered for inclusion

in the output graph. We train a support vector machine (SVM) over

this feature space with a small number of hand-labelled arcs. Then the

SVM can automatically discriminate arcs that are likely to be valid from

spurious ones. The algorithm runs iteratively, i.e. several graphs Gi may

be constructed, each refining the previous graph Gi−1 by recomputing

features and re-applying the SVM learner.

The rest of the chapter is organized as follows. Section 3.2 reviews

WordNet and related work. Section 3.3 describes the initial graph con-

struction phase. Section 3.4 presents the feature space and learning

model for graph refinement. Section 3.5 shows experimental results that

confirm the high recall and precision of our method, and demonstrates

the benefit for tasks like cross-lingual text classification. Section 3.6

summarizes and discusses the implications of these results.

3.2 Previous Work

WordNet. The original WordNet (Fellbaum, 1998) was manually com-

piled at Princeton University to evaluate hypotheses about human cogni-

tion, but eventually became one of the most widely used lexical resources

in natural language processing. WordNet is the fruit of over 20 years of

manual work. For information about its internal structure, see Section

2.1.

Non-English Wordnets. The original WordNet has sparked a number

of endeavours aiming at similar databases for other languages, most

importantly perhaps the EuroWordNet (Vossen, 1998) and BalkaNet

projects (Tufiş et al., 2004) that targeted many European languages. Indi-

vidual institutes have made similar efforts for further languages, often

under the auspices of the Global WordNet Association. Unfortunately,

the work on such resources has not resulted in a unified multilingual

wordnet, as there are different meaning identifiers, formats, licences, etc.

Previous attempts to address this situation are still in their infancy.

Marchetti et al. (2006) proposed a Semantic Web tool for managing and

interlinking wordnets in order to create a multilingual grid, however

they do not focus on the problem of actually populating this grid. An-

other ambitious project that started in 2006, the Global Wordnet Grid
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(a) Input from (English, Spanish)
wordnets

(b) Input graph G0 including transla-
tions

(c) Desired output graph Gi, new
arcs dotted

Figure 3.3: Excerpt of input and desired output graph
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(Fellbaum and Vossen, 2007), only contains very limited sets of concepts

for English, Spanish, and Catalan, as of December 2010.

Recently, Navigli and Ponzetto (2010) presented a multilingual know-

ledge base called BabelNet. The main contribution is an alignment of

WordNet with Wikipedia, which is discussed in Chapter 5. Addition-

ally, they also propose using an existing machine translation system

to translate a sense-annotated collection of English sentences to other

languages. For each English word sense, the most frequent translation is

then linked to the synset. While sense-annotated input sentences are not

readily available in large quantities, this approach is interesting because

the machine translation system only makes use of the local context of a

word in text for disambiguation. Using the Google Translate API, the

reported precision is 72%. Hence, this approach is likely to provide a

valuable complementary signal to the graph-based features we consider

in our approach.

Automatic Construction. A central problem in establishing wordnets

is the laborious manual compilation process, which typically leads to

insufficient coverage for practical applications. Several authors have

attempted to automatically or semi-automatically construct a wordnet

for a not yet covered language using existing wordnets (Okumura and

Hovy, 1994; Atserias et al., 1997; Daudé et al., 2000; Pianta et al., 2002;

Sathapornrungkij and Pluempitiwiriyawej, 2005; Fišer, 2008). Scannell

(2003) followed a similar approach to translate Roget’s Thesaurus to

Irish Gaelic.

Our approach adopts some of the basic intuitions of these studies,

but goes beyond simple heuristics by computing more sophisticated

features that can account for very subtle differences between correct

and incorrect means arcs, and then learning a model to make the final

prediction. In de Melo and Weikum (2008b), we showed that our ma-

chine learning strategy leads to an output of higher quality and better

recall than previous work. Many of the prior approaches experienced

difficulties with polysemous terms and were applied to nouns only,

while our technique works particularly well for commonly used poly-

semous terms. Isahara et al. (2008) attempted to use multiple existing

wordnets to combine information from multiple translation dictionaries,

however with precision scores of 54% at best. None of these previous
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studies have explored the ideas of letting automatically established

mappings for different languages reinforce each other or of exploiting

evidence from multilingual translation graphs. Finally, none of the pre-

vious approaches have been applied to the task of building a large-scale

multilingual wordnet.

Multilingual Lexical Knowledge Bases. There are not many other

approaches to building multilingual lexical databases automatically.

The PANGLOSS ontology (Knight and Luk, 1994) was created in the

1990s to facilitate machine translation. Interesting linking heuristics

were used; however no learning techniques were employed, and the

final coverage was limited to around 70,000 entities in two languages.

Cook (2008) created a semantic network that incorporates WordNet

and links nouns in three languages to WordNet nodes based on simple

heuristics as well as manual work. The heuristics yield high-quality

results but apply to monosemous nouns only and hence fail to account

for most commonly used words, as these tend to be polysemous.

A much larger lexical resource has been created by Etzioni et al.

(2007) and Mausam et al. (2009), who use translation dictionaries and

Wiktionary to create a very large translation graph, which is then ex-

ploited for cross-lingual image search. Their central aim, however, is

to derive a translation resource rather than constructing a semantic

network with terms and semantic entities equipped with additional

relations like hypernymy (or subclass), meronymy (or partOf), etc.

Michelbacher et al. (2010) used graph-based techniques to generate

a multilingual thesaurus that for a given term provides semantically

related terms in a second language. Such resources do not differentiate

between specific semantic relations or offer a taxonomy.

Finally, knowledge bases like YAGO (Suchanek et al., 2007) and

DBpedia (Auer et al., 2007), while drawing on Wikipedia’s interwiki

links to provide multilingual entity labels, do not possess a multilingual

upper-level ontology.

3.3 Initial Graph Construction

On our way towards producing a multilingual knowledge base, we work

with multiple graphs of the form described in Chapter 2. The initial
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input graph G0 will be the result of an extraction and synthesis of data

from existing sources, while further graphs Gi (i ≥ 1) constructed later

on will extend G0 with statistically derived information that eventually

yields the multilingual UWN graph.

3.3.1 Information Extraction and Acquisition

The initial graph G0 = (V, A0, Σ) will contain nodes V representing

terms and semantic entities, and arcs A0 representing simple lexical

relationships (with arc labels in Σ). To populate G0 with such nodes and

arcs, we draw on a range of different knowledge sources. Existing lexical

knowledge bases and translation sources are the essential ones here,

together with a small set of manually classified arcs that are required

for the learning. The other knowledge sources are optional. This means

that, apart from the means and other semantic arcs taken from inputs

like the English WordNet, most of the imported information will consist

of translation arcs (or synonym arcs).

Existing Wordnet Instances. To bootstrap the construction, we rely on

existing wordnets to provide term-to-meaning means arcs for a limited

set of languages, as well as meaning-to-meaning arcs. Since relations

like hypernymy, meronymy and so on apply to entire synsets rather than

just individual words in WordNet, we treat them as implying relations

between semantic entities (subclass, partOf, and so on).

Apart from Princeton WordNet 3.0, means information is also taken

from the Arabic (Rodrı́guez et al., 2008), Catalan (Benitez et al., 1998),

Estonian (Orav and Vider, 2005), Hebrew (Ordan and Wintner, 2007),

and Spanish (Atserias et al., 2004a) wordnets, as well as from the human-

verified parts of MLSN (Cook, 2008). These resources all use entity

identifiers compatible with Princeton WordNet, however many of them

are aligned with older versions of WordNet, so we apply mappings

between different WordNet versions (Daudé et al., 2003) to obtain ca-

nonical entity identifiers for semantic entities.

The arcs that we create mostly have a weight of 1, except in some

isolated cases where the mappings between different WordNet versions

had a lower weight. Sense rank information and sense frequency inform-

ation based on the sense-annotated SemCor corpus (Fellbaum, 1998) is
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incorporated as an annotation into means arc labels as specified earlier

in Section 2.4. Such sense frequency information reveals to us how often

for example the word ‘school’ was used to refer to a school building in

the corpus.

Translation Dictionaries. A considerable number of translation arcs

between two terms are imported from over 100 open-source translation

dictionaries that are freely available on the Web1. As only few of these

resources consist of well-structured markup (like XML), making their

content amenable to machine processing frequently requires custom

preprocessing steps. These involve separating the actual terms from

annotation information such as part-of-speech (e.g. adverb), semantic

domain (e.g. chemistry), etc. We treat translation information as many-

to-many relationships between words, adding source or target part-of-

speech labels to the translation arcs whenever they are given. The arcs

are assigned a weight of 1.

Wiktionary. The community-maintained Wiktionary project2 offers a

plethora of lexical information but relies on simple text-based mark-up

rather than an explicit, precise database schema. We thus use rule-based

information extraction techniques to mine translation and other arcs

from eight different language-specific editions of Wiktionary (Catalan,

English, French, German, Greek, Portuguese, Spanish, and Swedish).

Multilingual Thesauri and Ontologies. Translations are also obtained

from concept-oriented resources such as the GEneral Multilingual En-

vironmental Thesaurus (GEMET3), OmegaWiki4, as well as from OWL

ontologies (Buitelaar et al., 2004). For each semantic entity (concept) x,

we consider its set of natural language labels terms(x) in the resource,

1Sources: 5Lingue Table, Apertium, CEDICT, dict-fef, DictionaryForMIDs, Ding,
Ding Spanish-German, English-Hungarian dictionary (Egyeki Gergely), ER-Dict, es-ita
Dictionary, FreeDict, GIDIC, Greek-English UTF8 Dictionary, HanDeDict, Heinzelnisse
Norwegian-German, Laws Maori-English, Magic-Dic, Sdict English-Thai, Sdict Ukrainian-
English, Slovnyk English-Russian, Termcat Terminologia Oberta, trasvasesno Spanish-
German, XDXF English-Armenian, XDXF German-Russian

2http://www.wiktionary.org
3http://www.eionet.europa.eu/gemet/
4http://www.omegawiki.org

http://www.wiktionary.org
http://www.eionet.europa.eu/gemet/
http://www.omegawiki.org
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and then add a translation arc to the graph for each t, t′ ∈ terms(x)

(t 6= t′), unless they are from the same language, in which case we create

a synonym arc instead.

Parallel Corpora. Text from conventional multilingual corpora, trans-

lation memories, film subtitles, and software localization files can be

word-aligned to harness additional translation information for many

language pairs. We make use of GIZA++ (Och and Ney, 2003) and

Uplug (Tiedemann, 2003) to produce lexical alignments for a subset of

the OPUS corpora (Tiedemann, 2004), which includes the OpenSubtitles

corpus (Tiedemann, 2007). Since word alignments tend to be unreliable,

we compile alignment statistics and add translation arcs to the graph

between pairs of nodes where the respective term pair is encountered

with a high frequency (above a specified threshold).

Monolingual Thesauri. Monolingual thesauri from the OpenOffice

software distribution5 provide related arcs between the terms of a

single language, revealing e.g. that ‘college’ is semantically related to

‘university’.

Manually Classified Arcs. As our approach is based on supervised

learning, we also depend on a limited amount of manually classified

means arcs from terms to semantic entities, obtained via a collaborative

Web contribution interface (see also Figure 5.6 on page 157). Such arcs are

either labelled as positive (correct, adequate, with weight 1) or negative

(incorrect, inadequate, with weight 0). Details are given in Section 3.5.3.

3.3.2 Graph Enrichment and Pruning

After the initial information extraction, we apply additional prepro-

cessing methods to the input graph.

Inverse Links

First of all, we assume the translation and synonym relations are sym-

metric and add inverse links to ensure that all connections are reciprocal.

5http://wiki.services.openoffice.org/wiki/Dictionaries

http://wiki.services.openoffice.org/wiki/Dictionaries
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Criterion 3.1 (Symmetry). Given an arc a = (n1, n2, r, w) ∈ A0 where

r is a translation or synonym label, we add (n2, n1, r′, w) to A0 if no

comparable arc already exists, where r′ matches r except for inverted

source and target lexical categories.

Triangulation

Additionally, although the two relations are not genuinely transitive, we

use so-called triangulation heuristics to reduce the sparsity of transla-

tions and synonymy links. For instance, when the Italian word ‘scuola’

has an English translation ‘school’ and a French translation ‘école’, and

the latter two both have a Malay translation ‘sekolah’, then we can infer

that this Malay word is also a likely translation for the Italian term.

Criterion 3.2 (Triangulation). Translation (or synonymy) arcs (n1, n2, r, w)

between two term nodes n1, n2 are added to A0 if

|{n′|n′ ∈ Γo(n1, A0) ∩ Γi(n2, A0)}| ≥ mmin

and no comparable arc already exists.

Here, Γo and Γi refer to the out- and in-neighbourhood, respectively

(Definition 2.2). We empirically chose mmin = 5 for high accuracy.

(Near-)Duplicate Merging

Subsequently, the graph is pruned by merging duplicate and near-

duplicate arcs as follows. It is clear that duplicate arcs from different

sources can be merged, but additionally there can also be arcs between

two nodes that are nearly the same, except for some of the additional

information captured as part of the arc label (see Section 2.4). Hence, we

define a partial ordering ≤Σ over arc labels that captures when a label is

considered less specific than (or as specific as) another one.

Definition 3.1 Given two arc labels r, r′ ∈ Σ, we define the partial

ordering ≤Σ over Σ as follows: r ≤Σ r′ if and only if r and r′ express the

same relation (e.g. translation), and the additional information cap-

tured in r is in all cases less specific than (i.e., lexical category unknown,

synset rank 0, or synset frequency 1) or just as specific as the correspond-

ing information in r′.
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The rationale for defining a partial ordering is that when we have

two near-duplicate arcs, it often makes sense to keep only the more

precise one and assume that the other one simply lacks certain detail.

For instance, when we have two translation arcs, one without lexical

category information (unknown) and one with such information (e.g.

noun), we will keep only the latter, although, of course, it might still

be the case that the translation applies with respect to other lexical

categories like verb as well.

In practice, this assumption means that we iterate over all arcs a =

(n1, n2, r, w) ∈ A0, discarding a according to the following criterion.

Criterion 3.3 (Pruning). An arc a = (n1, n2, r, w) ∈ A0 is pruned from

A0 whenever there exists another arc a′ = (n1, n2, r′, w′) ∈ A0 with

a 6= a′, r ≤Σ r′, w ≤ w′.

3.3.3 Candidate Arc Creation

As a final preprocessing step that concludes the construction of G0,

we create a large set of zero-weighted arcs that denote potential means

relationships between words and semantic entities that will later be

evaluated. In Figure 3.3b, we see that the Italian word ‘piatto’ has a

translation arc to ‘course’, so it is likely that they share some meaning.

All four semantic nodes linked from ‘course’ in G0 correspond to po-

tential meanings of the word ‘piatto’. At this point, we do not know

which ones are correct, but we can create four candidate arcs to express

these potential means relationships between the word ‘piatto’ and the

respective semantic entities, as illustrated in Figure 3.4. In general, we

consider as candidate entities all meanings of translations or synonyms

of a given term. We iterate over the graph and define the set of possible

candidate arcs according to the following definition.

Definition 3.2 (Candidate Arcs) The set of candidate arcs Acand con-

sists of all possible (n0, n2, rm, w) such that

1. n0 is a term node,

2. n2 is a semantic node,

3. the arc label rm = (means, 0, 1),

4. w ∈ [0, 1],
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(a) Original Input

(b) Input with candidate arcs

Figure 3.4: Candidate arc creation – Terms are linked to meanings of their
translations.

5. there exists a 2-hop path of the form

{(n0, n1, r, w1), (n1, n2, r′, w2)} ⊂ A0,

where the arc label r is a translation or synonym one, and the arc

label r′ is a means one,

6. and no arc (n0, n2, r, w′) ∈ A0 already exists with a means label r.
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Each candidate arc (n0, n2, rm, w) links a term n0 to one of its poten-

tial meanings n2. While Acand includes all possible instantiations with

different weights w ∈ [0, 1], what we actually add to A0 at this point is

the set

{(n0, n2, rm, w) ∈ Acand | w = 0}.

This means that the arcs are initially set up with a weight of 0. Later on,

we iterate over all candidate arcs in the graph and establish more appro-

priate weights. In Figure 3.4, the arc to the semantic node described as

‘part of a meal’ should later receive a higher weight, as it is an adequate

meaning for ‘piatto’, while the other semantic entities, e.g. academic

course are inadequate, and the corresponding candidate arcs should no

longer be present in the final output graph.

3.4 Iterative Graph Refinement

In each iteration, a new graph Gi = (V, Ai, Σ) is constructed that is

topologically identical to Gi−1 and thus to G0. However, the weights of

all candidate means arcs in the graph are re-assessed to reflect a refined

measure of confidence in them being correct.

3.4.1 Scoring Model

Overview. To this end, our approach is to learn a statistical model for

assessing the validity of candidate arcs. In each iteration i, we employ a

supervised regression model wi, obtained by training on the small set of

hand-labelled arcs included in G0, which are labelled either as correct

(positive training samples) or incorrect (negative training samples). For a

given candidate arc, the model predicts a weight in [0, 1] that represents

the degree of confidence in the respective arc being correct, given the

previous graph Gi−1.

Feature Space. The regression model operates with respect to an ap-

propriately defined feature space. In our approach, the feature space is

recomputed with each new graph Gi of the refinement process. This is

in the spirit of relaxation labelling methods and belief propagation meth-

ods for graphical models (Getoor and Taskar, 2007). Directly applying
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such algorithms to the huge input graph in our task would face tremend-

ous scalability problems, since we need to capture non-straightforward

dependencies between outputs for different arcs even when they are

multiple hops apart. Instead, we embed information about the neigh-

bourhood of an arc into its feature vector. In the ideal case, the weight of

an arc, given its feature vector, will then be conditionally independent

of the weights of other arcs, allowing us to use a wide range of standard

learning algorithms. In each iteration i, the previous graph Gi−1 is used

as the basis to derive a feature vector xi(n0, n2) ∈ R
m for each candidate

arc (n0, n2, r, w) in Gi (where m is the number of features). Details will

be given in Section 3.4.2.

Model. Using the feature vectors for the hand-labelled training set,

we train an RBF-kernel support vector machine (SVM). SVMs are based

on the idea of computing a separating hyperplane that maximizes the

margin between positive and negative training instances in the feature

space or in a high-dimensional kernel space (Vapnik, 1995; Cortes and

Vapnik, 1995; Duda et al., 2000).

For each feature vector xi(n0, n2), standard regularized SVM clas-

sification initially yields values f(xi(n0, n2)) ∈ R that correspond to

distances from the separating hyperplane in the kernel space. To obtain

new weights w for candidate arcs (n0, n2, r, w′) ∈ Ai ∩ Acand, we adopt

Platt’s method of estimating posterior probabilities P (w = 1|xi(n0, n2))

using a sigmoid function. This means that w is set to an estimate of the

posterior probability computed as

wi(n0, n2) =
1

1 + exp(aif(xi(n0, n2)) + bi)
,

where parameter fitting for ai and bi is performed using maximum

likelihood estimation on the training data of iteration i (Platt, 2000; Lin

et al., 2007).

This regression model allows us to obtain new arc weights w =

wi(n0, n2) ∈ [0, 1] for all candidate arcs from term nodes n0 to semantic

nodes n2. Gi can be constructed as (V, Ai, Σ) where

Ai = (Ai−1\Acand)∪{(n0, n2, r, wi(n0, n2)) | (n0, n2, r, w′) ∈ Ai−1∩Acand}

and Acand is the set of possible candidate arcs (Definition 3.2).
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3.4.2 Feature Computation

Feature Vectors. The regression model determines the new arc weights

based on the feature vectors xi(n0, n2). These vectors need to provide

some sort of evidence that would indicate whether a given arc is correct.

For each candidate means arc (n0, n2, r, w) in Gi, we quantify evidence

from the graph as an m-tuple of numerical feature scores

xi(n0, n2) = (xi,1(n0, n2), . . . , xi,m(n0, n2)) ∈ R
m,

to allow the learning algorithm to assess whether the arc should be

accepted. We expect to see strong evidence for this arc if n2, a semantic

node, represents one of the meanings of the term designated by n0.

Given the previous graph Gi−1, the individual scores xi,j(n0, n2) are

computed as listed in Table 3.1. In Equation 3.1, two nodes are directly

compared by means of a cosine-based context similarity score, which

will be explained in Section 3.4.5.

Semantic Overlap. The underlying idea for Equations 3.2 and 3.3

(where φ1, φ2, γ are arc and path weighting functions) is that a word’s

most likely meanings can be determined by considering likely meanings

n′
2 of its translations and related terms n1 ∈ Γo(n0, Ai−1). Equation 3.2

considers each successor node n1, and then assesses how similar the

successors of n1 are to n2.

For instance, in the simplest case, if we use an identity test as a

similarity function for comparing those successors n′
2 to n2, then this

score effectively computes a weighted count of the number of two-hop

paths from n0 to n2. In the input graph in Figure 3.3b, there are multiple

paths from the German word ‘Kurs’ to the academic course semantic

node, which means that it is more likely to represent a correct meaning.

With more sophisticated similarity measures, we can also take into

consideration when there are multiple successors with distinct yet sim-

ilar meanings, e.g. one translation could have an academic course mean-

ing and another could refer to a group of students who are taught

together. In this case, these two very similar meanings are more likely to

be correct than meanings that are completely unrelated to the meanings

of other translations.
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Table 3.1: Feature computation formulae

xi,j(n0, n2) = sim(n0, n2) (3.1)

xi,j(n0, n2) =
∑

n1∈Γo(n0,Ai−1)

φ1(n0, n1) sim∗
n0,φ2

(n1, n2) (3.2)

xi,j(n0, n2) =
∑

n1∈Γo(n0,Ai−1)

φ1(n0, n1)
sim∗

n0,φ2
(n1,n2)

sim∗

n0,φ2
(n1,n2) +dissim+

n0,φ2
(n1,n2)

(3.3)

where

sim∗
n0,φ2

(n1, n2) = max
n′

2
∈Γo(n1,Ai−1)

γ(n0, n1, n′
2) φ2(n1, n′

2) sim(n2, n′
2)

(maximum weighted similarity between

n2 and successors of n1) (3.4)

dissim+
n0,φ2

(n1, n2) =
∑

n′

2
∈Γo(n1,Ai−1)

γ(n0, n1, n′
2) φ2(n1, n′

2)(1−sim(n2, n′
2))

(weighted sum of dissimilarities between

n2 and successors of n1) (3.5)

Polysemy. Equation 3.3 is similar to Equation 3.2, but adds an addi-

tional normalization with respect to the number of alternative choices in

the denominator. In the simplest case, the dissim+ function will simply

count how many alternative semantic entities there are, so if the term

represented by n1 has one meaning corresponding to n2, and 4 other

meanings, it would return 4, and lead to a summand of 1
1+4 for n1,

which reflects the probability of arriving at n2 from n1 when randomly

selecting means arcs. Equation 3.3 is also applied in the opposite direc-

tion to quantify reachability information from a semantic node to a term

node.
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Weighted Scores. More sophisticated scores are obtained by applying

additional weighting and normalization. This is addressed by having

the scores depend on a number of auxiliary formulae, in particular com-

binations of arc weighting functions φ1, φ2, as described in Section 3.4.3,

path weighting functions γ, described in Section 3.4.4, and measures of

semantic relatedness, which will be described in Section 3.4.5.

For example, in Equation 3.3 we may wish to not count all alternative

meanings, instead producing a weighted score where alternative mean-

ings are not fully considered if they are very similar or if their lexical

category tags do not match.

3.4.3 Arc Weighting Functions

Arcs from Terms to Terms. Not all translations or related terms for a

word are equally important. The different versions of φ1 listed in Table

3.2 estimate the relevance of a connection from a term n0 to a translation,

synonym or related term n1.

• Equation 3.6 simply filters out related arcs, as these are less reli-

able than translation and synonym ones. This weighting function

is combined with the other instantiations of φ1. Within the formula,

VT is the set of all term nodes.

• Equation 3.7 normalizes with respect to the size of the out-neigh-

bourhood of n0, counting the number of terms that have outgoing

means arcs (arcs to nodes in VS, the set of all semantic nodes in the

graph). This can lead to more comparable scores across different

terms n0, as some terms have significantly more translations than

others.

• Equation 3.8 is similar to Equation 3.3 but normalizes with respect

to a weighted in-degree of n1 for terms from the same language.

Essentially, it checks how many terms connected to the term n1

are from the same language as n0. If there are few or no alternat-

ives, then the connection between the two nodes is expected to be

stronger.

• Equation 3.9 defines the helper function φln
1 (n0, n′

0) that is used to

check if two term nodes have the same language.
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Table 3.2: Arc weighting functions plugged into the formulae in Table 3.1

Filtering

φ
f
1(n0, n1) =

{

1 ∃(n0, n1, r, w) ∈ Ai−1 : r 6= related, n1 ∈ VT

0 otherwise
(3.6)

Normalization

φ
nm
1 (n0, n1) =

φf
1(n0, n1)

|{n1 ∈ Γo(n0, Ai−1) | Γo(n1, Ai−1) ∩ VS 6= ∅}|
(3.7)

Weighted In-Degree

φ
bt
1 (n0, n1) = φ

f
1(n0, n1)

sim∗
n0,φln

1

(n1, n0)

sim∗
n0,φln

1
(n1, n0) + dissim+

n0,φln
1

(n1, n0)
(3.8)

Language Matching

φ
ln
1 (n0, n

′
0) =

{

1 n0 = (t, l), n′
0 = (t′, l) share language l

0 otherwise
(3.9)

Arc Weights

φ
tα
2 (n1, n2) =

{

1 ∃(n1, n2, r, w) ∈ Ai−1 : w > α, n2 ∈ VS

0 otherwise
(3.10)

Corpus Frequencies

φ
cf
2 (n1, n2) = φ

tα
2 (n1, n2)

freq(n1, n2)
∑

n′

2
∈Γo(n1,Ai−1)

φslc
3 (n2, n′

2) freq(n1, n′
2)

(3.11)

Sense Rank

φ
r
2(n1, n2) =



















0 φtα
2 (n1, n2) = 0

1

rank(n1, n2) + 1
2

rank(n1, n2) 6= 0

1

|{n′
2 ∈ Γo(n1, Ai−1)} ∩ VS|

otherwise

(3.12)

Semantic Node Lexical Category

φ
slc
3 (n2, n

′
2) =

{

1 n2 = (s, c), n′
2 = (s′, c) share category c

0 otherwise
(3.13)
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Arcs from Terms to Semantic Entities. Instantiations of φ2 estimate

the relevance of connections from translations, synonyms or related

terms n1 to semantic nodes n2.

• Equation 3.10 considers the weights of means arcs, allowing us to

ignore unreliable candidate arcs.

• Equation 3.11 uses sense-specific corpus frequencies, where the

function freq(n1, n2) yields the frequency of term n1 with sense n2

in the SemCor corpus or 1 if n1 does not occur in the corpus. This

information was embedded into the arc labels in Section 3.3.1. The

helper function φslc
3 (Equation 3.13) compares the part-of-speech

of semantic nodes.

• Equation 3.12 uses the sense ranking, where rank(n1, n2) gives the

WordNet-specific rank of n2 for term n1 (1 for the first sense, 2 for

the second, and so on, or 0 if unavailable). The ranks reflect the

importance assigned to different senses of a word by WordNet’s

editors.

3.4.4 Cross-Lingual Lexical Category Heuristics

Motivation. Several features described in Table 3.1 integrate a function

γ that assigns weights to entire paths in the graph. Apart from the trivial

choice of setting it to a constant value (γid(n0, n1, n2) = 1), we use

γlc as a version that considers lexical categories (part-of-speech tags)

associated with nodes in the graph. For instance, we may have a path

from a German noun like ‘Schule’ to the English translation ‘school’,

and then on to a verbal meaning of ‘school’ (to school someone). This

path should have a very low weight if we are sure that the German

word ‘Schule’ can only be a noun. Many of the previous studies on

automatically building wordnets dealt with nouns exclusively, whereas

our approach handles all lexical categories. Hence the need for some

means of preventing a noun from being mapped to a verbal or adjectival

meaning, for example.

Path Scores. We accomplish this by relying on different types of hints

provided by the graph, in conjunction with machine learning to possibly

detect the part-of-speech of words for which no hints are available.

The path weighting scores γlc(n0, . . . , nk) are supposed to provide an
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estimate of whether the nodes along the path from n0 to nk have the

same or at least compatible lexical categories.

Definition 3.3 We define

γlc(n0, . . . , nk) = max
c∈C

k−1
∏

i=1

µc(ni, ni+1)

where µc(ni, ni+1) ∈ [0, 1] provides an estimate of whether a local trans-

ition from ni to ni+1 is possible with lexical category c ∈ C, computed

as

µc(n, n′) =

{

1 ∃(n, n′, r, w) ∈ A0 : r, c compatible

min(µc(n), µc(n′)) otherwise.

Here, µc(n) ∈ [0, 1] estimates the probability of a node n having lexical

category c among one of its possible lexical categories.

In the formula for µc(ni, ni+1), we first check whether a transla-

tion or synonym arc from ni to ni+1 exists that provides explicit lexical

category information as part of the arc label. We explained earlier in

Sections 3.3 and 3.3.1 that some dictionaries and other sources provide

such information. If this is the case, we just need to match it with the

lexical category c under consideration.

Node Scores. If the arcs do not provide a clear answer, we compare

possible categories of individual nodes ni and ni+1, relying on estimates

µc(n) ∈ [0, 1]. The estimates depend on the type of node, and are

computed using Algorithm 1. The algorithm performs the following

steps.

1. If the node n is in VS, the set of semantic nodes, we can simply

check the lexical category encoded in the entity identifer (see Sec-

tion 2.3).

2. For term nodes, we check if the term has any incoming or outgoing

translation or synonym arc labelled with lexical categories, or

any means arc to a semantic node. If there are labelled arcs, but

none of them are labelled with c or with unknown, then µc(n) = 0.
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Algorithm 1: Lexical category compatibility µc(n) for nodes

1: procedure NODELC(n, c, G = (V, A, Σ))
2: if n ∈ VS then ⊲ if n is a semantic node

3: return

{

1 ∃s : n = (s, c)

0 otherwise
⊲ check c encoded in node label

4: R← {translation, synonym}
5: C1 ← {c1 | ∃(n, n′, r, w) ∈ A, l ∈ R, c2 : r = (l, c1, c2)}
6: ⊲ set of source lexical categories captured in arc labels
7: C2 ← {c2 | ∃(n

′, n, r, w) ∈ A, l ∈ R; c1 : r = (l, c1, c2)}
8: ⊲ set of target lexical categories captured in arc labels
9: C3 ← {c3 | ∃(n, n′, r, w) ∈ A, s : r is a means arc, n′ = (s, c3)}

10: ⊲ set of lexical categories captured in semantic nodes n′

11: if c ∈ (C1 ∪ C2 ∪ C3) then
12: return 1
13: else if |C1 ∪ C2 ∪ C3| > 0 and unknown 6∈ (C1 ∪ C2 ∪ C3) then
14: return 0
15: else if wc(n) available and wc(n) reliable then
16: return wc(n)
17: else
18: return 0.5

3. If this fails, we attempt to use learnt models for surface properties

of term strings, which often reveal likely lexical categories. For

each lexical category and language, we check whether the above

criteria provide us with sufficient examples to create a training

set and a withheld validation set of part-of-speech labelled terms.

The validation set is a separate labelled set that is disjoint from the

training set and can be used to assess how well the trained model

applies to new, unseen terms. If we have enough information

to create both labelled sets, we learn surface form properties as

described below.

4. If none of the aforementioned steps apply, a default score of 0.5

may be used, which means that we assume the chance of a com-

patible lexical category to be 50%.
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Surface Form Learning. The surface form learning for term nodes is

carried out by growing C4.5 decision trees (Quinlan, 1993; Duda et al.,

2000) with the following features:

1. Prefixes and suffixes of a word up to a length of 10 (without case

conversion): In many languages, affixes mark the part-of-speech

tag of a word. For instance, in Italian, lemma forms of virtually all

verbs end in ‘-are’, ‘-ere’, or ‘-ire’.

2. Boolean features for first character capitalization and complete

capitalization: In many languages, capitalized words tend to be

nouns (e.g. acronyms such as ‘USA’, proper nouns like ‘London’,

all nouns in German, Luxemburgish).

3. Term length: In some languages, nouns tend to be longer than

verbs, for example.

The reliability of the decision tree depends largely on the language.

For each lexical category and language, we evaluated on the respective

validation set, obtaining F1-scores between 0.03 and 0.99 (see Section

3.5.2 for an introduction to such evaluation metrics). Later on, for a given

term to be analysed, the confidence estimate wc(n) from the decision

tree’s leaves is considered reliable in the following cases:

1. the F1-score on the validation set was high

2. wc(n) > 0.5 and the precision on the validation set was high

3. wc(n) < 0.5 and the recall on the validation set was high

3.4.5 Measures of Semantic Relatedness

Motivation. The feature vector computation also uses a set of different

semantic relatedness measures. To see the potential benefit of this,

consider the following example. The single meaning of ‘schoolhouse’ is

related to the educational institution meaning of the word ‘school’, but

not to the meaning of ‘school’ that corresponds to groups of fish. So, if

a term node has translation arcs to both ‘school’ and ‘schoolhouse’, their

semantic relatedness tells us that the educational meanings of ‘school’

are much more likely to be correct than the one referring to fish. We

consider four different measures of semantic relatedness.
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Identity Relatedness

The first weighting function simid(n1, n2) is the trivial identity indicator

function.

Definition 3.4 The weighting function simid(n1, n2) is computed as

simid(n1, n2) =

{

1 n1 = n2

0 otherwise.

Neighbourhood Relatedness

A more sophisticated weighting function simn(n1, n2) considers the

neighbourhood in the graph. For a given path in the graph, we compute

a proximity score multiplicatively from relation-specific arc weights

w(a) ∈ [0, 1] obtained by optimizing application-specific scores using a

local search procedure (de Melo and Siersdorfer, 2007), e.g. 0.8 for hy-

pernymy, 0.7 for holonymy, and so on. The similarity is then defined to

be the maximum score for all simple paths p ∈ P(n1, n2, A0) between n1

and n2 in A0 if this maximum is above or equal a pre-defined threshold

αn = 0.35, and 0 otherwise. In practice, such scores can be computed

efficiently using an adaptation of Dijkstra’s shortest-path algorithm

(de Melo and Siersdorfer, 2007).

Definition 3.5 The weighting function simn(n1, n2) is defined as

sim′
n(n1, n2) = max

p∈P(n1,n2,A0)

∏

a∈p

w(a)

simn(n1, n2) =

{

sim′
n(n1, n2) sim′

n(n1, n2) ≥ αn

0 otherwise.

Here, P(n1, n2, A0) denotes the set of paths between n1 and n2 in A0,

w(a) yields a relation-specific weight for an arc a in some path p, and αn

is a threshold.

Contextual Relatedness

Another weighting function simc(n1, n2) uses the cosine similarity of

context strings for nodes. For semantic entities, context strings are
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constructed by concatenating English meaning descriptions (WordNet

glosses) and terms linked to the original semantic entity and neighbour-

ing semantic entities. For terms, the set of all English translations is used.

Two context strings are compared by stemming using Porter’s method,

creating TF-IDF vectors x1, x2, and computing the cosine of the angle

between them.

Definition 3.6 The weighting function simc(n1, n2) is defined as

simc(n1, n2) =
xT

1 x2

||x1||2 ||x2||2

for TF-IDF vectors x1, x2 corresponding to n1, n2.

Maximum Relatedness

The final measure of semantic relatedness simm(n1, n2) combines the

power of simn, and simc, which are each based on rather different char-

acteristics of the semantic entities.

Definition 3.7 The weighting function simm(n1, n2) is computed as

simm(n1, n2) = max{simn(n1, n2), simc(n1, n2)}.

3.4.6 Overall Algorithm

Iterative Refinements. Algorithm 2 describes the overall algorithm.

Our learning procedure not only makes use of the small set of manually

classified means arcs supplied as training instances, but also benefits

from the enormous numbers of originally unlabelled instances by run-

ning in multiple iterations. In each iteration i, a model wi is learnt using

feature scores computed on the output graph Gi−1 of the previous it-

eration, as described earlier. There is frequently some form of mutual

reinforcement between correct and highly weighted (but not known to

be correct) arcs and there is some gradual down-weighting of incorrect

arcs in the course of the iterations. Thus, our method can be seen as a

form of semi-supervised learning.

As a stopping criterion, we use either a withheld validation set of

manually classified arcs (not used for training) or apply cross-validation

with the training data, and check if a loss function L(Gi) (such as 1
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Algorithm 2: Lexical integration

1: procedure ADDTERMS(G0 = (V0, A0, Σ), L, ǫ, imax, L′, wmin, ŵmin)
2: i← 0
3: repeat
4: i← i + 1 ⊲ current iteration number
5: learn model wi given Gi−1 ⊲ as described in Section 3.4.1
6: Ai ← {(n0, n2, r, wi(n0, n2)) | (n0, n2, r, w′) ∈ Ai−1 ∩Acand}
7: ⊲ re-evaluate candidate arcs with wi

8: Ai ← Ai ∪ (Ai−1 \Acand) ⊲ other arcs unchanged
9: Gi ← (V, Ai, Σ)

10: until L(Gi−1)− L(Gi) < ǫ or i = imax

11: i∗ ← arg mini L′(Gi) ⊲ determine best iteration
12: A← {(n, n′, r, w) ∈ A0 | r not a means label} ⊲ semantic relations
13: Ai∗ ← Ai∗ ∩Acand ⊲ retain only candidate arcs
14: for all (n0, n2, r, w) ∈ Ai∗ do
15: if w > wmin then
16: A← A ∪ {(n0, n2, r, w)} ⊲ threshold wmin

17: else if w > ŵmin ∧ ¬∃n
′
2, r′, w′ : (n0, n′

2, r′, w′) ∈ Ai∗ , w′ > w then
18: A← A ∪ {(n0, n2, r, w)} ⊲ threshold ŵmin

19: V ← {n ∈ V | Γo(n, A) ∪ Γi(n, A) 6= ∅} ⊲ prune node set
20: return G = (V, A, Σ)

minus F1, cf. Section 3.5.3) shows a reduction L(Gi−1) − L(Gi) < ǫ

(where ǫ may also be slightly negative). The number of iterations can

optionally be limited by setting the imax parameter. In practice, we

observed that 2-4 iterations suffice to stabilize the precision and recall

measures on the graph.

Output Graph. Having determined the most profitable iteration i∗

with a loss function L′ (possibly different from L), Algorithm 2 then

proceeds to transform Gi∗ into the final UWN graph G. This involves

the following steps:

(i) We add to G language-independent semantic relationships from

Princeton WordNet (see Section 3.5.5 for details), but none of the

means arcs from the original input sources.

(ii) For candidate means arcs, we threshold by enforcing a minimal

weight wmin or possibly a slightly lower minimal weight ŵmin
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in the absence of better alternative arcs for a node n0. This al-

lows us to obtain a lexical database that retains only high-quality

links. It is, however, possible to set wmin,ŵmin to a value like −∞,

which allows us to obtain a statistical form of lexical database with

edge weights providing the degree of confidence of a statement.

Weighted edges can be useful in certain application settings.

(iii) Finally, we remove all nodes of degree 0.

Our specific choices of loss functions and thresholds are given in the

following section on experimental results.

3.5 Results

3.5.1 System Architecture

We used the Java programming language to develop a platform-indepen-

dent knowledge base processing framework. For efficiency reasons, the

weighted labelled multi-digraphs were stored in custom binary format

databases, where we could encode arc labels and weights very compactly.

Both the index and the actual data are cached in memory to the extent

possible, to reduce the level of disk access. In some cases, we also relied

on Bloom filtering to probabilistically avoid unnecessary disk reads

when no target nodes are available for a given pair (n, r) of source node

n and arc label r.

This framework allowed us to flexibly plug together information

extraction modules (as required in Section 3.3.1), knowledge base pro-

cessors (as used for preprocessing in Section 3.3.2 and for the iterative arc

reweighting in Section 3.4), as well as exporters and analysis modules

to form knowledge base processing pipelines. Our graph refinement

procedure is integrated as a mapper that assesses links between two

entities and produces new weights. For statistical learning, it relies on

the LIBSVM implementation (Chang and Lin, 2001) using an RBF kernel

K(x, y) = exp(− 1
m

(||x − y||2)2) where m is the number of features.

The main bottleneck of the iterative graph refinement is the storage

access to lookup direct and indirect neighbours of a node in the know-

ledge base, as required to compute the feature scores. In each of up to

imax iterations, up to O(|V0|2) candidate arcs are evaluated. The feature

computation in Equations 3.2 and 3.3 is based on O(|V0|2) 2-hop paths,
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and weighting functions and similarity measures can require additional

arc lookups. Fortunately, in practice, terms have a limited outdegree,

i.e. a limited number of translation, synonym and means arcs, so the

graph is extremely sparse.

Additionally, since the model is only updated once per iteration i and

embeds neighbourhood properties in Gi−1 into a given feature vector,

each of the large number of candidate arc assessments made within an

iteration can be made independently. Hence, parallelizing the mapping

process is trivial.

3.5.2 Evaluation Metrics

For evaluating the results, we rely on the standard metrics precision

and recall. These two measures have their roots in document retrieval.

Recall scores reveal what fraction of all correct (relevant, desired) items

is in the set of items selected by the system. This is also known as the

sensitivity. Precision scores, in contrast, indicate what fraction of all

items selected by the system are actually correct items. This is also

known as the positive predictive value. In document retrieval, the items

are documents or publications, and the correct ones are the ones that

users consider relevant for a given query. In our context, the items we

wish to assess are means arcs from term nodes to semantic nodes and

the correct ones are the ones where the semantic node indeed reflects

one of the senses of the term designated by the respective term node.

These scores can also be expressed in a slightly different terminology.

Correct items are often called positives, and incorrect items are accord-

ingly called negatives. If a system tells us an item is a positive, then it can

either be a true positive (assessed as correct by the system, and indeed

correct) or a false positive (assessed as correct by the system, but not

really correct), and similarly for negatives.

Definition 3.8 If PT, PF, NT, NF are the sets of true positives, false

positives, true negatives, and false negatives, respectively, then precision
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p and recall r can be defined as follows:

p =







|PT|

|PT ∪ PF|
PT ∪ PF 6= ∅

1 otherwise
(3.14)

r =







|PT|

|PT ∪ NF|
PT ∪ NF 6= ∅

1 otherwise
(3.15)

Neither precision nor recall is necessarily very useful on its own. A

trivial classifier that accepts all items has a perfect recall of 1, while a

classifier that does not accept any items obtains an optimal precision of 1.

In order to compare different evaluation results, one of several composite

measures can be used, for instance the break-even point of precision

and recall (criticized in Sebastiani, 2002, p.36), or the Fβ-measure (van

Rijsbergen, 1979, ch.7).

Definition 3.9 If p denotes the precision score, and r denotes the recall

score, then the Fβ-measure is computed as

Fβ =







(β2 + 1)pr

β2p + r
βp + r 6= 0

0 otherwise
(3.16)

for β ≥ 0, where β = 2 for example would imply that precision is

weighted twice as much as recall.

Most commonly, β = 1 is selected, which leads to the well-known F1-

measure (also known as F -score) that is equivalent to the harmonic

mean of precision and recall.

F1 =







2pr

p + r
p + r 6= 0

0 otherwise
(3.17)

Finally, we often speak about the accuracy of a resource. In relation to

the terminology used above, the accuracy could be computed as

|PT ∪ NT|

|PT ∪ PF ∪ NT ∪ NF|
,
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i.e. the fraction of all items that were correctly assessed. However,

when evaluating a sample of a resource, all items involved have already

been accepted by the system, so NT and NF are 0, and the accuracy is

equivalent to the precision.

3.5.3 Dataset

Initial Graph. Following Section 3.3, G0 was constructed with:

• 448,069 existing means arcs (from the input wordnets, mainly Eng-

lish, Spanish, Catalan),

• 10,805,400 translation arcs (from the dictionaries, Wiktionary,

thesauri, and parallel corpora),

• 10,343,601 candidate means arcs (generated following Section 3.3.3,

on average 7.7 per term node).

It contained roughly 129,500 semantic nodes and 1.3 million term nodes

with candidate arcs (5 million overall).

Training Set. We added 2,445 human-classified means arcs for training,

out of which 610 were positive, 1,835 were negative examples. The

training set was compiled by manual annotation of candidate means arcs

as either positive or negative for randomly selected French and German

terms, rather than for randomly selected arcs. This means that the risk

of overfitting is reduced and the learner is channelled to focus explicitly

on the distinction between negative and positive examples for a given

word rather than coincidental differences between different words.

Validation Set. We additionally used a validation set of 2,901 candid-

ate means arcs for French and German terms, manually annotated as

positive or negative using the same methodology, and selected 1 minus

F1 scores with respect to this validation set on the output graph for

wmin = 0.6, ŵmin = 0.5 as the loss function. A perfect F1 score (and

zero loss) would be obtained if all correct candidate means arcs in this

validation set (i.e. those manually assessed as positive) are accepted

when applying these thresholds, and none of the incorrect means arcs in

the validation set (those manually assessed as negative) are accepted.
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Table 3.3: Iterations of algorithm with validation set scores (for wmin = 0.7,
ŵmin = 0.6)

Graph Precision Recall F1 # Accepted
means Arcs

G0 N/A 0.00% 0.00% 0
G1 83.96% 67.42% 74.79% 1,540,206
G2 83.70% 68.48% 75.33% 1,594,652
G3 83.89% 68.64% 75.50% 1,595,763
G4 83.90% 67.88% 75.04% 1,573,395

Table 3.4: Precision of UWN result graph

Dataset Sample Size Precision (Wilson)

French 311 89.23% ± 3.39%
German 321 85.86% ± 3.76%
Mandarin Chinese 300 90.48% ± 3.26%

3.5.4 Results for Means Arcs

Algorithm. The algorithm ran for four iterations until it failed to im-

prove the F1-score on the validation set, as shown in Table 3.3, taking

multiple days to complete on a single machine. The input graph G0 does

not cover any of the validation arcs, and thus has a recall and F1-score

of 0%. English is the most widely represented language within the input

graph, both with respect to the input wordnets and for the translations,

so the first iteration provided for the most significant gains and already

delivered excellent results. In the next iteration, G1 served as the in-

put graph, leading to an improved F1-score for G2 because a larger

range of translation terms are equipped with non-zero means arcs in G1

compared to G0. These improvements decrease very quickly, since the

additional amount of information available to the feature computation

process, compared to previous iterations, keeps diminishing.
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Figure 3.5: Precision-recall curve on validation set for G3 when wmin =
ŵmin

Figure 3.6: Excerpt from UWN graph with means arcs from terms to three
semantic nodes
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Precision-Recall Tradeoff. At this point, we have the choice of pre-

ferring high precision, e.g. G2 has 91.59% precision at 44.55% recall for

wmin = 0.9, ŵmin = 0.75, or high recall, e.g. G3 gives us 73.92% precision

at 80.30% recall for wmin = 0.3, ŵmin = 0.25. Our loss function balances

precision and recall, making G3 the most profitable graph. Figure 3.5

shows the tradeoff between precision and recall on G3. For the final

UWN output graph, we chose wmin = 0.6, ŵmin = 0.5 as it provided

good coverage at a reasonable precision.

Assessment. Figure 3.6 provides an excerpt from this graph, highlight-

ing how words in different languages have been disambiguated and

linked to appropriate semantic entities constituting meanings of the

English word ‘school’, e.g., in French, the term ‘banc’ is used to refer to a

school of fish. We recruited human annotators for French, German, and

Mandarin Chinese, which were asked to evaluate randomly chosen arcs

in the respective language from the output graph. We rely on Wilson

score intervals at α = 0.05 (Brown et al., 2001) to generalize our find-

ings in a statistically significant manner, as listed in Table 3.4. These

randomly chosen arcs are not related to the training or validation sets,

which moreover did not contain any Mandarin Chinese terms, so the

results show that a surprisingly high level of precision can be obtained

even cross-lingually.

It must be pointed out that it is not possible to reliably evaluate the

accuracy of a wordnet using pre-existing wordnets, as they do not fulfil

the closed world assumption, i.e. a means arc not occurring in an existing

wordnet does not warrant the conclusion that the link is false. This is

particularly true for current non-English wordnets, which often have

limited coverage and semantic inventories based on older versions of

WordNet.

Examples of false positives include for instance the German word

‘Schuljahr’, which was correctly linked to a semantic node representing

academic years, but also linked to a semantic node for ‘schoolday’, which

is not correct. Cases of false negatives include the German word ‘Schule’,

which was correctly linked to semantic nodes for ‘school’ in the sense of

educational institutions and groups of artists or thinkers, among others,

but was not linked to the semantic node for the temporal meaning of

‘school’ or ‘schoolday’, as in ‘stay after school’.
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Table 3.5: Coverage of final UWN graph with respect to accepted candidate
means arcs as well as terms.

means Arcs Distinct Terms

Overall 1,595,763 822,212

By Language
German 132,523 67,087
French 75,544 33,423
Esperanto 71,247 33,664
Dutch 68,792 30,154
Spanish 68,445 32,143
Turkish 67,641 31,553
Czech 59,268 33,067
Russian 57,929 26,293
Portuguese 55,569 23,499
Italian 52,008 24,974
Hungarian 46,492 28,324
Thai 44,523 30,815
Others 795,782 427,216

By Lexical Category
Nouns 1,048,003 589,536
Verbs 221,916 88,189
Adjectives 289,328 147,257
Adverbs 36,095 26,254

Coverage. Table 3.5 shows the coverage of the output graph. Bearing

in mind that the final UWN graph retains only candidate means arcs,

these figures do not include any means arcs imported from the input

wordnets, and only count term nodes that are connected to semantic

nodes via these new candidate means arcs. There are terms in more than

200 languages in UWN.

The most well-represented languages result quite directly from the

selection of translations in the input graph G0. We found that terms

with translations to many languages had high chances of being included.

Our approach thus successfully addresses a long-standing problem in
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automatic construction of wordnets, namely that of insufficient coverage

of commonly used words, which tend to be more polysemous. Using

sophisticated features, it carefully benefits from cross-lingual evidence

to find meanings of such terms, while previous approaches had trouble

coping with the polysemy of commonly used words.

The terms in UWN have means links to a total of 80,620 distinct se-

mantic nodes. Of course, when pursuing this lexical integration strategy,

lexical gaps and incongruences are a problem, i.e. we do not cover

language-specific concepts that are not represented in the original in-

ventory of semantic entities. For instance, the German word ‘Feierabend’

means the finishing time of the daily working hours, which is not rep-

resented in WordNet. We address this problem in Chapters 4 and 5.

The break-down by part-of-speech shows that the majority of terms

are nouns. Table 3.6 provides average degrees with respect to means arcs

for term nodes (out-degree) and semantic nodes (in-degree), revealing

the level of polysemy of terms according to UWN. The middle column

shows average out-degrees when term nodes with only one means arc

are excluded.

3.5.5 Results for Semantic Relations

Cross-Lingual Transfer. We further evaluated to what extent relation-

ships given by Princeton WordNet apply to UWN. Some might contend

that using a taxonomy based on one set of languages cannot serve as

a structural basis that does justice to the organization of another lan-

guage’s lexicon. We believe that this is mainly an issue of accounting

for lexical gaps. As discussed earlier in Section 2.3.3, if in one language

birds and insects are considered animals and in another they are not,

then there are actually distinct concepts of animals that need to be dis-

tinguished. Thus, such issues can be addressed by adding new semantic

entities and integrating them into the taxonomy, as will be discussed in

Chapters 4 and 5, respectively.

Our working assumption is that relations between two semantic

entities, e.g. WordNet’s hypernymy, at an abstract level apply independ-

ently of the language of the terms associated with them. This is similar

to the assumption made in WordNet that many relations apply at the
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Table 3.6: Average degree with respect to means arcs of term nodes
(out-degree) and semantic nodes (in-degree)

Term Node
Out-Degree

Term Node
Out-Degree
Excluding

Monosemous

Semantic Node
In-Degree

(Multilingual)

Nouns 1.78 3.20 12.76
Verbs 2.52 4.24 16.12
Adjectives 1.96 3.63 15.19
Adverbs 1.37 2.53 9.97

Total 1.94 3.38 13.56

abstract synset level, independently of which particular synonyms of

that synset are considered.

Assessment. For several types of relations, randomly selected links

between two semantic entities were assessed, where both semantic

entities have associated German language terms (linked via means arcs).

Table 3.7 shows that the overall precision is high. Incorrect relationships

resulted almost entirely from incorrect means arcs.

In addition to relations between synsets, WordNet also provides rela-

tions between specific words (with respect to meanings of those words).

Such relations cannot be transferred directly to UWN, since it is not

known to which pairs of involved terms of the corresponding synsets

they apply. However, in some cases, we can infer from them more

generic relationships between semantic entities. For instance, when

WordNet tells us that the word ‘scholastic’ is derivationally related to the

word ‘school’, we can interpret this as a generic indicator of semantic

relatedness between semantic entities. Antonymy relationships between

words such as ‘good’ and ‘bad’ are re-interpreted as a generic form of se-

mantic opposition between semantic entities (opposite relation). These,

too, were evaluated in Table 3.7.
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Table 3.7: Quality assessment for imported relations

Precision Sample
Relation (Wilson Interval) Size

hypernymy 87.1% ± 4.8% 182
instance 88.8% ± 4.6% 174
similarity 92.0% ± 3.8% 181
category 93.3% ± 4.5% 100
meronymy (part-of) 94.4% ± 4.1% 102
meronymy (member-of) 92.7% ± 4.0% 145
meronymy (substance-of) 95.6% ± 3.5% 108

antonymy (as sense opposi-
tion)

94.3% ± 3.9% 117

derivation (as semantic simil-
arity)

94.5% ± 4.0% 104

Gloss Descriptions. UWN also includes hasGloss links connecting

semantic entities with their English language glosses from WordNet.

These are textual descriptions that define or explain the meanings in-

tended to be associated with semantic entities. The English glosses

generally also apply to non-English terms attached to the semantic en-

tities, which is an important asset also in NLP applications, as shown

later on in Section 3.5.8. Obtaining non-English gloss descriptions is

non-trivial. One solution we investigated is using sophisticated machine

translation systems (de Melo and Weikum, 2010b). The quality varies

greatly and depends on the machine translation system and the respect-

ive language pair. Fortunately, even syntactically incorrect translations

can suffice as contextual information for word sense disambiguation, for

example. Another solution is to rely on additional knowledge sources

providing glosses in many different languages, a strategy we pursue in

later chapters.



3.5. Results 65

3.5.6 Alternative Inventory of Semantic Entities

In an additional set of experiments, we evaluated how generic our

approach is by testing it on an alternative inventory of semantic entities.

Roget’s Thesaurus, first published by Peter Mark Roget in 1852, is the

most well-known thesaurus in the English-speaking world (Hüllen,

2004). The thesaurus has been used as a lexical knowledge base in

several different tasks, including word sense disambiguation (Yarowsky,

1992) and analysis of textual cohesion (Morris and Hirst, 1991).

We took advantage of the work by Cassidy (2000), who made the

American 1911 edition of Roget’s Thesaurus (Mawson, 1911) available in

digital form with minor extensions. Although this version is provided

as a plaintext file, parsing it in order to obtain a lexical database re-

quired considerable additional effort. We relied on a recursive top-down

approach to identify the top-level divisions and various sorts of sub-

divisions, all the way down to the level of headwords. Under each

headword, one finds one or more part-of-speech markers followed by

groups of terms or phrases relating to the headword, as displayed in

Figure 3.7. These groups, delimited by semicolons or full stops, can

be treated as reasonably fine-grained semantic entities, reflecting much

finer distinctions than the very general headwords. For instance, the

three terms ‘withdraw’, ‘take from’, ‘take away’ in Figure 3.7 would form a

single semantic entity.

In our case study, we investigated attaching French term entities to

these semantic entities. We used translation information derived from

English-French translation dictionaries, amounting to a total of 78,000

translation arcs and a coverage of around 34,000 English terms and

48,000 French terms. We created a training dataset of 731 candidate arcs

between term entities and semantic entities. The random test set consists

of 1,012 labelled arcs of this form. For additional details, please refer to

de Melo and Weikum (2008c).

With these inputs, we then built a French version of Roget’s Thesaurus

in a single iteration. Tables 3.8 and 3.9 give the results without and

with the French OpenOffice thesaurus as background knowledge, re-

spectively, for several choices of wmin and ŵmin. The results are more

than satisfactory, given the difficulty of such disambiguation tasks, and

demonstrate the viability of our approach despite our designation of
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#38. Nonaddition. Subtraction. -- N. subtraction, subduction|!;
deduction, retrenchment; removal, withdrawal; ablation, sublation[obs3];
abstraction &c. (taking) 789; garbling,, &c. v. mutilation,
detruncation[obs3]; amputation; abscission, excision, recision; curtailment
&c. 201; minuend, subtrahend; decrease &c. 36; abrasion.

V. subduct, subtract; deduct, deduce; bate, retrench; remove,
withdraw, take from, take away; detract.

garble, mutilate, amputate, detruncate[obs3]; cut off, cut away, cut
out; abscind[obs3], excise; pare, thin, prune, decimate; abrade, scrape,
file; geld, castrate; eliminate.

diminish &c. 36; curtail &c. (shorten) 201; deprive of &c. (take) 789;
weaken.

Adj. subtracted &c. v.; subtractive.
Adv. in deduction &c. n.; less; short of; minus, without, except,

except for, excepting, with the exception of, barring, save, exclusive of,
save and except, with a reservation; not counting, if one doesn’t count.

Figure 3.7: Excerpt from Roget’s Thesaurus text file.

Table 3.8: Evaluation of Roget’s Thesaurus translation for different choices
of classification thresholds

wmin ŵmin∗ Precision Recall

0.3 0.25 84.05% 77.75%
0.35 0.3 85.80% 75.50%
0.5 0.5 89.49% 66.00%
0.6 0.5 89.38% 61.00%

semicolon groups as the semantic entities, which requires much finer

distinctions than would be necessary at the level of headwords. The

coverage for wmin = 0.3, ŵmin = 0.25, with OpenOffice.org inform-

ation is given in Table 3.10. Figure 3.8 shows an excerpt from the

generated French thesaurus. Note how polysemy can lead to mis-

translations (translating the English ‘deduction’ to ‘ratiocination’ may

make sense in certain contexts, however in this case a different sense

of ‘deduction’ was intended). Similar translations have been generated

in several other languages, and are freely available for download at

http://www.mpi-inf.mpg.de/˜gdemelo/mtrogets/.

http://www.mpi-inf.mpg.de/~gdemelo/mtrogets/
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Table 3.9: Evaluation of Roget’s Thesaurus translation (with additional
background information from the OpenOffice.org thesaurus)

pmin pmin∗ Precision Recall

0.3 0.25 84.94% 81.75%
0.35 0.3 87.64% 78.00%
0.5 0.5 89.40% 67.50%
0.6 0.5 91.01% 63.25%

Table 3.10: Coverage statistics for translation of Roget’s Thesaurus with
additional background knowledge

terms lexicalized
nodes

node
mappings

nouns 11,161 11,628 31,376
verbs 3,624 4,861 14,666
adjectives 6,166 5,418 15,116
adverbs 705 651 1,638

total 21,232 22,560 62,798

3.5.7 Thesaurus Generation from WordNet

UWN itself can also be regarded as a multilingual thesaurus, however

with very fine-grained semantic distinctions. In a separate study, we

showed how parallel corpora can be used to obtain example sentences

for specific meanings of words (de Melo and Weikum, 2009a). With

such meaning-specific examples, users are more easily able to grasp the

differences between different uses of a word.

Often, however, users are simply looking for words that are some-

what related, without any particular interest in subtle differences in

meaning. To produce a more conventional associative thesaurus where

words that are loosely related are listed together, we can rely on a simple

recursive graph exploration. Algorithm 3 looks up all semantic entities
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#38. N. soustraction; prélèvement, déduction, ratiocination;
enlèvement, abaissement, élimination, déménagement, suppression, mise
à pied, retranchement, réduction; prélèvement, retraite, ablation,
retrait, claustration; inattention, idée abstraite, abstraction;
mutilation; amputation, exérèse; réduction, restriction, abaissement,
diminution, raccourcissement; réduction, abaissement; frottement,
abrasion, éraflure;

V. retrancher, soustraire, déduire, prélever, rabattre, décompter;
déduire, diminuer, inférer, rabattre; réduire, enlever, restreindre,
prélever, tirer, ôter, retirer, éloigner, emporter; retrancher,
enlever, prélever, ôter, éloigner, emporter, emmener; enlever, amputer,
mutiler, estropier, altérer, fausser; abattre, retrancher, tailler;
découper; élaguer, tailler, éplucher, rogner, diluer, pruneau,
s’effiler, exciser; éroder, gratter, user, utiliser, décimer, racler;
castrer, châtrer; castrer, châtrer, anglaiser; évacuer; rabattre,
soustraire; retrancher, réduire, restreindre, écourter, raccoucir;
débiliter;

Adj. soustrait, soustraites, soustraite, soustraits;
Adv. moins; excepté, hormis, sauf, en outre, moins, hors, dénué de,

à l’exception de;

Figure 3.8: Excerpt from translation of Roget’s Thesaurus text file.

for a term as well as certain related semantic entities, and then forms the

union of all lexicalizations of these entities. Table 3.11 provides example

output of the algorithm with settings lp = 2, lc = 2, lg = 1 on UWN’s

output graph. For the German language, the thesaurus contains a total

of 67,087 terms, each entry listing 31 additional related terms on average.

3.5.8 Semantic Relatedness

Task. We studied semantic relatedness assessment as an application

of UWN in conjunction with Princeton WordNet’s semantic relations

and descriptions. The objective is to automatically estimate the degree

of relatedness between two words, producing scores that correlate well

with the average ratings by human evaluators. For instance, most hu-

mans rate ‘curriculum’ as much more closely related to a word like ‘school’

than to a word like ‘water’. Such relatedness assessments are useful for

a number of different tasks in information retrieval and text mining.

Making the assessments automatically is an active research area, e.g.
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Table 3.11: Sample entries from generated German thesaurus

headword: Akademiker
Absolvent, Adressat, Akademie, Akademikerin, Assistenz-Professor,
Assistenz-Professorin, außerordentlicher Professor, außerordentliche
Professorin, Begünstigter, Buchgelehrte, Buchgelehrter, Empfänger,
Erzieher, Erzieherin, Gastprofessor, Gastprofessorin, Geist,
Gymnasium, Hochschule, Hochschullehrer, Hochschullehrerin,
Intellektuelle, Intellektueller, Lehrer, Lehrerin, Lehrstuhlinhaber,
Lehrstuhlinhaberin, ordentlicher Professor, Professor, Professorin,
Pädagoge, Pädagogin, Rezipient, Schüler, Stubengelehrte,
Stubengelehrter, Student
akademisch, intellektuell

headword: lernbegierig
Fleiß, Stubengelehrsamkeit
achtsam, angewandt, beflissen, behutsam, eifrig, emsig, fleißig,
geflissentlich, gelehrt, sorgfältig, sorgsam, wissenschaftlich

Table 3.12: Evaluation of semantic relatedness measures, using Pearson’s
sample correlation coefficient (r)

Dataset GUR65 GUR350 ZG222
r Cov. r Cov. r Cov.

Inter-Annotator Agreement 0.81 (65) 0.69 (350) 0.49 (222)

Wikipedia (ESA) 0.56 65 0.52 333 0.32 205
GermaNet (Lin) 0.73 60 0.50 208 0.08 88

UWN (simn) 0.77 60 0.62 242 0.43 106
UWN (simc) 0.77 60 0.68 242 0.52 106
UWN (simm) 0.80 60 0.68 242 0.51 106
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Algorithm 3: Thesaurus generation

Input: a lexical knowledge base G = (V, A, Σ), number of parent class levels lp,
number of child class levels lc, number of levels for other general relations
lg, set of acceptable general relations R, global set of all of term nodes VT

Objective: generate a thesaurus that lists related terms for any given term

1: procedure GENERATETHESAURUS(G = (V, A, Σ), R, VT)
2: for each term t in V ∩ VT do
3: T ← ∅ ⊲ the list of related terms for t

4: for each semantic node n ∈ Γo(t, A) \ VT do
5: for each node n′ ∈ RELATED(G, n, lp, lc, lg, R) do
6: T ← T ∪ (Γi(n

′, A) ∩ VT) ⊲ add terms of n′ to T

7: output T as list of related terms for t

8: function RELATED(G = (V, A, Σ), n, lp, lc, lg, R)
9: S ← {n}

10: for each node n′ ∈ Γo(n, A) \ VT do ⊲ recursively visit related nodes
11: if (n subclass of n′) ∧ (lp > 0) then
12: S ← S ∪ RELATED(G, n′, lp − 1, 0, 0, ∅)
13: else if (n′ subclass of n) ∧ (lc > 0) then
14: S ← S ∪ RELATED(G, n′, 0, lc − 1, 0, ∅)
15: else if (∃(n, n′, r, w) ∈ A : r ∈ R) ∧ (lg > 0) then
16: S ← S ∪ RELATED(G, n′, 0, 0, lg − 1, R)

17: return S

Resnik (1995) has been cited more than a thousand times. Many of the

well-known techniques rely on a lexical database like WordNet.

Approach. In Section 3.4.5, we described measures of semantic related-

ness between semantic entities. If we are instead given two term nodes

t1, t2, we can estimate their relatedness as

rel(t1, t2) = max
n1∈Γo(t1,A)

max
n2∈Γo(t2,A)

w(t1, n1)w(t2, n2)sim(n1, n2)

using the measures from Section 3.4.5 and w(t, n) denoting the means

arc weight from t to n (or 0 if none).
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Results. Three German-language datasets (Gurevych, 2005; Zesch and

Gurevych, 2006) that capture the arithmetic mean of relatedness assess-

ments made by human judges serve as our ground truth. For instance,

German words for ‘jewel’ and ‘gem’ were assessed as highly related

(98.5%), German words for ‘mountain’ and ‘coast’ were rated as some-

what related (42.7%), and German words for ‘glass’ and ‘magician’ were

judged as barely related (14.6%). Such arithmetic means were com-

pared with assessments made by our methods using Pearson’s sample

correlation coefficient (also known as the product-moment correlation

coefficient).

In Table 3.12, the first row lists the inter-annotator agreement between

different human evaluators and the number of term pairs rated for each

dataset. The following rows show the results for our three semantic

relatedness measures on the UWN graph, as well as scores for two altern-

ative measures as reported by Gurevych et al. (2007): the state-of-the-art

explicit semantic analysis (ESA) method by Gabrilovich and Markovitch

(2007) on Wikipedia, and a more traditional method based on GermaNet,

the manually compiled German wordnet.

The results suggest that UWN can be more useful than hand-crafted

resources, with respect to both the correlation with human judgments

and the coverage (the number of term pairs from the dataset where both

terms are found in the respective lexical database). Another advantage

of our approach is that it may also be applied without any further

changes to the task of cross-lingually assessing the relatedness of terms

in different languages.

3.5.9 Cross-Lingual Text Classification and Vector Spaces

Text Classification. Another applied task we considered was cross-

lingual text classification. Text classification is the task of assigning text

documents to the classes or categories considered most appropriate,

thereby e.g. topically distinguishing texts about thermodynamics from

others dealing with quantum mechanics. This is commonly achieved by

representing each document using a vector in a high-dimensional feature

space where each feature accounts for the occurrence of a particular

term from the document set (a bag-of-words model), and then applying
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Table 3.13: Cross-lingual text classification results

Precision Recall F1

English-Italian
Terms only 69.90% 66.81% 68.32%
Terms and meanings 83.24% 70.49% 76.34%

English-Russian
Terms only 57.86% 46.67% 51.66%
Terms and meanings 67.87% 74.94% 71.23%

Italian-English
Terms only 71.97% 77.06% 74.43%
Terms and meanings 76.59% 79.67% 78.10%

Italian-Russian
Terms only 59.65% 57.15% 58.37%
Terms and meanings 68.03% 79.26% 73.21%

Russian-English
Terms only 68.36% 66.34% 67.34%
Terms and meanings 73.56% 80.29% 76.78%

Russian-Italian
Terms only 67.85% 57.48% 62.24%
Terms and meanings 71.38% 72.21% 71.79%

machine learning techniques such as support vector machines. For more

information, please refer to the survey by Sebastiani (2002).

Cross-Lingual Text Classification. Cross-lingual text classification is

an extremely challenging variant, where the documents to be classified

are in a language distinct from the language of the labelled training

documents. Since documents from two different languages obviously

have completely different term distributions, the conventional bag-of-

words text representations perform poorly. Instead, it is necessary to

induce representations that tend to give two documents from different

languages similar representations when their semantic content is similar.
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One means of achieving this is the use of language-independent

conceptual feature vector spaces where feature dimensions represent

meanings of terms rather than just the original terms. In our experi-

ments, the set of terms in a document d is determined by tokenizing

the document text. Text is preprocessed by removing stop words and

performing part-of-speech tagging as well as lemmatization using the

TreeTagger (Schmid, 1994). We attempt to recognize multi-word expres-

sions by maintaining an n-gram window (limited to n ≤ 3 for practical

reasons) and performing lookups in WordNet or UWN to see whether

matching multi-word expressions exist. In addition to capturing the

original term frequencies for each term, the feature space is augmen-

ted by mapping each term to the respective semantic nodes listed by

Princeton WordNet (for English words) or UWN (for other languages).

We embrace a rather simple approach that foregoes disambiguation:

For every occurrence of a term t (after preprocessing), we take all se-

mantic nodes nm with a matching part-of-speech tag, and normalize

their weights by dividing by the sum of their means arc weights. Thus,

if a term has four equally relevant semantic nodes in UWN, then each

receives a local weight of 1
4 . Additionally, all original semantic nodes for

a term pass on their weight to neighbouring nodes immediately connec-

ted via subclass arcs. Summing up the weights of local occurrences of a

token t (either an original document term or a semantic entity identifier)

within a document d, one arrives at document-level occurrence scores

n(t, d), from which one can then compute TF-IDF feature vectors using

the following formula:

f(t, d) =

{

n(t, d) log |D|
|{d∈D | n(t,d)≥1}| {d ∈ D | n(t, d) ≥ 1} 6= ∅

0 otherwise

(3.18)

where D is the set of training documents.

Experiments. This approach was tested using a cross-lingual dataset

derived from the Reuters RCV1 and RCV2 collections of newswire art-

icles (Reuters, 2000a,b). The articles are mostly business related, and

have topical class labels like ‘accounts/earnings’, ‘economic performance’,

and ‘funding/capital’. For several pairs of languages, we created inde-

pendent datasets by randomly selecting 10 topics covered by both lan-
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guages in order to arrive at
(

10
2

)

= 45 separate binary classification tasks

per language pair, each based on 150 training documents in one lan-

guage, and 150 test documents in a second language, likewise randomly

selected with balanced class distributions.

Each dataset was evaluated independently, once using only the stand-

ard bag-of-words TF-IDF representation for terms (only genuine term

frequencies as n(t, d) in Equation 3.18), and once with the extended rep-

resentation that includes mappings to semantic entities as frequencies.

Table 3.13 provides the results. The scores shown were produced with

linear kernel SVMs using the SVMlight implementation in its default

settings, which are known to work well for text classification (Joachims,

1999) – LIBSVM produced similar margins between the two approaches

but overall slightly lower absolute scores. Since many of the Reuters

topic categories are business-related, using only the original document

terms, which include names of companies and people, already works

surprisingly well in some cases, despite the different languages. By

considering semantic entities, both precision and recall are boosted sig-

nificantly. This means that the vectors of documents are more similar

when their topical content is similar, despite the fact that the original

documents are in different languages. Hence, these experiments show,

for instance, that English terms in the training set are being mapped to

the same semantic entities as the corresponding Russian terms in the

test documents. The margins could be boosted even further by invoking

more intelligent word sense disambiguation strategies or using more

advanced semantic expansion strategies (de Melo and Siersdorfer, 2007).

Vector Space Representations. The vector space in our cross-lingual

text classification experiments consists of vectors that describe docu-

ments based on the terms or semantic entities they contain. Semantic

vector representations of this sort can also be used in tasks like informa-

tion retrieval (Salton and McGill, 1986), text similarity assessment, and

document clustering.

A different kind of vector representation can be constructed for terms

themselves, where individual vector space dimensions initially represent

co-occurrence with specific other terms in the text, and a singular value

decomposition (Schütze, 1992) or second-order co-occurrences can be

computed to create more stable representations (Schütze, 1998). As in
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the case of document vectors, we can adapt these approaches to rely on

co-occurrences with semantic entities, leading to a multilingual vector

space where words in different languages can be compared, even if they

do not themselves occur in UWN.

3.6 Discussion

In this chapter, we have presented a novel machine learning approach

for building large-scale multilingual lexical knowledge bases. Statistical

models are applied in multiple iterations to a graph in order to assess and

disambiguate meanings of terms. The resulting resource, called UWN,

contains 1.5 million means relationships for over 800,000 terms in over

200 languages, making it the largest multilingual version of WordNet.

UWN is available at http://www.mpi-inf.mpg.de/yago-naga/uwn/.

Our experiments have shown that UWN is useful in applied tasks.

In addition to the existing applications of WordNet, such as human

consultation (de Melo and Weikum, 2010b), question answering, query

expansion, text classification, semantic relatedness assessment, and

so on, which are now possible for a greater range of languages, we

also anticipate UWN being used for tasks that explicitly make use of

multilingual connections in the network, e.g. cross-lingual information

retrieval or cross-lingual text classification.

We have created a public querying Web site for UWN (Figure 5.6

on page 157) that also accepts user contributions, which in the long run

may allow us to address issues like correcting inaccurate arcs. Since

the confidence estimates derived from the learnt models correlate quite

well with the evaluated precision on the arcs, manual efforts could be

channelled to focus explicitly on arcs with borderline confidence values

and terms without accepted means arcs. An update submitted to the

Web interface or an additionally imported translation dictionary for one

language can subsequently lead to a sufficient amount of accumulated

evidence to sway the model towards accepting mappings in entirely

different languages. Hence, it is safe to expect continued growth and

refinement in the future.

http://www.mpi-inf.mpg.de/yago-naga/uwn/
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One issue that can be raised with regard to the lexical integration

strategy is that it may happen that the set of semantic entities taken from

the input wordnets is too limited to properly reflect language-specific

phenomena. This issue will be resolved in the following chapter.



CHAPTER 4

Entity Integration

4.1 Introduction

We now turn to a second aspect of establishing large-scale knowledge

bases. So far, we have demonstrated how new words (term entities) can

be integrated into a knowledge base with a given inventory of possible

semantic entities. In this chapter, we address the problem of integrating

new semantic entities into a knowledge base.

Motivation. An English lexical knowledge base like WordNet is likely

to lack semantic entities for certain language-specific concepts, e.g. Chi-

nese has words for elder sisters (‘姊’, ‘姐姐’), French has specific types of

educational institutions like grandes écoles, and of course even English

has concepts missing in WordNet, e.g. ‘mockumentary’ refers to a genre of

film and television. We may also want to add domain-specific concepts

or individual entities like cities, movie actors, or biomedical objects to

our knowledge base. Such entities can be imported from separate know-

ledge sources providing their own, independent inventories of entity

identifiers. The challenge then is merging these separate inventories of

entities from different knowledge sources to produce a consistent integ-

rated inventory of semantic entities. Figure 4.1 schematically describes

this strategy. In practice, this will require paying special attention to the

equals relation, which expresses equivalence between entities.

77
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Figure 4.1: Entity integration strategy

The semantic entities could be derived from a wide range of different

sources, e.g. one could take language- and domain-specific thesauri.

One could also use sense induction algorithms to derive semantic entit-

ies from raw text, based on co-occurrence information (Schütze, 1992;

Pereira et al., 1993). Domain-specific entities could come for example

from biomedical or bibliographical datasets in the Linked Data Web

(Bizer et al., 2009). In what follows, we will focus in particular on

the open community-maintained encyclopedia Wikipedia. Wikipedia

has not only turned the Internet into a more useful and linguistically

diverse source of information, but is also increasingly being used in

computational applications as a large-scale source of linguistic and en-

cyclopedic knowledge. It is a splendid resource in this respect, because

it goes beyond WordNet in describing a broad range of domain-specific

concepts (e.g. Diffeomorphism as a concept from differential topology)

as well as individual named entities (e.g. analytical philosopher Hans

Reichenbach). Wikipedia does not cover verb, adjective, or adverb

senses, but in many applications nouns and named entities are the most

important items of interest. Projects like DBpedia (Auer et al., 2007),

YAGO (Suchanek et al., 2007), WikiTaxonomy (Ponzetto and Strube,

2008), Intelligence-in-Wikipedia (Wu and Weld, 2008), and Freebase

(Bollacker et al., 2008) have exploited the semi-structured nature of Wiki-

pedia to produce valuable repositories of formal knowledge that are

orders of magnitude larger than hand-crafted resources.
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Additionally, while the English Wikipedia is the largest and most

popular edition, the first non-English editions went online in March

2001 just two months after the English version, and the number has

grown over the years. There are presently over 200 different editions of

Wikipedia, even for minority languages like Faroese and Dhivehi, each

providing a separate set of articles and categories.

In order to unify separate inventories of semantic entities, we assume

there is some way to obtain equals links that connect equivalent entity

identifiers. These can be mere heuristics, e.g. there has been extensive

research on thesaurus and ontology mapping techniques (see Section

4.2). Later on, in Chapter 5, we will rely on heuristics of this sort to

generate many equals links. Within Wikipedia, this process is even

simpler, as Wikipedia offers cross-lingual interwiki links that e.g. connect

the Japanese article about ‘Education’ to the corresponding articles in

over 100 other languages, and similarly for named entities like UNESCO

or Berlin University of the Arts. In Figure 4.2, we see screenshots of

an English-language article and of a corresponding Japanese-language

article. The cross-lingual links are displayed as a navigational aid in a

box at the side of the article text. Such links are extraordinarily valuable

for cross-lingual applications (Ferrández et al., 2007; Nguyen et al., 2009;

Pasternack and Roth, 2009), and for our purposes can be re-interpreted

as equals links.

Ideally, a set of entities connected directly or indirectly via equals

links would all describe the same entity or concept, as in Figure 4.3.

Genuine equivalence, after all, is a transitive and symmetric relation.

However, heuristic linking functions often produce inaccurate links. Not

only is it easy to confuse similar but reasonably distinct concepts, e.g.

the German Fachhochschule, a specific type of tertiary education institu-

tion, with regular universities. Heuristics sometimes deliver entirely

inappropriate links stemming from disambiguation errors.

Even in Wikipedia, due to conceptual drift, different granularities, as

well as mistakes made by editors and automated bots, we occasionally

find concepts as different as Economics and Manager in the same weakly

connected component in the graph of cross-lingual interwiki links. Fig-

ure 4.4 shows a larger excerpt of the connected component from Figure

4.3, where we see that it conflates the concept of television as a medium

in general with the concept of TV sets as physical devices. Such issues
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Figure 4.2: Wikipedia articles in English and Japanese

are unfortunately much more common than one would expect. Filtering

out inaccurate links would enable us to exploit Wikipedia’s multilin-

guality in a much safer manner and allow us to create an integrated

multilingual inventory of entities.
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Figure 4.3: Entities connected by equals links

Problem Statement. We assume that we are given entity identifiers

from different sources, e.g. different editions of Wikipedia. We further

assume that we have some way of obtaining weighted equals state-

ments that reveal equivalences between entities, as well as so-called

distinctness assertions that will express weighted disequality informa-

tion.

The goal will be to obtain a single integrated knowledge base, where

each connected component cleanly represents a single entity or concept,

and the weighted equals arcs have been reconciled with the weighted

distinctness assertions. These notions will be made clearer later in this

chapter.

Contribution. Our research contributions are:

1. We identify criteria to detect inaccurate connections in Wikipedia’s

cross-lingual link structure.

2. We formalize the task of integrating entities from different sources

and removing inaccurate equals connections between them in

light of distinctness information as a combinatorial optimization

problem. Unlike most previous work on thesaurus and ontology
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Figure 4.4: Connected component with inaccurate links (simplified)

mapping as well as record linkage, this formalization accounts for

the consistency of mappings between more than just two know-

ledge sources and allows capturing distinctness between arbitrary

subsets of entities.

3. We introduce an algorithm that aims to solve this problem in a

minimally invasive way. This algorithm has an approximation

guarantee with respect to optimal solutions.

4. We show how this algorithm can be applied to combine multiple

entity inventories, e.g. all editions of Wikipedia, into a single large-

scale multilingual register of named entities and concepts.

Overview. The rest of this chapter is organized as follows. Section 4.2

discusses related previous work. Section 4.3 specifies what the initial

knowledge sources that serve as input should look like. Section 4.4

describes how we identify inaccuracies in Wikipedia’s cross-lingual link

structure and formalizes the task of reconciling equality information

with distinctness information as an optimization problem. Section 4.5

introduces an approximation algorithm for solving this problem. Finally,

Section 4.6 presents our experimental results, and Section 4.7 discusses

the implications of these results.
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4.2 Previous Work

Entity Linking. Over the years, there have been numerous studies on

heuristics to create mappings between two repositories of entities. In the

EuroWordNet project (Vossen, 1998), this strategy for building a lexical

database was referred to as the merge approach. Rada and Martin (1987)

investigated how medical thesauri like SNOMED and MeSH can be

connected in order to facilitate interoperability, and similar links have

been created in other domains (de Melo and Weikum, 2008a; Lauser et al.,

2008). For ontology alignment, a number of linking heuristics have been

proposed to align classes and individual instances in two ontologies,

ranging from simple string similarity measures to more sophisticated

measures that consider the ontological context (Euzenat and Shvaiko,

2007). Such heuristics can serve as input to our algorithm, which greatly

boosts their value because our algorithm can make use of them to merge

more than two knowledge sources into a single unified knowledge base

while taking unique names assumptions into consideration.

Similarly, in the relational database world and in statistics, there have

been a wide range of entity resolution, deduplication, and record linkage

techniques that first compare the individual attribute fields associated

with a record, and then produce similarity scores between entire records.

Fields have been compared using string similarity measures (Bilenko

and Mooney, 2003), term overlap scores (Cohen et al., 2003), and other

heuristics. Record similarity can be assessed by combining the scores

for individual fields using the Fellegi-Sunter model (Fellegi and Sunter,

1969; Winkler, 1999), weighted sums (Bilenko et al., 2005), or rules (Lee

et al., 2004). See Gu et al. (2003) and Elmagarmid et al. (2007) for surveys.

Additional aspects that have been studied include how to take into

account mutual dependencies between similarity scores (Dong et al.,

2005; Kalashnikov and Mehrotra, 2006) and how to determine potential

match candidates more efficiently (Hernández and Stolfo, 1995; Monge

and Elkan, 1997; Benjelloun et al., 2009).

The entity similarity scores delivered as output by such methods can

as well serve as input to our algorithm, which can then make them more

consistent.
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Bipartite Graphs. When two knowledge sources are connected, the

similarity matrices produced by similarity heuristics of the sort just

mentioned can be interpreted as weights of a bipartite graph. If one

assumes that within each knowledge source all entities are mutually

distinct, then a consistent mapping between the two sources corresponds

to an independent edge set or matching, i.e. a set of pairwise non-adjacent

edges.

The stable marriage problem is the problem of finding a stable matching,

where one removes edges to obtain a matching, choosing the edges based

only on preference rankings, without regard for the precise edge weights.

The assignment problem (also called LSAP, linear sum assignment prob-

lem) considers the task of finding a maximum weight matching, where

the total weight of the retained edges is maximized and the total weight

of the removed edges is minimized. Solutions to this problem can be

found using the Kuhn-Munkres (“Hungarian”) algorithm (Munkres,

1957; Burkard et al., 2009).

The k-index assignment problem goes beyond bipartite graphs by

extending the problem from 2 to k data sources, aiming at connected

components of size k, each consisting of one element from each data

source (Burkard et al., 2009). In our work we study the much more

general case of an arbitrary number of knowledge sources with pos-

sible equivalences between arbitrary nodes in the graph, and an arbit-

rary number of distinctness assertions involving arbitrary sets of nodes

(rather than just distinctness between all nodes within each knowledge

source).

General Graphs. Our integration algorithm uses theoretical ideas put

forward by researchers studying graph cuts (Leighton and Rao, 1999;

Garg et al., 1996; Avidor and Langberg, 2007), as will be explained later

on in further detail.

Our problem setting is related to that of correlation clustering (Bansal

et al., 2004), where nodes of a graph with positively and negatively la-

belled similarity edges are clustered such that similar items are grouped

together, however our approach is much more generic than conventional

correlation clustering, e.g. it supports arbitrary edge and distinctness

weights. This is important, as equals links are often generated by heur-

istics, and may be much less reliable than individual distinctness asser-
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tions. Charikar et al. (2005) studied a variation of correlation clustering

that is more expressive than the standard variant, but since a negative

edge would have to be added between each relevant pair of entities in

a distinctness assertion, the approximation guarantee would only be

O(log n |V |2) and the ability to merge an entity e.g. with all redirects of

another entity at a fixed cost as in our framework would no longer be

given.

McCallum and Wellner (2004) proposed an undirected graphical

model that has similar restrictions and is solved heuristically without

guarantees. Similarly, Bhattacharya and Getoor (2007) developed a

greedy heuristic clustering framework where the cluster similarity can

be set to zero if there is some prior knowledge of distinctness.

Cohen et al. (2000) defined the task of “hardening soft information

sources” by assigning consistently used identifiers to groups of items.

They consider costs for merging possibly distinct items, but their formal-

ization cannot capture the global costs for removing equivalence edges.

Minimally invasive repair operations on graphs have also been stud-

ied for graph similarity computation (Zeng et al., 2009), where two

graphs are provided as input, and need to be compared.

Wikipedia. A number of projects have used Wikipedia as a database of

named entities (Silberer et al., 2008). The most well-known are probably

DBpedia (Auer et al., 2007), which serves as a hub in the Linked Data

Web, Freebase (Bollacker et al., 2008), which combines human input and

automatic extractors, and YAGO (Suchanek et al., 2007), which adds

an ontological structure on top of Wikipedia’s entities. WikiTaxonomy

(Ponzetto and Strube, 2007) re-organizes Wikipedia’s category system

as a taxonomy.

Gabrilovich and Markovitch (2007) interpreted Wikipedia’s articles

as concepts in order to assess semantic relatedness between texts, which

Hassan and Mihalcea (2009) extended for cross-lingual text similarity.

Wikipedia has further been used cross-lingually for cross-lingual IR (Su

et al., 2007; Nguyen et al., 2009), question answering (Ferrández et al.,

2007) as well as for learning transliterations (Pasternack and Roth, 2009),

among other things. Adar et al. (2009) and Bouma et al. (2009) show

how cross-lingual links can be used to propagate information from one

Wikipedia’s infoboxes to another edition.
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Mihalcea and Csomai (2007) have studied predicting new links

within a single edition of Wikipedia. Sorg and Cimiano (2008) con-

sidered the problem of suggesting new cross-lingual links, which could

be used as additional inputs in our problem. Völker et al. (2007) investig-

ated a machine learning approach for learning distinctness information

in ontologies.

4.3 Knowledge Sources

Input Graph. As input, our approach takes one or more knowledge

sources as well as equals links connecting entities from those knowledge

sources. The links express likely equivalence relationships, but contain

false positives. To simplify notation, we model the input here as a

simple undirected graph G = (V, E) with edge weights w(e), in which

undirected edges represent equals links in either direction. This is a

natural choice, as equality is a symmetric relation. A knowledge base

G′ = (V, A, Σ) in the sense of Chapter 2 can easily be converted into

such a graph by defining E as the set of all node pairs connected via

equals links in either direction, and edge weights straightforwardly

corresponding to the sum of all weights of relevant equals arcs.

Definition 4.1 (Equivalence Graph) Given a knowledge base G′ =

(V, A, Σ), the corresponding undirected graph of equivalences is defined

as G = (V, E) with E = {(u, v) | (u, v, r, w) ∈ A ∨ (v, u, r, w) ∈

A where r = equals, u 6= v}. Given an edge e = (u, v) ∈ E and r =

equals, the edge weight of e is

w(e) =
∑

(u,v,r,w)∈A

w +
∑

(v,u,r,w)∈A

w.

Equivalence Information. In practice, the equals links can be ob-

tained using various types of heuristics. In de Melo and Weikum (2008a),

we investigated mapping multilingual thesauri like AGROVOC (Leat-

herdale et al., 1982) with other resources. In de Melo and Weikum

(2010c), we interlinked registries for ISO 639, ISO 15924, and other

language- and geopolitical standards with WordNet and Wikipedia (see

also Section 4.6.6). In Chapter 5, we show how entities from Wikipedia

can be connected to WordNet synsets. To keep things simple for now,
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we focus only on cross-lingual links between entities in Wikipedia in

most of this chapter.

The union of cross-lingual links provided by all editions of Wikipedia

can easily be modelled using a simple undirected graph as described

above. In our experiments, we simply interpret each original cross-

lingual link as an equals link with a weight of one. This implies w(e) = 2

if there are reciprocal links between the two pages, 1 if there is a single

link, and 0 otherwise. However, our framework is flexible enough to

deal with more advanced weighting schemes. For instance, one could

easily plug in cross-lingual measures of semantic relatedness between

article texts based for instance on vector dot products.

Additionally, we also consider redirect links that automatically re-

direct Wikipedia users from one page to another. When browsing Wiki-

pedia on the Web, interwiki links to redirects are handled transparently,

however there are many redirects with titles that do not co-refer, e.g.

redirects from members of a band to the band, or from aspects of a topic

to the topic in general. We only inferred equals from redirect links in

the following cases:

1. the titles of redirect source and redirect target match after case con-

version, string encoding normalization using the Unicode NFKD

standard (Davis and Dürst, 2008), diacritics removal, and removal

of punctuation characters

2. the redirect uses certain templates or categories that indicate co-

reference with the target (alternative names, abbreviations, etc.)

We treat redirections like reciprocal interwiki links by assigning them a

weight of 2.

Inaccurate Equivalence Information. It turns out that an astonishing

number of connected components in this graph harbour inaccurate links

between entity identifiers. For instance, the Esperanto article Germana

Imperiestro is about German emperors and another Esperanto article

Germana Imperiestra Regno is about the German Empire, but, as of

October 2010, both are linked to the English and German articles about

the German Empire. Over time, some inaccurate links may be fixed, but

in this and in large numbers of other cases, the imprecise connection has
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persisted for many years. In order to detect such cases, we need to have

some way of specifying that two articles are likely to be distinct.

4.4 Considering Distinctness Information

4.4.1 Distinctness Assertions

Often, we are able to guess that certain entities are likely to be distinct.

In Figure 4.4, we saw a connected component conflating the concept of

television as a medium with the concept of TV sets as devices. Here,

among other things, we would like to formally express that Television

and T.V. are very likely distinct from Television set and TV set. In

general, we may have several sets of entities Di,1, . . . , Di,li
, for which we

would like to assert that any two entities u,v from different sets are pair-

wise distinct with some degree of confidence or weight. In our example,

Di,1 = {Television, T.V.} would be one set, and Di,2 = {Television

set, TV set} would be another set, which means that we are assuming

Television, for example, to be distinct from both Television set and

TV set. Figure 4.5 presents an extended scenario, where we have a third

set Di,3 containing Television station and TV station, which are also

considered pairwise distinct from members of the other sets.

Definition 4.2 (Distinctness Assertions) Given a set of nodes V , a

distinctness assertion is a collection Di = (Di,1, . . . , Di,li
) of pairwise

disjoint (i.e. Di,j ∩ Di,k = ∅ for j 6= k) subsets Di,j ⊂ V expressing that

any two nodes u ∈ Di,j , v ∈ Di,k from different subsets (j 6= k) are

asserted to be distinct from each other with some weight w(Di) ∈ R.

Our approach relies on the fact that there are reasonably good heuristics

to produce such weighted distinctness assertions automatically. For

example, any unique names assumption (Russell and Norvig, 2010, p.

299) for an individual knowledge source implies that distinct entity

identifiers from that knowledge source refer to distinct entities. In the

case of Wikipedia, we found that many components with inaccurate

links can be identified automatically with the following distinctness

assertions.

First of all, an important observation is that two articles from the

same Wikipedia edition very likely describe distinct concepts unless
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Figure 4.5: Distinctness assertion example

they are redirects of each other. For example, the entity Educational

television is distinct from Educational Television (Hong Kong) – the

latter is a specific TV series, and Television is distinct from Television

set.

Criterion 4.1 (Distinctness of Articles). For each language-specific edi-

tion of Wikipedia, a separate assertion (Di,1, Di,2, . . . ) can be made,

where each Di,j contains an individual article together with its respect-

ive redirection pages. Redirection pages that are marked by a category

or template as involving topic drift are kept in a separate Di,j , distinct

from the one of their redirect targets.

The criterion additionally accounts for the fact that certain redirects

are explicitly marked by a category or template as involving topic drift,

e.g. redirects from songs to albums or artists, from products to compan-

ies, etc. Similar distinctness assertions can be created for categories. For

instance, the category Documentary films is distinct from the category

Documentary filmmakers.

Criterion 4.2 (Distinctness of Categories). For each language-specific

edition of Wikipedia, a separate assertion (Di,1, Di,2, . . . ) is made, where
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each Di,j contains a category page together with any (so-called “soft”)

redirects.

Another criterion can be used to give us more specific distinctness

information when there is an interwiki link with an anchor identifier.

The English article Division by zero, for instance, links to the German

Null#Division. The latter is only a part of a larger article about the

number zero in general, so we can add a distinctness assertion to ensure

that Division by zero is separated from Null.

Criterion 4.3 (Distinctness for Anchor Identifiers). For each interwiki

link or redirection with an anchor identifier, we add an assertion (Di,1, Di,2)

where Di,1,Di,2 represent the respective articles without anchor identifi-

ers.

These different types of distinctness assertions can automatically be

instantiated for all articles and categories of different Wikipedia editions.

The assertion weights are tunable; the simplest choice is using a uniform

weight for all assertions (note that these weights are different from the

edge weights in the graph). We will revisit this issue in our experiments.

4.4.2 Enforcing Consistency

Reconciling Equivalence and Distinctness. Given a graph G repres-

enting equals links between entity identifiers, as well as distinctness

assertions D1, . . . , Dn with weights w(Di), we may find that nodes that

are asserted to be distinct are in the same connected component, as in

Figure 4.4. We can then attempt to perform repair operations to reconcile

the graph’s link structure with the distinctness assertions and obtain

global consistency. There are two ways to modify the input, and for

each we can think of the corresponding weights as a sort of cost that

quantifies how much we are changing the original input:

a) Edge cutting: We may remove an edge e ∈ E from the graph,

paying cost w(e).

b) Distinctness assertion relaxation: We may remove a node v ∈ V

from a distinctness assertion Di, paying cost w(Di).

Removing edges allows us to split connected components into multiple

smaller components, thereby ensuring that two nodes asserted to be
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distinct are no longer connected directly or indirectly. The graph in Fig-

ure 4.4 could be reconciled with a distinctness assertion between English

Wikipedia entities {Television, T.V.} and {Television set, TV set}

by deleting the edge from the Spanish Televisor (‘TV set’) to the Japan-

ese ‘television’ article, for instance. In contrast, removing nodes from

distinctness assertions means that we decide to give up our claim of

them being distinct, instead allowing them to share a connected com-

ponent.

(a) Trivially remove all edges (b) Three component solution

(c) Three component solution (d) Semantically desired solution

Figure 4.6: Potential solutions

Solution Costs. Figure 4.6 shows some possible ways of modifying

the input from Figure 4.4 to satisfy a distinctness assertion between

{Television, T.V.} and {Television set, TV set}. Additionally, there



92 Chapter 4. Entity Integration

is also the option of just keeping the input graph unchanged by remov-

ing nodes from the distinctness assertion.

Each of these solutions is consistent, but they are certainly not all

equally desirable. Our reliance on costs is based on the assumption

that the link structure or topology of the graph together with the edge

and distinctness weights provide the best indication of which solution

to choose. In this example, we have a distinctness assertion between

nodes in two densely connected clusters that are tied together only by a

single spurious link. In reality, with the criteria mentioned earlier, we

would even be having multiple distinctness assertions between these

two clusters. Solution (d) in Figure 4.6 removes only this single incorrect

edge, while the remaining solutions in the Figure remove more than one

edge.

The additional option of not removing any edges and instead just

removing nodes from the distinctness assertion does not make much

sense in this case, as we can separate the two components by removing

only a single edge. In other cases, however, we may find that separating

nodes by removing edges would definitely incur high costs. If we had

only a single distinctness assertion between T.V. and Television in

Figure 4.7, depending on the weights, it would perhaps be wiser to

just retain the original input graph and opt for relaxing the distinctness

assertion by removing one of these two nodes from it.

Objective. The aim will thus be to balance the costs for removing dif-

ferent edges from the graph with the costs for removing nodes from

distinctness assertions to produce a consistent solution with a min-

imal total repair cost. This allows us to accommodate our knowledge

about distinctness while staying as close as possible to what Wikipedia

provides as input.

This is formalized as what we call the Weighted Distinctness-Based

Graph Separation (WDGS) problem. Let G be an undirected graph

with a set of vertices V and a set of edges E weighted by w : E → R. We

assume we have n distinctness assertions D1, . . . , Dn, each consisting

of one or more sets Di = (Di,1, . . . , Di,li
). If we use a set C ⊆ V to

specify which edges we want to cut from the original graph, and sets

Ui to specify which nodes we want to remove from the corresponding
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Figure 4.7: Connected component not worth breaking up

distinctness assertions Di, we can begin by defining WDGS solutions as

follows.

Definition 4.3 (WDGS Solution) Given a graph G = (V, E) and n

distinctness assertions D1, . . . , Dn, a tuple (C, U1, . . . , Un) is a valid

WDGS solution if and only if for all i, j, k 6= j and any two nodes

u ∈ Di,j \ Ui, v ∈ Di,k \ Ui, we have P(u, v, E \ C) = ∅, i.e. the set of

paths from u to v in the graph (V, E \ C) is empty.

In other words, after removing nodes in Ui from matching Di,j , and

removing edges in C from E, there are no paths left from u ∈ Di,j to

v ∈ Di,k (provided k 6= j).

Definition 4.4 (WDGS Cost) Let w : E → R be a weight function for

edges e ∈ E, and w(Di) (i = 1 . . . n) be weights for the distinctness

assertions. The (total) cost of a WDGS solution S = (C, U1, . . . , Un) is

then defined as

c(S) = c(C, U1, . . . , Un)

=

[

∑

e∈C

w(e)

]

+

[

n
∑

i=1

|Ui| w(Di)

]
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The WDGS problem can then straightforwardly be defined as follows.

Definition 4.5 (WDGS) A WDGS problem instance P consists of a

graph G = (V, E) with edge weights w(e) and n distinctness assertions

D1, . . . , Dn with weights w(Di). The objective consists in finding a

solution (C, U1, . . . , Un) with minimal cost c(C, U1, . . . , Un).

It turns out that finding optimal solutions efficiently is a computa-

tionally hard problem.

Theorem 4.6 (Hardness) WDGS is an NP-hard problem.

Proof. We reduce the well-known NP-complete vertex cover problem to

the problem of whether a WDGS solution exists with a cost of at most

k. We are given a graph G = (V, E) and want to know whether a set

V ′ ⊆ V of size at most k exists such that for each edge e = (u, v) ∈ E

either u ∈ V ′ or v ∈ V ′ (or both).

Now construct a new star-shaped graph G+ with an added central

node v+ that is connected to all v ∈ V , i.e. G+ = (V ∪{v+}, {(v+, v) | v ∈

V }), with uniform edge weights w+(e) = 1 for all e. Add a distinct-

ness assertion ({u}, {v}) with weight k + 1 for each (u, v) in the ori-

ginal edge set E. Given a WDGS solution (C, U1, . . . , Un) for G+ with

c(C, U1, . . . , Un) ≤ k, we know that all Ui = ∅, i.e. all distinctness

assertions are satisfied, because otherwise c(C, U1, . . . , Un) ≥ k + 1.

Hence, for each (u, v) ∈ E, no paths from u to v exist in G+ after re-

moval of C, so either (v+, u) ∈ C or (v+, v) ∈ C. Any WDGS solution

(C, U1, . . . , Un) with cost at most k thus provides us with a vertex cover

V ′ = (
⋃

e∈C e)\{v+}. The cost for each edge in C is 1, so this vertex cover

will have a size of |V ′| = |C| =
∑

e∈C w+(e) = c(C, U1, . . . , Un) ≤ k.

Conversely, any vertex cover V ′ with size k for G yields a WDGS

solution C = {(v+, v) | v ∈ V ′}, Ui = ∅ with cost k for G+. The edge set

of G′ after applying this solution is {(v+, v) | v ∈ V } \ C = {(v+, v) | v ∈

V \V ′}. Since every edge in E is covered by V ′, for any (u, v) ∈ E, either

(v+, v) or (v+, u) will be missing from G′ after removing edges. Hence,

it will not provide any path from u to v. The cost of the WDGS solution

is
∑

e∈C w(e) = |V ′| = k. Hence, if no WDGS solution with cost k exists,

then by modus tollens no vertex cover of size k exists.
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For some NP-hard problems, efficient algorithms exist that provably

come extremely close to the optimal solution. An NP minimization

problem is approximated within a given factor f if for every possible

problem instance a solution is obtained with a cost at most f times the

optimal cost, where f can be a function of the length of a problem in-

stance. The class APX consists of all NP optimization problems that can

be approximated within a constant f in polynomial time. Unfortunately,

even when we are only interested in such approximations, WDGS turns

out to be difficult.

Theorem 4.7 (Hardness of Approximation) WDGS is APX-hard. It is

NP-hard to approximate WDGS within a factor of 1.3606. If the Unique

Games Conjecture (Khot, 2002) holds, then it is NP-hard to approximate

WDGS within any constant factor α > 0.

Proof. Given an instance of the minimum vertex cover problem for a

graph G = (V, E), we can again construct a star-shaped graph G+ =

(V ∪ {v+}, {(v+, v) | v ∈ V }) with uniform edge weights w+(e) = 1,

this time adding a distinctness assertion ({u}, {v}) with weight |V | + 1

for each (u, v) ∈ E. An optimal WDGS solution (C, U1, . . . , Un) for G+

will have Ui = ∅ for all i, and as in the proof of Theorem 4.6 imply a

vertex cover (
⋃

e∈C e)\{v+} of size c(C, U1, . . . , Un). Again, any optimal

vertex cover implies an optimal WDGS solution with the same cost, so

this reduction is gap-preserving. Hence, APX-hardness follows from the

hardness results for minimum vertex cover by Clementi and Trevisan

(1996). Similarly, hardness to approximate within a factor of 1.3606

follows with the minimum vertex cover result by Dinur and Safra (2005).

For showing that WDGS is not in APX given the Unique Games

Conjecture unless P = NP, we refer to previous results by Chawla et al.

(2005) and provide a gap-preserving reduction of the minimum multicut

problem to WDGS . Given a graph G = (V, E) with a positive cost c(e)

for each e ∈ E, and a set D = {(si, ti) | i = 1 . . . k} of k demand pairs,

our goal is to find a multicut M with respect to D with minimum total

cost
∑

e∈M c(e). We convert each demand pair (si, ti) into a simple dis-

tinctness assertion Di = ({si}, {ti}) with weight w(Di) = 1 +
∑

e∈E c(e).

An optimal WDGS solution (C, U1, . . . , Uk) with cost c then implies a

multicut C with the same weight: Since w(Di) >
∑

e∈E c(e), the solu-

tion can only be optimal if for all i, Ui = ∅. Hence, a multicut C will
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satisfy all demand pairs. C is a minimal multicut because any multicut

C ′ with lower cost would imply a valid WDGS solution (C ′, ∅, . . . , ∅)

with a cost lower than the optimal solution (C, U1, . . . , Uk), which is a

contradiction.

4.5 Approximation Algorithm

We now present an algorithm devised to tackle the WDGS problem,

allowing us to integrate entities from different knowledge sources un-

der consideration of available distinctness information about entities.

Although, as we just saw, it is computationally hard to obtain optimal

solutions, the algorithm not only works well in practice but also has

theoretical properties that allow it to remain within certain bounds of

the optimum. We are able to show that it is a polynomial-time approxim-

ation algorithm with an approximation factor of 4 ln(nq + 1) where n is

the maximal number of distinctness assertions within a connected com-

ponent and q = max
i,j

|Di,j |. This means that, no matter what problem

instance P we have to deal with, we can guarantee

c(S(P ))

c(S∗(P ))
≤ 4 ln(nq + 1),

where S(P ) is the solution determined by our algorithm, and S∗(P ) is an

optimal solution. Note that this approximation guarantee is independent

of how long each Di is, and that the factor merely represents an upper

bound on the worst case scenario. In practice, the results tend to be

much closer to the optimum, as will be shown in Section 4.6.

4.5.1 Description

Overview. Our algorithm starts out with a graph G = (V, E) and

distinctness assertions D1, . . . , Dn with weights w(Di). Without loss

of generality, we may assume that G consists of a single connected

component. If there are multiple connected components, we can simply

consider each respective subgraph as a separate problem.

The algorithm first solves a linear program (LP) relaxation of the

original problem, which gives us hints as to which edges should most

likely be cut and which nodes should most likely be removed from
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distinctness assertions. Note that this is a continuous LP, not an integer

linear program (ILP); the latter would not be tractable due to the large

number of variables and constraints of the problem.

After solving the linear program, a new – extended – graph is con-

structed and the optimal LP solution is used to define a distance metric

on it. The final solution is obtained by smartly selecting regions in this

extended graph as the individual output components, by employing a

region growing technique in the spirit of the seminal work by Leighton

and Rao (1999). Edges that cross the boundaries of these regions are cut.

Definition 4.8 (WDGS Linear Program) Given a WDGS instance, we

define a linear program of the following form:

minimize
∑

e∈E

dew(e) +
n

∑

i=1

li
∑

j=1

∑

v∈Di,j

ui,vw(Di)

subject to

si,j,v = ui,v ∀i, j<li, v ∈ Di,j (1)

si,j,v + ui,v ≥ 1 ∀i, j<li, v ∈
⋃

k>j

Di,k (2)

si,j,v ≤ si,j,u + de ∀i, j<li, e ∈ E, u,v 6=u ∈ e (3)

de ≥ 0 ∀e ∈ E (4)

ui,v ≥ 0 ∀i, v ∈

li
⋃

j=1

Di,j (5)

si,j,v ≥ 0 ∀i, j<li, v∈V (6)

The LP uses decision variables de and ui,v , and auxiliary variables si,j,v

that we refer to as separation distance variables. The de variables indicate

whether (or actually, since this is a continuous LP: to what degree) an

edge e should be deleted, and the ui,v variables indicate whether (to

what degree) v should be removed from a distinctness assertion Di. The

LP objective corresponds to Definition 4.4, aiming at minimizing the

total costs.

A separation distance variable si,j,v reflects to what degree a node v

has been separated from nodes in a set Di,j of a distinctness assertion. If

si,j,v = 0, then v is still connected to nodes in Di,j . Constraints (1) and (2)

enforce separation distances between Di,j and all nodes in Di,k with k >

j. For instance, for distinctness between Television and Television

set, they might require Television set to have a separation distance
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of 1, while Television has a distance of 0. The separation distances are

tied to the deletion variables de for edges in Constraint (3) as well as to

the ui,v in Constraints (1) and (2). This means that a separation distance

si,j,v + ui,v ≥ 1 can only be obtained if edges are deleted on every path

between Television and Television set, or if at least one of these

two nodes is removed from the distinctness assertion (by setting the

corresponding ui,v to non-zero values). Constraints (4), (5), (6) ensure

non-negativity.

Extended Graph. Having solved the linear program, the next major

step is to convert the optimal LP solution into the final – discrete –

solution. We cannot rely on standard rounding methods to turn the

optimal fractional values of the de and ui,v variables into a valid solution.

Often, all solution variables have small values and rounding will merely

produce an empty (C, U1, . . . , Un) = (∅, ∅, . . . , ∅).

Instead, a more sophisticated technique is necessary. We define an

extended graph G′ with a distance metric d between nodes derived from

the optimal solution of the LP. The algorithm then operates on this

graph, in each iteration selecting regions that become output compon-

ents and are removed from the graph. A simple example is shown in

Figure 4.8. The extended graph contains additional nodes representing

distinctness assertion elements and edges representing whether a node

remains in the distinctness assertion. Cutting one of these additional

edges corresponds to removing the connected node from the distinctness

assertion.

Definition 4.9 (Extended Graph) Given G = (V, E) and distinctness

assertions D1, . . . , Dn with weights w(Di), we define an undirected

graph G′ = (V ′, E′) where

V ′ = V ∪ {vi,v | i = 1 . . . n, v ∈
⋃

j

Di,j , w(Di) > 0},

E′ = {e ∈ E | w(e) > 0} ∪ {(v, vi,v) | v ∈
⋃

j

Di,j , w(Di) > 0}.

We accordingly extend the definition of w(e) to additionally cover the

new edges by defining w(e) = w(Di) for e = (v, vi,v). We also extend it

for sets S of edges by defining w(S) =
∑

e∈S w(e).
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Definition 4.10 (Distance Metric) Based on the optimal linear program

solution (variables de, ui,v), we define a node distance metric

d(u, v) =







































0 u = v

de e = (u, v) ∈ E

ui,v u = vi,v

ui,u v = vi,u

min
p∈P(u,v,E′)

∑

(u′,v′)∈p

d(u′, v′) otherwise,

where P(u, v, E′) denotes the set of acyclic paths between two nodes in

E′.

Definition 4.11 (Fractional Solution Cost) We further fix

ĉf =
∑

(u,v)∈E′

d(u, v) w(e)

as the weight of the fractional solution of the LP, based on E′ from

Definition 4.9 (ĉf is a constant based on the original E′, irrespective of

later modifications to the graph).

We will later show that this is a lower bound on the cost of the

optimal solution.

Regions. In this extended graph, we consider regions with a given

radius with respect to the distance metric. Regions will later essentially

become the output components representing single concepts or entities,

while whatever edges cross region boundaries will later be cut.

Definition 4.12 Around a given node v in G′, we consider regions

R(v, r) ⊆ V with radius r. The cut C(v, r) of a given region is defined

as the set of edges in G′ with one endpoint within the region and one

outside the region.

R(v, r) = {v′ ∈ V ′ | d(v, v′) ≤ r}

C(v, r) = {e ∈ E′ | |e ∩ R(v, r)| = 1}
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Definition 4.13 For sets of nodes S ⊆ V , we define

R(S, r) =
⋃

v∈S

R(v, r),

C(S, r) =
⋃

v∈S

C(v, r).

Figure 4.8: Extended graph with two added nodes v1,u, v1,v representing
distinctness between Televisión and Televisor, and a region around v1,u

that would cut the link from the Japanese ‘Television’ to Televisor

Choosing Regions. Our goal then becomes determining the extent of

such regions in a way that minimizes the overall costs of these cuts. The

good news is that the linear program solution can help us with this by

revealing which choices of regions incur high cut costs with regard to

our optimization objective. Given a region with radius r around a node

v, we define ĉ(v, r) based on the distance metric defined earlier. Since

the distance metric is based on the optimal linear program solution, this

function essentially gives us a bound on how good the optimal solution

can be in a particular region. The relationship will be made more explicit

later on in the proofs.



4.5. Approximation Algorithm 101

Definition 4.14 Given q = max
i,j

|Di,j |, we define

ĉ(v, r) =
∑

e=(u,u′)∈E′:
e⊆R(v,r)

d(u, u′) w(e) (4.1)

+
∑

e∈C(v,r)

v′∈e∩R(v,r)

(r − d(v, v′)) w(e)

ĉ(S, r) =

[

∑

v∈S

ĉ(v, r)

]

+
1

nq
ĉf (4.2)

The first summand for ĉ(v, r) accounts for the edges entirely within

the region, and the second one accounts for the edges in the cut C(v, r)

to the extent that they are within the radius. The definition of ĉ(S, r)

contains an additional slack component 1
nq

ĉf that is required for the

approximation guarantee proof.

Algorithm. Based on these definitions, Algorithm 4 uses the LP solu-

tion to construct the extended graph with its distance measure. It then

repeatedly, as long as there is an unsatisfied assertion Di, chooses a set

S of nodes containing a vi,v node for one node v from each relevant Di,j

in Di. In each iteration, it starts out with the respective nodes in S, and

simultaneously grows |S| regions with the same radius around them, a

technique previously suggested by Avidor and Langberg (2007). These

regions roughly correspond to the connected components that serve as

the final solution in the output graph.

The common radius r of the regions in each iteration could be chosen

in different ways. The largest value in D is 1
2 , so we know that any

radius chosen by our algorithm will be at most 1
2 − ǫ. This is important,

because a radius strictly smaller than 1
2 means that two regions will

never overlap (shown later on for Theorem 4.17). Repeatedly choosing a

radius based on the ratio w(C(S,r′))
ĉ(S,r′) additionally allows us to obtain the

approximation guarantee, because the distances in this extended graph

are based on the solution of the LP (Theorem 4.19 below).
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Algorithm 4: WDGS approximation algorithm

1: procedure SELECT(V, E, V ′, E′, w, D1, . . . , Dn, l1, . . . , ln)
2: solve LP from Definition 4.8 ⊲ determine optimal fractional solution
3: construct G′ = (V ′, E′) ⊲ create extended graph (Definition 4.9)
4: C ← {e ∈ E | w(e) = 0} ⊲ cut zero-weighted edges

5: Ui ←
li−1
⋃

j=1

Di,j ∀i : w(Di) = 0 ⊲ remove zero-weighted Di

6: while ∃i, j, k > j, u ∈ Di,j , v ∈ Di,k : P(vi,u, vi,v , E′) 6= ∅ do
7: ⊲ find an unsatisfied assertion
8: S ← ∅ ⊲ set of nodes around which regions will be grown
9: for all j in 1 . . . li − 1 do ⊲ arbitrarily choose node from each Di,j

10: if ∃v ∈ Di,j : vi,v ∈ V ′ then S ← S ∪ vi,v

11: D ← {d(u, v) ≤ 1
2
| u ∈ S, v ∈ V ′} ∪ { 1

2
} ⊲ set of distances

12: choose ǫ : ∀d, d′ 6= d ∈ D : 0 < ǫ≪ |d− d′| ⊲ infinitesimally small

13: r ←

[

argmin
r∈D\{0}

lim
r′→r−

w(C(S, r′))

ĉ(S, r′)

]

− ǫ

14: ⊲ choose optimal radius (ties broken arbitrarily)
15: C′ ← C(S, r) ⊲ set of chosen cut edges
16: V ′ ← V ′ \R(S, r) ⊲ remove chosen regions from G′

17: E′ ← {e ∈ E′ | e ⊆ V ′}
18: C ← C ∪ (C′ ∩ E) ⊲ update global solution (C)
19: for all i′ in 1 . . . n do ⊲ update global solution (Ui)
20: Ui′ ← Ui′ ∪ {v | (vi′,v , v) ∈ C′}

21: for all i′ in 1 . . . n do ⊲ prune distinctness assertions
22: for all j in 1 . . . li′ do
23: Di′,j ← Di′,j ∩ V ′

24: return (C, U1, . . . , Un)

4.5.2 Properties

Correctness of Algorithm

For proving the correctness, we first establish the relationship between

the linear program and the WDGS objective.

Lemma 4.15 The linear program given by Definition 4.8 enforces that

for any i,j,k 6= j,u ∈ Di,j , v ∈ Di,k, and any path v0, . . . , vt with v0 = u,

vt = v we obtain

ui,u +

t−1
∑

l=0

d(vl,vl+1) + ui,v ≥ 1.
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Proof. Without loss of generality, let us assume that j < k. The LP

constraints give us

si,j,vt
≤ si,j,vt−1

+ d(vt−1,vt)

. . . ≤ . . .

si,j,v1
≤ si,j,v0

+ d(v0,v1)

as well as si,j,v0
= ui,u and si,j,vt

+ ui,v ≥ 1. Hence

1 ≤ si,j,vt
+ ui,v ≤ ui,u +

t−1
∑

l=0

d(vl,vl+1) + ui,v.

Lemma 4.16 The integer linear program obtained by augmenting Defin-

ition 4.8 with integer constraints de, ui,v, si,j,v ∈ {0, 1} (for all applicable

e, i, j, v) produces optimal solutions (C, U1, . . . , Uk) for WDGS problems,

obtained as C = {e ∈ E | de = 1}, Ui = {v | ui,v = 1}.

Proof. Lemma 4.15 implies that, with added integrality constraints, we

obtain either u ∈ Ui, v ∈ Ui, or at least one edge along any path from

u to v is cut, i.e. P(u, v, E \ C) = ∅. This proves that any ILP solution

induces a valid WDGS solution (Definition 4.3).

Clearly, the integer program’s objective function minimizes the cost

c(C, U1, . . . , Un) (Definition 4.4) if C = ({e ∈ E | de = 1}, Ui = {v | ui,v =

1}. To see that the solutions are optimal, it thus suffices to observe

that any optimal WDGS solution (C∗, U∗
1 , . . . , U∗

n) yields a feasible ILP

solution de = 1C∗(e), ui,v = 1U∗

i
(v) (where 1S is the indicator function

for a set S).

This means that by solving the LP, we obtain an optimal fractional

solution to the LP relaxation of our actual objective.

Theorem 4.17 (Correctness) The algorithm yields a valid WDGS solu-

tion (C, U1, . . . , Un).

Proof. Clearly, r < 1
2 holds for any radius r chosen by the algorithm, so

for any region R(v0, r) grown around a node v0, and any two nodes u, v

within that region, the triangle inequality gives us d(u, v) ≤ d(u, v0) +

d(v0, v) < 1
2 + 1

2 = 1 (maximal distance condition).
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At the same time, by Lemma 4.15 and Definition 4.9, the LP ensures

that for any u ∈ Di,j , v ∈ Di,k (j 6= k), we obtain

d(vi,u, vi,v) = d(vi,u, u) + d(u, v) + d(v, vi,v) ≥ 1.

With the maximal distance condition above, this means that vi,u and vi,v

cannot be in the same region. Hence u, v cannot be in the same region,

unless the edge from vi,u to u is cut (in which case u will be placed in

Ui) or the edge from v to vi,v is cut (in which case v will be placed in Ui).

Since each region is separated from other regions via C, we obtain that

∀i, j, k 6= j, u, v: u ∈ Di,j \ Ui, v ∈ Di,k \ Ui implies P(u, v, E \ C) = ∅, so

a valid solution is obtained.

Approximation Guarantee

For the approximation guarantee, we need the following lemma, which

is essentially due to Avidor and Langberg (2007) and based on ideas by

Garg et al. (1996):

Lemma 4.18 For any i where ∃j, k > j, u ∈ Di,j , v ∈ Di,k : P(vi,u, vi,v, E′) 6=

∅ and w(Di) > 0, there exists an r such that

w(C(S, r)) ≤ 2 ln(nq + 1) ĉ(S, r)

and 0 ≤ r < 1
2 for any set S consisting of vi,v nodes from different Di,j .

Proof. Define w(S, r) =
∑

v∈S

w(C(v, r)). We will prove that there exists

an appropriate r with

w(C(S, r)) ≤ w(S, r) ≤ 2 ln(nq + 1) ĉ(S, r).

Assume, for reductio ad absurdum, that

∀r ∈ [0,
1

2
) : w(S, r) > 2 ln(nq + 1)ĉ(S, r).

As we expand the radius r, we note that

ĉ(S, r)
d

dr
=

∑

v∈S

∑

e∈C(v,r)

w(e) =
∑

v∈S

w(C(v, r)) = w(S, r)
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wherever ĉ is differentiable with respect to r. There are only a finite

number of points d1,. . . ,dl−1 in (0, 1
2 ) where this is not the case (namely,

when ∃u ∈ S, v ∈ V ′ : d(u, v) = di). Also note that ĉ increases monoton-

ically for increasing values of r, and that it is universally greater than

zero (since there is a path between vi,u, vi,v). Set d0 = 0, dl = 1
2 and

choose ǫ such that 0 < ǫ ≪ min{dj+1 − dj | j < l}. Our assumption then

implies:

l
∑

j=1

∫ dj−ǫ

dj−1+ǫ

w(S, r)

ĉ(S, r)
dr >

l
∑

j=1

(dj − dj−1 − 2ǫ) 2 ln(nq + 1).

This in turn entails the following:

l
∑

j=1

(ln ĉ(S, dj − ǫ) − ln ĉ(S, dj−1 + ǫ)) >

(

1

2
− 2lǫ

)

2 ln(nq + 1)

ln ĉ(S,
1

2
− ǫ) − ln ĉ(S, 0) > (1 − 4lǫ) ln(nq + 1)

ĉ(S, 1
2 − ǫ)

ĉ(S, 0)
> (nq + 1)1−4lǫ

ĉ(S,
1

2
− ǫ) > (nq + 1)1−4lǫĉ(S, 0).

For small ǫ, the right term can get arbitrarily close to

(nq + 1)ĉ(S, 0) = nq ĉ(S, 0) + ĉ(S, 0) ≥ ĉf + ĉ(S, 0),

which is strictly larger than ĉ(S, 1
2 − ǫ) no matter how small ǫ becomes.

However, we cannot have ĉ(S, 1
2 − ǫ) > (nq + 1)1−4lǫĉ(S, 0) if (nq +

1)1−4lǫĉ(S, 0) can come arbitrarily close to a value strictly larger than

ĉ(S, 1
2 − ǫ), so the initial assumption is false.

With this lemma, we can then prove the following theorem.

Theorem 4.19 (Approximation Guarantee) The algorithm yields a solu-

tion (C, U1, . . . , Un) with an approximation factor of 4 ln(nq + 1) with

respect to the cost of the optimal WDGS solution (C∗, U∗
1 , . . . , U∗

n), where

n is the number of distinctness assertions and q = max
i,j

|Di,j |. This solu-

tion can be obtained in polynomial time.
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Proof. Let Si, ri denote the set S and radius r chosen in particular itera-

tions, and let ci denote the corresponding costs incurred:

ci = w(C(Si, ri))

= w(C(Si, ri) ∩ E) +
n

∑

i′=1

w(Di′) |{v | (vi′,v, v) ∈ C(Si, ri)}|

Note that the cut C(Si, ri) for any radius ri chosen by the algorithm will

in fact correspond to the cut C(Si, r) for a radius r that fulfils the criterion

described by Lemma 4.18. This is because C(Si, r) and w(C(Si, r)) only

change at points r in D, so points r ∈ [0, 1
2 ) that minimize the ratio

between the two terms are reached by approaching points in D from the

left. Hence, we obtain ci ≤ 2 ln(nq + 1)ĉ(Si, ri).

For our global solution, note that there is no overlap between the

regions chosen within an iteration, since regions have a radius strictly

smaller than 1
2 , while vi,u, vi,v for u ∈ Di,j , v ∈ Di,k, j 6= k have a

distance of at least 1. Nor is there any overlap between regions from

different iterations, because in each iteration the selected regions are

removed from G′. Globally, we therefore obtain (observe that i ≤ nq):

c(C, U1, . . . , Un) =
∑

i

ci

< 2 ln(nq + 1)
∑

i

ĉ(Si, ri)

= 2 ln(nq + 1)
∑

i

[[

∑

v∈Si

ĉ(v, ri)

]

+
1

nq
ĉf

]

≤ 2 ln(nq + 1)2ĉf .

Since ĉf is the objective score for the fractional LP relaxation solution of

the WDGS ILP (Lemma 4.16), we know that ĉf ≤ c(C∗, U∗
1 , . . . , U∗

n), and

thus

c(C, U1, . . . , Un) < 4 ln(nq + 1) c(C∗, U∗
1 , . . . , U∗

n).

To obtain a solution in polynomial time, note that the LP size is

linear with respect to n,q and may be solved using a polynomial-time

algorithm (Karmarkar, 1984). The subsequent steps run in no more than

nq iterations in the worst case. In each iteration, we grow up to |V |

regions. The argmin can be computed efficiently in O((|E| + |V |) log |V |)
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steps by evaluating radiuses corresponding to distances of nearest neigh-

bours with respect to the distance metric, as will be explained in Section

4.6.1.

This guarantee is a nice property, as it shows that although our

algorithm is not exact, the results will still be within certain bounds with

respect to an ideal output given the input information.

4.6 Results

In addition to the theoretical properties, we also evaluate the practical

behaviour of this algorithm in our particular setting, i.e. for the task of

cleaning up equality links in conjunction with distinctness information

about entities derived from Wikipedia.

4.6.1 System Architecture

The overall system is based on the same framework as used for Chapter 3.

Equality information can come from the original data sources themselves

when they are imported as graph-structured knowledge bases. This is

the case for Wikipedia’s cross-lingual links. Alternatively, heuristic

mappers can be invoked to infer new equals connections.

The algorithm then operates on the union of these knowledge bases,

processing one connected component at a time. Each original connected

component turns into one or more connected components in the output.

While the input components may conflate distinct concepts or entities,

we expect each output component to cleanly represent a single concept

or entity.

The linear program solving is one of the main bottlenecks of the al-

gorithm. A fast LP solver is crucial, and making the right choice can lead

to speed-ups of several orders of magnitude. In our experiments, we

used the well-known commercial tool CPLEX. Even CPLEX, however,

in rare cases seemed to have trouble coping with certain inputs, so for

large subgraphs, we resorted to invoking CPLEX as an external process,

which is automatically killed if CPLEX is unable to find a solution within

a specific time frame. In Section 4.6.5 below, we explain how one can

proceed if this case occurs.
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During the region growing, the argmin of points r in D can be determ-

ined by iteratively visiting nearest neighbours of nodes in S with respect

to the distance metric d in the extended graph. A priority queue can be

used to keep track of the nearest unvisited neighbours. If this queue is

initialized with nodes in S at radius 0, then a simple uniform-cost search

will find the nearest neighbours that can be added to individual regions

as the radius expands. At a radius r corresponding to a given neighbour,

we evaluate lim
r′→r−

w(C(S,r′))
ĉ(S,r′) . It is essential to note that this is a one-sided

limit from the left, so lim
r′→r−

w(C(S, r′)) is not equal to w(C(S, r)) but

rather to w(C(S, r − ǫ)) for any strictly positive value ǫ that is smaller

than |d − d′| for d, d′ 6= d ∈ D.

Since the algorithm is applied to a single connected component at a

time, additional speed-ups are possible by parallelizing the processing.

For each individual connected component, one can also make use of the

parallel processing capabilities of recent versions of CPLEX.

4.6.2 Datasets

We downloaded XML dumps of all available editions of Wikipedia

as of February 2010, in total 272 editions that amount to 86.5 GB un-

compressed. From these dumps we produced two datasets. Dataset

A captures cross-lingual interwiki links between pages, in total 77.07

million undirected edges (146.76 million original links). Dataset B addi-

tionally includes 2.2 million edges derived from redirects, as described

in Section 4.3.

4.6.3 Application of Algorithm

The choice of distinctness assertion weights depends on how lenient we

wish to be with regard to conceptual drift. Lower weights mean that

the algorithm can liberally remove nodes from distinctness assertions

and produce coarse-grained semantic entities, while higher weights

lead to more fine-grained distinctions. Since Wikipedia editions rarely

contain genuine duplicates and since we envision an output resource

that reflects even subtle differences between semantic entities, we settled

on a weight of 100 in the following experiments.
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We analysed over 20 million connected components in each dataset,

checking for distinctness assertions. For the roughly 110,000 connec-

ted components with relevant distinctness assertions, we applied our

algorithm, relying on the commercial CPLEX tool to solve the linear

programs. In most cases, the LP solving took less than a second, how-

ever the LP sizes quickly grow with the size of the graph. In about 300

cases per dataset, CPLEX took too long and was automatically killed

or the linear program was a priori deemed too large to complete in a

short amount of time. In such circumstances, we adopted an alternative

strategy described later on.

Table 4.1 provides the experimental results for the two datasets. Data-

set B is more connected and thus has fewer connected components with

more pairs of nodes asserted to be distinct by distinctness assertions.

The LP given by Definition 4.8 provides fractional solutions that consti-

tute lower bounds on the optimal solution (as shown by Lemma 4.18),

so the optimal solution cannot have a cost lower than the fractional

LP solution. Table 4.1 shows that in practice, our algorithm achieves

near-optimal results.

Table 4.1: Algorithm results

Dataset A Dataset B

Connected components 23,356,027 21,161,631
– with distinctness assertions 112,857 113,714
– algorithm applied successfully 112,580 113,387

Distinctness assertions 380,694 379,724
Node pairs considered distinct 916,554 1,047,299

Lower bound on optimal cost 1,255,111 1,245,004
Cost of our solution 1,306,747 1,294,196
Factor 1.04 1.04

Edges to be deleted (undirected) 1,209,798 1,199,181
Nodes to be merged 603 573
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4.6.4 Result Quality

The near-optimal results of our algorithm apply with respect to our

problem formalization, which aims at repairing the graph in a minimally

invasive way. It may happen, however, that the graph’s topology is

misleading, and that in a specific case deleting many edges to separate

two entities is more appropriate than looking for a conservative way

to separate them. Figure 4.9 depicts a graph in which the Spanish

Televisión seems to be more tightly integrated with nodes describing

TV sets, but in reality, Televisión describes television as a medium and

belongs in a separate component together with en:Television.

For this reason, we additionally studied the quality of the output

from a semantic perspective. From Dataset A, we randomly sampled 200

pairs of nodes, consisting of an English and a German article, that were

originally in the same connected component but separated into separate

ones by our algorithm. The English and German Wikipedia editions

are the two largest ones, so this is a particularly difficult case, as they

are well-maintained and distinctness assertions often stem from very

subtle semantic differences rather than from links that are completely

erroneous. Examples are given in Table 4.2. The random sample was

evaluated by two annotators with an inter-annotator agreement (Cohen

κ) of 0.656. We obtained a precision of 87.97% ± 0.04% against the

consensus annotation, using a Wilson score interval at α = 0.05 (Brown

et al., 2001). The majority of incorrect pairs appear to have resulted from

articles having large numbers of inaccurate outgoing links, often due to

automated bots operating on Wikipedia. In these cases, entities may be

assigned to the wrong component. In other cases, we noted duplicate

articles in Wikipedia, or cases where a single Wikipedia article would

actually describe two related concepts on the same page. Finally, the

use of uniform edge weights in Section 4.3 means that the algorithm in

some cases lacks information on which it could base its decision. This

issue could be resolved by using edge weights biased to reflect entity

similarities or trust scores for different knowledge sources.

4.6.5 Large Problem Instances

Partitioning. When problem instances become too large, the linear

programs can become unwieldy for current linear optimization software.
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Figure 4.9: Misleading graph topology

Fortunately, in such cases, the graphs tend to be very sparsely connected,

consisting of many smaller, more densely connected subgraphs. The

reason for this is that a single spurious link is enough to turn two separ-

ate subgraphs into a single connected component. We thus investigated

graph partitioning heuristics to decompose larger graphs into smaller

parts that the LP solver could more easily cope with.

The METIS algorithms (Karypis and Kumar, 1998) can partition

graphs with hundreds of thousands of nodes almost instantly, but favour

equally sized clusters over lower cut costs. We obtain partitionings with

costs orders of magnitude lower using the heuristic by Dhillon et al.

(2007). We then run our WDGS algorithm on each individual partition.

Unbalanced partitionings can in principle contain large partitions that

remain too large to handle. In such cases, we can recursively apply the

same partitioning heuristic to obtain even smaller partitions, and then

run our WDGS algorithm on these.

Database of Named Entities. These partitioning heuristics allow us to

process all entries in the complete set of Wikipedia dumps and produce

a clean output set of connected components where each Wikipedia

article or category belongs to a connected component consisting of

pages about the same entity or concept. We can regard these connected

components as equivalence classes. This means that we obtain a large-

scale multilingual database of named entities and their translations.
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Table 4.2: Examples of separated concepts

English concept German concept (translated) Explanation

Compulsory education Right to education duty vs. right
Associação Académica

de Coimbra – O.A.F.
University of Coimbra the former is a football

organization
Nursery school Pre-school education the latter is more general
Mittlere Reife GCSE the former is a German

degree
Coffee percolator French Press different types of brewing

devices
Franz Kafka’s Diaries Franz Kafka diaries vs. person
Baqa-Jatt Baqa al-Gharbiyye Baqa-Jatt is a city resulting

from a merger of Baqa
al-Gharbiyye and Jatt

White tiger White tiger
(Constellation)

the latter refers to the
Chinese constellation symbol

Leucothoe (plant) Leucothea (Orchamos) the latter refers to a figure of
Greek mythology

Old Belarusian
language

Ruthenian language the latter is often considered
slightly broader

Sliding puzzle Fifteen puzzle the latter is a specific form of
sliding puzzle

Grand Staircase-
Escalante National
Monument

Calf Creek Canyon the latter is located in the
former

Torre Sant Sebastià Port Vell Aerial
Tramway

the former is a terminal of
the tramway

Multicore cable Multicore processor different types of objects

We are also able to more safely transfer information cross-lingually

between Wikipedia editions. For example, when an article a has a

category c in the French Wikipedia, we can suggest the corresponding

Indonesian category for the corresponding Indonesian article.

Later on, in Chapter 5, we shall see how such a multilingual database

of named entities can be used to create a multilingual taxonomy, where

even entirely non-English connected components can in many cases

be assigned a class in WordNet. So, the German Wikipedia article on

the educational TV series ‘Galileo’, despite the lack of a corresponding

English article, can be assigned the WordNet synset for television and

radio series.
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4.6.6 Case Study: Language Information

Language Entities. Semantic entities corresponding to individual hu-

man languages are of particular interest in a multilingual knowledge

base. In Figure 2.3 on page 23, we showed how one can link each term to

its respective language using the language relation. If there is additional

knowledge about these languages, we can answer queries like:

• Which words for ‘student’ exist in languages spoken in Asia?

• Which words for ‘mouse’ exist in Indo-European languages?

WordNet and Wikipedia already contain identifiers for several hun-

dred languages and language families. However, in a multilingual

knowledge base, it is beneficial to have a more complete register of

the world’s languages, based on international standards like ISO 639-3,

which describes over 7,000 languages. Similar standards exist for lan-

guage families, writing systems (e.g. Cyrillic, Devanagari, and Hangul)

and geographical regions. We can integrate such entities into a combined

knowledge base.

Knowledge Sources. The input graph’s node set contained entity iden-

tifiers for languages, language families, geographical regions, and writ-

ing systems from the following sources apart from Wikipedia and Word-

Net:

• the ISO 639-3 specification1, which defines codes for around 7,000

languages and lists relationships between macrolanguages and

individual languages,

• the ISO 639-5 specification2, which describes a limited number of

language families (e.g. Tai languages) and other collections (e.g.

sign languages),

• the ISO 15924 specification3, which lists a number of writing sys-

tems, e.g. Cyrillic, Devanagari, and Hangul,

• the Ethnologue language codes database (Lewis, 2009), which

provides additional language names, geographical regions where

languages are spoken, etc.,

1http://www.sil.org/iso639-3/
2http://www.loc.gov/standards/iso639-5/
3http://unicode.org/iso15924/

http://www.sil.org/iso639-3/
http://www.loc.gov/standards/iso639-5/
http://unicode.org/iso15924/
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• the Linguist List4, which contributes information on extinct lan-

guages as well as constructed languages,

• the Unicode Common Locale Data Repository5 (CLDR), which con-

nects languages to their geographical regions and writing systems,

and delivers names in many languages.

Input Edges. The nodes in the graph were connected as follows.

• The official ISO 639-3 mapping tables allowed us to connect lan-

guage identifiers based on ISO 639 Part 1 or 2 to ISO 639-3 identifi-

ers.

• Wikipedia’s languages were linked to languages from ISO 639-3

by extracting the codes from the respective articles in Wikipedia.

• Wikipedia’s language families were linked to corresponding lan-

guage families from ISO 639-5 where possible, by extracting links

from Wikipedia’s ‘List of ISO 639-5 codes’ article.

• The same article also provided equivalences between ISO 639-5

and ISO 639-3.

• Languages from WordNet and Wikipedia were matched using

heuristic mapping scores (de Melo and Weikum, 2010c).

Result. We added distinctness assertions between ISO 639-3 codes,

between WordNet synsets, and between Wikipedia articles. Our al-

gorithm then ensures that the output components are consistent, e.g. to

prevent Modern Greek and Ancient Greek from being conflated. The

result is a knowledge base where information from different knowledge

sources with different sets of entity identifiers has been consolidated.

This leads to a domain-specific extension of WordNet describing over

7000 languages rather than just the original 600 ones listed in Word-

Net. Additional factual knowledge is associated with each language,

e.g. where a language is spoken and what writing systems are used.

More details and results are given in a separate publication (de Melo

and Weikum, 2010c).

4http://linguistlist.org/
5http://cldr.unicode.org/

http://linguistlist.org/
http://cldr.unicode.org/
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4.7 Discussion

In this chapter, we have presented an algorithmic framework that ad-

dresses the problem of entity integration given weighted equivalence

links and distinctness assertions. Pre-existing or heuristically derived co-

reference information from multiple knowledge sources is represented

in a weighted undirected graph, and additional weighted distinctness

assertions are made. Our method reconciles conflicting information

by intelligently choosing between removing edges and allowing nodes

to remain connected. Our algorithm produces consistent connected

components of co-referring entities. In addition to having a logarithmic

approximation guarantee, the algorithm also shows excellent results in

practice. It has successfully been applied to Wikipedia’s cross-lingual

interwiki link graph, where we identified and eliminated surprisingly

large numbers of inaccurate connections, leading to a large-scale multi-

lingual register of named entities.

Additionally, our approach is flexible enough to apply to a wide

range of other scenarios. For instance, one could use heuristics to con-

nect isolated, unconnected Wikipedia articles to likely candidates in

other Wikipedias using weighted edges. One could resolve entity in-

tegration issues on the Linked Data Web, where there are well-known

problems with the de facto standard of using owl:sameAs to indicate co-

reference even when mappings are not ontologically precise (Halpin and

Hayes, 2010). Heuristic mappings between additional thesauri or sense

clusterings induced from text could be included in the input, with the

hope that the weights and link structure will then allow the algorithm

to make the final disambiguation decision.

Unlike most previous work on entity integration, our algorithm can

draw on distinctness information to combine more than just two know-

ledge sources. In the next chapter, we demonstrate, among other things,

that our algorithm can be used to integrate WordNet with multiple

editions of Wikipedia.





CHAPTER 5

Taxonomic Integration

5.1 Introduction

In order to put everything together into a full-fledged knowledge base

with a well-structured organization, we finally turn to taxonomic integ-

ration as the third and final major building block. The techniques from

Chapter 4 allow us to establish a unified repository of entities based on

multiple sources, where equivalent entities are cleanly linked together

by equals arcs. In this chapter, we explain how entities that are not

equivalent can be related to one another in terms of semantic relations

like instance and subclass. For example, an individual named entity

like Fersental could be described as an instance of Valleys in Italy,

and Valleys in Italy could be a subclass of Valley. A coherent taxo-

nomic class hierarchy would give us a global hierarchical organization

that connects all entities in the knowledge base, even if they originate

from different multilingual editions of Wikipedia.

Motivation. If a user is searching for institutes of higher education in

Europe, it would be helpful to have access to the fact that a Portuguese

‘ensino politécnico’ or a German ‘Technische Hochschule’ qualifies. Even

better, an application may have such ontological information about

specific institutes like the Royal College of Art, as in our example in

Chapter 1.

117
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We could try to derive taxonomic information from text corpora

(Hearst, 1992), machine-readable dictionaries (Chodorow et al., 1985),

or search engine query logs (Baeza-Yates and Tiberi, 2007), but once

again, Wikipedia turns out to be a very useful resource that not only

provides fairly reliable input signals but also richer content. For ex-

ample, for each entity we can additionally obtain gloss descriptions or

perhaps factual statements expressing geographical locations of places.

Wikipedia has previously been exploited by projects like DBpedia (Auer

et al., 2007), YAGO (Suchanek et al., 2007), and WikiTaxonomy (Ponzetto

and Strube, 2008). To date, however, these extraction efforts have largely

neglected the significant potential of Wikipedia’s multilingual nature.

While DBpedia and some other knowledge bases do extract abstracts

and other information also from non-English versions, the coverage is

still restricted to those entities that have a corresponding article in the

English Wikipedia. Certainly, the English Wikipedia is by far the most

comprehensive version. Yet, its articles make up only 24% among those

of the 50 largest Wikipedias. This means that there are large amounts

of untapped information that could be formalized in machine-readable

form.

This, however, leads not only to great opportunities but also to new

research challenges. In particular, it is not clear how these different

information sources can be brought together to form a unified, coher-

ent resource. In this chapter, we aggregate from multiple editions of

Wikipedia as well as WordNet to construct MENTA – Multilingual En-

tity Taxonomy – a large-scale taxonomic knowledge base that covers a

significantly greater range of entities than previous knowledge bases.

Additionally, MENTA enables tasks like semantic search also in lan-

guages other than English, for which existing taxonomies are often very

limited or entirely non-existent. Finally, we also hope that MENTA will

facilitate decidedly multilingual applications like cross-lingual inform-

ation retrieval (Etzioni et al., 2007; Bellaachia and Amor-Tijani, 2008),

machine translation (Knight and Luk, 1994), or learning transliterations

(Pasternack and Roth, 2009).

Problem Statement. As input we have a set of knowledge sources and

a large but incomplete set of unreliable, weighted statements linking

entities to parent entities (taxonomic links) or to equivalent entities
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(equals arcs). For a given entity, we often have many candidate parents

from different sources with different weights, and different parents may

or may not be related to each other in terms of equals and subclass

arcs (see Figure 5.2 for an example scenario).

The aim is to aggregate these unreliable, incomplete taxonomic links

between entities from different sources into a single more reliable and

coherent taxonomy. The output should be a clean, reliable knowledge

base where the entities share a single upper-level core rather than hav-

ing a diverse range of separate taxonomies. Schematically, this task is

depicted in Figure 5.1.

Figure 5.1: Taxonomic integration strategy

Contribution. We describe an algorithm called Markov Chain Tax-

onomy Induction that solves this central problem. Additionally, we

present a complete framework that starts out with all editions of Wiki-

pedia as well as WordNet and ties everything together. The input to the

algorithm is supplied by a set of heuristic linking functions that connect

Wikipedia articles in multiple languages, categories, so-called infobox

templates, and WordNet synsets. The algorithm produces aggregated

rankings of parents that take into account the dependencies between the

linked entities. The output for a specific entity is given by the stationary

distribution of a Markov chain, in the spirit of PageRank, but adapted
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to our specific setting. Overall, this leads to MENTA having three major

distinguishing properties.

1. Extended Coverage of Entities: The taxonomy draws on all ex-

isting editions of Wikipedia and hence includes large numbers of local

places, people, products, etc. that are not covered by the English Wiki-

pedia. For example, the Quechua Wikipedia has an article about the

Bolivian salt lake Salar de Coipasa, and the Czech Wikipedia has an

article about the French academic degree DESS.

2. Ranked Class Information: Individual entities are linked via in-

stance statements to classes (e.g. University, City, Airline company,

etc.) based on information provided by multiple Wikipedia editions,

thus exploiting complementary clues from different languages. The out-

put is a ranked list, because even when e.g. an English article provides

ample information, it is useful to capture that the Colorado River being

a river is more salient than it being a border of Arizona.

3. Coherent Taxonomy: While Wikipedia is an excellent source

of semi-structured knowledge about entities, it lacks an ontologically

organized taxonomy. The category systems of Wikipedia i) fail to dis-

tinguish classes from topic labels (the Free University of Bozen-Bolzano

is a University but not a Bolzano, Jean Piaget is a Developmental

psychologist but not a Child development), ii) tend to lack a clear

organization especially at the abstract upper level, and iii) differ substan-

tially between different languages. A single, more complete yet coherent

taxonomic class hierarchy is obtained by aggregating information from

multiple editions of Wikipedia and WordNet.

The resulting taxonomy in MENTA goes beyond what is offered by

previous semantic knowledge repositories. For instance, DBpedia and

YAGO do not have a multilingual upper-level ontology. None of the

previous taxonomies have managed to accommodate culture-specific

entities from non-English Wikipedia editions. Even for those entities

that are covered, the DBpedia Ontology provides class information only

for around a third. Likewise, in the field of multilingual taxonomies

and hierarchically-organized lexical knowledge bases, our knowledge

base surpasses all previous resources in the number of entities described.

MENTA is freely available under an open-source license from http:

//www.mpi-inf.mpg.de/yago-naga/menta/.

http://www.mpi-inf.mpg.de/yago-naga/menta/
http://www.mpi-inf.mpg.de/yago-naga/menta/
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Overview. The rest of this chapter is organized as follows. Section 5.2

begins with a description of previous knowledge bases and approaches.

Section 5.3 lays out how information is extracted from the input know-

ledge sources and represented in a form amenable to further processing

in our approach. Section 5.4 then introduces the heuristics that are

used to interlink entities and provide the input for the taxonomy induc-

tion step. Section 5.5 describes the Markov Chain Taxonomy Induction

algorithm that produces the output knowledge bases with unified taxo-

nomic class hierarchies. Section 5.6 evaluates this algorithm and the

resulting knowledge bases. Finally, Section 5.7 provides a concluding

discussion of these results.

5.2 Previous Work

Mining Wikipedia. A number of projects have imported basic inform-

ation from Wikipedia, e.g. translations and categories (Kinzler, 2008;

Silberer et al., 2008), or simple facts like birth dates, e.g. in the Freebase

project (Bollacker et al., 2008). Such resources lack the semantic integra-

tion of conflicting information as well as the taxonomic backbone that is

the focus of our work.

Apart from such facts, DBpedia (Auer et al., 2007) also provides

an ontology, based on a set of manually specified mappings from Wiki-

pedia’s infobox templates to a coarse-grained set of 260 classes. However,

the majority of English articles do not have any such infobox informa-

tion, and non-English articles without English counterparts are simply

ignored. DBpedia additionally includes class information from YAGO

(Suchanek et al., 2007), a knowledge base that links entities from Wiki-

pedia to an upper-level ontology provided by WordNet. We adopted

this idea of using WordNet as background knowledge as well as some

of the heuristics for creating instance and subclass arcs. YAGO’s upper

ontology is entirely monolingual, while in MENTA the class hierarchy it-

self is also multilingual and additionally accommodates entities that are

found in non-English Wikipedias. Furthermore, the class information is

simultaneously computed from multiple editions of Wikipedia. Nastase

et al. (2010) exploit categories not only to derive isA relationships, but

also to uncover other types of relations, e.g. a category like ‘Universities

in Milan’ also reveals where a university is located.
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Linking Heuristics. There are other projects that have proposed heur-

istics for interlinking Wikipedia editions or linking Wikipedia to Word-

Net. Ponzetto and Strube (2008) and Ponzetto and Navigli (2009) studied

heuristics and strategies to link Wikipedia categories to parent categories

and to WordNet. Their results are significant, as they lead to a taxonomy

of classes based on the category system of the English Wikipedia, how-

ever they did not study how to integrate individual entities (articles)

into this taxonomy.

Recently, Navigli and Ponzetto (2010) investigated matching English

Wikipedia articles with WordNet synsets by comparing the respective

contextual information, obtaining a precision of 81.9% at 77.5% recall.

Wu and Weld (2008) use parsing and machine learning to link infobox

templates to WordNet. The Named Entity WordNet project (Toral et al.,

2008) attempts to link entities from Wikipedia as instances of roughly

900 WordNet synsets. Others examined heuristics to generate new cross-

lingual links between different editions of Wikipedia (Oh et al., 2008;

Sorg and Cimiano, 2008).

The focus in our work is on a suitable algorithmic framework to

aggregate and rank information delivered by such heuristics, and many

of these heuristics could in fact be used as additional inputs to our al-

gorithm. The same holds for the large body of work on information

extraction to find isA relationships in text corpora (Hearst, 1992; Snow

et al., 2004; Etzioni et al., 2004; Garera and Yarowsky, 2008), machine-

readable dictionaries (Montemagni and Vanderwende, 1992), or search

engine query logs (Baeza-Yates and Tiberi, 2007). Adar et al. (2009) and

Bouma et al. (2009) studied how information from one Wikipedia’s in-

foboxes can be propagated to another edition’s articles, which is distinct

from the problem we are tackling.

Multilingual Knowledge Bases. Concerning multilingual knowledge

bases in general, previous results have been many orders of magnitude

smaller in terms of the number of entities covered (Knight and Luk,

1994; Fellbaum and Vossen, 2007), or lack an ontological class hierarchy

(Mausam et al., 2009). EuroWordNet (Vossen, 1998) provides multi-

lingual labels for many general words like ‘university’, but lacks the

millions of individual named entities (e.g. ‘Napa Valley’ or ‘San Diego

Zoo’) that Wikipedia provides.
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Taxonomy Induction Algorithms. Hierarchical agglomerative cluster-

ing has been used to derive monolingual taxonomies (Klapaftis and

Manandhar, 2010), however clustering techniques will often merge con-

cepts based on semantic relatedness rather than specific ontological

relationships. Our work instead capitalizes on the fact that reasonably

clean upper ontologies already exist, so the main challenge is integrating

the information into a coherent whole. There are numerous studies on

supervised learning of hierarchical classifications (Dumais and Chen,

2000), but such approaches would require reliable training data for each

of the several hundred thousand classes that we need to consider. An-

other interesting alternative approach, proposed by Wu and Weld (2008),

relies on Markov Logic Networks to jointly perform mappings between

entities and derive a taxonomy. Unfortunately, such techniques do not

scale to the millions of entities we deal with in our setting.

Snow et al. (2006) proposed a monolingual taxonomy induction

approach that considers the evidence of coordinate terms when disam-

biguating. Their approach assumes that evidence for any superordinate

candidates is directly given as input, while our approach addresses

the question of how to produce evidence for superordinate candidates

based on evidence for subordinate candidates. For instance, very weak

evidence that Stratford-upon-Avon is either a village or perhaps a city

may suffice to infer that it is a populated place. Talukdar et al. (2008)

studied a random walk technique to propagate class labels from seed

instances to other coordinate instances, but did not consider hierarchical

dependencies between classes. Ponzetto and Navigli (2009) proposed

a method to restructure a taxonomy based on its agreement with a

more reliable taxonomy (WordNet), but do not address how to integrate

multiple taxonomies.

Markov Chains. Our Markov Chain Taxonomy Induction algorithm is

most similar to PageRank with personalized random jump vectors (Page

et al., 1999; Haveliwala, 2002); however our transition matrix is based

on statement weights, and the probability for jumping to a start node

of a random walk depends on the weights of the alternative statements

rather than being uniform for all nodes. Uniform weights mean that

single parents are visited with very high probability even if they are only

very weakly connected, while in our approach such irrelevant parents
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will not obtain a high transition probability. Other studies have relied

on PageRank to find important vocabulary in an ontology (Zhang et al.,

2006) and to perform word sense disambiguation (Mihalcea et al., 2004).

Our Markov chain model differs from these in that we aim at identifying

salient parents for a specific node rather than generic random walk

reachability probabilities. We are not aware of any Markov chain-based

approaches for constructing class hierarchies.

5.3 Knowledge Extraction

5.3.1 Representation Model

We again rely on the knowledge representation framework from Chapter

2. The final set of entity identifiers to be used in MENTA is determined at

a later step when the different knowledge sources are combined. During

the initial extraction phase, while importing knowledge from existing

sources, we instead start out with preliminary entity identifiers. These

will again include semantic entity identifiers for Wikipedia pages (see

below in Section 5.3.2), semantic entities based on the WordNet data-

base’s synsets, as well as term entities, i.e. string literals with language

designators. The arc labels include:

• equals: identity or equivalence of entities (i.e. two entity identifi-

ers refer to the same entity)

• subclass: the relation between a semantic entity and another

semantic entity that is a subsuming generalization of the former

one

• instance: the relation between an individual entity and another

semantic entity it is an instance of (its class, type, or role)

• means: the meaning relationship between a term entity (a word or

a name in a given language) and a semantic entity

A statement might express that the University of Trento stands in an

instance relation to the entity University with confidence 1, or that

the Polish name ‘Trydent’ stands in a means relation to the city of Trento.
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5.3.2 Extraction from Wikipedia

To a certain extent, the input we derive from Wikipedia will be similar to

what we considered in Chapter 4. To obtain a more coherent knowledge

base, we will additionally be considering equivalences between articles

and WordNet synsets, categories, and infoboxes. Additionally, in order

to obtain a richer knowledge base, we also extract lexical and other

information from Wikipedia.

Entities. The preliminary entity identifiers used for the input graph

are intended to represent the subjects of different items encountered in

Wikipedia. In particular, each article page (including redirect pages),

category page, or template page (including infobox templates) in an

edition of Wikipedia becomes a node in our graph with a preliminary

entity identifier. These are assigned while parsing the raw XML and wiki-

markup-based Wikipedia dumps, extracting relevant information, and

casting it into our representation model to facilitate further processing.

Unfortunately, not all information necessary for assigning canonical

identifiers is available from within the dumps alone. We additionally

query the Web services provided by each server to find out for instance

that in the Tagalog Wikipedia, titles starting with “Kategorya:” refer

to categories (in addition to the default “Kaurian:” and the English

“Category:”, which are also accepted). Such information is normalized,

so as to obtain canonical entity identifiers. Being able to recognize

categories is also helpful at a later stage when constructing the taxonomy.

Statements. Additional information about entities and meta-data about

articles that may be of use later on is extracted and stored with appro-

priate relations. In particular, we capture template invocations, cross-

lingual “interwiki” links, redirects, multimedia links, category links,

and optional factual statements (locatedIn, bornIn, and so on).

Additionally, we create short description glosses for each article

entity (hasGloss) by processing wikitext and HTML mark-up and at-

tempting to identify the first proper paragraph in an article’s wikitext

mark-up (skipping infoboxes, pictures, links to disambiguation pages,

etc.). If this first paragraph is too long, i.e. the length is greater than

some l, a sentence boundary is identified in the vicinity of the position l.
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Term Meanings. Article titles allow us to create means statements that

link terms (words, labels, names) to the semantic entities they refer

to. The original article title is modified by removing any additional

qualifications in parentheses, e.g. ‘School (discipline)’ becomes ‘School’.

Some articles use special markup to provide the true capitalization of a

title, e.g. ‘iPod’ instead of ‘IPod’. If no markup is provided, we check for

the most frequent capitalization variant within the article text.

5.4 Linking Functions

Given our goal of creating a single more coherent knowledge base from

the different editions of Wikipedia and WordNet, our strategy will be to

first expose possible connections between different nodes using several

heuristics. After that, in a second step described later on in Section 5.5,

we integrate these noisy inputs to induce a shared taxonomy.

For the first step, we rely on so-called linking functions to identify

how different entities relate to each other. In particular, Section 5.4.1

introduces equals linking functions that identify identical entities, and

Sections 5.4.2 and 5.4.3 present linking functions for the subclass and

instance relations.

Definition 5.1 A linking function lr : V ×V → R
+
0 for a specific relation

r ∈ Σ is a function that yields confidence weight scores lr(x, y) ∈ R
+
0

and is used to produce statements (x, y, r, lr(x, y)) for pairs of entity

identifiers x, y.

Given a set of equals linking functions Le, a set of subclass linking

functions Ls, and a set of instance linking functions Li, Algorithm 5

shows how the input graph is extended with appropriate links. For each

linking function l ∈ Le ∪ Ls ∪ Li, we additionally assume we have a

candidate selection function σl, which for a given node x ∈ V yields

a set σl(x) ⊆ V containing all nodes y that are likely to have non-zero

scores l(x, y) > 0.

Later on, we will explain how the output of somewhat unreliable link-

ing functions can be aggregated to provide meaningful results. Which

heuristics are appropriate for a given input scenario depends on the

knowledge sources involved. We will now describe the specific choices
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Algorithm 5: Linking function application

1: procedure CREATELINKS(G0 = (V0, A0, Σ), Le, Ls, Li,{σl | l ∈ Le ∪ Ls ∪ Li})
2: for all l in Le do ⊲ for each equals linking function
3: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = equals, w = l(x, y)}

4: for all l in Ls do ⊲ for each subclass linking function
5: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = subclass, w = l(x, y)}

6: for all l in Li do ⊲ for each instance linking function
7: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = instance, w = l(x, y)}

8: return G0 = (V0, A0, Σ)

of linking functions that we use to connect entities in different language-

specific editions of Wikipedia as well as WordNet.

5.4.1 Equality Link Heuristics

In Chapter 4, we explored entity integration focussing only on Wikipedia.

Here, we will be re-using the algorithm from Chapter 4, but will draw on

a larger set of inputs. We use the following linking functions to generate

equals arcs between two entity identifiers x, y.

Cross-Lingual Linking

Like in Chapter 4, if there is a cross-lingual interwiki link from x to y in

Wikipedia, e.g. from Trydent in the Polish Wikipedia to Trento in the

English one, the cross-lingual linking function yields 1, otherwise 0.

Category-Article Linking

The category-article linking function returns 1 when x, y correspond to

a category and an article, respectively, known to be about the same

concept, e.g. the category Abugida writing systems and the article

Abugida. This is detected by checking for specific template invocations

on the category page.

Supervised WordNet Disambiguation

A Wikipedia entity like Degree (school) could match several different

WordNet entities for the word ‘degree’, e.g. degree as a position on a scale,
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or as the highest power of a polynomial. In Wikipedia, there are also

other alternatives for each WordNet entity, e.g. degree as the number

of edges incident to a vertex of a graph, or ‘Degree’ as a brand name.

In order to reliably assess the similarity between a Wikipedia article,

category, or infobox and a WordNet synset, we relied on a supervised

linking function to disambiguate possible meanings. The linking func-

tion relies on Ridge Regression (Bishop, 2007) to derive a model from a

small set of manually labelled training examples (see Section 5.6.3). It

uses three major signals as features.

Term Overlap. The term overlap feature quantifies the degree of sim-

ilarity between the respective human language terms associated with

entities. Here, the set terms(x) for a Wikipedia entity x is given by its

title (after removing additional qualifications and detecting the correct

capitalization, as mentioned earlier) and titles of its redirection articles.

A set of terms for a WordNet entity is retrieved from the English, Arabic

(Rodrı́guez et al., 2008), Catalan (Benitez et al., 1998), Estonian (Orav and

Vider, 2005), Hebrew (Ordan and Wintner, 2007), and Spanish (Atserias

et al., 2004a) wordnets as well as from MLSN (Cook, 2008).

For a Wikipedia entity x and a WordNet entity y, the term overlap

feature is then computed as:

∑

tx∈terms(x)

max
ty∈terms(y)

φx(tx, x) φy(ty, y) sim(tx, ty) (5.1)

Here, sim(tx, ty) is a a simple similarity measure between terms that

returns 1 if the languages match and the strings are equal after lemmat-

izing, and 0 otherwise.

For Wikipedia, the additional term weighting φx generally yields 1,

while for WordNet multiple different versions of φy are used in separate

features. One option is to have φy return 1/n when n different meanings

of ty are listed in WordNet. Additionally, we also use WordNet’s Sem-

Cor corpus frequency and synset rank weights as given in Table 3.2 in

Chapter 3.

It turns out that determining the right capitalization of terms aids

in avoiding incorrect matches. WordNet synsets for ‘college’ will then

only match articles about colleges but not articles about films or subway

stops called ‘College’.
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Cosine Similarity. The cosine vector similarity feature is computed as

vT
x vy(||vx||2 ||vy||2)−1 for vectors vx, vy derived for the short descrip-

tion gloss extracted from the English Wikipedia in Section 5.3.2 and the

gloss and terms provided by WordNet, respectively. The vectors are

created using TF-IDF scores after stemming using Porter’s method, as

in Section 3.4.5 (page 50).

Primary Sense Heuristic. The primary sense feature is computed by

taking the set of unqualified English titles for the Wikipedia entity x

or any of its redirects, and then counting for how many of them the

WordNet synset y is listed as the first (most frequent) noun sense in

WordNet. A Wikipedia title like ‘College’ is considered unqualified if

it does not include an additional qualification in parentheses, unlike

‘College (canon law)’. The most frequent sense of ‘college’ listed in WordNet

is much more likely to correspond to Wikipedia’s ‘College’ article than to

pages with additional qualifications like ‘College (canon law)’ or ‘College

(1927 film)’. Unqualified titles reflect the most important meaning of

words as chosen by Wikipedia editors, and thus are more likely to

correspond to the first sense of those words listed in WordNet.

Together, these three signals allow us to learn a regression model that

assesses whether a Wikipedia article and a WordNet synset are likely to

represent the same semantic entity.

Redirect Matching

Many projects treat redirect titles in Wikipedia as simple alias names of

an entity. However, the meanings of many redirect titles differ signific-

antly from those of their respective redirect target pages. For instance,

there are redirects from Physicist (i.e. human beings) to Physics (a

branch of science) and from God does not play dice to Albert Einstein.

Large numbers of redirects exist from song names to album names or

artist names, and so on. We decided to conservatively equate redirects

with their targets only in the following two cases.

1. The titles of redirect source and redirect target match after paren-

thesized substring removal, Unicode NFKD normalization (Davis

and Dürst, 2008), diacritics and punctuation removal, and lower-

case conversion. This means that London would match London
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(England), London (UK), and LONDON, but not Southwest London

or Climate of London.

2. The redirect uses certain templates or categories that explicitly

indicate co-reference with the target (alternative names, abbrevi-

ations, etc.).

Other redirects still have a chance of being connected to their targets

later on, by the methods described in Section 5.5.1.

Infobox Matching

The infobox matching linking function returns a constant w > 0 when an

infobox template like Infobox university is matched with an article or

category having a corresponding title, in this case University, and 0.0

otherwise. We chose w = 0.5 because these mappings are not as reliable

as interwiki links or redirect links. The function does not consider article

titles with additional qualifications as matching, so University (album)

would not be considered.

5.4.2 Subclass Link Heuristics

Subclass linking functions use simple heuristics to connect a class x to

its potential parent classes y.

Parent Categories

The parent category linking function checks if semantic entities x for

Wikipedia categories can be considered subclasses in the ontological

sense of entities y for their own parent categories as listed in Wikipedia.

To accomplish this, it ensures that both x and y are likely to be cat-

egories denoting genuine classes. A genuine class like Universities can

have instances as its class members (individual universities, ontologic-

ally speaking, are regarded as instances of Universities). In contrast,

other categories like Education or Science education merely serve as

topic labels. It would be wrong to say that the University of Trento “is an”

Education. For distinguishing the two cases automatically, we found

that the following heuristic generalizes the singular/plural heuristic

proposed for YAGO (Suchanek et al., 2007) to the multilingual case:
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• headword nouns that are countable (can have a plural form) tend

to indicate genuine classes

• headword nouns that are uncountable (exist only in singular form)

tend to be topic tags

Hence, we take the titles of a category as well as its cross-lingual coun-

terparts, remove qualifications in parentheses, and, if available, rely on a

parser to retain only the main headword. In practice, we exclusively use

the English Link Grammar parser (Sleator and Temperley, 1993). For

large numbers of non-English categories, it suffices to work with the

entire string after removing qualifications, e.g. the German Wikipedia

uses titles like Hochschullehrer (Berlin) rather than titles like German

academics. In most other cases, the Markov Chain Taxonomy Induction

algorithm will succeed at ensuring that taxonomic links are nevertheless

induced. We then check that whatever term remains is given in plural

(for English), or is countable (in the general case). Countability inform-

ation is extracted from WordNet and Wiktionary (wiktionary.org), the

latter using regular expressions. We also added a small list of Wikipedia-

specific exceptions (words like ‘articles’, ‘stubs’) that are excluded from

consideration as classes.

The linking function returns 1 if y is a parent category of x and both

x and y are likely to be genuine classes, and 0 otherwise.

Category-WordNet Subclass Relationships

If x is a category, then the headword of its title also provides a clue as to

what parent classes are likely in the input wordnets. For instance, a cat-

egory like University book publishers has ‘publishers’ as a headword.

While we need the headword to be covered by the input wordnets, it

suffices to use the English WordNet and perhaps a few other ones. As

we will later see, even if one were to use only Princeton WordNet, the

Markov Chain Taxonomy Induction algorithm could easily integrate

most categories, because the majority of non-English categories will

have equals arcs to English categories or subclass links ultimately

leading to an article or category that is connected to WordNet.

We again relied on supervised learning to disambiguate possible

meanings of a word, as earlier employing Ridge Regression (Bishop,

2007) to learn a model that recognizes likely semantic entities based on
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a labelled training set (see Section 5.6.4). The main features are again of

the form

∑

tx∈terms(x)

max
ty∈terms(y)

φx(tx, x) φy(ty, y) simhw(tx, ty) (5.2)

This is similar to Equation 5.1, however simhw(tx, ty) matches with head-

words of titles tx rather than full titles tx if such information is available.

As for the subclass links, qualifications in parentheses are removed,

and then the Link Grammar parser is used to retain only the headword

(Sleator and Temperley, 1993) if possible. Additionally, φx(tx, x) will be

1 if tx is in plural or countable and 0 otherwise, allowing us to distin-

guish topic labels from genuine classes. The second weighting function

φy(ty, b) again uses the number of alternative meanings as well as synset

rank and corpus frequency information. Apart from this, the linking

also relies on the cosine similarity feature used earlier for equals. To-

gether, these features allow the model to disambiguate between relevant

WordNet synsets. A few exceptions are specified manually, e.g. ‘capital’,

‘single’, ‘physics’, ‘arts’, and Wikipedia-specific ones like ‘articles’, ‘pages’,

‘templates’.

WordNet Hypernymy

WordNet’s notion of hypernymy between synsets is closely related to

the subclass relation. The hypernymy linking function hence returns 1

if y is a hypernym of x in WordNet, and 0 otherwise.

5.4.3 Instance Link Heuristics

Instance linking functions link individual entities to their classes.

Infoboxes

A University infobox placed in a Wikipedia article is a very strong

indicator of the article being about a university. The instance linking

function returns a constant winfobox > 0 if y is recognized as an infobox

template that occurred on the page of the article associated with x, and

0 otherwise. Since infoboxes are incorporated into Wikipedia articles

by means of simple template invocations, heuristics need to be used
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to distinguish them from other sorts of template invocations. For this,

we rely on a list of suffixes and prefixes (like “ Infobox”) for different

languages. The instance links generated by the infobox linking function

are useful later on, because we will also have equals links between

infobox templates and articles, as described in Section 5.4.1.

Categories

Entities for articles like Free University of Bozen-Bolzano are made

instances of certain categories, e.g. Universities in Italy, but not of

topic categories like Bolzano. If y is a Wikipedia category for the article

associated with x, the category linking function assesses whether a

headword of y (or of its interwiki translations) is in plural or countable,

and returns 1 if this is the case, and 0 otherwise, as earlier for subclass

relations.

We will now explain what these linking functions give us and what

needs to be done in order to obtain a more coherent output knowledge

base.

5.5 Taxonomy Induction

Applying the linking functions to the input as in Algorithm 5, we ob-

tain a graph G0 = (V0, A0, Σ) with an extended arc set A0 connecting

semantic entities from multiple knowledge sources to each other, in our

case articles, categories, infoboxes (from different editions of Wikipedia),

as well as WordNet entities. As shown in Figure 5.2, the connections

include equals statements (bidirectional arrows) representing equival-

ence, subclass statements connecting categories and WordNet entities

to parent classes, and instance statements connecting articles to cat-

egories and infoboxes (unidirectional arrows).

However, due to the noisy heuristic nature of these arcs and the

fact that these entities come from different sources, it is not trivial to

recognize that ‘Fersental’ is a valley rather than a language. In fact, in

reality, we may have more than 50 languages and many more potential

parents for an entity. What is needed is a way to aggregate information

and produce the final, much cleaner and more coherent knowledge
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Figure 5.2: Simplified illustration of noisy input from link heuristics

Figure 5.3: Relevant sample of the desired output
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base, which would ideally include what is depicted in Figure 5.3. We

proceed in two steps. The first step aggregates entity identifiers referring

to the same entity by producing consistent equivalence classes. In the

second step, taxonomic information from different linking functions is

aggregated to produce the clean output taxonomy.

5.5.1 Consistency of Equivalence Information

In general, there will often be multiple entity identifiers that refer to

the same entity and that are connected by equals statements. For in-

stance, the German Fersental is equivalent to the corresponding Italian,

Norwegian, and other articles about the valley. It will sometimes be

convenient to jointly refer to all of these equivalents.

To make the knowledge base more coherent, one key ingredient is

taking into account the symmetry and transitivity of equivalence. In

practice, we may have an infobox in some non-English edition with an

equals arc to an article, which has an equals arc to a category, which in

turn has an interwiki link to an English category, and so on.

This leads us to the following definition to capture the weakly con-

nected components corresponding to the symmetric, transitive closure

of equals.

Definition 5.2 (e-component) In a knowledge base G = (V, A, Σ), an

e-component E ⊆ V for some entity v0 ∈ V is a minimal set of entities

containing v0 such that v ∈ E for all u ∈ E, v ∈ V with statements

(u, v, r, w) ∈ A or (v, u, r, w) ∈ A (with r = equals, w > 0). We use the

notation E(v0) to denote the e-component containing a node v0.

As we saw earlier in Chapter 4, due to the heuristic nature of the equality

linking functions, it often occurs that two entities u, v are transitively

identified within an e-component, although we are quite sure that they

should not be. For instance, we may have two different Wikipedia

articles linked to the same WordNet synset. In some cases, the input

from Wikipedia is imprecise, e.g. the Catalan article about the city of

Bali in Rajasthan, India, as of October 2010, is linked to the Hindi article

about the Indonesian island of Bali.

We will again be using our WDGS framework from Chapter 4, and

most of the distinctness assertions will again come from the criteria
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in Section 4.4.1. We additionally apply the following two criteria to

avoid multiple WordNet synsets from being merged and to ensure

that disambiguation pages are not mixed up with regular articles. In

Wikipedia, disambiguation pages are special pages that provide a list of

available articles for ambiguous titles.

Criterion 5.1 (Distinctness of WordNet Synsets). We assume that Word-

Net does not contain any duplicate synsets and add a distinctness as-

sertion (Di,1, Di,2, . . . ), consisting of a singleton set Di,j = {v} for each

semantic entity v from WordNet.

Criterion 5.2 (Distinctness from Disambiguation Pages). We add an

assertion (Di,1, Di,2) where Di,1 contains all articles recognized as dis-

ambiguation pages, and Di,2 contains all articles not recognized as

disambiguation pages.

We could also have chosen not to remain that faithful to WordNet

and only enforce distinctness between different branches of entities

within WordNet, e.g. (Di,1, Di,2) where Di,1 contains all abstract entities

in WordNet and Di,2 contains all physical entities in WordNet. Since

we are aiming at a more precise upper-level ontology, we decided to

maintain WordNet’s fine-grained sense distinctions.

Algorithm. To reconcile the equals arcs with the distinctness informa-

tion, we first apply generic graph partitioning heuristics (Dhillon et al.,

2007) to break up very large sparsely connected components into indi-

vidual, much more densely connected clusters. On each of these densely

connected clusters, we then apply the more accurate WDGS algorithm

from Chapter 4 with its logarithmic approximation guarantee. In a few

rare cases, the LP solver may time out even for small partitions, in which

case we resort to computing minimal s-t cuts (Edmonds and Karp, 1972)

between individual pairs of entities that should be separated. Minimal

s-t cuts can be computed efficiently in O(V E2) or O(V 2E) time. The

statements corresponding to the cut edges are removed, and hence we

obtain smaller e-components that should no longer conflate different

concepts.
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5.5.2 Aggregated Ranking

Requirements

Having made the equals arcs consistent, we then proceed to build the

class hierarchy. In order to create the final output taxonomy, we will

reconsider which entities to choose as superordinate taxonomic parents

for a given entity. In doing so, the following considerations will need to

be acknowledged.

First of all, the taxonomic arcs provided as inputs in general are not

all equally reliable, as many of them originate from heuristic linking

functions. The input arcs are equipped with statements weights that

indicate how much we can trust them.

Property 5.1 (Ranking). The output should be a ranked list of taxonomic

parents with corresponding scores rather than a simple set, based on the

weights of the taxonomic arcs. All other things being equal, a taxonomic

parent of an entity (that is not in the same e-component) should receive a

greater parent ranking score for that entity if the weight of an incoming

arc is higher.

Additionally, to obtain a clean, coherent output, it is crucial to obtain

rankings that take into consideration the fact that parents are not inde-

pendent, but themselves can stand in relationships to each other. For

example, two different versions of Wikipedia may have what is essen-

tially the same class (equals arcs) or classes that are connected by means

of subclass relationships (subclass arcs).

This is very important in practice, because we frequently observe

that the input arcs link individual articles to their categories, but these

categories are language-specific local ones that are not part of a shared

multilingual class hierarchy. If an article is found to be in the class Tal in

Trentino-Südtirol in the German Wikipedia, then the possible parent

class Valley from WordNet, which is reachable by following equals

and subclass links, should gain further credibility.

The same consideration also applies to the node whose parents are

currently being considered. Clearly, when evaluating parents about a

Malay Wikipedia article, we may benefit from information available

about an equivalent English article entity, and vice versa.
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Property 5.2 (Dependencies). A taxonomic arc from a node u to a node

v with weight greater than 0 should contribute to the ranking scores of

nodes v′ that are reachable from v via equals and subclass arcs. When

evaluating parents for a node v0, outgoing taxonomic arcs of nodes v′

that are reachable from v0 via equals arcs should also contribute to the

ranking.

Finally, it is fairly obvious that information coming from multiple sources

is likely to be more reliable and salient. For example, many Wikipedia

editions describe the Colorado River as a river, but only few declare it to

be a border of Arizona.

Property 5.3 (Aggregation). If a parent node v is not in the same e-

component as the node v0 whose parents are being ranked, then, all

other things being equal, v should be given a higher ranking score with

incoming taxonomic arcs (of weight greater than 0) from multiple nodes

than if v had incoming arcs from fewer of those nodes.

Markov Chain

Taking these considerations into account, in particular Property 5.2, re-

quires going beyond conventional rank aggregation algorithms. We use

a Markov chain approach that captures dependencies between nodes.

Definition 5.3 (Parent Nodes) Given a set of entities S and a target

relation r (subclass or instance), the set of parents P (S, r) is the set

of all nodes vm that are reachable from v0 ∈ S following paths of the

form (v0, v1, . . . , vm) with (vi, vi+1, ri, wi) ∈ A, wi > 0 for all 0 ≤ i < m,

and specific ri. The path length m may be 0 (i.e. the initial entity v0

is considered part of the parent entity set), and may be limited for

practical purposes. When producing subclass arcs as output (r =sub-

class), all ri must be subclass or equals. When producing instance

arcs as output (r =instance), the first ri that is not equals must be

an instance relation, and any subsequent ri must be either equals or

subclass.

Definition 5.4 (Parent e-components) Instead of operating on original

sets of parent entities P (S, r), we consider the corresponding set of
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parent e-components {E(v) | v ∈ P (S, r)} (see Definition 5.2), which

consists of the e-components for all v ∈ P (S, r).

For every node v0 in the input graph, we will retrieve the set of

possible parents and construct a Markov chain in which each state

corresponds to a parent e-component of v0. The Markov chain will

enable us to create a ranking of those parents.

Definition 5.5 Given a source node v0 in a knowledge base G =

(V, A, Σ), a target relation r, and a corresponding set of parent e-compo-

nents {E0, . . . , En} (such that v0 ∈ E0), we define

wi,j =
∑

u∈Ei

∑

v∈Ej

∑

(u,v,r′,w)∈A

w

for all i,j from 0 to n, where r′ is instance if i = 0 and r=instance, and

r′ is subclass in all other cases (i.e. if i > 0 or r =subclass). We further

define Γo(i) as {j | wi,j > 0}.

If the target relation is subclass, this definition considers all sub-

class arcs between parent e-components. If the target relation is instance,

we need to distinguish between outgoing arcs from E0, which must be

instance ones, and other outgoing arcs, which must be subclass ones.

Definition 5.6 (Markov Chain) Given an entity v0, a corresponding

set of parent e-components {E0, . . . , En} (v0 ∈ E0), a weight matrix

wi,j characterizing the links between different Ei, and a weight c ∈ R
+,

we define a Markov chain (Ei0
, Ei1

, . . . ) as follows. The set {E0, . . . ,

En} serves as a finite state space S, an initial state Ei0
∈ S is chosen

arbitrarily, and the transition matrix Q is defined as follows.

Qi,j =























wi,j

c +
∑

k∈Γo(i)

wi,k

j 6= 0

c + wi,j

c +
∑

k∈Γo(i)

wi,k

j = 0
(5.3)

Figure 5.4 illustrates a Markov chain defined in this way: Part (a)

shows parent e-components corresponding to states, Part (b) shows

state transitions derived from taxonomic arcs between nodes in e-com-

ponents, and Part (c) shows how one can transition back to the source

node E0, which contains Fersental, from any state.
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(a) Parent e-components as state space

(b) State transitions based on taxonomic links

(c) Additional state transitions to source node

Figure 5.4: Markov chain setup
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Theorem 5.7 A transition matrix Q as defined in Definition 5.6 is

stochastic.

Proof. Given c > 0, for any i ∈ {0, . . . , n}, we obtain

n
∑

j=0

Qi,j =
c + wi,0

c +
∑

k∈Γo(i)

+

n
∑

j=1

Qi,j

=

c +
n

∑

j=0

wi,j

c +
n

∑

k=0

wi,k

= 1.

The state space includes the e-component E0 containing the source

node. The probability mass received by E0 rather than by genuine

parents Ei with i > 0 in the stationary distribution reflects the extent of

our uncertainty about the parents. For instance, if all immediate parents

of the source node are linked with very low weights, then E0 will attract

a high probability mass. In the definition, c is the weight endowed to

random restarts, i.e. transitions from arbitrary states back to E0. Larger

choices of c lead to a bias towards more immediate parents of E0, while

lower values work in favour of more general (and presumably more

reliable) parents at a higher level. It is easy to see that the Markov chain

is irreducible and aperiodic if c > 0, so a unique stationary distribution

must exist in those cases.

Theorem 5.8 (Stationary Probability) The Markov chain possesses a

unique stationary probability distribution π with π = πQ.

Proof. For any state E ∈ S, there exists some node vm ∈ E that is

reachable from the source node v0 by following a path of statements

with non-zero weights as specified in Definition 5.3. The corresponding

weights wi,j and state transition probabilities Qi,j along the path must

be non-zero. Hence, every state is reachable from E0.

Since c > 0, we obtain a non-zero random restart probability Qi,0 > 0

for every i, so from every state one can transition back to E0, and thus the
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chain is irreducible. Additionally, since c > 0, the state E0 is aperiodic

(one can remain in E0 for any amount of steps), and hence the entire

chain is aperiodic. By the Fundamental Theorem of Markov chains, a

unique stationary distribution exists.

Markov Chain Taxonomy Induction

This implies that we can use the stationary distribution of the Markov

chain to rank parents of a source node with respect to their connec-

tedness to that source node. The stationary distribution can easily be

computed with the power iteration method. Algorithm 6 captures the

steps taken to induce the taxonomy.

Input. As input, it takes a graph G0 as defined in Chapter 2, contain-

ing information from the original knowledge sources as well as noisy

equals and taxonomic statements, as produced by Algorithm 5. Ad-

ditionally, one supplies the c parameter from Definition 5.6, an output

selection function σ discussed below, parameters ǫ, imax for the station-

ary probability computation, and the taxonomic root node vR which is

supposed to subsume all other classes (e.g. Entity).

Forming e-components. The algorithm begins by forming consistent

e-components from the output of the WDGS framework. These become

the entities of the output knowledge base. In practice, one may want

to create entity identifier strings based on the entity identifiers within

the e-component, perhaps preferring article titles in a specific language.

Non-taxonomic statements like means statements that provide human-

readable terms or statements capturing factual knowledge like birth

dates of people are directly mapped to the e-components.

Ranking. Then, for each e-component E, the heuristics described in

Section 5.4.2 are used to assess whether E is likely to be a class (check-

ing headwords for Wikipedia and assuming yes for WordNet synsets

without outgoing instance arcs). In accordance with the outcome of

this assessment, the parents are retrieved and the transition matrix Q

for the Markov chain is constructed. The fixed point π = πQ can be

computed using a number of different algorithms, e.g. the well-known
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Algorithm 6: Markov Chain Taxonomy Induction algorithm

1: procedure TAXONOMY(G0 = (V0, A0, Σ), c, σ, ǫ, imax, vR)
2: D0, . . . , Dk ← distinctness assertions for G0 ⊲ cf. Section 5.5.1
3: apply WDGS framework to G0, D0, . . . , Dk ⊲ cf. Section 5.5.1
4: V ← {E(v) | v ∈ V0} ⊲ consistent e-components become nodes
5: ΣT ← {equals, instance, subclass} ⊲ set of taxonomic relations
6: A← {(E(u), E(v), r, w) | (u, v, r, w) ∈ A0, r 6∈ ΣT}
7: ⊲ map all non-taxonomic statements
8: AT ← ∅
9: for all E in V do ⊲ for all e-components

10: r ←

{

subclass if E likely to be a class

instance otherwise
⊲ see Section 5.4.2

11: E0 ← E

12: E1, . . . , En ← enumeration of {E(v) | v ∈ P (E, r)} \ {E}
13: ⊲ parent e-components as per Definition 5.4 in arbitrary order
14: Q← transition matrix for E using E0, . . . , En and c, r

15: ⊲ as per Definition 5.6
16: π ← EIGENVECTOR(Q, ǫ, imax)
17: AT ← AT ∪ {(E, Ei, r, πi) | i > 0} ⊲ preliminary output

18: A← A ∪ σ(AT ) ⊲ final output
19: optionally remove entities not connected to E(vR) ⊲ e.g. vR = Entity

20: return G = (V, A, Σ ∪ ΣT) ⊲ taxonomic knowledge base as output

21: procedure EIGENVECTOR([Qi,j ]i,j=1,...,n, ǫ, imax)
22: choose uniform π with πi = 1

n
⊲ initial distribution

23: i← 0
24: repeat ⊲ Power iteration method
25: π′ ← π

26: π ← Qπ

27: i← i + 1
28: until ||π − π′||1 < ǫ or i ≥ imax

29: return π
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power iteration method. Although this process needs to be repeated

for all e-components, these steps are nevertheless not a bottleneck (see

Section 5.6).

Output. The final output is generated by some selection function σ

from the preliminary output AT. This can involve the following steps.

• As an optional step, filtering with respect to specific criteria can be

performed, e.g. retaining only parents with Chinese labels, or only

WordNet synsets as parents, and of course filtering with respect to

some minimal weight threshold.

• Usually, the top-ranked k parent e-components E′ will be chosen

for a given E, where k = 1 leads to a more traditional taxonomy,

while higher k lead to more comprehensive knowledge bases.

• Cycles of subclass relationships can optionally be removed. A

cycle of formal subsumptions implies that all items in the cycle

are equivalent. Since we have already merged nodes assumed

to be equivalent into e-components, it makes sense to break up

cycles. Cycles can be found in linear time by determining strongly

connected components (Tarjan, 1972). In order to make the sub-

class arcs acyclic, one can remove the lowest-weighted subclass

arc in each cycle.

• Redundant arcs to parent classes can be removed. Whenever there

is an arc to a parent that is also a higher-order parent, we can

remove the redundant direct arc to the parent.

Before completing, we can optionally prune all entities (and correspond-

ing statements) which are not linked to the taxonomy’s root node E(vR)

by paths of taxonomic links in the output graph. This leads to an even

more coherent knowledge base.

Analysis. Given a knowledge graph G = (V0, A0, Σ) stored in a data

structure that allows lookups in both directions of a directed arc, e-com-

ponents can be found in linear time, i.e. O(|V0| + |A0|), by iterating over

the nodes and starting a depth-first search whenever an unseen node

is encountered. Due to the overall sparsity of the graph with respect to

equals arcs, the runtime will tend to be close to O(|V0|). Subsequently,

for each E ∈ V , the same strategy can be used to retrieve the set of parent
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e-components, and the weights wi,j can be computed on the fly while

doing this. Computing the Markov chain’s transition matrix Q can take

O(|V |2) steps, and approximating the stationary distribution requires

O(|V |2) operations if the power iteration method is used with a constant

imax. This means that with these implementation choices, the overall

worst-case complexity of the algorithm is O(|V0|3). In practice, the set

of parent e-components will be small, and additionally the transition

matrices will be sparse, so the algorithm runs fairly quickly, as we show

in Section 5.6.

Theorem 5.9 The Markov Chain Taxonomy Induction algorithm pos-

sesses properties 5.1, 5.2, and 5.3, if c > 0.

Proof. Definition 5.5 implies that, all other things being equal, a higher

weight for a taxonomic arc from some node u ∈ Ei to a parent v ∈ Ej

will lead to a higher weight wi,j . We know that c > 0 and additionally

assume v 6∈ E0 (i.e. j 6= 0). Then, by Definition 5.6, Qi,j will increase

(and at least Qi,0 will decrease). Additionally, from the proof of Theorem

5.8, we know that Q is aperiodic and irreducible and hence regular. Due

to the monotonicity of the stationary distribution of regular Markov

chains (Chien et al., 2003), the e-component including v will have a

greater probability mass in the new distribution, and Property 5.1 is

fulfilled.

Similarly, given a node v′ reachable from another node v via equals

and subclass arcs, the state E(v′) must be reachable from E(v) with

non-zero probability, so any taxonomic arc from a node u to v also

contributes to the ranking of v′. When evaluating parents for v0, nodes

v′ that are reachable from v0 via equals arcs are also in E0 = E(v0), so

outgoing taxonomic arcs of v′ contribute to the ranking, and Property

5.2 is fulfilled.

Finally, Definition 5.5 implies that, all other things being equal, a

parent v ∈ Ej with input arcs from multiple children will have a higher

sum of incoming weights
∑

i wi,j than the same parent if it had fewer of

those incoming arcs. With c > 0 and assuming j 6= 0, this also implies a

higher
∑

i Qi,j . The monotonicity of the stationary distribution (Chien

et al., 2003) then implies that Property 5.3 is satisfied.
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With these properties, Markov Chain Taxonomy Induction allows us to

aggregate link information from heterogeneous sources, e.g. information

from multiple editions of Wikipedia, including category and infobox

information, and from WordNet. The output is a much more coherent

taxonomic knowledge base, similar to the example excerpt in Figure 5.3,

where clean e-components have been merged, and taxonomic links have

been aggregated and cleaned.

5.6 Results

5.6.1 System Architecture

The system used to build MENTA is an extension of the one used in the

previous chapters. As in Chapter 3, we use mappers to implement link-

ing heuristics. The algorithm implementation from Chapter 4 ensures

that the equals arcs are reconciled with the distinctness information.

The Markov Chain Taxonomy Induction algorithm is used to process

the original noisy subclass and instance arcs that are provided as

input. In order to increase the speed, we limited the maximal parent

path length in Definition 5.3 to m = 4. This means that thousands of

states that would obtain near-zero probabilities are pruned in advance.

A second key to making the algorithm run quickly is relying on the

fact that many entities share common parents, so the expensive lookups

to determine potential parents should be cached. This allowed us to

process all 19.9 million e-components in less than 3 hours on a single

3GHz CPU. Additionally, since the main loop in Algorithm 6 considers

each source e-component separately, it would have been possible to

parallelize the processing.

5.6.2 Dataset

We wrote a custom Web crawler that downloads the latest Wikipedia

XML dumps from Wikimedia’s download site, retrieving 271 different

editions of Wikipedia as of April 2010. The size of the uncompressed

XML dumps amounts to around 89.55 GB in total, out of which 25.4 GB

stem from the English edition.
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Figure 5.5: Precision-recall curve for Wikipedia-WordNet links

5.6.3 Entity Equality

Equality Information. The linking functions provided 184.3 million

directed interwiki links and 7.1 million other directed equals arcs. The

WordNet disambiguation model was obtained by training on 200 out of

407 manually labelled examples, selected randomly among all Wikipedia

articles and WordNet synsets sharing a term. The precision-recall curve

on the remaining 207 examples used as the test set (Fig. 5.5) shows the

remarkably reliable results of the model. With a threshold of 0.5 we

obtain 94.3% precision at 80.7% recall (F1: 87.0%). The precision only

drops sharply once we move towards recall levels significantly above

80%. See Section 3.5.2 for an introduction to precision and recall. The

overall area under the ROC curve (ROC AUC) is 93.06%.

Distinctness Information. The equality arcs led to 19.5 million initial

e-components, including templates, categories, and redirects. It turns

out that roughly 150,000 of these e-components contained nodes to be

separated, among them a single large e-component consisting of nearly

1.9 million nodes. Overall, more than 5.0 million individual node pairs

are asserted to be distinct by the distinctness assertions.
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Reconciliation. We applied the WDGS framework from Section 5.5.1 to

separate the entities and obtain more consistent links. The process took

several days to complete, with the expensive linear program solving by

CPLEX (for the approximation algorithm) being the major bottleneck.

We experimented with agglomerative clustering as an alternative, but

found the WDGS solution costs to be orders of magnitude worse. Using

the approximation algorithm, a total of 2.3 million undirected equals

connections (4.6 million directed arcs) were removed, resulting in 19.9

million e-components after separation.

5.6.4 Taxonomy

Linking Functions. As additional input to the taxonomy induction al-

gorithm, the linking functions produced what correspond to 1.2 million

subclass arcs and 20.1 million instance arcs between e-components.

For the instance arcs, we chose winfobox = 2 because classes derived

from infoboxes are more reliable than categories. The WordNet disam-

biguation model for subclass was obtained by training on 1,539 random

mappings, the majority of these (1,353) being negative examples. On a

test set of 234 random mappings, we obtain a precision of 81.3% at 40.0%

recall, however going above 40% recall, the precision drops sharply, e.g.

60.8% precision at 47.7% recall. This task is apparently more difficult

than the equals disambiguation, because less contextual information is

directly available in the category page markup and because our heur-

istics for detecting classes may fail. Overall, there would be 6.1 million

subclass arcs, but we applied a minimal threshold weight of 0.4 to filter

out the very unreliable ones. The ROC AUC is only 65.8%. This shows

that using the original linking functions alone can lead to a taxonomy

with many incorrect links.

Algorithm. We thus relied on our Markov Chain Taxonomy Induction

algorithm to choose reliable parents. In our experiments, the algorithm’s

c parameter was fixed at c = 1
2 , based on the intuition that if there is

only one parent with weight 0.5, then that parent should be reached

with probability 1
2 from the current state. Examples of subclass and

instance rankings are given in Tables 5.1 and 5.2, respectively, showing

the highest-ranked parent entities from WordNet and Wikipedia. Note
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Table 5.1: Ranked subclass examples

Class WordNet Parent Wikipedia Parent

Science museums 1. museum Museums
in New Mexico 2. science museum Science museum

3. depository Museums in
New Mexico

Cathedrals in 1. church building Cathedral
Belize 2. cathedral

(large church)
Churches in Belize

3. cathedral
(diocese church)

Church buildings

Hamsters 1. rodent Rodents
2. hamster Pets
3. mammal Domesticated

animals

that in the final output, equivalent parents from WordNet and Wiki-

pedia would in most cases form a single e-component. They are listed

separately here for information purposes only.

Out of the 19.9 million e-components in the input, a large majority

consist of singleton redirects that were not connected to their redirect

targets, due to our careful treatment of redirect links in Section 5.4.1.

Coherence. For roughly 5.8 million e-components, we actually had

outgoing instance links in the input. To quantify the coherence, we

determine what fraction of these e-components can be connected to e-

components involving WordNet synsets, as WordNet can be considered

a shared upper-level core. Table 5.3 shows that this succeeds for nearly

all e-components. The first column lists the number of entities for which

we have outgoing instance arcs, while the second column is restricted

to those for which we could establish instance arcs to WordNet (at

a reachability probability threshold of 0.01). The small differences in

counts between these two columns indicate that most entities for which

there is any class information at all can be integrated into the upper-level
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Table 5.2: Ranked instance examples

Entity WordNet Parent Wikipedia Parent

Fersental 1. valley Valleys
2. natural depression Valleys of Italy
3. geological formation Valleys of Trentino /

Alto Adige

Cagayan National 1. secondary school Secondary school
High School 2. school School

3. educational
institution

High schools in the
Philippines

The Spanish 1. book Book
Tragedy 2. publication British plays

3. piece of work Plays

backbone provided by WordNet. The third column lists the number

of e-components that are independent of the English Wikipedia but

have successfully been integrated by our algorithm with instance links.

While some fraction of those may correspond to entities for which cross-

lingual interwiki links need to be added to Wikipedia, large numbers are

entities of local interest without any matching English Wikipedia article.

Additionally, we found that 338,387 e-components were connected as

subclasses of WordNet synsets, out of a total of 360,476 e-components

with outgoing subclass arcs.

Accuracy. Table 5.4 shows a manual assessment of highest-ranked

WordNet-based parent classes for over 100 random entities. We rely

on Wilson score intervals at α = 0.05 (Brown et al., 2001) to generalize

our findings to the entire dataset. For k = 2, 3, the ranked output is

significantly more reliable than the wi,j between e-components resulting

from the initial subclass arcs. The aggregation effect is even more

noticeable for the instance arcs to WordNet in Table 5.5. To connect

instances to WordNet, the algorithm needs to combine instance arcs

with unreliable subclass arcs. Yet, the output is significantly more
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Table 5.3: Coverage of individual entities by source Wikipedia

Instances Instances
Linked to
WordNet

Non-English
Instances

Linked to WN

English 3,109,029 3,004,137 N/A
German 911,287 882,425 361,717
French 868,864 833,626 268,693
Polish 626,798 579,702 159,505
Italian 614,524 594,403 161,922
Spanish 568,373 551,741 162,154
Japanese 544,084 519,153 241,534
Dutch 533,582 508,004 128,764
. . . . . . . . . . . .

Total 13,982,432 13,405,345 2,917,999
E-components 5,790,490 5,379,832 2,375,695

Table 5.4: Accuracy of subclass arcs to WordNet

top-k Sample
Size

Initial Arcs Ranked Arcs

1 104 82.46% ± 7.08% 83.38% ± 6.92%
2 196 57.51% ± 6.85% 83.03% ± 5.17%
3 264 45.89% ± 5.97% 79.87% ± 4.78%

accurate than the input subclass arcs, for k = 1, 2, and 3. This means

that the Markov chain succeeds at aggregating evidence across different

potential parents to select the most reliable ones.

We additionally asked speakers of 3 other languages to evaluate the

top-ranked WordNet synset for at least 100 randomly selected entities

covered in the respective language, but without corresponding English

articles. We see that non-English entities are also connected to the shared

upper-level ontology fairly reliably. The main sources for errors seem
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to be topic categories that are interpreted as classes and word sense

disambiguation errors from the subclass linking function. Fortunately,

we observed that additional manually specified exceptions as in YAGO

(Suchanek et al., 2007) would lead to significant accuracy improvements

with very little effort. Certain categories are very frequent and account

for the majority of disambiguation errors.

Table 5.5: Accuracy of instance arcs to WordNet

Language top-k Sample
Size

Wilson Score
Interval

English 1 116 90.05% ± 5.20%
English 2 229 86.72% ± 4.31%
English 3 322 85.91% ± 3.75%

Chinese 1 176 90.59% ± 4.18%
German 1 168 90.15% ± 4.36%
French 1 151 92.30% ± 4.06%

Coverage. The total number of output e-components in MENTA is

roughly 5.4 million excluding redirects (Table 5.3), so with respect to both

the number of entities and terms, MENTA is significantly larger than

existing multilingual and monolingual taxonomies relying only on the

English Wikipedia, which as of June 2010 has around 3.3 million articles.

For many of these entities, MENTA contains additional supplementary

information extracted from Wikipedia, including short glosses in many

different languages, geographical coordinates for countries, cities, places,

etc., and links to pictures, videos, and audio clips. For example, when

looking up ‘Mozart’, pictures as well as audio clips are available.

5.6.5 Lexical Knowledge

After forming e-components, the upper-level part of MENTA can be

considered a multilingual version of WordNet. A total of 42,041 Word-

Net synsets have been merged with corresponding Wikipedia articles or
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categories. We found that WordNet is extended with words and descrip-

tion glosses in 254 languages, although the coverage varies significantly

between languages. The average number of Wikipedia-derived labels

for these WordNet synsets is 20.

In Table 5.6, the results are compared with the results for UWN from

Chapter 3, which is derived mainly from translation dictionaries. While

MENTA’s coverage is limited to nouns, we see that MENTA covers

comparable numbers of distinct terms. The number of means statements

is lower than for UWN, because each Wikipedia article is only merged

with a single synset. The precision of MENTA’s disambiguation is 94.3%,

which is significantly higher than the 85-90% of UWN. This is not

surprising, because an approach based on translation dictionaries has

much less contextual information available for disambiguation, while

MENTA can make use of Wikipedia’s rich content and link structure.

Additionally, MENTA’s output is richer, because we add not only

words but also have over 650,000 short description glosses in many dif-

ferent languages as well as hundreds of thousands of links to media files

and Web sites as additional information for specific WordNet synsets.

Gloss descriptions are not only useful for users but are also important

for word sense disambiguation (Lesk, 1986). Finally, of course, our re-

source adds millions of additional instances in multiple languages, as

explained earlier.

UWN/MENTA Knowledge Base. The results suggest that we can ob-

tain a more complete knowledge base by bringing together MENTA’s

large numbers of nouns and named entities with UWN’s broad coverage

of verbs, adjectives, adverbs, as well as alternative senses of nouns (e.g.

‘school’ in the sense of the process of being educated).

We re-ran the UWN algorithm with a more up-to-date input graph,

i.e. with larger numbers of input translations than in the experiments

in Chapter 3. The new means statements and the corresponding terms

were attached to MENTA’s upper-level core, and duplicate statements

were removed.

Table 5.7 gives the lexical coverage of this final, integrated UWN/

MENTA knowledge base. We distinguish global values, which include

large numbers of named entities and domain-specific concepts from

Wikipedia, from the more restricted upper-level that consists of only
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Table 5.6: Multilingual Wordnet (upper-level part of MENTA)

Language means

Statements
in MENTA

Distinct
Terms in
MENTA

Distinct
Terms in

UWN

Overall 845,210 837,627 822,212

French 036,093 035,699 033,423
Spanish 031,225 030,848 032,143
Portuguese 026,672 026,465 023,499
German 025,340 025,072 067,087
Russian 023,058 022,781 026,293
Dutch 022,921 022,687 030,154

those entities that correspond to WordNet synsets. In total, there are

roughly 90 languages with at least 10,000 means statements, including

minority and regional languages like Welsh (48,983 means statements)

and Cebuano (41,552). The coverage extends to more than 200 languages

with at least 500 distinct terms and overall more than 300 languages. The

large coverage and diverse range of languages show that this integrated

resource comes very close to the universal multilingual knowledge base

envisioned in the introduction in Chapter 1.

User Interface for Lexical Database Queries. A simple Web-based

user interface has been implemented that allows users to look up words

or names and browse some of the information available in the UWN/

MENTA knowledge base. Figure 5.6 provides a screenshot. It is clear

that the way language users search for information about words and

their meanings has evolved significantly in recent years, as users are

increasingly turning to electronic resources to address their lexical in-

formation needs. Traditional print media take more time to consult and

are less flexible with respect to their organization. Alphabetical ordering,

for instance, is not well-suited for conveying conceptual relationships

between words.

Lexical databases, in contrast, can simultaneously capture multiple

forms of organization and multiple facets of lexical knowledge. Especially
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Table 5.7: Lexical coverage of final UWN/MENTA knowledge base

means Statements Distinct Terms
Language All Upper Level All Upper Level

Overall 18,090,4561 2,280,0391 16,708,1912 1,757,6162

English 04,135,5011 0066,5411 04,011,8692 0055,7722

French 01,317,0781 0100,5731 01,222,7312 0071,8872

German 01,038,8901 0125,9041 00923,4292 0087,4972

Spanish 00880,2541 0088,7981 00813,6052 0061,9112

Portuguese 00732,0921 0068,1161 00667,4172 0048,8872

Italian 00722,7871 0074,8431 00662,1982 0053,6452

Polish 00678,0261 0047,2401 00612,5122 0038,0002

Russian 00649,3041 0080,7391 00578,8202 0057,9802

Dutch 00637,6951 0081,6531 00555,4512 0050,8882

Japanese 00571,7971 0036,7991 00530,5352 0029,8592

Swedish 00408,6401 0054,7891 00377,8642 0041,6112

Finnish 00286,8761 0059,7731 00260,7852 0044,6682

Norwegian3 00277,2591 0023,1361 00263,2122 0020,6882

Chinese 00274,3611 0032,1791 00263,2532 0033,9202

Catalan 00233,0881 0046,5341 00213,4292 0034,6872

Czech 00229,7331 0074,3141 00201,2722 0056,1282

Turkish 00225,4001 0062,5481 00198,6622 0046,2592

Ukrainian 00212,7451 0052,1101 00187,9662 0038,3872

Romanian 00212,1161 0028,5881 00200,9182 0023,1882

Esperanto 00197,3031 0062,8121 00170,8822 0043,4672

Hungarian 00196,6691 0047,5431 00180,5392 0038,2132

Indonesian 00150,7731 0041,6911 00141,5132 0036,2012

Slovak 00150,2141 0044,4091 00133,1762 0033,8922

Danish 00149,0021 0028,7751 00136,2332 0021,7472

Korean 00134,8691 0019,4771 00123,7682 0016,5032

Vietnamese 00133,9671 0011,3121 00129,1032 0010,1702

Serbian 00129,9671 0018,7911 00120,7712 0015,8152

Arabic 00120,6691 0015,6601 00114,4672 0013,2642

Hebrew 00117,6001 0021,0811 00107,9922 0017,3662

Bulgarian 00115,8691 0027,7441 00099,8742 0020,6242

Volapük 00114,1521 0002,9681 00097,2642 0002,2892

Croatian 00107,8971 0034,6331 00098,5172 0028,8812

Thai 00103,9401 0047,9221 00093,9812 0041,0902

Slovene 00101,7941 0017,8721 00094,2802 0013,8502

. . . 00000. . . 0000. . . 00000. . . 0000. . .

1: counting only statements not already in Princeton WordNet
2: only terms with new means statements added to those already in WordNet
3: Norwegian Bokmål
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with the advent of the World Wide Web, users are increasingly expect-

ing to be able to lookup words and choose between different types of

information, perhaps navigating quickly from one concept to another

based on given links of interest. For example, a user wishing to find

a Spanish word for the concept of persuading someone not to believe

something might look up the word ‘persuasion’ and then navigate to

its antonym ‘dissuasion’ to find the Spanish translation. A non-native

speaker of English looking up the word ‘tercel’ might find it helpful to

see pictures available for the related terms ‘hawk’ or ‘falcon’.

In our browsing interface, for a given entity, a list of relevant inform-

ation is provided, sorted by category, salience and confidence. This is

discussed in further detail in de Melo and Weikum (2010b), where we

also explain how one can add etymological relationships, sense-specific

example sentences, pronunciation information, information about mis-

spellings or alternative spellings, and Chinese/Japanese/Korean char-

acter glyphs, among other things. A public demonstration showcasing a

subset of the available information is available at http://www.mpi-inf.

mpg.de/yago-naga/menta/.

Additionally, lexical knowledge bases like UWN/MENTA can also

serve in task-specific user interfaces. For instance, the integrated English-

language thesaurus of the OpenOffice.org application suite is based on

WordNet. Sense-disambiguated translations as provided by UWN/

MENTA could be of use in multilingual mobile communication aids for

travellers (Uszkoreit et al., 2006).

5.6.6 Upper-Level Ontology

As mentioned earlier, the most generic part of an ontological taxonomy,

i.e. the part at the top of the hierarchy, is known as the upper-level

ontology. In the main MENTA build and in the final UWN/MENTA

build, we have chosen to retain WordNet as an integral upper-level core

of MENTA.

Wikipedia as Upper Level. Alternatively, we may also create a more

Wikipedia-centric version where WordNet only serves as background

knowledge to help us connect different articles and categories and ob-

tain a more coherent taxonomy. To achieve this, it suffices to have

http://www.mpi-inf.mpg.de/yago-naga/menta/
http://www.mpi-inf.mpg.de/yago-naga/menta/
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Figure 5.6: User interface

the selection function σ in the algorithm choose only e-components in-

cluding Wikipedia articles or categories. This amounts to pruning all

e-components that consist only of WordNet synsets without correspond-

ing Wikipedia articles or categories. What we obtain is a taxonomy

in which the root node is based on the English article Entity and its

equivalents in other languages. At the upper-most level, the resulting

taxonomy is shallower than with WordNet, as many different classes

like Organisms, Unit, Necessity, are directly linked to Entity. At less

abstract levels, the knowledge base becomes more complete. Tables 5.1

and 5.2 provide examples of top-ranked parent entities from Wikipedia.

Alternative Upper-Level Ontologies. In an additional experiment, we

studied replacing WordNet’s lexically oriented upper-level ontology

with the more axiomatic one provided by SUMO (Niles and Pease, 2001).

SUMO’s expressive first-order (and higher-order) logic axioms enable

applications to draw conclusions with some kind of common sense,

capturing for example that humans cannot act before being born or

that every country has a capital. Extending this with more specific



158 Chapter 5. Taxonomic Integration

knowledge about entities from Wikipedia can give rise to a fruitful sym-

biosis, because such axioms can then be applied to individual entities.

We added SUMO’s class hierarchy as well as the publically available

mappings between WordNet and SUMO (Niles and Pease, 2003) as

inputs to the instance ranking, and found that SUMO can be extended

with 3,036,146 instances if we accept those linked to a SUMO class with

a Markov chain stationary probability of at least 0.01. The sampled

accuracy of 177 highest-ranked (top-1) arcs was 87.9% ± 4.7%. The

inaccurate links often stemmed from mappings between WordNet and

SUMO where the SUMO term did not appear to reflect the word sense

from WordNet particularly adequately.

Since traditional theorem proving systems have difficulties coping

with inconsistency and scaling to the large-scale knowledge bases pro-

duced by our work, we have collaborated with experts in the field to

develop the SPASS-XDB theorem proving system, which dynamically

incorporates relevant pieces of knowledge from large external databases

or services on the fly (Suda et al., 2009; Sutcliffe et al., 2010).

5.6.7 Large-Scale Domain-Specific Extensions

A salient feature of our approach is that we can easily tap on additional

large-scale knowledge sources in order to obtain even larger knowledge

bases. For instance, we can rely on the many domain-specific know-

ledge bases in the Linked Data Web (Bizer et al., 2009), which describe

biomedical entities, geographical objects, books and publications, music

releases, etc. In order to integrate them we merely need an equals link-

ing function for all entities and equals or subclass arcs for a typically

very small number of classes. Our entity aggregation from Section 5.5.1

will then ensure that the links are consistent, and the Markov Chain

Taxonomy Induction algorithm will choose the most appropriate classes,

taking into account the weights of the subclass arcs.

As a case study, we investigated a simple integration of the Linked-

MDB dataset, which describes movie-related entities. The equals links

for instances were derived from the existing DBpedia links provided

with the dataset, which are available for films and actors. Hence we

only needed to specify two manual equals arcs for these two classes to

allow all corresponding entities to be integrated. We obtain additional
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information on 18,531 films and 11,774 actors already in our knowledge

base. Additionally, up to 78,636 new films and 48,383 new actors are

added. Similar extensions of MENTA are possible for many other do-

mains.

5.6.8 Entity Search

Knowledge bases like MENTA are useful for semantic search applica-

tions. For instance, the Bing Web search engine has relied on Freebase to

provide explicit lists of entities for queries like ‘Pablo Picasso artwork’.

In Table 5.8, we compare the numbers of instances obtained as results

from the English Wikipedia with the numbers of instances in MENTA.

The Wikipedia column lists the number of articles belonging to a given

category in the English Wikipedia, while the MENTA columns list the

number of e-components with outgoing instance arcs to the respective

class e-components in MENTA’s aggregated ranking (with a minimum

stationary probability πi of 0.01). Even if we consider only MENTA in-

stances present in the English Wikipedia, i.e. e-components that include

English Wikipedia pages, we often find more instances than directly

given in the English Wikipedia, because our approach is able to infer

new parents of instances based on evidence in non-English editions.

Table 5.9 provides examples of entities from non-English Wikipedia

editions integrated into the taxonomy.

Machine-readable knowledge bases allow for more advanced expert

queries than standard text keyword search. For instance, one could

search for philosophers who were also physicists, perhaps born in a

specific time period and geographical area.

5.6.9 Non-Taxonomic Information

The taxonomic relations provide us with a global structure that connects

all semantic entities in the knowledge base. Additionally, we can also

include other relationships between entities. First of all, Wikipedia’s

category systems in different languages can be used to obtain large

numbers of hasCategory arcs, connecting entities like College to topics

like Education. Such information can be useful for word sense disam-

biguation (Buitelaar et al., 2006). Earlier, we already mentioned that

we can extract geographical coordinates and multimedia links from
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Table 5.8: Entity search query examples

Query Wikipedia MENTA
(English

Wikipedia)

MENTA
(All)

cities and towns in Italy 8,156 8,509 12,992
european newspapers 13 389 1,963
people 441,710 882,456 1,778,078
video games developed

in Japan
832 775 1,706

Table 5.9: Integrated non-English entities

Wikipedia Entity Top-Ranked Class
edition in WordNet

French Guillaume II bishop
(évêque de Meaux)

French Hansalim social movement
French Tropanol chemical compound

Chinese 王恩 person
Chinese 九巴士893 travel route
Chinese 东京梦华录 book

Wikipedia. Additionally, Wikipedia’s infoboxes provide factual relation-

ships between entities, e.g. the founding year and location of universities,

the authors of books, and the genres of musicians. Such information can

either be extracted from Wikipedia itself or from other databases that

are derived from Wikipedia (Auer et al., 2007; Suchanek et al., 2007).

5.7 Discussion

We have presented techniques to relate entities from multiple knowledge

sources to each other in terms of a coherent taxonomic hierarchy. As
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a first step, this involves using linking functions to connect individual

nodes that are equivalent or stand in a taxonomic relationship to each

other. Subsequently, the entity integration framework from Chapter 4

cleans up the equals links. Finally, a Markov chain ranking algorithm

is used to produce a much more coherent taxonomy while taking into

account arc weights, dependencies in terms of equals arcs, and higher-

order parents, among other things.

These methods were applied to the task of combining over 200

language-specific editions of Wikipedia as well as WordNet into a single

knowledge base, where we succeeded in integrating 13.4 million out of

14.0 million possible articles from different Wikipedia editions into the

upper-level ontology. The result of this work is MENTA, presumably

the largest multilingual lexical knowledge base, which is freely available

for download at http://www.mpi-inf.mpg.de/yago-naga/menta/.

We believe that MENTA can support a number of semantic applic-

ations, which leads to several opportunities for new research. For in-

stance, all-words word sense disambiguation using WordNet is well-

studied but definitely not a solved problem (Agirre et al., 2010). In

particular, established systems have not been designed to support large

numbers of named entities in conjunction with WordNet’s fine-grained

sense distinctions. Additionally, many current systems need to be adap-

ted to operate on non-English text.

The entity search problem also needs to be studied further. Users

may wish to pose natural language queries like ‘What are the top-selling

video games developed in Japan?’ or ‘Which cities in France have mayors

born in the 1930s?’. The required factual data from Wikipedia can be

incorporated into MENTA, but mapping natural language requests to

knowledge base queries is non-trivial.

Further experiments could be carried out by applying our taxonomy

induction in alternative settings. Apart from MENTA, we showed that

our Markov Chain Taxonomy Induction algorithm is flexible enough

to work with an alternative upper-level ontology like SUMO, or with

additional knowledge from the Linked Data Web. Our framework could

also operate on input from large-scale information extraction techniques

(Tandon and de Melo, 2010), which collect named entities and clues

about their classes from text. Overall, this framework paves the way

http://www.mpi-inf.mpg.de/yago-naga/menta/
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for new knowledge bases that integrate many existing large-scale data

sources while offering more than the sum of the inputs.



CHAPTER 6

Conclusion

6.1 Summary

This thesis has presented graph-based methods to create large know-

ledge bases. Prior to our work, there had been little research on auto-

matic approaches to produce multilingual semantic resources. In this

thesis, we have presented three new techniques that induce large-scale

multilingual knowledge bases by smartly integrating and reconciling

input signals from existing knowledge sources and heuristics.

The lexical integration strategy attaches multilingual words to se-

mantic entities by learning models that make use of carefully chosen

features. These features reflect certain properties of the neighbourhood

in the graph and allow us to disambiguate possible meanings of a word.

The entity integration framework allows us to incorporate entities from

different knowledge sources by reconciling equality information and

distinctness information using linear programming and region grow-

ing techniques. The taxonomic integration method derives a coherent

large-scale taxonomic organization from multiple knowledge sources

and noisy, incomplete heuristic inputs, using a ranking based on Markov

chains.

Together, these methods have been used to create the UWN/MENTA

knowledge base, which is one of the largest multilingual knowledge

bases available, describing over 5 million entities with over 16 million

natural language words and names in over 200 different languages.

163
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It additionally provides gloss descriptions of entities in different lan-

guages, and factual information about them.

6.2 Outlook

From a resource perspective, people looking for multilingual know-

ledge bases had few options available before our construction of the

UWN/MENTA knowledge base. Those alternatives that are available

do not offer the same level of massive multilingualism and taxonomic

structuring. UWN/MENTA is freely available for download from

http://www.mpi-inf.mpg.de/yago-naga/uwn/.

The UWN/MENTA knowledge base can serve as a catalyst for new

research on text mining and language technology in different markets,

as well as on new cross-lingual applications. As time passes, the know-

ledge sources currently used to create UWN/MENTA will expand, and

additional new sources can be added, so continued growth and improve-

ment is assured.

Additionally, the underlying algorithms and techniques themselves

can play an important role in the future. The increasing number of

information sources on the Web, including different editions of Wiki-

pedia, Wiktionary, Linked Data datasets (Bizer et al., 2009), and many

others, have brought us many new opportunities but also new chal-

lenges. Often, an application will need to draw on more than just one

or two knowledge sources. This thesis has presented methods that al-

low applications to make sense of information from several knowledge

sources and operate on a more coherent, unified view of the knowledge.

We believe that this can be an important contribution towards the more

general challenge of building bridges to tie together information from

disparate origins and different perspectives.

http://www.mpi-inf.mpg.de/yago-naga/uwn/
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Given that much of our knowledge is expressed in textual form, infor-
mation systems increasingly depend on knowledge about words and
the entities they represent. This book investigates novel methods for
automatically building large repositories of knowledge that capture
semantic relationships between words, names, and entities, in many
different languages. Three major new contributions are presented,
each involving graph algorithms and statistical techniques that com-
bine evidence from multiple sources of information.

The lexical integration method involves learning models that disam-
biguate word meanings based on contextual information in a graph,
thereby providing a means to connect words to the entities that they
denote. The entity integration method combines semantic items from
different sources into a single unified registry of entities by reconciling
equivalence and distinctness information and solving a combinatorial
optimization problem. Finally, the taxonomic integration method adds
a comprehensive and coherent taxonomic hierarchy on top of this
registry, capturing how different entities relate to each other.

Together, these methods can be used to produce a large-scale multi-
lingual knowledge base semantically describing over 5 million entities
and over 16 million natural language words and names in more than
200 different languages.
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