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Abstract

Due to the dynamic market involving synthetic cannabinoids (SCs), the determination

of analytical targets is challenging in clinical and forensic toxicology. SCs usually

undergo extensive metabolism, and therefore their main metabolites must be identi-

fied for the detection in biological matrices, particularly in urine. Controlled human

studies are usually not possible for ethical reasons; thus, alternative models must be

used. The aim of this work was to predict the in vitro and in vivo metabolic patterns

of 7-azaindole-derived SCs using 1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-

pyrollo[2,3-b]pyridin-3-carboxamide (cumyl-5F-P7AICA) as an example. Different

in vitro (pooled human liver S9 fraction, pooled human liver microsomes, and pig liver

microsomes) and in vivo (rat and pig) systems were compared. Monooxygenase isoen-

zymes responsible for the most abundant phase I steps, namely oxidative

defluorination (OF) followed by carboxylation, monohydroxylation, and ketone for-

mation, were identified. In both in vivo models, OF/carboxylation and N-

dealkylation/monohydroxylation/sulfation could be detected. Regarding pHS9 and

pig urine, monohydroxylation/sulfation or glucuronidation was also abundant. Fur-

thermore, the parent compound could still be detected in all models. Initial mono-

oxygenase activity screening revealed the involvement of CYP2C19, CYP3A4, and

CYP3A5. Therefore, in addition to the parent compound, the OF/carboxylated and

monohydroxylated (and sulfated or glucuronidated) metabolites can be rec-

ommended as urinary targets. In comparison to literature, the pig model predicts best

the human metabolic pattern of cumyl-5F-P7AICA. Furthermore, the pig model

should be suitable to mirror the time-dependent excretion pattern of parent com-

pounds and metabolites.
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1 | INTRODUCTION

In the past few years, new psychoactive substances (NPS), especially

synthetic cannabinoids (SCs), appeared on the market via the Internet

or head shops as a “legal” alternative to Δ9-tetrahydrocannabinol

(THC), because they were initially not controlled. In the following

years, the number of different SCs on the market increased steadily.1

According to the published European Drug Report 2018 of the

European Monitoring Centre for Drugs and Drug Addiction

(EMCDDA), SCs represent the largest group of NPS.2 In addition to

being the legal alternative to common drugs, the easy accessibility,

the cheap availability, and the fact that SCs can hardly be detected in

toxicological routine screenings are the main consumption motives.

As they act as full agonists at cannabinoid receptors (CB1 and

CB2),2–5 compared to THC higher potencies such as psychoactive

effects are expected, leading to an increasing number of intoxications,

mass intoxications, and even deaths.1,6–10 Therefore, they gained

increased attention in forensic toxicological analytics. Data on the

toxicokinetic (TK) and toxicodynamic properties of SCs are necessary

for the interpretation of clinical and forensic toxicological results, but

for ethical reasons, human studies are often not possible.

One of the so-called new-generation SCs is 1-(5-fluoropentyl)-N-

(2-phenylpropan-2-yl)-1H-pyrollo[2,3-b]pyridin-3-carboxamide

(cumyl-5F-P7AICA), first reported in 2015. Since April 2018, cumyl-

5F-P7AICA has been subject to the narcotic law in Germany. Con-

cerning its toxicodynamic properties, Asada et al reported that cumyl-

5F-P7AICA acts as a nonselective cannabinoid receptor agonist at

CB1 and CB2 receptors.5 Until today, only little is known about the

TK property of cumyl-5F-P7AICA.11–14

In general, in vitro and in vivo assays are available for the elucida-

tion of TK properties. As described elsewhere,15–17 already-

established in vitro assays are based on pooled human liver micro-

somes (pHLM) and cytosol, hepatocyte cell cultures, and pig liver

microsomes (PLMs) as well as the pooled human liver S9 fraction

(pHS9). Staeheli et al first reported on the in vitro metabolism of

cumyl-5F-P7AICA using pHLM.13 The benefits of those in vitro assays

are low cost and easy handling/storage.17 Nevertheless, the disadvan-

tage of all in vitro models is that they act as a static and the only quali-

tative model. In contrast, in vivo models allow one to consider relevant

physiological processes of the body.

As far as cumyl-5F-P7AICA is concerned, in vivo data regarding

major metabolic pathways have already been published using human

urine.11 The interpretation of the findings was limited, because noth-

ing was known about the time of consumption, the dose, and user

habits.11 Therefore, alternative systematic studies under controlled

conditions must be performed for better interpretation and assess-

ment of human TK properties. Common in vivo systems to determine

the metabolic patterns of drugs are the zebrafish larvae,18 the rat

model after oral administration,15 the chimeric mouse model after oral

administration,19 and the pig model.20–22 Zebrafish larvae are a new

in vivo model to circumvent an animal experiment request up to 120 h

post-fertilization. Yet post-mortem studies are not possible. Rats are

comparably easy to handle and maintain, but only small volumes of

body fluids are available. Due to the transplantation of human hepato-

cytes, the chimeric mouse model has already proven to be suitable as

an alternative animal model for human administration studies.19 In

analogy to the rat model, chimeric mice are also limited by the small

amount of body fluids, resulting in a long sample interval of 24 or

48 h. In comparison, the amount of available body fluids and tissues is

higher in pigs. Therefore, repeated sampling is possible, enabling the

elucidation of metabolic excretion patterns. In addition, pigs have a

great similarity to humans in terms of anatomical structure23,24 and

isoenzymes25,26 as well as physiological properties, and they have

already proven to be suitable inTK studies of other SCs as well as syn-

thetic opioids,16,20–22,27,28 thus justifying the difficult and laborious

experimental procedure for research purposes.

To determine which system is best suited and most practicable

to investigate new NPS, different assays should be compared.

Cumyl-5F-P7AICA was particularly chosen to study the different

in vitro and in vivo metabolism assays, because certain in vitro

(pHLM13) and human11 metabolism data have already been publi-

shed and may be compared with our results. Thus, in the present

work, the metabolic pattern of cumyl-5F-P7AICA was determined

and its targets were identified using different in vitro (pHLM, PLM,

pHS9 fraction) and in vivo (rat/pig) assays. The obtained results

were compared with each other as well as with already-published

in vitro and in vivo data.11,13 In addition, the main enzyme cyto-

chrome P450 isoenzymes (CYP) was identified.

2 | MATERIALS AND METHODS

2.1 | Chemicals and reagents

Cumyl-5F-P7AICA (purity 99.72%) was provided by the German Federal

Criminal Police Office (Wiesbaden, Germany). HPLC-grade ethanol was

purchased from Fisher Scientific (Loughborough, United Kingdom). Glucu-

ronidase (EC no. 3.2.1.32)/arylsulfatase (EC no. 3.1.6.1) from Helix

pomatia L, LC-MS-grade methanol, analytical-grade ammonium formate,

LC-MS-grade formic acid, LC-MS-grade acetonitrile, potassium chloride

(KCl), ethylenediaminetetraacetic acid disodium salt (Na2EDTA), and all

other analytical-grade chemicals and reagents were obtained from Merck

(Darmstadt, Germany). pHLM from 25 individual donors with 20-mg

microsomal protein per milliliter and 330 pmol of total CYP P450 per mil-

ligram protein, pHS9 from 30 individual donors with 20-mg protein per

milliliter, baculovirus-infected insect cell microsomes (Supersomes)-
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containing 1 nmol/mL of human complementary DNA (cDNA)-expressed

cytochrome P450 monooxygenases (CYP) CYP1A2, CYP2A6, CYP2B6,

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 (2 nmol/mL), CYP3A4,

CYP3A5 (2 nmol/mL), or flavin-containing monooxygenase (FMO)

3 (5 mg protein per milliliter) as well as the UGT (uridine diphosphate

[UDP]-glucuronosyltransferase) reaction mix solutions A (25 mM UDP-

glucuronic acid) and B (250 mM Tris–HCl, 40 mM MgCl2, and

0.125 mg/mL of alamethicin) were provided by Corning (Amsterdam, the

Netherlands). Nicotinamide adenine dinucleotide phosphate (NADP+) was

purchased from Biomol (Hamburg, Germany), and superoxide dismutase

(SOD), isocitrate, isocitrate dehydrogenase (IDH), dithiotreitol (DTT),

reduced glutathione (GSH), acetyl coenzyme A (AcCoA), acetyl carnitine,

30-phosphoadenosine-50-phosphosulfate (PAPS), S-(50-adenosyl)-L-methi-

onine (SAM), and phenylmethylsulfonylfluoride were obtained from

Sigma-Aldrich (Taufkirchen, Germany). The Pierce BCA Protein Assay Kit

was purchased fromThermoFisher Scientific (Schwerte, Germany).

All enzyme solutions, microsomes, and CYPs were thawed at

37�C. Then they were snap-frozen in liquid nitrogen and stored at

−80�C for further analysis.

2.2 | Preparation of PLM

For the preparation of PLM, the liver of one drug-free Swabian Hall

strain pig, obtained from Emil Faerber GmbH & Co. KG (Zweibrücken,

Germany), was used.16 The liver was stored at −80�C for further anal-

ysis. As previously described,16 12.5 g of liver was cut into small

pieces. After the addition of homogenization buffer (0.154 M KCl,

1 mM Na2EDTA) in a ratio of 15%–20% tissue/volume and

phenylmethylsulfonylfluoride (10 μg/mL), the liver was homogenized

and centrifuged at 10 000g for 15 min. Then, the supernatant was

filled in the centrifugation tubes and ultra-centrifuged at 3�C–4�C and

100 000g for 1.15 h. The pellet (microsomes) was resuspended in

washing buffer (0.154 M KCl) and centrifuged again at 3�C–4�C and

100 000g for 1.15 h. After the pellet (microsomes) was resuspended

in storing buffer (0.154 M KCl, 0.1 mM Na2EDTA), the microsomes

were aliquoted and stored at −80�C for further analysis.

For the determination of the obtained protein concentration, a

Pierce BCA Protein Assay Kit was used. A mixture of reagent A:

reagent B (50:1) was mixed with a part of the produced protein solu-

tion. After the mixture was shaken and incubated for 30 min at 60�C,

the protein concentration was determined by a photometric measure-

ment (540 nm) of the absorption using a bovine serum albumin cali-

bration curve.

2.3 | Incubation conditions and sample preparation
for identification of phase I and II metabolites using
pHS9 fraction

According to the experimental design published by Richter et al17 and

other published studies,15,29 100 U/mL of SOD, 0.1 mM AcCoA,

2.3 mM acetyl carnitine, 2.5 mM isocitrate, 0.8 U/mL of IDH, 0.6 mM

NADP+, 2.5 mM Mg2+, 25 μg/mL of alamethicin (UGT reaction mix

solution B) and 90 mM phosphate buffer (pH 7.4) were initially

preincubated for 10 min at 37�C with a final protein concentration of

2 mg/mL of pHS9. Then, 40 μM aqueous PAPS, 1 mM DTT, 2.5 mM

UDP-glucuronic acid (UGT reaction mix solution A), 1.2 mM SAM, and

10 mM GSH were added to the previously produced and pre-

incubated solution. To start the reactions, 25 μM cumyl-5F-P7AICA in

phosphate buffer (substrate) was added. All concentrations stated ear-

lier are final concentrations. After the solution was incubated for

60 min at 37�C, 60 μL of the mixture was transferred into a reaction

tube, and the reaction was stopped by adding 20 μL of ice-cold aceto-

nitrile. The remaining mixture was further incubated for 5 h. The reac-

tions were stopped by adding 30 μL of ice-cold acetonitrile, and the

solutions were cooled at −18�C for 30 min and then centrifuged at

14 000 rpm for 2 min. After the supernatant was transferred into

autosampler vials, 5 μL of the solution was injected into a liquid chro-

matography (LC)–high-resolution mass spectrometry (HRMS) system

described later, which is based on an Orbitrap. To remove impurities

and possibly interfering compounds, additional blank (without pHS9)

and control samples (without substrate) were prepared and incubated.

2.4 | Incubation conditions and sample preparation
for initial CYP activity screening and identification of
phase I metabolites using pHLM/PLM

The samples were incubated according to already-published standard

incubation conditions, containing 25 μM cumyl-5F-P7AICA (substrate)

and 50 pmol/mL of each CYP isoenzyme (CYP1A2, CYP2A6, CYP2B6,

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, or

CYP3A5), 0.25 mg protein per milliliter FMO3, or 1 mg protein per

milliliter of pHLM or PLM.16,17,29,30 All incubation mixtures had a final

volume of 50 μL and contained 200 U/mL of SOD, the NADP+ reg-

enerating system (containing 5 mM isocitrate, 0.5 U/mL of IDH, 5 mM

Mg2+, 1.2 mM NADP+), 90 mM phosphate buffer (pH 7.4), and the

substrate as well as the respective enzymes. According to the manu-

facturer's manual, phosphate buffer was replaced with 90 mM Tris

buffer (pH 7.4) in incubations with CYP isoenzymes CYP2A6 and

CYP2C9. After preincubation for 10 min, the NADP+ regenerating

system was added to start the reactions. All mixtures were incuba-

tions at 37�C. After 30 min the incubation was stopped by the addi-

tion of 50 μL of ice-cold acetonitrile. Then, the mixtures were

centrifuged for 2 min at 14 000 rpm. After 50 μL of the supernatant

was transferred into autosampler vials, 5 μL of the solution was

injected into an LC–HRMS/MS system. According to the already-

described sample preparation using pHS9, additional control samples

(without substrate) were prepared and incubated.

2.5 | In vivo studies

2.5.1 | Rat

As already described elsewhere,30–32 the experiment was performed

using urine samples from one male Wistar rat (Charles River, Sulzfeld,
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Germany) for toxicological diagnostic reasons according to German

law. First, one blank rat urine sample was collected before drug

administration for removing possible interfering compounds. Then, a

single dose of 0.6 mg/kg body weight (BW) of cumyl-5F-P7AICA was

orally administered in an aqueous suspension via a gastric intubation.

The urine sample of the rat was collected separately from feces over a

period of 24 h. The animal was housed in a metabolism cage and had

water ad libitum. The urine samples were aliquoted and stored at

−20�C for further analysis.

2.5.2 | Pig

The in vivo experiment was performed in accordance with the German

legislation on protection of animals and the National Institutes of

Health Guide for the Care and Use of Laboratory Animals (permission

number: 44/2019). According to already-published studies,16,20–22,27

one domestic male pig of the Swabian Hall strain with a BW of

43.2 kg was used. During the housing, the pig had free access to tap

water and daily standard chow. For 12 h before the experiment, the

animal had free access to water but was kept fasting.

Surgical procedures

The surgical procedures were performed in accordance with previous

studies.16,20–22,27,28 First, the animal received an intramuscular injec-

tion of 30 mg/kg BW of ketamine hydrochloride (Ursotamin, Ser-

umwerke Bernburg, Bernburg, Germany), 2.5 mg/kg BW of xylazine

hydrochloride (Rompun, Bayer, Leverkusen, Germany), and 1 mg of

atropine (Braun, Melsungen, Germany) as premedication. For mainte-

nance of analgosedation, 2%–4% of isoflurane (Forene, AbbVie,

Ludwigshafen, Germany) was administered through inhalation. During

the whole experiment, the animal was mechanically ventilated with a

1:2 v/v mixture of oxygen and air (FiO2 of 0.30, Respirator ABV-U,

F. Stephan GmbH, Gackenbach, Germany) and volume cycled with a

tidal volume of 10–12 mL/kg BW. To ensure sufficient fluid replace-

ment with 0.9% of sodium chloride (8 mL/kg/h, Braun), the left ear

vein was catheterized. For blood sampling and monitoring of the mean

central venous pressure, a triple-lumen 7F (Certofix Trio, Braun) cen-

tral venous catheter was placed in the jugular vein. In addition, a

suprapubic catheter (Cystofix, Braun) was placed in the bladder for

collecting urine. Following the aforementioned measures, the animal

was then allowed to stabilize for 10–15 min.

Study design

First, 2 mL of a stock solution containing 5 mg/mL of cumyl-5F-

P7AICA in ethanol was prepared. To obtain the desired dose of

200 μg/kg BW, the required volume of the stock solution (1728 μL)

was filled with ethanol (272 μL) to a volume of 2 mL. Analogous to

previous studies,27,28 the prepared solution was administered within

12 min by nebulization of cumyl-5F-P7AICA applying the inspiration-

triggered mode (<0.2 mL/min) of the M-neb flow+ ventilation ultra-

sonic nebulizer MN-300/7 (Nebutec, Elsenfeld, Germany). Through

the inspiratory limb and the tracheal tube, the aerosol was delivered

into the ventilated lung of the pig. The urine samples were collected

hourly (t1 = 0–1 h, t2 = 1–2 h, t3 = 2–3 h, t4 = 3–4 h, t5 = 4–5 h,

t6 = 5–6 h, t7 = 6–7 h, and t8 = 7–8 h) after the beginning of inhalative

administration. In addition, one urine sample was collected before

administration (t0). All collected urine samples were stored at −20�C

for further analysis.

2.6 | Preparation of rat and pig urine samples for
identification of phase I and II metabolites

According to published procedures,15,30,33 phase I and II metabolites

in urine samples were identified after protein precipitation with ace-

tonitrile. Therefore, 100 μL of urine was mixed with 500 μL of aceto-

nitrile. After shaking, the mixture was centrifuged for 2 min at

14 000 rpm. The supernatant was transferred into new vials and then

evaporated to dryness under a gentle stream of nitrogen at 60�C.

Subsequently, the residue was dissolved in 50 μL of a mixture of

eluents A and B (1:1, v/v). The composition of the eluents is

described in the next section. The solution was transferred into auto-

sampler vials, and 1 μL of the solution was injected into an LC–

HRMS/MS system.

2.7 | LC–HRMS/MS apparatus

As already described in other studies,15,16 the extracts were analyzed

using a Dionex UltiMate 3000 RS pump consisting of a degaser, a

quaternary pump, and an UltiMate autosampler (ThermoFisher Scien-

tific, Dreieich, Germany). The used LC system was coupled to a TF Q-

Exactive Plus system equipped with a heated electrospray ionization

(HESI)-II source.

The gradient elution of the LC system was performed using a TF

Accucore Phenylhexyl column (100 × 2.1 mm, 2.6 μm), with mobile

phases consisting of 2 mM aqueous ammonium formate plus 0.1%

(v/v) formic acid and 0.1% (v/v) acetonitrile (pH 3, eluent A) and

2 mM ammonium formate solution with acetonitrile/methanol (50:50,

v/v) plus 0.1% (v/v) formic acid and 1% (v/v) water (eluent B). The col-

umn oven temperature was set to 60�C. The settings of the gradient

and the flow rate of the eluents were as follows: 0–1.0 min 99% A

(0.5 mL/min flow rate), 1–10 min to 1% A (0.5 mL/min flow rate),

10–11.5 min hold 1% A (0.8 mL/min flow rate), 11.5–13.5 min hold

99% A (0.8 mL/min flow rate).

The settings for the HESI-II-source were as follows: spray voltage,

3.00 kV; heater temperature, 320�C; sheath gas, 60 arbitrary units

(AU); auxiliary gas, 10 AU; and S-lens RF level, 60.0.

The mass spectrometer was operated in positive-ionization mode

with full scan (FS) and a subsequent data-dependent acquisition

(DDA) mode. According to the manufacturer's recommendations,

mass calibration was done before analysis using external mass calibra-

tors. For FS mode, the following settings were defined: maximum

injection time (IT), 120 ms; resolution, 35.000; scan range, m/z

200–650; microscans, 1; and automatic gain control (AGC) target,
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1e6. The DDA mode was used, with the addition of an inclusion list

containing the m/z values of expected compounds. The following set-

tings were programmed for DDA mode: maximum IT, 250 ms; resolu-

tion, 17 500; AGC target, 2e5; loop count, 5; isolation window,

1.0 m/z; dynamic exclusion, off; spectrum data type, profile; underfill

ratio, 0.5%; option “do not pick others,” enabled; microscans, 1; high

collision dissociation with stepped normalized collision energy, 17.5%,

35%, and 52.5%. For data handling, TF Xcalibur Qual Browser soft-

ware version 3.0.63 was used.

3 | RESULTS AND DISCUSSION

3.1 | Dosage

A 0.6 mg/kg BW dose was administered orally to the rat. For the

study of pigs, a 200 μg/kg BW dose was inhalatively administered,

resulting in a total dose of �8.64 mg. These doses were calculated

based on reports of common drug users, recommending a dose of SC

in the range of 0.5 – 20 mg, depending on the route of administra-

tion.34 In addition, comparable dosages have already been established

in previous studies on NPS.16,21,22,27,28

3.2 | General findings

The aim of the study was to identify the in vitro and in vivo metabolic

patterns of cumyl-5F-P7AICA and compare the results with already-

published pHLM and human data. In all blank and control samples of

the in vitro assays as well as in all rat and pig urine specimens collected

before drug administration, neither the parent compound nor any

metabolite could be found. In all blank samples as well as in pHS9-,

pHLM-, and PLM incubations, a compound with a mass of m/z

250.1346 could be detected. The mass difference of m/z 118.0786 to

the precursor mass (PM) of the parent compound (m/z 368.2132) indi-

cated a cleavage of the cumyl moiety. The resulting carboxamide M0

(Table 1; Figure S1 [supporting information]) was identified by the

product ion (PI) at m/z 233.1082 representing hydrolysis of the amide

moiety, m/z 207.1289 indicating the cleavage of the complete amide

residue, and the PI at m/z 145.0394 and m/z 119.0604 corresponding

to an unaltered 7-azaindole core structure. Therefore, M0 has been

identified as an impurity, but interfering substances could be excluded.

Metabolites of cumyl-5F-P7AICA could clearly be identified in all

in vitro as well as in all in vivo assays using LC–HRMS/MS fragmenta-

tion. The parent compound (Table 1; Figure 1) could still be observed

in all in vitro assays and in rat urine, as well as in the early pig urinary

samples.

Cumyl-5F-P7AICA (protonated mass, PM of m/z 368.2132,

Table 1; Figure 1) was identified by the PI at m/z 233.1083 and m/z

250.1349, indicating a cleavage at the amide moiety. Furthermore,

the PI at m/z 145.0395 and m/z 174.0661 represented an unaltered

7-azaindole core structure. The additional presence of m/z 119.0857

has resulted from an unaltered cumyl moiety, whereas m/z 91.0548

exhibited cumyl moiety after the cleavage of the methyl units. The

fragmentation pattern of the parent compound is consistent with the

findings of Bovens et al.14

The respective metabolites were identified by comparison of their

MS2 spectra with the MS2 spectra of the parent compound cumyl-5F-

P7AICA. An overview of all tentatively identified phase I and II metab-

olites using in vitro and in vivo assays is presented inTable 1. The table

includes elemental composition, exact masses, accurate masses, mass

error, characteristic fragment ions, and retention time. Due to the high

number of metabolites found, not all are discussed in detail in the fol-

lowing section.

F IGURE 1 HRMS/MS spectra of cumyl-5F-P7AICA identified in pooled human liver S9 fraction incubation containing 25 μM cumyl-5F-
P7AICA [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 Metabolic patterns of cumyl-5F-P7AICA (M0–M24) elucidated in pooled human liver S9 fraction, pooled human liver
microsomes/published data using pHLM,9 pig liver microsomes, rat urine, pig urine, and/or human urine (HU).7 Urinary targets are marked in
boxes
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3.3 | LC–HRMS/MS fragmentation and
identification of cumyl-5F-P7AICA and its in vitro
phase I and II metabolites using pHLM, PLM, and
pHS9

3.3.1 | pHLM/PLM

Eleven phase I metabolites could be detected in pHLM and PLM incuba-

tion samples (Figure 2). In addition to the already-described presence of

the parent compound, major metabolic pathways of cumyl-5F-P7AICA

seemed to be oxidative defluorination (OF) followed by carboxylation,

aryl-monohydroxylation, 5-fluoropentyl-monohydroxylation, and ketone

formation, as well as N-dealkylation in both in vitro incubation assays. In

addition, aryl-dihydroxylation could be detected in pHLM incubation.

The OF/carboxylated metabolite (M1, PM of m/z 380.1968,

Table 1; Figure 3) was identified by the most abundant and character-

istic PI at m/z 119.0857 and m/z 262.1183, indicating the cleavage of

the cumyl moiety. As already shown in the fragmentation pattern of

cumyl-5F-P7AICA, the PI at m/z 91.0548 suggested the cumyl moiety

after the cleavage of the methyl units. The unaltered 7-azaindole core

structure was identified by the PI at m/z 145.0396. The cleavage of

the C–O bond of the carboxyl unit resulted in the PI at m/z 244.1078

and m/z 201.1021, whereas the amide moiety is still present at m/z

244.1078.

The aryl-monohydroxylated metabolite (M2, PM of m/z

384.2081, Table 1; Figure 4A) was identified by the PI at m/z

135.0804 and m/z 107.0494, which can be explained by a mass shift

of +16 u of the fragmentation pattern of the unaltered cumyl moiety

of cumyl-5F-P7AICA with m/z 119.0857 and m/z 91.0548. The PI at

m/z 250.1348 indicated the cleavage of the hydroxylated cumyl moi-

ety. The additional presence of the PI at m/z 145.0397 and m/z

174.0660 resulted from an unaltered 7-azaindole core structure.

In comparison, the 5-fluoropentyl-monohydroxylated metabolite

(M3, PM of m/z 384.2081, Table 1; Figure 4B) was identified by the

PI at m/z 266.1297, m/z 119.0857, and m/z 91.0547, indicating the

cleavage of the cumyl moiety. The PI at m/z 266.1297 exhibited a

hydroxylation at the 5-fluoropentyl or 7-azaindole moiety. The addi-

tional presence of the PI at m/z 145.0396 and m/z 174.0661

suggested an unaltered 7-azainole core structure. Therefore, hydrox-

ylation was formed at the 5-fluoropentyl moiety.

Ketone formation resulting in M4 (PM of m/z 382.1925, Table 1;

Figure S2 [supporting information]) was identified by the PI at m/z

264.1140 and m/z 119.0857, indicating the cleavage of the cumyl

moiety. Hydrolysis of the amide unit was identified by the PI at m/z

247.0876, whereas m/z 221.1081 exhibited the cleavage of the bond

between the amide and the 7-azaindole core.

The N-dealkylated metabolite (M5, PM of m/z 280.1444, Table 1;

Figure 5A) was identified by the presence of the most abundant and

characteristic PI at m/z 162.0662, representing cleavage of the cumyl

moiety. The unaltered 7-azaindole core structure formed the PI at m/z

119.0606.

The aryl-dihydroxylated metabolite (M6, PM at m/z 400.2030,

Table 1; Figure S3A [supporting information]) was identified by the

presence of the PI at m/z 250.1350, which could also be found in

HRMS/MS spectra of the aryl-monohydroxylated metabolite, as well

as the parent compound, indicating no hydroxylation at the

7-azaindole or 5-fluoropentyl moiety. The cleavage of the

dihydroxylated aryl moiety was also characterized by the PI at m/z

151.0754 and m/z 123.0443, which can be explained by a mass shift

of +32 u to the PI at m/z 119.0857 and m/z 91.0548 of the unaltered

cumyl moiety or +16 u to the PI at m/z 135.0804 and m/z 107.0494

of the aryl-monohydroxylated part.

Furthermore, the 5-fluoropentyl-dihydroxylated metabolite (M7,

PM at m/z 400.2030, Table 1; Figure 3B) was identified by the PI at

m/z 119.0858, indicating the cleavage of the cumyl moiety. The PI at

m/z 282.1247 and m/z 239.1184, indicating the hydroxylation at the

7-azaindole core or 5-fluoropentyl chain, and the additional presence

of m/z 162.0658 resulted from an unaltered 7-azaindole core.

F IGURE 3 HRMS/MS spectra of the oxidative defluorinated and carboxylated metabolite M1 identified in pooled human liver S9 fraction
incubation containing 25 μM cumyl-5F-P7AICA [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 HRMS/MS spectra of A, aryl-monohydroxylated (M2); B, 5-fluoropentyl-monohydroxylated (M3); and C, 7-azaindole-
monohydroxylated (M10) metabolites of cumyl-5F-P7AICA identified in pooled human liver S9 fraction incubation containing 25 μM cumyl-5F-
P7AICA [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 HRMS/MS spectra of A, N-dealkylated (M5); B, N-dealkylated-7-azaindole-monohydroxylated (M11); and C, N-dealkylated-aryl-
monohydroxylated (M12) metabolites of cumyl-5F-P7AICA identified in rat urine following a single oral administration of 0.6 mg/kg body weight
dose of cumyl-5F-P7AICA [Colour figure can be viewed at wileyonlinelibrary.com]
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The OF/5-fluoropentyl-monohydroxylated metabolite (M8, PM at

m/z 382.2125, Table 1; Figure S4A [supporting information]) was

identified by the presence of the PI at m/z 119.0857, representing the

cleavage of the cumyl moiety. The PI at m/z 264.1342, indicating the

hydroxylation at the 7-azaindole core or 5-fluoropentyl chain, and the

additional presence of m/z 174.0666 and m/z 145.0401 represented

an unaltered 7-azaindole core.

The carboxamide/5-fluoropentyl-monohydroxylated metabolite

(M9, PM at m/z 266.1299, Table 1; Figure S5 [supporting informa-

tion]), not detected in pHLM, was identified by the presence of the PI

at m/z 223.1241, indicating a hydroxylation at the 7-azaindole core or

5-fluoropentyl chain, and the additional presence of m/z 145.0397,

m/z 174.0663, and m/z 119.0606 representing an unaltered

7-azaindole core. However, the exact position of the hydroxylation at

the aryl or 5-fluoropentyl moiety could not be identified by the

methods applied.

3.3.2 | pHS9 fraction

As far as pHS9 incubations are concerned, phase II metabolites could

be identified in addition to phase I metabolites due to the addition of

cofactors. In total, 14 phase I and 6 phase II metabolites were found

(Figure 2).

The major metabolic pathways in pHS9 incubation seemed to be

those found in pHLM and PLM incubations, extended by mono- and

dihydroxylation followed by glucuronidation and sulfation. The metab-

olites described later could additionally be identified in pHS9 incuba-

tion samples.

The 7-azaindole-monohydroxylated metabolite (M10, PM at m/z

384.2081, Table 1; Figure 4C) was identified by the PI at m/z

223.1240 and m/z 266.1301, indicating a hydroxylation at the

7-azaindole core or 5-fluoropentyl chain. The PI at m/z 119.0857 and

m/z 91.0548 indicated the cleavage of the unaltered cumyl moiety,

and the additional presence of the PI at m/z 135.0553 and m/z

161.0346 represented a hydroxylated 7-azaindole core structure.

Phase II metabolites were mainly formed by glucuronidation or

sulfation of the monohydroxylated, dihydroxylated, and N-

dealkylated/aryl-monohydroxylated compounds. The N-dealkylated/aryl-

monohydroxylated/sulfated metabolite (M18, PM at m/z 376.0961,

Table 1) was identified by the aglycone at m/z 296.1393, as well as the PI

at m/z 135.0810 represented by a hydroxylated cumyl unit, and m/z

162.0659 indicated an unaltered 7-azaindole core structure.

The aryl-monohydroxylated/sulfated metabolite (M19, PM at m/z

464.1649, Table 1) was identified by the corresponding aglycone at

m/z 384.2087. The PI at m/z 250.1354 and m/z 233.1088 indicated

an unaltered 7-azaindole core and 5-fluoropentyl chain, and m/z

135.0807 formed by hydroxylation at the cumyl moiety. The aryl-

monohydroxylated/glucuronidated metabolite (M20, PM at m/z

560.2402, Table 1) was identified by the corresponding aglycone at

m/z 384.2081, as well as the PI at m/z 135.0805 and m/z 107.0495

representing a hydroxylation at the aryl moiety, and m/z 250.1349

suggesting an unaltered 7-azaindole core and 5-fluoropentyl chain.

The aryl- and 5-fluoropentyl-dihydroxylated/sulfated metabolite

(M21, PM at m/z 480.1599, Table 1) was identified by the aglycone at

m/z 400.2032, and the PI at m/z 266.1301 and m/z 223.1239 formed

by hydroxylation at the 7-azaindole core or 5-fluoropentyl chain. The

concurrent presence of m/z 135.0806 indicated a hydroxylation at the

cumyl moiety, as well as the PI at m/z 119.0609, m/z 174.0666, and

m/z 145.0398 representing an unaltered 7-azaindole core. It was not

possible to determine whether sulfation occurred at the aryl- or

5-fluoropentyl hydroxylation, because corresponding fragments with-

out cleavage of the sulfate group could not be detected in the spectra.

In contrast to M21 (Table 1), the aryl-dihydroxylated/sulfated

metabolite (M22, PM at m/z 480.1599, Table 1) was identified by the

corresponding aglycone at m/z 400.2019. The cleavage of the

dihydroxylated cumyl moiety was characterized by the PI at m/z

151.0755 and m/z 123.0443. An unaltered 7-azaindole core was iden-

tified by the PI at m/z 174.0662, whereas m/z 250.1350 and m/z

233.1089 characterized an unaltered 5-fluoropentyl chain. The spec-

tra of the formed phase II metabolites differed only in the higher pre-

cursor mass, caused by the additional presence of a sulfate or

glucuronide, from the corresponding phase I metabolite.

3.4 | LC–HRMS/MS fragmentation and
identification of cumyl-5F-P7AICA and its in vivo
phase I and II metabolites using rat and pig urine

3.4.1 | Rat urine

In total, eight phase I and two phase II metabolites could be detected

(Figure 2) and were found only in low abundances. The major meta-

bolic pathways in rats seemed to be OF/carboxylation, N-

dealkylation/monohydroxylation/glucuronidation or sulfation, and

monohydroxylation, as well as dihydroxylation. The metabolites

described later could be found only in rat urine sample. In analogy to

the in vitro results, the parent compound (PM at m/z 368.2132,

Table 1; Figure 1) could also be detected in rat urine.

The N-dealkylated/7-azaindole-monohydroxylated metabolite

(M11, PM at m/z 296.1393, Table 1; Figure 5B) was identified by the

PI at m/z 178.0608, m/z 161.0348, and m/z 135.0553 formed by a

hydroxylated 7-azaindole core. In comparison to the unhydroxylated

core, there is a mass shift of +16 u of m/z 162.0662 and m/z

119.0606. The N-dealkylated/aryl-monohydroxylated metabolite

(M12, PM at m/z 296.1393, Table 1; Figure 5C) was identified by m/z

162.0658 and m/z 119.0604, representing an unaltered 7-azaindole

core, and the additional presence of m/z 135.0804 formed by a

hydroxylated aryl moiety.

The N-dealkylated/aryl-monohydroxylated/glucuronidated metab-

olite (M23, PM at m/z 472.1714, Table 1) was identified by the agly-

cone at m/z 296.1385. The PI at m/z 135.0800 was formed by a

hydroxylated aryl moiety, and the PI at m/z 162.0658 and m/z

119.0608 represented an unaltered 7-azaindole core. The OF car-

boxamide/carboxylated metabolite (M13, PM at m/z 262.1186, Table 1;

Figure S6 [supporting information]) was identified by the PI at m/z
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244.1077 and m/z 201.1020, indicating the cleavage of the C–O bond

of the carboxyl unit, as well as the PI at m/z 119.0605 and m/z

145.0395, representing an unaltered 7-azaindole core.

3.4.2 | Pig urine

In total, one phase I and four phase II metabolites were identified in

the analyzed pig urine specimens (Figure 2). The major metabolic

pathways of cumyl-5F-P7AICA in pig seemed to be OF/carboxylation,

N-dealkylation/monohydroxylation/sulfation, and mono-

hydroxylation/glucuronidation or sulfation. The PIs used for the iden-

tification of the metabolites (Table 1) were in accordance with those

that have already been described in pHS9 incubation results.

In addition, the 5-fluoropentyl-monohydroxylated/glucuronidated

metabolite (M24, PM at m/z 560.2402, Table 1) could be detected

only in pig urine specimens and was identified by the aglycone at m/z

384.2092. The PI at m/z 119.0860 suggested an unaltered cumyl moi-

ety, m/z 266.1302 indicated a hydroxylation at the 7-azaindole core

or 5-fluoropentyl chain, and m/z 174.0665 represented an unaltered

7-azaindole core.

3.5 | CYP initial screening

To elucidate the main metabolic steps in pigs as compared to

humans, and the responsible CYP isoenzymes, a CYP activity

screening, using human CYP isoenzymes, was performed. All initial

steps for cumyl-5F-P7AICA, consisting of N-dealkylation, N-

dealkylation/hydroxylation, OF, OF/carboxylation, ketone formation,

monohydroxylation, and dihydroxylation, could be confirmed. As

shown in Table 2, cumyl-5F-P7AICA was predominantly metabolized

by CYP2C19, CYP3A4, and CYP3A5. The important metabolic steps

in pigs and humans, that is, OF followed by carboxylation as well as

monohydroxylation, were catalyzed mainly by these three CYP iso-

enzymes. In addition, N-dealkylation, catalyzed by CYP1A2,

CYP3A4, and CYP3A5 followed by monohydroxylation through

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5, could

be the main metabolic step in pigs, considering that human CYP iso-

enzymes were used.

Note. The main metabolizing enzymes are marked in boxes.

Consistent with these findings, the fact that the isoenzymes

CYP3A4 and CYP2C19 are involved in the metabolism of SCs, spe-

cifically monohydroxylation and dealkylation, has already been dem-

onstrated for different SCs, such as XLR-11, UR-11, AM-2201, RCS-

4, and JWH-210.20,35–37 Oxidative metabolism catalyzed by CYP3A5

could also be observed for several SCs, such as 5F-AKB-48 and

EAM-2201.38

3.6 | Comparison of the metabolic pattern in the
different metabolizing systems with human data

3.6.1 | In vitro metabolic pattern using pHLM,
PLM, and pHS9

The parent compound (Table 3; Figure 1) could be detected in high abun-

dances in all in vitro incubation samples. In general, the detected phase I

metabolites (Table 3; Figure 2) in the three in vitro assays were consistent.

The metabolic reactions observed in all three in vitro models were OF,

OF/carboxylation, OF/aryl-monohydroxylation, N-dealkylation, aryl- and

5-fluoropentyl-monohydroxylation, and ketone formation, as well as aryl-

dihydroxylation, 5-fluoropentyl-dihydroxylation, and a combination of

both. M0 (Table 3; Figure S1 [supporting information]) was detected as

an impurity in pHS9, pHLM, and PLM incubations.

In contrast to the results obtained from pHS9 and pHLM incubation

samples, OF/5-fluoropentyl-monohydroxylation (M8, Table 3; Figure S4A

[supporting information]) could not be identified in PLM incubation. In

pHLM, the carboxamide/5-fluoropentyl-monohydroxylated metabolite

M9 (PM at m/z 266.1299, Table 3; Figure S5 [supporting information])

could not be detected. Due to the fact that M8 (Table 3; Figure S4A

[supporting information]) was not found in pig urine as well as in human

urine samples, the formation of M8 seems to be species dependent. In

addition, M8 (Table 3; Figure S4A [supporting information]) and M9

(Table 3; Figure S5 [supporting information]) were only minor metabolites.

Because M0 (Table 3; Figure S1 [supporting information]) could be found

TABLE 2 Overview of the detected metabolites of cumyl-5F-P7AICA in cytochrome P450 monooxygenase (CYP) initial screening

WALLE ET AL. 85



in all in vitro samples as an impurity, it is possible that M9 (Table 3;

Figure S5 [supporting information]) was formed from M0 (Table 3;

Figure S1 [supporting information]) by monohydroxylation at the

5-fluoropentyl chain.

In PLM and pHLM incubations, comparable phase I metabolites

were detected. The 7-azaindole-monohydroxylated metabolite (M10,

Table 3; Figure 4C) could be detected only in pHS9 incubation sam-

ples in low abundances. Due to the presence of the carboxamide

linker and the 5-fluoropentyl tail in its chemical structure, steric hin-

derance could be the reason why monohydroxylation at the

7-azaindole core, resulting in M10 (Table 3; Figure 4C), was seen only

in pHS9. In addition, the compound at PM m/z 248.1393 (M14,

Table 3; Figure S7 [supporting information]) was identified as a car-

boxamide and OF compound and observed only in pHS9 incubation.

As mentioned earlier, this substance could have resulted from the

impurity M0 (Table 3; Figure S1 [supporting information]) with a sub-

sequent phase I reaction.

In addition, phase II reactions, that is, sulfation and

glucuronidation of mono- and dihydroxylated as well as N-deal-

kylated/monohydroxylated compounds, were detected in pHS9

incubation, whereas sulfated compounds were observed more often

(Table 3; Figure 2).

In general, the identified phase I metabolic reactions of cumyl-5F-

P7AICA in pHLM incubation of the present work were consistent with

those published by Staeheli et al,13 also using pHLM, identifying

dihydroxylation, OF/carboxylation, and monohydroxylation as the

three major metabolic pathways. In addition, ketone formation (M4,

Table 3; Figure S2 [supporting information]), N-dealkylation (M5,

Table 3; Figure 5A), OF (M15, Table 3; Figure S8 [supporting informa-

tion]), and OF/aryl-monohydroxylation (M16, Table 3; Figure S4B

TABLE 3 Overview and comparison of cumyl-5F-P7AICA and its phase I and II metabolites detected in different in vitro (pooled human liver
S9 fraction [pHS9], pooled human liver microsome [pHLM], and pig liver microsome [PLM] incubation) and in vivo models (rat urine [RU] after oral
administration and pig urine [PU] after inhalative administration) with already-published pHLM incubation13 and human urine (HU)11 data

pHS9 pHLM PLM RU PU pHLM13 HU11

Cumyl-5F-P7AICA X x x x x x

M0 Carboxamide X x x

M1 Oxidative defluorinated (OF) and carboxylated X x x x x x x

M2 Monohydroxylated1 X x x x x x

M3 Monohydroxylated2 X x x x

M4 Ketone X x x x

M5 N-Dealkylated X x x x x

M6 Dihydroxylated1 X x x x

M7 Dihydroxylated2 x x x x

M8 OF-monohydroxylated2 x x

M9 Carboxamide-monohydroxylated2 x x

M10 Monohydroxylated3 x x

M11 N-Dealkylated-monohydroxylated3 x x

M12 N-Dealkylated-monohydroxylated1 x

M13 OF-carboxamide and carboxylated x

M14 OF-carboxamide x

M15 OF x x x x

M16 OF-monohydroxylated1 x x x x

M17 Dihydroxylated1 + 2 x x x x x

M18 N-Dealkylated-monohydroxylated1 and sulfated x x x

M19 Monohydroxylated1 and sulfated x x x

M20 Monohydroxylated1 and glucuronidated x x x

M21 Dihydroxylated1 + 2 and sulfated x

M22 Dihydroxylated1 + 1 and sulfated x

M23 N-Dealkylated-monohydroxylated1 and glucuronidated x

M24 Monohydroxylated2 and glucuronidated x

Note. 1, aryl-monohydroxylated; 2, 5-fluoropentyl-monohydroxylated; 3, 7-azaindole-monohydroxylated.
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[supporting information]) were observed as metabolic reactions in

both pHLM incubations.

In contrast to the already-published data by Staeheli et al,13

describing an OF followed by methylation as well as an OF compound

in the blank pHLM incubation samples due to the storage of cumyl-

5F-P7AICA in methanol, none of those metabolites could be detected

as an impurity in the present study. Except for M0 (Table 3; Figure S1

[supporting information]) as an impurity, an OF/5-fluoropentyl-

monohydroxylated (M8, Table 3; Figure S4A [supporting information])

and a 5-fluoropentyl-dihydroxylated metabolite (M7, Table 3; Fig-

ure S3B [supporting information]) were additionally identified in the

present study, but no N-dealkylated/monohydroxylated metabolite13

could be found.

3.6.2 | In vivo metabolic pattern using rat and pig
urine

First, it must be mentioned that the metabolites excreted into rat and pig

urine, as well as their abundances, can hardly be compared to each other,

as the applied dosages and routes of administrations were different. Nev-

ertheless, if the metabolites detected in rat and pig urine should be com-

pared, it means that, in general, in addition to the parent compound, only

a small number of similar phase I and II metabolites were found in rat and

pig urine. Although SCs are generally known to be extensively

metabolized,20,39 the excretion of the parent compound into urine has

already been reported for other 7-azaindole-derived SCs,40 as well as, for

example, SCs containing an indazole-core structure.41

The OF/carboxylated (M1, Table 3; Figure 2) as well as the N-

dealkylated/aryl-monohydroxylated/sulfated (M18, Table 3; Figure 2)

metabolites were detected in high abundances in both rat and pig

urine. On the contrary, the metabolites M2, M5, M7, M11, M13,

M17, and M23 (Table 3; Figure 2) were detected only in rat urine. In

addition, M12 formed by N-dealkylation/aryl-monohydroxylation

could be found using only this animal model. However, the

corresponding phase II metabolites of the aryl-monohydroxylated

metabolite (M2) formed by sulfation (M19) or glucuronidation (M20),

as well as the 5-fluoropentyl-monohydroxylated/glucuronidated

(M24, Table 3) metabolite, could be detected only in pig urine speci-

mens but not in rat urine (Table 3).

The intensive N-dealkylation in rats not observed in pig urine

samples could be due to differences in CYP isoenzymes.42 The

absence of M2, M7, M12, and M17 (Table 3) in pig urine can be

explained by the fact that the monohydroxylated compounds under-

went conjugation in pigs, preventing further hydroxylation. This find-

ing is in accordance with results published by Schaefer et al,20

describing an intensive phase II metabolism in pigs.

In conclusion, the rat model seems to be less suitable for the elu-

cidation of metabolic patterns of 7-azaindole-containing SCs as com-

pared to the pig model. Due to its highly lipophilic properties, cumyl-

5F-P7AICA may not have been sufficiently absorbed after oral admin-

istration, thus probably explaining the low abundances of the

detected metabolites in rat urine.

3.6.3 | Comparison of in vitro and in vivo
metabolism

Comparing in vitro and in vivo assays, many of the in vitro identified

phase I metabolites could not be found in vivo, except for M1, M2,

M5, M7, and M17 (Table 3) also being detected in rat urine. The

ketone formation, resulting in M4 (Table 3), as a major metabolic path-

way of in vitro assays, could not be identified in vivo.

Comparing the results of PLM incubation with the elucidated

metabolites in pig urine, more phase I metabolites, such as mono-

hydroxylations and dihydroxylations, could be detected. This differ-

ence is not surprising, as monohydroxylated compounds undergo

conjugation in vivo. The metabolites M15 and M16 were identified in

PLM but not in pig urine (Table 3). Furthermore, M5 was identified in

PLM incubations; however, N-dealkylated compounds could not be

found in pig urine. A subsequent monohydroxylation of the aryl moi-

ety and conjugation with a sulfate resulting in M18 might be the rea-

son (Table 3).

Based on the high abundances of the formed phase II metabolites

in vivo, one might conclude that pHS9 is more appropriate for the elu-

cidation of the metabolic pattern of 7-azaindole-derived SCs as com-

pared to pHLM and PLM.

3.6.4 | Comparison of metabolism in pig with
human data

Consistent with the already-published study by Staeheli et al,11 phase

I and II metabolites detected in pig urine were in good accordance

with those found in authentic human urine samples. OF/carboxylation

(M1) and aryl-monohydroxylation/sulfation (M19) or glucuronidation

(M20) were detected in pig urine as well as in human urine specimens

(Table 3) as the main metabolic reactions.

High abundances of the phase I metabolite M1 were observed in

pig urine as well as in human urine samples. Regarding this metabolite,

no other phase II metabolite could be detected. Therefore, M1 does not

appear to be further metabolized by phase II reactions (Table 3). This

finding indicates that the intensive formation of an OF/carboxylated

metabolite seems to be a major metabolic pathway for cumyl-5F-

P7AICA, as already described in a previous study.11 In addition, this

result is consistent with those found for other fluorinated SCs.43–45

Furthermore, no dihydroxylated/glucuronidated/sulfated com-

pounds were identified in human and pig urine, which suggests that

monohydroxylated compounds undergo a fast phase II conjugation.

On the contrary, some differences between pig and human data

were found. To begin with, cumyl-5F-P7AICA was detected in pig

urine for 3 h after inhalative administration, but no parent compound

could be found in authentic human urine samples by Staeheli et al11

(Table 3). As in the casework by Staeheli et al,11 nothing is known

about the time of consumption as well as the consumed dosage; a

consumption of cumyl-5F-P7AICA far before urine sampling may offer

an explanation for the fact that no parent compound was found. On

the contrary, again in line with our results, the urinary excretion of the
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parent compound of 7-azaindole-derived SCs after oral administration

was already reported by Giorgetti et al.40

M18 and M24 could additionally be detected as phase II metabo-

lites in pig urine but not in human urine (Table 3). This intensive forma-

tion of phase II metabolites in pigs is in accordance with already-

published metabolism data in pigs by Schaefer et al.20 This issue could

be attributed to species-dependent differences in the formation of

these metabolites, because differences in the primary structure of CYP

forms, as well as in the gene expression, have already been reported.42

On the contrary, the monohydroxylated phase I metabolites M2

and M10 (Table 3) were detected only in studies on human urine per-

forming enzymatic hydrolysis during sample preparation but as mixed

spectra.11 The absence of these metabolites in pig urine samples in

our study is not surprising, as no enzymatic hydrolysis was

carried out.

In sum, despite minor differences, the metabolic pattern of the

in vivo pig model was consistent with the already-identified metabo-

lites in human urine samples. In conclusion, the pig is a suitable animal

model for the elucidation of recommended urinary targets of

7-azaindole-derived SCs in forensic toxicology.

3.7 | Urinary excretion pattern in pig and
recommendation of analytical targets

In the present work, the parent compound, cumyl-5F-P7AICA, was

detectable in the collected pig urine specimens for 3 h after drug admin-

istration, with the abundance decreasing time dependently. Regarding

the LC–HRMS/MS data, M20 (Table 3) was the most abundant metab-

olite for 8 h after administration in our experiment. M19 (Table 3) was

also initially predominantly present but disappeared after 7 h. M1

(Table 3; Figure 3), M18 (Table 3), and M24 (Table 3) were found in all

collected samples for 8 h but displayed lower abundances.

Assessing the metabolic pattern of other 7-azaindole-derived SCs,

such as 5F-MDMB-P7AICA, in pig urine46—in contrast to the results

obtained in our study of pig—no sulfated phase II metabolites were

detected. In addition, the parent compound, 5F-MDMB-P7AICA, was

detectable only for 1 h after inhalative administration,46 whereas in the

present study, cumyl-5F-P7AICA could be found for 3 h. This observa-

tion could be explained by differences in the chemical structures.

Despite an identical 5-fluoropentyl tail, 7-azaindole core, and carbox-

amide linker, the linked group is different. Whereas cumyl-5F-P7AICA

contains a cumyl moiety as a linked group, 5F-MDMB-P7AICA has an

ester structure, undergoing a fast degradation due to ester hydrolysis.46

Regarding indazole-derived SCs, such as 5F-MDMB-PINACA, no par-

ent compound could be detected in urinary specimens;47,48 however,

no systematic controlled studies were conducted.

Based on the aforementioned results and despite the fact that

cumyl-5F-P7AICA could not be detected in human urine samples, the

parent compound might be a high-specific urinary target to prove the

recent consumption of 7-azaindole-derived SCs.

Due to its high abundances in urine samples, M1 (Table 3;

Figure 3) might be used as a marker for consumption of cumyl-5F-

P7-AICA, as already described by Staeheli et al.11 Nevertheless, when

interpreting the findings, one must consider that the OF/carboxylated

metabolite M1 contains the full parent structure but is not fully spe-

cific, because it could also originate by the consumption of, for exam-

ple, cumyl-5F-PINACA or cumyl-PINACA.49 Due to the intensive

phase II metabolism of cumyl-5F-P7AICA in vivo, we further recom-

mend to use the aryl-monohydroxylated/sulfated (M19, Table 3) or

glucuronidated (M20, Table 3) metabolites as consumption markers if

no enzymatic hydrolysis is performed. To improve the specificity,

enzymatic hydrolysis of urine samples could be carried out. In accor-

dance with the study by Staeheli et al, the aryl-monohydroxylated

metabolite should also be used as a urinary target to prove consump-

tion, as it includes the full parent structure.11 This recommendation is

confirmed by the fact that monohydroxylation is an already-published

common metabolic pathway for SCs.20,45,50,51

Due to the high number of structurally similar SCs with common

metabolites, high sensitivity and specificity of recommended urinary

targets are necessary. To draw a conclusion from the findings of this

study and those published by Staeheli et al,11 urinary targets for the

confirmation of a consumption of cumyl-5F-P7AICA should be the

parent compound (seemed to be detectable only for a few hours after

inhalation), OF/carboxylated as well as the aryl-monohydroxylated

metabolite M2 (after enzymatic hydrolysis), and the corresponding

sulfated (M19) and glucuronidated (M20) metabolites (Table 3).

4 | CONCLUSIONS

The present work elucidated the metabolic patterns of cumyl-5F-

P7AICA using different in vitro (pHS9, pHLM, and PLM incubations)

and in vivo (rat and pig) models. In this context, the major metabolic

pathways were OF/carboxylation, aryl-monohydroxylation, and aryl-

monohydroxylation/glucuronidation or sulfation. CYP2C19, CYP3A4,

and CYP3A5 were predominantly involved in the metabolism of

cumyl-5F-P7AICA. To prove the consumption of cumyl-5F-P7AICA,

the parent compound and the OF/carboxylated, the aryl-mono-

hydroxylated/glucuronidated, or sulfated metabolites should be used

as urinary targets. After the enzymatic hydrolysis of urine samples,

the aryl-monohydroxylated metabolite might be preferentially used

as a urinary marker instead of the glucuronidated or sulfated phase

II metabolites. In contrast to the rat model, the pig formed metabo-

lites comparable to those found in human urine specimens except

for the parent compound, detected only in pig urine samples for 3 h

but not in human urine. Considering all the results of the present

study, the pig model is the most suitable animal model for the eluci-

dation of the metabolic pattern of 7-azaindole-derived SCs. In par-

ticular, the pig model allows for the elucidation of the time-

dependent urinary excretion pattern, because repeated collection of

multiple samples is possible.
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