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mittels in-situ Röntgenbeugung und

Modellierung der Streuintensitäten
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Kurzzusammenfassung

Ziel dieser Arbeit war die Untersuchung des Verformungsverhaltens von nanokristallinem

Pd90Au10 in Abhängigkeit von Dehnrate, Spannungszustand und Relaxationszustand, sowie

die Identifikation dabei aktiver Plastizitätsmechanismen. Dazu wurden Verformungsexperi-

mente an entsprechend präparierten Shear-Compression-Specimens (SCS) bei verschiedenen

Dehnraten durchgeführt, wobei die Verformung mittels optischer Dehnungsmessung erfasst

wurde. Simultan dazu wurde die Mikrostruktur mittels Transmissionsröntgenbeugung un-

tersucht. Die Analyse der Röntgendaten erfolgte mittels Whole Powder Pattern Modeling,

wodurch eine detaillierte und richtungsabhängige Analyse der Mikrostruktur über die gesamte

Verformung hinweg ermöglicht wurde. Zusammen mit den makroskopischen Kraft- und Deh-

nungsdaten ergibt sich damit eine umfassende sowie durchgängig konsistente Beschreibung

des Verformungsverhaltens nanokristalliner Pd90Au10 SCS.

In der kristallinen Phase konnten Versetzungsgleiten, Coupling und Kornrotation als aktive

und miteinander wechselwirkende Mechanismen gezeigt werden. Zusätzlich sind in den Korn-

grenzen weitere Plastizitätsmechanismen aktiv, die in Scherprozesse und volumenabbauende

Relaxationsprozesse unterschieden werde können. Das gesamte Verformungsverhalten ist das

Resultat des Zusammenwirkens und Konkurrierens aller Einzelmechanismen, welches maß-

geblich durch Relaxation, Dehnrate, Spannungszustand und Verformungshistorie beeinflusst

wird.

Abstract

The objective of this work was to investigate the deformation behaviour of nanocrystalline

Pd90Au10 as a function of strain-rate, stress-state and relaxation-state, and to identify active

plasticity mechanisms. Deformation experiments were carried out on accordingly prepared

shear-compression-specimens (SCS) at different strain-rates, with the deformation being re-

corded by optical strain measurement. Simultaneously the microstructure was investigated

by transmission X-ray diffraction. The analysis of the X-ray data was performed by Whole

Powder Pattern Modeling, which allowed a detailed and directional analysis of the microstruc-

ture throughout the entire deformation. Together with the macroscopic force and strain data,

this results in a comprehensive and consistent description of the deformation behaviour of

nanocrystalline Pd90Au10 SCS.

In the crystalline phase, dislocation slip, coupling and grain rotation were shown to be active

and interacting mechanisms. In addition, further plasticity mechanisms are active in the grain

boundaries, which can be distinguished into shear processes and volume-reducing relaxation

processes. The overall deformation behaviour is generated by the interaction and competition

of individual mechanisms, which are significantly influenced by relaxation, strain-rate, stress-

state and deformation history.
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1 Einleitung und Zielsetzung der Arbeit

Metallische Werkstoffe sind aufgrund ihrer Eigenschaften von herausragender technologischer

Bedeutung. In mechanischen und konstruktiven Anwendungen sind vor allem ihre hohe Festig-

keit, Zähigkeit und gute Formbarkeit relevant, die durch gezielte chemische und mikrostruktu-

relle Beeinflussungen an die jeweilige Anwendung angepasst werden können. Ein Beispiel für

die chemische Anpassung ist die großindustrielle Entwicklung und Optimierung spezialisierter

Stahlsorten. Die Mikrostruktur kann durch plastische Verformung (z.B. Schmieden, Walzen,

Kugelmahlen, shot peening), thermische Behandlung (z.B. Glühen, Abschrecken) oder Be-

strahlung geändert werden, wodurch zum Teil drastische Änderungen im Materialverhalten

erzielt werden.

Für die gezielte Herstellung metallischer Werkstoffe mit optimalen Eigenschaften sind die

wissenschaftliche Untersuchung der Eigenschaften von Metallen sowie der Prozesse, die für

ihre Verformung und ihr Versagen verantwortlich sind, grundlegend. Untersuchungen zu die-

sen Themen wurden bereits im 19. Jahrhundert in großem Umfang durchgeführt (siehe z.B.

[1, 2]), doch erst Anfang des 20. Jahrhunderts wurden durch neue Analyseverfahren, wel-

che Messungen auf atomarer Ebene erlaubten, entscheidende Durchbrüche erzielt. Beson-

ders hervorzuheben sind hier die Entdeckung der Röntgenstrahlen und der damit möglichen

Röntgenbeugung, sowie die Entwicklung des Transmissionselektronenmikroskopes. Stark ver-

einfacht kann das Ergebnis dieser Bemühungen dadurch zusammengefasst werden, dass Me-

talle einen kristallinen Aufbau aufweisen und ihre Plastizität, je nach Materialzustand und

Prozessbedingung, durch die Verschiebung nulldimensionaler (z.B. Fremdatome, Leerstellen)

oder eindimensionaler (Versetzungen) Gitterdefekte bewerkstelligt wird. Die Plastizität und

der kristalline Aufbau metallischer Werkstoffe sind also eng miteinander verbunden.

In den 1970ern wurde mit dem Schmelzschleudern ein Verfahren entwickelt, bei dem durch

rasches Abkühlen geeigneter Legierungen eine Erstarrung im amorphen Zustand erreicht wer-

den konnte. Die so hergestellten, amorphen metallischen Festkörper werden aufgrund ihrer

fehlenden atomaren Fernordnung als metallische Gläser bezeichnet und zeichnen sich durch

höhere Härte, Festigkeit und bessere Korrosionsbeständigkeit als die herkömmlichen kristalli-

nen Metalle aus. Ihre plastische Verformbarkeit ist im Vergleich zu letzteren in der Regel zwar

stark eingeschränkt, aber dennoch grundsätzlich vorhanden. Dieser Befund konnte, aufgrund

der fehlenden kristallinen Struktur, nicht mit den konventionellen Plastizitätsmechanismen

erklärt werden, wodurch die Entwicklung des Konzepts der Schertransformationen [3] moti-

viert wurde. Dieses beschreibt die plastische Verformung durch das lokale Abgleiten kleiner
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1 Einleitung und Zielsetzung der Arbeit

Gruppen von Atomen relativ zueinander und stellt damit den grundlegenden Verformungsme-

chanismus in amorphen Materialien dar. Die Unterschiede in den Eigenschaften kristalliner

und amorpher Metalle sind also eine Konsequenz aus den Unterschieden in Mikrostruktur

und den daraus resultierenden Unterschieden in den Plastizitätsmechanismen.

Die Lücke zwischen metallischen Gläsern und konventionellen kristallinen Materialien wurde

in den 1980ern geschlossen, indem mit der Edelgaskondensation ein Verfahren zur Herstellung

nanokristalliner Metalle entwickelt wurde [4]. Die damit herstellbaren Materialien zeichnen

sich in der Regel durch sehr kleine kristalline Bereiche (Körner) mit Durchmessern um 10 nm1

aus, die von ihren unterschiedlich orientierten Nachbarkörnern durch Grenzflächen (Korngren-

zen) voneinander getrennt sind. Die Atome in diesen Grenzflächen sind im Allgemeinen nicht

Teil der kristallinen Ordnung und ähneln insofern dem amorphen Zustand. Durch die ge-

ringe Korngröße liegt der Volumenanteil dieser Korngrenzen über 10 % des Gesamtvolumens

und damit um mehrere Größenordnung über dem in konventionellen Metallen. Eine kontinu-

ierliche Verkleinerung der Korngröße sollte demzufolge einen hypothetischen Übergang vom

kristallinen in den amorphen Zustand darstellen.

Diese nanokristallinen Metalle zeichnen sich durch eine Reihe bemerkenswerter Eigenschaften

aus, wie z.B. hohe Festigkeit [5, 6], hohe Härte [7, 8], hohe Verschleißfestigkeit [9], aber

auch erhöhte Temperatur- und Dehnratenabhängigkeit [10, 11], sowie stark unterschiedliches

Verformungsverhalten unter Zug- und Druckbelastung [5]. Umfassende Sammlungen dieser

und weiterer Eigenschaften wurden in der Vergangenheit in einer Reihe von Übersichtsartikeln

zusammengefasst [12, 13, 14, 15, 16, 17].

Dabei ist ein zentraler Befund, dass die Verformungseigenschaften nanokristalliner Metalle

weder denen von amorphen, noch denen von konventionellen Metallen entsprechen. Eine

Extrapolation der konventionellen Eigenschaften in den nanokristallinen Bereich führt in

den meisten Fällen zu falschen Vorhersagen, von denen der Zusammenbruch der Hall-Petch-

Beziehung [18, 19] vermutlich das bekannteste Beispiel ist.

Die Tatsache, dass plastische Verformungen nanokristalliner Proben unter Druck dennoch bis

zu hohen Dehnungen möglich sind, stellt somit automatisch die Frage nach dem dafür ver-

antwortlichen Mechanismus bzw. des Zusammenwirkens von unterschiedlichen Mechanismen.

Bei der Suche nach Antworten auf diese Frage geht man gemeinhin von zwei prinzipiellen

Ursachen für das veränderte plastische Verhalten aus. Einerseits kann der große Anteil von

Korngrenzen als Hindernis für interkristalline Plastizität wirken, andererseits kann intrakris-

talline Plastizität aufgrund der geringen räumlichen Ausdehnung der Körner gehemmt wer-

den. Zusätzlich können die Korngrenzen selbst als Träger plastischer Verformung fungieren

und somit zur plastischen Dehnung des Gesamtmaterials beitragen.

Vor diesem Hintergrund wurde bislang eine Vielzahl von Plastizitätsmechanismen theoretisch

hergeleitet, in Simulationen demonstriert und in Experimenten beobachtet. Ohne Anspruch

1Heute werden in der Regel Materialien mit mittleren Korndurchmessern < 100 nm als nanokristallin bezeich-
net. Gegenstand dieser Arbeit ist aber nur der untere Korngrößenbereich um 10 nm.

6



auf Vollständigkeit wurden in der Literatur als intrakristalline Mechanismen das Nabarro-

Herring-Kriechen und Gleiten von vollständigen sowie partiellen Versetzungen, einschließ-

lich ihrer Emission und Absorption an Korngrenzen, vorgeschlagen. Für die Plastizität in

und durch Korngrenzen werden Coble Kriechen, Korngrenzengleiten, Schertransformationen

in Korngrenzen, spannungsgetriebene Korngrenzenmigration (Coupling), sowie Kornrotation

diskutiert. Ein detaillierter Überblick zu diesen Themen findet sich in den zuvor genannten

Übersichtsartikeln. Ein einzelner dominanter Mechanismus konnte bisher nicht identifiziert

werden und die bisherige Datenlage legt zunehmend den Schluss nahe, dass das Verformungs-

verhalten im nanokristallinen Zustand Ausdruck eines komplexen Zusammenspiels mehrerer

der genannten Mechanismen ist. Darüber hinaus benötigen einige der Mechanismen prinzipiell

bereits mindestens einen zusätzlichen Akkomodationsmechanismus um mehr als inkrementel-

le Dehnungsbeiträge erzeugen zu können. Zudem mehren sich die Hinweise darauf, dass das

Verformungsverhalten nanokristalliner Metalle in besonderem Maße durch Prozessparame-

ter wie Dehnrate, Spannungs- und Dehnungszustand, Verformungshistorie oder Umgebungs-

temperatur beeinflusst wird. Die Untersuchung dieser Mechanismen stellt dadurch und durch

die große Anzahl möglicher, gleichzeitig ablaufender Prozesse eine anspruchsvolle experimen-

telle Herausforderung dar.

Ein vielversprechender Ansatz zur Klärung dieser Fragen stellen in-situ Röntgenbeugungsex-

perimente dar, bei denen zeitgleich Daten zur makroskopischen Verformung (z.B. Dehnung,

Kraft, usw.) und Streubilder aus der Röntgenbeugung aufgenommen werden, wodurch ma-

kroskopische und atomare Informationen direkt miteinander korreliert werden können. In

der Vergangenheit wurden von verschiedenen Gruppen mit großem Aufwand wegweisende

Experimente in dieser Richtung unternommen [20, 21, 22, 23, 24, 25, 26, 27, 28], die um-

fangreiche Erkenntnisse zu dem Thema geliefert haben. Dabei zeigten sich auch Verbesse-

rungsmöglichkeiten in den experimentellen Aufbauten und insbesondere bei der Auswertung

der Daten, die sich als große Herausforderung herausgestellt hat. Insbesondere während der

Verformung sind konventionelle Analysemethoden nur noch begrenzt anwendbar.

Auf dieser Grundlage ist die vorliegende Dissertation im Rahmen eines Nachfolgeprojekts zu

[29, 25, 30] entstanden, wo das Verformungsverhalten der in [29] entwickelten miniaturisier-

ten Shear-Compression-Specimens (SCS) aus nanokristallinen Palladium-Gold-Legierungen

(PdAu) in einer Reihe von in-situ Verformungsexperimenten an der Beamline ID11 der Eu-

ropean Synchrotron Radiation Facility (ESRF) verformt wurden. Der grundlegende Aufbau

dieser Experimente lehnt sich an die Aufbauten aus [25] an. Während des Experimentes wurde

der sich plastisch verformende Bereich der Proben mit einem Röntgenstrahl durchleuchtet und

das dabei entstehende Streubild auf einem zweidimensionalen Detektor aufgezeichnet. Gleich-

zeitig wurde der Verformungsprozess makroskopisch durch ein Kamerasystem erfasst und die

auf die Probe wirkende Kraft mittels Kraftmessdose aufgezeichnet. Aufgrund der Ergebnisse

aus [30] wurden zusätzlich SCS mit unterschiedlichen Stegwinkeln untersucht, um den Ein-

fluss verschiedener Spannungszustände auf das Verformungsverhalten zu beleuchten. Darüber
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1 Einleitung und Zielsetzung der Arbeit

hinaus wurden neben den wie-hergestellten Proben auch wärmebehandelte (relaxierte) Pro-

ben in die Studie mit einbezogen. Eine frühere eigene Arbeit [31] und die Untersuchungen

anderer Gruppen [7] legten eine relevante Beeinflussung des plastischen Materialverhaltens

durch die Relaxation nahe, die außerdem in späteren Arbeiten [8, 32] detaillierter untersucht

und verifiziert werden konnte.

Die vorliegende Arbeit behandelt in kompakter Form Konzeption und Umsetzung des ex-

perimentellen Aufbaus und der Experimente, insbesondere im Hinblick auf die Neuerun-

gen im Vergleich zu den vorangegangenen Arbeiten. Der zentrale Gegenstand dieser Dis-

sertation ist die anschließende Aufbereitung und Analyse der Daten. Dazu zählt die Ver-

arbeitung der Kamerabilder, aus denen makroskopische Rotations- und Dehnungsinforma-

tionen des vom Röntgenstrahl durchstrahlten Volumens extrahiert wurden. Der weitaus

größere Teil befasst sich mit der Auswertung der Daten aus der Röntgenstreuung. Wie zu-

vor erwähnt, gestaltet sich die Anwendung konventioneller Analyseverfahren schwierig und

eine zielführende Anpassung derselben stellte sich im Rahmen dieser Arbeit als unmöglich

heraus. Die Ursache dafür ist, dass die komplexe Struktur des nanokristallinen Materials

und die Überlagerung verschiedener Gitterverzerrungen durch Defekte, Belastungszustand

und aktive Plastizitätsmechanismen zu stark von den Voraussetzungen für die Anwendbar-

keit herkömmlicher Analysemethoden abweicht. Darüber hinaus ist die Informationsdichte im

Streubild in diesem Fall so hoch, dass die starke Datenreduktion zu Beginn herkömmlicher

Methoden2 eine quantitative Auswertung vor große Herausforderungen stellt.

Daher wurde in dieser Dissertation auf Grundlage der Arbeit von Scardi et al. (z.B. [33])

eine angepasste Implementierung des Whole Powder Pattern Modeling (WPPM) realisiert.

Bei diesem Verfahren wird auf Grundlage physikalischer Modelle das Streubild der unter-

suchten Probe theoretisch berechnet und durch Parametervariation an die gemessenen Daten

angepasst. Die Parameter, die die größte Übereinstimmung zwischen Modell und Messung

erzeugen, liefern dann die beste Beschreibung der modellspezifischen physikalischen Eigen-

schaften und Zustände der Probe und bilden die Grundlage für die weitere Analyse. Die

Anpassung der WPPM-Methode wurde hier aus zwei Gründen motiviert. Zum einen musste

der WPPM-Algorithmus aufgrund der immensen Datenmenge automatisiert und schnell auf

die Streubilder angewandt werden können, insbesondere weil davor und danach zusätzliche

Verarbeitungsschritte notwendig sind. Zum anderen erzwingen die komplexe Mikrostruktur

und Belastungszustände der Proben eine Erweiterung und Ergänzung der in der WPPM ent-

haltenen physikalischen Modelle. Bereits bestehende Implementierungen sind nach jetzigem

Kenntnisstand nicht zur Anpassung der vorliegenden Daten geeignet, besitzen dafür aber in

anderen Bereichen fortgeschrittenere Modelle, z.B. zur Modellierung von Stapelfehlern.

Mit Hilfe der WPPM und der optischen Dehnungsmessung konnten in dieser Arbeit Spannungs-

und Dehnungszustände der SCS während der Verformung detailliert analysiert werden, sowie

Signaturen von diversen Plastizitätsmechanismen nachgewiesen werden. Dabei zeigten sich

2Z.B. die Betrachtung der Halbwertsbreite der Bragg-Peaks.
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komplexe Abhängigkeiten und Zusammenspiele zwischen den verschiedenen Mechanismen,

welche durch Dehnrate, Spannungszustand (Stegwinkel) und Probenzustand (wie-hergestellt

bzw. relaxiert) systematisch beeinflusst werden.

Vor dem Hintergrund der komplexen Auswertungsprozedur müssen auch die recht umfang-

reich erscheinenden Theorie- und Methodikkapitel betrachtet werden. Für die Nachvollzieh-

barkeit – und damit Überprüfbarkeit – der WPPM Implementierung ist die Kenntnis weiter

Teile der klassischen Streutheorie, einschließlich Grundzügen der Krivoglaz-Wilkens-Theorie

zum Streuverhalten in Anwesenheit von Versetzungen, der Theorie zum Einfluss von Sta-

pelfehlern und Zwillingsgrenzen, sowie der Auswirkung von Verzerrungen und homogenen

Dehnungen notwendig. Letzteres erscheint vergleichsweise trivial, bedingt aber zwangswei-

se eine Auseinandersetzung mit dem Tensorformalismus der Elastizität und den Methoden

zur Mittelung elastischer Eigenschaften von Polykristallen. Zusätzlich ist in der WPPM für

die Anpassung der Daten unbedingt die Berücksichtigung der thermodiffusen Streuung not-

wendig, zu deren Bestimmung Grundlagen zur klassischen Phononentheorie genutzt werden.

Schließlich beinhaltet die WPPM an zentraler Stelle eine Fourier-Transformation zwischen

Real- und Impulsraum, welche im Zusammenhang mit dem Kristallgitter und reziproken

Gitter behandelt wird. Die Ausführungen in dieser Arbeit sollen daher dem Komfort des

interessierten Lesers dienen, indem diesem die, in Bezug auf diese Arbeit, wichtigsten Inhalte

aus den Quellen in kompakterer Form und in Bezug zueinander dargereicht werden.

Hinweis zum Datenträger

Dieser Arbeit ist ein USB-Stick als Datenträger beigefügt, auf dem Programme zur Visuali-

sierung der Messdaten und der Auswertungen enthalten sind (Ordner /Datenvisualisierung).

Zusätzlich sind darauf die Quelltexte zur Auswertung und Darstellung der in dieser Arbeit

diskutierten Daten enthalten. Eine Übersicht darüber wird im Anhang ab A.3 (S. 394) gege-

ben.

Auf dem Datenträger befindet sich außerdem eine Sammlungen der verwendeten Modellpa-

rameter und der zu Grunde liegenden Rohdaten. Diese liegen in Form von Matlab (.mat)

Dateien vor, weshalb zur Ansicht der Rohdaten das Programm Matlab notwendig ist (GNU

Octave könnte auch funktionieren, ist aber nicht getestet worden). Die Quelltexte (.m) können

mit jedem Texteditor betrachtet werden.

Falls dieser Ausgabe der Arbeit kein USB-Stick beiliegt, schreiben Sie bitte eine E-Mail an

diss.deckarm@gmail.com.
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2 Theorie

2.1 Kristallgitter und reziproke Gitter

2.1.1 Allgemeines

A1

A2

a1

2a

W-S
Zelle

d

{

200

hklG

d200

hkl=200

hkl=400

hkl=600

hkl=100

Abbildung 2.1: Zweidimensionale Darstellung eines Bravais-Gitter zur Veranschaulichung
verschiedener, essenzieller Konzepte und Größen. Links sind primitive Basis-
vektoren a⃗1 und a⃗2 in blau dargestellt, ebenso die davon aufgespannte primiti-
ve Einheitszelle. Die Basisvektoren der kubischen Einheitszelle A⃗1 und A⃗2 sind
rot dargestellt und die Wigner-Seitz-Zelle inklusive ihrer Konstruktionslinien
in Gelb. In Grün sind 200 Gitterebenen mit reziprokem Gittervektor G⃗hkl und
Ebenenabstand d200 in das Gitter eingezeichnet. Die Mitten zwischen benach-
barten Ebenen werden gepunktet dargestellt. Rechts ist die Periodizität der
Gitterebenen für verschiedene Ordnungen gezeigt. Die Positionen der Ebenen
sind dort ebenfalls durch grüne Linien markiert.

Die definierende Eigenschaft eines (perfekten) Kristalls ist sein räumlich periodischer Aufbau.

Er wird am direktesten über die Angabe der Raumkoordinaten der Gleichgewichtspositionen

der Atome beschrieben, welche durch die Periodizität gewöhnlich in zwei Teilprobleme ge-

gliedert wird. Zunächst beschreibt man die grundlegende Baueinheit des Kristalls, die soge-

nannte Basis. Dabei handelt es sich um ein Cluster mit der minimalen Menge benachbarter

und zueinander charakteristisch angeordneter Atome, deren periodische Wiederholung den

Kristall erzeugt. In dieser Arbeit wird aber lediglich der einfache Fall einer einatomigen Ba-

sis betrachtet, welcher den Gegebenheiten beim PdAu Substitutionsmischkristall entspricht.
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2 Theorie

Der Kristall wird durch die Anordnung von Atomen (allg. Basen) in einem dreidimensionalen

räumlich periodischen Punktgitter konstruiert, dessen Ortsvektoren (oder Punktkoordinaten)

durch die Linearkombination

r⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3 (2.1)

erzeugt werden können, wobei der Koordinatenursprung selbst immer Teil des Gitters ist. Da-

bei gilt n1, n2, n3 ∈ Z, sowie dass die primitiven Gittervektoren a⃗1, a⃗2, a⃗3 eine (Vektor)Basis

des (Orts)Vektorraumes R3 bilden. Ein solches Gitter ist translationsinvariant gegenüber

Verschiebungen um Translationsvektoren des Gitters t⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3, was zur Folge

hat, dass jede ortsabhängige physikalische Eigenschaft im Gitter f(x⃗) (z.B. Ladungsdichte,

potentielle Energie, usw.) dieser Gitterperiodizität entsprechen muss, also

f(x⃗) = f(x⃗ + t⃗). (2.2)

Das hat zur Folge, dass jeder Gitterpunkt gleichermaßen geeignet ist als Ursprung des Koor-

dinatensystems zur Beschreibung des Kristalls zu dienen, wodurch sich eine Unterscheidung

von Ortsvektor r⃗ und Translationsvektor t⃗ erübrigt und daher im Folgenden vernachlässigt

wird. Das Parallelepiped, das durch die Basisvektoren aufgespannt wird, wird als primitive

(Gitter)Zelle bezeichnet. Sie enthält genau einen Gitterpunkt (hier Atom, allg. Basis), so-

dass ihr Volumen Vpz = a⃗1(a⃗2 × a⃗3) gerade dem Volumen entspricht, das von einem Atom im

Kristall eingenommen wird. Darüber hinaus erreicht man durch ihre Verschiebung entlang

von Translationsvektoren eine raumfüllende Parkettierung des dreidimensionalen Raums. Die

bisherigen Bedingungen, die an das Gitter gestellt wurden, liefern jedoch keine Kriterien für

eine eindeutige Wahl der Basisvektoren.

Es gibt immer die Möglichkeit, eine eindeutige primitive Zelle unabhängig von den gewählten

Basisvektoren zu konstruieren, die genau einen Gitterpunkt enthält und die vollständige Sym-

metrie des Gitters widerspiegelt. Dabei handelt es sich um die Wigner-Seitz-Zelle [34], die

konstruiert wird, indem Verbindungsstrecken eines Gitterpunktes zu seinen umgebenden Git-

terpunkten (nächste Nachbarn, übernächste Nachbarn, usw.) durch Normalenebenen halbiert

werden. Das Volumen, das durch diese Ebenen um den Gitterpunkt eingeschlossen wird, bil-

det die Wigner-Seitz-Zelle und umfasst alle (mathematischen) Punkte im Raum, die näher

am eingeschlossenen Gitterpunkt liegen als an allen anderen. Aufgrund der Translationsin-

varianz des Gitters (vgl. Gl. (2.2)) können die ortsabhängigen physikalischen Eigenschaften

des gesamten Kristalls durch Punkte innerhalb der Wigner-Seitz-Zelle beschrieben werden.

Um eine sinnvolle Beschreibung der Kristallstruktur vorzunehmen, hat es sich als praktisch er-

wiesen, solche Basisvektoren zu wählen, die an die Symmetrie des Gitters angepasst sind [35].

Diese Überlegung liefert für kugelsymmetrische Basen (z.B. Basen, die nur aus einem Atom

bestehen) Einschränkungen für die Längen der Basisvektoren und die von ihnen eingeschlos-

senen Winkel, sodass nur 7 verschiedene Kristallsysteme mit den Basisvektoren A⃗1, A⃗2, A⃗3

unterschieden werden müssen, die sich in 14 Bravais-Gitter untergliedern [1]. Die Längen
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2.1 Kristallgitter und reziproke Gitter

dieser Basisvektoren werden Gitterkonstanten genannt und in der Regel mit a, b, c be-

zeichnet. Die von den Basisvektoren aufgespannten Einheitszellen sind ebenfalls raumfüllend

und translationsinvariant unter Verschiebungen um den Vektor R⃗ = n1A⃗1 + n2A⃗2 + n3A⃗3. Sie

müssen jedoch nicht mehr zwangsweise nur noch eine einzelne Basis beinhalten, was genau

dann der Fall ist, wenn es sich nicht um primitive Gitter, sondern um zentrierte Gitter han-

delt (raumzentriert, flächenzentriert, basiszentriert). Das hat zur Folge, dass die Ortsvektoren

eines Atoms für Vektorbasen von zentrierten Bravais-Gitter durch die Linearkombination

R⃗ = (n1A⃗1 + n2A⃗2 + n3A⃗3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Adressierung Einheitszelle

+ (m1A⃗1 +m2A⃗2 +m3A⃗3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Adressierung Atom in Einheitszelle

(2.3)

beschrieben wird, wobei nur solche Kombinationen von 0 ≤ m1, m2, m3 < 1, sinnvoll sind,

die einen Ortsvektor auf ein Atom innerhalb der Einheitszelle erzeugen. Hier zeigt sich, dass

man zu Gunsten der einfacheren Beschreibung der Symmetrie, die einfache Beschreibung der

Translationsinvarianz gegenüber Gittervektoren aufgibt. Das wird bereits dadurch deutlich,

dass die Basisvektoren (A⃗1, A⃗2, A⃗3) für sich alleine keinen Rückschluss mehr darauf zulassen,

ob ein primitives oder zentriertes Gitter vorliegt. Später wird das in Bezug auf das reziproke

Gitter noch zu einem Problem.

Für jedes Bravais-Gitter gibt es eine charakteristische Anzahl von nächsten Nachbarn zu

einem beliebigen Punkt im Gitter, also Punkte, die den gleichen, kürzest möglichen Abstand

zu einem Aufpunkt besitzen. Diese Anzahl wird Koordinationszahl genannt.

Richtungen in einem Kristall werden durch Zahlentripletts betragsmäßig kleinster, ganzer

Zahlen in eckigen Klammern [uvw] angegeben, wobei es sich bei den Zahlen um die Vek-

torkomponenten des Richtungsvektors in der Vektorbasis der Einheitszelle handelt. Negative

Werte werden üblicherweise mit einem Querstrich dargestellt, also −u = ū. Sollen alle symme-

trisch äquivalenten Richtungen bezeichnet werden, verwendet man spitze Klammern ⟨uvw⟩

mit u ≥ v ≥ w ≥ 0.

Neben den Gitterpunkten sind die von ihnen gebildeten Netzebenen von zentraler Bedeutung

für die Beschreibung physikalischer Eigenschaften und Vorgänge in Kristallen (Röntgenstreu-

ung, Gitterschwingungen, etc.). Netzebenen sind alle Ebenen im Kristall, die mindestens drei

nicht kollineare Gitterpunkte enthalten. Durch die Periodizität des Gitters existiert zu je-

der Netzebene eine Schar paralleler Netzebenen mit festem Netzebenenabstand. Eine Schar

äquivalenter und parallel zueinander verlaufender Netzebenen wird durch die ganzzahligen

Miller’schen Indizes beschrieben [36, 37], die einen Normalenvektor (hkl) definieren, dessen

Länge reziprok zum Netzebenenabstand dhkl ist. Die Gesamtheit aller äquivalenter Ebenen-

scharen, die in alle symmetrisch äquivalenten Richtungen orientiert sind, werden durch ge-

schweifte Klammern {hkl} gekennzeichnet. Ganz fundamental betrachtet bilden Netzebenen

die eindimensionale Periodizität des Kristalls entlang der Richtung [hkl] ab, was formal und

anschaulich durch stehende Wellen beschrieben werden kann. Die Netzebenen bilden in die-

sem Bild die Oszillatoren der ebenen Welle, die alle die gleiche Phase besitzen müssen, um der
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2 Theorie

Periodizitätsbedingung zu genügen (vgl. Abb. 2.1). Der Begriff Oszillatoren ist hier als ab-

straktes Konzept zur Beschreibung der Periodizität im Kristall zu verstehen und beschreibt

keine Bewegung von Atomen oder Elektronen. Eine Interpretation der oben eingeführten

Funktion f als ebene Wellenfunktion ergibt damit

f(x⃗) = f0 exp (iG⃗hklx⃗) = f0 exp (iG⃗hklx⃗) exp (iG⃗hklr⃗) = f(x⃗ + r⃗). (2.4)

Hier sind f0 die (hier unwichtige) Amplitude der Wellenfunktion und G⃗hkl der Wellenvektor

parallel zur Netzebenennormalen (hkl). Um diese Gleichung zu erfüllen, muss

exp (iG⃗hklr⃗) = 1, (2.5)

erfüllt sein, was äquivalent ist zu

G⃗hklr⃗ = 2πn (2.6)

mit n ∈ Z∗. Das heißt, es gibt unendlich viele diskrete, ebene Wellenfunktionen, welche die

Gleichung (2.5) bzw. (2.6) erfüllen, wobei die Fälle n ≠ ±1 dadurch zustande kommen, dass

zusätzliche Schwingungsperioden zwischen benachbarten Netzebenen eingeschoben werden.

Da an diesen Orten im Kristall aber keine Netzebenen, also Oszillatoren, existieren, ist die

tatsächlich beobachtbare Schwingung identisch zum Fall n = ±1 1.

Dieser Befund lässt sich verallgemeinern auf eine allgemeine gitterperiodische Funktion f , die

aufgrund ihrer Periodizität in einer Fourier-Reihe entwickelt werden kann und die Form

f(x⃗) = ∑
j∈Z

gj exp (iG⃗j x⃗) (2.7)

annimmt. Die Fourier-Koeffizienten gj folgen der üblichen Definition

gj =
1

Vpz
∫
Vpz

f(x⃗) exp (−iG⃗j x⃗)d3x (2.8)

wobei über das Volumen der primitiven Einheitszelle Vpz (z.B. Wigner-Seitz-Zelle) integriert

wird, also sozusagen der dreidimensionalen Periodenlänge des Kristalls. Analog zu oben gilt

auch hier die Periodizitätsbedingung Gl. (2.2), sodass sich die Fourierreihenentwicklung jeder

gitterperiodischen Funktion aus einer Überlagerung von ebenen Wellen zusammensetzt, deren

diskrete Wellenvektoren G⃗j =̂ G⃗hkl der Bedingung (2.5) bzw. (2.6) genügen. Fasst man alle

G⃗hkl als Ortsvektoren im reziproken Raum auf, also dem Vektorraum, der alle Wellenvektoren

enthält, ergibt sich wieder ein Bravais-Gitter, genannt reziprokes Gitter, das der Fourier-

Transformation des Kristallgitters im Realraum entspricht (siehe Beziehung von x⃗ und G⃗hkl

1Dieser Effekt ist formal identisch zu einem bekannten Befund aus dem Shannon-Nyquist-Abtasttheorem aus
der Nachrichtentechnik, nämlich dem Aliasing bei der Rekonstruktion von diskret abgetasteten Signalen [38,
39]. Die Netzebenen (Maxima) und ihre Lückenmitten (Minima) nehmen hier die Rolle der äquidistanten
Abtastung ein, welche die

”
Rekonstruktion“ der ebenen Wellen ermöglicht.
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2.1 Kristallgitter und reziproke Gitter

in Gl. (2.7)). Dabei kann aus den primitiven Gittervektoren a⃗1, a⃗2, a⃗3 mit der Bedingung

(2.6) ein Satz entsprechender Basisvektoren b⃗1, b⃗2, b⃗3 für den reziproken Raum passend zum

reziproken Gitter abgleitet werden, indem man folgende Konstruktion verwendet:

b⃗x =
2π

Vpz
(a⃗y × a⃗z) (2.9)

mit x, y, z ∈ {1,2,3}. Damit kann jeder reziproke Gittervektor durch die Linearkombination

G⃗hkl = hb⃗1 + kb⃗2 + lb⃗3 (2.10)

dargestellt werden, wobei h, k, l ∈ Z gilt und die h, k, l den Miller’schen Indizes entsprechen.

Sowohl das Konzept der Netzebenen als auch das reziproke Gitter beschreiben die entlang

der [hkl]-Richtung projizierte Periodizität des Kristalls. Allerdings ist die Beschreibung durch

das reziproke Gitter etwas allgemeiner, da hier die Bedingung wegfällt, dass die zu einer hkl-

Kombination gehörende Netzebene auch tatsächlich Basen (Atome) enthalten muss. Dieser

Umstand wird immer dann relevant, wenn
”
Netzebenen“ höherer Ordnung betrachtet werden,

deren Miller’schen Indizes einen gemeinsamen ganzzahligen Teiler besitzen. Ein Beispiel sind

die (400)-Ebenen, die in allen kubischen Gittern keine Atome mehr beinhalten, wohingegen

die (100)-Ebenen im Kristallgitter immer Basen (Atome) beinhalten. Trotzdem sind die zu

den (400)-Ebenen gehörenden reziproken Gitterpunkte
”
echt“ und von Bedeutung, da sie

z.B. zum Streubild des Kristalls beitragen.

Eine wichtige Konsequenz aus dem reziproken Gitter ist, dass jede Welle mit Wellenvektor

q⃗, die sich als periodische Störung des Kristalls oder einer damit verbundenen Größe (z.B.

Auslenkung von Atomen aus ihrer Ruhelage, Änderung der Ladungsdichte, etc.) manifestiert,

invariant gegenüber Verschiebungen im reziproken Raum um einen reziproken Gittervektor

ist. Es gilt also im Kristall für Wellenfunktionen g(q⃗) die Periodizitätsbedingung:

g(q⃗) = g(q⃗ + G⃗hkl). (2.11)

Darüber hinaus lassen sich alle Eigenschaften von Bravais-Gittern, die den Kristall im Orts-

raum beschreiben, ohne Einschränkung auf das reziproke Gitter übertragen. Das beinhal-

tet insbesondere die Möglichkeit der Konstruktion einer primitiven Gitterzelle analog zur

Wigner-Seitz-Zelle im Ortsraum, die im reziproken Raum 1. Brilloin-Zone genannt wird. Alle

Wellenvektoren außerhalb der Brilloin-Zone können durch einen äquivalenten Wellenvektor

innerhalb der Brilloin-Zone beschrieben werden, indem man eine Verschiebung um einen ge-

eigneten reziproken Gittervektor vornimmt.

Sowohl das Kristallgitter als auch das reziproke Gitter stellen vollständige, äquivalente Be-

schreibungen des Kristalls dar. Das wird bereits dadurch sichergestellt, dass eines der Gitter

jeweils aus dem anderen mittels Fourier-Transformation erzeugt werden kann und somit der

15



2 Theorie

Informationsgehalt beider Darstellungen identisch sein muss. Der Vorteil dieser zwei Sicht-

weisen auf den Kristall wird sich im Weiteren zwanglos ergeben, soll hier aber schon einmal

kurz motiviert werden. Das Kristallgitter ist intuitiv verständlich und liefert damit eine einfa-

chere Möglichkeit der räumlichen Orientierung im Kristall, was insbesondere nützlich bei der

Beschreibung der mechanischen Eigenschaften wird. Im Gegensatz dazu wird die Beschrei-

bung von Gitterschwingungen (Phononen), sowie die Beschreibung von Streuphänomenen im

reziproken Gitter dramatisch vereinfacht.

Im Folgenden werden nun die oben vorgestellten, allgemeinen Befunde zum Kristallgitter auf

den konkreten Fall des kubisch-flächenzentrierten Gitters (kfz, engl. face centered cubic - fcc)

mit einatomiger Basis übertragen, welches das Kristallgitter der in dieser Arbeit untersuchten

PdAu Legierung beschreibt.

2.1.2 Kubisch-flächenzentrierte Gitter

A1

A2

A3

a1

a2
a3

b1

b2b3

B1
B2

B3

a

Abbildung 2.2: (links) Darstellung des kubisch-flächenzentrierten Kristallgitters. (rechts)
Zugehöriges, kubisch-raumzentriertes reziprokes Gitter. Die eingezeichneten
Vektoren entsprechen der Notation im Text.

Das kubisch-flächenzentrierte Gitter, im Folgenden durch fcc abgekürzt, gehört zu den ku-

bischen Kristallsystemen, hat also an Würfelecken befindliche Atome, zu denen auf den

Würfelseiten zentrierte Atome hinzukommen. Die Zahl der Atome pro Einheitszelle ist damit

4, die Koordinationszahl ist 12. Orientiert man eine Orthonormalbasis entlang der Würfel-

kanten, erhält man für die Gittervektoren der kubischen Einheitszelle

A⃗1 = a

⎛
⎜
⎜
⎜
⎝

1

0

0

⎞
⎟
⎟
⎟
⎠

, A⃗2 = a

⎛
⎜
⎜
⎜
⎝

0

1

0

⎞
⎟
⎟
⎟
⎠

, A⃗3 = a

⎛
⎜
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎟
⎠

(2.12)
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2.1 Kristallgitter und reziproke Gitter

Tabelle 2.1: Ausgezeichnete und für diese Arbeit relevante Richtungen im fcc Kristall und
ihre Häufigkeiten.

Richtung ⟨uvw⟩ Richtungshäufigkeit
bzw. Ebene {hkl} bzw. Flächenhäufigkeit

111 8
100 6
110 12
311 24

mit der Gitterkonstante a.

Das fcc Gitter gehört zur Kristallklasse 4/m 3̄ 2/m und für die hier betrachtete einato-

mige Basis ist die Raumgruppe Fm3̄m mit Raumgruppennummer 225 [40]. Beide Anga-

ben kategorisieren die Symmetrieeigenschaften des Kristalls, wobei letztere die der Basis

mit berücksichtigt. Ohne an dieser Stelle genauer auf die Notation und Systematik einzu-

gehen sollen Symmetrieeigenschaften hier kurz anhand der Einheitszelle erläutert werden.

Der erste Teil 4/m beschreibt die vierzählige Symmetrie des Würfels bei Rotationen von 90○

um die Seitennormalen ⟨100⟩, die durch die Seitenmittenatome verlaufen. Zusätzlich dazu

existiert eine Spiegelsymmetrie an der zu den Würfelflächen parallelen Ebenen durch die

Würfelmitte. Der zweite Teil 3̄ steht für eine dreizählige Symmetrie bei Drehungen von 120○

um die Würfeldiagonalen ⟨111⟩, sowie für eine Punktspiegelung um die Würfelmitte. Der letz-

te Bestandteil, 2/m, beschreibt eine zweizählige Symmetrie gegenüber Drehungen von 180○

um die ⟨110⟩ Achsen durch die Kantenmitten, sowie gegenüber einer entsprechenden Spiege-

lung. Somit sind ⟨111⟩, ⟨110⟩ sowie ⟨100⟩ ausgezeichnete Richtungen mit den ausgeprägtesten

Symmetrieeigenschaften im fcc Kristall.

Durch die an die Gittersymmetrie angepasste Einheitszelle (bzw. Basisvektoren) ist die Iden-

tifikation äquivalenter Richtungen und Ebenen im kubischen Gitter besonders einfach und

systematisch durchführbar. Es handelt sich dabei lediglich um alle Permutationen u, v und

w (bzw. h, k, und l) inklusive Vertauschung des Vorzeichens. Die Anzahl von symmetrisch

äquivalenten Richtungen/Ebenen ist dabei abhängig von der jeweiligen uvw, bzw. hkl-Kombi-

nation. In Tabelle (2.1) sind diese für die in dieser Arbeit besonders relevanten Ebenenscharen

und Richtungen angegeben.
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A

B

C

Blickrichtung [111] Blickrichtung [110]

[112]

[111]

[112]

[110]

Abbildung 2.3: Illustration der Stapelfolge A, B, C entlang der ⟨111⟩-Richtungen im fcc Kris-
tall. Die Unterscheidbarkeit der einzelnen Ebenen, hier durch verschiedene
Symbole gekennzeichnet, ist in der Realität in ⟨111⟩-Richtung nicht möglich.
Die schwarzen Pfeile stellen die Verschiebungsvektoren aus Gl. (2.14a)ff dar.

Eine übliche Wahl der primitiven Gitterzelle mit entsprechenden Basisvektoren ist in Abb. 2.2

gezeigt. In der Basis der kubischen Einheitszelle sind die primitiven Gittervektoren

a⃗1 =
a

2

⎛
⎜
⎜
⎜
⎝

1
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0

⎞
⎟
⎟
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, a⃗2 =
a

2

⎛
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1

⎞
⎟
⎟
⎟
⎠

, a⃗3 =
a

2

⎛
⎜
⎜
⎜
⎝

1

0

1

⎞
⎟
⎟
⎟
⎠

. (2.13)

Damit ergibt sich für das Volumen der primitiven Gitterzelle Vpz = a
3/4, also wie erwartet

ein Viertel des Volumens der kubischen Einheitszelle. Die dichtest gepackten Ebenen sind die

{111}-Ebenen mit der Stapelfolge ...ABCABC... entlang der ⟨111⟩-Richtung, wobei benach-

barte Ebenen einen Abstand von d111 = a/
√

3 haben. Die Sequenz ABC beschreibt hier eine

Verschiebung von aufeinander folgenden {111}-Ebenen senkrecht zur Stapelrichtung [111]

um folgende Verschiebungsvektoren:

A→ B ∶
1

3

⎛
⎜
⎜
⎜
⎝

2

1

1

⎞
⎟
⎟
⎟
⎠

pr

=
1

6

⎛
⎜
⎜
⎜
⎝

1

1

2

⎞
⎟
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⎟
⎠

(2.14a)

B→ C ∶
1

3

⎛
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⎜
⎜
⎝
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1

⎞
⎟
⎟
⎟
⎠

pr

=
1

6

⎛
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(2.14b)

C→ A ∶
1

3
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⎝
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2
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⎟
⎟
⎠

pr
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(2.14c)
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2.1 Kristallgitter und reziproke Gitter

Der Index pr dient hier zur Verdeutlichung, dass die Vektoren in der primitiven Basis

(a⃗1, a⃗2, a⃗3) angegeben sind, ansonsten in der Standardbasis (A⃗1, A⃗2, A⃗3).

Aus den primitive Gittervektoren ergeben sich die primitiven Basisvektoren des reziproken

Gitters zu

b⃗1 = 2π
1

a

⎛
⎜
⎜
⎜
⎝

1

1

1̄

⎞
⎟
⎟
⎟
⎠

, b⃗2 = 2π
1

a

⎛
⎜
⎜
⎜
⎝

1̄

1

1

⎞
⎟
⎟
⎟
⎠

, b⃗3 = 2π
1

a

⎛
⎜
⎜
⎜
⎝

1

1̄

1

⎞
⎟
⎟
⎟
⎠

, (2.15)

welche ein kubisch raumzentriertes Gitter (krz, engl. body centered cubic - bcc) beschreiben.

Auch hier bietet sich die Wahl einer kubischen Einheitszelle mit passenden Basisvektoren

an, die die Symmetrieeigenschaften des bcc Gitters besser repräsentiert. Man erhält für die

Basisvektoren der bcc Einheitszelle

B⃗′
1 = 2π

2

a

⎛
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⎜
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0

⎞
⎟
⎟
⎟
⎠

, B⃗′
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. (2.16)

Das hierdurch erzeugte reziproke Gitter stellt die korrekte Beschreibung der Periodizität

des Kristalls gemäß obiger Kriterien dar, wobei dessen Gitterpunkte alle reziproken Gitter-

vektoren gemäß Bedingungen (2.5) bzw. (2.6) repräsentieren. Gleichzeitig verletzt es aber

Bedingung (2.10) insofern, dass die raumzentrierten reziproken Gitterpunkte an den Positio-

nen n ⋅ ⟨1/2 1/2 1/2⟩ mit ungeradzahligen n nicht ganzzahligen Koeffizienten hkl entsprechen.

Dieses Problem zeichnete sich bereits im Zusammenhang mit Gl. (2.3) ab. Die pragmatische

Lösung ist die Halbierung der Länge der Basisvektoren B⃗i um die reziproken Gitterpunkte

wieder in Einklang mit ganzzahligen Vorfaktoren hkl der Linearkombination in Gl. (2.10) zu

bringen, sodass ab jetzt gilt

B⃗1 =
2π

a

⎛
⎜
⎜
⎜
⎝
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0

0

⎞
⎟
⎟
⎟
⎠

, B⃗2 =
2π
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⎛
⎜
⎜
⎜
⎝
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1

0

⎞
⎟
⎟
⎟
⎠

, B⃗3 =
2π
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⎜
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⎝

0

0
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⎞
⎟
⎟
⎟
⎠

. (2.17)

Dieser Schritt dient ausschließlich dazu, der Konvention der Miller’schen Indizes zu folgen; al-

so um zu verhindern, dass der raumzentrierte Gitterpunkt, der den (111)-Ebenen entspricht,

die Koordinate [1
2

1
2

1
2]

2 anstatt [111] hat. Offensichtlich führt das zu einem Bruch der Sys-

tematik, der für allerlei Verwirrung sorgt und schlussendlich in uneleganten Konstruktionen

mündet, wie z.B. dem Strukturfaktor in der Röntgenstreuung3.

Immerhin bleibt durch diese Skalierung die Eigenschaft erhalten, dass keine unlogischen rezi-

proke Gitterpunkte auftreten, wie z.B. solche, die den {100}-Ebenen entsprächen. Die Indizie-

rung dieser Ebenenschar im fcc Gitter stellt, unter den bisherigen Gesichtspunkten, eigentlich

einen Fehler dar, der im Wellenbild (siehe Abb. (2.1) rechts unten) direkt ersichtlich ist. Die

2Eigentlich systematisch richtig.
3Mehr dazu im Kapitel zur Röntgenstreuung.
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mit {100} assoziierten, ebenen Wellen hätten an jeder zweiten {200}-Ebene, die tatsächlich

als physikalisches Objekt existieren und mit Atomen besetzt sind, eine Phasenverschiebung

von π. Für diese Ebenen würde also nicht die korrekte Periodizität beschrieben werden. Diese

Aussage ist jedoch nur unter der Voraussetzung korrekt, dass nur die Periodizität des ein-

dimensional entlang der ⟨hkl⟩-Richtungen projizierten Kristalls berücksichtigt wird. Es wird

also z.B. keine Unterscheidung von aufeinander folgenden {111}-Ebenen in Sinne der Sta-

pelfolge ...ABC... vorgenommen, was sich im Folgenden als durchaus praktisch herausstellen

wird.

B2

B3

B1

Γ

L

XWK

U

Punkt Koordinaten in Basis B

Γ (000)

X (1
200)

K (3
8

3
80)

L (1
4

1
4

1
4
)

W (1
4

1
20)

U (1
8

1
2

1
8
)

Abbildung 2.4: (links) Darstellung der 1. Brilloin-Zone (BZ) eines fcc Gitters. Die Basis des
reziproken bcc Gitters ist rot dargestellt mit Ursprung im Zentrum der 1. BZ.
Charakteristische Punkte auf dem Rand der 1. BZ sind gelb markiert, die
Verbindungslinien innerhalb der 1. BZ sind gepunktet eingezeichnet. (rechts)
Koordinaten der charakteristischen Punkte auf dem Rand der 1. BZ.

Für den Abstand von Netzebenen {hkl}, also der entsprechenden, eindimensionalen Peri-

odenlänge in [hkl]-Richtung, gilt im kubischen Gitter

dhkl =
2π

∣G⃗hkl∣
=

a
√

(h2 + k2 + l2)
. (2.18)

Abschließend soll hier noch die 1. Brilloin-Zone von PdAu eingeführt werden, die für die

Beschreibung des Phononenspektrums weiter unten von entscheidender Bedeutung sein wird,

da alle Wellenvektoren von Phononen auf die 1. Brilloin-Zone beschränkt sind (vgl. Wigner-

Seitz-Zelle im Ortsraum). Sie hat die Form eines Oktaederstumpfes mit Kantenlänge 1√
2

2π
a

und Volumen VBZ = 4 (2π
a
)

3
, wobei die abgeschnittenen Ecken des Oktaeders entlang der

⟨100⟩-Richtungen orientiert sind. Das Volumen VBZ entspricht gerade dem reziproken Volu-

men eines Atomes im Gitter Vat. = 1/VBZ. Die quadratischen Flächen haben einen Abstand

von 1
2

2π
a vom Mittelpunkt und die sechseckigen Flächen einen von

√
3

4
2π
a .
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2.2 Spannung, Dehnung und lineare Elastizität

Spannung

Die Ausführungen zur Tensorrechnung und Elastizität erfolgt in Anlehnung an [41, 42, 43]

und stellt hier nur ausgewählte Aspekte dar, die in dieser Arbeit zur Anwendung kommen.

Elastizität beschreibt eine vollständig reversible Verformung eines Körpers, hervorgerufen

durch Einwirkung einer (mechanischen) Spannung, die kleiner ist als die kritische Grenz-

spannung für Elastizität [42]. Oberhalb dieser Spannung werden plastische Verformungsme-

chansimen aktiv, welche eine permanente Verformung erzeugen.

σ11
σ12σ21

σ31

σ13

σ33

σ22

σ23
σ32

x1

x2

x3

x1

x2

x3

σ13

σ33

σ23

σ11
σ21

σ31σ22 σ32
σ12

n

σn

Abbildung 2.5: (links) Definition der Spannungskomponenten in Bezug auf die Oberflächen
eines Würfels. (rechts) Spannungskomponenten an einem Cauchy-Tetraeder
zur Bestimmung des Spannungsvektors σ⃗n in Bezug auf die Fläche mit Nor-
malenvektor n⃗.

Zunächst soll der Begriff Spannung im kontinuumsmechanischen Sinne geklärt werden. Span-

nung σ ist die Kraft F pro Einheitsfläche A, die auf die Oberfläche eines Volumenelements in

einem Körper wirkt. Eine homogene Spannung liegt dann vor, wenn die Kräfte auf ein Volu-

menelement mit konstanter Form und Orientierung unabhängig von der Position im Körper

sind. Zunächst soll dieser Fall für einen Körper im statischen Gleichgewicht betrachtet wer-

den, wobei die Bedingung für statisches Gleichgewicht durch den Ausdruck [42]

∫
∂V
F⃗dA = 0 (2.19)

gegeben ist (unter Vernachlässigung von Volumenkräften wie z.B. Gravitation). Hier ist ∂V

die Oberfläche, die das Volumenelement berandet, und über die die Kraft integriert wird. Im

Grunde handelt es sich hierbei um das dritte Newton’sche Axiom für einen ruhenden Körper.

In der Regel erfolgt die Beschreibung von dreidimensionalen Spannungen in einem kartesi-

schen Koordinatensystem mit den Achsen x1, x2 und x3, sodass die natürlichste Wahl für

das spannungsbeschreibende Volumenelement ein Würfel ist, dessen Oberflächennormalen

entlang der Koordinatenachsen nach außen orientiert sind (siehe Abb. 2.5). Die Kraft, die

auf die Oberflächen wirkt, ist aufgrund der Homogenität der Spannung überall betragsmäßig

21



2 Theorie

gleich, also insbesondere auch auf allen Würfeloberflächen, und kann in ihre drei Komponen-

ten entlang der Koordinatenachsen aufgeteilt werden. Damit ergibt sich für die Notation der

Spannungskomponenten folgende Konvention: σij ist die Kraftkomponente in xi-Richtung be-

zogen auf die Oberfläche mit Oberflächennormale in positive xj-Richtung. Um der Bedingung

für statisches Gleichgewicht zu genügen sind folglich die Richtungen der Spannungskompo-

nenten in Bezug auf die Oberfläche mit Oberflächennormale in negative xj-Richtung gerade

umgekehrt. Außerdem gilt, aufgrund der ebenfalls aus dem statischen Gleichgewicht resultie-

renden Drehmomentfreiheit, dass σij = σji gilt, sodass jeder Spannungszustand eine Zentral-

symmetrie aufweist (unabhängig von und zusätzlich zur Kristallsymmetrie). Der komplette

Spannungszustand kann als symmetrischer Tensor zweiter Stufe ¯̄σ mit den Einträgen

¯̄σ =

⎛
⎜
⎜
⎜
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎟
⎟
⎟
⎠

(2.20)

dargestellt werden. Bei den σij mit i ≠ j handelt es sich um die Scherkomponenten und bei

den σii um die Normalkomponenten der Spannung. Weiterhin wird hier die verbreitete Vor-

zeichenkonvention verwendet, dass Zugspannungen, bei denen die Kraftkomponenten entlang

der Flächennormalen wirken, positiv gezählt werden und Kompressionsspannungen entspre-

chend negativ. Die Spannung σ⃗n, die auf eine beliebig orientierte Oberfläche mit normiertem

Normalenvektor n⃗ wirkt, lässt sich dann mit

σ⃗n = ¯̄σ ⋅ n⃗ =

⎛
⎜
⎜
⎜
⎝

σ11n1 + σ12n2 + σ13n3

σ12n1 + σ22n2 + σ23n3

σ13n1 + σ23n2 + σ33n3

⎞
⎟
⎟
⎟
⎠

(2.21)

berechnen, was außerdem graphisch durch das Cauchy-Tetraeder in Abb. 2.5 dargestellt wer-

den kann.

Dehnung

Im nächsten Schritt werden nun Verformungen eines Körpers mithilfe von Dehnungen be-

schrieben. Grundsätzlich bedingt jede Verformung eine Verschiebung von Material, die durch

ein Verschiebungsfeld u⃗(r⃗) = r⃗′ − r⃗ beschrieben wird. Hier beschreibt r⃗ die Position eines infi-

nitesimalen Materialvolumens oder eines Atoms im unverformten Ausgangszustand und r⃗′ ist

die entsprechende Position im verformten Zustand. Mit dieser Definition wird der unverformte

Zustand als Referenz festgelegt. Eine umgekehrte Wahl ist prinzipiell möglich und gleichwer-

tig [42], wird hier aber nicht weiter betrachtet. Ist u⃗(r⃗) homogen, also ortsunabhängig, wird
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eine Translation des Körpers beschrieben. Verformungen resultieren also nur aus dem inho-

mogenen Anteil der Verschiebung in den neuen Zustand r⃗′ = r⃗ + u⃗(r⃗), welcher durch ¯̄F , den

(Deformations-)Gradienten4 von r⃗′, charakterisiert ist. Für ¯̄F gilt:

¯̄F = grad(r⃗′) = 1 +

⎛
⎜
⎜
⎜
⎝

∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

⎞
⎟
⎟
⎟
⎠

. (2.22)

Eine (kurze) Strecke dX⃗ im unverformten Material wird durch die Verformung/Dehnung zu

dX⃗ ′ = ¯̄F dX⃗. Der Deformationsgradient ¯̄F liefert also eine Abbildung von Streckenlängen

und Orientierung vom unverformten in den verformten Zustand. Da ¯̄F invertierbar und qua-

dratisch ist, existiert eine eindeutige Polarzerlegung der Form

¯̄F = ¯̄R ¯̄U. (2.23)

Der Tensor ¯̄U wird rechter Strecktensor genannt und enthält die gesamte Dehnungsinfor-

mation. Der Tensor ¯̄R ist der Rotationstensor und beschreibt die Starrkörperdrehung. Seine

Einträge haben die gleiche Bedeutung wie die in den üblichen Drehmatrizen. Der quadratische

rechte Strecktensor kann aus ¯̄F mit
¯̄U2

= ¯̄F T ¯̄F (2.24)

bestimmt werden. Hier ist ¯̄F T der transponierte Deformationsgradient. Damit lässt sich ¯̄U

über eine Eigenwert-Eigenvektor Zerlegung von ¯̄U2 berechnen, also

¯̄U = (e⃗1 e⃗2 e⃗2)

⎛
⎜
⎜
⎜
⎝

√
λ1 0 0

0
√
λ2 0

0 0
√
λ3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

e⃗1
T

e⃗2
T

e⃗2
T

⎞
⎟
⎟
⎟
⎠

. (2.25)

Hier sind λi und e⃗i die Eigenwerte bzw. die rechten Eigenvektoren von ¯̄U2. Den Rotations-

tensor erhält man dann durch Invertieren von ¯̄U mit

¯̄R = ¯̄F ¯̄U−1. (2.26)

Ein Maß für die Dehnung erhält man mit dem Green-Lagrange-Dehnungstensor, der über

¯̄E =
1

2
( ¯̄F T ¯̄F − 1) (2.27)

4Der Gradient eines Vektorfeldes grad u⃗ = (∇⊗ u⃗) = Ju⃗ entspricht außerdem gerade der Jacobi-Matrix Ju⃗.
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definiert ist. Die Einträge von ¯̄E hängen naheliegenderweise nur von dem Verschiebungsfeld

u⃗ ab und können Komponentenweise in der Form

Eij =
1

2
(
∂ui
∂xj

+
∂uj

∂xi
+∑

s

[
∂us
∂xi

⋅
∂us
∂xj

]) (2.28)

geschrieben werden.

Des Weiteren sei hier erwähnt, dass die Volumendehnung bei großen Dehnungen direkt aus

der Determinante von ¯̄F mit
∆V

V
= det ¯̄F − 1 (2.29)

bestimmt werden muss. Die oft genutzte Näherung über die Spur des Dehnungstensors kann,

je nach Dehnungszustand, deutlich abweichende Ergebnisse liefern.

Für kleine Verschiebungen, und damit kleine Dehnungen, ist der Summenterm in Gl. (2.28)

vernachlässigbar und der Dehnungstensor vereinfacht sich entsprechend. Alternativ kann man

den Dehnungstensor für kleine Dehnungen auch direkt aus dem transponierten Gradienten

des Verschiebungsfeldes ¯̄e ableiten:

¯̄e = (∇⊗ u⃗)T =

⎛
⎜
⎜
⎜
⎝

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1
∂u1

∂x2

∂u2

∂x2

∂u3

∂x2
∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

⎞
⎟
⎟
⎟
⎠

. (2.30)

Der Gradient ¯̄e selbst enthält im allgemeinen Fall neben Dehnungen noch Starrkörperrotatio-

nen, wobei der Dehnungsanteil einem symmetrischen Tensor ¯̄ε und der Rotationsanteil einem

antisymmetrischen Tensor ¯̄w entspricht, was zu folgender Aufteilung von ¯̄e führt:

¯̄e = ¯̄ε + ¯̄w =
1

2
(¯̄e + ¯̄eT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
symmetrisch

+
1

2
(¯̄e − ¯̄eT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
antisymmetrisch

. (2.31)

Der Dehnungstensors ist damit der symmetrische Anteil von ¯̄e und ist definiert als

¯̄ε =
1

2
(¯̄e + ¯̄eT ) . (2.32)

Für kleine Dehnungen gilt ¯̄E = ¯̄ε, für große Dehnungen wird in ¯̄ε aber der Summenterm aus

Gl. (2.28) unzulässig vernachlässigt.

Analog zum Spannungstensor, handelt es sich bei den Diagonalenelementen um die Normal-

dehnungen und bei den Nebendiagonalenelementen um die Scherdehnungen.

Darüber hinaus ergibt sich die Bedeutung der Vorzeichen von Normaldehnungen passend zur

Konvention bei den Spannungen; Zugdehnungen, die Abstände im Material vergrößern, sind

positiv und Kompressionsdehnungen entsprechend negativ.

Eigentlich ist das Thema Dehnung damit in dem Umfang behandelt, der für diese Arbeit

notwendig ist. Allerdings haben die zwei vermutlich gebräuchlichsten Dehnungsmaße noch
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2.2 Spannung, Dehnung und lineare Elastizität

keine Erwähnung gefunden, nämlich die technische Dehnung (engl. engineering strain) εe

und die wahre Dehnung (engl. true strain) εt. Diese zwei unterschiedlichen, eindimensionalen

Dehnungsmaße unterscheiden sich darin, relativ zu welcher Referenz das Verschiebungsfeld

u⃗(r⃗) gemessen wird. Bezieht man es immer auf den Anfangszustand zum Zeitpunkt t = 0

erhält man die technische Dehnung εe mit der verbreiteten, eindimensionalen Definition

εe =
∆L

L0
, (2.33)

bei der L0 die Anfangslänge des Körpers ist und ∆L die Änderung derselben entlang der

Messrichtung. Hierbei wird eine homogene Dehnung des Körpers vorausgesetzt. Die wahre

Dehnung5 wählt für jeden Zeitpunkt der Dehnung den aktuellen Zustand als Referenz für

u⃗(r⃗), sodass man εt als Summe über alle infinitesimalen Teildehnungen erhält:

εt = ∫ dε = ∫
1

L
dL = ∫

1

L

∂L

∂t
dt = log (1 + εe) . (2.34)

Für kleine Dehnungen, was im Normalfall alle elastischen Dehnungen einschließt, sind diese

beide Dehnungsmaße praktisch identisch. Bei großen Dehnungen, wie sie bei plastischen Ver-

formungen vorkommen6, können die Unterschiede jedoch bedeutender sein. Der Grund dafür

ist, dass bei der technischen Dehnung der Unterschied zwischen ¯̄E und ¯̄ε bei großen Deh-

nungswerten voll zum Tragen kommt, während die wahre Dehnung in jedem infinitesimalen

Inkrement den Umstand ¯̄E = ¯̄ε ausnutzt und so diesen Fehler vermeidet. Bei großen Dehnungs-

werten stellt die technische Dehnung damit eine implizite Linearisierung dar. In den folgen-

den Beschreibungen werden nur kleine Dehnungen betrachtet und daher, aus Gründen der

Übersichtlichkeit und Gewohnheit, Dehnungen mit ε gekennzeichnet. Wenn später größere,

plastische Dehnungen behandelt werden, wird an passender Stelle wieder ¯̄E benutzt.

Eigenschaften von Spannungs- und Dehnungstensor

Sowohl der Spannungstensor ¯̄σ als auch der Dehnungstensor ¯̄ε ( ¯̄E) sind symmetrische Ten-

soren zweiter Stufe, was zwei relevante Konsequenzen nach sich zieht.

Zum einen können ¯̄σ und ¯̄ε immer in ihren Hauptspannungs- bzw. Hauptdehnungsraum

transformiert werden, sodass alle Nebendiagonalenelemente zu null werden. Die Diagona-

lenelemente in diesem Fall σI , σII , σIII bzw. εI , εII , εIII werden von den Eigenwerten des

Tensors gebildet und die zugehörigen normierten Eigenvektoren bilden die Basisvektoren des

Hauptspannungs- bzw. Hauptdehnungsraumes. Diese Transformation entspricht einer dreidi-

mensionalen Drehung des Bezugssystems, in welchem die Tensoren definiert sind7. Damit ist

direkt klar, dass reine Scherspannungen oder Scherdehnungen in der Tensordarstellung nicht

ausschließlich über Nebendiagonalenelemente dargestellt werden, auch wenn ihre Benennung

5Die wahre Dehnung ist auch als logarithmische Dehnung bekannt.
6Insbesondere bei negativen Dehnungen.
7Die Realisierung dieser Drehungen wird später im Zusammenhang mit Gl. (2.57) behandelt.
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diesen Zusammenhang suggeriert, denn eine einfache Drehung des Bezugssystems kann diese

Einträge verschwinden lassen.

Im Gegensatz dazu ist die Spur der Tensoren eine Erhaltungsgröße gegenüber Transforma-

tionen, bei denen die Bezugssysteme rotiert werden. Es gilt also

Sp (¯̄ε) = ε11 + ε22 + ε33 = εI + εII + εIII (2.35)

und für Spannungen analog. Das erlaubt die Bestimmung einer orientierungsunabhängigen,

hydrostatischen Spannung σiso bzw. Dehnung εiso, die als mittleres Diagonalenelement der

entsprechenden Tensoren definiert ist, also

σiso =
1

3
Sp (¯̄σ) und εiso =

1

3
Sp (¯̄ε) . (2.36)

Die isotrope Spannung σiso wird oft auch hydrostatischer Druck oder einfach Druck p ge-

nannt. Die isotrope Dehnung εiso beschreibt die Volumendehnung des Materials, die durch

den isotropen Dehnungstensor ¯̄εvol dreidimensional ausgedrückt werden kann, für den gilt

¯̄εiso = εiso ⋅ 1 =

⎛
⎜
⎜
⎜
⎝

εiso 0 0

0 εiso 0

0 0 εiso

⎞
⎟
⎟
⎟
⎠

. (2.37)

Subtrahiert man vom Dehnungstensor ¯̄ε nun ¯̄εiso, bleiben die volumenerhaltenden, reinen

Scherdehnungen im sogenannten Dehnungsdeviator ¯̄εdev übrig und es gilt

¯̄εdev = ¯̄ε − ¯̄εiso. (2.38)

Das gilt analog für Spannungen, also ¯̄σdev = ¯̄σ − ¯̄σiso.

Elastizität

Die Elastizität ist durch die Beziehung von Spannung und Dehnung zueinander charakte-

risiert, die durch die Änderung der inneren Energie bzw. der freien Energie des Materials

als Reaktion auf Dehnungen bestimmt wird. Daher wird im Folgenden kurz der Zusammen-

hang von Energie mit elastischen Spannungen und Dehnungen skizziert, um schließlich die

elastischen Konstanten abzuleiten.

Wird ein Volumenelement V bei einer Spannung ¯̄σ ≠ 0 um ein infinitesimales Dehnungs-

inkrement d¯̄ε gedehnt, wird an diesem Volumen eine mechanische Arbeit dW verrichtet.

Die Änderung der Arbeitsdichte dW /V ergibt sich mit dem Frobenius-Skalarprodukt (:) aus

Spannung und Dehnungsänderung [41, 42, 43], sodass gilt

dW

V
= ¯̄σ ∶ d¯̄ε = ∑

i
∑
j

σijdεij . (2.39)

26
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Im adiabatischen Fall (dS = dQ = 0) entspricht dW dann gerade der Änderung der inneren

Energie dU = dW ∣S=const und im isothermen Fall gilt entsprechend für die Änderung der freien

Energie dF = dW ∣T=const.

Auf mikroskopischer Ebene wird eine elastische Verformung eines Kristalls durch die kollek-

tive Auslenkung der Atome im Kristall aus ihren Gleichgewichtslagen erzeugt. Diese Gleich-

gewichtslagen werden durch das Minimum der potentiellen Energie des Kristalls Φ(r⃗ij) be-

stimmt, welche durch die Summe der Energieterme aller interatomaren Paarwechselwirkungen

gebildet wird und von der räumlichen Verteilung der Atome relativ zueinander r⃗ij , sowie von

der von außen angelegten Spannung abhängt [41, 43]. Die Indizes ij beziehen sich auf ei-

ne Nummerierung der Atome i und j, sodass r⃗ij die Verbindungsvektoren zwischen diesen

Atomen bezeichnet. Die potentielle Energie des Kristalls stellt im unbelasteten Gleichge-

wichtszustand eine Näherung der inneren Energie Φ ≈ U(S,V (r⃗ij)) oder der Helmholtz freien

Energie Φ ≈ F (T,V (r⃗ij)) des Kristalls dar [41, 43].

Zunächst wird die thermische Vibration der Atome im Kristall vernachlässigt, welche bei

Raumtemperatur nur einen relativ kleinen Energiebeitrag zur Gesamtenergie liefert [43]; die

Atome im Kristallgitter werden also vorläufig statisch behandelt. Da PdAu ein zentrosym-

metrisches Gitter besitzt, treten außerdem keine piezoelektrischen Effekte auf [41].

Dehnt man den Kristall im Gleichgewichtszustand nun um d¯̄ε, so ändert sich zwangsweise r⃗ij

und erzeugt damit eine Anhebung von Φ bzw. U oder F . Die Zunahme der inneren Energie

dU entspricht bei adiabatischen Prozessen gerade der geleisteten mechanischen Arbeit dW ,

sodass

du =
dU

V
= ∑

i
∑
j

σijdεij ∣
S=const

(2.40)

gilt. Gleiches gilt für die Änderung der freie Energie bei isothermen Prozessen, nämlich

df =
dF

V
= ∑

i
∑
j

σijdεij ∣
T=const

. (2.41)

In diesen Fällen werden die Spannungskomponenten σij abhängig von der inneren/freien

Energie und der assoziierten Dehnungskomponente und aus (2.40) bzw. (2.41) folgt

σij =
∂u

∂εij
∣
S=const

σij =
∂f

∂εij
∣
T=const

. (2.42)

Mithilfe des totalen Differentials von σij kann schließlich die Beziehung zwischen Spannung

und Dehnung abgeleitet werden und es ergibt sich

dσij = ∑
k

∑
l

∂2u

∂εij∂εkl
dεkl ∣

S=const
dσij = ∑

k

∑
l

∂2f

∂εij∂εkl
dεkl ∣

T=const
. (2.43)

Jeder einzelne Eintrag des Spannungstensors hängt also von jedem Eintrag des Dehnungs-

tensors ab; umgekehrt gilt das Gleiche.
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Für kleine Dehnungen relativ zum Gleichgewichtszustand, ohne äußere angelegte Spannung,

sind die Vorfaktoren in (2.43) gerade die adiabatischen elastischen Konstanten cSijkl bzw. die

isothermen elastischen Konstanten cTijkl, also

cSijkl =
∂2u

∂εij∂εkl
cTijkl =

∂2f

∂εij∂εkl
. (2.44)

Elastische Prozesse, die in dieser Arbeit betrachtet werden, laufen in der Regel nicht adiaba-

tisch, aber bei konstanter Temperatur ab, sodass im weiteren Verlauf nur noch die isother-

men elastischen Konstanten betrachten werden. In Zuge dessen fällt die Kennzeichnung T

aus Gl. (2.44) ab jetzt weg.

Wie die Bezeichnung Konstanten bereits andeutet, sind im Fall des Gleichgewichts ohne

äußere angelegte Spannung sowohl u als auch f in guter Näherung parabolisch in der Nähe

ihres Minimums für kleine Dehnungen. Dann sind Spannung und Dehnung linear korreliert

und die elastischen Konstanten in der Tat konstant. Dieser Fall für hinreichend kleine Span-

nungen wird durch das Hook’sche Gesetz beschrieben, [44, 41] und als Hook’sch oder linear

elastisch bezeichnet.

Die Gesamtheit der cijkl bilden einen Tensor 4. Stufe, den Elastizitätstensor oder Steifigkeits-

tensor
¯̄̄̄
C, der 81 Einträgen umfasst. Die Symmetrie von ¯̄ε und ¯̄σ erzwingt jedoch, dass

cijkl = cijlk und cijkl = cjilk, (2.45)

wodurch die maximale Anzahl von unabhängigen Einträgen im Elastizitätstensor auf nur 36

beschränkt wird. Darüber hinaus wurde oben bereits gezeigt, dass sowohl Spannungen als

auch Dehnungen prinzipiell Zentralsymmetrie besitzen, womit diese Eigenschaft auch von
¯̄̄̄
C

erfüllt werden muss. Für
¯̄̄̄
C gilt also zusätzlich

cijkl = δimδjnδkoδlp cmnop, (2.46)

wobei hier δim (mit allen Indizes) das Kronecker Delta bezeichnet. In der Tensordarstellung

vereinfacht sich die Beziehung von Spannung und Dehnung damit zum Hook’schen Gesetz:

¯̄σ =
¯̄̄̄
C ¯̄ε (2.47)

oder komponentenweise

σij = ∑
k

∑
l

cijklεkl. (2.48)
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Die Symmetrie von
¯̄̄̄
C bezüglich der ersten beiden und letzten beiden Indizes erlaubt es immer,

den Elastizitätstensor vergleichsweise kompakt als symmetrische 6x6 Matrix darzustellen, also

¯̄̄̄
C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

c55 c56

c66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.49)

Damit kann Gleichung (2.47) in die Matrixschreibweise

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

c55 c56

c66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.50)

überführt werden, die auch als (Kelvin-)Voigt-Notation bekannt ist. Der Zusammenhang zwi-

schen den einfachen und doppelten Indizes von Spannungs- und Dehnungstensor ist

⎛
⎜
⎜
⎜
⎝

σ11 σ12 σ13

σ22 σ23

σ33

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

σ1 σ6 σ5

σ2 σ4

σ3

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

ε11 ε12 ε13

ε22 ε23

ε33

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

ε1 0.5 ε6 0.5 ε5

ε2 0.5 ε4

ε3

⎞
⎟
⎟
⎟
⎠

. (2.51)

Der Faktor 0.5 der Nebendiagonalenelemente im Dehnungstensor ist Konvention der Voigt-

Notation. Für den Zusammenhang der doppelten und vierfachen Indizierung des Elasti-

zitätstensors gilt:

• cii = ciiii, für i ∈ {1,2,3}

• cij = ciijj , für i,j ∈ {1,2,3}

• cim = ciijl, für i,j,l ∈ {1,2,3} und m ∈ {4,5,6} und m entspricht der Zuordnung zu jl

gerade wie im Fall des Spannungstensors.

• cmm = cijij , für i,j ∈ {1,2,3} und m ∈ {4,5,6} und m entspricht der Zuordnung zu ij

gerade wie im Fall des Spannungstensors.

• cim = ciijl, für i,j,l ∈ {1,2,3} und m ∈ {4,5,6} und m entspricht der Zuordnung zu jl

gerade wie im Fall des Spannungstensors.

• cmn = cijlj , für i,j,l ∈ {1,2,3} und m,n ∈ {4,5,6} und m,n entspricht der Zuordnung zu

ij bzw. lj gerade wie im Fall des Spannungstensors.
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Die Matrixdarstellung in (2.49) und (2.50) ist in vielen Fällen nützlich und übersichtlicher als

die vierfach indizierte Variante des Elastizitätstensors und stellt somit eine Vereinfachung der

Interpretation von
¯̄̄̄
C und den Rechnungen dar. Sie bedeutet aber nicht, dass die Komponen-

ten von
¯̄̄̄
C sich wie Komponenten eines Tensors zweiter Stufe verhalten, was insbesondere bei

Transformationen im Zuge von Drehungen des Bezugssystems (Basisvektoren) zu beachten

ist. In diesem Fall muss immer mit den vierfach indizierten Komponenten gerechnet werden;

dazu mehr weiter unten. Trotzdem ergibt sich aus der Matrixdarstellung (2.49) die Konse-

quenz, dass zu
¯̄̄̄
C eine inverse 6x6 Matrix

¯̄̄̄
C−1 =

¯̄̄̄
S, genannt Nachgiebigkeitstensor, existiert,

sodass
¯̄̄̄
C

¯̄̄̄
S = 1, (2.52)

womit analog zu Gl. (2.50) der Zusammenhang

¯̄ε =
¯̄̄̄
S ¯̄σ (2.53)

gilt. Dabei sind speziell für
¯̄̄̄
S folgende Bedingungen zu berücksichtigen:

• smn = sijkl, für m,n ∈ {1,2,3}

• smn = 2 sijkl, für m ∈ {1,2,3} ∧ n ∈ {4,5,6} oder m ∈ {4,5,6} ∧ n ∈ {1,2,3}

• smn = 4 sijkl, für m,n ∈ {4,5,6}

Sowohl
¯̄̄̄
S als auch

¯̄̄̄
C stellen gleichwertige Beschreibungen der elastischen Eigenschaften ei-

nes Kristalls dar. Dabei müssen die Symmetrieeigenschaften des Kristallgitters auch auf die

physikalischen und damit auch elastischen Eigenschaften übergehen8; ein Befund, der als

Neumannsches Prinzip [2] bekannt ist. Dadurch wird die Anzahl der unabhängigen Kom-

ponenten von
¯̄̄̄
S und

¯̄̄̄
C abhängig von der Symmetrie des Kristallgitters und dadurch weiter

reduziert. Im hier relevanten Fall eines kubisch-flächenzentrierten (bzw. allgemein kubischen)

Gitters reduziert sich die Anzahl unabhängiger Komponenten auf lediglich drei. Wählt man

zur Beschreibung die Basis aus Gl. (2.12) mit Basisvektoren entlang den ⟨100⟩-Richtungen,

so ergibt sich in der Matrixdarstellung für
¯̄̄̄
C und

¯̄̄̄
S

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c12 0 0 0

c11 c12 0 0 0

c11 0 0 0

c44 0 0

c44 0

c44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s11 s12 s12 0 0 0

s11 s12 0 0 0

s11 0 0 0

s44 0 0

s44 0

s44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.54)

8Die Umkehrung dieser Aussage ist im Allgemeinen nicht wahr. Tatsächlich besitzen physikalische Eigen-
schaften oft mehr Symmetrieelemente als die Kristallgitter.
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Hier manifestiert sich wieder einmal die Tatsache, dass die kubischen Gitter die höchste

Symmetrie aller Bravais Gitter besitzen [35, 41], und lediglich durch ein komplett isotropes

Material übertroffen werden. Die Umrechnung von s-Komponenten zu c-Komponenten, und

umgekehrt, vereinfacht sich damit zu

c11 =
s11 + s12

(s11 − s12) (s11 + 2s12)
(2.55a)

c12 =
−s12

(s11 − s12) (s11 + 2s12)
(2.55b)

c44 =
1

s44
(2.55c)

s11 =
c11 + c12

(c11 − c12) (c11 + 2c12)
(2.55d)

s12 =
−c12

(c11 − c12) (c11 + 2c12)
(2.55e)

s44 =
1

c44
(2.55f)

Im isotropen Fall reduziert sich die Anzahl unabhängiger Komponenten weiter auf zwei, indem

c44 =
1
2 (c11 − c12) und s44 = 2 (s11 − s12) gilt. Im Unterschied zum kubischen Kristall, sind die

elastischen Konstanten im isotropen Fall unabhängig von der Wahl der Basis, wohingegen

die einfache Darstellung für kubische Kristalle in Gl. (2.54) nur in der Standardbasis mit

Basisvektoren entlang der Würfelkanten der Einheitszelle gültig ist.

x1

x2

x3x3

x2

x1 cos(a  )21
-1

cos(a  )22
-1

cos(a  )23
-1

(a)

x1

x2

x3

α

β
ɣ

,α

,αβ

1. Drehung

2. Drehung

3. Drehung

(b)

Abbildung 2.6: a) Skizze zur Lage der Richtungskosinus anhand des Beispiels der a1i Kompo-
nenten mit i ∈ {1,2,3}. Das gedrehte Koordinatensystem mit den gestrichenen
Basisvektoren ist rot dargestellt. b) Darstellung der Reihenfolge der Drehun-
gen um die Winkel α, β und γ. Die zweite und dritte Drehung (β bzw. γ)
erfolgt jeweils um die Achsen des zuvor gedrehten Koordinatensystems.

Im weiteren Verlauf wird es sich jedoch als nützlich erweisen, die Orientierung der Basis des

Koordinatensystems durch Drehungen an die jeweilige Situation anzupassen; meistens, um

das Koordinatensystem entlang relevanter [hkl]-Richtungen im Kristallgitter auszurichten.

Die dadurch bedingte Transformation der Tensoren erfolgt über die Richtungskosinus aij der
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neuen (gedrehten) Basisvektoren x⃗′1, x⃗
′
2, x⃗

′
3 mit den ursprünglichen Basisvektoren x⃗1, x⃗2, x⃗3,

die definiert sind als

aij =
x⃗′i ⋅ x⃗j

∣x⃗′i∣ ∣x⃗j ∣
= cosαij , (2.56)

wobei aij der von x⃗′i und x⃗j eingeschlossene Winkel ist (vgl. Gl. 2.56). Die 9 möglichen

aij werden in einer im Allgemeinen unsymmetrischen 3x3 Matrix a zusammengefasst, deren

Einträge über drei Eulerwinkel α,β, γ gemäß folgender Regeln bestimmt sind [45]:

A = cosβ cosα D = sinβ cosα G = cosα

B = cosβ sinα E = − sinα H = cosβ

C = sinβ F = − sinβ sinα

a =

⎛
⎜
⎜
⎜
⎝

A B C

(D sinγ +E cosγ) (F sinγ +G cosγ) H sinγ

(D cosγ −E sinγ) (F cosγ −G sinγ) H cosγ

⎞
⎟
⎟
⎟
⎠

. (2.57)

Die Drehungen der Basis um die Eulerwinkel erfolgen zuerst um α um die ursprüngliche x3

Achse, dann um β um die gedrehte x2 Achse (x2,α) und schließlich um γ um die zweifach

gedrehte x1 Achse (x1,αβ) (vgl. Abb. 2.6b).

Die Transformation der Komponenten eines Vektors p⃗, eines Tensors zweiter Stufe ¯̄t und eines

Tensors vierter Stufe
¯̄̄̄
T erfolgt dann durch

p′i = aijpj (2.58a)

t′ij = aik ajl tkl (2.58b)

T ′ijkl = aim ajn ako alp Tmnop (2.58c)

Hier gilt die Einstein’sche Summationskonvention, d.h. über doppelte Indizes wird summiert.

Für jeden Eintrag eines transformierten Tensors vierter Stufe ist damit jeweils eine Summa-

tion über 81 Einträge notwendig.

Die Rückrichtung von der gestrichenen Basis zur ungestrichenen wird durch die Komponenten

der transponierten Matrix der Richtungskosinus aT beschrieben und erfolgt im Sinne von

Abb. 2.6b in umgekehrter Richtung und Reihenfolge.

Um den Nutzen dieser Transformationen zu demonstrieren sollen nun zwei einfache Beispiele

betrachtet werden. Zunächst betrachte man eine uniaxiale Spannung σ in x1 bzw. [100]-

Richtung. Der Spannungstensor kann direkt hingeschrieben werden und lautet

¯̄σ[100] =

⎛
⎜
⎜
⎜
⎝

σ 0 0

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎠

. (2.59)
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2.2 Spannung, Dehnung und lineare Elastizität

Legt man jedoch dieselbe Spannung an den Kristall in [111]-Richtung an, ist die Darstellung

im Standardkoordinatensystem nicht mehr offensichtlich. Orientiert man die x′1-Richtung

jedoch entlang der [111]-Richtung, ist der Fall gerade genauso trivial wie der erste und man

erhält nach Transformation mit den Richtungskosinus (Rückrichtung, also mit aT )

¯̄σ[111] =

⎛
⎜
⎜
⎜
⎝

σ 0 0

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎠

, x′1 ∥ [111] , x′2 ∥ [1̄10] , x′3 ∥ [1̄1̄2] (2.60a)

=
σ

3

⎛
⎜
⎜
⎜
⎝

1 1 1

1 1 1

1 1 1

⎞
⎟
⎟
⎟
⎠

, x1 ∥ [100] , Standardbasis (2.60b)

Der entscheidende Vorteil der Darstellung in der Standardbasis (2.60b) ist, dass damit die

elastischen Dehnungen mit dem üblichen Nachgiebigkeitstensor
¯̄̄̄
S berechnet werden können,

was mit der Darstellung (2.60a) aufgrund der unterschiedlichen Basen unmöglich ist. Alter-

nativ kann man mit dem analogen Vorgehen die (vierfach indizierten) elastischen Konstanten

transformieren (diesmal vorwärts, also mit a) und die Darstellung (2.60a) beibehalten. Man

erhält dann natürlich auch die Dehnungen in Bezug auf die Basis in (2.60a). Beide Heran-

gehensweisen haben situationsspezifische Vorteile und werden im Weiteren zur Anwendung

kommen.

Die Transformation von Tensoren mittels Richtungskosinus hat aber noch einen anschaulichen

Nutzen, der bisher nur implizit benutzt wurde und nun ausgeführt wird. Es ist oft intuitiv, die

Stärke oder Größe einer physikalischen Eigenschaft, die durch symmetrische Tensoren zweiter

Stufe beschrieben werden, entlang einer bestimmten Richtung oder Orientierung Ω (z.B. die

Spannung oder Dehnung in [110]-Richtung) zu diskutieren. Um diese eindimensionale Größe

aus den Tensoren zu extrahieren, ist eine zweifache Projektion entlang eines Einheitsvektors

n⃗Ω notwendig. Das soll nun am Beispiel der Spannung demonstriert werden, für Dehnungen

ist das Vorgehen analog. Die erste Projektion ist bereits in Gl. 2.21 gezeigt und erfolgt über

σ⃗ = ¯̄σ n⃗Ω (2.61)

σi = ∑
j

σijnj

Daraus resultiert der Vektor σ⃗, der die Spannungskomponenten in alle drei Raumrichtungen

bezogen auf eine Fläche mit Flächennormale n⃗Ω beinhaltet. Die Vektoren σ⃗ und n⃗Ω sind

dabei im Allgemeinen nicht kollinear. Die Größe der Spannung σΩ in Richtung n⃗Ω ist dann

die Projektion von σ⃗ entlang n⃗Ω, sodass man in Matrixschreibweise

σΩ = n⃗Ωσ⃗ = n⃗Ω ¯̄σ n⃗Ω (2.62)

σΩ = ∑
i
∑
j

σij ni nj
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erhält. Genau das Gleiche kann erreicht werden, indem man in der Basis eine Bezugsachse

wählt, in diesem Fall x1, und diese durch Transformation mittels Richtungskosinus in die

Richtung Ω orientiert. In diesem gedrehten Koordinatensystem ist der Vektor n⃗Ω = (100),

sodass σΩ = σ′11 ist. Mit den Richtungskosinus ergibt sich dann

σΩ = ∑
i
∑
j

σij a1i a1j . (2.63)

Damit steht eine einfache Beschreibung der richtungsabhängigen Stärke einer physikalischen

Eigenschaft über die Winkel α und β zur Verfügung. Sowohl Gl. (2.62) als auch Gl. (2.63)

können nun zur graphischen Darstellung einer tensoriellen Größe genutzt werden, indem ihre

Projektion in alle Richtungen als Skalierung des Radius einer Einheitskugel aufgefasst wird.

Für den Radius der (ehemaligen) Kugel in Richtung Ω gilt dann RΩ = σΩ (für Dehnun-

gen analog). In Abb. 2.7 ist diese Visualisierung beispielhaft für die beiden dimensionslosen

Beispieltensoren

¯̄a) =

⎛
⎜
⎜
⎜
⎝

0.4 0 0

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎠

, ¯̄b) =

⎛
⎜
⎜
⎜
⎝

0.25 0.25 0

0.25 0.25 0

0 0 −0.5

⎞
⎟
⎟
⎟
⎠

(2.64)

dargestellt. Eine Anwendung dieses Vorgehens auf Tensoren höherer Stufen ist jedoch nicht

direkt möglich.

a) b)

x1x2

x3 x3

x1x2

Abbildung 2.7: Visualisierung der Tensoren ¯̄a) und ¯̄b) aus Gl. (2.64) wie im Text beschrieben.
Der Radius wird zusätzlich farblich kodiert dargestellt.
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2.2 Spannung, Dehnung und lineare Elastizität

Gebräuchliche Elastizitätsmaße und elastische Anisotropie

In vielen Fällen, in denen elastische Konstanten oder elastische Eigenschaften untersucht

werden, werden der Elastizitätsmodul E, Schermodul G, Kompressionsmodul K und Pois-

sonzahl ν, seltener auch die Lamé-Konstanten λ und µ benutzt; in der Regel unter Annahme

von elastischer Isotropie (z.B. für untexturierte, polykristalline Materialien). Im Folgenden

wird nun der Zusammenhang zwischen
¯̄̄̄
S bzw.

¯̄̄̄
C und den genannten Größen hergestellt.

Der Elastizitätsmodul E ist die Proportionalitätskonstante zwischen der Dehnung in Richtung

einer angelegten, uniaxialen Spannung und dieser Spannung, also σ = Eε. Sei die angelegte

Spannung σ entlang der x1-Richtung orientiert, so ergibt sich für ihre Komponenten σ11 = σ

und σij = 0 für alle übrigen Komponenten. In x1 bzw [100]-Richtung ist dann die Dehnung

ε11 = s1111 σ = s11 σ =
σ

E
, (2.65)

womit folgt, dass E = 1
s1111

= 1
s11

. Auf die kompliziertere Darstellung in c-Komponenten, die

sich aus Gl. (2.55) ergibt, wird hier verzichtet. Der E-Modul hängt nur von der Orientierung

einer Richtung (hier x1-Richtung) ab und kommt damit einem Maß der Größe der elastischen

Konstanten in eine Richtung im Sinne der obigen Diskussion zu Tensoren zweiter Stufe recht

nahe, deckt dafür aber auch nur den Fall uniaxialer Spannungen ab. Entsprechend kann die

richtungsabhängige Größe des E-Moduls, in Anlehnung an Abb. 2.7, dargestellt werden. Für

das in dieser Arbeit untersuchte Palladium mit den elastischen Konstanten c11 = 226 GPa,

c12 = 175 GPa und c44 = 71.4 GPa [46] liefert das Abb. 2.8, worin u.a. die starke Anisotropie

der elastischen Eigenschaften im Pd Kristall deutlich wird.

x1x2

x3

[GPa]

Abbildung 2.8: Visualisierung der Projektionen des E-Moduls von Pd in verschiedenen Rich-
tungen. Der Wert des E-Moduls in einer Richtung wird durch den Radius der
Kugel, sowie durch die Farbe an dieser Stelle markiert. Die ⟨100⟩-Richtungen
sind parallel zu den x1, x2 und x3-Richtungen.
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Zusätzlich zu der Dehnung in x1-Richtung, bildet sich bei uniaxialer Belastung die Querdeh-

nung in die dazu senkrechten Richtungen (z.B. x2 und x3) aus, die durch Gl. (2.53) bestimmt

wird zu

ε22 = s1122 σ = s12 σ. (2.66)

Das negative Verhältnis von Querdehnung zur Dehnung in Richtung der angelegten Spannung

ist die Poissonzahl ν und es gilt hier

ν12 = −
ε22

ε11
= −

s1122

s1111
= −

s12

s11
. (2.67)

Im Fall von elastisch anisotropen Materialien ist damit auch die Poissonzahl richtungs-

abhängig. Im Unterschied zur Richtungsabhängigkeit des E-Moduls spielen hier jedoch die

Orientierung von zwei Richtungen, also der x1 und x2-Richtung, eine Rolle. Darüber hinaus

besteht für die meisten Orientierungen ein Unterschied zwischen ν12 und ν21, also in welche

Richtung die Spannung angelegt wird.

Der Schermodul G ist das Analogon zu E für Scherspannungen, also die Nebendiagonalen-

elemente im Spannungstensor. Der Schermodul ist also der Proportionalitätsfaktor zwischen

Scherspannung und entsprechender Scherdehnung, z.B.

σ23 = c2323 ε23 = c44 ε23 = G23 ε23. (2.68)

Ähnlich wie die Poissonzahl, ist auch G zweifach richtungsabhängig (hier im Beispiel x2 und

x3-Richtung) und muss dementsprechend für allgemeine Orientierungen des Bezugssystems

bei elastisch anisotropen Materialien zusätzlich über zwei Indizes spezifiziert werden.

Der Kompressionsmodul K ist schließlich die Proportionalitätskonstante zwischen der Volu-

mendehnung ∆V /V ≈ ∑i εii oder als Tensor 1εiso (für kleinen Dehnungen) und der Volumen-

spannung bzw. dem hydrostatischen Druck 1p = 1σiso. Bei beiden Größen handelt es sich, wie

oben beschrieben, um isotrope Größen (vgl. Gl. (2.36)), womit auch der Kompressionsmodul

frei von jeglicher Richtungsabhängigkeit ist und damit den isotropen Anteil der elastischen

Eigenschaften darstellt. Es gilt also

dp =K
dV

V
. (2.69)

In Tensorschreibweise ergibt sich der Ausdruck

∑
i

εii = ∑
i
∑
j

siijjσiso (2.70)
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2.2 Spannung, Dehnung und lineare Elastizität

Der Vorfaktor von σiso in Gl. (2.70) ist gerade die Kompressibilität κ = ∑i∑j siijj , deren

Kehrwert der Kompressionsmodul ist, also

K =
1

κ
=

1

∑i∑j siijj
. (2.71)

Im Falle von kubischen Gittern gilt dann für die Standardorientierung des Koordinatensys-

tems K = 1/(3(s11 + 2s12)) = (c11 + 2c12)/3

Mit Ausnahme des Kompressionsmoduls besitzen alle elastischen Eigenschaften prinzipiell

eine Richtungsabhängigkeit. Das kann dazu führen, dass sich Kristalle elastisch anisotrop

verhalten. Das Ausmaß dieser Anisotropie wird oftmals mit dem Anisotropieindex A für

kubische Kristalle nach Zener [47] quantifiziert, der durch folgenden Ausdruck definiert wird

A = 2
c44

c11 − c12
= 2

s11 − s12

s44
. (2.72)

Für Palladium nimmt er den Wert 2.8 an. Zum Vergleich: Für isotrope Materialien ist A = 1,

da in diesem Fall c44 = 0.5 (c11 − c12) gilt. Höhere Werte von A kennzeichnen also höheres

Maß an elastischer Anisotropie. Ein neueres, universelles Maß AU für die Anisotropie [48]

überkommt die Beschränkung von A auf kubische Systeme und ist außerdem frei von Aus-

nahmen mit Zener Anisotropie kleiner 1 (z.B. Po, Nb, ...), indem die komplette tensorielle

Information berücksichtigt wird. Es ist definiert als

AU = ⟨
¯̄̄̄
C(Ω) ⟩

V
∶ ⟨

¯̄̄̄
S(Ω) ⟩

R
− 6. (2.73)

Hier sind ⟨
¯̄̄̄
C(Ω) ⟩V der über alle Orientierungen Ω gemittelte Elastizitätstensor, was der

Voigt-Näherung für mittlere elastische Konstanten entspricht, und ⟨
¯̄̄̄
S(Ω) ⟩R der über alle

Orientierungen gemittelte Nachgiebigkeitstensor, was der Reuss-Näherung entspricht9. Iso-

trope elastische Konstanten entsprechen bei diesem Maß AU = 0 und zunehmende elastische

Anisotropie erzeugt eine Zunahme von AU , was für Pd zu einem Wert von 1.35 führt.

Elastische Konstanten von Polykristallen

In den meisten Fällen liegen Metalle nicht in der Form von Einkristallen vor, sondern als

Polykristalle; also als Zusammenschluss vieler kleinerer Einkristalle. Nanokristalline Mate-

rialien sind davon die Extremform, da durch die kleine Größe der einzelnen Kristallite bei

gleichem Volumen der Zusammenschluss besonders vieler Kristalle bedingt wird. Makrosko-

pisch betrachtet hat der Polykristall veränderte elastischen Eigenschaften im Vergleich zum

Einkristall, die in erster Näherung als eine Mittelung der elastischen Eigenschaften der Ein-

kristalle über alle vorkommenden Orientierungen aufgefasst werden können.

9Mehr Informationen zu mittleren elastischen Konstanten bzw. isotropen elastischen Konstanten folgen
später.
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Im hier vorliegenden Fall von nanokristallinem PdAu liegt keine Textur, also keine kristalline

Vorzugsorientierung, im Material vor [49, 50]. Darüber hinaus folgen die Misorientierungswin-

kel der Korngrenzen zwischen den Kristalliten einer Mackenzie-Verteilung [51, 52, 53, 54, 55],

d.h. es gibt keine Korrelationen zwischen den Orientierungen benachbarter Kristalle. Damit

ist nanokristallines PdAu ein Aggregat zufällig orientierter Kristalle und in dieser Hinsicht

ein statistisch perfekt isotroper Polykristall. Für diesen Fall sollen im Folgenden nun die ver-

schiedenen Ansätze zur Ableitung der makroskopischen, elastischen Eigenschaften aus denen

des kubischen Einkristalls und deren Vergleich mit den tatsächlich, makroskopisch messbaren,

erfolgen. In Anlehnung an das Neumann’sche Prinzip [2] ist aber bereits im Voraus klar, dass

die makroskopischen elastischen Eigenschaften des statistisch isotropen Polykristalls isotrop

sein müssen. Außerdem ist der Kompressionsmodul, der an sich bereits den isotropen Anteil

der elastischen Eigenschaften beinhaltet, vollkommen unabhängig von Kristallorientierungen,

weshalb der Kompressionsmodul des Polykristalls identisch zu dem der einzelnen Kristallite

ist.

Es sei vorausgeschickt, dass alle hier vorgestellten Ansätze Korngrenzen als mathematische

Grenzflächen zwischen den Kristalliten behandeln, womit Korngrenzen als Phase oder drei-

dimensionales Objekt nicht existieren und damit keine direkte Beeinflussung der elastischen

Eigenschaften bewirkt.

Zunächst gibt es zwei sehr direkte Methoden, um die mittleren elastischen Konstanten eines

statistisch isotropen Polykristalls zu berechnen: Die Näherung von Voigt [56] und die von

Reuss [57]. Bei beiden handelt es sich um eine Mittelung des Tensors, der die elastischen

Eigenschaften beschreibt, über alle möglichen Orientierungen Ω.

Im Fall der Näherung von Voigt geschieht das anhand des Elastizitätstensors
¯̄̄̄
CVoigt = ⟨

¯̄̄̄
C(Ω)⟩Ω,

dessen Einträge sich über die beiden orientierungsunabhängigen Invarianten (es gilt die Ein-

stein’sche Summationskonvention)

⟨cijkl⟩Ω δijδkl = cijklδijδkl (2.74)

⟨cijkl⟩Ω δikδjl = cijklδikδjl (2.75)

schnell berechnen lassen [58]. Diese Mittelung bedeutet anschaulich, dass alle Kristallite die

gleiche, homogene Dehnung erfahren, wodurch jedoch unterschiedlich orientierte, aneinander

grenzende Kristallite unterschiedliche Spannungszustände an ihrer gemeinsamen Korngrenze

erzeugen und damit die Stetigkeitsbedingung für die Spannung an Grenzflächen verletzt wird.

Durch diese Näherung werden die mittleren elastischen Konstanten überschätzt, und stellen

damit eine obere Grenze dar [59].

Die Näherung von Reuss erfolgt genau analog zu der von Voigt mit dem Unterschied, dass

hier der Nachgiebigkeitstensor
¯̄̄̄
SReuss = ⟨

¯̄̄̄
S(Ω)⟩Ω gemittelt wird. Hier wird eine homogene
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Spannung über alle Kristallite hinweg angenommen, womit automatisch auch die Stetig-

keitsbedingung an den Grenzflächen erfüllt ist. Allerdings resultiert diese Näherung in unter-

schiedlichen, unkorrelierten Dehnungen benachbarter Kristalle, was im Allgemeinen zu Rissen

zwischen und Durchdringungen von benachbarten Kristallen führen müsste. Dieser Fall führt

zu einer systematischen Unterschätzung, also zu einer unteren Grenze [59], der elastischen

Konstanten.

Für den Schubmodul G existiert außerdem die empirische Hill Näherung (auch Voigt-Reuss-

Hill Näherung) [59], die einfach den Mittelwert für G aus den Voigt und der Reuss Näherung

berechnet GH = 1
2(GV +GR) und in den meisten Fällen eine deutlich bessere Näherung dar-

stellt. Diese Näherung kann auch auf die übrigen elastischen Konstanten ausgeweitet werden,

dann aber mit schlechterer Übereinstimmung von Näherung und wahrem Wert.

Eine mathematisch exakte10 Lösung für das Problem wurde von Kröner [58], aufbauend auf

den Ergebnissen von Eshelby [60], veröffentlicht. Darin wird zugleich das Problem der Deh-

nung eines anisotropen Kristallits im Verbund des Polykristalls gelöst; insbesondere letzterer

Aspekt ist im Weiteren noch von Bedeutung. Kröners Ansatz besagt, dass sich unter Ein-

wirkung einer äußeren Kraft im Polykristall eine mittlere homogene Spannung ⟨¯̄σ⟩ und eine

mittlere homogene Dehnung ⟨¯̄ε⟩ ausbilden, die über die zu bestimmenden, mittleren isotropen

elastischen Konstanten ⟨
¯̄̄̄
C⟩ oder ⟨

¯̄̄̄
S⟩ in Beziehung stehen, also

⟨¯̄σ⟩ = ⟨
¯̄̄̄
C⟩ ⟨¯̄ε⟩. (2.76a)

⟨¯̄ε⟩ = ⟨
¯̄̄̄
S⟩ ⟨¯̄σ⟩. (2.76b)

Die Spannung ¯̄σ(Ω) bzw. Dehnung ¯̄ε(Ω), die sich in einem Kristallit mit bestimmter Git-

terorientierung Ω unter diesen Bedingungen einstellt, ist linear von diesen mittleren Größen

abhängig, sodass der Zusammenhang

¯̄σ(Ω) = (⟨
¯̄̄̄
C⟩ + ¯̄̄̄r(Ω)) ⟨¯̄ε⟩. (2.77a)

¯̄ε(Ω) = (⟨
¯̄̄̄
S⟩ +

¯̄̄̄
t(Ω)) ⟨¯̄σ⟩. (2.77b)

gilt. Die Tensoren vierter Stufe ¯̄̄̄r und
¯̄̄̄
t erzeugen die zusätzlich induzierte Spannung, bzw.

Dehnung im Einzelkristall, die entsteht, da die elastischen Konstanten des Einkristalls von

den mittleren des Polykristalls abweichen. Es handelt sich also um elastische Suszeptibi-

litäten oder, nach Multiplikation mit dem Einheitsvolumen, um elastische Polarisierbarkeiten

[58, 61]. Für ellipsoide Körner, die intern eine homogene elastische Polarisation aufweisen,

10Die Exaktheit bezieht sich hier auf die praxisrelevante, statistische Bedeutung. Also immer auf ein Vo-
lumen, das genügend Kristallite enthält, sodass die Mittelwerte für Spannung, Dehnung und elastischen
Eigenschaften identisch zu denen der gesamten Probe sind.
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lassen sich ¯̄̄̄r und
¯̄̄̄
t auf folgende Art komponentenweise berechnen (es gilt die Einstein’sche

Summationskonvention)

rijkl(Ω) = cijkl(Ω) − ⟨cijkl⟩ + cijmn(Ω) umnkl(Ω) (2.78a)

tijkl(Ω) = uijmn(Ω) ⟨Smnkl⟩ (2.78b)

uijkl(Ω) = −v−1
ijmn(Ω) (cmnkl(Ω) − ⟨cmnkl⟩) (2.78c)

vijkl(Ω) = cijkl(Ω) − ⟨cijkl⟩ + ⟨cijmn ⟩wmnkl (2.78d)

Der Tensor ¯̄̄̄w ist ein Ergebnis aus der Arbeit von Eshelby [60] und seine direkte Berech-

nung ist im Anhang von [58] gegeben (siehe auch Implementierung im Matlabprogramm

kroener eshelby tensor.m auf dem Datenträger).

In [58] wird auf Grundlage von Gl. (2.78a) bis (2.78d) dann für den isotropen mittleren

Schermodul des Polykristalls G die Bestimmungsgleichung

0 = G3
+ aG2

+ bG + c (2.79)

a =
5 c1111 + 4 c1122

8

b =
4 c1122 − 7 c1111

8
c1212

c =
c2

1111 + c1111 c1122 − 2 c2
1122

8
c1212

abgeleitet, wobei die cijkl Einträge des Elastizitätstensors des Einkristalls in der gewöhnlichen

Orientierung sind. Zusammen mit dem bereits bekannten Kompressionsmodul des Polykris-

talls ⟨K⟩ =K(Ω) hat man nun zwei elastische Konstanten, aus denen der komplette isotrope

Elastizitätstensor des Polykristalls abgeleitet werden kann. Genauso kann man dieses Ergeb-

nis nun verwenden um rückwärts auf etwas einfachere Weise ¯̄̄̄w und damit auch ¯̄̄̄r,
¯̄̄̄
t, ¯̄̄̄u sowie

¯̄̄̄v auszurechnen. Die physikalische Bedeutung von ¯̄̄̄r und
¯̄̄̄
t wurden bereits oben geklärt, aber

auch ¯̄̄̄u macht eine direkt ersichtliche Aussage; er dient der Berechnung der zusätzlichen Deh-

nung des Einzelkristalls ∆¯̄ε(Ω) = ε(Ω) − ⟨¯̄ε⟩ bei homogener mittlerer Dehnung ⟨¯̄ε⟩, also gilt

∆εij(Ω) = uijkl(Ω) ⟨ε⟩kl (2.80a)

εij(Ω) = (1 + uijkl(Ω)) ⟨ε⟩kl. (2.80b)

Das Analogon für Spannungen ergibt sich durch entsprechendes Hintereinanderreihen des

bereits Bekannten und hat die etwas sperrigere Form

∆σij(Ω) = cijkl(Ω) uklmn(Ω) ⟨smnop⟩ ⟨σ⟩op (2.81a)

σij(Ω) = (1 + cijkl(Ω) uklmn(Ω) ⟨smnop⟩) ⟨σ⟩op. (2.81b)

40



2.3 Phononen

Damit steht nun eine Beschreibung der elastischen Eigenschaften des Polykristalls aus denen

des Einkristalls zu Verfügung, sowie eine Methode zur Berechnung der elastischen Verzerrung

und Spannung eines im Polykristall eingebetteten Einkristalls in Abhängigkeit seiner Gitter-

orientierung relativ zur angelegten, mittleren homogenen Spannung bzw. Dehnung. Allerdings

hat die hier vorgestellte Theorie Einschränkungen, die aus den grundlegenden Annahmen

entstehen: Es wird von perfekten Einkristallen ausgegangen, die einen perfekten Polykristall

bilden, der nur soweit belastet bzw. verformt wird, dass die linear elastischen Näherungen

gültig sind. Insbesondere werden Korngrenzen als dreidimensionale Objekte, mit eigenen

elastischen Eigenschaften, vernachlässigt. Genauso werden Kristalldefekte, die die elastischen

Eigenschaften beeinflussen würden, ignoriert. Eine Abweichung von Messergebnissen von der

hier vorgestellten Theorie stellt also keine Falsifizierung derselben dar, sondern bietet eine

Möglichkeit zur quantitativen Abschätzung der Abweichung des experimentell beobachteten

Verhaltens vom theoretischen Ideal.

2.3 Phononen

In diesem Kapitel wird nun die statische Betrachtung des Kristalls aufgegeben und die Dy-

namik des Kristalls in Form von thermisch angeregten Schwingungen der Atome um ihre

Gitterplätze betrachtet. Daraus leitet sich die Versuchsfrequenz für das Überkommen von Po-

tentialbarrieren von thermisch aktivierbaren Prozessen, sowie ein Modell für die thermodiffuse

Streuung von Röntgenstrahlen im Rahmen der Modellierung der in-situ Röntgenexperimente

ab.

Die kollektiven Schwingungen von Atomen erzeugen stehende oder sich ausbreitende elasti-

sche Wellen im Kristall, die über Phononen genannte Quasiteilchen beschrieben werden. Die

Anzahl der Phononen entspricht der Anzahl der Freiheitsgrade von N Atomen, also 3N . Im

Allgemeinen führt das zu sehr großen Zahlen, da die Anzahl der Atome, wie das Volumen,

mit der dritten Potenz der linearen Ausdehnung des Kristalls skaliert. Im speziellen Fall von

Nanokristallen sind diese Zahlen aber noch im Rahmen dessen, was mit Computern innerhalb

von Minuten bis wenigen Stunden explizit gerechnet oder wenigstens sehr genau numerisch

angenähert werden kann.

Für die Zwecke dieser Arbeit wird die Betrachtung der Phononen auf die harmonische Näher-

ung unter weitgehender Vernachlässigung von Phonon-Phonon Wechselwirkung beschränkt,

weshalb hier hauptsächlich auf die kompakte und anwendungsorientierte Darstellung des

Themas aus [62] zurückgegriffen werden kann. Detailliertere Beschreibungen von Phononen

können z.B. aus darauf aufbauenden Störungsrechnungen gewonnen werden und sind u.a. in

[43] zu finden.

Da Phononen elastische Wellen im Kristall beschreiben, sind spezifische Phononen durch

die Angabe von Schwingungsamplitude und -orientierung a⃗, Wellenvektor q⃗ und Frequenz

ν bzw. Kreisfrequenz ω = 2πν vollständig charakterisiert. Der Betrag von q⃗ ist reziprok zur
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Wellenlänge λ (∣q⃗∣ = 1/λ). Die zeitabhängige Verschiebung u⃗n eines Atoms n an der Position

R⃗n, die durch ein Phonon hervorgerufen wird, ist dann

u⃗n(q⃗) = a(q⃗) e⃗(q⃗) cos (ω(q⃗) t − 2π q⃗ R⃗n − δ(q⃗)). (2.82)

Hier ist δ(q⃗) ein Phasenfaktor, der formal notwendig ist um die fehlende Phasenbeziehung

zwischen verschiedenen Phononen abzubilden. Im Weiteren wird auf ihn bei der Betrachtung

von Einzelphononen verzichtet. Die Amplitude a⃗ wird hier in ihren Betrag a und ihre Rich-

tung, dargestellt durch den Einheitsvektor e⃗, aufgespalten. Die Einträge von e⃗ entsprechen

den Richtungskosinus auf die Koordinatenachsen e1, e2, e3. Die gesamte Verschiebung des

Atoms ergibt sich dann aus der Superposition aller Einzelverschiebungen un,j = ∑q un,j(q⃗) (j

bezeichnet die Komponenten 1 bis 3). Bevor diese Größen und ihr Zusammenhang hergelei-

tet werden, können aus der Wellennatur der Phononen und der Struktur des Kristalls bereits

wichtige Schlüsse gezogen werden.

Die Wellenvektoren q⃗ der Phononen sind im Vektorraum des reziproken Gitters enthalten

[62] und es gilt für sie die Periodizitätsbedingung (2.11). Das heißt, dass eine Unterscheidung

von Wellenvektoren, die um einen reziproken Gittervektor Ghkl zueinander verschoben sind,

bedeutungslos ist. Daher kann die Gesamtheit aller relevanter Wellenvektoren für Phononen

auf die 1. Brilloin-Zone (siehe Abb. 2.4) beschränkt werden. Alle N Wellenvektoren begin-

nen im Ursprung des reziproken Raumes oder an den Gitterpunkten des reziproken Gitters

und enden auf einem regelmäßigen Gitter innerhalb der 1. Brilloin-Zone. Dieses Untergitter

entspricht dem Bravais-Gitter des reziproken Gitters [62, 43, 36]. Die Basisvektoren dieses

Phononengitters entsprechen denen des reziproken Gitters (vgl. (2.17)), die jeweils um den

Faktor 1/Ni skaliert sind, wobei Ni der Anzahl der Einheitszellen bzw. Atome des Kristalls

in dieser Richtung entspricht [36]. Somit ist die Basis für das Gitter der Phononenvektoren

B⃗1,phon =
2π

N1a

⎛
⎜
⎜
⎜
⎝

1

0

0

⎞
⎟
⎟
⎟
⎠

, B⃗2,phon =
2π

N2a

⎛
⎜
⎜
⎜
⎝

0

1

0

⎞
⎟
⎟
⎟
⎠

, B⃗3,phon =
2π

N3a

⎛
⎜
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎟
⎠

, (2.83)

womit alle Wellenvektoren der Bedingung

q⃗ = n1B⃗1,phon + n2B⃗2,phon + n3B⃗3,phon (2.84)

genügen, wobei für die ganzzahligen Faktoren ni gilt, dass −Ni/2 ≤ ni ≤ Ni/2. Für den Fall

eines kugelförmigen PdAu Kristalls mit Durchmesser ≈ 6 nm sind die Endpunkte der ca. 7000

Wellenvektoren in der 1. Brilloin-Zone in Abb. 2.9 als blaue Punkte eingezeichnet.

Damit können die Wellenvektoren aller möglichen Phononen nur aus den Eigenschaften des

Gitters vollständig abgeleitet werden. Was bleibt ist die Bestimmung der Amplituden, inklu-

sive Orientierung, und der Schwingungsfrequenzen.
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2.3 Phononen

Abbildung 2.9: Darstellung der Endpunkte aller Wellenvektoren in der 1. BZ eines ku-
gelförmigen PdAu Kristalls mit Durchmesser ≈ 6 nm.

Sowohl Schwingungsfrequenz als auch Schwingungsrichtung können über die Born-von-Kar-

man-Theorie der Gitterschwingungen bestimmt werden [63, 64]. Darin hängt die rücktreiben-

de Kraft auf ein Atom linear von der relativen Verschiebung u⃗ aller Atome zu dem betrachte-

ten Aufatom ab. Die interatomare Kraftkonstante (engl. interatomic force constants) Dij(nl)

beschreibt die Kraft, die das Aufatom l in Richtung i durch die Verschiebung von Atom n in

j-Richtung erfährt. Die gesamte Kraftkomponente F (l)i in Richtung i, die auf das Aufatom

l wirkt, ist dann gegeben durch

F (l)i =
N

∑
n=1

(Di1(nl)u1(n) +Di2(nl)u2(n) +Di3(nl)u3(n) ) , (2.85)

woraus man mittels F =m a die Bewegungsgleichung

m
d2ui(l)

dt2
=

N

∑
n=1

(Di1(nl)u1(n) +Di2(nl)u2(n) +Di3(nl)u3(n) ) , (2.86)

erzeugen kann. Einsetzen von Gl. (2.82) in Gl. (2.86) und Vereinfachen (siehe [62]) liefert

dann für die Frequenzen ω und Schwingungsrichtungen e⃗ = (e1, e2, e3) die drei Bedingungen

(i = 1,2,3)

−mω2ei =
N

∑
n=1

(Di1(nl)e1 +Di2(nl)e2 +Di3(nl)e3 ) cos (2πq⃗ (R⃗n − R⃗l)). (2.87)
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Ausgehend davon, lassen sich anstatt Dij(nl) nun q⃗ spezifische Koeffizienten definieren als

Dij(q⃗) = −
1

m

N

∑
n=1

Dij(nl) cos (2πq⃗ (R⃗n − R⃗l)). (2.88)

Damit wird aus den Gl. (2.87) für jeden Wellenvektor q⃗ das lineare Gleichungssystem,

(D11(q⃗) − ω
2
(q⃗)) e1 +D12(q⃗)e2 +D13(q⃗)e3 = 0 (2.89a)

D21(q⃗)e1 + (D22(q⃗) − ω
2
(q⃗)) e2 +D23(q⃗)e3 = 0 (2.89b)

D31(q⃗)e1 +D32(q⃗)e2 + (D33(q⃗) − ω
2
(q⃗)) e3 = 0 (2.89c)

Die nicht-triviale Lösung von Gl. (2.89a – 2.89c), also Lösungen abseits von e1 = e2 = e3 = 0,

sind durch die Nullstellen der Determinante der Koeffizientenmatrix, auch dynamische Matrix

genannt, bestimmt. Es gilt also für diese Lösungen

RRRRRRRRRRRRRRRRR

D11(q⃗) − ω
2(q⃗) D12(q⃗) D13(q⃗)

D21(q⃗) D22(q⃗) − ω
2(q⃗) D23(q⃗)

D31(q⃗) D32(q⃗) D33(q⃗) − ω
2(q⃗)

RRRRRRRRRRRRRRRRR

= 0. (2.90)

Die sich daraus ergebende Sekulargleichung oder charakteristische Gleichung ist eine Glei-

chung dritten Grades von ω2(q⃗), woraus sich die (Kreis)Frequenzen der drei zu q⃗ gehörenden

Phononen bestimmen lassen. Eine elegante und für die Implementierung in Matlab besonders

geeignete Lösungsmethode dieser Gleichung, erfolgt über die Begleitmatrix des charakteris-

tischen Polynoms. Wenn das Polynom die Form x3 + p2x
2 + p1x + p0 = 0 mit x = ω2 hat, sind

seine Nullstellen identisch zu den Eigenwerten der Begleitmatrix in Kardinalform [65]

⎛
⎜
⎜
⎜
⎝

−p0(q⃗) −p1(q⃗) −p2(q⃗)

1 0 0

0 1 0

⎞
⎟
⎟
⎟
⎠

. (2.91)

Im konkreten Fall folgen die Koeffizienten des Polynoms aus Gl. (2.90) und haben die Form

−p0(q⃗) =D11(q⃗)D22(q⃗)D33(q⃗) −D11(q⃗)D
2
23(q⃗) −D

2
12(q⃗)D33(q⃗)

−D2
13(q⃗)D22(q⃗) + 2D12(q⃗)D13(q⃗)D23(q⃗) (2.92a)

−p1(q⃗) =D
2
12(q⃗) +D

2
13(q⃗) +D

2
23(q⃗)

−D11(q⃗)D22(q⃗) −D11(q⃗)D33(q⃗) −D22(q⃗)D33(q⃗) (2.92b)

−p2(q⃗) =D11(q⃗) +D22(q⃗) +D33(q⃗). (2.92c)

Damit liefert die Eigenwertbestimmung von Gl. (2.91) die Dispersionsrelationen für die Schwin-

gungsfrequenzen ω1(q⃗), ω2(q⃗) und ω3(q⃗). Durch Einsetzen von ωi(q⃗) in Gl. (2.89a – 2.89c),

zusammen mit der Bedingung ∣e⃗∣ = 1 ⇔ e2
1 + e

2
2 + e

2
3 = 1, ergeben sich schließlich die zu den
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2.3 Phononen

Schwingungsfrequenzen gehörenden Schwingungsrichtungen e⃗i. Tatsächlich müssen aber nur

zwei Orientierungen ausgerechnet werden, da die Schwingungsrichtungen orthogonal zuein-

ander stehen und die dritte über das Kreuzprodukt der beiden anderen bestimmt werden

kann.

Die vollständige Charakterisierung der Phononen, in Abhängigkeit von den bereits bekannten

q⃗, wurde somit auf die Bestimmung der 9 Koeffizienten Dij(q⃗) reduziert. Diese soll nun für

ein kubisch-flächenzentriertes Material erfolgen.

Dazu werden die Größen in Gl. (2.88) zunächst in Gitterkoordinaten angegeben, also

R⃗n − R⃗l =
1

2
(n1A⃗1 + n2A⃗2 + n3A⃗3) (2.93a)

q⃗ = q1
B⃗1

2π
+ q2

B⃗2

2π
+ q3

B⃗3

2π
, (2.93b)

wobei für die Ganzzahlen n1, n2, n3 die Einschränkung gilt, dass ihre Summe immer gerade

ist und für q1, q2, q3 ≤ 1 gilt (vgl. mit Gl. (2.84) als alternative Darstellung). Der Faktor 1/2π

in Gl. (2.93b) dient der Normierung auf die 1. Brilloin-Zone und entspricht der Konvention

aus [62]. Damit wird Gl. (2.88) zu

Dij(q⃗) = −
1

m
∑

n1,n2,n3

Dij(n1n2n3) cos (π (n1q1 + n2q2 + n3q3)). (2.94)

Die Koeffizienten Dij(n1n2n3) nehmen mit wachsendem Abstand zum Aufatom ab, weshalb

in der Regel die Summe in Gl. (2.94) nur über einige Schalen von nächsten Nachbarato-

men ausgeführt wird. In Anlehnung an [62], wird die Summe hier bis zur dritten nächsten

Nachbarschale ausgeführt. Die 12 nächsten Nachbaratome der ersten Schale sitzen auf den

n1n2n3 = 110 Positionen (also alle eindeutigen Permutationen davon, inklusive Vorzeichen-

tausch), die 6 Übernächsten Nachbarn sind auf den Positionen n1n2n3 = 200 und die 24

drittnächsten Nachbarn auf den Positionen n1n2n3 = 211. Insgesamt gibt es also 42 Koeffizi-

enten Dij(n1n2n3) zu bestimmen, die aber aufgrund der Symmetrie des Gitters lediglich aus

den folgenden 9 unabhängigen Koeffizienten bestehen:

D11(101) = α1 D11(200) = α2 D11(211) = α3

D22(101) = β1 D22(200) = β2 D22(211) = β3 (2.95)

D31(101) = γ1 D23(211) = γ3 D12(211) = δ3
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Der Index dieser 9 Koeffizienten auf der rechten Seite bezieht sich auf die Ordnung der

zugehörigen nächsten Nachbarschale. Die Bestimmungsgleichungen der Dij(q⃗) werden damit

zu

Dij(q⃗) =
4

m
([γ1 + 2γ3 cos (2πqk)] sin (πqi) sin (πqj)

+ 2δ3 cos (πqk) [sin (2πqi) sin (πqj) + sin (2πqj) sin (πqi)]) (2.96a)

Dii(q⃗) =
4

m
(α1 [2 − cos (πqi) (cos (πqj) + cos (πqk))]

+ β1 [1 − cos (πqj) cos (πqk)]

+ α2 sin2
(πqi) + β2 [sin

2
(πqj) + sin2

(πqk)]

+ 2α3 [1 − cos (2πqi) cos (πqj) cos (πqk)]

+ 2β3 [2 − cos (πqi) (cos (2πqj) cos (πqk) + cos (πqj) cos (2πqk))]). (2.96b)

Die Dij(q⃗) in der Form von Gl.(2.96a und 2.96b) kann man heranziehen, um ω(q⃗) gemäß

Gl. (2.90) auszurechnen. Im Allgemeinen führt das zu offensichtlich unhandlichen Ausdrücken.

Für die drei Richtungen mit der höchsten Symmetrie im kubischen Gitter, also [100], [110]

und [111], werden diese Ausdrücke aber zum einen sehr kompakt, zum anderen sind alle

Komponenten qi, qj und qk entweder null oder gleich. Somit hängen Gl. (2.96a) und Gl. (2.96b)

effektiv nur noch von einem einzelnen, skalaren q ab.

Für die [100]-Richtung ergibt sich dann

ωL =
16

m
(α1 + 2β3) sin2

(
π

2
q) +

4

m
(α2 + 4β3) sin2

(πq) (2.97a)

ωT =
8

m
(α1 + β1 + 2α3 + 2β3) sin2

(
π

2
q) +

4

m
(β2 + 4β3) sin2

(πq). (2.97b)

Die Frequenzen der beiden Transversalschwingungen ωT sind hier identisch für alle Richtun-

gen in der Ebene senkrecht zur [100]-Richtung. Selbiges gilt für die [111]-Richtung, bei der

für die Schwingungsfrequenzen gilt

ωL =
4

m
((2α1 + 2β1 + α2 + 2β2 + 2α3 + 4β3 + 2γ1 − 4γ3) sin2

(πq)

+ (α3 + 2β3 + 2γ3 + 4δ3) sin2
(2πq)) (2.98a)

ωT =
4

m
((2α1 + β1 + α2 + 2β2 + 2α3 + 4β3 − γ1 + 2γ3) sin2

(πq)

+ (α3 + 2β3 − γ3 − 2δ3) sin2
(2πq)), (2.98b)
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und für [110] schließlich

ωL =
4

m
((2α1 + 2β1 + 2α3 + 2β3 − 4δ3) sin2

(
π

2
q)

+ (α1 + α2 + β2 + 2β3 + γ1 + 2γ3) sin2
(πq)

+ (1α3 + 2β3 + 4δ3) sin2
(

3π

2
q)) (2.99a)

ωT1 =
4

m
((2α1 + 2β1 + 2α3 + 2β3 − 4δ3) sin2

(
π

2
q)

+ (α1 + α2 + β2 + 2β3 − γ1 − 2γ3) sin2
(πq)

+ (1α3 + 2β3 − 4δ3) sin2
(

3π

2
q)) (2.99b)

ωT2 =
4

m
((4α1 + 4β3) sin2

(
π

2
q)

+ (β1 + 2β2 + 2α3) sin2
(πq)

+ 4β3 sin2
(

3π

2
q)). (2.99c)

(2.99d)

Die Dispersionsrelationen (2.97a) bis (2.99c) sind ausreichend, um die 9 Koeffizienten α, β

etc. zu bestimmen. Sie werden als Messergebnisse aus Neutronenstreuung gewonnen und in

der Literatur für gewöhnlich graphisch dargestellt, z.B. für Gold in [66] oder für Palladium

in [67] (siehe auch Abb. 2.10). Diese Daten dienen in dieser Arbeit als Ausgangspunkt zur

Bestimmung der 9 Koeffizienten und damit der dynamischen Matrix. Die Koordinate q aus

Gl. (2.97a) bis (2.99c) ist identisch in Abb. 2.10 enthalten und entspricht dem üblicherweise

angegebenen, reduzierten Wellenvektor ζ (vgl. z.B. [67]). Die Symbole am oberen Rand von

Abb. 2.10 spezifizieren die Punkte in der ersten Brilloin-Zone, wie sie in Abb. 2.4 (S. 20)

gezeigt sind.
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Abbildung 2.10: Phononen-Dispersionskurven von Pd bei einer Temperatur von 296 K zur
Berechnung der interatomaren Kraftkonstanten. Daten aus [67].
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Das Anfitten der in Abb. 2.10 dargestellten Dispersionsrelationen mithilfe von Gl. (2.97a) bis

(2.99c) liefert folgende Werte für die Koeffizienten:

α1 = 19.38 N/m α2 = 7.46 N/m α3 = −1.31 N/m

β1 = 1.84 N/m β2 = −2.19 N/m β3 = 0.01 N/m (2.100)

γ1 = 18.36 N/m γ3 = −1.49 N/m δ3 = 1.04 N/m

Diese Koeffizienten beschreiben näherungsweise auf mikroskopischer Ebene (bis zum dritten

nächsten Nachbarn) denselben physikalischen Sachverhalt, wie die elastischen Konstanten

auf makroskopischer Ebene für das Material als Kontinuum. Daher können die elastischen

Konstanten auch aus den 9 effektiven Federkonstanten aus Gl. (2.100) berechnet werden. Für

kubische Kristalle gilt, mit dem Gitterparameter a, der Zusammenhang aus [62]

c11 =(4α1 + 4α2 + 16α3 + 8β3)/a = 223 GPa (2.101a)

c44 =(2α1 + 2β1 + 4β2 + 3α3 + 20β3)/a = 74 GPa (2.101b)

c12 =(4γ1 + 8γ3 + 32δ3)/a − c44 = 170 GPa, (2.101c)

was zu einer recht guten Übereinstimmung mit den Literaturwerten für Pd (c11 = 226 GPa,

c12 = 175 GPa und c44 = 71.4 GPa [46]) führt.

Somit bleibt als letzte Unbekannte nur noch der Betrag der Schwingungsamplituden ai(q⃗).

Im Weiteren sind aber nur die mittleren quadratischen Amplituden ⟨a2
i (q⃗)⟩ relevant, die für

Gold und Palladium ab Raumtemperatur durch den Ausdruck

⟨a2
i (q⃗)⟩ =

2kBT

Nmω2
i (q⃗)

(2.102)

gut angenähert werden [62]. Hier sind m die Masse eines Atoms, N die Anzahl der Atome

im Kristall, ω die Kreisfrequenz der Schwingung, kB die Boltzmann Konstante und T die

Temperatur.

Das bedeutet, dass die Gesamtheit der anregbaren Phononen (Ausbreitungsrichtung, Schwin-

gungsrichtung, Schwingungsfrequenzen) nur durch Eigenschaften des Kristalls bestimmt wird

und die Temperatur lediglich die Amplitude, oder anders betrachtet, die Besetzung dieser

Zustände bestimmt.

Damit steht nun alles zur Verfügung, um alle Phononen in einem perfekten, aber endlichen

Kristalliten zu berechnen. Aus der Korngröße und der Kenntnis des Gitters lassen sich mit

Gl. (2.83) und (2.84) alle möglichen Wellenvektoren q⃗ bestimmen. Mit diesen und mit den Ko-

effizienten aus Gl. (2.100) können die drei Schwingungsfrequenzen mittels Gl. (2.90) berech-

net werden, woraus sich dann die Schwingungsrichtungen mit dem Gleichungssystem (2.89a

– 2.89c) ergeben. Die Amplitude ergibt sich mit Gl. (2.102) aus der Schwingungsfrequenz

und der Temperatur. Streng genommen ist das mit den gegebenen Werten nur für Palladium
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möglich. Für Gold könnten die gleichen Schritte anhand der entsprechenden Dispersionsre-

lationen (z.B. [66]) ergänzt werden, worauf hier jedoch verzichtet wird, da die Herleitung

der Eigenschaften der Phononen für die hier untersuchte PdAu Legierung nicht über eine

einfache Mischungsregel erfolgen kann. Stattdessen wird als Näherung mit den Werten von

reinem Palladium weitergearbeitet.

2.4 Gitterfehler

Bisher wurden nur perfekte Einkristalle behandelt, sowie der ideale Polykristall, der als form-

und kraftschlüssige Ansammlung unterschiedlich orientierter, perfekter Einkristalle aufgefasst

wurde. Reale Kristalle und Polykristalle besitzen jedoch eine Reihe von Abweichungen von

diesen idealen Modellen, die als Kristalldefekte (auch Fehlordnungen, Fehlstellen, Gitterde-

fekte) bezeichnet werden und nach ihrer räumlichen Ausdehnung in 0-dimensionale Punktde-

fekte, 1-dimensionale Liniendefekte, 2-dimensionale Flächendefekte und 3-dimensionale Vo-

lumendefekte gegliedert sind.

In vielen Fällen sind diese Defekte zahlreich vorhanden und beeinflussen die Materialeigen-

schaften maßgeblich [36, 68, 69]. Die unkonventionellen Eigenschaften nanokristalliner Metalle

sind im Kern eine Konsequenz aus der Änderung der Anzahl und des Charakters dieser Defek-

te und ihrem Zusammenspiel als Folge der nanokristallinen Struktur des Materials [12, 16, 17].

Im Folgenden wird daher ein Überblick über die möglichen Defekte in der untersuchten, na-

nokristallinen PdAu Legierung gegeben.

2.4.1 Punktdefekte

Es gibt in der untersuchten PdAu Legierung drei mögliche Punktdefekte: Leerstellen, inters-

titielle bzw. Zwischengitteratome und Fremdatome. Leerstellen sind unbesetzte Gitterplätze

im Kristall, die bei Temperaturen über 0 K prinzipiell in jedem Kristall im Gleichgewicht

in einer bestimmten, temperaturabhängigen Konzentration auftreten, da ihre Anwesenheit

zu einer Erhöhung der Konfigurationsentropie führt, was eine Absenkung der freien Ener-

gie des Kristalls bewirkt [36, 69, 70]. Darüber hinaus kann es bei bestimmten Legierungen,

unabhängig von der Temperatur, zu zusätzlichen, stabilen Fehlstellen, den constitutional va-

cancies, kommen [71, 72]. Außerdem können Leerstellen, genau wie Zwischengitteratome,

durch plastische Verformung oder Bestrahlung erzeugt werden [36, 69, 70]. Eine zunehmen-

de Konzentration von Leerstellen führt zu einer Volumenzunahme der gesamten Probe, bei

gleichzeitiger Absenkung der Gitterkonstanten [73].

Fremdatome können im Gitter entweder auf Zwischengitterplätzen als interstitielle Fremda-

tome oder auf regulären Gitterplätzen als Substitutionsfremdatome auftreten [36, 74]. Beide

Fälle spielen in dem hier untersuchten Material keine nennenswerte Rolle, da Fremdatome

nicht in relevanten Konzentrationen vorliegen (siehe EDX Messungen).
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2.4.2 Versetzungen

Schneidet man in einem Gedankenexperiment in einen Kristall und verschiebt die beiden

dadurch entstandenen Schnittflächen relativ zueinander um einen Gittervektor, so erzeugt

man entlang der Linie, die den Schnitt im Kristall berandet, eine 1-dimensionale Störung der

Gitterperiodizität; diese wird Versetzung genannt. Die statische der beiden Schnittebenen

wird dann Gleitebene genannt, relativ zu der die andere Ebene verschoben wurde. Versetzun-

gen wurden in den 1930ern als zentraler Bestandteil der Plastizitätstheorie von kristallinen

Materialien unabhängig von Orowan [75, 76, 77], Polanyi [78] und Taylor [79, 80] erstmals

eingeführt. Sie werden durch die Versetzungslinie s⃗ und den Burgers-Vektor b⃗ [70] vollständig

charakterisiert.

Die Versetzungslinie ist eine Raumkurve im Kristall, welche die Lage des Kerns der Versetzung

beschreibt und ist identisch zu der Berandung des gedachten Schnittes in den Kristall. Sie hat

entlang ihrer Länge einen einheitlichen Richtungssinn, der die Ausrichtung der Tangentialvek-

toren an die Versetzungslinie bestimmt, wodurch die mathematisch positive Umlaufrichtung

um die Versetzungslinie gemäß der Rechten-Hand-Regel festgelegt ist11. Versetzungslinien

können aus geometrischen Gründen nicht im Kristall enden, sondern nur an Grenzflächen

(z.B. Oberflächen, Korngrenzen oder Phasengrenzflächen) oder sie formen geschlossene Kon-

turen. Darüber hinaus können sich Versetzungslinien in zwei oder mehr Versetzungslinien

aufspalten.

Der Burgers-Vektor gibt die Relativverschiebung des Kristalls entlang der Versetzungslinie

in Bezug auf ihre Richtung oder ihren mathematischen Umlaufsinn an und wird durch einen

sogenannten Burgersumlauf bestimmt. Dieser ist ein geschlossener Umlauf in der Ebene senk-

recht zur Versetzungslinie entlang von Gitterpunkten in mathematisch positivem Sinn. Führt

man den gleichen Umlauf im perfekten Gitter durch, bleibt eine Lücke zwischen Anfangs- und

Endpunkt bestehen, deren Verbindungsvektor von Endpunkt zu Anfangspunkt der Burgers-

Vektor ist. Entlang einer Versetzungslinie ist die Länge und Ausrichtung des Burgers-Vektors

konstant und zwar auch dann, wenn die Versetzungslinie in mehrere Versetzungslinien auf-

spaltet. In diesem Fall ist die Summe aus den Burgers-Vektoren der aufgespaltenen Verset-

zungslinien gleich dem ursprünglichen Burgers-Vektor, also b⃗ = ∑i b⃗i. Es gibt zwei offensicht-

liche, ausgezeichnete Richtungsbeziehungen zwischen Versetzungslinie und Burgers-Vektor:

Kollinearität und Orthogonalität.

Stehen s⃗ und b⃗ senkrecht aufeinander, beschreiben sie eine Stufenversetzung (siehe Abb.

2.11). Die Stufenversetzung wird durch eine zusätzlich in den zuvor defektfreien Kristall ein-

geschobene Gitterebene gebildet, die an der Versetzungslinie endet. Die Richtung, in der diese

Zusatzebene eingeschoben ist, wird durch den zu ihr senkrechten Burgers-Vektor bestimmt.

Die Ebene befindet sich relativ zur Versetzungslinie dort im Kristall, wo der Burgers-Vektor

11Zeigt der Daumen der rechten Hand in Richtung der Versetzungslinie, so zeigen die Finger der rechten Hand
in Richtung des mathematisch positiven Umlaufs um die Versetzungslinie.
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b

(a)

b

(b)

Abbildung 2.11: Schematische Darstellung einer (a) Schraubenversetzung und (b) Stufen-
versetzung. Der Burgers-Vektor b⃗ ist rot eingezeichnet, die Versetzungslinie
blau. Die zusätzliche Halbebene der Stufenversetzung ist grau hervorgeho-
ben. Zeichnung entnommen aus [70].

entgegen der Umlaufrichtung um die Versetzungslinie orientiert ist. Oft werden Stufenverset-

zungen in Darstellungen mit dem Symbol � gekennzeichnet, bei dem die vertikale Linie in

Richtung der eingeschobenen Ebene ausgerichtet wird.

Sind s⃗ und b⃗ kollinear, beschreiben sie eine Schraubenversetzung, bei der die Kristallebe-

nen senkrecht zur Versetzungslinie einen schraubenförmigen Pfad um die Versetzungslinie

beschreiben, ähnlich wie eine Wendeltreppe aus Gitterebenen (siehe Abb. 2.11). Wenn der

Burgers-Vektor in die selbe Richtung wie die Versetzungslinie orientiert ist, so ist die entste-

hende Schraube rechtsgängig, im umgekehrten Fall linksgängig.

Im Allgemeinen kann der Burgers-Vektor beliebige Orientierungen relativ zur Versetzungslinie

einnehmen, womit Versetzungen in der Regel eine Mischung aus Stufen- und Schraubenver-

setzung sind, deren Zusammensetzung sich bei gekrümmten Versetzungslinien kontinuierlich

ändern kann.

Die Versetzungsdichte ρ� ist als Gesamtlänge aller Versetzungen l� pro Einheitsvolumen V

definiert, also ρ� = l�/V . Die Werte für Versetzungsdichten können sich für verschiedene Ma-

terialien über viele Größenordnungen erstrecken. So haben Siliziumwafer für die Halbleiter-

produktion sehr niedrige Versetzungsdichten um 106 1/m2, normale Kristalle etwa 1011 1/m2

und stark verformte Metalle bis zu 1015 1/m2 [70].

In der Nähe der Versetzung sind die Atome relativ zu ihrer normalen Gleichgewichtsposition

verschoben, was eine lokale Dehnung erzeugt. Diese führt, aufgrund der elastischen Eigen-

schaften des Kristalls, zu einer Spannung und somit zu einer Energieerhöhung. In unmittel-

barer Nähe der Versetzungslinie sind die Abweichungen der Atompositionen von denen des

Gitters so groß, dass in diesem Bereich die lineare Elastizitätstheorie nicht mehr sinnvoll an-

gewandt werden kann. Diesen Bereich der Versetzung nennt man Versetzungskern, der in der

Regel einen Durchmesser von 2 bis 8 Burgers-Vektorlängen senkrecht zur Versetzungslinie,

also < 2 nm12, besitzt [70].

12Die Länge des Burgers-Vektor in den untersuchten PdAu-Legierungen beträgt ≈ 277 pm ± 2 pm
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Für gerade Versetzungslinien lassen sich analytische Ausdrücke für die Spannungs- und Deh-

nungsfelder von Schrauben und Stufenversetzungen in elastisch isotropen Medien herleiten.

Die Dehnungskomponenten des Dehnungstensors einer rechtsgängigen Schraubenversetzung

mit Versetzungslinie entlang der x3-Richtung und Schnittebenennormalen in x2-Richtung

sind nach [70]

ε13 = −
∣⃗b∣

4π

sin (θ)

r

ε23 =
∣⃗b∣

4π

cos (θ)

r
(2.103)

ε11 = ε22 = ε33 = ε12 = 0.

Hier ist θ der Polarwinkel um die Versetzungslinie, wobei die Schnittebene der Versetzung

bei θ = 0 liegt und r die Abstandskoordinate zur Versetzungslinie ist. Für die Spannungen

gilt mit dem Schermodul G

σ13 = −
G∣⃗b∣

2π

sin (θ)

r

σ23 =
G∣⃗b∣

2π

cos (θ)

r
(2.104)

σ11 = σ22 = σ33 = σ12 = 0.

Bei Schraubenversetzungen treten also nur radialsymmetrische Scherspannungen und Scher-

dehnungen auf, die proportional zur Länge des Burgers-Vektors sind und mit 1/r abnehmen.

Beides ist in Abb. 2.12 dargestellt. Sowohl Gl. (2.103) als auch Gl. (2.104) sind nur für

r > r0 gültig, wo r0 der Radius des Versetzungskerns ist. Für r Ð→ 0 ergibt sich sogar der

physikalisch unsinnige Befund von divergierenden Spannungen und Dehnungen. Zusätzlich

erzeugen die Scherspannungen in endlich ausgedehnten Kristallen eine Verdrehung um die

Versetzungslinie, die als Eshelby-twist bekannt ist [70, 81].
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Abbildung 2.12: Dehnungen (links) und Spannungen (rechts) um die Versetzungslinie einer
rechtsgängigen Schraubenversetzung. Die Versetzungslinie steht senkrecht
auf der gezeigten x-y-Ebene bzw. x1-x2-Ebene. Die Normale auf die Ebene
ist die z- oder x3-Richtung, die Normale der Schnittebene der Versetzung
zeigt in die y- oder x2-Richtung. Der Burgers-Vektor zeigt entlang der x3-
Richtung aus der Zeichenebene heraus.

Eine Stufenversetzungen mit Burgers-Vektor entlang der x1-Richtung und Versetzungslinie

entlang der x3-Richtung erzeugt in einem isotropen Medium das Spannungsfeld [70]

σ11 = −
G∣⃗b∣y

2π(1 − ν)

3x2 + y2

(x2 + y2)2

σ22 =
G∣⃗b∣y

2π(1 − ν)

x2 − y2

(x2 + y2)2

σ33 = ν(σ11 + σ22) (2.105)

σ12 =
G∣⃗b∣x

2π(1 − ν)

x2 − y2

(x2 + y2)2
.

σ13 = σ23 = 0,
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wobei ν hier die isotrope Poissonzahl bezeichnet und die x1- und x2-Koordinaten hier durch

x und y ausgedrückt sind. Die entsprechenden Dehnungen erhält man direkt aus der Elasti-

zitätstheorie mithilfe des isotropen Nachgiebigkeitstensors, womit sich ein ebener Dehnungs-

zustand in der x1-x2-Ebene ergibt, also der Ebene senkrecht zur Versetzungslinie. Beides ist

in Abb. 2.13 dargestellt. Dieses Modell vernachlässigt die elastische Anisotropie der PdAu

Legierung vollständig, ist aber dennoch gut geeignet um die Absolutwerte der Spannun-

gen und Dehnungen, sowie ihre Ortsabhängigkeit abzuschätzen und zu illustrieren. Das ist

besonders für das Verständnis der Modellierung des Einflusses von Versetzungen auf die

Röntgenstreuung von Bedeutung.

Die elastische Dehnungsenergie durch die Anwesenheit einer Stufen- bzw. Schraubenverset-

zung ergibt sich aus Gl. (2.39) und resultiert im isotropen Modell in [70]

Wel(Stufe) =
Gb2

4π
ln(

R

r0
) (2.106a)

Wel(Schraube) =
1

1 − ν

Gb2

4π
ln(

R

r0
) (2.106b)

Hier ist R der äußere Abschneideradius, bis zu dem das elastische Feld der Versetzungen

berücksichtigt wird. Im Fall von nanokristallinen Körnern entspricht R etwa dem Kornradius.

Zur Gesamtenergie der Versetzung fehlt noch der Energieanteil des Versetzungskerns, der in

einen elastischen Verzerrungsanteil und einen Fehlpassungsanteil zerlegt werden kann [82].

Die Modellierung der Energie der elastischen Verzerrung ist bereits Gegenstand des Peierls-

Nabarro Modells [83, 84], das in modernisierter Form auch heute noch als rechenzeitsparsame

Alternative zu aufwändigeren ab-initio Energierechnungen zur Anwendung kommt [82]. Dieser

elastische Anteil des Versetzungskerns liefert noch einmal ca. 1/6 der elastischen Energie im

Außenraum [70, 82] und hängt, wie diese, vom Versetzungscharakter ab. Auch hier ist die

Energie der Stufenversetzung höher als die der Schraubenversetzung. Die gesamte elastische

Verzerrungsenergie ist für Stufenversetzungen somit im Wesentlichen um den Faktor 1/(1 −

ν) ≃ 1.5 größer als die von Schraubenversetzungen und hängt in allen Fällen entscheidend

von der Länge des Burgers-Vektors ab.
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Abbildung 2.13: Dehnungen (links) und Spannungen (rechts) um die Versetzungslinie einer
Stufenversetzung. Die Versetzungslinie steht senkrecht auf der gezeigten x-
y-Ebene bzw. x1-x2-Ebene. Die Normale auf die Ebene ist die z- oder x3-
Richtung. Der Burgers-Vektor zeigt hier entlang der x- bzw. x1-Richtung
und die Versetzungslinie entlang der z- oder x3-Richtung.

Der zweite Anteil zur Energie des Versetzungskerns bezieht sich auf die Fehlpassung der

Versetzung in Relation zur Gleitebene und kann geschrieben werden als [82]

Wmisfit = ∫

∞

−∞
γ(δ⃗(x⃗))dx⃗. (2.107)
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Hier ist x⃗ eine Ortskoordinate, δ⃗(x⃗) die Verschiebung parallel zur Gleitebene und γ die

generalisierte Stapelfehlerenergie [85]. Letztere gibt die Exzessenergie pro Einheitsfläche an,

wenn man zwei benachbarte Gitterebenen trennt, um δ verschiebt und wieder verschweißt

[85]. Diese generalisierte Stapelfehlerenergie wird in der Literatur in der Regel als γ-Fläche

dargestellt, in der die γ-Werte für alle Verschiebungen δ in der Gleitebene dargestellt sind.

Aufgrund der Gitterperiodizität ist es ausreichend nur den nicht reduzierbaren Ausschnitt der

γ-Fläche darzustellen, was für {111} Gleitebenen eine Verschiebung von maximal 1/2[11̄0]

und 1/2[112̄] umfasst. Die Gesamtfläche ergibt sich dann aus periodischer Wiederholung

dieses Ausschnitts. Diese generalisierte Stapelfehlerenergie wird durch Computersimulationen

mit DFT (Density Functional Theory) oder Molecular Dynamic Simulationen berechnet [86,

87, 85, 88, 89]. Für Pd ist die γ-Fläche aus einer Molecular Dynamic Simulation mit LAMMPS

[90] unter Nutzung des EAM-Potentials13 aus [89] in Abb. 2.14 gezeigt.
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Abbildung 2.14: Darstellung der generalisierten Stapelfehlerenergie von Pd in Abhängigkeit
von Verschiebungen in [101] und [121]-Richtung aus einer Molecular Dyna-
mic Simulation mit dem EAM Potential aus [89]. Einige mögliche Burgesvek-
toren sind beispielhaft mit Pfeilen dargestellt, welche die lokalen Minima der
γ-Fläche miteinander verbinden. Der Index p kennzeichnet Burgersvektoren
partieller Versetzungen.

Die Fehlpassungsenergie aus Gleichung (2.107) entspricht somit dem Integral über die γ-

Fläche über die Ausdehnung des Versetzungskerns, also dem Bereich der Versetzung, in dem

13Embedded Atom Model
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die nicht-elastische Fehlpassung vorliegt. Die Minimierung des Funktionals der Gesamtenergie

der Versetzung

Wtot =Wel.,0 +Wmisfit
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Kern

+ Wel.,∞
´¹¹¹¹¹¸¹¹¹¹¹¶
Umgebung

, (2.108)

mit der elastischen und Fehlpassungsenergie des Kerns Wel.,0, Wmisfit und der elastischen

Verzerrungsenergie um die Versetzung Wel.,∞, liefert dann die Lage und Ausdehnung der

Versetzung im Gleichgewicht in der Gleitebene [91, 82]. Der Anteil der elastischen Energie

durch die Verzerrung um die Versetzung ist kontinuumsmechanisch gerechnet und liefert da-

her keinen Beitrag zur Bestimmung der Position der Versetzung. Daher resultiert die Position

allein aus der gitterperiodischen Natur der Kernenergie der Versetzung. Eine Verschiebung

der Versetzungslinie aus dieser Gleichgewichtslage bedingt eine Energieerhöhung der Verset-

zung, weshalb dazu eine Kraft, bzw. eine Scherspannung parallel zur Gleitebene aufgebracht

werden muss. Diese wird Peierls-Spannung σp genannt und entspricht näherungsweise [69]

σp =
2G

1 − ν
exp (−

2π

1 − ν

d

b
), (2.109)

wobei d der Abstand benachbarter Gleitebenen bezeichnet. Eine genauere Näherung für σp

ist in [82] durch

σp =
Gb

ā
(

sin2(θ)

1 − ν
+ cos2

(θ)) exp(−1.7
ζ

ā
) (2.110)

gegeben mit dem mittleren Abstand benachbarter Atome in Gleitrichtung ā, dem Winkel

zwischen Burgers-Vektor und Gleitrichtung θ und der Halbwertsbreite des Versetzungskerns

ζ.

Kräfte können auf Versetzungen ausgeübt werden, indem ihre Spannungs-/Dehnungsfelder

mit externen Spannungs-/Dehnungsfeldern interagieren. Findet eine Überlagerung derart

statt, dass sich Dehnungen/Spannungen gegenseitig aufheben, wird die elastische Energie des

Kristalls vermindert, was eine anziehende Kraft zwischen den Spannungs/Dehnungsquellen

erzeugt. Im umgekehrten Fall wird eine abstoßende Kraft erzeugt. Die externen Spannun-

gen und Dehnungen können durch von außen angelegte Kräfte verursacht werden, aber auch

durch Punktdefekte, Ober- bzw. Grenzflächen oder andere Versetzungen.

Für nanokristalline Materialien ist der Fall von Grenzflächen von besonderer Bedeutung, da

sich jede Versetzung zwangsläufig immer in der Nähe einer solchen befindet. Zunächst soll zur

Darstellung des Prinzips aber der Fall einer freien Oberfläche betrachtet werden. Spannungen

und Dehnungen können jenseits der freien Oberfläche mangels Material nicht existieren, wes-

halb diese, zusammen mit der elastischen Energie, dort verschwinden. Tritt nun ein Teil des

gedachten Spannungs-/Dehnungsfeldes einer Versetzung im unendlich ausgedehnten Kristall
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durch diese Oberfläche hindurch, wird ihre elastische Energie um die des hindurchgetrete-

nen Teiles verringert. Diese Absenkung der elastischen Energie erzeugt eine Kraft auf die

Versetzung in Richtung Oberfläche. Modellieren lässt sich das durch eine an der Oberfläche

gespiegelte, virtuelle Versetzung mit entgegengesetztem Richtungssinn der Versetzungslinie,

die entgegengesetzte Spannungs-/Dehnungsfelder erzeugt. Die Spannungs-/Dehnungsfelder

der realen Versetzung und die der Bildversetzung heben sich an der Oberfläche auf, und die

Kraft auf die Versetzung Richtung Oberfläche ist identisch zur Kraft zwischen Versetzung

und Bildversetzung. Die Kraft skaliert also mit dem Abstand zur Oberfläche x wie 1/x und

ist daher für Versetzungen in freien Nanopartikeln immer vergleichsweise hoch. Somit sollten

per Inert Gas Condensation (IGC) hergestellte Kristallite vor der Kompaktierung frei von

Versetzungen sein. Im Fall von Korngrenzen ist die Sachlage wesentlich komplexer. Einerseits

gibt es auch hier eine Energieabsenkung durch die größere elastische Nachgiebigkeit in den

Korngrenzen [6], andererseits kann der Kristallit jenseits der Korngrenze beliebig orientiert

sein, sodass durch die elastische Anisotropie die effektive Nachgiebigkeit für das Spannungs-

feld höher oder niedriger sein kann. Dadurch sind sowohl anziehende als auch abstoßende

Kräfte auf die Versetzung denkbar. Darüber hinaus gibt es weitere Komplikationen wie etwa

Verzerrungsfelder in Korngrenznähe von Nanokristalliten [92, 93, 94, 95, 96], Pinning der Ver-

setzung an Korngrenzen [97] oder die kontinuierliche Längenänderung der Versetzungslinie,

wenn sich eine Versetzung radial in einem kugelförmigen Kristall bewegt, die eine einfache,

allgemeingültige Aussage über die Interaktion von Versetzungen mit Korngrenzen unmöglich

machen.

Da die Energie einer Versetzung maßgeblich quadratisch von der Länge des Burgers-Vektors

abhängt, verursacht die Existenz/Bildung von Versetzungen mit dem kürzest möglichen

Burgers-Vektor den geringsten Energiezuwachs. Solche Versetzungen werden daher mit der

höchsten Wahrscheinlichkeit gebildet oder können, ohne äußere Einwirkung, dauerhaft im

Kristall verbleiben. Da der Burgers-Vektor einer vollständigen Versetzung immer ein Git-

tervektor ist, ist der kürzest mögliche Burgers-Vektor der Verbindungsvektor zu nächsten

Nachbaratomen vom Typ 1/2⟨110⟩ mit einer Länge von a/
√

2 [70, 98]. Diese stehen immer

senkrecht auf den Normalen von {111} Gleitebenen. Im fcc Gitter14 liegt aber eine ...ab...

Abfolge von zueinander verschobenen Ebenen in ⟨110⟩-Richtung vor, ähnlich der ...ABC...

Ebenenfolge in ⟨111⟩-Richtung. Betrachtet man die Ebenenfolge in [110]-Richtung, entspricht

der Burgers-Vektor in dieser Richtung von einer Ebene zur nächsten, also von a nach a, dem

primitiven Gittervektor a⃗1. Die übrigen primitiven Gittervektoren a⃗2 und a⃗3 beschreiben

dann den Übergang von a nach b, haben aber, im Unterschied zu a⃗1, eine Verschiebungskom-

ponente in ⟨111⟩-Richtung. Eine Stufenversetzung besteht in diesem Fall also nicht aus einer

einzelnen, zusätzlich eingeschobenen Ebene, sondern aus einem ...ab... Ebenenpaar. Genauso,

aber weniger anschaulich, umfasst auch die Relativverschiebung einer Schraubenversetzung

14oder allgemein in dichtest gepackten Gittern, also auch in hcp Gittern.
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2 Ebenen. Dieser Sachverhalt ist in Abb. 2.15 in Anlehnung an die Darstellung in [98] veran-

schaulicht.

A

B

C

Blickrichtung [111]

[112]

[110]

a

a

a

b

b

b

bp2

bp1

Blickrichtung [112]

[110]

[111] Gleitebene

a b a b a b a b a b a b a b a b a b a b a b a b a b a b

Stapelfehler

b

bp1 bp2

Abbildung 2.15: (links) Illustration zur ...ab... Abfolge der (110)-Ebenen in Anlehnung an
die Darstellung der Stapelfolge in [111]-Richtung (Blickrichtung). Zusätzlich
sind die Burgers-Vektoren einer vollständigen Versetzung, sowie die Auf-
spaltung in zwei Burgers-Vektoren von Partialversetzungen gezeigt. (rechts)
Seitenansicht der linken Darstellung. Auf die Darstellung von Einzelatomen
wurde zur besseren Übersichtlichkeit verzichtet. Außerdem ist eine Stufen-
versetzung auf einer Gleitebene und ihre Aufspaltung in zwei Partialverset-
zungen mit eingeschossenem Stapelfehler dargestellt. Darstellung in Anleh-
nung an [98]

Damit ist es möglich, diese Versetzung in zwei partielle Versetzungen aufzuspalten, die je-

weils nur eine Verschiebung auf eine der beiden Ebenen realisiert. Die partiellen Versetzun-

gen haben kürzere Burgers-Vektoren b⃗p1 und b⃗p2 in der {111}-Ebene vom Typ 1/6⟨2̄11⟩ mit

einer Länge von a/
√

6 für die gilt, dass b⃗p1 + b⃗p2 = b⃗. Diese Versetzungen werden Shockley-

Partialversetzungen (engl. Shockley partials) genannt. Ihre Burgers-Vektoren entsprechen

genau den Relativverschiebungen von aufeinander folgenden {111}-Ebenen (vgl. Gl. (2.14c)

- (2.14a)), sodass die {111}-Ebenenfolge zwischen partiellen Versetzungen von ...ABCABC...

zu ...ABCA;C;ABC... geändert ist, was gerade einen zweidimensionalen intrinsischen Stapel-

fehler darstellt.

Da die elastische Energie von Versetzungen proportional zur Länge des Burgers-Vektors ist,

ist die elastische Energie zweier Partialversetzungen W ∝ 2⋅a2/6 geringer als die Energie einer

vollständigen Versetzung W ∝ a2/2, was die Aufspaltung einer vollständigen Versetzung in

zwei Shockley Partialversetzungen begünstigt. Darüber hinaus ist die Energiebarriere in der

γ-Fläche (siehe Abb. 2.14) für Partialversetzungen kleiner als für vollständige Versetzungen,

was sowohl eine Verringerung ihrer Kernenergie, als auch eine niedrigere Aktivierungsbarriere

für Nukleation und Bewegung nach sich zieht. Die Interaktion der Spannungsfelder der beiden

Partialversetzungen resultiert in einer abstoßenden Kraft, welche die Versetzungen auf ihrer

gemeinsamen Gleitebene auseinander treibt. Andererseits führt der zwischen den beiden Par-

tialversetzungen gebildete Stapelfehler zu einer Energieerhöhung dW = γdA, was wiederum

eine abstandsunabhängige anziehende Kraft zwischen den Partialversetzungen erzeugt.
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Dadurch stellt sich ein Gleichgewichtsabstand δ0 ein, der näherungsweise durch

δ0 =
Gb2

4πγ
(2.111)

beschrieben wird [70]. Für Palladium ergibt sich damit ein Partialversetzungsabstand von

δ0 ≈ 0.39 nm ≈ a bis δ0 ≈ 0.55 nm ≈ 1.5a, je nach Literaturwert für die Stapelfehlerenergie von

Pd [86, 87, 99, 100, 101]. Diese Abschätzung ist nur für spannungsfreie Kristallite gültig und

berücksichtigt keine Effekte von Oberflächen/Grenzflächen, die über Bildkräfte δ0 vergrößern

könnten, oder die Partialversetzungen komplett in Korngrenzen ziehen und absorbieren, was

Stapelfehler über die komplette Schnittfläche von Körnern zurücklassen könnte [102, 103, 104].

Darüber hinaus gibt es eine zweite Art von Partialversetzungen, die Frank-Partialversetzung

(engl. Frank partials) [105, 70], mit Burgers-Vektoren der Form 1/3⟨111⟩. Sie beranden Sta-

pelfehler, die durch Agglomeration von Leerstellen in einer {111}-Ebene (intrinsischer Sta-

pelfehler) oder Agglomeration von interstitiellen Atomen (extrinsischer Stapelfehler) gebil-

det wurden. In Metallen mit hoher Stapelfehlerenergie, wie etwa Pd, werden diese Gitter-

fehler jedoch in der Regel über ein Zusammenspiel von Shockley Partialversetzungen und

vollständigen Versetzungen abgebaut [70].

2.4.3 Stapelfehler und Zwillingsgrenzen

Blickrichtung [110][112]

[111]

intrinsischer
Stapelfehler

extrinsischer
Stapelfehler

Zwilling
perfekte
Stapelfolge

A
B

C
A
B

C
A
B

A
B

C
B
C

A
B
C

A
B

C

A
B

C

B

A

A
B

C
A

B
C

A
C

Abbildung 2.16: Illustration zu intrinsischen und extrinsischen Stapelfehlern, sowie zu Zwil-
lingsgrenzen.

Kubisch-flächenzentrierte und hexagonale Kristallgitter besitzen dichtest gepackte Ebenen,

deren Staplung den gesamten Kristall aufbauen. Für fcc Kristalle sind das die {111}-Ebenen,

die in drei aufeinander folgenden Lagen um 1/3⟨111⟩ in Normalenrichtung zueinander ver-

schoben sind. Die drei Lagen A, B und C unterscheiden sich jeweils durch Verschiebungen um

1/6⟨211⟩ relativ zueinander in den {111}-Ebenen. Eine Störung dieser Abfolge ...ABCABC...

wird Stapelfehler genannt und entsteht durch Partialversetzungen (siehe Kapitel 2.4.2), Anla-

gerungen von Leerstellen oder Zwischengitteratomen durch Diffusionsprozesse, oder während
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dem Kristallwachstum [70, 42, 69]. Stapelfehler können in intrinsische und extrinsische unter-

schieden werden. Beim intrinsischen Stapelfehler wird eine Ebene aus der Abfolge entfernt,

sodass sich die Abfolge zu ...ABC;BCA... ändert, beim extrinsischen Stapelfehler tritt eine

Ebene hinzu (...ABC;B;ABC...). Beides ist in Abb. 2.16 dargestellt.

Durch diese Änderung wird in fcc Kristallen eine Kristalllamelle mit hexagonaler Struktur

erzeugt, in der äquivalente Ebenen nur durch eine Zwischenebene voneinander getrennt sind

(...ABABAB...). Das führt zu eine Erhöhung der potentiellen Energie des Kristalls propor-

tional zur Fläche des Stapelfehlers. Dieser Energiezuwachs ist abhängig vom Material und

reicht von wenigen 10 mJ/m2 (z.B. Ag, Au, Cu [100, 87], bis zu einigen 100 mJ/m2 (z.B.

Ir, Pt [100, 87]). Im Fall von Palladium finden man in der Literatur intrinsische Stapel-

fehlerenergien von 161 mJ/m2[87, 106], 180 mJ/m2 [101, 107, 108, 99], 220 mJ/m2 [86] und

226 mJ/m2 [87] Die Stapelfehlerenergien von extrinsischen Stapelfehlern unterscheiden sich

nicht wesentlich von den intrinsischen, zumal die berichteten Abweichungen zwischen beiden

Typen oft geringer sind als die Unterschiede zwischen den intrinsischen Stapelfehlerenergien

aus unterschiedlichen Quellen.

Eine Generalisierung der Stapelfehlerenergie führt zu der bereits oben dargestellten γ-Fläche

[85], welche die Exzessenergie pro Einheitsfläche für beliebige Relativverschiebungen von 2

benachbarten Ebenen angibt15. Die Maxima der Fläche (siehe Abb. 2.14) entsprechen be-

nachbarten Ebenen vom gleichen Typ wie z.B. ...AA... und haben daher außerordentlich

hohe Energien. Die Minima in den Ecken repräsentieren die ungestörte Konfiguration (...AB-

CABC...), die Aufgrund der Translationsinvarianz gegenüber (primitiven) Gittervektoren

äquivalent sind und den exzessenergiefreien Grundzustand darstellen. Die restlichen Minima

der Fläche entsprechen dann den intrinsischen und extrinsischen Stapelfehlern. Die Höhen

niedrigster Energiebarrieren, die beim Übergang zwischen diesen stabilen Konfigurationen

überwunden werden müssen, entsprechen den instabilen Stapelfehlerenergien und betragen

für Palladium ca. 300 mJ/m2 [100, 99]. Stapelfehler, die innerhalb eines Kristalls enden, wer-

den von Partialversetzungen berandet (siehe vorherigen Abschnitt) andernfalls durch Ober-

bzw. Grenzflächen des Kristalls.

Die Stapelfehlerenergie von PdAu ist aufgrund der niedrigeren Stapelfehlerenergie von Gold

im Vergleich zu Palladium erniedrigt. Die Ergebnisse aus [99] zeigen für die hier untersuchten

Legierungen (cAu zwischen 10 at.% und 20 at.%) eine Absenkung auf ca. 78 % der Stapel-

fehlerenergie von Palladium, was einem Bereich von 125 mJ/m2 bis 176 mJ/m2 entspricht.

Im Gegenzug dazu sind die instabilen Stapelfehlerenergien in diesem Konzentrationsbereich

nahezu unverändert und steigen bei höheren Goldkonzentrationen sogar leicht an.

Ein Spezialfall der Änderung der Stapelfolge im Kristall ist der Zwilling, der eine Spiegel-

ebene für die Stapelfolge darstellt (... ABC;BAC...) und für beide Kristallhälften jeweils

keine Störung des Gitters darstellt. Die Exzessenergie eines Zwillings ist dadurch signifikant

15Die zugrundeliegende Rechnung erstreckt sich notwendigerweise immer über mehrere nächste Nachbarscha-
len und umfasst somit mehrere Ebenen oberhalb und unterhalb der zueinander verschobenen Ebenen[85].
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geringer als für Stapelfehler und beträgt in der Regel nur ca. die Hälfte der Exzessenergie

eines Stapelfehlers [107, 101]; für Pd liegen die Werte für Zwillingsenergien bei 76 mJ/m2 bis

106 mJ/m2 [87, 101]. In einer groben Näherung kann man die Ursache bereits in Abb. 2.16

erkennen: Für Stapelfehler existieren immer zwei Ebenenpaare äquivalenter Ebenen, die durch

lediglich eine Zwischenebene getrennt sind; beim Zwilling ist es lediglich ein Ebenenpaar.

Bei genauer Betrachtung verschwimmt beim Zwilling die Grenze zwischen Fehler in der Sta-

pelfolge und Korngrenze, einem weiteren Typ eines zweidimensionalen Gitterdefektes, der

unterschiedliche Kristallite voneinander abgrenzt. Man kann die Zwillingsgrenze als Korn-

grenze auffassen, wenn man die Kristallhälften oberhalb und unterhalb der Spiegelebene als

eigenständige Kristallite betrachtet.

2.4.4 Korngrenzen

Verschiedene Kristallite im Polykristall werden als Körner bezeichnet und unterscheiden sich

von ihren Nachbarkörnern durch unterschiedliche Ausrichtungen ihrer Gitter. Das wird durch

Misorientierung und Relativverschiebung bestimmt [69]. Die Misorientierung zweier Körner

kann durch die räumliche Rotation beschrieben werden, die das Gitter des einen Korns in

das des andern überführt, wenn man die Ursprünge beider Gitter übereinander legt. Diese

Drehung kann z.B. durch Angabe der drei Eulerwinkel, durch Angabe einer Drehachse (2

Parameter) und Kippwinkel um die Drehachse (+1 Parameter) oder durch Einheitsquarter-

nionen beschrieben werden. Nutzt man die Darstellung über eine Drehachse und den Kipp-

winkel ψ, so nennt man ψ auch Misorientierungswinkel, der in kubischen Gittern aufgrund

der Symmetrie auf das Intervall [0○,62.8○] beschränkt werden kann [109]. Mackenzie hat

für die Wahrscheinlichkeitsverteilung des Misorientierungswinkels zwischen kubischen Kris-

tallen16 in [109] einen analytischen Ausdruck abgeleitet, der seither als Mackenzie-Verteilung

bekannt ist und der typische Verteilung von Misorientierungswinkeln in texturfreien poly-

kristallinen Materialien entspricht. Der Nachweis einer Mackenzie-Verteilung wird daher oft

als Beleg für Texturfreiheit und zufälliger Orientierungsverteilung der Kristallite herangezo-

gen; das ist typischerweise für IGC Nanomaterialien der Fall [53]. Allerdings beschreibt der

Misorientierungswinkel allein, ohne Angabe der Drehachse, keine eindeutige Misorientierung

der beiden Gitter17 und ist daher in vielen Fällen keine ausreichende Koordinate für die Be-

schreibung von Grenzflächeneigenschaften (Exzessenergie, Mobilität, ...). Neben der reinen

Rotation, können beide Gitter zusätzlich relativ zueinander verschoben sein. Daher ist erst

durch Angabe der 6 Parameter zur relativen Rotation und Translation zweier Körnern der

Unterschied in Orientierung und Lage ihrer Gitter vollkommen beschrieben.

Für bestimmte Orientierungsbeziehungen zwischen zwei Gittern mit gemeinsamem Ursprung,

kommt es zu Überlappungen von Gitterpunkten der beiden Gitter, die Koinzidenzpunkte

16Eigentlich sogar allgemein für kubische Objekte.
17Besonders ausgeprägt für ψ ≈ 45○.
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genannt werden [69]. Aufgrund der Gittersymmetrie formen diese Koinzidenzpunkte eben-

falls ein Gitter, das Koinzidenzgitter (engl. coincidence site lattice, CSL) genannt wird (vgl.

Abb. 2.17) und aus größeren Einheitszellen als die ursprünglichen Gitter aufgebaut ist [69,

110]. Die Dichte der Koinzidenzgitterpunkte relativ zu jener der ursprünglichen Gitterpunk-

ten, ist äquivalent zum Volumen der Einheitszelle des CSL (VCSL) relativ zu dem der Ein-

heitszelle des Ursprungsgitters Va und definiert das Maß Σ mit

Σ =
VCSL
Va

. (2.112)

Fasst man das Kristallgitter oberhalb und unterhalb einer Zwillingsgrenze als zwei getrennte

Gitter auf, sieht man anhand Abb. 2.16, dass hier die A-Ebenen in beiden Gittern an den

korrekten Positionen sind, also jeder dritten Ebene, und damit ein Σ = 3 CSL vorliegt. In

diesem Fall sitzen alle Atome der A-Ebenen auf Koinzidenzplätzen. Genauso gut könnte auch

eine B- oder C-Ebene die Spiegelebene und damit die Koinzidenzplätze darstellen.

Tatsächlich ist das nur ein Beispiel für die allgemeine Eigenschaft, dass die Koinzidenzpunkte

des CSL, bei gegebener Misorientierung, durch jeden Gitterpunkt der beiden Kristallgitter

dargestellt werden können. Genauer gesagt gibt es für den Fall Σ = X genau X alternati-

ve Darstellungen des CSL, die durch Relativverschiebungen der Gitter zueinander erzeugt

werden können. Die kürzest möglichen Verschiebungsvektoren sind die, die innerhalb der

Einheitszelle des CSL die Gitterpunkte des ersten Gitters auf ihren nächsten Nachbar des

zweiten Gitters abbilden. Diese Vektoren sind Gittervektoren des gröbsten möglichen Git-

ters, das beide Kristallgitter als Untergitter beinhaltet und DSC-Gitter (displacement shift

complete) genannt wird (siehe Abb. 2.17 A). Im 2d Beispiel von Abb. 2.17 wird dieses Gitter

durch die Gittervektoren d⃗x und d⃗y aufgespannt. Im Gegensatz zu den bisher betrachteten

Gittern, besitzt dieses unbesetzte Gitterpunkte, führt jedoch bei Verschiebungen um belie-

bige DSC Gittervektoren zu einer verschobenen Reproduktion des CSL. Genau genommen

stammt das DSC Gitter von den Ergebnissen der O-Gitter Theorie von Bollmann [111] ab,

auf die an dieser Stelle aber nicht eingegangen wird.

In der Realität können sich die Gitter benachbarter Körner natürlich nicht gegenseitig durch-

dringen, sodass es Flächen geben muss, die benachbarte aber unterschiedlich orientierte Gitter

voneinander abgrenzen. Diese Flächen werden Korngrenzen genannt. Sie stellen eine flächige

Störung der Gitterordnung dar, da an ihnen der Übergang von einer Orientierung zur anderen

(gegebenenfalls mit Verschiebung) erfolgt und zählen damit zu den 2d Gitterdefekten. Die

Gestalt der Korngrenze ist abhängig von ihrer Orientierung relativ zu den angrenzenden Git-

tern und wird durch ihren Normalenvektor festgelegt. Da die Länge dieses Normalenvektor

nicht von Bedeutung ist, kann er durch nur zwei Parameter beschrieben werden (z.B. zwei

Winkel in orthogonalen Richtungen) [69]. Insgesamt sind für die Beschreibung einer Korn-

grenze mindestens 8 Parameter notwendig, zwei um die Orientierung der Korngrenzebene

festzulegen und sechs zur Beschreibung der Beziehung zwischen den angrenzenden Gittern.
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Abbildung 2.17: Illustration zu DSC- und CSL-Gittern, sowie zu Koinzidenzkorngrenzen.
Darstellung in Anlehnung an [69] und [112].

Die Linien, an denen sich drei Korngrenzen treffen, werden als Tripellinien bezeichnet und

die Punkte, an denen sich vier Korngrenzen treffen, als Quadrupelpunkte.

Wenn beide Gitter gerade so orientiert sind, dass sie ein CSL ausbilden, wird die Korngrenze

durch die Koinzidenzpunkte zwischen ihnen als ΣX Koinzidenzkorngrenze bezeichnet, wobei

X dem Σ Wert nach Gl. (2.112) entspricht (siehe Abb. 2.17 B für Σ = 5). Die Atome an den

Koinzidenzpunkten stellen also eigentlich keine Störung der Kristallgitter dar. Allerdings ist

die Periodizität normal zu Korngrenze gestört, sodass die Atome außerhalb der Korngrenze

nicht auf Gitterplätzen des jeweils anderen Gitters sitzen, was zu einer Erhöhung der poten-

tiellen, und damit Gibbs-Energie ∆G, des Polykristalls relativ zu der eines Einkristalls führt.

Bezogen auf die Fläche der Korngrenze A erhält man so die Exzessenergie der Korngrenze

γ = ∂G/∂A = ∆G/A (T,P,N = konstant). Koinzidenzkorngrenzen entsprechen den lokalen

Energieminima [113]. Die Gibbs Energie G im vorangegangen Ausdruck bezieht sich auf die

Gesamtenergie des Polykristalls, im Unterschied zu ∆G, wodurch nur die Exzessenergie der
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Korngrenze beschrieben wird. Eine Abweichung in Lage oder Orientierung der Korngrenzen

vom Koinzidenzfall führen in der Regel zu erhöhten Werten für γ.

Da an der Grenzfläche gerade beide Gitter überlappen, können hier und nur hier Verschie-

bungen um Gittervektoren des DSC-Gitters realisiert werden, die genau wie Verschiebungen

im Kristallgitter durch Versetzungen erfolgen. Für diese sekundären Korngrenzenversetzun-

gen, deren Burgers-Vektoren Gittervektoren des DSC Gitters sind (siehe Abb. 2.17 C und

D), gelten alle oben getroffenen Aussagen zu Gitterversetzungen in analoger Weise [113]; al-

so insbesondere auch, dass die elastische Energie der Versetzung proportional zu b2 ist. Die

Energie einer Korngrenzenversetzung ist also in der Regel geringer als die einer normalen

Versetzung oder einer partiellen Versetzung.

Um die Gesamtenergie des Systems zu minimieren, ist es in der Regel günstig, eine Stufe in

Richtung der Korngrenzennormalen am Ort der Versetzung einzubauen, sodass der Verlauf

der Korngrenzen möglichst entlang von Koinzidenzpunkten verläuft (siehe Abb. 2.17 D). Diese

Kombination aus Korngrenzenversetzung und Stufe mit Stufenhöhe hj bildet den auf Korn-

grenzen beschränkte Liniendefekt, der Disconnection genannt wird [112] und durch Burgers-

Vektor und Stufenhöhe (b⃗,hj) charakterisiert ist. Hier sind prinzipiell auch Burgers-Vektoren

der Länge null zulässig (siehe Abb. 2.17 B). Die möglichen Stufenhöhen und ihre Quantelung

hängen von dem Burgers-Vektor der zugehörigen Versetzung ab [112], sie sind jedoch nicht

eindeutig über den Burgers-Vektor bestimmt. Die Energie der Disconnection skaliert aber

mit der Stufenhöhe, sodass in der Praxis nur kleine Stufenhöhen in der Größenordnung von

DSC Gittervektoren relevant sein dürften [112]. Der Extremfall hiervon sind Disconnections

mit Stufenhöhe null, die identisch zu reinen sekundären Korngrenzenversetzungen sind.

Mit hoher Wahrscheinlichkeit sind angrenzende Kristallite aber nicht so orientiert, dass sie

ein gemeinsames CSL ausbilden. Dieser Fall kann durch das near CSL Modell behandelt wer-

den [113]. Hier wählt man als Referenz die nächstliegende Orientierung beider Kristallite,

die ein CSL bilden, und biegt sie durch eine elastische Verformung entlang der Korngrenze

wieder in ihre ursprüngliche Lage zurück, wodurch entlang der Korngrenze ein langreichwei-

tiges Spannungsfeld entsteht, welches eine entsprechende Erhöhung der potentiellen Energie

der Kristalle bewirkt. Entlang der Grenze werden nun Versetzungen oder Disklinationen

derart eingebaut, dass sie dieses Spannungsfeld mit ihrem eigenen überlagern und dadurch

abschirmen, wodurch die Verzerrungsenergie im Kristall größtenteils wieder abgebaut wird.

Die Gleichgewichtskonzentration von Korngrenzenversetzungen, welche die Gesamtenergie

der Grenzfläche und der angrenzenden Kristalle minimiert, ist grundlegend von der Abwei-

chung zur nächsten CSL Konfiguration abhängig und kann über die Frank-Bilby Gleichung

bestimmt werden [113].
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Kleinwinkelkorngrenzen, die kleine Misorientierungswinkel von maximal 15 ○ besitzen [113],

haben in den meisten Fällen als Referenz-CSL den Einkristall (Σ = 1), sodass ihr DSC-

Gitter dem normalen Kristallgitter entspricht und die Korngrenzenversetzungen damit un-

unterscheidbar von normalen Gitterversetzungen entlang der Korngrenzen sind (vgl. Abb

2.18).

Abbildung 2.18: Illustration einer aus Gitterversetzungen aufgebauten Kleinwinkelkorngren-
zen. Darstellung in Anlehnung an [69], entnommen aus [31].

Genau wie normale Gitterversetzungen mit partiellen Versetzungen interagieren können, ist

auch eine Interaktion von sekundären Korngrenzenversetzungen, und damit auch Disconnecti-

ons, mit den beiden vorher genannten Gitterversetzungen möglich. Das heißt, dass Korngren-

zen prinzipiell in der Lage sind, Gitterversetzungen zu absorbieren und in Korngrenzenverset-

zungen umzuwandeln und umgekehrt [113]. Durch diesen Prozess können in der Korngrenze

mehr oder weniger Korngrenzenversetzungen vorhanden sein, als im Gleichgewicht notwendig

sind, wodurch die Abschirmung des langreichweitigen Spannungsfelds nicht mehr vollständig

gegeben ist [113]. Diese zusätzlichen oder fehlenden Versetzungen, die durch den Austausch

mit dem angrenzenden Kristall verursacht werden, werden als extrinsische Versetzungen be-

zeichnet; die Korngrenzenversetzungen, die im Gleichgewicht vorhanden sind, werden kon-

sequenterweise intrinsische Versetzungen genannt. Allerdings entspricht eine Änderung der

Orientierung der Korngrenze einer Änderung der Gleichgewichtskonzentration von Korngren-

zenversetzungen, sodass sich die Korngrenze durch leichtes Verkippen dem neuen Versetzungs-

gehalt anpassen kann.

Erfolgt die Wechselwirkung von Gitterversetzungen und Korngrenze nur lokal beschränkt, ist

eine lokale Verkippung der Korngrenze möglich. Der verkippte Bereich wird vom unverkippten

durch einen Liniendefekt abgegrenzt, der Disklination genannt wird. Dabei handelt es sich

um den analogen Effekt zur Versetzung, der statt durch eine (Relativ-)Verschiebung durch

eine (Relativ-)Rotation gebildet wird. Wie Versetzungen, so verursachen auch Disklinationen

komplizierte dreidimensionale Spannungs- und Dehnungsfelder in ihrer Umgebung.

Bei einer lokal beschränkten Änderung des Misorientierungswinkels der Korngrenze existiert

zu jedem Disklinationssegment ein entsprechend entgegengesetzt gerichtetes Segment, so dass
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außerhalb der Verkippung der ursprüngliche Misorientierungswinkel erhalten bleibt. In die-

sem Fällen liegen Disklinationsdipole vor, die in nanokristallinen Materialien auch durch

Korngrenzengleiten oder Coupling (siehe Kapitel 2.6.3) in der Nähe von Tripellinien gebil-

det werden können [114, 115]. Bei Interaktionen mit Versetzungen wurde die Bildung von

Disklinationsdipolen ausführlich in [116] untersucht.

Die tatsächliche Struktur von Korngrenzen ist durch die vom System angestrebte, lokale Mini-

mierung von Exzessvolumen und Maximierung der Koordinationszahl im Detail jedoch noch

viel komplizierter und oft nur durch Computersimulationen zugänglich [113]. Beispiele dafür

sind die Relaxation der Positionen von Korngrenzenversetzungen, (lokale) Translationen ent-

lang der Grenzflächen, unkorrelierte Verschiebungen einzelner Atome oder die Ausdehnung

der Korngrenze normal zur Grenzfläche. Letzteres beschreibt den Befund, dass Großwinkel-

korngrenzen im Gleichgewicht eine Ausdehnung normal zur Grenzfläche aufweisen, die vom

mittleren Ebenenabstand der angrenzenden Kristallite abweicht und so eine lokale Absen-

kung der Dichte des Kristalls darstellen [113]; die Größe dieses Effektes ist abhängig von

der Orientierung der beiden angrenzenden Kristallite. Das dadurch erzeugte, zusätzliche freie

Volumen wird als Exzessvolumen bezeichnet und oft durch eine Exzesslänge entlang der

Korngrenzennormalen charakterisiert, die der Aufweitung der Korngrenze entspricht. Diese

Korngrenzenaufweitung liegt in der Größenordnung einiger 1 ⋅ 10−11 m [117] und wurde z.B.

für eine nanokristalline Pd Probe (Herstellung Inert Gas Condensation) auf 2.3 ⋅10−11 m [118]

und für eine ultrafeinkörnige Ni Probe (HPT) auf 3.2 ⋅10−11 m bis 3.5 ⋅10−11 m bestimmt [117].

Speziell im Hinblick auf nanokristalline Materialien, sind noch zwei Besonderheiten zu beach-

ten. Zum einen stellt der Einbau von Versetzungen in Korngrenzen und die damit verbundene

Abschirmung des langreichweitigen Spannungsfeldes der Korngrenzen eine Energieminimie-

rung des Gesamtsystems dar. Wenn die Ausdehnung der kristallinen Bereiche so klein ist,

dass die Energie des Verzerrungsfeldes kleiner ist als die Energie, die durch die Versetzung in

das System eingebracht wird, stellt der Einbau der Versetzung keine Absenkung der Gesam-

tenergie mehr dar; es existiert also eine kritische Dicke des Kristalls, ab der ein Einbau von

Korngrenzenversetzung überhaupt erst günstig ist. Unterhalb davon bleibt das langreichwei-

tige Spannungsfeld der Korngrenze bestehen [113]. Ein Kriterium für diese kritische Dicke ist

selbst für ebene Korngrenzen nicht einfach herzuleiten [113], und wird für den komplizierteren

Fall von annähernd ellipsoiden Berandungen, wie sie im Fall von nanokristallinen Materialien

vorliegen, selbst in [113] komplett ausgelassen.

Der zweite Punkt ist der, dass viele Betrachtungen von Korngrenzen darauf beruhen, dass es

sich um ebene Grenzen zwischen zwei halbunendlichen Kristallen handelt, die ihre Energie

minimieren können und sich damit im Gleichgewicht befinden. Speziell in den hier unter-

suchten nanokristallinen Materialien ist, aufgrund der dreidimensionalen gegenseitigen Ein-

spannung und Fehlpassung der Kristallite untereinander, davon auszugehen, dass bei der

Kompaktierung interne Spannungen entstehen und die Energieminimierung des Gesamtsys-

tems zu anderen Konfigurationen der Korngrenzen führen wird. In Abgrenzung zu den zuvor
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genannten, werden diese Korngrenzen als Nichtgleichgewichtskorngrenzen bezeichnet. Auch

hier lassen sich a priori keine einfachen Aussagen zu langreichweitigen Spannungsfeldern oder

Versetzungsgehalt der Korngrenzen mehr treffen.

In dieser Situation liefern Computersimulationen weitere Einsichten zu diesen komplexeren

Fällen. So haben schon zuvor erwähnte Simulationen Verzerrungsfelder durch Korngrenzen

in Pd Nanokristalliten nachgewiesen [92, 93, 94, 95, 96], die im Detail sehr komplex sind,

sich aber in allen Fällen auf einen Abfall der mittleren Verzerrung von der Korngrenze in

Richtung Kornmittelpunkt reduzieren ließen. In [92] wurde diese Verzerrung durch das Maß

δ =
√

1/3 (ε2
I + ε

2
II + ε

2
III) quantifiziert, in [93, 94, 95, 96] erfolgte darüber hinaus eine Unter-

teilung in Volumen- und Scherdehnung. Außerdem wurde in [92] gezeigt, dass das Ausmaß

der Verzerrung und die Art des Abfalls abhängig von dem Durchmesser des Kristalliten sind.

Streng genommen wurde aber in diesen Studien die Fehlpassung der Kristallite, wie sie in

der Realität vorliegt, nicht vollumfänglich berücksichtigt, da die einzelnen Kristallite in den

Simulationszellen formschlüssig erzeugt wurden. In realen Proben ist daher ein zusätzlich

überlagertes, fehlpassungsabhängiges Spannungsfeld im Kristalliten zu erwarten.

Korngrenzen im Gleichgewicht mit ihren angrenzenden Kristalliten können thermodynamisch

bezüglich γ ähnlich wie Gleichgewichtsphasen bezüglichG beschrieben werden. In Unterschied

zu dreidimensionalen Phasen, die der Gibbs’schen Phasendefinition entsprechen [119], können

Korngrenzen inhomogen sein, Gradienten in Struktur, Zusammensetzung und anderen Eigen-

schaften aufweisen und vor allem nicht ohne ihre angrenzenden Kristallite existieren [120].

Daher wurde für Korngrenzen der Begriff Complexion eingeführt [121], der eine Korngrenze

in thermodynamischem Gleichgewicht mit ihren angrenzenden Kristalliten bezeichnet, die

eine stabile, definierte Dicke aufweist.

Verschiedene Complexions können sich durch unterschiedliche Facettierung der Korngrenze,

durch unterschiedliche Struktur und Dicke des Korngrenzenkernbereichs oder durch Dissozia-

tion der Korngrenze voneinander unterscheiden. Im Fall von mehrkomponentigen Systemen

kommen dazu noch verschiedene chemische oder strukturelle Ordnungen der Atomsorten im

Kernbereich der Korngrenzen [120]. Die Stabilität einer Complexion hängt vom thermody-

namischen Zustand des Systems bezüglich Temperatur, Druck bzw. Spannungszustand, che-

mischer Zusammensetzung und, speziell bei Korngrenzen, Gittermissoirentierung und Korn-

grenzenorientierung genau in der gleichen Art ab, wie es bei herkömmliche Phasen der Fall

ist; es ist also immer die Complexion stabil, die für diesen Zustand das niedrigste γ realisiert.

Der Wechsel von einer Complexion zur anderen bei kontinuierlicher Änderung des Zustandes

des Systems kann, genau wie bei Phasen, abrupt (Übergang 1. Ordnung) oder kontinuierlich

(Übergang 2. Ordnung) erfolgen.

In diesem Sinne können die Nichtgleichgewichtskorngrenzen in nanokristallinen Materialien

als eine Complexion in Anwesenheit von inhomogenen Spannungszuständen, bzw. der spezi-

ellen Gegebenheiten dieses Zustands, aufgefasst werden, die sich von vollständig relaxierten

Gleichgewichtskorngrenzen im spannungsfreien Referenzfall strukturell und energetisch un-

terscheiden.
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2.4.5 Poren

Poren sind abgeschlossene Volumen innerhalb des Polykristalls, die frei vom Material des

Polykristalls sind. Sie werden von freien Oberflächen innerhalb des Materials berandet, die

näherungsweise die doppelte Flächenenergie γS von Korngrenzen besitzen; im Fall von Pd

beträgt sie 1.88 J/m2 für {111} Oberflächen und 1.90 J/m2 für {100} Oberflächen [122]. Eine

mögliche Verminderung der Grenzflächenenergie durch eine Dehnung, sei es durch Abbau

von Grenzfläche oder durch Absenkung von γS , erzeugt eine Grenzflächenspannung σS an

der Oberfläche der Pore, die in Anlehnung an Gl. (2.42)

σSij =
1

V

d(γSA)

dεij
(2.113)

=
1

V
(
A∂γS
∂εij

+
γS∂A

∂εij
)

entspricht. Der erste Term beschreibt die Grenzflächenspannung in Festkörpern bei konstan-

tem Flächeninhalt der Grenzflächen [123, 124] und der zweite ist identisch zu dem Ansatz,

der für Flüssigkeiten auf die Young-Laplace Gleichung führt. Da es sich bei der Oberfläche

der Pore um eine mathematische Fläche handelt, können Spannungs- und Dehnungstensor

auf zweidimensionale Oberflächentensoren reduziert werden, die dafür aber im krummlini-

gen Koordinatensystem der Oberfläche definiert sind [123, 124]; hier wird darauf verzichtet.

Zwischen Grenzflächenspannung σS und angrenzenden Kristalliten herrscht ein mechanisches

Gleichgewicht, sodass sich in diesen Kristalliten ein entsprechender Dehnungszustand einstel-

len muss, der die Wirkung der Oberflächenspannung kompensiert. Im Mittel bildet sich eine

solche Dehnung aus, dass die Pore zur Minderung der Grenzfläche möglichst komprimiert

wird, wodurch die angrenzenden Kristallite in Richtung der Pore expandiert werden. Dies ist

ein Spannungs-/Dehnungszustand, der aufgrund der elastischen Anisotropie der Kristallite

und der Abhängigkeit von γS von der Orientierung und Dehnung des angrenzenden Kris-

talls sehr komplex sein kann. Trotzdem muss auch hier der Beitrag des zweiten Terms in

Gl. (2.113) zur Spannung, wie in der Young-Laplace Gleichung, für eine kugelförmige Pore

mit Radius r näherungsweise wie 1/r skalieren.

Im Fall von sehr kleinen Poren, mit Ausdehnungen von wenigen Atomdurchmessern, muss

darüber hinaus ein Übergang von freier Oberfläche zu inneren Grenzflächen mit entsprechen-

der Absenkung von γS → γGB stattfinden. Aus Gl. (2.113) folgt dann unmittelbar, dass für

kleine r der Spannungsanstieg noch stärker als 1/r sein muss. Für sehr kleine Poren ist da-

her zu erwarten, dass die Spannung höher ist, als die für plastische Verformung notwendige

Grenzsspannung, sodass diese kleinsten Poren durch plastische Verformung abgebaut werden.

In nanokristallinen Metallen sind nach der Herstellung in der Regel bei allen Herstellungsme-

thoden Poren enthalten. Laut Literatur teilweise auch dann, wenn die Proben über Dichtemes-

sung als 100% dicht identifiziert wurden [6, 16, 125, 126, 127, 14, 128, 129, 130]; in letzterem

Fall wird jedoch von dem Spezialfall sehr kleiner Nanoporen mit Ausdehnungen von unter
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2 nm berichtet, die äquivalent zu einer Ansammlung von einigen zehn Gitterleerstellen sind

[14, 129]. An dieser Stelle muss jedoch kritisch angemerkt werden, dass eine exakte Trennung

zwischen Nanoporosität und Exzessvolumen in/an Korngrenzen in der Regel an der man-

gelnden Trennschärfe gängiger Messmethoden (z.B. Dilatometrie, Positronen-Annihilation)

scheitert. Im Grenzfall ist es abhängig von der Interpretation des Autors und dem verwende-

ten Modell, ob das freie Volumen als kleinste Nanoporen oder Exzessvolumen in Korngrenzen

identifiziert wird. Diese Beurteilung kann auch unter Berücksichtigung der Eigenheiten des

Herstellungsprozesses (SPD, IGC, ED ) unterschiedlich erfolgen.

Computersimulationen an nanokristallinem Pd haben jedoch gezeigt, dass kleinste Poren

(≈ 1 nm) vor allem im Bereich der Korngrenzen instabil sind und von diesen bereits inner-

halb von simulationstypisch sehr kurzen Zeiten absorbiert werden. Größere Poren (⪆ 3 nm) in

Korngrenzennähe schrumpfen nach ihrer Erzeugung signifikant, indem sie zusätzliches freies

Volumen in die Korngrenzen einbringen [128]. Außerdem ergaben SANS-Messungen an na-

nokristallinem Pd, dass die Porengröße etwa der Korngröße entspricht und einer ähnlichen

Verteilung folgt [126].

Sowohl im Experiment [126] als auch in der Simulation [128] hat die Porosität P nahezu

keinen Einfluss auf die makroskopische Poissonzahl, führt jedoch zu einer Absenkung des

E-Moduls gegenüber dem des porenfreien Materials E0, die über die empirische Beziehung

aus [131]

E = E0 exp (−βP ) (2.114)

mit einem Fitparameter β von 2.8 (Simulation) bzw. 2.4 (Experiment) beschrieben wurde.

Eine elementarere, kontinuumsmechanische Behandlung des Problems als isotrop elastische

Matrix18 mit einem geringen Volumenanteil von sphärischen Poren ergibt für den E-Modul

in Reuss- bzw. Voigt-Näherung die Ausdrücke [132]

E = E0(1 − 3P ) (Reuss) (2.115)

E = E0
1

(1 + 3P )
(Voigt), (2.116)

die zusammen mit den Ergebnissen aus Gl. (2.114) in Abb. 2.19 gezeigt sind. Die Reuss-

Näherung ist in dem dargestellten Porositätsbereich außerdem praktisch identisch zur selbst-

konsistenten Rechnung aus [132].

Darüber hinaus wird in der Simulation eine lineare Abnahme der Fließspannung mit der

Porosität festgestellt, die auf einen erleichterten Ablauf von Korngrenzanpassungsprozessen

zurückgeführt wird [128].

18Eine Annahme, die im statistischen Sinne für den Polykristall erfüllt ist [58].
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Im Fall von nanokristallinem PdAu kann der Volumenanteil der Poren im Material auf ca. P ≈

3 % abgeschätzt werden [6, 31], sodass allein aufgrund dieses Effektes eine Absenkung des E-

Moduls auf unter 120 GPa zu erwarten ist und in der Gesamtbetrachtung nicht vernachlässigt

werden darf.
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Abbildung 2.19: E-Module in Abhängigkeit der Porosität für Pd90Au10 nach verschiedenen
Modellen. Im relevanten Porositätsbereich für die in dieser Arbeit untersuch-
ten Proben sind die Kurven mit durchgezogenen Linien gezeichnet.

2.5 Röntgenbeugung

Prinzipiell wird bei Röntgenbeugungsmethoden die Intensität oder Energie von Röntgen-

strahlen, die an dem zu untersuchenden Material gebeugt wurden, mit einem Detektor in

Abhängigkeit vom Beugungswinkel aufgenommen. Ein eindimensionales Beispiel für ein sol-

ches Diffraktogramm ist in Abb. 2.20 gezeigt. Die winkelabhängige Intensität bzw. Energie

der gebeugten Strahlung ist ein Abbild der beugenden Struktur und eignet sich dadurch

zur Charakterisierung derselben. Nachfolgend soll nun der Einfluss von perfektem Gitter,

Gitterdefekten, Dehnung und Phononen auf das Beugungsbild beschrieben werden, um da-

mit die Grundlage für die Methode
”
Whole Powder Pattern Modeling“ (WPPM) [33] zu

legen. Bei dieser Methode wird, von physikalischen Modellen ausgehend, ein theoretisches

Diffraktogramm errechnet und durch Variation der zugrundeliegenden, physikalischen Para-

meter das gemessene Diffraktogramm damit angepasst. Dadurch wird ein Rückschluss auf

die tatsächlichen Parameter, welche die Probe beschreiben, möglich. Sowohl für die Imple-

mentierung dieser Methode als auch für ein Verständnis ihrer Grenzen ist eine detaillierte

Auseinandersetzung mit der Streutheorie unumgänglich. Insbesondere soll auf den kommen-

den Seiten der immanent modulare Aufbau der theoretischen Beschreibung von messbarer

71



2 Theorie

Intensität bzw. Energie dargestellt werden, der genau so auch in der WPPM-Anpassung im-

plementiert wurde. Des Weiteren sollen die notwendigen Randbedingungen und Grenzen der

Theorie herausgearbeitet werden. Alle Ausführungen zur Streutheorie orientieren sich, soweit

nicht anders angegeben, an dem umfassenden Buch von Warren [62].
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Abbildung 2.20: Beispiel für ein Diffraktogramm von nanokristallinem PdAu.

2.5.1 Röntgenstreuung an einem Elektron

Trifft ein Röntgenstrahl auf ein freies Elektron, so wird dieses durch die Coulombkraft von der

E-Feldkomponente des Strahls periodisch beschleunigt, wodurch wiederum Röntgenstrahlung

ausgesendet wird. Fällt ein Strahl mit Intensität I0 = ⟨E2
0⟩c/8π in x-Richtung auf ein Elektron

mit Polarisation in y-Richtung (siehe Abb. 2.21a), so ist an einem Beobachtungspunkt P in der

x-z-Ebene senkrecht zur Polarisationsrichtung in Entfernung R vom Elektron die Intensität

der gestreuten Strahlung

Ixz = I0
e4

m2c4R2
. (2.117)

Hier ist e die Elementarladung des Elektrons, m die Elektronenmasse und c die Vakuumlicht-

geschwindigkeit. In der x-y-Ebene, also der Ebene welche die Polarisationsrichtung enthält,

ergibt sich die bekannte Charakteristik eines Dipols mit

Ixy = I0
e4

m2c4R2
cos2

(2θ), (2.118)
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wobei 2θ den Winkel zwischen einfallendem Strahl und gestreutem Strahl bezeichnet. Für

unpolarisierte Röntgenstrahlung, die alle Polarisationsrichtungen mit gleicher Wahrschein-

lichkeit enthält, ergibt sich der bekannte Zusammenhang

I = I0
e4

m2c4R2
(

1 + cos2(2θ)

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Polarisationsfaktor

, (2.119)

in dem der letzte Term als Polarisationsfaktor bezeichnet wird. Das heißt, dass bereits die

Streuung an einem einzelnen Elektron eine deutliche Winkelabhängigkeit aufweist. Die Inten-

sität der gestreuten Strahlung eines einzelnen Elektrons wird in der Literatur gelegentlich als

Einheit für die Intensität von Röntgenstrahlung verwendet und als Elektroneneinheit (engl.

electron unit) Ie bezeichnet.
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Abbildung 2.21: Skizze zur Streuung von Röntgenstrahlen an einem Elektron (a), bzw. einem
Atom (b). Details siehe Text.

2.5.2 Röntgenstreuung an einem Atom

Die Interaktion von Röntgenstrahlung mit Atomen ist im Wesentlichen eine Interaktion der

Röntgenstrahlung mit den Hüllenelektronen, sodass sich am Beobachtungspunkt P die Bei-

träge aller Hüllenelektronen überlagern. Fällt ein ebener Röntgenstrahl auf ein Atom im

Ursprung des Koordinatensystems, so ergibt sich die gestreute E-Feldstärke E am Punkt P ,

vorerst ohne Berücksichtigung von Polarisationseffekten, mit

E = E0
e2

mc2∑
n

1

Rn
exp(i2π [νt −

s⃗0r⃗n +Rn
λ

]). (2.120)

Die Summe erstreckt sich hier über alle n Elektronen in der Atomhülle an den Orten r⃗n,

s⃗0 ist der normierte Wellenvektor des einfallenden Strahls, ν und λ sind die Frequenz und

Wellenlänge der eingestrahlten Röntgenstrahlung, t ist die Zeit und Rn der Abstand von

Elektron n zum Beobachtungspunkt (siehe Abb. 2.21b). Der Anteil r⃗ns⃗0 ist damit die Länge
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der Verschiebung des n-ten Elektrons relativ zum Ursprung (Kern) in Strahlrichtung und

r⃗ns⃗0 + Rn damit die Weglänge des gestreuten Strahls in Bezug auf die ebene Wellenfront

durch den Ursprung.

Da in der Regel ∣r⃗n∣ ≪ R und Rn ≈ R gilt, wobei R der Abstand vom Ursprung zum Beob-

achtungspunkt ist, kann man den Faktor 1/Rn mit 1/R nähern und im Exponenten Rn durch

R− s⃗r⃗n ersetzen. Hier ist s⃗ der normierte Wellenvektor des gestreuten Strahls und man erhält

damit aus Gl. (2.120)

E = E0
e2

mc2R
exp(i2π [νt −

R

λ
])∑

n

exp (i2πS⃗r⃗n), (2.121)

wobei hier (s⃗0−s⃗) durch den Streuvektor S⃗ = (s⃗0−s⃗)/λ ersetzt wurde. Da die Hüllenelektronen

nicht an einem festen Ort sind, sondern in Orbitalen mit gewissen Aufenthaltswahrschein-

lichkeiten verteilt sind, wird die Summe in Gl. (2.121) zu einem Integral über die normierte

Elektronendichte ρe(r⃗) um den Atomkern, womit gilt

E = E0
e2

mc2R
exp(i2π [νt −

R

λ
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Streuung von einzelnem e−

∫ exp (i2πS⃗r⃗n)ρe(r⃗)dr
3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fe

. (2.122)

Die Terme vor dem Integral in Gl. (2.122) sind identisch zur Streuung an einem freien Elektron

am Ort des Atoms (abgesehen von Polarisationseffekten). Das Integral selbst in Gl. (2.122) ist

der Atomformfaktor fe, der das Verhältnis der Amplitude der vom Atom gestreuten Strahlung

zur Amplitude der von einem einzelnen Elektron gestreuten Strahlung angibt. Das gesamte

atomspezifische Streuverhalten ist damit in fe enthalten. Formal entspricht fe genau der Fou-

riertransformation der Elektronendichte ρe(r⃗) vom Orstraum in den Wellenvektorraum, der

die Wellenvektoren S⃗ enthält. Der Betrag (die Länge) von S⃗ ist ein Maß für den Streuwinkel

2θ, der den Winkel der Abweichung der gestreuten Strahlung von der einfallenden Strahlung

darstellt, und es gilt

∣S⃗∣ =
2 sin (θ)

λ
. (2.123)

Näherungsweise gilt fe ≈ Z, wobei Z die Ordnungszahl des Atoms ist. Eine genauere Be-

rechnung, die auch die 2θ-Abhängigkeit, die Orbitalstruktur des jeweiligen Atoms, sowie die

Abhängigkeit von λ berücksichtigt, ist in [133] in der parametrisierten Form

fe = c +
4

∑
i=1

ai exp(−bi
sin (θ)

λ
) (2.124)

angegeben. Die Parameter für Palladium und Gold aus [133] sind in Tabelle 2.2 gelistet und

die daraus berechneten Atomformfaktoren in Abb. 2.22 für den in dieser Arbeit relevanten

Streuwinkelbereich für die Wellenlänge aus dem Experiment λ = 15.814 pm gezeigt. Zuzüglich
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2.5 Röntgenbeugung

Tabelle 2.2: Parameter zur Berechnung des Atomformfaktors fe für Palladium und Gold nach
Gl. (2.124) aus [133].

Element i a b c

Pd

1 19.3319 0.698655

5.26593
2 15.5017 7.98929
3 5.29537 25.2052
4 0.605844 76.8986

Au

1 16.8819 0.4611

12.0658
2 18.5913 8.6216
3 25.5582 1.4826
4 5.86 36.3956

des oben behandelten Polarisationsfaktors ist damit das gesamte Streuverhalten eines Atoms

beschrieben.
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Abbildung 2.22: Atomformfaktoren für Pd und Au für Röntgenstrahlen mit einer Wellenlänge
von λ = 15.814 pm.

2.5.3 Röntgenstreuung an einem Kristall

So wie zuvor bei der Streuung am Atom das E-Feld am Beobachtungspunkt aus der Überla-

gerung der E-Felder der an allen Elektronen gestreuten Strahlung hervorgeht, so kann für die

Streuung am Kristall das E-Feld am Beobachtungspunkt aus der Überlagerung der Beiträge

aller Atome im Kristall bestimmt werden. Es gelten die selben Näherungen wie zuvor mit

dem Zusatz, dass das streuende Kristallvolumen klein gegenüber R ist. Dadurch kann der

gestreute Strahl als ebene Welle angesehen werden. Die Koordinaten der Atome im Kristall
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lassen sich, wie in Gl. (2.3), durch den Ortsvektor R⃗ angeben (nicht zu verwechseln mit

dem Abstand zum Beobachtungspunkt R). Die Gleichung wird hier in kompakterer Form

wiederholt, wobei der Ortsvektor der 4 Atome innerhalb der kubischen Einheitszelle durch

x⃗m bezeichnet wird19.

R⃗ = (n1A⃗1 + n2A⃗2 + n3A⃗3) + x⃗m (2.125)

Damit ergibt sich für das E-Feld für eine einatomige Basis analog zu oben,

E = E0
e2

mc2R
exp(i2π [νt −

R

λ
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Streuung von einzelnem e−

fe ∑
n,m

exp (i2π [S⃗ (n1A⃗1 + n2A⃗2 + n3A⃗3 + x⃗m)])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Beitrag Kristall

, (2.126)

wobei die Summe über alle Atome im streuenden Volumen ausgeführt werden muss. Für den

Fall von mehratomigen Basen muss fe passend für das jeweilige Basisatom m gewählt werden

(fme ). Besteht der Kristall aus N1, N2 und N3 Einheitszellen in den Richtungen von A⃗1, A⃗2

und A⃗3, so lässt sich Gl. (2.126) faktorisieren zu

E =E0
e2

mc2R
exp(i2π [νt −

R

λ
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Streuung von einzelnem e−

∑
m

fme exp (i2πS⃗x⃗m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Beitrag Einheitszelle

N1

∑
n1=1

exp (i2πn1S⃗A⃗1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Beitrag A⃗1 Richtung

N2

∑
n2=1

exp (i2πn2S⃗A⃗2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Beitrag A⃗2 Richtung

N3

∑
n3=1

exp (i2πn3S⃗A⃗3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Beitrag A⃗3 Richtung

. (2.127)

Der Beitrag der Einheitszelle in Gl. (2.127) wird als Strukturfaktor F bezeichnet und be-

schreibt das Streuverhalten einer Einheitszelle in Relation zum Streuverhalten eines einzel-

nen Elektrons; F stellt damit eine Erweiterung von fe dar. Die Beiträge in die verschiedenen

Richtungen in Gl. (2.127) haben die Form einer geometrischen Reihe, sodass für die Partial-

summen von 1 bis N die geschlossene Form

N

∑
n=1

exp (i2πnS⃗A⃗) =
exp (i2πNS⃗A⃗) − 1

exp (i2πS⃗A⃗) − 1
(2.128)

19Hier wird direkt der Fall von fcc Gittern behandelt.
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2.5 Röntgenbeugung

existiert. Die Intensität ergibt sich aus E mit I = ⟨E2⟩c/8π , wobei in der hier verwendeten,

komplexen Darstellung E2 zu EE∗ wird. Für die geschlossene Darstellung aus Gl. (2.128)

führt das zu

exp (i2πNS⃗A⃗) − 1

exp (i2πS⃗A⃗) − 1

exp (−i2πNS⃗A⃗) − 1

exp (−i2πS⃗A⃗) − 1
=

sin2 (πNS⃗A⃗)

sin2 (πS⃗A⃗)
. (2.129)

Zusammen mit der Intensität eines Elektrons Ie aus Abschnitt 2.5.1 und der Abkürzung für

den Strukturfaktor F 2 = FF ∗ ergibt sich dann die Intensität aus Gl. (2.127 - 2.129) zu

I =Ie F
2 sin2 (πN1S⃗A⃗1)

sin2 (πS⃗A⃗1)

sin2 (πN2S⃗A⃗2)

sin2 (πS⃗A⃗2)

sin2 (πN3S⃗A⃗3)

sin2 (πS⃗A⃗3)
. (2.130)

Die
sin2(πNx)

sin2(πx)
Terme in Gl. (2.130) haben ein Maximum für x ∈ Z∗ und sind für große N

ansonsten nur in unmittelbarer Nähe zu den Maxima von null verschieden. Für ein Inten-

sitätsmaximum müssen laut Gl. (2.130) daher die drei Lauebedingungen

S⃗A⃗1 =h (2.131a)

S⃗A⃗2 =k (2.131b)

S⃗A⃗3 =l (2.131c)

mit h,k,l ∈ Z∗ gleichzeitig erfüllt sein. Das ist gemäß Gl. (2.6 und 2.10) immer dann der Fall,

wenn

2πS⃗ = G⃗hkl (2.132)

gilt, wobei G⃗hkl ein reziproker Gittervektor ist, wie er in Gl. (2.10) definiert wurde. Die h,k,l

in Gl. (2.131a - 2.131c) sind damit identisch zu den Miller’schen Indizes.

Die Sinnhaftigkeit dieser Wahl zeigt sich am Strukturfaktor, der prinzipiell für alle Streu-

vektoren definiert ist, also auch solche, die Gl. (2.132) nicht erfüllen. Letztere sind aber

irrelevant, wie sich gleich zeigen wird. Allgemein ergibt sich aus Gl. (2.127) der Befund, dass

F = 4fe für alle h,k,l gerade oder ungerade und F = 0 für gemischte h,k,l ist. Null wird

hier als gerade Zahl gezählt. Damit existiert z.B. das Maximum zu hkl = 200, nicht aber

für hkl = 100. Dieser zunächst etwas willkürlich wirkende Befund spiegelt aber nur die Ei-

genschaft des (reziproken) Gitters wieder, die zuvor schon im Zusammenhang mit Gl. (2.17)

diskutiert wurde: Die {100}-Ebenen stellen keine korrekte Beschreibung der Periodizität des

Gitters dar. Folglich existieren die entsprechenden Gitterpunkte im reziproken Gitter auch

nicht, wenn es systematisch sauber (vgl. Gl. (2.17)) definiert wurde, sodass Gl. (2.132) al-

leine schon vollkommen ausreicht um das Auftreten von Intensitätsmaxima zu beschreiben:

Zu jedem Punkt im reziproken Gitter existiert dann auch ein Maximum im Streubild. Der

Strukturfaktor ist dabei immer 4fe, was der Tatsache Rechnung trägt, dass in Gl. (2.127)
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und (2.130) immer über Einheitszellen summiert wird, die vier Atome enthalten. Die h,k,l

gerade oder ungerade Regel ist damit überflüssig.

Durch die Bestimmung der Streuvektoren der Maxima lässt sich also der entsprechende re-

ziproke Gittervektor rekonstruieren, wodurch dann im fcc Gitter wegen Gl. (2.18) auch die

zugehörigen Ebenenabstände bekannt sind. Dabei steht der Streuvektor, genau wie G⃗hkl,

immer senkrecht auf den an der Streuung beteiligten Ebenen im Kristall.

Bisher bezog sich die Betrachtung auf einen statischen Kristall, bei dem die Atome fest an

ihren Gitterplätzen ruhen. Wie schon im Kapitel 2.3 zu den Phononen beschrieben, führen die

Atome aber Schwingungen um ihre Ruhelagen aus, deren Amplitude für die Röntgenstreuung

durchaus relevant ist. Der Ortsvektor eines Atoms aus Gl. (2.125) muss daher um den

zeitabhängigen Verschiebungsvektor u⃗m(t) erweitert werden, sodass der vollständige Orts-

vektor R⃗′
m beschrieben wird durch

R⃗′
m(t) = R⃗m + u⃗m(t). (2.133)

Hier wurde auf die getrennte Adressierung der Atome nach Einheitszelle und Position in

derselben (n1, n2, n3,m) verzichtet und stattdessen eine einfachere und allgemeinere Variante

der Durchnummerierung aller Atome mit m gewählt. Der zeitunabhängige Vektor R⃗m hat

genau die selbe Bedeutung wie der in Gl. (2.125). Die Ableitung der Intensität des Kristalls

erfolgt damit genau wie oben und man erhält für die Intensität

I = Ie∑
m
∑
m′

fme f
m′

e exp (i2πS⃗ [R⃗m − R⃗m′])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
statisch

⟨ exp (i2πS⃗ [u⃗m(t) − u⃗m′(t)]) ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
thermische V ibration

. (2.134)

Die spitzen Klammern um den Term, der die thermischen Vibrationen berücksichtigt, be-

zeichnen den zeitlichen Mittelwert. Für gemessene Intensitäten ist nur dieser relevant. Auf

die Streuung wirken sich nur die Verschiebungen in Richtung des Streuvektors aus (vgl.

Gl. (2.134)), sodass S⃗ [u⃗m(t) − u⃗m′(t)] durch (uSm(t)−uSm′(t))/λ ersetzt werden kann, wobei

uSm die skalare Verschiebungskomponente von u⃗m in Richtung des Streuvektors beschreibt.

Damit wird der zeitliche Mittelwert in Gl. (2.134) für kleine Auslenkungen oder für Gauß-

verteilte Auslenkungen zu

⟨ exp (i2πS⃗ [u⃗m(t) − u⃗m′(t)]) ⟩ = exp (−2π2
∣S⃗∣2⟨ (uSm − uSm′)

2
⟩)

= exp (−2π2
∣S⃗∣2⟨u2

Sm⟩) exp (−2π2
∣S⃗∣2⟨u2

Sm′⟩) exp (4π2
∣S⃗∣2⟨uSmuSm′⟩)

= e(−Mm)e(−Mm′) [1 + exp (4π2
∣S⃗∣2⟨uSmuSm′⟩) − 1] . (2.135)

Im letzten Schritt wurden die Argumente der vorderen Exponentialfunktionen durch −M

abgekürzt. Außerdem wurde im letzten Term 0 = +1 − 1 addiert; der Grund dafür wird
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2.5 Röntgenbeugung

im nächsten Schritt offensichtlich. Für die Intensität ergibt sich dann durch Einsetzen von

Gl. (2.135) in Gl. (2.134)

I = Ie∑
m
∑
m′

fme f
m′

e e(−Mm)e(−Mm′) exp (i2πS⃗ [R⃗m − R⃗m′])

+ Ie∑
m
∑
m′

fme f
m′

e e(−Mm)e(−Mm′) exp (i2πS⃗ [R⃗m − R⃗m′]) {exp (4π2
∣S⃗∣2⟨uSmuSm′⟩) − 1} .

(2.136)

Der Term in der zweiten Zeile von Gl. (2.136) ist vernachlässigbar für große Atomabstände,

also große ∣R⃗m−R⃗m′ ∣, da uSm und uSm′ mit zunehmendem Abstand zunehmend unkorrelierter

werden, sodass ⟨uSmuSm′⟩ gegen null geht. Im Phononenbild wird das durch die abnehmende

Häufigkeit von Phononen mit großer Wellenlänge bzw. kurzem Wellenvektor repräsentiert

(vgl. Abb. (2.10)). Große Abstände ∣R⃗m − R⃗m′ ∣ entsprechen in der vorherigen Herleitung

zur Intensität einer großen Anzahl von Einheitszellen N in Richtung des Streuvektors, was

die Ursache für die scharfen Maxima im Streubild ist. Das heißt wiederum, dass für die

Intensität der Maxima der Summand in der zweiten Zeile von Gl. (2.136) von untergeordneter

Bedeutung ist und daher zunächst vernachlässigt werden kann. Tatsächlich beschreibt dieser

Term die thermodiffuse Streuung, auf die später noch eingegangen wird.

Der für die Maxima ausschlaggebende Term in der ersten Zeile von Gl. (2.136) ist im Grun-

de identisch zu den Termen aus der statischen Herleitung, enthält aber zusätzlich die beiden

e(−Mm) Faktoren. Da es für einatomige Systeme prinzipiell keinen Unterschied zwischen ⟨uSm⟩

und ⟨uSm′⟩ gibt, können die Exponentialterme zusammengefasst und mit den Atomformfak-

toren vor die Summe gezogen werden. Damit erhält man dann analog zu Gl. (2.130)

I =Ie F
2 e(−2M)

sin2 (πN1S⃗A⃗1)

sin2 (πS⃗A⃗1)

sin2 (πN2S⃗A⃗2)

sin2 (πS⃗A⃗2)

sin2 (πN3S⃗A⃗3)

sin2 (πS⃗A⃗3)
. (2.137)

Der Faktor e(−2M) wird Debye-Temperaturfaktor oder Debye-Waller-Faktor genannt, der

die Abnahme der Intensität in Folge der thermischen Bewegung der Atome angibt (sie-

he Abb. 2.23) und ausgeschrieben lautet:

e(−2M)
= exp (−4π2

∣S⃗∣2⟨u2
S⟩) = exp(−16π2

⟨u2
S⟩

sin2(θ)

λ2
). (2.138)

Alternativ kann e(−2M) auch über die Debye-Temperatur ΘM ausgedrückt werden mit

e(−2M)
=

12h2T

mkBΘ2
M

(1 +
Θ2
M

36 T 2
−

Θ4
M

3600 T 4
+ ...)

sin2(θ)

λ2
, (2.139)

wobei h das Plank’sche Wirkungsquantum, kB die Boltzmannkonstante und m die Masse des

Atoms ist. Die Debye-Temperatur ΘM ist ein Mittelwert der Debye-Temperatur longitudina-

ler und transversaler Schwingungen und nicht exakt identisch zur Debye-Temperatur ΘD aus
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der Theorie der spezifischen Wärme; die Unterschiede sind für Pd und Au aber im Rahmen

dieser Arbeit vernachlässigbar [62].
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Abbildung 2.23: Winkelabhängiger Debye-Temperaturfaktor oder Debye-Waller-Faktor für
Pd90Au10 und Röntgenstrahlen mit einer Wellenlänge von λ = 15.814 pm
bei Raumtemperatur.

2.5.4 Röntgenstreuung an einem Polykristall (oder Pulver)

Ein Pulver aus gleichförmigem, kristallinem Material, genauso wie ein texturfreier Polykris-

tall, zeichnen sich dadurch aus, dass in einem ausreichend großen Volumen jede Kristallorien-

tierung gleich häufig vorhanden ist, bzw. das Auftreten jeder Orientierung die gleiche Wahr-

scheinlichkeit aufweist. Wird Röntgenstrahlung in einem solchen Volumen von einem Pulver

oder Polykristall gestreut, überlagern sich im Streubild alle Einzelbeiträge der unterschiedlich

orientierten kristallinen Bereiche (siehe Abb. 2.24). Für die Streuung ist dann das effektive

reziproke Gitter relevant, das aus der Überlagerung der reziproken Gitter aller Einzelkris-

tallite entsteht und aus konzentrischen Kugelschalen besteht, deren Radien den Abständen

der reziproken Gitterpunkte um den Ursprung entsprechen (siehe Abb. 2.25). Reziproke Git-

terpunkte, die zu symmetrisch äquivalenten Ebenen gehören, haben den gleichen Abstand

zum Ursprung und befinden sich somit auf der gleichen Kugelschale. Die Punktdichte ρM

der einzelnen Schalen ist proportional zur relativen Häufigkeit der symmetrisch äquivalenten

Ebenen, was identisch zur Häufigkeit der entsprechenden reziproken Gitterpunkte in einem

Kristall ist. Diese Anzahl wird (Flächen-)Multiplizität η genannt und ist für die in dieser
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Abbildung 2.24: Streubild eines untexturierten, defektfreien PdAu Polykristalls oder Pulvers
aus kugelförmigen Kristallen mit 30 nm Durchmesser.

Arbeit relevanten hkl-Kombinationen in Tabelle 2.3 gelistet. Für einen Polykristall mit M

Kristalliten gilt dann für die Punktdichte auf den Kugelschalen im reziproken Raum

ρM,hkl =
M η

4π∣G⃗hkl∣2
. (2.140)

Die gestreute Intensität ist dann

Ihkl = I ρM,hkl Arez.(S⃗), (2.141)

wobei I hier die von einem einzelnen Kristalliten gestreute Intensität und Arez. die Fläche

auf der hkl Kugelschale ist, die vom Streuvektor erfasst wird.

Ein Maximum im Streubild kommt für einen Polykristall immer dann zustande, wenn der

Streuvektor auf einer Kugelschale endet, wobei die relative Intensität der Maxima einzelner

Schalen mit ihrer Punktdichte skaliert. Für das Auftreten eines Maximums ist aufgrund der

Isotropie nur noch der Betrag des Streuvektors 2π∣S⃗∣ = ∣G⃗hkl∣ entscheidend.
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111 200 220 311 222hkl:

B2

B3

B1

B2

B3

B1

B2

B3

Abbildung 2.25: (links) Darstellung der Gitterpunkte im reziproken Raum eines Einkris-
talls. (mitte) Überlagerung der reziproken Gitterpunkte vieler identischer,
aber zufällig orientierter Kristalle. Die einzelnen Punkte bilden für alle
hkl-Kombinationen Kugelschalen mit spezifischen Radien. Zur Darstellung
der inneren Kugelschalen ist ein Achtel der Kugelschalen nicht dargestellt.
(rechts) Schnittbild durch die hkl Kugelschalen in der B2-B3-Ebene.

Fällt also ein Röntgenstrahl mit Wellenvektor s⃗0/λ auf einen Polykristall, so entsteht für jede

hkl Schale ein Streukegel mit solchen Wellenvektoren s⃗/λ, dass 2π∣(s⃗ − s⃗0)∣/λ = 2π∣S⃗∣ = ∣G⃗hkl∣

(vgl. Abb. 2.26). Die in diesen Streukegeln gestreute Intensität ist

Ikeg. = ∫ I ρM,hkl 2π∣G⃗hkl∣
2 sin (90○ − θ + γ) dγ

=
M ηhkl

2
∫ I cos (θ) dγ (kleine γ), (2.142)

wobei γ eine kleine Variation des Einfallswinkels des einfallenden Strahls ist.

hkl=220

B2

B3

s0
λ

s
λ

s
λ

S

S

2θ
2θ

ɣ

dVrez.

Abbildung 2.26: Zweidimensionale Skizze zum Streuverhalten an der hkl = 220 Kugelschale
eines Polykristalls aus Abb. 2.25. Die Streukegel erhält man durch Rotation
um die B2 Achse. Die vom Streuvektor erfasste Fläche (bzw. in 3d: Volumen)
im reziproken Raum ist durch dVrez. gekennzeichnet.
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Tabelle 2.3: Flächenmultiplizitäten η für verschiedene hkl-Kombinationen.

hkl 111 200 220 311 222
η 8 6 12 24 8

2.5.5 Einfluss der Messgeometrie

Die Messung der Intensität der gestreuten Strahlung erfolgt immer über die aktive Fläche des

Detektors und über einen bestimmten Zeitraum, sodass die gemessene Energie im Detektor

ED dem Integral über die Zeit und Fläche der gestreuten Intensität entspricht, also:

ED =

x
Idt dA = ∆t

x
I R2dα dβ. (2.143)

Hier wurde die Detektorfläche A, die senkrecht20 zum normierten Wellenvektor des gestreuten

Stahls s⃗ steht, über den Abstand zum Detektor R und die beiden Winkel α und β genähert.

Außerdem ist hier ⟨I⟩ = I, es wird also angenommen, dass die Messzeit ∆t viel größer ist als

die periodische Schwankung des instantanen Wertes von I. Die Intensität ist beim Polykristall

natürlich immer identisch zu Ikeg. aus Gl. (2.142), sodass Gl. (2.143) vollständig lautet:

ED =

x
Idt dA = ∆t R2

y
I(γ) dα dβ dγ (2.144)

Die Winkel dα und dβ beschreiben zusätzliche, kleine Variationen vom Streuwinkel 2θ und

damit Variationen vom Streuvektor ∆S⃗, sodass der gesamte Streuvektor in Gl. (2.144) zu S⃗′ =

S⃗+∆S⃗(α,β, γ) wird. Der Streuvektor ist in I enthalten, wofür keine ausführlichen Ausdrücke

angegeben wurden, um eine bessere Übersichtlichkeit zu erhalten. Im Folgenden muss aber die

Auswirkung von S⃗′ untersucht werden, weshalb nun wieder auf die vollständigeren Ausdrücke

zurückgegriffen werden muss.

Das Integral über α, β und γ entspricht einer Integration von I über ein Volumen im rezipro-

ken Raum in der Nähe eines reziproken Gitterpunktes (im Falle eines Kristalles) oder in der

Nähe eines Segments einer hkl Schale (im Falle eines Polykristalls). Als Vereinfachung bietet

es sich an, den Streuvektor durch reziproke Gittervektoren und kontinuierliche Parameter

h1, h2, h3 auszudrücken, also

2πS⃗′ = h1B⃗1 + h2B⃗2 + h3B⃗3, (2.145)

20Das muss nicht bedeuten, dass die tatsächliche Oberfläche des Detektors an allen Punkten senkrecht zum
Strahl orientiert ist. In der Rechnung bezieht sich A dann auf die senkrecht zum Strahl projizierte Fläche.
Der Aspekt wird in der Rechnung berücksichtigt.
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womit I mit Gl. (2.136), bzw. Gl. (2.137) die folgende Form annimmt:

I(h1h2h3) = Ie F
2 e(−2M)∑

m
∑
m′

exp (i2π [(m1 −m
′
1)h1 + (m2 −m

′
2)h2 + (m3 −m

′
3)h3])

= Ie F
2 e(−2M) sin2 (πN1h1)

sin2 (πh1)

sin2 (πN2h2)

sin2 (πh2)

sin2 (πN3h3)

sin2 (πh3)
. (2.146)

Das infinitesimale Volumenelement im reziproken Raum, das durch den Vektor ∆S⃗(α,β, γ)

unter infinitesimalen Änderungen von α, β und γ beschrieben wird, ist bestimmt durch

dVrez. = sin (2θ)
dα

λ

dβ

λ

dγ

λ

= vb dh1 dh2 dh3, (2.147)

wobei vb = 8π3/a3 das Volumen der Einheitszelle im reziproken Gitter ist21. Zusammen liefern

Gl. (2.147) und Gl. (2.146) mit Gl. (2.144) unter Berücksichtigung von cos(θ)/ sin (2θ) =

1/(2 sin(θ)) für die Energie am Detektor

ED = ∆t R2 M ηhkl
4

λ3
y I(h1h2h3)

sin(θ)
dVrez.

= ∆t R2 2π3M ηhkl
a3

λ3
y I(h1h2h3)

sin(θ)
dh1 dh2 dh3. (2.148)

Um die Rechnung zu vereinfachen ist es hilfreich, das Koordinatensystem so zu drehen (vgl.

Gl. (2.56) und Gl.(2.57)), dass der Hauptteil des Streuvektors S⃗22 entlang eines der neuen,

gedrehten Basisvektoren B⃗′
1, B⃗

′
2,B⃗

′
3 liegt. O.B.d.A. seien S⃗ und B⃗′

3 kollinear (vgl. Abb. 2.27)

und Gl. (2.145) sowie Gl. (2.148) gelten genau wie zuvor, jetzt aber mit h′1, h
′
2, h

′
3 im neuen

Koordinatensystem anstatt der ungestrichenen Größen. Für die Länge des Streuvektors gilt

dann

2π∣S⃗′∣ = ∣h′1B⃗
′
1 + h

′
2B⃗

′
2 + h

′
3B⃗

′
3∣

≈ 2π∣S⃗∣ = h′3∣B⃗
′
3∣ =

4π sin (θhkl)

λ
, (2.149)

wobei θhkl der halbe Streuwinkel des Maximums des hkl Reflexes ist.

Damit erhält man für dh′3

dh′3 = 2π
cos (θhkl)

λ∣B⃗′
3∣

d(2θ) = a
cos (θhkl)

λ
d(2θ), (2.150)

21Hier wurde der Zusammenhang zwischen Streuvektor und dem reziproken Raum benutzt.
22Zur Erinnerung: S⃗′ = S⃗ +∆S⃗.
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Abbildung 2.27: Illustration zur Drehung des Koordinatensystems des reziproken Raums zur
Vereinfachung der Berechnung der Intensität bzw. der messbaren Energie
am Detektor.

womit in Kombination mit Gl. (2.148) für die Energie ED(2θ) am Detektor unter dem Streu-

winkel 2θ gilt

ED(2θ) = ∆t R2 2π3M ηhkl
a2

λ2 cos (θhkl)

sin(θ)

x
I(h′1h

′
2h

′
3) dh′1 dh′2. (2.151)

An dieser Stelle sei explizit darauf hingewiesen, dass der Streuwinkel 2θ eine äquivalente

Darstellung des Betrags des Streuvektors und damit zu h′3 ist (vgl. Gl.(2.149)). Anstatt

ED(2θ) könnte man auch ED(h′3) schreiben. Um diesen Aspekt im Folgenden klar zu machen,

wird ab jetzt h′3 als Funktion des Streuwinkels h′3(2θ) angegeben. Allerdings enthält ED(2θ)

aus Gl. (2.151) die Energie aus dem gesamten Streukegel, weshalb ED(2θ) noch durch den

Umfang am Ort des Detektors 2πR sin (2θhkl) geteilt werden muss um die tatsächlich an einem

(kleinen) Detektor bzw. Detektorpixel messbare Linienenergiedichte im Kegel zu erhalten,

welche man als E′
D(2θ) gemäß folgendem Ausdruck erhält:

E′
D(2θ) = ∆tM R

π2 ηhkl
a2

λ2 1

sin(θ) sin(θhkl)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

x
I(h′1h

′
2h

′
3(2θ)) dh′1 dh′2. (2.152)

Im Vorfaktor K taucht hier der Lorentz-Faktor LF für Pulver und Polykristalle in der Form

auf, wie er auch in [62] und [134] ausführlicher hergeleitet wurde23:

LFhkl =
1

sin (θ) sin (θhkl)
(2.153)

Der Verlauf des Lorentz-Faktors in Abhängigkeit vom Streuwinkel ist in Abb. 2.28 für den

111, 200, 220 und 311 Peak dargestellt.

23Die genaue Form des Lorentz-Faktors ist abhängig von der Messgeometrie.
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Abbildung 2.28: Lorentz-Faktor in Abhängigkeit vom Streuwinkel für verschiedene hkl Peaks.

Der Vollständigkeit halber sei hier noch ein weiterer Vorfaktor, der Comptonfaktor CF

erwähnt, der für das in dieser Arbeit benutzte Material und der gegebenen Geometrie durch

CF = 114
exp (−µρt sec(2θ)) − exp (−µρt)

µρ(1 − sec(2θ))
(2.154)

bestimmt ist und den Effekt von Absorption und Comptonstreuung auf die Intensität der

Maxima berücksichtigt [133, 135], wobei t die Dicke des durchstrahlten Materials ist, ρ des-

sen Dichte und µ der Absorptionskoeffizient [133, 135]. Für die hier untersuchten Pd90Au10

Proben ist µρ ≈ 30.26 cm−1 (Wert für µ aus [133]), sodass CF hier eine sehr kleine Korrektur

darstellt (vgl. Abb. 2.29). Mit CF erhält man den erweiterten Vorfaktor K ′ =K ⋅CF , der im

Folgenden bei der Lösung des Integrals aus Gl. (2.152) verwendet wird.

Man erhält damit aus Gl. (2.152)

E′
D(2θ) =∆t M K ′ Ie F

2 e(−2M)

x
∑
m
∑
m′

exp (i2π [(m1 −m
′
1)h

′
1 + (m2 −m

′
2)h

′
2 + (m3 −m

′
3)h

′
3(2θ)]) dh′1 dh′2.

(2.155)

Die Adressierung der Atome m1,m2,m3 beziehen sich hier natürlich auf die Basisvektoren

des gedrehten Koordinatensystems B⃗′
1, B⃗

′
2,B⃗

′
3.
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Abbildung 2.29: Comptonfaktor in Abhängigkeit vom Streuwinkel.

2.5.6 Effekt der Korngröße

Der allgemein bekannte Befund, dass kleine Kristallite zu einer Verbreiterung der Bragg-

Peaks führen, folgt direkt aus der Integration von Gl. (2.155). Um bei der Integration über

h′1 und h′2 den gesamten Bereich im reziproken Raum abzudecken, der für den jeweiligen hkl

Reflex relevant ist, muss über den Querschnitt der 1. Brilloin-Zone integriert werden, was

näherungsweise einer Integration von −1/2 bis 1/2 in den B′ Koordinaten entspricht (vgl.

Abb. 2.4). Man erhält damit das Ergebnis

∫

1/2

−1/2
exp (i2π [(m1 −m

′
1)h

′
1]) dh′1 =

sin (π [(m1 −m
′
1)])

π [(m1 −m′
1)]

, (2.156)

wodurch aus Gl. (2.155) der Ausdruck

E′
D(2θ) =∆t M K ′ Ie F

2 e(−2M)

∑
m
∑
m′

sin (π [(m1 −m
′
1)])

π [(m1 −m′
1)]

sin (π [(m2 −m
′
2)])

π [(m2 −m′
2)]

exp (i2π(m3 −m
′
3)h

′
3(2θ)) (2.157)

wird. Die Sinusterme sind 1, wenn m =m′ und ansonsten 0, sodass man den Ausdruck weiter

reduzieren kann zu

E′
D(2θ) =∆t K ′ Ie F

2 e(−2M)∑
M

∑
m1

∑
m2

∑
m3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∑N

∑
m′

3

exp (i2π(m3 −m
′
3)h

′
3(2θ)) ∣

m1,m2

. (2.158)
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Hier muss berücksichtigt werden, dass die möglichen Werte von m3 und m′
3, je nach Kornform,

von m1 und m2 abhängen können. Den Kristalliten kann man sich aus Säulen von Einheits-

zellen in Richtung des Streuvektors aufgebaut vorstellen. Hier ist der Streuvektor in Richtung

B′
3 im reziproken Raum orientiert, was einer kollinearen Richtung A′

3 im Realraum entspricht,

die aus der gewöhnlichen A3-Richtung durch identische Drehung wie zuvor B3 → B′
3 hervor-

geht. Dieser Sachverhalt ist am Beispiel eines kugelförmigen Kornes in Abb. 2.30 dargestellt.

Anstatt die Summen in Gl. (2.158) über alle Einheitszellen in einem Korn auszuführen, kann

man genauso über alle Atome in einem Korn summieren und muss dazu nur F 2 durch f2
e

ersetzen.

A2

A3

S L=Δm a3

a

a

3

3

2

Abbildung 2.30: Aufbau eines kugelförmigen Kristalliten aus Einheitszellen entlang der Rich-
tung des Streuvektors S⃗.

Der FaktorM , der die Anzahl der Kristallite im Streuvolumen bezeichnet, wurde in Gl. (2.158)

ebenfalls durch eine Summation ausgedrückt. Die Summation über M , m1, m2, m3 kann man

zu einer Summe über alle N Atome im Polykristall zusammenfassen. Man summiert dann

mit m′
3 für jedes einzelne dieser Atome über die Realraumabstände L zu den anderen Ato-

men innerhalb der Säule in Streuvektorrichtung. Im Kern handelt es sich bei Gl. (2.158)

also nicht um eine Summe über die Beiträge von Atomen, sondern um eine Summe über die

Beiträge von Atompaaren in Streuvektorrichtung. Dieser Ausdruck kann allgemeiner formu-

liert werden, indem man die komplette Summation durch eine Summe über die Paarabstände

n = ∆m3 ∈ [−∞,∞] ersetzt und dafür in der Summe den Faktor Nn ergänzt, der die Anzahl

der Atome in der Probe beschreibt, die einen n’ten Nachbar in Streuvektorrichtung besitzen.

Damit erhält man

E′
D(2θ) =∆t N K ′ Ie F

2 e(−2M)
∞

∑
n=−∞

Nn

N
exp (i2πnh′3(2θ)), (2.159)
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was gerade die Form einer Fourierreihe mit den, im Allgemeinen komplexen, Fourier-Koeffizien-

ten CSn = Nn/N
24 hat. Der Imaginärteil von Gl. (2.159) ist immer null, da Atompaare mit Ab-

stand n zweimal mit unterschiedlichen Vorzeichen in der Summe auftauchen (n und −n) und

sich dadurch im Imaginärteil gegenseitig aufheben. Die Fourier-Koeffizienten CSn können mit-

hilfe des Konzeptes des Geisterbildes aus [136] anschaulich bestimmt werden (vgl. Abb. 2.31).

Dabei wird eine Kopie eines Kristalliten relativ zu seinem Original um L in Streuvektorrich-

tung verschoben, wodurch ein Volumen V (L) durch die Überschneidung von Geisterbild und

Original gebildet wird. Das Verhältnis V (L)/V , wobei V das Volumen des Kristalliten ist, ist

identisch zu den Fourier-Koeffizienten CSn = Nn/N . Der Grund dafür ist, dass in dem Schnitt-

volumen alle Atome enthalten sind, die Endpunkte der Säulen mit Länge L bezogen auf den

Originalkristalliten sein können und gleichzeitig Anfangspunkte bezogen auf das Geisterbild.

D.h. alle Säulen mit Länge L, die in diesem Volumen starten bzw. enden, passen auch in den

Kristalliten, bzw. sein verschobenes Bild; alle anderen nicht.

A2

A3

S
L=n a3

Säule

Ende

Anfang

Geisterbild

Originalkristall

V(L)

Abbildung 2.31: Skizze zum Konzept des Geisterbildes um die Herleitung der Fourier-
Koeffizienten für den Korngrößeneffekt zu veranschaulichen. Details siehe
Text.

Offensichtlich sind diese Fourier-Koeffizienten abhängig von Kornform, Orientierung und

Größenverteilung. Dieses Problem wurde für verschiedene Kornformen und Verteilungsfunk-

tionen in [137] ausführlich behandelt, sodass hier nur das Ergebnis für kugelförmige Kristallite

mit logarithmisch normalverteilten Durchmessern wiedergegeben wird; dieser Fall stellt die

beste Annäherung an die hier untersuchten Proben dar [51, 138].

24Die Fourier-KoeffizientenNn/N sind hier natürlich noch nicht komplex. Im Zusammenhang mit Gitterfehlern
in den Kristalliten tauchen jedoch komplexe Fourier-Koeffizienten auf.
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Für die Fourier-Koeffizienten CS(L) gilt dann nach [137]:

CS(L) =
1

2
erfc(

ln(∣L∣) − µ − 3σ2

σ
√

2
)

−
3

4
∣L∣ erfc(

ln(∣L∣) − µ − 2σ2

σ
√

2
) exp(−µ − 2.5σ2

)

+
1

4
∣L∣3 erfc(

ln(∣L∣) − µ

σ
√

2
) exp(−3µ − 4.5σ2

). (2.160)

Hier sind µ und σ die Parameter der logarithmischen Normalverteilung g(D):

g(D) =
1

Dσ
√

2π
exp(

(ln(D) − µ)2

2σ2
) (2.161a)

=
1

D ln(σ′)
√

2π
exp(

(ln(D/D0))
2

2 ln(σ′)2
). (2.161b)

Die Darstellung in Gl. (2.161b) entspricht der in [51, 138] mit dem Median D0 und der

Verteilungsbreite σ′. Die Parameter hängen mit denen aus Gl. (2.161a) über die Beziehungen

µ = ln(D0) und σ = ln (σ′) zusammen. Die Fourier-Koeffizienten sind aufgrund der Kugelform

der Körner erwartungsgemäß nicht hkl abhängig.
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Abbildung 2.32: a) Logarithmische Normalverteilung für σ′ = 1.6 und ⟨D⟩vol = 15 nm. Die
verschiedenen Momente der Verteilung ⟨D⟩ sind zusätzlich zum Median D0

eingezeichnet. b) Fourier-Koeffizienten für verschiedene Werte von ⟨D⟩vol bei
konstantem σ′ = 1.6.

Für die Energiedichte am Detektor gilt dann mit h′3 = a
′
3/dS(2θ):

E′
D(2θ) =∆t N K ′ Ie F

2 e(−2M)
∞

∑
L=−∞

CS(L) exp(i2πL
1

dS(2θ)
), (2.162)
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2.5 Röntgenbeugung

wobei dS(2θ) der Abstand benachbarter Atome in Streuvektorrichtung ist; für hkl Reflexe

entspricht das gerade dem Netzebenenabstand dhkl. Bei einem unendlich ausgedehnten Kris-

tall ist CS(L) = 1 für alle L. Erweitert man den Fourier-Koeffizienten um den Faktor 1, also

CS(L) = 1 ⋅CS(L), so ist die Fourierreihe in E′
D(2θ) gerade die Faltung aus der Funktion, die

die Intensität eines unendlich ausgedehnten Kristalliten beschreibt (hier 1), mit der Funk-

tion, die den Effekt der begrenzten Korngröße auf die Intensität beschreibt. Diese Faltung

wird hier über die Multiplikation der Fourier-Koeffizienten 1 und CS(L) realisiert. Dieses

Resultat ist kein Zufall, sondern eine fundamentale Eigenschaft dieser Darstellung, wie sich

im nächsten Abschnitt zeigen wird.
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2 [°]

In
te
ns

itä
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D
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Abbildung 2.33: Bragg-Peaks zu hkl = 111 für die verschiedenen Korngrößenverteilungen aus
Abb. 2.32b mit σ′ = 1.6.

2.5.7 Allgemeine Auswirkung von Gitterdefekten auf das Streubild

Gitterdefekte zeichnen sich durch eine statische Verschiebung der Atome aus und beeinflussen

dadurch das Streuverhalten der Probe. Die Verschiebung des Atoms m kann ganz allgemein

durch den Verschiebungsvektor δ⃗m beschrieben werden, der in Komponentenschreibweise die

Form

δ⃗m =XmA⃗1 + YmA⃗2 +ZmA⃗3

= xmA⃗
′
1 + ymA⃗

′
2 + zmA⃗

′
3 (2.163)

hat. Die gestrichenen Größen in der zweiten Zeile entsprechen der Drehung des Koordina-

tensystems aus dem vorherigen Kapitel (vgl. Abb. 2.27), sodass A⃗′
3 und B⃗′

3 in Richtung des
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Streuvektors S⃗ orientiert sind. Der Ortsvektor der Atome R⃗m wird, genau wie zuvor bei den

dynamischen Verschiebungen, um δ⃗m ergänzt, sodass für den statischen Ortsvektor gilt:

R⃗′
m = R⃗m + δ⃗m. (2.164)

Damit erhält man nun für I(h1h2h3), ganz analog zu Gl. (2.146) in der bereits gedrehten

Form,

I(h′1h
′
2h

′
3) = Ie F

2 e(−2M)∑
m
∑
m′

exp(i2π[(m1 −m
′
1)h

′
1 + (m2 −m

′
2)h

′
2 + (m3 −m

′
3)h

′
3

+ (xm − xm′)h′1 + (ym − ym′)h′2 + (zm − zm′)h′3]). (2.165)

Die Rechnung funktioniert von hier an so wie zuvor und man erhält anstatt Gl. (2.158) nun

E′
D(2θ) = ∆t K ′ Ie F

2 e(−2M)∑
M

∑
m1

∑
m2

∑
m3

∑
m′

3

exp (i2π(m3 −m
′
3)h

′
3(2θ))

⋅ exp (i2π(zm − zm′)h′3(2θ)) ∣
m1,m2

. (2.166)

Auch hier ist nur die Verschiebungskomponente in Richtung des Streuvektors (zm) entschei-

dend für das Streubild. Eine weitere Analyse führt zu dem zu Gl. (2.159) und Gl. (2.162)

analogen Ergebnis

E′
D(2θ) = ∆t N K ′ Ie F

2 e(−2M)
∞

∑
n=−∞

Nn

N
⟨ exp (i2π znh

′
3(2θ))⟩ exp (i2πnh′3(2θ))

= ∆t N K ′ Ie F
2 e(−2M)

∞

∑
L=−∞

CS(L) ⟨ exp(i2π εL
L

dS(2θ)
)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=C(L)

exp(i2π
L

dS(2θ)
)

(2.167)

mit zn = (zm−zm′). Die spitzen Klammern um den zn Exponentialterm stellen den Mittelwert

über alle Atompaare mit Abstand n in Streuvektorrichtung dar. Die Dehnung der Säulenlänge

εL = ∆L/L in der zweiten Zeile erhält man mit ∆L = zna
′
3 und, wie zuvor, L = na′3; dS ist

wieder der Ebenenabstand in Streurichtung. Für einen Ausdruck der Form ⟨exp (ix)⟩ gilt,

wenn x klein oder Gaußverteilt ist, ⟨exp (ix)⟩ = exp (−⟨x2⟩/2) und damit entsprechend für

Gl. (2.167)

E′
D(2θ) = ∆t N K ′ Ie F

2 e(−2M)
∞

∑
L=−∞

CS(L) exp(−2π2
⟨ε2
L⟩

L2

d2
S(2θ)

) exp(i2π
L

dS(2θ)
)

(2.168)

Der quadratische Mittelwert ⟨ε2
L⟩ von εL entspricht der Varianz der Dehnung in Richtung

des Streuvektors und wird häufig als Mikroverzerrung bezeichnet. Formal ist nun der Term
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2.5 Röntgenbeugung

Nn/N⟨exp ...⟩ = CS(L)⟨exp ...⟩ der Fourier-Koeffizient C(L), der durch Multiplikation der

einzelnen Beiträge entsteht.

Prinzipiell kann man sich die Verschiebung δ⃗ als eine Überlagerung der Einzelverschiebungen

der verschiedenen Gitterdefekte denken, sodass δ⃗ aus Gl. (2.163) zerlegt werden kann in

δ⃗m =∑
j

δ⃗j,m. (2.169)

Verschiedene Defekte sind hier mit dem Index j nummeriert. Für den Defektbeitrag im

Fourier-Koeffizienten aus Gl. (2.167) gilt dann

⟨ exp (i2π φ(L))⟩ = ⟨∏
j

exp (i2π φj(L))⟩

=∏
j

⟨ exp (i2π φj(L))⟩ (Bedingung siehe unten!) (2.170)

mit der Abkürzung φ(L) = εL L/dS . Das Gleichheitszeichen in der zweiten Zeile von Gl. (2.170)

gilt nur dann, wenn die einzelnen Beiträge der Defekte voneinander unabhängig und unkorre-

liert sind. Konkret muss erfüllt sein, dass die Mittelwerte der Mischterme immer verschwinden

(z.B. ⟨∏j εj⟩ = 0 für ⟨ε2
L⟩). Nur dann folgt das in der Modellierung von Röntgendiffraktogram-

men übliche Ergebnis für C(L)

C(L) = 1 ⋅CS(L) ⋅∏
j

Cj(L). (2.171)

Alle Beiträge zu C in Gl. (2.171) beschreiben die Abweichung des defektbehafteten Kris-

talls zum unendlich ausgedehnten, defektfreien Kristall aufgrund einzelner, voneinander un-

abhängiger und unkorrelierter Gitterdefekte. Die Herausforderung besteht nun in der Bestim-

mung der Fourier-Koeffizienten der einzelnen Defektarten, ähnlich wie es oben und ausführ-

licher in [136, 137] für CS(L) getan wurde. Ist das gelungen, kann das Messsignal am Detek-

tor durch Fouriertransformation von C(L) und Multiplikation mit dem Vorfaktor theoretisch

ausgerechnet werden.

Im Folgenden sollen Methoden zur Bestimmung der Fourier-Koeffizienten für Stapelfehler

und Versetzungen vorgestellt werden.

93



2 Theorie

2.5.8 Effekt von Stapelfehlern

Um die Fourier-Koeffizienten von Stapelfehlern zu berechnen, betrachtet man Stapelfehler im

Kristall, welche o.B.d.A. so orientiert sind, dass sie die (111)-Ebenen betreffen und sich über

die komplette Ebene erstrecken. Letzterer Aspekt ist allein schon deswegen notwendig, da man

ansonsten zwangsläufig den Beitrag der berandenden Partialversetzungen berücksichtigen

müsste. Zur Beschreibung verwendet man, wie in [62], das an das Problem angepasste Koor-

dinatensystem a⃗′1, a⃗
′
2, a⃗

′
3, das aus der Standardbasis mit

a⃗′1 = −
1

2
A⃗1 +

1

2
A⃗2 (2.172a)

a⃗′2 = −
1

2
A⃗2 +

1

2
A⃗3 (2.172b)

a⃗′3 = A⃗1 + A⃗2 + A⃗3 (2.172c)

erzeugt werden kann. Die Vektoren a⃗′1, a⃗
′
2 liegen hier in den (111)-Ebenen und der Vektor

a⃗′3 steht senkrecht auf ihnen. Die Verschiebung aufgrund der Stapelfehler δ⃗(m3) ist auf die

a⃗′1 − a⃗
′
2-Ebene beschränkt und hängt nur von der Indizierung bzw. Lage der Ebene senkrecht

zum Stapelfehler m3 ab. Die Miller Indizes hkl werden in dieser Basis zu H0K0L0 mit

H0 = −
1

2
h +

1

2
k (2.173a)

K0 = −
1

2
k +

1

2
l (2.173b)

L0 = h + k + l. (2.173c)

Die unbedingte Wahrscheinlichkeit für das Auftreten eines Stapelfehlers bzw. eines Zwillings

wird mit α bzw. β bezeichnet. Der Erwartungswert für den Abstand zwischen Stapelfehlern

oder Zwillingen, gemessen in Ebenenabständen, ist folglich 1/α bzw. 1/β.

Die Herleitung der Fourier-Koeffizienten aus diesem Ansatz ist grundsätzlich in [62] enthalten

und basiert auf einer Fouriertransformation der Ebenen-Ebenen Korrelationsfunktion P 0 [62,

139]; das Ergebnis ist in etwas übersichtlicherer Form z.B. in [140, 141, 142] angegeben. Hier

wird auf die Variante aus [143] zurückgegriffen, worin bei den notwendigen Näherungen etwas

höhere Terme als üblich berücksichtigt werden. Der Fourier-Koeffizient CFhkl lautet dann

CFhkl(L) = A
F
hkl(L) [1 + iBF

hkl(L)] (2.174a)

AFhkl(L) = (1 − 3α − 2β + 3α2
+ 6αβ − 6αβ2)

∣ L
2dhkl

L0
h2

0

σ(L0)∣
(2.174b)

BF
hkl(L) = −σ(L0)

L

∣L∣

L0

∣L0∣

β

(3 − 12α − 6β + 12α2 − β2 + 24αβ(1 − α))1/2
. (2.174c)
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Tabelle 2.4: Auflistung der relevanten Größen zur Berechnung des Einflusses von Stapelfeh-
lern auf das Streubild. Details siehe Text.

{hkl} ηhkl ∣L0∣ L0 ⋅ σ(L0) ηhkl(L0) γhkl

{111} 8 3 0 2 0○

1 +1 6 70.5○

{200} 6 2 -2 6 54.7○

{220} 12 0 0 6 90○

4 +4 6 35.3○

{311} 24 3 0 12 58.5○

1 +1 6 80○

5 -5 6 29.5○

{222} 8 6 0 2 0○

2 -2 6 70.5○

Hier sind h2
0 = h

2 + k2 + l2 und σ(L0) eine Funktion von L0 der Form

σ(L0) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+1, wenn L0 = 3N + 1

0, wenn L0 = 3N mit N ∈ Z (2.175)

−1, wenn L0 = 3N − 1

Die Größen L0 und σ(L0) beinhalten die richtungsabhängige Skalierung der Effektgröße der

Stapelfehler auf die Fourier-Koeffizienten. Ein anschauliches Beispiel ist, dass σ(L0) = 0 ist für

hkl = 111 und somit CF (L) immer 1 ist25. Das ist zu erwarten, weil δ⃗(m3) gerade keine Ver-

schiebungskomponente in Richtung der Streuvektors (parallel zu [111]) hat. Eine vollständige

Auflistung der Werte von ∣L0∣ und L0 ⋅σ(L0)
26 für alle relevanten hkl-Kombinationen in die-

ser Arbeit ist in Tabelle 2.4 angegeben. Die Anzahl der verschiedenen Möglichkeiten L0 zu

berechnen entspricht der Flächenmultiplizität η der zugehörigen hkl-Kombination, d.h. jede

L0 Berechnung spiegelt den Effekt auf das Streubild von genau dieser hkl-Ebene wider, wobei

negative Werte von L0 einer Spiegelung der Ebenennormale an der Ebene entsprechen (z.B.

(111) und (1̄1̄1̄)). Gleiche Werte von ∣L0∣ entsprechen folglich gleichen Auswirkungen auf das

Streubild, was durch eine gleiche Neigung der betreffenden Flächen relativ zur (111) Ebene

herrührt. Daher sind die Flächenmultiplizität ηhkl, die Anzahl gleicher ∣L0∣ Werte ηhkl(L0),

sowie der Winkel γhkl zwischen der (111) Ebene und den (hkl)-Ebenen ebenfalls in Tabelle 2.4

angegeben. Eine weitergehende Auflistung dieser Werte für zusätzliche hkl-Kombinationen

findet sich in [141].

25D.h. keine Auswirkung auf das Streubild.
26Für die hier vorkommenden Formeln sind nur diese Ausdrücke relevant.
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Abbildung 2.34: a) Realteil der Stapelfehler-Fourier-Koeffizienten für α = 0.025 und β = 0.04
für alle drei Subkomponenten des Peaks hkl = 311. b) Imaginärteil der
Stapelfehler-Fourier-Koeffizienten für α = 0.025 und β = 0.04 für alle drei
Subkomponenten des Peaks hkl = 311.

Zusätzlich zu dem Effekt auf C(L) bewirken Stapelfehler und Zwillinge noch eine lokale

Änderung des Radius der hkl Kugelschalen ∣G⃗hkl∣ aus Abb. 2.25 um ∣G⃗′
hkl∣ = ∣G⃗hkl∣ + ghkl mit

ghkl =
σ(L0)

dhkl

L0

h2
0

[
1

2π
arctan(

(3 − 12α − 6β + 12α2 − β2)1/2

1 − β
) −

1

6
] , (2.176)

was eine Verschiebung der Peakmaxima im Diffraktogramm in 2θ bewirkt (vgl. Gl. (2.132)

und Gl. (2.123)).

Stapelfehler und Zwillinge bewirken also eine Aufspaltung der Bragg-Peaks in Subpeaks, de-

ren Anzahl der Zahl verschiedener ηhkl(L0) entspricht. Diese Subpeaks sind zueinander ver-

schoben (vgl. Gl (2.176)) und haben unterschiedliche Peakformen (vgl. Gl (2.174a – 2.174c)).

Der Anteil der einzelnen Subpeaks am Gesamtpeak entspricht dem Quotienten ηhkl(L0)/ηhkl.

Die aus den in Abb. 2.34 gezeigten Fourier-Koeffizienten resultierenden Diffraktionspeaks

sind in Abb. 2.35 gezeigt.

Dem bisherigen Stapelfehlermodell liegt jedoch die Annahme zu Grunde, dass der Kristallit

praktisch unendlich groß ist und somit vor und nach jedem Stapelfehler die gleiche Menge an

Ebenen existieren. Gleichzeitig wird die Fläche aller Stapelfehler unabhängig von ihrer Lage

als konstant angenommen. Beide Aspekte sind im Fall von nanokristallinen Polykristallen

mit annähernd kugelförmigen Körnern nicht erfüllt, weshalb in [143] und [139] die daraus

entstehenden Fehler durch die oben angegebene Modellierung untersucht wurden.

In [143] wurden dazu an Computermodellen von sphärischen Nanopartikeln mit Stapelfehlern

und Zwillingen virtuelle Streuung mithilfe der Debye Formel durchgeführt und die so erhalte-

nen Diffraktogramme, basierend auf dem obigen Modell, mithilfe von WPPM angepasst (mehr
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Abbildung 2.35: Einzelkomponenten des 311 Bragg-Peaks für α = 0.025, β = 0.04, ⟨D⟩vol =

20 nm und σ′ = 1.6. Die Summe der Einzelkomponenten formt den
vollständigen 311 Peak und ist schwarz gepunktet eingezeichnet.

zu WPPM in Kapitel 3.8). Die daraus erhaltenen Stapelfehler- und Zwillingswahrscheinlich-

keiten wurden mit den tatsächlichen Werten verglichen, was zu dem Ergebnis führte, dass

die Stapelfehlerwahrscheinlichkeit, je nach Ausgangssituation zwischen, −5% und +10% von

der tatsächlichen abwich. Bei Zwillingen wurde β sogar um bis zu 30% durch das Modell

überschätzt.

Ein Beitrag zu diesen Abweichungen lässt sich auf den geometrischen Effekt zurückführen,

dass die Querschnittsfläche einer Kugel senkrecht zu ihrem Radius nicht konstant ist. Je

weiter am Rand ein Stapelfehler liegt, desto kleiner ist seine Fläche und desto geringer ist

sein Beitrag zur gesamten Stapelfehlerwahrscheinlichkeit. Umgekehrt wird der Beitrag mit

dem Modell für in der Mitte des Korns liegende Stapelfehler überschätzt.

Zusätzlich wurde in [139] der Effekt der Lage eines Stapelfehlers in einem zylindrischen Korn

untersucht, bei dem die Stapelfehlernormalen entlang der langen Zylinderachse ausgerichtet

waren. Dadurch wurde der geometrische Effekt auf die Stapelfehlerfläche eliminiert. Hier

wurde gezeigt, dass Stapelfehler im mittleren Bereich des Korns relativ zum wahren Wert

um bis zu 25% überschätzt werden, während sie am Rand quasi vollständig bedeutungslos

werden.

Trotzdem war in allen Fällen die Modellierung des Streubildes mit der oben vorgestellten Me-

thode möglich, d.h. die prinzipielle physikalische Auswirkung des Gitterdefektes wird korrekt

beschrieben. Für die spätere Analyse in dieser Arbeit bedeutet das, dass bei der Bewertung

der Absolutwerte für α und β dieser Aspekt berücksichtigt werden muss. Eine Korrektur

erscheint auf Grundlage dieser Ergebnisse mit den vorhandenen Daten unmöglich.
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2.5.9 Effekt von Versetzungen

Um den Effekt von Versetzungen auf die Röntgenstreuung zu berechnen, muss das Dehnungs-

feld um die Versetzung bestimmt werden (vgl. Abb. 2.13 und Abb. 2.12) um daraus εL bzw.

⟨ε2
L⟩ aus Gl. (2.167) bzw. Gl. (2.168) zu erhalten und damit die Fourier-Koeffizienten zu be-

stimmen; von den Dehnungsbeiträgen ist dann, wie immer, die Projektion in Richtung des

Streuvektors relevant. Dabei muss die elastische Anisotropie des Gitters berücksichtigt wer-

den, sodass die einfachen Beispiele aus den genannten Abbildungen nicht ohne weiteres zur

Anwendung kommen können. Zusätzlich muss der Einfluss des Versetzungskernes genähert

werden.

Dieses Problem wurde im Rahmen der Krivoglaz-Wilkens-Theorie [144, 145, 146] (im Zu-

sammenhang mit WPPM auch [33, 140, 147]) für zufällig verteilte Versetzungen mit geraden

Versetzungslinien in ansonsten perfekten, unendlich ausgedehnten Kristallen in Form einer

Näherung gelöst. Konkret gilt danach für ⟨ε2
L⟩ in hkl-Richtung

⟨ε2
L⟩hkl =

ρb2Chkl
4π

f∗(L/Re). (2.177)

Hier sind ρ die Versetzungsdichte, b die Länge des Burgers-Vektor, Re ein effektiver Abschnei-

deradius, f∗ die Wilkens-Funktion und Chkl der Versetzungskontrastfaktor. Die Wilkens-

Funktion f∗ modelliert den Abfall der Verzerrung durch die Versetzung im Bereich von nahe

des Versetzungskerns bis hin zu großen Abständen davon. Sie hat nach [148] die folgende

Form:

f∗(L/Re) = f
∗
(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ln (X) +
7

4
− ln (2) +

X2

6
−

32X3

225π
, wenn X ≤ 1

(2.178)

256

45πX
− (

11

24
+

ln (2X)

4
)X−2, wenn X > 1

wobei X = 0.5 exp (−1/4)L/Re ist. Beispiele für den Verlauf von ⟨ε2
L⟩ sind in Abb. 2.36 gezeigt.

Der Versetzungskontrastfaktor beinhaltet sowohl die Wirkung der elastischen Anisotropie

des Gitters als auch eine Skalierung, die die Größe der tatsächlich erzeugten Dehnung in

der jeweiligen Richtung festsetzt. Er hängt dabei, neben den elastischen Eigenschaften des

Gitters, maßgeblich von der Lage und dem Charakter der Versetzung ab, also vom Burgers-

Vektor b⃗, dem Versetzungslinienvektor l⃗ und der Normalen der Gleitebene n⃗.
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2.5 Röntgenbeugung

10 20 30 40 50
L [nm]

0

0.5

1

1.5

2

R
e
=5nm, =1 1016 1/m2

R
e
=5nm, =5 1016 1/m2

R
e
=5nm, =5 1015 1/m2

R
e
=15nm, =1 1016 1/m2

R
e
=15nm, =5 1016 1/m2

R
e
=15nm, =5 1015 1/m2

Abbildung 2.36: Mikroverzerrungen aufgrund von Versetzungen in Abhängigkeit von L für
verschiedene Versetzungsdichten ρ und effektive Abschneideradien Re für
Chkl = 1. Die Wirkung von ρ entspricht einer einfachen Skalierung der Kur-
ven, wohingegen eine Änderung von Re eine Formänderung der Kurve er-
zeugt.

Der Effekt der elastischen Anisotropie auf ⟨ε2
L⟩hkl wurde für kubische Kristalle bereits in [136]

und allgemein in [149] bestimmt und hat für kubische Kristalle die Form

⟨ε2
L⟩hkl = A +B Γ

= A +B ⋅
h2k2 + k2l2 + l2h2

(h2 + k2 + l2)2
. (2.179)

Dieses Ergebnis ist allgemein für die Varianz von Dehnungen gültig und kann daher, neben

Versetzungen, auch auf beliebige andere Dehnungen im (Poly-)Kristall angewandt werden.

Im Zusammenhang mit Versetzungen fließt Gl. (2.179) in den Versetzungskontrastfaktor ein

und man erhält, wie auch in [33, 140, 147, 150, 151] berichtet,

Chkl = A +B Γ

= C200 (1 + q Γ) . (2.180)

Teilweise werden in den Quellen auch direkt die mittleren Kontrastfaktoren C̄hkl und C̄200

angegeben, die man aus der Mittelung der Kontrastfaktoren aller 12 Gleitsysteme27 in der

Probe erhält. Die verbleibende Herausforderung der recht umfangreichen Berechnung der

Kontrastfaktoren wurde auf Grundlage von [152, 153] ausführlich in [154] für den allgemei-

nen Fall gelöst, sowie in [155] im Rahmen der Entwicklung der Software ANIZC, die online

27Für den fcc Fall, wenn man nur die Standardgleitsysteme auf {111}-Ebenen in ⟨110⟩-Richtungen betrachtet.
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[156] frei verfügbar ist. Die Software ANIZC wurde auch genutzt, um die Versetzungskon-

trastfaktoren der hier untersuchten PdAu Legierung für alle relevanten hkl-Kombinationen

der 12 Standardgleitsysteme (⟨110⟩{111}) für reine Stufen- und reine Schraubenversetzungen

auszurechnen. Die Ergebnisse sind in Tabelle 2.5 auf S. 103 zusammengefasst. In Tabelle

2.6 auf S. 104 sind darüber hinaus Werte für die Versetzungskontrastfaktoren mittlerer Ver-

setzungen, die zu gleichen Teilen Stufen- als auch Schraubencharakter besitzen, angegeben.

Außerdem sind die Winkel zwischen b⃗ und dem Streuvektor in den Tabellen enthalten. Diese

Information wird später für die weitere Analyse benötigt.

Die mittleren Versetzungskontrastfaktoren C̄hkl sind außerdem in [151] tabelliert und lauten

für Pd90Au10 für Stufenversetzungen gemäß Gl. (2.180)

C̄st. = 0.3048 ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 − 1.5563 ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3

0

1/4

0.157

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, falls

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

hkl = 111

hkl = 200

hkl = 220

hkl = 311

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.181)

und für Schraubenversetzungen

C̄sch. = 0.2808 ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2.3106 ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3

0

1/4

0.157

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, falls

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

hkl = 111

hkl = 200

hkl = 220

hkl = 311

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.182)

Die Werte für verschiedene Ordnungen des selben Reflexes (z.B. (200), (400), ...) unter-

scheiden sich nicht voneinander. Der mittlere Versetzungskontrastfaktor für eine gemischte

Versetzung, bzw. für im statistischen Mittel gemischte Versetzungen, ergibt sich aus C̄st. und

C̄sch. durch eine anteilsgewichtete Mittelung [147, 151], also

C̄ = ast.C̄st. + (1 − ast.)C̄sch., (2.183)

wobei ast. der Anteil an Stufenversetzungen ist.

Damit erhält man für die Fourier-Koeffizienten des Versetzungseinflusses CV (L)

CV (L) = exp(−
1

2
πρb2 Chkl f

∗
(L/Re)

L2

d2
S(2θ)

), (2.184)

wobei hier Chkl, je nach Annahme, ein konkreter Versetzungskontrastfaktor aus Tabelle 2.5

auf S. 103 oder ein mittlerer C̄ im Sinne von Gl. (2.181), Gl. (2.182) oder Gl. (2.183) sein

kann. Beispiele für Fourier-Koeffizienten und daraus berechnete Bragg-Peaks sind in Abb. 2.37

dargestellt.

Wie bereits bei den Stapelfehlern, sind auch bei den Versetzungen die Voraussetzungen für die

Anwendbarkeit der Theorie auf nanokristalline Materialien nicht im strengen Sinne erfüllt,
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Abbildung 2.37: a) Fourier-Koeffizienten aufgrund von Versetzungen für den 111 Peak mit
mittlerem Versetzungskontrastfaktor, der zu gleichen Teilen Stufe- und
Schraubenversetzungen berücksichtigt. Die Koeffizienten sind für verschie-
dene Versetzungsdichten dargestellt. b) Die aus den Fourier-Koeffizienten
aus a) berechneten Peaks im Diffraktogramm.

weshalb die daraus resultierenden Abweichungen zwischen tatsächlicher und theoretisch, mit-

tels WPPM bestimmter Versetzungsdichte in [157, 158] anhand von Computermodellen un-

tersucht wurde. Es stellte sich heraus, dass unter bestimmten Umständen tatsächlich große

Abweichungen (bis zu 50%) in der Versetzungsdichte vorkommen können. Die Ergebnisse

werden laut [158] aber deutlich besser, wenn Re auf den Wert des Korndurchmessers D fest-

gesetzt wurde; in diesem Fall werde die Versetzungsdichte tendenziell leicht unterschätzt.

Zusätzlich dazu ist in [157] der Abfall der Dehnungen aus der MD Simulation in nanokris-

tallinen Körnern zusammen mit den gut übereinstimmenden, analytischen Ergebnissen auf

Grundlage von [70] gezeigt. Vergleicht man diese Ergebnisse aber mit denen, die man bei

Re ≈ D aus Gl. (2.177) erhält und die für verschiedene hkl-Richtungen auch in [157] darge-

stellt sind, so stellt man fest, dass deren Abfall unerwartet langsam erfolgt, wenn man sie

mit denen der Spannungen aus den MD Simulationen vergleicht. In der Krivoglaz-Wilkens-

Theorie gibt es für isotrope Materialien lediglich 2 Freiheitsgrade, ρ und Re, wobei ein zu

langsamer Abfall der mittleren quadratischen Spannung am ehesten auf einen zu großen Wert

für Re zurückgeführt werden kann (vgl. Abb. 2.36). Diese Beobachtung legt nahe, dass ein

kleinerer Wert als D für Re ebenfalls zu plausiblen Ergebnissen führen sollte, die vermutlich

sogar eine bessere Übereinstimmung mit den tatsächlich von der Versetzung im Nanokorn

verursachten Verzerrung erzeugen. Eine detailliertere Betrachtung zu diesem Thema erfolgt

im Methodikkapitel zur Versetzungsmodellierung 3.8.3.

Darüber hinaus wurde in [94, 147, 157, 158] davor gewarnt, dass Mikroverzerrungen in Nano-

kristallen, die nicht durch Versetzungen verursacht werden, fälschlicherweise durch WPPM,
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genau wie bei anderen Methoden, als Versetzungseffekt gewertet werden können; sofern es

kein zusätzliches Modell für andere Ursachen gibt.
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2.5.10 Thermodiffuse Streuung und zusätzliche Untergrundbeiträge

Um den Beitrag der thermodiffusen Streuung (TDS) konkret berechnen zu können, wird in

Gl. (2.125) bzw. Gl. (2.134) für die Verschiebungen u⃗m der Ansatz aus der Phononentheorie

(siehe Abschnitt 2.3, Gl. (2.82), S. 42) benutzt. Es gilt damit für die Gesamtverschiebungen

des Atoms m

u⃗m =∑
q,i

ai(q⃗) e⃗i(q⃗) cos (ωi(q⃗) t − 2π q⃗ R⃗m − δm,i(q⃗)), (2.185)

womit sich ganz analog zu Gl. (2.135) unter Anwendung der Identität

2 cosA cosB = cos (A −B) + cos (A +B) der Ausdruck

⟨ exp (i2πS⃗ [u⃗m(t) − u⃗m′(t)]) ⟩ = exp
⎛
⎜
⎝

2π2∑
q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩

⎡
⎢
⎢
⎢
⎢
⎣

cos (2πq⃗ (R⃗m − R⃗m′)) −1
¯
−2M

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

(2.186)

ergibt. Hier werden alle Terme mit gemischten q⃗,i und q⃗′,i′ ignoriert, da deren zeitlicher

Mittelwert aufgrund der fehlenden festen Phasenbeziehung verschwinden. Die Summe in

Gl. (2.186) läuft daher nur über die ungestrichenen Größen. Ein Ausdruck für ⟨a2
i (q⃗)⟩ ist

bereits in Abschnitt 2.3 mit Gl. (2.102) (S. 48) angegeben; ebenso ist dort das Vorgehen zur

Berechnung von q⃗ sowie e⃗i(q⃗) und ωi(q⃗) zu finden. Der Term S⃗e⃗i(q⃗) erfüllt im Grunde die

gleiche Funktion wie uSm weiter oben, also die Projektion der thermischen Auslenkungen

entlang des Streuvektors im Sinne eines Richtungskosinus, welcher noch mit der Amplitude

multipliziert werden muss, um die tatsächliche Auslenkung zu erhalten. In Gl. (2.186) kann

der Debye-Waller-Faktor durch folgenden Ausdruck identifiziert werden:

e−2M
= exp

⎛

⎝
−2π2∑

q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩ cos (2πq⃗ (R⃗m − R⃗m′))

⎞

⎠
, (2.187)

womit für die Intensität der gestreuten Strahlung durch Einsetzen in Gl. (2.134) (S. 78) gilt

I = Ief
2
e e

−2M∑
m
∑
m′

exp (i2πS⃗ [R⃗m − R⃗m′]) exp
⎛

⎝
2π2∑

q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩ cos (2πq⃗ (R⃗m − R⃗m′))

⎞

⎠
.

(2.188)
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Die Reihenentwicklung des hinteren Exponentialterm liefert den zu Gl. (2.136) analogen

Ausdruck für I

I = Ief
2
e e

−2M∑
m
∑
m′

exp (i2πS⃗ [R⃗m − R⃗m′])

+ Ief
2
e e

−2M∑
m
∑
m′

exp (i2πS⃗ [R⃗m − R⃗m′]) 2π2∑
q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩ cos (2πq⃗ (R⃗m − R⃗m′))

+ Ief
2
e e

−2M∑
m
∑
m′

exp (i2πS⃗ [R⃗m − R⃗m′])
1

2

⎛

⎝
2π2∑

q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩ cos (2πq⃗ (R⃗m − R⃗m′))

⎞

⎠

2

+ ...

= I0(S⃗) + I1(S⃗) + I2(S⃗) + ... (2.189)

Die erste Zeile in Gl. (2.189) beschreibt, wie bisher, die Intensität der Maxima (im Folgenden

I0), die zweite die der thermodiffusen Streuung 1. Ordnung I1, die dritte die der thermodiffu-

sen Streuung 2. Ordnung I2 usw.. Da die Beiträge zur Intensität mit ansteigender Ordnung

immer geringer werden, ist es in der Regel ausreichend, nur die ersten beiden Ordnungen der

thermodiffusen Streuung zu berücksichtigen (vgl. [159] und weiter unten).

Für die thermodiffuse Streuung 1. Ordnung erhält man, wenn man den Kosinusterm aus

Gl. (2.189) in zwei Exponentialfunktionen ausdrückt durch 2 cos (A −B) = exp (i(A −B)) +

exp (−i(A −B)),

I1(S⃗) = Ief
2
e e

−2Mπ2∑
q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩

∑
m
∑
m′

exp (i2π(S⃗ + q⃗) [R⃗m − R⃗m′]) + exp (i2π(S⃗ − q⃗) [R⃗m − R⃗m′])

= π2∑
q,i

(S⃗e⃗i(q⃗))
2
⟨a2
i (q⃗)⟩ (I0(S⃗ + q⃗) + I0(S⃗ − q⃗)) . (2.190)

Wie immer liefern die I0-Terme nur dann nennenswerte Beiträge, wenn ihr Streuvektor auf

(oder sehr nahe bei) einem reziproken Gitterpunkt endet; in diesem Fall also, wenn (S⃗ ± q⃗) =

G⃗hkl/2π ist. Die Wellenvektoren der Phononen können dabei nur aus der 1. Brilloin-Zone

um den jeweiligen reziproken Gitterpunkt stammen (vgl. Abschnitt 2.3), sodass Beiträge zur

thermodiffusen Streuung 1. Ordnung im Diffraktogramm immer auf die nähere Umgebung zu

Bragg-Reflexen beschränkt sind. Anschaulich schließen die Wellenvektoren der Phononen die

Lücke zwischen einem in der 1. Brilloin-Zone endenden Streuvektor und dem in dieser Brilloin-

Zone liegenden Gitterpunkt, um so die Streubedingung (vgl. Gl. (2.132)) über die inelastische

Wechselwirkung zwischen Phonon und Photon doch noch zu erfüllen (siehe Abb. 2.38).

Bei der thermodiffusen Streuung 2. Ordnung I2 geht man im Prinzip genauso vor und erhält

I2(S⃗) = π
4∑
q,i

∑
q′,i′

(S⃗e⃗i(q⃗))
2
(S⃗e⃗i′(q⃗

′
))

2
⟨a2
i (q⃗)⟩⟨a

2
i′(q⃗

′)⟩ I0(S⃗ ± q⃗ ± q⃗
′
), (2.191)
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Abbildung 2.38: Zweidimensionale Darstellung zur Berechnung der TDS 1. und 2. Ordnung.
Die 1. Brilloin-Zone (1. BZ) ist gelb eingezeichnet. Bei der TDS 2. Ordnung
ist die verschobene 1. BZ gestrichelt dargestellt. Der Mittelpunkt der ver-
schobenen 1. BZ muss bei der TDS 2. Ordnung immer innerhalb der 1. BZ
liegen. Details siehe Text.

wobei I0(S⃗± q⃗± q⃗
′) eine Abkürzung für die Summe aus allen vier Vorzeichenkombinationen im

Argument von I0 ist. Relevante Beiträge erhält man, wie oben, nur für (S⃗ ± q⃗± q⃗′) = G⃗hkl/2π,

was die gleiche anschauliche Bedeutung, wie im Falle der thermodiffusen Streuung 1. Ordnung

hat; diesmal jedoch mit 2 wechselwirkenden Phononen. Das führt u.a. dazu, dass nun der

Streuvektor in einem größeren Bereich um den reziproken Gitterpunkt enden kann und in

bestimmten Bereichen Beiträge von mehreren Bragg-Reflexen bzw. Gitterpunkten erzeugt

(siehe Abb. 2.38).

Insgesamt liefert die thermodiffuse Streuung einen signifikanten, winkelabhängigen Beitrag

zum Untergrund am Ort von und zwischen den Bragg-Peaks. Außerdem weist die TDS eine

auffällige Signatur mit Maxima an den und um die Bragg-Peaks auf (vgl. Abb. 2.39). Die

pragmatische, technische Implementierung dieser Rechnung wird weiter unten in Kapitel 3.8.8

beschrieben.

In dieser Arbeit werden noch zwei weitere Beiträge der Intensität im Untergrund von Dif-

fraktogrammen betrachtet, die von der untersuchten Probe herrühren und eine ausgeprägte

Winkelabhängigkeit aufweisen.

Einer dieser Beiträge ist die Comptonstreuung, welche einen etwas geringeren Beitrag als die

thermodiffuse Streuung liefert (vgl. Abb. 2.39) und u.a. für Pd in [133] tabelliert ist. Aufgrund

des glatten Verlaufs dieses Beitrags und der Unabhängigkeit von den meisten Probeneigen-

schaften, kann zwischen den Stützstellen einfach interpoliert oder die Stützstellen mit einer

Funktion angepasst werden.

Den zweiten Beitrag liefert die monotone Lauestreuung, die in zweikomponentigen Materia-

lien (Pd und Au) ohne Nahordnung durch [62]

IL = IeNcAucPd(fAu − fPd)
2 (2.192)
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gegeben ist. Hier sind cx die Konzentration der Komponente x in der Legierung und fx der

Atomformfaktor derselben. Im Vergleich zu den anderen Beiträgen zum Untergrund, ist die

monotone Lauestreuung eher unbedeutend (vgl. Abb. 2.39). Falls eine Nahordnung, z.B. in

Form von Pd3Au vorliegen würde, wäre der Beitrag davon zur Streuung etwa gleichgroß wie

die monotone Lauestreuung [62], weshalb dieser Aspekt im Folgenden ignoriert werden kann.
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2  [°]
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TDS 1. + 2. Ordnung
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Abbildung 2.39: Verschiedene Beiträge zum Untergrund des Diffraktogramms. Die TDS
ist für Körner mit D = 30 nm gerechnet. Der 111 Peak hat ein Inten-
sitätsmaximum von 1, sodass die TDS hier einen Anteil von ≈ 4 % an der
Gesamtintensität hat. Defekte oder Verzerrungen der Körner wurden hier
nicht berücksichtigt.
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2.6 Plastizität

2.6 Plastizität

Plastizität oder plastische Verformung beschreibt eine Relativverschiebung von Atomen im

Material in Folge einer äußeren Belastung, die nach Wegnahme der Last bestehen bleibt.

Dieser letzte Aspekt bildet den Unterschied zur elastischen Verformung.

Im Rahmen dieser Arbeit liefern zwei Quellen Informationen zum plastischen Verhalten der

nanokristallinen PdAu Proben. Zum einen gibt es die makroskopische Messung, die jedoch

keine strukturellen Details aus dem Inneren der Probe abbilden kann. Die zugehörige theore-

tische Beschreibung liefert hier die kontinuumsmechanische Plastizitätstheorie, ergänzt durch

den Formalismus zur Viskosität. Zum anderen liefert die Röntgenstreuung Informationen zu

den strukturellen Änderungen während der Verformung, wodurch Rückschlüsse auf Plasti-

zitätsmechanismen möglich werden. Letztere stellen eine mechanistische Beschreibung von

Plastizität auf mikroskopischer Ebene dar. Nachfolgend werden daher beide Betrachtungs-

weisen der Plastizität dargestellt.

2.6.1 Kontinuumsmechanische Beschreibung der Plastizität

Phänomenologisch können zwei Formen von Plastizität unterschieden werden: Viskoses und

plastisches Verhalten. Allerdings soll hier nicht der Eindruck einer Dichotomie dieser bei-

den Verhaltensweisen erzeugt werden. Vielmehr ist es so, dass das viskose Verhalten einen

Spezialfall der Plastizität darstellt und in der kontinuumsmechanischen, thermodynamischen

und mechanistischen Betrachtung unter den passenden Bedingungen aus der allgemeinen

Beschreibung hervorgeht.

Beim viskosen Verhalten [160] besteht, ähnlich wie beim Hook’schen Gesetz, eine lineare

Abhängigkeit zwischen Spannung σ und plastischer Dehnrate ε̇p. Eindimensional werden

beide Größen über die Viskosität η mit

ε̇p = ησ (2.193)

verknüpft. Allgemein handelt es sich eigentlich bei allen Größen um Tensoren, wobei der

Dehnratentensor aus dem Dehnungstensor durch zeitliche Ableitung aller Komponenten her-

vorgeht. Der Viskositätstensor ist formal ein Analogon zum Elastizitätstensor, d.h. es kann

theoretisch eine Vielzahl von unabhängigen Einträgen geben, die ein anisotropes viskoses

Verhalten von Materialien beschreiben. In der Regel wird aber isotropes viskoses Verhalten

betrachtet, sodass nur noch zwei unabhängige Viskositäten im Viskositätstensor vorkommen,

nämlich die Scherviskosität ηs und die Volumenviskosität ηv. Genau wie bei der Elastizität im

isotropen Fall, beschreibt die Volumenviskosität das Materialverhalten bei volumenändernden

Verformungen und die Scherviskosität das Materialverhalten bei volumenerhaltenden aber

formändernden Scherverformungen. In diesem Fall sind die Hauptachsen des Dehnratenten-

sors genauso orientiert wie die des Spannungstensors. Plastisches Fließen erfolgt also in die
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gleichen Richtungen, in die auch die Spannung wirkt. In Richtung positiver Zugspannun-

gen erfolgen positive Dehnungen und in Richtung negativer Druckspannungen kommt es zur

Stauchung (negative Dehnung) des Materials. Außerdem erfolgen plastische Scherungen nur

entlang solcher Ebenen an denen auch Scherspannungen anliegen. Im Zusammenhang mit

inkompressiblen Flüssigkeiten fällt die Volumenviskosität häufig weg, sodass es sich bei nicht

weiter spezifizierten Viskositäten in der Regel um Scherviskositäten isotroper, inkompressibler

Medien handelt.

Beim plastischen Verhalten [42] findet im Gegensatz dazu erst dann eine plastische Verfor-

mung statt, wenn eine kritische Spannung, die Fließspannung σy, erreicht wird; vorher ist das

Verhalten elastisch. Für das Vorhandensein von plastischem Verhalten in diesem Sinne ist es

also notwendig, dass in dem Material bei Verschiebung zunächst rückstellende Kräfte erzeugt

werden, andernfalls kann keine Spannung aufgebaut werden. Fließt das Material ab Erreichen

der Fließspannung bei konstanter Spannung mit der von außen vorgegebenen Dehnrate, ist

das Verhalten ideal plastisch. Muss die angelegte Spannung zur Aufrechterhaltung des Flie-

ßens kontinuierlich gesteigert werden, liegt (Kalt-)Verfestigung (engl. work hardening) vor,

beim gegenteiligen Fall entsprechend Entfestigung (engl. work softening).

Für das Auftreten von plastischer Verformung lässt sich formal eine Fließbedingung der Form

f(¯̄σ) = 0 (2.194)

formulieren, wobei f eine spannungsabhängige Fließfunktion darstellt. Plastizität tritt bei

den Spannungszuständen auf, bei denen die Fließfunktion die Fließbedingung erfüllt. Die

Herausforderung ist also, die zum Materialverhalten passende Fließfunktion zu bestimmen,

von denen in der Vergangenheit bereits zahlreiche für unterschiedlich komplexes Material-

verhalten entwickelt wurden; ein guter Überblick über die gängigsten Fließfunktionen und

Fließbedingung ist u.A. in [42] enthalten. Die einfachsten sind das von Mises- und das Tresca-

Kriterium für isotrope Materialien, die sich unter Druck- und Zugbelastung gleich verhal-

ten und unabhängig von der hydrostatischen Spannung sind. Das Mohr-Coulomb-Kriterium

berücksichtigt darüber hinaus Normalspannungen auf den Gleitebenen und das Drucker-

Prager-Kriterium ergänzt eine allgemeinere Abhängigkeit von der hydrostatischen Spannung.

Für poröse Metalle wurde das von Mises-Kriterium zum Gurson-Kriterium erweitert, in dem

explizit die Porosität des Materials enthalten ist. Noch komplexere Modelle, wie z.B. das

Pitman-Schaeffer-Gray-Stiles-Kriterium [161, 162] decken Effekte wie Kompressibilität, Di-

latanz und Kontraktanz ab und wurden ursprünglich für die Beschreibung des Verhaltens

granularer Materialien entwickelt.

Die Fließbedingung beschreibt für die verschiedenen Fließfunktionen verschieden geformte

Hyperflächen im 6-dimensionalen Spannungsraum; die Fließfunktion ist natürlich auch au-

ßerhalb der Fließfläche definiert. Stellt man die Spannungen im Hauptspannungsraum dar,

reduziert sich die Dimensionalität des Spannungsraumes von 6 auf 3 Dimensionen und die

Fließflächen können graphisch dargestellt werden. Für das von Mises-Kriterium erhält man

110



2.6 Plastizität

σI

σII

Fl
ie
ßf

lä
ch

e

σIII
hydrostatische
Achse

σI

σII

Fli
eß

flä
ch

e

σIII
hydrostatische
Achse

von Mises Drucker-Prager

Abbildung 2.40: Skizzen der Fließflächen des von Mises-Kriteriums und des Drucker-Prager-
Kriteriums im Hauptspannungsraum.

so z.B. den bekannten Zylinder und für das Drucker-Prager-Kriterium entsprechend einen

Kegel mit Endkappe (siehe Abb. 2.40). Ein Spannungszustand wird hier durch einen Punkt

im Hauptspannungsraum repräsentiert28, der sich bei Änderung der Belastung im Span-

nungsraum verschiebt – in jedem inkrementellen Zeitschritt dt um d¯̄σ. Trifft dieser Punkt

auf die Fließfläche, ist die Fließbedingung erfüllt und es kommt zu plastischer Deformation.

Die Mittelachsen der Fließflächen entsprechen (normalerweise) der ersten Raumachse, welche

die Gesamtheit aller hydrostatischen Spannungszustände repräsentiert. Die Raumkoordina-

ten des Spannungszustandes in Richtung der hydrostatischen Achse beschreiben somit den

hydrostatischen Teil der Spannung und die verbleibende Abweichung senkrecht dazu ent-

spricht dem deviatorischen Anteil der Spannung. Man erkennt also direkt an der Gestalt der

Fließflächen, dass das von Mises-Kriterium unabhängig von der hydrostatischen Spannung ist

und nur vom Spannungsdeviator abhängt, wohingegen die Abhängigkeit des Drucker-Prager-

Kriteriums von der hydrostatischen Spannung offensichtlich ist.

Entscheidend für das plastische Materialverhalten sind aber die Vorgänge, welche durch das

Erreichen der Fließfläche initiiert werden29. Der bisherige Formalismus macht nämlich kei-

nerlei Aussage darüber, wie schnell sich das Material bei Erreichen der Fließfläche verformt

oder in welche Richtung. Die Beantwortung dieser Fragestellung ist Gegenstand des Fließ-

gesetzes und erfolgt auf Grundlage des plastischen Potentials. Bei assoziierten Fließgesetzen

ist das plastische Potential identisch mit der Fließfunktion f , bei nicht-assoziierten Fließge-

setzen ist das nicht der Fall. Dort wird das plastische Potential zusätzliche modelliert, um

28Die Orientierung des Hauptspannungsraums gegenüber dem Laborkoordinatensystem ist hier komplett un-
bestimmt und es kann z.B. zu beliebigen Drehungen des Hauptspannungsraumes gegenüber dem Laborko-
ordinatensystem während der Änderung des Spannungszustandes kommen.

29Hier erfolgt eine vereinfachte Darstellung. Die vollständige Komplexität ist z.B. in [42] dargestellt.
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einen weiteren Freiheitsgrad in das Modell einzubringen. Hier wird der Einfachheit halber

nur der assoziierte Fall betrachtet, Weiterführendes ist z.B. in [42] enthalten. Die Einträge

des plastischen Dehnratentensors ergeben sich dann aus der Fließfunktion (allgemeiner: dem

plastischen Potential) mit

ε̇pij = γ̇
∂f

∂σij
, γ̇ > 0 (2.195)

wobei γ̇ ein skalarwertiger, positiver plastischer Multiplikator ist. Aus Gl. (2.195) folgt direkt,

dass die plastische Dehnrate bzw. das Dehnungsinkrement genauso orientiert sind, wie der

Gradient der Fließfunktion/des plastischen Potentials. Dieser Gradient steht immer senkrecht

auf der Fließfläche30 (vgl. Abb. 2.41), weshalb dieser Sachverhalt als Normalitätsbedingung

bezeichnet wird. Daraus folgt außerdem, dass die Hauptachsen des plastischen Dehnraten-

tensors bzw. des Tensors des plastischen Dehnungsinkrements, genauso orientiert sind, wie

die Hauptachsen des Hauptspannungsraums (Koaxialitätsbedingung); die Implikationen sind

die gleichen wie oben bei der Viskosität beschrieben. Assoziierte Fließgesetze und die Norma-

litätsbedingung haben sich für die Beschreibung der Plastizität vieler metallischer Werkstoffe

bewährt. Bei Gestein, Sand und granularen Materialien, oder allgemein druckabhängigen,

dilatierenden Materialien, scheitern sie jedoch häufig, weshalb nicht-assoziierte Materialge-

setze verwendet werden müssen, bei denen die Normalitätsbedingung und damit auch die

Koaxialitätsbedingung ihre Gültigkeit verlieren [42, 163].

σiso

σdev

0

Fließfläche

Normale

Spannungszustand

dε

dεvol

Abbildung 2.41: Zweidimensionale Darstellung einer Fließfläche eines assoziierten Fließgeset-
zes mit der hydrostatischen Spannung als x-Achse und einer deviatorischen
Spannung als y-Achse. Der aktuelle Spannungszustand wird durch einen
Punkt, hier auf der Fließfläche, gekennzeichnet. Das resultierende Dehnungs-
inkrement dε entlang der Normalen auf der Fließfläche, besitzt eine isotrope
Dehnungskomponente dεvol, die kollinear mit der σiso Achse ist.

30Bei assoziierten Fließgesetzen.
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Für Fließflächennormalen, die nicht senkrecht auf der hydrostatischen Spannungsachse ste-

hen, kommt es zu Kompression, Dilatation, Dilatanz oder Kontraktanz, da die resultie-

rende Dehnrate/Dehnungsinkrement einen hydrostatischen Dehnungsanteil besitzen (siehe

Abb. 2.41). Wenn die Fließflächennormale bei einem Spannungszustand eine Komponente

in Richtung negativer hydrostatischer Spannung besitzt, folgt eine Volumenabnahme durch

Kompression oder Kontraktanz, andernfalls eine Volumenzunahme durch Dilatanz bzw. Dila-

tation. Kontraktanz bzw. Dilatanz liegen dann vor, wenn bei einer reinen Scherspannung die

resultierende Scherdehnung durch einen isotropen Dehnungsanteil ergänzt wird. Die Orien-

tierung der Hauptachsen des Dehnratentensors wird durch den isotropen Anteil offensichtlich

nicht beeinflusst. Kompression bzw. Dilatation sind die analogen Prozesse, die jedoch durch

Normalspannungen hervorgerufen werden.

Die zeitliche Entwicklung des plastischen Fließens wird durch das Zusammenspiel von der

Entwicklung des Belastungszustandes und der Reaktion des Materials darauf bestimmt. Die

Entwicklung des Belastungszustandes bedeutet hier, wie sich in jedem Zeitinkrement der

Spannungszustand d¯̄σ in Bezug auf das plastische Potential (hier die Fließfläche FF)31 ent-

wickelt. Es müssen nur drei relevante Fälle unterschieden werden (siehe auch Abb. 2.42)

∂f

∂ ¯̄σ
∶ d¯̄σ

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

> 0, Lastzunahme normal zu FF

= 0, neutrale Laständerung entlang FF (2.196)

< 0, Lastabnahme normal zu FF

Das Frobenis-Skalarprodukt (:) wirkt hier analog zum gewohnten Skalarprodukt zwischen

Vektoren und liefert ein verallgemeinertes Maß für die Projektion von d¯̄σ entlang der Nor-

malen auf die Fließfläche. Im Hauptspannungsraum sind das Frobenis-Skalarprodukt (:) und

das Skalarprodukt (⋅) zweier Vektoren identisch.

Der plastische Multiplikator γ̇ hängt von diesem Belastungszustand in der Form

γ̇ =
1

H(ϑ)
(
∂f

∂ ¯̄σ
∶ d¯̄σ) (2.197)

ab, wobei H eine skalarwertige Funktion ist, die von der vorherigen Verformungsgeschichte

ϑ abhängt und das Verfestigungsverhalten des Materials beschreibt. Gleichung (2.197) gilt

in genau dieser Form auch bei nicht-assoziierten Fließgesetzen. Die Verformungsgeschichte

wird hier als Platzhalter mit ϑ bezeichnet und kann im konkreten Fall nahezu beliebig kom-

plex von plastischer Dehnung, Temperatur, Druck, Dehnrate, usw. abhängen; weitergehende

Informationen zu dem Thema finden sich in [42]. Zusammen mit der Bedingung γ̇ > 0 sind

31Assoziiertes Materialgesetz.
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also drei verschieden plastische Reaktionen des Materials nach Erreichen der Fließbedingung

möglich:

H > 0,
∂f

∂ ¯̄σ
∶ d¯̄σ > 0, Verfestigung

H < 0,
∂f

∂ ¯̄σ
∶ d¯̄σ < 0, Entfestigung (2.198)

H = 0,
∂f

∂ ¯̄σ
∶ d¯̄σ = 0, ideal plastisch

Zusätzlich ist bei Lastabnahme (2. Fall in Gl. (2.198)) natürlich immer die elastische Entlas-

tung möglich, also das Verlassen der Fließfläche in Richtung betragsmäßig32 kleinerer Span-

nungen.
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Abbildung 2.42: Zweidimensionale Darstellung der verschiedenen Belastungszustände und
der entsprechenden Entwicklungen der Fließfläche (bzw. des plastischen Po-
tentials).

Solange plastische Verformung stattfindet, muss der Spannungszustand die Fließbedingung

erfüllen, also der entsprechende Punkt im Spannungsraum auf der Fließfläche bleiben. Bei

Verfestigung und Entfestigung bewegt sich der Spannungszustand aber (teilweise) normal

zur ursprünglichen Fließfläche, weshalb eine entsprechende Anpassung derselben durch eine

Modifikation der Fließfunktion notwendig wird. Dabei kann die Form der Fließfläche als

Folge von Ver-/Entfestigung angepasst werden oder die Fließfläche im Spannungsraum als

Ganzes verschoben werden. Formal wird dadurch die Fließfunktion selbst ebenfalls von der

Verformungsgeschichte abhängig, also f(¯̄σ) Ð→ f(¯̄σ,ϑ).

Die Besprechung der kontinuumsmechanischen Plastizitätstheorie wird an dieser Stelle abge-

brochen; ihr grundsätzlicher Aufbau und die elementarsten Folgerungen sind im Grundsatz

32Der Betrag ist hier im allgemeinen Fall bei Tensoren die Frobeniusnorm.
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dargestellt. Die eigentliche Arbeit bestünde in der Identifikation oder Entwicklung passender

Fließfunktionen, ggf. plastischer Potentiale und Verfestigungsgesetze, wodurch eine quantita-

tive theoretische Beschreibung der makroskopischen Plastizität möglich wird. Das ist jedoch

nicht Gegenstand dieser Arbeit. Trotzdem ist die Plastizitätstheorie, selbst in dieser ober-

flächlichen Form, nützlich um die Daten der makroskopischen Verformung im Ergebnisteil

aufzubereiten und zu interpretieren.

2.6.2 Thermodynamische Beschreibung und thermische Aktivierung

Im Gegensatz zur kontinuumsmechanischen Plastizitätstheorie, konzentriert sich die mikro-

skopische Beschreibung auf die Mechanismen, durch die die permanenten Relativverschiebun-

gen im Gitter oder im Polykristall erzeugt werden. Die Aktivierbarkeit dieser Mechanismen in

einem Material – bei gegebenen Bedingungen wie Temperatur, (Mikro-)Struktur etc. – hängt

dabei von der angelegten Spannung ab. Das ist genau wie in der Kontinuumsmechanik und

muss auch so sein, denn grundsätzlich beschreiben beide Ansätze den gleichen Vorgang. Das

Analogon eines Plastizitätsmechanismus zur Fließbedingung ist die Aktivierungsspannung

(oder Scherwiderstand, engl. glide resistance) τ , welche die angelegte Spannung erreichen

muss, um den Mechanismus zu aktivieren. Sie lässt sich thermodynamisch als Fortsetzung zu

dem Formalismus herleiten, der oben bei der Elastizität benutzt wurde (siehe Gl. (2.39ff)).

Um damit die Brücke von der makroskopischen Kontinuumsmechanik zur mikroskopischen

Betrachtung zu schlagen, wird das Gesamtsystem, welches durch ein thermodynamisches

Potential wie F beschrieben wird, in Subsysteme unterteilt, sodass F = ∑Fi ist. Diese Sub-

systeme sollen nun so gewählt sein, dass jeder lokal ablaufende Plastizitätsmechanismus durch

ein eigenes Subsystem repräsentiert wird. Zudem sollen Plastizitätsmechanismen verschiede-

ner Subsysteme sich nicht gegenseitig beeinflussen, sondern wie in [32] parallel zueinander

ablaufen. Die folgende Darstellung stützt sich im Wesentlichen auf [164] und [165] und wurde

bereits in früheren Arbeiten [25, 166, 167, 30] in ähnlicher Weise aufgegriffen.

Im elastischen, also reversiblen Fall gilt dF = dW ∣T=const und damit

σij =
∂f

∂εij
∣
T=const

=
1

V

∂W

∂εij
∣
T=const

. (2.199)

Das ist der Fall, in dem gemäß dem Prinzip der maximalen Arbeit bei konstanter Entropie die

maximale mechanische Arbeit am System verrichtet wird [119]. Bei irreversiblen Vorgängen

nimmt die Entropie zu, sodass dF < dW ∣T=const gilt. Damit ergibt sich für die durch die

Verformung dissipierte Energie dΨ nach [164]

dΨ = V ∑
i
∑
j

σijdεij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dW

−dF ≥ 0. (2.200)
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Die Aktivierungsspannung ist im Prinzip genauso definiert wie die allgemeine Spannung σ

zuvor, also

τij =
∂f

∂εij
∣
T=const

, (2.201)

nur dass hier die Einschränkung dF = dW ∣T=const in den allgemeineren Fall dF ≤ dW ∣T=const

übergeht.

Mit Gl. (2.201) erhält man dann aus Gl. (2.200) den Zusammenhang für die dissipierte Energie

dΨ = V ∑
i
∑
j

dεij (σij − τij) . (2.202)

Für jeden Belastungsfall σ ≠ 0 erzeugt man, neben plastischer Dehnung, immer auch elasti-

sche Dehnung, weshalb zunächst die Implikationen dieses Formalismus in Bezug auf elastische

Vorgänge betrachtet wird. Dieser Fall ist in Abb. 2.43 (S. 117)für eindimensionale Spannun-

gen und Dehnungen dargestellt. Zwingt man einem elastischen Material eine Dehnung εf

auf, bzw. belastet es mit einer entsprechenden Spannung σf , gilt in jedem Punkt der Belas-

tungskurve σ = τ und damit dΨ = 0, es wird also keine Energie dissipiert. Die verrichtete

mechanische Arbeit, die der Fläche unter der τ Kurve entspricht, ist in Form von potentieller

Verzerrungsenergie ∆W im Material gespeichert. Eine Entlastung entspricht einer Dehnung

in negative ε-Richtung und setzt, formal durch den Vorzeichenwechsel von ε, die Verzerrungs-

energie −∆W wieder frei. Das gilt, solange die Bedingung für lineare Elastizität erfüllt ist,

für beliebige Dehnungen/Spannungen.

Bei einer plastischen Verformung erreicht man, im Unterschied zur elastischen, ein neues lo-

kales Minimum in F bei höheren Dehnungswerten εB (siehe Abb. 2.44, S. 119). Altes und

neues Energieminimum sind durch eine freie Energiebarriere voneinander getrennt. Der plas-

tische Dehnungsunterschied ∆εp zwischen den Minima, sowie Form und Höhe der Energieb-

arriere, sind abhängig von dem Plastizitätsmechanismus. Ein fiktives Beispiel für solch einen

elastisch-plastischen Vorgang ist in Abb. 2.44 (S. 119) gezeigt.

Hier wird von außen eine Spannung σa auf das Material aufgebracht, was eine initiale elasti-

sche, reversible Dehnung εs verursacht; diese Dehnung muss nicht zwangsweise linear elastisch

sein. Allerdings muss bis zu diesem Punkt stets σ = τ gelten. Anhand des τ − ε Diagramms

kann man erkennen, dass der Punkt bei εs und τ(εs) = σa stabil ist, da für eine weitere Deh-

nung eine Erhöhung der Spannung notwendig wäre. Für das Überwinden der Barriere ist eine

Spannungserhöhung auf den Maximalwert τ̂ , der sogenannten athermischen Grenzspannung,

notwendig.

Erreicht man diesen Wert, wird eine plastische Dehnungszunahme bis zum nächsten stabilen

Punkt (hier ε′s) bewirkt. Bei dieser plastischen Dehnung ist τ < σa, sodass dΨ > 0 ist, also

Energie dissipiert wird. Am neuen stabilen Punkt stellt sich bei σa ≠ 0 natürlich wieder eine
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Abbildung 2.43: Veranschaulichung des Zusammenhangs zwischen freier Energie F , angeleg-
ter Spannung σ und Scherwiderstand τ , sowie dissipierter Energie Ψ für den
elastischen Fall. Details siehe Text.

entsprechende elastische Dehnung ein, deren Abbau die elastisch gespeicherte Verzerrungs-

energie −∆W wieder freisetzt – vorausgesetzt, die elastischen Eigenschaften des Materials

wurden durch die plastische Verformung nicht verändert.

In der Regel wird die angelegte Spannung die athermische Grenzspannung aber nicht erreichen

können, da die Barriere vorher durch die thermischen Schwingungen der Atome überwunden

wird. Dazu ist eine zufällige, kollektive Bewegung aller am Plastizitätsprozess beteiligten Ato-

me in der Art nötig, dass momentan eine effektive lokale Dehnung und Spannung33 entsteht,

durch welche die Lücke zu τ̂ und ε̂ geschlossen wird. Die plastische Dehnung läuft ab da, genau

wie oben, selbstständig ab, wobei in jedem plastischen Dehnungsinkrement dεp die mechani-

sche Arbeit dW = σadεp verrichtet wird. Zwischen εs und dem instabilen Gegenpart auf der

33Die Spannung ist die rückstellende Kraft der thermischen Schwingungen.
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abfallenden Flanke der Barriere εi ist τ > σ und damit dΨ < 0. Es muss also in diesem Bereich

∆F ∗ am System verrichtet werden, was einerseits durch mechanische Arbeit ∆W = σa(εi−εs)

und andererseits durch thermische Arbeit in Form von ∆G∗ erfolgt. Das Auftreten der freien

Enthalpie ∆G∗ erklärt sich durch die Konstanz von Temperatur und Druck, wobei letzteres

aus der Konstanz von σa folgt. Die am System zu verrichtende Arbeit in Form von freier Ener-

gie setzt sich damit aus ∆F ∗ = ∆W +∆G∗ zusammen, wobei der Stern die zu verrichtenden

Aktivierungsenergien kennzeichnet. Mit dem Einsetzen der plastischen Verformung gilt also

dG = −dψ, und zwar auch nach dem Bereich εi bis εs. Die Aktivierungsenergie ∆G∗ wird

dem System beim Überwinden der Barriere entzogen und anschließend über die Dissipation

dG = −dψ wieder zugeführt. Der Unterschied zwischen insgesamt verrichteter mechanischer

Arbeit ∆Wg und insgesamt dissipierter Energie ∆ψg ist der Unterschied zwischen altem und

neuem Minimum in der freien Energie ∆F .

Die Verfestigung aus dem vorherigen Abschnitt entspricht hier einer Erhöhung von τ̂ durch

plastische Verformung. Das kann z.B. in einem Subsystem (d.h. Teilvolumen) durch einen

Versetzungsaufstau an der Korngrenze verursacht werden. Dann interagieren nachfolgende

Versetzungen mit dem Spannungsfeld der aufgestauten Versetzungen (siehe z.B. [165, 168])

und erzeugen so beim Gleiten über die gleiche Distanz34 eine größere Zunahme der potentiel-

len Energie und damit von F . Die daraus resultierende Zunahme der Steigung von F erzeugt

dann einen Anstieg von τ und somit auch von τ̂ . Die Entfestigung entspricht der Umkehrung

eines solchen Vorgangs. Wenn die gesamte Verformung im Material nur von einem Mecha-

nismus getragen wird, der quasi isotrop im Materialvolumen stattfindet, ist die Beschreibung

des Gesamtsystems und der Subsysteme identisch, andernfalls sind sie nur formal ähnlich.

Die Dehnrate, mit der die plastische Verformung abläuft, ist durch die thermisch aktivierte

Überwindung der Potentialbarriere bestimmt. Das heißt, wenn von außen die athermische

Grenzspannung σ = τ̂ angelegt wird, kann die plastische Verformung beliebig schnell ablaufen.

Praktisch wird die maximale Dehnrate dadurch beschränkt, dass die Geschwindigkeit der

Plastizitätsmechanismen durch die Schallgeschwindigkeit im Material begrenzt ist. Für alle

Fälle σ < τ̂ ergibt sich die Dehnrate ε̇ aus dem Produkt der Rate R, mit der die Barriere

überwunden wird, und dem dadurch hervorgerufenen Dehnungsinkrement ∆ε, also

ε̇ = R ∆ε. (2.203)

Die Rate R hängt wiederum von der Frequenz ν ab, mit der die thermischen Fluktuationen

versuchen, die Barriere zu überwinden, sowie von der Wahrscheinlichkeit P (∆G∗, T ), mit

der eine thermische Fluktuation auftritt, deren Energie größer oder gleich der benötigten

Aktivierungsenergie ∆G∗ ist. Man erhält also

R = ν P (∆G∗, T ). (2.204)

34Das entspricht der Erzeugung einer gleichen Dehnung dε.
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∆W/V

∆G/V

∆F/V=∆W/V
/V

Abbildung 2.44: Veranschaulichung des Zusammenhangs zwischen freier Energie F , angeleg-
ter Spannung σ und Scherwiderstand τ , sowie dissipierter Energie Ψ für den
plastischen Fall. Zusätzlich ist der Zusammenhang zur hier relevanten Gibbs
Energie G dargestellt. Details siehe Text.
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Die thermischen Fluktuationen sind, mechanistisch betrachtet, kollektive Bewegung aller am

Plastizitätsprozess beteiligten Atome, was im Prinzip identisch zu den atomaren Schwingun-

gen ist, die durch die Phononen beschrieben werden. In einem Subsystem ist die räumliche

Ausdehnung des Plastizitätsmechanismus, über den die kollektive Schwingung stattfinden

muss, daher mit der Wellenlänge des entsprechenden Phonons korreliert. Für die Wahr-

scheinlichkeit P gilt die Bose-Einstein-Statistik, die für große Aktivierungsenergien ∆G∗

in die gebräuchlichere Maxwell-Boltzmann-Statistik übergeht, sodass man den gewohnten

Arrhenius-Ausdruck aus Frequenzfaktor und Boltzmannfaktor erhält, wie er auch in [164,

165, 25, 166, 167, 30] verwendet wird. Man erhält also

P (∆G∗, T ) ∼
1

exp (∆G∗

kBT
) − 1

ÐÐÐÐÐÐ→
∆G∗≫kbT

exp(−
∆G∗

kBT
). (2.205)

Die Frequenz ν entspricht dann ν = ω/2π, wobei ω die Kreisfrequenz des Phonons ist, wie

sie in Kapitel 2.3 angegeben ist. Diese hängt in komplexer Art von Länge und Orientie-

rung des Phononenvektors q⃗ und der Mode (z.B. transversal, longitudinal) ab, folgt aber

im Prinzip ebenfalls der Bose-Einstein-Statistik mit der Energie E = h̵ω ≈ ∆G∗, sodass die

gleiche Proportionalität wie in Gl. (2.205) gilt. Die Frequenz ν wird häufig lediglich auf ei-

ne Größenordnung abgeschätzt (ν ≲ 1011 s−1) [164] oder grob genähert wie z.B. in [165], wo

ν = νD(Ω/Ω0)
1/3 mithilfe von Debye-Frequenz νD, Atomvolumen Ω0 und Größe des Schervo-

lumens Ω für Schertransformationen abgeleitet wird.

In dieser Arbeit wird die Näherung ∆G∗ ≫ kbT genutzt; bei Raumtemperatur ist kBT ≈

0.025 eV, was deutlich kleiner ist als die zu erwartenden Werte für ∆G∗ ≈ 0.5 eV [166] bzw.

∆G∗ ≈ 0.75 eV [167] oder ∆G∗ ≈ 0.77 eV [11]. Damit wird Gl. (2.204) zu

R = ν exp(−
∆G∗

kBT
) = ν0 exp(−

2∆G∗

kBT
), (2.206)

wobei ν0 ≈ 1012 s−1 ist, womit ν für den Fall ∆G∗ = 0 der Größenordnung von ω/2π für ∣q⃗∣ ≈ 0

aus den Phononenrechnungen für PdAu entspricht.

Für die Dehnrate erhält man dann mit Gl. (2.206) und Gl. (2.203)

ε̇ = ε̇0 exp(−
∆G∗

eff

kBT
) (2.207a)

= ∆ε ν0 exp(−
2∆G∗

eff

kBT
) (2.207b)

≈∑
i

ci ∆εi ν0 exp(−
2∆G∗

i

kBT
). (2.207c)
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Hier beziehen sich Gl. (2.207a) und Gl. (2.207b) auf das Gesamtsystem; ε̇0 beschreibt die ef-

fektive, makroskopische athermische Dehnrate, ∆ε das effektive, makroskopische Dehnungs-

inkrement durch den effektiven Plastizitätsprozess und ∆G∗
eff ist die effektive thermische

Aktivierungsenergie aller an der Verformung beteiligten Mechanismen.

Die Gl. (2.207c) stellt die Summation über alle Subsysteme dar. Hier ist ∆εi die lokal im

i-ten Subsystem erzeugte Dehnung durch den Plastizitätsmechanismus mit thermischer Ak-

tivierungsenergie ∆G∗
i . Zusätzlich wird ein Gewichtungsfaktor ci notwendig, der den Anteil

des Subsystems am Gesamtvolumen repräsentiert. Genau genommen stellt Gl. (2.207c) nur

eine Annäherung an Gl. (2.207a) oder Gl. (2.207b) dar, da eine einfache, gewichtete Summa-

tion von lokalen Dehnungen in Teilvolumina der Probe nicht zulässig ist. Die genaue Lösung

erhielte man erst durch die Lösung aller Eshelby-Probleme [42, 60]. Außerdem ist bei der Be-

trachtung der Subsysteme nicht gewährleistet, dass nur ein einzelner Plastizitätsmechanismus

darin enthalten ist. Allgemein müssen immer alle (stark) miteinander wechselwirkenden Pro-

zesse in einem gemeinsamen Subsystem enthalten sein und bilden zusammen einen effektiven

Plastizitätsprozess, wodurch ∆εi und ∆G∗
i streng genommen auch effektive Größen auf klei-

nerer Längenskala sind. Im Beispiel mit der Aufstauung von Versetzungen an der Korngrenze

müssten z.B. alle miteinander wechselwirkenden Versetzungen im selben Subsystem enthalten

sein.

In Übereinstimmung mit dem oben Gesagten, ergibt sich in dieser Beschreibung als ather-

mischer Grenzfall (∆G∗ = 0) eine Verformung, bei der sich der Plastizitätsmechanismus mit

Schallgeschwindigkeit bewegt. Streng genommen müsste man in diesem Fall eigentlich auf die

Näherung ∆G∗ ≫ kbT verzichten und erhielte divergierende Dehnraten, wie es auch in [165]

der Fall ist; physikalisch sinnvoll ist das aber nicht.

Des Weiteren lässt sich feststellen, dass im Prinzip die Fließspannungen alle Verformungs-

prozesse dehnratenabhängig bzw. temperaturabhängig sind oder umgekehrt, dass jeder Plas-

tizitätsmechanismus zu einem viskosen Fließen führt [169]. In der Praxis ist die Dehnraten-

abhängigkeit/das viskose Verhalten bei den Prozessen, die die Aktivierungsbarriere im We-

sentlichen nicht thermisch überwinden, aber oft so gering, dass dieser Aspekt in den gängigen

Beschreibungen vernachlässigt wird (z.B. Versetzungsgleiten bei niedrigen homologen Tem-

peraturen).
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Bisher wurden plastische Verformungen bei konstanter angelegter Spannung betrachtet. Im

Experiment wurde die Verformung jedoch geschwindigkeitskontrolliert durchgeführt, d.h. die

angelegte Spannung ist variabel und kann durch das Auftreten eines Scherereignisses kurz-

zeitig abgesenkt werden. Die geleistete mechanische Arbeit und die dissipierte Energie, wie

sie in Abb. 2.44 (S. 119) dargestellt sind, stellen daher obere Schranken dar.

Für nanokristalline Materialien, in denen eine Vielzahl von Plastizitätsmechanismen möglich

sind, bedeutet das, dass bei gegebener Dehnrate die Spannung im Material solange ansteigt,

bis die Gesamtheit aller bei dieser Spannung/Temperatur/etc. aktiven Prozesse die von außen

vorgegebene, effektive Dehnrate erreicht.

Laufen diese Prozesse vollständig parallel zueinander ab, also ohne gegenseitige Beeinflussung

oder Abhängigkeit, wird das Geschehen von dem Prozess mit der geringsten Aktivierungsener-

gie dominiert, sofern dieser Prozess alleine fähig ist, die geforderte makroskopische Dehnrate

bereitzustellen (vgl. ci∆εi in Gl. (2.207c)). Der Beitrag zur effektiven Dehnrate von Kombi-

nationen untereinander abhängiger bzw. sich beeinflussender Prozesse ist immer durch den

Mechanismus mit der höchsten Aktivierungsenergie begrenzt.

Kommen Mechanismen mit niedriger Aktivierungsenergie mit fortlaufender Verformung zum

Erliegen, muss auf schwerer aktivierbare Prozesse ausgewichen werden, wodurch die angeleg-

te Spannung steigen muss, um die Verformung aufrecht zu erhalten. Formal wird in diesen

Fällen ci(εp,i) von dem bereits geleisteten Beitrag dieses Prozesses zur plastischen Dehnung

εp,i abhängig. Dieser Vorgang ist identisch zu dem, der während der Relaxation von nano-

kristallinen Metallen auftritt und in [32] ausführlich beschrieben ist. Außerdem werden in [8]

Indizien dafür geliefert, dass dieses relaxationsähnliche Verhalten einen Beitrag zur plasti-

schen Verformung nanokristalliner Metalle liefert.

2.6.3 Plastizitätsmechanismen

Im vorherigen Abschnitt wurde dargelegt, dass Plastizitätsmechanismen mit niedrigen Akti-

vierungsenergien die plastische Verformung dominant beeinflussen. Die Aktivierungsenergie

entspricht der Energieerhöhung im Material im transienten Zustand des aktiven Prozesses

und skaliert näherungsweise mit der Anzahl der daran beteiligten Atome, deren Positionen

während der Verformung kurzzeitig (stark) von regulären Gitterplätzen abweichen. Daher ist

es energetisch günstig, plastische Verformung lokalisiert über die Verschiebung von Gitterde-

fekten zu realisieren, wobei eine niedrigere Dimensionalität des Defektes mit einer niedrigeren

Aktivierungsenergie verbunden sein sollte.

Diesem Argument folgend sollte die Bewegung nulldimensionaler Defekte eigentlich entschei-

dend für die Plastizität sein (siehe Abb. 2.45a, S. 123). Deren Bewegung ist in der Regel

diffusionskontrolliert, wobei die treibende Kraft dafür aus einer inhomogenen Änderung des

chemischen Potentials an Grenz- und Oberflächen von Körnern resultiert, die durch den devia-

torischen Anteil der Spannung hervorgerufen wird [169]; der isotrope Spannungsanteil führt

zu einer homogenen Änderung des chemischen Potentials, sodass keine Gradienten und damit
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keine treibende Kraft für die Diffusion erzeugt wird. Tatsächlich existieren eine Reihe von Mo-

dellen für diesen Prozess, wie z.B. Nabarro-Herring Kriechen [170, 171], Coble Kriechen [172]

oder die Modelle von Lifshitz [173], Gibbs [174] oder Raj und Ashby [175]. Allerdings ist all

diesen Prozessen gemein, dass sie nur relativ niedrige Dehnraten erreichen können, u.a. weil

die Bewegung einer einzelnen Leerstelle/Atoms nur eine verschwindend geringe Gesamtdeh-

nung erzeugt, weshalb diese Prozesse nur bei niedrigen Spannungen und hohen Temperaturen

dominant zur Verformung beitragen [169]. Unter diesen Bedingungen können sie ihren Vorteil

der leichten thermischen Aktivierbarkeit gegenüber dem Versetzungsgleiten voll ausspielen.

σ

KG-
Diffusion

Gitter-
Diffusion

(a)

b

bb

(b)

Abbildung 2.45: a) Diffusionskriechen von nulldimensionalen Defekten (Leerstellen, Fremda-
tome, ...) im Korn bei angelegter Spannung σ. Die Diffusion kann über die
Korngrenzen (KG) oder durch das Gitter erfolgen und ist hier durch Pfeile
veranschaulicht. b) Darstellung von ⟨110⟩{111} Gleitsystemen in der Ein-
heitszelle des fcc Gitters. Die (111)-Ebene ist grau eingezeichnet und die
drei möglichen Gleitrichtungen sind durch blaue Pfeile markiert.

Unter allen anderen Bedingungen, also niedrigen Temperaturen und/oder hohen Spannun-

gen, kommt daher die Verschiebung des nächst höherdimensionalen Defektes zum Tragen,

den Versetzungen. Die Versetzungsbewegung, auch Versetzungsgleiten genannt, erfolgt im

einfachsten Fall entlang einer {111} Gleitebene35 und erzeugt eine lokale Verschiebung in

Burgers-Vektorrichtung ⟨110⟩. Die insgesamt 12 unabhängigen {111}⟨110⟩ Gleitsysteme in

fcc Kristallen wurden bereits in Tabelle 2.5 (S. 103) gelistet. Die Lage dieser Gleitsysteme

in der fcc Einheitszelle ist in Abb. 2.45b dargestellt. Zusätzlich gibt es in fcc Materialien

weitere Gleitsysteme, die zwar energetisch ungünstiger sind, aber in manchen Fällen dennoch

aktiviert werden können – unter anderem auch in nanokristallinem PdAu [50, 28].

35Die Ebene, die Burgers- und Linienvektor enthält [70].
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Die treibende Kraft für die Versetzungsbewegung in der Gleitebene ist die Scherspannung

σgn entlang dieser Ebene in Gleitrichtung, also

σgn = g⃗ (¯̄σ n⃗), (2.208)

wobei n⃗ der Einheitsnormalenvektor auf die Gleitebene ist und g⃗ der Einheitsvektor in Glei-

trichtung. Für uniaxiale Spannungszustände erhält man damit den Spezialfall des Schmid’schen

Schubspannungsgesetzes mit den beiden Richtungskosinus der Gleitebenennormalen und Glei-

trichtung in Bezug auf die Richtung der angelegten Spannung F /A = σ [70]

σgn = σ cos (β) cos (λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

. (2.209)

Der Schmidfaktor m gibt also lediglich an, auf welcher Gleitebene bei einer angelegten un-

iaxialen Spannung die betragsmäßig größte Scherspannung in eine Gleitrichtung anliegt. Die

Bestimmung einer analogen Größe zu m für den Polykristall wurde von Taylor in [176] vor-

geschlagen. Dieser Taylorfaktor ist für bcc und fcc Materialien M ≈ 3 [70], gilt aber ebenfalls

nur für uniaxiale Spannungszustände. Eine Anpassung von M für allgemeinere Vergleichss-

pannungen wurde in [177] vorgenommen und liefert für die von Mises Vergleichsspannung

M ′ =M/
√

3 oder für die Tresca Vergleichsspannung M ′ =M/2.

Gleiten setzt dann ein, wenn σgn den Scherwiderstand τ überwindet. Die Details hängen von

Umgebungsbedingungen (z.B. Temperatur und Druck), der aktuellen Mikrostruktur des Ma-

terials und von Prozessparametern wie konstante angelegte Spannung oder konstante Dehn-

rate ab.

Der Scherwiderstand der Versetzungen resultiert aus der Energieerhöhung während der Bewe-

gung und ist im perfekten Gitter identisch zur Peierls-Spannung (vgl. Gl. 2.109 oder Gl. 2.110,

S. 57). Darüber hinaus ist eine Erhöhung oder (seltener) Erniedrigung des Scherwiderstandes

durch die Interaktion von Versetzungen mit weiteren Gitterdefekten wie Leerstellen, Fremda-

tomen, anderen Versetzungen, Korn- und Phasengrenzen, Ausscheidungen usw. möglich, was

technisch zur Beeinflussung der Härte oder Festigkeit von Metallen und Legierungen vielfach

eingesetzt wird [70, 168, 165].

Um die wohlbekannten, starken plastischen Verformungen von Metallen über Versetzungsbe-

wegungen zu realisieren, wird außerdem eine Möglichkeit zur Erzeugung neuer Versetzungen

benötigt. Gäbe es sie nicht, würden die anfänglich im Material vorhandenen Versetzungen

mit fortschreitender Verformung aufgebraucht und eine weitere Verformung wäre nicht mehr

möglich. Innerhalb von Kristalliten gibt es mehrere mögliche Prozesse, durch die vorhan-

dene Versetzungen während der Verformung vervielfacht werden können. Der wahrscheinlich

bekannteste ist die Frank-Read-Quelle [70, 107], aber es gibt weitere Prozesse wie die Bardeen-

Herring-Quelle, die Multiplikation durch Versetzungsklettern oder mehrfaches Kreuzgleiten

(multiple cross slip) erzeugt [70, 107]. Darüber hinaus können Korngrenzen als Quellen und
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Senken für Gitterversetzungen dienen [70, 107], was insbesondere bei nanokristallinen Ma-

terialien von Bedeutung ist, da die Aktivierungsspannungen der intragranularen Multipli-

kationsprozesse umgekehrt mit ihrer Ausdehnung skalieren. In wenigen Nanometern großen

Körnern führt das zu theoretischen Aktivierungsspannungen, die weit oberhalb der beobach-

teten Fließspannungen liegen [30].

Bei geringeren Spannungen gleiten Versetzungen, als Konsequenz der thermischen Aktivie-

rung, in den seltensten Fällen als Ganzes ab, sondern i.d.R. stückweise durch die Nuklea-

tion und Bewegung von Kinks bzw. Kink-Paaren ab [70, 164]. Dabei handelt es sich um

Knickstellen oder lokal begrenzte Ausstülpungen der Versetzungslinie in der Gleitebene, de-

ren Nukleation und Verschiebung ein lokal beschränktes Abgleiten der Versetzung erzeugen

(siehe Abb. 2.46). Da die Energiezunahme im transienten Zustand mit der Länge der glei-

tenden Versetzungslinie skaliert, kann dieser Prozess bereits bei geringeren angelegten Span-

nungen ablaufen. Der analoge
”
Defekt“ der Versetzungslinie senkrecht zur Gleitebene wird

Jog genannt und erzeugt bei Bewegung ein Klettern der Versetzung, also eine Bewegungs-

komponente senkrecht zur Gleitebene, was im Zusammenspiel mit den Verzerrungsfeldern

weiterer Gitterdefekte und bei erhöhten Temperaturen (> 0.3Tm) eine energetisch günstigere

Versetzungsbewegung darstellen kann [70, 164]. Diese überwiegend thermisch aktivierten Ver-

setzungsbewegungen sind für das (Versetzungs-)Kriechen von Metallen verantwortlich, also

der (langsamen) plastischen Verformung von Metallen bei niedrigen Spannungen und meist

erhöhten Temperaturen, die nicht von Diffusionsmechanismen dominiert wird.

a b a b... Gleitebene

Kin
k-P
aa
r

Kin
k

A
B

Jog

Abbildung 2.46: Illustration der Versetzungsbewegung über Kinks in der Versetzungslinie ei-
ner Stufenversetzung. Die zusätzlich eingeschobene Ebene ist blau umrandet
in verschiedenen Zuständen gezeigt. Die Stapelfolge in 110-Richtung (...ab...)
ist auf der Gleitebene gekennzeichnet. Beim Jog (rechts hinten) wird außer-
dem die Stapelfolge in 111-Richtung (...ABC...) angegeben.

In Polykristallen kann es zusätzlich zu Korngrenzengleiten kommen, bei dem benachbarte

Körner in Folge einer Scherspannung an ihrer gemeinsamen Korngrenze relativ zueinander

entlang der Korngrenze abgleiten [178]. Dieser Prozess kann als Diffusionsprozess aufgefasst
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werden, der die erhöhte Diffusivität entlang der Korngrenze nutzt, um die Verschiebung ei-

nes Kornes relativ zu dem anderen zu erzeugen. Andererseits kann der Prozess auch über

die Bewegung von Korngrenzenversetzungen beschrieben werden, deren Gleiten in der Korn-

grenzenebene eine plastische Dehnung über die Grenze hinweg erzeugt. Ungeachtet dieser

Details sind immer Akkomodationsmechanismen notwendig, um die Kohärenz des Gefüges

zu wahren, wodurch zwei Arten von Korngrenzengleiten unterschieden werden können. Beim

Rachinger-Gleiten [179] dient Versetzungsgleiten in den beteiligten Kristalliten als Akkom-

modationsprozess, bei dem die Kornformen erhalten bleiben, während beim Lifshitz-Gleiten

[173] die Diffusion von Leerstellen als Akkommodationsprozess genutzt wird und zu einer

Längung der Körnern in Zugrichtung führt. Damit sind beide Formen von Korngrenzenglei-

ten keine reinen Einzelprozesse, sondern Kombinationen voneinander abhängiger Prozesse

und damit ein Beispiel für diejenigen Subsysteme des vorherigen Abschnittes, die mehrere,

sich gegenseitig beeinflussende Mechanismen enthalten.

Die plastische Verformung konventioneller, grobkristalliner Materialien in ihrer Gesamtheit

ist also immer eine Überlagerung verschiedener Prozesse, wobei der oder die dominanten Pro-

zesse von Mikrostruktur, Umgebungsbedingungen und Verformungsart abhängen. Um diese

komplexen Zusammenhänge darzustellen, wurde eine Kartographierung für Deformationsme-

chanismen entwickelt, die Deformation-Mechanism-Maps [169, 180, 181, 182], die für ein Ma-

terial die Dehnrate in Abhängigkeit der angelegten Spannung und Temperatur (Ashby-Frost)

[169] oder in Abhängigkeit der Temperatur und Korngröße (Langdon-Mohamed) [181, 182]

angeben. Der jeweils lokal dominante Mechanismus, der den größten Beitrag zur Dehnrate

leistet, wird i.d.R. in den Karten ausgewiesen. Beispiele sind u.a. in [169] enthalten und in

Abb. 2.47 schematisch dargestellt.

Im Zusammenhang mit nanokristallinen Materialien ist das Aufstauen von Versetzungen an

Korngrenzen von besonderer Bedeutung. Korngrenzen stellen für das Versetzungsgleiten ein

Hindernis dar, d.h. bei konstanter Spannung werden Versetzungen in der Regel nicht von

der Grenze absorbiert oder transmittiert, sondern erhöhen durch die Wechselwirkung mit der

Korngrenzen ihren Scherwiderstand und stauen sich daher vor ihr auf; eine detaillierte Be-

handlung dieses Themas ist in [116] zu finden. Die aufgestauten Versetzungen wechselwirken

außerdem miteinander und allen nachfolgenden Versetzungen, sodass der Scherwiderstand

mit wachsender Anzahl von Versetzungen weiter zunimmt [165, 168], was effektiv eine Ver-

festigung des Materials bewirkt. Eine Abnahme der Korngröße führt zu einer Zunahme der

im Polykristall vorhandenen Korngrenzenfläche, sodass dieser Effekt verstärkt wird und die

Grundlage für Feinkornhärtung darstellt. Die Zunahme der Fließspannung σy oder Härte wird

in diesem Fall häufig durch die Hall-Petch Gleichung [18, 19, 164, 183]

σy = σ0 +
ky

Dx
(2.210)
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Abbildung 2.47: a) Beispielhafte Ashby-Frost Deformation-Mechanism-Map für fcc Metalle.
Hier bezeichnet Tm die Schmelztemperatur, G den Schermodul des Ma-
terials und σ die Fließspannung. Das Versetzungskriechen wird in einen
Hochtemperaturprozess (HT) und einen Prozess bei niedrigen Tempera-
turen (LT) unterschieden. Der Korndurchmesser D beträgt hier ca. 104

Burgers-Vektorlängen. b) Zu a) analoge Langdon-Mohammed Deformation-
Mechanism-Map. Darstellung in Anlehnung an [180].

beschrieben. Hier sind σ0 die Fließspannung im perfekten Kristall, ky eine Materialkonstante,

D die Korngröße und x wird in der klassischen Hall-Petch-Beziehung auf 1/2 gesetzt. Aller-

dings gibt es Argumente dafür, diesen Parameter ebenfalls als materialabhängige Konstante

zu behandeln [184].

Diese Beziehung verliert für nanokristalline Materialien (D < 100 nm) ihre Gültigkeit, und

zwar je nach Untersuchung dadurch, dass die Steigung der Hall-Petch Geraden (siehe Abb.

2.48) bei kleinen Korngrößen abnimmt, null wird oder sogar negativ wird [16, 17, 14, 185];

bekannt ist dieser Befund unter dem Namen Hall-Petch Breakdown und wird gemeinhin als

zentrales Argument genutzt, dass es beim Übergang zur Nanokristallinität zu einem Wechsel

der Plastizitätsmechanismen kommen muss, oder wenigstens, dass die bisherigen Modelle in

diesem Bereich unzureichend sind.

Tatsächlich ist das Gesamtbild noch viel dramatischer, denn der Hall-Petch Breakdown ist

nur eines unter vielen Indizien, dass es zu grundlegende Änderungen in der Art und/oder Zu-

sammensetzung von Mechanismen in Nanomaterialien kommt. Weitere
”
Breakdowns“ beim

Übergang zur Nanokristallinität sind u.a. eine starke Zunahme der Dehnratenempfindlichkeit

[11, 16, 17, 14, 166, 167, 186], eine deutliche Verkleinerung des Aktivierungsvolumens [11, 16,

17, 14, 166], eine Erhöhung der Temperaturabhängigkeit der Fließspannung [10, 11, 187, 167],

das Aufkommen von Zug-Druck-Asymmetrie bei plastischer Verformung [30, 188, 189] und,

eigentlich viel bemerkenswerter, eine duktil-spröde Asymmetrie unter Druck und Zug [5, 189].
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Abbildung 2.48: Schematische Darstellung der Hall-Petch-Beziehung. Im Bereich kleiner
Korngrößen werden die verschiedenen, in der Literatur diskutierten Fort-
setzungen der Hall-Petch Kurve dargestellt. Details dazu sind im Text an-
gegeben.

Außerdem zeigt sich nur in nanokristallinem PdAu eine Mischkristallerweichung [6]. Schließ-

lich wurde in verschiedenen nanokristallinen Materialien nachgewiesen, dass thermische Be-

handlungen eine Relaxation des Materials auslösen, die u.a. auch die plastischen Eigenschaf-

ten deutlich beeinflussen [7, 8, 32, 190, 191]. Es kommt also erschwerend hinzu, dass im na-

nokristallinen Zustand die Korngröße allein kein ausreichender Parameter zur Beschreibung

der Änderungen des plastischen Verhaltens ist, selbst wenn keine Änderungen in der chemi-

schen Zusammensetzung oder der kristallinen Phase nachgewiesen werden können und die

Umgebungsbedingungen (Temperatur, Druck, Spannungszustand, Dehnraten, etc.) konstant

gehalten werden.

Alle Beobachtungen weisen eindeutig darauf hin, dass die effektive Energiebarriere der plas-

tischen Verformung und ihre Steigung in Nanomaterialien, relativ zum grobkristallinen Zu-

stand, zunimmt und ihre thermisch aktivierte Überwindung bedeutender wird. Durch welche

Plastizitätsmechanismen oder Kombinationen davon das ausgelöst wird, ist aber nach wie

vor Gegenstand der Forschung, die in mehreren Übersichtsartikeln zusammengefasst wurde

[15, 16, 17, 14].

Die offensichtlichste Auswirkung der Verkleinerung der Korngröße ist die dazu reziproke,

starke Zunahme der Korngrenzenfläche und damit auch dem Anteil des Korngrenzenvolumens

am Gesamtvolumen des Materials. Das legte schon früh den Schluss nahe, dass die Plastizität

von Mechanismen in/an der Korngrenze getragen oder zumindest dominiert wird [183, 192,

193]. Im Folgenden wird eine Übersicht über die Verformungsmechanismen geliefert, die in

der Literatur diskutiert wurden. Zusätzlich sind diese Prozesse in Abb. 2.49 als schematische

Zeichnungen zusammengefasst.
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Abbildung 2.49: Übersicht über die bisher diskutierten Verformungsmechanismen. Auch wenn
die Mechanismen hier einzeln und voneinander unabhängig dargestellt wer-
den, soll damit nicht ausgedrückt werden, dass sie auch unter realen Be-
dingungen einzeln auftreten können. Einige der hier gezeigten Prozesse
benötigen sogar zwangsweise zusätzliche, plastische Akkommodationspro-
zesse.

Ein Mechanismus in den Korngrenzen, der stark von geringeren Korngrößen profitiert, ist

das Coble-Kriechen (ε̇∝ 1/D3), das im Grenzfall nanokristalliner Materialien allerdings eine

Abschwächung der Abhängigkeit von der Korngröße zu ε̇ ∝ 1/D2 erfährt [194]. Ein Pla-

teau im Hall-Petch Plot oder gar eine inverse Hall-Petch-Beziehung lässt sich damit zwar

nicht erklären, dennoch wurde dieser Prozess in Arbeiten als dominant oder zumindest als

dehnratenbestimmender Akkommodationsprozess identifiziert [194, 195].

Ein viel diskutierter, korngrenzengestützter Mechanismus ist das Korngrenzengleiten (z.B. in

[178, 194, 196, 197, 198, 199, 200, 201]), das gerade in den Nichtgleichgewichtskorngrenzen

aufgrund des geringeren Scherwiderstandes einfach zu aktivieren sein sollte [202]. Für sehr

große plastische Verformungen (ε > 1) wird sogar von mesoskopischem Gleiten entlang von

Korngrenzen über mehrere passend orientierte Körner hinweg berichtet [203]. Der Begriff

wird aber im Zusammenhang mit nanokristallinen Materialien weiter gefasst als bei grobkris-

tallinen, indem nicht nur Starrkörpertranslationen von Körnern relativ zueinander entlang

der Grenzfläche so bezeichnet werden, sondern auch lokale Scherprozesse/Scherinkremente

in einem Korngrenzenabschnitt oder in Kombinationsprozessen, welche die gleichzeitige Ver-

schiebung der Korngrenze beinhalten; ohne Kontext ist der Begriff für Nanomaterialien daher

vergleichsweise unscharf.

Genau wie oben, kann auch hier eine Verschiebung in/entlang der Korngrenzenebene durch

die Verschiebung von Korngrenzenversetzungen beschrieben werden. Allgemeiner ist jedoch

die Betrachtung von Disconnections, deren Verschiebung für den Fall h = 0 identisch zu den

zuvor genannten ist. Bei allen anderen Stufenhöhen h führt eine Verschiebung aber gleichzeitig

zu einer Bewegung des überstrichenen Korngrenzenelementes um h normal zur Korngrenze-

nebene und es kommt zu einer Kopplung von Scherung (= ∣⃗b∣) und Korngrenzenmigration
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(= h), der sogenannten spannungsgetriebenen Korngrenzenmigration bzw. Spannungsgetrie-

benes Kornwachstum (SGKW) oder kurz Coupling (siehe auch Abb. 2.17, S. 64) [204, 205,

206, 207, 208, 209]. Dieser Prozess wurde als weiterer, möglicher Plastizitätsmechanismus

nanokristalliner Materialien identifiziert [28, 97, 210, 211].

Wie oben bereits erwähnt, benötigt Korngrenzengleiten in jeder Form Akkomodationsmecha-

nismen. Beispiele dafür sind Kornrotation [203, 212, 213, 214] oder die Emission und Absorpti-

on von Versetzungen oder Partialversetzungen [17, 189, 202, 213, 215, 216, 217, 218, 219, 220]

infolge, aber nicht ausschließlich, von Spannungskonzentrationen an Tripellinien [217, 221].

Die genannten Mechanismen werden aber nicht nur als Akkomodationsmechanismen disku-

tiert, sondern auch als primäre/dominante Plastizitätsmechanismen, teilweise vollkommen

unabhängig von Korngrenzengleiten, dafür aber zum Teil als untereinander abhängige Pro-

zesse. Im Fall von einzelnen Partialversetzungen, die nukleiert werden, durch das Korn laufen

und wieder absorbiert werden, können in Simulationen und Experimenten (hauptsächlich

TEM Untersuchungen) Stapelfehler und Zwillingsgrenzen in den Gittern beobachtet werden

[213, 215, 222, 223]. Dabei herrscht allerdings Uneinigkeit, ob z.B. die Konzentration der Zwil-

lingsgrenzen durch Verformung zunimmt [215] oder abnimmt [213]. Das liefert einen weiteren

Hinweis darauf, dass die konkreten Plastizitätsmechanismen empfindlich von der Art der

Verformung, den Umgebungsbedingungen und der Verformungsgeschichte abhängen [224].

Außerdem wurden in Simulationen die Entstehung von Nanorissen an Tripelpunkten und

Korngrenzen gezeigt [202], sowie die spannungsabhängige Umverteilung von Exzessvolumen

beobachtet [224].

Lokal begrenzte, plastische Vorgänge in Korngrenzen [28, 166, 188, 225, 226, 227] haben star-

ke Parallelen zu oder sind sogar identisch zu Schertransformationen in metallischen Gläsern

[3, 228, 229, 230, 231], dem fundamentalen Verformungsmechanismus dieser Materialklasse.

Schertransformationen bezeichnen das lokale Abgleiten einer zusammenhängenden Gruppe

von Atomen relativ zur Umgebung, wodurch eine lokale, plastische Verformung erzeugt wird,

welche über die elastische Ankopplung an den Rest des Materials ein makroskopisches Deh-

nungsinkrement erzeugt. Die Plastizität über Schertransformationen zeigt eine Reihe von

Ähnlichkeiten zu den Beobachtungen an nanokristallinen Materialien wie Größe des Aktivie-

rungsvolumens, Zug-Druck Asymmetrie [25, 30], ein universelles Skalierungsverhalten von σy

mit dem Schermodul G [6] oder das thermisch aktivierbare Relaxieren des Materials [32].

Auch für die Plastizität in Korngrenzen existieren Modelle, die eine Verfestigung mit zu-

nehmender plastischer Dehnung beschreiben. Ein bekanntes davon beschreibt den Anstieg

des Scherwiderstandes in Korngrenzen als Konsequenz der Bildung von Disklinationsdipolen

in der Nähe von Tripellinien [114, 115]. Deren Spannungsfeld hat im Prinzip eine ähnliche

Wirkung wie das von aufgestauten Versetzungen in Kristallen, indem es die lokal notwendige

Spannung für weitere Verformungen erhöht. Zusätzlich können diese Disklinationsdipole aber

auch als Startpunkt für Rissbildung und damit für das Versagen des Materials dienen.
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Es zeigt sich also, dass es eine ganze Reihe möglicher Plastizitätsmechanismen für nanokris-

talline Materialien gibt, die sich teilweise gegenseitig bedingen, bzw. voraussetzen. Insgesamt

zeichnet sich ein Konsens ab, dass die plastische Verformung nanokristalliner Materialien

nicht auf einem einzelnen Prozess beruht, sondern immer ein Zusammenspiel oder Konkur-

rieren verschiedener Prozesse darstellt. Die teilweise existierenden unterschiedlichen Ergeb-

nisse und Widersprüche in der Literatur lassen sich vermutlich auf unterschiedliche Legie-

rungen/Materialien36, Herstellungsmethoden, Umgebungsbedingungen, Spannungszustände,

Dehnraten, Korngrößen, Relaxation, Porosität etc. zurückführen. Für jeden dieser Faktoren

wurde gezeigt, dass sie das Verformungsverhalten beeinflussen können und damit möglicherwei-

se die Zusammensetzung und Dominanz von Verformungsmechanismen ändern. Die Bestim-

mung einer universellen Abhängigkeit nanokristalliner Materialien von nur einem dieser Para-

meter, ungeachtet aller anderen, wäre angesichts des enormen Parameterraums als glücklicher

Umstand zu bezeichnen und ist eigentlich nicht zu erwarten. Die unklare Fortsetzung der Hall-

Petch-Beziehung in den nanokristallinen Bereich ist ein gutes Beispiel dafür: Die Korngröße

allein ist gerade kein universeller Parameter zur Beschreibung des Verformungsverhaltens.

Dennoch wird im Bereich von Korngrößen um 10 nm für verschiedene fcc Materialien häufig

eine korngrößenabhängige Änderung des plastischen Verhaltens festgestellt [15, 220, 226, 232].

In vielen Arbeiten, wie auch hier, unterliegt die Korngröße in den Proben einer Verteilung

mit signifikanter Breite. Überspannt diese Konrgrößenverteilung den Bereich um 10 nm wie

es auch hier der Fall ist, kann eine Schwankung der Verteilung von Probe zu Probe oder

eine Änderung der Verteilung durch spannungsinduziertes Kornwachstum während der Ver-

formung zu einer Verschiebung der Anteile unterschiedlicher Plastizitätsmechanismen führen.

Ein weiterer Aspekt ist die Entwicklung der Verformungsmechanismen in einer Probe mit fort-

schreitender Verformung (Dehnung, Spannung), was u.a. in einer Simulationsarbeit [202] und

in in-situ Experimenten [26, 28] untersucht wurde. Über alle Arbeiten hinweg gibt es die Ge-

meinsamkeiten, dass die plastische Verformung bereits zu Beginn, bei niedrigen Spannungen,

über Schertransformationen/Korngrenzengleiten einsetzt und dann, bei hohen Spannungen,

auch (partielle) Versetzungen in den Körnern nukleiert werden und gleiten. In den experimen-

tellen Arbeiten wurde bei den höchsten Spannungen zusätzlich Kornwachstum nachgewiesen,

während in der Simulationsarbeit die Bildung von Hohlräumen und Rissen an Tripellinien

und Korngrenzen berichtet wird. Dieser Unterschied kann aber auch daher rühren, dass in

der Simulation ein Zugversuch durchgeführt wurde, wohingegen die Experimente im Druck-

versuch oder zumindest mit einem hydrostatischen Druckanteil durchgeführt wurden.

36Ändert z.B. die Stapelfehlerenergie, Gittertyp, chemisches Potential, usw..
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2.7 Relaxation

Nanokristalline Materialien befinden sich nach der Herstellung in der Regel in Nichtgleichge-

wichtszuständen [190, 191] mit hoher Exzessenergie, d.h. zusätzlicher gespeicherter Energie

im Vergleich zum kristallinen Grundzustand. Diese zusätzliche Energie ist in den Kristal-

liten in Form von Verzerrungen/Defekten, sowie in den Korngrenzen gespeichert [32, 113].

Letztere stehen mit den angrenzenden Kristalliten und den darin enthaltenen Defekten im

mechanischen Gleichgewicht37, sodass die Exzessenergiedichte in den Korngrenzen, durch ih-

re im Vergleich zum Kristall verringerten elastischen Konstanten [6, 233] wegen Gl. (2.39)

und (2.47) (S. 26), höher sein muss [32]. Gleichzeitig können Nichtgleichgewichtskorngrenzen

als Stabilisierung für Gitterdefekte fungieren. Der hohe Volumenanteil der Korngrenzen im

nanokristallinen Zustand ist also notwendige Voraussetzung für das Vorhandensein der hohen

Exzessenergie.

Prinzipiell erzeugt ein Energiegradient eine Kraft, die das System in den energetisch niedriger

liegenden Grundzustand treiben will; theoretisch ist das der Einkristall, praktisch der grob-

kristalline Polykristall [8]. Tatsächlich bleiben die hier untersuchten nanokristallinen Proben

aber über Jahre hinweg nanokristallin38. Diese Zustände hoher Exzessenergie stellen also

inhärente Strukturen dar, die durch Energiebarrieren von energetisch niedrigeren Zuständen

abgegrenzt sind. Diese Barrieren können thermisch oder mechanisch überkommen werden,

wodurch die in den Proben gespeicherte Energie freigesetzt werden kann. In vielen Fällen ist

eine kontinuierliche, thermisch aktivierte Energieabsenkung möglich, die Kornwachstum ver-

meidet [7, 31, 191] und so den nanokristallinen Zustand des Materials erhält. Diese thermisch

aktivierte Energieabsenkung wird als (strukturelle) Relaxation bezeichnet [234, 235] und be-

wirkt in erster Linie eine Änderung der Struktur der Korngrenzen, die mit einer Absenkung

des Exzessvolumens in der Probe verbunden ist.

In [32] konnte die komplexe Kinetik dieses Relaxationsvorganges für nanokristallines Pd90Au10

modelliert werden, wodurch ein Spektrum von thermischen Parametern bestimmt werden

konnte, welches die Kinetik der Relaxation quantitativ beschreibt. Das wiederum ermöglichte

in [8] eine Rekonstruktion der zeitlichen Entwicklung des Energieinhalts in der Probe, sowie

der effektiven Energiebarrieren, die das System während der Relaxation überwunden hat.

Es stellte sich heraus, dass die zu überwindenden, effektiven Energiebarrieren mit fortschrei-

tender Relaxation höher werden und schließlich in ihrer Höhe identisch zu der sind, die zur

Initiierung von Kornwachstum überwunden werden muss; der Übergang von Relaxation zu

Kornwachstum ist also fließend.

Trotzdem können durch geeignete Temperaturprogramme signifikante Energieabsenkungen

im nanokristallinen Bereich erreicht werden. Somit wurden in [8] die Auswirkung der Relaxa-

tion auf elastische und plastische Eigenschaften der Proben untersucht. Zusätzlich konnte eine

37σ setzt sich also stetig fort
38Eine nanokristalline PdAu Probe wurde über 9 Jahre regelmäßig im Rahmen des Fortgeschrittenenprakti-

kums mit Röntgenstreuung untersucht und ist nach wie vor nanokristallin.
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Änderung der Dichte (des Exzessvolumens) nachgewiesen werden. Die Ergebnisse zeigten zu-

dem eine Zunahme der elastischen Konstanten und der Härte der Proben. Die Härtezunahme

ist dabei ein Maß für die Zunahme der Fließspannung und damit der Festigkeit des Materials.

Ähnliche Beobachtungen werden auch in [7, 31] berichtet.

2.8 Materialsystem PdAu

Palladium und Gold sind über den gesamten Konzentrationsbereich vollständig mischbar und

bilden eine Substitutionsmischkristall [236], in dem reguläre Gitterplätze des fcc Gitters sta-

tistisch mit Pd und Au Atomen besetzt sind. In der Literatur wird von einer intermetallischen

AuPd3 Phase berichtet, die eine Überstruktur mit einer stöchiometrischen Fernordnung bei

Goldkonzentrationen um 20 at.% vom AuCu3 Typ besitzt [236]. Experimente belegen jedoch

nur eine sehr schwache Ausprägung dieser Fernordnung [237]. In nanokristallinen IGC Proben

ist die Bildung dieser Phase aufgrund der hohen effektiven Abkühlrate beim Herstellungsver-

fahren sehr unwahrscheinlich [62, 74]. Darüber hinaus zeigt sich in der Röntgenstreuung der

nanokristallinen PdAu Proben keine signifikante Signatur einer Überstruktur.
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3.1 Herstellung nanokristalliner PdAu Legierungen mittels

Edelgaskondensation

Die in dieser Arbeit untersuchten Proben wurden mittels Edelgaskondensation (engl. inert

gas condensation, IGC) hergestellt. Dieses Verfahren wurde in den 1980ern für nanokristalline

Materialien entwickelt [4, 12] und ist bereits ausführlich in [31] dargestellt; die Beschreibung

hier erfolgt daher in aller Kürze.

Bei der hier verwendeten Edelgaskondensation werden reine Palladium- (99.95%) und Gold-

drähte (99.99%) gemäß der gewünschten Legierungszusammensetzung in einem Molybdän-

Schiffchen mit Keramikeinsatz unter Hochvakuum (p ≤ 5 ⋅ 10−7 mbar) zu einer Legierung

eingeschmolzen [236], die anschließend in einer 6 mbar Heliumatmosphäre verdampft wird.

Die Metallatome bilden in der He-Atmosphäre Metallcluster mit Durchmessern von wenigen

Nanometern, die durch Konvektion an eine rotierende, flüssigstickstoffgekühlte Edelstahlwal-

ze transportiert werden, an der sie sich anlagern und von einem CuBe-Abstreifer wieder gelöst

werden können. Das abgestreifte Agglomerat aus nanokristallinen PdAu-Partikeln wird über

einen Glastrichter in einer verschiebbaren Presshülse aus Edelstahl gesammelt, deren Boden

aus einem Hartmetallstempel (Saar Hartmetall und Werkzeuge GmbH, VG50) besteht. Mit-

hilfe eines weiteren, identischen Stempels kann das Material in der Presshülse vorverdichtet

oder unter Hochvakuum zu einem scheibenförmigen Festkörper verpresst werden. Dabei wirkt

auf die Stempelfläche für ca. 30 s ein Druck von 1.8 GPa bis 2 GPa. Anschließend werden die

so hergestellten Pellets aus der Presshülse in ein Auffangröhrchen, das vom restlichen Kessel

über Ventile abgetrennt werden kann, heraus gedrückt und daraus entnommen.

Die so hergestellten Proben haben einen Durchmesser von 8 mm und eine Dicke von 0.1 mm

bis 1.5 mm. In [8, 238] wurde mittels Dichte- und Härtemessung nachgewiesen, dass die so

hergestellten Pellets eine zum Rand hin abfallende Dichte bzw. Härte aufweisen, was auf die

Reibung des Pressgutes mit dem Rand der Presshülse zurückgeführt werden kann, wodurch

ein verminderter effektiver Druck bei der Verdichtung im Randbereich wirkt. Im Rahmen der

ESRF Experimente wurde dieser Effekt dahingehend berücksichtigt, dass die Randbereiche

der Pellets abgeschnitten wurden und damit nicht Teil der untersuchten Proben waren.
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Abbildung 3.1: Prinzipskizze der Edelgaskondensationsanlage. Für Details siehe Text. Abbil-
dung aus [31].

3.2 Charakterisierung

Nach der Herstellung und nach der Relaxation der Proben erfolgte jeweils eine zerstörungs-

freie sowie zustandserhaltende Charakterisierung der Proben hinsichtlich ihrer chemischen,

strukturellen und elastischen Eigenschaften, um die Streuung der Probenzustände zu quanti-

fizieren und um spätere experimentelle Beobachtungen mit den Probenzuständen zu korrelie-

ren. Darüber hinaus liefern diese Messungen Indikatoren um ungeeignete Proben frühzeitig

zu erkennen und auszusortieren. Diese Charakterisierung umfasste die folgenden Punkte:

• Bestimmung von Dicke und Durchmesser mittels Mikrometerschraube.

• Bestimmung der chemischen Zusammensetzung mittels energiedispersiver

Röntgenspektroskopie.

• Bestimmung der Korngröße und Gitterkonstante mittels Röntgendiffraktion.

• Bestimmung der Dichte der Probe mittels Archimedischer Dichtemessung.

• Bestimmung der elastischen Modulen mittels Ultraschalllaufzeitmessung.
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Im Folgenden wird das Vorgehen bei diesen Schritten kurz dargestellt.

Die Anteile von Palladium und Gold in Atomprozent in den Pellets wurde durch energiedi-

spersive Röntgenspektroskopie (EDX) bestimmt. Sie wurde in einem Jeol SEM-7000 Raste-

relektronenmikroskop mithilfe eines EDAX Genesis EDX-Spektrometers (Firma Antek) bei

200-facher Vergrößerung und einer Beschleunigungsspannung von 20 keV über eine Dauer von

120 s auf beiden Seiten der Pellets durchgeführt.

Die Röntgendiffraktion (XRD) wurde mit einem X’Pert Pro MPD Bragg-Brentano Labor-

röntgendiffraktometer (θ-θ Geometrie) der Firma Panalytical B.V. durchgeführt, das mit

einem PIXcel-1D Halbleiterdetektor ausgestattet ist. Die Messungen erfolgten über einen

Winkelbereich von 30 ○ bis 140 ○ mit einer Schrittweite von 0.026 ○ und einer Messzeit von

480 s pro Schritt. In der Panalytical HighScore Software wurde der Untergrund in den Dif-

fraktogrammen global mit einer Chebychev II Funktion angepasst und die einzelnen Peaks

jeweils mit Split-Pearson VII Funktionen gefittet. Davon ausgehend wurden die Daten mit

einem selbst geschriebenen Matlab-Script (Datenträger: XrayInterpreter.m) von der zuvor

anhand des NIST 660a Standard bestimmten Gerätefunktion bereinigt [62, 239] und anschlie-

ßend Korngröße und Mikroverzerrung nach der Methode von Klug & Alexander [239, 240]

extrahiert. Die Gitterkonstante wurde nach dem Verfahren von Nelson & Riley bestimmt

[241, 242, 243], um den Einfluss der Höhendejustage zu eliminieren.

Die Dichte der Pellets wurde durch die Archimedische Dichtemessung [31, 244] bestimmt,

bei der das Gewicht der Pellets mit einer Sartorius R160P Waage (Messgenauigkeit 0.01 mg)

wiederholt an Luft und in Diethylphtalat (DEP) gemessen wurde. DEP hat eine Dichte von

ρDEP = 1.1176 g/cm3 und Luft eine mittlere Dichte von ρair = 1.25 ⋅ 10−3 g/cm3, womit die

Dichte des Pellets ρbulk über

ρbulk =
⟨m⟩air ( ρDEP − ρair )

⟨m⟩air − ⟨m⟩DEP
+ ρair (3.1)

bestimmt werden kann, wobei ⟨m⟩air und ⟨m⟩DEP die mittlere gemessene Masse des Pellets

an Luft und in DEP sind.

Zusätzlich kann aus der Gitterkonstanten a und der chemischen Zusammensetzung der Pro-

be mit den molaren Massen von Gold und Palladium (mPd = 106.42 g/mol und mAu =

196.9665 g/mol) die theoretische Dichte ρtheo eines perfekten Kristalls dieser Legierung als

Referenzwert mittels [31, 244]

ρtheo = 4 ⋅ 1030 mPd(1 − cAu) +mAu cAu
(NA a3)

(3.2)
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berechnet werden. Hier ist Na die Avogadro-Konstante und cAu die Atomkonzentration von

Gold in der Legierung. Die Gitterkonstante a kann entweder über die Vegard-Regel berech-

net werden (aAu = 408 pm, aPd = 389 pm [236]), die für das Palladium-Gold-System sehr gut

erfüllt ist [236], oder direkt aus den XRD Messergebnissen genommen werden. Die Auswer-

tung erfolgte wieder mittels eines Matlab-Programms (Datenträger: DensityMeasurement.m).

Die Messung der elastischen Eigenschaften beruht auf dem Puls-Echo-Verfahren [233, 245],

bei dem ein breitbandiger Ultraschallpuls, der durch einen Prüfkopf erzeugt wird, die Pro-

be durchläuft, an der gegenüberliegenden Luft-Pellet Grenzschicht reflektiert wird und dann

als Echo durch den Prüfkopf (mehrfach) wieder detektiert werden kann. Der Ultraschall-

puls selbst stellt eine periodische, elastische Anregung der Mediums dar, die sich aus einem

breiten Spektrum an Wellenlängen zusammensetzt und kann daher als Überlagerung von,

hauptsächlich langwelligen (kleinen q), Phononen aufgefasst werden. In einem Einkristall

können die Schallgeschwindigkeiten1 v daher aus dem Bereich kleiner Wellenvektoren der

Dispersionrelation ω(q⃗) (vgl. Abb. 2.10) bestimmt werden mit

v =
ω(q⃗)

∣q⃗∣
≈
∂ω

∂q
(3.3)

und koppeln damit direkt an die interatomaren Federkonstanten und damit auch an die elas-

tischen Modulen an. Im Fall nanokristalliner Proben erstrecken sich die Wellenlängen der

relevanten Phononen über mehrere Körner und Korngrenzen hinweg, sodass hier nicht die

Eigenschaften des Einkristalls, sondern die des statistisch gemittelten Polykristalls inklusive

der elastischen Eigenschaften der darin enthaltenen Korngrenzen ausschlaggebend sind. Die

Energie des Ultraschallpulses ist dabei so gering, dass keine strukturverändernden Prozesse

(Relaxation, Kornwachstum, etc.) aktiviert werden können und stellt damit eine Isokonfigu-

rationsmessung des nanokristallinen Zustands dar [8]. Die daraus abgeleiteten Größen sind

also effektive Größen des statistisch isotropen, nanokristallinen Polykristalls. Die gemittelte

Laufzeit der Echos liefert, bei bekannter Probendicke, ein Maß für die Schallgeschwindigkeit,

bei der aufgrund der Isotropie nur zwischen einer longitudinalen und einer transversalen An-

regung unterschieden werden muss. Für die effektiven Modulen gilt dann mit der Dichte ρbulk

und der transversalen und longitudinalen Schallgeschwindigkeit vt und vl

E = ρbulk
v2
t (3v2

l − 4v2
t )

v2
l − v

2
t

(3.4a)

G = ρbulk v
2
t (3.4b)

K = ρbulk (v2
l −

4

3
v2
t ). (3.4c)

1Die Schallgeschwindigkeit entspricht der Phasengeschwindigkeit.
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In dieser Arbeit wurden die Messungen mit einem Panametrics V2173 20 MHz Prüfkopf durch-

geführt und die Pulsfolge mit einem LeCroy Waverunner 6051 Oszilloskop aufgezeichnet. Die

Auswertung der Daten erfolgte über ein Matlab-Programm (Datenträger: PulseEcho.m).

Alle Ergebnisse der Probencharakterisierung sind im Anhang A.1 in Tabelle A.1 zusammen-

gefasst.

3.3 In-situ Experiment an Beamline ID11 der ESRF

Die Experimente (MA-3137) an der Beamline ID 11 an der European Synchrotron Radiation

Facility (ESRF) von 2016 hatten zum Ziel, makroskopische mechanische Daten von Verfor-

mungen nanokristalliner Proben mit gleichzeitig aufgenommen Streubildern aus der Trans-

missionsröntgenbeugung zu korrelieren um dadurch Einblicke in die stattfindenden plastischen

Vorgänge zu gewinnen, sowie ihre Auswirkung auf das Materialverhalten zu untersuchen.

Ähnliche Experimente wurden bereits zuvor durchgeführt [20, 21, 22, 23, 24, 25, 26, 27, 28],

sodass hier auf bestehende Ergebnisse und Erfahrungen zurückgegriffen werden konnte. Ins-

besondere die zeitliche Auflösung von mechanischen Daten und Röntgendaten, sowie deren

Synchronizität stellten sich als kritische Parameter für diese Art von Experimenten her-

aus. Daher wurde das Hauptaugenmerk bei der Konzeption der neuen Experimente auf die

technische Umsetzung dieser Aspekte gerichtet. Darüber hinaus wurde eine systematische

Zusammenstellung von verschieden präparierten Proben und Verformungsraten erstellt, die

eine maximale Spreizung der experimentellen Parameter in der zur Verfügung stehenden Zeit

ermöglichte (siehe Tabelle 4.1, S. 234), um folgende Fragestellungen zu beantworten:

• Welche Auswirkung hat die Dehnrate auf die Verformung und ihre Mechanismen?

• Welche Auswirkung hat der Spannungszustand auf die Verformung und ihre Mechanis-

men?

• Welche Änderungen ergeben sich durch das Relaxieren der Proben?

Um aus den Experimenten Antworten auf diese Fragen liefern zu können, müssen zunächst

Informationen zum Verformungsablauf und zu den beteiligten Prozessen aus den Messda-

ten extrahiert werden. Nachfolgend soll nun ein Überblick über die Konzeption und tech-

nische Umsetzung der Experimente an der ESRF erfolgen, sowie über die Konzeption und

Präparation der untersuchten Proben.

Eine Liste der untersuchten Proben, ihrer Abmessungen und der experimentellen Parameter

ist im Anhang A.1 in Tabelle A.3 und Tabelle A.5 gegeben. Probenherstellung, Charakteri-

sierung und die Durchführung der Messungen an der ESRF wurden kooperativ mit Andreas

Leibner durchgeführt.
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3.3.1 Konzept und Präparation der SCS

Nanokristalline Metalle zeigen i.d.R. ein sprödes Versagen unter Zugbelastung bei relativ

kleinen plastischen Dehnungen [5, 16, 17, 22, 52, 246, 247, 248], wodurch der untersuchbare

Bereich plastischer Verformung deutlich eingeschränkt wird. Dieses spröde Verhalten ist ei-

ne inhärente Eigenschaft nanokristalliner Metalle [5, 189, 227] und wird i.d.R. nicht durch

eingebaute Fehlstellen verursacht. Der Wechsel auf einfache Kompressionsproben umgeht die-

ses Problem nur eingeschränkt, da durch den senkrecht zur Belastungsrichtung induzierten

Querzug im Wesentlichen nur eine Umorientierung des Problems bewirkt wird.

Eine etablierte Methode um nanokristalline Materialien sehr stark plastisch zu verformen ist

High Pressure Torsion (HPT) [203, 249], bei der eine Probe in einem zweiteiligen Werkzeug

in einem abgeschlossenen Volumen unter hohen hydrostatischen Druck gesetzt wird (meh-

rere GPa) und dann durch relative Rotation einer Werkzeughälfte gegenüber der anderen

tordiert wird. Daraus ergeben sich radial zunehmende Scherverformungen bis zu mehreren

100 % Dehnung. Die Durchführung einer Röntgenbeugung an der Probe während der Verfor-

mung ist aber unmöglich, da die Probe allseitig von dem Werkzeug umschlossen ist; somit ist

dieses Verfahren für die hier angestrebte in-situ Messung ungeeignet. Zudem ist eine Messung

der Kraft und der dadurch erzeugten Dehnung nur global möglich, also über einen Verfor-

mungsbereich mit radialen Unterschieden von 0 % Dehnung im Zentrum bis zur Enddehnung

am Rand. Eine direkte Korrelation im Sinne einer Spannungs-Dehnungs-Kurve ist so nicht

möglich. Das Verfahren zeigt aber auf, dass das Aufbringen von hydrostatischem Druck eine

wichtige Randbedingung zum Erreichen großer plastischer Dehnungen ist.

Um gleichzeitig der geometrischen Anforderung der Transmissionsröntgenbeugung, der Mess-

barkeit von aufgebrachter Kraft und resultierender Dehnung, sowie dem Vorhandensein hy-

drostatischer Spannung zu genügen, werden in dieser Arbeit Shear Compression Specimens

(SCS) verwendet [250, 251]. Dabei handelt es sich um eine spezielle Probengeometrie in einem

uniaxialen Druckversuch, bei der zwei parallele Nuten auf gegenüberliegenden Seiten der Pro-

be einen Stegbereich formen. Dieser Stegbereich ist eine lokale Verjüngung der Probe, welche

an dieser Stelle eine Spannungserhöhung durch die reduzierte Querschnittsfläche erzeugt und

so die Verformung der Probe in diesen Bereich konzentriert. Durch eine Neigung des Stegbe-

reiches relativ zur Druckrichtung wird eine Scherung des Steges induziert, wobei gleichzeitig

ein Teil der Spannung als hydrostatische Spannung vorliegt. Der Anteil von Scherspannung

und hydrostatischer Spannung wird hauptsächlich durch den Neigungswinkel des Stegberei-

ches beeinflusst [30] (siehe auch Kapitel 3.3.1). Eine miniaturisierte Variante dieser Geometrie

wurde in [248] entwickelt und getestet und kommt aufgrund des beschränkten Volumens der

Ausgangspellets auch hier zum Einsatz.
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Im Unterschied zu [248], wurde die Geometrie – ähnlich wie bei den Experimenten von 2011

[25] – um eine Abschrägung der Nutenflanken ergänzt, um ein ungehindertes Austreten des

Streukegels aus dem Stegbereich zu ermöglichen. Anders als in [25], begann die Abschrägung

aber erst 100µm vom Steg entfernt, um die Spannungen im abgeschrägten Bereich durch den

größeren Querschnitt auf einem niedrigen Niveau zu halten (siehe Abb. 3.2).

Einspannung

Pellet

SCS

H

B

sw

D

12°

W s
b

x

y

z

y

Abbildung 3.2: Position der SCS im Pellet (links) und Bemaßung aller geometrischer Merk-
male der SCS (rechts).

Je zwei SCS wurden aus einem zuvor charakterisierten Pellet mittels Drahtfunkenerosion am

Institut für Mikrotechnik Mainz (IMM) herausgeschnitten (zusätzliche Informationen in [25]).

Der Stegbereich der fertigen SCS stammt möglichst aus der Mitte der Pellets, ist jedoch leicht

dazu versetzt um ausreichend Einspannfläche für den Schneidevorgang bereitzustellen. Im

Fall der relaxierten Proben, wurde die Wärmebehandlung vor dem Schneiden durchgeführt.

Vorangegangene Experimente zeigten, dass die bei der Drahtfunkenerosion entstehende Irri-

tationsschicht während der Relaxation lokales Kornwachstum begünstigen kann und dadurch

die Gefahr erhöht, eine bimodale Korngrößenverteilung im Steg zu erzeugen [167, 252].

Die Proben haben äußere Abmessungen von ca. 6 mm x 1.2 mm x 1 mm und eine Stegbrei-

te und Höhe von ca. 0.12 mm bzw. 0.11 mm (genauere Angaben in Tabelle 4.1). Um die

Abhängigkeit der Verformung vom Spannungszustand zu untersuchen, wurden Proben mit

vier verschiedenen Stegwinkeln hergestellt: 0 ○, 25 ○, 45 ○ und 60 ○. Um die 0 ○-Proben resis-

tenter gegen Knickinstabilitäten zu machen, wurde bei ihnen die Gesamthöhe der Proben

von 6 mm auf 4.5 mm reduziert. Eine Übersicht über die genutzten Probengeometrien ist in

Abb. 3.3 dargestellt.
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perspektivisch
Front Seite

Abbildung 3.3: Schematische Darstellung der untersuchten SCS Geometrien (Stegwinkel je-
weils von links nach rechts: 0 ○, 25 ○, 45 ○, 60 ○).

Theoretische Vorhersagen zum Verhalten der SCS

Bisher wurde das Verhalten der SCS während der Verformung lediglich aufgrund von Intuiti-

on, Beobachtungen/Messungen und Simulationen beschrieben. Für das Verständnis und die

spätere Interpretation der Messungen ist es aber nützlich, das prinzipielle Verformungsver-

halten aus elementaren, kontinuumsmechanischen Überlegungen in Form eines analytischen

Ausdruckes herzuleiten.

Die Kraft, die von außen auf die Probe wirkt, kann theoretisch an jeder Querschnittsfläche ge-

messen werden, welche die Probe komplett durchschneidet und deren Normale nicht senkrecht

zum Kraftvektor steht. Diese Kraft ist identisch zu F⃗ = A⟨σ⃗n⟩, wobei A der Flächeninhalt

der Schnittebene ist und ⟨σ⃗n⟩ ist die über die Fläche gemittelte Spannung in der Probe

(vgl. Gl. (2.21)). Man betrachte nun eine Schnittebene, die nur den Steg durchschneidet. Die

Kraft auf diese Ebene muss unabhängig von Verschiebungen innerhalb der Probe sein. Da

der Flächeninhalt der Schnittebene aber im Steg mindestens um den Faktor 7 kleiner ist als

außerhalb, ist folglich die Spannung im Steg um diesen Faktor erhöht2, weshalb die Verfor-

mung näherungsweise nur im Steg stattfindet. Das heißt, dass die Verformung der gesamten

Probe durch die Beschreibung der Verformung des Stegbereiches gut genähert werden kann.

Der restliche Teil der Probe wird für die theoretische Betrachtung als starr angesehen.

Wie im Experiment, wird die Verformung durch eine (kleine) Relativverschiebung (uy) der

unteren und oberen x-z-Flächen der SCS aufeinander zu erzeugt. Durch die starren Proben-

teile außerhalb des Steges liegt diese in der Rechnung auch direkt am Steg an. Es gilt nun,

die resultierenden Verschiebungen ux und uz zu bestimmen, die bei uy die kleinste Zunahme

der potentiellen Energie (hier: Verzerrungsenergie) bewirken. Dazu muss zunächst Spannung

und Dehnung im Steg über die Verschiebungen ausgedrückt werden.

2Der exakte Faktor hängt von der exakten Abmessung der Probe ab.
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O.B.d.A. wird nun angenommen, dass der untere Teil der SCS fixiert ist und der obere um uy

nach unten verschoben wird. Aus Symmetriegründen ist die z-Richtung eine Hauptspannungs-

/dehnungsrichtung. Das Verschiebungsfeld wird im Steg als homogen angenommen, sodass

der Gradient des Verschiebungsfeldes für kleine Verschiebungen über

¯̄e = (∇⊗ u⃗)T =

⎛
⎜
⎜
⎜
⎝

ux
∆x

uy
∆y

uz
∆z

ux
∆x

uy
∆y

uz
∆z

ux
∆x

uy
∆y

uz
∆z

⎞
⎟
⎟
⎟
⎠

=
1

s

⎛
⎜
⎜
⎜
⎝

ux sin (sw) uy sin (sw) 0

ux cos (sw) uy cos (sw) 0

0 0 s⋅uz
b

⎞
⎟
⎟
⎟
⎠

(3.5)

bestimmt werden kann (vgl. Gl. (2.30)). Die Ausdehnungen des Steges in x- und y-Richtung

(∆x, ∆y) wird hier über die Schnittbreite s und den Stegwinkel sw ausgedrückt. Die Dehnung

lässt sich daraus mit Gl. (2.32) ableiten und man erhält

¯̄ε =
1

s

⎛
⎜
⎜
⎜
⎝

ux sin (sw) 1
2 (uy sin (sw) + ux cos (sw)) 0

1
2 (uy sin (sw) + ux cos (sw)) uy cos (sw) 0

0 0 s⋅uz
b

⎞
⎟
⎟
⎟
⎠

. (3.6)

Für das Stegmaterial wird hier ein homogenes, isotropes Kontinuum angenommen, sodass die

Spannungen mit den elastischen Konstanten aus den Dehnungen berechnet werden können

(vgl. Gl. (2.47), S. 28 oder (2.76a), S. 39). Man erhält dann (aus Platzgründen in Voigt-

Notation)

¯̄σ =
1

s

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11ux sin (sw) +C12uy cos (sw) +C12suz/b

C12ux sin (sw) +C11uy cos (sw) +C12suz/b

C12ux sin (sw) +C12uy cos (sw) +C11suz/b

0

0

C44 [uy sin (sw) + ux cos (sw)]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.7)

Die Verzerrungsenergiedichte w ist dann nach Gl. (2.39) (S. 26)

w =
C11

s2
[u2

x sin2
(sw) + u2

y cos2
(sw) +

s2u2
z

b2
]

+ 2
C12

s2
[uxuy sin (sw) cos (sw) + uxuz sin (sw)

s

b
+ uyuz cos (sw)

s

b
]

+
C44

s2
[u2
x sin2

(sw) + u2
y cos2

(sw) + 2uxuy sin (sw) cos (sw)] . (3.8)
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Sie ist bei gegebener Verschiebung uy eine Funktion von ux und uz, die ein eindeutiges

Minimum besitzt. Im Minimum gilt für ux und uz

ux = −
uy sin (sw) cos (sw) [C11C12 +C11C44 −C

2
12]

C2
11 sin2 (sw) −C2

12 sin2 (sw) +C11C44 cos2 (sw)
(3.9a)

uz = − uy cos (sw)C12
b

s

C11 [cos2 (sw) − 1] +C12 [1 − cos2 (sw)] +C44 [1 − 2 cos2 (sw)]

C2
11 [cos2 (sw) − 1] +C2

12 [1 − cos2 (sw)] −C11C44 cos2 (sw)
.

(3.9b)

Gibt man also uy vor, erhält man mit Gl. (3.9a) und (3.9b) die mittleren Relativverschiebun-

gen ux und uz über den Steg, die die geringste Verzerrungsenergiedichte erzeugen und damit

diejenigen sind, die in der Realität stattfinden. Die Ausdrücke liefern nur eine Beschreibung

für den linear elastischen Fall. Wird die Fließspannung überschritten, werden zusätzliche

plastische Dehnungen erzeugt. Allerdings ist der Spannungszustand auch dann noch über die

Elastizität mit der elastischen Dehnung gekoppelt, sodass das elastische Ergebnis eine relativ

gute, qualitative Näherung auch für die plastische Verformung liefern sollte. Mit ux, uy und

Null
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Abbildung 3.4: Theoretisch berechnete Spannungen und Dehnungen im Stegbereich einer
SCS mit verschiedenen Stegwinkeln.

uz können der Dehnungszustand (Gl. (3.6), S. 143) und der Spannungszustand bestimmt

werden (Gl. (3.7), S. 143), die sich unter Last einstellen. In Abb. 3.4 sind exemplarische

Spannungen und Dehnungen in der x-y-Ebene einer SCS mit einer Schnittbreite von 120µm

und einer Stegdicke von 130µm für die vier in dieser Arbeit untersuchten Stegwinkel gezeigt.

Die Verschiebung in y-Richtung ist in diesem Beispiel 3µm und als elastische Konstanten

werden die von Palladium verwendet. Die Spannungen in z-Richtung sind in allen Fällen

null und die Dehnungen εz in Abb. 3.5b in Abhängigkeit vom Stegwinkel gezeigt. Die Ab-

solutwerte sind in diesem Rechenbeispiel von untergeordneter Bedeutung, da sie einfach mit

der Verschiebung uy skalieren. Viel interessanter sind die qualitativen Ergebnisse, also die

Unterschiede zwischen verschiedenen Stegwinkeln und die Nulldurchgänge der verschiedenen
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3.3 In-situ Experiment an Beamline ID11 der ESRF

Größen. Von 0 ○-Stegwinkel zu 60 ○-Stegwinkel lässt sich in den Dehnungen ein Übergang von
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Abbildung 3.5: a) Hydrostatischer bzw. isostatischer Druckanteil im Stegbereich einer SCS
in Abhängigkeit vom Stegwinkel. b) Dehnung in z-Richtung in Abhängigkeit
vom Stegwinkel.

einer reinen uniaxialen Kompression zu einer reinen Scherung beobachten. Bei der 0 ○-Probe

erfolgt dabei die komplette Querdehnung in z-Richtung; in x-Richtung ist daher in Abb. 3.4

keine Querdehnung zu erkennen. Die Darstellung von Scherungen in Abb. 3.4 ist anfangs

etwas unintuitiv: Eine reine Scherung in der x-y-Ebene äußert sich in einer Ellipse (oder Erd-

nussform in Polardarstellung), deren um 90 ○ zueinander verschobenen Minima und Maxima

betragsgleich sind. Die Scherrichtung und Scherebene liegen jeweils um 45 ○ zum Minimum

bzw. Maximum gedreht (siehe Abb. 3.6a). Bei einem dreidimensionalen Dehnungszustand

müssen die Minima und Maxima in einer Ebene nicht mehr betragsgleich sein. Stattdessen

folgt aus der Spurfreiheit des Deviators, dass die Summe aller Extrema in allen Ebenen null

ergeben muss.

Bei der 60 ○-Probe ist die σiso (also auch εiso) praktisch null, d.h. es liegt eine reine Scherdeh-

nung vor (siehe Abb. 3.5a). Diese Scherung erfolgt bei der 60 ○-Probe entlang des Steges, bei

der 45 ○- und der 25 ○-Probe bewirkt der isotrope Dehnungsanteil eine Kippung der Scherrich-

tung relativ zum Steg. Im Fall der 45 ○-Probe erfolgt sie etwa 5 ○ steiler und bei der 25 ○-Probe

etwa 2 ○ flacher.

Schließlich kann aus dem antisymmetrischen Anteil von ¯̄e noch die Starrkörperrotation des

Stegmaterials bestimmt werden. Alle Einträge von ¯̄w (siehe Gl. (2.31), S. 24) sind null mit

Ausnahme von w12 und w21 = −w12, d.h. es erfolgt nur eine Rotation um die z-Achse. Der Ro-

tationswinkel lässt sich mit arctan(w12) berechnen; das Ergebnis für verschiedene Stegwinkel

ist in Abb. 3.6b gezeigt. Es ist also in allen Fällen außer den 0 ○-Proben damit zu rechnen,

dass die Verformung des Steges eine Rotation erzeugt, die für die 45 ○-Probe am stärksten

ausgeprägt sein sollte.
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Abbildung 3.6: a) Veranschaulichung des Zusammenhangs einer reinen Scherung entlang der
135 ○/315 ○-Richtung und der Darstellung des entsprechenden Dehnungszu-
standes in der Polardarstellung. b) Rotation des Steges bei der Verformung
in Abhängigkeit vom Stegwinkel.

3.3.2 Konzept des Experiments

Die grundlegende Idee des Experimentes ist es, plastische Verformungen im Stegbereich ver-

schiedener SCS Proben mit verschiedenen Dehnraten zu erzeugen, während die Mitte des

Stegbereiches mit einem Röntgenstrahl durchleuchtet wird. Die auf die Probe ausgeübte Kraft

in Druckrichtung und die Verformung der Probe sollen zusammen mit einem zweidimensio-

nalen Streubild zeitlich korreliert erfasst werden. Der prinzipielle Aufbau ist in Abb. 3.7

dargestellt und in Abb. 3.8 sind Photos des tatsächlichen Aufbaus gezeigt.

Prüfmaschine

Der zentrale, aktive Bestandteil des Experiments ist eine Prüfmaschine, welche die kontrol-

lierte Verformung der Proben im Experiment erzeugt. Sie muss einen ausreichend großen Be-

reich an Verformungsgeschwindigkeiten bei den benötigten Kräften bieten. Letztere wurden

auf Grundlage bestehender Daten im Voraus auf maximal 2 kN abgeschätzt. Die benötigten,

geregelten Verfahrgeschwindigkeiten ergaben sich aus den Probengeometrien und der Vorga-

be, Experimente bei Dehnraten zwischen 1 ⋅ 10−5 s−1 und 1 ⋅ 10−1 s−1 durchzuführen, weshalb

Geschwindigkeiten im Bereich von 2 nm/s bis 50µm/s notwendig waren. Des Weiteren musste

die Maschine klein genug sein, um auf den Experimentträger der Beamline ID11 an der ESRF

zu passen, sowie vor und hinter der Probe einen Freiraum für den einfallenden und gestreuten

Röntgenstrahl aufweisen. Außerdem war es notwendig, dass die obere und untere Traverse

der Prüfmaschine symmetrisch verfahren, um den Steg ortsfest im Röntgenstrahl zu halten.
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Detektor SCS

Frontkamera
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Strahlrohr

Beamstop Röntgenstrahl

Frontkamera

Seitenkamera

Beamstop

Detektor

SCS
Strahlrohr

20°

10.5°

Vogelperspektive

Räumliche Darstellung Druck

Druck

Abbildung 3.7: Schematischer Aufbau des ESRF Experiments. Die Anordnung und Winkel
der Bestandteile sind korrekt dargestellt, die Abstände und Größen sind für
die Darstellung aber stark reduziert. Die Prüfmaschine ist hier nicht darge-
stellt.

Zum Einsatz kam ein System aus Zug/Druck-Modul der Firma Kammrath & Weiss mit

DDS3-Steuerung in der 5 kN Ausführung und zusätzlichem Motor für niedrige Verfahrge-

schwindigkeiten, welches formal alle oben genannten Anforderungen erfüllte. Allerdings zeig-

te die Maschine innerhalb des relevanten Kraftbereichs bereits eine signifikante elastische

Verformung des Maschinenteils, welcher zwischen interner Wegmessung und Druckstempel

liegt, sodass der gemessene Verfahrweg nicht identisch mit dem an der Probe anliegenden

Verfahrweg war. Unter anderem aus diesem Grund erfolgt die Dehnungsmessung in dieser

Arbeit über eine optische Verschiebungsmessung direkt an der Probe.

Theoretisch wäre eine kraftgesteuerte Korrektur des Verfahrweges bzw. der Verfahrgeschwin-

digkeit möglich, diese ist aber weder direkt an der Maschine, noch mit der Steuerung oder in

der Software realisierbar. Das System ist auf konstanten Geschwindigkeiten gemäß der inte-

grierten Wegmessung beschränkt. Dazu kommt, dass Geschwindigkeitsänderungen nur nach

Anhalten der Maschine möglich sind. Die zur Verfügung gestellte API3 erlaubt es nur, die

3von engl.
”
application programming interface“, zu Deutsch: Programmierschnittstelle.
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Abbildung 3.8: Photos des Versuchaufbaus aus der Vogelperspektive (links) und etwa aus
Sicht des Röntgenstrahls (rechts). Unwesentliche Teile des Aufbaus werden
zur besseren Übersicht mit geringerer Deckkraft dargestellt.

mitgelieferte Software aus Fremdanwendungen heraus anzusprechen und unterliegt somit den

gleichen Limitierungen. Die Experimente konnten daher nur mit verschiedenen, aber jeweils

konstanten Maschinengeschwindigkeiten durchgeführt werden. Das führt zu einem Anstieg

der Verformungsgeschwindigkeit, und damit der Dehnrate an der Probe in Abhängigkeit der

Laständerung.

Die Kraft auf die Probe in Druckrichtung wurde durch den integrierten Drucksensor mit

einem Messbereich von ±2 kN am oberen Druckstempel erfasst und von der DDS3 Einheit

digitalisiert.

Die SCS wurden ähnlich wie in [248] auf einem Edelstahlwagen mittels einer Klemmvor-

richtung montiert, der auf die untere Traverse auf eine Halterung aufgesetzt werden konnte.

Diese Halterung lagerte den Probenwagen auf einem Nadellager und erlaubte dadurch ein

freies Abscheren der Probe senkrecht zur Druckrichtung (x-Richtung), indem er die Probe in

Rollrichtung nahezu kräftefrei macht. Zum Detektor hin war in der Halterung ein Kugellage-

ranschlag integriert um Proben reproduzierbar im selben Abstand zum Detektor platzieren

zu können, ohne dadurch nennenswerte zusätzliche Reibungskräfte zu erzeugen.

Optische Verschiebungsmessung

Die Bewegung der Probe sollte optisch auf zwei zueinander senkrecht stehenden Seiten der

Proben erfasst werden, um Informationen über die Bewegung der Proben in allen drei Raum-

richtungen zu erhalten. Dazu wurde die Verformung der Probe mit zwei Kameras (PointGrey

Grasshopper 3, USB3.0 Interface, 2/3”monochrom Sensor mit 2448x2048px, 3.45µm Pixel-

kantenlänge, max. 75fps) aufgezeichnet, die die Frontfläche und die linke Seitenfläche erfassten

(siehe Abb. 3.9).
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Bild Seitenkamera Bild
Frontkamera

x

y

z
Abbildung 3.9: Beispiele für die von den Proben aufgenommenen Bilder der Front- und Sei-

tenkamera. Die Bereiche der Probe, die von den Kameras erfasst werden, sind
in der Schemazeichnung in der Mitte gekennzeichnet.

Die Frontkamera war mit einem bi-telezentrischen 2fach Zoom Objektiv mit Festbrennwei-

te und 300mm Arbeitsabstand (Edmund Optics TECHSPEC CompactTL) ausgestattet und

erfasste einen Probenbereich von ca. 4x4mm (1.725 µm pro Pixel). Der Schärfebereich des

Frontkameraobjektives betrug ca. 1mm und war dadurch in der Lage, sowohl die Probenober-

fläche als auch die Stegoberfläche gleichzeitig scharf abzubilden. Um nicht den Röntgenstrahl

abzuschatten oder mit dem Strahlrohr zu kollidieren, war die Frontkamera um einen Winkel

von 10.5 ○ relativ zum Lot auf die Probenfront horizontal geneigt.

Die Seitenkamera besaß ein bi-telezentrisches 4fach Zoom Objektiv mit Festbrennweite und

100mm Arbeitsabstand (Edmund Optics TECHSPEC CompactTL) und erfasste einen Pro-

benbereich von ca. 2x2mm (0.8625 µm pro Pixel). Bei der Seitenkamera betrug die horizontale

Neigung sogar 20 ○, um an der Antriebsspindel der Prüfmaschine vorbeizuschauen.

Durch den Einsatz von bi-telezentrischen Objektiven wurden typische optische Verzerrungen

weitestgehend vermieden. Zudem haben telezentrische Objektive die Eigenschaft, dass ihr

Abbildungsmaßstab bei Verschiebungen entlang der optischen Achse konstant ist, womit sie

sich besonders gut für Messaufgaben eignen.

Zur Beleuchtung kamen zehn 3W LED-Spots mit einem Abstrahlwinkel von 20 ○ zum Einsatz,

deren grünes Licht im Bereich der maximalen spektralen Empfindlichkeit der Kameras lag.
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Die Spots konnten zur optimalen Ausleuchtung paarweise flexibel mithilfe von Schwanenhals-

halterungen positioniert werden, wodurch die Beleuchtungsproblematik durch eine einzelne

Lichtquelle aus [25] gemindert wurde. Die LEDs wurde über eine selbst gebaute Steuerungs-

elektronik mit Strom versorgt und wahlweise manuell oder per Software in ihrer Helligkeit

geregelt.

Die lokale Verschiebung definierter Bildbereiche zwischen verschiedenen Kamerabildern wird

mittels digitaler Bildkorrelation (Software DaVis 8.3.1 von LaVision) berechnet (Details siehe

[25]), wodurch aus den Daten jeder Kamera zweidimensionale Verschiebungsfelder extrahiert

werden können.

Die Frontkamera dient hauptsächlich der Überwachung und Quantifizierung des Abscherver-

haltens der Probe entlang des Steges während der Verformung, wohingegen die Seitenkamera

der Überwachung von Ausbauchungen im Stegbereich oder Knicken der Probe entlang des

Steges dient. Letzteres erzeugt u.a. Scheinverschiebungen aus Sicht der Frontkamera. Darüber

hinaus ist durch die Kombination der komplementären Informationen beider Kameras ein

grobe, dreidimensionale Rekonstruktion der Probenbewegung möglich (Details siehe Kapitel

3.4).

Transmissionsröntgenbeugung

Der monochromatische Röntgenstrahl, der von der ESRF zur Verfügung gestellt wurde,

hatte eine Energie von 78.3948 keV (Pt K-Absorptionskante) und damit eine Wellenlänge

von 15.814 pm. Über ein Blendensystem konnte dieser auf einen rechteckigen Bereich einge-

schränkt werden, der bei langsamen Experimenten (Dehnrate < 1 ⋅ 10−2 s−1) eine Abmessung

von 30x30µm und bei schnellen Experimenten, zur Steigerung der Intensität, eine Abmes-

sung von 40x40µm hatte. Dieser Strahl traf senkrecht zu Frontfläche der Probe auf die Mit-

te des Stegbereiches. Hinter der Probe befand sich in einem Abstand von 34.4 cm ein 2d

Röntgendetektor (Frelon 2k, 2048x2048 Pixel, quadratische Pixel, Kantenlänge 50µm), mit

dem die gestreute Röntgenstrahlung bis zu einem Streuwinkel von 10 ○ aufgenommen wurde.

Bei voller Auflösung war eine maximale Bildrate von 0.9 Hz bei einer Belichtungszeit von

700 ms4 möglich, die für schnelle Verformungen durch ein 2x2 Pixelbinning5 auf 2 Hz bei

einer Belichtungszeit von 300 ms gesteigert werden konnte; dadurch wurde jedoch die zur

Verfügung stehende Auflösung geviertelt (1024x1024 Pixel, quadratische Pixel, Kantenlänge

100µm). Der transmittierte Primärstrahl wurde durch einen zylindrischen Beamstop vom

Detektor abgehalten, um eine Übersteuerung oder Beschädigung des Detektors zu vermei-

den. Die Halterung des Beamstops hat den Bereich auf der 6-Uhr Position des Detektors

abgeschattet (siehe Abb. 3.10).

Der Detektor konnte extern über einen 5 V TTL-Puls getriggert werden, wodurch die Synchro-

nizität zwischen Röntgenmessung und dem restlichen Versuchsaufbau hergestellt wurde. Die

4Zuzüglich Datenübertragungszeit.
52x2 Pixel werden zu einem zusammengefasst.
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Aufnahmen des Röntgendetektors wurden auf einem Computer der ESRF im proprietären

ESRF Data Format (.edf) gespeichert und konnten im Anschluss an die Experimente von

dort heruntergeladen werden.

Zusätzlich zu den bisher beschriebenen Messungen wurde bei jedem Experiment die Um-

gebungstemperatur im Labor und an der oberen und unteren Traverse der Prüfmaschine

aufgezeichnet.

Abbildung 3.10: Rohdaten des Röntgendetektors. Der rote Kasten zeigt in den Ecken die
Abweichung der Detektordaten von einer ebenen, viereckigen Fläche durch
die Kissenverzerrung des Detektors.

3.3.3 Experimentsteuerung

Die Steuerung des Experiments erfolgte zentral über einen Mess-PC mit Hilfe eines in Lab-

view (National Instruments) geschriebenen Steuerprogramms (SCS-ControlNew.vi). Das Pro-

gramm hatte zum einen die Aufgabe, die Messdaten (Kamerabilder, Mechanische Daten,

Temperatur) während des Experimentes zu erfassen, zum anderen sollte es die Steuerung

aller Komponenten übernehmen und die Synchonizität der verschiedenen Messsignale garan-

tieren. Zusätzlich mussten die Kamerabilder inklusive Histogramme zu Justagezwecken vor

dem eigentlichen Experiment als Livestream zur Verfügung stehen und während der Messung

sollte der aktuelle Zustand, die Laufzeit und die Restlaufzeit des Experimentes jederzeit ab-

lesbar sein. Außerdem sollte die manuelle Steuerung der Beleuchtung und der Prüfmaschine

über die Software möglich sein, um den Arbeitsablauf zu erleichtern und so das Risiko von

Bedienfehlern zu minimieren. Schließlich war ein Betreten des Strahlenschutzbereiches nicht

jederzeit möglich und mit relativ großem Aufwand verbunden.

Das vereinfachte Schema der Software ist in Abb. 3.11 und die Bedienoberfläche ist in

Abb. 3.12 und Abb. 3.13 dargestellt. Grob eingeteilt kann sich die Software in zwei Zuständen

befinden: Frei und messend.
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Abbildung 3.11: Schematische Darstellung des Aufbaus der Experimentsteuerung.

Im freien Zustand sind die Eingabefelder und Schaltflächen der Bedienoberfläche freigege-

ben und können durch den Nutzer manipuliert werden, etwa um Probeninformationen und

Messparameter des nächsten Experimentes einzutragen, die Beleuchtung anzupassen, Kame-

raeinstellungen in Echtzeit vorzunehmen oder die Prüfmaschine manuell zu verfahren.

Im Messzustand ist die Oberfläche bis auf die Stopp-Schaltfläche gesperrt und es ist keine

Interaktion außer dem Abbruch der Messung möglich. Zu Beginn der Messung werden aus

den Nutzereingaben die notwendigen Maschinenparameter für das Experiment errechnet (z.B.

Verfahrgeschwindigkeiten, Bildraten, etc.), die Bestandteile des Aufbaus entsprechend initia-

lisiert und die Einstellungen und Probeninformationen im Experimentordner in einer Textda-

teien gespeichert ([Probenname]-info.txt). Danach werden die verschiedenen Taktsignale von

einem zentralen Taktgeber generiert, welche das Auslösen der Kameras und der TTL-Pulse

des Röntgendetektors steuern, sowie das Abtasten der Messwerte der Prüfmaschine und der
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Abbildung 3.12: Photo der Bedienoberfläche auf dem Steuerungsrechner im Nutzerbereich
der ID11.

Temperaturmessung bestimmen. Während des Experimentes werden die Bilddaten der Kame-

ras kontinuierlich auf die interne Festplatte gespeichert und in der Benutzeroberfläche zu Kon-

trollzwecken angezeigt. Am Ende werden die aufgenommenen Temperaturwerte (Temperatu-

res.txt) und Kraft-Weg-Daten der Prüfmaschine ([Probenname]–LoadElong.txt) gespeichert

und das Programm wieder in seinen Ausgangszustand vor dem Experiment zurückversetzt.

Zusätzlich bietet das Programm die Möglichkeit, eine automatische Annäherung der Prüfma-

schine an die Probe durchzuführen. Dabei wurde die Prüfmaschine kontrolliert zusammenge-

fahren und die Kraft am Pressstempel überwacht. Beim Detektieren des Schwellenwertes von

2 N wird die Bewegung der Maschine gestoppt und der Einbau der Probe ist abgeschlossen.
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Abbildung 3.13: Bedienoberfläche der Steuerungssoftware.
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3.4 Extraktion der Verschiebungsfelder aus Kamerabildern

Die Relativverschiebung der Probe zwischen zwei aufeinander folgenden Kamerabildern wur-

de durch digitale Bildkorrelation bestimmt. Der Grundgedanke hinter diesem Verfahren ist

es, das erste Bild in quadratische Bereiche zu unterteilen und die entsprechenden Bereiche

im zweiten Bild zu identifizieren. Der Verschiebungsvektor des Bereiches im ersten Bild zum

selben Bereich im zweiten Bild ist dann die lokale Verschiebung der Probe an dieser Stelle.

Technisch wird dieses Identifikation gleicher Bereiche durch die Anwendung einer zweidi-

mensionalen Korrelationsfunktion auf die Intensitäten beider Bilder erreicht. Diese stellt ein

skalares Maß für die Übereinstimmung beider Bilder bzw. Bildbereiche in Abhängigkeit ei-

nes Verschiebungsvektors bereit, sodass der zum Maximum der Korrelationsfunktion gehörige

Verschiebungsvektor mit hoher Wahrscheinlichkeit der tatsächlichen Verschiebung entspricht.

Weitere Details zu diesem Verfahren sind in [25] angegeben. In dieser Arbeit wurde für die

Durchführung der digitalen Bildkorrelation auf die Software LaVision DaVis in Version 8.3.1

zurückgegriffen, in der das Verfahren gut getestet und numerisch schnell und stabil umge-

setzt ist. Im Unterschied zu Vorgängerarbeiten [25, 30] wurde das Verschiebungsfeld über

die gesamte im Bild befindliche Probenfläche in Pixelkoordinaten ohne vorherige Bildmani-

pulation (z.B. Verschiebungsausgleich, Rotationsausgleich) bestimmt und anschließend zur

weiteren Analyse im ParaView (.tp) Format exportiert. Dieses Format liefert eine Liste der

x- und y-Ortskoordinaten der quadratischen Auswertebereiche und der entsprechenden Ver-

schiebungen entlang beider Richtungen u und v.

Die Wahl der Größe der korrelierten Auswertebereiche muss so getroffen werden, dass diese

durch plastische und elastische Dehnungen in aufeinander folgenden Bildern nicht so stark

verzerrt werden, dass eine Identifikation nicht mehr möglich ist. Andererseits steigt die Zu-

verlässigkeit, mit der ein Bereich identifiziert werden kann, näherungsweise mit der Fläche des

Bereiches an, da mehr Information zur Identifikation zur Verfügung steht. Vor diesem Hin-

tergrund wurden quadratische Bildbereiche mit einer Kantenlänge von 49 Pixeln gewählt, die

überlappend in einem 20 x 20 Pixel Gitter angeordnet wurden. Dadurch wurde einerseits die

Informationsdichte der Verschiebungsfelder erhöht, andererseits stellen die überlappenden

Korrelationsbereiche eine gewisse Redundanz dar, die gerade an Objektkanten und dem

Übergang zum Stegbereich nützlich ist. Es ist außerdem sinnvoll, zu jedem Zeitpunkt die

akkumulierte Verschiebung zu betrachten, da sich dadurch die stochastisch verteilten Messfeh-

ler mit fortschreitender Zeit herausmitteln, während die tatsächliche Verschiebung zunimmt,

wodurch das Signal-zu-Rausch-Verhältnis verbessert wird.

Ein Beispiel für ein typisches Vektorfeld ist in Abb. 3.14 gezeigt. Hier lässt sich gut erken-

nen, dass der obere Teil der SCS vom Druckstempel gerade nach unten verschoben wird

und sich nur der untere Teil durch den rollbaren Probenhalter nach links verschiebt. Die

Verschiebungsinformation aus dem Steg ist problematisch, was vor allem durch die sichtbare

plastische Deformation und Ausbauchung des Stegbereiches während der Verformung her-

vorgerufen wird. Ohne zusätzliche Informationen zur Änderung der Form der Oberfläche im
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Abbildung 3.14: Links sind zwei aufeinander folgende Kamerabilder der Frontkamera gezeigt,
die zur Unterscheidung rot und blau eingefärbt sind. Der durch das magen-
tafarbene Rechteck markierte Bereich beider Bilder wurde vergrößert und
mit jeweils 50% Deckkraft überlagert. In dem überlagerten Bild ist die Ver-
schiebung zwischen den beiden Bildern mit bloßem Auge erkennbar. Rechts
ist das per Software extrahierte Verschiebungsfeld dargestellt, in dem die
Längen der Vektoren mit dem Faktor 2 skaliert wurden. Der Stegbereich ist
durch schwarze Linien markiert.

Steg6 ist eine notwendige Korrektur der Verschiebungsinformationen in diesem Bereich nicht

möglich. Darüber hinaus hat der Stegbereich selbst eine Breite von ca. 1.5 Auswertebereichen,

sodass hier die oben genannten Anforderungen für digitale Bildkorrelation nur unzureichend

erfüllt sind.

Aus diesem Grund wurde zusätzlich gezielt das Vektorfeld des Stegbereiches der Probe in der

Ansicht der Seitenkamera in der digitalen Bildkorrelation mit einem kleineren Korrelations-

bereich von nur 20 x 20 Pixeln extrahiert. Der Grund dafür wird im Verlauf des nachfolgenden

Kapitel 3.5 geliefert.

Die Analyse der Verschiebungsfelder findet im Folgenden größtenteils anhand der wesentlich

unkritischeren Probenoberfläche außerhalb des Stegbereiches statt, welche nur einen geringe

elastischen Deformationsanteil aufweisen.

6Die Oberflächenform könnte z.B. durch stereoskopische Aufnahmen mit mehreren Kameras erfasst werden.
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3.5 Auswertung der Verschiebungsfelder

Die Auswertung der Verschiebungsfelder hat das Ziel, eine klare Beschreibung der Gesamtbe-

wegung der Probe und der Relativbewegung der Probenteile ober- und unterhalb des Stegbe-

reiches zu liefern. Dafür sollen die Informationen von Frontfläche und Seitenfläche konsistent

in einem gemeinsamen Koordinatensystem zusammengeführt werden. Darauf aufbauend, er-

folgt eine dreidimensionale Extrapolation des Verschiebungsfeldes bis an den Stegbereich, um

daraus eine Abschätzung für die dreidimensionale Dehnung im Zentrum des Steges zu erhal-

ten. Das bildet die makroskopische Komplementärinformation zu den Röntgenmessungen, die

das Zentrum des Steges abdecken.

Zunächst werden die Kamerabilder von Pixelkoordinaten in Längen umgerechnet, sowie eine

Entzerrung in horizontaler Richtung durchgeführt, die wegen der Neigung der Kameraachsen

zur Oberflächennormalen notwendig ist. Für die Längen der Frontfläche in x-Richtung gilt

x′ = x/ cos(10.5○) und für die z-Richtung der Seitenfläche z′ = z/ cos(20○).

Um die weitere Analyse durchzuführen, wird das Kamerabild in zwei relevante Bereiche un-

terteilt, nämlich die Probenoberflächen ober- und unterhalb des Stegbereiches. Diese ergeben

sich aus einer Maskierung, die den Stegbereich inklusive der Abschrägung und einem Zuschlag

von ≈ 50µm bei den Frontkamerabildern ausspart, um unzuverlässige Verschiebungsinforma-

tionen aufgrund von Kanteneffekten zu vermeiden. Bei den Seitenkamerabildern wird lediglich

der Steg selbst ausgespart, da durch die dort stattfindende, starke plastische Verformung die

Bildkorrelation mit den großen Auswertebereichen an ihre Grenzen stößt.

z

y

x

y

Bildausschnitt

Maskierung

z

x

SCS

Bildebene
Frontkamera

Bildebene
Seitenkamera

10.5°

20°

Abbildung 3.15: Darstellung der Bildausschnitte und getrennt ausgewerteten Bildbereiche der
SCS, sowie der Neigung der Bildebene (Kameras) relativ zu den Probeno-
berflächen.

In einem ersten Schritt erfolgt eine Zerlegung der Verschiebungsfelder der beiden Probenteile

in Starrkörpertranslation, Starrkörperrotation, beides in Bezug auf den jeweiligen Schwer-

punkt, und den Rest, wobei letzterer im Normalfall der elastischen und plastischen Dehnung

entsprechen sollte. Der Sinn dieser Zerlegung ist es, mathematisch einfach beschreibbare
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Teilvektorfelder zu extrahieren, die jeweils in einfacher und systematischer Weise physika-

lisch sinnvoll extrapoliert werden können. Das gesamte Verschiebungsfeld ergibt sich durch

additive Überlagerung der Teilvektorfelder. Formal erhält man für das untere bzw. obere

Verschiebungsfeld u⃗u bzw. u⃗o:

u⃗u,o(x,y,z) = u⃗u,oT + u⃗u,oR + u⃗u,od , (3.10)

wobei die Indizes T , R und d den Translations-, Rotations- und Dehnungsanteil des Verschie-

bungsfeldes beschreiben. Für die zunächst einzeln betrachteten, zweidimensionalen Kamera-

bilder ist immer jeweils eine der Ortskoordinaten x′ oder z′ konstant und die entsprechende

Verschiebungskomponente null.

Die Starrkörpertranslation der beiden Hälften ergibt sich einfach aus dem Mittelwert des Ver-

schiebungsfeldes im jeweiligen Probenteil ⟨u⃗⟩ = u⃗T . Die Translation der Gesamtprobe u⃗GT wird

o.B.d.A. mit der Verschiebung des oberen Probenteils identifiziert. Durch die Subtraktion von

u⃗GT vom gesamten Vektorfeld wird der Schwerpunkt des oberen Teiles ortsfest und die gesam-

te Starrkörperrelativverschiebung u⃗rT auf den unteren Teil abgebildet. Zusammengefasst gilt

also für die Starrkörpertranslation

u⃗GT = ⟨u⃗⟩o (3.11a)

u⃗rT = u⃗uT − u⃗
G
T = ⟨u⃗⟩u − ⟨u⃗⟩o. (3.11b)

Die Starrkörperrotation wird bestimmt, indem man die Verschiebungsfelder in Polarkoordi-

naten mit dem Schwerpunkt der Probenteile als Mittelpunkt beschreibt. Der Mittelwert des

Polarwinkels ϕ über die Flächen entspricht dann dem Drehwinkel der Starrkörperrotation,

also ⟨u⃗⟩ϕ = u⃗R. Auch hier wird zuerst die Rotation des oberen Teils als Gesamtrotation u⃗GR
aufgefasst und vom Verschiebungsfeld subtrahiert, wonach der obere Teil rotationsfrei ist.

Die gesamte Relativrotation u⃗rR wird, wie bei der Translation, durch die nun verbleibende

Rotation des unteren Teils beschrieben. Zusammengefasst gilt dann für die Rotation:

u⃗GR = ⟨u⃗⟩oϕ (3.12a)

u⃗rR = ⟨u⃗u − u⃗GR⟩ϕ. (3.12b)

Bei den Rotationen muss beachtet werden, dass diese keine Aussage über die tatsächlichen

Rotationswinkel oder Rotationsachsen machen, sondern nur der Zerlegung des Vektorfeldes

im beobachtbaren Bereich dient. Durch die vorhergehende Subtraktion des Mittelwertes der

Verschiebung wird nämlich für jede Rotation die Rotationsachse in den Schwerpunkt ver-

schoben, auch wenn die ursprüngliche Rotationsachse an einem anderen Ort, wie z.B. in der

Standfläche, liegt. Folglich verändert sich dadurch auch der Rotationswinkel. Gibt es also

eine Rotationskomponente in dem Vektorfeld, ist damit klar, dass tatsächlich eine Rotation

im Experiment stattgefunden hat. Es ist aber nicht klar, um welche Achse und um welchen
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Winkel in der Realität rotiert wurde, da nicht die kompletten Probenhälften im Kamera-

bild abgebildet werden. In Bezug auf die Bewegung relativ zum Steg stellt das aber keine

Einschränkung dar.

Die Dehnungsverschiebungen beider Teile ergeben sich einfach nach Subtraktion aller zuvor

beschriebenen Anteile der Gesamtverschiebungsfelder, womit die komplette Zerlegung die

folgende Form hat:

u⃗ = u⃗GT + u⃗
G
R

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
gesamt

+ u⃗rT + u⃗
r
R

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
relativ

+ u⃗d
¯

Dehnung

. (3.13)

Auf Grundlage dieser Zerlegung erfolgt nun im nächsten Schritt die Korrektur von Schein-

verschiebungen auf den beiden Flächen, die durch Translation und Rotation auf der jeweils

dazu senkrecht stehenden Fläche erzeugt wird. Dazu werden die Verschiebungsfelder aus

beiden Kamerabildern in einem gemeinsamen, dreidimensionalen Koordinatensystem zusam-

mengeführt, wobei die Stegkoordinaten zur korrekten Positionierung der Seitenkameradaten

relativ zu den Frontkameradaten genutzt werden.

Zunächst wird die Korrektur der Scheinverschiebungen durch die Rotationen betrachtet, da

Rotationen auf den dazu senkrechten Flächen keine Scheinrotationen in den Vektorfeldern er-

zeugen können; die Korrekturen beeinflussen sich also nicht gegenseitig. Rotationen erzeugen

an den Probenkanten, und damit auf den entsprechenden Flächen, inhomogene Verschiebun-

gen sowohl in y-Richtung als auch in der Richtung senkrecht dazu (siehe Abb. 3.16). Diese

Verschiebungen können mit der Drehachse und dem Drehwinkel der jeweils anderen Fläche

für jeden Verschiebungsvektor berechnet und subtrahiert werden, um die korrigierten, nun

dreidimensionalen7 Verschiebungen zu erhalten. Die Mittelwerte dieser Korrekturverschie-

bungen sind auf die Starrkörpertranslationen als Korrektur anzuwenden und der inhomogene

Rest auf die verbleibenden Dehnungsfelder.

x

y

Abbildung 3.16: Skizze zur Veranschaulichung des Einflusses der Rotation in der x-y-Ebene
auf die scheinbare, inhomogene Verschiebung in der y-z-Ebene. Hier wird der
linke Probenteil um die durch das rote x markierte Drehachse in Pfeilrichtung
rotiert. Die roten Pfeile auf der oberen Seite des linken Probenteils zeigen
die Verschiebungskomponenten an diesen Stellen durch die Rotation an.

7Die Komponente, die nicht in y-Richtung zeigt, steht immer senkrecht auf der zu korrigierenden Ebene.
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Die Translationsbewegung in den beiden Ebenen würde eigentlich nicht zu Scheinverschie-

bungen auf den jeweils senkrechten Flächen führen. Allerdings existiert aufgrund der unter-

schiedlichen Neigungen der Kameras eine Verschiebungskomponente in x-Richtung aufgrund

von Verschiebungen in z-Richtung und umgekehrt (vgl. Abb. 3.15, S. 157). Die y-Richtung

ist in beiden Fällen identisch, weswegen auch die beobachteten Verschiebungen identisch sein

müssen und keiner Korrektur bedürfen.

Um die Scheinverschiebungen durch die x-z-Kopplung zu korrigieren, müssen die zuvor vor-

genommenen Entzerrungen in diese Richtungen rückgängig gemacht werden, die jeweiligen

Projektionsanteile subtrahiert werden und dann die Entzerrung erneut vorgenommen wer-

den (Details/Implementierung siehe Datenträger: Xcorrection.m). Dabei sind die x- und z-

Komponenten aus der vorherigen Rotationskorrektur mit zu berücksichtigen.

Für die korrigierte Verschiebung in x-Richtung auf der Frontfläche ux,c und die Entsprechende

Verschiebung in z-Richtung uz,c gilt dann

ux,c = ux − u
rot
x − uz

cos(π/2 − 10.5 ○)

cos(20 ○) [cos(10.5 ○) −
sin(20 ○) cos(π/2−10.5 ○)

sin(10.5 ○) ]
(3.14a)

uz,c = uz − u
rot
z − ux,c tan (20 ○

) (3.14b)

Beispiele für zerlegte und korrigierte Verschiebungsfelder einer 45 ○ SCS sind in Abb. 3.17

gezeigt.

Auf dieser Grundlage wird nun eine Extrapolation der Verschiebungsfelder in x- und y-

Richtung bis an den Steg vorgenommen, um die makroskopische Dehnung des Probenvo-

lumens zu bestimmen, welches auch vom Röntgenstrahl untersucht wird.

Die Extrapolation des Verschiebungsfeldes zum Steg ist im Fall der Starrkörperverschiebung

und -rotation offensichtlich und muss für die Bestimmung der Dehnung im Steg auch nur für

die Vektorfelder erfolgen, welche die relativen Bewegungen beschreiben. Weder Gesamttrans-

lation noch Gesamtrotation erzeugen Dehnungen im Steg.
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Abbildung 3.17: a) Zerlegung des Verschiebungsfeldes einer SCS in die im Text beschriebenen Teilverschiebungsfelder. Der Skalierungs-
faktor der Pfeillängen der Verschiebungsfelder (x4, x40) ist für jeden Fall angegeben. Bei den Gesamtverschiebungen,
die immer anhand der oberen Verschiebungsfelder bestimmt werden, sind die in die untere Hälfte extrapolierten Ver-
schiebungen hellblau dargestellt. Die Lage des Steges ist durch schwarze Linien markiert, die der Schwerpunkte in der
oberen und unteren Probenhälfte ist durch rote Kreuze markiert. Die Pfeildichte wurde für die Darstellung reduziert.
b) Gleiche Darstellung wie in a) für die Seitenkamera.

161



3 Methodik

Die verbleibende Herausforderung ist die Extrapolation der Dehnungsverschiebungen des un-

teren und oberen Probenteils bis an den Steg. Die Schwierigkeit ist hierbei, dass die Bewegung

der Frontfläche in Stegnähe keine Repräsentation der Bewegung des unteren Probenteils dar-

stellt, da die Spannung und Dehnung in Stegnähe in einem schmaleren Bereich fokussiert

ist (siehe Seitenkamera u⃗d in Abb. 3.17). Für die Verschiebung in x-Richtung steht damit

keine sichere Grundlage für eine Extrapolation zur Verfügung und die x-Verschiebung auf

der Frontfläche stellt lediglich eine untere Schranke dar, die in Ermangelung einer besseren

Alternative einfach genau so auch am Steg angesetzt wird. Da die elastische Verschiebungs-

komponente aber nur einen geringen Anteil an der Gesamtverschiebung hat, ist die daraus

entstehende Ungenauigkeit maximal im Bereich weniger Prozent.
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Abbildung 3.18: a) Darstellung der Scherung des Steges und der daraus resultierenden freien
Kante an den Seiten der Proben (links). Auswertebereich für die Extrapo-
lation der y-Verschiebung bis an den Steg auf der Probenseite (rechts). Die
Richtungen der blauen und schwarzen y-Koordinaten sind hier ebenfalls dar-
gestellt. b) Anpassung der uy Verschiebungsdaten der Seitenkamera aus den
in a) dargestellten Bereichen und ihre quadratische Anpassung.

Die Dehnungsverschiebung in y-Richtung hingegen kann aus den Dehnungsverschiebungs-

feldern der Seitenkamera bis in unmittelbare Stegnähe beobachtet werden, wodurch eine

Grundlage für eine Extrapolation dieser Komponenten bis zum Steg existiert. Durch die Span-

nungskonzentration durch den Steg und die Verjüngung des Probenquerschnittes in Stegnähe,

weicht die Dehnungsverschiebung von dem üblichen linearen Zusammenhang von Abstand

und Verschiebung ab. Allerdings muss dabei berücksichtigt werden, dass am Rand der Probe

durch das Abscheren beider Hälften zueinander dadurch eine unsymmetrische Verschiebung

erzeugt wird, dass einem Probenteil zunehmend der Gegenpart fehlt; der andere verbleibt

dauerhaft in Kontakt mit seinem Gegenpart. Der Probenteil, der den Kontakt zur restlichen

Probe zunehmend verliert, wird dadurch auch zunehmend geringere Verschiebungen aufgrund

der elastischen Dehnungen/Spannungen aufweisen (vgl. Abb. 3.18). Für die Extrapolation der
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3.5 Auswertung der Verschiebungsfelder

Verschiebung in der Mitte des Steges ist offensichtlich nur der Teil relevant, der dauerhaft

in Kontakt bleibt; in diesem Beispiel ist es der obere Teil. Die Verschiebung unterhalb bzw.

oberhalb des Steges kann, in Abhängigkeit von der y-Position, mit einer quadratischen Funk-

tion gefittet werden (vgl. Abb. 3.18), deren Funktionswert am Ort des Steges den Wert der

y-Verschiebung aufgrund der elastischen Dehnung auf beiden Seiten des Steges liefert.

Die mittleren Dehnungen im Steg in der x-y-Ebene werden aus den Verschiebungsinforma-

tionen in x- und y-Richtung entlang des Steges so berechnet, wie im Theorieteil in Gl. (2.28)

dargestellt. Hier ist, wegen der großen plastischen Dehnungen, die Benutzung des Green-

Lagrange-Dehnungstensors notwendig. Benutzt man den linearen Dehnungstensor, kann es

bei großen Dehnungswerten (ε > 0.1) sowohl zu qualitativen als auch quantitativen Fehlern

kommen. Bei der Berechnung wird angenommen, dass die Dehnungen in dieser Ebene im Steg

weitestgehend homogen sind. Zu diesem Ergebnis kommen auch FEM-Simulationen an iden-

tischen Geometrien [248, 250]. Durch diese Annahme gehen die Ableitungen zur Berechnung

von ¯̄F in Differenzenquotienten über, die direkt aus den extrapolierten Verschiebungsfeldern

berechnet werden können. Diese Zusammenhänge und die Lage des durchstrahlten Bereiches

sind in Abb. 3.19 dargestellt.
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x
-z

y

Stegmitte

Δx

Δy

u

u

u

Abbildung 3.19: (links) Schematische Darstellung des mittleren Stegbereiches in der x-y-
Ebene mit den Ausdehnungen des Steges in x- und y-Richtung, sowie die
Zerlegung der Verschiebungen an den Stegrändern, welche die Grundlage zur
Berechnung der Differenzenquotienten zur Bestimmung von ¯̄F visualisiert.
Der vom Röntgenstrahl durchstrahlte Bereich ist durch das rote Quadrat
markiert. (rechts) Dreidimensionale Darstellung des vom Röntgenstrahl er-
fassten Bereiches (rot) in der SCS. Der Steg ist halbtransparent dargestellt.
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Die noch fehlenden Dehnungs- und Verschiebungsinformationen in z-Richtung im Steg werden

direkt anhand des zusätzlichen Verschiebungsfeldes des Stegbereiches aus den Bildern der

Seitenkamera extrahiert (siehe Abb. 3.20). Dieses Verschiebungsfeld enthält allerdings auch

die Verschiebungskomponenten aufgrund der Verkippung und Verschiebung bzw. Scherung

durch die plastische Verformung des Steges und ist ebenfalls von dem oben beschriebenen

Kantenproblem betroffen. Es muss daher auch, wie oben beschrieben, korrigiert werden. Da

eine Hälfte des Steges durch die Scherung den Kontakt mit ihrem Gegenpart verliert, darf

zur Bestimmung von elastischer und plastischer Querdehnung im Stegbereich nur die Hälfte

des Steges in y-Richtung berücksichtigt werden, in der beide Probenhälften dauerhaft in

Kontakt miteinander sind. In Abb. 3.18b ist der deutliche Unterschied in der y-Verschiebung

der beiden Probenhälften dargestellt. Der Dehnungsgradient in z-Richtung folgt dann aus

Fz = ⟨
∆uz
b

⟩, (3.15)

wobei b die Stegbreite und ∆uz die Differenzverschiebung zwischen linker und rechter Stego-

berfläche ist. Dabei werden die z-Verschiebungen über einen Bereich von ca. 1/3 der Steghöhe

in y-Richtung von der Stegmitte aus gemittelt.
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Abbildung 3.20: Darstellung der Position des zusätzlichen Verschiebungsfeldes an der Seite
des Steges (links) und das Verschiebungsfeld selbst (rechts). Der Bereich,
über den die Querdehnung in z-Richtung gemittelt wird, ist hier rot markiert.

Daraus kann der dreidimensionale Dehnungszustand aus der Mitte des Stegbereiches, der

auch vom Röntgenstrahl durchleuchtet wird, genähert werden. Die Ergebnisse für die Ver-

schiebungsfelder aus Abb. 3.17 (S. 161) sind in Abb. 3.21 (S. 165) gezeigt.

Mit ¯̄F erhält man außerdem den Rotationstensor ¯̄R, der jedoch aufgrund der Symmetrie der

SCS im Wesentlichen nur eine Rotationskomponente um die z-Achse enthält. Der zugehörige

Drehwinkel ψ kann dann aus ¯̄R einfach durch ψ = arcsin (R21) extrahiert werden. Der Dreh-

winkel ψ zu den Verschiebungsfeldern aus Abb. 3.17 (S. 161) beträgt ≈ −6.6 ○ (es gilt der

mathematische Drehsinn, hier erfolgt die Drehung also im Uhrzeigersinn).
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Abbildung 3.21: a) Dreidimensionale Darstellung des Dehnungszustandes in der Stegmitte
zu den Verschiebungsfeldern aus Abb. 3.17. b) bis d) Polardarstellungen des
Dehnungszustandes in verschiedenen Ebenen. Die Polardarstellungen ent-
sprechen Schnitten durch den Ellipsoiden aus a), wobei die Schnittebenen
durch den Ursprung verlaufen und die Basisvektoren als Normalenvektoren
besitzen.
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3.6 Änderung des Stegquerschnitts

Durch die Verformung ändert sich Querschnittsfläche des Steges im Verlauf des Experimentes

und muss entsprechend mit der Zeit/Dehnung angepasst werden, um eine gültige Bezugsfläche

zu Umrechnung von Spannungen und Kräften zu ermöglichen. Die Anfangsfläche ergibt sich

aus der SCS-Geometrie mit

A0 =
B ⋅ b

cos (sw)
= ∣B⃗ × b⃗∣ =

RRRRRRRRRRRRRRRRR

B ⋅

⎛
⎜
⎜
⎜
⎝

1

− tan (sw)

0

⎞
⎟
⎟
⎟
⎠

×

⎛
⎜
⎜
⎜
⎝

0

0

b

⎞
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRR

, (3.16)

wobei die Kanten der effektiven Stegquerschnittsfläche in Form orthogonaler Vektoren (B⃗ und

b⃗) ausgedrückt wurden. Hier haben b, B und sw die Bedeutungen, wie sie in der Bemaßungs-

skizze der SCS dargestellt sind (vgl. Abb. 3.2, S. 141). Durch die Verformung werden diese

Vektoren gemäß ¯̄F transformiert, also gedehnt und gegebenenfalls um die z-Achse gedreht,

sodass gilt

B⃗′
= ¯̄F B⃗ (3.17a)

b⃗′ = ¯̄F b⃗. (3.17b)

Für die zeitliche Entwicklung der Querschnittsfläche ist nur die Projektion in Richtung der

Normalen n⃗ = (cos (sw),− sin (sw),0) der ursprünglichen Querschnittsfläche entscheidend,

sodass für A gilt

A =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

n⃗ ⋅
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(3.18)

Zusätzlich wurde in Gl. (3.18) in x-Richtung zwei mal die mittlere Relativverschiebung in

x-Richtung der beiden Probenhälften abgezogen, um die Teile des Steges an beiden Rändern

zu berücksichtigen, die durch die Scherung keinen Gegenpart mehr haben. Dadurch wird

die effektive Querschnittsfläche in x-Richtung um 2⟨ux⟩ verkürzt. Die resultierende relative

Flächenänderung, bezogen auf die Anfangsfläche, A/A0, ist in Abb. 3.22 über den Verlauf

einer Verformung der 45 ○-SCS (Y4-2) dargestellt.

Die Kraft F⃗ , die auf die Stegquerschnittsfläche wirkt, ist mit dem Spannungstensor ¯̄σ über

den Ausdruck

F⃗ = A ⋅ ¯̄σ ⋅ n⃗ (3.19)

verknüpft und hängt dadurch gleichzeitig von Spannungs- und Dehnungszustand ab.

166



3.7 Aufbereitung der in-situ Röntgendaten
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Abbildung 3.22: Relative Änderung der Stegquerschnittsfläche im Verlauf der Verformung
der Probe Y4-2.

3.7 Aufbereitung der in-situ Röntgendaten

Die Rohdaten der Röntgenaufnahmen lagen im ESRF Data Format (.edf) vor. Für die wei-

tere Analyse mussten diese Daten um die Detektorfehler bereinigt und von Pixelkoordinaten

in 2θ-Koordinaten umgerechnet werden. Zu den Detektorfehlern gehört die bereits oben ge-

zeigte Kissenverzerrung (siehe Abb. 3.10, S. 151), aber auch statistische Schwankungen der

Dunkelzählrate und Quanteneffizienz auf Pixelebene, beides auch abhängig von der Belich-

tungszeit, sowie unterschiedliche, lokale Empfindlichkeit in Abhängigkeit vom Einfallswinkel

der Röntgenstrahlen und damit vom radialen Abstand von der Detektormitte.

Sämtliche Korrekturen dieser detektorspezifischen Messartefakte, sowie die Umrechnung in

2θ-Koordinaten, wurden durch die ESRF Software Bubble von Vadim Dyadkin [253] bewerk-

stelligt. Dazu wurde vor Ort eine Referenzmessung an CeO2-Pulver angefertigt um Verzer-

rungen, Pixelempfindlichkeiten und 2θ-Koordinaten auf dem Detektorbild zu bestimmen. Die

Parameter für die entsprechenden Korrekturen wurden in einer SPLINE Datei (Verzerrungs-

korrekturen) und PONI Datei (Umrechnungsinformationen) gespeichert. Zusätzlich wurden

eine Reihe von Dunkelaufnahmen8 mit den in den Experimenten benutzten Belichtungszei-

ten angefertigt, die als Referenz für die Dunkelzählrate und das Rauschen des Detektors

dienen. Die Rohdaten der Streubilder werden mit diesen Informationen korrigiert und an-

schließend über 2 ○ breiten Segmenten integriert, um so aus jedem zweidimensionalen Detek-

torbild 180 Diffraktogramme zu extrahieren. Jedes Diffraktogramm stellt die mittlere Inten-

sitätsverteilung in radiale 2θ-Richtung des jeweiligen Segmentes dar, wobei jedes Segment

durch den Polarwinkel ϕ gekennzeichnet ist, der den mittleren Polarwinkel des Segmentes

beschreibt (siehe Abb. 3.23, S. 3.23). Das erste Segment erstreckt sich von 0 ○ bis 2 ○, sodass

der zugehörige Wert für ϕ = 1 ○ ist.

8Aufnahmen ohne Röntgenstrahl
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Abbildung 3.23: a) Darstellung der Koordinaten des Detektorbildes und der Einteilung in 2 ○

breite Segmente. b) Diffraktogramm aus einem Winkelsegment.

Die Daten für jedes Segment werden in Form von Textdateien von Bubble ausgegeben,

die 2θ-Koordinaten und Intensitäten enthalten. Da die weitere Verarbeitung in Matlab er-

folgt, müssen diese Daten möglichst zeit- und platzsparend in das .mat Format umgewan-

delt werden. Dazu wird mit dem Programm ImDisk (Version 2.0.9 von Olof Lagerkvist)

eine 2 GB große RAMDisk9 erstellt, in die von Bubble die Textdateien geschrieben werden.

Noch während der Laufzeit von Bubble werden die bereits geschriebenen Textdateien mithilfe

des Matlab-Programms bubble companion.m eingelesen und in je einem dreidimensionalen

Array (Dimensionen: Polarwinkel, Streuwinkel, Intensität) pro Bild gespeichert. Sobald der

Durchlauf von Bubble beendet ist, werden sämtliche Arrays in einem einzelnen, vierdimen-

sionalen Array (Dimensionen: Zeit bzw. Bildnummer, Polarwinkel, Streuwinkel, Intensität)

konzentriert, welches die gesamten vorverarbeiteten Rohdaten des Experimentes enthält. Das

Detektorsignal wird darüber hinaus auf den größten vorkommenden Wert normiert, sodass

innerhalb eines Arrays alle Intensitätswerte im Intervall [0,1] liegen, ohne dass dadurch die

Beziehungen der Intensitäten zwischen verschiedenen Bildern/Zeitpunkten oder Segmenten

verloren geht. Diese Arrays stellten die Grundlage für alle weiteren Auswertungen dar.

9Virtuelle Festplatte im Arbeitsspeicher, um die notwendigen Schreib- und Lesevorgänge zu beschleunigen
und den Verschleiß des Speichermediums zu reduzieren.
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3.8 Modellierung der in-situ Röntgendaten

Um physikalische Größen aus den Diffraktogrammen zu extrahieren, wurde im Rahmen die-

ser Arbeit eine WPPM-Methode implementiert, die speziell an die Gegebenheiten des expe-

rimentellen Aufbaus und der Proben angepasst wurde. Um diesen Entwicklungsaufwand zu

rechtfertigen, soll zunächst ein kurzer Überblick über etablierte Analysemethoden und die

Probleme ihrer Anwendung auf diesen speziellen Fall gegeben werden.

Klassische Methoden zur Analyse von Diffraktogrammen

Bereits 1920 wurde von Scherrer die Scherrer-Gleichung [254] zur Bestimmung von Struktur

und Größe von Kolloidteilchen aus Röntgenbeugungsaufnahmen entwickelt. Seither wurde

eine Vielzahl von Methoden zur Extraktion physikalischer Parameter etabliert, die sich in

der Regel auf bestimmte Charakteristika im Diffraktogramm konzentrieren, um so mit ver-

gleichsweise geringem rechnerischen und technischen Aufwand ein Maximum an Information

zu erhalten.

Ein bewährtes Verfahren zur Analyse von nanokristallinen Materialien ist die (modifizierte)

Williamson-Hall-Methode [239, 240], in der integrale Peakbreiten oder Halbwertsbreiten und

Peakpositionen jedes Peaks in einer geschickten Weise aufgetragen werden, sodass mit Hil-

fe einer Geraden durch die Datenpunkte die Effekte der Verbreiterung aufgrund endlicher

Korngröße und Mikroverzerrung in y-Achsenabschnitt und Steigung separiert werden. Die-

se Methode erlaubt aus sich heraus aber keine Rückschlüsse auf verschiedene Beiträge zur

Mikroverzerrung.

Grundlage der Williamson-Hall-Methode ist die Annahme, dass jeder Reflex das gleiche Maß

an Mikroverzerrung aufweist und in gleicher Systematik davon beeinflusst wird; diese An-

nahme ist im Fall von nanokristallinem PdAu verletzt. Trotzdem wurden diese Methode

erfolgreich auf nanokristalline Metalle angewandt und darüber hinaus sogar auf virtuelle, be-

lastete Systeme [255], sowie auf in-situ Kornwachstum [256] adaptiert. In beiden Fällen waren

jedoch weitere Modifikationen notwendig, die im Kern die Auswirkungen der nicht erfüllten

Grundannahme mildern sollten.

Allerdings versagt die Methode bei in-situ Messungen, wie sie auch in dieser Arbeit zum

Tragen kommen. Dieses grundlegende Problem wurde bereits in der Vergangenheit in [25]

und [257] festgestellt und mit der komplexen Entwicklung von Mikroverzerrung, Korngrößen-

und Dehnungseffekten erklärt, die eine systematische Trennung im Sinne der Williamson-

Hall-Methode unmöglich macht.

Um die Williamson-Hall-Methode robust gegen den Einfluss von Versetzungen zu machen,

wurde in [258] eine Modifikation auf Grundlage der Streutheorie von Versetzungen (siehe

oben) entwickelt. Allerdings waren im Rahmen dieser Arbeit alle Versuche erfolglos, eine auf

[255] und [258] aufbauende Korrektur bzw. Anpassung der Methode zum Zwecke der Analyse

der in-situ Daten zu realisieren.

169



3 Methodik

Eine weitere etablierte Methode ist die Warren-Averbach-Methode [62, 259], bei der die Peaks

mehrere Ordnungen der selben Ebenenschar (z.B. {111} und {222}) Fourier-Transformiert

werden, um daraus die mittlere Kristallitgröße und Mikroverzerrung zu bestimmen. Der Nach-

teil dieser Methode ist, dass auch hier keine Aussage über die Ursachen der Mikroverzerrung

getroffen werden können. Zudem ignoriert diese Methode drei von fünf Peaks in den zur

Verfügung stehenden Diffraktogrammen und ignoriert dadurch einen Großteil der in den Roh-

daten enthaltenen Informationen. Darüber hinaus zeigten Versuche, dass auch diese Methode

nicht stabil während der Verformung anwendbar ist.

Aufgrund der oben genannten Problemen, wurde in [25, 257] die single-line-analysis aus

[260, 261] verwendet, bei der jeder Peak des Diffraktogramms isoliert analysiert wird, in-

dem Korngrößen- und Mikroverzerrungseffekt durch den Lorentz- und Gaußanteil des Ge-

samtpeaks bestimmt werden. Allerdings ignoriert diese Methode die durchaus bestehenden

Abhängigkeiten dieser Größen von verschiedenen Peaks und macht prinzipiell, wie auch schon

Williamson-Hall, für alle Peaks im Grunde identische Annahmen. Das zuvor bestehende Pro-

blem wird hier im Kern dadurch umgangen, dass die Ergebnisse verschiedener Peaks nicht

mehr methodisch im Einklang miteinander stehen müssen.

Daraus resultieren in der Praxis große Abweichungen zwischen den Ergebnissen verschiedener

Peaks bis hin zu einigen 10 nm für die Korngrößen bei mittleren Korngrößen von lediglich

10 nm bis 15 nm [257]. Spätestens unter Last werden die Ergebnisse für die in-situ Messungen

dieser Arbeit für einzelne Peaks physikalisch unhaltbar (z.B. verschwindende Korngrößen).

Zwangsweise sind damit auch die Ergebnisse für die Mikroverzerrung zweifelhaft, weswegen

auch diese Methode für die hier angestrebte, quantitative Analyse nicht anwendbar ist.

In Ergänzung zu dem hier Gesagten sei noch auf [262] verwiesen, wo kürzlich 22 gängige

Analyseverfahren für Streudaten im Hinblick auf ihre Anwendbarkeit auf Nanomaterialien

kritisch evaluiert wurden. Vorbehaltlos kann keine davon angewandt werden.

WPPM

Aus diesen Gründen wird hier als Ansatz die WPPM-Methode gewählt, die den fundamen-

talen Vorteil bietet, dass Sie die gesamte zur Verfügung stehende Information der Rohdaten

nutzt, sowie prinzipbedingt ein Modell der physikalischen Ursachen der Mikroverzerrung lie-

fert. Diese Methode modelliert auf Grundlage von physikalischen Parametern mithilfe der

Streutheorie das gesamte, beobachtbare Diffraktogramm inklusive Untergrund. Mit einem

Optimierungsalgorithmus kann dieses Modelldiffraktogramm durch Variation der zugrunde-

liegenden Parameter an das gemessene Diffraktogramm angepasst werden.

WPPM wurde maßgeblich von P. Scardi über mehr als 20 Jahre entwickelt (siehe z.B. [137,

140, 263, 264]) und in zahlreichen Studien anhand verschiedener Modellsysteme validiert;

insbesondere im Hinblick auf Korngrößeneffekte [137], den Einfluss von Versetzungen [157,

158], Stapelfehlern- bzw. Zwillingsgrenzen [143, 139], sowie den Einfluss der thermodiffusen

Streuung [159].
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In der praktischen Umsetzung werden die Effekte verschiedener Ursachen für jeden Bragg-

peak in Form von Fourier-Koeffizienten wie in Gl. (2.171) (S. 93) modelliert, miteinander

multipliziert und dann rücktransformiert, um so das theoretische Diffraktogramm zu jedem

hkl Reflex zu erzeugen. Die additive Überlagerung aller Peaks unter Berücksichtigung des

vollständigen, winkelabhängigen Vorfaktors (siehe S. 79ff), liefert dann, zusammen mit dem

Untergrund, das komplette Diffraktogramm.

Die hier untersuchten, nanokristallinen Proben stellen für die Modellierung einen komplexen

Fall dar, da sie alle erwähnten Effekte gleichzeitig aufweisen. Zusätzlich ist es notwendig,

darüber hinausgehende Effekte zu modellieren, um eine durchgängig gute Anpassung der

Diffraktogramme über die Daten der gesamten in-situ Messung zu erhalten und die Beson-

derheiten der Proben zu berücksichtigen.

Im Folgenden wird die Implementierung der WPPM-Anpassung in Matlab beschrieben, die

im Rahmen dieser Arbeit erstellt wurde. Zunächst erfolgt dazu ein Überblick über den gene-

rellen Aufbau, gefolgt von den Modellen zur Bestimmung der Fourier-Koeffizienten einzelner

Effekte.

3.8.1 Genereller Aufbau der WPPM

Die Implementierung der WPPM-Methode besteht grob aus zwei Teilen: Dem Minimierer

und dem Modellierer.

Der Minimierer (WPPMminimize skewAbet.m) kümmert sich hauptsächlich um die Berech-

nung der Abweichung von Modellrechnung und Messdaten, sowie um die Verwaltung und

Variation der Fitparameter mithilfe der Matlabfunktion lsqnonlin, die einen trust-region-

reflective Algorithmus zur Minimierung der zuvor erwähnten Abweichung nutzt. Darüber

hinaus werden hier eine Reihe von Hilfsrechnungen durchgeführt (z.B. Berechnung von kon-

zentrationsabhängigen mittleren Atomformfaktoren) und es wird eine Gewichtung verschie-

dener Bereiche des Diffraktogramms für die Optimierung vorgenommen. Konkret werden die

Bereiche um die Braggpeaks (111), (200) und (220) mit dem Faktor 6 gewichtet, und der Be-

reich um (311) und (222) mit dem Faktor 12. Das ist notwendig, da der Informationsgehalt der

Peaks höher ist als der des relativ strukturlosen Zwischenbereiches, letzterer aber viel mehr

Datenpunkte enthält als die Peaks. Ein ungewichteter Fit würde die perfekte Anpassung des

Zwischenbereiches auf Kosten der Peakanpassung bevorzugen.

Die Abweichung ∆E′
D für jeden Datenpunkt E′

D vom modellierten Wert E′
T ist durch

∆E′
D(2θ) = 10 (E′

D −E′
T )w(2θ) + P (D) + PI (3.20)

gegeben, wobei w(2θ) die oben erwähnte Gewichtung ist und der Vorfaktor 10 lediglich dazu

dient, das Residuum im Mittel in einen Wertebreich > 10 zu heben. Die Summanden P (D)

und PI werden weiter unten besprochen (siehe S. 175 und S. 205).
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Außerdem erfolgt eine Abbildung der technischen Fitparameter, die auf den Bereich [−1,1]

beschränkt sind, auf die damit assoziierten, physikalischen Größen. Das hat den Vorteil,

dass der an sich sehr allgemeine Optimierungsalgorithmus alle technischen Parameter im

gleichen Wertebereich mit der gleichen Genauigkeit/Schrittweite variieren kann, obwohl die

physikalischen Parameter viele Größenordnungen überspannen, sowohl was ihre Werte angeht

(z.B. ⟨D⟩vol ≈ 10−8 m, ρ ≈ 1016 m−2) als auch ihre Variationsbereiche.

Zusätzlich wird ein Untergrundbeitrag in Form eines Polynoms zweiten Grades berechnet,

dessen grundsätzliche Form aus einer Leermessung abgeleitet wurde. Der physikalische Hin-

tergrund dieses Beitrags besteht hauptsächlich aus der Luftstreuung der Röntgenstrahlen.

Eine Modellierung derselben ist aber in der Praxis ungenauer als die Verwendung des Po-

lynoms aus der Leermessung. Trotzdem sind auch die Parameter dieses Polynoms in engen

Grenzen Teil der Optimierung10, da die Luftstreuung des Streukegels den Untergrund relativ

zur Leermessung verändert.

Der Optimierungsalgorithmus variiert in der Anpassung alle Parameter so, dass ∑(∆E′
D)2

minimiert wird. Die Parameter, die dieses Minimum erzeugen, sind die Parameter, die das

Diffraktogramm mit dem Modell am besten beschreiben. Weitere, effektspezifische Details

werden im Zusammenhang mit der Berechnung der Fourier-Koeffizienten behandelt (S. 175ff).

Der Modellierer (WholePattern fft allin.m) führt die eigentliche Modellierung der Diffrakto-

gramme und des Untergrundes aus. Dazu erzeugt er als Grundlage für alle Rechnungen die

Fourierlängen L, die in einem Array von 0 nm bis 500 nm in 212 Schritten gespeichert werden.

Der negative Wertebereich von L kann aus Symmetriegründen ignoriert werden, wodurch der

Rechenaufwand halbiert wird. Auf dieser Grundlage werden die zu L korrelierten Längen im

reziproken Raum (g) aus der Schrittweite von L (∆L) im Bereich −1/(2∆L) bis 1/(2∆L)

erzeugt; ebenfalls mit 212 Schritten. Die Schrittweite von g (∆g) entspricht der reziproken,

maximalen Ausdehnung des von L abgedeckten Wertebereiches, also ∆g = 1/Lmax. Sowohl L

als auch g stellen prinzipiell gleichwertige Koordinaten zur Modellierung von Diffraktogram-

men dar, zwischen denen mittels Fourier-Transformation gewechselt werden kann. Dabei muss

L für nanokristalline Materialien immer größer als die größte Korngröße in der Probe sein.

Denn L muss nicht die Ausdehnung eines Defektes abdecken, sondern dessen Auswirkung auf

die Gitterperiodizität. Letztere wird direkt durch die g-Koordinate im reziproken Raum be-

schrieben. Daher entspricht einem konkreten Wert von g kein einzelner Wert von L, sondern

ein Wertebereich in L (vgl. Berechnung von g aus L).

Die Längen im reziproken Raum g können, zusammen mit der Gitterkonstanten a, in hkl-

abhängige Gitterdehnungen umgerechnet werden und es gilt:

εhkl =
∆a

a
=

∆d

dhkl
= (

a g
√
h2 + k2 + l2

+ 1)

−1

− 1. (3.21)

10Die Parameter des Polynoms können also in der Anpassung variiert werden.
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3.8 Modellierung der in-situ Röntgendaten

Der hkl-abhängige Ebenenabstand wird hier mit dhkl bezeichnet. Die hkl-Abhängigkeit der

Gitterdehnung entsteht dadurch, dass die Ebenenabstände für verschiedene hkl unterschied-

lich sind, nicht jedoch deren Änderungen, die durch g repräsentiert werden.

Des Weiteren können aus g und der Wellenlänge λ für jeden (Sub-)Peak die korrelierten

Streuwinkel 2θhkl mit

2θhkl = 2 arcsin(
(g +Ghkl + ghkl) λ

2
) (3.22)

berechnet werden (vgl. Gl. (2.176)), die später die Grundlage für die Verortung der einzelnen

Peakbeiträge im Diffraktogramm bilden.

Die Modellierung der einzelnen Peaks erfolgt, aus Sicht des reziproken Raumes, immer re-

lativ zu den entsprechenden reziproken Gitterpunkten Ghkl. Daher kann die Modellierung

der Fourier-Koeffizienten C(L) auch immer auf einer identischen Grundlage von L Werten

erfolgen und ist zunächst vollkommen unabhängig von der Lage im reziproken Raum bzw. der

Lage des Peaks im Diffraktogramm. Diese Verortung der Peaks im reziproken Raum (oder

in 2θ) entsteht erst bei der Rücktransformation der C(L) und erfolgt damit erst nach der

Modellierung der Fourier-Koeffizienten.

Die Modellierung und Berechnung der einzelnen Cj(L) wird in den nachfolgenden Abschnit-

ten beschrieben. Für die generelle Arbeitsweise ist an dieser Stelle nur relevant, dass sie

jeweils für alle Subpeaks berechnet und multipliziert werden (C(L) = ∏Cj(L)) und dann

das Produkt rücktransformiert wird, woraus sich der Subpeak in 2θhkl-Koordinaten ergibt

(siehe Gl. (3.22)). Dieser Vorgang muss sowohl für die eigentlichen Peaks als auch für den

Untergrund in Form der thermodiffusen Streuung durchgeführt werden.

Die Addition aller Subpeaks liefert das komplette Diffraktogramm, das abschließend nur noch

mit dem 2θ abhängigen Vorfaktor (siehe oben) multipliziert werden muss; letzterer kann di-

rekt aus 2θ und den entsprechenden Parametern wie z.B. Debye-Temperatur, Absorptions-

koeffizient etc. berechnet werden. In Abb. 3.24 ist ein Beispiel für eine WPPM-Anpassung an

Messdaten gezeigt, sowie die Zerlegung des Modells in seine verschiedenen Bestandteile.
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Abbildung 3.24: a) WPPM-Anpassung (rot) an die Messdaten (schwarz) in einem einzelnen
Diffraktogramm. Unten ist die Differenz zwischen Messdaten und Anpas-
sung dargestellt. b) Darstellung der verschiedenen Bestandteile des WPPM-
Modells. Oben sind die einzelnen Subpeaks dargestellt, unten die einzel-
nen Bestandteile der thermodiffusen Streuung (TDS), sowie die Compton-
Streuung und die monotone Laue-Streuung. Der polynomielle Untergrund
aus der Leermessung ist hier nicht dargestellt.

Im Folgenden werden nun die Berechnungen der Fourier-Koeffizienten der Auswirkungen von

Korngröße, Versetzungen und Stapelfehlern dargelegt. Darüber hinaus müssen hier weitere

Effekte berücksichtigt werden:

• Dehnungen in Folge der Fehlpassungen der Körner

• Dehnungen aufgrund von Nichtgleichgewichtskorngrenzen

• Dehnungen unter Last aufgrund der elastischen Anisotropie

Außerdem wird die praktische Umsetzung des Modells der thermodiffusen Streuung vorge-

stellt.
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3.8 Modellierung der in-situ Röntgendaten

3.8.2 Korngröße

Der Berechnung der Fourier-Koeffizienten liegt zugrunde, dass die Kristallite in der Probe

annähernd kugelförmig sind und einer logarithmischen Normalverteilung folgen [51, 138]. Die

Berechnung erfolgt dann genau so wie in Gl. (2.160) (S. 90).

In der Praxis zeigt sich jedoch das Problem, dass die Optimierung in manchen Fällen die

Parameter der Korngrößenverteilung ⟨D⟩vol und σ in einer solchen Weise verändert, dass

unphysikalische Ergebnisse mit einem relativ hohen Anteil an Körnern unter 1.5 nm entstehen,

welche z.B. in TEM-Untersuchungen in dieser Menge nicht nachgewiesen werden können

[25, 213]. Dadurch wird in diesen seltenen Fällen zwar in den frühen Optimierungsschritten

eine Absenkung des Residuums erreicht, verhindert dann aber das Erreichen einer physikalisch

sinnvollen Lösung mit insgesamt niedrigerem Residuum.

Um das Verfahren dagegen robuster zu gestalten, wird das Integral über die Korngrößenverteilung

von 0 nm bis 1.5 nm berechnet und mit einem konstanten Faktor skaliert, sodass sein Wert

bei ca. ≤ 2.5% des Residuums liegt. Anschließend wird dieser Wert zum Residuum addiert,

wodurch für die Optimierung ein Anreiz geschaffen wird, eine Verteilung mit möglichst ge-

ringem Anteil in diesem Bereich zu erzeugen. Dieser zusätzliche Summand entspricht P (D)

aus Gl. (3.20) (S. 171).

Die daraus resultierenden Abweichungen in den Ergebnissen für ⟨D⟩vol und σ betragen

≈ 0.4 nm und ≈ 0.01. Allerdings wird die Robustheit der Optimierung drastisch verbessert,

was im Hinblick auf die angestrebte, automatisierte Anpassung von tausenden von Diffrak-

togrammen von entscheidender Bedeutung ist.

0 10 20 30 40
D [nm]

g(
D

)

normal
robust

Abbildung 3.25: Vergleich der Korngrößenverteilungen aus der WPPM-Anpassung zwischen
der normalen und robusten Variante (siehe Text). Der Unterschied zwischen
beiden Varianten ist in der Regel, wie hier gezeigt, sehr gering.
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3.8.3 Versetzungen

Für die Modellierung des Versetzungseinflusses wird hier die Standardannahme getroffen,

dass alle Gleitsysteme mit gleicher Wahrscheinlichkeit und in gleichen Teilen von Stufen- und

Schraubenversetzungen besetzt sind. Die Berechnung der Fourier-Koeffizienten erfolgt dann

gemäß Gl. (2.184) (S. 100), wobei der mittlere Versetzungskontrastfaktor gemäß Gl. (2.181)

bis Gl. (2.183) (S. 100) verwendet wird. Dadurch enthält das Modell nur noch die beiden

Parameter ρ und Re.

Es wurde aber bereits in [157, 158] gezeigt, dass es für die stabile Modellierung des Einflusses

von Versetzungen auf das Streubild im Rahmen von WPPM praktisch unumgänglich ist, eine

physikalisch plausible und begründete Wahl für den Parameter Re zu treffen. Daher muss die

freie Variation dieses Parameter durch eine Regel ersetzt werden, mit der im Rahmen der

Anpassung eine physikalisch sinnvolle Festlegung von Re erfolgt.

Um sich einer solchen Regel anzunähern, wird hier auf das einfachste zur Verfügung stehende

Modell zurückgegriffen, nämlich das Verzerrungsfeld von Stufen- und Schraubenversetzungen

im isotropen Medium aus [70], wie es schon in Abschnitt 2.4.2 (S. 50) vorgestellt wurde. Die

geraden, unendlich langen Versetzungen samt ihrer Verzerrungsfelder werden nun in einem

Gedankenexperiment aus dem unendlichen Kristall in Form einer Kugel derart herausge-

schnitten, dass sich die Versetzungslinie entlang eines Durchmessers der so entstandenen

Kugel befindet. Dieses grundsätzliche Szenario ähnelt dem aus [157, 158], ist aber in seiner

Ausführung im Vergleich dazu viel simpler. In diesem Gedankenexperiment werden die Ober-

flächen der Kugeln nicht als solche betrachtet; in der Realität wären es ohnehin Korngrenzen.

Es findet also keinerlei Anpassung der Verzerrungsfelder oder Interaktion der Versetzungen

mit der Oberfläche der Kugel statt. Gerade für kleinere Kugeln oder allgemein nahe der

Grenzflächen ist hier eine deutliche Abweichung von den tatsächlichen Verhältnissen zu er-

warten.

In dieser Kugel wird nun ⟨ε2(L)⟩ für verschiedene Werte von L numerisch in den Richtungen

ausgerechnet, in denen die Versetzung die maximale Dehnungen des Gitters erzeugt (vgl.

Abschnitt 2.4.2, S. 50). Die Rechnung wird ausgeführt, indem die Kugel senkrecht zu den von

Dehnungen maximal beeinflussten Ebenen in Scheiben von 0.5 nm Dicke unterteilt wird, in

denen das Dehnungsfeld entlang der Scheibenachse als homogen betrachtet wird. Jede dieser

Scheiben wird für die verschiedenen Werte von L in einem Raster mit Schrittweite 0.2 nm (in

zwei Dimensionen) mit gleichgerichteten Säulen der Länge L bedeckt. Entlang dieser Säulen

werden die projizierten Dehnungswerte des Dehnungsfeldes mit der Schrittweite multipliziert

und dann aufsummiert, um so den Wert für ∆L für die jeweilige Säule zu erhalten, also

∆L(r⃗) =∑
n

εn(r⃗)s, (3.23)

wobei s die Schrittweite bezeichnet, r⃗ den Ort der Säule und die Summe entlang der Säule mit

n = L/s läuft. Die Werte der lokalen Säulendehnung folgen dann einfach aus εL(r⃗) = ∆L/L.
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3.8 Modellierung der in-situ Röntgendaten

Der Mittelwert der Quadrate von εL(r⃗) über das gesamte Kugelvolumen liefert dann gerade

⟨ε2(L)⟩, wofür die Krivoglaz-Wilkens-Theorie mit Gl. (2.177) (S. 98) einen theoretischen

Ausdruck liefert. Dieses Vorgehen ist in Abb. 3.26 veranschaulicht.

εx

Säule

x

z

Versetzungslinie

Abbildung 3.26: Schema zur Abschätzung der Mikroverzerrung durch die Versetzungen. Links
ist die Unterteilung eines Korns in Scheiben dargestellt, rechts ist die Drauf-
sicht auf eine solche Scheibe mit dem Verzerrungsfeld um die Versetzung
gezeigt. Die Orientierung der Stufenversetzung ist durch das Symbol ge-
kennzeichnet. Die Säulen sind in x-Richtung orientiert, weswegen nur die
dafür relevante Dehnung in x-Richtung εx dargestellt ist.

Im Modell wird eine Mischung von Stufen- und Schraubenversetzungen mit gleichen Anteilen

in der Probe angenommen, weswegen dieses Verhältnis auch in dieser Modellrechnung zur

Anwendung kommt. Das heißt, der numerisch berechnete Wert ⟨ε2(L)⟩ ist über Stufen- und

Schraubenversetzungen gemittelt. Da die Schraubenversetzungen ein um die Versetzungslinie

rotationssymmetrisches Dehnungsfeld erzeugen, genügt es hier nur einen Fall in einer Rich-

tung maximaler Dehnung durchzurechnen. Bei Stufenversetzungen ist diese Symmetrie nicht

mehr gegeben, sodass ⟨ε2(L)⟩ über alle Richtungen in der x-y-Ebene gemittelt werden muss.

Aufgrund der Periodizität des Dehnungsfeldes für Drehungen um die Versetzungslinie, liefert

das aber gerade den gleichen Wert wie die Rechnung für Säulen, die einem Winkel von 45 ○

mit dem Burgers-Vektor einschließen (siehe Abb. 3.26).

Dieses einfache Modell bietet außerdem die Möglichkeit, direkt aus der Konstruktion ein Maß

für die Versetzungsdichte abzuleiten, womit nach elementaren Überlegungen für Kugeln mit

Durchmesser D für die Versetzungsdichte ρ gilt:

ρ =
6

πD2
. (3.24)
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Nimmt man zusätzlich einen mittleren Wert von 0.25 für den Versetzungskontrastfaktor in

Gl. (2.177) (S. 98) an, so ist ⟨ε2(L)⟩ aus der Krivoglaz-Wilkens-Theorie nur noch von Re

abhängig, dessen Wert durch Vergleich mit den berechneten Modellwerten bestimmt werden

kann (siehe Abb. 3.27).
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Abbildung 3.27: Vergleich zwischen der Mikroverzerrung durch Versetzungen durch eine ein-
fache, numerische Abschätzung (siehe Text) und der Krivoglaz-Wilkens-
Theorie für verschiedene Korndurchmesser D. Hier wurde immer Re =

⟨D⟩area/2 benutzt.

Es stellt sich heraus, dass vor allem für größere Körner eine Anpassung der numerischen

Modellrechnung mit der Krivoglaz-Wilkens-Theorie für L Werte unterhalb des Kugelradius

recht gut möglich ist, wenn man für Re den Wert des mittleren Querschnittsflächenradius der

Kugel (⟨D⟩area/2) verwendet. Für L jenseits des Kugelradius wird der Effekt der begrenzten

Kugelgröße dominant und führt zu einem raschen Abfall von ⟨ε2(L)⟩, was durch die von

unendlich ausgedehnten Kristallen ausgehende Krivoglaz-Wilkens-Theorie erwartungsgemäß
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schlecht abgebildet wird. Es sind aber gerade die großen Werte von L, die zwangsläufig im-

mer den schlecht repräsentierten Randbereich der Körner beinhalten. Weiter unten werden

weitere Indizien dafür geliefert, dass die Krivoglaz-Wilkens-Theorie vermutlich trotzdem eine

bessere Beschreibung des Randbereiches darstellt, als man aufgrund dieser einfachen Betrach-

tung vermuten mag (siehe Abschnitt 3.8.6). Vor dem Hintergrund dieses Ergebnisses wird in

dem hier verwendeten WPPM-Modell der Faktor Re fest an den mittleren Flächenradius

gekoppelt, also Re = 0.5⟨D⟩area.

3.8.4 Stapelfehler und Zwillingsgrenzen

Die Fourier-Koeffizienten der Effekte der Stapelfehler und Zwillingsgrenzen werden so be-

rechnet wie in Abschnitt 2.5.8 in Gl. 2.174a bis Gl. 2.174c (S. 94) dargestellt.

3.8.5 Fehlpassungsspannungen & -Dehnungen

Die während der IGC hergestellten Kristallite und Agglomeratpartikel, erzeugen in der Presshülse

keine perfekte Raumfüllung, da ihre zufällige Anordnung in der Regel nicht formschlüssig ist.

Infolge der Kompaktierung wird dann durch Relativverschiebung einzelner Partikel zueinan-

der und plastischer Deformation ein ca. 91% dichter Festkörper erzeugt, der makroskopisch

betrachtet spannungsfrei ist. Man muss aber davon ausgehen, dass bei diesem Prozess, nach

der Kompaktierung, lokale Spannungen im Material zurückbleiben. Einerseits können das

Zugspannungen sein, wenn sich benachbarte Kristallite so dehnen, sodass angrenzende, freie

Oberflächen eine Korngrenze bilden und damit die Gesamtenergie des Systems abgesenkt

wird. Andererseits können Kristallite nach der Kompaktierung in einem (teil)gequetschten

Zustand verbleiben, sofern die dadurch erzeugte Spannung zu niedrig ist, um bei Raumtem-

peratur lokal plastische Prozesse bzw. Relaxation zu aktivieren.

Kompaktierung

Abbildung 3.28: Schema zur Veranschaulichung der Ursache der lokalen Spannungen im Ma-
terial durch die Kompaktierung. Dehnungen/Spannungen sind hier durch
die Pfeile in den Körnern dargestellt.
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Diese lokalen Spannungen, entlang der Berandung eines Korns, erzeugen einen näherungs-

weise homogenen Spannungs- und Dehnungszustand im Korn. Da die Spannungen aber über

das Gesamtvolumen inhomogen sind, schwanken diese Spannungs- und Dehnungszustände

zwischen verschiedenen Körnern, sodass sich insgesamt betrachtet eine inhomogene Span-

nungsverteilung mit entsprechender Auswirkung auf die Röntgenstreuung ergibt. Zusätzlich

können unterschiedliche Konfigurationen/Zustände von Korngrenzen zu unterschiedlichen

Grenzflächenspannungen führen, die ebenfalls zur Variation der Dehnungszustände beitra-

gen können [124, 265, 266].

Das Problem hierbei ist, dass die lokale Fehlpassung und die lokalen Spannungen in der Pro-

be unbekannt sind, weshalb zwangsweise Modellannahmen getroffen werden müssen, um eine

plausible Verteilungsfunktion aufzustellen. Diese Verteilungsfunktion muss auf jeden Fall die

Anforderung erfüllen, dass ihr Mittelwert null ist (makroskopisch spannungsfrei). Weiterhin

gibt es keinen Grund anzunehmen, dass die Verteilung asymmetrisch ist, sodass hier aus

Gründen der Einfachheit angenommen wird, dass die Spannungswerte in allen Raumrichtun-

gen in Form einer Gauß-Verteilung um 0 GPa statistisch schwanken.

Der Fall ist dem eines elastisch isotropen [60] bzw. anisotropen [42, 58] Eshelby-Einschlusses

in einem (statistisch) isotropen Medium nicht unähnlich. Daher erscheint es angemessen, die

elastische Polarisation von Kristalliten in Folge der Einwirkung der Gaußverteilten Span-

nungen im Sinne des Kröner-Formalismus zu bestimmen. Dieses Vorgehen beschreibt aber

die elastische Polarisation des Einschlusses in Folge einer homogenen Spannung über den

Polykristall, während hier die Korngrenze zwischen Einschluss und restlichem Material die

Spannung erzeugt. Darüber hinaus ist diese Spannung außerhalb des Einschlusses nicht ho-

mogen und die Grenze selbst ist Teil der Balance des mechanischen Gleichgewichts, wird aber

nicht durch die elastischen Konstanten des Kristalls beschrieben. Der Kröner-Formalismus

ist daher hier nicht anwendbar. Würde man ihn benutzen, so würde man rechnerisch ei-

ne zusätzliche Dehnung der Matrix fordern, die ihrer angenommen Ursache gerade zuwider

läuft11.

Tatsächlich gestaltet sich die Rechnung der Dehnung des Korns dadurch sogar viel einfacher,

da sie lediglich der elastischen Dehnung infolge der anliegenden Spannung entspricht, also

¯̄ε =
¯̄̄̄
S ¯̄σ. Der Anteil dieser Dehnung, der eine elastische Anpassung des eingeschlossenen

Korns an seine Umgebung erzeugt, lässt sich durch

∆¯̄ε = (
¯̄̄̄
S −

¯̄̄̄
S′iso) ¯̄σ (3.25)

abschätzen. Hier ist
¯̄̄̄
S′iso die mittlere, elastische Nachgiebigkeit der umgebenden Matrix. Sie

wird prinzipiell nach dem Formalismus für die mittleren elastischen Konstanten von Kröner

wie in [58] berechnet, indem, ausgehend von den elastischen Konstanten des Einkristalls C11,

11Hier soll natürlich nicht suggeriert werden, dass die Spannung nicht auf die Umgebung um den Einschluss
wirkt.

180



3.8 Modellierung der in-situ Röntgendaten

C12 und C44, die isotropen, elastischen Konstanten des Polykristalls in Form von E und G

ausgerechnet werden. Um die signifikante Reduktion der elastischen Modulen von nanokristal-

linen Materialien aufgrund der Korngrenzen zu berücksichtigen (siehe Ultraschallmessungen

Tabelle 4.1, S. 234 oder [6]), erfolgt vor der Ableitung von
¯̄̄̄
S′iso noch eine Reduktion der

Modulen um 30%, was in etwa der mittleren Absenkung der Modulen entspricht.

Davon ausgehend muss nun die resultierende Verteilung der Dehnungen entlang der Streurich-

tungen ⟨111⟩, ⟨200⟩, ⟨220⟩ und ⟨311⟩ (jeweils unter Beachtung aller äquivalenter Richtungen)

bestimmt werden, weshalb zunächst die entsprechenden Permutationen von ¯̄σ erzeugt wer-

den müssen. Dazu wird ¯̄σ im Hauptspannungsraum aufgestellt, womit das Problem auf die

drei Diagonalenelemente σI , σII und σIII reduziert wird. Alle σ-Komponenten folgen der

identischen Gauß-Verteilung, sind aber voneinander unabhängig, weshalb alle Kombinatio-

nen von Spannungswerten der drei Komponenten existieren und unterscheidbar sind. Hier

wurden Gaußverteilte Spannungswerte zwischen −2 GPa und 2 GPa in 61 diskreten Schrit-

ten zur Berechnung verwendet, womit sich 613 = 226981-Kombinationen ergeben. Eine dieser

Kombinationen und ihre Wirkung auf ein kugelförmiges Korn ist in Abb. 3.29 dargestellt.
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Abbildung 3.29: a) Dehnung eines kugelförmigen Korns infolge eines von außen angeleg-
ten, dreidimensionalen Spannungszustandes. Der Spannungszustand ist hier
durch die drei Hauptspannungsrichtungen dargestellt. Die Orientierung des
Gitters wird hier durch die Orientierung der Einheitszelle (schwarzer Würfel)
dargestellt. b) Gauß-Verteilung von Spannungen, die im Modell in jeder der
Hauptspannungsrichtungen vorliegt.

Um der elastischen Anisotropie Rechnung zu tragen, muss der Hauptspannungsraum für al-

le Spannungskombinationen gegenüber dem Gitter so gedreht werden (d.h. hier relativ zu

den Nachgiebigkeitstensoren), dass alle Orientierungen gleichmäßig abgedeckt werden (vgl.

Richtungskosinus). Andernfalls würden die Spannungen nur entlang der ⟨200⟩-Richtungen
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wirken. Wählt man o.B.d.A. die σI -Achse als primäre Achse, so entspricht die gleichmäßige

Abdeckung aller Orientierungen der σI -Achse einer gleichmäßigen Überdeckung einer Kuge-

loberfläche mit Punkten, die alle zueinander auf der Kugeloberfläche den gleichen Abstand

haben. Die Realisierung dieser scheinbar einfachen Anforderung stellt sich bei genauerer Be-

trachtung als nicht trivial heraus. Hier wurde diese Anforderung in guter Näherung durch

die Nutzung von Ikosaedern vom Typ 1, Klasse 2 mit einer Frequenz von 26 erfüllt, de-

ren Punkte auf eine Kugeloberfläche projiziert wurden; damit ergibt sich ein nahezu ideales,

sphärisches Punktraster mit 6762 Punkten. Um dieses Raster zu erstellen, wurde der Matlab-

Code
”
Make Icosahedron“ von Edward Zechmann12 [267] als Grundlage verwendet. Aus Sym-

metriegründen muss jedoch nur eine Halbkugelschale (3381 Punkte) betrachtet werden (siehe

Abb. 3.30a).

xy

z

(a)

σI

σIII

x
y σII

z

(b)

Abbildung 3.30: a) Überdeckung einer Halbkugel mit einem Punktraster um eine diskrete,
gleichmäßige Variation von Orientierungen zu erzeugen. b) Veranschauli-
chung der notwendigen Drehung um die primäre σI -Achse, um alle möglichen
Spannungszustände zu erzeugen. Details siehe Text.

Zusätzlich ist für die Abdeckung aller Orientierungen noch eine Drehung um die neue σI -

Achse zu berücksichtigen, wodurch eine Umorientierung der σII und σIII -Achse erreicht

wird. Auch hier kann aus Symmetriegründen der Winkelbereich dieser Drehung auf 90 ○ ein-

geschränkt werden. Dabei muss sichergestellt werden, dass die σII und σIII -Achsen immer

im gleichen Halbraum liegen, wie die σI -Achse; andernfalls wird keine gleichmäßige Vertei-

lung der dreidimensionalen Orientierungen erreicht (siehe Abb. 3.30b). In der Modellrechnung

wurden diese zusätzlichen Drehungen in 15 ○-Schritten durchgeführt. Das ist zwar einerseits

relativ grob, andererseits ist der Verlauf der resultierenden Dehnungen stetig und in großen

Bereichen näherungsweise linear (ähnlich zu cos2), sodass die grobe Rasterung hier zu nicht

12Heruntergeladen von MathWorks MatlabCentral File Exchange.
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allzu großen Abweichungen der Statistik führt. Zusätzlich wird diese grobe Rasterung teil-

weise von der recht engen Rasterung der Primärachse kompensiert. Damit ergeben sich ins-

gesamt 3381 ⋅ 6 = 20286 verschiedene Orientierungen des Hauptspannungsraumes, für die

jeweils 226981 verschiedene Spannungskombinationen berechnet werden müssen, also grob

4.6 ⋅ 109-Kombinationen insgesamt.

Bei diesem Modell erfolgt jedoch keine Rückkopplung der elastischen Anisotropie an die

aufgebrachten Spannungen, was dazu führt, dass besonders nachgiebige Richtungen, wie die

[200]-Richtungen, größere Anpassungsdehnungen zeigen als härtere Richtungen wie [111].

Zwar ist das grundsätzlich sicherlich auch in der Realität gelegentlich der Fall, es ist aber zu

erwarten, dass für die so berechneten, großen Dehnungen in [200]-Richtung eigentlich gar kein

Bedarf besteht. Anders ausgedrückt: Es gibt keinen Grund warum die initiale Fehlpassung in

⟨200⟩-Richtung im Schnitt besonders groß sein sollte.

Daher wurde das Modell noch um einen Dämpfungsfaktor Df aus dem Intervall [0,1] ergänzt,

der die Spannungskomponenten σI , σII und σIII proportional zur Projektion des Basisvektors

der jeweiligen Achse auf eine ⟨200⟩-Richtung verringert. Praktisch wurde das durch eine

Modifikation der Richtungskosinus der Form

Dj = max
i

(∣aij ∣ −
1

√
3
) ⋅

1

1 − 1/
√

3
(3.26a)

a′ij = aij
√

1 −Df ⋅D3
j . (3.26b)

erreicht. Da a-priori unklar war, ob und wie stark dieser Effekt eine Rolle spielen würde, wurde

eine Variation von Df zwischen 0 (keine Dämpfung) und 0.7 in 0.05 Schritten durchgeführt

und anschließend stichprobenweise die Auswirkung auf die WPPM-Anpassung untersucht.

Es stellte sich heraus, dass die besten Ergebnisse mit Df = 0.05 erzielt wurden, also mit einer

sehr geringen Dämpfung, sodass diesem Aspekt keine allzu große Bedeutung beigemessen

werden muss.

Für jeden berechneten Dehnungszustand müssen dann die Projektionen der Dehnung entlang

aller kristallographisch äquivalenten Streurichtungen ⟨111⟩, ⟨200⟩, ⟨220⟩ und ⟨311⟩ berechnet

werden. Zusätzlich wird der Anpassungsanteil der Dehnung ∆¯̄ε nach Gl. (3.25) (S. 180) be-

rechnet. Die Rechnung dieser großen Anzahl an Werten ist dank moderner PC-Technik und

Parallelisierung innerhalb relativ kurzer Zeit machbar (etwa 1 bis 8 Stunden, je nach Hard-

ware), allerdings ist die dabei anfallende Datenmenge nicht mehr einfach handhabbar13. Des-

halb wird direkt nach der Erzeugung neuer Daten ein Datenreduktionsschritt nachgeschaltet.

In diesem werden die Dehnungswerte entlang der Streurichtungen für jede Streurichtung ge-

trennt in je einem zweidimensionalen Histogramm erfasst. Die beiden Dimensionen der Histo-

gramme sind die Dehnungswerte in Streurichtung (−7% bis 7% Dehnung in 0.02% Schritten)

und die Größe der damit verbundenen Anpassungsdehnung (0% bis 10% in 0.05% Schritten).

13Geschätzt fallen mehrere Terabyte an Daten an, praktisch ist Matlab abgestürzt.
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Das Maß für die Größe der Anpassungsdehnung ist hier die Frobeniusnorm von ∆¯̄ε. Alle

berechneten Daten, außer dem Histogramm, werden nach jeder Iteration verworfen, sodass

die gesamte zu erhaltende Datenmenge vollkommen unproblematisch ist. Die Histogramme

sind in Abb. 3.31 dargestellt.

(a) hkl = 111 (b) hkl = 200

(c) hkl = 220 (d) hkl = 311

Abbildung 3.31: Histogramme der Verteilung der Anpassungsdehnungen in die vier Streu-
richtungen für ⟨D⟩vol = 18 nm und σ′ = 1.6. Details siehe Text.

Ursprünglich wurde die Größe der Anpassungsdehnung berechnet, um Dehnungswerte über

einem gewissen Schwellwert der Anpassungsdehnung auszusortieren oder eine nachträgliche

Gewichtung verschiedener Anteile des Histogramms durchzuführen. Es stellte sich aber in der

Praxis heraus, dass dadurch keine signifikante und vor allem durchgängige Verbesserung der

WPPM-Anpassung erreicht werden kann, sodass dieser Aspekt nicht weiter verfolgt wurde.
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Reduziert man diese Histogramme also auf ein eindimensionales Histogramm, das nur noch

die Dehnungswerte in Streurichtung berücksichtigt, erhält man die streurichtungsabhängige

Verteilung der Dehnung aufgrund der Fehlpassungsspannungen, wie sie in Abb. 3.32 gezeigt

sind.

-2 -1 0 1 2

p
111
200
220
311

hkl

Abbildung 3.32: Verteilungen der Fehlpassungsdehnungen in die vier verschiedenen Streu-
richtungen.

Diese Verteilungen lassen sich durch eine Überlagerung von drei Gaußfunktionen, die alle sym-

metrisch um die null sind, anpassen. Die generelle Form dieser Verteilungen ist unabhängig

von der Ausdehnung des Gaußverteilten Spannungsbereichs, aber ihre Breite skaliert damit

linear. Als Maß für die Breite wird nun ⟨ε2⟩hkl genutzt und alle Verteilungsfunktionen relativ

dazu ausgedrückt, womit man für jede hkl-Richtung eine charakteristische Verteilungsfunk-

tion p(ε, ⟨ε2⟩hkl) der Dehnungen in Abhängigkeit von ⟨ε2⟩hkl erhält:

p(ε, ⟨ε2
⟩hkl) =

3

∑
n=1

cn,1

⟨ε2⟩hkl
exp(−

ε2

2cn,2⟨ε2⟩hkl)
2
) . (3.27)

Hier sind cn,1 und cn,2 die Koeffizienten der vorangegangenen Fits an die berechneten Vertei-

lungen; ihre Werte sind in Tabelle 3.1 angegeben. Da die ⟨ε2⟩hkl Werte über verschiedene hkl

hinweg in einem festen Verhältnis zueinander stehen, reicht die Angabe eines einzigen Wertes

aus; die restlichen können über die bekannten Verhältnisse berechnet werden, die in Tabelle

3.2 angegeben sind.
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Tabelle 3.1: Parameter der Anpassung der Dehnungsverteilungen in die vier Streurichtungen.

hkl c1,1 c2,1 c3,1 c1,2 c2,2 c3,2

111 5.30 ⋅ 10−5 2.32 ⋅ 10−5 2.93 ⋅ 10−5 0.6621 0.2811 1.2965
200 0.99 ⋅ 10−5 5.42 ⋅ 10−5 2.85 ⋅ 10−5 0.2345 1.1041 0.6193
220 4.48 ⋅ 10−5 2.46 ⋅ 10−5 3.39 ⋅ 10−5 0.6817 0.2884 1.2429
311 3.70 ⋅ 10−5 1.16 ⋅ 10−5 4.48 ⋅ 10−5 0.6788 0.2723 1.1489

Tabelle 3.2: Verhältnisse der Dehnungsvarianzen in verschiedene Richtungen zur Dehnungs-
varianz in 111-Richtung.

⟨ε2⟩111

⟨ε2⟩111

⟨ε2⟩200

⟨ε2⟩111

⟨ε2⟩220

⟨ε2⟩111

⟨ε2⟩311

⟨ε2⟩111

1.0000 2.3374 1.4489 1.8331

Mit dem allgemeinen Ausdruck für die mittlere quadratische Dehnung in Abhängigkeit von

der elastischen Anisotropie (siehe Gl. (2.179), S. 99 und [149]) in der Form

⟨ε2
⟩hkl = ⟨ε2

⟩200 (1 + q ⋅ Γ) (3.28)

lassen sich aus den Verhältnissen der ⟨ε2⟩hkl-Werte die Größe q über

⟨ε2⟩hkl

⟨ε2⟩200
− 1 = q ⋅ Γ (3.29)

bestimmen. Der Wert von q ist für alle hkl gleich, falls der Dämpfungsfaktor null ist. Für

zunehmende Dämpfungsfaktoren weichen die Werte von q aus verschiedenen hkl zunehmend

voneinander ab, wie es zu erwarten ist14. Daraus wird auch deutlich, dass dieser Effekt

grundsätzlich dem von Versetzungen ähnlich ist. Im Detail unterscheiden sich die Fourier-

Koeffizienten aber voneinander, sodass keine vollständige Kompensation des einen Effektes

durch den anderen möglich ist.

Aus der Angabe eines Wertes von ⟨ε2⟩hkl für eine einzige hkl-Kombination lassen sich mit

den bekannten Verhältnissen der ⟨ε2⟩hkl und den Fitkoeffizienten c die Dehnungsverteilungen

für alle Streurichtungen berechnen. Wie bereits oben erwähnt wurde, können Dehnungen in

reziproke Längen überführt werden, aus denen wiederum Fourierlängen L mittels Fourier-

Transformation gewonnen werden können. Die entsprechende Fourier-Transformation der

Dehnungsverteilungen liefert damit direkt die Fourier-Koeffizienten C(L) = FT (p(ε, ⟨ε2⟩hkl))

für diesen Effekt, die lediglich von einem Wert von ⟨ε2⟩hkl abhängen. Beispiele für die so er-

haltenen Fourier-Koeffizienten sind in Abb. 3.33 gezeigt.

Die Anwendung dieses Modells im Rahmen der WPPM-Anpassung ist insofern unkritisch,

da darin keine Korrelationen zu anderen Effekten enthalten sind. Tatsächlich sind diese aber

14Der Dämpfungsfaktor wirkt in dieser Betrachtung wie eine Modifikation der elastischen Anisotropie.
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vorstellbar, wie z.B. Stabilisierung von Versetzungen oder anderen Gitterdefekten in Körnern

durch die Fehlpassungsspannungen.
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Abbildung 3.33: a) Beispiel für den Realteil der Fourier-Koeffizienten aus dem Fehlpassungs-
modell. b) Beispiel für den Imaginärteil der Fourier-Koeffizienten aus dem
Fehlpassungsmodell.

3.8.6 Korngrenzenverzerrung

Wie im Theorieteil bereits diskutiert wurde (S. 68), ist in nanokristallinen Metallen davon

auszugehen, dass Korngrenzen zu einer Verzerrung des Gitters in ihrer Nähe führen, die zur

Kornmitte hin abfällt. Dieser Effekt wurde in Simulationsarbeiten von Stukowski et al. [92],

sowie in einer Reihe von Veröffentlichungen von Leonardi et al. [93, 94, 95, 96] anhand von

Molecular Dynamics (MD) Simulationen gezeigt. Dabei wurden in allen Fällen die Simu-

lationsvolumina mittels Voronoi-Tesselation mit Körnern gefüllt, die dann mit Atomen auf

Kristallgitterplätzen aufgefüllt wurden. Das bedeutet, dass die in der Realität relevante Fehl-

passung einzelner Kristallite hier per Design ausgeschlossen wurde. Der Verzerrungseffekt der

Gitter durch die Korngrenze ist also fundamentalerer Natur.

In [92] wurde die Gitterverzerrung mit dem Maß δ =
√

1/3 (ε2
I + ε

2
II + ε

2
III) für verschieden

große Kristallite entlang eines Radius im Abstand x von der Korngrenze quantifiziert. Die

Ergebnisse davon wurden zur weiteren Analyse aus [92] mit ImageJ15 ausgelesen und sind in

Abb. 3.34b dargestellt. Für die Modellierung der Auswirkung dieses Effektes auf das Streubild

ist es notwendig, für die gesamte Korngrößenverteilung die entsprechenden Werte von δ in

den Körnern zu bestimmen, wofür eine Modellierung der Verzerrungen in Abhängigkeit von

der Korngröße notwendig ist. Hier wurde dafür folgendes einfache, kontinuumsmechanische

Modell entwickelt: Die Dichteschwankung der Korngrenze gegenüber dem Kristall wurde als

15https://imagej.nih.gov/ij/
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Bedeckung der Korngrenze mit annähernd kugelförmigen Eshelby-Einschlüssen modelliert,

die das Exzessvolumen enthalten. Diese Einschlüsse müssen so klein sein, dass sie inner-

halb der Korngrenze Platz finden können, weshalb ihre Ausdehnung maximal 1 nm beträgt.

Aus den Rechnungen zum Eshelby-Einschluss [42, 60] folgt als Ergebnis, dass das Verschie-

bungsfeld um den Einschluss mit dem inversen quadratischen Abstand abfällt. Daher fallen

die Dehnung und δ mit dem inversen kubischen Abstand. Dieser Zusammenhang wird nun

genutzt, um das Skalierungsverhalten der Verzerrungen im Abstand zur Korngrenze zu mo-

dellieren.
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Abbildung 3.34: a) Zweidimensionale Darstellung des Schemas des oben im Text beschriebe-
nen Modells. Die Eshelby-Einschlüsse in der Korngrenze sind durch schwar-
ze Kreuze gekennzeichnet. b) Verzerrungen im Abstand von der Korngrenze
in annähernd kugelförmigen Körnern mit verschiedenen Durchmessern D.
Daten aus [92]. Zusätzlich sind die Ergebnisse des im Text beschriebenen
Modells für die gleichen Korngrößen gezeigt.

Die Kristallite wurden als Kugeln modelliert, sodass die Korngrenze automatisch die Form

einer Kugelschale annimmt. Zur Bestimmung der Verzerrung im Kristall werden die Verzer-

rungseinflüsse aller Eshelby-Einschlüsse der Korngrenze an jedem Punkt entlang eines Radius

überlagert. Hier wird davon ausgegangen, dass jeder einzelne Beitrag zu δ positiv ist, also

dass keine Kompensation der Verzerrung durch unterschiedliche Teile der Korngrenze erfolgt.

Es gilt also mit der Verzerrung δ0 direkt am Einschluss

δ(x) =
δ0

N

N

∑
i=1

1

(di(x))3
. (3.30)
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Die N gleichmäßig über die Korngrenze verteilte Eshelby-Einschlüsse werden durch den Index

i unterschieden und ihre Abstände zum Beobachtungspunkt werden mit di bezeichnet. Der

Beobachtungspunkt entlang eines Radius der Kugel hat den Abstand x zur Korngrenze.

Um die Koordinaten der Zentren der Eshelby-Einschlüsse zu modellieren, wird wieder der

Matlab Code
”
Make Icosahedron“ von Edward Zechmann16 [267] verwendet um auf Kugelo-

berflächen projizierte Punkte von Ikosaedern vom Typ 1, Klasse 2 zu erzeugen. Jeder dieser

Punkte hat in guter Näherung den gleichem Abstand zu seinen nächsten Nachbarn. Aus dem

Vergleich des Volumens des kugelförmigen Kristalliten mit Durchmesser D und des Ikosaeders

erhält man für die Kantenlänge a der gleichseitigen Dreiecke des Ikosaeders

a = (
2π

5(3 +
√

5)
)

1/3

D. (3.31)

Für den mittleren Punkt-zu-Punkt Abstand17 a′ benachbarter Punkte gilt näherungsweise

a′ ≈ a/f , wobei f die Frequenz des Ikosaeders ist; ein wesentlich genaueres Ergebnis liefert

aber der Ausdruck a′ = (D/f) ⋅ 0.621443327458386.

Die beste Übereinstimmung des Modells mit den Simulationsdaten aus [92] stellt sich mit

einem mit D skalierenden Abstand a′ der Form

a′ = 0.02624 ⋅D + 0.7861 nm (3.32)

ein. Physikalisch bedeutet das, dass weniger gekrümmte Korngrenzen von größeren Kör-

nern weniger dicht von Eshelby-Einschlüssen bedeckt sind, also weniger Dichtefluktuationen

und/oder Exzessvolumen aufweisen.

Aus Gl. (3.32) und a′ = (D/f) ⋅ 0.621443327458386 kann somit die Ikosaeder-Frequenz f für

die Modellierung der Verzerrung bei einer gegebenen Korngröße bestimmt werden. Aller-

dings kann die Anzahl und damit der Abstand der Punkte auf der Kugeloberfläche mit der

Ikosaeder-Methode nicht frei variiert werden, da die Frequenz des Ikosaeders (f) auf gerade,

ganze Zahlen beschränkt ist. Daher wird die berechnete Frequenz jeweils auf- und abgerun-

det und die Berechnung in Gl. (3.30) für Ikosaeder mit beiden Frequenzen durchgeführt. Das

Endergebnis folgt dann aus der gewichteten Mittelung beider Teilergebnisse. Damit hängt das

Modell für δ entlang des Radius eines kugelförmigen Kristalliten nur noch von dessen Durch-

messer D, dem Abstand zur Korngrenze x und einer a-priori unbekannten Konstante δ0 ab.

Letztere Konstante kann aus dem Vergleich des Modells mit den Daten zu allen Korngrößen

aus [92] zu δ0 = 6.5% bestimmt werden, sodass in allen Fällen eine gute Übereinstimmung

des Modells mit den Simulationsergebnissen erreicht wird (siehe Abb. 3.34b).

16Heruntergeladen von MathWorks MatlabCentral File Exchange, siehe Referenz [267].
17Mit dem Punkt-zu-Punkt Abstand skaliert offensichtlich auch die Anzahl der Punkte, also N(f).
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In [95] wurden von Leonardi et al. ähnliche Ergebnisse wie von Stukowski et al. [92] gefun-

den, allerdings wurden anstatt der Größe δ jeweils der mittlere Wert der isotropen Volumen-

dehnung und einer Invarianten der deviatorischen Dehnung angegeben, deren Beiträge zur

Gesamtdehnung etwa im Verhältnis 1:2 stehen.

Um die Auswirkung dieses Effektes auf das Streubild zu bestimmen, ist im Grunde das gleiche

Vorgehen wie zuvor bei den Versetzungen notwendig: Das Kristallvolumen wird mit gleichge-

richteten Säulen der Länge L ausgelegt und die Dehnung in Bezug auf die Endpunkte dieser

Säulen bestimmt. Für den deviatorischen Teil der Dehnung ist dabei allerdings a-priori nicht

klar, wie groß die Dehnungskomponente in Streurichtung ist. Daher wird hier ein statistischer

Ansatz gewählt, der davon ausgeht, dass dieser deviatorische Teil von der Radiuskoordinate x

genau wie δ abhängt und die Dehnung in Streurichtung an einem Punkt im Korn einer Gauß-

Verteilung mit Varianz δ2 folgt. Die Dehnung der Säule ist dann der Unterschied zwischen den

Gauß-Verteilungen an den Enden der Säulen (siehe Abb. 3.35). Da aber ohne weitere Infor-

mation alle Differenzen zwischen zwei Punkten der Gauß-Verteilungen gleich wahrscheinlich

sind, entspricht diesem Unterschied die Faltung beider Gauß-Verteilungen miteinander, was

wieder eine Gauß-Verteilung mit der Varianz δ2 = δ2
A + δ

2
B ergibt, wobei δ2

A und δ2
B die Vari-

anzen der beiden Gauß-Verteilungen an den Enden der Säule sind.
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Abbildung 3.35: Schemazeichnung zur Berechnung der Dehnungen entlang von Säulen der
Länge L zur Herleitung des Einflusses der Verzerrung in Korngrenznähe auf
das Streubild. Details siehe Text.

Allerdings ist auch klar, dass die Dehnung lokal stetig sein muss und keine allzu drasti-

schen Schwankungen über wenige Atome hinweg machen wird. Das bedeutet, dass für kurze
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Säulen die Faltung beider Gauß-Verteilungen zu einer massiven Überschätzung der Dehnun-

gen führen würde, weshalb eine Berücksichtigung der lokalen Korrelation der Dehnungen not-

wendig ist. Um das zu erreichen, wird für jede Säulenlänge L ein Korrelationsfaktor kf ∈ [0,1]

errechnet, der die Form

kf = −1 +
L

0.5 R
(3.33)

hat. Hier ist R der Radius des Kristalliten. Werte von kf > 1 werden auf den Wert 1 gesetzt.

Mit diesem Faktor wird nun die Berechnung der Varianz der Gauß-Verteilung der Dehnungs-

unterschiede zwischen den Enden der Säulen zu

δ2
L = δ2

A + δ
2
B ⋅ kf(L). (3.34)

Dadurch werden die Dehnungsunterschiede ∆ε zwischen direkt benachbarten Atomen klein,

wohingegen die Verteilung zwischen weit entfernten Atomen maximal wird. Die Wirkung

davon ist in Abb. 3.36 dargestellt.
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Abbildung 3.36: Illustration der Wirkung des Korrelationsfaktors kf auf die Faltung der Deh-
nungsverteilungen für lange Säulen (oben) und kurze Säulen (unten). Details
siehe Text.

Aufgrund der intrinsischen Isotropie der Volumendehnungskomponente εv und dem Umstand,

dass für die Volumendehnung ausschließlich positive Werte angenommen werden, gestaltet

sich die Sache für εv einfacher:

∆εvol,L = εv,A + εv,B ⋅ cos (α). (3.35)
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Der Winkel α wird hier relativ zum Durchmesser des Kreises gemessen, der senkrecht auf

der Säule L steht. Dadurch wird die Umkehr des Vorzeichens der Verschiebungskomponente

in Säulenrichtung beim Übergang von einer Hemisphäre in die andere bewerkstelligt (untere

Kugelhälfte zu oberer Kugelhälfte in Abb. 3.35 (S. 190)).

Für beide Anteile, also deviatorische Dehnung und Volumendehnung, ergeben sich für ei-

ne Säulenlänge für verschiedene Säulenpositionen im Korn verschiedene Werte für δ2
L bzw.

∆εvol,L, sodass man insgesamt für jede Säulenlänge L über das gesamte Korn je ein Hi-

stogramm für beide Größen erhält. Um ein realistisches Bild einer nanokristallinen Probe

zu erzeugen, muss diese Rechnung auf alle Korngrößen einer logarithmischen Normalvertei-

lung angewandt werden und die Ergebnisse müssen, entsprechend ihrer relativen Häufigkeit

gewichtet, in ein kumuliertes Histogramm einfließen. Praktisch wurde das numerisch umge-

setzt, indem diskrete Korngrößenverteilungen zwischen 2 nm und 70 nm mit einer Schrittwei-

te von 0.2 nm berechnet wurden. Für jede Korngröße wurden Säulen der Länge L in einem

0.1 nm Raster in die Körner gelegt. Die Säulenlänge wurde zudem für jedes Korn zwischen

2 nm und 70 nm in 1024 Schritten variiert. Durch die Ausnutzung der Symmetrie der Kugeln

konnte die Rechenzeit massiv verkürzt werden, indem das Raster nur in einer Hälfte einer

zweidimensionalen Kreisscheibe berechnet wurde. Die Charakteristik der Kugel wurde da-

durch berücksichtigt, dass jede Säule mit 2πr (Kreisumfang) gewichtet wurde, wobei r der

senkrechte Abstand der Säule zur Symmetrieachse ist.

Einen großen Anteil an der Rechenzeit hat hierbei die Summation über alle Punkte auf der

Kugeloberfläche (siehe Gl. (3.30), S. 188). Daher lässt sich eine signifikante Optimierung

der Rechnung erreichen, indem man sie an Einheitskugeln mit allen relevanten Frequenzen

des Ikosaeders jeweils einmal für eine Einheitsverzerrung δ0 = 1 durchführt und die Ergeb-

nisse speichert. Damit hat man bereits alle möglichen qualitativen Ergebnisse bestimmt18.

Die konkreten Werte für eine bestimmte Korngröße und Verzerrung lassen sich dann ein-

fach erzeugen, indem x und δ dieser Ergebnisse entsprechend skaliert werden und dann

gemäß ihrer Ikosaederfrequenzen (D-abhängig) gemittelt werden (Details siehe S. 189 und auf

Datenträger: Ico coords concentrator.m, brute force sphere precalc.m, Ico precalc.mat, bru-

te force sphere quick.m). Die daraus erhaltenen, normierten Histogramme für δL und ∆εvol

sind in Abb. 3.37 gezeigt.

Um aus diesen Histogrammen die Fourier-Koeffizienten C(L) zu bestimmen geht man wieder

der Umweg über die Dehnungen. Dazu werden alle Gauß’schen Dehnungsverteilungen mit den

Varianzen δ2
L erzeugt und mit den zuvor berechneten Wahrscheinlichkeiten pdev(δL) gewichtet

gemittelt (siehe Histogramm Abb. 3.37a).

pdev(∆ε,L) =∑
δL

pdev(δL)
√

2πδL
exp(−

∆ε2

2δ2
L

) . (3.36)

18Das Vorgehen ist genau wie bei einem Lookup-Table.
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Abbildung 3.37: Normierte Histogramme von δL (a) und ∆εvol (b) für ⟨D⟩vol = 18 nm und
σ′ = 1.6. Jede horizontale Linie in einem Histogramm entspricht einem nor-
mierten, eindimensionalen Histogramm für die jeweilige Säulenlänge.

Die daraus erhaltene Wahrscheinlichkeitsverteilung von Dehnungen in Säulenrichtung wird

dann mit der Wahrscheinlichkeitsverteilung aus den Volumendehnungen pvol(ε,L) gefaltet,

um so die gesamte Wahrscheinlichkeitsverteilung der Dehnungen p(ε,L) durch den Einfluss

der Korngrenzen zu erhalten:

p(∆ε,L) = pdev(∆ε,L) ∗ pvol(∆ε,L). (3.37)

Allerdings ist bislang noch keine elastische Anisotropie des Gitters berücksichtigt worden;

dieser Zusammenhang ist in den Simulationsarbeiten [92, 95] auch nicht explizit angegeben.

Prinzipiell muss aber auch hier wieder ein Zusammenhang ähnlich wie in [149] gelten, also

⟨ε2⟩ = ⟨ε2⟩200 (1 + qΓ). Um den Effekt auf die Gitterdehnung ε abzuschätzen, wurden die

Verhältnisse εhkl/ε200 infolge einer uniaxialen Spannung σ entlang [hkl] aus den elastischen

Konstanten berechnet, was für hkl = 111 und hkl = 220 die folgende Form annimmt (σ kürzt

sich aus den Gleichungen):

ε111

ε200
=
S11 + 2S12 + S44

3S11
(3.38a)

ε220

ε200
=
S11 + S12 + 0.5S44

2S11
. (3.38b)

Damit stellt sich heraus, dass ∆εhkl in diesem speziellen Fall für Pd90Au10 in der Form

∆εhkl = ∆ε200 (1 − 1.84 ⋅ Γ) (3.39)
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dargestellt werden kann. Mit diesem Ausdruck können nun die Dehnungswerte ∆ε der Ver-

teilungsfunktion p(∆ε,L) skaliert werden19 um die Verteilung unter Berücksichtigung der

elastischen Anisotropie zu erhalten. Diese Näherung ist zwar relativ grob, aber in diesem Fall

ausreichend, wie sich im Folgenden gleich zeigen wird.

Mit den jetzt zur Verfügung stehenden Daten werden die C(L) der Verzerrung durch die

Korngrenze direkt aus Gl. (2.167) (S. 92) berechnet:

Chkl(L) =∑
ε

p(∆ε,L) ⋅ exp (i2π ∆εhkl). (3.40)

Hierin ist enthalten, dass εL = ∆L/L ≈ (∆εhkldhkl)/L ist, sowie dhkl ≈ dS(2θ).

Obwohl die Rechnung für eine typische Korngrößenverteilung durch oben erwähnte Opti-

mierungen nur noch im Bereich weniger Sekunden liegt, ist dieses Vorgehen im Rahmen

der automatisierten WPPM-Anpassung um mindestens eine Größenordnung zu langsam und

kann daher in dieser Form nicht angewandt werden.

Stattdessen wird im Vorhinein eine vierdimensionale Lookup-Tabelle (Dimensionen: ⟨D⟩vol,

σ′, hkl, L) der C(L) für verschiedene Korngrößenverteilungen berechnet. Dazu wurde ⟨D⟩vol

zwischen 10 nm und 30 nm in 1 nm Schritten und σ′ zwischen 1.35 und 2.00 in 0.025 Schritten

variiert. Für all diese Korngrößenverteilungen wurde C(L) für alle relevanten hkl-Kombinationen

berechnet und in der Lookup-Tabelle gespeichert. Als maximale deviatorische Verzerrung an

der Korngrenze wurde 6.5 %, und für die maximale Volumenverzerrung ein Wert von 2.5 %

angenommen. Beides sind Werte am oberen Ende des plausiblen Bereiches, sodass hier eine

Abschätzung der Effektstärke nach oben erfolgt. In der WPPM-Anpassung wird C(L) auf

Grundlage von ⟨D⟩vol und σ′ aus der Lookup-Tabelle durch Interpolation bestimmt. Als ein-

ziger Fitparameter dient dann ein Stärkefaktor zwischen 0 und 1, der die Größe des Effektes

in der WPPM anpassen kann. Beispiele für die so erhaltenen Fourier-Koeffizienten sind in

Abb. 3.38 gezeigt.

Es stellt sich heraus, dass die Realteile der C(L) immer nahe 1 sind und damit nur einen sehr

geringen Einfluss auf das modellierte Diffraktogramm haben. Für sich genommen handelt es

sich somit um eine eher unwichtige Detailverbesserung.

Allerdings gibt es einen weiteren, wichtigeren Aspekt, denn streng genommen ist der hier

betrachtete Effekt in seiner Auswirkung auf die Streuung nicht unabhängig von dem der Ver-

setzungen. Stattdessen führt er zu einer systematischen Anhebung von ⟨ε2⟩ im Randbereich

des Korns; genau der Bereich, der in der numerischen Modellrechnung eine Abweichung nach

unten von der Vorhersage der Krivoglaz-Wilkens-Theorie aufweist (vgl. Abb. 3.27, S. 178).

Für ein Korn mit Durchmesser 10 nm wurde auf Grundlage des oben vorgestellten Modells

⟨ε2⟩(L) aus den Histogrammen abgeleitet und zu den Werten aus der Modellrechnung für

die Versetzung addiert; das Ergebnis ist in Abb. 3.39 dargestellt. Die Gitterverzerrung wird

durch die Korngrenze so beeinflusst, dass die Übereinstimmung mit der Vorhersage aus der

Krivoglaz-Wilkens-Theorie fast über den gesamten Korndurchmesser signifikant verbessert

19Die Dehnungswerte ∆ε bilden bei einer graphischen Darstellung der Verteilungsfunktion die x-Achse.
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Abbildung 3.38: Realteil (a) und Imaginärteil (b) der Fourierparameter für ⟨D⟩vol = 18 nm
und σ′ = 1.6.

wird. Dieser Aspekt ist im Zusammenhang mit der WPPM-Anpassung von großer Bedeutung,

liefert er doch eine mögliche Erklärung, wieso das Versetzungsmodell ohne Modifikation in

der Lage ist die Verzerrungen in den Körnern zu beschreiben. Gleichzeitig wird klar, dass die

Bestimmung verschiedener Beiträge mittels WPPM trotz guter Anpassung nicht unkritisch

hingenommen werden darf. Die bestimmte Versetzungsdichte enthält hier z.B. immer auch

die Verzerrung durch die Korngrenze.
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Abbildung 3.39: Erweiterung der Darstellung der Mikroverzerrung durch Versetzungen aus
Abb. 3.27b um den hier modellierten Effekt der Korngrenze. Der verbleiben-
de Verzerrungseffekt der Korngrenze ist hier auf einen sehr kleinen Bereich
eingeschränkt und beeinflusst das Diffraktogramm nur noch minimal. KW
steht hier für die Vorhersage der Krivoglaz-Wilkens-Theorie.
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3.8.7 Heterogene Verzerrung unter Last

Während der Verformung zeigen die Diffraktogramme mit Streuvektoren in Belastungsrich-

tung eine deutliche Verschiebung der Peakpositionen aufgrund der elastischen Gitterdehnung,

die nach Entlastung weitestgehend wieder verschwindet. Gleichzeitig zu diesem erwartbaren

Phänomen, bilden die Peaks unter Last eine (hkl-abhängige) starke Asymmetrie aus, die

sich gemeinsam mit der Verschiebung durch die elastische Gitterdehnung entwickelt und die

gleiche Reversibilität aufweist (siehe Abb. 3.40).

Eine Anpassung dieser Diffraktogramme während der Belastung ist mit den bisherigen Mo-

dellbestandteilen allein nicht möglich, sodass ein zusätzlicher Aspekt ergänzt werden muss,

der speziell die elastische Reaktion der Gitter auf die von außen angelegte Last berücksichtigt.

Das heißt es muss ein Modell für eine asymmetrische Verteilung von Gitterdehnungen unter

Berücksichtigung der elastischen Anisotropie gefunden werden.
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Abbildung 3.40: Diffraktogramme während verschiedener Belastungszustände. Der Streuvek-
tor zeigt immer in Druckrichtung.

In [268] wurde gezeigt, dass die Spannung, die auf einen einzelnen Kristallit in einem von au-

ßen belasteten Polykristall wirkt, stark von der lokalen Einbettung des Kristalliten abhängt

(siehe Abb. 3.41). Dazu wurden zwei anschauliche Grenzfälle beschrieben. Wenn ein Korn in

der Ebene senkrecht zur angelegten Belastung von in Lastrichtung harten Kristalliten umge-

ben ist (z.B. ⟨111⟩ in Lastrichtung, siehe. Abb. 2.8, S. 35), so kommt es zu einer Abschattung

der Last auf das Zentralkorn. Das Gegenteil ist der Fall bei weichen Nachbarkörnern (z.B.

⟨200⟩ in Lastrichtung). Zusätzlich wurde der Fall von harten und weichen Körnern in Serie mit

dem Zentralkorn diskutiert, wobei die besagten Körner in Lastrichtung an das Zentralkorn

angrenzen. Hier wirken harte Körner als Stempel, die dem Zentralkorn eine größere Dehnung

aufzwingen; bei weichen Körnern ist es genau umgekehrt.
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Jede Orientierung der Zentralkörner weicht in ihren elastischen Eigenschaften in Belastungs-

richtung relativ zu allen Kombinationen von Nachbarkörnern in charakteristischer Weise ab.

Zentralköner mit ⟨111⟩ in Lastrichtung stellen beispielsweise global die härtesten dar, solche

mit ⟨200⟩ in Lastrichtung die weichsten. Daher bleibt hier netto ein systematischer Effekt in

Bezug auf die Dehnung des Zentralkorns in Abhängigkeit von den Gitterorientierungen er-

halten. In nanokristallinen Materialien sollte dieser Effekt besonders ausgeprägt sein, da die

parallelen Nachbarkörner durch den großen Anteil an vergleichsweise weichen Nichtgleichge-

wichtskorngrenzen stärker als gewöhnlich voneinander entkoppelt werden. Im konventionellen

Polykristall, in dem die Korngrenzen im Zusammenhang mit dem elastischen Verhalten in

der Regel vernachlässigt werden, führt nämlich gerade die Querdehnung der Kristallite und

ihre Wechselwirkung mit den Nachbarn zu einer Angleichung der effektiven elastischen Ei-

genschaften verschieden orientierter Kristallite.
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Abbildung 3.41: Skizze zur Veranschaulichung der Lage umgebender Körner relativ zu einem
Zentralkorn und der Belastungsrichtung.

Das Verhalten eines nanokristallinen Drahtes unter Zug wurde mit MD20-Simulationen in

[202] untersucht. Hierbei stellte sich heraus, dass die atomare Dehnung der Gitteratome unter

Last eine starke Asymmetrie in Richtung positiver Dehnungen ausbilden, wobei die Vertei-

lung einen flachen, aber weitreichenden Ausläufer zu sehr hohen positiven Dehnungswerten

aufwies. Eine Unterscheidung des Effektes in Abhängigkeit der Gitterorientierungen einzelner

Körner wurde in der Arbeit leider nicht durchgeführt, sodass die darin enthaltenen Ergeb-

nisse eine Überlagerung aller Körner, und damit aller Orientierungen, darstellen. Trotzdem

dient die prinzipielle Form dieser Dehnungsverteilung als Inspiration für die nachfolgende

Modellierung.

Die Dehnungsverteilung wird mit einer asymmetrischen Variante der Pseudo-Voigt-Funktion

erzeugt, die folgende Form hat

p(ε) = Lo
⟨ε⟩ as sc

⟨ε⟩ as sc + ( ε
⟨ε⟩ as sc)

2
+G exp

⎛

⎝
−(

ε

2/3 ⟨ε⟩ as sc
)

2
⎞

⎠
. (3.41)

20Molecular Dynamic

197



3 Methodik

Tabelle 3.3: Lorentzanteile Lo für verschiedene hkl-Reflexe für die Modellierung der
Spannungs-/Dehnungsverteilung durch Abschattungseffekte benachbarter
Körner.

hkl 111 200 220 311

Lo 0.96 0.72 0.96 0.816

Hier sind G und Lo die Anteile von Gauß- und Lorentz-förmigem Peak mit G = 1 − Lo

und sc ist ein Skalierungsfaktor, der die Breite beider Anteile gleichermaßen variiert. Die

Gesamtbreite der Verteilung wird somit proportional zur mittleren Gitterdehnung ⟨ε⟩. Der

Parameter as ist ein Asymmetriefaktor, der die Form

as(⟨ε⟩, ε) = {
1, wenn ⟨ε⟩ und ε gleiches Vorzeichen haben (3.42a)

0.2, sonst (3.42b)

hat und unterschiedliche Breiten auf der linken und rechten Seite der Verteilung erzeugt.

Die Breiten auf beiden Seiten stehen im Verhältnis 1 zu 0.2, wobei die breitere Seite immer

entgegen der Richtung liegt, in der die mittlere Dehnung ⟨ε⟩ relativ zur null liegt, um die

Abschattung von Spannung/Dehnung zu berücksichtigen. Das Verhältnis 1 zu 0.2 wurde auf

einen konstanten, empirischen Wert festgelegt, um die Zahl der Parameter in der WPPM-

Anpassung nicht ausufern zu lassen. Das gewählte Verhältnis hat sich im Rahmen dieser

Arbeit insofern bewährt, dass es in den meisten Stichproben das kleinste Residuum in der

Anpassung erzeugte. Später werden die Ergebnisse zeigen, dass dadurch vor allem eine gute

Beschreibung unter hoher Belastung erreicht wird. Die Ursache dafür ist, dass dieser Zustand

über den längsten Zeitraum während der Verformung vorliegt und dadurch die Optimierung

der konstanten Werte dominiert hat.

Durch die Proportionalität von der Breite der Verteilung und von ⟨ε⟩ ist hier implizit die

elastische Anisotropie berücksichtigt und muss nicht mehr explizit in dem Modell ergänzt

werden. Die resultierenden Verteilungen sind qualitativ ähnlich zu denen aus [202] und für

den Druckfall exemplarisch in Abb. 3.42 gezeigt.

Voruntersuchungen, in denen in der WPPM-Anpassung der Lorentzanteil Lo als freier Fit-

parameter enthalten war, haben gezeigt, dass eine systematische Abhängigkeit zwischen Lo

und hkl existiert, die nur in geringem Maße zwischen verschiedenen Proben und verschie-

denen Dehnungszuständen variiert. Um auch hier wieder relativ unwichtige Parameter zu

eliminieren, wird daher auch Lo für alle Anpassungen auf konstante Werte festgelegt, die in

Tabelle 3.3 gelistet sind. Die geringeren Werte von Lo bei 200 und 311, also den weicheren

Richtungen, führen zu einer runderen, breiteren Verteilung um das Maximum verglichen mit

den härteren Richtungen.
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Abbildung 3.42: Dehnungsverteilung von Gitterdehnungen in Druckrichtung für verschie-
den orientierte Körner unter Berücksichtigung des Abschattungseffektes. Die
mittleren Dehnungen sind durch gestrichelte Linien markiert.

3.8.8 Thermodiffuse Streuung

Die thermodiffuse Streuung (TDS) verursacht einen kleinen, aber ungleichmäßigen und win-

kelabhängigen Beitrag zum Diffraktogramm und kann daher für eine quantitative Analyse

nicht vernachlässigt werden. Am deutlichsten ist dies im Bereich zwischen den Peaks: Ver-

nachlässigt man hier den Beitrag der TDS, ist eine Anpassung dieses Bereiches nur schlecht

möglich. Die Versuche des Optimierungsalgorithmus, das Modell ohne TDS-Beitrag an die

Daten anzunähern, führt zu ungenaueren Ergebnissen für die Fitparameter. Diese minimieren

zwar das Residuum, liefern aber eine im Detail falsche Beschreibung (vgl. Abb. 3.43).

Der theoretische Hintergrund zur TDS wurde bereits beschrieben (siehe S. 105), weshalb hier

nur noch auf die praktische Umsetzung eingegangen wird. Im Grunde muss man den TDS-

Beitrag genau wie in der Theorie ausrechnen, allerdings für alle möglichen Streuvektoren in

den 1. Brilloin-Zonen (1. BZ) (TDS 1. Ordnung), bzw. auch im umliegenden Gebiet (TDS 2.

Ordnung).

Da es sich bei dem Material um einen Polykristall handelt, liegen die möglichen Streuvekto-

ren auf Kugelschalen, deren Radius der Länge des Streuvektors entspricht. Im Unterschied zu

den zuvor besprochenen hkl-Kugelschalen, sind hier aber auch alle Schalen dazwischen rele-

vant. Das Vorgehen ist also für die TDS 1. Ordnung wie folgt: Es wird pro hkl-Kombination

immer nur eine 1. BZ betrachtet, die N Phononenvektorendpunkte enthält. Die Zahl N ent-

spricht der Anzahl von Atomen im Korn und ist damit abhängig von der Korngröße. Im

Modell werden wieder kugelförmige Körner genutzt, deren Atomzahl über das Kugelvolumen

im Vergleich zum Einheitszellenvolumen bestimmt wird. Um den Ursprung des reziproken
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Abbildung 3.43: WPPM-Anpassungen von Messdaten mit und ohne TDS-Modell. Hier ist
vor allem der Bereich der Peakfüße dargestellt.

Raumes werden nun konzentrische Kugelschalen mit zunehmendem Radius erzeugt, wobei

das Radiusinkrement in 2θ-Koordinaten einer Schrittweite von 0.0038 ○ entspricht. Diese Ku-

gelschalen werden zur numerischen Rechnung wieder durch ein gleichmäßiges Punktraster

diskretisiert, wozu erneut der Matlab-Code
”
Make Icosahedron“ von Edward Zechmann21

[267] benutzt wird, um von Ikosaedern vom Typ 1, Klasse 2, Punktprojektionen auf der

Kugeloberfläche zu erzeugen. Als Frequenz für das Sampling wurde 120 verwendet, was ei-

ne Rasterung mit 72301 Punkten erzeugt. Jeder dieser Punkte entspricht einem möglichen

Endpunkt eines Streuvektors, der dann zur TDS-Beiträgt, wenn er auf einem Phononen-

vektorendpunkt in der 1. BZ endet. Auf diese Weise werden einige dieser Punkte zufällig

getroffen, allerdings wird die Statistik deutlich besser, wenn man die Streuvektorendpunkte

anteilig auf die nächstgelegenen Phononenvektorendpunkte aufteilt; in der Modellrechnung

wurde dieser Ansatz verfolgt. Die maximale Abweichung senkrecht zur Kugeloberfläche ist

dabei auf 0.0038 ○/2 (in 2θ-Koordinaten) beschränkt um Doppelzählung auf verschiedenen

Kugelschalen zu vermeiden.

Physikalisch lässt sich diese Modifikation rechtfertigen, wenn man bedenkt, dass der Rest

des Modells in Bezug auf die Maxima eigentlich nichts anderes bewirkt, als eine Verschmie-

rung der scharfen hkl-Punkte im reziproken Raum, sodass auch Streuvektoren in deren Nähe

relevante Beiträge zur Peakintensität leisten. Die Orte der Phononenvektorendpunkte lie-

gen in Relation zu diesen scharfen hkl-Punkten und müssen daher zwangsweise auch die

gleiche Verschmierung aufweisen wie das Brilloin-Zonenzentrum. Die maximale Abweichung

21Heruntergeladen von MathWorks MatlabCentral File Exchange, siehe [267].
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senkrecht zur Kugelschale von 0.0038 ○/2 ist in diesem Zusammenhang praktisch unerheb-

lich. Abweichungen auf der Kugelschale sind darüber hinaus in jedem Fall unkritisch, da alle

möglichen Punkte auf der Kugelschale gültige Streuvektoren repräsentieren. Das Vorgehen

ist schematisch in Abb. 3.44 dargestellt.

1. BZ

0

hkl

S

TDS 1. Ordnung TDS 2. Ordnung

1. BZ

0

hkl

S

S

Phononenvektorendpunkt
Streuvektorendpunkt
Aufteilung Streuv. / Phononenv.

Abbildung 3.44: Prinzip der Berechnung der TDS mit der Streuvektorkugel, die durch die
hkl-spezifische 1. Brilloin-Zone geschoben wird. Die Zuordnung von Pho-
nonenvektorendpunkten zu Streuvektorkugelschalen innerhalb von 0.0038 ○

ist rechts anhand eines Ausschnitts der Kugelschale dargestellt, wobei der
0.0038 ○ Bereich durch gestrichelte Linien markiert ist.

Für jeden der so getroffenen Phononenvektorendpunkte muss dann aus den atomaren Kraft-

konstanten (siehe Gl. (2.100), S. 48) die dynamische Matrix aufgestellt werden, aus der wie-

derum die Orientierung der drei Phononenvektoren, sowie die Phononenfrequenzen und Am-

plituden berechnet werden. Mit diesen Informationen wird dann, wie in Gl. (2.190) (S. 106)

beschrieben, der Beitrag dieses Phonons zur TDS bestimmt. Der Gesamtbeitrag ergibt sich

aus einer Mittelung der Intensitäten über die gesamte Kugelschale, die dann anschließend

mit dem Flächenanteil der Kugelschale in der 1. BZ ABZ(∣S⃗∣)/A und der Flächenmultiplizität

des hkl Gitterpunktes gewichtet werden muss (siehe Abb. 3.45). Das ist notwendig, um den

Effekt der variierenden Punktdichte bei verschiedenen Radien der Streuvektorkugeln zu eli-

minieren und das Vorhandensein mehrerer 1. BZ zum gleichen Reflex im reziproken Raum

zu berücksichtigen. Formal ist die Rechnung damit durch

ED = ∆t M K ′ηhkl
ABZ(∣S⃗∣)

A(∣S⃗∣)

1

nku.
∑
nku.

I1(S⃗), (3.43)

beschrieben, wobei nku. die Anzahl der Phononenvektorendpunkte in der BZ (fast) auf der

Kugelschale ist. Da sich die Rechnung nur auf die Kristallgitter im Material bezieht, wird in

der Rechnung als Debye-Temperatur ein Wert von 275 K benutzt, was dem Wert in einem

konventionellen Kristall dieser chemischen Zusammensetzung entspricht [46]. Außerdem muss

hier auch der Beitrag des 400 Peaks berücksichtigt werden. Dieser befindet sich als Peak

eigentlich nicht mehr im Messbereich des Detektors, aber die Ausläufer seines TDS-Beitrags

reichen trotzdem bis in den modellierten Bereich hinein.
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Abbildung 3.45: a) Lage der 1. Brilloin-Zonen aller relevanten hkl Gitterpunkte im rezipro-
ken Raum. Zur Berechnung der TDS wird eine Streuvektorkugel um den
Ursprung aufgeblasen, und die beschriebene Rechnung durchgeführt. Der
Radius der Kugel ist ein Maß für den Streuwinkel.
b) Flächenanteil der Streuvektorkugel innerhalb der 1. BZ für verschiedene
Gitterpunkte.

Wie bei allen korngrößenabhängigen Modellrechnungen, muss auch hier die gesamte Rechnung

für jede Korngröße wiederholt werden, um so der Korngrößenverteilung des Materials gerecht

zu werden. Der Unterschied in der TDS für verschiedene Korngrößen ist an zwei Beispielen

in Abb. 3.46 gezeigt.
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Abbildung 3.46: TDS-Intensität für kugelförmige Körner mit 5 nm und 25 nm Durchmesser.
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3.8 Modellierung der in-situ Röntgendaten

Das Vorgehen für die TDS 2. Ordnung ist im Prinzip genauso wie bei der TDS 1. Ord-

nung, allerdings muss hier anstatt einer einzelnen Rechnung pro Punkt im reziproken Raum

auf der Kugeloberfläche über alle möglichen Kombinationen von zwei Phononenvektoren, die

von diesem Punkt zum Brilloin-Zonenmittelpunkt reichen, iteriert werden. Die korrespondie-

renden Zwischenpunkte (dort, wo sich die beiden Phononenvektoren treffen), liegen in dem

gemeinsamen Volumen der 1. BZ und einer virtuellen 1. BZ um den Endpunkt des Streuvek-

tors. Der Rechenaufwand ist dadurch um ein Vielfaches größer, weshalb sowohl die Anzahl

der berechneten Radien der Streuvektorkugel als auch die Frequenz der Rasterung halbiert

wurden.

Die physikalisch relevanten Aspekte des Vorgehens sind damit beschrieben. Für detailliertere

Informationen zur technischen Umsetzung sei hier auf einen Blick in den Programmcode

verwiesen (siehe Tabelle A.17, S. 399).

Wie schon bei den Korngrenzenverzerrungen, ist die erneute Durchführung dieser Rechnun-

gen in jedem Anpassungsschritt viel zu zeitaufwendig, weshalb alle Rechnungen dazu für

verschiedene Korngrößen im Voraus durchgeführt wurden (5 nm bis 40 nm in 2.5 nm Schrit-

ten). Die Fourier-Koeffizienten wurden daraus durch Fourier-Transformation bestimmt und

für die spätere Verwendung gespeichert. Ein Abrastern verschiedener kompletter Verteilungs-

funktionen wäre rechnerisch bereits so aufwendig gewesen, dass es die zur Verfügung stehen-

den Kapazitäten überschritten hätte. Allerdings ist die Entwicklung der Fourier-Koeffizienten

mit der Korngröße eine stetige Funktion, sodass in der WPPM-Anpassung aus der bekannten

Korngrößenverteilung die passenden Fourier-Koeffizienten aus den vorberechneten Werten

zu einzelnen Korndurchmessern interpoliert und gemittelt werden können. Die relativen In-

tensitäten der verschiedenen Peaks werden zusätzlich in Form eines Vektors abgespeichert

(TDS rel scaler) und in der WPPM-Anpassung mit den entsprechenden Beiträgen multipli-

ziert (Details siehe Datenträger: build TDS model und WholePattern fft allin).

Diese Fourier-Koeffizienten gehen nicht in die Berechnung der Peaks ein, sondern bilden eine

zweite, parallele Berechnung für die TDS, in der die TDS Fourier-Koeffizienten mit allen zuvor

berechneten Koeffizienten multipliziert und dann rücktransformiert werden, um so den TDS-

Anteil am Detektorsignal zu berechnen. Als einziger zusätzlicher Parameter fließt hier noch ein

Skalierungsparameter ein, der die relative Intensität des TDS-Beitrags zur Gesamtintensität

bestimmt.

Es sei hier noch einmal darauf hingewiesen, dass in der TDS alle Effekte, die die Peaks

beeinflussen, ebenfalls enthalten sind; der Grund dafür wurde bereits oben geliefert, da die

Verschmierung der reziproken hkl-Punkte die TDS in gleicher Weise prägt wie die Inten-

sitätsmaxima.

In [159] wurde für nanokristalline Pulver eine analytische Näherung der TDS abgeleitet, die

außerdem die unterschiedlichen Schwingungsmoden von Oberflächen und Kanten berücksichtigt.

Allerdings wurden darin die 1. BZ als Kugeln genähert und eine homogene, lückenlose Beset-

zung der 1. BZ mit Phononenvektoren angenommen. Der Effekt der kleinen Kristallitgröße

203



3 Methodik

wurde dadurch berücksichtigt, dass Phononenvektoren in einer Kugel um das Zentrum der

1. BZ ausgespart wurden, deren Durchmesser identisch zum korngrößenabhängigen Punktab-

stand in der 1. BZ ist. Eine Abschätzung der Auswirkung dieser Vereinfachungen auf das

Endergebnis gestaltet sich schwierig, sodass in dieser Arbeit der konservativere Ansatz der

numerischen Berechnung gewählt wurde.

3.8.9 Überblick WPPM-Parameter

Bevor hier ein Überblick über alle Parameter der WPPM-Anpassung gegeben wird, müssen

zunächst noch die zwei letzten Beiträge im Untergrund erwähnt werden.

Die Compton-Streuung wird, wie auf S. 105 und in [133] beschrieben, modelliert. Ihre Inten-

sität wird in einem festen Verhältnis zur TDS berechnet und skaliert daher genau wie diese.

Gleiches gilt für den Beitrag der monotonen Laue-Streuung22, der gemäß Gl. (2.192) (S. 107)

berechnet wird.

Damit sind alle in der WPPM-Anpassung vorkommenden Beiträge vorgestellt und es können

abschließend alle relevanten Parameter in Tabelle 3.4 und Tabelle 3.5 (S. 206f) zusammen-

gefasst werden. In Tabelle 3.4 sind die Größen enthalten, die statisch in die Modellierung

eingehen und in Tabelle 3.5 sind die Parameter aufgelistet, die Gegenstand der Optimierung

sind. Die bisher noch unerwähnten Parameter i200, i220 und i311 modifizieren die Intensitäten

der 200-, 220- und 311-Peaks gegenüber der Intensität der 111 Peaks (I ′hkl = Ihkl ⋅ihkl) um Tex-

tureffekte berücksichtigen zu können. Um dadurch nicht ungewollt die Funktion des Debye-

Temperaturfaktors zu ersetzen, wird das Residuum um einen Wert erhöht, der proportional

zur Ähnlichkeit der Intensitätsanpassung durch ihkl zur Intensitätsanpassung aufgrund des

Debye-Temperaturfaktors ist.

Der Ansatz ist wie folgt: Wenn die Vorfaktoren den Debye-Faktor ersetzten, müssen sie den

gleichen Verlauf wie dieser in 2θ beschreiben, also ihkl = e
−2M = exp (−16π2⟨u2

S⟩
sin2(θ)
λ2 ) (vgl.

Gl. (2.138), S. 79). Wenn das der Fall ist, ist − log(ihkl)/ − 2M = 1. Die a-priori unbekannte,

mittlere quadratische Verschiebung kürzt sich hier heraus. Die Differenz zwischen Paaren

von − log(ihkl)/ − 2M sollte dann für verschiedene hkl-Kombinationen null sein, sofern der

Verlauf des Debye-Temperaturfaktors nicht mit dem der ihkl übereinstimmt. Ansonsten liefert

die Summe der Beträge der Differenzen über alle − log(ihkl)/ − 2M einen Teil des gesuchten

Maßes für die Ähnlichkeit der Wirkung von Debye-Temperaturfaktor und ihkl:

A =∑
hkl

∣
log(ihkl)

2M
∣ . (3.44)

22Der Beitrag der monotonen Laue-Streuung ist so gering, dass er eigentlich keine Rolle spielt. Der Rechen-
aufwand ist aber so gering, dass man ihn problemlos trotzdem mitberücksichtigen kann.
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Zusätzlich ist bekannt, dass e−2M immer streng monoton fallend ist. Das heißt, dass un-

terschiedliche Vorzeichen der ihkl zumindest für eine der drei Intensitätsmodifikationen aus-

schließt, dass sie dem Verlauf des Debye-Faktors folgt. Ein Maß dafür ist B = ∣∑
hkl

ihkl∣. Kom-

biniert man beide Bestandteile und skaliert sie passend zu den üblichen Residuen, so erhält

man

PI = 100
B

A
. (3.45)

Dieses PI entspricht dem zusätzliche Summanden PI aus Gl. (3.20) (S. 171).

Die Debye-Temperatur, die im Rahmen der WPPM-Anpassung variiert wird, hat nur Aus-

wirkungen auf den Debye-Temperaturfaktor im Vorfaktor der Berechnung der Intensität. In

der Berechnung oder dem Modell für die thermodiffuse Streuung ist diese Variation nicht

enthalten. Das hat den Grund, dass im Debye-Temperaturfaktor neben den dynamischen

Schwankungen der Atompositionen u⃗dyn. auch die statischen u⃗stat., z.B. in/an den Korngren-

zen, enthalten sind. Eine Trennung dieser beiden Beiträge ist auf Grundlage der vorliegenden

Messungen nicht möglich. Dazu wären zusätzliche Messungen bei verschiedenen Tempera-

turen notwendig gewesen, um den konstanten, statischen Anteil der Positionsschwankungen

von dem temperaturabhängigen dynamischen Anteil zu trennen. Allerdings tritt bei erhöhten

Temperaturen zusätzlich der Effekt der Relaxation auf, was eine Änderung der Struktur der

Korngrenzen bewirkt und damit, voraussichtlich, wieder eine Überlagerung von statischen

und dynamischen Effekten hervorrufen würde [32]. Darüber hinaus ist eine Relaxation in

Folge einer von außen angelegten mechanischen Spannung auch bei niedrigen Temperaturen

denkbar, sodass ohne Temperaturänderung eine Änderung der statischen Positionsschwan-

kungen der Atome stattfinden kann. Die Debye-Temperatur aus der Anpassung repräsentiert

also immer eine Kombination von statischen und dynamischen Verschiebungsbeiträgen und

muss entsprechend interpretiert werden.

Prinzipiell haben der Debye-Temperaturfaktor und die TDS die selbe Ursache, weshalb auch

die TDS durch statische Schwankungen der Atompositionen u⃗stat. beeinflusst werden müsste.

Beim Kristall ist es anschaulich so, dass die Intensität durch den Debye-Temperaturfaktor

von den Peaks in den Untergrund umverteilt wird. Dementsprechend müsste der Anteil

der TDS an der Intensität ansteigen, was im Modell nur durch eine Zunahme des TDS-

Intensitätsparameters geschehen kann. Entsprechende Beobachtungen werden im Ergebnisteil

diskutiert (siehe S. 269ff).
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Tabelle 3.4: Parameter der WPPM-Anpassung, die in der Anpassung nicht variiert werden –
statische Parameter.

Größe Bezeichner Wert Beschreibung

Wellenlänge λ 15.814 pm
Wellenlänge der

Röntgenstrahlung

theoretische
a ≈ 391 pm

theoretisch berechnete Gitter-
Gitterkonstante konstante gemäß Goldgehalt

Absorptions-
µ ⋅ ρm 30.2682 cm−1

mittlerer Absorptions-
koeffizient koeffizient bei 12.2 g/cm3

Massendichte

Stegdicke t 130µm
mittlere Stegdicke

für Absorption

Streuwinkel 2θ ≈ 3 ○ bis 9 ○ Streuwinkel aus Messung

Miller’sche Indizes hkl 111 bis 400
Miller’sche Indizes

der Braggpeaks

Parameter
- -

siehe S. 179
Fehlpassungsmodell

Parameter heterogene
- -

siehe S. 196
elastische Verzerrung

Fourier-Koeffizienten
C(L) -

siehe S. 187
Korngrenzenverzerrung

Fourier-Koeffizienten
C(L) -

siehe S. 199
TDS
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Tabelle 3.5: Parameter der WPPM-Anpassung, die in der Anpassung variiert werden.

Größe Bezeichner Wertebereich Modell

Korngröße ⟨D⟩vol 10 nm,35 nm D, Vers., KG, TDS
Verteilungsbreite σ′ 1.4,2.0 D, Vers., KG, TDS
Gitterdehnung 111/222 ε111 −4 %,4 % Dehnung, het. Verz.
Gitterdehnung 200/400 ε200 −4 %,4 % Dehnung, het. Verz.
Gitterdehnung 220 ε220 −4 %,4 % Dehnung, het. Verz.
Gitterdehnung 311 ε311 −4 %,4 % Dehnung, het. Verz.
Versetzungsdichte ρ 1010 m−1,1017 m−1 Versetzungen
Stapelfehlerwahr. α 0 %,8 % Stapelfehler
Zwillingswahr. β 0 %,8 % Zwillinge

Mirkoverz. Fehlpass. (MS)
√

⟨ε2⟩111 0 %,0.2 % Fehlpassung
Skalierungsfakt. ε111 e111 0,1.1 Last
Skalierungsfakt. ε200 e200 0,1.1 Last
Skalierungsfakt. ε220 e220 0,1.25 Last
Skalierungsfakt. ε311 e311 0,1.1 Last
Skalierungsfakt. KG-Dehn. eKG 0,1 Korngrenzdehnung
Debye Temp. TD 175 K,300 K Vorfaktor
Intensität 111 I111 0,2 Vorfaktor
rel. Int. 200 i200 0.55,1.45 Vorfaktor
rel. Int. 220 i220 0.55,1.45 Vorfaktor
rel. Int. 311 i311 0.55,1.45 Vorfaktor
TDS Int. ITDS 0.001,0.15 TDS, Untergrund
Untergrund Polyn. p1 0,0.0025 Untergrund
Untergrund Polyn. p2 0,0.25 Untergrund
Untergrund Versch. ∆2θ 3.05 ○,5 ○ Untergrund
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3.9 Automatisierung der WPPM

Im Verlauf eines Verformungsexperimentes wurden zwischen 20 (bei Dehnraten ≈ 10−1 s−1)

bis über 1000 (bei Dehnraten < 10−4 s−1) Detektorbilder aufgenommen, aus denen jeweils

180 Diffraktogramme extrahiert werden. Im Schnitt ist also für ein einziges Verformungsex-

periment die Anpassung von etwa 60000 Diffraktogrammen notwendig. Die Zeit, die für die

Durchführung einer Anpassung benötigt wird, hängt stark von der Wahl der Startparameter

ab; je näher diese an den Endwerten der Anpassung liegen, desto kürzer dauert die Anpas-

sung. Mit den verwendeten Computern liegt diese Zeit zwischen 0.8 s und 10 s, wobei letztere

Dauer nur in seltenen, besonders ungünstigen Fällen auftritt.

Eine manuelle Durchführung dieser Anpassungen ist damit vollkommen unmöglich und eine

Automatisierung dringend geboten. Um die auch dann noch sehr lange Ausführungszeit zu

reduzieren, werden in einem ersten Schritt immer zwei benachbarte 2 ○ Winkelsegmente zu

einem 4 ○ Segment durch Mittelwertbildung zusammengefasst, um so den Rechenaufwand zu

halbieren. Die Winkelauflösung halbiert sich damit natürlich auch, dafür wird das Rauschen

in den Daten etwas geringer.

In einem zweiten Schritt wurden bei langsameren Dehnraten (Dehnrate < 10−2 s−1) mehrere

Diffraktogramme der selben Winkelsegmente zeitlich gemittelt, sodass diese Zeitinkremente

von 4.4 s statt 1.1 s (bei Dehnrate ≈ 10−3 s−1), 16.5 s statt 1.1 s (bei Dehnrate ≈ 10−4 s−1) und

600 s statt 5 s (bei Dehnrate ≈ 10−5 s−1) abbilden. Auch hier tauscht man zeitliche Auflösung

gegen einen Zugewinn an Ausführungsgeschwindigkeit bei vermindertem Rauschen ein.

Die Rohdaten und die zu deren Anpassung benötigten Daten (z.B. Modellparameter, Gold-

konzentration, etc.) wurden zusammen als Attribute in einer Instanz eines

WPPM Manager-Objekts23 gebündelt. Die Methoden dieses Objektes realisieren dann Auf-

gaben wie die Durchführung einer einzelnen WPPM-Anpassung anhand von gegebenen Start-

werten, das Speichern der Ergebnisse, das Verwalten von Startwerten oder die Beschrankung

der Variation von Parametern in der Anpassung. Abschließend wird die üblicherweise genutz-

te Abfolge dieser Arbeitsschritte in der
”
fire and forget“ Methode gebündelt, sodass diese

die automatische Anpassung eines gesamten Datensatzes zu einem Verformungsexperiment

durchführt.

Das Vorgehen ist wie folgt: Zunächst werden mit einem bewährten Satz von allgemeinen

Anfangswerten die Diffraktogramme des ersten und des letzten Detektorbildes angepasst.

Beim ersten Detektorbild sind dabei die Anpassungen der relativen Intensitäten ausgeschal-

tet (ihkl = 0), da die Anfangskonfiguration texturfrei sein sollte. Der unnötige Freiheitsgrad

würde die Anpassung nur ungenauer machen. Danach werden nacheinander die Diffrakto-

gramme zu jedem Winkelsegment über alle Zeitschritte von Anfang bis zum Ende angepasst,

wobei als Startwerte immer die Ergebnisse aus dem vorherigen Schritt verwendet werden. Da

unstetige Änderungen der Parameter nicht zu erwarten sind, sollten dadurch kontinuierlich

23Der Begriff Objekt ist hier im Sinne der objektorientierten Programmierung zu verstehen.
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gute Startwerte vorhanden sein, wodurch die Ausführungszeit im Schnitt verkürzt wird und

durchgängig eine gute Minimierung der Residuen erreichbar sein sollte. In seltenen Fällen

kann es aber dazu kommen, dass die Parameter einer ungünstigen Anpassung über einige

Zeitschritte als schlechter Startwert nachgeschleppt werden. Falls das Residuum nach einem

Anpassungsschritt über einem Schwellenwert (hier 150) liegt oder ungewöhnlich stark zu-

nimmt (∆ Residuum > 30 in aufeinander folgenden Zeitschritten), wird dieser Schritt mit

einer größeren Anzahl von Iterationen wiederholt.

Theoretisch wäre eine wiederholte Anpassung aller Diffraktogramme mit zufällig variier-

ten Startwerten und abschließender Auswahl der besten Anpassung ein besseres Vorgehen

(Monte-Carlo-Ansatz). Jedoch sind durch die große Anzahl an Parametern auch eine große

Anzahl an Startparametervariationen notwendig, wodurch die Ausführungszeit um mehrere

Größenordnungen zunimmt. Daher eignet sich dieses Verfahren allenfalls für Einzelfälle, oder

stichprobenhafte Überprüfungen der Ergebnisse.

In Abb. 3.47a ist beispielhaft ein Vergleich beider Ansätze in Form eines Histogramms der

Summe der quadratischen Abweichungen ∑(∆E′
D)2 (Residuum) gezeigt24, die aus einer

Monte-Carlo-Variation der Startwerte mit 12000 verschiedenen Variationen erzeugt wurde.

Zusätzlich ist ∑(∆E′
D)2 für den gleichen Datensatz aus der automatisierten Anpassung als

rote Linie eingezeichnet. Es zeigt sich, dass in den allermeisten Fällen der Monte-Carlo-

Variation nahezu der gleiche, minimale Wert für das Residuum erreicht wird (y-Achse ist

logarithmisch!) und daneben nur ein weiterer Häufungspunkt bei 140 existiert. Wahrschein-

lich handelt es sich dabei um zwei lokale Minima, die der Optimierungsalgorithmus findet,

wobei das Minimum bei 90 vermutlich das globale Minimum darstellt. Der in dieser Arbeit

verwendete Automatisierungsansatz liefert in diesem Fall eine nahezu ideale Lösung. Damit

ist wenigstens anekdotisch gezeigt, dass der Automatisierungsansatz Startwerte liefern kann,

die zu optimalen Lösungen führen.

Eine rigorose Untersuchung zu diesem Thema konnte aus Zeitgründen nicht durchgeführt

werden, denn der Unterschied in der Rechenzeit ist aus zwei Gründen dramatisch: Beim Au-

tomatisierungsansatz sind die Startwerte schon relativ nahe an den optimierten Endwerten,

sodass der Optimierungsalgorithmus nach wenigen Iterationen endet. Die benötigte Rechen-

zeit ist dann besonders kurz und liegt in der Regel unter 1 s. Bei den zufälligen Startwerten

des Monte-Carlo-Ansatzes ist das naturgemäß nicht der Fall, sodass die mittlere Rechen-

zeit für eine einzelne Anpassung länger ist, als in der automatisierten Variante. Der weitaus

größere Effekt ist aber, dass die Monte-Carlo-Variation viel mehr, schlussendlich verworfe-

ne, Anpassungen durchführen muss. In diesem Fall werden 11999 Durchgänge berechnet und

verworfen, wodurch die Rechenzeit um eben diesen Faktor über der automatisierten Variante

liegt (> 11999 s ≈3.3 h).

24Also der Größe, die vom Optimierungsalgorithmus minimiert wird um die optimale Übereinstimmung von
Modell und Messung zu erzeugen.
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Abbildung 3.47: a) Vergleich der Verteilung der Residuen aus der Anpassung mit einem
Monte-Carlo-Ansatz (Histogrammbalken) mit dem Residuum aus der au-
tomatisierten Anpassung. b) Residuum der Anpassung des selben Winkel-
segmentes aus der automatisierten Anpassung über alle Zeitschritte.

Ein Nachteil der automatisierten Variante ist, dass sich eine schlechte Optimierung aus dem

vorherigen Schritt fortpflanzen kann. Die Tatsache, dass die Optimierung bei den meisten Va-

riationen der Startparameter im Monte-Carlo Ansatz das selbe Residuum erreicht, ist aber

ein Indiz dafür, dass die Optimierung an sich robust genug ist, um ungünstige Startparame-

ter auszugleichen. Ein Beispiel für einen ungünstigen Fall ist in Abb. 3.47b gezeigt, in der

die Residuen der Anpassungen des gleichen Winkelsegmentes in verschiedenen Zeitschritten

(Frames) dargestellt sind. Die angepassten Parameter führen in den ersten 11 Zeitschritten

zunehmend zu größeren Residuen. Der Algorithmus fängt diesen Trend aber ab dem 12. Zeit-

schritt wieder ein und bleibt dann stabil bei niedrigen Residuen. Der leichte Anstieg der

Residuen mit fortschreitender Zeit ist ein genereller Trend, der daher rührt, dass mit zu-

nehmender Belastung die Anpassung schwieriger und damit die Bestimmung der Parameter

unsicherer wird (mehr dazu im nächsten Abschnitt).

Maße und Unsicherheit der WPPM-Anpassung

Im Rahmen der WPPM-Anpassungen sind verschiedene Maße zur Qualität der Anpassung

und zur Unsicherheit in der Bestimmung der Parameter von Interesse. Zunächst sind das

natürlich die zwei grundlegenden Maße der Anpassung: Die gewichtete und erweiterte Ab-

weichung ∆E′
D und die daraus errechnete Summe der Quadrate ∑(∆E′

D)2. Letztere bildet

die zu minimierende, positive, skalare Größe und damit das grundlegende Maß für die Qua-

lität der Anpassung; je kleiner ∑(∆E′
D)2 ist, desto besser. Darüber hinausgehend liefert
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3.9 Automatisierung der WPPM

∆E′
D Informationen über die Richtung und das lokale Ausmaß (in 2θ) der Abweichung (siehe

Abb. 3.48).
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Abbildung 3.48: Typische Abweichung ∆E′
D zwischen Anpassung und Rohdaten.

Im Rahmen der Optimierung wird auf der Grundlage dieser Information die Jacobi-Matrix

J∆E′

D
bestimmt, in der die partiellen Ableitungen jedes Datenpunktes an den Stellen 2θi nach

jedem Modellparameter enthalten sind

J∆E′

D
=

⎛
⎜
⎜
⎜
⎝

∂∆E′

D(2θ1)

∂⟨D⟩vol

∂∆E′

D(2θ1)

∂σ′ ⋯

∂∆E′

D(2θ2)

∂⟨D⟩vol

∂∆E′

D(2θ2)

∂σ′ ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

. (3.46)

Die Jacobi-Matrix ist damit eine n × 24 Matrix, wobei n die Anzahl der Messpunkte im

Diffraktogramm ist und 24 die Anzahl der Modellparameter. Jede Spalte von J∆E′

D
enthält

die Information über die Abhängigkeit von ∆E′
D von dem entsprechenden Modellparameter.

Trägt man diese Spalteninformation gegen 2θ auf, erhält man eine anschauliche Darstellung

des Einflusses eines Parameters auf das modellierte Diffraktogramm und die dadurch hervor-

gerufene Änderung der Abweichung zwischen Rechnung und Messung. Das soll im Folgenden

anhand einiger Beispiele diskutiert werden, um die Wirkung einzelner Modellparameter auf

die Anpassung zu veranschaulichen.

Einen auf den ersten Blick einfachen Fall stellen die Gitterdehnungen dar (Abb. 3.49). Erhöht

man den Wert der Gitterdehnung, verschiebt sich der zugehörige Peak nach links, verringert

man ihn, so verschiebt er sich nach rechts. Entsprechend sieht man an den Orten der Peak-

maxima einen Vorzeichenwechsel der Ableitung, denn durch eine Verschiebung des Modell-

peaks relativ zum gemessenen Peak entsteht auf einer Seite eine Abweichung nach unten und

auf der anderen Seite nach oben. Allerdings sieht man in dem Beispiel auch, dass der Git-

terdehnungsparameter des 111-Peaks zusätzlich alle anderen Peaks in einer anderen Weise
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beeinflusst. Die Ursache dafür liegt darin, dass in der Modellierung die Intensität so nor-

miert wird, dass das Maximum des 111-Peaks bei 1 liegt, und dann anschließend, global mit

dem Intensitätsparameter I111 skaliert wird. Der Vorfaktor, der die relativen Intensitäten in

Abhängigkeit von 2θ berücksichtigt, wurde aber schon zuvor multipliziert. Eine Verschiebung

des 111-Peaks in 2θ führt deshalb zu einer globalen Anhebung oder Absenkung der Pea-

kintensität. Diese kann zwar leicht über den Parameter I111 kompensiert werden, zeigt aber

auf, wie durch die Komplexität des Modells in manchen Fällen unerwartete Abhängigkeiten

zwischen Parametern erzeugt werden können.
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Abbildung 3.49: Beispiel für die Jacobi-Matrix-Einträge zu den Gitterdehnungen aus der An-
passung.

Das nächste Beispiel (Abb. 3.50) umfasst die im Modell berücksichtigten Gitterfehler: Ver-

setzungen (ρ), Stapelfehlerdichte (α), Zwillingsdichte (β) und Mikroverzerrung durch die

Varianz homogener Dehnungen auf Einzelkornebene (⟨ε2⟩111). Allen Defekten ist gemein,

dass sie bei Zunahme zu einer Verbreiterung der Peaks führen, wodurch das Modell die Mes-

sung in den Flanken übertrifft und dafür am Maximum unterschätzt. Die Empfindlichkeit ist

für die verschiedenen Effekte aber sehr unterschiedlich, was wesentlich von unterschiedlichen

Variationsbereichen verursacht wird. Es ist außerdem zu erkennen, dass sowohl Stapelfehler

als auch Zwillinge einen asymmetrischen Effekt Verursachen, wohingegen Versetzungen und

Mikroverzerrung weitestgehend symmetrisch zum Maximum wirken.

In einem letzten Beispiel soll nun der Effekt der Korngrößenverteilung betrachtet werden

(Abb. 3.51). Eine Zunahme der Korngröße ⟨D⟩vol führt zu einer Zunahme der Intensität und

zusätzlich zu schmäleren Peaks. Im Fall des 111-Peaks wird der Effekt der Zunahme der

Maximalintensität aber durch die oben beschriebene Skalierung mit I111 unterbunden. Der

verbleibende Effekt entspricht im Prinzip einer Umkehrung dessen, was bei den Gitterfehlern

zu beobachten war. Die restlichen Peaks werden durch die relative Skalierung zu 111 in der
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Abbildung 3.50: Beispiel für die Jacobi-Matrix-Einträge zur Versetzungsdichte, Stapelfehlern
und Fehlpassung.

Art beeinflusst, dass Sie zwar schmäler werden, aber ihr Maximum deutlich unterhalb des ge-

messenen Peaks gesenkt wird. Eine Zunahme der Verteilungsbreite bei konstanter Korngröße

hat in etwa den gegenteiligen Effekt.
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Abbildung 3.51: Beispiel für die Jacobi-Matrix-Einträge zur volumengewichteten Korngröße
und Korngrößenverteilungsbreite. Die Kanten werden durch die Gewichtung
von ∆ED um die Peaks verursacht.
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Die Gesamtempfindlichkeit der Anpassung auf verschiedene Parameter, also in Bezug auf auf

∑(∆E′
D)2, sowie die Ähnlichkeiten von Effekten verschiedener Parameter, können über die

Varianz-Kovarianz-Matrix

Σ = JT∆E′

D
⋅ J∆E′

D
(3.47)

dargestellt werden, wobei der Exponent T hier die transponierte Matrix bezeichnet. Auf

der Diagonalen von Σ stehen dann Maße für die Empfindlichkeit von ∑(∆E′
D)2 auf die-

sen Parameter und auf den Nebendiagonalen stehen Maße für die Ähnlichkeit der Effek-

te zweier Parameter (Zeile und Spalte entspricht jeweils einem Parameter). Formal han-

delt es sich bei den Diagonalenelementen um die Varianz ∑(∂(∆E′
D)/∂X)2, wobei X hier

für einen Modellparameter steht, und bei den Nebendiagonalenelementen um die Kovarianz

∑(∂(∆E′
D)/∂Xi)(∂(∆E

′
D)/∂Xj).

Wie bereits erwähnt, sind die absoluten Empfindlichkeiten aber weniger von Interesse, da

sie größtenteils die Wahl des Variationsbereiches widerspiegeln25. Daher kann ohne großen

Informationsverlust stattdessen die Korrelationsmatrix R betrachtet werden, die sich aus Σ

mit

R = diag(Σ)
−1/2 Σ diag(Σ)

−1/2 (3.48)

ergibt. Hier beschreibt diag() die Matrix, die nur die Diagonalenelemente enthält und in

der alle Nebendiagonalenelemente 0 sind. Die Einträge von R sind aus dem Intervall [−1,1]

und alle Diagonalenelemente sind 1. Wenn ein Nebendiagonalenelement den Wert 1 hat be-

deutet das, dass durch Änderung der beiden zugehörigen Parameter die gleiche Wirkung in

∑(∆E′
D)2 erreicht werden kann. Ist der Wert −1, gilt die Aussage ebenfalls, nur müssen

beide Parameter entgegengesetzt variiert werden. Alle Werte dazwischen geben schwächere

Korrelationen an, wobei hier Korrelation in etwa gleichbedeutend mit Austauschbarkeit oder

Uneindeutigkeit ist. Der Wert 0 beschreibt dann vollkommene Unabhängigkeit der Parameter

voneinander.

Theoretisch ist es für ein Optimierungsproblem ideal, wenn alle Nebendiagonalenelemente

der Korrelationsmatrix 0 oder betragsmäßig möglichst klein sind. Umgekehrt ist es prinzipi-

ell unmöglich, eine eindeutige Anpassung von Parametern durchzuführen, deren Korrelation

-1 oder 1 ist; jede Änderung des einen Parameters kann durch eine entsprechende des anderen

kompensiert werden, sodass bei gleichem ∑(∆E′
D)2-Wert unendlich viele Parameterkombi-

nationen existieren.

Im Fall der WPPM-Anpassung lässt es sich aber aus physikalischen Gründen nicht vermeiden,

dass einige Parameter relativ stark korreliert sind (Korrelationskoeffzient > 0.75). Gitterfeh-

ler führen hier immer zu Verbreiterungen des Peaks, ebenso die Reduktion der Korngröße.

25Die Diagonalenelemente sind hier also nicht aussagekräftig, da ihr Wert durch eine Änderung des Variati-
onsbereiches der Parameter verändert werden kann.
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3.9 Automatisierung der WPPM

Genauso kann eine Absenkung des polynomiellen Untergrundes durch eine Absenkung der

Intensität der thermodiffusen Streuung (teilweise) nachgeahmt werden. Dennoch ist die An-

passung solange möglich, wie die Nebendiagonalenelemente von 1 oder -1 verschieden sind.

Allerdings haben betragsmäßig große Korrelationswerte hier offensichtlich eine negative Aus-

wirkung auf die Genauigkeit, mit der man die Werte der Parameter bestimmen kann. In

Tabelle 3.7 (S. 218) ist beispielhaft eine Korrelationsmatrix einer 45 ○ SCS unter Last für

die Anpassung eines Winkelsegmentes nahe der Hauptdruckrichtung (ϕ = 94 ○) dargestellt.

Dieser Fall ist repräsentativ für eine anspruchsvollere WPPM-Anpassung, da hier durch die

hohen Dehnungswerte/Belastung alle Effekte gleichzeitig relevante Beiträge liefern.

Die stärksten Korrelationen in der Korrelationsmatrix (Tabelle 3.7) sind rot hinterlegt und

entsprechen in Teilen dem, was bereits anhand der Jacobi-Matrix ersichtlich war. Zum einen

sind die Gitterdefekte ρ, α und β recht stark miteinander korreliert, was zu erwarten war,

da sie ähnliche Ursachen haben und sich ähnlich auf das Diffraktogramm auswirken. Zu-

dem sind sie stark negativ mit der Korngröße korreliert, die ebenfalls eine Verbreiterung

der Peaks verursacht, allerdings bei abnehmender Korngröße. Bemerkenswert ist hier, dass

der Mikroverzerrungsbeitrag durch die Variation homogener Verzerrungen über verschiedene

Körner hinweg relativ schwach mit dem übrigen Parametern korreliert. Zwar ist der Beitrag

dieses Parameters zum Modell insgesamt betrachtet relativ gering, aber gleichzeitig schwach

korreliert und damit einzigartig. Weiterhin sind die Gitterdehnungen εhkl und die Skalierungs-

faktoren εhkl alle relativ stark korreliert. Das ist wenig verwunderlich, da in das Modell zur

Dehnungsverteilung durch Spannungsabschirmung das Produkt aus beiden Werten eingeht.

Sie sind also innerhalb dieses Beitrags direkt korreliert. Die Unterscheidung ist lediglich durch

die Auswirkung auf die Peakposition von εhkl möglich, auf die εhkl keinen Einfluss hat. Au-

ßerdem gibt es eine starke Korrelation zwischen ITDS und den Gitterfehlerbeiträgen β (α, ρ),

was seine Ursache darin hat, dass eine Anhebung des Beitrags der thermodiffusen Streuung

immer auch eine leichte Verbreiterung der Peaks verursacht (siehe Abb. 3.46, S. 202). Eine

weitere, auffällige Korrelation besteht zwischen der Debye-Temperatur TD und der relativen

Intensitäts-Skalierung i311, die darauf beruht, dass durch TD der Abfall der Intensität über

2θ mitbestimmt wird. Dieser Abfall hängt offensichtlich mit allen ihkl zusammen, ist aber für

i311 am stärksten ausgeprägt, da dieser Peak am weitesten rechts von 111 liegt und somit den

größten
”
Hebel“ besitzt. Schlussendlich gibt es starke Korrelationen, global gesehen sogar die

stärksten, zwischen den Parametern des Untergrundes p1, p2 und ∆2θ. Diese starke Korrelati-

on ist Ausdruck davon, dass der Untergrundbeitrag im Wesentlichen eine nahezu horizontale

Linie ohne nennenswerte Krümmung ist. Das an sich ist nicht problematisch, da dieser Bei-

trag als einziger keine direkte physikalische Relevanz hat. Allerdings führen die Korrelationen

dieser drei Parameter mit den übrigen Parametern dazu, dass deren Bestimmung formal mit

einer höheren Unsicherheit erfolgt.
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In der Vielzahl der Korrelationen zwischen den Parametern liegt aber auch ein Vorteil, den

man erkennt, wenn man sich nicht ausschließlich auf starke paarweise Korrelationen konzen-

triert. Zwar finden sich diverse Parameterpaare, die sich gegenseitig beinahe kompensieren

können, allerdings haben diese Parameter in keinem Fall die gleichen Abhängigkeiten zu al-

len anderen Parametern; diese sind in der Anpassung aber alle gleichzeitig relevant. Eine

scheinbar mögliche Kompensation zwischen zwei Parametern ist daher, bei umfassenderer

Betrachtung, wegen der unterschiedlichen restlichen Abhängigkeiten unmöglich. Zum Bei-

spiel ist die Korrelation zwischen ⟨D⟩vol und β mit −0.90 sehr hoch. Für ⟨D⟩vol besteht aber

nahezu keine Korrelation zu σ′ (−0.03), während für β eine Korrelation besteht (−0.18). Um-

gekehrtes gilt für die Korrelationen zu MS (Mikroverzerrung durch Fehlpassung). Das heißt,

die starke Austauschbarkeit und damit Unbestimmbarkeit zwischen ⟨D⟩vol und β besteht nur,

solange man alle anderen Parameter außer Acht lässt.

In diesem Zusammenhang muss allerdings angemerkt werden, dass auch mit dieser Ergänzung

die Trennschärfe zwischen α und β schlecht ist. Berücksichtigt man die Ähnlichkeit der zu-

grundeliegenden Effekte und das gleichrangige Auftauchen beider Parameter in Gl. (2.174a)

bis Gl. (2.174c) (S. 94) ist das aber zu erwarten. Eine umfassende Aussage über die Bestimm-

barkeit der Parameter in der Anpassung ist offensichtlich eine sehr komplexe Fragestellung

und kann hier nicht erschöpfend behandelt werden. Einfache Regeln werden dem Sachverhalt

aber mit Sicherheit nicht gerecht.

Aus ∆E′
D und J∆E′

D
kann für jeden Modellparameter das 95 %-Konfidenzintervall abgeleitet

werden; in Matlab wird dafür in der automatisierten WPPM-Anpassung die Funktion nlpar-

ci verwendet. Allerdings handelt es sich dabei um ein rein systematisch aus dem Optimie-

rungsalgorithmus folgendes Unsicherheitsmaß, in dem nur die lokale (numerische) Ableitung

der Residuen am Minimum enthalten ist. Das kann dazu führen, dass in manchen Fällen

unphysikalische Werte innerhalb des Konfidenzintervalls liegen, wie z.B. negative Stapelfeh-

lerwahrscheinlichkeiten. Außerdem spiegeln diese Unsicherheiten die gesamte Unsicherheit

aller korrelierter Parameter zusammen wieder, und nicht, wie man gewöhnlich annimmt, die

Unsicherheit eines einzelnen Parameters. Das wäre nur dann der Fall, wenn alle Nebendia-

gonalenelemente in der Korrelationsmatrix 0 wären. In Tabelle 3.6 sind die Parameter und

die Konfidenzintervalle für den selben Fall, wie bei der Korrelationsmatrix aus Tabelle 3.7

angegeben. Die darin angegebenen Unsicherheiten entsprechen den typisch zu erwartenden

Werten im Rahmen der WPPM-Anpassung im belasteten Zustand.
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Tabelle 3.6: Beispiel für die Unsicherheiten der Parameter zur Anpassung der Probe Y4-2 im
Winkelsegment 98 ○ bei 535 s (Bild 120).

Größe Bezeichner Wert Unsicherheit

Korngröße ⟨D⟩vol 19.4 nm ±1.8 nm
Verteilungsbreite σ′ 1.70 ±0.06
Gitterdehnung 111/222 ε111 −1.18 % ±0.02 %
Gitterdehnung 200/400 ε200 −2.79 % ±0.05 %
Gitterdehnung 220 ε220 −1.40 % ±0.04 %
Gitterdehnung 311 ε311 −1.93 % ±0.01 %
Versetzungsdichte ρ 2.74 ⋅ 1016 m−1 ±4 ⋅ 1015 m−1

Stapelfehlerwahr. α 1.5 % ±0.4 %
Zwillingswahr. β 0.9 % ±0.8 %

Mikroverz. Fehlpass.
√

⟨ε2⟩111,fp (MS) 0.16 % ±0.12 %
Skalierungsfakt. ε111 e111 1 ±0.2
Skalierungsfakt. ε200 e200 1 ±0.1
Skalierungsfakt. ε220 e220 0.7 ±0.2
Skalierungsfakt. ε311 e311 1 ±0.2
Skalierungsfakt. KG-Dehn. eKG 1 ±2
Debye-Temp. TD 280 K ±24 K
Intensität 111 I111 0.731 ±0.003
rel. Intensität 200 i200 −0.2 ±0.01
rel. Intensität 220 i220 0.009 ±0.01
rel. Intensität 311 i311 −0.121 ±0.02
TDS-Intensität ITDS 0.016 ±0.004
Untergrund Polynom p1 0.006 ±0.001
Untergrund Polynom p2 0.123 ±0.003
Untergrund Verschiebung ∆2θ 3.2 ○ ±0.6 ○

217



3 Methodik

T
a
b

elle
3
.7

:
K

orrelation
sm

atrix
zu

r
A

n
p
assu

n
g

d
er

P
rob

e
Y

4-2
im

W
in

kelsegm
en

t
98

○
b

ei
535

s
(B

ild
120).

⟨D
⟩
v

σ
′

ε
1
1
1

ε
2
0
0

ε
2
2
0

ε
3
1
1

ρ
α

β
M
S

ε
1
1
1

ε
2
0
0

ε
2
2
0

ε
3
1
1

ε
K

G
T
D

I
1
1
1

i
2
0
0

i
2
2
0

i
3
1
1

I
T

D
S

p
1

p
2

∆
2
θ

⟨D
⟩
v

1
.0

0
-0

.0
3

0
.2

2
-0

.0
4

0
.0

0
-0

.0
3

-0
.7

3
-0

.8
2

-0
.9

0
0
.2

7
-0

.5
9

0
.0

7
0
.0

8
0
.2

5
0
.1

1
-0

.5
8

-0
.6

9
-0

.2
5

-0
.2

3
-0

.5
2

-0
.6

9
-0

.3
7

0
.4

2
-0

.5
5

σ
′

-0
.0

3
1
.0

0
0
.0

1
-0

.0
1

-0
.0

3
-0

.0
2

-0
.2

7
-0

.1
6

-0
.1

8
-0

.2
2

-0
.1

0
-0

.0
2

-0
.0

6
-0

.1
6

-0
.1

6
-0

.1
3

-0
.2

8
-0

.1
3

-0
.1

9
-0

.0
1

-0
.5

2
-0

.4
1

0
.4

7
-0

.5
8

ε
1
1
1

0
.2

2
0
.0

1
1
.0

0
-0

.0
1

-0
.0

1
-0

.0
5

-0
.1

2
-0

.5
8

-0
.2

6
0
.1

3
0
.5

9
0
.0

1
0
.0

2
0
.0

2
0
.5

2
-0

.1
3

-0
.1

5
-0

.0
7

-0
.0

7
-0

.1
0

-0
.1

6
-0

.1
0

0
.1

1
-0

.1
4

ε
2
0
0

-0
.0

4
-0

.0
1

-0
.0

1
1
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.1

4
0
.0

8
-0

.1
3

0
.0

4
0
.4

9
0
.0

0
-0

.0
0

0
.2

4
0
.0

1
0
.0

6
0
.2

5
0
.0

0
0
.0

0
0
.0

4
-0

.0
0

-0
.0

0
0
.0

2
ε
2
2
0

0
.0

0
-0

.0
3

-0
.0

1
0
.0

0
1
.0

0
0
.0

0
0
.0

1
-0

.0
9

-0
.0

6
-0

.0
3

0
.0

1
-0

.0
0

0
.8

8
-0

.0
0

0
.2

5
0
.0

1
0
.0

2
0
.0

0
0
.0

8
-0

.0
0

0
.0

1
-0

.0
0

-0
.0

0
0
.0

1
ε
3
1
1

-0
.0

3
-0

.0
2

-0
.0

5
0
.0

0
0
.0

0
1
.0

0
-0

.0
5

0
.0

6
0
.0

8
-0

.2
0

0
.0

0
-0

.0
0

-0
.0

0
0
.6

4
0
.4

5
0
.0

7
0
.0

5
-0

.0
0

0
.0

0
0
.2

0
0
.0

3
0
.0

1
-0

.0
2

0
.0

3
ρ

-0
.7

3
-0

.2
7

-0
.1

2
0
.0

1
0
.0

1
-0

.0
5

1
.0

0
0
.7

7
0
.8

6
0
.4

0
0
.5

2
0
.0

5
0
.0

5
0
.0

9
0
.1

5
0
.2

8
0
.6

3
0
.1

4
0
.1

0
0
.2

0
0
.6

5
0
.3

6
-0

.4
1

0
.5

2
α

-0
.8

2
-0

.1
6

-0
.5

8
0
.1

4
-0

.0
9

0
.0

6
0
.7

7
1
.0

0
0
.9

2
0
.0

2
0
.1

9
0
.1

9
-0

.0
8

-0
.0

7
-0

.1
4

0
.4

5
0
.6

0
0
.1

2
0
.1

4
0
.4

0
0
.6

9
0
.3

9
-0

.4
4

0
.5

7
β

-0
.9

0
-0

.1
8

-0
.2

6
0
.0

8
-0

.0
6

0
.0

8
0
.8

6
0
.9

2
1
.0

0
0
.0

5
0
.4

8
0
.1

8
-0

.0
6

-0
.0

5
0
.0

4
0
.4

9
0
.6

6
0
.1

2
0
.1

5
0
.4

6
0
.7

6
0
.4

1
-0

.4
8

0
.6

2
M
S

0
.2

7
-0

.2
2

0
.1

3
-0

.1
3

-0
.0

3
-0

.2
0

0
.4

0
0
.0

2
0
.0

5
1
.0

0
-0

.0
8

0
.2

3
0
.1

4
0
.3

9
0
.3

1
-0

.3
4

-0
.1

8
-0

.1
9

-0
.2

0
-0

.3
7

0
.0

2
0
.0

2
-0

.0
2

0
.0

3
ε
1
1
1

-0
.5

9
-0

.1
0

0
.5

9
0
.0

4
0
.0

1
0
.0

0
0
.5

2
0
.1

9
0
.4

8
-0

.0
8

1
.0

0
-0

.0
7

-0
.0

4
-0

.1
5

0
.4

0
0
.3

8
0
.4

8
0
.1

7
0
.1

8
0
.3

6
0
.4

6
0
.2

5
-0

.2
8

0
.3

8
ε
2
0
0

0
.0

7
-0

.0
2

0
.0

1
0
.4

9
-0

.0
0

-0
.0

0
0
.0

5
0
.1

9
0
.1

8
0
.2

3
-0

.0
7

1
.0

0
0
.0

0
0
.0

0
0
.3

4
-0

.0
5

-0
.0

8
-0

.3
9

-0
.0

1
-0

.0
2

0
.0

2
-0

.0
2

0
.0

2
-0

.0
1

ε
2
2
0

0
.0

8
-0

.0
6

0
.0

2
0
.0

0
0
.8

8
-0

.0
0

0
.0

5
-0

.0
8

-0
.0

6
0
.1

4
-0

.0
4

0
.0

0
1
.0

0
-0

.0
0

0
.2

8
-0

.0
8

-0
.0

6
0
.0

0
-0

.2
5

-0
.0

0
-0

.0
0

-0
.0

1
0
.0

0
0
.0

1
ε
3
1
1

0
.2

5
-0

.1
6

0
.0

2
-0

.0
0

-0
.0

0
0
.6

4
0
.0

9
-0

.0
7

-0
.0

5
0
.3

9
-0

.1
5

0
.0

0
-0

.0
0

1
.0

0
0
.6

3
-0

.3
3

-0
.1

5
0
.0

0
0
.0

1
-0

.3
4

-0
.0

2
-0

.0
5

0
.0

3
-0

.0
1

ε
K

G
0
.1

1
-0

.1
6

0
.5

2
0
.2

4
0
.2

5
0
.4

5
0
.1

5
-0

.1
4

0
.0

4
0
.3

1
0
.4

0
0
.3

4
0
.2

8
0
.6

3
1
.0

0
-0

.2
4

-0
.0

6
-0

.1
1

-0
.0

3
-0

.1
7

0
.0

8
-0

.0
7

0
.0

4
0
.0

5
T
D

-0
.5

8
-0

.1
3

-0
.1

3
0
.0

1
0
.0

1
0
.0

7
0
.2

8
0
.4

5
0
.4

9
-0

.3
4

0
.3

8
-0

.0
5

-0
.0

8
-0

.3
3

-0
.2

4
1
.0

0
0
.4

8
0
.0

5
0
.3

2
0
.8

8
0
.5

7
0
.7

2
-0

.7
2

0
.6

4
I
1
1
1

-0
.6

9
-0

.2
8

-0
.1

5
0
.0

6
0
.0

2
0
.0

5
0
.6

3
0
.6

0
0
.6

6
-0

.1
8

0
.4

8
-0

.0
8

-0
.0

6
-0

.1
5

-0
.0

6
0
.4

8
1
.0

0
0
.2

2
0
.2

4
0
.4

0
0
.6

0
0
.3

3
-0

.3
7

0
.4

7
i
2
0
0

-0
.2

5
-0

.1
3

-0
.0

7
0
.2

5
0
.0

0
-0

.0
0

0
.1

4
0
.1

2
0
.1

2
-0

.1
9

0
.1

7
-0

.3
9

0
.0

0
0
.0

0
-0

.1
1

0
.0

5
0
.2

2
1
.0

0
0
.0

0
-0

.0
1

0
.2

8
0
.0

2
-0

.0
7

0
.2

1
i
2
2
0

-0
.2

3
-0

.1
9

-0
.0

7
0
.0

0
0
.0

8
0
.0

0
0
.1

0
0
.1

4
0
.1

5
-0

.2
0

0
.1

8
-0

.0
1

-0
.2

5
0
.0

1
-0

.0
3

0
.3

2
0
.2

4
0
.0

0
1
.0

0
0
.0

2
0
.2

3
0
.1

6
-0

.2
1

0
.2

4
i
3
1
1

-0
.5

2
-0

.0
1

-0
.1

0
0
.0

0
-0

.0
0

0
.2

0
0
.2

0
0
.4

0
0
.4

6
-0

.3
7

0
.3

6
-0

.0
2

-0
.0

0
-0

.3
4

-0
.1

7
0
.8

8
0
.4

0
-0

.0
1

0
.0

2
1
.0

0
0
.4

4
0
.5

5
-0

.5
5

0
.4

8
I
T

D
S

-0
.6

9
-0

.5
2

-0
.1

6
0
.0

4
0
.0

1
0
.0

3
0
.6

5
0
.6

9
0
.7

6
0
.0

2
0
.4

6
0
.0

2
-0

.0
0

-0
.0

2
0
.0

8
0
.5

7
0
.6

0
0
.2

8
0
.2

3
0
.4

4
1
.0

0
0
.7

1
-0

.7
9

0
.9

5
p
1

-0
.3

7
-0

.4
1

-0
.1

0
-0

.0
0

-0
.0

0
0
.0

1
0
.3

6
0
.3

9
0
.4

1
0
.0

2
0
.2

5
-0

.0
2

-0
.0

1
-0

.0
5

-0
.0

7
0
.7

2
0
.3

3
0
.0

2
0
.1

6
0
.5

5
0
.7

1
1
.0

0
-0

.9
9

0
.8

6
p
2

0
.4

2
0
.4

7
0
.1

1
-0

.0
0

-0
.0

0
-0

.0
2

-0
.4

1
-0

.4
4

-0
.4

8
-0

.0
2

-0
.2

8
0
.0

2
0
.0

0
0
.0

3
0
.0

4
-0

.7
2

-0
.3

7
-0

.0
7

-0
.2

1
-0

.5
5

-0
.7

9
-0

.9
9

1
.0

0
-0

.9
2

∆
2
θ

-0
.5

5
-0

.5
8

-0
.1

4
0
.0

2
0
.0

1
0
.0

3
0
.5

2
0
.5

7
0
.6

2
0
.0

3
0
.3

8
-0

.0
1

0
.0

1
-0

.0
1

0
.0

5
0
.6

4
0
.4

7
0
.2

1
0
.2

4
0
.4

8
0
.9

5
0
.8

6
-0

.9
2

1
.0

0

218



3.10 Ableitung von Spannungs- und Dehnungstensor

3.10 Ableitung von Spannungs- und Dehnungstensor

In diesem Abschnitt soll dargelegt werden, wie aus den Gitterdehnungen die Spannungs-

und Dehnungstensoren abgeleitet werden können. Zunächst sei hier aber daran erinnert,

dass die Gitterdehnungsparameter εhkl,WPPM aus der WPPM-Anpassung noch nicht den

Beitrag der asymmetrischen Dehnungsverteilung infolge der Belastung beinhalten. Daher

muss zunächst die mittlere Dehnung ⟨εload⟩ durch diesen Effekt aus dem Modell bestimmt und

zu den Gitterdehnungen aus der Anpassung addiert werden εhkl = εhkl,WPPM + ⟨εload⟩ (siehe

Datenträger: extract2meanstrain.m). Alle anderen Effekte in der WPPM-Anpassung erzeugen

keinen Beitrag zur mittleren Dehnung und müssen hier nicht mehr betrachtet werden. Die

so korrigierten Werte entsprechen den tatsächlichen mittleren Gitterdehnungen, wie sie in

Abb. 3.52 gezeigt sind, und dienen als Grundlage für die weitere Analyse.
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Abbildung 3.52: Polardarstellung der Gitterdehnungen zu verschiedenen hkl-Peaks. Die La-
ge der streuenden Ebenen in verschiedenen Orientierungen ist rechts dar-
gestellt, wobei die Rotationsinvarianz um die Streurichtung dieser Körner
durch den schwarzen Pfeil gekennzeichnet ist.

Die Gitterdehnungen εhkl in einem Polarwinkelsegment in der x-y-Ebene aus der Röntgenbeu-

gung sind keine einfach zu interpretierenden Größen. Es handelt sich dabei um die mittlere

Dehnung aller Kristallite im Polykristall in hkl-Richtung, bei denen die hkl-Richtung gerade

parallel zum Streuvektor liegt. Das entspricht der mittleren 1d Projektion der Dehnungs-

tensoren dieser Untergruppe von Körnern (siehe Kapitel 2.2, S. 32). Eine Untergruppe wird

dadurch definiert, dass alle Körner darin eine hkl-Richtung gemeinsam haben, die räumlich

gleich orientiert ist und einen Reflex auf dem Detektor erzeugt. Das bedeutet aber auch,
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dass die Dehnungsinformationen zum gleichen hkl-Reflex in einem anderen Polarwinkelseg-

ment von einer anderen Untergruppe von Körnern stammt26. Die durchgezogenen Linien in

Abb. 3.52 dürfen also keineswegs als kontinuierliche Dehnungsinformation der selben Menge

von Körnern aufgefasst werden; sie repräsentieren keine Tensoren/Dehnungen im Sinne der

Projektion aus Abschnitt 2.2. Um die tatsächlichen mittleren Dehnungen zu erhalten, wird im

Folgenden aus dieser fragmentierten Dehnungsinformation eine Rekonstruktion dreidimensio-

naler Dehnungsinformationen vorgenommen.

Dazu kann man sich der Zusammenhänge der Dehnungsinformationen über alle hkl-Reflexe

und Polarwinkel ϕ hinweg bedienen. Denn aufgrund der kristallinen Struktur der Körner

gibt es nur bestimmte zulässige Polarwinkel, in denen korrelierte Bragg-Reflexe – und damit

Dehnungswerte – der selben Untergruppe von Körnern existieren können. Da die Streuvek-

toren aber alle fast in der x-y-Ebene liegen (Abweichung < 4 ○), ist diese Information auf zwei

Dimensionen beschränkt. Daher muss zusätzliches Wissen über die Probengeometrie in die

Analyse einfließen.

Die aus der Probengeometrie abgeleitete Annahme ist die, dass zwei Richtungen des Haupt-

dehnungsraumes in der beobachtbaren x-y-Ebene liegen. Die SCS-Geometrie ist symmetrisch

zur x-y-Ebene durch die Mitte der Probe, sowie symmetrisch zur z-Achse durch den Stegmit-

telpunkt27. In Anlehnung an das Neumann’sche Prinzip [2] ist es daher naheliegend, dass die

Hauptdehnungs- und Spannungsräume entsprechend in der x-y-Ebene und in z-Richtung ori-

entiert sind. Außerdem kann man mechanisch argumentieren, dass die z-Richtung nicht von

außen mit Spannung beaufschlagt werden kann. Übrig bleibt damit nur der Einspannungs-

effekt des Steges von den Probenteilen unter- und oberhalb davon; allerdings ist auch dieser

Effekte in der z-Richtung am geringsten. Es ist also davon auszugehen, dass die Geometrie

der Probe im Spannungs- und Dehnungstensor widergespiegelt wird.

Daraus ergibt sich, dass der Verlauf der eindimensionalen Projektionen von Dehnungstensoren

in dieser Ebene mit dem Polarwinkel ϕ einen Verlauf der Form

ε(ϕ) = εI cos2
(ϕ) + εII sin2

(ϕ) + (εI − εII) cos (ϕ) sin (ϕ) (3.49)

haben müssen, wobei hier εI und εII die Hauptdehnungen in der x-y-Ebene sind28.

Die Beschreibung in Gl. (3.49) misst den Polarwinkel allerdings im Hauptdehnungsraum, der

beliebig zum Laborkoordinatensystem um die z-Achse29 gedreht sein kann. Diese Drehung

des Hauptdehnungsraums gegenüber dem Laborsystem wird durch den Winkel φ abgebildet,

sodass in Gl. (3.49) aus Sicht des Laborsystems ϕ durch ϕ + φ ersetzt werden muss.

26Die Untergruppen sind verschieden, aber nicht notwendigerweise disjunkt.
27Die Symmetrie zur z-Achse folgt aus der fundamentaleren Punktsymmetrie zum Mittelpunkt des Steges und

der Ebenensymmetrie zur x-y-Ebene.
28Der Zusammenhang folgt direkt aus Gl. (2.57) (S. 32) mit α = β = 0 und ϕ = γ. Die Hauptdehnungen εI

und εII liegen dann in der x2- und x3-Richtung.
29Die z-Achse ist in beiden Koordinatensystemen identisch.
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3.10 Ableitung von Spannungs- und Dehnungstensor

Alle Körner der selben Gruppe haben den Freiheitsgrad einer Rotation des Gitters um die

gemeinsame (primäre) hkl-Achse. Da die Orientierungen der Körner gleichverteilt sind, kann

man sich im Gedankenexperiment in Bezug auf die Streuung vorstellen, dass jede Untergrup-

pe von Körnern mit gemeinsamer hkl-Achse durch ein einzelnes Korn repräsentiert wird, das

um die hkl-Achse rotiert. Dadurch werden alle weiteren h′k′l′-Richtungen, die prinzipiell die

Streubedingung erfüllen können, bei passender Drehung auch gemeinsam mit hkl in Streu-

bedingung sein, also gleichzeitig einen ≈ 90 ○ Winkel zum Strahl einschließen. Die Drehachse

wird dabei automatisch zur Symmetrieachse, welche die grundsätzlich vorhandene Punkt-

symmetrie (Vorzeichenwechsel bei h′k′l′) ergänzt. Jeder korrelierte h′k′l′-Reflex ist dadurch

immer an vier verschiedenen Positionen im Detektorbild enthalten. Der eingeschlossene Win-

kel zwischen hkl und h′k′l′ gibt die Lage dieser korrelierten Reflexe als Polarwinkeldifferenz

(±∆ϕ) relativ zu ±hkl an. In Tabelle 3.8 sind alle Winkelbeziehungen für verschiedene hkl

und h′k′l′-Kombinationen gelistet, inklusive ihrer Häufigkeit, also der Anzahl der Erzeugung

eines korrelierten h′k′l′ Reflexes durch Drehung um die primäre hkl-Achse. Die Beziehungen

sind außerdem in Abb. 3.53 graphisch dargestellt.
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Abbildung 3.53: Richtungsbeziehungen zwischen primären hkl-Richtungen und gleichzeitig
streuenden, sekundären h′k′l′-Richtungen. Auf dem blauen Kreis sind z.B.
alle Orientierungen markiert, in denen für die Körner Röntgenreflexe auftau-
chen können, deren 111-Richtung entlang der primären Richtung liegen. Die
Ebenen, die diese sekundären Reflexe erzeugen, werden hier als korrelierte
h′k′l′ bezeichnet. Details siehe Text oder Tabelle 3.8.
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Tabelle 3.8: Winkel zwischen primären hkl-Richtungen und gleichzeitig streuenden, se-
kundären h′k′l′-Richtungen. Die h′k′l′ umfassen alle Permutationen inklusive
Vorzeichenwechsel.

primäre Richtung sekundäre Richtung Winkel Häufigkeit
hkl h′k′l′ ∡(hkl,h′k′l′)

111 111 70.529 ○ 3
109.471 ○ 3

200 54.736 ○ 3
125.264 ○ 2

220 35.264 ○ 3
90.000 ○ 6

144.736 ○ 3
311 29.496 ○ 3

58.518 ○ 6
79.975 ○ 3

100.025 ○ 3
121.482 ○ 6
150.504 ○ 3

200 200 90.000 ○ 4
109.471 ○ 3

220 45.000 ○ 4
90.000 ○ 4

135.000 ○ 4
311 25.239 ○ 4

72.452 ○ 8
107.548 ○ 8
154.761 ○ 4

220 220 60.000 ○ 4
90.000 ○ 2

120.000 ○ 4
311 31.482 ○ 4

64.761 ○ 6
90.000 ○ 4

115.239 ○ 6
148.518 ○ 4

311 311 35.097 ○ 2
50.479 ○ 3
62.964 ○ 2
84.784 ○ 4
95.216 ○ 4

117.036 ○ 2
129.521 ○ 3
144.903 ○ 2
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3.10 Ableitung von Spannungs- und Dehnungstensor

Um den mittleren, ebenen Dehnungszustand einer Untergruppe von Körnern in der x-y-Ebene

zu rekonstruieren, nutzt man nun diese Korrelation von Reflexen in verschiedenen Richtun-

gen von Körnern derselben Untergruppe aus. Zunächst interpoliert man die Dehnungswerte

ε(ϕ)hkl in ϕ-Richtung mit einer Fourier-Reihe bis zum vierten Glied:

ε(ϕ) = c0 +

4

∑
i=1

ci,1 cos (i ϕ c1) + ci,2 sin (i ϕ c1) (3.50)

Die mit c bezeichneten Größen sind die Fitparameter der Fourier-Reihe. Dadurch hat man zu

jedem Winkel ϕ einen Wert für die Dehnung. Da ε(ϕ)hkl stetig ist und die Stützstellen der

Interpolation nur jeweils 4 ○ auseinander liegen, sollte dieser Schritt das Ergebnis im weiteren

Verlauf nicht signifikant beeinflussen.

Diese Interpolation erlaubt es nun, für eine Untergruppe von Körnern mit beliebiger Orien-

tierung in ϕ einen Fit gemäß Gl. (3.49) (S. 220) durch die korrelierten Gitterdehnungswerte

durchzuführen, was in Form der Parameter εI , εII und φ die Einträge des Dehnungsten-

sors dieser Körner in der x-y-Ebene liefert (siehe Abb. 3.54). Dabei muss im Fit die relative

Gewichtung verschiedener Beiträge berücksichtigt werden, die der relativen Häufigkeit der

einzelnen Winkelbeziehungen (d.h. Stützstellen des Fits) entspricht. Die Tensorkomponenten

im Laborkoordinatensystem erhält man, indem man den Tensor im Hauptdehnungsraum um

den Winkel −φ um die z-Achse zurückdreht. In z-Richtung liegen aus der Röntgenmessung

keine Informationen vor und eine direkte Abschätzung der Dehnungskomponenten ist nicht

möglich.

Man kann allerdings eine gute Abschätzung für die Spannungskomponente in z-Richtung

machen, denn von außen wird in dieser Richtung keine Kraft ausgeübt. Der freien Quer-

dehnung wirkt nur die Einspannung des Steges durch das umgebende Material entgegen.

Die dadurch erzeugten Druck- oder Rutschkegel in dieser Richtung bilden dann einen Be-

reich, in dem die Querdehnung stark eingeschränkt ist [269], wohingegen sich das Material

außerhalb des Rutschkegels quasi spannungsfrei in die z-Richtung dehnen kann. Nimmt man

einen 45 ○-Winkel für den Rutschkegel an, dann liegen vom durchstrahlten Volumen ≈ 5%

im Rutschkegel30. Für die Abschätzung wird nun angenommen, dass dieser Teil des Volu-

mens gar keine Querdehnung erfährt, während der Teil außerhalb des Rutschkegels in der

z-Richtung frei querdehnen kann.

30Das Volumen im Rutschkegel variiert mit den Abmessungen des Steges, dem Stegwinkel und der exakten
Position des Röntgenstrahls. Die Anteile liegen aber größtenteils im Bereich 0% − 5%, bei den 0 ○-Proben
auch geringfügig darüber, und können im Rahmen dieser Abschätzung ignoriert werden.
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Abbildung 3.54: a) Polardarstellung der Gitterdehnungen und Markierung der primären hkl-
Richtung. Zusätzlich ist hier, als Beispiel für die Beziehung zwischen gleich-
zeitig streuenden Ebenen, ein Korn in der Mitte eingezeichnet, dessen 111-
Richtung in der primären Richtung liegt. Die gleichzeitig die Streubedingung
erfüllenden 200-Ebenen sind ebenfalls dargestellt. Die farbigen Pfeile weisen
auf die zugehörigen Dehnungsinformationen in der Polardarstellung. b) Dar-
stellung der Gitterdehnungen der primären 111-Richtung und den sich dar-
aus ergebenden Stützstellen für die Anpassung zur Bestimmung des ebenen
Dehnungstensors.

Auf dieser Grundlage berechnet man für das frei querdehnende kristalline Volumen den ebe-

nen Spannungstensor aus dem Dehnungstensor; die Spannung in z-Richtung ist hier null.

Da die z-Richtung außerdem eine Hauptspannungsrichtung ist, verschwinden auch die Scher-

komponenten in diese Richtung. Zur Berechnung nutzt man den mittleren Elastizitätstensor
¯̄̄̄
Chkl = ⟨

¯̄̄̄
C(χhkl)⟩χhkl , der über alle Rotationen χ ∈ [0 ○,360 ○) um die hkl-Achse gemittelt

wird (siehe Abb 3.55). Durch die Mittelung des Elastizitätstensors über diese Drehungen ist

der resultierende Tensor in allen Belangen rotationssymmetrisch um die hkl-Richtung. Die

Einträge der gemittelten Tensoren sind für Palladium in Anhang A.2 (S. 393) angegeben.

Den vollständigen Spannungstensor des frei querdehnenden kristallinen Volumens nutzt man

dann, um mit einem analog bestimmten, mittleren Nachgiebigkeitstensor
¯̄̄̄
Shkl = ⟨

¯̄̄̄
S(χhkl)⟩χhkl

aus dem Spannungstensor den dreidimensionalen Dehnungstensor der Körner zu berechnen.

Abschließend muss dessen Dehnungskomponente in z-Richtung mit dem Faktor (1 − 0.05) = 0.95

multipliziert werden, um den Einfluss des nicht querdehnenden Volumens zu berücksichtigen

und so den Dehnungstensor des gesamten durchstrahlten Volumens zu erhalten. Den Span-

nungstensor des gesamten Volumens erhält man aus diesem Dehnungstensor wieder mit
¯̄̄̄
Chkl.

Damit hat man für die Untergruppe mit gemeinsamer hkl-Achse eine gute Abschätzung für

den vollständigen Spannungs- und Dehnungszustand der kristallinen Phase im Material.
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[GPa]

111
200

220 311

Abbildung 3.55: Darstellung des richtungsabhängigen E-Moduls der um hkl gemittelten Elas-
tizitätstensoren.

Die so erzeugten Spannungs- und Dehnungstensoren haben durch diese Konstruktion immer

eine Hauptspannungs-/Hauptdehnungs-Richtung in z-Richtung, sodass es für die vollständige

Beschreibung der Tensoren ausreicht, wenn man den ebenen Spannungs- oder Dehnungs-

zustand in der x-y-Ebene, sowie die einzelne Spannungs- oder Dehnungskomponente in z-

Richtung angibt. Die graphische Darstellung beschränkt sich daher im Folgenden auf den

übersichtlicheren, zweidimensionalen ebenen Zustand in der x-y-Ebene (Beispiel siehe Abb. 3.56).
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Abbildung 3.56: Darstellung der eindimensionalen Gitterdehnung (Rohdaten) und einiger
daraus abgeleitete Dehnungs- und Spannungstensoren für verschiedene Ori-
entierungen der primären hkl-Richtungen.
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3.11 Analyse komplexer Größen

Die in der WPPM-Anpassung bestimmten Parameter geben alle Auskunft über physikalische

Eigenschaften, die entlang des Streuvektors zu messbaren Beeinflussungen des Streubildes

führen. In einigen Fällen ist die Richtung des Streuvektors identisch zur relevanten Richtung

in Bezug auf die gemessene Größe, wie etwa der Korngröße (bzw. die Korngrößenverteilung),

denn die Korngröße bezieht sich streng genommen nur auf die Ausdehnung der Körner in

Richtung des Streuvektors. Gleiches gilt für Gitterdehnungen, die Skalierungsfaktoren εhkl,

relative Intensitätsänderungen ihkl, Gesamtintensität, Debye-Temperatur oder den Anteil

der Mikroverzerrung durch Schwankungen homogener Dehnungen zwischen verschiedenen

Körnern (MS). Die Interpretation dieser Größen in Bezug auf ihre Richtung/räumliche Ori-

entierung ist also insofern einfach, dass sie immer entlang der Streuvektorrichtung erfolgt.

Trägt man die Parameter aus der Anpassung in Polardarstellung auf, wie z.B. bereits für die

Gitterdehnungen geschehen (siehe Abb. 3.52, S. 219), erhält man direkt eine anschauliche

Darstellung in der die Effektstärke und Effektrichtung einfach ablesbar sind.

Für Stapelfehler, Zwillingsgrenzen und Versetzungen gestaltet sich die Interpretation schwie-

riger, da hier die Wirkung auf das Streubild und die Lage bzw. charakteristische Richtungen

der Gitterdefekte nicht oder nicht ausschließlich in Richtung des Streuvektors liegen. Zunächst

wird hier die Interpretation der Versetzungsdichte ρ behandelt.

3.11.1 Analyse der Versetzungsdichten

Für die Interpretation der Versetzungsdichte, insbesondere in Bezug auf ihre Rolle als Plas-

tizitätsmechanismus, ist die Information von Interesse, wie sich die Versetzungsdichte auf

Gleitebenen und Gleitrichtungen (d.h. Burgers-Vektorrichtungen) verteilt. Die Stärke der

Auswirkung einer Versetzung eines bestimmten Gleitsystems auf das Streubild wird durch

den Versetzungskontrastfaktor beschrieben (siehe Tabelle 2.5, S. 103) und zeigt, dass fast je-

des Gleitsystem unterschiedliche Einflüsse auf die Streuung in verschiedene Richtungen hat.

Die grundlegende Annahme für die Modellierung ist, dass alle Gleitsysteme gleichmäßig mit

Versetzungen beider Typen (Stufe und Schraube) belegt sind. Tatsächlich liefert die WPPM-

Anpassung, insbesondere unter hoher Belastung, deutlich anisotrope Werte für ρ, was immer

dann im Widerspruch zur Annahme steht, wenn in verschiedenen Richtungen unterschiedliche

Werte für ρ bestimmt werden, die gemeinsame Beiträge von identischen Gleitsystemen besit-

zen. Die Besetzung der verschiedenen Gleitsysteme mit Versetzungen kann in diesen Fällen

also eigentlich nicht gleich sein. Allerdings ist es möglich, die wahrscheinlichste Verteilung

der Versetzungen zu rekonstruieren, die im Einklang mit den extrahierten Versetzungsdichten

unter der Modellannahme ist. Dafür müssen die Versetzungsdichten in allen beobachtbaren

Richtungen (also in allen Winkelsegmenten ϕ) gleichzeitig betrachtet werden.

Die Aussage eines einzelnen Wertes für die Versetzungsdichte in einem Winkelsegment im

Modell wird zunächst wieder dekonstruiert. Gemäß Modell ist die Versetzungsdichte in allen
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12 Gleitsystemen identisch zu ρ für alle beobachteten hkl Reflexe, also 111, 200, 220 und 311.

Die möglichen Winkel, welche die Burgers-Vektoren der Versetzungen in den Gleitsystemen

mit dem Streuvektor einschließen können, sind in Tabelle 2.6 (S. 104) gelistet; aufgrund der

Symmetrie sind nur wenige Winkel möglich. Allerdings kann die Orientierung der Burgers-

Vektoren nicht weiter eingeschränkt werden, weshalb eine Drehung um den Streuvektor als

Freiheitsgrad unbestimmt bleibt. Die Richtung des Burgers-Vektor liegt also auf einem Kegel

mit dem Winkel zwischen Streuvektor und Burgers-Vektor als halbem Öffnungswinkel (siehe

Abb. 3.57). Die Besetzungsdichte dieser Kegel mit Versetzungen wird in der Auswertung

entlang des Streuvektors zu ρ bestimmt, wobei das Gewicht der Beiträge einzelner Kegel den

entsprechenden mittleren Versetzungskontrastfaktoren ⟨C⟩ aus Tabelle 2.6 entspricht.
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Abbildung 3.57: Illustration der Kegel, auf denen sich der Burgers-Vektor befinden kann,
wenn die hkl-Richtung in Richtung des Streuvektors liegt. Hier sind nur
Schnitte der Kegel in einer Ebene dargestellt.

Für die Analyse wird dieses Schema umgedreht. Die gesuchte, wahrscheinlichste Verteilung

der Versetzungen ergibt sich nun aus der Mittelung aller Versetzungsdichten in Richtung der

Kegel, wobei die Versetzungskontrastfaktoren der entsprechenden Kegel wieder als Gewich-

tung verwendet werden. Mehrfach vorhandene Winkel bilden den gleichen Kegel, sodass ihre

Gewichte summiert werden. Dabei muss beachtet werden, dass nicht jeder Punkt (bzw. jede

Orientierung) von allen Kegeln erreicht wird, sodass die Gewichtungsfaktoren entsprechend

für jeden Punkt angepasst werden müssen. Für Punkte, die mit der x-y-Ebene einen Winkel

> 65 ○ einschließen, sind z.B. nur noch die 90 ○ Beiträge relevant. Die Winkel und Gewichtun-

gen sind in Tabelle 3.9 zusammengefasst, wobei dort die Gewichte für den Fall gerechnet sind,

dass alle Kegel beitragen; das ist für alle Punkte erfüllt, die mit der x-y-Ebene einen Winkel

kleiner als 31.4822 ○ einschließen. Für alle anderen Punkte lassen sich die Gewichtungen aus

diesen Angaben ableiten.

Durch dieses Vorgehen werden entlang aller möglichen Orientierungen im Raum Versetzungs-

dichten bestimmt, deren Orientierung der Orientierung der Burgers-Vektoren und damit der

Verschiebungsrichtung entspricht. Das Ergebnis dieser Rechnung kann als Farbkodierung auf

einer Kugeloberfläche oder, übersichtlicher, in einer stereographischen Projektion dargestellt
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3.11 Analyse komplexer Größen

Tabelle 3.9: Winkel zwischen Burgers-Vektor b⃗ und Streurichtung hkl, sowie deren Gewich-
tung in der Berechnung zur Versetzungsdichte von Versetzungen mit bestimmten
Burgers-Vektororientierungen.

Streuvektor in hkl ∡(b⃗,hkl) Gewichtung

111 35.2644 ○ 0.1214
90.0000 ○ 0.0449

200 45.0000 ○ 0.3708
90.0000 ○ 0.0449

220 0.0000 ○ 0.0473
60.0000 ○ 0.1533
90.0000 ○ 0.0449

311 31.4822 ○ 0.1472
64.7606 ○ 0.1150
90.0000 ○ 0.0449

werden (siehe Abb. 3.58). Durch die Art der Rechnung sind die Versetzungsdichten zur x-y-

Ebene spiegelsymmetrisch, sodass die Darstellung eines Halbraumes/Halbkugel ausreichend

ist. Da die Probe die gleiche Symmetrie aufweist, sollte das mit der Realität übereinstimmen.

Die so erhaltenen Versetzungsdichten haben den Charakter einer Wahrscheinlichkeitsvertei-

lung, indem sie lediglich das mögliche Vorhandensein von Versetzungen beschreiben. Für eine

eindeutige Bestimmung, ob tatsächlich Versetzungen in einem bestimmten Gleitsystem vor-

handen sind, reicht die zugrundeliegende, zweidimensionale Information nicht aus. Außerdem

sind in den stereographischen Darstellungen ringförmige Sprünge in der Farbdarstellung bei

bestimmten Winkeln relativ zur x-y-Ebene zu erkennen. Diese Ringe entstehen immer an

den halben Öffnungswinkeln der Kegel. Unterhalb dieser Winkel tragen die Kegel zu den

Mittelwerten der Punkte bei, oberhalb nicht mehr. Die Mittelwerte beruhen also auf einer

zur Mitte hin abnehmenden Anzahl an Einzelwerten und werden somit zunehmend schlech-

ter/ungenauer.

Technisch wird die Rechnung etwas anders umgesetzt. Eine Einheitskugelschale im Halb-

raum über der x-y-Ebene wird, wie üblich, mithilfe von [267] in gleichmäßig verteilte Punkte

unterteilt. Für jeden dieser Punkte wird der Winkel, den sie mit allen Streuvektoren (Win-

kelsegmenten in ϕ) einschließen, berechnet. Wenn dieser Winkel gleich oder fast gleich (±2 ○)

mit einem Winkel aus Tabelle 3.9 ist, wird der zu diesem Winkelsegment gehörende Wert von

ρ mit dem Gewicht multipliziert und zur Versetzungsdichte zu diesem Punkt31 addiert.

31d.h. Versetzungsdichte von Versetzungen, deren Burgers-Vektor in Richtung dieses Punktes orientiert sind.
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Abbildung 3.58: a) Versetzungsdichte von Versetzungen, deren Burgers-Vektoren entlang be-
stimmter Richtungen orientiert sind. Die Richtungen werden durch Punk-
te auf der Halbkugel repräsentiert, die Versetzungsdichte ist farbkodiert. b)
Darstellung des gleichen Sachverhalts als zweidimensionale, stereographische
Projektion. Die gestrichelten Linien markieren die Winkel aus Tabelle 3.9.

3.11.2 Analyse von Stapelfehlern/Zwillingen
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Abbildung 3.59: Illustration der Kegel, auf denen sich sie Stapelfehlernormalen befinden
können, wenn die hkl-Richtung in Richtung des Streuvektors liegt. Hier sind
nur Schnitte der Kegel in einer Ebene dargestellt.

Das Vorgehen ist bei den Stapelfehler- und Zwillingswahrscheinlichkeiten im Prinzip identisch

zu dem bei den Versetzungen. Statt der Burgers-Vektoren werden hier die Normalenvektoren

n⃗ auf den Stapelfehler- bzw. Zwillingsebenen betrachtet. Die möglichen Winkel zwischen

diesen und den hkl-Richtungen entlang des Streuvektors sind bereits in Tabelle 2.4 (S. 95)

als γhkl gelistet und die daraus resultierenden Kegel um die Streurichtung in 2d in Abb. 3.59

analog zu Abb. 3.57 (S. 228) dargestellt. Statt der Versetzungskontrastfaktoren wird zur

Gewichtung die Größe ∑∣L0 ⋅ σ(L0)∣ ηhkl(L0) in der gleichen Art verwendet (siehe Tabelle
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2.4, S. 95). Die Ergebnisse können, wie zuvor, in stereographischer Darstellung präsentiert

werden. Ein Beispiel dafür ist in Abb. 3.60 für die Stapelfehlerwahrscheinlichkeit α und die

Zwillingsgrenzenwahrscheinlichkeit β gezeigt.
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Abbildung 3.60: Stereographische Darstellung der Stapelfehlerwahrscheinlichkeit α (a) und
der Zwillingsgrenzenwahrscheinlichkeit β (b). Die Farbe eines Punktes re-
präsentiert den Wert von α bzw. β und seine Position die Orientierung der
Normalen auf den Stapelfehler/die Zwillingsgrenze. Die gestrichelten Linien
entsprechen den Winkeln aus Tabelle 2.4 (S. 95)
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4 Ergebnisse

4.1 Probenübersicht

Im Rahmen der Experimente an der ESRF wurden insgesamt 61 erfolgreiche1 Verformungen

an relaxierten und wie-hergestellten Proben mit unterschiedlichen Stegwinkeln (0 ○, 25 ○, 45 ○

und 60 ○) bei Dehnraten zwischen 1 ⋅10−1 s−1 und 1.5 ⋅10−5 s−1 durchgeführt. Durch diese um-

fassende Variation der experimentellen Parameter wurde die Grundlage für die Untersuchung

der Einflüsse von Spannungszustand, Dehnrate und Relaxation auf das Verformungsverhalten

nanokristalliner Proben geschaffen.

In diesem Ergebniskapitel werden davon nur die Ergebnisse einer Auswahl von neun Proben

dargestellt und diskutiert, die instruktiv für die Wirkung je einer Parametervariation sind. Die

Daten aus der Charakterisierung, die geometrischen Abmessungen und die experimentellen

Parameter der diskutierten Proben sind in den Tabellen 4.1, 4.2 und 4.3 zusammengefasst.

Zusätzlich ist in Abb. 4.1 eine Bemaßungsskizze zur Zuordnung der Größen aus Tabelle 4.2

angegeben. Die vollständige Sammlung dieser Daten zu allen 60 Proben ist in Anhang A.1

(S. 387) zu finden.
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Abbildung 4.1: Bemaßung der geometrischen Merkmale der SCS.

1Erfolgreich bedeutet hier, dass zu den Verformungen jeweils ein vollständiger Datensatz vorliegt. Insgesamt
wurden 74 Experimente durchgeführt, von denen 13 aus technischen Gründen nicht für eine Auswertung
geeignet sind.
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Tabelle 4.1: Goldgehalt cAu in Atomprozent (at.%), gemessene Dichte ρ und theoretische
Dichte ρtheo des defektfreien Materials gleicher chemischer Zusammensetzung der
diskutierten Proben (jeweils in g/cm3). Zusätzlich sind der Elastizitätsmodul (E)
und der Schermodul (G) aus der Ultraschalllaufzeitmessung in GPa angegeben.

Bezeichner relaxiert cAu ρ ρtheo E G

Y4-2 nein 14(1) 11.879(4) 13.149 93(2) 34(1)
V2-2 nein 14(1) 11.817(4) 13.014 91(3) 33(1)
N1-2 nein 15(1) 11.704(3) 12.970 86(2) 32(1)
U1-1 nein 15(1) 11.950(2) 13.131 91(2) 33(1)
O1-2 nein 18(1) 11.877(4) 13.450 89(3) 33(1)
S1-1 nein 15(1) 11.589(2) 13.149 83(1) 30(1)

Zb3kr-1 ja 15(1.5) 12.306(4) 13.178 105(1) 38(1)
Zb3kr-2 ja 15(1.5) 12.306(4) 13.178 105(1) 38(1)
H1r-2 ja 13(1.5) 11.921(2) 12.956 98(3) 35(1)

Tabelle 4.2: Geometrische Abmessungen der diskutierten Proben (vgl. Abb. 4.1 ).

Bezeichner sw [○] H [mm] B [mm] D [µm] b [µm] s [µm]

Y4-2 45 6.0 1.25 1039 145 130
V2-2 45 6.0 1.25 751 119 110
N1-2 45 6.0 1.25 1050 155 134
U1-1 0 4.5 1.23 939 149 131
O1-2 25 6.0 1.22 811 119 112
S1-1 60 6.0 1.25 1376 147 142

Zb3kr-1 45 6.0 1.23 1029 149 130
Zb3kr-2 45 6.0 1.26 1029 149 130
H1r-2 45 6.0 1.25 812 115 114

Tabelle 4.3: Parameter der Verformungsexperimente der diskutierten Proben. Zusätzlich ist
angegeben, ob die Probe während der Verformung gerissen ist.

Bezeichner relaxiert sw [○] Dehnrate [s−1] Rissbildung

Y4-2 nein 45 1 ⋅ 10−3 nein
V2-2 nein 45 1 ⋅ 10−1 nein
N1-2 nein 45 2 ⋅ 10−4 ja
U1-1 nein 0 1 ⋅ 10−3 ja (quer)
O1-2 nein 25 1 ⋅ 10−3 nein
S1-1 nein 60 1 ⋅ 10−3 ja

Zb3kr-1 ja 45 1 ⋅ 10−4 nein
Zb3kr-2 ja 45 1 ⋅ 10−3 nein
H1r-2 ja 45 1 ⋅ 10−1 ja
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4.2 Referenzprobe Y4-2

Die Diskussion der Ergebnisse erfolgt zunächst anhand der Referenzprobe Y4-2 in aller

Ausführlichkeit; sie entspricht dem in Vorgängerarbeiten am häufigsten untersuchten Stan-

dardfall [25, 28, 30, 167, 186]. Anhand der Ergebnisse dieser Referenzprobe wird anschließend

eine Hypothese zu den während der Verformung aktiven Mechanismen und ihrem Zusammen-

spiel aufgestellt.

Alle anderen Fälle werden in verkürzter Form im Vergleich zu den Ergebnissen dieser Pro-

be diskutiert, wobei das Hauptaugenmerk auf den Auswirkungen des variierten Parameters

(Dehnrate, Stegwinkel, Relaxation) auf das Verformungsverhalten liegt.

Die Daten können in diesem Dokument in vielen Fällen nur in repräsentativen Auszügen

gezeigt werden, anhand derer im Anschluss die Diskussion erfolgen wird. Eine umfängliche

Visualisierung der vollständigen Datensätze zu den diskutierten Proben ist in mehrere Pro-

gramme ausgelagert, die auf dem beigefügten Datenträger enthalten sind. Insbesondere ist

damit eine Darstellung der zeitlichen Entwicklung der Daten
”
in Bewegung“ möglich, wo-

durch ein intuitiver Zugang zu den im Folgenden beschriebenen Sachverhalten möglich wird.

An passender Stelle im Ergebniskapitel wird auf die entsprechenden Programme verwiesen.

Eine vollständige Auflistung und Kurzbeschreibung ist in Anhang A.3, (S 394) zu finden.

Als Einleitung sei hier bereits auf das Programm WPPM-Fit Viewer verwiesen, in dem

alle Diffraktogramme und die entsprechenden WPPM-Anpassungen dargestellt werden. Diese

Anpassungen bilden das Fundament der Auswertung der Röntgendaten, werden aber im

Folgenden nicht mehr einzeln thematisiert.

4.2 Referenzprobe Y4-2

Bei der Probe Y4-2 handelt es sich um eine wie-hergestellte (nicht-relaxierte) SCS mit 45 ○-

Stegwinkel, die mit einer nominellen Dehnrate von 10−3 s−1 verformt wurde.

Zuerst erfolgt eine Analyse der Dehnungsinformationen aus den Kameradaten, die den ma-

kroskopischen Verformungsablauf charakterisieren und als Richtschnur für alle anschließen-

den Diskussionen dient. Danach erfolgen die Besprechungen der aus den Röntgenmessungen

extrahierten Daten. In beiden Fällen werden sowohl kartesische Koordinaten als auch Polar-

koordinaten in den Darstellungen genutzt, deren Ausrichtung in Relation zur SCS in Abb. 4.2

gezeigt.
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Abbildung 4.2: Skizze zur Darstellung der Orientierung der SCS in Bezug auf Polarkoordi-
naten und kartesischen Koordinaten. Stegnormale und Stegrichtung beziehen
sich immer auf die Ausrichtung des Steges und ändern sich für Proben mit
unterschiedlichen Stegwinkeln. In der Abbildung ist der Fall einer 45 ○-Probe
dargestellt.

4.2.1 Verschiebungsfelder

Die Verformung der Probe Y4-2 ist in Abb. 4.3 anhand der gemessenen Verschiebung der

Traverse der Prüfmaschine dargestellt und besteht, wie alle Experimente, aus drei Segmenten:

1. Belastung der Probe durch Verfahren der Traversen mit konstanter Geschwindigkeit

(#1 bis #5).

2. Haltesegment (#5 bis #6).

3. Entlastung mit konstanter Geschwindigkeit (ab #6).

Gleichzeitig dienen diese Messwerte der Prüfmaschine als Regelgrößen für die Verfahrge-

schwindigkeit. Die markierten Punkte (#1 bis #6) in Abb. 4.3 entsprechen charakteristischen

Zeitpunkten bzw. Spannungs-/Dehnungszuständen der Probe während der Verformung. Sie

dienen im Folgenden der Gliederung aller Ergebnisse zur Probe Y4-2. Hier haben nur #1 (An-

fang des Experimentes), #5 (Anfang des Haltesegments) und #6 (Anfang der Entlastung)

erkennbare Bedeutungen, die der restlichen Punkte ergeben sich im weiteren Verlauf.

Wie bereits oben diskutiert, beeinflusst der Verfahrweg der Traverse die Probenbewegung

und Verformung nur mittelbar (siehe Abschnitt 3.3.2, S. 146), sodass nur die aus den Kame-

rabildern extrahierten Verschiebungsfelder verlässliche Informationen über makroskopischen
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Abbildung 4.3: Verfahrweg der Traverse gemäß Prüfmaschine gegen die Zeit. Die Zeitpunkte
#1 bis #6 dienen der nachfolgenden Diskussion der Ergebnisse und werden
bei allen Messdaten angegeben.

Bewegungen der Probe liefern und die Bestimmung der makroskopischen Dehnungen im Steg-

bereich erlauben.

Der dominante Anteil der Relativverschiebung ist die Starrkörperverschiebung der unteren

Hälfte relativ zur oberen in der x-y-Ebene, wodurch die wesentliche Kompressions- und Scher-

bewegung der SCS abgebildet wird. Die Trajektorie dieser Bewegung ist in x- und y-Richtung

in Abb. 4.4a dargestellt. Der Zeitliche Verlauf beginnt bei (ux, uy) = (0,0) und entwickelt sich

dann in Richtung der Nummern #1 bis #6. Zusätzlich ist die Stegorientierung (45 ○) durch

graue Hilfslinien gekennzeichnet. Die anfängliche Bewegung erfolgt nahezu senkrecht zur Ste-

grichtung (#1 bis #2), dreht dann im weiteren Verlauf kontinuierlich in Stegrichtung (#2

bis #4) und erfolgt schließlich annähernd entlang einer um −12 ○ zur Stegrichtung gedrehten

Geraden (#4 bis #5). Am Punkt #5 wird der Motor der Prüfmaschine gestoppt, sodass die

Bewegung zwischen #5 und #6 einer Spannungsrelaxation entspricht. Dieser Teil der Trajek-

torie verläuft entlang der Stegrichtung. Die Bewegung nach Punkt #6 stellt die Entlastung

der Probe dar.

Speziell der anfängliche Verlauf der Probe zwischen #1 und #2 und, etwas schwächer aus-

geprägt, zwischen #2 und #3 ist auffällig, da hier eine Verschiebungskomponente in positive

x-Richtung beobachtet wird. Bei rein elastischem Verhalten sollte diese positive Verschiebung

nicht auftreten, da ux = uy ⋅ c mit c < 0 (vgl. Gl. (3.9a), S. 144). Somit liefert bereits diese

grundlegende Betrachtung einen Hinweis auf nicht elastisches, sondern plastisches Verhalten

zu Beginn der Verformung.

Für die weitere Diskussion ist die Bestimmung der Dehnungskomponenten des Dehnungsten-

sors ¯̄E notwendig; das Vorgehen ist in Abschnitt 3.5 (S. 157) beschrieben und die Ergebnisse

sind in den nachfolgenden Abbildungen dargestellt.
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Abbildung 4.4: a) Trajektorie des unteren Probenteils relativ zum oberen in x- und y-
Richtung. Die Orientierung des Steges ist durch graue Linien dargestellt. Die
Nummern #1 bis #6 markieren die Zeitpunkte, anhand derer Y4-2 disku-
tiert wird. b) Veranschaulichung des Koordinatensystems zur Beschreibung
der Relativbewegung des unteren Teils relativ zum feststehenden oberen Pro-
benteil.

In Abb. 4.5a sind die vier von null verschiedenen Einträge des Dehnungstensors gegen die

Zeit dargestellt und in Abb. 4.5b sind die entsprechenden zeitlichen Ableitungen (Dehnraten)

gezeigt. Letztere wurden über ein Zeitfenster von 15 s (entspricht 150 Messpunkten) mittels

gleitendem Durchschnitt geglättet, um die starken Oszillationen durch das Rauschen in den

Komponenten von E zu mindern. Die drei Diagonalenelemente des Dehnungstensors Ex, Ey

und Ez verhalten sich grundsätzlich ähnlich. Zunächst nehmen sie während der Belastung

betragsmäßig stetig zu, wobei zwischen #1 und #4 eine stetige Beschleunigung stattfindet.

Die Dehnung Ez in z-Richtung (Strahlrichtung) setzt jedoch erst verzögert ab #3 ein. Ab

#4 nehmen die Dehnungen zu #5 hin in y- und z-Richtung mit konstanter Dehnrate zu,

wohingegen die Dehnrate in x-Richtung hier noch weiter ansteigt. Außerdem zeigt sich, dass

die nominelle Dehnrate in y-Richtung von −1 ⋅ 10−3 s−1 nie erreicht wird. Ursachen dafür

sind einerseits die bereits erwähnte, geringe Steifigkeit der Maschine, andererseits die naive

Abschätzung zur Berechnung der benötigten Maschinengeschwindigkeit, die nur anhand eines

linearen Dehnungsmaßes in y-Richtung erfolgte.

Die Scherkomponente Exy fällt von #1 bis #4 und steigt dann bis #5 wieder an. In der

Polardarstellung der Dehnung (siehe Abb. 4.6a) führt Exy zu einer Verkippung der Deh-

nungsellipse: Der Abfall von Exy zwischen #1 und #4 führt zu einer Verkippung in negative

Richtung (siehe #4) und der anschließende Anstieg zu #5 kippt die Ellipse wieder zurück in
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Abbildung 4.5: a) Zeitliche Entwicklung der Einträge des aus den Kameradaten abgeleiteten
Dehnungstensors. Die Zeitpunkte #1 bis #6 sind für alle Kurven durch die
gestrichelten Linien markiert. b) Zeitliche Ableitungen der Kurven aus a),
also die Einträge des Dehnratentensors. Oben sind die korrespondierenden
Dehnungswerte in Druckrichtung (Ey) angegeben.

positive Richtung. Es sei nochmal daran erinnert, dass Exy nicht allein sämtliche Scherung

beschreibt. Der größte Teil der Scherung in der x-y-Ebene äußert sich hier in den nahezu be-

tragsgleichen Anteilen unterschiedlichen Vorzeichens von Ex und Ey, wodurch eine Scherung

entlang des Steges beschrieben wird (Stegrichtung entspricht 135 ○ bzw. 315 ○, Stegnormale

entlang 45 ○ bzw. 225 ○).

Das Vorauseilen von Ey relativ zu den anderen Diagonalenelementen zwischen #1 und #4

ist charakteristisch für ein Kompression. Ab #4 wird Ey durch die schnellere Dehnrate von

Ex eingeholt und überführt die Verformung zunehmend in eine Scherung. Diese wird im

weiteren Verlauf durch eine Dilatation ergänzt. In der Polardarstellung (siehe Abb. 4.6a)

äußert sich das dadurch, dass sich die Beträge der Minima und Maxima der Ellipsen mit

fortschreitender Verformung aneinander annähern und schließlich der Betrag der Maxima

den der Minima übersteigt; in der anfänglichen, kompressiven Verformung sind die Minima

betragsmäßig größer.

In der y-z-Ebene ist der Betrag von Ez durchgängig deutlich kleiner als Ey; die Scherdehnung

in der y-z-Ebene spielt also eine untergeordnete Rolle im Vergleich zu der in der x-y-Ebene.

Folglich sind die Minima in der Polardarstellung in 4.6b betragsmäßig immer deutlich größer

als die Maxima.

Während des Haltesegmentes zwischen #5 und #6 verringern sich alle Dehnraten um ca. eine

Größenordnung im Verlauf weniger Sekunden nach dem Anhalten der Maschine. Übrig bleibt

in allen Komponenten ein langsames Kriechen. In der x-y-Ebene beschreibt das hauptsächlich
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Abbildung 4.6: a) Polardarstellung der Dehnung in der x-y-Ebene zu den Zeitpunkten #1 bis
#6. b) Polardarstellung der Dehnung in der y-z-Ebene zu den Zeitpunkten
#1 bis #6.

eine Scherung entlang des Steges in Übereinstimmung mit der Trajektorie zwischen #5 und

#6 in Abb. 4.4a, die in diesem Bereich entlang der 45 ○-Linien verläuft.

In der Polardarstellung (siehe Abb. 4.6a) wird darüber hinaus deutlich, dass in den 135 ○-

bzw. 315 ○-Richtungen zu allen Zeiten ein Nulldurchgang ist. Das heißt, dass entlang des

Steges zu keiner Zeit eine Streckung stattfindet, sondern nur Scherungen und Kompressio-

nen/Dilatationen senkrecht dazu.

Um eine bessere Trennung zwischen der isotropen, volumenändernden Dehnung und der

formändernden Scherdehnung zu erreichen, bietet es sich an, ¯̄E in den isotropen Anteil Eiso

und den Dehnungsdeviator ¯̄Edev zu zerlegen (siehe Gl. (2.36) und Gl. (2.38), S. 26).

Der isotrope Dehnungsanteil ist in Abb. 4.7a gegen die Zeit aufgetragen und zeigt eine kon-

stant abnehmende, kompressive Dehnung zwischen #1 und #3, eine Stagnation zwischen

#3 und #4 und schließlich eine zunehmend positive Dehnung bis #5. Diese positive isotrope

Dehnung wird durch die zunehmende Dominanz der positiven Dehnungskomponenten Ex und

Ez gegenüber Ey erzeugt, wobei die Beschleunigung der Zunahme von Eiso im Wesentlichen

durch die ansteigende Dehnrate von Ex verursacht wird. Die Zunahme der positiven Dehnung

setzt sich mit niedriger Rate im Haltesegment fort; hier findet also zusätzlich zur Scherung

entlang des Steges eine Dilatation statt.

Um Missverständnissen vorzubeugen sei darauf hingewiesen, dass Eiso nicht mit einer iso-

tropen Volumendehnung gleichzusetzen ist. Durch die Formänderung aufgrund der Scherung

kann der Effekt von Eiso in manchen Richtungen abgeschwächt oder verstärkt werden, wes-

halb man den Verlauf von Eiso nicht mit der relativen Volumenänderung im Steg ∆V /V

verwechseln darf. Diese muss mithilfe von Gl. (2.29) (S. 24) bestimmt werden und ist in
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4.2 Referenzprobe Y4-2

Abb. 4.7b dargestellt. Das Volumen im Steg nimmt stetig bis #4 ab und stagniert dann bis

#5. Im Haltesegment nimmt es dann wieder leicht zu.
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Abbildung 4.7: a) Zeitliche Entwicklung des isotropen Dehnungsanteils Eiso = Sp( ¯̄E)/3. b)
Zeitliche relative Volumenänderung ∆V /V0, wobei V0 das Stegvolumen zu
Beginn der Verformung bezeichnet.

Umgerechnet auf die Dichte des Materials im Stegbereich, erhält man den Verlauf in Abb. 4.8a,

wobei die Anfangsdichte bei t = 0 s aus der vorangegangenen Charakterisierung des Pellets

übernommen wurde und bei der Berechnung die Masse des Steges als konstant angesehen

wird. Der Verlauf zeigt die erwartete Dichtezunahme bis #4, gefolgt von der anschließenden

Stagnation. Zusätzlich ist als Referenzdichte die Dichte eines theoretischen, defektfreien Ma-

terials gleicher chemischer Zusammensetzung als gestrichelte Linie in Abb. 4.8a angegeben

(ρtheo = 13.15 g/cm3). íIn Abb. 4.8b ist der damit errechnete Verlauf der relativen Dichte

ρ/ρtheo gezeigt.

Während der Verformung findet also anfänglich eine Volumenabnahme des Materials im

Stegbereich von 2 % bis 3 % statt. Dieser Wertebereich entspricht den Volumendehnungen,

die bei thermischen Ralaxationen des selben Materials bei 120 ○C nach 5000 min beobachtet

werden können [8, 32] und dort hauptsächlich auf eine Änderung der Korngrenzenstruktur

zurückgeführt wurden. Die anfängliche Dichtezunahme während der Verformung könnte auf

einem ähnlichen Effekt beruhen, mit dem Unterschied, dass hier die zur Aktivierung der

Relaxation notwendige Energie hauptsächlich durch die angelegte mechanische Spannung be-

reitgestellt wird. Das Ende der Dichtezunahme legt nahe, dass sich dieser Prozess im Bereich

zwischen #1 und #4 erschöpft. Daher muss innerhalb dieses Bereiches eine kontinuierliche

Änderung des Zusammenwirkens der Verformungsmechanismen erfolgen.

Die Einträge des Dehnungsdeviators ¯̄Edev sind, analog zu Abb. 4.5a (S. 239), in Abb. 4.9

gegen die Zeit dargestellt und beschreiben die Anteile der Dehnung, die nur durch Scherungen

erzeugt werden. Die Einträge verhalten sich ähnlich zu denen im Dehnungstensor mit dem
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Abbildung 4.8: Zeitliche Entwicklung der Dichte des Stegbereiches. Die horizontale, gestri-
chelte Linie markiert die theoretisch zu erwartende Dichte des Kristalls glei-
cher Zusammensetzung (ρtheo = 13.15 g/cm3). b) Dichte aus a) normiert auf
die theoretische Dichte.

Unterschied, dass hier Edev,y betragsmäßig größer ist als Edev,x und Edev,z, was eine direkte

Konsequenz aus Edev,x +Edev,y +Edev,z = 0 unter Berücksichtigung der jeweiligen Vorzeichen

ist.
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Abbildung 4.9: Einträge des Dehnungsdeviators gegen die Zeit aufgetragen.

Die Polardarstellung des Deviators zeigt die Orientierung der Scherverformung in der x-

y-Ebene (siehe Abb. 4.10a) und in der in der y-z-Ebene (siehe Abb. 4.10b), die natürlich

beide mit der Orientierung des zugrundeliegenden Dehnungstensors übereinstimmen. Hier
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zeigt sich, dass bei Wegfall der Volumendehnungskomponente Eiso der Dehnungsdeviator den

zeitunabhängigen Nulldurchgang des Dehnungstensors bei 135 ○ verliert. Dieser ist also eine

Konsequenz aus der Überlagerung von Eiso und Scherung. Des Weiteren sei hier angemerkt,

dass ab #4 ∣Edev,y ∣ > ∣Ey ∣ ist, d.h. ein Teil der Dehnung in y-Richtung durch Scherung wird

durch den positiven, isotropen Dehnungsanteil Eiso kompensiert. Zuvor haben sowohl Eiso

als auch Edev,y zur negativen Dehnung in y-Richtung beigetragen. Das bedeutet, dass ab #4

die Dehnung in y-Richtung ausschließlich durch Scherung realisiert wird, während vorher die

Verdichtung des Steges einen Teil der Verformung in y-Richtung getragen hat.
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Abbildung 4.10: a) Polardarstellung des Dehnungsdeviators in der x-y-Ebene zu den Zeit-
punkten #1 bis #6. b) Polardarstellung des Dehnungsdeviators in der y-z-
Ebene.

Die Scherung in der y-z-Ebene ist vergleichsweise gering, sodass die Ellipsenform hier (Abb. 4.10b)

wesentlich schwächer ausgeprägt ist als in der x-y-Ebene (Abb. 4.10a). Die Scherung findet

also hauptsächlich in der x-y-Ebene statt.

Für eine quantitative Beschreibung der Orientierung der Scherdehnung, wird der Polarwin-

kel des Dehnungsmaximums in der Polardarstellung ∆φ ausgewertet. Formal entspricht das

der Bestimmung der Orientierung des Hauptdehnungsraumes relativ zur x-y-Basis. Hier ent-

spricht ∆φ = 0 ○ einer liegenden Ellipse mit langer Achse entlang der 0 ○-Richtung, wodurch

eine reine Scherung entlang der 45 ○- und/oder 135 ○-Richtung beschrieben wird 2. Positive

Werte von ∆φ entsprechen Rotationen um die z-Achse in mathematisch positive Richtungen

(gegen den Uhrzeigersinn). Das Ergebnis dieser Analyse ist in Abb. 4.11 gezeigt.

Das abnehmende Rauschen der Daten zu größeren Zeiten, und damit Dehnungen, rührt daher,

dass die anfänglich geringen Dehnungen annähernd eine Kreisform in der Polardarstellung

2Die Scherung in der y-z-Ebene wurde hier der Einfachheit wegen vernachlässigt.
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Abbildung 4.11: Drehung des Hauptdehnungsraumes relativ zum x-y-Koordinatensystem.
Diese Drehung beschreibt gleichzeitig die Abweichung der Hauptscherrich-
tung von der Stegrichtung (entlang 135 ○ und 315 ○).

beschreiben, was die Bestimmung der Maxima schwierig macht. Mit zunehmender Dehnung

nimmt die Elliptizität der Kurven zu und dadurch die Zuverlässigkeit der Maximumsbestim-

mung. Der Bereich zwischen #1 und #2 wird daher nicht weiter betrachtet mit Ausnahme

der Tatsache, dass zum Zeitpunkt #2 ∆φ ungefähr den Wert −15 ○ erreicht hat. Von da aus

nimmt ∆φ bis #5 stetig zu, wobei die Steigung zwischen #3 und #4 größer ist als in den

beiden anderen Abschnitten. Im Haltesegment zwischen #5 und #6 steigt ∆φ nur noch un-

wesentlich an. Das heißt, dass die effektive Scherung entlang von Ebenen mit Normalen in

ϕ = 30 ○ und ϕ = 120 ○ startet, dann im Verlauf der Verformung dreht und schließlich entlang

von Ebenen mit Normalen in ϕ = 47 ○ und ϕ = 137 ○ abläuft.

Dabei wird die anfänglich in der Verformung erzeugte Kompressionsdehnung des Steges durch

spätere Dehnungsinkremente teilweise wieder rückgängig gemacht. Dieser Vorgang lässt sich

anhand des Dehnratentensors darstellen, der als Polarplot in Abb. 4.12 zu den Zeitpunkten

#1 bis #6 gezeigt ist. In der x-y-Ebene zeigen die Ellipsen der Dehnrate bis #3 durch die

Stegkompression eine Neigung in negative Richtung, die bis zum Zeitpunkt #4 abgebaut wird

und ab dann in eine Neigung in positive Richtung übergeht (siehe Abb. 4.12a). Dabei gibt es

zu keinem Zeitpunkt eine Dehnratenkomponente zu einer Normaldehnung entlang des Steges

(ϕ = 135 ○).

Diese Rotation der Hauptdehnratenrichtungen ist in Abb. 4.13, wie für den Dehnungstensor,

mittels ∆φ dargestellt. Aufgrund der relativ niedrigen Dehnraten zu Beginn der Verformung

sind die Daten bis #3 relativ stark verrauscht. Im Haltesegment zwischen #5 und #6 ist dieser

244



4.2 Referenzprobe Y4-2

0

45

90

135

180

225

270

315

-1

10-3

0.5

1

-0.5

0

x

y

(a)

0

45

90

135

180

225

270

315

-1

10-3

0.5

1

-0.5

0

z

y

(b)

#1
#2
#3
#4
#5
#6

Abbildung 4.12: a) Polardarstellung des Dehnratentensors in der x-y-Ebene. b) Polardarstel-
lung des Dehnratentensors in der y-z-Ebene.

Effekt sogar noch stärker ausgeprägt. Dazwischen zeigt sich eine kontinuierliche Rotation der

Hauptdehnratenrichtungen in positive Richtung um ca. 20 ○.
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Abbildung 4.13: Drehung des Hauptdehnratenraumes relativ zum x-y-Koordinatensystem.
Diese Drehung beschreibt gleichzeitig die Abweichung der Hauptscherraten-
richtung von der Stegorientierung (entlang 135 ○ und 315 ○). Der Verlauf wur-
de zwischen #2 und #5 durch die rote Kurve mit einem smoothing spline
als Orientierungshilfe angepasst.
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Der Mechanismus, durch den diese Rotation erzeugt wird, ist eine Überlagerung einer reinen

Scherung entlang des Steges mit einer Kompressionsdehnung senkrecht zum Steg, die im Ver-

lauf der Verformung in eine Dilatation senkrecht zum Steg übergeht. Schematisch sind der

Kompressions- und der Dilatationsfall in Abb. 4.14 dargestellt, wo die blaue Scherungsellipse

jeweils mit einer roten Kompressions- bzw. Dilatationsellipse überlagert wird. Die resultie-

renden Polardarstellungen entsprechen den Neigungen des Dehnratentensors zu Beginn und

Ende der Verformung.
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Abbildung 4.14: Veranschaulichung der Wirkung einer Überlagerung von reiner Scherung
(blau) und linearer Abnahme bzw. Zunahme senkrecht zum Steg (rot). Die
Ergebnisse sind rechts (magenta) dargestellt und zeigen eine negative Rota-
tion der Ellipse im Druckfall und eine positive Rotation im Zugfall. Diese
Darstellung gilt allgemein und für alle additiven Tensorgrößen.

Diese Ergebnisse zeigen, dass spätestens ab #4 Dilatanz im Steg einsetzt, also eine zeitlich

parallel zur Scherung stattfindende positive Dehnung normal zur Scherebene. Vor #4 lässt

sich der gegenteilige Effekt der Kontraktanz beobachten. Ob dieser eine Folge der Scherdeh-

nung ist, oder rein durch die gleichzeitig stattfindende Relaxation der Korngrenzen erzeugt

wird, lässt sich anhand der bisherigen Daten aber noch nicht entscheiden.

Die Kontraktanz/Dilatanz lässt sich über das Verhältnis von Volumendehnung zu Scher-

dehnung mit dem Dilatanzfaktor β quantifizieren. Diese Größe ist z.B. im plastischen Po-

tential des nicht-assoziierten Drucker-Prager-Fließgesetz enthalten und bestimmt dort die

Abhängigkeit der Verformung vom hydrostatischen Druck. Aus dem Dehnratentensor lässt

sich β wie in [42] beschrieben über

β =
Sp(Ėp)

√

2Ėdev,p ∶ Ėdev,p

(4.1)
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bestimmen, wobei hier für die plastische Dehnrate Ėp die Näherung Ėp ≈ Ė verwendet wird.

Für große Dehnungen und/oder im Bereich relativ konstanter Spannungen (ab #4) sollte

die Abweichung zwischen Ėp und Ė verschwinden. Das Ergebnis ist in Abb. 4.15 gezeigt

und beschreibt zwischen #1 und #4 die erwartete abnehmende Verdichtung des Materials,

welche durch einen negativen Dilatanzfaktor repräsentiert wird. Ab #4 steigt β weiter an

und erreicht positive Werte, d.h. es kommt während den Scherdehnungen im Mittel zu einer

Volumenzunahme. Zum Zeitpunkt #4 werden diese aber durch die isotrope Kompression

kompensiert, was sich in der Volumenänderung ∆V /V (siehe Abb. 4.7, S. 241) bzw. in der

Dichte (siehe Abb. 4.8, S. 242) in der beobachteten Stagnation äußert.
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Abbildung 4.15: Dilatanzfaktor β aufgetragen gegen die Zeit. Da β aus den Dehnraten abge-
leitet ist, ist die Genauigkeit zwischen #3 und #5 am größten.

Falls die Normalitäts- und Koaxialitätsbedingung der Plastizitätstheorie erfüllt sind, liefert

der Dehnratentensor einen Hinweis auf die Orientierung des Spannungstensors und damit

eine zusätzliche Information zu den bislang unbekannten Spannungskomponenten. Die Ko-

axialitätsbedingung besagt, dass der Hauptspannungsraum des Spannungstensors und die

Hauptachsen des plastischen Dehnratentensors gleich orientiert sind, was näherungsweise der

Orientierung des gesamten Dehnratentensors entsprechen sollte (siehe Abb. 4.12,S. 245 oder

Abb. 4.13, S. 245). Der Fakt, dass eine deutliche Dilatanz während der Scherung auftritt, lässt

aber Zweifel an der Anwendbarkeit der Normalitätsbedingung und Koaxialitätsbedingung

aufkommen, da diese bei dilatierenden, druckabhängigen Materialien häufig verletzt sind

[42, 163].

Abschließend soll das makroskopisch beobachtbare Verformungsverhalten zusammengefasst

werden. Die Komponente in z-Richtung wird dabei nicht mehr betrachtet, da sie der typi-

schen Querdehnung im Druckexperiment entspricht und insgesamt eine untergeordnete Rolle

spielt. In der x-y-Ebene wird der Dehnungszustand nun in angepasster Form anstatt durch
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4 Ergebnisse

Ex, Ey und Exy durch die Scherdehnung entlang des Steges E∥ und die Normaldehnung

senkrecht zum Steg E⊥ ausgedrückt, indem das Koordinatensystem so gedreht wird, dass je

eine Koordinatenachse entlang des Steges bzw. senkrecht dazu steht. Die Normaldehnungen

entlang des Steges sind, wie oben gezeigt, immer null, womit der komplette Dehnungszustand

in der x-y-Ebene mit dieser impliziten Information nur durch E∥ und E⊥ ausgedrückt werden

kann. Die Ergebnisse für die Dehnungen und Dehnraten sind in Abb. 4.16a, bzw. Abb. 4.16b

dargestellt.
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Abbildung 4.16: a) Dehnungskomponenten in der x-y-Ebene im an den Steg angepassten
Koordinatensystem. b) Dehnraten zu den Dehnungen in a). c) Darstellung
der Orientierung des an den Steg angepassten Koordinatensystems.

Zwischen #1 und #3 nehmen beide Dehnungsmaße in gleichem Maß zu, wobei bis #2 die

Entwicklung der E⊥ Komponenten geringfügig schneller erfolgt; hierin findet sich die positive

ux Komponente aus Abb. 4.4a wieder. Offenbar ist die senkrechte Kompression des Steges zu

Anfang der am leichtesten ablaufende Verformungsmodus. Ab #3 nimmt die Scherrate von

E∥ zu, wohingegen die von E⊥ abnimmt und dann bei #4 schließlich zum Erliegen kommt.

Die Verformung über den Volumenabbau im Steg ist ab dann nicht mehr möglich und wird

komplett über Scherverformung realisiert. Ab #4 nimmt E⊥ mit steigender Dehnrate zu, es

kommt also zunehmend zur Dilatation des Steges. Währenddessen nimmt die Scherrate Ė∥

weiter zu und übernimmt die komplette Verformung in y-Richtung.
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4.2.2 Dehnung und Spannung

Die Gitterdehnungsinformationen der Körner können über die Peakpositionen bestimmt wer-

den, was die Grundlage für die Rekonstruktion der Dehnungstensoren darstellt. Details dazu

wurden in Abschnitt 3.10 (S. 219) diskutiert. Die mittleren elastischen Dehnungen der Körner

werden direkt aus den gemittelten Dehnungstensoren abgeleitet. Die Mittelung muss sowohl

über alle Dehnungstensoren zu unterschiedlichen Orientierungen ϕ der primären hkl-Richtung

erfolgen, als auch über die vier primären hkl-Richtungen 111, 200, 220 und 311. In letzterem

Schritt sind die Flächenmultiplizitäten als Gewichtung zu beachten. Diese mittleren elasti-

schen Dehnungen der kristallinen Phase sind die äquivalente Größe der Röntgenmessungen

zu den makroskopischen Dehnungsinformationen, enthalten aber nur die elastische Dehnung

der kristallinen Phase. Die Komponenten der so erhaltenen, mittleren Dehnungstensoren

sind in Abb. 4.17a und als Polarprojektion in Abb. 4.18 dargestellt. Darüber hinaus sind in

Abb. 4.17b die Einträge des Dehnratentensors gezeigt.
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Abbildung 4.17: a) Zeitliche Entwicklung der Einträge des aus den Röntgendaten abgeleite-
ten elastischen Dehnungstensors der Gitterdehnungen. Die Zeitpunkte #1
bis #6 sind für alle Kurven durch die gestrichelten Linien markiert. b) Zeit-
liche Ableitungen der Kurven aus a), also die Einträge des elastischen Dehn-
ratentensors. Die Dehnratenkurven wurden hier über ein Zeitintervall von
18 s per gleitendem Durchschnitt geglättet.

Die Dehnungen nehmen zwischen #1 und #4 stark und dann ab #4 bis #5 nur noch langsam

zu, wobei maximale Dehnungswerte von ≈ 1.3 % erreicht werden. Die Dehnraten haben bei #3

ein Maximum, was dem Bereich des stärksten Kraftanstiegs entspricht. Ab #5 sind außerdem

Dehnungsrelaxationen als Folge der Spannungsrelaxation bei stehendem Motor zu sehen, vor

allem in den Diagonalenelementen εx und εy.

Die Messunsicherheit dieser Größen kann anhand der Größe des Konfidenzintervalls für die

Gitterdehnungen aus der WPPM abgeschätzt werden, die in Abb. 4.19 für alle Reflexe, jeweils
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über den gesamten Streukegel gemittelt, dargestellt sind. Der daraus berechnete Mittelwert

über alle hkl ist ebenfalls dargestellt und liefert den gesuchten Schätzwert für die Unsicherheit.

Diese beträgt über die gesamte Messung hinweg nur wenige Prozent des gesamten elastischen

Dehnungswertes.
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Abbildung 4.18: a) Polardarstellung der elastischen Dehnung der Kristalle in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. b) Polardarstellung der elastischen Dehnung
der Kristalle in der y-z-Ebene zu den Zeitpunkten #1 bis #6.
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Abbildung 4.19: Messunsicherheiten der Gitterdehnungen aus den hkl-Peaks. Die Messun-
sicherheiten zu jedem Zeitpunkt sind jeweils über alle Polarwinkelseg-
mente gemittelt. Die Mittelwert über alle hkl (lila) berücksichtigt die
Flächenmultiplizitäten als Gewichtungsfaktor.

250



4.2 Referenzprobe Y4-2

Eine Zerlegung in isotrope Volumendehnung (Abb. 4.20a) und Deviator (Abb. 4.20b) ist auch

hier wieder möglich, wobei auf die Darstellung des Deviators in der y-z-Ebene verzichtet wird.

Die isotrope Volumendehnung εiso nimmt bis #4 betragsmäßig zu, wobei ein relativ geringer

Wert von ≈ −0.055 % erreicht wird, und dann bis #5 wieder leicht ab. Im Relaxationssegment

folgt εiso der Abnahme von εx und εy.

Der Deviator (Abb. 4.20b) ist wegen der geringen Werte von εiso fast identisch zum Dehnungs-

tensor. Wie zuvor lässt sich auch hier die Orientierung der Hauptachsen des Dehnungstensors

und des Deviators in der x-y-Ebene durch den Winkel ∆φ darstellen (siehe Abb. 4.21). Zu

Beginn liegt das Maximum des Dehnungstensors bei ≈ −40 ○. Das heißt, dass die Haupt-

kompressionsrichtung fast senkrecht auf dem Steg steht, was seinerseits eine Signatur der

anfänglichen dominanten Kompression senkrecht zum Steg darstellt. Zwischen #1 und #2

dreht das Maximum auf ≈ −10 ○, steigt bis #3 auf ≈ −6 ○ an und ändert sich im Folgenden nur

noch geringfügig; im Gegensatz zum Befund bei der makroskopischen plastischen Dehnung.
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Abbildung 4.20: a) Zeitliche Entwicklung der isotropen Dehnung εiso. b) Polardarstellung des
Dehnungsdeviators in der x-y-Ebene zu den Zeitpunkten #1 bis #6.
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Abbildung 4.21: Drehung des Hauptdehnungsraumes relativ zum x-y-Koordinatensystem.
Diese Drehung beschreibt gleichzeitig die Abweichung der elastischen Haupt-
scherrichtung der Kristallite von der Stegorientierung.
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Wie schon die makroskopischen Dehnungen, haben auch die elastischen Gitterdehnungen

zu allen Zeiten einen gemeinsamen Nulldurchgang, der hier jedoch bei 131.5 ○ bzw. 311.5 ○

in der x-y-Ebene liegt (siehe Abb. 4.18) und damit zum makroskopischen Fall um −3.5 ○

rotiert ist. Damit ergibt sich auch hier die Möglichkeit, den kompletten Dehnungszustand in

der x-y-Ebene durch einen senkrechten und parallelen Dehnungsteil ε⊥ und ε∥ darzustellen,

wobei das Bezugssystem um −3.5 ○ zur Stegrichtung geneigt ist (siehe Abb. 4.22). Auch in

der elastischen Dehnung der Körner dominiert die Scherdehnung entlang des Steges über die

Kompressionsdehnung. Bis #4 nehmen beide Anteile betragsmäßig zu, jedoch nimmt ab #4

die Kompressionsdehnung ε⊥ wieder leicht ab, wohingegen ε∥ weiter zunimmt. Ab #5 ergibt

sich in beiden Fällen die bekannte Signatur der Relaxation.

Weder bei εiso, noch bei ε⊥ tauchen während der gesamten Verformung positive Dehnungswer-

te auf. Das Volumen der kristallinen Körner im Steg nimmt also durch elastische Dehnungen

während der Verformung nicht zu.
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Abbildung 4.22: a) Dehnungskomponenten in der x-y-Ebene im an den Steg angepassten
Koordinatensystem. Hier ist das Koordinatensystem um −3.5 ○ zum Steg
rotiert. b) Dehnraten zu den Dehnungen in a). Die Zeitpunkte #1 bis #6
sind für alle Kurven durch die gestrichelten Linien markiert.

Wie im Methodikteil beschrieben (siehe Abschnitt 3.10, S. 219), werden neben den Dehnungs-

tensoren auch die Spannungstensoren aus den Gitterkonstanten abgeleitet, die analog zu den

Dehnungstensoren gemittelt werden können und in Abb. 4.23 bzw. in Polardarstellung in

Abb. 4.24 dargestellt sind. Die Unsicherheit der Spannungen kann aus der Unsicherheit der

Dehnungen zu < 0.08 GPa abgeschätzt werden. Die mittleren Spannungstensoren verhalten

sich, wie für den elastischen Fall zu erwarten, proportional zu den Dehnungstensoren, da die

Mittelung der Tensoren die statistische Isotropie des Polykristalls herstellt. Dadurch sind auch

die elastischen Eigenschaften der kristallinen Phase im Mittel isotrop und die Hauptachsen
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von Spannungs- und (elastischem) Dehnungszustand koaxial. Im Unterschied zu den Deh-

nungen in z-Richtung sind die Spannungswerte hier negativ, wobei der Betrag der Spannung

stets klein ist. Der Grund dafür ist die Art der Berechnung der z-Komponente der Tensoren,

wodurch das Vorhandensein eines Rutschkegels in der y-z-Ebene im Steg berücksichtigt wer-

den soll, und damit eine Abweichung von der Spannungsfreiheit in z-Richtung erzeugt wird.

Die Orientierung des Spannungstensors in der x-y-Ebene entspricht der des Dehnungstensors

und hat damit den gleichen Verlauf wie in Abb. 4.21 dargestellt.
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Abbildung 4.23: a) Zeitliche Entwicklung der Einträge des aus den Röntgendaten abgeleiteten
Spannungstensors. Die Zeitpunkte #1 bis #6 sind für alle Kurven durch
die gestrichelten Linien markiert. b) Zeitliche Ableitungen der Kurven aus
a). Die Kurven wurden hier über ein Zeitintervall von 18 s per gleitendem
Durchschnitt geglättet.

Anders als bei den Dehnungen, gibt es bei den Spannungen keinen konstanten Nulldurch-

gang bei 131.5 ○ bzw. 311.5 ○, was durch einen signifikanten hydrostatischen Druckanteil (siehe

Abb. 4.25a) verursacht wird, der nicht vollständig durch Scherspannungen in der 131.5 ○ bzw.

311.5 ○-Richtung kompensiert wird. Betrachtet man den Spannungsdeviator (Abb. 4.25b), in

dem der hydrostatische Druckanteil fehlt, findet sich wieder ein über weite Teile quasi kon-

stanter Nulldurchgang. Die größten Scherspannungen wirken also in den Körnern durchweg

entlang des Steges.

Offensichtlich drängt sich der Vergleich zwischen der im Experiment gemessenen Kraft in

y-Richtung und der entsprechenden aus dem Spannungstensor errechneten Kraft auf (vgl.

Gl. (3.19), S. 166). Das Ergebnis davon ist in Abb. 4.26 dargestellt und und weist zwischen

#3 und #5 eine deutliche Diskrepanz zwischen den beiden Kräften auf; also in dem Be-

reich, in dem der größte Teil der plastischen Verformung stattfindet. Hier liegt die Annahme

zu Grunde, dass die Spannungen im gesamten Material, also in kristalliner Phase und in

den Korngrenzen, identisch sind, woraus eine Überschätzung der Kraft resultiert. Aus dieser
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Abbildung 4.24: a) Polardarstellung der elastischen Spannung der Kristalle in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. b) Polardarstellung der elastischen Spannung
der Kristalle in der y-z-Ebene zu den Zeitpunkten #1 bis #6. Angaben in
GPa.
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Abbildung 4.25: a) Zeitliche Entwicklung der isotropen Spannung σiso. b) Polardarstellung
des Spannungsdeviators in der x-y-Ebene zu den Zeitpunkten #1 bis #6.
Angaben in GPa.

Überschätzung folgt, dass die tatsächlichen Spannungen in den Korngrenzen geringer als in

den Körnern sein müssen.

Da nur eine Kraftmessung in einer Richtung vorliegt, ist eine genaue Bestimmung der dreidi-

mensionalen Kräfte bzw. Spannungen in den Korngrenzen nicht möglich. Der Spannungsten-

sor kann im Hauptspannungsraum auf die drei Diagonalenelemente reduziert werden, sodass
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Abbildung 4.26: Vergleich der zeitlichen Entwicklung der Kraft in y-Richtung aus der Mes-
sung mit der Kraftdose und der Spannungsanalyse aus den Röntgendaten.
Letztere entspricht dem Fall, dass das Gesamtmaterial nur aus der kristalli-
nen Phase besteht oder dass die Korngrenzen mechanisch identisch zu den
Körnern sind.

für diese Bestimmung theoretisch zwei weitere, linear unabhängige Kraftmessungen notwen-

dig wären, z.B. in x- und z- Richtung. Praktisch gestaltet sich das schwierig, denn außerhalb

des Steges sind die Kräfte in x-Richtung durch den Rollwagen null und damit nicht mess-

bar. In z-Richtung resultieren die Kräfte im Steg aus der Einspannung des Steges durch das

restliche Material. Auch hier existieren außerhalb des Steges praktisch keine makroskopisch

messbaren Kräfte mehr.

Eine weitergehende, quantitative Analyse ist somit nur unter der korrigierten Annahme

möglich, dass die Spannungszustände in den Körnern und den Korngrenzen verschieden sind.

In diesem Zuge bietet sich die Aufspaltung des Spannungstensors in den hydrostatischen

Druck und den Spannungsdeviator an, denn der hydrostatische Druck in den Körnern und

in den Korngrenzen muss identisch sein. Die Abweichung der Kräfte, und damit der Span-

nungen, beruht damit ausschließlich auf einem Unterschied in den deviatorischen Anteilen

der Spannungen. Da nur eine Kraftmessung zur Verfügung steht, wird der Deviator ¯̄σdev.,tot

des Gesamtmaterials aus dem der Körnern (¯̄σdev.) abgeleitet, indem er mit einem Fitfaktor

χ multipliziert wird, sodass die Kräfte in y-Richtung aus der Spannungsrechnung und der

Messung übereinstimmen. Für den Spannungstensor des Gesamtmaterials ¯̄σtot. erhält man

damit

¯̄σtot = σiso ⋅ 1 + ¯̄σdev,tot = σiso ⋅ 1 + χ ⋅ ¯̄σdev. (4.2)
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Dieses Vorgehen stellt aus oben genannten Gründen eine starke Vereinfachung dar, da die

Abweichungen der Scherspannungen in den Korngrenzen in dieser Rechnung immer isotrop er-

folgen, ohne dass diese Annahme anhand der Messungen überprüft werden kann. Andererseits

erlaubt dieses Vorgehen wenigstens eine mögliche, konsistente Beschreibung der vorliegenden

Daten. Der Wertebereich von χ ist bei der Anpassung auf das Intervall [0.6,1.5] beschränkt.

Dahinter steht die Überlegung, dass die Korngrenzen im Extremfall gar keinen Scherwider-

stand besitzen und damit die Scherspannungen null sind. Der Flächenanteil der Korngrenzen

beträgt bei den üblichen Korngrößenverteilungen im Stegquerschnitt ca. 40 %, sodass die Mi-

schungsregel für die Gesamtspannung eine maximale Absenkung auf 0.4 ⋅0+(1−0.4)⋅σ = 0.6 ⋅σ

ergibt. Für die Begrenzung nach oben existiert kein solches Argument für den Wertebereich

von χ, sodass pragmatisch ein Wert gewählt wurde, welcher höherer ist als das Maximum

von χ über alle Anpassungen. Der Fall χ < 1 beschreibt also eine geringere Scherspannung

in den Korngrenzen als in den Kristallen, was für die Plastizität auf einen niedrigeren Scher-

widerstand hinweist. Umgekehrt ist bei χ > 1 die Scherspannung in den Grenzen höher und

damit auch der Scherwiderstand in ihnen. Bei χ = 1 gilt die ursprüngliche Annahme, dass

Spannungen in Kristallen und Grenzen identisch sind.
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Abbildung 4.27: a) Vergleich der zeitlichen Entwicklung der Kraft in y-Richtung aus der Mes-
sung mit der Kraftdose und der Spannungsanalyse aus den Röntgendaten
nach der Skalierung des Spannungsdeviators der Körner mit χ. Der Faktor
χ diente hier als Fitparameter, sodass beide Kurven perfekt übereinander
liegen. b) Wert des Skalierungsfaktors χ in Abhängigkeit der Zeit. Wer-
te kleiner Eins entsprechen einer Absenkung der Scherspannungen in den
Korngrenzen.

Die aus den so angepassten Spannungen berechneten Gesamtkräfte in y-Richtung sind in

Abb. 4.27a dargestellt und beschreiben die Messung durch den zusätzlichen Freiheitsgrad

exakt. Die zugehörigen Werte für χ sind in Abb. 4.27b dargestellt. Im Bereich bis #2 sind

die Spannungs- und Kraftwerte noch sehr niedrig, sodass die Werte von χ hier relativ wenig
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4.2 Referenzprobe Y4-2

Aussagekraft besitzen und daher nicht weiter berücksichtigt werden. Zwischen #2 und #3

ist χ nahezu konstant bei einem Wert von 0.93 und fällt dann bis kurz vor #4 auf 0.83

ab. Die Scherspannungen in den Korngrenzen sind damit niedriger als in den Kristallen und

fallen am Anfang der Verformung weiter ab, womit auch der Scherwiderstand in den Grenzen

entsprechend abfallen sollte. Ab #4 nehmen Scherspannungen und der Scherwiderstand in

den Grenzen bis #5 wieder zu und erreichen einen Wert von 0.97. Einerseits kann das auf

eine Verfestigung der Grenzen im Verlauf der Verformung hindeuten, andererseits kann dieser

Effekt auf Kornwachstum und dem damit verbunden Abbau von Korngrenzen, herrühren.

Während des Haltesegmentes bleibt χ dann konstant.

Aus ¯̄σtot kann nun eine Spannungs-Dehnungs-Kurve bestimmt werden, indem σtot,y gegen

Ey aufgetragen wird (siehe Abb. 4.28). Zusätzlich sind in Abb. 4.28 die Spannung in y-

Richtung in den Körnern und die von Mises-Vergleichsspannung σa aufgetragen. Letztere

stellt das Spannungsmaß dar, welches in vorherigen Arbeiten aus der FEM abgeleitet wurde

[25, 30, 186] und nach [42] aus dem Spannungstensor mit

σa =

√
1

2
⋅

√

(σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2 + 6(σ2

12 + σ
2
13 + σ

2
23) (4.3)

berechnet werden kann. Das Modell hinter der von Mises-Vergleichsspannung geht von der

Unabhängigkeit des Verformungsverhaltens von der hydrostatischen Spannungskomponente

aus und eliminiert diese folgerichtig aus σa. Es handelt sich daher um ein skalares Maß des

Spannungsdeviators, genauer um σa =
√

3I ′2, wobei I ′2 = 1/2σdev,ijσdev,ij die zweite Invariante

des Spannungsdeviators ist. Im vorliegenden Fall wird dadurch spätestens ab #3 jede expe-

rimentell messbare Spannungskomponente deutlich überschätzt, wenn auch die Spannung in

y-Richtung davon qualitativ richtig beschrieben wird.

Bis zu #3 verhalten sich alle Kurven annähernd gleich. Zwischen #1 und #2 findet eine

geringe Spannungszunahme statt und die Kurven sind links-gekrümmt, was direkt einem

anfänglich elastischen Verhalten widerspricht. Danach gehen die Kurven bis #3 in einen

linearen Anstieg zu höheren Spannungen über, der sich anschließend zwischen #3 bis #4 zu-

nehmen verlangsamt. Das äußert sich in einem deutlichen, rechts-gekrümmten Abknicken der

Spannungs-Dehnungs-Kurven. Zwischen #4 und #5 weicht die Fortentwicklung der Spannun-

gen in den Kristalliten qualitativ von der im Gesamtmaterial ab. Während in den Kristalliten

nur noch eine sehr schwache Spannungszunahme bei hohen Spannungen zu beobachten ist,

nehmen die kleineren (Scher)Spannungen im Gesamtmaterial, also vor allem in den Korn-

grenzen, weiterhin deutlich zu. Im Haltesegment zwischen #5 und #6 kommt es dann überall

gleichermaßen zu einer Spannungsrelaxation.

In vorhergehenden Arbeiten wurden die Spannungs-Dehnungs-Kurven üblicherweise in drei

Bereiche unterteilt (siehe z.B. [30, 186]), wobei der Bereich von #1 bis #3 als linear elastisch,

der Bereich zwischen #3 und #4 als mikroplastisch und der Bereich zwischen #4 und #5

als (makro)plastisch bezeichnet wurde. Der elastische und der makroplastische Bereich wa-

ren aufgrund des zur Auswertung benutzten FEM Modells immer linear. Zusätzlich wurden
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Abbildung 4.28: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in y-
Richtung. Als Spannungsmaße sind sowohl die Spannungen in den Körnern
als auch die des Gesamtmaterials, sowie die von Mises-Vergleichsspannung
angegeben.

die Proben vor der Messung mit 50 N vorbelastet, was in der hier gezeigten Messung dem

Punkt #2 entspricht. Dadurch erfolgte der nichtlineare Anfangsbereich der Verformung fast

komplett in der Vorbelastung und wurde im eigentlichen Verformungsexperiment nicht mehr

beobachtet.

Wenn die Normalitätsbedingung der Plastizitätstheorie erfüllt ist, müssen die Hauptachsen

von Spannungstensor und (plastischem) Dehnratentensor koaxial sein. Um das zu überprüfen,

ist die Orientierung des Spannungstensors gemeinsam mit der des makroskopischen Dehnra-

tentensors in Abb. 4.29 in Form von ∆φ aufgetragen. Es zeigt sich, dass sich diese in der

Regel deutlich voneinander unterscheiden, mit Ausnahme des Bereiches zwischen #2 und

#3. Hier ereignet sich der größte Spannungsanstieg, wodurch der größte Anstieg von elasti-

schen Dehnungen verursacht wird. Der Anteil der elastischen Dehnrate der Gitter an Ė ist in

diesem Bereich somit besonders hoch und da die Hauptachsen von ε und σ zu jeder Zeit gleich

orientiert sind, ist auch die Orientierung der Hauptachsen von Ė und σ in diesem Bereich

allein durch den elastischen Beitrag ähnlicher. Daraus zu schlussfolgern, dass hier kurzzeitig

die elastische Verformung das Geschehen dominiert, ist aber falsch.

Vergleicht man dazu die elastischen Gitterdehnraten und die makroskopischen Dehnraten zum

Zeitpunkt #3, stellt man fest, dass die makroskopischen die elastischen deutlich übersteigen.
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Abbildung 4.29: Drehung des makroskopischen Hauptdehnratenraumes und des Hauptspan-
nungsraumes relativ zum x-y-Koordinatensystem.

Konkret ist zum Zeitpunkt #3 Ė∥/ε̇∥ = 4.9 und Ė⊥/ε̇⊥ = 6.5. Es sind also weiterhin Plasti-

zitätsprozesse aktiv, welche die plastische Verformung aufrechterhalten. Ein elastischer Bei-

trag der Korngrenzen allein könnte diese Diskrepanz nicht erklären, da in diesem Fall die

elastischen Konstanten der Korngrenzen weniger als 10 % der elastischen Konstanten im Git-

ter betragen müssten.

Des Weiteren kann mit Hilfe des Skalierungsfaktors χ und dem Flächenanteil der Korngren-

zen AKG/A der mittlere Spannungszustand in den Korngrenzen abgeschätzt werden. Der

Flächenanteil der Korngrenzen AKG/A lässt sich aus den Korngrößenverteilungen und der

Ausdehnung der Korngrenzen in Richtung ihrer Flächennormale δ bestimmen. In [6] wurde

δ ≈ 0.8 nm abgeschätzt, sodass sich für Y4-2 ein Flächenanteil der Korngrenzen AKG/A ≈ 40 %

ergibt. Für den Spannungsdeviator in der Korngrenze ¯̄σdev,KG erhält man

¯̄σdev,KG = ¯̄σdev ⋅ (
χ − (1 −AKG/A)

AKG/A
) . (4.4)

Die Gesamtspannung in den Korngrenzen ergibt sich, indem man hydrostatische Spannung

und Spannungsdeviator addiert. Die abgeschätzten mittleren Gesamtspannungen in den Korn-

grenzen ¯̄σKG in der x-y-Ebene sind in Abb. 4.30 dargestellt. Die Unsicherheit von ¯̄σKG

aufgrund von Unsicherheiten in AKG/A, χ und ¯̄σdev lässt sich konservativ auf ±0.15 GPa

abschätzen. Bei den Spannungen in den Korngrenzen fällt besonders auf, dass positive Nor-

malspannungen entlang der Hauptzugspannungsrichtung erst viel später (nach #4) auftreten

als in den Körnern; dort war das spätestens ab #3 der Fall. Die Korngrenzen stehen also in
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der x-y-Ebene längere Zeit als die Körner unter allseitigem Druck. Das Einsetzen von po-

sitiven Zugspannungen in den Korngrenzen tritt gleichzeitig mit dem Anfang der positiven

Steigung von Eiso und dem Ende des Volumenabbaus auf, wodurch ein weiteres Indiz dafür

geliefert wird, dass die Korngrenzen für die Volumenänderungen im Steg verantwortlich sind.
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Abbildung 4.30: Polardarstellung der mittleren Spannung der Korngrenzen in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. Angaben in GPa.

Es zeichnet sich also folgendes Bild ab: Bis zum Zeitpunkt #4 läuft ein Verformungsme-

chanismus ab, der im Zusammenspiel mit allen anderen eine makroskopische Kontraktanz

erzeugt, die senkrecht zum Steg erfolgt. Vermutlich handelt es sich dabei um eine mechanisch

induzierte Relaxation im Zusammenspiel mit weiteren Prozessen, welche dominant Scher-

dehnungen erzeugen. Diese Scherprozesse können aufgrund des geringeren Scherwiderstandes

auch in den Korngrenzen ablaufen, wie z.B. Schertranformationen oder Korngrenzenglei-

ten. Dieser Mechanismus oder dieses Zusammenspiel erschöpft sich bis #4 und der Dila-

tanzfaktor β nimmt den Wert null an. Die Koaxialitätsbedingung ist dabei im Allgemeinen

verletzt. Das heißt, dass einfache kontinuumsmechanische Materialgesetze, welche die Nor-

malitätsbedingung (und Koaxialitätsbedingung) enthalten, grundsätzlich ungeeignet zur Be-

schreibung des Verhaltens von nanokristallinem Pd90Au10 sind. Anstatt der Skalierung mit

χ hätte man eine Anpassung des Spannungstensors an die Kraft in y-Richtung auch durch

eine Drehung des Deviators um die z-Achse erreichen können. Die dafür benötigte Drehrich-

tung ist aber entgegengesetzt der Drehrichtung von ∆φ(Ė), sodass dieser Ansatz weniger

naheliegend erscheint. Die Normalitätsbedingung könnte damit in keinem Fall herbeigeführt

werden.

Des Weiteren weisen die Ergebnisse darauf hin, dass eine Überlagerung verschiedener Plas-

tizitätsmechanismen existieren muss, die besonders zu Beginn der Verformung eine Volu-

menänderung erzeugen, welche durch typische Plastizitätsmechanismen in den Körnern nicht
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erreicht werden kann. Weder Versetzungsgleiten, noch eine Änderung der Stapelfehler- oder

Zwillingsdichte erzeugen bei fcc Metallen eine Volumenänderung. Der volumenändernde Me-

chanismus muss also entweder komplett in den Korngrenzen ablaufen, oder Teile des Volumens

der kristallinen Phase und des Korngrenzenvolumens ineinander umwandeln. Wegen des Ex-

zessvolumens in den Korngrenzen kann dadurch netto eine Volumenänderung herbeigeführt

werden. Möglich ist auch eine Überlagerung verschiedener Prozesse in der Korngrenze, bei

der die Volumenänderung durch die Relaxation und die Scherung durch Korngrenzengleiten

oder Schertransformationen erzeugt wird. Bei letzteren tritt zwar eine Volumenänderung im

transienten Zustand auf, diese würde aber eine zeitlich begrenzte Volumenzunahme bewirken.

Nach #4 setzt makroskopische Dilatanz ein. Entweder dreht sich der Relaxationsprozess um,

oder das Zusammenspiel aller anderen Prozesse führt zu einem β > 0. Hinweise auf solche

Prozesse, bzw. kooperativ ablaufende Prozesse, werden im Folgenden behandelt. Zunächst

sollen aber in Vorbereitung darauf die ungemittelten Spannungs- und Dehnungsinformationen

aus der Röntgenstreuung im Detail diskutiert werden.

Die Dehnungen und Spannungen in der x-y-Ebene, sowie ihre zeitliche Entwicklung, können in

dem Programm Tensor Viewer vollständig in Augenschein genommen werden (siehe Anhang

A.3, S. 394).

4.2.3 Dehnungen und Spannungen der Kristallite im Detail

In diesem Abschnitt wird nur eine Auswahl von Spannungs- und Dehnungszuständen vor-

gestellt, denn die schiere Menge an einzelnen Spannungs- und Dehnungstensoren aus den

Röntgenstreuungen macht eine vollständige Diskussion unmöglich. Schon bei den reduzierten

Ausgangsdaten gibt es 90 Winkelsegmente, in denen die primären hkl-Richtungen von jeweils

4 (111, 200, 220, 311) Spannungs- und Dehnungstensoren liegen können. Selbst wenn man

durch Ausnutzung der Symmetrie die Anzahl der Winkelsegmente auf 45 reduzieren würde

und nur die Tensoren zu den Zeitpunkten #1 bis #6 betrachtet, blieben 1080 unterschied-

liche übrig. Im Folgenden wird also nur eine Auswahl besonders instruktiver Beispiele für

die Referenzprobe Y4-2 vorgestellt, alle anderen können mit dem Visualisierungsprogramm

Tensor Viewer (siehe Datenträger) dargestellt werden (siehe Anhang A.3, S. 394).

In diesem Kontext bieten sich als Beispiele die Tensoren zum Zeitpunkt #3 und #4 an. Die

Tensoren davor bzw. danach unterscheiden sich hauptsächlich durch die Beträge der Einträge,

weisen aber qualitativ keine großen Unterschiede zu denen bei #3 bzw. #4 auf. Außerdem

wird als primäre hkl-Richtung jeweils nur die Hauptdruck- und Zugrichtung betrachtet, sowie

die Richtung, die normal auf der Scherebene steht. In den folgenden Polarplots in Abb. 4.31 bis

4.36 sind links (a, c) die Spannungs- bzw. Dehnungstensoren dargestellt und rechts davon (b,

d) ihre Zerlegung in Deviator und isotropen Anteil. Letzterer wird durch einen gestrichelten

Kreis repräsentiert und vereinfacht den Vergleich des Betrages des isotropen Anteils mit dem

Deviator.
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Die Dehnungen und Spannungen der Körner, deren gemeinsame hkl-Richtung zum Zeitpunkt

#3 in Druckrichtung ausgerichtet ist, sind in Abb. 4.31 gezeigt. Die Dehnungen entlang der

Druckrichtung sind für die verschiedenen hkl-Richtungen sehr unterschiedlich und entspre-

chen in ihrer Reihenfolge den elastischen Härten der Körner in diese Richtung von hart (111)

zu weich (200). Die isotrope Stauchung ist in allen Fällen sehr gering und liegt fast auf

der Nullline. Folglich entspricht der Dehnungsdeviator nahezu exakt dem Dehnungstensor.

Dieser Befund wiederholt sich für alle kommenden Dehnungstensoren. Die Reihenfolge bei

den Spannungen in Druckrichtung ist erwartungsgemäß genau umgekehrt wie bei den Deh-

nungen, wobei nur die Spannung der 200-Körner deutlich von den übrigen abweicht. Die

hydrostatische Druckspannung ist hier deutlich von null verschieden und unterscheidet sich

nur geringfügig zwischen den hkl. Diese kleinen Unterschiede genügen jedoch, dass im Devia-

tor die Reihenfolge der Spannungen in Druckrichtung etwas deutlicher hervortritt. Insgesamt

sind die Spannungszustände der verschiedenen hkl aber recht ähnlich.
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Abbildung 4.31: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #3. c) und d) zeigt das gleiche für Spannungen.
Die Orientierung der primären hkl-Richtung – hier in Druckrichtung – wird
durch die orange Linie markiert.
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Ist die primäre hkl-Achse in Zugrichtung orientiert (siehe Abb. 4.32), sind im Prinzip alle

zuvor in Druckrichtung getätigten Aussagen weiterhin gültig; lediglich das Vorzeichen dreht

sich um.
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Abbildung 4.32: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #3. c) und d) zeigt das gleiche für Spannungen.
Die Orientierung der primären hkl-Richtung – hier in Zugrichtung – wird
durch die orange Linie markiert.

Ein anderes Bild präsentiert sich bei Ausrichtung der primären hkl-Richtung entlang der

Scherebenennormalen (siehe Abb. 4.33). Hier sind alle Dehnungstensoren bzw. Deviatoren

identisch und haben einen Nulldurchgang in Richtung Scherebenennormalen. Sie beschreiben

also alle gleichartige Scherungen entlang einer gemeinsamen Scherebene. Die entsprechenden

Spannungstensoren sind dagegen aufgefächert. Betrachtet man den Deviator und den iso-

tropen Anteil, so fällt auf, dass die isotrope Kompression in allen Fällen identisch ist, der

Unterschied in den Spannungstensoren ist also ausschließlich ein Effekt der Scherspannungen.

Anders als bisher, sind hier die größten Spannungswerte bei 200 zu finden, wohingegen 111
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die geringsten Spannungswerte aufweist. Das ist eine direkte Konsequenz der unterschiedli-

chen effektiven Schermodule der verschieden orientierten Körner; entlang 200-Ebenen ist eine

elastische Scherung besonders schwierig, entlang von 111-Ebenen besonders leicht. Dieses Re-

sultat ist insbesondere im Hinblick auf mögliche Versetzungsbewegungen interessant, denn

die dazu nötige Scherspannung hängt linear vom Schermodul ab; unter anderem deswegen

sind die 111-Ebenen i.d.R. auch die bevorzugten Gleitebenen. Die Ergebnisse hier zeigen aber,

dass die Scherspannungen entsprechend der unterschiedlichen Schubmodule mitskalieren (die

Dehnungen sind in allen Fällen identisch), sodass der Aspekt der unterschiedlichen Schub-

module entlang dieser Scherebenen seine Bedeutung verliert. Es existieren natürlich weitere

Faktoren wie Burgers-Vektorlänge, Ebenenabstände etc., welche den Scherwiderstand für

Versetzungsgleiten mitbestimmen. Dennoch weisen diese Ergebnisse darauf hin, dass neben

den üblichen {111}⟨110⟩-Gleitsystemen weitere, eigentlich ungünstigere, vermutlich leichter

aktiviert werden können, als es gewöhnlich der Fall ist.
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Abbildung 4.33: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Deh-
nung (gestrichelt) zum Zeitpunkt #3. c) und d) zeigt das gleiche für Span-
nungen. Die Orientierung der primären hkl-Richtung – hier in entlang der
Scherebenennormalen – wird durch die orange Linie markiert.
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Nach den Tensoren zum Zeitpunkt #3 sollen nun diejenigen zum Zeitpunkt #4 in glei-

cher Abfolge betrachtet werden, beginnend mit der primären hkl-Richtung in Druckrichtung

(Abb. 4.34). In den Spannungen gibt es keinen grundlegenden Unterschied zu vorher, ledig-

lich die Beträge der Spannungswerte sind hier wegen der höheren Belastung durchweg größer

und die Abweichung von 200 zum Rest tritt noch deutlicher hervor. Die Reihenfolge der

Spannungen in Druckrichtung hat sich jedoch im Vergleich zu vorher umgedreht, auf den ei-

gentlich härtesten Ebenen lastet nun die geringste Spannung und auf den eigentlich weichen

311-Ebenen die höchste. Insgesamt sind die Spannungsunterschiede in Druckrichtung aber

geringer als zuvor. In Zugrichtung (≈ 170 ○) fächern die Spannungen aber viel stärker auf als

noch bei #3. Ein Blick auf den Spannungsdeviator und den hydrostatischen Druck zeigt, dass

diese Änderungen vollständig durch unterschiedliche hydrostatische Spannungen erklärt wer-

den; zuvor waren diese für alle hkl quasi identisch. Eine mögliche Ursache dafür ist, dass die

Querdehnungen der 200-Körner größer sind, als bei allen anderen. Eine Behinderung dieser

Querdehnung führt im vorliegenden Fall automatisch zu einer Erhöhung der hydrostatischen

Spannung in diesen Körnern. In den 111-Körnern ist der Anstieg der hydrostatischen Span-

nung aufgrund der geringeren Querdehnung entsprechend am geringsten. Es sei hier daran

erinnert, dass ab #4 der Dilatationsfaktor positiv ist. Nimmt man nun an, dass die Dilatati-

on ausschließlich in den Korngrenzen stattfindet, wäre deren Volumenzunahme eine mögliche

Ursache für die stärkere Behinderung der elastischen Querdehnung der Körner. Umgekehrt

könnte man vor diesem Hintergrund die durchweg sehr ähnlichen hydrostatischen Spannungs-

werte bzw. ähnlichen Spannungswerte in Zugrichtung zum Zeitpunkt #3 interpretieren: Die

kompaktierenden Korngrenzen sorgten für ein Abpuffern der elastischen (Quer-)Dehnungen

der Körner. Lediglich die großen Dehnungen in 200 Richtung überstiegen mit über 1 % Deh-

nung die anfänglich vorhandene Kapazität an linear kompaktierbarem Volumen.
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Abbildung 4.34: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #4. c) und d) zeigt das gleiche für Spannungen.
Die Orientierung der primären hkl-Richtung – hier in Druckrichtung – wird
durch die orange Linie markiert.

Ist die primäre hkl-Richtung in Zugrichtung orientiert (Abb. 4.35), zeigt sich ein ähnliches

Bild: Eine weitere Auffächerung der Dehnungen korreliert mit wesentlich stärker voneinander

abweichenden Spannungswerten, die durch unterschiedliche hydrostatische Drücke erzeugt

werden.

Im Fall der entlang der Scherebenennormalen orientierten, primären hkl-Richtung

(Abb. 4.36) treten im Vergleich zu #3 die geringsten Änderungen auf. Lediglich eine etwas

höhere Abweichung der hydrostatischen Drücke in den verschieden ausgerichteten Körnern

lässt sich feststellen.

Zusammenfassend lässt sich feststellen, dass die zuvor nachgewiesene Änderung des Verfor-

mungsverhaltens auch in den einzelnen, aus der WPPM-Anpassung extrahierten Spannungs-
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Abbildung 4.35: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #4. c) und d) zeigt das gleiche für Spannungen.
Die Orientierung der primären hkl-Richtung – hier in Zugrichtung – wird
durch die orange Linie markiert.

und Dehnungstensoren, deutliche Signaturen hinterlässt. Zwischen #3 und #4 ist dieser

Übergang am deutlichsten, weshalb die Diskussion der Einzeltensoren anhand dieses Bei-

spiels durchgeführt wurde. Dabei zeigen sich zwar interessante Details, im Grunde werden

aber nur die zuvor schon bestehenden Befunde bestätigt. Da die Betrachtung von Einzeltenso-

ren schnell ausufernd wird, wird im Folgenden darauf verzichtet, sofern sich keine zusätzlichen

Erkenntnisse daraus ableiten lassen. Abschließend sei aber noch darauf hingewiesen, dass die

scheinbare Koaxialität der gezeigten Spannungs- und Dehnungstensoren keinesfalls ein typi-

sches Ergebnis ist und dass darauf basierend nicht geschlossen werden kann, dass die elastische

Anisotropie hier nicht beobachtbar ist. Der Eindruck entsteht dadurch, dass bisher nur aus-

gezeichnete primäre hkl-Richtungen berücksichtigt wurden. Weicht man von diesen ab, sind
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Abbildung 4.36: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Deh-
nung (gestrichelt) zum Zeitpunkt #4. c) und d) zeigt das gleiche für Span-
nungen. Die Orientierung der primären hkl-Richtung – hier in entlang der
Scherebenennormalen – wird durch die orange Linie markiert.

die Hauptachsen von Spannungs- und Dehnungstensor in der Regel nicht mehr koaxial und

die Abweichungen hängen von hkl ab. Als Beispiel sind in Abb. 4.37 Dehnungen (a) und

Spannungen (b) zum Zeitpunkt #4 mit primärer hkl-Richtung in 60 ○-Richtung gezeigt, wo

offensichtlich keine Koaxialität mehr besteht.

Die Daten zu den Gitterdehnungen können in dem Programm Tensor Viewer vollständig in

Augenschein genommen werden (siehe Anhang A.3, S. 394).
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Abbildung 4.37: a) Dehnung und b) Spannungen zum Zeitpunkt #4. Die Orientierung der
primären hkl-Richtung wird durch die orange Linie markiert.

4.2.4 Intensität

Als nächstes wird die über den gesamten aktiven Bereich des Detektors integrierte Energie

ED bzw. Intensität der gestreuten Röntgenstrahlen betrachtet, deren Änderung ein Maß für

die Änderung der Anzahl aller streuenden Atome N darstellt; die Richtungsinformation bleibt

bei dieser Betrachung zunächst außen vor. Die Proportionalität ED ∝ N gilt aber nur dann,

wenn die Intensitätsverteilung über den Streuwinkel 2θ unverändert bleibt, da ansonsten alle

streuwinkelabhängigen Terme im Vorfaktor der Intensität bzw. ED (z.B. Atomformfaktor,

Polarisationsfaktor, Lorentz-Faktor, usw.) die Gesamtintensität beeinflussen können. Wenn

sich also eine Textur ausbildet, ist ED ∝ N nicht mehr streng erfüllt. Gleiches gilt, falls

es zu einer Änderung der Anteile von Korngrenz- und Kristallvolumen kommt, da dadurch

Intensität aus dem schmalen 2θ Bereich der Peaks in den diffusen Untergrund umverteilt wird

oder umgekehrt.

Die Gesamtenergie ED ist in Abb. 4.38a über den kompletten zeitlichen Verlauf der Verfor-

mung aufgetragen und zeigt einen monotonen Anstieg bis #5 und ab dann eine Stagnation

bis #6. In Abb. 4.38a ist zusätzlich eine einfache Abschätzung der Entwicklung der Gesamt-

energie auf Grundlage der geometrischen Veränderung des Steges dargestellt (Abschätzung).

Dabei wurde die relative Änderung der Dichte des Materials, die Zunahme des durchstrahl-

ten Volumens durch die Dehnung in z-Richtung, sowie die erhöhte Absorption durch die

größere Materialdicke in z-Richtung berücksichtigt. Dehnungen in x- und y-Richtung sind

nur indirekt durch die Dichteänderung relevant, da die Fläche des durchstrahlten Volumens
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in der x-y-Ebene durch die konstante Strahlgeometrie unverändert bleibt. Konkret gilt für

die Änderung der Gesamtintensität aufgrund der Absorption:

I(t) = I(0) exp (−µ ρ(t) b (1 +Ez(t))). (4.5)

Hier ist µ der Absorptionskoeffizient, ρ die Dichte und b die Anfangslänge des Steges in

Strahlrichtung. Die gestreute Intensität Is ist proportional zu der Anzahl der streuenden

Atome und der momentanen Intensität, also:

Is(t) ∝ I(t) ρ(t) (1 +Ez(t)). (4.6)

Für die zeitliche Entwicklung der gestreuten Intensität Is gilt also mit Gl. (4.5) und Gl. (4.6):

Is = I(0)
∆ρ(t)

ρ(0)
(1 +Ez(t)) (1 − exp (−µ b(ρ(t) (1 +Ez(t)) − ρ(0)))). (4.7)

Die Abschätzung stimmt mit den Rohdaten bis knapp über 400 s (zwischen #4 und #5)

sehr gut überein und liefert damit eine unabhängige Bestätigung dafür, dass die Rekonstruk-

tion der Stegdehnung aus den Kameradaten in diesem Bereich akkurat ist. Umgekehrt ist

damit auch gezeigt, dass der Anstieg der Gesamtintensität in der Streuung bis zu diesem

Punkt ein rein geometrischer Effekt ist. Danach kommt es zu Effekten, die oben genannte

Voraussetzungen verletzen.
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Abbildung 4.38: a) Integrierte Gesamtenergie auf dem aktiven Bereich des Detektors und die
Abschätzung aus der Geometrieänderung des Stegbereiches. b) Änderung
der Größen aus a) und Zerlegung der Energieänderung aus der WPPM-
Anpassung (WPPM Summe) in Einzelbeiträge.

In Abb. 4.38b ist die Energieänderung ∆ED sowohl aus den Rohdaten, als auch aus der

Abschätzung und der WPPM-Anpassung (WPPM Summe) aufgetragen. Für Letztere sind
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außerdem die zeitlichen Entwicklungen der verschiedenen Bestandteile der WPPM darge-

stellt, also der Beitrag der Bragg-Peaks, der TDS und des restlichen Untergrundes (Compton-

Streuung, monotone Laue-Streuung), sowie der Teil des Untergrunds, der in der WPPM durch

das Polynom 2. Grades beschrieben wird (Polynom). Das ist der Teil, der auch dann vorliegt,

wenn keine Probe im Strahl ist, also durch andere Effekte wie z.B. Luftstreuung, Detektor-

rauschen, etc. erzeugt wird und nur schwach von der Probe beeinflusst wird.

Zunächst fällt auf, dass die Gesamtänderung ∆ED in allen Fällen im Vergleich zur Gesamt-

energie relativ gering ist und unterhalb von 3 % liegt. Zur Gesamtenergie trägt der durch das

Polynom beschriebene Untergrund ca. 3/4 bei.

Die modellierte Gesamtenergie übersteigt die aus den Rohdaten extrahierte über die gesamte

Verformung hinweg deutlich (∆ED > 0), ist aber ebenfalls monoton wachsend. Ihre einzel-

nen Bestandteile zeichnen ein komplexeres Bild. Zunächst sinkt der Anteil der Intensität aus

den Peaks bis #3 und wächst dann stark an bis #5, wohingegen die beiden Untergrundbe-

standteile (TDS und Untergrund) einen entgegengesetzten Trend aufweisen. Da TDS und

Untergrund im Modell aneinander gekoppelt sind, ist das zwangsweise der Fall. Im Modell

wird also anfänglich Intensität aus den Peaks in den Untergrund umverteilt. Der Polynom-

Untergrund zeigt bis knapp oberhalb von 400 s (zwischen #4 und #5) eine leichte negative

Steigung und nimmt dann bis #5 rapide zu. Das stimmt mit dem Zeitpunkt überein, in dem

auch die einfache, geometrische Abschätzung beginnt von den Rohdaten abzuweichen. Im

Zuge dessen nimmt auch der Unterschied zwischen der WPPM Summe und den Rohdaten

zu, was den Schluss nahelegt, dass während der plastischen Verformung zwischen #4 und

#5 ein neuer Mechanismus in der Probe einsetzt, der die Röntgenstreuung beeinflusst, aber

nicht korrekt in der WPPM berücksichtigt wurde.

Denn diese ist trotz deutlicher Umverteilung von Intensität zwischen den verschiedenen An-

teilen über die Verformung hinweg offenbar nicht in der Lage, die Intensität der Rohdaten

exakt zu reproduzieren. Stattdessen kommt es zu einer systematischen Überschätzung, vor

allem oberhalb von 400 s. Aufgrund der Freiheitsgrade der WPPM-Anpassung in Bezug auf

die Gesamtintensität und die relativen Intensitäten der Peaks kann dieses Verhalten nicht

nur durch eine einfache Texturbildung erklärt werden. Genauso ist eine Änderung der Unter-

grundintensität als Ursache für die Fälle ausgeschlossen, die sich mit dem Polynom 2. Grades

in den oben gelisteten Grenzen darstellen lassen (siehe Tabelle 3.5, S. 207). Es gibt also im

Detail Effekte in der Probe, die eine Umverteilung von Intensität in 2θ-Richtung bewirken,

die durch das WPPM-Modell systematisch nicht korrekt abgebildet werden.

Betrachtet man die Intensitätsabweichungen für jedes Polarwinkelsegment ∆ϕ getrennt, zeigt

sich über den gesamten Verformungsprozess hinweg ein sechszähliges Muster (siehe Abb. 4.39a).

Zwischen #1 und #4 bleiben die relativen Abweichungen in ihrer Polarwinkelabhängigkeit

stabil mit einer Gesamttendenz zu negativen Werten. Zwischen #4 und #5 tritt dann eine

starke Änderung auf, die an den Orten der vorherigen Maxima nun vergleichsweise stark

ausgeprägte Minima aufweist.
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Abbildung 4.39: a) Polardarstellung der Abweichung der Energie auf dem Detektor zur
WPPM (∆E) in den Polarsegmenten zu den Zeitpunkten #1 bis #6.
b) Residuum aus der WPPM-Anpassung zu den Zeitpunkten #1 bis #6.

Vergleicht man diese Intensitätsabweichungen mit den Residuen aus der WPPM-Anpassung

(siehe Abb. 4.39b), zeigt sich in den Fällen ab #5 ein direkter Zusammenhang zwischen

großen Intensitätsabweichungen und großem Residuum, also schlechter Anpassung3. Bis #4

ist dieser Zusammenhang praktisch nicht vorhanden.

Um eine mögliche Ursache dieser auffälligen Abweichungen zu identifizieren, sollen nun drei

Diffraktogramme und ihre Anpassungen zum Zeitpunkt #5 betrachtet werden. Diese Dif-

fraktogramme (siehe Abb. 4.40) stammen aus den Winkelsegmenten ϕ = 50 ○, ϕ = 82 ○ und

ϕ = 134 ○ und repräsentieren folgende drei Fälle:

• ϕ = 50 ○: starke Intensitätsabweichung, großes Residuum

• ϕ = 82 ○: kleine Intensitätsabweichung, mittleres Residuum

• ϕ = 134 ○: kleine Intensitätsabweichung, kleines Residuum

Die Anpassungen reproduzieren in allen Fällen die wesentlichen Merkmale der Diffraktogram-

me. Ein durchgängiges Problem stellt der 220-Peak dar (3. von links), der in allen Fällen von

der WPPM-Anpassung überschätzt wird, vor allem im Bereich der rechten Flanke. Die deut-

lichen Abweichungen im Bereich des 111-Peaks werden durch die hohe Intensität dieses Peaks

und seine steilen Flanken erzeugt und bestehen in ähnlicher Form bei allen Anpassungen. Der

entscheidende Unterschied zwischen den drei Anpassungen liegt aber darin, dass für ϕ = 50 ○

das Diffraktogramm durch die Anpassung insgesamt überschätzt wird, also die ∆ED Kurve

hauptsächlich unterhalb von null liegt. Bei ϕ = 82 ○ ist das schwächer ausgeprägt und bei

ϕ = 134 ○ ist ∆ED relativ gleichmäßig um null verteilt.

3

”
Schlecht“ ist hier im Vergleich zu den vorherigen Anpassungen zu verstehen.
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Abbildung 4.40: Diffraktogramme und ihre WPPM-Anpassung zum Zeitpunkt #5 aus drei
unterschiedlichen Polarwinkelsegmenten (siehe auch WPPM-Fit Viewer).
Zusätzlich ist die Abweichung ∆ED dargestellt, deren Verlauf jeweils durch
ein Polynom 9. Grades angepasst wurde.

273



4 Ergebnisse

Zur genaueren Untersuchung wurden die ∆ED Kurven in Abb. 4.40 mit einem Polynom 9.

Grades angepasst, wodurch der Verlauf von ∆ED erfasst wird, ohne jedoch die Abweichungen

in den Peakflanken zu berücksichtigen. In Analogie zu den Diffraktogrammen handelt es sich

hier sozusagen um den Untergrund der Abweichungen ∆ED. Die Fits sind in Abb. 4.41 in

höherer Auflösung in ∆ED aufgetragen. Im Fall von ϕ = 50 ○ trägt der Untergrund der Abwei-

chung allein bereits 72 % der gesamten Abweichung bei und ist damit hauptverantwortlich für

die in Abb. 4.39a (S. 272) gezeigten, ϕ-periodischen Abweichungsminima. Die Abweichungen

in den Peakflanken sind also nicht entscheidend.
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Abbildung 4.41: Detailansicht der Fits an ∆ED aus Abb. 4.40.

Die Form der welligen ∆ED Verläufe in Abb. 4.39a entspricht keinem in der WPPM-Anpass-

ung enthaltenen Modellbestandteil. Eine Anpassung dieses Verlaufs ist damit grundsätzlich

nicht möglich und verlangt nach einer Erweiterung des Modells um einen offenbar fehlenden

Bestandteil. In der WPPM-Anpassung, wie sie in dieser Arbeit zum Einsatz kommt, wird eine

Minimierung des Residuums dadurch erreicht, dass die Intensität der Rohdaten überschätzt

wird, wodurch die Auswirkung dieses fehlenden Modellbestandteils minimiert wird. Das be-

deutet, dass die in Abb. 4.39a gezeigten ∆ED keine akkurate Abbildung des Intensitätsprofils

des fehlenden Bestandteils sind und nur einen Anhaltspunkt für die Natur desselben liefern. In

diesem Sinne erinnern die ∆ED an eine an der x-Achse gespiegelte Signatur von Streuung an

amorphen Materialien, deren breite Maxima charakteristisch für die Verteilung von nächsten

Nachbarabständen sind [62]. Die Spiegelung an der x-Achse wird durch die Überschätzung

der Intensität durch die WPPM-Anpassung verursacht.

In der verwendeten WPPM-Anpassung ist kein Modell für Streuung an einer amorphen Phase

enthalten. Das Vorhandensein von Nichtgleichgewichtskorngrenzen führt aber lokal sicherlich

dazu, dass amorph erscheinende Anordnungen von Atomen in Richtung des Streuvektors

existieren, die eine wellige, schwach ausgeprägte Signatur im Beugungsbild erzeugen könnten.
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Der damit am nächsten verwandte Bestandteil der WPPM-Anpassung ist die TDS, die prin-

zipiell auch statische Verrückungsschwankungen abbilden kann. Sie ist jedoch hier immer in

Bezug auf Kristallgitter gerechnet, was zu ausgeprägten Spitzen im Bereich der hkl-Reflexe

im Streubild und konkaven Flanken der TDS-Maxima führt (siehe Abb. 3.46, S. 202). Beide

Merkmale treten bei der Streuung an amorphen Materialien nicht auf.

Es sei darauf hingewiesen, dass die Amplitude dieser Schwankung in ∆ED selbst zum Ende der

Verformung noch sehr gering ist. Dennoch lässt sie sich auch schon zu Beginn der Verformung

feststellen, wo die Residuen noch deutlich kleiner sind. Die Wellenform ist dann mit noch

geringerer Amplitude symmetrisch um die Nulllinie verteilt.

Allerdings erklärt die Streuung an amorphen Strukturen nur einen geringen Teil von ∆ED

in Abb. 4.39a (S. 272), und insbesondere nicht die Unterschiede zwischen den verschiedenen

Winkeln ϕ. Das Thema wird später wieder aufgegriffen, zuvor muss jedoch ein anderer Aspekt

der Intensität betrachtet werden.

Eine robuste und instruktive Größe, die sich aus der Intensität ableiten lässt, ist die rela-

tive Intensitätsänderung eines hkl-Peaks in einem Winkelsegment während der Verformung

(Ihkl − ⟨Ihkl,#1⟩ϕ). Die Bezugsgröße ⟨Ihkl,#1⟩ϕ ist die über alle ϕ-Segmente gemittelte Inten-

sität des Peaks hkl zu Beginn der Verformung (#1), die für alle Polarwinkelsegmente gleich

ist und so Vergleiche zwischen verschiedenen Polarwinkelsegmenten erlaubt. Bei einer Nor-

mierung auf die Anfangsintensität des jeweiligen Winkelsegmentes wäre diese Eigenschaft

nicht erfüllt. Um die Intensitäten verschiedener Peaks im Sinne von ∆It = ∆ED ∝ ∆N zu

interpretieren und miteinander zu vergleichen, ist es außerdem notwendig, den 2θ und hkl-

abhängigen Einfluss des Vorfaktors aus den Intensitätsänderungen herauszurechnen. Hier

wird eine vereinfachte Variante benutzt, in der in jedem Zeitschritt für jeden hkl-Peak der

über ϕ gemittelte Vorfaktor ⟨V Fhkl⟩ϕ verwendet wird. Da nur der Vergleich zwischen den In-

tensitäten verschiedener Peaks, nicht jedoch deren Absolutwerte, von Interesse sind, werden

die modifizierten Intensitäten I ′ mit (⟨V Fhkl⟩ϕ/⟨V F111⟩ϕ)
−1 skaliert. Der 111-Peak dient hier

als frei wählbarer Bezugspunkt und es gilt

I ′ = (Ihkl − ⟨Ihkl,#1⟩ϕ) ⋅ (⟨V Fhkl⟩ϕ/⟨V F111⟩ϕ)
−1 . (4.8)

Es sei noch einmal betont, dass dieser Schritt essenziell für die Vergleichbarkeit über verschie-

dene Peaks hinweg ist und ein Auslassen desselben teilweise völlig falsche Eindrücke in Bezug

auf die Anzahl streuender Atome erwecken kann. Die so skalierten I ′ Werte sind nicht mehr

direkt mit den vorherigen Intensitätswerten vergleichbar4, stellen dafür aber ein direktes Maß

für ∆N dar.

Modifizierte Intensitäten I ′ sind für die Zeitpunkte #1 bis #6 in Abb. 4.42 dargestellt und

zeigen Änderungen von bis zu 40 % im Verlauf der Verformung. Abweichungen von der An-

fangsintensität sind am deutlichsten zu den Zeitpunkten #5 und #6 ausgeprägt, wo sich

4Mit Ausnahme des 111 Peaks natürlich.
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Abbildung 4.42: Integrale Intensitätsänderungen ∆I ′ = (Ihkl − ⟨Ihkl,#1⟩ϕ)/(⟨V Fhkl⟩ϕ/⟨V F111⟩ϕ)

bezogen auf den Anfangszustand (#1) (siehe Text). Gezeigt sind die Inten-
sitätsänderungen zu den Zeitpunkten #1 bis #6.

eine ϕ-periodische Schwankung ausgebildet hat, wie sie prinzipiell z.B. auch schon in [28]

für 111, 200 und 220 beobachtet wurden. Diese Strukturen bilden sich zwischen #4 und #5

aus. Zwischen #3 und #4 entwickelt sich eine davon verschiedene, einfachere Struktur von

Minima/Maxima in den Hauptdruck- und/oder Hauptzugrichtungen. Vor #3 findet praktisch

keine Änderung statt. Die Texturbildung ist also ein zweistufiger Prozess, der zunächst eine

Übergangsstruktur bildet und dann ab #4 die endgültige Intensitätsverteilung ausbildet.

Positive Werte von I ′ bedeuten für den jeweiligen Peak, dass mehr Atome Teil der entspre-

chenden hkl-Ebenen in Streubedingung sind. Das kann einerseits durch eine Umorientierung

der Körner, andererseits durch selektives Kornwachstum entsprechend orientierter Körner be-

wirkt werden. Eine Unterscheidung dieser beiden Anteile ist, rein auf Grundlage der integralen

Intensitäten, nicht möglich und wird im Zusammenhang mit den Korngrößenauswertungen

wieder aufgegriffen.
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Abbildung 4.43: a) Intensitätsänderung ∆I ′ zu den Zeitpunkten #4 und #5 für hkl = 111.
Die Lage der zur Berechnung der Texturentwicklung verwendeten Maxima
wird durch die farbigen Linien markiert, wobei die Bedeutung der Farben wie
in Abbildungsteil (b) ist. b) Intensitätsdifferenzen lokaler Maxima für hkl =
111. Diese Größe ist ein Maß für die Textur im Steg und zeigt die zeitliche
Entwicklung des Übergangs- und Endzustandes. Der Übergangszustand ist
durch ∆I ′111 = ∆I ′111(82 ○) charakterisiert und der Endzustand durch ∆I ′111 =

∆I ′111(54 ○) −∆I ′111(82 ○).

Die vier hkl-spezifischen Intensitätsmuster aus Abb. 4.42 entwickeln sich synchron zueinander,

sodass es für eine Quantifizierung dieser Texturbildung ausreichend ist, die Entwicklung der

Maxima für einen einzelnen hkl-Reflex über die Zeit zu verfolgen. Hier wird dafür der Fall

hkl = 111 gewählt, da damit eine einfache Unterscheidung des Übergangs- und Endzustandes

möglich ist. Das Maximum des Übergangszustandes befindet sich in Hauptdruckrichtung

bei ϕ = 82 ○, sodass ein Maß für die Ausprägung des Übergangszustandes die Intensität des

Maximums in diesen Richtungen ist, also ∆I ′111 = ∆I ′111(82 ○). Der Endzustand unterscheidet

sich vom Übergangszustand für hkl = 111 dadurch, dass das Maximum bei ϕ = 82 ○ zu einem

lokalen Minimum wird und u.a. bei ϕ = 54 ○ ein neues lokales Maximum entsteht. Um ein

Maß für die zeitliche Entwicklung nur dieser zweiten Komponente zu erhalten, kann man

die Differenz dieses neuen Maximums zum neuen Minimum (alten Maximum) nutzen, also

∆I ′111 = ∆I ′111(54 ○) −∆I ′111(82 ○). In Abb. 4.43 ist die zeitliche Entwicklung des Übergangs-

und Endzustandes zusammen mit der Lage der Intensitätsmaxima dargestellt.

Die Entwicklung des Übergangszustandes findet hauptsächlich zwischen #2 und #4 statt,

also parallel zur Zunahme der Druckbelastung. Ab #4 setzt dann die Ausbildung des End-

zustandes ein, die kontinuierlich bis #5 erfolgt.
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An dieser Stelle bietet sich ein Rückbezug auf das Problem der Abweichungen der Intensität

aus den Rohdaten und der WPPM-Anpassung an, denn die Positionen der Maxima der 111-

Intensitätsänderung sind identisch mit den Positionen dieser Abweichungen (vgl. Abb. 4.39a,

S. 272). Das legt die Vermutung nahe, dass die Ursache der Abweichung der modellierten

Intensitäten von den Rohdaten in der Modellierung der Intensität des 111-Peaks liegt. Diese

ist gleichzeitig der Skalierungsfaktor des gesamten modellierten Diffraktogramms; die Inten-

sitäten der restlichen Peaks ergeben sich aus den bekannten Vorfaktoren. Um die Bildung einer

Textur zu berücksichtigen, können der 200-, 220- und 311-Peak über die Faktoren ihkl skaliert

werden. Damit diese Faktoren nicht die Rolle des Debye-Temperaturfaktors übernehmen5,

wird die Ähnlichkeit ihres Verlaufs zu dem des Debye-Temperaturfaktors bestimmt und dar-

aus der Zusatzterm PI in Gl. (3.20) (S. 171) abgeleitet. Wenn sich die Intensität durch die

Texturbildung in einem Winkelsegment so ändern, dass die entsprechenden ihkl eine höhere

Ähnlichkeit zu einem möglichen Verlauf des Debye-Temperaturfaktors aufweisen, führt das zu

einer Erhöhung von PI , wodurch die Anpassung scheinbar schlechter wird. Später wird man

sehen, dass die Debye-Temperatur in der Anpassung mit Aufkommen der Textur physikalisch

unsinnige Werte annimmt um diesen Effekt zu kompensieren. Diese Wechselwirkung in der

WPPM-Anpassung ist leider zu spät aufgefallen, sodass eine Korrektur dieses ungewollten

Effektes aus Zeitgründen nicht mehr möglich war.

Die Intensitätsmaxima und -minima der gezeigten hkl-Reflexe sind in verschiedenen Ori-

entierungen nicht unabhängig voneinander, sondern über die Kristallstruktur miteinander

gekoppelt. Dieser Umstand wurde zuvor bei der Berechnung der Dehnungstensoren aus den

Gitterdehnungen ausgenutzt. In diesem Zusammenhang wurden bereits in Abb. 3.53 (S. 221)

und in Tabelle 3.8 (S. 222) die Winkelbeziehungen der verschiedenen Ebenen zueinander an-

gegeben, die hier wieder bei der Interpretation der Intensitätsverteilung zum Zeitpunkt #56

zur Anwendung kommen werden. Die deutlichsten Intensitätsänderungen gehen vom 220-

und 200-Peak etwa in Druckrichtung aus (ϕ ≈ 82 ○); im Fall von 220 liegt dort ein Maxi-

mum in der Intensitätsänderung vor und bei 200 ein Minimum. Beide Änderungen sind also

komplementär zueinander. Daher wird zunächst folgende, vereinfachende Hypothese genutzt:

Allen beobachteten Intensitätsänderungen ist gemein, dass sie über solche Umorientierun-

gen/Kornwachstum zustande kommen, dass die Intensität des 220-Peaks in Druckrichtung

erhöht wird oder die des 200-Peaks verringert wird. Dadurch genügt es in erster Näherung,

220 und 200 entlang der Druckrichtung als primäre hkl-Richtung zu betrachten. Alle übrigen

Intensitätsänderungen sollten sich dann aus den h′k′l′-Beziehungen zu dieser Primärrichtung

ergeben. Bei der Berechnung der Dehnungstensoren war es unerheblich, welche Kombina-

tionen von sekundären h′k′l′ gleichzeitig vorliegen können; das ist hier anders. Daher wird

die aus Abb. 3.53 (S. 221) bekannte Darstellung für die 220-Primärrichtung in ihre fünf

5Das würde praktisch immer passieren, denn die ihkl sind in der Anpassung flexibler als ein einziger Debye-
Temperaturfaktor.

6Zu diesem Zeitpunkt ist die Textur besonders ausgeprägt.
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Bestandteile (A bis E) zerlegt, von denen jeder eine Kombination von gleichzeitig die Streu-

bedingung erfüllenden Ebenen im Kristall repräsentiert. In Abb. 4.44 ist links der Bestand-

teil für 220-Primärrichtung aus Abb. 3.53 wiedergegeben und die Zerlegung davon ist rechts

dargestellt. Für die sekundären h′k′l′-Richtungen sind außerdem die Miller’schen Indizes an-

gegeben. Zusätzlich ist in der Mitte die hkl-Richtung entlang des Röntgenstrahls, in die

Zeichenebene hinein, dargestellt. Die Bestandteile A bis E können durch Rotation um die

primäre 220-Richtung ineinander überführt werden. Dabei besitzen A und B eine zweifache

Rotationssymmetrie und C, D und E eine vierfache. Entscheidender ist aber die Anzahl der

Permutationen der Miller’schen Indizes der Normalenvektoren, die die tatsächliche Multipli-

zität der Komponenten verraten. Hier sind dann auch die Fälle berücksichtigt, bei denen die

primäre Richtung entlang einer kristallographisch äquivalenten Richtung orientiert ist, z.B.

2̄20 anstatt 220. Damit ergeben sich folgende Multiplizitäten: A 12, B 6, C 8, D 24, E 24.
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Abbildung 4.44: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primäre 220-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

In Abb. 4.45 ist das gleiche wie in Abb. 4.44 für 200 gezeigt. Hier existieren nur drei ver-

schiedene Zerlegungen F, G und H, wobei F eine zweifache und G und H eine vierfache

Rotationssymmetrie bei Drehungen um 200 besitzen. Für die Multiplizitäten gilt: F 6, G 12,

H 18. Die Komponente F ist eine um 45 ○ um 001̄ gedrehte Variante von Komponente B, hier

wurde also nur die primäre hkl-Richtung vertauscht.
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Abbildung 4.45: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primäre 200-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

Schließlich sei hier noch die Zerlegung für den Fall angegeben, dass die primäre Richtung 111

ist. Hier existieren zwei grundsätzlich verschiedene Zerlegungen I und J mit den Normalen-

vektoren vom Typ 1̄10 und 2̄11 (siehe Abb. 4.46). Genau genommen könnte die Zerlegung I

in zwei einzelne Zerlegungen mit Normalenvektor 1̄10 und 11̄0 aufgespalten werden, die durch

eine 180 ○-Drehung um die 111-Achse ineinander überführt werden können. Die Situation ist

aber schon so unübersichtlich genug, weshalb darauf verzichtet wird. Auf die Wiedergabe

des komplexen Falls mit 311-Primärrichtung wird hier ebenso verzichtet; der Anschaulichkeit

wäre damit nicht geholfen.
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Abbildung 4.46: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primäre 111-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

Mit diesen Schablonen können jetzt die Beziehungen zwischen den Intensitätsänderungen

untersucht werden. Dazu wurden Letztere für den Zeitpunkt #5 in einem gemeinsamen Po-

lardiagramm in Abb. 4.47 (links) zusammengefasst; rechts davon sind die Zerlegungen A

bis J gezeigt. Hier wurde zwecks besserer Übersichtlichkeit auf die Wiedergabe der Inten-

sitätsänderungen von den hkl-Primärrichtungen verzichtet, die in der jeweiligen Zerlegung
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keine Rolle spielen. In einem ersten Schritt wird Abb. 4.47 mit der einfachsten Annahme

betrachtet, dass alle Komponenten A bis E, bzw. F bis H mit gleicher Wahrscheinlichkeit

auftreten. Dann sollten die Positionen der Maxima mit denen übereinstimmen, die in den

Zerlegungen A bis E angegeben sind. Die der Minima sollten mit denen aus den Zerlegun-

gen F bis H übereinstimmen. Dort wo sich Maximum und Minimum der selben Peakin-

tensität überlagern, sollte die Gesamtbilanz eine Intensität nahe null ergeben. Das alles ist

näherungsweise erfüllt, insbesondere wenn man beachtet, dass das Maximum/Minimum ent-

lang der primären hkl-Richtung (ϕ ≈ 82 ○) relativ breit ist. Die groben Merkmale werden also

schon mit dieser einfachen Betrachtung erfasst.
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Abbildung 4.47: (links) Intensitäten I ′ zum Zeitpunkt #5 der verschiedenen hkl. (rechts)
Wiederholung der Darstellung links, wobei für jede der Komponenten A bis
J die primäre hkl-Richtung in Richtung des 220-Maximums ausgerichtet ist.
Die hkl-Komponenten, die in einer Zerlegung nicht vorkommen, wurden aus
den I ′ Darstellungen entfernt.
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Für eine exaktere Analyse kann auf dieser Idee aufbauend ein Programm zur Anpassung der

Intensitätsverteilung erstellt werden. Als Fitparameter dienen die modifizierten Intensitäten

I ′ der Komponenten A bis J, die sowohl in der primären als auch in allen sekundären Rich-

tungen gleichermaßen Beiträge zur Intensität beisteuern. Die kompletten Verteilungen aus

Abb. 4.47 (links) ergeben sich dann aus der Addition aller Teilbeiträge. Um den kompletten

Bereich des 220-Intensitätsmaximums in Druckrichtung zu erfassen, ist außerdem eine Va-

riation der primären hkl-Richtung aller Komponenten notwendig. Diese Variation sollte auf

einen Wertebereich beschränkt bleiben, in dem es nicht zu doppelten/uneindeutigen Inten-

sitätsbeiträgen kommt. Dreht man beispielsweise die primäre 220-Richtung um (ϕ = 60 ○),

wird die primäre 220-Richtung in Komponente C identisch zu einer vorher sekundären 02̄2-

Richtung. Um diese Fälle zu vermeiden, sollte die Winkelvariation δϕ nicht den kleinsten

vorkommenden Winkel zwischen primären und sekundären hkl-Richtungen überschreiten.

Der kleinste relevante Winkel ist hier zwischen der 111- und 220-Richtung mit ∆ϕ = 35.264 ○;

die 311-Richtung ist nicht Teil des Modells und kann daher vernachlässigt werden. Aus tech-

nischen Gründen wird die Variation hier zwischen −38 ○ und +38 ○ relativ zu einer mittle-

ren primären hkl-Richtung in 1 ○-Schritten durchgeführt; die globale, mittlere primäre hkl-

Richtung entspricht etwa dem Maximum der 220-Intensität in Druckrichtung und ist eben-

falls ein Fitparameter. Zusätzlich wird über einen weiteren Parameter eine isotrope Inten-

sitätszunahme berücksichtigt, was aufgrund der Dichtezunahme notwendig ist. Als technischer

Unterbau dient eine modifizierte und vereinfachte Variante der WPPM-Anpassung (siehe

Datenträger: Texture fit 3.m, texture builder 3.m oder Tabelle A.13, S. 397). Die Ergebnis-

se dieser Anpassungen sind für die Intensitätsänderungen zum Zeitpunkt #5 in Abb. 4.48

dargestellt und zeigen, in Anbetracht des einfachen Modells (enthält z.B. keine primären

311-Richtungen), eine hervorragende Reproduktion der Messdaten.

Die Fitparameter liefern ein Maß für die Beiträge der Komponenten A bis J in den verschiede-

nen Orientierungen, dargestellt in Abb. 4.49. Diese Parameterkombinationen liefern offenbar

eine gute Beschreibung der Messdaten, es kann aber nicht garantiert werden, dass diese Er-

gebnisse eine eindeutige oder global optimale Lösung darstellen. Aufgrund der großen Anzahl

an Fitparametern und der Komplexität der Abhängigkeiten sind diese Nachweise nicht einfach

durchführbar und eine Diskussion anhand der Korrelationsmatrix führt hier nicht weiter, da

sie größer als 700x700 wäre. Davon abgesehen liefern die Ergebnisse zumindest eine mögliche

Erklärung der Daten und geben einen Einblick in die damit verbundenen Orientierungsver-

teilungen.

Zunächst fällt auf, dass der größte Teil der Intensitätsänderung von nur zwei Komponenten

stammt: E und H (siehe Abb. 4.49c). Beide liefern ca. um eine Größenordnung höhere Beiträge

als die restlichen Komponenten und sind damit hauptverantwortlich für das Maximum (220)

und Minimum (200) in Druckrichtung, sowie das dazu senkrechte Maximum in der 311-

Intensität. Die Komponenten A bis D sind in Abb. 4.49a dargestellt. A und C sind annähernd

symmetrisch um die mittlere primäre hkl-Richtung verteilt und zeigen jeweils zu beiden Seiten

282



4.2 Referenzprobe Y4-2

0

45

90

135

180

225

270

315

-20

-10

0

10

20

(a) hkl=111

0

45

90

135

180

225

270

315

-20

-10

0

10

20

(b) hkl=200

0

45

90

135

180

225

270

315

-20

-10

0

10

20

(c) hkl=220

0

45

90

135

180

225

270

315

-20

-10

0

10

20

(d) hkl=311

Abbildung 4.48: Gemessene Intensitätsänderungen ∆I ′ zum Zeitpunkt #5 (schwarz) und An-
passungen (rot) für die vier verschiedenen hkl-Beiträge. Die schwarz darge-
stellten Daten sind identisch zu denen, die in Abb. 4.47 (links) dargestellt
sind.

ausgeprägte Maxima. Im Fall von C existiert ein zusätzliches, drittes Maximum bei kleinen

Winkeln. Die Komponente D ist relativ schwach ausgeprägt und weist ein Minimum unterhalb

der mittleren primären hkl-Richtung auf. Komponente B weicht von allen anderen dadurch

ab, dass sie um die mittlere primäre hkl-Richtung durchgehend null ist und erst an den

Rändern zwei klar definierte Maxima aufweist.

Insgesamt bewirken diese Verteilungen, dass in den Bereichen der maximalen Hauptdruck-

spannung tendenziell 111- und 220-Intensitäten zunehmen und im Bereich der maximalen

Hauptzugspannung die 311-Intensitäten zunehmen. Gleichzeitig nehmen die 111-Intensitäten
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Abbildung 4.49: Beiträge der verschiedenen Komponenten A bis J zur Intensitätsänderung
∆I ′ für verschiedene Polarwinkelorientierungen der primären hkl-Achsen.
Die globale, mittlere Orientierung der primären hkl-Richtung ist durch die
graue vertikale Linie markiert.

in den Richtungen zu, in denen tendenziell hohe Scherspannungen an den 111-Ebenen an-

greifen. Die Zunahme der 200-Intensitäten erfolgt zwischen diesen ausgezeichneten Rich-

tungen, wobei die Zunahme im Bereich der Zugspannungen höher ist als im Bereich der

Druckspannungen. In Summe erfolgt diese Umorientierung bzw. das Wachstum der Körner

derart, dass eine minimale Zunahme der elastischen Verzerrungsenergie während der Ver-

formung/Belastung erreicht wird. Die vorherige Untersuchung der hkl und orientierungs-

abhängigen Spannungstensoren hat gezeigt, dass Druckspannungen in der Hauptdruckrich-

tung für alle Ebenen praktisch identisch sind (siehe Abb. 4.34c, S. 266). Die harten 111- und

220-Richtungen, die vornehmlich in diesem Bereich an Intensität zunehmen, erfahren daher

die geringsten Dehnungen, wodurch die geringsten elastischen Verzerrungsenergien erzeugt

werden. In Zugrichtung gibt es eine Kompensation von Spannungen und Dehnungen (siehe
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Abb. 4.35c, S. 267), sodass der Effekt hier vernachlässigbar ist. Im Fall der Scherspannungen

zeigt ein Blick auf Abb. 4.36 (S. 268), dass die Argumentation hier umgedreht werden muss,

da entlang aller Ebenen die gleiche Scherung auftritt. Die entsprechend orientierten 111-

Ebenen besitzen den geringsten Schermodul und erzeugen daher die geringsten Spannungen

und damit den kleinsten Zuwachs an Verzerrungsenergie. Die gleiche Argumentation kann in

ähnlicher Weise auf die Komponenten F und G angewandt werden. Anders als vorher, wird

hier die Anzahl ungünstig orientierter Ebenen reduziert, es gibt also hauptsächlich weniger

200-Ebenen in Druck und Scherrichtung. Wie zu erwarten, fallen auch I und J in das gleiche

Schema.
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Abbildung 4.50: Verzerrungsenergiedichte für alle Orientierungen der primären hkl-Richtung
zu den Zeitpunkten #1 bis #6.

Mit Hilfe der ungemittelten Spannungs- und Dehnungstensoren aus dem vorangegangenen

Abschnitt, lassen sich diese Ausführungen zu den Unterschieden in der Verzerrungsenergie

quantifizieren. Dazu wird aus den Spannungs- und Dehnungstensoren für jede Orientierung

285



4 Ergebnisse

der primären hkl-Richtung zu jedem Zeitpunkt die Verzerrungsenergiedichte whkl(ϕ) berech-

net. Für die Zeitpunkte #1 bis #6 ist das in Abb. 4.50 gezeigt. Bis #3 ist die Zunahme relativ

gleichmäßig über alle Orientierungen für alle primären hkl-Richtungen verteilt. Es zeichnen

sich aber bereits energetisch günstigere Orientierungen ab, z.B. 111 und 220 in Druckrichtung

und 311 in Zugrichtung. Ab #4 treten die Unterschiede zwischen den verschiedenen primären

Richtungen aber deutlich zu Tage. Diese Unterschiede in der Verzerrungsenergie liefern die

treibende Kraft für die beobachteten Umorientierungen der Körner und die sich daraus erge-

bende Umverteilung von Peakintensitäten. Zudem wird hier deutlich, dass die Variation der

Verzerrungsenergiedichten in Zugrichtung wesentlich kleiner ist als in Druckrichtung. Diese

Darstellung stellt jedoch eine massive Vereinfachung des tatsächlichen Sachverhaltes dar, da

nur noch primäre Richtungen betrachtet werden. Tatsächlich ist diese Energieminimierung,

wie auch die Texturbildung zuvor, ein dreidimensionales Problem.

Zur Vollständigkeit sei hier noch erwähnt, dass der isotrope Intensitätszuwachs 0.98 beträgt;

er ist also relativ gering, aber keineswegs vernachlässigbar.

Schließlich ist in Abb. 4.51 die Summe über alle hkl-spezifischen Beiträge der Intensitätsän-

derungen zum Ende der Verformung gezeigt, womit die gesamte Zunahme der Anzahl der

in einem Winkelbereich ϕ streuenden Atome erfasst ist. Das bietet sich an, da das Korn-

größenmodell in der WPPM-Anpassung keine hkl-Abhängigkeit enthält und dadurch auch

nicht die hkl-spezifischen Intensitätsänderungen erklären könnte. Stattdessen sind die in

Abb. 4.51 dargestellten, kumulierten Intensitätsänderungen die passende Vergleichsgröße.

Die komplette zeitliche Entwicklung der Intensitäten aller diskutierten Proben kann in dem

Programm Intensity Viewer dargestellt werden (siehe Anhang A.3, S. 394).
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Abbildung 4.51: Summe über die skalierten Intensitätsänderungen ∆I ′ der Peaks 111,
200, 220 und 311 zum Zeitpunkt #5 (Summe über alle Kurven in
Abb. 4.47, S. 281, links). Die Ebenenmultiplizitäten sind hier bereits im-
plizit berücksichtigt.
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4.2.5 Korngröße

Die Korngrößen, die durch die WPPM-Anpassung bestimmt werden, folgen immer einer loga-

rithmischen Normalverteilung und können daher durch zwei Parameter beschrieben werden.

Hier wird dazu die volumengemittelte Korngröße ⟨D⟩vol und die Verteilungsbreite σ′ genutzt.

Die Verwendung von ⟨D⟩vol hat den Vorteil, dass durch die Berücksichtigung des Volumen-

anteils automatisch auch eine Gewichtung mit der Anzahl der Atome in den Körnern erfolgt,

wodurch diese Größe direkt mit den modifizierten Intensitäten aus dem vorherigen Abschnitt

vergleichbar ist. Das Korngrößenmodell der WPPM-Anpassung kennt keine hkl-Abhängigkeit

und bestimmt daher immer mittlere Korngrößen in den Richtungen in der x-y-Ebene, die

durch den Polarwinkel ϕ festgelegt sind.

Prinzipiell wäre eine Modifikation dahingehend möglich, dass zu jedem Peak eine getrennte

Korngrößenverteilung bestimmt wird, wodurch jedoch die Anzahl der Parameter um sechs

zunehmen werden würde und so die Komplexität des Modells stark erhöht wäre. Da die An-

passungen mit dem vorhandenen Modell zufriedenstellend gelingen, wurde davon abgesehen.
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Abbildung 4.52: a) Polardarstellung der volumengewichteten Korngröße ⟨D⟩vol in nm aus
der WPPM-Anpassung. b) Verteilungsbreite σ′ der Korngrößenverteilungen.
Beide Größen werden zu den Zeitpunkten #1 bis #6 gezeigt.

In Abb. 4.52 sind sowohl ⟨D⟩vol als auch σ′ zu den Zeitpunkten #1 bis #6 dargestellt.

Zwischen #1 und #3 bleibt die Änderung von ⟨D⟩vol auf den Bereich der maximalen Druck-

spannung (≈ 80 ○) beschränkt, wo es zu einer signifikanten Abnahme um 3 nm kommt. Die

Verteilungsbreite σ′ weist zwischen #1 und #3 keine nennenswerten Veränderungen auf. Die-

ser Befund abnehmender Korngrößen ist unerwartet und nicht mit den zu diesem Zeitpunkt

praktisch unveränderten Peakintensitäten vereinbar (siehe Abb. 4.42, S. 276).

Eine nähere Betrachtung zeigt, dass es auch hier wieder zu einer ungewollten Wechselwir-

kung zwischen verschiedenen Modellbestandteilen der WPPM gekommen ist. In diesem Fall
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übernimmt das Modell zur Korngrößenverteilung im Bereich zwischen #2 und #3 die Aufga-

be des Modells zur heterogenen Verzerrung unter Last. Konkret werden die Parameter e111,

e200 und e311 in diesem Zeitbereich praktisch null, sodass die inhomogenen Dehnungsvertei-

lungen zu diesen Peaks aus dem Modell praktisch ausgeschaltet sind. Jenseits von #3, im

Bereich der höchsten Spannungswerte und damit der höchsten Wirksamkeit dieses Modells,

steigen die Parameter ehkl sprunghaft an und das Modell wird aktiv; ab dann erfüllt es seine

eigentlich vorgesehene Aufgabe. Um dieses Verhalten zu veranschaulichen ist als Beispiel der

Parameter e111 in Abb. 4.53 gegen die Zeit dargestellt.

Die Zunahme der Breiten des 111-, 200- und 311-Peaks wird bis #3 also durch die abneh-

mende Korngröße abgebildet, was in diesem Bereich offenbar effektiver ist als das Modell zur

heterogenen Verzerrung unter Last.
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Abbildung 4.53: Zeitliche Entwicklung des Parameters e111 aus dem Modell zur heteroge-
nen Verzerrung unter Last für ϕ = 82 ○. Zwischen #4 und #6 nimmt der
Wert seinen Maximalwert an, womit die maximale Wirksamkeit des Modells
hergestellt wird.

Daraus folgt, dass zu Beginn der Belastung in Druckrichtung keine stark asymmetrische

Dehnungsverteilung in Druckrichtung bei 111, 200 und 311 induziert wird, sondern eine wei-

testgehend symmetrische7, was durch das Modell zur heterogenen Verzerrung unter Last

nicht beschrieben werden kann. Als Alternative zur Absenkung der Korngröße könnte das

MS Mikroverzerrungsmodell symmetrische Verbreiterungen erzeugen, allerdings gleichzeitig

bei allen Peaks in festgelegter Weise. Diese Kopplung der Peakverbreiterungen passt beim

MS Mikroverzerrungsmodell offenbar schlechter als beim Korngrößenmodell, sodass in der

7Die Aussage bezieht sich nur auf die durch die Belastung induzierte Verbreiterung. Stapelfehler und Zwillinge
können ungeachtet dessen zu einer asymmetrischen Peakform beitragen.
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WPPM in diesem Winkelbereich bis #3 immer die Anpassung über die Korngrößen bevor-

zugt wird. In Zugrichtung besteht das Problem praktisch nicht, was teilweise auf die Tatsache

zurückgeführt werden kann, dass hier Dehnungen betragsmäßig kleiner sind und der Effekt

dadurch bereits abgemildert wird.

Vermutlich liegt der Grund für die anfänglich symmetrischere Dehnungsverteilung wieder

in den verschiedenen Verzerrungsenergien unterschiedlich orientierter Kristallite. Wenn 200-

Richtungen in Druckrichtung orientiert sind, ist diese besonders hoch, sodass hier bereits

früh eine Abnahme der Intensität gezeigt werden konnte. Entweder geschieht das, indem die

Körnern aus dieser Richtung rotieren, oder zu Gunsten anders orientierter Körner schrump-

fen. In beiden Fällen bewirkt die 200-Richtung einen Bruch der statistischen Isotropie in

Bezug auf die Korngröße, was prinzipiell ein Problem für das genutzte Korngrößenmodell

darstellt.

Darüber hinaus ist zu erwarten, dass die Körner mit der höchsten Verzerrungsenergie (d.h.

hier Dehnung) die ersten sind, die aus der Druckrichtung herausdrehen, wodurch die Flanke

der Dehnungsverteilung auf Seite der hohen Dehnungswerte ausschmiert. Dadurch wird die

rechte Seite beim 200-Peak flacher und die gesamte Peakform symmetrischer.

Des Weiteren ist die Verzerrungsenergie von Körnern mit primären 111-Richtungen in Druck-

richtung besonders gering, wodurch größere Dehnungswerte in einer Verteilung hier besonders

wenig Energiezuwachs bewirken. Es ist daher zu erwarten, dass Körner mit der 111-Richtung

besonders früh in Druckrichtung drehen und einen Ausläufer in der Dehnungsverteilung auf

der Kompressionsseite erzeugen. Auch das hat eine symmetrischere Peakform zur Folge, als

sie durch das Modell zur heterogenen Verzerrung unter Last vorhergesagt werden würde.

Für die Korngrößen in Druckrichtung aus der WPPM-Anpassung ergibt sich daraus die Kon-

sequenz, dass sie im Bereich zwischen #2 und #3 unzuverlässig sind. Vorher sind die Gitter-

dehnungen so gering, dass keine nennenswerte Beeinflussung stattfindet, danach entsprechen

sich die Beobachtungen und die Modellannahmen soweit, sodass die relativen Änderungen

der Korngrößen im Bereich zwischen #4 und #6 wieder aussagekräftig sind. Zukünftige Ver-

sionen der WPPM-Anpassung müssen sich dieses Problems unbedingt annehmen. Wie die

hier beobachtete Wechselwirkung jedoch verhindert werden kann, ist zum jetzigen Zeitpunkt

noch unklar. Ein Verzicht auf das Modell zur heterogenen Verzerrung unter Last würde die

Anpassung spätestens ab #4 deutlich verschlechtern und stellt daher keinen erfolgverspre-

chenden Lösungsansatz dar. Ein Vergleich zwischen der Änderung der Korngröße ∆⟨D⟩vol

und der über alle hkl summierten Intensität I ′ aus dem vorherigen Abschnitt unterstützt die

obige Analyse. Sofern die Intensitätsänderung durch Kornwachstum während der Verformung

erklärt werden kann, sollten beide Größen jederzeit proportional zueinander sein. Dieser Ver-

gleich wird in allen Polarwinkeln zu den Zeitpunkten #1 bis #6 durchgeführt, indem die

kumulierten Intensitäten I ′ und die passend skalierte Korngrößenänderung ∆⟨D⟩vol dazu

im gleichen Polardiagramm dargestellt werden (siehe Abb. 4.54). Die Skalierung der Korn-

größenänderung erfolgt für alle Zeiten und Winkel mit dem konstanten Faktor 2 ⋅ 109 nm−1,

289



4 Ergebnisse

der nur dazu dient, die Einheit der Korngröße in die Intensitätseinheit umzuwandeln und so

zu skalieren, dass beide Größen in ähnlichen Wertebereichen liegen.

Zu den Zeitpunkten #1 und #2 sind beide Größen nahe null, sodass die Proportionalität

auf triviale Weise besteht. Zum Zeitpunkt #3 zeigt sich in Druckrichtung die diskutierte

Abweichung, die bis zum Zeitpunkt #4 Bestand hat. Allerdings nimmt die Korngröße in

Druckrichtung zwischen #3 und #4 im gleichen Maße zu wie die Intensität – es bleibt also

nur die zuvor entstandene Differenz bestehen. In Zugrichtung entsteht eine kleine Diskrepanz

zwischen beiden Größen, was durch die dominante Zunahme der Intensität der 311-Peaks in

dieser Richtung erklärt werden kann. Durch die fehlende hkl-Abhängigkeit kann das Korn-

größenmodell eine stärkere Zunahme des Korndurchmessers in 311-Richtung nur schlecht

abbilden, da das Residuum durch die Abweichung beim stärker ausgeprägten 111-Peak domi-

niert werden würde. Zum Zeitpunkt #5 hat sich die Abweichung beider Größen voneinander

in allen Richtungen weitestgehend abgebaut. In Zugrichtung besteht die kleine Diskrepanz

aus eben genanntem Grund weiterhin und in Druckrichtung bleibt noch ein Rest der Ab-

weichung vom Beginn der Verformung bestehen. Beide Abweichungen nehmen während der

Spannungsrelaxation bis #6 noch weiter ab.

Diese Beobachtungen lassen zwei Schlüsse zu. Zum einen scheint ein entscheidender Teil der

Intensitätszunahme durch eine richtungsabhängige Zunahme der Korngrößen zustande zu

kommen. Zum anderen befindet sich die Abweichung zwischen ∆⟨D⟩vol und I ′ zeitlich und

räumlich in einem begrenzten Bereich, wodurch eine Korrektur dieses Effekts möglich wird.

Ab #4 stabilisieren sich die Ergebnisse für das Korngrößenmodell in der WPPM-Anpassung

wieder, weisen aber den bis #3 ausgebildeten Versatz zu kleineren Werten von ∆⟨D⟩vol auf.

Die symmetrische Dehnungsverteilung in Druckrichtung, die sich bis #3 ausgebildet hat, wird

also in Form kleinerer Korngrößen im Verlauf der weiteren Anpassung mitgeschleppt.

Ein Blick auf die zeitliche Entwicklung von ⟨D⟩vol in Druckrichtung veranschaulicht diesen

Sachverhalt (siehe Abb. 4.55a). Die schwarze Linie zeigt hier den Verlauf von ⟨D⟩vol, wie

er aus der WPPM-Anpassung bestimmt wird. Dieser zeichnet sich durch den ausgeprägten,

anfänglichen Abfall bis #3 aus, dem ein kontinuierlicher Anstieg folgt. Der Anstieg ist klar

erkennbar um den vorherigen Abfall nach unten versetzt, mit Ausnahme des letzten Daten-

punktes. Hier ist zu beachten, dass der letzte Datenpunkt aus einer unabhängigen WPPM-

Anpassung des letzten Detektorbildes stammt, bei dem keine Last mehr an der Probe anliegt.

Dieser Datenpunkt sollte daher nicht durch den vorherigen Versatz beeinflusst sein.

Die rote Kurve zeigt ein sehr einfaches Korrekturmodell, in dem die anfängliche Abnahme

von ⟨D⟩vol linear angepasst wurde, gefolgt von einem konstanten Verlauf bis zur Entlastung.

Zum letzten Bild hin springt das Korrekturmodell wieder auf den Anfangswert. Die Änderung

der Werte im Korrekturmodell werden von den Rohdaten subtrahiert und bilden die blaue

Kurve. Unter der Annahme, dass die Änderung von ⟨D⟩vol bis #3 ausschließlich von dem oben

diskutierten Effekt verursacht wurde, stellt die blaue Kurve damit den korrigierten Verlauf

von ⟨D⟩vol dar. Tatsächlich entspricht dieser viel eher der physikalischen Intuition, da die
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Abbildung 4.54: Intensitätsänderung ∆I ′ und Änderung der volumengewichteten Korngröße
∆⟨D⟩vol zu den Zeitpunkten #1 bis #3. Die Korngrößenänderung ∆⟨D⟩vol
wurde hier so skaliert, dass sie sich leicht mit ∆I ′ vergleichen lässt.
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Korngröße hier bis #3 konstant bleibt und erst ab diesem Zeitpunkt zunimmt. In diesem

Bereich liegen ausreichend hohe Spannungen an, um spannungsgetriebenes Kornwachstum

zu begünstigen, durch welches eine signifikante Absenkung der Verzerrungsenergie erfolgen

kann. Außerdem ist der korrigierte ⟨D⟩vol Wert am Ende der Verformung praktisch identisch

zu dem Wert von ⟨D⟩vol aus der Anpassung des letzten Detektorbildes. Dieser Befund liefert

ein starkes Indiz dafür, dass die anfängliche Abnahme von ⟨D⟩vol ein technisch begründbares

Artefakt der Anpassung darstellt.

Als Ergänzung sei hier noch der Verlauf von ⟨D⟩vol in Zugrichtung angeführt (siehe Abb. 4.55b),

die nicht oder nur schwach von dem Problem betroffen sein sollte und einen sehr ähnlichen

Verlauf wie der in Druckrichtung nach der Korrektur aufweist. Das liefert ein weiteres Indiz

für die prinzipielle Richtigkeit der Problemanalyse und der Korrektur. Außerdem fällt auf,

dass der Verlauf von ⟨D⟩vol sowohl in Zug- als auch in Druckrichtung der zeitlichen Entwick-

lung der Texturentwicklung (siehe Abb. 4.43b, S. 277) ähnelt, wobei der Anstieg von ⟨D⟩vol

etwas früher einsetzt. Das deutet auf eine gemeinsame Voraussetzung für die Aktivierung von

Kornrotation und Kornwachstum hin.
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Abbildung 4.55: a) Verlauf der volumengewichteten mittleren Korngröße in Druckrichtung
und ihre Korrektur. b) Verlauf der volumengewichteten mittleren Korngröße
in Zugrichtung.

Um ein vollständiges Bild von der Entwicklung der Korngrößenverteilungen zu erhalten,

müssen ⟨D⟩vol und σ′ immer gemeinsam betrachtet werden. Dazu kann man die Entwick-

lung der logarithmischen Normalverteilungen zu verschiedenen Zeiten aus dem gleichen Po-

larwinkel analysieren. In Abb. 4.56a ist das beispielhaft für die Zugrichtung (ϕ = 174 ○) zu

den Zeiten #1 bis #6 getan. Leider zeigt sich hier direkt, dass die einzelnen Verteilungen

in dieser Darstellung über den Verlauf der Verformung schwer zu unterscheiden sind. Wer-

den die Wahrscheinlichkeiten der logarithmischen Normalverteilung (P ) mit D3, also dem
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Volumen8 der entsprechenden Kristallite, gewichtet, so erhält man die volumengewichtete lo-

garithmische Normalverteilung, wie sie in Abb. 4.56b dargestellt ist. Abgesehen davon, dass

der Volumenanteil der unterschiedlich großen Kristallite die physikalisch relevantere Größe

darstellt, sind in Unterschiede zwischen den Verteilungen zu unterschiedlichen Darstellungen

so etwas besser zu erkennen. Hier erkennt man, dass mit fortlaufender Verformung ab #3

eine Verlagerung hin zu größeren Körnern stattfindet, bei der gleichzeitig die Verteilungsbrei-

te zunimmt. Die Verlagerung hin zu größeren Körnern erfolgt hier hauptsächlich auf Kosten

mittelgroßer Körner (D > 10 nm), ihr Anteil am Gesamtvolumen nimmt aber weniger stark

ab, als die einfache logarithmische Normalverteilung in Abb. 4.56a zunächst suggeriert.
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Abbildung 4.56: a) Logarithmische Normalverteilungen in Zugrichtung (ϕ = 174 ○) zu den
Zeitpunkten #1 bis #6. b) Volumengewichtete logarithmische Normalver-
teilungen in ϕ = 174 ○ zu den Zeitpunkten #1 bis #6.

Als nächstes bietet sich der Blick in Druckrichtung an (ϕ = 80 ○). Ohne Korrektur von ⟨D⟩vol

sehen die Verteilungen so wie in Abb. 4.57a aus. Hier scheint es, als würde ab #2 praktisch

keine Änderung der Korngrößenverteilung mehr stattfinden. Nutzt man stattdessen die kor-

rigierten Daten für ⟨D⟩vol in Druckrichtung (siehe Abb. 4.55a), ergibt sich ein anderes Bild.

Wie in der Zugrichtung gibt es auch hier im Verlauf der Verformung mehr große Körner.

Diese Zunahme an großen Kristallen ist sogar noch ausgeprägter als die, die in Zugrichtung

beobachtet wurde und lässt sich in drei Abschnitte einteilen. Zwischen #1 und #2 ergibt

sich für die Verteilung keine Änderung. Danach nimmt der Volumenanteil großer Körner bis

#3 zu und verändert sich zu #4 hin nur schwach. Zwischen #4 und #5 erfolgt dann erneut

eine große Zunahme des Volumenanteils großer Körner. Währenddessen nimmt der Anteil

mittelgroßer Körner über die gesamte Verformung hinweg relativ gleichmäßig ab.

8Für das korrekte Volumen ist ein von der Form abhängender, konstanter Faktor notwendig. In diesem
Zusammenhang bewirkt dieser aber nur eine konstante Skalierung der Kurven, sodass darauf verzichtet
werden kann.
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Abbildung 4.57: a) Volumengewichtete logarithmische Normalverteilungen in Druckrichtung
(ϕ = 80 ○) zu den Zeitpunkten #1 bis #6 ohne Korrektur. b) Wie a), aber
mit Korrektur.

Neben Zug- und Druckrichtung gibt es noch zwei markante Polarwinkel für ⟨D⟩vol. Zum einen

gibt es ein deutliches Minimum im Verlauf der Verformung entlang des Steges (ϕ ≈ 130 ○),

zum andern ein Maximum bei ϕ ≈ 40 ○. In letztere Richtung sind ungefähr die Normale zu

den Ebenen orientiert, an denen die größten Scherspannungen angreifen (siehe Abb. 4.25b,

S. 254).

In der Entwicklung der Korngrößenverteilungen entlang des Steges (siehe Abb. 4.58a) zeigt

sich eine Abnahme des Volumenanteils mittelgroßer Kristallite (10 nm <D < 20 nm) bei relativ

geringer Zunahme von großen Kristalliten. In Richtung ϕ ≈ 40 ○ (siehe Abb. 4.58b), also fast

normal zum Steg, zeigt sich im Bereich mittelgroßer Körner ab #4 keine weitere Änderung

während der Verformung. Das Volumen großer Kristallite nimmt bis #4 zu, allerdings weniger

stark als in Druckrichtung.

Zusammen mit den vorherigen Beobachtungen kann nun eine Hypothese zu den ablaufenden

Mechanismen formuliert werden. Normal zu den Ebenen, an denen die größten Scherspan-

nungen anliegen (ϕ ≈ 40 ○ und ϕ ≈ 130 ○), kommt es zu spannungsgetriebenem Kornwachstum

(SGKW)/Coupling. Im Verlauf der Verformung drehen diese gewachsenen Körner ihre lan-

ge Achse in die Druck- bzw. Zugrichtung. Da die Scherung des Steges eine makroskopische

Drehung im Uhrzeigersinn verursacht, ist diese Richtung vermutlich auch die bevorzugte

Drehrichtung für die Kornrotation. Dadurch kommt es, wie im vorangegangenen Abschnitt

beschrieben, bei entsprechender Orientierung der Kristallrichtungen zur Absenkung der elas-

tischen Verzerrungsenergie. Das Weiterdrehen der Körner über die Zug- und Druckrichtung

hinaus ist daher energetisch ungünstig, sodass sich die langen Achsen der Körner in diesen

beiden Richtungen ansammeln. Daher steigt hier der Volumenanteil großer Körner besonders

stark an, verbunden mit einer Zunahme der Verteilungsbreite in diesen Richtungen.

294



4.2 Referenzprobe Y4-2

0 20 40 60 80
Korngröße D [nm]

0

1

2

3

4

5

6
P

D
3    

10
-3

 [ 
]

(a)

0 20 40 60 80
Korngröße D [nm]

0

1

2

3

4

5

6

P
D

3    
10

-3
 [ 

]

(b)

#1
#2
#3
#4
#5
#6

Abbildung 4.58: a) Volumengewichtete logarithmische Normalverteilungen in ϕ = 130 ○ zu
den Zeitpunkten #1 bis #6 (≈ Stegrichtung). b) Volumengewichtete loga-
rithmische Normalverteilungen in ϕ = 40 ○ zu den Zeitpunkten #1 bis #6
(≈ Stegnormalen).

Entlang des Steges (ϕ ≈ 130 ○) steigt die Intensität der Peaks im Mittel durch diesen Prozess

nicht an (vgl. Abb. 4.54, S. 291). Passend dazu nimmt der Volumenanteil großer Kristalle

im Mittel ebenfalls nicht signifikant zu (vgl. Abb. 4.58a). Allein die 220-Richtung nimmt

hier eine Sonderrolle ein, da deren Intensität in dieser Richtung während der Verformung

zunimmt. Das könnte seine Ursache darin haben, dass das die Gleitrichtungen von Verset-

zungen auf 111-Ebenen sind, wodurch Verzerrungsenergie durch Versetzungsgleiten dissipiert

werden könnte und dadurch die treibende Kraft für die Drehung bereits passend orientierter

Körner verschwindet.

Die Richtung normal zum Steg zeigt ein etwas anderes Verhalten. Hier gibt es durch das

SGKW einen kleinen Zuwachs von Verteilungsbreite und vom Volumenanteil großer Körner.

Das heißt, dass das Ausdrehen der langen Achsen hin zur Zugrichtung (in der bevorzug-

ten Rotationsrichtung) nicht so effizient stattfindet, wie im zuvor beschriebenen Fall. Eine

Ursache davon könnte die geringere Absenkung der Verzerrungsenergie in Zugrichtung sein.

Entsprechend ist die Zunahme des Volumenanteils großer Körner in Zugrichtung weniger

stark als in Druckrichtung.

Dieser Effekt macht sich auch in der Intensitätsverteilung bemerkbar. Geht man vom Mi-

nimum bei ϕ ≈ 130 ○ aus in negative ϕ-Richtung, ergibt sich ein stärker ausgeprägtes In-

tensitätsmaximum, als wenn man äquivalente Bereiche von ϕ ≈ 40 ○ aus betrachtet (vgl.

Abb. 4.54, S. 291). Zudem nimmt die Intensität in den breiten Intensitätsmaxima in Zug-

und Druckrichtung in negative ϕ-Richtung tendenziell ab, was darauf zurückgeführt werden

kann, dass größere Drehwinkel schwieriger zu realisieren sind als kleinere und die negative

ϕ-Richtung in der Tat die bevorzugte Drehrichtung darstellt. Es fällt außerdem auf, dass die
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Intensitätszunahme in Druckrichtung früher einsetzt (ab #3) und anfänglich deutlich ausge-

prägter ist (siehe #4) als in Zugrichtung, was ein deutliches Indiz für eine höhere Rate von

rotierenden Körnern aus ϕ ≈ 130 ○ als aus ϕ ≈ 40 ○ ist.

Bei ϕ ≈ 25 ○ gibt es sowohl in der Intensität als auch in der Korngröße ab #4 ein auffälliges

Minimum. Dieses Minimum liegt zwischen der Richtung mit der größten Scherspannung und

der Richtung mit der größten Zugspannung in dem Bereich, in dem die (positiven) Normal-

spannungen die geringsten Werte aufweisen. Die Normalspannungen sind hier betragsmäßig

besonders gering, weil Scherspannungen und isotrope Spannungen unterschiedliche Vorzei-

chen haben und sich daher destruktiv überlagern. Dieser Bereich ist für den Zeitpunkt #5 in

Abb.4.59 anhand der Spannungen und der Intensität/Korngröße eingezeichnet. Eine Ausrich-

tung von Körnern in diese Richtung, insbesondere mit ihren langen und elastisch harten Rich-

tungen, würde einer Erhöhung der Verzerrungsenergie gleichkommen, denn die energetisch

günstige Ausrichtung dieser langen und/oder harten Richtungen entlang der größten Nor-

malspannungen wäre damit ausgeschlossen. Folglich rotieren die Körner entweder gar nicht

erst in diesen Bereich, oder, bei genügend hohen Spannungen, darüber hinaus. Die volumen-

gewichteten Korngrößenverteilung bleibt in diesem Winkelbereich eine über den Verlauf der

Verformung nahezu konstant (siehe Abb. 4.59c). Für die Rotation von Körnern aus ϕ ≈ 130 ○

hin zur Druckrichtung existiert dieser Bereich nicht in derselben Ausprägung, da sich hier die

Scherspannungskomponente und die isotrope Spannungskomponente konstruktiv überlagern

und so bei Rotation in negative Richtung betragsmäßig größere Normalspannungen auftre-

ten. Diese Hypothese liefert eine konsistente Erklärung der bisherigen Beobachtungen. Im

Folgenden wird sie auf Anschlussfähigkeit zu den verbleibenden Parametern aus der WPPM

getestet und gegebenenfalls erweitert.

Die Größen ⟨D⟩vol und σ′ und die daraus abgeleiteten logarithmischen Normalverteilungen

können für alle Zeitpunkte und in allen Richtungen jeweils mit und ohne Korrektur in dem

Programm Size Viewer für alle diskutierten Proben betrachtet werden (siehe Anhang A.3,

S. 394).
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Abbildung 4.59: a) Spannungstensor zum Zeitpunkt #5. Der grau markierte Bereich ist
der Bereich geringster positiver Spannungen. b) Intensität I ′ (schwarz)
und ⟨D⟩vol (grün) zum Zeitpunkt #5. Der graue Bereich wurde aus a)
übernommen und schließt das globale Minimum beider Größen ein. c) Volu-
mengewichtete logarithmische Normalverteilungen aus dem grau markierten
Bereich zu den Zeitpunkten #1 bis #6.
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4.2.6 Versetzungen

Die Versetzungsdichten werden hier zu den Zeitpunkten #1 bis #6 in Abb. 4.60 in der stereo-

graphischen Projektion dargestellt, wie sie in Abschnitt 3.11.1 (S. 227) beschrieben wurde.

Die Positionen der farbigen Punkte, welche die Farbflächen in Abb. 4.60 bilden, entsprechen

also den Richtungen der Burgers-Vektoren und damit den Richtungen der durch die Verset-

zungen verursachten Verschiebung im Kristall. Die Farbe kennzeichnet die Versetzungsdichte

dieser entsprechend ausgerichteten Versetzungen. Hier konzentriert sich die Diskussion auf

den äußeren Ring der stereographischen Projektionen, da die Unsicherheit zur Mitte hin zu-

nimmt, sodass die Daten dort mit entsprechender Vorsicht zu betrachten sind. Zu Beginn

(#1 und #2) ist die Versetzungsdichte isotrop in allen Richtungen verteilt und hat Werte um

1.5 ⋅1016 m−2. Bis #3 nimmt dieser Wert leicht auf 1.8 ⋅1016 m−2 zu, wobei in Zug- und Druck-

richtung schwache Maxima sich abzuzeichnen beginnen. Zwischen #3 und #4 bilden sich

diese Maxima deutlicher aus, während insgesamt die Versetzungsdichte auf über 2 ⋅ 1016 m−2

ansteigt. Dieser Zustand bleibt im Prinzip bis #6 bestehen, wobei die Versetzungsdichte

im Mittel weiter zunimmt. Außerdem werden die Bereiche hoher Versetzungsdichten in ϕ-

Richtung breiter. In Abb. 4.61 ist ergänzend die Situation nach der Verformung und nach der

Entlastung gezeigt. Hier hat die Versetzungsdichte in allen Richtungen wieder deutlich ab-

genommen, liegt aber über dem Anfangswert. Zudem sind die ehemaligen Bereiche niedriger

Versetzungsdichten noch schwach erkennbar.

Zwei Schlussfolgerungen können bereits aus dieser Betrachtung abgeleitet werden. Zum einen

nimmt die Versetzungsdichte bei hohen Spannungen deutlich zu, was auf Versetzungsgleiten

als Plastizitätsmechanismus und/oder Akkommodationsmechanismus hinweist. Nach Entlas-

tung der Probe sinkt die Versetzungsdichte wieder deutlich bis fast auf den Anfangswert

ab. Die Versetzungsdichten bei hohen Spannungen stellen also einen Momentanwert von

statischen und gleitenden Versetzungen dar, wobei die neuen Versetzungen an Korngren-

zen emittiert und absorbiert werden können. Nachdem die von außen angelegten Spannungen

wegfallen, werden die zuvor neugebildeten Versetzungen zum Großteil wieder in/an die Korn-

grenzen gezogen und absorbiert, bis sich das Gleichgewicht zwischen Versetzungsdichte und

den übrigen Defekten erneut eingestellt hat.

Eine alternativer Vorgang besteht darin, dass die Versetzungen an den Korngrenzen nukle-

iert und in das Korn emittiert werden, dann aber die Spannung nicht mehr ausreicht um

sie komplett durch das Korn zu schieben, etwa weil bei einem kugelförmigen Korn die Ver-

setzungslinienlänge in der ersten Hälfte stetig zunimmt und dadurch der Scherwiderstand τ

ansteigt. Vorwärtsgleiten geschieht dann nur noch langsam (z.B. über Kink(-Paar)-Bildung)

oder gar nicht mehr, Rückwärtsgleiten ist aber durch die angelegte Spannung nicht möglich.

Die Versetzungen bleiben also solange statisch im Korn stecken, wie die Spannung von außen

angelegt bleibt. Ein Beitrag im Sinne eines Plastizitätsprozesses wird in diesem Fall nicht

erbracht, allerdings kann dadurch eine Akkommodation des betroffenen Kornes an andere

Plastizitätsprozesse erreicht werden.
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Abbildung 4.60: Stereographische Projektion der Versetzungsdichten ρΩ zu verschiedenen
Zeitpunkten (angegeben jeweils unten links). Die Versetzungsdichte ist farb-
lich kodiert, der Ort in der Projektion gibt die Orientierung des Burgers-
Vektors zur entsprechenden Versetzungsdichte an. Unsicherheiten sind je-
weils in den Farbskalen markiert.

Zum andern bildet sich während der Verformung eine anisotrope Verteilung von Versetzungs-

dichten aus. Es bietet sich also an, die Änderung der Versetzungsdichten in einen homogenen

Anteil und einen anisotropen Anteil zu zerlegen. Der homogene Anteil kann durch die über
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Abbildung 4.61: Stereographische Projektion der Versetzungsdichten ρΩ nach der Entlastung
(vgl. Abb. 4.60).

alle Richtungen Ω gemittelte mittlere Versetzungsdichte ⟨ρ⟩Ω dargestellt werden. Da diese nur

noch eine skalare Größe ist, kann sie in einem Diagramm gegen die Zeit dargestellt werden,

wie in Abb. 4.62a geschehen. Die Versetzungsdichte nimmt im Mittel von Anfang an zu. Bei

#3 gibt es aber eine deutliche Zunahme in der Steigung von ⟨ρ⟩Ω (siehe Abb. 4.62b), die ab

#4 kontinuierlich abnimmt und zwischen #4 und #5 einen konstanten Wert annimmt. Ab

dann nimmt die Versetzungsdichte annähernd linear und langsam bis #6 zu.

Wie es sich bereits bei der Intensität angedeutet hat (vgl Abb. 4.38b, S. 270), zeichnet sich

zwischen #4 und #5 ein weiterer, kontinuierlicher Übergang in den Verformungsmechanismen

ab, der in Spannung und Dehnung keine auffällige Signatur hinterlässt. Gleichzeitig scheint

die Versetzungsaktivität für die Verlangsamung der Spannungszunahme in der Spannungs-

Dehnungs-Kurve ab #3 verantwortlich zu sein und damit auch die maximalen Spannungen zu

bestimmen (vgl. Abb. 4.28, S. 258). Die Änderungsrate der mittleren Versetzungsdichte liefert

einen Anhaltspunkt für die Zunahme der mittleren Versetzungsaktivität. Dabei bedeutet eine

Änderungsrate von null nicht, dass keine Versetzungsaktivität stattfindet; für die weitere

Diskussion dieses Aspekts muss aber zunächst der anisotrope Anteil der Versetzungsdichte

∆ρΩ betrachtet werden.

Dieser ergibt sich einfach aus der Differenz der richtungsabhängigen Versetzungsdichte ρΩ und

der mittleren Versetzungsdichte ⟨ρ⟩Ω; die Größe ∆ρΩ ist analog zu Abb. 4.60 in Abb. 4.64

(S. 303) dargestellt. Zum Zeitpunkt #1 ist die Verteilung isotrop. Bei #2 bilden sich Bereiche

höherer Versetzungsdichte aus, deren Burgers-Vektoren auf den Ebenen liegen, an denen die

maximalen Scherspannungen angreifen. Die Richtungen der Normalenvektoren dieser Ebe-

nen entsprechen den Nulldurchgängen des Spannungsdeviators in Polardarstellung in der

x-y-Ebene. Eine detailliertere Darstellung der mittleren Scherspannungen ist in Abb. 4.63

gegeben, wo die Beträge der Scherspannungen in der x-y-Ebene zu den Zeitpunkten #1 bis
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Abbildung 4.62: a) Mittlere Versetzungsdichte ⟨ρ⟩Ω. b) Änderungsrate der mittleren Verset-
zungsdichte.

#6 angegeben sind. Man erhält diese Polardarstellung formal wie bei den Normalspannun-

gen, indem man den zweiten radialen Einheitsnormalenvektor n⃗ durch einen tangentialen

Einheitsvektor t⃗ ersetzt, also σscher = t⃗ ⋅ (¯̄σ ⋅ n⃗) (vgl. S. 33). Der Vektor t⃗ liegt hier immer

in der x-y-Ebene. Damit sind jetzt zusätzlich zu den Orientierungen der Ebenen maximaler

Scherspannung auch die Beträge dieser Spannungen dargestellt. Die Spannung τ , die benötigt

wird um eine Versetzung zu emittieren, ist nach [217]

τ = G
b

D
, (4.9)

wobei G der Schermodul, b die Burgers-Vektorlänge und D ≈ 10 nm der Korndurchmesser

sind. Der Schermodul für Scherungen entlang von 111-Ebenen beträgt ≈ 37 GPa, sodass man

für τ Werte von ≈ 1 GPa erhält; die benötigten Spannungen für Partialversetzungsemission

liegt etwas darunter (siehe [217]). Spätestens ab #4 ist also im Mittel9 die Scherspannung

ausreichend, um vollständige Versetzungen zu emittieren.

Die Lagen der Ebenen maximaler Scherspannung sind in Abb. 4.64 durch Linien markiert,

sodass die Burgers-Vektoren der meisten gleitenden Versetzungen entlang dieser Linien ori-

entiert sein sollten. Zwischen #2 und #3 beginnt eine Drehung des Musters aus hohen und

niedrigen Versetzungsdichten in negative ϕ-Richtung, die zum Zeitpunkt #4 abgeschlossen

ist. Jetzt liegen die Bereiche niedriger Versetzungsdichte dort, wo die maximalen Scherspan-

nungen anliegen. Gleichzeitig hat die Differenz zwischen den Bereichen zugenommen. Ab

#4 gibt es an diesem Zustand keine signifikanten Änderungen mehr bis einschließlich #6.

Nach der Entlastung (siehe Abb. 4.65) nimmt der Unterschied zwischen hohen und niedrigen

9Also nicht als lokale Ausnahmeerscheinung, z.B. durch Spannungskonzentration an Tripellinien.
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Abbildung 4.63: Betrag der mittleren Scherspannungen in der x-y-Ebene ∣σscher ∣ in GPa zu
den Zeitpunkten #1 bis #6.

Versetzungsdichten wieder ab, die Orientierung entspricht aber in etwa der zum Zeitpunkt

#3.

Folgender Ablauf erscheint plausibel und ist widerspruchsfrei zu den bisherigen Ergebnissen:

Relativ früh während der Verformung können Versetzungen in passend orientierten Körnern

nukleiert werden und gleiten durch/in die Körner. Das geschieht entlang von Ebenen, an

denen die größten Scherspannungen auftreten. Nachdem die Versetzungen die Körner durch-

laufen haben, werden sie an der gegenüberliegenden Korngrenze wieder absorbiert. Die durch

das Korn laufenden Versetzungen bewirken eine Zunahme der Versetzungsdichte im zeitlichen

Mittel. Im weiteren Verlauf nehmen Spannungen und damit die Nukleationsraten zu, wodurch

eine ansteigende Versetzungsdichte detektiert wird. Außerdem setzt die zuvor beschriebene

Rotation von Körnern ein. Die Kornrotation bewirkt eine Abnahme der Scherspannung auf

den Gleitebenen der rotierenden Körner, auf denen zuvor Versetzungen nukleiert wurden.

Das führt dazu, dass die Versetzungen auf diesen Ebenen stecken bleiben und ihre Burgers-

Vektoren in Zug- bzw. Druckrichtung rotieren. Bis #4 führt dieser Prozess zu einer Zunahme

der Versetzungsdichteunterschiede, ab dann ist offenbar ein stabiler Zustand für ∆ρΩ erreicht;

⟨ρ⟩Ω nimmt aber weiter zu.

Die höchsten Versetzungsdichten treten also in den Richtungen auf, in denen das geringste

Versetzungsgleiten stattfindet. Umgekehrt sind die Richtungen mit den geringsten Verset-

zungsdichten diejenigen, auf denen Versetzungsgleiten als Plastizitätsmechanismus am ak-

tivsten ist, da die Versetzungen an den gegenüberliegenden Korngrenzen wieder absorbiert

werden können. Wenn die äußere Belastung wegfällt, wird ein Großteil aller nukleierten Ver-

setzungen wieder absorbiert. Durch die gleichzeitig auf null sinkende Nukleationsrate, nimmt
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Abbildung 4.64: Stereographische Projektion des anisotropen Teils der Versetzungsdichten
∆ρΩ zu verschiedenen Zeitpunkten (angegeben jeweils unten links). Darstel-
lung analog zu Abb. 4.60 (S. 299). Zusätzlich sind die Ebenen markiert, an
denen die größten Scherspannungen anliegen.

die Versetzungsdichte wieder ab. Da die Bereiche hoher Versetzungsdichten auch nach der

Entlastung noch sichtbar sind, werden offenbar nicht alle stecken gebliebenen Versetzungen
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während der Entlastung wieder aus den Körnern getrieben. Der gleiche Befund ergibt sich

für ⟨ρ⟩Ω: Hier liegt der Wert nach der Entlastung über dem Anfangswert.

Eine Änderungsrate der mittleren Versetzungsdichte von null bedeutet also nicht, dass keine

Versetzungsaktivität entlang günstig orientierter Körner stattfindet. Sie liefert aber einen In-

dikator für die Änderung des gekoppelten Versetzungs-Rotations-SGKW-Mechanismus (bzw.

Versetzungs-Rotations-Coupling-Mechanismus), der sich zwischen #4 und #5 offenbar in

einen stabilen Zustand einpendelt, bei dem insbesondere Kornwachstum zugunsten der Ro-

tation eine abnehmende Rolle spielt. Das deckt sich mit den Beobachtungen zur Intensität

und Kornwachstum.

Sowohl Kornrotation als auch SGKW/Coupling können über die Bildung und Verschiebung

von Disconnections in Korngrenzen beschrieben werden. Emission und Absorption von Ver-

setzungen in/an den Korngrenzen stellt einen Mechanismus zur Bildung und zum Transport

von Burgers-Vektoren durch die Kristalle dar. Die Versetzungsaktivität könnte also ein not-

wendiger Mechanismus für Kornrotation und SGKW sein. Betrachtet man nur die skalaren

Indikatoren für das globale Auftreten dieser Mechanismen (siehe Abb. 4.62, S. 301, Abb. 4.55,

S. 292 und Abb. 4.43b, S. 277), so setzt die Versetzungsaktivität von allen am frühesten ein,

gefolgt von Kornwachstum und der Texturbildung/Rotation. Diese Reihenfolge ist verein-

bar mit der Bewegung von Disconnections in Korngrenzen als Träger von Kornrotation und

SGKW.

Die Entstehung der endgültigen Textur fällt mit dem Bereich größter Versetzungsaktivität

zusammen. Das legt den Schluss nahe, dass der Wechsel von der Übergangstextur auf die

Endtextur durch eine Änderung der Kornrotation in der Art erzeugt wird, dass die Gleit-

widerstände für Versetzungen möglichst gering sind. Die resultierende Kornrotation stellt

also einen Kompromiss aus geringem Gleitwiderstand und Absenkung der elastischen Verzer-

rungsenergie dar.

Darüber hinaus besteht natürlich jederzeit und in jede Richtung die Möglichkeit, dass geome-

trisch notwendige Versetzungen [270] in die Kristallite eingebaut werden, um deren Kohäsion

aufrecht zu erhalten. Allerdings nur, sofern alternative Möglichkeiten nicht energetisch günstiger

sind, wie z.B. Kornrotation, Schertransformationen in Korngrenzen, Korngrenzengleiten oder

lokale Zunahme der Korngrenzendicke bzw. des Exzessvolumens in der Grenze.

Die zeitlichen und räumlichen Entwicklungen der Versetzungsdichten sind in dem Programm

DiStaTwi Viewer für alle diskutierten Proben enthalten (siehe Anhang A.3, S. 394).
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Abbildung 4.65: Stereographische Projektion des anisotropen Teils der Versetzungsdichten
∆ρΩ nach Entlastung (vgl. Abb. 4.64).

4.2.7 Debye-Temperatur und TDS

In Abb. 4.66 sind für die Zeitpunkte #1 bis #6 die Debye-Temperatur TD, sowie die TDS-

Intensität ITDS aus der WPPM-Anpassung in allen ϕ-Richtungen angegeben. Beide Größen

stellen ein Maß für die mittleren quadratischen Schwankungen der Atompositionen in Streu-

vektorrichtung ⟨u2
S⟩ dar10. Darin können sowohl statische u⃗stat, als auch dynamische Anteile

u⃗dyn enthalten sein, diese lassen sich jedoch mit den hier benutzten Mitteln nicht voneinander

trennen.

0

45

90

135

180

225

270

315

150

200

250

300

(a) Debye-Temperatur TD (K)

0

45

90

135

180

225

270

315

0

0.01

0.02

0.03

0.04

(b)

#1
#2
#3
#4
#5
#6

Abbildung 4.66: a) Debye-Temperatur TD [K] zu den Zeitpunkten #1 bis #6. b) TDS-
Intensität ITDS zu den Zeitpunkten #1 bis #6.

10
⟨u2
S⟩ wird auch Varianz von uS genannt.
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Die Debye-Temperatur geht in den Vorfaktor der WPPM-Anpassung ein und wirkt sich daher

auf alle Teile des Diffraktogramms aus. Dynamische und statische Atompositionsschwankun-

gen im Kristallgitter werden dadurch also genauso abgebildet, wie die in/an den Korngrenzen.

Eine Zunahme von TD entspricht dabei einer Abnahme von ⟨u2
S⟩ in der entsprechenden Rich-

tung.

Die TD Werte aus der WPPM-Anpassung (siehe Abb. 4.66a) zeigen zu Anfang eine uniforme

Verteilung von TD entlang ϕ mit Werten von ≈ 205 K, also deutlich unter dem grobkristallinen

Erwartungswert (≈ 275 K). Das lässt sich dadurch erklären, dass die Atome in den weniger

dicht gepackten Korngrenzen höhere nächste Nachbarabstände aufweisen, wodurch der stati-

sche Anteil von ⟨u2
S⟩ erhöht wird. Zusätzlich können dadurch weitere statische Verzerrungen

in den Kristallen in der Nähe der Korngrenzen erzeugt werden.

Außerdem ist davon auszugehen, dass die Nichtgleichgewichtsstruktur in/an Korngrenzen

mit erhöhtem Exzessvolumen eine Änderung der interatomaren Kraftkonstanten im Vergleich

zum Kristall bewirkt. Das wird durch die Ultraschallmessungen bestätigt, die für das wie-

hergestellte, nanokristalline Material relativ stark abgesenkte elastische Konstanten auswei-

sen (siehe Anhang A.1, S. 387 oder [6, 233]), welche gemäß Kapitel 2.3 direkt mit niedrigeren

interatomaren Kraftkonstanten korrelieren. Daher muss in diesem Bereich ein anderes Phono-

nenspektrum vorliegen, einschließlich größerer Schwingungsamplituden, wodurch zusätzlich

zum statischen auch eine Erhöhung des dynamischen Anteils von ⟨u2
S⟩ im Bereich der Korn-

grenzen zu erwarten ist.

Im Verlauf der Verformung (bis #4) nimmt TD in Druckrichtung kontinuierlich zu, sodass

die Verdichtung der Probe in Druckrichtung offensichtlich eine Abnahme von ⟨u2
S⟩ (Zunahme

von TD) bewirkt. Zusätzlich nimmt TD zwischen #3 und #4 senkrecht zum Steg und entlang

des Steges zu, also normal zu den Ebenen, an denen die größten Scherspannungen anliegen.

Das legt den Schluss nahe, dass Scherprozesse in/an Korngrenzen dazu führen, dass die

Verzerrungen durch die Scherungen abgebaut werden.

In Zugrichtung lässt sich dagegen ab #3 eine Abnahme von TD beobachten. Die in diese

Richtung wirkende Dilatanz bewirkt offenbar eine Zunahme von ⟨u2
S⟩ (Abnahme von TD) in

Richtung der größten Zugspannungen. Vermutlich werden in dieser Richtung die Korngren-

zen als schwächstes Glied lokal auseinander gezogen und so neues Exzessvolumen aufgebaut.

Eventuell entstehen hier bereits Mikrorisse als Vorläufer des schlussendlich auftretenden Ma-

terialversagens (vgl. [30]).

Das unterschiedliche Verhalten der Korngrenzen unter Zug und Druck könnte außerdem die

Ursache für die Unterschiede im beobachteten Spannungs- und Dehnungsverhalten der Körner

in Zug- und Druckrichtung sein. Unter Druck werden die Korngrenzen so lange verdichtet,

bis eine weitere Verdichtung höhere Spannungen benötigt als andere elastische und plastische

Prozesse. Die Korngrenzen sind dann gegenüber Normalspannungen steif und liefern keinen

eigenen Dehnungsbeitrag mehr. In Zugrichtung gibt es keinen vergleichbaren Grund für eine

306



4.2 Referenzprobe Y4-2

Erschöpfung der Dehnung der Korngrenzen, was im Einklang mit der makroskopisch beob-

achteten, anhaltenden Dilatanz ist. Damit können die Korngrenzen bis zur Rissbildung in

dieser Richtung Dehnungen normal zur Korngrenzenfläche beitragen.

Für #5 und #6 liefert TD aus den oben genannten, ungünstigen Wechselwirkungen mit den

ihkl keine sinnvollen Werte mehr, weshalb diese Fälle nicht weiter betrachtet werden.

Die TDS-Intensität ITDS (siehe Abb. 4.66b) verhält sich in Bezug auf ⟨u2
S⟩ umgekehrt zu

TD. Höhere Werte von ITDS bei konstanter Temperatur entsprechen einer größeren Varianz

von uS , also größeren Positionsschwankungen. Im Unterschied zur Debye-Temperatur, macht

ITDS aufgrund der Art der Modellierung primär nur eine Aussage zum kristallinen Anteil

des Materials und muss daher weder qualitativ noch quantitativ der invertierten Debye-

Temperatur entsprechen. Das ist auch nicht der Fall, da bis zum Zeitpunkt #3 keine signifi-

kante Änderung der anfänglich in ϕ-Richtung gleichverteilten TDS-Intensität zu beobachten

ist, insbesondere auch keine Abnahme in Druckrichtung. Die anfängliche durch TD beobach-

tete Abnahme von ⟨u2
S⟩ in Druckrichtung ist also primär ein Effekt der Korngrenzen.

Erst zum Zeitpunkt #4 ist in Druckrichtung ein leichter Rückgang der TDS-Intensität zu ver-

zeichnen, der möglicherweise durch die Relaxation der Korngrenzen unter Druck verursacht

wird, indem durch die mechanische Kopplung von Grenzen und Körnern die Verzerrungen in

letzteren in dieser Richtung teilweise abgebaut werden. Viel auffälliger sind aber die Maxima

in 40 ○- und 130 ○-Richtung, also entlang der Ebenen maximaler Scherspannung. Eine plau-

sible Ursache dafür ist, dass Bewegungen von Versetzungen mit Burgers-Vektoren in diesen

Richtungen eine zeitlich veränderliche, lokale Verschiebung von Atompositionen entlang die-

ser Richtungen erzeugt. Diese trägt zu einer Zunahme des dynamischen Anteils von ⟨u2
S⟩ und

damit von ITDS bei. Ruhende Versetzungen erzeugen keine höhere Varianz von uS und wer-

den vollständig vom Versetzungsmodell der WPPM-Anpassung beschrieben. Vergleicht man

die Positionen der Maxima mit den Bereichen geringerer Versetzungsdichte11 aus dem vor-

herigen Kapitel 4.2.6, findet sich eine gute Übereinstimmung der Ausrichtung beider Effekte

(siehe Abb. 4.67a).

Zum Zeitpunkt #5 (siehe Abb. 4.67b) zeigt sich eine weitere Zunahme der vier Maxima

in der TDS-Intensität. Diese konzentriert sich aber nur auf den Bereich, in dem der Span-

nungszustand in den Körnern und in den Korngrenzen negative Normalspannungen, also

Druckspannungen, aufweist. In Richtung der Zugspannungen schließen an die TDS-Maxima

jetzt deutlich zu erkennende Minima im Bereich des Vorzeichenwechsels der Normalspannung

in den Korngrenzen an. Dort, wo die vier Maxima erhalten bleiben, ändert sich nichts an der

vorherigen Interpretation. Im Zugspannungsbereich deutet der Einbruch der TDS-Intensität

aber auf ein zum Erliegen kommen des Versetzungsgleitens hin. Dieses kommt vermutlich

dadurch zustande, dass das Auseinanderziehen von Korngrenzen und/oder Schertransfor-

mationen bzw. Korngrenzengleiten unter diesem Belastungszustand leichtgängigere Verfor-

mungsmechanismen darstellen als Versetzungsnukleation und -gleiten. Die große Ähnlichkeit

11Das sind die Richtungen, in denen die sich bewegenden Versetzungen ihre Burgers-Vektoren orientiert haben.
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#4

(a)

#5

(b)
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Abbildung 4.67: Vergleich des inhomogenen Versetzungsanteils ∆ρΩ mit der TDS-Intensität
zu den Zeitpunkten #4 (a) bis #6 (c). Die schwarzen Linien grenzen hier
Bereiche positiver und negativer Normalspannungen in den Körnern ab, wo-
bei negative Spannungen durch nach innen gerichtete Pfeile dargestellt sind,
positive entsprechend umgekehrt. Die gepunkteten Linien beschreiben den
gleichen Sachverhalt für die Normalspannungen in den Korngrenzen. Für
den Vergleich des inhomogenen Versetzungsanteils und der TDS-Intensität
ist nur der äußere Ring der Darstellung von ∆ρΩ relevant.

der Signatur der TDS-Intensität zum Zeitpunkt #6 lässt darauf schließen, dass diese Inter-

pretation auch nach dem Anhalten der Maschine anwendbar bleibt.

Darüber hinaus bildet sich bei #5 und #6 ein weiteres Maximum der TDS-Intensität etwa

in Richtung der maximalen Zugspannung aus. Eine mögliche Ursache für dieses Maximum

ist die Texturkomponente J (siehe Abb. 4.47, S. 281), bei der die 220-Richtung senkrecht

auf den 111-Ebenen stehen, also ein Gleitsystem für Versetzungen darstellt. Die Orientie-

rung dieser Komponente konzentriert sich zum größten Teil auf den Bereich ϕ < 70 ○ (siehe

Abb. 4.49, S. 284), wodurch vermehrt günstig orientierte Gleitsysteme mit Gleitrichtungen
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entlang der Maxima der TDS in Zugrichtung existieren. Versetzungsgleiten auf diesen beson-

ders günstigen Gleitsystemen wäre dann ein möglicher Plastizitäts- oder Akkommodations-

mechanismus, der die Zunahme von ITDS in dieser Richtung erklären könnte. Gleichzeitig

wäre diese Erklärung konsistent mit der Beobachtung, dass dieses zusätzliche Maximum erst

nach der Umorientierung der Körner und der Bildung der Endtextur auftritt.

Der Umstand, dass nicht alle Bereiche niedriger Versetzungsdichten (Bereiche starken Ver-

setzungsgleitens) von den ITDS Maxima erfasst werden, stellt übrigens keinen Widerspruch

dar. Es liegt nämlich in der Natur der Berechnung der stereographisch dargestellten Ver-

setzungsdichten, dass diese keine absoluten Aussagen machen können – sie haben eher den

Charakter einer notwendigen Bedingung, nicht jedoch den einer hinreichenden Bedingung für

die Charakterisierung von Versetzungsaktivität.

Die TDS-Intensität kann in dem Programm DiStaTwi Viewer für alle diskutierten Proben

im Polardiagramm mit eingeblendet werden (siehe Anhang A.3, S. 394).

4.2.8 Stapelfehler

Die Stapelfehlerwahrscheinlichkeit α wird, wie schon die Versetzungsdichten zuvor, zu den

Zeitpunkten #1 bis #6 in Abb. 4.69 in der stereographischen Projektion dargestellt. Zusätzlich

ist der Mittelwert ⟨α⟩ in Abb. 4.68 gegen die Zeit aufgetragen. Der naheliegendste Entstehungs-

und Vernichtungsprozess von Stapelfehlern im vorliegenden Fall ist die Aktivität von Par-

tialversetzungen. Vergleicht man also zunächst die zeitlichen Entwicklungen der mittleren

Versetzungsdichte ⟨ρ⟩Ω (siehe Abb. 4.62, S. 301) und von ⟨α⟩, zeigt sich bereits eine Zu-

sammenhang dieser beiden Größen. In den Bereichen, in denen ⟨ρ⟩Ω eine geringe Steigung

aufweist, nimmt ⟨α⟩ ab. Zwischen #3 und #4, wo ⟨ρ⟩Ω den größten Anstieg zeigt, nimmt

auch ⟨α⟩ zu. Die Stapelfehlerdichte wird also zu Beginn der Verformung durch die noch rela-

tiv geringe Versetzungsaktivität im Mittel verringert. Entweder werden Partialversetzungen

gezielt so nukleiert, dass bestehende Stapelfehler durch deren Abgleiten abgebaut werden,

oder die in den Körnern bereits existierenden Partialversetzungen, die bestehende Stapel-

fehler beranden, werden durch die angelegte Spannung in die Korngrenzen getrieben, sodass

die Stapelfehler verschwinden. Letzterer Fall erscheint wahrscheinlicher, da in diesem nicht

die hohen Nukleationsspannungen aufgebracht werden müssen. Zudem liefert der Abbau von

Stapelfehlern eine zusätzliche treibende Kraft für die Versetzungsbewegung, da damit ein

Abbau von Stapelfehlerenergie einhergeht.

Ab #3 nimmt die Stapelfehlerdichte zusammen mit ⟨ρ⟩Ω bzw. der Änderungsrate von ⟨ρ⟩Ω

deutlich bis #4 zu. Das ist prinzipiell vereinbar mit dem zuvor beschriebenen Mechanis-

mus der Kornrotation, wodurch Partialversetzungen in den gedrehten Körnern nicht mehr

weiter abgleiten und damit einen Stapelfehler zurücklassen. Zusätzlich kann die höhere Nu-

kleationsrate dazu führen, dass im zeitlichen Mittel mehr Stapelfehler erzeugt als abgebaut

werden. Zwischen #4 und #5 erschöpft sich dieser Prozess und die Stapelfehlerdichte nimmt
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Abbildung 4.68: Über alle Orientierungen gemittelte Stapelfehlerdichte ⟨α⟩.

wieder ab, nachdem sich bei den Versetzungen die Gleichgewichtsdichte für die äußere Belas-

tung/Dehnrate eingestellt hat. Ab dann sind Nukleations- und Absorptionsraten scheinbar

ähnlich groß, sodass im Mittel keine neuen Stapelfehler mehr erzeugt werden. Die bereits

vorhandenen Stapelfehler können aber weiterhin abgebaut werden.

Dieses Zusammenspiel von Versetzungsaktivität und Stapelfehlern muss eine entsprechen-

de räumliche Korrelation erfüllen, die nun anhand der räumlichen Verteilung von α (siehe

Abb. 4.69) überprüft wird. Dazu wurden in Abb. 4.69 die Ebenen größter Scherspannun-

gen aus Abb. 4.64 (S. 303), entlang derer die meisten Versetzungen gleiten, als gestrichelte

Geraden eingezeichnet. Die Stapelfehler sollten senkrecht dazu auftreten, weshalb diese Rich-

tungen mit durchgezogenen Geraden markiert wurden. Beide Angaben beziehen sich auf die

x-y-Ebene, also den äußeren Rand der stereographischen Darstellung. Bis #3 ist die Änderung

von α praktisch uniform, wie es auch bei der Versetzungsaktivität zu diesem Zeitpunkt der

Fall war. Zum Zeitpunkt #4 gibt es dann klare Bereiche höherer Stapelfehlerwahrschein-

lichkeit. Bereiche hoher Stapelfehlerdichte liegen also in den Bereichen, in denen sie von

abgleitenden Partialversetzungen erzeugt werden können. In Richtung ϕ ≈ 40 ○ ist dieser Ef-

fekt besonders ausgeprägt, in ϕ ≈ 130 ○ etwas schwächer. Zuvor hat sich aber abgezeichnet,

dass die Rotation von Körnern aus dieser Richtung schneller und effizienter erfolgt als aus

der ϕ ≈ 40 ○-Richtung. Die Maxima in α, die dazu in negative Richtung gedreht sind, können

also von Kornrotationen herrühren. Das ist z.B. in Druckrichtung, oder in Richtung ϕ ≈ 145 ○

so (siehe auch Intensität in Abb. 4.42d, S. 276).
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#1 #2

#3 #4

#5 #6

Abbildung 4.69: Stereographische Projektion der Stapelfehlerwahrscheinlichkeit α. Der Wert
von α ist durch die Farbkodierung gegeben und die Position der Datenpunkte
zeigt die Orientierung der Normalen auf die Stapelfehler. Ebenen größter
Scherspannungen sind als gestrichelte Geraden eingezeichnet. Die Ebenen
senkrecht dazu sind mit durchgezogenen Geraden dargestellt. Die Zeitpunkte
wurden jeweils unten links angegeben.
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Bei #5 sind die Maxima deutlich schärfer als bei #4. Dieser Effekt spiegelt zum einen die

Fokussierung der Versetzungsaktivität auf den Bereich negativer Normalspannungen wieder

(siehe auch Abb. 4.67, S. 308), was in Abb. 4.69 einer Verkippung der gestrichelten Gera-

den in Druckrichtung entspräche. Die dazu senkrechten, durchgezogenen Geraden würden

entsprechend folgen und eine bessere Übereinstimmung zwischen durchgezogenen Geraden

und Bereichen von hohen α Werten liefern. Zum anderen lassen sich in Druckrichtung die

erwarteten Maxima in α durch die rotierten Körner beobachten, wobei eine Aufspaltung in

zwei Maxima durch die Ausbildung der zwei 111-Intensitätsmaxima erfolgt12. Es handelt sich

hier also auch um einen Effekt der zwischen #4 und #5 entstehenden Endtextur.

Das Minimum in Hauptzugspannungsrichtung lässt sich mit diesem oberflächlichen Argument

aber nicht verstehen und liefert hier sogar einen scheinbaren Widerspruch, da hier eben-

falls ein 111-Intensitätsmaximum auftritt, also viele 111-Ebenennormalen in dieser Richtung

orientiert sind. Betrachtet man aber die möglichen Einzelkomponenten der Textur (siehe

Abb. 4.47, S. 281), gibt es nur einen Kandidaten, der das Maximum der 111-Intensität in

Zugspannungsrichtung erklären kann und gleichzeitig ein Gleitsystem für Versetzungen in

der x-y-Ebene darstellt (d.h. 111 ⊥ 220), nämlich Komponente D (siehe Abb. 3.17, S. 161).

Genau diese Komponente hat aber ein Minimum in ∆I ′ im Bereich ϕ < 80 ○ (siehe Abb. 4.49,

S. 284). Das bedeutet, dass die Körner gerade so drehen, dass die 111-Ebenen in Zugrichtung

nicht zu einem vorher aktiven Gleitsystem gehören, weshalb diese Ebenen auch keine erhöhte

Stapelfehlerdichte aufweisen.

Abbildung 4.70: Stapelfehlerwahrscheinlichkeit α nach Entlastung (vgl. Abb. 4.69).

Zwischen #5 und #6 sinkt die Stapelfehlerdichte uniform weiter ab. Vermutlich bewirkt hier

die Spannungsrelaxation einen Abbau der Stapelfehlerdichte in Druckrichtung. Trotzdem

bleibt, solange die äußere Last angelegt ist, die grundsätzliche Verteilung von α bestehen.

Nach der Entlastung stellt sich eine gleichmäßigere Verteilung von α ein, die wahrscheinlich

12Stapelfehler existieren nur auf 111-Ebenen.
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durch das (Zurück-)Drehen von Körnern während der Entlastung zustande kommt (siehe

Abb. 4.70).

Die zeitlichen und räumlichen Entwicklungen der Stapelfehlerwahrscheinlichkeiten sind in

dem Programm DiStaTwi Viewer für alle diskutierten Proben enthalten (siehe Anhang A.3,

S. 394).

4.2.9 Zwillinge

Die Zwillingswahrscheinlichkeiten β sind, analog zu den Stapelfehlerwahrscheinlichkeiten, als

stereographische Projektionen in Abb. 4.71 dargestellt. Diese zeigen eine durchgängige Ab-

nahme von β während der gesamten Verformung, die anfangs (bis #3) im Rahmen der Unsi-

cherheit homogen erfolgt und dann ab #4 Minima in Druckrichtung und Maxima ca. ≈ 30 ○

aus der x-y-Ebene in Zugrichtung geneigt ausbildet. Ab #5 sind die Unterschiede zwischen

Minima und Maxima allerdings nur noch gering.

Ein Blick auf die Werte für β nach der Entlastung (siehe Abb. 4.72a) zeigt jedoch, dass hier

β im Mittel etwa den Wert von #3 erreicht aber eine komplett andere Verteilung aufweist.

Die Entwicklung von β von #4 bis #6 und dann der plötzliche Sprung auf den Zustand

aus Abb. 4.72a lässt sich physikalisch nicht erklären. Zur Klärung dieses Sachverhalts ist es

nützlich, die Auswirkung von β auf die modellierten Diffraktogramme im Vergleich zu den

Rohdaten zu untersuchen. Das ist am Beispiel des 111- und 200-Peaks in ϕ = 82 ○-Richtung

zum Zeitpunkt #5 in Abb. 4.72b dargestellt. Der Wert aus der Anpassung ist hier β = 0 und

entspricht der roten Kurve in Abb. 4.72b. Zusätzlich wurde das Modell mit weiteren Werten

für β berechnet und dargestellt; alle anderen Parameter wurden nicht verändert. Tatsächlich

ist es so, dass die Kurve zu β = 0 im Bereich des 111-Peaks die beste Übereinstimmung

zwischen Messung und Modell erreicht. Beim 200-Peak, ist das aber nicht so. Speziell an

der linken Flanke und im Bereich des Maximums würde durch höhere Werte von β eine

bessere Übereinstimmung erzielt werden, obwohl für die veränderten Werte von β keine Op-

timierung durchgeführt wurde. Die schlechtere Reproduktion der Intensität des Minimums

zwischen dem 111- und 200-Peak für β = 0.03 und β = 0.05 ist auf diese fehlende Optimierung

zurückzuführen. Der gleiche Befund wiederholt sich beim 220- und 311-Peak. Das heißt, dass

β hier offensichtlich hkl-abhängig ist und entsprechend modelliert werden müsste. Theore-

tisch ist das auch nicht anders zu erwarten, denn die Stapelfehler, welche die unterschiedlichen

hkl-Peaks entlang der gleichen Richtung ϕ beeinflussen, liegen auf ganz unterschiedlich orien-

tierten 111-Ebenen (siehe Abb. 3.59, S. 230). Das Modell zur Stapelfehlerwahrscheinlichkeit

geht von statistischer Isotropie des Materials und seines Dehnungszustandes aus, was aber

spätestens ab #3 in Bezug auf die Dehnungen in verschiedene Richtungen und für verschiede-

ne hkl nicht mehr erfüllt ist. Zusätzlich beginnt die Ausbildung der Endtextur ab #4, wodurch

die Isotropie noch weiter gestört wird. Die Entwicklung von β spiegelt also spätestens ab #3,
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Abbildung 4.71: Stereographische Projektion der Zwillingswahrscheinlichkeiten β. Der Wert
von β ist durch die Farbkodierung gegeben und die Position der Datenpunkte
zeigt die Orientierung der Normalen auf die Zwillingsgrenze. Die Zeitpunkte
sind jeweils unten links angegeben.

neben der Zwillingsgrenzenwahrscheinlichkeit, immer auch diese Effekte wieder. Eine Korre-

lation von β mit anderen Größen, die diesen Effekt im Sinne einer Wechselwirkung in der

WPPM-Anpassung erklären könnte, konnte nicht gefunden werden.
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Abbildung 4.72: a) Stereographische Projektion der Zwillingswahrscheinlichkeiten β nach
Entlastung (vgl. Abb. 4.71). Zusätzlich ist der Intensitätsverlauf der 111-
Peaks als gestrichelte Linie dargestellt. In den Richtungen hoher Intensität
liegen immer erhöhte Zwillingswahrscheinlichkeiten vor. b) Ausschnitt aus
einem Diffraktogramm (Fuß 111- und 200-Peak) und Anpassungen mit un-
terschiedlichen Werten für β. Die übrigen Parameter sind bei allen Anpas-
sungen gleich.

Das passende Vorgehen in diesem Fall wäre eine Anpassung aller Diffraktogramme zum selben

Zeitpunkt in den verschiedenen ϕ-Richtungen mit einer globalen WPPM-Anpassung, die ein

über alle Orientierungen hinweg konsistentes Modell zur Zwillingsgrenzenwahrscheinlichkeit

beinhaltet. Technisch ist das machbar, würde aber einen umfangreichen Umbau der hier ver-

wendeten Programme erfordern, da diese auf die sequenzielle Anpassung der Diffraktogramme

in einem Polarwinkelsegment ausgelegt sind.

Prinzipiell existiert dieses Problem auch für Stapelfehlerwahrscheinlichkeiten (α) und Ver-

setzungsdichten (ρ). Dem Versetzungsmodell liegt aber der Dehnungsgradient zu Grunde,

weshalb dieses prinzipiell robuster sein sollte – und offenbar auch ist – als das der Zwillings-

grenzenwahrscheinlichkeit. Die Stapelfehlerwahrscheinlichkeiten sind aus Sicht des Modells

hingegen eng verwandt mit den Zwillingsgrenzenwahrscheinlichkeiten. Trotzdem scheint der

kleine Unterschied in den Auswirkungen auf das Diffraktogramm auszureichen, um die Be-

stimmung von α in der WPPM-Anpassung wesentlich robuster zu machen als die Bestimmung

von β. Im Zusammenhang damit sei erwähnt, dass auch in [143] eine wesentlich höhere Ge-

nauigkeit bei der Bestimmung von α durch WPPM-Methoden als für β nachgewiesen wurde.

Ein Grund dafür wurde aber auch dort nicht angegeben.

Die Umverteilung der Zwillingsgrenzenwahrscheinlichkeit in Maxima und Minima nach der

Entlastung (siehe Abb. 4.72a) spiegelt in großen Teilen die 111-Textur wieder; letztere ist als

gestrichelte Linie in Abb. 4.72a eingezeichnet. Da die Zwillingsgrenzen nur auf 111-Ebenen
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existieren können, ist dieser Befund physikalisch nachvollziehbar und liefert ein Indiz dafür,

dass die Probleme bei der Bestimmung von β hauptsächlich auf der Anisotropie beruht, die

während der Verformung induziert wird. Die Textur besteht schließlich auch noch nach der

Entlastung der Probe.

Die zeitlichen und räumlichen Entwicklungen der Zwillingswahrscheinlichkeiten sind in dem

Programm DiStaTwi Viewer für alle diskutierten Proben enthalten (siehe Anhang A.3,

S. 394).

4.2.10 Mikroverzerrung durch Fehlpassung

Die mittlere Mikroverzerrung durch Fehlpassung zeigt über den Verlauf der Verformung hin-

weg eine charakteristische zeitliche Entwicklung. Für #4 und #5 ergibt sich außerdem eine

charakteristische Verteilung in ϕ-Richtung (siehe Abb. 4.73). Allerdings sind die Unsicherhei-

ten der Mittelwerte für diese Größe ähnlich groß, wie die Werte selbst. Daher sind sämtliche

Änderungen im strengen Sinne nicht signifikant und der Effekt scheint nur von geringer Be-

deutung zu sein. Daraus lässt sich ableiten, dass die Mikroverzerrungen durch Fehlpassung in

den Körnern im wie-hergestellten Zustand nur sehr gering sein können und die Spannungs-

schwankungen zwischen den Körnern daher auf einige 10 MPa bis wenige 100 MPa beschränkt

sind. Wären sie größer, wäre der Effekt stärker. Trotz der großen Unsicherheit dieser Größe

wird die Anpassung aber nachweisbar schlechter, wenn man diesen Modellteil entfernt. Es

scheinen also im Bereich zwischen #4 und #5 tatsächlich entsprechende Spannungsschwan-

kungen im Material aufzutreten. Für eine quantitative Untersuchung ist die Qualität der

Daten aus der verwendeten Methode aber nicht ausreichend.

0 200 400 600 800
t [s]

0

2

4

6

8

(a)

0

45

90

135

180

225

270

315

0

10 10-4

20 10-4

(b)

#1
#2
#3
#4
#5
#6

Abbildung 4.73: a) Mittlere Mikroverzerrung durch das MS Modell. b) Mikroverzerrung des
MS Modells zu den Zeitpunkten #1 bis #6.
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4.2 Referenzprobe Y4-2

4.2.11 Zusammenfassung zur Referenzprobe

Damit sind die Ergebnisse zur Probe Y4-2 abschließend dargestellt und umfassend bespro-

chen. Diskussionen und Analysen zu möglichen Plastizitätsmechanismen und ihren Wech-

selwirkungen wurden an den entsprechenden Stellen bereits vorgenommen und sollen jetzt

abschließend in kompakter Form zusammengefasst werden. Die bisherige Einteilung in die

Zeitpunkte #1 bis #6 und die dadurch definierten Intervalle werden dafür beibehalten. Die

folgende Darstellung beschreibt ein mögliches Modell, das im Einklang mit allen Beobach-

tungen eine konsistente Beschreibung liefert. Zusätzlich ist in Abb. 4.74 das Auftreten der

diskutierten Mechanismen anhand der Spannungs-Dehnungs-Kurven skizziert. Die Kurven

unterhalb der Spannungs-Dehnungs-Kurve dienen nur der Veranschaulichung des Auftretens

der verschiedenen Mechanismen und repräsentieren keine Messgrößen.
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Abbildung 4.74: Spannungs-Dehnungs-Kurve und Illustration zum Auftreten der diskutierten
Plastizitätsprozesse.
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#1 Ð→ #2:

Die Verformung läuft zu Beginn bei sehr niedrigen Spannungen hauptsächlich über einen

Prozess, welcher der thermischen Relaxation des Materials ähnlich ist [8, 31, 32]. Wie dort,

ist auch hier die anfängliche Verformung mit einem Volumenabbau verbunden. Durch die von

außen angelegte Spannung wird die benötigte Aktivierungsenergie soweit abgesenkt, dass bei

Raumtemperatur zu Beginn relativ hohe Dehnraten erreicht werden. Die äußere Belastung

stellt außerdem, ähnlich einem Kriechexperiment, eine Spannungsreservoir dar, wohingegen

bei der rein thermischen Relaxation die internen Spannungen mit der Zeit abgebaut werden

und sich dadurch die treibende Kraft im Verlauf der Relaxation erschöpft. Im Verformungsfall

können somit höhere Dehnraten über größere Dehnungsbereiche aufrechterhalten werden als

bei der thermischen Relaxation.

Außerdem eröffnet die zusätzliche Scherkomponente bei der Verformung die Möglichkeit, die

Konfigurationen in den Korngrenzen abseits des Relaxationsprozesses zu ändern. Dadurch

lassen sich auch solche Konfigurationen erreichen, die durch die rein thermische Relaxation

nicht zugänglich wären, wodurch möglicherweise die Kapazität an erreichbarer, plastischer

Dehnung durch die Relaxation vergrößert wird. Zusätzlich besteht immer die Möglichkeit,

dass durch die Verformung lokal Konfigurationen hoher Energie/hohen Exzessvolumens neu

erzeugt werden, die in der Folge relaxieren oder lokale Scherungen erzeugen und dadurch zur

plastischen Dehnung beitragen. Letzterer Fall ist funktional identisch zu Schertransformatio-

nen in Gläsern, die hier jedoch auf die Bereiche der Korngrenze eingeschränkt sind.

Ergänzend können in geringem Maß Versetzungen durch die Körner gleiten und so plasti-

sche Dehnung erzeugen oder als Akkommodationsprozess für die Relaxation fungieren. Diese

Versetzungen können sowohl von Anfang an in den Körnern vorhanden sein, als auch durch

lokale Spannungskonzentration nukleiert werden.

#2 Ð→ #3:

Im anschließenden Zeit- und Dehnungsintervall ist die Kapazität des zuvor beschriebenen Pro-

zesses in einem solchen Maß erschöpft, dass es zu einem starken Spannungsanstieg kommt.

Das heißt nicht, dass dieser Prozess zum Erliegen kommt, sondern dass seine effektive Ak-

tivierungsbarriere zunimmt, etwa weil die Konzentration von relaxierbaren Bereichen in der

Korngrenze abnimmt und deren Neubildung zum limitierenden Faktor wird. Nach wie vor

nimmt die Dichte im Stegbereich zu, wenn auch der Dilatanzfaktor stetig zunimmt und da-

mit die Kontraktanz senkrecht zum Steg abnimmt. Möglicherweise ist die Ursache dafür eine

Zunahme des Anteils von spannungsgetriebenen Scherverformungen in den Korngrenzen ge-

genüber dem Relaxationsprozess.

Durch die höheren Spannungen werden nun eine Reihe von weiteren Mechanismen zugänglich.

Der offensichtlichste ist eine erhöhte Versetzungsaktivität – vor allem auf 111-Ebenen, die in

Richtung der maximalen Scherspannungen ausgerichtet sind. Es erfolgt also eine teilweise

Verlagerung der Plastizität ins Innere der Kristallite.
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Zusätzlich zeigt sich hier der Beginn der Rotation von Körnern zum Abbau elastischer Verzer-

rungsenergie, sowie von anisotropem Kornwachstum in Folge von Coupling. Beide Prozesse

können durch Bildung und Bewegung von Disconnections in Korngrenzen erzeugt werden,

welche ihrerseits durch die Versetzungsaktivität im Korninneren erzeugt, vernichtet und um-

verteilt werden können.

#3 Ð→ #4:

Der Bereich zwischen #3 und #4 bildet in der Spannungs-Dehnungs-Kurve das Ende des

stärksten Spannungsanstieges und den kontinuierlichen Übergang in den Bereich annähernd

konstanter Spannungswerte in den Körnern. Gleichzeitig kommt die Dichtezunahme in die-

sem Bereich zum Erliegen, weshalb das Reservoir an relaxierbaren Konfigurationen in den

Korngrenzen bis #4 aufgebraucht zu sein scheint.

In diesem Bereich liegt auch die größte Zunahme an Versetzungsdichte und damit vermutlich

auch die größte Zunahme an Versetzungsaktivität. Das passt auch zu dem Befund, dass die

maximalen Scherspannungen in den Körnern hier im Mittel Werte von ≈ 1 GPa annehmen,

wodurch die Emission von vollständigen Versetzungen problemlos möglich sein sollte. Da

das mit dem Ende des Spannungsanstieges in den Körnern korreliert, ist dieser Mechanismus

möglicherweise der entscheidende für die Begrenzung der Maximalspannungen in den Körnern

und damit auch in abgeschwächter Form im Gesamtmaterial.

Außerdem setzt zwischen #3 und #4 Kornwachstum (vermutlich durch SGKW/Coupling) in

vollem Umfang ein. Die vermehrte Emission und Absorption von Versetzungen an den Korn-

grenzen mag diesen Prozess begünstigen, da dadurch Korngrenzenversetzungen und Stufen

in den Korngrenzen erzeugt werden, sodass in diesem Zuge Disconnections gebildet oder ab-

gebaut werden, die als Träger von Coupling fungieren können. Zusätzlich kann dadurch die,

ebenfalls in diesem Bereich zunehmende, Kornrotation unterstützt werden.

In diesem Bereich fällt auch χ (siehe Gl. (4.4), S. 259) deutlich ab, was gleichbedeutend

mit einer relativen Abnahme der Scherspannungen in den Korngrenzen im Vergleich zu den

Körnern ist, was mit einer Abnahme des Scherwiderstandes der Korngrenzen gleichgesetzt

werden kann. Auch diese Beobachtung kann einerseits mit der höheren Konzentration von

Korngrenzenversetzungen bzw. Disconnections in den Grenzen erklärt werden, andererseits

könnten auch Schertransformationen in den Korngrenzen aktiv werden. In jedem Fall steigt

der Beitrag der Korngrenzenplastizität zur gesamten Scherverformung.

Insgesamt steigt die Scherspannung in den Korngrenzen aber weiterhin an, ohne dass noch

eine nennenswerte Verdichtung des Stegbereiches stattfindet. Zum Zeitpunkt #4 geht die

Kontraktanz sogar in eine Dilatanz über (Vorzeichenwechsel des Dilatanzfaktors). Die Dich-

tezunahme und Relaxation der Korngrenzen kann in diesem Bereich also nicht mehr für die

Verfestigung der Korngrenzen verantwortlich sein, weshalb die übrigen, in der Korngrenze

aktiven Prozesse eine Verfestigung herbeiführen müssen. In [114, 115] wurde dazu ein Modell
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beschrieben, bei dem Korngrenzengleiten oder Coupling zur Bildung von Disklinationsdi-

polen an Tripellinien führt. Die von diesen Disklinationsdipolen verursachten Spannungen

bewirken eine Verfestigung der Korngrenzen, bilden aber gleichzeitig den Keim für eine Riss-

bildung entlang der Korngrenze. Um große plastische Dehnungen zu erzielen, müssen laut

[115] aus diesem Grund zusätzliche Plastizitätsmechanismen zu einer Spannungsrelaxation

dieser Disklinationsdipole beitragen, wie z.B. Diffusionsprozesse, Versetzungsemission oder

auch Schertransformationen.

#4 Ð→ #5:

Zwischen #4 und #5 erfolgt die weitere Verformung bei nur noch schwach ansteigenden Span-

nungen in den Körnern; im Gesamtmaterial steigen die Spannungen jedoch noch weiterhin

deutlich an. Die bisher stattfindende Dichtezunahme stagniert in diesem Bereich, gleichzei-

tig treten in den Korngrenzen in der Hauptzugrichtung positive Normalspannungen auf und

der Dilatanzfaktor nimmt positive Werte an. Der Verformungsmodus entspricht damit einer

Scherdehnung mit Dilatanz, gleichzeitig nimmt der hydrostatische Druck im Steg durch die

Zugspannungen in den Grenzen geringfügig ab. Die Dilatanz kann nur durch Prozesse au-

ßerhalb der Körner – also in den Korngrenzen – getragen werden; entweder durch Zunahme

des Exzessvolumens (Rückwärtsrelaxation) oder durch die Entstehung von Mikrorissen zwi-

schen den Körnern. In beiden Fällen wird dadurch das Versagen der Probe in Zugrichtung

vorbereitet.

Die Zunahme der Versetzungsdichte endet in diesem Bereich, sodass sich eine Gleichgewichts-

Versetzungsdichte in Abhängigkeit von der Dehnrate und dem Belastungszustand einstellt.

Zusätzlich verengt sich der Winkelbereich, in dem Versetzungen gleiten, auf die Richtungen

in denen eine negative Normalspannung vorliegt. In den Richtungen mit positiven Normal-

spannungen übernehmen vermutlich Kongrenzenmechanismen die plastische Dehnung.

Die Aktivitäten von Kornwachstum und Kornrotation sind jetzt maximal ausgeprägt und

es bildet sich die endgültige Textur (Intensitätsmuster) aus. Dieser Endzustand der Inten-

sitätsverteilung stellt einen Kompromiss für die Umorientierung der Körnern zwischen Ab-

senkung der Verzerrungsenergie und möglichst geringer Hinderung des Versetzungsgleitens

dar und ist damit eng an die Versetzungsaktivität gekoppelt.

In den Korngrenzen nehmen die Scherspannungen kontinuierlich zu, es findet also weiterhin

eine Verfestigung der Korngrenzen statt. Trotzdem ist absehbar, dass die Probe durch die

Dilatanz schlussendlich auf ein Versagen durch Rissbildung zusteuert.

Die Kornvergröberung durch Coupling verlangsamt sich relativ schnell nach #4 und stagniert

ab dann.

#5 Ð→ #6:

Bei #5 wurde die Prüfmaschine gestoppt und der Verformungsprozess geht in eine Spannungs-

relaxation über, in deren Verlauf die Spannungswerte etwa auf das Niveau zum Zeitpunkt
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#4 fallen. Die Dehnraten sinken währenddessen auf (nahe) null, alle Plastizitätsmechanismen

kommen also praktisch zum Erliegen. Allerdings hat dieser Prozess die Form eines exponen-

tiellen Abfalls und ist auch nach dem 200-sekündigen Haltesegment noch nicht vollständig

abgeschlossen.

Die anliegende Spannung kompensiert weiterhin die Rückspannungen im Material, sodass die

Versetzungsdichte in diesem Bereich nicht abnimmt. Das passiert erst nach Entlastung des

Materials.

Damit ist die Zusammenfassung der Ergebnisse der Referenzprobe und einer möglichen Er-

klärung der ablaufenden Prozesse abgeschlossen. Nachfolgend werden die Auswirkung von

Variationen der Stegwinkel, also des Spannungszustandes, sowie der Dehnrate untersucht

und die Unterschiede zwischen nicht-relaxierten und relaxierten Proben beleuchtet.
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4.3 Dehnrateneinfluss

In diesem Kapitel wird der Einfluss der Variation der Dehnraten auf das Verformungsverhal-

ten anhand dreier Proben mit Stegwinkeln von 45 ○ untersucht. Bei diesen Proben handelt

sich um V2-2 (Nenndehnrate Ėy = 1 ⋅ 10−1 s−1), N1-2 (Nenndehnrate Ėy = 2 ⋅ 10−4 s−1) und die

Referenzprobe Y4-2 (Nenndehnrate Ėy = 1 ⋅ 10−3 s−1).

Da die Verformungszeiträume um mehrere Größenordnungen voneinander abweichen, ist die

Zeit für den Vergleich dieser drei Experimente kein geeigneter Ordnungsparameter. Statt-

dessen wird in diesem Kapitel durchgängig die makroskopische Dehnung in y-Richtung (Ey)

in allen Darstellungen genutzt. Diese ist in guter Näherung eine streng monoton steigende

Funktion der Zeit und bietet daher eine ähnlich gute, aber vor allem vergleichbare Basis für

die folgende Diskussion. Allerdings lassen sich die Änderungsraten der dargestellten Größen

nicht mehr direkt erkennen und das Relaxationssegment am Ende der Verformung wird auf

einen kleinen Dehnungsbereich gestaucht.

Die zuvor zur Einteilung genutzten Zeitpunkte #1 bis #6 werden hier weiterhin verwendet,

beschreiben jetzt aber die Dehnungswerte Ey der Referenzprobe Y4-2 zu diesen Zeitpunkten.

Zusätzlich werden die Dehnungswerte #V und #N eingeführt, die das Ende der Verformung

(den Anfang des Relaxationssegmentes) von V2-2, bzw. N1-2 markieren.

Zunächst sind in Abb. 4.75 die tatsächlich erreichten Dehnraten aus der optischen Deh-

nungsmessung der drei Proben dargestellt. Die Nenndehnrate in y-Richtung entspricht in

allen Fällen dem kleinsten Wert auf der y-Achse in den Darstellungen und wird jeweils nur

zu ca. 60 % erreicht. Ansonsten sind die Verläufe der Dehnraten in allen Fällen qualitativ

ähnlich. Nur bei N1-2 gibt es eine auffällige Störung der Dehnraten bei einem Dehnungswert

in y-Richtung von −0.195, die sich vermutlich auf die Ausbildung von Rissen in der Probe

zurückführen lässt. Diese sind in den Frontkamerabildern zu diesem Zeitpunkt noch nicht zu

erkennen, zeigen sich aber im späteren Verlauf der Verformung deutlich (siehe Abb. 4.76).

Der Riss verläuft genau senkrecht zur Richtung der maximalen Zugspannung, sodass es sich

hier offenbar um einen Modus I Spaltbruch handelt [30]. In [30] wurde für das selbe Material

bei SCS mit 45 ○-Stegwinkel ein Gleitbruch nach Modus II beschrieben. Allerdings lag dort

die Nenndehnrate mit 3 ⋅ 10−3 s−1 um den Faktor 20 höher als bei N1-2.
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Abbildung 4.75: Einträge des Dehnratentensors gegen die Dehnung in y-Richtung von
V2-2 (a), Y4-2 (b) und N1-2 (c). Hier sind nur die von null verschiedenen
Einträge dargestellt.

In früheren Arbeiten [25, 30, 166] wurde die Dehnratenabhängigkeit der Verformung anhand

von Spannungs-Dehnungs-Kurven dargestellt. Trägt man, wie zuvor, die y-Komponente des

Spannungstensors (von Körnern und Gesamtmaterial) gegen die y-Komponente des makro-

skopischen Dehnungstensors auf (siehe Abb. 4.77), ist allerdings weder für das Gesamtma-

terial, noch für die Kristallite der bekannte Befund nachweisbar, dass Spannungen mit der

Dehnrate ansteigen. Die beiden schnelleren Verformungen (V2-2 und Y4-2) zeigen annähernd

identische Spannungen im Gesamtmaterial, wohingegen die langsamste Verformung (N1-2)

deutlich geringere Spannungswerte in y-Richtung aufweist. Bei den Spannungen in den Kris-

talliten liegt V2-2 jedoch zwischen den Spannungswerten von Y4-2 und N1-2. Die Rissbildung

der Probe N1-2 bei Ey = −0.195 führt außerdem zu einem plötzlichen Anstieg der Spannung

und einem leichten Anstieg der nachfolgenden Verfestigung. Für eine genauere Untersuchung
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Abbildung 4.76: a) Ausschnitt aus dem Bild der Frontkamera zum Ende der Verformung
von N1-2. Die Darstellung wurde so angepasst, dass der dunkle Stegbe-
reich hier besser hervortritt. Im unbearbeiteten Kamerabild ist die Probe
nicht überbelichtet. Der rote Kasten markiert den Bereich, in dem sich der
Riss im Stegbereich gebildet hat. Die Hauptzugspannungsrichtung ist durch
grüne Pfeile gekennzeichnet. b) Polarplot des Spannungszustandes in der
x-y-Ebene in den Kristalliten von N1-2 zum Zeitpunkt der Aufnahme des
Bildes in a). Die Hauptzugspannungsrichtung ist hier ebenfalls durch grüne
Pfeile gekennzeichnet.

der Spannungen bietet sich erneut die Aufspaltung des Spannungszustandes in den hydrosta-

tischen Druck σiso und den verbleibenden deviatorischen Anteil ¯̄σdev an.

Für die hydrostatischen Spannungen σiso (siehe Abb. 4.78a) stellt sich keine einfache Ab-

hängigkeit von der Dehnrate ein: Die σiso Werte von V2-2 und N1-2 sind nahezu identisch bis

zu dem Punkt, an dem sich in N1-2 der Riss ausbildet. Ab dann steigt σiso für N1-2 plötzlich

an. Für Y4-2 liegt σiso ab #3 konstant um 0.07 GPa leicht über den andern beiden Werten.

Sollte es deutliche Unterschiede in den Spannungszuständen der drei Verformungen geben,

müssen sich diese in Unterschieden im Spannungsdeviator niederschlagen.

Skalare Größen, die den Spannungsdeviator beschreiben, sind z.B. die Invarianten von ¯̄σdev

oder daraus abgeleitete Größen wie die von Mises-Vergleichsspannung. Diese haben aber den

Nachteil, dass sie nicht direkt messbare bzw. wirkende Spannungen im Material beschreiben,

wie weiter oben bereits diskutiert wurde (S. 257). Um den Spannungsdeviator mit einer

skalaren Größe zu beschreiben, wird stattdessen der Betrag der maximalen Scherspannung

σscher gewählt, also das Maximum der in Abb. 4.63 (S. 302) für Y4-2 dargestellten Größe. Die

Ebenennormalen der Ebenen, an denen die maximalen Scherspannung wirken, befinden sich

bei den 45 ○-Proben immer in der x-y-Ebene in Richtung der Winkelhalbierenden zwischen

den Hauptspannungsrichtungen.
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Abbildung 4.77: Spannungs-Dehnungs-Kurven in Form der Spannungen und Dehnungen in
y-Richtung. Die Spannungen sind sowohl für die Körner (gepunktete Linien),
als auch für das Gesamtmaterial (durchgezogene Linien) angegeben.

Die Orientierung dieser Hauptspannungsrichtungen wird, wie oben, durch ∆φ beschrieben,

wodurch die Abweichung des Minimums des Spannungstensors in der x-y-Ebene von der

ϕ = 90 ○ Position angegeben wird. Für die drei Dehnraten ist ∆φ in Abb. 4.79a gezeigt und

liefert für alle Dehnraten ähnliche Werte, die sich maximal um 4 ○ voneinander unterscheiden.

Das entspricht gerade der Breite ∆ϕ der Segmente aus der Röntgenauswertung, sodass der

Unterschied identisch zur Auflösung in ϕ-Richtung ist. Die in Abb. 4.79a gezeigten Werte sind

sowohl für die Spannungstensoren der Körner, als auch für die des Gesamtmaterials gültig,

da sich diese nur durch eine skalare/isotrope Skalierung um χ voneinander unterscheiden.

Die Hauptspannungsrichtungen der Spannungstensoren sind damit in allen Fällen ähnlich

orientiert, sodass σscher für alle Dehnraten direkt miteinander verglichen werden können.

In Abb. 4.78b sind die maximalen Scherspannungen in den Körnern und in Abb. 4.78c die

maximalen Scherspannungen im Gesamtmaterial dargestellt. Hier zeigt sich nun deutlich die

erwartete Zunahme der Spannungen mit der Dehnrate, wobei die Unterschiede spätestens

ab #4 für das Gesamtmaterial sogar stärker ausgeprägt sind. In den Körnern tritt ab #4

nur in sehr geringem Maß eine Verfestigung in Bezug auf die Scherspannungen auf, während

beim Gesamtmaterial eine mit der Dehnrate zunehmende Verfestigung beobachtet werden

kann. Dabei sind die Scherspannungen im Gesamtmaterial geringer als in den Körnern, mit

Ausnahme des Endes der schnellsten Verformung V2-2.
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Abbildung 4.78: a) Hydrostatischer Druck in Abhängigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Körnern als Funktion der Dehnung in
y-Richtung. c) Wie b), aber für das Gesamtmaterial.

Entsprechend sind die Werte von χ (siehe Gl. (4.4), S. 259), abgesehen von dieser Ausnahme,

kleiner als 1 (siehe Abb. 4.79b). Die geringsten Werte von χ weist die am langsamsten ver-

formte Probe N1-2 auf, deren Verlauf von χ näherungsweise einem nach unten verschobenen

Verlauf von Y4-2 entspricht. Die schnell verformte Probe V2-2 zeigt verglichen dazu einen

stärkeren Anstieg von χ über die gesamte Verformung hinweg und erreicht am Ende sogar

Werte über 1. In diesem Bereich übersteigt der mittlere Scherwiderstand der Korngrenzen

also sogar den der Kristallite.

Die von Mises-Vergleichsspannungen entsprechen qualitativ genau den Verläufen der maxi-

malen Scherspannungen in Abb. 4.78b, bzw. in Abb. 4.78c, allerdings zu höheren Spannungs-

werten verschoben – daher werden sie hier nicht wiedergegeben.

Nach den Spannungen sollen im nächsten Schritt nun die Dehnungen im Verlauf der Verfor-

mungen mit unterschiedlichen Dehnraten präsentiert werden. Wie bei der Referenzprobe, ist

326



4.3 Dehnrateneinfluss

0 0.05 0.1 0.15 0.2 0.25
-E

y
 []

-50

-40

-30

-20

-10

0
 [°

]

(a)

0 0.05 0.1 0.15 0.2 0.25
-E

y
 []

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 []

(b)

#1
#2
#3
#4
#5
#6
#V
#N

Abbildung 4.79: a) Rotationswinkel ∆φ, um den die Hauptspannungsrichtungen in der x-y-
Ebene um das Laborkoordinatensystem gedreht sind. Die Ausrichtung der
Achsen des Laborkoordinatensystems entsprechen den Polarwinkeln ϕ = 0 ○

und ϕ = 90 ○. b) Multiplikator des Spannungsdeviators χ, durch den die Span-
nungen in den Kristalliten auf die mittlere Spannung im Gesamtmaterial
umgerechnet wird. Werte kleiner 1 entsprechen einer Spannungsabsenkung
in den Korngrenzen im Vergleich zu den Spannungen in den Körnern.

auch hier in allen Fällen über alle Verformungen hinweg die Normaldehnung entlang der Ste-

grichtung (ϕ = 135 ○ bzw. ϕ = 315 ○) stets null. Daher können die Dehnungen in der x-y-Ebene

wieder in einen Normaldehnungsanteil senkrecht zum Steg E⊥ und einen Scherdehnungsanteil

entlang des Steges E∥ aufgeteilt werden, die in Abb. 4.80 dargestellt sind. Die Dehnungskom-

ponenten in z-Richtung liefern keine relevanten Zusatzinformationen und werden hier nicht

dargestellt.

Die Verläufe von E⊥ und E∥ sind für die beiden schnellen Verformungen V2-2 und Y4-2

qualitativ und quantitativ bis #4 identisch. Ab #4 steigt E⊥ bei Y4-2 zunehmend stärker an

als bei V2-2 und erreicht damit bei gleichem Ey etwas größere Werte von E⊥. Insgesamt sind

die Unterschiede aber gering.

Bei der langsamen Verformung N1-2 ist das Dehnungsverhalten zu Anfang sehr verschieden.

Die Scherdehnung E∥ setzt leicht verzögert erst ab #2 ein und verläuft ab dann gleichartig

wie bei Y4-2 oder V2-2; hier findet also eine Verschiebung von E∥ in positive Ey-Richtung

statt. Der verzögerte Einsatz von E∥ wird durch einen stärkeren anfänglichen Abfall von E⊥

ausgeglichen, also einer starken Kompression des Steges. Zwischen #2 und #3 nimmt die

Steigung von E⊥ von N1-2 den Wert der E⊥-Steigung von Y4-2 an. Ab dann verläuft die

E⊥-Kurve parallel zu der von Y4-2 mit einem Abstand von −1.7 %.

Dieser Befund äußert sich auch in der unterschiedlichen Orientierung der Hauptdehnungs-

richtungen in der x-y-Ebene, die in Form von ∆φ in Abb. 4.81 angegeben sind. Bei N1-2 ist

∆φ mit −47 ○bis #2 viel kleiner als bei V2-2 oder Y4-2 (∆φ = −10 ○ bzw. ∆φ = −12 ○), d.h.
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0 0.05 0.1 0.15 0.2 0.25
-E

y
[]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

D
eh

nu
ng

 [
]

(b) Y4-2 (1 ⋅ 10−3 s−1)
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Abbildung 4.80: Darstellung der Dehnung in der x-y-Ebene in Form der Dehnung entlang des
Steges E∥ und senkrecht zum Steg E⊥. Die Normaldehnungskomponente in
Stegrichtung ist stets null, sodass hier auf ihre Wiedergabe verzichtet wird.
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die Hauptkompressionsrichtung steht anfangs bei N1-2 senkrecht auf dem Steg, ohne dass

Scherung stattfindet; in den übrigen Fällen setzt diese direkt zu Beginn der Verformung mit

ein. Im weiteren Verlauf der Verformung steigt ∆φ dann kontinuierlich an und erreicht ca.

ab #V ähnliche ∆φ-Werte wie in den übrigen Experimenten.
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Abbildung 4.81: Rotationswinkel ∆φ, um den die Hauptdehnungsrichtungen in der x-y-Ebene
um das Laborkoordinatensystem gedreht sind. Die Ausrichtung der Ach-
sen des Laborkoordinatensystem Entsprechen den Polarwinkeln ϕ = 0 ○ und
ϕ = 90 ○.

Der Hauptunterschied des Dehnungsverhaltens von N1-2 im Vergleich zu den restlichen Ver-

formungen stammt damit von dem unterschiedlichen Anfangsverhalten von N1-2, das von

einer reinen Kompression senkrecht zum Steg geprägt ist. Das anschließende Verformungs-

verhalten ist dann insgesamt sehr ähnlich zu den übrigen Dehnraten, wird aber weiterhin von

dem anfänglichen Unterschied geprägt, der erst spät in der Verformung ausgeglichen werden

kann.

In der Volumendehnung (siehe Abb. 4.82a) äußert sich das in einer deutlich stärkeren anfäng-

lichen Volumenabnahme von N1-2 im Vergleich zu Y4-2 und V2-2. Die beiden letztgenannten

zeigen indes ein einander sehr ähnliches Verhalten bis ca. #4. Danach stagniert das Steg-

volumen bei Y4-2, nimmt bei N1-2 wieder zu und bei V2-2 weiter ab. Der Bereich, in dem

die Rissbildung bei N1-2 einsetzte fällt mit dem zusammen, in dem ∆V /V positiv wird. Die

schnellste Verformung V2-2 ist die einzige, die bis zum Ende eine durchgängige Volumenab-

nahme zeigt.
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Dieses unterschiedliche Volumendehnungsverhalten geht zu großen Teilen auf die unterschied-

liche anfängliche Kompaktierung der Proben zurück, weniger auf Unterschiede im Dilatanz-

verhalten. Folglich sind die Dilatanzfaktoren β der drei Proben über die Verformung hinweg

ähnlich (siehe Abb. 4.82b). Es fällt jedoch auf, dass β bei N1-2 als Folge der starken Kom-

pression bis ca. #3 bei etwas niedrigeren Werten startet. Ab #3 ist dieser Effekt abgeklungen

und die Dilatanzfaktoren aller drei Proben steigen bis #4 mit ähnlicher Steigung an, wobei

die Werte von N1-2 durchgängig über denen der andern beiden liegen. Es lässt sich also fest-

halten, dass Dilatanz/Kontraktanz hauptsächlich durch niedrige Dehnraten beeinflusst wird

und für Dehnraten über 1 ⋅ 10−3 s−1 keinen signifikanten Unterschiede aufweist.
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Abbildung 4.82: a) Entwicklung der Volumendehnung im Steg mit der Dehnung in y-
Richtung. b) Dilatanzfaktor β als Funktion der Dehnung in y-Richtung.

Im nächsten Abschnitt wird die Entwicklung der Intensitäten während der drei Verformun-

gen betrachtet. Dazu wird zunächst die Textur in den Endphasen der Verformungen bei

#V in Abb. 4.83 betrachtet, wo für die drei Dehnraten jeweils die vier Peakintensitäten in

Abhängigkeit von ϕ gezeigt sind. Um die Vergleichbarkeit zwischen den verschiedenen Proben

herzustellen, ist hier nicht I ′, sondern I ′′ = I ′/⟨I111,#1⟩ϕ aufgetragen. Die unterschiedlichen

Belichtungszeiten auf dem Detektor und unterschiedliche Probendicken würden bei I ′ zu nicht

direkt miteinander vergleichbaren Werten für die drei Proben führen. Die Normierung von I ′

auf die mittlere Anfangsintensität des 111-Peaks ⟨I111,#1⟩ϕ umgeht dieses Problem und stellt

die Vergleichbarkeit in Form von I ′′ her.

Die drei Texturen sind einander qualitativ sehr ähnlich, die von V2-2 und Y4-2 entsprechen

sich sogar quantitativ in den Beträgen der Maxima und Minima im Rahmen der Messgenau-

igkeit. Letztere ist bei V2-2 schlechter, da die effektiven Belichtungszeiten kürzer sind und die

laterale Auflösung auf dem Detektor durch das Pixel-Binning halbiert ist. Die größere Nei-

gung des 220-Maximums aus der ϕ = 90 ○ Position in negativer Richtung ist mit der stärkeren

Neigung der Hauptspannungsachsen in diese Richtung korreliert. Die Intensitätsverteilung
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Abbildung 4.83: Intensitätsänderung I ′ für alle Peaks von V2-2 (a), Y4-2 (b) und N1-2 (c)
zum Dehnungszustand #V .

von N1-2 ist etwas schwächer ausgeprägt als die der beiden anderen und weist außerdem eine

stärker ausgeprägte Asymmetrie auf. Diese ist besonders gut in der Darstellung der summier-

ten Intensitäten in Abb. 4.84 zu erkennen: Wo die Intensitätsmaxima in Druckrichtung bei

Y4-2 und besonders bei V2-2 sehr gleichmäßig in ϕ-Richtung ausgebildet sind, zeigt sich bei

N1-2 ein klar erkennbarer Abfall der Intensität des Maximums in negativer Drehrichtung. Der

Drehprozess der Körner scheint also mit abnehmender Dehnrate stärker gehemmt zu sein.

Die Entwicklung sowohl der Übergangs- als auch der Endtextur ist in Abb. 4.85 in Form von

∆I ′′ angegeben. Wie zuvor bei Y4-2 wird hier die Übergangstextur durch ∆I ′′111(82 ○) und

die der Endtextur durch ∆I ′′111 = ∆I ′′111(54 ○) − ∆I ′′111(82 ○) quantifiziert; aus Gründen der

Vergleichbarkeit hier allerdings unter Verwendung der zweifach gestrichenen Größen.

Die Übergangstextur entwickelt sich bis #4 für alle Dehnraten gleich (siehe Abb. 4.85a) und

ändert sich ab dann für Y4-2 und N1-2 fast nicht mehr, wobei die Ausprägung für N1-2 etwas

schwächer ist als für Y4-2.
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Abbildung 4.84: Über alle Peaks summierte Intensitäten I ′′ am Ende der Verformung von
V2-2 (a), Y4-2 (b) und N1-2 (c). Positive Werte entsprechen hier einer Zu-
nahme der Anzahl der Atome, die an der Streuung in Körnern in die jeweilige
Richtung beteiligt sind.

Der bei V2-2 beobachtete Abfall nach #4 wird nur nur durch zwei Datenpunkte verursacht

und könnte daher ein Effekt der Messunsicherheit sein, welche bei V2-2 aus den oben genann-

ten Gründen besonders hoch ist.

Die Entwicklung der Endtextur (siehe Abb. 4.85b) verläuft ebenfalls bis #4 bei allen Dehnra-

ten nahezu identisch. Ab dann ist der Anstieg bei N1-2 viel flacher als bei den anderen beiden

Proben, sodass ein geringerer Endwert erreicht wird, obwohl die Verformung sowohl bzgl. Zeit

als auch bzgl. Dehnung die anderen übertrifft. Das zeigt, dass die schwächer ausgeprägte End-

textur bei geringer Dehnrate repräsentativ für den gesamten Verlauf der Verformung ist.
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Abbildung 4.85: a) Entwicklung der Übergangstextur in Abhängigkeit von der Dehnung in
y-Richtung, gemessen durch ∆I ′′111(82 ○). b) Entwicklung der Endtextur in
Abhängigkeit von der Dehnung in y-Richtung. Als Maß dient hier ∆I ′′111 =

∆I ′′111(54 ○) −∆I ′′111(82 ○).

Tabelle 4.4: Parameter der Korngrößenverteilung zu Beginn der Verformung.

V2-2 Y4-2 N1-2

⟨D⟩vol [nm] 17.1 18.6 18.6
σ′ [ ] 1.55 1.62 1.66

Während allen drei Verformungen kommt es zu anisotropem Kornwachstum, bei dem die

Richtungen, in denen die Korngrößen zunehmen, etwa den Maxima der summierten Inten-

sitäten entsprechen (siehe Abb. 4.84) – ähnlich wie bei Y4-2 . Ein direkter Vergleich der

Korngrößen und ihrer Entwicklung ist hier nicht zielführend, da die Anfangskorngrößen und

ihre Verteilungen voneinander abweichen. Die volumengemittelten Korngrößen ⟨D⟩vol sowie

die Verteilungsbreiten σ′ zu Beginn der Verformung sind in Tabelle 4.4 zusammengefasst und

zeigen, dass die Anfangsverteilungen der Korngrößen, insbesondere für V2-2, zu verschieden

voneinander sind, als dass einfache Vergleiche von ⟨D⟩vol und σ′ zulässig wäre.

Für den Vergleich der Proben untereinander ist eine daraus abgeleitete Größe wesentlich

geeigneter, nämlich der Anteil des Volumens der Korngrenzen VKG in Relation zum Gesamt-

volumen V und dessen Entwicklung mit der Zeit bzw. der Dehnung. Um diese Größe zu

berechnen, kann der Ansatz aus [271] bzw. [8] benutzt werden, wo für VKG/V der Ausdruck

VKG
V

=
3δ

3δ + exp (ln (⟨D⟩vol) − (lnσ′)2
)

(4.10)
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abgeleitet wurde. Hier bezeichnet δ die Dicke des Korngrenzbereiches normal zur Grenzfläche,

welche in [6] zu δ ≈ 0.8 nm abgeschätzt wurde. Die Größe VKG/V gibt direkt den Volumenan-

teil des Korngrenzbereiches im Stegbereich an, was zusätzlich den Vorteil hat, dass damit die

komplette Korngrößenverteilung (also ⟨D⟩vol und σ′) in einer physikalisch relevanten Weise

durch ein ein skalares Maß beschrieben wird.
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Abbildung 4.86: a) Entwicklung des Korngrenzenvolumenanteils ∆VKG/V mit der Dehnung.
b) Über alle Burgers-Vektororientierungen gemittelte Versetzungsdichten
⟨ρ⟩Ω als Funktion der Dehnung in y-Richtung.

Die drei Proben starten bei geringfügig unterschiedlichen Werten von VKG/V (V2-2: 0.145,

Y4-2: 0.140, N1-2: 0.142), weshalb ein direkter Vergleich der Entwicklung davon unübersicht-

lich wäre. Daher ist in Abb. 4.86a die Änderung von VKG/V in Bezug auf den Anfangszustand

bei #1, also ∆VKG/V = (VKG−VKG,#1)/V , aufgetragen, wobei ∆VKG/V für jeden Zeitpunkt

über alle Winkelsegmente gemittelt wurde. Dadurch haben alle Proben den gemeinsamen

Startwert null, sodass sich Unterschiede in der Entwicklung von VKG/V direkt in Abweichun-

gen der Kurven voneinander niederschlagen.

Die Ergebnisse zeigen deutlich, dass bis #4 keine Unterschiede im Abbau von korngrenzen-

volumen für die verschiedenen Dehnraten bestehen. Dabei findet in allen Fällen bei niedri-

gen Spannungen bis #3 praktisch kein Abbau statt. Jenseits von #4 unterscheidet sich die

schnellste Verformung aber von den anderen beiden, indem die Änderung des korngrenzen-

volumens zum Erliegen kommt, wohingegen in den beiden langsameren Verformungen weiter

korngrenzenvolumen abgebaut wird. In allen Fällen findet aber der größte Teil des Abbaus

von Korngrenzen im Bereich um #4 statt.

Zuletzt werden die Entwicklungen der Versetzungsdichten bei den unterschiedlichen Dehn-

raten diskutiert. Die über alle Richtungen gemittelten Versetzungsdichten ⟨ρ⟩Ω sind in Abb.

4.86b dargestellt. Die anfänglichen Versetzungsdichten sind bei allen Proben sehr ähnlich
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4.3 Dehnrateneinfluss

und nehmen bis #3, unabhängig von den verschiedenen Dehnraten, in gleichem Maße zu. Ab

dann steigt die Versetzungsdichte bei der schnellen Verformung V2-2 aber viel stärker an als

bei den langsameren. Bei Y4-2 ist dieser Effekt gegenüber der noch langsameren Verformung

von N1-2 auch vorhanden, aber schwächer ausgeprägt. Ab #4 nimmt die Steigung aller Kur-

ven ab, sodass diese fast horizontal verlaufen. Der Abfall der Versetzungsdichten nach der

Entlastung ist in Abb. 4.86b nicht dargestellt.
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Abbildung 4.87: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen Ω von der mittleren Ver-
setzungsdichte ⟨ρ⟩Ω beim Dehnungszustand #4 von V2-2 (a), Y4-2 (b) und
N1-2 (c).

Hinsichtlich der Richtungsabhängigkeiten der Versetzungsdichten (siehe Abb. 4.87) gibt es

zwischen den Dehnraten keine qualitativen Unterschiede. Die Differenz zwischen den Maxima

und Minima ∆ρmax nimmt aber mit der Dehnrate in ähnlicher Art zu, wie bereits ⟨ρ⟩Ω. Für

die beiden langsameren Verformungen N1-2 und Y4-2 beträgt ∆ρmax ≈ 2.8 ⋅ 1015 m−2 und für

V2-2 ist ∆ρmax ≈ 3.8 ⋅ 1015 m−2.

Dieser Sachverhalt ist noch einmal übersichtlicher in Form von Histogrammen von ρΩ zur

Dehnung/Zeitpunkt #4 in Abb. 4.88 für die drei Dehnraten zusammengefasst. Da bei der

Berechnung der orientierungsabhängigen Versetzungsdichten immer die gleiche Anzahl an
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Punkten verwendet wird (identisch zu den Punkten in Abb. 4.87), sind die daraus abgeleiteten

Histogramme zu jeder Zeit direkt miteinander vergleichbar. Abb. 4.88 veranschaulicht somit

direkt die Unterschiede in den Mittelwerten der Versetzungsdichten ⟨ρ⟩Ω, sowie die Verteilung

von ρΩ. Offenbar nimmt die Versetzungsaktivität mit der Dehnrate zu.
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Abbildung 4.88: Histogramme der Versetzungsdichten ρΩ zum Dehnungswert/Zeitpunkt #4
über alle Burgers-Vektororientierungen Ω.

Die noch verbleibenden Größen verhalten sich unabhängig von den Dehnraten so, wie es

aus der Besprechung der Referenzprobe zu erwarten ist und werden daher nicht mehr gra-

phisch dargestellt. Die Debye-Temperatur steigt bis #4 in Druckrichtung an und leidet dann

an den oben genannten Bestimmungsproblemen. Die TDS-Intensitätsmaxima korrelieren mit

den Bereichen, in denen Versetzungen aktiv sein können und konzentrieren sich im weiteren

Verlauf auf die Bereiche, in denen Druckspannung vorherrscht. Stapelfehler- und Zwillings-

wahrscheinlichkeiten verhalten sich ebenfalls in allen Fällen ähnlich, wie bei Y4-2 gezeigt.

Damit sind die relevantesten Auswirkungen der Dehnratenvariation auf das Verformungsver-

halten dargestellt und werden nun zusammengefasst und diskutiert. Es zeigt sich, dass höhere

Dehnraten zu einem Anstieg der Scherspannungen in den Körnern und im Gesamtmaterial

führen. Der Spannungsanstieg mit der Dehnrate ist im Gesamtmaterial höher als in den

Kristalliten, sodass daraus folgt, dass die Korngrenzen eine höhere Dehnratenabhängigkeit

aufweisen, als die kristalline Phase. Die Spannungen im Gesamtmaterial sind dabei nach wie

vor niedriger als in den Körnern, weshalb die Korngrenzen offenbar in der Regel geringere

Scherwiderstände aufweisen, als die Körner. Lediglich am Ende der schnellsten Verformung

V2-2 scheinen die Korngrenzen höhere Scherspannungen und damit höhere Scherwiderstände
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aufzuweisen. Falls die Verfestigung in den Korngrenzen durch die in [114, 115] beschriebe-

ne Bildung von Disklinationsdipolen erzeugt wird, könnte die hohe Festigkeit bei schnellen

Dehnraten durch den Wegfall von Relaxationsmechanismen in den Korngrenzen erklärt wer-

den, welche die Disklinationsdipole mit der Zeit abbauen. Die treibende Kraft hinter diesem

Abbau wird von den durch die Disklinationsdipole erzeugten Spannungen bereitgestellt.

Da die Plastizitätsmechanismen in den Körnern und in den Korngrenzen unterschiedliche

Dehnratenabhängigkeiten aufweisen, führt die Änderung der Dehnrate zu einer Änderung der

Anteile und des Zusammenspiels aller Plastizitätsmechanismen, genau wie nach Gl. (2.207c)

(S. 120) zu erwarten ist. Der Übersichtlichkeit halber wird der Ausdruck hier noch einmal

wiederholt:

ε̇ ≈∑
i

ci ∆εi ν0 exp(−
2∆G∗

i

kBT
). (4.11)

Der Index i bezeichnet hier voneinander unabhängig arbeitende Subsysteme (z.B. einzelne

Mechanismen), welche die Verformung im Material erzeugen. Eine Erhöhung der Dehnrate

bei konstanter Temperatur muss also eine Absenkung der Aktivierungs-Gibbs-Energie her-

vorrufen, indem der Anteil der mechanischen Arbeit ∆W zunimmt. Das ist bei gleichen

Dehnungsinkrementen gleichbedeutend mit einer Zunahme der Scherspannung. In welchem

Umfang die Spannung erhöht werden muss, ist empfindlich von der exakten Barrierenform des

jeweiligen Prozesses abhängig (siehe Abb. 2.44, S. 119), die sehr wahrscheinlich für verschiede-

ne Prozesse (Versetzungsgleiten, Coupling, Schertransformation, etc.) systematisch voneinan-

der abweichen und dadurch eine Änderung des Zusammenwirkens der Mechanismen bewirkt.

Zusätzlich beeinflusst das Gl. (4.11), indem die Entwicklungen der ci in den nachfolgenden

Dehnungsinkrementen unterschiedliche Verläufe für unterschiedliche Dehnraten nehmen. Das

sollte insbesondere bei erschöpflichen Prozessen, wie hier dem Relaxationsprozess am Anfang

der Verformung, deutlich zu Tage treten.

Im konkreten Fall führt das bei Erhöhung der Dehnrate spätestens ab #4 zu einer Ver-

lagerung der Verformung in die Körner, also im Wesentlichen zu einer Zunahme von Ver-

setzungsnukleation und -gleiten. Umgekehrt führt die Absenkung der Dehnrate zu einem

höheren Anteil von Korngrenzenplastizität. Die Auswirkungen dieser Dehnratenabhängigkeit

äußert sich auch in weiteren Befunden, wie z.B. in der stärkeren Ausbildung der Endtextur

bei höheren Dehnraten, die einen Kompromiss zwischen der Absenkung der elastischen Ver-

zerrungsenergie und einem möglichst niedrigen Scherwiderstand für das Versetzungsgleiten

in den Körnern darstellt. Wenn das Versetzungsgleiten weniger Relevanz für den gesamten

Verformungsprozess hat, ist offenbar auch die treibende Kraft für die Ausbildung dieser Tex-

turkomponente schwächer (siehe N1-2). Allerdings reagiert dieser Prozess nicht identisch zur

Versetzungsdichte auf die Dehnratenvariation. Beim Versetzungsgleiten verhalten sich Y4-2

und N1-2 einander ähnlich, bei der Texturentwicklung sind es Y4-2 und V2-2.
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Bei der Übergangstextur gibt es hingegen fast keine Unterschiede zwischen den Dehnraten.

Da die Ursache hierfür die Elastizität der Kristalle ist, ist zumindest für die treibende Kraft

dahinter aber auch keine Dehnratenabhängigkeit zu erwarten. Der eigentliche Prozess der

Umorientierung der Körner scheint hier also nicht der limitierende Faktor zu sein.

Kornwachstum, also der Abbau von Korngrenzfläche bzw. -volumen, verschwindet bei der

höchsten Dehnrate V2-2 ab #4 fast komplett, während bei den beiden anderen Proben dieser

Prozess verlangsamt weiterläuft. Die Konzentration der Plastizität auf das Korninnere hemmt

offenbar die Mobilität der Korngrenzen, welche entscheidend für SGKW/Coupling ist. Umge-

kehrt findet bei den langsameren Verformungen bei den Scherprozessen in den Korngrenzen

über SGKW/Coupling ein steter Abbau der Grenzflächen statt. Die Tatsache, dass der Ver-

lauf von ∆VKG/V bis #4 bei allen Dehnraten gleichartig erfolgt, kann als Indiz dafür gewertet

werden, dass zu Beginn der Verformung (bei niedrigen Spannungen) die Korngrenzenplasti-

zität in den Nichtgleichgewichtskorngrenzen in allen Fällen einen wichtigen Mechanismus

darstellt.

Die Dehnungszustände der Proben über die Verformung hinweg unterscheiden sich für V2-2

und Y4-2 nicht stark voneinander. Bei der langsamsten Verformung von N1-2 dominiert je-

doch zu Beginn der Verformung bis #2 die Kompression senkrecht zum Steg, was sich in einem

stärkeren Volumenabbau im Steg bemerkbar macht. Das hat seine Ursache in der mechanisch

aktivierten Relaxation des Stegbereiches, die bei der langsamen Verformung über einen viel

größeren Zeitraum ablaufen kann. Danach entwickeln sich die Dehnungen von N1-2 qualitativ

ähnlich zu den beiden anderen Proben, allerdings um die anfängliche Kompressionsdehnung

zu den übrigen verschoben. Im weiteren Verlauf zeigt nur V2-2 ab #4 eine fortlaufende Volu-

menabnahme im Steg. Bei Y4-2 wird das durch die stärkere Querdehnung in Strahlrichtung

kompensiert. Bei N1-2 nimmt das Volumen im Steg ab #4 wieder zu, was schlussendlich zu

einem Versagen der Probe im Stegbereich führen wird. Tatsächlich bildet sich zu dem Zeit-

punkt senkrecht zur Hauptzugspannung ein Riss im Stegbereich, wenn die Volumendehnung

positive Werte annimmt. Dieser Riss entspricht einem Spaltbruch nach Modus I.

Die Ausbildung dieses Risstyps ist allerdings nicht typisch für die Verformung von SCS mit

45 ○-Stegwinkel, da in [30] bei höheren Dehnraten (3 ⋅ 10−3 s−1) für diese Geometrie Gleit-

brüche nach Modus II nachgewiesen wurden. Es ist davon auszugehen, dass das auch hier

bei den höheren Dehnraten in einer weitergehenden Verformung der Fall wäre. Die Art des

Versagens der Probe ist also nicht nur von der Geometrie abhängig, sondern vom komplet-

ten Verformungsablauf, inklusive der Zusammensetzung und dem Zusammenspiel der Plasti-

zitätsmechanismen.

Neben der Variation der Dehnrate sollten die hier beobachteten Änderungen im Verfor-

mungsverhalten in ähnlicher Weise auch durch Temperaturvariationen hervorgerufen werden

können. In [11] wurden deshalb Micropillars aus dem gleichen Material bei unterschiedlichen

Temperaturen mit unterschiedlichen Dehnraten verformt. Dort zeigte sich – im Einklang mit

den hier gezeigten Ergebnissen – eine Zunahme der zur Verformung benötigten Kraft mit
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steigender Dehnrate sowie mit sinkenden Temperaturen. Dieser Effekt war für die nanokris-

tallinen Proben wesentlich stärker als für die grobkristalline Referenzprobe des gleichen Ma-

terials, wodurch erneut belegt wird, dass die Dehnratenabhängigkeit plastischer Verformung

mit dem Volumenanteil der Korngrenzen korreliert.
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4.4 Stegwinkeleinfluss

In diesem Kapitel wird die Auswirkung unterschiedlicher Stegwinkel (sw) auf die Verfor-

mung untersucht. Dazu werden im Folgenden die Proben U1-1 (sw = 0 ○), O1-2 (sw = 25 ○),

Y4-2 (sw = 45 ○) und S1-1 (sw = 60 ○) betrachtet, die jeweils mit einer Nenndehnrate von

1 ⋅ 10−3 s−1 verformt wurden. Die Vorüberlegung in Kapitel 3.3.1 (S. 142) haben gezeigt, dass

verschiedene Stegwinkel zu unterschiedlichen Spannungs- und Dehnungszuständen im Steg-

bereich führen, die sich vor allem in ihrer hydrostatischen Spannung und der Ausrichtung der

Hauptspannungs- und Dehnungsräume in der x-y-Ebene voneinander unterscheiden. Folg-

lich können unterschiedliche Stegwinkel dadurch zu unterschiedlichen Zusammenspielen von

Plastizitätsmechanismen führen.

Die zeitliche Entwicklung der Verformungen ist in Abb. 4.89 durch die Einträge des makro-

skopischen Dehnungstensors dargestellt, wobei die gewohnte Einteilung aus der Diskussion

der Referenzprobe Y4-2 (hier #1 bis #5) beibehalten wird. Es zeigt sich direkt, dass mit

abnehmendem Stegwinkel die Dehnungen in x- und z-Richtung stark abnehmen. Außerdem

sind die Absolutwerte der Dehnungen in der Belastungsrichtung y, und somit auch ihre Dehn-

raten, ebenfalls geringer für kleinere Stegwinkel. Die 60 ○-Probe S1-1 entspricht grundsätzlich

auch diesem Schema, zeigt aber relativ früh drastisch erhöhte Dehnraten und reißt dann

kurze Zeit später im Steg. Der Punkt, ab dem die Dehnrate stark ansteigt, ist der Beginn

der Rissbildung im Steg und wird mit #R bezeichnet, der Zeitpunkt des endgültigen Abrei-

ßens der Probe mit #V . Zwischen #R und #V stehen nicht durchgängig Dehnungsdaten zur

Verfügung, da die Bildkorrelation die großen Änderungen in aufeinander folgenden Bildern

nicht mehr richtig erfassen konnte13.

Der Prozess der Rissbildung lässt sich aber in den Bildern der Frontkamera nachverfolgen und

ist anhand zweier Aufnahmen zu den Zeitpunkten #R und #V in Abb. 4.90 dargestellt. Das

Bild #V ist das letzte Bild vor dem Abreißen der Probenhälften voneinander. Die Anfangs-

und Endpunkte der Risse im Steg sind, soweit erkennbar, mit roten Pfeilen markiert, wobei

die gepunkteten Pfeile in Bild #R die Positionen der noch nicht entstandenen, aber bei #V

vorhandenen Risse markieren. Zum Zeitpunkt #R sind also erst die Hälfte der schlussendlich

vorhandenen Risse sichtbar. In Abb. 4.90 ist außerdem die Polardarstellung des Spannungs-

zustandes in der x-y-Ebene von S1-1 zum Zeitpunkt #R vorweggenommen, in der sowohl

die Rissorientierung in rot als auch die Hauptzugspannungsrichtung in grün eingezeichnet

sind. Wie bei der Probe N1-2 aus dem vorherigen Abschnitt, bildet sich auch hier der Riss

senkrecht zur Hauptzugspannungsrichtung und entspricht damit ebenfalls einem Spaltbruch

nach Modus I. Diese Beobachtung deckt sich mit der aus [30] und allen anderen Verformun-

gen von 60 ○-Proben im Rahmen der ESRF-Experimente, die ausnahmslos dieses Versagen

gezeigt haben, unabhängig von Dehnrate oder Relaxationszustand.

13Prinzipiell sollte die Auswertung über die Bildkorrelation natürlich trotzdem möglich sein, allerdings müsste
sie für diesen Spezialfall entsprechend angepasst werden.
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Abbildung 4.89: Zeitliche Entwicklung der Einträge des Dehnungstensors ¯̄E.

Die unterschiedlichen Dehnraten, die sich bereits anhand von Abb. 4.89 erkennen lassen,

sind am Beispiel der y-Komponente Ėy in Abb. 4.91 dargestellt. Hier zeigt sich, dass zu

unterschiedlichen Zeiten die Dehnraten unterschiedlich stark voneinander abweichen, sodass

die Zeit als Ordnungsparameter immer dann ungeeignet ist, wenn die betrachtete Größe

in charakteristischer Weise vom Dehnungszustand der Probe abhängt. In diesen Fällen ist

z.B. Ey eine besserer Wahl, weshalb im weiteren Verlauf an passender Stelle sowohl die

Darstellung gegen die Zeit als auch gegen die Dehnung verwendet wird. Die Einteilung #1

bis #5 bezieht sich damit auf Zeit und Dehnung, wobei die Dehnungswerte der Referenzprobe

Y4-2 verwendet werden.

Die Orientierungsunterschiede der Dehnungszustände in der x-y-Ebene sind anhand von Po-

larplots in Abb. 4.92 zu den Zeitpunkten #1 bis #5 dargestellt. Im Fall von S1-1 sind nur

die Zeitpunkte #1 bis #3, sowie #R gezeigt, da später keine Verschiebungsfelder und damit

keine Dehnungsinformationen mehr vorliegen. Die Lage des Steges ist durch graue Balken
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Abbildung 4.90: Ausschnitte aus den Bildern der Frontkamera zum Zeitpunkt der Rissbil-
dung #R und des Versagens #V . Anfang und Ende der Risse sind mit roten
Pfeilen gekennzeichnet. Die gepunkteten Pfeile bei #R markieren die Posi-
tionen der Risse, die bei #V vorhanden sind aber in #R noch nicht sichtbar
sind. Rechts ist der Spannungszustand in der x-y-Ebene zum Zeitpunkt #R
als Polardiagramm dargestellt. Zusätzlich ist die Orientierung der Risse (rot)
und die Hauptzugspannungsrichtung (grün) eingezeichnet.
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Abbildung 4.91: Zeitliche Entwicklung der Dehnraten in y-Richtung Ėy für Proben mit ver-
schiedenen Stegwinkeln.
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Abbildung 4.92: Polardarstellung der Dehnungen in der x-y-Ebene. Die Stegorientierung ist
als grauer Balken eingezeichnet.

gekennzeichnet. Wie aus Kapitel 3.3.1 (S. 142) zu erwarten, führt eine Änderung des Steg-

winkels zu einer Rotation des Hauptdehnungsraumes um die z-Achse. Dabei gilt aber nach

wie vor bei allen Stegwinkeln, dass zu jedem Zeitpunkt in Stegrichtung ein Nulldurchgang

der Normaldehnung vorliegt. Somit lässt sich die gesamte Dehnung in der x-y-Ebene für alle

Stegwinkel in bewährter Weise relativ zum Steg mittels E⊥ und E∥ darstellen.

Diese Darstellung ist in Abb. 4.93 gezeigt und veranschaulicht direkt das unterschiedliche

Verformungsverhalten der Proben. Bei U1-1 (sw = 0 ○) gibt es nahezu keine Scherung (E∥)

entlang des Steges, sodass die gesamte Verformung durch die Kompression senkrecht zum

Steg (E⊥) getragen wird. Bei O1-2 (sw = 25 ○) steigt der Scheranteil deutlich an, sodass E⊥

und E∥ etwa zu gleichen Teilen zur Verformung beitragen. Im Unterschied zur Referenzpro-

be erfolgt die Kompression des Steges hier viel stärker und über die Dauer der gesamten

Verformung hinweg. Bei S1-1 (sw = 60 ○) dreht sich der Befund von U1-1 um: Hier findet

kaum Kompression senkrecht zum Steg statt, sodass die Verformung fast vollständig von der

Scherung entlang des Steges getragen wird.
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Abbildung 4.93: Dehnungskomponenten in der x-y-Ebene. Das Koordinatensystem wurde je-
weils an den Steg angepasst.

Entsprechend dieser Ergebnisse ist ein zunehmender Abbau von Stegvolumen mit abnehmen-

dem Stegwinkel zu erwarten. Diese Systematik zeigt sich aber nicht direkt in den Volumen-

dehnungen, wo der Volumenabbau von U1-1 geringer ist als der von O1-2. Das hat seine

Ursache teilweise in den unterschiedlichen Anfangsdichten der Proben: Trägt man die Ent-

wicklung der relativen Dichte der Proben gegeneinander auf (siehe Abb. 4.94), zeigen sich

die Zusammenhänge deutlicher. Die Proben mit den kleinen Stegwinkeln weisen im Verlauf

der Verformung die höchsten Dichten auf. Die Dichtezunahme von U1-1 ist daher geringer

als bei O1-2, weil U1-1 zu Beginn bereits eine um 0.03 höhere relative Dichte aufweist. U1-1

erreicht am Ende der Verformung eine höhere Dichte als O1-2, obwohl die erreichte Dehnung

in y-Richtung geringer ist. In Bezug auf y-Dehnung ist die Verdichtung von U1-1 damit effizi-

enter. Die Enddichte liegt sogar leicht über 1, wobei der starke hydrostatische Druck noch auf

der Probe lastet und somit die isotrope elastische Stauchung ebenfalls zum Volumenabbau

beiträgt. Dieser Effekt wird zusätzlich dadurch verstärkt, dass die effektive Steghöhe bei der
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0 ○-Probe geringer ist als bei den übrigen Proben und so die Einspannung durch den oberen

und unteren Probenteil in y-Richtung stärker ausgeprägt ist. S1-1 zeigt eine vergleichsweise

langsame und geringe Dichtezunahme im Bereich bis #R, danach nimmt die Dichte schlag-

artig wieder ab. Die Ursache dafür ist die zunehmende Öffnung und Neubildung von Rissen,

wodurch rechnerisch das Stegvolumen, welches auch die Risse beinhaltet, vergrößert wird.
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Abbildung 4.94: a) Zeitliche Entwicklung der relativen Dichten im Stegbereich. Die theore-
tische Dichte ρtheo bezieht sich auf den defektfreien Kristall gleicher chemi-
scher Zusammensetzung. b) Wie a), aber gegen die Dehnung in y-Richtung
Ey aufgetragen.

Im nächsten Abschnitt werden die zu den Dehnungen komplementären Spannungen betrach-

tet. Dazu sind in Abb. 4.95a die Spannungs-Dehnungs-Kurven in y-Richtung für die Körner,

und in Abb. 4.95b die für das Gesamtmaterial gezeigt. In beiden Fällen zeigt sich eine eindeu-

tige Zunahme der Spannung in y-Richtung mit abnehmendem Stegwinkel. Außerdem steigt

die Verfestigung mit abnehmendem Stegwinkel, besonders für das Gesamtmaterial. Dieser

Befund lässt sich teilweise auf die stärkere Dichtezunahme der Proben mit kleineren Steg-

winkeln zurückführen. Dabei ist zu beachten, dass die höhere Dichte nicht allein für die

höheren Spannungswerte bei kleineren Stegwinkeln verantwortlich ist. Ein Gegenbeispiel ist

die geringere relative Dichte von O1-2 zum Zeitpunkt #4 im Vergleich zu Y4-2, obwohl die

Spannungswerte in y-Richtung von O1-2 in y-Richtung die von Y4-2 übersteigen.

Einen weiteren Beitrag zu den höheren Spannungen in y-Richtung bei kleineren Stegwinkeln

lässt sich durch einen Projektionseffekt bei der Projektion der Spannungen in den Spannungs-

Dehnungs-Kurven in y-Richtung erklären. In Abb. 4.96 (S. 347) sind die Spannungen in den

Körnern in der x-y-Ebene als Polardarstellungen gezeigt und es fällt auf, dass die Haupt-

druckrichtung mit zunehmendem Stegwinkel weiter von der 90 ○-Position abweicht. Dadurch
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Abbildung 4.95: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in y-
Richtung. Abbildungsteil a) bezieht sich auf die Spannungen in den Körnern,
b) bezieht sich auf die mittleren Spannungen im Gesamtmaterial.

wird die σy-Komponente betragsmäßig kleiner, was sich direkt in den Spannungs-Dehnungs-

Kurven in Abb. 4.95 niederschlägt. Dieser Effekt alleine kann die Stegwinkelabhängigkeit von

σy aber ebenfalls nicht vollständig erklären.

Des Weiteren zeigt sich hier, dass bei der 0 ○-Probe U1-1 in allen Richtungen in der x-y-Ebene

negative Normalspannungen anliegen. Die Scherspannungen werden hier vom hydrostatischen

Druck also so überkompensiert, dass keine positiven Normalspannungen mehr auftreten. Die-

ser Effekt tritt abgeschwächt auch bei der 25 ○-Probe O1-2 auf, wo die Spannungen in der

Hauptzugspannungsrichtung fast exakt null sind. Hier heben sich hydrostatischer Druck und

Scherspannungen in Zugrichtung also gegenseitig auf. Da die Scherspannungen in den Körnern

meistens größer sind als im Gesamtmaterial (Skalierung mit χ) folgt daraus, dass in den Korn-

grenzen auch in der x-y-Ebene in beiden Fällen über weite Teile eine allseitig kompressive

Spannung anliegt. Erst jenseits von #4 übersteigen bei O1-2 die Scherspannungen in den

Korngrenzen die in den Kristalliten und führen dort so zu positiven Normalspannungen in

Zugrichtung. Das ist ähnlich wie bei den zuvor betrachteten 45 ○-Proben, allerdings gibt es

dort auch in den Kristalliten positive Zugspannungen.

Bei S1-1 sind die positiven Zugspannungen bei #R am stärksten ausgeprägt, werden aber

im Zuge der Rissbildung schlagartig abgebaut und bleiben bis #V fast auf null, was in den

Grenzen allseitig kompressive Spannungen zur Folge hat. Zusätzlich rotieren die Hauptspan-

nungsrichtungen nach der Rissbildung in negative Richtung um die z-Achse. Die Rissbildung

baut also mit der Zugspannungskomponente in den Korngrenzen genau die Spannungskom-

ponente ab, die ursächlich für die Rissbildung war.
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Abbildung 4.96: Polardarstellung der Spannungen in den Körnern in der x-y-Ebene. Hier
bezieht sich #5 jeweils auf das Ende der Verformung. Die Stegorientierung
ist als grauer Balken eingezeichnet. Angaben in GPa.

Auch hier bietet sich als Alternative zu Spannungs-Dehnungs-Kurven aus Abb. 4.95 die Auf-

spaltung der Spannung in hydrostatischen Druck σiso (siehe Abb. 4.97a) und maximale Scher-

spannung in der x-y-Ebene σscher an; letztere jeweils für Körner und Gesamtmaterial (siehe

Abb. 4.97b bzw. Abb. 4.97c). Beim hydrostatischen Druck bleibt die Reihenfolge aus der

einfacheren Spannungs-Dehnungs-Kurve weiterhin bestehen, allerdings setzt sich U1-1 hier

mit großem Abstand von den übrigen Proben ab. Bei den Scherspannungen in den Körnern

verschwindet der Unterschied zwischen S1-1 und Y4-2, während beim Gesamtmaterial die

Systematik komplett verloren geht. Hier liegen die Scherspannungen aller Proben mit Steg-

winkel ≠ 0 ○ eng beieinander. Lediglich die Scherspannungen der 0 ○-Probe U1-1 sind stets viel

geringer als die übrigen und liegen in Bereichen, in denen Versetzungsnukleation und -gleiten

nur noch unbedeutende Beiträge liefern sollten. Allerdings ist U1-1 auch der einzige Fall, in

dem die größte auftretende Scherspannung nicht in der x-y-Ebene, sondern in der y-z-Ebene

liegt. Daher ist die maximale Scherspannung in der y-z-Ebene zusätzlich in Abb. 4.97b und
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Abb. 4.97c als gepunktete Linie eingezeichnet und zeigt durchaus Werte, die nennenswerte

Versetzungsplastizität ermöglicht – nur entlang anderer Richtungen als bisher. Bei der 25 ○-

Probe O1-2 fällt auf, dass die Scherspannungen im Gesamtmaterial ab #4 starke Verfestigung

aufweisen und im weiteren Verlauf die Scherspannungswerte in den Kristalliten übersteigen.

Hier tritt offenbar durch die vergleichsweise hohe Normalspannung auf den Ebenen maxi-

maler Scherspannung und/oder die hohe hydrostatische Spannung eine massive Behinderung

von Scherprozessen in den Korngrenzen auf.
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Abbildung 4.97: a) Hydrostatischer Druck in Abhängigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Körnern als Funktion der Dehnung in y-
Richtung. Die gepunktete schwarze Kurve gibt die maximale Scherspannung
von U1-1 in der y-z-Ebene an. c) Wie b) für das Gesamtmaterial.

Offensichtlich sind auch für die übrigen Spannungszustände die Richtungen maximaler Scher-

spannung in der x-y-Ebene nicht mehr identisch, sondern abhängig vom Stegwinkel um die z-

Achse rotiert (siehe Abb. 4.96), wodurch sich die Orientierungsbeziehung von Scherspannung

und Stegorientierung zueinander ändert. Diese Beziehung kann durch den Winkel ∆φscher

348



4.4 Stegwinkeleinfluss

ausgedrückt werden, der dem Winkel zwischen der Stegnormalen und der Normalen auf die

Ebene, an der die größte Scherspannung in der x-y-Ebene anliegt, entspricht. Bei ∆φscher = 0 ○

greift die maximale Scherspannung genau entlang des Steges an, positive Werte beschrei-

ben eine Abweichung von der Stegorientierung in positive Rotationsrichtung um die z-Achse

und negative Werte entsprechend in negative Richtung. Um nur die Abweichung als solche

zu betrachten, reicht der Betrag von ∆φscher, wie er in Abb. 4.98 angegeben ist. Daraus

wird ersichtlich, dass mit kleiner werdendem Stegwinkel die Abweichung zwischen maximaler

Scherspannung und Steg zunimmt. U1-1 erreicht bei #2 sogar den Maximalwert von 45 ○. Für

Scherprozesse entlang des Steges wird die Orientierung der maximalen Scherspannung mit

kleiner werdendem Stegwinkel also immer ungünstiger, wodurch die effektive Scherspannung

entlang des Steges im Vergleich zur maximalen Scherspannung abnimmt. Dadurch könnte

der Beitrag zur makroskopischen Scherung entlang des Steges von den Prozessen abnehmen,

die auf eine Aktivierung durch Scherspannungen angewiesen sind, wie Versetzungsgleiten,

Korngrenzengleiten, Schertransformationen etc..
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Abbildung 4.98: Betrag des Winkels zwischen der Stegnormalen und der Normalen der Ebene
maximaler Scherspannung in der x-y-Ebene.

In [30] wurde anhand von Pd90Au10-SCS mit Stegwinkeln zwischen 40 ○ und 50 ○ gezeigt, dass

eine Abhängigkeit der von Mises-Vergleichsspannung sowohl vom hydrostatischen Druck als

auch von der Normalspannung auf den Steg besteht. Diese Abhängigkeiten wurden im Rah-

men zweier Fließbedingungen, nämlich einem modifizierten Tresca-Kriterium bzw. dem Mohr-

Coulomb-Gesetz [42, 272, 273], mit dem Ergebnis analysiert, dass beide Belastungen zu einer

Zunahme des effektiven Scherwiderstandes des Gesamtmaterials führen. Die Zunahme der

Scherspannung mit abnehmendem Winkel an sich ist also prinzipiell ein bereits bekannter
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Abbildung 4.99: Polardarstellung der Intensitätsänderungen I ′′ für alle Peaks zum jeweiligen
Ende der Verformung. Bei S1-1 in d) bezieht sich die Darstellung auf den
Anfang der Rissbildung #R.

Im nächsten Abschnitt wird die radiale Verteilung der normierten und skalierten Inten-

sitätsänderungen I ′′ in den Polarplots in Abb. 4.99 betrachtet, die jeweils zum Ende der

Verformungen dargestellt sind. Bei Y4-2 entspricht das #5, bei S1-1 ist ersatzweise der Zu-

stand bei #R angegeben. Bei den Proben mit den niedrigen Stegwinkeln (U1-1 und O1-2)

zeigt sich zum Ende der Verformung nicht die Ausbildung derselben Endtextur, wie sie sich

bei der 45 ○-Probe Y4-2 ausbildet (bzw. V2-2 und N1-2 aus dem vorherigen Kapitel). Statt-

dessen bleibt die Übergangstextur bis zum Ende der Verformung erhalten, ist dafür aber
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Abbildung 4.100: Entwicklung der Übergangstextur in Abhängigkeit von der Dehnung in y-
Richtung, gemessen durch ∆I ′′.

ähnlich stark ausgeprägt wie die Endtextur der Referenzprobe Y4-2. Die 60 ○-Probe S1-1 er-

reicht vor dem Versagen nur geringe Dehnungen, sodass sich hier nur eine relativ schwache

Übergangstextur ausbilden konnte.

Aus diesem Grund ist hier auch nur ein Vergleich der Entwicklung der Übergangstextur in

Form von ∆I ′′ sinnvoll, der in Abb. 4.100 dargestellt ist – die in vorangegangenen Kapiteln

diskutierte Endtextur entsteht schließlich nur bei 45 ○-Proben. S1-1 und O1-2 weichen von

den anderen zu Beginn der Verformung (bis #3) ab, indem ∆I ′′ weniger mit der Dehnung

ansteigt als bei Y4-2 und U1-1. Die Ursachen dafür könnten wieder die unterschiedlichen

Anfangsdichten (siehe Abb. 4.94, S. 345) sein, denn diese erlauben anfänglich vermutlich eine

stärkere Verformung über Relaxationsprozesse, durch die keine Textur erzeugt wird. Abge-

sehen von diesem Effekt sind die Anstiege von ∆I ′′ mit der Dehnung/Zeit für alle Proben

grundsätzlich ähnlich. Allerdings zeigt S1-1 kurz vor #R, also vor der Rissbildung, einen

sprunghaften Anstieg. Ob die Texturentwicklung aber wirklich ab diesem Punkt schneller

ablaufen würde, lässt sich durch das anschließende Versagen der Probe nicht feststellen. So-

wohl U1-1 als auch O1-2 zeigen im Unterschied zu Y4-2 einen durchgängigen Anstieg von ∆I ′′

über die gesamte Verformung hinweg. Bei Y4-2 fällt ∆I ′′ in der späten Verformung zwischen

#4 und #5 wieder leicht, während sich die Endtextur bildet.

Die Verformung induziert bei allen hier betrachteten Proben Kornwachstum. Aufgrund der

unterschiedlichen Anfangsverteilungen von Korngrößen (siehe Tabelle 4.5) kommt hier als

Vergleichsgröße wieder die mittlere Änderung des korngrenzenvolumenanteils relativ zum An-

fangszustand ∆VKG/V zum Einsatz (siehe Abb. 4.101), zu deren Berechnung ⟨D⟩vol und σ′
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Tabelle 4.5: Parameter der Korngrößenverteilung zu Beginn der Verformung.

U1-1 O1-2 Y4-2 S1-1

⟨D⟩vol [nm] 20.2 20.0 18.6 18.6
σ′ [ ] 1.66 1.63 1.62 1.66

in jedem Zeitschritt über ϕ gemittelt wurden (vgl. S. 333). Alle Proben bauen im Verlauf der

Verformung korngrenzenvolumen ab. Bei S1-1 geschieht das zeitlich sehr früh ab der Rissiniti-

ierung, bei Y4-2 etwas später ab #3 und bei den restlichen Proben ab #4 (siehe Abb. 4.101a).

Der Abbau von Korngrenzenvolumen setzt also umso später ein, je flacher der Stegwinkel ist.

Trägt man ∆VKG/V gegen die Dehnung in y-Richtung auf (siehe Abb. 4.101b), so zeigt

sich, dass bei U1-1 pro Dehnungsinkrement in y-Richtung am meisten Korngrenzenvolumen

abgebaut wird und bei O1-2 am wenigsten. Der Volumenanteil, der durch die Verformung

abgebaut wird, ist bei den verschiedenen Stegwinkeln zwar unterschiedlich, liegt aber bei

S1-1, Y4-2 und U1-1 mit ≈ −2 % relativ nahe beieinander. Nur bei O1-2 ist ∆VKG/V ≈ −1.4 %

signifikant geringer.
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Abbildung 4.101: Änderung des Korngrenzenvolumenanteils ∆VKG/V mit der Zeit a), bzw
der Dehnung b).

Abschließend wird nun die Entwicklung der mittleren Versetzungsdichten, sowie die Ver-

setzungsdichten für die verschiedenen Orientierungen von Burgers-Vektoren untersucht. Die

mittleren Versetzungsdichten ⟨ρ⟩Ω sind in Abb. 4.102 sowohl gegen die Zeit, als auch gegen

die Dehnung in y-Richtung dargestellt. In allen Fällen steigt ⟨ρ⟩Ω im Verlauf der Verformung

an, bleibt im Haltesegment nahezu konstant, und fällt nach Entlastung schlagartig auf einen

Wert leicht oberhalb des Startwertes (≈ 1.5 ⋅ 1016 m−2) ab. In y-Dehnung gemessen verläuft
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die Entwicklung von S1-1, Y4-2 und O1-2 bis in den Bereich zwischen #3 und #4 praktisch

gleich. Danach spalten sich die Kurven leicht auf, wobei die Probe mit dem flachsten Stegwin-

kel (O1-2) die größte Verzögerung im Zuwachs von ⟨ρ⟩Ω zeigt und S1-1, als Probe mit dem

steilsten Stegwinkel, den schnellsten Zuwachs zeigt. Am Ende der Verformung gleichen sich

die Versetzungsdichten von O1-2 und Y4-2 wieder einander an. Die Probe U1-1 nimmt hier

eine Sonderrolle ein, da sie zu Anfang von den restlichen Proben durch eine etwas niedrigere

Anfangsversetzungsdichte abweicht (1.3 ⋅1016 m−2 statt 1.42 ⋅1016 m−2). Dieser Versatz zu den

anderen Proben bleibt während der kompletten Entwicklung von ρ bestehen, ansonsten er-

folgt sie zeitlich genau so wie bei O1-2. Da U1-1 viel geringere Dehnungswerte in y-Richtung

als O1-2 erreicht, ergibt sich in Abb. 4.102b eine deutliche Abweichung der U1-1 Kurve von

den übrigen, indem ihre entsprechende Entwicklung durchweg bei geringeren Dehnungswer-

ten stattfindet. Bemerkenswert ist hier, dass ⟨ρ⟩Ω trotz der geringen Scherspannungen in der

x-y-Ebene stark ansteigt. Vermutlich hat hier ein Großteil der Burgers-Vektoren aktiver Ver-

setzungen durch die hohen Scherspannungen in der y-z-Ebene eine signifikante Komponente

in z-Richtung. Aufgrund ihrer Wirkung auf das Streubild sind diese Versetzungen aber auch

dann sichtbar, wenn der Streuvektor, wie hier, näherungsweise in der x-y-Ebene liegt.
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Abbildung 4.102: Entwicklung der über alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten ⟨ρ⟩Ω mit der Zeit a), bzw der Dehnung b).

Als Indiz für die orientierungsabhängige Versetzungsaktivität, sowie für Rotationsprozesse,

sind in Abb. 4.103 die Abweichungen der Versetzungsdichten von der mittleren Versetzungs-

dichte ∆ρΩ für unterschiedliche Burgers-Vektororientierung Ω in der stereographischen Pro-

jektion dargestellt. Die gezeigten Darstellungen entsprechen jeweils dem Zustand am Ende

der Verformung, beziehungsweise dem Anfang der Rissbildung #R bei S1-1. Offensichtlich

ist die Schwankung von ∆ρΩ für Y4-2 viel größer als für O1-2, die ihrerseits größer ist als

bei U1-1 und S1-1. Grundsätzlich ist sie aber in allen Fällen in ähnlicher Weise vorhanden:

Entlang der größten Scherspannungen sind die Versetzungsdichten am geringsten und entlang
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der Richtungen mit den geringsten Scherspannungen sind sie am größten. Damit bleibt die

Versetzungsbewegung entlang der Richtungen größter Scherspannungen weiterhin am aktivs-

ten, im Vergleich zu den 45 ○-Proben erfolgt sie aber in allen anderen Fällen isotroper, also

weniger gerichtet. Allerdings ist für S1-1 aufgrund der kurzen Zeitspanne und der geringen

Dehnungen ein Vergleich mit den übrigen Proben eigentlich nicht zulässig.

(a) U1-1, sw = 0 ○ (b) O1-2, sw = 25 ○

(c) Y4-2, sw = 45 ○ (d) S1-1, sw = 60 ○

Abbildung 4.103: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen Ω von der mittleren
Versetzungsdichte ∆ρΩ am Ende der jeweiligen Verformung. Bei S1-1 in d)
bezieht sich die Darstellung auf den Anfang der Rissbildung #R.

Als zusätzliches Indiz der Versetzungsaktivität wurde zuvor die Schwankung der TDS-Inten-

sität herangezogen. Diese ist für den vorliegenden Fall in Abb. 4.104 dargestellt, wobei hier

zur besseren Vergleichbarkeit statt ITDS die Abweichung von der mittleren Anfangsintensität

angegeben ist, also ∆ITDS = ITDS − ⟨ITDS⟩ϕ,#1. Die Darstellungen in Abb. 4.104 beziehen

sich erneut auf das Ende der Verformungen, bzw. auf #R bei S1-1. Die Anisotropie in ϕ

von ∆ITDS ist für Y4-2 von allen Proben am stärksten ausgeprägt, gefolgt von O1-2 und

U1-1, womit die aus ∆ρΩ abgeleitete Hierarchie der Versetzungsaktivitäten bestätigt ist. Bei

O1-2 verschwimmen die Maxima in den Hauptscherspannungsrichtungen mit den Maxima in
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Hauptzugspannungsrichtung, wobei letztere schwächer ausgeprägt sind als bei Y4-2. Letzterer

Aspekt rührt vermutlich daher, dass die Zugspannungen bei O1-2 viel kleiner sind als bei Y4-2.

Das Ausschmieren der Maxima lässt sich dadurch erklären, dass die Fokussierung der Maxima

auf den Bereich negativer Normalspannungen – wie sie bei Y4-2 auftritt – bei O1-2 keine Rolle

spielt, weil praktisch keine positiven Normalspannungen in den Körnern auftreten. Ähnliches

gilt für U1-1, wo jedoch die Maxima aufgrund der geringeren Versetzungsaktivität in der

x-y-Ebene noch schwächer ausgeprägt sind als bei O1-2. Bei allen drei Proben (U1-1, O1-2,

Y4-2) ist das Minimum in Hauptdruckrichtung identisch vorhanden, das in allen Fällen durch

die geringere mittlere quadratische Verschiebung der Atome in Druckrichtung hervorgerufen

wird.

S1-1 stellt auch hier aufgrund des frühen Materialversagens einen Sonderfall dar. Wie bei

∆ρΩ lässt sich auch ∆ITDS nicht mit den anderen Fällen vergleichen, da weder genug Zeit

zur Verfügung stand, noch ausreichend große Dehnungen erreicht wurden, als dass sich die

bei Y4-2 beobachteten, charakteristischen Effekte hätten ausbilden können.

Die relevantesten Ergebnisse zu den Proben mit unterschiedlichen Stegwinkeln sind hiermit

abschließend dargestellt und werden im Folgenden zusammengefasst und diskutiert. Verschie-

dene Stegwinkel führen bei der SCS-Geometrie zu sehr unterschiedlichen Dehnungsverhalten,

deren prominentestes Merkmal der Rückgang von Dehnungen in x- und z-Richtung mit abneh-

mendem Stegwinkel ist. Gleichzeitig verringern sich die Dehnraten. Des Weiteren bedingen

verschiedene Stegwinkel unterschiedliche Ausrichtungen der Hauptdehnungsrichtungen in der

x-y-Ebene, wobei entlang der Stegrichtung nach wie vor keine Normaldehnungen auftreten.

Die Dehnung in dieser Ebene kann also weiterhin durch die Scherung entlang des Steges

und der Normaldehnung senkrecht zum Steg beschrieben werden. In dieser Darstellung (vgl.

Abb. 4.93, S. 344) zeigt sich, dass mit zunehmendem Stegwinkel der Anteil der Scherung

entlang des Steges zunimmt, wohingegen die Normaldehnung senkrecht zum Steg abnimmt.

Genau wie auf die Dehnungen, hat der Stegwinkel auch starke Auswirkungen auf den Span-

nungszustand im Stegbereich. Mit zunehmendem Stegwinkel nimmt der hydrostatische Druck

betragsmäßig ab und die maximale Scherspannung in den Körnern zu. Im Gesamtmaterial

lässt sich für die Scherspannungen dieser einfache Zusammenhang nicht zeigen. Dort liegen

die Scherspannungen dicht beieinander, die von O1-2 (sw = 25 ○) übersteigt am Ende der Ver-

formung sogar die von Y4-2 (sw = 45 ○). Die Scherspannungen in den Korngrenzen hängen

also nicht in einfacher Weise von der Steggeometrie ab. Mit dem Stegwinkel verändert sich

außerdem die Beziehung der Richtung maximaler Scherspannung und der Orientierung des

Steges: Je kleiner der Stegwinkel ist, desto stärker weicht die Orientierung der maximalen

Scherspannung von der des Steges ab. Das bedeutet, dass für die makroskopische Scher-

dehnung entlang des Steges effektiv ein geringerer Anteil der maximalen Scherspannung zur

Überwindung des Scherwiderstandes zur Verfügung steht.

Versetzungsgleiten einschließlich Nukleation vollständiger und/oder partieller Versetzungen

sind Mechanismen, die bei den 45 ○-Proben zur makroskopischen Scherdehnung beitragen und
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Abbildung 4.104: Polardarstellung der Abweichung der TDS-Intensität von der mittleren An-
fangsintensität ∆ITDS am Ende der jeweiligen Verformung. Bei S1-1 in d)
bezieht sich die Darstellung auf den Anfang der Rissbildung #R.

auf die Aktivierung durch Scherspannungen angewiesen sind. Die Ergebnisse zeigen, dass mit

kleiner werdendem Stegwinkel die Versetzungsaktivität insgesamt abnimmt und die Scher-

dehnung entlang des Steges weniger stark davon getragen wird. Darüber hinaus zeigt die

TDS, dass die Richtungen hoher Versetzungsaktivität für kleinere Stegwinkel weniger einge-

schränkt werden, da praktisch in allen Richtungen negative Normalspannungen vorherrschen.

Trotzdem nimmt die Versetzungsdichte während der Verformung in allen Fällen in ähnlichem

Maße zu. Das heißt, dass bei kleineren Stegwinkel nicht weniger Versetzungen gleichzeitig

im Material existieren, deren Burgers-Vektoren aber isotroper verteilt sind. Versetzungen

erfüllen damit stärker die Rolle eines Akkommodationsmechanismus.

Diese Schlussfolgerung deckt sich mit der Beobachtung, dass bei kleineren Stegwinkeln die

Ausbildung der Endtextur ausbleibt. Als Ursache für die Endtextur wurde zuvor (vgl. S. 285)
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die Energieminimierung im Hinblick auf die starke, gerichtete Aktivität von Versetzungen ent-

lang der Richtungen maximaler Scherspannung identifiziert. Bei schwächer gerichteter Verset-

zungsaktivität fällt auch die treibende Kraft hinter der Bildung der Endtextur schwächer aus.

Die Übergangstextur entsteht in Folge der Minimierung der elastischen Verzerrungsenergie,

die ungeachtet des Stegwinkels immer vorliegt. Durch die höheren Spannungen bei kleinen

Stegwinkeln ist die treibende Kraft hier sogar höher.

Die makroskopische Verformung muss bei kleinen Stegwinkeln somit stärker von Prozessen

in den Korngrenzen mitgetragen werden, welche durch die höheren hydrostatischen Drücke

und Normalspannungen auf ihre Gleitrichtungen aber ebenfalls behindert werden, was zu ei-

ner höheren Verfestigung des Gesamtmaterials führt. Ähnliche Effekte konnten schon in [30]

experimentell nachgewiesen werden, die zuvor in [225] anhand von Simulationen für nano-

kristalline Materialien vorausgesagt wurden. Durch die höheren Scherwiderstände sind für die

Verformung höhere Spannungen nötig, ohne dass dadurch ein Anstieg der Dehnraten verur-

sacht wird – in den hier untersuchten Fällen nimmt die Dehnrate trotz höherer Spannungen

sogar ab.

Für Schertransformationen in metallischen Gläsern ist eine entsprechende Abhängigkeit des

Scherwiderstandes von der Normalspannung bzw. des hydrostatischen Drucks bereits bekannt

und Beispiele dafür wurden in [30] zusammengetragen. Mit [274] erschien zudem erst kürzlich

eine Arbeit, die eine Abhängigkeit der Fließspannung vom hydrostatischen Druck in nano-

kristallinem Nickel zeigte, was dort mit der starken Sensitivität der Plastizitätsmechanismen

in Korngrenzen auf hydrostatischen Druck in Verbindung gebracht wurde.

Anschaulich kann dieses Verhalten damit erklärt werden, dass z.B. Schertransformationen

in ihrem transienten Zustand eine lokale Dilatation und damit Volumenzunahme erzeugen,

die durch Normalspannung oder hydrostatischen Druck, abhängig vom Vorzeichen, erschwert

oder erleichtert werden kann. Im Bild der thermisch aktivierten Plastizitätsprozesse führt

eine Änderung des hydrostatischen Drucks zu einer Änderung der Aktivierungsenergie ∆G∗,

da die prozesstypische Volumenänderung im transienten Zustand gegen den jeweiligen Druck

erfolgen muss und damit eine Änderung von ∆W ∝ P∆V bedingt. Dieses Argument lässt

sich genauso auf Normalspannungen anwenden.

Passend dazu zeigen die Proben mit geringen Stegwinkeln und damit hohem hydrostatischem

Druck und hohen Normalspannungen auf den Hauptscherebenen die größten Dichtezunah-

men. Eine Stagnation der Dichte oder gar eine Abnahme tritt bei diesen Verformungen nicht

mehr auf. Das schließt zwar keine lokale Dilatation in transienten Zuständen in den Korngren-

zen aus, liefert aber ein weiteres Indiz dafür, dass dieser Vorgang durch den Spannungszustand

im Mittel behindert wird.

Erklärt man die Verfestigung der Korngrenzen mit der Bildung von Disklinationsdipolen

[114, 115], könnten der hydrostatische Druck und die Normalspannungen auch eine Rela-

xation dieser Dipole behindern und so aufgrund der höheren Festigkeit höhere Spannungen

während der Verformung erzwingen. In [115] wurde außerdem gezeigt, dass die Bildung eines
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Disklinationsdipols zu einer Zunahme der Korngrenzendicke führt, sodass alternativ auch

schon die Bildung der Disklinationsdipole erschwert werden könnte und so die Verfestigung

der Korngrenzen erzeugt wird. Gleichzeitig wird die Rissbildung an den Disklinationsdipo-

len durch diese Spannungen unterdrückt und dadurch ein frühzeitiges Versagen der Probe

verhindert.

Die beiden Extremfälle U1-1 (sw = 0 ○) und S1-1 (sw = 60 ○) weisen zusätzliche Besonderheiten

auf. Bei S1-1 kommt es sehr früh während der Verformung zu Rissbildung im Steg senkrecht

zur Hauptzugrichtung. Das Versagen der Probe, das sich bei den 45 ○-Proben bereits ange-

deutet hat, tritt hier durch die höheren Zugspannungen früh ein und führt dadurch zu einem

Abreißen der Probe bevor die Verformung in den horizontaleren Bereich der Spannungs-

Dehnungs-Kurve ab #4 eingetreten ist. Bei den Rissen handelt es sich hier wieder um Modus

I Spaltrisse, die ausnahmslos bei allen Proben mit einem Stegwinkel von 60 ○ aufgetreten sind.

Bei U1-1 liegt die Besonderheit vor, dass die Hauptzugspannungs- und -dehnungsrichtung

nicht in der x-y-Ebene liegt, sondern in z-Richtung. Entsprechend findet die meiste Scherung

auch in der y-z-Ebene statt, was vermutlich sowohl Versetzungsgleiten als auch Prozesse

in der Korngrenze einschließt. Ein Teil der in der x-y-Ebene beobachteten Signatur, der

Versetzungsdichte, TDS, usw., stammt also aus der Versetzungsaktivität senkrecht dazu. Das

ist zwar grundsätzlich immer der Fall, hier kann man aber davon ausgehen, dass dieser Aspekt

die Ergebnisse dominiert oder wenigstens ungewöhnlich stark beeinflusst. Die Ausrichtung

der Hauptzugspannungsrichtung in z-Richtung zeigt sich auch am Versagen der 0 ○-Proben,

welches Anhand von J1-1 in Abb. 4.105 gegen Ende der Verformung dargestellt ist; die Probe

U1-1 wurde nicht weit genug verformt, sodass das Versagen hier noch nicht eingetreten ist.

In der Seitenansicht von J1-1 bildet sich unterhalb des Stegbereiches ein Riss senkrecht zur

z-Richtung aus, der sich im Verlauf der Verformung fast bis zur Standfläche erstreckt. Die

z-Richtung ist hier die Richtung maximaler Zugspannung, wobei die Zugspannung unterhalb

des Steges aufgrund der fehlenden Einspannungseffekte höher ist, als direkt im Steg. Im Bild

der Frontkamera ist dieser Vorgang nicht nachweisbar. Ähnliches Bruchverhalten normal zur

maximalen Zugspannung wurde bereits in [5] anhand von Kompressionsproben beobachtet.
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4.5 Relaxationseinfluss

Frontkamera Seitenkamera

Abbildung 4.105: Kamerabilder der Front- und Seitenkamera am Ende der Verformung der
0 ○-Probe J1-1. In der Seitenansicht ist deutlich der Riss unterhalb des Ste-
ges senkrecht zur Hauptzugrichtung (z-Richtung) zu erkennen. Der Anfang
des Risses ist durch den roten Pfeil markiert und die Zugspannungsrichtung
ist durch die grünen Pfeile dargestellt. In der Frontansicht ist von dem Riss
nichts zu erkennen.

4.5 Relaxationseinfluss

Zuletzt werden die Effekte der Relaxation auf das Verformungsverhalten anhand der Pro-

be Zb3kr-2 behandelt. Dabei handelt es sich um eine thermisch relaxierte Probe mit 45 ○-

Stegwinkel, die mit einer Nenndehnrate von 1 ⋅ 10−3 s−1 verformt wurde. Die Abmessung des

Stegbereiches ist identisch zur Referenzprobe Y4-2, sodass Zb3kr-2 die ideale Vergleichspro-

be darstellt. Das Kürzel ( kr) steht für kurz relaxiert, da die Relaxationszeit in diesem Fall

aufgrund eines Stromausfalls nur 8 h statt der üblichen 48 h Stunden betrug. Der größte Teil

der aus der Relaxation resultierenden Effekte sollte sich aber innerhalb der ersten Stunden

ausbilden (siehe [8, 32]), sodass keine starken Abweichungen der Ergebnisse dieser Probe zu

den länger relaxierten zu erwarten sind.

Der Hauptunterschied zwischen wie-hergestellten und relaxierten Proben besteht darin, dass

in den relaxierten die Defektdichte sowie das Korngrenzenvolumen und die Korngrenzenener-

gie durch thermisch aktivierte Prozesse abgesenkt wurden. Die Verdichtung der Korngrenze

legt direkt den Schluss nahe, dass der anfängliche Verdichtungsschritt, wie er in den wie-

hergestellten Proben beobachtet wurde, in den relaxierten weniger ausgeprägt sein sollte.

Weitergehende Effekte werden anhand der nachfolgenden Ergebnisse diskutiert.
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4 Ergebnisse

Bei den relaxierten Proben bleibt der Nulldurchgang der Normaldehnungen in Stegrichtung

über die gesamte Verformung bestehen, weshalb die Dehnung in der x-y-Ebene direkt re-

lativ zum Steg durch E∥ und E⊥ dargestellt werden kann (siehe Abb. 4.106a). Hier zeigt

sich, dass beide Verformungen qualitativ sehr ähnlich verlaufen und bis #4 auch quanti-

tativ fast übereinstimmen. Ab #4 eilt E∥ und E⊥ der relaxierten Probe den Werten der

wie-hergestellten voraus und übersteigt diese im Bereich zwischen #4 und #5. Ab #4 wird

die relaxierte Probe also schneller und weiter verformt.
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Abbildung 4.106: a) Dehnung in der x-y-Ebene in Bezug auf den Steg. Kompressionen senk-
recht zum Steg werden durch E⊥ dargestellt und Scherungen entlang des
Steges durch E∥. b) Rotation der Hauptdehnungsrichtungen in der x-y-
Ebene relativ zum Laborkoordinatensystem.

Allerdings wird aus der Darstellung in Abb. 4.106a nicht ersichtlich, dass schon zwischen #1

und #3 ein Unterschied im Dehnungsverhalten beider Proben besteht. Um diesen zu erkennen

ist die Ausrichtung der Hauptdehnungsrichtungen in der x-y-Ebene in Abb. 4.106b durch

∆φ (vgl. S. 243) dargestellt. Hier zeigt Zb3kr-2 zu Beginn der Verformung eine geringere

Neigung der Hauptkompressionsrichtung in Richtung der Stegnormalen als Y4-2, d.h. die

Kompression senkrecht zum Steg ist bei Y4-2 stärker ausgeprägt. Dieser Befund entspricht

der oben formulierten Erwartung, dass der anfängliche Relaxationsprozess bei der relaxierten

Probe weniger stark zur Verformung beitragen kann.

Folglich fällt auch die relative Volumenabnahme zwischen #1 und #3 bei Zb3kr-2 etwas ge-

ringer aus als bei Y4-2 (siehe Abb. 4.107a). Anschließend übersteigt die Volumenabnahme von

Zb3kr-2 die von Y4-2 jedoch bis #5 und fällt dann während der Spannungsrelaxation wieder

auf die Werte der wie-hergestellten Probe. Offenbar ist der Effekt während der Spannungsre-

laxation bei der relaxierten Probe wesentlich stärker ausgeprägt als bei der wie-hergestellten.

Die Volumenänderung ist in Abb. 4.107b zusätzlich in Form der zeitlichen Entwicklung der

relativen Dichten beider Proben dargestellt. Zunächst fällt hier der große anfängliche Dicht-

eunterschied zwischen relaxierter und wie-hergestellter Probe auf. Dieser ist größer als die
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Abbildung 4.107: a) Volumendehnung im Steg als Funktion der Zeit. b) Relative Dichte im
Steg als Funktion der Zeit. Die Dichte wurde hier jeweils mit der theroreti-
schen Dichte des defektfreien Materials gleicher chemischer Zusammenset-
zung normiert.

Dichtezunahme, die Y4-2 während der gesamten Verformung erreicht. Zumindest bei 45 ○-

Proben stellt die Relaxation im Vergleich zur Verformung bei dieser Dehnrate also den effek-

tiveren Verdichtungsprozess dar. Da die relaxierte Probe trotzdem während der Verformung

noch weiter verdichten kann, ähnlich wie die wie-hergestellte, deutet auf unterschiedliche

zu Grunde liegende Prozesse für die Verdichtung durch thermische Relaxation und die Ver-

dichtung durch mechanische Verformung hin. Diese Prozesse können sich zwar gegenseitig

beeinflussen, aber nicht ersetzen.

Insgesamt entwickeln sich die Dehnungen beider Proben sehr ähnlich und unterscheiden sich

hauptsächlich in zwei Aspekten. Zum einen erfolgt bei der wie-hergestellten Probe zu Beginn

eine etwas höhere Verdichtung, zum anderen erfolgt ab #4 eine etwas schnellere Verformung

der relaxierten Probe.

Im Gegensatz dazu sind die Unterschiede in den Spannungen fundamentaler und zunächst

anhand der üblichen Spannungs-Dehnungs-Kurve mit Spannungen und Dehnungen entlang

der y-Richtung in Abb. 4.108 dargestellt. Dort sind sowohl die Spannungswerte der Kristallite

als auch die des Gesamtmaterials gezeigt. Bei beiden liegen die Spannungswerte der relaxier-

ten Probe über denen der wie-hergestellten. Bei den Spannungen in den Kristalliten zeigt

sich zwischen #3 und #4 ein Überschwinger, der anschließend auf den gleichen Wert wie bei

der wie-hergestellten Probe abfällt. Die Spannungswerte des Gesamtmaterials beider Proben

verlaufen näherungsweise parallel zueinander, allerdings ist die Anfangssteigung bei Zb3kr-2

höher und der Übergangsbereich zwischen #3 und #4 bei der relaxierten Probe kürzer als

bei Y4-2.
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Abbildung 4.108: Spannungs-Dehnungs-Kurven der Spannungen und Dehnungen in y-
Richtung. Die Spannungen im Kristall sind gestrichelt dargestellt.

Für eine detaillierte Analyse der Spannungen erfolgt hier wieder die Aufspaltung in hydro-

statische Spannung und maximale Scherspannung in der x-y-Ebene (siehe Abb. 4.109). In

der hydrostatischen Spannung (Abb. 4.109a) gibt es zwischen beiden Proben über weite Tei-

le fast keine Unterschiede, allerdings finden sich auch hier höhere Anfangssteigung und der

Überschwinger der relaxierten Probe aus der Spannungs-Dehnungs-Kurve.

In der Scherspannung in den Kristalliten (siehe Abb. 4.109b) ist dieser Überschwinger der

Spannung von Zb3kr-2 gegenüber Y4-2 aber viel stärker präsent. Außerdem zeigt sich hier,

dass die Scherspannung bei der relaxierten Probe schnell bis knapp über 1 GPa steigt und

dann bis zum Ende konstant bleibt, wohingegen die wie-hergestellte Probe auch in den Kris-

talliten eine Scherverfestigung zeigt.

Im Gesamtmaterial (siehe Abb. 4.109c) zeigen indes beide Proben Verfestigungsverhalten, wo-

bei auch hier das der relaxierten Probe schwächer ausgeprägt ist als bei der wie-hergestellten.

Des Weiteren ist beim Gesamtmaterial die Verkürzung des Übergangsbereiches zwischen

#3 und #4 der relaxierten Probe weniger stark ausgeprägt als in den Kristalliten. Zudem

übersteigt σscher bei der relaxierten Probe im Gesamtmaterial den Wert in den Körnern ab

#4, was auf einen hohen Scherwiderstand in den Korngrenzen hindeutet, der im Verlauf der

Verformung weiter ansteigt. Die Ergebnisse bisher legen somit nahe, dass bei der relaxierten

Probe die Versetzungen dominant zur makroskopischen Verformung beitragen sollten.

Ein weiterer bemerkenswerter Unterschied in den Spannungszuständen beider Proben besteht

in den Zugspannungen des Gesamtmaterials, welche in Abb. 4.109 nicht direkt repräsentiert
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Abbildung 4.109: a) Hydrostatischer Druck in Abhängigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Körnern als Funktion der Dehnung in
y-Richtung. c) Wie b), aber für das Gesamtmaterial.
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sind. Aus diesem Grund ist der Spannungszustand in der x-y-Ebene des Gesamtmaterials

als Polarplot zu den Zeitpunkten #1 bis #6 in Abb. 4.110a für Zb3kr-2 und in Abb. 4.110b

für Y4-2 dargestellt. Hier zeigen sich ab #3 für Zb3kr-2 deutlich höhere Zugspannungen als

bei Y4-2. Diese lassen darauf schließen, dass die relaxierten Korngrenzen einer Zugbelastung

einen wesentlich höheren Widerstand entgegensetzen können und damit weniger anfällig für

eine Volumenzunahme in den Korngrenzen und/oder Rissbildung entlang der Korngrenzen

sind. Damit korreliert auch die ab #3 stärkere Volumenabnahme in der relaxierten Probe im

Vergleich zur wie-hergestellten, da in der relaxierten Probe vermutlich die Volumenzunahme

in den Grenzen unter Zugbelastung fehlt.
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Abbildung 4.110: Polardarstellung des Spannungszustandes des Gesamtmaterials von
Zb3kr-2 (a) und Y4-2 (b) zu den Zeitpunkten #1 bis #6. c) Rotation der
Hauptspannungsrichtungen in der x-y-Ebene relativ zum Laborkoordina-
tensystem.
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Darüber hinaus zeigt sich zu Beginn der Verformung bis #2 ein deutlicher Unterschied in der

Orientierung der Hauptspannungsrichtungen in der x-y-Ebene zwischen den Proben. Da die-

ser Unterschied in den bisherigen Darstellungen nicht erkennbar ist, ist die Orientierung von

¯̄σ in Abb. 4.110c in Form von ∆φ gezeigt. Hier erkennt man, dass die Hauptspannungsrich-

tungen bei Zb3kr-2 zu Beginn der Verformung wesentlich weniger relativ zum Laborkoordina-

tensystem geneigt sind als bei Y4-2. Konkret bedeutet das, dass bei Zb3kr-2 am Anfang die

Hauptdruckspannung weniger senkrecht zum Steg wirkt, was, wie schon bei den Dehnungen,

auf eine geringere anfängliche Relaxation im Steg hinweist.

Bei der Volumendehnung und der Dichte fanden sich Hinweise darauf, dass die Spannungs-

relaxation während des Haltesegments bei der relaxierten Probe stärker ausgeprägt ist als

bisher bei den wie-hergestellten. Um diesen Aspekt näher zu untersuchen, sind in Abb. 4.111

ausgewählte Spannungen gegen die Zeit aufgetragen. In Abb. 4.111a sind das die Spannun-

gen in den Kristalliten in y-Richtung, in Abb. 4.111b die Spannungen des Gesamtmaterials

in y-Richtung und in Abb. 4.111c die Spannungen des Gesamtmaterials in x-Richtung.

In den Kristalliten zeigt σy im Spannungsrelaxationssegment zwischen #5 und #6 fast gar

keine Unterschiede zwischen Zb3kr-2 und Y4-2, sodass die kristalline Phase als Ursache der

stärkeren Spannungsrelaxation ausscheidet. Im Gesamtmaterial zeigt sich aber sowohl in x-

als auch in y-Richtung ein deutlich größerer Spannungsabfall für Zb3kr-2 als für Y4-2 im

gleichen Zeitintervall. Der Unterschied zwischen den Spannungsdifferenzen zwischen Zb3kr-2

und Y4-2 im Zeitintervall zwischen #5 und #6 beträgt in y-Richtung 30 % und in x-Richtung

sogar 68 % in Bezug auf den Spannungsabfall von Y4-2. Die Spannungsrelaxation fällt für die

relaxierte Probe also in allen Richtungen stärker aus, was gleichbedeutend mit einer höheren

Dehnratenempfindlichkeit der relaxierten Korngrenzen ist – das Anhalten der Maschine ist

schließlich nur eine starke Änderung der Dehnrate, die eine Spannungsänderung in der Probe

hervorruft.

Außerdem zeigt sich in Abb. 4.111c erneut der Unterschied in den Zugspannungen beider

Proben, sowie die zeitliche Entwicklung dieses Unterschiedes. Tatsächlich beginnen diese be-

reits ab #2, was in den Polardarstellungen in Abb. 4.110 allerdings schwer zu erkennen ist.

Als nächstes wird die Entwicklung der Intensitätsverteilung entlang des Polarwinkels ϕ be-

trachtet. Dazu sind in Abb. 4.112 bis Abb. 4.115 die Intensitäten der Bragg-Peaks zu 111,

200, 220 und 311 in Form von I ′′ für beide Proben zu den Zeitpunkten #1 bis #6 dargestellt.

Sämtliche Intensitätsverteilungen sind zu allen Zeitpunkten qualitativ gleich, allerdings sind

die Minima und Maxima für Zb3kr-2 im Vergleich zu Y4-2 größer und auf engere Bereiche in ϕ

beschränkt. Der Rotations- und Wachstumsmechanismus, wie er in den wie-hergestellten Pro-

ben beobachtet wurde, ist also in den relaxierten Proben weiterhin aktiv und führt zunächst

zur Übergangstextur, die anschließend in die Endtextur übergeht.
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Abbildung 4.111: a) Spannung in den Körnern in y-Richtung. b) Spannung im Gesamtmate-
rial in y-Richtung. c) Spannung im Gesamtmaterial in x-Richtung.
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Abbildung 4.112: Integrale Intensitätsänderungen ∆I ′′ des 111-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.113: Integrale Intensitätsänderungen ∆I ′′ des 200-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.114: Integrale Intensitätsänderungen ∆I ′′ des 220-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.115: Integrale Intensitätsänderungen ∆I ′′ des 311-Peaks zu den Zeitpunkten #1
bis #6.
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Die Quantifizierung von Übergangs- und Endtextur mittels ∆I ′′ ist hier wieder dienlich und

in Abb. 4.116 dargestellt. Das Vorgehen ist genau wie bei der Referenzprobe Y4-2 mit dem

Unterschied, dass hier die Intensität auf die mittlere Anfangsintensität des 111-Peaks bezogen

wird um verschiedene Proben besser miteinander zu vergleichen. An den Positionen für die

Auswertung der beiden Texturen hat sich dadurch nichts geändert. Der Übergangszustand

ist durch ∆I ′′111 = ∆I ′′111(82 ○) und der Endzustand durch ∆I ′′111 = ∆I ′′111(54 ○) − ∆I ′′111(82 ○)

charakterisiert.

Der Zeitliche Verlauf der Entwicklung der Übergangstextur ist bei beiden Proben identisch.

Bei Zb3kr-2 verlangsamt sich die Entwicklung zwischen #3 und #4 relativ zu Y4-2 und

erreicht dadurch niedrigere Werte. Die höheren Spannungen bei Zb3kr-2 führen somit nicht

zu einer stärkeren Ausbildung der Übergangstextur um die elastische Verzerrungsenergie

abzubauen.

Die Ausbildung der Endtextur erfolgt ab #4 bei beiden Proben zwar zeitgleich, aber im Fall

von Zb3kr-2 signifikant schneller und damit stärker als bei Y4-2. Allerdings sei hier daran erin-

nert, dass die Maxima/Minima in letzterem Fall breiter sind. Daher unterscheiden sich beide

Proben nicht in der insgesamt stattfindenden Kornrotation, aber bei der relaxierten Probe

findet diese verstärkt nach #4 statt und führt zu einer schärferen Endtextur. Die stärker un-

terdrückte Übergangstextur um #4 ist also eine Folge der stärkeren und früher einsetzenden

Entwicklung der Endtextur. Daraus lässt sich ableiten, dass die Versetzungsaktivität bei der

relaxierten Probe in einem engeren Winkelbereich fokussiert sein sollte und damit gezielter zur

makroskopischen Verformung beiträgt. Ab #4 dominiert dieser Prozess die Energieminimie-

rung und unterdrückt dadurch die Übergangstextur. Kornrotation ist damit bei relaxierten

Proben noch stärker an Versetzungsaktivität gekoppelt als bei den wie-hergestellten.
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Abbildung 4.116: a) Entwicklung der Übergangstextur in Abhängigkeit von der Dehnung in
y-Richtung, gemessen durch ∆I ′′111(82 ○). b) Entwicklung der Endtextur in
Abhängigkeit von der Dehnung in y-Richtung. Als Maß dient hier ∆I ′′111 =

∆I ′′111(54 ○) −∆I ′′111(82 ○).

369



4 Ergebnisse

Interessanterweise haben die Beobachtungen zu den hkl-spezifischen Intensitätsverteilungen

keinen Einfluss auf die Summe der Intensitätsverteilungen. Dieser Befund ist zum Zeitpunkt

#4 anhand Abb. 4.117a und zum Zeitpunkt #5 anhand Abb. 4.117b veranschaulicht. In bei-

den Fällen zeigen sich keine signifikanten Unterschiede in ∑ I ′′ zwischen Zb3kr-2 und Y4-2,

obwohl die Verteilungen für die Einzelkomponenten deutlich voneinander abweichen. Zuvor

wurde für Y4-2 gezeigt, dass ∑ I ′′ und die orientierungsabhängige Korngrößenverteilung mit-

einander korrelieren (siehe S. 287ff). Das ist auch bei Zb3kr-2 der Fall. Damit liegt der Schluss

nahe, dass die Zunahme des Volumens der kristallinen Phase in beiden Fällen praktisch iden-

tisch sein sollte.
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Abbildung 4.117: a) Über alle Peaks summierte Intensitäten I ′′ zum Zeitpunkt #4. b) Wie
a), aber zum Zeitpunkt #5.

Diese Hypothese kann anhand der komplementären Größe, nämlich dem Volumenanteil der

Korngrenzen VKG/V , überprüft werden (siehe Abb. 4.118). In Abb. 4.118a erkennt man den

Versatz zwischen beiden Proben, der vermutlich durch geringfügiges Kornwachstum während

der thermischen Relaxation von Zb3kr-2 erzeugt wurde, wodurch ein Teil der Korngrenzen-

fläche in dieser Probe vor dem Experiment an der ESRF abgebaut wurde. Abgesehen davon

sieht der Verlauf beider Kurven ähnlich aus. Um eine bessere Vergleichbarkeit herzustellen,

wurde die Änderung des Volumenanteils der Korngrenzen ∆VKG/V in Abb. 4.118b darge-

stellt. Hier bestätigt sich der Eindruck, dass beide Proben praktisch die gleiche Dynamik beim

Kornwachstum aufweisen, die hauptsächlich im Bereich um #4 stattfindet. Die Hypothese,

die anhand ΣI ′′ formuliert wurde, ist damit bestätigt: Die Zunahme der Korngröße verläuft

bei relaxierten und wie-hergestellten Proben nahezu identisch.

Zum Schluss werden die per WPPM-Anpassung bestimmten Versetzungsdichten betrachtet.

Die Entwicklung der mittleren Versetzungsdichte ⟨ρ⟩Ω ist in Abb. 4.119a dargestellt. Die

Anfangsversetzungsdichte der relaxierten Probe ist mit 0.8 ⋅1016 m−2 geringer als die der wie-

hergestellten Probe mit 1.42 ⋅ 1016 m−2, was vermutlich auf einen Abbau von Versetzungen
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Abbildung 4.118: a) Entwicklung des Korngrenzenvolumenanteils VKG/V mit der Zeit. b)
Änderung des Korngrenzenvolumenanteils ∆VKG/V mit der Zeit in Bezug
auf den jeweiligen Anfangszustand.

infolge der thermischen Relaxation zu erklären ist. Dieses Resultat stützt den zuvor ver-

muteten Zusammenhang zwischen dem Vorhandensein von Nichtgleichgewichtskorngrenzen

und der daraus resultierenden Stabilisierung von Gitterdefekten, indem die stärker relaxierten

Korngrenzen in den relaxierten Proben weniger Versetzungen in den Kristalliten als Kompen-

sation benötigen. Der Anstieg in ⟨ρ⟩Ω erfolgt bei Zb3kr-2 sowohl stärker, als auch schneller,

erreicht aber in der Spitze nicht die Versetzungsdichten von Y4-2. Der Hauptanstieg erfolgt

in beiden Fällen zwischen #3 und #4, wobei die größte Versetzungsaktivität gemäß den vor-

herigen Ergebnissen erst nach #4 stattfinden sollte. Die mittlere Versetzungsdichte ist also in

beiden Fällen als Größe zu begreifen, die einen zeitlichen Mittelwert statischer und dynami-

scher Versetzungen beschreibt. Ein hoher Anstieg von ⟨ρ⟩Ω bietet daher einen großen Spiel-

raum für dynamische Versetzungen zusätzlich zu den schon vorhandenen statischen (eventuell

geometrisch notwendigen) Versetzungen.

In der räumlichen Verteilung der Abweichung der Versetzungsdichten vom Mittelwert gemäß

ihrer Burgers-Vektororientierung (∆ρΩ) spiegelt sich die stärkere Fokussierung der Inten-

sitätsverteilung bei Zb3kr-2 wieder. Diese ist für den Zeitpunkt #5 in Abb. 4.120 für beide

Proben dargestellt. Die grundsätzliche Orientierung der Bereiche höherer und niedrigerer

Versetzungsdichten ist in beiden Fällen identisch. Allerdings sind diese Bereiche bei Zb3kr-2

schmäler in ϕ-Richtung, was aufgrund der vorherigen Ergebnisse auch so zu erwarten war. Die

Fokussierung der Gleitrichtungen, auf denen die Versetzungen zur makroskopischen Scherung

beitragen, schlägt sich somit auch hier nieder.
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Abbildung 4.119: a) Entwicklung der über alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten ⟨ρ⟩Ω mit der Zeit. b) Histogramme der Versetzungsdichten
zum Zeitpunkt #5 über alle Burgers-Vektororientierungen Ω.

Der Unterschied zwischen den höchsten und niedrigsten Versetzungsdichten ist außerdem bei

der relaxierten Probe etwas geringer als bei Y4-2, was auch aus dem Histogramm der Ver-

setzungsdichtenverteilung in Abb. 4.119b hervorgeht und vermutlich eine Konsequenz aus

der schmäleren Orientierungsverteilung der drehenden Körner, sowie einer höheren Verset-

zungsaktivität ist. Umgekehrt betrachtet könnte man bei Y4-2 auch von einer effektiveren

Speicherung von Versetzungen in Körnern sprechen, die dann aber nicht mehr für die weitere

Verformung des Steges zur Verfügung stehen.

(a) Zb3kr-2 (b) Y4-2
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Abbildung 4.120: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen Ω von der mittleren
Versetzungsdichte ∆ρΩ zum Zeitpunkt #5 für Zb3kr-2 (a) und Y4-2 (b).
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Als Zusammenfassung lässt sich damit für die relaxierten Proben festhalten, dass die Rela-

xation im Wesentlichen zu einer Erhöhung der Festigkeit der Korngrenzen führt, insbeson-

dere unter Zugbelastung. Dieser Befund legt nahe, dass die Bindungskräfte zwischen den

Atomen in den Korngrenzen gegenüber positiven (Volumen-)Dehnungen im Vergleich zum

wie-hergestellten Zustand zugenommen haben. Außerdem führt der Abbau von Exzessvolu-

men bei den relaxierten Proben erwartungsgemäß zu einer Verminderung des anfänglichen

Relaxationsprozesses in der Verformung, der bei den wie-hergestellten Proben den Bereich

bis #2 maßgeblich beeinflusst hat.

Die höhere Festigkeit der Korngrenzen in den relaxierten Proben erzwingt einen allgemeinen

Anstieg der Scherspannungen, wodurch der Anteil von Versetzungsprozessen im Vergleich

zum wie-hergestellten Zustand zunimmt. Die hohen Scherspannungen führen zu einer Absen-

kung der thermischen Aktivierungs-Gibbs-Energie der Versetzungsbewegung (bzw. Nuklea-

tion), wodurch die Dehnrate des Dehnungsbeitrages durch Versetzungsgleiten zunimmt. Die

beobachtete höhere Dehnrate bei den relaxierten Proben lässt sich zumindest teilweise durch

diesen Effekt erklären.

Prinzipiell sollten die Dehnraten aller Prozesse zunehmen, deren Scherwiderstand, und damit

Aktivierungsbarriere, durch die Relaxation nicht in gleichem Maße erhöht wurde, wie für

die Prozesse in den Korngrenzen (z.B. Schertransformationen, Korngrenzengleiten). Dazu

gehört z.B. SGKW/Coupling, bei dem die Aktivierungsbarriere weitgehend unabhängig von

der Relaxation zu sein scheint, da in der wie-hergestellten und der relaxierten Probe etwa

in gleichem Maß Kornwachstum stattgefunden hat; bei der relaxierten Probe allerdings in

geringfügig kürzerer Zeit.

Das Modell der Verfestigung der Korngrenzen aufgrund der Bildung von Disklinationsdipolen

[114, 115] liefert auch hier wieder eine zu den Beobachtungen passende Interpretationsgrund-

lage. In den relaxierten Proben sind Relaxationsprozesse durch das geringere Exzessvolumen

und die höheren Bindungskräfte zwischen den Atomen schwieriger zu aktivieren, weswegen

auch die Relaxation der Disklinationsdipole nur schwieriger/langsamer ablaufen kann. Der

höhere Gehalt an Disklinationsdipolen stellt dann eine mögliche Ursache der gesteigerten Ver-

festigung der Korngrenzen dar. Außerdem könnte das die Ursache für die wesentlich stärker

ausgeprägte Spannungsrelaxation im Haltesegment bei den relaxierten Proben sein. In diesem

Fall liefert die Richtungsabhängigkeit der Spannungsrelaxation vom Belastungszustand einen

Hinweis auf eine ähnliche Richtungs-/Spannungsabhängigkeit der Disklinationsdipolbildung.

Durch diese Ergebnisse drängt sich eine Betrachtung der dehnratenabhängigen Verformung

von relaxierten Proben geradezu auf, denn dadurch wird direkt der Umfang möglicher Re-

laxationsprozesse in den Korngrenzen beeinflusst, wodurch sich entsprechende Änderungen

im Verformungsverhalten einstellen sollten. Zum Abschluss werden daher die relaxierten Pro-

ben Zb3kr-1 (Nenndehnrate 1 ⋅ 10−4 s−1) und H1r-2 (Nenndehnrate 1 ⋅ 10−1 s−1) mit Zb3kr-2
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(Nenndehnrate 1 ⋅ 10−3 s−1) verglichen. Die Probe Zb3kr-2 dient in dieser Betrachtung als

neue Referenzprobe für den relaxierten Zustand. Als Ordnungsparameter dient, aufgrund der

verschiedenen Dehnraten, wieder die makroskopische Dehnung in y-Richtung.
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Abbildung 4.121: a) Darstellung der Dehnung in der x-y-Ebene in Form der Dehnung entlang
des Steges E∥ und senkrecht zum Steg E⊥. Die Normaldehnungskomponente
in Stegrichtung ist stets null, sodass hier auf ihre Wiedergabe verzichtet
wird. b) Zeitliche Entwicklung der relativen Dichten im Stegbereich. Die
theoretische Dichte ρtheo bezieht sich auf den defektfreien Kristall gleicher
chemischer Zusammensetzung.

Die Dehnung in der x-y-Ebene ist in Bezug auf den Steg in Abb. 4.121a durch E⊥ (Dehnung

senkrecht zum Steg) und E∥ (Scherung entlang des Steges) dargestellt. Die Ergebnisse er-

innern hier an die der wie-hergestellten Proben (siehe S. 328), indem die beiden schnelleren

Verformungen beinahe das gleiche Dehnungsverhalten aufweisen, wohingegen die langsamere

Verformung (Zb3kr-1) durch eine anfängliche (bis #2) starke Kompression des Steges ge-

kennzeichnet ist. Danach entwickelt sich die Dehnung dieser Probe ebenfalls ähnlich zu den

übrigen. Allerdings kommt es bei der schnellsten Verformung (H1r-1) ab einer Dehnung von

Ey ≈ −0.11 zur Rissbildung im Steg, in deren Folge die Dehnungswerte stärker ansteigen.

Die Probenhälften reißen aber, im Unterschied zu den 60○-Proben (siehe S1-1, S. 340ff),

während der gesamten Verformung nicht voneinander ab. Die Rissbildung wird weiter unten

detaillierter betrachtet.

Zunächst wird die Entwicklung des Stegvolumens mit der Dehnung in Form der relativen

Dichten in Abb. 4.121b adressiert. Alle Proben weisen einen Dichteanstieg am Anfang der

Verformung (bis #3) auf, der bei der langsamen Verformung (Zb3kr-1) wegen der anfänglich

stärkeren Kompression des Steges schneller als bei den übrigen Proben erfolgt. Bei den lang-

samen Dehnraten sind also offensichtlich noch Relaxationsprozesse möglich, die bei höheren

Dehnraten in den relaxierten Proben bereits unterdrückt sind. Ab #3 sinkt die Dichte bei
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Zb3kr-1 bis zum Ende der Verformung kontinuierlich, was den Schluss nahelegt, dass bei

langsamen Verformungsraten auch in den relaxierten Proben noch Relaxationsprozesse und

Volumenzunahmen in den Grenzen ablaufen können, ähnlich wie in den wie-hergestellten

Proben.

Bei den schnelleren Verformungen steigt die Dichte dagegen weiter an. Bei H1r-1 setzt ab

Ey ≈ −0.06 (zwischen #3 und #4) eine Dichteabnahme ein, die als frühe Signatur der Riss-

bildung im Steg bei Ey ≈ −0.11 interpretiert werden kann. Nach der Rissbildung nimmt

die Dichte im Steg schnell und stark ab, da dem Stegvolumen hier auch das Volumen der

Risse zugerechnet wird. Die Dichteabnahme vor der makroskopischen Rissbildung geht also

vermutlich auf vorher entstandene, lokal beschränkte Mikrorisse im Material zurück.
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Abbildung 4.122: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in
y-Richtung. Abbildungsteil a) bezieht sich auf die Spannungen in den
Körnern, b) bezieht sich auf die mittleren Spannungen im Gesamtmate-
rial.

Trotz dieser Unterschiede und der stark voneinander abweichenden Dehnraten ergeben sich

für die drei Verformungen erstaunlich ähnliche Spannungs-Dehnungs-Kurven aus den Span-

nungen und Dehnungen in y-Richtung (siehe Abb. 4.122), und zwar sowohl für die Körner,

als auch für das Gesamtmaterial. Die größte Auffälligkeit ergibt sich für H1r-2 dort, wo ab

der Rissbildung die Spannungen in den Körnern zunehmen, wohingegen die Spannungen im

Gesamtmaterial kontinuierlich abnehmen. Da im Gesamtmaterial auch die Risse enthalten

sind, ist diese Diskrepanz erwartbar – Risse können schließlich keine Last aufnehmen.

Eine etwas aufschlussreichere Darstellung liefert auch hier wieder die Zerlegung der Span-

nung in hydrostatischen Druck (σiso) und die maximale Scherspannung in der x-y-Ebene

(σscher)
14. Diese Zerlegung ist in Abb. 4.123 dargestellt und offenbart für die hydrostatische

14Das entspricht bei den hier betrachteten 45○-Proben der globalen maximalen Scherspannung in den Proben.
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Abbildung 4.123: a) Hydrostatischer Druck in Abhängigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Körnern als Funktion der Dehnung in
y-Richtung. c) Wie b), aber für das Gesamtmaterial.

Spannung und die maximale Scherspannung in den Körnern (siehe Abb. 4.123a und Abb.

4.123b) keine signifikanten Unterschiede zwischen den verschiedenen Dehnraten, solange die

Proben intakt sind. Sobald sich bei H1r-2 die Risse im Steg bilden, steigt der hydrostatische

Druck sprunghaft an und die Scherspannung sinkt ab.

Erst im Gesamtmaterial tritt der Unterschied bei den Scherspannungen zwischen der lang-

samsten und den schnellen Verformungen zu Tage. Hier ist die Scherspannung von Zb3kr-

1 deutlich geringer als bei den anderen. Das zeigt, dass bei der langsamen Verformung

Relaxations- und/oder Scherprozesse ein Absenkung des Scherwiderstand in den Korngrenzen

verursachen.

Die Ergebnisse bis hierhin zeigen, dass bei niedrigen Dehnraten durchaus noch Relaxations-

prozesse in den Korngrenzen relaxierter Proben stattfinden können. Diese Relaxationsprozes-

se werden mit zunehmender Dehnrate offenbar immer stärker unterdrückt und führen so zu

einer Zunahme bei den Scherspannungen im Gesamtmaterial. Die Tatsache, dass es hierbei
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Abbildung 4.124: Entwicklung der über alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten ⟨ρ⟩Ω mit der Zeit.

keine signifikanten Unterschiede zwischen Dehnraten von 10−1 s−1 und 10−3 s−1 gibt zeigt, dass

die intrakristalline Versetzungsaktivität praktisch als Überdruckventil für Scherspannungen

wirkt und diese in den Kristalliten auf ca. 1 GPa begrenzt. Im Grunde trifft dieser Befund

bereits bei den wie-hergestellten Proben bei entsprechender Belastung und Dehnrate zu.

Die Entwicklung der mittleren Versetzungsdichte ⟨ρ⟩Ω der relaxierten Proben unterstützt

diese These, indem bei H1r-2 der Anstieg der Versetzungsdichte deutlich größer ist, als bei

den langsameren Verformungen (siehe Abb. 4.124). Dieser stärkere Anstieg ist bei höheren

Dehnraten notwendig, um über die Versetzungsaktivität in einem kürzeren Zeitraum mehr

Spannungen aufgrund des höheren Scherwiderstandes in den Grenzen zu dissipieren, als bei

der langsameren Verformung (z.B. Zb3kr-2). In letzterem Fall kann ein Teil dieser Arbeit

durch Scherprozesse und Relaxation in den Korngrenzen übernommen werden.

Die Rissbildung im Steg bei H1r-2 ergänzt dieses Bild noch um einem weiteren Aspekt.

In Abb. 4.125 sind die Risse im Steg nach der Rissbildung dargestellt, die sich in ihrer

Ausrichtung deutlich von den zuvor beobachteten unterscheiden (vgl. Abb. 4.76, S. 324 oder

Abb. 4.90, S. 342 oder Abb. 4.105, S. 359). Ein Vergleich der Rissorientierung mit dem

Spannungszustand zeigt hier (siehe Abb. 4.125), dass bei der Rissbildung gleichzeitig zwei

Bedingungen erfüllt wurden. Zum einen ist der Riss entlang einer Ebene hoher Scherspannung

entstanden, es handelt sich also um einen Typ II Gleitriss. Bei allen zuvor beobachteten Rissen

handelte es sich um Typ I Spaltrisse. Zum anderen fällt auf, dass der Riss nicht senkrecht zur

größten Scherspannung entsteht, sondern erst in der Richtung, in der die Normalspannung
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Abbildung 4.125: Frontansicht von H1r-2 bei Ey ≈ −0.13. Die Anfangs- und Endpunkte der
Risse im Steg sind durch rote Pfeile gekennzeichnet. Rechts daneben sind
die Normalspannungen (durchgezogene Linien) und die Beträge der Scher-
spannungen (gestrichelte Linien) vor und nach der Rissbildung dargestellt.
Die Rissorientierung ist als durchgezogene rote Linie in der Mitte der Polar-
diagramme eingetragen und die dazu normalen Richtungen als gestrichelte
rote Linie. Spannungsangaben erfolgen in GPa.

auf den Riss null wird. Die makroskopische Rissausbreitung ist also offenbar nur möglich,

solange keine negative Druckspannung auf die Rissfläche wirkt.

Der Spannungszustand nach der Rissentstehung zeichnet sich dadurch aus, dass in der x-y-

Ebene allseitig negative Druckspannungen vorliegen. Vermutlich ist das die Ursache, dass sich

die Risse nicht unkontrolliert weiter ausbreiten und dadurch die Probenhälften, trotz Rissen,

noch nicht voneinander abreißen. Diese Rissentstehung bei schnellen Verformungen von re-

laxierten 45○-Proben ist keine Ausnahme, sondern ist in drei von vier untersuchten Fällen

aufgetreten. Sie liefert einen Hinweis darauf, dass Relaxationsprozesse bzw. Scherprozesse in

den Korngrenzen entscheidend für die Unterdrückung von Rissen in Folge von Versetzungsak-

tivität und/oder der Bildung von Disklinationsdipolen sind. Dabei hängt die Aktivierbarkeit

dieser Korngrenzenprozesse sowohl von der Dehnrate, als auch vom Zustand der Korngrenzen

ab. Dieser Rissbildungsprozess unterscheidet sich damit deutlich von der zuvor beobachteten

Bildung von Spaltrissen, welche im Wesentlichen durch starke Zugspannungen bei 60○-Proben

hervorgerufen wurden, und sowohl bei relaxierten, als auch bei wie-hergestellten Proben be-

obachtet werden können.
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4.6 Zusammenfassung und Interpretation der Ergebnisse

In den vorherigen Kapiteln wurde das Verformungsverhalten nanokristalliner Pd90Au10 SCS

mit verschiedenen Stegwinkeln für verschiedene Dehnraten sowohl für wie-hergestellte als

auch für relaxierte Proben beschrieben. Dazu wurden die Daten aus der Kraftmessung und

der optischen Verschiebungsmessung zusammen mit den Ergebnissen aus der Analyse der

Röntgendaten mittels WPPM-Anpassung zusammengetragen, zueinander in Beziehung ge-

setzt und interpretiert. Die makroskopischen Daten liefern eine direkte Beschreibung der

Dehnungen des Gesamtmaterials, wohingegen die Röntgendaten primär eine Beschreibung

des Spannungs- und Dehnungszustands der kristallinen Phase liefern, sowie der darin enthal-

tenen Defektdichten. Die Diskrepanz beider Datensätze in Bezug auf die Kraft in y-Richtung

lieferte die Grundlage für die Abschätzung der Scherspannungen in den Korngrenzen.

Als Ergebnis dieser Untersuchung konnten Versetzungsaktivität in den Körnern, spannungs-

getriebenes Kornwachstum (SGKW) bzw. Coupling und Kornrotation als aktive Mechanis-

men während der Verformung nachgewiesen und detailliert beschrieben werden. Darüber

hinaus weisen die Ergebnisse auf eine komplexe gegenseitige Abhängigkeit zwischen den ge-

nannten Prozessen hin, die zusätzlich von Dehnrate, Belastungzustand, Probenzustand und

Verformungshistorie beeinflusst wird. Außerdem konnte gezeigt werden, dass in allen Fällen

zusätzliche Beiträge von Korngrenzenprozessen zur Scher- und Volumendehnung notwendig

sind. Da der Informationsgehalt der Röntgendaten in Bezug auf die Korngrenzen wesentlich

geringer ist als in Bezug auf die Kristallite, ist eine exakte Aufschlüsselung der aktiven Korn-

grenzenprozesse im Rahmen dieser Arbeit nicht möglich. Es lassen sich jedoch Aussagen über

notwendige Eigenschaften der effektiven Korngrenzenprozesse ableiten.

Die Ergebnisse legen den Schluss nahe, dass generell zwischen zwei effektiven Plastizitäts-

mechanismen in den Korngrenzen unterschieden werden kann. Bei dem einen handelt es sich

um einen Relaxationsprozess, der freies Volumen in den Korngrenzen abbaut und so eine

Kompression des Steges erzeugt. Dieser Prozess läuft bei wie-hergestellten Proben bereits bei

geringen Spannungen ab, verbraucht dabei aber das im Material vorhandene, freie Exzess-

volumen. Dadurch werden die zur Aktivierung dieses Prozesses zu überwindenden Aktivie-

rungsbarrieren immer höher, sodass andauernde Beiträge zur Dehnung bei fester Dehnrate

immer höhere Spannungen/Temperaturen benötigen. Ähnliches lässt sich auch bei der rein

thermischen Relaxation beobachten [8, 32]. Wie bei allen thermisch aktivierten Prozessen,

weist auch dieser eine Dehnratenabhängigkeit auf, wobei diese außerdem vom zuvor geleiste-

ten Dehnungsbeitrag dieses Prozesses abhängt; Hinweise darauf lassen sich bereits in [8, 32]

finden.

Bei dem anderen effektiven Plastizitätsmechanismus in den Korngrenzen handelt es sich um

einen Scherprozess oder eine Überlagerung mehrerer Scherprozesse. Kandidaten für die ver-

antwortlichen Mechanismen sind Schertransformationen, Korngrenzengleiten oder Diffusions-

prozesse. Eine Diskriminierung dieser Prozesse ist bei der aktuellen Datenlage leider nicht
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abschließend möglich. Es erscheint aber zwingend notwendig, dass während dieser Scher-

prozesse in den Grenzen im transienten Zustand eine Volumendehnung oder eine Dehnung

normal zur Scherebene erzeugt wird. Die Funktion davon kann offenbar teilweise durch das be-

reits vorhandene Exzessvolumen übernommen werden, weshalb der Scherwiderstand im Zuge

des Volumenabbaus während der Verformung ansteigt. Alternativ führt auch die thermische

Relaxation zu einem deutlichen Anstieg des Scherwiderstandes in den Korngrenzen.

Vor diesem Hintergrund folgt die Abhängigkeit der Verformung vom Spannungszustand zwang-

los: Bei negativem hydrostatischem Druck oder bei negativen Normalspannungen auf den

Ebenen, an denen Scherspannungen angreifen, müssen die notwendigen Volumendehnun-

gen bzw. Normaldehnungen bei den Scherprozessen in den Grenzen gegen die äußere Last

stattfinden. Dadurch steigt die Energiezunahme im transienten Zustand, was im Sinne der

thermischen Aktivierung (siehe S. 115) gleichbedeutend mit einer Erhöhung der Aktivie-

rungsbarriere ist. Bei gleicher Dehnrate ist daher eine höhere angelegte Spannung zur Auf-

rechterhaltung der Verformung notwendig, d.h. der Scherwiderstand der Grenzen steigt an.

Für Diffusionsprozesse und Schertransformationen ist genau dieses Verhalten bereits in an-

deren Zusammenhängen bekannt [30], sodass beide Prozesse grundsätzlich als aktive Plas-

tizitätsmechanismen in Korngrenzen in Frage kommen. Da Korngrenzengleiten ein Zusam-

menwirken von Diffusion (oder Korngrenzenversetzungsbewegung) und entsprechenden Ak-

kommodationsmechanismen beschreibt, ist auch dieser Prozess entlang entsprechend günstig

orientierter Korngrenzen möglich.

Die Abhängigkeit zwischen Dehnrate und Scherspannung folgt ebenfalls direkt aus der ther-

modynamischen Beschreibung, denn um höhere Dehnraten bei gleicher Temperatur zu errei-

chen, sind höhere Scherspannungen in den Korngrenzen erforderlich. Durch die Abhängigkeit

der Aktivierungsbarriere vom Spannungszustand hängt auch die Dehnratenabhängigkeit des

Verformungsprozesses vom Spannungszustand ab.

Allerdings liefert die ausschließliche Betrachtung des Verhaltens der Korngrenzen in Bezug

auf Spannungszustand und Dehnrate keine sinnvolle Beschreibung des Materialverhaltens,

da das Auftreten von Plastizitätsmechanismen und ihr Zusammenspiel aus dem Wettbewerb

verschiedener Mechanismen um den geringsten Scherwiderstand entlang der Richtungen ho-

her Scherspannung hervorgeht15. Zu diesen Mechanismen zählen neben den Scherprozessen

in den Korngrenzen u.a. auch Coupling oder die intrakristalline Versetzungsaktivität. Diese

Prozesse laufen zwar bei nanokristallinen Materialien erst bei hohen Spannungen ab, zeigen

jedoch keine (gleich-)starke Abhängigkeit von Spannungszustand oder Dehnrate. Dadurch ist

die Zusammensetzung der Plastizitätsmechanismen ein dynamischer und richtungsabhängiger

Prozess, bei dem sich die aktuelle Zusammensetzung der Mechanismen im Verlauf der Ver-

formung mehrfach drastisch ändern kann und so eine Abfolge sehr verschiedener, effektiver

15Gleiches gilt ergänzend dazu für den geringsten Widerstand gegenüber Normaldehnung/Volumendehnung
unter den gegebenen Spannungszuständen.
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Plastizitätsmechanismen in verschiedenen Richtungen erzeugt. Die Gestalt der Spannungs-

Dehnungs-Kurven wird wesentlich dadurch bestimmt, wobei die Beiträge der Elastizität dabei

im gesamten Dehnungsbereich nur eine untergeordnete Rolle spielen.

Ein Beispiel für diese Änderung der Zusammensetzung und das Zusammenspiel verschiede-

ner Mechanismen zeigt sich bei der Variation der Dehnraten für wie-hergestellte Proben. Die

hohe Dehnratenabhängigkeit der Korngrenzenprozesse führt zu einer Zunahme der Scher-

spannungen bei schnellen Verformungen. Da der Scherwiderstand der Versetzungsprozesse

weniger stark von der Dehnrate abhängt, übernehmen diese einen größeren Teil der von au-

ßen erzwungenen Dehnung und dissipieren so die hohen Spannungen in den Korngrenzen,

die dadurch weniger zur Gesamtdehnung beitragen müssen/können. Aus ähnlichen Gründen

zeigt sich auch bei den relaxierten Proben ein größerer Beitrag durch Versetzungsgleiten, wo-

bei hier der höhere Scherwiderstand der Korngrenzen durch die Relaxation verursacht wurde.

Ein Beispiel für die Richtungsabhängigkeit ist die Fokussierung der Versetzungsaktivität auf

die Bereiche, in denen negative Normalspannungen auf die Scherebenen wirken. Dort wo diese

nicht vorliegen oder sogar positive Normalspannungen wirken, übernehmen offenbar die unter

diesen Bedingungen viel einfacher zu aktivierenden Korngrenzenprozesse die Scherdehnung –

die Versetzungsaktivität ist dagegen viel geringer.

Allerdings führt nicht jede Behinderung der Plastizitätsprozesse in den Korngrenzen automa-

tisch zu einer dauerhaften Zunahme der Versetzungsaktivität. Einerseits zeigte sich anhand

schneller Verformungen, dass auch Versetzungsgleiten Akkommodationsprozesse in den Korn-

grenzen benötigt. In diesen Fällen sind die Relaxations- und Scherprozesse in den Korngrenzen

stark behindert, was bei relativ geringen Dehnungen schon zur Ausbildung von Gleitbrüchen

im Stegbereich führte. Andererseits wirken sich unterschiedliche Spannungs- und Dehnungs-

zustände auch direkt auf die Versetzungsaktivität aus, etwa indem die Orientierung von

maximaler Scherdehnung und der Hauptscherrichtung bei verschiedenen Stegwinkeln unter-

schiedlich stark voneinander abweichen.

Des Weiteren führen bereits relativ geringe Zugspannungen zu einer Zunahme des Volumens

der Korngrenzen, was schlussendlich zum Aufreißen derselben und damit zum Bruch führt.

Die Ergebnisse der relaxierten Proben legen nahe, dass die dafür benötigten Zugspannungen

bei relaxierten Proben zunehmen. Daher liegt der Umkehrschluss nahe, dass beim Ausein-

anderziehen der Korngrenze mit fortschreitender Normaldehnung eine abnehmende Normal-

spannung notwendig sein sollte. Allerdings begünstigt diese Rückwärtsrelaxation auch wieder

Scherprozesse in den Korngrenzen, wodurch die Bildung von Gleitrissen unterbunden werden

könnte.

Bei der Interpretation dieser Vorgänge bewährte sich das Modell aus [114, 115], in dem die

Verfestigung der Korngrenzen durch die Bildung von Disklinationsdipolen bei Scherverfor-

mung in der Nähe von Tripellinien beschrieben wird. Darin wird insbesondere darauf hin-

gewiesen, dass Spannungsrelaxation in den Korngrenzen essenziell für die Verhinderung von
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Rissen an diesen Disklinationsdipolen ist. Auch alle übrigen Implikationen dieses Modells

fügen sich nahtlos in die restliche Beschreibung und die experimentellen Beobachtungen ein.

Um Vorhersagen zum Materialverhalten auf Grundlage eines thermodynamischen Modells zu

treffen, ist zunächst die Ableitung thermischer Aktivierungsparameter aus den experimentel-

len Daten notwendig. Das gestaltet sich mit den üblichen Methoden schwierig, da dadurch

i.d.R. nur effektive Aktivierungsparameter bestimmt werden. Allerdings ändert sich der effek-

tive Plastizitätsmechanismus während der Verformung ständig und unregelmäßig, sodass kein

Satz von effektiven Aktivierungsparametern existiert, der die gesamte Verformung beschrei-

ben kann. Daher wäre eine stückweise Bestimmung dieser effektiven Parameter in den Zeit-

und Dehnungsbereichen notwendig, in denen eine annähernd gleichbleibende Zusammenset-

zung von Mechanismen vorliegt; also der gleiche effektive Mechanismus. Damit hätte man

aber keine fundamentalen Parameter bestimmt, sondern nur die Abfolge effektiver Parame-

ter genau dieser einen Verformung. Der vermutlich sinnvollere Ansatz wäre eine Anpassung

des Vorgehens aus [32, 275], wo die thermische Relaxation mit Hilfe eines Modells aus einer

Überlagerung mehrerer Relaxationsprozesse bestimmt wurde. Dabei wurde die Anpassung

des Modells an die Messdaten gleichzeitig über mehrere, unterschiedliche Messungen durch-

geführt um daraus die zu Grunde liegenden, elementaren Aktivierungsparameter der konsti-

tuierenden Einzelprozesse zu extrahieren. Grundsätzlich ist eine entsprechende Anpassung

auf den Verformungsprozess möglich, das Modell wäre aber um einiges komplexer.

Vorhersagen zum Verformungsverhalten zu treffen ist daher eine anspruchsvolle Herausforde-

rung, die zwangsweise ein komplexes Modell erfordert, welches alle hier dargelegten Aspekte

und ihr Zusammenwirken quantitativ abbilden kann. Die vergleichsweise einfachen FEM-

Modelle aus vorherigen Arbeiten sind dafür ungeeignet und die Anpassung komplexerer

Modelle wie z.B. dem Drucker-Prager-Materialgesetz, hat sich als ausgesprochen schwierig

herausgestellt. Mit den Ergebnissen aus dieser Analyse ergeben sich für mögliche kontinu-

umsmechanische Materialgesetze die Anforderungen, dass diese Zug-Druck-Asymmetrie und

Dehnratenabhängigkeit enthalten müssen, sowie durch ein anisotropes und vom Belastungszu-

stand abhängiges Verfestigungs- und Entfestigungsmodell ergänzt werden. Ein erfolgverspre-

chender Ansatz könnte z.B. in der Anpassung des Pitman-Schaeffer-Gray-Stiles-Kriterium

[161, 162] liegen.
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Ziel dieser Arbeit war die systematische Untersuchung des Verformungsverhaltens von nano-

kristallinem Pd90Au10. Dabei war insbesondere der Einfluss verschiedener Spannungszustände

und Dehnraten, sowie der Einfluss der thermischen Relaxation auf die Verformungsmecha-

nismen von Interesse. Dazu wurden an der European Synchrotron Radiation Facility (ESRF)

über 70 Verformungsexperimente mit in-situ Röntgenbeugung durchgeführt und die daraus

gewonnen Daten im Anschluss detailliert analysiert.

Ein Teil dieser Arbeit bestand in der Konzeption und der Umsetzung dieser Experimente.

Diese basieren auf vorangegangenen Arbeiten [25, 30, 186], sodass auch hier die bewährten

Shear Compression Specimens (SCS) in einer Kammrath & Weiss Prüfmaschine verformt

wurden, während ein Röntgenstrahl an dem sich stark verformenden Stegbereich der Proben

gestreut wurde. Das Streubild nahm ein hinter der Probe aufgestellter 2d Detektor mit hoher

zeitlicher und räumlicher Auflösung auf. Im Unterschied zu vorherigen Experimenten, wur-

de die Probenbewegung hier in drei Raumrichtungen mit zwei gekreuzten, hochauflösenden

Kameras erfasst. Außerdem wurde die zeitliche Korrelation der verschiedenen Messdaten je-

derzeit durch eine zentrale, teilautomatisierte Experimentsteuerung garantiert, die zudem

einen hohen Probendurchsatz ermöglichte.

Die Variation der Spannungszustände wurde durch unterschiedliche Stegwinkel der SCS er-

reicht, von denen jeweils die gleichen Mengen an wie-hergestellten und relaxierten Proben

hergestellt und verformt wurden. Die Variation der Dehnraten erfolgte durch unterschiedli-

che Verformungsgeschwindigkeiten.

Die Daten aus diesen Experimenten bildeten die Grundlage für die anschließende Analyse

des Verformungsverhaltens. Zuvor mussten jedoch sowohl die Daten zur makroskopischen

Dehnung, als auch die Daten aus der Röntgenstreuung umfassend verarbeitet werden, um die

darin enthaltenen Informationen in interpretierbarer Form zu extrahieren.

Aus den Kamerabildern wurden die Verschiebungsfelder auf der Front- und Seitenfläche der

SCS mit Hilfe der Software DaVis (von LaVision) extrahiert. Anschließend bestimmten eigens

dafür entwickelte Matlab-Programme aus diesen Verschiebungsfeldern die dreidimensionalen

Verschiebungsgradienten im Stegbereich der SCS, woraus dreidimensionale Dehnungs- und

Rotationsinformationen abgeleitet werden konnten.
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Die Rohdaten aus dem Röntgendetektor wurden mit Hilfe eines Programms von Vadim Dyad-

kin (Bubble) [253] hinsichtlich Detektorfehler korrigiert und in Form von konventionellen Lini-

endiffraktogrammen exportiert, die das Resultat der Mittelung 2 ○-breiter Polarwinkelsegmen-

te des Detektorbildes waren. Diese bildeten die Grundlage für die anschließende Anpassung

der Daten mittels eines auf dieses Materialsystem angepassten, automatisierten Algorith-

mus auf Grundlage des Whole Powder Pattern Modeling (WPPM), welches ursprünglich von

Paolo Scardi [33] entwickelt wurde. Dabei wird das Diffraktogramm aus theoretischen Mo-

dellen errechnet und die zu Grunde liegenden Parameter so lange variiert, bis eine optimale

Übereinstimmung zwischen Modellrechnung und Messdaten hergestellt ist. Die Parameter,

die zur größten Übereinstimmung führen, liefern dann die beste Beschreibung der korrespon-

dierenden physikalischen Eigenschaften in der untersuchten Probe. Dadurch ist es möglich,

und gleichzeitig zwingend notwendig, eine große Bandbreite an Parametern aus den Diffrakto-

grammen zu bestimmen, wie z.B. Korngrößenverteilung, Versetzungsdichte, Gitterdehnungen,

Stapelfehler- und Zwillingsgrenzenwahrscheinlichkeit, Debye-Temperatur usw..

Zusammen liefern diese mikrostrukturellen Daten mit den makroskopischen Kraft- und Deh-

nungsdaten eine umfassende sowie durchgängig konsistente Beschreibung des Verformungs-

verhaltens nanokristalliner Pd90Au10 SCS. Darüber hinaus liefert die Analyse Informationen

zu den aktiven Plastizitätsmechanismen und ihrem Zusammenspiel/ihrer Zusammensetzung

im Verlauf der Verformung. Zusätzlich lassen sich verschiedene Modi des Materialversagens

beobachten und mögliche Ursachen dafür aus den Daten ableiten. Eine kompakte Zusam-

menfassung der Ergebnisse und ihrer Interpretation ist in Kapitel 4.6 (S. 379ff) gegeben.

Es sei an dieser Stelle noch einmal darauf hingewiesen, dass die ausgewerteten Daten auch

in Form von Visualisierungsprogrammen auf dem Datenträger beiliegen. Damit können auch

solche Darstellungen der Daten in Augenschein genommen werden, die nicht in gedruckter

Form vorliegen. Insbesondere können die Daten in Bewegung betrachtet werden, wodurch

viele Zusammenhänge und Entwicklungen intuitiver erfassbar sind (siehe Anhang A.3, S. 394).

Es könnte der Eindruck entstehen, dass mit den Ergebnissen dieser Arbeit die Konstrukti-

on einer Deformation-Mechanism-Map in Anlehnung an die von Ashby-Frost [169] oder von

Langdon-Mohamed [181, 182] möglich sein sollte. Diese Deformation-Mechanism-Maps für

konventionelle Materialien sind zweidimensionale Schnitte eines vierdimensonalen Parame-

terraumes (Scherspannung, Temperatur, Dehnrate und Korngröße), in denen der jeweils do-

minante Plastizitätsmechanismus eingezeichnet ist. Hypothetischen Deformation-Mechanism-

Maps zu den hier untersuchten nanokristallinen Materialien müsste ein erweiterter Parame-

terraum zu Grunde liegen, da das Verformungsverhalten nicht nur vom Betrag der Scherspan-

nung, sondern vom gesamten 3d Spannungszustand abhängt (+2 Dimensionen), sowie vom

Relaxationszustand der Korngrenzen (+1 Dimension). Zudem kann sich das Verformungs-

verhalten mit zunehmender Dehnung verändern, sodass dieser Parameterraum auch diesen

Aspekt enthalten müsste (mindestens +1 Dimension). Die Nützlichkeit und Aussagekraft von
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zweidimensionalen Deformation-Mechanism-Maps ist aus diesen Gründen für nanokristalline

Materialien zweifelhaft.

Zudem werden auch bei konventionellen Materialien die Deformation-Mechanism-Maps i.d.R.

aus Modellen zum Materialverhalten und den Plastizitätsmechanismen abgeleitet und nicht

direkt anhand von Messdaten bestimmt. Die Entwicklung von Modellen zum Verformungs-

verhalten nanokristalliner Materialien ist daher die grundlegendere und nutzbringendere Auf-

gabe, deren Ergebnis in Form von Deformation-Mechanism-Maps visualisiert werden könnte.

Dessen ungeachtet würde bereits das Konzept eines dominanten Mechanismus aufgrund der

starken Verflechtung und Überlagerung verschiedener Einzelmechanismen wahrscheinlich kei-

ne adäquate Beschreibung des Verformungsverhaltens mehr darstellen.

Bei der Analyse der Ergebnisse aus der WPPM-Anpassung sind drei Probleme zu Tage ge-

treten, die in Zukunft unbedingt adressiert werden sollten. In zwei Fällen kam es zu un-

beabsichtigten Wechselwirkungen verschiedener Modellbestandteile, welche die genaue Be-

stimmung der beteiligten Parameter erschwerte oder verhinderte. Zum einen war das die

Wechselwirkung von Debye-Temperatur und der Texturanpassung der Intensität, zum ande-

ren eine Wechselwirkung zwischen dem Modell zur heterogenen Verzerrung unter Last und

dem Korngrößenmodell. Das letzte Problem trat beim Modell zur Bestimmung der Zwillings-

wahrscheinlichkeit auf, dessen Lösung vermutlich in der globalen Anpassung des gesamten

Detektorbildes anstatt der einzelnen Liniendiffraktogramme besteht.

Wenn thermodynamische oder kontinuumsmechanische Modelle zum Materialverhalten zur

Verfügung stünden, könnte man auch diese in die WPPM-Anpassung integrieren um nur

solche Parametervariationen durchzuführen, die eine konsistente Beschreibung im Rahmen

des Modells darstellen. Dadurch könnte die konsistente Anpassung der Daten schon während

des Fits sichergestellt und eventuell sogar beschleunigt erfolgen. Notwendigerweise müssten

dann weitere Messdaten wie z.B. die makroskopische Dehnung, Dehnrate oder die auf die

Probe ausgeübte Kraft in einem erweiterten WPPM-Algorithmus mit berücksichtigt werden.

Alternativ ist auch denkbar, dass die Parameter dieser Modelle durch eine oder mehrere

WPPM-Anpassungen mit-optimiert werden und so über viele Experimente hinweg eine Ver-

besserung des thermodynamischen oder kontinuumsmechanischen Modells erreicht werden

kann.

Auf experimenteller Seite wäre eine Erweiterung der Information aus der Röntgenstreuung

von zwei Dimensionen auf drei Dimensionen durch die Verwendung von zwei zueinander

verkippten Röntgenstrahlen und Detektoren wünschenswert. Erst dann wäre die komplette

räumliche Erfassung von Gitterdehnungen frei von Annahmen möglich – bei den Gitterde-

fekten könnte man den Umfang der Annahmen zumindest reduzieren. Die Drehung einer

rotationssymmetrischen Probengeometrie in einem einzelnen Röntgenstrahl könnte diese An-

forderung ebenfalls erfüllen, allerdings müsste dann ein größerer Aufwand in die Vorrichtung

zur Verformung fließen um nicht-rotationssymmetrische Spannungs- und Dehnungszustände
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5 Zusammenfassung und Ausblick

einzustellen. Wären diese nämlich ebenfalls rotationssymmetrisch, würde dadurch keine Zu-

satzinformation erzeugt werden.

Darüber hinaus existieren weiterhin noch eine ganze Reihe offener Fragestellungen zum The-

ma nanokristalliner Materialien, die z.T. mit ihren mechanischen Eigenschaften in Verbin-

dung stehen. So kann z.B. in ehemals nanokristallinem Pd90Au10 nach thermisch aktiviertem

Kornwachstum eine sehr hohe Härte festgestellt werden, obwohl die Korngrößen im Bereich

konventioneller Materialien liegen [8]. Der Grund dafür ist bislang unbekannt. Darüber hin-

aus kommt es beim Kornwachstum dieser Materialien oft zu abnormalem Kornwachstum,

wodurch fraktale Korngrenzen im Material erzeugt werden [276] – die genaue Ursache und

alle Konsequenzen aus diesem interessanten Befund sind bereits Gegenstand aktueller For-

schung.
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A Anhang

A.1 Charakterisierungsdaten

Tabelle A.1: Goldgehalt cAu in Atomprozent (at.%), gemessene Dichte ρ und theoretische
Dichte ρtheo des defektfreien Materials gleicher chemischer Zusammensetzung
(jeweils in g/cm3). Zusätzlich sind der Elastizitätsmodul (E) und der Schermodul
(G) aus der Ultraschalllaufzeitmessung in GPa angegeben.

Bezeichner relaxiert cAu ρ ρtheo E G

A4r ja 13(1) 12.422(4) 13.001 104(1) 37(1)
B3r ja 16(1) 12.270(2) 13.225 99(2) 36(1)
C1r ja 14(1) 12.370(4) 13.028 107(4) 40(2)
C2r ja 13(1) 12.496(5) 12.971 116(6) 42(2)
D1r ja 14(1) 12.346(3) 13.022 101(4) 36(1)
D2r ja 12(2) 12.295(3) 12.866 105(3) 38(1)
E1r ja 15(3) 12.300(4) 13.132 108(4) 39(1)
F1r ja 16(1) 12.250(6) 13.278 101(2) 36(1)
F2r ja 17(1) 12.218(2) 13.283 99(3) 36(1)
G1 nein 15(1) 11.89(2) 13.140 88(1) 33(1)
G2 nein 14(1) 12.13(1) 13.069 84(4) 31(2)
H1r ja 13(1.5) 11.921(2) 12.956 98(3) 35(1)
H2 nein 15(3) 11.530(2) 13.153 84(3) 31(1)
J1 nein 12(1.2) 11.518(2) 12.923 84(4) 31(2)
J2 nein 11(1.1) 11.737(3) 12.784 97(3) 35(1)
K2 nein 13(1) 12.293(3) 12.983 103(2) 37(1)
M1 nein 13(1) 11.405(4) 13.002 83(4) 30(1)
M2 nein 12(1) 11.818(1) 12.896 91(2) 33(1)
M3 nein 11(1) 11.588(1) 12.802 91(2) 33(1)
N1 nein 13(1.2) 11.704(3) 12.970 86(2) 32(1)
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Tabelle A.2: Fortsetzung von Tabelle A.1.

Bezeichner relaxiert cAu ρ ρtheo E G

N2r ja 12(1) 12.122(1) 12.923 100(2) 36(1)
O1 nein 18(1) 11.877(4) 13.436 - -
P1r ja 16(3) 12.156(2) 13.227 98(4) 36(2)
Q2r ja 13(2) 12.356(3) 13.014 109(3) 39(1)
R1 nein 15(4) 12.022(3) 13.164 91(3) 33(1)
S1 nein 15(1) 11.589(1) 13.149 83(1) 30(1)
U1 nein 15(2) 11.950(2) 13.131 91(2) 33(1)
V2 nein 14(1) 11.817(4) 13.014 91(3) 33(1)
V3r ja 14(2) 12.071(4) 13.063 100(3) 36(1)
W2 nein 15(1) 12.043(3) 13.123 87(3) 32(1)
X1 nein 12(3) 11.860(2) 12.827 97(3) 35(1)
X2 nein 15(2) 12.120(4) 13.132 91(5) 33(2)
Y1 nein 15(1) 12.009(2) 13.336 94(2) 34(1)
Y2 nein 13(1) 11.781(3) 13.132 93(2) 34(1)
Y3 nein 12(1) 12.028(5) 13.063 94(2) 34(1)
Y4 nein 13(1) 11.879(4) 13.149 93(2) 34(1)
Z2r ja 14(1) 12.180(3) 13.207 100(1) 36(1)

Za1kr ja 13(2) 11.877(5) 12.991 97(1) 36(1)
Zb2kr ja 15(1) 12.277(3) 13.158 109(1) 39(1)
Zb3kr ja 15(2) 12.306(4) 13.178 105(1) 38(1)
Zb4kr ja 14(3) 12.312(2) 13.057 104(1) 38(1)
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A.1 Charakterisierungsdaten

Tabelle A.3: Geometrische Abmessungen (vgl. Abb. 4.1, S. 233).

Bezeichner sw [○] H [mm] B [mm] D [µm] b [µm] s [µm]

A4r-1 60 6.0 1.22 629 111 122
A4r-2 60 6.0 1.26 629 111 122
B3r-2 25 6.0 1.22 1038 149 130
C1r-1 60 6.0 1.21 712 125 106
C2r-1 45 6.0 1.27 721 122 107
C2r-2 45 6.0 1.22 721 122 107
D1r-1 45 6.0 1.26 735 120 110
D2r-2 45 6.0 1.26 1042 450 130
E1r-1 0 4.5 1.25 912 153 108
F1r-2 0 4.5 1.24 998 149 129
F2r-1 25 6.0 1.25 1027 142 135
F2r-2 25 6.0 1.23 1027 142 135
H1r-2 45 6.0 1.22 812 115 114
H1r-2 45 6.0 1.25 812 115 114
H2-1 60 6.0 1.21 695 123 107
H2-2 60 6.0 1.25 695 123 107
J1-1 0 4.5 1.24 947 149 131
J1-2 0 4.5 1.23 947 149 131
J2-2 45 6.0 1.21 713 118 112
K2-1 45 6.0 1.21 1049 151 132
M1-2 0 4.5 1.22 858 147 132
M2-1 60 6.0 1.26 1370 137 140
M2-2 60 6.0 0.91 1370 137 140
M3-1 45 6.0 1.21 1121 148 134
N1-2 45 6.0 1.25 1050 155 134
N2r-1 45 6.0 1.25 1436 148 132
N2r-2 45 6.0 1.23 1436 148 132
O1-2 25 6.0 1.22 811 119 112
P1r-1 0 4.5 1.24 1012 147 132
R1-1 0 4.5 1.24 862 149 131
R1-2 0 4.5 1.22 862 149 131
Q2r-1 45 6.0 1.26 1093 150 130
Q2r-2 45 6.0 1.21 1093 150 130
S1-1 60 6.0 1.25 1376 147 142
U1-1 0 4.5 1.23 939 149 131
U1-2 0 4.5 1.24 939 149 131
V2-1 45 6.0 1.21 751 119 110
V2-2 45 6.0 1.25 751 119 110
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Tabelle A.4: Fortsetzung von Tabelle A.3.

Bezeichner sw [○] H [mm] B [mm] D [µm] b [µm] s [µm]

V3r-1 0 4.5 1.22 1018 150 129
V3r-2 0 4.5 1.24 1018 150 129
W2-1 60 6.0 1.26 675 122 108
X1-1 45 6.0 1.26 758 120 109
X1-2 45 6.0 1.22 758 120 109
X2-1 25 6.0 1.26 706 118 112
X2-2 25 6.0 1.22 706 118 112
Y1-1 45 6.0 1.21 983 149 131
Y1-2 45 6.0 1.25 983 149 131
Y2-2 0 4.5 1.23 875 150 130
Y3-1 45 6.0 1.25 1098 149 131
Y3-2 45 6.0 1.21 1098 149 131
Y4-1 45 6.0 1.25 1039 145 130
Y4-1 45 6.0 1.22 1039 145 130
Z2r-1 60 6.0 1.25 1020 140 143
Z2r-2 60 6.0 1.25 1020 140 143

Za1kr-1 45 6.0 1.26 760 113 118
Za1kr-2 45 6.0 1.22 760 113 118
Za2kr 45 6.0 1.25 1574 142 141

Zb2kr-2 25 6.0 1.25 962 150 130
Zb3kr-1 45 6.0 1.23 1029 149 130
Zb3kr-2 45 6.0 1.26 1029 149 130
Zb4kr-1 0 4.5 1.25 940 150 129
Zb4kr-2 0 4.5 1.22 940 150 129
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A.1 Charakterisierungsdaten

Tabelle A.5: Parameter der Verformungsexperimente. Wenn die Proben Risse entwickeln,
aber beide Probenhälften bis zum Ende der Verformung verbunden bleiben,
wird das in der Spalte

”
Rissbildung“ mit (ja) markiert. Der Stegwinkel wird mit

sw abgekürzt.

Bezeichner relaxiert sw [○] Dehnrate [1/s] Rissbildung

A4r-1 ja 60 1 ⋅ 10−1 ja
A4r-2 ja 60 1 ⋅ 10−3 ja
B3r-2 ja 25 1 ⋅ 10−3 nein
C1r-1 ja 60 9 ⋅ 10−2 ja
C2r-1 ja 45 1 ⋅ 10−1 nein
C2r-2 ja 45 1 ⋅ 10−2 nein
D1r-1 ja 45 1 ⋅ 10−2 nein
D2r-2 ja 45 1 ⋅ 10−2 nein
E1r-1 ja 0 1.4 ⋅ 10−5 nein
F1r-1 ja 0 1 ⋅ 10−1 (ja)
F1r-2 ja 0 2 ⋅ 10−4 nein
F2r-1 ja 25 1 ⋅ 10−4 nein
F2r-2 ja 25 1 ⋅ 10−3 nein
H1r-2 ja 45 1 ⋅ 10−2 (ja)
H1r-2 ja 45 1 ⋅ 10−1 (ja)
H2-1 nein 60 1 ⋅ 10−3 ja
H2-2 nein 60 9.2 ⋅ 10−2 ja
J1-1 nein 0 1.6 ⋅ 10−4 (ja)
J1-2 nein 0 1 ⋅ 10−2 (ja)
J2-2 nein 45 1 ⋅ 10−1 nein
K2-1 nein 45 1.5 ⋅ 10−5 nein
M1-2 nein 0 1 ⋅ 10−1 (ja)
M2-1 nein 60 1 ⋅ 10−3 (ja)
M2-2 nein 60 7 ⋅ 10−2 ja
M3-1 nein 25 1 ⋅ 10−2 nein
N1-1 nein 45 1.2 ⋅ 10−4 nein
N1-2 nein 45 2 ⋅ 10−4 (ja)
N2r-1 ja 45 1 ⋅ 10−3 (ja)
N2r-2 ja 45 1 ⋅ 10−1 (ja)
O1-2 nein 25 1 ⋅ 10−3 nein
P1r-1 ja 0 1 ⋅ 10−2 nein
R1-1 nein 0 1 ⋅ 10−1 nein
R1-2 nein 0 1 ⋅ 10−3 nein
Q2r-1 ja 45 2 ⋅ 10−5 nein
Q2r-2 ja 45 1 ⋅ 10−3 nein
S1-1 nein 60 1 ⋅ 10−3 ja
U1-1 nein 0 1 ⋅ 10−3 nein
U1-2 nein 0 1 ⋅ 10−2 ja
V2-1 nein 45 1 ⋅ 10−2 nein
V2-2 nein 45 1 ⋅ 10−1 nein
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Tabelle A.6: Fortsetzung von Tabelle A.5.

Bezeichner relaxiert sw [○] Dehnrate [1/s] Rissbildung

V3r-1 ja 0 1 ⋅ 10−3 nein
V3r-2 ja 0 1 ⋅ 10−2 nein
W2-1 nein 60 1.5 ⋅ 10−5 ja
X1-1 nein 45 1 ⋅ 10−2 nein
X1-2 nein 45 1 ⋅ 10−3 nein
X2-1 nein 25 1 ⋅ 10−3 nein
X2-2 nein 25 1 ⋅ 10−1 nein
Y1-1 nein 45 1.5 ⋅ 10−4 nein
Y1-2 nein 45 1 ⋅ 10−1 nein
Y2-2 nein 0 1 ⋅ 10−4 nein
Y3-1 nein 45 1 ⋅ 10−3 nein
Y3-2 nein 45 1 ⋅ 10−3 nein
Y4-1 nein 45 1 ⋅ 10−3 nein
Y4-1 nein 45 1 ⋅ 10−3 nein
Z2r-1 ja 60 1.2 ⋅ 10−5 ja
Z2r-2 ja 60 1 ⋅ 10−3 ja

Za1kr-1 ja 45 1 ⋅ 10−1 ja
Za1kr-2 ja 45 1 ⋅ 10−3 ja
Za2kr-1 ja 45 2 ⋅ 10−4 nein
Zb2kr-2 ja 25 1 ⋅ 10−1 nein
Zb3kr-1 ja 45 1 ⋅ 10−4 nein
Zb3kr-2 ja 45 1 ⋅ 10−3 nein
Zb4kr-1 ja 0 1 ⋅ 10−3 nein
Zb4kr-2 ja 0 1 ⋅ 10−4 nein
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A.2 Mittlere Elastizitätstensoren

A.2 Mittlere Elastizitätstensoren

Hier sind die mittleren Elastizitätstensoren für Palladium
¯̄̄̄
Chkl = ⟨

¯̄̄̄
C(χhkl)⟩χhkl in Voigt-

Notation angegeben, die über alle Rotationen χ ∈ [0 ○,360 ○) um die hkl-Achse gemittelt

wurden. In der Rechnung wurden die elastischen Konstanten von Pd aus [46] genutzt (c11 =

226 GPa, c12 = 175 GPa und c44 = 71.4 GPa). Die Richtung entlang des ersten Basisvektors

(Indizes 11 bzw. xx) entspricht bei
¯̄̄̄
Chkl immer hkl in der gezeigten Darstellung. In den

Rechnungen zu den untersuchten Proben wurde der Goldgehalt in den elastischen Konstanten

vor der Mittlung der Elastizitätstensoren berücksichtigt (siehe [277]).

¯̄̄̄
C111 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

287.2 144.4 144.4 0 0 0

144.4 287.2 165.4 0 0 0

144.4 165.4 287.2 0 0 0

0 0 0 50.4 0 0

0 0 0 0 36.6 0

0 0 0 0 0 36.6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Angaben in GPa (A.1)

¯̄̄̄
C200 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

226.0 175.0 175.0 0 0 0

175.0 243.5 157.5 0 0 0

175.0 157.5 243.5 0 0 0

0 0 0 43.0 0 0

0 0 0 0 71.4 0

0 0 0 0 0 71.4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Angaben in GPa (A.2)

¯̄̄̄
C220 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

264.8 155.6 155.6 0 0 0

155.6 258.6 161.8 0 0 0

155.6 161.8 258.6 0 0 0

0 0 0 48.4 0 0

0 0 0 0 43.0 0

0 0 0 0 0 43.0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Angaben in GPa (A.3)

¯̄̄̄
C311 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

247.8 164.1 164.1 0 0 0

164.1 258.6 159.6 0 0 0

164.1 159.6 258.6 0 0 0

0 0 0 46.3 0 0

0 0 0 0 51.3 0

0 0 0 0 0 51.3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Angaben in GPa (A.4)
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A.3 Programme zur Visualisierung der Daten

Viele der Daten und der daraus abgeleiteten Größen können aus Platzgründen in dieser Ar-

beit nur auszugsweise dargestellt werden. Zudem ist eine adäquate Darstellung der Dynamik

der Daten in vielen Fällen in gedruckter Form nicht möglich. Um dem Leser diese Aspek-

te dennoch zugänglich zu machen, sind auf dem beigefügten Datenträger fünf Programme

enthalten, die für die neun im Ergebnisteil diskutierten Proben einen großen Teil der Daten

vollständig visualisieren können (siehe Ordner /Datenvisualisierung). Die in den Programmen

visualisierten Größen sind Tabelle A.7 gelistet.

Technische Hinweise: Bei der Installation der Programme unter Windows kommt es i.d.R. bei

der ersten Ausführung zu einer Warnung (
”
Der Computer wurde durch Windows geschützt

...). Die Ursache dafür ist die fehlende Signatur der Programme, die Programme an sich

können aber bedenkenlos ausgeführt und installiert werden. Dazu muss man in der Warn-

meldung auf
”
Weitere Informationen“ und dann auf die Schaltfläche

”
Trotzdem ausführen“

klicken.

Die Programme sind allein lauffähige Matlab-Programme. Bei der Installation wird die für

die Ausführung notwendige, frei verfügbare Matlab-Runtime (MATLAB Runtime for R2020a)

automatisch aus dem Internet installiert. Alternativ kann diese Runtime auch manuell her-

unterladen und installiert werden; die Programme aus dem
”
Linux und Mac“ Unterordner

sind dann ohne Installation lauffähig (auch Linux, OS X).

Tabelle A.7: Programme zur Visualisierung verschiedener Größen.
Ordner: ./Datenvisualisierung.

Name dargestellte Größen

WPPM-Fit Viewer Rohdaten Diffraktogramme, WPPM-Fits, Abweichung. Zur Orien-
tierung: Spannungs-Dehnungs-Kurve in y-Richtung, Spannungen in
der x-y-Ebene. Die Datendichte ist gegenüber den Ausgangsdaten
um mehr als die Hälfte reduziert. Auf die Darstellung hat das na-
hezu keine sichtbaren Auswirkungen.

Tensor Viewer Spannungs- und Dehnungstensoren, Spannungs-Dehnungs-Kurve

Intensity Viewer Intensität (∆I ′′) sowie Texturstärke von Übergangs- und Endtex-
tur. Zur Orientierung: Spannungs-Dehnungs-Kurve in y-Richtung.

Size Viewer Korngröße ⟨D⟩vol, Verteilungsbreite σ′ und logarithmische Nor-
malverteilungen in Blickrichtung. Zur Orientierung: Spannungs-
Dehnungs-Kurve in y-Richtung.

DiStaTwi Viewer Stereologische Projektionen der Versetzungsdichte ρ, Stapelfehler-
dichte α und Zwillingsdichte β. Zusätzlich kann die TDS-Intensität
mit eingeblendet werden. Zur Orientierung: Spannungs-Dehnungs-
Kurve in y-Richtung.
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A.4 Programme zur Datenauswertung

Hier erfolgt ein Überblick über die Programme (siehe beigefügter Datenträger), welche im

Rahmen dieser Arbeit entstanden und bei der Datenauswertung verwendet wurden. Die Auf-

listung beschränkt sich hier auf die relevantesten Programme – Hilfsprogramme oder solche,

die der Visualisierung dienen, werden hier nicht beschrieben. Die meisten Programme wur-

den bis kurz vor Entstehung dieser Arbeit noch aktiv entwickelt oder modifiziert weshalb eine

ausführliche Kommentierung der Quelltexte in vielen Fällen fehlt.

A.4.1 Sonstige Programme

Tabelle A.8: Programme zur Experimentsteuerung. Ordner: ./Quelltexte/Steuerungssoftware

Name Funktion Abhängigkeiten

SCS Control Zentrale Steuerung der Experimente
(siehe S. 151)

alle anderen VI im Ord-
ner Steuerungssoftware

Tabelle A.9: Programme zur Charakterisierung der Proben vor der Durchführung der ESRF-
Experimente (siehe S. 136). Ordner: ./Quelltexte/Charakterisierung.

Name Funktion Abhängigkeiten

Density-
Measurement

Berechnung der Probendichte Dichtemessung

PulseEcho Berechnung der elastischen Kon-
stanten aus Ultraschallmessungen

Probendicke, Laufzeit-
messungen, Dichte

UltimateXray Berechnung von Korngröße
(Williamson-Hall) und Gitter-
kostante (Nelson-Riley)

Röntgendiffraktogramm
(Labordiffraktometer)

Tabelle A.10: Programme zur Umwandlung der ESRF-Daten in Matlab-Daten (siehe S. 167).
Ordner: ./Quelltexte/Bubble Companion.

Name Funktion Abhängigkeiten

bubble companion Umwandlung der ESRF-Daten Bubble [253], di-
verse detektor- und
messungsspezifische
Kalibrierdaten (siehe
Ordner).
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A.4.2 Programme zur Auswertung der Verschiebungsfelder

Tabelle A.11: Programme zur Auswertung der Verschiebungsfelder.
Ordner: ./Quelltexte/ Vektorfelder Optisch.

Name Funktion Abhängigkeiten

Vec wrapper Einlesen der Vektorfelder und deren
komplette Analyse

Spannungs- und
Dehnungstensoren
(Röntgen), WPPM-
Ergebnisse, VectorMas-
ter, Macroanalyse neo

VectorMaster Einlesen der Vektorfelder, Korrek-
turen (S. 157) und Korrelation mit
Kraftdaten

Vektorfelder
(DaVis), Kraftdaten,
vecfield wrapper

vecfield wrapper Einlesen der Vektorfelder und Kor-
rekturen (S. 157)

Vektorfelder (DaVis),
vecfield deconstructor,
Xcorrection,
side pseudoelast,
vec2strain neo

vecfield-
deconstructor

Zerlegung der Vektorfelder (siehe
(S. 161)

Vektorfelder

Xcorrection Korrektur der Vektorfelder Zerlegung aus
vecfield deconstructor

side pseudoelast Extrapolation des seitlichen Ver-
schiebungsfeldes zum Steg (siehe
(S. 162)

korrigierte Vektorfelder

vec2strain neo Extraktion des Verschiebungsgradi-
enten im Stegzentrum

korrigierte Vektorfelder
und Extrapolation zum
Steg

Macroanalyse neo Berechnung von Dehnungen, Span-
nungen und Volumenänderung

Spannungs- und
Dehnungstensoren
(Röntgen), Ergebnisse
aus VectorMaster
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A.4.3 Programme zur Auswertung der Röntgendaten

Tabelle A.12: Programme zur Durchführung der WPPM (siehe S. 169ff).
Ordner: ./Quelltext/WPPM und Analyse/WPPM.

Name Funktion Abhängigkeiten

WPPM ManagerSi Durchführung der automatisierten
Anpassung eines Datensatzes (Ex-
periment)

Rohdaten, WPPM-
minimize skewAbet,
data compressor A/B

WPPMminimize-
skewAbet

Anpassung eines einzelnen Diffrak-
togramms und teilweise Berechnung
des Vorfaktors

WholePattern fft allin,
Vorberechnete Modelle,
Rohdaten Diffrakto-
gramm

WholePattern-
fft allin

Berechnung eines Diffraktogramms
mittels WPPM

Vorberechnete Modelle,
Parameter aus WPPM-
minimize skewAbet

data comp-
ressor A/B

Komprimieren der Rohdaten Rohdaten

Tabelle A.13: Programme zur weiteren Analyse.
Ordner: ./Quelltext/WPPM und Analyse/Tensor Rekonstruktion
bzw. /Texturfit bzw. /Analyse komplexe Groessen.

Name Funktion Abhängigkeiten

tensor wrapper neo Extraktion der Spannungs- und
Dehnungstensoren aus den Ergeb-
nissen der WPPM (S. 219)

Ergebnisse aus der
WPPM-Anpassung,
Multiplizitäten mittlere
elastische Konstanten

elasticity wrapper Berechnung der mittleren elasti-
schen Konstanten

Goldkonzentration

Texture fit 3 Bestimmung der Texturkom-
ponenten anhand der Inten-
sitätsverteilung (S. 276ff)

Intensitäten, Winkel-
beziehungen,
texture builder 3

texture builder 3 Berechnung der Intensitätsvertei-
lung aus den Texturkomponenten

Texturkomponenten,
Winkelbeziehungen

397



A Anhang

Tabelle A.14: Programme zur weiteren Analyse (S. 227).
Ordner: ./Quelltext/WPPM und Analyse/Analys komplexe Groessen.

Name Funktion Abhängigkeiten

richtungs-
rekonstruktion3d

Analyse von Versetzungsdichte,
Stapelfehler- und Zwillingswahr-
scheinlichkeit (S. 227)

Ergebnisse WPPM,
Winkelbeziehungen,
Gewichtungen, Verset-
zungskontrastfaktor

VersetzungsStat Erzeugung der Histogramme zur
Versetzungsdichte (S. 336)

Ergebnis richtungs-
rekonstruktion3d

versetzungen-
vorrechnung

Berechnung der Gewichtung für die
Vesetzungen

Versetzungskontrast-
faktoren

stapelre-
konstruktion-
vorberechnung

Berechnung der Gewichtung für die
Stapelfehler und Zwillinge

Winkelbeziehungen
(S. 95)

Tabelle A.15: Programme zur Entwicklung von Modellen in der WPPM (S. 179ff).
Ordner: ./Quelltext/WPPM und Analyse/Vorberechnung Modelle WPPM-
/Fehlpassung.

Name Funktion Abhängigkeiten

stress on grain-
wrapper shape-

change damping

Berechnung der Histogramme
zur Dehnung entlang hkl für
Gauß-verteilte 3d Spannungs-
schwankungen

Kroener RTU aligned,
stress on grain-
statistics shapechange-
200damper

Mstrain-
model builder

Erstellen des Fehlpassungsmodells
für die WPPM aus den Dehnungs-
histogrammen

Dehnungshistogramme
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Tabelle A.16: Programme zur Entwicklung von Modellen in der WPPM (S. 187ff).
Ordner: ./Quelltext/WPPM und Analyse/Vorberechnung Modelle WPPM-
/KG Verzerrung.

Name Funktion Abhängigkeiten

Spherestrain-
columns

Berechnung der Mikroverzerrung
durch die Korngrenzen für eine
Konrgrößenverteilung

Vorberechnungen an-
hand normierter Kugeln

brute force sphere-
quick

Vorberechnungen zur Mikroverzer-
rung anhand normierter Kugeln

Verzerrung in normier-
ten Kugeln

brute force sphere-
precalc

Verzerrung in normierten Kugeln –

CL get coeff Erstellen des Modells für die
WPPM

Ergebnisse aus Spheres-
train columns

Tabelle A.17: Programme zur Entwicklung von Modellen in der WPPM (S. 199ff).
Ordner: ./Quelltext/WPPM und Analyse/Vorberechnung Modelle WPPM-
/TDS Berechnung.

Name Funktion Abhängigkeiten

TDS1 gridsphere Berechnung der thermodiffusen
Streuung 1. Ordnung

interatomare
Kraftkonstanten,
build dynamic matrix

build dynamic-
matrix

Berechnung von Schwingungsfre-
quenz und Moden eines Phononen-
vektors

interatomare Kraftkon-
stanten, Phononenvek-
tor

TDS2 Berechnung der thermodiffusen
Streuung 2. Ordnung

interatomare
Kraftkonstanten,
build dynamic matrix,
B zone scanray

B zone scanray Rasterung der Überlappung von
echter und virtueller 1. BZ

–

build TDS model Erstellen des Modells für die
WPPM

Ergebnisse zur TDS 1.
und 2. Ordnung
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kimäki und R. Birringer. Anatomizing deformation mechanisms in nanocrystalline

Pd90Au10. Mechanics of Materials (2017). 114: 254–267. ISSN 0167-6636. doi:

10.1016/J.MECHMAT.2017.08.010.

[29] M. Ames. Miniaturisierung der shear compression specimen (SCS) und ihre Anwen-

dung auf nanokristalline Metalle und Legierungen. Dissertation, Universität des Saar-

landes (2012).

[30] C. Braun. Plastizität von PdAu-Legierungen am unteren Ende der Nanoskala: ein
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auch, M. J. Deckarm, C. Gachot, H. Natter, M. Hannig, F. Müller und

K. Jacobs. Synthesis of Hydroxyapatite Substrates: Bridging the Gap between Model

Surfaces and Enamel. ACS Applied Materials and Interfaces (2016). 8(39). ISSN

19448252. doi: 10.1021/acsami.6b10089.

425



Publikationsübersicht
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