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Kurzzusammenfassung

Ziel dieser Arbeit war die Untersuchung des Verformungsverhaltens von nanokristallinem
PdgpAuyp in Abhéingigkeit von Dehnrate, Spannungszustand und Relaxationszustand, sowie
die Identifikation dabei aktiver Plastizitdtsmechanismen. Dazu wurden Verformungsexperi-
mente an entsprechend priparierten Shear-Compression-Specimens (SCS) bei verschiedenen
Dehnraten durchgefiihrt, wobei die Verformung mittels optischer Dehnungsmessung erfasst
wurde. Simultan dazu wurde die Mikrostruktur mittels Transmissionsrontgenbeugung un-
tersucht. Die Analyse der Rontgendaten erfolgte mittels Whole Powder Pattern Modeling,
wodurch eine detaillierte und richtungsabhéngige Analyse der Mikrostruktur iiber die gesamte
Verformung hinweg ermoglicht wurde. Zusammen mit den makroskopischen Kraft- und Deh-
nungsdaten ergibt sich damit eine umfassende sowie durchgingig konsistente Beschreibung
des Verformungsverhaltens nanokristalliner PdggAuyg SCS.

In der kristallinen Phase konnten Versetzungsgleiten, Coupling und Kornrotation als aktive
und miteinander wechselwirkende Mechanismen gezeigt werden. Zusétzlich sind in den Korn-
grenzen weitere Plastizitdtsmechanismen aktiv, die in Scherprozesse und volumenabbauende
Relaxationsprozesse unterschieden werde konnen. Das gesamte Verformungsverhalten ist das
Resultat des Zusammenwirkens und Konkurrierens aller Einzelmechanismen, welches maf-
geblich durch Relaxation, Dehnrate, Spannungszustand und Verformungshistorie beeinflusst

wird.

Abstract

The objective of this work was to investigate the deformation behaviour of nanocrystalline
PdggAuyg as a function of strain-rate, stress-state and relaxation-state, and to identify active
plasticity mechanisms. Deformation experiments were carried out on accordingly prepared
shear-compression-specimens (SCS) at different strain-rates, with the deformation being re-
corded by optical strain measurement. Simultaneously the microstructure was investigated
by transmission X-ray diffraction. The analysis of the X-ray data was performed by Whole
Powder Pattern Modeling, which allowed a detailed and directional analysis of the microstruc-
ture throughout the entire deformation. Together with the macroscopic force and strain data,
this results in a comprehensive and consistent description of the deformation behaviour of
nanocrystalline PdggAuyg SCS.

In the crystalline phase, dislocation slip, coupling and grain rotation were shown to be active
and interacting mechanisms. In addition, further plasticity mechanisms are active in the grain
boundaries, which can be distinguished into shear processes and volume-reducing relaxation
processes. The overall deformation behaviour is generated by the interaction and competition
of individual mechanisms, which are significantly influenced by relaxation, strain-rate, stress-

state and deformation history.
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1 Einleitung und Zielsetzung der Arbeit

Metallische Werkstoffe sind aufgrund ihrer Eigenschaften von herausragender technologischer
Bedeutung. In mechanischen und konstruktiven Anwendungen sind vor allem ihre hohe Festig-
keit, Zahigkeit und gute Formbarkeit relevant, die durch gezielte chemische und mikrostruktu-
relle Beeinflussungen an die jeweilige Anwendung angepasst werden kénnen. Ein Beispiel fiir
die chemische Anpassung ist die groffindustrielle Entwicklung und Optimierung spezialisierter
Stahlsorten. Die Mikrostruktur kann durch plastische Verformung (z.B. Schmieden, Walzen,
Kugelmahlen, shot peening), thermische Behandlung (z.B. Glithen, Abschrecken) oder Be-
strahlung gesindert werden, wodurch zum Teil drastische Anderungen im Materialverhalten

erzielt werden.

Fiir die gezielte Herstellung metallischer Werkstoffe mit optimalen Eigenschaften sind die
wissenschaftliche Untersuchung der Eigenschaften von Metallen sowie der Prozesse, die fiir
ihre Verformung und ihr Versagen verantwortlich sind, grundlegend. Untersuchungen zu die-
sen Themen wurden bereits im 19. Jahrhundert in groBem Umfang durchgefiihrt (siehe z.B.
[1, 2]), doch erst Anfang des 20. Jahrhunderts wurden durch neue Analyseverfahren, wel-
che Messungen auf atomarer Ebene erlaubten, entscheidende Durchbriiche erzielt. Beson-
ders hervorzuheben sind hier die Entdeckung der Réntgenstrahlen und der damit moglichen
Rontgenbeugung, sowie die Entwicklung des Transmissionselektronenmikroskopes. Stark ver-
einfacht kann das Ergebnis dieser Bemiihungen dadurch zusammengefasst werden, dass Me-
talle einen kristallinen Aufbau aufweisen und ihre Plastizitdt, je nach Materialzustand und
Prozessbedingung, durch die Verschiebung nulldimensionaler (z.B. Fremdatome, Leerstellen)
oder eindimensionaler (Versetzungen) Gitterdefekte bewerkstelligt wird. Die Plastizitét und

der kristalline Aufbau metallischer Werkstoffe sind also eng miteinander verbunden.

In den 1970ern wurde mit dem Schmelzschleudern ein Verfahren entwickelt, bei dem durch
rasches Abkiihlen geeigneter Legierungen eine Erstarrung im amorphen Zustand erreicht wer-
den konnte. Die so hergestellten, amorphen metallischen Festkorper werden aufgrund ihrer
fehlenden atomaren Fernordnung als metallische Gléser bezeichnet und zeichnen sich durch
hohere Hérte, Festigkeit und bessere Korrosionsbesténdigkeit als die herkémmlichen kristalli-
nen Metalle aus. Ihre plastische Verformbarkeit ist im Vergleich zu letzteren in der Regel zwar
stark eingeschriankt, aber dennoch grundsitzlich vorhanden. Dieser Befund konnte, aufgrund
der fehlenden kristallinen Struktur, nicht mit den konventionellen Plastizititsmechanismen
erklart werden, wodurch die Entwicklung des Konzepts der Schertransformationen [3] moti-

viert wurde. Dieses beschreibt die plastische Verformung durch das lokale Abgleiten kleiner
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Gruppen von Atomen relativ zueinander und stellt damit den grundlegenden Verformungsme-
chanismus in amorphen Materialien dar. Die Unterschiede in den Eigenschaften kristalliner
und amorpher Metalle sind also eine Konsequenz aus den Unterschieden in Mikrostruktur
und den daraus resultierenden Unterschieden in den Plastizitdtsmechanismen.

Die Liicke zwischen metallischen Glidsern und konventionellen kristallinen Materialien wurde
in den 1980ern geschlossen, indem mit der Edelgaskondensation ein Verfahren zur Herstellung
nanokristalliner Metalle entwickelt wurde [4]. Die damit herstellbaren Materialien zeichnen
sich in der Regel durch sehr kleine kristalline Bereiche (Kérner) mit Durchmessern um 10 nmEI
aus, die von ihren unterschiedlich orientierten Nachbarkornern durch Grenzflachen (Korngren-
zen) voneinander getrennt sind. Die Atome in diesen Grenzflichen sind im Allgemeinen nicht
Teil der kristallinen Ordnung und &hneln insofern dem amorphen Zustand. Durch die ge-
ringe Korngrofe liegt der Volumenanteil dieser Korngrenzen iiber 10 % des Gesamtvolumens
und damit um mehrere Gréflenordnung iiber dem in konventionellen Metallen. Eine kontinu-
ierliche Verkleinerung der KorngriBe sollte demzufolge einen hypothetischen Ubergang vom
kristallinen in den amorphen Zustand darstellen.

Diese nanokristallinen Metalle zeichnen sich durch eine Reihe bemerkenswerter Eigenschaften
aus, wie z.B. hohe Festigkeit [0, [6], hohe Hérte [7, §], hohe VerschleiBfestigkeit [9], aber
auch erhohte Temperatur- und Dehnratenabhéngigkeit [10, [11], sowie stark unterschiedliches
Verformungsverhalten unter Zug- und Druckbelastung [5]. Umfassende Sammlungen dieser
und weiterer Eigenschaften wurden in der Vergangenheit in einer Reihe von Ubersichtsartikeln
zusammengefasst [12, [13] 14] [15] 16, [17].

Dabei ist ein zentraler Befund, dass die Verformungseigenschaften nanokristalliner Metalle
weder denen von amorphen, noch denen von konventionellen Metallen entsprechen. Eine
Extrapolation der konventionellen Eigenschaften in den nanokristallinen Bereich fithrt in
den meisten Fillen zu falschen Vorhersagen, von denen der Zusammenbruch der Hall-Petch-
Beziehung [18] 19] vermutlich das bekannteste Beispiel ist.

Die Tatsache, dass plastische Verformungen nanokristalliner Proben unter Druck dennoch bis
zu hohen Dehnungen moglich sind, stellt somit automatisch die Frage nach dem dafiir ver-
antwortlichen Mechanismus bzw. des Zusammenwirkens von unterschiedlichen Mechanismen.
Bei der Suche nach Antworten auf diese Frage geht man gemeinhin von zwei prinzipiellen
Ursachen fiir das verédnderte plastische Verhalten aus. Einerseits kann der grofie Anteil von
Korngrenzen als Hindernis fiir interkristalline Plastizitdt wirken, andererseits kann intrakris-
talline Plastizitéit aufgrund der geringen rdumlichen Ausdehnung der Korner gehemmt wer-
den. Zusétzlich konnen die Korngrenzen selbst als Triger plastischer Verformung fungieren
und somit zur plastischen Dehnung des Gesamtmaterials beitragen.

Vor diesem Hintergrund wurde bislang eine Vielzahl von Plastizitdtsmechanismen theoretisch

hergeleitet, in Simulationen demonstriert und in Experimenten beobachtet. Ohne Anspruch

'Heute werden in der Regel Materialien mit mittleren Korndurchmessern < 100 nm als nanokristallin bezeich-
net. Gegenstand dieser Arbeit ist aber nur der untere Korngrélenbereich um 10 nm.



auf Vollstdndigkeit wurden in der Literatur als intrakristalline Mechanismen das Nabarro-
Herring-Kriechen und Gleiten von vollstdndigen sowie partiellen Versetzungen, einschlief3-
lich ihrer Emission und Absorption an Korngrenzen, vorgeschlagen. Fiir die Plastizitit in
und durch Korngrenzen werden Coble Kriechen, Korngrenzengleiten, Schertransformationen
in Korngrenzen, spannungsgetriebene Korngrenzenmigration (Coupling), sowie Kornrotation
diskutiert. Ein detaillierter Uberblick zu diesen Themen findet sich in den zuvor genannten
Ubersichtsartikeln. Ein einzelner dominanter Mechanismus konnte bisher nicht identifiziert
werden und die bisherige Datenlage legt zunehmend den Schluss nahe, dass das Verformungs-
verhalten im nanokristallinen Zustand Ausdruck eines komplexen Zusammenspiels mehrerer
der genannten Mechanismen ist. Dariiber hinaus beno6tigen einige der Mechanismen prinzipiell
bereits mindestens einen zusétzlichen Akkomodationsmechanismus um mehr als inkrementel-
le Dehnungsbeitrige erzeugen zu koénnen. Zudem mehren sich die Hinweise darauf, dass das
Verformungsverhalten nanokristalliner Metalle in besonderem Mafle durch Prozessparame-
ter wie Dehnrate, Spannungs- und Dehnungszustand, Verformungshistorie oder Umgebungs-
temperatur beeinflusst wird. Die Untersuchung dieser Mechanismen stellt dadurch und durch
die grofle Anzahl moglicher, gleichzeitig ablaufender Prozesse eine anspruchsvolle experimen-

telle Herausforderung dar.

Ein vielversprechender Ansatz zur Klarung dieser Fragen stellen in-situ Rontgenbeugungsex-
perimente dar, bei denen zeitgleich Daten zur makroskopischen Verformung (z.B. Dehnung,
Kraft, usw.) und Streubilder aus der Rontgenbeugung aufgenommen werden, wodurch ma-
kroskopische und atomare Informationen direkt miteinander korreliert werden koénnen. In
der Vergangenheit wurden von verschiedenen Gruppen mit grofem Aufwand wegweisende
Experimente in dieser Richtung unternommen [20, 2], 22, 23], 24, 25| 20, 27, 28], die um-
fangreiche Erkenntnisse zu dem Thema geliefert haben. Dabei zeigten sich auch Verbesse-
rungsmoglichkeiten in den experimentellen Aufbauten und insbesondere bei der Auswertung
der Daten, die sich als grofle Herausforderung herausgestellt hat. Insbesondere wihrend der

Verformung sind konventionelle Analysemethoden nur noch begrenzt anwendbar.

Auf dieser Grundlage ist die vorliegende Dissertation im Rahmen eines Nachfolgeprojekts zu
[29, 25], B0] entstanden, wo das Verformungsverhalten der in [29] entwickelten miniaturisier-
ten Shear-Compression-Specimens (SCS) aus nanokristallinen Palladium-Gold-Legierungen
(PdAu) in einer Reihe von in-situ Verformungsexperimenten an der Beamline ID11 der Eu-
ropean Synchrotron Radiation Facility (ESRF) verformt wurden. Der grundlegende Aufbau
dieser Experimente lehnt sich an die Aufbauten aus [25] an. Wéhrend des Experimentes wurde
der sich plastisch verformende Bereich der Proben mit einem Rontgenstrahl durchleuchtet und
das dabei entstehende Streubild auf einem zweidimensionalen Detektor aufgezeichnet. Gleich-
zeitig wurde der Verformungsprozess makroskopisch durch ein Kamerasystem erfasst und die
auf die Probe wirkende Kraft mittels Kraftmessdose aufgezeichnet. Aufgrund der Ergebnisse
aus [30] wurden zusétzlich SCS mit unterschiedlichen Stegwinkeln untersucht, um den Ein-

fluss verschiedener Spannungszustinde auf das Verformungsverhalten zu beleuchten. Dariiber
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hinaus wurden neben den wie-hergestellten Proben auch wéirmebehandelte (relaxierte) Pro-
ben in die Studie mit einbezogen. Eine friihere eigene Arbeit [3I] und die Untersuchungen
anderer Gruppen [7] legten eine relevante Beeinflussung des plastischen Materialverhaltens
durch die Relaxation nahe, die auflerdem in spéiteren Arbeiten [8] [32] detaillierter untersucht
und verifiziert werden konnte.

Die vorliegende Arbeit behandelt in kompakter Form Konzeption und Umsetzung des ex-
perimentellen Aufbaus und der Experimente, insbesondere im Hinblick auf die Neuerun-
gen im Vergleich zu den vorangegangenen Arbeiten. Der zentrale Gegenstand dieser Dis-
sertation ist die anschlieBende Aufbereitung und Analyse der Daten. Dazu zdhlt die Ver-
arbeitung der Kamerabilder, aus denen makroskopische Rotations- und Dehnungsinforma-
tionen des vom Rontgenstrahl durchstrahlten Volumens extrahiert wurden. Der weitaus
groflere Teil befasst sich mit der Auswertung der Daten aus der Réntgenstreuung. Wie zu-
vor erwahnt, gestaltet sich die Anwendung konventioneller Analyseverfahren schwierig und
eine zielfiihrende Anpassung derselben stellte sich im Rahmen dieser Arbeit als unmdoglich
heraus. Die Ursache dafiir ist, dass die komplexe Struktur des nanokristallinen Materials
und die Uberlagerung verschiedener Gitterverzerrungen durch Defekte, Belastungszustand
und aktive Plastizitdtsmechanismen zu stark von den Voraussetzungen fiir die Anwendbar-
keit herkémmlicher Analysemethoden abweicht. Dariiber hinaus ist die Informationsdichte im
Streubild in diesem Fall so hoch, dass die starke Datenreduktion zu Beginn herkémmlicher
MethodenE] eine quantitative Auswertung vor grofle Herausforderungen stellt.

Daher wurde in dieser Dissertation auf Grundlage der Arbeit von Scardi et al. (z.B. [33])
eine angepasste Implementierung des Whole Powder Pattern Modeling (WPPM) realisiert.
Bei diesem Verfahren wird auf Grundlage physikalischer Modelle das Streubild der unter-
suchten Probe theoretisch berechnet und durch Parametervariation an die gemessenen Daten
angepasst. Die Parameter, die die groBte Ubereinstimmung zwischen Modell und Messung
erzeugen, liefern dann die beste Beschreibung der modellspezifischen physikalischen Eigen-
schaften und Zusténde der Probe und bilden die Grundlage fiir die weitere Analyse. Die
Anpassung der WPPM-Methode wurde hier aus zwei Griinden motiviert. Zum einen musste
der WPPM-Algorithmus aufgrund der immensen Datenmenge automatisiert und schnell auf
die Streubilder angewandt werden koénnen, insbesondere weil davor und danach zusétzliche
Verarbeitungsschritte notwendig sind. Zum anderen erzwingen die komplexe Mikrostruktur
und Belastungszustdnde der Proben eine Erweiterung und Ergénzung der in der WPPM ent-
haltenen physikalischen Modelle. Bereits bestehende Implementierungen sind nach jetzigem
Kenntnisstand nicht zur Anpassung der vorliegenden Daten geeignet, besitzen dafiir aber in
anderen Bereichen fortgeschrittenere Modelle, z.B. zur Modellierung von Stapelfehlern.

Mit Hilfe der WPPM und der optischen Dehnungsmessung konnten in dieser Arbeit Spannungs-
und Dehnungszustinde der SCS wahrend der Verformung detailliert analysiert werden, sowie

Signaturen von diversen Plastizitdtsmechanismen nachgewiesen werden. Dabei zeigten sich

27 B. die Betrachtung der Halbwertsbreite der Bragg-Peaks.



komplexe Abhéngigkeiten und Zusammenspiele zwischen den verschiedenen Mechanismen,
welche durch Dehnrate, Spannungszustand (Stegwinkel) und Probenzustand (wie-hergestellt
bzw. relaxiert) systematisch beeinflusst werden.

Vor dem Hintergrund der komplexen Auswertungsprozedur miissen auch die recht umfang-
reich erscheinenden Theorie- und Methodikkapitel betrachtet werden. Fiir die Nachvollzieh-
barkeit — und damit Uberpriifbarkeit — der WPPM Implementierung ist die Kenntnis weiter
Teile der klassischen Streutheorie, einschliefllich Grundziigen der Krivoglaz-Wilkens-Theorie
zum Streuverhalten in Anwesenheit von Versetzungen, der Theorie zum Einfluss von Sta-
pelfehlern und Zwillingsgrenzen, sowie der Auswirkung von Verzerrungen und homogenen
Dehnungen notwendig. Letzteres erscheint vergleichsweise trivial, bedingt aber zwangswei-
se eine Auseinandersetzung mit dem Tensorformalismus der Elastizitdt und den Methoden
zur Mittelung elastischer Eigenschaften von Polykristallen. Zusétzlich ist in der WPPM fiir
die Anpassung der Daten unbedingt die Beriicksichtigung der thermodiffusen Streuung not-
wendig, zu deren Bestimmung Grundlagen zur klassischen Phononentheorie genutzt werden.
Schliefllich beinhaltet die WPPM an zentraler Stelle eine Fourier-Transformation zwischen
Real- und Impulsraum, welche im Zusammenhang mit dem Kristallgitter und reziproken
Gitter behandelt wird. Die Ausfithrungen in dieser Arbeit sollen daher dem Komfort des
interessierten Lesers dienen, indem diesem die, in Bezug auf diese Arbeit, wichtigsten Inhalte

aus den Quellen in kompakterer Form und in Bezug zueinander dargereicht werden.

Hinweis zum Datentrager

Dieser Arbeit ist ein USB-Stick als Datentriger beigefiigt, auf dem Programme zur Visuali-
sierung der Messdaten und der Auswertungen enthalten sind (Ordner /Datenvisualisierung).
Zusétzlich sind darauf die Quelltexte zur Auswertung und Darstellung der in dieser Arbeit
diskutierten Daten enthalten. Eine Ubersicht dariiber wird im Anhang ab (S. gege-

ben.

Auf dem Datentréiger befindet sich auflerdem eine Sammlungen der verwendeten Modellpa-
rameter und der zu Grunde liegenden Rohdaten. Diese liegen in Form von Matlab (.mat)
Dateien vor, weshalb zur Ansicht der Rohdaten das Programm Matlab notwendig ist (GNU
Octave konnte auch funktionieren, ist aber nicht getestet worden). Die Quelltexte (.m) kénnen

mit jedem Texteditor betrachtet werden.

Falls dieser Ausgabe der Arbeit kein USB-Stick beiliegt, schreiben Sie bitte eine E-Mail an

diss.deckarm@gmail. com.






2 Theorie

2.1 Kristallgitter und reziproke Gitter

2.1.1 Alligemeines
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Abbildung 2.1: Zweidimensionale Darstellung eines Bravais-Gitter zur Veranschaulichung
verschiedener, essenzieller Konzepte und Groflen. Links sind primitive Basis-
vektoren d; und do in blau dargestellt, ebenso die davon aufgespannte primiti-
ve Einheitszelle. Die Basisvektoren der kubischen Einheitszelle ;11 und /12 sind
rot dargestellt und die Wigner-Seitz-Zelle inklusive ihrer Konstruktionslinien
in Gelb. In Griin sind 200 Gitterebenen mit reziprokem Gittervektor G und
Ebenenabstand dagg in das Gitter eingezeichnet. Die Mitten zwischen benach-
barten Ebenen werden gepunktet dargestellt. Rechts ist die Periodizitdt der
Gitterebenen fiir verschiedene Ordnungen gezeigt. Die Positionen der Ebenen
sind dort ebenfalls durch griine Linien markiert.

Die definierende Eigenschaft eines (perfekten) Kristalls ist sein rdumlich periodischer Aufbau.
Er wird am direktesten iiber die Angabe der Raumkoordinaten der Gleichgewichtspositionen
der Atome beschrieben, welche durch die Periodizitit gewohnlich in zwei Teilprobleme ge-
gliedert wird. Zunéchst beschreibt man die grundlegende Baueinheit des Kristalls, die soge-
nannte Basis. Dabei handelt es sich um ein Cluster mit der minimalen Menge benachbarter
und zueinander charakteristisch angeordneter Atome, deren periodische Wiederholung den
Kristall erzeugt. In dieser Arbeit wird aber lediglich der einfache Fall einer einatomigen Ba-

sis betrachtet, welcher den Gegebenheiten beim PdAu Substitutionsmischkristall entspricht.
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2 Theorie

Der Kristall wird durch die Anordnung von Atomen (allg. Basen) in einem dreidimensionalen
réumlich periodischen Punktgitter konstruiert, dessen Ortsvektoren (oder Punktkoordinaten)
durch die Linearkombination

7 =n1G1 + Nodg + n3ds (2'1)

erzeugt werden konnen, wobei der Koordinatenursprung selbst immer Teil des Gitters ist. Da-
bei gilt ny, ng, n3 € Z, sowie dass die primitiven Gittervektoren di, ds, ds eine (Vektor)Basis
des (Orts)Vektorraumes R? bilden. Ein solches Gitter ist translationsinvariant gegeniiber
Verschiebungen um Translationsvektoren des Gitters t = nid; + nads + nzds, was zur Folge
hat, dass jede ortsabhéngige physikalische Eigenschaft im Gitter f(Z) (z.B. Ladungsdichte,

potentielle Energie, usw.) dieser Gitterperiodizitit entsprechen muss, also
f(@) = f(@+1). (2.2)

Das hat zur Folge, dass jeder Gitterpunkt gleichermaflen geeignet ist als Ursprung des Koor-
dinatensystems zur Beschreibung des Kristalls zu dienen, wodurch sich eine Unterscheidung
von Ortsvektor # und Translationsvektor ¢ eriibrigt und daher im Folgenden vernachlissigt
wird. Das Parallelepiped, das durch die Basisvektoren aufgespannt wird, wird als primitive
(Gitter)Zelle bezeichnet. Sie enthélt genau einen Gitterpunkt (hier Atom, allg. Basis), so-
dass ihr Volumen V;, = d;(dg x d3) gerade dem Volumen entspricht, das von einem Atom im
Kristall eingenommen wird. Dariiber hinaus erreicht man durch ihre Verschiebung entlang
von Translationsvektoren eine raumfiillende Parkettierung des dreidimensionalen Raums. Die
bisherigen Bedingungen, die an das Gitter gestellt wurden, liefern jedoch keine Kriterien fiir

eine eindeutige Wahl der Basisvektoren.

Es gibt immer die Moglichkeit, eine eindeutige primitive Zelle unabhéingig von den gewéhlten
Basisvektoren zu konstruieren, die genau einen Gitterpunkt enthélt und die vollsténdige Sym-
metrie des Gitters widerspiegelt. Dabei handelt es sich um die Wigner-Seitz-Zelle [34], die
konstruiert wird, indem Verbindungsstrecken eines Gitterpunktes zu seinen umgebenden Git-
terpunkten (néchste Nachbarn, iibernéchste Nachbarn, usw.) durch Normalenebenen halbiert
werden. Das Volumen, das durch diese Ebenen um den Gitterpunkt eingeschlossen wird, bil-
det die Wigner-Seitz-Zelle und umfasst alle (mathematischen) Punkte im Raum, die niher
am eingeschlossenen Gitterpunkt liegen als an allen anderen. Aufgrund der Translationsin-
varianz des Gitters (vgl. Gl. ) kénnen die ortsabhéngigen physikalischen Eigenschaften

des gesamten Kristalls durch Punkte innerhalb der Wigner-Seitz-Zelle beschrieben werden.

Um eine sinnvolle Beschreibung der Kristallstruktur vorzunehmen, hat es sich als praktisch er-
wiesen, solche Basisvektoren zu wihlen, die an die Symmetrie des Gitters angepasst sind [35].
Diese Uberlegung liefert fiir kugelsymmetrische Basen (z.B. Basen, die nur aus einem Atom
bestehen) Einschrankungen fiir die Léangen der Basisvektoren und die von ihnen eingeschlos-
senen Winkel, sodass nur 7 verschiedene Kristallsysteme mit den Basisvektoren Ay, Ay, A

unterschieden werden miissen, die sich in 14 Bravais-Gitter untergliedern [I]. Die Léngen
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2.1 Kristallgitter und reziproke Gitter

dieser Basisvektoren werden Gitterkonstanten genannt und in der Regel mit a, b, ¢ be-
zeichnet. Die von den Basisvektoren aufgespannten Einheitszellen sind ebenfalls raumfiillend
und translationsinvariant unter Verschiebungen um den Vektor R= nlfh + n2;12 + ngleg. Sie
miissen jedoch nicht mehr zwangsweise nur noch eine einzelne Basis beinhalten, was genau
dann der Fall ist, wenn es sich nicht um primitive Gitter, sondern um zentrierte Gitter han-
delt (raumzentriert, flichenzentriert, basiszentriert). Das hat zur Folge, dass die Ortsvektoren
eines Atoms fiir Vektorbasen von zentrierten Bravais-Gitter durch die Linearkombination

R-= (77,1/11 + TLQAQ + ngzzlg) + (mlfil + mgflg + m;»,;lg) (23)

Adressierung Einheitszelle Adressierung Atom in Einheitszelle

beschrieben wird, wobei nur solche Kombinationen von 0 < mj, meo, ms < 1, sinnvoll sind,
die einen Ortsvektor auf ein Atom innerhalb der Einheitszelle erzeugen. Hier zeigt sich, dass
man zu Gunsten der einfacheren Beschreibung der Symmetrie, die einfache Beschreibung der
Translationsinvarianz gegeniiber Gittervektoren aufgibt. Das wird bereits dadurch deutlich,
dass die Basisvektoren (;11, As, ;13) fiir sich alleine keinen Riickschluss mehr darauf zulassen,
ob ein primitives oder zentriertes Gitter vorliegt. Spéter wird das in Bezug auf das reziproke
Gitter noch zu einem Problem.

Fiir jedes Bravais-Gitter gibt es eine charakteristische Anzahl von néchsten Nachbarn zu
einem beliebigen Punkt im Gitter, also Punkte, die den gleichen, kiirzest méglichen Abstand
zu einem Aufpunkt besitzen. Diese Anzahl wird Koordinationszahl genannt.

Richtungen in einem Kristall werden durch Zahlentripletts betragsméflig kleinster, ganzer
Zahlen in eckigen Klammern [uvw] angegeben, wobei es sich bei den Zahlen um die Vek-
torkomponenten des Richtungsvektors in der Vektorbasis der Einheitszelle handelt. Negative
Werte werden {iblicherweise mit einem Querstrich dargestellt, also —u = u. Sollen alle symme-
trisch dquivalenten Richtungen bezeichnet werden, verwendet man spitze Klammern (uvw)
mitu>v2>w2>0.

Neben den Gitterpunkten sind die von ihnen gebildeten Netzebenen von zentraler Bedeutung
fiir die Beschreibung physikalischer Eigenschaften und Vorgéinge in Kristallen (Réntgenstreu-
ung, Gitterschwingungen, etc.). Netzebenen sind alle Ebenen im Kristall, die mindestens drei
nicht kollineare Gitterpunkte enthalten. Durch die Periodizitdt des Gitters existiert zu je-
der Netzebene eine Schar paralleler Netzebenen mit festem Netzebenenabstand. Eine Schar
dquivalenter und parallel zueinander verlaufender Netzebenen wird durch die ganzzahligen
Miller’schen Indizes beschrieben [36] [37], die einen Normalenvektor (hkl) definieren, dessen
Lénge reziprok zum Netzebenenabstand dpy; ist. Die Gesamtheit aller dquivalenter Ebenen-
scharen, die in alle symmetrisch &dquivalenten Richtungen orientiert sind, werden durch ge-
schweifte Klammern {hkl} gekennzeichnet. Ganz fundamental betrachtet bilden Netzebenen
die eindimensionale Periodizitéit des Kristalls entlang der Richtung [hkl] ab, was formal und
anschaulich durch stehende Wellen beschrieben werden kann. Die Netzebenen bilden in die-

sem Bild die Oszillatoren der ebenen Welle, die alle die gleiche Phase besitzen miissen, um der
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2 Theorie

Periodizitiatsbedingung zu geniigen (vgl. Abb. [2.1]). Der Begriff Oszillatoren ist hier als ab-
straktes Konzept zur Beschreibung der Periodizitdat im Kristall zu verstehen und beschreibt
keine Bewegung von Atomen oder Elektronen. Eine Interpretation der oben eingefiihrten

Funktion f als ebene Wellenfunktion ergibt damit
£(@) = foexp (iGpuz) = foexp (iGpuz) exp (IGhut) = f( + 7). (2.4)

Hier sind fj die (hier unwichtige) Amplitude der Wellenfunktion und G der Wellenvektor

parallel zur Netzebenennormalen (hkl). Um diese Gleichung zu erfiillen, muss
exp (iGput) = 1, (2.5)

erfiillt sein, was dquivalent ist zu
Ghuf = 210 (2.6)

mit n € Z*. Das heifft, es gibt unendlich viele diskrete, ebene Wellenfunktionen, welche die
Gleichung bzw. erfiillen, wobei die Fille n # +1 dadurch zustande kommen, dass
zusétzliche Schwingungsperioden zwischen benachbarten Netzebenen eingeschoben werden.
Da an diesen Orten im Kristall aber keine Netzebenen, also Oszillatoren, existieren, ist die

tatsdchlich beobachtbare Schwingung identisch zum Fall n = +1 H

Dieser Befund ldsst sich verallgemeinern auf eine allgemeine gitterperiodische Funktion f, die

aufgrund ihrer Periodizitét in einer Fourier-Reihe entwickelt werden kann und die Form

f(z) = Z gj €xXp (iéj:ﬁ) (2.7)

JEL

annimmt. Die Fourier-Koeffizienten g; folgen der {iblichen Definition

g = Vi prZ (&) exp (-G d3x (2.8)
wobei iiber das Volumen der primitiven Einheitszelle V,, (z.B. Wigner-Seitz-Zelle) integriert
wird, also sozusagen der dreidimensionalen Periodenldnge des Kristalls. Analog zu oben gilt
auch hier die Periodizitdtsbedingung Gl. , sodass sich die Fourierreihenentwicklung jeder
gitterperiodischen Funktion aus einer Uberlagerung von ebenen Wellen zusammensetzt, deren
diskrete Wellenvektoren Gj 2 Gpp der Bedingung 1} bzw. geniigen. Fasst man alle
@hkl als Ortsvektoren im reziproken Raum auf, also dem Vektorraum, der alle Wellenvektoren
enthélt, ergibt sich wieder ein Bravais-Gitter, genannt reziprokes Gitter, das der Fourier-

Transformation des Kristallgitters im Realraum entspricht (siehe Beziehung von Z und G’hkl

!Dieser Effekt ist formal identisch zu einem bekannten Befund aus dem Shannon-Nyquist-Abtasttheorem aus
der Nachrichtentechnik, ndmlich dem Aliasing bei der Rekonstruktion von diskret abgetasteten Signalen [38]
39]. Die Netzebenen (Maxima) und ihre Liickenmitten (Minima) nehmen hier die Rolle der dquidistanten
Abtastung ein, welche die ,,Rekonstruktion“ der ebenen Wellen erméglicht.
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2.1 Kristallgitter und reziproke Gitter

in Gl. (2.7)). Dabei kann aus den primitiven Gittervektoren dy, d2, Gg mit der Bedingung
1) ein Satz entsprechender Basisvektoren 51, 52, bs fiir den reziproken Raum passend zum

reziproken Gitter abgleitet werden, indem man folgende Konstruktion verwendet:

by = ‘2/” (dy x ) (2.9)

Pz

mit z, y, z€{1,2,3}. Damit kann jeder reziproke Gittervektor durch die Linearkombination
G'hkl = hgl + ki)z + li)g (2.10)

dargestellt werden, wobei h, k, [ € Z gilt und die h, k, | den Miller’schen Indizes entsprechen.
Sowohl das Konzept der Netzebenen als auch das reziproke Gitter beschreiben die entlang
der [hkl]-Richtung projizierte Periodizitéit des Kristalls. Allerdings ist die Beschreibung durch
das reziproke Gitter etwas allgemeiner, da hier die Bedingung wegfillt, dass die zu einer hkl-
Kombination gehérende Netzebene auch tatséchlich Basen (Atome) enthalten muss. Dieser
Umstand wird immer dann relevant, wenn ,,Netzebenen“ hoherer Ordnung betrachtet werden,
deren Miller’schen Indizes einen gemeinsamen ganzzahligen Teiler besitzen. Ein Beispiel sind
die (400)-Ebenen, die in allen kubischen Gittern keine Atome mehr beinhalten, wohingegen
die (100)-Ebenen im Kristallgitter immer Basen (Atome) beinhalten. Trotzdem sind die zu
den (400)-Ebenen gehérenden reziproken Gitterpunkte ,echt“ und von Bedeutung, da sie
z.B. zum Streubild des Kristalls beitragen.

Eine wichtige Konsequenz aus dem reziproken Gitter ist, dass jede Welle mit Wellenvektor
g, die sich als periodische Stérung des Kristalls oder einer damit verbundenen Grofle (z.B.
Auslenkung von Atomen aus ihrer Ruhelage, Anderung der Ladungsdichte, etc.) manifestiert,
invariant gegeniiber Verschiebungen im reziproken Raum um einen reziproken Gittervektor

ist. Es gilt also im Kristall fiir Wellenfunktionen g(q) die Periodizitéitsbedingung;:

9(@) = 9(3 + Ghn)- (2.11)

Dariiber hinaus lassen sich alle Eigenschaften von Bravais-Gittern, die den Kristall im Orts-
raum beschreiben, ohne Einschrénkung auf das reziproke Gitter iibertragen. Das beinhal-
tet insbesondere die Moglichkeit der Konstruktion einer primitiven Gitterzelle analog zur
Wigner-Seitz-Zelle im Ortsraum, die im reziproken Raum 1. Brilloin-Zone genannt wird. Alle
Wellenvektoren auflerhalb der Brilloin-Zone kénnen durch einen dquivalenten Wellenvektor
innerhalb der Brilloin-Zone beschrieben werden, indem man eine Verschiebung um einen ge-

eigneten reziproken Gittervektor vornimmt.

Sowohl das Kristallgitter als auch das reziproke Gitter stellen vollstindige, dquivalente Be-
schreibungen des Kristalls dar. Das wird bereits dadurch sichergestellt, dass eines der Gitter

jeweils aus dem anderen mittels Fourier-Transformation erzeugt werden kann und somit der
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2 Theorie

Informationsgehalt beider Darstellungen identisch sein muss. Der Vorteil dieser zwei Sicht-
weisen auf den Kristall wird sich im Weiteren zwanglos ergeben, soll hier aber schon einmal
kurz motiviert werden. Das Kristallgitter ist intuitiv verstdndlich und liefert damit eine einfa-
chere Moglichkeit der rdaumlichen Orientierung im Kristall, was insbesondere niitzlich bei der
Beschreibung der mechanischen Eigenschaften wird. Im Gegensatz dazu wird die Beschrei-
bung von Gitterschwingungen (Phononen), sowie die Beschreibung von Streuphénomenen im
reziproken Gitter dramatisch vereinfacht.

Im Folgenden werden nun die oben vorgestellten, allgemeinen Befunde zum Kristallgitter auf
den konkreten Fall des kubisch-flichenzentrierten Gitters (kfz, engl. face centered cubic - fcc)
mit einatomiger Basis {ibertragen, welches das Kristallgitter der in dieser Arbeit untersuchten
PdAu Legierung beschreibt.

2.1.2 Kubisch-flichenzentrierte Gitter

w>l

N>l

|-l>l
®
N

Abbildung 2.2: (links) Darstellung des kubisch-flachenzentrierten Kristallgitters. (rechts)
Zugehoriges, kubisch-raumzentriertes reziprokes Gitter. Die eingezeichneten
Vektoren entsprechen der Notation im Text.

Das kubisch-flichenzentrierte Gitter, im Folgenden durch fcc abgekiirzt, gehort zu den ku-
bischen Kristallsystemen, hat also an Wiirfelecken befindliche Atome, zu denen auf den
Wiirfelseiten zentrierte Atome hinzukommen. Die Zahl der Atome pro Einheitszelle ist damit
4, die Koordinationszahl ist 12. Orientiert man eine Orthonormalbasis entlang der Wiirfel-

kanten, erhélt man fiir die Gittervektoren der kubischen Einheitszelle

A1=CL y AQZQ 1 s flg,:a (212)

oS O =
_ o O
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2.1 Kristallgitter und reziproke Gitter

Tabelle 2.1: Ausgezeichnete und fiir diese Arbeit relevante Richtungen im fcc Kristall und
ihre Haufigkeiten.
Richtung (uvw) Richtungshiufigkeit
bzw. Ebene {hkl} bzw. Flichenhiufigkeit

111 8
100 6
110 12
311 24

mit der Gitterkonstante a.

Das fcc Gitter gehort zur Kristallklasse 4/m 3 2/m und fiir die hier betrachtete einato-
mige Basis ist die Raumgruppe F'm3m mit Raumgruppennummer 225 [40]. Beide Anga-
ben kategorisieren die Symmetrieeigenschaften des Kristalls, wobei letztere die der Basis
mit beriicksichtigt. Ohne an dieser Stelle genauer auf die Notation und Systematik einzu-
gehen sollen Symmetrieeigenschaften hier kurz anhand der Einheitszelle erldutert werden.
Der erste Teil 4/m beschreibt die vierzéhlige Symmetrie des Wiirfels bei Rotationen von 90°
um die Seitennormalen (100), die durch die Seitenmittenatome verlaufen. Zusétzlich dazu
existiert eine Spiegelsymmetrie an der zu den Wiirfelflichen parallelen Ebenen durch die
Wiirfelmitte. Der zweite Teil 3 steht fiir eine dreiziihlige Symmetrie bei Drehungen von 120°
um die Wiirfeldiagonalen (111), sowie fiir eine Punktspiegelung um die Wiirfelmitte. Der letz-
te Bestandteil, 2/m, beschreibt eine zweizihlige Symmetrie gegeniiber Drehungen von 180°
um die (110) Achsen durch die Kantenmitten, sowie gegeniiber einer entsprechenden Spiege-
lung. Somit sind (111), (110) sowie (100) ausgezeichnete Richtungen mit den ausgepréigtesten
Symmetrieeigenschaften im fcc Kristall.

Durch die an die Gittersymmetrie angepasste Einheitszelle (bzw. Basisvektoren) ist die Iden-
tifikation dquivalenter Richtungen und Ebenen im kubischen Gitter besonders einfach und
systematisch durchfithrbar. Es handelt sich dabei lediglich um alle Permutationen u, v und
w (bzw. h, k, und [) inklusive Vertauschung des Vorzeichens. Die Anzahl von symmetrisch
dquivalenten Richtungen/Ebenen ist dabei abhéingig von der jeweiligen uvw, bzw. hkl-Kombi-
nation. In Tabelle sind diese fiir die in dieser Arbeit besonders relevanten Ebenenscharen

und Richtungen angegeben.
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Blickrichtung [111] Blickrichtung [110]

o o Qo
g? >k
A * 3k *
‘ 5 [110] .A [111]

A A A
* O 000

[112] [112]

Abbildung 2.3: Tllustration der Stapelfolge A, B, C entlang der (111)-Richtungen im fcc Kris-
tall. Die Unterscheidbarkeit der einzelnen Ebenen, hier durch verschiedene

Symbole gekennzeichnet, ist in der Realitéit in (111)-Richtung nicht moglich.
Die schwarzen Pfeile stellen die Verschiebungsvektoren aus Gl. (2.14a)ff dar.

Eine iibliche Wahl der primitiven Gitterzelle mit entsprechenden Basisvektoren ist in Abb. [2.2]

gezeigt. In der Basis der kubischen Einheitszelle sind die primitiven Gittervektoren
0 1. (2.13)

Damit ergibt sich fiir das Volumen der primitiven Gitterzelle V}, = a®/4, also wie erwartet
ein Viertel des Volumens der kubischen Einheitszelle. Die dichtest gepackten Ebenen sind die
{111}-Ebenen mit der Stapelfolge ... ABCABC... entlang der (111)-Richtung, wobei benach-
barte Ebenen einen Abstand von dj11 = a/ /3 haben. Die Sequenz ABC beschreibt hier eine
Verschiebung von aufeinander folgenden {111}-Ebenen senkrecht zur Stapelrichtung [111]
um folgende Verschiebungsvektoren:

2 1k
AsB: o T 22 9.14
sBig 6l L (2.14a)
1 5
pr
1 1
Boc: 1 9 L3 (2.14b)
-C: = == .
3| = 6
1 1
pr
1 2
coa: 21| =i (2.14c)
>A: = == 14c
3 6
9 1
pr
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2.1 Kristallgitter und reziproke Gitter

Der Index pr dient hier zur Verdeutlichung, dass die Vektoren in der primitiven Basis
(a1, do, ds) angegeben sind, ansonsten in der Standardbasis (211, A, ;13).
Aus den primitive Gittervektoren ergeben sich die primitiven Basisvektoren des reziproken

Gitters zu

1

. . 1 . 1
bl =27— , b2=27‘(’— y b3=271’— (2.15)
a a a

—= =
— =
—_ = =

welche ein kubisch raumzentriertes Gitter (krz, engl. body centered cubic - bee) beschreiben.
Auch hier bietet sich die Wahl einer kubischen Einheitszelle mit passenden Basisvektoren
an, die die Symmetrieeigenschaften des bee Gitters besser reprisentiert. Man erhilt fiir die

Basisvektoren der bee Einheitszelle

1 0 0

B, 2 B, 2 B, 2

Bhi=2n-| 0 |, Ba=2n-| 1| Bs=21-]0 | (2.16)
0 0 1

Das hierdurch erzeugte reziproke Gitter stellt die korrekte Beschreibung der Periodizitéit
des Kristalls geméfl obiger Kriterien dar, wobei dessen Gitterpunkte alle reziproken Gitter-
vektoren geméifl Bedingungen bzw. repriasentieren. Gleichzeitig verletzt es aber
Bedingung insofern, dass die raumzentrierten reziproken Gitterpunkte an den Positio-
nen n-(1/2 1/2 1/2) mit ungeradzahligen n nicht ganzzahligen Koeffizienten hkl entsprechen.
Dieses Problem zeichnete sich bereits im Zusammenhang mit Gl. ab. Die pragmatische
Losung ist die Halbierung der Liinge der Basisvektoren B; um die reziproken Gitterpunkte
wieder in Einklang mit ganzzahligen Vorfaktoren hkl der Linearkombination in GI. zu
bringen, sodass ab jetzt gilt

0

L9 L9 L9

Bi=""{o|, B.= 1], Bs=""| 0| (2.17)
a 0 a a 1

Dieser Schritt dient ausschlieBlich dazu, der Konvention der Miller’schen Indizes zu folgen; al-
so um zu verhindern, dass der raumzentrierte Gitterpunkt, der den (111)-Ebenen entspricht,
die Koordinate [%%%]ﬂ anstatt [111] hat. Offensichtlich fiihrt das zu einem Bruch der Sys-
tematik, der fiir allerlei Verwirrung sorgt und schlussendlich in uneleganten Konstruktionen
miindet, wie z.B. dem Strukturfaktor in der Rt')ntgenstreuungﬂ

Immerhin bleibt durch diese Skalierung die Eigenschaft erhalten, dass keine unlogischen rezi-
proke Gitterpunkte auftreten, wie z.B. solche, die den {100}-Ebenen entspriichen. Die Indizie-
rung dieser Ebenenschar im fcc Gitter stellt, unter den bisherigen Gesichtspunkten, eigentlich

einen Fehler dar, der im Wellenbild (siehe Abb. (2.1) rechts unten) direkt ersichtlich ist. Die

2Eigentlich systematisch richtig.
3Mehr dazu im Kapitel zur Réntgenstreuung.
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mit {100} assoziierten, ebenen Wellen hétten an jeder zweiten {200}-Ebene, die tatsdchlich
als physikalisches Objekt existieren und mit Atomen besetzt sind, eine Phasenverschiebung
von 7. Fiir diese Ebenen wiirde also nicht die korrekte Periodizitét beschrieben werden. Diese
Aussage ist jedoch nur unter der Voraussetzung korrekt, dass nur die Periodizitéit des ein-
dimensional entlang der (hkl)-Richtungen projizierten Kristalls beriicksichtigt wird. Es wird
also z.B. keine Unterscheidung von aufeinander folgenden {111}-Ebenen in Sinne der Sta-

pelfolge ...ABC... vorgenommen, was sich im Folgenden als durchaus praktisch herausstellen

wird.
AB,
Punkt Koordinaten in Basis B
T (000)
X (300)
K (£50)
{ L (i11)
— —> w (130)
B, % U (441)

Abbildung 2.4: (links) Darstellung der 1. Brilloin-Zone (BZ) eines fcc Gitters. Die Basis des
reziproken bcce Gitters ist rot dargestellt mit Ursprung im Zentrum der 1. BZ.
Charakteristische Punkte auf dem Rand der 1. BZ sind gelb markiert, die
Verbindungslinien innerhalb der 1. BZ sind gepunktet eingezeichnet. (rechts)
Koordinaten der charakteristischen Punkte auf dem Rand der 1. BZ.

Fiir den Abstand von Netzebenen {hkl}, also der entsprechenden, eindimensionalen Peri-
odenlédnge in [hkl]-Richtung, gilt im kubischen Gitter

Do — 2t a
hht ‘éhkl‘ \/(h2+k’2+l2)'

Abschlielend soll hier noch die 1. Brilloin-Zone von PdAu eingefiihrt werden, die fiir die

(2.18)

Beschreibung des Phononenspektrums weiter unten von entscheidender Bedeutung sein wird,
da alle Wellenvektoren von Phononen auf die 1. Brilloin-Zone beschréankt sind (vgl. Wigner-

Seitz-Zelle im Ortsraum). Sie hat die Form eines Oktaederstumpfes mit Kantenldnge %%’T

und Volumen Vpyz = 4(27”)3, wobei die abgeschnittenen Ecken des Oktaeders entlang der
(100)-Richtungen orientiert sind. Das Volumen Vpy entspricht gerade dem reziproken Volu-
men eines Atomes im Gitter V. = 1/Vpz. Die quadratischen Flichen haben einen Abstand
127 V321
4 a”

von 5<% vom Mittelpunkt und die sechseckigen Fléchen einen von
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2.2 Spannung, Dehnung und lineare Elastizitét

2.2 Spannung, Dehnung und lineare Elastizitat

Spannung

Die Ausfithrungen zur Tensorrechnung und Elastizitét erfolgt in Anlehnung an [41] 42 43]
und stellt hier nur ausgewéhlte Aspekte dar, die in dieser Arbeit zur Anwendung kommen.

FElastizitat beschreibt eine vollsténdig reversible Verformung eines Koérpers, hervorgerufen
durch Einwirkung einer (mechanischen) Spannung, die kleiner ist als die kritische Grenz-
spannung fiir Elastizitdt [42]. Oberhalb dieser Spannung werden plastische Verformungsme-

chansimen aktiv, welche eine permanente Verformung erzeugen.

X X
A3 “0-33 A3
—
;/()'13 (%
(2%
1031 |
>
“ 0,
0. 12
O, 2 > 0>, >
X, X2
O.
X1 X1 33

Abbildung 2.5: (links) Definition der Spannungskomponenten in Bezug auf die Oberflichen
eines Wiirfels. (rechts) Spannungskomponenten an einem Cauchy-Tetraeder
zur Bestimmung des Spannungsvektors &, in Bezug auf die Fliche mit Nor-
malenvektor 7.

Zunéchst soll der Begriff Spannung im kontinuumsmechanischen Sinne geklért werden. Span-
nung o ist die Kraft F' pro Einheitsfliche A, die auf die Oberfliche eines Volumenelements in
einem Korper wirkt. Fine homogene Spannung liegt dann vor, wenn die Kréfte auf ein Volu-
menelement mit konstanter Form und Orientierung unabhéngig von der Position im Korper
sind. Zunéchst soll dieser Fall fiir einen Korper im statischen Gleichgewicht betrachtet wer-

den, wobei die Bedingung fiir statisches Gleichgewicht durch den Ausdruck [42]

- FdA=0 (2.19)
gegeben ist (unter Vernachlissigung von Volumenkriften wie z.B. Gravitation). Hier ist 0V
die Oberfldche, die das Volumenelement berandet, und iiber die die Kraft integriert wird. Im
Grunde handelt es sich hierbei um das dritte Newton’sche Axiom fiir einen ruhenden Korper.
In der Regel erfolgt die Beschreibung von dreidimensionalen Spannungen in einem kartesi-
schen Koordinatensystem mit den Achsen x1, o und z3, sodass die natiirlichste Wahl fiir
das spannungsbeschreibende Volumenelement ein Wiirfel ist, dessen Oberflichennormalen
entlang der Koordinatenachsen nach aufien orientiert sind (siche Abb. [2.5)). Die Kraft, die

auf die Oberflachen wirkt, ist aufgrund der Homogenitét der Spannung iiberall betragsmafig
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gleich, also insbesondere auch auf allen Wiirfeloberflichen, und kann in ihre drei Komponen-
ten entlang der Koordinatenachsen aufgeteilt werden. Damit ergibt sich fiir die Notation der
Spannungskomponenten folgende Konvention: o;; ist die Kraftkomponente in z;-Richtung be-
zogen auf die Oberfliche mit Oberflaichennormale in positive x;-Richtung. Um der Bedingung
fiir statisches Gleichgewicht zu gentigen sind folglich die Richtungen der Spannungskompo-
nenten in Bezug auf die Oberfliche mit Oberflichennormale in negative x;-Richtung gerade
umgekehrt. Auflerdem gilt, aufgrund der ebenfalls aus dem statischen Gleichgewicht resultie-
renden Drehmomentfreiheit, dass o;; = 0j; gilt, sodass jeder Spannungszustand eine Zentral-
symmetrie aufweist (unabhéngig von und zusétzlich zur Kristallsymmetrie). Der komplette

Spannungszustand kann als symmetrischer Tensor zweiter Stufe & mit den Eintragen

011 012 013

Qi

=|o12 o092 093 (2.20)

013 023 033

dargestellt werden. Bei den o;; mit ¢ # j handelt es sich um die Scherkomponenten und bei
den o0y um die Normalkomponenten der Spannung. Weiterhin wird hier die verbreitete Vor-
zeichenkonvention verwendet, dass Zugspannungen, bei denen die Kraftkomponenten entlang
der Flichennormalen wirken, positiv gezéihlt werden und Kompressionsspannungen entspre-
chend negativ. Die Spannung &y, die auf eine beliebig orientierte Oberfliche mit normiertem

Normalenvektor 7 wirkt, ldsst sich dann mit

011M1 + 012N2 + 013N3

On =01 =|019n1 + 022N9 + 023N3 (2.21)

013N1 + 023N2 + 033N3

berechnen, was auflerdem graphisch durch das Cauchy-Tetraeder in Abb. dargestellt wer-

den kann.

Dehnung

Im néchsten Schritt werden nun Verformungen eines Korpers mithilfe von Dehnungen be-
schrieben. Grundsétzlich bedingt jede Verformung eine Verschiebung von Material, die durch
ein Verschiebungsfeld 4(7) = #' — 7 beschrieben wird. Hier beschreibt 7 die Position eines infi-
nitesimalen Materialvolumens oder eines Atoms im unverformten Ausgangszustand und 7 ist
die entsprechende Position im verformten Zustand. Mit dieser Definition wird der unverformte
Zustand als Referenz festgelegt. Eine umgekehrte Wahl ist prinzipiell méglich und gleichwer-

tig [42], wird hier aber nicht weiter betrachtet. Ist %(7) homogen, also ortsunabhéngig, wird
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2.2 Spannung, Dehnung und lineare Elastizitét

eine Translation des Korpers beschrieben. Verformungen resultieren also nur aus dem inho-
mogenen Anteil der Verschiebung in den neuen Zustand 7' = 7 + 4(7), welcher durch F, den
(Deformations—)Gradiente von 7', charakterisiert ist. Fiir F gilt:

Our  dur Qu
o1 0o oxs

F=grad(i')=1+| 52 g Zulf (2.22)

Ouz  Ouz  Oug

o1 O0xo Oxg
Eine (kurze) Strecke dX im unverformten Material wird durch die Verformung/Dehnung zu
dX’ = F dX. Der Deformationsgradient F' liefert also eine Abbildung von Streckenlingen
und Orientierung vom unverformten in den verformten Zustand. Da F invertierbar und qua-

dratisch ist, existiert eine eindeutige Polarzerlegung der Form

ol
i

F= (2.23)
Der Tensor U wird rechter Strecktensor genannt und enthélt die gesamte Dehnungsinfor-
mation. Der Tensor R ist der Rotationstensor und beschreibt die Starrkorperdrehung. Seine
Eintrége haben die gleiche Bedeutung wie die in den iiblichen Drehmatrizen. Der quadratische
rechte Strecktensor kann aus F mit

U?=F'F (2.24)

bestimmt werden. Hier ist £ der transponierte Deformationsgradient. Damit lédsst sich U

iiber eine Eigenwert-Eigenvektor Zerlegung von U? berechnen, also

\/)\1 0 0 6_’1T
U= (61 €9 eﬂg) 0 VA 0 el . (2.25)
0 0 \/)\3 6_’2T

Hier sind \; und é; die Eigenwerte bzw. die rechten Eigenvektoren von U2. Den Rotations-

tensor erhiilt man dann durch Invertieren von U mit
R=F U (2.26)
Ein Ma#f fiir die Dehnung erhélt man mit dem Green-Lagrange-Dehnungstensor, der iiber

(FTF-1) (2.27)

“Der Gradient eines Vektorfeldes grad 4 = (V ® i) = Jy entspricht auBerdem gerade der Jacobi-Matrix Jy.
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definiert ist. Die Eintrdge von E héngen naheliegenderweise nur von dem Verschiebungsfeld

4 ab und konnen Komponentenweise in der Form

1{0u; Ouj Ous Oug

geschrieben werden.
Des Weiteren sei hier erwidhnt, dass die Volumendehnung bei groflen Dehnungen direkt aus
der Determinante von F' mit
A—VV =detF -1 (2.29)

bestimmt werden muss. Die oft genutzte Nidherung iiber die Spur des Dehnungstensors kann,
je nach Dehnungszustand, deutlich abweichende Ergebnisse liefern.
Fiir kleine Verschiebungen, und damit kleine Dehnungen, ist der Summenterm in GI.
vernachléssighar und der Dehnungstensor vereinfacht sich entsprechend. Alternativ kann man
den Dehnungstensor fiir kleine Dehnungen auch direkt aus dem transponierten Gradienten
des Verschiebungsfeldes € ableiten:

Qui Ouz  Oug

o1 o0x1 o0x1

= T
e=(Veu) =|gu S Ju] (2.30)

Our  Qug  Qus

Oxrs Oxz Oxs
Der Gradient € selbst enthélt im allgemeinen Fall neben Dehnungen noch Starrkérperrotatio-
nen, wobei der Dehnungsanteil einem symmetrischen Tensor € und der Rotationsanteil einem

antisymmetrischen Tensor w entspricht, was zu folgender Aufteilung von € fiihrt:

§=§+@=%(E+ET)+ %(E—ET) . (2.31)

symmetrisch —antisymmetrisch

Der Dehnungstensors ist damit der symmetrische Anteil von e und ist definiert als

e, 22)

My

Fiir kleine Dehnungen gilt E =&, fiir grofle Dehnungen wird in € aber der Summenterm aus
Gl unzuléssig vernachléssigt.

Analog zum Spannungstensor, handelt es sich bei den Diagonalenelementen um die Normal-
dehnungen und bei den Nebendiagonalenelementen um die Scherdehnungen.

Dariiber hinaus ergibt sich die Bedeutung der Vorzeichen von Normaldehnungen passend zur
Konvention bei den Spannungen; Zugdehnungen, die Abstdnde im Material vergréfiern, sind
positiv und Kompressionsdehnungen entsprechend negativ.

Eigentlich ist das Thema Dehnung damit in dem Umfang behandelt, der fiir diese Arbeit

notwendig ist. Allerdings haben die zwei vermutlich gebrduchlichsten Dehnungsmafie noch
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2.2 Spannung, Dehnung und lineare Elastizitét

keine Erw#hnung gefunden, ndmlich die technische Dehnung (engl. engineering strain) e
und die wahre Dehnung (engl. true strain) ;. Diese zwei unterschiedlichen, eindimensionalen
Dehnungsmafle unterscheiden sich darin, relativ zu welcher Referenz das Verschiebungsfeld
u(7) gemessen wird. Bezieht man es immer auf den Anfangszustand zum Zeitpunkt ¢ = 0

erhélt man die technische Dehnung e, mit der verbreiteten, eindimensionalen Definition

AL

=— 2.33
o (233)

€e
bei der Ly die Anfangslinge des Korpers ist und AL die Anderung derselben entlang der
Messrichtung. Hierbei wird eine homogene Dehnung des Korpers vorausgesetzt. Die wahre
Dehnungﬂ wahlt fiir jeden Zeitpunkt der Dehnung den aktuellen Zustand als Referenz fiir

u(7), sodass man ¢; als Summe iiber alle infinitesimalen Teildehnungen erhélt:

1 101
5t—fde—fzdL—fEEdt—log(lJree). (2.34)

Fiir kleine Dehnungen, was im Normalfall alle elastischen Dehnungen einschliefit, sind diese
beide Dehnungsmaifle praktisch identisch. Bei groflen Dehnungen, wie sie bei plastischen Ver-
formungen Vorkommenﬂ konnen die Unterschiede jedoch bedeutender sein. Der Grund dafiir
ist, dass bei der technischen Dehnung der Unterschied zwischen E und Z bei groflen Deh-
nungswerten voll zum Tragen kommt, wihrend die wahre Dehnung in jedem infinitesimalen
Inkrement den Umstand E = £ ausnutzt und so diesen Fehler vermeidet. Bei grof3en Dehnungs-
werten stellt die technische Dehnung damit eine implizite Linearisierung dar. In den folgen-
den Beschreibungen werden nur kleine Dehnungen betrachtet und daher, aus Griinden der
Ubersichtlichkeit und Gewohnheit, Dehnungen mit ¢ gekennzeichnet. Wenn spéter grofere,

plastische Dehnungen behandelt werden, wird an passender Stelle wieder E benutzt.

Eigenschaften von Spannungs- und Dehnungstensor

Sowohl der Spannungstensor ¢ als auch der Dehnungstensor € ( ]_:L?) sind symmetrische Ten-
soren zweiter Stufe, was zwei relevante Konsequenzen nach sich zieht.

Zum einen konnen ¢ und & immer in ihren Hauptspannungs- bzw. Hauptdehnungsraum
transformiert werden, sodass alle Nebendiagonalenelemente zu null werden. Die Diagona-
lenelemente in diesem Fall o;, o771, o751 bzw. €1, €11, €177 werden von den Eigenwerten des
Tensors gebildet und die zugehdrigen normierten Eigenvektoren bilden die Basisvektoren des
Hauptspannungs- bzw. Hauptdehnungsraumes. Diese Transformation entspricht einer dreidi-
mensionalen Drehung des Bezugssystems, in welchem die Tensoren definiert sindﬂ Damit ist
direkt klar, dass reine Scherspannungen oder Scherdehnungen in der Tensordarstellung nicht

ausschliellich iiber Nebendiagonalenelemente dargestellt werden, auch wenn ihre Benennung

Die wahre Dehnung ist auch als logarithmische Dehnung bekannt.
Insbesondere bei negativen Dehnungen.
"Die Realisierung dieser Drehungen wird spéter im Zusammenhang mit Gl. (2.57) behandelt.
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diesen Zusammenhang suggeriert, denn eine einfache Drehung des Bezugssystems kann diese
Eintrage verschwinden lassen.
Im Gegensatz dazu ist die Spur der Tensoren eine Erhaltungsgréfie gegeniiber Transforma-

tionen, bei denen die Bezugssysteme rotiert werden. Es gilt also
Sp(§)=€11 +E9g+esz=¢crterterrs (235)

und fiir Spannungen analog. Das erlaubt die Bestimmung einer orientierungsunabhéngigen,
hydrostatischen Spannung o5, bzw. Dehnung i5,, die als mittleres Diagonalenelement der

entsprechenden Tensoren definiert ist, also
1 - 1 -
Tiso = §Sp (6) und &g = gSp (8). (2.36)

Die isotrope Spannung ois, wird oft auch hydrostatischer Druck oder einfach Druck p ge-
nannt. Die isotrope Dehnung ei5, beschreibt die Volumendehnung des Materials, die durch

den isotropen Dehnungstensor £,, dreidimensional ausgedriickt werden kann, fiir den gilt

€iso 0 0
8:iso = Eiso 1= 0 Eiso 01. (237)
0 0 Eiso

Subtrahiert man vom Dehnungstensor € nun &g, bleiben die volumenerhaltenden, reinen

Scherdehnungen im sogenannten Dehnungsdeviator £q4e, tibrig und es gilt

Edev = €- giso- (238)

Das gilt analog fiir Spannungen, also Ggev = 7 — Figo-

Elastizitat

Die Elastizitét ist durch die Beziehung von Spannung und Dehnung zueinander charakte-
risiert, die durch die Anderung der inneren Energie bzw. der freien Energie des Materials
als Reaktion auf Dehnungen bestimmt wird. Daher wird im Folgenden kurz der Zusammen-
hang von Energie mit elastischen Spannungen und Dehnungen skizziert, um schliellich die
elastischen Konstanten abzuleiten.

Wird ein Volumenelement V' bei einer Spannung ¢ # 0 um ein infinitesimales Dehnungs-
inkrement dé gedehnt, wird an diesem Volumen eine mechanische Arbeit dW verrichtet.
Die Anderung der Arbeitsdichte dW /V ergibt sich mit dem Frobenius-Skalarprodukt (:) aus
Spannung und Dehnungsénderung [41), 42] [43], sodass gilt

aw

% =0:dé= Z ZUijdEij- (2.39)

g
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2.2 Spannung, Dehnung und lineare Elastizitét

Im adiabatischen Fall (dS = d@ = 0) entspricht dIW dann gerade der Anderung der inneren
Energie dU = dW|g-const und im isothermen Fall gilt entsprechend fiir die Anderung der freien
Energie dF' = dW|p—const -

Auf mikroskopischer Ebene wird eine elastische Verformung eines Kristalls durch die kollek-
tive Auslenkung der Atome im Kristall aus ihren Gleichgewichtslagen erzeugt. Diese Gleich-
gewichtslagen werden durch das Minimum der potentiellen Energie des Kristalls ®(7;;) be-
stimmt, welche durch die Summe der Energieterme aller interatomaren Paarwechselwirkungen
gebildet wird und von der rdumlichen Verteilung der Atome relativ zueinander 7;;, sowie von
der von auflen angelegten Spannung abhingt [41), 43]. Die Indizes ij beziehen sich auf ei-
ne Nummerierung der Atome ¢ und j, sodass 7;; die Verbindungsvektoren zwischen diesen
Atomen bezeichnet. Die potentielle Energie des Kristalls stellt im unbelasteten Gleichge-
wichtszustand eine Néherung der inneren Energie ® ~ U(S,V (7)) oder der Helmholtz freien
Energie ® ~» F(T,V (7)) des Kristalls dar [41], 43].

Zunéchst wird die thermische Vibration der Atome im Kristall vernachléssigt, welche bei
Raumtemperatur nur einen relativ kleinen Energiebeitrag zur Gesamtenergie liefert [43]; die
Atome im Kristallgitter werden also vorldufig statisch behandelt. Da PdAu ein zentrosym-

metrisches Gitter besitzt, treten auflerdem keine piezoelektrischen Effekte auf [41].

Dehnt man den Kristall im Gleichgewichtszustand nun um dé, so éndert sich zwangsweise 7
und erzeugt damit eine Anhebung von ® bzw. U oder F. Die Zunahme der inneren Energie
dU entspricht bei adiabatischen Prozessen gerade der geleisteten mechanischen Arbeit dW,

sodass

S=const

dU
du=—-= Z Zaijdgij ‘ (2.40)
gilt. Gleiches gilt fiir die Anderung der freie Energie bei isothermen Prozessen, nimlich

(2.41)

dF
df = — = dess .
f %4 ZZ-:;UZ] =i ‘Tzconst
In diesen Féllen werden die Spannungskomponenten o;; abhéngig von der inneren/freien
Energie und der assoziierten Dehnungskomponente und aus (2.40)) bzw. (2.41]) folgt

A of
0ij = Oij =
" 85”- S=const 4

= . 2.42

861']' ’T:const ( )
Mithilfe des totalen Differentials von o;; kann schliefllich die Beziehung zwischen Spannung
und Dehnung abgeleitet werden und es ergibt sich

82u 82 f

doij =22, doij=.2.

— = dew = dew . 2.43
T 1 85ij85kl S=const L 1 85ij05kl T=const ( )

Jeder einzelne Eintrag des Spannungstensors héngt also von jedem Eintrag des Dehnungs-

tensors ab; umgekehrt gilt das Gleiche.
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Fiir kleine Dehnungen relativ zum Gleichgewichtszustand, ohne &uflere angelegte Spannung,
sind die Vorfaktoren in l) gerade die adiabatischen elastischen Konstanten cfj i bzw. die

isothermen elastischen Konstanten Cz; il> also

82U T a2f

- P 2.44
ae’:‘ijaékl ngkl 85@‘8&%1 ( )

S _
Cijkl =

Elastische Prozesse, die in dieser Arbeit betrachtet werden, laufen in der Regel nicht adiaba-
tisch, aber bei konstanter Temperatur ab, sodass im weiteren Verlauf nur noch die isother-

men elastischen Konstanten betrachten werden. In Zuge dessen fillt die Kennzeichnung T

aus Gl (2.44) ab jetzt weg.

Wie die Bezeichnung Konstanten bereits andeutet, sind im Fall des Gleichgewichts ohne
dulere angelegte Spannung sowohl u als auch f in guter Naherung parabolisch in der Néhe
ihres Minimums fiir kleine Dehnungen. Dann sind Spannung und Dehnung linear korreliert
und die elastischen Konstanten in der Tat konstant. Dieser Fall fiir hinreichend kleine Span-
nungen wird durch das Hook’sche Gesetz beschrieben, [44, 4I] und als Hook’sch oder linear

elastisch bezeichnet.

Die Gesamtheit der ¢;ji bilden einen Tensor 4. Stufe, den Elastizititstensor oder Steifigkeits-

tensor 5’, der 81 Eintrigen umfasst. Die Symmetrie von € und ¢ erzwingt jedoch, dass
Cijkl = Cijlk und Cijkl = Cjilk, (245)

wodurch die maximale Anzahl von unabhéngigen Eintrigen im Elastizitéitstensor auf nur 36
beschrankt wird. Dariiber hinaus wurde oben bereits gezeigt, dass sowohl Spannungen als
auch Dehnungen prinzipiell Zentralsymmetrie besitzen, womit diese Eigenschaft auch von C

erfiillt werden muss. Fiir C' gilt also zusitzlich
Cijkl = 5im5jn6k05lp Cmnop; (2.46)

wobei hier d;,, (mit allen Indizes) das Kronecker Delta bezeichnet. In der Tensordarstellung

vereinfacht sich die Beziehung von Spannung und Dehnung damit zum Hook’schen Gesetz:

Qi
Q]

(2.47)

5— =
oder komponentenweise

Oij = D Y CijkiEki- (2.48)

k1
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Die Symmetrie von C beziiglich der ersten beiden und letzten beiden Indizes erlaubt es immer,

den Elastizitédtstensor vergleichsweise kompakt als symmetrische 6x6 Matrix darzustellen, also

C11 €12 €13 Ci4 Ci15 Ci6
C22 (€23 C24 C25 C26

€33 C34 €35 C36

C= (2.49)
C44  C45 C46
C55 Cs56
C66
Damit kann Gleichung in die Matrixschreibweise
01 C11 €12 C13 Ci4 C15 Cig ) [€1
02 C2 €23 C24 C25 C26||€2
3| _ €33 €34 C35 C36||€3 (2.50)
o Ca4 C45 C46 || €4
05 C55 Cs56 || €5
g Ce6/ \E6

iiberfithrt werden, die auch als (Kelvin-)Voigt-Notation bekannt ist. Der Zusammenhang zwi-

schen den einfachen und doppelten Indizes von Spannungs- und Dehnungstensor ist

011 012 013 o1 0 O3 €11 €12 €13 g1 05e5 05e¢e5
022 023 |= o2 04, €99 €93|= g9 0.5e4|. (2.51)
033 03 €33 €3

Der Faktor 0.5 der Nebendiagonalenelemente im Dehnungstensor ist Konvention der Voigt-
Notation. Fiir den Zusammenhang der doppelten und vierfachen Indizierung des Elasti-

zitdtstensors gilt:
® Ci; = Ciiig,s fiir 7 € {1,2,3}
® Cij = Ciijj, fur i,j € {1,2,3}

® Cim = Cigji, fiir 4,5,0 € {1,2,3} und m € {4,5,6} und m entspricht der Zuordnung zu jl

gerade wie im Fall des Spannungstensors.

® Coum = Cijij, fiir 4,5 € {1,2,3} und m € {4,5,6} und m entspricht der Zuordnung zu ij

gerade wie im Fall des Spannungstensors.

® Cim = Cijji, fur i,5,0 € {1,2,3} und m € {4,5,6} und m entspricht der Zuordnung zu jl

gerade wie im Fall des Spannungstensors.

® Comn = Cijij, fiir 4,5,0 € {1,2,3} und m,n € {4,5,6} und m,n entspricht der Zuordnung zu

1j bzw. lj gerade wie im Fall des Spannungstensors.
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Die Matrixdarstellung in (2.49) und (2.50) ist in vielen Féllen niitzlich und iibersichtlicher als

die vierfach indizierte Variante des Elastizitédtstensors und stellt somit eine Vereinfachung der

Interpretation von C und den Rechnungen dar. Sie bedeutet aber nicht, dass die Komponen-
ten von C sich wie Komponenten eines Tensors zweiter Stufe verhalten, was insbesondere bei
Transformationen im Zuge von Drehungen des Bezugssystems (Basisvektoren) zu beachten
ist. In diesem Fall muss immer mit den vierfach indizierten Komponenten gerechnet werden;
dazu mehr weiter unten. Trotzdem ergibt sich aus der Matrixdarstellung die Konse-
quenz, dass zu C eine inverse 6x6 Matrix C! = § , genannt Nachgiebigkeitstensor, existiert,

sodass

Qu
L

=1 (2.52)

Y

womit analog zu Gl. (2.50) der Zusammenhang

Q]

I}
I
Qi

(2.53)

gilt. Dabei sind speziell fiir S folgende Bedingungen zu beriicksichtigen:
® Smn = Sijki, filr m,n € {1,2,3}
® Spmn =2 Sijri, fir me {1,2,3} Ane{4,56} oder me {4,5,6} Ane{l,2,3}
® S =4 sijr, fir m,n e {4,5,6}

Sowohl S als auch C stellen gleichwertige Beschreibungen der elastischen Eigenschaften ei-
nes Kristalls dar. Dabei miissen die Symmetrieeigenschaften des Kristallgitters auch auf die
physikalischen und damit auch elastischen Eigenschaften ﬁbergeherﬁ; ein Befund, der als
Neumannsches Prinzip [2] bekannt ist. Dadurch wird die Anzahl der unabhingigen Kom-
ponenten von S und C abhéngig von der Symmetrie des Kristallgitters und dadurch weiter
reduziert. Im hier relevanten Fall eines kubisch-flichenzentrierten (bzw. allgemein kubischen)
Gitters reduziert sich die Anzahl unabhingiger Komponenten auf lediglich drei. Wahlt man
zur Beschreibung die Basis aus GI. mit Basisvektoren entlang den (100)-Richtungen,
so ergibt sich in der Matrixdarstellung fiir C und S

cii c2 c2 0 0 0 s11 s12 si2 0 0 O

ci1 c12 O 0 0 S11  S12 0 0
ci1 O 0 0 , S11 0 0 (2.54)

cae 0 0 s4 0 0

cyg O 44 O

C44 S44

8Die Umkehrung dieser Aussage ist im Allgemeinen nicht wahr. Tatséchlich besitzen physikalische Eigen-
schaften oft mehr Symmetrieelemente als die Kristallgitter.
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2.2 Spannung, Dehnung und lineare Elastizitét

Hier manifestiert sich wieder einmal die Tatsache, dass die kubischen Gitter die hochste
Symmetrie aller Bravais Gitter besitzen [35] [41], und lediglich durch ein komplett isotropes
Material iibertroffen werden. Die Umrechnung von s-Komponenten zu c-Komponenten, und

umgekehrt, vereinfacht sich damit zu

S11 + S12

C11 = 2.5ba
(511 —s12) (811 + 2512) ( )
c12 = o1 (2.55b)
(511 — s12) (811 + 2512)
1
Cqq = — (2.55¢)
544
C11 t C12
S11 = 2.55d
(c11 — c12) (c11 + 2¢12) ( )
—C12
S12 = 2.55e
(c11 — c12) (c11 + 2¢12) ( )
1
Sq4 = — (2.55f)
Ca4

Im isotropen Fall reduziert sich die Anzahl unabhéngiger Komponenten weiter auf zwei, indem
Caq = % (c11 — c12) und s4q4 = 2 (811 — $12) gilt. Im Unterschied zum kubischen Kristall, sind die
elastischen Konstanten im isotropen Fall unabhéngig von der Wahl der Basis, wohingegen
die einfache Darstellung fiir kubische Kristalle in Gl. nur in der Standardbasis mit

Basisvektoren entlang der Wiirfelkanten der Einheitszelle giiltig ist.

X3

1. Drehung

2. Drehung

XLGB 3. Drehung

(b)

Abbildung 2.6: a) Skizze zur Lage der Richtungskosinus anhand des Beispiels der a;; Kompo-
nenten mit ¢ € {1,2,3}. Das gedrehte Koordinatensystem mit den gestrichenen
Basisvektoren ist rot dargestellt. b) Darstellung der Reihenfolge der Drehun-
gen um die Winkel «, 8 und ~. Die zweite und dritte Drehung (8 bzw. v)
erfolgt jeweils um die Achsen des zuvor gedrehten Koordinatensystems.

Im weiteren Verlauf wird es sich jedoch als niitzlich erweisen, die Orientierung der Basis des
Koordinatensystems durch Drehungen an die jeweilige Situation anzupassen; meistens, um
das Koordinatensystem entlang relevanter [hkl]-Richtungen im Kristallgitter auszurichten.

Die dadurch bedingte Transformation der Tensoren erfolgt {iber die Richtungskosinus a;; der

31



2 Theorie

neuen (gedrehten) Basisvektoren #7, 75,45 mit den urspriinglichen Basisvektoren Z1,Za, I3,

die definiert sind als ,

8
8

i
%]
wobei a;; der von #, und Z; eingeschlossene Winkel ist (vgl. Gl [2.56). Die 9 méglichen

a;; werden in einer im Allgemeinen unsymmetrischen 3x3 Matrix a zusammengefasst, deren

L = cos aj, (2.56)

aij =
il

&
=l

Eintréige iiber drei Eulerwinkel «, 3,7 geméf folgender Regeln bestimmt sind [45]:

A=cosf cosa D= sinf cosa G =cosa
B =cosf sina FE=-sina H =cosp
C =sing F=-sinf sina
A B C
a=|(Dsiny+ FEcosy) (Fsiny+Gcosy) Hsinvy|. (2.57)

(Dcosy—-Esiny) (Fcosy-Gsiny) H cosy

Die Drehungen der Basis um die Eulerwinkel erfolgen zuerst um « um die urspriingliche 3

Achse, dann um S um die gedrehte z2 Achse (22,) und schlieilich um v um die zweifach
gedrehte 1 Achse (21,43) (vgl. Abb. [2.6b).

Die Transformation der Komponenten eines Vektors p, eines Tensors zweiter Stufe ¢ und eines

Tensors vierter Stufe T erfolgt dann durch

Py = Qijp; (2.58a)
tij = aik aji ty (2.58Db)
i,jkl = Qim Qjn Ako Alp Tmnop (2580)

Hier gilt die Einstein’sche Summationskonvention, d.h. iiber doppelte Indizes wird summiert.
Fiir jeden Eintrag eines transformierten Tensors vierter Stufe ist damit jeweils eine Summa-

tion iiber 81 Eintrége notwendig.

Die Riickrichtung von der gestrichenen Basis zur ungestrichenen wird durch die Komponenten
der transponierten Matrix der Richtungskosinus a’ beschrieben und erfolgt im Sinne von

Abb. in umgekehrter Richtung und Reihenfolge.

Um den Nutzen dieser Transformationen zu demonstrieren sollen nun zwei einfache Beispiele
betrachtet werden. Zunichst betrachte man eine uniaxiale Spannung o in z; bzw. [100]-

Richtung. Der Spannungstensor kann direkt hingeschrieben werden und lautet

5'[100] = (259)

S o 9
o o o
o o o
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2.2 Spannung, Dehnung und lineare Elastizitét

Legt man jedoch dieselbe Spannung an den Kristall in [111]-Richtung an, ist die Darstellung
im Standardkoordinatensystem nicht mehr offensichtlich. Orientiert man die z}-Richtung
jedoch entlang der [111]-Richtung, ist der Fall gerade genauso trivial wie der erste und man

erhilt nach Transformation mit den Richtungskosinus (Riickrichtung, also mit a’)

c 0 0
opy= [0 0 Of, 21 || [111], 5 || [110], o5 || [112] (2.60a)
0 00
1 11
=% 1 1 1], z1 | [100], Standardbasis (2.60b)
1 11

Der entscheidende Vorteil der Darstellung in der Standardbasis_ ist, dass damit die
elastischen Dehnungen mit dem iiblichen Nachgiebigkeitstensor S berechnet werden konnen,
was mit der Darstellung aufgrund der unterschiedlichen Basen unmoglich ist. Alter-
nativ kann man mit dem analogen Vorgehen die (vierfach indizierten) elastischen Konstanten
transformieren (diesmal vorwirts, also mit @) und die Darstellung beibehalten. Man
erhélt dann natiirlich auch die Dehnungen in Bezug auf die Basis in (2.60al). Beide Heran-
gehensweisen haben situationsspezifische Vorteile und werden im Weiteren zur Anwendung
kommen.

Die Transformation von Tensoren mittels Richtungskosinus hat aber noch einen anschaulichen
Nutzen, der bisher nur implizit benutzt wurde und nun ausgefithrt wird. Es ist oft intuitiv, die
Stérke oder Grofe einer physikalischen Eigenschaft, die durch symmetrische Tensoren zweiter
Stufe beschrieben werden, entlang einer bestimmten Richtung oder Orientierung 2 (z.B. die
Spannung oder Dehnung in [110]-Richtung) zu diskutieren. Um diese eindimensionale Grofie
aus den Tensoren zu extrahieren, ist eine zweifache Projektion entlang eines Einheitsvektors
nq notwendig. Das soll nun am Beispiel der Spannung demonstriert werden, fiir Dehnungen

ist das Vorgehen analog. Die erste Projektion ist bereits in Gl. [2.21] gezeigt und erfolgt iiber

—

[

M Qi

o (2.61)

g; = aijnj

<

Daraus resultiert der Vektor , der die Spannungskomponenten in alle drei Raumrichtungen
bezogen auf eine Flache mit Flichennormale 7 beinhaltet. Die Vektoren ¢ und 7 sind
dabei im Allgemeinen nicht kollinear. Die Grofle der Spannung oq in Richtung 7q ist dann

die Projektion von & entlang 7iq, sodass man in Matrixschreibweise

o = gl = g & fig (2.62)
00 =2, 00 ni
7
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erhéalt. Genau das Gleiche kann erreicht werden, indem man in der Basis eine Bezugsachse
wéhlt, in diesem Fall x1, und diese durch Transformation mittels Richtungskosinus in die
Richtung Q orientiert. In diesem gedrehten Koordinatensystem ist der Vektor 7o = (100),

sodass oq = o1 ist. Mit den Richtungskosinus ergibt sich dann
g = Z Zaij a1 alj. (2.63)
g

Damit steht eine einfache Beschreibung der richtungsabhéngigen Stérke einer physikalischen
Eigenschaft iiber die Winkel o und £ zur Verfiigung. Sowohl GI. als auch GI.
konnen nun zur graphischen Darstellung einer tensoriellen Grofie genutzt werden, indem ihre
Projektion in alle Richtungen als Skalierung des Radius einer Einheitskugel aufgefasst wird.
Fiir den Radius der (ehemaligen) Kugel in Richtung € gilt dann Rq = oq (fiir Dehnun-
gen analog). In Abb. ist diese Visualisierung beispielhaft fiir die beiden dimensionslosen

Beispieltensoren
04 0 O 025 025 0
ay=10 o of, b)=1025 025 0 (2.64)
0 0 0 0 0 -0.5

dargestellt. Eine Anwendung dieses Vorgehens auf Tensoren hoherer Stufen ist jedoch nicht

direkt moglich.

Abbildung 2.7: Visualisierung der Tensoren a) und E) aus Gl. 1' wie im Text beschrieben.
Der Radius wird zusétzlich farblich kodiert dargestellt.
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2.2 Spannung, Dehnung und lineare Elastizitét

Gebrauchliche ElastizitatsmaBle und elastische Anisotropie

In vielen Fillen, in denen elastische Konstanten oder elastische Eigenschaften untersucht
werden, werden der Elastizitdtsmodul £, Schermodul G, Kompressionsmodul K und Pois-
sonzahl v, seltener auch die Lamé-Konstanten A und p benutzt; in der Regel unter Annahme
von elastischer Isotropie (z.B. fiir untexturierte, polykristalline Materialien). Im Folgenden

wird nun der Zusammenhang zwischen S bzw. C und den genannten Groflen hergestellt.

Der Elastizitatsmodul F ist die Proportionalitdtskonstante zwischen der Dehnung in Richtung
einer angelegten, uniaxialen Spannung und dieser Spannung, also o = Ee. Sei die angelegte
Spannung o entlang der x1-Richtung orientiert, so ergibt sich fiir ihre Komponenten 011 = o

und o5 = 0 fiir alle iibrigen Komponenten. In z; bzw [100]-Richtung ist dann die Dehnung

(o
E11 =511 0 =511 0 = 4, (2.65)

womit folgt, dass E = 51}11 = i Auf die kompliziertere Darstellung in c-Komponenten, die

sich aus Gl. (2.55)) ergibt, wird hier verzichtet. Der E-Modul hdngt nur von der Orientierung

einer Richtung (hier z1-Richtung) ab und kommt damit einem Maf} der Gro8e der elastischen

Konstanten in eine Richtung im Sinne der obigen Diskussion zu Tensoren zweiter Stufe recht
nahe, deckt dafiir aber auch nur den Fall uniaxialer Spannungen ab. Entsprechend kann die
richtungsabhingige Grofie des £-Moduls, in Anlehnung an Abb. dargestellt werden. Fiir
das in dieser Arbeit untersuchte Palladium mit den elastischen Konstanten ¢1; = 226 GPa,
c12 = 175 GPa und ¢yy = 71.4 GPa [46] liefert das Abb. worin u.a. die starke Anisotropie
der elastischen Eigenschaften im Pd Kristall deutlich wird.

[GPa]

180
160
140

120

Abbildung 2.8: Visualisierung der Projektionen des E-Moduls von Pd in verschiedenen Rich-
tungen. Der Wert des E-Moduls in einer Richtung wird durch den Radius der
Kugel, sowie durch die Farbe an dieser Stelle markiert. Die (100)-Richtungen
sind parallel zu den 1, 9 und x3-Richtungen.
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Zusétzlich zu der Dehnung in z1-Richtung, bildet sich bei uniaxialer Belastung die Querdeh-
nung in die dazu senkrechten Richtungen (z.B. 25 und x3) aus, die durch Gl. (2.53)) bestimmt
wird zu

€22 = 81122 0 = 812 0. (2.66)

Das negative Verhéltnis von Querdehnung zur Dehnung in Richtung der angelegten Spannung

ist die Poissonzahl v und es gilt hier

Dy =222 _Su2 _ S12 (2.67)

€11 S1111 S11

Im Fall von elastisch anisotropen Materialien ist damit auch die Poissonzahl richtungs-
abhingig. Im Unterschied zur Richtungsabhéngigkeit des E-Moduls spielen hier jedoch die
Orientierung von zwei Richtungen, also der x; und x2-Richtung, eine Rolle. Dariiber hinaus
besteht fiir die meisten Orientierungen ein Unterschied zwischen vq9 und vo1, also in welche

Richtung die Spannung angelegt wird.

Der Schermodul G ist das Analogon zu FE fiir Scherspannungen, also die Nebendiagonalen-
elemente im Spannungstensor. Der Schermodul ist also der Proportionalitétsfaktor zwischen

Scherspannung und entsprechender Scherdehnung, z.B.

093 = 2323 €23 = C44 €23 = Gla3 €23. (2.68)

Ahnlich wie die Poissonzahl, ist auch G zweifach richtungsabhéngig (hier im Beispiel 25 und
x3-Richtung) und muss dementsprechend fiir allgemeine Orientierungen des Bezugssystems

bei elastisch anisotropen Materialien zusétzlich iiber zwei Indizes spezifiziert werden.

Der Kompressionsmodul K ist schlieflich die Proportionalitdtskonstante zwischen der Volu-
mendehnung AV /V » ¥, g;; oder als Tensor 1e;4, (fiir kleinen Dehnungen) und der Volumen-
spannung bzw. dem hydrostatischen Druck 1p = 10;4,. Bei beiden Grofien handelt es sich, wie
oben beschrieben, um isotrope Gréfien (vgl. Gl. ), womit auch der Kompressionsmodul
frei von jeglicher Richtungsabhingigkeit ist und damit den isotropen Anteil der elastischen

Eigenschaften darstellt. Es gilt also

av

dp=K —. 2.69
p v (2.69)

In Tensorschreibweise ergibt sich der Ausdruck

Z €ii = Z Z SiijjTiso (2.70)
% i J
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2.2 Spannung, Dehnung und lineare Elastizitét

Der Vorfaktor von oy, in Gl. (2.70) ist gerade die Kompressibilitit x = ; ¥, siijj, deren

Kehrwert der Kompressionsmodul ist, also

1 1
K:

- - 2.71
Ko X2 Siij (2.71)

Im Falle von kubischen Gittern gilt dann fiir die Standardorientierung des Koordinatensys-
tems K =1/(3(s11 +2s12)) = (c11 + 2¢12)/3

Mit Ausnahme des Kompressionsmoduls besitzen alle elastischen Eigenschaften prinzipiell
eine Richtungsabhéngigkeit. Das kann dazu fithren, dass sich Kristalle elastisch anisotrop
verhalten. Das Ausmaf dieser Anisotropie wird oftmals mit dem Anisotropieindex A fiir

kubische Kristalle nach Zener [47] quantifiziert, der durch folgenden Ausdruck definiert wird

A=o G4 ol 12 (2.72)

C11 — C12 S44
Fiir Palladium nimmt er den Wert 2.8 an. Zum Vergleich: Fiir isotrope Materialien ist A =1,
da in diesem Fall cqq = 0.5 (c11 — ¢12) gilt. Hohere Werte von A kennzeichnen also héheres
MaB an elastischer Anisotropie. Ein neueres, universelles Mafi AV fiir die Anisotropie [48]
iiberkommt die Beschriankung von A auf kubische Systeme und ist auflerdem frei von Aus-
nahmen mit Zener Anisotropie kleiner 1 (z.B. Po, Nb, ...), indem die komplette tensorielle

Information beriicksichtigt wird. Es ist definiert als

@)W (59Q) ) -6 (2.73)

Qi

AY =

Hier sind ( CE’(Q) )V der iiber alle Orientierungen Q gemittelte Elastizitiitstensor, was der
Voigt-Néherung fiir mittlere elastische Konstanten entspricht, und ( S () )® der iiber alle
Orientierungen gemittelte Nachgiebigkeitstensor, was der Reuss-Nédherung entsprich‘ﬂ Iso-
trope elastische Konstanten entsprechen bei diesem MaB AY = 0 und zunehmende elastische

Anisotropie erzeugt eine Zunahme von AY, was fiir Pd zu einem Wert von 1.35 fiihrt.

Elastische Konstanten von Polykristallen

In den meisten Fillen liegen Metalle nicht in der Form von Einkristallen vor, sondern als
Polykristalle; also als Zusammenschluss vieler kleinerer Einkristalle. Nanokristalline Mate-
rialien sind davon die Extremform, da durch die kleine Grofle der einzelnen Kristallite bei
gleichem Volumen der Zusammenschluss besonders vieler Kristalle bedingt wird. Makrosko-
pisch betrachtet hat der Polykristall verdnderte elastischen Eigenschaften im Vergleich zum
Einkristall, die in erster Ndherung als eine Mittelung der elastischen Eigenschaften der Ein-

kristalle iiber alle vorkommenden Orientierungen aufgefasst werden kénnen.

9Mehr Informationen zu mittleren elastischen Konstanten bzw. isotropen elastischen Konstanten folgen
spater.
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Im hier vorliegenden Fall von nanokristallinem PdAu liegt keine Textur, also keine kristalline
Vorzugsorientierung, im Material vor [49] 50]. Dariiber hinaus folgen die Misorientierungswin-
kel der Korngrenzen zwischen den Kristalliten einer Mackenzie-Verteilung [51], 52], 53], [54] [55],
d.h. es gibt keine Korrelationen zwischen den Orientierungen benachbarter Kristalle. Damit
ist nanokristallines PdAu ein Aggregat zufillig orientierter Kristalle und in dieser Hinsicht
ein statistisch perfekt isotroper Polykristall. Fiir diesen Fall sollen im Folgenden nun die ver-
schiedenen Ansétze zur Ableitung der makroskopischen, elastischen Eigenschaften aus denen
des kubischen Einkristalls und deren Vergleich mit den tatséchlich, makroskopisch messbaren,
erfolgen. In Anlehnung an das Neumann’sche Prinzip [2] ist aber bereits im Voraus klar, dass
die makroskopischen elastischen Eigenschaften des statistisch isotropen Polykristalls isotrop
sein miissen. Auflerdem ist der Kompressionsmodul, der an sich bereits den isotropen Anteil
der elastischen Eigenschaften beinhaltet, vollkommen unabhingig von Kristallorientierungen,
weshalb der Kompressionsmodul des Polykristalls identisch zu dem der einzelnen Kristallite

ist.

Es sei vorausgeschickt, dass alle hier vorgestellten Ansétze Korngrenzen als mathematische
Grenzflichen zwischen den Kristalliten behandeln, womit Korngrenzen als Phase oder drei-
dimensionales Objekt nicht existieren und damit keine direkte Beeinflussung der elastischen

Figenschaften bewirkt.

Zunéchst gibt es zwei sehr direkte Methoden, um die mittleren elastischen Konstanten eines
statistisch isotropen Polykristalls zu berechnen: Die Nidherung von Voigt [56] und die von
Reuss [57]. Bei beiden handelt es sich um eine Mittelung des Tensors, der die elastischen

Figenschaften beschreibt, iiber alle moglichen Orientierungen 2.

Im Fall der Niherung von Voigt geschieht das anhand des Elastizitétstensors 5voigt =(C(Q))q,
dessen Eintrége sich iiber die beiden orientierungsunabhéngigen Invarianten (es gilt die Ein-

stein’sche Summationskonvention)

(Cijrr)a 0450kt = Cijk10ijOrt (2.74)
{cijri)o Oindji = Cijridindii (2.75)

schnell berechnen lassen [58]. Diese Mittelung bedeutet anschaulich, dass alle Kristallite die
gleiche, homogene Dehnung erfahren, wodurch jedoch unterschiedlich orientierte, aneinander
grenzende Kristallite unterschiedliche Spannungszusténde an ihrer gemeinsamen Korngrenze
erzeugen und damit die Stetigkeitsbedingung fiir die Spannung an Grenzflichen verletzt wird.
Durch diese Naherung werden die mittleren elastischen Konstanten iiberschétzt, und stellen

damit eine obere Grenze dar [59].

Die Néherung von Reuss erfolgt genau analog zu der von Voigt mit dem Unterschied, dass

hier der Nachgiebigkeitstensor SReuss = (5’ (2))q gemittelt wird. Hier wird eine homogene
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2.2 Spannung, Dehnung und lineare Elastizitét

Spannung iiber alle Kristallite hinweg angenommen, womit automatisch auch die Stetig-
keitsbedingung an den Grenzfldchen erfiillt ist. Allerdings resultiert diese Niherung in unter-
schiedlichen, unkorrelierten Dehnungen benachbarter Kristalle, was im Allgemeinen zu Rissen
zwischen und Durchdringungen von benachbarten Kristallen fiihren miisste. Dieser Fall fithrt
zu einer systematischen Unterschitzung, also zu einer unteren Grenze [59], der elastischen

Konstanten.

Fiir den Schubmodul G existiert auflerdem die empirische Hill Ndherung (auch Voigt-Reuss-
Hill Naherung) [59], die einfach den Mittelwert fiir G aus den Voigt und der Reuss N&herung
berechnet Gy = %(GV + GR) und in den meisten Féllen eine deutlich bessere Néherung dar-
stellt. Diese Néaherung kann auch auf die iibrigen elastischen Konstanten ausgeweitet werden,

dann aber mit schlechterer Ubereinstimmung von Niherung und wahrem Wert.

Eine mathematisch exaktﬂ Losung fiir das Problem wurde von Kroner [58], aufbauend auf
den Ergebnissen von Eshelby [60], veroffentlicht. Darin wird zugleich das Problem der Deh-
nung eines anisotropen Kristallits im Verbund des Polykristalls gelost; insbesondere letzterer
Aspekt ist im Weiteren noch von Bedeutung. Kroners Ansatz besagt, dass sich unter Ein-
wirkung einer dufleren Kraft im Polykristall eine mittlere homogene Spannung (&) und eine

mittlere homogene Dehnung () ausbilden, die iiber die zu bestimmenden, mittleren isotropen

elastischen Konstanten (C') oder (S) in Beziehung stehen, also

(2.76a)

AA
o Qll
~ ~
Il Il
—_—~ —_~
i Qi
~
—_~
Qi QY]]
~ ~

~
—

(2.76b)

Die Spannung () bzw. Dehnung £(12), die sich in einem Kristallit mit bestimmter Git-
terorientierung €2 unter diesen Bedingungen einstellt, ist linear von diesen mittleren Gréfien

abhéngig, sodass der Zusammenhang

5(Q) = ((5) . %(Q)) (). (2.77a)
Q) = (<§> , f(Q)) (5). (2.77b)

gilt. Die Tensoren vierter Stufe 7 und 7 erzeugen die zusétzlich induzierte Spannung, bzw.
Dehnung im Einzelkristall, die entsteht, da die elastischen Konstanten des Einkristalls von
den mittleren des Polykristalls abweichen. Es handelt sich also um elastische Suszeptibi-
litdten oder, nach Multiplikation mit dem Einheitsvolumen, um elastische Polarisierbarkeiten

[68, [61]. Fiir ellipsoide Kérner, die intern eine homogene elastische Polarisation aufweisen,

'Dje Exaktheit bezieht sich hier auf die praxisrelevante, statistische Bedeutung. Also immer auf ein Vo-
lumen, das geniigend Kristallite enthélt, sodass die Mittelwerte fiir Spannung, Dehnung und elastischen
Eigenschaften identisch zu denen der gesamten Probe sind.
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lassen sich 7 und £ auf folgende Art komponentenweise berechnen (es gilt die Einstein’sche

Summationskonvention)

Tijht($2) = i (1) = (Cijht) + Cijmn (2) Umnki (£2) (2.78a)
tikt () = Uijmn () (Smnki) (2.78b)
uijr(2) = Umn(Q) (Cmnkt(82) = (Cmnki)) (2.78¢)
Vi1 () = cijr () = {(Cijrr) + (Cijmn YWmnki (2.78d)

Der Tensor o ist ein Ergebnis aus der Arbeit von Eshelby [60] und seine direkte Berech-
nung ist im Anhang von [58] gegeben (siche auch Implementierung im Matlabprogramm

kroener_eshelby_tensor.m auf dem Datentréiger).

In [58] wird auf Grundlage von Gl. (2.78a) bis (2.78d]) dann fiir den isotropen mittleren
Schermodul des Polykristalls G' die Bestimmungsgleichung

0=0G%+aG*+bG +c (2.79)
511 +4 e
8
4 -7 enn
b= 1212
8
2 -9 2
_ Ci111 T C1111 C1122 C1122
= 3 1212

abgeleitet, wobei die c;;; Eintrége des Elastizititstensors des Einkristalls in der gewhnlichen
Orientierung sind. Zusammen mit dem bereits bekannten Kompressionsmodul des Polykris-
talls (K) = K(€2) hat man nun zwei elastische Konstanten, aus denen der komplette isotrope
Elastizitdtstensor des Polykristalls abgeleitet werden kann. Genauso kann man dleses Ergeb—
nis nun verwenden um riickwérts auf etwas emfachere Weise w und damit auch 7, t U sowie
v auszurechnen. Die physikalische Bedeutung von 7 und f wurden bereits oben gekldrt, aber
auch @ macht eine direkt ersichtliche Aussage; er dient der Berechnung der zusétzlichen Deh-

nung des Einzelkristalls A(Q2) = () — (£) bei homogener mittlerer Dehnung (£), also gilt

Agij () = uijra () ()u (2.80a)
6@‘(9) = (1 + uijkl(Q)) <€)kl~ (2.80b)

Das Analogon fiir Spannungen ergibt sich durch entsprechendes Hintereinanderreihen des

bereits Bekannten und hat die etwas sperrigere Form

Agij(Q) = Cijkl(Q) uklmn(Q) (Smnop> <U>op (2.81&)
Uij(Q) = (1 + Cijkl(Q) uklmn(Q) <3mnop>) <U>op- (281b)
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Damit steht nun eine Beschreibung der elastischen Eigenschaften des Polykristalls aus denen
des Einkristalls zu Verfiigung, sowie eine Methode zur Berechnung der elastischen Verzerrung
und Spannung eines im Polykristall eingebetteten Einkristalls in Abhéngigkeit seiner Gitter-
orientierung relativ zur angelegten, mittleren homogenen Spannung bzw. Dehnung. Allerdings
hat die hier vorgestellte Theorie Einschriankungen, die aus den grundlegenden Annahmen
entstehen: Es wird von perfekten Einkristallen ausgegangen, die einen perfekten Polykristall
bilden, der nur soweit belastet bzw. verformt wird, dass die linear elastischen Ndherungen
giiltig sind. Insbesondere werden Korngrenzen als dreidimensionale Objekte, mit eigenen
elastischen Eigenschaften, vernachléssigt. Genauso werden Kristalldefekte, die die elastischen
Eigenschaften beeinflussen wiirden, ignoriert. Eine Abweichung von Messergebnissen von der
hier vorgestellten Theorie stellt also keine Falsifizierung derselben dar, sondern bietet eine
Moglichkeit zur quantitativen Abschétzung der Abweichung des experimentell beobachteten

Verhaltens vom theoretischen Ideal.

2.3 Phononen

In diesem Kapitel wird nun die statische Betrachtung des Kristalls aufgegeben und die Dy-
namik des Kristalls in Form von thermisch angeregten Schwingungen der Atome um ihre
Gitterplitze betrachtet. Daraus leitet sich die Versuchsfrequenz fiir das Uberkommen von Po-
tentialbarrieren von thermisch aktivierbaren Prozessen, sowie ein Modell fiir die thermodiffuse
Streuung von Rontgenstrahlen im Rahmen der Modellierung der in-situ Réntgenexperimente
ab.

Die kollektiven Schwingungen von Atomen erzeugen stehende oder sich ausbreitende elasti-
sche Wellen im Kristall, die iiber Phononen genannte Quasiteilchen beschrieben werden. Die
Anzahl der Phononen entspricht der Anzahl der Freiheitsgrade von N Atomen, also 3N. Im
Allgemeinen fiihrt das zu sehr groflen Zahlen, da die Anzahl der Atome, wie das Volumen,
mit der dritten Potenz der linearen Ausdehnung des Kristalls skaliert. Im speziellen Fall von
Nanokristallen sind diese Zahlen aber noch im Rahmen dessen, was mit Computern innerhalb
von Minuten bis wenigen Stunden explizit gerechnet oder wenigstens sehr genau numerisch
angendhert werden kann.

Fiir die Zwecke dieser Arbeit wird die Betrachtung der Phononen auf die harmonische Néher-
ung unter weitgehender Vernachléssigung von Phonon-Phonon Wechselwirkung beschrénkt,
weshalb hier hauptséchlich auf die kompakte und anwendungsorientierte Darstellung des
Themas aus [62] zuriickgegriffen werden kann. Detailliertere Beschreibungen von Phononen
konnen z.B. aus darauf aufbauenden Storungsrechnungen gewonnen werden und sind u.a. in
[43] zu finden.

Da Phononen elastische Wellen im Kristall beschreiben, sind spezifische Phononen durch
die Angabe von Schwingungsamplitude und -orientierung d, Wellenvektor ¢ und Frequenz

v bzw. Kreisfrequenz w = 27v vollstindig charakterisiert. Der Betrag von ¢ ist reziprok zur
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Wellenlénge A (|G| = 1/A). Die zeitabhingige Verschiebung i, eines Atoms n an der Position

R,,, die durch ein Phonon hervorgerufen wird, ist dann
in() = a(@) &) cos(w(q) t-27 G R~ 6(q)). (2.82)

Hier ist 6(¢) ein Phasenfaktor, der formal notwendig ist um die fehlende Phasenbeziehung
zwischen verschiedenen Phononen abzubilden. Im Weiteren wird auf ihn bei der Betrachtung
von Einzelphononen verzichtet. Die Amplitude d wird hier in ihren Betrag a und ihre Rich-
tung, dargestellt durch den Einheitsvektor €, aufgespalten. Die Eintrége von € entsprechen
den Richtungskosinus auf die Koordinatenachsen ej,eo, e3. Die gesamte Verschiebung des
Atoms ergibt sich dann aus der Superposition aller Einzelverschiebungen uy, j = ¥, un,;(q) (j
bezeichnet die Komponenten 1 bis 3). Bevor diese Gréfien und ihr Zusammenhang hergelei-
tet werden, konnen aus der Wellennatur der Phononen und der Struktur des Kristalls bereits

wichtige Schliisse gezogen werden.

Die Wellenvektoren ¢ der Phononen sind im Vektorraum des reziproken Gitters enthalten
[62] und es gilt fiir sie die Periodizitétsbedingung . Das heifit, dass eine Unterscheidung
von Wellenvektoren, die um einen reziproken Gittervektor Gy, zueinander verschoben sind,
bedeutungslos ist. Daher kann die Gesamtheit aller relevanter Wellenvektoren fiir Phononen
auf die 1. Brilloin-Zone (siehe Abb. beschréankt werden. Alle N Wellenvektoren begin-
nen im Ursprung des reziproken Raumes oder an den Gitterpunkten des reziproken Gitters
und enden auf einem regelméfligen Gitter innerhalb der 1. Brilloin-Zone. Dieses Untergitter
entspricht dem Bravais-Gitter des reziproken Gitters [62, [43] B6]. Die Basisvektoren dieses
Phononengitters entsprechen denen des reziproken Gitters (vgl. ), die jeweils um den
Faktor 1/N; skaliert sind, wobei IV; der Anzahl der Einheitszellen bzw. Atome des Kristalls

in dieser Richtung entspricht [36]. Somit ist die Basis fiir das Gitter der Phononenvektoren

- 2m ~ 27 - 2m
B = — 0 s B n= - , B n= - 0 s 2.83
1,phon A 71 2,pho N. 3,pho N ( )

womit alle Wellenvektoren der Bedingung
g= nlél,phon + nQBQ,phon + nSBS,phon (284)

geniigen, wobei fiir die ganzzahligen Faktoren n; gilt, dass —NV;/2 < n; < N;/2. Fiir den Fall
eines kugelformigen PdAu Kristalls mit Durchmesser » 6 nm sind die Endpunkte der ca. 7000
Wellenvektoren in der 1. Brilloin-Zone in Abb. [2.9) als blaue Punkte eingezeichnet.

Damit konnen die Wellenvektoren aller moéglichen Phononen nur aus den Eigenschaften des
Gitters vollsténdig abgeleitet werden. Was bleibt ist die Bestimmung der Amplituden, inklu-

sive Orientierung, und der Schwingungsfrequenzen.
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-1/2

Abbildung 2.9: Darstellung der Endpunkte aller Wellenvektoren in der 1. BZ eines ku-
gelformigen PdAu Kristalls mit Durchmesser » 6 nm.

Sowohl Schwingungsfrequenz als auch Schwingungsrichtung kénnen iiber die Born-von-Kar-
man-Theorie der Gitterschwingungen bestimmt werden [63] [64]. Darin héngt die riicktreiben-
de Kraft auf ein Atom linear von der relativen Verschiebung % aller Atome zu dem betrachte-
ten Aufatom ab. Die interatomare Kraftkonstante (engl. interatomic force constants) D;;(nl)
beschreibt die Kraft, die das Aufatom [ in Richtung ¢ durch die Verschiebung von Atom n in
j-Richtung erfihrt. Die gesamte Kraftkomponente F'(1); in Richtung ¢, die auf das Aufatom
[ wirkt, ist dann gegeben durch

N
F’(l)Z = Z (D,l(nl)ul(n) + D,g(nl)ug(n) + ng(nl)u;g(n) ) s (285)
n=1
woraus man mittels /' = m a die Bewegungsgleichung

d2u1(l) N
Mm—e © nzl (Di1(nl)ui(n) + Di(nl)ua(n) + Dig(nl)ug(n) ), (2.86)

erzeugen kann. Einsetzen von Gl (2.82) in Gl. (2.86) und Vereinfachen (siehe [62]) liefert
dann fiir die Frequenzen w und Schwingungsrichtungen € = (e1, 2, e3) die drei Bedingungen
(1=1,2,3)

- mw?e; = g: (Dji1(nl)ey + Dia(nl)es + Dig(nl)es ) cos (27r(j(ﬁin - Rl)) (2.87)

n=1
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Ausgehend davon, lassen sich anstatt D;;(nl) nun G spezifische Koeffizienten definieren als

1 X L
Dij(q) = _EZ D;j(nl) cos (2mG (R — Ry)). (2.88)

Damit wird aus den Gl. (2.87) fiir jeden Wellenvektor ¢ das lineare Gleichungssystem,

(D11(g) - w?(q)) e1 + D12(q)e2 + D13(g)es =0 (2.89a)
Dy1(G)er + (D22(§) —w?(q)) e2 + Das(§)es = 0 (2.89b)
D31(@)€1 + D32((j)62 + (D33((j) - WQ(Q)) €3 = 0 (2.890)

Die nicht-triviale Losung von Gl. (2.89a] - , also Losungen abseits von e; = ey = e3 =0,
sind durch die Nullstellen der Determinante der Koeffizientenmatrix, auch dynamische Matrix

genannt, bestimmt. Es gilt also fiir diese Losungen

D11(q) - w?(4) D12(q) D13(q)
D21(9) Das(q) - w*(4) D13(q) = 0. (2.90)
Ds1(q) D33(q) Ds3(q) - w?(q)

Die sich daraus ergebende Sekulargleichung oder charakteristische Gleichung ist eine Glei-
chung dritten Grades von w?(§), woraus sich die (Kreis)Frequenzen der drei zu ¢ gehdrenden
Phononen bestimmen lassen. Eine elegante und fiir die Implementierung in Matlab besonders
geeignete Losungsmethode dieser Gleichung, erfolgt iiber die Begleitmatrix des charakteris-
tischen Polynoms. Wenn das Polynom die Form 3 + pox? + p1x + po = 0 mit = = w? hat, sind

seine Nullstellen identisch zu den Eigenwerten der Begleitmatrix in Kardinalform [65]

-po(q) -p1(G) -p2(q)
1 0 o |. (2.91)
0 1 0

Im konkreten Fall folgen die Koeffizienten des Polynoms aus Gl. (2.90)) und haben die Form

—p0(q) = D11(§) D22(§) D33(§) — D11(§) D33(@) — D15(3) D33()

— D¥3(q) D22(q) +2D12(§) D13(q) D23(q) (2.92a)
—p1(q) = Di2(§) + D 3(Q) + D23(Q)

- D11(q)D22(q) — D11(q)D33(q) — D22(G) D33(q) (2.92b)
—p2(q) = D11(q) + D22(q) + D33(). (2.92¢)

Damit liefert die Eigenwertbestimmung von Gl. (2.91]) die Dispersionsrelationen fiir die Schwin-

gungsfrequenzen wq(q), w2(§) und wz(g). Durch Einsetzen von w;(g) in Gl. (2.89a| - ,

zusammen mit der Bedingung || = 1 <> €2 + €3 + 3 = 1, ergeben sich schlielich die zu den
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Schwingungsfrequenzen gehtérenden Schwingungsrichtungen é;. Tatséchlich miissen aber nur
zwei Orientierungen ausgerechnet werden, da die Schwingungsrichtungen orthogonal zuein-
ander stehen und die dritte tiber das Kreuzprodukt der beiden anderen bestimmt werden

kann.

Die vollstandige Charakterisierung der Phononen, in Abhéngigkeit von den bereits bekannten
¢, wurde somit auf die Bestimmung der 9 Koeffizienten D;;(§) reduziert. Diese soll nun fir

ein kubisch-flichenzentriertes Material erfolgen.

Dazu werden die Gréflen in Gl. (2.88) zunéchst in Gitterkoordinaten angegeben, also

~ 1 - N N
Rn - Rl = 5 (n1A1 + TLQAQ + TL3A3) (2.93&)

— —

B B B
G=q1 + e + a3, (2.93b)
2 2 2

wobei fiir die Ganzzahlen ny,ns,n3 die Einschrankung gilt, dass ihre Summe immer gerade
ist und fiir ¢1,¢2,¢3 <1 gilt (vgl. mit Gl. als alternative Darstellung). Der Faktor 1/27
in Gl dient der Normierung auf die 1. Brilloin-Zone und entspricht der Konvention
aus [62]. Damit wird Gl. zu

D;j(q) = L Y. Dij(ninanz) cos(m(n1qi +nage + n3qs)). (2.94)
ni,n2,n3

Die Koeffizienten D;j(ningn3) nehmen mit wachsendem Abstand zum Aufatom ab, weshalb
in der Regel die Summe in GI. nur iiber einige Schalen von n#chsten Nachbarato-
men ausgefithrt wird. In Anlehnung an [62], wird die Summe hier bis zur dritten néchsten
Nachbarschale ausgefiihrt. Die 12 néchsten Nachbaratome der ersten Schale sitzen auf den
ningng = 110 Positionen (also alle eindeutigen Permutationen davon, inklusive Vorzeichen-
tausch), die 6 Uberniichsten Nachbarn sind auf den Positionen ningns = 200 und die 24
drittnéchsten Nachbarn auf den Positionen ninsng = 211. Insgesamt gibt es also 42 Koeffizi-
enten D;j(ningng) zu bestimmen, die aber aufgrund der Symmetrie des Gitters lediglich aus

den folgenden 9 unabhéngigen Koeffizienten bestehen:

D11(101) = Q] D11(200) = Q9 D11(211) = Q3
D32(101) = 5 D22(200) = 32 Dy2(211) = f3 (2.95)
Ds31(101) = Dy3(211) =3 D15(211) = 03
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Der Index dieser 9 Koeffizienten auf der rechten Seite bezieht sich auf die Ordnung der
zugehorigen nichsten Nachbarschale. Die Bestimmungsgleichungen der D;;(§) werden damit

zu

D (@) = (I + 27305 (27g0) | sin () s )

+ 203 cos (mqy,) [sin (2mg; ) sin (7q;) + sin (27g;) sin (7g;)]) (2.96a)

Di(@) = (o [2 - c0s (05) (cos (na5) + cos (7))
+ 1 [1 - cos (mq;) cos (mqy)]
+ g sin? (mg;) + B2 [sin2 (mq;) + sin? (qu)]
+ 203 [1 - cos (2mg;) cos (mq;) cos (mqy) ]
+2033[2 - cos (mq;) (cos (2mq;) cos (mqy) + cos (mg; ) cos (2mqy))]). (2.96b)

Die D;;(g) in der Form von GI(2.96a und [2.96b) kann man heranziehen, um w(g) geméis
Gl auszurechnen. Im Allgemeinen fiihrt das zu offensichtlich unhandlichen Ausdriicken.
Fiir die drei Richtungen mit der héchsten Symmetrie im kubischen Gitter, also [100], [110]
und [111], werden diese Ausdriicke aber zum einen sehr kompakt, zum anderen sind alle

Komponenten ¢;, g; und ¢, entweder null oder gleich. Somit hangen Gl. (2.96al) und GI. (2.96b))

effektiv nur noch von einem einzelnen, skalaren ¢ ab.

Fiir die [100]-Richtung ergibt sich dann

Wi =2 (ay + 26 sin? (zq) + L (g + 485) sin? (mq) (2.97a)
m 2 m

or =+ + 203+ 255)sind ( 3) + = (B + 48) s (). (2.97b)
m 2 m

Die Frequenzen der beiden Transversalschwingungen wr sind hier identisch fiir alle Richtun-
gen in der Ebene senkrecht zur [100]-Richtung. Selbiges gilt fiir die [111]-Richtung, bei der
fiir die Schwingungsfrequenzen gilt
4 .y
wr =—((201 + 261 + a2 + 202 + 23 + 483 + 2y1 — 43) sin” (7q)
m
+ (a3 + 2B + 273 + 463) sin? (27¢)) (2.98a)
4 .
wr =R((2a1 + 81+ g + 280 + 2003 + 433 — 1 + 23) sin? (7q)

+ (a3 + 263 — 73 - 203) sin? (27q)), (2.98b)
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und fiir [110] schlieBlich

wr, :i((2a1 + 251 + 2043 + 2,83 - 4(53) sin2 (Eq)
m 2
+ (a1 + ag + B2 + 203 +y1 + 273) sin? (7q)
+ (Lag + 23 + 403) sin? (%Tq)) (2.99a)
w1 :i<(2a1 + 2/31 + 2043 + 2,63 - 453) Sin2 (zq)
m 2
+ (o1 + g + B + 23 — 1 — 273) sin® (7q)
+ (Lo + 283 — 443) sin? (%Tq)) (2.99b)
4 . T
w9 =—((4a1 +403) sin? (—q)
m 2
+ (ﬂl + 252 + 2@3) sin2 (7rq)
+ 43 sin® (%Tq)) (2.99¢)

(2.99d)

Die Dispersionsrelationen (2.97a)) bis (2.99¢|) sind ausreichend, um die 9 Koeffizienten «, S
etc. zu bestimmen. Sie werden als Messergebnisse aus Neutronenstreuung gewonnen und in
der Literatur fiir gewohnlich graphisch dargestellt, z.B. fiir Gold in [66] oder fiir Palladium
in [67] (siehe auch Abb. [2.10). Diese Daten dienen in dieser Arbeit als Ausgangspunkt zur
Bestimmung der 9 Koeffizienten und damit der dynamischen Matrix. Die Koordinate ¢ aus
Gl bis ist identisch in Abb. enthalten und entspricht dem iiblicherweise
angegebenen, reduzierten Wellenvektor ¢ (vgl. z.B. [67]). Die Symbole am oberen Rand von

Abb. spezifizieren die Punkte in der ersten Brilloin-Zone, wie sie in Abb. (S.
gezeigt sind.

r L r K r X
(Q00) 1(111) (oo) 3(011) (900) (001)
— i — longitudinal —_ | — i
— longitudinal I longitudinal
3 7 —trar?sversal 8. 7 %li:glr’:g\\;g:ggllé 8 7 — transversal
C 6 Pd 296K °6 © 6} Pd 296K
N (aqq] & | Pd 296K < -
° qaq = 2> 100
z, ;4[0qq] ;4[Q]
23 L3 23
=) 5 5
5 2 5 2 “g 2
£ 1 2y ©
% 02 02 06 08 1 % 02 04 06 08 1 D 02 04 06 08 1

qll’ al] qll
Abbildung 2.10: Phononen-Dispersionskurven von Pd bei einer Temperatur von 296 K zur
Berechnung der interatomaren Kraftkonstanten. Daten aus [67].
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Das Anfitten der in Abb. dargestellten Dispersionsrelationen mithilfe von Gl. (2.97a)) bis
(2.99¢) liefert folgende Werte fiir die Koeffizienten:

ap =19.38N/m az = T7.46N/m ag =-1.31N/m
B1 = 1.84N/m Bs = -2.19N/m B3= 0.01N/m (2.100)
1 = 18.36 N/m v3 = —-1.49N/m d3= 1.04N/m

Diese Koeffizienten beschreiben niherungsweise auf mikroskopischer Ebene (bis zum dritten
néichsten Nachbarn) denselben physikalischen Sachverhalt, wie die elastischen Konstanten
auf makroskopischer Ebene fiir das Material als Kontinuum. Daher kénnen die elastischen
Konstanten auch aus den 9 effektiven Federkonstanten aus GI. berechnet werden. Fiir

kubische Kristalle gilt, mit dem Gitterparameter a, der Zusammenhang aus [62]

c11 =(4aq +4ag + 16a3 + 8f3) /a = 223 GPa (2.101a)
Cqq 2(2041 + 251 + 452 + 3@3 + 2053)/@ =74 GPa (2101b)
C12 2(4’)/1 + 8’)/3 + 32(53)/0, —C44 = 170 GPa, (2.101C)

was zu einer recht guten Ubereinstimmung mit den Literaturwerten fiir Pd (c; = 226 GPa,
c12 = 175 GPa und cy4 = 71.4 GPa [46]) fiihrt.

Somit bleibt als letzte Unbekannte nur noch der Betrag der Schwingungsamplituden a;(q).
Im Weiteren sind aber nur die mittleren quadratischen Amplituden (a?(q)) relevant, die fiir

Gold und Palladium ab Raumtemperatur durch den Ausdruck

2kpT
(@}(D) = —5— (2.102)
HO) N2 @
gut angenéhert werden [62]. Hier sind m die Masse eines Atoms, N die Anzahl der Atome
im Kristall, w die Kreisfrequenz der Schwingung, kg die Boltzmann Konstante und T die

Temperatur.

Das bedeutet, dass die Gesamtheit der anregbaren Phononen (Ausbreitungsrichtung, Schwin-
gungsrichtung, Schwingungsfrequenzen) nur durch Eigenschaften des Kristalls bestimmt wird
und die Temperatur lediglich die Amplitude, oder anders betrachtet, die Besetzung dieser

Zustiande bestimmt.

Damit steht nun alles zur Verfiigung, um alle Phononen in einem perfekten, aber endlichen
Kristalliten zu berechnen. Aus der Korngréfie und der Kenntnis des Gitters lassen sich mit
GL und alle moglichen Wellenvektoren ¢ bestimmen. Mit diesen und mit den Ko-
effizienten aus Gl. konnen die drei Schwingungsfrequenzen mittels Gl. berech-
net werden, woraus sich dann die Schwingungsrichtungen mit dem Gleichungssystem
- ergeben. Die Amplitude ergibt sich mit GI. aus der Schwingungsfrequenz

und der Temperatur. Streng genommen ist das mit den gegebenen Werten nur fiir Palladium
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moglich. Fiir Gold kénnten die gleichen Schritte anhand der entsprechenden Dispersionsre-
lationen (z.B. [66]) ergénzt werden, worauf hier jedoch verzichtet wird, da die Herleitung
der Eigenschaften der Phononen fiir die hier untersuchte PdAu Legierung nicht iiber eine
einfache Mischungsregel erfolgen kann. Stattdessen wird als Naherung mit den Werten von

reinem Palladium weitergearbeitet.

2.4 Gitterfehler

Bisher wurden nur perfekte Einkristalle behandelt, sowie der ideale Polykristall, der als form-
und kraftschliissige Ansammlung unterschiedlich orientierter, perfekter Einkristalle aufgefasst
wurde. Reale Kristalle und Polykristalle besitzen jedoch eine Reihe von Abweichungen von
diesen idealen Modellen, die als Kristalldefekte (auch Fehlordnungen, Fehlstellen, Gitterde-
fekte) bezeichnet werden und nach ihrer rdumlichen Ausdehnung in 0-dimensionale Punktde-
fekte, 1-dimensionale Liniendefekte, 2-dimensionale Fldchendefekte und 3-dimensionale Vo-
lumendefekte gegliedert sind.

In vielen Fillen sind diese Defekte zahlreich vorhanden und beeinflussen die Materialeigen-
schaften mafigeblich [36], 68, [69]. Die unkonventionellen Eigenschaften nanokristalliner Metalle
sind im Kern eine Konsequenz aus der Anderung der Anzahl und des Charakters dieser Defek-
te und ihrem Zusammenspiel als Folge der nanokristallinen Struktur des Materials [12}, 16} [17].
Im Folgenden wird daher ein Uberblick iiber die mdglichen Defekte in der untersuchten, na-

nokristallinen PdAu Legierung gegeben.

2.4.1 Punktdefekte

Es gibt in der untersuchten PdAu Legierung drei mogliche Punktdefekte: Leerstellen, inters-
titielle bzw. Zwischengitteratome und Fremdatome. Leerstellen sind unbesetzte Gitterplitze
im Kristall, die bei Temperaturen {iber 0 K prinzipiell in jedem Kristall im Gleichgewicht
in einer bestimmten, temperaturabhingigen Konzentration auftreten, da ihre Anwesenheit
zu einer Erhohung der Konfigurationsentropie fiihrt, was eine Absenkung der freien Ener-
gie des Kristalls bewirkt [36] [69] [70]. Dariiber hinaus kann es bei bestimmten Legierungen,
unabhéingig von der Temperatur, zu zusétzlichen, stabilen Fehlstellen, den constitutional va-
cancies, kommen [71, [72]. AuBlerdem konnen Leerstellen, genau wie Zwischengitteratome,
durch plastische Verformung oder Bestrahlung erzeugt werden [36, 69, [70]. Eine zunehmen-
de Konzentration von Leerstellen fithrt zu einer Volumenzunahme der gesamten Probe, bei
gleichzeitiger Absenkung der Gitterkonstanten [73].

Fremdatome koénnen im Gitter entweder auf Zwischengitterplidtzen als interstitielle Fremda-
tome oder auf regulidren Gitterplidtzen als Substitutionsfremdatome auftreten [36] [74]. Beide
Félle spielen in dem hier untersuchten Material keine nennenswerte Rolle, da Fremdatome

nicht in relevanten Konzentrationen vorliegen (sieche EDX Messungen).
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2.4.2 Versetzungen

Schneidet man in einem Gedankenexperiment in einen Kristall und verschiebt die beiden
dadurch entstandenen Schnittflichen relativ zueinander um einen Gittervektor, so erzeugt
man entlang der Linie, die den Schnitt im Kristall berandet, eine 1-dimensionale Stérung der
Gitterperiodizitit; diese wird Versetzung genannt. Die statische der beiden Schnittebenen
wird dann Gleitebene genannt, relativ zu der die andere Ebene verschoben wurde. Versetzun-
gen wurden in den 1930ern als zentraler Bestandteil der Plastizitétstheorie von kristallinen
Materialien unabhéngig von Orowan [75] 76 [77], Polanyi [78] und Taylor [79, [80] erstmals
eingefiihrt. Sie werden durch die Versetzungslinie § und den Burgers-Vektor b [70] vollstéindig

charakterisiert.

Die Versetzungslinie ist eine Raumkurve im Kristall, welche die Lage des Kerns der Versetzung
beschreibt und ist identisch zu der Berandung des gedachten Schnittes in den Kristall. Sie hat
entlang ihrer Lénge einen einheitlichen Richtungssinn, der die Ausrichtung der Tangentialvek-
toren an die Versetzungslinie bestimmt, wodurch die mathematisch positive Umlaufrichtung
um die Versetzungslinie geméfi der Rechten-Hand-Regel festgelegt istF_rl Versetzungslinien
konnen aus geometrischen Griinden nicht im Kristall enden, sondern nur an Grenzflichen
(z.B. Oberflichen, Korngrenzen oder Phasengrenzflichen) oder sie formen geschlossene Kon-
turen. Dariiber hinaus kénnen sich Versetzungslinien in zwei oder mehr Versetzungslinien

aufspalten.

Der Burgers-Vektor gibt die Relativverschiebung des Kristalls entlang der Versetzungslinie
in Bezug auf ihre Richtung oder ihren mathematischen Umlaufsinn an und wird durch einen
sogenannten Burgersumlauf bestimmt. Dieser ist ein geschlossener Umlauf in der Ebene senk-
recht zur Versetzungslinie entlang von Gitterpunkten in mathematisch positivem Sinn. Fiihrt
man den gleichen Umlauf im perfekten Gitter durch, bleibt eine Liicke zwischen Anfangs- und
Endpunkt bestehen, deren Verbindungsvektor von Endpunkt zu Anfangspunkt der Burgers-
Vektor ist. Entlang einer Versetzungslinie ist die Ladnge und Ausrichtung des Burgers-Vektors
konstant und zwar auch dann, wenn die Versetzungslinie in mehrere Versetzungslinien auf-
spaltet. In diesem Fall ist die Summe aus den Burgers-Vektoren der aufgespaltenen Verset-
zungslinien gleich dem urspriinglichen Burgers-Vektor, also b= ¥ b;. Es gibt zwei offensicht-
liche, ausgezeichnete Richtungsbeziehungen zwischen Versetzungslinie und Burgers-Vektor:

Kollinearitéit und Orthogonalitit.

Stehen § und b senkrecht aufeinander, beschreiben sie eine Stufenversetzung (siehe Abb.
. Die Stufenversetzung wird durch eine zusétzlich in den zuvor defektfreien Kristall ein-
geschobene Gitterebene gebildet, die an der Versetzungslinie endet. Die Richtung, in der diese
Zusatzebene eingeschoben ist, wird durch den zu ihr senkrechten Burgers-Vektor bestimmt.

Die Ebene befindet sich relativ zur Versetzungslinie dort im Kristall, wo der Burgers-Vektor

1 7Zeigt der Daumen der rechten Hand in Richtung der Versetzungslinie, so zeigen die Finger der rechten Hand
in Richtung des mathematisch positiven Umlaufs um die Versetzungslinie.
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2.4 Gitterfehler

Abbildung 2.11: Schematische Darstellung einer (a) Schraubenversetzung und (b) Stufen-

versetzung. Der Burgers-Vektor b ist rot eingezeichnet, die Versetzungslinie
blau. Die zusétzliche Halbebene der Stufenversetzung ist grau hervorgeho-
ben. Zeichnung entnommen aus [70].

entgegen der Umlaufrichtung um die Versetzungslinie orientiert ist. Oft werden Stufenverset-
zungen in Darstellungen mit dem Symbol 1 gekennzeichnet, bei dem die vertikale Linie in
Richtung der eingeschobenen Ebene ausgerichtet wird.

Sind § und b kollinear, beschreiben sie eine Schraubenversetzung, bei der die Kristallebe-
nen senkrecht zur Versetzungslinie einen schraubenformigen Pfad um die Versetzungslinie
beschreiben, &hnlich wie eine Wendeltreppe aus Gitterebenen (siehe Abb. . Wenn der
Burgers-Vektor in die selbe Richtung wie die Versetzungslinie orientiert ist, so ist die entste-
hende Schraube rechtsgéngig, im umgekehrten Fall linksgéngig.

Im Allgemeinen kann der Burgers-Vektor beliebige Orientierungen relativ zur Versetzungslinie
einnehmen, womit Versetzungen in der Regel eine Mischung aus Stufen- und Schraubenver-
setzung sind, deren Zusammensetzung sich bei gekriimmten Versetzungslinien kontinuierlich
dndern kann.

Die Versetzungsdichte p, ist als Gesamtldnge aller Versetzungen [, pro Einheitsvolumen V'
definiert, also p, =1,/V. Die Werte fiir Versetzungsdichten kénnen sich fiir verschiedene Ma-
terialien iiber viele Gréflenordnungen erstrecken. So haben Siliziumwafer fiir die Halbleiter-
produktion sehr niedrige Versetzungsdichten um 10° 1/m?, normale Kristalle etwa 10! 1/m?
und stark verformte Metalle bis zu 10 1/m? [70].

In der Nédhe der Versetzung sind die Atome relativ zu ihrer normalen Gleichgewichtsposition
verschoben, was eine lokale Dehnung erzeugt. Diese fithrt, aufgrund der elastischen Eigen-
schaften des Kristalls, zu einer Spannung und somit zu einer Energieerh6hung. In unmittel-
barer Niahe der Versetzungslinie sind die Abweichungen der Atompositionen von denen des
Gitters so grof}, dass in diesem Bereich die lineare Elastizitdtstheorie nicht mehr sinnvoll an-
gewandt werden kann. Diesen Bereich der Versetzung nennt man Versetzungskern, der in der
Regel einen Durchmesser von 2 bis 8 Burgers-Vektorlingen senkrecht zur Versetzungslinie,
also < 21111][1—_7]7 besitzt [70].

12Die Linge des Burgers-Vektor in den untersuchten PdAu-Legierungen betréigt ~ 277 pm + 2 pm
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Fiir gerade Versetzungslinien lassen sich analytische Ausdriicke fiir die Spannungs- und Deh-
nungsfelder von Schrauben und Stufenversetzungen in elastisch isotropen Medien herleiten.
Die Dehnungskomponenten des Dehnungstensors einer rechtsgingigen Schraubenversetzung
mit Versetzungslinie entlang der x3-Richtung und Schnittebenennormalen in z9-Richtung
sind nach [70]

. _@sin(ﬁ)

BT T4y

€23 = 18] cos (9) (2.103)
T r

€11 = €22 = €33 = €12 = 0.

Hier ist 8 der Polarwinkel um die Versetzungslinie, wobei die Schnittebene der Versetzung
bei 6 = 0 liegt und r die Abstandskoordinate zur Versetzungslinie ist. Fiir die Spannungen

gilt mit dem Schermodul G

G|b| sin (0)
oj3= - ——=
2 T
023 = —G|b| s () (2.104)
2T r

011 = 022 =033 =012 = 0.

Bei Schraubenversetzungen treten also nur radialsymmetrische Scherspannungen und Scher-
dehnungen auf, die proportional zur Liénge des Burgers-Vektors sind und mit 1/r abnehmen.
Beides ist in Abb. dargestellt. Sowohl GI. als auch GI. sind nur fiir
r > 1o giiltig, wo rg der Radius des Versetzungskerns ist. Fiir » — 0 ergibt sich sogar der
physikalisch unsinnige Befund von divergierenden Spannungen und Dehnungen. Zusétzlich
erzeugen die Scherspannungen in endlich ausgedehnten Kristallen eine Verdrehung um die
Versetzungslinie, die als Eshelby-twist bekannt ist [70] 81].
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Abbildung 2.12: Dehnungen (links) und Spannungen (rechts) um die Versetzungslinie einer
rechtsgidngigen Schraubenversetzung. Die Versetzungslinie steht senkrecht
auf der gezeigten x-y-Ebene bzw. x1-xo-Ebene. Die Normale auf die Ebene
ist die z- oder zs-Richtung, die Normale der Schnittebene der Versetzung
zeigt in die y- oder xo-Richtung. Der Burgers-Vektor zeigt entlang der xs-
Richtung aus der Zeichenebene heraus.

Fine Stufenversetzungen mit Burgers-Vektor entlang der zi-Richtung und Versetzungslinie

entlang der x3-Richtung erzeugt in einem isotropen Medium das Spannungsfeld [70]

Gbly  3z%+1?

o1 = -

2(1-v) (22 +y?)>?

Goly — 2?-y?
o‘ =

22 2r(1-v) (22 +y?)?

o33 = V(011 +022)

Glolz 2% - y?
o12 =

2n(1-v) (22 +y2)2

013 = 023 = 0,

(2.105)
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wobei v hier die isotrope Poissonzahl bezeichnet und die z1- und zs-Koordinaten hier durch
x und y ausgedriickt sind. Die entsprechenden Dehnungen erhélt man direkt aus der Elasti-
zitétstheorie mithilfe des isotropen Nachgiebigkeitstensors, womit sich ein ebener Dehnungs-
zustand in der x1-x2-Ebene ergibt, also der Ebene senkrecht zur Versetzungslinie. Beides ist
in Abb. dargestellt. Dieses Modell vernachlissigt die elastische Anisotropie der PdAu
Legierung vollstéindig, ist aber dennoch gut geeignet um die Absolutwerte der Spannun-
gen und Dehnungen, sowie ihre Ortsabhéngigkeit abzuschétzen und zu illustrieren. Das ist
besonders fiir das Versténdnis der Modellierung des Einflusses von Versetzungen auf die
Rontgenstreuung von Bedeutung.

Die elastische Dehnungsenergie durch die Anwesenheit einer Stufen- bzw. Schraubenverset-
zung ergibt sich aus GI. und resultiert im isotropen Modell in [70]

2
W (Stufe) = av ln(E) (2.106a)
47 T0
2
We(Schraube) = L G In (E) (2.106Db)
1-v 4r )

Hier ist R der duflere Abschneideradius, bis zu dem das elastische Feld der Versetzungen
beriicksichtigt wird. Im Fall von nanokristallinen Kérnern entspricht R etwa dem Kornradius.
Zur Gesamtenergie der Versetzung fehlt noch der Energieanteil des Versetzungskerns, der in
einen elastischen Verzerrungsanteil und einen Fehlpassungsanteil zerlegt werden kann [82].

Die Modellierung der Energie der elastischen Verzerrung ist bereits Gegenstand des Peierls-
Nabarro Modells [83], [84], das in modernisierter Form auch heute noch als rechenzeitsparsame
Alternative zu aufwéndigeren ab-initio Energierechnungen zur Anwendung kommt [82]. Dieser
elastische Anteil des Versetzungskerns liefert noch einmal ca. 1/6 der elastischen Energie im
AuBlenraum [70} [82] und héngt, wie diese, vom Versetzungscharakter ab. Auch hier ist die
Energie der Stufenversetzung hoher als die der Schraubenversetzung. Die gesamte elastische
Verzerrungsenergie ist fiir Stufenversetzungen somit im Wesentlichen um den Faktor 1/(1 -
v) ~ 1.5 grofler als die von Schraubenversetzungen und héngt in allen Féllen entscheidend

von der Lange des Burgers-Vektors ab.
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Abbildung 2.13: Dehnungen (links) und Spannungen (rechts) um die Versetzungslinie einer
Stufenversetzung. Die Versetzungslinie steht senkrecht auf der gezeigten x-
y-Ebene bzw. x1-zs-Ebene. Die Normale auf die Ebene ist die z- oder z3-
Richtung. Der Burgers-Vektor zeigt hier entlang der x- bzw. x1-Richtung
und die Versetzungslinie entlang der z- oder x3-Richtung.

Der zweite Anteil zur Energie des Versetzungskerns bezieht sich auf die Fehlpassung der

Versetzung in Relation zur Gleitebene und kann geschrieben werden als [82]

Wast = | _ 7(3())da. (2.107)
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Hier ist # eine Ortskoordinate, 0(Z) die Verschiebung parallel zur Gleitebene und ~ die
generalisierte Stapelfehlerenergie [85]. Letztere gibt die Exzessenergie pro Einheitsfliche an,
wenn man zwei benachbarte Gitterebenen trennt, um ¢ verschiebt und wieder verschweif3t
[85]. Diese generalisierte Stapelfehlerenergie wird in der Literatur in der Regel als 7-Fliche
dargestellt, in der die y-Werte fiir alle Verschiebungen ¢ in der Gleitebene dargestellt sind.
Aufgrund der Gitterperiodizitét ist es ausreichend nur den nicht reduzierbaren Ausschnitt der
v-Fléche darzustellen, was fiir {111} Gleitebenen eine Verschiebung von maximal 1/2[110]
und 1/2[112] umfasst. Die Gesamtfliche ergibt sich dann aus periodischer Wiederholung
dieses Ausschnitts. Diese generalisierte Stapelfehlerenergie wird durch Computersimulationen
mit DFT (Density Functional Theory) oder Molecular Dynamic Simulationen berechnet [86),
[87, 185, [88],[89]. Fiir Pd ist die y-Fléche aus einer Molecular Dynamic Simulation mit LAMMPS
[90] unter Nutzung des EAM—Potentialﬂ aus [89] in Abb. gezeigt.

y [m]/m?2]
2000
1500
—
N
h 1000
o\
~
-
500
0

b
0 02 04 06 08 1
1/2 [101]

Abbildung 2.14: Darstellung der generalisierten Stapelfehlerenergie von Pd in Abhéngigkeit
von Verschiebungen in [101] und [121]-Richtung aus einer Molecular Dyna-
mic Simulation mit dem EAM Potential aus [89]. Einige mogliche Burgesvek-
toren sind beispielhaft mit Pfeilen dargestellt, welche die lokalen Minima der
~v-Flédche miteinander verbinden. Der Index p kennzeichnet Burgersvektoren
partieller Versetzungen.

Die Fehlpassungsenergie aus Gleichung (2.107)) entspricht somit dem Integral iiber die ~-

Flédche iiber die Ausdehnung des Versetzungskerns, also dem Bereich der Versetzung, in dem

BEmbedded Atom Model
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die nicht-elastische Fehlpassung vorliegt. Die Minimierung des Funktionals der Gesamtenergie

der Versetzung

Wiot = Wel.,O + Whisfit + Wel.,oo ) (2108)
Kern Umgebung

mit der elastischen und Fehlpassungsenergie des Kerns W o, Whisat und der elastischen
Verzerrungsenergie um die Versetzung W o, liefert dann die Lage und Ausdehnung der
Versetzung im Gleichgewicht in der Gleitebene [01) [82]. Der Anteil der elastischen Energie
durch die Verzerrung um die Versetzung ist kontinuumsmechanisch gerechnet und liefert da-
her keinen Beitrag zur Bestimmung der Position der Versetzung. Daher resultiert die Position
allein aus der gitterperiodischen Natur der Kernenergie der Versetzung. Eine Verschiebung
der Versetzungslinie aus dieser Gleichgewichtslage bedingt eine Energieerh6hung der Verset-
zung, weshalb dazu eine Kraft, bzw. eine Scherspannung parallel zur Gleitebene aufgebracht
werden muss. Diese wird Peierls-Spannung o, genannt und entspricht ndherungsweise [69]

2 2
G axp(--2 (2.109)
1-vb

o= 1-v
wobei d der Abstand benachbarter Gleitebenen bezeichnet. Eine genauere Néherung fiir o),
ist in [82] durch
Gb (sin®(0
op = T(w+cos2(0))exp(—l.7g) (2.110)
a 1-v a
gegeben mit dem mittleren Abstand benachbarter Atome in Gleitrichtung a, dem Winkel

zwischen Burgers-Vektor und Gleitrichtung # und der Halbwertsbreite des Versetzungskerns

C.

Krifte konnen auf Versetzungen ausgeiibt werden, indem ihre Spannungs-/Dehnungsfelder
mit externen Spannungs-/Dehnungsfeldern interagieren. Findet eine Uberlagerung derart
statt, dass sich Dehnungen/Spannungen gegenseitig autheben, wird die elastische Energie des
Kristalls vermindert, was eine anziehende Kraft zwischen den Spannungs/Dehnungsquellen
erzeugt. Im umgekehrten Fall wird eine abstoflende Kraft erzeugt. Die externen Spannun-
gen und Dehnungen kénnen durch von auflen angelegte Kréfte verursacht werden, aber auch

durch Punktdefekte, Ober- bzw. Grenzflichen oder andere Versetzungen.

Fiir nanokristalline Materialien ist der Fall von Grenzflichen von besonderer Bedeutung, da
sich jede Versetzung zwangsldufig immer in der Ndhe einer solchen befindet. Zunéchst soll zur
Darstellung des Prinzips aber der Fall einer freien Oberflache betrachtet werden. Spannungen
und Dehnungen kénnen jenseits der freien Oberfliche mangels Material nicht existieren, wes-
halb diese, zusammen mit der elastischen Energie, dort verschwinden. Tritt nun ein Teil des

gedachten Spannungs-/Dehnungsfeldes einer Versetzung im unendlich ausgedehnten Kristall
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durch diese Oberfliche hindurch, wird ihre elastische Energie um die des hindurchgetrete-
nen Teiles verringert. Diese Absenkung der elastischen Energie erzeugt eine Kraft auf die
Versetzung in Richtung Oberfliche. Modellieren lésst sich das durch eine an der Oberfliche
gespiegelte, virtuelle Versetzung mit entgegengesetztem Richtungssinn der Versetzungslinie,
die entgegengesetzte Spannungs-/Dehnungsfelder erzeugt. Die Spannungs-/Dehnungsfelder
der realen Versetzung und die der Bildversetzung heben sich an der Oberfliche auf, und die
Kraft auf die Versetzung Richtung Oberfliche ist identisch zur Kraft zwischen Versetzung
und Bildversetzung. Die Kraft skaliert also mit dem Abstand zur Oberfliche 2 wie 1/x und
ist daher fiir Versetzungen in freien Nanopartikeln immer vergleichsweise hoch. Somit sollten
per Inert Gas Condensation (IGC) hergestellte Kristallite vor der Kompaktierung frei von
Versetzungen sein. Im Fall von Korngrenzen ist die Sachlage wesentlich komplexer. Einerseits
gibt es auch hier eine Energieabsenkung durch die groflere elastische Nachgiebigkeit in den
Korngrenzen [6], andererseits kann der Kristallit jenseits der Korngrenze beliebig orientiert
sein, sodass durch die elastische Anisotropie die effektive Nachgiebigkeit fiir das Spannungs-
feld hoher oder niedriger sein kann. Dadurch sind sowohl anziehende als auch abstoflende
Krifte auf die Versetzung denkbar. Dariiber hinaus gibt es weitere Komplikationen wie etwa
Verzerrungsfelder in Korngrenznihe von Nanokristalliten [92) 03, 94] [95] [06], Pinning der Ver-
setzung an Korngrenzen [97] oder die kontinuierliche Langendnderung der Versetzungslinie,
wenn sich eine Versetzung radial in einem kugelférmigen Kristall bewegt, die eine einfache,
allgemeingiiltige Aussage iiber die Interaktion von Versetzungen mit Korngrenzen unméglich

machen.

Da die Energie einer Versetzung mafigeblich quadratisch von der Linge des Burgers-Vektors
abhéingt, verursacht die Existenz/Bildung von Versetzungen mit dem kiirzest moglichen
Burgers-Vektor den geringsten Energiezuwachs. Solche Versetzungen werden daher mit der
hochsten Wahrscheinlichkeit gebildet oder kénnen, ohne duflere Einwirkung, dauerhaft im
Kristall verbleiben. Da der Burgers-Vektor einer vollstdndigen Versetzung immer ein Git-
tervektor ist, ist der kiirzest mogliche Burgers-Vektor der Verbindungsvektor zu néchsten
Nachbaratomen vom Typ 1/2(110) mit einer Linge von a/v/2 [70, ©8]. Diese stehen immer
senkrecht auf den Normalen von {111} Gleitebenen. Im fcc Gitter{lzl liegt aber eine ...ab...
Abfolge von zueinander verschobenen Ebenen in (110)-Richtung vor, dhnlich der ...ABC...
Ebenenfolge in (111)-Richtung. Betrachtet man die Ebenenfolge in [110]-Richtung, entspricht
der Burgers-Vektor in dieser Richtung von einer Ebene zur néchsten, also von a nach a, dem
primitiven Gittervektor d;. Die iibrigen primitiven Gittervektoren do und ds beschreiben
dann den Ubergang von a nach b, haben aber, im Unterschied zu d1, eine Verschiebungskom-
ponente in (111)-Richtung. Eine Stufenversetzung besteht in diesem Fall also nicht aus einer
einzelnen, zusétzlich eingeschobenen Ebene, sondern aus einem ...ab... Ebenenpaar. Genauso,

aber weniger anschaulich, umfasst auch die Relativverschiebung einer Schraubenversetzung

HModer allgemein in dichtest gepackten Gittern, also auch in hep Gittern.
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2 Ebenen. Dieser Sachverhalt ist in Abb. in Anlehnung an die Darstellung in [98] veran-

schaulicht.

Blickrichtung [111] Blickrichtung[lgi]b b ababab
ababababababa

~—Gleitebene

Abbildung 2.15: (links) Illustration zur ...ab... Abfolge der (110)-Ebenen in Anlehnung an
die Darstellung der Stapelfolge in [111]-Richtung (Blickrichtung). Zusétzlich
sind die Burgers-Vektoren einer vollstdndigen Versetzung, sowie die Auf-
spaltung in zwei Burgers-Vektoren von Partialversetzungen gezeigt. (rechts)
Seitenansicht der linken Darstellung. Auf die Darstellung von Einzelatomen
wurde zur besseren Ubersichtlichkeit verzichtet. Aufierdem ist eine Stufen-
versetzung auf einer Gleitebene und ihre Aufspaltung in zwei Partialverset-
zungen mit eingeschossenem Stapelfehler dargestellt. Darstellung in Anleh-

nung an [98]

Damit ist es moglich, diese Versetzung in zwei partielle Versetzungen aufzuspalten, die je-
weils nur eine Verschiebung auf eine der beiden Ebenen realisiert. Die partiellen Versetzun-
gen haben kiirzere Burgers-Vektoren by und bpy in der {111}-Ebene vom Typ 1/6(211) mit
einer Linge von a/V/6 fiir die gilt, dass Bpl + BpQ = ). Diese Versetzungen werden Shockley-
Partialversetzungen (engl. Shockley partials) genannt. Ihre Burgers-Vektoren entsprechen
genau den Relativverschiebungen von aufeinander folgenden {111}-Ebenen (vgl. Gl
- (2.14a))), sodass die {111}-Ebenenfolge zwischen partiellen Versetzungen von ...ABCABC...
zu ...ABCA;C;ABC... gedndert ist, was gerade einen zweidimensionalen intrinsischen Stapel-
fehler darstellt.

Da die elastische Energie von Versetzungen proportional zur Linge des Burgers-Vektors ist,
ist die elastische Energie zweier Partialversetzungen W oc 2-a%/6 geringer als die Energie einer
vollsténdigen Versetzung W o a?/2, was die Aufspaltung einer vollstandigen Versetzung in
zwei Shockley Partialversetzungen begiinstigt. Dariiber hinaus ist die Energiebarriere in der
~-Fliche (siehe Abb. fiir Partialversetzungen kleiner als fiir vollstdndige Versetzungen,
was sowohl eine Verringerung ihrer Kernenergie, als auch eine niedrigere Aktivierungsbarriere
fiir Nukleation und Bewegung nach sich zieht. Die Interaktion der Spannungsfelder der beiden
Partialversetzungen resultiert in einer abstoflenden Kraft, welche die Versetzungen auf ihrer
gemeinsamen Gleitebene auseinander treibt. Andererseits fithrt der zwischen den beiden Par-
tialversetzungen gebildete Stapelfehler zu einer Energieerhohung dW = yd A, was wiederum

eine abstandsunabhéngige anziehende Kraft zwischen den Partialversetzungen erzeugt.
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Dadurch stellt sich ein Gleichgewichtsabstand dg ein, der ndherungsweise durch

Gv?

0p=——
0 4mry

(2.111)
beschrieben wird [70]. Fiir Palladium ergibt sich damit ein Partialversetzungsabstand von
do ~ 0.39nm » a bis Jp ~ 0.55nm ~ 1.5a, je nach Literaturwert fiir die Stapelfehlerenergie von
Pd [86, 87, [99] 100], T0T]. Diese Abschétzung ist nur fiir spannungsfreie Kristallite giiltig und
beriicksichtigt keine Effekte von Oberflichen/Grenzflichen, die iiber Bildkréfte oy vergrofiern
konnten, oder die Partialversetzungen komplett in Korngrenzen ziehen und absorbieren, was
Stapelfehler iiber die komplette Schnittfliache von Kérnern zuriicklassen konnte [102], 103], [104].
Dariiber hinaus gibt es eine zweite Art von Partialversetzungen, die Frank-Partialversetzung
(engl. Frank partials) [105, [70], mit Burgers-Vektoren der Form 1/3(111). Sie beranden Sta-
pelfehler, die durch Agglomeration von Leerstellen in einer {111}-Ebene (intrinsischer Sta-
pelfehler) oder Agglomeration von interstitiellen Atomen (extrinsischer Stapelfehler) gebil-
det wurden. In Metallen mit hoher Stapelfehlerenergie, wie etwa Pd, werden diese Gitter-
fehler jedoch in der Regel iiber ein Zusammenspiel von Shockley Partialversetzungen und

vollstédndigen Versetzungen abgebaut [70].

2.4.3 Stapelfehler und Zwillingsgrenzen

perfekte intrinsischer extrinsischer Zwillin
Stapelfolge Stapelfehler Stapelfehler 9
A A AB * % %C o0 oA *® % % C
[ N N ¥ A A AB ® * #C 00 0A
* * ®C 0 0A A A AB A A AB
A A AP ® % ® C ® 00 A ® % % C
[111] o0 o0 A A A B A A AB —e & & A
® ® ® C * % * C ® % % C *® * * C
A A AP A A APB A A AB A A AP
00 OO0 0A OO0 0A oo oA
P>[112] Blickrichtung [110]
Abbildung 2.16: Illustration zu intrinsischen und extrinsischen Stapelfehlern, sowie zu Zwil-
lingsgrenzen.

Kubisch-flichenzentrierte und hexagonale Kristallgitter besitzen dichtest gepackte Ebenen,
deren Staplung den gesamten Kristall aufbauen. Fiir fcc Kristalle sind das die {111}-Ebenen,
die in drei aufeinander folgenden Lagen um 1/3(111) in Normalenrichtung zueinander ver-
schoben sind. Die drei Lagen A, B und C unterscheiden sich jeweils durch Verschiebungen um
1/6(211) relativ zueinander in den {111}-Ebenen. Eine Stérung dieser Abfolge ...ABCABC...
wird Stapelfehler genannt und entsteht durch Partialversetzungen (siehe Kapitel, Anla-

gerungen von Leerstellen oder Zwischengitteratomen durch Diffusionsprozesse, oder wahrend
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dem Kristallwachstum [70, 42, [69]. Stapelfehler konnen in intrinsische und extrinsische unter-
schieden werden. Beim intrinsischen Stapelfehler wird eine Ebene aus der Abfolge entfernt,
sodass sich die Abfolge zu ...ABC;BCA... dndert, beim extrinsischen Stapelfehler tritt eine
Ebene hinzu (...ABC;B;ABC...). Beides ist in Abb. dargestellt.

Durch diese Anderung wird in fcc Kristallen eine Kristalllamelle mit hexagonaler Struktur
erzeugt, in der dquivalente Ebenen nur durch eine Zwischenebene voneinander getrennt sind
(...ABABAB...). Das fiihrt zu eine Erhohung der potentiellen Energie des Kristalls propor-
tional zur Fliche des Stapelfehlers. Dieser Energiezuwachs ist abhéngig vom Material und
reicht von wenigen 10mJ/m? (z.B. Ag, Au, Cu [100, 87], bis zu einigen 100mJ/m? (z.B.
Ir, Pt [100, 87]). Im Fall von Palladium finden man in der Literatur intrinsische Stapel-
fehlerenergien von 161 mJ/m?2[87, 106, 180mJ/m? [T01} 107, 108, ©9], 220 mJ/m? [86] und
226mJ/m? [87] Die Stapelfchlerenergien von extrinsischen Stapelfehlern unterscheiden sich
nicht wesentlich von den intrinsischen, zumal die berichteten Abweichungen zwischen beiden
Typen oft geringer sind als die Unterschiede zwischen den intrinsischen Stapelfehlerenergien

aus unterschiedlichen Quellen.

Eine Generalisierung der Stapelfehlerenergie fithrt zu der bereits oben dargestellten y-Fléche
[85], welche die Exzessenergie pro Einheitsfliche fiir beliebige Relativverschiebungen von 2
benachbarten Ebenen angibﬂ Die Maxima der Flidche (siche Abb. entsprechen be-
nachbarten Ebenen vom gleichen Typ wie z.B. ...AA... und haben daher auflerordentlich
hohe Energien. Die Minima in den Ecken repriisentieren die ungestorte Konfiguration (...AB-
CABC...), die Aufgrund der Translationsinvarianz gegeniiber (primitiven) Gittervektoren
dquivalent sind und den exzessenergiefreien Grundzustand darstellen. Die restlichen Minima
der Flidche entsprechen dann den intrinsischen und extrinsischen Stapelfehlern. Die Hohen
niedrigster Energiebarrieren, die beim Ubergang zwischen diesen stabilen Konfigurationen
iiberwunden werden miissen, entsprechen den instabilen Stapelfehlerenergien und betragen
fiir Palladium ca. 300 mJ/m? [100, 99]. Stapelfehler, die innerhalb eines Kristalls enden, wer-
den von Partialversetzungen berandet (siehe vorherigen Abschnitt) andernfalls durch Ober-
bzw. Grenzflichen des Kristalls.

Die Stapelfehlerenergie von PdAu ist aufgrund der niedrigeren Stapelfehlerenergie von Gold
im Vergleich zu Palladium erniedrigt. Die Ergebnisse aus [99] zeigen fiir die hier untersuchten
Legierungen (ca, zwischen 10at.% und 20at.%) eine Absenkung auf ca. 78 % der Stapel-
fehlerenergie von Palladium, was einem Bereich von 125mJ/m? bis 176 mJ/m? entspricht.
Im Gegenzug dazu sind die instabilen Stapelfehlerenergien in diesem Konzentrationsbereich
nahezu unverdndert und steigen bei hoheren Goldkonzentrationen sogar leicht an.

Ein Spezialfall der Anderung der Stapelfolge im Kristall ist der Zwilling, der eine Spiegel-
ebene fiir die Stapelfolge darstellt (... ABC;BAC...) und fiir beide Kristallhélften jeweils

keine Storung des Gitters darstellt. Die Exzessenergie eines Zwillings ist dadurch signifikant

Y Die zugrundeliegende Rechnung erstreckt sich notwendigerweise immer iiber mehrere nichste Nachbarscha-
len und umfasst somit mehrere Ebenen oberhalb und unterhalb der zueinander verschobenen Ebenen|85].
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geringer als fiir Stapelfehler und betrédgt in der Regel nur ca. die Hilfte der Exzessenergie
eines Stapelfehlers [107, [T01]; fiir Pd liegen die Werte fiir Zwillingsenergien bei 76 mJ/m? bis
106 mJ/m? [87, T01]. In einer groben Niherung kann man die Ursache bereits in Abb.
erkennen: Fiir Stapelfehler existieren immer zwei Ebenenpaare dquivalenter Ebenen, die durch
lediglich eine Zwischenebene getrennt sind; beim Zwilling ist es lediglich ein Ebenenpaar.

Bei genauer Betrachtung verschwimmt beim Zwilling die Grenze zwischen Fehler in der Sta-
pelfolge und Korngrenze, einem weiteren Typ eines zweidimensionalen Gitterdefektes, der
unterschiedliche Kristallite voneinander abgrenzt. Man kann die Zwillingsgrenze als Korn-
grenze auffassen, wenn man die Kristallhélften oberhalb und unterhalb der Spiegelebene als

eigensténdige Kristallite betrachtet.

2.4.4 Korngrenzen

Verschiedene Kristallite im Polykristall werden als Kérner bezeichnet und unterscheiden sich
von ihren Nachbarkérnern durch unterschiedliche Ausrichtungen ihrer Gitter. Das wird durch
Misorientierung und Relativverschiebung bestimmt [69]. Die Misorientierung zweier Korner
kann durch die rdumliche Rotation beschrieben werden, die das Gitter des einen Korns in
das des andern iiberfithrt, wenn man die Urspriinge beider Gitter iibereinander legt. Diese
Drehung kann z.B. durch Angabe der drei Eulerwinkel, durch Angabe einer Drehachse (2
Parameter) und Kippwinkel um die Drehachse (+1 Parameter) oder durch Einheitsquarter-
nionen beschrieben werden. Nutzt man die Darstellung iiber eine Drehachse und den Kipp-
winkel ¢, so nennt man 1 auch Misorientierungswinkel, der in kubischen Gittern aufgrund
der Symmetrie auf das Intervall [0°,62.8°] beschrinkt werden kann [109]. Mackenzie hat
fiir die Wahrscheinlichkeitsverteilung des Misorientierungswinkels zwischen kubischen Kris-
talleﬂ in [I09] einen analytischen Ausdruck abgeleitet, der seither als Mackenzie-Verteilung
bekannt ist und der typische Verteilung von Misorientierungswinkeln in texturfreien poly-
kristallinen Materialien entspricht. Der Nachweis einer Mackenzie-Verteilung wird daher oft
als Beleg fiir Texturfreiheit und zufélliger Orientierungsverteilung der Kristallite herangezo-
gen; das ist typischerweise fiir IGC Nanomaterialien der Fall [53]. Allerdings beschreibt der
Misorientierungswinkel allein, ohne Angabe der Drehachse, keine eindeutige Misorientierung
der beiden GitteIE] und ist daher in vielen Fallen keine ausreichende Koordinate fiir die Be-
schreibung von Grenzflicheneigenschaften (Exzessenergie, Mobilitét, ...). Neben der reinen
Rotation, kénnen beide Gitter zuséitzlich relativ zueinander verschoben sein. Daher ist erst
durch Angabe der 6 Parameter zur relativen Rotation und Translation zweier Kérnern der

Unterschied in Orientierung und Lage ihrer Gitter vollkommen beschrieben.

Fiir bestimmte Orientierungsbeziehungen zwischen zwei Gittern mit gemeinsamem Ursprung,

kommt es zu Uberlappungen von Gitterpunkten der beiden Gitter, die Koinzidenzpunkte

'SEigentlich sogar allgemein fiir kubische Objekte.
'"Besonders ausgeprigt fiir ¢ ~ 45°.
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genannt werden [69]. Aufgrund der Gittersymmetrie formen diese Koinzidenzpunkte eben-
falls ein Gitter, das Koinzidenzgitter (engl. coincidence site lattice, CSL) genannt wird (vgl.
Abb. und aus groferen Einheitszellen als die urspriinglichen Gitter aufgebaut ist [69)
110]. Die Dichte der Koinzidenzgitterpunkte relativ zu jener der urspriinglichen Gitterpunk-
ten, ist dquivalent zum Volumen der Einheitszelle des CSL (Vg ) relativ zu dem der Ein-

heitszelle des Ursprungsgitters V, und definiert das Maf3 3 mit

y - Yest (2.112)
Va

Fasst man das Kristallgitter oberhalb und unterhalb einer Zwillingsgrenze als zwei getrennte
Gitter auf, sieht man anhand Abb. dass hier die A-Ebenen in beiden Gittern an den
korrekten Positionen sind, also jeder dritten Ebene, und damit ein ¥ = 3 CSL vorliegt. In
diesem Fall sitzen alle Atome der A-Ebenen auf Koinzidenzplétzen. Genauso gut kénnte auch

eine B- oder C-Ebene die Spiegelebene und damit die Koinzidenzplétze darstellen.

Tatséchlich ist das nur ein Beispiel fiir die allgemeine Eigenschaft, dass die Koinzidenzpunkte
des CSL, bei gegebener Misorientierung, durch jeden Gitterpunkt der beiden Kristallgitter
dargestellt werden konnen. Genauer gesagt gibt es fiir den Fall ¥ = X genau X alternati-
ve Darstellungen des CSL, die durch Relativverschiebungen der Gitter zueinander erzeugt
werden konnen. Die kiirzest moglichen Verschiebungsvektoren sind die, die innerhalb der
Einheitszelle des CSL die Gitterpunkte des ersten Gitters auf ihren néchsten Nachbar des
zweiten Gitters abbilden. Diese Vektoren sind Gittervektoren des grobsten moglichen Git-
ters, das beide Kristallgitter als Untergitter beinhaltet und DSC-Gitter (displacement shift
complete) genannt wird (siche Abb. A). Im 2d Beispiel von Abb. wird dieses Gitter
durch die Gittervektoren d, und Jy aufgespannt. Im Gegensatz zu den bisher betrachteten
Gittern, besitzt dieses unbesetzte Gitterpunkte, fithrt jedoch bei Verschiebungen um belie-
bige DSC Gittervektoren zu einer verschobenen Reproduktion des CSL. Genau genommen
stammt das DSC Gitter von den Ergebnissen der O-Gitter Theorie von Bollmann [I11] ab,

auf die an dieser Stelle aber nicht eingegangen wird.

In der Realitét konnen sich die Gitter benachbarter Kérner natiirlich nicht gegenseitig durch-
dringen, sodass es Fldchen geben muss, die benachbarte aber unterschiedlich orientierte Gitter
voneinander abgrenzen. Diese Flichen werden Korngrenzen genannt. Sie stellen eine flichige
Stoérung der Gitterordnung dar, da an ihnen der Ubergang von einer Orientierung zur anderen
(gegebenenfalls mit Verschiebung) erfolgt und zdhlen damit zu den 2d Gitterdefekten. Die
Gestalt der Korngrenze ist abhéngig von ihrer Orientierung relativ zu den angrenzenden Git-
tern und wird durch ihren Normalenvektor festgelegt. Da die Lange dieses Normalenvektor
nicht von Bedeutung ist, kann er durch nur zwei Parameter beschrieben werden (z.B. zwei
Winkel in orthogonalen Richtungen) [69]. Insgesamt sind fiir die Beschreibung einer Korn-
grenze mindestens 8 Parameter notwendig, zwei um die Orientierung der Korngrenzebene

festzulegen und sechs zur Beschreibung der Beziehung zwischen den angrenzenden Gittern.
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Abbildung 2.17: Tllustration zu DSC- und CSL-Gittern, sowie zu Koinzidenzkorngrenzen.
Darstellung in Anlehnung an [69] und [112].

Die Linien, an denen sich drei Korngrenzen treffen, werden als Tripellinien bezeichnet und

die Punkte, an denen sich vier Korngrenzen treffen, als Quadrupelpunkte.

Wenn beide Gitter gerade so orientiert sind, dass sie ein CSL ausbilden, wird die Korngrenze
durch die Koinzidenzpunkte zwischen ihnen als ¥ X Koinzidenzkorngrenze bezeichnet, wobei
X dem X Wert nach Gl entspricht (siche Abb. B fiir ¥ = 5). Die Atome an den
Koinzidenzpunkten stellen also eigentlich keine Stérung der Kristallgitter dar. Allerdings ist
die Periodizitdt normal zu Korngrenze gestort, sodass die Atome auflerhalb der Korngrenze
nicht auf Gitterplédtzen des jeweils anderen Gitters sitzen, was zu einer Erh6hung der poten-
tiellen, und damit Gibbs-Energie AG, des Polykristalls relativ zu der eines Einkristalls fiihrt.
Bezogen auf die Fliche der Korngrenze A erhilt man so die Exzessenergie der Korngrenze
v = 0G[0A = AGJA (T,P,N = konstant). Koinzidenzkorngrenzen entsprechen den lokalen
Energieminima [113]. Die Gibbs Energie G im vorangegangen Ausdruck bezieht sich auf die

Gesamtenergie des Polykristalls, im Unterschied zu AG, wodurch nur die Exzessenergie der

64



2.4 Gitterfehler

Korngrenze beschrieben wird. Eine Abweichung in Lage oder Orientierung der Korngrenzen

vom Koinzidenzfall fithren in der Regel zu erhohten Werten fiir .

Da an der Grenzfliche gerade beide Gitter tiberlappen, kénnen hier und nur hier Verschie-
bungen um Gittervektoren des DSC-Gitters realisiert werden, die genau wie Verschiebungen
im Kristallgitter durch Versetzungen erfolgen. Fiir diese sekundédren Korngrenzenversetzun-
gen, deren Burgers-Vektoren Gittervektoren des DSC Gitters sind (siche Abb. C und
D), gelten alle oben getroffenen Aussagen zu Gitterversetzungen in analoger Weise [113]; al-
so insbesondere auch, dass die elastische Energie der Versetzung proportional zu b? ist. Die
Energie einer Korngrenzenversetzung ist also in der Regel geringer als die einer normalen

Versetzung oder einer partiellen Versetzung.

Um die Gesamtenergie des Systems zu minimieren, ist es in der Regel giinstig, eine Stufe in
Richtung der Korngrenzennormalen am Ort der Versetzung einzubauen, sodass der Verlauf
der Korngrenzen méglichst entlang von Koinzidenzpunkten verlduft (siehe Abb.[2.17|D). Diese
Kombination aus Korngrenzenversetzung und Stufe mit Stufenhéhe h; bildet den auf Korn-
grenzen beschrinkte Liniendefekt, der Disconnection genannt wird [112] und durch Burgers-
Vektor und Stufenhhe (B,hj) charakterisiert ist. Hier sind prinzipiell auch Burgers-Vektoren
der Lénge null zuléssig (siehe Abb. B). Die moglichen Stufenhéhen und ihre Quantelung
hingen von dem Burgers-Vektor der zugehorigen Versetzung ab [112], sie sind jedoch nicht
eindeutig {iber den Burgers-Vektor bestimmt. Die Energie der Disconnection skaliert aber
mit der Stufenhohe, sodass in der Praxis nur kleine Stufenhéhen in der Gréflenordnung von
DSC Gittervektoren relevant sein diirften [112]. Der Extremfall hiervon sind Disconnections

mit Stufenhohe null, die identisch zu reinen sekundédren Korngrenzenversetzungen sind.

Mit hoher Wahrscheinlichkeit sind angrenzende Kristallite aber nicht so orientiert, dass sie
ein gemeinsames CSL ausbilden. Dieser Fall kann durch das near CSL Modell behandelt wer-
den [I13]. Hier wihlt man als Referenz die néchstliegende Orientierung beider Kristallite,
die ein CSL bilden, und biegt sie durch eine elastische Verformung entlang der Korngrenze
wieder in ihre urspriingliche Lage zuriick, wodurch entlang der Korngrenze ein langreichwei-
tiges Spannungsfeld entsteht, welches eine entsprechende Erhchung der potentiellen Energie
der Kristalle bewirkt. Entlang der Grenze werden nun Versetzungen oder Disklinationen
derart eingebaut, dass sie dieses Spannungsfeld mit ihrem eigenen iiberlagern und dadurch
abschirmen, wodurch die Verzerrungsenergie im Kristall grofitenteils wieder abgebaut wird.
Die Gleichgewichtskonzentration von Korngrenzenversetzungen, welche die Gesamtenergie
der Grenzfliche und der angrenzenden Kristalle minimiert, ist grundlegend von der Abwei-
chung zur nichsten CSL Konfiguration abhéngig und kann iiber die Frank-Bilby Gleichung

bestimmt werden [113].
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Kleinwinkelkorngrenzen, die kleine Misorientierungswinkel von maximal 15° besitzen [113],
haben in den meisten Féllen als Referenz-CSL den Einkristall (¥ = 1), sodass ihr DSC-
Gitter dem normalen Kristallgitter entspricht und die Korngrenzenversetzungen damit un-
unterscheidbar von normalen Gitterversetzungen entlang der Korngrenzen sind (vgl. Abb
2.18|).

Gitter 1

=/ 1]

- |

Gitter 2

Abbildung 2.18: Tllustration einer aus Gitterversetzungen aufgebauten Kleinwinkelkorngren-
zen. Darstellung in Anlehnung an [69], entnommen aus [31].

Genau wie normale Gitterversetzungen mit partiellen Versetzungen interagieren kénnen, ist
auch eine Interaktion von sekundéren Korngrenzenversetzungen, und damit auch Disconnecti-
ons, mit den beiden vorher genannten Gitterversetzungen moglich. Das heifit, dass Korngren-
zen prinzipiell in der Lage sind, Gitterversetzungen zu absorbieren und in Korngrenzenverset-
zungen umzuwandeln und umgekehrt [I13]. Durch diesen Prozess kénnen in der Korngrenze
mehr oder weniger Korngrenzenversetzungen vorhanden sein, als im Gleichgewicht notwendig
sind, wodurch die Abschirmung des langreichweitigen Spannungsfelds nicht mehr vollstandig
gegeben ist [I13]. Diese zusétzlichen oder fehlenden Versetzungen, die durch den Austausch
mit dem angrenzenden Kristall verursacht werden, werden als extrinsische Versetzungen be-
zeichnet; die Korngrenzenversetzungen, die im Gleichgewicht vorhanden sind, werden kon-
sequenterweise intrinsische Versetzungen genannt. Allerdings entspricht eine Anderung der
Orientierung der Korngrenze einer Anderung der Gleichgewichtskonzentration von Korngren-
zenversetzungen, sodass sich die Korngrenze durch leichtes Verkippen dem neuen Versetzungs-
gehalt anpassen kann.

Erfolgt die Wechselwirkung von Gitterversetzungen und Korngrenze nur lokal beschrénkt, ist
eine lokale Verkippung der Korngrenze méglich. Der verkippte Bereich wird vom unverkippten
durch einen Liniendefekt abgegrenzt, der Disklination genannt wird. Dabei handelt es sich
um den analogen Effekt zur Versetzung, der statt durch eine (Relativ-)Verschiebung durch
eine (Relativ-)Rotation gebildet wird. Wie Versetzungen, so verursachen auch Disklinationen
komplizierte dreidimensionale Spannungs- und Dehnungsfelder in ihrer Umgebung.

Bei einer lokal beschrinkten Anderung des Misorientierungswinkels der Korngrenze existiert

zu jedem Disklinationssegment ein entsprechend entgegengesetzt gerichtetes Segment, so dass
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auBerhalb der Verkippung der urspriingliche Misorientierungswinkel erhalten bleibt. In die-
sem Féllen liegen Disklinationsdipole vor, die in nanokristallinen Materialien auch durch
Korngrenzengleiten oder Coupling (siehe Kapitel in der Ndhe von Tripellinien gebil-
det werden konnen [114), 115]. Bei Interaktionen mit Versetzungen wurde die Bildung von

Disklinationsdipolen ausfiihrlich in [IT6] untersucht.

Die tatséchliche Struktur von Korngrenzen ist durch die vom System angestrebte, lokale Mini-
mierung von Exzessvolumen und Maximierung der Koordinationszahl im Detail jedoch noch
viel komplizierter und oft nur durch Computersimulationen zugénglich [113]. Beispiele dafiir
sind die Relaxation der Positionen von Korngrenzenversetzungen, (lokale) Translationen ent-
lang der Grenzflichen, unkorrelierte Verschiebungen einzelner Atome oder die Ausdehnung
der Korngrenze normal zur Grenzfliche. Letzteres beschreibt den Befund, dass Grofiwinkel-
korngrenzen im Gleichgewicht eine Ausdehnung normal zur Grenzfliche aufweisen, die vom
mittleren Ebenenabstand der angrenzenden Kristallite abweicht und so eine lokale Absen-
kung der Dichte des Kristalls darstellen [113]; die Grofie dieses Effektes ist abhéngig von
der Orientierung der beiden angrenzenden Kristallite. Das dadurch erzeugte, zusétzliche freie
Volumen wird als Exzessvolumen bezeichnet und oft durch eine Exzesslinge entlang der
Korngrenzennormalen charakterisiert, die der Aufweitung der Korngrenze entspricht. Diese
Korngrenzenaufweitung liegt in der GréfSenordnung einiger 1-1071'm [117] und wurde z.B.
fiir eine nanokristalline Pd Probe (Herstellung Inert Gas Condensation) auf 2.3-107'' m [I18]
und fiir eine ultrafeinksrnige Ni Probe (HPT) auf 3.2-107' m bis 3.5-107' m bestimmt [117].

Speziell im Hinblick auf nanokristalline Materialien, sind noch zwei Besonderheiten zu beach-
ten. Zum einen stellt der Einbau von Versetzungen in Korngrenzen und die damit verbundene
Abschirmung des langreichweitigen Spannungsfeldes der Korngrenzen eine Energieminimie-
rung des Gesamtsystems dar. Wenn die Ausdehnung der kristallinen Bereiche so klein ist,
dass die Energie des Verzerrungsfeldes kleiner ist als die Energie, die durch die Versetzung in
das System eingebracht wird, stellt der Einbau der Versetzung keine Absenkung der Gesam-
tenergie mehr dar; es existiert also eine kritische Dicke des Kristalls, ab der ein Einbau von
Korngrenzenversetzung iiberhaupt erst giinstig ist. Unterhalb davon bleibt das langreichwei-
tige Spannungsfeld der Korngrenze bestehen [I13]. Ein Kriterium fiir diese kritische Dicke ist
selbst fiir ebene Korngrenzen nicht einfach herzuleiten [113], und wird fiir den komplizierteren
Fall von annéhernd ellipsoiden Berandungen, wie sie im Fall von nanokristallinen Materialien

vorliegen, selbst in [I13] komplett ausgelassen.

Der zweite Punkt ist der, dass viele Betrachtungen von Korngrenzen darauf beruhen, dass es
sich um ebene Grenzen zwischen zwei halbunendlichen Kristallen handelt, die ihre Energie
minimieren kénnen und sich damit im Gleichgewicht befinden. Speziell in den hier unter-
suchten nanokristallinen Materialien ist, aufgrund der dreidimensionalen gegenseitigen Ein-
spannung und Fehlpassung der Kristallite untereinander, davon auszugehen, dass bei der
Kompaktierung interne Spannungen entstehen und die Energieminimierung des Gesamtsys-

tems zu anderen Konfigurationen der Korngrenzen fiithren wird. In Abgrenzung zu den zuvor
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genannten, werden diese Korngrenzen als Nichtgleichgewichtskorngrenzen bezeichnet. Auch
hier lassen sich a priori keine einfachen Aussagen zu langreichweitigen Spannungsfeldern oder

Versetzungsgehalt der Korngrenzen mehr treffen.

In dieser Situation liefern Computersimulationen weitere Einsichten zu diesen komplexeren
Féllen. So haben schon zuvor erwdhnte Simulationen Verzerrungsfelder durch Korngrenzen
in Pd Nanokristalliten nachgewiesen [92), 93, [94], 05, [96], die im Detail sehr komplex sind,
sich aber in allen Fillen auf einen Abfall der mittleren Verzerrung von der Korngrenze in
Richtung Kornmittelpunkt reduzieren lieen. In [92] wurde diese Verzerrung durch das Maf
d= \/ 1/3 (¢2 + €%, +¢7,;) quantifiziert, in [93} 94} 95| 96] erfolgte dariiber hinaus eine Unter-

teilung in Volumen- und Scherdehnung. Auflerdem wurde in [92] gezeigt, dass das Ausmaf

der Verzerrung und die Art des Abfalls abhéngig von dem Durchmesser des Kristalliten sind.
Streng genommen wurde aber in diesen Studien die Fehlpassung der Kristallite, wie sie in
der Realitét vorliegt, nicht vollumfianglich beriicksichtigt, da die einzelnen Kristallite in den
Simulationszellen formschliissig erzeugt wurden. In realen Proben ist daher ein zusétzlich

iiberlagertes, fehlpassungsabhingiges Spannungsfeld im Kristalliten zu erwarten.

Korngrenzen im Gleichgewicht mit ihren angrenzenden Kristalliten kénnen thermodynamisch
beziiglich v &hnlich wie Gleichgewichtsphasen beziiglich G beschrieben werden. In Unterschied
zu dreidimensionalen Phasen, die der Gibbs’schen Phasendefinition entsprechen [119], kénnen
Korngrenzen inhomogen sein, Gradienten in Struktur, Zusammensetzung und anderen Eigen-
schaften aufweisen und vor allem nicht ohne ihre angrenzenden Kristallite existieren [120)].
Daher wurde fiir Korngrenzen der Begriff Complexion eingefiihrt [121], der eine Korngrenze
in thermodynamischem Gleichgewicht mit ihren angrenzenden Kristalliten bezeichnet, die

eine stabile, definierte Dicke aufweist.

Verschiedene Complexions kénnen sich durch unterschiedliche Facettierung der Korngrenze,
durch unterschiedliche Struktur und Dicke des Korngrenzenkernbereichs oder durch Dissozia-
tion der Korngrenze voneinander unterscheiden. Im Fall von mehrkomponentigen Systemen
kommen dazu noch verschiedene chemische oder strukturelle Ordnungen der Atomsorten im
Kernbereich der Korngrenzen [120]. Die Stabilitét einer Complexion hingt vom thermody-
namischen Zustand des Systems beziiglich Temperatur, Druck bzw. Spannungszustand, che-
mischer Zusammensetzung und, speziell bei Korngrenzen, Gittermissoirentierung und Korn-
grenzenorientierung genau in der gleichen Art ab, wie es bei herkémmliche Phasen der Fall
ist; es ist also immer die Complexion stabil, die fiir diesen Zustand das niedrigste  realisiert.
Der Wechsel von einer Complexion zur anderen bei kontinuierlicher Anderung des Zustandes
des Systems kann, genau wie bei Phasen, abrupt (Ubergang 1. Ordnung) oder kontinuierlich

(Ubergang 2. Ordnung) erfolgen.

In diesem Sinne koénnen die Nichtgleichgewichtskorngrenzen in nanokristallinen Materialien
als eine Complexion in Anwesenheit von inhomogenen Spannungszustidnden, bzw. der spezi-
ellen Gegebenheiten dieses Zustands, aufgefasst werden, die sich von vollstéindig relaxierten
Gleichgewichtskorngrenzen im spannungsfreien Referenzfall strukturell und energetisch un-

terscheiden.
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2.4.5 Poren

Poren sind abgeschlossene Volumen innerhalb des Polykristalls, die frei vom Material des
Polykristalls sind. Sie werden von freien Oberflichen innerhalb des Materials berandet, die
naherungsweise die doppelte Flichenenergie vs von Korngrenzen besitzen; im Fall von Pd
betriigt sie 1.88J/m? fiir {111} Oberfliichen und 1.90 J/m? fiir {100} Oberfliichen [122]. Eine
mogliche Verminderung der Grenzflichenenergie durch eine Dehnung, sei es durch Abbau
von Grenzfliche oder durch Absenkung von 7g, erzeugt eine Grenzflichenspannung o° an

der Oberfléiche der Pore, die in Anlehnung an Gl. (2.42))

1 d(ysA)
S
S S A & 2.113
UZJ Vv df‘:z‘j ( )
1 [ADvs N v50A
- Vv 861']' 85@-

entspricht. Der erste Term beschreibt die Grenzflichenspannung in Festkorpern bei konstan-
tem Flidcheninhalt der Grenzflichen [123), [124] und der zweite ist identisch zu dem Ansatz,
der fiir Fliissigkeiten auf die Young-Laplace Gleichung fiihrt. Da es sich bei der Oberfléche
der Pore um eine mathematische Flache handelt, kénnen Spannungs- und Dehnungstensor
auf zweidimensionale Oberflichentensoren reduziert werden, die dafiir aber im krummlini-
gen Koordinatensystem der Oberfliche definiert sind [123] 124]; hier wird darauf verzichtet.
Zwischen Grenzflichenspannung o und angrenzenden Kristalliten herrscht ein mechanisches
Gleichgewicht, sodass sich in diesen Kristalliten ein entsprechender Dehnungszustand einstel-
len muss, der die Wirkung der Oberflichenspannung kompensiert. Im Mittel bildet sich eine
solche Dehnung aus, dass die Pore zur Minderung der Grenzfliche mdoglichst komprimiert
wird, wodurch die angrenzenden Kristallite in Richtung der Pore expandiert werden. Dies ist
ein Spannungs-/Dehnungszustand, der aufgrund der elastischen Anisotropie der Kristallite
und der Abhéngigkeit von g von der Orientierung und Dehnung des angrenzenden Kris-
talls sehr komplex sein kann. Trotzdem muss auch hier der Beitrag des zweiten Terms in
Gl zur Spannung, wie in der Young-Laplace Gleichung, fiir eine kugelférmige Pore
mit Radius r ndherungsweise wie 1/r skalieren.

Im Fall von sehr kleinen Poren, mit Ausdehnungen von wenigen Atomdurchmessern, muss
dariiber hinaus ein Ubergang von freier Oberfliche zu inneren Grenzflichen mit entsprechen-
der Absenkung von vg — vyop stattfinden. Aus GI. folgt dann unmittelbar, dass fiir
kleine r der Spannungsanstieg noch stéirker als 1/r sein muss. Fiir sehr kleine Poren ist da-
her zu erwarten, dass die Spannung hoher ist, als die fiir plastische Verformung notwendige
Grenzsspannung, sodass diese kleinsten Poren durch plastische Verformung abgebaut werden.
In nanokristallinen Metallen sind nach der Herstellung in der Regel bei allen Herstellungsme-
thoden Poren enthalten. Laut Literatur teilweise auch dann, wenn die Proben iiber Dichtemes-
sung als 100% dicht identifiziert wurden [6l [16], [125] [126], 127, [14], 128, 129] 130]; in letzterem

Fall wird jedoch von dem Spezialfall sehr kleiner Nanoporen mit Ausdehnungen von unter
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2nm berichtet, die dquivalent zu einer Ansammlung von einigen zehn Gitterleerstellen sind
[14, 129]. An dieser Stelle muss jedoch kritisch angemerkt werden, dass eine exakte Trennung
zwischen Nanoporositit und Exzessvolumen in/an Korngrenzen in der Regel an der man-
gelnden Trennschirfe gingiger Messmethoden (z.B. Dilatometrie, Positronen-Annihilation)
scheitert. Im Grenzfall ist es abhéingig von der Interpretation des Autors und dem verwende-
ten Modell, ob das freie Volumen als kleinste Nanoporen oder Exzessvolumen in Korngrenzen
identifiziert wird. Diese Beurteilung kann auch unter Beriicksichtigung der Eigenheiten des
Herstellungsprozesses (SPD, IGC, ED ) unterschiedlich erfolgen.

Computersimulationen an nanokristallinem Pd haben jedoch gezeigt, dass kleinste Poren
(» 1nm) vor allem im Bereich der Korngrenzen instabil sind und von diesen bereits inner-
halb von simulationstypisch sehr kurzen Zeiten absorbiert werden. Groere Poren (% 3nm) in
Korngrenzennihe schrumpfen nach ihrer Erzeugung signifikant, indem sie zusétzliches freies
Volumen in die Korngrenzen einbringen [128]. Auerdem ergaben SANS-Messungen an na-
nokristallinem Pd, dass die Porengrofie etwa der Korngrofie entspricht und einer dhnlichen
Verteilung folgt [126].

Sowohl im Experiment [126] als auch in der Simulation [128] hat die Porositdt P nahezu
keinen Einfluss auf die makroskopische Poissonzahl, fiihrt jedoch zu einer Absenkung des
E-Moduls gegeniiber dem des porenfreien Materials Ejy, die {iber die empirische Beziehung
aus [131]

E = Eyexp (-BP) (2.114)

mit einem Fitparameter 8 von 2.8 (Simulation) bzw. 2.4 (Experiment) beschrieben wurde.
Eine elementarere, kontinuumsmechanische Behandlung des Problems als isotrop elastische
Matriﬁ mit einem geringen Volumenanteil von sphérischen Poren ergibt fiir den E-Modul
in Reuss- bzw. Voigt-Niherung die Ausdriicke [132]

E=FEy(1-3P) (Reuss) (2.115)
1

die zusammen mit den Ergebnissen aus Gl. (2.114]) in Abb. gezeigt sind. Die Reuss-
N#herung ist in dem dargestellten Porositéitsbereich aulerdem praktisch identisch zur selbst-

konsistenten Rechnung aus [132].

Dariiber hinaus wird in der Simulation eine lineare Abnahme der Fliespannung mit der
Porositit festgestellt, die auf einen erleichterten Ablauf von Korngrenzanpassungsprozessen
zuriickgefiihrt wird [128].

'®Eine Annahme, die im statistischen Sinne fiir den Polykristall erfiillt ist [58].
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Im Fall von nanokristallinem PdAu kann der Volumenanteil der Poren im Material auf ca. P ~
3% abgeschitzt werden [6l, 31], sodass allein aufgrund dieses Effektes eine Absenkung des E-
Moduls auf unter 120 GPa zu erwarten ist und in der Gesamtbetrachtung nicht vernachléssigt

werden darf.

—kont. Reuss
120 —kont. Voigt

= —emp. mit 2.8
o emp. mit 2.4
o 100 1
= e,
B sof e Tl
2. ..........
Lu .....

60

40 L L L L s

0 5 10 15 20 25

Porositat P [%0]

Abbildung 2.19: E-Module in Abhéngigkeit der Porositit fiir PdggAu;g nach verschiedenen
Modellen. Im relevanten Porositétsbereich fiir die in dieser Arbeit untersuch-
ten Proben sind die Kurven mit durchgezogenen Linien gezeichnet.

2.5 Rontgenbeugung

Prinzipiell wird bei Rontgenbeugungsmethoden die Intensitit oder Energie von Rontgen-
strahlen, die an dem zu untersuchenden Material gebeugt wurden, mit einem Detektor in
Abhéingigkeit vom Beugungswinkel aufgenommen. Ein eindimensionales Beispiel fiir ein sol-
ches Diffraktogramm ist in Abb. gezeigt. Die winkelabhéngige Intensitit bzw. Energie
der gebeugten Strahlung ist ein Abbild der beugenden Struktur und eignet sich dadurch
zur Charakterisierung derselben. Nachfolgend soll nun der Einfluss von perfektem Gitter,
Gitterdefekten, Dehnung und Phononen auf das Beugungsbild beschrieben werden, um da-
mit die Grundlage fiir die Methode ,,Whole Powder Pattern Modeling® (WPPM) [33] zu
legen. Bei dieser Methode wird, von physikalischen Modellen ausgehend, ein theoretisches
Diffraktogramm errechnet und durch Variation der zugrundeliegenden, physikalischen Para-
meter das gemessene Diffraktogramm damit angepasst. Dadurch wird ein Riickschluss auf
die tatséchlichen Parameter, welche die Probe beschreiben, moglich. Sowohl fiir die Imple-
mentierung dieser Methode als auch fiir ein Verstdndnis ihrer Grenzen ist eine detaillierte
Auseinandersetzung mit der Streutheorie unumgénglich. Insbesondere soll auf den kommen-

den Seiten der immanent modulare Aufbau der theoretischen Beschreibung von messbarer
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Intensitdt bzw. Energie dargestellt werden, der genau so auch in der WPPM-Anpassung im-
plementiert wurde. Des Weiteren sollen die notwendigen Randbedingungen und Grenzen der
Theorie herausgearbeitet werden. Alle Ausfithrungen zur Streutheorie orientieren sich, soweit

nicht anders angegeben, an dem umfassenden Buch von Warren [62].

Energie am Detektor

w

3 4 5 6 7 8 9
20 [°]

Abbildung 2.20: Beispiel fiir ein Diffraktogramm von nanokristallinem PdAu.

2.5.1 Rontgenstreuung an einem Elektron

Trifft ein Rontgenstrahl auf ein freies Elektron, so wird dieses durch die Coulombkraft von der
E-Feldkomponente des Strahls periodisch beschleunigt, wodurch wiederum Roéntgenstrahlung
ausgesendet wird. Fillt ein Strahl mit Intensitit Iy = (EZ)c/87 in x-Richtung auf ein Elektron
mit Polarisation in y-Richtung (siehe Abb. , so ist an einem Beobachtungspunkt P in der
x-z-Ebene senkrecht zur Polarisationsrichtung in Entfernung R vom Elektron die Intensitét

der gestreuten Strahlung

64

(2.117)

Hier ist e die Elementarladung des Elektrons, m die Elektronenmasse und ¢ die Vakuumlicht-
geschwindigkeit. In der x-y-Ebene, also der Ebene welche die Polarisationsrichtung enthélt,
ergibt sich die bekannte Charakteristik eines Dipols mit

Iy = cos®(26), (2.118)

e
0 9 4p2
m*c*R
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wobei 20 den Winkel zwischen einfallendem Strahl und gestreutem Strahl bezeichnet. Fiir
unpolarisierte Rontgenstrahlung, die alle Polarisationsrichtungen mit gleicher Wahrschein-

lichkeit enthélt, ergibt sich der bekannte Zusammenhang

et 1+ cos?(26)
I=1 , 2.119
O m2cAR? 2 ( )
| S ——

Polarisationsfaktor

in dem der letzte Term als Polarisationsfaktor bezeichnet wird. Das heifit, dass bereits die
Streuung an einem einzelnen Elektron eine deutliche Winkelabhéngigkeit aufweist. Die Inten-
sitdt der gestreuten Strahlung eines einzelnen Elektrons wird in der Literatur gelegentlich als
Einheit fiir die Intensitét von Rontgenstrahlung verwendet und als Elektroneneinheit (engl.

electron unit) I. bezeichnet.

(a) Elektron (b) Atom

Abbildung 2.21: Skizze zur Streuung von Rontgenstrahlen an einem Elektron (a), bzw. einem
Atom (b). Details siehe Text.

2.5.2 Rontgenstreuung an einem Atom

Die Interaktion von Rontgenstrahlung mit Atomen ist im Wesentlichen eine Interaktion der
Rontgenstrahlung mit den Hiillenelektronen, sodass sich am Beobachtungspunkt P die Bei-
trige aller Hiillenelektronen iiberlagern. Fallt ein ebener Rontgenstrahl auf ein Atom im
Ursprung des Koordinatensystems, so ergibt sich die gestreute E-Feldstirke £ am Punkt P,

vorerst ohne Beriicksichtigung von Polarisationseffekten, mit

2 1 5 ﬁ7’L n
E= EQ% zn: 7 exp (i27r [l/t - W])

n

(2.120)

Die Summe erstreckt sich hier iiber alle n Elektronen in der Atombhiille an den Orten 7,
So ist der normierte Wellenvektor des einfallenden Strahls, v und A sind die Frequenz und
Wellenldnge der eingestrahlten Rontgenstrahlung, ¢ ist die Zeit und R, der Abstand von
Elektron n zum Beobachtungspunkt (siehe Abb. . Der Anteil 7, 8g ist damit die Linge
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der Verschiebung des n-ten Elektrons relativ zum Ursprung (Kern) in Strahlrichtung und
nd0 + Ry, damit die Weglidnge des gestreuten Strahls in Bezug auf die ebene Wellenfront

durch den Ursprung.
Da in der Regel |7,| < R und R, ~ R gilt, wobei R der Abstand vom Ursprung zum Beob-

achtungspunkt ist, kann man den Faktor 1/R,, mit 1/R nihern und im Exponenten R,, durch

R - 87, ersetzen. Hier ist § der normierte Wellenvektor des gestreuten Strahls und man erhélt
damit aus GI. (2.120)

2
E = Eom;R exp (i27r [Vt— }—/\%]) Zn:exp (i27r§77n), (2.121)

wobei hier (39—3) durch den Streuvektor S = (89—3)/\ ersetzt wurde. Da die Hiillenelektronen
nicht an einem festen Ort sind, sondern in Orbitalen mit gewissen Aufenthaltswahrschein-
lichkeiten verteilt sind, wird die Summe in GI. (2.121)) zu einem Integral tiber die normierte

Elektronendichte p(7) um den Atomkern, womit gilt

2
R o
E=E, miQR exp (i27r [l/t - X]) / exp (iQWSFn) pe(7)dr?. (2.122)
Streuung von einzelnem e~ fe

Die Terme vor dem Integral in GI. sind identisch zur Streuung an einem freien Elektron
am Ort des Atoms (abgesehen von Polarisationseffekten). Das Integral selbst in Gl. ist
der Atomformfaktor f., der das Verhéltnis der Amplitude der vom Atom gestreuten Strahlung
zur Amplitude der von einem einzelnen Elektron gestreuten Strahlung angibt. Das gesamte
atomspezifische Streuverhalten ist damit in f. enthalten. Formal entspricht f. genau der Fou-
riertransformation der Elektronendichte p.(7) vom Orstraum in den Wellenvektorraum, der
die Wellenvektoren S enthélt. Der Betrag (die Lénge) von S ist ein Maf fiir den Streuwinkel
26, der den Winkel der Abweichung der gestreuten Strahlung von der einfallenden Strahlung
darstellt, und es gilt

- 2sin(0)
S|=—=.
151 A

(2.123)
N#herungsweise gilt f. » Z, wobei Z die Ordnungszahl des Atoms ist. Eine genauere Be-
rechnung, die auch die 260-Abhéngigkeit, die Orbitalstruktur des jeweiligen Atoms, sowie die
Abhéngigkeit von A beriicksichtigt, ist in [I33] in der parametrisierten Form

4 .
fe=c+ Z a; exp (—bi Sm}\(e)) (2.124)
i=1

angegeben. Die Parameter fiir Palladium und Gold aus [133] sind in Tabelle gelistet und
die daraus berechneten Atomformfaktoren in Abb. 2:22] fiir den in dieser Arbeit relevanten

Streuwinkelbereich fiir die Wellenléinge aus dem Experiment A\ = 15.814 pm gezeigt. Zuziiglich
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Tabelle 2.2: Parameter zur Berechnung des Atomformfaktors f. fiir Palladium und Gold nach

Gl ([2124) aus [133].

Element i a b C
1 19.3319  0.698655
2 155017  7.98929

Pd g 5o0s37 250050 020993
4 0.605844  76.8986
1 16.8819  0.4611
9 185913  8.6216

Au g orssgy 1aggg 120058
4 586 36.3956

des oben behandelten Polarisationsfaktors ist damit das gesamte Streuverhalten eines Atoms

beschrieben.

20 [°]

Abbildung 2.22: Atomformfaktoren fiir Pd und Au fiir Rontgenstrahlen mit einer Wellenlénge
von A =15.814 pm.

2.5.3 Rontgenstreuung an einem Kiristall

So wie zuvor bei der Streuung am Atom das E-Feld am Beobachtungspunkt aus der Uberla-
gerung der E-Felder der an allen Elektronen gestreuten Strahlung hervorgeht, so kann fiir die
Streuung am Kristall das E-Feld am Beobachtungspunkt aus der Uberlagerung der Beitrige
aller Atome im Kristall bestimmt werden. Es gelten die selben Ndherungen wie zuvor mit
dem Zusatz, dass das streuende Kristallvolumen klein gegeniiber R ist. Dadurch kann der

gestreute Strahl als ebene Welle angesehen werden. Die Koordinaten der Atome im Kristall
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lassen sich, wie in GI. 1' durch den Ortsvektor R angeben (nicht zu verwechseln mit
dem Abstand zum Beobachtungspunkt R). Die Gleichung wird hier in kompakterer Form
wiederholt, wobei der Ortsvektor der 4 Atome innerhalb der kubischen Einheitszelle durch
Zm bezeichnet Wifd@

—

R =(mAs +naAs + ngAs) + i, (2.125)

Damit ergibt sich fiir das E-Feld fiir eine einatomige Basis analog zu oben,

2
e
E=Ey—
mc

7 exp (227T [Vt - —]) fe Z eXp z27r [5’ (nlfll +nods +nsAs + im)]), (2.126)

Streuung von einzelnem e~ Beitrag Kristall

wobei die Summe iiber alle Atome im streuenden Volumen ausgefithrt werden muss. Fiir den
Fall von mehratomigen Basen muss f. passend fiir das jeweilige Basisatom m gew#hlt werden
(f2"). Besteht der Kristall aus Ny, Ny und N3 Einheitszellen in den Richtungen von Ay, A,
und As, so lisst sich Gl. (2.126) faktorisieren zu

2

ook grevters

Streuung von einzelnem e~

E=E,

Beitrag Einheitszelle

Ny N N3
Z exp (2'27Tn1§/11) Z exp (i27m25¥12) Z exp (i27m3§;13) . (2.127)
ni=1 no=1 nz=1

Beitrag A Richtung Beitrag A, Richtung Beitrag As Richtung

Der Beitrag der Einheitszelle in GI. wird als Strukturfaktor F' bezeichnet und be-
schreibt das Streuverhalten einer Einheitszelle in Relation zum Streuverhalten eines einzel-
nen Elektrons; F' stellt damit eine Erweiterung von f. dar. Die Beitréige in die verschiedenen
Richtungen in Gl. haben die Form einer geometrischen Reihe, sodass fiir die Partial-

summen von 1 bis N die geschlossene Form

exp (i27TN§A) -1
exp (1271'5';1) -1

N
Z exp (127rn5' Q) (2.128)

YHier wird direkt der Fall von fcec Gittern behandelt.
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existiert. Die Intensitiit ergibt sich aus E mit I = (E?)c/87 , wobei in der hier verwendeten,
komplexen Darstellung E? zu EE* wird. Fiir die geschlossene Darstellung aus Gl. (2.128))

fithrt das zu
exp (i2rNSA) -1 exp (-i2nNSA) -1 sin® (xNSA)
exp (i27r ﬂfl) -1 exp (—i27r§fi) -1  sin? (77 %;1) '

(2.129)
Zusammen mit der Intensitdt eines Elektrons I, aus Abschnitt und der Abkiirzung fiir
den Strukturfaktor F2 = FF* ergibt sich dann die Intensitéit aus Gl. (2.127]- [2.129) zu

sin2 (Wngz‘Il) sin2 (ﬂ'NQgAé) sin2 (7TN3§1‘I3)
sin? (WS’/L) sin? (7r§ff2) sin? (WS’/I;J,)

I=I, F? (2.130)

Die % Terme in GIl. (2.130) haben ein Maximum fiir € Z* und sind fiir groffle N

ansonsten nur in unmittelbarer Nidhe zu den Maxima von null verschieden. Fiir ein Inten-
sitdtsmaximum miissen laut Gl. (2.130]) daher die drei Lauebedingungen

SA; =h (2.131a)
SAy =k (2.131b)
SAjz =l (2.131c)

mit h,k,l € Z* gleichzeitig erfiillt sein. Das ist gemafl Gl. und [2.10)) immer dann der Fall,

wenn
275 = Ghul (2.132)

gilt, wobei Gy ein reziproker Gittervektor ist, wie er in GI. 1) definiert wurde. Die h,k,l
in Gl (2.131a]- [2.131¢) sind damit identisch zu den Miller’schen Indizes.

Die Sinnhaftigkeit dieser Wahl zeigt sich am Strukturfaktor, der prinzipiell fiir alle Streu-
vektoren definiert ist, also auch solche, die Gl. ([2.132)) nicht erfiillen. Letztere sind aber
irrelevant, wie sich gleich zeigen wird. Allgemein ergibt sich aus GI. der Befund, dass
F = Af, fiir alle h,k,l gerade oder ungerade und F = 0 fiir gemischte h,k,l ist. Null wird
hier als gerade Zahl gezdhlt. Damit existiert z.B. das Maximum zu hkl = 200, nicht aber
fiir hkl = 100. Dieser zunéchst etwas willkiirlich wirkende Befund spiegelt aber nur die Ei-
genschaft des (reziproken) Gitters wieder, die zuvor schon im Zusammenhang mit Gl.
diskutiert wurde: Die {100}-Ebenen stellen keine korrekte Beschreibung der Periodizitét des
Gitters dar. Folglich existieren die entsprechenden Gitterpunkte im reziproken Gitter auch
nicht, wenn es systematisch sauber (vgl. Gl (2.17)) definiert wurde, sodass Gl. al-
leine schon vollkommen ausreicht um das Auftreten von Intensitdtsmaxima zu beschreiben:
Zu jedem Punkt im reziproken Gitter existiert dann auch ein Maximum im Streubild. Der
Strukturfaktor ist dabei immer 4f., was der Tatsache Rechnung trégt, dass in GI.
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und (2.130) immer iiber Einheitszellen summiert wird, die vier Atome enthalten. Die h,k,l

gerade oder ungerade Regel ist damit iiberfliissig.

Durch die Bestimmung der Streuvektoren der Maxima ldsst sich also der entsprechende re-
ziproke Gittervektor rekonstruieren, wodurch dann im fcc Gitter wegen Gl. (2.18) auch die
zugehorigen Ebenenabstdnde bekannt sind. Dabei steht der Streuvektor, genau wie @hkl,

immer senkrecht auf den an der Streuung beteiligten Ebenen im Kristall.

Bisher bezog sich die Betrachtung auf einen statischen Kristall, bei dem die Atome fest an
ihren Gitterplédtzen ruhen. Wie schon im Kapitel 2.3]zu den Phononen beschrieben, fiithren die
Atome aber Schwingungen um ihre Ruhelagen aus, deren Amplitude fiir die Rontgenstreuung
durchaus relevant ist. Der Ortsvektor eines Atoms aus GI. muss daher um den
zeitabhiingigen Verschiebungsvektor i,,(t) erweitert werden, sodass der vollstindige Orts-

vektor R/, beschrieben wird durch
R! (t) = Ry + T (1). (2.133)

Hier wurde auf die getrennte Adressierung der Atome nach Einheitszelle und Position in
derselben (n1,ng,ns, m) verzichtet und stattdessen eine einfachere und allgemeinere Variante
der Durchnummerierung aller Atome mit m gewiihlt. Der zeitunabhiingige Vektor R,, hat
genau die selbe Bedeutung wie der in Gl. . Die Ableitung der Intensitét des Kristalls

erfolgt damit genau wie oben und man erhalt fiir die Intensitét

I= Iezz fo 1 exp (278 [ R = Rowr]) ( exp (12708 [lim () — e (D)]) ). (2:134)

thermische Vibration

statisch

Die spitzen Klammern um den Term, der die thermischen Vibrationen beriicksichtigt, be-
zeichnen den zeitlichen Mittelwert. Fiir gemessene Intensitéiten ist nur dieser relevant. Auf
die Streuung wirken sich nur die Verschiebungen in Richtung des Streuvektors aus (vgl.
Gl (2.134)), sodass S [t (t) = T ()] durch (g, (t)—usm (t))/A ersetzt werden kann, wobei
ugm die skalare Verschiebungskomponente von i, in Richtung des Streuvektors beschreibt.
Damit wird der zeitliche Mittelwert in GI. fiir kleine Auslenkungen oder fiir Gauf}-

verteilte Auslenkungen zu

( exp (i27r§ [t (t) - ﬂm/(t)]) ) = exp (—27T2|5’|2< (s — Ugm)* ))
= exp (—27r2|5'|2<u§m)) exp (—2W2|5|2(u§m,>) exp (4W2\5’|2<uSmuSmr))

= e("Mm) (M) [1 +exp (47r2|5’|2<uSmuSm/)) - 1] . (2.135)

Im letzten Schritt wurden die Argumente der vorderen Exponentialfunktionen durch —M

abgekiirzt. Auflerdem wurde im letzten Term 0 = +1 — 1 addiert; der Grund dafiir wird
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2.5 Rontgenbeugung

im n#chsten Schritt offensichtlich. Fiir die Intensitét ergibt sich dann durch Einsetzen von

Gl in Gl
=LY fom ' eCMm) M) exp (12708 [ Ry — R ])

LY M M) oxp (1278 [ B = B ]) {exp (471 (s ) 1}

m m'

(2.136)

Der Term in der zweiten Zeile von Gl. ist vernachlissighbar fiir grofle Atomabsténde,
also grofie |Rm—Rmr|, da ug,, und ug,, mit zunehmendem Abstand zunehmend unkorrelierter
werden, sodass (ugmusm) gegen null geht. Im Phononenbild wird das durch die abnehmende
Héaufigkeit von Phononen mit grofler Wellenléinge bzw. kurzem Wellenvektor représentiert
(vgl. Abb. ) GroBe Abstéinde |R,, — Ryy| entsprechen in der vorherigen Herleitung
zur Intensitét einer grofien Anzahl von Einheitszellen N in Richtung des Streuvektors, was
die Ursache fiir die scharfen Maxima im Streubild ist. Das heifit wiederum, dass fiir die
Intensitdt der Maxima der Summand in der zweiten Zeile von GI. von untergeordneter
Bedeutung ist und daher zunichst vernachléssigt werden kann. Tatséchlich beschreibt dieser
Term die thermodiffuse Streuung, auf die spéater noch eingegangen wird.

Der fiir die Maxima ausschlaggebende Term in der ersten Zeile von GI. ist im Grun-
de identisch zu den Termen aus der statischen Herleitung, enthélt aber zusétzlich die beiden
e(=Mm) Faktoren. Da es fiir einatomige Systeme prinzipiell keinen Unterschied zwischen (wsm)
und (ugy,) gibt, konnen die Exponentialterme zusammengefasst und mit den Atomformfak-
toren vor die Summe gezogen werden. Damit erhélt man dann analog zu GI.

Sin2 (7TN1§A&) sin2 (WNQS/IQ) Sin2 (7TN3§143)

I=I, F? (2M) - = H
¢ sin? (ﬂ'SAl) sin? (WSAQ) sin? (ﬂ'SAg)

(2.137)

Der Faktor e(=2™) wird Debye-Temperaturfaktor oder Debye-Waller-Faktor genannt, der
die Abnahme der Intensitit in Folge der thermischen Bewegung der Atome angibt (sie-
he Abb. [2.23]) und ausgeschrieben lautet:

e(2M) —exp (—47T2|§|2<’U/%'>) = exp (—167T2(U%> sin;(H) ) (2.138)

Alternativ kann e(=2") auch iiber die Debye-Temperatur ©y; ausgedriickt werden mit

2 (Y- o4 iq2
om0 () Oy Oy sin(0) (2.139)
mkp©2, \" " 36 T2 3600 T4 A2

wobei h das Plank’sche Wirkungsquantum, kp die Boltzmannkonstante und m die Masse des
Atoms ist. Die Debye-Temperatur O, ist ein Mittelwert der Debye-Temperatur longitudina-

ler und transversaler Schwingungen und nicht exakt identisch zur Debye-Temperatur © p aus
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der Theorie der spezifischen Wirme; die Unterschiede sind fiir Pd und Au aber im Rahmen

dieser Arbeit vernachldssigbar [62].

0 2 4 6 8 10
20 [°]

Abbildung 2.23: Winkelabhéngiger Debye-Temperaturfaktor oder Debye-Waller-Faktor fiir
PdggAuig und Rontgenstrahlen mit einer Wellenldnge von A = 15.814pm
bei Raumtemperatur.

2.5.4 Rontgenstreuung an einem Polykristall (oder Pulver)

FEin Pulver aus gleichférmigem, kristallinem Material, genauso wie ein texturfreier Polykris-
tall, zeichnen sich dadurch aus, dass in einem ausreichend groflen Volumen jede Kristallorien-
tierung gleich haufig vorhanden ist, bzw. das Auftreten jeder Orientierung die gleiche Wahr-
scheinlichkeit aufweist. Wird Rontgenstrahlung in einem solchen Volumen von einem Pulver
oder Polykristall gestreut, tiberlagern sich im Streubild alle Einzelbeitréage der unterschiedlich
orientierten kristallinen Bereiche (siche Abb.[2.24). Fiir die Streuung ist dann das effektive
reziproke Gitter relevant, das aus der Uberlagerung der reziproken Gitter aller Einzelkris-
tallite entsteht und aus konzentrischen Kugelschalen besteht, deren Radien den Abstinden
der reziproken Gitterpunkte um den Ursprung entsprechen (siehe Abb. . Reziproke Git-
terpunkte, die zu symmetrisch dquivalenten Ebenen gehotren, haben den gleichen Abstand
zum Ursprung und befinden sich somit auf der gleichen Kugelschale. Die Punktdichte pjs
der einzelnen Schalen ist proportional zur relativen Haufigkeit der symmetrisch dquivalenten
Ebenen, was identisch zur Héufigkeit der entsprechenden reziproken Gitterpunkte in einem

Kristall ist. Diese Anzahl wird (Flichen-)Multiplizitit n genannt und ist fiir die in dieser
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Intensitat

Abbildung 2.24: Streubild eines untexturierten, defektfreien PdAu Polykristalls oder Pulvers
aus kugelformigen Kristallen mit 30 nm Durchmesser.

Arbeit relevanten hkl-Kombinationen in Tabelle gelistet. Fiir einen Polykristall mit M

Kristalliten gilt dann fiir die Punktdichte auf den Kugelschalen im reziproken Raum

M n
PMhAkl = — == (2.140)
Ar| Gl
Die gestreute Intensitéit ist dann
Tkt =T parinkt Aves (S), (2.141)

wobei I hier die von einem einzelnen Kristalliten gestreute Intensitdt und A,.. die Fliche

auf der hkl Kugelschale ist, die vom Streuvektor erfasst wird.

FEin Maximum im Streubild kommt fiir einen Polykristall immer dann zustande, wenn der
Streuvektor auf einer Kugelschale endet, wobei die relative Intensitidt der Maxima einzelner
Schalen mit ihrer Punktdichte skaliert. Fiir das Auftreten eines Maximums ist aufgrund der

Isotropie nur noch der Betrag des Streuvektors 27|S| = |G| entscheidend.
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hkl: 111 200 220 311 222

Abbildung 2.25: (links) Darstellung der Gitterpunkte im reziproken Raum eines Einkris-
talls. (mitte) Uberlagerung der reziproken Gitterpunkte vieler identischer,
aber zufillig orientierter Kristalle. Die einzelnen Punkte bilden fiir alle
hkl-Kombinationen Kugelschalen mit spezifischen Radien. Zur Darstellung
der inneren Kugelschalen ist ein Achtel der Kugelschalen nicht dargestellt.
(rechts) Schnittbild durch die hkl Kugelschalen in der Bs-Bs-Ebene.

Fallt also ein Rontgenstrahl mit Wellenvektor §y/A auf einen Polykristall, so entsteht fiir jede
hkl Schale ein Streukegel mit solchen Wellenvektoren §/X, dass 27|(5 - 30)|/A = 275 = |Gl
(vgl. Abb. [2.26]). Die in diesen Streukegeln gestreute Intensitét ist

Ikeg. = f I PM,hkl 277’éhkl|2 sin (900 —9+’y) d")/

M
= % / I cos(0) dy  (kleine ), (2.142)
wobei « eine kleine Variation des Einfallswinkels des einfallenden Strahls ist.

B3A

dViez.
s
5 A

20

Y( S\ 8 B
N S _»2
S
hkl=220 A

Abbildung 2.26: Zweidimensionale Skizze zum Streuverhalten an der hkl = 220 Kugelschale
eines Polykristalls aus Abb. Die Streukegel erhdlt man durch Rotation
um die By Achse. Die vom Streuvektor erfasste Fliche (bzw. in 3d: Volumen)
im reziproken Raum ist durch dV,... gekennzeichnet.
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2.5 Rontgenbeugung

Tabelle 2.3: Flachenmultiplizitdten n fiir verschiedene hkl-Kombinationen.

hkl 111 200 220 311 222
n 8 6 12 24 8

2.5.5 Einfluss der Messgeometrie

Die Messung der Intensitét der gestreuten Strahlung erfolgt immer iiber die aktive Fliache des
Detektors und iiber einen bestimmten Zeitraum, sodass die gemessene Energie im Detektor

Ep dem Integral iiber die Zeit und Flache der gestreuten Intensitét entspricht, also:
Ep=[[1atdA=at ([ 1 R?da dB. (2.143)

Hier wurde die Detektorfliche A, die senkrech@ zum normierten Wellenvektor des gestreuten
Stahls s steht, iiber den Abstand zum Detektor R und die beiden Winkel v und 8 genéhert.
AuBerdem ist hier (I} = I, es wird also angenommen, dass die Messzeit At viel grofier ist als

die periodische Schwankung des instantanen Wertes von I. Die Intensitét ist beim Polykristall
natiirlich immer identisch zu Iy, aus Gl. (2.142), sodass Gl. (2.143)) vollstéindig lautet:

Ep= [[1atdA=at R {[[1(7) da dB dy (2.144)

Die Winkel da und df beschreiben zusétzliche, kleine Variationen vom Streuwinkel 20 und
damit Variationen vom Streuvektor AS, sodass der gesamte Streuvektor in Gl. zu S =
S+AS (e, B,7) wird. Der Streuvektor ist in I enthalten, wofiir keine ausfiihrlichen Ausdriicke
angegeben wurden, um eine bessere Ubersichtlichkeit zu erhalten. Im Folgenden muss aber die
Auswirkung von S’ untersucht werden, weshalb nun wieder auf die vollstéindigeren Ausdriicke

zuriickgegriffen werden muss.

Das Integral iiber «, 5 und -y entspricht einer Integration von [ iiber ein Volumen im rezipro-
ken Raum in der N&he eines reziproken Gitterpunktes (im Falle eines Kristalles) oder in der
Nihe eines Segments einer hkl Schale (im Falle eines Polykristalls). Als Vereinfachung bietet
es sich an, den Streuvektor durch reziproke Gittervektoren und kontinuierliche Parameter

h1, ho, hg auszudriicken, also

271'5” = hlél + h2B2 + thg, (2145)

20Das muss nicht bedeuten, dass die tatséichliche Oberfliche des Detektors an allen Punkten senkrecht zum
Strahl orientiert ist. In der Rechnung bezieht sich A dann auf die senkrecht zum Strahl projizierte Flache.
Der Aspekt wird in der Rechnung beriicksichtigt.
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womit I mit Gl. (2.136]), bzw. Gl. (2.137)) die folgende Form annimmt:

I(hihghs) = I, F? e(_QM)ZZ exp (i27r [(m1 —my)h1 + (ma —m)hs + (M3 — mé)hg])

m m’

L[ P2 o2 sin? (rN1h1) sin? (mNaho) sin (7TN3h3)

2.146
sin? (rhy)  sin®(mhg)  sin® (7whs) ( )

Das infinitesimale Volumenelement im reziproken Raum, das durch den Vektor AS (o, B,7)

unter infinitesimalen Anderungen von «a, 8 und v beschrieben wird, ist bestimmt durch

da df dy
dViez. = 20
sin (20) — < % X
=Up dhl dh2 dhg, (2.147)

wobei v, = 873 /a? das Volumen der Einheitszelle im reziproken Gitter is@ Zusammen liefern

Gl. (2.147) und Gl. (2.146)) mit Gl. (2.144]) unter Beriicksichtigung von cos(#)/sin (26) =
1/(2sin(#)) fiir die Energie am Detektor

M npir (3 I(hihahsg)
Ep=At R? L ————2 dV,e-
b 4 Hf sin(0) '

2 M I(hihoh
= At R 21 Ty ] (h (29 3) ahy dhy dhs, (2.148)
Sln

Um die Rechnung zu vereinfachen ist es hilfreich, das Koordinatensystem so zu drehen (vgl.
Gl. (2.56) und Gl.), dass der Hauptteil des Streuvektors entlang eines der neuen,
gedrehten Basisvektoren B, BS,Bj liegt. O.B.d.A. seien S und Bj kollinear (vgl. Abb.
und GI. sowie Gl. gelten genau wie zuvor, jetzt aber mit h{,h%, h% im neuen
Koordinatensystem anstatt der ungestrichenen Gréflen. Fiir die Lénge des Streuvektors gilt

dann

on|S’| = |} B} + hy, BY + hiy BY|

47 sin (Hhkl)

~ 27|S| = hy| Bj| = 3 , (2.149)
wobei 0y der halbe Streuwinkel des Maximums des hkl Reflexes ist.
Damit erhélt man fur dhj
0 0
dn} = Wd( 9) = Md(w) (2.150)
By

*'Hier wurde der Zusammenhang zwischen Streuvektor und dem reziproken Raum benutzt.
227ur Erinnerung: S’ = S + AS.

84
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hkl=220

Abbildung 2.27: Illustration zur Drehung des Koordinatensystems des reziproken Raums zur
Vereinfachung der Berechnung der Intensitédt bzw. der messbaren Energie
am Detektor.

womit in Kombination mit Gl. (2.148) fiir die Energie Ep(26) am Detektor unter dem Streu-
winkel 26 gilt

Ep(20) = At R? 2”3]”2 ikt 52 €05 (Ohit) | 1(rihghs) by dn. (2.151)
a sin(0)
An dieser Stelle sei explizit darauf hingewiesen, dass der Streuwinkel 26 eine dquivalente
Darstellung des Betrags des Streuvektors und damit zu hf ist (vgl. Gl.). Anstatt
Ep(20) kénnte man auch Ep(h4) schreiben. Um diesen Aspekt im Folgenden klar zu machen,
wird ab jetzt h% als Funktion des Streuwinkels h5(26) angegeben. Allerdings enthélt Ep(26)
aus GI. die Energie aus dem gesamten Streukegel, weshalb Ep(26) noch durch den
Umfang am Ort des Detektors 2w R sin (26px;) geteilt werden muss um die tatséichlich an einem
(kleinen) Detektor bzw. Detektorpixel messbare Linienenergiedichte im Kegel zu erhalten,

welche man als E7,(26) geméf folgendem Ausdruck erhélt:

2
1
Ep(20) = AtM R TIHEL 32 (W, hhh5(20)) db; dh, 2.152
p(20) R 22 sin(9)sin(9hk1)ﬂ (h1hahs(20)) dhy dhy (2.152)

K

Im Vorfaktor K taucht hier der Lorentz-Faktor LF' fiir Pulver und Polykristalle in der Form
auf, wie er auch in [62] und [I134] ausfiihrlicher hergeleitet Wurdﬂ

1
sin (0) sin (Opx1)

LEyy = (2.153)

Der Verlauf des Lorentz-Faktors in Abhéngigkeit vom Streuwinkel ist in Abb. fiir den
111, 200, 220 und 311 Peak dargestellt.

23Die genaue Form des Lorentz-Faktors ist abhiingig von der Messgeometrie.
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Abbildung 2.28: Lorentz-Faktor in Abhéngigkeit vom Streuwinkel fiir verschiedene hkl Peaks.

Der Vollstandigkeit halber sei hier noch ein weiterer Vorfaktor, der Comptonfaktor C'F

erwahnt, der fiir das in dieser Arbeit benutzte Material und der gegebenen Geometrie durch

_1146XP (-pptsec(26)) — exp (—ppt)
CF =114 (1~ 5o (@) (2.154)

bestimmt ist und den Effekt von Absorption und Comptonstreuung auf die Intensitit der
Maxima beriicksichtigt [133] [135], wobei ¢ die Dicke des durchstrahlten Materials ist, p des-
sen Dichte und p der Absorptionskoeffizient [133] [135]. Fiir die hier untersuchten PdggAuyg
Proben ist pp = 30.26cm ™! (Wert fiir x aus [133]), sodass C'F hier eine sehr kleine Korrektur
darstellt (vgl. Abb.[2.29). Mit C'F erhélt man den erweiterten Vorfaktor K’ = K -C'F, der im
Folgenden bei der Losung des Integrals aus Gl. verwendet wird.

Man erhélt damit aus Gl. (2.152))

E(20) =At M K' I, F? ¢(2M)
jf ZZ exp (27 [(ma —m)h] + (mg — mb)hy + (ms —m5)Rh5(20)]) dhf dhj.

(2.155)

Die Adressierung der Atome mq,ms, m3 beziehen sich hier natiirlich auf die Basisvektoren

des gedrehten Koordinatensystems B}, B, Bj.
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Abbildung 2.29: Comptonfaktor in Abhéngigkeit vom Streuwinkel.

2.5.6 Effekt der KorngroBBe

Der allgemein bekannte Befund, dass kleine Kristallite zu einer Verbreiterung der Bragg-
Peaks fithren, folgt direkt aus der Integration von GI. . Um bei der Integration iiber
hi und h} den gesamten Bereich im reziproken Raum abzudecken, der fiir den jeweiligen hkl
Reflex relevant ist, muss iiber den Querschnitt der 1. Brilloin-Zone integriert werden, was
niherungsweise einer Integration von —1/2 bis 1/2 in den B’ Koordinaten entspricht (vgl.
Abb. . Man erhélt damit das Ergebnis

1/2 . I\ ! I Sin(ﬂ- [(m _m,)])
[1/2 exp (i27 [(mq - mi)hi]) dh] = <o im’l)l] ’ (2.156)

wodurch aus Gl. (2.155)) der Ausdruck
E(20) =At M K' I, F? ¢(2M)

BT S v o) o

wird. Die Sinusterme sind 1, wenn m = m’ und ansonsten 0, sodass man den Ausdruck weiter

reduzieren kann zu

E(20) =At K' I, F? ¢(72M) Z Z Z Z Z exp (i2m(mg —mé)hé(?@))

M mi1 m2 m3 m}

XN

(2.158)

mi,m2
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Hier muss berticksichtigt werden, dass die moglichen Werte von mg und mj, je nach Kornform,
von my und meo abhingen kénnen. Den Kristalliten kann man sich aus Sdulen von Einheits-
zellen in Richtung des Streuvektors aufgebaut vorstellen. Hier ist der Streuvektor in Richtung
B im reziproken Raum orientiert, was einer kollinearen Richtung A% im Realraum entspricht,
die aus der gewohnlichen Az-Richtung durch identische Drehung wie zuvor B3 — Bj hervor-
geht. Dieser Sachverhalt ist am Beispiel eines kugelférmigen Kornes in Abb. dargestellt.
Anstatt die Summen in GIl. iiber alle Einheitszellen in einem Korn auszufithren, kann
man genauso iiber alle Atome in einem Korn summieren und muss dazu nur F? durch f2

ersetzen.

! 1
A; A a3I|_|
T %
\ IL=Am3a;

\ >

NS A,

y
I

\

Abbildung 2.30: Aufbau eines kugelférmigen Kristalliten aus Einheitszellen entlang der Rich-
tung des Streuvektors S.

Der Faktor M, der die Anzahl der Kristallite im Streuvolumen bezeichnet, wurde in Gl.
ebenfalls durch eine Summation ausgedriickt. Die Summation iiber M, m, ms, ms kann man
zu einer Summe {iber alle N Atome im Polykristall zusammenfassen. Man summiert dann
mit mj fiir jedes einzelne dieser Atome iiber die Realraumabsténde L zu den anderen Ato-
men innerhalb der Sdule in Streuvektorrichtung. Im Kern handelt es sich bei GI.
also nicht um eine Summe iiber die Beitrige von Atomen, sondern um eine Summe iiber die
Beitrdge von Atompaaren in Streuvektorrichtung. Dieser Ausdruck kann allgemeiner formu-
liert werden, indem man die komplette Summation durch eine Summe iiber die Paarabstinde
n = Amsg € [-o00,00] ersetzt und dafiir in der Summe den Faktor N,, ergénzt, der die Anzahl
der Atome in der Probe beschreibt, die einen n’ten Nachbar in Streuvektorrichtung besitzen.

Damit erhilt man

(=) Nn
Ep(20) =At N K' I, F? 2 % P (i2mnh(26)), (2.159)

n=—oo
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was gerade die Form einer Fourierreihe mit den, im Allgemeinen komplexen, Fourier-Koeffizien-
ten C2 = N,/ hat. Der Imaginérteil von GI. ist immer null, da Atompaare mit Ab-
stand n zweimal mit unterschiedlichen Vorzeichen in der Summe auftauchen (n und -n) und
sich dadurch im Imaginirteil gegenseitig aufheben. Die Fourier-Koeffizienten C kénnen mit-
hilfe des Konzeptes des Geisterbildes aus [136] anschaulich bestimmt werden (vgl. Abb. [2.31).
Dabei wird eine Kopie eines Kristalliten relativ zu seinem Original um L in Streuvektorrich-
tung verschoben, wodurch ein Volumen V(L) durch die Uberschneidung von Geisterbild und
Original gebildet wird. Das Verhiltnis V(L)/V, wobei V' das Volumen des Kristalliten ist, ist
identisch zu den Fourier-Koeffizienten C5 = N,,/N. Der Grund dafiir ist, dass in dem Schnitt-
volumen alle Atome enthalten sind, die Endpunkte der Sdulen mit Lénge L bezogen auf den
Originalkristalliten sein kénnen und gleichzeitig Anfangspunkte bezogen auf das Geisterbild.
D.h. alle Sdulen mit Lénge L, die in diesem Volumen starten bzw. enden, passen auch in den

Kristalliten, bzw. sein verschobenes Bild; alle anderen nicht.

Ende

Saule

Anfang

Originalkristall

Abbildung 2.31: Skizze zum Konzept des Geisterbildes um die Herleitung der Fourier-
Koeffizienten fiir den Korngréfeneffekt zu veranschaulichen. Details siehe
Text.

Offensichtlich sind diese Fourier-Koeffizienten abhéngig von Kornform, Orientierung und
Groflenverteilung. Dieses Problem wurde fiir verschiedene Kornformen und Verteilungsfunk-
tionen in [I137] ausfiihrlich behandelt, sodass hier nur das Ergebnis fiir kugelférmige Kristallite
mit logarithmisch normalverteilten Durchmessern wiedergegeben wird; dieser Fall stellt die

beste Anniherung an die hier untersuchten Proben dar [511 [13§].

24Die Fourier-Koeffizienten N,, /N sind hier natiirlich noch nicht komplex. Im Zusammenhang mit Gitterfehlern
in den Kristalliten tauchen jedoch komplexe Fourier-Koeffizienten auf.

89



2 Theorie

Fiir die Fourier-Koeffizienten C*°(L) gilt dann nach [137]:

1 In(|L|) - p - 30
C5(L) —§erfc( o3 )

3 hl(’L’)—M—?UQ) 2
— —|Llerfc exp(—p — 2.50
snferte( MUELRZET) g 250)

1 lIl(lLl) /JJ) 2
+—|L 3erfc e — ex —3/1 —4.507). 2.160

Hier sind p und o die Parameter der logarithmischen Normalverteilung g(D):

(In(D) - p)*
9(D )—DU\/— p( 57 ) (2.161a)
- 1 (In(D/Dy))*
s T ) (210

Die Darstellung in Gl. (2.161b)) entspricht der in [51l 138] mit dem Median Dy und der
Verteilungsbreite ¢’. Die Parameter hiingen mit denen aus Gl. (2.161a)) iiber die Beziehungen
w1 =1n(Dgy) und o =1In (¢") zusammen. Die Fourier-Koeffizienten sind aufgrund der Kugelform

der Koérner erwartungsgeméfl nicht hkl abhéingig.

-3
15 ><10_ S
o |9 T 1
2 B ls
3 ]

A 0.8
= Joe}
a »

o )
0_5. p 04'
\ 0.2}
ol M| e 0

0 5 10 15 20 25 30 35 0 10 20 30 40 50
D [nm] L [nm]
(a) (b)
Abbildung 2.32: a) Logarithmische Normalverteilung fiir o/ = 1.6 und (D), = 15nm. Die
verschiedenen Momente der Verteilung (D) sind zusétzlich zum Median Dy

eingezeichnet. b) Fourier-Koeffizienten fiir verschiedene Werte von (D), bei
konstantem ¢’ = 1.6.

Fiir die Energiedichte am Detektor gilt dann mit h% = a3/dg(26):

En(20) =At N K' I, F? ¢(-2M) Z C5(L) exp(zQﬂ'L
L=—0c0

y (20)) (2.162)
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2.5 Rontgenbeugung

wobei dg(260) der Abstand benachbarter Atome in Streuvektorrichtung ist; fiir hkl Reflexe
entspricht das gerade dem Netzebenenabstand dx;. Bei einem unendlich ausgedehnten Kris-
tall ist C(L) = 1 fiir alle L. Erweitert man den Fourier-Koeffizienten um den Faktor 1, also
CS(L) =1-C5(L), so ist die Fourierreihe in E/,(26) gerade die Faltung aus der Funktion, die
die Intensitit eines unendlich ausgedehnten Kristalliten beschreibt (hier 1), mit der Funk-
tion, die den Effekt der begrenzten Korngrofle auf die Intensitdt beschreibt. Diese Faltung
wird hier iiber die Multiplikation der Fourier-Koeffizienten 1 und C°(L) realisiert. Dieses
Resultat ist kein Zufall, sondern eine fundamentale Eigenschaft dieser Darstellung, wie sich

im néchsten Abschnitt zeigen wird.

—(D,,,)=10nm hki=111

—(D__)=15nm

vol >

Intensitat

38 39 4 4.1 4.2
20 [°]

Abbildung 2.33: Bragg-Peaks zu hkl = 111 fiir die verschiedenen Korngréflenverteilungen aus
Abb. [2.32b| mit ¢’ = 1.6.

2.5.7 Allgemeine Auswirkung von Gitterdefekten auf das Streubild

Gitterdefekte zeichnen sich durch eine statische Verschiebung der Atome aus und beeinflussen
dadurch das Streuverhalten der Probe. Die Verschiebung des Atoms m kann ganz allgemein

durch den Verschiebungsvektor bm beschrieben werden, der in Komponentenschreibweise die

Form

(S:m = Xm;ll + YmAQ + Zmzzlg
= fL‘mzZl’l + ymfi'Q + zm;lg (2.163)

hat. Die gestrichenen Groflen in der zweiten Zeile entsprechen der Drehung des Koordina-
tensystems aus dem vorherigen Kapitel (vgl. Abb. , sodass flg und Bg in Richtung des
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Streuvektors S orientiert sind. Der Ortsvektor der Atome R,, wird, genau wie zuvor bei den

dynamischen Verschiebungen, um Om erginzt, sodass fiir den statischen Ortsvektor gilt:
R}, = Ry + 0. (2.164)

Damit erhélt man nun fiir I(hihohs), ganz analog zu Gl. (2.146]) in der bereits gedrehten

Form,

I(hih5hS) =1, F? 6(72M)ZZ exp(i2m[(my —mi)h] + (mg —mb)hy + (mg —mb)h}

m m’

+ (T = T YR + (Y = Y YRS + (2 — 22 )B5]). (2.165)
Die Rechnung funktioniert von hier an so wie zuvor und man erhélt anstatt Gl. (2.158)) nun

Ep(20) = At K' I, F? 23 5SS S exp (2 (mg — ml)h5(26)

M mi1 m2 m3 m}

-exp (127 (2 — 2mr ) 15(20))

(2.166)

mi,m2

Auch hier ist nur die Verschiebungskomponente in Richtung des Streuvektors (z,,) entschei-
dend fiir das Streubild. Eine weitere Analyse fithrt zu dem zu Gl. (2.159) und GI. (2.162])

analogen Ergebnis

Ep(20) = At N K' I, F? D % % (exp (i2m 2,h5(20))) exp (i2nnh(20))

n=—oo

= L
=At N K' I, F? ¢(2M) Z C5(L) (exp (2'27T EL—)> exp (z’27r

)
1= ds(20) ds(20)

=C(L)
(2.167)

mit z, = (2, —2p ). Die spitzen Klammern um den z,, Exponentialterm stellen den Mittelwert
iiber alle Atompaare mit Abstand n in Streuvektorrichtung dar. Die Dehnung der Sdulenlédnge
er, = AL/L in der zweiten Zeile erhilt man mit AL = z,a4 und, wie zuvor, L = naj; dg ist
wieder der Ebenenabstand in Streurichtung. Fiir einen Ausdruck der Form (exp (ix)) gilt,

wenn x klein oder GauBverteilt ist, (exp (iz)) = exp (—(x?)/2) und damit entsprechend fiir

Gl (2-167)

) 2
E(20) = At N K' I, F? (2M) Y C%(L) exp(—27r2 (%) L ) exp (2'27T

L
L= d5(20) ds(29))

(2.168)

Der quadratische Mittelwert (¢2) von e, entspricht der Varianz der Dehnung in Richtung

des Streuvektors und wird héufig als Mikroverzerrung bezeichnet. Formal ist nun der Term
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2.5 Rontgenbeugung

N,/N{exp...) = C(L){exp...) der Fourier-Koeffizient C'(L), der durch Multiplikation der
einzelnen Beitréige entsteht.

Prinzipiell kann man sich die Verschiebung 6 als eine Uberlagerung der Einzelverschiebungen
der verschiedenen Gitterdefekte denken, sodass 6 aus Gl (2.163) zerlegt werden kann in

Om = ZSj,m. (2.169)
J

Verschiedene Defekte sind hier mit dem Index j nummeriert. Fiir den Defektbeitrag im
Fourier-Koeffizienten aus Gl. (2.167]) gilt dann

(exp (127 6(1))) = ([T exp (127 05(L)))
J

= H (exp (i2m (bj(L))) (Bedingung siehe unten!) (2.170)
J

mit der Abkiirzung ¢(L) = e, L/dg. Das Gleichheitszeichen in der zweiten Zeile von Gl.
gilt nur dann, wenn die einzelnen Beitrige der Defekte voneinander unabhéngig und unkorre-
liert sind. Konkret muss erfiillt sein, dass die Mittelwerte der Mischterme immer verschwinden
(zB. (I1;¢;) = 0 fiir (¢7)). Nur dann folgt das in der Modellierung von Réntgendiffraktogram-
men iibliche Ergebnis fiir C(L)

C(L)=1-C5(L)-T] C/(L). (2.171)
J

Alle Beitrdge zu C in GI. beschreiben die Abweichung des defektbehafteten Kris-
talls zum unendlich ausgedehnten, defektfreien Kristall aufgrund einzelner, voneinander un-
abhéngiger und unkorrelierter Gitterdefekte. Die Herausforderung besteht nun in der Bestim-
mung der Fourier-Koeffizienten der einzelnen Defektarten, &hnlich wie es oben und ausfiihr-
licher in [I36], 137] fiir C° (L) getan wurde. Ist das gelungen, kann das Messsignal am Detek-
tor durch Fouriertransformation von C'(L) und Multiplikation mit dem Vorfaktor theoretisch
ausgerechnet werden.
Im Folgenden sollen Methoden zur Bestimmung der Fourier-Koeffizienten fiir Stapelfehler

und Versetzungen vorgestellt werden.
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2.5.8 Effekt von Stapelfehlern

Um die Fourier-Koeffizienten von Stapelfehlern zu berechnen, betrachtet man Stapelfehler im
Kristall, welche 0.B.d.A. so orientiert sind, dass sie die (111)-Ebenen betreffen und sich iiber
die komplette Ebene erstrecken. Letzterer Aspekt ist allein schon deswegen notwendig, da man
ansonsten zwangsldufig den Beitrag der berandenden Partialversetzungen beriicksichtigen
miisste. Zur Beschreibung verwendet man, wie in [62], das an das Problem angepasste Koor-

dinatensystem a1, a5, a4, das aus der Standardbasis mit

L1 1
=——A;+-A 2.172
ay 5 1+ 5 2 ( 7 a)

1. 1.
6,2 = —§A2 + §A3 (2172]3)
b = Ay + Ay + A3 (2.172¢)

erzeugt werden kann. Die Vektoren d},d/ liegen hier in den (111)-Ebenen und der Vektor
a5 steht senkrecht auf ihnen. Die Verschiebung aufgrund der Stapelfehler S(mg) ist auf die
d} — ay-Ebene beschrinkt und hingt nur von der Indizierung bzw. Lage der Ebene senkrecht

zum Stapelfehler mg ab. Die Miller Indizes hkl werden in dieser Basis zu HyKyLg mit

1 1
Hy=—-——h+-k 2.173
0 5 + 5 ( a)
Ko= -k (2.173Db)
079" 9 '
Lo=h+k+I. (2.173c)

Die unbedingte Wahrscheinlichkeit fiir das Auftreten eines Stapelfehlers bzw. eines Zwillings
wird mit « bzw. 8 bezeichnet. Der Erwartungswert fiir den Abstand zwischen Stapelfehlern

oder Zwillingen, gemessen in Ebenenabstéinden, ist folglich 1/« bzw. 1/8.

Die Herleitung der Fourier-Koeffizienten aus diesem Ansatz ist grundsétzlich in [62] enthalten
und basiert auf einer Fouriertransformation der Ebenen-Ebenen Korrelationsfunktion P° [62]
139]; das Ergebnis ist in etwas iibersichtlicherer Form z.B. in [140] [141], 142] angegeben. Hier
wird auf die Variante aus [143] zuriickgegriffen, worin bei den notwendigen Néherungen etwas

hohere Terme als {iblich bertiicksichtigt werden. Der Fourier-Koeffizient C,fkl lautet dann

C(L) = Apgg (L) [1+iByy(L)] (2.174a)
32— 280(Lo)
Af(L) = (1-3a - 28+ 3a” + 6aB - 6% )12kt 15 (2.174b)
L L
Bii(L) = =0 (Lo) T g (2.174c)

LI |Lol (3 - 120 — 68 + 1202 — 82 + 24a8(1 - a))?
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Tabelle 2.4: Auflistung der relevanten Gréflen zur Berechnung des Einflusses von Stapelfeh-
lern auf das Streubild. Details siehe Text.

{hEL}  mpw |Lol Lo-o(Lo) mwki(Lo)  Vhk

{111} 8 3 0 2 0°
1 +1 6 70.5°
{2000 6 2 -2 6 54.7°
{2200 12 0 0 6 90°
4 +4 6 35.3°
(311} 24 3 0 12 585°
1 +1 6 80°
5 5 6 29.5°
{2222 8 6 0 2 0°
2 -2 6 70.5°

Hier sind h3 = h% + k% + 12 und o(Lg) eine Funktion von L der Form

+1, wenn Lyg=3N +1
o(Lp)=4 0, wenn Ly=3N mit N eZ (2.175)
-1, wenn Lyg=3N -1

Die Grofilen Lo und o(Lg) beinhalten die richtungsabhéingige Skalierung der Effektgrofie der
Stapelfehler auf die Fourier-Koeffizienten. Ein anschauliches Beispiel ist, dass o(Lg) = 0 ist fiir
hkl = 111 und somit C¥'(L) immer 1 is Das ist zu erwarten, weil 6(m3) gerade keine Ver-
schiebungskomponente in Richtung der Streuvektors (parallel zu [111]) hat. Eine vollsténdige
Auflistung der Werte von |Lo| und Lg - o( Lo)PY| fiir alle relevanten hkl-Kombinationen in die-
ser Arbeit ist in Tabelle angegeben. Die Anzahl der verschiedenen Moglichkeiten Lg zu
berechnen entspricht der Flachenmultiplizitét n der zugehorigen hkl-Kombination, d.h. jede
Lo Berechnung spiegelt den Effekt auf das Streubild von genau dieser hkl-Ebene wider, wobei
negative Werte von L einer Spiegelung der Ebenennormale an der Ebene entsprechen (z.B.
(111) und (111)). Gleiche Werte von |Lg| entsprechen folglich gleichen Auswirkungen auf das
Streubild, was durch eine gleiche Neigung der betreffenden Fléchen relativ zur (111) Ebene
herriihrt. Daher sind die Flichenmultiplizitit npx;, die Anzahl gleicher |Lo| Werte npr(Lo),
sowie der Winkel ~px; zwischen der (111) Ebene und den (hkl)-Ebenen ebenfalls in Tabelle
angegeben. Eine weitergehende Auflistung dieser Werte fiir zusétzliche hkl-Kombinationen
findet sich in [141].

2D.h. keine Auswirkung auf das Streubild.
25Fiir die hier vorkommenden Formeln sind nur diese Ausdriicke relevant.
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0.15F
hkl=311
0.1 3
- ILyI=5
= 0.05
M ILyl=3
0
= L~
L_-0.05¢ =
hki=311 < Lo~
-0.1}
-0.15
100 150 0 50 100 150
L [nm] L [nm]
(a) (b)

Abbildung 2.34: a) Realteil der Stapelfehler-Fourier-Koeffizienten fiir o = 0.025 und g = 0.04
fiir alle drei Subkomponenten des Peaks hkl = 311. b) Imaginérteil der
Stapelfehler-Fourier-Koeffizienten fiir o = 0.025 und g8 = 0.04 fiir alle drei
Subkomponenten des Peaks hkl = 311.

Zusétzlich zu dem Effekt auf C(L) bewirken Stapelfehler und Zwillinge noch eine lokale
Anderung des Radius der hkl Kugelschalen |éhkl| aus Abb. um |(§’;Lkl| = |G’hkl| + gpk Mmit

_ _ 2 _ n2y1/2
ghkl:a(Lo)@[iamtan((?) 1200 - 68 + 122 - 82) ) 1]7 (2.176)

e b2 | 27 1-8 6

6

was eine Verschiebung der Peakmaxima im Diffraktogramm in 260 bewirkt (vgl. Gl.
und Gl (2.123)).

Stapelfehler und Zwillinge bewirken also eine Aufspaltung der Bragg-Peaks in Subpeaks, de-
ren Anzahl der Zahl verschiedener 7, (Lg) entspricht. Diese Subpeaks sind zueinander ver-
schoben (vgl. Gl (2.176)) und haben unterschiedliche Peakformen (vgl. G1 (2.174a]-[2.174d)).
Der Anteil der einzelnen Subpeaks am Gesamtpeak entspricht dem Quotienten 1k (Lo)/npki-
Die aus den in Abb. gezeigten Fourier-Koeffizienten resultierenden Diffraktionspeaks
sind in Abb. 2:35] gezeigt.

Dem bisherigen Stapelfehlermodell liegt jedoch die Annahme zu Grunde, dass der Kristallit

praktisch unendlich grof ist und somit vor und nach jedem Stapelfehler die gleiche Menge an
Ebenen existieren. Gleichzeitig wird die Flédche aller Stapelfehler unabhéngig von ihrer Lage
als konstant angenommen. Beide Aspekte sind im Fall von nanokristallinen Polykristallen
mit anndhernd kugelformigen Koérnern nicht erfiillt, weshalb in [143] und [139] die daraus
entstehenden Fehler durch die oben angegebene Modellierung untersucht wurden.

In [143] wurden dazu an Computermodellen von sphérischen Nanopartikeln mit Stapelfehlern
und Zwillingen virtuelle Streuung mithilfe der Debye Formel durchgefiihrt und die so erhalte-

nen Diffraktogramme, basierend auf dem obigen Modell, mithilfe von WPPM angepasst (mehr
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hkl=311

PRA RN

Intensitat

1€ L =3
1k °

L I=1

IL |=5.5
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Abbildung 2.35: Einzelkomponenten des 311 Bragg-Peaks fiir o = 0.025, 8 = 0.04, (D)o =
20nm und ¢’ = 1.6. Die Summe der Einzelkomponenten formt den
vollstandigen 311 Peak und ist schwarz gepunktet eingezeichnet.

zu WPPM in Kapitel . Die daraus erhaltenen Stapelfehler- und Zwillingswahrscheinlich-
keiten wurden mit den tatsdchlichen Werten verglichen, was zu dem Ergebnis fiihrte, dass
die Stapelfehlerwahrscheinlichkeit, je nach Ausgangssituation zwischen, -5% und +10% von
der tatsichlichen abwich. Bei Zwillingen wurde 3 sogar um bis zu 30% durch das Modell

iiberschéitzt.

Ein Beitrag zu diesen Abweichungen lésst sich auf den geometrischen Effekt zuriickfiihren,
dass die Querschnittsfliche einer Kugel senkrecht zu ihrem Radius nicht konstant ist. Je
weiter am Rand ein Stapelfehler liegt, desto kleiner ist seine Fldche und desto geringer ist
sein Beitrag zur gesamten Stapelfehlerwahrscheinlichkeit. Umgekehrt wird der Beitrag mit
dem Modell fiir in der Mitte des Korns liegende Stapelfehler iiberschétzt.

Zusitzlich wurde in [139] der Effekt der Lage eines Stapelfehlers in einem zylindrischen Korn
untersucht, bei dem die Stapelfehlernormalen entlang der langen Zylinderachse ausgerichtet
waren. Dadurch wurde der geometrische Effekt auf die Stapelfehlerfliche eliminiert. Hier
wurde gezeigt, dass Stapelfehler im mittleren Bereich des Korns relativ zum wahren Wert
um bis zu 25% iiberschiitzt werden, wihrend sie am Rand quasi vollstindig bedeutungslos

werden.

Trotzdem war in allen Féllen die Modellierung des Streubildes mit der oben vorgestellten Me-
thode moglich, d.h. die prinzipielle physikalische Auswirkung des Gitterdefektes wird korrekt
beschrieben. Fiir die spétere Analyse in dieser Arbeit bedeutet das, dass bei der Bewertung
der Absolutwerte fiir o und S dieser Aspekt beriicksichtigt werden muss. Eine Korrektur

erscheint auf Grundlage dieser Ergebnisse mit den vorhandenen Daten unméglich.
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2.5.9 Effekt von Versetzungen

Um den Effekt von Versetzungen auf die Rontgenstreuung zu berechnen, muss das Dehnungs-
feld um die Versetzung bestimmt werden (vgl. Abb. und Abb. um daraus €7, bzw.
(e2) aus GL bzw. Gl. (2.168)) zu erhalten und damit die Fourier-Koeffizienten zu be-
stimmen; von den Dehnungsbeitrigen ist dann, wie immer, die Projektion in Richtung des
Streuvektors relevant. Dabei muss die elastische Anisotropie des Gitters beriicksichtigt wer-
den, sodass die einfachen Beispiele aus den genannten Abbildungen nicht ohne weiteres zur
Anwendung kommen koénnen. Zusétzlich muss der Einfluss des Versetzungskernes gendhert
werden.

Dieses Problem wurde im Rahmen der Krivoglaz-Wilkens-Theorie [144, [145] 146] (im Zu-
sammenhang mit WPPM auch [33], 140} [147]) fiir zuféllig verteilte Versetzungen mit geraden
Versetzungslinien in ansonsten perfekten, unendlich ausgedehnten Kristallen in Form einer

Néherung gelost. Konkret gilt danach fiir (¢2) in hkl-Richtung

_ Ppb2Chy

1 L/Re). (2.177)

(5%>hkl

Hier sind p die Versetzungsdichte, b die Léinge des Burgers-Vektor, R, ein effektiver Abschnei-
deradius, f* die Wilkens-Funktion und Cjyy; der Versetzungskontrastfaktor. Die Wilkens-
Funktion f* modelliert den Abfall der Verzerrung durch die Versetzung im Bereich von nahe

des Versetzungskerns bis hin zu groflen Abstdnden davon. Sie hat nach [I48] die folgende

Form:
2 3
—1n(X)+Z—ln(2)+X—— 32X , wenn X <1
4 6 2257
F(L/Re) = [*(X) = (2.178)
26 (1 + In (2X) X2 wenn X > 1
457X\ 24 4

wobei X = 0.5exp (-1/4) L/ R, ist. Beispiele fiir den Verlauf von (€2 ) sind in Abb. gezeigt.
Der Versetzungskontrastfaktor beinhaltet sowohl die Wirkung der elastischen Anisotropie
des Gitters als auch eine Skalierung, die die Grole der tatséchlich erzeugten Dehnung in
der jeweiligen Richtung festsetzt. Er hingt dabei, neben den elastischen Eigenschaften des
Gitters, mafigeblich von der Lage und dem Charakter der Versetzung ab, also vom Burgers-

Vektor b, dem Versetzungslinienvektor [ und der Normalen der Gleitebene 7i.
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—R_=5nm, p=1-10'° 1/rp?

—R,=5nm, p=5-10"° 1/m?
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05 15 2
—R_=15nm, p=5-10"% 1/m

10 20 30 40 50
L [nm]
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Abbildung 2.36: Mikroverzerrungen aufgrund von Versetzungen in Abhéngigkeit von L fiir
verschiedene Versetzungsdichten p und effektive Abschneideradien R, fiir
Chir = 1. Die Wirkung von p entspricht einer einfachen Skalierung der Kur-
ven, wohingegen eine Anderung von R, eine Forminderung der Kurve er-
zeugt.

Der Effekt der elastischen Anisotropie auf (¢ ), wurde fiir kubische Kristalle bereits in [136]
und allgemein in [149] bestimmt und hat fiir kubische Kristalle die Form

(e1)mi=A+BT
R2K2 + K212 + 12h2
(B2 +k2+12)*

=A+B (2.179)
Dieses Ergebnis ist allgemein fiir die Varianz von Dehnungen giiltig und kann daher, neben
Versetzungen, auch auf beliebige andere Dehnungen im (Poly-)Kristall angewandt werden.
Im Zusammenhang mit Versetzungen fliefit Gl. (2.179)) in den Versetzungskontrastfaktor ein
und man erhélt, wie auch in [33] 140}, 147, 150, [I51] berichtet,

Chkl =A+BT
=Co(1+¢qT). (2.180)

Teilweise werden in den Quellen auch direkt die mittleren Kontrastfaktoren Cjy; und Cago
angegeben, die man aus der Mittelung der Kontrastfaktoren aller 12 Gleitsystem@ in der
Probe erhilt. Die verbleibende Herausforderung der recht umfangreichen Berechnung der
Kontrastfaktoren wurde auf Grundlage von [152] [I53] ausfiihrlich in [I54] fir den allgemei-
nen Fall gelost, sowie in [I55] im Rahmen der Entwicklung der Software ANIZC, die online

2"Fiir den fcc Fall, wenn man nur die Standardgleitsysteme auf {111}-Ebenen in (110)-Richtungen betrachtet.
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[156] frei verfiigbar ist. Die Software ANIZC wurde auch genutzt, um die Versetzungskon-
trastfaktoren der hier untersuchten PdAu Legierung fiir alle relevanten hkl-Kombinationen
der 12 Standardgleitsysteme ((110){111}) fiir reine Stufen- und reine Schraubenversetzungen
auszurechnen. Die Ergebnisse sind in Tabelle auf S. zusammengefasst. In Tabelle
auf S. sind dariiber hinaus Werte fiir die Versetzungskontrastfaktoren mittlerer Ver-
setzungen, die zu gleichen Teilen Stufen- als auch Schraubencharakter besitzen, angegeben.
AuBerdem sind die Winkel zwischen b und dem Streuvektor in den Tabellen enthalten. Diese
Information wird spéter fiir die weitere Analyse bendttigt.

Die mittleren Versetzungskontrastfaktoren Cjy,; sind auflerdem in [151] tabelliert und lauten
fiir PdggAuy fiir Stufenversetzungen geméifl Gl.

1/3 hkl =111

_ 0 hkl =200
Cst. =0.3048 -1 1 - 1.5563 - , falls (2.181)

1/4 hkl =220

0.157 hkl =311

und fiir Schraubenversetzungen

1/3 hkl =111

_ 0 hkl =200
Csen. =0.2808 - | 1 -2.3106 - , falls . (2.182)

1/4 hkl =220

0.157 hkl =311

Die Werte fiir verschiedene Ordnungen des selben Reflexes (z.B. (200), (400), ...) unter-
scheiden sich nicht voneinander. Der mittlere Versetzungskontrastfaktor fiir eine gemischte

Versetzung, bzw. fiir im statistischen Mittel gemischte Versetzungen, ergibt sich aus Cy;. und

Cyen. durch eine anteilsgewichtete Mittelung [147, [151], also
C = ast.ést. + (1 - ast.)csch.a (2183)

wobel ag. der Anteil an Stufenversetzungen ist.

Damit erhélt man fiir die Fourier-Koeffizienten des Versetzungseinflusses CV (L)

2
V(1) = eXp(—%ﬂpbz Cha 1 (LIR,) @) (2180

wobei hier Cp;, je nach Annahme, ein konkreter Versetzungskontrastfaktor aus Tabelle

auf S. oder ein mittlerer C' im Sinne von Gl. (2.181)), Gl. (2.182)) oder Gl. (2.183) sein

kann. Beispiele fiir Fourier-Koeffizienten und daraus berechnete Bragg-Peaks sind in Abb.
dargestellt.
Wie bereits bei den Stapelfehlern, sind auch bei den Versetzungen die Voraussetzungen fiir die

Anwendbarkeit der Theorie auf nanokristalline Materialien nicht im strengen Sinne erfiillt,
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Abbildung 2.37: a) Fourier-Koeffizienten aufgrund von Versetzungen fiir den 111 Peak mit
mittlerem Versetzungskontrastfaktor, der zu gleichen Teilen Stufe- und
Schraubenversetzungen beriicksichtigt. Die Koeffizienten sind fiir verschie-
dene Versetzungsdichten dargestellt. b) Die aus den Fourier-Koeffizienten
aus a) berechneten Peaks im Diffraktogramm.

weshalb die daraus resultierenden Abweichungen zwischen tatséchlicher und theoretisch, mit-
tels WPPM bestimmter Versetzungsdichte in [I57, [158] anhand von Computermodellen un-
tersucht wurde. Es stellte sich heraus, dass unter bestimmten Umsténden tatsédchlich grofie
Abweichungen (bis zu 50%) in der Versetzungsdichte vorkommen kénnen. Die Ergebnisse
werden laut [I58] aber deutlich besser, wenn R, auf den Wert des Korndurchmessers D fest-

gesetzt wurde; in diesem Fall werde die Versetzungsdichte tendenziell leicht unterschétzt.

Zusétzlich dazu ist in [I57] der Abfall der Dehnungen aus der MD Simulation in nanokris-
tallinen Kérnern zusammen mit den gut iibereinstimmenden, analytischen Ergebnissen auf
Grundlage von [70] gezeigt. Vergleicht man diese Ergebnisse aber mit denen, die man bei
R. ~ D aus Gl erhéilt und die fiir verschiedene hkl-Richtungen auch in [I57] darge-
stellt sind, so stellt man fest, dass deren Abfall unerwartet langsam erfolgt, wenn man sie
mit denen der Spannungen aus den MD Simulationen vergleicht. In der Krivoglaz-Wilkens-
Theorie gibt es fiir isotrope Materialien lediglich 2 Freiheitsgrade, p und R., wobei ein zu
langsamer Abfall der mittleren quadratischen Spannung am ehesten auf einen zu groflen Wert
fiir R, zuriickgefithrt werden kann (vgl. Abb. . Diese Beobachtung legt nahe, dass ein
kleinerer Wert als D fiir R, ebenfalls zu plausiblen Ergebnissen fiihren sollte, die vermutlich
sogar eine bessere Ubereinstimmung mit den tatséchlich von der Versetzung im Nanokorn
verursachten Verzerrung erzeugen. Eine detailliertere Betrachtung zu diesem Thema erfolgt

im Methodikkapitel zur Versetzungsmodellierung [3.8.3]

Dariiber hinaus wurde in [94], 147, 157, [I58] davor gewarnt, dass Mikroverzerrungen in Nano-

kristallen, die nicht durch Versetzungen verursacht werden, falschlicherweise durch WPPM,
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genau wie bei anderen Methoden, als Versetzungseffekt gewertet werden kénnen; sofern es

kein zusétzliches Modell fiir andere Ursachen gibt.
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2 Theorie

Tabelle 2.6: Mittlere Versetzungskontrastfaktoren Cyz; berechnet mit ANIZC [155] [156]

Burgers- Gleit- Mittlerer Versetzungskontrastfaktor C' = (Csgufe + CSchraube ) /2
vektor  ebene  Streuvektor [111] Streuvektor [200] Streuvektor [220] Streuvektor [311]

b o «(b,[111]) C £ (b,[200]) C «(b,[220]) C «(b,[311]) C
011 111 35.264° 0.18388 90° 0.03329 60° 0.23999 64.761° 0.08577
101 111 35.264° 0.18388 45° 0.42136 60° 0.23999 31.482° 0.38318
110 111 90° 0.00272 45° 0.42136 90° 0.00870 64.761° 0.18588
011 111 90° 0.00272 90° 0.03329 60° 0.10836 90° 0.00210
101 111 35.264° 0.18388 45° 0.42136 60° 0.10836 31.482° 0.28588
110 111 35.264° 0.18388 45° 0.42136 0° 0.21517 31.482° 0.28588
011 111 35.264° 0.18388 90° 0.03329 60° 0.10836 64.761° 0.08577
101 111 90° 0.00272 45° 0.42136 60° 0.10836 64.761° 0.18588
110 111 35.264° 0.18388 45° 0.42136 0° 0.21517 31.482° 0.38318
011 111 90° 0.05860 90° 0.03329 60° 0.23999 90° 0.07353
101 111 90° 0.05860 45° 0.42136 60° 0.23999 64.761° 0.25096
110 111 90° 0.05860 45° 0.42136 90° 0.00870 64.761° 0.25096
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2.5 Rontgenbeugung

2.5.10 Thermodiffuse Streuung und zusitzliche Untergrundbeitrige

Um den Beitrag der thermodiffusen Streuung (TDS) konkret berechnen zu kénnen, wird in
Gl (2.125)) bzw. Gl. (2.134) fiir die Verschiebungen ,, der Ansatz aus der Phononentheorie
(siehe Abschnitt Gl (2.82)), S. benutzt. Es gilt damit fiir die Gesamtverschiebungen

des Atoms m

U, = Y ai(§) €(q) cos(wi(q) t—2m G Ry — 6mi(d)), (2.185)
gt
womit sich ganz analog zu Gl. (2.135)) unter Anwendung der Identitét
2cos Acos B = cos (A - B) +cos (A + B) der Ausdruck

( exp (1278 [ (t) - e (1)]) ) = exp QWZZ(géi((j))2(a?((j)) cos (21 (R = Ronr)) =1
q, -2M

(2.186)

ergibt. Hier werden alle Terme mit gemischten ¢, und §’,i’ ignoriert, da deren zeitlicher
Mittelwert aufgrund der fehlenden festen Phasenbeziehung verschwinden. Die Summe in
Gl. liuft daher nur iiber die ungestrichenen GroBen. Ein Ausdruck fiir (a?(g)) ist
bereits in Abschnitt mit Gl. (S. angegeben; ebenso ist dort das Vorgehen zur
Berechnung von ¢ sowie €;(¢) und w;(§) zu finden. Der Term Sé;(§) erfiillt im Grunde die
gleiche Funktion wie ug,, weiter oben, also die Projektion der thermischen Auslenkungen
entlang des Streuvektors im Sinne eines Richtungskosinus, welcher noch mit der Amplitude
multipliziert werden muss, um die tatséchliche Auslenkung zu erhalten. In GI. kann
der Debye-Waller-Faktor durch folgenden Ausdruck identifiziert werden:

e M = exp (—2w22(5‘éi(d))2(a?(5)) cos (271G (R - Rm,))), (2.187)
q,t
womit fiir die Intensitit der gestreuten Strahlung durch Einsetzen in Gl. (2.134)) (S. gilt

I-= Ieffe_QMZZ exp (i27r5’ [fn’,m - Rm/]) exp (ZWQZ(géi((j))Z(a?((j)) cos (27 (R, - Rm/)))
" " (2.188)
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Die Reihenentwicklung des hinteren Exponentialterm liefert den zu GIl. (2.136)) analogen
Ausdruck fiir 1

—

I=T.f2e ™3> exp (i2nS [ R — Rt ])

+ Ieffe&MZZ exp (i27r§ [Rm - Rmr]) 2W2Z(§é’i(d))2<a?(cj)) cos (277(:1’ (Rm - Rmr))

2
+ Ieffe‘QMZZ exp (i2rS [ R — Ry ]) % (27722(5'@((1))2(@?(@)) cos (210G (R, - Rm,)))
+ ...

=Io(S) + I1(S) + I(S) + ... (2.189)

Die erste Zeile in GI. beschreibt, wie bisher, die Intensitidt der Maxima (im Folgenden
Iy), die zweite die der thermodiffusen Streuung 1. Ordnung I7, die dritte die der thermodiffu-
sen Streuung 2. Ordnung I> usw.. Da die Beitridge zur Intensitdt mit ansteigender Ordnung
immer geringer werden, ist es in der Regel ausreichend, nur die ersten beiden Ordnungen der

thermodiffusen Streuung zu beriicksichtigen (vgl. [I159] und weiter unten).

Fiir die thermodiffuse Streuung 1. Ordnung erhélt man, wenn man den Kosinusterm aus
Gl. (2.189) in zwei Exponentialfunktionen ausdriickt durch 2cos(A - B) = exp (i(A - B)) +
exp (-i(A - B)),

L(S) = Lf2e M 723 (Sei(d)) a2(d))

q,t

ZZ exp (127 (S +G) [ R — B ]) + exp (i27(S = §) [ R — R ])

=Y (56 (@) (a2(@) (Io(S+@) + (S - ). (2.190)

Wie immer liefern die [p-Terme nur dann nennenswerte Beitrdge, wenn ihr Streuvektor auf
(oder sehr nahe bei) einem reziproken Gitterpunkt endet; in diesem Fall also, wenn (S' +q) =
Gl /27 ist. Die Wellenvektoren der Phononen kénnen dabei nur aus der 1. Brilloin-Zone
um den jeweiligen reziproken Gitterpunkt stammen (vgl. Abschnitt , sodass Beitrage zur
thermodiffusen Streuung 1. Ordnung im Diffraktogramm immer auf die ndhere Umgebung zu
Bragg-Reflexen beschréinkt sind. Anschaulich schlieflen die Wellenvektoren der Phononen die
Liicke zwischen einem in der 1. Brilloin-Zone endenden Streuvektor und dem in dieser Brilloin-
Zone liegenden Gitterpunkt, um so die Streubedingung (vgl. Gl. ) iiber die inelastische
Wechselwirkung zwischen Phonon und Photon doch noch zu erfiillen (siche Abb. [2.38)).

Bei der thermodiffusen Streuung 2. Ordnung I3 geht man im Prinzip genauso vor und erhélt

L(8) = 'Y 3 (561(9)"(Ser (@)’ (a2(@)a?(a)) Io(S =G +7), (2.191)

S
4t q
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TDS 1. Ordnung TDS 2. Ordnung
~ nq’
2nq  hkl 2nq hkl
27[§ 27[§
Gy Ehk,
0 0

Abbildung 2.38: Zweidimensionale Darstellung zur Berechnung der TDS 1. und 2. Ordnung.
Die 1. Brilloin-Zone (1. BZ) ist gelb eingezeichnet. Bei der TDS 2. Ordnung
ist die verschobene 1. BZ gestrichelt dargestellt. Der Mittelpunkt der ver-
schobenen 1. BZ muss bei der TDS 2. Ordnung immer innerhalb der 1. BZ
liegen. Details siehe Text.

wobei Io(S+G+q') eine Abkiirzung fiir die Summe aus allen vier Vorzeichenkombinationen im
Argument von I ist. Relevante Beitriige erhilt man, wie oben, nur fiir (S +G+q’) = G /2,
was die gleiche anschauliche Bedeutung, wie im Falle der thermodiffusen Streuung 1. Ordnung
hat; diesmal jedoch mit 2 wechselwirkenden Phononen. Das fiihrt u.a. dazu, dass nun der
Streuvektor in einem groéfleren Bereich um den reziproken Gitterpunkt enden kann und in
bestimmten Bereichen Beitrige von mehreren Bragg-Reflexen bzw. Gitterpunkten erzeugt
(siche Abb. 2.38).

Insgesamt liefert die thermodiffuse Streuung einen signifikanten, winkelabhingigen Beitrag
zum Untergrund am Ort von und zwischen den Bragg-Peaks. Aufilerdem weist die TDS eine
auffillige Signatur mit Maxima an den und um die Bragg-Peaks auf (vgl. Abb. . Die
pragmatische, technische Implementierung dieser Rechnung wird weiter unten in Kapitel [3.8.§]
beschrieben.

In dieser Arbeit werden noch zwei weitere Beitrédge der Intensitdt im Untergrund von Dif-
fraktogrammen betrachtet, die von der untersuchten Probe herriihren und eine ausgeprigte
Winkelabhéngigkeit aufweisen.

Einer dieser Beitrége ist die Comptonstreuung, welche einen etwas geringeren Beitrag als die
thermodiffuse Streuung liefert (vgl. Abb. und u.a. fiir Pd in [I33] tabelliert ist. Aufgrund
des glatten Verlaufs dieses Beitrags und der Unabhingigkeit von den meisten Probeneigen-
schaften, kann zwischen den Stiitzstellen einfach interpoliert oder die Stiitzstellen mit einer
Funktion angepasst werden.

Den zweiten Beitrag liefert die monotone Lauestreuung, die in zweikomponentigen Materia-
lien (Pd und Au) ohne Nahordnung durch [62]

I, = IeNCAucPd(fAu - de)2 (2192)
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gegeben ist. Hier sind ¢, die Konzentration der Komponente x in der Legierung und f, der
Atomformfaktor derselben. Im Vergleich zu den anderen Beitragen zum Untergrund, ist die
monotone Lauestreuung eher unbedeutend (vgl. Abb. . Falls eine Nahordnung, z.B. in
Form von PdsAuwu vorliegen wiirde, wire der Beitrag davon zur Streuung etwa gleichgrof3 wie

die monotone Lauestreuung [62], weshalb dieser Aspekt im Folgenden ignoriert werden kann.

0.05 T T
—TDS 1. + 2. Ordnung
0.04¢ — Comptonstreuung
—Laue monotone Str.
T 0.03f
7
G
IS 0.02}
0.01¢f /\V/\\
p
0
2 4 6 8 10

20 [°]

Abbildung 2.39: Verschiedene Beitrdge zum Untergrund des Diffraktogramms. Die TDS
ist fiir Kérner mit D = 30nm gerechnet. Der 111 Peak hat ein Inten-
sititsmaximum von 1, sodass die TDS hier einen Anteil von ~ 4% an der
Gesamtintensitdt hat. Defekte oder Verzerrungen der Koérner wurden hier
nicht beriicksichtigt.
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2.6 Plastizitat

Plastizitat oder plastische Verformung beschreibt eine Relativverschiebung von Atomen im
Material in Folge einer dufleren Belastung, die nach Wegnahme der Last bestehen bleibt.
Dieser letzte Aspekt bildet den Unterschied zur elastischen Verformung.

Im Rahmen dieser Arbeit liefern zwei Quellen Informationen zum plastischen Verhalten der
nanokristallinen PdAu Proben. Zum einen gibt es die makroskopische Messung, die jedoch
keine strukturellen Details aus dem Inneren der Probe abbilden kann. Die zugehérige theore-
tische Beschreibung liefert hier die kontinuumsmechanische Plastizitétstheorie, ergénzt durch
den Formalismus zur Viskositdt. Zum anderen liefert die Rontgenstreuung Informationen zu
den strukturellen Anderungen wihrend der Verformung, wodurch Riickschliisse auf Plasti-
zitdtsmechanismen moglich werden. Letztere stellen eine mechanistische Beschreibung von
Plastizitat auf mikroskopischer Ebene dar. Nachfolgend werden daher beide Betrachtungs-

weisen der Plastizitdt dargestellt.

2.6.1 Kontinuumsmechanische Beschreibung der Plastizitat

Phéanomenologisch kénnen zwei Formen von Plastizitdt unterschieden werden: Viskoses und
plastisches Verhalten. Allerdings soll hier nicht der Eindruck einer Dichotomie dieser bei-
den Verhaltensweisen erzeugt werden. Vielmehr ist es so, dass das viskose Verhalten einen
Spezialfall der Plastizitdt darstellt und in der kontinuumsmechanischen, thermodynamischen
und mechanistischen Betrachtung unter den passenden Bedingungen aus der allgemeinen
Beschreibung hervorgeht.

Beim viskosen Verhalten [160] besteht, &hnlich wie beim Hook’schen Gesetz, eine lineare
Abhingigkeit zwischen Spannung o und plastischer Dehnrate ¢,. Eindimensional werden
beide Groflen iiber die Viskositat n mit

£y =10 (2.193)

verkniipft. Allgemein handelt es sich eigentlich bei allen Gréflen um Tensoren, wobei der
Dehnratentensor aus dem Dehnungstensor durch zeitliche Ableitung aller Komponenten her-
vorgeht. Der Viskositétstensor ist formal ein Analogon zum Elastizitdtstensor, d.h. es kann
theoretisch eine Vielzahl von unabhéngigen Eintrdgen geben, die ein anisotropes viskoses
Verhalten von Materialien beschreiben. In der Regel wird aber isotropes viskoses Verhalten
betrachtet, sodass nur noch zwei unabhéngige Viskositédten im Viskositétstensor vorkommen,
némlich die Scherviskositdt 1s und die Volumenviskositét 7,. Genau wie bei der Elastizitéit im
isotropen Fall, beschreibt die Volumenviskositéit das Materialverhalten bei volumenéndernden
Verformungen und die Scherviskositit das Materialverhalten bei volumenerhaltenden aber
forméndernden Scherverformungen. In diesem Fall sind die Hauptachsen des Dehnratenten-

sors genauso orientiert wie die des Spannungstensors. Plastisches Flieflen erfolgt also in die
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gleichen Richtungen, in die auch die Spannung wirkt. In Richtung positiver Zugspannun-
gen erfolgen positive Dehnungen und in Richtung negativer Druckspannungen kommt es zur
Stauchung (negative Dehnung) des Materials. Aulerdem erfolgen plastische Scherungen nur
entlang solcher Ebenen an denen auch Scherspannungen anliegen. Im Zusammenhang mit
inkompressiblen Fliissigkeiten fillt die Volumenviskositdt hdufig weg, sodass es sich bei nicht
weiter spezifizierten Viskositéten in der Regel um Scherviskositéten isotroper, inkompressibler
Medien handelt.

Beim plastischen Verhalten [42] findet im Gegensatz dazu erst dann eine plastische Verfor-
mung statt, wenn eine kritische Spannung, die Fliespannung o, erreicht wird; vorher ist das
Verhalten elastisch. Fiir das Vorhandensein von plastischem Verhalten in diesem Sinne ist es
also notwendig, dass in dem Material bei Verschiebung zunéchst riickstellende Krifte erzeugt
werden, andernfalls kann keine Spannung aufgebaut werden. Fliefit das Material ab Erreichen
der FlieBspannung bei konstanter Spannung mit der von auflen vorgegebenen Dehnrate, ist
das Verhalten ideal plastisch. Muss die angelegte Spannung zur Aufrechterhaltung des Flie-
Bens kontinuierlich gesteigert werden, liegt (Kalt-)Verfestigung (engl. work hardening) vor,
beim gegenteiligen Fall entsprechend Entfestigung (engl. work softening).

Fiir das Auftreten von plastischer Verformung lasst sich formal eine FlieSbedingung der Form
f(3)=0 (2.194)

formulieren, wobei f eine spannungsabhingige Fliefifunktion darstellt. Plastizitat tritt bei
den Spannungszustinden auf, bei denen die FlieSfunktion die FlieBbedingung erfiillt. Die
Herausforderung ist also, die zum Materialverhalten passende Fliefifunktion zu bestimmen,
von denen in der Vergangenheit bereits zahlreiche fiir unterschiedlich komplexes Material-
verhalten entwickelt wurden; ein guter Uberblick iiber die gingigsten FlieBfunktionen und
Fliefbedingung ist u.A. in [42] enthalten. Die einfachsten sind das von Mises- und das Tresca-
Kriterium fiir isotrope Materialien, die sich unter Druck- und Zugbelastung gleich verhal-
ten und unabhéngig von der hydrostatischen Spannung sind. Das Mohr-Coulomb-Kriterium
beriicksichtigt dariiber hinaus Normalspannungen auf den Gleitebenen und das Drucker-
Prager-Kriterium ergénzt eine allgemeinere Abhéngigkeit von der hydrostatischen Spannung.
Fiir porose Metalle wurde das von Mises-Kriterium zum Gurson-Kriterium erweitert, in dem
explizit die Porositdt des Materials enthalten ist. Noch komplexere Modelle, wie z.B. das
Pitman-Schaeffer-Gray-Stiles-Kriterium [161], [162] decken Effekte wie Kompressibilitéit, Di-
latanz und Kontraktanz ab und wurden urspriinglich fiir die Beschreibung des Verhaltens
granularer Materialien entwickelt.

Die FlieBbedingung beschreibt fiir die verschiedenen Fliefunktionen verschieden geformte
Hyperflichen im 6-dimensionalen Spannungsraum; die FlieBfunktion ist natiirlich auch au-
Berhalb der Fliefifliche definiert. Stellt man die Spannungen im Hauptspannungsraum dar,
reduziert sich die Dimensionalitéit des Spannungsraumes von 6 auf 3 Dimensionen und die

Flieflichen konnen graphisch dargestellt werden. Fiir das von Mises-Kriterium erhélt man

110



2.6 Plastizitét
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Abbildung 2.40: Skizzen der FlieBflichen des von Mises-Kriteriums und des Drucker-Prager-
Kriteriums im Hauptspannungsraum.

so z.B. den bekannten Zylinder und fiir das Drucker-Prager-Kriterium entsprechend einen
Kegel mit Endkappe (siehe Abb. . Ein Spannungszustand wird hier durch einen Punkt
im Hauptspannungsraum 1"ep1réaLsentielrtP__gI7 der sich bei Anderung der Belastung im Span-
nungsraum verschiebt — in jedem inkrementellen Zeitschritt d¢ um do. Trifft dieser Punkt
auf die FlieBfliche, ist die Fliebedingung erfiillt und es kommt zu plastischer Deformation.
Die Mittelachsen der FlieBflichen entsprechen (normalerweise) der ersten Raumachse, welche
die Gesamtheit aller hydrostatischen Spannungszustéinde représentiert. Die Raumkoordina-
ten des Spannungszustandes in Richtung der hydrostatischen Achse beschreiben somit den
hydrostatischen Teil der Spannung und die verbleibende Abweichung senkrecht dazu ent-
spricht dem deviatorischen Anteil der Spannung. Man erkennt also direkt an der Gestalt der
Flieflichen, dass das von Mises-Kriterium unabhéngig von der hydrostatischen Spannung ist
und nur vom Spannungsdeviator abhingt, wohingegen die Abhéingigkeit des Drucker-Prager-
Kriteriums von der hydrostatischen Spannung offensichtlich ist.

Entscheidend fiir das plastische Materialverhalten sind aber die Vorgénge, welche durch das
Erreichen der Flieffliche initiiert werden} Der bisherige Formalismus macht némlich kei-
nerlei Aussage dariiber, wie schnell sich das Material bei Erreichen der Flie3fliche verformt
oder in welche Richtung. Die Beantwortung dieser Fragestellung ist Gegenstand des Flief3-
gesetzes und erfolgt auf Grundlage des plastischen Potentials. Bei assoziierten Fliefigesetzen
ist das plastische Potential identisch mit der FlieSfunktion f, bei nicht-assoziierten Flie3ge-

setzen ist das nicht der Fall. Dort wird das plastische Potential zusétzliche modelliert, um

28Die Orientierung des Hauptspannungsraums gegeniiber dem Laborkoordinatensystem ist hier komplett un-
bestimmt und es kann z.B. zu beliebigen Drehungen des Hauptspannungsraumes gegeniiber dem Laborko-
ordinatensystem wihrend der Anderung des Spannungszustandes kommen.

29Hier erfolgt eine vereinfachte Darstellung. Die vollstindige Komplexitit ist z.B. in [42] dargestellt.
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einen weiteren Freiheitsgrad in das Modell einzubringen. Hier wird der Einfachheit halber
nur der assoziierte Fall betrachtet, Weiterfithrendes ist z.B. in [42] enthalten. Die Eintréige
des plastischen Dehnratentensors ergeben sich dann aus der FlieBfunktion (allgemeiner: dem

plastischen Potential) mit

» . Of

E.. :’y
R aO'ij7

450 (2.195)

wobei 4 ein skalarwertiger, positiver plastischer Multiplikator ist. Aus GI. folgt direkt,
dass die plastische Dehnrate bzw. das Dehnungsinkrement genauso orientiert sind, wie der
Gradient der Fliefifunktion/des plastischen Potentials. Dieser Gradient steht immer senkrecht
auf der Flieﬁﬂachﬂ (vgl. Abb. , weshalb dieser Sachverhalt als Normalitdtsbedingung
bezeichnet wird. Daraus folgt auflerdem, dass die Hauptachsen des plastischen Dehnraten-
tensors bzw. des Tensors des plastischen Dehnungsinkrements, genauso orientiert sind, wie
die Hauptachsen des Hauptspannungsraums (Koaxialitdtsbedingung); die Implikationen sind
die gleichen wie oben bei der Viskositét beschrieben. Assoziierte Flieigesetze und die Norma-
litdtsbedingung haben sich fiir die Beschreibung der Plastizitéit vieler metallischer Werkstoffe
bewéhrt. Bei Gestein, Sand und granularen Materialien, oder allgemein druckabhéingigen,
dilatierenden Materialien, scheitern sie jedoch hiufig, weshalb nicht-assoziierte Materialge-
setze verwendet werden miissen, bei denen die Normalitétsbedingung und damit auch die

Koaxialitidtsbedingung ihre Giiltigkeit verlieren [42] [163].

Aodev

Normale

Abbildung 2.41: Zweidimensionale Darstellung einer Flieffliche eines assoziierten FlieBgeset-
zes mit der hydrostatischen Spannung als x-Achse und einer deviatorischen
Spannung als y-Achse. Der aktuelle Spannungszustand wird durch einen
Punkt, hier auf der Fliefliche, gekennzeichnet. Das resultierende Dehnungs-
inkrement de entlang der Normalen auf der Fliefifliche, besitzt eine isotrope
Dehnungskomponente de,,;, die kollinear mit der o5, Achse ist.

30Bei assoziierten FlieBgesetzen.
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Fir FlieBflichennormalen, die nicht senkrecht auf der hydrostatischen Spannungsachse ste-
hen, kommt es zu Kompression, Dilatation, Dilatanz oder Kontraktanz, da die resultie-
rende Dehnrate/Dehnungsinkrement einen hydrostatischen Dehnungsanteil besitzen (siehe
Abb. . Wenn die Flielflaichennormale bei einem Spannungszustand eine Komponente
in Richtung negativer hydrostatischer Spannung besitzt, folgt eine Volumenabnahme durch
Kompression oder Kontraktanz, andernfalls eine Volumenzunahme durch Dilatanz bzw. Dila-
tation. Kontraktanz bzw. Dilatanz liegen dann vor, wenn bei einer reinen Scherspannung die
resultierende Scherdehnung durch einen isotropen Dehnungsanteil ergénzt wird. Die Orien-
tierung der Hauptachsen des Dehnratentensors wird durch den isotropen Anteil offensichtlich
nicht beeinflusst. Kompression bzw. Dilatation sind die analogen Prozesse, die jedoch durch

Normalspannungen hervorgerufen werden.

Die zeitliche Entwicklung des plastischen Flielens wird durch das Zusammenspiel von der
Entwicklung des Belastungszustandes und der Reaktion des Materials darauf bestimmt. Die
Entwicklung des Belastungszustandes bedeutet hier, wie sich in jedem Zeitinkrement der
Spannungszustand do in Bezug auf das plastische Potential (hier die FlieBfliche FF)E| ent-
wickelt. Es miissen nur drei relevante Félle unterschieden werden (siehe auch Abb.

>0, Lastzunahme normal zu FF
of

9 do { =0, neutrale Lastinderung entlang FF (2.196)
o

<0, Lastabnahme normal zu FF

Das Frobenis-Skalarprodukt (:) wirkt hier analog zum gewohnten Skalarprodukt zwischen
Vektoren und liefert ein verallgemeinertes Ma$ fiir die Projektion von d& entlang der Nor-
malen auf die Flieffliche. Im Hauptspannungsraum sind das Frobenis-Skalarprodukt (:) und

das Skalarprodukt (-) zweier Vektoren identisch.

Der plastische Multiplikator 4 hingt von diesem Belastungszustand in der Form

4= ﬁ (% : da) (2.197)
ab, wobei H eine skalarwertige Funktion ist, die von der vorherigen Verformungsgeschichte
¥ abhingt und das Verfestigungsverhalten des Materials beschreibt. Gleichung gilt
in genau dieser Form auch bei nicht-assoziierten Flieigesetzen. Die Verformungsgeschichte
wird hier als Platzhalter mit ¢ bezeichnet und kann im konkreten Fall nahezu beliebig kom-
plex von plastischer Dehnung, Temperatur, Druck, Dehnrate, usw. abhéngen; weitergehende

Informationen zu dem Thema finden sich in [42]. Zusammen mit der Bedingung < > 0 sind

31 Assoziiertes Materialgesetz.
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also drei verschieden plastische Reaktionen des Materials nach Erreichen der FlieBbedingung

moglich:

0 _

H>0, —J: :do >0,  Verfestigung
do
of .- .

H <0, e do <0,  Entfestigung (2.198)

o
H-=0, % :do =0, ideal plastisch

0o

Zusétzlich ist bei Lastabnahme (2. Fall in Gl. (2.198))) natiirlich immer die elastische Entlas-
tung moglich, also das Verlassen der Fliefifliche in Richtung betragsméiﬁiglﬂ kleinerer Span-

nungen.

—> Lastzunahme
—> Lastabnahme
neutrale Belastung

Abbildung 2.42: Zweidimensionale Darstellung der verschiedenen Belastungszustinde und
der entsprechenden Entwicklungen der FlieBfliche (bzw. des plastischen Po-
tentials).

Solange plastische Verformung stattfindet, muss der Spannungszustand die FlieSbedingung
erfiillen, also der entsprechende Punkt im Spannungsraum auf der FlieBfliche bleiben. Bei
Verfestigung und Entfestigung bewegt sich der Spannungszustand aber (teilweise) normal
zur urspriinglichen Flie3fliche, weshalb eine entsprechende Anpassung derselben durch eine
Modifikation der Fliefunktion notwendig wird. Dabei kann die Form der FlieBfliche als
Folge von Ver-/Entfestigung angepasst werden oder die Flieffliche im Spannungsraum als
Ganzes verschoben werden. Formal wird dadurch die FlieSfunktion selbst ebenfalls von der
Verformungsgeschichte abhiingig, also f(5) — f(7,9).

Die Besprechung der kontinuumsmechanischen Plastizitdtstheorie wird an dieser Stelle abge-

brochen; ihr grundsétzlicher Aufbau und die elementarsten Folgerungen sind im Grundsatz

32Der Betrag ist hier im allgemeinen Fall bei Tensoren die Frobeniusnorm.
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dargestellt. Die eigentliche Arbeit bestiinde in der Identifikation oder Entwicklung passender
Flielfunktionen, ggf. plastischer Potentiale und Verfestigungsgesetze, wodurch eine quantita-
tive theoretische Beschreibung der makroskopischen Plastizitit moglich wird. Das ist jedoch
nicht Gegenstand dieser Arbeit. Trotzdem ist die Plastizitéitstheorie, selbst in dieser ober-
flichlichen Form, niitzlich um die Daten der makroskopischen Verformung im Ergebnisteil

aufzubereiten und zu interpretieren.

2.6.2 Thermodynamische Beschreibung und thermische Aktivierung

Im Gegensatz zur kontinuumsmechanischen Plastizitédtstheorie, konzentriert sich die mikro-
skopische Beschreibung auf die Mechanismen, durch die die permanenten Relativverschiebun-
gen im Gitter oder im Polykristall erzeugt werden. Die Aktivierbarkeit dieser Mechanismen in
einem Material — bei gegebenen Bedingungen wie Temperatur, (Mikro-)Struktur etc. — héngt
dabei von der angelegten Spannung ab. Das ist genau wie in der Kontinuumsmechanik und
muss auch so sein, denn grundsétzlich beschreiben beide Ansétze den gleichen Vorgang. Das
Analogon eines Plastizitdtsmechanismus zur FlieSbedingung ist die Aktivierungsspannung
(oder Scherwiderstand, engl. glide resistance) 7, welche die angelegte Spannung erreichen
muss, um den Mechanismus zu aktivieren. Sie lédsst sich thermodynamisch als Fortsetzung zu
dem Formalismus herleiten, der oben bei der Elastizitit benutzt wurde (siche Gl. (2.39f)).
Um damit die Briicke von der makroskopischen Kontinuumsmechanik zur mikroskopischen
Betrachtung zu schlagen, wird das Gesamtsystem, welches durch ein thermodynamisches
Potential wie F' beschrieben wird, in Subsysteme unterteilt, sodass F' = ) F; ist. Diese Sub-
systeme sollen nun so gewéhlt sein, dass jeder lokal ablaufende Plastizitdtsmechanismus durch
ein eigenes Subsystem reprisentiert wird. Zudem sollen Plastizitdtsmechanismen verschiede-
ner Subsysteme sich nicht gegenseitig beeinflussen, sondern wie in [32] parallel zueinander
ablaufen. Die folgende Darstellung stiitzt sich im Wesentlichen auf [164] und [165] und wurde
bereits in fritheren Arbeiten [25] 166, 167, [30] in dhnlicher Weise aufgegriffen.

Im elastischen, also reversiblen Fall gilt dF = dW|p_const und damit

_of | 1 ow ‘
- 88@' T=const \%4 a&ij T=const_

Tij (2.199)
Das ist der Fall, in dem gem#fl dem Prinzip der maximalen Arbeit bei konstanter Entropie die
maximale mechanische Arbeit am System verrichtet wird [I19]. Bei irreversiblen Vorgéngen
nimmt die Entropie zu, sodass dF < dW/|pr-const gilt. Damit ergibt sich fiir die durch die
Verformung dissipierte Energie d¥ nach [164]

d¥ =V > > 0ijde;; —dF > 0. (2.200)
i

daw
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Die Aktivierungsspannung ist im Prinzip genauso definiert wie die allgemeine Spannung o

zuvor, also

of

651-]- |T:const’

Tij (2.201)
nur dass hier die Einschrinkung dF = dW|p_const in den allgemeineren Fall dF < dW |p_const
tibergeht.

Mit Gl. (2.201)) erhélt man dann aus Gl. (2.200)) den Zusammenhang fiir die dissipierte Energie

dv =V Z Z de’;‘ij (Uij - Tij) . (2.202)
g

Fiir jeden Belastungsfall o # 0 erzeugt man, neben plastischer Dehnung, immer auch elasti-
sche Dehnung, weshalb zunéchst die Implikationen dieses Formalismus in Bezug auf elastische
Vorgénge betrachtet wird. Dieser Fall ist in Abb. (S. ﬁir eindimensionale Spannun-
gen und Dehnungen dargestellt. Zwingt man einem elastischen Material eine Dehnung ¢y
auf, bzw. belastet es mit einer entsprechenden Spannung oy, gilt in jedem Punkt der Belas-
tungskurve ¢ = 7 und damit d¥ = 0, es wird also keine Energie dissipiert. Die verrichtete
mechanische Arbeit, die der Fliche unter der 7 Kurve entspricht, ist in Form von potentieller
Verzerrungsenergie AW im Material gespeichert. Eine Entlastung entspricht einer Dehnung
in negative e-Richtung und setzt, formal durch den Vorzeichenwechsel von €, die Verzerrungs-
energie —AW wieder frei. Das gilt, solange die Bedingung fiir lineare Elastizitat erfiillt ist,

fiir beliebige Dehnungen/Spannungen.

Bei einer plastischen Verformung erreicht man, im Unterschied zur elastischen, ein neues lo-
kales Minimum in F' bei hoheren Dehnungswerten ep (siehe Abb. S. [I19). Altes und
neues Energieminimum sind durch eine freie Energiebarriere voneinander getrennt. Der plas-
tische Dehnungsunterschied Ae, zwischen den Minima, sowie Form und Hohe der Energieb-
arriere, sind abhéngig von dem Plastizitdtsmechanismus. Ein fiktives Beispiel fiir solch einen
elastisch-plastischen Vorgang ist in Abb. (S. gezeigt.

Hier wird von auflen eine Spannung o, auf das Material aufgebracht, was eine initiale elasti-
sche, reversible Dehnung ¢, verursacht; diese Dehnung muss nicht zwangsweise linear elastisch
sein. Allerdings muss bis zu diesem Punkt stets ¢ = 7 gelten. Anhand des 7 — ¢ Diagramms
kann man erkennen, dass der Punkt bei 5 und 7(g5) = 0, stabil ist, da fiir eine weitere Deh-
nung eine Erhohung der Spannung notwendig wire. Fiir das Uberwinden der Barriere ist eine
Spannungserh6hung auf den Maximalwert 7, der sogenannten athermischen Grenzspannung,

notwendig.

Erreicht man diesen Wert, wird eine plastische Dehnungszunahme bis zum néchsten stabilen
Punkt (hier ) bewirkt. Bei dieser plastischen Dehnung ist 7 < g4, sodass d¥ > 0 ist, also

Energie dissipiert wird. Am neuen stabilen Punkt stellt sich bei g, # 0 natiirlich wieder eine
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2~ 0

€

Abbildung 2.43: Veranschaulichung des Zusammenhangs zwischen freier Energie F', angeleg-
ter Spannung ¢ und Scherwiderstand 7, sowie dissipierter Energie V¥ fiir den
elastischen Fall. Details siehe Text.

entsprechende elastische Dehnung ein, deren Abbau die elastisch gespeicherte Verzerrungs-
energie —AW wieder freisetzt — vorausgesetzt, die elastischen Eigenschaften des Materials
wurden durch die plastische Verformung nicht veréndert.

In der Regel wird die angelegte Spannung die athermische Grenzspannung aber nicht erreichen
konnen, da die Barriere vorher durch die thermischen Schwingungen der Atome {iberwunden
wird. Dazu ist eine zufillige, kollektive Bewegung aller am Plastizitéitsprozess beteiligten Ato-
me in der Art nétig, dass momentan eine effektive lokale Dehnung und Spannunﬂ entsteht,
durch welche die Liicke zu 7 und € geschlossen wird. Die plastische Dehnung lduft ab da, genau
wie oben, selbststéndig ab, wobei in jedem plastischen Dehnungsinkrement de, die mechani-

sche Arbeit dW = 0,de, verrichtet wird. Zwischen e5 und dem instabilen Gegenpart auf der

33Die Spannung ist die riickstellende Kraft der thermischen Schwingungen.
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abfallenden Flanke der Barriere g; ist 7 > o und damit d¥ < 0. Es muss also in diesem Bereich
AF* am System verrichtet werden, was einerseits durch mechanische Arbeit AW = o,(g;—¢5)
und andererseits durch thermische Arbeit in Form von AG” erfolgt. Das Auftreten der freien
Enthalpie AG* erklirt sich durch die Konstanz von Temperatur und Druck, wobei letzteres
aus der Konstanz von o, folgt. Die am System zu verrichtende Arbeit in Form von freier Ener-
gie setzt sich damit aus AF* = AW + AG” zusammen, wobei der Stern die zu verrichtenden
Aktivierungsenergien kennzeichnet. Mit dem Einsetzen der plastischen Verformung gilt also
dG = -dy, und zwar auch nach dem Bereich ¢; bis 5. Die Aktivierungsenergie AG* wird
dem System beim Uberwinden der Barriere entzogen und anschliefend iiber die Dissipation
dG = —dtp wieder zugefiihrt. Der Unterschied zwischen insgesamt verrichteter mechanischer
Arbeit AW, und insgesamt dissipierter Energie A1, ist der Unterschied zwischen altem und

neuem Minimum in der freien Energie AF.

Die Verfestigung aus dem vorherigen Abschnitt entspricht hier einer Erhohung von 7 durch
plastische Verformung. Das kann z.B. in einem Subsystem (d.h. Teilvolumen) durch einen
Versetzungsaufstau an der Korngrenze verursacht werden. Dann interagieren nachfolgende
Versetzungen mit dem Spannungsfeld der aufgestauten Versetzungen (siehe z.B. [165] [168])
und erzeugen so beim Gleiten iiber die gleiche Distanz{f] eine grofere Zunahme der potentiel-
len Energie und damit von F'. Die daraus resultierende Zunahme der Steigung von F' erzeugt
dann einen Anstieg von 7 und somit auch von 7. Die Entfestigung entspricht der Umkehrung
eines solchen Vorgangs. Wenn die gesamte Verformung im Material nur von einem Mecha-
nismus getragen wird, der quasi isotrop im Materialvolumen stattfindet, ist die Beschreibung

des Gesamtsystems und der Subsysteme identisch, andernfalls sind sie nur formal dhnlich.

Die Dehnrate, mit der die plastische Verformung abliuft, ist durch die thermisch aktivierte
Uberwindung der Potentialbarriere bestimmt. Das heiBt, wenn von auBen die athermische
Grenzspannung o = 7 angelegt wird, kann die plastische Verformung beliebig schnell ablaufen.
Praktisch wird die maximale Dehnrate dadurch beschrinkt, dass die Geschwindigkeit der
Plastizitdtsmechanismen durch die Schallgeschwindigkeit im Material begrenzt ist. Fiir alle
Falle 0 < 7 ergibt sich die Dehnrate € aus dem Produkt der Rate R, mit der die Barriere

iiberwunden wird, und dem dadurch hervorgerufenen Dehnungsinkrement Aeg, also
=R Ac. (2.203)

Die Rate R hingt wiederum von der Frequenz v ab, mit der die thermischen Fluktuationen
versuchen, die Barriere zu iiberwinden, sowie von der Wahrscheinlichkeit P(AG*,T), mit
der eine thermische Fluktuation auftritt, deren Energie grofler oder gleich der benétigten

Aktivierungsenergie AG” ist. Man erhélt also

R=v P(AG*,T). (2.204)

34 Das entspricht der Erzeugung einer gleichen Dehnung de.
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Abbildung 2.44: Veranschaulichung des Zusammenhangs zwischen freier Energie F', angeleg-
ter Spannung ¢ und Scherwiderstand 7, sowie dissipierter Energie ¥ fiir den
plastischen Fall. Zusétzlich ist der Zusammenhang zur hier relevanten Gibbs
Energie G dargestellt. Details siehe Text.
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Die thermischen Fluktuationen sind, mechanistisch betrachtet, kollektive Bewegung aller am
Plastizititsprozess beteiligten Atome, was im Prinzip identisch zu den atomaren Schwingun-
gen ist, die durch die Phononen beschrieben werden. In einem Subsystem ist die rdumliche
Ausdehnung des Plastizitdtsmechanismus, {iber den die kollektive Schwingung stattfinden
muss, daher mit der Wellenléinge des entsprechenden Phonons korreliert. Fiir die Wahr-
scheinlichkeit P gilt die Bose-Einstein-Statistik, die fiir grofle Aktivierungsenergien AG*
in die gebréduchlichere Maxwell-Boltzmann-Statistik iibergeht, sodass man den gewohnten
Arrhenius-Ausdruck aus Frequenzfaktor und Boltzmannfaktor erhélt, wie er auch in [164]
165), 25| 166, 167, B30] verwendet wird. Man erhilt also

1 AG*
P(AG*,T) ~ : exp(— ¢ ) (2.205)
exp (%BGT) —1 AG*>»kT k‘BT

Die Frequenz v entspricht dann v = w/27, wobei w die Kreisfrequenz des Phonons ist, wie
sie in Kapitel angegeben ist. Diese hingt in komplexer Art von Lénge und Orientie-
rung des Phononenvektors ¢ und der Mode (z.B. transversal, longitudinal) ab, folgt aber
im Prinzip ebenfalls der Bose-Einstein-Statistik mit der Energie F = hw ~» AG”, sodass die
gleiche Proportionalitdt wie in GL gilt. Die Frequenz v wird héufig lediglich auf ei-
ne GroBenordnung abgeschitzt (v § 101 s7!) [164] oder grob genithert wie z.B. in [165], wo
v = vp (/)Y mithilfe von Debye-Frequenz vp, Atomvolumen €y und GroBe des Schervo-

lumens 2 fiir Schertransformationen abgeleitet wird.

In dieser Arbeit wird die Naherung AG* > kT genutzt; bei Raumtemperatur ist kT =~
0.025eV, was deutlich kleiner ist als die zu erwartenden Werte fiir AG* ~ 0.5eV [166] bzw.
AG* ~0.75eV [167] oder AG* ~0.77€eV [11]. Damit wird Gl. (2.204) zu

AG* 2AG*
R=vexp (— kBGT) = Vg exp (— kB(; ), (2.206)

wobei vg ~ 1012571 ist, womit v fiir den Fall AG* = 0 der GréB8enordnung von w/2r fiir || ~ 0

aus den Phononenrechnungen fiir PdAu entspricht.

Fiir die Dehnrate erhélt man dann mit Gl. (2.206]) und GI. (2.203|)

£=¢0 exp B (2.207a)
kpT
2AG;
= Ae 1y exp (—T;ff) (2.207b)
2AG}
~ ch- Ag; vy exp (— k TZ ) (2.207¢)
i B
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Hier beziehen sich GI. und Gl auf das Gesamtsystem; £¢ beschreibt die ef-
fektive, makroskopische athermische Dehnrate, Ae das effektive, makroskopische Dehnungs-
inkrement durch den effektiven Plastizitdtsprozess und AG;'f g st die effektive thermische
Aktivierungsenergie aller an der Verformung beteiligten Mechanismen.

Die Gl stellt die Summation {iber alle Subsysteme dar. Hier ist Ag; die lokal im
i-ten Subsystem erzeugte Dehnung durch den Plastizitdtsmechanismus mit thermischer Ak-
tivierungsenergie AG;. Zusatzlich wird ein Gewichtungsfaktor ¢; notwendig, der den Anteil
des Subsystems am Gesamtvolumen reprasentiert. Genau genommen stellt Gl. nur
eine Anndherung an GI. oder GI. dar, da eine einfache, gewichtete Summa-
tion von lokalen Dehnungen in Teilvolumina der Probe nicht zuléssig ist. Die genaue Lésung
erhielte man erst durch die Lsung aller Eshelby-Probleme [42] [60]. Aufierdem ist bei der Be-
trachtung der Subsysteme nicht gewéhrleistet, dass nur ein einzelner Plastizitdtsmechanismus
darin enthalten ist. Allgemein miissen immer alle (stark) miteinander wechselwirkenden Pro-
zesse in einem gemeinsamen Subsystem enthalten sein und bilden zusammen einen effektiven
Plastizitatsprozess, wodurch Ae; und AG; streng genommen auch effektive GroBen auf klei-
nerer Lingenskala sind. Im Beispiel mit der Aufstauung von Versetzungen an der Korngrenze
miissten z.B. alle miteinander wechselwirkenden Versetzungen im selben Subsystem enthalten
sein.

In Ubereinstimmung mit dem oben Gesagten, ergibt sich in dieser Beschreibung als ather-
mischer Grenzfall (AG* = 0) eine Verformung, bei der sich der Plastizitétsmechanismus mit
Schallgeschwindigkeit bewegt. Streng genommen miisste man in diesem Fall eigentlich auf die
Niaherung AG* > kT verzichten und erhielte divergierende Dehnraten, wie es auch in [165]
der Fall ist; physikalisch sinnvoll ist das aber nicht.

Des Weiteren ldsst sich feststellen, dass im Prinzip die FlieSspannungen alle Verformungs-
prozesse dehnratenabhéngig bzw. temperaturabhéingig sind oder umgekehrt, dass jeder Plas-
tizitdtsmechanismus zu einem viskosen FlieSlen fithrt [169]. In der Praxis ist die Dehnraten-
abhéingigkeit/das viskose Verhalten bei den Prozessen, die die Aktivierungsbarriere im We-
sentlichen nicht thermisch iiberwinden, aber oft so gering, dass dieser Aspekt in den gingigen
Beschreibungen vernachléssigt wird (z.B. Versetzungsgleiten bei niedrigen homologen Tem-

peraturen).
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Bisher wurden plastische Verformungen bei konstanter angelegter Spannung betrachtet. Im
Experiment wurde die Verformung jedoch geschwindigkeitskontrolliert durchgefiihrt, d.h. die
angelegte Spannung ist variabel und kann durch das Auftreten eines Scherereignisses kurz-
zeitig abgesenkt werden. Die geleistete mechanische Arbeit und die dissipierte Energie, wie
sie in Abb. (S. dargestellt sind, stellen daher obere Schranken dar.

Fiir nanokristalline Materialien, in denen eine Vielzahl von Plastizitdtsmechanismen moglich
sind, bedeutet das, dass bei gegebener Dehnrate die Spannung im Material solange ansteigt,
bis die Gesamtheit aller bei dieser Spannung/Temperatur/etc. aktiven Prozesse die von auflen
vorgegebene, effektive Dehnrate erreicht.

Laufen diese Prozesse vollstdndig parallel zueinander ab, also ohne gegenseitige Beeinflussung
oder Abhéngigkeit, wird das Geschehen von dem Prozess mit der geringsten Aktivierungsener-
gie dominiert, sofern dieser Prozess alleine fihig ist, die geforderte makroskopische Dehnrate
bereitzustellen (vgl. ¢;Ae; in Gl (2.207¢))). Der Beitrag zur effektiven Dehnrate von Kombi-
nationen untereinander abhéngiger bzw. sich beeinflussender Prozesse ist immer durch den
Mechanismus mit der hochsten Aktivierungsenergie begrenzt.

Kommen Mechanismen mit niedriger Aktivierungsenergie mit fortlaufender Verformung zum
Erliegen, muss auf schwerer aktivierbare Prozesse ausgewichen werden, wodurch die angeleg-
te Spannung steigen muss, um die Verformung aufrecht zu erhalten. Formal wird in diesen
Féllen c¢;(ep;) von dem bereits geleisteten Beitrag dieses Prozesses zur plastischen Dehnung
€p; abhéngig. Dieser Vorgang ist identisch zu dem, der wihrend der Relaxation von nano-
kristallinen Metallen auftritt und in [32] ausfiihrlich beschrieben ist. AuBerdem werden in [§]
Indizien dafiir geliefert, dass dieses relaxationsdhnliche Verhalten einen Beitrag zur plasti-

schen Verformung nanokristalliner Metalle liefert.

2.6.3 Plastizitatsmechanismen

Im vorherigen Abschnitt wurde dargelegt, dass Plastizitdtsmechanismen mit niedrigen Akti-
vierungsenergien die plastische Verformung dominant beeinflussen. Die Aktivierungsenergie
entspricht der Energieerhthung im Material im transienten Zustand des aktiven Prozesses
und skaliert ndherungsweise mit der Anzahl der daran beteiligten Atome, deren Positionen
wéhrend der Verformung kurzzeitig (stark) von regulidren Gitterplétzen abweichen. Daher ist
es energetisch giinstig, plastische Verformung lokalisiert iiber die Verschiebung von Gitterde-
fekten zu realisieren, wobei eine niedrigere Dimensionalitét des Defektes mit einer niedrigeren
Aktivierungsenergie verbunden sein sollte.

Diesem Argument folgend sollte die Bewegung nulldimensionaler Defekte eigentlich entschei-
dend fiir die Plastizitdt sein (siehe Abb. S. [123). Deren Bewegung ist in der Regel
diffusionskontrolliert, wobei die treibende Kraft dafiir aus einer inhomogenen Anderung des
chemischen Potentials an Grenz- und Oberfléichen von Kérnern resultiert, die durch den devia-
torischen Anteil der Spannung hervorgerufen wird [169]; der isotrope Spannungsanteil fiithrt

zu einer homogenen Anderung des chemischen Potentials, sodass keine Gradienten und damit
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keine treibende Kraft fiir die Diffusion erzeugt wird. Tatséchlich existieren eine Reihe von Mo-
dellen fiir diesen Prozess, wie z.B. Nabarro-Herring Kriechen [I70} [I71], Coble Kriechen [172]
oder die Modelle von Lifshitz [I73], Gibbs [174] oder Raj und Ashby [175]. Allerdings ist all
diesen Prozessen gemein, dass sie nur relativ niedrige Dehnraten erreichen kénnen, u.a. weil
die Bewegung einer einzelnen Leerstelle/ Atoms nur eine verschwindend geringe Gesamtdeh-
nung erzeugt, weshalb diese Prozesse nur bei niedrigen Spannungen und hohen Temperaturen

dominant zur Verformung beitragen [169]. Unter diesen Bedingungen kénnen sie ihren Vorteil

der leichten thermischen Aktivierbarkeit gegeniiber dem Versetzungsgleiten voll ausspielen.

i

/j &E??f'usion ® 2

Gitter-

(a) (b)

Abbildung 2.45: a) Diffusionskriechen von nulldimensionalen Defekten (Leerstellen, Fremda-
tome, ...) im Korn bei angelegter Spannung o. Die Diffusion kann iiber die
Korngrenzen (KG) oder durch das Gitter erfolgen und ist hier durch Pfeile
veranschaulicht. b) Darstellung von (110){111} Gleitsystemen in der Ein-
heitszelle des fcc Gitters. Die (111)-Ebene ist grau eingezeichnet und die
drei moglichen Gleitrichtungen sind durch blaue Pfeile markiert.

o
OV A

Unter allen anderen Bedingungen, also niedrigen Temperaturen und/oder hohen Spannun-
gen, kommt daher die Verschiebung des néichst hoherdimensionalen Defektes zum Tragen,
den Versetzungen. Die Versetzungsbewegung, auch Versetzungsgleiten genannt, erfolgt im
einfachsten Fall entlang einer {111} Gleitebene{ﬂ und erzeugt eine lokale Verschiebung in
Burgers-Vektorrichtung (110). Die insgesamt 12 unabhéngigen {111}(110) Gleitsysteme in
fcc Kristallen wurden bereits in Tabelle (S. gelistet. Die Lage dieser Gleitsysteme
in der fcc Einheitszelle ist in Abb. dargestellt. Zusitzlich gibt es in fcc Materialien
weitere Gleitsysteme, die zwar energetisch ungiinstiger sind, aber in manchen Féllen dennoch

aktiviert werden kénnen — unter anderem auch in nanokristallinem PdAu [50] 28].

3Die Ebene, die Burgers- und Linienvektor enthlt [70].
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Die treibende Kraft fiir die Versetzungsbewegung in der Gleitebene ist die Scherspannung

ogn entlang dieser Ebene in Gleitrichtung, also
ogn =9 (0 1), (2.208)

wobei 71 der Einheitsnormalenvektor auf die Gleitebene ist und g der Einheitsvektor in Glei-
trichtung. Fiir uniaxiale Spannungszusténde erhélt man damit den Spezialfall des Schmid’schen
Schubspannungsgesetzes mit den beiden Richtungskosinus der Gleitebenennormalen und Glei-

trichtung in Bezug auf die Richtung der angelegten Spannung F/A = o [70]

Ogn =0 cos () cos (). (2.209)
S —

Der Schmidfaktor m gibt also lediglich an, auf welcher Gleitebene bei einer angelegten un-
iaxialen Spannung die betragsméfig groffite Scherspannung in eine Gleitrichtung anliegt. Die
Bestimmung einer analogen Grofie zu m fiir den Polykristall wurde von Taylor in [176] vor-
geschlagen. Dieser Taylorfaktor ist fiir bee und fec Materialien M ~ 3 [70], gilt aber ebenfalls
nur fiir uniaxiale Spannungszustinde. Eine Anpassung von M fiir allgemeinere Vergleichss-
pannungen wurde in [177] vorgenommen und liefert fiir die von Mises Vergleichsspannung
M’ = M//3 oder fiir die Tresca Vergleichsspannung M’ = M /2.

Gleiten setzt dann ein, wenn o4, den Scherwiderstand 7 {iberwindet. Die Details héngen von
Umgebungsbedingungen (z.B. Temperatur und Druck), der aktuellen Mikrostruktur des Ma-
terials und von Prozessparametern wie konstante angelegte Spannung oder konstante Dehn-

rate ab.

Der Scherwiderstand der Versetzungen resultiert aus der Energieerh6hung wihrend der Bewe-
gung und ist im perfekten Gitter identisch zur Peierls-Spannung (vgl. Gl. oder Gl.
S. . Dariiber hinaus ist eine Erhthung oder (seltener) Erniedrigung des Scherwiderstandes
durch die Interaktion von Versetzungen mit weiteren Gitterdefekten wie Leerstellen, Fremda-
tomen, anderen Versetzungen, Korn- und Phasengrenzen, Ausscheidungen usw. moglich, was
technisch zur Beeinflussung der Hérte oder Festigkeit von Metallen und Legierungen vielfach
eingesetzt wird [70, 168 [165].

Um die wohlbekannten, starken plastischen Verformungen von Metallen iiber Versetzungsbe-
wegungen zu realisieren, wird auflerdem eine Moglichkeit zur Erzeugung neuer Versetzungen
benotigt. Gébe es sie nicht, wiirden die anfinglich im Material vorhandenen Versetzungen
mit fortschreitender Verformung aufgebraucht und eine weitere Verformung wére nicht mehr
moglich. Innerhalb von Kristalliten gibt es mehrere mégliche Prozesse, durch die vorhan-
dene Versetzungen wihrend der Verformung vervielfacht werden kénnen. Der wahrscheinlich
bekannteste ist die Frank-Read-Quelle [70,[107], aber es gibt weitere Prozesse wie die Bardeen-
Herring-Quelle, die Multiplikation durch Versetzungsklettern oder mehrfaches Kreuzgleiten

(multiple cross slip) erzeugt [70, [I07]. Dariiber hinaus kénnen Korngrenzen als Quellen und
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Senken fiir Gitterversetzungen dienen [70], [107], was insbesondere bei nanokristallinen Ma-
terialien von Bedeutung ist, da die Aktivierungsspannungen der intragranularen Multipli-
kationsprozesse umgekehrt mit ihrer Ausdehnung skalieren. In wenigen Nanometern grofien
Kornern fiihrt das zu theoretischen Aktivierungsspannungen, die weit oberhalb der beobach-

teten FlieBspannungen liegen [30].

Bei geringeren Spannungen gleiten Versetzungen, als Konsequenz der thermischen Aktivie-
rung, in den seltensten Fillen als Ganzes ab, sondern i.d.R. stiickweise durch die Nuklea-
tion und Bewegung von Kinks bzw. Kink-Paaren ab [70, [164]. Dabei handelt es sich um
Knickstellen oder lokal begrenzte Ausstiilpungen der Versetzungslinie in der Gleitebene, de-
ren Nukleation und Verschiebung ein lokal beschrinktes Abgleiten der Versetzung erzeugen
(siehe Abb. . Da die Energiezunahme im transienten Zustand mit der Lénge der glei-
tenden Versetzungslinie skaliert, kann dieser Prozess bereits bei geringeren angelegten Span-
nungen ablaufen. Der analoge ,,Defekt der Versetzungslinie senkrecht zur Gleitebene wird
Jog genannt und erzeugt bei Bewegung ein Klettern der Versetzung, also eine Bewegungs-
komponente senkrecht zur Gleitebene, was im Zusammenspiel mit den Verzerrungsfeldern
weiterer Gitterdefekte und bei erhthten Temperaturen (> 0.37,,,) eine energetisch giinstigere
Versetzungsbewegung darstellen kann [70, [164]. Diese iiberwiegend thermisch aktivierten Ver-
setzungsbewegungen sind fiir das (Versetzungs-)Kriechen von Metallen verantwortlich, also
der (langsamen) plastischen Verformung von Metallen bei niedrigen Spannungen und meist

erhohten Temperaturen, die nicht von Diffusionsmechanismen dominiert wird.

X

Gleitebeﬁe

Abbildung 2.46: Illustration der Versetzungsbewegung iiber Kinks in der Versetzungslinie ei-
ner Stufenversetzung. Die zusétzlich eingeschobene Ebene ist blau umrandet
in verschiedenen Zusténden gezeigt. Die Stapelfolge in 110-Richtung (...ab...)
ist auf der Gleitebene gekennzeichnet. Beim Jog (rechts hinten) wird aufer-
dem die Stapelfolge in 111-Richtung (...ABC...) angegeben.

In Polykristallen kann es zusidtzlich zu Korngrenzengleiten kommen, bei dem benachbarte
Korner in Folge einer Scherspannung an ihrer gemeinsamen Korngrenze relativ zueinander

entlang der Korngrenze abgleiten [I78]. Dieser Prozess kann als Diffusionsprozess aufgefasst
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werden, der die erhohte Diffusivitiat entlang der Korngrenze nutzt, um die Verschiebung ei-
nes Kornes relativ zu dem anderen zu erzeugen. Andererseits kann der Prozess auch iiber
die Bewegung von Korngrenzenversetzungen beschrieben werden, deren Gleiten in der Korn-
grenzenebene eine plastische Dehnung iiber die Grenze hinweg erzeugt. Ungeachtet dieser
Details sind immer Akkomodationsmechanismen notwendig, um die Kohédrenz des Gefiiges
zu wahren, wodurch zwei Arten von Korngrenzengleiten unterschieden werden kénnen. Beim
Rachinger-Gleiten [179] dient Versetzungsgleiten in den beteiligten Kristalliten als Akkom-
modationsprozess, bei dem die Kornformen erhalten bleiben, wihrend beim Lifshitz-Gleiten
[173] die Diffusion von Leerstellen als Akkommodationsprozess genutzt wird und zu einer
Langung der Kornern in Zugrichtung fiithrt. Damit sind beide Formen von Korngrenzenglei-
ten keine reinen Einzelprozesse, sondern Kombinationen voneinander abhingiger Prozesse
und damit ein Beispiel fiir diejenigen Subsysteme des vorherigen Abschnittes, die mehrere,

sich gegenseitig beeinflussende Mechanismen enthalten.

Die plastische Verformung konventioneller, grobkristalliner Materialien in ihrer Gesamtheit
ist also immer eine Uberlagerung verschiedener Prozesse, wobei der oder die dominanten Pro-
zesse von Mikrostruktur, Umgebungsbedingungen und Verformungsart abhédngen. Um diese
komplexen Zusammenhénge darzustellen, wurde eine Kartographierung fiir Deformationsme-
chanismen entwickelt, die Deformation-Mechanism-Maps [169) 180} 18T, [182], die fir ein Ma-
terial die Dehnrate in Abhéngigkeit der angelegten Spannung und Temperatur (Ashby-Frost)
[169] oder in Abhéngigkeit der Temperatur und Korngréfie (Langdon-Mohamed) [I81], [182]
angeben. Der jeweils lokal dominante Mechanismus, der den grofiten Beitrag zur Dehnrate
leistet, wird i.d.R. in den Karten ausgewiesen. Beispiele sind u.a. in [169] enthalten und in
Abb. schematisch dargestellt.

Im Zusammenhang mit nanokristallinen Materialien ist das Aufstauen von Versetzungen an
Korngrenzen von besonderer Bedeutung. Korngrenzen stellen fiir das Versetzungsgleiten ein
Hindernis dar, d.h. bei konstanter Spannung werden Versetzungen in der Regel nicht von
der Grenze absorbiert oder transmittiert, sondern erhhen durch die Wechselwirkung mit der
Korngrenzen ihren Scherwiderstand und stauen sich daher vor ihr auf; eine detaillierte Be-
handlung dieses Themas ist in [116] zu finden. Die aufgestauten Versetzungen wechselwirken
auBerdem miteinander und allen nachfolgenden Versetzungen, sodass der Scherwiderstand
mit wachsender Anzahl von Versetzungen weiter zunimmt [165, [168], was effektiv eine Ver-
festigung des Materials bewirkt. Eine Abnahme der Korngrofie fithrt zu einer Zunahme der
im Polykristall vorhandenen Korngrenzenfliche, sodass dieser Effekt verstarkt wird und die
Grundlage fiir Feinkornhértung darstellt. Die Zunahme der FlieBspannung o, oder Harte wird
in diesem Fall héufig durch die Hall-Petch Gleichung [18], 19] 164 [183]
ky

O'y:O'[)‘i‘E (2210)
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Abbildung 2.47: a) Beispielhafte Ashby-Frost Deformation-Mechanism-Map fiir fcc Metalle.
Hier bezeichnet T,, die Schmelztemperatur, G den Schermodul des Ma-
terials und o die FlieBspannung. Das Versetzungskriechen wird in einen
Hochtemperaturprozess (HT) und einen Prozess bei niedrigen Tempera-
turen (LT) unterschieden. Der Korndurchmesser D betriigt hier ca. 10
Burgers-Vektorldangen. b) Zu a) analoge Langdon-Mohammed Deformation-
Mechanism-Map. Darstellung in Anlehnung an [180].

beschrieben. Hier sind o die Fliespannung im perfekten Kristall, £k, eine Materialkonstante,
D die Korngréfie und x wird in der klassischen Hall-Petch-Beziehung auf 1/2 gesetzt. Aller-
dings gibt es Argumente dafiir, diesen Parameter ebenfalls als materialabhingige Konstante
zu behandeln [184].

Diese Beziehung verliert fir nanokristalline Materialien (D < 100nm) ihre Giiltigkeit, und
zwar je nach Untersuchung dadurch, dass die Steigung der Hall-Petch Geraden (siehe Abb.
bei kleinen Korngrofien abnimmt, null wird oder sogar negativ wird [16, [17, [14] [185];
bekannt ist dieser Befund unter dem Namen Hall-Petch Breakdown und wird gemeinhin als
zentrales Argument genutzt, dass es beim Ubergang zur Nanokristallinitéit zu einem Wechsel
der Plastizitdtsmechanismen kommen muss, oder wenigstens, dass die bisherigen Modelle in

diesem Bereich unzureichend sind.

Tatséchlich ist das Gesamtbild noch viel dramatischer, denn der Hall-Petch Breakdown ist
nur eines unter vielen Indizien, dass es zu grundlegende Anderungen in der Art und Joder Zu-
sammensetzung von Mechanismen in Nanomaterialien kommt. Weitere ,, Breakdowns“ beim
Ubergang zur Nanokristallinitét sind u.a. eine starke Zunahme der Dehnratenempfindlichkeit
[111, 16, 17, [14], [166], 167, [186], eine deutliche Verkleinerung des Aktivierungsvolumens [11], 16,
17,14, [166], eine Erhohung der Temperaturabhéngigkeit der FlieBspannung [10} 11, 187, 167,
das Aufkommen von Zug-Druck-Asymmetrie bei plastischer Verformung [30] 188 [189] und,

eigentlich viel bemerkenswerter, eine duktil-spréde Asymmetrie unter Druck und Zug [5], [189].
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Abbildung 2.48: Schematische Darstellung der Hall-Petch-Beziehung. Im Bereich kleiner
Korngréflen werden die verschiedenen, in der Literatur diskutierten Fort-
setzungen der Hall-Petch Kurve dargestellt. Details dazu sind im Text an-
gegeben.

Auflerdem zeigt sich nur in nanokristallinem PdAu eine Mischkristallerweichung [6]. Schlief3-
lich wurde in verschiedenen nanokristallinen Materialien nachgewiesen, dass thermische Be-
handlungen eine Relaxation des Materials auslésen, die u.a. auch die plastischen Eigenschaf-
ten deutlich beeinflussen [7, [8, 32 190} 191]. Es kommt also erschwerend hinzu, dass im na-
nokristallinen Zustand die Korngroéfle allein kein ausreichender Parameter zur Beschreibung
der Anderungen des plastischen Verhaltens ist, selbst wenn keine Anderungen in der chemi-
schen Zusammensetzung oder der kristallinen Phase nachgewiesen werden kénnen und die
Umgebungsbedingungen (Temperatur, Druck, Spannungszustand, Dehnraten, etc.) konstant

gehalten werden.

Alle Beobachtungen weisen eindeutig darauf hin, dass die effektive Energiebarriere der plas-
tischen Verformung und ihre Steigung in Nanomaterialien, relativ zum grobkristallinen Zu-
stand, zunimmt und ihre thermisch aktivierte Uberwindung bedeutender wird. Durch welche
Plastizitdtsmechanismen oder Kombinationen davon das ausgelost wird, ist aber nach wie
vor Gegenstand der Forschung, die in mehreren Ubersichtsartikeln zusammengefasst wurde
[15L 16, 17, 14].

Die offensichtlichste Auswirkung der Verkleinerung der Korngrofle ist die dazu reziproke,
starke Zunahme der Korngrenzenfliche und damit auch dem Anteil des Korngrenzenvolumens
am Gesamtvolumen des Materials. Das legte schon frith den Schluss nahe, dass die Plastizitéit
von Mechanismen in/an der Korngrenze getragen oder zumindest dominiert wird [I83] [192]
193]. Im Folgenden wird eine Ubersicht iiber die Verformungsmechanismen geliefert, die in
der Literatur diskutiert wurden. Zusitzlich sind diese Prozesse in Abb. als schematische

Zeichnungen zusammengefasst.
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Abbildung 2.49: Ubersicht iiber die bisher diskutierten Verformungsmechanismen. Auch wenn
die Mechanismen hier einzeln und voneinander unabhingig dargestellt wer-
den, soll damit nicht ausgedriickt werden, dass sie auch unter realen Be-
dingungen einzeln auftreten konnen. Einige der hier gezeigten Prozesse
benéGtigen sogar zwangsweise zusitzliche, plastische Akkommodationspro-
zesse.

Ein Mechanismus in den Korngrenzen, der stark von geringeren Korngroéflen profitiert, ist
das Coble-Kriechen (& o< 1/D3?), das im Grenzfall nanokristalliner Materialien allerdings eine
Abschwiichung der Abhingigkeit von der Korngréfie zu é o 1/D? erfihrt [194]. Ein Pla-
teau im Hall-Petch Plot oder gar eine inverse Hall-Petch-Beziehung lésst sich damit zwar
nicht erkliren, dennoch wurde dieser Prozess in Arbeiten als dominant oder zumindest als

dehnratenbestimmender Akkommodationsprozess identifiziert [194] [195].

Ein viel diskutierter, korngrenzengestiitzter Mechanismus ist das Korngrenzengleiten (z.B. in
[178], 194, 196] 197, 198, 199, 200, 201]), das gerade in den Nichtgleichgewichtskorngrenzen
aufgrund des geringeren Scherwiderstandes einfach zu aktivieren sein sollte [202]. Fiir sehr
grofe plastische Verformungen (¢ > 1) wird sogar von mesoskopischem Gleiten entlang von
Korngrenzen iiber mehrere passend orientierte Koérner hinweg berichtet [203]. Der Begriff
wird aber im Zusammenhang mit nanokristallinen Materialien weiter gefasst als bei grobkris-
tallinen, indem nicht nur Starrkérpertranslationen von Koérnern relativ zueinander entlang
der Grenzfliche so bezeichnet werden, sondern auch lokale Scherprozesse/Scherinkremente
in einem Korngrenzenabschnitt oder in Kombinationsprozessen, welche die gleichzeitige Ver-
schiebung der Korngrenze beinhalten; ohne Kontext ist der Begriff fiir Nanomaterialien daher

vergleichsweise unscharf.

Genau wie oben, kann auch hier eine Verschiebung in/entlang der Korngrenzenebene durch
die Verschiebung von Korngrenzenversetzungen beschrieben werden. Allgemeiner ist jedoch
die Betrachtung von Disconnections, deren Verschiebung fiir den Fall h = 0 identisch zu den
zuvor genannten ist. Bei allen anderen Stufenhchen h fithrt eine Verschiebung aber gleichzeitig
zu einer Bewegung des iiberstrichenen Korngrenzenelementes um /- normal zur Korngrenze-

nebene und es kommt zu einer Kopplung von Scherung (= |b|) und Korngrenzenmigration

129



2 Theorie

(= h), der sogenannten spannungsgetriebenen Korngrenzenmigration bzw. Spannungsgetrie-
benes Kornwachstum (SGKW) oder kurz Coupling (sieche auch Abb. S. [204,, 205
2006, 207, 208, 209]. Dieser Prozess wurde als weiterer, moglicher Plastizitétsmechanismus
nanokristalliner Materialien identifiziert [28], 97 210, 211].

Wie oben bereits erwihnt, benttigt Korngrenzengleiten in jeder Form Akkomodationsmecha-
nismen. Beispiele dafiir sind Kornrotation [203, 212} 213] 214] oder die Emission und Absorpti-
on von Versetzungen oder Partialversetzungen [17, 189, 202, 213, 215, 216, 217, 218], 219, [220]
infolge, aber nicht ausschlieBlich, von Spannungskonzentrationen an Tripellinien [217), 221].
Die genannten Mechanismen werden aber nicht nur als Akkomodationsmechanismen disku-
tiert, sondern auch als primére/dominante Plastizitdtsmechanismen, teilweise vollkommen
unabhéngig von Korngrenzengleiten, dafiir aber zum Teil als untereinander abhéngige Pro-
zesse. Im Fall von einzelnen Partialversetzungen, die nukleiert werden, durch das Korn laufen
und wieder absorbiert werden, kénnen in Simulationen und Experimenten (hauptséichlich
TEM Untersuchungen) Stapelfehler und Zwillingsgrenzen in den Gittern beobachtet werden
[213, 2151, 222 [223]. Dabei herrscht allerdings Uneinigkeit, ob z.B. die Konzentration der Zwil-
lingsgrenzen durch Verformung zunimmt [215] oder abnimmt [213]. Das liefert einen weiteren
Hinweis darauf, dass die konkreten Plastizititsmechanismen empfindlich von der Art der
Verformung, den Umgebungsbedingungen und der Verformungsgeschichte abhingen [224].
Auflerdem wurden in Simulationen die Entstehung von Nanorissen an Tripelpunkten und
Korngrenzen gezeigt [202], sowie die spannungsabhingige Umverteilung von Exzessvolumen
beobachtet [224].

Lokal begrenzte, plastische Vorginge in Korngrenzen [28, 166, (188, [225], 226], 227] haben star-
ke Parallelen zu oder sind sogar identisch zu Schertransformationen in metallischen Glasern
[3, 228, 229, 230, 231], dem fundamentalen Verformungsmechanismus dieser Materialklasse.
Schertransformationen bezeichnen das lokale Abgleiten einer zusammenhéngenden Gruppe
von Atomen relativ zur Umgebung, wodurch eine lokale, plastische Verformung erzeugt wird,
welche iiber die elastische Ankopplung an den Rest des Materials ein makroskopisches Deh-
nungsinkrement erzeugt. Die Plastizitét {iber Schertransformationen zeigt eine Reihe von
Ahnlichkeiten zu den Beobachtungen an nanokristallinen Materialien wie GroBe des Aktivie-
rungsvolumens, Zug-Druck Asymmetrie [25] [30], ein universelles Skalierungsverhalten von o,

mit dem Schermodul G [6] oder das thermisch aktivierbare Relaxieren des Materials [32].

Auch fiir die Plastizitéit in Korngrenzen existieren Modelle, die eine Verfestigung mit zu-
nehmender plastischer Dehnung beschreiben. Ein bekanntes davon beschreibt den Anstieg
des Scherwiderstandes in Korngrenzen als Konsequenz der Bildung von Disklinationsdipolen
in der Ndhe von Tripellinien [114] [IT5]. Deren Spannungsfeld hat im Prinzip eine &hnliche
Wirkung wie das von aufgestauten Versetzungen in Kristallen, indem es die lokal notwendige
Spannung fiir weitere Verformungen erhoht. Zusétzlich kénnen diese Disklinationsdipole aber

auch als Startpunkt fiir Rissbildung und damit fiir das Versagen des Materials dienen.
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Es zeigt sich also, dass es eine ganze Reihe moglicher Plastizitétsmechanismen fiir nanokris-
talline Materialien gibt, die sich teilweise gegenseitig bedingen, bzw. voraussetzen. Insgesamt
zeichnet sich ein Konsens ab, dass die plastische Verformung nanokristalliner Materialien
nicht auf einem einzelnen Prozess beruht, sondern immer ein Zusammenspiel oder Konkur-
rieren verschiedener Prozesse darstellt. Die teilweise existierenden unterschiedlichen Ergeb-
nisse und Widerspriiche in der Literatur lassen sich vermutlich auf unterschiedliche Legie-
rungen/ Materialierm Herstellungsmethoden, Umgebungsbedingungen, Spannungszusténde,
Dehnraten, Korngrofien, Relaxation, Porositéit etc. zuriickfithren. Fiir jeden dieser Faktoren
wurde gezeigt, dass sie das Verformungsverhalten beeinflussen kénnen und damit moglicherwei-
se die Zusammensetzung und Dominanz von Verformungsmechanismen dndern. Die Bestim-
mung einer universellen Abhéngigkeit nanokristalliner Materialien von nur einem dieser Para-
meter, ungeachtet aller anderen, wire angesichts des enormen Parameterraums als gliicklicher
Umstand zu bezeichnen und ist eigentlich nicht zu erwarten. Die unklare Fortsetzung der Hall-
Petch-Beziehung in den nanokristallinen Bereich ist ein gutes Beispiel dafiir: Die Korngrofe
allein ist gerade kein universeller Parameter zur Beschreibung des Verformungsverhaltens.
Dennoch wird im Bereich von Korngréflen um 10 nm fiir verschiedene fcc Materialien héufig
eine korngréBenabhingige Anderung des plastischen Verhaltens festgestellt [15, 220, 226, 232].
In vielen Arbeiten, wie auch hier, unterliegt die Korngréfie in den Proben einer Verteilung
mit signifikanter Breite. Uberspannt diese Konrgréfenverteilung den Bereich um 10nm wie
es auch hier der Fall ist, kann eine Schwankung der Verteilung von Probe zu Probe oder
eine Anderung der Verteilung durch spannungsinduziertes Kornwachstum wéhrend der Ver-
formung zu einer Verschiebung der Anteile unterschiedlicher Plastizitdtsmechanismen fithren.
Ein weiterer Aspekt ist die Entwicklung der Verformungsmechanismen in einer Probe mit fort-
schreitender Verformung (Dehnung, Spannung), was u.a. in einer Simulationsarbeit [202] und
in in-situ Experimenten [26, 28] untersucht wurde. Uber alle Arbeiten hinweg gibt es die Ge-
meinsamkeiten, dass die plastische Verformung bereits zu Beginn, bei niedrigen Spannungen,
iiber Schertransformationen/Korngrenzengleiten einsetzt und dann, bei hohen Spannungen,
auch (partielle) Versetzungen in den Kérnern nukleiert werden und gleiten. In den experimen-
tellen Arbeiten wurde bei den héchsten Spannungen zusétzlich Kornwachstum nachgewiesen,
wéhrend in der Simulationsarbeit die Bildung von Hohlrdumen und Rissen an Tripellinien
und Korngrenzen berichtet wird. Dieser Unterschied kann aber auch daher rithren, dass in
der Simulation ein Zugversuch durchgefiithrt wurde, wohingegen die Experimente im Druck-

versuch oder zumindest mit einem hydrostatischen Druckanteil durchgefiihrt wurden.

36 Andert z.B. die Stapelfehlerenergie, Gittertyp, chemisches Potential, usw..
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2.7 Relaxation

Nanokristalline Materialien befinden sich nach der Herstellung in der Regel in Nichtgleichge-
wichtszustédnden [190, 191] mit hoher Exzessenergie, d.h. zusétzlicher gespeicherter Energie
im Vergleich zum kristallinen Grundzustand. Diese zusétzliche Energie ist in den Kristal-
liten in Form von Verzerrungen/Defekten, sowie in den Korngrenzen gespeichert [32, 113].
Letztere stehen mit den angrenzenden Kristalliten und den darin enthaltenen Defekten im
mechanischen Gleichgewicht{ﬂ sodass die Exzessenergiedichte in den Korngrenzen, durch ih-
re im Vergleich zum Kristall verringerten elastischen Konstanten [6, 233] wegen GL.
und (S. , hoher sein muss [32]. Gleichzeitig konnen Nichtgleichgewichtskorngrenzen
als Stabilisierung fiir Gitterdefekte fungieren. Der hohe Volumenanteil der Korngrenzen im
nanokristallinen Zustand ist also notwendige Voraussetzung fiir das Vorhandensein der hohen
Exzessenergie.

Prinzipiell erzeugt ein Energiegradient eine Kraft, die das System in den energetisch niedriger
liegenden Grundzustand treiben will; theoretisch ist das der Einkristall, praktisch der grob-
kristalline Polykristall [§]. Tatséchlich bleiben die hier untersuchten nanokristallinen Proben
aber iiber Jahre hinweg nanokristallin@ Diese Zustéinde hoher Exzessenergie stellen also
inh&rente Strukturen dar, die durch Energiebarrieren von energetisch niedrigeren Zusténden
abgegrenzt sind. Diese Barrieren kénnen thermisch oder mechanisch {iberkommen werden,
wodurch die in den Proben gespeicherte Energie freigesetzt werden kann. In vielen Féllen ist
eine kontinuierliche, thermisch aktivierte Energieabsenkung moglich, die Kornwachstum ver-
meidet [7), 31} 191] und so den nanokristallinen Zustand des Materials erhélt. Diese thermisch
aktivierte Energieabsenkung wird als (strukturelle) Relaxation bezeichnet [234] 235] und be-
wirkt in erster Linie eine Anderung der Struktur der Korngrenzen, die mit einer Absenkung
des Exzessvolumens in der Probe verbunden ist.

In [32] konnte die komplexe Kinetik dieses Relaxationsvorganges fiir nanokristallines PdggAuyg
modelliert werden, wodurch ein Spektrum von thermischen Parametern bestimmt werden
konnte, welches die Kinetik der Relaxation quantitativ beschreibt. Das wiederum ermoglichte
in [§] eine Rekonstruktion der zeitlichen Entwicklung des Energieinhalts in der Probe, sowie
der effektiven Energiebarrieren, die das System wihrend der Relaxation iiberwunden hat.
Es stellte sich heraus, dass die zu iiberwindenden, effektiven Energiebarrieren mit fortschrei-
tender Relaxation hoher werden und schlieBlich in ihrer Hohe identisch zu der sind, die zur
Initiierung von Kornwachstum iiberwunden werden muss; der Ubergang von Relaxation zu
Kornwachstum ist also flieend.

Trotzdem konnen durch geeignete Temperaturprogramme signifikante Energieabsenkungen
im nanokristallinen Bereich erreicht werden. Somit wurden in [8] die Auswirkung der Relaxa-

tion auf elastische und plastische Eigenschaften der Proben untersucht. Zusétzlich konnte eine

376 setzt sich also stetig fort
38Eine nanokristalline PdAu Probe wurde iiber 9 Jahre regelmiBig im Rahmen des Fortgeschrittenenprakti-
kums mit Rontgenstreuung untersucht und ist nach wie vor nanokristallin.
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Anderung der Dichte (des Exzessvolumens) nachgewiesen werden. Die Ergebnisse zeigten zu-
dem eine Zunahme der elastischen Konstanten und der Héarte der Proben. Die Hértezunahme
ist dabei ein Maf} fiir die Zunahme der Fliespannung und damit der Festigkeit des Materials.
Ahnliche Beobachtungen werden auch in [7, BI] berichtet.

2.8 Materialsystem PdAu

Palladium und Gold sind iiber den gesamten Konzentrationsbereich vollsténdig mischbar und
bilden eine Substitutionsmischkristall [236], in dem reguldre Gitterplitze des fcc Gitters sta-
tistisch mit Pd und Au Atomen besetzt sind. In der Literatur wird von einer intermetallischen
AuPds Phase berichtet, die eine Uberstruktur mit einer stéchiometrischen Fernordnung bei
Goldkonzentrationen um 20 at.% vom AuCus Typ besitzt [236]. Experimente belegen jedoch
nur eine sehr schwache Ausprigung dieser Fernordnung [237]. In nanokristallinen IGC Proben
ist die Bildung dieser Phase aufgrund der hohen effektiven Abkiihlrate beim Herstellungsver-
fahren sehr unwahrscheinlich [62), [74]. Dariiber hinaus zeigt sich in der Réntgenstreuung der

nanokristallinen PdAu Proben keine signifikante Signatur einer Uberstruktur.

133






3 Methodik

3.1 Herstellung nanokristalliner PdAu Legierungen mittels

Edelgaskondensation

Die in dieser Arbeit untersuchten Proben wurden mittels Edelgaskondensation (engl. inert
gas condensation, IGC) hergestellt. Dieses Verfahren wurde in den 1980ern fiir nanokristalline
Materialien entwickelt [4], [12] und ist bereits ausfiihrlich in [31] dargestellt; die Beschreibung
hier erfolgt daher in aller Kiirze.

Bei der hier verwendeten Edelgaskondensation werden reine Palladium- (99.95%) und Gold-
driahte (99.99%) geméif der gewiinschten Legierungszusammensetzung in einem Molybdén-
Schiffchen mit Keramikeinsatz unter Hochvakuum (p < 5- 107" mbar) zu einer Legierung
eingeschmolzen [236], die anschliefiend in einer 6 mbar Heliumatmosphiire verdampft wird.
Die Metallatome bilden in der He-Atmosphéire Metallcluster mit Durchmessern von wenigen
Nanometern, die durch Konvektion an eine rotierende, fliissigstickstoffgekiihlte Edelstahlwal-
ze transportiert werden, an der sie sich anlagern und von einem CuBe-Abstreifer wieder gelGst
werden konnen. Das abgestreifte Agglomerat aus nanokristallinen PdAu-Partikeln wird iiber
einen Glastrichter in einer verschiebbaren Presshiilse aus Edelstahl gesammelt, deren Boden
aus einem Hartmetallstempel (Saar Hartmetall und Werkzeuge GmbH, VG50) besteht. Mit-
hilfe eines weiteren, identischen Stempels kann das Material in der Presshiilse vorverdichtet
oder unter Hochvakuum zu einem scheibenférmigen Festkorper verpresst werden. Dabei wirkt
auf die Stempelfliche fiir ca. 30s ein Druck von 1.8 GPa bis 2 GPa. Anschlieflend werden die
so hergestellten Pellets aus der Presshiilse in ein Auffangrohrchen, das vom restlichen Kessel
iiber Ventile abgetrennt werden kann, heraus gedriickt und daraus entnommen.

Die so hergestellten Proben haben einen Durchmesser von 8 mm und eine Dicke von 0.1 mm
bis 1.5mm. In [§, 238 wurde mittels Dichte- und Hértemessung nachgewiesen, dass die so
hergestellten Pellets eine zum Rand hin abfallende Dichte bzw. Harte aufweisen, was auf die
Reibung des Pressgutes mit dem Rand der Presshiilse zuriickgefithrt werden kann, wodurch
ein verminderter effektiver Druck bei der Verdichtung im Randbereich wirkt. Im Rahmen der
ESRF Experimente wurde dieser Effekt dahingehend beriicksichtigt, dass die Randbereiche

der Pellets abgeschnitten wurden und damit nicht Teil der untersuchten Proben waren.
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Abbildung 3.1: Prinzipskizze der Edelgaskondensationsanlage. Fiir Details siehe Text. Abbil-
dung aus [31].

3.2 Charakterisierung

Nach der Herstellung und nach der Relaxation der Proben erfolgte jeweils eine zerstérungs-
freie sowie zustandserhaltende Charakterisierung der Proben hinsichtlich ihrer chemischen,
strukturellen und elastischen Eigenschaften, um die Streuung der Probenzusténde zu quanti-
fizieren und um spétere experimentelle Beobachtungen mit den Probenzustéinden zu korrelie-
ren. Dariiber hinaus liefern diese Messungen Indikatoren um ungeeignete Proben friihzeitig

zu erkennen und auszusortieren. Diese Charakterisierung umfasste die folgenden Punkte:

e Bestimmung von Dicke und Durchmesser mittels Mikrometerschraube.

Bestimmung der chemischen Zusammensetzung mittels energiedispersiver

Rontgenspektroskopie.

Bestimmung der Korngrofle und Gitterkonstante mittels Rontgendiffraktion.

Bestimmung der Dichte der Probe mittels Archimedischer Dichtemessung.

Bestimmung der elastischen Modulen mittels Ultraschalllaufzeitmessung.
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Im Folgenden wird das Vorgehen bei diesen Schritten kurz dargestellt.

Die Anteile von Palladium und Gold in Atomprozent in den Pellets wurde durch energiedi-
spersive Rontgenspektroskopie (EDX) bestimmt. Sie wurde in einem Jeol SEM-7000 Raste-
relektronenmikroskop mithilfe eines EDAX Genesis EDX-Spektrometers (Firma Antek) bei
200-facher Vergroflerung und einer Beschleunigungsspannung von 20keV iiber eine Dauer von
120s auf beiden Seiten der Pellets durchgefiihrt.

Die Rontgendiffraktion (XRD) wurde mit einem X’Pert Pro MPD Bragg-Brentano Labor-
rontgendiffraktometer (6-6 Geometrie) der Firma Panalytical B.V. durchgefiihrt, das mit
einem PIXcel-1D Halbleiterdetektor ausgestattet ist. Die Messungen erfolgten iiber einen
Winkelbereich von 30° bis 140° mit einer Schrittweite von 0.026° und einer Messzeit von
480s pro Schritt. In der Panalytical HighScore Software wurde der Untergrund in den Dif-
fraktogrammen global mit einer Chebychev II Funktion angepasst und die einzelnen Peaks
jeweils mit Split-Pearson VII Funktionen gefittet. Davon ausgehend wurden die Daten mit
einem selbst geschriebenen Matlab-Script (Datentréger: XraylInterpreter.m) von der zuvor
anhand des NIST 660a Standard bestimmten Gerétefunktion bereinigt [62, 239] und anschlie-
Bend Korngroe und Mikroverzerrung nach der Methode von Klug & Alexander [239, 240]
extrahiert. Die Gitterkonstante wurde nach dem Verfahren von Nelson & Riley bestimmt

[241], 242) 243], um den Einfluss der Hohendejustage zu eliminieren.

Die Dichte der Pellets wurde durch die Archimedische Dichtemessung [31] 244] bestimmt,
bei der das Gewicht der Pellets mit einer Sartorius R160P Waage (Messgenauigkeit 0.01 mg)
wiederholt an Luft und in Diethylphtalat (DEP) gemessen wurde. DEP hat eine Dichte von
ppep = 1.1176 g/cm® und Luft eine mittlere Dichte von pg; = 1.25- 1073 g/cm?®, womit die
Dichte des Pellets ppyi liber

<m>air ( PDEP — Pair )
<m>air - (m>DEP

Pbulk = + Pair (3.1)
bestimmt werden kann, wobei (m)q;, und (m)pgp die mittlere gemessene Masse des Pellets
an Luft und in DEP sind.

Zusétzlich kann aus der Gitterkonstanten a und der chemischen Zusammensetzung der Pro-
be mit den molaren Massen von Gold und Palladium (mpg = 106.42g/mol und my4, =
196.9665 g/mol) die theoretische Dichte pipe, eines perfekten Kristalls dieser Legierung als
Referenzwert mittels [31) [244]

0 mpa(l—cay) + May cay

=4-10°
Ptheo (NA (13)

(3.2)
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berechnet werden. Hier ist NV, die Avogadro-Konstante und c4, die Atomkonzentration von
Gold in der Legierung. Die Gitterkonstante a kann entweder iiber die Vegard-Regel berech-
net werden (a4, = 408 pm, apy = 389 pm [230]), die fiir das Palladium-Gold-System sehr gut
erfiillt ist [236], oder direkt aus den XRD Messergebnissen genommen werden. Die Auswer-

tung erfolgte wieder mittels eines Matlab-Programms (Datentriger: DensityMeasurement.m).

Die Messung der elastischen Eigenschaften beruht auf dem Puls-Echo-Verfahren [233] 245],
bei dem ein breitbandiger Ultraschallpuls, der durch einen Priifkopf erzeugt wird, die Pro-
be durchléuft, an der gegeniiberliegenden Luft-Pellet Grenzschicht reflektiert wird und dann
als Echo durch den Priifkopf (mehrfach) wieder detektiert werden kann. Der Ultraschall-
puls selbst stellt eine periodische, elastische Anregung der Mediums dar, die sich aus einem
breiten Spektrum an Wellenlingen zusammensetzt und kann daher als Uberlagerung von,
hauptséchlich langwelligen (kleinen ¢), Phononen aufgefasst werden. In einem Einkristall
konnen die Schallgeschwindigkeiterﬂ v daher aus dem Bereich kleiner Wellenvektoren der
Dispersionrelation w(g) (vgl. Abb. bestimmt werden mit

,ow@ 0w
lgl  Oq

(3.3)

und koppeln damit direkt an die interatomaren Federkonstanten und damit auch an die elas-
tischen Modulen an. Im Fall nanokristalliner Proben erstrecken sich die Wellenlédngen der
relevanten Phononen iiber mehrere Kérner und Korngrenzen hinweg, sodass hier nicht die
Eigenschaften des Einkristalls, sondern die des statistisch gemittelten Polykristalls inklusive
der elastischen Eigenschaften der darin enthaltenen Korngrenzen ausschlaggebend sind. Die
Energie des Ultraschallpulses ist dabei so gering, dass keine strukturverdndernden Prozesse
(Relaxation, Kornwachstum, etc.) aktiviert werden kénnen und stellt damit eine Isokonfigu-
rationsmessung des nanokristallinen Zustands dar [8]. Die daraus abgeleiteten Grofien sind
also effektive Groflen des statistisch isotropen, nanokristallinen Polykristalls. Die gemittelte
Laufzeit der Echos liefert, bei bekannter Probendicke, ein Maf fiir die Schallgeschwindigkeit,
bei der aufgrund der Isotropie nur zwischen einer longitudinalen und einer transversalen An-
regung unterschieden werden muss. Fiir die effektiven Modulen gilt dann mit der Dichte ppyi

und der transversalen und longitudinalen Schallgeschwindigkeit v; und v;

of (307 —d})

E = ppuik T2 (3.4a)
l t

G= Pbulk ’UtQ (3.4b)
4

K= Pbulk (1)12 - gvtz) (34C)

'Die Schallgeschwindigkeit entspricht der Phasengeschwindigkeit.
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In dieser Arbeit wurden die Messungen mit einem Panametrics V2173 20 MHz Priifkopf durch-
gefiithrt und die Pulsfolge mit einem LeCroy Waverunner 6051 Oszilloskop aufgezeichnet. Die
Auswertung der Daten erfolgte iiber ein Matlab-Programm (Datentréiger: PulseEcho.m).

Alle Ergebnisse der Probencharakterisierung sind im Anhang in Tabelle zusamien-

gefasst.

3.3 In-situ Experiment an Beamline ID11 der ESRF

Die Experimente (MA-3137) an der Beamline ID 11 an der European Synchrotron Radiation
Facility (ESRF) von 2016 hatten zum Ziel, makroskopische mechanische Daten von Verfor-
mungen nanokristalliner Proben mit gleichzeitig aufgenommen Streubildern aus der Trans-
missionsrontgenbeugung zu korrelieren um dadurch Einblicke in die stattfindenden plastischen
Vorginge zu gewinnen, sowie ihre Auswirkung auf das Materialverhalten zu untersuchen.
Ahnliche Experimente wurden bereits zuvor durchgefithrt [20, 21], 22, 23], 24| 25, 26, 27, 28],
sodass hier auf bestehende Ergebnisse und Erfahrungen zuriickgegriffen werden konnte. Ins-
besondere die zeitliche Auflésung von mechanischen Daten und Rontgendaten, sowie deren
Synchronizitdt stellten sich als kritische Parameter fiir diese Art von Experimenten her-
aus. Daher wurde das Hauptaugenmerk bei der Konzeption der neuen Experimente auf die
technische Umsetzung dieser Aspekte gerichtet. Dariiber hinaus wurde eine systematische
Zusammenstellung von verschieden préparierten Proben und Verformungsraten erstellt, die
eine maximale Spreizung der experimentellen Parameter in der zur Verfiigung stehenden Zeit
ermdoglichte (siche Tabelle S. , um folgende Fragestellungen zu beantworten:

e Welche Auswirkung hat die Dehnrate auf die Verformung und ihre Mechanismen?

e Welche Auswirkung hat der Spannungszustand auf die Verformung und ihre Mechanis-

men?
e Welche Anderungen ergeben sich durch das Relaxieren der Proben?

Um aus den Experimenten Antworten auf diese Fragen liefern zu kénnen, miissen zunéchst
Informationen zum Verformungsablauf und zu den beteiligten Prozessen aus den Messda-
ten extrahiert werden. Nachfolgend soll nun ein Uberblick iiber die Konzeption und tech-
nische Umsetzung der Experimente an der ESRF erfolgen, sowie iiber die Konzeption und
Praparation der untersuchten Proben.

Eine Liste der untersuchten Proben, ihrer Abmessungen und der experimentellen Parameter
ist im Anhang in Tabelle und Tabelle gegeben. Probenherstellung, Charakteri-
sierung und die Durchfiihrung der Messungen an der ESRF wurden kooperativ mit Andreas

Leibner durchgefiihrt.
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3.3.1 Konzept und Praparation der SCS

Nanokristalline Metalle zeigen i.d.R. ein sprodes Versagen unter Zugbelastung bei relativ
kleinen plastischen Dehnungen [5, 16}, 17, 22], 52, 246] 247, 248], wodurch der untersuchbare
Bereich plastischer Verformung deutlich eingeschréinkt wird. Dieses sprode Verhalten ist ei-
ne inhérente Eigenschaft nanokristalliner Metalle [5, 189, 227] und wird i.d.R. nicht durch
eingebaute Fehlstellen verursacht. Der Wechsel auf einfache Kompressionsproben umgeht die-
ses Problem nur eingeschrénkt, da durch den senkrecht zur Belastungsrichtung induzierten
Querzug im Wesentlichen nur eine Umorientierung des Problems bewirkt wird.

Eine etablierte Methode um nanokristalline Materialien sehr stark plastisch zu verformen ist
High Pressure Torsion (HPT) [203, 249], bei der eine Probe in einem zweiteiligen Werkzeug
in einem abgeschlossenen Volumen unter hohen hydrostatischen Druck gesetzt wird (meh-
rere GPa) und dann durch relative Rotation einer Werkzeughilfte gegeniiber der anderen
tordiert wird. Daraus ergeben sich radial zunehmende Scherverformungen bis zu mehreren
100 % Dehnung. Die Durchfiihrung einer Rontgenbeugung an der Probe wiihrend der Verfor-
mung ist aber unmoglich, da die Probe allseitig von dem Werkzeug umschlossen ist; somit ist
dieses Verfahren fiir die hier angestrebte in-situ Messung ungeeignet. Zudem ist eine Messung
der Kraft und der dadurch erzeugten Dehnung nur global moglich, also iiber einen Verfor-
mungsbereich mit radialen Unterschieden von 0% Dehnung im Zentrum bis zur Enddehnung
am Rand. Eine direkte Korrelation im Sinne einer Spannungs-Dehnungs-Kurve ist so nicht
moglich. Das Verfahren zeigt aber auf, dass das Aufbringen von hydrostatischem Druck eine
wichtige Randbedingung zum Erreichen grofler plastischer Dehnungen ist.

Um gleichzeitig der geometrischen Anforderung der Transmissionsrontgenbeugung, der Mess-
barkeit von aufgebrachter Kraft und resultierender Dehnung, sowie dem Vorhandensein hy-
drostatischer Spannung zu geniigen, werden in dieser Arbeit Shear Compression Specimens
(SCS) verwendet [250}, 251]. Dabei handelt es sich um eine spezielle Probengeometrie in einem
uniaxialen Druckversuch, bei der zwei parallele Nuten auf gegeniiberliegenden Seiten der Pro-
be einen Stegbereich formen. Dieser Stegbereich ist eine lokale Verjiingung der Probe, welche
an dieser Stelle eine Spannungserhéhung durch die reduzierte Querschnittsfliche erzeugt und
so die Verformung der Probe in diesen Bereich konzentriert. Durch eine Neigung des Stegbe-
reiches relativ zur Druckrichtung wird eine Scherung des Steges induziert, wobei gleichzeitig
ein Teil der Spannung als hydrostatische Spannung vorliegt. Der Anteil von Scherspannung
und hydrostatischer Spannung wird hauptséchlich durch den Neigungswinkel des Stegberei-
ches beeinflusst [30] (siehe auch Kapitel[3.3.1)). Eine miniaturisierte Variante dieser Geometrie
wurde in [248] entwickelt und getestet und kommt aufgrund des beschrinkten Volumens der

Ausgangspellets auch hier zum Einsatz.
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Im Unterschied zu [248], wurde die Geometrie — dhnlich wie bei den Experimenten von 2011
[25] — um eine Abschrigung der Nutenflanken ergéinzt, um ein ungehindertes Austreten des
Streukegels aus dem Stegbereich zu ermoglichen. Anders als in [25], begann die Abschrigung
aber erst 100 um vom Steg entfernt, um die Spannungen im abgeschriagten Bereich durch den
groferen Querschnitt auf einem niedrigen Niveau zu halten (siche Abb. .

Y y

A B A B
Einspannung
SCs
12°
ST WI’fJHE:IS
H b
Pellet

Abbildung 3.2: Position der SCS im Pellet (links) und Bemafilung aller geometrischer Merk-
male der SCS (rechts).

Je zwei SCS wurden aus einem zuvor charakterisierten Pellet mittels Drahtfunkenerosion am
Institut fiir Mikrotechnik Mainz (IMM) herausgeschnitten (zusétzliche Informationen in [25]).
Der Stegbereich der fertigen SCS stammt moglichst aus der Mitte der Pellets, ist jedoch leicht
dazu versetzt um ausreichend Einspannfliche fiir den Schneidevorgang bereitzustellen. Im
Fall der relaxierten Proben, wurde die Wéarmebehandlung vor dem Schneiden durchgefiihrt.
Vorangegangene Experimente zeigten, dass die bei der Drahtfunkenerosion entstehende Irri-
tationsschicht wiahrend der Relaxation lokales Kornwachstum begiinstigen kann und dadurch
die Gefahr erhoht, eine bimodale Korngrofienverteilung im Steg zu erzeugen [167), 252].

Die Proben haben duflere Abmessungen von ca. 6mm x 1.2mm x 1 mm und eine Stegbrei-
te und Hohe von ca. 0.12mm bzw. 0.11mm (genauere Angaben in Tabelle [£.1)). Um die
Abhéngigkeit der Verformung vom Spannungszustand zu untersuchen, wurden Proben mit
vier verschiedenen Stegwinkeln hergestellt: 0°, 25°, 45° und 60°. Um die 0°-Proben resis-
tenter gegen Knickinstabilitdten zu machen, wurde bei ihnen die Gesamthohe der Proben

von 6mm auf 4.5mm reduziert. Eine Ubersicht iiber die genutzten Probengeometrien ist in
Abb. [3.3] dargestellt.
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perspektivisch
Front Seite

Abbildung 3.3: Schematische Darstellung der untersuchten SCS Geometrien (Stegwinkel je-
weils von links nach rechts: 0°, 25°, 45°, 60°).

Theoretische Vorhersagen zum Verhalten der SCS

Bisher wurde das Verhalten der SCS wihrend der Verformung lediglich aufgrund von Intuiti-
on, Beobachtungen/Messungen und Simulationen beschrieben. Fiir das Versténdnis und die
spétere Interpretation der Messungen ist es aber niitzlich, das prinzipielle Verformungsver-
halten aus elementaren, kontinuumsmechanischen Uberlegungen in Form eines analytischen

Ausdruckes herzuleiten.

Die Kraft, die von aufien auf die Probe wirkt, kann theoretisch an jeder Querschnittsfliche ge-
messen werden, welche die Probe komplett durchschneidet und deren Normale nicht senkrecht
zum Kraftvektor steht. Diese Kraft ist identisch zu F' = A(G,), wobei A der Flicheninhalt
der Schnittebene ist und (G,) ist die iiber die Fliche gemittelte Spannung in der Probe
(vgl. GL (2.21))). Man betrachte nun eine Schnittebene, die nur den Steg durchschneidet. Die
Kraft auf diese Ebene muss unabhéingig von Verschiebungen innerhalb der Probe sein. Da
der Fliacheninhalt der Schnittebene aber im Steg mindestens um den Faktor 7 kleiner ist als
auBerhalb, ist folglich die Spannung im Steg um diesen Faktor erh('jhtEl, weshalb die Verfor-
mung niaherungsweise nur im Steg stattfindet. Das heifit, dass die Verformung der gesamten
Probe durch die Beschreibung der Verformung des Stegbereiches gut gendhert werden kann.

Der restliche Teil der Probe wird fiir die theoretische Betrachtung als starr angesehen.

Wie im Experiment, wird die Verformung durch eine (kleine) Relativverschiebung (u,) der
unteren und oberen x-z-Flidchen der SCS aufeinander zu erzeugt. Durch die starren Proben-
teile auflerhalb des Steges liegt diese in der Rechnung auch direkt am Steg an. Es gilt nun,
die resultierenden Verschiebungen u, und u, zu bestimmen, die bei u, die kleinste Zunahme
der potentiellen Energie (hier: Verzerrungsenergie) bewirken. Dazu muss zunéchst Spannung

und Dehnung im Steg iiber die Verschiebungen ausgedriickt werden.

2Der exakte Faktor hingt von der exakten Abmessung der Probe ab.
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3.3 In-situ Experiment an Beamline ID11 der ESRF

0.B.d.A. wird nun angenommen, dass der untere Teil der SCS fixiert ist und der obere um u,
nach unten verschoben wird. Aus Symmetriegriinden ist die z-Richtung eine Hauptspannungs-
/dehnungsrichtung. Das Verschiebungsfeld wird im Steg als homogen angenommen, sodass

der Gradient des Verschiebungsfeldes fiir kleine Verschiebungen {iber

i A= Z—Z A ugzsin (sw) uysin(sw) 0
e=(veu)' = Az Z—Z == o cos (sw) wuycos(sw) 0 (3.5)
ug My up 0 0 Uz

Az Ay Az

bestimmt werden kann (vgl. Gl. (2.30])). Die Ausdehnungen des Steges in x- und y-Richtung
(Az, Ay) wird hier iiber die Schnittbreite s und den Stegwinkel sw ausgedriickt. Die Dehnung
ldsst sich daraus mit Gl. (2.32)) ableiten und man erhélt

Uy sin (sw) %(uy sin (sw) + uy cos (sw)) 0

€= S %(uy sin (sw) + ug cos (sw)) Uy cos (sw) 01 (3.6)
0 0 A
b

Fiir das Stegmaterial wird hier ein homogenes, isotropes Kontinuum angenommen, sodass die
Spannungen mit den elastischen Konstanten aus den Dehnungen berechnet werden kénnen
(vgl. GL , S. oder , S. . Man erhélt dann (aus Platzgriinden in Voigt-
Notation)
Chiug sin (sw) + Crauy cos (sw) + Crasu, [b
Chaug sin (sw) + Criuy cos (sw) + Crasu, [b
Chaug sin (sw) + Crauy cos (sw) + Crisu, /b
0
0

Ca [uy sin (sw) + ug cos (sw) ]

Qi
Il
w |~

Die Verzerrungsenergiedichte w ist dann nach Gl. (2.39) (S.

w =— | u?sin® (sw) + “?24 cos? (sw) + 72

2,2
Cu| 2. s2u?
52

C

+ 2% [uxuy sin (sw) cos (sw) + uzu, sin (sw)% + Uy, COS (sw)%]

+ 0_24 [u3 sin® (sw) +u; cos” (sw) + 2ugy sin (sw) cos (sw)]. (38)
S
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Sie ist bei gegebener Verschiebung u, eine Funktion von u, und wu., die ein eindeutiges
Minimum besitzt. Im Minimum gilt fiir u, und wu,
uy sin (sw) cos (sw) [CHCm +C11Cyy - 0122] (3.99)
T = - . al
“ C2, sin? (sw) — CZ, sin? (sw) + C11Cuq cos? (sw)
b Cin [cos2 (sw) - 1] + C12 [1 — cos? (sw)] + Cyy [1 - 2cos? (sw)]
Uy = —uy cos (sw)Cra— 5 5 .
C3, [cos? (sw) — 1] + CEy [1 - cos? (sw)] = C11Caa cos? (sw)

(3.9b)

Gibt man also u, vor, erhdlt man mit Gl. (3.9a)) und (3.9b)) die mittleren Relativverschiebun-

gen u, und u, iiber den Steg, die die geringste Verzerrungsenergiedichte erzeugen und damit
diejenigen sind, die in der Realitét stattfinden. Die Ausdriicke liefern nur eine Beschreibung
fiir den linear elastischen Fall. Wird die Flielspannung iiberschritten, werden zusétzliche
plastische Dehnungen erzeugt. Allerdings ist der Spannungszustand auch dann noch iiber die
Elastizitat mit der elastischen Dehnung gekoppelt, sodass das elastische Ergebnis eine relativ

gute, qualitative Néherung auch fiir die plastische Verformung liefern sollte. Mit ., u, und

Y Y
A Dehnung A Spannung [GPa]
90 90
135 45 135 45
1%
/ \ 0% Null
x —sw=0° N
180 0 sw=25° | 180 C}) O\1 0
—sw=45°
\' v —sw=60° ==
225 315 225 315
270 270
X X
> >

Abbildung 3.4: Theoretisch berechnete Spannungen und Dehnungen im Stegbereich einer
SCS mit verschiedenen Stegwinkeln.

u, konnen der Dehnungszustand (GI. , S. und der Spannungszustand bestimmt
werden (GI. , S. , die sich unter Last einstellen. In Abb. sind exemplarische
Spannungen und Dehnungen in der x-y-Ebene einer SCS mit einer Schnittbreite von 120 pm
und einer Stegdicke von 130 pum fiir die vier in dieser Arbeit untersuchten Stegwinkel gezeigt.
Die Verschiebung in y-Richtung ist in diesem Beispiel 3 um und als elastische Konstanten
werden die von Palladium verwendet. Die Spannungen in z-Richtung sind in allen Fillen
null und die Dehnungen €, in Abb. in Abhéngigkeit vom Stegwinkel gezeigt. Die Ab-
solutwerte sind in diesem Rechenbeispiel von untergeordneter Bedeutung, da sie einfach mit
der Verschiebung u, skalieren. Viel interessanter sind die qualitativen Ergebnisse, also die

Unterschiede zwischen verschiedenen Stegwinkeln und die Nulldurchgéinge der verschiedenen
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3.3 In-situ Experiment an Beamline ID11 der ESRF

GroBen. Von 0°-Stegwinkel zu 60 °-Stegwinkel lisst sich in den Dehnungen ein Ubergang von

0.2 v r r 2
15F
1 5
uﬂ;
0.5
0 e
1.2 . . . -0.5 . . .
0 20 40 60 0 20 40 60
sw [°] sw [°]
(a) (b)

Abbildung 3.5: a) Hydrostatischer bzw. isostatischer Druckanteil im Stegbereich einer SCS
in Abhéngigkeit vom Stegwinkel. b) Dehnung in z-Richtung in Abhéingigkeit
vom Stegwinkel.

einer reinen uniaxialen Kompression zu einer reinen Scherung beobachten. Bei der 0 °-Probe
erfolgt dabei die komplette Querdehnung in z-Richtung; in x-Richtung ist daher in Abb.
keine Querdehnung zu erkennen. Die Darstellung von Scherungen in Abb. ist anfangs
etwas unintuitiv: Eine reine Scherung in der x-y-Ebene &ufiert sich in einer Ellipse (oder Erd-
nussform in Polardarstellung), deren um 90° zueinander verschobenen Minima und Maxima
betragsgleich sind. Die Scherrichtung und Scherebene liegen jeweils um 45° zum Minimum
bzw. Maximum gedreht (siehe Abb. . Bei einem dreidimensionalen Dehnungszustand
miissen die Minima und Maxima in einer Ebene nicht mehr betragsgleich sein. Stattdessen
folgt aus der Spurfreiheit des Deviators, dass die Summe aller Extrema in allen Ebenen null
ergeben muss.

Bei der 60 °-Probe ist die 045, (also auch €;4,) praktisch null, d.h. es liegt eine reine Scherdeh-
nung vor (siehe Abb. . Diese Scherung erfolgt bei der 60 °-Probe entlang des Steges, bei
der 45 °- und der 25 °-Probe bewirkt der isotrope Dehnungsanteil eine Kippung der Scherrich-
tung relativ zum Steg. Im Fall der 45 °-Probe erfolgt sie etwa 5 ° steiler und bei der 25 °-Probe
etwa 2° flacher.

Schliefflich kann aus dem antisymmetrischen Anteil von € noch die Starrkorperrotation des
Stegmaterials bestimmt werden. Alle Eintrége von w (siehe Gl , S. sind null mit
Ausnahme von wio und wey = —w1a, d.h. es erfolgt nur eine Rotation um die z-Achse. Der Ro-
tationswinkel lésst sich mit arctan(wi2) berechnen; das Ergebnis fiir verschiedene Stegwinkel
ist in Abb. gezeigt. Es ist also in allen Fallen aufler den 0°-Proben damit zu rechnen,
dass die Verformung des Steges eine Rotation erzeugt, die fiir die 45°-Probe am stirksten

ausgeprigt sein sollte.
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Abbildung 3.6: a) Veranschaulichung des Zusammenhangs einer reinen Scherung entlang der
135°/315°-Richtung und der Darstellung des entsprechenden Dehnungszu-
standes in der Polardarstellung. b) Rotation des Steges bei der Verformung
in Abhéngigkeit vom Stegwinkel.

3.3.2 Konzept des Experiments

Die grundlegende Idee des Experimentes ist es, plastische Verformungen im Stegbereich ver-
schiedener SCS Proben mit verschiedenen Dehnraten zu erzeugen, wiahrend die Mitte des
Stegbereiches mit einem Rontgenstrahl durchleuchtet wird. Die auf die Probe ausgeiibte Kraft
in Druckrichtung und die Verformung der Probe sollen zusammen mit einem zweidimensio-
nalen Streubild zeitlich korreliert erfasst werden. Der prinzipielle Aufbau ist in Abb.
dargestellt und in Abb. sind Photos des tatséichlichen Aufbaus gezeigt.

Priifmaschine

Der zentrale, aktive Bestandteil des Experiments ist eine Priifmaschine, welche die kontrol-
lierte Verformung der Proben im Experiment erzeugt. Sie muss einen ausreichend grofien Be-
reich an Verformungsgeschwindigkeiten bei den bendtigten Kraften bieten. Letztere wurden
auf Grundlage bestehender Daten im Voraus auf maximal 2kN abgeschétzt. Die benotigten,
geregelten Verfahrgeschwindigkeiten ergaben sich aus den Probengeometrien und der Vorga-
be, Experimente bei Dehnraten zwischen 1-107°s™! und 1-107's™' durchzufiihren, weshalb
Geschwindigkeiten im Bereich von 2nm/s bis 50 ym/s notwendig waren. Des Weiteren musste
die Maschine klein genug sein, um auf den Experimenttréager der Beamline ID11 an der ESRF
zu passen, sowie vor und hinter der Probe einen Freiraum fiir den einfallenden und gestreuten
Rontgenstrahl aufweisen. Auflerdem war es notwendig, dass die obere und untere Traverse

der Priifmaschine symmetrisch verfahren, um den Steg ortsfest im Rontgenstrahl zu halten.

146



3.3 In-situ Experiment an Beamline ID11 der ESRF

Vogelperspektive
Frontkamera
Detektor SCS//
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Strahlrohr
20°%_
Beamstop Roéntgenstrahl
Seitenkamera
Raumliche Darstellung Druck
Detektor
Seitenkamera
Strahlrohr

Beamstop

Frontkamera

Abbildung 3.7: Schematischer Aufbau des ESRF Experiments. Die Anordnung und Winkel
der Bestandteile sind korrekt dargestellt, die Abstéinde und Gréflen sind fiir
die Darstellung aber stark reduziert. Die Priifmaschine ist hier nicht darge-
stellt.

Zum Einsatz kam ein System aus Zug/Druck-Modul der Firma Kammrath & Weiss mit
DDS3-Steuerung in der 5kN Ausfithrung und zusétzlichem Motor fiir niedrige Verfahrge-
schwindigkeiten, welches formal alle oben genannten Anforderungen erfiillte. Allerdings zeig-
te die Maschine innerhalb des relevanten Kraftbereichs bereits eine signifikante elastische
Verformung des Maschinenteils, welcher zwischen interner Wegmessung und Druckstempel
liegt, sodass der gemessene Verfahrweg nicht identisch mit dem an der Probe anliegenden
Verfahrweg war. Unter anderem aus diesem Grund erfolgt die Dehnungsmessung in dieser
Arbeit iiber eine optische Verschiebungsmessung direkt an der Probe.

Theoretisch wire eine kraftgesteuerte Korrektur des Verfahrweges bzw. der Verfahrgeschwin-
digkeit moglich, diese ist aber weder direkt an der Maschine, noch mit der Steuerung oder in
der Software realisierbar. Das System ist auf konstanten Geschwindigkeiten gemé&f der inte-
grierten Wegmessung beschrinkt. Dazu kommt, dass Geschwindigkeitsénderungen nur nach

Anhalten der Maschine moglich sind. Die zur Verfiigung gestellte AP]El erlaubt es nur, die

3von engl. ,application programming interface“, zu Deutsch: Programmierschnittstelle.
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Abbildung 3.8: Photos des Versuchaufbaus aus der Vogelperspektive (links) und etwa aus
Sicht des Rontgenstrahls (rechts). Unwesentliche Teile des Aufbaus werden
zur besseren Ubersicht mit geringerer Deckkraft dargestellt.

mitgelieferte Software aus Fremdanwendungen heraus anzusprechen und unterliegt somit den
gleichen Limitierungen. Die Experimente konnten daher nur mit verschiedenen, aber jeweils
konstanten Maschinengeschwindigkeiten durchgefiihrt werden. Das fithrt zu einem Anstieg
der Verformungsgeschwindigkeit, und damit der Dehnrate an der Probe in Abhéingigkeit der
Lastdnderung.

Die Kraft auf die Probe in Druckrichtung wurde durch den integrierten Drucksensor mit
einem Messbereich von +2kN am oberen Druckstempel erfasst und von der DDS3 Einheit
digitalisiert.

Die SCS wurden dhnlich wie in [248] auf einem Edelstahlwagen mittels einer Klemmvor-
richtung montiert, der auf die untere Traverse auf eine Halterung aufgesetzt werden konnte.
Diese Halterung lagerte den Probenwagen auf einem Nadellager und erlaubte dadurch ein
freies Abscheren der Probe senkrecht zur Druckrichtung (x-Richtung), indem er die Probe in
Rollrichtung nahezu kréftefrei macht. Zum Detektor hin war in der Halterung ein Kugellage-
ranschlag integriert um Proben reproduzierbar im selben Abstand zum Detektor platzieren

zu kénnen, ohne dadurch nennenswerte zusétzliche Reibungskréfte zu erzeugen.

Optische Verschiebungsmessung

Die Bewegung der Probe sollte optisch auf zwei zueinander senkrecht stehenden Seiten der
Proben erfasst werden, um Informationen iiber die Bewegung der Proben in allen drei Raum-
richtungen zu erhalten. Dazu wurde die Verformung der Probe mit zwei Kameras (PointGrey
Grasshopper 3, USB3.0 Interface, 2/3”monochrom Sensor mit 2448x2048px, 3.45um Pixel-

kantenldnge, max. 75fps) aufgezeichnet, die die Frontfliche und die linke Seitenfliche erfassten

(sieche Abb. 3.9).
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Abbildung 3.9: Beispiele fiir die von den Proben aufgenommenen Bilder der Front- und Sei-
tenkamera. Die Bereiche der Probe, die von den Kameras erfasst werden, sind
in der Schemazeichnung in der Mitte gekennzeichnet.

Die Frontkamera war mit einem bi-telezentrischen 2fach Zoom Objektiv mit Festbrennwei-
te und 300mm Arbeitsabstand (Edmund Optics TECHSPEC CompactTL) ausgestattet und
erfasste einen Probenbereich von ca. 4x4mm (1.725 um pro Pixel). Der Schiirfebereich des
Frontkameraobjektives betrug ca. lmm und war dadurch in der Lage, sowohl die Probenober-
fliche als auch die Stegoberfliche gleichzeitig scharf abzubilden. Um nicht den Réntgenstrahl
abzuschatten oder mit dem Strahlrohr zu kollidieren, war die Frontkamera um einen Winkel

von 10.5° relativ zum Lot auf die Probenfront horizontal geneigt.

Die Seitenkamera besafl ein bi-telezentrisches 4fach Zoom Objektiv mit Festbrennweite und
100mm Arbeitsabstand (Edmund Optics TECHSPEC CompactTL) und erfasste einen Pro-
benbereich von ca. 2x2mm (0.8625 pum pro Pixel). Bei der Seitenkamera betrug die horizontale

Neigung sogar 20°, um an der Antriebsspindel der Priifmaschine vorbeizuschauen.

Durch den Einsatz von bi-telezentrischen Objektiven wurden typische optische Verzerrungen
weitestgehend vermieden. Zudem haben telezentrische Objektive die Eigenschaft, dass ihr
Abbildungsmafistab bei Verschiebungen entlang der optischen Achse konstant ist, womit sie

sich besonders gut fiir Messaufgaben eignen.

Zur Beleuchtung kamen zehn 3W LED-Spots mit einem Abstrahlwinkel von 20° zum Einsatz,

deren griines Licht im Bereich der maximalen spektralen Empfindlichkeit der Kameras lag.
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Die Spots konnten zur optimalen Ausleuchtung paarweise flexibel mithilfe von Schwanenhals-
halterungen positioniert werden, wodurch die Beleuchtungsproblematik durch eine einzelne
Lichtquelle aus [25] gemindert wurde. Die LEDs wurde iiber eine selbst gebaute Steuerungs-
elektronik mit Strom versorgt und wahlweise manuell oder per Software in ihrer Helligkeit
geregelt.

Die lokale Verschiebung definierter Bildbereiche zwischen verschiedenen Kamerabildern wird
mittels digitaler Bildkorrelation (Software DaVis 8.3.1 von LaVision) berechnet (Details siehe
[25]), wodurch aus den Daten jeder Kamera zweidimensionale Verschiebungsfelder extrahiert
werden konnen.

Die Frontkamera dient hauptsiichlich der Uberwachung und Quantifizierung des Abscherver-
haltens der Probe entlang des Steges wiahrend der Verformung, wohingegen die Seitenkamera
der Uberwachung von Ausbauchungen im Stegbereich oder Knicken der Probe entlang des
Steges dient. Letzteres erzeugt u.a. Scheinverschiebungen aus Sicht der Frontkamera. Dariiber
hinaus ist durch die Kombination der komplementiren Informationen beider Kameras ein

grobe, dreidimensionale Rekonstruktion der Probenbewegung moglich (Details siehe Kapitel

5).

Transmissionsrontgenbeugung

Der monochromatische Rontgenstrahl, der von der ESRF zur Verfiigung gestellt wurde,
hatte eine Energie von 78.3948keV (Pt K-Absorptionskante) und damit eine Wellenléinge
von 15.814pm. Uber ein Blendensystem konnte dieser auf einen rechteckigen Bereich einge-
schrinkt werden, der bei langsamen Experimenten (Dehnrate < 1-1072s7!) eine Abmessung
von 30x30 pm und bei schnellen Experimenten, zur Steigerung der Intensitéit, eine Abmes-
sung von 40x40 pm hatte. Dieser Strahl traf senkrecht zu Frontfliche der Probe auf die Mit-
te des Stegbereiches. Hinter der Probe befand sich in einem Abstand von 34.4cm ein 2d
Rontgendetektor (Frelon 2k, 2048x2048 Pixel, quadratische Pixel, Kantenldnge 50 ym), mit
dem die gestreute Rontgenstrahlung bis zu einem Streuwinkel von 10° aufgenommen wurde.
Bei voller Auflésung war eine maximale Bildrate von 0.9 Hz bei einer Belichtungszeit von
700 mg] moglich, die fiir schnelle Verformungen durch ein 2x2 Pixelbinning?’| auf 2Hz bei
einer Belichtungszeit von 300 ms gesteigert werden konnte; dadurch wurde jedoch die zur
Verfiigung stehende Auflosung geviertelt (1024x1024 Pixel, quadratische Pixel, Kantenlinge
100 pm). Der transmittierte Primérstrahl wurde durch einen zylindrischen Beamstop vom
Detektor abgehalten, um eine Ubersteuerung oder Beschiidigung des Detektors zu vermei-
den. Die Halterung des Beamstops hat den Bereich auf der 6-Uhr Position des Detektors
abgeschattet (siehe Abb. [3.10).

Der Detektor konnte extern iiber einen 5V TTL-Puls getriggert werden, wodurch die Synchro-

nizitdt zwischen Rontgenmessung und dem restlichen Versuchsaufbau hergestellt wurde. Die

4Zuziiglich Dateniibertragungszeit.
59x2 Pixel werden zu einem zusammengefasst.
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Aufnahmen des Rontgendetektors wurden auf einem Computer der ESRF im proprietiren
ESRF Data Format (.edf) gespeichert und konnten im Anschluss an die Experimente von
dort heruntergeladen werden.

Zuséatzlich zu den bisher beschriebenen Messungen wurde bei jedem Experiment die Um-
gebungstemperatur im Labor und an der oberen und unteren Traverse der Priifmaschine

aufgezeichnet.

Abbildung 3.10: Rohdaten des Rontgendetektors. Der rote Kasten zeigt in den Ecken die
Abweichung der Detektordaten von einer ebenen, viereckigen Fliche durch
die Kissenverzerrung des Detektors.

3.3.3 Experimentsteuerung

Die Steuerung des Experiments erfolgte zentral {iber einen Mess-PC mit Hilfe eines in Lab-
view (National Instruments) geschriebenen Steuerprogramms (SCS-ControlNew.vi). Das Pro-
gramm hatte zum einen die Aufgabe, die Messdaten (Kamerabilder, Mechanische Daten,
Temperatur) wihrend des Experimentes zu erfassen, zum anderen sollte es die Steuerung
aller Komponenten iibernehmen und die Synchonizitét der verschiedenen Messsignale garan-
tieren. Zusétzlich mussten die Kamerabilder inklusive Histogramme zu Justagezwecken vor
dem eigentlichen Experiment als Livestream zur Verfiigung stehen und wihrend der Messung
sollte der aktuelle Zustand, die Laufzeit und die Restlaufzeit des Experimentes jederzeit ab-
lesbar sein. Auflerdem sollte die manuelle Steuerung der Beleuchtung und der Priifmaschine
iiber die Software moglich sein, um den Arbeitsablauf zu erleichtern und so das Risiko von
Bedienfehlern zu minimieren. Schliefllich war ein Betreten des Strahlenschutzbereiches nicht
jederzeit moglich und mit relativ groem Aufwand verbunden.

Das vereinfachte Schema der Software ist in Abb. und die Bedienoberflache ist in
Abb.[3:12)und Abb. 3.13]dargestellt. Grob eingeteilt kann sich die Software in zwei Zusténden

befinden: Frei und messend.
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Abbildung 3.11: Schematische Darstellung des Aufbaus der Experimentsteuerung.

Im freien Zustand sind die Eingabefelder und Schaltflichen der Bedienoberfliche freigege-
ben und kénnen durch den Nutzer manipuliert werden, etwa um Probeninformationen und
Messparameter des néichsten Experimentes einzutragen, die Beleuchtung anzupassen, Kame-

raeinstellungen in Echtzeit vorzunehmen oder die Priifmaschine manuell zu verfahren.

Im Messzustand ist die Oberfliche bis auf die Stopp-Schaltfliche gesperrt und es ist keine
Interaktion aufler dem Abbruch der Messung moglich. Zu Beginn der Messung werden aus
den Nutzereingaben die notwendigen Maschinenparameter fiir das Experiment errechnet (z.B.
Verfahrgeschwindigkeiten, Bildraten, etc.), die Bestandteile des Aufbaus entsprechend initia-
lisiert und die Einstellungen und Probeninformationen im Experimentordner in einer Textda-
teien gespeichert ([Probennamel-info.txt). Danach werden die verschiedenen Taktsignale von
einem zentralen Taktgeber generiert, welche das Auslosen der Kameras und der TTL-Pulse

des Rontgendetektors steuern, sowie das Abtasten der Messwerte der Priifmaschine und der
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3.3 In-situ Experiment an Beamline ID11 der ESRF

Abbildung 3.12: Photo der Bedienoberfliche auf dem Steuerungsrechner im Nutzerbereich
der ID11.

Temperaturmessung bestimmen. Wéhrend des Experimentes werden die Bilddaten der Kame-
ras kontinuierlich auf die interne Festplatte gespeichert und in der Benutzeroberfliche zu Kon-
trollzwecken angezeigt. Am Ende werden die aufgenommenen Temperaturwerte (Temperatu-
res.txt) und Kraft-Weg-Daten der Priifmaschine ([Probenname|-LoadElong.txt) gespeichert
und das Programm wieder in seinen Ausgangszustand vor dem Experiment zuriickversetzt.

Zusétzlich bietet das Programm die Moglichkeit, eine automatische Annédherung der Priifma-
schine an die Probe durchzufiithren. Dabei wurde die Priifmaschine kontrolliert zusammenge-
fahren und die Kraft am Pressstempel iiberwacht. Beim Detektieren des Schwellenwertes von

2N wird die Bewegung der Maschine gestoppt und der Einbau der Probe ist abgeschlossen.
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Abbildung 3.13: Bedienoberfliche der Steuerungssoftware.
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3.4 Extraktion der Verschiebungsfelder aus Kamerabildern

Die Relativverschiebung der Probe zwischen zwei aufeinander folgenden Kamerabildern wur-
de durch digitale Bildkorrelation bestimmt. Der Grundgedanke hinter diesem Verfahren ist
es, das erste Bild in quadratische Bereiche zu unterteilen und die entsprechenden Bereiche
im zweiten Bild zu identifizieren. Der Verschiebungsvektor des Bereiches im ersten Bild zum
selben Bereich im zweiten Bild ist dann die lokale Verschiebung der Probe an dieser Stelle.
Technisch wird dieses Identifikation gleicher Bereiche durch die Anwendung einer zweidi-
mensionalen Korrelationsfunktion auf die Intensitéiten beider Bilder erreicht. Diese stellt ein
skalares MaSB fiir die Ubereinstimmung beider Bilder bzw. Bildbereiche in Abhingigkeit ei-
nes Verschiebungsvektors bereit, sodass der zum Maximum der Korrelationsfunktion gehérige
Verschiebungsvektor mit hoher Wahrscheinlichkeit der tatsdchlichen Verschiebung entspricht.
Weitere Details zu diesem Verfahren sind in [25] angegeben. In dieser Arbeit wurde fiir die
Durchfithrung der digitalen Bildkorrelation auf die Software LaVision DaVis in Version 8.3.1
zuriickgegriffen, in der das Verfahren gut getestet und numerisch schnell und stabil umge-
setzt ist. Im Unterschied zu Vorgéngerarbeiten [25 B0] wurde das Verschiebungsfeld iiber
die gesamte im Bild befindliche Probenfliche in Pixelkoordinaten ohne vorherige Bildmani-
pulation (z.B. Verschiebungsausgleich, Rotationsausgleich) bestimmt und anschliefend zur
weiteren Analyse im ParaView (.tp) Format exportiert. Dieses Format liefert eine Liste der
x- und y-Ortskoordinaten der quadratischen Auswertebereiche und der entsprechenden Ver-
schiebungen entlang beider Richtungen » und v.

Die Wahl der Grofle der korrelierten Auswertebereiche muss so getroffen werden, dass diese
durch plastische und elastische Dehnungen in aufeinander folgenden Bildern nicht so stark
verzerrt werden, dass eine Identifikation nicht mehr moglich ist. Andererseits steigt die Zu-
verlassigkeit, mit der ein Bereich identifiziert werden kann, ndherungsweise mit der Fliche des
Bereiches an, da mehr Information zur Identifikation zur Verfiigung steht. Vor diesem Hin-
tergrund wurden quadratische Bildbereiche mit einer Kantenlénge von 49 Pixeln gewahlt, die
iiberlappend in einem 20 x 20 Pixel Gitter angeordnet wurden. Dadurch wurde einerseits die
Informationsdichte der Verschiebungsfelder erhéht, andererseits stellen die iiberlappenden
Korrelationsbereiche eine gewisse Redundanz dar, die gerade an Objektkanten und dem
Ubergang zum Stegbereich niitzlich ist. Es ist auBerdem sinnvoll, zu jedem Zeitpunkt die
akkumulierte Verschiebung zu betrachten, da sich dadurch die stochastisch verteilten Messfeh-
ler mit fortschreitender Zeit herausmitteln, wiahrend die tatséchliche Verschiebung zunimmt,
wodurch das Signal-zu-Rausch-Verhiltnis verbessert wird.

Ein Beispiel fiir ein typisches Vektorfeld ist in Abb. gezeigt. Hier lésst sich gut erken-
nen, dass der obere Teil der SCS vom Druckstempel gerade nach unten verschoben wird
und sich nur der untere Teil durch den rollbaren Probenhalter nach links verschiebt. Die
Verschiebungsinformation aus dem Steg ist problematisch, was vor allem durch die sichtbare
plastische Deformation und Ausbauchung des Stegbereiches wiahrend der Verformung her-

vorgerufen wird. Ohne zusitzliche Informationen zur Anderung der Form der Oberfliiche im
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Abbildung 3.14: Links sind zwei aufeinander folgende Kamerabilder der Frontkamera gezeigt,
die zur Unterscheidung rot und blau eingefirbt sind. Der durch das magen-
tafarbene Rechteck markierte Bereich beider Bilder wurde vergréflert und
mit jeweils 50% Deckkraft iiberlagert. In dem iiberlagerten Bild ist die Ver-
schiebung zwischen den beiden Bildern mit blofem Auge erkennbar. Rechts
ist das per Software extrahierte Verschiebungsfeld dargestellt, in dem die
Léngen der Vektoren mit dem Faktor 2 skaliert wurden. Der Stegbereich ist
durch schwarze Linien markiert.

Stegﬂ ist eine notwendige Korrektur der Verschiebungsinformationen in diesem Bereich nicht
moglich. Dariiber hinaus hat der Stegbereich selbst eine Breite von ca. 1.5 Auswertebereichen,
sodass hier die oben genannten Anforderungen fiir digitale Bildkorrelation nur unzureichend
erfiillt sind.

Aus diesem Grund wurde zusétzlich gezielt das Vektorfeld des Stegbereiches der Probe in der
Ansicht der Seitenkamera in der digitalen Bildkorrelation mit einem kleineren Korrelations-
bereich von nur 20 x 20 Pixeln extrahiert. Der Grund dafiir wird im Verlauf des nachfolgenden
Kapitel [3.5] geliefert.

Die Analyse der Verschiebungsfelder findet im Folgenden grofitenteils anhand der wesentlich
unkritischeren Probenoberfliche auflerhalb des Stegbereiches statt, welche nur einen geringe

elastischen Deformationsanteil aufweisen.

Die Oberfliichenform kénnte z.B. durch stereoskopische Aufnahmen mit mehreren Kameras erfasst werden.
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3.5 Auswertung der Verschiebungsfelder

Die Auswertung der Verschiebungsfelder hat das Ziel, eine klare Beschreibung der Gesamtbe-
wegung der Probe und der Relativbewegung der Probenteile ober- und unterhalb des Stegbe-
reiches zu liefern. Dafiir sollen die Informationen von Frontfliche und Seitenfliche konsistent
in einem gemeinsamen Koordinatensystem zusammengefiithrt werden. Darauf aufbauend, er-
folgt eine dreidimensionale Extrapolation des Verschiebungsfeldes bis an den Stegbereich, um
daraus eine Abschétzung fiir die dreidimensionale Dehnung im Zentrum des Steges zu erhal-
ten. Das bildet die makroskopische Komplementérinformation zu den Rontgenmessungen, die

das Zentrum des Steges abdecken.

Zunéchst werden die Kamerabilder von Pixelkoordinaten in Langen umgerechnet, sowie eine
Entzerrung in horizontaler Richtung durchgefiihrt, die wegen der Neigung der Kameraachsen
zur Oberflichennormalen notwendig ist. Fiir die Lingen der Frontfliche in x-Richtung gilt
2’ = x/c0s(10.5°) und fiir die z-Richtung der Seitenfliche 2" = z/ cos(20°).

Um die weitere Analyse durchzufiihren, wird das Kamerabild in zwei relevante Bereiche un-
terteilt, ndmlich die Probenoberflichen ober- und unterhalb des Stegbereiches. Diese ergeben
sich aus einer Maskierung, die den Stegbereich inklusive der Abschrigung und einem Zuschlag
von » 50 um bei den Frontkamerabildern ausspart, um unzuverlissige Verschiebungsinforma-
tionen aufgrund von Kanteneffekten zu vermeiden. Bei den Seitenkamerabildern wird lediglich
der Steg selbst ausgespart, da durch die dort stattfindende, starke plastische Verformung die

Bildkorrelation mit den groflen Auswertebereichen an ihre Grenzen st6f3t.

Bildausschnitt

1 / \ ........... SToehers

1 Seitenkamera
§><}Maskierung/§/ :

\N

SCS

Yy Yy 20°

Bildebene

A/\//Frontkamera
zY 10.5°
y4 X

Abbildung 3.15: Darstellung der Bildausschnitte und getrennt ausgewerteten Bildbereiche der
SCS, sowie der Neigung der Bildebene (Kameras) relativ zu den Probeno-
berflachen.

In einem ersten Schritt erfolgt eine Zerlegung der Verschiebungsfelder der beiden Probenteile
in Starrkorpertranslation, Starrkorperrotation, beides in Bezug auf den jeweiligen Schwer-
punkt, und den Rest, wobei letzterer im Normalfall der elastischen und plastischen Dehnung

entsprechen sollte. Der Sinn dieser Zerlegung ist es, mathematisch einfach beschreibbare
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Teilvektorfelder zu extrahieren, die jeweils in einfacher und systematischer Weise physika-
lisch sinnvoll extrapoliert werden kénnen. Das gesamte Verschiebungsfeld ergibt sich durch
additive Uberlagerung der Teilvektorfelder. Formal erhélt man fiir das untere bzw. obere

Verschiebungsfeld 4% bzw. 4°:

00 (xyy,2) = g’ + Uy’ + Uy, (3.10)
wobei die Indizes T, R und d den Translations-, Rotations- und Dehnungsanteil des Verschie-
bungsfeldes beschreiben. Fiir die zunéchst einzeln betrachteten, zweidimensionalen Kamera-
bilder ist immer jeweils eine der Ortskoordinaten x’ oder z’ konstant und die entsprechende

Verschiebungskomponente null.

Die Starrkorpertranslation der beiden Hélften ergibt sich einfach aus dem Mittelwert des Ver-
schiebungsfeldes im jeweiligen Probenteil (@) = tp. Die Translation der Gesamtprobe ﬁg wird
0.B.d.A. mit der Verschiebung des oberen Probenteils identifiziert. Durch die Subtraktion von
ﬂg vom gesamten Vektorfeld wird der Schwerpunkt des oberen Teiles ortsfest und die gesam-
te Starrkorperrelativverschiebung 7. auf den unteren Teil abgebildet. Zusammengefasst gilt

also fiir die Starrkorpertranslation

a$ = (u)° (3.11a)

i = 0% - a5 = (@) - (4)°. (3.11D)

Die Starrkorperrotation wird bestimmt, indem man die Verschiebungsfelder in Polarkoordi-
naten mit dem Schwerpunkt der Probenteile als Mittelpunkt beschreibt. Der Mittelwert des
Polarwinkels ¢ iiber die Flidchen entspricht dann dem Drehwinkel der Starrkérperrotation,
also (@), = tiig. Auch hier wird zuerst die Rotation des oberen Teils als Gesamtrotation ﬂg
aufgefasst und vom Verschiebungsfeld subtrahiert, wonach der obere Teil rotationsfrei ist.
Die gesamte Relativrotation @, wird, wie bei der Translation, durch die nun verbleibende

Rotation des unteren Teils beschrieben. Zusammengefasst gilt dann fiir die Rotation:

af = () (3.12a)

iy = (0" — %) (3.12b)

Bei den Rotationen muss beachtet werden, dass diese keine Aussage iiber die tatséchlichen
Rotationswinkel oder Rotationsachsen machen, sondern nur der Zerlegung des Vektorfeldes
im beobachtbaren Bereich dient. Durch die vorhergehende Subtraktion des Mittelwertes der
Verschiebung wird namlich fiir jede Rotation die Rotationsachse in den Schwerpunkt ver-
schoben, auch wenn die urspriingliche Rotationsachse an einem anderen Ort, wie z.B. in der
Standfléche, liegt. Folglich verédndert sich dadurch auch der Rotationswinkel. Gibt es also
eine Rotationskomponente in dem Vektorfeld, ist damit klar, dass tatséchlich eine Rotation

im Experiment stattgefunden hat. Es ist aber nicht klar, um welche Achse und um welchen
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Winkel in der Realitédt rotiert wurde, da nicht die kompletten Probenhilften im Kamera-
bild abgebildet werden. In Bezug auf die Bewegung relativ zum Steg stellt das aber keine

Finschriankung dar.

Die Dehnungsverschiebungen beider Teile ergeben sich einfach nach Subtraktion aller zuvor
beschriebenen Anteile der Gesamtverschiebungsfelder, womit die komplette Zerlegung die

folgende Form hat:

U=0% +0% + Wp iy + Uy (3.13)
——— —— ——
gesamt relativ Dehnung

Auf Grundlage dieser Zerlegung erfolgt nun im néichsten Schritt die Korrektur von Schein-
verschiebungen auf den beiden Fléchen, die durch Translation und Rotation auf der jeweils
dazu senkrecht stehenden Fliche erzeugt wird. Dazu werden die Verschiebungsfelder aus
beiden Kamerabildern in einem gemeinsamen, dreidimensionalen Koordinatensystem zusam-
mengefiihrt, wobei die Stegkoordinaten zur korrekten Positionierung der Seitenkameradaten

relativ zu den Frontkameradaten genutzt werden.

Zunéchst wird die Korrektur der Scheinverschiebungen durch die Rotationen betrachtet, da
Rotationen auf den dazu senkrechten Fliachen keine Scheinrotationen in den Vektorfeldern er-
zeugen konnen; die Korrekturen beeinflussen sich also nicht gegenseitig. Rotationen erzeugen
an den Probenkanten, und damit auf den entsprechenden Flichen, inhomogene Verschiebun-
gen sowohl in y-Richtung als auch in der Richtung senkrecht dazu (siehe Abb. . Diese
Verschiebungen kénnen mit der Drehachse und dem Drehwinkel der jeweils anderen Fliche
fiir jeden Verschiebungsvektor berechnet und subtrahiert werden, um die korrigierten, nun
dreidimensionalenm Verschiebungen zu erhalten. Die Mittelwerte dieser Korrekturverschie-
bungen sind auf die Starrkorpertranslationen als Korrektur anzuwenden und der inhomogene

Rest auf die verbleibenden Dehnungsfelder.

x Y

Abbildung 3.16: Skizze zur Veranschaulichung des Einflusses der Rotation in der x-y-Ebene
auf die scheinbare, inhomogene Verschiebung in der y-z-Ebene. Hier wird der
linke Probenteil um die durch das rote x markierte Drehachse in Pfeilrichtung
rotiert. Die roten Pfeile auf der oberen Seite des linken Probenteils zeigen
die Verschiebungskomponenten an diesen Stellen durch die Rotation an.

"Die Komponente, die nicht in y-Richtung zeigt, steht immer senkrecht auf der zu korrigierenden Ebene.
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Die Translationsbewegung in den beiden Ebenen wiirde eigentlich nicht zu Scheinverschie-
bungen auf den jeweils senkrechten Fliachen fithren. Allerdings existiert aufgrund der unter-
schiedlichen Neigungen der Kameras eine Verschiebungskomponente in x-Richtung aufgrund
von Verschiebungen in z-Richtung und umgekehrt (vgl. Abb. S. . Die y-Richtung
ist in beiden Fillen identisch, weswegen auch die beobachteten Verschiebungen identisch sein
miissen und keiner Korrektur bediirfen.

Um die Scheinverschiebungen durch die x-z-Kopplung zu korrigieren, miissen die zuvor vor-
genommenen Entzerrungen in diese Richtungen riickgéingig gemacht werden, die jeweiligen
Projektionsanteile subtrahiert werden und dann die Entzerrung erneut vorgenommen wer-
den (Details/Implementierung siehe Datentréger: Xcorrection.m). Dabei sind die x- und z-
Komponenten aus der vorherigen Rotationskorrektur mit zu beriicksichtigen.

Fiir die korrigierte Verschiebung in x-Richtung auf der Frontfliche u; . und die Entsprechende

Verschiebung in z-Richtung u; . gilt dann

2-10.5°
Up e = Uy — U — 1y cos(m/ sn?(zf)ooz cos(nj2 1057 (3.14a)
cos(20°) [cos(10.5°) - (105 ]
Uz ec = Uy — uZOt —Ug,c tan (20 O) (314b)

Beispiele fiir zerlegte und korrigierte Verschiebungsfelder einer 45° SCS sind in Abb.
gezeigt,.

Auf dieser Grundlage wird nun eine Extrapolation der Verschiebungsfelder in x- und y-
Richtung bis an den Steg vorgenommen, um die makroskopische Dehnung des Probenvo-
lumens zu bestimmen, welches auch vom Roéntgenstrahl untersucht wird.

Die Extrapolation des Verschiebungsfeldes zum Steg ist im Fall der Starrkorperverschiebung
und -rotation offensichtlich und muss fiir die Bestimmung der Dehnung im Steg auch nur fiir
die Vektorfelder erfolgen, welche die relativen Bewegungen beschreiben. Weder Gesamttrans-

lation noch Gesamtrotation erzeugen Dehnungen im Steg.
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Abbildung 3.17: a) Zerlegung des Verschiebungsfeldes einer SCS in die im Text beschriebenen Teilverschiebungsfelder. Der Skalierungs-
faktor der Pfeillingen der Verschiebungsfelder (x4, x40) ist fiir jeden Fall angegeben. Bei den Gesamtverschiebungen,
die immer anhand der oberen Verschiebungsfelder bestimmt werden, sind die in die untere Hilfte extrapolierten Ver-
schiebungen hellblau dargestellt. Die Lage des Steges ist durch schwarze Linien markiert, die der Schwerpunkte in der
oberen und unteren Probenhélfte ist durch rote Kreuze markiert. Die Pfeildichte wurde fiir die Darstellung reduziert.

b) Gleiche Darstellung wie in a) fiir die Seitenkamera.
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Die verbleibende Herausforderung ist die Extrapolation der Dehnungsverschiebungen des un-
teren und oberen Probenteils bis an den Steg. Die Schwierigkeit ist hierbei, dass die Bewegung
der Frontfliche in Stegnihe keine Représentation der Bewegung des unteren Probenteils dar-
stellt, da die Spannung und Dehnung in Stegnihe in einem schmaleren Bereich fokussiert
ist (siehe Seitenkamera 4 in Abb. . Fiir die Verschiebung in x-Richtung steht damit
keine sichere Grundlage fiir eine Extrapolation zur Verfiigung und die x-Verschiebung auf
der Frontflache stellt lediglich eine untere Schranke dar, die in Ermangelung einer besseren
Alternative einfach genau so auch am Steg angesetzt wird. Da die elastische Verschiebungs-
komponente aber nur einen geringen Anteil an der Gesamtverschiebung hat, ist die daraus

entstehende Ungenauigkeit maximal im Bereich weniger Prozent.

‘ 5K - -
x unterer Probenteil
4t x oberer Probenteil 1
- 3l —Fit
reie | pumeret, g
Kante \ =
\ : 5> 1t
Y Y of
_1 -
I -400 -200 0 200
Ay [pm]

X y4
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Abbildung 3.18: a) Darstellung der Scherung des Steges und der daraus resultierenden freien
Kante an den Seiten der Proben (links). Auswertebereich fiir die Extrapo-
lation der y-Verschiebung bis an den Steg auf der Probenseite (rechts). Die
Richtungen der blauen und schwarzen y-Koordinaten sind hier ebenfalls dar-

gestellt. b) Anpassung der u, Verschiebungsdaten der Seitenkamera aus den
in a) dargestellten Bereichen und ihre quadratische Anpassung.

Die Dehnungsverschiebung in y-Richtung hingegen kann aus den Dehnungsverschiebungs-
feldern der Seitenkamera bis in unmittelbare Stegnihe beobachtet werden, wodurch eine
Grundlage fiir eine Extrapolation dieser Komponenten bis zum Steg existiert. Durch die Span-
nungskonzentration durch den Steg und die Verjiingung des Probenquerschnittes in Stegnéhe,
weicht die Dehnungsverschiebung von dem iiblichen linearen Zusammenhang von Abstand
und Verschiebung ab. Allerdings muss dabei beriicksichtigt werden, dass am Rand der Probe
durch das Abscheren beider Hélften zueinander dadurch eine unsymmetrische Verschiebung
erzeugt wird, dass einem Probenteil zunehmend der Gegenpart fehlt; der andere verbleibt
dauerhaft in Kontakt mit seinem Gegenpart. Der Probenteil, der den Kontakt zur restlichen
Probe zunehmend verliert, wird dadurch auch zunehmend geringere Verschiebungen aufgrund
der elastischen Dehnungen/Spannungen aufweisen (vgl. Abb. . Fiir die Extrapolation der
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3.5 Auswertung der Verschiebungsfelder

Verschiebung in der Mitte des Steges ist offensichtlich nur der Teil relevant, der dauerhaft
in Kontakt bleibt; in diesem Beispiel ist es der obere Teil. Die Verschiebung unterhalb bzw.
oberhalb des Steges kann, in Abhingigkeit von der y-Position, mit einer quadratischen Funk-
tion gefittet werden (vgl. Abb. , deren Funktionswert am Ort des Steges den Wert der
y-Verschiebung aufgrund der elastischen Dehnung auf beiden Seiten des Steges liefert.

Die mittleren Dehnungen im Steg in der x-y-Ebene werden aus den Verschiebungsinforma-
tionen in x- und y-Richtung entlang des Steges so berechnet, wie im Theorieteil in GI.
dargestellt. Hier ist, wegen der groflen plastischen Dehnungen, die Benutzung des Green-
Lagrange-Dehnungstensors notwendig. Benutzt man den linearen Dehnungstensor, kann es
bei groflen Dehnungswerten (¢ > 0.1) sowohl zu qualitativen als auch quantitativen Fehlern
kommen. Bei der Berechnung wird angenommen, dass die Dehnungen in dieser Ebene im Steg
weitestgehend homogen sind. Zu diesem Ergebnis kommen auch FEM-Simulationen an iden-
tischen Geometrien [248, [250]. Durch diese Annahme gehen die Ableitungen zur Berechnung
von F in Differenzenquotienten iiber, die direkt aus den extrapolierten Verschiebungsfeldern
berechnet werden kénnen. Diese Zusammenhénge und die Lage des durchstrahlten Bereiches
sind in Abb. dargestellt.

Stegmitte

Abbildung 3.19: (links) Schematische Darstellung des mittleren Stegbereiches in der x-y-
Ebene mit den Ausdehnungen des Steges in x- und y-Richtung, sowie die
Zerlegung der Verschiebungen an den Stegréndern, welche die Grundlage zur
Berechnung der Differenzenquotienten zur Bestimmung von F visualisiert.
Der vom Rontgenstrahl durchstrahlte Bereich ist durch das rote Quadrat
markiert. (rechts) Dreidimensionale Darstellung des vom Réntgenstrahl er-
fassten Bereiches (rot) in der SCS. Der Steg ist halbtransparent dargestellt.
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3 Methodik

Die noch fehlenden Dehnungs- und Verschiebungsinformationen in z-Richtung im Steg werden
direkt anhand des zusétzlichen Verschiebungsfeldes des Stegbereiches aus den Bildern der
Seitenkamera extrahiert (sieche Abb. . Dieses Verschiebungsfeld enthilt allerdings auch
die Verschiebungskomponenten aufgrund der Verkippung und Verschiebung bzw. Scherung
durch die plastische Verformung des Steges und ist ebenfalls von dem oben beschriebenen
Kantenproblem betroffen. Es muss daher auch, wie oben beschrieben, korrigiert werden. Da
eine Hilfte des Steges durch die Scherung den Kontakt mit ihrem Gegenpart verliert, darf
zur Bestimmung von elastischer und plastischer Querdehnung im Stegbereich nur die Hélfte
des Steges in y-Richtung beriicksichtigt werden, in der beide Probenhélften dauerhaft in
Kontakt miteinander sind. In Abb. ist der deutliche Unterschied in der y-Verschiebung
der beiden Probenhélften dargestellt. Der Dehnungsgradient in z-Richtung folgt dann aus

Au,
b

F, = ) (3.15)

wobei b die Stegbreite und Awu, die Differenzverschiebung zwischen linker und rechter Stego-
berfldche ist. Dabei werden die z-Verschiebungen iiber einen Bereich von ca. 1/3 der Steghohe

in y-Richtung von der Stegmitte aus gemittelt.
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Abbildung 3.20: Darstellung der Position des zusétzlichen Verschiebungsfeldes an der Seite
des Steges (links) und das Verschiebungsfeld selbst (rechts). Der Bereich,
iiber den die Querdehnung in z-Richtung gemittelt wird, ist hier rot markiert.

Daraus kann der dreidimensionale Dehnungszustand aus der Mitte des Stegbereiches, der
auch vom Rontgenstrahl durchleuchtet wird, gendhert werden. Die Ergebnisse fiir die Ver-
schiebungsfelder aus Abb. (S. sind in Abb. (S. gezeigt.

Mit F erhilt man aufierdem den Rotationstensor ﬁ, der jedoch aufgrund der Symmetrie der
SCS im Wesentlichen nur eine Rotationskomponente um die z-Achse enthélt. Der zugehorige
Drehwinkel ¢ kann dann aus R einfach durch 1 = arcsin (Ra1) extrahiert werden. Der Dreh-
winkel ¢ zu den Verschiebungsfeldern aus Abb. (S. betrigt ~ —6.6° (es gilt der

mathematische Drehsinn, hier erfolgt die Drehung also im Uhrzeigersinn).
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Abbildung 3.21: a) Dreidimensionale Darstellung des Dehnungszustandes in der Stegmitte
zu den Verschiebungsfeldern aus Abb. b) bis d) Polardarstellungen des
Dehnungszustandes in verschiedenen Ebenen. Die Polardarstellungen ent-
sprechen Schnitten durch den Ellipsoiden aus a), wobei die Schnittebenen
durch den Ursprung verlaufen und die Basisvektoren als Normalenvektoren

besitzen.
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3.6 Anderung des Stegquerschnitts

Durch die Verformung éndert sich Querschnittsfliche des Steges im Verlauf des Experimentes
und muss entsprechend mit der Zeit/Dehnung angepasst werden, um eine giiltige Bezugsfléiche
zu Umrechnung von Spannungen und Kréften zu erméglichen. Die Anfangsfliche ergibt sich

aus der SCS-Geometrie mit

1 0
B-b L.
Ag=——=|Bxb|=|B-|-tan(sw) | x|0|[, (3.16)
cos (sw) 0 ;

wobei die Kanten der effektiven Stegquerschnittsfliche in Form orthogonaler Vektoren (B und
I;) ausgedriickt wurden. Hier haben b, B und sw die Bedeutungen, wie sie in der Bemaffungs-
skizze der SCS dargestellt sind (vgl. Abb. S. . Durch die Verformung werden diese
Vektoren geméf F transformiert, also gedehnt und gegebenenfalls um die z-Achse gedreht,

sodass gilt

I
sl

Bl

B (3.17a)
b =Fb.

(3.17b)

I
sl

Fiir die zeitliche Entwicklung der Querschnittsfliche ist nur die Projektion in Richtung der
Normalen 71 = (cos (sw),—sin (sw),0) der urspriinglichen Querschnittsfliche entscheidend,

sodass fiir A gilt

1 0

A={i-|F-|-tan (sw) |- (B —-2(ug)) |- F-lo0 (3.18)
0 b
z—-y—Ebene z—Richtung

Zusitzlich wurde in Gl. in x-Richtung zwei mal die mittlere Relativverschiebung in
x-Richtung der beiden Probenhélften abgezogen, um die Teile des Steges an beiden Réndern
zu beriicksichtigen, die durch die Scherung keinen Gegenpart mehr haben. Dadurch wird
die effektive Querschnittsfliche in x-Richtung um 2(u,) verkiirzt. Die resultierende relative
Fliachensinderung, bezogen auf die Anfangsfliche, A/Ayp, ist in Abb. iitber den Verlauf
einer Verformung der 45°-SCS (Y4-2) dargestellt.

Die Kraft F', die auf die Stegquerschnittsfliiche wirkt, ist mit dem Spannungstensor & iiber
den Ausdruck

F=A-G-n (3.19)

verkniipft und héngt dadurch gleichzeitig von Spannungs- und Dehnungszustand ab.
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Abbildung 3.22: Relative Anderung der Stegquerschnittsfliche im Verlauf der Verformung
der Probe Y4-2.

3.7 Aufbereitung der in-situ Rontgendaten

Die Rohdaten der Rontgenaufnahmen lagen im ESRF Data Format (.edf) vor. Fiir die wei-
tere Analyse mussten diese Daten um die Detektorfehler bereinigt und von Pixelkoordinaten
in 20-Koordinaten umgerechnet werden. Zu den Detektorfehlern gehort die bereits oben ge-
zeigte Kissenverzerrung (siehe Abb. S. , aber auch statistische Schwankungen der
Dunkelzahlrate und Quanteneffizienz auf Pixelebene, beides auch abhéngig von der Belich-
tungszeit, sowie unterschiedliche, lokale Empfindlichkeit in Abhingigkeit vom Einfallswinkel
der Rontgenstrahlen und damit vom radialen Abstand von der Detektormitte.

Séamtliche Korrekturen dieser detektorspezifischen Messartefakte, sowie die Umrechnung in
26-Koordinaten, wurden durch die ESRF Software Bubble von Vadim Dyadkin [253] bewerk-
stelligt. Dazu wurde vor Ort eine Referenzmessung an C'eOs-Pulver angefertigt um Verzer-
rungen, Pixelempfindlichkeiten und 20-Koordinaten auf dem Detektorbild zu bestimmen. Die
Parameter fiir die entsprechenden Korrekturen wurden in einer SPLINE Datei (Verzerrungs-
korrekturen) und PONI Datei (Umrechnungsinformationen) gespeichert. Zusétzlich wurden
eine Reihe von Dunkelaufnahmenﬁ mit den in den Experimenten benutzten Belichtungszei-
ten angefertigt, die als Referenz fiir die Dunkelzéhlrate und das Rauschen des Detektors
dienen. Die Rohdaten der Streubilder werden mit diesen Informationen korrigiert und an-
schlieflend iiber 2° breiten Segmenten integriert, um so aus jedem zweidimensionalen Detek-
torbild 180 Diffraktogramme zu extrahieren. Jedes Diffraktogramm stellt die mittlere Inten-
sitatsverteilung in radiale 26-Richtung des jeweiligen Segmentes dar, wobei jedes Segment
durch den Polarwinkel ¢ gekennzeichnet ist, der den mittleren Polarwinkel des Segmentes
beschreibt (siehe Abb. S.[3.23). Das erste Segment erstreckt sich von 0° bis 2°, sodass
der zugehorige Wert fiir ¢ = 1° ist.

8 Aufnahmen ohne Réntgenstrahl
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Abbildung 3.23: a) Darstellung der Koordinaten des Detektorbildes und der Einteilung in 2°
breite Segmente. b) Diffraktogramm aus einem Winkelsegment.

Die Daten fiir jedes Segment werden in Form von Textdateien von Bubble ausgegeben,
die 20-Koordinaten und Intensitédten enthalten. Da die weitere Verarbeitung in Matlab er-
folgt, miissen diese Daten moglichst zeit- und platzsparend in das .mat Format umgewan-
delt werden. Dazu wird mit dem Programm ImDisk (Version 2.0.9 von Olof Lagerkvist)
eine 2 GB grofle RAMDiSkH erstellt, in die von Bubble die Textdateien geschrieben werden.
Noch wihrend der Laufzeit von Bubble werden die bereits geschriebenen Textdateien mithilfe
des Matlab-Programms bubble_companion.m eingelesen und in je einem dreidimensionalen
Array (Dimensionen: Polarwinkel, Streuwinkel, Intensitéit) pro Bild gespeichert. Sobald der
Durchlauf von Bubble beendet ist, werden sdmtliche Arrays in einem einzelnen, vierdimen-
sionalen Array (Dimensionen: Zeit bzw. Bildnummer, Polarwinkel, Streuwinkel, Intensitét)
konzentriert, welches die gesamten vorverarbeiteten Rohdaten des Experimentes enthélt. Das
Detektorsignal wird dariiber hinaus auf den grofiten vorkommenden Wert normiert, sodass
innerhalb eines Arrays alle Intensitéitswerte im Intervall [0,1] liegen, ohne dass dadurch die
Beziehungen der Intensitéiten zwischen verschiedenen Bildern/Zeitpunkten oder Segmenten

verloren geht. Diese Arrays stellten die Grundlage fiir alle weiteren Auswertungen dar.

9Virtuelle Festplatte im Arbeitsspeicher, um die notwendigen Schreib- und Lesevorginge zu beschleunigen
und den Verschleifl des Speichermediums zu reduzieren.
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3.8 Modellierung der in-situ Réntgendaten

3.8 Modellierung der in-situ Rontgendaten

Um physikalische Groflen aus den Diffraktogrammen zu extrahieren, wurde im Rahmen die-
ser Arbeit eine WPPM-Methode implementiert, die speziell an die Gegebenheiten des expe-
rimentellen Aufbaus und der Proben angepasst wurde. Um diesen Entwicklungsaufwand zu
rechtfertigen, soll zuniichst ein kurzer Uberblick iiber etablierte Analysemethoden und die

Probleme ihrer Anwendung auf diesen speziellen Fall gegeben werden.

Klassische Methoden zur Analyse von Diffraktogrammen

Bereits 1920 wurde von Scherrer die Scherrer-Gleichung [254] zur Bestimmung von Struktur
und Grole von Kolloidteilchen aus Rontgenbeugungsaufnahmen entwickelt. Seither wurde
eine Vielzahl von Methoden zur Extraktion physikalischer Parameter etabliert, die sich in
der Regel auf bestimmte Charakteristika im Diffraktogramm konzentrieren, um so mit ver-
gleichsweise geringem rechnerischen und technischen Aufwand ein Maximum an Information
zu erhalten.

Ein bew#hrtes Verfahren zur Analyse von nanokristallinen Materialien ist die (modifizierte)
Williamson-Hall-Methode [239], 240], in der integrale Peakbreiten oder Halbwertsbreiten und
Peakpositionen jedes Peaks in einer geschickten Weise aufgetragen werden, sodass mit Hil-
fe einer Geraden durch die Datenpunkte die Effekte der Verbreiterung aufgrund endlicher
Korngréfle und Mikroverzerrung in y-Achsenabschnitt und Steigung separiert werden. Die-
se Methode erlaubt aus sich heraus aber keine Riickschliisse auf verschiedene Beitréige zur
Mikroverzerrung.

Grundlage der Williamson-Hall-Methode ist die Annahme, dass jeder Reflex das gleiche Maf3
an Mikroverzerrung aufweist und in gleicher Systematik davon beeinflusst wird; diese An-
nahme ist im Fall von nanokristallinem PdAu verletzt. Trotzdem wurden diese Methode
erfolgreich auf nanokristalline Metalle angewandt und dariiber hinaus sogar auf virtuelle, be-
lastete Systeme [255], sowie auf in-situ Kornwachstum [256] adaptiert. In beiden Fillen waren
jedoch weitere Modifikationen notwendig, die im Kern die Auswirkungen der nicht erfiillten
Grundannahme mildern sollten.

Allerdings versagt die Methode bei in-situ Messungen, wie sie auch in dieser Arbeit zum
Tragen kommen. Dieses grundlegende Problem wurde bereits in der Vergangenheit in [25]
und [257] festgestellt und mit der komplexen Entwicklung von Mikroverzerrung, Korngrofien-
und Dehnungseffekten erklart, die eine systematische Trennung im Sinne der Williamson-
Hall-Methode unmoglich macht.

Um die Williamson-Hall-Methode robust gegen den Einfluss von Versetzungen zu machen,
wurde in [258] eine Modifikation auf Grundlage der Streutheorie von Versetzungen (siehe
oben) entwickelt. Allerdings waren im Rahmen dieser Arbeit alle Versuche erfolglos, eine auf
[255] und [258] aufbauende Korrektur bzw. Anpassung der Methode zum Zwecke der Analyse

der in-situ Daten zu realisieren.
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Eine weitere etablierte Methode ist die Warren-Averbach-Methode [62], 259], bei der die Peaks
mehrere Ordnungen der selben Ebenenschar (z.B. {111} und {222}) Fourier-Transformiert
werden, um daraus die mittlere Kristallitgrofie und Mikroverzerrung zu bestimmen. Der Nach-
teil dieser Methode ist, dass auch hier keine Aussage iiber die Ursachen der Mikroverzerrung
getroffen werden konnen. Zudem ignoriert diese Methode drei von fiinf Peaks in den zur
Verfiigung stehenden Diffraktogrammen und ignoriert dadurch einen Grofiteil der in den Roh-
daten enthaltenen Informationen. Dariiber hinaus zeigten Versuche, dass auch diese Methode
nicht stabil wihrend der Verformung anwendbar ist.

Aufgrund der oben genannten Problemen, wurde in [25, 257] die single-line-analysis aus
[260, 261] verwendet, bei der jeder Peak des Diffraktogramms isoliert analysiert wird, in-
dem Korngréfien- und Mikroverzerrungseffekt durch den Lorentz- und Gauflanteil des Ge-
samtpeaks bestimmt werden. Allerdings ignoriert diese Methode die durchaus bestehenden
Abhéngigkeiten dieser Grofien von verschiedenen Peaks und macht prinzipiell, wie auch schon
Williamson-Hall, fiir alle Peaks im Grunde identische Annahmen. Das zuvor bestehende Pro-
blem wird hier im Kern dadurch umgangen, dass die Ergebnisse verschiedener Peaks nicht
mehr methodisch im Einklang miteinander stehen miissen.

Daraus resultieren in der Praxis grofle Abweichungen zwischen den Ergebnissen verschiedener
Peaks bis hin zu einigen 10nm fiir die Korngréflen bei mittleren Korngréflen von lediglich
10nm bis 15nm [257]. Spétestens unter Last werden die Ergebnisse fiir die in-situ Messungen
dieser Arbeit fiir einzelne Peaks physikalisch unhaltbar (z.B. verschwindende Korngrofien).
Zwangsweise sind damit auch die Ergebnisse fiir die Mikroverzerrung zweifelhaft, weswegen
auch diese Methode fiir die hier angestrebte, quantitative Analyse nicht anwendbar ist.

In Ergénzung zu dem hier Gesagten sei noch auf [262] verwiesen, wo kiirzlich 22 géngige
Analyseverfahren fiir Streudaten im Hinblick auf ihre Anwendbarkeit auf Nanomaterialien

kritisch evaluiert wurden. Vorbehaltlos kann keine davon angewandt werden.

WPPM

Aus diesen Griinden wird hier als Ansatz die WPPM-Methode gewihlt, die den fundamen-
talen Vorteil bietet, dass Sie die gesamte zur Verfiigung stehende Information der Rohdaten
nutzt, sowie prinzipbedingt ein Modell der physikalischen Ursachen der Mikroverzerrung lie-
fert. Diese Methode modelliert auf Grundlage von physikalischen Parametern mithilfe der
Streutheorie das gesamte, beobachtbare Diffraktogramm inklusive Untergrund. Mit einem
Optimierungsalgorithmus kann dieses Modelldiffraktogramm durch Variation der zugrunde-
liegenden Parameter an das gemessene Diffraktogramm angepasst werden.

WPPM wurde mafigeblich von P. Scardi iiber mehr als 20 Jahre entwickelt (siehe z.B. [137,
140}, 263, 264]) und in zahlreichen Studien anhand verschiedener Modellsysteme validiert;
insbesondere im Hinblick auf Korngrofeneffekte [137], den Einfluss von Versetzungen [157,
158], Stapelfehlern- bzw. Zwillingsgrenzen [143] 139], sowie den Einfluss der thermodiffusen
Streuung [159].
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In der praktischen Umsetzung werden die Effekte verschiedener Ursachen fiir jeden Bragg-
peak in Form von Fourier-Koeffizienten wie in GI. (S. modelliert, miteinander
multipliziert und dann riicktransformiert, um so das theoretische Diffraktogramm zu jedem
hkl Reflex zu erzeugen. Die additive Uberlagerung aller Peaks unter Beriicksichtigung des
vollsténdigen, winkelabhéngigen Vorfaktors (siehe S. ), liefert dann, zusammen mit dem
Untergrund, das komplette Diffraktogramm.

Die hier untersuchten, nanokristallinen Proben stellen fiir die Modellierung einen komplexen
Fall dar, da sie alle erwihnten Effekte gleichzeitig aufweisen. Zusétzlich ist es notwendig,
dariiber hinausgehende Effekte zu modellieren, um eine durchgingig gute Anpassung der
Diffraktogramme iiber die Daten der gesamten in-situ Messung zu erhalten und die Beson-

derheiten der Proben zu beriicksichtigen.

Im Folgenden wird die Implementierung der WPPM-Anpassung in Matlab beschrieben, die
im Rahmen dieser Arbeit erstellt wurde. Zunéchst erfolgt dazu ein Uberblick iiber den gene-
rellen Aufbau, gefolgt von den Modellen zur Bestimmung der Fourier-Koeflizienten einzelner
Effekte.

3.8.1 Genereller Aufbau der WPPM

Die Implementierung der WPPM-Methode besteht grob aus zwei Teilen: Dem Minimierer

und dem Modellierer.

Der Minimierer (WPPMminimize skewAbet.m) kiimmert sich hauptséchlich um die Berech-
nung der Abweichung von Modellrechnung und Messdaten, sowie um die Verwaltung und
Variation der Fitparameter mithilfe der Matlabfunktion Ilsqnonlin, die einen trust-region-
reflective Algorithmus zur Minimierung der zuvor erwidhnten Abweichung nutzt. Dariiber
hinaus werden hier eine Reihe von Hilfsrechnungen durchgefiihrt (z.B. Berechnung von kon-
zentrationsabhéngigen mittleren Atomformfaktoren) und es wird eine Gewichtung verschie-
dener Bereiche des Diffraktogramms fiir die Optimierung vorgenommen. Konkret werden die
Bereiche um die Braggpeaks (111), (200) und (220) mit dem Faktor 6 gewichtet, und der Be-
reich um (311) und (222) mit dem Faktor 12. Das ist notwendig, da der Informationsgehalt der
Peaks hoher ist als der des relativ strukturlosen Zwischenbereiches, letzterer aber viel mehr
Datenpunkte enthélt als die Peaks. Ein ungewichteter Fit wiirde die perfekte Anpassung des

Zwischenbereiches auf Kosten der Peakanpassung bevorzugen.

Die Abweichung AEY, fiir jeden Datenpunkt E}, vom modellierten Wert E/. ist durch
AE}R(20) =10 (Ep - BEp) w(20) + P(D) + Py (3.20)

gegeben, wobei w(26) die oben erwihnte Gewichtung ist und der Vorfaktor 10 lediglich dazu
dient, das Residuum im Mittel in einen Wertebreich > 10 zu heben. Die Summanden P(D)
und P; werden weiter unten besprochen (siehe S. und S. [205).
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AuBerdem erfolgt eine Abbildung der technischen Fitparameter, die auf den Bereich [-1,1]
beschrankt sind, auf die damit assoziierten, physikalischen Groflien. Das hat den Vorteil,
dass der an sich sehr allgemeine Optimierungsalgorithmus alle technischen Parameter im
gleichen Wertebereich mit der gleichen Genauigkeit/Schrittweite variieren kann, obwohl die
physikalischen Parameter viele Grolenordnungen iiberspannen, sowohl was ihre Werte angeht
(z.B. (D)yor # 1078 m, p ~ 1019 m™2) als auch ihre Variationsbereiche.

Zusétzlich wird ein Untergrundbeitrag in Form eines Polynoms zweiten Grades berechnet,
dessen grundsitzliche Form aus einer Leermessung abgeleitet wurde. Der physikalische Hin-
tergrund dieses Beitrags besteht hauptséchlich aus der Luftstreuung der Rontgenstrahlen.
Eine Modellierung derselben ist aber in der Praxis ungenauer als die Verwendung des Po-
lynoms aus der Leermessung. Trotzdem sind auch die Parameter dieses Polynoms in engen
Grenzen Teil der OptimierungEGL da die Luftstreuung des Streukegels den Untergrund relativ

zur Leermessung veréndert.

Der Optimierungsalgorithmus variiert in der Anpassung alle Parameter so, dass Z(AEED)2
minimiert wird. Die Parameter, die dieses Minimum erzeugen, sind die Parameter, die das
Diffraktogramm mit dem Modell am besten beschreiben. Weitere, effektspezifische Details
werden im Zusammenhang mit der Berechnung der Fourier-Koeffizienten behandelt (S.[L75).

Der Modellierer (WholePattern_fft_allin.m) fiihrt die eigentliche Modellierung der Diffrakto-
gramme und des Untergrundes aus. Dazu erzeugt er als Grundlage fiir alle Rechnungen die

212 Schritten gespeichert werden.

Fourierlangen L, die in einem Array von O nm bis 500 nm in
Der negative Wertebereich von L kann aus Symmetriegriinden ignoriert werden, wodurch der
Rechenaufwand halbiert wird. Auf dieser Grundlage werden die zu L korrelierten Léngen im
reziproken Raum (g) aus der Schrittweite von L (AL) im Bereich —1/(2AL) bis 1/(2AL)
erzeugt; ebenfalls mit 2'? Schritten. Die Schrittweite von g (Ag) entspricht der reziproken,
maximalen Ausdehnung des von L abgedeckten Wertebereiches, also Ag = 1/L;q,. Sowohl L
als auch g stellen prinzipiell gleichwertige Koordinaten zur Modellierung von Diffraktogram-
men dar, zwischen denen mittels Fourier-Transformation gewechselt werden kann. Dabei muss
L fiir nanokristalline Materialien immer grofler als die grofite Korngrofle in der Probe sein.
Denn L muss nicht die Ausdehnung eines Defektes abdecken, sondern dessen Auswirkung auf
die Gitterperiodizitit. Letztere wird direkt durch die g-Koordinate im reziproken Raum be-

schrieben. Daher entspricht einem konkreten Wert von g kein einzelner Wert von L, sondern

ein Wertebereich in L (vgl. Berechnung von g aus L).

Die Léngen im reziproken Raum g konnen, zusammen mit der Gitterkonstanten a, in hkl-

abhingige Gitterdehnungen umgerechnet werden und es gilt:

-1
Aa Ad ag
epy = o = +1] -1. 3.21

TG dp (\/ h2 + k2 + 2 ) (3:21)

Dje Parameter des Polynoms kénnen also in der Anpassung variiert werden.
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3.8 Modellierung der in-situ Réntgendaten

Der hkl-abhingige Ebenenabstand wird hier mit dpy; bezeichnet. Die hkl-Abhéngigkeit der
Gitterdehnung entsteht dadurch, dass die Ebenenabsténde fiir verschiedene hkl unterschied-
lich sind, nicht jedoch deren Anderungen, die durch g représentiert werden.

Des Weiteren koénnen aus g und der Wellenlénge A fiir jeden (Sub-)Peak die korrelierten

Streuwinkel 26, mit

(3.22)

205,11 = 2 arcsin ( 5

(g + Grkl + gnkt) )\)
berechnet werden (vgl. Gl. ), die spiiter die Grundlage fiir die Verortung der einzelnen
Peakbeitrige im Diffraktogramm bilden.

Die Modellierung der einzelnen Peaks erfolgt, aus Sicht des reziproken Raumes, immer re-
lativ zu den entsprechenden reziproken Gitterpunkten Gpy;. Daher kann die Modellierung
der Fourier-Koeffizienten C'(L) auch immer auf einer identischen Grundlage von L Werten
erfolgen und ist zunéchst vollkommen unabhéngig von der Lage im reziproken Raum bzw. der
Lage des Peaks im Diffraktogramm. Diese Verortung der Peaks im reziproken Raum (oder
in 260) entsteht erst bei der Riicktransformation der C(L) und erfolgt damit erst nach der
Modellierung der Fourier-Koeffizienten.

Die Modellierung und Berechnung der einzelnen C7(L) wird in den nachfolgenden Abschnit-
ten beschrieben. Fiir die generelle Arbeitsweise ist an dieser Stelle nur relevant, dass sie
jeweils fiir alle Subpeaks berechnet und multipliziert werden (C(L) = [TCY(L)) und dann
das Produkt riicktransformiert wird, woraus sich der Subpeak in 260,;;-Koordinaten ergibt
(siehe GL ) Dieser Vorgang muss sowohl fiir die eigentlichen Peaks als auch fiir den
Untergrund in Form der thermodiffusen Streuung durchgefiithrt werden.

Die Addition aller Subpeaks liefert das komplette Diffraktogramm, das abschlieend nur noch
mit dem 26 abhingigen Vorfaktor (siche oben) multipliziert werden muss; letzterer kann di-
rekt aus 20 und den entsprechenden Parametern wie z.B. Debye-Temperatur, Absorptions-
koeffizient etc. berechnet werden. In Abb. ist ein Beispiel fiir eine WPPM-Anpassung an

Messdaten gezeigt, sowie die Zerlegung des Modells in seine verschiedenen Bestandteile.
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Abbildung 3.24: a) WPPM-Anpassung (rot) an die Messdaten (schwarz) in einem einzelnen
Diffraktogramm. Unten ist die Differenz zwischen Messdaten und Anpas-
sung dargestellt. b) Darstellung der verschiedenen Bestandteile des WPPM-
Modells. Oben sind die einzelnen Subpeaks dargestellt, unten die einzel-
nen Bestandteile der thermodiffusen Streuung (TDS), sowie die Compton-
Streuung und die monotone Laue-Streuung. Der polynomielle Untergrund

aus der Leermessung ist hier nicht dargestellt.

Im Folgenden werden nun die Berechnungen der Fourier-Koeffizienten der Auswirkungen von

Korngrofle, Versetzungen und Stapelfehlern dargelegt. Dariiber hinaus miissen hier weitere

Effekte berticksichtigt werden:
e Dehnungen in Folge der Fehlpassungen der Kérner
e Dehnungen aufgrund von Nichtgleichgewichtskorngrenzen

e Dehnungen unter Last aufgrund der elastischen Anisotropie

Auflerdem wird die praktische Umsetzung des Modells der thermodiffusen Streuung vorge-

stellt.
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3.8 Modellierung der in-situ Réntgendaten

3.8.2 KorngroBe

Der Berechnung der Fourier-Koeffizienten liegt zugrunde, dass die Kristallite in der Probe

anndhernd kugelférmig sind und einer logarithmischen Normalverteilung folgen [511 [138]. Die
Berechnung erfolgt dann genau so wie in Gl. (2.160)) (S. .

In der Praxis zeigt sich jedoch das Problem, dass die Optimierung in manchen Féllen die
Parameter der Korngréfienverteilung (D),, und o in einer solchen Weise verdindert, dass
unphysikalische Ergebnisse mit einem relativ hohen Anteil an Kérnern unter 1.5 nm entstehen,
welche z.B. in TEM-Untersuchungen in dieser Menge nicht nachgewiesen werden kénnen
[25, 213]. Dadurch wird in diesen seltenen Féllen zwar in den frithen Optimierungsschritten
eine Absenkung des Residuums erreicht, verhindert dann aber das Erreichen einer physikalisch

sinnvollen Loésung mit insgesamt niedrigerem Residuum.

Um das Verfahren dagegen robuster zu gestalten, wird das Integral iiber die Korngréflenverteilung
von Onm bis 1.5nm berechnet und mit einem konstanten Faktor skaliert, sodass sein Wert
bei ca. < 2.5% des Residuums liegt. Anschliefend wird dieser Wert zum Residuum addiert,
wodurch fiir die Optimierung ein Anreiz geschaffen wird, eine Verteilung mit moglichst ge-

ringem Anteil in diesem Bereich zu erzeugen. Dieser zusiitzliche Summand entspricht P(D)
aus Gl. (3.20]) (S.[171)).

Die daraus resultierenden Abweichungen in den Ergebnissen fiir (D),, und o betragen
~ 0.4nm und ~ 0.01. Allerdings wird die Robustheit der Optimierung drastisch verbessert,
was im Hinblick auf die angestrebte, automatisierte Anpassung von tausenden von Diffrak-

togrammen von entscheidender Bedeutung ist.

—normal
—robust

9(D)

0 10 20 30 40
D [nm]

Abbildung 3.25: Vergleich der Korngréflenverteilungen aus der WPPM-Anpassung zwischen
der normalen und robusten Variante (siehe Text). Der Unterschied zwischen
beiden Varianten ist in der Regel, wie hier gezeigt, sehr gering.
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3.8.3 Versetzungen

Fiir die Modellierung des Versetzungseinflusses wird hier die Standardannahme getroffen,
dass alle Gleitsysteme mit gleicher Wahrscheinlichkeit und in gleichen Teilen von Stufen- und
Schraubenversetzungen besetzt sind. Die Berechnung der Fourier-Koeffizienten erfolgt dann
gemif Gl. (S. , wobei der mittlere Versetzungskontrastfaktor gemafl Gl.
bis GI. (S. verwendet wird. Dadurch enthilt das Modell nur noch die beiden
Parameter p und R..

Es wurde aber bereits in [I57), 158] gezeigt, dass es fiir die stabile Modellierung des Einflusses
von Versetzungen auf das Streubild im Rahmen von WPPM praktisch unumgénglich ist, eine
physikalisch plausible und begriindete Wahl fiir den Parameter R, zu treffen. Daher muss die
freie Variation dieses Parameter durch eine Regel ersetzt werden, mit der im Rahmen der
Anpassung eine physikalisch sinnvolle Festlegung von R, erfolgt.

Um sich einer solchen Regel anzunéhern, wird hier auf das einfachste zur Verfiigung stehende
Modell zuriickgegriffen, ndmlich das Verzerrungsfeld von Stufen- und Schraubenversetzungen
im isotropen Medium aus [70], wie es schon in Abschnitt (S. vorgestellt wurde. Die
geraden, unendlich langen Versetzungen samt ihrer Verzerrungsfelder werden nun in einem
Gedankenexperiment aus dem unendlichen Kristall in Form einer Kugel derart herausge-
schnitten, dass sich die Versetzungslinie entlang eines Durchmessers der so entstandenen
Kugel befindet. Dieses grundsitzliche Szenario dhnelt dem aus [I57, [I58], ist aber in seiner
Ausfiihrung im Vergleich dazu viel simpler. In diesem Gedankenexperiment werden die Ober-
flachen der Kugeln nicht als solche betrachtet; in der Realitdt wiren es ohnehin Korngrenzen.
Es findet also keinerlei Anpassung der Verzerrungsfelder oder Interaktion der Versetzungen
mit der Oberfliche der Kugel statt. Gerade fiir kleinere Kugeln oder allgemein nahe der
Grenzflichen ist hier eine deutliche Abweichung von den tatséichlichen Verhéltnissen zu er-
warten.

In dieser Kugel wird nun (¢2(L)) fiir verschiedene Werte von L numerisch in den Richtungen
ausgerechnet, in denen die Versetzung die maximale Dehnungen des Gitters erzeugt (vgl.
Abschnitt S. . Die Rechnung wird ausgefiihrt, indem die Kugel senkrecht zu den von
Dehnungen maximal beeinflussten Ebenen in Scheiben von 0.5nm Dicke unterteilt wird, in
denen das Dehnungsfeld entlang der Scheibenachse als homogen betrachtet wird. Jede dieser
Scheiben wird fiir die verschiedenen Werte von L in einem Raster mit Schrittweite 0.2nm (in
zwei Dimensionen) mit gleichgerichteten Séulen der Liange L bedeckt. Entlang dieser Sdulen
werden die projizierten Dehnungswerte des Dehnungsfeldes mit der Schrittweite multipliziert

und dann aufsummiert, um so den Wert fiir AL fiir die jeweilige Sdule zu erhalten, also
AL(F) = Y en(F)s, (3.23)

wobei s die Schrittweite bezeichnet, 7 den Ort der Sdule und die Summe entlang der Sdule mit

n = L/s lauft. Die Werte der lokalen Sdulendehnung folgen dann einfach aus e, (7) = AL/L.

176



3.8 Modellierung der in-situ Réntgendaten

Der Mittelwert der Quadrate von e (7) iiber das gesamte Kugelvolumen liefert dann gerade
(e2(L)), wofiir die Krivoglaz-Wilkens-Theorie mit Gl. (2.177) (S. |98 einen theoretischen
Ausdruck liefert. Dieses Vorgehen ist in Abb. veranschaulicht.

Séaule

Versetzungslinie
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Abbildung 3.26: Schema zur Abschétzung der Mikroverzerrung durch die Versetzungen. Links
ist die Unterteilung eines Korns in Scheiben dargestellt, rechts ist die Drauf-
sicht auf eine solche Scheibe mit dem Verzerrungsfeld um die Versetzung
gezeigt. Die Orientierung der Stufenversetzung ist durch das Symbol ge-
kennzeichnet. Die Sdulen sind in x-Richtung orientiert, weswegen nur die
dafiir relevante Dehnung in x-Richtung e, dargestellt ist.

Im Modell wird eine Mischung von Stufen- und Schraubenversetzungen mit gleichen Anteilen
in der Probe angenommen, weswegen dieses Verhéltnis auch in dieser Modellrechnung zur
Anwendung kommt. Das heit, der numerisch berechnete Wert (¢2(L)) ist iiber Stufen- und
Schraubenversetzungen gemittelt. Da die Schraubenversetzungen ein um die Versetzungslinie
rotationssymmetrisches Dehnungsfeld erzeugen, geniigt es hier nur einen Fall in einer Rich-
tung maximaler Dehnung durchzurechnen. Bei Stufenversetzungen ist diese Symmetrie nicht
mehr gegeben, sodass (¢2(L)) iiber alle Richtungen in der x-y-Ebene gemittelt werden muss.
Aufgrund der Periodizitdt des Dehnungsfeldes fiir Drehungen um die Versetzungslinie, liefert
das aber gerade den gleichen Wert wie die Rechnung fiir Séulen, die einem Winkel von 45°
mit dem Burgers-Vektor einschlieBen (siehe Abb. [3.26).

Dieses einfache Modell bietet aulerdem die Mo6glichkeit, direkt aus der Konstruktion ein Maf
fiir die Versetzungsdichte abzuleiten, womit nach elementaren Uberlegungen fiir Kugeln mit

Durchmesser D fiir die Versetzungsdichte p gilt:

6

p
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Nimmt man zusétzlich einen mittleren Wert von 0.25 fiir den Versetzungskontrastfaktor in

Gl (2.177) (S. an, so ist (¢2(L)) aus der Krivoglaz-Wilkens-Theorie nur noch von R,
abhéingig, dessen Wert durch Vergleich mit den berechneten Modellwerten bestimmt werden

kann (siehe Abb. 3.27).
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Abbildung 3.27: Vergleich zwischen der Mikroverzerrung durch Versetzungen durch eine ein-
fache, numerische Abschitzung (siehe Text) und der Krivoglaz-Wilkens-
Theorie fiir verschiedene Korndurchmesser D. Hier wurde immer R, =
(D)area/2 benutzt.

Es stellt sich heraus, dass vor allem fiir groflere Korner eine Anpassung der numerischen
Modellrechnung mit der Krivoglaz-Wilkens-Theorie fiir L Werte unterhalb des Kugelradius
recht gut moglich ist, wenn man fiir R, den Wert des mittleren Querschnittsflichenradius der
Kugel ({(D)area/2) verwendet. Fiir L jenseits des Kugelradius wird der Effekt der begrenzten
KugelgréBe dominant und fithrt zu einem raschen Abfall von (¢?(L)), was durch die von

unendlich ausgedehnten Kristallen ausgehende Krivoglaz-Wilkens-Theorie erwartungsgemaf
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schlecht abgebildet wird. Es sind aber gerade die grolen Werte von L, die zwangslaufig im-
mer den schlecht représentierten Randbereich der Kérner beinhalten. Weiter unten werden
weitere Indizien dafiir geliefert, dass die Krivoglaz-Wilkens-Theorie vermutlich trotzdem eine
bessere Beschreibung des Randbereiches darstellt, als man aufgrund dieser einfachen Betrach-
tung vermuten mag (siehe Abschnitt . Vor dem Hintergrund dieses Ergebnisses wird in
dem hier verwendeten WPPM-Modell der Faktor R, fest an den mittleren Flachenradius
gekoppelt, also Re = 0.5(D)greq-

3.8.4 Stapelfehler und Zwillingsgrenzen

Die Fourier-Koeffizienten der Effekte der Stapelfehler und Zwillingsgrenzen werden so be-

rechnet wie in Abschnitt in Gl. [2.174a| bis Gl. [2.174¢| (S. dargestellt.

3.8.5 Fehlpassungsspannungen & -Dehnungen

Die wiahrend der IGC hergestellten Kristallite und Agglomeratpartikel, erzeugen in der Presshiilse
keine perfekte Raumfiillung, da ihre zufillige Anordnung in der Regel nicht formschliissig ist.
Infolge der Kompaktierung wird dann durch Relativverschiebung einzelner Partikel zueinan-
der und plastischer Deformation ein ca. 91% dichter Festkorper erzeugt, der makroskopisch
betrachtet spannungsfrei ist. Man muss aber davon ausgehen, dass bei diesem Prozess, nach
der Kompaktierung, lokale Spannungen im Material zuriickbleiben. Einerseits kénnen das
Zugspannungen sein, wenn sich benachbarte Kristallite so dehnen, sodass angrenzende, freie
Oberfldchen eine Korngrenze bilden und damit die Gesamtenergie des Systems abgesenkt
wird. Andererseits konnen Kristallite nach der Kompaktierung in einem (teil)gequetschten
Zustand verbleiben, sofern die dadurch erzeugte Spannung zu niedrig ist, um bei Raumtem-

peratur lokal plastische Prozesse bzw. Relaxation zu aktivieren.

Kompaktierung ¢

Abbildung 3.28: Schema zur Veranschaulichung der Ursache der lokalen Spannungen im Ma-
terial durch die Kompaktierung. Dehnungen/Spannungen sind hier durch
die Pfeile in den Kornern dargestellt.
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Diese lokalen Spannungen, entlang der Berandung eines Korns, erzeugen einen ndherungs-
weise homogenen Spannungs- und Dehnungszustand im Korn. Da die Spannungen aber iiber
das Gesamtvolumen inhomogen sind, schwanken diese Spannungs- und Dehnungszustéinde
zwischen verschiedenen Kornern, sodass sich insgesamt betrachtet eine inhomogene Span-
nungsverteilung mit entsprechender Auswirkung auf die Rontgenstreuung ergibt. Zusétzlich
kénnen unterschiedliche Konfigurationen/Zusténde von Korngrenzen zu unterschiedlichen
Grenzflichenspannungen fiithren, die ebenfalls zur Variation der Dehnungszustéinde beitra-
gen konnen [124], 265, 266].

Das Problem hierbei ist, dass die lokale Fehlpassung und die lokalen Spannungen in der Pro-
be unbekannt sind, weshalb zwangsweise Modellannahmen getroffen werden miissen, um eine
plausible Verteilungsfunktion aufzustellen. Diese Verteilungsfunktion muss auf jeden Fall die
Anforderung erfiillen, dass ihr Mittelwert null ist (makroskopisch spannungsfrei). Weiterhin
gibt es keinen Grund anzunehmen, dass die Verteilung asymmetrisch ist, sodass hier aus
Griinden der Einfachheit angenommen wird, dass die Spannungswerte in allen Raumrichtun-
gen in Form einer GauB-Verteilung um 0 GPa statistisch schwanken.

Der Fall ist dem eines elastisch isotropen [60] bzw. anisotropen [42, 58] Eshelby-Einschlusses
in einem (statistisch) isotropen Medium nicht un&hnlich. Daher erscheint es angemessen, die
elastische Polarisation von Kristalliten in Folge der Einwirkung der Gaufiverteilten Span-
nungen im Sinne des Kroner-Formalismus zu bestimmen. Dieses Vorgehen beschreibt aber
die elastische Polarisation des Einschlusses in Folge einer homogenen Spannung iiber den
Polykristall, wiahrend hier die Korngrenze zwischen Einschluss und restlichem Material die
Spannung erzeugt. Dariiber hinaus ist diese Spannung auflerhalb des Einschlusses nicht ho-
mogen und die Grenze selbst ist Teil der Balance des mechanischen Gleichgewichts, wird aber
nicht durch die elastischen Konstanten des Kristalls beschrieben. Der Kréner-Formalismus
ist daher hier nicht anwendbar. Wiirde man ihn benutzen, so wiirde man rechnerisch ei-
ne zusétzliche Dehnung der Matrix fordern, die ihrer angenommen Ursache gerade zuwider
léufdﬂ

Tatsédchlich gestaltet sich die Rechnung der Dehnung des Korns dadurch sogar viel einfacher,
da sie lediglich der elastischen Dehnung infolge der anliegenden Spannung entspricht, also
g = § 0. Der Anteil dieser Dehnung, der eine elastische Anpassung des eingeschlossenen

Korns an seine Umgebung erzeugt, lasst sich durch

AE = (S—i{so) 5 (3.25)
abschétzen. Hier ist §{so die mittlere, elastische Nachgiebigkeit der umgebenden Matrix. Sie
wird prinzipiell nach dem Formalismus fiir die mittleren elastischen Konstanten von Kroner

wie in [58] berechnet, indem, ausgehend von den elastischen Konstanten des Einkristalls Cy,

"jier soll natiirlich nicht suggeriert werden, dass die Spannung nicht auf die Umgebung um den Einschluss
wirkt.
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C1o und Cyy, die isotropen, elastischen Konstanten des Polykristalls in Form von E und G
ausgerechnet werden. Um die signifikante Reduktion der elastischen Modulen von nanokristal-
linen Materialien aufgrund der Korngrenzen zu beriicksichtigen (siehe Ultraschallmessungen
Tabelle S. [234] oder [6]), erfolgt vor der Ableitung von E’Z{SO noch eine Reduktion der

Modulen um 30%, was in etwa der mittleren Absenkung der Modulen entspricht.

Davon ausgehend muss nun die resultierende Verteilung der Dehnungen entlang der Streurich-
tungen (111), (200), (220) und (311) (jeweils unter Beachtung aller dquivalenter Richtungen)
bestimmt werden, weshalb zunéchst die entsprechenden Permutationen von & erzeugt wer-
den miissen. Dazu wird ¢ im Hauptspannungsraum aufgestellt, womit das Problem auf die
drei Diagonalenelemente oy, o;r und ojrr reduziert wird. Alle o-Komponenten folgen der
identischen Gauf-Verteilung, sind aber voneinander unabhéngig, weshalb alle Kombinatio-
nen von Spannungswerten der drei Komponenten existieren und unterscheidbar sind. Hier
wurden Gaufiverteilte Spannungswerte zwischen -2 GPa und 2 GPa in 61 diskreten Schrit-
ten zur Berechnung verwendet, womit sich 61% = 226981-Kombinationen ergeben. Eine dieser
Kombinationen und ihre Wirkung auf ein kugelférmiges Korn ist in Abb. dargestellt.
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Abbildung 3.29: a) Dehnung eines kugelférmigen Korns infolge eines von auflen angeleg-
ten, dreidimensionalen Spannungszustandes. Der Spannungszustand ist hier
durch die drei Hauptspannungsrichtungen dargestellt. Die Orientierung des
Gitters wird hier durch die Orientierung der Einheitszelle (schwarzer Wiirfel)
dargestellt. b) Gauf-Verteilung von Spannungen, die im Modell in jeder der
Hauptspannungsrichtungen vorliegt.
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Um der elastischen Anisotropie Rechnung zu tragen, muss der Hauptspannungsraum fiir al-
le Spannungskombinationen gegeniiber dem Gitter so gedreht werden (d.h. hier relativ zu
den Nachgiebigkeitstensoren), dass alle Orientierungen gleichméfig abgedeckt werden (vgl.

Richtungskosinus). Andernfalls wiirden die Spannungen nur entlang der (200)-Richtungen
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wirken. Wahlt man 0.B.d.A. die o;-Achse als primére Achse, so entspricht die gleichméfBige
Abdeckung aller Orientierungen der o7-Achse einer gleichmiBigen Uberdeckung einer Kuge-
loberfliche mit Punkten, die alle zueinander auf der Kugeloberfliche den gleichen Abstand
haben. Die Realisierung dieser scheinbar einfachen Anforderung stellt sich bei genauerer Be-
trachtung als nicht trivial heraus. Hier wurde diese Anforderung in guter Niherung durch
die Nutzung von Ikosaedern vom Typ 1, Klasse 2 mit einer Frequenz von 26 erfiillt, de-
ren Punkte auf eine Kugeloberfliche projiziert wurden; damit ergibt sich ein nahezu ideales,
sphérisches Punktraster mit 6762 Punkten. Um dieses Raster zu erstellen, wurde der Matlab-
Code ,,Make Icosahedron* von Edward Zechmanrm [267] als Grundlage verwendet. Aus Sym-

metriegriinden muss jedoch nur eine Halbkugelschale (3381 Punkte) betrachtet werden (siehe

Abb. [5-308).

Abbildung 3.30: a) Uberdeckung einer Halbkugel mit einem Punktraster um eine diskrete,
gleichméflige Variation von Orientierungen zu erzeugen. b) Veranschauli-
chung der notwendigen Drehung um die primére o;-Achse, um alle méglichen
Spannungszustinde zu erzeugen. Details siehe Text.

Zusétzlich ist fiir die Abdeckung aller Orientierungen noch eine Drehung um die neue o;-
Achse zu beriicksichtigen, wodurch eine Umorientierung der o;; und ojrj-Achse erreicht
wird. Auch hier kann aus Symmetriegriinden der Winkelbereich dieser Drehung auf 90 ° ein-
geschrinkt werden. Dabei muss sichergestellt werden, dass die o7 und ojr7-Achsen immer
im gleichen Halbraum liegen, wie die o7-Achse; andernfalls wird keine gleichméfliige Vertei-
lung der dreidimensionalen Orientierungen erreicht (siehe Abb. . In der Modellrechnung
wurden diese zusdtzlichen Drehungen in 15°-Schritten durchgefiihrt. Das ist zwar einerseits
relativ grob, andererseits ist der Verlauf der resultierenden Dehnungen stetig und in grofien

Bereichen niherungsweise linear (ihnlich zu cos?), sodass die grobe Rasterung hier zu nicht

2Heruntergeladen von MathWorks MatlabCentral File Exchange.
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3.8 Modellierung der in-situ Réntgendaten

allzu groflen Abweichungen der Statistik fithrt. Zusétzlich wird diese grobe Rasterung teil-
weise von der recht engen Rasterung der Primérachse kompensiert. Damit ergeben sich ins-
gesamt 3381 -6 = 20286 verschiedene Orientierungen des Hauptspannungsraumes, fiir die
jeweils 226981 verschiedene Spannungskombinationen berechnet werden miissen, also grob

4.6 - 109-Kombinationen insgesamt.

Bei diesem Modell erfolgt jedoch keine Riickkopplung der elastischen Anisotropie an die
aufgebrachten Spannungen, was dazu fiihrt, dass besonders nachgiebige Richtungen, wie die
[200]-Richtungen, gréfiere Anpassungsdehnungen zeigen als hértere Richtungen wie [111].
Zwar ist das grundsétzlich sicherlich auch in der Realitdt gelegentlich der Fall, es ist aber zu
erwarten, dass fiir die so berechneten, grofien Dehnungen in [200]-Richtung eigentlich gar kein
Bedarf besteht. Anders ausgedriickt: Es gibt keinen Grund warum die initiale Fehlpassung in
(200)-Richtung im Schnitt besonders grof} sein sollte.

Daher wurde das Modell noch um einen Dampfungsfaktor D f aus dem Intervall [0,1] ergéinzt,
der die Spannungskomponenten oy, orr und oy proportional zur Projektion des Basisvektors
der jeweiligen Achse auf eine (200)-Richtung verringert. Praktisch wurde das durch eine

Modifikation der Richtungskosinus der Form

1 1
Dj = Hl?X (|aij| - ﬁ) . m (326&)

a;j = Qg /1 - Df : D? (326b)

erreicht. Da a-priori unklar war, ob und wie stark dieser Effekt eine Rolle spielen wiirde, wurde
eine Variation von D f zwischen 0 (keine Ddmpfung) und 0.7 in 0.05 Schritten durchgefiihrt
und anschliefend stichprobenweise die Auswirkung auf die WPPM-Anpassung untersucht.
Es stellte sich heraus, dass die besten Ergebnisse mit D f = 0.05 erzielt wurden, also mit einer
sehr geringen Dampfung, sodass diesem Aspekt keine allzu grofle Bedeutung beigemessen

werden muss.

Fiir jeden berechneten Dehnungszustand miissen dann die Projektionen der Dehnung entlang
aller kristallographisch dquivalenten Streurichtungen (111), (200), (220) und (311) berechnet
werden. Zusétzlich wird der Anpassungsanteil der Dehnung A& nach Gl. (S. be-
rechnet. Die Rechnung dieser groflen Anzahl an Werten ist dank moderner PC-Technik und
Parallelisierung innerhalb relativ kurzer Zeit machbar (etwa 1 bis 8 Stunden, je nach Hard-
ware), allerdings ist die dabei anfallende Datenmenge nicht mehr einfach handhabbaﬁ Des-
halb wird direkt nach der Erzeugung neuer Daten ein Datenreduktionsschritt nachgeschaltet.
In diesem werden die Dehnungswerte entlang der Streurichtungen fiir jede Streurichtung ge-
trennt in je einem zweidimensionalen Histogramm erfasst. Die beiden Dimensionen der Histo-
gramme sind die Dehnungswerte in Streurichtung (-7% bis 7% Dehnung in 0.02% Schritten)
und die Groe der damit verbundenen Anpassungsdehnung (0% bis 10% in 0.05% Schritten).

13Geschitzt fallen mehrere Terabyte an Daten an, praktisch ist Matlab abgestiirzt.
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Das Ma#f} fiir die Grofle der Anpassungsdehnung ist hier die Frobeniusnorm von AZ. Alle
berechneten Daten, aufler dem Histogramm, werden nach jeder Iteration verworfen, sodass

die gesamte zu erhaltende Datenmenge vollkommen unproblematisch ist. Die Histogramme

sind in Abb. dargestellt.
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Abbildung 3.31: Histogramme der Verteilung der Anpassungsdehnungen in die vier Streu-
richtungen fiir (D), = 18 nm und ¢’ = 1.6. Details siehe Text.

Urspriinglich wurde die Grofle der Anpassungsdehnung berechnet, um Dehnungswerte iiber
einem gewissen Schwellwert der Anpassungsdehnung auszusortieren oder eine nachtrigliche
Gewichtung verschiedener Anteile des Histogramms durchzufiihren. Es stellte sich aber in der
Praxis heraus, dass dadurch keine signifikante und vor allem durchgéngige Verbesserung der

WPPM-Anpassung erreicht werden kann, sodass dieser Aspekt nicht weiter verfolgt wurde.
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Reduziert man diese Histogramme also auf ein eindimensionales Histogramm, das nur noch
die Dehnungswerte in Streurichtung beriicksichtigt, erhélt man die streurichtungsabhéngige
Verteilung der Dehnung aufgrund der Fehlpassungsspannungen, wie sie in Abb. gezeigt

sind.

Abbildung 3.32: Verteilungen der Fehlpassungsdehnungen in die vier verschiedenen Streu-
richtungen.

Diese Verteilungen lassen sich durch eine Uberlagerung von drei Gauifunktionen, die alle sym-
metrisch um die null sind, anpassen. Die generelle Form dieser Verteilungen ist unabhéngig
von der Ausdehnung des Gaufiverteilten Spannungsbereichs, aber ihre Breite skaliert damit
linear. Als MaB fiir die Breite wird nun (£2),; genutzt und alle Verteilungsfunktionen relativ
dazu ausgedriickt, womit man fiir jede hkl-Richtung eine charakteristische Verteilungsfunk-

tion p(e, (¢2)nr) der Dehnungen in Abhingigkeit von (€2),z; erhélt:

) 3. 1 &2
R e e o .27)
2 2¢n,2(€% ) hkt)?
Hier sind ¢, 1 und ¢, 2 die Koeffizienten der vorangegangenen Fits an die berechneten Vertei-
lungen; ihre Werte sind in Tabelle angegeben. Da die (¢2);,,; Werte iiber verschiedene hkl
hinweg in einem festen Verhéltnis zueinander stehen, reicht die Angabe eines einzigen Wertes
aus; die restlichen kénnen iiber die bekannten Verhéltnisse berechnet werden, die in Tabelle

-2 angegeben sind.
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Tabelle 3.1: Parameter der Anpassung der Dehnungsverteilungen in die vier Streurichtungen.

hkl 1,1 2,1 3,1 1,2 2,2 3,2

111 5.30-107° 2.32-107° 2.93-10™° 0.6621 0.2811 1.2965
200 0.99-107° 5.42-107° 2.85-107° 0.2345 1.1041 0.6193
220 4.48-107° 2.46-107° 3.39-107° 0.6817 0.2884 1.2429
311 3.70-107° 1.16-10™° 4.48-107° 0.6788 0.2723 1.1489

Tabelle 3.2: Verhéltnisse der Dehnungsvarianzen in verschiedene Richtungen zur Dehnungs-
varianz in 111-Richtung.

(82)111 (82)200 (82)220 (82)311
(e2)111 (e2)111 (e2)111 (e2)111

1.0000 2.3374 1.4489 1.8331

Mit dem allgemeinen Ausdruck fiir die mittlere quadratische Dehnung in Abhéngigkeit von
der elastischen Anisotropie (siehe Gl. (2.179)), S.[99|und [149]) in der Form

(e%Vnrt = (£%)200 (1 + ¢ -T) (3.28)
lassen sich aus den Verhéltnissen der (EQ)hkl—Werte die Grofle ¢ iiber

(e”)nm

Pra 1=¢-T (3.29)

bestimmen. Der Wert von ¢ ist fiir alle hkl gleich, falls der Dampfungsfaktor null ist. Fiir
zunehmende Dampfungsfaktoren weichen die Werte von ¢ aus verschiedenen hkl zunehmend
voneinander ab, wie es zu erwarten is} Daraus wird auch deutlich, dass dieser Effekt
grundsétzlich dem von Versetzungen #hnlich ist. Im Detail unterscheiden sich die Fourier-
Koeffizienten aber voneinander, sodass keine vollstéindige Kompensation des einen Effektes
durch den anderen moglich ist.

Aus der Angabe eines Wertes von (g2)j,z; fiir eine einzige hkl-Kombination lassen sich mit
den bekannten Verhéltnissen der (52) nkt und den Fitkoeffizienten ¢ die Dehnungsverteilungen
fiir alle Streurichtungen berechnen. Wie bereits oben erwihnt wurde, kénnen Dehnungen in
reziproke Langen tiberfithrt werden, aus denen wiederum Fourierlingen L mittels Fourier-
Transformation gewonnen werden konnen. Die entsprechende Fourier-Transformation der
Dehnungsverteilungen liefert damit direkt die Fourier-Koeffizienten C(L) = FT (p(e, (?)nx1))
fiir diesen Effekt, die lediglich von einem Wert von (€2),;; abhingen. Beispiele fiir die so er-
haltenen Fourier-Koeffizienten sind in Abb. gezeigt.

Die Anwendung dieses Modells im Rahmen der WPPM-Anpassung ist insofern unkritisch,

da darin keine Korrelationen zu anderen Effekten enthalten sind. Tatsdchlich sind diese aber

"Der Dampfungsfaktor wirkt in dieser Betrachtung wie eine Modifikation der elastischen Anisotropie.
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3.8 Modellierung der in-situ Réntgendaten

vorstellbar, wie z.B. Stabilisierung von Versetzungen oder anderen Gitterdefekten in Kérnern

durch die Fehlpassungsspannungen.

1 . . . . . 0.2 .
hkl
hkl
08 —111 ] 0.15} oo
~ —200 —~ —220
=0.6 —220 = —311
O —311 O 0.1f 227
Co4 222 £ 400
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Abbildung 3.33: a) Beispiel fiir den Realteil der Fourier-Koeffizienten aus dem Fehlpassungs-
modell. b) Beispiel fiir den Imaginérteil der Fourier-Koeffizienten aus dem
Fehlpassungsmodell.

3.8.6 Korngrenzenverzerrung

Wie im Theorieteil bereits diskutiert wurde (8. , ist in nanokristallinen Metallen davon
auszugehen, dass Korngrenzen zu einer Verzerrung des Gitters in ihrer Néhe fiihren, die zur
Kornmitte hin abfillt. Dieser Effekt wurde in Simulationsarbeiten von Stukowski et al. [92],
sowie in einer Reihe von Verdffentlichungen von Leonardi et al. [93] [94] 95] [96] anhand von
Molecular Dynamics (MD) Simulationen gezeigt. Dabei wurden in allen Féllen die Simu-
lationsvolumina mittels Voronoi-Tesselation mit Kérnern gefiillt, die dann mit Atomen auf
Kristallgitterplitzen aufgefiillt wurden. Das bedeutet, dass die in der Realitéit relevante Fehl-
passung einzelner Kristallite hier per Design ausgeschlossen wurde. Der Verzerrungseffekt der

Gitter durch die Korngrenze ist also fundamentalerer Natur.

In [92] wurde die Gitterverzerrung mit dem Mafl § = \/ 1/3 (e2+ %, +¢2,,) fiir verschieden
grofle Kristallite entlang eines Radius im Abstand x von der Korngrenze quantifiziert. Die
Ergebnisse davon wurden zur weiteren Analyse aus [92] mit Imageﬂ ausgelesen und sind in
Abb.[3.34D]| dargestellt. Fiir die Modellierung der Auswirkung dieses Effektes auf das Streubild
ist es notwendig, fiir die gesamte Korngrofienverteilung die entsprechenden Werte von 4 in
den Koérnern zu bestimmen, wofiir eine Modellierung der Verzerrungen in Abhéngigkeit von
der Korngrofle notwendig ist. Hier wurde dafiir folgendes einfache, kontinuumsmechanische

Modell entwickelt: Die Dichteschwankung der Korngrenze gegeniiber dem Kristall wurde als

Yhttps://imagej.nih.gov/ij/
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Bedeckung der Korngrenze mit anndhernd kugelformigen Eshelby-Einschliissen modelliert,
die das Exzessvolumen enthalten. Diese Einschliisse miissen so klein sein, dass sie inner-
halb der Korngrenze Platz finden kénnen, weshalb ihre Ausdehnung maximal 1 nm betrégt.
Aus den Rechnungen zum Eshelby-Einschluss [42] 60] folgt als Ergebnis, dass das Verschie-
bungsfeld um den Einschluss mit dem inversen quadratischen Abstand abfillt. Daher fallen
die Dehnung und ¢ mit dem inversen kubischen Abstand. Dieser Zusammenhang wird nun
genutzt, um das Skalierungsverhalten der Verzerrungen im Abstand zur Korngrenze zu mo-

dellieren.

45
4 ®x D=4.6nm
* D=6.9nm
.. 3.5 { D=9.2nm
X % D=13.8nm
+ i 3 % D=18.4nm
—Modell
X + 25 —Modell
Lo - . = Modell
f‘ * < 2r —Modell
- W : ; ——Modell
F— 1 Beobach-
tungspunkt .
+ *
X. ¥
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Abbildung 3.34: a) Zweidimensionale Darstellung des Schemas des oben im Text beschriebe-
nen Modells. Die Eshelby-Einschliisse in der Korngrenze sind durch schwar-
ze Kreuze gekennzeichnet. b) Verzerrungen im Abstand von der Korngrenze
in anndhernd kugelférmigen Koérnern mit verschiedenen Durchmessern D.
Daten aus [92]. Zusétzlich sind die Ergebnisse des im Text beschriebenen
Modells fiir die gleichen Korngréflen gezeigt.

Die Kristallite wurden als Kugeln modelliert, sodass die Korngrenze automatisch die Form
einer Kugelschale annimmt. Zur Bestimmung der Verzerrung im Kristall werden die Verzer-
rungseinfliisse aller Eshelby-Einschliisse der Korngrenze an jedem Punkt entlang eines Radius
tiberlagert. Hier wird davon ausgegangen, dass jeder einzelne Beitrag zu 0 positiv ist, also
dass keine Kompensation der Verzerrung durch unterschiedliche Teile der Korngrenze erfolgt.

Es gilt also mit der Verzerrung dp direkt am Einschluss

5 o1 3.30
©°N & @@y 30
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Die N gleichmiBig iiber die Korngrenze verteilte Eshelby-Einschliisse werden durch den Index
1 unterschieden und ihre Abstdnde zum Beobachtungspunkt werden mit d; bezeichnet. Der

Beobachtungspunkt entlang eines Radius der Kugel hat den Abstand z zur Korngrenze.

Um die Koordinaten der Zentren der Eshelby-Einschliisse zu modellieren, wird wieder der
Matlab Code ,,Make Icosahedron® von Edward Zechmanrﬁ [267] verwendet um auf Kugelo-
berflichen projizierte Punkte von Ikosaedern vom Typ 1, Klasse 2 zu erzeugen. Jeder dieser
Punkte hat in guter Ndherung den gleichem Abstand zu seinen néichsten Nachbarn. Aus dem
Vergleich des Volumens des kugelférmigen Kristalliten mit Durchmesser D und des Ikosaeders

erhalt man fiir die Kantenldnge a der gleichseitigen Dreiecke des Tkosaeders

2w 1/3
a= (m) D. (3.31)

Fiir den mittleren Punkt-zu-Punkt Abstandﬂ a’ benachbarter Punkte gilt niherungsweise
a' ~alf, wobei f die Frequenz des Tkosaeders ist; ein wesentlich genaueres Ergebnis liefert
aber der Ausdruck o’ = (D/f)-0.621443327458386.

Die beste Ubereinstimmung des Modells mit den Simulationsdaten aus [92] stellt sich mit

einem mit D skalierenden Abstand a’ der Form
a’=0.02624- D + 0.7861 nm (3.32)

ein. Physikalisch bedeutet das, dass weniger gekriimmte Korngrenzen von gréfleren Kor-
nern weniger dicht von Eshelby-Einschliissen bedeckt sind, also weniger Dichtefluktuationen

und/oder Exzessvolumen aufweisen.

Aus Gl. und a’ = (D/f) -0.621443327458386 kann somit die Ikosaeder-Frequenz f fiir
die Modellierung der Verzerrung bei einer gegebenen Korngréfle bestimmt werden. Aller-
dings kann die Anzahl und damit der Abstand der Punkte auf der Kugeloberfliche mit der
Tkosaeder-Methode nicht frei variiert werden, da die Frequenz des Ikosaeders (f) auf gerade,
ganze Zahlen beschrinkt ist. Daher wird die berechnete Frequenz jeweils auf- und abgerun-
det und die Berechnung in GI. fiir Ikosaeder mit beiden Frequenzen durchgefiihrt. Das
Endergebnis folgt dann aus der gewichteten Mittelung beider Teilergebnisse. Damit hiangt das
Modell fiir 6 entlang des Radius eines kugelférmigen Kristalliten nur noch von dessen Durch-
messer D, dem Abstand zur Korngrenze x und einer a-priori unbekannten Konstante g ab.
Letztere Konstante kann aus dem Vergleich des Modells mit den Daten zu allen Korngréfien

aus [92] zu d = 6.5% bestimmt werden, sodass in allen Fillen eine gute Ubereinstimmung
des Modells mit den Simulationsergebnissen erreicht wird (siche Abb. [3.34b)).

'SHeruntergeladen von MathWorks MatlabCentral File Exchange, siehe Referenz [267].
'"Mit dem Punkt-zu-Punkt Abstand skaliert offensichtlich auch die Anzahl der Punkte, also N(f).
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In [95] wurden von Leonardi et al. &hnliche Ergebnisse wie von Stukowski et al. [92] gefun-
den, allerdings wurden anstatt der Grofle § jeweils der mittlere Wert der isotropen Volumen-
dehnung und einer Invarianten der deviatorischen Dehnung angegeben, deren Beitréige zur

Gesamtdehnung etwa im Verhéltnis 1:2 stehen.

Um die Auswirkung dieses Effektes auf das Streubild zu bestimmen, ist im Grunde das gleiche
Vorgehen wie zuvor bei den Versetzungen notwendig: Das Kristallvolumen wird mit gleichge-
richteten Sdulen der Linge L ausgelegt und die Dehnung in Bezug auf die Endpunkte dieser
Séulen bestimmt. Fiir den deviatorischen Teil der Dehnung ist dabei allerdings a-priori nicht
klar, wie grofl die Dehnungskomponente in Streurichtung ist. Daher wird hier ein statistischer
Ansatz gewéhlt, der davon ausgeht, dass dieser deviatorische Teil von der Radiuskoordinate x
genau wie ¢ abhéngt und die Dehnung in Streurichtung an einem Punkt im Korn einer Gauf3-
Verteilung mit Varianz 62 folgt. Die Dehnung der Siule ist dann der Unterschied zwischen den
GauB-Verteilungen an den Enden der Séulen (siche Abb. [3.35). Da aber ohne weitere Infor-
mation alle Differenzen zwischen zwei Punkten der Gauf-Verteilungen gleich wahrscheinlich
sind, entspricht diesem Unterschied die Faltung beider GauB-Verteilungen miteinander, was
wieder eine GauB-Verteilung mit der Varianz 6% = (5% + (5% ergibt, wobei (53 und (5% die Vari-

anzen der beiden Gauf3-Verteilungen an den Enden der Séule sind.

Symmetrie-

0

€

Abbildung 3.35: Schemazeichnung zur Berechnung der Dehnungen entlang von Séulen der
Lénge L zur Herleitung des Einflusses der Verzerrung in Korngrenznéhe auf
das Streubild. Details siehe Text.

Allerdings ist auch klar, dass die Dehnung lokal stetig sein muss und keine allzu drasti-

schen Schwankungen iiber wenige Atome hinweg machen wird. Das bedeutet, dass fiir kurze
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Siulen die Faltung beider GauB-Verteilungen zu einer massiven Uberschétzung der Dehnun-
gen fithren wiirde, weshalb eine Beriicksichtigung der lokalen Korrelation der Dehnungen not-
wendig ist. Um das zu erreichen, wird fiir jede Sdulenlidnge L ein Korrelationsfaktor kf € [0,1]

errechnet, der die Form

L
05 R

kf=-1+ (3.33)

hat. Hier ist R der Radius des Kristalliten. Werte von kf > 1 werden auf den Wert 1 gesetzt.
Mit diesem Faktor wird nun die Berechnung der Varianz der Gau-Verteilung der Dehnungs-

unterschiede zwischen den Enden der Siaulen zu
62 = 6%+ 0% - kf(L). (3.34)

Dadurch werden die Dehnungsunterschiede Ae zwischen direkt benachbarten Atomen klein,
wohingegen die Verteilung zwischen weit entfernten Atomen maximal wird. Die Wirkung
davon ist in Abb. dargestellt.

L
L>R
KF=1 ©° 5, %%x\ = 5
\ﬁ\
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: : e

Abbildung 3.36: Illustration der Wirkung des Korrelationsfaktors & f auf die Faltung der Deh-
nungsverteilungen fiir lange Séulen (oben) und kurze Séulen (unten). Details
siehe Text.

Aufgrund der intrinsischen Isotropie der Volumendehnungskomponente €, und dem Umstand,
dass fiir die Volumendehnung ausschliellich positive Werte angenommen werden, gestaltet

sich die Sache fiir ¢, einfacher:

Acyol,L = Ev,A +Ey,B - COS (). (3.35)
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Der Winkel a wird hier relativ zum Durchmesser des Kreises gemessen, der senkrecht auf
der Saule L steht. Dadurch wird die Umkehr des Vorzeichens der Verschiebungskomponente

in Sdulenrichtung beim Ubergang von einer Hemisphére in die andere bewerkstelligt (untere

Kugelhiilfte zu oberer Kugelhilfte in Abb. (S. [190)).

Fiir beide Anteile, also deviatorische Dehnung und Volumendehnung, ergeben sich fiir ei-
ne Sdulenlénge fiir verschiedene Sédulenpositionen im Korn verschiedene Werte fiir 5% bzw.
Agyol,1,, sodass man insgesamt fiir jede Sdulenléinge L {iber das gesamte Korn je ein Hi-
stogramm fiir beide Gréflen erhélt. Um ein realistisches Bild einer nanokristallinen Probe
zu erzeugen, muss diese Rechnung auf alle Korngroflen einer logarithmischen Normalvertei-
lung angewandt werden und die Ergebnisse miissen, entsprechend ihrer relativen H&aufigkeit
gewichtet, in ein kumuliertes Histogramm einfliefen. Praktisch wurde das numerisch umge-
setzt, indem diskrete Korngrofenverteilungen zwischen 2nm und 70 nm mit einer Schrittwei-
te von 0.2nm berechnet wurden. Fiir jede Korngréfle wurden Saulen der Linge L in einem
0.1nm Raster in die Korner gelegt. Die Sdulenldnge wurde zudem fiir jedes Korn zwischen
2nm und 70nm in 1024 Schritten variiert. Durch die Ausnutzung der Symmetrie der Kugeln
konnte die Rechenzeit massiv verkiirzt werden, indem das Raster nur in einer Hélfte einer
zweidimensionalen Kreisscheibe berechnet wurde. Die Charakteristik der Kugel wurde da-
durch beriicksichtigt, dass jede Sdule mit 27r (Kreisumfang) gewichtet wurde, wobei r der

senkrechte Abstand der Sdule zur Symmetrieachse ist.

Einen grofien Anteil an der Rechenzeit hat hierbei die Summation iiber alle Punkte auf der
Kugeloberfliche (siehe Gl , S. . Daher lésst sich eine signifikante Optimierung
der Rechnung erreichen, indem man sie an Einheitskugeln mit allen relevanten Frequenzen
des Tkosaeders jeweils einmal fiir eine Einheitsverzerrung dg = 1 durchfiihrt und die Ergeb-
nisse speichert. Damit hat man bereits alle moglichen qualitativen Ergebnisse bestimmﬂ
Die konkreten Werte fiir eine bestimmte Korngréfle und Verzerrung lassen sich dann ein-
fach erzeugen, indem x und § dieser Ergebnisse entsprechend skaliert werden und dann
geméf ihrer Tkosaederfrequenzen (D-abhéngig) gemittelt werden (Details siehe S. und auf
Datentriger: Ico_coords_concentrator.m, brute_force_sphere_precalc.m, Ico_precalc.mat, bru-

te_force_sphere_quick.m). Die daraus erhaltenen, normierten Histogramme fiir 67, und Ae,y
sind in Abb. gezeigt.

Um aus diesen Histogrammen die Fourier-Koeffizienten C'(L) zu bestimmen geht man wieder
der Umweg {iber die Dehnungen. Dazu werden alle Gauf3’schen Dehnungsverteilungen mit den

Varianzen 5% erzeugt und mit den zuvor berechneten Wahrscheinlichkeiten pge, (1) gewichtet

gemittelt (siehe Histogramm Abb. (3.37al).

pdev(dL) p(_A_&Q)‘ (3.36)

evAaL = Y
Paeo(Be,L) 5%: Varo, P\ 202

8Das Vorgehen ist genau wie bei einem Lookup-Table.
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Abbildung 3.37: Normierte Histogramme von ¢7, (a) und Agyy (b) fiir (D), = 18 nm und
o’ =1.6. Jede horizontale Linie in einem Histogramm entspricht einem nor-
mierten, eindimensionalen Histogramm fiir die jeweilige Sdulenlénge.

Die daraus erhaltene Wahrscheinlichkeitsverteilung von Dehnungen in Siulenrichtung wird
dann mit der Wahrscheinlichkeitsverteilung aus den Volumendehnungen p,,(g,L) gefaltet,
um so die gesamte Wahrscheinlichkeitsverteilung der Dehnungen p(e,L) durch den Einfluss

der Korngrenzen zu erhalten:
P(AE,L) = paev(Ae,L) * puoi(Ae,L). (3.37)

Allerdings ist bislang noch keine elastische Anisotropie des Gitters beriicksichtigt worden;
dieser Zusammenhang ist in den Simulationsarbeiten [92], 05] auch nicht explizit angegeben.
Prinzipiell muss aber auch hier wieder ein Zusammenhang dhnlich wie in [149] gelten, also
(€2) = (€%)200 (1 +¢I'). Um den Effekt auf die Gitterdehnung e abzuschiitzen, wurden die
Verhiltnisse epx;/e200 infolge einer uniaxialen Spannung o entlang [hkl] aus den elastischen
Konstanten berechnet, was fiir hkl = 111 und hkl = 220 die folgende Form annimmt (o kiirzt

sich aus den Gleichungen):

€111 S11+2512 + S

= 3.38a
£200 3511 ( )
€220 _ SH + 512 + 0.5544 (3 38b)
€200 251 ‘

Damit stellt sich heraus, dass Aepy; in diesem speziellen Fall fiir PdggAujg in der Form

Aghkl = AEQOQ (1 -1.84- F) (339)
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dargestellt werden kann. Mit diesem Ausdruck kénnen nun die Dehnungswerte Ae der Ver-
teilungsfunktion p(Ae,L) skaliert Werderﬂ um die Verteilung unter Beriicksichtigung der
elastischen Anisotropie zu erhalten. Diese Naherung ist zwar relativ grob, aber in diesem Fall
ausreichend, wie sich im Folgenden gleich zeigen wird.

Mit den jetzt zur Verfiigung stehenden Daten werden die C'(L) der Verzerrung durch die
Korngrenze direkt aus Gl. (2.167) (S. berechnet:

Chkl(L) = Z p(AE,L) - eXp (’L27‘[‘ Aghkl)' (340)

Hierin ist enthalten, dass e, = AL/L ~ (Aepgidpkr) /L ist, sowie dpg; ~ ds(26).

Obwohl die Rechnung fiir eine typische Korngrolenverteilung durch oben erwdhnte Opti-
mierungen nur noch im Bereich weniger Sekunden liegt, ist dieses Vorgehen im Rahmen
der automatisierten WPPM-Anpassung um mindestens eine Gréenordnung zu langsam und
kann daher in dieser Form nicht angewandt werden.

Stattdessen wird im Vorhinein eine vierdimensionale Lookup-Tabelle (Dimensionen: (D)1,
o', hkl, L) der C'(L) fiir verschiedene Korngroienverteilungen berechnet. Dazu wurde (D),
zwischen 10 nm und 30 nm in 1 nm Schritten und ¢’ zwischen 1.35 und 2.00 in 0.025 Schritten
variiert. Fiir all diese Korngroenverteilungen wurde C'(L) fiir alle relevanten hkl-Kombinationen
berechnet und in der Lookup-Tabelle gespeichert. Als maximale deviatorische Verzerrung an
der Korngrenze wurde 6.5 %, und fiir die maximale Volumenverzerrung ein Wert von 2.5 %
angenommen. Beides sind Werte am oberen Ende des plausiblen Bereiches, sodass hier eine
Abschitzung der Effektstirke nach oben erfolgt. In der WPPM-Anpassung wird C (L) auf
Grundlage von (D), und ¢’ aus der Lookup-Tabelle durch Interpolation bestimmt. Als ein-
ziger Fitparameter dient dann ein Stérkefaktor zwischen 0 und 1, der die Grofle des Effektes
in der WPPM anpassen kann. Beispiele fiir die so erhaltenen Fourier-Koeffizienten sind in
Abb. gezeigt.

Es stellt sich heraus, dass die Realteile der C'(L) immer nahe 1 sind und damit nur einen sehr
geringen Einfluss auf das modellierte Diffraktogramm haben. Fiir sich genommen handelt es
sich somit um eine eher unwichtige Detailverbesserung.

Allerdings gibt es einen weiteren, wichtigeren Aspekt, denn streng genommen ist der hier
betrachtete Effekt in seiner Auswirkung auf die Streuung nicht unabhéngig von dem der Ver-
setzungen. Stattdessen fiihrt er zu einer systematischen Anhebung von (¢?) im Randbereich
des Korns; genau der Bereich, der in der numerischen Modellrechnung eine Abweichung nach
unten von der Vorhersage der Krivoglaz-Wilkens-Theorie aufweist (vgl. Abb. S. .
Fiir ein Korn mit Durchmesser 10 nm wurde auf Grundlage des oben vorgestellten Modells
(e2)(L) aus den Histogrammen abgeleitet und zu den Werten aus der Modellrechnung fiir
die Versetzung addiert; das Ergebnis ist in Abb. dargestellt. Die Gitterverzerrung wird
durch die Korngrenze so beeinflusst, dass die Ubereinstimmung mit der Vorhersage aus der

Krivoglaz-Wilkens-Theorie fast iiber den gesamten Korndurchmesser signifikant verbessert

9Die Dehnungswerte Ae bilden bei einer graphischen Darstellung der Verteilungsfunktion die x-Achse.
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Abbildung 3.38: Realteil (a) und Imaginérteil (b) der Fourierparameter fiir (D), = 18 nm
und o’ = 1.6.

wird. Dieser Aspekt ist im Zusammenhang mit der WPPM-Anpassung von grofier Bedeutung,
liefert er doch eine mogliche Erklarung, wieso das Versetzungsmodell ohne Modifikation in
der Lage ist die Verzerrungen in den Koérnern zu beschreiben. Gleichzeitig wird klar, dass die
Bestimmung verschiedener Beitrdge mittels WPPM trotz guter Anpassung nicht unkritisch
hingenommen werden darf. Die bestimmte Versetzungsdichte enthélt hier z.B. immer auch

die Verzerrung durch die Korngrenze.

i =B numerisch
18 e KW
—0—Summe
16F ——Korngrenze

L [nm]

Abbildung 3.39: Erweiterung der Darstellung der Mikroverzerrung durch Versetzungen aus
Abb. um den hier modellierten Effekt der Korngrenze. Der verbleiben-
de Verzerrungseffekt der Korngrenze ist hier auf einen sehr kleinen Bereich
eingeschrankt und beeinflusst das Diffraktogramm nur noch minimal. KW
steht hier fiir die Vorhersage der Krivoglaz-Wilkens-Theorie.
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3.8.7 Heterogene Verzerrung unter Last

Waéhrend der Verformung zeigen die Diffraktogramme mit Streuvektoren in Belastungsrich-
tung eine deutliche Verschiebung der Peakpositionen aufgrund der elastischen Gitterdehnung,
die nach Entlastung weitestgehend wieder verschwindet. Gleichzeitig zu diesem erwartbaren
Phénomen, bilden die Peaks unter Last eine (hkl-abhingige) starke Asymmetrie aus, die
sich gemeinsam mit der Verschiebung durch die elastische Gitterdehnung entwickelt und die
gleiche Reversibilitéit aufweist (siehe Abb. [3.40).

FEine Anpassung dieser Diffraktogramme wihrend der Belastung ist mit den bisherigen Mo-
dellbestandteilen allein nicht moglich, sodass ein zusétzlicher Aspekt ergédnzt werden muss,
der speziell die elastische Reaktion der Gitter auf die von auflen angelegte Last beriicksichtigt.
Das heifit es muss ein Modell fiir eine asymmetrische Verteilung von Gitterdehnungen unter

Berticksichtigung der elastischen Anisotropie gefunden werden.

1 L
——vor Belastung
——belastet
ost nach Belastung
~ 06F
£
0.4F 1
| e‘r
0.2p »' }k }\ }"\'L-

] IR
3 35 4 45 5 55 6 65 7 75 8 85
20 [°]

Abbildung 3.40: Diffraktogramme wahrend verschiedener Belastungszustédnde. Der Streuvek-
tor zeigt immer in Druckrichtung.

In [268] wurde gezeigt, dass die Spannung, die auf einen einzelnen Kristallit in einem von au-
Ben belasteten Polykristall wirkt, stark von der lokalen Einbettung des Kristalliten abhéingt
(siehe Abb. . Dazu wurden zwei anschauliche Grenzfélle beschrieben. Wenn ein Korn in
der Ebene senkrecht zur angelegten Belastung von in Lastrichtung harten Kristalliten umge-
ben ist (z.B. (111) in Lastrichtung, siehe. Abb. S.[35), so kommt es zu einer Abschattung
der Last auf das Zentralkorn. Das Gegenteil ist der Fall bei weichen Nachbarkérnern (z.B.
(200) in Lastrichtung). Zusétzlich wurde der Fall von harten und weichen Kérnern in Serie mit
dem Zentralkorn diskutiert, wobei die besagten Koérner in Lastrichtung an das Zentralkorn
angrenzen. Hier wirken harte Korner als Stempel, die dem Zentralkorn eine gréflere Dehnung

aufzwingen; bei weichen Kornern ist es genau umgekehrt.
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Jede Orientierung der Zentralkdrner weicht in ihren elastischen Eigenschaften in Belastungs-
richtung relativ zu allen Kombinationen von Nachbarkornern in charakteristischer Weise ab.
Zentralkoner mit (111) in Lastrichtung stellen beispielsweise global die hirtesten dar, solche
mit (200) in Lastrichtung die weichsten. Daher bleibt hier netto ein systematischer Effekt in
Bezug auf die Dehnung des Zentralkorns in Abhéngigkeit von den Gitterorientierungen er-
halten. In nanokristallinen Materialien sollte dieser Effekt besonders ausgeprigt sein, da die
parallelen Nachbarkorner durch den groflen Anteil an vergleichsweise weichen Nichtgleichge-
wichtskorngrenzen stérker als gewohnlich voneinander entkoppelt werden. Im konventionellen
Polykristall, in dem die Korngrenzen im Zusammenhang mit dem elastischen Verhalten in
der Regel vernachlissigt werden, fithrt ndmlich gerade die Querdehnung der Kristallite und
ihre Wechselwirkung mit den Nachbarn zu einer Angleichung der effektiven elastischen Ei-

genschaften verschieden orientierter Kristallite.

— Zentralkorn
— paralleles Korn

— serielles Korn

P €

Belastung

Abbildung 3.41: Skizze zur Veranschaulichung der Lage umgebender Korner relativ zu einem
Zentralkorn und der Belastungsrichtung.

Das Verhalten eines nanokristallinen Drahtes unter Zug wurde mit MD@-Simulationen in
[202] untersucht. Hierbei stellte sich heraus, dass die atomare Dehnung der Gitteratome unter
Last eine starke Asymmetrie in Richtung positiver Dehnungen ausbilden, wobei die Vertei-
lung einen flachen, aber weitreichenden Ausldufer zu sehr hohen positiven Dehnungswerten
aufwies. Eine Unterscheidung des Effektes in Abhéngigkeit der Gitterorientierungen einzelner
Korner wurde in der Arbeit leider nicht durchgefiihrt, sodass die darin enthaltenen Ergeb-
nisse eine Uberlagerung aller Korner, und damit aller Orientierungen, darstellen. Trotzdem
dient die prinzipielle Form dieser Dehnungsverteilung als Inspiration fiir die nachfolgende

Modellierung.

Die Dehnungsverteilung wird mit einer asymmetrischen Variante der Pseudo-Voigt-Funktion

erzeugt, die folgende Form hat

p(2) = Lo (€) as sc

? +G o ('(2/3 <€§ as sc)z)‘ (3.41)

(e} as sc+ (m

20Molecular Dynamic
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Tabelle 3.3: Lorentzanteile Lo fiir verschiedene hkl-Reflexe fiir die Modellierung der
Spannungs- /Dehnungsverteilung  durch ~ Abschattungseffekte  benachbarter
Korner.

hkl 111 200 220 311
Lo 096 0.72 0.96 0.816

Hier sind G und Lo die Anteile von Gau- und Lorentz-férmigem Peak mit G = 1 — Lo
und sc ist ein Skalierungsfaktor, der die Breite beider Anteile gleichermafien variiert. Die
Gesamtbreite der Verteilung wird somit proportional zur mittleren Gitterdehnung (g). Der

Parameter as ist ein Asymmetriefaktor, der die Form

1,  wenn () und e gleiches Vorzeichen haben (3.42a)
as(le)9) - |

0.2, sonst (3.42b)

hat und unterschiedliche Breiten auf der linken und rechten Seite der Verteilung erzeugt.
Die Breiten auf beiden Seiten stehen im Verh#ltnis 1 zu 0.2, wobei die breitere Seite immer
entgegen der Richtung liegt, in der die mittlere Dehnung () relativ zur null liegt, um die
Abschattung von Spannung/Dehnung zu beriicksichtigen. Das Verhéltnis 1 zu 0.2 wurde auf
einen konstanten, empirischen Wert festgelegt, um die Zahl der Parameter in der WPPM-
Anpassung nicht ausufern zu lassen. Das gewéhlte Verhéltnis hat sich im Rahmen dieser
Arbeit insofern bewéhrt, dass es in den meisten Stichproben das kleinste Residuum in der
Anpassung erzeugte. Spiter werden die Ergebnisse zeigen, dass dadurch vor allem eine gute
Beschreibung unter hoher Belastung erreicht wird. Die Ursache dafiir ist, dass dieser Zustand
iiber den langsten Zeitraum wéhrend der Verformung vorliegt und dadurch die Optimierung
der konstanten Werte dominiert hat.

Durch die Proportionalitét von der Breite der Verteilung und von (g) ist hier implizit die
elastische Anisotropie beriicksichtigt und muss nicht mehr explizit in dem Modell ergéinzt
werden. Die resultierenden Verteilungen sind qualitativ &hnlich zu denen aus [202] und fiir
den Druckfall exemplarisch in Abb. gezeigt.

Voruntersuchungen, in denen in der WPPM-Anpassung der Lorentzanteil Lo als freier Fit-
parameter enthalten war, haben gezeigt, dass eine systematische Abhéingigkeit zwischen Lo
und hkl existiert, die nur in geringem Mafle zwischen verschiedenen Proben und verschie-
denen Dehnungszustdnden variiert. Um auch hier wieder relativ unwichtige Parameter zu
eliminieren, wird daher auch Lo fiir alle Anpassungen auf konstante Werte festgelegt, die in
Tabelle gelistet sind. Die geringeren Werte von Lo bei 200 und 311, also den weicheren
Richtungen, fithren zu einer runderen, breiteren Verteilung um das Maximum verglichen mit

den hérteren Richtungen.
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—111
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——220
—311

2.5 5

Abbildung 3.42: Dehnungsverteilung von Gitterdehnungen in Druckrichtung fiir verschie-
den orientierte Korner unter Beriicksichtigung des Abschattungseffektes. Die
mittleren Dehnungen sind durch gestrichelte Linien markiert.

3.8.8 Thermodiffuse Streuung

Die thermodiffuse Streuung (TDS) verursacht einen kleinen, aber ungleichméfigen und win-
kelabhéngigen Beitrag zum Diffraktogramm und kann daher fiir eine quantitative Analyse
nicht vernachléssigt werden. Am deutlichsten ist dies im Bereich zwischen den Peaks: Ver-
nachlissigt man hier den Beitrag der TDS, ist eine Anpassung dieses Bereiches nur schlecht
moglich. Die Versuche des Optimierungsalgorithmus, das Modell ohne TDS-Beitrag an die
Daten anzunéhern, fiihrt zu ungenaueren Ergebnissen fiir die Fitparameter. Diese minimieren

zwar das Residuum, liefern aber eine im Detail falsche Beschreibung (vgl. Abb. [3.43]).
Der theoretische Hintergrund zur TDS wurde bereits beschrieben (siehe S. , weshalb hier

nur noch auf die praktische Umsetzung eingegangen wird. Im Grunde muss man den TDS-
Beitrag genau wie in der Theorie ausrechnen, allerdings fiir alle moglichen Streuvektoren in
den 1. Brilloin-Zonen (1. BZ) (TDS 1. Ordnung), bzw. auch im umliegenden Gebiet (TDS 2.
Ordnung).

Da es sich bei dem Material um einen Polykristall handelt, liegen die méglichen Streuvekto-
ren auf Kugelschalen, deren Radius der Liange des Streuvektors entspricht. Im Unterschied zu
den zuvor besprochenen hkl-Kugelschalen, sind hier aber auch alle Schalen dazwischen rele-
vant. Das Vorgehen ist also fiir die TDS 1. Ordnung wie folgt: Es wird pro hkl-Kombination
immer nur eine 1. BZ betrachtet, die N Phononenvektorendpunkte enthélt. Die Zahl N ent-
spricht der Anzahl von Atomen im Korn und ist damit abhingig von der Korngréfe. Im
Modell werden wieder kugelformige Korner genutzt, deren Atomzahl iiber das Kugelvolumen

im Vergleich zum Einheitszellenvolumen bestimmt wird. Um den Ursprung des reziproken
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Abbildung 3.43: WPPM-Anpassungen von Messdaten mit und ohne TDS-Modell. Hier ist
vor allem der Bereich der Peakfiifle dargestellt.

Raumes werden nun konzentrische Kugelschalen mit zunehmendem Radius erzeugt, wobei
das Radiusinkrement in 20-Koordinaten einer Schrittweite von 0.0038 ° entspricht. Diese Ku-
gelschalen werden zur numerischen Rechnung wieder durch ein gleichméfiiges Punktraster
diskretisiert, wozu erneut der Matlab-Code ,Make Icosahedron“ von Edward Zechmannlﬂ
[267] benutzt wird, um von Ikosaedern vom Typ 1, Klasse 2, Punktprojektionen auf der
Kugeloberfliiche zu erzeugen. Als Frequenz fiir das Sampling wurde 120 verwendet, was ei-
ne Rasterung mit 72301 Punkten erzeugt. Jeder dieser Punkte entspricht einem moglichen
Endpunkt eines Streuvektors, der dann zur TDS-Beitrdgt, wenn er auf einem Phononen-
vektorendpunkt in der 1. BZ endet. Auf diese Weise werden einige dieser Punkte zufillig
getroffen, allerdings wird die Statistik deutlich besser, wenn man die Streuvektorendpunkte
anteilig auf die néchstgelegenen Phononenvektorendpunkte aufteilt; in der Modellrechnung
wurde dieser Ansatz verfolgt. Die maximale Abweichung senkrecht zur Kugeloberfliche ist
dabei auf 0.0038°/2 (in 26-Koordinaten) beschrinkt um Doppelzihlung auf verschiedenen

Kugelschalen zu vermeiden.

Physikalisch ldsst sich diese Modifikation rechtfertigen, wenn man bedenkt, dass der Rest
des Modells in Bezug auf die Maxima eigentlich nichts anderes bewirkt, als eine Verschmie-
rung der scharfen hkl-Punkte im reziproken Raum, sodass auch Streuvektoren in deren Néhe
relevante Beitrdge zur Peakintensitdt leisten. Die Orte der Phononenvektorendpunkte lie-
gen in Relation zu diesen scharfen hkl-Punkten und miissen daher zwangsweise auch die

gleiche Verschmierung aufweisen wie das Brilloin-Zonenzentrum. Die maximale Abweichung

*'Heruntergeladen von MathWorks MatlabCentral File Exchange, siche [267].
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senkrecht zur Kugelschale von 0.0038°/2 ist in diesem Zusammenhang praktisch unerheb-
lich. Abweichungen auf der Kugelschale sind dariiber hinaus in jedem Fall unkritisch, da alle
moglichen Punkte auf der Kugelschale giiltige Streuvektoren représentieren. Das Vorgehen

ist schematisch in Abb. dargestellt.

TDS 1. Ordnung TDS 2. Ordnung

® Phononenvektorendpunkt
X Streuvektorendpunkt
—— Aufteilung Streuv. / Phononenv.

Abbildung 3.44: Prinzip der Berechnung der TDS mit der Streuvektorkugel, die durch die
hkl-spezifische 1. Brilloin-Zone geschoben wird. Die Zuordnung von Pho-
nonenvektorendpunkten zu Streuvektorkugelschalen innerhalb von 0.0038°
ist rechts anhand eines Ausschnitts der Kugelschale dargestellt, wobei der
0.0038° Bereich durch gestrichelte Linien markiert ist.

Fiir jeden der so getroffenen Phononenvektorendpunkte muss dann aus den atomaren Kraft-
konstanten (siehe Gl. , S. die dynamische Matrix aufgestellt werden, aus der wie-
derum die Orientierung der drei Phononenvektoren, sowie die Phononenfrequenzen und Am-
plituden berechnet werden. Mit diesen Informationen wird dann, wie in GI. (S.
beschrieben, der Beitrag dieses Phonons zur TDS bestimmt. Der Gesamtbeitrag ergibt sich
aus einer Mittelung der Intensititen iiber die gesamte Kugelschale, die dann anschliefend
mit dem Flichenanteil der Kugelschale in der 1. BZ Apz(|S|)/A und der Flichenmultiplizitiit
des hkl Gitterpunktes gewichtet werden muss (siehe Abb. . Das ist notwendig, um den
Effekt der variierenden Punktdichte bei verschiedenen Radien der Streuvektorkugeln zu eli-
minieren und das Vorhandensein mehrerer 1. BZ zum gleichen Reflex im reziproken Raum

zu beriicksichtigen. Formal ist die Rechnung damit durch

Apz(S]) 1 5
ED =At M K,nhkl—_.— Il(S), (343)
A(IS]) - 7k, nkz

beschrieben, wobei ng,,. die Anzahl der Phononenvektorendpunkte in der BZ (fast) auf der
Kugelschale ist. Da sich die Rechnung nur auf die Kristallgitter im Material bezieht, wird in
der Rechnung als Debye-Temperatur ein Wert von 275K benutzt, was dem Wert in einem
konventionellen Kristall dieser chemischen Zusammensetzung entspricht [46]. AuBerdem muss
hier auch der Beitrag des 400 Peaks beriicksichtigt werden. Dieser befindet sich als Peak

eigentlich nicht mehr im Messbereich des Detektors, aber die Auslaufer seines TDS-Beitrags

reichen trotzdem bis in den modellierten Bereich hinein.
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Abbildung 3.45: a) Lage der 1. Brilloin-Zonen aller relevanten hkl Gitterpunkte im rezipro-
ken Raum. Zur Berechnung der TDS wird eine Streuvektorkugel um den
Ursprung aufgeblasen, und die beschriebene Rechnung durchgefiihrt. Der
Radius der Kugel ist ein Maf fiir den Streuwinkel.
b) Fliachenanteil der Streuvektorkugel innerhalb der 1. BZ fiir verschiedene
Gitterpunkte.

Wie bei allen korngrofienabhéingigen Modellrechnungen, muss auch hier die gesamte Rechnung
fiir jede Korngrofle wiederholt werden, um so der Korngréflenverteilung des Materials gerecht

zu werden. Der Unterschied in der TDS fiir verschiedene Korngréflen ist an zwei Beispielen

in Abb. gezeigt.

Korndurchmesser
'5, — 5nm
=== 25nm

Intensitat

260 [°]

Abbildung 3.46: TDS-Intensitét fiir kugelférmige Kérner mit 5nm und 25 nm Durchmesser.
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3.8 Modellierung der in-situ Réntgendaten

Das Vorgehen fiir die TDS 2. Ordnung ist im Prinzip genauso wie bei der TDS 1. Ord-
nung, allerdings muss hier anstatt einer einzelnen Rechnung pro Punkt im reziproken Raum
auf der Kugeloberflache iiber alle moglichen Kombinationen von zwei Phononenvektoren, die
von diesem Punkt zum Brilloin-Zonenmittelpunkt reichen, iteriert werden. Die korrespondie-
renden Zwischenpunkte (dort, wo sich die beiden Phononenvektoren treffen), liegen in dem
gemeinsamen Volumen der 1. BZ und einer virtuellen 1. BZ um den Endpunkt des Streuvek-
tors. Der Rechenaufwand ist dadurch um ein Vielfaches grofler, weshalb sowohl die Anzahl
der berechneten Radien der Streuvektorkugel als auch die Frequenz der Rasterung halbiert

wurden.

Die physikalisch relevanten Aspekte des Vorgehens sind damit beschrieben. Fiir detailliertere

Informationen zur technischen Umsetzung sei hier auf einen Blick in den Programmcode

verwiesen (siehe Tabelle S.[399).

Wie schon bei den Korngrenzenverzerrungen, ist die erneute Durchfithrung dieser Rechnun-
gen in jedem Anpassungsschritt viel zu zeitaufwendig, weshalb alle Rechnungen dazu fiir
verschiedene Korngréfien im Voraus durchgefithrt wurden (5nm bis 40 nm in 2.5 nm Schrit-
ten). Die Fourier-Koeffizienten wurden daraus durch Fourier-Transformation bestimmt und
fiir die spétere Verwendung gespeichert. Ein Abrastern verschiedener kompletter Verteilungs-
funktionen wére rechnerisch bereits so aufwendig gewesen, dass es die zur Verfiigung stehen-
den Kapazititen iiberschritten hétte. Allerdings ist die Entwicklung der Fourier-Koeffizienten
mit der Korngrofle eine stetige Funktion, sodass in der WPPM-Anpassung aus der bekannten
KorngroBenverteilung die passenden Fourier-Koeffizienten aus den vorberechneten Werten
zu einzelnen Korndurchmessern interpoliert und gemittelt werden kénnen. Die relativen In-
tensitédten der verschiedenen Peaks werden zusétzlich in Form eines Vektors abgespeichert
(TDS_rel_scaler) und in der WPPM-Anpassung mit den entsprechenden Beitrigen multipli-
ziert (Details siehe Datentréger: build_TDS_model und WholePattern_fft_allin).

Diese Fourier-Koeflizienten gehen nicht in die Berechnung der Peaks ein, sondern bilden eine
zweite, parallele Berechnung fiir die TDS, in der die TDS Fourier-Koeffizienten mit allen zuvor
berechneten Koeffizienten multipliziert und dann riicktransformiert werden, um so den TDS-
Anteil am Detektorsignal zu berechnen. Als einziger zusétzlicher Parameter fliefit hier noch ein
Skalierungsparameter ein, der die relative Intensitéit des TDS-Beitrags zur Gesamtintensitét

bestimmt.

Es sei hier noch einmal darauf hingewiesen, dass in der TDS alle Effekte, die die Peaks
beeinflussen, ebenfalls enthalten sind; der Grund dafiir wurde bereits oben geliefert, da die
Verschmierung der reziproken hkl-Punkte die TDS in gleicher Weise priagt wie die Inten-
sitdtsmaxima.

In [I59] wurde fiir nanokristalline Pulver eine analytische Naherung der TDS abgeleitet, die
auBerdem die unterschiedlichen Schwingungsmoden von Oberflichen und Kanten beriicksichtigt.
Allerdings wurden darin die 1. BZ als Kugeln gendhert und eine homogene, liickenlose Beset-

zung der 1. BZ mit Phononenvektoren angenommen. Der Effekt der kleinen Kristallitgrofie
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wurde dadurch beriicksichtigt, dass Phononenvektoren in einer Kugel um das Zentrum der
1. BZ ausgespart wurden, deren Durchmesser identisch zum korngréfienabhéngigen Punktab-
stand in der 1. BZ ist. Eine Abschéitzung der Auswirkung dieser Vereinfachungen auf das
Endergebnis gestaltet sich schwierig, sodass in dieser Arbeit der konservativere Ansatz der

numerischen Berechnung gewéhlt wurde.

3.8.9 Uberblick WPPM-Parameter

Bevor hier ein Uberblick iiber alle Parameter der WPPM-Anpassung gegeben wird, miissen
zunéchst noch die zwei letzten Beitrdge im Untergrund erwéhnt werden.

Die Compton-Streuung wird, wie auf S. und in [I33] beschrieben, modelliert. IThre Inten-
sitdt wird in einem festen Verhéltnis zur TDS berechnet und skaliert daher genau wie diese.
Gleiches gilt fiir den Beitrag der monotonen Laue—Streuun@, der gemaf Gl. (S.
berechnet wird.

Damit sind alle in der WPPM-Anpassung vorkommenden Beitrége vorgestellt und es kénnen
abschliefflend alle relevanten Parameter in Tabelle und Tabelle (S. [206f) zusammen-
gefasst werden. In Tabelle [3.4] sind die Grofien enthalten, die statisch in die Modellierung
eingehen und in Tabelle sind die Parameter aufgelistet, die Gegenstand der Optimierung
sind. Die bisher noch unerwihnten Parameter is(, 1299 und i3;7 modifizieren die Intensitaten
der 200-, 220- und 311-Peaks gegeniiber der Intensitét der 111 Peaks (I}, = Ipki-ink) um Tex-
tureffekte beriicksichtigen zu kénnen. Um dadurch nicht ungewollt die Funktion des Debye-
Temperaturfaktors zu ersetzen, wird das Residuum um einen Wert erhéht, der proportional
zur Ahnlichkeit der Intensititsanpassung durch ipy zur Intensititsanpassung aufgrund des
Debye-Temperaturfaktors ist.

Der Ansatz ist wie folgt: Wenn die Vorfaktoren den Debye-Faktor ersetzten, miissen sie den
gleichen Verlauf wie dieser in 20 beschreiben, also ipz = e 2M = exp (—16%2(u%)smj#) (vgl.
GI. , S. . Wenn das der Fall ist, ist —log(ipk)/ — 2M = 1. Die a-priori unbekannte,
mittlere quadratische Verschiebung kiirzt sich hier heraus. Die Differenz zwischen Paaren
von —log(ink)/ — 2M sollte dann fiir verschiedene hkl-Kombinationen null sein, sofern der
Verlauf des Debye-Temperaturfaktors nicht mit dem der i, iibereinstimmt. Ansonsten liefert
die Summe der Betrige der Differenzen iiber alle —log(ipk;)/ — 2M einen Teil des gesuchten
Mafes fiir die Ahnlichkeit der Wirkung von Debye-Temperaturfaktor und s

A=y

hkl

log (i)

| (3.44)

22Der Beitrag der monotonen Laue-Streuung ist so gering, dass er eigentlich keine Rolle spielt. Der Rechen-
aufwand ist aber so gering, dass man ihn problemlos trotzdem mitberiicksichtigen kann.
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2M

Zusétzlich ist bekannt, dass e " immer streng monoton fallend ist. Das heifit, dass un-

terschiedliche Vorzeichen der i,y; zumindest fiir eine der drei Intensitatsmodifikationen aus-
> ihki

hkl
biniert man beide Bestandteile und skaliert sie passend zu den iiblichen Residuen, so erhilt

schliefit, dass sie dem Verlauf des Debye-Faktors folgt. Ein Mafl dafiir ist B = . Kom-

man

B

Pr= 1002. (3.45)
Dieses Pr entspricht dem zusétzliche Summanden P; aus GI. (S. .
Die Debye-Temperatur, die im Rahmen der WPPM-Anpassung variiert wird, hat nur Aus-
wirkungen auf den Debye-Temperaturfaktor im Vorfaktor der Berechnung der Intensitét. In
der Berechnung oder dem Modell fiir die thermodiffuse Streuung ist diese Variation nicht
enthalten. Das hat den Grund, dass im Debye-Temperaturfaktor neben den dynamischen
Schwankungen der Atompositionen gy, auch die statischen tissqs., z.B. in/an den Korngren-
zen, enthalten sind. Eine Trennung dieser beiden Beitrége ist auf Grundlage der vorliegenden
Messungen nicht moglich. Dazu wéren zuséitzliche Messungen bei verschiedenen Tempera-
turen notwendig gewesen, um den konstanten, statischen Anteil der Positionsschwankungen
von dem temperaturabhéngigen dynamischen Anteil zu trennen. Allerdings tritt bei erhchten
Temperaturen zusitzlich der Effekt der Relaxation auf, was eine Anderung der Struktur der
Korngrenzen bewirkt und damit, voraussichtlich, wieder eine Uberlagerung von statischen
und dynamischen Effekten hervorrufen wiirde [32]. Dariiber hinaus ist eine Relaxation in
Folge einer von auflen angelegten mechanischen Spannung auch bei niedrigen Temperaturen
denkbar, sodass ohne Temperaturinderung eine Anderung der statischen Positionsschwan-
kungen der Atome stattfinden kann. Die Debye-Temperatur aus der Anpassung repréasentiert
also immer eine Kombination von statischen und dynamischen Verschiebungsbeitréigen und
muss entsprechend interpretiert werden.
Prinzipiell haben der Debye-Temperaturfaktor und die TDS die selbe Ursache, weshalb auch
die TDS durch statische Schwankungen der Atompositionen g, beeinflusst werden miisste.
Beim Kristall ist es anschaulich so, dass die Intensitédt durch den Debye-Temperaturfaktor
von den Peaks in den Untergrund umverteilt wird. Dementsprechend miisste der Anteil
der TDS an der Intensitéit ansteigen, was im Modell nur durch eine Zunahme des TDS-

Intensitdatsparameters geschehen kann. Entsprechende Beobachtungen werden im Ergebnisteil

diskutiert (siehe S. [269ff).
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Tabelle 3.4: Parameter der WPPM-Anpassung, die in der Anpassung nicht variiert werden —
statische Parameter.

Grofe Bezeichner Wert Beschreibung
. Wellenldnge der
Wellenldnge A 15.814 pm Réntgenstrahlung
theoretische a ~ 391 pm theoretisch berechnete Gitter-
Gitterkonstante - p konstante gemifl Goldgehalt
Absorptions- mittlerer Absorptions-
koeffizient W Pm 30.2682cm ™! koeffizient bei 12.2 g/cm?
Massendichte

. mittlere Stegdicke
Stegdicke t 130 pm fiir Absorption
Streuwinkel 20 ~3° bis 9° Streuwinkel aus Messung
Miller’sche Indizes hkl 111 bis 400 Miller'sche Indizes

der Braggpeaks

Parameter siehe S.

Fehlpassungsmodell

Parameter heterogene i ) siehe S.
elastische Verzerrung

Fourier-Koeffizienten c(L) ) siehe S.
Korngrenzenverzerrung

Fourier-Koeflizienten (L) ) siehe S.

TDS
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Tabelle 3.5: Parameter der WPPM-Anpassung, die in der Anpassung variiert werden.

Grofle Bezeichner Wertebereich Modell
Korngrofie (D)ot 10nm, 35 nm D, Vers., KG, TDS
Verteilungsbreite o’ 1.4,2.0 D, Vers., KG, TDS
Gitterdehnung 111/222 €111 -4%,4% Dehnung, het. Verz.
Gitterdehnung 200,/400 €200 -4 %,4% Dehnung, het. Verz.
Gitterdehnung 220 €990 -4%,4% Dehnung, het. Verz.
Gitterdehnung 311 €311 -4%,4% Dehnung, het. Verz.
Versetzungsdichte p 10°m 10" m™! Versetzungen
Stapelfehlerwahr. « 0%,8% Stapelfehler
Zwillingswahr. B 0%,8% Zwillinge
Mirkoverz. Fehlpass. (MS) (€211 0%,0.2% Fehlpassung
Skalierungsfakt. €111 €111 0,1.1 Last
Skalierungsfakt. 909 €200 0,1.1 Last
Skalierungsfakt. €220 €220 0, 1.25 Last
Skalierungsfakt. 311 €311 0,1.1 Last
Skalierungsfakt. KG-Dehn. eKG 0,1 Korngrenzdehnung
Debye Temp. Tp 175K, 300 K Vorfaktor
Intensitat 111 I 0,2 Vorfaktor
rel. Int. 200 1200 0.55,1.45 Vorfaktor
rel. Int. 220 1920 0.55,1.45 Vorfaktor
rel. Int. 311 1311 0.55,1.45 Vorfaktor
TDS Int. ITps 0.001,0.15 TDS, Untergrund
Untergrund Polyn. p1 0,0.0025 Untergrund
Untergrund Polyn. P2 0,0.25 Untergrund
Untergrund Versch. A20 3.05°,5° Untergrund
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3.9 Automatisierung der WPPM

Im Verlauf eines Verformungsexperimentes wurden zwischen 20 (bei Dehnraten ~ 107!s™1)
bis iiber 1000 (bei Dehnraten < 107*s™!) Detektorbilder aufgenommen, aus denen jeweils
180 Diffraktogramme extrahiert werden. Im Schnitt ist also fiir ein einziges Verformungsex-
periment die Anpassung von etwa 60000 Diffraktogrammen notwendig. Die Zeit, die fiir die
Durchfithrung einer Anpassung bendtigt wird, hingt stark von der Wahl der Startparameter
ab; je ndher diese an den Endwerten der Anpassung liegen, desto kiirzer dauert die Anpas-
sung. Mit den verwendeten Computern liegt diese Zeit zwischen 0.8s und 10s, wobei letztere
Dauer nur in seltenen, besonders ungiinstigen Fillen auftritt.

Eine manuelle Durchfiihrung dieser Anpassungen ist damit vollkommen unmdéglich und eine
Automatisierung dringend geboten. Um die auch dann noch sehr lange Ausfithrungszeit zu
reduzieren, werden in einem ersten Schritt immer zwei benachbarte 2° Winkelsegmente zu
einem 4° Segment durch Mittelwertbildung zusammengefasst, um so den Rechenaufwand zu
halbieren. Die Winkelauflosung halbiert sich damit natiirlich auch, dafiir wird das Rauschen
in den Daten etwas geringer.

In einem zweiten Schritt wurden bei langsameren Dehnraten (Dehnrate < 1072s7!) mehrere
Diffraktogramme der selben Winkelsegmente zeitlich gemittelt, sodass diese Zeitinkremente
von 4.4s statt 1.1s (bei Dehnrate ~ 1073s71), 16.5s statt 1.1s (bei Dehnrate ~ 10™4s7!) und
600s statt 5s (bei Dehnrate ~ 107°s™!) abbilden. Auch hier tauscht man zeitliche Auflésung
gegen einen Zugewinn an Ausfithrungsgeschwindigkeit bei vermindertem Rauschen ein.

Die Rohdaten und die zu deren Anpassung bendtigten Daten (z.B. Modellparameter, Gold-
konzentration, etc.) wurden zusammen als Attribute in einer Instanz eines
WPPM,Manager—ObjektsFE] gebiindelt. Die Methoden dieses Objektes realisieren dann Auf-
gaben wie die Durchfithrung einer einzelnen WPPM-Anpassung anhand von gegebenen Start-
werten, das Speichern der Ergebnisse, das Verwalten von Startwerten oder die Beschrankung
der Variation von Parametern in der Anpassung. Abschliefend wird die tiblicherweise genutz-
te Abfolge dieser Arbeitsschritte in der ,fire_and_forget“ Methode gebiindelt, sodass diese
die automatische Anpassung eines gesamten Datensatzes zu einem Verformungsexperiment
durchfiihrt.

Das Vorgehen ist wie folgt: Zunéchst werden mit einem bewéhrten Satz von allgemeinen
Anfangswerten die Diffraktogramme des ersten und des letzten Detektorbildes angepasst.
Beim ersten Detektorbild sind dabei die Anpassungen der relativen Intensitdten ausgeschal-
tet (ipr = 0), da die Anfangskonfiguration texturfrei sein sollte. Der unnotige Freiheitsgrad
wiirde die Anpassung nur ungenauer machen. Danach werden nacheinander die Diffrakto-
gramme zu jedem Winkelsegment {iber alle Zeitschritte von Anfang bis zum Ende angepasst,
wobei als Startwerte immer die Ergebnisse aus dem vorherigen Schritt verwendet werden. Da

unstetige Anderungen der Parameter nicht zu erwarten sind, sollten dadurch kontinuierlich

%Der Begriff Objekt ist hier im Sinne der objektorientierten Programmierung zu verstehen.
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gute Startwerte vorhanden sein, wodurch die Ausfiihrungszeit im Schnitt verkiirzt wird und
durchgingig eine gute Minimierung der Residuen erreichbar sein sollte. In seltenen Féllen
kann es aber dazu kommen, dass die Parameter einer ungiinstigen Anpassung iiber einige
Zeitschritte als schlechter Startwert nachgeschleppt werden. Falls das Residuum nach einem
Anpassungsschritt iiber einem Schwellenwert (hier 150) liegt oder ungewdhnlich stark zu-
nimmt (A Residuum > 30 in aufeinander folgenden Zeitschritten), wird dieser Schritt mit

einer grofferen Anzahl von Iterationen wiederholt.

Theoretisch wire eine wiederholte Anpassung aller Diffraktogramme mit zufillig variier-
ten Startwerten und abschliefflender Auswahl der besten Anpassung ein besseres Vorgehen
(Monte-Carlo-Ansatz). Jedoch sind durch die grofie Anzahl an Parametern auch eine grofle
Anzahl an Startparametervariationen notwendig, wodurch die Ausfithrungszeit um mehrere
Groflenordnungen zunimmt. Daher eignet sich dieses Verfahren allenfalls fiir Einzelfille, oder

stichprobenhafte Uberpriifungen der Ergebnisse.

In Abb. ist beispielhaft ein Vergleich beider Ansiitze in Form eines Histogramms der
Summe der quadratischen Abweichungen Z(AE}))2 (Residuum) gezeig@ die aus einer
Monte-Carlo-Variation der Startwerte mit 12000 verschiedenen Variationen erzeugt wurde.
Zuséatzlich ist Z(AEE))2 fiir den gleichen Datensatz aus der automatisierten Anpassung als
rote Linie eingezeichnet. Es zeigt sich, dass in den allermeisten Féllen der Monte-Carlo-
Variation nahezu der gleiche, minimale Wert fiir das Residuum erreicht wird (y-Achse ist
logarithmisch!) und daneben nur ein weiterer Hiufungspunkt bei 140 existiert. Wahrschein-
lich handelt es sich dabei um zwei lokale Minima, die der Optimierungsalgorithmus findet,
wobei das Minimum bei 90 vermutlich das globale Minimum darstellt. Der in dieser Arbeit
verwendete Automatisierungsansatz liefert in diesem Fall eine nahezu ideale Losung. Damit
ist wenigstens anekdotisch gezeigt, dass der Automatisierungsansatz Startwerte liefern kann,

die zu optimalen Losungen fiihren.

Eine rigorose Untersuchung zu diesem Thema konnte aus Zeitgriinden nicht durchgefiihrt
werden, denn der Unterschied in der Rechenzeit ist aus zwei Griinden dramatisch: Beim Au-
tomatisierungsansatz sind die Startwerte schon relativ nahe an den optimierten Endwerten,
sodass der Optimierungsalgorithmus nach wenigen Iterationen endet. Die bené6tigte Rechen-
zeit ist dann besonders kurz und liegt in der Regel unter 1s. Bei den zufilligen Startwerten
des Monte-Carlo-Ansatzes ist das naturgeméf nicht der Fall, sodass die mittlere Rechen-
zeit fiir eine einzelne Anpassung ldnger ist, als in der automatisierten Variante. Der weitaus
groflere Effekt ist aber, dass die Monte-Carlo-Variation viel mehr, schlussendlich verworfe-
ne, Anpassungen durchfithren muss. In diesem Fall werden 11999 Durchgénge berechnet und
verworfen, wodurch die Rechenzeit um eben diesen Faktor iiber der automatisierten Variante
liegt (> 11999 s ~3.3h).

24 Also der GroBe, die vom Optimierungsalgorithmus minimiert wird um die optimale Ubereinstimmung von
Modell und Messung zu erzeugen.
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Abbildung 3.47: a) Vergleich der Verteilung der Residuen aus der Anpassung mit einem
Monte-Carlo-Ansatz (Histogrammbalken) mit dem Residuum aus der au-
tomatisierten Anpassung. b) Residuum der Anpassung des selben Winkel-
segmentes aus der automatisierten Anpassung iiber alle Zeitschritte.

Ein Nachteil der automatisierten Variante ist, dass sich eine schlechte Optimierung aus dem
vorherigen Schritt fortpflanzen kann. Die Tatsache, dass die Optimierung bei den meisten Va-
riationen der Startparameter im Monte-Carlo Ansatz das selbe Residuum erreicht, ist aber
ein Indiz dafiir, dass die Optimierung an sich robust genug ist, um ungiinstige Startparame-
ter auszugleichen. Ein Beispiel fiir einen ungiinstigen Fall ist in Abb. gezeigt, in der
die Residuen der Anpassungen des gleichen Winkelsegmentes in verschiedenen Zeitschritten
(Frames) dargestellt sind. Die angepassten Parameter fithren in den ersten 11 Zeitschritten
zunehmend zu groBleren Residuen. Der Algorithmus fingt diesen Trend aber ab dem 12. Zeit-
schritt wieder ein und bleibt dann stabil bei niedrigen Residuen. Der leichte Anstieg der
Residuen mit fortschreitender Zeit ist ein genereller Trend, der daher riihrt, dass mit zu-
nehmender Belastung die Anpassung schwieriger und damit die Bestimmung der Parameter

unsicherer wird (mehr dazu im n#chsten Abschnitt).

MaBle und Unsicherheit der WPPM-Anpassung

Im Rahmen der WPPM-Anpassungen sind verschiedene Mafle zur Qualitdt der Anpassung
und zur Unsicherheit in der Bestimmung der Parameter von Interesse. Zuné&chst sind das
natiirlich die zwei grundlegenden Mafle der Anpassung: Die gewichtete und erweiterte Ab-
weichung AE}, und die daraus errechnete Summe der Quadrate Z(AE’D)Q. Letztere bildet
die zu minimierende, positive, skalare Grofle und damit das grundlegende Maf fiir die Qua-

litdt der Anpassung; je kleiner Z(AE )2 ist, desto besser. Dariiber hinausgehend liefert
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AFE, Informationen iiber die Richtung und das lokale Ausmaf} (in 26) der Abweichung (siehe
Abb. B48).

1.5
1t
0.5}t
[m)
L OF
<
-0.5¢

3 4 5 6 7 8
20 [°]
Abbildung 3.48: Typische Abweichung AE7, zwischen Anpassung und Rohdaten.

Im Rahmen der Optimierung wird auf der Grundlage dieser Information die Jacobi-Matrix
JA B, bestimmt, in der die partiellen Ableitungen jedes Datenpunktes an den Stellen 26; nach

jedem Modellparameter enthalten sind

OAE(201)  OAE,(201)

(D)o 9o’ -
JAE’ _ BAE,D(QHQ) BAE'D(QOQ) 1 (346)

D B(D)wl do’

Die Jacobi-Matrix ist damit eine n x 24 Matrix, wobei n die Anzahl der Messpunkte im
Diffraktogramm ist und 24 die Anzahl der Modellparameter. Jede Spalte von Jap: enthélt
die Information iiber die Abhéngigkeit von AE}, von dem entsprechenden Modellparameter.
Tréagt man diese Spalteninformation gegen 260 auf, erhélt man eine anschauliche Darstellung
des Einflusses eines Parameters auf das modellierte Diffraktogramm und die dadurch hervor-
gerufene Anderung der Abweichung zwischen Rechnung und Messung. Das soll im Folgenden
anhand einiger Beispiele diskutiert werden, um die Wirkung einzelner Modellparameter auf
die Anpassung zu veranschaulichen.

Einen auf den ersten Blick einfachen Fall stellen die Gitterdehnungen dar (Abb. . Erhoht
man den Wert der Gitterdehnung, verschiebt sich der zugehorige Peak nach links, verringert
man ihn, so verschiebt er sich nach rechts. Entsprechend sieht man an den Orten der Peak-
maxima einen Vorzeichenwechsel der Ableitung, denn durch eine Verschiebung des Modell-
peaks relativ zum gemessenen Peak entsteht auf einer Seite eine Abweichung nach unten und
auf der anderen Seite nach oben. Allerdings sieht man in dem Beispiel auch, dass der Git-

terdehnungsparameter des 111-Peaks zusétzlich alle anderen Peaks in einer anderen Weise

211



3 Methodik

beeinflusst. Die Ursache dafiir liegt darin, dass in der Modellierung die Intensitit so nor-
miert wird, dass das Maximum des 111-Peaks bei 1 liegt, und dann anschliefend, global mit
dem Intensitatsparameter I111 skaliert wird. Der Vorfaktor, der die relativen Intensitdten in
Abhingigkeit von 26 beriicksichtigt, wurde aber schon zuvor multipliziert. Eine Verschiebung
des 111-Peaks in 26 fiihrt deshalb zu einer globalen Anhebung oder Absenkung der Pea-
kintensitat. Diese kann zwar leicht iiber den Parameter 1717 kompensiert werden, zeigt aber
auf, wie durch die Komplexitidt des Modells in manchen Féllen unerwartete Abhingigkeiten

zwischen Parametern erzeugt werden konnen.
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Abbildung 3.49: Beispiel fiir die Jacobi-Matrix-Eintridge zu den Gitterdehnungen aus der An-
passung,.

Das niichste Beispiel (Abb. umfasst die im Modell beriicksichtigten Gitterfehler: Ver-
setzungen (p), Stapelfehlerdichte («), Zwillingsdichte (8) und Mikroverzerrung durch die
Varianz homogener Dehnungen auf Einzelkornebene ((g%)111). Allen Defekten ist gemein,
dass sie bei Zunahme zu einer Verbreiterung der Peaks fithren, wodurch das Modell die Mes-
sung in den Flanken iibertrifft und dafiir am Maximum unterschétzt. Die Empfindlichkeit ist
fiir die verschiedenen Effekte aber sehr unterschiedlich, was wesentlich von unterschiedlichen
Variationsbereichen verursacht wird. Es ist auflerdem zu erkennen, dass sowohl Stapelfehler
als auch Zwillinge einen asymmetrischen Effekt Verursachen, wohingegen Versetzungen und
Mikroverzerrung weitestgehend symmetrisch zum Maximum wirken.

In einem letzten Beispiel soll nun der Effekt der Korngréfienverteilung betrachtet werden
(Abb. . Eine Zunahme der Korngréfie (D), fithrt zu einer Zunahme der Intensitit und
zusétzlich zu schméleren Peaks. Im Fall des 111-Peaks wird der Effekt der Zunahme der
Maximalintensitdt aber durch die oben beschriebene Skalierung mit /717 unterbunden. Der
verbleibende Effekt entspricht im Prinzip einer Umkehrung dessen, was bei den Gitterfehlern

zu beobachten war. Die restlichen Peaks werden durch die relative Skalierung zu 111 in der
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Abbildung 3.50: Beispiel fiir die Jacobi-Matrix-Eintréige zur Versetzungsdichte, Stapelfehlern
und Fehlpassung.

Art beeinflusst, dass Sie zwar schméler werden, aber ihr Maximum deutlich unterhalb des ge-
messenen Peaks gesenkt wird. Eine Zunahme der Verteilungsbreite bei konstanter Korngrofie

hat in etwa den gegenteiligen Effekt.

8AED/0X

20 [°]

Abbildung 3.51: Beispiel fiir die Jacobi-Matrix-Eintrége zur volumengewichteten Korngrofie
und Korngréflenverteilungsbreite. Die Kanten werden durch die Gewichtung
von AEp um die Peaks verursacht.
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Die Gesamtempfindlichkeit der Anpassung auf verschiedene Parameter, also in Bezug auf auf
Z(AEb)2, sowie die Ahnlichkeiten von Effekten verschiedener Parameter, kinnen iiber die

Varianz-Kovarianz-Matrix
RN (3.47)

dargestellt werden, wobei der Exponent T hier die transponierte Matrix bezeichnet. Auf
der Diagonalen von ¥ stehen dann Mafe fiir die Empfindlichkeit von ) (AE},)? auf die-
sen Parameter und auf den Nebendiagonalen stehen Mafe fiir die Ahnlichkeit der Effek-
te zweier Parameter (Zeile und Spalte entspricht jeweils einem Parameter). Formal han-
delt es sich bei den Diagonalenelementen um die Varianz Y (9(AE},)/0X)?, wobei X hier
flir einen Modellparameter steht, und bei den Nebendiagonalenelementen um die Kovarianz
Z((‘)(AE’D)/(?Xi)(8(AEb)/8Xj).

Wie bereits erwahnt, sind die absoluten Empfindlichkeiten aber weniger von Interesse, da
sie groftenteils die Wahl des Variationsbereiches Widerspiegeln[g_gl Daher kann ohne groflen
Informationsverlust stattdessen die Korrelationsmatrix R betrachtet werden, die sich aus X

mit
R = diag(2)™/? ¥ diag(x)1/? (3.48)

ergibt. Hier beschreibt diag() die Matrix, die nur die Diagonalenelemente enthélt und in
der alle Nebendiagonalenelemente 0 sind. Die Eintridge von R sind aus dem Intervall [-1,1]
und alle Diagonalenelemente sind 1. Wenn ein Nebendiagonalenelement den Wert 1 hat be-
deutet das, dass durch Anderung der beiden zugehérigen Parameter die gleiche Wirkung in
Z(AEb)Q erreicht werden kann. Ist der Wert -1, gilt die Aussage ebenfalls, nur miissen
beide Parameter entgegengesetzt variiert werden. Alle Werte dazwischen geben schwéchere
Korrelationen an, wobei hier Korrelation in etwa gleichbedeutend mit Austauschbarkeit oder
Uneindeutigkeit ist. Der Wert 0 beschreibt dann vollkommene Unabhéngigkeit der Parameter
voneinander.

Theoretisch ist es fiir ein Optimierungsproblem ideal, wenn alle Nebendiagonalenelemente
der Korrelationsmatrix 0 oder betragsméfig moglichst klein sind. Umgekehrt ist es prinzipi-
ell unmoglich, eine eindeutige Anpassung von Parametern durchzufiihren, deren Korrelation
-1 oder 1 ist; jede Anderung des einen Parameters kann durch eine entsprechende des anderen
kompensiert werden, sodass bei gleichem Z(AEb)Z-Wert unendlich viele Parameterkombi-
nationen existieren.

Im Fall der WPPM-Anpassung ldsst es sich aber aus physikalischen Griinden nicht vermeiden,
dass einige Parameter relativ stark korreliert sind (Korrelationskoeffzient > 0.75). Gitterfeh-

ler fithren hier immer zu Verbreiterungen des Peaks, ebenso die Reduktion der Korngrofie.

%Die Diagonalenelemente sind hier also nicht aussagekriiftig, da ihr Wert durch eine Anderung des Variati-
onsbereiches der Parameter verandert werden kann.
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3.9 Automatisierung der WPPM

Genauso kann eine Absenkung des polynomiellen Untergrundes durch eine Absenkung der
Intensitét der thermodiffusen Streuung (teilweise) nachgeahmt werden. Dennoch ist die An-
passung solange moglich, wie die Nebendiagonalenelemente von 1 oder -1 verschieden sind.
Allerdings haben betragsmiflig grofle Korrelationswerte hier offensichtlich eine negative Aus-
wirkung auf die Genauigkeit, mit der man die Werte der Parameter bestimmen kann. In
Tabelle (S. ist beispielhaft eine Korrelationsmatrix einer 45° SCS unter Last fiir
die Anpassung eines Winkelsegmentes nahe der Hauptdruckrichtung (¢ = 94°) dargestellt.
Dieser Fall ist reprisentativ fiir eine anspruchsvollere WPPM-Anpassung, da hier durch die

hohen Dehnungswerte/Belastung alle Effekte gleichzeitig relevante Beitrige liefern.

Die stéirksten Korrelationen in der Korrelationsmatrix (Tabelle sind rot hinterlegt und
entsprechen in Teilen dem, was bereits anhand der Jacobi-Matrix ersichtlich war. Zum einen
sind die Gitterdefekte p, a und  recht stark miteinander korreliert, was zu erwarten war,
da sie dhnliche Ursachen haben und sich dhnlich auf das Diffraktogramm auswirken. Zu-
dem sind sie stark negativ mit der Korngrofle korreliert, die ebenfalls eine Verbreiterung
der Peaks verursacht, allerdings bei abnehmender Korngrofle. Bemerkenswert ist hier, dass
der Mikroverzerrungsbeitrag durch die Variation homogener Verzerrungen iiber verschiedene
Korner hinweg relativ schwach mit dem iibrigen Parametern korreliert. Zwar ist der Beitrag
dieses Parameters zum Modell insgesamt betrachtet relativ gering, aber gleichzeitig schwach
korreliert und damit einzigartig. Weiterhin sind die Gitterdehnungen epx; und die Skalierungs-
faktoren epy; alle relativ stark korreliert. Das ist wenig verwunderlich, da in das Modell zur
Dehnungsverteilung durch Spannungsabschirmung das Produkt aus beiden Werten eingeht.
Sie sind also innerhalb dieses Beitrags direkt korreliert. Die Unterscheidung ist lediglich durch
die Auswirkung auf die Peakposition von epx; moglich, auf die ejx; keinen Einfluss hat. Au-
Berdem gibt es eine starke Korrelation zwischen ITpg und den Gitterfehlerbeitrigen S («, p),
was seine Ursache darin hat, dass eine Anhebung des Beitrags der thermodiffusen Streuung
immer auch eine leichte Verbreiterung der Peaks verursacht (siehe Abb. S. . Eine
weitere, auffillige Korrelation besteht zwischen der Debye-Temperatur Tp und der relativen
Intensitits-Skalierung 311, die darauf beruht, dass durch Tp der Abfall der Intensitét iiber
260 mitbestimmt wird. Dieser Abfall hingt offensichtlich mit allen iy zusammen, ist aber fiir
1311 am stirksten ausgeprégt, da dieser Peak am weitesten rechts von 111 liegt und somit den
grofiten ,,Hebel“ besitzt. Schlussendlich gibt es starke Korrelationen, global gesehen sogar die
starksten, zwischen den Parametern des Untergrundes p1, po und A26. Diese starke Korrelati-
on ist Ausdruck davon, dass der Untergrundbeitrag im Wesentlichen eine nahezu horizontale
Linie ohne nennenswerte Kriimmung ist. Das an sich ist nicht problematisch, da dieser Bei-
trag als einziger keine direkte physikalische Relevanz hat. Allerdings fiihren die Korrelationen
dieser drei Parameter mit den iibrigen Parametern dazu, dass deren Bestimmung formal mit

einer hoheren Unsicherheit erfolgt.
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In der Vielzahl der Korrelationen zwischen den Parametern liegt aber auch ein Vorteil, den
man erkennt, wenn man sich nicht ausschliefSlich auf starke paarweise Korrelationen konzen-
triert. Zwar finden sich diverse Parameterpaare, die sich gegenseitig beinahe kompensieren
konnen, allerdings haben diese Parameter in keinem Fall die gleichen Abhéngigkeiten zu al-
len anderen Parametern; diese sind in der Anpassung aber alle gleichzeitig relevant. Eine
scheinbar mogliche Kompensation zwischen zwei Parametern ist daher, bei umfassenderer
Betrachtung, wegen der unterschiedlichen restlichen Abhingigkeiten unméglich. Zum Bei-
spiel ist die Korrelation zwischen (D),, und 8 mit —0.90 sehr hoch. Fiir (D), besteht aber
nahezu keine Korrelation zu o’ (-0.03), wihrend fiir 5 eine Korrelation besteht (-0.18). Um-
gekehrtes gilt fiir die Korrelationen zu M S (Mikroverzerrung durch Fehlpassung). Das heifit,
die starke Austauschbarkeit und damit Unbestimmbarkeit zwischen (D), und 5 besteht nur,
solange man alle anderen Parameter aufler Acht lasst.

In diesem Zusammenhang muss allerdings angemerkt werden, dass auch mit dieser Ergéinzung
die Trennschirfe zwischen a und S schlecht ist. Beriicksichtigt man die Ahnlichkeit der zu-
grundeliegenden Effekte und das gleichrangige Auftauchen beider Parameter in Gl.
bis Gl. (S. ist das aber zu erwarten. Eine umfassende Aussage iiber die Bestimm-
barkeit der Parameter in der Anpassung ist offensichtlich eine sehr komplexe Fragestellung
und kann hier nicht erschépfend behandelt werden. Einfache Regeln werden dem Sachverhalt
aber mit Sicherheit nicht gerecht.

Aus AE}, und Jp B, kann fiir jeden Modellparameter das 95 %-Konfidenzintervall abgeleitet
werden; in Matlab wird dafiir in der automatisierten WPPM-Anpassung die Funktion nlpar-
ci verwendet. Allerdings handelt es sich dabei um ein rein systematisch aus dem Optimie-
rungsalgorithmus folgendes Unsicherheitsma$, in dem nur die lokale (numerische) Ableitung
der Residuen am Minimum enthalten ist. Das kann dazu fithren, dass in manchen Féllen
unphysikalische Werte innerhalb des Konfidenzintervalls liegen, wie z.B. negative Stapelfeh-
lerwahrscheinlichkeiten. Auflerdem spiegeln diese Unsicherheiten die gesamte Unsicherheit
aller korrelierter Parameter zusammen wieder, und nicht, wie man gewohnlich annimmt, die
Unsicherheit eines einzelnen Parameters. Das wére nur dann der Fall, wenn alle Nebendia-
gonalenelemente in der Korrelationsmatrix 0 wéren. In Tabelle sind die Parameter und
die Konfidenzintervalle fiir den selben Fall, wie bei der Korrelationsmatrix aus Tabelle
angegeben. Die darin angegebenen Unsicherheiten entsprechen den typisch zu erwartenden

Werten im Rahmen der WPPM-Anpassung im belasteten Zustand.
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3.9 Automatisierung der WPPM

Tabelle 3.6: Beispiel fiir die Unsicherheiten der Parameter zur Anpassung der Probe Y4-2 im

Winkelsegment 98° bei 5355 (Bild 120).

Grofle Bezeichner Wert Unsicherheit
Korngrofie (D)yor 19.4nm +1.8nm
Verteilungsbreite o’ 1.70 +0.06
Gitterdehnung 111/222 €111 -1.18% +0.02%
Gitterdehnung 200/400 €200 -2.79% +0.05 %
Gitterdehnung 220 €920 -1.40% +0.04 %
Gitterdehnung 311 €311 -1.93% +0.01 %
Versetzungsdichte P 2.74-10%m™'  +4.10%m™!
Stapelfehlerwahr. a 1.5% £0.4%
Zwillingswahr. g 0.9% +0.8%
Mikroverz. Fehlpass. (€2)111,p (MS) 0.16 % +0.12%
Skalierungsfakt. €111 €111 1 +0.2
Skalierungsfakt. e99¢ €200 1 +0.1
Skalierungsfakt. £990 €290 0.7 +0.2
Skalierungsfakt. €311 €311 1 +0.2
Skalierungsfakt. KG-Dehn. eKG 1 +2
Debye-Temp. Tp 280K +24 K
Intensitéit 111 T 0.731 +0.003
rel. Intensitdt 200 1200 -0.2 +0.01
rel. Intensitat 220 1920 0.009 +0.01
rel. Intensitéit 311 1311 -0.121 +0.02
TDS-Intensitat ITps 0.016 +0.004
Untergrund Polynom 1 0.006 +0.001
Untergrund Polynom D2 0.123 +0.003
Untergrund Verschiebung A260 3.2° +0.6°
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Tabelle 3.7: Korrelationsmatrix zur Anpassung der Probe Y4-2

im Winkelsegment 98° bei 535s (Bild 120).

(D) o’ €111 €200 €220 €311 P o 8 MS €111 €200 €220 €311 EKG Tp Ti11 9200 1220 i311 ITps P1 P2 A20
(D) -0.03 | 0.22 | -0.04 | 0.00 | -0.03 | -0.73 [ 0.27 | -0.59 | 0.07 [ 0.08 | 025 | 0.1l | -0.58 | -0.69 | -0.25 | -0.23 | -0.52 | -0.69 | -0.37 | 0.42 | -0.55
o -0.03 0.01 [ -0.01 [ -0.08 [ -0.02 [ -0.27 [ -0.16 | -0.18 [ -0.22 | -0.10 | -0.02 | -0.06 | -0.16 | -0.16 | -0.13 | -0.28 | -0.13 | -0.19 | -0.01 | -0.52 [ -0.41 | 0.47 [ -0.58
c111 022 | 0.01 -0.01 | -0.01 | -0.05 | -0.12 | -0.58 | -0.26 | 0.13 | 0.59 | 0.01 | 0.02 | 0.02 | 0.52 | -0.18 | -0.15 | -0.07 | -0.07 | -0.10 | -0.16 | -0.10 | 0.11 | -0.14
€200 -0.04 | -0.01 | -0.01 0.00 | 0.00 [ 0.0 [ 0.14 | 0.08 | -0.13 | 0.04 | 0.49 | 0.00 | -0.00 | 0.24 | 0.0l | 0.06 | 0.25 | 0.00 | 0.00 0.04 | -0.00 [ -0.00 | 0.02
€220 0.00 [ -0.03 | -0.01 | 0.00 0.00 0.01 | -0.09 | -0.06 | -0.03 | 0.01 | -0.00 [JNOMSSMN -0.00 | 0.25 0.01 0.02 0.00 | 0.08 | -0.00 0.01 -0.00 | -0.00 | 0.01
€311 -0.03 | -0.02 | -0.05 | 0.00 | 0.00 -0.05 | 0.06 | 0.08 | -0.20 | 0.00 | -0.00 | -0.00 | 0.64 | 0.45 | 0.07 | 0.05 | -0.00 | 0.00 | 0.20 0.03 0.0 | -0.02 [ 0.03
P -0.73 | -0.27 | -0.12 | 0.0 | 0.0L | -0.05 040 | 052 | 0.05 | 0.05 | 0.09 | 0.15 | 028 | 0.63 | 0.14 | 0.10 | 0.20 0.65 0.36 | -0.41 | 0.52
o -0.16 | -0.58 | 0.14 [ -0.09 | 0.06 002 | 019 [ 0.19 [ -0.08 | -0.07 | -0.14 | 0.45 | 0.60 | 0.12 [ 0.14 | 0.40 0.69 039 | -0.44 | 0.57
B “ -0.18 | -0.26 | 0.08 [ -0.06 | 0.08 0.05 | 048 | 0.18 [ -0.06 | -0.05 [ 0.04 | 049 | 0.66 | 0.12 | 0.15 | 0.46 |WNOWGNN 0.41 | -0.48 | 0.62
MS 027 [ -0.22 | 0.13 | -0.13 | -0.03 | -0.20 | 0.40 | 0.02 | 0.05 -0.08 | 023 | 014 | 039 | 03I | -0.34 | -0.18 | -0.19 | -0.20 | -0.37 | 0.02 0.02 | -0.02 | 0.03
€111 -0.59 | -0.10 | 059 | 0.04 | 0.0 | 0.00 | 052 | 0.19 | 0.48 | -0.08 -0.07 | -0.04 | -0.15 | 0.40 | 0.38 | 0.48 | 0.17 | 0.18 | 0.36 0.46 025 | -0.28 | 0.38
€200 0.07 | -0.02 [ 0.01 [ 049 | -0.00 | -0.00 | 0.05 | 0.19 | 0.18 | 0.23 | -0.07 000 | 000 | 034 [ -0.05 | -0.08 [ -0.39 | -0.01 | -0.02 0.02 | -0.02 | 0.02 | -0.01
€220 0.08 | -0.06 | 0.02 | 0.00 |JNOMSSIN -0.00 | 0.05 | -0.08 | -0.06 | 0.14 | -0.04 | 0.00 -0.00 | 0.28 | -0.08 | -0.06 | 0.00 | -0.25 | -0.00 | -0.00 | -0.0I | 0.00 | 0.01
€311 025 | -0.16 | 0.02 | -0.00 | -0.00 [ 0.64 | 0.09 | -0.07 | -0.05 | 0.39 | -0.15 | 0.00 | -0.00 0.63 | -0.33 | -0.156 | 0.00 | 0.01 | -0.34 | -0.02 | -0.05 | 0.03 | -0.01
kG 011 | -0.16 | 052 | 024 | 025 | 045 | 0.15 | -0.14 | 0.04 | 0.31 | 040 | 0.34 | 0.28 | 0.63 -0.24 | -0.06 | -0.11 | -0.03
Tp -0.58 | -0.13 | -0.13 | 0.01 | 0.01 | 0.07 | 0.28 | 045 | 049 | -0.34 | 0.38 | -0.05 | -0.08 | -0.33 | -0.24 048 | 0.05 | 0.32
Ti11 -0.69 | -0.28 | -0.15 | 0.06 | 0.02 | 0.05 | 0.63 | 0.60 | 0.66 | -0.18 | 0.48 | -0.08 | -0.06 | -0.15 | -0.06 | 0.48 022 | 0.24
200 -0.25 | -0.13 | -0.07 | 0.25 | 0.00 | -0.00 | 0.14 | 0.12 | 0.12 [ -0.19 | 0.17 | -0.39 | 0.00 | 0.00 | -0.1f | 0.05 | 0.22 0.00
i220 -0.23 | -0.19 [ -0.07 [ 0.00 [ 0.08 [ 0.00 [ 0.10 | 0.14 | 0.15 | -0.20 | 0.18 | -0.0f | -0.25 | 0.01 | -0.03 | 0.32 | 0.24 | 0.00
is11 -0.52 | -0.01 | -0.10 | 0.00 | -0.00 | 0.20 | 0.20 | 0.40 | 0.46 | -0.37 | 0.36 | -0.02 | -0.00 | -0.34 | -0.17 l 0.40 | -0.01 | 0.02
Irps | -0.69 | -0.52 | -0.16 | 0.04 | 0.01 0.03 0.65 0.69 |[WON6NN 0.02 046 | 0.02 | -0.00 | -0.02 | 0.08 | 0.57 [ 0.60 028 | 0.23
P1 -0.37 | -0.41 | -0.10 | -0.00 | -0.00 | 0.0 | 0.36 | 0.39 | 0.41 [ 0.02 | 0.25 | -0.02 | -0.0L | -0.056 | -0.07 | 0.72 | 0.33 | 0.02 | 0.16
P2 042 | 0.47 [ 0.11 [ -0.00 | -0.00 | -0.02 | -0.41 | -0.44 | -048 | -0.02 | -0.28 | 0.02 | 0.00 | 0.08 | 0.04 | -0.72 | -0.37 | -0.07 | -0.21
A20 -0.55 | -0.58 | -0.14 | 0.02 | 0.0 | 0.03 | 052 | 057 | 0.62 | 0.08 | 0.38 | -0.0I | 0.01 | -0.0L | 0.05 | 0.64 | 0.47 | 0.21 | 0.24
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3.10 Ableitung von Spannungs- und Dehnungstensor

In diesem Abschnitt soll dargelegt werden, wie aus den Gitterdehnungen die Spannungs-
und Dehnungstensoren abgeleitet werden konnen. Zunéchst sei hier aber daran erinnert,
dass die Gitterdehnungsparameter epi wppy aus der WPPM-Anpassung noch nicht den
Beitrag der asymmetrischen Dehnungsverteilung infolge der Belastung beinhalten. Daher
muss zunéchst die mittlere Dehnung (£;,44) durch diesen Effekt aus dem Modell bestimmt und
zu den Gitterdehnungen aus der Anpassung addiert werden epp = €nk,wppPm + (€load) (siche
Datentréiger: extract2meanstrain.m). Alle anderen Effekte in der WPPM-Anpassung erzeugen
keinen Beitrag zur mittleren Dehnung und miissen hier nicht mehr betrachtet werden. Die
so korrigierten Werte entsprechen den tatséchlichen mittleren Gitterdehnungen, wie sie in
Abb. gezeigt sind, und dienen als Grundlage fiir die weitere Analyse.
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Abbildung 3.52: Polardarstellung der Gitterdehnungen zu verschiedenen hkl-Peaks. Die La-
ge der streuenden Ebenen in verschiedenen Orientierungen ist rechts dar-
gestellt, wobei die Rotationsinvarianz um die Streurichtung dieser Korner
durch den schwarzen Pfeil gekennzeichnet ist.

Die Gitterdehnungen ex; in einem Polarwinkelsegment in der x-y-Ebene aus der Rontgenbeu-
gung sind keine einfach zu interpretierenden Groflen. Es handelt sich dabei um die mittlere
Dehnung aller Kristallite im Polykristall in hki-Richtung, bei denen die hkl-Richtung gerade
parallel zum Streuvektor liegt. Das entspricht der mittleren 1d Projektion der Dehnungs-
tensoren dieser Untergruppe von Koérnern (siehe Kapitel S. . FEine Untergruppe wird
dadurch definiert, dass alle Kérner darin eine hkl-Richtung gemeinsam haben, die rdumlich

gleich orientiert ist und einen Reflex auf dem Detektor erzeugt. Das bedeutet aber auch,
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dass die Dehnungsinformationen zum gleichen hkl-Reflex in einem anderen Polarwinkelseg-
ment von einer anderen Untergruppe von Kérnern stammtlﬂ Die durchgezogenen Linien in
Abb. diirfen also keineswegs als kontinuierliche Dehnungsinformation der selben Menge
von Kornern aufgefasst werden; sie reprisentieren keine Tensoren/Dehnungen im Sinne der
Projektion aus Abschnitt Um die tatséchlichen mittleren Dehnungen zu erhalten, wird im
Folgenden aus dieser fragmentierten Dehnungsinformation eine Rekonstruktion dreidimensio-

naler Dehnungsinformationen vorgenommen.

Dazu kann man sich der Zusammenhénge der Dehnungsinformationen iiber alle hkl-Reflexe
und Polarwinkel ¢ hinweg bedienen. Denn aufgrund der kristallinen Struktur der Koérner
gibt es nur bestimmte zuldssige Polarwinkel, in denen korrelierte Bragg-Reflexe — und damit
Dehnungswerte — der selben Untergruppe von Koérnern existieren kénnen. Da die Streuvek-
toren aber alle fast in der x-y-Ebene liegen (Abweichung < 4°), ist diese Information auf zwei
Dimensionen beschrinkt. Daher muss zusétzliches Wissen iiber die Probengeometrie in die

Analyse einflielen.

Die aus der Probengeometrie abgeleitete Annahme ist die, dass zwei Richtungen des Haupt-
dehnungsraumes in der beobachtbaren x-y-Ebene liegen. Die SCS-Geometrie ist symmetrisch
zur x-y-Ebene durch die Mitte der Probe, sowie symmetrisch zur z-Achse durch den Stegmit-
telpunk@ In Anlehnung an das Neumann’sche Prinzip [2] ist es daher naheliegend, dass die
Hauptdehnungs- und Spannungsrdume entsprechend in der x-y-Ebene und in z-Richtung ori-
entiert sind. Auflerdem kann man mechanisch argumentieren, dass die z-Richtung nicht von
aufen mit Spannung beaufschlagt werden kann. Ubrig bleibt damit nur der Einspannungs-
effekt des Steges von den Probenteilen unter- und oberhalb davon; allerdings ist auch dieser
Effekte in der z-Richtung am geringsten. Es ist also davon auszugehen, dass die Geometrie

der Probe im Spannungs- und Dehnungstensor widergespiegelt wird.

Daraus ergibt sich, dass der Verlauf der eindimensionalen Projektionen von Dehnungstensoren

in dieser Ebene mit dem Polarwinkel ¢ einen Verlauf der Form

e(p) =ercos® () +errsin® () + (er —err) cos () sin () (3.49)

haben miissen, wobei hier e; und €;; die Hauptdehnungen in der x-y-Ebene sind@

Die Beschreibung in Gl. (3.49)) misst den Polarwinkel allerdings im Hauptdehnungsraum, der
beliebig zum Laborkoordinatensystem um die z—Achs@ gedreht sein kann. Diese Drehung

des Hauptdehnungsraums gegeniiber dem Laborsystem wird durch den Winkel ¢ abgebildet,
sodass in Gl. (3.49) aus Sicht des Laborsystems ¢ durch ¢ + ¢ ersetzt werden muss.

?Die Untergruppen sind verschieden, aber nicht notwendigerweise disjunkt.

2"Die Symmetrie zur z-Achse folgt aus der fundamentaleren Punktsymmetrie zum Mittelpunkt des Steges und
der Ebenensymmetrie zur x-y-Ebene.

ZDer Zusammenhang folgt direkt aus Gl. (S.132) mit a = 8 =0 und ¢ = . Die Hauptdehnungen &;
und g7 liegen dann in der z2- und x3-Richtung.

2Dje z-Achse ist in beiden Koordinatensystemen identisch.

220



3.10 Ableitung von Spannungs- und Dehnungstensor

Alle Korner der selben Gruppe haben den Freiheitsgrad einer Rotation des Gitters um die
gemeinsame (primére) hkl-Achse. Da die Orientierungen der Kérner gleichverteilt sind, kann
man sich im Gedankenexperiment in Bezug auf die Streuung vorstellen, dass jede Untergrup-
pe von Kornern mit gemeinsamer hkl-Achse durch ein einzelnes Korn repréisentiert wird, das
um die hkl-Achse rotiert. Dadurch werden alle weiteren h'k’l’-Richtungen, die prinzipiell die
Streubedingung erfiillen kénnen, bei passender Drehung auch gemeinsam mit hkl in Streu-
bedingung sein, also gleichzeitig einen ~ 90° Winkel zum Strahl einschlieflen. Die Drehachse
wird dabei automatisch zur Symmetrieachse, welche die grundsétzlich vorhandene Punkt-
symmetrie (Vorzeichenwechsel bei h'k’l") ergénzt. Jeder korrelierte h'k’l’-Reflex ist dadurch
immer an vier verschiedenen Positionen im Detektorbild enthalten. Der eingeschlossene Win-
kel zwischen hkl und h'k’l" gibt die Lage dieser korrelierten Reflexe als Polarwinkeldifferenz
(£Agp) relativ zu +hkl an. In Tabelle sind alle Winkelbeziehungen fiir verschiedene hkl
und h'k’'l’-Kombinationen gelistet, inklusive ihrer Hiaufigkeit, also der Anzahl der Erzeugung
eines korrelierten h'k’l" Reflexes durch Drehung um die primére hkl-Achse. Die Beziehungen
sind auflerdem in Abb. graphisch dargestellt.

Primare hkl
Richtung
—111
—200
—220
—311

Primare hkl
Richtung

korrelierte h'k'l'
Richtungen

X 111

O 200

+ 220

O 311

270

Abbildung 3.53: Richtungsbeziehungen zwischen priméren hkl-Richtungen und gleichzeitig
streuenden, sekundéren h'k’l’-Richtungen. Auf dem blauen Kreis sind z.B.
alle Orientierungen markiert, in denen fiir die Kérner Rontgenreflexe auftau-
chen konnen, deren 111-Richtung entlang der priméren Richtung liegen. Die
Ebenen, die diese sekundéren Reflexe erzeugen, werden hier als korrelierte
RW'E'l" bezeichnet. Details siehe Text oder Tabelle

221



3 Methodik

Tabelle 3.8: Winkel zwischen priméaren hkl-Richtungen und gleichzeitig streuenden, se-
kundédren h'k’l’-Richtungen. Die h'k’l’ umfassen alle Permutationen inklusive
Vorzeichenwechsel.

primére Richtung sekundére Richtung Winkel H#ufigkeit
hkl nET « (hklLWE'T")
111 111 70.529°
109.471°

200 54.736°

125.264°

220 35.264°

90.000°

144.736°

311 29.496 °

58.518°

79.975°

100.025°

121.482°

150.504°

200 200 90.000°
109.471°

220 45.000°

90.000°

135.000°

311 25.239°

72.452°

107.548°

154.761°

220 220 60.000°
90.000°

120.000°

311 31.482°

64.761°

90.000°

115.239°

148.518°

311 311 35.097°
50.479°

62.964 °

84.784°

95.216°

117.036°

129.521°

144.903°

WK & RN WN| O RO BN O B R ERWER|[WO WWO WWOo W Www

222



3.10 Ableitung von Spannungs- und Dehnungstensor

Um den mittleren, ebenen Dehnungszustand einer Untergruppe von Kérnern in der x-y-Ebene
zu rekonstruieren, nutzt man nun diese Korrelation von Reflexen in verschiedenen Richtun-
gen von Kornern derselben Untergruppe aus. Zunéchst interpoliert man die Dehnungswerte

e(¢)pk in p-Richtung mit einer Fourier-Reihe bis zum vierten Glied:

4
e(p)=co+ Z ciicos (i@ cr)+ciasin(i ¢ cr) (3.50)
i=1
Die mit ¢ bezeichneten Groflen sind die Fitparameter der Fourier-Reihe. Dadurch hat man zu
jedem Winkel ¢ einen Wert fiir die Dehnung. Da e(¢)nk; stetig ist und die Stiitzstellen der
Interpolation nur jeweils 4 ° auseinander liegen, sollte dieser Schritt das Ergebnis im weiteren
Verlauf nicht signifikant beeinflussen.
Diese Interpolation erlaubt es nun, fiir eine Untergruppe von Kérnern mit beliebiger Orien-
tierung in ¢ einen Fit gemif GI. (S. durch die korrelierten Gitterdehnungswerte
durchzufiithren, was in Form der Parameter €7, ;7 und ¢ die Eintrédge des Dehnungsten-
sors dieser Korner in der x-y-Ebene liefert (sieche Abb. . Dabei muss im Fit die relative
Gewichtung verschiedener Beitrige beriicksichtigt werden, die der relativen Haufigkeit der
einzelnen Winkelbeziehungen (d.h. Stiitzstellen des Fits) entspricht. Die Tensorkomponenten
im Laborkoordinatensystem erhélt man, indem man den Tensor im Hauptdehnungsraum um
den Winkel —¢ um die z-Achse zuriickdreht. In z-Richtung liegen aus der Roéntgenmessung
keine Informationen vor und eine direkte Abschitzung der Dehnungskomponenten ist nicht
moglich.
Man kann allerdings eine gute Abschitzung fiir die Spannungskomponente in z-Richtung
machen, denn von auflen wird in dieser Richtung keine Kraft ausgeiibt. Der freien Quer-
dehnung wirkt nur die Einspannung des Steges durch das umgebende Material entgegen.
Die dadurch erzeugten Druck- oder Rutschkegel in dieser Richtung bilden dann einen Be-
reich, in dem die Querdehnung stark eingeschrénkt ist [269], wohingegen sich das Material
auBerhalb des Rutschkegels quasi spannungsfrei in die z-Richtung dehnen kann. Nimmt man
einen 45°-Winkel fiir den Rutschkegel an, dann liegen vom durchstrahlten Volumen » 5%
im Rutschkege]m Fiir die Abschitzung wird nun angenommen, dass dieser Teil des Volu-
mens gar keine Querdehnung erfahrt, wihrend der Teil aulerhalb des Rutschkegels in der

z-Richtung frei querdehnen kann.

39Das Volumen im Rutschkegel variiert mit den Abmessungen des Steges, dem Stegwinkel und der exakten
Position des Rontgenstrahls. Die Anteile liegen aber grofitenteils im Bereich 0% — 5%, bei den 0 °-Proben
auch geringfiigig dariiber, und kénnen im Rahmen dieser Abschitzung ignoriert werden.
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Abbildung 3.54: a) Polardarstellung der Gitterdehnungen und Markierung der priméren hkl-
Richtung. Zusétzlich ist hier, als Beispiel fiir die Beziehung zwischen gleich-
zeitig streuenden Ebenen, ein Korn in der Mitte eingezeichnet, dessen 111-
Richtung in der priméren Richtung liegt. Die gleichzeitig die Streubedingung
erfiillenden 200-Ebenen sind ebenfalls dargestellt. Die farbigen Pfeile weisen
auf die zugehorigen Dehnungsinformationen in der Polardarstellung. b) Dar-
stellung der Gitterdehnungen der priméren 111-Richtung und den sich dar-
aus ergebenden Stiitzstellen fiir die Anpassung zur Bestimmung des ebenen
Dehnungstensors.

Auf dieser Grundlage berechnet man fiir das frei querdehnende kristalline Volumen den ebe-
nen Spannungstensor aus dem Dehnungstensor; die Spannung in z-Richtung ist hier null.
Da die z-Richtung auflerdem eine Hauptspannungsrichtung ist, verschwinden auch die Scher-
komponenten in diese Richtung. Zur Berechnung nutzt man den mittleren Elastizitétstensor
CE'W = (CE’(thl))thl, der iiber alle Rotationen x € [0°,360°) um die hkl-Achse gemittelt
wird (siehe Abb . Durch die Mittelung des Elastizitétstensors iiber diese Drehungen ist
der resultierende Tensor in allen Belangen rotationssymmetrisch um die hkl-Richtung. Die
Eintréage der gemittelten Tensoren sind fiir Palladium in Anhang (S. angegeben.
Den vollsténdigen Spannungstensor des frei querdehnenden kristallinen Volumens nutzt man
dann, um mit einem analog bestimmten, mittleren Nachgiebigkeitstensor §hkl = (§ (Xhkl) )
aus dem Spannungstensor den dreidimensionalen Dehnungstensor der Korner zu berechnen.
Abschlielend muss dessen Dehnungskomponente in z-Richtung mit dem Faktor (1 - 0.05) = 0.95
multipliziert werden, um den Einfluss des nicht querdehnenden Volumens zu beriicksichtigen
und so den Dehnungstensor des gesamten durchstrahlten Volumens zu erhalten. Den Span-
nungstensor des gesamten Volumens erhélt man aus diesem Dehnungstensor wieder mit é’hkl.
Damit hat man fiir die Untergruppe mit gemeinsamer hkl-Achse eine gute Abschétzung fiir

den vollstdndigen Spannungs- und Dehnungszustand der kristallinen Phase im Material.

224
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Abbildung 3.55: Darstellung des richtungsabhéngigen E-Moduls der um hkl gemittelten Elas-
tizitatstensoren.

Die so erzeugten Spannungs- und Dehnungstensoren haben durch diese Konstruktion immer
eine Hauptspannungs-/Hauptdehnungs-Richtung in z-Richtung, sodass es fiir die vollsténdige
Beschreibung der Tensoren ausreicht, wenn man den ebenen Spannungs- oder Dehnungs-
zustand in der x-y-Ebene, sowie die einzelne Spannungs- oder Dehnungskomponente in z-
Richtung angibt. Die graphische Darstellung beschriankt sich daher im Folgenden auf den
iibersichtlicheren, zweidimensionalen ebenen Zustand in der x-y-Ebene (Beispiel sieche Abb. .
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Abbildung 3.56: Darstellung der eindimensionalen Gitterdehnung (Rohdaten) und einiger
daraus abgeleitete Dehnungs- und Spannungstensoren fiir verschiedene Ori-
entierungen der priméren hkl-Richtungen.
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3.11 Analyse komplexer GréBen

3.11 Analyse komplexer GroBBen

Die in der WPPM-Anpassung bestimmten Parameter geben alle Auskunft {iber physikalische
Figenschaften, die entlang des Streuvektors zu messbaren Beeinflussungen des Streubildes
fithren. In einigen Féllen ist die Richtung des Streuvektors identisch zur relevanten Richtung
in Bezug auf die gemessene Grofle, wie etwa der Korngrofie (bzw. die Korngrofienverteilung),
denn die Korngrofle bezieht sich streng genommen nur auf die Ausdehnung der Koérner in
Richtung des Streuvektors. Gleiches gilt fiir Gitterdehnungen, die Skalierungsfaktoren ey,
relative Intensitdtsinderungen iy, Gesamtintensitdt, Debye-Temperatur oder den Anteil
der Mikroverzerrung durch Schwankungen homogener Dehnungen zwischen verschiedenen
Kérnern (MS). Die Interpretation dieser Groflen in Bezug auf ihre Richtung/rédumliche Ori-
entierung ist also insofern einfach, dass sie immer entlang der Streuvektorrichtung erfolgt.
Tragt man die Parameter aus der Anpassung in Polardarstellung auf, wie z.B. bereits fiir die
Gitterdehnungen geschehen (siche Abb. S. , erhélt man direkt eine anschauliche
Darstellung in der die Effektstérke und Effektrichtung einfach ablesbar sind.

Fiir Stapelfehler, Zwillingsgrenzen und Versetzungen gestaltet sich die Interpretation schwie-
riger, da hier die Wirkung auf das Streubild und die Lage bzw. charakteristische Richtungen
der Gitterdefekte nicht oder nicht ausschlieflich in Richtung des Streuvektors liegen. Zunéchst
wird hier die Interpretation der Versetzungsdichte p behandelt.

3.11.1 Analyse der Versetzungsdichten

Fiir die Interpretation der Versetzungsdichte, insbesondere in Bezug auf ihre Rolle als Plas-
tizitdtsmechanismus, ist die Information von Interesse, wie sich die Versetzungsdichte auf
Gleitebenen und Gleitrichtungen (d.h. Burgers-Vektorrichtungen) verteilt. Die Stérke der
Auswirkung einer Versetzung eines bestimmten Gleitsystems auf das Streubild wird durch
den Versetzungskontrastfaktor beschrieben (siehe Tabelle S. und zeigt, dass fast je-
des Gleitsystem unterschiedliche Einfliisse auf die Streuung in verschiedene Richtungen hat.
Die grundlegende Annahme fiir die Modellierung ist, dass alle Gleitsysteme gleichméflig mit
Versetzungen beider Typen (Stufe und Schraube) belegt sind. Tats#chlich liefert die WPPM-
Anpassung, insbesondere unter hoher Belastung, deutlich anisotrope Werte fiir p, was immer
dann im Widerspruch zur Annahme steht, wenn in verschiedenen Richtungen unterschiedliche
Werte fiir p bestimmt werden, die gemeinsame Beitrédge von identischen Gleitsystemen besit-
zen. Die Besetzung der verschiedenen Gleitsysteme mit Versetzungen kann in diesen Féllen
also eigentlich nicht gleich sein. Allerdings ist es moglich, die wahrscheinlichste Verteilung
der Versetzungen zu rekonstruieren, die im Einklang mit den extrahierten Versetzungsdichten
unter der Modellannahme ist. Dafiir miissen die Versetzungsdichten in allen beobachtbaren
Richtungen (also in allen Winkelsegmenten ¢) gleichzeitig betrachtet werden.

Die Aussage eines einzelnen Wertes fiir die Versetzungsdichte in einem Winkelsegment im

Modell wird zunéchst wieder dekonstruiert. Geméfl Modell ist die Versetzungsdichte in allen

227



3 Methodik

12 Gleitsystemen identisch zu p fiir alle beobachteten hkl Reflexe, also 111, 200, 220 und 311.
Die moglichen Winkel, welche die Burgers-Vektoren der Versetzungen in den Gleitsystemen
mit dem Streuvektor einschlieffen konnen, sind in Tabelle (S. gelistet; aufgrund der
Symmetrie sind nur wenige Winkel moglich. Allerdings kann die Orientierung der Burgers-
Vektoren nicht weiter eingeschréinkt werden, weshalb eine Drehung um den Streuvektor als
Freiheitsgrad unbestimmt bleibt. Die Richtung des Burgers-Vektor liegt also auf einem Kegel
mit dem Winkel zwischen Streuvektor und Burgers-Vektor als halbem Offnungswinkel (siche
Abb. . Die Besetzungsdichte dieser Kegel mit Versetzungen wird in der Auswertung
entlang des Streuvektors zu p bestimmt, wobei das Gewicht der Beitrdge einzelner Kegel den
entsprechenden mittleren Versetzungskontrastfaktoren (C') aus Tabelle entspricht.

90

120 60 — 111
— 200 in
150 0 — 220 Streurichtung
— 311
180 0
210 330
240 300

270

Abbildung 3.57: Illustration der Kegel, auf denen sich der Burgers-Vektor befinden kann,
wenn die hkl-Richtung in Richtung des Streuvektors liegt. Hier sind nur
Schnitte der Kegel in einer Ebene dargestellt.

Fiir die Analyse wird dieses Schema umgedreht. Die gesuchte, wahrscheinlichste Verteilung
der Versetzungen ergibt sich nun aus der Mittelung aller Versetzungsdichten in Richtung der
Kegel, wobei die Versetzungskontrastfaktoren der entsprechenden Kegel wieder als Gewich-
tung verwendet werden. Mehrfach vorhandene Winkel bilden den gleichen Kegel, sodass ihre
Gewichte summiert werden. Dabei muss beachtet werden, dass nicht jeder Punkt (bzw. jede
Orientierung) von allen Kegeln erreicht wird, sodass die Gewichtungsfaktoren entsprechend
fiir jeden Punkt angepasst werden miissen. Fiir Punkte, die mit der x-y-Ebene einen Winkel
> 65° einschlieflen, sind z.B. nur noch die 90° Beitrége relevant. Die Winkel und Gewichtun-
gen sind in Tabelle [3.9) zusammengefasst, wobei dort die Gewichte fiir den Fall gerechnet sind,
dass alle Kegel beitragen; das ist fiir alle Punkte erfiillt, die mit der x-y-Ebene einen Winkel
kleiner als 31.4822° einschlieflen. Fiir alle anderen Punkte lassen sich die Gewichtungen aus
diesen Angaben ableiten.

Durch dieses Vorgehen werden entlang aller moglichen Orientierungen im Raum Versetzungs-
dichten bestimmt, deren Orientierung der Orientierung der Burgers-Vektoren und damit der
Verschiebungsrichtung entspricht. Das Ergebnis dieser Rechnung kann als Farbkodierung auf

einer Kugeloberfliche oder, tibersichtlicher, in einer stereographischen Projektion dargestellt
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3.11 Analyse komplexer GréBen

Tabelle 3.9: Winkel zwischen Burgers-Vektor b und Streurichtung hkl, sowie deren Gewich-
tung in der Berechnung zur Versetzungsdichte von Versetzungen mit bestimmten
Burgers-Vektororientierungen.

Streuvektor in hkl < (b,hkl) Gewichtung

111 35.2644° 0.1214
90.0000° 0.0449
200 45.0000° 0.3708
90.0000° 0.0449
220 0.0000° 0.0473
60.0000° 0.1533
90.0000° 0.0449
311 31.4822° 0.1472
64.7606 ° 0.1150
90.0000° 0.0449

werden (siche Abb. [3.58). Durch die Art der Rechnung sind die Versetzungsdichten zur x-y-
Ebene spiegelsymmetrisch, sodass die Darstellung eines Halbraumes/Halbkugel ausreichend
ist. Da die Probe die gleiche Symmetrie aufweist, sollte das mit der Realitét tibereinstimmen.
Die so erhaltenen Versetzungsdichten haben den Charakter einer Wahrscheinlichkeitsvertei-
lung, indem sie lediglich das mogliche Vorhandensein von Versetzungen beschreiben. Fiir eine
eindeutige Bestimmung, ob tatsdchlich Versetzungen in einem bestimmten Gleitsystem vor-
handen sind, reicht die zugrundeliegende, zweidimensionale Information nicht aus. Aufflerdem
sind in den stereographischen Darstellungen ringférmige Spriinge in der Farbdarstellung bei
bestimmten Winkeln relativ zur x-y-Ebene zu erkennen. Diese Ringe entstehen immer an
den halben Offnungswinkeln der Kegel. Unterhalb dieser Winkel tragen die Kegel zu den
Mittelwerten der Punkte bei, oberhalb nicht mehr. Die Mittelwerte beruhen also auf einer
zur Mitte hin abnehmenden Anzahl an Einzelwerten und werden somit zunehmend schlech-
ter /ungenauer.

Technisch wird die Rechnung etwas anders umgesetzt. Eine Einheitskugelschale im Halb-
raum iiber der x-y-Ebene wird, wie {iblich, mithilfe von [267] in gleichmifBig verteilte Punkte
unterteilt. Fiir jeden dieser Punkte wird der Winkel, den sie mit allen Streuvektoren (Win-
kelsegmenten in ) einschliefien, berechnet. Wenn dieser Winkel gleich oder fast gleich (+2°)
mit einem Winkel aus Tabelle [3.9|ist, wird der zu diesem Winkelsegment gehérende Wert von

p mit dem Gewicht multipliziert und zur Versetzungsdichte zu diesem Punkt!] addiert.

31d.h. Versetzungsdichte von Versetzungen, deren Burgers-Vektor in Richtung dieses Punktes orientiert sind.
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Abbildung 3.58: a) Versetzungsdichte von Versetzungen, deren Burgers-Vektoren entlang be-
stimmter Richtungen orientiert sind. Die Richtungen werden durch Punk-
te auf der Halbkugel représentiert, die Versetzungsdichte ist farbkodiert. b)
Darstellung des gleichen Sachverhalts als zweidimensionale, stereographische
Projektion. Die gestrichelten Linien markieren die Winkel aus Tabelle

3.11.2 Analyse von Stapelfehlern/Zwillingen
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Abbildung 3.59: Illustration der Kegel, auf denen sich sie Stapelfehlernormalen befinden
konnen, wenn die hkl-Richtung in Richtung des Streuvektors liegt. Hier sind
nur Schnitte der Kegel in einer Ebene dargestellt.

Das Vorgehen ist bei den Stapelfehler- und Zwillingswahrscheinlichkeiten im Prinzip identisch
zu dem bei den Versetzungen. Statt der Burgers-Vektoren werden hier die Normalenvektoren
n auf den Stapelfehler- bzw. Zwillingsebenen betrachtet. Die moglichen Winkel zwischen
diesen und den hkl-Richtungen entlang des Streuvektors sind bereits in Tabelle (S.
als ypp gelistet und die daraus resultierenden Kegel um die Streurichtung in 2d in Abb.
analog zu Abb. (S. dargestellt. Statt der Versetzungskontrastfaktoren wird zur
Gewichtung die GroBle Y |Lo - o(Lo)| npki(Lo) in der gleichen Art verwendet (siehe Tabelle
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S.[95)). Die Ergebnisse kénnen, wie zuvor, in stereographischer Darstellung préisentiert
werden. Ein Beispiel dafiir ist in Abb. fiir die Stapelfehlerwahrscheinlichkeit o« und die
Zwillingsgrenzenwahrscheinlichkeit 5 gezeigt.

fs2.5°/o

\"\ 2.0%
1.5%

0

2.5%

2.0% %

1.5% M

1.0% 1.0%

210 330

0.5% 0.5%

0.0%

0.0%

Abbildung 3.60: Stereographische Darstellung der Stapelfehlerwahrscheinlichkeit @ (a) und
der Zwillingsgrenzenwahrscheinlichkeit 5 (b). Die Farbe eines Punktes re-
prasentiert den Wert von « bzw. 8 und seine Position die Orientierung der
Normalen auf den Stapelfehler/die Zwillingsgrenze. Die gestrichelten Linien
entsprechen den Winkeln aus Tabelle (S.
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4 Ergebnisse

4.1 Probentbersicht

Im Rahmen der Experimente an der ESRF wurden insgesamt 61 erfolgreiche{f] Verformungen
an relaxierten und wie-hergestellten Proben mit unterschiedlichen Stegwinkeln (0°, 25°, 45°
und 60°) bei Dehnraten zwischen 1-1071s™! und 1.5-107°s™! durchgefiihrt. Durch diese um-
fassende Variation der experimentellen Parameter wurde die Grundlage fiir die Untersuchung
der Einfliisse von Spannungszustand, Dehnrate und Relaxation auf das Verformungsverhalten
nanokristalliner Proben geschaffen.

In diesem Ergebniskapitel werden davon nur die Ergebnisse einer Auswahl von neun Proben
dargestellt und diskutiert, die instruktiv fiir die Wirkung je einer Parametervariation sind. Die
Daten aus der Charakterisierung, die geometrischen Abmessungen und die experimentellen
Parameter der diskutierten Proben sind in den Tabellen und zusammengefasst.
Zusitzlich ist in Abb. eine Bemaflungsskizze zur Zuordnung der Groflen aus Tabelle
angegeben. Die vollstdndige Sammlung dieser Daten zu allen 60 Proben ist in Anhang

(S. zu finden.
YA B YA D

[— l—|
12°
ST WI= Ht:IS
H b
5 —>
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Abbildung 4.1: Bemaflung der geometrischen Merkmale der SCS.

'Erfolgreich bedeutet hier, dass zu den Verformungen jeweils ein vollstindiger Datensatz vorliegt. Insgesamt
wurden 74 Experimente durchgefiihrt, von denen 13 aus technischen Griinden nicht fiir eine Auswertung
geeignet sind.
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Tabelle 4.1: Goldgehalt cy4, in Atomprozent (at.%), gemessene Dichte p und theoretische
Dichte pipeo des defektfreien Materials gleicher chemischer Zusammensetzung der
diskutierten Proben (jeweils in g/em?). Zusitzlich sind der Elastizitéitsmodul (E)
und der Schermodul (G) aus der Ultraschalllaufzeitmessung in G Pa angegeben.

Bezeichner relaxiert CAu P Ptheo E G
Y4-2 nein 14(1) 11.879(4) 13.149 93(2) 34(1)
V2-2 nein 14(1) 11.817(4) 13.014 91(3) 33(1)
N1-2 nein 15(1) 11.704(3) 12.970 86(2) 32(1)
Ul-1 nein 15(1) 11.950(2) 13.131 91(2) 33(1)
01-2 nein 18(1)  11.877(4) 13.450 89(3) 33(1)
S1-1 nein 15(1) 11.589(2) 13.149 83(1) 30(1)

Zb3kr-1 ja 15(1.5) 12.306(4) 13.178 105(1) 38(1)
Zb3kr-2 ja 15(1.5) 12.306(4) 13.178 105(1) 38(1)
Hir-2 ja 13(1.5) 11.921(2) 12.956 98(3) 35(1)

Tabelle 4.2: Geometrische Abmessungen der diskutierten Proben (vgl. Abb. ).

Bezeichner sw [°] H [mm] B [mm] D [pm] b [pm] s [pum]

Y4-2 45 6.0 1.25 1039 145 130
V2-2 45 6.0 1.25 751 119 110
N1-2 45 6.0 1.25 1050 155 134
Ul-1 0 4.5 1.23 939 149 131
01-2 25 6.0 1.22 811 119 112
S1-1 60 6.0 1.25 1376 147 142
Zb3kr-1 45 6.0 1.23 1029 149 130
Zb3kr-2 45 6.0 1.26 1029 149 130
Hir-2 45 6.0 1.25 812 115 114

Tabelle 4.3: Parameter der Verformungsexperimente der diskutierten Proben. Zusétzlich ist
angegeben, ob die Probe wihrend der Verformung gerissen ist.

Bezeichner relaxiert sw [°] Dehnrate [s7!] Rissbildung

Y4-2 nein 45 1-1073 nein
V2-2 nein 45 1-1071 nein
N1-2 nein 45 2-107* ja
Ul-1 nein 0 1-1073 ja (quer)
01-2 nein 25 1-1073 nein
S1-1 nein 60 1-1073 ja
Zb3kr-1 ja 45 1-107% nein
Zb3kr-2 ja 45 1-1073 nein
Hir-2 ja 45 1-107! ja
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4.2 Referenzprobe Y4-2

Die Diskussion der Ergebnisse erfolgt zunéchst anhand der Referenzprobe Y4-2 in aller
Ausfiihrlichkeit; sie entspricht dem in Vorgéngerarbeiten am h#ufigsten untersuchten Stan-
dardfall [25] 28], 130}, 167, [186]. Anhand der Ergebnisse dieser Referenzprobe wird anschliefend
eine Hypothese zu den wihrend der Verformung aktiven Mechanismen und ihrem Zusammen-
spiel aufgestellt.

Alle anderen Félle werden in verkiirzter Form im Vergleich zu den Ergebnissen dieser Pro-
be diskutiert, wobei das Hauptaugenmerk auf den Auswirkungen des variierten Parameters

(Dehnrate, Stegwinkel, Relaxation) auf das Verformungsverhalten liegt.

Die Daten konnen in diesem Dokument in vielen Féllen nur in reprisentativen Ausziigen
gezeigt werden, anhand derer im Anschluss die Diskussion erfolgen wird. Eine umfingliche
Visualisierung der vollstdndigen Datensétze zu den diskutierten Proben ist in mehrere Pro-
gramme ausgelagert, die auf dem beigefiigten Datentriger enthalten sind. Insbesondere ist
damit eine Darstellung der zeitlichen Entwicklung der Daten ,in Bewegung® moglich, wo-
durch ein intuitiver Zugang zu den im Folgenden beschriebenen Sachverhalten moglich wird.
An passender Stelle im Ergebniskapitel wird auf die entsprechenden Programme verwiesen.
Eine vollstdndige Auflistung und Kurzbeschreibung ist in Anhang (S zu finden.

Als Einleitung sei hier bereits auf das Programm WPPM-Fit Viewer verwiesen, in dem
alle Diffraktogramme und die entsprechenden WPPM-Anpassungen dargestellt werden. Diese
Anpassungen bilden das Fundament der Auswertung der Rontgendaten, werden aber im

Folgenden nicht mehr einzeln thematisiert.

4.2 Referenzprobe Y4-2

Bei der Probe Y4-2 handelt es sich um eine wie-hergestellte (nicht-relaxierte) SCS mit 45 °-
Stegwinkel, die mit einer nominellen Dehnrate von 1073 s™! verformt wurde.

Zuerst erfolgt eine Analyse der Dehnungsinformationen aus den Kameradaten, die den ma-
kroskopischen Verformungsablauf charakterisieren und als Richtschnur fiir alle anschliefen-
den Diskussionen dient. Danach erfolgen die Besprechungen der aus den Réntgenmessungen
extrahierten Daten. In beiden Féllen werden sowohl kartesische Koordinaten als auch Polar-
koordinaten in den Darstellungen genutzt, deren Ausrichtung in Relation zur SCS in Abb.
gezeigt.
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Abbildung 4.2: Skizze zur Darstellung der Orientierung der SCS in Bezug auf Polarkoordi-
naten und kartesischen Koordinaten. Stegnormale und Stegrichtung beziehen
sich immer auf die Ausrichtung des Steges und #ndern sich fiir Proben mit
unterschiedlichen Stegwinkeln. In der Abbildung ist der Fall einer 45 °-Probe
dargestellt.

4.2.1 Verschiebungsfelder

Die Verformung der Probe Y4-2 ist in Abb. anhand der gemessenen Verschiebung der

Traverse der Priifmaschine dargestellt und besteht, wie alle Experimente, aus drei Segmenten:

1. Belastung der Probe durch Verfahren der Traversen mit konstanter Geschwindigkeit

(#1 bis #5).
2. Haltesegment (#5 bis #6).
3. Entlastung mit konstanter Geschwindigkeit (ab #6).

Gleichzeitig dienen diese Messwerte der Priifmaschine als Regelgréfien fiir die Verfahrge-
schwindigkeit. Die markierten Punkte (#1 bis #6) in Abb. [4.3|entsprechen charakteristischen
Zeitpunkten bzw. Spannungs-/Dehnungszustinden der Probe wihrend der Verformung. Sie
dienen im Folgenden der Gliederung aller Ergebnisse zur Probe Y4-2. Hier haben nur #1 (An-
fang des Experimentes), #5 (Anfang des Haltesegments) und #6 (Anfang der Entlastung)
erkennbare Bedeutungen, die der restlichen Punkte ergeben sich im weiteren Verlauf.

Wie bereits oben diskutiert, beeinflusst der Verfahrweg der Traverse die Probenbewegung
und Verformung nur mittelbar (sieche Abschnitt S.[146)), sodass nur die aus den Kame-

rabildern extrahierten Verschiebungsfelder verléssliche Informationen {iber makroskopischen
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Abbildung 4.3: Verfahrweg der Traverse geméfl Priifmaschine gegen die Zeit. Die Zeitpunkte
#1 bis #6 dienen der nachfolgenden Diskussion der Ergebnisse und werden
bei allen Messdaten angegeben.

Bewegungen der Probe liefern und die Bestimmung der makroskopischen Dehnungen im Steg-
bereich erlauben.

Der dominante Anteil der Relativverschiebung ist die Starrkérperverschiebung der unteren
Halfte relativ zur oberen in der x-y-Ebene, wodurch die wesentliche Kompressions- und Scher-
bewegung der SCS abgebildet wird. Die Trajektorie dieser Bewegung ist in x- und y-Richtung
in Abb. dargestellt. Der Zeitliche Verlauf beginnt bei (ug, u,) = (0,0) und entwickelt sich
dann in Richtung der Nummern #1 bis #6. Zusétzlich ist die Stegorientierung (45°) durch
graue Hilfslinien gekennzeichnet. Die anfingliche Bewegung erfolgt nahezu senkrecht zur Ste-
grichtung (#1 bis #2), dreht dann im weiteren Verlauf kontinuierlich in Stegrichtung (#2
bis #4) und erfolgt schliefilich annidhernd entlang einer um —12° zur Stegrichtung gedrehten
Geraden (#4 bis #5). Am Punkt #5 wird der Motor der Priifmaschine gestoppt, sodass die
Bewegung zwischen #5 und #6 einer Spannungsrelaxation entspricht. Dieser Teil der Trajek-
torie verlauft entlang der Stegrichtung. Die Bewegung nach Punkt #6 stellt die Entlastung
der Probe dar.

Speziell der anfingliche Verlauf der Probe zwischen #1 und #2 und, etwas schwécher aus-
gepragt, zwischen #2 und #3 ist auffillig, da hier eine Verschiebungskomponente in positive
x-Richtung beobachtet wird. Bei rein elastischem Verhalten sollte diese positive Verschiebung
nicht auftreten, da u,; = u, - ¢ mit ¢ < 0 (vgl. GL , S. . Somit liefert bereits diese
grundlegende Betrachtung einen Hinweis auf nicht elastisches, sondern plastisches Verhalten
zu Beginn der Verformung.

Fiir die weitere Diskussion ist die Bestimmung der Dehnungskomponenten des Dehnungsten-
sors E notwendig; das Vorgehen ist in Abschnitt (S. beschrieben und die Ergebnisse
sind in den nachfolgenden Abbildungen dargestellt.
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Abbildung 4.4: a) Trajektorie des unteren Probenteils relativ zum oberen in x- und y-
Richtung. Die Orientierung des Steges ist durch graue Linien dargestellt. Die
Nummern #1 bis #6 markieren die Zeitpunkte, anhand derer Y4-2 disku-
tiert wird. b) Veranschaulichung des Koordinatensystems zur Beschreibung
der Relativbewegung des unteren Teils relativ zum feststehenden oberen Pro-
benteil.

In Abb. sind die vier von null verschiedenen Eintrdge des Dehnungstensors gegen die
Zeit dargestellt und in Abb. sind die entsprechenden zeitlichen Ableitungen (Dehnraten)
gezeigt. Letztere wurden iiber ein Zeitfenster von 15s (entspricht 150 Messpunkten) mittels
gleitendem Durchschnitt geglédttet, um die starken Oszillationen durch das Rauschen in den
Komponenten von E zu mindern. Die drei Diagonalenelemente des Dehnungstensors E,, E,
und FE, verhalten sich grundsétzlich dhnlich. Zun#chst nehmen sie wihrend der Belastung
betragsméfig stetig zu, wobei zwischen #1 und #4 eine stetige Beschleunigung stattfindet.
Die Dehnung E, in z-Richtung (Strahlrichtung) setzt jedoch erst verzogert ab #3 ein. Ab
#4 nehmen die Dehnungen zu #5 hin in y- und z-Richtung mit konstanter Dehnrate zu,
wohingegen die Dehnrate in x-Richtung hier noch weiter ansteigt. Aulerdem zeigt sich, dass
die nominelle Dehnrate in y-Richtung von —1-1073s™! nie erreicht wird. Ursachen dafiir
sind einerseits die bereits erwidhnte, geringe Steifigkeit der Maschine, andererseits die naive
Abschétzung zur Berechnung der benétigten Maschinengeschwindigkeit, die nur anhand eines
linearen Dehnungsmafles in y-Richtung erfolgte.

Die Scherkomponente E,, fillt von #1 bis #4 und steigt dann bis #5 wieder an. In der
Polardarstellung der Dehnung (siehe Abb. fithrt E,, zu einer Verkippung der Deh-
nungsellipse: Der Abfall von E,, zwischen #1 und #4 fiihrt zu einer Verkippung in negative
Richtung (siehe #4) und der anschlieBende Anstieg zu #5 kippt die Ellipse wieder zuriick in
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Abbildung 4.5: a) Zeitliche Entwicklung der Eintrige des aus den Kameradaten abgeleiteten
Dehnungstensors. Die Zeitpunkte #1 bis #6 sind fiir alle Kurven durch die
gestrichelten Linien markiert. b) Zeitliche Ableitungen der Kurven aus a),
also die Eintrége des Dehnratentensors. Oben sind die korrespondierenden
Dehnungswerte in Druckrichtung (E,) angegeben.

positive Richtung. Es sei nochmal daran erinnert, dass E, nicht allein sdmtliche Scherung
beschreibt. Der grofite Teil der Scherung in der x-y-Ebene duflert sich hier in den nahezu be-
tragsgleichen Anteilen unterschiedlichen Vorzeichens von E, und E,, wodurch eine Scherung
entlang des Steges beschrieben wird (Stegrichtung entspricht 135° bzw. 315°, Stegnormale
entlang 45° bzw. 225°).

Das Vorauseilen von FE, relativ zu den anderen Diagonalenelementen zwischen #1 und #4
ist charakteristisch fiir ein Kompression. Ab #4 wird E, durch die schnellere Dehnrate von
FE, eingeholt und tiberfithrt die Verformung zunehmend in eine Scherung. Diese wird im
weiteren Verlauf durch eine Dilatation ergéinzt. In der Polardarstellung (sieche Abb.
duert sich das dadurch, dass sich die Betrige der Minima und Maxima der Ellipsen mit
fortschreitender Verformung aneinander anndhern und schliellich der Betrag der Maxima
den der Minima iibersteigt; in der anfinglichen, kompressiven Verformung sind die Minima
betragsméfig grofer.

In der y-z-Ebene ist der Betrag von FE, durchgéngig deutlich kleiner als Fy; die Scherdehnung
in der y-z-Ebene spielt also eine untergeordnete Rolle im Vergleich zu der in der x-y-Ebene.
Folglich sind die Minima in der Polardarstellung in betragsméfig immer deutlich grofer
als die Maxima.

Waihrend des Haltesegmentes zwischen #5 und #6 verringern sich alle Dehnraten um ca. eine
GroBenordnung im Verlauf weniger Sekunden nach dem Anhalten der Maschine. Ubrig bleibt

in allen Komponenten ein langsames Kriechen. In der x-y-Ebene beschreibt das hauptséchlich
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Abbildung 4.6: a) Polardarstellung der Dehnung in der x-y-Ebene zu den Zeitpunkten #1 bis
#6. b) Polardarstellung der Dehnung in der y-z-Ebene zu den Zeitpunkten

#1 bis #6.

eine Scherung entlang des Steges in Ubereinstimmung mit der Trajektorie zwischen #5 und
#6 in Abb. die in diesem Bereich entlang der 45 °-Linien verlduft.

In der Polardarstellung (siehe Abb. wird dariiber hinaus deutlich, dass in den 135 °-
bzw. 315°-Richtungen zu allen Zeiten ein Nulldurchgang ist. Das heifit, dass entlang des
Steges zu keiner Zeit eine Streckung stattfindet, sondern nur Scherungen und Kompressio-
nen/Dilatationen senkrecht dazu.

Um eine bessere Trennung zwischen der isotropen, volumendndernden Dehnung und der
forméndernden Scherdehnung zu erreichen, bietet es sich an, E in den isotropen Anteil E;g,
und den Dehnungsdeviator Edev zu zerlegen (siehe Gl. und Gl. , S. .

Der isotrope Dehnungsanteil ist in Abb. gegen die Zeit aufgetragen und zeigt eine kon-
stant abnehmende, kompressive Dehnung zwischen #1 und #3, eine Stagnation zwischen
#3 und #4 und schliellich eine zunehmend positive Dehnung bis #5. Diese positive isotrope
Dehnung wird durch die zunehmende Dominanz der positiven Dehnungskomponenten E, und
E, gegeniiber E;, erzeugt, wobei die Beschleunigung der Zunahme von FEj, im Wesentlichen
durch die ansteigende Dehnrate von E, verursacht wird. Die Zunahme der positiven Dehnung
setzt sich mit niedriger Rate im Haltesegment fort; hier findet also zusétzlich zur Scherung
entlang des Steges eine Dilatation statt.

Um Missverstdndnissen vorzubeugen sei darauf hingewiesen, dass Fj;s, nicht mit einer iso-
tropen Volumendehnung gleichzusetzen ist. Durch die Formédnderung aufgrund der Scherung
kann der Effekt von Fj;s, in manchen Richtungen abgeschwécht oder verstirkt werden, wes-
halb man den Verlauf von Ejs, nicht mit der relativen Volumenénderung im Steg AV/V
verwechseln darf. Diese muss mithilfe von GI. (S. bestimmt werden und ist in
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Abb. [L.75] dargestellt. Das Volumen im Steg nimmt stetig bis #4 ab und stagniert dann bis

#5. Im Haltesegment nimmt es dann wieder leicht zu.
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Abbildung 4.7: a) Zeitliche Entwicklung des isotropen Dehnungsanteils Ejs, = Sp(E)/3. b)
Zeitliche relative Volumendnderung AV /Vj, wobei Vj das Stegvolumen zu
Beginn der Verformung bezeichnet.

Umgerechnet auf die Dichte des Materials im Stegbereich, erhdlt man den Verlaufin Abb.
wobei die Anfangsdichte bei ¢t = 0s aus der vorangegangenen Charakterisierung des Pellets
iibernommen wurde und bei der Berechnung die Masse des Steges als konstant angesehen
wird. Der Verlauf zeigt die erwartete Dichtezunahme bis #4, gefolgt von der anschliefenden
Stagnation. Zusétzlich ist als Referenzdichte die Dichte eines theoretischen, defektfreien Ma-
terials gleicher chemischer Zusammensetzung als gestrichelte Linie in Abb. [£.8a] angegeben
(ptheo = 13.15g/cm?). iln Abb. ist der damit errechnete Verlauf der relativen Dichte
P/ Ptheo gezeigt.

Waéihrend der Verformung findet also anfinglich eine Volumenabnahme des Materials im
Stegbereich von 2% bis 3% statt. Dieser Wertebereich entspricht den Volumendehnungen,
die bei thermischen Ralaxationen des selben Materials bei 120 °C nach 5000 min beobachtet
werden konnen [8, B2] und dort hauptsichlich auf eine Anderung der Korngrenzenstruktur
zuriickgefithrt wurden. Die anfingliche Dichtezunahme wahrend der Verformung kénnte auf
einem #hnlichen Effekt beruhen, mit dem Unterschied, dass hier die zur Aktivierung der
Relaxation notwendige Energie hauptséchlich durch die angelegte mechanische Spannung be-
reitgestellt wird. Das Ende der Dichtezunahme legt nahe, dass sich dieser Prozess im Bereich
zwischen #1 und #4 erschopft. Daher muss innerhalb dieses Bereiches eine kontinuierliche
Anderung des Zusammenwirkens der Verformungsmechanismen erfolgen.

Die Eintrdge des Dehnungsdeviators Edev sind, analog zu Abb. (S. , in Abb.
gegen die Zeit dargestellt und beschreiben die Anteile der Dehnung, die nur durch Scherungen

erzeugt werden. Die Eintrdge verhalten sich dhnlich zu denen im Dehnungstensor mit dem
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Abbildung 4.8: Zeitliche Entwicklung der Dichte des Stegbereiches. Die horizontale, gestri-
chelte Linie markiert die theoretisch zu erwartende Dichte des Kristalls glei-
cher Zusammensetzung (pineo = 13.15g/cm?). b) Dichte aus a) normiert auf

die theoretische Dichte.

Unterschied, dass hier Ey, , betragsméBig grofler ist als Ege, , und Ege, ., was eine direkte

Konsequenz aus Egey gz + Edev,y + Edev,> = 0 unter Beriicksichtigung der jeweiligen Vorzeichen

ist.
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Abbildung 4.9: Eintriage des Dehnungsdeviators gegen die Zeit aufgetragen.

Die Polardarstellung des Deviators zeigt die Orientierung der Scherverformung in der x-
y-Ebene (siehe Abb. [4.10a)) und in der in der y-z-Ebene (siehe Abb. [4.10b)), die natiirlich

beide mit der Orientierung des zugrundeliegenden Dehnungstensors iibereinstimmen. Hier
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zeigt sich, dass bei Wegfall der Volumendehnungskomponente F;4, der Dehnungsdeviator den
zeitunabhéngigen Nulldurchgang des Dehnungstensors bei 135° verliert. Dieser ist also eine
Konsequenz aus der Uberlagerung von Ej,, und Scherung. Des Weiteren sei hier angemerkt,
dass ab #4 |Egey | > |E,y| ist, d.h. ein Teil der Dehnung in y-Richtung durch Scherung wird
durch den positiven, isotropen Dehnungsanteil F;s, kompensiert. Zuvor haben sowohl Ejg,
als auch Fge, , zur negativen Dehnung in y-Richtung beigetragen. Das bedeutet, dass ab #4
die Dehnung in y-Richtung ausschliellich durch Scherung realisiert wird, wéhrend vorher die
Verdichtung des Steges einen Teil der Verformung in y-Richtung getragen hat.
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Abbildung 4.10: a) Polardarstellung des Dehnungsdeviators in der x-y-Ebene zu den Zeit-

punkten #1 bis #6. b) Polardarstellung des Dehnungsdeviators in der y-z-
Ebene.

Die Scherung in der y-z-Ebene ist vergleichsweise gering, sodass die Ellipsenform hier (Abb.
wesentlich schwiicher ausgepriigt ist als in der x-y-Ebene (Abb. . Die Scherung findet
also hauptséchlich in der x-y-Ebene statt.

Fiir eine quantitative Beschreibung der Orientierung der Scherdehnung, wird der Polarwin-
kel des Dehnungsmaximums in der Polardarstellung A¢ ausgewertet. Formal entspricht das
der Bestimmung der Orientierung des Hauptdehnungsraumes relativ zur x-y-Basis. Hier ent-
spricht A¢ = 0° einer liegenden Ellipse mit langer Achse entlang der 0°-Richtung, wodurch
eine reine Scherung entlang der 45°- und/oder 135°-Richtung beschrieben wird ﬂ Positive
Werte von A¢ entsprechen Rotationen um die z-Achse in mathematisch positive Richtungen
(gegen den Uhrzeigersinn). Das Ergebnis dieser Analyse ist in Abb. gezeigt.

Das abnehmende Rauschen der Daten zu grofleren Zeiten, und damit Dehnungen, riithrt daher,

dass die anfiinglich geringen Dehnungen annihernd eine Kreisform in der Polardarstellung

Die Scherung in der y-z-Ebene wurde hier der Einfachheit wegen vernachlissigt.
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Abbildung 4.11: Drehung des Hauptdehnungsraumes relativ zum x-y-Koordinatensystem.
Diese Drehung beschreibt gleichzeitig die Abweichung der Hauptscherrich-
tung von der Stegrichtung (entlang 135° und 315°).

beschreiben, was die Bestimmung der Maxima schwierig macht. Mit zunehmender Dehnung
nimmt die Elliptizitit der Kurven zu und dadurch die Zuverldssigkeit der Maximumsbestim-
mung. Der Bereich zwischen #1 und #2 wird daher nicht weiter betrachtet mit Ausnahme
der Tatsache, dass zum Zeitpunkt #2 A¢ ungefdhr den Wert —15° erreicht hat. Von da aus
nimmt A¢ bis #5 stetig zu, wobei die Steigung zwischen #3 und #4 grofler ist als in den
beiden anderen Abschnitten. Im Haltesegment zwischen #5 und #6 steigt A¢ nur noch un-
wesentlich an. Das heifit, dass die effektive Scherung entlang von Ebenen mit Normalen in
@ =30° und ¢ = 120° startet, dann im Verlauf der Verformung dreht und schlieflich entlang
von Ebenen mit Normalen in ¢ =47° und ¢ = 137° ablauft.

Dabei wird die anfinglich in der Verformung erzeugte Kompressionsdehnung des Steges durch
spitere Dehnungsinkremente teilweise wieder riickgéngig gemacht. Dieser Vorgang lésst sich
anhand des Dehnratentensors darstellen, der als Polarplot in Abb. zu den Zeitpunkten
#1 bis #6 gezeigt ist. In der x-y-Ebene zeigen die Ellipsen der Dehnrate bis #3 durch die
Stegkompression eine Neigung in negative Richtung, die bis zum Zeitpunkt #4 abgebaut wird
und ab dann in eine Neigung in positive Richtung tibergeht (siche Abb. . Dabei gibt es
zu keinem Zeitpunkt eine Dehnratenkomponente zu einer Normaldehnung entlang des Steges
(p=135°).

Diese Rotation der Hauptdehnratenrichtungen ist in Abb. wie fiir den Dehnungstensor,
mittels A¢ dargestellt. Aufgrund der relativ niedrigen Dehnraten zu Beginn der Verformung

sind die Daten bis #3 relativ stark verrauscht. Im Haltesegment zwischen #5 und #6 ist dieser
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Abbildung 4.12: a) Polardarstellung des Dehnratentensors in der x-y-Ebene. b) Polardarstel-
lung des Dehnratentensors in der y-z-Ebene.

Effekt sogar noch stérker ausgeprégt. Dazwischen zeigt sich eine kontinuierliche Rotation der

Hauptdehnratenrichtungen in positive Richtung um ca. 20 °.
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Abbildung 4.13: Drehung des Hauptdehnratenraumes relativ zum x-y-Koordinatensystem.
Diese Drehung beschreibt gleichzeitig die Abweichung der Hauptscherraten-
richtung von der Stegorientierung (entlang 135° und 315 °). Der Verlauf wur-
de zwischen #2 und #5 durch die rote Kurve mit einem smoothing spline
als Orientierungshilfe angepasst.
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4 Ergebnisse

Der Mechanismus, durch den diese Rotation erzeugt wird, ist eine Uberlagerung einer reinen
Scherung entlang des Steges mit einer Kompressionsdehnung senkrecht zum Steg, die im Ver-
lauf der Verformung in eine Dilatation senkrecht zum Steg iibergeht. Schematisch sind der
Kompressions- und der Dilatationsfall in Abb. dargestellt, wo die blaue Scherungsellipse
jeweils mit einer roten Kompressions- bzw. Dilatationsellipse iiberlagert wird. Die resultie-
renden Polardarstellungen entsprechen den Neigungen des Dehnratentensors zu Beginn und

Ende der Verformung.
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Abbildung 4.14: Veranschaulichung der Wirkung einer Uberlagerung von reiner Scherung
(blau) und linearer Abnahme bzw. Zunahme senkrecht zum Steg (rot). Die
Ergebnisse sind rechts (magenta) dargestellt und zeigen eine negative Rota-
tion der Ellipse im Druckfall und eine positive Rotation im Zugfall. Diese
Darstellung gilt allgemein und fiir alle additiven Tensorgroflen.

Diese Ergebnisse zeigen, dass spétestens ab #4 Dilatanz im Steg einsetzt, also eine zeitlich
parallel zur Scherung stattfindende positive Dehnung normal zur Scherebene. Vor #4 lisst
sich der gegenteilige Effekt der Kontraktanz beobachten. Ob dieser eine Folge der Scherdeh-
nung ist, oder rein durch die gleichzeitig stattfindende Relaxation der Korngrenzen erzeugt
wird, ldsst sich anhand der bisherigen Daten aber noch nicht entscheiden.

Die Kontraktanz/Dilatanz ldsst sich iiber das Verhéltnis von Volumendehnung zu Scher-
dehnung mit dem Dilatanzfaktor § quantifizieren. Diese Grofle ist z.B. im plastischen Po-
tential des nicht-assoziierten Drucker-Prager-Flielgesetz enthalten und bestimmt dort die
Abhéngigkeit der Verformung vom hydrostatischen Druck. Aus dem Dehnratentensor ldsst

sich 8 wie in [42] beschrieben iiber

SP(Ep)

\/ 2Edev,p : Edev,p

5= (4.1)
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4.2 Referenzprobe Y4-2

bestimmen, wobei hier fiir die plastische Dehnrate Ep die Ndherung Ep ~ F verwendet wird.
Fiir grofie Dehnungen und/oder im Bereich relativ konstanter Spannungen (ab #4) sollte
die Abweichung zwischen Ep und E verschwinden. Das Ergebnis ist in Abb. gezeigt
und beschreibt zwischen #1 und #4 die erwartete abnehmende Verdichtung des Materials,
welche durch einen negativen Dilatanzfaktor reprasentiert wird. Ab #4 steigt 5 weiter an
und erreicht positive Werte, d.h. es kommt wihrend den Scherdehnungen im Mittel zu einer
Volumenzunahme. Zum Zeitpunkt #4 werden diese aber durch die isotrope Kompression
kompensiert, was sich in der Volumenénderung AV /V (siehe Abb. S. bzw. in der
Dichte (siehe Abb. S. in der beobachteten Stagnation duflert.

0 200 400 600 800
t[s]

Abbildung 4.15: Dilatanzfaktor § aufgetragen gegen die Zeit. Da 3 aus den Dehnraten abge-
leitet ist, ist die Genauigkeit zwischen #3 und #5 am grofiten.

Falls die Normalitéts- und Koaxialitdtsbedingung der Plastizitédtstheorie erfiillt sind, liefert
der Dehnratentensor einen Hinweis auf die Orientierung des Spannungstensors und damit
eine zusétzliche Information zu den bislang unbekannten Spannungskomponenten. Die Ko-
axialitdtsbedingung besagt, dass der Hauptspannungsraum des Spannungstensors und die
Hauptachsen des plastischen Dehnratentensors gleich orientiert sind, was ndherungsweise der
Orientierung des gesamten Dehnratentensors entsprechen sollte (siche Abb. S. oder
Abb. S. . Der Fakt, dass eine deutliche Dilatanz wahrend der Scherung auftritt, lasst
aber Zweifel an der Anwendbarkeit der Normalitdtsbedingung und Koaxialitdtsbedingung
aufkommen, da diese bei dilatierenden, druckabhingigen Materialien hiufig verletzt sind
[42] 163].

Abschlieflend soll das makroskopisch beobachtbare Verformungsverhalten zusammengefasst
werden. Die Komponente in z-Richtung wird dabei nicht mehr betrachtet, da sie der typi-
schen Querdehnung im Druckexperiment entspricht und insgesamt eine untergeordnete Rolle

spielt. In der x-y-Ebene wird der Dehnungszustand nun in angepasster Form anstatt durch
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4 Ergebnisse

E;, Ey und E;, durch die Scherdehnung entlang des Steges E) und die Normaldehnung
senkrecht zum Steg E, ausgedriickt, indem das Koordinatensystem so gedreht wird, dass je
eine Koordinatenachse entlang des Steges bzw. senkrecht dazu steht. Die Normaldehnungen
entlang des Steges sind, wie oben gezeigt, immer null, womit der komplette Dehnungszustand
in der x-y-Ebene mit dieser impliziten Information nur durch £y und FE, ausgedriickt werden
kann. Die Ergebnisse fiir die Dehnungen und Dehnraten sind in Abb. bzw. Abb.
dargestellt.
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©
8015 = N #4
% N I ”5
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200 400 600 800 | —
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Abbildung 4.16: a) Dehnungskomponenten in der x-y-Ebene im an den Steg angepassten
Koordinatensystem. b) Dehnraten zu den Dehnungen in a). ¢) Darstellung
der Orientierung des an den Steg angepassten Koordinatensystems.

Zwischen #1 und #3 nehmen beide Dehnungsmafle in gleichem Mafl zu, wobei bis #2 die
Entwicklung der £, Komponenten geringfiigig schneller erfolgt; hierin findet sich die positive
u, Komponente aus Abb. [£.4a] wieder. Offenbar ist die senkrechte Kompression des Steges zu
Anfang der am leichtesten ablaufende Verformungsmodus. Ab #3 nimmt die Scherrate von
E) zu, wohingegen die von E, abnimmt und dann bei #4 schliellich zum Erliegen kommt.
Die Verformung iiber den Volumenabbau im Steg ist ab dann nicht mehr moglich und wird
komplett {iber Scherverformung realisiert. Ab #4 nimmt F, mit steigender Dehnrate zu, es
kommt also zunehmend zur Dilatation des Steges. Wéahrenddessen nimmt die Scherrate EH

weiter zu und {ibernimmt die komplette Verformung in y-Richtung.
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4.2 Referenzprobe Y4-2

4.2.2 Dehnung und Spannung

Die Gitterdehnungsinformationen der Kérner kénnen {iber die Peakpositionen bestimmt wer-
den, was die Grundlage fiir die Rekonstruktion der Dehnungstensoren darstellt. Details dazu
wurden in Abschnitt (S. diskutiert. Die mittleren elastischen Dehnungen der Korner
werden direkt aus den gemittelten Dehnungstensoren abgeleitet. Die Mittelung muss sowohl
iiber alle Dehnungstensoren zu unterschiedlichen Orientierungen ¢ der priméren hkl-Richtung
erfolgen, als auch iiber die vier priméren hkl-Richtungen 111, 200, 220 und 311. In letzterem
Schritt sind die Flichenmultiplizitéten als Gewichtung zu beachten. Diese mittleren elasti-
schen Dehnungen der kristallinen Phase sind die dquivalente Grofle der Rontgenmessungen
zu den makroskopischen Dehnungsinformationen, enthalten aber nur die elastische Dehnung
der kristallinen Phase. Die Komponenten der so erhaltenen, mittleren Dehnungstensoren
sind in Abb. und als Polarprojektion in Abb. dargestellt. Dariiber hinaus sind in
Abb. die Eintriige des Dehnratentensors gezeigt.
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0 #1
— #2
© .0.005
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-0.015 " L " — -8 . " L " —
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Abbildung 4.17: a) Zeitliche Entwicklung der Eintrége des aus den Rontgendaten abgeleite-
ten elastischen Dehnungstensors der Gitterdehnungen. Die Zeitpunkte #1
bis #6 sind fiir alle Kurven durch die gestrichelten Linien markiert. b) Zeit-
liche Ableitungen der Kurven aus a), also die Eintrége des elastischen Dehn-
ratentensors. Die Dehnratenkurven wurden hier iiber ein Zeitintervall von
18 s per gleitendem Durchschnitt gegléattet.

Die Dehnungen nehmen zwischen #1 und #4 stark und dann ab #4 bis #5 nur noch langsam
zu, wobei maximale Dehnungswerte von ~ 1.3 % erreicht werden. Die Dehnraten haben bei #3
ein Maximum, was dem Bereich des stiarksten Kraftanstiegs entspricht. Ab #5 sind auflerdem
Dehnungsrelaxationen als Folge der Spannungsrelaxation bei stehendem Motor zu sehen, vor
allem in den Diagonalenelementen e, und &,.

Die Messunsicherheit dieser Gréflen kann anhand der Gréfle des Konfidenzintervalls fiir die
Gitterdehnungen aus der WPPM abgeschétzt werden, die in Abb. fiir alle Reflexe, jeweils
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4 Ergebnisse

iiber den gesamten Streukegel gemittelt, dargestellt sind. Der daraus berechnete Mittelwert
iiber alle hkl ist ebenfalls dargestellt und liefert den gesuchten Schitzwert fiir die Unsicherheit.

Diese betréagt iiber die gesamte Messung hinweg nur wenige Prozent des gesamten elastischen

Dehnungswertes.
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Abbildung 4.18: a) Polardarstellung der elastischen Dehnung der Kristalle in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. b) Polardarstellung der elastischen Dehnung
der Kristalle in der y-z-Ebene zu den Zeitpunkten #1 bis #6.
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Abbildung 4.19: Messunsicherheiten der Gitterdehnungen aus den hkl-Peaks. Die Messun-
sicherheiten zu jedem Zeitpunkt sind jeweils iiber alle Polarwinkelseg-

mente gemittelt. Die Mittelwert iiber alle hkl (lila) beriicksichtigt die
Fliachenmultiplizitéiten als Gewichtungsfaktor.
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Eine Zerlegung in isotrope Volumendehnung (Abb. und Deviator (Abb. ist auch
hier wieder mdglich, wobei auf die Darstellung des Deviators in der y-z-Ebene verzichtet wird.
Die isotrope Volumendehnung €;5, nimmt bis #4 betragsméfig zu, wobei ein relativ geringer
Wert von ~ —0.055 % erreicht wird, und dann bis #5 wieder leicht ab. Im Relaxationssegment
folgt €i5o der Abnahme von ¢, und €.

Der Deviator (Abb. ist wegen der geringen Werte von ¢;5, fast identisch zum Dehnungs-
tensor. Wie zuvor ldsst sich auch hier die Orientierung der Hauptachsen des Dehnungstensors
und des Deviators in der x-y-Ebene durch den Winkel A¢ darstellen (sieche Abb. . Zu
Beginn liegt das Maximum des Dehnungstensors bei » —40°. Das heifit, dass die Haupt-
kompressionsrichtung fast senkrecht auf dem Steg steht, was seinerseits eine Signatur der
anfinglichen dominanten Kompression senkrecht zum Steg darstellt. Zwischen #1 und #2
dreht das Maximum auf » —10°, steigt bis #3 auf ~ —6° an und &ndert sich im Folgenden nur

noch geringfiigig; im Gegensatz zum Befund bei der makroskopischen plastischen Dehnung.
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Abbildung 4.20: a) Zeitliche Entwicklung der isotropen Dehnung &;4,. b) Polardarstellung des
Dehnungsdeviators in der x-y-Ebene zu den Zeitpunkten #1 bis #6.
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Abbildung 4.21: Drehung des Hauptdehnungsraumes relativ zum x-y-Koordinatensystem.

Diese Drehung beschreibt gleichzeitig die Abweichung der elastischen Haupt-

scherrichtung der Kristallite von der Stegorientierung.
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4 Ergebnisse

Wie schon die makroskopischen Dehnungen, haben auch die elastischen Gitterdehnungen
zu allen Zeiten einen gemeinsamen Nulldurchgang, der hier jedoch bei 131.5° bzw. 311.5°
in der x-y-Ebene liegt (siehe Abb. und damit zum makroskopischen Fall um -3.5°
rotiert ist. Damit ergibt sich auch hier die Moglichkeit, den kompletten Dehnungszustand in
der x-y-Ebene durch einen senkrechten und parallelen Dehnungsteil €, und ¢ darzustellen,
wobei das Bezugssystem um -3.5° zur Stegrichtung geneigt ist (siehe Abb. . Auch in
der elastischen Dehnung der Kérner dominiert die Scherdehnung entlang des Steges iiber die
Kompressionsdehnung. Bis #4 nehmen beide Anteile betragsméflig zu, jedoch nimmt ab #4
die Kompressionsdehnung ¢, wieder leicht ab, wohingegen ¢ weiter zunimmt. Ab #5 ergibt

sich in beiden Féllen die bekannte Signatur der Relaxation.

Weder bei g;4,, noch bei g, tauchen wihrend der gesamten Verformung positive Dehnungswer-
te auf. Das Volumen der kristallinen Kérner im Steg nimmt also durch elastische Dehnungen

wahrend der Verformung nicht zu.
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Abbildung 4.22: a) Dehnungskomponenten in der x-y-Ebene im an den Steg angepassten
Koordinatensystem. Hier ist das Koordinatensystem um —-3.5° zum Steg
rotiert. b) Dehnraten zu den Dehnungen in a). Die Zeitpunkte #1 bis #6
sind fiir alle Kurven durch die gestrichelten Linien markiert.

Wie im Methodikteil beschrieben (sieche Abschnitt S. , werden neben den Dehnungs-
tensoren auch die Spannungstensoren aus den Gitterkonstanten abgeleitet, die analog zu den
Dehnungstensoren gemittelt werden kénnen und in Abb. bzw. in Polardarstellung in
Abb. dargestellt sind. Die Unsicherheit der Spannungen kann aus der Unsicherheit der
Dehnungen zu < 0.08 GPa abgeschéitzt werden. Die mittleren Spannungstensoren verhalten
sich, wie fiir den elastischen Fall zu erwarten, proportional zu den Dehnungstensoren, da die
Mittelung der Tensoren die statistische Isotropie des Polykristalls herstellt. Dadurch sind auch

die elastischen Eigenschaften der kristallinen Phase im Mittel isotrop und die Hauptachsen
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4.2 Referenzprobe Y4-2

von Spannungs- und (elastischem) Dehnungszustand koaxial. Im Unterschied zu den Deh-
nungen in z-Richtung sind die Spannungswerte hier negativ, wobei der Betrag der Spannung
stets klein ist. Der Grund dafiir ist die Art der Berechnung der z-Komponente der Tensoren,
wodurch das Vorhandensein eines Rutschkegels in der y-z-Ebene im Steg beriicksichtigt wer-
den soll, und damit eine Abweichung von der Spannungsfreiheit in z-Richtung erzeugt wird.
Die Orientierung des Spannungstensors in der x-y-Ebene entspricht der des Dehnungstensors
und hat damit den gleichen Verlauf wie in Abb. dargestellt.
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Abbildung 4.23: a) Zeitliche Entwicklung der Eintrége des aus den Réntgendaten abgeleiteten
Spannungstensors. Die Zeitpunkte #1 bis #6 sind fiir alle Kurven durch
die gestrichelten Linien markiert. b) Zeitliche Ableitungen der Kurven aus
a). Die Kurven wurden hier iiber ein Zeitintervall von 18s per gleitendem
Durchschnitt gegléttet.

Anders als bei den Dehnungen, gibt es bei den Spannungen keinen konstanten Nulldurch-
gang bei 131.5° bzw. 311.5°, was durch einen signifikanten hydrostatischen Druckanteil (siehe
Abb. verursacht wird, der nicht vollstdndig durch Scherspannungen in der 131.5° bzw.
311.5 °-Richtung kompensiert wird. Betrachtet man den Spannungsdeviator (Abb. , in
dem der hydrostatische Druckanteil fehlt, findet sich wieder ein {iber weite Teile quasi kon-
stanter Nulldurchgang. Die grofiten Scherspannungen wirken also in den Kérnern durchweg
entlang des Steges.

Offensichtlich dréangt sich der Vergleich zwischen der im Experiment gemessenen Kraft in
y-Richtung und der entsprechenden aus dem Spannungstensor errechneten Kraft auf (vgl.
GlL. , S. . Das Ergebnis davon ist in Abb. dargestellt und und weist zwischen
#3 und #5 eine deutliche Diskrepanz zwischen den beiden Kriften auf; also in dem Be-
reich, in dem der grofite Teil der plastischen Verformung stattfindet. Hier liegt die Annahme
zu Grunde, dass die Spannungen im gesamten Material, also in kristalliner Phase und in

den Korngrenzen, identisch sind, woraus eine Uberschiitzung der Kraft resultiert. Aus dieser
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Abbildung 4.24: a) Polardarstellung der elastischen Spannung der Kristalle in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. b) Polardarstellung der elastischen Spannung
der Kristalle in der y-z-Ebene zu den Zeitpunkten #1 bis #6. Angaben in
GPa.
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Abbildung 4.25: a) Zeitliche Entwicklung der isotropen Spannung o;s,. b) Polardarstellung
des Spannungsdeviators in der x-y-Ebene zu den Zeitpunkten #1 bis #6.
Angaben in GPa.

Uberschiitzung folgt, dass die tatséchlichen Spannungen in den Korngrenzen geringer als in
den Kornern sein miissen.

Da nur eine Kraftmessung in einer Richtung vorliegt, ist eine genaue Bestimmung der dreidi-
mensionalen Kréfte bzw. Spannungen in den Korngrenzen nicht méglich. Der Spannungsten-

sor kann im Hauptspannungsraum auf die drei Diagonalenelemente reduziert werden, sodass
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Abbildung 4.26: Vergleich der zeitlichen Entwicklung der Kraft in y-Richtung aus der Mes-
sung mit der Kraftdose und der Spannungsanalyse aus den Rontgendaten.
Letztere entspricht dem Fall, dass das Gesamtmaterial nur aus der kristalli-
nen Phase besteht oder dass die Korngrenzen mechanisch identisch zu den
Kornern sind.

fiir diese Bestimmung theoretisch zwei weitere, linear unabhéngige Kraftmessungen notwen-
dig wéren, z.B. in x- und z- Richtung. Praktisch gestaltet sich das schwierig, denn aulerhalb
des Steges sind die Krifte in x-Richtung durch den Rollwagen null und damit nicht mess-
bar. In z-Richtung resultieren die Kriifte im Steg aus der Einspannung des Steges durch das
restliche Material. Auch hier existieren auflerhalb des Steges praktisch keine makroskopisch

messbaren Krifte mehr.

Eine weitergehende, quantitative Analyse ist somit nur unter der korrigierten Annahme
moglich, dass die Spannungszustéinde in den Kérnern und den Korngrenzen verschieden sind.
In diesem Zuge bietet sich die Aufspaltung des Spannungstensors in den hydrostatischen
Druck und den Spannungsdeviator an, denn der hydrostatische Druck in den Kérnern und
in den Korngrenzen muss identisch sein. Die Abweichung der Krifte, und damit der Span-
nungen, beruht damit ausschlielich auf einem Unterschied in den deviatorischen Anteilen
der Spannungen. Da nur eine Kraftmessung zur Verfiigung steht, wird der Deviator Ggey. tor
des Gesamtmaterials aus dem der Koérnern (G4¢,.) abgeleitet, indem er mit einem Fitfaktor
x multipliziert wird, sodass die Kréfte in y-Richtung aus der Spannungsrechnung und der
Messung iibereinstimmen. Fiir den Spannungstensor des Gesamtmaterials ;4. erhilt man

damit

5'tot =0jso0 " 1+ Edev,tat =0iso L+ X 5'dev- (42)
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Dieses Vorgehen stellt aus oben genannten Griinden eine starke Vereinfachung dar, da die
Abweichungen der Scherspannungen in den Korngrenzen in dieser Rechnung immer isotrop er-
folgen, ohne dass diese Annahme anhand der Messungen iiberpriift werden kann. Andererseits
erlaubt dieses Vorgehen wenigstens eine mogliche, konsistente Beschreibung der vorliegenden
Daten. Der Wertebereich von y ist bei der Anpassung auf das Intervall [0.6, 1.5] beschrénkt.
Dahinter steht die Uberlegung, dass die Korngrenzen im Extremfall gar keinen Scherwider-
stand besitzen und damit die Scherspannungen null sind. Der Flichenanteil der Korngrenzen
betrigt bei den iiblichen Korngréfienverteilungen im Stegquerschnitt ca. 40 %, sodass die Mi-
schungsregel fiir die Gesamtspannung eine maximale Absenkung auf 0.4-0+(1-0.4)-0 =0.6-0
ergibt. Fiir die Begrenzung nach oben existiert kein solches Argument fiir den Wertebereich
von x, sodass pragmatisch ein Wert gewéhlt wurde, welcher hoherer ist als das Maximum
von x iiber alle Anpassungen. Der Fall x < 1 beschreibt also eine geringere Scherspannung
in den Korngrenzen als in den Kristallen, was fiir die Plastizitét auf einen niedrigeren Scher-
widerstand hinweist. Umgekehrt ist bei y > 1 die Scherspannung in den Grenzen héher und
damit auch der Scherwiderstand in ihnen. Bei x = 1 gilt die urspriingliche Annahme, dass

Spannungen in Kristallen und Grenzen identisch sind.
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Abbildung 4.27: a) Vergleich der zeitlichen Entwicklung der Kraft in y-Richtung aus der Mes-
sung mit der Kraftdose und der Spannungsanalyse aus den Roéntgendaten
nach der Skalierung des Spannungsdeviators der Kérner mit x. Der Faktor
x diente hier als Fitparameter, sodass beide Kurven perfekt iibereinander
liegen. b) Wert des Skalierungsfaktors y in Abhéngigkeit der Zeit. Wer-
te kleiner Eins entsprechen einer Absenkung der Scherspannungen in den
Korngrenzen.

Die aus den so angepassten Spannungen berechneten Gesamtkrifte in y-Richtung sind in
Abb. dargestellt und beschreiben die Messung durch den zusétzlichen Freiheitsgrad
exakt. Die zugehorigen Werte fiir y sind in Abb. [£.27h] dargestellt. Im Bereich bis #2 sind

die Spannungs- und Kraftwerte noch sehr niedrig, sodass die Werte von x hier relativ wenig
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Aussagekraft besitzen und daher nicht weiter beriicksichtigt werden. Zwischen #2 und #3
ist x nahezu konstant bei einem Wert von 0.93 und fillt dann bis kurz vor #4 auf 0.83
ab. Die Scherspannungen in den Korngrenzen sind damit niedriger als in den Kristallen und
fallen am Anfang der Verformung weiter ab, womit auch der Scherwiderstand in den Grenzen
entsprechend abfallen sollte. Ab #4 nehmen Scherspannungen und der Scherwiderstand in
den Grenzen bis #5 wieder zu und erreichen einen Wert von 0.97. Einerseits kann das auf
eine Verfestigung der Grenzen im Verlauf der Verformung hindeuten, andererseits kann dieser
Effekt auf Kornwachstum und dem damit verbunden Abbau von Korngrenzen, herriihren.

Waéihrend des Haltesegmentes bleibt x dann konstant.

Aus 04y kann nun eine Spannungs-Dehnungs-Kurve bestimmt werden, indem oy, gegen
E, aufgetragen wird (siehe Abb. . Zusétzlich sind in Abb. die Spannung in y-
Richtung in den Koérnern und die von Mises-Vergleichsspannung o, aufgetragen. Letztere
stellt das Spannungsmaf} dar, welches in vorherigen Arbeiten aus der FEM abgeleitet wurde

[25], 130} [186] und nach [42] aus dem Spannungstensor mit

1
04 = \/; \/(011 —022)? + (022 — 033)% + (033 — 011)% + 6(07, + 0% + 033) (4.3)

berechnet werden kann. Das Modell hinter der von Mises-Vergleichsspannung geht von der
Unabhéngigkeit des Verformungsverhaltens von der hydrostatischen Spannungskomponente
aus und eliminiert diese folgerichtig aus o,. Es handelt sich daher um ein skalares Mafl des
Spannungsdeviators, genauer um o, = \/3_I§, wobei I, = 1/ 20 dev,ij0dev,ij die zweite Invariante
des Spannungsdeviators ist. Im vorliegenden Fall wird dadurch spétestens ab #3 jede expe-
rimentell messbare Spannungskomponente deutlich {iberschéitzt, wenn auch die Spannung in

y-Richtung davon qualitativ richtig beschrieben wird.

Bis zu #3 verhalten sich alle Kurven anniéhernd gleich. Zwischen #1 und #2 findet eine
geringe Spannungszunahme statt und die Kurven sind links-gekriimmt, was direkt einem
anfanglich elastischen Verhalten widerspricht. Danach gehen die Kurven bis #3 in einen
linearen Anstieg zu hoheren Spannungen iiber, der sich anschlieffend zwischen #3 bis #4 zu-
nehmen verlangsamt. Das duflert sich in einem deutlichen, rechts-gekriimmten Abknicken der
Spannungs-Dehnungs-Kurven. Zwischen #4 und #5 weicht die Fortentwicklung der Spannun-
gen in den Kristalliten qualitativ von der im Gesamtmaterial ab. Wihrend in den Kristalliten
nur noch eine sehr schwache Spannungszunahme bei hohen Spannungen zu beobachten ist,
nehmen die kleineren (Scher)Spannungen im Gesamtmaterial, also vor allem in den Korn-
grenzen, weiterhin deutlich zu. Im Haltesegment zwischen #5 und #6 kommt es dann {iberall
gleichermaflen zu einer Spannungsrelaxation.

In vorhergehenden Arbeiten wurden die Spannungs-Dehnungs-Kurven {iblicherweise in drei
Bereiche unterteilt (siche z.B. [30} [186]), wobei der Bereich von #1 bis #3 als linear elastisch,
der Bereich zwischen #3 und #4 als mikroplastisch und der Bereich zwischen #4 und #5
als (makro)plastisch bezeichnet wurde. Der elastische und der makroplastische Bereich wa-

ren aufgrund des zur Auswertung benutzten FEM Modells immer linear. Zusétzlich wurden
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Abbildung 4.28: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in y-
Richtung. Als Spannungsmafle sind sowohl die Spannungen in den Kérnern
als auch die des Gesamtmaterials, sowie die von Mises-Vergleichsspannung
angegeben.

die Proben vor der Messung mit 50N vorbelastet, was in der hier gezeigten Messung dem
Punkt #2 entspricht. Dadurch erfolgte der nichtlineare Anfangsbereich der Verformung fast
komplett in der Vorbelastung und wurde im eigentlichen Verformungsexperiment nicht mehr
beobachtet.

Wenn die Normalitdtsbedingung der Plastizitéitstheorie erfiillt ist, miissen die Hauptachsen
von Spannungstensor und (plastischem) Dehnratentensor koaxial sein. Um das zu iiberpriifen,
ist die Orientierung des Spannungstensors gemeinsam mit der des makroskopischen Dehnra-
tentensors in Abb. in Form von A¢ aufgetragen. Es zeigt sich, dass sich diese in der
Regel deutlich voneinander unterscheiden, mit Ausnahme des Bereiches zwischen #2 und
#3. Hier ereignet sich der grofite Spannungsanstieg, wodurch der grofite Anstieg von elasti-
schen Dehnungen verursacht wird. Der Anteil der elastischen Dehnrate der Gitter an F ist in
diesem Bereich somit besonders hoch und da die Hauptachsen von € und o zu jeder Zeit gleich
orientiert sind, ist auch die Orientierung der Hauptachsen von F und o in diesem Bereich
allein durch den elastischen Beitrag dhnlicher. Daraus zu schlussfolgern, dass hier kurzzeitig

die elastische Verformung das Geschehen dominiert, ist aber falsch.

Vergleicht man dazu die elastischen Gitterdehnraten und die makroskopischen Dehnraten zum

Zeitpunkt #3, stellt man fest, dass die makroskopischen die elastischen deutlich iibersteigen.
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Abbildung 4.29: Drehung des makroskopischen Hauptdehnratenraumes und des Hauptspan-
nungsraumes relativ zum x-y-Koordinatensystem.

Konkret ist zum Zeitpunkt #3 E/é| = 4.9 und E, /¢, = 6.5. Es sind also weiterhin Plasti-
zitdtsprozesse aktiv, welche die plastische Verformung aufrechterhalten. Ein elastischer Bei-
trag der Korngrenzen allein konnte diese Diskrepanz nicht erkldren, da in diesem Fall die
elastischen Konstanten der Korngrenzen weniger als 10 % der elastischen Konstanten im Git-

ter betragen miissten.

Des Weiteren kann mit Hilfe des Skalierungsfaktors x und dem Flidchenanteil der Korngren-
zen Agg/A der mittlere Spannungszustand in den Korngrenzen abgeschéitzt werden. Der
Fléchenanteil der Korngrenzen Agq/A lisst sich aus den Korngréfienverteilungen und der
Ausdehnung der Korngrenzen in Richtung ihrer Fldchennormale § bestimmen. In [6] wurde
d ~ 0.8 nm abgeschitzt, sodass sich fiir Y4-2 ein Flichenanteil der Korngrenzen Axg/A ~ 40 %

ergibt. Fiir den Spannungsdeviator in der Korngrenze 04, k¢ erhélt man

X_(l_AKG/A))‘ (44)

5-dev KG = Edev : (
’ AgalA

Die Gesamtspannung in den Korngrenzen ergibt sich, indem man hydrostatische Spannung
und Spannungsdeviator addiert. Die abgeschétzten mittleren Gesamtspannungen in den Korn-
grenzen i in der x-y-Ebene sind in Abb. dargestellt. Die Unsicherheit von ¢
aufgrund von Unsicherheiten in Agg/A, x und G4e, ldsst sich konservativ auf +0.15 GPa
abschétzen. Bei den Spannungen in den Korngrenzen fallt besonders auf, dass positive Nor-
malspannungen entlang der Hauptzugspannungsrichtung erst viel spéter (nach #4) auftreten

als in den Kérnern; dort war das spatestens ab #3 der Fall. Die Korngrenzen stehen also in
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der x-y-Ebene ldngere Zeit als die Korner unter allseitigem Druck. Das Einsetzen von po-
sitiven Zugspannungen in den Korngrenzen tritt gleichzeitig mit dem Anfang der positiven
Steigung von FE;s, und dem Ende des Volumenabbaus auf, wodurch ein weiteres Indiz dafiir

geliefert wird, dass die Korngrenzen fiir die Volumenénderungen im Steg verantwortlich sind.

135 45

AW #

wo| (e
=r

270

o

Abbildung 4.30: Polardarstellung der mittleren Spannung der Korngrenzen in der x-y-Ebene
zu den Zeitpunkten #1 bis #6. Angaben in GPa.

Es zeichnet sich also folgendes Bild ab: Bis zum Zeitpunkt #4 lduft ein Verformungsme-
chanismus ab, der im Zusammenspiel mit allen anderen eine makroskopische Kontraktanz
erzeugt, die senkrecht zum Steg erfolgt. Vermutlich handelt es sich dabei um eine mechanisch
induzierte Relaxation im Zusammenspiel mit weiteren Prozessen, welche dominant Scher-
dehnungen erzeugen. Diese Scherprozesse kénnen aufgrund des geringeren Scherwiderstandes
auch in den Korngrenzen ablaufen, wie z.B. Schertranformationen oder Korngrenzenglei-
ten. Dieser Mechanismus oder dieses Zusammenspiel erschopft sich bis #4 und der Dila-
tanzfaktor f nimmt den Wert null an. Die Koaxialitdtsbedingung ist dabei im Allgemeinen
verletzt. Das heif3t, dass einfache kontinuumsmechanische Materialgesetze, welche die Nor-
malitéitsbedingung (und Koaxialitédtsbedingung) enthalten, grundsétzlich ungeeignet zur Be-
schreibung des Verhaltens von nanokristallinem PdggAuyg sind. Anstatt der Skalierung mit
x hétte man eine Anpassung des Spannungstensors an die Kraft in y-Richtung auch durch
eine Drehung des Deviators um die z-Achse erreichen konnen. Die dafiir benttigte Drehrich-
tung ist aber entgegengesetzt der Drehrichtung von A(b(E), sodass dieser Ansatz weniger
naheliegend erscheint. Die Normalitdtsbedingung kénnte damit in keinem Fall herbeigefiihrt
werden.

Des Weiteren weisen die Ergebnisse darauf hin, dass eine Uberlagerung verschiedener Plas-
tizitdtsmechanismen existieren muss, die besonders zu Beginn der Verformung eine Volu-

mendnderung erzeugen, welche durch typische Plastizitdtsmechanismen in den Kérnern nicht
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erreicht werden kann. Weder Versetzungsgleiten, noch eine Anderung der Stapelfehler- oder
Zwillingsdichte erzeugen bei fcc Metallen eine Volumenénderung. Der volumenéndernde Me-
chanismus muss also entweder komplett in den Korngrenzen ablaufen, oder Teile des Volumens
der kristallinen Phase und des Korngrenzenvolumens ineinander umwandeln. Wegen des Ex-
zessvolumens in den Korngrenzen kann dadurch netto eine Volumendnderung herbeigefiihrt
werden. Moglich ist auch eine Uberlagerung verschiedener Prozesse in der Korngrenze, bei
der die Volumendnderung durch die Relaxation und die Scherung durch Korngrenzengleiten
oder Schertransformationen erzeugt wird. Bei letzteren tritt zwar eine Volumenéinderung im

transienten Zustand auf, diese wiirde aber eine zeitlich begrenzte Volumenzunahme bewirken.

Nach #4 setzt makroskopische Dilatanz ein. Entweder dreht sich der Relaxationsprozess um,
oder das Zusammenspiel aller anderen Prozesse fithrt zu einem 8 > 0. Hinweise auf solche
Prozesse, bzw. kooperativ ablaufende Prozesse, werden im Folgenden behandelt. Zunéchst
sollen aber in Vorbereitung darauf die ungemittelten Spannungs- und Dehnungsinformationen

aus der Rontgenstreuung im Detail diskutiert werden.

Die Dehnungen und Spannungen in der x-y-Ebene, sowie ihre zeitliche Entwicklung, kénnen in

dem Programm Tensor Viewer vollstéindig in Augenschein genommen werden (siche Anhang

A3 s. o).

4.2.3 Dehnungen und Spannungen der Kiristallite im Detail

In diesem Abschnitt wird nur eine Auswahl von Spannungs- und Dehnungszustdnden vor-
gestellt, denn die schiere Menge an einzelnen Spannungs- und Dehnungstensoren aus den
Rontgenstreuungen macht eine vollsténdige Diskussion unmoglich. Schon bei den reduzierten
Ausgangsdaten gibt es 90 Winkelsegmente, in denen die priméren hkl-Richtungen von jeweils
4 (111, 200, 220, 311) Spannungs- und Dehnungstensoren liegen kénnen. Selbst wenn man
durch Ausnutzung der Symmetrie die Anzahl der Winkelsegmente auf 45 reduzieren wiirde
und nur die Tensoren zu den Zeitpunkten #1 bis #6 betrachtet, blieben 1080 unterschied-
liche iibrig. Im Folgenden wird also nur eine Auswahl besonders instruktiver Beispiele fiir
die Referenzprobe Y4-2 vorgestellt, alle anderen kénnen mit dem Visualisierungsprogramm
Tensor Viewer (siehe Datentréiger) dargestellt werden (siehe Anhang S.[394).

In diesem Kontext bieten sich als Beispiele die Tensoren zum Zeitpunkt #3 und #4 an. Die
Tensoren davor bzw. danach unterscheiden sich hauptséachlich durch die Betrige der Eintréige,
weisen aber qualitativ keine grofien Unterschiede zu denen bei #3 bzw. #4 auf. Auflerdem
wird als primére hkl-Richtung jeweils nur die Hauptdruck- und Zugrichtung betrachtet, sowie
die Richtung, die normal auf der Scherebene steht. In den folgenden Polarplots in Abb. [4.31]bis
sind links (a, ¢) die Spannungs- bzw. Dehnungstensoren dargestellt und rechts davon (b,
d) ihre Zerlegung in Deviator und isotropen Anteil. Letzterer wird durch einen gestrichelten
Kreis reprasentiert und vereinfacht den Vergleich des Betrages des isotropen Anteils mit dem

Deviator.
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Die Dehnungen und Spannungen der Korner, deren gemeinsame hkl-Richtung zum Zeitpunkt
#3 in Druckrichtung ausgerichtet ist, sind in Abb. gezeigt. Die Dehnungen entlang der
Druckrichtung sind fiir die verschiedenen hkl-Richtungen sehr unterschiedlich und entspre-
chen in ihrer Reihenfolge den elastischen Hérten der Korner in diese Richtung von hart (111)
zu weich (200). Die isotrope Stauchung ist in allen Fillen sehr gering und liegt fast auf
der Nullline. Folglich entspricht der Dehnungsdeviator nahezu exakt dem Dehnungstensor.
Dieser Befund wiederholt sich fiir alle kommenden Dehnungstensoren. Die Reihenfolge bei
den Spannungen in Druckrichtung ist erwartungsgeméfl genau umgekehrt wie bei den Deh-
nungen, wobei nur die Spannung der 200-Koérner deutlich von den iibrigen abweicht. Die
hydrostatische Druckspannung ist hier deutlich von null verschieden und unterscheidet sich
nur geringfiigig zwischen den hkl. Diese kleinen Unterschiede geniigen jedoch, dass im Devia-
tor die Reihenfolge der Spannungen in Druckrichtung etwas deutlicher hervortritt. Insgesamt

sind die Spannungszustédnde der verschiedenen hkl aber recht dhnlich.

90 90
135 0/01 45 135 0/01 45
prim. prim.
—111 —111
180 0 —200 180 0 —200
—220 —220
—311 —311
225 315 225 315
270 270
(a) (b)
90 90
135 1 45 135 1 45
0
prim. prim.
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180 0 —200 180 0 —200
—220 —220
—311 —311
225 315 225 315
270 270
(c) (d)

Abbildung 4.31: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #3. c¢) und d) zeigt das gleiche fiir Spannungen.
Die Orientierung der priméren hkl-Richtung — hier in Druckrichtung — wird
durch die orange Linie markiert.
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Ist die primére hkl-Achse in Zugrichtung orientiert (siehe Abb. [4.32)), sind im Prinzip alle
zuvor in Druckrichtung getéitigten Aussagen weiterhin giiltig; lediglich das Vorzeichen dreht

sich um.

prim.
—111
0 —200
—220
—311
225 315 225 315
270 270
(a) (b)
90 90
135 1 45 135 1 45
0
prim. prim
—111 —111
180 0 —200 180 0 —200
—220 —220
—311 —311
225 315 225 315
270 270

() (d)

Abbildung 4.32: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #3. ¢) und d) zeigt das gleiche fiir Spannungen.
Die Orientierung der priméren hkl-Richtung — hier in Zugrichtung — wird
durch die orange Linie markiert.

Ein anderes Bild prisentiert sich bei Ausrichtung der priméren hkl-Richtung entlang der
Scherebenennormalen (siehe Abb. . Hier sind alle Dehnungstensoren bzw. Deviatoren
identisch und haben einen Nulldurchgang in Richtung Scherebenennormalen. Sie beschreiben
also alle gleichartige Scherungen entlang einer gemeinsamen Scherebene. Die entsprechenden
Spannungstensoren sind dagegen aufgefichert. Betrachtet man den Deviator und den iso-
tropen Anteil, so fillt auf, dass die isotrope Kompression in allen Fillen identisch ist, der
Unterschied in den Spannungstensoren ist also ausschliefflich ein Effekt der Scherspannungen.

Anders als bisher, sind hier die gréfiten Spannungswerte bei 200 zu finden, wohingegen 111
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die geringsten Spannungswerte aufweist. Das ist eine direkte Konsequenz der unterschiedli-
chen effektiven Schermodule der verschieden orientierten Korner; entlang 200-Ebenen ist eine
elastische Scherung besonders schwierig, entlang von 111-Ebenen besonders leicht. Dieses Re-
sultat ist insbesondere im Hinblick auf mogliche Versetzungsbewegungen interessant, denn
die dazu notige Scherspannung héngt linear vom Schermodul ab; unter anderem deswegen
sind die 111-Ebenen i.d.R. auch die bevorzugten Gleitebenen. Die Ergebnisse hier zeigen aber,
dass die Scherspannungen entsprechend der unterschiedlichen Schubmodule mitskalieren (die
Dehnungen sind in allen Féllen identisch), sodass der Aspekt der unterschiedlichen Schub-
module entlang dieser Scherebenen seine Bedeutung verliert. Es existieren natiirlich weitere
Faktoren wie Burgers-Vektorldnge, Ebenenabstdnde etc., welche den Scherwiderstand fiir
Versetzungsgleiten mitbestimmen. Dennoch weisen diese Ergebnisse darauf hin, dass neben
den iiblichen {111}(110)-Gleitsystemen weitere, eigentlich ungiinstigere, vermutlich leichter

aktiviert werden konnen, als es gewOhnlich der Fall ist.
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Abbildung 4.33: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Deh-
nung (gestrichelt) zum Zeitpunkt #3. ¢) und d) zeigt das gleiche fiir Span-
nungen. Die Orientierung der priméren hkl-Richtung — hier in entlang der
Scherebenennormalen — wird durch die orange Linie markiert.
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Nach den Tensoren zum Zeitpunkt #3 sollen nun diejenigen zum Zeitpunkt #4 in glei-
cher Abfolge betrachtet werden, beginnend mit der priméren hkl-Richtung in Druckrichtung
(Abb. . In den Spannungen gibt es keinen grundlegenden Unterschied zu vorher, ledig-
lich die Betrige der Spannungswerte sind hier wegen der hoheren Belastung durchweg grofler
und die Abweichung von 200 zum Rest tritt noch deutlicher hervor. Die Reihenfolge der
Spannungen in Druckrichtung hat sich jedoch im Vergleich zu vorher umgedreht, auf den ei-
gentlich hértesten Ebenen lastet nun die geringste Spannung und auf den eigentlich weichen
311-Ebenen die hochste. Insgesamt sind die Spannungsunterschiede in Druckrichtung aber
geringer als zuvor. In Zugrichtung (~ 170°) fachern die Spannungen aber viel stirker auf als
noch bei #3. Ein Blick auf den Spannungsdeviator und den hydrostatischen Druck zeigt, dass
diese Anderungen vollstéindig durch unterschiedliche hydrostatische Spannungen erklirt wer-
den; zuvor waren diese fiir alle hkl quasi identisch. Eine mogliche Ursache dafiir ist, dass die
Querdehnungen der 200-Ko6rner grofler sind, als bei allen anderen. Eine Behinderung dieser
Querdehnung fithrt im vorliegenden Fall automatisch zu einer Erhhung der hydrostatischen
Spannung in diesen Kérnern. In den 111-Kérnern ist der Anstieg der hydrostatischen Span-
nung aufgrund der geringeren Querdehnung entsprechend am geringsten. Es sei hier daran
erinnert, dass ab #4 der Dilatationsfaktor positiv ist. Nimmt man nun an, dass die Dilatati-
on ausschlielich in den Korngrenzen stattfindet, wire deren Volumenzunahme eine mogliche
Ursache fiir die stidrkere Behinderung der elastischen Querdehnung der Kérner. Umgekehrt
konnte man vor diesem Hintergrund die durchweg sehr &hnlichen hydrostatischen Spannungs-
werte bzw. dhnlichen Spannungswerte in Zugrichtung zum Zeitpunkt #3 interpretieren: Die
kompaktierenden Korngrenzen sorgten fiir ein Abpuffern der elastischen (Quer-)Dehnungen
der Koérner. Lediglich die grofien Dehnungen in 200 Richtung iiberstiegen mit iiber 1% Deh-

nung die anfinglich vorhandene Kapazitit an linear kompaktierbarem Volumen.
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Abbildung 4.34: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #4. ¢) und d) zeigt das gleiche fiir Spannungen.
Die Orientierung der priméren hkl-Richtung — hier in Druckrichtung — wird
durch die orange Linie markiert.

Ist die primére hkl-Richtung in Zugrichtung orientiert (Abb. , zeigt sich ein dhnliches
Bild: Eine weitere Auffacherung der Dehnungen korreliert mit wesentlich stérker voneinander
abweichenden Spannungswerten, die durch unterschiedliche hydrostatische Driicke erzeugt
werden.

Im Fall der entlang der Scherebenennormalen orientierten, priméren hkl-Richtung

(Abb. [4.36)) treten im Vergleich zu #3 die geringsten Anderungen auf. Lediglich eine etwas

hohere Abweichung der hydrostatischen Driicke in den verschieden ausgerichteten Kérnern
l&sst sich feststellen.

Zusammenfassend lisst sich feststellen, dass die zuvor nachgewiesene Anderung des Verfor-

mungsverhaltens auch in den einzelnen, aus der WPPM-Anpassung extrahierten Spannungs-
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Abbildung 4.35: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Dehnung
(gestrichelt) zum Zeitpunkt #4. ¢) und d) zeigt das gleiche fiir Spannungen.
Die Orientierung der priméren hkl-Richtung — hier in Zugrichtung — wird
durch die orange Linie markiert.

und Dehnungstensoren, deutliche Signaturen hinterlédsst. Zwischen #3 und #4 ist dieser
Ubergang am deutlichsten, weshalb die Diskussion der Einzeltensoren anhand dieses Bei-
spiels durchgefiihrt wurde. Dabei zeigen sich zwar interessante Details, im Grunde werden
aber nur die zuvor schon bestehenden Befunde bestétigt. Da die Betrachtung von Einzeltenso-
ren schnell ausufernd wird, wird im Folgenden darauf verzichtet, sofern sich keine zusétzlichen
Erkenntnisse daraus ableiten lassen. Abschlielend sei aber noch darauf hingewiesen, dass die
scheinbare Koaxialitéit der gezeigten Spannungs- und Dehnungstensoren keinesfalls ein typi-
sches Ergebnis ist und dass darauf basierend nicht geschlossen werden kann, dass die elastische
Anisotropie hier nicht beobachtbar ist. Der Eindruck entsteht dadurch, dass bisher nur aus-

gezeichnete primére hkl-Richtungen beriicksichtigt wurden. Weicht man von diesen ab, sind
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Abbildung 4.36: a) Dehnung und b) die Zerlegung in Dehnungsdeviator und isotrope Deh-
nung (gestrichelt) zum Zeitpunkt #4. ¢) und d) zeigt das gleiche fiir Span-
nungen. Die Orientierung der priméren hkl-Richtung — hier in entlang der
Scherebenennormalen — wird durch die orange Linie markiert.

die Hauptachsen von Spannungs- und Dehnungstensor in der Regel nicht mehr koaxial und
die Abweichungen héngen von hkl ab. Als Beispiel sind in Abb. Dehnungen (a) und
Spannungen (b) zum Zeitpunkt #4 mit primérer hkl-Richtung in 60 °-Richtung gezeigt, wo

offensichtlich keine Koaxialitat mehr besteht.

Die Daten zu den Gitterdehnungen kénnen in dem Programm Tensor Viewer vollstdndig in
Augenschein genommen werden (siehe Anhang S. 1394).
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Abbildung 4.37: a) Dehnung und b) Spannungen zum Zeitpunkt #4. Die Orientierung der
priméren hkl-Richtung wird durch die orange Linie markiert.

4.2.4 Intensitat

Als néchstes wird die iiber den gesamten aktiven Bereich des Detektors integrierte Energie
Ep bzw. Intensitéit der gestreuten Rontgenstrahlen betrachtet, deren Anderung ein MaB fiir
die Anderung der Anzahl aller streuenden Atome N darstellt; die Richtungsinformation bleibt
bei dieser Betrachung zunéchst aulen vor. Die Proportionalitdt Ep o< N gilt aber nur dann,
wenn die Intensitéitsverteilung {iber den Streuwinkel 26 unverindert bleibt, da ansonsten alle
streuwinkelabhéngigen Terme im Vorfaktor der Intensitéit bzw. Fp (z.B. Atomformfaktor,
Polarisationsfaktor, Lorentz-Faktor, usw.) die Gesamtintensitit beeinflussen kénnen. Wenn
sich also eine Textur ausbildet, ist Ep o< N nicht mehr streng erfiillt. Gleiches gilt, falls
es zu einer Anderung der Anteile von Korngrenz- und Kristallvolumen kommt, da dadurch
Intensitdt aus dem schmalen 26 Bereich der Peaks in den diffusen Untergrund umverteilt wird

oder umgekehrt.

Die Gesamtenergie Ep ist in Abb. iiber den kompletten zeitlichen Verlauf der Verfor-
mung aufgetragen und zeigt einen monotonen Anstieg bis #5 und ab dann eine Stagnation
bis #6. In Abb. ist zusétzlich eine einfache Abschiitzung der Entwicklung der Gesamt-
energie auf Grundlage der geometrischen Verdnderung des Steges dargestellt (Abschétzung).
Dabei wurde die relative Anderung der Dichte des Materials, die Zunahme des durchstrahl-
ten Volumens durch die Dehnung in z-Richtung, sowie die erhdhte Absorption durch die
groflere Materialdicke in z-Richtung beriicksichtigt. Dehnungen in x- und y-Richtung sind

nur indirekt durch die Dichtednderung relevant, da die Flédche des durchstrahlten Volumens
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in der x-y-Ebene durch die konstante Strahlgeometrie unverindert bleibt. Konkret gilt fiir

die Anderung der Gesamtintensitit aufgrund der Absorption:

I(t) = 1(0) exp (=p p(t) b (1 + E.(1))). (4.5)

Hier ist p der Absorptionskoeffizient, p die Dichte und b die Anfangslinge des Steges in
Strahlrichtung. Die gestreute Intensitéit I, ist proportional zu der Anzahl der streuenden

Atome und der momentanen Intensitét, also:
L(t) o< I(t) p(t) (1+ E. (). (4.6)
Fiir die zeitliche Entwicklung der gestreuten Intensitéit I gilt also mit Gl. (4.5) und Gl. (4.6):

1= 1(0) Apf—((ff (14 B()) (1—exp (- b(p(t) (1 + Bo() = p(0))).  (47)
Die Abschitzung stimmt mit den Rohdaten bis knapp iiber 400s (zwischen #4 und #5)
sehr gut iiberein und liefert damit eine unabhéngige Bestitigung dafiir, dass die Rekonstruk-
tion der Stegdehnung aus den Kameradaten in diesem Bereich akkurat ist. Umgekehrt ist
damit auch gezeigt, dass der Anstieg der Gesamtintensitit in der Streuung bis zu diesem
Punkt ein rein geometrischer Effekt ist. Danach kommt es zu Effekten, die oben genannte

Voraussetzungen verletzen.

3 700
l i l — Detektor roh J
2.995 | — Detektor roh 1 600 [ —Peaks .
—_ 4 1 Untergrun
g9 ApSchamng : 500 —7ps
— — ——Polynom
> 2.985 = 400t__\yppm Summe #1
— LIJD 300 | —Abschatzung #2
N 2.98 a4 200 \ X
2.975 100 44
2.97 ] 45
2.965 — : 1 100 Ll L
0 200 400 600 800 0 200 400 600 800

t[s] t[s]

() (b)

Abbildung 4.38: a) Integrierte Gesamtenergie auf dem aktiven Bereich des Detektors und die
Abschitzung aus der Geometrieinderung des Stegbereiches. b) Anderung
der GroBlen aus a) und Zerlegung der Energieinderung aus der WPPM-
Anpassung (WPPM Summe) in Einzelbeitrége.

In Abb. [4:38H] ist die Energieinderung AFEp sowohl aus den Rohdaten, als auch aus der
Abschitzung und der WPPM-Anpassung (WPPM Summe) aufgetragen. Fiir Letztere sind
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aulerdem die zeitlichen Entwicklungen der verschiedenen Bestandteile der WPPM darge-
stellt, also der Beitrag der Bragg-Peaks, der TDS und des restlichen Untergrundes (Compton-
Streuung, monotone Laue-Streuung), sowie der Teil des Untergrunds, der in der WPPM durch
das Polynom 2. Grades beschrieben wird (Polynom). Das ist der Teil, der auch dann vorliegt,
wenn keine Probe im Strahl ist, also durch andere Effekte wie z.B. Luftstreuung, Detektor-

rauschen, etc. erzeugt wird und nur schwach von der Probe beeinflusst wird.

Zunéchst fillt auf, dass die Gesamténderung AFEp in allen Féllen im Vergleich zur Gesamt-
energie relativ gering ist und unterhalb von 3 % liegt. Zur Gesamtenergie triagt der durch das

Polynom beschriebene Untergrund ca. 3/4 bei.

Die modellierte Gesamtenergie iibersteigt die aus den Rohdaten extrahierte iiber die gesamte
Verformung hinweg deutlich (AEp > 0), ist aber ebenfalls monoton wachsend. Ihre einzel-
nen Bestandteile zeichnen ein komplexeres Bild. Zunéchst sinkt der Anteil der Intensitit aus
den Peaks bis #3 und wéchst dann stark an bis #5, wohingegen die beiden Untergrundbe-
standteile (TDS und Untergrund) einen entgegengesetzten Trend aufweisen. Da TDS und
Untergrund im Modell aneinander gekoppelt sind, ist das zwangsweise der Fall. Im Modell
wird also anfidnglich Intensitédt aus den Peaks in den Untergrund umverteilt. Der Polynom-
Untergrund zeigt bis knapp oberhalb von 400s (zwischen #4 und #5) eine leichte negative
Steigung und nimmt dann bis #5 rapide zu. Das stimmt mit dem Zeitpunkt iiberein, in dem
auch die einfache, geometrische Abschitzung beginnt von den Rohdaten abzuweichen. Im
Zuge dessen nimmt auch der Unterschied zwischen der WPPM Summe und den Rohdaten
zu, was den Schluss nahelegt, dass wihrend der plastischen Verformung zwischen #4 und
#5 ein neuer Mechanismus in der Probe einsetzt, der die Rontgenstreuung beeinflusst, aber
nicht korrekt in der WPPM beriicksichtigt wurde.

Denn diese ist trotz deutlicher Umverteilung von Intensitéit zwischen den verschiedenen An-
teilen iiber die Verformung hinweg offenbar nicht in der Lage, die Intensitét der Rohdaten
exakt zu reproduzieren. Stattdessen kommt es zu einer systematischen Uberschétzung, vor
allem oberhalb von 400s. Aufgrund der Freiheitsgrade der WPPM-Anpassung in Bezug auf
die Gesamtintensitdt und die relativen Intensitdten der Peaks kann dieses Verhalten nicht
nur durch eine einfache Texturbildung erklirt werden. Genauso ist eine Anderung der Unter-
grundintensitit als Ursache fiir die Félle ausgeschlossen, die sich mit dem Polynom 2. Grades
in den oben gelisteten Grenzen darstellen lassen (siehe Tabelle S. . Es gibt also im
Detail Effekte in der Probe, die eine Umverteilung von Intensitéit in 260-Richtung bewirken,
die durch das WPPM-Modell systematisch nicht korrekt abgebildet werden.

Betrachtet man die Intensitdtsabweichungen fiir jedes Polarwinkelsegment Ay getrennt, zeigt
sich tiber den gesamten Verformungsprozess hinweg ein sechszihliges Muster (siehe Abb. .
Zwischen #1 und #4 bleiben die relativen Abweichungen in ihrer Polarwinkelabhingigkeit
stabil mit einer Gesamttendenz zu negativen Werten. Zwischen #4 und #5 tritt dann eine
starke Anderung auf, die an den Orten der vorherigen Maxima nun vergleichsweise stark

ausgeprigte Minima aufweist.
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#1
#2

#4

Abbildung 4.39: a) Polardarstellung der Abweichung der Energie auf dem Detektor zur
WPPM (AFE) in den Polarsegmenten zu den Zeitpunkten #1 bis #6.
b) Residuum aus der WPPM-Anpassung zu den Zeitpunkten #1 bis #6.

Vergleicht man diese Intensitédtsabweichungen mit den Residuen aus der WPPM-Anpassung
(siehe Abb. , zeigt sich in den Féllen ab #5 ein direkter Zusammenhang zwischen
groflen Intensitdtsabweichungen und grofiem Residuum, also schlechter Anpassungﬂ Bis #4
ist dieser Zusammenhang praktisch nicht vorhanden.

Um eine mogliche Ursache dieser auffilligen Abweichungen zu identifizieren, sollen nun drei
Diffraktogramme und ihre Anpassungen zum Zeitpunkt #5 betrachtet werden. Diese Dif-
fraktogramme (siehe Abb. stammen aus den Winkelsegmenten ¢ = 50°, ¢ = 82° und

¢ = 134° und représentieren folgende drei Fille:
e ¢ =50°: starke Intensitdtsabweichung, grofles Residuum
e © =82°: kleine Intensitdtsabweichung, mittleres Residuum
e o =134°: kleine Intensitdtsabweichung, kleines Residuum

Die Anpassungen reproduzieren in allen Fillen die wesentlichen Merkmale der Diffraktogram-
me. Ein durchgéngiges Problem stellt der 220-Peak dar (3. von links), der in allen Féllen von
der WPPM-Anpassung iiberschéitzt wird, vor allem im Bereich der rechten Flanke. Die deut-
lichen Abweichungen im Bereich des 111-Peaks werden durch die hohe Intensitét dieses Peaks
und seine steilen Flanken erzeugt und bestehen in dhnlicher Form bei allen Anpassungen. Der
entscheidende Unterschied zwischen den drei Anpassungen liegt aber darin, dass fiir ¢ = 50°
das Diffraktogramm durch die Anpassung insgesamt iiberschitzt wird, also die AEp Kurve
hauptsédchlich unterhalb von null liegt. Bei ¢ = 82° ist das schwécher ausgepridgt und bei
@ =134° ist AFEp relativ gleichméfiig um null verteilt.

8 Schlecht® ist hier im Vergleich zu den vorherigen Anpassungen zu verstehen.

272



4.2 Referenzprobe Y4-2

11k Rohdaten | 1k Rohdaten |
) — WPPM ’ — WPPM
1 - 1
09|
(oX: J
Z o7}
o
w osf
05
04 .
03} .
02 .
01 L N " L L
3 4 5 6 7 8
20[°]
012 4 5 6 7 8 ‘
- & -
: -y _
— 0 Wﬁ% — o0 %
[a) o fa) L % -
4 : 9 ! g )
¥ ! E
d ; - 4 -
-0.1 -0.1
(a) =50° (b) ¢ =82°
il Rohdaten |
' — WPPM
1Pk
09|
08|
= o7
[a]
w06
05
04
03}
02f
0.1 L L
3 4 5 6 7 8
201[°]
012 4 5 6 7 8
[ 2
— 0 - - - Y
- NT!%— v AP
4 i
-0.1

(c) p=134°

Abbildung 4.40: Diffraktogramme und ihre WPPM-Anpassung zum Zeitpunkt #5 aus drei
unterschiedlichen Polarwinkelsegmenten (sieche auch WPPM-Fit Viewer).
Zusétzlich ist die Abweichung AFEp dargestellt, deren Verlauf jeweils durch
ein Polynom 9. Grades angepasst wurde.
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Zur genaueren Untersuchung wurden die AEp Kurven in Abb. mit einem Polynom 9.
Grades angepasst, wodurch der Verlauf von AFEp erfasst wird, ohne jedoch die Abweichungen
in den Peakflanken zu beriicksichtigen. In Analogie zu den Diffraktogrammen handelt es sich
hier sozusagen um den Untergrund der Abweichungen AFEp. Die Fits sind in Abb. in
hoherer Auflésung in AFEp aufgetragen. Im Fall von ¢ = 50° trigt der Untergrund der Abwei-
chung allein bereits 72 % der gesamten Abweichung bei und ist damit hauptverantwortlich fiir
die in Abb. (S. gezeigten, p-periodischen Abweichungsminima. Die Abweichungen

in den Peakflanken sind also nicht entscheidend.

0.01 :
—p = 134°
—p =82°
— 0.005 o5

20 [°]

Abbildung 4.41: Detailansicht der Fits an AEp aus Abb.

Die Form der welligen AEp Verldufe in Abb. entspricht keinem in der WPPM-Anpass-
ung enthaltenen Modellbestandteil. Eine Anpassung dieses Verlaufs ist damit grundsétzlich
nicht moéglich und verlangt nach einer Erweiterung des Modells um einen offenbar fehlenden
Bestandteil. In der WPPM-Anpassung, wie sie in dieser Arbeit zum Einsatz kommt, wird eine
Minimierung des Residuums dadurch erreicht, dass die Intensitdt der Rohdaten iiberschétzt
wird, wodurch die Auswirkung dieses fehlenden Modellbestandteils minimiert wird. Das be-
deutet, dass die in Abb. gezeigten AFEp keine akkurate Abbildung des Intensitétsprofils
des fehlenden Bestandteils sind und nur einen Anhaltspunkt fiir die Natur desselben liefern. In
diesem Sinne erinnern die AFEp an eine an der x-Achse gespiegelte Signatur von Streuung an
amorphen Materialien, deren breite Maxima charakteristisch fiir die Verteilung von néchsten
Nachbarabsténden sind [62]. Die Spiegelung an der x-Achse wird durch die Uberschiitzung
der Intensitét durch die WPPM-Anpassung verursacht.

In der verwendeten WPPM-Anpassung ist kein Modell fiir Streuung an einer amorphen Phase
enthalten. Das Vorhandensein von Nichtgleichgewichtskorngrenzen fithrt aber lokal sicherlich
dazu, dass amorph erscheinende Anordnungen von Atomen in Richtung des Streuvektors

existieren, die eine wellige, schwach ausgeprigte Signatur im Beugungsbild erzeugen kénnten.
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Der damit am néchsten verwandte Bestandteil der WPPM-Anpassung ist die TDS, die prin-
zipiell auch statische Verriickungsschwankungen abbilden kann. Sie ist jedoch hier immer in
Bezug auf Kristallgitter gerechnet, was zu ausgeprégten Spitzen im Bereich der hkl-Reflexe
im Streubild und konkaven Flanken der TDS-Maxima fiihrt (siehe Abb. S. . Beide

Merkmale treten bei der Streuung an amorphen Materialien nicht auf.

Es sei darauf hingewiesen, dass die Amplitude dieser Schwankung in A Fp selbst zum Ende der
Verformung noch sehr gering ist. Dennoch lésst sie sich auch schon zu Beginn der Verformung
feststellen, wo die Residuen noch deutlich kleiner sind. Die Wellenform ist dann mit noch

geringerer Amplitude symmetrisch um die Nulllinie verteilt.

Allerdings erklért die Streuung an amorphen Strukturen nur einen geringen Teil von AFEp
in Abb. (S. , und insbesondere nicht die Unterschiede zwischen den verschiedenen
Winkeln . Das Thema wird spéater wieder aufgegriffen, zuvor muss jedoch ein anderer Aspekt

der Intensitat betrachtet werden.

Eine robuste und instruktive Grofle, die sich aus der Intensitdt ableiten ldsst, ist die rela-
tive Intensitdtsédnderung eines hkl-Peaks in einem Winkelsegment wihrend der Verformung
(Inkt = (Inkr,#1)e)- Die BezugsgroBe (Ipx41), ist die iiber alle p-Segmente gemittelte Inten-
sitit des Peaks hkl zu Beginn der Verformung (#1), die fiir alle Polarwinkelsegmente gleich
ist und so Vergleiche zwischen verschiedenen Polarwinkelsegmenten erlaubt. Bei einer Nor-
mierung auf die Anfangsintensitéit des jeweiligen Winkelsegmentes wire diese Eigenschaft
nicht erfiillt. Um die Intensitidten verschiedener Peaks im Sinne von Alt = AEp o< AN zu
interpretieren und miteinander zu vergleichen, ist es auflerdem notwendig, den 260 und hkl-
abhingigen Einfluss des Vorfaktors aus den Intensitdtsdnderungen herauszurechnen. Hier
wird eine vereinfachte Variante benutzt, in der in jedem Zeitschritt fiir jeden hkl-Peak der
iiber ¢ gemittelte Vorfaktor (V Fjy), verwendet wird. Da nur der Vergleich zwischen den In-
tensitéten verschiedener Peaks, nicht jedoch deren Absolutwerte, von Interesse sind, werden
die modifizierten Intensitéiten I’ mit ((V Fj)o/(V Fi11),) " skaliert. Der 111-Peak dient hier

als frei wahlbarer Bezugspunkt und es gilt

I’ = (Ing = Ikt 1)) - ((V Frrt)o/(V Fin ) )~ (4.8)

Es sei noch einmal betont, dass dieser Schritt essenziell fiir die Vergleichbarkeit iiber verschie-
dene Peaks hinweg ist und ein Auslassen desselben teilweise vollig falsche Eindriicke in Bezug
auf die Anzahl streuender Atome erwecken kann. Die so skalierten I’ Werte sind nicht mehr
direkt mit den vorherigen Intensititswerten Vergleichbalﬁ7 stellen dafiir aber ein direktes Maf

fir AN dar.
Modifizierte Intensitéiten I’ sind fiir die Zeitpunkte #1 bis #6 in Abb. dargestellt und

zeigen Anderungen von bis zu 40 % im Verlauf der Verformung. Abweichungen von der An-

fangsintensitdt sind am deutlichsten zu den Zeitpunkten #5 und #6 ausgepréigt, wo sich

4Mit Ausnahme des 111 Peaks natiirlich.
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Abbildung 4.42: Integrale Intensitétsanderungen AI" = (Ing — (Inki,#1)0 )/ ((V Frit)o/(V F111) )
bezogen auf den Anfangszustand (#1) (siehe Text). Gezeigt sind die Inten-
sitdtsénderungen zu den Zeitpunkten #1 bis #6.

eine @-periodische Schwankung ausgebildet hat, wie sie prinzipiell z.B. auch schon in [2§]
fiir 111, 200 und 220 beobachtet wurden. Diese Strukturen bilden sich zwischen #4 und #5
aus. Zwischen #3 und #4 entwickelt sich eine davon verschiedene, einfachere Struktur von
Minima/Maxima in den Hauptdruck- und/oder Hauptzugrichtungen. Vor #3 findet praktisch
keine Anderung statt. Die Texturbildung ist also ein zweistufiger Prozess, der zunichst eine
Ubergangsstruktur bildet und dann ab #4 die endgiiltige Intensitiitsverteilung ausbildet.

Positive Werte von I’ bedeuten fiir den jeweiligen Peak, dass mehr Atome Teil der entspre-
chenden hkl-Ebenen in Streubedingung sind. Das kann einerseits durch eine Umorientierung
der Korner, andererseits durch selektives Kornwachstum entsprechend orientierter Korner be-
wirkt werden. Eine Unterscheidung dieser beiden Anteile ist, rein auf Grundlage der integralen
Intensitdten, nicht moglich und wird im Zusammenhang mit den Korngréflenauswertungen

wieder aufgegriffen.
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Abbildung 4.43: a) Intensitéitsinderung AI’ zu den Zeitpunkten #4 und #5 fiir hkl = 111.
Die Lage der zur Berechnung der Texturentwicklung verwendeten Maxima
wird durch die farbigen Linien markiert, wobei die Bedeutung der Farben wie
in Abbildungsteil (b) ist. b) Intensitétsdifferenzen lokaler Maxima fiir hkl =
111. Diese Grofe ist ein Maf fiir die Textur im Steg und zeigt die zeitliche
Entwicklung des Ubergangs- und Endzustandes. Der Ubergangszustand ist
durch AI7;; = AI{;;(82°) charakterisiert und der Endzustand durch AI{;; =
Al (54°) - AT}, (82°).

Die vier hkl-spezifischen Intensititsmuster aus Abb. [£.42]entwickeln sich synchron zueinander,
sodass es fiir eine Quantifizierung dieser Texturbildung ausreichend ist, die Entwicklung der
Maxima fiir einen einzelnen hkl-Reflex iiber die Zeit zu verfolgen. Hier wird dafiir der Fall
hkl = 111 gewhlt, da damit eine einfache Unterscheidung des Ubergangs- und Endzustandes
moglich ist. Das Maximum des Ubergangszustandes befindet sich in Hauptdruckrichtung
bei ¢ = 82°, sodass ein Maf fiir die Auspriigung des Ubergangszustandes die Intensitit des
Maximums in diesen Richtungen ist, also AI{;; = Al{;;(82°). Der Endzustand unterscheidet
sich vom Ubergangszustand fiir hkl = 111 dadurch, dass das Maximum bei ¢ = 82° zu einem
lokalen Minimum wird und u.a. bei ¢ = 54° ein neues lokales Maximum entsteht. Um ein
Maf fiir die zeitliche Entwicklung nur dieser zweiten Komponente zu erhalten, kann man
die Differenz dieses neuen Maximums zum neuen Minimum (alten Maximum) nutzen, also
AlI{y; = AI{1;(54°) = AI{;,(82°). In Abb. ist die zeitliche Entwicklung des Ubergangs-

und Endzustandes zusammen mit der Lage der Intensitdtsmaxima dargestellt.

Die Entwicklung des Ubergangszustandes findet hauptsiichlich zwischen #2 und #4 statt,
also parallel zur Zunahme der Druckbelastung. Ab #4 setzt dann die Ausbildung des End-

zustandes ein, die kontinuierlich bis #5 erfolgt.
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An dieser Stelle bietet sich ein Riickbezug auf das Problem der Abweichungen der Intensitéit
aus den Rohdaten und der WPPM-Anpassung an, denn die Positionen der Maxima der 111-
Intensitétsinderung sind identisch mit den Positionen dieser Abweichungen (vgl. Abb.
S. . Das legt die Vermutung nahe, dass die Ursache der Abweichung der modellierten
Intensitidten von den Rohdaten in der Modellierung der Intensitéit des 111-Peaks liegt. Diese
ist gleichzeitig der Skalierungsfaktor des gesamten modellierten Diffraktogramms; die Inten-
sitédten der restlichen Peaks ergeben sich aus den bekannten Vorfaktoren. Um die Bildung einer
Textur zu beriicksichtigen, konnen der 200-, 220- und 311-Peak iiber die Faktoren iy skaliert
werden. Damit diese Faktoren nicht die Rolle des Debye-Temperaturfaktors ﬁbernehmenﬂ
wird die Ahnlichkeit ihres Verlaufs zu dem des Debye-Temperaturfaktors bestimmt und dar-
aus der Zusatzterm Pr in Gl. (S. abgeleitet. Wenn sich die Intensitét durch die
Texturbildung in einem Winkelsegment so dndern, dass die entsprechenden ipx; eine hohere
Ahnlichkeit zu einem maglichen Verlauf des Debye-Temperaturfaktors aufweisen, fithrt das zu
einer Erhohung von Pj, wodurch die Anpassung scheinbar schlechter wird. Spéater wird man
sehen, dass die Debye-Temperatur in der Anpassung mit Aufkommen der Textur physikalisch
unsinnige Werte annimmt um diesen Effekt zu kompensieren. Diese Wechselwirkung in der
WPPM-Anpassung ist leider zu spét aufgefallen, sodass eine Korrektur dieses ungewollten

Effektes aus Zeitgriinden nicht mehr moglich war.

Die Intensitéitsmaxima und -minima der gezeigten hkl-Reflexe sind in verschiedenen Ori-
entierungen nicht unabhéngig voneinander, sondern iiber die Kristallstruktur miteinander
gekoppelt. Dieser Umstand wurde zuvor bei der Berechnung der Dehnungstensoren aus den
Gitterdehnungen ausgenutzt. In diesem Zusammenhang wurden bereits in Abb. (S.
und in Tabelle (S. die Winkelbeziehungen der verschiedenen Ebenen zueinander an-
gegeben, die hier wieder bei der Interpretation der Intensitéitsverteilung zum Zeitpunkt #Eﬁ
zur Anwendung kommen werden. Die deutlichsten Intensitéitséinderungen gehen vom 220-
und 200-Peak etwa in Druckrichtung aus (¢ ~ 82°); im Fall von 220 liegt dort ein Maxi-
mum in der Intensitétsinderung vor und bei 200 ein Minimum. Beide Anderungen sind also
komplementér zueinander. Daher wird zunéichst folgende, vereinfachende Hypothese genutzt:
Allen beobachteten Intensitéitséinderungen ist gemein, dass sie iiber solche Umorientierun-
gen/Kornwachstum zustande kommen, dass die Intensitét des 220-Peaks in Druckrichtung
erhoht wird oder die des 200-Peaks verringert wird. Dadurch geniigt es in erster Ndherung,
220 und 200 entlang der Druckrichtung als primére hkl-Richtung zu betrachten. Alle {ibrigen
Intensitéitsinderungen sollten sich dann aus den h'k’l’-Beziehungen zu dieser Primérrichtung
ergeben. Bei der Berechnung der Dehnungstensoren war es unerheblich, welche Kombina-
tionen von sekundiren h'k’l" gleichzeitig vorliegen koénnen; das ist hier anders. Daher wird

die aus Abb. (S. [221)) bekannte Darstellung fiir die 220-Primérrichtung in ihre fiinf

®Das wiirde praktisch immer passieren, denn die inx; sind in der Anpassung flexibler als ein einziger Debye-
Temperaturfaktor.
67u diesem Zeitpunkt ist die Textur besonders ausgeprigt.
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Bestandteile (A bis E) zerlegt, von denen jeder eine Kombination von gleichzeitig die Streu-
bedingung erfiillenden Ebenen im Kristall reprisentiert. In Abb. ist links der Bestand-
teil fiir 220-Primérrichtung aus Abb. wiedergegeben und die Zerlegung davon ist rechts
dargestellt. Fiir die sekundéren h'k’l’-Richtungen sind aulerdem die Miller’schen Indizes an-
gegeben. Zusétzlich ist in der Mitte die hkl-Richtung entlang des Rontgenstrahls, in die
Zeichenebene hinein, dargestellt. Die Bestandteile A bis E kénnen durch Rotation um die
primére 220-Richtung ineinander iiberfithrt werden. Dabei besitzen A und B eine zweifache
Rotationssymmetrie und C, D und E eine vierfache. Entscheidender ist aber die Anzahl der
Permutationen der Miller’schen Indizes der Normalenvektoren, die die tatsdchliche Multipli-
zitdt der Komponenten verraten. Hier sind dann auch die Fille beriicksichtigt, bei denen die
primére Richtung entlang einer kristallographisch dquivalenten Richtung orientiert ist, z.B.
220 anstatt 220. Damit ergeben sich folgende Multiplizititen: A 12, B 6, C 8, D 24, E 24.

o
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Abbildung 4.44: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primére 220-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

In Abb. ist das gleiche wie in Abb. fiir 200 gezeigt. Hier existieren nur drei ver-
schiedene Zerlegungen F, G und H, wobei F eine zweifache und G und H eine vierfache
Rotationssymmetrie bei Drehungen um 200 besitzen. Fiir die Multiplizitidten gilt: F 6, G 12,
H 18. Die Komponente F ist eine um 45° um 001 gedrehte Variante von Komponente B, hier

wurde also nur die primére hkl-Richtung vertauscht.
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Abbildung 4.45: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primére 200-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

SchlieBlich sei hier noch die Zerlegung fiir den Fall angegeben, dass die primére Richtung 111
ist. Hier existieren zwei grundsétzlich verschiedene Zerlegungen I und J mit den Normalen-
vektoren vom Typ 110 und 211 (siche Abb. [£.46). Genau genommen kénnte die Zerlegung I
in zwei einzelne Zerlegungen mit Normalenvektor 110 und 110 aufgespalten werden, die durch
eine 180 °-Drehung um die 111-Achse ineinander iiberfiihrt werden kénnen. Die Situation ist
aber schon so uniibersichtlich genug, weshalb darauf verzichtet wird. Auf die Wiedergabe
des komplexen Falls mit 311-Primérrichtung wird hier ebenso verzichtet; der Anschaulichkeit

wére damit nicht geholfen.
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Abbildung 4.46: Zerlegung der Winkelbeziehungen verschiedener Ebenen in Bezug auf eine
primére 111-Ebene in Komponenten von gleichzeitig streuenden Ebenen.

Mit diesen Schablonen konnen jetzt die Beziehungen zwischen den Intensitdtsinderungen
untersucht werden. Dazu wurden Letztere fiir den Zeitpunkt #5 in einem gemeinsamen Po-
lardiagramm in Abb. (links) zusammengefasst; rechts davon sind die Zerlegungen A
bis J gezeigt. Hier wurde zwecks besserer Ubersichtlichkeit auf die Wiedergabe der Inten-

sitdtsédnderungen von den hkl-Primérrichtungen verzichtet, die in der jeweiligen Zerlegung
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keine Rolle spielen. In einem ersten Schritt wird Abb. [£.47] mit der einfachsten Annahme
betrachtet, dass alle Komponenten A bis E, bzw. F bis H mit gleicher Wahrscheinlichkeit
auftreten. Dann sollten die Positionen der Maxima mit denen {ibereinstimmen, die in den
Zerlegungen A bis E angegeben sind. Die der Minima sollten mit denen aus den Zerlegun-
gen F bis H iibereinstimmen. Dort wo sich Maximum und Minimum der selben Peakin-
tensitéit iiberlagern, sollte die Gesamtbilanz eine Intensitdt nahe null ergeben. Das alles ist
niherungsweise erfiillt, insbesondere wenn man beachtet, dass das Maximum/Minimum ent-
lang der priméren hkl-Richtung (¢ ~ 82°) relativ breit ist. Die groben Merkmale werden also

schon mit dieser einfachen Betrachtung erfasst.

Abbildung 4.47: (links) Intensitéiten I’ zum Zeitpunkt #5 der verschiedenen hkl. (rechts)
Wiederholung der Darstellung links, wobei fiir jede der Komponenten A bis
J die primére hkl-Richtung in Richtung des 220-Maximums ausgerichtet ist.
Die hkl-Komponenten, die in einer Zerlegung nicht vorkommen, wurden aus
den I' Darstellungen entfernt.
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Fiir eine exaktere Analyse kann auf dieser Idee aufbauend ein Programm zur Anpassung der
Intensitatsverteilung erstellt werden. Als Fitparameter dienen die modifizierten Intensitéiten
I’ der Komponenten A bis J, die sowohl in der priméren als auch in allen sekundéren Rich-
tungen gleichermaflen Beitrdge zur Intensitdt beisteuern. Die kompletten Verteilungen aus
Abb. (links) ergeben sich dann aus der Addition aller Teilbeitrige. Um den kompletten
Bereich des 220-Intensitéitsmaximums in Druckrichtung zu erfassen, ist auflerdem eine Va-
riation der priméren hkl-Richtung aller Komponenten notwendig. Diese Variation sollte auf
einen Wertebereich beschrinkt bleiben, in dem es nicht zu doppelten/uneindeutigen Inten-
sitétsbeitragen kommt. Dreht man beispielsweise die primére 220-Richtung um (¢ = 60°),
wird die primére 220-Richtung in Komponente C identisch zu einer vorher sekundiren 022-
Richtung. Um diese Fille zu vermeiden, sollte die Winkelvariation d¢ nicht den kleinsten
vorkommenden Winkel zwischen primédren und sekundiren hkl-Richtungen iiberschreiten.
Der kleinste relevante Winkel ist hier zwischen der 111- und 220-Richtung mit Ay = 35.264 °;
die 311-Richtung ist nicht Teil des Modells und kann daher vernachldssigt werden. Aus tech-
nischen Griinden wird die Variation hier zwischen —38° und +38° relativ zu einer mittle-
ren priméren hkl-Richtung in 1°-Schritten durchgefiihrt; die globale, mittlere primére hkl-
Richtung entspricht etwa dem Maximum der 220-Intensitdt in Druckrichtung und ist eben-
falls ein Fitparameter. Zusétzlich wird iiber einen weiteren Parameter eine isotrope Inten-
sitdtszunahme beriicksichtigt, was aufgrund der Dichtezunahme notwendig ist. Als technischer
Unterbau dient eine modifizierte und vereinfachte Variante der WPPM-Anpassung (siehe
Datentrager: Texture_fit_3.m, texture_builder_3.m oder Tabelle S. . Die Ergebnis-
se dieser Anpassungen sind fiir die Intensitétsdnderungen zum Zeitpunkt #5 in Abb.
dargestellt und zeigen, in Anbetracht des einfachen Modells (enthilt z.B. keine priméren

311-Richtungen), eine hervorragende Reproduktion der Messdaten.

Die Fitparameter liefern ein Ma$ fiir die Beitrige der Komponenten A bis J in den verschiede-
nen Orientierungen, dargestellt in Abb. Diese Parameterkombinationen liefern offenbar
eine gute Beschreibung der Messdaten, es kann aber nicht garantiert werden, dass diese Er-
gebnisse eine eindeutige oder global optimale Losung darstellen. Aufgrund der groflien Anzahl
an Fitparametern und der Komplexitit der Abhingigkeiten sind diese Nachweise nicht einfach
durchfiihrbar und eine Diskussion anhand der Korrelationsmatrix fiihrt hier nicht weiter, da
sie grofler als 700x700 wére. Davon abgesehen liefern die Ergebnisse zumindest eine mogliche
Erkldrung der Daten und geben einen Einblick in die damit verbundenen Orientierungsver-

teilungen.

Zunichst fallt auf, dass der grofite Teil der Intensitdtsédnderung von nur zwei Komponenten
stammt: E und H (siehe Abb. . Beide liefern ca. um eine Groflenordnung héhere Beitrige
als die restlichen Komponenten und sind damit hauptverantwortlich fiir das Maximum (220)
und Minimum (200) in Druckrichtung, sowie das dazu senkrechte Maximum in der 311-
Intensitit. Die Komponenten A bis D sind in Abb. dargestellt. A und C sind annihernd

symmetrisch um die mittlere primére hkl-Richtung verteilt und zeigen jeweils zu beiden Seiten
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Abbildung 4.48: Gemessene Intensititsidnderungen AI’ zum Zeitpunkt #5 (schwarz) und An-
passungen (rot) fiir die vier verschiedenen hkl-Beitrige. Die schwarz darge-
stellten Daten sind identisch zu denen, die in Abb. (links) dargestellt
sind.

ausgeprigte Maxima. Im Fall von C existiert ein zusétzliches, drittes Maximum bei kleinen
Winkeln. Die Komponente D ist relativ schwach ausgepriagt und weist ein Minimum unterhalb
der mittleren priméren hkl-Richtung auf. Komponente B weicht von allen anderen dadurch
ab, dass sie um die mittlere primére hkl-Richtung durchgehend null ist und erst an den

Réandern zwei klar definierte Maxima aufweist.

Insgesamt bewirken diese Verteilungen, dass in den Bereichen der maximalen Hauptdruck-
spannung tendenziell 111- und 220-Intensitédten zunehmen und im Bereich der maximalen

Hauptzugspannung die 311-Intensitdten zunehmen. Gleichzeitig nehmen die 111-Intensitéiten
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Abbildung 4.49: Beitréige der verschiedenen Komponenten A bis J zur Intensitéitsdnderung
AT’ fiir verschiedene Polarwinkelorientierungen der primiren hkl-Achsen.
Die globale, mittlere Orientierung der priméren hkl-Richtung ist durch die
graue vertikale Linie markiert.

in den Richtungen zu, in denen tendenziell hohe Scherspannungen an den 111-Ebenen an-
greifen. Die Zunahme der 200-Intensitéten erfolgt zwischen diesen ausgezeichneten Rich-
tungen, wobei die Zunahme im Bereich der Zugspannungen hoher ist als im Bereich der
Druckspannungen. In Summe erfolgt diese Umorientierung bzw. das Wachstum der Koérner
derart, dass eine minimale Zunahme der elastischen Verzerrungsenergie wihrend der Ver-
formung/Belastung erreicht wird. Die vorherige Untersuchung der hkl und orientierungs-
abhingigen Spannungstensoren hat gezeigt, dass Druckspannungen in der Hauptdruckrich-
tung fiir alle Ebenen praktisch identisch sind (siehe Abb. S. . Die harten 111- und
220-Richtungen, die vornehmlich in diesem Bereich an Intensitéit zunehmen, erfahren daher
die geringsten Dehnungen, wodurch die geringsten elastischen Verzerrungsenergien erzeugt

werden. In Zugrichtung gibt es eine Kompensation von Spannungen und Dehnungen (siehe
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Abb. S. , sodass der Effekt hier vernachléssigbar ist. Im Fall der Scherspannungen
zeigt ein Blick auf Abb. (S. , dass die Argumentation hier umgedreht werden muss,
da entlang aller Ebenen die gleiche Scherung auftritt. Die entsprechend orientierten 111-
Ebenen besitzen den geringsten Schermodul und erzeugen daher die geringsten Spannungen
und damit den kleinsten Zuwachs an Verzerrungsenergie. Die gleiche Argumentation kann in
dghnlicher Weise auf die Komponenten F und G angewandt werden. Anders als vorher, wird
hier die Anzahl ungiinstig orientierter Ebenen reduziert, es gibt also hauptsichlich weniger
200-Ebenen in Druck und Scherrichtung. Wie zu erwarten, fallen auch I und J in das gleiche

Schema.

180

(a) bkl =111 (b) hkl = 200

#1
#2
180 0
#4
#5
270 270
(d) hkl = 220 (e) hkl =311

Abbildung 4.50: Verzerrungsenergiedichte fiir alle Orientierungen der priméren hkl-Richtung
zu den Zeitpunkten #1 bis #6.

Mit Hilfe der ungemittelten Spannungs- und Dehnungstensoren aus dem vorangegangenen
Abschnitt, lassen sich diese Ausfithrungen zu den Unterschieden in der Verzerrungsenergie

quantifizieren. Dazu wird aus den Spannungs- und Dehnungstensoren fiir jede Orientierung
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der priméren hkl-Richtung zu jedem Zeitpunkt die Verzerrungsenergiedichte wpg;(¢) berech-
net. Fir die Zeitpunkte #1 bis #6 ist das in Abb. gezeigt. Bis #3 ist die Zunahme relativ
gleichméfig {iber alle Orientierungen fiir alle priméren hkl-Richtungen verteilt. Es zeichnen
sich aber bereits energetisch giinstigere Orientierungen ab, z.B. 111 und 220 in Druckrichtung
und 311 in Zugrichtung. Ab #4 treten die Unterschiede zwischen den verschiedenen priméren
Richtungen aber deutlich zu Tage. Diese Unterschiede in der Verzerrungsenergie liefern die
treibende Kraft fiir die beobachteten Umorientierungen der Kérner und die sich daraus erge-
bende Umverteilung von Peakintensitédten. Zudem wird hier deutlich, dass die Variation der
Verzerrungsenergiedichten in Zugrichtung wesentlich kleiner ist als in Druckrichtung. Diese
Darstellung stellt jedoch eine massive Vereinfachung des tatséchlichen Sachverhaltes dar, da
nur noch primére Richtungen betrachtet werden. Tatséichlich ist diese Energieminimierung,
wie auch die Texturbildung zuvor, ein dreidimensionales Problem.

Zur Vollstandigkeit sei hier noch erwdhnt, dass der isotrope Intensitdtszuwachs 0.98 betrigt;
er ist also relativ gering, aber keineswegs vernachléssigbar.

SchlieBlich ist in Abb. die Summe iiber alle hkl-spezifischen Beitrage der Intensitétsén-
derungen zum Ende der Verformung gezeigt, womit die gesamte Zunahme der Anzahl der
in einem Winkelbereich ¢ streuenden Atome erfasst ist. Das bietet sich an, da das Korn-
groffenmodell in der WPPM-Anpassung keine hkl-Abhéngigkeit enthélt und dadurch auch
nicht die hkl-spezifischen Intensititsinderungen erkldren konnte. Stattdessen sind die in
Abb. dargestellten, kumulierten Intensitdtsdnderungen die passende Vergleichsgrofe.
Die komplette zeitliche Entwicklung der Intensitéten aller diskutierten Proben kann in dem
Programm Intensity Viewer dargestellt werden (siche Anhang S. .

90
20

180 0

225 315

270

Abbildung 4.51: Summe iiber die skalierten Intensititsinderungen AI’ der Peaks 111,
200, 220 und 311 zum Zeitpunkt #5 (Summe {iiber alle Kurven in
Abb. S. links). Die Ebenenmultiplizitdten sind hier bereits im-
plizit beriicksichtigt.
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4.2.5 KorngroBe

Die Korngrofien, die durch die WPPM-Anpassung bestimmt werden, folgen immer einer loga-
rithmischen Normalverteilung und kénnen daher durch zwei Parameter beschrieben werden.
Hier wird dazu die volumengemittelte Korngroe (D), und die Verteilungsbreite o’ genutzt.
Die Verwendung von (D), hat den Vorteil, dass durch die Beriicksichtigung des Volumen-
anteils automatisch auch eine Gewichtung mit der Anzahl der Atome in den Kérnern erfolgt,
wodurch diese Grofle direkt mit den modifizierten Intensitdten aus dem vorherigen Abschnitt
vergleichbar ist. Das Korngréflenmodell der WPPM-Anpassung kennt keine hkl-Abhéngigkeit
und bestimmt daher immer mittlere Korngréflen in den Richtungen in der x-y-Ebene, die
durch den Polarwinkel ¢ festgelegt sind.

Prinzipiell wire eine Modifikation dahingehend moglich, dass zu jedem Peak eine getrennte
Korngrofienverteilung bestimmt wird, wodurch jedoch die Anzahl der Parameter um sechs
zunehmen werden wiirde und so die Komplexitit des Modells stark erhoht wire. Da die An-

passungen mit dem vorhandenen Modell zufriedenstellend gelingen, wurde davon abgesehen.
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Abbildung 4.52: a) Polardarstellung der volumengewichteten KorngréBe (D), in nm aus
der WPPM-Anpassung. b) Verteilungsbreite o’ der Korngréenverteilungen.
Beide Groflen werden zu den Zeitpunkten #1 bis #6 gezeigt.

In Abb. sind sowohl (D), als auch ¢’ zu den Zeitpunkten #1 bis #6 dargestellt.
Zwischen #1 und #3 bleibt die Anderung von (D), auf den Bereich der maximalen Druck-
spannung (~ 80°) beschrinkt, wo es zu einer signifikanten Abnahme um 3nm kommt. Die
Verteilungsbreite o’ weist zwischen #1 und #3 keine nennenswerten Veréinderungen auf. Die-
ser Befund abnehmender Korngrofien ist unerwartet und nicht mit den zu diesem Zeitpunkt
praktisch unverénderten Peakintensitéiten vereinbar (siehe Abb. S. .

FEine n#éhere Betrachtung zeigt, dass es auch hier wieder zu einer ungewollten Wechselwir-

kung zwischen verschiedenen Modellbestandteilen der WPPM gekommen ist. In diesem Fall
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iibernimmt das Modell zur Korngroflenverteilung im Bereich zwischen #2 und #3 die Aufga-
be des Modells zur heterogenen Verzerrung unter Last. Konkret werden die Parameter e111,
eo00 und e3q; in diesem Zeitbereich praktisch null, sodass die inhomogenen Dehnungsvertei-
lungen zu diesen Peaks aus dem Modell praktisch ausgeschaltet sind. Jenseits von #3, im
Bereich der hochsten Spannungswerte und damit der hiochsten Wirksamkeit dieses Modells,
steigen die Parameter epy; sprunghaft an und das Modell wird aktiv; ab dann erfiillt es seine
eigentlich vorgesehene Aufgabe. Um dieses Verhalten zu veranschaulichen ist als Beispiel der
Parameter e111 in Abb. gegen die Zeit dargestellt.

Die Zunahme der Breiten des 111-, 200- und 311-Peaks wird bis #3 also durch die abneh-
mende Korngréfle abgebildet, was in diesem Bereich offenbar effektiver ist als das Modell zur

heterogenen Verzerrung unter Last.
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Abbildung 4.53: Zeitliche Entwicklung des Parameters ej1; aus dem Modell zur heteroge-
nen Verzerrung unter Last fiir ¢ = 82°. Zwischen #4 und #6 nimmt der
Wert seinen Maximalwert an, womit die maximale Wirksamkeit des Modells
hergestellt wird.

Daraus folgt, dass zu Beginn der Belastung in Druckrichtung keine stark asymmetrische
Dehnungsverteilung in Druckrichtung bei 111, 200 und 311 induziert wird, sondern eine wei-
testgehend symmetrischﬂ was durch das Modell zur heterogenen Verzerrung unter Last
nicht beschrieben werden kann. Als Alternative zur Absenkung der Korngréfie konnte das
MS Mikroverzerrungsmodell symmetrische Verbreiterungen erzeugen, allerdings gleichzeitig
bei allen Peaks in festgelegter Weise. Diese Kopplung der Peakverbreiterungen passt beim

MS Mikroverzerrungsmodell offenbar schlechter als beim Korngréflenmodell, sodass in der

"Die Aussage bezieht sich nur auf die durch die Belastung induzierte Verbreiterung. Stapelfehler und Zwillinge
konnen ungeachtet dessen zu einer asymmetrischen Peakform beitragen.
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WPPM in diesem Winkelbereich bis #3 immer die Anpassung iiber die Korngroflen bevor-
zugt wird. In Zugrichtung besteht das Problem praktisch nicht, was teilweise auf die Tatsache
zuriickgefithrt werden kann, dass hier Dehnungen betragsméflig kleiner sind und der Effekt

dadurch bereits abgemildert wird.

Vermutlich liegt der Grund fiir die anfinglich symmetrischere Dehnungsverteilung wieder
in den verschiedenen Verzerrungsenergien unterschiedlich orientierter Kristallite. Wenn 200-
Richtungen in Druckrichtung orientiert sind, ist diese besonders hoch, sodass hier bereits
frith eine Abnahme der Intensitit gezeigt werden konnte. Entweder geschieht das, indem die
Kornern aus dieser Richtung rotieren, oder zu Gunsten anders orientierter Kérner schrump-
fen. In beiden Fillen bewirkt die 200-Richtung einen Bruch der statistischen Isotropie in
Bezug auf die Korngrofle, was prinzipiell ein Problem fiir das genutzte Korngréenmodell
darstellt.

Dariiber hinaus ist zu erwarten, dass die Korner mit der hochsten Verzerrungsenergie (d.h.
hier Dehnung) die ersten sind, die aus der Druckrichtung herausdrehen, wodurch die Flanke
der Dehnungsverteilung auf Seite der hohen Dehnungswerte ausschmiert. Dadurch wird die

rechte Seite beim 200-Peak flacher und die gesamte Peakform symmetrischer.

Des Weiteren ist die Verzerrungsenergie von Kérnern mit priméren 111-Richtungen in Druck-
richtung besonders gering, wodurch gréflere Dehnungswerte in einer Verteilung hier besonders
wenig Energiezuwachs bewirken. Es ist daher zu erwarten, dass Kérner mit der 111-Richtung
besonders frith in Druckrichtung drehen und einen Ausldufer in der Dehnungsverteilung auf
der Kompressionsseite erzeugen. Auch das hat eine symmetrischere Peakform zur Folge, als

sie durch das Modell zur heterogenen Verzerrung unter Last vorhergesagt werden wiirde.

Fiir die Korngrofien in Druckrichtung aus der WPPM-Anpassung ergibt sich daraus die Kon-
sequenz, dass sie im Bereich zwischen #2 und #3 unzuverlissig sind. Vorher sind die Gitter-
dehnungen so gering, dass keine nennenswerte Beeinflussung stattfindet, danach entsprechen
sich die Beobachtungen und die Modellannahmen soweit, sodass die relativen Anderungen
der Korngréfen im Bereich zwischen #4 und #6 wieder aussagekriftig sind. Zukiinftige Ver-
sionen der WPPM-Anpassung miissen sich dieses Problems unbedingt annehmen. Wie die
hier beobachtete Wechselwirkung jedoch verhindert werden kann, ist zum jetzigen Zeitpunkt
noch unklar. Ein Verzicht auf das Modell zur heterogenen Verzerrung unter Last wiirde die
Anpassung spétestens ab #4 deutlich verschlechtern und stellt daher keinen erfolgverspre-
chenden Loésungsansatz dar. Ein Vergleich zwischen der Anderung der KorngroBe A(D)yo;
und der iiber alle hkl summierten Intensitit I’ aus dem vorherigen Abschnitt unterstiitzt die
obige Analyse. Sofern die Intensitédtsdnderung durch Kornwachstum wéhrend der Verformung
erkldrt werden kann, sollten beide Grofien jederzeit proportional zueinander sein. Dieser Ver-
gleich wird in allen Polarwinkeln zu den Zeitpunkten #1 bis #6 durchgefiihrt, indem die
kumulierten Intensitéiten I’ und die passend skalierte KorngréBendnderung A(D),, dazu
im gleichen Polardiagramm dargestellt werden (siehe Abb. . Die Skalierung der Korn-

grofensinderung erfolgt fiir alle Zeiten und Winkel mit dem konstanten Faktor 2-10% nm™!,
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4 Ergebnisse

der nur dazu dient, die Einheit der Korngréfle in die Intensitétseinheit umzuwandeln und so

zu skalieren, dass beide Groflen in dhnlichen Wertebereichen liegen.

Zu den Zeitpunkten #1 und #2 sind beide Gréflen nahe null, sodass die Proportionalitét
auf triviale Weise besteht. Zum Zeitpunkt #3 zeigt sich in Druckrichtung die diskutierte
Abweichung, die bis zum Zeitpunkt #4 Bestand hat. Allerdings nimmt die Korngréfie in
Druckrichtung zwischen #3 und #4 im gleichen Mafle zu wie die Intensitét — es bleibt also
nur die zuvor entstandene Differenz bestehen. In Zugrichtung entsteht eine kleine Diskrepanz
zwischen beiden Groflen, was durch die dominante Zunahme der Intensitdt der 311-Peaks in
dieser Richtung erkléirt werden kann. Durch die fehlende hki-Abhéngigkeit kann das Korn-
groffenmodell eine stérkere Zunahme des Korndurchmessers in 311-Richtung nur schlecht
abbilden, da das Residuum durch die Abweichung beim stérker ausgeprigten 111-Peak domi-
niert werden wiirde. Zum Zeitpunkt #5 hat sich die Abweichung beider Griéflen voneinander
in allen Richtungen weitestgehend abgebaut. In Zugrichtung besteht die kleine Diskrepanz
aus eben genanntem Grund weiterhin und in Druckrichtung bleibt noch ein Rest der Ab-
weichung vom Beginn der Verformung bestehen. Beide Abweichungen nehmen wéhrend der

Spannungsrelaxation bis #6 noch weiter ab.

Diese Beobachtungen lassen zwei Schliisse zu. Zum einen scheint ein entscheidender Teil der
Intensitdtszunahme durch eine richtungsabhéingige Zunahme der Korngroflen zustande zu
kommen. Zum anderen befindet sich die Abweichung zwischen A(D),,; und I” zeitlich und
réaumlich in einem begrenzten Bereich, wodurch eine Korrektur dieses Effekts moglich wird.
Ab #4 stabilisieren sich die Ergebnisse fiir das Korngréflenmodell in der WPPM-Anpassung
wieder, weisen aber den bis #3 ausgebildeten Versatz zu kleineren Werten von A(D),,; auf.
Die symmetrische Dehnungsverteilung in Druckrichtung, die sich bis #3 ausgebildet hat, wird

also in Form kleinerer Korngréflen im Verlauf der weiteren Anpassung mitgeschleppt.

Ein Blick auf die zeitliche Entwicklung von (D), in Druckrichtung veranschaulicht diesen
Sachverhalt (sieche Abb. [4.55a]). Die schwarze Linie zeigt hier den Verlauf von (D), wie
er aus der WPPM-Anpassung bestimmt wird. Dieser zeichnet sich durch den ausgeprégten,
anfanglichen Abfall bis #3 aus, dem ein kontinuierlicher Anstieg folgt. Der Anstieg ist klar
erkennbar um den vorherigen Abfall nach unten versetzt, mit Ausnahme des letzten Daten-
punktes. Hier ist zu beachten, dass der letzte Datenpunkt aus einer unabhidngigen WPPM-
Anpassung des letzten Detektorbildes stammt, bei dem keine Last mehr an der Probe anliegt.

Dieser Datenpunkt sollte daher nicht durch den vorherigen Versatz beeinflusst sein.

Die rote Kurve zeigt ein sehr einfaches Korrekturmodell, in dem die anfiingliche Abnahme
von (D), linear angepasst wurde, gefolgt von einem konstanten Verlauf bis zur Entlastung.
Zum letzten Bild hin springt das Korrekturmodell wieder auf den Anfangswert. Die Anderung
der Werte im Korrekturmodell werden von den Rohdaten subtrahiert und bilden die blaue
Kurve. Unter der Annahme, dass die Anderung von (D), bis #3 ausschliellich von dem oben
diskutierten Effekt verursacht wurde, stellt die blaue Kurve damit den korrigierten Verlauf

von (D), dar. Tatséchlich entspricht dieser viel eher der physikalischen Intuition, da die
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Abbildung 4.54: Intensitiitsinderung AI” und Anderung der volumengewichteten Korngrofe
A(D),o zu den Zeitpunkten #1 bis #3. Die KorngroBendnderung A(D),
wurde hier so skaliert, dass sie sich leicht mit A’ vergleichen lisst.
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4 Ergebnisse

Korngrofle hier bis #3 konstant bleibt und erst ab diesem Zeitpunkt zunimmt. In diesem
Bereich liegen ausreichend hohe Spannungen an, um spannungsgetriebenes Kornwachstum
zu begiinstigen, durch welches eine signifikante Absenkung der Verzerrungsenergie erfolgen
kann. AuBlerdem ist der korrigierte (D), Wert am Ende der Verformung praktisch identisch
zu dem Wert von (D), aus der Anpassung des letzten Detektorbildes. Dieser Befund liefert
ein starkes Indiz dafiir, dass die anfiingliche Abnahme von (D), ein technisch begriindbares

Artefakt der Anpassung darstellt.
Als Ergénzung sei hier noch der Verlauf von (D), in Zugrichtung angefiihrt (siehe Abb.|4.55b

die nicht oder nur schwach von dem Problem betroffen sein sollte und einen sehr dhnlichen
Verlauf wie der in Druckrichtung nach der Korrektur aufweist. Das liefert ein weiteres Indiz
fiir die prinzipielle Richtigkeit der Problemanalyse und der Korrektur. Auflerdem fillt auf,
dass der Verlauf von (D), sowohl in Zug- als auch in Druckrichtung der zeitlichen Entwick-
lung der Texturentwicklung (siche Abb. S. dhnelt, wobei der Anstieg von (D),
etwas frither einsetzt. Das deutet auf eine gemeinsame Voraussetzung fiir die Aktivierung von

Kornrotation und Kornwachstum hin.
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Abbildung 4.55: a) Verlauf der volumengewichteten mittleren Korngréfle in Druckrichtung
und ihre Korrektur. b) Verlauf der volumengewichteten mittleren Korngrofie
in Zugrichtung.

Um ein vollstéindiges Bild von der Entwicklung der Korngroflenverteilungen zu erhalten,
miissen (D), und ¢’ immer gemeinsam betrachtet werden. Dazu kann man die Entwick-
lung der logarithmischen Normalverteilungen zu verschiedenen Zeiten aus dem gleichen Po-
larwinkel analysieren. In Abb. ist das beispielhaft fiir die Zugrichtung (¢ = 174°) zu
den Zeiten #1 bis #6 getan. Leider zeigt sich hier direkt, dass die einzelnen Verteilungen
in dieser Darstellung iiber den Verlauf der Verformung schwer zu unterscheiden sind. Wer-

den die Wahrscheinlichkeiten der logarithmischen Normalverteilung (P) mit D3, also dem
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Volumenﬁ der entsprechenden Kristallite, gewichtet, so erhélt man die volumengewichtete lo-
garithmische Normalverteilung, wie sie in Abb. dargestellt ist. Abgesehen davon, dass
der Volumenanteil der unterschiedlich grolen Kristallite die physikalisch relevantere Grofe
darstellt, sind in Unterschiede zwischen den Verteilungen zu unterschiedlichen Darstellungen
so etwas besser zu erkennen. Hier erkennt man, dass mit fortlaufender Verformung ab #3
eine Verlagerung hin zu grofleren Kornern stattfindet, bei der gleichzeitig die Verteilungsbrei-
te zunimmt. Die Verlagerung hin zu grofleren Kornern erfolgt hier hauptséchlich auf Kosten
mittelgroBer Koérner (D > 10nm), ihr Anteil am Gesamtvolumen nimmt aber weniger stark
ab, als die einfache logarithmische Normalverteilung in Abb. zunéchst suggeriert.
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Abbildung 4.56: a) Logarithmische Normalverteilungen in Zugrichtung (¢ = 174°) zu den
Zeitpunkten #1 bis #6. b) Volumengewichtete logarithmische Normalver-
teilungen in ¢ = 174° zu den Zeitpunkten #1 bis #6.

Als néichstes bietet sich der Blick in Druckrichtung an (¢ = 80°). Ohne Korrektur von (D),
sehen die Verteilungen so wie in Abb. aus. Hier scheint es, als wiirde ab #2 praktisch
keine Anderung der Korngréfenverteilung mehr stattfinden. Nutzt man stattdessen die kor-
rigierten Daten fiir (D), in Druckrichtung (sieche Abb. , ergibt sich ein anderes Bild.
Wie in der Zugrichtung gibt es auch hier im Verlauf der Verformung mehr grofle Korner.
Diese Zunahme an groflen Kristallen ist sogar noch ausgepréagter als die, die in Zugrichtung
beobachtet wurde und lésst sich in drei Abschnitte einteilen. Zwischen #1 und #2 ergibt
sich fiir die Verteilung keine Anderung. Danach nimmt der Volumenanteil groBer Korner bis
#3 zu und verdndert sich zu #4 hin nur schwach. Zwischen #4 und #5 erfolgt dann erneut
eine grofle Zunahme des Volumenanteils grofiler Kérner. Wihrenddessen nimmt der Anteil

mittelgrofler Korner iiber die gesamte Verformung hinweg relativ gleichméflig ab.

8Fiir das korrekte Volumen ist ein von der Form abhingender, konstanter Faktor notwendig. In diesem
Zusammenhang bewirkt dieser aber nur eine konstante Skalierung der Kurven, sodass darauf verzichtet
werden kann.
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Abbildung 4.57: a) Volumengewichtete logarithmische Normalverteilungen in Druckrichtung
(¢ =80°) zu den Zeitpunkten #1 bis #6 ohne Korrektur. b) Wie a), aber
mit Korrektur.

Neben Zug- und Druckrichtung gibt es noch zwei markante Polarwinkel fiir (D). Zum einen
gibt es ein deutliches Minimum im Verlauf der Verformung entlang des Steges (¢ ~ 130°),
zum andern ein Maximum bei ¢ ~ 40°. In letztere Richtung sind ungefihr die Normale zu
den Ebenen orientiert, an denen die grofiten Scherspannungen angreifen (siehe Abb.
. [59).

In der Entwicklung der Korngrofienverteilungen entlang des Steges (siehe Abb. zeigt
sich eine Abnahme des Volumenanteils mittelgroer Kristallite (10nm < D < 20 nm) bei relativ
geringer Zunahme von groflen Kristalliten. In Richtung ¢ ~40° (siche Abb. , also fast
normal zum Steg, zeigt sich im Bereich mittelgroBer Kérner ab #4 keine weitere Anderung
wéhrend der Verformung. Das Volumen grofler Kristallite nimmt bis #4 zu, allerdings weniger

stark als in Druckrichtung.

Zusammen mit den vorherigen Beobachtungen kann nun eine Hypothese zu den ablaufenden
Mechanismen formuliert werden. Normal zu den Ebenen, an denen die gréfiten Scherspan-
nungen anliegen (¢ ~ 40° und ¢ » 130 °), kommt es zu spannungsgetriebenem Kornwachstum
(SGKW)/Coupling. Im Verlauf der Verformung drehen diese gewachsenen Kérner ihre lan-
ge Achse in die Druck- bzw. Zugrichtung. Da die Scherung des Steges eine makroskopische
Drehung im Uhrzeigersinn verursacht, ist diese Richtung vermutlich auch die bevorzugte
Drehrichtung fiir die Kornrotation. Dadurch kommt es, wie im vorangegangenen Abschnitt
beschrieben, bei entsprechender Orientierung der Kristallrichtungen zur Absenkung der elas-
tischen Verzerrungsenergie. Das Weiterdrehen der Korner iiber die Zug- und Druckrichtung
hinaus ist daher energetisch ungiinstig, sodass sich die langen Achsen der Korner in diesen
beiden Richtungen ansammeln. Daher steigt hier der Volumenanteil grofier Kérner besonders

stark an, verbunden mit einer Zunahme der Verteilungsbreite in diesen Richtungen.
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Abbildung 4.58: a) Volumengewichtete logarithmische Normalverteilungen in ¢ = 130° zu
den Zeitpunkten #1 bis #6 (~ Stegrichtung). b) Volumengewichtete loga-
rithmische Normalverteilungen in ¢ = 40° zu den Zeitpunkten #1 bis #6
(~ Stegnormalen).

Entlang des Steges (¢ ~ 130°) steigt die Intensitét der Peaks im Mittel durch diesen Prozess
nicht an (vgl. Abb. S. [291)). Passend dazu nimmt der Volumenanteil grofer Kristalle
im Mittel ebenfalls nicht signifikant zu (vgl. Abb. . Allein die 220-Richtung nimmt
hier eine Sonderrolle ein, da deren Intensitéit in dieser Richtung wéhrend der Verformung
zunimmt. Das konnte seine Ursache darin haben, dass das die Gleitrichtungen von Verset-
zungen auf 111-Ebenen sind, wodurch Verzerrungsenergie durch Versetzungsgleiten dissipiert
werden kénnte und dadurch die treibende Kraft fiir die Drehung bereits passend orientierter

Korner verschwindet.

Die Richtung normal zum Steg zeigt ein etwas anderes Verhalten. Hier gibt es durch das
SGKW einen kleinen Zuwachs von Verteilungsbreite und vom Volumenanteil grofier Korner.
Das heifit, dass das Ausdrehen der langen Achsen hin zur Zugrichtung (in der bevorzug-
ten Rotationsrichtung) nicht so effizient stattfindet, wie im zuvor beschriebenen Fall. Eine
Ursache davon konnte die geringere Absenkung der Verzerrungsenergie in Zugrichtung sein.
Entsprechend ist die Zunahme des Volumenanteils grofler Kérner in Zugrichtung weniger

stark als in Druckrichtung.

Dieser Effekt macht sich auch in der Intensitdtsverteilung bemerkbar. Geht man vom Mi-
nimum bei ¢ ~ 130° aus in negative p-Richtung, ergibt sich ein stédrker ausgeprigtes In-
tensitdtsmaximum, als wenn man dquivalente Bereiche von ¢ ~ 40° aus betrachtet (vgl.
Abb. S. . Zudem nimmt die Intensitdt in den breiten Intensitédtsmaxima in Zug-
und Druckrichtung in negative p-Richtung tendenziell ab, was darauf zuriickgefithrt werden
kann, dass groflere Drehwinkel schwieriger zu realisieren sind als kleinere und die negative

p-Richtung in der Tat die bevorzugte Drehrichtung darstellt. Es fillt aulerdem auf, dass die
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Intensitétszunahme in Druckrichtung frither einsetzt (ab #3) und anfénglich deutlich ausge-
prigter ist (siehe #4) als in Zugrichtung, was ein deutliches Indiz fiir eine héhere Rate von
rotierenden Kornern aus ¢ » 130° als aus ¢ ~ 40° ist.

Bei ¢ ~ 25° gibt es sowohl in der Intensitét als auch in der Korngréfie ab #4 ein auffilliges
Minimum. Dieses Minimum liegt zwischen der Richtung mit der gréfiten Scherspannung und
der Richtung mit der grofiten Zugspannung in dem Bereich, in dem die (positiven) Normal-
spannungen die geringsten Werte aufweisen. Die Normalspannungen sind hier betragsméflig
besonders gering, weil Scherspannungen und isotrope Spannungen unterschiedliche Vorzei-
chen haben und sich daher destruktiv iiberlagern. Dieser Bereich ist fiir den Zeitpunkt #5 in
Abb anhand der Spannungen und der Intensitét/Korngrofie eingezeichnet. Eine Ausrich-
tung von Kornern in diese Richtung, insbesondere mit ihren langen und elastisch harten Rich-
tungen, wiirde einer Erhéhung der Verzerrungsenergie gleichkommen, denn die energetisch
giinstige Ausrichtung dieser langen und/oder harten Richtungen entlang der grofiten Nor-
malspannungen wire damit ausgeschlossen. Folglich rotieren die Koérner entweder gar nicht
erst in diesen Bereich, oder, bei geniigend hohen Spannungen, dariiber hinaus. Die volumen-
gewichteten Korngréflenverteilung bleibt in diesem Winkelbereich eine iiber den Verlauf der
Verformung nahezu konstant (siehe Abb. . Fiir die Rotation von Kérnern aus ¢ ~ 130°
hin zur Druckrichtung existiert dieser Bereich nicht in derselben Ausprigung, da sich hier die
Scherspannungskomponente und die isotrope Spannungskomponente konstruktiv iiberlagern
und so bei Rotation in negative Richtung betragsméfig groflere Normalspannungen auftre-
ten. Diese Hypothese liefert eine konsistente Erklarung der bisherigen Beobachtungen. Im
Folgenden wird sie auf Anschlussfihigkeit zu den verbleibenden Parametern aus der WPPM
getestet und gegebenenfalls erweitert.

Die Gréfien (D)o und ¢’ und die daraus abgeleiteten logarithmischen Normalverteilungen
konnen fiir alle Zeitpunkte und in allen Richtungen jeweils mit und ohne Korrektur in dem
Programm Size Viewer fiir alle diskutierten Proben betrachtet werden (siche Anhang |A.3
S. (394]).
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Abbildung 4.59: a) Spannungstensor zum Zeitpunkt #5. Der grau markierte Bereich ist
der Bereich geringster positiver Spannungen. b) Intensitéit I’ (schwarz)
und (D), (griin) zum Zeitpunkt #5. Der graue Bereich wurde aus a)
iibernommen und schlieft das globale Minimum beider Grofien ein. c¢) Volu-
mengewichtete logarithmische Normalverteilungen aus dem grau markierten
Bereich zu den Zeitpunkten #1 bis #6.
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4.2.6 Versetzungen

Die Versetzungsdichten werden hier zu den Zeitpunkten #1 bis #6 in Abb. in der stereo-
graphischen Projektion dargestellt, wie sie in Abschnitt (S. beschrieben wurde.
Die Positionen der farbigen Punkte, welche die Farbflichen in Abb. bilden, entsprechen
also den Richtungen der Burgers-Vektoren und damit den Richtungen der durch die Verset-
zungen verursachten Verschiebung im Kristall. Die Farbe kennzeichnet die Versetzungsdichte
dieser entsprechend ausgerichteten Versetzungen. Hier konzentriert sich die Diskussion auf
den dufleren Ring der stereographischen Projektionen, da die Unsicherheit zur Mitte hin zu-
nimmt, sodass die Daten dort mit entsprechender Vorsicht zu betrachten sind. Zu Beginn
(#1 und #2) ist die Versetzungsdichte isotrop in allen Richtungen verteilt und hat Werte um
1.5-10' m~2. Bis #3 nimmt dieser Wert leicht auf 1.8-10'® m~2 zu, wobei in Zug- und Druck-
richtung schwache Maxima sich abzuzeichnen beginnen. Zwischen #3 und #4 bilden sich
diese Maxima deutlicher aus, wihrend insgesamt die Versetzungsdichte auf iiber 2-10'6 m=2
ansteigt. Dieser Zustand bleibt im Prinzip bis #6 bestehen, wobei die Versetzungsdichte
im Mittel weiter zunimmt. Auflerdem werden die Bereiche hoher Versetzungsdichten in -
Richtung breiter. In Abb. ist ergédnzend die Situation nach der Verformung und nach der
Entlastung gezeigt. Hier hat die Versetzungsdichte in allen Richtungen wieder deutlich ab-
genommen, liegt aber iiber dem Anfangswert. Zudem sind die ehemaligen Bereiche niedriger
Versetzungsdichten noch schwach erkennbar.

Zwei Schlussfolgerungen kénnen bereits aus dieser Betrachtung abgeleitet werden. Zum einen
nimmt die Versetzungsdichte bei hohen Spannungen deutlich zu, was auf Versetzungsgleiten
als Plastizitdtsmechanismus und/oder Akkommodationsmechanismus hinweist. Nach Entlas-
tung der Probe sinkt die Versetzungsdichte wieder deutlich bis fast auf den Anfangswert
ab. Die Versetzungsdichten bei hohen Spannungen stellen also einen Momentanwert von
statischen und gleitenden Versetzungen dar, wobei die neuen Versetzungen an Korngren-
zen emittiert und absorbiert werden kénnen. Nachdem die von auflen angelegten Spannungen
wegfallen, werden die zuvor neugebildeten Versetzungen zum Grofteil wieder in/an die Korn-
grenzen gezogen und absorbiert, bis sich das Gleichgewicht zwischen Versetzungsdichte und
den iibrigen Defekten erneut eingestellt hat.

Fine alternativer Vorgang besteht darin, dass die Versetzungen an den Korngrenzen nukle-
iert und in das Korn emittiert werden, dann aber die Spannung nicht mehr ausreicht um
sie komplett durch das Korn zu schieben, etwa weil bei einem kugelférmigen Korn die Ver-
setzungslinienlidnge in der ersten Halfte stetig zunimmt und dadurch der Scherwiderstand 7
ansteigt. Vorwirtsgleiten geschieht dann nur noch langsam (z.B. iiber Kink(-Paar)-Bildung)
oder gar nicht mehr, Riickwértsgleiten ist aber durch die angelegte Spannung nicht mdoglich.
Die Versetzungen bleiben also solange statisch im Korn stecken, wie die Spannung von auflen
angelegt bleibt. Ein Beitrag im Sinne eines Plastizitétsprozesses wird in diesem Fall nicht
erbracht, allerdings kann dadurch eine Akkommodation des betroffenen Kornes an andere

Plastizitétsprozesse erreicht werden.
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Abbildung 4.60: Stereographische Projektion der Versetzungsdichten pq zu verschiedenen
Zeitpunkten (angegeben jeweils unten links). Die Versetzungsdichte ist farb-
lich kodiert, der Ort in der Projektion gibt die Orientierung des Burgers-
Vektors zur entsprechenden Versetzungsdichte an. Unsicherheiten sind je-

weils in den Farbskalen markiert.

Zum andern bildet sich wahrend der Verformung eine anisotrope Verteilung von Versetzungs-

dichten aus. Es bietet sich also an, die Anderung der Versetzungsdichten in einen homogenen

Anteil und einen anisotropen Anteil zu zerlegen. Der homogene Anteil kann durch die iiber
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Abbildung 4.61: Stereographische Projektion der Versetzungsdichten pg nach der Entlastung

(vel. Abb. [1.60).
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alle Richtungen 2 gemittelte mittlere Versetzungsdichte (p)q dargestellt werden. Da diese nur
noch eine skalare Grofle ist, kann sie in einem Diagramm gegen die Zeit dargestellt werden,
wie in Abb. geschehen. Die Versetzungsdichte nimmt im Mittel von Anfang an zu. Bei
#3 gibt es aber eine deutliche Zunahme in der Steigung von (p)q (siehe Abb. , die ab
#4 kontinuierlich abnimmt und zwischen #4 und #5 einen konstanten Wert annimmt. Ab

dann nimmt die Versetzungsdichte annéhernd linear und langsam bis #6 zu.

Wie es sich bereits bei der Intensitéit angedeutet hat (vgl Abb. S. , zeichnet sich
zwischen #4 und #5 ein weiterer, kontinuierlicher Ubergang in den Verformungsmechanismen
ab, der in Spannung und Dehnung keine auffillige Signatur hinterldsst. Gleichzeitig scheint
die Versetzungsaktivitét fiir die Verlangsamung der Spannungszunahme in der Spannungs-
Dehnungs-Kurve ab #3 verantwortlich zu sein und damit auch die maximalen Spannungen zu
bestimmen (vgl. Abb. S. . Die Anderungsrate der mittleren Versetzungsdichte liefert
einen Anhaltspunkt fiir die Zunahme der mittleren Versetzungsaktivitit. Dabei bedeutet eine
Anderungsrate von null nicht, dass keine Versetzungsaktivitit stattfindet; fiir die weitere
Diskussion dieses Aspekts muss aber zunéchst der anisotrope Anteil der Versetzungsdichte

Apq betrachtet werden.

Dieser ergibt sich einfach aus der Differenz der richtungsabhéngigen Versetzungsdichte pg und
der mittleren Versetzungsdichte (p)q; die Gréfie Apq ist analog zu Abb. in Abb.
(S. dargestellt. Zum Zeitpunkt #1 ist die Verteilung isotrop. Bei #2 bilden sich Bereiche
hoherer Versetzungsdichte aus, deren Burgers-Vektoren auf den Ebenen liegen, an denen die
maximalen Scherspannungen angreifen. Die Richtungen der Normalenvektoren dieser Ebe-
nen entsprechen den Nulldurchgéngen des Spannungsdeviators in Polardarstellung in der
x-y-Ebene. Eine detailliertere Darstellung der mittleren Scherspannungen ist in Abb. [£.63]

gegeben, wo die Betriige der Scherspannungen in der x-y-Ebene zu den Zeitpunkten #1 bis
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Abbildung 4.62: a) Mittlere Versetzungsdichte (p)g. b) Anderungsrate der mittleren Verset-

zungsdichte.

#6 angegeben sind. Man erhélt diese Polardarstellung formal wie bei den Normalspannun-
gen, indem man den zweiten radialen Einheitsnormalenvektor 7 durch einen tangentialen
Einheitsvektor ¢ ersetzt, also ogeper = t- (7 -7) (vel. S. . Der Vektor ¢ liegt hier immer
in der x-y-Ebene. Damit sind jetzt zusétzlich zu den Orientierungen der Ebenen maximaler
Scherspannung auch die Betriage dieser Spannungen dargestellt. Die Spannung 7, die benétigt

wird um eine Versetzung zu emittieren, ist nach [217]

b
=G — 4.9
r=G 5, (19)

wobei G der Schermodul, b die Burgers-Vektorlinge und D ~ 10nm der Korndurchmesser
sind. Der Schermodul fiir Scherungen entlang von 111-Ebenen betrigt ~ 37 GPa, sodass man
fiir 7 Werte von ~ 1 GPa erhilt; die benttigten Spannungen fiir Partialversetzungsemission
liegt etwas darunter (siehe [217]). Spétestens ab #4 ist also im Mitte]ﬂ die Scherspannung

ausreichend, um vollstdndige Versetzungen zu emittieren.

Die Lagen der Ebenen maximaler Scherspannung sind in Abb. durch Linien markiert,
sodass die Burgers-Vektoren der meisten gleitenden Versetzungen entlang dieser Linien ori-
entiert sein sollten. Zwischen #2 und #3 beginnt eine Drehung des Musters aus hohen und
niedrigen Versetzungsdichten in negative ¢-Richtung, die zum Zeitpunkt #4 abgeschlossen
ist. Jetzt liegen die Bereiche niedriger Versetzungsdichte dort, wo die maximalen Scherspan-
nungen anliegen. Gleichzeitig hat die Differenz zwischen den Bereichen zugenommen. Ab
#4 gibt es an diesem Zustand keine signifikanten Anderungen mehr bis einschlieSlich #6.
Nach der Entlastung (siehe Abb. nimmt der Unterschied zwischen hohen und niedrigen

9Also nicht als lokale Ausnahmeerscheinung, z.B. durch Spannungskonzentration an Tripellinien.
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Abbildung 4.63: Betrag der mittleren Scherspannungen in der x-y-Ebene |oscper| in GPa zu
den Zeitpunkten #1 bis #6.

Versetzungsdichten wieder ab, die Orientierung entspricht aber in etwa der zum Zeitpunkt
#3.

Folgender Ablauf erscheint plausibel und ist widerspruchsfrei zu den bisherigen Ergebnissen:
Relativ frith wahrend der Verformung kénnen Versetzungen in passend orientierten Koérnern
nukleiert werden und gleiten durch/in die Kérner. Das geschieht entlang von Ebenen, an
denen die gréfiten Scherspannungen auftreten. Nachdem die Versetzungen die Kérner durch-
laufen haben, werden sie an der gegeniiberliegenden Korngrenze wieder absorbiert. Die durch
das Korn laufenden Versetzungen bewirken eine Zunahme der Versetzungsdichte im zeitlichen
Mittel. Im weiteren Verlauf nehmen Spannungen und damit die Nukleationsraten zu, wodurch
eine ansteigende Versetzungsdichte detektiert wird. Auflerdem setzt die zuvor beschriebene
Rotation von Kérnern ein. Die Kornrotation bewirkt eine Abnahme der Scherspannung auf
den Gleitebenen der rotierenden Koérner, auf denen zuvor Versetzungen nukleiert wurden.
Das fithrt dazu, dass die Versetzungen auf diesen Ebenen stecken bleiben und ihre Burgers-
Vektoren in Zug- bzw. Druckrichtung rotieren. Bis #4 fiihrt dieser Prozess zu einer Zunahme
der Versetzungsdichteunterschiede, ab dann ist offenbar ein stabiler Zustand fiir Apgq erreicht;

(p)q nimmt aber weiter zu.

Die hochsten Versetzungsdichten treten also in den Richtungen auf, in denen das geringste
Versetzungsgleiten stattfindet. Umgekehrt sind die Richtungen mit den geringsten Verset-
zungsdichten diejenigen, auf denen Versetzungsgleiten als Plastizitdtsmechanismus am ak-
tivsten ist, da die Versetzungen an den gegeniiberliegenden Korngrenzen wieder absorbiert
werden konnen. Wenn die duflere Belastung wegfallt, wird ein Grofiteil aller nukleierten Ver-

setzungen wieder absorbiert. Durch die gleichzeitig auf null sinkende Nukleationsrate, nimmt
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Abbildung 4.64: Stereographische Projektion des anisotropen Teils der Versetzungsdichten
Apgq zu verschiedenen Zeitpunkten (angegeben jeweils unten links). Darstel-
lung analog zu Abb. (S. . Zusiatzlich sind die Ebenen markiert, an
denen die grofiten Scherspannungen anliegen.

die Versetzungsdichte wieder ab. Da die Bereiche hoher Versetzungsdichten auch nach der

Entlastung noch sichtbar sind, werden offenbar nicht alle stecken gebliebenen Versetzungen
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wahrend der Entlastung wieder aus den Kornern getrieben. Der gleiche Befund ergibt sich
fiir (p)q: Hier liegt der Wert nach der Entlastung iiber dem Anfangswert.

Eine Anderungsrate der mittleren Versetzungsdichte von null bedeutet also nicht, dass keine
Versetzungsaktivitit entlang giinstig orientierter Korner stattfindet. Sie liefert aber einen In-
dikator fiir die Anderung des gekoppelten Versetzungs-Rotations-SGKW-Mechanismus (bzw.
Versetzungs-Rotations-Coupling-Mechanismus), der sich zwischen #4 und #5 offenbar in
einen stabilen Zustand einpendelt, bei dem insbesondere Kornwachstum zugunsten der Ro-
tation eine abnehmende Rolle spielt. Das deckt sich mit den Beobachtungen zur Intensitét
und Kornwachstum.

Sowohl Kornrotation als auch SGKW /Coupling kénnen iiber die Bildung und Verschiebung
von Disconnections in Korngrenzen beschrieben werden. Emission und Absorption von Ver-
setzungen in/an den Korngrenzen stellt einen Mechanismus zur Bildung und zum Transport
von Burgers-Vektoren durch die Kristalle dar. Die Versetzungsaktivitit konnte also ein not-
wendiger Mechanismus fiir Kornrotation und SGKW sein. Betrachtet man nur die skalaren
Indikatoren fiir das globale Auftreten dieser Mechanismen (siehe Abb.[4.62] S.[301} Abb.[4.55|
S. und Abb. S. , so setzt die Versetzungsaktivitéit von allen am friihesten ein,

gefolgt von Kornwachstum und der Texturbildung/Rotation. Diese Reihenfolge ist verein-

bar mit der Bewegung von Disconnections in Korngrenzen als Trager von Kornrotation und
SGKW.

Die Entstehung der endgiiltigen Textur fallt mit dem Bereich grofiter Versetzungsaktivitét
zusammen. Das legt den Schluss nahe, dass der Wechsel von der Ubergangstextur auf die
Endtextur durch eine Anderung der Kornrotation in der Art erzeugt wird, dass die Gleit-
widerstéinde fiir Versetzungen moglichst gering sind. Die resultierende Kornrotation stellt
also einen Kompromiss aus geringem Gleitwiderstand und Absenkung der elastischen Verzer-
rungsenergie dar.

Dariiber hinaus besteht natiirlich jederzeit und in jede Richtung die Moglichkeit, dass geome-
trisch notwendige Versetzungen [270] in die Kristallite eingebaut werden, um deren Kohésion
aufrecht zu erhalten. Allerdings nur, sofern alternative Moglichkeiten nicht energetisch giinstiger
sind, wie z.B. Kornrotation, Schertransformationen in Korngrenzen, Korngrenzengleiten oder
lokale Zunahme der Korngrenzendicke bzw. des Exzessvolumens in der Grenze.

Die zeitlichen und rdumlichen Entwicklungen der Versetzungsdichten sind in dem Programm
DiStaTwi Viewer fiir alle diskutierten Proben enthalten (siche Anhang S. .
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x10'®

Abbildung 4.65: Stereographische Projektion des anisotropen Teils der Versetzungsdichten
Apq nach Entlastung (vgl. Abb. {4.64)).

4.2.7 Debye-Temperatur und TDS

In Abb. sind fiir die Zeitpunkte #1 bis #6 die Debye-Temperatur T, sowie die TDS-
Intensitdt ITpg aus der WPPM-Anpassung in allen p-Richtungen angegeben. Beide Grofien
stellen ein Maf fiir die mittleren quadratischen Schwankungen der Atompositionen in Streu-
vektorrichtung (u%) daﬂ Darin kénnen sowohl statische g4, als auch dynamische Anteile
tUgyn enthalten sein, diese lassen sich jedoch mit den hier benutzten Mitteln nicht voneinander

trennen.

<500
/ \ 45

135

#1
#2

180

#4

(a) Debye-Temperatur Tp (K) (b)

Abbildung 4.66: a) Debye-Temperatur Tp [K| zu den Zeitpunkten #1 bis #6. b) TDS-
Intensitét Irpg zu den Zeitpunkten #1 bis #6.

9u2) wird auch Varianz von ug genannt.
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Die Debye-Temperatur geht in den Vorfaktor der WPPM-Anpassung ein und wirkt sich daher
auf alle Teile des Diffraktogramms aus. Dynamische und statische Atompositionsschwankun-
gen im Kristallgitter werden dadurch also genauso abgebildet, wie die in/an den Korngrenzen.
Eine Zunahme von T entspricht dabei einer Abnahme von (u%) in der entsprechenden Rich-

tung.
Die Tp Werte aus der WPPM-Anpassung (siehe Abb. 4.66a)) zeigen zu Anfang eine uniforme

Verteilung von Tp entlang ¢ mit Werten von ~ 205 K, also deutlich unter dem grobkristallinen
Erwartungswert (» 275K). Das ldsst sich dadurch erklidren, dass die Atome in den weniger
dicht gepackten Korngrenzen hohere nichste Nachbarabstéinde aufweisen, wodurch der stati-
sche Anteil von (u%) erhoht wird. Zusitzlich kénnen dadurch weitere statische Verzerrungen

in den Kristallen in der Ndhe der Korngrenzen erzeugt werden.

AuBerdem ist davon auszugehen, dass die Nichtgleichgewichtsstruktur in/an Korngrenzen
mit erhdhtem Exzessvolumen eine Anderung der interatomaren Kraftkonstanten im Vergleich
zum Kristall bewirkt. Das wird durch die Ultraschallmessungen bestétigt, die fiir das wie-
hergestellte, nanokristalline Material relativ stark abgesenkte elastische Konstanten auswei-
sen (siehe Anhang[A.1} S.[387 oder [6l, 233]), welche gemafl Kapitel direkt mit niedrigeren
interatomaren Kraftkonstanten korrelieren. Daher muss in diesem Bereich ein anderes Phono-
nenspektrum vorliegen, einschliellich gréflerer Schwingungsamplituden, wodurch zusétzlich
zum statischen auch eine Erhohung des dynamischen Anteils von (u%) im Bereich der Korn-

grenzen zu erwarten ist.

Im Verlauf der Verformung (bis #4) nimmt 7p in Druckrichtung kontinuierlich zu, sodass
die Verdichtung der Probe in Druckrichtung offensichtlich eine Abnahme von (u%) (Zunahme
von Tp) bewirkt. Zusétzlich nimmt 7Tp zwischen #3 und #4 senkrecht zum Steg und entlang
des Steges zu, also normal zu den Ebenen, an denen die gréfiten Scherspannungen anliegen.
Das legt den Schluss nahe, dass Scherprozesse in/an Korngrenzen dazu fiihren, dass die

Verzerrungen durch die Scherungen abgebaut werden.

In Zugrichtung ldsst sich dagegen ab #3 eine Abnahme von Tp beobachten. Die in diese
Richtung wirkende Dilatanz bewirkt offenbar eine Zunahme von (u%) (Abnahme von 7)) in
Richtung der grofiten Zugspannungen. Vermutlich werden in dieser Richtung die Korngren-
zen als schwéchstes Glied lokal auseinander gezogen und so neues Exzessvolumen aufgebaut.
Eventuell entstehen hier bereits Mikrorisse als Vorlaufer des schlussendlich auftretenden Ma-

terialversagens (vgl. [30]).

Das unterschiedliche Verhalten der Korngrenzen unter Zug und Druck kénnte aulerdem die
Ursache fiir die Unterschiede im beobachteten Spannungs- und Dehnungsverhalten der Kérner
in Zug- und Druckrichtung sein. Unter Druck werden die Korngrenzen so lange verdichtet,
bis eine weitere Verdichtung héhere Spannungen benttigt als andere elastische und plastische
Prozesse. Die Korngrenzen sind dann gegeniiber Normalspannungen steif und liefern keinen

eigenen Dehnungsbeitrag mehr. In Zugrichtung gibt es keinen vergleichbaren Grund fiir eine
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Erschopfung der Dehnung der Korngrenzen, was im Einklang mit der makroskopisch beob-
achteten, anhaltenden Dilatanz ist. Damit kénnen die Korngrenzen bis zur Rissbildung in

dieser Richtung Dehnungen normal zur Korngrenzenfliche beitragen.

Fiir #5 und #6 liefert Tp aus den oben genannten, ungiinstigen Wechselwirkungen mit den

ink keine sinnvollen Werte mehr, weshalb diese Félle nicht weiter betrachtet werden.

Die TDS-Intensitit I7ps (siche Abb. |4.66b)) verhilt sich in Bezug auf (u%) umgekehrt zu
Tp. Hohere Werte von Irpg bei konstanter Temperatur entsprechen einer gréflieren Varianz
von ug, also groferen Positionsschwankungen. Im Unterschied zur Debye-Temperatur, macht
Irps aufgrund der Art der Modellierung primér nur eine Aussage zum kristallinen Anteil
des Materials und muss daher weder qualitativ noch quantitativ der invertierten Debye-
Temperatur entsprechen. Das ist auch nicht der Fall, da bis zum Zeitpunkt #3 keine signifi-
kante Anderung der anfinglich in ¢-Richtung gleichverteilten TDS-Intensitét zu beobachten
ist, insbesondere auch keine Abnahme in Druckrichtung. Die anfiingliche durch Tp beobach-

tete Abnahme von (u%) in Druckrichtung ist also primér ein Effekt der Korngrenzen.

Erst zum Zeitpunkt #4 ist in Druckrichtung ein leichter Riickgang der TDS-Intensitét zu ver-
zeichnen, der moglicherweise durch die Relaxation der Korngrenzen unter Druck verursacht
wird, indem durch die mechanische Kopplung von Grenzen und Kérnern die Verzerrungen in
letzteren in dieser Richtung teilweise abgebaut werden. Viel auffilliger sind aber die Maxima
in 40°- und 130°-Richtung, also entlang der Ebenen maximaler Scherspannung. Eine plau-
sible Ursache dafiir ist, dass Bewegungen von Versetzungen mit Burgers-Vektoren in diesen
Richtungen eine zeitlich verdnderliche, lokale Verschiebung von Atompositionen entlang die-
ser Richtungen erzeugt. Diese triagt zu einer Zunahme des dynamischen Anteils von (u%) und
damit von Irpg bei. Ruhende Versetzungen erzeugen keine héhere Varianz von ug und wer-
den vollstéindig vom Versetzungsmodell der WPPM-Anpassung beschrieben. Vergleicht man
die Positionen der Maxima mit den Bereichen geringerer Versetzungsdichtdﬂ aus dem vor-
herigen Kapitel findet sich eine gute Ubereinstimmung der Ausrichtung beider Effekte

(siche Abb. [4.674).

Zum Zeitpunkt #5 (siehe Abb. zeigt sich eine weitere Zunahme der vier Maxima
in der TDS-Intensitét. Diese konzentriert sich aber nur auf den Bereich, in dem der Span-
nungszustand in den Kornern und in den Korngrenzen negative Normalspannungen, also
Druckspannungen, aufweist. In Richtung der Zugspannungen schlieen an die TDS-Maxima
jetzt deutlich zu erkennende Minima im Bereich des Vorzeichenwechsels der Normalspannung
in den Korngrenzen an. Dort, wo die vier Maxima erhalten bleiben, &ndert sich nichts an der
vorherigen Interpretation. Im Zugspannungsbereich deutet der Einbruch der TDS-Intensitét
aber auf ein zum Erliegen kommen des Versetzungsgleitens hin. Dieses kommt vermutlich
dadurch zustande, dass das Auseinanderzichen von Korngrenzen und/oder Schertransfor-
mationen bzw. Korngrenzengleiten unter diesem Belastungszustand leichtgéngigere Verfor-

mungsmechanismen darstellen als Versetzungsnukleation und -gleiten. Die groBe Ahnlichkeit

"Das sind die Richtungen, in denen die sich bewegenden Versetzungen ihre Burgers-Vektoren orientiert haben.
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Abbildung 4.67: Vergleich des inhomogenen Versetzungsanteils Apq mit der TDS-Intensitét
zu den Zeitpunkten #4 (a) bis #6 (c). Die schwarzen Linien grenzen hier
Bereiche positiver und negativer Normalspannungen in den Koérnern ab, wo-
bei negative Spannungen durch nach innen gerichtete Pfeile dargestellt sind,
positive entsprechend umgekehrt. Die gepunkteten Linien beschreiben den
gleichen Sachverhalt fiir die Normalspannungen in den Korngrenzen. Fiir
den Vergleich des inhomogenen Versetzungsanteils und der TDS-Intensitét
ist nur der duflere Ring der Darstellung von Apq relevant.

der Signatur der TDS-Intensitdt zum Zeitpunkt #6 ldsst darauf schlielen, dass diese Inter-

pretation auch nach dem Anhalten der Maschine anwendbar bleibt.

Dariiber hinaus bildet sich bei #5 und #6 ein weiteres Maximum der TDS-Intensitéit etwa
in Richtung der maximalen Zugspannung aus. Eine mogliche Ursache fiir dieses Maximum
ist die Texturkomponente J (siche Abb. S. , bei der die 220-Richtung senkrecht
auf den 111-Ebenen stehen, also ein Gleitsystem fiir Versetzungen darstellt. Die Orientie-

rung dieser Komponente konzentriert sich zum grofiten Teil auf den Bereich ¢ < 70° (siehe
Abb. S. , wodurch vermehrt giinstig orientierte Gleitsysteme mit Gleitrichtungen
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entlang der Maxima der TDS in Zugrichtung existieren. Versetzungsgleiten auf diesen beson-
ders giinstigen Gleitsystemen wére dann ein moglicher Plastizitéits- oder Akkommodations-
mechanismus, der die Zunahme von Irpg in dieser Richtung erkldren konnte. Gleichzeitig
wire diese Erklarung konsistent mit der Beobachtung, dass dieses zusétzliche Maximum erst

nach der Umorientierung der Kérner und der Bildung der Endtextur auftritt.

Der Umstand, dass nicht alle Bereiche niedriger Versetzungsdichten (Bereiche starken Ver-
setzungsgleitens) von den I7pg Maxima erfasst werden, stellt iibrigens keinen Widerspruch
dar. Es liegt ndmlich in der Natur der Berechnung der stereographisch dargestellten Ver-
setzungsdichten, dass diese keine absoluten Aussagen machen konnen — sie haben eher den
Charakter einer notwendigen Bedingung, nicht jedoch den einer hinreichenden Bedingung fiir

die Charakterisierung von Versetzungsaktivitét.

Die TDS-Intensitét kann in dem Programm DiStaTwi Viewer fiir alle diskutierten Proben
im Polardiagramm mit eingeblendet werden (sieche Anhang S. 1394)).

4.2.8 Stapelfehler

Die Stapelfehlerwahrscheinlichkeit o wird, wie schon die Versetzungsdichten zuvor, zu den
Zeitpunkten #1 bis #6 in Abb.[4.6in der stereographischen Projektion dargestellt. Zusétzlich
ist der Mittelwert («) in Abb. gegen die Zeit aufgetragen. Der naheliegendste Entstehungs-
und Vernichtungsprozess von Stapelfehlern im vorliegenden Fall ist die Aktivitit von Par-
tialversetzungen. Vergleicht man also zunéchst die zeitlichen Entwicklungen der mittleren
Versetzungsdichte (p)q (sieche Abb. S. und von (), zeigt sich bereits eine Zu-
sammenhang dieser beiden Gréfien. In den Bereichen, in denen (p)q eine geringe Steigung
aufweist, nimmt («) ab. Zwischen #3 und #4, wo (p)q den groBiten Anstieg zeigt, nimmt
auch («) zu. Die Stapelfehlerdichte wird also zu Beginn der Verformung durch die noch rela-
tiv geringe Versetzungsaktivitdt im Mittel verringert. Entweder werden Partialversetzungen
gezielt so nukleiert, dass bestehende Stapelfehler durch deren Abgleiten abgebaut werden,
oder die in den Kornern bereits existierenden Partialversetzungen, die bestehende Stapel-
fehler beranden, werden durch die angelegte Spannung in die Korngrenzen getrieben, sodass
die Stapelfehler verschwinden. Letzterer Fall erscheint wahrscheinlicher, da in diesem nicht
die hohen Nukleationsspannungen aufgebracht werden miissen. Zudem liefert der Abbau von
Stapelfehlern eine zusétzliche treibende Kraft fiir die Versetzungsbewegung, da damit ein
Abbau von Stapelfehlerenergie einhergeht.

Ab #3 nimmt die Stapelfehlerdichte zusammen mit (p)q bzw. der Anderungsrate von {p)q
deutlich bis #4 zu. Das ist prinzipiell vereinbar mit dem zuvor beschriebenen Mechanis-
mus der Kornrotation, wodurch Partialversetzungen in den gedrehten Kornern nicht mehr
weiter abgleiten und damit einen Stapelfehler zuriicklassen. Zusétzlich kann die hchere Nu-
kleationsrate dazu fithren, dass im zeitlichen Mittel mehr Stapelfehler erzeugt als abgebaut

werden. Zwischen #4 und #5 erschopft sich dieser Prozess und die Stapelfehlerdichte nimmt
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Abbildung 4.68: Uber alle Orientierungen gemittelte Stapelfehlerdichte ().

wieder ab, nachdem sich bei den Versetzungen die Gleichgewichtsdichte fiir die duflere Belas-
tung/Dehnrate eingestellt hat. Ab dann sind Nukleations- und Absorptionsraten scheinbar
ghnlich grof}, sodass im Mittel keine neuen Stapelfehler mehr erzeugt werden. Die bereits
vorhandenen Stapelfehler konnen aber weiterhin abgebaut werden.

Dieses Zusammenspiel von Versetzungsaktivitdt und Stapelfehlern muss eine entsprechen-
de rédumliche Korrelation erfiillen, die nun anhand der rdumlichen Verteilung von a (siehe
Abb. iiberpriift wird. Dazu wurden in Abb. die Ebenen grofiter Scherspannun-
gen aus Abb. (S. , entlang derer die meisten Versetzungen gleiten, als gestrichelte
Geraden eingezeichnet. Die Stapelfehler sollten senkrecht dazu auftreten, weshalb diese Rich-
tungen mit durchgezogenen Geraden markiert wurden. Beide Angaben beziehen sich auf die
x-y-Ebene, also den #uBeren Rand der stereographischen Darstellung. Bis #3 ist die Anderung
von « praktisch uniform, wie es auch bei der Versetzungsaktivitit zu diesem Zeitpunkt der
Fall war. Zum Zeitpunkt #4 gibt es dann klare Bereiche hoherer Stapelfehlerwahrschein-
lichkeit. Bereiche hoher Stapelfehlerdichte liegen also in den Bereichen, in denen sie von
abgleitenden Partialversetzungen erzeugt werden kénnen. In Richtung ¢ ~ 40° ist dieser Ef-
fekt besonders ausgeprégt, in ¢ ~ 130° etwas schwéicher. Zuvor hat sich aber abgezeichnet,
dass die Rotation von Koérnern aus dieser Richtung schneller und effizienter erfolgt als aus
der ¢ ~ 40 °-Richtung. Die Maxima in «, die dazu in negative Richtung gedreht sind, kénnen

also von Kornrotationen herriihren. Das ist z.B. in Druckrichtung, oder in Richtung ¢ ~ 145°

so (siehe auch Intensitdt in Abb. |4.42d} S. [276)).
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Abbildung 4.69: Stereographische Projektion der Stapelfehlerwahrscheinlichkeit . Der Wert

von « ist durch die Farbkodierung gegeben und die Position der Datenpunkte
zeigt die Orientierung der Normalen auf die Stapelfehler. Ebenen grofiter
Scherspannungen sind als gestrichelte Geraden eingezeichnet. Die Ebenen
senkrecht dazu sind mit durchgezogenen Geraden dargestellt. Die Zeitpunkte

wurden jeweils unten links angegeben.
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Bei #5 sind die Maxima deutlich schérfer als bei #4. Dieser Effekt spiegelt zum einen die
Fokussierung der Versetzungsaktivitit auf den Bereich negativer Normalspannungen wieder
(siehe auch Abb. S. , was in Abb. einer Verkippung der gestrichelten Gera-
den in Druckrichtung entspriche. Die dazu senkrechten, durchgezogenen Geraden wiirden
entsprechend folgen und eine bessere Ubereinstimmung zwischen durchgezogenen Geraden
und Bereichen von hohen o Werten liefern. Zum anderen lassen sich in Druckrichtung die
erwarteten Maxima in a durch die rotierten Kérner beobachten, wobei eine Aufspaltung in
zwel Maxima durch die Ausbildung der zwei 111-Intensitdtsmaxima erfolgtEl Es handelt sich
hier also auch um einen Effekt der zwischen #4 und #5 entstehenden Endtextur.

Das Minimum in Hauptzugspannungsrichtung lasst sich mit diesem oberflichlichen Argument
aber nicht verstehen und liefert hier sogar einen scheinbaren Widerspruch, da hier eben-
falls ein 111-Intensitdtsmaximum auftritt, also viele 111-Ebenennormalen in dieser Richtung
orientiert sind. Betrachtet man aber die moglichen Einzelkomponenten der Textur (siehe
Abb. S. , gibt es nur einen Kandidaten, der das Maximum der 111-Intensitéit in
Zugspannungsrichtung erkldren kann und gleichzeitig ein Gleitsystem fiir Versetzungen in
der x-y-Ebene darstellt (d.h. 111 1 220), ndmlich Komponente D (siehe Abb. S. [161).
Genau diese Komponente hat aber ein Minimum in A7’ im Bereich ¢ < 80° (siche Abb.
S. . Das bedeutet, dass die Korner gerade so drehen, dass die 111-Ebenen in Zugrichtung
nicht zu einem vorher aktiven Gleitsystem gehoren, weshalb diese Ebenen auch keine erhohte

Stapelfehlerdichte aufweisen.

0.02
0.015
0.01

0.005

Abbildung 4.70: Stapelfehlerwahrscheinlichkeit o nach Entlastung (vel. Abb. [4.69).

Zwischen #5 und #6 sinkt die Stapelfehlerdichte uniform weiter ab. Vermutlich bewirkt hier
die Spannungsrelaxation einen Abbau der Stapelfehlerdichte in Druckrichtung. Trotzdem
bleibt, solange die duflere Last angelegt ist, die grundsétzliche Verteilung von « bestehen.

Nach der Entlastung stellt sich eine gleichméfligere Verteilung von « ein, die wahrscheinlich

128tapelfehler existieren nur auf 111-Ebenen.
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durch das (Zuriick-)Drehen von Kérnern wihrend der Entlastung zustande kommt (siehe
Abb. 4.70]).

Die zeitlichen und rdumlichen Entwicklungen der Stapelfehlerwahrscheinlichkeiten sind in

dem Programm DiStaTwi Viewer fiir alle diskutierten Proben enthalten (siehe Anhang|A.3

S. 599).

4.2.9 Zwillinge

Die Zwillingswahrscheinlichkeiten /3 sind, analog zu den Stapelfehlerwahrscheinlichkeiten, als
stereographische Projektionen in Abb. [£.71] dargestellt. Diese zeigen eine durchgingige Ab-
nahme von 3 wihrend der gesamten Verformung, die anfangs (bis #3) im Rahmen der Unsi-
cherheit homogen erfolgt und dann ab #4 Minima in Druckrichtung und Maxima ca. » 30°
aus der x-y-Ebene in Zugrichtung geneigt ausbildet. Ab #5 sind die Unterschiede zwischen

Minima und Maxima allerdings nur noch gering.

Ein Blick auf die Werte fiir 8 nach der Entlastung (siehe Abb. zeigt jedoch, dass hier
B im Mittel etwa den Wert von #3 erreicht aber eine komplett andere Verteilung aufweist.
Die Entwicklung von § von #4 bis #6 und dann der plétzliche Sprung auf den Zustand
aus Abb. ldsst sich physikalisch nicht erkldren. Zur Klidrung dieses Sachverhalts ist es
niitzlich, die Auswirkung von 5 auf die modellierten Diffraktogramme im Vergleich zu den
Rohdaten zu untersuchen. Das ist am Beispiel des 111- und 200-Peaks in ¢ = 82°-Richtung
zum Zeitpunkt #5 in Abb. dargestellt. Der Wert aus der Anpassung ist hier 5 = 0 und
entspricht der roten Kurve in Abb. Zusitzlich wurde das Modell mit weiteren Werten
fiir B berechnet und dargestellt; alle anderen Parameter wurden nicht verdndert. Tatséchlich
ist es so, dass die Kurve zu 8 = 0 im Bereich des 111-Peaks die beste Ubereinstimmung
zwischen Messung und Modell erreicht. Beim 200-Peak, ist das aber nicht so. Speziell an
der linken Flanke und im Bereich des Maximums wiirde durch hoéhere Werte von [ eine
bessere Ubereinstimmung erzielt werden, obwohl fiir die veréinderten Werte von § keine Op-
timierung durchgefithrt wurde. Die schlechtere Reproduktion der Intensitdt des Minimums
zwischen dem 111- und 200-Peak fiir 5 = 0.03 und 5 = 0.05 ist auf diese fehlende Optimierung
zuriickzufithren. Der gleiche Befund wiederholt sich beim 220- und 311-Peak. Das heifit, dass
B hier offensichtlich hki-abhéngig ist und entsprechend modelliert werden miisste. Theore-
tisch ist das auch nicht anders zu erwarten, denn die Stapelfehler, welche die unterschiedlichen
hkl-Peaks entlang der gleichen Richtung ¢ beeinflussen, liegen auf ganz unterschiedlich orien-
tierten 111-Ebenen (sieche Abb. S. 230). Das Modell zur Stapelfehlerwahrscheinlichkeit
geht von statistischer Isotropie des Materials und seines Dehnungszustandes aus, was aber
spétestens ab #3 in Bezug auf die Dehnungen in verschiedene Richtungen und fiir verschiede-
ne hkl nicht mehr erfiillt ist. Zusétzlich beginnt die Ausbildung der Endtextur ab #4, wodurch

die Isotropie noch weiter gestort wird. Die Entwicklung von g spiegelt also spéitestens ab #3,
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Abbildung 4.71: Stereographische Projektion der Zwillingswahrscheinlichkeiten 8. Der Wert
von ( ist durch die Farbkodierung gegeben und die Position der Datenpunkte
zeigt die Orientierung der Normalen auf die Zwillingsgrenze. Die Zeitpunkte

sind jeweils unten links angegeben.

neben der Zwillingsgrenzenwahrscheinlichkeit, immer auch diese Effekte wieder. Eine Korre-

lation von S mit anderen Gréflen, die diesen Effekt im Sinne einer Wechselwirkung in der

WPPM-Anpassung erkléren kénnte, konnte nicht gefunden werden.
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Abbildung 4.72: a) Stereographische Projektion der Zwillingswahrscheinlichkeiten S nach
Entlastung (vgl. Abb. . Zusétzlich ist der Intensitdtsverlauf der 111-
Peaks als gestrichelte Linie dargestellt. In den Richtungen hoher Intensitét
liegen immer erhohte Zwillingswahrscheinlichkeiten vor. b) Ausschnitt aus
einem Diffraktogramm (Fufl 111- und 200-Peak) und Anpassungen mit un-
terschiedlichen Werten fiir 5. Die iibrigen Parameter sind bei allen Anpas-
sungen gleich.

Das passende Vorgehen in diesem Fall wire eine Anpassung aller Diffraktogramme zum selben
Zeitpunkt in den verschiedenen (p-Richtungen mit einer globalen WPPM-Anpassung, die ein
iiber alle Orientierungen hinweg konsistentes Modell zur Zwillingsgrenzenwahrscheinlichkeit
beinhaltet. Technisch ist das machbar, wiirde aber einen umfangreichen Umbau der hier ver-
wendeten Programme erfordern, da diese auf die sequenzielle Anpassung der Diffraktogramme

in einem Polarwinkelsegment ausgelegt sind.

Prinzipiell existiert dieses Problem auch fiir Stapelfehlerwahrscheinlichkeiten («) und Ver-
setzungsdichten (p). Dem Versetzungsmodell liegt aber der Dehnungsgradient zu Grunde,
weshalb dieses prinzipiell robuster sein sollte — und offenbar auch ist — als das der Zwillings-
grenzenwahrscheinlichkeit. Die Stapelfehlerwahrscheinlichkeiten sind aus Sicht des Modells
hingegen eng verwandt mit den Zwillingsgrenzenwahrscheinlichkeiten. Trotzdem scheint der
kleine Unterschied in den Auswirkungen auf das Diffraktogramm auszureichen, um die Be-
stimmung von « in der WPPM-Anpassung wesentlich robuster zu machen als die Bestimmung
von f3. Im Zusammenhang damit sei erwéhnt, dass auch in [I143] eine wesentlich hohere Ge-
nauigkeit bei der Bestimmung von o durch WPPM-Methoden als fiir § nachgewiesen wurde.

FEin Grund dafiir wurde aber auch dort nicht angegeben.

Die Umverteilung der Zwillingsgrenzenwahrscheinlichkeit in Maxima und Minima nach der
Entlastung (siehe Abb. [4.72al) spiegelt in grofien Teilen die 111-Textur wieder; letztere ist als
gestrichelte Linie in Abb. eingezeichnet. Da die Zwillingsgrenzen nur auf 111-Ebenen
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existieren konnen, ist dieser Befund physikalisch nachvollziehbar und liefert ein Indiz dafiir,
dass die Probleme bei der Bestimmung von S hauptséichlich auf der Anisotropie beruht, die
wihrend der Verformung induziert wird. Die Textur besteht schliellich auch noch nach der

Entlastung der Probe.

Die zeitlichen und rédumlichen Entwicklungen der Zwillingswahrscheinlichkeiten sind in dem

Programm DiStaTwi Viewer fiir alle diskutierten Proben enthalten (siche Anhang |A.3

S.[594).

4.2.10 Mikroverzerrung durch Fehlpassung

Die mittlere Mikroverzerrung durch Fehlpassung zeigt iiber den Verlauf der Verformung hin-
weg eine charakteristische zeitliche Entwicklung. Fiir #4 und #5 ergibt sich auflerdem eine
charakteristische Verteilung in ¢-Richtung (siehe Abb. . Allerdings sind die Unsicherhei-
ten der Mittelwerte fiir diese Grofle dhnlich grofi, wie die Werte selbst. Daher sind sédmtliche
Anderungen im strengen Sinne nicht signifikant und der Effekt scheint nur von geringer Be-
deutung zu sein. Daraus lésst sich ableiten, dass die Mikroverzerrungen durch Fehlpassung in
den Koérnern im wie-hergestellten Zustand nur sehr gering sein kénnen und die Spannungs-
schwankungen zwischen den Kérnern daher auf einige 10 MPa bis wenige 100 MPa beschrankt
sind. Wéren sie grofler, wire der Effekt stérker. Trotz der groflen Unsicherheit dieser Grofe
wird die Anpassung aber nachweisbar schlechter, wenn man diesen Modellteil entfernt. Es
scheinen also im Bereich zwischen #4 und #b5 tatséchlich entsprechende Spannungsschwan-
kungen im Material aufzutreten. Fiir eine quantitative Untersuchung ist die Qualitit der

Daten aus der verwendeten Methode aber nicht ausreichend.

135 45
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225 315
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Abbildung 4.73: a) Mittlere Mikroverzerrung durch das MS Modell. b) Mikroverzerrung des
MS Modells zu den Zeitpunkten #1 bis #6.
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4.2 Referenzprobe Y4-2

4.2.11 Zusammenfassung zur Referenzprobe

Damit sind die Ergebnisse zur Probe Y4-2 abschlielend dargestellt und umfassend bespro-
chen. Diskussionen und Analysen zu moglichen Plastizitdtsmechanismen und ihren Wech-
selwirkungen wurden an den entsprechenden Stellen bereits vorgenommen und sollen jetzt
abschliefend in kompakter Form zusammengefasst werden. Die bisherige Einteilung in die
Zeitpunkte #1 bis #6 und die dadurch definierten Intervalle werden dafiir beibehalten. Die
folgende Darstellung beschreibt ein mogliches Modell, das im Einklang mit allen Beobach-
tungen eine konsistente Beschreibung liefert. Zusétzlich ist in Abb. das Auftreten der
diskutierten Mechanismen anhand der Spannungs-Dehnungs-Kurven skizziert. Die Kurven
unterhalb der Spannungs-Dehnungs-Kurve dienen nur der Veranschaulichung des Auftretens

der verschiedenen Mechanismen und représentieren keine Messgrofien.

KG Scherung /“\\

1.5
#1 :
#2 1k :
o) X
o I
S !
#4 > 1
® :
5 0.5 !
— gesamt
: —Korner
0 1 ! ! ! 1
q) 0.05 : 0.1 0.15 02 . 0.25
1 1 _E
: X y !
Relaxation

Rickwartsrelax./
Dilatanz

Versetzungen /
Coupling E _J\_-\‘
Kornrotation E E &

-\

Abbildung 4.74: Spannungs-Dehnungs-Kurve und Illustration zum Auftreten der diskutierten
Plastizitatsprozesse.
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#1 — #2:

Die Verformung lduft zu Beginn bei sehr niedrigen Spannungen hauptséchlich iiber einen
Prozess, welcher der thermischen Relaxation des Materials dhnlich ist [8, [3T], [32]. Wie dort,
ist auch hier die anfingliche Verformung mit einem Volumenabbau verbunden. Durch die von
auflen angelegte Spannung wird die benétigte Aktivierungsenergie soweit abgesenkt, dass bei
Raumtemperatur zu Beginn relativ hohe Dehnraten erreicht werden. Die duflere Belastung
stellt auBlerdem, &hnlich einem Kriechexperiment, eine Spannungsreservoir dar, wohingegen
bei der rein thermischen Relaxation die internen Spannungen mit der Zeit abgebaut werden
und sich dadurch die treibende Kraft im Verlauf der Relaxation erschopft. Im Verformungsfall
konnen somit héhere Dehnraten iiber grofiere Dehnungsbereiche aufrechterhalten werden als

bei der thermischen Relaxation.

Aulerdem eré6ffnet die zusétzliche Scherkomponente bei der Verformung die Moglichkeit, die
Konfigurationen in den Korngrenzen abseits des Relaxationsprozesses zu dndern. Dadurch
lassen sich auch solche Konfigurationen erreichen, die durch die rein thermische Relaxation
nicht zugénglich wiren, wodurch moglicherweise die Kapazitéit an erreichbarer, plastischer
Dehnung durch die Relaxation vergroflert wird. Zusétzlich besteht immer die Moglichkeit,
dass durch die Verformung lokal Konfigurationen hoher Energie/hohen Exzessvolumens neu
erzeugt werden, die in der Folge relaxieren oder lokale Scherungen erzeugen und dadurch zur
plastischen Dehnung beitragen. Letzterer Fall ist funktional identisch zu Schertransformatio-

nen in Glésern, die hier jedoch auf die Bereiche der Korngrenze eingeschrinkt sind.

Ergénzend konnen in geringem Mafl Versetzungen durch die Korner gleiten und so plasti-
sche Dehnung erzeugen oder als Akkommodationsprozess fiir die Relaxation fungieren. Diese
Versetzungen konnen sowohl von Anfang an in den Kérnern vorhanden sein, als auch durch

lokale Spannungskonzentration nukleiert werden.

#2 — #3:

Im anschlieflenden Zeit- und Dehnungsintervall ist die Kapazitéit des zuvor beschriebenen Pro-
zesses in einem solchen Maf erschopft, dass es zu einem starken Spannungsanstieg kommt.
Das heifit nicht, dass dieser Prozess zum Erliegen kommt, sondern dass seine effektive Ak-
tivierungsbarriere zunimmt, etwa weil die Konzentration von relaxierbaren Bereichen in der
Korngrenze abnimmt und deren Neubildung zum limitierenden Faktor wird. Nach wie vor
nimmt die Dichte im Stegbereich zu, wenn auch der Dilatanzfaktor stetig zunimmt und da-
mit die Kontraktanz senkrecht zum Steg abnimmt. Méglicherweise ist die Ursache dafiir eine
Zunahme des Anteils von spannungsgetriebenen Scherverformungen in den Korngrenzen ge-
geniiber dem Relaxationsprozess.

Durch die hoheren Spannungen werden nun eine Reihe von weiteren Mechanismen zugénglich.
Der offensichtlichste ist eine erhchte Versetzungsaktivitdt — vor allem auf 111-Ebenen, die in
Richtung der maximalen Scherspannungen ausgerichtet sind. Es erfolgt also eine teilweise

Verlagerung der Plastizitét ins Innere der Kristallite.
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Zusétzlich zeigt sich hier der Beginn der Rotation von Kérnern zum Abbau elastischer Verzer-
rungsenergie, sowie von anisotropem Kornwachstum in Folge von Coupling. Beide Prozesse
konnen durch Bildung und Bewegung von Disconnections in Korngrenzen erzeugt werden,
welche ihrerseits durch die Versetzungsaktivitdt im Korninneren erzeugt, vernichtet und um-

verteilt werden konnen.

#3 — #4:

Der Bereich zwischen #3 und #4 bildet in der Spannungs-Dehnungs-Kurve das Ende des
stirksten Spannungsanstieges und den kontinuierlichen Ubergang in den Bereich annéhernd
konstanter Spannungswerte in den Koérnern. Gleichzeitig kommt die Dichtezunahme in die-
sem Bereich zum Erliegen, weshalb das Reservoir an relaxierbaren Konfigurationen in den

Korngrenzen bis #4 aufgebraucht zu sein scheint.

In diesem Bereich liegt auch die grofite Zunahme an Versetzungsdichte und damit vermutlich
auch die grofite Zunahme an Versetzungsaktivitét. Das passt auch zu dem Befund, dass die
maximalen Scherspannungen in den Koérnern hier im Mittel Werte von » 1 GPa annehmen,
wodurch die Emission von vollstdndigen Versetzungen problemlos moglich sein sollte. Da
das mit dem Ende des Spannungsanstieges in den Kornern korreliert, ist dieser Mechanismus
moglicherweise der entscheidende fiir die Begrenzung der Maximalspannungen in den Kérnern

und damit auch in abgeschwichter Form im Gesamtmaterial.

AuBlerdem setzt zwischen #3 und #4 Kornwachstum (vermutlich durch SGKW /Coupling) in
vollem Umfang ein. Die vermehrte Emission und Absorption von Versetzungen an den Korn-
grenzen mag diesen Prozess begiinstigen, da dadurch Korngrenzenversetzungen und Stufen
in den Korngrenzen erzeugt werden, sodass in diesem Zuge Disconnections gebildet oder ab-
gebaut werden, die als Triager von Coupling fungieren kénnen. Zusétzlich kann dadurch die,

ebenfalls in diesem Bereich zunehmende, Kornrotation unterstiitzt werden.

In diesem Bereich fillt auch x (siehe GI. , S. deutlich ab, was gleichbedeutend
mit einer relativen Abnahme der Scherspannungen in den Korngrenzen im Vergleich zu den
Kornern ist, was mit einer Abnahme des Scherwiderstandes der Korngrenzen gleichgesetzt
werden kann. Auch diese Beobachtung kann einerseits mit der héheren Konzentration von
Korngrenzenversetzungen bzw. Disconnections in den Grenzen erkléart werden, andererseits
konnten auch Schertransformationen in den Korngrenzen aktiv werden. In jedem Fall steigt

der Beitrag der Korngrenzenplastizitiat zur gesamten Scherverformung.

Insgesamt steigt die Scherspannung in den Korngrenzen aber weiterhin an, ohne dass noch
eine nennenswerte Verdichtung des Stegbereiches stattfindet. Zum Zeitpunkt #4 geht die
Kontraktanz sogar in eine Dilatanz {iber (Vorzeichenwechsel des Dilatanzfaktors). Die Dich-
tezunahme und Relaxation der Korngrenzen kann in diesem Bereich also nicht mehr fiir die
Verfestigung der Korngrenzen verantwortlich sein, weshalb die iibrigen, in der Korngrenze

aktiven Prozesse eine Verfestigung herbeifiithren miissen. In [114, 115] wurde dazu ein Modell
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beschrieben, bei dem Korngrenzengleiten oder Coupling zur Bildung von Disklinationsdi-
polen an Tripellinien fithrt. Die von diesen Disklinationsdipolen verursachten Spannungen
bewirken eine Verfestigung der Korngrenzen, bilden aber gleichzeitig den Keim fiir eine Riss-
bildung entlang der Korngrenze. Um grofle plastische Dehnungen zu erzielen, miissen laut
[115] aus diesem Grund zusétzliche Plastizitdtsmechanismen zu einer Spannungsrelaxation
dieser Disklinationsdipole beitragen, wie z.B. Diffusionsprozesse, Versetzungsemission oder

auch Schertransformationen.

#4 — #5:

Zwischen #4 und #5 erfolgt die weitere Verformung bei nur noch schwach ansteigenden Span-
nungen in den Koérnern; im Gesamtmaterial steigen die Spannungen jedoch noch weiterhin
deutlich an. Die bisher stattfindende Dichtezunahme stagniert in diesem Bereich, gleichzei-
tig treten in den Korngrenzen in der Hauptzugrichtung positive Normalspannungen auf und
der Dilatanzfaktor nimmt positive Werte an. Der Verformungsmodus entspricht damit einer
Scherdehnung mit Dilatanz, gleichzeitig nimmt der hydrostatische Druck im Steg durch die
Zugspannungen in den Grenzen geringfiigig ab. Die Dilatanz kann nur durch Prozesse au-
Berhalb der Korner — also in den Korngrenzen — getragen werden; entweder durch Zunahme
des Exzessvolumens (Riickwértsrelaxation) oder durch die Entstehung von Mikrorissen zwi-
schen den Kornern. In beiden Fillen wird dadurch das Versagen der Probe in Zugrichtung

vorbereitet.

Die Zunahme der Versetzungsdichte endet in diesem Bereich, sodass sich eine Gleichgewichts-
Versetzungsdichte in Abhéngigkeit von der Dehnrate und dem Belastungszustand einstellt.
Zusétzlich verengt sich der Winkelbereich, in dem Versetzungen gleiten, auf die Richtungen
in denen eine negative Normalspannung vorliegt. In den Richtungen mit positiven Normal-
spannungen iibernehmen vermutlich Kongrenzenmechanismen die plastische Dehnung.

Die Aktivitdten von Kornwachstum und Kornrotation sind jetzt maximal ausgeprigt und
es bildet sich die endgiiltige Textur (Intensitéitsmuster) aus. Dieser Endzustand der Inten-
sitdtsverteilung stellt einen Kompromiss fiir die Umorientierung der Kérnern zwischen Ab-
senkung der Verzerrungsenergie und moglichst geringer Hinderung des Versetzungsgleitens
dar und ist damit eng an die Versetzungsaktivitéit gekoppelt.

In den Korngrenzen nehmen die Scherspannungen kontinuierlich zu, es findet also weiterhin
eine Verfestigung der Korngrenzen statt. Trotzdem ist absehbar, dass die Probe durch die
Dilatanz schlussendlich auf ein Versagen durch Rissbildung zusteuert.

Die Kornvergroberung durch Coupling verlangsamt sich relativ schnell nach #4 und stagniert

ab dann.

#5 — #6:
Bei #5 wurde die Priifmaschine gestoppt und der Verformungsprozess geht in eine Spannungs-

relaxation iiber, in deren Verlauf die Spannungswerte etwa auf das Niveau zum Zeitpunkt
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#4 fallen. Die Dehnraten sinken wéihrenddessen auf (nahe) null, alle Plastizitdtsmechanismen
kommen also praktisch zum Erliegen. Allerdings hat dieser Prozess die Form eines exponen-
tiellen Abfalls und ist auch nach dem 200-sekiindigen Haltesegment noch nicht vollstindig
abgeschlossen.

Die anliegende Spannung kompensiert weiterhin die Riickspannungen im Material, sodass die
Versetzungsdichte in diesem Bereich nicht abnimmt. Das passiert erst nach Entlastung des

Materials.

Damit ist die Zusammenfassung der Ergebnisse der Referenzprobe und einer méglichen Er-
kldrung der ablaufenden Prozesse abgeschlossen. Nachfolgend werden die Auswirkung von
Variationen der Stegwinkel, also des Spannungszustandes, sowie der Dehnrate untersucht

und die Unterschiede zwischen nicht-relaxierten und relaxierten Proben beleuchtet.
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4.3 Dehnrateneinfluss

In diesem Kapitel wird der Einfluss der Variation der Dehnraten auf das Verformungsverhal-
ten anhand dreier Proben mit Stegwinkeln von 45° untersucht. Bei diesen Proben handelt
sich um V2-2 (Nenndehnrate £, = 1-107's7!), N1-2 (Nenndehnrate F, = 2-10*s7!) und die
Referenzprobe Y4-2 (Nenndehnrate E, = 1-1073s71).

Da die Verformungszeitrdume um mehrere Gréflenordnungen voneinander abweichen, ist die
Zeit fiir den Vergleich dieser drei Experimente kein geeigneter Ordnungsparameter. Statt-
dessen wird in diesem Kapitel durchgéngig die makroskopische Dehnung in y-Richtung (Ej)
in allen Darstellungen genutzt. Diese ist in guter Ndherung eine streng monoton steigende
Funktion der Zeit und bietet daher eine &hnlich gute, aber vor allem vergleichbare Basis fiir
die folgende Diskussion. Allerdings lassen sich die Anderungsraten der dargestellten GroBen
nicht mehr direkt erkennen und das Relaxationssegment am Ende der Verformung wird auf
einen kleinen Dehnungsbereich gestaucht.

Die zuvor zur Einteilung genutzten Zeitpunkte #1 bis #6 werden hier weiterhin verwendet,
beschreiben jetzt aber die Dehnungswerte £, der Referenzprobe Y4-2 zu diesen Zeitpunkten.
Zusétzlich werden die Dehnungswerte #V und #N eingefiihrt, die das Ende der Verformung
(den Anfang des Relaxationssegmentes) von V2-2, bzw. N1-2 markieren.

Zunichst sind in Abb. die tatsdchlich erreichten Dehnraten aus der optischen Deh-
nungsmessung der drei Proben dargestellt. Die Nenndehnrate in y-Richtung entspricht in
allen Féllen dem kleinsten Wert auf der y-Achse in den Darstellungen und wird jeweils nur
zu ca. 60% erreicht. Ansonsten sind die Verldufe der Dehnraten in allen Féllen qualitativ
ghnlich. Nur bei N1-2 gibt es eine auffillige Storung der Dehnraten bei einem Dehnungswert
in y-Richtung von —0.195, die sich vermutlich auf die Ausbildung von Rissen in der Probe
zuriickfithren lédsst. Diese sind in den Frontkamerabildern zu diesem Zeitpunkt noch nicht zu
erkennen, zeigen sich aber im spéteren Verlauf der Verformung deutlich (siehe Abb. .
Der Riss verlauft genau senkrecht zur Richtung der maximalen Zugspannung, sodass es sich
hier offenbar um einen Modus I Spaltbruch handelt [30]. In [30] wurde fiir das selbe Material
bei SCS mit 45 °-Stegwinkel ein Gleitbruch nach Modus II beschrieben. Allerdings lag dort
die Nenndehnrate mit 3-107%s™! um den Faktor 20 hoher als bei N1-2.
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Abbildung 4.75: Eintridge des Dehnratentensors gegen die Dehnung in y-Richtung von
V2-2 (a), Y4-2 (b) und N1-2 (c). Hier sind nur die von null verschiedenen
Eintrédge dargestellt.

In fritheren Arbeiten [25] 30, [166] wurde die Dehnratenabhéngigkeit der Verformung anhand
von Spannungs-Dehnungs-Kurven dargestellt. Trégt man, wie zuvor, die y-Komponente des
Spannungstensors (von Koérnern und Gesamtmaterial) gegen die y-Komponente des makro-
skopischen Dehnungstensors auf (siehe Abb. , ist allerdings weder fiir das Gesamtma-
terial, noch fiir die Kristallite der bekannte Befund nachweisbar, dass Spannungen mit der
Dehnrate ansteigen. Die beiden schnelleren Verformungen (V2-2 und Y4-2) zeigen annidhernd
identische Spannungen im Gesamtmaterial, wohingegen die langsamste Verformung (N1-2)
deutlich geringere Spannungswerte in y-Richtung aufweist. Bei den Spannungen in den Kris-
talliten liegt V2-2 jedoch zwischen den Spannungswerten von Y4-2 und N1-2. Die Rissbildung
der Probe N1-2 bei E, = —0.195 fiihrt auflerdem zu einem pl6tzlichen Anstieg der Spannung

und einem leichten Anstieg der nachfolgenden Verfestigung. Fiir eine genauere Untersuchung
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Abbildung 4.76: a) Ausschnitt aus dem Bild der Frontkamera zum Ende der Verformung
von N1-2. Die Darstellung wurde so angepasst, dass der dunkle Stegbe-
reich hier besser hervortritt. Im unbearbeiteten Kamerabild ist die Probe
nicht iiberbelichtet. Der rote Kasten markiert den Bereich, in dem sich der
Riss im Stegbereich gebildet hat. Die Hauptzugspannungsrichtung ist durch
griine Pfeile gekennzeichnet. b) Polarplot des Spannungszustandes in der
x-y-Ebene in den Kristalliten von N1-2 zum Zeitpunkt der Aufnahme des
Bildes in a). Die Hauptzugspannungsrichtung ist hier ebenfalls durch griine
Pfeile gekennzeichnet.

der Spannungen bietet sich erneut die Aufspaltung des Spannungszustandes in den hydrosta-
tischen Druck o;, und den verbleibenden deviatorischen Anteil G 4., an.

Fiir die hydrostatischen Spannungen o5, (sieche Abb. stellt sich keine einfache Ab-
héngigkeit von der Dehnrate ein: Die 0,5, Werte von V2-2 und N1-2 sind nahezu identisch bis
zu dem Punkt, an dem sich in N1-2 der Riss ausbildet. Ab dann steigt o;s, fiir N1-2 plotzlich
an. Fir Y4-2 liegt 0,5, ab #3 konstant um 0.07 GPa leicht iiber den andern beiden Werten.
Sollte es deutliche Unterschiede in den Spannungszustdnden der drei Verformungen geben,
miissen sich diese in Unterschieden im Spannungsdeviator niederschlagen.

Skalare Grofien, die den Spannungsdeviator beschreiben, sind z.B. die Invarianten von &4,
oder daraus abgeleitete Groflen wie die von Mises-Vergleichsspannung. Diese haben aber den
Nachteil, dass sie nicht direkt messbare bzw. wirkende Spannungen im Material beschreiben,
wie weiter oben bereits diskutiert wurde (S. . Um den Spannungsdeviator mit einer
skalaren Grofle zu beschreiben, wird stattdessen der Betrag der maximalen Scherspannung
Oscher ewihlt, also das Maximum der in Abb. (S. fiir Y4-2 dargestellten Grofle. Die
Ebenennormalen der Ebenen, an denen die maximalen Scherspannung wirken, befinden sich
bei den 45°-Proben immer in der x-y-Ebene in Richtung der Winkelhalbierenden zwischen

den Hauptspannungsrichtungen.
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Abbildung 4.77: Spannungs-Dehnungs-Kurven in Form der Spannungen und Dehnungen in
y-Richtung. Die Spannungen sind sowohl fiir die Kérner (gepunktete Linien),
als auch fiir das Gesamtmaterial (durchgezogene Linien) angegeben.

Die Orientierung dieser Hauptspannungsrichtungen wird, wie oben, durch A¢ beschrieben,
wodurch die Abweichung des Minimums des Spannungstensors in der x-y-Ebene von der
¢ = 90° Position angegeben wird. Fiir die drei Dehnraten ist A¢ in Abb. gezeigt und
liefert fiir alle Dehnraten &hnliche Werte, die sich maximal um 4 ° voneinander unterscheiden.
Das entspricht gerade der Breite Ay der Segmente aus der Rontgenauswertung, sodass der
Unterschied identisch zur Auflésung in ¢-Richtung ist. Die in Abb. gezeigten Werte sind
sowohl fiir die Spannungstensoren der Korner, als auch fiir die des Gesamtmaterials giiltig,
da sich diese nur durch eine skalare/isotrope Skalierung um y voneinander unterscheiden.
Die Hauptspannungsrichtungen der Spannungstensoren sind damit in allen Féllen &hnlich

orientiert, sodass ggeper fiir alle Dehnraten direkt miteinander verglichen werden koénnen.

In Abb. sind die maximalen Scherspannungen in den Koérnern und in Abb. die
maximalen Scherspannungen im Gesamtmaterial dargestellt. Hier zeigt sich nun deutlich die
erwartete Zunahme der Spannungen mit der Dehnrate, wobei die Unterschiede spétestens
ab #4 fir das Gesamtmaterial sogar stédrker ausgeprigt sind. In den Koérnern tritt ab #4
nur in sehr geringem Maf eine Verfestigung in Bezug auf die Scherspannungen auf, wihrend
beim Gesamtmaterial eine mit der Dehnrate zunehmende Verfestigung beobachtet werden
kann. Dabei sind die Scherspannungen im Gesamtmaterial geringer als in den Koérnern, mit

Ausnahme des Endes der schnellsten Verformung V2-2.
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Abbildung 4.78: a) Hydrostatischer Druck in Abhéingigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Kérnern als Funktion der Dehnung in
y-Richtung. ¢) Wie b), aber fiir das Gesamtmaterial.

Entsprechend sind die Werte von y (siehe Gl. , S. , abgesehen von dieser Ausnahme,
kleiner als 1 (siehe Abb. . Die geringsten Werte von y weist die am langsamsten ver-
formte Probe N1-2 auf, deren Verlauf von y ndherungsweise einem nach unten verschobenen
Verlauf von Y4-2 entspricht. Die schnell verformte Probe V2-2 zeigt verglichen dazu einen
stiarkeren Anstieg von x iiber die gesamte Verformung hinweg und erreicht am Ende sogar
Werte iiber 1. In diesem Bereich iibersteigt der mittlere Scherwiderstand der Korngrenzen

also sogar den der Kristallite.

Die von Mises-Vergleichsspannungen entsprechen qualitativ genau den Verldufen der maxi-
malen Scherspannungen in Abb. bzw. in Abb. allerdings zu hoheren Spannungs-

werten verschoben — daher werden sie hier nicht wiedergegeben.

Nach den Spannungen sollen im néchsten Schritt nun die Dehnungen im Verlauf der Verfor-

mungen mit unterschiedlichen Dehnraten présentiert werden. Wie bei der Referenzprobe, ist
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Abbildung 4.79: a) Rotationswinkel A¢, um den die Hauptspannungsrichtungen in der x-y-
Ebene um das Laborkoordinatensystem gedreht sind. Die Ausrichtung der
Achsen des Laborkoordinatensystems entsprechen den Polarwinkeln ¢ = 0°
und ¢ = 90°. b) Multiplikator des Spannungsdeviators y, durch den die Span-
nungen in den Kristalliten auf die mittlere Spannung im Gesamtmaterial
umgerechnet wird. Werte kleiner 1 entsprechen einer Spannungsabsenkung
in den Korngrenzen im Vergleich zu den Spannungen in den Koérnern.

auch hier in allen Fillen tiber alle Verformungen hinweg die Normaldehnung entlang der Ste-
grichtung (¢ = 135° bzw. ¢ = 315°) stets null. Daher kénnen die Dehnungen in der x-y-Ebene
wieder in einen Normaldehnungsanteil senkrecht zum Steg E, und einen Scherdehnungsanteil
entlang des Steges | aufgeteilt werden, die in Abb. dargestellt sind. Die Dehnungskom-
ponenten in z-Richtung liefern keine relevanten Zusatzinformationen und werden hier nicht
dargestellt.

Die Verldufe von £, und E) sind fiir die beiden schnellen Verformungen V2-2 und Y4-2
qualitativ und quantitativ bis #4 identisch. Ab #4 steigt F, bei Y4-2 zunehmend stirker an
als bei V2-2 und erreicht damit bei gleichem F etwas gréfiere Werte von E, . Insgesamt sind
die Unterschiede aber gering.

Bei der langsamen Verformung N1-2 ist das Dehnungsverhalten zu Anfang sehr verschieden.
Die Scherdehnung E) setzt leicht verzogert erst ab #2 ein und verlduft ab dann gleichartig
wie bei Y4-2 oder V2-2; hier findet also eine Verschiebung von E) in positive E,-Richtung
statt. Der verzogerte Einsatz von E| wird durch einen stérkeren anféinglichen Abfall von E,
ausgeglichen, also einer starken Kompression des Steges. Zwischen #2 und #3 nimmt die
Steigung von F, von N1-2 den Wert der E,-Steigung von Y4-2 an. Ab dann verlduft die
E-Kurve parallel zu der von Y4-2 mit einem Abstand von —1.7 %.

Dieser Befund &uflert sich auch in der unterschiedlichen Orientierung der Hauptdehnungs-
richtungen in der x-y-Ebene, die in Form von A¢ in Abb. angegeben sind. Bei N1-2 ist
A¢ mit —47 °bis #2 viel kleiner als bei V2-2 oder Y4-2 (A¢ = —10° bzw. A¢ = -12°), d.h.
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Abbildung 4.80: Darstellung der Dehnung in der x-y-Ebene in Form der Dehnung entlang des
Steges F) und senkrecht zum Steg F,. Die Normaldehnungskomponente in
Stegrichtung ist stets null, sodass hier auf ihre Wiedergabe verzichtet wird.
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die Hauptkompressionsrichtung steht anfangs bei N1-2 senkrecht auf dem Steg, ohne dass
Scherung stattfindet; in den iibrigen Fillen setzt diese direkt zu Beginn der Verformung mit
ein. Im weiteren Verlauf der Verformung steigt A¢ dann kontinuierlich an und erreicht ca.

ab #V dhnliche A¢-Werte wie in den iibrigen Experimenten.
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Abbildung 4.81: Rotationswinkel A¢, um den die Hauptdehnungsrichtungen in der x-y-Ebene
um das Laborkoordinatensystem gedreht sind. Die Ausrichtung der Ach-
sen des Laborkoordinatensystem Entsprechen den Polarwinkeln ¢ = 0° und
p=90°.

Der Hauptunterschied des Dehnungsverhaltens von N1-2 im Vergleich zu den restlichen Ver-
formungen stammt damit von dem unterschiedlichen Anfangsverhalten von N1-2, das von
einer reinen Kompression senkrecht zum Steg geprigt ist. Das anschliefende Verformungs-
verhalten ist dann insgesamt sehr dhnlich zu den iibrigen Dehnraten, wird aber weiterhin von
dem anféanglichen Unterschied geprégt, der erst spét in der Verformung ausgeglichen werden

kann.

In der Volumendehnung (siehe Abb. aufBert sich das in einer deutlich stérkeren anféing-
lichen Volumenabnahme von N1-2 im Vergleich zu Y4-2 und V2-2. Die beiden letztgenannten
zeigen indes ein einander sehr dhnliches Verhalten bis ca. #4. Danach stagniert das Steg-
volumen bei Y4-2, nimmt bei N1-2 wieder zu und bei V2-2 weiter ab. Der Bereich, in dem
die Rissbildung bei N1-2 einsetzte fillt mit dem zusammen, in dem AV /V positiv wird. Die
schnellste Verformung V2-2 ist die einzige, die bis zum Ende eine durchgingige Volumenab-

nahme zeigt.
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Dieses unterschiedliche Volumendehnungsverhalten geht zu groflen Teilen auf die unterschied-
liche anfiangliche Kompaktierung der Proben zuriick, weniger auf Unterschiede im Dilatanz-
verhalten. Folglich sind die Dilatanzfaktoren 8 der drei Proben iiber die Verformung hinweg
ahnlich (siche Abb. . Es fillt jedoch auf, dass 8 bei N1-2 als Folge der starken Kom-
pression bis ca. #3 bei etwas niedrigeren Werten startet. Ab #3 ist dieser Effekt abgeklungen
und die Dilatanzfaktoren aller drei Proben steigen bis #4 mit dhnlicher Steigung an, wobei
die Werte von N1-2 durchgéngig iiber denen der andern beiden liegen. Es ldsst sich also fest-
halten, dass Dilatanz/Kontraktanz hauptséchlich durch niedrige Dehnraten beeinflusst wird

und fiir Dehnraten iiber 1-1073s™! keinen signifikanten Unterschiede aufweist.
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Abbildung 4.82: a) Entwicklung der Volumendehnung im Steg mit der Dehnung in y-
Richtung. b) Dilatanzfaktor 8 als Funktion der Dehnung in y-Richtung.

Im n#chsten Abschnitt wird die Entwicklung der Intensitéiten wihrend der drei Verformun-
gen betrachtet. Dazu wird zunéchst die Textur in den Endphasen der Verformungen bei
#V in Abb. betrachtet, wo fiir die drei Dehnraten jeweils die vier Peakintensitidten in
Abhéngigkeit von ¢ gezeigt sind. Um die Vergleichbarkeit zwischen den verschiedenen Proben
herzustellen, ist hier nicht I’, sondern I" = I' /(1111 41), aufgetragen. Die unterschiedlichen
Belichtungszeiten auf dem Detektor und unterschiedliche Probendicken wiirden bei I’ zu nicht
direkt miteinander vergleichbaren Werten fiir die drei Proben fiihren. Die Normierung von I’
auf die mittlere Anfangsintensitét des 111-Peaks (1111 41), umgeht dieses Problem und stellt
die Vergleichbarkeit in Form von I"” her.

Die drei Texturen sind einander qualitativ sehr dhnlich, die von V2-2 und Y4-2 entsprechen
sich sogar quantitativ in den Betrdgen der Maxima und Minima im Rahmen der Messgenau-
igkeit. Letztere ist bei V2-2 schlechter, da die effektiven Belichtungszeiten kiirzer sind und die
laterale Auflosung auf dem Detektor durch das Pixel-Binning halbiert ist. Die groflere Nei-
gung des 220-Maximums aus der ¢ = 90° Position in negativer Richtung ist mit der stdrkeren

Neigung der Hauptspannungsachsen in diese Richtung korreliert. Die Intensitédtsverteilung
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Abbildung 4.83: Intensitéitsinderung I’ fiir alle Peaks von V2-2 (a), Y4-2 (b) und N1-2 (c)
zum Dehnungszustand #V'.

von N1-2 ist etwas schwécher ausgepréigt als die der beiden anderen und weist auflerdem eine
stiarker ausgepriagte Asymmetrie auf. Diese ist besonders gut in der Darstellung der summier-
ten Intensititen in Abb. [£.84] zu erkennen: Wo die Intensitéitsmaxima in Druckrichtung bei
Y4-2 und besonders bei V2-2 sehr gleichméBig in ¢-Richtung ausgebildet sind, zeigt sich bei
N1-2 ein klar erkennbarer Abfall der Intensitéit des Maximums in negativer Drehrichtung. Der

Drehprozess der Kérner scheint also mit abnehmender Dehnrate stérker gehemmt zu sein.

Die Entwicklung sowohl der Ubergangs- als auch der Endtextur ist in Abb. in Form von
AI" angegeben. Wie zuvor bei Y4-2 wird hier die Ubergangstextur durch AI7},(82°) und
die der Endtextur durch AI{}; = AI{};(54°) — AI{};(82°) quantifiziert; aus Griinden der

Vergleichbarkeit hier allerdings unter Verwendung der zweifach gestrichenen Gréfen.

Die Ubergangstextur entwickelt sich bis #4 fiir alle Dehnraten gleich (siche Abb. 4.85a]) und
andert sich ab dann fiir Y4-2 und N1-2 fast nicht mehr, wobei die Auspriagung fiir N1-2 etwas

schwicher ist als fiir Y4-2.
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Abbildung 4.84: Uber alle Peaks summierte Intensititen I” am Ende der Verformung von
V2-2 (a), Y4-2 (b) und N1-2 (c). Positive Werte entsprechen hier einer Zu-
nahme der Anzahl der Atome, die an der Streuung in Kérnern in die jeweilige
Richtung beteiligt sind.

Der bei V2-2 beobachtete Abfall nach #4 wird nur nur durch zwei Datenpunkte verursacht
und konnte daher ein Effekt der Messunsicherheit sein, welche bei V2-2 aus den oben genann-
ten Griinden besonders hoch ist.

Die Entwicklung der Endtextur (siehe Abb. verlauft ebenfalls bis #4 bei allen Dehnra-
ten nahezu identisch. Ab dann ist der Anstieg bei N1-2 viel flacher als bei den anderen beiden
Proben, sodass ein geringerer Endwert erreicht wird, obwohl die Verformung sowohl bzgl. Zeit
als auch bzgl. Dehnung die anderen iibertrifft. Das zeigt, dass die schwicher ausgeprigte End-

textur bei geringer Dehnrate représentativ fiir den gesamten Verlauf der Verformung ist.
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Abbildung 4.85: a) Entwicklung der Ubergangstextur in Abhingigkeit von der Dehnung in
y-Richtung, gemessen durch AI{};(82°). b) Entwicklung der Endtextur in
Abhéngigkeit von der Dehnung in y-Richtung. Als Maf dient hier AI{}; =
Al (54°) - AlT,(82°).

Tabelle 4.4: Parameter der Korngroflenverteilung zu Beginn der Verformung.

V2-2 Y4-2 NI1-2

(D)yor [nm] 17.1  18.6  18.6
o [] 155 1.62 1.66

Waihrend allen drei Verformungen kommt es zu anisotropem Kornwachstum, bei dem die
Richtungen, in denen die Korngréflen zunehmen, etwa den Maxima der summierten Inten-
sitdten entsprechen (siehe Abb. — dhnlich wie bei Y4-2 . Ein direkter Vergleich der
Korngrofien und ihrer Entwicklung ist hier nicht zielfithrend, da die Anfangskorngréfien und
ihre Verteilungen voneinander abweichen. Die volumengemittelten Korngréfien (D),,; sowie
die Verteilungsbreiten ¢’ zu Beginn der Verformung sind in Tabelle zusammengefasst und
zeigen, dass die Anfangsverteilungen der Korngréfien, insbesondere fiir V2-2, zu verschieden

voneinander sind, als dass einfache Vergleiche von (D), und ¢’ zuliissig wiire.

Fiir den Vergleich der Proben untereinander ist eine daraus abgeleitete Grofle wesentlich
geeigneter, ndmlich der Anteil des Volumens der Korngrenzen Vi in Relation zum Gesamt-
volumen V' und dessen Entwicklung mit der Zeit bzw. der Dehnung. Um diese Grofie zu

berechnen, kann der Ansatz aus [271] bzw. [§] benutzt werden, wo fiir Vi /V der Ausdruck

Vka 30

V" 35+ exp (In ((D)oor) — (Inc”)?) (4.10)
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4 Ergebnisse

abgeleitet wurde. Hier bezeichnet § die Dicke des Korngrenzbereiches normal zur Grenzfliache,
welche in [6] zu § ~ 0.8 nm abgeschétzt wurde. Die Groe Vi /V gibt direkt den Volumenan-
teil des Korngrenzbereiches im Stegbereich an, was zusétzlich den Vorteil hat, dass damit die
komplette Korngrofienverteilung (also (D), und o) in einer physikalisch relevanten Weise

durch ein ein skalares Maf3 beschrieben wird.
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Abbildung 4.86: a) Entwicklung des Korngrenzenvolumenanteils AV /V mit der Dehnung.
b) Uber alle Burgers-Vektororientierungen gemittelte Versetzungsdichten
(p)q als Funktion der Dehnung in y-Richtung.

Die drei Proben starten bei geringfiigig unterschiedlichen Werten von Vi /V (V2-2: 0.145,
Y4-2: 0.140, N1-2: 0.142), weshalb ein direkter Vergleich der Entwicklung davon uniibersicht-
lich wére. Daher ist in Abb. die Anderung von Vi ¢/V in Bezug auf den Anfangszustand
bei #1, also AVka/V = (Vka—Vka.41)]V, aufgetragen, wobei AVy/V fiir jeden Zeitpunkt
iiber alle Winkelsegmente gemittelt wurde. Dadurch haben alle Proben den gemeinsamen
Startwert null, sodass sich Unterschiede in der Entwicklung von Vi /V direkt in Abweichun-
gen der Kurven voneinander niederschlagen.

Die Ergebnisse zeigen deutlich, dass bis #4 keine Unterschiede im Abbau von korngrenzen-
volumen fiir die verschiedenen Dehnraten bestehen. Dabei findet in allen Féllen bei niedri-
gen Spannungen bis #3 praktisch kein Abbau statt. Jenseits von #4 unterscheidet sich die
schnellste Verformung aber von den anderen beiden, indem die Anderung des korngrenzen-
volumens zum Erliegen kommt, wohingegen in den beiden langsameren Verformungen weiter
korngrenzenvolumen abgebaut wird. In allen Fillen findet aber der grofite Teil des Abbaus

von Korngrenzen im Bereich um #4 statt.
Zuletzt werden die Entwicklungen der Versetzungsdichten bei den unterschiedlichen Dehn-

raten diskutiert. Die iiber alle Richtungen gemittelten Versetzungsdichten (p)q sind in Abb.
dargestellt. Die anfinglichen Versetzungsdichten sind bei allen Proben sehr #dhnlich
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4.3 Dehnrateneinfluss

und nehmen bis #3, unabhéngig von den verschiedenen Dehnraten, in gleichem Mafle zu. Ab
dann steigt die Versetzungsdichte bei der schnellen Verformung V2-2 aber viel stérker an als
bei den langsameren. Bei Y4-2 ist dieser Effekt gegeniiber der noch langsameren Verformung
von N1-2 auch vorhanden, aber schwicher ausgepréigt. Ab #4 nimmt die Steigung aller Kur-
ven ab, sodass diese fast horizontal verlaufen. Der Abfall der Versetzungsdichten nach der
Entlastung ist in Abb. nicht dargestellt.

15 15

(a) V2-2 (1-107ts71)

(c) N1-2 (2-107%s71)

Abbildung 4.87: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen €2 von der mittleren Ver-
setzungsdichte (p)q beim Dehnungszustand #4 von V2-2 (a), Y4-2 (b) und
N1-2 (c).

Hinsichtlich der Richtungsabhéngigkeiten der Versetzungsdichten (siche Abb. gibt es
zwischen den Dehnraten keine qualitativen Unterschiede. Die Differenz zwischen den Maxima
und Minima Apy,q, nimmt aber mit der Dehnrate in &hnlicher Art zu, wie bereits (p)q. Fiir
die beiden langsameren Verformungen N1-2 und Y4-2 betriagt Apae ~ 2.8-10 m™2 und fiir
V2-2 ist Appae ~ 3.8-10 m™2,

Dieser Sachverhalt ist noch einmal tibersichtlicher in Form von Histogrammen von pq zur
Dehnung/Zeitpunkt #4 in Abb. fiir die drei Dehnraten zusammengefasst. Da bei der

Berechnung der orientierungsabhéngigen Versetzungsdichten immer die gleiche Anzahl an
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4 Ergebnisse

Punkten verwendet wird (identisch zu den Punkten in Abb.[4.87)), sind die daraus abgeleiteten
Histogramme zu jeder Zeit direkt miteinander vergleichbar. Abb. veranschaulicht somit
direkt die Unterschiede in den Mittelwerten der Versetzungsdichten (p)q, sowie die Verteilung

von pq. Offenbar nimmt die Versetzungsaktivitit mit der Dehnrate zu.
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Abbildung 4.88: Histogramme der Versetzungsdichten pg zum Dehnungswert/Zeitpunkt #4
iiber alle Burgers-Vektororientierungen (2.

Die noch verbleibenden Gréflen verhalten sich unabhéingig von den Dehnraten so, wie es
aus der Besprechung der Referenzprobe zu erwarten ist und werden daher nicht mehr gra-
phisch dargestellt. Die Debye-Temperatur steigt bis #4 in Druckrichtung an und leidet dann
an den oben genannten Bestimmungsproblemen. Die TDS-Intensitdtsmaxima korrelieren mit
den Bereichen, in denen Versetzungen aktiv sein kénnen und konzentrieren sich im weiteren
Verlauf auf die Bereiche, in denen Druckspannung vorherrscht. Stapelfehler- und Zwillings-

wahrscheinlichkeiten verhalten sich ebenfalls in allen Féllen dhnlich, wie bei Y4-2 gezeigt.

Damit sind die relevantesten Auswirkungen der Dehnratenvariation auf das Verformungsver-
halten dargestellt und werden nun zusammengefasst und diskutiert. Es zeigt sich, dass hchere
Dehnraten zu einem Anstieg der Scherspannungen in den Koérnern und im Gesamtmaterial
fihren. Der Spannungsanstieg mit der Dehnrate ist im Gesamtmaterial hcher als in den
Kristalliten, sodass daraus folgt, dass die Korngrenzen eine hthere Dehnratenabhéngigkeit
aufweisen, als die kristalline Phase. Die Spannungen im Gesamtmaterial sind dabei nach wie
vor niedriger als in den Kornern, weshalb die Korngrenzen offenbar in der Regel geringere
Scherwiderstdnde aufweisen, als die Korner. Lediglich am Ende der schnellsten Verformung

V2-2 scheinen die Korngrenzen héhere Scherspannungen und damit hohere Scherwidersténde
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4.3 Dehnrateneinfluss

aufzuweisen. Falls die Verfestigung in den Korngrenzen durch die in [I14], 115] beschriebe-
ne Bildung von Disklinationsdipolen erzeugt wird, kénnte die hohe Festigkeit bei schnellen
Dehnraten durch den Wegfall von Relaxationsmechanismen in den Korngrenzen erklart wer-
den, welche die Disklinationsdipole mit der Zeit abbauen. Die treibende Kraft hinter diesem

Abbau wird von den durch die Disklinationsdipole erzeugten Spannungen bereitgestellt.

Da die Plastizitdtsmechanismen in den Koérnern und in den Korngrenzen unterschiedliche
Dehnratenabhingigkeiten aufweisen, fithrt die Anderung der Dehnrate zu einer Anderung der
Anteile und des Zusammenspiels aller Plastizitdtsmechanismen, genau wie nach GI.
(S. zu erwarten ist. Der Ubersichtlichkeit halber wird der Ausdruck hier noch einmal

wiederholt:

2AG}
Ew Zci Ag; 1 exp(— ! )

4.11
T (4.11)

Der Index i bezeichnet hier voneinander unabhéngig arbeitende Subsysteme (z.B. einzelne
Mechanismen), welche die Verformung im Material erzeugen. Eine Erhohung der Dehnrate
bei konstanter Temperatur muss also eine Absenkung der Aktivierungs-Gibbs-Energie her-
vorrufen, indem der Anteil der mechanischen Arbeit AW zunimmt. Das ist bei gleichen
Dehnungsinkrementen gleichbedeutend mit einer Zunahme der Scherspannung. In welchem
Umfang die Spannung erh6ht werden muss, ist empfindlich von der exakten Barrierenform des
jeweiligen Prozesses abhéingig (siehe Abb. S. , die sehr wahrscheinlich fiir verschiede-
ne Prozesse (Versetzungsgleiten, Coupling, Schertransformation, etc.) systematisch voneinan-
der abweichen und dadurch eine Anderung des Zusammenwirkens der Mechanismen bewirkt.
Zusétzlich beeinflusst das Gl. , indem die Entwicklungen der ¢; in den nachfolgenden
Dehnungsinkrementen unterschiedliche Verldufe fiir unterschiedliche Dehnraten nehmen. Das
sollte insbesondere bei erschépflichen Prozessen, wie hier dem Relaxationsprozess am Anfang

der Verformung, deutlich zu Tage treten.

Im konkreten Fall fithrt das bei Erhohung der Dehnrate spétestens ab #4 zu einer Ver-
lagerung der Verformung in die Koérner, also im Wesentlichen zu einer Zunahme von Ver-
setzungsnukleation und -gleiten. Umgekehrt fiihrt die Absenkung der Dehnrate zu einem
hoheren Anteil von Korngrenzenplastizitéit. Die Auswirkungen dieser Dehnratenabhéngigkeit
auflert sich auch in weiteren Befunden, wie z.B. in der stirkeren Ausbildung der Endtextur
bei hoheren Dehnraten, die einen Kompromiss zwischen der Absenkung der elastischen Ver-
zerrungsenergie und einem moglichst niedrigen Scherwiderstand fiir das Versetzungsgleiten
in den Kornern darstellt. Wenn das Versetzungsgleiten weniger Relevanz fiir den gesamten
Verformungsprozess hat, ist offenbar auch die treibende Kraft fiir die Ausbildung dieser Tex-
turkomponente schwiicher (siehe N1-2). Allerdings reagiert dieser Prozess nicht identisch zur
Versetzungsdichte auf die Dehnratenvariation. Beim Versetzungsgleiten verhalten sich Y4-2
und N1-2 einander dhnlich, bei der Texturentwicklung sind es Y4-2 und V2-2.
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4 Ergebnisse

Bei der Ubergangstextur gibt es hingegen fast keine Unterschiede zwischen den Dehnraten.
Da die Ursache hierfiir die Elastizitit der Kristalle ist, ist zumindest fiir die treibende Kraft
dahinter aber auch keine Dehnratenabhéngigkeit zu erwarten. Der eigentliche Prozess der

Umorientierung der Kérner scheint hier also nicht der limitierende Faktor zu sein.

Kornwachstum, also der Abbau von Korngrenzfliche bzw. -volumen, verschwindet bei der
hochsten Dehnrate V2-2 ab #4 fast komplett, wiahrend bei den beiden anderen Proben dieser
Prozess verlangsamt weiterlduft. Die Konzentration der Plastizitéit auf das Korninnere hemmt
offenbar die Mobilitdt der Korngrenzen, welche entscheidend fiir SGKW /Coupling ist. Umge-
kehrt findet bei den langsameren Verformungen bei den Scherprozessen in den Korngrenzen
iitber SGKW /Coupling ein steter Abbau der Grenzflachen statt. Die Tatsache, dass der Ver-
lauf von AV /V bis #4 bei allen Dehnraten gleichartig erfolgt, kann als Indiz dafiir gewertet
werden, dass zu Beginn der Verformung (bei niedrigen Spannungen) die Korngrenzenplasti-
zitdt in den Nichtgleichgewichtskorngrenzen in allen Féllen einen wichtigen Mechanismus
darstellt.

Die Dehnungszustidnde der Proben iiber die Verformung hinweg unterscheiden sich fiir V2-2
und Y4-2 nicht stark voneinander. Bei der langsamsten Verformung von N1-2 dominiert je-
doch zu Beginn der Verformung bis #2 die Kompression senkrecht zum Steg, was sich in einem
starkeren Volumenabbau im Steg bemerkbar macht. Das hat seine Ursache in der mechanisch
aktivierten Relaxation des Stegbereiches, die bei der langsamen Verformung iiber einen viel
grofleren Zeitraum ablaufen kann. Danach entwickeln sich die Dehnungen von N1-2 qualitativ
dghnlich zu den beiden anderen Proben, allerdings um die anfingliche Kompressionsdehnung
zu den {ibrigen verschoben. Im weiteren Verlauf zeigt nur V2-2 ab #4 eine fortlaufende Volu-
menabnahme im Steg. Bei Y4-2 wird das durch die stirkere Querdehnung in Strahlrichtung
kompensiert. Bei N1-2 nimmt das Volumen im Steg ab #4 wieder zu, was schlussendlich zu
einem Versagen der Probe im Stegbereich fithren wird. Tatséchlich bildet sich zu dem Zeit-
punkt senkrecht zur Hauptzugspannung ein Riss im Stegbereich, wenn die Volumendehnung

positive Werte annimmt. Dieser Riss entspricht einem Spaltbruch nach Modus I.

Die Ausbildung dieses Risstyps ist allerdings nicht typisch fiir die Verformung von SCS mit
45°-Stegwinkel, da in [30] bei hoheren Dehnraten (3-1073s7!) fiir diese Geometrie Gleit-
briiche nach Modus II nachgewiesen wurden. Es ist davon auszugehen, dass das auch hier
bei den hoheren Dehnraten in einer weitergehenden Verformung der Fall wire. Die Art des
Versagens der Probe ist also nicht nur von der Geometrie abhéingig, sondern vom komplet-
ten Verformungsablauf, inklusive der Zusammensetzung und dem Zusammenspiel der Plasti-

zitatsmechanismen.

Neben der Variation der Dehnrate sollten die hier beobachteten Anderungen im Verfor-
mungsverhalten in &hnlicher Weise auch durch Temperaturvariationen hervorgerufen werden
kénnen. In [11] wurden deshalb Micropillars aus dem gleichen Material bei unterschiedlichen
Temperaturen mit unterschiedlichen Dehnraten verformt. Dort zeigte sich — im Einklang mit

den hier gezeigten Ergebnissen — eine Zunahme der zur Verformung benéttigten Kraft mit
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4.3 Dehnrateneinfluss

steigender Dehnrate sowie mit sinkenden Temperaturen. Dieser Effekt war fiir die nanokris-
tallinen Proben wesentlich stéirker als fiir die grobkristalline Referenzprobe des gleichen Ma-
terials, wodurch erneut belegt wird, dass die Dehnratenabhéngigkeit plastischer Verformung

mit dem Volumenanteil der Korngrenzen korreliert.
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4.4 Stegwinkeleinfluss

In diesem Kapitel wird die Auswirkung unterschiedlicher Stegwinkel (sw) auf die Verfor-
mung untersucht. Dazu werden im Folgenden die Proben Ul-1 (sw =0°), O1-2 (sw = 25°),
Y4-2 (sw = 45°) und S1-1 (sw = 60°) betrachtet, die jeweils mit einer Nenndehnrate von
1-1073s7! verformt wurden. Die Voriiberlegung in Kapitel (S. haben gezeigt, dass
verschiedene Stegwinkel zu unterschiedlichen Spannungs- und Dehnungszustdnden im Steg-
bereich fiithren, die sich vor allem in ihrer hydrostatischen Spannung und der Ausrichtung der
Hauptspannungs- und Dehnungsrdume in der x-y-Ebene voneinander unterscheiden. Folg-
lich kénnen unterschiedliche Stegwinkel dadurch zu unterschiedlichen Zusammenspielen von

Plastizitatsmechanismen fiithren.

Die zeitliche Entwicklung der Verformungen ist in Abb. durch die Eintrdge des makro-
skopischen Dehnungstensors dargestellt, wobei die gewohnte Einteilung aus der Diskussion
der Referenzprobe Y4-2 (hier #1 bis #5) beibehalten wird. Es zeigt sich direkt, dass mit
abnehmendem Stegwinkel die Dehnungen in x- und z-Richtung stark abnehmen. Auflerdem
sind die Absolutwerte der Dehnungen in der Belastungsrichtung y, und somit auch ihre Dehn-
raten, ebenfalls geringer fiir kleinere Stegwinkel. Die 60 °~Probe S1-1 entspricht grundsétzlich
auch diesem Schema, zeigt aber relativ frith drastisch erhéhte Dehnraten und reifit dann
kurze Zeit spéter im Steg. Der Punkt, ab dem die Dehnrate stark ansteigt, ist der Beginn
der Rissbildung im Steg und wird mit # R bezeichnet, der Zeitpunkt des endgiiltigen Abrei-
Bens der Probe mit #V. Zwischen #R und #V stehen nicht durchgéingig Dehnungsdaten zur
Verfiigung, da die Bildkorrelation die groBen Anderungen in aufeinander folgenden Bildern
nicht mehr richtig erfassen konntﬂ

Der Prozess der Rissbildung lésst sich aber in den Bildern der Frontkamera nachverfolgen und
ist anhand zweier Aufnahmen zu den Zeitpunkten #R und #V in Abb. dargestellt. Das
Bild #V ist das letzte Bild vor dem Abreiflen der Probenhélften voneinander. Die Anfangs-
und Endpunkte der Risse im Steg sind, soweit erkennbar, mit roten Pfeilen markiert, wobei
die gepunkteten Pfeile in Bild #R die Positionen der noch nicht entstandenen, aber bei #V
vorhandenen Risse markieren. Zum Zeitpunkt # R sind also erst die Hélfte der schlussendlich
vorhandenen Risse sichtbar. In Abb. ist auBerdem die Polardarstellung des Spannungs-
zustandes in der x-y-Ebene von S1-1 zum Zeitpunkt #R vorweggenommen, in der sowohl
die Rissorientierung in rot als auch die Hauptzugspannungsrichtung in griin eingezeichnet
sind. Wie bei der Probe N1-2 aus dem vorherigen Abschnitt, bildet sich auch hier der Riss
senkrecht zur Hauptzugspannungsrichtung und entspricht damit ebenfalls einem Spaltbruch
nach Modus I. Diese Beobachtung deckt sich mit der aus [30] und allen anderen Verformun-
gen von 60 °-Proben im Rahmen der ESRF-Experimente, die ausnahmslos dieses Versagen

gezeigt haben, unabhéngig von Dehnrate oder Relaxationszustand.

13Prinzipiell sollte die Auswertung iiber die Bildkorrelation natiirlich trotzdem mdoglich sein, allerdings miisste
sie fiir diesen Spezialfall entsprechend angepasst werden.
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Abbildung 4.89: Zeitliche Entwicklung der Eintrédge des Dehnungstensors E.

Die unterschiedlichen Dehnraten, die sich bereits anhand von Abb. [£:.89] erkennen lassen,
sind am Beispiel der y-Komponente Ey in Abb. dargestellt. Hier zeigt sich, dass zu
unterschiedlichen Zeiten die Dehnraten unterschiedlich stark voneinander abweichen, sodass
die Zeit als Ordnungsparameter immer dann ungeeignet ist, wenn die betrachtete Grofe
in charakteristischer Weise vom Dehnungszustand der Probe abhéingt. In diesen Fillen ist
z.B. E, eine besserer Wahl, weshalb im weiteren Verlauf an passender Stelle sowohl die
Darstellung gegen die Zeit als auch gegen die Dehnung verwendet wird. Die Einteilung #1
bis #5 bezieht sich damit auf Zeit und Dehnung, wobei die Dehnungswerte der Referenzprobe

Y4-2 verwendet werden.

Die Orientierungsunterschiede der Dehnungszusténde in der x-y-Ebene sind anhand von Po-
larplots in Abb. zu den Zeitpunkten #1 bis #5 dargestellt. Im Fall von S1-1 sind nur
die Zeitpunkte #1 bis #3, sowie # R gezeigt, da spéter keine Verschiebungsfelder und damit

keine Dehnungsinformationen mehr vorliegen. Die Lage des Steges ist durch graue Balken
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Abbildung 4.90: Ausschnitte aus den Bildern der Frontkamera zum Zeitpunkt der Rissbil-
dung #R und des Versagens #V . Anfang und Ende der Risse sind mit roten
Pfeilen gekennzeichnet. Die gepunkteten Pfeile bei # R markieren die Posi-
tionen der Risse, die bei #V vorhanden sind aber in # R noch nicht sichtbar
sind. Rechts ist der Spannungszustand in der x-y-Ebene zum Zeitpunkt # R
als Polardiagramm dargestellt. Zusétzlich ist die Orientierung der Risse (rot)
und die Hauptzugspannungsrichtung (griin) eingezeichnet.
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Abbildung 4.91: Zeitliche Entwicklung der Dehnraten in y-Richtung Ey fiir Proben mit ver-
schiedenen Stegwinkeln.
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Abbildung 4.92: Polardarstellung der Dehnungen in der x-y-Ebene. Die Stegorientierung ist
als grauer Balken eingezeichnet.

gekennzeichnet. Wie aus Kapitel (S. zu erwarten, fithrt eine Anderung des Steg-
winkels zu einer Rotation des Hauptdehnungsraumes um die z-Achse. Dabei gilt aber nach
wie vor bei allen Stegwinkeln, dass zu jedem Zeitpunkt in Stegrichtung ein Nulldurchgang
der Normaldehnung vorliegt. Somit lésst sich die gesamte Dehnung in der x-y-Ebene fiir alle

Stegwinkel in bewihrter Weise relativ zum Steg mittels £, und £} darstellen.

Diese Darstellung ist in Abb. gezeigt und veranschaulicht direkt das unterschiedliche
Verformungsverhalten der Proben. Bei Ul-1 (sw = 0°) gibt es nahezu keine Scherung (E))
entlang des Steges, sodass die gesamte Verformung durch die Kompression senkrecht zum
Steg (E,) getragen wird. Bei O1-2 (sw = 25°) steigt der Scheranteil deutlich an, sodass F,
und E| etwa zu gleichen Teilen zur Verformung beitragen. Im Unterschied zur Referenzpro-
be erfolgt die Kompression des Steges hier viel starker und {iber die Dauer der gesamten
Verformung hinweg. Bei S1-1 (sw = 60°) dreht sich der Befund von Ul-1 um: Hier findet
kaum Kompression senkrecht zum Steg statt, sodass die Verformung fast vollstdndig von der

Scherung entlang des Steges getragen wird.
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Abbildung 4.93: Dehnungskomponenten in der x-y-Ebene. Das Koordinatensystem wurde je-
weils an den Steg angepasst.

Entsprechend dieser Ergebnisse ist ein zunehmender Abbau von Stegvolumen mit abnehmen-
dem Stegwinkel zu erwarten. Diese Systematik zeigt sich aber nicht direkt in den Volumen-
dehnungen, wo der Volumenabbau von Ul-1 geringer ist als der von O1-2. Das hat seine
Ursache teilweise in den unterschiedlichen Anfangsdichten der Proben: Trigt man die Ent-
wicklung der relativen Dichte der Proben gegeneinander auf (sieche Abb. , zeigen sich
die Zusammenhénge deutlicher. Die Proben mit den kleinen Stegwinkeln weisen im Verlauf
der Verformung die h6chsten Dichten auf. Die Dichtezunahme von Ul-1 ist daher geringer
als bei O1-2, weil Ul-1 zu Beginn bereits eine um 0.03 héhere relative Dichte aufweist. Ul-1
erreicht am Ende der Verformung eine hohere Dichte als O1-2, obwohl die erreichte Dehnung
in y-Richtung geringer ist. In Bezug auf y-Dehnung ist die Verdichtung von U1-1 damit effizi-
enter. Die Enddichte liegt sogar leicht {iber 1, wobei der starke hydrostatische Druck noch auf
der Probe lastet und somit die isotrope elastische Stauchung ebenfalls zum Volumenabbau
beitragt. Dieser Effekt wird zusétzlich dadurch verstérkt, dass die effektive Steghohe bei der
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0°-Probe geringer ist als bei den iibrigen Proben und so die Einspannung durch den oberen
und unteren Probenteil in y-Richtung stiarker ausgeprigt ist. S1-1 zeigt eine vergleichsweise
langsame und geringe Dichtezunahme im Bereich bis # R, danach nimmt die Dichte schlag-
artig wieder ab. Die Ursache dafiir ist die zunehmende Offnung und Neubildung von Rissen,

wodurch rechnerisch das Stegvolumen, welches auch die Risse beinhaltet, vergrofiert wird.

1.02 . . .
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1f—o01-2, sw=25°
—Y4-2, sw = 45°
0.98 -—Sl—l, sw = 60°
= 0.96 #1
o
£0.94 #2
>
S I )
0.92 —Ul-1, sw = 0° #4
0.9 —_—01-2, sw = 25° 1 e
—Y4-2, sw = 45° | *2
0.88 —S81-1, sw = 60° #R
0.86 L : : e : —
0 100 200 300 400 500 600 700 0 005 01 c 015 02 025 #V
tis] /0
(a) (b)

Abbildung 4.94: a) Zeitliche Entwicklung der relativen Dichten im Stegbereich. Die theore-
tische Dichte pypeo bezieht sich auf den defektfreien Kristall gleicher chemi-
scher Zusammensetzung. b) Wie a), aber gegen die Dehnung in y-Richtung
E, aufgetragen.

Im néchsten Abschnitt werden die zu den Dehnungen komplementiren Spannungen betrach-
tet. Dazu sind in Abb. die Spannungs-Dehnungs-Kurven in y-Richtung fiir die Kérner,
und in Abb. die fiir das Gesamtmaterial gezeigt. In beiden Féllen zeigt sich eine eindeu-
tige Zunahme der Spannung in y-Richtung mit abnehmendem Stegwinkel. Aulerdem steigt
die Verfestigung mit abnehmendem Stegwinkel, besonders fiir das Gesamtmaterial. Dieser
Befund lasst sich teilweise auf die stéirkere Dichtezunahme der Proben mit kleineren Steg-
winkeln zuriickfithren. Dabei ist zu beachten, dass die hohere Dichte nicht allein fiir die
hoheren Spannungswerte bei kleineren Stegwinkeln verantwortlich ist. Ein Gegenbeispiel ist
die geringere relative Dichte von O1-2 zum Zeitpunkt #4 im Vergleich zu Y4-2, obwohl die
Spannungswerte in y-Richtung von O1-2 in y-Richtung die von Y4-2 iibersteigen.

Einen weiteren Beitrag zu den hoheren Spannungen in y-Richtung bei kleineren Stegwinkeln
l&sst sich durch einen Projektionseffekt bei der Projektion der Spannungen in den Spannungs-
Dehnungs-Kurven in y-Richtung erkldren. In Abb. (S. sind die Spannungen in den
Kornern in der x-y-Ebene als Polardarstellungen gezeigt und es fillt auf, dass die Haupt-

druckrichtung mit zunehmendem Stegwinkel weiter von der 90 °-Position abweicht. Dadurch
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Abbildung 4.95: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in y-
Richtung. Abbildungsteil a) bezieht sich auf die Spannungen in den Kérnern,
b) bezieht sich auf die mittleren Spannungen im Gesamtmaterial.

wird die oy-Komponente betragsméfig kleiner, was sich direkt in den Spannungs-Dehnungs-
Kurven in Abb. niederschlégt. Dieser Effekt alleine kann die Stegwinkelabhéngigkeit von

oy aber ebenfalls nicht vollstindig erkliren.

Des Weiteren zeigt sich hier, dass bei der 0 °-Probe U1-1 in allen Richtungen in der x-y-Ebene
negative Normalspannungen anliegen. Die Scherspannungen werden hier vom hydrostatischen
Druck also so iiberkompensiert, dass keine positiven Normalspannungen mehr auftreten. Die-
ser Effekt tritt abgeschwiicht auch bei der 25°-Probe O1-2 auf, wo die Spannungen in der
Hauptzugspannungsrichtung fast exakt null sind. Hier heben sich hydrostatischer Druck und
Scherspannungen in Zugrichtung also gegenseitig auf. Da die Scherspannungen in den Kérnern
meistens grofer sind als im Gesamtmaterial (Skalierung mit x) folgt daraus, dass in den Korn-
grenzen auch in der x-y-Ebene in beiden Fiéllen iiber weite Teile eine allseitig kompressive
Spannung anliegt. Erst jenseits von #4 iibersteigen bei O1-2 die Scherspannungen in den
Korngrenzen die in den Kristalliten und fiithren dort so zu positiven Normalspannungen in
Zugrichtung. Das ist dhnlich wie bei den zuvor betrachteten 45°-Proben, allerdings gibt es

dort auch in den Kristalliten positive Zugspannungen.

Bei S1-1 sind die positiven Zugspannungen bei #R am stérksten ausgeprigt, werden aber
im Zuge der Rissbildung schlagartig abgebaut und bleiben bis #V fast auf null, was in den
Grenzen allseitig kompressive Spannungen zur Folge hat. Zusétzlich rotieren die Hauptspan-
nungsrichtungen nach der Rissbildung in negative Richtung um die z-Achse. Die Rissbildung
baut also mit der Zugspannungskomponente in den Korngrenzen genau die Spannungskom-

ponente ab, die urséchlich fiir die Rissbildung war.
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Abbildung 4.96: Polardarstellung der Spannungen in den Koérnern in der x-y-Ebene. Hier
bezieht sich #5 jeweils auf das Ende der Verformung. Die Stegorientierung
ist als grauer Balken eingezeichnet. Angaben in GPa.

Auch hier bietet sich als Alternative zu Spannungs-Dehnungs-Kurven aus Abb. die Auf-
spaltung der Spannung in hydrostatischen Druck o;4, (siche Abb. und maximale Scher-
spannung in der x-y-Ebene og.per an; letztere jeweils fir Korner und Gesamtmaterial (siehe
Abb. bzw. Abb. . Beim hydrostatischen Druck bleibt die Reihenfolge aus der
einfacheren Spannungs-Dehnungs-Kurve weiterhin bestehen, allerdings setzt sich Ul-1 hier
mit groflem Abstand von den {ibrigen Proben ab. Bei den Scherspannungen in den Kérnern
verschwindet der Unterschied zwischen S1-1 und Y4-2, wihrend beim Gesamtmaterial die
Systematik komplett verloren geht. Hier liegen die Scherspannungen aller Proben mit Steg-
winkel # 0° eng beieinander. Lediglich die Scherspannungen der 0°-Probe Ul-1 sind stets viel
geringer als die {ibrigen und liegen in Bereichen, in denen Versetzungsnukleation und -gleiten
nur noch unbedeutende Beitrdge liefern sollten. Allerdings ist Ul-1 auch der einzige Fall, in
dem die grofite auftretende Scherspannung nicht in der x-y-Ebene, sondern in der y-z-Ebene
liegt. Daher ist die maximale Scherspannung in der y-z-Ebene zusétzlich in Abb. und
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Abb. als gepunktete Linie eingezeichnet und zeigt durchaus Werte, die nennenswerte
Versetzungsplastizitéit ermoglicht — nur entlang anderer Richtungen als bisher. Bei der 25 °-
Probe O1-2 fillt auf, dass die Scherspannungen im Gesamtmaterial ab #4 starke Verfestigung
aufweisen und im weiteren Verlauf die Scherspannungswerte in den Kristalliten {ibersteigen.
Hier tritt offenbar durch die vergleichsweise hohe Normalspannung auf den Ebenen maxi-
maler Scherspannung und/oder die hohe hydrostatische Spannung eine massive Behinderung

von Scherprozessen in den Korngrenzen auf.
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Abbildung 4.97: a) Hydrostatischer Druck in Abhéingigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Kérnern als Funktion der Dehnung in y-

Richtung. Die gepunktete schwarze Kurve gibt die maximale Scherspannung
von Ul-1 in der y-z-Ebene an. ¢) Wie b) fiir das Gesamtmaterial.

Offensichtlich sind auch fiir die iibrigen Spannungszustédnde die Richtungen maximaler Scher-
spannung in der x-y-Ebene nicht mehr identisch, sondern abhéngig vom Stegwinkel um die z-
Achse rotiert (siehe Abb. , wodurch sich die Orientierungsbeziehung von Scherspannung

und Stegorientierung zueinander dndert. Diese Beziehung kann durch den Winkel A¢gcner
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ausgedriickt werden, der dem Winkel zwischen der Stegnormalen und der Normalen auf die
Ebene, an der die groBite Scherspannung in der x-y-Ebene anliegt, entspricht. Bei A¢gcper = 0°
greift die maximale Scherspannung genau entlang des Steges an, positive Werte beschrei-
ben eine Abweichung von der Stegorientierung in positive Rotationsrichtung um die z-Achse
und negative Werte entsprechend in negative Richtung. Um nur die Abweichung als solche
zu betrachten, reicht der Betrag von A¢gcher, wie er in Abb. angegeben ist. Daraus
wird ersichtlich, dass mit kleiner werdendem Stegwinkel die Abweichung zwischen maximaler
Scherspannung und Steg zunimmt. U1-1 erreicht bei #2 sogar den Maximalwert von 45 °. Fiir
Scherprozesse entlang des Steges wird die Orientierung der maximalen Scherspannung mit
kleiner werdendem Stegwinkel also immer ungiinstiger, wodurch die effektive Scherspannung
entlang des Steges im Vergleich zur maximalen Scherspannung abnimmt. Dadurch kénnte
der Beitrag zur makroskopischen Scherung entlang des Steges von den Prozessen abnehmen,
die auf eine Aktivierung durch Scherspannungen angewiesen sind, wie Versetzungsgleiten,

Korngrenzengleiten, Schertransformationen etc..

T
1

—Ul-1, sw =0°
—01-2, sw = 25°
—Y4-2, sw = 45°

—S1-1, sw = 60°

\ 3 ] #1
: L #2
B | >
rul L i i i L #5

0.05 0.1 0.15 0.2 0.25
E [ #R
y #V

Abbildung 4.98: Betrag des Winkels zwischen der Stegnormalen und der Normalen der Ebene
maximaler Scherspannung in der x-y-Ebene.

In [30] wurde anhand von PdgpAuo-SCS mit Stegwinkeln zwischen 40° und 50 ° gezeigt, dass
eine Abhéngigkeit der von Mises-Vergleichsspannung sowohl vom hydrostatischen Druck als
auch von der Normalspannung auf den Steg besteht. Diese Abhéngigkeiten wurden im Rah-
men zweier FlieBbedingungen, nédmlich einem modifizierten Tresca-Kriterium bzw. dem Mohr-
Coulomb-Gesetz [42] 272] 273], mit dem Ergebnis analysiert, dass beide Belastungen zu einer
Zunahme des effektiven Scherwiderstandes des Gesamtmaterials fithren. Die Zunahme der

Scherspannung mit abnehmendem Winkel an sich ist also prinzipiell ein bereits bekannter
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Abbildung 4.99: Polardarstellung der Intensititsinderungen I” fiir alle Peaks zum jeweiligen
Ende der Verformung. Bei S1-1 in d) bezieht sich die Darstellung auf den
Anfang der Rissbildung #R.

Im néchsten Abschnitt wird die radiale Verteilung der normierten und skalierten Inten-
sitdtsinderungen I” in den Polarplots in Abb. betrachtet, die jeweils zum Ende der
Verformungen dargestellt sind. Bei Y4-2 entspricht das #b5, bei S1-1 ist ersatzweise der Zu-
stand bei #R angegeben. Bei den Proben mit den niedrigen Stegwinkeln (Ul-1 und O1-2)
zeigt sich zum Ende der Verformung nicht die Ausbildung derselben Endtextur, wie sie sich
bei der 45 °-Probe Y4-2 ausbildet (bzw. V2-2 und N1-2 aus dem vorherigen Kapitel). Statt-

dessen bleibt die Ubergangstextur bis zum Ende der Verformung erhalten, ist dafiir aber
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Abbildung 4.100: Entwicklung der Ubergangstextur in Abhingigkeit von der Dehnung in y-
Richtung, gemessen durch AI”.

ghnlich stark ausgeprigt wie die Endtextur der Referenzprobe Y4-2. Die 60 °-Probe S1-1 er-
reicht vor dem Versagen nur geringe Dehnungen, sodass sich hier nur eine relativ schwache

Ubergangstextur ausbilden konnte.

Aus diesem Grund ist hier auch nur ein Vergleich der Entwicklung der Ubergangstextur in
Form von AI"” sinnvoll, der in Abb. dargestellt ist — die in vorangegangenen Kapiteln
diskutierte Endtextur entsteht schlieBlich nur bei 45°-Proben. S1-1 und O1-2 weichen von
den anderen zu Beginn der Verformung (bis #3) ab, indem AI” weniger mit der Dehnung
ansteigt als bei Y4-2 und Ul-1. Die Ursachen dafiir konnten wieder die unterschiedlichen
Anfangsdichten (siehe Abb. S. sein, denn diese erlauben anfiinglich vermutlich eine
stirkere Verformung iiber Relaxationsprozesse, durch die keine Textur erzeugt wird. Abge-
sehen von diesem Effekt sind die Anstiege von AI” mit der Dehnung/Zeit fiir alle Proben
grundsétzlich #hnlich. Allerdings zeigt S1-1 kurz vor #R, also vor der Rissbildung, einen
sprunghaften Anstieg. Ob die Texturentwicklung aber wirklich ab diesem Punkt schneller
ablaufen wiirde, ldsst sich durch das anschlielende Versagen der Probe nicht feststellen. So-
wohl U1-1 als auch O1-2 zeigen im Unterschied zu Y4-2 einen durchgéingigen Anstieg von A"
iiber die gesamte Verformung hinweg. Bei Y4-2 fillt AI” in der spiten Verformung zwischen
#4 und #5 wieder leicht, wiahrend sich die Endtextur bildet.

Die Verformung induziert bei allen hier betrachteten Proben Kornwachstum. Aufgrund der
unterschiedlichen Anfangsverteilungen von Korngréflen (siehe Tabelle kommt hier als
VergleichsgroBe wieder die mittlere Anderung des korngrenzenvolumenanteils relativ zum An-
fangszustand AVkg/V zum Einsatz (siehe Abb. , zu deren Berechnung (D), und o’
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Tabelle 4.5: Parameter der Korngréenverteilung zu Beginn der Verformung.

Ul-1 0O1-2 Y42 S1-1

(D)yoy [nm]  20.2 200 18.6 18.6
o ] 1.66 1.63 1.62 1.66

in jedem Zeitschritt iiber ¢ gemittelt wurden (vgl. S. . Alle Proben bauen im Verlauf der
Verformung korngrenzenvolumen ab. Bei S1-1 geschieht das zeitlich sehr frith ab der Rissiniti-
ierung, bei Y4-2 etwas spéter ab #3 und bei den restlichen Proben ab #4 (siehe Abb. .
Der Abbau von Korngrenzenvolumen setzt also umso spéter ein, je flacher der Stegwinkel ist.
Triigt man AVkq/V gegen die Dehnung in y-Richtung auf (siche Abb. [£.101D)), so zeigt
sich, dass bei Ul-1 pro Dehnungsinkrement in y-Richtung am meisten Korngrenzenvolumen
abgebaut wird und bei O1-2 am wenigsten. Der Volumenanteil, der durch die Verformung
abgebaut wird, ist bei den verschiedenen Stegwinkeln zwar unterschiedlich, liegt aber bei
S1-1, Y4-2 und Ul-1 mit ~ -2 % relativ nahe beieinander. Nur bei O1-2 ist AVgq/V » -1.4%
signifikant geringer.
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Abbildung 4.101: Anderung des Korngrenzenvolumenanteils AVxg/V mit der Zeit a), bzw
der Dehnung b).

Abschlieend wird nun die Entwicklung der mittleren Versetzungsdichten, sowie die Ver-
setzungsdichten fiir die verschiedenen Orientierungen von Burgers-Vektoren untersucht. Die
mittleren Versetzungsdichten (p)q sind in Abb. sowohl gegen die Zeit, als auch gegen
die Dehnung in y-Richtung dargestellt. In allen Fillen steigt (p)q im Verlauf der Verformung
an, bleibt im Haltesegment nahezu konstant, und féllt nach Entlastung schlagartig auf einen

Wert leicht oberhalb des Startwertes (~ 1.5-10m™2) ab. In y-Dehnung gemessen verliuft
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die Entwicklung von S1-1, Y4-2 und O1-2 bis in den Bereich zwischen #3 und #4 praktisch
gleich. Danach spalten sich die Kurven leicht auf, wobei die Probe mit dem flachsten Stegwin-
kel (O1-2) die grofite Verzogerung im Zuwachs von (p)q zeigt und S1-1, als Probe mit dem
steilsten Stegwinkel, den schnellsten Zuwachs zeigt. Am Ende der Verformung gleichen sich
die Versetzungsdichten von O1-2 und Y4-2 wieder einander an. Die Probe Ul-1 nimmt hier
eine Sonderrolle ein, da sie zu Anfang von den restlichen Proben durch eine etwas niedrigere
Anfangsversetzungsdichte abweicht (1.3-106 m=2 statt 1.42-10'% m2). Dieser Versatz zu den
anderen Proben bleibt wihrend der kompletten Entwicklung von p bestehen, ansonsten er-
folgt sie zeitlich genau so wie bei O1-2. Da Ul-1 viel geringere Dehnungswerte in y-Richtung
als O1-2 erreicht, ergibt sich in Abb. eine deutliche Abweichung der Ul-1 Kurve von
den {ibrigen, indem ihre entsprechende Entwicklung durchweg bei geringeren Dehnungswer-
ten stattfindet. Bemerkenswert ist hier, dass (p)q trotz der geringen Scherspannungen in der
x-y-Ebene stark ansteigt. Vermutlich hat hier ein Grofiteil der Burgers-Vektoren aktiver Ver-
setzungen durch die hohen Scherspannungen in der y-z-Ebene eine signifikante Komponente
in z-Richtung. Aufgrund ihrer Wirkung auf das Streubild sind diese Versetzungen aber auch

dann sichtbar, wenn der Streuvektor, wie hier, ndherungsweise in der x-y-Ebene liegt.
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Abbildung 4.102: Entwicklung der iiber alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten (p)q mit der Zeit a), bzw der Dehnung b).

Als Indiz fiir die orientierungsabhingige Versetzungsaktivitéit, sowie fiir Rotationsprozesse,
sind in Abb. die Abweichungen der Versetzungsdichten von der mittleren Versetzungs-
dichte Apgq fiir unterschiedliche Burgers-Vektororientierung €2 in der stereographischen Pro-
jektion dargestellt. Die gezeigten Darstellungen entsprechen jeweils dem Zustand am Ende
der Verformung, beziehungsweise dem Anfang der Rissbildung #R bei S1-1. Offensichtlich
ist die Schwankung von Apq fiir Y4-2 viel grofer als fiir O1-2, die ihrerseits grofler ist als
bei Ul-1 und S1-1. Grundsétzlich ist sie aber in allen Féllen in &hnlicher Weise vorhanden:

Entlang der grofiten Scherspannungen sind die Versetzungsdichten am geringsten und entlang

353



4 FErgebnisse

der Richtungen mit den geringsten Scherspannungen sind sie am gréfften. Damit bleibt die
Versetzungsbewegung entlang der Richtungen grofiter Scherspannungen weiterhin am aktivs-
ten, im Vergleich zu den 45°-Proben erfolgt sie aber in allen anderen Féllen isotroper, also
weniger gerichtet. Allerdings ist fiir S1-1 aufgrund der kurzen Zeitspanne und der geringen

Dehnungen ein Vergleich mit den {ibrigen Proben eigentlich nicht zuléssig.
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(c) Y4-2, sw=45° (d) S1-1, sw=160°

Abbildung 4.103: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen {2 von der mittleren
Versetzungsdichte Apg am Ende der jeweiligen Verformung. Bei S1-1 in d)
bezieht sich die Darstellung auf den Anfang der Rissbildung #R.

Als zusétzliches Indiz der Versetzungsaktivitit wurde zuvor die Schwankung der TDS-Inten-
sitét herangezogen. Diese ist fiir den vorliegenden Fall in Abb. dargestellt, wobei hier
zur besseren Vergleichbarkeit statt I7pg die Abweichung von der mittleren Anfangsintensitét
angegeben ist, also Alrps = ITps — (ITps)p#1- Die Darstellungen in Abb. beziehen
sich erneut auf das Ende der Verformungen, bzw. auf #R bei S1-1. Die Anisotropie in ¢
von Alrpg ist fiir Y4-2 von allen Proben am stérksten ausgeprigt, gefolgt von O1-2 und
Ul-1, womit die aus Apg abgeleitete Hierarchie der Versetzungsaktivitdten bestétigt ist. Bei

01-2 verschwimmen die Maxima in den Hauptscherspannungsrichtungen mit den Maxima in
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4.4 Stegwinkeleinfluss

Hauptzugspannungsrichtung, wobei letztere schwicher ausgepragt sind als bei Y4-2. Letzterer
Aspekt rithrt vermutlich daher, dass die Zugspannungen bei O1-2 viel kleiner sind als bei Y4-2.
Das Ausschmieren der Maxima liasst sich dadurch erkliaren, dass die Fokussierung der Maxima
auf den Bereich negativer Normalspannungen — wie sie bei Y4-2 auftritt — bei O1-2 keine Rolle
spielt, weil praktisch keine positiven Normalspannungen in den Kérnern auftreten. Ahnliches
gilt fiir Ul-1, wo jedoch die Maxima aufgrund der geringeren Versetzungsaktivitit in der
x-y-Ebene noch schwécher ausgeprigt sind als bei O1-2. Bei allen drei Proben (Ul-1, O1-2,
Y4-2) ist das Minimum in Hauptdruckrichtung identisch vorhanden, das in allen Fillen durch
die geringere mittlere quadratische Verschiebung der Atome in Druckrichtung hervorgerufen

wird.

S1-1 stellt auch hier aufgrund des frithen Materialversagens einen Sonderfall dar. Wie bei
Apq lasst sich auch Alrpg nicht mit den anderen Fillen vergleichen, da weder genug Zeit
zur Verfiigung stand, noch ausreichend grofie Dehnungen erreicht wurden, als dass sich die
bei Y4-2 beobachteten, charakteristischen Effekte héitten ausbilden konnen.

Die relevantesten Ergebnisse zu den Proben mit unterschiedlichen Stegwinkeln sind hiermit
abschliefend dargestellt und werden im Folgenden zusammengefasst und diskutiert. Verschie-
dene Stegwinkel fiihren bei der SCS-Geometrie zu sehr unterschiedlichen Dehnungsverhalten,
deren prominentestes Merkmal der Riickgang von Dehnungen in x- und z-Richtung mit abneh-
mendem Stegwinkel ist. Gleichzeitig verringern sich die Dehnraten. Des Weiteren bedingen
verschiedene Stegwinkel unterschiedliche Ausrichtungen der Hauptdehnungsrichtungen in der
x-y-Ebene, wobei entlang der Stegrichtung nach wie vor keine Normaldehnungen auftreten.
Die Dehnung in dieser Ebene kann also weiterhin durch die Scherung entlang des Steges
und der Normaldehnung senkrecht zum Steg beschrieben werden. In dieser Darstellung (vgl.
Abb. S. zeigt sich, dass mit zunehmendem Stegwinkel der Anteil der Scherung

entlang des Steges zunimmt, wohingegen die Normaldehnung senkrecht zum Steg abnimmt.

Genau wie auf die Dehnungen, hat der Stegwinkel auch starke Auswirkungen auf den Span-
nungszustand im Stegbereich. Mit zunehmendem Stegwinkel nimmt der hydrostatische Druck
betragsméfBig ab und die maximale Scherspannung in den Koérnern zu. Im Gesamtmaterial
lésst sich fiir die Scherspannungen dieser einfache Zusammenhang nicht zeigen. Dort liegen
die Scherspannungen dicht beieinander, die von O1-2 (sw = 25°) iibersteigt am Ende der Ver-
formung sogar die von Y4-2 (sw = 45°). Die Scherspannungen in den Korngrenzen hingen
also nicht in einfacher Weise von der Steggeometrie ab. Mit dem Stegwinkel verédndert sich
auBerdem die Beziehung der Richtung maximaler Scherspannung und der Orientierung des
Steges: Je kleiner der Stegwinkel ist, desto stérker weicht die Orientierung der maximalen
Scherspannung von der des Steges ab. Das bedeutet, dass fiir die makroskopische Scher-
dehnung entlang des Steges effektiv ein geringerer Anteil der maximalen Scherspannung zur

Uberwindung des Scherwiderstandes zur Verfiigung steht.

Versetzungsgleiten einschliefilich Nukleation vollstéindiger und/oder partieller Versetzungen

sind Mechanismen, die bei den 45 °~-Proben zur makroskopischen Scherdehnung beitragen und
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Abbildung 4.104: Polardarstellung der Abweichung der TDS-Intensitét von der mittleren An-
fangsintensitit Alrps am Ende der jeweiligen Verformung. Bei S1-1 in d)
bezieht sich die Darstellung auf den Anfang der Rissbildung #R.

auf die Aktivierung durch Scherspannungen angewiesen sind. Die Ergebnisse zeigen, dass mit
kleiner werdendem Stegwinkel die Versetzungsaktivitéit insgesamt abnimmt und die Scher-
dehnung entlang des Steges weniger stark davon getragen wird. Dariiber hinaus zeigt die
TDS, dass die Richtungen hoher Versetzungsaktivitét fiir kleinere Stegwinkel weniger einge-
schrankt werden, da praktisch in allen Richtungen negative Normalspannungen vorherrschen.
Trotzdem nimmt die Versetzungsdichte wihrend der Verformung in allen Féllen in &hnlichem
Mafle zu. Das heifit, dass bei kleineren Stegwinkel nicht weniger Versetzungen gleichzeitig
im Material existieren, deren Burgers-Vektoren aber isotroper verteilt sind. Versetzungen

erfiillen damit stiarker die Rolle eines Akkommodationsmechanismus.

Diese Schlussfolgerung deckt sich mit der Beobachtung, dass bei kleineren Stegwinkeln die
Ausbildung der Endtextur ausbleibt. Als Ursache fiir die Endtextur wurde zuvor (vgl. S.[285|)
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4.4 Stegwinkeleinfluss

die Energieminimierung im Hinblick auf die starke, gerichtete Aktivitit von Versetzungen ent-
lang der Richtungen maximaler Scherspannung identifiziert. Bei schwéicher gerichteter Verset-
zungsaktivitdt fallt auch die treibende Kraft hinter der Bildung der Endtextur schwicher aus.
Die Ubergangstextur entsteht in Folge der Minimierung der elastischen Verzerrungsenergie,
die ungeachtet des Stegwinkels immer vorliegt. Durch die héheren Spannungen bei kleinen

Stegwinkeln ist die treibende Kraft hier sogar hoher.

Die makroskopische Verformung muss bei kleinen Stegwinkeln somit stédrker von Prozessen
in den Korngrenzen mitgetragen werden, welche durch die héheren hydrostatischen Driicke
und Normalspannungen auf ihre Gleitrichtungen aber ebenfalls behindert werden, was zu ei-
ner hoheren Verfestigung des Gesamtmaterials fithrt. Ahnliche Effekte konnten schon in [30]
experimentell nachgewiesen werden, die zuvor in [225] anhand von Simulationen fiir nano-
kristalline Materialien vorausgesagt wurden. Durch die hoheren Scherwidersténde sind fiir die
Verformung hohere Spannungen nétig, ohne dass dadurch ein Anstieg der Dehnraten verur-
sacht wird — in den hier untersuchten Féllen nimmt die Dehnrate trotz hoherer Spannungen

sogar ab.

Fiir Schertransformationen in metallischen Glésern ist eine entsprechende Abhéngigkeit des
Scherwiderstandes von der Normalspannung bzw. des hydrostatischen Drucks bereits bekannt
und Beispiele dafiir wurden in [30] zusammengetragen. Mit [274] erschien zudem erst kiirzlich
eine Arbeit, die eine Abhéngigkeit der Flielspannung vom hydrostatischen Druck in nano-
kristallinem Nickel zeigte, was dort mit der starken Sensitivitét der Plastizitdtsmechanismen

in Korngrenzen auf hydrostatischen Druck in Verbindung gebracht wurde.

Anschaulich kann dieses Verhalten damit erklirt werden, dass z.B. Schertransformationen
in ihrem transienten Zustand eine lokale Dilatation und damit Volumenzunahme erzeugen,
die durch Normalspannung oder hydrostatischen Druck, abhéingig vom Vorzeichen, erschwert
oder erleichtert werden kann. Im Bild der thermisch aktivierten Plastizitéitsprozesse fiihrt
eine Anderung des hydrostatischen Drucks zu einer Anderung der Aktivierungsenergie AG*,
da die prozesstypische Volumenénderung im transienten Zustand gegen den jeweiligen Druck
erfolgen muss und damit eine Anderung von AW o PAV bedingt. Dieses Argument ldsst

sich genauso auf Normalspannungen anwenden.

Passend dazu zeigen die Proben mit geringen Stegwinkeln und damit hohem hydrostatischem
Druck und hohen Normalspannungen auf den Hauptscherebenen die grofiten Dichtezunah-
men. Eine Stagnation der Dichte oder gar eine Abnahme tritt bei diesen Verformungen nicht
mehr auf. Das schlie8t zwar keine lokale Dilatation in transienten Zusténden in den Korngren-
zen aus, liefert aber ein weiteres Indiz dafiir, dass dieser Vorgang durch den Spannungszustand
im Mittel behindert wird.

Erklart man die Verfestigung der Korngrenzen mit der Bildung von Disklinationsdipolen
[114, 115], konnten der hydrostatische Druck und die Normalspannungen auch eine Rela-
xation dieser Dipole behindern und so aufgrund der héheren Festigkeit hohere Spannungen

wihrend der Verformung erzwingen. In [I15] wurde auerdem gezeigt, dass die Bildung eines
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Disklinationsdipols zu einer Zunahme der Korngrenzendicke fiihrt, sodass alternativ auch
schon die Bildung der Disklinationsdipole erschwert werden kénnte und so die Verfestigung
der Korngrenzen erzeugt wird. Gleichzeitig wird die Rissbildung an den Disklinationsdipo-
len durch diese Spannungen unterdriickt und dadurch ein frithzeitiges Versagen der Probe
verhindert.

Die beiden Extremfélle Ul-1 (sw = 0°) und S1-1 (sw = 60 °) weisen zusétzliche Besonderheiten
auf. Bei S1-1 kommt es sehr frith widhrend der Verformung zu Rissbildung im Steg senkrecht
zur Hauptzugrichtung. Das Versagen der Probe, das sich bei den 45°-Proben bereits ange-
deutet hat, tritt hier durch die hoheren Zugspannungen friih ein und fithrt dadurch zu einem
Abreiflen der Probe bevor die Verformung in den horizontaleren Bereich der Spannungs-
Dehnungs-Kurve ab #4 eingetreten ist. Bei den Rissen handelt es sich hier wieder um Modus
I Spaltrisse, die ausnahmslos bei allen Proben mit einem Stegwinkel von 60 ° aufgetreten sind.
Bei Ul-1 liegt die Besonderheit vor, dass die Hauptzugspannungs- und -dehnungsrichtung
nicht in der x-y-Ebene liegt, sondern in z-Richtung. Entsprechend findet die meiste Scherung
auch in der y-z-Ebene statt, was vermutlich sowohl Versetzungsgleiten als auch Prozesse
in der Korngrenze einschliefit. Ein Teil der in der x-y-Ebene beobachteten Signatur, der
Versetzungsdichte, TDS, usw., stammt also aus der Versetzungsaktivitét senkrecht dazu. Das
ist zwar grundsétzlich immer der Fall, hier kann man aber davon ausgehen, dass dieser Aspekt
die Ergebnisse dominiert oder wenigstens ungewohnlich stark beeinflusst. Die Ausrichtung
der Hauptzugspannungsrichtung in z-Richtung zeigt sich auch am Versagen der 0°-Proben,
welches Anhand von J1-1 in Abb. gegen Ende der Verformung dargestellt ist; die Probe
U1-1 wurde nicht weit genug verformt, sodass das Versagen hier noch nicht eingetreten ist.
In der Seitenansicht von J1-1 bildet sich unterhalb des Stegbereiches ein Riss senkrecht zur
z-Richtung aus, der sich im Verlauf der Verformung fast bis zur Standflache erstreckt. Die
z-Richtung ist hier die Richtung maximaler Zugspannung, wobei die Zugspannung unterhalb
des Steges aufgrund der fehlenden Einspannungseffekte hoher ist, als direkt im Steg. Im Bild
der Frontkamera ist dieser Vorgang nicht nachweisbar. Ahnliches Bruchverhalten normal zur

maximalen Zugspannung wurde bereits in [5] anhand von Kompressionsproben beobachtet.

358



4.5 Relaxationseinfluss

Frontkam

i

era

P

Seitenkamera

»

73

Ji

Abbildung 4.105: Kamerabilder der Front- und Seitenkamera am Ende der Verformung der
0°-Probe J1-1. In der Seitenansicht ist deutlich der Riss unterhalb des Ste-
ges senkrecht zur Hauptzugrichtung (z-Richtung) zu erkennen. Der Anfang
des Risses ist durch den roten Pfeil markiert und die Zugspannungsrichtung

ist durch die griinen Pfeile dargestellt. In der Frontansicht ist von dem Riss
nichts zu erkennen.

4.5 Relaxationseinfluss

Zuletzt werden die Effekte der Relaxation auf das Verformungsverhalten anhand der Pro-
be Zb3kr-2 behandelt. Dabei handelt es sich um eine thermisch relaxierte Probe mit 45 °-
Stegwinkel, die mit einer Nenndehnrate von 1-1073s~! verformt wurde. Die Abmessung des
Stegbereiches ist identisch zur Referenzprobe Y4-2, sodass Zb3kr-2 die ideale Vergleichspro-
be darstellt. Das Kiirzel (kr) steht fiir kurz relaxiert, da die Relaxationszeit in diesem Fall
aufgrund eines Stromausfalls nur 8 h statt der {iblichen 48 h Stunden betrug. Der grofite Teil
der aus der Relaxation resultierenden Effekte sollte sich aber innerhalb der ersten Stunden
ausbilden (siche [8] 32]), sodass keine starken Abweichungen der Ergebnisse dieser Probe zu

den langer relaxierten zu erwarten sind.

Der Hauptunterschied zwischen wie-hergestellten und relaxierten Proben besteht darin, dass
in den relaxierten die Defektdichte sowie das Korngrenzenvolumen und die Korngrenzenener-
gie durch thermisch aktivierte Prozesse abgesenkt wurden. Die Verdichtung der Korngrenze
legt direkt den Schluss nahe, dass der anfingliche Verdichtungsschritt, wie er in den wie-
hergestellten Proben beobachtet wurde, in den relaxierten weniger ausgepriagt sein sollte.

Weitergehende Effekte werden anhand der nachfolgenden Ergebnisse diskutiert.
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Bei den relaxierten Proben bleibt der Nulldurchgang der Normaldehnungen in Stegrichtung
iiber die gesamte Verformung bestehen, weshalb die Dehnung in der x-y-Ebene direkt re-
lativ zum Steg durch Ej und E, dargestellt werden kann (sieche Abb. . Hier zeigt
sich, dass beide Verformungen qualitativ sehr #hnlich verlaufen und bis #4 auch quanti-
tativ fast iibereinstimmen. Ab #4 eilt F) und E, der relaxierten Probe den Werten der
wie-hergestellten voraus und {ibersteigt diese im Bereich zwischen #4 und #5. Ab #4 wird

die relaxierte Probe also schneller und weiter verformt.
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Abbildung 4.106: a) Dehnung in der x-y-Ebene in Bezug auf den Steg. Kompressionen senk-
recht zum Steg werden durch E, dargestellt und Scherungen entlang des
Steges durch Ej. b) Rotation der Hauptdehnungsrichtungen in der x-y-
Ebene relativ zum Laborkoordinatensystem.

Allerdings wird aus der Darstellung in Abb. nicht ersichtlich, dass schon zwischen #1
und #3 ein Unterschied im Dehnungsverhalten beider Proben besteht. Um diesen zu erkennen
ist die Ausrichtung der Hauptdehnungsrichtungen in der x-y-Ebene in Abb. durch
A¢ (vgl. S. dargestellt. Hier zeigt Zb3kr-2 zu Beginn der Verformung eine geringere
Neigung der Hauptkompressionsrichtung in Richtung der Stegnormalen als Y4-2, d.h. die
Kompression senkrecht zum Steg ist bei Y4-2 stirker ausgepréigt. Dieser Befund entspricht
der oben formulierten Erwartung, dass der anfiingliche Relaxationsprozess bei der relaxierten
Probe weniger stark zur Verformung beitragen kann.

Folglich fillt auch die relative Volumenabnahme zwischen #1 und #3 bei Zb3kr-2 etwas ge-
ringer aus als bei Y4-2 (siche Abb. . Anschlielend iibersteigt die Volumenabnahme von
Zb3kr-2 die von Y4-2 jedoch bis #5 und fallt dann wiahrend der Spannungsrelaxation wieder
auf die Werte der wie-hergestellten Probe. Offenbar ist der Effekt wiahrend der Spannungsre-
laxation bei der relaxierten Probe wesentlich stéirker ausgepréigt als bei der wie-hergestellten.
Die Volumenénderung ist in Abb. zusétzlich in Form der zeitlichen Entwicklung der
relativen Dichten beider Proben dargestellt. Zunéchst fillt hier der grofle anfdngliche Dicht-

eunterschied zwischen relaxierter und wie-hergestellter Probe auf. Dieser ist grofler als die
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Abbildung 4.107: a) Volumendehnung im Steg als Funktion der Zeit. b) Relative Dichte im
Steg als Funktion der Zeit. Die Dichte wurde hier jeweils mit der theroreti-
schen Dichte des defektfreien Materials gleicher chemischer Zusammenset-
zung normiert.

Dichtezunahme, die Y4-2 wihrend der gesamten Verformung erreicht. Zumindest bei 45 °-
Proben stellt die Relaxation im Vergleich zur Verformung bei dieser Dehnrate also den effek-
tiveren Verdichtungsprozess dar. Da die relaxierte Probe trotzdem wéhrend der Verformung
noch weiter verdichten kann, dhnlich wie die wie-hergestellte, deutet auf unterschiedliche
zu Grunde liegende Prozesse fiir die Verdichtung durch thermische Relaxation und die Ver-
dichtung durch mechanische Verformung hin. Diese Prozesse konnen sich zwar gegenseitig

beeinflussen, aber nicht ersetzen.

Insgesamt entwickeln sich die Dehnungen beider Proben sehr d&hnlich und unterscheiden sich
hauptséchlich in zwei Aspekten. Zum einen erfolgt bei der wie-hergestellten Probe zu Beginn
eine etwas hohere Verdichtung, zum anderen erfolgt ab #4 eine etwas schnellere Verformung

der relaxierten Probe.

Im Gegensatz dazu sind die Unterschiede in den Spannungen fundamentaler und zunéchst
anhand der iiblichen Spannungs-Dehnungs-Kurve mit Spannungen und Dehnungen entlang
der y-Richtung in Abb. dargestellt. Dort sind sowohl die Spannungswerte der Kristallite
als auch die des Gesamtmaterials gezeigt. Bei beiden liegen die Spannungswerte der relaxier-
ten Probe iiber denen der wie-hergestellten. Bei den Spannungen in den Kristalliten zeigt
sich zwischen #3 und #4 ein Uberschwinger, der anschlieBend auf den gleichen Wert wie bei
der wie-hergestellten Probe abfillt. Die Spannungswerte des Gesamtmaterials beider Proben
verlaufen néherungsweise parallel zueinander, allerdings ist die Anfangssteigung bei Zb3kr-2
hoher und der Ubergangsbereich zwischen #3 und #4 bei der relaxierten Probe kiirzer als
bei Y4-2.
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Abbildung 4.108: Spannungs-Dehnungs-Kurven der Spannungen und Dehnungen in y-
Richtung. Die Spannungen im Kristall sind gestrichelt dargestellt.

Fiir eine detaillierte Analyse der Spannungen erfolgt hier wieder die Aufspaltung in hydro-
statische Spannung und maximale Scherspannung in der x-y-Ebene (siehe Abb. . In
der hydrostatischen Spannung (Abb. gibt es zwischen beiden Proben {iber weite Tei-
le fast keine Unterschiede, allerdings finden sich auch hier héhere Anfangssteigung und der
Uberschwinger der relaxierten Probe aus der Spannungs-Dehnungs-Kurve.

In der Scherspannung in den Kristalliten (siche Abb. 4.109b)) ist dieser Uberschwinger der
Spannung von Zb3kr-2 gegeniiber Y4-2 aber viel stirker priasent. Auflerdem zeigt sich hier,
dass die Scherspannung bei der relaxierten Probe schnell bis knapp iiber 1 GPa steigt und
dann bis zum Ende konstant bleibt, wohingegen die wie-hergestellte Probe auch in den Kris-
talliten eine Scherverfestigung zeigt.

Im Gesamtmaterial (sieche Abb. zeigen indes beide Proben Verfestigungsverhalten, wo-
bei auch hier das der relaxierten Probe schwécher ausgepréagt ist als bei der wie-hergestellten.
Des Weiteren ist beim Gesamtmaterial die Verkiirzung des Ubergangsbereiches zwischen
#3 und #4 der relaxierten Probe weniger stark ausgepréigt als in den Kristalliten. Zudem
libersteigt ogeper bei der relaxierten Probe im Gesamtmaterial den Wert in den Kérnern ab
#4, was auf einen hohen Scherwiderstand in den Korngrenzen hindeutet, der im Verlauf der
Verformung weiter ansteigt. Die Ergebnisse bisher legen somit nahe, dass bei der relaxierten
Probe die Versetzungen dominant zur makroskopischen Verformung beitragen sollten.

FEin weiterer bemerkenswerter Unterschied in den Spannungszusténden beider Proben besteht
in den Zugspannungen des Gesamtmaterials, welche in Abb. nicht direkt reprasentiert
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Abbildung 4.109: a) Hydrostatischer Druck in Abhéngigkeit von der Dehnung in y-Richtung.
b) Maximale Scherspannung in den Koérnern als Funktion der Dehnung in
y-Richtung. ¢) Wie b), aber fiir das Gesamtmaterial.
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sind. Aus diesem Grund ist der Spannungszustand in der x-y-Ebene des Gesamtmaterials
als Polarplot zu den Zeitpunkten #1 bis #6 in Abb. fir Zb3kr-2 und in Abb.
flir Y4-2 dargestellt. Hier zeigen sich ab #3 fiir Zb3kr-2 deutlich héhere Zugspannungen als
bei Y4-2. Diese lassen darauf schlieflen, dass die relaxierten Korngrenzen einer Zugbelastung
einen wesentlich hoheren Widerstand entgegensetzen kénnen und damit weniger anféllig fiir
eine Volumenzunahme in den Korngrenzen und/oder Rissbildung entlang der Korngrenzen
sind. Damit korreliert auch die ab #3 stiarkere Volumenabnahme in der relaxierten Probe im
Vergleich zur wie-hergestellten, da in der relaxierten Probe vermutlich die Volumenzunahme

in den Grenzen unter Zugbelastung fehlt.
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Abbildung 4.110: Polardarstellung des Spannungszustandes des Gesamtmaterials von
Zb3kr-2 (a) und Y4-2 (b) zu den Zeitpunkten #1 bis #6. c¢) Rotation der
Hauptspannungsrichtungen in der x-y-Ebene relativ zum Laborkoordina-
tensystem.
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Dariiber hinaus zeigt sich zu Beginn der Verformung bis #2 ein deutlicher Unterschied in der
Orientierung der Hauptspannungsrichtungen in der x-y-Ebene zwischen den Proben. Da die-
ser Unterschied in den bisherigen Darstellungen nicht erkennbar ist, ist die Orientierung von
& in Abb. in Form von A¢ gezeigt. Hier erkennt man, dass die Hauptspannungsrich-
tungen bei Zb3kr-2 zu Beginn der Verformung wesentlich weniger relativ zum Laborkoordina-
tensystem geneigt sind als bei Y4-2. Konkret bedeutet das, dass bei Zb3kr-2 am Anfang die
Hauptdruckspannung weniger senkrecht zum Steg wirkt, was, wie schon bei den Dehnungen,
auf eine geringere anfingliche Relaxation im Steg hinweist.

Bei der Volumendehnung und der Dichte fanden sich Hinweise darauf, dass die Spannungs-
relaxation wiahrend des Haltesegments bei der relaxierten Probe stérker ausgeprigt ist als
bisher bei den wie-hergestellten. Um diesen Aspekt néher zu untersuchen, sind in Abb.
ausgewihlte Spannungen gegen die Zeit aufgetragen. In Abb. sind das die Spannun-
gen in den Kristalliten in y-Richtung, in Abb. die Spannungen des Gesamtmaterials
in y-Richtung und in Abb. die Spannungen des Gesamtmaterials in x-Richtung.

In den Kristalliten zeigt o, im Spannungsrelaxationssegment zwischen #5 und #6 fast gar
keine Unterschiede zwischen Zb3kr-2 und Y4-2, sodass die kristalline Phase als Ursache der
starkeren Spannungsrelaxation ausscheidet. Im Gesamtmaterial zeigt sich aber sowohl in x-
als auch in y-Richtung ein deutlich gréflerer Spannungsabfall fiir Zb3kr-2 als fiir Y4-2 im
gleichen Zeitintervall. Der Unterschied zwischen den Spannungsdifferenzen zwischen Zb3kr-2
und Y4-2 im Zeitintervall zwischen #5 und #6 betrigt in y-Richtung 30 % und in x-Richtung
sogar 68 % in Bezug auf den Spannungsabfall von Y4-2. Die Spannungsrelaxation fillt fiir die
relaxierte Probe also in allen Richtungen stirker aus, was gleichbedeutend mit einer hoheren
Dehnratenempfindlichkeit der relaxierten Korngrenzen ist — das Anhalten der Maschine ist
schlieBlich nur eine starke Anderung der Dehnrate, die eine Spannungsinderung in der Probe
hervorruft.

Auflerdem zeigt sich in Abb. erneut der Unterschied in den Zugspannungen beider
Proben, sowie die zeitliche Entwicklung dieses Unterschiedes. Tatséchlich beginnen diese be-
reits ab #2, was in den Polardarstellungen in Abb. allerdings schwer zu erkennen ist.

Als n#chstes wird die Entwicklung der Intensitdtsverteilung entlang des Polarwinkels ¢ be-
trachtet. Dazu sind in Abb. bis Abb. die Intensititen der Bragg-Peaks zu 111,
200, 220 und 311 in Form von I"” fiir beide Proben zu den Zeitpunkten #1 bis #6 dargestellt.
Samtliche Intensitéitsverteilungen sind zu allen Zeitpunkten qualitativ gleich, allerdings sind
die Minima und Maxima fiir Zb3kr-2 im Vergleich zu Y4-2 gréler und auf engere Bereiche in ¢
beschriankt. Der Rotations- und Wachstumsmechanismus, wie er in den wie-hergestellten Pro-
ben beobachtet wurde, ist also in den relaxierten Proben weiterhin aktiv und fithrt zunéchst

zur Ubergangstextur, die anschliefend in die Endtextur iibergeht.
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Abbildung 4.111: a) Spannung in den Koérnern in y-Richtung. b) Spannung im Gesamtmate-
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Abbildung 4.112: Integrale Intensitéitsinderungen AI” des 111-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.113: Integrale Intensitéitsinderungen A" des 200-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.114: Integrale Intensitéitsinderungen A" des 220-Peaks zu den Zeitpunkten #1
bis #6.
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Abbildung 4.115: Integrale Intensitéitsinderungen AI” des 311-Peaks zu den Zeitpunkten #1
bis #6.

368



4.5 Relaxationseinfluss

Die Quantifizierung von Ubergangs- und Endtextur mittels AI"” ist hier wieder dienlich und
in Abb. dargestellt. Das Vorgehen ist genau wie bei der Referenzprobe Y4-2 mit dem
Unterschied, dass hier die Intensitéit auf die mittlere Anfangsintensitit des 111-Peaks bezogen
wird um verschiedene Proben besser miteinander zu vergleichen. An den Positionen fiir die
Auswertung der beiden Texturen hat sich dadurch nichts geéndert. Der Ubergangszustand
ist durch AI{|; = AI{};(82°) und der Endzustand durch AI{}, = AI{};(54°) - AI{|;(82°)
charakterisiert.

Der Zeitliche Verlauf der Entwicklung der Ubergangstextur ist bei beiden Proben identisch.
Bei Zb3kr-2 verlangsamt sich die Entwicklung zwischen #3 und #4 relativ zu Y4-2 und
erreicht dadurch niedrigere Werte. Die hoheren Spannungen bei Zb3kr-2 fithren somit nicht
zu einer stirkeren Ausbildung der Ubergangstextur um die elastische Verzerrungsenergie
abzubauen.

Die Ausbildung der Endtextur erfolgt ab #4 bei beiden Proben zwar zeitgleich, aber im Fall
von Zb3kr-2 signifikant schneller und damit stérker als bei Y4-2. Allerdings sei hier daran erin-
nert, dass die Maxima/Minima in letzterem Fall breiter sind. Daher unterscheiden sich beide
Proben nicht in der insgesamt stattfindenden Kornrotation, aber bei der relaxierten Probe
findet diese verstérkt nach #4 statt und fiithrt zu einer schirferen Endtextur. Die stérker un-
terdriickte Ubergangstextur um #4 ist also eine Folge der stiirkeren und frither einsetzenden
Entwicklung der Endtextur. Daraus lédsst sich ableiten, dass die Versetzungsaktivitit bei der
relaxierten Probe in einem engeren Winkelbereich fokussiert sein sollte und damit gezielter zur
makroskopischen Verformung beitrigt. Ab #4 dominiert dieser Prozess die Energieminimie-
rung und unterdriickt dadurch die Ubergangstextur. Kornrotation ist damit bei relaxierten

Proben noch stédrker an Versetzungsaktivitéit gekoppelt als bei den wie-hergestellten.

0.5

0.5
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Abbildung 4.116: a) Entwicklung der Ubergangstextur in Abhingigkeit von der Dehnung in
y-Richtung, gemessen durch AI{|;(82°). b) Entwicklung der Endtextur in

Abhingigkeit von der Dehnung in y-Richtung. Als Maf§ dient hier AI{}; =
AT}, (54°) - AT}, (82°).
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Interessanterweise haben die Beobachtungen zu den hkl-spezifischen Intensitétsverteilungen
keinen Einfluss auf die Summe der Intensitétsverteilungen. Dieser Befund ist zum Zeitpunkt
#4 anhand Abb. und zum Zeitpunkt #5 anhand Abb. veranschaulicht. In bei-
den Féllen zeigen sich keine signifikanten Unterschiede in 3 I zwischen Zb3kr-2 und Y4-2,
obwohl die Verteilungen fiir die Einzelkomponenten deutlich voneinander abweichen. Zuvor
wurde fiir Y4-2 gezeigt, dass 3. I” und die orientierungsabhiingige Korngréfenverteilung mit-
einander korrelieren (siehe S.[287]f). Das ist auch bei Zb3kr-2 der Fall. Damit liegt der Schluss
nahe, dass die Zunahme des Volumens der kristallinen Phase in beiden Féllen praktisch iden-

tisch sein sollte.

—v4-2
—Zb3kr-2

—Y4-2
—2Zb3kr-2

270 270

(a) #4 (b) #5

Abbildung 4.117: a) Uber alle Peaks summierte Intensitiiten I’ zum Zeitpunkt #4. b) Wie
a), aber zum Zeitpunkt #5.

Diese Hypothese kann anhand der komplementidren Grofle, ndmlich dem Volumenanteil der
Korngrenzen Vi /V, tiberpriift werden (siehe Abb. . In Abb. erkennt man den
Versatz zwischen beiden Proben, der vermutlich durch geringfiigiges Kornwachstum wéhrend
der thermischen Relaxation von Zb3kr-2 erzeugt wurde, wodurch ein Teil der Korngrenzen-
fliche in dieser Probe vor dem Experiment an der ESRF abgebaut wurde. Abgesehen davon
sieht der Verlauf beider Kurven dhnlich aus. Um eine bessere Vergleichbarkeit herzustellen,
wurde die Anderung des Volumenanteils der Korngrenzen AVxg/V in Abb. darge-
stellt. Hier bestétigt sich der Eindruck, dass beide Proben praktisch die gleiche Dynamik beim
Kornwachstum aufweisen, die hauptséchlich im Bereich um #4 stattfindet. Die Hypothese,
die anhand XI"” formuliert wurde, ist damit bestétigt: Die Zunahme der Korngrofie verliuft

bei relaxierten und wie-hergestellten Proben nahezu identisch.

Zum Schluss werden die per WPPM-Anpassung bestimmten Versetzungsdichten betrachtet.
Die Entwicklung der mittleren Versetzungsdichte (p)q ist in Abb. |4.119a| dargestellt. Die
Anfangsversetzungsdichte der relaxierten Probe ist mit 0.8-10'% m~2 geringer als die der wie-

hergestellten Probe mit 1.42-10'*m™2, was vermutlich auf einen Abbau von Versetzungen
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Abbildung 4.118: a) Entwicklung des Korngrenzenvolumenanteils Vi /V mit der Zeit. b)
Anderung des Korngrenzenvolumenanteils AVxg/V mit der Zeit in Bezug
auf den jeweiligen Anfangszustand.

infolge der thermischen Relaxation zu erkldren ist. Dieses Resultat stiitzt den zuvor ver-
muteten Zusammenhang zwischen dem Vorhandensein von Nichtgleichgewichtskorngrenzen
und der daraus resultierenden Stabilisierung von Gitterdefekten, indem die stérker relaxierten
Korngrenzen in den relaxierten Proben weniger Versetzungen in den Kristalliten als Kompen-
sation bendtigen. Der Anstieg in (p)q erfolgt bei Zb3kr-2 sowohl stiirker, als auch schneller,
erreicht aber in der Spitze nicht die Versetzungsdichten von Y4-2. Der Hauptanstieg erfolgt
in beiden Féllen zwischen #3 und #4, wobei die grofite Versetzungsaktivitéit geméf den vor-
herigen Ergebnissen erst nach #4 stattfinden sollte. Die mittlere Versetzungsdichte ist also in
beiden Fillen als Grofle zu begreifen, die einen zeitlichen Mittelwert statischer und dynami-
scher Versetzungen beschreibt. Ein hoher Anstieg von (p)q bietet daher einen grofien Spiel-
raum fiir dynamische Versetzungen zusétzlich zu den schon vorhandenen statischen (eventuell

geometrisch notwendigen) Versetzungen.

In der rdumlichen Verteilung der Abweichung der Versetzungsdichten vom Mittelwert gem#if
ihrer Burgers-Vektororientierung (Apg) spiegelt sich die stirkere Fokussierung der Inten-
sitédtsverteilung bei Zb3kr-2 wieder. Diese ist fiir den Zeitpunkt #5 in Abb. fiir beide
Proben dargestellt. Die grundsétzliche Orientierung der Bereiche hoherer und niedrigerer
Versetzungsdichten ist in beiden Féllen identisch. Allerdings sind diese Bereiche bei Zb3kr-2
schmadler in p-Richtung, was aufgrund der vorherigen Ergebnisse auch so zu erwarten war. Die
Fokussierung der Gleitrichtungen, auf denen die Versetzungen zur makroskopischen Scherung

beitragen, schlégt sich somit auch hier nieder.
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Abbildung 4.119: a) Entwicklung der iiber alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten (p)q mit der Zeit. b) Histogramme der Versetzungsdichten
zum Zeitpunkt #5 iiber alle Burgers-Vektororientierungen 2.

Der Unterschied zwischen den hochsten und niedrigsten Versetzungsdichten ist aulerdem bei
der relaxierten Probe etwas geringer als bei Y4-2, was auch aus dem Histogramm der Ver-
setzungsdichtenverteilung in Abb. hervorgeht und vermutlich eine Konsequenz aus
der schmileren Orientierungsverteilung der drehenden Koérner, sowie einer hoheren Verset-
zungsaktivitdt ist. Umgekehrt betrachtet kénnte man bei Y4-2 auch von einer effektiveren
Speicherung von Versetzungen in Kérnern sprechen, die dann aber nicht mehr fiir die weitere

Verformung des Steges zur Verfligung stehen.
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Abbildung 4.120: Stereographische Projektionen der Abweichungen der Versetzungsdichten
mit unterschiedlichen Burgers-Vektororientierungen 2 von der mittleren
Versetzungsdichte Apg zum Zeitpunkt #5 fiir Zb3kr-2 (a) und Y4-2 (b).
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Als Zusammenfassung ldsst sich damit fiir die relaxierten Proben festhalten, dass die Rela-
xation im Wesentlichen zu einer Erhchung der Festigkeit der Korngrenzen fiihrt, insbeson-
dere unter Zugbelastung. Dieser Befund legt nahe, dass die Bindungskréifte zwischen den
Atomen in den Korngrenzen gegeniiber positiven (Volumen-)Dehnungen im Vergleich zum
wie-hergestellten Zustand zugenommen haben. Auflerdem fithrt der Abbau von Exzessvolu-
men bei den relaxierten Proben erwartungsgeméf zu einer Verminderung des anfinglichen
Relaxationsprozesses in der Verformung, der bei den wie-hergestellten Proben den Bereich
bis #2 mafigeblich beeinflusst hat.

Die hohere Festigkeit der Korngrenzen in den relaxierten Proben erzwingt einen allgemeinen
Anstieg der Scherspannungen, wodurch der Anteil von Versetzungsprozessen im Vergleich
zum wie-hergestellten Zustand zunimmt. Die hohen Scherspannungen fithren zu einer Absen-
kung der thermischen Aktivierungs-Gibbs-Energie der Versetzungsbewegung (bzw. Nuklea-
tion), wodurch die Dehnrate des Dehnungsbeitrages durch Versetzungsgleiten zunimmt. Die
beobachtete hohere Dehnrate bei den relaxierten Proben lésst sich zumindest teilweise durch
diesen Effekt erkliren.

Prinzipiell sollten die Dehnraten aller Prozesse zunehmen, deren Scherwiderstand, und damit
Aktivierungsbarriere, durch die Relaxation nicht in gleichem Mafle erhoht wurde, wie fiir
die Prozesse in den Korngrenzen (z.B. Schertransformationen, Korngrenzengleiten). Dazu
gehort z.B. SGKW /Coupling, bei dem die Aktivierungsbarriere weitgehend unabhéingig von
der Relaxation zu sein scheint, da in der wie-hergestellten und der relaxierten Probe etwa
in gleichem Mafl Kornwachstum stattgefunden hat; bei der relaxierten Probe allerdings in
geringfiigig kiirzerer Zeit.

Das Modell der Verfestigung der Korngrenzen aufgrund der Bildung von Disklinationsdipolen
[114) [1T5] liefert auch hier wieder eine zu den Beobachtungen passende Interpretationsgrund-
lage. In den relaxierten Proben sind Relaxationsprozesse durch das geringere Exzessvolumen
und die hoheren Bindungskrifte zwischen den Atomen schwieriger zu aktivieren, weswegen
auch die Relaxation der Disklinationsdipole nur schwieriger/langsamer ablaufen kann. Der
hohere Gehalt an Disklinationsdipolen stellt dann eine mégliche Ursache der gesteigerten Ver-
festigung der Korngrenzen dar. Aulerdem koénnte das die Ursache fiir die wesentlich stérker
ausgeprigte Spannungsrelaxation im Haltesegment bei den relaxierten Proben sein. In diesem
Fall liefert die Richtungsabhéngigkeit der Spannungsrelaxation vom Belastungszustand einen

Hinweis auf eine dhnliche Richtungs-/Spannungsabhéingigkeit der Disklinationsdipolbildung.

Durch diese Ergebnisse dréngt sich eine Betrachtung der dehnratenabhingigen Verformung
von relaxierten Proben geradezu auf, denn dadurch wird direkt der Umfang moglicher Re-
laxationsprozesse in den Korngrenzen beeinflusst, wodurch sich entsprechende Anderungen
im Verformungsverhalten einstellen sollten. Zum Abschluss werden daher die relaxierten Pro-
ben Zb3kr-1 (Nenndehnrate 1-107*s™!) und Hir-2 (Nenndehnrate 1-107*s™) mit Zb3kr-2
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(Nenndehnrate 1-1073s7!) verglichen. Die Probe Zb3kr-2 dient in dieser Betrachtung als
neue Referenzprobe fiir den relaxierten Zustand. Als Ordnungsparameter dient, aufgrund der

verschiedenen Dehnraten, wieder die makroskopische Dehnung in y-Richtung.
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Abbildung 4.121: a) Darstellung der Dehnung in der x-y-Ebene in Form der Dehnung entlang
des Steges F| und senkrecht zum Steg F, . Die Normaldehnungskomponente
in Stegrichtung ist stets null, sodass hier auf ihre Wiedergabe verzichtet
wird. b) Zeitliche Entwicklung der relativen Dichten im Stegbereich. Die
theoretische Dichte pipe, bezieht sich auf den defektfreien Kristall gleicher
chemischer Zusammensetzung.

Die Dehnung in der x-y-Ebene ist in Bezug auf den Steg in Abb. durch E, (Dehnung
senkrecht zum Steg) und E; (Scherung entlang des Steges) dargestellt. Die Ergebnisse er-
innern hier an die der wie-hergestellten Proben (siehe S. , indem die beiden schnelleren
Verformungen beinahe das gleiche Dehnungsverhalten aufweisen, wohingegen die langsamere
Verformung (Zb3kr-1) durch eine anféngliche (bis #2) starke Kompression des Steges ge-
kennzeichnet ist. Danach entwickelt sich die Dehnung dieser Probe ebenfalls d&hnlich zu den
iibrigen. Allerdings kommt es bei der schnellsten Verformung (H1r-1) ab einer Dehnung von
E, ~ -0.11 zur Rissbildung im Steg, in deren Folge die Dehnungswerte stirker ansteigen.
Die Probenhélften reilen aber, im Unterschied zu den 60°-Proben (siche S1-1, S. ),
wihrend der gesamten Verformung nicht voneinander ab. Die Rissbildung wird weiter unten
detaillierter betrachtet.

Zunichst wird die Entwicklung des Stegvolumens mit der Dehnung in Form der relativen
Dichten in Abb. adressiert. Alle Proben weisen einen Dichteanstieg am Anfang der
Verformung (bis #3) auf, der bei der langsamen Verformung (Zb3kr-1) wegen der anfinglich
stiarkeren Kompression des Steges schneller als bei den iibrigen Proben erfolgt. Bei den lang-
samen Dehnraten sind also offensichtlich noch Relaxationsprozesse moglich, die bei hoheren
Dehnraten in den relaxierten Proben bereits unterdriickt sind. Ab #3 sinkt die Dichte bei
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Zb3kr-1 bis zum Ende der Verformung kontinuierlich, was den Schluss nahelegt, dass bei
langsamen Verformungsraten auch in den relaxierten Proben noch Relaxationsprozesse und
Volumenzunahmen in den Grenzen ablaufen kénnen, dhnlich wie in den wie-hergestellten
Proben.

Bei den schnelleren Verformungen steigt die Dichte dagegen weiter an. Bei Hlr-1 setzt ab
E, ~ —0.06 (zwischen #3 und #4) eine Dichteabnahme ein, die als frithe Signatur der Riss-
bildung im Steg bei E, ~ —0.11 interpretiert werden kann. Nach der Rissbildung nimmt
die Dichte im Steg schnell und stark ab, da dem Stegvolumen hier auch das Volumen der
Risse zugerechnet wird. Die Dichteabnahme vor der makroskopischen Rissbildung geht also

vermutlich auf vorher entstandene, lokal beschrinkte Mikrorisse im Material zuriick.
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Abbildung 4.122: Spannungs-Dehnungs-Kurve in Form der Spannungen und Dehnungen in
y-Richtung. Abbildungsteil a) bezieht sich auf die Spannungen in den
Kornern, b) bezieht sich auf die mittleren Spannungen im Gesamtmate-
rial.

Trotz dieser Unterschiede und der stark voneinander abweichenden Dehnraten ergeben sich
fiir die drei Verformungen erstaunlich &hnliche Spannungs-Dehnungs-Kurven aus den Span-
nungen und Dehnungen in y-Richtung (siehe Abb. , und zwar sowohl fiir die Korner,
als auch fiir das Gesamtmaterial. Die grofite Auffalligkeit ergibt sich fiir Hlr-2 dort, wo ab
der Rissbildung die Spannungen in den Kérnern zunehmen, wohingegen die Spannungen im
Gesamtmaterial kontinuierlich abnehmen. Da im Gesamtmaterial auch die Risse enthalten
sind, ist diese Diskrepanz erwartbar — Risse konnen schliefflich keine Last aufnehmen.

Eine etwas aufschlussreichere Darstellung liefert auch hier wieder die Zerlegung der Span-
nung in hydrostatischen Druck (ojs,) und die maximale Scherspannung in der x-y-Ebene
(ascher)El Diese Zerlegung ist in Abb. dargestellt und offenbart fiir die hydrostatische

Das entspricht bei den hier betrachteten 45°-Proben der globalen maximalen Scherspannung in den Proben.
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Abbildung 4.123: a) Hydrostatischer Druck in Abhéngigkeit von der Dehnung in y-Richtung.

b) Maximale Scherspannung in den Koérnern als Funktion der Dehnung in
y-Richtung. ¢) Wie b), aber fiir das Gesamtmaterial.

Spannung und die maximale Scherspannung in den Kérnern (siehe Abb. 4.123al und Abb.
4.123b|) keine signifikanten Unterschiede zwischen den verschiedenen Dehnraten, solange die
Proben intakt sind. Sobald sich bei H1r-2 die Risse im Steg bilden, steigt der hydrostatische

Druck sprunghaft an und die Scherspannung sinkt ab.

Erst im Gesamtmaterial tritt der Unterschied bei den Scherspannungen zwischen der lang-
samsten und den schnellen Verformungen zu Tage. Hier ist die Scherspannung von Zb3kr-
1 deutlich geringer als bei den anderen. Das zeigt, dass bei der langsamen Verformung
Relaxations- und/oder Scherprozesse ein Absenkung des Scherwiderstand in den Korngrenzen

verursachen.

Die Ergebnisse bis hierhin zeigen, dass bei niedrigen Dehnraten durchaus noch Relaxations-
prozesse in den Korngrenzen relaxierter Proben stattfinden kénnen. Diese Relaxationsprozes-
se werden mit zunehmender Dehnrate offenbar immer stidrker unterdriickt und fithren so zu

einer Zunahme bei den Scherspannungen im Gesamtmaterial. Die Tatsache, dass es hierbei
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Abbildung 4.124: Entwicklung der iiber alle Burgers-Vektororientierungen gemittelten Ver-
setzungsdichten (p)q mit der Zeit.

keine signifikanten Unterschiede zwischen Dehnraten von 1071 s™! und 1073571 gibt zeigt, dass
die intrakristalline Versetzungsaktivitiit praktisch als Uberdruckventil fiir Scherspannungen
wirkt und diese in den Kristalliten auf ca. 1 GPa begrenzt. Im Grunde trifft dieser Befund

bereits bei den wie-hergestellten Proben bei entsprechender Belastung und Dehnrate zu.

Die Entwicklung der mittleren Versetzungsdichte (p)q der relaxierten Proben unterstiitzt
diese These, indem bei H1r-2 der Anstieg der Versetzungsdichte deutlich grofler ist, als bei
den langsameren Verformungen (siehe Abb. . Dieser stiarkere Anstieg ist bei hoheren
Dehnraten notwendig, um iiber die Versetzungsaktivitdt in einem kiirzeren Zeitraum mehr
Spannungen aufgrund des héheren Scherwiderstandes in den Grenzen zu dissipieren, als bei
der langsameren Verformung (z.B. Zb3kr-2). In letzterem Fall kann ein Teil dieser Arbeit
durch Scherprozesse und Relaxation in den Korngrenzen iibernommen werden.

Die Rissbildung im Steg bei H1r-2 erginzt dieses Bild noch um einem weiteren Aspekt.
In Abb. sind die Risse im Steg nach der Rissbildung dargestellt, die sich in ihrer
Ausrichtung deutlich von den zuvor beobachteten unterscheiden (vgl. Abb. S. oder
Abb. S. oder Abb. S. . Fin Vergleich der Rissorientierung mit dem
Spannungszustand zeigt hier (siehe Abb. , dass bei der Rissbildung gleichzeitig zwei
Bedingungen erfiillt wurden. Zum einen ist der Riss entlang einer Ebene hoher Scherspannung
entstanden, es handelt sich also um einen Typ II Gleitriss. Bei allen zuvor beobachteten Rissen
handelte es sich um Typ I Spaltrisse. Zum anderen fillt auf, dass der Riss nicht senkrecht zur

grofiten Scherspannung entsteht, sondern erst in der Richtung, in der die Normalspannung
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Abbildung 4.125: Frontansicht von Hlr-2 bei E, ~ -0.13. Die Anfangs- und Endpunkte der
Risse im Steg sind durch rote Pfeile gekennzeichnet. Rechts daneben sind
die Normalspannungen (durchgezogene Linien) und die Betrige der Scher-
spannungen (gestrichelte Linien) vor und nach der Rissbildung dargestellt.
Die Rissorientierung ist als durchgezogene rote Linie in der Mitte der Polar-
diagramme eingetragen und die dazu normalen Richtungen als gestrichelte
rote Linie. Spannungsangaben erfolgen in GPa.

auf den Riss null wird. Die makroskopische Rissausbreitung ist also offenbar nur moglich,
solange keine negative Druckspannung auf die Rissfliche wirkt.

Der Spannungszustand nach der Rissentstehung zeichnet sich dadurch aus, dass in der x-y-
Ebene allseitig negative Druckspannungen vorliegen. Vermutlich ist das die Ursache, dass sich
die Risse nicht unkontrolliert weiter ausbreiten und dadurch die Probenhélften, trotz Rissen,
noch nicht voneinander abreiflen. Diese Rissentstehung bei schnellen Verformungen von re-
laxierten 45°-Proben ist keine Ausnahme, sondern ist in drei von vier untersuchten Féillen
aufgetreten. Sie liefert einen Hinweis darauf, dass Relaxationsprozesse bzw. Scherprozesse in
den Korngrenzen entscheidend fiir die Unterdriickung von Rissen in Folge von Versetzungsak-
tivitdt und/oder der Bildung von Disklinationsdipolen sind. Dabei hingt die Aktivierbarkeit
dieser Korngrenzenprozesse sowohl von der Dehnrate, als auch vom Zustand der Korngrenzen
ab. Dieser Rissbildungsprozess unterscheidet sich damit deutlich von der zuvor beobachteten
Bildung von Spaltrissen, welche im Wesentlichen durch starke Zugspannungen bei 60°-Proben
hervorgerufen wurden, und sowohl bei relaxierten, als auch bei wie-hergestellten Proben be-

obachtet werden konnen.
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4.6 Zusammenfassung und Interpretation der Ergebnisse

In den vorherigen Kapiteln wurde das Verformungsverhalten nanokristalliner PdggAuig SCS
mit verschiedenen Stegwinkeln fiir verschiedene Dehnraten sowohl fiir wie-hergestellte als
auch fiir relaxierte Proben beschrieben. Dazu wurden die Daten aus der Kraftmessung und
der optischen Verschiebungsmessung zusammen mit den Ergebnissen aus der Analyse der
Rontgendaten mittels WPPM-Anpassung zusammengetragen, zueinander in Beziehung ge-
setzt und interpretiert. Die makroskopischen Daten liefern eine direkte Beschreibung der
Dehnungen des Gesamtmaterials, wohingegen die Réntgendaten primér eine Beschreibung
des Spannungs- und Dehnungszustands der kristallinen Phase liefern, sowie der darin enthal-
tenen Defektdichten. Die Diskrepanz beider Datensétze in Bezug auf die Kraft in y-Richtung

lieferte die Grundlage fiir die Abschétzung der Scherspannungen in den Korngrenzen.

Als Ergebnis dieser Untersuchung konnten Versetzungsaktivitit in den Kornern, spannungs-
getriebenes Kornwachstum (SGKW) bzw. Coupling und Kornrotation als aktive Mechanis-
men wihrend der Verformung nachgewiesen und detailliert beschrieben werden. Dariiber
hinaus weisen die Ergebnisse auf eine komplexe gegenseitige Abhéngigkeit zwischen den ge-
nannten Prozessen hin, die zusétzlich von Dehnrate, Belastungzustand, Probenzustand und
Verformungshistorie beeinflusst wird. Auflerdem konnte gezeigt werden, dass in allen Fillen
zusétzliche Beitrage von Korngrenzenprozessen zur Scher- und Volumendehnung notwendig
sind. Da der Informationsgehalt der Rontgendaten in Bezug auf die Korngrenzen wesentlich
geringer ist als in Bezug auf die Kristallite, ist eine exakte Aufschliisselung der aktiven Korn-
grenzenprozesse im Rahmen dieser Arbeit nicht moglich. Es lassen sich jedoch Aussagen iiber

notwendige Eigenschaften der effektiven Korngrenzenprozesse ableiten.

Die Ergebnisse legen den Schluss nahe, dass generell zwischen zwei effektiven Plastizitéts-
mechanismen in den Korngrenzen unterschieden werden kann. Bei dem einen handelt es sich
um einen Relaxationsprozess, der freies Volumen in den Korngrenzen abbaut und so eine
Kompression des Steges erzeugt. Dieser Prozess lauft bei wie-hergestellten Proben bereits bei
geringen Spannungen ab, verbraucht dabei aber das im Material vorhandene, freie Exzess-
volumen. Dadurch werden die zur Aktivierung dieses Prozesses zu iiberwindenden Aktivie-
rungsbarrieren immer hoher, sodass andauernde Beitrdge zur Dehnung bei fester Dehnrate
immer héhere Spannungen/Temperaturen bendtigen. Ahnliches lisst sich auch bei der rein
thermischen Relaxation beobachten [8, [32]. Wie bei allen thermisch aktivierten Prozessen,
weist auch dieser eine Dehnratenabhingigkeit auf, wobei diese auflerdem vom zuvor geleiste-
ten Dehnungsbeitrag dieses Prozesses abhéngt; Hinweise darauf lassen sich bereits in [8] [32]
finden.

Bei dem anderen effektiven Plastizitdtsmechanismus in den Korngrenzen handelt es sich um
einen Scherprozess oder eine Uberlagerung mehrerer Scherprozesse. Kandidaten fiir die ver-
antwortlichen Mechanismen sind Schertransformationen, Korngrenzengleiten oder Diffusions-

prozesse. Eine Diskriminierung dieser Prozesse ist bei der aktuellen Datenlage leider nicht
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abschliefend moglich. Es erscheint aber zwingend notwendig, dass wihrend dieser Scher-
prozesse in den Grenzen im transienten Zustand eine Volumendehnung oder eine Dehnung
normal zur Scherebene erzeugt wird. Die Funktion davon kann offenbar teilweise durch das be-
reits vorhandene Exzessvolumen iibernommen werden, weshalb der Scherwiderstand im Zuge
des Volumenabbaus wiahrend der Verformung ansteigt. Alternativ fiihrt auch die thermische

Relaxation zu einem deutlichen Anstieg des Scherwiderstandes in den Korngrenzen.

Vor diesem Hintergrund folgt die Abhéngigkeit der Verformung vom Spannungszustand zwang-
los: Bei negativem hydrostatischem Druck oder bei negativen Normalspannungen auf den
Ebenen, an denen Scherspannungen angreifen, miissen die notwendigen Volumendehnun-
gen bzw. Normaldehnungen bei den Scherprozessen in den Grenzen gegen die duflere Last
stattfinden. Dadurch steigt die Energiezunahme im transienten Zustand, was im Sinne der
thermischen Aktivierung (siehe S. gleichbedeutend mit einer Erhdhung der Aktivie-
rungsbarriere ist. Bei gleicher Dehnrate ist daher eine hohere angelegte Spannung zur Auf-
rechterhaltung der Verformung notwendig, d.h. der Scherwiderstand der Grenzen steigt an.
Fiir Diffusionsprozesse und Schertransformationen ist genau dieses Verhalten bereits in an-
deren Zusammenhingen bekannt [30], sodass beide Prozesse grundsitzlich als aktive Plas-
tizitdtsmechanismen in Korngrenzen in Frage kommen. Da Korngrenzengleiten ein Zusam-
menwirken von Diffusion (oder Korngrenzenversetzungsbewegung) und entsprechenden Ak-
kommodationsmechanismen beschreibt, ist auch dieser Prozess entlang entsprechend giinstig

orientierter Korngrenzen moglich.

Die Abhéngigkeit zwischen Dehnrate und Scherspannung folgt ebenfalls direkt aus der ther-
modynamischen Beschreibung, denn um héhere Dehnraten bei gleicher Temperatur zu errei-
chen, sind hohere Scherspannungen in den Korngrenzen erforderlich. Durch die Abhéngigkeit
der Aktivierungsbarriere vom Spannungszustand hingt auch die Dehnratenabhéngigkeit des

Verformungsprozesses vom Spannungszustand ab.

Allerdings liefert die ausschlieflliche Betrachtung des Verhaltens der Korngrenzen in Bezug
auf Spannungszustand und Dehnrate keine sinnvolle Beschreibung des Materialverhaltens,
da das Auftreten von Plastizitdtsmechanismen und ihr Zusammenspiel aus dem Wettbewerb
verschiedener Mechanismen um den geringsten Scherwiderstand entlang der Richtungen ho-
her Scherspannung hervorgehﬁ Zu diesen Mechanismen zéhlen neben den Scherprozessen
in den Korngrenzen u.a. auch Coupling oder die intrakristalline Versetzungsaktivitit. Diese
Prozesse laufen zwar bei nanokristallinen Materialien erst bei hohen Spannungen ab, zeigen
jedoch keine (gleich-)starke Abhéngigkeit von Spannungszustand oder Dehnrate. Dadurch ist
die Zusammensetzung der Plastizitdtsmechanismen ein dynamischer und richtungsabhéngiger
Prozess, bei dem sich die aktuelle Zusammensetzung der Mechanismen im Verlauf der Ver-

formung mehrfach drastisch &ndern kann und so eine Abfolge sehr verschiedener, effektiver

15Gleiches gilt erginzend dazu fiir den geringsten Widerstand gegeniiber Normaldehnung/Volumendehnung
unter den gegebenen Spannungszusténden.
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Plastizitdtsmechanismen in verschiedenen Richtungen erzeugt. Die Gestalt der Spannungs-
Dehnungs-Kurven wird wesentlich dadurch bestimmt, wobei die Beitrége der Elastizitiat dabei

im gesamten Dehnungsbereich nur eine untergeordnete Rolle spielen.

Ein Beispiel fiir diese Anderung der Zusammensetzung und das Zusammenspiel verschiede-
ner Mechanismen zeigt sich bei der Variation der Dehnraten fiir wie-hergestellte Proben. Die
hohe Dehnratenabhéngigkeit der Korngrenzenprozesse fithrt zu einer Zunahme der Scher-
spannungen bei schnellen Verformungen. Da der Scherwiderstand der Versetzungsprozesse
weniger stark von der Dehnrate abhéngt, iibernehmen diese einen grofleren Teil der von au-
Ben erzwungenen Dehnung und dissipieren so die hohen Spannungen in den Korngrenzen,
die dadurch weniger zur Gesamtdehnung beitragen miissen/kénnen. Aus dhnlichen Griinden
zeigt sich auch bei den relaxierten Proben ein groflerer Beitrag durch Versetzungsgleiten, wo-
bei hier der hohere Scherwiderstand der Korngrenzen durch die Relaxation verursacht wurde.
Ein Beispiel fiir die Richtungsabhéngigkeit ist die Fokussierung der Versetzungsaktivitat auf
die Bereiche, in denen negative Normalspannungen auf die Scherebenen wirken. Dort wo diese
nicht vorliegen oder sogar positive Normalspannungen wirken, iibernehmen offenbar die unter
diesen Bedingungen viel einfacher zu aktivierenden Korngrenzenprozesse die Scherdehnung —

die Versetzungsaktivitit ist dagegen viel geringer.

Allerdings fiihrt nicht jede Behinderung der Plastizitdtsprozesse in den Korngrenzen automa-
tisch zu einer dauerhaften Zunahme der Versetzungsaktivitit. Einerseits zeigte sich anhand
schneller Verformungen, dass auch Versetzungsgleiten Akkommodationsprozesse in den Korn-
grenzen benotigt. In diesen Féllen sind die Relaxations- und Scherprozesse in den Korngrenzen
stark behindert, was bei relativ geringen Dehnungen schon zur Ausbildung von Gleitbriichen
im Stegbereich fiihrte. Andererseits wirken sich unterschiedliche Spannungs- und Dehnungs-
zustdnde auch direkt auf die Versetzungsaktivitdt aus, etwa indem die Orientierung von
maximaler Scherdehnung und der Hauptscherrichtung bei verschiedenen Stegwinkeln unter-

schiedlich stark voneinander abweichen.

Des Weiteren fithren bereits relativ geringe Zugspannungen zu einer Zunahme des Volumens
der Korngrenzen, was schlussendlich zum Aufreiflen derselben und damit zum Bruch fiihrt.
Die Ergebnisse der relaxierten Proben legen nahe, dass die dafiir benétigten Zugspannungen
bei relaxierten Proben zunehmen. Daher liegt der Umkehrschluss nahe, dass beim Ausein-
anderziehen der Korngrenze mit fortschreitender Normaldehnung eine abnehmende Normal-
spannung notwendig sein sollte. Allerdings begiinstigt diese Riickwirtsrelaxation auch wieder
Scherprozesse in den Korngrenzen, wodurch die Bildung von Gleitrissen unterbunden werden

konnte.

Bei der Interpretation dieser Vorgéinge bewéhrte sich das Modell aus [114], [115], in dem die
Verfestigung der Korngrenzen durch die Bildung von Disklinationsdipolen bei Scherverfor-
mung in der Nidhe von Tripellinien beschrieben wird. Darin wird insbesondere darauf hin-

gewiesen, dass Spannungsrelaxation in den Korngrenzen essenziell fiir die Verhinderung von
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Rissen an diesen Disklinationsdipolen ist. Auch alle iibrigen Implikationen dieses Modells
fligen sich nahtlos in die restliche Beschreibung und die experimentellen Beobachtungen ein.
Um Vorhersagen zum Materialverhalten auf Grundlage eines thermodynamischen Modells zu
treffen, ist zunéichst die Ableitung thermischer Aktivierungsparameter aus den experimentel-
len Daten notwendig. Das gestaltet sich mit den iiblichen Methoden schwierig, da dadurch
i.d.R. nur effektive Aktivierungsparameter bestimmt werden. Allerdings dndert sich der effek-
tive Plastizitdtsmechanismus wahrend der Verformung stdndig und unregelméfig, sodass kein
Satz von effektiven Aktivierungsparametern existiert, der die gesamte Verformung beschrei-
ben kann. Daher wére eine stiickweise Bestimmung dieser effektiven Parameter in den Zeit-
und Dehnungsbereichen notwendig, in denen eine anndhernd gleichbleibende Zusammenset-
zung von Mechanismen vorliegt; also der gleiche effektive Mechanismus. Damit héitte man
aber keine fundamentalen Parameter bestimmt, sondern nur die Abfolge effektiver Parame-
ter genau dieser einen Verformung. Der vermutlich sinnvollere Ansatz wire eine Anpassung
des Vorgehens aus [32] 275], wo die thermische Relaxation mit Hilfe eines Modells aus einer
Uberlagerung mehrerer Relaxationsprozesse bestimmt wurde. Dabei wurde die Anpassung
des Modells an die Messdaten gleichzeitig {iber mehrere, unterschiedliche Messungen durch-
gefiihrt um daraus die zu Grunde liegenden, elementaren Aktivierungsparameter der konsti-
tuierenden Kinzelprozesse zu extrahieren. Grundsétzlich ist eine entsprechende Anpassung
auf den Verformungsprozess moglich, das Modell wire aber um einiges komplexer.
Vorhersagen zum Verformungsverhalten zu treffen ist daher eine anspruchsvolle Herausforde-
rung, die zwangsweise ein komplexes Modell erfordert, welches alle hier dargelegten Aspekte
und ihr Zusammenwirken quantitativ abbilden kann. Die vergleichsweise einfachen FEM-
Modelle aus vorherigen Arbeiten sind dafiir ungeeignet und die Anpassung komplexerer
Modelle wie z.B. dem Drucker-Prager-Materialgesetz, hat sich als ausgesprochen schwierig
herausgestellt. Mit den Ergebnissen aus dieser Analyse ergeben sich fiir mogliche kontinu-
umsmechanische Materialgesetze die Anforderungen, dass diese Zug-Druck-Asymmetrie und
Dehnratenabhéngigkeit enthalten miissen, sowie durch ein anisotropes und vom Belastungszu-
stand abhéngiges Verfestigungs- und Entfestigungsmodell ergéinzt werden. Ein erfolgverspre-
chender Ansatz konnte z.B. in der Anpassung des Pitman-Schaeffer-Gray-Stiles-Kriterium
[161], 162] liegen.
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Ziel dieser Arbeit war die systematische Untersuchung des Verformungsverhaltens von nano-
kristallinem PdggAuyg. Dabei war insbesondere der Einfluss verschiedener Spannungszustinde
und Dehnraten, sowie der Einfluss der thermischen Relaxation auf die Verformungsmecha-
nismen von Interesse. Dazu wurden an der European Synchrotron Radiation Facility (ESRF)
iiber 70 Verformungsexperimente mit in-situ Rontgenbeugung durchgefiihrt und die daraus

gewonnen Daten im Anschluss detailliert analysiert.

Ein Teil dieser Arbeit bestand in der Konzeption und der Umsetzung dieser Experimente.
Diese basieren auf vorangegangenen Arbeiten [25, B0, [I86], sodass auch hier die bewé#hrten
Shear Compression Specimens (SCS) in einer Kammrath & Weiss Priifmaschine verformt
wurden, wiahrend ein Rontgenstrahl an dem sich stark verformenden Stegbereich der Proben
gestreut wurde. Das Streubild nahm ein hinter der Probe aufgestellter 2d Detektor mit hoher
zeitlicher und rdumlicher Auflésung auf. Im Unterschied zu vorherigen Experimenten, wur-
de die Probenbewegung hier in drei Raumrichtungen mit zwei gekreuzten, hochauflésenden
Kameras erfasst. Aulerdem wurde die zeitliche Korrelation der verschiedenen Messdaten je-
derzeit durch eine zentrale, teilautomatisierte Experimentsteuerung garantiert, die zudem

einen hohen Probendurchsatz ermoglichte.

Die Variation der Spannungszustdnde wurde durch unterschiedliche Stegwinkel der SCS er-
reicht, von denen jeweils die gleichen Mengen an wie-hergestellten und relaxierten Proben
hergestellt und verformt wurden. Die Variation der Dehnraten erfolgte durch unterschiedli-

che Verformungsgeschwindigkeiten.

Die Daten aus diesen Experimenten bildeten die Grundlage fiir die anschliefende Analyse
des Verformungsverhaltens. Zuvor mussten jedoch sowohl die Daten zur makroskopischen
Dehnung, als auch die Daten aus der Rontgenstreuung umfassend verarbeitet werden, um die

darin enthaltenen Informationen in interpretierbarer Form zu extrahieren.

Aus den Kamerabildern wurden die Verschiebungsfelder auf der Front- und Seitenfliche der
SCS mit Hilfe der Software DaVis (von LaVision) extrahiert. Anschlielend bestimmten eigens
dafiir entwickelte Matlab-Programme aus diesen Verschiebungsfeldern die dreidimensionalen
Verschiebungsgradienten im Stegbereich der SCS, woraus dreidimensionale Dehnungs- und

Rotationsinformationen abgeleitet werden konnten.
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Die Rohdaten aus dem Rontgendetektor wurden mit Hilfe eines Programms von Vadim Dyad-
kin (Bubble) [253] hinsichtlich Detektorfehler korrigiert und in Form von konventionellen Lini-
endiffraktogrammen exportiert, die das Resultat der Mittelung 2 °-breiter Polarwinkelsegmen-
te des Detektorbildes waren. Diese bildeten die Grundlage fiir die anschliefende Anpassung
der Daten mittels eines auf dieses Materialsystem angepassten, automatisierten Algorith-
mus auf Grundlage des Whole Powder Pattern Modeling (WPPM), welches urspriinglich von
Paolo Scardi [33] entwickelt wurde. Dabei wird das Diffraktogramm aus theoretischen Mo-
dellen errechnet und die zu Grunde liegenden Parameter so lange variiert, bis eine optimale
Ubereinstimmung zwischen Modellrechnung und Messdaten hergestellt ist. Die Parameter,
die zur groBten Ubereinstimmung fiihren, liefern dann die beste Beschreibung der korrespon-
dierenden physikalischen Eigenschaften in der untersuchten Probe. Dadurch ist es moglich,
und gleichzeitig zwingend notwendig, eine grofie Bandbreite an Parametern aus den Diffrakto-
grammen zu bestimmen, wie z.B. Korngrofenverteilung, Versetzungsdichte, Gitterdehnungen,

Stapelfehler- und Zwillingsgrenzenwahrscheinlichkeit, Debye-Temperatur usw..

Zusammen liefern diese mikrostrukturellen Daten mit den makroskopischen Kraft- und Deh-
nungsdaten eine umfassende sowie durchgingig konsistente Beschreibung des Verformungs-
verhaltens nanokristalliner PdggAuig SCS. Dariiber hinaus liefert die Analyse Informationen
zu den aktiven Plastizitdtsmechanismen und ihrem Zusammenspiel /ihrer Zusammensetzung
im Verlauf der Verformung. Zuséitzlich lassen sich verschiedene Modi des Materialversagens
beobachten und mogliche Ursachen dafiir aus den Daten ableiten. Eine kompakte Zusam-
menfassung der Ergebnisse und ihrer Interpretation ist in Kapitel (S.B79fE) gegeben.

Es sei an dieser Stelle noch einmal darauf hingewiesen, dass die ausgewerteten Daten auch
in Form von Visualisierungsprogrammen auf dem Datentriiger beiliegen. Damit kénnen auch
solche Darstellungen der Daten in Augenschein genommen werden, die nicht in gedruckter
Form vorliegen. Insbesondere koénnen die Daten in Bewegung betrachtet werden, wodurch
viele Zusammenhénge und Entwicklungen intuitiver erfassbar sind (siehe Anhang S. .

Es konnte der Eindruck entstehen, dass mit den Ergebnissen dieser Arbeit die Konstrukti-
on einer Deformation-Mechanism-Map in Anlehnung an die von Ashby-Frost [169] oder von
Langdon-Mohamed [I81), 182] mdoglich sein sollte. Diese Deformation-Mechanism-Maps fiir
konventionelle Materialien sind zweidimensionale Schnitte eines vierdimensonalen Parame-
terraumes (Scherspannung, Temperatur, Dehnrate und Korngréfie), in denen der jeweils do-
minante Plastizitdtsmechanismus eingezeichnet ist. Hypothetischen Deformation-Mechanism-
Maps zu den hier untersuchten nanokristallinen Materialien miisste ein erweiterter Parame-
terraum zu Grunde liegen, da das Verformungsverhalten nicht nur vom Betrag der Scherspan-
nung, sondern vom gesamten 3d Spannungszustand abhingt (+2 Dimensionen), sowie vom
Relaxationszustand der Korngrenzen (+1 Dimension). Zudem kann sich das Verformungs-
verhalten mit zunehmender Dehnung veréndern, sodass dieser Parameterraum auch diesen

Aspekt enthalten miisste (mindestens +1 Dimension). Die Niitzlichkeit und Aussagekraft von
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zweidimensionalen Deformation-Mechanism-Maps ist aus diesen Griinden fiir nanokristalline

Materialien zweifelhaft.

Zudem werden auch bei konventionellen Materialien die Deformation-Mechanism-Maps i.d.R.
aus Modellen zum Materialverhalten und den Plastizitdtsmechanismen abgeleitet und nicht
direkt anhand von Messdaten bestimmt. Die Entwicklung von Modellen zum Verformungs-
verhalten nanokristalliner Materialien ist daher die grundlegendere und nutzbringendere Auf-
gabe, deren Ergebnis in Form von Deformation-Mechanism-Maps visualisiert werden kénnte.
Dessen ungeachtet wiirde bereits das Konzept eines dominanten Mechanismus aufgrund der
starken Verflechtung und Uberlagerung verschiedener Einzelmechanismen wahrscheinlich kei-

ne adédquate Beschreibung des Verformungsverhaltens mehr darstellen.

Bei der Analyse der Ergebnisse aus der WPPM-Anpassung sind drei Probleme zu Tage ge-
treten, die in Zukunft unbedingt adressiert werden sollten. In zwei Féllen kam es zu un-
beabsichtigten Wechselwirkungen verschiedener Modellbestandteile, welche die genaue Be-
stimmung der beteiligten Parameter erschwerte oder verhinderte. Zum einen war das die
Wechselwirkung von Debye-Temperatur und der Texturanpassung der Intensitét, zum ande-
ren eine Wechselwirkung zwischen dem Modell zur heterogenen Verzerrung unter Last und
dem Korngroflenmodell. Das letzte Problem trat beim Modell zur Bestimmung der Zwillings-
wahrscheinlichkeit auf, dessen Losung vermutlich in der globalen Anpassung des gesamten

Detektorbildes anstatt der einzelnen Liniendiffraktogramme besteht.

Wenn thermodynamische oder kontinuumsmechanische Modelle zum Materialverhalten zur
Verfiigung stiinden, kénnte man auch diese in die WPPM-Anpassung integrieren um nur
solche Parametervariationen durchzufithren, die eine konsistente Beschreibung im Rahmen
des Modells darstellen. Dadurch kénnte die konsistente Anpassung der Daten schon wahrend
des Fits sichergestellt und eventuell sogar beschleunigt erfolgen. Notwendigerweise miissten
dann weitere Messdaten wie z.B. die makroskopische Dehnung, Dehnrate oder die auf die
Probe ausgeiibte Kraft in einem erweiterten WPPM-Algorithmus mit beriicksichtigt werden.
Alternativ ist auch denkbar, dass die Parameter dieser Modelle durch eine oder mehrere
WPPM-Anpassungen mit-optimiert werden und so iiber viele Experimente hinweg eine Ver-
besserung des thermodynamischen oder kontinuumsmechanischen Modells erreicht werden

kann.

Auf experimenteller Seite wire eine Erweiterung der Information aus der Rontgenstreuung
von zwei Dimensionen auf drei Dimensionen durch die Verwendung von zwei zueinander
verkippten Rontgenstrahlen und Detektoren wiinschenswert. Erst dann wére die komplette
rdumliche Erfassung von Gitterdehnungen frei von Annahmen moglich — bei den Gitterde-
fekten konnte man den Umfang der Annahmen zumindest reduzieren. Die Drehung einer
rotationssymmetrischen Probengeometrie in einem einzelnen Rontgenstrahl konnte diese An-
forderung ebenfalls erfiillen, allerdings miisste dann ein gréfierer Aufwand in die Vorrichtung

zur Verformung flielen um nicht-rotationssymmetrische Spannungs- und Dehnungszustéinde
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5 Zusammenfassung und Ausblick

einzustellen. Wiren diese ndmlich ebenfalls rotationssymmetrisch, wiirde dadurch keine Zu-
satzinformation erzeugt werden.

Dariiber hinaus existieren weiterhin noch eine ganze Reihe offener Fragestellungen zum The-
ma nanokristalliner Materialien, die z.T. mit ihren mechanischen Eigenschaften in Verbin-
dung stehen. So kann z.B. in ehemals nanokristallinem PdggAuig nach thermisch aktiviertem
Kornwachstum eine sehr hohe Hirte festgestellt werden, obwohl die Korngréflen im Bereich
konventioneller Materialien liegen [8]. Der Grund dafiir ist bislang unbekannt. Dariiber hin-
aus kommt es beim Kornwachstum dieser Materialien oft zu abnormalem Kornwachstum,
wodurch fraktale Korngrenzen im Material erzeugt werden [276] — die genaue Ursache und
alle Konsequenzen aus diesem interessanten Befund sind bereits Gegenstand aktueller For-

schung.
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A Anhang

A.1 Charakterisierungsdaten

Tabelle A.1: Goldgehalt ¢4, in Atomprozent (at.%), gemessene Dichte p und theoretische
Dichte pipe, des defektfreien Materials gleicher chemischer Zusammensetzung
(jeweils in g/cm?). Zusitzlich sind der Elastizititsmodul (F) und der Schermodul
(@) aus der Ultraschalllaufzeitmessung in G Pa angegeben.

Bezeichner relaxiert CAu 1) Ptheo E G
Adr ja 13(1)  12.422(4) 13.001 104(1) 37(1)
Bar ja 16(1) 12.270(2) 13.225 99(2) 36(1)
Clr ja 14(1)  12.370(4) 13.028 107(4) 40(2)
C2r ja 13(1) 12.496(5) 12.971 116(6) 42(2)
Dir ja 14(1) 12.346(3) 13.022 101(4) 36(1)
D2r ja 12(2)  12.295(3) 12.866 105(3) 38(1)
Elr ja 15(3) 12.300(4) 13.132 108(4) 39(1)
Fir ja 16(1)  12.250(6) 13.278 101(2) 36(1)
Fr ja 17(1) 12.218(2) 13.283 99(3) 36(1)
G1 nein 15(1) 11.89(2) 13.140 88(1) 33(1)
G2 nein 14(1) 12.13(1) 13.069 84(4) 31(2)
Hir ja 13(1.5) 11.921(2) 12.956 98(3) 35(1)
H2 nein 15(3) 11.530(2) 13.153 84(3) 31(1)
J1 nein 12(1.2) 11.518(2) 12.923 84(4) 31(2)
J2 nein 11(1.1) 11.737(3) 12.784 97(3) 35(1)
K2 nein 13(1) 12.293(3) 12.983 103(2) 37(1)
M1 nein 13(1) 11.405(4) 13.002 83(4) 30(1)
M2 nein 12(1) 11.818(1) 12.896 91(2) 33(1)
M3 nein 11(1)  11.588(1) 12.802 91(2) 33(1)
N1 nein 13(1.2) 11.704(3) 12.970 86(2) 32(1)
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Tabelle A.2: Fortsetzung von Tabelle

Bezeichner relaxiert cgy 0 Ptheo FE G
N2r ja 12(1) 12.122(1) 12.923 100(2) 36(1)
o1 nein  18(1) 11.877(4) 13436 - ]
Plr ja 16(3) 12.156(2) 13.227 98(4) 36(2)
Q2r ja 13(2) 12.356(3) 13.014 109(3) 39(1)
R1 nein  15(4) 12.022(3) 13.164 91(3) 33(1)
S1 nein  15(1) 11.589(1) 13.149 83(1) 30(1)
Ul nein  15(2) 11.950(2) 13.131 91(2) 33(1)
V2 nein 14(1) 11.817(4) 13.014 91(3) 33(1)
V3r ja 14(2) 12.071(4) 13.063 100(3) 36(1)
W2 nein 15(1) 12.043(3) 13.123 87(3) 32(1)
X1 nein  12(3) 11.860(2) 12.827 97(3) 35(1)
X2 nein 15(2) 12.120(4) 13.132 91(5) 33(2)
Y1 nein  15(1) 12.009(2) 13.336 94(2) 34(1)
Y2 nein 13(1) 11.781(3) 13.132 93(2) 34(1)
Y3 nein  12(1) 12.028(5) 13.063 94(2) 34(1)
Y4 nein  13(1) 11.879(4) 13.149 93(2) 34(1)
721 ja 14(1) 12.180(3) 13.207 100(1) 36(1)

Zalkr ja 13(2) 11.877(5) 12.991 97(1) 36(1)
Zb2kr ja 15(1) 12.277(3) 13.158 109(1) 39(1)
Zb3kr ja 15(2) 12.306(4) 13.178 105(1) 38(1)
Zb4kr ja 14(3) 12.312(2) 13.057 104(1) 38(1)




A.1 Charakterisierungsdaten

Tabelle A.3: Geometrische Abmessungen (vgl. Abb. S. .

Bezeichner sw [°] H [mm] B [mm] D [pm] b [pm] s [pm]

Adr-1 60 6.0 1.22 629 111 122
Adr-2 60 6.0 1.26 629 111 122
B3r-2 25 6.0 1.22 1038 149 130
Clr-1 60 6.0 1.21 712 125 106
C2r-1 45 6.0 1.27 721 122 107
C2r-2 45 6.0 1.22 721 122 107
Dir-1 45 6.0 1.26 735 120 110
D2r-2 45 6.0 1.26 1042 450 130
Elr-1 0 4.5 1.25 912 153 108
Flr-2 0 4.5 1.24 998 149 129
F2r-1 25 6.0 1.25 1027 142 135
F2r-2 25 6.0 1.23 1027 142 135
Hilr-2 45 6.0 1.22 812 115 114
Hir-2 45 6.0 1.25 812 115 114
H2-1 60 6.0 1.21 695 123 107
H2-2 60 6.0 1.25 695 123 107
J1-1 0 4.5 1.24 947 149 131
J1-2 0 4.5 1.23 947 149 131
J2-2 45 6.0 1.21 713 118 112
K2-1 45 6.0 1.21 1049 151 132
M1-2 0 4.5 1.22 858 147 132
M2-1 60 6.0 1.26 1370 137 140
M2-2 60 6.0 0.91 1370 137 140
M3-1 45 6.0 1.21 1121 148 134
N1-2 45 6.0 1.25 1050 155 134
N2r-1 45 6.0 1.25 1436 148 132
N2r-2 45 6.0 1.23 1436 148 132
01-2 25 6.0 1.22 811 119 112
Plr-1 0 4.5 1.24 1012 147 132
R1-1 0 4.5 1.24 862 149 131
R1-2 0 4.5 1.22 862 149 131
Q2r-1 45 6.0 1.26 1093 150 130
Q2r-2 45 6.0 1.21 1093 150 130
S1-1 60 6.0 1.25 1376 147 142
Ul-1 0 4.5 1.23 939 149 131
U1l-2 0 4.5 1.24 939 149 131
V2-1 45 6.0 1.21 751 119 110
V2-2 45 6.0 1.25 751 119 110
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Tabelle A.4: Fortsetzung von Tabelle .

Bezeichner sw [°] H [mm] B [mm] D [pm] b [pm] s [pm]

Vr-1 0 4.5 1.22 1018 150 129
V33r-2 0 4.5 1.24 1018 150 129
W2-1 60 6.0 1.26 675 122 108
X1-1 45 6.0 1.26 758 120 109
X1-2 45 6.0 1.22 758 120 109
X2-1 25 6.0 1.26 706 118 112
X2-2 25 6.0 1.22 706 118 112
Y1-1 45 6.0 1.21 983 149 131
Y1-2 45 6.0 1.25 983 149 131
Y2-2 0 4.5 1.23 875 150 130
Y3-1 45 6.0 1.25 1098 149 131
Y3-2 45 6.0 1.21 1098 149 131
Y4-1 45 6.0 1.25 1039 145 130
Y4-1 45 6.0 1.22 1039 145 130
Z2r-1 60 6.0 1.25 1020 140 143
Z2r-2 60 6.0 1.25 1020 140 143
Zalkr-1 45 6.0 1.26 760 113 118
Zalkr-2 45 6.0 1.22 760 113 118
Za2kr 45 6.0 1.25 1574 142 141
Zb2kr-2 25 6.0 1.25 962 150 130
Zb3kr-1 45 6.0 1.23 1029 149 130
Zb3kr-2 45 6.0 1.26 1029 149 130
Zb4kr-1 0 4.5 1.25 940 150 129
Zb4kr-2 0 4.5 1.22 940 150 129
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A.1 Charakterisierungsdaten

Tabelle A.5: Parameter der Verformungsexperimente. Wenn die Proben Risse entwickeln,
aber beide Probenhélften bis zum Ende der Verformung verbunden bleiben,
wird das in der Spalte ,,Rissbildung® mit (ja) markiert. Der Stegwinkel wird mit
sw abgekiirzt.

Bezeichner relaxiert sw [°] Dehnrate [1/s] Rissbildung

Adr-1 ja 60 1-1071 ja

Adr-2 ja 60 1-1073 ja

B3r-2 ja 25 1-1073 nein
Clr-1 ja 60 9.1072 ja

C2r-1 ja 45 1-107! nein
C2r-2 ja 45 1-1072 nein
Dilr-1 ja 45 1-1072 nein
D2r-2 ja 45 1-1072 nein
Elr-1 ja 0 1.4-107° nein
Flr-1 ja 0 1-1071 (ja)
Flr-2 ja 0 2-107* nein
F2r-1 ja 25 1-107* nein
F2r-2 ja 25 1-1073 nein
Hir-2 ja 45 1-1072 (ja)
Hir-2 ja 45 1-1071 (ja)
H2-1 nein 60 1-1073 ja

H2-2 nein 60 9.2-1072 ja

Ji-1 nein 0 1.6-107* (ja)
J1-2 nein 0 1-1072 (ja)
J2-2 nein 45 1-107! nein
K2-1 nein 45 1.5-107° nein
M1-2 nein 0 1-107 (ja)
M2-1 nein 60 1-1073 (ja)
M2-2 nein 60 7-1072 ja

M3-1 nein 25 1-1072 nein
N1-1 nein 45 1.2-1074 nein
N1-2 nein 45 21074 (ja)
N2r-1 ja 45 1-1073 (ja)
N2r-2 ja 45 1-107! (ja)
01-2 nein 25 1-1073 nein
Plr-1 ja 0 1-1072 nein
R1-1 nein 0 1-1071 nein
R1-2 nein 0 1-1073 nein
Q2r-1 ja 45 2.107° nein
Q2r-2 ja 45 1-1073 nein
S1-1 nein 60 1-1073 ja

Ul-1 nein 0 1-1073 nein
U1-2 nein 0 1-1072 ja

V2-1 nein 45 1-1072 nein
V2-2 nein 45 1-107! nein
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Tabelle A.6: Fortsetzung von Tabelle .

Bezeichner relaxiert sw [°] Dehnrate [1/s] Rissbildung
V3r-1 ja 0 1-1073 nein
V3r-2 ja 0 1-1072 nein
W2-1 nein 60 1.5-107° ja
X1-1 nein 45 1-1072 nein
X1-2 nein 45 1-1073 nein
X2-1 nein 25 1-1073 nein
X2-2 nein 25 1-107! nein
Yi-1 nein 45 1.5-107* nein
Y1-2 nein 45 1-107! nein
Y2-2 nein 0 1-107% nein
Y3-1 nein 45 1-1073 nein
Y3-2 nein 45 1-1073 nein
Y4-1 nein 45 1-1073 nein
Y4-1 nein 45 1-1073 nein
72r-1 ja 60 1.2-107° ja
72r-2 ja 60 1-1073 ja

Zalkr-1 ja 45 1-107! ja

Zalkr-2 ja 45 1-1073 ja

Za2kr-1 ja 45 2.107* nein
Zb2kr-2 ja 25 1-107! nein
Zb3kr-1 ja 45 1-107% nein
Zb3kr-2 ja 45 1-1073 nein
Zbdkr-1 ja 0 1-1073 nein
Zb4kr-2 ja 0 1-107% nein




A.2 Mittlere Elastizititstensoren

A.2 Mittlere Elastizitatstensoren

Hier sind die mittleren Elastizititstensoren fiir Palladium 5hkl = (5(thl)>xhkl in Voigt-
Notation angegeben, die iiber alle Rotationen x € [0°,360°) um die hkl-Achse gemittelt
wurden. In der Rechnung wurden die elastischen Konstanten von Pd aus [46] genutzt (c11 =
226 GPa, c12 = 175GPa und c44 = 71.4GPa). Die Richtung entlang des ersten Basisvektors
(Indizes 11 bzw. xzx) entspricht bei CE'h;d immer Akl in der gezeigten Darstellung. In den
Rechnungen zu den untersuchten Proben wurde der Goldgehalt in den elastischen Konstanten
vor der Mittlung der Elastizitidtstensoren beriicksichtigt (siehe [277]).

287.2 1444 1444 O 0 0
144.4 287.2 165.4 0 0
= 1444 1654 2872 O 0 0
Ci11 = Angaben in GPa (A.1)
0 0 0 504 0 0
0 0 0 0 366 O
0 0 0 0 0 36.6
226.0 175.0 175.0 0 0
175.0 243.5 1575 O 0 0
= 175.0 157.5 2435 O 0 0
Cooo = Angaben in GPa (A.2)
0 0 0 430 O 0
0 0 0 71.4 0
0 0 0 0 714
264.8 155.6 155.6 O 0 0
155.6 258.6 161.8 O 0 0
= 155.6 161.8 258.6 O 0 0
Ca9 = Angaben in GPa (A.3)
0 0 0 484 0 0
0 0 0 0 430 O
0 0 0 0 0 43.0
247.8 164.1 164.1 0 0
164.1 258.6 159.6 0 0
= 164.1 159.6 258.6 0 0 0
Cs11 = Angaben in GPa (A.4)
0 0 0 463 O 0
0 0 0 0 513 O
0 0 0 0 0 513
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A.3 Programme zur Visualisierung der Daten

Viele der Daten und der daraus abgeleiteten Groéfien konnen aus Platzgriinden in dieser Ar-
beit nur auszugsweise dargestellt werden. Zudem ist eine addquate Darstellung der Dynamik
der Daten in vielen Fillen in gedruckter Form nicht moglich. Um dem Leser diese Aspek-
te dennoch zugénglich zu machen, sind auf dem beigefiigten Datentriger fiinf Programme
enthalten, die fiir die neun im Ergebnisteil diskutierten Proben einen grofien Teil der Daten
vollstiandig visualisieren konnen (siehe Ordner /Datenvisualisierung). Die in den Programmen
visualisierten Grofien sind Tabelle [A.7] gelistet.

Technische Hinweise: Bei der Installation der Programme unter Windows kommt es i.d.R. bei
der ersten Ausfithrung zu einer Warnung (,,Der Computer wurde durch Windows geschiitzt
...). Die Ursache dafiir ist die fehlende Signatur der Programme, die Programme an sich
konnen aber bedenkenlos ausgefithrt und installiert werden. Dazu muss man in der Warn-
meldung auf ,, Weitere Informationen* und dann auf die Schaltfliche ,, Trotzdem ausfiihren
klicken.

Die Programme sind allein lauffiahige Matlab-Programme. Bei der Installation wird die fiir
die Ausfithrung notwendige, frei verfiigbare Matlab-Runtime (MATLAB Runtime for R2020a)
automatisch aus dem Internet installiert. Alternativ kann diese Runtime auch manuell her-
unterladen und installiert werden; die Programme aus dem ,,Linux und Mac“ Unterordner
sind dann ohne Installation lauffihig (auch Linux, OS X).

Tabelle A.7: Programme zur Visualisierung verschiedener Grofien.
Ordner: ./Datenvisualisierung.

Name dargestellte Grofien

WPPM-Fit Viewer

Tensor Viewer

Intensity Viewer

Size Viewer

DiStaTwi Viewer

Rohdaten Diffraktogramme, WPPM-Fits, Abweichung. Zur Orien-
tierung: Spannungs-Dehnungs-Kurve in y-Richtung, Spannungen in
der x-y-Ebene. Die Datendichte ist gegeniiber den Ausgangsdaten
um mehr als die Hilfte reduziert. Auf die Darstellung hat das na-
hezu keine sichtbaren Auswirkungen.

Spannungs- und Dehnungstensoren, Spannungs-Dehnungs-Kurve

Intensitit (AI") sowie Texturstirke von Ubergangs- und Endtex-
tur. Zur Orientierung: Spannungs-Dehnungs-Kurve in y-Richtung.

Korngrole (D)o, Verteilungsbreite o’ und logarithmische Nor-
malverteilungen in Blickrichtung. Zur Orientierung: Spannungs-
Dehnungs-Kurve in y-Richtung.

Stereologische Projektionen der Versetzungsdichte p, Stapelfehler-
dichte o und Zwillingsdichte S. Zusétzlich kann die TDS-Intensitét
mit eingeblendet werden. Zur Orientierung: Spannungs-Dehnungs-
Kurve in y-Richtung.
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A.4 Programme zur Datenauswertung

Hier erfolgt ein Uberblick iiber die Programme (siehe beigefiigter Datentriiger), welche im
Rahmen dieser Arbeit entstanden und bei der Datenauswertung verwendet wurden. Die Auf-
listung beschrénkt sich hier auf die relevantesten Programme — Hilfsprogramme oder solche,
die der Visualisierung dienen, werden hier nicht beschrieben. Die meisten Programme wur-
den bis kurz vor Entstehung dieser Arbeit noch aktiv entwickelt oder modifiziert weshalb eine

ausfiihrliche Kommentierung der Quelltexte in vielen Féllen fehlt.

A.4.1 Sonstige Programme

Tabelle A.8: Programme zur Experimentsteuerung. Ordner: ./Quelltexte/Steuerungssoftware

Name Funktion Abhé#ngigkeiten
SCS_Control Zentrale Steuerung der Experimente alle anderen VI im Ord-
(siehe S. [151)) ner Steuerungssoftware

Tabelle A.9: Programme zur Charakterisierung der Proben vor der Durchfithrung der ESRF-
Experimente (siehe S. [136). Ordner: ./Quelltexte/Charakterisierung.

Name Funktion Abhé#ngigkeiten

Density- Berechnung der Probendichte Dichtemessung

Measurement

PulseEcho Berechnung der elastischen Kon- Probendicke, Laufzeit-
stanten aus Ultraschallmessungen messungen, Dichte

UltimateXray Berechnung von Korngrofle  Rontgendiffraktogramm

(Williamson-Hall)  und  Gitter- (Labordiffraktometer)
kostante (Nelson-Riley)

Tabelle A.10: Programme zur Umwandlung der ESRF-Daten in Matlab-Daten (siche S.[167)).
Ordner: ./Quelltexte/Bubble_Companion.

Name Funktion Abhingigkeiten

bubble_companion Umwandlung der ESRF-Daten Bubble  [253],  di-
verse detektor- und
messungsspezifische
Kalibrierdaten  (siehe
Ordner).
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A.4.2 Programme zur Auswertung der Verschiebungsfelder

Tabelle A.11: Programme zur Auswertung der Verschiebungsfelder.
Ordner: ./Quelltexte/ Vektorfelder_Optisch.

Name Funktion Abhéngigkeiten
Vec_wrapper Einlesen der Vektorfelder und deren Spannungs- und
komplette Analyse Dehnungstensoren
(Rontgen), WPPM-

VectorMaster

vecfield_wrapper

vecfield-
_deconstructor
Xcorrection

side_pseudoelast

vec2strain_neo

Macroanalyse_neo

Einlesen der Vektorfelder, Korrek-
turen (S. [157) und Korrelation mit
Kraftdaten

Einlesen der Vektorfelder und Kor-

rekturen (S.

Zerlegung der Vektorfelder (siehe

s

Korrektur der Vektorfelder

Extrapolation des seitlichen Ver-
schiebungsfeldes zum Steg (siehe
s

Extraktion des Verschiebungsgradi-
enten im Stegzentrum

Berechnung von Dehnungen, Span-
nungen und Volumenénderung

Ergebnisse, VectorMas-
ter, Macroanalyse_neo

Vektorfelder
(DaVis),  Kraftdaten,
vecfield_wrapper

Vektorfelder  (DaVis),
vecfield_deconstructor,
Xcorrection,
side_pseudoelast,
vec2strain_neo

Vektorfelder

Zerlegung aus
vecfield_deconstructor
korrigierte Vektorfelder
korrigierte Vektorfelder

und Extrapolation zum
Steg

Spannungs- und
Dehnungstensoren
(Rontgen), Ergebnisse

aus VectorMaster
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A.4.3 Programme zur Auswertung der Réntgendaten

Tabelle A.12: Programme zur Durchfithrung der WPPM (siehe S. [169fF).
Ordner: ./Quelltext/ WPPM_und_Analyse/ WPPM.

Name

Funktion

Abhéngigkeiten

WPPM _ManagerSi

WPPMminimize-
_skewAbet

WholePattern-
_fTt_allin

data_comp-
ressor_A /B

Durchfithrung der automatisierten
Anpassung eines Datensatzes (Ex-
periment)

Anpassung eines einzelnen Diffrak-

togramms und teilweise Berechnung
des Vorfaktors

Berechnung eines Diffraktogramms
mittels WPPM

Komprimieren der Rohdaten

Rohdaten, WPPM-
minimize_skewAbet,
data_compressor_A /B

WholePattern_fft_allin,
Vorberechnete Modelle,
Rohdaten Diffrakto-
gramm

Vorberechnete Modelle,
Parameter aus WPPM-
minimize_skewAbet

Rohdaten

Tabelle A.13: Programme zur weiteren Analyse.
Ordner: ./Quelltext/ WPPM_und_Analyse/Tensor_Rekonstruktion
bzw. /Texturfit bzw. /Analyse_komplexe_Groessen.

Name

Funktion

Abhéngigkeiten

tensor_wrapper_neo

elasticity_wrapper

Texture_fit_3

texture_builder_3

Extraktion der Spannungs- und

Dehnungstensoren aus den Ergeb-
nissen der WPPM (S. [219)

Berechnung der mittleren -elasti-
schen Konstanten

Bestimmung der Texturkom-
ponenten  anhand  der

sitétsverteilung (S. [276fF)

Berechnung der Intensititsvertei-
lung aus den Texturkomponenten

Inten-

Ergebnisse aus der
WPPM-Anpassung,
Multiplizitdten mittlere

elastische Konstanten

Goldkonzentration
Intensitdten,  Winkel-
beziehungen,

texture_builder_3

Texturkomponenten,
Winkelbeziehungen
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Tabelle A.14: Programme zur weiteren Analyse (S. .
Ordner: ./Quelltext/WPPM _und_Analyse/Analys_komplexe_Groessen.

Name Funktion Abhéngigkeiten

richtungs- Analyse von Versetzungsdichte, FErgebnisse WPPM,

rekonstruktiondd  Stapelfehler- und Zwillingswahr- Winkelbeziehungen,
scheinlichkeit (S. [227) Gewichtungen, Verset-

zungskontrastfaktor

VersetzungsStat Erzeugung der Histogramme zur FErgebnis richtungs-
Versetzungsdichte (S. |336]) rekonstruktion3d

versetzungen- Berechnung der Gewichtung fiir die Versetzungskontrast-

_vorrechnung Vesetzungen faktoren

stapelre- Berechnung der Gewichtung fiir die Winkelbeziehungen

konstruktion- Stapelfehler und Zwillinge (S.

_vorberechnung

Tabelle A.15: Programme zur Entwicklung von Modellen in der WPPM (8. [L79fF).

./Quelltext/WPPM _und_Analyse/Vorberechnung_Modelle. WPPM-

Abhéngigkeiten

Ordner:
/Fehlpassung.
Name Funktion
stress_on_grain- Berechnung der  Histogramme
_wrapper_shape- zur Dehnung entlang hkl fir
change_damping Gaufl-verteilte  3d  Spannungs-
schwankungen

Mstrain-
_model_builder

Erstellen des Fehlpassungsmodells
fiir die WPPM aus den Dehnungs-
histogrammen

Kroener RTU _aligned,
stress_on_grain-
_statistics_shapechange-
_200damper

Dehnungshistogramme
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Tabelle A.16: Programme zur Entwicklung von Modellen in der WPPM (8. [187fF).
./Quelltext/WPPM_und_Analyse/Vorberechnung_Modelle WPPM-
/KG_Verzerrung.

Ordner:

Name Funktion Abhéngigkeiten
Spherestrain- Berechnung der Mikroverzerrung Vorberechnungen — an-
_columns durch die Korngrenzen fiir eine hand normierter Kugeln

brute_force_sphere-
_quick

brute_force_sphere-
_precalc

CL_get_coeff

Konrgrolenverteilung

Vorberechnungen zur Mikroverzer-
rung anhand normierter Kugeln

Verzerrung in normierten Kugeln

Erstellen des Modells fiir die

WPPM

Verzerrung in normier-
ten Kugeln

Ergebnisse aus Spheres-
train_columns

Tabelle A.17: Programme zur Entwicklung von Modellen in der WPPM (8. [199fF).
./Quelltext/WPPM_und_Analyse/Vorberechnung_Modelle_-WPPM-
/TDS_Berechnung.

Ordner:

Name Funktion Abhéngigkeiten
TDS1 gridsphere ~ Berechnung der thermodiffusen interatomare
Streuung 1. Ordnung Kraftkonstanten,

build_dynamic-
_matrix

TDS2

B_zone_scanray

build_TDS_model

Berechnung von Schwingungsfre-
quenz und Moden eines Phononen-
vektors

Berechnung der thermodiffusen
Streuung 2. Ordnung

Rasterung der Uberlappung von
echter und virtueller 1. BZ

Erstellen des Modells fiir die

WPPM

build_dynamic_matrix

interatomare Kraftkon-
stanten, Phononenvek-
tor

interatomare
Kraftkonstanten,
build_dynamic_matrix,
B_zone_scanray

Ergebnisse zur TDS 1.
und 2. Ordnung
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