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Influence of slip on the Plateau–Rayleigh instability
on a fibre
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The Plateau–Rayleigh instability of a liquid column underlies a variety of fascinating

phenomena that can be observed in everyday life. In contrast to the case of a free liquid

cylinder, describing the evolution of a liquid layer on a solid fibre requires consideration of the

solid–liquid interface. Here we revisit the Plateau–Rayleigh instability of a liquid coating a fibre

by varying the hydrodynamic boundary condition at the fibre–liquid interface, from no slip to

slip. Although the wavelength is not sensitive to the solid–liquid interface, we find that the

growth rate of the undulations strongly depends on the hydrodynamic boundary condition.

The experiments are in excellent agreement with a new thin-film theory incorporating slip,

thus providing an original, quantitative and robust tool to measure slip lengths.
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G
listening pearls of water on a spider’s web1 or the
breakup of a cylindrical jet of water into droplets are
familiar manifestations of the Plateau–Rayleigh instability

(PRI)2,3. By evolving into droplets, the surface area of the liquid
and consequently the surface energy are reduced. This instability
also acts for a liquid film coating a solid fibre4–12, a situation
where the flow boundary condition at the solid–liquid interface
provides additional complexity to the system. Although the
breakup of a homogeneous film into droplets on a fibre may be a
nuisance in coating technologies of, for example, wires and
optical fibres, this fundamental instability turns out to be very
useful: take for example water collection through fog
harvesting13,14, a biomimetic approach that is perfected in
nature by the spider’s web1. Hence, taking advantage of the PRI
on a fibre enables gaining physical insight into the solid–liquid
boundary condition. Indeed, understanding the breakdown of the
no-slip boundary condition15 is of major interest to the scientific
and industrial communities, as it has practical implications in
areas that involve small-scale fluid systems, such as lab-on-a-chip
devices, flows in porous media, as well as biological flows, to
name a few.

The classical case of the breakup of a laminar free-flowing
liquid stream is dependent on material properties and
geometry16. Although there are some studies of this instability
in geometries other than free cylindrical liquid flows17–23, the role
of the boundary condition at the solid–liquid interface on the
evolution of the PRI is less well understood24,25. It has been
shown that the appearance of a dewetting liquid rim undergoing
a Plateau–Rayleigh-type instability is influenced by the
hydrodynamic boundary condition at the solid–liquid
interface26; however, a general quantitative match between the
growth dynamics of the PRI in experiments and analytical theory
involving hydrodynamic slip has thus far not been achieved.

Characterization of slip boundary conditions at interfaces and
their controlling parameters has been actively investigated in the
literature27–31. The classical boundary condition assumes no slip
at the solid–liquid interface. That is, for simple shear flow in the x
direction along a solid interface placed at z¼ 0, the tangential
flow velocity, vx(z), vanishes at the solid–liquid interface:
vx(0)¼ 0. However, as already noted by Navier32, there is no
fundamental principle requiring vx(0)¼ 0 and one can also have
hydrodynamic slippage at this interface, as defined by the slip
length: b¼ [vx/qzvx]|z¼ 0, where b¼ 0 corresponds to the classical
no-slip case.

Here we explicitly address the effect of a varying boundary
condition, from no-slip to slip at the solid–liquid interface, on the
PRI of a viscous liquid layer on a solid fibre. We find that the
growth rate of the instability is strongly affected by the solid–
liquid interface, with a faster breakup into droplets for a slip
boundary condition compared with an equivalent sample with no
slip. In contrast, the wavelength l* of the fastest growing mode is
not sensitive to the solid–liquid interface. The linear stability
analysis of a newly developed thin-film equation incorporating
slip is in excellent agreement with our data. The theory is valid for
all Newtonian liquids and enables the precise determination
of the capillary velocity g/Z and most importantly of the slip
length b.

Results
The experimental approach. An entangled polystyrene (PS,
78 kgmol� 1) film with homogeneous thickness e0 (5–93 mm) is
coated onto a fibre with radius a (10–25 mm), resulting in a
PS-coated fibre with radius h0¼ aþ e0, as schematically shown
in Fig. 1a. Glass fibres provide a simple no-slip boundary
condition33. In contrast, a slip interface results from coating the

entangled PS film onto a glass fibre pre-coated with a nanometric
thin amorphous fluoropolymer (AF2400, 14±1 nm)34. The
fluoropolymer coating on glass was used, because it is
well established that PS, above a critical molecular weight
(McB35 kgmol� 1), exhibits significant hydrodynamic slip at
this solid–liquid interface34. Henceforth, we will refer to these as
the ‘no-slip’ and ‘slip’ fibres.

All samples were prepared and stored at room temperature,
well below the PS glass transition temperature (TgB100 �C),
thereby ensuring that there is no flow in the PS film before the
start of the experiment. Before each experiment, the PS-coated
fibre was measured with optical microscopy as shown in the
t¼ 0 image of Fig. 1b. To initiate the experiments, samples
were annealed in ambient atmosphere at 180 �C—well above
Tg—which causes the PRI to develop. The evolution of the surface
profile was recorded with optical microscopy. Figure 1b shows a
typical evolution for a PS film on a no-slip fibre.

Above Tg, the liquid PS film becomes unstable, which causes
variations in the local axisymmetric surface profile, h(x, t)¼
h0þ z(x, t), over the axial coordinate x and time t. The amplitude
z(x, t) of the undulations grows with time and finally results
in a droplet pattern displaying a uniform wavelength. By
measuring the spatial variation of z(x, t) in the initial
development and locating the maxima, the PRI wavelength l*
of each sample was determined (see Fig. 1a). Typically, four or
five wavelengths were averaged per sample. In addition, by
measuring the temporal change in radius of an individual bulge,
we gained information about the growth rate of the instability and
consequently the influence of the hydrodynamic boundary
condition.

The theoretical approach. The experimental findings can be
understood within the lubrication approximation, from a thin-
film model based on the Laplace pressure-driven Stokes equation.
We assume incompressible flow of a viscous Newtonian liquid
film of thickness varying from 5 to 93mm, which is well above the
film thickness where disjoining pressure plays a role (a few tens of
nanometres)35. Gravitational effects can be neglected, as all length
scales involved in the problem are well below the capillary length
lcC1.73mm. Finally, the velocities of the liquid films are small
(for example, the fastest observed rate of change in the amplitude
is B25 nm s� 1). Thus, the Reynolds and Weissenberg numbers
are orders of magnitude smaller than 1, and inertial and
viscoelastic effects can be ignored.

We non-dimensionalize the problem (see Fig. 1 for variable
definitions) through

H0 ¼
h0
a
;H ¼ h

a
;X ¼ x

a
;L� ¼ l�

a
;B ¼ b

a
;T ¼ g

Z
t
a
; ð1Þ

where the capillary velocity g/Z is the ratio of the liquid–air
surface tension to the viscosity of PS. By assuming volume
conservation, no stress at the liquid–air interface and the Navier
slip condition at the solid–liquid boundary, one obtains (see
Supplementary Methods) the governing equation for the
dimensionless profile H(X, T)

@THþ 1
H

H0 þH2H000

16
MðH;BÞ

� �0
¼ 0 ; ð2Þ

where

MðH;BÞ ¼ 4H2 logHþð4B� 3ÞH2 þ 4� 8Bþ 4B� 1
H2

; ð3Þ

and where the prime denotes the partial derivative with respect to
X. It is noteworthy that equation (2) is a composite equation in
the sense that we have kept a second-order lubrication term in the
pressure contribution: the axial curvature. It is the lowest order
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term counterbalancing the driving radial curvature and it is thus
crucial to obtain the actual threshold of the instability. The
dynamical aspect of the flow is however well described at the
lowest lubrication order. An interesting discussion on this matter
can be found in ref. 9.

Performing linear stability analysis, namely letting H(X, T)¼
H0þ e(T)eiQX, where e(T)oo1, yields an exponential growth of
the perturbation of the form e(T) peT/t(Q), where the rate
function is given by

1
tðQÞ ¼ Q2 1�H2

0Q
2

� �MðH0;BÞ
16H0

: ð4Þ

We define the fastest growing mode Q* corresponding to the
smallest time constant t*¼ t(Q*) and obtain Q*¼ 1/(H0O2).
Writing Q* in terms of the dimensionless wavelength leads to

L� ¼ 2p
ffiffiffi
2

p
H0 ; ð5Þ

which is similar to the classical PRI dominant wavelength for
inviscid jets with no solid core. We note that the correspondence
between Rayleigh’s result and ours is dependent on both the
assumption of Stokes flow and on the presence of a solid core in
our system.

The dimensionless growth rate of the fastest growing mode is
given by

1
t�

¼ aBþb ; ð6Þ

where B is the dimensionless slip length, defined in equation (1),
and where a and b are parameters that depend on geometry only

a ¼ 1
16H3

0
H0 �

1
H0

� �2

ð7aÞ

b ¼ 1
64H3

0
4H2

0 logH0 � 3H2
0 �

1
H2

0
þ 4

� �
: ð7bÞ

As one sees, the wavelength of the fastest growing mode
depends exclusively on the initial total radius, whereas the
corresponding growth rate is a linear function of the slip length. It
is worth noting that in the case of shear-thickening liquids, the
PRI should be significantly slowed down as a result of the
increasing viscosity associated with an increasing strain rate.

Conversely, a shear-thinning liquid is expected to accelerate the
rise of the instability. In the case of a viscoelastic material,
Maxwell-like rheological models36 can be implemented and may
reveal interesting physics beyond the scope of the present study.

The spatial evolution of the instability. Figure 2 displays the
wavelength l* of the fastest growing modes, measured on no-slip
and slip fibres, as a function of the initial total radius h0. As
expected from equation (5), the wavelength l* grows linearly with
increasing radius of the fibre–polymer system and is identical on
slip and no-slip fibres. This is consistent with experiments and a
theoretical framework for retracting liquid ridges on planar
substrates26. The spatial morphology of the instability at short
times is thus unaffected by the solid–liquid boundary condition.
Although it is clear from Fig. 2 that the wavelength is the same on
slip and no-slip fibres, there is a small systematic deviation from
the theory. This slight deviation could perhaps be related to the
lowest lubrication order of the present model9, but could also be
attributed to the experimental contribution of several modes and
the asymmetry of the rate function (see equation (4)) in the
vicinity of the fastest growing mode.
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Figure 1 | Plateau–Rayleigh instability on a fibre. (a) Schematic and (b) optical micrographs illustrating the PRI for a liquid PS film on a glass fibre.

At t¼0, the PS film on the no-slip fibre has a thickness e0¼ 13.2±1mm and the glass fibre radius is a¼9.6±1mm. The width of the optical images

is 560mm.
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Figure 2 | Influence of the geometry on the wavelength of the instability.

Wavelength of the fastest growing mode as a function of the total initial

radius (see Fig. 1a). The black dashed line represents equation (5). The

error bars are calculated from the error in the geometry and the inaccuracy

given by the wavelength measurement.
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The temporal evolution of the instability. We now turn
from the spatial morphology of the instability to the temporal
evolution. From the experimental images (see Fig. 1b), we extract
the maximal radius of an individual bulge as it develops, to obtain
the amplitude z as a function of time. The linear stability analysis
presented predicts a perturbation that grows exponentially with a
dimensionless growth rate 1/t* for the fastest growing mode (see
equation (6)). Figure 3 displays typical data for the logarithm of
the perturbation amplitude normalized by the radius of the fibre,
z/a, as a function of t, for both no-slip and slip fibres. The data for
both boundary conditions are consistent with the expected
exponential growth in the early regime. Thus, the initial slopes of
these curves provide reliable measurements of the growth rates.

The dimensionless growth rates 1/t* are shown in Fig. 4 for
both slip and no-slip fibres as a function of the dimensionless
initial total radius H0. We see that for both the slip and no-slip
boundary conditions, the growth rates show a similar geometry
dependence. The maxima for the slip and no-slip data can be
easily understood: a decreasing growth rate as H0 converges to 1
is due to the diminishing thickness of the liquid film, and thus to
the reduced mobility, whereas the decreasing growth rate for large
H0 is due to smaller curvatures and thus a smaller driving force of
the instability.

According to equation (6) with B¼ 0 (no slip), a maximum in
the growth rate is expected for H0¼ 1þ e0/a¼ 5.15. This
prediction is entirely consistent with the data. Thus, a coated
fibre of a given diameter is maximally unstable when the ratio of
the film thickness to the fibre radius is about e0/aB4, consistent
with an earlier theoretical study5. The capillary velocity is the
only adjustable parameter in the no-slip case. We obtained
g/Z¼ 294±43 mmmin� 1, which is in agreement with previous
data33 adjusted to the temperature used here, through the
Wiliams–Landel–Ferry equation37,38. For the slip case, there are
now two free parameters: the capillary velocity g/Z and the
dimensionless slip length B. If we take the value of the capillary
velocity to be that of the no-slip case, we are left with only one
true fitting parameter.

To quantify the slip length in our system, the growth rates
normalized by b are plotted as a function of a/(ba) (see inset of

Fig. 4, equation (6) and equations (7a,b)). As expected, the no-slip
data is consistent with the theoretical prediction of
1/t*¼ b for all geometries. In contrast, the ratio 1/(t*b) reveals
that the amplification due to slip on the rise of the instability is
more pronounced as a/(ba) increases. For the fibre radii used
here, large a/(ba) corresponds to small H0 (see equations (7a,b)).
The stronger influence of slip observed for smaller values of
H0 is due to a non-zero velocity of polymer molecules at the
solid–liquid interface31,34. For the smallest value of H0,
corresponding to e0/aB0.4, the slip-induced amplification
factor of the growth rate is as large as B4. On the contrary, in
thick polymer films, the impact of slip is diminished. From a best
linear fit to the slip data shown in the inset of Fig. 4, the slip
length is found to be b¼ 4.0±0.4 mm. Obtaining a slip length in
the range of micrometres is in accordance with former studies on
the dewetting of entangled polymer films from substrates with a
fluoropolymer coating34.

Having determined the value of b and knowing the fibre radii,
we obtain B for each of the experimental geometries. Based on the
theoretical model (equation (6)) corresponding growth rates can
be calculated and are shown to be in excellent agreement with the
experimental data (see Fig. 4). The dimensionless slip length
B¼ b/a ranges from 0.25 to 0.37 in our experiments. To guide the
eye, a typical curve calculated with B¼ 0.3 is shown in Fig. 4.
We see that for the fibres with the slip boundary condition, the
growth rate is larger than in the no-slip case for a given geometry
and the maximum of the growth rate 1/t* corresponds to a
smaller value of H0. As expected, a slippery surface facilitates a
higher mobility and hence a faster growth of the instability. This
enhanced mass transport also explains the horizontal shift of
the maximum of the growth rate: for a given geometry—and
thus curvature—the mobility of the slip case is increased in
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Figure 3 | Temporal growth of the perturbation. Semi-logarithmic plot of
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Figure 4 | Influence of slip on the growth rate. The inset shows the

dimensionless growth rate 1/t* normalized by the no-slip case b, as a

function of a/(ba), see equation (6) and equations (7a,b). The slip length b

is obtained from a best linear fit (dash-dotted) to the slip data. The error

bars are calculated from the error in the geometry and the inaccuracy given

by the growth rate measurement. The main curve shows the dimensionless

growth rate of the fastest growing mode on no-slip (glass) and slip

(AF2400) fibres, as a function of the dimensionless initial total radius
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with B¼0). Furthermore, the theoretical curve for slip (equation (6), with

B¼0.3) is plotted as a guide to the eye.
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comparison with no-slip case. Therefore, the maximum of the
growth rate is shifted to lower values of H0.

Discussion
We report on the PRI of a viscous liquid PS layer on a solid fibre
of radius a, when the boundary condition at the solid–liquid
interface is varied between the classical case of no-slip and the
relevant situation of slippage. The wavelength of the fastest
growing mode on a slip fibre shows a linear dependence on the
initial total polymer-fibre radius, h0¼ aþ e0, and is not affected
by the boundary condition, consistent with the lubrication theory
developed. For both slip and no-slip fibres, we observe an
exponential temporal growth of the instability at short times and
the respective growth rates show a qualitatively similar geometry
dependence. In the case of a slip fibre, the geometry correspond-
ing to the maximum of the growth rate 1/t* is shifted to a smaller
value of h0/a and the rise of the instability is faster due to the
added mobility at the solid–liquid interface. The slip-induced
amplification of the growth rate is significant in a parameter
range that is of paramount technological relevance. The linear
stability analysis of the thin-film equation developed here is in
excellent agreement with the data, valid for all Newtonian liquids,
and provides a robust measure of two fundamental quantities: the
capillary velocity g/Z and the slip length b.

Methods
Preparation of fibres. Glass fibres were prepared by pulling heated glass capillary
tubes to final radius in the range 10oao25 mm using a pipette puller (Narishige,
PN30). To prepare the slip boundary condition, the glass fibres were hydrophobized
by dip coating in a 0.5 wt% solution of AF2400 (Poly[4,5-difluoro-2,2-bis
(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene]) (Aldrich) in a perfluoro-
compound solvent (FC72t, Fisher Scientific), to form an amorphous
fluoropolymer layer (TgB240 �C). A dip-coating speed of 1mm s� 1 resulted in an
AF2400 layer with a thickness of 14±1 nm. The hydrophobized fibres were
annealed in a vacuum chamber at 80 �C for 90min to remove excess solvent.

Preparation of homogeneous PS films. To prepare homogeneous PS films,
a concentrated solution (35wt%) of atactic PS (Polymer Source Inc.) with a
molecular weight of 78 kgmol� 1 and low polydispersity (Mw/Mn¼ 1.05) was
dissolved in chloroform (Fisher Scientific). A droplet of the highly viscous polymer
solution was placed between two glass slides, forming a meniscus at the edge of the
glass slides. We note that the chloroform does not dissolve the underlying AF2400
coating on the slip fibres. A slip or no-slip fibre could then be placed in the middle
of the gap between the slides and pulled out of the droplet with a constant speed
using a motorized linear translation stage. By varying the pulling speed v0 in the
range 80ov0o150mm s� 1, we obtained film thicknesses that ranged from e0¼ 5
to 93mm after the solvent had evaporated.

Experimental setup. The as-prepared samples were placed into a heated sample
cell to initiate the PRI. With two B0.5-mm-thick spacers, the coated fibres were
suspended above a reflective Si wafer (to improve contrast) and placed on a
microscope hot stage (Linkam). A metal ring in direct contact with the hot stage
supported a glass cover over the sample and Si wafer (see Supplementary Fig. 1 and
Supplementary Methods), thereby ensuring good thermal contact and temperature
control to within 1 �C. The surface profiles were analysed from the optical
micrographs taken at various times using a custom-made edge detection software
written in MATLAB.
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