
Genome-wide analysis of DNA

methylation topology to understand cell

fate

Dissertation

zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultät

der Universität des Saarlandes

von
ABDUL RAHMAN SALHAB

Saarbrücken

2019



Tag des Kolloquiums: 29.05.2020

Dekan: Prof. Dr. Guido Kickelbick

Vorsitzender: Prof. Dr. Volkhard Helms

Berichterstatter: Prof. Dr. Jörn E. Walter

Prof. Dr. Tobias Marschall

Akad. Beisitzerin: Dr. Nicole Ludwig



ّوَقُل زبِّ شِدِىي عِلِنا   

 114ضوزة طه، آية                      

 

 حَياتِه طُولَ الَجهِلِ ذُلَّ تَجسَّعَ. ................ضاعَةّ  التَّعلُهِ مُسَّ يَرُقِ لَهِ وَمَنِ
 ( الكاهسة820 – غصة 767 )                                                                                                                    الإماو الشافعي 

 

 والشَّسَفِ العِصِّ بَيِتَ يَهِدوُ والَجهِلُ..................  ...لَه عِنادَ لا بَيِتاّ يَسِفَعُ العِلِهُ
 (، الكاهسة1932 – 1868)                                                                                                                   الشاعس أحمد شوقي 

 

 

 

 

 

And pray: My lord, increase me in knowledge  

                                                              – Quran, Chapter 20, Verse 114 

 

“Who do not slightly experience a hurdle of learning; will suffer from humiliation 

of ignorance throughout his life” 

 – Al-imam Al-Shafi„i (767, Gaza – 820, Cairo) 

 

“Knowledge builds up a house that has no mainstays; ignorance demolishes the 

house of honor and glory” 

                                       – The poet, Ahmed Shawqi (1868 – 1932, Cairo) 

 



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. Dr. Jörn Walter for the continuous support of my PhD study and research, his

guidance and encouragement. His support has never stopped since he accepted me

as master student in his lab, and later as PhD candidate. I am very much grateful

to him for introducing me into epigenetics field and for giving me the opportunity

to work closely and collaborate with great scientist from DEEP project. I should also

thank him for his support in different occasions outside academia.

I would like to thank the committee’s members for investing their time and effort in

reviewing my thesis and giving me the opportunity to present my work in front of

their groups.

My gratitude and deep appreciation to my mentor, Karl Nordström, who introduced

me to NGS data processing and analysis, and bash scripting. He helped me a lot to

shape my future career for many years ahead.

I would like to thank all co-authors and collaborators whom I worked with during my

PhD period. Special thanks to Dr. Julia K. Polansky-Biskup from whom I learnt a lot

about immune system, and a collaborative work with her represents one pillar of this

thesis. Also, a great thanks to Peter Ebert, from whom I learnt about Chip-seq data

processing and reproducibility in computational research.

I am very much grateful to Gilles Gasparoni and Pascal Giehr for reading my thesis

and providing me critical comments and feedback. I learnt a lot about molecular bi-

ology from both of you, many thanks. I am also thankful to Gilles for his kind help in

correcting the German version of the abstract.

Big thanks to Epigenetic group at Saarland university for the great time, the nice en-

vironment, and the continuous support. I should not forget the former member and

a friend, Pavlo Lutsik, with whom I shared the working space for almost three years,

getting direct support from him for methylation analysis with RnBeads.

I would like to thank Gilles, Annemarie, Kathrin, Anna and Pascal for asking me to

process internal and external data related to their projects. This helped me to de-

velop my skills in data processing and data integration, and enriched my knowledge

in biology.

I would like to thank Karl, Gilles and Annemarie with whom I shared the working

i



space and exciting discussions in different topics outside science. I would like to

thank everybody, who helped and supported me to improve my German language.

Particularly, Annemarie, Nicole, Pascal, Judith, Karl, Gilles and Nina.

I would like to thank my brother, Mohammad Salhab, who helped me to prepare the

cover picture.

I owemy deepest gratitude tomy family inside and outside Syria, particularlymy par-

ents, my sisters, my brother, my brothers in law and my mother in law, from whom

I derived my determination to pursue my PhD. Without their unconditional support

and love, this work would not have been possible.

Last but not least, I would like to thank my lovely wife, Heba, for her love, support,

passion to my work and her patience, especially during the writing phase of the the-

sis. She has always been supportive and provided the best conditions to finish my

PhD.

ii



Dedicated to:

My family
My uncle, Mohammad Salhab (†2017)

iii



Abstract

DNA methylation is an epignetic modification associated with gene regulation. It

has extensively been studied in the context of small regulatory regions. Yet, not so

much is known about large domains characterized by fuzzy methylation patterns,

termed Partially Methylated Domains (PMDs). The present thesis comprises PMD

analyses in various contexts and provides several new aspects to study DNA methy-

lation.

First, a comprehensive analysis of PMDs across a large cohort of WGBS samples

was performed, to identify structural and functional features associated with PMDs.

A newly developed approach, ChromH3M, was proposed for the analysis and integra-

tion of a large spectrum ofWGBS data sets. Second, PMDs were found to be indicators

of the cellular proliferation history and segmented loss of DNA methylation in PMDs

supports the sequential linear differentiation model of memory T-cells. Third, assess-

ment of genome-wide methylation changes in PMDs of Multiple Sclerosis-discordant

monozygotic co-twins did not show significant differences, but local changes (DMRs)

were identified.

Taken together, the outcomes of the presented studies shed light on a so far ne-

glected aspect of DNA methylation, that is PMDs, in different contexts; lineage spe-

cialization, differentiation, replication, disease, chromatin organization and gene ex-

pression.
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Kurzfassung

Die DNA-Methylierung ist eine epigenetische Modifikation, die funktionell mit der

Genregulation verbunden ist. Sie wurde bereits ausführlich im Kontext kleiner reg-

ulatorischer Regionen untersucht. Es ist jedoch noch nicht sehr viel bekannt über

große Domänen, welche erstmals in WGBS-Daten beschrieben wurden. Sie werden

als partiell methylierte Regionen (PMDs) bezeichnet und sind durch das Vorhanden-

sein variabler Methylierungsmuster charakterisiert. Die vorliegende Arbeit umfasst

PMD-Analysen in unterschiedlichen Kontexten und liefert verschiedene neue Aspekte

zur Untersuchung der DNA-Methylierung.

Zuerst wurde eine umfassende Analyse von PMDs in einer großen Kohorte von

WGBS-Proben durchgeführt, um strukturelle und funktionelle Merkmale zu iden-

tifizieren, die mit PMDs assoziert sind. Ein neu entwickelter Ansatz, ChromH3M,

wurde für die Analyse und Integration einer großen Kohorte von WGBS Datensätzen

angewandt. Zweitens wurde festgestellt, dass PMDs Indikatoren für die Zellprolif-

erationshistorie sind, und der zu beobachtende graduelle Verlust der globalen DNA-

Methylierung bei der Differenzierung von T-Gedächtniszellen unterstützt die Hypoth-

ese der sequenziellen linearen Differenzierung. Drittens zeigte die Bewertung der

genomweitenMethylierungsänderungen in PMDs vonMultiple Sklerose-diskordanten

monozygoten Zwillingen keine signifikanten Unterschiede, jedoch wurden lokale Än-

derungen (DMRs) identifiziert.

Insgesamt geben die Ergebnisse der vorgestellten Studien Aufschluss über einen

bislang eher vernachlässigten Aspekt der DNA-Methylierung, d.h. PMDs, in verschiede-

nen Zusammenhängen: der Festlegung der Zell-entwicklungsbahnen, der Zelldifferen-

zierung, der Replikation, die Krankheit, der Organisation des Chromatins, sowie der

Regulation der Genexpression.
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Chapter 1

Introduction

Preface

The definition of epigenetics has been redefined multiple times since the first time it

was coined by Conrad Waddington in early 1940s (reviewed in [Cavalli and Heard,

2019]). According to Riggs and Holliday, epigenetics refers to the study of the herita-

ble phenotype changes that do not entail alterations in the DNA sequence [Holliday,

1994]. These changes encompass DNA methylation and histone modifications which

control gene expression. Moreover, the higher order structure of the chromatin plays

a role in gene regulation by bringing loci far away from each other, in the linear

DNA, into proximity in space. Hence, joint efforts from different biological fields are

needed to better understand how epigenetic changes impact and regulate gene ex-

pression.

This chapter will guide you through a biological background of epigenetics and chro-

matin organization. Section 1.1 provides knowledge about the 3D chromatin archi-

tecture and themost used techniques tomap chromatin contacts (associated to the re-

sults of Chapter 2). Section 1.2 and Section 1.3 outline the two epigenetic marks; DNA

methylation and histone marks, and the current methods for charting these modifi-

cations (associated to Chapter 2, Chapter 3 and Chapter 4). Section 1.4 introduces an

international effort to decipher high quality reference epigenomes of different pri-

mary human cell types. Section 1.5 and Section 1.6 introduce the goal of this thesis

and outline the results of three studies.

1.1 Chromatin Organization

Chromatin is a complex of DNA and proteins in eukaryotic cells and it is com-

pacted in such a way that 2m of DNA fits in a 10μm-sized nucleus [Nuebler et al.,

2018]. This is guaranteed through the hierarchy of the 3D genome (reviewed in [Gib-

cus and Dekker, 2013]), where the genome is organized at different scales (Figure 1.1);

(i) small scale where the DNA is wrapped around a histone octamer to form a nucle-

1



CHAPTER 1. INTRODUCTION

osome (see Section 1.1.2), (ii) intermediate scale‡ which includes (a) loops that bring

two (or more) loci far away from each other into proximity to modulate gene tran-

scription, (b) Topologically Associating Domains (TADs) [Dixon et al., 2012, Nora et al.,

2012, Sexton et al., 2012] which are domains, highly enriched by intra-chromosomal

interactions, and (c) transcriptionally active compartments (A compartments) and

transcriptionally inactive compartments (B compartments) as defined by Hi-C exper-

iments [Lieberman-Aiden et al., 2009]. These domains were found to coincide with

“metaTAD” tree (hierarchy of domains-within-domains [Fraser et al., 2015], (iii) fi-

nally, the largest scale comprises chromosomal territories [Cremer and Cremer, 2001,

Manuelidis, 1985], which are made up by A- and B- compartments where neighbor-

ing chromosomes interweave. The stability of these different hierarchical structures

is different within cells; the larger the structures, the more stable they are [Gibcus

and Dekker, 2013].

Therefore, a better understanding how the genome operates and how genes are regu-

lated requires to study the 3D genome organization and integration of this knowledge

with information encoded in the linear genome. An overview of such technologies to

study the higher-order chromatin structure is presented in the next section.

Figure 1.1: DNA packaging into chromatin. DNA is compacted in a hierarchical manner

forming nucleosomes by wrapping DNA around ‘core’ histones. On a larger scale, chromatin

loops are formed to bring loci into proximity. TADs are then formed with lengths ∼ 10kb -
few Mb. Multiple TADs make up active (A) and inactive (B) compartments which compose

chromosome territories at a larger scale (∼ hundreds of Mb). (From [Hansen et al., 2018], see
Table B.1 for the license.)

‡
This thesis focuses on studying DNA methylation at this scale. However, the nomenclature “large

scale” is used within this work as it contrasts studying DNAmethylation at smaller scale, e.g., regulatory

regions

2



CHAPTER 1. INTRODUCTION

1.1.1 Methods to study the 3D genome

Experimental methods

During the past decade new technologies (3C-based methods [Dekker et al., 2002])

have emerged to study the nuclear structure and three-dimensional organization of

the genome, allowing high-throughput mapping of DNA to DNA contacts across dif-

ferent genomic regions and chromosomes (reviewed in [Pombo and Dillon, 2015]).

These technologies compromise different flavours of 3C technology; Capturing Chro-

mosome Conformation (3C) [Dekker et al., 2002], chromosome conformation capture-

on-chip (4C) [Simonis et al., 2006], carbon-copy chromosome conformation capture

(5C) [Dostie et al., 2006], Hi-C [Dixon et al., 2012, Lieberman-Aiden et al., 2009, Sex-

ton et al., 2012] (which is relevant to this work, see Chapter 2), genome conforma-

tion capture (GCC) [Rodley et al., 2009], tethered conformation capture (TCC) [Kalhor

et al., 2012], multiplexed 3C sequencing (3C-seq) [Stadhouders et al., 2013], capture-

C [Hughes et al., 2014] and targeted chromatin capture (T2C) [Kolovos et al., 2014].

All these methods engage crosslinking and proximity based ligation of close-by re-

gions, DNA fragmentation by restriction enzyme, followed by quantification of lig-

ated products that are explained as chromatin contacts [Pombo and Dillon, 2015].

Despite the wealth of information that 3C-based methods has revealed (loops, TADs,

A and B compartments), these methodologies have some limitations due to digestion

and ligation principle; like GC-biases. They are inadequate to quantify simultane-

ous contacts between multiple chromatin regions, and they do not provide informa-

tion about chromatin associations with the nuclear periphery. A new genome-wide

ligation-free method, Genome Architecture Mapping (GAM), was introduced [Beagrie

et al., 2017], which combines ultra-thin cryosectioning with laser microdissection and

DNA sequencing. TSA-Seq is an immunocytochemistry method to study the cytologi-

cal distance of genomic loci relative to a particular nuclear compartment [Chen et al.,

2018]. Other researchers approached the same problem using imaging technologies

utilizing super-resolution microscopes to visualize loci and sub-nuclear structures in-

side (living) cells [Chen et al., 2013, Hess et al., 2006, Nir et al., 2018].

As it is mentioned before there are many methods to study the higher-order chro-

matin structure and each has its own advantages and limitations. To harmonize

the work and foster the efforts of the experts in the 3D genome field, the 4D Nucle-

ome project was emerged [Dekker et al., 2017], which aims to better understand the

three-dimensional organization of the nucleus in space and time (the 4th dimension)

through developing standardized experimental and computational methods.

3



CHAPTER 1. INTRODUCTION

Hi-C for mapping chromatin interactions

Hi-C is a genome-widemethod to study long-range interactions by pairing proximity-

based ligation withmassively parallel sequencing [Lieberman-Aiden et al., 2009]. The

major steps of this method can be summarized as follow (Figure 1.2):

1. cells are cross-linked with formaldehyde

2. DNA is digested with restriction enzyme like DpnII

3. ends are filled with biotin and ligated

4. DNA is purified and sheared

5. fragments with biotin are pulled down by streptavidin beads and followed by

high-throughput sequencing

Figure 1.2: Hi-C protocol. DNA cross-linking; DNA digestionwith a restriction enzyme; filling

the ends with biotin; ends ligation; DNA purification and shearing; biotinylated junctions

(which represent fragments that were originally in close spatial proximity) are sequenced.

(From [Lieberman-Aiden et al., 2009]. Reprinted with permission from AAAS, see Table B.1

for license)

Hi-C data analysis

Although there are many different bioinformatic tools available to process Hi-C

data, most of them share the main steps: mapping paired-end reads to the reference

genome (separately) to get the distal interacting tags, pairing to get the paired-end

tags (PETs), filtering invalid PETs (singletons or randomly pulled down fragments),

binning thewhole genome (withmultiple resolutions) to count interactions frequency

between genomic regions, normalization to account for biases in Hi-C library, down-

stream analysis such as chromatin loop detection, TADs and A/B compartments call-

ing. The interaction frequencies are usually visualized as heatmaps [Forcato et al.,

4



CHAPTER 1. INTRODUCTION

2017, Han and Wei, 2017].

The Hi-C data used in Chapter 2 was processed and visualized using HiCExplorer

[Ramírez et al., 2018, Wolff et al., 2018].

1.1.2 Nucleosome

Nucleosome is the basic building unit of chromatin and consists of 146 base pair

of DNA wrapped around an octamer of histone proteins (two molecules of each ‘core’

histone H2A, H2B, H3 and H4) [Wolffe, 1998] (Figure 1.3). H1 histone enhances this

structure and binds to the “linker DNA” region between nucleosomes, helping to sta-

bilize the chromatin higher-order structure [Berezney and Jeon, 1995]. Histones have

tails which can be subject to post translationalmodifications (PTM) (or histonemarks)

like methylation, acetylation, phosphorylation and ubiquitination (Figure 1.3) which

can influence chromatin compaction, gene transcription and expression. More de-

tails about PTM will be given in the next section.

1.2 Histone Modifications

Histone can be modified, removed or reprogrammed by different groups of en-

zymes which leads to opening or closing the chromatin. While ‘writers’ (establish-

ing enzymes) deposit histone marks, ‘erasers’ (de-modifying enzymes) remove them.

For instance, acetylation of lysines is dynamic and governed by two enzyme families

working in antagonistic manner. The ‘writer’ histone acetyltransferases (HATs) trans-

fer acetyl-groups from Acetyl-Co-A to lysine facilitating the opening of the chromatin

by reducing the DNA-histone contacts, but the ‘eraser’ histone deacetylases (HDACs)

reverse the lysine acetylation. ‘readers’ which are usually part of a large complex

bind to histone modifications to apply downstream functions [Strahl and Allis, 2000].

More than one hundred histone modifications have been reported with their func-

tional role [Khare et al., 2011, Kouzarides, 2007] (Figure 1.3 shows some of them).

The most two studied marks are methylation and acytelation of lysines. H3K4me3 is

found to be associated with promoters of active genes [Barski et al., 2007, Bernstein

et al., 2005, Santos-Rosa et al., 2002, Strahl et al., 1999] while H3K36me3 is found to

be enriched in the gene bodies and associated with active transcription [Bannister

et al., 2005]. H3K4me1 is considered as an enhancer mark, while H3K27ac as an ac-

tive enhancer [Creyghton et al., 2010] and active promoter mark [Wang et al., 2008].

Heterochromatic regions are usually enriched by H3K9me3 [Barski et al., 2007, Hall

et al., 2002, Lippman et al., 2004, Martens et al., 2005] and H3K27me3 [Barski et al.,

2007, Litt et al., 2001, Ringrose and Paro, 2004]. However, it is not always easy and

trivial to assign a functional role to a certain histone mark to describe the chromatin

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Histone tail modification sites. Depiction of a nucleosome, the basic building

unit of the chromatin. DNA (in green) is wrapped around an octamer of histone proteins. The

tails of these histones may carry different post translational modifications. Active marks usu-

ally include lysine (K) acetylation (blue flag, such as H3K27ac), arginine (R) methylation (red

flag) and some lysine methylation, such as H3K4me1, H3K4me3 and H3K36me3. Repressive

marks include H3K9me3 and H3K27me3 (From [Salhab, 2014]).

state of a genomic region. In some cases, a chromatin state is characterized by co-

occurrence of two (or more) antagonistic marks, such as “bivalent/poised” promoter

or enhancer. The term “bivalent” domains was introduced by Bernstein et al. to de-

scribe the poised state of promoters of important developmental genes in ES cells that

keep them ‘on-hold’ until they receive a suitable stimulus and become active rapidly

[Bernstein et al., 2006]. The TSSs of these genes were occupied simultaneously by ac-

tive (H3K4me3) and inactive (H3K27me3) marks. Upon differentiation, some of the

bivalent genes became silent and lost H3K4me3 but preserved H3K27me3, while the

expressed genes lost H3K27me3. Interestingly, the different histonemarks exhibit dif-

ferent localization in the genome. The three active marks H3K4me1, H3K4me3 and

H3K27ac present in the genome as sharp or ‘narrow’ marks, whereas the heterochro-

matic marks H3K27me3 and H3K9me3 distribute across ‘broad’ domains. Another

active mark, H3K36me3 can also be seen as a ‘broad’ mark. Different techniques for

genome-wide profiling for histone marks are discussed in the next section.
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CHAPTER 1. INTRODUCTION

1.2.1 Genome-wide profiling of protein–DNA interactions

Chromatin Immunoprecipitation Sequencing (ChIP-Seq) is themost commonly uti-

lized method for genome-wide profiling of histone marks [Barski et al., 2007, Johnson

et al., 2007]. First, proteins are cross-linked with their bound DNA using formalde-

hyde, then the chromatin is sheared to fragment the DNA. Next, a specific antibody

is used to capture the protein of interest (histone modification) and the associated

DNA is isolated. Finally, after reverse cross-links, DNA fragments are purified, am-

plified (PCR) and sequenced. Although this method has some limitations, it is still

widely accepted and used by the community (see Chapter 1.4). New methods have

been developed to cope with the drawbacks of ChIP-Seq. For instance, DamID [van

Steensel et al., 2001] and ChEC-seq [Zentner et al., 2015] do not include immunopre-

cipitation or crosslinking, that can lead to epitop masking, but rather they are de-

pendent on DNA-modifying enzymes. CUT&RUN [Skene et al., 2018] allows to work

with low cell-numbers (100 cells) making it suitable to study rare cell types. Addi-

tionally, it has lower background compared to ChIP-Seq and could be done in one

day. CUT&TAG is an improvement of CUT&RUN to allow single cell application [Kaya-

Okur et al., 2019]. The resolution of ChIP-Seq is limited by sonication, but methods

like ChIP-exo [Rhee and Pugh, 2011], high-resolution X-ChIP [Skene et al., 2014] and

ChIP-nexus [He et al., 2015] can improve its resolution by adding nuclease digestion

steps. To enhance the scalability and universality of ChIP-Seq, a barcoding system

RELACS was implemented allowing to profile hundreds of ChIP-Seq samples in three

days [Arrigoni et al., 2018].

1.2.2 ChIP-Seq data analysis

The usual workflow for processing ChIP-Seq starts with filtering step for low qual-

ity reads and sequencing adaptors, followed by mapping the reads to a reference

genome and finally peak calling to predict protein-DNA interaction sites. There are

some technical issues should be taken into account when processing ChIP-Seq data:

• peak calling is a very hot topic and more attention should be brought to this
issue. As it is mentioned earlier, histone marks have different localization and

distribution across the genome. Hence, the proposed algorithms to call ‘nar-

row’ peaks may not be appropriate to call ‘broad’ domains. MACS is widely used

tool for calling peaks from ChIP-Seq data [Zhang et al., 2008]. However, other

tools have been implemented to call domains of broad histone marks, like his-

toneHMM [Heinig et al., 2015] and RSEG [Song and Smith, 2011].

• It was found that some genomic regions show artificially high signal often found
at centromeres, telomeres and satellite repeats. Such regions are important to

7
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be removed when computing Pearson correlation between genome-wide tracks.

These regions were termed ‘Blacklist’ and was generated by ENCODE consor-

tium [ENCODE et al., 2012].

ChIP-Seq samples used within this cumulative work (Chapter 2 and Chapter 3) were

processed with DEEP pipeline (http://doi.org/10.17617/1.2W) [Ebert et al., 2015].

The above mentioned methods for peaks/domains calling are capable of analyzing

each sample separately. To get a comprehensive picture of chromatin states when

profiling multiple, histone marks segmentation tools are available to tackle this issue

by integrating the different samples in a multivariate hidden markov model (HMM)

(e.g., ChromHMM [Ernst and Kellis, 2012] and EpiCSeg [Mammana and Chung, 2015]).

The output of such tools will be different states representing distinct signatures of hi-

stone marks (ChromHMM 18-state track in Figure 1.4a and the left panel in Figure

1.4b). The next step will be to interpret these states and assign meaningful biological

labels for each state. Usually, this is done through computing overlap and neighbor-

hood enrichment of each state across functional annotations (Figure 1.4b).

1.3 DNA Methylation

The process of adding a methyl group to DNAmolecule is called DNAmethylation.

It can happen at the cytosine or adenine residues. The most common form of DNA

methylation is methylation of cytosine at the fifth carbon atom of the pyrimidine ring

which is termed ‘5-methylcytosine (5mC)‡’. In 1975, 5mC in the context of CpG dinu-

cleotides has been proposed as an epigenetic mark in vertebrates [Holliday and Pugh,

1975, Riggs, 1975] and it is common in eukaryotes and prokaryotes, although its rate

is different across species. It is very abundant in mammalian genomes and occurs

predominantly in the CpG context where the methylation, generally, are high except

for short CpG dense regions (∼ 1 kb length), so called CpG islands (CGI), which of-
ten are devoid for methylation [Feng et al., 2010, Zemach et al., 2010]. The majority

of CGI are located at gene promoters. Additionally, CpG-poor regions were found to

be lowly methylated (termed as LMRs; less than 50% methylated and contain less

than 30 CpGs) and associated with distal regulatory elements and occupied by cell-

type-specific transcription factors [Burger et al., 2013, Stadler et al., 2011]. Numerous

studies clarified the impact of 5mC on gene control in different regulatory contexts

(reviewed in [Jones, 2012]). For instance, the methylation of a promoter region is

mainly associated to the silencing of the respective gene, but the high methylation

in gene body may trigger the transcription elongation if the respective promoter is

‡
There are different derivatives of 5mC (see 1.3.1, Active demethylation). However, the focus of this

thesis is only on 5mC in CpG context.
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unmethylated and it may even influence splicing [Jones, 2012]. Moreover, methyla-

tion in repetitive regions like centromeres and telomeres is important for genome

stability and integrity through the suppression of the expression of transposable ele-

ments [Moarefi and Chédin, 2011]. More details about the role of DNAmethylation in

(a)

(b)

Figure 1.4: ChromHMM output example. (a) Tracks of the 6 core histone marks of DEEP

effector memory T cell (Tmem) with chromatin states underneath generated by 18-state

ChromHMMmodel (trained on 98 epigenome from ROADMAP consortium). The green tracks

show three active ’narrow’ marks, the ‘broad’ active histone mark is shown in purple and the

two repressivemarks are shown in dark red. Each color in ChromHMM18-state segmentation

represent distinct state named in (b). (b) The left panel represent a heatmap of the emission

parameters where the rows correspond to different states and the columns correspond to

different marks. The darker the blue the more the propability of observing the mark in the

state. Next to the left panel is a heatmap of overlap fold enrichment in TEM across different

genomic annotations. The next panel shows the fold enrichment for each state for each 200

bp bin within 4kb around the TSSs. The right panel shows biological labels assigned to each

state. Panel (a) was prepared using pyGenomeTracks package [Ramírez et al., 2018]

9



CHAPTER 1. INTRODUCTION

different functional annotations are presented in section 1.3.2

1.3.1 Establishment, maintenance and erasing of DNA methylation

In mammals, DNA methylation patterns are established during the early embryo

development by de novomethylating enzymes called Dnmt3a and Dnmt3b and can be
maintained during cell division by Dnmt1 allowing these patterns to be transmitted

through cell generations [Allis et al., 2015]. Nevertheless, DNA methylation patterns

are not permanent and changes can occur as a physiological response to environmen-

tal changes or can be associated with pathological processes. One mechanism that

can remove DNAmethylation marks is “active demethylation” in which DNA hydrox-

ylases (TET proteins) are involved. Another mechanism “passive demethylation” is

dependent on inhibition/loss of maintenance methyltransferase, Dnmt1, during DNA

replication (see below and Figure 1.5) [Allis et al., 2015, p. 424].

DNA demethylation can happen genome wide or locally. After fertilization both ma-

ternal and paternal genomes undergo a massive genome wide loss of methylation

throughout different proposed mechanisms. In the paternal genome, methylation is

directly lost after fertilization and before the start of DNA replication, suggesting an

active mechanism [Mayer et al., 2000, Oswald et al., 2000], whereas in the maternal

genome the methylation is lost after consecutive cell divisions, suggesting a passive

replication-dependent mechanism [Mayer et al., 2000]. Global DNA demethylation

can also happen in primordial germ cells (PGCs) [Hajkova et al., 2002, Morgan et al.,

2005]. On the other hand, gene-specific demethylation occurs during lineage-specific

differentiation [Ji et al., 2010].

Passive demethylation‡

Passive demethylation (Figure 1.5) is triggered by cell division after successive

rounds of DNA replication due to lack of Dnmt1 which is known to be responsible for

maintenance methylation by recognizing hemimethylated CpG sites (CpG that is only

methylated on one strand) and methylating the cytosine on the newly synthesized

strand. In addition, it has been reported that Dnmt3a and Dnmt3b contribute to the

maintenance of DNA methylation patterns [Chen et al., 2018, Liang et al., 2002].

Active demethylation‡

Active demethylation is mediated by TET proteins that can oxidize iteratively the

5mC into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine

(5caC). These 5mC derivatives can be reversed into unmodified C by different mech-

‡
This section is based on the review by [Wu and Zhang, 2017]
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Figure 1.5: DNA demethylation pathways. Passive demethylation of 5mC (in purple) occurs

as a result of DNA replication coupled with absence/block of Dnmt1. Active demethylation

is mediated by TET enzymes that can oxidize 5mC into 5hmC, 5fC and 5caC. These oxidized

forms can be reverted into unmodified C either through replication-dependent pathway (in

red) or TDG+BER pathway (in green).

anisms (reviewed in [Bochtler et al., 2017, Wu and Zhang, 2014, 2010]). But the most

accepted models are (Figure 1.5):

• TDG-BER pathway: through excision of 5fC/5caC by glycosylases such as TDG
coupled with base excision repair (BER) to generate C [He et al., 2011, Maiti and

Drohat, 2011, Weber et al., 2016]. This model is DNA replication-independent

and is known as active modification-active removal (AM-AR) [Kohli and Zhang,

2013].

• Replication-dependent dilution of oxidized 5mC: this model is known as ac-
tivemodification-passive dilution (AM-PD) [Kohli and Zhang, 2013]. During DNA

replication hemi-modified CpG dyads are created by incorporation of unmodi-

fied cytosine in the newly synthesized strand. UHRF1 recognizes 5mC:C dyad

and recruits Dnmt1 to the hemi-methylated cytosines. Several in vitro studies
showed that Dnmt1 is much less efficient at 5hmC:C, 5fC:C and 5caC:C dyads

than at a 5mC:C dyad [Hashimoto et al., 2012, Ji et al., 2014, Otani et al., 2013]

and hence after successive cell divisions, the oxidative forms of 5mC become

demethylated.
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1.3.2 DNA methylation in different genomic contexts

Methylation at transcription start sites

CGIs in somatic cells remain unmethylated and usually promoters of active genes

are characterized by nucleosome depleted regions (NDRs) at the TSS, and these NDRs

are usually enriched by H3K4me3 [Kelly et al., 2010]. Repression of CGI promot-

ers can happen in different ways like i) repression mediated by polycomb proteins

(H3K27me3) or ii) repression mediated by methylation of CGIs. So far it is not clear

whether the silencing or the methylation comes first. [Lock et al., 1987] showed that

methylation acts as a ‘lock’ to keep the previously silenced state of X-linked genes.

Moreover, CGI promoters of mediated polycomb silenced genes are more likely to

gain methylation in cancer cells. This suggests that methylation follows silencing,

however the current data are not enough to make a strong statement (reviewed in

[Jones, 2012]).

Methylation at enhancers

Enhancers are key regulatory elements that control gene expression in a tissue-

specific manner. However, there is no clear definition for these elements, they are

usually defined as genomic regions demarcated by H3K4me1 histone mark. In DNA

methylation context they are linked to ‘low methylated regions (LMRs)’ which are

CpG-poor regions (less than 30 CpGs) that have average methylation levels below 50%

[Burger et al., 2013]. Enhancers have been linked to deferentially methylated regions

(DMRs) of differentiation specific genes when studying two closely related T cell pop-

ulations [Schmidl et al., 2009].

Methylation at gene bodies

Long time ago gene bodymethylation was linked to gene transcription [Wolf et al.,

1984] and a positive relationship between gene body methylation and active tran-

scription has been confirmed on the active X chromosome [Hellman and Chess, 2007].

Moreover, gene body CGIs are highly methylated and do not prevent transcription

elongation. One can conclude that the presence of 5mC regulates the transcription,

and it is very much dependent on the genomic context of this mark. It was shown

that exons are highly methylated compared to introns and there are transitions in

DNA methylation level at the exon-intron boundaries, which suggests a role for DNA

methylation in splice variance regulations [Laurent et al., 2010].
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Partially methylated domains

While DNA methylation has been extensively studied in the context of small reg-

ulatory regions like CpG-islands [Meissner et al., 2008], CpG shores [Irizarry et al.,

2009], insulators [Bell and Felsenfeld, 2000, Shukla et al., 2011], promoters and en-

hancers [Burger et al., 2013, Stadler et al., 2011], not so much is known about large

scale DNA methylation landscape and its impact on gene regulation and genome or-

ganization. With the first published whole genome bisulfite sequencing (WGBS) data

set in 2009, a new term has been introduced, partially methylated domains (PMDs),

referring into long genomic regions (mean length ∼ 150kb) characterized by fuzzy
methylation patterns [Lister et al., 2009] (Figure 1.6). They were initially found in fi-

broblast cell line IMR90 but not in human embryonic stem cells H1. Since then PMDs

have not gotten a great attention except for few isolated studies limited to cultured

(cancer) cell lines such as medulloblastoma [Hovestadt et al., 2014], adipocyte tissue

[Lister et al., 2011], SH-SY5Y neuronal cells [Schroeder et al., 2011], and human can-

cers [Berman et al., 2012, Hansen et al., 2011, Hon et al., 2012, Timp et al., 2014].

Moreover, some of these studies are based on 450K arrays data which only cover

around 2% of CpGs in human. Schroeder et al. reported for the first time PMDs in a

non-cancer primary human placenta tissue [Schroeder et al., 2013].

PMD characterizations and functions PMDs have been reported as long genomic

regions that can cover up to 40% of the genome [Lister et al., 2009, 2011] and were

characterized with highly disordered methylation levels. Later, it has been shown

that PMDs are enriched by repressive histone marks H3K27me and H3K9me3, and

are gene-poor regions and encompass lowly expressed and silenced genes (Figure 1.6)

[Hon et al., 2012, Hovestadt et al., 2014], suggesting PMDs as marks of transcriptional

repression. Moreover, they tend to be correlated with late replication timing [Aran

et al., 2010] and nuclear lamina-associated regions [Berman et al., 2012].

1.3.3 DNA methylation detection

Several technologies have been developed to map 5mC levels on a genome-wide

scale or in a locus-specific manner. These methods can be classified into three main

groups (reviewed in [Yong et al., 2016]); i) Restriction enzyme-based methods in

which a restriction enzyme has a preference to cut at certain sequence but it is sensi-

tive to the DNAmethylation state. e.g., the comprehensive high-throughput arrays for

relative methylation (CHARM) method utilizes McrBC enzyme to fragment DNA and

then uses array hybridization [Irizarry et al., 2008]. The method is quantitative and

it has low cost allowing to profile large number of samples; ii) Affinity enrichment-

based methods which use either methyl-CpG-binding domain (MBD) proteins or an-
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Figure 1.6: Partially methylated domains (PMDs). A snapshot of ∼ 600Kb of chr2 show-
ing tracks of methylation and detected PMDs with corresponding three broad histone marks

of Tmem cells (same sample of Figure 1.4a). The methylation values represented as blue

bars which have values between 0 (unmethylated) and 100 (fully methylated). Below the

methylation track is the detected PMDs by MethylSeekR tool [Burger et al., 2013]. PMDs en-

riched by heterochromatic marks H3K27me3 and H3K9me3 but depleted for the active mark

H3K36me3. This figure was prepared using pyGenomeTracks package [Ramírez et al., 2018]

tibodies specific for 5mC to immunoprecipitate DNA with methylated CpG sites (like

MeDIP). For the latter, DNA fractions can be then evaluated by arrays (MeDIP-chip)

[Weng et al., 2009] or high-throughput sequencing (MeDIP-seq) [Zhao et al., 2014]; iii)

Bisulfite conversion-basedmethodswhich is the most reliable method to test all cy-

tosines in the genome. It involves sodium bisulfite treatment to modify the unmethy-

lated cytosine into uracil (and during PCR, it is translated into thymine), whereas the

methylated cytosines remain protected [Frommer et al., 1992]. Suchmethods provide

single-base resolution and can be combined with array or high-throughput sequenc-

ing (WGBS) to study DNA methylation genome wide.

A benchmarking study showed that different technologies (MeDIP-seq, MethylCap-

seq, RRBS and Infinium HumanMethylation27 array) measure DNA methylation ac-

curately but they vary in the number of covered CpGs, sequencing depth and hence

the cost [Bock et al., 2010]. Additionally, they differ in the number of detected DMRs.

This can be related to the assay specific limitations, e.g., CpG-poor regions are difficult

to be caught by MeDIP-seq and RRBS.

1.3.3.1 Array methods

These methods are based on hybridization of the converted DNA (through bisul-

fite treatment) to an arraywhich have probes to discriminate between themethylated

and unmethylated Cs. The most popular array is Illumina’s Infinium HumanMethy-

lation450 BeadChip (HM450K) which has almsot 450k probes covering mostly CpG

islands, shores and shelves. The most recent version of this array is the Infinium

MethylationEPIC BeadChip which covers >90% of 450k sites in addition to CpG sites

in enhancers defined by ENCODE [ENCODE et al., 2012] and FANTOM consortia [For-

rest et al., 2014]. Many cancer studies use this method to study DNA methylation on
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a genome wide level.

1.3.3.2 Whole genome bisulfite sequencing (WGBS)

The general WGBS protocol consists of the following main steps: shearing the ge-

nomic DNA into fragments which are then end-repaired, followed by adding an ade-

nine overhang (A-tailing) to the 3′ end, and ligation of the methylated adaptors into

the fragments, which are then size-selected and bisulfite treated. Products are puri-

fied and amplified by PCR (Figure 1.7) and finally the resulting library is sequenced

[Lister et al., 2009]. It should be noted that bisulfite treatment is a harsh treatment

and lots of the starting material is lost, so it is recommended to start with a high

amount of DNA to avoid over amplification. Additionally, bisulfite treatment can not

distinguish between 5mC and 5hmC. On the other hand, WGBS measures almost all

Cs in the genome allowing to study DNA methylation not only in CpG context but

also in non CpG context. Moreover, WGBS allows to measure DNA methylation at

CpG-poor regions which are hardly detectable by other methods. WGBS of IMR90 re-

vealed long regions that compose one third of the genome, with average methylation

levels less than 70%, termed PMDs (section 1.3.2) [Lister et al., 2009]. Although this

method became a gold standard to study DNA methylation in many epigenomic con-

sortia such as Roadmap, ENCODE, IHEC, Blueprint and DEEP (section 1.4), it remains

the most expensive technique. To reduce the cost of WGBS, Meissner et al. devel-

oped a method called reduced representation bisulfite sequencing (RRBS) [Meissner

et al., 2008]. This method is cost-effective in comparison to WGBS because only a

fraction of the genome is sequenced (1-3% of the mammalian genome) which cover

CpG-rich regions in close proximity to the restriction enzyme’s recognition sequence

(in this case MspI enzyme). A combination of different restriction enzymes (like Alu

and HaeIII) can be used to increase the number of covered CGs but this will increase

the sequencing cost as well.

1.3.4 WGBS data analysis

As it is mentioned in section 1.3.3 the bisulfite treatment involves C to T conver-

sion. Hence, the quantification of methylated Cs will be done by identifying C-to-T

conversions in the aligned reads and then calculating number of Cs divided by the

sum of number of Cs and Ts for each cytosine in the genome.

The general workflow for processingWGBS data starts by trimming sequencing adap-

tors followed by the mapping the sequencing reads into the genome, then methyla-

tion calling for each CpG, and finally ends up with quality control using different

measurements. The alignment step is not so trivial for many reasons; i) depletion

of cytosines, due to the bisulfite treatment, reduces the sequence complexity of the
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Figure 1.7: General scheme of bisulfite treatment outcome. Bisulfite treatment of DNA

converts cytosine residues into uracil and then into thymine during PCR amplification,

whereas methylated cytosine residues remain unmodified. PCR amplification of bisulfite con-

verted DNA during WGBS library preparation will give rise to four different DNA sequences.

OT, original top strand; CTOT, complement of the original top strand; OB, original bottom

strand; CTOB, complement of the original bottom strand. This figure is adapted from [Krueger

et al., 2012], see Table B.1 for the license.

resulting reads which leads to imperfect reads mapping or wrong alignment to the

reference genome; ii) the bisulfite conversion rate is not always 100% efficient, mean-

ing that some unmethylated cytosines will not be converted and then it will appear

as methylated cytosines; iii) problems related to short-reads aligners including repet-

itive elements mapping and sequencing errors. An overview and recommendations

for bisulfite alignment tools are available from [Bock, 2012, Krueger et al., 2012].

Two approaches have been developed to tackle these challenges; i)Wild-card align-

ers where Cs, in the genomic DNA sequence, are replaced by letter Y which match

both Cs and Ts in the read, or the aligner does not penalize C to T mismatches. Exam-

ples of such aligners are BSMAP [Xi and Li, 2009], GSNAP [Wu and Nacu, 2010], Last

[Frith et al., 2012], Pash [Coarfa et al., 2010], RMAP [Smith et al., 2009], RRBSMAP [Xi

et al., 2011] and segemehl [Otto et al., 2012]; ii) three-letter aligners such as Bismark

[Krueger and Andrews, 2011], BRAT [Harris et al., 2012, 2009], BS-Seeker [Chen et al.,

2010] and MethylCoder [Pedersen et al., 2011] convert all Cs in the sequencing reads

and in both strands of the reference genome into Ts and then apply standard map-

ping methods on this reduced base-space.

After the alignment step, DNAmethylation levels are inferred by calculating the ratio

between the observed Cs and the total number of Cs and Ts at each assayed CpG. How-

ever, the accuracy can be improved by including additional steps as Bis-SNP caller

does [Liu et al., 2012]; first: local realignments in loci with known variation (could be

taken from public database dbSNP or can be sample specific SNPs) and then marking

duplicates and clipping overlapping ends in case the fragment size is too short; sec-
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ond: base quality recalibration.

Methylation calling is followed usually by post quality control measurements such as

number of called sites (usually ∼ 26M CpGs), average CpG coverage, conversion rate
(usually a sample should have at least 99.5% conversion rate), unique alignment rates

and duplication rate.

Downstream analysis is the next logical step to be done and it is very dependent on

the study design and the addressed biological questions. It might involve finding dif-

ferential methylated regions DMRs, or genome-wide segmentation to define different

classes of methylated regions/domains like UMRs, LMRs, PMDs and HMDs.

The focus of this thesis was analyzing WGBS data sets across a large spectrum of cell

types and tissues. WGBS samples from DEEP project were uniformly processed ac-

cording to DEEP pipeline (http://doi.org/10.17617/1.2W) [Ebert et al., 2015].

Methylation segmentation

WGBS provides methylation information at base-pair resolution (∼ 26M CpGs). A
visual inspection of such generated methylation profiles in a genome browser, one

can directly notice a depletion of 5mC at some regions, mostly but not exclusively at

CpG-rich regions. Such regions often represent regulatory elements like promoters.

Hence, dividing the genome into different classes according tomethylation levels is of

great interest to define regulatory elements genome-wide. Stadler et.al implemented

a 3-state HMM to define three regions; unmethylated state with ∼ 0% methylation;
low methylated state with ∼ 30% methylation and fully methylated state with ∼ 80%
methylation [Stadler et al., 2011]. Based on this idea, Burger et.al implemented an R

package, called MethylSeekR‡, to detect PMDs and discriminate them from the small

unmethylated (UMRs) and low methylated regions (LMRs) [Burger et al., 2013] (the

main workflow is shown in Figure 1.8a). PMDs detection using this tool is based on

HMMmethod instead of defining them based on averagemethylation levels (less than

70% [Lister et al., 2009]). Instead of modeling PMDs at each CpG, summary statistics

in 101 CpGs sliding windows (one CpG at a time) are used to characterize PMDs. More

precisely, reads that cover each CpG are modeled as being generated from beta bino-

mial distribution characterized with α parameter. The distribution of α values will

tell if the sample contains PMDs or not. Distributions with α < 1 means that the

methylome has a unimodal distribution, i.e., methylation levels are skewed toward

0 or 100%; α = 1 corresponds to uniform distribution; α > 1 means that the methy-

lome has a bimodal distribution and it is an indicator of the presence of PMDs (Figure

1.8b). In such case, a two-state HiddenMarkovModel (HMM) is trained with Gaussian

emission on the α values via standard expectation maximization algorithm and then

‡
This tool was frequently used in this thesis
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PMDs are predicted using Viterbi algorithm. After detecting PMDs, they are masked

and hypomethylated regions are detected as stretches of CpGs with average methyla-

tion levels below a certain cutoff (default 50%).
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Figure 1.8: MethylSeekR segmentation. (a)MethylSeekR workflow for PMDs and short reg-

ulatory elements detection. (b) Distribution of posterior α distribution for Tmem sample.
The bimodal distribution and the tail where α > 1 suggest a presence of PMDs. (c) Two
clouds represent LMRs as CpG-poor regions with methylation levels between 10 and 50%, and

UMRs as CpG-rich regions with methylation levels between 0 and 10%. The vertical dashed

line represents the used cut-off value (number of CG=30) of number of CGs per region for

LMRs/UMRs classification. (d) Zoomed-in and zoomed-out snapshots of genome-wide seg-

mentation of WGBS data. The segmentation track shows different genomic regions/domains.

While PMDs (light brown) and HMDs (red) are observed as domains UMRs (dark blue) and

LMRs (light blue) stretch over short regions which coincide with CpG-rich and CpG-poor re-

gions, respectively.
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These regions are further classified into low methylated regions LMRs and UMRs

based on CG contents and minimum number of CpG within a region (controlled by

FDR) (Figure 1.8c). In principle these are the main three segments that MethylSeekR

defines, but as a notion of [Stadler et al., 2011] and [Schroeder et al., 2013, 2011] the

rest of the genome, other than the three mentioned regions, is called either highly

methylated domains (HMDs) or fully methylated regions (FMRs). Throughout this

thesis the two terms were used interchangeably. Figure 1.8d shows snapshots of

MethylSeekR segmentation for DEEP Tmem sample in zoomed-in and zoomed-out

view.

In the context of this thesis and to automatize the segmentation process of hun-

dreds of samples, a wrapper around MethylSeekR was implemented to generate a

segmentation file, which can be used to explore the segmentation results in a genome

browser. Additionally, a friendly HTML report is generated including figures related

to segmentation results. e.g., distribution of average methylation of each segment

type, segment length distributions and the percentage of each segment type. The in-

put of this wrapper is a bed file that contains the following information for each CpG:

chromosome, position of the CpG, methylation level, total number of reads cover-

ing this CpG position and the strand. The methylation levels from both strands are

aggregated and then a file compatible with MethylSeekR input format is generated.

PMDs, LMRs, UMRs are then generated by MethylSeekR. HMDs are calculated as the

complementary of the genome excluding genomic gaps as annotated by UCSC [Rosen-

bloom et al., 2014] using bedtools [Quinlan and Hall, 2010]. The average methylation

per segment are calculated and a bed file with color code is generated, which can be

visualized in any genome browser. Finally, the above mentioned HTML report is gen-

erated.

Moreover, to explore PMDs across large number of samples, ChromH3M was imple-

mented as a meta segmentation of MethylSeekR results. This workflow is presented

in Chapter 2 (Figure S3). Briefly, it uses the bed files generated from the previously

mentioned segmentation wrapper as input. 1kb windows across the genome are an-

notated with 0/1 according to absence/presence of PMDs for each sample (another

window size is applied for LMRs and UMRs). ChromHMM [Ernst and Kellis, 2012] is

then applied to the binarized matrix with different number of states provided by the

user. The emission probabilities are then hierarchically clustered and annotations

are added to the heatmap based on a provided sample sheet. This workflow and the

segmentation wrapper script is available at https://github.com/asalhab/ChromH3M.
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1.4 International effort for profiling reference epigenome

maps

The International Human Epigenome Consortium (IHEC) coordinates the efforts of

world-wide epigenomic consortia to map and decipher at least 1000 high resolution

reference epigenomes of different primary human cell types to understand how the

genome interacts with environment during development, and how the epigenome in-

fluences the diseases and health, aiming to accelerate applying of this knowledge to

improve human health [Stunnenberg et al., 2016]. All consortia contribute to IHEC

goals, but each consortium has also its own focus on specific cell types and diseases.

Therefore, IHEC develops standards for data generation, software and methods to

minimize the variance between the different consortia and harmonize data process-

ing and data sharing which are important issues for integrative analysis and data

interpretation later on. To this end, “EpiMap”‡ project was evoked under IHEC um-

brella aiming to reprocess samples from different consortia with the same pipelines

and integrating them for later biological interpretation.

The current full members of IHEC (till the time of writing this thesis, September

2019) includes: CIHR and CEEHRC (Canada), BLUEPRINT Project (EU), DEEP (Ger-

many), HKUST (Hong Kong), CREST (Japan), GIS (Singapore), KNIH (South Korea), NIH

ROADMAP Epigenome Program (USA), NHGRI ENCODE Project (USA), 4D Nucleome

Program (USA). Within the scope of IHEC and the context of the German Epigenome

Program DEEP two projects, presented in Chapter 2 and Chapter 3, provide examples

for large-scale data integration and data interpretation.

The reference epigenomes belonging to IHEC should include the following assays for

each sample: DNA methylation (WGBS), ChIP-Seq of six core histone modifications

plus input (H3K27ac, H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K9me3),

gene expression (RNA-Seq) and optional open chromatin assay (ATAC-, DNaseI- or

NOMe-Seq). All samples should meet IHEC QC standards‡‡, defined by Assay Stan-

dards Working Group, in order to be considered as IHEC samples.

1.5 Aim of the thesis

As it is mentioned in Section 1.4 a large epigenome cohort for broad spectrum of

primary human cell types has been generated by IHEC and integrating such data is a

big computational challenge, specially when considering the different assays gener-

ated by IHEC.

‡
Working title defined by IHEC Integrative Analysis Work Group

‡‡https://github.com/IHEC/ihec-assay-standards
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This thesis presents the results of three projects; two of them (Chapter 2 and Chapter

3) have been conducted within DEEP consortium and toward the overarching IHEC

vision. The third one (Chapter 4) is outside DEEP’s context yet related to the results

of the first two projects. The focus of these projects is investigating DNA methylation

landscape genome-wide across a comprehensive spectrum of WGBS samples gener-

ated by IHEC members and others to define common and cell type specific features of

Partially Methylated Domains (PMDs) as very abundant topological units of genomes,

and focusing on PMDs in differentiated CD4+ T memory cells (Tmem) and CD4+ cells

of four Multiple Sclerosis-discordant female Monozygotic twin pairs. More specif-

ically, understanding the developmental relationship of Tmem cell subsets to iden-

tify the most likely differentiation model, i.e., either the sequential or the parallel

model. Moreover, DNAmethylation was integrated in the context of PMDs with other

(epi)genetic data like histone modifications, gene expression, replication timing and

3D chromatin conformation data, aiming to understand the interplay between DNA

methylation, heterochromatin and the higher-order chromatin structure.

1.6 Results outline

This section will guide you throughout the outcomes of this cumulative work,

structured in three chapters and give a summary of the aim and the results of each

project.

Chapter 2 presents a comprehensive comparative analysis of 195 DNAmethylome

in primary cells and tissues to get insight into PMDs, their genome-wide organization,

structural and functional features associated with them. This data set includes sam-

ples that have been produced by different members of IHEC in addition to publicly

available data. This work spotlights a different aspect for studying DNA methylation

beyond its role in small regulatory elements, that is, focusing on the large-scale facet.

Additionally, it delivers an important message about using cell lines as in-vitromodel
to study DNA methylation changes in cancer. The major results can be summarized

as follow:

• PMDs are strong cell-type specific discriminators and cover up to 75% of the
genome regardless of their tissues or cell origin. Each cell type has distinct aver-

age methylation levels in PMDs. Myeloid cells have homogeneous average PMD

methylation levels compared to lymphoid cells (proliferating cells).

• A decreased DNA methylation at PMDs in immortalized cells is linked to an in-
crease in heterochromatization and to a decrease of gene expression.
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• Distinct hetrochromatic signatures at PMDs demarcate distinct domains of late
DNA replication.

• PMDs are epitopological features beside their role in gene regulation.

• The implemented ChromH3M workflow is a straightforward framework for in-
tegration of large-scale WGBS data.

This work was originally published in a peer-reviewed journal [Salhab et al., 2018]

(see Chapter 2 for the detailed contribution), and it was conducted in the context of

DEEP project. The main text is at page 25 and the supplementary material is at page

38.

Chapter 3 focuses on another DEEP-related project, and its aim was to study the

influence of epigenetics on the differentiation of memory T-cells (Tmem) and to iden-

tify the keymolecular regulators. Specifically, understandingwhether different Tmem

subtypes arise from a common progenitor or whether they represent stages of a se-

quential differentiation process. Accordingly, a comprehensive epigenetic data was

generated for naive, central-, effector-, and terminally differentiated CD4+ Tmem hu-

man cells from blood and CD69+ Tmem human cells from bone marrow.

A major findings of this study is observing a progressive genome-wide loss of DNA

methylation during Tmemdifferentiationwhich found to bemore prominent in PMDs.

Similar observations are found during the memory differentiation of B cells, but

not during the differentiation of monocytes into macrophages. These findings sup-

port the linear sequential differentiation model of T- and B-cells, and suggest PMDs-

associated loss of DNA methylation as an indicator of the proliferation history of the

cells. Moreover, PMDs were used in this work as an adjusting tool for detecting ‘func-

tional’ differential methylated regions (DMRs) in highly proliferative cells.

This work was originally published in a peer-reviewed journal [Durek et al., 2016]

(see Chapter 3 for the detailed contribution). The main text is at page 61 and the sup-

plementary material is at page 76.

Chapter 4 deals with studying DNA methylation signatures of CD4+ memory T

cells of monozygotic twins (MZ) clinically discordant for Multiple Sclerosis (MS), an

autoimmune disease affecting the central nervous system. The aim was to identify

changes in DNA methylation related to MS in peripheral blood mononuclear cells

(PBMCs), and to check how MS treatment affects the methylome. The major part of

this paper was based on analyzing EPIC arrays, and in a small part WGBS data was

used to assess the global DNA methylation differences between the MS-discordant

co-twins. The results showed that there was no significant genome-wide changes in
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DNA methylation in PMDs between the MS-discordant co-twins. However, a local

prominent MS-DMR in FIRRE (located on X-chromosome) was identified.
This work was originally published in a peer-reviewed journal [Souren et al., 2019]

(see Chapter 4 for the detailed contribution). The main text is at page 94 and the

supplementary material is at page 106.
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Chapter 2

A comprehensive analysis of 195 DNA methylomes

reveals shared and cell-specific features of partially

methylated domains

The full text of this chapter was originally published as:

Salhab, A., Nordström, K., Gasparoni, G., Kattler, K., Ebert, P., Ramirez, F., Ar-

rigoni, L., Müller, F., Polansky, J. K., Cadenas, C., G.Hengstler, J., Lengauer, T.,

Manke, T., DEEP Consortium, and Walter, J. (2018). A comprehensive analysis

of 195 dna methylomes reveals shared and cell-specific features of partially

methylated domains. Genome Biology, 19(1):150.

under the terms of the Creative Commons Attribution 4.0 International License (http:

//creativecommons.org/licenses/by/4.0/).

The author of this thesis contributed to the study design, integrative analysis, Hi-C

data analysis and ChromH3M implementation. He generated all the main and the

supplementary figures (except Figure S9, the left panel). Together with J.W. and K.N.

and contribution from other authors he wrote the manuscript. All authors read and

accepted the final version of the manuscript.
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A comprehensive analysis of 195 DNA
methylomes reveals shared and cell-specific
features of partially methylated domains
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Abstract

Background: Partially methylated domains are extended regions in the genome exhibiting a reduced average DNA
methylation level. They cover gene-poor and transcriptionally inactive regions and tend to be heterochromatic. We
present a comprehensive comparative analysis of partially methylated domains in human and mouse cells, to identify
structural and functional features associated with them.

Results: Partially methylated domains are present in up to 75% of the genome in human and mouse cells
irrespective of their tissue or cell origin. Each cell type has a distinct set of partially methylated domains, and genes
expressed in such domains show a strong cell type effect. The methylation level varies between cell types with a more
pronounced effect in differentiating and replicating cells. The lowest level of methylation is observed in highly
proliferating and immortal cancer cell lines. A decrease of DNA methylation within partially methylated domains tends
to be linked to an increase in heterochromatic histone marks and a decrease of gene expression. Characteristic
combinations of heterochromatic signatures in partially methylated domains are linked to domains of early and
middle S-phase and late S-G2 phases of DNA replication.

Conclusions: Partially methylated domains are prominent signatures of long-range epigenomic organization.
Integrative analysis identifies them as important general, lineage- and cell type-specific topological features. Changes
in partially methylated domains are hallmarks of cell differentiation, with decreased methylation levels and increased
heterochromatic marks being linked to enhanced cell proliferation. In combination with broad histone marks, partially
methylated domains demarcate distinct domains of late DNA replication.

Keywords: Partially methylated domains, Heterochromatin, Replication timing, Proliferation

Background
DNA methylation is an epigenetic hallmark with an
important role in gene and genome regulation. Changes
in the genome-wide landscape of DNA methylation are
extensively studied in the context of small regulatory
regions like CpG islands [1], CpG shores [2], and proximal
and distal regulatory regions [3]. With the first genome-
wide bisulfite-based DNA methylation analyses, a new

*Correspondence: j.walter@mx.uni-saarland.de
1Department of Genetics, Saarland University, Campus Saarbrücken, 66123
Saarbrücken, Germany
Full list of author information is available at the end of the article

term, partially methylated domains (PMDs), was intro-
duced by Lister et al. [4] referring to long genomic regions
in the range of hundreds of kilo-basepairs (kb) character-
ized by highly disordered methylation levels. They were
initially discovered in the fibroblast cell line IMR90 but
cannot be observed in human embryonic stem cells H1.
It has been shown later that PMDs are enriched

with heterochromatic histone modifications such as
H3K27me3 and that they are gene-poor and less active
[5, 6] than other genomic regions. Several studies have
since reported PMDs in various cell types: medulloblas-
toma [6], adipocyte tissue [7], SH-SY5Y neuronal cells [8],
and human cancers [5, 9–11]. PMDs in cancer cells are

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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linked to late replication and nuclear lamina-associated
regions [10]. The first non-cancer primary human tis-
sue type with PMDs has been reported in placenta [12]
and were defined using a hidden Markov model (HMM)
rather than applying a threshold of methylation level.
Recently, we, as part of the DEEP consortium http://www.
deutsches-epigenom-programm.de/, published the first
primary human cells, CD4+ T cells, with PMDs [13]. We
showed that progressive loss of DNA methylation cor-
relates with T cell memory differentiation and happens
predominantly in PMDs. Burger et al. [3] implemented
an HMM-based detection method called MethylSeekR
to define PMDs and separate them from highly methy-
lated domains (HMDs) and short (regulatory) regions
that come in two types (methylation below 50%): lowly
methylated regions (LMRs, CpG poor regions, less than
30 CpGs) and unmethylated regions (UMRs, mostly CpG
islands, more than 30 CpGs). LMRs and UMRs are rela-
tively short (a few hundred to a few thousand basepairs)
and correspond to distal and proximal regulatory ele-
ments, respectively [14]. Tools such as MethylSeekR are
very useful for exploring the methylome landscape on a
large scale and help to discriminate the large domains,
from the small regulatory regions.
In collaboration with our colleagues in the interna-

tional human epigenome consortium IHEC http://ihec-
epigenomes.org/, we contributed to generating a large
epigenome cohort for numerous primary cell types from
human and mouse. WGBS data serve as an invaluable
resource for studying PMDs in primary cells. PMDs rep-
resent a new aspect for studying the DNA methylation
landscape on a genome-wide level apart from the context
of regulatory regions that have been studied extensively
and pose the question whether DNA methylation has an
impact on the genome organization. At the same time, it
has become quite clear that cells in vitro behave differently
from primary cells, for instance regarding methylation
levels. Thus, it is important to compare the methylome
of primary cells and cell lines in order to validate in vitro
systems and afford an appropriate interpretation of the
data.
Here, we investigate the genome-wide organization

of PMDs across a comprehensive spectrum of available
WGBS data generated by IHEC members, DEEP http://
www.deutsches-epigenomprogramm.de/, Blueprint
www.blueprint-epigenome.eu, and Roadmap http://www.
roadmapepigenomics.org/, together with other public
data in order to gain insights into PMDs. In addition,
we integrated WGBS data with other epigenetic data,
ChIP-seq, RNA-seq, Hi-C and Repli-seq, in an attempt
to describe the interaction between DNA methylation
and chromatin formation in order to understand how
they impact cell division, differentiation, and the higher
order chromatin structure. Moreover, we propose a

new integrative approach to exploring and interpreting
methylome topologies using WGBS data, an approach
very much needed as the amount of such data is growing
rapidly.

Results
Partially methylated domains are cell type discriminators
We collected and surveyed 171 public human WGBS
datasets of different primary cell types (hepatocytes, T
cells, B cells, monocytes, macrophages, eosinophils, neu-
trophils, dentritic cells, natural killer cells, endothelial
cells, and thymocytes) and tissues (liver, intestine, spleen,
esophagus, stomach gastric, colon sigmoid, colonmucosa,
heart, and pancreas) for which we identified PMDs with
MethylSeekR (see Additional file 1 for the complete list
of samples). Figure 1 shows methylomes of different cell
types with the corresponding segmentation tracks. The
lengths of PMDs vary broadly, ranging from 100 kb up to
20 Mb (Additional file 2: Figure S1). PMDs cover a large
portion of the genome (50–75%). The average and individ-
ual levels of PMD methylation vary between different cell
types (boxplots in Fig. 2a). While PMD positions in the
genomes are highly conserved across cell types, in general,
only roughly 26% of the genome is annotated as com-
pletely shared PMDs across all cell types (Fig. 2b). Overall,
PMDs are enriched for the broad heterochromatic marks
H3K27me3 and H3K9me3 and depleted for the broad
euchromatic mark H3K36me3. The latter is also reflected
in the low appearance of annotated transcriptional units
within PMDs and an overall low average transcription
of genes located in PMDs (Fig. 1 and Additional file 2:
Figure S2).
To gain a deeper insight into the cell-specific and

genome-wide distribution of PMD methylation pro-
files, we generated and applied a modified ChromHMM
[15] approach, “ChromH3M,” as an abbreviation for
ChromHMMmeta segmentation (see details in the
“Methods” section and Additional file 2: Figure S3). In
brief, we bin the genome into 1 kb tiled windows, labeled
as 1 or 0 according to the presence/absence of PMDs for
each sample. This binarized signal is then processed with
ChromHMM to generate a 15-state model. The emission
probabilities are displayed after hierarchical clustering.
This approach generates PMD clusters discriminating cell
type origin and/or cell-related subgroups (Fig. 2a). Only
five out of 171 samples did not cluster together with
samples of similar origin. This approach is surprisingly
stable even across cells which differ strongly in their over-
all methylation level (shown as box plots in Fig. 2a).
We also used shorter LMR and UMR regions for such
a ChromH3M meta-segmentation and roughly obtained
the main subgroups in hierarchical clusters using 10,000
bootstraps and an “au” threshold of 97 (see Additional
file 2: Figure S4 and the “Methods” section for details).
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Fig. 1 Genome-wide DNA methylation segmentation across different cell types. IGV snapshot showing DNA methylation profiles of different cell
types (from top to bottom: monocytes, macrophages, naive/central/effector/terminal memory T cells, naive/germinal center/class switched
memory B cells, plasma, GM12878, HepG2, HepaRG, and primary human hepatocytes) with the corresponding MethylSeekR segments: highly
methylated domains (red); HMDs, partially methylated domains (light pink); PMDs, low methylated regions (light blue); LMRs and unmethylated
regions (blue); UMRs (only one track per cell type shown for simplicity). Below the block of methylation data, three broad histone marks and
RNA-seq profiles of hepatocytes are displayed. PMDs can be seen as long regions with highly disordered methylation levels and tend to be largely
overlapping between the different cell types. However, there are cell type-specific PMDs (the highlighted region shows a hepatocyte-specific PMD).
PMDs are gene-poor and transcriptionally inactive regions and have heterochromatic signature (H3K27me3 and H3K9me3). In contrast, HMDs are
transcriptionally active and rich-gene regions with enrichment of active histone mark H3K36me3

We conclude that PMDs are strong cell-type-specific dis-
criminators comparable with regulatory changes in short
UMRs/LMRs.
For 171 available human methylomes of tissues and

primary cells, ChromH3M generates a tree with six
main branches separating myeloid from lymphoid cells,
endothelial tissues, liver tissue, and tissues of the digestive
system and heart. Myeloid cells split into two subclusters:
the granulocytes (neutrophils and eosinophils) and agran-
ulocytes (monocytes, macrophages, and dentritic cells).
Members of both subclusters have similar average PMD
methylation. B cells and T cells form a lymphocyte clus-
ter which branches off into subgroups of memory T and
B cells, i.e., central and effector memory T cells, germi-
nal center and memory B cells, respectively. This indicates
that cell types not only display a distinct overall PMD
topology but also acquire distinct PMD substructures
upon proliferation and differentiation [13].
We furthermore observe that, in general, PMDs have

extended heterochromatic signatures in both primary
cells and permanent cell lines (Fig. 2c). PMDs cover rel-
atively gene-poor regions with mostly lowly/unexpressed
genes (Additional file 2: Figure S2). The ChromH3M
analysis reveals a couple of distinct features of cell-
type-specific PMDs (Fig. 2a). For instance, states 10 and
11 comprise regions that only are HMDs in liver and
endothelial cell types, respectively. State 4 discriminates
myeloid HMDs from PMDs in other cell types. State 3
defines B and T cell-specific PMDs (Fig. 2a, b). The shared

PMDs are defined by states 1, 8, and 9, while states 14 and
15 define shared HMDs.
To explore the biological functions of genes present

within cell-type-specific HMDs/PMDs, we performed a
functional annotation analysis with DAVID [16, 17] for
genes in state 10 and state 3. For the former, liver-specific
HMDs, the GO terms liver tissue expression, Rotor
syndrom disease (lack of hepatocyte pigment deposits),
and the KEGG pathway for drug metabolism through
cytochrome P450 were obtained. These genes exhibit sig-
nificantly higher expression in liver tissue/hepatocytes
than in other cell types (two-way ANOVA and Tukey
HSD post hoc test, p adj = 0) (Fig. 2d). Furthermore,
these HMDs are largely devoid of heterochromatic marks
and enriched for the transcriptional elongation mark
H3K36me3 across gene bodies (Additional file 2: Figure S5,
left panel). This is exemplified by two hepatocyte-specific
gene loci CYP2B6 and FMO6P (Additional file 2: Figure S6).
The latter state, number 3, marks B and T cell-specific
PMDs. Hence, these regions in B and T cells are enriched
with the repressive mark H3K27me3 and, to a lower
degree, with H3K36me3. Further, the functional analysis
provides cell-type-associated terms, cell differentiation,
inflammatory response, adaptive immune response and
specific surface antigen MHC class I, in addition to the
KEGG pathway for the hematopoietic cell lineage. Inter-
estingly, the expression levels of these genes are downreg-
ulated in accordance with their PMD annotation. How-
ever, regarding only the DNA methylation signal, there is
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Fig. 2 PMD signatures discriminate cell type and global transcriptional control. a Colored representation of the emission probabilities calculated by
ChromH3M. Samples and states were hierarchically clustered forming six main groups: myeloid, lymphoid, endothelial, liver, digestive system, and
heart. Beneath each sample, the corresponding average methylation levels within PMDs is shown as whisker box plots and the percentage of
MethylSeekR segments as stacked bar plots. Samples derived from the same cell type clustered together, although they differ in mean methylation
level, suggesting that they have more similar PMD structure than the other cell types. PMDs comprise about 50–75% of the genome. b Graphical
representation of the relative (percentage) contribution of each state in the 15-state ChromH3Mmodel. Twenty-six percent of the genome shares
the same PMDs across all samples and roughly one third differ between them. c Genome-wide normalized histone mark signals within PMDs
(including 100 kb flanking regions). Note the enrichment of heterochromatic marks H3K27me3 and H3K9me3 across PMDs and a depletion of the
transcription-coupled mark H3K36me3. d Log10-scaled FPKM values of state 10 (Liver-HMDs) associated protein-coding genes. Genes are
significantly more highly expressed in hepatocyte samples (PHH) than in macrophages, monocytes, and T cells, according to two-way ANOVA and
Tukey HSD post hoc test (see details in the “Methods” section). Only samples marked with star in a are used for simplicity and since they belong to
one consortium

a trend to split the B and T cells into naive versus mem-
ory cells. This discrimination can neither be confirmed by
ChIP-seq nor by RNA-seq (see Additional file 2: Figure
S5, right panel). This could be due to the limitation in
detecting the precise boundaries of shallow PMDs in naive
cells.
In summary, the ChromH3M results indicate a domain-

wide transition of cell-type-specific PMDs into HMDs
and vice versa along with transcriptional regulation. The
direction of this transition couples with specific changes
in heterochromatic states.
A ChromH3M analysis on 24 WGBS mouse samples

(Additional file 2: Figure S7) shows a similar classifica-
tion and distribution of PMD states, confirming that our
findings not only hold for human but describe a fea-
ture apparently conserved among mammals. In mouse,
we identify cell-type/tissue-specific PMDs for neuron,
intestine, colon, and mammary epithelial cells. Further-
more, the epithelial cells group into cells of the luminal
and the basal compartment. We conclude that in human

and mouse, PMDs are excellent epigenome classifiers of
cell-type-specific topologies.

Chromatin compaction increases with DNAmethylation
erosion at PMDs in immortalized cells
Immortalized cell lines are widely used for studying
cellular mechanisms including the influence of epige-
netic control. However, it is known that cells in culture
undergo drastic epigenetic alterations linked to passag-
ing and cell replication numbers [18]. To investigate
the epigenome-wide changes occurring between primary
cells and immortal cell lines, we compared the methy-
lomes of primary cells and cell lines of the same ori-
gin. With this comparison, we wanted to monitor the
impact of cultivation and cancer-specific changes on
PMD formation. We generated epigenome data for iso-
lated primary hepatocytes (PHH) and two hepatic can-
cer cell lines: the hepatic progenitor cell line (HepaRG)
and the liver hepatocellular carcinoma cell line (HepG2).
We also include in our comparison results on publicly
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available liver cancer cells and noncancerous liver tissues
(Fig. 3a).
First, we calculated the average methylation across the

samples in 10 Kb bins. We then performed k-means
clustering forming six disjoint clusters which were sub-
sequently annotated by the MethylSeekR segmentation

(Fig. 3b). Cluster 1 defines highly methylated bins across
all samples while the other clusters show progressive loss
of methylation in the order: liver tissue >PHH >liver can-
cer >HepaRG >HepG2. Interestingly, primary liver cancer
was more similar to the non-cancerous liver and PHH
than to the cancer cell lines HepaRG and HepG2. Both

cb

a

Fig. 3 Heterochromatization accompanied by DNA methylation erosion at PMDs in cancers. a A snapshot of 14 Mb of chr3 showing the relevant
epigenetic marks. Top: distinct DNA methylation tracks and the MethylSeekR segmentation of liver tissue, isolated hepatocytes (PHH), liver cancer
tissue, HepaRG, and HepG2 cell lines, respectively. PMDs of primary cells and normal and cancerous tissues are extensively and selectively less
methylated in cancer cell lines (largely converted into unmethylated regions). Middle: histone marks H3K27me3, H3K9me3, and H3K36me3 in the
same samples. Bottom: ChromHMM segmentation based on these three histone modifications in addition to H3K4me3, H3K4me1, H3K27ac, and
Input (see details in the “Methods” section). b K-means clustering (k = 6) based on the averaged methylation in 10 Kb bins. Cluster 1 represents the
most (almost fully) methylated bins across all samples, while the other clusters are ordered according to the progressive erosion of methylation in
PMDs. Bar plots (left) beside the heatmap show the percentage of the annotated bins as HMD, PMDs, and UMR for each sample in each cluster.
c Progressive change of DNA methylation in PMDs across cancer cell lines. The top of the figure shows classified and grouped PMDs (three classes)
based on the average PMDmethylation levels in PHH and their corresponding overall levels in HepaRG and HepG2, respectively. Note the
intermediate status of HepaRG, e.g., with a higher similarity to PHH in class_I (most highly methylated), an intermediate status in class_II and a
higher similarity to HepG2 in class_III (lowest methylation level). The bottom shows the PMD wide changes in heterochromatic marks across the
clusters defined by DNA methylation. The inverse correlation to DNA methylation is most obvious for HepaRG (class_I and class_III)
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cancer cell lines have lower methylation levels compared
to the primary cells, as seen in clusters 4 and 5. This indi-
cates a different epigenomic pattern in cultivated cancer
cells in comparison to primary cancer cells. To gain deeper
understanding of the features governing the development
and changes in cell-type-specific PMDs, we focused on
the analysis of liver PMDs that exhibit changes in the aver-
age methylation level in the cancer cell lines. We first
extracted PMDs of PHH cells, which exhibit large overlap
with PMDs of liver tissue and liver cancer tissue (data not
shown). Such primary liver cell PMDs split into three sub-
classes, with respect to changes in DNA methylation in
HepaRG and HepG2 (Fig. 3c). In the first subclass (class_I,
red), PHH andHepaRG exhibit the same average degree of
methylation (65%), but show a very low methylation state
in HepG2. In the second class (class_II, green), HepaRG
methylation levels are intermediate between PHH and
HepG2, while in the third class (class_III, blue) both Hep-
aRG and HepG2 show the same low average methylation
as compared to the primary cells.
Along with the progressive loss of DNA methylation

in these three subclasses, we observe a distinct gain of
heterochromatic marks (Fig. 3c), suggesting a compen-
satory effect. The effect is most obvious in the HepaRG
cell line which shows an intermediate level of PMDmethy-
lation. Moreover, H3K36me3 is positively correlated with
DNA methylation across the gene body in the three sub-
classes (Additional file 2: Figure S8). We confirmed this
observation by calculating the average methylation across
ChromHMM segments of HepaRG (Additional file 2:
Figures S9 and S10). PMDs associated with stronger tran-
scription are higher methylated, on average, and marked
by lower levels of heterochromatic marks.
We conclude that in immortalized cells, a progres-

sive erosion of DNA methylation mainly in PMDs is
linked to a substantial gain of heterochromatic marks.
This is likely to be accompanied by differences in
chromatin compaction and regulation in the immor-
talized cells with a prolonged proliferation. The con-
version of PMDs and sometimes of HMDs, found in
cancer tissues, into low methylated domains as seen
for HepG2 indicate that epigenetic changes found in
model cell lines should be interpreted with great care,
as they may reflect the properties more of the cell’s
proliferation history and less of the cancer state or
cell-specific origin.

Distinct heterochromatic signatures of PMDs predict
replication timing
It has been shown that during cell division, late-replicating
regions can become gradually demethylated [19] and
long PMDs show widespread H3K9me3 marks bordered
by H3K27me3, whereas shorter PMDs are enriched by
H3K27me3 only [6]. So far, these features have not been

deeply investigated and analyzed in an integrated fash-
ion, i.e., combining DNA methylation and chromatin
marks. Using replication timing data for HepG2 from
the ENCODE project [20, 21], we clustered HepG2
hypomethylated/PMDs regions (longer than 300 kb),
by the k-means algorithm, into three clusters (see the
“Methods” section and Fig. 4a). We observe that these
clusters display distinct combinations of histone modi-
fication and DNA methylation (Fig. 4b and Additional
file 2: Figure S11). Cluster of early/mid S phase (dark
blue) is associated with shortest PMDs, and the chro-
matin is enriched for the two repressive marks H3K27me3
and H3K9me3. Mid/late S phase cluster (light blue)
comprises longer PMDs which are less highly enriched
for H3K27me3 compared to the previous cluster. In
very late S/G2 phase cluster (yellow), PMDs extend
over very long regions making up roughly 50% of the
total PMDs/hypomethylated regions (Additional file 2:
Figures S12 and S13). These PMDs are strongly enriched
for H3K9me3, bordered by H3K27me3. We confirm our
clustering by using the three broad histone modifica-
tion signals in PMDs as predictors and observe a high
average prediction accuracy of 0.77 for HepG2 (0.81
for IMR90) (notice that this is a three-class prediction,
details in the “Methods” section). The very late repli-
cating regions S/G2 phase have the highest prediction
accuracy, suggesting a distinct chromatin signature in this
phase. These findings extend previous results [19] indi-
cating that combinations of heterochromatic marks and
DNA methylation define early and middle S-phase and
late S-G2 phase (Fig. 4b).

PMDs organization and topologically associated domains
(TADs)
To analyze the overall relationship between PMDs and
TADs (topologically associated domains), we generated
Hi-C data for HepG2 and used available liver Hi-C data
[22]. Using HiCExplorer tool [23], we identified 3217 and
4021 TADs in liver and HepG2, respectively. As a conse-
quence, TADs of HepG2 are shorter than those in liver
(Additional file 2: Figure S14). This finding is in agreement
with Taberlay et al. [24], who showed that cancer cells
in general form smaller TADs and establish new bound-
aries. We find that TAD borders are significantly closer
to PMD borders as compared to randomized test bor-
ders (p value<2.2e−16, Wilcoxon test) (Additional file 2:
Figure S15). Moreover, 94% of base pairs within PMDs,
in HepG2 and liver, are also annotated as heterochro-
matic TADs (Additional file 2: Figure S16) (details in
“Methods” section). The light red box in Fig. 4c highlights
a typical example of a region in which several TADs exist
in HepG2 and primary liver that are belonging to one
PMD. In HepG2, we observe the formation of an extra
TAD (marked in red) but not the formation of an addi-
tional PMD boundary. This extra TAD shows a strong
enrichment of H3K9me3.
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c

b

a

Fig. 4 Distinct heterochromatin signatures of PMDs predict replication timing. a HepG2 PMDs are classified into three classes according to
replication timing signals: cluster 1 represents the early/mid S phase associated with PMD boundaries, cluster 2 represents the middle/late S phase
(S3/S4), and cluster 3 represents the very late S phase (S4) and G2. b Epigenetic mark signatures across clusters in a; H3K27me3 is highly enriched in
cluster 1 and in the PMD boundaries of cluster 3 and less so in cluster 2. H3K9me3 enrichment is similar in cluster 1 and cluster 2 and become more
prominent in cluster 3. The elongation mark H3K36me3 is depleted in all clusters. PMDs in cluster 3 have the lowest methylation level among the
other two clusters and encompass the transcriptionally inactive genes. c Different epigenomic data tracks from chr2 shown in the following order:
DNA methylation profiles, H3K9me3, H3K27me3, and H3K36me3 histone marks of HepG2 and PHH, replication timing signals (G1-G2) of HepG2,
clustered HepG2-hypomethylated/PMDs according to a, Hi-C contact matrices of HepG2, and liver with the corresponding called TADs, tRNA, and
RefSeq genes. The highlighted region shows one long PMD, roughly 3Mb, extends over three TADs which are splitting according to H3K9me3 signal
enrichment. Two of these TADs, marked in red, fuse into one TAD in the liver sample in agreement with the H3K9me3 signature
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Discussion
Our comprehensive integrated analysis of primary human
cells adds valuable novel insights into the structure and
function of PMDs in human and mouse epigenomes.
Building on our first report of PMD changes in pri-
mary T cells [13], we here integrated publicly available
WGBS datasets fulfilling high-quality standards to sys-
tematically analyze the features of PMDs in primary
cells, primary tissues, and immortalized cells from human
and mouse. We apply a new integrative “ChromH3M”
approach which combines existing tools and represents an
easy and straightforward method for analyzing and inte-
grating a large cohort of WGBS datasets. This allowed us
to define and compare PMDs across hundreds of WGBS
samples, revealing a couple of intriguing newDNAmethy-
lation properties with respect to genome organization,
timing of DNA replication and cell-type-specific gene
regulation.
We find that PMDs comprise up to 75% of all

epigenomes. However, only roughly 26% of the genome
consists of PMDs that are shared across all investigated
cells (shared PMDs). These common/shared PMDs have
also been a focus of a recent analysis by Zhou et al.
[25] confirming some of our findings. As a major dif-
ference, we also find that PMDs serve as excellent cell
type classifiers as cells with functional similarities show
a more similar PMD arrangement and topology, argu-
ing for a shared developmental origin of lineage-specific
PMDs. Finally, we observe that PMDmethylation changes
in some cells when they proliferate and show strong
methylation decreases in immortal cell lines.
Analyzing the PMD topology in more detail, we observe

that the epigenomes of cells are partitioned into long
regions of PMDs interspersed with HMDs. These two
classes of epi-domains show contrasting chromatin signa-
tures. While PMDs are more heterochromatic and gene-
poor regions, HMDs show strong transcriptional activity
and enrichment of genes. This finding generalizes previ-
ous isolated observations reported by [4, 8, 10, 13, 26]
to a number of different cancer types and cell lines. We
also find cell-type-specific changes from PMD to HMD,
and vice versa, occurring in genomic regions that contain
genes functionally enriched for cell-type-specific proper-
ties. This finding points towards a developmental control
of PMD and HMD formation. The complete understand-
ing which partitioning of HMDs and PMDs defines a
precursor ground state of a cell type needs more investi-
gation. Such knowledge will help understanding the role
of epigenetic domains in cell differentiation.
We find that long PMDs have a lower density of protein-

coding genes, lincRNA, and pseudogenes relative to the
shorter PMDs. In general, protein-coding genes are less
highly expressed in long PMDs than in shorter PMDs
and HMDs (Additional file 2: Figures S17 and S18).

We hypothesize that this is also reflected in the more
pronounced constitutive heterochromatic nature of long
PMDs as compared to the more facultative heterochro-
matic nature of shorter PMDs [27]. Shorter PMDs retain
more epigenomic plasticity with more pronounced cell-
type-specific features.
PMDs can also be divided into different subclasses

which are observed in different stages of DNA replica-
tion. A hallmark of the late stages of replication (S4 and
G2) is their length and the presence of the constitutive
heterochromatic mark H3K9me3 together with a charac-
teristic enrichment of H3K27me3 at the boundaries. On
the other hand, the early/middle S phases (S1-3) PMDs
are shorter and exhibit a higher overall proportion of
H3K27me3. The length-dependent histone modification
pattern is in agreement with previous findings in medul-
loblastoma [6]. The differences are strong enough to be
used as predictors of the replication phases. Our results
are consistent with a previous report [19] and extend its
results by providing a detailed characterization of chro-
matin state and DNA methylation at PMDs in relation to
cell cycle. Moreover, the long PMDs associated with the
late S4-G2 phases overlap with 56% of the bases within
shared PMDs. The shorter PMDs retain a greater variabil-
ity, confirming our hypothesis that shorter PMDs possess
epigenetically more less rigid heterochromatic structures
than longer ones. This characteristic could be relevant for
differentiation, cell-fate determination, and/or cell matu-
ration processes.
To deeper understand the cell-type-specific changes

occuring at PMDs (and HMDs), in cancer and cancer cell
lines, we compared the DNA methylation landscape of
primary human hepatocytes (PHH) to liver cancer tis-
sue and hepatocellular carcinoma cell lines (HepaRG and
HepG2). Notably, the methylome of primary liver can-
cer retained a PMD structure highly similar to primary
cells. PMDs in cancer tissue show a mild but clearly
reduced level of methylation. In cancer cell lines, however,
the DNA methylation in PHH-specific PMDs strongly
decreases. The regions with lower methylation still retain
the typical PMD histone marks even if they are completely
unmethylated. So far, we have no explanation to how this
aligns with models suggesting that global demethylation
is caused by a global loss of heterochromatic marks such
as H3K9me2/3 and consequently a lack of UHRF1 activ-
ity during replication by deregulation of DNMT1 [28].
When counting the unmethylated regions as PMDs, the
overall PMD structure of cell lines is hepatocyte-like.
It is likely that the strong erosion of DNA methylation
is the consequence of extensive cultivation leading to a
proliferation-dependent loss of methylation while main-
taining or even enforcing heterochromatic marks such as
H3K9me2/3. An alternative hypothesis is that the loss of
PMD methylation is caused by the selection/expansion
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of cell subpopulations with lower methylation. To better
understand the generation of increased demethylation in
PMDs as a consequence of cell proliferation (cell division),
we performed an experiment outlined in Additional file 2:
Figure S19A. Human T memory cells were obtained from
three different donors, and from each, such “bulk” sample
single cells were isolated and clonally expanded follow-
ing TCR stimulation. After proliferative expansion, single
clonal cultures were analyzed and compared to the start-
ing “bulk” samples (mixed T cells) by RRBS. We observe
a preferential loss of methylation in PMDs (Additional
file 2: Figure S19B, confirming our results reported in
Durek et al. [13]). We calculated the percentage of fully
methylated, fully unmethylated, and mixed patterns of
four consecutive CpGs within single read (see Additional
file 2: Supplementary methods for details). Interestingly,
the fraction of mixed patterns within PMDs remains con-
stant in all three single cell clones while the fraction of
fully unmethylated patterns expands and the fraction of
fully methylated patterns diminishes (Additional file 2:
Figure S19C). Moreover, 20–35% of CpGs in the fully
methylated fraction loses methylation in all three clonally
expanded populations. This strongly argues for a gradual
loss of methylation coupled to cell division rather than a
clonal selection considering that the analyzed cell pop-
ulations arise from three independent single cells/donor.
Overall, our findings are in agreement with result of a
recent paper [29] which suggested that at least in cancers,
hypomethylation is unlikely to be the result of a “popula-
tion level effect” only and the extent of hypomethylation
is proportional to the cell division rate of the tissue.
A genome-wide decrease of methylation is also seen

in early human and mouse embryos [30–34]. Schroeder
et al. [35] reported that PMDs can be detected in the
oocyte and early embryos of several species but that they
are not detectable in placentae, a tissue that shows a low
level of overall DNA methylation. Upon differentiation,
the genome-wide DNA methylation levels (also in PMDs)
increase in somatic cells probably to prevent genomic and
transcriptional instability that is observed in fast prolifer-
ating cancer cells that usually show a pronounced erosion
of PMDs [11]. These findings are in line with our analysis
suggesting that while PMDs are general features of (adult)
somatic cells, proliferation, differentiation, and develop-
ment have an impact on PMD topology and genome-wide
epigenetic memory.
In general, levels of PMD methylation should be con-

sidered when comparing local epigenetic states in vitro
particularly when comparing healthy and cancerous tis-
sues to immortal cell lines. In our recent study [13], we
suggested a way to consider such global demethylation
effects for the detection of differentially methylated region
(DMR). Here, we screened for DMRs based on their devi-
ation from the global methylation change rather than

applying a fixed cutoff (for more details, see [13]). DMRs
were stratified over PMDs and HMDs such that many
DMRs simply following the global change of methyla-
tion could be excluded. In B cells, this procedure reduced
the number of DMRs within PMDs tremendously (from
28,014 to 8338 using adaptive filtering when comparing
naive B cells with plasma cells). On the other hand, DMRs,
within PMDs, that gain DNA methylation upon differen-
tiation are increased (2811 DMRs in comparison to 95
retrieved by basic thresholding method) (Additional file 2:
Figure S20). Genomic region enrichment analysis for such
DMRs using GREAT [36] provides cell differentiation and
development relevant as major terms (Additional file 2:
Figure S20). These findings demonstrate the advantage of
stratifying DMRs according to increasing and decreasing
of DNA methylation in HMDs and PMDs, affording more
insight into the biological role of the genes associated with
these DMRs.
A very important observation is that PMD and HMD

prediction can be used as a proxy for and/or support Hi-C
data when detecting and classifying TADs. When over-
laying TAD and PMD predictions, we observe that they
largely co-localize and often share the same boundaries.
Specifically, PMDs almost completely overlap with hete-
rochromatic TADs. However, we also observe that multi-
ple TADs can overlap with one single PMD. This suggests
that either PMDs cover domains larger than TADs or
indicates that Hi-C data provide a more fine-grained res-
olution for domain boundaries. Overall, we observe that
there are commonalities as well as differences when align-
ing TADs and PMDs, and their topological organization
and functional relation will have to be further investigated
to better understand their dependencies. A recent study
by Nothjunge et al. [37] showed that the establishment
of heterochromatic (B) compartments precedes PMD for-
mation. As this study only focused on DNA methylation,
it remains an open question if B compartments are indeed
established prior to a heterochromatic domain formation
which we see as one feature of cell-type-specific PMDs.

Conclusions
We provide a comprehensive analysis of PMDs for 195
human and mouse methylomes including more than 157
primary cell samples. Our analysis adds a new dimension
to studying DNA methylation on a large scale extending
beyond the context of cis-regulatory elements that has
been studied extensively. Our results show that PMDs are
an excellent classifier of cellular origin and confirm that
they are indicators of the cellular proliferation history. In
addition, PMD heterochromatic histone mark signatures
serve as an effective classifier for distinguishing early from
middle and late replication domains. ChromH3M is an
easy and straightforward framework for integrated anal-
ysis of large-scale WGBS data and can highlight specific
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combinatorial patterns of PMDs across large number
of samples. PMDs are also a useful adjusting tool for
detecting functional DMRs in highly proliferative cells.
We believe that PMDs are a crucial epitopological sig-
nature beside their role in gene regulation. Our analysis
reveals an important limitation in using cultivated cells
for disease-associated epigenetic studies as they undergo
strong changes in their epigenetic topology.

Methods
WGBS
Coverage and methylation fraction of human sam-
ples were downloaded from the Roadmap Epigenomic
Project http://egg2.wustl.edu/roadmap/data/byDataType/
dnamethylation/WGBS. Blueprint data was downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data/
homo_sapiens/GRCh38/ and then mapped to hg19 using
liftOver from UCSC [38]. DEEP data was taken from pre-
vious studies [13, 39]. Bed files containing the coverage
and methylation levels at CpG resolution from [40] were
directly used in the analysis. We list all samples with the
relevant sources in the Additional file 1.

MethylSeekR segmentation
All samples were segmented into partially methylated
domain (PMDs), lowly methylated regions (LMRs), and
unmethylated regions (UMRs) using the MethylSeekR
tool [3]. The rest of the genome, excluding gaps as
annotated by UCSC [38], was denoted as highly methy-
lated domains (HMDs). We ran MethylSeekR with default
parameters: a coverage cutoff at five reads per CpG,
methylation level threshold at 0.5, and maximum FDR of
0.05 for detection of hypomethylated regions, resulting
in a threshold of at least four CpGs per LMR, 101 CpGs
per sliding window nCGbin = 101, and smoothing over 3
CpGs. Methylation levels of both strands were aggregated
and weighted average methylation levels were plotted as
box plots across PMDs.

ChromH3M segmentation
In order to explore PMDs and find combinatorial pat-
terns across samples, we binned the genome into 1 kb
windows and annotated each of them with 1 if the
bin overlaps with a PMD and 0 otherwise across all
samples. We used ChromHMM [15] to train this bina-
rized signal with a 15-state HMM. We termed this
method “ChromH3M.” The emission probabilities and
states were hierarchically clustered using Euclidean dis-
tance and ward.D2 as an agglomeration method in the
R environment [41]. The very same analysis was per-
formed for LMRs and UMRs, respectively. To assess the
uncertainty in the hierarchical clustering, we calculated
an unbiased p value (AU p value) via multiscale boot-
strap resampling (n = 10,000). The two cell line samples

HepaRG and HepG2 were not included in ChromH3M
analysis.
The normalized mean coverage of three broad histone

marks (H3K27me3, H3K36me3, and H3K9me3), gener-
ated by the DEEP pipeline http://doi.org/10.17617/1.2W
[42], were plotted genome-wide across the PMDs with
proper flanking regions using deepTools [43]. The number
of protein-coding genes falling within PMDs was calcu-
lated, demanding a minimum of 80% of the gene length to
be overlapping with the segment. A pseudocount of 1 was
added to FPKM to avoid zeros in the box plots.
The heatmap in Fig. 3b was generated by binning the

genome into 1 kb windows and averaging the methyla-
tion levels across all samples resulting in roughly 280,000
windows which then were clustered by k-means into
six clusters and annotated with methylSeekR segments.
Samples were hierarchically clustered with ward.D2 and
Euclidean distance. Sex chromosomes were excluded from
the aforementioned analyses.

Clustering of PHH PMDs and cancer cell lines
PHH PMDs shorter than 20 kb were filtered, and a matrix
of methylation levels in 1 kb windows across PHH, Hep-
aRG, and HepG2 was calculated after normalizing all
PMDs to the same length of 150 kb using deepTools [43].
The windows were clustered with k-means method into
three clusters. H3K27me3, H3K9me3, and DNA methyla-
tion signals were plotted along PMDs of each cluster using
deepTools [43].

Analysis of replication domains
Replication timing signals were downloaded from
ENCODE project and used directly (details about this
data are available from https://www.encodeproject.org/
documents/50ccff70-1305-4312-8b09-0311f7681881/@@
download/attachment/wgEncodeUwRepliSeq.html.pdf).
A two-state HMM was used to segment the HepG2
methylation profile into highly methylated and
PMDs/hypomethylated regions using the “Hidden-
Markov” R package [44], assuming that each CpG may
have one of the two states: foreground state with high
methylation level and background state with low methy-
lation level. Regions shorter than 300 kb were filtered.
The mean coverage of replication signals (G1, S1-S4, and
G2) was calculated in 1 kb bins across normalized (to
500 kb length) and flanked PMDs (250 kb up and down-
stream) using deepTools [43]. PMDs were then clustered
using k-means into three classes: early/middle S phase,
middle/late S phase, and late S/G2 phase. The mean cov-
erage signals of H3K27me3, H3K9me3, and H3K36me3,
and DNA methylation levels were plotted across the
PMDs of each class using deepTools. The number of
protein-coding genes falling into each class was calcu-
lated, demanding 80% of the gene length to be within the
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PMD. FPKM values were plotted as box plots in log scale
with pseudocount of 1 to avoid zeros. For the prediction
of replication domains, we built a multiclass classification
model using the counts of reads of each histone mark in
1 kb bins as predictors and the three aforementioned clus-
ters as response at each PMD. We split the data into 75%
training set and 25% test set. We trained the model with
a random forest classifier and selected the model using
10-fold CV repeated five times. The prediction accuracy
was calculated based on the confusion matrix between
the predicted and the reference values. One-versus-all
accuracy was calculated and then the average accuracy
was calculated. This analysis was performed using the
caret package https://github.com/topepo/caret/ in the R
environment. The analysis of genomic regions regarding
DMRs, with and without adjusting for the global DNA
demethylation, was carried out using the GREAT tool
[36]. GO analysis was done using DAVID [16, 17].

Chromatin state segmentation
All Chip-Seq samples, listed in Additional file 2, were pre-
processed starting from raw BAM files as follows: dupli-
cate reads were removed using samtools version 1.3 with
the filter “-F 1024.” Regions of known artifacts (“blacklist
regions”) taken from the ENCODE project https://www.
encodeproject.org/ [20], which we adapted to account for
differences between ENCODE’s hg19 and DEEP’s hs37d5
assembly, were filtered out using bedtools version 2.20.1
with the subcommand “pairtobed” and the option “-type
neither.” After preprocessing, the filtered BAM files for
all six histone marks plus Input were used as input for
the chromatin state segmentation using ChromHMMver-
sion 1.11 (Java 1.7) with default parameters. We did not
train a dedicated ChromHMMmodel for our dataset, but
used the available ROADMAP 18-state model [45] to ben-
efit from its biologically meaningful state labeling, which
enabled us to immediately interpret the chromatin state
maps in the context of this work.

HepG2 Hi-C
HepG2 cells have been fixed for 10 min using 1%
formaldehyde in D-MEM and quenched for 5 min in
125 mM glycine. After two PBS washes, cells have been
collected by scraping them off the plate and snap-frozen
in liquid nitrogen. Hi-C experiments have been conducted
as previously described [23], with the following modi-
fications. Nuclei from cell pellets containing about four
million of cells have been extracted by sonication [46]
using the following parameters: 75 W peak power, 2%
duty factor, 200 cycles/burst, and 180 s, using Covaris
milliTubes and Covaris E220 sonicator. After nuclei per-
meabilization, chromatin has been digested overnight at
37 ◦C using HindIII high fidelity (80 units per million
cells; R3104S, NEB). Biotin incorporation has been car-
ried out at 37 ◦C for 1 h in 300 μl volume using these

reaction conditions: 50 mM of each nucleotide (dATP,
dTTP, dGTP, biotin-14-dCTP, from Life Technologies,
19518-018) and 8 U of Klenow (NEB, M0210L). Ligase
mix has been added to each sample followed by 4 h of
incubation at room temperature under rotation. After
nuclei lysis, protein digestion and overnight de-crosslink,
DNA has been precipitated and sonicated to 100–600
bp. Biotinylated DNA has been pulled down as previ-
ously described. One hundred nanograms of DNA bound
to beads have been used for library preparation using a
modification of the NEBNext Ultra DNA library prepa-
ration workflow (NEB, E7370). DNA bound to beads has
been end-repaired, A-tailed, adaptor-ligated, and USER-
treated following manufacturer’s instruction. After a bead
wash, DNA has been eluted from the beads by incubat-
ing at 98 ◦C for 10 min. Adaptor-ligated DNA has been
PCR amplified using 7 PCR cycles. Libraries have been
sequenced paired-end, with a read length of 75 bp, on the
Illumina NextSeq 500 instrument.

Hi-C data processing
Reads were mapped to the human reference genome hg19
(37d5) using bowtie2 [47], and then samtools [48] was
used to convert the reads to BAM format. A matrix of
read counts over the bins in the genome, considering
the sites around the restriction site AAGCTT was built
using the hicBuildMatrix function fromHiCExplorer [23].
Ten bins were merged with hicMergeMatrixBins and then
the matrix was corrected for GC bias and very low/high
contact regions. To compute the TADs we first calcu-
lated the TAD scores by “hicFindTADs TAD_score” com-
mand with the following parameters “–minDepth 300000
–maxDepth 2000000 –step 70000” and then TADs were
identified by “hicFindTADs find_TADs” command. The
interaction matrix and other signal tracks were also visu-
alized using HiCExplorer.

Comparison between TADs and PMDs
To test the consistency between TAD borders and PMD
borders, we generated an equally sized set of random-
ized borders and calculated the shortest distance between
TAD borders and (i) PMD borders and (ii) the random-
ized borders. A Wilcoxon test was carried out between
the two distance distributions. To calculate the overlap
between PMDs and heterochromatic TADs (generated as
described above), we classified TADs using histone marks
into two classes by k-means from deepTools. One class
is enriched by heterochromatic marks and the other by
euchromatic mark. We counted the number of overlap-
ping base-pairs between PMDs and the heterochromatic
TADs and then plotted the results as venn diagrams. The
comparison was done for liver and HepG2. In this analy-
sis, PMDs within a distance of 50 kb were fused and only
those longer than 300 kb were included. This was done to
exclude intersecting LMRs and UMRs.
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European Genome-phenome Archive (EGA), which is hosted by the EBI and
the CRG, under accession number EGAS00001003157. All DEEP samples were
uniformly processed as described in [13] according to DEEP pipelines [42, 55].
ChromH3M code has been deposited at Zenodo [56] and is available from
GitHub [57].
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Figure S1 

 

 

Figure S1. PMDs length distribution. The mean length distribution of PMDs is ~150 kb 
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Figure S2

Figure S2. PMDs are gene-poor regions. Number of genes and their FPKM values in

PMDs/HMDs in one cell line (HepaRG) and two primary cells (hepatocytes and effector memory T-

cells).
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Figure S3

Figure S3. ChromH3M workflow. MethylSeekR is applied to each sample to identify PMDs. 1Kb 
bins across the genome are annotated with 1/0 according to presence/absence of PMD for each sample.
The binarized signal is loaded into ChromHMM and a model with 15 states is trained. The emission 
probabilities and states are then hierarchically clustered.
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Figure S4

Figure S4. Dendrograms calculated from emission probabilities derived from ChromH3M model for
PMDs, LMRs and UMRs analyzed with 10000 bootstrap replications. Red values are AU
(Approximately Unbiased) p-value and green values are BP (Bootstrap Probability) value. Colored
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boxes are the clusters with AU greater than 97% and they contain the same samples across the analyzed
three segments. The two shaded boxes in UMRs correspond to the two same colored boxes (blue and 
brown) in LMRs and PMDs. 
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Figure S5

Figure S5. Cell-type specific PMDs/FMRs and their heterochromatic signature. The left panel

represents the broad histone mark signals of four cell types; hepatocytes, monocytes, machrophages

and T-cells in hepatocyte-specific HMDs together with FPKM values of the associated genes. The

right panel is the same but for B/T cell-specific PMDs.
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Figure S6

Figure S6. hepatocyte gene specific locus. Two hepatocyte gene families CYP and FMO which have 
been identified to be part of state10 displayed in Figure 2A.
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Figure S7

Figure S7. Analogous to Figure 2A for mouse data
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Figure S8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S8. Epigenetic modification signatures in PHHPMDs. DNA-methylation, H3K36me3, 

H3K27me3 and H3K9me3 signal across the gene bodies in three classes according to Figure 3C. 
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Figure S9

Figure S9. chromatin state segmentation. Emission probabilities of ChromHMM model and 
ChromHMM segments fraction related to Figure 3A. labels are the following:

PHH HepaRG HepG2

1_TssA: Active TSS, 2_TssAFlank: Flanking active TSS, 3_TxFlankU: Flanking TSS Upstream,
3_TxFlankD: Flanking TSS Downstream, 5_Tx: Strong transcription, 6_TxWk: Weak transcription, 
7_EnhG1: Genic enhancer1, 7_EnhG2: Genic enhancer2, 9_EnhA1: Active Enhancer 1,
10_EnhA2: Active Enhancer 2, 11_EnhWk: Weak Enhancer, 12_ZNF/Rpts: ZNF genes & repeats,
13_Het: Heterochromatin, 14_TssBiv: Bivalent/Poised TSS, 15_EnhBiv: Bivalent Enhancer, 
16_ReprPC: Repressed PolyComb, 17_ReprPCWk: Weak Repressed PolyComb, 18_Quies: Quiescent/Low
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Figure S10

Figure S10. DNA methylation erosion is accompanied by increasing of heterochromatic marks.
Methylation levels across selected ChromHMM segments showing that DNA-demthylation is 
accompanied by heterochromatization in HepaRG. labels are the following:

methylation

heterochromatin

5_Tx: Strong transcription, 6_TxWk: Weak transcription, 12_ZNF/Rpts: ZNF genes & repeats,
13_Het: Heterochromatin, 16_ReprPC: Repressed PolyComb, 17_ReprPCWk: Weak Repressed PolyComb
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Figure S11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11. PMDs and heterochromatic marks demarcate distinct domains of late DNA-

replication. Heterochromatization at PMDs during cell cycle in IMR90 (related to Figure 4A, B of 

HepG2) 
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Figure S12

Figure S12. Cluster lengths 
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Figure S13

Figure S13. Clusters percentage of the genome

51



Figure S14

Figure S14. TAD lengths. TAD lengths in log10 scale for HepG2 and liver. The number above each 
boxplot represent the number of TADs for the corresponding sample.
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Figure S15

Figure S15. Distance distribution between TAD borders and PMD borders. TAD borders are 

closer to PMD borders than randomized set of borders according to Wilcoxon test (p-value < 2.2e-

16). Fg (in red) represent the distance distribution between TAD borders and PMD borders. Bg (in 

green) represent the distance distribution between TAD borders and randomized test borders.

(bp)
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Figure S16

Figure S16. PMDs and heterochromatic TADs overlap. 94% of PMDs overlap with 

heterochromatic TADs in HepG2 and liver. Heterochromatic TADs in HepG2 form ~ 2.25 Gb of the

genome while they are less in liver ~ 2.0 Gb.  

Heterochromatic_TADs

PMDs

liver

Mb Mb Mb

Heterochromatic_TADs

PMDs

Mb MbMb

HepG2

54



Figure S17

Figure S17. Number of the genes and FPKM values in some gene classes in each cluster
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Figure S18

Figure S18. Gene lengths in some gene classes in each cluster
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Figure S19

Figure S19: Clonal cultures of T memory cells. (A) Workflow of the designed experiment for T 
memory single cell expansion (details in the supplementary materials). (B) Average methylation across 
the three donors (ex vivo + in vitro cloned single cells) in PMDs/HMDs (as defined by TEM sample in 
Durek et al). A clear loss of methylation in PMDs of in vitro samples was obsereved. (C)  CpG pattern 
class distributions in the PMDs/HMDs/others (as described in the supplementary materials). The 
fraction of mixed patterns (green), in PMDs, does not change due to the expansion process. The 
fraction of fully methylated patterns (blue) decreases and is compensated by an increase in the 
unmethylated patterns (red).
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Figure S20

Figure S20. Adaptive filtering. DMRs analysis of B-cells during differentiation using the adaptive

filtering method from Durek et al 2016. naive=Naive B-cells, gc=germinal center B-cells, mem= 

memory B-cells. Significant DMRs are annotated as HMDs+/- or PMDs+/-. Gene enrichment 

analysis for HMD+ and PMD- was performed using GREAT tool.
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Supplementary methods
Clonal cultures of T memory cells
CD4+ T memory cells (CD3+ CD4+ CD45RA- CD45RO+ CD25-) from three different donors were 
sorted by flow-cytometry either as a bulk culture ('ex vivo' sample) or in a single-cell format into 96 
well-plates. Single cells were cultured in the presence of a TCR stimulus (human T Cell 
Activation/Expansion Kit, Miltenyi Biotech) and human interleukin-2. After expansion, single clonal 
cultures were picked and treated with bisulfite for RRBS analysis. All three ex vivo and the matching 
three clones were sequenced.

CpG patterns analysis:
We considered four consecutive CpGs to be in the same read and classified the patterns into three 
classes; fully methylated patterns (Fully), fully unmethylated patterns (Un) and the remaining pattern 
combinations are “mix”. We calculated the fraction of each pattern genome wide in each ex vivo and 
the matched cloned sample. The patterns were stratified across HMDs and PMDs as defined from 
Figure 3A in the MS. We considered cluster 1 as “HMDs”, cluster 5 as “PMDs” and the remaining 
clusters as “others”.

References
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SUMMARY

The impact of epigenetics on the differentiation of
memory T (Tmem) cells is poorly defined. We gener-
ated deep epigenomes comprising genome-wide
profiles of DNA methylation, histone modifications,
DNA accessibility, and coding and non-coding RNA
expression in naive, central-, effector-, and terminally
differentiated CD45RA+ CD4+ Tmem cells from blood
and CD69+ Tmem cells from bone marrow (BM-
Tmem). We observed a progressive and prolifera-
tion-associated global loss of DNA methylation in
heterochromatic parts of the genome during Tmem
cell differentiation. Furthermore, distinct gradually
changing signatures in the epigenome and the tran-

scriptome supported a linearmodel ofmemory devel-
opment in circulating T cells, while tissue-resident
BM-Tmembranched off with a unique epigenetic pro-
file. Integrative analyses identified candidate master
regulators of Tmem cell differentiation, including the
transcription factor FOXP1. This study highlights the
importance of epigenomic changes for Tmem cell
biology and demonstrates the value of epigenetic
data for the identification of lineage regulators.

INTRODUCTION

CD4+ T helper (Th) cells orchestrate the quality and quantity of

an adaptive immune reaction and contribute to immunity by
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generating a pool of long-livedmemory (Tmem) cells, which arise

from naive T (Tn) cells after activation by primary antigen

encounter. Tmem cells are per se resting, almost non-dividing

cells, which can be subdivided into subpopulations based on

marker expression, tissue localization and functional properties.

Central memory (Tcm) cells appear most similar to Tn cells with

respect to their ability to recirculate through blood and lymphoid

tissues, the limited effector cytokine commitment, and their high

proliferative capacity (Sallusto et al., 1999). In contrast, T effector

memory (Tem) cells preferentially home to peripheral tissues and

show commitment for the selective production of effector cyto-

kine panels (e.g., IFN-g, IL-4, and IL-17) characteristic of their

functional subtype (Th1, Th2, and Th17, respectively). Their ca-

pacity to expand and differentiate is more limited than that of

Tcm cells—a feature also found for the so far poorly character-

ized CD4+ terminally differentiated CD45RA+ memory (Temra)

cells (Henson et al., 2012), which feature expression of selected

markers of Tn cells (e.g., CD45RA). In addition to these popula-

tions circulating through the blood, recent studies have high-

lighted the importance of tissue-resident memory cells (Carbone

et al., 2013; Schenkel and Masopust, 2014). CD4+ Tmem cells

from the bone marrow (BM-Tmem) have been shown to consti-

tute a major part of long-term memory in mouse and man

(Okhrimenko et al., 2014; Tokoyoda et al., 2009).

The developmental relationship of Tmem cell subsets is not

well defined. The question whether different Tmem subtypes

represent stages in a sequential linear differentiation process,

or whether they branch into different sublineages from early acti-

vation stages is still a subject of controversy (Ahmed et al., 2009;

Flossdorf et al., 2015; Harrington et al., 2008; Kaech and Cui,

2012). Similarly, master regulators controlling the transit from

naive to memory stages, particularly in the human system, are

largely unknown, partially due to the lack of suitable experi-

mental systems.

Epigenetic mechanisms play a key role in cell differentiation

by controlling expression programs that are stable over time

and through cellular generations and hence are prime candi-

dates for the imprinting of stable, heritable expression profiles.

Because Tmem cells do not revert to the naive stage, their

cellular program seems to be permanently switched, pointing

toward epigenetic regulation. Main players in epigenetic regu-

lation are DNA methylation (DNA-meth), histone modifications,

and non-coding RNAs, which together direct the rearrange-

ment of the chromatin to promote or to prevent expression

of the affected genes. Genome-wide analysis of such epige-

netic marks therefore allows for conclusions not only on the

current gene expression status but also facilitates insights

into the history and the future potential of cells. To date only

a few studies on mouse Tmem cells have been published, re-

porting limited datasets (Crompton et al., 2016; Hashimoto

et al., 2013; Komori et al., 2015; Russ et al., 2014). A deep

and systematic genome-wide analysis of the epigenetic land-

scape during human CD4+ Tmem cell differentiation is

currently lacking.

As part of the International Human Epigenome Consortium

(IHEC) and the German Epigenome Programme (DEEP), we

generated comprehensive epigenomic maps of ex vivo isolated

isogenic human CD4+ Tn cells and several Tmem cell subsets

from the blood and the bone marrow to address the question

of whether and how the epigenome contributes to the formation,

maintenance, and function of Tmem cell populations in humans.

Our data support a model of linear differentiation for circulating

human Tmem cells—a topic so far studied only in the murine

system. In addition, we find that many known molecular regula-

tors of Tmem cells are under epigenetic control and that epige-

netic changes point to novel regulator candidates, which are

likely to be involved in Tmem cell differentiation.

RESULTS

Generation of Genome-Wide Epigenetic Datasets of
Human CD4+ Tn Cells and Tmem Cell Subsets
To generate comprehensive epigenomic datasets (i.e., class I

epigenomes according to the IHEC standards) for the key

differentiation stages of human CD4+ Th cells, we sorted

CD4+ Tn, Tcm, Tem, and Temra cells from the peripheral blood

of healthy human donors by flow cytometry (Figure S1A). To

obtain sufficient cell numbers for the subsequent analyses

and to mitigate potential inter-donor variations, we used

pooled samples of 3–10 female donors (Table S1). For Tn,

Tcm, and Tem, analyses of all epigenetic parameters within

one replicate were carried out in parallel, i.e., were derived

from the same genetic donor pool and therefore represent

isogenic samples. For each sample we determined (1)

genome-wide DNA-meth profiles, by whole-genome bisulfite

sequencing (WBGS) or by reduced representation bisulfite

sequencing (RRBS), (2) DNA accessibility maps by nucleo-

some occupancy and methylome sequencing (NOMe-seq),

(3) high-resolution histone modification maps (by Chromatin

Immune-Precipitation sequencing, ChIP-seq) for H3K4me1

( = mono-methylation of lysine 4 on histone 3), H3K4me3,

H3K9me3, H3K27ac, H3K27me3, and H3K36me3 and, (4)

transcriptomes for total RNA (depleted from ribosomal

RNAs), messenger RNAs (mRNAs), long non-coding RNAs

(lncRNAs), micro RNAs (miRNA), and circular RNAs (circRNA)

by deep sequencing of three different RNA libraries (polyade-

nylated RNAs, small RNAs, and total RNAs depleted from

ribosomal RNAs). A selection of these datasets (Figure S1B)

was generated for CD4+ BM-Tmem cells, which were se-

parated into the CD69+ tissue-resident and the circulating

CD69� subsets (Figure S1A).

Progressive Segmented Loss of DNA-Meth Correlates
with Tmem Cell Differentiation
We profiled the DNA-meth landscape in Tn, Tcm, Tem, and

Temra cells using WGBS and observed a strong progressive

loss of DNA-meth in the order Tn-Tcm-Tem-Temra with mean

methylation levels for the entire genome dropping from 84% in

Tn to 67% in Temra (Figure 1A). Loss of methylation predomi-

nantly occurred in large domains of up to several hundreds of ki-

lobases (kb), which were decorated with the repressive histone

marks H3K27me3 and H3K9me3 (Figure 1B and Figure S2A).

Such regions are referred to as ‘‘partially methylated domains,

PMDs’’ and can be identified using established software pack-

ages (‘‘MethylSeekR,’’ Burger et al., 2013). PMDs contrasted

with broad regions that were uniformly fully methylated (‘‘fully

methylated regions,’’ FMRs, by MethylSeekR) and to peaks of

strong consistent de-methylation typically found in CpG islands
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(‘‘unmethylated regions,’’ UMRs) and transcriptional control re-

gions (e.g., CpG-low promoters and enhancers, ‘‘lowmethylated

regions,’’ LMRs). PMDs showed the strongest loss of methyl-

ation of all MethylSeekR segments (Figure 1C) and covered up

to 67% of the genome (in Tem cells; Figure S2B). Hence,

PMDs were responsible for the bulk of the observed global

DNA de-methylation in Tmem cell populations. PMD-associated

genes generally showed low expression levels compared to

FMR-associated genes and were fewer in number (Figure S2C).
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Figure 1. Global Loss of DNA-Meth in

Tmem Cells Occurs in Large Heterochro-

matic Regions

(A) Circle plots of WGBS data (Tn, Tcm, Tem of

donor pool Hf03, and Temra, Hf05) are shown.

Mean methylation levels in 10 Mb blocks are

depicted as color-coded (white-blue) bars. Heat-

maps (blue-red) indicate the methylation differ-

ence between the adjacent subsets. Total mean

methylation for each cell type is given in the center.

(B) Exemplary genomic view of Tn, Tcm, Tem

(Hf03 samples), and Temra (Hf05), displaying ex-

amples of the genomic segments called by the

MethylSeekR software from WGBS data (indi-

cated with boxes): PMD, partially methylated

domain; FMR, fully methylated region; LMR, low

methylated region; UMR, unmethylated region.

The following tracks are shown (top to bottom,

each for Tn, Tcm, Tem, Temra): Genes annotated

in RefSeq; MethylSeekR-segments; DNA-meth

(WGBS); 6 indicated histone modifications;

total RNA.

(C) Weighted average DNA-meth across the

MethylSeekR segments.

(D) Weighted average methylation across PMDs in

B cells (data from the BLUEPRINT project, see

Accession codes in Experimental Procedures).

Bnai, naive B cells (ERX625136); Bgc, geminal

center B cells (ERX715129); BmemCS, class-

switched memory B cells (ERX625127); Bpc,

plasma cells (ERX301127).

(E) PCA of DNA-meth data (based on WGBS).

CpGs with min. coverage = 5 were considered;

only CpGs with calls in all indicated samples

were used.

We observed a similar segmented loss

of global DNA-meth when re-examining

DNA-meth profiles from B cells pub-

lished by the BLUEPRINT consortium

(Kulis et al., 2015). Here too, PMDs

were the genomic segments that dis-

played progressive loss of DNA-meth

with differentiation into memory B cells

and antibody-secreting plasma cells

(Figure 1D), indicating that this phenom-

enon is shared during lymphocyte

development.

In a principal-component analysis

(PCA), the blood-derived T cell subsets

were placed along the main principal

component 1 (PC1), in the order Tn-

Tcm-Tem-Temra (Figure 1E), which

mirrors the DNA de-methylation in PMDs. Temra cells fell at

the extreme position along PC1 in relation to Tn cells, suggest-

ing that they are the most differentiated population. However,

their inter-donor pool variation was larger compared to other

cell types (Figure S2D). In contrast to Temra cells, BM-Tmem

cells took an ‘‘intermediate’’ position on PC1 close to circu-

lating Tcm and Tem cells, indicating that their epigenetic

imprint toward terminal differentiation is less pronounced

(Figure 1E).
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These data show that DNA de-methylation in heterochromatic

parts of the genome accompanies Tmem cell differentiation in

the order of Tn-Tcm-Tem-Temra with BM-Tmem cells clustering

with the Tcm and Tem cell populations.

Comprehensive Transcriptome Analyses Reveal a
Progressive Change with Tmem Cell Differentiation in
the Order of Tn-Tcm-Tem-Temra
We generated full transcriptomes by RNA-seq and determined

expression profiles for total RNA, mRNAs, miRNAs, lncRNA,

and circRNA for Tn cells and Tmem subsets. Our analysis

identified previously described RNAs, as well as previously un-

known RNAs (including 981 novel miRNAs, 173 lncRNAs, and

4,826 candidate circRNAs) and many differentially expressed

RNAs between the T cell subtypes (Tables S2–S4).

We performed PCA on each of these functionally independent

RNA species. Our analysis revealed a consistent pattern with

respect to the main component PC1: for all RNA species, the cell

types fell along this axis in the strict order of Tn-Tcm-Tem-Temra

(Figure 2A). As observed for DNA-meth, BM-Tmem cells took an

intermediate position close to Tcm and Tem cells from the blood

rather than resembling the most terminally differentiated Temra

cell population. For total RNAand lncRNAs,PC2 indicated proper-

ties of Tn that were recapitulated in Temra cells and distinguished

them from the othermemory subsets. Inter-donor pool differences

were generally small, except in the miRNA datasets, in which one

donor pool became separated by PC2 from all others. Thus, the

consistent arrangement of the T cell subtypes on PC1 for all RNA

species indicated a progressive change of the transcriptome

during Tmem cell differentiation (Tn-Tcm-Tem-Temra).

To validate this further, we performed a co-expression

network analysis using the Tn, Tcm, and Tem samples and

focused on the 700 most variable genes or on transcriptional

regulators (TRs). The topology of both networks showed similar

features, with two major gene clusters and a smaller number of

genes connecting these two clusters (Figure 2B). Overlaying

the expression differences of the included genes revealed

that one major cluster was defined by Tn-, the other by Tem

cell-associated genes. Tcm cell-associated genes mainly con-

nected the two main clusters, indicating that this population

indeed represents an intermediate stage of T cell differentiation.

An additional bioinformatic approach was used to evaluate the

mode of differentiation. We used the degree of similarity of the

entire transcriptomesbetweenTn, Tcm, andTemcells andcalcu-

lated the likelihood of possible differentiation models: two linear

models in the order of Tn-Tcm-Tem or Tn-Tem-Tcm and one

bifurcatedmodel inwhichTcmandTemcells arise independently

from Tn. As shown in Figure 2C, the linear Tn-Tcm-Tem model

had the highest cosine similarity score of 0.98 (max = 1) and

was significantly different from the other two models (p < 10�16).

These data show that the transcriptome changes progres-

sively during Tmem cell differentiation in the order of Tn-Tcm-

Tem-Temra.

Chromatin Accessibility and DNA-Meth Analyses
Support a Linear Model of Differentiation for Circulating
Tmem Cells
We wanted to clarify whether the linear relationship between the

Tmem cell subsets (Tn-Tcm-Tem-Temra) apparent from the

DNA-meth and transcriptome data (Figures 1E and 2A), could

also be deduced from epigenetic imprints in the chromatin struc-

ture. For this, we first analyzed genome-wide DNA accessibility

maps, which were generated by NOMe-seq. In a PCA, again a

linear arrangement of the blood-derived T cell subsets in the

order of Tn-Tcm-Tem-Temra was visible on the 2nd most impor-

tant component PC2 (Figure 2D). However, the different popula-

tions were generally less stringently separated. The main

component PC1 separated the replicates Hf03 and Hf04 from

Hf06, which reflected a slight change in the NOMe protocol

between these samples (Figure S2E and Supplemental Experi-

mental Procedures). In addition, when we called accessible

( = nucleosome-depleted) regions (NOMe-peaks) from Tn,

Tcm, and Tem cells and compared their degree of accessibility

between the cellular subtypes, the vast majority of sites gained

or lost accessibility in the order Tn-Tcm-Tem (Figure 2E).

Next, we analyzed global DNA-meth profiles (by RRBS) of

blood- and bone-marrow-derived Tmem cell subsets, with the

latter population subdivided into a tissue-resident CD69+ and a

circulating CD69� fraction (CD69 being a regulator of tissue

egress and marker for tissue-resident cells; Sathaliyawala

et al., 2013). While the CD69� fraction clustered closely to Tcm

and Tem cells from the blood, the CD69+ tissue-resident

BM-Tmem subfraction deviated from its CD69� counterpart,

as well as from blood-derived circulating populations in PC2

(Figure 2F), indicating a major epigenetic imprint for their tissue

residency and specialized function.

Taken together, our results from epigenomic and trans-

criptomic analyses support a linear model of differentiation for

circulating Tmem cells from the blood with the bone-marrow-

resident (CD69+) T cell population deviating early and displaying

a specific epigenetic imprint (Figure S2F).

Changes in DNA-Meth of Transcriptional Control
Elements Are Associated with Tmem Cell
Differentiation
DNA-meth can control the expression of genes, which are

required for the maintenance of lineage identity, as found for

Foxp3 in regulatory T cells (Huehn et al., 2009). This holds true

also for CD4+ Tmem cells, as we found a correlation between

DNA-meth andgene-expression changes,whenweusedan inte-

grative sparse linear regression model measuring DNA-meth in

promoters and gene bodies (Figure S2G). While the highest

impact on gene expression was computed for predicted TF bind-

ing in accessible chromatin sites (NOMe peaks around genes),

DNA-meth had a higher regulation potential than miRNAs.

With our genome-wide epigenetic datasets we therefore

strived to (1) elucidate to what extent DNA-meth is involved in

the regulation of known key Tmem cell checkpoint regulators,

and (2) investigate whether epigenomic data could identify novel

transcriptional regulators of Tmem differentiation.

For this, we called differentially methylated regions (DMRs)

from the WGBS datasets, using the Metilene software (J€uhling

et al., 2016) applying strict selection criteria (min. #CpGs = 5;

min. coverage = 5 reads) and a context-sensitive filtering step

to reduce the contribution of the global de-methylation effect

observed in PMDs (‘‘adaptive filtering,’’ Supplemental Experi-

mental Procedures). This approach resulted in 1670 DMRs

between Tn, Tcm and Tem cells (Table S5) associated with
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970 protein-coding genes. These DMRs seemed functionally

relevant for the regulation of gene expression as most of them

were located within or proximal to genes and were classified

as promoters or enhancers according to their histone modifica-

tion profile (Figure S3A). The majority of these DMRs showed a

continuous (Tn > Tcm > Tem, 47%) or early (Tn > Tcm and

Tem, 26%) decrease in DNA-meth with Tmem cell generation

(Figure 3A).

Next, we analyzed the correlation between DNA-meth

changes and gene expression and found that 516 of the DMRs

(36%) displayed an inverse correlation to gene expression (Fig-

ure S3B). Such DMRs showed the paradigm mode of gene
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Figure 2. Progressive Changes in the Transcriptomes and in the DNA Accessibility Profiles Support a Linear Differentiation Model for

Circulating Human CD4+ Tmem Subsets

(A) PCAs of different RNA species for Tn, Tcm, Tem, Temra cells from blood, and Tmem cells from the bone-marrow (BM-Tmem).

(B) Co-regulation network based on the top 700 most variable genes in the dataset (top) or based on transcriptional regulators (TRs, bottom). Nodes represent

genes colored according to the corresponding fold-change to mean expression. Links are unweighted and represent significant correlations.

(C) Three possible differentiation models (x axis) were compared using a designed similarity score (y axis), based on the hypothesis, that T cells that are closer to

each other in the differentiation order should showmore similar gene-expression profiles. The plot shows the distribution of similarity scores obtained (error bars

denote SD estimated from 100.000 bootstrap samples). A significantly higher score was obtained for Tn-Tcm-Tem compared to the other models (bootstrapped

t test p value).

(D) PCA of DNA accessibility data (based on NOMe-seq data).

(E) Visualization of the degree of DNA accessibility (quantile-normalized GCHmethylation levels) in consistent nucleosome depleted regions (NOMe-peaks) with a

statistical difference between at least two cell types. Bars denote mean and SD.

(F) PCA of DNA-meth data (based on RRBS data). CpGs with min. coverage of 5 were considered; only CpGs with calls in all indicated samples were used.
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regulation by DNA-meth, in which transcriptional control ele-

ments, such as promoter and enhancers, are repressed by

increased DNA-meth, whereas a loss of DNA-meth at these ele-

ments leads to gene activation. Other DMRs were associated

with genes by location, which (1) were not expressed in any

cell type, (2) the expression of which did not change, or (3) the

expression change correlated to the methylation change (Fig-

ure S3B). These classes of DMRs might serve different functions

such as (1) preparing a locus for gene expression upon additional

environmental signals or locking a locus to prevent alternative

cellular fates, (2) stabilizing otherwise transient gene expression,

or (3) affecting sites acting as silencers. Furthermore, it cannot

be excluded that some DMRs might also act as long-range reg-

ulators for distant genes.

These data show that in addition to the large-scale DNA de-

methylation in PMDs, transcriptional control elements such as

promoters and enhancers are targets of epigenetic regulation

during Tmem cell differentiation.

Known Regulators of Tmem Differentiation
and Function Display DNA-Meth Changes
in Transcriptional Control Regions
To test the assumption that key factors regulating Tmem differ-

entiation and function are under epigenetic control, we extracted

a list of 144 known memory-related genes according to recent

reviews (Figure S3C) and checked for the occurrence of DMRs

in their loci. One quarter of these Tmem cell-related genes dis-

played one or several DMRs (Figure 3B), 95% of which were

associated with a promoter or enhancer histone signature

(Table S5). The largest group lost DNA-meth with progressive

differentiation, which correlated with an increase in expression

(Figure 3B). Among them were genes upregulated upon differ-

entiation from naive to memory states, including surface or intra-

cellular receptors such as PDCD1 (PD-1), IL2RA, and IL2RB,

NOD2, SLAMF1, and TNFRSF1B, but also many transcriptional

regulators such as RUNX3 (Figure 3C, top), NFATC2, BATF,

MAF, TBX21 (T-BET), the CD45-splicing regulator HNRNPLL,

PRDM1 (BLIMP-1), DUSP4, DUSP5, STAM, TOX, and ZEB2. In

a smaller group, increased methylation was linked with

decreased expression. This group included the signature

markers of Tn and Tcm SELL (L-SELECTIN; Figure 3C, middle)

and CCR7, but also several key transcriptional regulators,

namely TCF7 (encodes TCF-1; Figure 3C, bottom), LEF1, and

BACH2, which are known to control the development or mainte-

nance of Tmem cells. In a few genes (FOXO1 and BACH2), loss

of DNA-meth was associated with a decrease in expression;

accordingly, these DMRs might control transcriptional silencers.

In other cases (NOTCH1, SLFN12L, RPTOR, ZBTB32, RBPJ),

a change in methylation was not correlated to changes in

expression. It is of high interest to investigate whether loss of

DNA-meth in genes of this group is not a requirement for expres-

sion but might act by stabilizing transcription, as was found

previously for the TSDR (CNS2) enhancer region in the FOXP3

locus (Huehn et al., 2009; Polansky et al., 2008).

While a causal role of DNA-meth in the regulation of these

genes remains to be experimentally demonstrated, these find-

ings provide evidence that epigenetic mechanisms contribute

to the developmental regulation of Tmem cells by controlling

the expression of key genes.

Integrative Analyses of Epigenomic and Transcriptomic
Datasets Facilitate the Identification of Functional
Regulator Candidates for Tmem Differentiation
In addition to screening for known developmental regulators,

a reciprocal approach can be applied, in which the occurrence

of DMRs is used to identify novel candidate genes that might

be involved in the control of Tmem differentiation and which un-

dergo direct epigenetic expression control. To this end, 171

DMRs associated with 104 transcriptional regulator genes

were identified (Table S5), indicating that these genes might

contribute to memory development and maintenance. This list

included the gene FOXP1.

While these candidates seem to undergo direct expression

control by DNA-meth, a different class of regulators might gain

or lose functional importance for Tmem cell development and/

or function because their binding sites in target genes are being

exposed (or blocked) by chromatin remodeling. To identify such

‘‘functional epigenetic’’ regulators, we used an alternative

approach combining DNA accessibility data and transcriptomic

data. In this, the impact of a given TF on the transcriptional profile

is determined by the accessibility of its binding sites within pro-

moters and enhancers in its target genes. We used our DNA

accessibility dataset (NOMe-seq data) and computed TF binding

affinities to open chromatin regions (NOMe-peaks). Using a

machine learning approach (Schmidt et al., 2016), we modeled

differential gene expression between T cell subsets based on

these TF binding predictions. In this, the impact of each TF to

the differential transcriptional profile is calculated and TFs with

a strong influence can be extracted. Indeed, comparison of

modeled to observed gene-expression changes, as measured

by RNA-seq, displayed a high accuracy (Figure S4A) supporting

the validity of the approach. A number of regulatory TF candi-

dates for Tn cells and Tmem subsets could be extracted (Fig-

ure 4A and 4B). The lists comprised TFs known to control

Tmem cells, such as BCL6, E2F2, and RUNX3, as well as new

candidates, including AHR, CREB1, ETS1, FLI1, FOXP1,

FOXJ3, NFEL2, NRF1, RFX3, and ZFP161. For a number of these

(e.g., AHR, FLI1, FOXP1, and RUNX3), we also found an associ-

ated DMR in their genes and differential expression during Tmem

cell differentiation (Table S5), indicating that these factors not

only drive transcriptional profiles during Tmem differentiation

but are under epigenetic regulation themselves.

Figure 3. Epigenetic Changes in Known Tmem Cell-Related Genes

(A) Patterns of DNA-meth changes in differentially methylated regions (DMRs). DMRs changing in the order Tn-Tcm-Tem are shown in the upper row.

cnt., continuous; inter., intermediate; decr., decrease; incr., increase. Bars denote mean and SD.

(B) List of known Tmem cell-related genes (based on Figure S3C) which display at least one DMR in their loci (color legend shown on the bottom).

(C) Examples of DMR-containing Tmem regulator genes (RUNX3, top; SELL, middle; TCF7/TCF-1, bottom) showing the location of the identified DMRs (red, top

track). The following tracks are shown in each panel (top to bottom, each for Tn, Tcm, Tem): Gene annotation from RefSeq; DNA-meth (WGBS); polyA-RNA;

genome segmentation by EpicCSeg (color legend shown on the bottom).
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With these analyses we identified several promising new TFs

from epigenomic data which are likely to be involved in Tmem

cell generation and function.

FOXP1 Is an Epigenetically Controlled ‘‘Naive-Keeping’’
Checkpoint Regulator
We found the TF FOXP1 to be a particularly interesting candidate

for Tmem cell regulation due to several reasons: First, a DMR in

the FOXP1 locus displayed increasing DNA-meth, concomitant

with decreased mRNA levels from Tn to Tem (Table S5); second,

FOXP1 was predicted to bind to accessible chromatin regions

and thus contribute to differential gene expression in Tn versus

Tem (Figure 4); and third, FOXP1 was among the top predicted

Tn cell-specific regulators according to an iRegulon (Janky

et al., 2014) analysis (Figure S4B), which is based on the enrich-

ment of TF binding sites in genes contributing to the cell-type-

specific clusters shown in Figure 2B. Therefore, we selected

the TF FOXP1 for a more detailed investigation.
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Figure 4. Selection of Tmem Cell Regulator Candidates Based on Their Predicted Binding Affinities in Open Chromatin Regions of Differen-

tially Expressed Genes

(A) Bar plots showing normalized feature values (y axis) for each TF (x axis) computed using amachine learning approach (based on logistic regression classifiers)

to predict differentially expressed genes in pairwise comparisons of two cellular subtypes. Differences in predicted TF affinities, calculated from open chromatin

regions (NOMe-peaks) in the vicinity of a gene, were used as features in the classification. Large feature values denote a higher impact of the TF on differential

gene expression.

(B) Summarized representation of all selected TFs shown in (A). Filled boxes reflect that a TF (column) has been selected as a feature in the respective comparison

(row). TFs joint by double colons indicate that both TFs are predicted to bind as a complex. The TF FOXP1 is highlighted in gray.
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Ourdatasuggested thatFOXP1might actasan important regu-

lator for theTn-to-Tmem transition.Confirming this,we found that

T cell-specific depletion of Foxp1 protein expression in Foxp1

conditional-deficient mice resulted in loss of the naive CD44low

phenotype inTcells (Figure 5A). Thesefindings togetherwithpub-

lished data (Feng et al., 2011; Wei et al., 2016), support the view

that Foxp1 acts as a ‘‘naive-keeping’’ factor for T cells. Analyses

of DNA-meth in our datasets revealed a DMR in the FOXP1 locus,

which displayed a strong progressive gain of methylation with

differentiation (Tn < Tcm < Tem), which was classified as a selec-

tive active promoter in Tn cells (Figure 5B) based on the displayed

histone modification patterns (by EpiCSeg, Mammana and

Chung, 2015). Indeed, a methylation-sensitive promoter activity

of the FOXP1-DMR was confirmed in luciferase reporter gene

assays in primary human CD4+ T cells, as the FOXP1-DMR was

able to drive luciferase expression when cloned upstream of the

reporter gene in the sense orientation, but not when the orienta-

tion of the FOXP1-DMR was inverted or when the FOXP1-DMR

was methylated (Figure 5C).

Consistent with the occurrence of a Tn cell-specific promoter,

we found the FOXP1 protein expression in humanCD4+ T cells to

be highest in Tn cells and to be decreased in Tcm, Tem, and

Temra cells (Figure 5D). In addition, we found indications in our

RNA-seq datasets for three alternative shorter RNA isoforms,

which started within or directly downstream of the FOXP1-

DMR promoter (Figure S4C). All three isoforms showed preferen-

tial expression in Tn compared to Tcm and Tem cells as

measured by qPCR (Figure 5E). In addition, two of them contain

the complete protein coding sequence (Figure 5E), which we

verified by single molecule real-time sequencing (data not

shown).

Taken together, these results validate FOXP1 as an important

gate-keeper for the naive-to-memory transition, which was iden-

tified by integrative analyses of epigenomic data. In addition,

these analyses also enabled the identification of the epigenetic

control mechanisms regulating differential FOXP1 expression

during Tmem cell generation.

DISCUSSION

This study reveals that the differentiation of Tn cells into distinct

types of memory cells and their long-term maintenance is con-

nected to major epigenetic and transcriptional reprogramming.

This is manifested on a global scale with a genome-wide

segmented loss of DNA-meth during differentiation and in

gene-specific epigenetic changes, which control the stage-spe-

cific expression and/or function of transcriptional regulators.

As our first major finding, we documented a progressive

genome-wide loss of DNA-meth upon transition from the naive

to the memory stages. This de-methylation was most prominent

in ‘‘partially methylated domains’’ (PMDs, Hon et al., 2012; Lister

et al., 2009), a feature shared in memory differentiation of B cells,

but absent during the differentiation of monocytes into macro-

phages (Wallner et al., 2016). PMDs have been associated with

heterochromatic histone signatures and correlate to regions,

which are replicated late during S phase and progressively

lose methylation during strong proliferation (Aran et al., 2011).

Consistent with this, T and B cells, but not monocytes, undergo

extensive proliferation during differentiation as a result of TCR-

(BCR-) mediated activation. It is therefore feasible that the

observed PMD-associated loss of methylation is a consequence

and a signature of highly proliferative episodes in the history of

these cells.

This interpretation is supported for CD4+ Tmem cells by two

additional observations in our study: (1) the progressive short-

ening of telomere length in the order of Tn-Tcm-Tem (Fig-

ure S5A), and (2) the progressive loss of methylation in PMDs

observed in short-term culture of Tn cells proliferating in vitro

after TCR-mediated activation (Figures S5B and S5C). It remains

to be investigated whether the global de-methylation is just a

tolerated bystander effect of proliferation or whether it consti-

tutes a telomere-independent senescence signal for the cell as

suggested by studies on hematopoietic stem cells under prolif-

erative stress (Beerman et al., 2013).

These findings are relevant for the interpretation and functional

assignment of DNA-meth changes found by gene-specific

DNA-meth assays. Using the epigenomic maps of this study as

a reference, gene-specific differentially methylated regions

(DMRs), which might have (direct) functional relevance for gene

expression, can be discriminated from DMRs in regions that

are likely to represent a mere imprint from the proliferation his-

tory. This discrimination could be of particular relevance when

studying epigenetic changes in T cells isolated from chronic

stimulatory conditions, e.g., inflammatory diseases such as

rheumatoid arthritis or lupus erythematosus where disease-

associated methylation differences have been reported (de

Andres et al., 2015; Javierre et al., 2010).

The second major conclusion from our global epigenomic an-

alyses sheds light onto the still-controversial subject of themode

of memory differentiation of human CD4+ T cells: Do memory

cells originate (1) early after antigen encounter independently

of (but in parallel to) themassive expansion of short-lived effector

cells (parallel or bifurcative differentiation model, Arsenio et al.,

2015) or (2) do they develop from effector cells, which adopt

Tmem stages toward the end of the primary effector phase

(linear model)? While we could not directly address the posi-

tioning of effector cells in relation to memory development with

the present dataset, all our findings are more consistent with

the linear progression model for circulating Tmem cells: We

observed a strong loss of DNA-meth in PMDs upon transition

from Tn to Tcm cells, which was further reduced in the more

differentiated Tem and Temra phenotypes. These data indicate

that Tcm cells would have already passed through a phase of

intense proliferation during initial activation and prior to convert-

ing into resting memory cells. While the parallel model cannot be

formally excluded by this, additional proliferation-independent

datasets were similarly more consistent with the linear model,

including: (1) patterns of DNA-meth at single-DMR resolution,

as well as patterns of DNA accessibility (NOMe-peaks), showed

almost exclusively changes in the order of Tn-Tcm-Tem, (2)

changes in the transcriptomes grouped the samples along a pro-

gressive Tn-Tcm-Tem-Temra cell differentiation axis, (3) network

analysis of co-expressed genes placed the Tcm phenotype as

intermediate to the Tn- and Tem-associated clusters, and (4)

calculation of the similarity of the transcriptomic profiles re-

vealed the linear Tn-Tcm-Tem model as the most likely one.

These conclusions are in part in contrast to conclusions from

restricted expression analyses of murine CD8+ single cells
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Figure 5. ANewly IdentifiedMethylation-Sensitive Promoter Drives Alternative CodingmRNA Isoformsof the ‘‘Naive-Keeping’’ Transcription

Factor FOXP1 in Tn

(A) CD4+ T cells isolated from spleens of Foxp1+/flox CD4 Cre and Foxp1flox/flox CD4 Cre mice at the age of 6–10 weeks were analyzed by flow cytometry for a

CD44high memory phenotype. Dot plots show CD62L and CD44 surface expression after gating on CD4+ living cells.

(B) Genomic view of the human FOXP1 locus indicating a distinct FOXP1-DMR (red box) gaining DNA-meth from Tn to Tcm to Tem cells. The following tracks are

shown (each for Tn, Tcm, and Tem cells): RefSeq annotation, DNA-meth (WGBS), 6 histone modifications, total RNA coverage and segmentation by EpiCSeg

(red, promoter; green, enhancer; light blue, transcribed; dark blue, repressed).

(C) Luciferase reporter assay testing amethylation-sensitive and orientation-dependent promoter activity of the FOXP1-DMR in primary human CD4+ T cells. The

Firefly luciferase signal was normalized to the signal of the Renilla transfection control and is shown relative to the empty vector control. One representative

experiment performed in triplicates out of two independent experiments is shown.

(D) FOXP1 protein expression in gated human Tn, Tcm, Tem, and Temra cells as assessed by intracellular staining and flow cytometry. Numbers: geometricmean

of the FOXP1 signal. Control staining (contr.) was done using the fluorescently labeled secondary antibody only.

(E) Schematic depiction of different human FOXP1 RNA isoforms. The position of the FOXP1-DMR is shown and the protein coding exons are indicated as boxes.

Three isoforms start within or shortly downstream of the FOXP1-DMR. Their relative expression values are shown for the different cell types (normalized to Tn

cells) measured by qPCR using the indicated primers (arrowheads). One representative experiment performed in technical triplicates (mean and SD) out of two

independent experiments is shown.
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(Arsenio et al., 2015). However, elegant in vivo approaches using

adoptive transfer systems of single murine CD8+ memory cells

(Gerlach et al., 2013a; Graef et al., 2014) also argue in favor of

a linear differentiation model. As similar experiments have not

been conducted for CD4+ cells yet and are impossible in the

human system, our data represent new insights into this topic.

The distinct positioning of Temra cells in the analysis of

genome-wide DNA-meth and transcriptomic data suggests that

they represent a late stage of Tmem differentiation and have un-

dergone extensive proliferation. Alternatively, circulating Temra

cells might represent survivors of prolonged effector proliferation

due to chronic re-activation. This could also explain the

enhanced heterogeneity of the Temra samples, since their epige-

netic imprint might have been specialized over time. Indeed,

increased frequencies of Temra cells have e.g., been reported

in response to persistent CMV infection (Derhovanessian et al.,

2011) and in liver disease, where high Temra cell numbers repre-

sent a significant risk of organ rejection after organ transplanta-

tion (Gerlach et al., 2013b). In contrast, Tmem cells isolated

from the bone marrow did not display a Temra-like epigenetic

phenotype but were positioned between Tcm and Tem cells,

indicating that they have preserved significant expansion and

differentiation capacity. In addition, the CD69+ tissue-resident

subset of BM-Tmem cells displayed a distinct DNA-meth profile,

indicating that acquisition of a resident phenotype, too, is linked

to significant epigenetic reprogramming.

The third pillar of our study is dedicated to the identification of

factors, which drive and/or maintain Tmem cells. In this

endeavor, we identified many non-coding RNAs (ncRNAs),

which are highly and/or differentially expressed in Tn and

Tmem cells. Among them, we identified numerous circRNAs

for which the normal linear host transcript is barely detectable

(Rybak-Wolf et al., 2015), thus, activity of these genes would

have been missed in standard polyA- selected RNA-seq and/

or normal linear splice analysis. These and other ncRNA mole-

cules (lncRNAs, miRNAs) may not only reflect but also induce

functional consequences during Tmem differentiation. The

expression of the ncRNAs appears to be coordinated and finely

tuned during Tmem differentiation with a remarkable link to other

epigenomic changes. Therefore, our dataset provides a deep

basis to further investigate the direct contribution of ncRNAs to

Tmem differentiation and to clarify the mutual regulatory impact

between ncRNAs and chromatin structure.

In addition to RNAs, we report two classes of protein regula-

tors, which include known and potentially new factors controlling

Tmem cell generation and function: (1) TFs, which undergo

epigenetic expression control during Tmem cell formation, and

(2) TFs, which gain or lose functional importance as their binding

sites in target genes are being exposed or closed, respectively,

independently of their own expression change. For the first

class, we found several widely discussed regulators of Tmem

differentiation, which displayed differential DNA-meth in pro-

moter or enhancer regions that anti-correlated with differences

in gene expression levels, following the classical paradigm of

methylation-controlled gene repression. For several of them

(e.g., IL2RA, RUNX3, NFATC2, MAF, BACH2, FOXO1), epige-

netic control in Tmem differentiation has not been reported so

far and awaits experimental confirmation. Interestingly, among

differentially methylated genes was also HNRNPLL, involved in

alternative splicing of CD45 to the Tmem signature isoform

CD45RO, and the two homing-related receptors, SELL (L-selec-

tin) and CCR7, suggesting that the permanent change in the

recirculation pattern with transition from Tcm to Tem is epigenet-

ically fixed. For others, concordant epigenetic changes have

already been described in murine CD8+ T cells (e.g., BATF,

LEF1, PDCD1, TBX21, TCF7, ZBTB32; Scharer et al., 2013;

Youngblood et al., 2011; Hashimoto et al., 2013).

As for the second class of TFs, we identified FOXP1 as one of

the top candidates, a less well known but functionally confirmed

Tmem regulator in mice (Feng et al., 2011; Wei et al., 2016). Our

present analyses support a similar function in human CD4+

Tmem and additionally unravel the epigenetic control of the

FOXP1 gene. Other prime TF candidates include TFs previously

implicated in Tmem regulation such as RUNX3, E2F2, LEF1,

BCL6, or members of the ELF-, KLF-, or FOXJ- families, as

well as CREB1, ETS-1, and JUN-FOS, which are known to be

involved in multiple cellular processes of differentiation and

activation. Additional interesting candidates include (1) the aryl

hydrocarbon receptor, AHR, which has been implicated in differ-

entiation of CD4+ T cells into pro- or anti-inflammatory subsets

and, hence, to modulate autoimmune diseases in various animal

models (reviewed in Esser et al., 2009; Hanieh, 2014) and (2) the

ets-family member FLI-1, which has been reported to affect

thymic T cell development, TCR signaling, glycosphingolipid

metabolism, and cytokine expression and has been implicated

in autoimmune diseases, too (Richard et al., 2013; Sato et al.,

2014). Others of the top-predicted TFs have not been directly

associated to regulation of Tmem differentiation yet, but are

players in potentially relevant cellular processes, such as intra-

cellular signaling (RFX3, via the RAS-MAPK pathway), metabolic

processes (NRF1 and SREBF1, associated with mTORC1

signaling), and chromatin remodeling (ZFP161, targeting of the

repressive Polycomp complex). Thus, important Tmem cell

properties might be under the control of yet neglected transcrip-

tional regulators that could be revealed by the integrated anal-

ysis of transcriptomic and epigenomic features.

In conclusion, the comprehensive epigenomic analysis of

several human CD4+ Tmem subsets in this study revealed in-

sights into the Tmem differentiation pathway and allowed the

identification of relevant epigenetically controlled transcriptional

regulators. In addition, these data constitute a resource of

normal T cell differentiation, which can serve as a reference for

the identification of altered epigenetic signatures in T cells

from pathological situations such as chronic inflammatory dis-

ease. The challenging task for the future will be the application

of ‘‘epigenetic engineering’’ to achieve therapeutic re-program-

ming of pathogenic T cells or to optimize T cells for their use in

cellular therapy.

EXPERIMENTAL PROCEDURES

T Cell Isolation

PBMCs from blood of healthy female donors or from bone marrow samples of

female donors undergoing hip replacements were isolated and enriched for

CD4+ T cells using the MACS-technology (Miltenyi Biotech). Tn cells and

Tmem subsets were purified by flow cytometry using markers shown in Fig-

ure S1A. Donors gave their written and informed consent prior to participating

in the study (Ethics committee of the Charite Universitaetsmedizin Berlin,

application numbers EA1/116/13 and EA1/105/09).
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Epigenomic Data Generation

WGBS was carried out by the combined analysis of two bisulfite-converted

libraries using the pre-bisulfite library protocol (Urich et al., 2015) and the

TruSeq DNA Methylation kit (Illumina, San Diego, USA). RRBS libraries were

prepared as previously published (Boyle et al., 2012). For NOMe-seq, nuclei

of fixed cells were extracted and DNA-meth on GpCmotifs in accessible chro-

matin regions was introduced using the M. CviPI methyltransferase, followed

by WGBS analysis. ChIP-seq for histone modifications was carried out as

previously described (Arrigoni et al., 2016; Kinkley et al., 2016). RNA was ex-

tracted using the miRNeasy Micro Kit (QIAGEN) and three Illumina sequencing

libraries were prepared (small RNA sequencing library, one stranded total

RNA, and one stranded mRNA library). Sequencing was carried out on HiSeq

2000 and HiSeq2500 machines (Illumina). Bioinformatical processing of the

sequencing reads includingmapping to the hg19 reference genome is outlined

in the Supplemental Experimental Procedures section.

DNA Methylation Analyses

Genome segmentation based on WGBS data was performed using

MethylSeekR (Burger et al., 2013). The methylation levels from both strands

were aggregated and weighted average methylation levels were plotted.

WGBS data from B cells (Blueprint consortium) was converted to hg19

coordinates using the liftOver tool (Rosenbloom et al., 2015) and segmentation

was carried out. Differentially methylated regions (DMRs) were predicted

with Metilene (J€uhling et al., 2016) in de-novo mode among sites with at least

53 coverage.

Calling of Accessible Chromatin Region

Nucleosome-depleted regions (NOMe-peaks) were identified by segmenting

the GCH-methylation signal with a binomial hidden Markov model with two

states (1 open/NDR, 0 background) in each sample separately and consistent

NOMe-peaks confirmed in all three replicates were selected.

Identification of mRNAs, miRNAs, lncRNAs, and circRNAs

Expression values for total RNA were quantified using TopHat, Htseq-count,

and DESeq2 (Anders and Huber, 2010). Cufflinks (Trapnell et al., 2010) was

used for the identification of novel lncRNAs. To remove possible coding genes,

we estimated the coding potential of novel transcripts using PhyloCSF (Lin

et al., 2011) and CPAT (Wang et al., 2013). Mature miRNA read counts

were estimated for each sample using miRDeep2 (Friedl€ander et al., 2012)

and miRBase (version 21) annotations. CircRNAs were detected, filtered,

and annotated as described before (Memczak et al., 2013).

Co-Expression Network Construction

Expression data of Tn, Tcm, and Tem cells (3 replicates each) was filtered

using either a list of human transcriptional regulators (TRs) or the 700 most

variable genes (i.e., most significant p values in an ANOVA-based analysis)

to get a reduced expression table of present genes. The group of TRs

contained transcription factors (TFs), co-factors, RNA-binding proteins and

chromatin remodelers originating from the TFCat data base (Fulton et al.,

2009). The expression matrices were loaded into BioLayout Express3D

(Theocharidis et al., 2009) and co-regulation networks were generated

with a Pearson correlation cutoff of 0.9. The predicted gene-gene pairs were

visualized by Cytoscape (Shannon et al., 2003) and fold change expression

values calculated against the group mean were mapped to the network.

Prediction of Transcriptional Regulators Using a Machine-Learning

Approach to Model Differential Gene Expression

Weused amachine-learning approach based on a logistic regression classifier

with the elastic net penalty (Zou and Hastie, 2005) to model differential gene

expression between the Tn, Tcm, and Tem subsets. Because the TF features

for the logistic regression classifier, we used the ratio of TF gene scores, which

were computed using TEPIC (Schmidt et al., 2016). TFs predicted to contribute

to differential gene expression were selected.

Functional Analyses on the TF FOXP1 and the FOXP1-DMR

For the generation of a T cell-specific Foxp1 deletion, a conditional Foxp1

knock-out allelewasgeneratedusingstandardgene targeting techniques inmu-

rine ESCs by introducing loxP sites into intronic regions flanking exons 10–12

(T. Patzelt, O. Gorka, and J. Ruland, manuscript in preparation). The generated

Foxp1-floxed mice were crossed to CD4-Cre animals (Lee et al., 2001).

Intracellular staining of FOXP1 protein in human CD4+ T cells was performed

using the Fixation/Permeabilization Buffer set for intracellular Foxp3 staining

(eBioscience) in a two-step staining procedure (primary FOXP1 antibody

polyclonal #2005, Cell Signaling Technology, DyeLight-649-labeled donkey

anti-rabbit secondary antibody #406406, BioLegend). Samples were acquired

on a BD LSRFortessa instrument (BDBioscience).

The FOXP1-DMR was cloned into the CpG-free Firefly luciferase vector

pCpGL (Klug and Rehli, 2006). Treatment with the M.SssI CpGmethyltransfer-

ase (NEB) allowed selective methylation of the FOXP1-DMR. Ex vivo isolated

CD4+ T cells were TCR-stimulated for 48 hr and transfected with the FOXP1-

DMR Firefly vector and a pRL-TK Renilla control vector (Promega) using the

Neon� Transfection System (Life Technologies). Firefly and Renilla luciferase

activity were assessed using the Dual Luciferase Assay Kit (Promega) after

24 hr. The Firefly luciferase signal was normalized to the Renilla reporter signal.

Expression levels of the FOXP1RNA isoformswere quantified using the plat-

inum SYBR green qPCR superMix-UDG (Thermo Fisher Scientific) on a Step

One instrument (Thermo Fisher Scientific). Relative transcript levels were

normalized to hRPS18. Primer sequences are given in the Supplemental

Experimental Procedures section.
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Figure S1: T cell populations and data types generated and analyzed in the present study.
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Supplemental Figures

Figure S1, related to Figure 1-5: T cell populations and data types generated and analyzed in the present 
study. A) Sorting strategy of blood- or bone marrow-derived T cell populations. Samples from blood (left) were pre-ga-
ted on CD3+ CD4+ CD25- cells in the lymphocyte gate. Samples from the bone-marrow (right) were pre-gated on CD3+ 
CD4+ CD25- cells in the lymphocyte gate for total BM-Tmem and on CD3+ CD4+ cells for the CD69+ and CD69- subsets. 
B) Overview of the epigenomic data sets generated in this study.
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Figure S2, related to Figure 2 and 3: Progressive changes in the DNA-meth levels in PMDs, in the transcriptomes 
and in the DNA accessibility profiles support a linear differentiation model for circulating human CD4+ Tmem 
subsets. 
A) Normalized mean coverage of different histone modification marks across the MethylSeekR segments in Tem cells (donor 
pool Hf03). PMD=partially methylated domain, FMR=fully methylated region, LMR=low methylated region, UMR=unmethyla-
ted region. B) Characteristics of MethylSeekR states (derived from Tem Hf03): Fraction of genome covered, mean 
methylation loss in Tem vs. Tn cells and fraction of CpG sites covered. C) Expression values for protein-coding genes across 
the MethylSeekR segments in Tn, Tcm, Tem and Temra cells. The range of the numbers of genes included in each segment 
is shown. D) PCA on DNA-meth in CpG context (excluding GpCpG context) from NOMe-seq data. Only sites with a minimum 
read coverage of five in all indicated samples were considered. E) PCA on NOMe-seq data showing PC1 and PC2. Note that 
PC1 is separating one replicate (donor pool Hf06) due to a slight change in the NOMe-seq protocol. F) Scheme for the propo-
sed model of CD4+ Tmem cell differentiation suggested by epigenomic and transcriptomic analyses: Circulating Tmem cell 
subsets from the blood (Tn, Tcm, Tem, Temra cells) are generated successively (= linear model) with multiple rounds of proli-
feration accompanying each differentiation step, leading to the observed progressive loss of DNA-meth and the progressive 
change in transcriptomes and chromatin landscape. In contrast, tissue-resident BM-Tmem branch off early and display a 
particular epigenomic imprint. G) Using either TF binding in open-chromatin peaks (TF), DNA-meth at the promoter or gene 
body (DNA-meth) or miRNA target sites with miRNA expression (miRNA), the ability to predict gene expression using a 
regression approach was calculated for each feature. Each boxplot shows the Spearman correlation values of all 6 samples 
(2x Tn, 2x Tcm, 2x Tem) and the result of 6-fold nested cross validation.
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Figure S3: Identification and characterization of differentially methylated regions (DMRs) in Tn, Tcm and Tem cells 
which were used to assess the epigenetic contribution to known Tmem cell-related genes. 
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Figure S4, related to Figure 4 and 5: Identification of Tmem regulator candidates from transcriptomic and epig-
enomic datasets using two different approaches.
A) Test accuracy of the applied machine learning approach to model differential gene expression between Tn, Tcm and 
Tem cells. This approach was based on the TF binding affinities in open chromatin regions (NOMe-peaks), which allows 
the identification of TFs contributing to the differential gene expression profile (TFs shown in Figure 4). B) Putative master 
regulators for Tmem cell differentiation were predicted using iRegulon (Janky et al., 2014). The analysis is based on 
predicted TF-binding site enrichments in promoters of co-regulated genes within the Tn-, Tcm- and Tem cell-associated 
clusters of transcriptional regulators (shown in Figure 2B, bottom). For the TFs with most significantly enriched predicted 
binding sites, we visualized their expression, inferred their connectivity (left) and marked their location within the TF 
network (right). Heatmaps represent z-scored mean expression values and the corresponding degree (indicating the 
number of connections within the network). The boxplot indicates the overall distribution of degrees within the network. C) 
Sashimi plot of mRNA-seq data zoomed into the FOXP1 locus, displaying the region downstream of the FOXP1-DMR. 
Arcs represent reads covering splicing events with the corresponding counts. Only arcs representing at least 25 reads are 
shown. RNA isoforms inferred from the mRNA-seq data are shown at the bottom, three of which (in blue) are annotated in 
RefSeq.

Figure S4: Identification of Tmem regulator candidates from transcriptomic and epigenomic datasets using two 
different approaches. 

81



segment

FMR

PMD

LMR

UMR

Segment
FMR
PMD
LMR
UMR

0 3-4 7-8
# of cell 
division:

*** = p < 2.2e-16, paired t-test

0.00

0.25

0.50

0.75

1.00

Tn_Ct Tn_T1 Tn_T2

W
ei

gh
te

d 
av

er
ag

e 
m

et
hy

la
tio

n

*** ***

Te
lo

m
er

e 
co

nt
en

t (
re

la
tiv

e 
to

 T
n)

0.00

0.25

0.50

0.75

1.00

Hf03 Hf04

Tn Tcm Tem Tn Tcm Tem

B

C

A

Figure S5: Loss of DNA-meth in PMDs correlates to past episodes of proliferation in the CD4+ T cells. 

Figure S5, related to Figure 1: Loss of DNA-meth in PMDs correlates to past episodes of proliferation in the 
CD4+ T cells. 
A) Reduced telomere length in Tmem compared to Tn cells. Quantification of telomere content was performed using the 
TelomereHunter python package on WGBS-alignments. To account for the variable read length in the WGBS data, the 
repeatThreshold was set to 0.06*read length. Results were normalized to the value of Tn cells for each donor pool (Hf03 
and Hf04). Similar results were obtained when ChIP-input data from the same cellular samples were used (data not 
shown). B) In vitro activated Tn cells lose DNA-meth in PMDs corresponding to their number of cell divisions. Weighted 
average DNA-meth, aggregated from both strands, across the MethylseekR segments in ex vivo Tn cells (Tn_Ct, donor 
pool Hf09) as well as Tn cells, which have undergone 3-4 (Tn_T1) or 7-8 (Tn_T2) cell divisions in vitro (sorted according 
to CFSE dilution). The median of weighted average methylation levels for ex vivo TNs are marked with colored lines for 
each segment. Statistically significant differences (paired t-test) were found in PMDs between Tn_Ct and Tn_T1 as well 
as Tn_T1 and Tn_T2. C) PCA of DNA-meth profiles (based on RRBS data, left, zoom-in on the right) containing ex vivo 
isolated T cell samples (Tn, Tcm, Tem, Temra, Tn_Ct, CD69+ and CD69- BM-Tmem) as well as Tn cells after proliferaton 
in vitro (Tn_T1 and Tn_T2).
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Supplemental Tables 
 
Table S1: Overview of the genome-wide datasets generated in this study (related to Figure 1-5). The list includes 
information on the donor pools, the data type and the number of mapped reads for each dataset. 
 
Table S2: List of identified miRNAs (related to Figure 2). The list includes known and new miRNAs as well as 
differentially expressed miRNAs between the different T cell subtypes. 
 
Table S3: List of identified lncRNAs (related to Figure 2). The list includes all identified lncRNAs and their 
expression values (FPKM) for all samples.  
 
Table S4: List of identified circRNA candidates (related to Figure 2). The list includes all identified circRNAs 
including a classification into highly expressed circRNAs and genes for which the circular isoforms seems to be 
dominant over the linear spliced isoform.     
 
Table S5: List of DMRs (related to Figure 3). The list includes all DMRs (Tn vs. Tcm vs. Tem cells) after 'adaptive 
filtering' including information on their DNA-meth level, location within MethylSeekR segments and CpG-Islands 
and the correlation to the expression changes of the associated genes.  
 
 
Supplemental Experimental Procedures 
 
T cell isolation from human peripheral blood and bone-marrow 
PBMC from peripheral blood of healthy female donors were isolated directly from whole blood (donor pools Hf02 
and Hf05) or from leukocyte filters (Hf03-04, Hf06) obtained from the blood bank of the Charité University 
Hospital, Institute of Transfusion Medicine. Bone marrow samples were obtained from systemically healthy female 
donors undergoing hip replacements.  
Bone marrow-derived T cell subsets were sorted as described earlier (Okhrimenko et al., 2014). For blood-derived T 
cell subsets, PBMCs were isolated by density gradient centrifugation using Lymphocyte Separation Medium LSM 
1077 (PAA). Remaining erythrocytes were lysed in Erythrocyte-Lysis-Buffer (Buffer EL, Qiagen). CD4+ T 
lymphocytes were enriched using the MACS-technology and human CD4 MicroBeads (Miltenyi Biotec) on an 
AutoMACS-instrument (Miltenyi Biotec). The enriched population was stained using antibodies targeting CD3 
(UCHT1), CD4 (OKT4), CD127 (A019D5), CD25 (M-A251), CCR7 (GO43H7, all from Biolegend) and CD45RA 
(2H4LDH11LDB9, Beckmann-Coulter) and sorted on a FACS-Aria instrument (BD Bioscience). Regulatory T cells 
were excluded by gating out the CD3+ CD4+ CD25high CD127low population. The remaining cells were sorted into 
naive (Tn), central memory (Tcm), effector memory (Tem) and Temra populations using the following marker 
combinations: Tn = CD3+ CD4+ CD45RA+ CCR7+, Tcm = CD3+ CD4+ CD45RA- CCR7+, Tem = CD3+ CD4+ 
CD45RA- CCR7- and Temra = CD3+ CD4+ CD45RA+ CCR7-. Purity of the sorted populations was confirmed by 
flow-cytometry. Each sample was split into 4 fractions, snap-frozen and stored as a cell pellet at -80°C. For RNA-
seq, one aliquot was pelleted, resuspended and homogenized in QIAzol Lysis Reagent (Qiagen) using a 21G needle 
before snap-freezing. Aliquots of several donors were pooled for the analysis of genome-wide epigenetic signatures 
(Table S1). Pools for ChIP-seq and NOMe-seq were fixed with 1% methanol-free formaldehyde for 5 min at RT, 
quenched with 0.125 M glycine for 5 min RT and washed with PBS. 
 
T cell culture 
Naïve or total CD4+ T lymphocytes were cultured in RPMI 1640 medium with Glutamax (Thermo Fisher Scientific) 
supplemented with 10% FCS (Biochrom, Merck Millipore), 25 mM HEPES, 1 mM sodium pyruvate, 50 μM β-
mercaptoethanol, 100 U/ml penicillin/streptomycin (all Merck Millipore). In vitro culture was initiated by TCR-
mediated stimulation with plate-bound anti-CD3 (UCHT1; 4 µg/ml) and anti-CD28 (CD28.2; 2 µg/ml, both BD 
Bioscience) in the presence of 20 ng/ml recombinant human IL-2 (R&D Systems) for 2-3 days. Cells were rested in 
uncoated plates until day 7 and then re-stimulated on coated plates over night. Culture was terminated on day 14.  
 
WGBS 
For each sample two types of WGBS libraries were prepared to obtain a well balanced coverage across the genome. 
For the first type, a pre-bisulfite library protocol as described by Urich et al. (Urich et al., 2015) was followed, using 
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2 μg of DNA. For the second type, a post-bisulfite library was prepared using 100 ng of DNA with the TruSeq DNA 
Methylation kit (Illumina, San Diego, USA) according to the manufacturer’s instructions. All libraries were quality-
checked and quantified on an Agilent Bioanalyzer (Santa Clara) and by qPCR using the Perfecta qPCR FastMix 
(Quanta Biosciences). Samples were sequenced for three lanes (two lanes pre-bisulfite and one lane post-bisulfite 
library) on a HiSeq2500 machine (Illumina) resulting in ~30x fold raw genome coverage per sample. 
 
RRBS 
RRBS libraries were prepared according to the procedure described by Boyle et al., 2012, with small modifications: 
Briefly, 10 to 100 ng of genomic DNA were digested overnight using 50 U of MspI or HaeIII enzyme (NEB) 
followed by end-repair, A-tailing, NGS-adaptor ligation and purification with Ampure XP beads (Beckman Coulter). 
The libraries were then bisulfite converted with the EZ-DNA Methylation Gold kit (Zymo Research) and PCR-
amplified for 12-14 cycles using Hot Star Taq polymerase (Qiagen) followed by a final Ampure beads purification 
step. 
 
NOMe-seq 
Fixed frozen (Hf06 only) or fresh frozen cells (200-500k) were thawed in nuclei extraction buffer (60 mM KCl;15 
mM Tris-HCl, pH 8.0; 15 mM NaCl; 1 mM EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0; 0.5 mM spermidine free base) 
supplemented with complete protease inhibitor cocktail (Roche) and 0.1% NP40 (Sigma-Aldrich) and incubated on 
ice for 30 min. During incubation, fixed samples were dounced 10-20 times with a douncing pistil (Qiagen). Nuclei 
were centrifuged (500 g, 4 °C, 8 min) and the pellet was washed with NP40-free nuclei buffer. After centrifugation, 
nuclei were resuspended in 90 μl of 1x GpC-buffer (NEB) followed by addition of 70 μl of NOMe reaction mix (7 μl 
10x GpC buffer, NEB), 1.5 μl of 32 mM SAM (NEB), 45 μl of 1 M Sucrose, 60 U of M. CviPI (NEB), 0.5 μl of aqua 
bidest. The reaction was incubated 3 h at 37 °C and another 0.5 μl of SAM were added hourly. The reaction was 
stopped with 160 μl NOMe stop buffer (20 mM Tris-HCl, pH 8.0; 600 mM NaCl; 1 % SDS, 10 mM EDTA) and 10 
μl proteinase K (20 mg/ml, Sigma-Aldrich) and genomic DNA was extracted. NOMe libraries were prepared from 
100 ng of DNA using the post-bisulfite library protocol (see WGBS section) and sequenced for two lanes on a 
HiSeq2500 instrument. 
 
ChIP-seq 
Chromatin Preparation: Three million fixed cells were lysed in 300 µl chromatin lysis buffer (50 mM Tris-HCl 
pH8.1, 100 mM NaCl, 1% SDS, 3% Triton X-100, 5 mM EDTA, 0.2% NaN3) supplemented with 3x protease 
inhibitors (Roche complete protease inhibitor cocktail) on ice for 10 minutes. Lysates were then diluted 3x with a 
dilution buffer (50 mM Tris-HCl pH 8.6, 100 mM NaCl, 5 mM EDTA, 0.2% NaN3) and homogenized ten times 
with a syringe (271/2 gauge). The lysate was then aliquoted (200 µl) into 1.5 ml TPX polymethylpentene tubes 
(Diagenode) and sheared at 4 °C in a Bioruptor Pico for 3x10 cycles. The chromatin was then pooled and centrifuged 
for 10 minutes at 14,000 rpm at 4°C to pellet debris. For Temra cells, one million cells were formaldehyde-fixed and 
nuclei were extracted as previously described (Arrigoni et al., 2016). Nuclei were resuspended in 1 ml of shearing 
buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 0.1% SDS, supplemented with 1x protease inhibitor cocktail) and 
chromatin was sonicated using Covaris E220 ultrasonicator for 12 minutes, using the instrument settings 140W peak 
power, 5% duty factor and 200 cycles/burst.  
5% of the chromatin was collected to analyze the shearing efficiency and the remaining 840 µl of chromatin was 
diluted with 800 µl of dilution buffer supplemented with 1x protease inhibitors. Chromatin from Temra cells has 
been diluted at 1:1 ratio with Diagenode ChIP buffer H (Auto histone ChIP-seq kit), supplemented with 1x protease 
inhibitor cocktail, prior ChIP.DNA preparation and Chromatin Shearing Efficiency: 40 µl of sheared chromatin was 
collected and diluted up to 100 µl with TE buffer pH 9.5 and supplemented with 4 µl 5M NaCl. The chromatin was 
de-crosslinked at 65°C for 2h, followed by an RNAseA treatment (0.2 mM) at 60°C for 30 minutes and proteinase K 
treatment (3 µl; Sigma) for 2h at 55°C. The DNA was then isolated using ChIP DNA concentrator columns (Zymo 
Research D5205) according to the manufacturer's instructions. Shearing efficiency was monitored by loading 1 ng 
DNA on a high sensitivity DNA chip using high sensitivity DNA regents according to the manufacturer's instructions 
(Agilent) and analyzed on an Agilent 2100 Bioanalyzer. 
Chromatin Immunoprecipitation: The ChIP was performed using the Diagenode Auto Histone ChIPseq kit on an 
IPstar SX-8G compact automated system (Diagenode) using their indirect method (Ag + Ab → Beads). The IP 
reaction was performed for 11 h, the incubation with beads for 7h and the washes were performed for 5 minutes 
each. 100 µl of chromatin (165,000 cells, 60,000 for Temra cells), 10 µl of protein A magnetic beads and 1 µg of 
Diagenode ChIPseq grade rabbit polyclonal antibody (H3K4me1; pAb-194-050, H3K4me3; pAb-003-050, 
H3K9me3; pAb-193-050, H3K27Ac; pAb-196-050, H3K27me3; pAb-195-050 and H3K36me3; pAb-192-050) were 
used per ChIP. 20 µl of chromatin (33,000 cells) and 1 µl for Temra cells (600 cells) was used for the input. ChIPs 
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were eluted in 100 µl TE buffer pH 9.5 and the input was diluted up to 100 µl with TE buffer pH 9.5. 4 µl of 5 M 
NaCl was added to each sample and the DNA was isolated as described above after de-crosslinking, RNAseA and 
proteinase K digestion.  
Library Preparation: The libraries were generated using a Diagenode Microplex Library preparation Kit 
(C05010010) according to manufactures instructions. In brief, 2 ng or less of ChIP DNA was used to generate 
sequencing libraries. After adapter ligation, 10 rounds of PCR amplification were used to amplify library DNA. The 
libraries were size selected using Agencourt AMPure XP beads (Beckman Coulter) to remove ligated adaptors and 
DNA fragments greater than 1000bp, using the calculated ratios of 0.56 first followed by 0.95. Libraries for Temra 
cells ChIP DNA were prepared using the NEBNext Ultra library preparation kit (NEB, E7370S) following 
manufacturer’s instructions and skipping the size selection. Adapter-ligated DNA fragments were amplified using 13 
PCR cycles.  
ChIP Library Sequencing: All libraries were sequenced on an Ilumina HiSeq 2500 using version 3 chemistry and 
50bp paired end sequencing according to Ilumina suggested protocols. 
 
RNA-seq incl. RNA isolation 
Pooled samples for RNA-seq were homogenized in QIAzol Lysis Reagent (Qiagen) using a 21G needle. After 
addition of chloroform and phase separation by centrifugation, total RNA, including small RNAs, was extracted 
from the aqueous phase by using the miRNeasy Micro Kit (Qiagen) following the manufacturer's recommendations. 
Sequencing of long RNA libraries: Starting from 2x500ng total RNA of RIN 9.6, one stranded total RNA and one 
stranded mRNA library were prepared according to the manufacturer's instructions (Illumina). Both libraries were 
sequenced for 2x101nt on an Illumina HiSeq 2000, yielding about 100 million paired-end reads for each library.  
Sequencing of short RNA libraries: Starting from 1-5 ug total RNA of RIN 9.6, the small RNA sequencing library 
was prepared according to the manufacturer's instructions (Illumina) and  sequenced for 1x51nt on an Illumina HiSeq 
2000, yielding about 10 million single end reads for each library. 
 
Mapping of WGBS and NOMe-seq 
The WGBS data were processed as described in Wang et al., 2013b. The hg19 reference genome (37d5) was 
transformed in silico for both the top strand (C to T) and bottom strand (G to A) using MethylCtools (Hovestadt et 
al., 2014). Before alignment, adaptor sequences were trimmed using SeqPrep (https://github.com/jstjohn/SeqPrep). 
The first read in each read pair was then C-to-T converted and the 2nd read in the pair was G-to-A converted. The 
converted reads were aligned to a combined reference of the transformed top (C to T) and bottom (G to A) strands 
using BWA (bwa-0.6.2-tpx) with default parameters, yet, disabling the quality threshold for read trimming (-q) of 20 
and the Smith-Waterman for the unmapped mate (-s). After alignment, reads were converted back to the original 
states, and reads mapped to the antisense strand of the respective reference were removed. Duplicate reads were 
removed, and the complexity determined using Picard MarkDuplicates (http://picard.sourceforge.net/). Reads with 
alignment scores less than 1 were filtered before subsequent analysis. Total genome coverage was calculated using 
the total number of bases aligned from uniquely mapped reads over the total number of mappable bases in the 
genome. 
 
Mapping of RRBS 
RRBS data were trimmed with the Cutadapt (http://dx.doi.org/10.14806/ej.17.1.200) wrapper 
Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) in RRBS mode, and subsequently 
mapped with MethylCtools as described for WGBS, excluding the removal of duplicates. 
 
Mapping of ChIPseq data 
Reads were mapped to the 1000 genomes phase 2 assembly of the human reference genome (NCBI build 37.1, 
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/ 
phase2_reference_assembly_sequence/) with a hardware-accelerated implementation of Burrows-Wheeler Aligner 
BWA aln version 0.6.2 (Li and Durbin, 2009) with -q 20, and BWA 0.6.2 sampe with -a 1000. Merging and 
duplicate marking was performed with Picard version 1.125 (http://broadinstitute.github.io/picard).  
 
Mapping of RNA data 
BAM files of RNA-seq reads were produced with TopHat 2.0.11 (Kim et al., 2013), with Bowtie 2.2.1 (Langmead 
and Salzberg, 2012) and NCBI build 37.1 in --library-type fr-firststrand and --b2-very-sensitive setting. 
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Calling of DNA-methylation values 
Alignments of bisulfite treated reads were analyzed with a Bis-SNP (Liu et al., 2012) based pipeline comprising 
Picard tools (http://broadinstitute.github.io/picard), samtools (Li et al., 2009), bamUtil 
(http://genome.sph.umich.edu/wiki/BamUtil) and UCSC tools (Kent et al., 2010). The pipeline includes SNP-aware 
realignment, trimming of overlapping read pairs and re-calibration of quality values before methylation ratios were 
calculated for all cytosines. In the case of RRBS data, the maximum coverage allowed was adjusted from the default 
250 reads to 2000 reads per loci. For WGBS and RRBS data, cytosines in CG-context were extracted for further 
processing, while GCH and HCG-data were gathered from the NOMe data sets.  
 
Genome segmentation based on DNA-methylation (MethylSeekR) 
The WGBS data was used to segment the genome into four different states using MethylSeekR (Burger et al., 2013); 
fully methylated regions (FMRs), partially methylated domains (PMDs), lowly methylated regions (LMRs) and 
unmethylated regions (UMRs). The tool ran with a methylation level threshold at 0.5, a coverage cutoff at five reads 
per CpG and maximum FDR of 0.05, resulting in a threshold of at least four CpGs per LMR. The methylation levels 
from both strands were aggregated and weighted average methylation levels were plotted across the four segments 
resulting in very few outliers in LMRs/UMRs with methylation values > 0.5 due to the smoothing in MethylSeekR.  
For the downstream analyses, we merged the large scale regions (PMDs and FMRs) from each replicate, allowing 
them to span gaps introduced by shorter LMRs or UMRs. The merged PMDs were calculated as the difference 
between the original PMDs after joining neighboring regions allowing for 5kb gaps and joined original FMRs, 
excluding regions shorter than 5kb. The merged FMRs were then calculated as the complement to the merged PMDs, 
excluding genomic gaps as annotated by UCSC (Rosenbloom et al., 2015), e.g., telomeres and centromeres.  
The normalized mean coverage of three broad histone marks (H3K27me3, H3K36me3 and H3K9me3) were plotted 
genome wide across the merged FMRs/PMDs and the original LMRs/UMRs with the appropriate flanking regions 
using deeptools (Ramirez et al., 2014), with the addition of the other three histone marks in LMRs/UMRs. Only 
merged PMDs and FMRs longer than 20kb and 10kb were considered, respectively. 
The number of protein coding genes falling within merged PMDs and FMRs was calculated, demanding a minimum 
of 80% of the gene length to be overlapped by the segment. A pseudo count (1) was added to FPKM to avoid zeros 
in the box-plots. The aforementioned analyses were restricted to chromosomes 1-22.  
WGBS Blueprint data from B cells was converted to hg19 coordinates using the liftOver tool (Rosenbloom et al., 
2015) and segmentation was carried out afterward. 
 
DMR calling and 'adaptive filtering' 
Quality control and primary analysis of methylation data was done using custom R scripting and the RnBeads 
software package (Assenov et al., 2014). Differentially methylated regions (DMRs) were predicted with Metilene 
(Juhling et al., 2015) in de-novo mode among sites with at least 5x coverage. The tool ran without cutoffs for q-value 
and absolute methylation difference.  
For 'adaptive filtering', the resulting loci were split with regard to overlap of merged PMDs or not, due to the 
different global effects within and outside merged PMDs. In each group, cutoffs for the methylation difference were 
determined as the 2.5% and 97.5% quantiles. Extracting the tails of the Δmethylation distribution and requiring a q-
value below 0.05 resulted in the set of DMRs to be considered. 
 
NDR calling (Nome-peaks) 
Nucleosome depleted regions (NDRs) were identified by segmenting the GCH-methylation signal with a binomial 
hidden Markov model with two states (1 open/NDR, 0 background). Each putative NDR was contrasted to the 
closest 4kb of flanking background regions up- and down-stream by computing a significance with Fisher's exact 
test. Empirical false discovery rates were calculated using permutation analysis in which shuffled GCH methylation 
values genome-wide where run through the same process (HMM and Fisher's exact test) and subsequently used to 
control for multiple testing with a cutoff at 0.01.  
 
Differential NDRs 
Accessible regions were called in each sample separately, but only consistent NDRs (cNDRs) confirmed in all three 
replicates (Hf03/Hf04/Hf06) were kept. The union of overlapping, cNDRs was used for the differential analysis. One 
major reason for the deviation between replicates was deviating global average GCH-methylation levels. Given this, 
the GCH-methylation signal was normalized to the third quartile and after removing sites with a coverage below 
five, Metilene (Juhling et al., 2015) was applied in regional mode to conserved NDRs with a q-value cutoff at 0.05 
which yieled 596 differential cNDRs. 
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Generation of DMRs in Tn, Tcm, Tem cells 
DMRs from pairwise comparisons were overlapped and joined into master regions. Significance levels as well as 
directions of the methylation changes were taken over from the underlying DMRs, by prioritizing DMRs with the 
highest absolute methylation difference, if more than one DMR from the respective pairwise comparison was 
present. Mean methylation levels were computed by averaging methylation levels of CpG consistently covered by at 
least 5 reads in Hf03 and Hf04 samples. MethylSeekR regions were assigned by prioritizing overlaps of the DMRs 
with PMD, UMR, LMR and FMR regions. CpG Island annotations were based on UCSC hg19 annotations, by 
prioritizing Islands, Shores (+/- 2kb from Island) and Shelves (+/- 2kb - 4kb from Islands). Not overlapping DMRs 
were defined as Opensea. EpiCSeg states were assigned by prioritizing overlapping DMRs with promoter, enhancer, 
transcribed, repressed and unmarked states. GENCODE annotation was used to assign DMR to annotated locations 
and functions by prioritizing overlapping promoters (+/- 500bp forom TSSs), protein coding sequence (CDS), (non-
coding) exons, introns and regions upstream the TSS (-10kb TSSs). DMRs with no overlaps were defined as 
intragenic. Pairwise differential transcription analyses between cell-types were performed for mRNA samples Hf02, 
Hf03 and Hf04. Significant changes were defined by p-value < 0.05 and fold change > 1.3 of the averaged 
normalized read counts. A minimal read count of 10 was set prior to the fold change computation to prevent extreme 
values of lowly expressed genes. Genes with averaged normalized read counts < 10 in all cell-types were defined as 
not expressed.  
 
Transcriptome analyses 
Htseq-count from HTSeq-0.6.1p1 (Anders et al., 2015) was used to count reads mapping to genes from GENCODE 
release 19 (GRCh37.p13) in '-f bam -s reverse -m union -a 20' setting.  
Pairwise differential expression analyses were performed with DESeq2_1.8.1 (Anders and Huber, 2010).  An FDR 
cutoff of 0.01 was used to select differentially expressed genes. Principal component analyses were performed on 
rlog-normalized reads, as implemented in DESeq2. 
 
Identification and analysis of lncRNAs 
10 Tophat aligned bam files (ribo-depleted RNA, Hf02-04 for Tn, Tcm, Tem and Hf05 for Temra) were used for a 
reference-assisted transcriptome assemby by Cufflinks (v2.2.1) (Trapnell et al., 2010), using the Ensembl gene 
annotation. The output GTF files were merged by cuffmerge. Among the novel transcripts, only the ones with 'u' 
(intergenic transcription) or 'x' (Exonic overlap with reference on the opposite strand) as 'class_code' were kept. Only 
spliced novel transcripts were considered. Fusion genes (3'-extensions of upstream genes) were filtered, if more than 
one paired-end read partly aligned to its upstream genes. To remove lowly expressed genes from novel and known 
lncRNAs as well as from coding RNAs, only genes with an average of min. 20 reads and a mean FPKM of at least 1 
in at least one of four cell types were selected for further analyses.  
To remove possible coding genes from novel transcripts, the coding potential was predicted using PhyloCSF (Lin et 
al., 2011) and CPAT (Wang et al., 2013a). PhyloCSF predicts protein coding potential of transcripts using codon 
substitution frequencies based on multi-species nucleotide sequence alignments. The pre-calculated human hg19 
PhyloCSF values based on 29 mammalian alignments were downloaded from 
https://github.com/mlin/PhyloCSF/wiki. CPAT integrates the coding information of four sequence features: “open 
reading frame size, open reading frame coverage, Fickett TESTCODE statistic and hexamer usage bias” for each 
predicted open reading frame (ORF). CPAT was fed with self-predicted ORFs based on canonical transcript 
start/stop codons, and the recommended cutoff of 0.364. Novel transcripts predicted as protein coding by either 
PhyloCSF or CPAT were removed from further analysis. The method was validated by applying it to 10 616 
annotated and expressed coding genes as well as 669 lincRNAs. 10 455 (98.5%) coding genes and 77 (11.5%) 
lincRNAs were reported as protein coding. 
 
Identification and analysis of miRNAs 
Mature miRNA read counts were estimated for each sample using miRDeep2 (Friedlander et al., 2012) and miRBase 
(version 21) annotations. Identical mature miRNA counts originating from different precursor miRNAs were 
summed in order to produce total mature miRNA counts per sample and miRNAs with either less than five counts or 
identical counts in all samples were removed from the analysis. Principal component analysis was based on centered 
variance-stabilized counts (Huber et al., 2002). Clustering of samples was based on the Euclidean distance of 
Spearman correlations computed over the variance-stabilized counts. Differential expression analysis was done on 
the summarized counts using the DESeq2 package (Love et al., 2014). 
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circRNA detection, annotation and quantification 
CircRNAs were detected, filtered and annotated as described before (Memczak et al., 2013), using hg19 genome 
assembly as a reference. Two additional quality filtering steps were performed. We remapped all reads supporting 
head-to-tail junctions to the human genome using STAR (Dobin et al., 2013), and discarded the ones that mapped 
successfully. We also corrected head-to-tail read counts in cases where both mates of a paired-end read supported the 
same splice junction. 
We labeled circRNAs with 50 or more head-to-tail junction reads in at least one sample as “highly expressed”, 
resulting in a subset of 344 circRNAs. Head-to-tail read counts were increased by a pseudocount of 2 (equal to the 
detection threshold), normalized to library depth (total number of head-to-tail reads), and log-transformed. Principal 
component analysis was performed on these values using standard R functions. 
 
Co-expression network construction and meta-information visualization 
Expression data of Tn, Tcm and Tem cells (3 replicates each) was filtered by either a list of human transcriptional 
regulators (TRs) or 700 most variable genes (i.e. most significant p-values in an ANOVA-based analysis) to get a 
reduced expression table of present genes. The group of TRs contained transcription factors (TFs), co-factors, RNA-
binding proteins and chromatin remodelers originating from the TFCat data base (Fulton et al., 2009). The 
expression matrices were loaded into BioLayout Express3D (Theocharidis et al., 2009) and co-regulation networks 
were generated with a Pearson correlation cutoff of 0.9 resulting in a network of 553 nodes for TRs and 700 nodes 
for the most variable genes. For further analysis, the predicted gene-gene pairs were visualized by Cytoscape 
(Shannon et al., 2003) using organic layout. Further information at transcriptional level such as fold change values 
calculated against the group mean (defined as the mean of all samples within the dataset) were mapped to the 
network one by one.  
 
Transcription factor binding site (TFBS) prediction by iRegulon 
To predict TFBS enrichment for a cluster of co-expressed genes, the Cytoscape plugin iRegulon 
(http://iregulon.aertslab.org/index.html; Janky et al., 2014) was applied. The co-expression network was classified 
into three clusters according to the regulation patterns of Tn, Tcm and Tem cells. For each subtype separately, the 
cluster genes were used as input for iRegulon. The corresponding species Homo sapiens and putative regulatory 
region of 500 bp upstream were selected and default parameters (e.g. enrichment threshold of 3, ROC threshold for 
AUC calculation of 0.03 and rank threshold of 5000, etc.) were used. The resulting output file was used to filter for 
TFs which were also present in the respective network clusters. Predicted TFs with the most significant normalized 
enrichment scores were visualized in a heatmap. 
 
Gene expression prediction using epigenetic data 
We use Elastic Net regression (Zou and Hastie, 2005) to learn a linear model for each sample to predict log2 gene 
expression levels for each sample. As features we use four different setups: 1) each gene can be regulated by a 
microRNA that has a predicted target site in its 3'UTR, where the feature value is the expression of the microRNA in 
the sample. That means for each gene a different number of non-zero features is defined based on Targetscan 
interactions (version 6.0) (Friedman et al., 2009). 2) We compute the average methylation value in four different 
intervals, (i) 3kb upstream of the gene's TSS, (ii) 3kb downstream of the gene's TSS, (iii) 1.5 kb upstream and 1.5 kb 
downstream of the gene's TSS, (iv) average methylation in the whole gene body. We use the TEPIC software 
(Schmidt et al., 2016) to compute TF binding features, considering NOMe peaks that reside within 3 kb of the TSS 
(1.5 kb upstream and 1.5 kb downstream). TEPIC computes TF affinities within the NOMe-peaks and aggregates 
them to gene TF scores. 4) We shuffle the feature matrices from 1-3 and relearn the model to obtain an estimate for 
model performance on random data.  
In order to make the model learning comparable for the three feature sets, all model estimations are run on the same 
set of genes, namely the ones that have at least one NOMe-peak within their 3kb promoter region, as defined above. 
For each set of the three features we perform parameter selection using six fold cross validation using log2 gene 
expression values as a response in the regression. Then we compute the Spearman correlation coefficient between 
predicted gene expression levels and 6-fold hold out sets, i.e. we use a nested cross-validation approach, to measure 
model performance. 
 
Machine-learning approach to model differential gene expression 
We use a logistic regression classifier with the elastic net penalty (Zou and Hastie, 2005) to learn a linear model for 
three pairwise comparisons (Tn vs Tcm, Tcm vs Tem, Tn vs Tem). In each comparison we aim to predict up and 
down regulated genes. Differentially expressed genes were identified as mentioned above (Section Transcriptome 
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analyses), using a FDR cut-off of 0.05. As TF features for the logistic regression classifier we use a two-step 
approach.  
First, we compute TF binding features for each gene using the TEPIC software (Schmidt et al., 2016; 
https://github.com/SchulzLab/TEPIC) using NOMe-peaks for each replicate. The following command line was used 
for TEPIC (e.g. for replicate 51_Hf03_BlTN):  
bash TEPIC.sh –g hs37d5.fa –b 51_Hf03_BlTN_Ct_NOMe_S_1.NCSv2.20150513.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed -o 
51_Hf03_BlTN_Ct_TEPIC –p pwm_vertebrates_jaspar_uniprobe_converted.txt –n 6 –a protein_coding_only.gtf –w 50000 –c 
16). Shortly, TEPIC computes predicted binding affinities for each TF in each peak region and scales these affinities 
by NOMe signal strength, and then summarizes these peak scores per TF in a 50kb window centered on the TSS of 
each gene. This gives a TF-gene association map for each biological sample. 
Second, we compute a mean TF-gene association map 𝑀𝐴𝑅 a matrix with G rows and T columns for a set of 
biological replicates R, where G is the number of genes and T is the number of TFs. One entry  𝑚𝑎𝑖,𝑗,𝑅 of 𝑀𝐴𝑅 is 
computed as follows: 
(1) 𝑚𝑎𝑖,𝑗,𝑅 = 1

|𝑅|
∑ 𝑎𝑖,𝑗,𝑟𝑟∈𝑅 , where 𝑚𝑎𝑖,𝑗,𝑅 is the mean affinity of TF j for gene i for the set of all replicates of subtype 

R, and 𝑚𝑎𝑖,𝑗,𝑟is the affinity of TF j, for gene i in replicate r.  
Next, the ratio between the means for each TF between the subtypes considered in the comparison is calculated (2). 
(2) 𝑟𝑎𝑖,𝑗

𝑅1,𝑅2 =  
𝑚𝑎𝑖,𝑗,𝑅1

𝑚𝑎𝑖,𝑗,𝑅2
, where 𝑟𝑎𝑖,𝑗

𝑅1,𝑅2 is the ratio of mean affinity values between replicates of subtype 1 (R1),  and 

subtype 2 (R2), for gene i and TF j. We denote as RAR1,R2 an GxT matrix of ratios between mean affinity values for 
subtypes R1 and R2, such that one entry is computed using formula (2). RAR1,R2is the feature matrix that is used by 
the classifier to up and down-regulated genes. 
We measure classification performance using accuracy calculated for a 10-fold outer cross validation (CV) loop. A 
6-fold inner CV loop is used for parameter learning.  80% of the data are used for training and 20% for testing.  
 
Analysis of the likelihood of different differentiation models based on gene expression similarity 
Based on the hypothesis, that T cells that are closer to each other in the differentiation order should show more 
similar gene expression profiles, we designed a cell type similarity score to measure the similarity of two cell types. 

cos�Θ𝑟2
𝑟1� = ∑ 𝑚𝑒𝑖

𝑅1𝑚𝑒𝑖
𝑅2 𝐺

𝑖=1

�∑ 𝑚𝑒𝑖
𝑅12 𝐺

𝑖=1 �∑ 𝑚𝑒𝑖
𝑅22 𝐺

𝑖=1

 , 

where 𝑚𝑒𝑖𝑟1(𝑚𝑒𝑖𝑟2) denotes the mean expression of gene i in subtype R1 (R2), and G is the total number of genes. 
Then we sum this score to derive a similarity for the investigated differentiation orders: 

𝑠𝑖𝑚𝑇𝑁−𝑇𝐶𝑀−𝑇𝐸𝑀 = cos(Θ𝑇𝐶𝑀𝑇𝑁 ) + cos (Θ𝑇𝐸𝑀𝑇𝐶𝑀) 
𝑠𝑖𝑚𝑇𝑁−𝑇𝐸𝑀−𝑇𝐶𝑀 = cos(Θ𝑇𝐸𝑀𝑇𝑁 ) + cos(Θ𝑇𝐸𝑀𝑇𝐶𝑀) 

𝑠𝑖𝑚𝑇𝑁−𝑇𝐶𝑀; 𝑇𝑁−𝑇𝐸𝑀 = cos(Θ𝑇𝐶𝑀𝑇𝑁 ) + cos (Θ𝑇𝐸𝑀𝑇𝑁 ), 
where 𝑠𝑖𝑚𝑥denotes the cosine similarity score for differentiation order x. 
The summed scores are normalized between 0 and 1. A large score reflects highly similar gene expression profiles. 
Using bootstrapping, we did 100,000 resampling steps of 15,000 out of 57,688 genes to assess whether the similarity 
scores are significantly different between the orderings. Statistical difference between the means of the final 
similarity-scores was assessed using two-sided t-tests. 
 
Estimation of telomere length 
Quantification of telomere content was performed using the TelomereHunter software on the aligned BAM files 
(https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html). To account for the variable 
read length in the WGBS data the repeatThreshold was set to 0.06x(read length) and applied on the Illumina TruSeq 
PCR free library data. 
 
Genome segmentation based on histone modification (5-states using Epicseg) 
Annotation of different chromatin states was performed by Epicseg (Mammana and Chung, 2015) using all six 
histone marks. To get a robust classification scheme, valid across all cell subsets, the number of states was set to 5, 
the length of segmentation unit to 200bp and the minimum mapping quality to 20. The five states were defined as: 
Promoter (mainly enriched by H3K4me3 and H3K27ac), Enhancer (mainly enriched by H3K4me1), Transcribed 
(mainly enriched by H3K36me3), Repressed (mainly enriched by H3K27me3 and H3K9me3) and Unmarked 
(regions with very few ChIP-seq reads) as evaluated by the “log of mean read counts” heatmaps.  
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Analysis of intracellular FOXP1 protein by flow cytometry 
Following staining of surface proteins (see T cell isolation), cells were fixed using the 1x Fixation/Permeabilization 
Buffer for intracellular Foxp3 staining (eBioscience) for 30min at 4°C. Cells were washed in 1x Permeabilization 
Buffer (eBioscience) and sequentially stained in1x Permeabilization Buffer using a Foxp1 antibody (polyclonal, Cell 
Signalling Technology #2005) and a DyeLight-649-labelled donkey anti-rabbit secondary antibody (Biolegend, 
#406406). Control stainings were performed using the secondary antibody only. Each staining step was performed 
for 30min at 4°C and was followed by a washing step using 1x Permeabilization Buffer. Cells were resuspended in 
PBS and stored at 4°C until acquisition on a BD LSRFortessa™ instrument (BDbioscience). Analysis of flow-
cytometric data was performed using the Flowjo software (Flowjo, LLC). 
 
Cloning of luciferase constructs and luciferase reporter assay 
The FOXP1-DMR was amplified by PCR from genomic DNA of CD4+ T cells using FOXP1-DMR forward and 
reverse primers (see below: 'Quantitative RT-PCR' section) and cloned into the CpG-free Firefly luciferase vector 
pCpGL (Klug and Rehli, 2006) by restriction digest with BglII (New England Biolabs). Successful cloning and 
orientation of the FOXP1-DMR was confirmed by sequencing.  
CD4+ T lymphocytes were enriched by magnetic cell sorting using the human CD4 MicroBeads (Miltenyi Biotec) 
and stimulated for 48h with plate-bound anti-CD3 (UCHT1) anti-CD28 (CD28.2, both BD Bioscience). 1x106 cells 
were transfected with 2 pmol pCpGL plasmid using the NeonTM Transfection System (Life Technologies). Cells 
were co-transfected with 200ng of pRL-TK Renilla luciferase reporter vector (Promega) as an internal control. The 
transfected cells were seeded in antiobiotic-free medium supplemented with hIL-2 (20ng/ml) and cultured for 24h 
without stimulation. Firefly and Renilla luciferase activity were assessed using the Dual Luciferase Assay Kit 
(Promega) and an Orion L Microplate Luminometer (Berthold Technologies) according to the manufacturer’s 
instructions. To calculate reporter activity, the Firefly luciferase signal was divided by the Renilla reporter signal for 
each sample in order to normalize for differences in transfection efficiency. Normalized luciferase signals were then 
divided by the value of the empty pCpGL-basic vector in order to calculate the fold change activity of each sample 
relative to pCpGL-basic.  
 
In vitro methylation of plasmid DNA 
Plasmids were methylated using M.SssI CpG methyltransferase (New England Biolabs) according to the 
manufacturer’s recommendation. Briefly, 30μg plasmid was incubated with M.SssI in the presence of S-
adenosylmethionine (SAM; New England Biolabs) for four hours at 37°C. Mock-methylated plasmid was treated in 
the same way without the addition of M.SssI or SAM. Plasmids were purified using the NucleoSpin Extract II kit 
(Macherey Nagel). 
The efficiency of methylation was verified by digesting both methylated and mock-methylated plasmids using the 
methylation-sensitive restriction enzyme HpaII and the methylation-insensitive enzyme MspI followed by analysis of 
the digestion product using gel electrophoresis. 
 
Quantitative RT-PCR 
cDNA was generated by reverse transcription of total RNA using oligo(dT)20 primers and SuperScript III Reverse 
Transcriptase (Thermo Fisher Scientific). Quantitative real-time PCR was performed with platinum SYBR green 
qPCR superMix-UDG (Thermo Fisher Scientific) on a Step One instrument (Thermo Fisher Scientific). Relative 
transcript levels were normalized to hRPS18 using the ΔΔCT method. To quantify the different FOXP1 isoforms, 
specific primer pairs for each isoform were used as well as the hRPS18 primers as a reference.  
 

 
 
 

Primer Sequence 5' - 3' 

Foxp1-DMR forward GACGAGATCTGATTTGTACCCAAG
Foxp1-DMR reverse GACGAGATCTATTATAGCAACATAACATTTAAC

Foxp1 Short Isoform forward TGCCTCCTCACCATGAACGG
Foxp1 Short Isoform reverse CTGGATGGCAAGGTCTTCTCC
Foxp1 Long Isoform forward GTGAAAATTGCCTCTCCCGC
Foxp1 Long Isoform reverse CTGGATGGCTGAACCGTTACT
Foxp1  Isoform 5 forward CAGTGAGGCTGCTGAAGGTTT
Foxp1  Isoform 5 reverse CTGGATGGCTGAACCGTTACT
hRPS18 forward ATTAAGGGTGTGGGCCGAAG
hRPS18 reverse GGAGCTTGTTGTCCAGACCA

Cloning of luciferase vectors 

Primers used for qPCR

90



 
 

Selection of 144 genes associated with Tmem cell differentiation and -function from recent 
literature 
 
The following articles were used: Best et al., 2013; Bottcher and Knolle, 2015; Caserta and Zamoyska, 2007; Chang 
et al., 2014; Gray et al., 2014; Huber and Lohoff, 2014; Kaech and Cui, 2012; Kurtulus et al., 2012; Lochner et al., 
2015; Oberdoerffer et al., 2008; Sprent and Surh, 2001; Thaventhiran et al., 2013; Tsukumo et al., 2013; Weng et al., 
2012. 
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Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous

system with a modest concordance rate in monozygotic twins, which strongly argues for

involvement of epigenetic factors. We observe highly similar peripheral blood mononuclear

cell-based methylomes in 45 MS-discordant monozygotic twins. Nevertheless, we identify

seven MS-associated differentially methylated positions (DMPs) of which we validate two,

including a region in the TMEM232 promoter and ZBTB16 enhancer. In CD4+ T cells we find

an MS-associated differentially methylated region in FIRRE. Additionally, 45 regions show

large methylation differences in individual pairs, but they do not clearly associate with MS.

Furthermore, we present epigenetic biomarkers for current interferon-beta treatment, and

extensive validation shows that the ZBTB16 DMP is a signature for prior glucocorticoid

treatment. Taken together, this study represents an important reference for epigenomic MS

studies, identifies new candidate epigenetic markers, and highlights treatment effects and

genetic background as major confounders.
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Multiple sclerosis (MS), a leading cause of neurological
disability in young adults, is considered to be an auto-
immune disease, characterized by chronic inflamma-

tory demyelination of the central nervous system1,2. Although
nuclear genetic factors contribute to the development of MS3, a
maximum concordance rate for MS in monozygotic (MZ) twins
of 25%4,5, indicates that interaction with other risk factors is
compulsory for clinical symptoms to develop. While various
studies suggested mitochondrial DNA variants as plausible MS
susceptibility factors, we recently showed that mitochondrial
DNA variation (e.g., skewed heteroplasmy) does not play a major
role in the discordant clinical manifestation of MS in MZ twins6.

DNA methylation differences represent another source of
molecular variation that can cause discordant phenotypes within
MZ twins7–13. As DNA methylation changes can cause tran-
scriptional alterations, aberrant DNA methylation has been
observed in various human diseases14,15. Discordant DNA
methylation profiles within MZ twins have been reported quite
frequently at imprinted regions7–9, which are characterized by
parent-of-origin-specific methylation patterns resulting in mono-
allelic expression. As a maternal parent-of-origin effect in MS
susceptibility has been reported16,17, and several imprinted genes
have been linked to immune system development and function-
ing (reviewed by Ruhrmann et al.18), genomic imprinting errors
might be involved in the pathogenesis of MS18. Additionally,
environmental risk factors such as smoking, history of sympto-
matic Epstein-Barr virus infection, and vitamin D deficiency have
been associated with an increased MS risk19–21. Although the
molecular mechanisms underlying these associations remain
unknown, evidence that these environmental factors can induce
DNA methylation changes is accumulating22–25.

Thus far, several epigenome-wide association studies (EWAS)
for MS have been carried out26–31, and a number of differentially
methylated CpG positions (DMPs) have been reported, including
DMPs in the HLA-DRB1 locus. Although these studies used
the same array platform (i.e., Infinium HumanMethylation450
(450 K)), the results are inconsistent. Since these studies used
genetically unmatched cases and controls, they are potentially
hampered by DNA sequence variation. As genetic factors
predispose to MS, these studies cannot determine whether MS is
due to genetic or epigenetic susceptibility. In addition, SNP-
containing probes give rise to biased DNA methylation mea-
surements32, and DNA methylation changes are also often the

result of cis- or trans-acting genetic variants (methylation quan-
titative trait loci or mQTLs)33. A MZ twin-based design controls
for these genetic differences and for other factors (potentially)
affecting the methylome, including gender, age, and a broad range
of environmental factors. Thus far, one EWAS in MS-discordant
MZ twins has been reported, but no DNA methylation differences
were identified34. Since this study included only three pairs and
exclusively aimed at identifying very large methylation differences
(i.e., ≥80% methylation in one co-twin and ≤20% in the other),
further studies in larger cohorts are required.

Here, we describe an EWAS comprising a unique cohort of
45MZ twins clinically discordant for MS in which we aim to
identify MS-associated DNA methylation changes in peripheral
blood mononuclear cells (PBMCs) and to study the effect of
MS treatments on the methylome (Fig. 1). Although we confirm
that MS-discordant MZ twins have very similar methylomes, we
identify a few new MS-associated candidate loci and observe
DNA methylation changes associated with current interferon-
beta (IFN) and prior glucocorticoid (GC) treatment.

Results
PBMC-based methylomes. PBMCs of 46 MZ twins clinically
discordant for MS were accessible and genome-wide DNA
methylation profiles were established using Illumina Infinium
MethylationEPIC BeadChips (EPIC arrays). After quality control
and filtering, methylation data of 849,832 sites were available
for 45 twin pairs. As expected, within-pair array-wide correlation
coefficients were very high (mean= 0.995), indicating high-
quality data. Clinical characteristics of the 45 MS-discordant
MZ twins are shown in Table 1 and Supplementary Fig. 1.

Detection and validation of MS-DMPs in TMEM232 and
ZBTB16. To identify DMPs associated with the clinical mani-
festation of MS (MS-DMPs), first a pair-wise analysis was carried
out on the EPIC array data of the 45 pairs without adjusting
for cell-type composition (Supplementary Fig. 2a, b). The Q-Q
plot in Supplementary Fig. 2b shows that the obtained p-values
(Wilcoxon singed-rank test) clearly deviate from the null expec-
tation. This inflation was eliminated after adjusting for cell-type
composition (Fig. 2a, b), indicating that many differences are due
to variation in cellular composition.

Multiple sclerosis

MS-DMPs
MS-DVPs
WP-DMRs
WP-CNVs

EPIC array
- Illumina Infinium
MethylationEPIC
BeadChip assay

- PBMCs of 45 MZ
twin pairs

Interferon-beta treatment

Recent glucocorticoid treatment history

IFN-DMPs

GC-DMPs

45 pairs

12 pairs

14 pairs

WGBS
- Whole genome

bisulfite sequencing
- CD4+ T cells of
four MZ twin pairs

Multiple sclerosis

Glucocorticoid treatment

4 pairs

1 pair

MS-DMRs

GC-DMRs

TDBS
-Targeted deep

bisulfite sequencing

Repetitive elements HERVK, LINE1 & Alu

DMP validation
45 pairs

Methods Samples Analysis strategiesCohort

45 MZ twins
clinically

discordant for
multiple sclerosis

Fig. 1 Schematic overview of the study design and analysis strategies. DMPs, differentially methylated CpG positions; DMRs, differentially methylated
regions; DVP, differentially variable CpG positions; GC-DMPs, glucocorticoid treatment-associated DMPs; HERVK, human endogenous retrovirus type K;
IFN-DMPs, interferon-beta treatment-associated DMPs; LINE1, long interspersed nuclear element-1; MS-DMPs, multiple sclerosis-associated DMPs; MS-
DVPs, multiple sclerosis-associated DVPs; MZ, monozygotic; PBMCs, peripheral blood mononuclear cells; WP-CNVs, within-pair copy-number variations;
WP-DMRs, within-pair differentially methylated regions. The logo of the MS/TWIN/STUDY is not covered by the article CC BY license. Image credit goes
to Lisa Ann Gerdes. All rights reserved, used with permission
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Mean within-pair β-value differences (Δβ-values) were small
(Fig. 2a and Supplementary Fig. 2a). The largest differences were
observed for ECT2 (cg12393503), SELPG (cg02520593), and IL34
(cg01447350), with mean Δβ-values of 0.15, 0.06, and −0.09,
respectively, but they did not reach statistical significance. In
several twins, these CpGs showed very large Δβ-values (~0.8)
(Supplementary Fig. 3), but these differences were not confirmed
by validation using targeted, deep bisulfite sequencing (TDBS)
(Supplementary Fig. 4). This indicates that some EPIC probes
are prone to technical artefacts, as reported by others35, and that
validation using independent assays is required.

The unadjusted analysis revealed 39 MS-DMPs with a
suggestive p < 5 × 10−6 (Wilcoxon singed-rank test). After
correcting for multiple testing six MS-DMPs remained genome-
wide significant (false discovery rate (FDR) < 0.05) (Supplemen-
tary Fig. 2a). After adjusting for cell-type composition, no
MS-DMP had FDR < 0.05, but five MS-DMPs had a suggestive
p < 5 × 10−6 (Fig. 2a and Table 2). One of these MS-DMPs is
located in the promoter of the TMEM232 gene (cg27037608,
mean Δβ-value= 0.024), encoding for a transmembrane protein
of unknown function. Genetic variants in TMEM232 have been
associated with atopic dermatitis and allergic rhinitis in
GWAS36,37. For this MS-DMP, EPIC array data for 12
neighboring CpGs were also available, which all showed a similar
effect, and p < 0.01 was calculated for eight CpGs (Fig. 2c). A
second solitary MS-DMP was observed in the gene body of
SEMA3C (cg00232450, mean Δβ-value= 0.013), which has been
suggested to promote dendritic cell migration during innate and
adaptive immune responses, and to be involved in axonal
guidance and growth38. A third MS-DMP is located in the
YWHAG gene (cg01708711, mean Δβ-value= 0.015), which has
been associated with MS severity in a GWAS39. This MS-DMP
has five neighboring CpGs on the array, but all are non-
significant, questioning the significance of this MS-DMP. A
fourth MS-DMP (cg25345365) showed the largest methylation
difference (mean Δβ-value=−0.039) and is located in an
enhancer within ZBTB16, which has been reported to be essential
for natural killer T (NKT) cell development40. The fifth MS-DMP
(cg25755428, mean Δβ-value= 0.033) is located in the MRI1
gene, in which mutations have been associated with vanishing
white matter disease41. The β-value distribution of this and

neighboring CpGs suggests that this concerns a mQTL (Table 2).
Additional adjustment for smoking status did not alter the
p-values of these 5 MS-DMPs, indicating that they are not
confounded by smoking status.

Next, all 698 MS-DMPs with p < 0.001 (Wilcoxon singed-rank
test) after adjusting for cell-type composition were functionally
annotated using the GREAT tool, which assigns biological
meaning to a set of non-coding genomic regions by analyzing
the annotations of nearby genes42. This analysis revealed that
TMEM232 is enriched for MS-DMPs. Other annotation cate-
gories were not significant.

Based on their significance, effect size and/or whether
neighboring probes were also differentially methylated, the
TMEM232 (cg27037608) and ZBTB16 (cg25345365) MS-DMPs
were selected for validation using TDBS. The TDBS data
correlated highly with the array data (rPearson-TMEM232= 0.84
and rPearson-ZBTB16= 0.89, Supplementary Figs. 5a and 6a),
and both MS-DMPs as well as the surrounding CpGs were
significantly differentially methylated between the MS-discordant
twins (Supplementary Figs. 5b and 6b). This confirms that these
MS-DMPs represent true effects in our cohort.

TMEM232 and ZBTB16 MS-DMPs associated with long-
standing MS. To verify whether the identified methylation dif-
ferences are dependent on disease duration, we performed a pair-
wise analysis including only the EPIC array data of the 25 pairs
that have been clinically discordant for MS longer than 10 years
(Supplementary Table 1). In the analysis adjusted for cell-type
composition, two DMPs had a suggestive p < 5 × 10−6 (Wilcoxon
singed-rank test), one of which is located in the promoter of the
TACSTD2 gene encoding tumor-associated calcium signal
transducer 2 (mean Δβ-value=−0.022)43. The second DMP is
located in the promotor of the RCL1 gene (mean Δβ-value=
−0.011), which has been linked to depression44. For these
two long-standing MS-DMPs, EPIC array data of neighboring
CpGs were available ( < 500 bp), and two neighboring CpGs
of the TACSTD2 MS-DMP showed a similar trend (p < 0.10).
Additionally, the TMEM232 MS-DMPs cg27037608 (mean
Δβ-value= 0.026, p= 3.2 × 10−5) and cg26583412 (mean
Δβ-value= 0.038, p= 1.8 × 10−5) were among the top 15
most significant DMPs associated with long-standing MS.

Table 1 Characteristics of the MZ twins clinically discordant for MS

Characteristic MS-affected MZ co-twins Non-affected MZ co-twins Range pb

Number of pairs 45 45
Gender (female/male) 32/13 32/13
Age at study entry (years) 42.3 ± 12.1 42.3 ± 12.1 (21–67)
Age of disease onset (years)a 27.9 ± 8.4 (14–46)
Years clinically discordant for MS at sample collectiona 15.3 ± 11.1 (1–45)
EDSS at study entry 3.3 ± 2.3 (0–9.5)
Pairs longer than 10 years clinically discordant for MS 25 (56%)
Pairs with a positive family history of MS 13 (29%)
MS type
- RRMS 31 (69%)
- SPMS 12 (27%)
- PPMS 2 (4%)
Smoking status
Smoking at disease onset 23 (51%) 19 (42%) 0.53
Pack-years at disease onset 0.03 (0–3.5) 0 (0–3.8) 0.81
Smoking at sample collection 14 (31%) 12 (27%) 0.82
Pack-years at sample collection 0.6 (0–10.8) 0 (0–6.3) 0.24

Continuous data expressed as: mean ± standard deviation or median (interquartile range). Categorical data expressed as: number of observations (%)
EDSS Expanded Disability Status Scale, PPMS primary-progressive MS, RRMS relapsing-remitting MS, SPMS secondary-progressive MS
aSee Supplementary Fig. 1 for boxplots (with all data points) showing the distribution of the age of disease onset and the years that the MZ twins were clinically discordant for MS at sample collection
bMS-affected versus non-affected MZ co-twins calculated using a two-tailed Wilcoxon signed-rank test for continuous data and two-tailed Fisher’s exact test for categorical data
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Furthermore, the ZBTB16 MS-DMP had a mean Δβ-value dif-
ference of −0.036 (p= 0.002, Supplementary Table 1). Additional
adjustment for smoking status did not change the results. Hence,
the TMEM232 and ZBTB16 MS-DMPs are also associated with
long-standing MS.

Evaluation of the TMEM232 MS-DMPs in a case-control
cohort. Next, we evaluated the selected MS-DMPs in whole
blood-based 450 K EWAS data of 140 unrelated MS patients and
139 controls from Kular et al.31. Unfortunately, the cg25345365
ZBTB16, cg27037608 and cg26583412 TMEM232MS-DMPs were
not present on the 450 K array, but data from seven neighboring
CpGs in TMEM232 were available. Although none of these CpGs
were significantly differentially methylated between the MS cases
and controls (p > 0.05, linear regression), methylation levels were
always higher in the MS patients, confirming the directionality
of the effect observed in the twins (Supplementary Table 2).

Whole-genome bisulfite sequencing reveals MS-DMR in
FIRRE. To identify additional MS-associated differentially
methylated regions (MS-DMRs), we performed whole-genome
bisulfite sequencing (WBGS) for a subset of four MS-discordant
female twin pairs on CD4+memory T cells, which have been
implicated in the pathogenesis of MS45. First, genome-wide DNA
methylation changes were evaluated by identifying and compar-
ing partially methylated domains (PMD), fully methylated
regions (FMRs), low methylated regions (LMRs), and unmethy-
lated regions (UMRs). However, no significant differences were
observed between the MS-discordant co-twins (p > 0.05, paired
t-test) (Supplementary Figs. 7, 8).

Next, a DMR analysis was carried out and MS-DMRs were
defined as ≥ 3 CpGs (max. distance 500 bp), each having p < 0.05
(paired t-test) and an absolute mean methylation difference >0.2.
The DMR analysis revealed a prominent MS-DMR located in
an intronic CTCF/YY1 bound regulatory region in FIRRE, which
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Fig. 2 DNA methylation changes associated with the clinical manifestation of MS. Results of the differential DNA methylation analysis including the EPIC
array data of the 45 MZ twin pairs clinically discordant for MS. a Volcano plot of the p-values resulting from the nonparametric two-tailed Wilcoxon
signed-rank test against the mean within-pair β-value difference for each CpG. Data were adjusted for cell-type composition. b Q-Q plot of the p-values
resulting from the nonparametric two-tailed Wilcoxon signed-rank test shown in Fig. 2a. Data were adjusted for cell-type composition. Within-pair β-value
difference (Δβ-value)= clinically MS-affected MZ co-twin—non-affected MZ co-twin. c Overview of the TMEM232 promoter region. Data are presented as
Tukey boxplots including the individual data points that represent the (adjusted) β-values of the significant MS-associated differentially methylated CpG
position (MS-DMP) cg27037608 and 12 neighboring CpGs present on the EPIC array. The lines connect the mean methylation values of each CpG site for
the MS-affected and clinically non-affected MZ co-twins separately. Boxplots represent the interquartile range or IQR (bottom and top of the box) and 1.5
times the IQR (whiskers). Source data are provided as a Source Data file. n= number of twin pairs
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is located on the X-chromosome (chrX:130863481–130863509)
and encodes a circular, long, non-coding RNA (Supplementary
Figs. 9 and 10)46. This MS-DMR is not covered by the EPIC
array, but a probe (cg08117231) located 6 bp upstream of this
DMR was not significant in the PBMC-based EWAS, nor in the
females-only analysis (p > 0.05, Wilcoxon signed-rank test).
When performing the analysis using a less robust methylation
difference of >0.15, then 19 additional MS-DMRs were identified
(Supplementary Table 3). Five of these were also covered by the
EPIC array, but were not significant in the PBMC-based EWAS.
Only 11 of these additional MS-DMRs showed overall consistent
methylation differences across the entire DMR, including an MS-
DMR in the DDAH1 gene that also contains an established
MS-associated SNP3. Unfortunately, the TMEM232 and ZBTB16
loci did not fulfill the filtering criterion of ≥10 reads coverage
across all samples, but note that they were validated by TDBS.

Within-pair DMRs are common among MZ twins. Our PBMC-
based EWAS concentrated on the identification of MS-DMPs
showing differences across many twin pairs. However, since MS is
a heterogeneous disease, DNA methylation changes present in
only a few cases should also be considered. Therefore the EPIC

array data was used to identify within-pair DMRs (WP-DMRs).
To detect robust methylation changes in individual twin pairs,
WP-DMRs were defined as ≥3 CpGs within 1 kb having a Δβ-
value (adjusted for cell-type composition) > 0.20 and the aberrant
methylated co-twin a β-value greater than ±3 standard deviations
from the mean. Overall, 45 WP-DMRs were identified in 17 of
the 45 twin pairs, ranging from one to 11 WP-DMRs per pair
(Supplementary Table 4 and Supplementary Figs. 11–14). Of the
45 WP-DMRs, 43 were solitary and pair-specific and only two
WP-DMRs (ISOC2 and HIST1H3E) were found in two inde-
pendent pairs (Supplementary Fig. 11), but the aberrant methy-
lation pattern did not correlate with the MS phenotype
(Supplementary Table 4). Of the 43 pair-specific WP-DMRs,
16 showed an aberrant methylation pattern in the non-affected
co-twin and 27 in the MS-affected co-twin. These WP-DMRs
have not been associated with MS in other EWAS, nor do they
overlap with MS-associated genes reported in the GWAS Catalog
(accessed May 2018)47. Two pair-specific WP-DMRs were located
in reported imprinted DMRs48 in SVOPL and HM13/MCTS2P
(Supplementary Fig. 12), but in both cases the non-affected
co-twin showed an abnormal methylation pattern. Lowering the
WP-DMR Δβ-value threshold to 0.15 revealed that of the 27
WP-DMRs, which were aberrantly methylated in the MS-affected

Table 2 DMPs associated with the clinical manifestation of MS (n= 45 twin pairs)a

Probe ID Gene/
Locationb

Functional
regionc

β-value (U/A) Δβ value (95%
CI) (U/A)

β-value
range

pW-U/pW-A FDRW-U/
FDRW-A

Close
probesd

450 K Full name &
reported functionMS non-MS

cg27037608 TMEM232/
chr5:
110062618

TSS200/
TFBS

0.488/
0.489

0.466/
0.465

0.022
(0.012,0.032)/
0.024
(0.014,0.034)

0.31–0.59 4.8 × 10−5/
4.3 × 10−6

0.13/
0.74

13
within
500 bp,
8 with p
< 0.01

N Transmembrane
protein 232:
associated with
atopic dermatitis
and allergic rhinitis
in GWAS36,37

cg00232450 SEMA3C/
chr7:
80421169

Body/DHS 0.813/
0.810

0.793/
0.797

0.020
(0.012,0.027)/
0.013
(0.008,0.019)

0.73–0.86 1.6 × 10−7/
2.5 × 10−6

0.03/
0.52

0
within 2
kb

N Semaphorin 3 C:
involved in axonal
guidance and
growth. Promotes
dendritic cell
migration during
innate and adaptive
immune
responses38

cg01708711 YWHAG/
chr7:
75959031

Body/CpG
island/
TFBS

0.855/
0.854

0.839/
0.839

0.016
(0.011,0.021)/
0.015
(0.010,0.020)

0.79–0.89 1.8 × 10−7/
7.3 × 10−7

0.03/
0.21

5 within
350 bp,
p > 0.01

Y Tyrosine 3-
monooxyge-nase/
tryptophan 5-mono-
oxygenase
activation protein,
gamma: associated
with MS severity in
GWAS39

cg25345365 ZBTB16/
chr11:
114050114

Body/
DHS/
FANTOM5
enhancer

0.540/
0.544

0.587/
0.583

−0.047
(−0.063,
−0.031)/
−0.039
(−0.053,
−0.024)

0.36–0.72 1.5 × 10−7/
7.3 × 10−7

0.03/
0.21

0
within 2
kb

N Zinc Finger And
BTB Domain
Containing 16:
transcription factor
essential for NKT
cell development40

cg25755428 MRI1/
chr19:
13875111

TSS1500/
CpG
island/
DHS

0.328/
0.336

0.311/
0.303

0.017
(0.006,0.027)/
0.033
(0.021,0.044)

0.05–0.89e 8.6 × 10−4/
5.8 × 10−7

0.17/
0.21

mQTLe Y Methylthioribose-1-
phosphate
isomerase 1:
includes mutation
associated with
vanishing white
matter disease41

Source data are provided as a Source Data file
A adjusted for cell-type composition, CI confidence interval, DHS DNAse I hypersensitive site, FDRW-A FDR two-tailed Wilcoxon signed-rank test adjusted for cell-type composition, FDRW-U FDR two-
tailed Wilcoxon signed-rank test unadjusted for cell-type composition, GWAS genome-wide association study, pW-A p-value two-tailed Wilcoxon signed-rank test adjusted for cell-type composition, pW-U

p-value two-tailed Wilcoxon signed-rank test unadjusted for cell-type composition, TFBS transcription factor-binding site, TSS200 the region from transcription start site (TSS) to −200 nt upstream of
TSS, TSS1500 −200 to −1500 nt upstream of TSS, U unadjusted for cell-type composition, 450 K CpG present on 450 K array (N no, Y yes), Δβ-value within-pair β-value difference (clinically MS-affected
MZ co-twin—non-affected MZ co-twin)
aListed are the five MS-DMPs with a suggestive p < 5 × 10−6 (two-sided Wilcoxon signed-rank test) in the pair-wise analysis carried out using the EPIC array data of the 45 MZ twin pairs adjusted for
cell-type composition
bGenome coordinates are human genome build GRCh37/hg19
cBased on information provided by the Illumina manifest
dNumber of EPIC probes mapping close to the DMPs are listed and whether these probes have a p < 0.01 (two-sided Wilcoxon signed-rank test)
eBehaves like a methylation quantitative trait loci
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co-twins, four WP-DMRs were also identified in other twins.
Of these one intergenic WP-DMR was present in four pairs
and always hypermethylated in the MS-affected co-twins (Sup-
plementary Table 5). Furthermore, among the 23 pair-specific
WP-DMRs, which were aberrantly methylated in the MS-affected
co-twins, four WP-DMRs were identified in one pair in the
protocadherin gamma (PCDHG) gene cluster (Supplementary
Fig. 13), and another was observed in the promoter of the non-
clustered protocadherin 10 (PCDH10) gene (Supplementary
Fig. 14). Protocadherins are highly expressed in the brain and
involved in neuronal development49.

Methylation variability not enhanced in MS-discordant twins.
Increased DNA methylation variability has been observed in MZ
twins discordant for the autoimmune diseases type 1 diabetes
(T1D) and rheumatoid arthritis (RA)12,13. Hence, we tested
whether DNA methylation variability is also implicated in MS
using the iEVORA algorithm50. Applying the default FDR < 0.001
resulted in only 25 differentially variable CpG positions (DVPs)
of which the majority (88%) was hypervariable in the non-
affected co-twins (Supplementary Table 6 and Supplementary
Fig. 15). Hence, our PBMC-based EPIC array data does not
support the presence of an MS-associated DNA methylation
variability signature in these MS-discordant MZ twins.

IFN treatment induces robust DNA methylation changes. Our
study design also allows to identify MS treatment-related DNA
methylation changes. In our cohort, IFN is the most common
disease-modifying treatment, and although IFN-induced tran-
scriptomic alterations in blood cells of MS patients have been
studied previously51–53, DNA methylation changes have not been
reported so far. We performed a pair-wise analysis including the
EPIC array data of the 12 pairs of which the MS-affected co-twins
were treated with IFN at blood collection. The mean Δβ-values

were larger in this subcohort (Fig. 3a), as we identified 257 DMPs
with an absolute mean Δβ-value > 0.05 and p < 0.001 (Wilcoxon
singed-rank test). None of the MS-DMPs listed in Table 2 were
among these 257 IFN-associated DMPs (IFN-DMPs). The 257
IFN-DMPs were annotated to 212 genes, of which 124 genes
(58%) overlap with IFN-regulated genes recorded in the
INTERFEROME gene expression database (accessed May 2018)
51. Functional annotation analysis revealed clear enrichment for
genes involved in antiviral defense and interferon homeostasis
(Fig. 3b). Moreover, seven IFN-DMPs had an absolute mean
Δβ-value > 0.10 and p < 0.001, due to strong hypomethylation
in the IFN-treated MS-affected co-twins (Supplementary Table 7
and Supplementary Fig. 16). These seven DMPs were located in
RSAD2 (n= 3),MX1 (n= 2), IFI44L (n= 1) and PLSCR1 (n= 1),
i.e., genes reported to be up-regulated in blood cells of IFN-
treated MS patients51–53. Although the estimated NK and B cells
proportions differed significantly between the IFN-treated MS-
affected and non-affected co-twins (Supplementary Table 8),
adjusting the data for cell-type composition resulted in only a
slight attenuation of the IFN-effect (Supplementary Table 7).
Hence, our results indicate that these seven DMPs are robust
markers for monitoring IFN treatment effects in PBMCs.

GC treatment induces hypomethylation at ZBTB16 enhancer
DMP. Among the MS-DMPs, the ZBTB16 DMP (cg25345365)
had the largest effect size (~4%) and is located in an enhancer
in intron 3 of ZBTB16, which encodes for a transcription factor
also known as promyelocytic leukemia zinc finger (PLZF).
ZBTB16/PLZF has been reported to be essential for NKT cell
development40, and to contribute to T-helper 17 (Th17) cell
differentiation and phenotype maintenance54. However, ZBTB16
is also known as a major GC response gene, being highly upre-
gulated after GC exposure55, and several days of high-dose
intravenous GC therapy is generally used to treat relapses in MS.
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Fig. 3 Interferon-beta (IFN) treatment-associated DNA methylation changes. a Results of the differential DNA methylation analysis including only the EPIC
array data of the 12 pairs, of which the MS-affected MZ co-twin was treated with IFN at the moment of blood collection. The volcano plot presents the p-values
resulting from the nonparametric two-tailed Wilcoxon signed-rank test vs. the mean within-pair β-value difference for each CpG. Data were not adjusted for
cell-type composition. Within-pair β-value difference (Δβ-value)=MS-affected IFN-treated MZ co-twin - clinically non-affected MZ co-twin. n= number of
twin pairs. b Summary of the functional annotation analysis using GREAT42, on the 257 IFN-associated differentially methylated CpG positions (IFN-DMPs)
(absolute mean within-pair β-value difference >0.05 and two-sided Wilcoxon signed-rank test p < 0.001). Annotation terms are ranked according to their
enrichment p-values calculated by GREAT42: GO Biological Process terms (Hyper raw p < 1 × 10−6) and the other presented terms (Hyper raw p < 1 × 10−5)
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None of the MS-affected co-twins included in the array-based
EWAS received GCs within three months prior blood collection.
Nevertheless, GC treatment constitutes a serious confounder,
because 43 of the 45 MS-affected co-twins have a GC treatment
history (and the healthy co-twins not). Of these 14 received GCs
within >3-12 months prior to blood collection (i.e. high-dose
intravenous methylprednisolone (IVMP) 1 g/day for at least
3 days and on average 6 days). In those 14 pairs, the within-pair
methylation differences at the ZBTB16 DMP are significantly
larger (more negative) than the pairs in which the MS-affected
co-twin had received GCs longer than 12 months ago (p= 0.0004,
Wilcoxon rank-sum test) (Fig. 4a and Supplementary Fig. 17).

This indicates that the strong association between the ZBTB16
DMP and the MS phenotype is due to the GC treatment history
of the MS-affected co-twins.

GC-induced DMPs are not widespread in GC-response genes.
Then, the EPIC array data of the 14 pairs of which the MS-
affected co-twin had received GCs within >3–12 months prior to
blood collection was analyzed to study the effect of recent
GC treatment history on the PBMC methylomes (Fig. 4b). 320
potential GC-DMPs had an absolute mean Δβ-value > 0.05 and
P < 0.001 (Wilcoxon signed-rank test) and were annotated to 279
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Fig. 4 Prior glucocorticoid (GC) treatment-associated DNA methylation changes. aWithin-pair methylation differences of the ZBTB16 DMP (cg25345365),
determined using TDBS in the 14 pairs of which the MS-affected co-twin received GCs within >3–12 months prior blood collection, compared to the 31 pairs
of which the MS-affected co-twin was treated with GCs more than 1 year ago. Boxplots represent the median (central line), the interquartile range or IQR
(bottom and top of the box), and 1.5 times the IQR (whiskers). p-value= nonparametric two-tailed Wilcoxon rank-sum test result. Source data are
provided as a Source Data file. b Results of the differential DNA methylation analysis including only the EPIC array data of the 14 pairs of which the MS-
affected co-twins received GCs >3–12 months prior to blood collection. The volcano plot presents the p-values resulting from the nonparametric two-tailed
Wilcoxon signed-rank test vs. the mean within-pair β-value difference for each CpG. Data were unadjusted for cell-type composition. a–b Within-pair
methylation/β-value difference=MS-affected MZ co-twin receiving GCs >3–12 months prior to blood collection – clinically non-affected MZ co-twin.
c Methylation level of the ZBTB16 DMP (cg25345365) region determined using WGBS in CD4+ memory T cells of one MS-discordant MZ twin pair of
which the MS-affected MZ twin was treated very recently with GCs at the time of blood collection. Coverage at cg25345365 is >20 reads in each co-twin.
Source data are provided as a Source Data file. d Methylation and reported expression patterns of the 41 GC-DMRs that overlap with GC-response
(dexamethasone) genes recorded in the EMBL-EBI Expression Atlas (accessed May 2018). One GC-DMR was excluded because it was reported to be
down- and upregulated after dexamethasone treatment (Supplementary Table 9). n= number of twin pairs
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genes. Of these, only five genes (1.8%), including CCNA1, GMPR,
ITGA6, LSP1, and ZBTB16, overlap with the 721 GC-response
(dexamethasone) genes recorded in the EMBL-EBI Expression
Atlas (accessed May 2018). The other four MS-DMPs listed in
Table 2 were not among these 320 GC-DMPs.

To study acute GC treatment effects, a WGBS analysis was
performed on CD4+ memory T cells of a twin pair of which the
MS-affected co-twin was very recently treated with two courses of
GCs (i.e., 2 months and 10 days before blood collection with
IVMP 1 g/day for 3 and 5 days, respectively). The WGBS data
confirmed the strong hypomethylation of the ZBTB16 DMP
(cg25345365) in the GC-treated MS-affected co-twin (36%
methylation difference) (Fig. 4c). In addition, 1424 other potential
GC-DMRs were identified in the WGBS data, consisting of
at least 2 CpGs, absolute mean methylation difference >0.25
and p < 0.01 (Wald test). These GC-DMRs were annotated to 682
genes. Only 41 GC-DMRs overlap with 39 (5.7%) GC-response
genes reported in the EMBL-EBI Expression Atlas (Supplemen-
tary Table 9), which represent potential GC-treatment epigenetic
biomarkers. The majority of these 41 GC-DMRs were hypo-
methylated and the corresponding GC-response gene was
recorded as upregulated due to GC treatment (Fig. 4d).

ZBTB16 methylation and EPIC array-wide hypermethylation.
DNA methylation of the repetitive elements Alu, human endo-
genous retrovirus type K (HERVK), and the long interspersed
nuclear element-1 (LINE1) in the PBMC-derived samples were
assessed by TDBS. Although Alu methylation correlated sig-
nificantly with LINE1 methylation (rPearson= 0.43, p= 0.003),
methylation levels were overall very similar, showing maximum
absolute within-pair differences for Alu,HERVK, and LINE1 of only
0.015, 0.024, and 0.025, respectively. Hence, Alu, HERVK and
LINE1 methylation levels did not differ between the MS-discordant
co-twins (p > 0.05, Wilcoxon signed-rank test). Although Alu and
HERVK methylation were affected by cell-type composition differ-
ences, adjusting for cell-type composition did not change the results.
For Alu generic primers were used, and since the element has ~1
million copies/genome, with a minimum sequencing coverage of
2000 reads/sample about 0.2% of the elements were analyzed. In
contrast, HERVK and LINE1 primers were designed to amplify the
youngest subfamilies, which gives with a minimum sequencing
coverage of 2000 reads >6 fold coverage per individual HERVK and
LINE1 element (see legend of Supplementary Table 12).

The volcano plots of the EPIC array data in Supplementary
Fig. 2a and Fig. 2 are slightly unbalanced because 59.1% and
55.9% of the CpGs have a positive mean within-pair β-value
difference before and after cell-type adjustment, respectively.
Hence, the EPIC array data suggest an overall hypermethylation
in the MS-affected co-twins (Supplementary Table 10). Although
this EPIC array-wide hypermethylation in the MS-affected co-
twins was not significantly associated with GC treatment history
(Supplementary Fig. 18a), the number of hypermethylated
CpGs in the MS-affected co-twins correlated significantly with
the within-pair ZBTB16 DMP methylation differences (rPearson=
−0.36, p= 0.02) (Supplementary Fig. 18b).

No evidence for within-pair copy-number variations. Finally,
discordant phenotypes within MZ twins can also be due to
within-pair copy-number variations (WP-CNVs)56. Hence, we
checked the EPIC array data for CNVs, but within the MZ twin
pairs no chromosomal gains and losses were observed (Supple-
mentary Fig. 19).

Discussion
Here, we present the largest EWAS in MZ twins clinically dis-
cordant for MS to date. Although the PBMC-based methylomes

of the 45 MS-discordant MZ twins were highly similar (mean
Δβ-values < 0.05), a few new MS-associated candidate loci were
identified.

The most prominent MS-DMP was the technically replicated
cg25345365 DMP in ZBTB16, which has thus far not been
reported, probably because the 450 K array used in other MS
EWAS studies does not cover this CpG26–31. The transcription
factor ZBTB16 is a GC-response gene that becomes highly
upregulated after GC exposure55, and we show that the strong
association between the ZBTB16 DMP and MS in our EWAS is
due to GC treatment history. Since none of the MS-affected co-
twins had received GCs within three months prior to blood
collection, our results indicate that for epigenomic and tran-
scriptomic studies in MS a more stringent inclusion criterion is
required (Supplementary Fig. 17). Our results might also have
broader implications, because GCs are used in a variety of
inflammatory and autoimmune diseases, but dosage and
administration route vary per disorder. The GC-glucocorticoid
receptor (GCR) complex regulates transcription by binding to
glucocorticoid-response elements (GREs) in the genome57. GC-
GCR binding has been associated with DNA demethylation at
enhancer elements, supposedly due to active demethylation58.
Indeed the ZBTB16 DMP is hypomethylated in the (GC-treated)
MS-affected co-twins, and is located in an enhancer and
flanked (<100 bp) by two consensus GRE downstream half-sites
(TGTTCT) (Supplementary Fig. 20), which are believed to be
sufficient for binding of the GC-GCR complex57. In contrast to
IFN, a strong GC signature was not observed, because the EPIC
array and the WGBS data did not show methylation differences in
other common, GC-regulated genes, like FKBP5 and TXNIP55,59.
However, IFN treatment was ongoing, while GC treatment had
been given >3–12 months prior to blood collection. In the WGBS
analysis a very recently GC-treated MS-affected co-twin was
included, but as this concerned a single-replicate experiment, very
stringent analyses criteria had to be applied (e.g. coverage
threshold ≥15 reads). Hence, our data reveals the ZBTB16 DMP
as a prominent epigenetic biomarker for GC treatment, and
future studies should assess its utility in predicting clinical GC
response in patients with inflammatory or autoimmune diseases
receiving GC therapy.

Our PBMC-based EWAS also revealed a DMR enriched for
MS-DMPs in the TMEM232 promoter region, which shows
enrichment for the chromatin activation mark H3K4me3 in dif-
ferent immune cell types (Supplementary Fig. 21). Despite the
small effect size (mean Δβ-value= 0.024), this MS-DMR was
technically replicated using TDBS, indicating a true effect.
TMEM232 MS-DMPs were also strongly associated with long-
standing MS, and no evidence indicated that the association is
confounded by treatment history. In whole blood-based case-
control 450 K data, no significant difference was observed, but
the two most prominent TMEM232 MS-DMPs were not present
on the 450 K array. Nevertheless, neighboring CpGs present on
the 450 K array confirmed the directionality of the effect, which
might indicate that the MS-DMR is restricted to a PBMC subtype
and is diluted in whole blood, in which neutrophils are the pre-
dominant cell type. TMEM232 is a member of the transmem-
brane (TMEM) protein family, which is predicted to be part
of mitochondrial, endoplasmic reticulum, lysosome, and Golgi
apparatus membranes60. While the function of TMEM232 is
still unknown, variants in this gene have been associated with
atopic dermatitis and allergic rhinitis in GWAS36,37. Although
this might point towards a common immunologic pathway
involving TMEM232, robust evidence that supports an associa-
tion between atopic diseases and MS is lacking61. Further studies
in PBMCs and sorted immune cells are needed to verify the
association between the TMEM232 DMR and MS.
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We also carried out a WGBS analysis on CD4+ memory
T cells of four MS-discordant female MZ twins. Although this
pilot did not reveal widespread global or site-specific MS-asso-
ciated methylation differences, one potential MS-DMR was
identified in an intronic regulatory region in the X-linked FIRRE
gene. This encodes for a circular, long, non-coding RNA reported
to be involved in positioning the inactive X-chromosome to the
nucleolus and to maintain histone H3K27me3 methylation46,62.
While the CpGs within this MS-DMR are not covered by the
EPIC array, a probe located 6 bp upstream of the DMR was not
significant in the PBMC-based EWAS. This might indicate that
this MS-DMR is CD4+ T cell-specific, but can also be the result
of stochastic variation caused, e.g., by molecular processes such as
X-inactivation. Although our results are preliminary, MS is more
common in women3 and a role of X-inactivation in the patho-
genesis of MS has been proposed (reviewed by Brooks et al.63);
therefore, this DMR represents a possible candidate.

Since MS is a heterogeneous disease, DNA methylation chan-
ges present in only a few patients might also contribute to disease
manifestation. To identify such rare methylation differences, a
WP-DMR analysis was performed, revealing 45 WP-DMRs in 17
twin pairs. This suggests that WP-DMRs are quite common
among MZ twins, but, as our analysis is restricted to disease-
discordant MZ twins, this cannot be extrapolated to healthy MZ
twins. Additional filtering revealed that 24 of these WP-DMRs
were associated with the MS phenotype, of which 23 were pair-
specific and one intergenic WP-DMR was present in 4 twin pairs.
Although these WP-DMRs have not previously been associated
with MS, two WP-DMRs were related to genes encoding proto-
cadherins that are involved in neuronal development49. Hence, a
contribution of these WP-DMRs to the discordant phenotype
cannot be excluded, but since they are mainly pair-specific, these
results should be interpreted very cautiously.

Several observations suggest a role of genomic imprinting in
the etiology of MS18. In this context, MZ twins are of particular
interest because MZ twins discordant for imprinting defects have
been described relatively frequently7–9. Although we detected two
WP-DMRs in reported imprinted DMRs (SVOPL and HM13/
MCTS2P), the aberrant methylation profile was observed in the
non-affected co-twin in both cases. Consequently, our PBMC-
based analysis does not support the hypothesis that genomic
imprinting errors contribute to the discordant clinical manifes-
tation of MS in these MZ twins.

Neven et al.64 reported hypermethylation of the repetitive
elements Alu, LINE1, and Sat-α in blood of MS patients. We also
assessed methylation of the repetitive elements Alu, HERVK, and
LINE1 but observed no differences. However, our EPIC array data
does suggest a slight hypermethylation in the MS-affected co-
twins. Also Bos et al.26 observed in their 450 K data evidence for
hypermethylation in CD8+ T cells of MS patients, but not for
CD4+ T cells or whole blood. While GC treatment history was
not directly associated with EPIC array-wide hypermethylation,
we observed a rather weak, but significant association between
increased within-pair ZBTB16 methylation differences and the
number of hypermethylated CpGs in the MS-affected co-twins.
Although further confirmation is needed, this association might
indirectly indicate that GCs also affect global DNA methylation
levels. This might also explain the strong repetitive element
hypermethylation in MS patients reported by Neven et al.64, who
applied an inclusion criterion of only >1 month after GC treat-
ment. However, in our study, hypermethylation in the MS-
affected co-twins was only observed in the EPIC array data, and
repetitive elements are strongly underrepresented on this array.
Accordingly, additional studies are warranted to assess the asso-
ciation between DNA hypermethylation and MS and whether it is
confounded by GC treatment history.

All MS-DMPs observed in our study have remained undetected
in previous MS EWAS studies26–31. However, those studies
observed much larger methylation differences and applied abso-
lute mean β-value difference thresholds of >0.0526 or >0.1027–30.
As those studies used genetically unmatched cases and con-
trols26–31, the reported large methylation differences might
mainly be driven by genetic variation. Hannon et al.65 recently
showed that, in particular, sites with variable DNA methylation
levels and sites robustly associated with environmental exposures
are influenced by genetic effects, highlighting the need to control
for genetic background in EWAS. Although our discordant MZ
twin design perfectly controls for genetic variation, there are also
limitations. MS-discordant MZ twins are scarce and therefore it is
not possible to control for treatment effects without losing sta-
tistical power. Furthermore, the healthy co-twins are at risk to
develop MS in the future and subsequently some of the pairs
included in this EWAS will get clinically concordant for MS.
Since the evolution of MS is supposed to be a continuum it is
likely that prior to the clinical onset there is a prodromal phase of
undefined duration, with subclinical subtle changes in CSF or
MRI pointing to latent neuroinflammation. However, the onset of
this postulated prodromal phase is impossible to define and,
therefore, we aimed to identify DNA methylation differences that
contribute to the discordant clinical manifestation of MS in MZ
twins. For the EPIC array analysis, only DNA extracted from
PBMCs was available, although it might be more informative to
profile distinctive subtypes, such as CD4+ T cells, CD8+ T cells
and B cells that are believed to be involved in the pathophysiology
of MS45,66. Nevertheless, Paul et al.12 profiled CD4+ T cells, B
cells, and monocytes of 50 T1D-discordant MZ twins using the
450 K array, and observed only one genome-wide significant
DMP in T cells (mean Δβ-value= 0.023)12. This might indicate
that for detecting robust MS-DMPs even rarer subpopulations
such as Th1, Th17, and regulatory T cells need to be profiled, or
immune cells in the cerebrospinal fluid. In contrast, Paul et al.12

identified 10,548 differentially variable CpG positions (DVPs) in
B cells, 4314 in CD4+ T cells, and 6508 in monocytes, and the
T1D-affected MZ co-twins were enriched for DVPs. In addition,
Webster et al.13 identified 1107 DVPs in whole-blood 450 K data
of 79 RA-discordant MZ twins, of which 763 DVPs were
hypervariable in the RA-affected MZ co-twins. Although, we used
the same method and significance threshold as applied in these
studies, we only identified 25 DVPs of which the majority was
hypervariable in the non-affected co-twins. Hence, our PBMC-
based EPIC data does not reveal an MS-associated DNA
methylation variability signature.

In conclusion, our EWAS shows that PBMC-based methylomes
of MS-discordant MZ twins are highly similar, and no evidence
was found that genomic imprinting errors or CNVs explain the
discordant phenotype. However, a few candidate loci were iden-
tified, including a MS-DMR in the TMEM232 promoter. Fur-
thermore, epigenetic biomarkers for MS treatments were
identified, revealing that besides short-term also medium-term
treatment effects are detectable in blood cells, which should be
considered in epigenomic and transcriptomic studies. Overall, we
believe that this study represents an important first step in eluci-
dating epigenetic mechanisms underlying the pathogenesis of MS.

Methods
Participants. Twins were recruited by launching a nationally televised appeal and
internet notification in Germany with support from the German Multiple Sclerosis
Society (DMSG, regional and national division). Inclusion criteria for study par-
ticipation were met for MZ twins with an MS diagnosis according to the revised
McDonald criteria or clinically isolated syndrome in one co-twin only67. In total,
55 MZ twin pairs visited the outpatient department at the Institute of Clinical
Neuroimmunology in Munich for a detailed interview and neurological exam-
ination. To confirm MS diagnosis, medical records including MRI scans from the
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patients’ treating neurologists were obtained and reviewed. For inclusion in the
present analysis, PBMCs had to be available from both co-twins, resulting in 46MZ
twin pairs. The pair that carries the Leber’s hereditary optic neuropathy-specific
mutation m.11778G>A was not included in this analysis6. At blood collection, 23
MS-affected co-twins were receiving disease-modifying treatments, including
interferon-beta (IFN, n= 12), natalizumab (n= 5), glatiramer acetate (n= 3),
teriflunomide (n= 1), and dimethyl fumarate (n= 2). None of the MS-affected co-
twins included in the array-based EWAS received GCs within three months prior
to blood collection. The non-affected co-twins underwent a detailed interview,
including a comprehensive history of past and present complaints. In addition,
non-affected co-twins were asked in detail for any occurrence of neurological
symptoms in the past and an experienced MS neurologist (LAG) performed a
neurological examination, including the EDSS. All previous patient registry
information, including MRI scans if existing, were obtained and critically reviewed.
The study was approved by the local ethics committee of the Ludwig Maximilians
University of Munich and all participants gave written informed consent.

DNA extraction and zygosity determination. PBMCs were isolated from whole
blood using Ficoll density gradient centrifugation and DNA was extracted using the
QIAamp DNA Blood Midi Kit (Qiagen, Hilden, Germany). Extracted DNA was
treated with RNase A/T1 Mix (Thermo Scientific, Oberhausen, Germany) and
subsequently purified using the Genomic DNA Clean & Concentrator™−10 Kit
(Zymo Research, CA, USA). As previously described6, zygosity was confirmed by
genotyping 17 highly polymorphic microsatellite markers and by next-generation
sequencing of 33 SNPs.

Infinium MethylationEPIC BeadChip assay. Genomic DNA was treated with
bisulfite using the EZ DNA Methylation kit (D5002, Zymo Research), of which a
detailed description is provided in the Supplementary Methods. Both members of a
twin pair were always processed in the same batch. Genome-wide DNA methy-
lation profiles of 46 MZ twin pairs clinically discordant for MS were generated
using Illumina’s Infinium MethylationEPIC BeadChip assay (EPIC array) (Illu-
mina, San Diego, CA, USA) at the Department of Psychiatry and Psychotherapy of
the Saarland University Hospital. The assay determines DNA methylation levels at
>850,000 CpG sites and provides coverage of CpG islands, RefSeq genes, ENCODE
open chromatin, ENCODE transcription factor-binding sites, and FANTOM5
enhancers. The assay was performed according to the manufacturer’s instructions
and scanned on an Illumina HiScan. To avoid batch effects, both members of a
twin pair were always assayed on the same array.

EPIC array data processing and DMP identification. Raw EPIC array data were
preprocessed using the RnBeads R/Bioconductor package68. Low-quality samples
and probes were removed using the Greedycut algorithm, based on a detection
p-value threshold of 0.05, as implemented in the RnBeads package. In addition,
probes with less than three beads and probes with a missing value in at least 5%
of the samples were removed. For each CpG site, a β-value was calculated,
which represents the fraction of methylated cytosines at that particular CpG site
(0= unmethylated, 1= fully methylated). Subsequently, β-values were normalized
using Illumina’s default normalization method. In total, methylation data of
849,832 sites (866,895 in total) were available for 45 MS-discordant MZ twins. The
relatively large number of excluded probes is due to inclusion of early access EPIC
arrays, which have 11,652 fewer probes than the final release EPIC arrays. The
EPIC array includes 59 SNP sites, which were used for quality control. All MZ twin
pairs, except one, shared the same genotypes. The exceptional pair showed only a
discordant genotype for SNP rs6471533. However, validation using targeted deep
sequencing (TDS) revealed that both co-twins have the same genotype for the
rs6471533 SNP (Supplementary Fig. 22), which indicates a technical artifact in
the corresponding EPIC probe rather than a true genetic difference.

To identify differentially methylated CpG positions (DMPs) a two-sided
non-parametric Wilcoxon signed-rank test was carried out. For the MS EWAS, an
arbitrary significance level α < 5 × 10−6 was considered suggestive and genome-
wide significance was defined as false discovery rate (FDR) < 0.05. All statistical
analyses were performed in R. A functional annotation analysis was performed
using the Genomic Regions Enrichment of Annotations Tool (GREAT v3.0.0)
with default settings and the EPIC array CpGs, which passed quality control, as
background42.

Power calculation. Since the power function of the Wilcoxon signed-rank test is
difficult to express69, we used its closest parametric equivalent (paired T-test) to
estimate the power of our MS EWAS. With a sample size of 45 twin pairs, >98%
power is achieved to detect a mean β-value difference of at least 0.05 with a
(genome-wide) significance threshold of 1 × 10−7, using a two-sided paired T-test
and assuming a standard deviation of 0.0266 (which is the true median standard
deviation observed in our data). Details of this power calculation and calculations
using smaller mean β-value differences are presented in Supplementary Table 11.
The power analysis was performed using SAS University Edition.

Estimation of cell-type composition. A detailed description of the cell-type
composition estimation is provided in the Supplementary Methods. In brief,

cell-type composition of each PBMC sample was estimated using the Houseman
algorithm implemented in the minfi R/Bioconductor package70. The obtained minfi
estimates were used to adjust the β-values for cellular composition using linear
regression and the residuals were used for downstream analysis. To obtain
interpretable, adjusted β-values, the unadjusted mean β-value of each CpG site
was added to the residuals. To check the quality of the adjustment, the adjusted
β-values were used to recalculate the within-pair correlations. As a result, Sup-
plementary Fig. 23 shows that the overall within-pair correlations are, as expected,
higher after adjusting for cell-type composition.

Within-pair DMR analysis. To identify WP-DMRs in the EPIC array data, the
β-value differences (Δβ-values) (adjusted for cell-type composition) per CpG were
calculated for each twin pair (the 257 IFN-associated CpGs were excluded). To
avoid false positives caused by single probes, WP-DMRs were defined as ≥3 CpGs,
each having an absolute Δβ-value > 0.2 with a maximum 1 kb distance between
neighboring CpGs. To exclude regions that are characterized by overall variable
methylation levels, WP-DMRs were only considered when the β-value of the
aberrant methylated co-twin was more than three standard deviations away from
the mean.

DVP identification. For the DVP analysis, probes containing a SNP within five
bases of the measured CpG site, probes mapping to the sex chromosomes, and
probes with at least one missing value were excluded, resulting in methylation data
of 759,291 sites. DVPs were identified using the iEVORA algorithm50, which
measures differential variability between two groups by utilizing the Bartlett’s test
to detect differences in variance and an unpaired T-test to identify difference in
means. CpGs with a FDR-corrected Barlett’s p < 0.001 and raw t-test p < 0.05 were
defined as DVPs.

Copy-number variation analysis. CNV analysis with the EPIC array data
was performed using the conumee R/Bioconductor package with default settings
(http://bioconductor.org/packages/conumee/, R package version 1.6.0, Accessed
1 Nov 2016). Individual profiles and output were manually assessed. To define
chromosomal gains and losses within the MZ twin pairs, an absolute segment mean
threshold ≥0.3 was applied.

Targeted deep bisulfite sequencing. TDBS was used to validate DMPs resulting
from the EPIC array analysis and to determine methylation levels of the repetitive
elements HERVK, LINE1, and Alu. Amplicons were generated on bisulfite-treated
DNA using region-specific primers with TruSeq adaptor sequences on their 5′-ends
(Illumina). Reaction conditions and primer sequences are described in Supple-
mentary Table 12. Purified PCR products were quantified, pooled, amplified using
index primers (five cycles), and sequenced in a 300-bp paired-end MiSeq run
(Illumina). After demultiplexing, adaptor trimming, and clipping overlapping
mates, the resulting FASTQ files were imported into BiQ Analyzer HiMod71 to
filter out low-quality reads and call the methylation levels. Final coverage was
>1500 reads/base.

Targeted deep sequencing. The rs6471533 SNP was genotyped using TDS
(see Supplementary Table 12 for reaction conditions and primer sequences). The
workflow is similar to that described for TDBS, except that genomic DNA was used
and that the resulting FASTQ files were aligned to the reference sequence using
Bowtie 2. Subsequently, variants were called with SAMtools mpileup and variant
information was extracted using filter pileup. Final coverage was >1500 reads/base.

Third-party MS case-control cohort data analysis. The whole blood-based 450 K
data of 140 unrelated MS patients and 139 controls from Kular et al.31

(GSE106648) were available as intensity matrices of methylated and unmethylated
probe intensities, which were imported into R using RnBeads68. As no quality
information was provided, Greedycut and bead-based filtering was not possible.
Proportions of major cell types were estimated as described above. In line with the
original study31, MS-DMPs were determined using linear regression with limma72

as implemented in RnBeads adjusting for gender, age, smoking status, and the first
two principal components of the estimated cell proportion matrix. Adjustment for
the batch effect was not possible as the corresponding variable was not provided.

Whole-genome bisulfite sequencing in CD4+ T cells. WGBS was used to profile
CD4+ central and effector memory T cells of four MS-discordant female MZ twin
pairs (mean age 43.3 years, discordant for MS > 12 years, Supplementary Table 13).
Of one pair, the MS-affected co-twin had been treated very recently with GCs at the
time of blood collection (but never received any immune-modulating therapy),
while the MS-affected co-twins of the other three pairs had not received GCs or
other immune-modulating therapies within at least 12 months prior to blood
collection. The cell sorting procedure, the preparation of the WGBS libraries,
and the preprocessing of the WGBS sequencing data are described in detail in
the Supplementary Methods. The coverage statistics of the samples are summarized
in Supplementary Table 13.
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DMR identification in the WGBS data. To identify MS-associated DMRs (MS-
DMRs), the WGBS data of all four pairs were analyzed using the RnBeads package,
in which a paired t-test was performed for every CpG. Only CpGs with a coverage
≥10 reads in all samples were included, resulting in methylation information
of about 2.7 million CpGs (Supplementary Table 13). MS-DMRs were defined as
≥3 CpGs, each having p < 0.05 (two-sided paired t-test) and an absolute mean
methylation difference >0.2, and a maximum of 500 bp distance between neigh-
boring significant CpGs.

To identify GC treatment-associated DMRs (GC-DMRs), the WGBS data of the
pair with the GC-treated MS-affected co-twin were analyzed using DSS-single73,
which is designed to detect DMRs from WGBS data without replicates. To increase
the quality of this single-replicate DMR analysis, only CpGs with a coverage ≥15
reads in both samples were included and the sex chromosomes were excluded,
resulting in methylation data of up to 2.8 million CpGs (Supplementary Table 13).
It has been reported that binding of the GCR complex is rare within CpG islands
and predominantly occurs at distal regulatory elements58. To detect DMRs in such
CpG poor regions, the DSS settings included a smoothing span of 100 bp and
minimum DMR length of 25 bp with ≥ 2 CpGs and p < 0.01 (Wald test). The
absolute mean methylation difference had to be larger than 0.25, and to limit the
number of false positives only GC-DMRs located in reported GC-response genes
were considered. The GC and MS-DMRs were annotated using the ChIPseeker R/
Bioconductor package (v1.14.2)74.

Partially methylated domain analysis in WGBS data. The WGBS data was
segmented into PMDs, low methylated regions (LMRs), and unmethylated regions
(UMRs) using the MethylSeekR R/Bioconductor package75. After filtering gaps
annotated by UCSC, the rest of the genome was designated as fully methylated
regions (FMRs). As input for MethylSeekR the aggregated strand information per
CpG was used, and the MethylSeekR settings included coverage ≥5 reads per CpG,
50% methylation and an FDR ≤ 0.05 for calling hypomethylated regions, resulting
in a cut-off of ≥ 4 CpGs per LMR. For each segment, the methylation levels
between the non-affected and MS-affected co-twins were compared using a paired
t-test on the median weighted average methylation values. In addition, to assess the
genome-wide PMD similarity across the eight samples, the genome was binned
into 1 kb windows and each was annotated with 1 if the bin overlapped with a
PMD and with 0 otherwise. Based on this binarized matrix a hierarchical clustering
was performed in R using ward.D2 as agglomeration method and euclidean as a
distance measurement. The very same procedure was performed for FMRs.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The epigenomic data has been deposited at the European Genome-phenome Archive
(EGA, http://www.ebi.ac.uk/ega/), which is hosted at the EBI, under accession number
EGAS00001003147. The source data underlying Table 2, Supplementary Tables 1–9,
Figs. 2c, 4a, c, and Supplementary Figs. 5, 6, 9, and 11–18 are provided as a Source Data
file. The authors declare that all other data are contained within the article and its
supplementary files or available from the author upon request.
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Supplementary Tables  
 
Supplementary Table 1. Characteristics of the top 15 most significantly differentially methylated positions (DMPs) associated with long-
standing MS, identified by a pair-wise analysis including only the EPIC array data of the 25 MZ twins pairs that have been clinically 
discordant for MS for more than 10 years (n = 25 twin pairs). The first two DMPs had a suggestive P-value<5*10-6 (adjusted for cell type composition). 

      Mean β- value (U)     

 Probe ID Locationa Gene 
 

Functional regionb 
 

450k 

MS-
affected 

co-twins 
(n=25) 

non-
affected 

co-twins 
(n=25) 

Mean Δβ-value    
(95% CI) (U) 

Mean Δβ-value    
(95% CI) (A) 

β-value 
range PW-u/PW-A 

1 cg11243634 chr1:59044320 TACSTD2 TSS1500/DHS Y 0.667 0.689 -0.022 (-0.029,-0.015) -0.022 (-0.029,-0.015) 0.62-0.73 1.13*10-6/2.56*10-6 

2 cg23896094 chr9:4839083 RCL1 TSS1500/Body/ 

TFBS 

N 0.890 0.901 -0.011 (-0.016,-0.007) -0.011 (-0.016,-0.007) 0.87-0.93 4.17*10-6/4.17*10-6 

3 cg06958567 chr18:52495541 RAB27B TSS1500/DHS Y 0.120 0.129 -0.009 (-0.015,-0.004) -0.010 (-0.015,-0.006) 0.08-0.18 3.29*10-4/8.17*10-6 

4 cg07850221 chr19:36235109 U2AF1L4/ 
PSENEN 

Body/TSS1500/ 
TFBS 

Y 0.825 0.834 -0.009 (-0.012,-0.005) -0.009 (-0.013,-0.005) 0.78-0.87 1.83*10-5/8.17*10-6 

5 cg22891413 chr5:1407569 SLC6A3 Body Y 0.901 0.910 -0.009 (-0.013,-0.005) -0.009 (-0.013,-0.006) 0.85-0.94 2.50*10-4/1.01*10-5 

6 cg04669407 chr5:148521450 ABLIM3 5’UTR/CpG 

island/DHS 

Y 0.377 0.404 -0.027 (-0.037,-0.017) -0.025 (-0.036,-0.015) 0.28-0.48 1.97*10-6/1.23*10-5 

7 cg17514766 chr19:39826927 GMFG TSS1500/TFBS Y 0.105 0.115 -0.010 (-0.014,-0.005) -0.010 (-0.014,-0.006) 0.08-0.16 3.81*10-5/1.83*10-5 

8 cg22008026 chr4:155413392 DCHS2 TSS1500/CpG 

island/DHS 

Y 0.213 0.237 -0.024 (-0.031,-0.016) -0.021 (-0.029,-0.014) 0.16-0.31 1.01*10-5/1.83*10-5 

9 cg26583412 chr5:110062780 TMEM232 TSS1500/DHS N 0.528 0.490 0.038 (0.022,0.054) 0.038 (0.023, 0.052) 0.26-0.68 5.39*10-5/1.83*10-5 

10 cg26630171 chr19:3459270 NFIC Body/DHS Y 0.906 0.897 0.008 (0.004,0.012) 0.008 (0.005,0.012) 0.86-0.93 1.20*10-4/1.83*10-5 

11 cg23516613 chr19:12595698 ZNF709 TSS200/CpG 

island/DHS 

Y 0.121 0.131 -0.010 (-0.014,-0.006) -0.009 (-0.013,-0.006) 0.10-0.16 1.01*10-5/2.21*10-5 

12 cg16468417 chr3:35835606 ARPP-21 3’UTR Y 0.788 0.769 0.019 (0.011-0.026) 0.016 (0.009,0.022) 0.73-0.84 3.19*10-5/2.66*10-5 

13 cg27037608 chr5:110062618 TMEM232 TSS200/TFBS N 0.498 0.472 0.026 (0.014,0.038) 0.027 (0.015,0.038) 0.34-0.59 8.80*10-5/3.19*10-5 

14 cg11079989 chr1:17222715 CROCC Body/DHS Y 0.135 0.148 -0.013 (-0.019,-0.008) -0.013 (-0.018,-0.008) 0.11-0.19 2.66*10-5/4.54*10-5 

15 cg10344516 chr10:6689948  DHS N 0.152 0.14 0.012 (0.007,0.018) 0.012 (0.006,0.018) 0.10-0.20 1.23*10-5/5.39*10-5 

            
756 cg25345365 chr11:114050114 ZBTB16 Body/DHS/ 

enhancer 
N 0.526 0.566 -0.040 (-0.065,-0.015) -0.036 (-0.057,-0.014) 0.36-0.72 0.002/0.0018 

Source data are provided as a Source Data file. aAll the genome coordinates are based on human genome build GRCh37/hg19. bBased on information provided 

by the Illumina manifest. Since all genes have multiple transcripts, the “UCSC_RefGene_Group” gene-related location is listed. A = adjusted for cell-type 
composition, CI = confidence interval, DHS = DNAse I hypersensitive site, n = number of MS-discordant MZ twin pairs, PW-A = P-value two-tailed Wilcoxon 

signed-rank test adjusted for cell-type composition, PW-U = P-value two-tailed Wilcoxon signed-rank test unadjusted for cell-type composition, TFBS = 

transcription factor binding site, TSS200 = the region from transcription start site (TSS) to −200 nt upstream of TSS, TSS1500 = −200 to −1500 nt upstream of 
TSS, U = unadjusted for cell-type composition, 450k = probe present on the 450k array (Y = yes, N = no), 5′UTR= 5’ untranslated region, Δβ-value = within-

pair β-value difference (clinically MS-affected MZ co-twin – non-affected MZ co-twin). 
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Supplementary Table 2. Evaluation of the TMEM232 MS-DMPs in blood-based 450K EWAS data of 140 MS patients and 139 unrelated controls 
from Kular et al1. The results of the PBMC-based EPIC array EWAS in the 45 MZ twins clinically discordant for MS are shown as well. 

   Blood-based 450K EWAS of unrelated cases and controls  PBMC-based EPIC EWAS of MS discordant MZ twins 

   Mean β-value (± SD)       Mean β -value     

Probe IDa 

Location at 

chr 5:  

MS patients 

(n=140) 

Controls 

(n=139) 

Mean 
Δβ-

value 

β-value 

range Pu
b 

 

PA
b 

 

PA2
b  

MS-

affected 
co-twins 

(n=45) 

Non-

affected 
co-twins 

(n=45) 

Mean Δβ-value    

(95% CI) 

β-value 

range PW-U PW-A 

cg23279021 110062343 1st exon 0.309 ± 0.076 0.297 ± 0.084 0.012 0.11-0.67 0.20 0.13 0.24  0.320 0.295 0.025 (0.011,0.040) 0.08-0.49 0.001 2.6*10-4 

cg17248924 110062384 TSS200 0.327 ± 0.098 0.314 ± 0.107 0.012 0.12-0.76 0.25 0.15 0.23  0.457 0.444 0.013 (-0.005,0.031) 0.22-0.62 0.16 0.08 

cg11641395 110062398 TSS200 0.276 ± 0.080 0.268 ± 0.086 0.008 0.10-0.55 0.32 0.22 0.35  0.437 0.425 0.012 (-0.001,0.025) 0.26-0.58 0.16 0.12 

cg06429214 110062417 TSS200 0.276 ± 0.099 0.259 ± 0.108 0.017 0.05-0.76 0.12 0.07 0.19  0.309 0.284 0.025 (0.008,0.041) 0.09-0.50 0.008 0.005 

cg25259944 110062473 TSS200 0.325 ± 0.089 0.308 ± 0.099 0.017 0.11-0.70 0.10 0.05 0.16  0.483 0.455 0.028 (0.012,0.044) 0.27-0.61 0.001 0.002 

cg22429640 110062570 TSS200         0.539 0.514 0.025 (0.009,0.041) 0.33-0.65 0.005 0.003 

cg19398821 110062608 TSS200         0.507 0.484 0.023 (0.006,0.041) 0.29-0.68 0.017 0.016 

cg27037608 110062618 TSS200         0.488 0.466 0.022 (0.012,0.032) 0.31-0.59 4.8*10-5 4.3*10-6 

cg17946588 110062682 TSS1500         0.461 0.439 0.022 (0.007,0.037) 0.26-0.60 0.006 0.005 

cg10597099 110062725 TSS1500         0.544 0.522 0.022 (0.002,0.041) 0.22-0.73 0.032 0.013 

cg19526166 110062729 TSS1500 0.388 ± 0.098 0.374 ± 0.112 0.014 0.15-0.80 0.23 0.14 0.18  0.532 0.505 0.027 (0.007,0.048) 0.31-0.71 0.013 0.007 

cg26583412 110062780 TSS1500         0.516 0.482 0.034 (0.020,0.048) 0.23-0.68 2.0*10-5 1.3*10-5 

cg06414816 110062837 TSS1500 0.403 ± 0.078 0.391 ± 0.087 0.012 0.20-0.69 0.21 0.15 0.31  0.547 0.526 0.021 (0.007,0.035) 0.35-0.64 0.010 0.010 

Source data are provided as a Source Data file. aThe 450K array contains only 7 of the 13 TMEM232 promoter probes that are present on the EPIC array. 
bSignificance estimated using linear regression (see Methods for details). CI = confidence interval, n = number of individuals, PU = P-value unadjusted, PA = P-

value adjusted for sex, age and smoking status, PA2 = P-value adjusted for sex, age, smoking status and cell type composition, PW-A = P-value Wilcoxon two-

tailed signed-rank test adjusted for cell-type composition, PW-U = P-value Wilcoxon two-tailed signed-rank test unadjusted for cell-type composition, TSS200 = 
the region from transcription start site (TSS) to −200 nt upstream of TSS, TSS1500 = −200 to −1500 nt upstream of TSS, Δβ-value = within-pair β-value 

difference (clinically MS-affected MZ co-twin – non-affected MZ co-twin). 
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Supplementary Table 3. MS-associated differentially methylated regions (MS-DMRs) identified in whole genome bisulfite sequencing (WBGS) 
data of CD4+ memory T cells of four MS discordant female MZ twin pairs (n = 4 twin pairs). MS-DMRs listed in this table were defined as ≥3 CpGs, 

each having P<0.05 (two-tailed paired T-test) and absolute mean methylation difference >0.15, and a maximum of 500 bp distance between neighbouring 
significant CpGs.  

      Mean methylation      

Chra Start End Width 
# 
CG Location 

MS-  

affected       
MZ co-twins 

Non-  

affected      
MZ co-twins  

Mean 

methylation 
difference Gene Full gene name 

 

Robust 
DMR 

Distance to closest  EWAS 
EPIC probe and PW-A

b 

1 17711436 17712116 681 3 Intron 0.74 0.91 -0.17 PADI6 Peptidyl arginine deiminase 6 No 900 bp, P>0.05  

1 85791031 85791047 17 5 Intron 0.85 0.67 0.18 DDAH1 Dimethylarginine 
dimethylaminohydrolase 12,3 

Yes 4 kb 

1 87644875 87644911 37 5 Distal Intergenic 0.56 0.76 -0.20   Yes 1 kb  
1 228755378 228755464 87 3 Distal Intergenic 0.71 0.51 0.20   Yes 1.5 kb  

2 87568953 87569230 278 3 Intron 0.40 0.59 -0.18 RMND5A Required for meiotic nuclear 
division 5 homolog A 

No 0 bp (cg21997198), 
P>0.05 

5 176007126 176007142 17 3 Intron 0.75 0.57 0.18 CDHR2 Cadherin related family member 
2 

Yes 600 bp, P>0.05 

6 57421688 57421697 10 3 Intron 0.71 0.51 0.20 PRIM2 DNA primase subunit 2 Yes 9 kb  
6 170403829 170404107 279 3 Distal Intergenic 0.62 0.84 -0.22   Yes 250 bp, P>0.05 

7 31117742 31118094 353 3 Intron 0.65 0.82 -0.17 ADCYAP1R1 ADCYAP receptor type I No 1.5 kb  
7 98424232 98424350 119 3 Distal Intergenic 0.51 0.70 -0.20   No 0 bp (cg16446288c/ 

cg11757417), P=0.04/ 

0.86, Δβ=-0.01/0.00 
8 102904079 102904097 19 3 Intron 0.33 0.53 -0.19 NCALD Neurocalcin delta Yes 170 bp, P>0.05 

9 43134844 43135115 272 3 Promoter (1-2kb) 0.45 0.62 -0.17 ANKRD20A3 Ankyrin repeat domain 20 family 
member A3 

Yes 90 bp, P>0.05 

9 66493004 66493351 348 3 Promoter (1-2kb) 0.42 0.24 0.18 PTGER4P2-
CDK2AP2P2 

PTGER4P2-CDK2AP2P2 read 
through, transcribed pseudogene 

No  0 bp (cg17548900), 
P>0.05 

11 133519484 133519982 499 3 Distal Intergenic 0.35 0.60 -0.25   No 10 kb  
13 27295982 27296125 144 3 Distal Intergenic 0.20 0.43 -0.23   Yes 0 bp (cg16557370d/ 

cg08419873), P>0.05 
14 101291034 101291083 50 3 Promoter (1-2kb) 0.45 0.64 -0.19 MEG3 Maternally expressed 3 (non-

protein coding) 

Yes 0 bp (cg23870378), 

P>0.05 
15 21083039 21083557 519 3 Distal Intergenic 0.62 0.42 0.20   No 50 kb 

16 22545670 22545683 14 3 Exon 0.59 0.80 -0.21 NPIPB5 Nuclear pore complex interacting 
protein family member B5 

Yes 5 kb 

20 23515851 23516134 284 3 Intron 0.67 0.84 -0.17 CST13P Cystatin 13, pseudogene No 4 kb 
Xe 130863481 130863509 29 3 Intron 0.66 0.40 0.26 FIRRE Firre intergenic repeating 

RNA element 

Yes  6 bp (cg08117231), 

P>0.05 

Source data are provided as a Source Data file. aGenomic coordinates are based on human genome build GRCh37/hg19. The MS-DMRs were annotated using 

the ChIPseeker R/Bioconductor package (v1.14.2)4. bIn this column the approximate distance to the closest EWAS EPIC probe is listed. When the distance is <1 
kb, then of this EPIC probe the PW-A-value of the pair-wise analysis using the EPIC array data of the 45 MZ twin pairs adjusted for cell-type composition is listed 

as well. If the distance is 0 bp, then the EPIC probe is located within the MS-DMR. ccg16446288 is exactly located at chr7:98424232-98424233. dcg16557370 is 
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exactly located at chr13:27295982-27295983. eThis MS-DMR fulfilled the stringent selection criteria of ≥3 CpGs, each having P<0.05 (two-tailed paired T-test) 
and absolute mean methylation difference >0.20, and a maximum of 500 bp distance between neighbouring significant CpGs. PW-A = P-value two-tailed Wilcoxon 

signed-rank test adjusted for cell-type composition. Robust DMR = DMR that shows overall consistent methylation differences (same direction) across the entire 
DMR (applying the lower methylation threshold of 0.15 resulted in several MS-DMRs not showing consistent methylation differences (same direction) across the 

entire DMR). Please see the Source Data File for details. Δβ = Within-pair β-value difference (clinically MS-affected MZ co-twin – non-affected MZ co-twin). 
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Supplementary Table 4. Within-pair differentially methylated regions (WP-DMRs)a identified in the 

EPIC array data of the 45 MZ twins clinically discordant for multiple sclerosis (MS).  

 
Gene locus 

 
Chr 

 
IR 

Location 
first CpGb 

Location 
last CpGb 

#EPIC 
probes 

#Twin 
pairs 

Abnormal 
methylation profile 

Methylation 
aberration 

 
Pair 

Treat-
ment 

RBP7 1  10057303 10057312 3 1 Non-affected co-twin Hyper E GLAT 

KIF26B 1  245710332 245710401 3 1 MS co-twin Hypo AG IFN 
PAX8-AS1/PAX8/ 
LOC440839/LOC654433 

2  113992694 113993313 7 1 MS co-twin Hypo V DMF 

DUSP19 2  183943175 183943698 9 1 MS co-twin Hyper AD IFN 

PLOD2 3  145878963 145878979 3 1 MS co-twin Hyper AN IFN 
LRRC34 3  169531663 169531783 3 1 MS co-twin Hyper AD IFN 

RP11-1398P2.1 4  1581921 1582181 4 1 MS co-twin Hyper V DMF 
TACR3 4  104640662 104641250 4 1 MS co-twin Hyper G  

PCDH10 4  134070433 134070441 3 1 MS co-twin Hyper Y IFN 
PCDHG gene cluster 5  140749783 140750160 4 1 MS co-twin Hyper P  

PCDHG gene cluster 5  140762261 140762315 3 1 MS co-twin Hyper P  
PCDHG gene cluster 5  140792511 140792540 3 1 MS co-twin Hyper P  

PCDHG gene cluster 5  140810051 140810137 3 1 MS co-twin Hyper P  

DPYSL3 5  146889238 146889275 3 1 Non-affected co-twin Hyper AA IFN 
CCNG1 5  162864291 162864633 8 1 MS co-twin Hyper Y IFN 

HIST1H3E 6  26224013 26224925 6 2 Non-affected co-
twins 

Hyper H/AG TFM/IFN 

HIST1H2AL 6  27833095 27833555 3 1 Non-affected co-twin Hyper U IFN 
NA 6  30434109 30434324 5 1 MS co-twin Hyper V DMF 

AGPAT1/RNF5/RNF5P1 6  32146466 32146595 4 1 MS co-twin Hyper P  
DNAH8 6  38682995 38683221 4 1 MS co-twin Hyper AD IFN 

SVOPL 7 Y 138348774 138349443 5 1 Non-affected co-twin Hypo AB IFN 
NA 7  158750244 158751184 5 1 MS co-twin Hyper V DMF 

DLC1 8  13134144 13134166 3 1 Non-affected co-twin Hyper R  
TRMT12 8  125462982 125463066 4 1 MS co-twin Hyper W  

NEBL-AS1/NEBL 10  21462747 21462768 3 1 Non-affected co-twin Hyper AA IFN 
HSD17B7P2 10  38645376 38645740 3 1 Non-affected co-twin Hyper AD IFN 

CAT 11  34460140 34460557 3 1 MS co-twin Hyper H TFM 
DIXDC1 11  111847892 111848326 3 1 Non-affected co-twin Hyper AA IFN 

WDR66 12  122356316 122356598 5 1 Non-affected co-twin Hyper AD IFN 

GPR133 12  131488390 131488726 3 1 MS co-twin Hypo AD IFN 
DHRS4L2 14  24438909 24439192 4 1 Non-affected co-twin Hyper AD IFN 

CLEC14A 14  38724646 38724675 3 1 MS co-twin Hyper W  
PAK6/C15orf56 15  40545050 40545145 3 1 Non-affected co-twin Hyper E GLAT 

LOC101928414/CTD-
2651B20.3 

15  45571526 45571636 4 1 MS co-twin Hyper AD IFN 

NA 15  53092788 53093509 3 1 MS co-twin Hyper AG IFN 
CLK3 15  74890733 74891207 3 1 Non-affected co-twin Hyper AD IFN 

UNC45A 15  91473167 91473569 6 1 Non-affected co-twin Hyper P  
ITGAM 16  31342453 31343056 4 1 Non-affected co-twin Hyper T  

C17orf97 17  259755 259924 3 1 MS co-twin Hyper AG IFN 
L3MBTL4 18  6414958 6414978 4 1 Non-affected co-twin Hyper AA IFN 

ZNF254 19  24269919 24270468 4 1 MS co-twin Hyper AD IFN 
LYPD5 19  44324903 44325004 3 1 MS co-twin Hyper AD IFN 

ISOC2 19  55972646 55973778 11 2 MS & Non-affected  
co-twin 

Hyper H/BA TFM/- 

AURKC 19  57742345 57742423 4 1 MS co-twin Hypo AG IFN 
HM13/MCTS2P 20 Y 30134929 30135362 7 1 Non-affected co-twin Hyper B IFN 

Source data are provided as a Source Data file. aWP-DMRs were defined as ≥3 CpGs with a within-pair β-value 
difference >0.20 (adjusted for cell-type composition) and a maximum 1 kb distance between neighboring CpGs 

(the 257 IFN-associated CpGs were excluded from this analysis). In addition, the β-value of the “abnormally 
methylated” co-twin had to be greater than ±3 standard deviations from the mean. bAll genome coordinates are 

based on human genome build GRCh37/hg19. Chr = chromosome, DMF = dimethyl fumarate, GLAT = 
glatiramer acetate, IFN = interferon-beta, IR = imprinted region (Y = yes), TFM = teriflunomide. 
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Supplementary Table 5. Results of the evaluation whether the 27 WP-DMRsa, that were aberrantly methylated in the MS-affected co-twins 
(listed in Table 4), were present in other pairs as well by applying a lower Δβ-value threshold of 0.15. In total, four WP-DMRs were also identified 

in other twin pairs, of which one intergenic WP-DMR was present in 4 pairs and always associated with the MS phenotype (in bold). Hence, in total 24 MS-
associated WP-DMRs were identified in 11 pairs, of which 23 were pair-specific and one present in 4 twin pairs. Clinical characteristics such as gender, MS 

course, disease duration at sampling date, age at first disease manifestation, MS treatment, and pack-years at sample collection did not differ between these 11 

twin pairs and the 34 other pairs (P>0.05, two-tailed Wilcoxon rank sum test for continuous data and two-tailed Fisher’s exact test for categorical data). 

 

Gene locus 

 

Chr 

 

IR 

Location first 

CpGb 

Location last 

CpGb 

#EPIC 

probes 

#Twin 

pairs 

Abnormal 
methylation 

profile 

Methylation 

aberration 

 

Pair 

Treat-

ment  

#Twin pairs 
Δβ-value 

0.15c 

Abnormal 
methylation 

profile Paird Treatment 

KIF26B 1  245710332 245710401 3 1 MS co-twin Hypo AG IFN  1 MS co-twin AG IFN 
PAX8-AS1/PAX8/ 
LOC440839/LOC654433 

2  113992694 113993313 7 1 MS co-twin Hypo V DMF  2 Non-affected 

co-twin & MS 
co-twin 

U/V IFN/DMF 

DUSP19 2  183943175 183943698 9 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 
PLOD2 3  145878963 145878979 3 1 MS co-twin Hyper AN IFN  1 MS co-twin AN IFN 

LRRC34 3  169531663 169531783 3 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 
RP11-1398P2.1 4  1581921 1582181 4 1 MS co-twin Hyper V DMF  3 MS co-twin & 

Non-affected 
co-twin 

L/V/AF -/DMF/NAT 

TACR3 4  104640662 104641250 4 1 MS co-twin Hyper G   1 MS co-twin G  
PCDH10 4  134070433 134070441 3 1 MS co-twin Hyper Y IFN  1 MS co-twin Y IFN 

PCDHG gene cluster 5  140749783 140750160 4 1 MS co-twin Hyper P   1 MS co-twin P  
PCDHG gene cluster 5  140762261 140762315 3 1 MS co-twin Hyper P   1 MS co-twin P  

PCDHG gene cluster 5  140792511 140792540 3 1 MS co-twin Hyper P   1 MS co-twin P  
PCDHG gene cluster 5  140810051 140810137 3 1 MS co-twin Hyper P   1 MS co-twin P  

–CCNG1 5  162864291 162864633 8 1 MS co-twin Hyper Y IFN  1 MS co-twin Y IFN 
NA 6  30434109 30434324 5 1 MS co-twin Hyper V DMF  1 MS co-twin V DMF 

AGPAT1/RNF5/RNF5P1 6  32146466 32146595 4 1 MS co-twin Hyper P   1 MS co-twin P  

DNAH8 6  38682995 38683221 4 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 
NA 7  158750244 158751184 5 1 MS co-twin Hyper V DMF  4 MS co-twin U/V/AB

/AH 

IFN/DMF/ 

IFN/IFN 
TRMT12 8  125462982 125463066 4 1 MS co-twin Hyper W   1 MS co-twin W  

CAT 11  34460140 34460557 3 1 MS co-twin Hyper H TFM  2 MS co-twin & 
Non-affected 

co-twin 

H/P TFM/- 

GPR133 12  131488390 131488726 3 1 MS co-twin Hypo AD IFN  1 MS co-twin AD IFN 

CLEC14A 14  38724646 38724675 3 1 MS co-twin Hyper W   1 MS co-twin W  
LOC101928414/CTD-
2651B20.3 

15  45571526 45571636 4 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 

NA 15  53092788 53093509 3 1 MS co-twin Hyper AG IFN  1 MS co-twin AG IFN 

C17orf97 17  259755 259924 3 1 MS co-twin Hyper AG IFN  1 MS co-twin AG IFN 
ZNF254 19  24269919 24270468 4 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 

LYPD5 19  44324903 44325004 3 1 MS co-twin Hyper AD IFN  1 MS co-twin AD IFN 
AURKC 19  57742345 57742423 4 1 MS co-twin Hypo AG IFN  1 MS co-twin AG IFN 
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Source data are provided as a Source Data file. aWP-DMRs were defined as ≥3 CpGs with a within-pair β-value difference >0.20 (adjusted for cell-type 
composition) and a maximum 1 kb distance between neighboring CpGs (the 257 IFN-associated CpGs were excluded from this analysis). In addition, the β-value 

of the “abnormally methylated” co-twin had to be greater than ±3 standard deviations from the mean. bAll genome coordinates are based on human genome 
build GRCh37/hg19. cA Δβ-value threshold of 0.15 was used to evaluate whether the 27 WP-DMRs, that were aberrantly methylated in the MS-affected co-twins, 

were present in other twin pairs as well. Chr = chromosome, DMF = dimethyl fumarate, GLAT = glatiramer acetate, IFN = interferon-beta, IR = imprinted 

region (Y = yes), TFM = teriflunomide.  
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Supplementary Table 6. The 25 differentially variable positions (DVPs) identified between MS-affected and clinically non-affected MZ co-
twins using iEVORA (n = 45 twin pairs).5 

 Probe ID Locationa Gene Functional regionb Punpaired T-Test 

PFDR-corrected 

Barlett’s test 

Hypervariable 

Group 

1 cg09319843 chr18:25757569 CDH2 TSS200/CpG Island 1.49*10-03 2.63*10-04 Non-affected 
2 cg07380496 chr5:71403420 MAP1B 1stExon/CpG Island 2.05*10-03 3.08*10-07 Non-affected 

3 cg08927443 chr18:25757565 CDH2 TSS200/CpG Island 2.25*10-03 1.62*10-07 Non-affected 
4 cg21303011 chr3:24537177 THRB TSS1500/CpG Island 4.28*10-03 1.81*10-04 Non-affected 

5 cg11732619 chr5:168728076 SLIT3 5'UTR/1stExon/CpG Island 4.92*10-03 2.02*10-04 Non-affected 

6 cg11181094 chr9:125093748   6.07*10-03 4.82*10-05 Non-affected 

7 cg13913015 chr2:47797963 KCNK12 TSS1500/CpG Island 9.64*10-03 5.09*10-06 Non-affected 
8 cg06090660 chr18:25757555 CDH2 TSS200/CpG Island 1.17*10-02 5.39*10-04 Non-affected 

9 cg11777419 chr14:104604401 KIF26A TSS1500/CpG Island 1.20*10-02 5.49*10-06 Non-affected 
10 cg23526824 chr17:38245542 THRA Body 1.29*10-02 5.22*10-04 Non-affected 

11 cg26452004 chr14:69726546 GALNT16 TSS200/CpG Island 1.57*10-02 7.33*10-04 Non-affected 

12 cg26330510 chr5:1155853   1.62*10-02 2.45*10-09 Non-affected 

13 cg07147599 chr16:50502136   1.88*10-02 3.65*10-04 Non-affected 

14 cg26245302 chr6:163148501 PARK2/PACRG TSS1500/Body/5'UTR/CpG Island 2.34*10-02 8.30*10-06 Non-affected 
15 cg09936645 chr1:207627581 CR2 TSS200/CpG Island 2.43*10-02 3.02*10-08 Non-affected 

16 cg07848601 chr5:170289430 RANBP17 Body/CpG Island 2.52*10-02 4.81*10-04 Non-affected 
17 cg08558397 chr7:752149 PRKAR1B 5'UTR/1stExon/CpG Island 2.90*10-02 9.26*10-06 Non-affected 

18 cg23307163 chr10:4828732   2.98*10-02 4.68*10-04 Non-affected 

19 cg16026114 chr1:232765417   3.69*10-02 2.16*10-06 Non-affected 

20 cg25088874 chr4:95678817 BMPR1B TSS1500/CpG Island 4.19*10-02 4.60*10-06 Non-affected 
21 cg23683528 chr2:235860449 SH3BP4 TSS200/CpG Island 4.35*10-02 5.96*10-06 MS-affected 

22 cg20928782 chr11:63803364 MACROD1 Body 4.46*10-02 2.22*10-04 MS-affected 
23 cg12954230 chr15:100882231 ADAMTS17 TSS200/CpG Island 4.55*10-02 3.57*10-07 Non-affected 

24 cg21947590 chr19:620162 POLRMT Body/CpG Island 4.58*10-02 4.33*10-05 Non-affected 
25 cg09272992 chr7:150497601 TMEM176B 5'UTR/TSS1500/1stExon/CpG Island 4.58*10-02 7.97*10-06 MS-affected 

Source data are provided as a Source Data file. DVPs were defined as CpGs with a FDR-corrected Barlett’s P-value<0.001 and raw T-test P-value<0.05. aAll 
genome coordinates are based on human genome build GRCh37/hg19. bBased on information provided by the Illumina manifest. 
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Supplementary Table 7. Characteristics of the seven most significant interferon-beta-associated differentially methylated positions (IFN-
DMPs) (absolute mean Δβ-value>0.10 and PW-U<0.001), identified by a pair-wise analysis only including the EPIC array data of the 12 pairs 
of which the MS-affected co-twins were treated with IFN at the moment of blood collection (n = 12 twin pairs). 

     Mean β-value (U/A)      

Probe ID Locationa Gene 

 

Functional 
regionb 

 

 
450k 

IFN-treated 

MS-affected 
co-twins 

non-

affected 
co-twins 

Mean Δβ-value    
(95% CI) (U) 

Mean Δβ-value    
(95% CI) (A) 

β-value 
range PW-u/PW-A Full name  

cg03607951 chr1:79085586 IFI44c TSS1500/DHS Y 0.57/0.59 0.69/0.68 -0.12 (-0.16,-0.08) -0.09 (-0.13,-0.05) 0.44-0.77 9.77*10-4 

/1.46*10-3 

Interferon-induced 

protein 44-like 
cg06981309 chr3:146260954 PLSCR1 5’UTR/DHS  Y 0.59/0.60 0.71/0.70 -0.12 (-0.16,-0.07) -0.09 (-0.13,-0.05) 0.50-0.76 4.88*10-4 

/4.88*10-4 

Phospholipid 

scramblase 1 
cg10549986 chr2:7018153 RSAD2 1st exon/DHS Y 0.17/0.18 0.31/0.30 -0.14 (-0.19,-0.09) -0.12 (-0.16,-0.07) 0.11-0.44 4.88*10-4 

/4.88*10-4 

Radical S-adenosyl 

methionine domain-
containing protein 2 cg10771443 chr2:7018855 RSAD2 Body/DHS N 0.36/0.38 0.49/0.45 -0.13 (-0.18,-0.07) -0.07 (-0.12,-0.03) 0.26-0.56 9.77*10-4 

/9.27*10-3 
cg15839328 chr2:7018885 RSAD2 Body/DHS N 0.36/0.38 0.49/0.47 -0.13 (-0.18,-0.08) -0.09 (-0.12,-0.05) 0.27-0.57 4.88*10-4 

/1.46*10-3 

cg21549285 chr21:42799141 MX1 5’UTR/DHS Y 0.63/0.64 0.79/0.78 -0.16 (-0.22,-0.09) -0.14 (-0.20,-0.07) 0.44-0.86 4.88*10-4 

/1.46*10-3 
MX dynamin like 
GTPase 1 

cg26312951 chr21:42797847 MX1 TSS200/5’UTR/ 
TFBS/open 

chromatin  

Y 0.32/0.33 0.43/0.42 -0.11 (-0.16,-0.07) -0.09 (-0.13,-0.05) 0.17-0.48 4.88*10-4 

/2.44*10-3 

Source data are provided as a Source Data file. aAll the genome coordinates are based on human genome build GRCh37/hg19. bBased on information provided 
by the Illumina manifest. Since all genes have multiple transcripts, the “UCSC_RefGene_Group” gene-related location is listed. cOther potential IFN-DMPs in 

IFI44L are cg13452062 (Δβ-value = 0.20, PW-U = 0.002) and cg05696877 (Δβ-value = 0.15, PW-U = 0.001). 450k = probe present on the 450k array (Y = yes, N 
= no), A = adjusted for cell-type composition, CI = confidence interval, DHS = DNAse I hypersensitive site, IFN-DMPs = interferon-beta treatment-associated 

differentially methylated positions, n = number of pairs, PW-A = P-value two-tailed Wilcoxon signed-rank test adjusted for cell-type composition, PW-U = P-value 

two-tailed Wilcoxon signed-rank test unadjusted for cell-type composition, TFBS = transcription factor binding site, TSS200 = the region from transcription start 
site (TSS) to −200 nt upstream of TSS, TSS1500 = −200 to −1500 nt upstream of TSS, U = unadjusted for cell-type composition, 5′UTR= 5’ untranslated 

region, Δβ = within-pair β-value difference (clinically MS-affected, IFN-treated MZ co-twin – non-affected MZ co-twin). 
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Supplementary Table 8. Estimated cell type proportions of the 12 pairs of which the clinically MS-
affected MZ co-twins were treated with interferon-beta (IFN) at the moment of blood collection (n 
= 12 twin pairs).a  

 
 
Cell Types 

Cellular proportions 
IFN-treated MS-

affected MZ co-twinsb 

Cellular proportions 
clinically non-affected 

MZ co-twinsb 

 
Mean within-pair 

difference(95% CI)b 

 
 

PW 

CD4+ T cells 0.35 ± 0.08 0.34 ± 0.06 0.01 (-0.02,0.04) 0.57 
CD8+ T cells 0.18 ± 0.08 0.19 ± 0.06 -0.01 (-0.04,0.03) 0.57 
CD19+ B cells 0.14 ± 0.04 0.12 ± 0.03 0.02 (0.01,0.04) 0.01 
CD14+ Monocytes 0.18 ± 0.07 0.19 ± 0.07 -0.01 (-0.04,0.02) 0.42 
CD56+ NK cells 0.06 ± 0.07 0.12 ± 0.09 -0.06 (-0.10,-0.02) 0.007 
Granulocytes 0.09 ± 0.12 0.04 ± 0.06 0.05 (-0.01,0.10) 0.09 

Source data are provided as a Source Data file. aCell type proportions were estimated using the DNA methylome 

reference-based method of Houseman et al.6 implemented in the minfi R/Bioconductor package7. bValues are 

expressed as mean ± SD. cWithin-pair difference = clinically MS-affected, IFN-treated MZ co-twin – non-affected 
MZ co-twin. CI = confidence interval, n = number of pairs. PW=P-value nonparametric two-tailed Wilcoxon 

signed-rank test. P-values<0.05 are in bold.  
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Supplementary Table 9. Summary of the 41 GC-DMRsa (in 39 genes) that overlap with GC-response 

(dexamethasone) genes recorded in the EMBL-EBI Expression Atlas (accessed May 2018) (n =1 

pair). 

Gene Chr Startb Endb Width #CG Location 

Mean 
methylation 

GC-treated 
MS co-twin 

Mean 
methylation 

unaffected 
co-twin 

Mean 

methylation 
difference 

Methylation 
aberration 

GC- 
treatment 

Expression 
effect of GCs 

recorded in 
EMBL-EBI 

Expression 
Atlas 

ADAMTS2 5 178652819 178652857 39 2 Intron 0.61 0.87 -0.26 Hypo Up 
ADAMTS2 5 178661985 178662010 26 3 Intron 0.85 0.60 0.25 Hyper Up 

ADORA3 1 112049050 112049096 47 2 Intron 0.64 0.90 -0.26 Hypo Up 

ALK 2 29794637 29794701 65 3 Intron 0.62 0.89 -0.27 Hypo Up 

APOBEC3A_B 22 39363192 39363237 46 2 Intron 0.88 055 0.33 Hyper Down 

ARRDC2 19 18124639 18124670 32 2 3' UTR 0.28 0.58 -0.29 Hypo Up 

ATP6V0D2 8 87126109 87126154 46 2 Exon 0.99 0.66 0.33 Hyper Down 

BCL11A 2 60756422 60756472 51 2 Intron 0.73 0.44 0.29 Hyper Down 

CALHM6 6 116783956 116783983 28 2 Intron 0.80 0.51 0.29 Hyper Up 

CCL26 7 75416004 75416035 32 2 Intron 0.61 0.88 -0.26 Hypo Up 

CD83 6 14122060 14122276 217 4 Intron 0.57 0.30 0.27 Hyper Down 

CDH1 16 68816259 68816295 37 2 Intron 0.51 0.05 0.45 Hyper Down 

COL4A2 13 110996989 110997025 37 3 Intron 0.67 0.92 -0.25 Hypo Up 

DDC 7 50597354 50597383 30 2 Intron 0.85 0.58 0.27 Hyper Up 

EGFR 7 55180338 55180378 41 2 Intron 0.52 0.84 -0.32 Hypo Up 

EVL 14 100524807 100524853 47 2 Intron 0.89 0.62 0.27 Hyper Down 

FAM49A 2 16745180 16745220 41 2 Intron 0.46 0.78 -0.32 Hypo Up 

FETUB 3 186367720 186367750 31 2 Intron 0.52 0.21 0.31 Hyper Up 

FGF18 5 170864899 170864934 36 2 Intron 0.87 0.57 0.30 Hyper Up 

FKBP1B 2 24274695 24274736 42 2 Intron 0.69 0.96 -0.28 Hypo Up 

GMPR 6 16260445 16260473 29 2 Intron 0.68 0.93 -0.26 Hypo Up 

HBEGF 5 139717277 139717324 48 2 Intron 0.76 0.47 0.29 Hyper Down 

IP6K3 6 33710284 33710320 37 2 Intron 0.27 0.60 -0.33 Hypo Up 

KALRN 3 124281329 124281373 45 2 Intron 0.77 0.51 0.26 Hyper Down 

KLHL29 2 23750256 23750281 26 2 Intron 0.88 0.52 0.36 Hyper Up 

LIFR 5 38601623 38601671 49 2 Upstream 0.60 0.86 -0.26 Hypo Up 

MGAT4A 2 99264172 99264216 45 2 Intron 0.23 0.53 -0.30 Hypo Up 

MTSS1 8 125727330 125727375 46 2 Intron 0.91 0.60 0.32 Hyper Up 

MYO7A 11 76905938 76908116 2179 3 Intron 0.62 0.97 -0.36 Hypo Up 

MYO7A 11 76898554 76898595 42 2 Intron 0.17 0.48 -0.30 Hypo Up 

NDRG1 8 134261878 134261928 51 3 Intron 0.04 0.46 -0.42 Hypo Up 

P2RY6 11 73000436 73000474 39 3 Intron 0.50 0.23 0.28 Hyper Down 

PGBD5 1 230554455 230554484 30 2 Intron 0.75 0.46 0.29 Hyper Down 

PHACTR3 20 58236433 58236475 43 3 Intron 0.37 0.66 -0.29 Hypo Up 

PHGDH 1 120267645 120267683 39 2 Intron 0.93 0.67 0.25 Hyper Down 

PRSS21 16 2869882 2869916 35 2 Intron 0.92 0.57 0.35 Hyper Down 

RGCC 13 42038266 42038305 40 2 Intron 0.11 0.42 -0.31 Hypo Up/Down 

RUNX2 6 45448204 45448233 30 2 Intron 0.83 0.56 0.28 Hyper Up 

SPATA13 13 24825973 24825999 27 4 Exon 0.06 0.31 -0.25 Hypo Down 

TIMP3 22 33197034 33197061 28 2 Exon 0.75 0.48 0.28 Hyper Down 

ZBTB16 11 114050079 114050114 36 2 Intron 0.24 0.54 -0.29 Hypo Up 

Source data are provided as a Source Data file. aThe glucocorticoid treatment-associated DMRs (GC-DMRs) 

result from the DMR analysis of the WGBS data of CD4+ memory T-cells of a MS discordant MZ twin pair of 
which the MS-affected co-twin was very recently treated with GCs at the moment of blood collection (n=1). The 

GC-DMRs were identified using the DSS-single package8, including a smoothing span of 100 bp, a minimum 

region length of 25 bp with ≥2 CpGs and a P-value<0.01. The absolute mean methylation difference had to be 
larger than 0.25, and to limit the number of false positives only GC-DMRs located in reported GC-response genes 

were considered. bGenomic coordinates are based on human genome build GRCh37/hg19. 
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Supplementary Table 10. Number of hyper- and hypomethylated CpGs in the EPIC array EWAS data 

of the 45 MZ twins clinically discordant for MS, according to different Δβ-values and P-value 

thresholds (n = 45 twin pairs).  

Hypermethylated  
in MS-affected co-twin 

 
#CpGs 

 
%CpGs 

 Hypomethylated  
in MS-affected co-twin 

 
#CpGs 

 
%CpGs 

Unadjusted for cell type composition    Unadjusted for cell type composition   
Mean Δβ-value>0 502222 59.1  Mean Δβ-values<0 347551 40.9 

Mean Δβ-value>0.005 168434 62.2  Mean Δβ-value<-0.005 102184 37.8 

Mean Δβ-value>0.01 50255 54.4  Mean Δβ-value<-0.01 42090 45.6 

Mean Δβ-value>0 & P<0.001 2913 60.1  Mean Δβ-value<0 & P<0.001 1933 39.9 

Mean Δβ-value>0.005 & P<0.001 2880 59.9  Mean Δβ-value<-0.005 & P<0.001 1930 40.1 

Mean Δβ-value>0.01 & P<0.001 2496 58.1  Mean Δβ-value<-0.01 & P<0.001 1806 41.9 

Adjusted for cell type composition    Adjusted for cell type composition   

Mean Δβ-value>0 475327 55.9  Mean Δβ-values<0 374446 44.1 

Mean Δβ-value>0.005 101816 62.8  Mean Δβ-value<-0.005 60242 37.2 

Mean Δβ-value>0.01 17129 63.8  Mean Δβ-value<-0.01 9712 36.2 

Mean Δβ-value>0 & P<0.001 385 55.2  Mean Δβ-value<0 & P<0.001 313 44.8 

Mean Δβ-value>0.005 & P<0.001 354 53.4 
 

 Mean Δβ-value<-0.005 & P<0.001 309 46.6 

Mean Δβ-value>0.01 & P<0.001 249 53.9  Mean Δβ-value<-0.01 & P<0.001 213 46.1 

Δβ-values = clinically MS-affected MZ co-twin – non-affected MZ co-twin. n= number of twin pairs, P = P-value 
two-tailed Wilcoxon signed-rank test. 
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Supplementary Table 11. Statistical power of the multiple sclerosis EWAS that includes 45 MZ twin 

pairs clinically discordant for multiple sclerosis. 

Magnitude 

of the 
correlation 

Power to detect a mean β-value 

difference of (at least) 0.05 at 
alpha = 1x10-7 

Power to detect a mean β-value 

difference of (at least) 0.04 at 
alpha = 1x10-7 

Power to detect a mean β-value 

difference of (at least) 0.03 at 
alpha = 1x10-7 

0 0.984 0.749 0.210 

0.2 0.999 0.914 0.390 
0.4 >0.999 0.991 0.686 

0.6 >0.999 >0.999 0.961 
0.8 >0.999 >0.999 >0.999 

1.0 >0.999 >0.999 >0.999 

The table shows the statistical power to detect a mean β-value difference of (at least) 0.05, 0.04 and 0.03 with 

a (genome-wide) significance threshold of 1x10-7, a sample size of 45 MS discordant MZ twin pairs using a two-
sided paired T-test and assuming a standard deviation of 0.0266 (which is the true median standard deviation 

observed in the EPIC array data). 
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Supplementary Table 12. Primer sequences and PCR conditions.a 

aLoci were amplified in 30 µL mixes containing 40 ng bisulfite-treated DNA (TDS: 25 ng genomic DNA), 0.2 mM of each dNTP, n nM of each primer, 2.5 mM 
MgCl2, 1.5 U HotStarTaq DNA polymerase (Qiagen) and 1X PCR buffer. DNA was denatured for 15 min at 95°C, followed by n cycles of 30 sec at 95°C, 1 min at 
T°C and 30 sec up to 1 min at 72°C. The reaction was completed by a final extension step of 5 min at 72°C. PCR products were mixed, purified using AMPure 
XP beads (Agencourt) and quantified using the Qubit Fluorometer and Qubit dsDNA HS assay kit (Invitrogen). TMEM232 was sequenced with a minimum 
coverage of 1500 reads. All other amplicons were sequenced with a minimum coverage of at least 2000 reads. bAlu primers were designed using the consensus 
sequence published by Price et al.9 (nucleotide positions 29-260) and generate in silico10 an “infinite” number of specific PCR products (no mismatches allowed). 
cHERVK primers target the youngest subfamily LTR5Hs (nucleotide position 256-487) and generate in silico10 328 different specific PCR products (no mismatches 
allowed) of which 98% matches to LTR5Hs according to RepeatMasker (http://repeatmasker.org/). dLINE1 Primers were designed using the promoter/5’-UTR 
consensus sequence (GenBank-Nr. X58075.1, nucleotide positions 105-361) and generate in silico10 309 different specific PCR products (no mismatches 
allowed), which mainly comprise the youngest subfamilies L1HS (~64%), L1PA2 (~25%) and L1PA3 (~9%). The repetitive elements were sequenced with a 
minimum coverage of 2000 reads, giving a >6 fold coverage per individual HERVK and LINE1 element. BisConAssay = bisulfite conversion rate assay (non-
bisulfite-dependent primers), C = primer concentration (nM), Cyc = number of cycles, NA = not applicable, T = annealing temperature (°C), TDBS = targeted 
deep bisulfite sequencing, TDS = targeted deep sequencing, #CpGs = number of CpGs present in the amplicon. 

Method 
CpG/SNP 
number 

Gene/ 
element Forward primer sequence (5’→3’) C Reverse primer sequence (5’→3’) C T Cyc 

Product 
size 

# 
CpGs 

TDBS cg12393503 ECT2 GATTTTGTGTGAGTGAGAGAGGTGT 133 TCTTCTATCCAAAAAAACCAACAAATA 133 58 42 252 19 

 cg01447350 IL34 TTTTAGTTATTTGGGAGGTTGAAGTAG 133 ATCCATAAATAACTCAAACTAAAAAACAAA 133 59 42 340 8 

 cg02520593 SELPLG TTTGTTGTTTAAGAGGTAAAATTGAAGTT 133 ATATCCCAACTACAAATCCAATACAAA 133 58 42 230 3 

 cg27037608 TMEM232 ATTAGGATTTATAAGTGAATTTTTATTTGTTT 133 CAAAACATTCTAAATACTTTATTTACTCACTA 133 60 40 379 9 

 cg25345365 ZBTB16 ATTTTTTTGAGGGAAAGAATATATAGTGT 133 AATACAAAATATACCAAAACAACAAACC 133 60 42 191 3 

           
  ALub TTTTAGTATTTTGGGAGGT 100 CCCAAACTAAAATACAATAAC 100 60 30 232 17 

  HERVKc TATTTTTTAATTTTAAGTATTTAGGGAT 100 TTCCTCTTATCTCAACTACAAAAA 100 56 30 233 6 

  LINE1d GGTTTATTTTATTAGGGAGTGTTAGAT 100 AAACCCTCTAAACCAAATATAAAATATAA 100 54 30 257 18 

           
 BisConAssay PTPRVP TGGGGTAATGATGAGAGATGG 100 CTCTCTTTATTTCAAAACCCCCTA 100 58 40 343 NA 

           
TDS rs6471533  ACCCACTGGTTCTGGGAAG 133 TATGGCATGTTGGCAGAAGA 133 63 35 170 NA 
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Supplementary Table 13. Sequencing coverage statistics of the whole genome bisulfite sequencing (WGBS) analysis in CD4+ memory T-cells 
of four MS discordant female MZ twin pairs. 

aOnly the MS-affected co-twin of pair AY had been treated very recently with GCs at the time of blood collection (but never received any immune-modulating 
therapy), while the MS-affected co-twins of the other three pairs had not received GCs or other immune-modulating therapies within at least 12 months prior to 

blood collection. GC-DMR = glucocorticoid treatment-associated differentially methylated region, MS-DMR = MS-associated DMR, SS = smoking status at sample 

collection (Y = yes, N = no). 
 
 
 

Sample Age 

Years 
discordant 

for MS 

 
 

SS #CpGs  

Average 

coverage  

#CpGs with 
coverage ≥5 

#CpGs with 

coverage ≥10  

#CpGs with coverage ≥10 

across all samples included 

in the MS-DMR analysis 

 
Average 

coverage  

#CpGs with coverage ≥15 

across all samples included 

in the GC-DMR analysis 

 
Average 

coverage  

R-MS 39.8 14.4 N 27,951,337 11.0  25,375,958 15,495,007  2,693,926 19.1    

R-H 39.8 14.4 N 27,901,316 9.5  24,183,957 12,021,398  2,693,926 16.6    

AK-MS 46.5 19.1 Y 27,827,126 8.1  22,221,731 8,188,033  2,693,926 15.4    

AK-H 46.5 19.1 Y 27,962,853 11.4  25,245,516 16,062,214  2,693,926 20.4    

AV-MS 45.8 13.9 N 27,984,627 11.9  25,949,059 

  
17,517,610  2,693,926 20.5    

AV-H 45.8 13.9 Y 27,972,888 10.9  25,398,997 15,269,579  2,693,926 19.1    

AY-MSa 40.9 12.0 Y 28,002,000 12.1  26,061,610 17,794,246  2,693,926 20.6  2,796,900 21.8 

AY-H 40.9 12.0 N 27,970,390 10.8  25,398,195 15,270,455  2,693,926 18.7  2,796,900 20.6 
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Supplementary Figures 
 
 

 

Supplementary Figure 1. Tukey boxplots (with all data points shown in green) of (A) the age of 
disease onset and (B) the years that the MZ twins were clinically discordant for MS at sample 
collection (n = 45 twin pairs). Our twin cohort has an average age of onset of 28 years, and contains 7 
(16%) cases that were younger than 20 years and 6 (13%) cases that were older than 40 years at disease 
onset. Since MS has an average age of onset of about 30 years and manifests in 70% of the patients between 
20 and 40 years of age11,12, the age of onset in our cohort is within the normal range. Boxplots represent the 
median (central line), the interquartile range or IQR (bottom and top of the box), and 1.5 times the IQR 
(whiskers). 
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Supplementary Figure 2. DNA methylation changes associated with the clinical manifestation of 
MS (n = 45 twin pairs). Results of the differential DNA methylation analysis including the EPIC array data 

of all 45 MZ twin pairs clinically discordant for MS. (A) Volcano plot of the P-values resulting from the non-

parametric two-tailed Wilcoxon signed-rank test versus the mean within-pair β-value difference for each CpG. 
Data were unadjusted for cell-type composition. (B) Q-Q plot of the P-values resulting from the non-

parametric two-tailed Wilcoxon signed-rank shown in Figure 3A. Data were unadjusted for cell-type 
composition. (C) Volcano plot of the P-values resulting from the non-parametric two-tailed Wilcoxon signed-

rank test against the mean within-pair β-value difference for each CpG. Data were adjusted for cell-type 
composition. (D) Q-Q plot of the P-values resulting from the non-parametric two-tailed Wilcoxon signed-rank 

shown in Figure 3C. Data were adjusted for cell-type composition. Within-pair β-value difference (Δβ-value) = 

clinically MS-affected MZ co-twin – non-affected MZ co-twin. 
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Supplementary Figure 3. Infinium MethylationEPIC BeadChip β-values of each sample are shown for the ECT2 (cg12393503), SELPLG (cg02520593) 

and IL34 (cg01447350) CpGs, which show very large mean within-pair β–value differences (n = 45 twin pairs). Labels indicate: Pair ID - Disease status (i.e. 
MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). 
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Supplementary Figure 4. Validation of the ECT2 (cg12393503), IL34 (cg01447350) and the SELPLG (cg02520593) CpGs by targeted deep bisulfite 

sequencing (TDBS) (n = 7 twin pairs). On the y-axis the Infinium MethylationEPIC BeadChip β-values as well as the TDBS results are shown, both represented as the 
fraction of methylated cytosines. Labels indicate: Pair ID - Disease status (i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin), M = methylated, U = 

unmethylated. In contrast to the Infinium MethylationEPIC BeadChip data, TDBS revealed that ECT2 (cg12393503) was completely unmethylated, while IL34 (cg01447350) 
and SELPLG (cg02520593) were highly methylated in all samples.  
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Supplementary Figure 5. Validation of the TMEM232 (cg27037608) MS-DMP by targeted deep bisulfite sequencing (TDBS) (n = 45 twin pairs). (A) 
Correlation plot of the unadjusted Infinium MethylationEPIC BeadChip data and the TDBS data of the TMEM232 (cg27037608) MS-DMP of all 45 MZ twin pairs. Infinium 

MethylationEPIC BeadChip data are expressed as β-value. TDBS data are expressed as mean methylation value, where the methylation level is calculated by dividing the 
number of reads in which the particular CpG is methylated by the total number of sequenced reads (minimal coverage >1500 reads/base). r = Pearson's correlation 

coefficient with P-value. (B) Summary of the non-parametric two-tailed Wilcoxon signed-rank test on the unadjusted Infinium MethylationEPIC data and the TDBS data of 
the TMEM232 amplicon including the cg27037608 DMP (n = all 45 twin pairs). Within-pair methylation difference = MS-affected MZ co-twin – clinically non-affected MZ co-

twin. Source data are provided as a Source Data file. 
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Supplementary Figure 6. Validation of the ZBTB16 (cg25345365) MS-DMP by targeted deep bisulfite sequencing (TDBS) (n = 45 twin pairs). (A) 
Correlation plot of the unadjusted Infinium MethylationEPIC BeadChip data and the TDBS data of the ZBTB16 (cg25345365) MS-DMP of all 45 MZ twin pairs. Infinium 
MethylationEPIC BeadChip data are expressed as β-value. TDBS data are expressed as mean methylation value, where the methylation level is calculated by dividing the 
number of reads in which the particular CpG is methylated by the total number of sequenced reads (minimal coverage >2000 reads/base). r = Pearson's correlation 
coefficient with P-value. (B) Summary of the nonparametric two-tailed Wilcoxon signed-rank test on the unadjusted Infinium MethylationEPIC BeadChip data and the TDBS 
data of the ZBTB16 (cg25345365) MS-DMP (n = 45 twin pairs). Within-pair methylation difference = MS-affected MZ co-twin – clinically non-affected MZ co-twin. Source 
data are provided as a Source Data file. 
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Supplementary Figure 7. Results of the PMD analysis on the WGBS data of CD4+ memory T-cells of four MS discordant MZ twin pairs (n = 4 twin pairs). 
Median weighted average methylation levels in PMDs, FMRs, LMRs and UMRs were similar between the clinically non-affected and MS-affected MZ co-twins (P>0.05, two-
tailed paired T-test) (A) Segment percentages in the genome plotted as stacked barplots. (B) Weighted average methylation levels per segment plotted as boxplots. FMR 
= fully methylated region, PMD = partially methylated domains, LMR = low methylated region, UMR = unmethylated region. Labels indicate: Pair ID - Disease status (i.e. 
MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). The MS-affected co-twin of pair AY was treated with glucocorticoid at the moment of blood 
collection. 
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Supplementary Figure 8. Hierarchical clustering of (A) the partially methylated domains (PMDs) and (B) the fully methylated regions (FMRs), identified 

in the WGBS data of CD4+ memory T-cells of four MS discordant MZ twin pairs, demonstrating that all co-twins cluster together (n = 4 twin pairs). 
Labels indicate: Pair ID - Disease status (i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). The MS-affected co-twin of pair AY was treated with 

glucocorticoid at the moment of blood collection. 
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Chr Start End Annotation Gene 
Mean methylation 

MS co-twins 

Mean methylation 

unaffected co-twins 

Mean within-pair 

methylation difference 

 

Full name 

X 130863481 130863509 Intron FIRRE 0.66 0.40 0.26 Functional intergenic repeating RNA element 

 
Supplementary Figure 9. MS-DMR in the FIRRE gene identified by WGBS of CD4+ memory T-cells of four female MS discordant MZ twin pairs (n = 4 
twin pairs). This MS-DMR is located in an intronic CTCF/YY1 bound regulatory region in the FIRRE gene,13 that is located on the X-chromosome (chrX:130863481-
130863509) and encodes a circular long non-coding RNA.14 MS-DMRs were defined as ≥3 CpGs, each having P-value<0.05 (two-tailed paired T test) and absolute mean 
methylation difference >0.2, and a maximum 500 bp distance between neighbouring CpGs. The green bars highlights the MS-affected co-twins. All genome coordinates are 
based on human genome build GRCh37/hg19. Labels indicate: Pair ID - Disease status (i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). Source 
data are provided as a Source Data file.   
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Supplementary Figure 10. Methylation and chromatin status of the FIRRE MS-DMR in various subsets of primary CD4+ T cells in male and female 
BLUEPRINT samples15. Whole genome bisulfite sequencing (WGBS) data of central memory and effector memory CD4+ T cells shows that in females methylation levels 
at the FIRRE DMR locus are lower compared to males (~50% versus ~100%). In addition, in female central memory CD4+ T cells a H3K4me3 peak is observed at the 
FIRRE DMR locus, but not in males. Unfortunately, H3K27ac central memory and H3K4me3 effector memory CD4+ T-cell data was not available of a female donor. All 
genome coordinates are based on human genome build GRCh38/hg38. 
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Supplementary Figure 11. Identified within-pair DMRs (WP-DMRs) in DUSP19, PLOD2, HIST1H3E, DNAH8 and C17orf97. The green horizontal line 
highlights the aberrant methylated sample(s). These WP-DMRs were identified in the Infinium MethylationEPIC BeadChip data. Labels indicate: Pair ID - Disease status (i.e. 
MS = MS-affected MZ co-twin, H  = clinically non-affected MZ co-twin). Source data are provided as a Source Data file. 
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Supplementary Figure 12. Identified within-pair DMRs (WP-DMRs) in HIST1H2AL, DNAH8, CLK3, ZNF254, LYPD5 and HM13/MCTS2P. The green 

horizontal line highlights the aberrant methylated sample. These WP-DMRs were identified in the Infinium MethylationEPIC BeadChip data. Labels indicate: Pair ID - Disease 
status (i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). MCTS2P is also called PSIMCT-1. Source data are provided as a Source Data file. 
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Supplementary Figure 13. Identified within-pair DMRs (WP-DMRs) in the PCDHG gene cluster. The green bars highlights the aberrant methylated sample. 
These WP-DMRs were identified in the Infinium MethylationEPIC BeadChip data. Labels indicate: Pair ID - Disease status (i.e. MS = MS-affected MZ co-twin, H = clinically 
non-affected MZ co-twin). Source data are provided as a Source Data file. 
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Supplementary Figure 14. Identified within-pair DMRs (WP-DMRs) in RBP7, PCDH10, CCNG1, Chr6:30434109-30434324 and PAK6. The green horizontal 
line highlights the aberrant methylated sample. These WP-DMRs were identified in the Infinium MethylationEPIC BeadChip data. Labels indicate: Pair ID - Disease status 
(i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). Source data are provided as a Source Data file. 
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Supplementary Figure 15. Boxplots of the 16 top-ranked differentially variable positions (DVPs) identified 
in the 45 MS-discordant MZ twin pairs (n=45 twin pairs). DVPs were identified using the iEVORA algorithm5 and 
were defined as CpGs with a FDR-corrected Barlett’s P-value<0.001 and raw T-test P-value<0.05. Boxplots represent 
the median (central line), the interquartile range or IQR (bottom and top of the box), and 1.5 times the IQR (whiskers). 
Source data are provided as a Source Data file. 
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Supplementary Figure 16. Infinium MethylationEPIC BeadChip β-values of CpGs in PLSCR1 (cg06981309), RSAD2 (cg10549986) and MX1 
(cg21549285) that were strongly differentially methylated following interferon-beta (IFN) treatment (IFN-DMPs) (n = 12 twin pairs). Labels indicate: 
Pair ID - Disease status (i.e. MS = MS-affected IFN-treated MZ co-twin (yellow), H = clinically non-affected non-treated MZ co-twin (blue)). Source data are provided as a 
Source Data file. 
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Supplementary Figure 17. ZBTB16 MS-DMP (cg25345365, targeted deep bisulfite sequencing 
(TDBS)) within-pair methylation differences plotted against the elapsed time since the last 
glucocorticoid treatment in the MS-affected MZ co-twin (n = 45 twin pairs). r = Pearson's correlation 
coefficient with P-value, within-pair methylation difference = MS-affected MZ co-twin – clinically non-affected MZ 
co-twin. Source data are provided as a Source Data file. 
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Supplementary Figure 18. EPIC-array wide hypermethylation, glucocorticoid treatment history and ZBTB16 methylation (n = 45 twin pairs). (A) 
Number of hypermethylated CpGs in the MS-affected co-twins and elapsed time since last glucocorticoid treatment in the MS-affected MZ co-twin. Data are presented 
as Tukey boxplots. P-value = non-parametric two-tailed Wilcoxon rank-sum test result. (B) Number of hypermethylated CpGs in the MS-affected co-twins plotted 
against the within-pair methylation differences of the ZBTB16 DMP (cg25345365, TDBS). r = Pearson's correlation coefficient with P-value, within-pair methylation 
difference = MS-affected MZ co-twin – clinically non-affected MZ co-twin. Source data are provided as a Source Data file. Boxplots represent the median (central line), 
the interquartile range or IQR (bottom and top of the box), and 1.5 times the IQR (whiskers). 
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Supplementary Figure 19. An example of copy number plots generated from the Infinium MethylationEPIC BeadChip data of non-affected co-twins 
(Q-H & T-H) and their MS-affected MZ co-twins (Q-MS & T-MS). Gains are indicated in green and losses in red. MZ co-twins show very similar copy number 
profiles and no within-pair chromosomal gains and losses (defined as absolute segment mean threshold ≥0.3) were observed. Labels indicate: Pair ID - Disease status 
(i.e. MS = MS-affected MZ co-twin, H = clinically non-affected MZ co-twin). 
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Supplementary Figure 20. Genomic sequence of the ZBTB16 DMP (cg25345365) region. The 

cg25345365 CpG is marked in green and the other CpGs in this region are marked yellow. The consensus 

GRE downstream half-sites (TGTTCT) are in bold and marked blue. The genomic position of the forward and 

reverse primers used to generate the amplicon for the TDBS analysis are bold and underlined. Genome 

coordinates are human genome build GRCh37/hg19.   
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Supplementary Figure 21. Status of the active H3K4me3 and repressive H3K27me3 chromatin marks at the TMEM232 promoter region in 

different immune cell types from BLUEPRINT samples.15 Note that all genome coordinates are based on human genome build GRCh38/hg38. MS-DMP 
= MS-associated differentially methylated position. 
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Supplementary Figure 22. Validation of the rs6471533 SNP using targeted deep sequencing 

(TDS) in pair P, which shows a discordant genotype for the rs6471533 SNP on the Infinium 

MethylationEPIC BeadChip (n = 4 twin pairs). The rs6471533 SNP was also genotyped using TDS in 
pair B heterozygous for the rs6471533 SNP, pair G homozygous for the G allele and pair L homozygous for 

the A allele, according to the Infinium MethylationEPIC BeadChip. Hence, TDS reveals that both co-twins of 
pair P are homozygous G allele carriers, and the genotypes of the other pairs agrees with the genotype of 

the Infinium MethylationEPIC BeadChip. 
On the y-axis the Infinium MethylationEPIC BeadChip β-values as well as the TDS results are shown, both 
represented as the fraction of guanines (0=AA and 1=GG). Labels indicate: Pair ID - Disease status (i.e. MS 
= multiple sclerosis-affected MZ co-twin, H = clinically non-affected MZ co-twin). 
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Supplementary Figure 23. Tukey Box-plots of the within-pair Pearson correlation coefficients 

before and after adjusting the Infinium MethylationEPIC BeadChip data for cell-type 
composition (n = 45 twin pairs). Boxplots represent the median (central line), the interquartile range or 

IQR (bottom and top of the box), and 1.5 times the IQR (whiskers). 
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Supplementary Methods 
 

Bisulfite treatment 

From each PBMC sample, 500 ng DNA was treated with bisulfite using the EZ DNA Methylation kit 

(D5002, Zymo Research), according to the manufacturer’s recommendations for the Illumina 

Infinium assay. The conversion reaction was incubated at 16 cycles of 95°C for 1 min and 50°C for 

60 min. For all six MZ twin pairs that were processed in the first batch, the bisulfite controls 

present on the Illumina Infinium MethylationEPIC BeadChip (EPIC array) showed suboptimal 

results, i.e., bisulfite conversion controls (I and II) showed moderate intensities at probes which 

should be at background level. However, the within-pair array-wide Pearson correlation 

coefficients for these MZ twin pairs were very high and ranged from 0.996 to 0.997, indicating 

high quality methylation data. We verified the conversion rate of these samples by targeted, deep 

bisulfite sequencing (TDBS) of a 343-bp region amplified using non-bisulfite-dependent primers 

(Chr1:202150908-202151251, see Supplementary Table 12). TDBS of these samples showed 

an average conversion rate of 98.6% (SD=0.37%) (minimal coverage >2000 reads), indicating 

that the EPIC array bisulfite controls are extremely sensitive. Hence, these EPIC array data were 

used in the downstream analysis. Nevertheless, the bisulfite treatment procedure was adapted by 

incubating samples in a programmable ThermoQ Metal Bath with a heated lid (Bioer, Hangzhou, 

China) instead of a Eppendorf Mastercycler (Eppendorf AG, Hamburg, Germany), and TDBS in 16 

samples revealed an average conversion rate of 99.7% (SD=0.10%). Accordingly, the other 40 MZ 

twin pairs were processed using the adapted bisulfite treatment and the EPIC array bisulfite 

controls showed normal intensities for those samples. Both members of a twin pair were always 

processed in the same batch. 

 

Estimation of cell-type composition 

Cell-type composition of each PBMC sample was estimated with the reference-based method first 

published by Houseman et al.6, which employs DNA methylation reference profiles of individual cell 

types to estimate the cell-type composition of each sample. Several reference-based deconvolution 

algorithms were compared, including the implementation of the Houseman algorithm in the minfi 

R/Bioconductor package7, and the standard constrained projection as well as the two non-

constrained, reference-based, cell-type deconvolution approaches recently implemented in the 

EpiDISH R/Bioconductor package16. For a subset of samples (n=61) cell-type proportions 

determined using immunophenotyping were available, which showed the best correlation with the 

estimates provided by the minfi package. Accordingly, the minfi estimates were used to adjust the 
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β-values for cellular composition using linear regression and the residuals were used for 

downstream analysis. To obtain interpretable, adjusted β-values, the unadjusted mean β-value of 

each CpG site was added to the residuals. To check the quality of the adjustment, the adjusted β-

values were used to recalculate the within-pair correlations. In the final regression model, the 

proportions of the four major lymphocyte subtypes were included (i.e., CD4+ T, CD8+ T, CD19+ 

B, and CD56+ NK cells). Myeloid cells (i.e., monocytes and neutrophils) were not included in the 

model as immunophenotyping data showed that monocyte proportions were not properly 

estimated and including them resulted in severe adjustment bias in some samples. As a result, 

Supplementary Figure 23 shows that the overall within-pair correlations are, as expected, 

higher after adjusting for cell-type composition. 

 

Cell sorting procedure, WGBS library preparation and sequencing data preprocessing 

Whole genome-wide bisulfite sequencing (WGBS) was used to profile CD4+ central and effector 

memory T cells of four MS-discordant female MZ twin pairs (mean age 43.3 years, discordant for 

MS >12 years, Supplementary Table 13). Of one pair, the MS-affected co-twin had been 

treated very recently with GCs at the time of blood collection (but never received any immune-

modulating therapy), while the MS-affected co-twins of the other three pairs had not received GCs 

or other immune-modulating therapies within at least 12 months prior to blood collection. 

Cryopreserved PBMCs were thawed and gently suspended in 10 ml of pre-cooled FACS buffer 

(PBS, 2% FCS) and centrifuged at 300 g for 10 min at 4°C. Then, one additional washing step was 

performed. Cells were stained with the following monoclonal antibodies: CD3-AF700 (OKT3, 

eBioscience, Frankfurt, Germany); CD4-Pacific-Blue (S3.5, Molecular Probes, Invitrogen, Karlsruhe, 

Germany); CD8-PerCP (SK1, BioLegend, Fell, Germany); CD45RO-FITC (UCHL1, eBioscience); and 

CCR7-APC (3D12, eBioscience) on ice for 30 minutes. Cells were then sorted using a FACSAria 

Fusion flow cytometer (BD Biosciences, Heidelberg, Germany) to selectively collect antigen-

experienced CD4+ T cells by excluding dead cells, naive CD45RA+CCR7+ T cells, and CD8+ T 

cells. 

WGBS libraries were prepared using a tagmentation-based protocol similar to that described by 

Weichenhan et al.17. Briefly, fresh frozen primary CD4 cell pellets (each 20,000-200,000 cells) were 

thawed in 50-100 µl of 1.1x TD buffer (Illumina) supplemented with 6 µl Protease (1 mg/ml; 

Qiagen) and incubated in a thermomixer at 55°C for 3 h followed by 20 min at 75°C. DNA was 

quantified using the Qubit HS-DNA kit (Thermo Fisher Scientific, Waltham, USA). From each 

sample the volume corresponding to 50 ng DNA was transferred in a new 1.5-ml tube and 1x TD 

buffer was added to a total volume of 47.5 µl. Then, the DNA was tagged with 2.5 µl of Tn5 from 
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the Nextera library preparation kit (Illumina) by incubation for 5 min at 55°C. After purification 

with the MinElute kit (Qiagen) and final elution with 10 µl EB buffer, gaps were repaired by adding 

2 µl of 10x CutSmart buffer (NEB, Ipswich, USA), 3 µl of dNTPs (2.5 mM each), 5 U Klenow exo- 

(NEB) and incubating for 1 h at 30°C. Bisulfite conversion was performed with the EZ Methylation 

Gold Kit (Zymo Research) with a final 10 µl elution volume. Indexing library enrichment PCR was 

performed in 40 µl reactions with 1x HotStartBuffer (Qiagen), 0.25 mM of each dNTP, 0.3 µl 

ssDNA Binding Protein (Affymetrix, Santa Clara, USA), 100 nM of each primer (reverse primer 

contains sample-specific DNA barcode), 4 U HotStartTaq DNA polymerase (Qiagen), and 10 µl 

bisulfite-converted DNA. DNA was denatured at 95°C for 15 min, followed by 12 cycles of 30 sec 

at 95°C, 2 min at 53°C, and 1 min at 72°C, and a final extension step of 7 min at 72°C. Reactions 

were purified using 0.8x volume AMPure XP Beads (Beckman Coulter, Brea, USA) and eluted in 10 

µl Elution Buffer (Qiagen). Library fragment distributions were checked on the Agilent Bioanalyzer 

(Agilent, Santa Clara, USA). 

The WGBS libraries were sequenced in a 100-bp paired-end HiSeq2500 run (Illumina) using 

custom sequencing primers. After adapter trimming using Trimmomatic v0.3618, the read pairs 

were aligned to the human reference genome (GRCh37) using bwa-meth v0.2.019, which is a 

wrapper of the BWA-MEM1 alignment algorithm suited for bisulfite sequencing data. PCR 

duplicates were removed using the MarkDuplicates tool of the Picard suite v2.5.0-1 

(http://broadinstitute.github.io/picard). Methylation levels of the CpG cytosines were determined 

using MethylDackel v0.2.1 (https://github.com/dpryan79/MethylDackel.git). Of both read mates, 

10 base pairs were disregarded from both read ends to eliminate the gap repair bias and 

methylation bias artifacts. The obtained BED files were loaded in the RnBeads package, which 

aggregated for each CpG the methylation information of both strands. The coverage statistics of 

the samples are summarized in Supplementary Table 13. 
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Chapter 5

General Discussion, Conclusions and Outlook

In this cumulative work a different aspect of DNA methylation has been investi-

gated together with various epigenetic marks in order to understand the role of DNA

methylation topology in cell fate and its association to genome organization. In this

chapter the results of the three presented papers are summarized and discussed. Sec-

tion 5.8 provides a broad perspective on how this work can be further developed, and

suggests possible directions for epigenetic data integration.

Since the first published mammalian WGBS data set and the discovery of PMDs, very

few studies reported on PMD features. These studies were conducted mainly in cell

lines, cancer cells and very limited number of tissues but not yet in isolated specific

primary cell types. Additionally, most studies that employed WGBS were focusing,

to large degree, on DMRs identification and linking DNA methylation changes of reg-

ulatory regions, like promoters, enhancers and insulators, to gene expression. Col-

lectively, this thesis draw the attention to new features of PMDs in different primary

cells as well as in cell lines, and provide a new sight to study DNA methylation on a

large-scale instead of mining only in the zoomed-in view (i.e., CpG islands, promoters

and enhancers).

5.1 DNA methylation and chromatin organization

Part of Chapter 2 highlighted a so far neglected aspect of DNA methylation, i.e.,

its link to 3D genome organization. DNA methylation segmentation revealed two

main epi-organizational units in the genome possessing contrasted features; (i) PMDs

characterized by fuzzy methylation patterns and heterochromatic signature, and (ii)

HMDs featured by homogeneous, highly methylated CpGs and less packed chromatin.

While PMDs overlay with heterochromatic B- compartments, HMDs represent active

A- compartments. Such relationship between DNA methylation domains and A/B

compartments would be beneficial when detecting TADs, and can be used as a proxy

for Hi-C data to define TADs and compartments. As Hi-C data was used before to

construct the hierarchical structure of the genome (metaTADs) [Fraser et al., 2015], it

would be interesting to check whether this is also reflected in PMDs. It might be that
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PMDs which have similar average methylation levels are more close to each other, in

the 3D genome configurations, than to those that have more distinct average methy-

lation levels, suggesting an existence of interactions between similarly methylated

domains. Additionally, PMDs and HMDs can be used to limit the search space when

linking DMRs to their potential target genes, because genes in a particular domain

(PMD or HMD) most likely don’t interact with genes in different PMDs/HMDs.

Most of DMRs calling methods are dependent on setting a methylation difference cut-

off for calling significant DMRs, and this cumulative work showed clearly that the

general methylation level is cell-type- and region- dependent, and there is genome

wide loss of methylation in highly proliferating cells. Hence, a fixed methylation dif-

ference threshold for calling DMRs is not advisable. Instead, a more efficient way for

calling and filtering DMRs, termed ‘adaptive filtering’, was proposed in Chapter 3 and

was applied in Chapter 2, where DMRs were first annotated as being in PMDs/HMDs

and then filtered according to the distribution of methylation difference of all DMRs

in each segment type. Such analysis highlights the importance of utilizing PMDs, not

only to capture the large scale changes in DNA methylation but also to enhance the

detection of the ‘functional DMRs’ as local changes.

Chapter 2 represents one of the very early studies that link DNAmethylation domains

and the higher order chromatin structure. The current studies reported the relation-

ship between histone marks and either the higher order chromatin structure or DNA

methylation, without bridging DNAmethylation and chromatin structure. Nothjunge

et al. showed that PMD formation follows the establishment of B- compartments

during the differentiation of cardiac myocytes [Nothjunge et al., 2017]. However,

it is still interesting to investigate whether the heterochromatic marks occupy the B-

compartments before, after or simultaneously with PMDs establishment. This kind of

knowledge will help to understand the intertwined relationship between DNAmethy-

lation and heterochromatic marks at B- compartments. A very recent study reported

‘Methyl-HiC’, a method to profile simultaneously DNAmethylation and chromatin ar-

chitecture [Li et al., 2019]. Such method is useful to dissect the cross talk between

DNAmethyation and chromatin architecture, and to reveal their heterogeneity when

applied on a single cell level.

In summary, it becomes very clear that DNA methylation has many roles other than

controlling gene expression programs. It overlays with the 3D chromatin organiza-

tion of the genome, and more efforts for developing newmethods and tools would be

needed in the future to dissect their relationship.
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5.2 PMDs as discriminators for cellular origin

The first pillar of this thesis, Chapter2, represents a comprehensive study of DNA

methylation for a wide spectrum of WGBS human samples covering roughly ten pri-

mary cell types and tissues. It provides integrative approach to study PMDs in pri-

mary cells, primary tissues and immortalized cell lines, and unravels novel valuable

features of PMDs.

The implemented integrative approach, ChromH3M, revealed PMDs as cell type dis-

criminators and showed that gene regulation is existing genome-wide on a large scale

level (PMDs/ HMDs), as well as on a smaller scale. PMD-associated genes showed cell-

type specificity although they were lowly expressed or unexpressed. This result sug-

gests that low gene activity or deactivation of some genes in PMDs is a regulatory fea-

ture, that is important as much as the activation of genes located outside of PMDs, to

give a cell its specific functionality. Surprisingly, the average levels of PMD methyla-

tion vary between different cell types. For instance, PMDs of the myeloid cells, in gen-

eral, have higher methylation levels compared to that of lymphoid cells. Moreover,

within the lymphoid cells (B- and T-cells) DNA methylation of PMDs decreases with

cell differentiation (see Chapter 3). These distinct methylation landscapes between

lymphoid and myeloid cells suggest that they are derived from two different progen-

itors. It remains interesting to investigate PMDs of Multipotent Progenitor (MPP) and

compare it to the ones of Common Lymphoid Progenitor (CLP) and Common Myeloid

Progenitor (CMP).

Although thymus is the organ where T cells mature, thymocytes located, unexpect-

edly, closer tomonocytes andmachrophages than to lymphoid cells (Chapter 2, Figure

2a). This can be partially explained by the results from [Luc et al., 2012], who found

that the earliest progenitors in the neonatal thymus possess combined granulocyte -

monocyte and lymphoid lineage potential.

Based on the findings that PMD methylation levels are different across different cell

types, HMM-basedmethods for PMDdetection aremore reliable than threshold-based

methods. However, we realized that PMD detection using MethylSeekR (HMM-based)

is more challenging for samples with highly methylated landscape like naive B and

T-cells, monocytes and macrophages, where the difference of average methylation

levels between PMDs and HMDs is small. This might cause loss of some very shallow-

short PMDs. To enhance PMD detection, DNA methylation can be integrated with

broad histone marks in one model (see Chapter 5.8).

The implemented ChromH3M workflow (see Chapter 2) complements Solo-WCGWs

method [Zhou et al., 2018] by defining distinct patterns of PMDs across many samples,

not to only identify common-PMDs/HMDs but also cell-type specific PMDs/HMDs. This
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workflow can be generalized for any type of segmentation (e.g., LMRs, UMRs or any

chromatin states). ChromH3M fits perfectly to the scope of EpiMAP project from IHEC

(Section 1.4), and will help integrating large cohort of WGBS samples.

5.3 PMDs as indicators of proliferation history of cells

CD4+ T cells play an important role in the adaptive immune system by generating

different sub-types ofmemory cells (Tmem), which arise fromnaive T cells (Tn). How-

ever, the developmental relationship of Tmem cell sub-types is still under controver-

sial debate. While some suggest a sequential linear model for Tmem differentiation,

others reported a parallel model where Tmem branch off into different sub-types at

early activation stage.

DNA methylation and other epigenetic marks play an important role in cell differ-

entiation. With the help of such epigenetic data, Chapter 3 reported evidences that

support the linear model of Tmem cells differentiation. The major evidence was the

observation of genome-wide progressive loss of DNA methylation during differentia-

tion of Tn into differentiated memory sub-types, i.e., Tcm, Tem and Temra. This loss

of DNAmethylation occured predominantly at PMDs, whichwere largely overlapping

between Tn and Tmem cells. Moreover, the same phenomenonwas confirmed during

differentiation of B cells into memory and plasma cells, but not during the differenti-

ation of monocytes to macrophages (they do not proliferate). This feature, demethy-

lation, seems to be shared in the highly proliferating cells, i.e., lymphoid lineage, but

absent in non-proliferating cells, i.e., myeloid linage. Additionally, it suggests PMDs-

demethylation as indicator for the proliferation history of cells. Although, the loss

of methylation in PMDs was correlated to past episodes of proliferation in CD4+ T

cells, it remains to be investigated, experimentally, whether the loss of methylation is

proportional to the number of cell divisions as the model of [Dmitrijeva et al., 2018]

proposed. Transcriptome and chromatin accessibility analyses supported the linear

differentiation model (Tn > Tcm > Tem > Temra), which is in line with the observed

global loss of methylation in PMDs. This is a confirmation that large scale DNAmethy-

lation changes are linked to transcriptional control.

To date, there is no concrete evidence that explains the genome-wide hypomethyla-

tion in PMDs and the mechanism behind the demethylation process associated with

proliferation/replication. [von Meyenn et al., 2016] attributed the global demethy-

lation in naive embryonic stem cells to the loss of DNA methylation maintenance,

through impaired recruitment of DNMT1 by UHRF1 to the replication foci, exclud-

ing the possibility of active mechanisms by TET or reduction of de novo methylation.

Whether this holds for somatic cells still needs more investigations. It is known that
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UHRF1 binds to hemimethylated DNA at replication forks during S phase, so it would

be interesting to screen the distribution of hemimethylated CpGs in PMDs and HMDs,

which can be carried out by utilizing genome-wide hairpin bisulfite assay in combi-

nation with long-read sequencing technologies.

Another hypothesis to explain demethylation during differentiation / proliferation is

the expansion of pre-existing subpopulations that already contain PMDs. Although

our analysis could not exclude this hypothesis, it argued in favour of ‘gradual loss of

methylation with cell division’ model, which is in agreement with [Dmitrijeva et al.,

2018]. Alternatively, a TET-associated mechanism may contribute to the genome-

wide hypomethylation. A recent study [López-Moyado et al., 2019] postulates that

TET deficiency in different cell types might be a fundamental mechanism behind the

widespread hypomethylation in heterochromatin compartments, coupled to focal hy-

permethylation in euchromatic regions, a feature of cancer genomes [Berman et al.,

2012]. They explained the cooperation between TET1 and DNMT3A1 in TET-deficient

genomes and proposed amodel, in which loss of TET1 inmESCs leads to relocalization

of DNMT3A1 away from heterochromatic compartments into focal regions in euchro-

matic compartments that were previously occupied by TET1 (which oxidize 5mC into

5hmC), leading to a global hypomethylation in the heterochromatic compartments

(overlapping with PMDs), and regional hypermethylation in the euchromatic com-

partments.

In summary, two important points need further investigations to elucidate the mech-

anism behind global demethylation; (i) why and how some domains (PMDs) in the

genome are less methylated than others (HMDs), in other words how PMDs are estab-

lished?, and (ii) by which mechanism(s) the demethylation is propagated during pro-

liferation/replication. A HMM-model developed by [Giehr et al., 2016] to measure the

activities of different enzymes (TETs and DNMTs) during proliferation could be ap-

plied genome-wide to investigate the potential role of these enzymes in the demethy-

lation phenomenon.

5.4 PMDs in cancerous cells and immortalized cell lines

DNA methylation patterns are transmitted during replication into the daughter

cells by a copying mechanism utilizing DNMT1 to maintain global DNA methylation.

However it is known that cells in culture undergo excessive epigenetic alterations

linked to passages and cell replication numbers [Shipony et al., 2014]. Such aber-

ration can lead to erroneous gene expression and alter cell properties. In this re-

spect, the biological interpretation drawn from studies carried out on immortalized

cell lines, that are widely used for studying epigenetic control, should be considered
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with great care.

Chapter 2 addressed this issue by comparing primary cells to cell lines of the same ori-

gin. More specifically, the impact of cultivation and cancer-specific changes of PMD

methylation have been investigated. The striking observation was that cancerous

liver tissue retained a PMD structure similar to that of primary hepatocytes (PHH)

and liver tissue, with mildly reduced methylation level, especially at PMDs, which

suggests DNAmethylation in PMDs as an epigenetic memory of cancer cell origin. On

the other hand, the two cancer cell lines were more similar to each other than to the

tissue cancerous cells with (strong) erosion of DNA methylation at PHH-associated

PMDs. This suggests that PMDs demethylation in the cancer cell lines might reflect

the cell’s proliferation history, but less of the ‘honest’ cancer state.

The previously described cancer hallmark, long range hypomethylation [Berman et al.,

2012], seems not to be an exclusively cancer characteristic, but it is also an imprint

of primary cells as shown in Chapter 2. At which PMD methylation level the can-

cer starts and deviate from the healthy state needs more investigations. A suggested

analysis would be a genome wide screening of DNA methylation levels at PMDs dur-

ing different stages of the cancer. The outcome from such analysis may serve as a

diagnostic tool for cancer or as a biomarker for cancer progression.

5.5 Heterochromatic signatures of PMDs and replication

domains

PMDs have been associated with repressive histone marks (H3K27me3 and H3K9-

me3) and linked to late replicating regions. However, detailed analysis of heterochro-

matic signatures of PMDs in relation to replicating domains is lacking. Utilizing an

unsupervised clustering method, k-means, PMDs of HepG2 have been classified us-
ing replication data into three groups; (i) early/mid S phase (=cluster_1), (ii) mid/late

S phase (=cluster_2) and (iii) very late S/G2 phase (=cluster_3) (see Chapter 2, Fig-

ure 4a). Surprisingly, each of these domains is characterized by distinct heterochro-

matic pattern. The most unambiguous cluster of PMDs is cluster_3, the longest of

the three clusters, marked by H3K9me3 and bordered by H3K27me3, while the other

two are more similar to each other and can be differentiated by the enrichment level

of H3K27me3 (see Chapter 2, Figure 4b). The high base-pair overlapping percentage

of cluster_3 with the shared/common PMDs (as defined by ChromH3M in Chapter 2)

suggests these domains as very stable and rigid heterochromatic structure in com-

parison to the other two. Moreover, they harbor the most lowly expressed genes. The

various chromatin states of PMDs also suggest distinct chromatin packaging which
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could be confirmed by DLR score ‡ from Hi-C data, where PMDs of the longest clus-

ter, cluster_3, were the most condensed and compacted in comparison to PMDs of

the other two clusters (Figure 5.1 and our recent work [Nordström et al., 2019] (in

press in NAR journal). Such packaging may explain why cluster_1 and cluster_2 repli-

cate before cluster_3, or it can simply be due to domain length characteristic, i.e., the

longer the region the longer the time it needs for replication. Intriguingly, the pack-

aging was mirrored in the genome wide “backgound” of NOMe signal ‡‡ which has

been neglected for long time (see our recent work [Nordström et al., 2019]).

Figure 5.1: Different chromatin states of PMDs show distinct packaging of chromatin

during replication. PMDs of cluster_3 (Very late S/G2 phase) are the longest (left panel),

and have the lowest transcriptional activity (middle panel), and are more highly condensed

in comparison to the other two clusters (early/mid S and mid/late S) according to DLR score

(right panel).

Taken together, our findings extend and advance previous studies by defining fine

grained heterochromatic signatures in PMDs of HepG2 and IMR90 at different stages

of replication (S - G2). The epigenomic plasticity observed in these distinguished do-

mains could be relevant for differentiation and cell fate determination.

5.6 PMDs in MS-discordant monozygotic twins

With the notion from the two studies (Chapter 2 and Chapter 3) about global DNA

methylation changes in PMDs of cancer and CD4+ T cells, we investigatedwhether this

hallmark is also existing in MS disease. Indeed, MS co-twins had PMDs as well as the

healthy co-twins. However, evaluation of genome-wide DNA methylation changes

in PMDs/HMDs of CD4+ T cells from four MS-discordant monozygotic twins did not

‡
DLR (Distal-to-Local [log2] Ratio) score is defined by Homer software as “Log2 ratio of distal Hi-C

interactions interacting along the chromosome at distances greater than 3 Mb compared to local Hi-C

interactions interacting less than 3 Mb” [Heinz et al., 2010]
‡‡
NOMe-Seq stands for “nucleosome occupancy and methylation”. It is a method to profile accessible

chromatin regions on a genomewide level by utilizing the enzymeM.CviPI which specificallymethylates

cytosines in a GpC sequence context. Thus, measuring two signals simultaneously; methylation levels at

GpC sites and at endogenous CpG sites (more details in ref. [Nordström et al., 2019]).
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reveal significant differences. But, a prominent MS-DMR in a gene located on the X-

chromosome was identified. Overall, this study showed how consistent the methy-

lomes of MS-discordant monozygotic twins are with respect to the large domains

(PMDs/HMDs), accompanied with few MS-associated DMRs as local changes.

5.7 Conclusion

The studies presented in this thesis illuminate diverse roles of DNA methylation

in different contexts. Apart from its role in gene expression, it overlays with the 3D

chromatin architecture. PMDs are epi-topological units that coincide with the hete-

rochromatic compartments. Distinct heterochromatic states of PMDs in cancer cell

lines distinguish different replicating domains and different packaging states. More-

over, PMDs are strong cell type discriminators, and the observed decrease of methy-

lation in PMDs is an indicator of cell proliferation history. The observed decrease in

DNAmethylation at PMDs is more pronounced in immortalized cell lines, arguing for

replication-dependent loss of methylation in PMDs. The segmented loss of methyla-

tion in PMDs during CD4+ T memory cells differentiation supports the linear model

of Tmem differentiation.

The computational method and aspects developed within this work are very much

suited for the epigenetic community. First, ChromH3M is an easy and straightfor-

ward workflow for integration of hundreds of WGBS samples. Second, employing

PMDs for stratifying and filtering DMRs is a powerful tool when studying DNAmethy-

lation changes in highly proliferating cells. Third, the overall presented epigenetic

data integration led to discovering new aspects of DNA methylation that are of great

interest to a broad audience of biologists.

5.8 Outlook

Epigenetics is a fast growing field in terms of both wet lab and computational

methods. Profiling of 1000 epigenomes with high quality standards is an ambitious

goal for IHEC, and integrating these data afterward is very challenging. The diversity

of the assays make it even formidable task. But our knowledge about the common-

alities between the assay’s readouts and our expertise about the current tools’ limita-

tions can help to direct our thinking about what should be improved in the current

tools, what kind of new tools are needed and how can we develop them?

Within the context of this work, we observed that the available DNA methylation

segmentation tool (MethylSeekR) to detect PMDs has difficulties in detecting short-

shallow PMDs of high methylation profiles, e.g., monocytes and macrophages. On the

other hand we also observed the intertwined relationship between DNA mehylation
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and histone marks on a large scale. Hence, taking the advantage of this knowledge,

implementing a HMM-method that account for both marks can not only improve

PMDs detection, but also help exploring the relatively large ‘unknown/quiescent’ state

that result in usually from histone mark-segmentation tools (e.g., ChromHMM and

EpiCSeg). Moreover, the feature patterns coming out of such model will improve our

understanding of the dependencies between these two epigenetic marks and maybe

capturing new ‘biological’ states that were missed by either of the two methods (i.e.,

MethylSeekR- and ChromHMM/EpiCSeg-like).

It is of high interest to apply such model on the wealthy data of IHEC. However, uni-

fied processing of these data, generated by different members, need to be done first

in order to minimize the variance that may arise from the fact that each consortium

has its own processing pipelines. Despite of the great effort by IHEC to standardize

and unify data processing procedures, it is still facing some obstacles associated to

data retrieval and sharing, and lacking of nomenclature-consistency of the metadata.

Overcoming these hurdles will ease the access to the epigenetic data through some

established databases like DeepBlue [Albrecht et al., 2016]. Hence, helping scientist

who are aiming doing integrative analysis to get the most out of the available epige-

netic data sets.

Illumina EPIC array becomes an attractive platform for Epigenome-Wide Associa-

tion Studies (EWAS) because it covers roughly 850,000 CpG positions distributed over

many regulatory regions, and it is an efficient and cost-effective approach for study-

ing DNA methylation. It would be of great interest to use methylation arrays for PMD

detection taking the advantage of available tool like minfi for A/B compartments seg-

mentation [Fortin and Hansen, 2015] as a proxy for PMDs/HMDs domains, and adapt

it to work with individual sample. Similarly, this could be applied for RRBS data.

One Major outcome of this cumulative work is that PMDs are linked to prolifera-

tion, DNA replication, differentiation, heterochromatization, 3D chromatin structure

and gene regulation (Figure 5.2). These results came as consequences of several inte-

grative analyses, which point us to the importance of data integration in the epigenet-

ics filed. For instance, scientist observed that epigenetic marks are connected to 3D

chromatin structure and they started to develop methods to resolve this relationship

[Li et al., 2019].

Understanding the mechanism behind the hypomethylation of PMDs in cancer

cells may have medical and therapeutic applications through DNA methylation re-

programming. However, in-depth examination needs to be carried out to resolve this

phenomenon, which was also found to be existed in primary cells. Hence, clear char-

acterization of hypomethylation in primary cells and their cancerous counterparts

can help understanding the role of PMDs hypomethylation in cancer.
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Altogether, advancing in the epigenetic filed stimulates the bioinformatician and

computational biologists to develop new methods to deal with the readouts from the

new technologies. Nevertheless, there is still a need to develop methods for integra-

tive analysis to deal with the complexity of epigenetic data.

Proliferation

Heterochromatization

3D chromatin structure and condensation

Gene regulation

PMDs

Figure 5.2: PMDs in different contexts. A summary scheme for the different roles of PMDs

investigated in this thesis.
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