
                                                            

Aus dem Bereich Theoretische Medizin und Biowissenschaften 

der Medizinischen Fakultät 

der Universität des Saarlandes, Homburg/Saar 

 

 

 

 

Development of kisspeptin-GnRH neural circuit in 

utero and mapping of GnRH receptor neurons in mice 

brain 

 

 

              Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften 

der Medizinischen Fakultät        

der UNIVERSITÄT DES SAARLANDES 

2017 

 

 

 

vorgelegt von: Vinod Babu Periasamy 

geboren am: 24/06/1985 in Bangalore, India 

 

 

 

 



 

Erklärung gemäß § 7 Abs. 1 Nr. 4 

 

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter 

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen 

Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle 

gekennzeichnet. 
 

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten 

Personen in der jeweils beschriebenen Weise unentgeltlich/entgeltlich geholfen: 

1. .....  

2. ..... usw. 

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht 

beteiligt. Insbesondere habe ich nicht die entgeltliche Hilfe von Vermittlungs- bzw. 

Beratungsdiensten (Promotionsberater/innen oder anderer Personen) in Anspruch genommen. 

Außer den Angegebenen hat niemand von mir unmittelbar oder mittelbar geldwerte Leistungen 

für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation 

stehen. 

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form in 

einem anderen Verfahren zur Erlangung des Doktorgrades einer anderen Prüfungsbehörde 

vorgelegt. 

Ich versichere an Eides statt, dass ich nach bestem Wissen die Wahrheit gesagt und nichts 

verschwiegen habe. 

Vor Aufnahme der vorstehenden Versicherung an Eides Statt wurde ich über die Bedeutung 

einer eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder 

unvollständigen eidesstattlichen Versicherung belehrt. 

 

Ort, Datum 

 

 

Unterschrift der/des Promovierenden 

 

 

Unterschrift der die Versicherung an Eides statt aufnehmenden Beamtin bzw. des 

aufnehmenden Beamten 



  

I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag des Promotionskolloquiums:   ________________________________________ 

Dekan:                                            ________________________________________ 

Vorsitzender:     ________________________________________ 

Berichterstatter:     ________________________________________ 

      ________________________________________ 

      ________________________________________ 



  

II 
 

Zusammenfassung 

'Gonadotropin releasing hormone (GnRH)'-Neurone repräsentieren die gemeinsame ZNS-

Endstrecke zur hormonalen Kontrolle der Keimdrüsen. Dabei unterliegt die GnRH-Freisetzung 

einer Feedback-Regulation durch das gonadale Steroidhormon Östrogen. GnRH-Neurone 

exprimieren selbst allerdings nicht Östrogen-Rezeptor-alpha (ER), was nahelegt, dass das 

Feedback-Signal über einen vorgeschalteten Steroid-sensitiven Signalweg auf GnRH-Neurone 

übertragen wird. Tatsächlich fungieren 'Kisspeptin'-Neurone als Upstream-Regulator der 

GnRH-Freisetzung und dienen als Angriffspunkt für Steroidhormone in der Regulation der 

GnRH-Sekretion. GnRH-Neurone exprimieren den Kisspeptin-Rezeptor GPR54. Kisspeptin-

Neurone sind im Gehirn vor allem im Nucleus arcuatus (ARC) und im anterolateralen Nucleus 

paraventricularis (AVPV) lokalisiert. Kisspeptin-Neurone projizieren in die mediane Eminenz 

und auf GnRH-Neurone der prä-optischen Region. Kisspeptin bindet an GPR54 und stimuliert 

GnRH-Neurone der prä-optischen Region zur GnRH-Freisetzung in die Zirkulation. In der 

vorliegenden Arbeit wurde das genaue raumzeitliche Expressionsmuster der dem 

GnRH-Neuron vor- und nachgeschaltetem Neuronensysteme, des 'Kisspeptin'-Systems und des 

GnRH-exprimierenden Systems, bestimmt.  

Dazu wurde zunächst das Einsetzen der Expression von Kisspeptin und seinem Rezeptor 

GPR54 in männlichen KissIC/eR26-GFP-Embryonen sowie in männlichen GPIC/eR26-

GFP-Embryonen untersucht. Kisspeptin und GPR54 erschienen gleichzeitig am Embryonaltag 

E13.5.  Während der ganzen embryonalen Hirnentwicklung wurde Kisspeptin nur im ARC des 

Hypothalamus gefunden. Hingegen blieb die Expression von GPR54 auf GnRH-Neurone 

beschränkt. Die detailierte Analyse zeigt jedoch, dass das GPR54-Expressionsmuster 

unabhängig von der Lage der GnRH-Neuronen war. Zur Bestimmung des Zeitpunkts, an dem 

Kisspeptin-Neurone sensitiv gegenüber Sexualsteroiden werden, wurde die Expression von 

Östrogen-Rezeptor ER und von Androgen-Rezeptor (AR) in ARC Kisspeptin-Neuronen 

untersucht. Es stellte sich heraus, dass  ER und AR-positive Neurone die embryonale 

Hirnregion markieren, in der sich Kisspeptin-Neurone entwickeln. Trans-synaptisches Tracing 

zeigte schließlich, dass im männlichen embryonalen Mäusegehirn Kisspeptin-Neurone des 

ARC mit dem GnRH-Neuronensystem kommunizieren. Die Verbindung zwischen ARC-

Kisspeptin-Neuronen und GnRH-Neuronen ist unabhängig von der Lage der Neurone im 

männlichen embryonalen Mäusegehirn. Diese Beobachtung legt den Schluß nahe, dass im 

Gegensatz zum adulten Gehirn, in dem Kisspeptin-Neurone eine geschlechtsspezifische 

Verteilung aufweisen, Beginn und Entwicklung des Kisspeptin-GPR54-Systems im 
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männlichen embryonalen Mäusegehirn eher dem  weiblichen Mäusegehirn ähneln und dass der 

Sexualdimorphismus erst später in der Entwicklung entsteht.  

Es folgte die Untersuchung des Downstream-Targets, dem Gonadotropin releasing hormone 

receptor (GnRHR)-Neurons. In der Hypophyse triggert GnRH-Rezeptorbindung die Synthese 

und Freisetzung von Luteinisierungshormon (LH) und von follikelstimulierendem Hormon 

(FSH). Die Rolle von GnRHR in den gonadotropen Zellen der Hypophyse ist bekannt, aber die 

Funktion der GnRHR-Neurone im Gehirn ist noch nicht vollständig geklärt. Zur Bearbeitung 

dieser Frage wurde die Verteilung der GnRHR-Neurone im embryonalen Gehirn von 

weiblichen GnRHR/eR26-GFP-Mäuseembryonen kartiert. Es stellte sich heraus, dass ihre 

Anzahl signifikant im Lauf der Entwicklung ansteigt. Die GnRHR-Neuronen reicherten sich in 

der olfaktorischen Hirnregion und in Sexualzentren wie der medialen Amygdala (MeA), der 

medialen prä-optischen Region (MPA), dem ventromedialen Hypothalamus (VMH) und der 

peri-aquaeduktalen grauen Substanz (PAG) an. Die GnRHR-Neuronen der olfaktorischen 

Regionen und Sexualzentren erwiesen sich als sensitiv gegenüber Sexualsteroiden. Erstmalig 

konnte die olfaktorische Stimulation von GnRHR-exprierenden Neuronen gezeigt werden. Die 

Ergebnisse der vorliegende Untersuchung liefern Einblicke in die Entwicklung des Kisspeptin-

GPR54-Systems und können zum besseren Verständnis von Störungen der 

Geschlechtsentwicklung wie dem hypogonadotrophen Hypogonadismus oder der Pubertas 

praecox beitragen. Die anatomische Kartierung der GnRHR-Neurone im Gehirn beleuchtet die 

Rolle von GnRH-Signalwegs in der Säugetier-Hypothalamus/Hypophysen/Gonaden-Achse.     
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Abstract 

Gonadotropin releasing hormone (GnRH) neurons are the final common output pathway by 

which brain controls reproduction. Gonadal steroid hormone, estrogen regulates GnRH release 

by feedback signaling. Interestingly, GnRH neurons do not express estrogen receptors (ER 

suggesting that a steroid sensitive pathway might mediate these effects on GnRH neuron. 

Kisspeptin, a key upstream regulator of GnRH secretion serves as a target for steroid hormone 

in the control of GnRH secretion. GnRH neurons express kisspeptin receptor, GPR54. 

Kisspeptin neurons are primarily located in two major locations of the hypothalamus, the 

arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Kisspeptin neurons 

project to GnRH neurons located in the preoptic area (and to the median eminence). Kisspeptin 

binds to GPR54 to stimulate GnRH neuron in the preoptic area to release GnRH into the 

circulation. The goal of this study is to determine the precise spatio-temporal expression pattern 

of the upstream and the downstream target of GnRH neuron, Kisspeptin system and GnRHR 

expressing neurons respectively. 

I examined the onset of kisspeptin and its receptor, GPR54 in the KissIC/eR26-GFP and 

GPIC/eR26-GFP male mouse embryo respectively. Interestingly expression of Kisspeptin and 

its receptor GPR54 initiates at the same time (E13.5). Throughout the embryonic brain 

development kisspeptin neurons remain restricted to the ARC of the hypothalamus whereas 

GPR54 expression is restricted to the GnRH neuron. Detailed analysis revealed that the GPR54 

expression is independent of the location of the GnRH neuron. Next I analyzed when kisspeptin 

neurons becomes sensitive to gonadal steroid hormones. I investigated the expression of 

estrogen receptor alpha (ER) and androgen receptor (AR) in the ARC kisspeptin neuron. I 

observed that ERand AR positive neurons marks the birthplace of kisspeptin neuron in the 

embryonic brain. Transsynaptic tracing in the embryonic mouse brain revealed that ARC 

kisspeptin neurons communicate with GnRH neurons in utero. The connectivity between ARC 

kisspeptin neurons and GnRH neurons is independent of the location of the GnRH neurons in 

the embryonic male mouse brain. These observations suggests that in contrast to the adult brain 

where kisspeptin neurons are present in sexually dimorphic manner, onset and the development 

of Kisspeptin-GPR54 system in embryonic male brain is highly similar to female brain and 

sexual dimorphism arises later in development. 

Next, I investigated the downstream target of GnRH neuron, gonadotropin releasing hormone 

receptor (GnRHR) expressing neurons. GnRH binds to its receptor in pituitary to trigger the  
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synthesis and release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). The 

role of GnRHR in pituitary gonadotropes is well understood but the function of GnRHR neurons 

in the brain is not well established. Using GnRHR/eR26-GFP mouse I mapped the distribution 

of GnRHR neurons in the female brain. I observed that the GnRHR neurons are concentrated 

in olfactory processing areas and reproductive centers in the brain such as medial amygdala 

(MeA), medial preoptic area (MPA), ventromedial hypothalamus (VMH) and periaqueductal 

grey (PAG). I found that the number of GnRHR neurons significantly increases across 

developmental stage I also observed that GnRHR neurons in olfactory and reproductive centers 

are sensitive to steroid hormones. For the first time I also identified that GnRHR expressing 

neurons are activated upon olfactory stimulation. Taken together, the present study provides 

insight into the (I) development of kisspeptin-GPR54 system which will help to better 

understand reproductive disorders such as hypogonadotropic hypogonadism and precocious 

puberty (II) detailed anatomical mapping of GnRHR neurons in the brain will help in 

understanding the role of GnRH signaling in the mammalian brain and its effect on reproductive 

axis. 
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1 Introduction 

1.1 GnRH neuronal system 

The mammalian reproductive function is maintained by hypothalamic pituitary gonadal (HPG) 

axis (Figure 1.1), the neuroendocrine system consisting of hypothalamus, pituitary and gonads 

(Carolsfeld, et al., 2000). At the center of the HPG axis are the hypothalamic gonadotropin 

releasing hormone (GnRH) producing neurons that are scattered along the medial septum/ 

preoptic area to the posterior hypothalamus. Adult mouse brain has about 800-1000 GnRH 

neurons in number (Tobet et al., 2001). GnRH neuron is the master regulator of the HPG axis. 

The GnRH neuron which are the final common output pathway of the brain controlling 

reproduction integrate intrinsic and extrinsic cues  resulting in a pulsatile secretion of the 

decapeptide GnRH(also known as luteinizing hormone-releasing hormone) into the portal 

stream. The GnRH acts on the GnRH receptor (GnRHR) expressed on the surface of the 

gonadotropes that are scattered in the anterior pituitary triggering the synthesis and release of the 

gonadotropins (luteinizing hormone (LH) and follicle stimulating hormone (FSH)) into the 

systemic circulation (Clayton et al., 1981). 

In the female, LH acts on theca cells in the ovary and induces ovulation. In the male, LH acts on 

leydig cells in the testis and stimulates the production of testosterone. FSH stimulates the 

maturation of germ cells in both testis and ovary (Gharib et al., 1990; Hillier, 2001). The LH and 

FSH acts on the gonads triggering gametogenesis and stimulates the release of gonadal steroid 

hormones which have positive and negative feedback effect on the HPG axis by modulating 

either the gonadotropes in the pituitary or the release of GnRH from the hypothalamus. The 

circuit controlling reproduction undergoes dramatic functional changes during development. The 

HPG axis is tightly regulated and its function is important for the development and the 

maintenance of reproductive physiology (Varykina, 2010).  
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Figure 1.1 The Hypothalamic-Pituitary-Gonadal (HPG) axis. The schematic diagram 

represents the components of the HPG axis. GnRH neurons in the hypothalamus releases 

gonadotropin releasing hormone (GnRH) into the median eminence in a pulsatile fashion. GnRH 

acts on the anterior pituitary to secrete gonadotropins, luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) into the circulation. The gonadotropins act on the receptors located 

in the gonads to stimulate the production of steroid hormones such as estrogen/ progesterone in 

female and testosterone in male. In females the gonadal hormones, estrogen and progesterone 

exert positive and negative feedback at the level of both pituitary and hypothalamus to regulate 

the secretion of GnRH. In males, testosterone exert negative feedback both at the level of 

pituitary and hypothalamus to regulate the secretion of GnRH. Abbreviations: HPG axis, 

hypothalamic-pituitary-gonadal axis; GnRH, gonadotropin releasing hormone; LH, luteinizing 

hormone; FSH, follicle stimulating hormone. Adapted from Hilmer Sturmhoefel and Bartke, 

1998. 
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1.1.1 Development of GnRH neurons 

During embryonic development GnRH neurons originate outside the brain in the olfactory 

placodes and migrate to their final destination in the forebrain (Figure 1.2). GnRH neurons are 

born at embryonic day (E)10 in the mouse olfactory placode (Schwanzel et al., 1989; El Amraoui 

et al., 1993). At E12.5 the number of GnRH neurons is same as that of the number of GnRH 

neurons in the postnatal mouse but are predominantly located in the nasal regions (Schwanzel et 

al., 1989; Wray et al., 1989; Wray et al., 1994). The GnRH neurons migrate in clusters along the 

vomeronasal axons cross the cribriform plate to destinations in the forebrain. The GnRH neurons 

in mice migrate from olfactory areas to the forebrain between E11 and birth (Schwarting et al., 

2007). GnRH neurons complete their migration by birth. At E12.5, GnRH neurons are not 

detected in the forebrain. At E14.5 GnRH neurons can be located in the forebrain and at E16.5 

they are predominantly detected in the forebrain areas such as preoptic area (POA) and medial 

septum (Livne et al., 1993). From E12.5 to E16.5 as the GnRH neurons migrate in a rostral to 

caudal direction the number of GnRH neurons in the nasal area decreases with increase in the 

number of GnRH neurons in the forebrain areas. The number of GnRH neurons changes during 

embryonic development. Some report suggest that the number of GnRH neurons peaks to around 

1500 at E15 and then declines to 800 postnatally (Wu et al., 1997).  The adult like spatial 

distribution of GnRH neurons are established by birth (Wierman et al., 2004). The neurons reach 

their final destination in the hypothalamus by birth and extend their processes to the median 

eminence (ME), the organum vasculosm of the lamina terminalis (OVLT) or both to release 

GnRH into the circulation (Tobet et al., 2001; Schwanzel et al., 1989). At the median eminence 

GnRH neurons are in contact with the blood vessels and release GnRH into circulation to activate 

pituitary gonadotropin production and secretion (Herbison et al., 2006; Palkovits et al., 1978).  

GnRH neurons are not sexually dimorphic. GnRH modulates reproductive physiology by binding 

to GnRH receptor expressed by the gonadotropes in the anterior pituitary to release LH and FSH. 

Gonadotropes constitute 7-15% of the total number of cells in the anterior pituitary gland (Kaiser, 

2011). Studies have revealed the presence of heterogeneous gonadotrope population, 

monohormonal (15%) positive for either LH or FSH and bihormonal (70%) gonadotrope positive 

for both LH and FSH (Moriarty, 1976; Meeran et al., 2003). GnRH neuronal migration and the 

secretion of GnRH is critical for the regulation of HPG axis. The precise mechanism that control 

GnRH neuron migration is not known. 

Abnormal migration of GnRH neuron causes Kallmann syndrome and hypogonadotropic 

hypogonadism characterized by infertility (MacColl, et al., 2002; Clayton et al., 1981). Kallmann 
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syndrome is a genetic disorder associated with the mutation in the KAL 1 gene. KAL 1 gene 

encodes the secreted glycoprotein anosmin-1 that play a critical role in axon pathfinding and 

migration during CNS development (de Castro et al., 2014). In Kallmann syndrome the GnRH 

neurons were found to be in clusters in the olfactory area of the human fetus brain (Schwanzel-

Fukuda et al., 1989). Molecules such as membrane receptors, neurotransmitters, and 

chemorepellent molecules has influence on the guidance of GnRH neurons. Mutations in several 

other genes which alter the development of GnRH and olfactory systems has been identified in 

Kallmann syndrome patients such as NELF, FGFR1, prokineticin and its receptor (Miura et al., 

2004; Dodé et al., 2003; Dodé et al., 2006).  
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Figure 1.2 Gonadotropin releasing hormone (GnRH) neuronal migration. Photo depicting 

the migratory route of GnRH neuron during developmental stages on a sagittal section in the 

mouse brain. The black dots on embryonic day (E) 11, 13, 14 and 16 represents GnRH neuron. 

The GnRH neurons at E11 were detected in the VNO. As the development progresses, at E13 

most of the GnRH migrate along the olfactory nerve towards the base of the telencephalon. The 

olfactory nerves serve as a migratory routing guide. On day E14, most of the GnRH neurons are 

located at the ganglion terminale. By day E16, GnRH neurons reach POA in the basal forebrain 

and adult like distribution is achieved. Abbreviations; VNO, vomeronasal organ; gt, ganglion 

terminale; ob, olfactory bulb; poa, preoptic area. Adapted from Schwanzel Fukuda et al., 1989.          
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1.1.2 Distribution of GnRH neurons in the brain 

In most mammals GnRH neurons are bipolar and fusiform in shape. A small subtype of GnRH 

neurons are multipolar with triangular cell body (Dudas B et al., 2000). The location of the GnRH 

neurons are dependent on the species. In rodents, the GnRH neurons are present in clusters within 

the hypothalamus (Figure 1.3). The clusters are found in the organsum vasculosum laminae 

terminalis (OVLT) and medial preoptic nucleus (MPA) (Merchenthaler et al., 1984).  

GnRH neuron distribution is referred as an inverted Y shaped where the bottom of the Y is in the 

medial septum. In mice GnRH neurons exhibit remodeling of the dendritic tree to increase direct 

input during reproductive maturation. During reproductive maturation the morphology of GnRH 

neuron is altered. Spine like processes increases in GnRH neurons located in the preoptic area 

(Xue et al., 2014).   

Studies have shown that GnRH fibers communicate to approximately 50000 neurons and 

innervate approximately 53 different areas in the brain (Boehm et al.,2005). However the major 

targets of the GnRH neurons are the OVLT which is located at the rostral end of the third 

ventricle and the median eminence which is located along the ventral surface of the hypothalamus 

(Tobet et al., 2001). In humans three morphological subtypes of GnRH neurons are scattered in 

medial basal hypothalamus, preoptic area, septal area, bed nucleus of the stria terminalis to the 

amygdala, magnocellular basal forebrain complex, ventral pallidum and putamen (Rance et al., 

1994).  
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Figure 1.3 Localization of GnRH neurons in the adult mouse brain. Image showing the 

localization of GnRH neurons in the mouse forebrain. A. Coronal section of the adult mouse 

brain containing GnRH neurons in forebrain area. (B) A photomicrograph representing the 

distribution of GnRH neuron in the POA. Abbreviations; CC, corpus callosum; AC, anterior 

commissure; ON, optic nerve; POA, preoptic area. Adapted from Grober et al., 1998.  

 

 

 

 



  

13 
 

1.1.3 GnRH and GnRHR 

Gonadotropin releasing hormone is an evolutionary conserved decapeptide synthesized and 

released in synchronized pulses from the nerve endings of the GnRH neuron into the portal 

circulation every 30-120 min to stimulate the synthesis and secretion of gonadotropin from 

pituitary gonadotropes. During ovulatory LH surge the pulse frequency is the highest whereas 

during luteal phase the pulse frequency is the lowest (Millar et al., 2004). For the release of LH 

and FSH the pituitary requires pulsatile secretion of GnRH. When the GnRH receptors are 

stimulated continuously by exogenous GnRH, the GnRH receptors are desensitized and 

downregulated (Miura et al., 2004). GnRH is critical in maintaining FSH levels. In GnRH null 

mice FSH levels are reduced approximately 60%  when compared to normal mice (Mason et al., 

1986). Upon single pulse administration of GnRH led to fourfold increase in the levels of FSH 

beta gene expression (Burger et al., 2001).  

There are 3 isoforms of GnRH- GnRH1, GnRH2, and GnRH3. Most vertebrates have GnRH1 

and GnRH2 (King et al., 1990). In vertebrates atleast two major isoforms of GnRH are identified, 

namely GnRH1 which acts on the hypothalamus, pituitary and GnRH 2 is extra hypothalamic 

found primarily in the midbrain for which the function is still under investigation (Gorbman et 

al., 2003). GnRH3 has been identified only in teleosts (Yamamoto et al., 1995).  

GnRH exerts its effect by binding to GnRH receptor (GnRHR).  The primary structure of GnRHR 

was first elucidated by cloning and sequencing cDNA from a murine gonadotroph derived cell 

line (αT3-1) (Reinhart et al., 1992). GnRH receptors belong to the G protein coupled receptor 

(GPCR) family of proteins, characterized by seven hydrophobic extra and intracellular loops. 

The extracellular domains and superficial regions of the TM domains are typically responsible 

for binding events, especially the third extracellular loop (EC3) (Millar et al., 2004; Stojilkovic 

et al., 1994).  

In vertebrates three forms of GnRHR (GnRHR I, GnRHR II, and GnRHR III) have been 

identified (Millar, 2005). Among the three forms of GnRHR, GnRH type I is the predominantly 

expressed form of the receptor. In man hypothalamic GnRH binds to GnRH type I receptors in 

the pituitary to regulate the secretion of LH and FSH (Millar et al., 2004). The mouse type I 

GnRH receptor amino acid sequence is atleast 80% homologous to pigs, sheep and humans. 

GnRHR II was first identified in chicken and is expressed by most of the vertebrates (Miyamoto 

et al., 1984). In this thesis GnRH and GnRHR refers to GnRH1 and type 1 GnRH receptor if not 

mentioned. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mason%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=3024317
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GnRHR consists of 328 amino acids in human, 327 amino acids in mouse and rat (Reinhart et 

al., 1992). Mammalian GnRHR do not contain intracellular carboxy terminal domain. The lack 

of C-terminal domain does not allow rapid desensitization and internalization of the receptor. 

Non- mammalian GnRHR contain C- terminal tail and the internalization is rapid (Hislop et al., 

2001). Continuous activation of GnRHR results in desensitization and leads to the suppression 

of gonadotropin secretion (Limonta et al., 2012). GnRHR is primarily expressed by the 

gonadotrope in the anterior pituitary, GnRHR is also detected in the brain, breast, endometrium 

and prostate (Cheung et al., 2008). 

 

When GnRH binds to GnRHR, signaling cascade is activated. GnRHR activates Gq/11 which 

leads to the activation of phospholipase C (PLC) (Figure 1.4). Activated PLC generates inositol 

1, 4, 5- triphosphate (IP3) and diacylglycerol (DAG) from phosphatidylinositol 4, 5 bisphosphate 

(PiP2). This leads to the activation of protein kinase (PKC). IP3 binds to its receptor in the 

endoplasmic reticulum (ER) which mobilizes calcium from the intracellular stores and activates 

CaMK downstream cascade. This results in the influx of extracellular calcium triggering the 

release of gonadotropins (Ciccone et al., 2009; Haisenleder et al., 2003).  
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Figure 1.4 Schematic picture of the signal transduction cascade in pituitary gonadotrope 

in response to GnRH binding to the GnRHR. Activation of GnRHR induces PLC which 

generates IP3 and DAG from PiP2. The cascade of events lead to the release of calcium from the 

intracellular stores and activates the downstream pathway. Abbreviations; PLC, Phospholipase 

C; IP3, inositol phosphate; DAG, diacylglycerol; PIP2 phosphatidyl inositol phosphate; Ca++, 

calcium ions; ER, endoplasmic reticulum; PKC, protein kinase C; ERK, mitogen activated 

protein kinase; PLA2, phospholipase A2; LH, luteinizing hormone; FSH, Follicle-stimulating 

hormone. Adapted from Karges et al., 2003. 
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1.2 Kisspeptin/GPR54 neuronal system 

1.2.1 Kisspeptin 

The Kiss1 gene and its product kisspeptin play an important role in the neural control of fertility 

(Kauffman, 2010; Clarkson et al., 2008). In 1996, Kiss1 gene was identified in the tumor cells 

for its antimetastatic properties (Lee et al., 1996). In humans the Kiss1 gene is located on 

chromosome 1(1q32) (Ohtaki et al., 2001). The protein product of Kiss1 gene is a 145 amino 

acid peptide which is proteolytically cleaved to 54 amino acid peptide (Kisspeptin-54). The 

Kisspeptin-54 can further be cleaved to yield C-terminal fragments of 14, 13 and 10 amino acid 

peptides (Figure 1.5). The physiological role of the shorter peptides are yet to be studied (Kotani 

et al., 2001).  

Kisspeptin-54 is the most abundant form in humans. Kisspeptin-54, the longer form of kisspeptin 

could be unstable and cleave into shorter forms kisspeptin-14, kisspeptin-13 and kisspeptin-10 

during the purification process. All the forms of kisspeptin with a common RF- amide C terminus 

have similar binding affinities to its receptor, GPR54 (Kotani  et al., 2001). Since all the truncated 

form of kisspeptin are biologically active this suggests that the C-terminal domain is responsible 

for binding to GPR54.  

Kisspeptin neuron integrates both the central and peripheral signals and acts as an important 

upstream regulator of GnRH neurons. The distribution of kisspeptin neurons varies between 

species (Colledge, 2009). In rodents kisspeptin neurons are primarily located between two 

hypothalamic regions, the arcuate nucleus (ARC) and the anteroventral periventricular nucleus 

(AVPV)/ rostral periventricular (PN) nuclei (Semaan et al., 2010). One of the major circuits 

involved in the secretion of GnRH and puberty onset is the kisspeptin neural circuit. The ARC 

kisspeptin neurons co-express two additional peptides, neurokinin B (NKB) and dynorphin 

whereas the kisspeptin neurons in the anteroventricular nucleus (AVPe) do not express any of 

these peptides. This population of kisspeptin neurons in the ARC are known as KNDy neurons 

(Cheng et al., 2010; Foradori et al., 2006).  

In the hypothalamus kisspeptin fibers are identified in lateral septum, preoptic area and arcuate 

nuclei. Outside the hypothalamus kisspeptin fibers are located in medial amygdala (MeA), bed 

nucleus of stria terminalis (BNST) and periaqueductal grey (PAG). Role of kisspeptin in regions 

other than hypothalamus are yet unknown (Clarkson et al., 2009; Brailoiu et al., 2005; Kim et 

al., 2011).  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=8944003
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Figure 1.5 Products of Kiss1 gene: The primary translated product of Kiss1 gene is a 145 amino 

acid peptide called kisspeptin-145. Kisspeptin-145 undergoes proteolytic cleavage to yield RF 

amidated peptide known as kisspeptin-54. Unstable kisspeptin undergoes degradation to result 

in shorter peptide with C-terminal region (Kisspeptin-14, Kisspeptin-13 and Kisspeptin- 10). 

Adapted from Oakley et al., 2009. 
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1.2.2 Development of kisspeptin 

During embryonic development Kiss1 expression in rodents is restricted to the arcuate nucleus 

(ARC) (Desroziers et al., 2012). Kisspeptin protein expression in the AVPV occurs during early 

postnatal life (Semaan et al., 2010). The number of kisspeptin neuron increases during embryonic 

development and some reports suggest that the number decreases during the late embryonic stage 

(Desroziers et al., 2012). Kisspeptin exhibit sexual dimorphism during a critical developmental 

window due to the exposure of steroid hormones such as estradiol and testosterone. The critical 

developmental window extends from the late embryonic development to the early postnatal 

development (Poling and Kauffman, 2013).   

Several studies have shown that steroid hormones establish kisspeptin dimorphism. New born 

female mice treated with steroid hormone had fewer kisspeptin neuron in the AVPV whereas the 

number of kisspeptin neurons increased when a male mice is castrated (Homma, 2009). One 

mechanism is because developing males are exposed to higher levels of steroid hormone than 

females resulting in estradiol induced apoptosis and establishment of organizational effect. In 

developing male brain the circulating testosterone produced by the testis reaches the brain and it 

is aromatized to estradiol which then leads to the masculinization of the brain (Naftolin et al., 

1974). Estradiol is from the aromatization of testosterone (Poling and Kauffman, 2013). The 

AVPV kisspeptin neurons are sexually dimorphic. Female rodents have atleast 10 fold higher 

number of AVPV kisspeptin neurons than male rodents. The kisspeptin neurons in the 

periventricular (Pe) region increases from P25 to adult along with the innervation of its fibers on 

GnRH neuron (Clarkson and Herbison, 2006).  

Administration of kisspeptin activates GnRH neurons and increases the secretion of GnRH while 

increase in the secretion of GnRH was not observed in kisspeptin receptor knockout mice 

suggesting that kisspeptin induces GnRH secretion (d'Anglemont de Tassigny et al., 2008). 

Neuronal activity marker c-Fos is detected in 85% of GnRH neurons upon application of 

kisspeptin suggesting that kisspeptin activates GnRH neuron (Irwig et al., 2005). Activation of 

kisspeptin receptor induces the release of luteinising hormone (LH) (Gottsch et al., 2009). 

Administration of an antagonist to GnRH (Acyline) results in the inhibition of LH reporting that 

the action of kisspeptin is via GnRH neuron (Irwig et al., 2005). These studies confirm that 

kisspeptin is a potent activator of GnRH neuron. 

Steroid hormones regulate the release of GnRH via feedback. GnRH neurons do not express ERα 

and AR, therefore the sex steroids regulate GnRH neurons indirectly (Roseweir et al., 2009). 
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Kisspeptin neuron being a potent regulator of GnRH neuron express steroid hormone receptor 

(Lehman et al., 2010). The AVPe kisspeptin neuron mediates the positive effect of estrogen 

which is necessary for the preovulatory surge in females whereas the arcuate nucleus (ARC) 

mediates the inhibitory effect of estrogen in both male and female (Smith et al., 2005a; Smith et 

al., 2005b). When estrogen levels are low in diestrus stage ARC Kiss1 levels are increased and 

during proestrus stage when estrogen level peaks the levels of ARC Kiss1 decreased. AVPV 

Kiss1 levels are increased in proestrus when estrogen level peaks. Studies have revealed that 

estrogen exert positive effect on AVPV kisspeptin neurons and exert negative effect on ARC 

kisspeptin neurons (Keen et al., 2008).  

Past studies have shown that ERα plays a critical role in modulating LH response to kisspeptin 

and not ERβ. Selectively blocking ERα resulted in the elimination of LH rise and blocked 

ovulation while blocking ERβ did not have any effect on LH rise. This result showed that 

estrogen acts through ERα in mediating both positive and negative effects on kisspeptin (Roa et 

al., 2008). Factors that affect kisspeptin neurons will modulate GnRH release. Estrogen and 

testosterone both can act on kisspeptin neurons and  modulate the kiss1 gene expression (Smith 

et al., 2005a). Sex steroid hormones regulate the two population of Kiss1 mRNA differentially 

via positive and negative feedback in the rodent brain. They increase Kiss1 mRNA expression in 

the AVPV whereas they decrease the Kiss1 mRNA expression in the ARC (Clarkson et al., 2008; 

Smith  et al., 2005b; Adachi et al., 2007). Most of the ARC and AVPV kisspeptin neurons express 

ERα and approximately 25-40% express ERβ (Smith et al., 2005b). 

Upon administering developing female mice with gonadal steroid hormones at 2, 5, 10 and 20 

days old mice and when tested for fertility after 100 days. Animals to which the gonadal steroid 

hormone was administered at day 2 and day 5 revealed that the ovarian and uterine weight  

significantly reduced and sterile. The animal to which the gonadal steroids were administered at 

day 20 were fertile (Barraclough., 1961). This study demonstrated that exposure to steroid 

hormones during the critical perinatal window could severely affect fertility. Alpha fetoprotein 

which is a plasma protein found in high levels during late gestation and early stages of 

development binds to circulating estrogen and prevents the developing female brain from 

masculinization (Bakker et al., 2006).  
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1.2.3 GPR54 

The receptor for kisspeptin, Kiss1r also known as GPR54 is a G protein coupled receptor   

important for gonadotrophin physiology (Lee et al., 1999). In 2003, it was discovered that GPR54 

mutation cause hypogonadotropic hypogonadism and absence of puberty in mice and humans 

(de Roux et al., 2003).  

Kisspeptin binds to its receptor expressed by GnRH neuron, GPR54 to stimulate the release of 

GnRH (d’Anglemont de Tassigny et al., 2008). GPR54 share 45% identity with galanin 

receptors. GPR54 is detected in multiple regions in the brain such as pons, thalamus, 

hypothalamus, amygdala, arcuate nucleus, cortex, frontal cortex and striatum. Kisspeptin-54, -

14 and -13 were found to bind and activate to GPR54 (Lee et al., 1999). GnRH neurons express 

GPR54 mRNA and kisspeptin depolarize GnRH neuron documenting that kisspeptin neuron 

regulate GnRH neuron (Irwig et al., 2004; Han et al., 2005).  

In human tissues, quantitative PCR with reverse transcription (RT-PCR) method revealed that 

GPR54 is also highly expressed in regions other than brain such as placenta, testis and moderate 

levels in pancreas, liver and small intestine (Ohtaki et al., 2001). In the preoptic area more than 

60% of GnRH neurons express GPR54 in mice. Dual labelling in mice across development ages 

P1, P5, P20 and P30 revealed that the percentage of GnRH neurons expressing GPR54 increases 

from 40% to 70% (Herbison et al., 2010). The GPR54 expression along with Kiss1 varies during 

different stages of the estrous cycle. 

Kisspeptin signaling also plays a role in the regulation of metabolism. Adult GPR54 knockout 

female mice have high levels of leptin and fat whereas adult GPR54 knockout male mice have 

regular levels of leptin. These experiments state that the role of kisspeptin in metabolism is 

sexually dimorphic (Holmes, 2014).  

Kisspeptin on binding to its receptor GPR54 (Kiss1r) activates G protein, Gq/11 and 

phospholipase C to cleave phosphatidylinositol 4,5-bisphosphate (PiP2) resulting in the 

generation of intracellular inositol triphosphate (IP3) and diacylglycerol (Figure1.6). IP3 causes 

Ca2+ release from the endoplasmic reticulum which results in the activation of ERK1/2 and 

p38mitogen activated MAPK pathways (Kotani et al., 2001; Stafford et al., 2002). Although 

GPR54 is expressed in GnRH neurons and pituitary, the stimulatory effect of kisspeptin on 

gonadotropin release is only via the activation of GnRH neuron (Clarkson et al., 2008).  
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Figure 1.6 Kisspeptin and Kiss1r (GPR54) signaling. Schematic picture of how kisspeptin 

neuron activates Kiss1r (GPR54) in the GnRH neuron. Kisspeptin binds to GPR54 and activates 

phospholipase C which results in the generation of IP3 and DAG, which in turn results in the 

increase of calcium. Abbreviations ; PIP2, phosphatidylinositol 4,5- phosphate PLC, 

Phospholipase C; IP3, inositol phosphate; DAG, diacylglycerol; Ca++, calcium ions; PKC, 

protein kinase C; Adapted from Oakley et al., 2009. 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Oakley%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=19770291
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1.2.4 Role of kisspeptin and GPR54 in the regulation of puberty 

Kisspeptin and GPR54 are established as a key gatekeeper of puberty and preovulatory LH surge 

(Figure 1.7). Kisspeptin neurons initiating puberty was first identified in humans (Seminara et 

al., 2003; Mayer et al., 2010).  

In mice, kisspeptin neurons in the AVPV are detected at P25 and the number reaches adult level 

at P31 when the puberty onset occurs (Clarkson et al., 2006). Administration of kisspeptin from 

P25 induced precocious puberty, increase in uterus weight, increase in the levels of LH and 

estrogen in mice compared to controls (Navarro et al., 2004). An autosomal dominant mutation in 

GPR54 where proline is substituted for arginine at 386 codon in which the receptor is 

continuously active triggering signaling pathways are associated with precocious puberty (Teles 

et al., 2008). In mice and in primates intravenous administration of kisspeptin resulted in the 

advancement of puberty (Navarro et al., 2004; Plant et al., 2006). The expression level of Kiss1 

mRNA increases during puberty both in male and female (Shahab et al., 2005). Another study 

has shown that the administration of human kisspeptin (hkp-10) resulted in increased GnRH 

release whereas administration of kisspeptin antagonist peptide (Kp232) resulted in reduced 

GnRH release both in prepubertal and pubertal monkey. In ovariectomized pubertal monkey, 

kisspeptin failed to stimulate GnRH due to the absence of steroids but when estrogen is 

administered hkp10 triggered GnRH release partially. In ovariectomized prepubertal monkey 

kisspeptin administration stimulated GnRH release demonstrating that it is independent of steroid 

hormones (Guerriero et al., 2011).  

Administration of kisspeptin antagonist result in the impairment of puberty onset whereas 

mutations that activate GPR54 cause precious puberty (Pineda et al., 2010; Teles et al., 2008). 

GPR54 knockout mice were identified with the absence of puberty, smaller gonads and low 

levels of gonadotropins and steroids (Holmes et al., 2014). During puberty, kisspeptin fibers that 

are in vicinity to GnRH neurons has been shown to increase in mice (Clarkson et al., 2006). 

During pubertal development the levels of both Kiss1 and GPR54 mRNA increase in rodents and 

in primates (Han et al., 2005; Keen et al., 2008). Kisspeptin fibers have been found to be in close 

vicinity to GnRH neurons in the preoptic area in mice and in rats (Clarkson et al., 2006; Kinoshita 

et al., 2005). The sensitivity of kisspeptin to the GnRH neurons changes during different stages 

of reproductive development. During juvenile stage 27% of GnRH neurons are depolarized to 

kisspeptin, 45 % of GnRH neurons are depolarized to kisspeptin during prepubertal stage and 

90% in post pubertal stage (Han et al., 2005). The number of GnRH neurons that respond to 

kisspeptin are not sexually dimorphic (Liu et al., 2008). Steroid hormone is critical for the 
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pubertal development and the maintenance of reproductive physiology (Takase et al., 2009). 

Ablation of ERα in kisspeptin neuron result in the decreased inhibition of GnRH neuron and has 

been shown to cause precocious puberty (Mayer et al., 2010). GPR54 and Kiss1 knockout mice 

exhibit infertility and impaired reproductive function (Funes et al., 2003; d'Anglemont de 

Tassigny X et al., 2007; Lapatto et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

24 
 

 

 

 

 

 

 

 

 

Figure 1.7 Schematic representation of kisspeptin neuron and GnRH neuron interaction. 

Abbreviations; POA, preoptic area of hypothalamus; KNDy neuron, kisspeptin dynorphin 

neuron; GPR54, G protein coupled receptor 54(GPR54); GnRH, gonadotrophin releasing 

hormone; GnRHR-1, gonadotrophin releasing hormone receptor 1; LH, luteinizing hormone; 

FSH, follicle stimulation hormone; ER, estrogen receptor alpha; PR, progesterone receptor; 

NKB, neurokinin B; Dyn, dynorphin. Adapted from Javed et al., 2015. 
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1.3 Neuronal circuit underlying chemosensory signaling and 

reproduction 

1.3.1 Interaction of GnRH neurons with chemosensory system  

Pheromone exerts its effects on GnRH neurons and thereby modulate the neuroendocrine status. 

One study dissected the neurons communicating with GnRH neuron and revealed that olfactory 

cue could influence reproductive function. They used a transgenic mice in which barley lectin 

gene (a tracer that travels both across upstream and downstream synapses) placed next to the 

gene encoding GnRH neuron in which only the GnRH neuron produces barley lectin. The study 

concluded that the Bl+ve cells which communicate with GnRH neurons are found in 

approximately 53 different functional areas. The expression of BL was identified in regions 

including the vomeronasal amygdala which receives vomeronasal input, olfactory cortex 

indicating direct synaptic connection with GnRH neuron. Upon pheromone exposure the GnRH 

downstream and upstream neurons were activated which was detected by the expression of c-

Fos. This indicates that the GnRH neurons could influence a variety of functions including the 

processing of chemosensory signals (Boehm et al., 2005).  

Another important study traced GnRH neurons using modified pseudo rabies virus to infect only 

GnRH expressing neurons to anatomically trace the afferent pathways to GnRH neurons in the 

hypothalamus. The transneuronal retrograde travelling property of the virus allowed them to  

identify olfactory receptor neurons in the main olfactory epithelium that are  polysynaptic 

connected to GnRH neurons in mice (Yoon et al., 2005). Several other studies have showed the 

significance of pheromone mediated behavior either by surgical removal of vomeronasal organ 

(VNOx) which resulted in the decrease of lordosis behavior to male mount, decrease in urine 

marking and intermale aggression, reduced copulatory behavior and decrease in pregnancy block 

(Keller et al., 2006a; Maruniak et al., 1986; Clancy et al., 1984; Lloyd-Thomas et al., 1982; Li 

et al., 2013). While chemical ablation of the main olfactory epithelium resulted in decreased 

lordosis behavior and sex discrimination (Keller et al., 2006b).  

The olfactory cues can modulate endocrine status and cause certain effects such as (i) 

Vandenberg eefect (ii) Bruce effect (iii) Lee-Boot effect and (iv) Whitten effect. 

(i) Vandenbergh effect 

When a female mice is exposed to the chemosignals of the male mice, the pubertal development 

of the female mice is accelerated .This phenomenon is known as Vandenbergh effect (Castro, 

1967; Vandenbergh, 1975). Female mice raised with a castrated male mice do not undergo 
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accelerated puberty (Bronson et al., 1975).  Removal of VNO in the female mice eliminated the 

role of male urine in accelerating puberty (Kaneko et al., 1980).  

(ii) Bruce effect 

In Bruce effect, the female mice terminates its pregnancy upon exposure to the odors of 

unfamiliar male. The implantation failure is due to the decrease in prolactin (Bellringer, J et al., 

1980). Pregnancy is unaffected when the female mice is exposed to the mated male. Thus females 

are able to respond to odor of known and unknown mice. The first vomeronasal stimuli identified 

that can induce Bruce effect are MHC peptides (Bruce, 1959; Singh et al., 1987). 

(iii) Lee-Boot effect 

Lee Boot effect is a phenomenon in which when the females are grouped together the estrous 

cycle of the females are prolonged (Van Der Lee et al., 1955). The stimuli for Lee Boot effect is 

an estrogen dependent pheromone which does not suppress estrous cycle in females (Lepri et al., 

1985). 

(iv) The Whitten Effect 

The Whitten effect is a tendency in which estrous can be induced in grouped females when 

exposed to male mouse urine (Whitten, 1956). The stimuli inducing the Whitten effect is 

unidentified but studies have shown that it is species specific volatile and androgen dependent 

urinary metabolites (Bronson, 1974).  

 

1.3.2 Brain pathways mediating the detection of chemosensory cues in mice. 

In rodents chemosignals can be detected by two olfactory systems, namely the main olfactory 

system and the accessory olfactory system (Zufall,et al., 2001; Liberles et al., 2006). The main 

olfactory system is responsible for detecting volatile odor compounds. It is mediated by G protein 

coupled receptor (GPCR). The vomeronasal olfactory system is responsible for detecting 

pheromones. It is mediated by pheromone receptors V1 and V2 (Dulac and Wagner, 2001).  

Sensory neurons from the main olfactory epithelium (MOE) and vomeronasal organ (VNO) 

project into the main olfactory bulb and accessory olfactory bulb respectively (Figure 1.8). The 

MOB receives sensory input from the main olfactory receptors and projects to the lateral 

olfactory tract (NLOT), the anterior cortical nucleus (ACN), and the posterolateral cortical 

amygdaloid nucleus (PLCN) (Westberry et al., 2003). The AOB receives sensory input from the 

VNO which then projects to the anterior amygdala (MeA), posterior amygdala (MeP), 

posteromedial cortical nucleus (PMCN) of the amygdala and the bed nucleus of the stria 
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terminalis (BNST) (Meisami et al., 1998; von Campenhausen et al., 2000). Neurons from these 

regions project to the medial preoptic area (MPOA), ventromedial hypothalamus (VMH), the 

premammillary nuclei and the supra optic nuclei in the hypothalamus that are associated with 

reproduction and maternal behavior (Petrovich et al., 2001).  
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Figure 1.8 Neural pathways underlying the detection of chemosensory cues in mice. 

Chemosensory input can be detected by vomeronasal organ (VNO) or main olfactory epithelium. 

The vomeronasal input is transmitted from the vomeronasal organ to the accessory olfactory bulb 

(AOB) and projects to the anterior and posterior medial amygdala (MeA, MeP) and posterior 

medial cortical nucleus (PMCN) and bed nucleus of the stria terminalis (BNST). The input from 

these areas further goes to the medial preoptic area (MPOA). The chemosensory input detected 

by the main olfactory epithelium is transmitted to the main olfactory bulb (MOB) and projects 

to the anterior cortical nucleus (ACN), posterolateral cortical nucleus (PLCN), anterior olfactory 

nucleus (AON) and olfactory tubercle (OT), tenia tecta (TT), piriform cortex (Pir) and entorhinal 

cortex (EC). Adapted from Dulac and Wagner, 2006. 
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1.4 Aim of the thesis 

The main goal of this study was to investigate the development of the upstream neuroendocrine 

circuit of GnRH neurons, Kisspeptin-GPR54 system during embryonic brain development and 

the downstream target of GnRH, GnRHR expressing neurons. The following questions were 

addressed in three aims: 

 

Aim I: To understand the development of kisspeptin and GnRH neural circuit in the embryonic 

male mouse brain I investigated the precise spatio-temporal expression pattern of Kisspeptin and 

GPR54 utilizing a binary genetic strategy in KissIC/eR26-GFP and GPIC/eR26-GFP male 

embryonic mice respectively. To examine when kisspeptin neurons are sensitive to steroid 

hormones I decided to study when Kisspeptin neurons starts to express steroid hormone 

receptors. And finally, combinatorial transsynaptic tracing was used to dissect the kisspeptin 

neuron and GnRH neuron circuit in KissIC/R26-BIZ male embryonic mice. These results are 

presented in Chapter 3.1. 

 

Aim II: To identify the role of estrogen signaling during reproductive development in the AVPV 

and ARC kisspeptin neurons I studied the expression of ERinAVPV and ARC kisspeptin 

neurons. In addition I also studied the expression of dopaminergic kisspeptin neurons during 

reproductive maturation in KissIC/eR26-GFP female mice. These results are discussed in 

Chapter 3.2. 

 

Aim III: The objective of this aim is to investigate the role of GnRH receptor (GnRHR) neurons 

in the brain. I first mapped the distribution the GnRHR expressing neurons in the GRIC/eR26-

GFP adult female mice brain. I assessed GnRHR expressing neurons for steroid hormone 

sensitivity and investigated their potential role in olfactory process. These results are described 

in Chapter 3.3. 
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2. Materials and Methods 

2.1 Animals 

All experimental procedures were conducted with the guidelines established by the animal 

welfare committee of the University of Saarland. Mice were kept under standard light/dark cycle 

with food and water ad libitum. Kisspeptin-IRES-Cre (KissIC) mice (Mayer et al., 2010), 

GPR54-IRES-Cre (GPIC) mice (Mayer and Boehm, 2011), GnRHR-IRES-cre (GRIC) mice 

(Wen et al., 2008), ROSA26-CAGS-GFP (eR26-GFP) mice (Wen et al., 2011), ROSA26-BL-

IRES-lacZ (R26-BIZ) (Kumar et al., 2014) mice were kept in a mixed (129/SvJ and C57BL/6J) 

background. 

 

2.2 Extraction of genomic DNA from tail biopsies 

Genomic DNA isolation was carried out by incubating tail biopsies (approx. 1 cm) in 150 μl of 

tail lysis buffer containing proteinase K (1mg/ml) at 550C overnight in a shaking incubator. To 

the viscous sample equal volumes of isopropanol was added and then centrifuged at 1300 rpm 

for 10 minutes at room temperature. The supernatant was removed to a new tube containing 

isopropanol and then centrifuged at maximum speed. The pellet was washed twice with 70% 

ethanol, decanted and dried at room temperature. The genomic DNA was resuspended in distilled 

H2O. The genotyping for all embryos were performed using genomic DNA isolated from tail 

biopsies. 

Lysis Buffer                        

50 mM Tris HCl 

100 mM NaCl 

0.2% Tween 

0.2% NP40 

1 mM EDTA 1 

1 mg/ml Proteinase K 

 

2.3 Extraction of genomic DNA from ear biopsies 

The genotyping for adult animals were done using genomic DNA isolated from ear biopsies. 

Ear biopsies were lysed by incubating overnight with lysis buffer containing proteinase K at 

55oC. The extracted genomic DNA were stored at 4oC until use for PCR. 
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2.4 Gender Determination by PCR 

To identify the gender of the embryo, genomic DNA were isolated from the tail biopsies and 

PCR amplification was performed. The primers were purchased from Eurofins MWG operon 

The reaction mixture for the PCR to identify the gender is described below 

 gDNA template                           1.0 μl 

 PCR buffer (10X)                 5.0 μl 

 dNTPs (25 mM)                              1.0 μl 

 MgCl2 (25 mM)                    5.0 μl 

 Betaine (5 M)                       10 μl 

 DMSO                  2.5 μl 

 Primers (25 μM)                         0.5 μl 

 Taq Polymerase 1U 

 ddH2O make final volume upto 50 μl 

 

2.5 Genotyping by PCR  

Program for genotyping 

 

Temperature   Time 

940C  5 mins 

940C  30 secs 

55oC  1 min 

72oC  2 mins 

72oC  10 mins 

4oC   hold 

 

2.6 Primers 

Cre                       

        Fwd: GTCGATGCAACGAGTGATGAGGTTCG 

        Rev: CCAGGCTAAGTGCCTTCTCTACACCTGC 
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KissIC 

        Fwd: CAAAGCTATCAGAGGGAGAAGCAAACAGCC 

        Rev1: CGGAATTCATCGATGATATCAGATCCGG 

        Rev2: CGACTTTGGCACCGAGGACATCTTG 

 

GPIC (GPR54) 

        Fwd: GGCTATTATTGTGCTTGTGTGGAGGTACACAG 

        Rev1: CATAAACACAAACTCCTGGTTCGGTTCTCAG 

        Rev2: CGGAATTCATCGATGATATCAGATCCGG 

Primer used in gender PCR   

XY Fwd: TGAAGCTTTTGGCTTTGA 

       XY Rev: CCGCTGCCAAATTCTTTG 

 

2.7 Adult mouse tissue preparation 

All animals were deeply anaesthetized using intraperitoneal injection of ketamine/xylazine.   

Transcardial perfusions were performed using 100 ml PBS to remove the circulatory blood 

completely. Animals were then perfused with 100 ml 4% PFA. Brains were then dissected out 

and post fixed in 4% PFA for 2 hours at 4°C. Then the brains were transferred to 30% sucrose 

solution until the brain completely sinks. The brains are then stored in cryoprotectant. The brains 

were sectioned into 5 series of 14 µm on a cryostat. The sections were collected on super frost 

glass slide (Roth, Karlsruhe, Germany) with adjacent sections placed across different slides to 

produce a series of slides. 

 

2.8 Preparation of embryonic mouse brain 

In order to obtain the embryonic brains of KissIC/eR26- τGFP, GPIC/ eR26- τGFP, pregnant 

mice were anaesthetized with isofluorane and sacrificed by decapitation. The embryos were 

isolated with the amniotic sac in ice cold PBS. The embryos were carefully dissected out from 

the amniotic sac. To identify the gender tails of the embryo were cut and used for  gender PCR. 

Isolated embryos were rinsed thoroughly in ice cold PBS and were then fixed with 4% PFA for 

1.5-4 hrs. After fixation the embryos were washed in ice cold 1XPBS. The embryos were then 

soaked in 30% sucrose until the embryo completely sinks in sucrose and frozen using Leica 

cryoprotectant. Series of 14 µm sagittal sections were taken on superfrost plus glass slide for 

immunohistochemistry analysis.  
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2.9 Immunofluorescence analysis 

The sections were washed with 1X PBS and incubated with ice cold MeOH for 20 minutes at 

room temperature (RT). After washing with PBS the sections were incubated with blocking 

solution for 2 hours at RT. Then the sections were incubated with primary antisera diluted in 

blocking solution overnight at 4 C. The next day sections were washed thoroughly with PBS and 

incubated with secondary antibody diluted in blocking solution for 2 hrs at RT followed by 

washing with PBS. Then nuclear staining was done using Hoechst for 10 minutes and the sections 

were mounted with Fluromount G. For dual immunostaining after incubating with the first 

primary antibody the sections were washed with 1XPBS and then incubated overnight with the 

second primary antibody at 4 oC. The sections were washed with PBS and the secondary antibody 

for both the antibody diluted with blocking solution were incubated together. 

Blocking solution      5% donkey serum 

                                   0.02% sodium azide 

                                   0.2% Triton X-100 in PBs, pH 7.4 

20XPBS                     3 M NaCl 

                                   161 mM Na2HPO4 

                                   39 mM KH2PO4 

                                    pH 7.4 

 

2.10 LacZ staining  

The embryonic sections  were fixed in 0.2% glutaraldehyde, 2mM MgCl2, 5mM EGTA, and 

1XPBS (pH 7.3) for 2 minutes at 20°C–25°C. Then the sections were washed for 30 minutes 

using LacZ wash buffer A and then washed for 10 minutes using LacZ wash buffer B. LacZ 

staining solution was added to completely cover the sections. Sections were incubated in a 

humidified chamber at 30°C overnight. The sections were washed with LacZ wash buffer A and 

then mounted with Mayer’s glycine gelatin. The brain sections were analyzed using Zeiss 

Axiophot light microscope. 

LacZ wash buffer A        

2Mm MgCl2 

5mM EGTA 

0.1M Phosphate buffer pH 7.4  
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LacZ wash buffer B  

0.1% Sodium deoxycholate 

0.02% Nonidet P40, 2mM MgCl2 

5 mM EGTA, 0.1 M Phosphate buffer pH 7.4 

LacZ staining buffer       

0.02% Nonidet P40, 2Mm MgCl2 

0.01% Sodium deoxycholate 

5mM EGTA, 20 mM K3FeCN6, 20mM K4FeCN6 

2mg/ml X-gal, 0.1 M Phosphate buffer pH 7.4 

LacZ staining buffer         

 0.01 % sodium deoxycholate 

 0.02% Nonidet P40, 2mM MgCl2 

     5mM EGTA, 0.5 mg/ml of NBT 

                                     0.5 mg/ml of X-Gal 

                                     0.1M Phosphate buffer pH 7.4 

 
 

2.11 Immunostaining for Barley Lectin (BL) using TSA amplification 

To detect BL from KissIC/R26BIZ mice, sections were washed with 1X PBS for 10 minutes. 

Then the sections were incubated with ice cold MeOH:H2O2 for 30 minutes at room temperature. 

Following a 10 minutes incubation in 0.5% Triton X 100 the sections were washed with TNT 

(TRIS NaCl Tween) buffer and then blocked with TNB blocking solution for 30 minutes at room 

temperature. The sections were then incubated with Goat antiBL antibody (WGA) 1:1000 in 

TNB overnight at 40C. The sections were washed with TNT solution, incubated with 1:1000 HRP 

in TNB for 30 minutes, followed with a wash the sections were incubated briefly for 5-10 minutes 

with tyramide signal amplification (TSA) solution. After 3X wash with TNT the sections were 

incubated with 1:500 streptavidin Alexa 546 in TNB buffer for 1 hour. Then nuclear staining 

was done using Hoechst for 10 minutes and the sections were mounted with Fluromount G. 

For DAB staining, following incubation with TSA amplification solution wash thoroughly with 

TNT solution and incubate with ABC for 30 minutes at RT. Then wash the sections and add 

DAB and monitor the colour development, wash with PBS then with distilled water before air 

drying. Dehydrate with increasing grades of alcohol 50%, 70%, 80%, 90%, 95%, 2X 100%, 2 X 

Xylene. Mount with DPX. 

TNT wash buffer                 1.5 M NaCl 
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                                             0.1 M Tris HCl pH7.4 

                                             0.02% Tween 20 

TNB blocking solution        1.5M NaCl 

                                             2.5g blocking powder (Perkin Elmer) 

                                             0.1 M Tris HCl pH7.4 

ABC Vector laboratories 2 drops of A + 2 drops of B in 5 ml of PBS prepare 30 minutes before 

use.  

 

2.12 Exposure to Odorants 

The experiments were conducted with 13-18 week old sexually naive GRIC/eR26-GFP male 

mice. The mice were housed individually before the experiments. Prior to the experiment the 

animals were habituated to testing environment (clean bedding) for atleast 10 days. The 

chemosensory stimuli (bedding) were collected from a group of atleast 5 housed females. The 

female bedding were collected mixed and used fresh as a stimuli. After habituation the test 

animals were exposed to soiled bedding simultaneously the control animals were exposed to 

clean bedding for 90 minutes. The animals were sacrificed were perfused intracardially with ice 

cols 4% PFA. 
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2.13 Antibody  

 

 

 2.14 Image acquisition and Processing 

 
The images were captured using Axiovision software with Zeiss Axioskop microscope. The 

captured images were processed using adobe Photoshop CC 2015. 

 

2.15 Quantification of neuron 

Kisspeptin, GFP, GnRH, AR and ERimmunoreactive neurons were manually counted in 

every fifth section both in 14 m thick sagittal sections for embryonic brain study and 14 m 

thick coronal sections for adult brain study. The neurons were counted using Image J cell counter 

plugin. The nuclei was visualized by staining with Hoecht 33258. The total number of 

immunopositive neurons in the embryonic brain and the adult brain were multiplied by 2.5 to 

estimate the total number of neurons per brain. 

 

 

 

Name of the antibody              Host Manufacturer   Dilution 

GnRH Rabbit (Polyclonal) Affinity Bio reagents PA1-121 1:1000 

ER α Rabbit (Polyclonal) Millipore 06-935                                  1:1000 

Kisspeptin     Rabbit (Polyclonal) Millipore AB9754                               1:500 

AR    Rabbit (Polyclonal) Santa Cruz SC816 1:200 

GFP Chicken (Polyclonal) Molecular Probes A10262 1:1000 

WGA       Goat (Polyclonal) Vector laboratories AS 2124 1:1000 

TH   Rabbit (Polyclonal) Millipore AB 152 1:1000 

c-Fos                             Goat(Polyclonal)                 Santa Cruz SC52 1:300 

Rabbit IgG Cy3 conjugated IgG Molecular Probes A10520 1:500 

Chicken IgG Alexa Fluor 488 Molecular Probes A11039 1:500 

Goat IgG Biotinylated Vector Laboratories BA 9500 1:500 
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2.16 Statistics 

All experiments were performed in triplicate. All data quantification were expressed as mean ± 

standard error of the mean (SEM). Statistical significance was assessed using two-tailed unpaired 

Student’s tests.  
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3. Results 

3.1 Development of Kisspeptin-GPR54 system in male mice 

3.1.1 Temporal and spatial expression of kisspeptin neurons in male mice 

                             To detect kisspeptin neurons I bred Kiss-IRES-Cre with eR26-τGFP mice. In 

Kiss-IRES-Cre mice, Cre recombinase is coexpressed along with Kiss1 gene. Transcription of 

Kiss1 allele yields a biscistronic mRNA from which Kiss1 and Cre are independently translated. 

The reporter strain eRosa 26-τGFP carries a fusion protein in the rosa locus. Due to the presence 

of loxp flanked stop signal the transcription normally terminates prematurely, but when crossed 

with Kiss-IRES-Cre mice, the Cre mediated excision of the transcription stop signal leads to 

τGFP expression. Therefore kisspeptin neurons in double heterozygous KissIC/eR26-τGFP 

mouse brain express τGFP and can be visualized by fluorescence signals (Figure 3.1 A). 

                            To anatomically map kisspeptin neuron in the male embryonic brain I 

examined KissIC/eR26-GFP embryonic mouse brain at different developmental stages. GFP 

immunostaining on sagittal sections of mouse brain across different ages shows the distribution 

of kisspeptin neurons. I did not detect τGFP cells at E12.5. I detected the first expression of τGFP 

cells (94.3 ± 8.3, n=3) at E13.5 in ARC (Figure 3.1 B). At E16.5, I observed an increase the 

number of GFP expressing kisspeptin neurons (962.7 ± 68, n=3) (Figure 3.1 E). The kisspeptin 

neurons remained restricted to the ARC (Figure 3.1 C). I performed immunohistochemistry with 

polyclonal antibody directed against kisspeptin and detected the first expression of kisspeptin 

neuron at E16.5. On performing double immunohistochemistry I found that that 92.1 ± 1% of 

GFP cells express kisspeptin showing faithful expression of τGFP in kisspeptin neurons 

demonstrating the sensitivity of binary genetic system over immunohistochemistry (Figure 3.1 

C-F).                                                                                                            
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Figure 3.1 Temporal and spatial expression of Kisspeptin neurons in male mouse embryos. A, 

Genetic strategy to analyze the temporal and spatial expression pattern of kisspeptin neuron. In double heterozygous 

KissIC/eR26-GFP male embryos, Kisspeptin neurons express GFP. B, Representative Immunolabelling images 

for GFP on a sagittal section in KissIC/eR26-GFP male mouse embryo during early stages of embryonic 

development. Note, GFP was not detected E12.5 (left). The first expression of GFP was detected at E13.5 

(middle) in the arcuate nucleus (ARC) of the hypothalamus. At E16.5 (right) the expression of GFP increased 
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significantly, the expression of GFP remained restricted to the ARC throughout the development. C, Expression of 

GFP in kisspeptin neurons is confirmed by the double immunolabelling for GFP (green) and kisspeptin (red) 

against antisera in KissIC/eR26-GFP male embryo at E16.5 male embryo. D-F, Representative immunolabelling 

images for GFP (green) and GnRH (red) on a sagittal section in in KissIC/eR26-GFP male mouse embryo at 

E16.5. 3V, third ventricle; POA, preoptic area; OE, olfactory epithelium. E, Quantification of kisspeptin neurons at 

E12.5, E13.5 and E16.5 in KissIC/eR26-GFP male mouse embryo.  ***, P <0.001. Scale bars: 25 m (B and C), 

500 m (D) and 50 m (E and F). 

 

3.1.2 Temporal and spatial expression of GPR54 receptor expressing neurons 

in male mice 

Kisspeptin controls the secretion of GnRH via acting on GPR54 expressed by GnRH neurons. 

To map the temporal and spatial expression of GPR54 receptor expressing neurons in male 

embryonic mice I used GPIC/eR26-τGFP double heterozygous mice. 

To detect GPR54 expressing neurons I bred GPR54-IRES-Cre (GPIC) with eR26-τGFP mice. In 

GPR54-IRES-Cre mice, Cre recombinase is coexpressed along with GPR54 gene. Transcription 

of Gpr54 allele results in a biscistronic mRNA from which GPR54 and Cre are independently 

translated. The reporter strain eRosa26-GFP carries a fusion protein in the Rosa locus. Due to 

the presence of loxp flanked stop signal the transcription normally terminates prematurely. But 

when crossed with GPIC-IRES-Cre mice the Cre mediated excision of the transcription stop 

signal leads to τGFP expression. Therefore GPR54 expressing neurons in double heterozygous 

GPIC/eR26-GFP mouse brain express GFP and can be visualized by fluorescence signals 

(Figure 3.2 A). I performed dual immunolabelling using antisera against GFP and GnRH. During 

embryonic development GnRH neurons are born outside the brain in the olfactory placode cross 

the cribriform plate and migrate towards basal forebrain. 

I did not detect the τGFP expressing cells at E12.5 (Figure 3.2 B). I detected first τGFP expressing 

cells at E13.5. At E13.5 approximately 3% of GnRH neurons expressed GPR54 (5.3 ± 1.3 τGFP+ 

of 183 ± 6.8 GnRH+, n=3). At E13.5 GnRH neurons are primarily located in the nasal septum 

and rostral forebrain, and all the τGFP+ cells were GnRH neurons (Figure 3.2 C). At E16.5 

GnRH are distributed in nasal septum, preoptic area and OVLT. At E16.5, 43% of GnRH neurons 

express GPR54 (100.3 ± 2.8 τGFP+/ GnRH+ of 262.7 ± 8 GnRH+, n=3 mice). 

At E16.5 GnRH neurons are primarily located in the anterior forebrain and few neurons are 

distributed along their migratory path (Figure 3.2 D). At PND2, 72% GnRH neuron expressing 

GPR54 (102.3 ± 12 τGFP+/GnRH+ of 141 ± 11 GnRH+, n=3 mice) (Figure 3.2 E). The number 

of GnRH neurons expressing GPR54 had greatly increased across ages. During embryonic 
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development all the τGFP expressing neurons are GnRH neurons independent of their location 

within the brain (Figure 3.2 F). 
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Figure 3.2 Temporal and spatial expression of GPR54 expressing neurons in male mouse embryos. 

A, Genetic strategy to analyze the temporal and spatial expression pattern of GPR54 neuron in 

heterozygous GPIC/ eR26-GFP male embryos. B-E, Double immunolabelling with GFP (green) and 

GnRH (red) on a sagittal section of the head  at E 12.5, E13.5, E16.5 and coronal section of the head at 

PND2 in a  heterozygous GPIC/ eR26-GFP PND2 male mouse. Note, GPR54 expression starts at E13.5 
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in the olfactory area. Open arrows points GnRH neurons that do not express GPR54, whereas close arrow 

shows GnRH neuron that express GPR54. NS, nasal septum; OE, olfactory epithelium; FB, forebrain; 

POA, preoptic area. Scale bars, 50 m. F, Quantification of GPR54 expressing GnRH neurons during the 

development. ***, P<0.001. 

 

3.1.3 ERα and AR immunoreactivity within the male embryonic brain marks 

the birthplace of kisspeptin neurons   

It is known that steroid hormones regulate HPG axis through both positive and negative feedback 

loops between the gonads and brain. Previous studies have shown that estrogen regulate Kiss1 

expression in AVPV and ARC within the brain. Sex steroids acts on kisspeptin neuron which in 

turn modulate GnRH neurons. To address the question when during embryonic development 

ARC kisspeptin neurons becomes sensitive to steroid hormone I used double heterozygous 

KissIC/eR26- τGFP mouse brain in which kisspeptin neurons express τGFP. I performed 

immunohistochemistry using antisera against estrogen receptor alpha (ERα) and androgen 

receptor (AR). 

While I did not detect AR signal at E12.5 but I first observed AR signal first at E13.5 (Figure 3.3 

A-B). Results from my previous experiments showed that the onset of kisspeptin neuron 

expression is also at E13.5. At E13.5, 63.4 ± 6.9% of kisspeptin neurons expressed AR (45.8 ± 

15.3 AR+/τGFP+ of 69.3 ± 20.2 τGFP+, n=3 mice). The number of kisspeptin neurons 

expressing AR increased to 96.4 ± 1 % (376 ± 21.2 AR +/τGFP+ of 390.7 ± 26.3 τGFP+, n=3 

mice) at E16.5 (Figure 3.3 C-D). 

To address the question when ARC kisspeptin neuron starts to express ER I used double 

heterozygous KissIC/eR26-GFP mouse brain and performed immunolabelling against ERand 

GFP. I detected ER expression in the ARC at E13.5 (Figure 3.4 A). At E13.5, 61.6 ± 6.7% of 

kisspeptin neurons expressed ERα (45.6 ±16.7 ERα +/τGFP+ of 70 ± 18.9 τGFP+, n=3 mice). 

The number of kisspeptin neurons expressing ERα increased to 93.1 ± 1.7% (317 ± 7.6 

ERα+/τGFP+ of 340.7 ± 10.6 τGFP+, n=3) at E16.5 (Figure 3.4 C-D).The expression of AR and 

ER marks the birthplace of kisspeptin neuron in the ARC (Figure 3.3 B and Figure 3.4 B). 
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Figure 3.3 ARC kisspeptin neurons express AR in the embryonic male brain. A-C, Double 

immunolabelling with antibody against AR (red) and GFP (green) on whole head sagittal section in 

KissIC/eR26-GFP male embryos at E12.5, E13.5 and E16.5. Note, the AR expression was not detected 

at E12.5. The first expression of AR was observed in ARC at E13.5. The kisspeptin neuron born at ARC 

express AR demonstrating steroid sensitivity. The number of AR expressing kisspeptin neurons increase 

in population at E16.5. D, Graph showing the ratio of kisspeptin neurons co-expressing AR in the 

developing embryonic brain. **, P<0.01; Scale bar, 50 m (overview) and 25 m (insert)  
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Figure 3.4 ARC kisspeptin neurons express ER in the embryonic male brain. -CDouble 

immunolabelling with antibody against ER(red) and GFP (green) on whole head sagittal section in 

KissIC/eR26-GFP embryos at E12.5, E13.5 and E16.5. Note, ERexpression was not detected at E12.5. 

The first expression of ER was observed in ARC at E13.5. The kisspeptin neurons born at ARC express 

ER demonstrating steroid sensitivity. D, Graph showing the ratio of kisspeptin neurons co-expressing 

ER in the developing embryonic brain. **, P<0.05; Scale bar, 50 m (overview) and 25 m (insert). 
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3.1.4 Establishment of kisspeptin and GnRH neuronal connectivity in utero. 

The establishment of kisspeptin-GnRH neuron circuit in utero was analyzed using KissIC/R26-

BIZ male embryonic mice in which barley lectin (BL) is produced by kisspeptin neurons (Fig 

3.5 A). BL is a bidirectional transneuronal tracer marking both the upstream and downstream 

neuron while LacZ acts as a stationary marker labeling the primary neurons. Immunostaining for 

βGalactosidase (βgal) activity which is a gene product of LacZ to identify BL producing neurons 

revealed that BL producing neurons were found primarily in the ARC (Fig 3.5 B-D). In addition 

to the ARC, BL was detected in the anterior brain regions such as POA and OVLT where GnRH 

are present. The presence of transynaptically transferred BL in the anterior brain shows that BL 

producing (kisspeptin) neurons are synaptically connected to the neurons in the anterior brain. 

Tracing of kisspeptin neurons using transneural tracer BL revealed that kisspeptin neurons in the 

ARC communicate with the GnRH neurons (Fig 3.5 E-G). At E16.5 approximately 40% (130.7 

± 14.3 BL+/GnRH+ of 333 ± 33 GnRH+, n=3) of the GnRH neurons are connected to kisspeptin 

neurons. The number of connected neurons increased to 60.4% (147.7 ± 32 BL+/ GnRH+ of 243 

± 50 GnRH+, n=3) at E18.5. At PND2 nearly 57% (127.3 ± 19 BL+/ GnRH+ of 222 ± 17 GnRH+, 

n =3) of the GnRH neurons are connected to ARC kisspeptin neurons (FIG 3.5 H). These 

experiments demonstrate that embryonic GnRH neurons are synaptically connected to ARC 

kisspeptin neurons.  
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Figure 3.5 ARC kisspeptin and GnRH connectivity is established in utero. A, Genetic strategy for 

KissIC/R26-BIZ mice in which lacZ acts as a stationary marker and BL is transferred to synaptically 

connected neurons. B-D, At E18.5, b-gal producing primary neurons are restricted to the ARC. E-G, 

Immunostaining against GnRH (green) and BL (red) at E16.5, E18.5 and PND2. Closed arrowhead 

indicates that GnRH neuron contain BL whereas open arrowhead points to GnRH neuron that do not 

contain BL (right). H, Quantification of the percentage of BL positive GnRH neurons across different 

developmental stages. Scale bars: 200 m (B), and 50 mm (E-G). Declaration: Contributed by Kumar 

et al., 2015b. 
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3.2 Differential expression of R and dopaminergic AVPV 

kisspeptin neurons during puberty 

3.2.1 Expression of R in AVPV and ARC kisspeptin neurons during 

reproductive maturation 

Kisspeptin neuron signaling is a crucial component of the reproductive circuit maturation. 

Previous studies have shown that AVPV and ARC kisspeptin neurons are sensitive to estrogen 

and control GnRH neuron. The question that I asked was whether the sensitivity (responsiveness) 

of AVPV and ARC Kisspeptin towards estrogen change before puberty (P21) and after puberty 

(P84). 

To address this question I used KissIC/eR26-GFP brain (P21) and stained them with ER 

antisera. The number of ARC kisspeptin neurons expressing ER at P21 was approximately 90 

% whereas at P21, the number of AVPV kisspeptin neurons expressing ERwas approximately 

30%. Surprisingly at P84 the number of AVPV kisspeptin neurons expressing ER increased to 

approximately 73% whereas the sensitivity of ARC kisspeptin neurons remained the same. These 

experiment showed that the sensitivity of AVPV kisspeptin neuron towards estrogen 

significantly increase during reproductive maturation. 

 

 

   

Figure 3.6 AVPV and ARC kisspeptin neurons express ERA,Immunohistochemistry analysis of 

AVPV (top) and ARC (bottom) in kissIC/R26-GFP using antisera against GFP (green) left , ER (red) 

middle, kisspeptin neuons expressing ERyellow) left. B, Quantification of the percentage of kisspeptin 
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neurons expressing ER in P21 and P84 female kissIC/R26-GFP mice. *, P < 0.05. Declaration: P84 

quantification and Figure B contributed by Kumar et al., 2015a. 

 

3.2.1 Expression of dopaminergic AVPV and ARC kisspeptin neurons 

during reproductive maturation 

Kisspeptin neuron has been shown to produce dopamine and dopamine has an inhibitory effect 

on GnRH neuron. To understand if dopaminergic kisspeptin neurons increase during maturation. 

I performed dual immunohistochemistry using antisera against GFP and tyrosine hydroxylase 

(TH) which is a catecholaminergic neuronal marker in double heterozygous KissIC/eR26-GFP 

female mice. At P21 (before puberty), I found that the number of AVPV kisspeptin neurons 

positive for TH was 10.4% ± 1.3% (n = 3). At P84 (after puberty), the number of AVPV 

kisspeptin neurons positive for TH had greatly increased to 47.3% ± 2% (n = 3). This suggest 

that dopamine being an inhibitor on GnRH neuron might play a crucial rule during the onset of 

puberty and modulate GnRH neuron firing during estrous cycle. 

 

 

 

 

Figure 3.7 AVPV and ARC kisspeptin neurons express THA,Immunohistochemistry analysis of 

AVPV (top) and ARC (bottom) in kissIC/R26-GFP using antisera against GFP (green) left , TH (red) 

middle, kisspeptin neurons expressing THyellow) left. B, Quantification of the percentage of kisspeptin 

neurons expressing TH in P21 and P84 female kissIC/R26-GFP mice. ***, P < 0.001. Declaration: P84 

quantification and Figure B contributed by Kumar et al., 2015a. 
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3.3 Distribution and characterization of GnRH receptor (GnRHR) 

neurons in the female mouse brain 

3.3.1 Distribution of GnRH receptor neurons in the female mouse brain 

I examined GnRH receptor (GnRHR) expressing neurons which is the target of the GnRH 

neurons using binary genetic strategy. I mapped the neuroanatomical distribution of GnRHR 

neurons across different developmental ages using immunofluorescence. Previous studies have 

shown that GnRH neurons communicate with neurons in approximately 50 functionally different 

brain areas indicating that GnRH neurons integrate a variety of information and influence 

numerous brain functions. 

To visualize GnRHR expressing neurons in female mice I bred GnRHR-IRES-cre (GRIC) mice 

with eROSA26-CAGS-GFP female mice. 

In GRIC/eRosa26-GFP mice, GFP serves as a readout for GnRH receptor (GnRHR) neurons. 

Binary genetic strategy to genetically label GnRH receptor (GnRHR) neurons 

 

                 GnRHR-IRES-Cre (GRIC)            x                    eROSA-GFP 

 

The anatomical locations of GnRH receptor neurons were identified in the coronal sections of 13 

weeks and 10 weeks old adult GRIC/eR26-GFP female mice. The brains were cryosectioned 

into five serial sets of 14 m coronal sections on superfrost slides. First set of sections from each 

animal was used for immunohistochemistry studies to examine GnRH receptor neuron 

expression. GnRH receptor neurons were identified between bregma 1.34 mm and bregma -6.12 

mm in the mouse brain atlas (Paxinos and Franklin, 2001). 
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Mouse brain regions expressing GFP 

 

TELENCEPHALON 

 ACo              Anterior cortical amygdaloidal nucleus (ACo) 

 BMA          Basomedial amygdaloid nucleus 

 MeA        Medial amygdala 

 MePD           Posterodorsal medial amygdala 

 Pir         Piriform cortex 

 PLCO                               Posterolateral cortical amygdale nucleus 

 PMCO                              Posteromedial cortical amygdaloid nucleus 

 BMA                                           Basomedial amygdale nucleus 

 

DIENCEPHALON 

 MPA                               Medial preoptic area 

            BSTMPM       Bed nucleus of the stria terminalis, posteromedial 

            BSTMPL       Bed nucleus of the stria terminalis, posterolateral 

            AV                          Anteroventral thalamic nucleus 

 LD        Laterodorsal thalamic nucleus 

 LHb        Lateral habenular nucleus 

 LHA        Lateral hypothalamic areas 

 AD                   Anterodorsal thalamic nucleus 

 Pe                   Periventricular hypothalamic nucleus 

 AM                   Anteromedial thalamic nucleus 

           VMH                 Ventromedial hypothalamic nucleus 

 MD        Mediodorsal thalamic nucleus 

 AH        Anterior hypothalamic area 

 DM        Dorsomedial hypothalamus nucleus 

 LA        Lateroanterior hypothalamic nucleus 

 PH        Posterior hypothalamic area 
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MESENPHALON 

 DL PAG       Dorsolateral periaqueductal gray 

 DM PAG       Dorsomedial periaqueductal gray 

 SC        Superior colliculus 

 VLPAG                                      Ventrolateral periaqueductal gray 

 

METENCEPHALON AND MYELENCEPHALON 

 Cerebellum 

 Raphe nucleus 
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Figure 3.8 Schematic diagrams showing the distribution of GnRH receptor neurons in the adult 

female mouse brain. Numbers below each diagram points to the distance from bregma in mm. Red 
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dots, location of GnRHR neurons. Arc, arcuate nucleus; Diagrams are adapted and modified from the 

Mouse Brain Atlas, Paxinos and Franklin, 2001. 

 

3.3.2   Expression of GnRH receptor neurons in olfactory and reproductive 

centers in the female mouse brain 

I prepared coronal sections from GRIC/eR26-GFP adult female mice and performed 

immunostaining using antisera against GFP. I found that the GnRH receptor expressing neurons 

to be highly concentrated in olfactory and reproductive centers such as piriform cortex (Pir), 

anterior cortical nucleus of amygdala (ACo), posterodorsal medial amygdala (MePD), 

ventromedial hypothalamus (VMH) and bed stria terminalis and periaqueductal grey (PAG).  

 

A  
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B 

                           

 

 

Figure 3.9 Expression of GnRH receptor neurons in olfactory and reproductive centers: A-B, 

GnRHR neurons expression in olfactory processing area and reproductive centers in 13 week old adult 

female mouse brain. A, Bregma -1.70mm; B, Bregma -4.60mm. 

 

3.3.3 GnRH receptor neurons are upregulated during reproductive 

maturation 

To identify if GnRH receptor neurons are upregulated during reproductive maturation I analyzed 

GnRH receptor expression at different developmental stages 6 weeks, 10 weeks and 13 weeks 

GRIC/eR26-GFP female mice. I identified that the GnRH receptor neurons are upregulated 

across developmental stages, especially in olfactory and reproductive centers between 10 weeks 

and 13 weeks. 

 

 

                                     

Figure 3.10 GnRH receptor neurons are upregulated in mouse brain. Representative images 

depicting the upregulation of GnRH receptor neurons in the posterodorsal medial amygdala (MePD). A, 

Expression of GnRH receptor neurons in 10 weeks old GRIC/eR26-GFP female mice. B, Expression of 

GnRH receptor neurons in 13 weeks old GRIC/eR26-GFP female mice. 
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3.3.4 GnRH receptor neurons express steroid hormone receptor  

To determine if GnRH receptor neurons are sensitive to steroid hormones, I used 13 weeks old 

GRIC/eR26-GFP female mice to analyze whether GnRH receptor neurons express ER 

I performed double immunostaining using antisera against ERα and GFP. I identified that a 

subset of GnRH neurons in medial preoptic area (MPO), posterodorsal medial amygdala (MePD) 

and all the GnRH receptor neurons in ARC region express ERα. 

 

 

 

 

Figure 3.11 GnRH receptor neurons express ER in GRIC/eR26-GFP female mice. Dual 

immunostained photomicrograph of GFP (green) and estrogen receptor alpha (ER) (red) showing high 

degree of colocalization in the MPO (top), MePD (middle) and ARC (bottom) in a 13 week old female 

GRIC/eR26-GFP mice. 
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3.3.5 GnRH receptor neurons and kisspeptin expression 

To detect whether kisspeptin neuron which is a key upstream regulator of GnRH neuron also 

express GnRH receptor. I performed dual immunolabelling on GRIC/eR26-GFP female mice 

using antisera against GFP and kisspeptin. Dual label immunohistochemistry showed that 

kisspeptin neuron does not express GnRH receptors. 

 

 

 

Figure 3.12 GnRH receptor and kisspeptin expression. A-C, Immunohistochemistry analysis on 14 

μm coronal section of the medial periventricular nuclei (Pe) from 13 week old female GRIC/eR26-

τGFP  mice (n=3) with anti GFP and anti Kisspeptin antibody reveals that GFP signal (closed arrow 

head)does not overlap with kisspeptin signal (open arrowhead). 3V, Third ventricle, A, 100 μm, B, C, 25 

μm, Bregma 0.02mm. 
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3.3.6 GnRH receptor neurons are activated after olfactory stimuli 

In order to examine whether the chemosensory cues activate GnRH receptor neurons, I exposed  

GRIC/eR26-GFP male mice to female mice soiled bedding as a source of olfactory input for 2 

hr. Soiled bedding from adult female mice were collected, mixed and were used to stimulate 

GRIC/eR26-GFP male mice. I used c-Fos as a neuronal activity marker to determine the neurons 

activated by olfactory input. I used immunohistochemistry to detect the expression of c-Fos in 

GnRH receptor neurons after chemosensory stimulation. Exposure to clean bedding did not 

induce c-Fos expression in the neurons whereas stimulation with female soiled bedding 

significantly induces c-Fos expression in GnRH receptor neurons in the male mice. The increased 

density of c-Fos were found in main olfactory bulb (MOB), accessory olfactory bulb (AOB) and 

posterodorsal medial amygdala (MePD). The medial amygdala integrates input, both the main 

olfactory input, accessory olfactory input and the hormonal state to trigger behavioral response. 

This data suggest that GnRH receptor neurons could be a downstream target of olfactory stimuli. 

                   A 

 

 

Figure 3.13 GnRH receptor neurons are activated after olfactory stimuli. A, Image illustrating of c-

Fos immunoreactivity in GnRH receptor neurons in MePD, ACO and PMCO of GRIC/eR26-GFP male 

mice when exposed to female mice bedding for 2 hours. 
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4. Discussion 

4.1 Establishment of Kisspeptin-GnRH neural circuit in utero 

Reproductive capacity is essential for the survival of the species. In all vertebrates, gonadotropin 

releasing hormone (GnRH) neuron is the master regulator of reproduction. Fertility depends on 

the pulsatile release of gonadotropin releasing hormone (GnRH) by GnRH neurons located in 

the hypothalamus. GnRH neurons are modulated by endocrine, metabolic and environmental 

inputs (Skorupskaite et al., 2014; Jeong et al., 2006). As GnRH neurons do not express sex steroid 

receptors, kisspeptin neurons mediate in relaying gonadal steroid feedback signals to GnRH 

neurons (Javed et al., 2015). Kisspeptin signaling is essential both for the initiation of puberty as 

well as for the maintenance of reproductive physiology. Loss of function mutation of kisspeptin 

signaling results in infertility (Topaloglu et al., 2012; Seminara et al., 2003). Although the 

function of kisspeptin/GPR54 system in the reproductive axis has been well studied during 

postnatal life, very few studies have been conducted on the development of kisspeptin/GPR54 

system during fetal life. 

The first aim of this thesis is to understand the development of the kisspeptin/GPR54 system in 

the male embryonic brain. I studied the development of kisspeptin/GPR54 expressing neurons, 

and when kisspeptin neurons becomes sensitive to steroid hormone receptors. In addition I 

studied when communication between kisspeptin neurons and GnRH neurons are established in 

the male mouse brain to better understand how kisspeptin in the hypothalamus regulate GnRH 

secretion from GnRH neurons. In the present study, I used genetic strategies and investigated the 

birth and the neuroanatomical distribution of kisspeptin neurons in KissIC/eR26-GFP male 

embryos (Figure 3.1). Kisspeptin expression was not detected at E12.5. I observed the first 

expression of kisspeptin at E13.5 in the arcuate nucleus (ARC) of the hypothalamus, while I did 

not detect kisspeptin expression in the AVPV region (Figure 3.1 B). Previous studies have shown 

that upon administration of bromodeoxyuridine (BrdU) at different gestational period to female 

rats and upon performing double immunolabelling for kisspeptin and BrdU revealed that 

kisspeptin expression begun between E12.5 and E13.5 in the ARC. Kisspeptin immunoreactive 

cells in the ARC increased in their number until E18.5 (Desroziers et al., 2012). Studies using in 

situ hybridization (ISH), quantitative reverse transcription real time PCR (QPCR) and 

immunohistochemistry have showed that the kiss1 mRNA is detected at E13 within the ARC. At 

E17, QPCR revealed that female have higher number of cells than male but ISH showed that 

there is no difference in the number of cells between male and female (Knoll et al., 2013). My 
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results are consistent with both the studies. My study revealed that the number of kisspeptin 

neuron increase significantly from E13.5 to E16.5 (Figure 3.1 E). At E 16.5, approximately 92% 

of the GFP cells are positive for kisspeptin immunolabelling confirming the faithfulness of the 

binary genetic system (Figure 3.1 F).  

It is known that kisspeptin, a potent activator of GnRH neurons acts via GPR54. GnRH neurons 

express GPR54. Injection of kisspeptin in GPR54 knockout mice did not result in the increase of 

LH and FH suggesting that kisspeptin acts directly on GnRH neuron via GPR54 (Messager et 

al., 2005). Mutation in GPR54 result in autosomal recessive idiopathic hypogonadotropic 

hypogonadism where the gonadotropin level is low in both humans and mice pointing that 

GPR54 signaling is critical for reproductive regulation and puberty (Seminara et al., 2003; 

Kauffman et al., 2007). GPR54 activating mutation are associated with precocious puberty (Teles 

et al., 2008). Though the role and distribution of GPR54 expressing neurons has been studied the 

development of GPR54 expressing neurons has not been well characterized during embryonic 

male brain development. In the next experiment, I used GPIC/eR26-GFP male embryos and 

analyzed the expression of GPR54 (Figure 3.2). I did not observe GPR54 expression at E12.5. I 

found that GPR54 expression starts at E13.5. At E13.5, I detected GnRH neurons mostly in the 

nasal septum and 3% of GnRH neuron expressed GPR54 (Figure 3.2 B-C). At E16.5 most of the 

GnRH neurons has reached their final location in the forebrain. At E16.5, 43% of the GnRH 

neuron expressed GPR54 respectively (Figure 3.2 F). Previous studies using ISH demonstrated 

that the expression of kiss1 mRNA and GPR54 mRNA at E13 (Knoll et al., 2013). My studies 

show that the expression of both kisspeptin and GPR54 start at E13.5 and their coordinated 

increase at E16.5 suggest the possibility of signaling between kisspeptin neurons and GnRH 

neurons during the embryonic development.  

 

Since kisspeptin/GPR54 signaling has been associated with anti-metastatic effects it has been 

speculated that kisspeptin/GPR54 signaling might act as a pausing signal for migrating GnRH 

neurons (Schwarting et al., 2007). Studies in GPR54 knockout mice have shown that the GnRH 

neuron exhibited normal migration and projection indicating that hypogonadism is only due to 

the lack of release of GnRH (Messager et al., 2005). My study revealed that all GPR54 expressing 

neurons are GnRH neurons but not all GnRH neurons express GPR54 during embryonic brain 

development. In addition, my data indicate that the expression of GPR54 in GnRH neuron was 

independent of the migratory path of the GnRH neuron (Figure 3.2 D). Hence kisspeptin/GPR54 

signaling might not act as a cessation signal for migrating embryonic GnRH neurons. 
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At postnatal day 2, I detected 72% of the GnRH neurons express GPR54 (Figure 3.2 F). Similar 

observations has been made in studies using knockin LacZ mice in which 40% of the GnRH 

neurons express GPR54 at birth and the number increases to 70% by PND20 (Herbison et al., 

2010). GPR54 was detected in 14 regions in the brain including dentate gyrus, hypothalamus, 

PAG. Northern blot and in situ hybridization analyses revealed that GPR54 is expressed in brain 

regions such as pons, midbrain, thalamus, hypothalamus, amygdala, cortex, frontal cortex, and 

striatum as well as peripheral regions such as liver and intestine (Herbison et al., 2010; Lee et 

al., 1999). GPR54 is also located in regions that do not contain GnRH neurons such as in pituitary 

and gonads raising the possibility to have additional functions (Irwig et al., 2005). The presence 

of GPR54 in the PAG suggests that GPR54 might play a role in sexual and motor behaviour.  

The gonadal steroid hormones regulate the secretion of GnRH and gonadotropin hormones 

through positive and negative feedback loop by acting on both hypothalamus and pituitary and 

enable reproductive function (Thackray et al., 2010). Circulating steroid hormones such as 

estrogen and testosterone exert profound influence on the reproductive function. In rodents 

GnRH neurons do not express ER (Roseweir et al., 2009). Steroid hormones exert their effect 

on GnRH neurons via the kisspeptin neurons. Gonadal steroids act as a key regulator of 

kisspeptin neuron at different stages of the reproductive physiology (Irwig et al., 2005). 

Kisspeptin neurons in the ARC and AVPV have different functions in the HPG axis. In the adult 

female mice almost all the kisspeptin neuron in the AVPV and ARC express ER suggesting 

that kisspeptin neurons in the AVPV and ARC are sensitive to estrogen. Sex steroids also regulate 

hypothalamic expression of Kiss1 and GPR54. One study revealed that the expression of Kiss1 

and GPR54 increased after gonadectomy but this effect was reversed by sex steroid replacement 

(Navarro et al., 2004).  AVPV kisspeptin neurons expressing ERα cause positive feedback of 

estrogen on GnRH neurons during LH surge and ovulation. ARC kisspeptin neurons that express 

ERα cause negative feedback of estrogen on GnRH neurons (Smith et al., 2005).  

Mayer and colleagues using a conditional knockout of ERin kisspeptin neuron studied pubertal 

maturation and found that puberty occurred in WT mice approximately at 29 days whereas in 

kisspeptin specific ERknockout mice the puberty onset was  approximately at 13 days. These 

data demonstrate that loss ER in kisspeptin neurons leads to precocious puberty (Mayer et al., 

2010). It is unclear when during development kisspeptin neurons become sensitive to steroid 

hormones.  

I used Kiss/eR26-GFP female mouse in which kisspeptin neurons express GFP to shed light 

on when kisspeptin neurons become sensitive to steroid hormones during development (Figure 
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3.3). I detected that kisspeptin neurons are born in the ARC of the embryonic male brain at E13.5. 

The number of kisspeptin neurons increase while being restricted to the ARC (Figure 3.3 B).  

Interestingly ER and AR were also first detected at E13.5. At E13.5, approximately 63% of 

kisspeptin neurons express AR and at E16.5, 96% of kisspeptin neurons express AR (Figure 3.3 

D). At E13.5, 61% of kisspeptin neurons express ER and the number increases to 93 % at E16.5 

(Figure 3.4 D) The birthplace of the steroid hormone receptors also marks the birthplace of 

kisspeptin neurons in the embryonic brain.     

In ovariectomized mice, upon gonadal steroid administration that generates LH surge, kisspeptin 

neurons express neuronal activity marker, c-Fos. In wild type mice that generate LH surge, 50% 

of the GnRH neurons express c-Fos whereas Kiss1 and GPR54 knockout mice did not generate 

LH surge nor did the GnRH neurons express c-Fos. This demonstrates that both Kiss1 and 

GPR54 are important for the action of GnRH and LH surge (Clarkson et al., 2008).  In rat, 77% 

of GnRH neurons express GPR54 and when kisspeptin is administered intracerebroventricularly 

more than 85% of the GnRH neurons expressed c-Fos demonstrating that kisspeptin can directly 

act on GnRH neuron. Another study showed that more that 90% of GnRH neurons express 

GPR54 mRNA both in adult and juvenile mice whereas AVPV kiss-1 mRNA increased through 

the reproductive maturation from juvenile to adult (Hans et al., 2005). Administration of 

kisspeptin peptide induce LH levels in both males and females (Navarro et al., 2004). Continuous 

administration of kisspeptin leads to the desensitization of GPR54 suggesting that invivo 

pulsatile release of kisspeptin could trigger GnRH release during puberty (Seminara et al., 2006).  

Although studies have shown the ontogeny of kisspeptin and GPR54 in the embryonic mice 

brain, the development of kisspeptin-GnRH neuronal circuitry has not been well established in 

the male brain. Studies using calcium imaging demonstrated that GnRH neurons from the 

embryonic nasal explant respond to kisspeptin application (Constantin et al., 2009). Kisspeptin 

circuitry has not been well studied due to the insensitivity of existing kisspeptin antibodies. One 

study using dual immunofluorescence experiments detected the interaction between kisspeptin 

fibers and GnRH neurons at P25 (Clarkson and Herbison, 2006).  My study made use of 

transynaptic tracing method to dissect when kisspeptin neurons communicate with GnRH 

neurons during embryonic development. In the present study transynaptic tracing of kisspeptin 

neurons using transneural tracer BL in KissIC/R26-BIZ embryonic male mice revealed that the 

connectivity of ARC kisspeptin neurons with the GnRH neurons is established in utero (Fig 3.5 

A-G). The connectivity was first established at E16.5. At E16.5 approximately 40% of GnRH 

neurons are connected to ARC kisspeptin neurons. The number of GnRH neurons connected to 
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kisspeptin neurons increased to 60% at PND2 (Fig 3.5H). GnRH neurons containing BL was 

observed in all hypothalamic nuclei containing GnRH neurons indicating that the connectivity is 

independent of the location of GnRH neurons. A selective population of GnRH neurons are 

connected to kisspeptin neurons and the connected GnRH neurons are in hypothalamic nuclei. 

The synaptic connection between kisspeptin neuron and GnRH neuron suggest that kisspeptin 

signal is operative via GPR54 expressed by GnRH neuron. These findings suggests that the 

connectivity between kisspeptin neurons and GnRH neurons is established during embryonic 

development. 

4.2 Expression of ERand dopaminergic kisspeptin neurons during puberty 

It is known that the increased frequency of GnRH secretion is critical for puberty. The precise 

mechanism of how estrogen regulates GnRH secretion is not completely known. GnRH neuron 

do not express ER. Estrogen regulates GnRH neurons via AVPV kisspeptin neuron and ARC 

kisspeptin neuron in adult mice (Radovick et al., 2012). However, different roles have been 

proposed for AVPV kisspeptin neurons and ARC kisspeptin neurons in mediating estrogen 

feeback on GnRH neurons (Lehman et al., 2010). Kisspeptin neurons expressing ER is 

responsible for generating LH surge which is important for ovulation (Clarkson et al., 2008). In 

mice 40-60% of the AVPV kisspeptin neurons express gonadal steroid hormone receptors. In 

ovariectomized mice, upon gonadal steroid administration that generates LH surge, kisspeptin 

neurons express c-FOS whereas the kisspeptin neurons in the non LH surging mice do not 

express c-FOS. In wild type mice that generate LH surge, 50% of the GnRH neurons express c-

FOS whereas Kiss1 and GPR54 knockout mice did not generate LH surge nor did the GnRH 

neurons express c-FOS. This demonstrates that both Kiss1 and GPR54 are important for the 

action of GnRH and LH surge (Clarkson et al., 2008). Upon injection of monoclonal antibody in 

the POA that inhibits kisspeptin abolishes estrous cyclicity in rats (Kinoshita et al., 2005). 

Estrogen plays an important role in the regulation of kisspeptin neuron during puberty. Estrogen 

exerts its effect via ER (Clarkson, 2013). The above mentioned studies suggests that AVPV 

kisspeptin neurons and ARC kisspeptin neurons have distinct roles in mediating estrogen 

feedback but how their sensitivity to estrogen changes during reproductive maturation has not 

been established.  

To identify estrogen sensitive kisspeptin neurons during reproductive maturation I stained 

sections obtained from KissIC/R26-GFP female mice against GFP and ER(Figurey 

study showed that at P21 (before puberty), 31% of AVPV kisspeptin neurons express ERand 
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88% of ARC kisspeptin neurons express ER(Figure 3.6 Bt P84 (after puberty), 73% of 

AVPV kisspeptin neurons express ERand 90% of ARC kisspeptin neurons express 

ERKumar et al., 2015a). The number of estrogen sensitive ARC kisspeptin neurons remains 

same pre-puberty and post-puberty. Therefore my results demonstrate that the estrogen sensitive 

AVPV kisspeptin neurons increased in number during reproductive maturation. Previous studies 

in mice established that the AVPV kiss1 mRNA peak during proestrous and ARC Kiss1 mRNA 

remains low. During LH surge, AVPV kiss1 mRNA levels are increased.   AVPV kisspeptin 

neurons were positive for c-Fos only during the LH surge and not during diestrus whereas ARC 

kisspeptin neuron did not express c-Fos (Smith et al., 2006).  

My study extends the understanding of AVPV kisspeptin neurons and ARC kisspeptin neurons 

in mediating estrogen feedback action on GnRH release. AVPV kisspeptin neurons might be the 

target to relay estrogen –positive feedback on GnRH release. Studies using genetic tracing 

strategy demonstrate that only a subpoulation of AVPV and ARC kisspeptin neurons are 

synaptically connected with GnRH neurons. All the AVPV kisspeptin neurons that are connected 

to GnRH neurons are estrogen sensitive (Kumar et al., 2015a) 

 

Dopamine exhibits inhibitory action to affect LH secretion (Drouva et al., 1977). 

Immunohistochemistry studies revealed that in the AVPV most of the kisspeptin neurons express 

TH but very few TH neurons coexpress kisspeptin (Semaan et al., 2010).  20% of GnRH neurons 

receive dopaminergic input from AVPV (Liu et al., 2012). The function of AVPV kisspeptin 

neurons coexpressing TH is not completely understood. To identify if dopaminergic kisspeptin 

neurons increase during puberty. I stained sections prepared from KissIC/R26-GFP females 

against GFP and tyrosine hydroxylase (TH) (Figure 3.7). identified that at P21 (before puberty), 

10% of AVPV kisspeptin neurons express TH (Figure 3.7 B). At P84 (after puberty), 47% of 

AVPV kisspeptin neurons express TH. Therefore the number of dopaminergic AVPV kisspeptin 

neuron increased in number during pubertal maturation whereas the number dopaminergic ARC 

kisspeptin neurons remained the same. 

The increase in estrogen sensitive and catecholaminergic AVPV kisspeptin neurons across 

reproductive developmental stages suggest that estrogen signaling and dopamine might play an 

important role in reproductive maturation. This was in consistent with the previous studies which 

showed that Kiss1 expression increases during puberty and the level fluctuates during estrous 

cycle (Smith et al., 2006). Gonadal steroids influence the level of TH in the AVPV. In rats 

gonadectomy resulted in the increase of the number of TH mRNA containing cells and estradiol 
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administration resulted in the decrease of the AVPV TH mRNA neurons in female rats (Simerly, 

1989). 

Estrogen sensitivity and TH expression significantly increased during puberty in AVPV 

kisspeptin neurons. Thus AVPV kisspeptin neurons express both stimulator, kisspeptin and 

inhibitor, dopamine and regulate GnRH release. Estrogen sensitivity and TH expression 

remained the same pre-puberty and post-puberty in ARC kisspeptin neurons. There are several 

unanswered questions left to be explored in kisspeptin and GnRH biology. The precise molecular 

mechanism by which estrogen exert differential effect on ARC and AVPV kisspeptin neurons is 

still unknown. Previous studies using anterograde and retrograde tracing technique showed that 

ARC kisspeptin neuronal population innervate to wide number of hypothalamic and limbic 

region nuclei, whereas AVPV kisspeptin neuronal population innervate to medially located 

hypothalamic nuclei (Yeo et al., 2011). Kumar and colleagues dissected the connectivity between 

AVPV and ARC kisspeptin neurons with GnRH neuron using a combinatorial genetic strategy 

demonstrating that a subpopulation of AVPV and ARC kisspeptin neurons are synaptically 

connected to GnRH neuron. All the kisspeptin neurons that are connected to GnRH neurons 

express ERand some are TH positive neurons (Kumar et al. 2015a).  

4.3 Expression and characterization of GnRH receptor neurons in the mouse 

brain 

GnRH acts on the pituitary gland to stimulate the synthesis and release of gonadotropins, 

luteinizing hormone (LH) and follicle stimulating hormone (FSH). In pituitary gonadotropes, 

10% of the cells express GnRH(R) receptor (Naor et al., 1982). The role of GnRHR in pituitary 

is well established but the role of GnRH receptor in the brain in not known. Several studies have 

reported that GnRH neurons project to different hypothalamic nuclei. Injecting a retrograde 

neural tracer, wheat germ agglutinin (WGA) in the median eminence revealed that approximately 

70% of GnRH neurons in septal and anterior hypothalamic region project to the median 

eminence. The rest of the GnRH neurons projects to different hypothalamic and extra 

hypothalamic regions of the brain (Merchenthaler et al., 1989). In 2005, Yoon and colleagues 

identified that a subset of olfactory sensory neurons targets the hypothalamus and regulate GnRH 

synthesis and secretion (Yoon et al., 2005). Another study identified the GnRH neural circuitry 

using Barley lectin (BL), genetic neural tracer in mice. The study demonstrated that GnRH 

neurons which are approximately 800 in number located in the hypothalamus have synaptic 

connection with approximately 50,000 neurons in 53 different brain areas. When male mice were 
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exposed to female soiled bedding several of the BL labelled neurons in medial amygdala (MeA), 

Posteromedial cortical amygdaloid nucleus (PMCO) expressed c-Fos (Merchenthaler et al., 

1989; Boehm et al., 2005). This suggest that olfactory system transmit information to GnRH 

neurons and GnRH neurons in addition to projecting to the median eminence also project to 

different brain areas especially olfactory processing areas. These observations led me to 

speculate that GnRH neuropeptide could also be released in the brain and act on GnRHR 

expressing neurons in the brain to modulate reproductive behavior. 

Many animals transmit information about their social status, territorial ownership and 

reproductive status via chemosignals (Nakamura et al., 2007). Chemosensory cues are known to 

regulate neuroendocrine functions such as estrous induction, pubertal development and elicit 

behavioral response essential for reproduction (Halpern et al., 2003; Meredith, 1998). In the main 

olfactory system, main olfactory epithelium receives information and is relayed to anterior 

cortical nucleus (AON), olfactory tubercle (OT), tenia tecta (TT), and piriform cortex (Pir). The 

vomeronasal system receive sensory input which is relayed to medial amygdala (MeA), 

Posteromedial cortical amygdaloid nucleus (PMCO) and posterior bed nucleus of the stria 

terminalis (BNSTp) (Dulac et al., 2006).  

In the present study to understand the potential role of GnRHR neurons in the brain I precisely 

mapped the distribution of GnRHR neurons at different developmental stages in GRIC/eR26-

GFP adult female mouse. I identified that GnRHR neurons in pheromone information 

processing areas. The GnRHR neurons are concentrated in posteromedial cortical amygdaloid 

nucleus (PMCO), anterior cortical amygdaloid nucleus (ACO), piriform cortex (PC) and medial 

amygdala (MeA) (Figure 3.9). The distribution of GnRH receptors is in consistent with the 

previous study (Wen et al., 2011).  

In the GRIC/eR26-GFP adult female mice I detected GnRHR neurons in bed nucleus of the stria 

terminalis (BNST), ventromedial nucleus of the hypothalamus (VMH) which plays a role in 

mating behavior. I also detected GnRHR neurons in the periaqueductal gray (PAG). PAG is 

involved in multiple functions such as vocalization, fear and lordosis. Upon injection of 

retrograde transneuronal tracer pseudorabies virus in the lumbar epaxial muscle, the 

pseudorabies virus labelled cells that control lordosis behavior such as the PAG (periaqueductal 

gray, medullary reticular formation (MRF) and ventromedial nucleus of the hypothalamus 

(VMH) (Daniels et al., 1999). Electrical stimulation of PAG triggered lordosis behavior in female 

rats and bilateral lesion of PAG resulted in reduced lordosis behavior in response to male mount 
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(Sakuma et al., 1979a; Sakuma et al., 1979b). I also detected GnRHR expression in medial 

amygdala which could provide emotional tag to information and, play a role in mate recognition 

and mating. Lesion in the medial amygdala resulted in significant reduction of the lordosis 

behavior (DiBenedictis et al., 2012).  

 Interestingly, I identified that the number of GnRHR neurons are upregulated after 6 weeks. 

Studies have shown that GnRH neurons reach their final number and location during late 

embryonic stage but the development of GnRHR neuorns has not been studied (Jasoni et al., 

2009). I compared 10 weeks and 13 weeks old GRIC/eR26-GFP female mice. I found that the 

expression of GnRHR neurons significantly increased at 13 weeks (Figure 3.10). For the first 

time my study revealed that the GnRHR neurons are significantly upregulated until 13 weeks. 

GnRHR expression in the brain could be upregulated by GnRH, as well as by steroid hormones 

like estrogen during reproductive maturation. Previous studies in pituitary have shown that 

GnRHR expression is upregulated by estrogen (Choi et al., 2005). To understand if the GnRHR 

expressing neurons are sensitive to estrogen in the brain. I performed dual immunolabelling 

against ERand GFP on sections from GRIC/eR26-GFP female mice. My experiments 

revealed that a subpopulation GnRHR neurons neurons in medial preoptic area (MPOA), 

posterodorsal medial amygdala (MePD) and all the GnRHR neurons in arcuate nucleus (ARC) 

are sensitive to estrogen (Figure 3.12). 

Kisspeptin is a potent activator of GnRH neurons. To study if kisspeptin neurons express GnRH 

receptor and GnRH regulate kisspeptin via feedback regulation. I performed immunolabelling 

for kisspeptin in GRIC/eR26-GFP mouse which revealed that kisspeptin neurons do not express 

GnRH receptors in the periventricular nucleus (Pe) (Figure 3.13).  

My mapping results revealed that GnRHR are highly distributed in reproductive behavior and 

olfactory processing areas. Previous studies suggest that the brain areas that receive olfactory 

input also contain GnRH neurons or projections from GnRH neurons raising the possibility that 

olfactory input could activate GnRH neurons and modulate reproductive behavior (Westberry et 

al., 2003). Plasma LH levels increases in male mice when exposed to female urine. (Coquelin et 

al., 1984). Exposure to female vaginal secretions increase androgen surge in male hamster and 

upon removal of VNO this effect was abolished. This demonstrates that VNO mediates the effect 

induced by pheromones resulting in the increase of GnRH release which subsequently trigger 

LH and testosterone secretion in animals (Pfeiffer et al., 1984). My mapping result suggest that 

GnRH might be released locally and speculate that GnRHR neurons might play a role in olfactory 

triggered reproductive behavior. 
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Previous studies have shown that olfactory stimuli could activate kisspeptin neurons and GnRH 

neurons such as the exposure of male chemosensory cue induced c-Fos expression in AVPV 

kisspeptin neurons of the mice and stimulate GnRH release (Bakker et al., 2010; Murata et al., 

2011). Mating or exposure to chemosignals activated neurons in the same regions such as 

amygdala, bed nucleus of the stria terminalis, medial preoptic area (Westberry et al., 2003). Main 

olfactory and vomeronasal pathway converge to the medial amygdala in the brain and plays an 

important role in integrating chemosignals and endocrine status to trigger behavioral response 

(Meredith, 1998; Sokolowski and Corbin, 2015). In addition to medial amygdala the response to 

olfactory input is detected in several regions in the brain containing steroid receptors (Blake et 

al., 2011).  

Exposure of male mice to female chemosensory signals result in LH secretion which can be 

abolished by VNX demonstrating that vomeronasal input activates GnRH neurons (Meredith, 

1989). Brain areas that contain GnRH cell bodies/fibers also expressed increased c-Fos 

expression when the mice is exposed to chemosensory cues. (Westberry et al., 2003).  

Several studies demonstrated that olfactory system activates GnRH neurons but none of the 

studies shed light on the role of GnRHR neurons in the brain. In my study I observed that 

exposure of female chemosensory cue to male mice increased neuronal activation marker, c-Fos 

expression in the amygdala, bed nucleus of the stria terminalis and medial preoptic area (MPOA). 

I detected that GnRHR neurons in pheromone processing areas PMCO, ACO and MeA are 

activated in male mice upon stimulating with female bedding for 2 hours (Figure 3.11). This 

strongly suggests that GnRH is released locally within the brain in response to chemosignals to 

modulate reproductive behavior. Another study reported that when  mice is exposed to 

chemosensory cues some of the brain areas such as amygdala, bed nucleus of the stria 

terminals(BNST), medial preoptic area that contain GnRH cell bodies/fibers also expressed 

increased c-Fos expression , suggesting potential role of GnRH in the olfactory cue triggered 

behavior (Westberry et al., 2003). Consistent with these studies the activation of GnRHR neurons 

in MePD, PMCO and ACO in response to olfactory stimuli suggests the potential role of GnRHR 

neurons in the olfactory cue triggered reproductive behavior.  
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5. Summary 

The experiments presented in this thesis were designed to understand the development of 

presynaptic and postsynaptic target of GnRH neurons. First, the presynaptic target, kisspeptin 

neuron development were thoroughly studied. My results demonstrate that kisspeptin neuron and 

its receptor GPR54 are expressed at E13.5, kisspeptin expression is restricted to ARC and GPR54 

expression is restricted to GnRH neurons during embryonic development, androgen receptor 

(AR) and estrogen receptor alpha (ER) marks the birthplace of kisspeptin neurons in the male 

brain, and kisspeptin-GnRH neural circuit is established in utero. This study dissects the 

development of kisspeptin-GPR54 system which will help to better understand reproductive 

disorders such as hypogonadotropic hypogonadism and precocious puberty. Secondly, during 

reproduction maturation AVPV and ARC kisspeptin neurons are sensitive to ERandexpress 

tyrosine hydroxylase (he expression of TH and estrogen sensitivity increased in AVPV 

kisspeptin neurons during pubertal development whereas in the ARC kisspeptin neurons it 

remained the same. Thirdly, this study represent the first line of evidence in which the post 

synaptic target of GnRH neuron, GnRH receptor (GnRHR) expressing neuron was mapped 

extensively and characterized in female mice. This study provide detailed neuroanatomical 

framework of GnRHR neurons in a female mice, GnRHR expression is upregulated during 

reproductive development and olfactory stimuli activate GnRHR neurons. Taken together this 

will help in further understanding the role of GnRHR in the mammalian reproductive axis. 
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