
Saarland University

Faculty for Mathematics and Computer Science

Department of Computer Science

Accountable Infrastructure and Its
Impact on Internet Security and Privacy

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Milivoj Simeonovski

Saarbrücken,
2018



Tag des Kolloquiums: 17.09.2019

Dekan: Prof. Dr. Sebastian Hack

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Markus Bläser
Berichterstattende: Prof. Dr. Dr. h. c. Michael Backes

Prof. Dr. Christian Rossow
Akademischer Mitarbeiter: Dr. Robert Künnemann



Zusammenfassung

Die Internet-Infrastrutur stützt sich auf die korrekte Ausführung zugrun-
deliegender Protokolle, welche mit Fokus auf Funktionalität entwickelt wurden.
Sicherheit und Datenschutz wurden nachträglich hinzugefügt, hauptsächlich durch
die Anwendung kryptografischer Methoden in verschiedenen Schichten des Pro-
tokollstacks. Fehlende Zurechenbarkeit, eine fundamentale Eigenschaft Hand-
lungen mit deren Verantwortlichen in Verbindung zu bringen, verhindert jedoch,
Fehlverhalten zu erkennen und zu unterbinden.

Diese Dissertation betrachtet die Zurechenbarkeit im Internet aus verschiede-
nen Blickwinkeln. Zuerst untersuchen wir die Notwendigkeit für Zurechenbarkeit
in anonymisierten Kommunikationsnetzen um es Proxyknoten zu erlauben Fehlver-
halten beweisbar auf den eigentlichen Verursacher zurückzuverfolgen. Zweitens
entwerfen wir ein Framework, das die skalierbare und automatisierte Umsetzung
des Rechts auf Vergessenwerden unterstützt. Unser Framework bietet Benutzern
die technische Möglichkeit, ihre Berechtigung für die Entfernung von Suchergeb-
nissen nachzuweisen. Drittens analysieren wir die Internet-Infrastruktur, um
mögliche Sicherheitsrisiken und Bedrohungen aufgrund von Abhängigkeiten zwis-
chen den verschiedenen beteiligten Entitäten zu bestimmen. Letztlich evaluieren
wir die Umsetzbarkeit von Hop Count Filtering als ein Instrument DRDoS An-
griffe abzuschwächen und wir zeigen, dass dieses Instrument diese Art der Angriffe
konzeptionell nicht verhindern kann.

iii





Abstract

The Internet infrastructure relies on the correct functioning of the basic
underlying protocols, which were designed for functionality. Security and privacy
have been added post hoc, mostly by applying cryptographic means to different
layers of communication. In the absence of accountability, as a fundamental
property, the Internet infrastructure does not have a built-in ability to associate
an action with the responsible entity, neither to detect or prevent misbehavior.

In this thesis, we study accountability from a few different perspectives. First,
we study the need of having accountability in anonymous communication networks
as a mechanism that provides repudiation for the proxy nodes by tracing back
selected outbound traffic in a provable manner. Second, we design a framework
that provides a foundation to support the enforcement of the right to be forgotten
law in a scalable and automated manner. The framework provides a technical
mean for the users to prove their eligibility for content removal from the search
results. Third, we analyze the Internet infrastructure determining potential
security risks and threats imposed by dependencies among the entities on the
Internet. Finally, we evaluate the feasibility of using hop count filtering as a
mechanism for mitigating Distributed Reflective Denial-of-Service attacks, and
conceptually show that it cannot work to prevent these attacks.

v





Acknowledgments

Writing a PhD thesis is not a solipsistic process of an individual mind, but
rather a reflection of a collaboration between myself and the people that motivated,
inspired and supported me. Therefore, I would like to express my sincere gratitude
and appreciations to the people that make my whole PhD journey possible.

First, I would like to thank my supervisor Prof. Michael Backes for giving me
a chance to do my PhD in his group. He supported me along the way with his
invaluable advices and enthusiastic encouragements. He is truly a great mentor,
motivator, researcher, and I am very honored to be one of his students.

I also like to thank all my collaborators and co-authors, in particular, the
senior ones from whom I got support, guidance and wisdom: Aniket Kate, Rizwan
Asghar, Ben Stock, Giancarlo Pellegrino, Christian Rossow, Robert Künnemann.
In addition, I hat tip Kim Pecina for his patience and guidance with the ProVerif
proofs.

An office is a place where we get inspiration, ideas, and spend most of our
time. For this reason, I would like to give special credits to my colleagues Praveen,
Sebastian, Sven, Olli, Malte, Jie, Marie-Therese, Aurore whom I enjoyed sharing
an office over the years. Although Yang was never my office mate, I thank him for
stopping by on a regular basis and cheering us up with his unique sense of humor.
Additionally, I would like to express my sincere gratitude to all my colleagues and
friends at CISPA for creating a joyful working environment. Special thanks to
our team assistant Bettina for making our days brighter and keeping the group
running smoothly.

To maintain a healthy balance between the mind and the body, the recognition
goes to my enthusiastic tennis buddies Kiril, Dragan, Bojan, Sebastian, Kim,
Hazem. Thank you guys for letting me win from time to time.

Saarbrücken is the place where many friendships were born or strengthened. I
am grateful to my best friends in Saarbrücken for their love and support: Kiril,
Bojan, Dragan, Monika, Evica, Marinela. Special thanks to Monika who gave
me the idea and encouragement to come to Saarbrücken and introduced me to
my wife. I am fortunate to have many other friends supporting me through the
years: Irena, Jasmina, Diana, Mohamed, Christina, Monica, Lisette, Edite, Nisa,
Varvara, Max, Iulia, Tomas, Saskia, Freddie, Christine, Levi. My sincere gratitude
to my best friends in Macedonia: Filip, Bojan, Aleksandra, Neda who always are
standing by my side with their unconditional support.

Despite being mentioned at the end, the support of the family is the most
important thing that truly drives and motivates. I am deeply grateful to my
parents and my brother for their support and encouragement. Without them, I
would certainly not stand where I stand today. Mainly, I thank my wife Tanja
and our daughter Amelia for their faith in me and unconditional love that I get
every single moment.

vii





Contents

1 Background of this Dissertation 1

2 Introduction 7

3 BackRef 13
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Background and Related Work . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Anonymous Communication Protocols . . . . . . . . . . . 16
3.3.2 Accountable Anonymity Mechanisms . . . . . . . . . . . . 18

3.4 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Threat Model and System Goals . . . . . . . . . . . . . . . 19
3.4.2 Design Rationale and Key Idea . . . . . . . . . . . . . . . 20
3.4.3 Scope of Solution . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Repudiation (or Traceability) . . . . . . . . . . . . . . . . . . . . 22
3.5.1 The OR Protocol: Overview . . . . . . . . . . . . . . . . . 22
3.5.2 The BackRef Protocol Flow . . . . . . . . . . . . . . . . . 23
3.5.3 Cryptographic Details . . . . . . . . . . . . . . . . . . . . 25
3.5.4 Exit Node Whitelisting Policies . . . . . . . . . . . . . . . 27
3.5.5 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 BLS Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Bilinear Pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 1W-AKE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Systems Aspects and Discussion . . . . . . . . . . . . . . . . . . . 38
3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Oblivion 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Conceptual Overview of Oblivion . . . . . . . . . . . . . . . . . . 46

4.4.1 Motivating Scenario and System Model . . . . . . . . . . . 46

ix



CONTENTS

4.4.2 Threat Model and Security Objectives . . . . . . . . . . . 47
4.4.3 Key Ideas of the Protocol . . . . . . . . . . . . . . . . . . 48

4.5 Realization Details of Oblivion . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Registration Phase . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Ownership Claim Phase . . . . . . . . . . . . . . . . . . . 51
4.5.3 Reporting Phase . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.1 Implementation Details and Evaluation Parameters . . . . 53
4.6.2 Evaluating the CA-Module . . . . . . . . . . . . . . . . . . 54
4.6.3 Evaluating the User-Module . . . . . . . . . . . . . . . . . 55
4.6.4 Evaluating the OCP-Module . . . . . . . . . . . . . . . . . 56

4.7 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Who Controls the Internet 63
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Property Graph . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Taint-style Propagation and Rules . . . . . . . . . . . . . . 70
5.4.3 Query and Evaluation . . . . . . . . . . . . . . . . . . . . 71

5.5 Data Sets and Acquisition . . . . . . . . . . . . . . . . . . . . . . 73
5.5.1 Initial Domain Names . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Routing Information and Networks . . . . . . . . . . . . . 74
5.5.4 Countries and Organizations . . . . . . . . . . . . . . . . . 74

5.6 Entity Identification . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.1 First Order Metrics . . . . . . . . . . . . . . . . . . . . . . 75
5.6.2 Second Order Metrics . . . . . . . . . . . . . . . . . . . . . 78

5.7 Attack Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.1 Distribution of JS Malicious Content . . . . . . . . . . . . 79
5.7.2 Email Sniffing . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7.3 DoS against Core Service Provider . . . . . . . . . . . . . 84

5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



CONTENTS

6 TTL-based Filtering 87
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Relevant Internet Technologies . . . . . . . . . . . . . . . . 90
6.3.2 Source Spoofing and DRDoS . . . . . . . . . . . . . . . . . 91
6.3.3 Hop Count Filtering . . . . . . . . . . . . . . . . . . . . . 92

6.4 Re-Evaluating the Feasibility of Hop-Count Filtering . . . . . . . 93
6.4.1 Protocol-based Probing . . . . . . . . . . . . . . . . . . . . 93
6.4.2 Interpreting Responses. . . . . . . . . . . . . . . . . . . . . 94
6.4.3 Horizontal Probing . . . . . . . . . . . . . . . . . . . . . . 95
6.4.4 Caveats of Active Probing . . . . . . . . . . . . . . . . . . 95

6.5 Probing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.1 Benign Traffic . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.2 Spoofed Traffic . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Methodology for Estimating Hop Count Value . . . . . . . . . . . 100
6.6.1 Key Idea and Attacker Model . . . . . . . . . . . . . . . . 100
6.6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . 105
6.7.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7.2 Leave-one-out Evaluation . . . . . . . . . . . . . . . . . . 106
6.7.3 Overall Performance . . . . . . . . . . . . . . . . . . . . . 107

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusion 109

xi





List of Figures

3.1 The concept of onion routing . . . . . . . . . . . . . . . . . . . . . 16
3.2 The concept of mix network (Mix cascade with two mixes) . . . . 17
3.3 Backward traceability verification . . . . . . . . . . . . . . . . . . 21
3.4 No false accusation adversarial model . . . . . . . . . . . . . . . . 33
3.5 Anonymity game . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 No forward traceability . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Conceptual overview of Oblivion. . . . . . . . . . . . . . . . . . 49
4.2 An article illustrating personal information of Alice Schmidt who

has an ID card with digital credentials issued by the German
government. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Evaluation of the CA-module: Performance overhead for certifying
user attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Evaluation of the user-module: Performance overhead of (a) identi-
fying personal information and (b) for packing user attributes. . . 55

4.5 Evaluation of the OCP-module: Performance overhead of (a) veri-
fying the messages, (b) verifying user attributes signed by the CA,
(c) verifying user requests and (d) running entity disambiguation. 57

5.1 Fragment of property graph for google.com . . . . . . . . . . . . 69

6.1 Deviation differences for selected probe types . . . . . . . . . . . . 97
6.2 Deviation difference between spoofed and non-spoofed traffic . . . 99
6.3 Approach to estimate the hops between amplifier (M) and victim (V )101
6.4 Workflow of the methodology . . . . . . . . . . . . . . . . . . . . 102
6.5 Connecting border ASes (AS-Mi and AS-Vi) . . . . . . . . . . . . 104
6.6 Average hop deviation per amplifier . . . . . . . . . . . . . . . . . 108

xiii





List of Tables

1.1 Published peer-reviewed papers. . . . . . . . . . . . . . . . . . . . 5

5.1 Labels of nodes and relationships . . . . . . . . . . . . . . . . . . 70
5.2 First order metrics for identifying possible attackers and victims:

(a) the number of Alexa domains, (b) number of domains hosting
JS libraries, (c) number of mailexchange servers, and (d) number
of name server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Second order metrics for identifying possible attackers and victims:
(a) number of JS servers whose NS is in a country/AS, and (b)
number of MX servers whose NS in a country/AS . . . . . . . . . 77

5.4 Attack evaluation: Distribution of malicious JS content with hosting
malicious JS content and in-path malicious JS injection . . . . . . 79

5.5 Attack evaluation: (a) malicious name resolution (b) email sniffing
via malicious email provider, and (c) malicious name resolution for
email sniffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 JS injection on in-path TCP connections group by countries. . . . 84
5.7 Attack results of malicious email providers grouped by countries . 85

6.1 Accuracy of measured TTLs (direct probes only) . . . . . . . . . . 97
6.2 Overall performance of the methodology . . . . . . . . . . . . . . 107

xv





List of Listings

3.1 Πor with BackRef for party N (without circuit destruction) . . . . . . . 29
3.2 Backward Traceability Verification . . . . . . . . . . . . . . . . . 31
3.3 Subroutine for Πor with BackRef for N . . . . . . . . . . . . . . 31
3.4 The ntor protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Attack evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xvii





1
Background of this Dissertation

Underlying Scientific Papers

1





The foundation of this dissertation are published, peer-reviewed scientific
publications where I contributed as one of the main authors. The following list
gives a short summary of the publications along with the clarification of the
authorship of the respective papers.

1. Many anonymous communication networks rely on routing traffic through
proxy nodes to obfuscate the originator of the traffic. Without an account-
ability mechanism, exit proxy nodes risk sanctions by law enforcement if
users commit illegal actions through the AC network. Chapter 3 presents
BackRef, a generic mechanism for AC networks that provides practical
repudiation for the proxy nodes by tracing back the selected outbound traffic
to the predecessor node (but not in the forward direction) through a cryp-
tographically verifiable chain. This work was published in the proceedings
of the 12th International Conference on Applied Cryptology and Network
Security (ACNS) in 2015 [1]. Aniket Kate and I developed the main concept
of BackRef. Peter Druschel contributed in solving the last mile problem.
All authors contributed with general writing tasks and performed reviews of
the paper.

2. Indexing systems such as Google search, collect, store, and organize publicly
available data in order to provide accurate information retrieval for the end
users. This data, typically comprise a variety of sources that contain personal
information, often with detrimental effects on the individual’s privacy. To
grant individuals the ability to regain control over their disseminated personal
information, the European Court of Justice ruled that EU citizens have a
right to be forgotten in the sense that indexing systems, must offer them
technical means to request removal of links from search results. Chapter 4
presents Oblivion, a universal framework to support the automation of the
right to be forgotten in a scalable, provable and privacy-preserving manner.
This work was published in proceedings of the 13th International Conference
on Applied Cryptology and Network Security (ACNS) in 2015 [2]. Rizwan
Asghar and I mainly developed the concept of Oblivion. The security
analysis part was conducted by Fabian Bendun. All authors contributed
with general writing tasks and performed reviews of the paper.

3. In the current Internet, there is not much accountability in place which
highlights and quantifies the need for accountable behavior among the entities
on the Internet. Chapter 5 present an analysis of the Internet infrastructure
determining potential threats imposed by dependencies between the entities
involved. We analyse dependencies among the entities on the Internet
responsible for the Internet’s core services as well as the dependences that
are indirectly imposed by the service providers that distribute content such
as JavaScript. In this work, we present a technique for modeling services,

3



CHAPTER 1. BACKGROUND OF THIS DISSERTATION

providers, and dependencies as a property graph, and then reason on global-
scale threats. Our what-if analysis quantifies the impact of security incidents
when providers/entities are set to be attackers but also victims. This work
was published in the proceedings of the 26th International Conference on
World Wide Web (WWW) in 2017 [3]. Giancarlo Pellegrino and I are the
two main co-authors of the paper that developed and realized the idea. I
was responsible for the major part of the implementation and evaluation.
All authors performed reviews of the paper.

4. In a scenario of a denial of service attack, in particular, DRDoS attack, service
providers play an important role in protecting the Internet infrastructure as
well as their users. Led by the idea that an attacker cannot fabricate the
number of hops a packet travels between amplifier and victim, Hop Count
Filtering mechanisms that analyze the Time-to-Live (TTL) of incoming
packets have been proposed as a solution for mitigating DRDoS attacks. In
Chapter 6, we present our work on the feasibility of such a mechanism for
DRDoS mitigation. We analyze the potential of this mechanism from two
different perspectives, namely the defender’s and the attacker’s perspective.
First, we detail how a server can use active probing to learn the correct
TTLs of the alleged packet and consequently filter the spoofed packages.
Then, from the attacker’s perspective, we evaluate the TTL mechanism and
show that a spoofing attacker can subvert TTL-based filters by predicting
the TTL value. Our findings conceptually show that TTL-based defenses
cannot work to thwart the outlined attacks. This work was published in the
proceedings of the 19th International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID) in 2016 [4]. The general idea for this work
was developed in a joint effort among all the authors. Teemu Rytilahtiu
mainly contributed by re-evaluating the concept of Hop Count Filtering
(with strong support from Ben Stock) to determine the necessary level of
tolerance required for the approach to work in practice. I developed the
methodology for predicting the TTL values. All authors contributed with
general writing tasks and performed reviews of the paper.

The following table (Table 1.1) lists the peer-reviewed scientific publications
that I have published, grouped by years, while the highlighted ones are the
underlying scientific publications of this thesis.

4



20
18

Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar,
Michael Backes, and Claudia Diaz. “A Survey on Routing in Anonymous
Communication Protocols.” In: ACM Computing Surveys (CSUR) 51.3
(2018), 51:1–51:39

Muhammad Rizwan Asghar, Michael Backes, and Milivoj Simeonovski.
“PRIMA: Privacy-Preserving Identity and Access Management at Internet-
Scale.” In: Proceedings of the IEEE International Conference on Commu-
nications (ICC 2018). IEEE, 2018

Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Sime-
onovski, Giancarlo Pellegrino, Joerg Hoffmann, and Michael Backes.
“Formally Reasoning about the Cost and Efficacy of Securing the Email
Infrastructure.” In: Proceedings of the 3nd IEEE European Symposium
on Security and Privacy (Euro S&P 2018). IEEE, 2018

20
17

Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, and Michael
Backes. “Who Controls the Internet?: Analyzing Global Threats using
Property Graph Traversals.” In: Proceedings of the 26th International
Conference on World Wide Web (WWW 2017). ACM

20
16

Michael Backes, Thorsten Holz, Christian Rossow, Teemu Rytilahti,
Milivoj Simeonovski, and Ben Stock. “On the Feasibility of TTL-Based
Filtering for DRDoS Mitigation.” In: Proceedings of the 19th Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID
2016). Springer, 2016

20
15

Milivoj Simeonovski, Fabian Bendun, Muhammad Rizwan Asghar,
Michael Backes, Ninja Marnau, and Peter Druschel. “Oblivion: Mit-
igating Privacy Leaks by Controlling the Discoverability of Online Infor-
mation.” In: Proceedings of the 13th International Conference on Applied
Cryptography and Network Security (ACNS 2015). 2015

20
14

Milivoj Simeonovski. “POSTER: Quasi-ID: In Fact, I Am a Human.” In:
Proceedings of the 21st ACM Conference on Computer and Communication
Security (CCS 2014). ACM, 2014

Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and
Peter Druschel. “BackRef: Accountability in Anonymous Communication
Networks.” In: Proceedings of the 12th International Conference on
Applied Cryptography and Network Security (ACNS 2014). 2014

Table 1.1: Published peer-reviewed papers.

5





2
Introduction

7





The Internet has been evolving rapidly over time. From a network primarily
used for communication to a platform that has become an integral part of everyday
life. It has revolutionized businesses and has changed the way how people interact.
In addition to the social benefits that this evolution has brought, the extensive
reach of the Internet has created new security and privacy threats. Historically,
the Internet was designed for functionality, without paying too much attention
neither to security nor privacy. Security and privacy have been added post hoc,
mostly by applying cryptographic means to various layers of communication.

The Internet infrastructure relies on the correct functioning of the basic
underlying protocols, along with the accountable behavior of the entities that
are responsible for the core Internet operations such as routing, name resolution,
email transfers, etc. In the absence of accountability, as a first order property, the
Internet infrastructure does not have a built-in ability to detect and/or prevent
certain types of malicious behavior. As a result, the overall security of the Internet
depends on or at least is influenced by the behavior of the entities that operate
on different communication layers. For example, service providers can perform
various attacks such as advertising false BGP paths to sensitive targets through
their network [9, 10] and injecting HTTP responses into TCP connections [11]. A
malicious service provider can deliver malicious content to the end users which
then can be used to mount different type of attacks, e.g., The Great Cannon
attack [12].

Furthermore, protecting privacy on the Internet is a widely unsolved challenge
for the users and providers. On the one hand, users tend to reveal personal
information without considering the widespread of online data, on the other hand,
service providers collect users’ data in order to understand their behavior and
improve the services they provide. The current Internet lacks accountability as
a foundational property, hence the users have to place reliance on the service
providers for their data. Once the data is disclosed or leaked, the widespread is
inevitable because of the absence of a fundamental ability to associate an action
with the responsible entity. The implications reported in the press range from
public embarrassment and loss of prospective opportunities to safety issues. Since
the prevention of the data widespread is impossible, the privacy risks can be at
least mitigated by controlling the findability of the disclosed information.

In this dissertation, we look at accountability from a few different perspectives.
We start with a design of a framework for adding accountability mechanism to
anonymous communication networks in order to protect the proxy nodes from
false accusation. Then we continue by proposing an accountable infrastructure
for the users and indexing systems, where the users can control the findability of
their disseminated data. Finally, we analyse the importance of the accountable
behavior among the entities on the Internet.
The thesis consists of four different parts in the following order.

9



CHAPTER 2. INTRODUCTION

BackRef. The nature of the properties of the technology behind the anonymous
communication networks can sometimes be harmful for the nodes serving as
proxies. Without an accountability mechanism, exit proxy nodes that forward the
traffic may become embroiled in a criminal investigation if the originating user
commits criminal actions through the anonymous communication network.

We present BackRef [1], a design of an accountable infrastructure for anony-
mous communication networks. BackRef is a generic mechanism that provides
practical repudiation for the proxy nodes by tracing back the selected outbound
traffic to the predecessor node (but not in the forward direction) through a
cryptographically verifiable chain. It also provides an option for full (or partial)
traceability back to the entry node or even to the corresponding originator when
all intermediate nodes are cooperating. To maintain a good balance between
anonymity and accountability, the protocol incorporates whitelist directories at
exit proxy nodes. Moreover, to assist in the design of BackRef, we introduce a
novel concept of pseudonymous signatures that may be of independent interest.

Oblivion. Search engines (or indexing systems) are the prevalently used tools
to collect information about individuals on the Internet by means of crawling
the entire web space. Search results typically comprise a variety of sources that
contain personal information — either intentionally released by the person herself,
or unintentionally leaked or published by third parties without being noticed,
often with detrimental effects on the individual’s privacy. To grant individuals
the ability to regain control over their disseminated personal information, the
European Court of Justice ruled that EU citizens have a right to be forgotten in
the sense that indexing systems, such as Google, must offer them technical means
to request removal of links from search results that point to sources violating their
data protection rights. These technical means consist of a web form that requires
a user to manually identify all relevant links herself upfront and to insert them
into the web form, followed by a manual evaluation by employees of the indexing
system to assess if the request to remove those links is eligible and lawful.

We present Oblivion [2], a universal framework for supporting the automation
of the right to be forgotten in a scalable, provable, and privacy-preserving manner.
Oblivion enables a user to automatically find and tag her disseminated personal
information using natural language processing (NLP) and image recognition
techniques and file a request in a privacy-preserving manner. Second, Oblivion
provides indexing systems with an automated and provable eligibility mechanism,
asserting that the author of a request is indeed affected by an online resource. The
automated eligibility proof ensures censorship-resistance so that only legitimately
affected individuals can request the removal of the corresponding links from the
search results.

10



Who Controls the Internet? The Internet is built on top of the basic network
services, such as, routing, DNS, email, and CDNs which are operated and controlled
by private or governmental organizations. These organizations are usually held
accountable for the correct functioning of the services they provide because, on
one hand, they serve a huge portion of the Internet users, and on the other hand,
their business model depends on the proper functioning of the services. However,
the more important role an organization has in the Internet’s ecosystem, the more
likely is to be involved in security-related incidents. Recent events have shown
that these organizations may, knowingly or unknowingly, be part of global-scale
incidents including large-scale DDoS attacks and state-sponsored mass surveillance
programs.

The research community has been constantly studying the security of the
Internet infrastructure considering attack techniques and root cause vulnerabilities.
However, we lack models and algorithms to study the intricate dependencies
between services and providers, reason on their abuse, and assess the attack
impact. To close this gap, we present a technique [3] that models services,
providers, and dependencies as a property graph. Moreover, we present a taint-
style propagation-based technique to query the model and present an evaluation
of our framework on the top 100K Alexa domains.

TTL-based Filtering. Distributed Reflective Denial-of-Service attacks are one
of the main disruptions for network providers in the recent years. The adversary
spoofs the IP address of a victim and sends a flood of tiny packets to vulnerable
services. The services then respond to the spoofed IP, flooding the victim with
large replies. In a scenario of such an attack, the service providers play an
important role in protecting the Internet infrastructure as well as their users.

Following the idea that an attacker cannot fabricate the number of hops a
packet travels between amplifier and victim, Hop Count Filtering mechanisms
that utilize the Time-to-Live (TTL) of incoming packets have been proposed as a
solution. Our work [4] evaluates the feasibility of using Hop Count Filtering for
mitigating Distributed Reflective Denial-of-Service attacks. First, we detail how a
server can use active probing to learn TTLs of alleged packet senders. Based on
data sets of benign and spoofed Network Time Protocol (NTP) requests, we find
that a TTL-based defense could block over 75% of spoofed traffic while allowing
86.4% of benign traffic to pass. To achieve this performance, however, such an
approach must allow for a tolerance of +/-2 hops. Second, we investigate the
tacit assumption that an attacker cannot learn the correct TTL value. By using
a combination of tracerouting and BGP data, we build statistical models which
allow to estimate the TTL within that tolerance level. We observe that by wisely
choosing the used amplifiers, the attacker is able to circumvent such TTL-based
defenses.

11



CHAPTER 2. INTRODUCTION

Outline

The remainder of this dissertation is structured as follows. We present BackRef
in Chapter 3 and Oblivion in Chapter 4. Who Controls the Internet? in
Chapter 5 and TTL-based Filtering is presented in Chapter 6. We conclude this
dissertation in Chapter 7.

12



3
BackRef

Accountability in Anonymous Communication

Networks

13





3.1. MOTIVATION

3.1 Motivation

Anonymous communication networks (ACNs) are designed to hide the originator
of each message within a larger set of users. In some systems, like DC Nets [13]
and Dissent [14], the message emerges from aggregating all participants’ messages.
In other systems, like onion routing [15], mix networks [16, 17, 18, 19], and peer-
to-peer anonymous communication networks [20, 21], messages are routed through
volunteer nodes that act as privacy-preserving proxies for the users’ messages.
In this thesis, we focus on the latter class which is also known as proxy-based
anonymous communication networks.

Proxy-based anonymous communication networks provide a powerful service
to their users, and correspondingly they have been the most successful ACNs so
far. However, the nature of the properties of the technology can sometimes be
harmful to the nodes serving as proxies. If a network user’s online communication
results in a criminal investigation or a cause of action, the last entity to forward
the traffic may become embroiled in the proceedings [22, 23, 24, 25], whether
as the suspect/defendant or as a third party with evidence. Repudiation in the
form of a partial or full traceability has never been a component of any widely-
deployed ACN, however, it may become the case that new anonymity networks,
or a changing political climate, initiate an interest in providing a verifiable trace
to users who misuse anonymity networks according to laws or terms of service.

While several proposals [26, 27, 28, 29, 30, 31, 32] have been made to tackle or
at least to mitigate this problem under the umbrella term of accountable anonymity,
as we discuss in the next section some of them are broken, while others are not
scalable enough for deploying in low latency ACNs.

3.2 Contributions

In this work, we design BackRef, a novel practical repudiation mechanism
for anonymous communication, which has advantages in terms of deployability
and efficiency over the literature. To assist in the design of BackRef, we
propose a concept of pseudonymous signatures, which employ pseudonyms (or
half Diffie-Hellman exponents) as temporary public keys (and corresponding
temporary secrets) employed or employable in almost all ACNs for signing messages.
These pseudonym signatures are used to create a verifiable pseudonym-linkability
mechanism where any proxy node within the route or path, when required, can
verifiably reveal its predecessor in a time-bound manner. We use this property
to design a novel repudiation mechanism, which allows each proxy node, in
cooperation with the network, to issue a cryptographic guarantee that a selected
traffic flow can be traced back to its originator (i.e., predecessor node) while
maintaining the eventual forward secrecy of the system.

15



CHAPTER 3. BACKREF

Destination

Figure 3.1: The concept of onion routing

Unlike the related work, which largely relies on group signatures and/or
anonymous credentials, BackRef avoids the logistical difficulties of organizing
users into groups and arranging a shared group key, and does not require access
to a trusted party to issue credentials. While BackRef is applicable to all
proxy-based ACNs, we illustrate its utility by applying it to the onion routing
(OR) protocol. We observe that it introduces a small computational overhead and
does not affect the performance of the underlying OR protocol. BackRef also
includes a whitelisting option; i.e., if an exit node considers traceability to one or
more web-services unnecessary, then it can include those services in a whitelist
directory such that accesses to those are not logged.

We formally define the important properties of the BackRef network. In
particular, we formalize anonymity and no forward traceability as observational
equivalence relations, and backward traceability and no false accusation as trace
properties. We conduct a formal security analysis of BackRef using ProVerif,
an automated cryptographic protocol verifier, establishing the aforementioned
security and privacy properties against a strong adversarial model. We believe
both the definitions and the security analysis are of independent interest since
they are the first for the OR protocol.

3.3 Background and Related Work

Anonymous communication networks aim at protecting personally identifiable in-
formation (PII), in particular, the network addresses of the communicating parties
by hiding correlation between input and output messages at one or more network
entities. For this purpose, the ACN protocols employ techniques such as using
a series of intermediate routers and layered encryptions to obfuscate the source
of a communication, and adding fake traffic to make the “real” communication
difficult to extract.

3.3.1 Anonymous Communication Protocols

Single-hop proxy servers, which relay traffic flows, enable a simple form of anony-
mous communication. However, anonymity in this case requires, at a minimum,
that the proxy is trustworthy and not compromised. Nevertheless, this approach

16



3.3. BACKGROUND AND RELATED WORK

does not protect the anonymity of senders if the adversary inspects traffic through
the proxy [33]. Even with the use of encryption between the sender and the proxy
server, timing attacks can be used to correlate flows.

Starting with Chaum [16], several technologies for anonymous communication
have been developed in the last thirty years to provide stronger anonymity
not dependent on a single entity [13, 14, 15, 17, 18, 34, 35, 36, 37, 38, 39,
40]. Among these, mix networks [16, 17] and onion routing [34] have arguably
been most successful. Both offer user anonymity, relationship anonymity, and
unlinkability [41], but they obtain these properties through differing assumptions
and techniques.

An onion routing (OR) infrastructure involves a set of routers (or OR nodes)
that relay traffic, a directory service providing status information for OR nodes,
and users. Users benefit from anonymous access by constructing a circuit—a
small ordered subset of OR nodes—and routing traffic through it sequentially
(Figure 3.1). The crucial property for anonymity is that an OR node within
the built circuit is not able to identify any portion of the circuit other than its
predecessor and successor. The user sends messages (to the first OR node in the
circuit) in a form of an onion—a data structure multiply encrypted by symmetric
session keys (one encryption layer per node in the circuit). The symmetric keys
are negotiated during an initial circuit construction phase. This is followed by a
second phase of low latency communication (opening and closing streams) through
the constructed circuit for the session duration. An OR network does not aim at
providing anonymity and unlinkability against a global passive observer, which
in theory can analyze end-to-end traffic flow. Instead, it assumes an adversary
that adaptively compromises a small fraction of OR nodes and controls a small
fraction of the network.

A mix network (Figure 3.2) achieves anonymity by relaying messages through
a path of mix nodes (or mixes) in a latency-tolerant manner. The user encrypts a
message to be partially decrypted by each mix along the path. Mixes accept a
batch of encrypted messages, which are partially decrypted, randomly permuted,
and forwarded. Unlike onion routing, an observer is unable to correlate incoming

Mix 1

A

A

C

Mix 2

B

A

B

C A

B

C C

B

A

Figure 3.2: The concept of mix network (Mix cascade with two mixes)

17



CHAPTER 3. BACKREF

and outgoing messages at the mix node; thus, mix networks provide anonymity
against a powerful global passive adversary. In fact, as long as a single mix
node in the user’s path remains uncompromised, the message will maintain some
anonymity. However, batching of messages at a mix node introduces inherent
delays, making mix networks unsuitable for low-latency, interactive applications
(e.g., web browsing, instant messaging). When used, it is for latency-tolerant
applications like anonymous email.

3.3.2 Accountable Anonymity Mechanisms

The literature has examined several approaches for adding accountability to ACN
technologies, allowing misbehaving users to be selectively traced [26, 27, 28], exit
nodes to deny originating traffic it forwards [29, 30], misbehaving users to be
banned [31, 32], and misbehaving participants to be discovered [14, 42, 43]. All of
these approaches either require users to obtain credentials or do not extend to
interactive, low-latency, internet-scale ACNs. A number of them also partition
users into subgroups, which reduces anonymity and requires a group manager.
BackRef does not require credentials, subgroups, and it is compatible with
low-latency ACNs like onion routing, adding minimal overhead.

Kopsell et al. [26] propose traceability through threshold group signatures. A
user logs into the system to join a group, signs messages with a group signature, and
a group manager is empowered to revoke anonymity. The system also introduces
an external proxy to inspect all outbound traffic for correct signatures and protocol
compliance. The inspector has been criticized for centralizing traffic flows, which
enables DoS, censorship, and increases observability [44].

Von Ahn et al. [27] also use group signatures as the basis for a general
transformation for traceability in ACNs and illustrate it with DC Nets. Users are
required to register as members of a group capable of sending messages through
the network. Our solution can be viewed as a follow-up to this paper, with a focus
on deployability: we do not require users to be organized into groups or introduce
new entities, and we concentrate on onion routing.

Diaz and Preneel [28] achieve traceability through issuing anonymous creden-
tials to users and utilizing a traitor tracing scheme to revoke anonymity. It is
tailored to high-latency mix networks and requires a trusted authority to issue
credentials—both impede deployability. Danezis and Sassaman [44] demonstrate
a bypass attack on this and the Kopsell et al. scheme [26]. The attack is based
on the protocols’ assumption that there can be no leakage of information from
inside the channel to the world unless it passes through the verification step. Our
protocol does not rely on such a strong assumption, namely any exit node (or any
node who leaks the information) with enabled BackRef can always activate the
repudiation mechanism and shift liability to its predecessor node.

Short of revoking the anonymity of misbehaving users, techniques have been

18



3.4. DESIGN OVERVIEW

proposed to at least allow exit nodes to deny originating the traffic. Golle [29] and
Clark et al. [30] pursue this goal, with the former being specific to high-latency mix
networks and the latter requiring anonymous credentials. Tor offers a service called
ExoneraTor [45] that provides a record of which nodes were online at a given time,
but it does not explicitly prove that a given traffic flow originated from Tor. Other
techniques, such as Nymble [31] and its successors (see a survey [32]), enable users
to be banned. However these systems inherently require some form of credential or
pseudonym infrastructure for the users, and also require web-servers to verify user
requests. Finally, Dissent [14] and its successors [42, 43] presents an interesting
approach for accountable anonymous communication for DC Nets [13], however
even when highly optimized [42], DC Nets are not competitive for internet-scale
application.

3.4 Design Overview

In this section we describe our threat model and system goals, and present our
key idea and design rationale.

3.4.1 Threat Model and System Goals

We consider the same threat model as the underlying ACN in which we wish to
incorporate the BackRef mechanism. Our active adversary A aims at breaking
some anonymity property by determining the ultimate source and/or destination of
a communication stream or breaking unlinkability by linking two communication
streams of the same user. We assume that some, but not all, of the nodes in the
path of the communication stream are compromised by the adversary A, who
knows all their secret values, and is able to fully control their functionalities. We,
however, limit the attacker, such that he does not have control over both entry
and exit node, and cannot correlate end-to-end traffic [46, 47].

For high latency ACNs like mix networks, we assume that the adversary can
also observe all traffic in the network, as well as intercept and inject arbitrary
messages, while for low latency ACNs like onion routing, we assume the adversary
can observe, intercept, and inject traffic in some parts of the network.

While maintaining the anonymity and unlinkability properties of an ACN, we
wish to achieve the following goals when incorporating BackRef in the ACN:

Repudiation: For a communication stream flowing through a node, the node
operator should be able to prove that the stream is coming from another
predecessor node or user.

Backward traceability: Starting from an exit node of a path (or circuit), it
should be possible to trace the source of a communication stream when all
nodes in the path verifiably reveal their predecessors.

19



CHAPTER 3. BACKREF

No forward traceability: For a compromised node, it should not be possible
for the adversary A to use BackRef to verifiably trace its successor in any
completed anonymous communication session through it.

No false accusation: It should not be possible for a compromised node to
corrupt the BackRef mechanism to trace a communication stream:

1. to a path different from the path employed for the stream, and
2. to a node other than its predecessor in the path.

Non-Goals. We expect our accountability notion to be reactive in nature. We
do not aim at proactive accountability and do not try to stop an illegal activity
in an ACN in a proactive manner, as we believe perfect black-listing of web urls
and content to be an infeasible task. Moreover, some nodes may choose not to
follow the BackRef mechanism locally (e.g., they may not maintain or share
the required evidence logs), and full backward traceability to the user cannot be
ensured in those situations; nevertheless, the cooperating nodes can still prove
their innocence in a verifiable manner.

Due to its reactive nature, our repudiation mechanism inherently requires
evidence logs containing verifiable routing information. Encrypting these logs
and regularly rotating the corresponding keys can provide us eventual forward
secrecy [48]. However, we cannot aim for immediate forward secrecy due to the
inherently eventual forward secret nature of the encryption mechanism.

3.4.2 Design Rationale and Key Idea

Figure 3.3 presents a general expected architecture to achieve the above mentioned
goals. It is clear the network level logs as well as the currently cryptographic
mechanism in the ACNs cannot be used for verifiably backward traceability
purpose as they cannot stop false accusations (or traceability) by compromised
nodes: a compromised node can tamper with its logs to intermix two different
paths as there is no cryptographic association between different parts of an ACN
path.

We observe that almost all OR protocols [37, 48, 49, 50, 51, 52] (except TAP)
and mix network protocols [17, 18, 38, 53, 54, 55] employ (or can employ1) an
element of a cyclic group of prime order satisfying some (version of) Diffie-Hellman
assumption as an authentication challenges or randomization element per node in
the path. In particular, it can be represented as X = gx, where g is a generator of
a cyclic group G of prime order p with the security parameter κ and x ∈R Zp is a
random secret value known only to the user. This element is used by each node

1Although some of these have been defined using RSA encryptions, as discussed in [38] they
can be modified to work in the discrete logarithm (DL) setting.

20



3.4. DESIGN OVERVIEW




 









Figure 3.3: Backward traceability verification

on the path to derive a secret that is shared with the user and is used to extract
a set of (session) keys for encryption and integrity protection. In the anonymity
literature, these authentication challenges X are known as user pseudonyms.

The key idea of our BackRef mechanism is to use these pseudonyms X = gx

and the corresponding secret keys x as signing key pairs to sign pseudonym’s for
successor nodes at entry and middle nodes, and to sign the communication stream
headers at the exit nodes. Signatures that use (x, gx) as the signing key pair are
referred to as pseudonym signatures. As pseudonyms are generated independently
for every single node, and the corresponding secret exponents are random elements
of Zp, they do not reveal the user’s identity. Moreover, it also is not possible to link
two or more pseudonyms to a single identity. Therefore, pseudonym signatures
become particularly useful in our BackRef mechanism, where users utilize them
to sign messages without being identified by the verifier.

We can employ a CMA-secure [56] signature scheme against a computationally
bounded adversary (with the security parameter κ) such that, along with the
usual existential unforgeability, the resultant pseudonym signature scheme satisfies
the following property:

Unconditional signer anonymity: The adversary cannot determine a signer’s
identity, even if it is allowed to obtain signatures on an unbounded number
of messages of its choice.

We use such temporary signing key pairs (or pseudonym signatures) to sign
consecutively employed pseudonyms in an ACN path and the web communication
requests leaving the ACN. Pseudonym signatures provide linkability between the
employed pseudonyms and the communicated message on an ACN path. However,
these pseudonyms are not sufficient to link the node employed in the ACN path: for
a pseudonym received by a node, its predecessor node can always deny sending the
pseudonym in the first place. We solve this problem by introducing endorsement
signatures: We assume that every node signs the pseudonym while sending it
to the successor so that it cannot plausibly deny this transfer during backward
tracing.

21



CHAPTER 3. BACKREF

3.4.3 Scope of Solution

To understand the scope of BackRef, first consider traceability in the context
of the simplest ACN: a single-hop proxy. Any traceability mechanism from the
literature implicitly assumes a solution to the problem of how users can be traced
through a simple proxy. We dub this the “last mile” problem. The proxy can
keep logs, but this requires a trusted proxy. Alternatively the ISP could observe
and log relevant details about traffic to the proxy, requiring trust in the ISP. The
solution more typically used in the literature is to assume individual users have
digital credentials or signing keys—essentially some form of PKI is in place to
certify the keys of individual users [26, 27, 28, 29, 30].

None of these last mile solutions are particularly attractive. The assumption of
a PKI provides the best distribution of trust but short-term deployment appears
infeasible. We believe the involvement of ISPs is the most readily deployable. Such
a solution involves an ISP with a packet attestation mechanism [57] which acts as
a trusted party capable of proving the existence of a particular communication.
We discuss the packet attestation mechanism further in Section 3.10.

For selected traffic flows, BackRef provides traceability to the entrance node.
This is effectively equivalent to reducing the strong anonymity of a distributed
cryptographic ACN to the weak anonymity of a single hop proxy. For full
traceability, we then must address the “last mile” problem: tracing the flow back
to the individual sender. Thus BackRef is not a full traceability mechanism,
but rather an essential component that can be composed with any solution to
the last mile problem. While we later discuss a solution that involves ISPs, we
emphasize that BackRef itself is concentrated on, arguably, the more difficulty
problem of offering ensured traceability within the ACN.

3.5 Repudiation (or Traceability)

In this section, we present our BackRef repudiation scheme. For ease of expo-
sition, we include our scheme in an OR protocol instead of including it in the
generic ACN protocol. Nevertheless, our scheme is applicable to almost all ACN
mentioned in Section 3.4.2. We start our discussion with a brief overview of
the OR protocol in the Tor notions [58]. We then discuss the protocol flow for
BackRef, describe our cryptographic components, introduce the concept of exit
node whitelisting policies, and present a formal pseudocode.

3.5.1 The OR Protocol: Overview

The OR protocol is defined in two phases: circuit construction and streams relay.

22



3.5. REPUDIATION (OR TRACEABILITY)

OR Circuit Construction. The circuit construction phase involves the user
onion proxy (OP) randomly selecting a short circuit of (e.g., 3) OR nodes, and
negotiating a session key with each selected OR node using one-way authenticated
key exchange (1W-AKE) [52] such as the ntor protocol. (Section 3.9 presents more
details for the 1W-AKE protocol.) When a user wants to create a circuit with
an OR node N1, she runs the Initiate procedure of the ntor protocol to generate
and send an authentication challenge to N1. Node N1 then runs the Respond
procedure and returns the authentication response. Finally, the user uses the
ComputeKey procedure of ntor along with the response to authenticate N1 and to
compute a session key with it. To extend the circuit further, the user sends an
extend request to N1 specifying the address of the next node N2 and a new ntor
authentication challenge for N2. The process continues to until the user exchanges
the key with the exit node N3.

Relaying Streams. Once a circuit (denoted as 〈U ↔ N1 ↔ N2 ↔ N3〉) has been
constructed through N1, N2 and N3, the user-client U routes traffic through the
circuit using onion-wrapping WrOn and onion-unwrapping UnwrOn procedures.
WrOn creates a layered encryption of a payload (plaintext or onion) given an
ordered list of (three) session keys. UnwrOn removes one or more layers of
encryptions from an onion to output a plaintext or an onion given an input onion
and a ordered list of one or more session keys. To reduce latency, many of the
user’s communication streams employ the same circuit [34].

The structure and components of communication streams may vary with
the network protocol. For ease of exposition, we assume the OR network uses
TCP-based communication in the same way as Tor, but our schemes can easily
be adapted for other types of communication streams.

In Tor, the communication between the user’s TCP-based application and her
Tor proxy takes place via SOCKS. To open a communication stream (i.e., to start
a TCP connection to some web server and port), the user proxy sends a relay
begin cell (or packet) over the circuit to the exit node N3. When N3 receives the
TCP request, it makes a standard TCP handshake with the web server. Once
the connection is established, N3 responds to the user with a relay connected cell.
The user then forwards all TCP stream requests for the server as relay data cells
to the circuit. (See [34, 58] for a detailed explanation.)

3.5.2 The BackRef Protocol Flow

Consider a user U who wishes to construct an OR circuit 〈U ↔ N1 ↔ N2 ↔ N3〉,
and use it to send communication stream m. BackRef adds the repudiation
mechanism as a layer on the top of the existing OR protocol. We assume that
every OR node possesses a signing (private) key for which the corresponding
verification (public) key is publicly available through the OR directory service.

23



CHAPTER 3. BACKREF

The corresponding OR protocol with the BackRef scheme works according
to the following five steps:

1. Circuit construction with an entry node. The user U creates a circuit
with the entry node N1 using the ntor protocol. If the user is an OR node, then
it endorses its pseudonym X1 by signing it with its public key and sending the
signature along with X1.

However, if the user U is not an OR node, it cannot endorse the pseudonym X1
as no public-key infrastructure (PKI) or credential system is available to him. We
solve this endorsement problem by entrusting the ISP with a packet attestation
mechanism [57] such that the ISP can prove that a pseudonym was sent from U
to N1. We discuss the packet attestation mechanism in Section 3.10.

2. Circuit extension. To extend a circuit to N2, U generates a new pseudonym
X2 of an ntor instance, signs X2 and the current timestamp with the secret value
x1 associated with X1, and sends an extend request to N1 along with the identifier
for N2, {X2||tsx2}σX1

and a timestamp tsx2 . Notice that the extension request is
encrypted by a symmetric session key negotiated between U and N1.

Upon receiving a message, N1 decrypts and verifies {X2||tsx2}σX1
using the

previously received pseudonym X1 and timestamp. We call this verification
pseudonyms linkability verification. If the signature is valid, it creates an evidence
record as discussed in Step 4, signsX2 using its private key to generate {X2||ts2}σsk2
and sends a circuit create request to the node N2 with {X2||ts2}σsk2

.
Node N2, upon receiving a circuit creation request along with {X2||ts2}σsk2

,
verifies the signature. Upon a successful verification, it replies to N1 with an ntor
authentication response for the OR key agreement and generates the OR session
key for its session with (unknown) user U . N1 sends the authentication response
back to U using their OR session, who then computes the session key with N2
and continues to build its circuit to N3 in a similar fashion.

Notice that we carefully avoid any conceptual modification of the OR circuit
construction protocol; the above signature generation and verification steps are
the only adjustments that BackRef makes to this protocol.

3. Stream verification. Once a circuit 〈U ↔ N1 ↔ N2 ↔ N3〉 has been estab-
lished, the user U can utilize it to send her web stream requests. To open a TCP
connection, the user sends a relay begin cell to the exit node N3 through the circuit.
The user U includes a pseudonym signature (or stream request signature) on the
cell contents signed with the secret exponent x3 of X3. The user also includes a
timestamp in her stream request. When the relay cell reaches the exit node N3,
the exit node verifies the pseudonym signature with X3. Once the verification is
successful and the timestamp is current, N3 creates the evidence log (Step 4) and
proceeds with the TCP handshake to the destination server. The relay stream
request is discarded otherwise.

This stream verification helps N3 to prove linkability between its handshakes

24



3.5. REPUDIATION (OR TRACEABILITY)

with the destination server and the pseudonym X3 it received from N2. When
a whitelist directory exists, the exit node first consults the directory and if the
request (i.e., web stream request) is whitelisted, the exit node just forwards it to
the destination server. In such a case, the exit node does not require any signature
verification and also does not create an evidence log. We further discuss the server
whitelisting in Section 3.5.4.
4. Log generation. After every successful pseudonym linkability or stream
verification, the evidence record is created. A pseudonym linkability verification
evidence record associates linkability between two pseudonyms Xi and Xi+1 and
an endorsement signature on Xi, while a stream verification evidence record
associates a stream verification with an endorsement signature on X3 for N3.
5. Repudiation or traceability. The verifier contacts the exit node N3 with the
request information (e.g., IP address, port number, and timestamp) for a malicious
stream coming out of the exit node N3. The operator of N3 can determine a record
using the stream request information. This evidence record verifiably reveals the
identity of the middle node N2.
As an optional next step, using the evidence records, it is possible for N2 to
verifiably reveal the identity of the predecessor node N1. Then, the last mile of a
full traceability is to reach from N1 to the user U in a verifiable manner using the
evidence record on N1 and the request information on the ISP [57]. When the
user U is an OR node a record at N1 is sufficient and the last mile problem does
not exist.

3.5.3 Cryptographic Details

For pseudonym and endorsement signatures, we use the short signature scheme of
Boneh, Lynn and Shacham (BLS) [59]. We recall the BLS signature scheme in
Section 3.7. We choose the BLS signature scheme due to the shorter size of their
signatures; however, if signing and verification efficiency is more important, we
can choose faster signature schemes such as [60].

Circuit Extension. To extend the circuit 〈U ↔ N1〉 to the next hop N2, the user
U chooses x2 ∈R Zp and generates a pseudonym X2 = gx2

2 , where g2 ∈ G2. U
then signs the pseudonym X2 with pseudonym X1 as public key. Also we include
the current timestamp value tsx2 in the signature σX1 = H(X2||tsx2)x1 . Upon
receiving the signed pseudonym {X2||tsx2}σX1

along with the timestamp tsx2 , the
node N1 checks if the timestamp is current and verifies it as follows:

e(H(X2||tsx2), X1) ?= e(σX1 , g2)

Pseudonym endorsement. After successful verification, N1 creates an en-
dorsement signature σ1 = H(X2||ts2)sk1 for pseudonym X2 and current timestamp

25



CHAPTER 3. BACKREF

ts2 using its signing key sk1 and sends it along with X2 and ts2 to N2. The node
N2 then follows the pseudonym endorsement step. Upon receiving the signed
pseudonym {X2||ts2}σ1 , the exit node N2 verifies it as follows:

e(H(X2||ts2), pk1) ?= e(σ1, g2).

On a successful verification, N2 continues with the OR protocol.

Stream verification. To generate a stream request signature, the user signs the
stream request (i.e., selected contents of the relay begin cell) using the pseudonym
X3 = gx3

2 where x3 is the secret corresponding to X3. For contents of the relay
cell m = {address||port||tsxm}, the stream request signature σX3 is defined as

σX3 = H(m)x3 .

The user sends the signature along with the relay cell and the current timestamp
tsxm to the exit node through the already-built circuit.

Once the signed stream request reaches N3, it verifies the signature as follows:

e(H(m), X3) ?= e(σX3 , g2). (3.1)

Upon a successful verification, the exit node N3 proceeds with the TCP
handshake. A verified request allows the node to link X3 and the request.

Log generation. After every successful pseudonym or stream verification, an
evidence record is added to the evidence log. The evidence records differ with the
position of the nodes within a circuit, and we define two types of evidence logs.

Exit node log: For every successful stream verification, an evidence record is
added to the evidence log at the exit node. A single evidence record consists
of the signature on X3 (i.e., {X3||ts3}σ2), and the stream request (m =
{address||port||tsxm}) coupled by the pseudonym signature {m}σX3

and the
timestamp tsxm .

Middle and entry node log: The middle and entry node evidence record comprises
two pseudonyms Xi, Xi+1, and a timestamp value tsxi+1 coupled with the
appropriate signatures and the IP address of Ni−1. The pseudonym Xi is
coupled with an endorsement signature {Xi||tsi}σi−1

from node Ni−1, and
the pseudonym Xi+1 is coupled by a pseudonym signature {Xi+1||tsx+1}σXi

.
When the user is not an OR node and does not posse a verifiable signature
key pair, the corresponding record at N1 consists of a signed pseudonym
{X2||tsx2}σX1

, pseudonym X1, timestamp value tsx2 , and the IP of the user.

26



3.5. REPUDIATION (OR TRACEABILITY)

Repudiation or traceability. Given the server logs of a stream request, an
evidence record corresponding to the stream request can be obtained. In the
first step, it is checked whether the timestamp matches the stream request under
observation. In the next step, the association between the stream request and the
pseudonym of the exit node X3 is verified using the pseudonym signature. Then,
the association of the pseudonym X3 and N2 is checked using the pseudonym
endorsement signature.

Given the pseudonym X3 and a timestamp tsxm , the backward traceability
verification at node N2 is carried out as follows:

1. Do a lookup in the evidence log to locate the signed pseudonym {X3||tsx3}σX2
and the timestamp tsx3 , where X3 is the lookup index.

2. Compare the timestamps (tsxm and tsx3) under observation and prove the
linkability between X2 and X3 by verifying the signature {X3||tsx3}σX2

.

3. If verification succeeds, reveal the IP address of the node N1 who has
forwarded X2 and verify {X2||ts2}σ1

with pk1.

The above three steps can be used repeatedly to reach the entry node. However,
they cannot be used to verifiably reach the user if we do not assume any public
key and credential infrastructure for the users. Instead, our protocol relies on
the ISP between user U and N1 to use packet attestation [57] to prove that the
pseudonym X1 was sent from U to N1.

3.5.4 Exit Node Whitelisting Policies

To provide a good balance between anonymity and accountability, we include a
whitelisting option for exit nodes. This option allows a user to avoid the complete
verification and logging mechanisms if her destination is in the whitelist directory
of her exit node. In particular, we categorize the destinations into two groups:

Whitelisted destinations. For several destinations such as educational .edu
websites, an exit node may find traceability to be unnecessary. The exit node
includes such destinations in a whitelist directory such that, for these destinations,
the employed circuit nodes do not demand any endorsement and pseudonym
signatures. Traffic sent to these whitelisted destinations through the circuit
remains anonymous in the current ACN sense.

Non-listed destinations. For destinations that are not listed in the exit-node
whitelist directory, the user has to use BackRef while building the circuit to it;
otherwise, the exit node will drop her requests to the non-listed destinations. We
emphasize that BackRef is not an “all-or-nothing” design alternative: it allows

27



CHAPTER 3. BACKREF

an ACN to conveniently disable the complete verification and logging mechanisms
for some pre-selected destinations. In particular, an exit node with “Sorry, it is
an anonymity network, no logs” opinion can still whitelist the whole Internet,
while others employ BackRef for non-whitelisted sites. The use of BackRef is
transparent, and users can choose if they wish to use a BackRef node for their
circuits.

3.5.5 Pseudocode

In this subsection, we present pseudocode for the OR protocol with BackRef
extending the OR pseudocode developed by Backes et al. [61] following the Tor
specification [58]. In Listing 3.1, we highlight our changes to their original (Πor)
protocol pseudocode from [61] by underlining those. Our pseudocode formalism
demonstrates that our modifications of the original OR protocol are minimal. It
also forms the basis for our applied pi calculus [62] based OR model in Section 3.6.
In the pseudocode, an OR node maintains a state for every protocol execution and
responds (changes the state and/or sends a message) upon receiving a message.

There are two types of messages that the protocol employs: the first type
contains input and output actions, which carry respectively the user inputs to
the protocol, and the protocol outputs to the user; the second message type is
a network message (a cell in the OR literature), which is to be delivered by one
protocol node to another. In Listing 3.2, we formalize the backward traceability
verification of BackRef. Here, function LookupLog determines an entry from
the log index by its input. Function V erify performs signature verification, while
function TraceFail outputs that a valid log entry does not exists at node N .

In onion routing, a directory server maintains the list of valid OR nodes and the
respective public keys. A functionality FNreg abstracts this directory server. Each
OR node initially computes its long-term keys (sk, pk) (for both 1W-AKE and
signature schemes) and registers the public part at FNreg. For ease of exposition,
cryptographically important Tor cells are considered in the protocol. This includes
create, created and destroy cells among control cells, and data, extend and extended
cells among relay cells. There are two input messages createcircuit and send, where
the user uses createcircuit to create OR circuits and uses send to send messages m
over already-created circuits.

The ExtendCircuit function defined in Listing 3.3 presents the circuit con-
struction description from Section 3.5.1 in a pseudocode form. Circuit IDs
(cid ∈ {0, 1}κ) associate two consecutive circuit nodes in a circuit. The terminol-
ogy C = Ni−1

cidi,ki⇐⇒ Ni
cidi+1⇐⇒ Ni+1, says that Ni−1 and Ni+1 are respectively the

predecessor and successor of Ni in a circuit C. ki is a session key between Ni and
the OP, while the absence of ki+1 indicates that a session key between Ni+1 and
the OP is not known to Ni; analogously the absence of a circuit id cid in that
notation means that only the first circuit id is known, as for OP, for example.

28



3.5. REPUDIATION (OR TRACEABILITY)

Functions prev and next on cid correspondingly return information about the
predecessor or successor of the current node with respect to cid; e.g., next(cid i)
returns (Ni+1, cid i+1) and next(cid i+1) returns ⊥. The OP passes on to the user
〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`〉.

Within a circuit, a user’s OP (onion proxy) and the exit node use relay cells
created using wrapping algorithm WrOn to tunnel commands and communica-
tion. The exit nodes use the streams to synchronize communication between the
network and a circuit C. It is represented as sid in the pseudocode. End-to-end
communication between OP and the exit node happens with a WrOn call with
multiple session keys and a series of UnwrOn calls with individual session keys.
Cells are exchanged between OR nodes over a secure and authenticated channels
Fscs [63]. Circuit destruction remains the same so we omit it in our pseudocode
and refer the readers to [61] for more details.

Listing 3.1 Πor with BackRef for party N (without circuit destruction)

upon an input (setup):
Generate an asymmetric key pair (sk, pk)← G.
send a cell (register, N, pk) to the FNreg functionality
wait for a cell (registered, 〈Nj, pkj〉nj=1) from FNreg
output (ready,N = 〈Nj〉nj=1)

upon an input (createcircuit,N = 〈N, 〈Nj〉`j=1〉):
store N and C ← 〈N〉; call ExtendCircuit(N , C)

upon an input (send, C = 〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`〉,m):
look up the keys (〈kj〉`j=1) for cid1
O ←WrOn(m,σX`

, ts, (kj)`j=1); Used(cid1)++
send a cell (cid1, relay, O) to N1 over Fscs

upon receiving a cell (cid, create, X, σi, ts) from Ni over Fscs:
if Verify(σi , pkNi ) then
〈Y, knew〉 ← Respond(pkN , skN , X)
store C ← 〈Ni

cid,knew⇐⇒ N〉
store Log ← 〈H(X), IPNi

X, σi, ts〉
send a cell (cid, created, Y, t) to Ni over Fscs

upon receiving a cell (cid, created, Y, t) from Ni over Fscs:
if prev(cid) = (N ′, cid ′, k′) then
O ←WrOn(〈extended, Y, t〉, k′)
send a cell (cid ′, relay, O) to N ′ over Fscs

else if prev(cid) = ⊥ then
knew ← ComputeKey(pki, Y, t)
update C with knew; call ExtendCircuit(N , C)

29



CHAPTER 3. BACKREF

upon receiving a cell (cid, relay, O) from Ni over Fscs:
if prev(cid) = ⊥ then
if getkey(cid) = (kj)`

′
j=1 then

(type,m) or O ← UnwrOn(O, (kj)`
′
j=1)

(N ′, cid ′) or ⊥ ← next(cid)
else if prev(cid) = (N ′, cid ′, k′) then
O ←WrOn(O, k′) /* a backward onion */

switch (type)
case extend:
get 〈Nnext , X, σXi

, ts〉 from m; cidnext
$← {0, 1}κ

if Verify(σXi ,Xi) then
update C ← 〈Ni

cid,k⇐⇒ N
cidnext⇐⇒ Nnext〉

store Log ← 〈H(X), IPNi
X, σXi

, ts〉
send a cell (cidnext , create, X) to Nnext over Fscs

case extended:
get 〈Y, t〉 from m; get Nex from (C,N )
kex ← ComputeKey(pkex, Y, t)
update C with (kex); call ExtendCircuit(N , C)

case data:
if (N = OP) then output (received, C,m)
else if m = (S,m′, σX , ts)
store Log ← 〈H(m), IPNi

, X, σX , ts〉
generate or lookup the unique sid for cid
send (N,S, sid,m′) to the network

case default: /*encrypted forward/backward onion*/
send a cell (cid ′, relay, O) to N ′ over Fscs

upon receiving a msg (sid,m) from Fnetq :
get C ← 〈N ′ cid,k⇐⇒ N〉 for sid; O ←WrOn(m, k)
send a cell (cid, relay, O) to N ′ over Fscs

3.6 Security Analysis

In this section we present a formal security analysis of BackRef. We model
our protocol from the previous section (in a restricted form) in the applied pi
calculus [62] and verify the important properties anonymity, backward trace-
ability, no forward traceability, and no false accusation with ProVerif [64], a
state-of-the-art automated theorem prover that provides security guarantees for
an unbounded number of protocol sessions. We model backward traceability and
no false accusation as trace properties, and anonymity and no forward traceability
as observational equivalence relations. The ProVerif scripts used in the analyses

30



3.6. SECURITY ANALYSIS

Listing 3.2 Backward Traceability Verification
upon a verification request (m):
if LookupLog(H(m)) = ⊥ then
TraceFail(m)

else
get Log ← 〈H(m), Nprev, X, σ, ts〉 for H(m)
if ((N = N1) & V erify(σ,X)) then
output (X,Nprev)

else
get Log ← 〈H(X), NNprev , pkNprev , σ

′, ts〉 for H(X)
if (V erify(σ,X) & V erify(σ′, pkNprev )) then
output (X,Nprev)

else
TraceFail(m)

are publicly available [65].
In Listing 3.2, we formalize the backward traceability verification of BackRef.

Here, function LookupLog determines an entry from the log index by its input.
Function V erify performs signature verification, while function TraceFail outputs
that a valid log entry does not exists at node N .

Listing 3.3 Subroutine for Πor with BackRef for N
ExtendCircuit(N = 〈Nj〉`j=1, C = 〈N cid1,k1⇐⇒ N1

k2⇐⇒ · · ·N`′〉):
determine the next node N`′+1 from N and C
if N`′+1 = ⊥ then
output (created, 〈N cid1⇐⇒ N1 ⇐⇒ · · ·N`′〉)

else
X ← Initiate(pkN`′+1

, N`′+1)
if N`′+1 = N1 then

cid1
$← {0, 1}κ

send a cell (cid1, create, X) to N1 over Fscs
else
O ←WrOn({extend, N`′+1, X, σX`′

, ts}, (kj)`
′
j=1)

send a cell (cid1, relay, O) to N1 over Fscs

Basic Model. We model the OR protocol in the applied pi calculus to use
circuits of length three (i.e., one user and three nodes); the extension to additional
nodes is straightforward. To prove different security properties we upgrade the
model to use additional processes and events. The event contents used to decorate

31



CHAPTER 3. BACKREF

the various steps in the OR protocol as well as BackRef mechanism follow the
pseudocode from the previous section. We also involve an ISP between the user
and the entry node, which participate in the protocol as a trusted party. The
ISP is honest and can prove the existence of a communication channel between
the user and the entry node. This channel is modeled to be private, preventing
any ISP log forgeries. The cryptographic log collection model is designed in a
decentralized way such that nodes retain the logs themselves in a table that is
inaccessible to the adversary.

We model the flow of the pseudonyms and the onion, together with the corre-
sponding verification. However, we do not model the underlying, cryptographically
verified 1W-AKE ntor protocol, and assume that the session key between the user
and the selected OR process is exchanged securely. The attacker is a standard
Dolev-Yao active adversary with full control over the public channels: It learns
everything ever sent on the network, and can create and insert messages on the
public channels. It also controls network scheduling.

Backward Traceability. The essential goal of our protocol is to trace the source
of the communication stream starting from an exit node. We verify that the
property of backward traceability arrives from the correctness of the (backward)
traceability verification mechanism.

The correctness property can be formalized in ProVerif notation as follows:

TraceUser(IP ) =⇒ (LookupISP (X1, IP ) =⇒
(RevealPredecessorU(IP )) =⇒
(RevealPredecessor(ipN1)) =⇒

(RevealPredecessor(ipN2)) ∧ CheckSignature
∧LookupN3(m)))

(3.2)

where the notation A =⇒ B denotes the requirement that the event A must
be preceded by a event B. In our protocol, the property says that the user is
traced if and only if all nodes in the circuit verifiably trace their predecessors. The
traceability protocol P starts with the event LookupN3(m) which means that
for a given message m (stream request) the verifier consults the log, and if such
request exists, it checks the signature CheckSignature. Finally when all these
conditions are fulfilled, the verifier reveals the identity of the predecessor node
RevialPredecessor(ipN2) (i.e., the middle node). This completes the nested
correspondence (CheckSignature ∧ LookupN3(m) ∧RevealPredecessor(ipN2))
which verifiably traces N2. In a similar fashion, after all conditions are fulfilled,
the verifier traces N1 and the user U .

After the identity of U is revealed, the verifier lookup into the evidence table
of the ISP (LookupISP ) to prove the connection between the identity of the user

32



3.6. SECURITY ANALYSIS

N
2

N
1ISP

U
1

U
2

m
1

m
2

ISP Log Table

IP

Address

Pseudo.

N
1

U
1
IP

U
2
IP

Extend request

IP,
1

IP, 1
*

Onion

Extend request

Onion

N
1

Log Table

Hashed

pseudonym

IP

Address
Pseudo.

Signed

Pseudo.

H( ) U
1
IP ( ts

1
)

H( ) U
2
IP ( ts )

N
3

Log Table

Lookup

Key

IP

Address
Pseudo.

Signed

Pseudo.

H( ) N
2
IP ( ts

1
)

H( ) N
2
IP ( ts )

H(m
1
) N

2
IP (m

1
)

H(m
2
) N

2
IP (m

2
)

N
3

Compromised
Node/Client

Public Channel

Private Channel

N
2

Log Table

Hashed

pseudonym

IP

Address
Pseudo.

Signed

Pseudo.

H( ) N
1
IP ( ts

1
)

H( ) N
1
IP ( ts )

H( ) N
1
IP ( ts

1
)

H( ) N
1
IP ( ts )

Figure 3.4: No false accusation adversarial model

IP and the pseudonym of the entry node X1. If such record exist into the table,
the address of the user is revealed and the event TraceUser(IP ) is executed.

Theorem 1. The trace property defined in Equation (3.2) holds true for all
possible executions of process P.

Proof. Automatically proven by ProVerif.

No false accusation. There are two aspects associated with false accusations:

1. It should not be possible for a malicious node NA to trace a communication
stream to an OR node NC other than to its predecessor in the corresponding
circuit. Informally, to break this property, NA has to be obtain a signature of
NC on a particular pseudonym associated with the circuit. This requires NA

to forge a signature for NC , which is not possible due to the unforgeability
property of the signature scheme.

2. It should not be possible for a malicious node NA to trace a communication
stream to a circuit C1 other than the circuit C2 employed for the communi-
cation stream. Consider a scenario where two concurrent circuits (C1 and
C2), established by two different users U1 and U2, pass through a malicious
node NA. Suppose that NA collaborates with U2 who is misbehaving and
have used the OR network for a criminal activities. To help U2 by falsely
accusing a different predecessor, NA must forge two signatures: To link two
pseudonyms X1i−1 and X2i from circuits C1 and C2 respectively, NA has to
forge the pseudonym signature on X2i with X1i−1 as a public key, or he has
to know the temporal signing key pair for the predecessor in C1.

33



CHAPTER 3. BACKREF

Intuitively, the first case is ruled out by the unforgeability property of the
signature scheme. We model the later case as a trace property. Here, even when
NA collaborates with U2, it cannot forge the signed pseudonym received from
its predecessor. The property remains intact as long as one of nodes on C1 and
the packet attesting ISP [57] remains uncompromised. In absence of a PKI or
credential system for users, the last condition is unavoidable.

We formalize and verify the latter case of the property in an adversarial model
where the attacker has compromised one user (U1 or U2). Figure 3.4 provides a
graphical representation of the protocol P . We upgrade the basic model involving
additional user U2 who sends additional message m2. As mentioned before, to
simulate the packet attesting mechanism [57] we involve a honest ISP between
the user and the entry node. The ISP only collects data that identifies the user
(IP address of the user) and the pseudonym for the entry node (X1) which is send
in plain-text. The adversary does not have an access to the log stored by the ISP,
i.e., cannot read or write anything into the log table. We want to verify that for
all protocol executions the request mi cannot be associated with any user Ui other
than the originator.

To formalize the no false accusation property in ProVerif, we model security-
related protocol events with logical predicates. The event CorrISP defines the
point of the protocol where the ISP is corrupted. The no false accusation property
is formalize as the following policy:

Accuse(IP,m) =⇒ CorrISP. (3.3)

This policy says that if a user with address IP is falsely accused for a message
m, i.e., Accuse(IP,m), then indeed the ISP have to be corrupted.

Theorem 2. The trace property defined in Equation (3.3) holds true for all
possible executions of process P.

Proof. Automatically proven by ProVerif.

Anonymity. We model this property as an observational equivalence relation
between two processes that are replicated an unbounded numbers of time and
execute in parallel. In the first process P , users U1 and U2 send two messages
m1 and m2, respectively. While in the second process Q the two messages are
swapped. If the two defined processes are observationally equivalent (P ≈ Q),
then we say that the attacker cannot distinguish between m1 and m2, i.e., cannot
learn which message is sent by which user. In our scenario we assume that the
attacker can compromise some fraction of the OR node, but not all. Figure 3.5
provide a graphical representation of the anonymity game where the exit node N3
is honest. The game works as follows:

34



3.6. SECURITY ANALYSIS

1. U1 and U2 create an onion data structure O1 and O2, respectively, intended
for N3 and send via previously built circuits C1 (U1 ↔ N1 ↔ N2 ↔ N3)
and C2(U2 ↔ N1 ↔ N2 ↔ N3). Nodes communicate between each other
through public channel.

2. Two of the intermediate nodes are corrupted and the attacker has full control
over them. The intermediate compromised nodes (in our case N1 and N2)
remove one layer of encryption from O1 and O2 and send the onion to the
exit node N3.

3. After receiving these two onions from the users U1 and U2 and possibly other
onions from compromised users, the exit OR node N3 remove the last layer
of the encryption and publish the message on a public channel.

Note that the ISP does not affect the anonymity game and only acts as a proxy
between the users and the outside world. For the anonymity verification, we assume
that user U1 and user U2 are honest and they follow the protocol. Nevertheless,
the action of any compromised user and honest users can be interleaved in any
order.

Theorem 3. The observational equivalence relation P ≈ Q holds true.

Proof. Automatically proven by ProVerif.

Notice that the evidence records here inherently break anonymity: anybody
with access to logs of the entry, middle, and exit nodes of a circuit can break the
user anonymity. Therefore, traceability logs have to be indexed and individually
encrypted using an appropriate trust-enforcing mechanism. In Section 3.10, we
discuss the possible solutions.

[m
2
]
N3

[m
1
]
N3

[m
2
]
N3

[m
1
]
N3

N
2

N
1ISP

U
1

U
2

[[[m
1
]
N3
]
N2
]
N1

[[[m
2
]
N3
]
N2
]
N1 N

3

Public Channel

Symmetric Encryption
for Node N

X

N
2

N
1ISP

U
1

U
2

[[[m
2
]
N3
]
N2
]
N1

[[[m
1
]
N3
]
N2
]
N1 N

3

[ ]
Nx

Compromised fraction
of the OR network

m
1 ,m

2

m 2
,m 1

Figure 3.5: Anonymity game

35



CHAPTER 3. BACKREF

N
2_1

N
1

ISP

U
1

U
2

[[[m
1
]
N3
]
N2
]
N1

[[[m
2
]
N3
]
N2
]
N1

N
3

Public Channel

Symmetric Encryption
for Node N

X

N
1

ISP

U
1

U
2

[[[m
2
]
N3
]
N2
]
N1

[[[m
1
]
N3
]
N2
]
N1

N
3

[ ]
Nx

[[
m 1
] N3
] N2

[[m
2 ]
N3 ]

N2

[m
1 ]
N
3 ]

[m
2
] N

3

m
1,m

2

N
2_2

m 2,
m 1

N
2_1

N
2_2

[[
m 1
] N3
] N2

[[m
2]N3]N2[m 2

] N3

[m
1]N3]

Figure 3.6: No forward traceability

No forward traceability. The evidence log of the backward traceability protocol
in BackRef does not store any information (i.e., IP addresses) that can identify
or verifiably reveal the identity of a node’s successor. The log contains only the
pseudonym for the successor node which does not reveal anything about the
identity of the node.

We formalize this property as an observational equivalence relation between two
distinct processes and verify that an adversary cannot distinguish them. Figure 3.6
provides a graphical representation of the game. To prove the observational
equivalence, we model a scenario with concurrent circuit executions. In this game,
the adversary can corrupt parties and extract their secrets only after the message
transmission over the circuit has completed. For this game, our model involves
an additional middle node and user U2. Two users U1 and U2 send two different
messages m1 and m2 via two circuits. We verify that it is impossible for an
attacker to deduce any meaningful information about the successor node for a
particular request. Our game works as follows:

1. U1 and U2 start the protocol and constructs two different circuits C1(U ↔
N1 ↔ N2 ↔ N3) and C2(U ↔ N1 ↔ N∗2 ↔ N3), respectively with adequate
values (x1, x2, x3) for a circuit C1 and (x′1, x′2, x′3) for C2.

2. U1 and U2 create an onion data structure O1 and O2 and send to the exit node
N3 via previously built circuits C1 and C2. Nodes communicate between
each other through public channels.

3. After receiving the two onions from the users and possibly other onions
from compromised users, N3 removes the last layer of the encryption and
publishes the messages on a public channel.

4. After protocol completion, the entry node N1 is compromised and the
adversary obtains the evidence log.

In the first process P , U1 sends m1 and U2 sends m2, while the process Q is
reversed process P . For the no forward traceability verification, we assume that
all other parties in the protocol remain honest, except the compromised N1. For
example, if two neighbor nodes are compromised, the no forward traceability can
be easily broken with activating the backward traceability mechanism.

36



3.7. BLS SIGNATURES

Theorem 4. The observational equivalence relation P ≈ Q holds true.

Proof. Automatically proven by ProVerif.

Finally, to the best of our knowledge, our formal analysis is the first ProVerif-
based analysis of the OR protocol; it can be of independent interest towards
formalizing and verifying other properties of the OR protocol.

3.7 BLS Signatures

In this section, we briefly review BLS signatures. For more details see [59] and
references therein.

Consider two Gap co-Diffie-Hellman groups (or co-GDH group) G1 and G2 and
a multiplicative cyclic group GT , all of the same prime order p, associated by a
bilinear map [66] e : G1×G2 → GT . (We include a small note on bilinear maps in
Section 3.8.) Let g1, g2, and gT be generators for G1, G2, and GT respectively and
let a full-domain hash function H : {0, 1}∗ → G1. The BLS signature scheme [59]
comprises three algorithms, Key Generation, Signing and Verification defined as
follows:

Key Generation: Choose random sk ∈R Zp and compute pk = gsk
2 . The private

key is sk, and the public key is pk.

Signing: Given a private key pk ∈ Zp, and a message m ∈ {0, 1}∗, compute
h = H(m) ∈ G1 and signature σ = hsk , where σ ∈ G1.

Verification: Given a public key pk ∈ G2, message m ∈ {0, 1}∗, and signature
σ ∈ G1, compute h = H(m) ∈ G1 and verify that (g2, pk, h, σ) is a valid
co-Diffie-Hellman tuple.

3.8 Bilinear Pairings

In this section, we briefly review bilinear pairings. For more details see [66] and
references therein.

Consider two additive cyclic groups G1 and G2 and a multiplicative cyclic group
GT , all of the same prime order p. A bilinear map e is a map e : G1 ×G2 → GT

with the following properties.

Bilinearity: For all P ∈ G1, Q ∈ G2 and a, b ∈ Zp, e(P a, Qb) = e(P,Q)ab.

Non-degeneracy: The map does not send all pairs in G1 ×G2 to unity in GT .

Computability: There is an efficient algorithm to compute e(P,Q) for any
P ∈ G1 and Q ∈ G2.

37



CHAPTER 3. BACKREF

3.9 1W-AKE Protocol

Until recently, Tor has been using an authenticated Diffie-Hellman (DH) key
agreement protocol called the Tor authentication protocol (TAP), where users’
authentication challenges are encrypted with RSA public keys of OR nodes.
However, this atypical use of RSA encryption is found to be inefficient in practice,
and several different interactive and non-interactive (one-way authenticated) key
agreement (1W-AKE) protocols have been proposed in the literature [48, 52, 51,
37, 49, 50]. TAP has recently been replaced by the ntor protocol by Goldberg,
Stebila and Ustaoglu [52]. The ntor protocol is in turn derived from a protocol
by Øverlier and Syverson [48].

The protocol ntor [52] as defined in Figure 3.4, is a 1W-AKE protocol between
two parties P (client) and Q (server), where client P authenticates server Q. Let
(pkQ, skQ) be the static key pair for Q. We assume that P holds Q’s certificate
(Q, pkQ). P initiates an ntor session by calling the Initiate function and sending
the output message mP to Q. Upon receiving a message m′P , server Q calls the
Respond function and sends the output message mQ to P . Party P then calls
the ComputeKey function with parameters from the received message m′Q, and
completes the ntor protocol. We assume a unique mapping between the session
ids ΨP of the cid in Πor.

3.10 Systems Aspects and Discussion

Communication overhead. Communication overhead for BackRef is mini-
mal: every circuit creation, circuit extension, and stream request carries a 32 byte
BLS signature and additional 4 byte timestamp.

Computation overhead. In a system with BackRef, every node has to
verify a signature and generate another. Using the pairing-based cryptography
(PBC) library, a BLS signature generation takes less than 1ms while a verification
requires nearly 3ms for 128-bit security on a commodity PC with an Intel i5
quad-core processor with 3.3 GHz and 8 GB RAM. Signing and verification time
(and correspondingly system load) can be further reduced using faster signature
schemes (e.g., [60]).

Log storage. BackRef requires nodes to maintain logs of cryptographic
information for potential use by law enforcement. These logs are not innocuous,
and the implications of publicly disclosing a record need to be considered. The
specificity of the logs should be carefully designed to balance minimal disclosure
of side-information (such as specific timings) while allowing flows to be uniquely
identified. It must also be possible to reconstruct the logged data from the types

38



3.10. SYSTEMS ASPECTS AND DISCUSSION

Listing 3.4 The ntor protocol
Initiate(pkQ, Q):

1. Generate an ephemeral key pair (x,X ← gx).
2. Set session id ΨP ← Hst(X).
3. Update st(ΨP )← (ntor, Q, x,X).
4. Set mP ← (ntor, Q,X).
5. Output mP .

Respond(pkQ, skQ, X):
1. Verify that X ∈ G∗.
2. Generate an ephemeral key pair (y, Y ← gy).
3. Set session id ΨQ ← Hst(Y ).
4. Compute (k′, k)← H(Xy, XskQ , Q,X, Y, ntor).
5. Compute tQ ← Hmac(k′, Q, Y,X, ntor, server).
6. Set mQ ← (ntor, Y, tQ).
7. Set out ← (k, ?,X, Y, pkQ), where ? is the anonymous party symbol.
8. Delete y and output mQ.

ComputeKey(pkQ,ΨP , tQ, Y ):
1. Retrieve Q, x, X from st(ΨP ) if it exists.
2. Verify that Y ∈ G∗.
3. Compute (k′, k)← H(Y x, pkxQ, Q,X, Y, ntor).
4. Verify tQ = Hmac(k′, Q, Y,X, ntor, server).
5. Delete st(ΨP ) and output k.

If any verification fails, the party erases all session-specific information and aborts
the session.

of information available to law enforcement. The simplest entry would contain the
destination IP, source (exit node) IP, a coarse timestamp, as well as the signature.
Logs should be maintained for a pre-defined period and then erased.

No single party can hold the logs without entrusting this entity with the
anonymity of all users. The OR nodes can retain the logs themselves. This,
however, would require law enforcement to acquire the logs from every such node
and consequently involve the nodes in the investigation—a scenario that may not
be desirable. Furthermore, traceability exposes nodes of all types, not just exit
nodes, to investigation. We are aware of a number of entities who deliberately run
middle nodes in Tor to avoid this exposure. An alternative is to publish encrypted
logs, where a distributed set of trustees share a decryption key and act as a liaison
to law enforcement, while holding each other accountable by refusing to decrypt
logs of users who have not violated the traceability policy. Such an entity acts in
a similar fashion to the group manager schemes based on group signatures [27].

39



CHAPTER 3. BACKREF

Non-cooperating nodes. Given the geographic diversity of the ACNs, it
is always possible that some proxy nodes will cooperate with the BackRef
mechanism, while others will not. The repudiation property of BackRef ensures
that a cooperating node can always at least correctly shift liability to a non-
cooperating node. Moreover, such a cooperating node may also reactively decide
to block any future communication from the non-cooperating node as a policy.

Venturing the last mile. In the scenarios where full traceability is required, we
need a mechanism for solving the last mile problem addressed in the previous
sections. BackRef does not introduce any PKI for the users, therefore our
protocol has to rely on some trust mechanism to prove the linkability between the
IP address of the user and the entry node pseudonym. For this purpose, we consider
an ISP with a packet attestation mechanism [57] to be a proper solution that adds
a small overhead for the existing ISP infrastructure and at the same time does not
harm any of the properties provided by the ACN. In some countries there is an
obligation for the ISPs to retain data that identify the user. In other countries the
ISPs are not obligated by law, but it is nevertheless common practice. The protocol
is designed in a way that the ISP has to attest only to the ClientKeyExchange
message (this message is a part of the TLS establishing procedure, and also is
public and not encrypted message) which is used to establish the initial TLS
communication. This message does not reveal any sensitive information related
to the identity of the user. By its design, we reuse this message as a pseudonym
for the entry OR node.

3.11 Conclusion

In this chapter we presented BackRef, an accountability mechanism for ACNs
that provides practical repudiation for the proxy nodes, allowing selected outbound
traffic flows to be traced back to the predecessor node. It also provides a full
traceability option when all intermediate nodes are cooperating. While traceability
mechanisms have been proposed in the past, BackRef is the first that is both
compatible with low-latency, interactive applications (such as anonymous web
browsing) and does not require group managers or credential issuers. BackRef
is provably secure, requires little overhead, and can be adapted to a wide range of
anonymity systems. We also analyzed some important systems issues (namely,
white-listing, log storage, non-cooperating nodes, and the last mile problem)
with any reactively accountable ACN, and presented plausible options towards
deploying BackRef in practice.

40



4
Oblivion

Mitigating Privacy Leaks by Controlling the

Discoverability of Online Information

41





4.1. MOTIVATION

4.1 Motivation

Protecting privacy on the Internet remains a widely unsolved challenge for users,
providers, and legislators alike. Users tend to reveal personal information without
considering the widespread, easy accessibility, potential linkage and permanent
nature of online data. Once the data is disclosed or leaked, the widespread is
inevitable. The implications reported in the press range from public embarrassment
and loss of prospective opportunities to safety issues.

Legislators have responded by tightening privacy regulations. The European
Court of Justice recently ruled in Google Spain v. Mario Costeja González [67]
that EU citizens have a fundamental right to be forgotten for digital content on
the Internet, in the sense that indexing systems such as Google (or other search
engines, as well as systems that make data easily discoverable, such as Facebook
and Twitter) must offer users technical means to request removal of links in search
results that point to sources containing their personal information and violating
their data protection rights.1 While a comprehensive expiration mechanism for
digital data has often been postulated by privacy advocates in the past, this court
decision, for the first time, imposes a legal constraint for indexing systems that
operate in the EU to develop and deploy suitable enforcement techniques. As of
now, the solution deployed by leading search engines, such as Google, Microsoft
and Yahoo, consists of a simple web form that requires a user to manually identify
all relevant links herself upfront and to insert them into the web form, followed by
a manual evaluation by the search engine’s employees to assess whether the author
of the request is eligible and the request itself is lawful, i.e., the data subject’s
right to privacy overrides the interests of the indexing operator and the freedom
of speech and information.

According to the Google transparency report [68], the number of removal
requests that have been submitted to Google since the court decision in May 2014
has already exceeded 700K and the number of URLs that Google has evaluated
for removal are more than 2.7 millions. Clearly, in order to enable efficient
enforcement, it is essential to develop techniques that at least partly automate
this process and are scalable to Internet size, while being censorship-resistant by
ensuring that malicious users cannot effectively blacklist links to Internet sources
that do not affect them.

1In the court’s case, the plaintiff requested the removal of the link to a 12-year old news
article that listed his real-estate auction connected with social security debts from the Google
search results about him. The court ruled that the indexing by a search engine of the plaintiff’s
personal data is “prejudicial to him and his fundamental rights to the protection of those data
and to privacy — which encompass the right to be forgotten — [and overrides] the legitimate
interests of the operator of the search engine and the general interest in freedom of information.”

43



CHAPTER 4. OBLIVION

4.2 Contribution

We propose a universal framework, called Oblivion, providing the foundation to
support the enforcement of the right to be forgotten in a scalable and automated
manner. Technically, Oblivion provides means for a user to prove her eligibility2

to request the removal of a link from search results based on trusted third party-
issued digital credentials, such as her passport or electronic ID card. Oblivion
then leverages the trust imposed by these credentials to generate eligible removal
requests. More specifically, the officially-generated signatures contained in such
credentials comprise personally-identifiable information of the card owner, such as
her signed passport picture, address, etc. These so-called signed attributes are
subsequently automatically compared with publicly available data whose removal
should be requested, in order to determine if a source indeed contains information
about a given entity. In Oblivion, we use state-of-the-art natural language
processing (NLP) and image recognition techniques, in order to cover textual and
visually identifiable information about a user, respectively. Further modalities can
be seamlessly integrated into Oblivion. These techniques in particular automate
the task for a user to determine if she is actually affected by an online source in the
first place. The outcome of these comparisons, based on the signed attributes, is
then used to provide proof to the indexing system that a user is eligibly affected by
a source. To avoid creating further privacy concerns, Oblivion lets the user prove
her eligibility to request data removal without disclosing any further personal
information beyond what is already available at the link. This approach applies to
a variety of different indexing systems, and in particular goes beyond the concept
of search engines that we refer to throughout this work for reasons of concreteness.
Moreover, Oblivion exploits the homomorphic properties of RSA [69] in order
to verify the eligibility of an arbitrarily large set of user credentials using only a
single exponentiation, and is thus capable of handling 278 requests per second
on a standard notebook (2.5 GHz dual core and 8 GB RAM). We consider this
suitable for large-scale deployment.

2With our framework we allow for the automation of the eligibility proof of the user. Eligibility
in our framework describes the user being personally affected by an online source, or in legal
terms being the data subject. The right to be forgotten additionally requires that the user’s data
protection rights override the legitimate interests of the search engine operator and the freedom
of information. This assessment of the lawfulness of the request is a purely legal task, which is
in the domain of courts. Hence the technical assessment of lawfulness is out of scope for our
framework. If courts and regulators agree on guidelines for this assessment, Oblivion could be
extended to a partly automated assessment of these guidelines in future work.

44



4.3. RELATED WORK

4.3 Related Work

The most common way to prevent web robots (or web crawlers) [70] from indexing
web content is the Robots Exclusion Protocol (a.k.a. robots.txt protocol) [71], a
standard for controlling how web pages are indexed. Basically, robots.txt is a simple
text file that allows site owners to specify and define whether and how indexing
services access their web sites. The use of this protocol for privacy enforcement is
limited, since the file that defines the protocol can only be placed and modified
by the administrator of the web site. The individual whose personal data is being
published is hardly capable of contacting and persuading all administrators of these
sources to remove the data or modify the robots.txt file. There are many attempts
to approach this privacy enforcement problem in an orthogonal fashion, by adding
an expiration date to information at the time of its first dissemination [72, 73,
74, 75, 76, 77]. The basic idea is to encrypt images and make the corresponding
decryption key unavailable after a certain period of time. This requires the
decryption key to be stored on a trusted server, which takes care of deleting the
key after the expiration date has been reached. Although some of the approaches
utilize CAPTCHAs to prevent crawling the images easily, there is no fundamental
protection against archiving images and corresponding keys while they are still
openly available, even though first successes using trusted hardware to mitigate
this data duplication problem have been achieved [72]. Another approach in this
direction is the concept of sticky policies [78, 79, 80, 81]. The concept was originally
introduced by Mont et al. [78] and requires a machine-readable access policy to
be bound to the data before it is disseminated. The policy then ensures that
the recipient of the data acts in accordance with the policy definition. However,
enforcement of such policies has to be backed by additional underlying hardware
and software infrastructure. In addition to these shortcomings, a user needs to
take care to augment data with expiration dates before the data is disseminated
in all these approaches. Thus, these approaches are inherently unsuited to cope
with data that is already openly available on the Internet or gets published by
third parties. Finally, to implement the European Court of Justice’s decision,
Google, Microsoft and Yahoo recently launched dedicated web forms [82, 83, 84]
for submitting removal requests. Users have to manually identify all relevant links
and insert them into this form. Subsequently, the request is evaluated manually
by the employees of the indexing system to assess first, weather the author is
eligible to file that request and second, whether the link to the source needs to be
deleted for a specific search. To this end, users have to additionally hand over
a legible copy of an ID document. The necessity of handing over a user’s full
identity to use the service comes with additional privacy implications that one
would like to avoid. Oblivion constitutes a technical follow-up to this solution,
with a dedicated focus on censorship-resistance, while additionally avoiding the
detrimental effect of having to disseminate further personal information.

45



CHAPTER 4. OBLIVION

4.4 Conceptual Overview of Oblivion

In this work, we propose a framework laying the foundation for a privacy-preserving
automation of the right to be forgotten in a scalable manner. The basic idea is
that users automatically identify online sources that contain their personal data
and can automatically request its removal from indexing systems, if it violates
their data protection rights. Upon receiving the request, we enable the indexing
service to automatically verify if the author of the request is provably affected by
the source in question. Our framework is sufficiently generic to incorporate any
type of data, such as text, pictures, voice, and video. For brevity reasons, in this
work, we mainly focus on two data types: text and pictures.

4.4.1 Motivating Scenario and System Model

We start with a motivating scenario to explain the required functionality of the
framework and the different parties involved. We assume that a user, Alice,
discovers that an indexing service, say Google, returns certain query requests
with links pointing to a document that contains her personal information and
violates her privacy. In the next step, Alice contacts an Ownership Certification
Party (OCP) in order to receive validation that this source indeed contains her
personal information. Such an OCP could be a third party or the Google helpdesk.
Along with the relevant links, she hands over publicly verifiable ID documents
such as driver’s license, passport, or national ID card to the OCP. If the provided
documents and the content of the article in question indeed match (which will
be automatically checked by Oblivion), the OCP hands back a corresponding
certificate. Alice then contacts Google to request removal of these links, providing
an additional explanation, and proves her eligibility to do so based on the certificate
of the OCP. Upon receiving this information, Google checks if the considered
document is indeed indexed by Google, and if the OCP certificate is valid for this
specific document and user. In this case, the requested article will be removed
from the indexing system.

Based on this use case scenario, we consider the following entities in our
proposed framework designed for automating the process of handling removal
requests.

User: An authorized user who issues the request to remove her personal data.

Indexing system: This system is capable of removing links to sources containing
a user’s personal data from its indexing system, based on a removal request
of the user.

Ownership Certification Party (OCP): It is responsible for verifying if the

46



4.4. CONCEPTUAL OVERVIEW OF OBLIVION

user is the eligible data subject of the source under consideration.3

Certification Authority (CA): It issues publicly verifiable credentials to the
users.

4.4.2 Threat Model and Security Objectives

We assume that all entities in the system fully trust the CA. However, a CA does
not need to be online because the issuance of credentials to the users takes place
out of band, typically for a longer period of time, say a couple of years.

Unlike the CA, the OCP is an entity that is not fully trusted from the user’s
perspective because it can try to learn the user’s keying material and additional
user credentials not required for the ownership verification; moreover, it might
want to forge removal requests. The OCP is the only entity that is not part of
the traditional system. The OCP can be run by the organization (e.g., Google)
that manages the indexing system, or it can be a third-party service. The OCP is
assumed to be online during the execution of a request.

The indexing system is an entity inherently present in the traditional system.
The indexing system and the OCP mutually trust each other; in practice, this is
often trivially the case since the OCP and the indexing system are often managed
by the same organization. If the OCP is an independent third party, this trust
would typically be established via the CA using appropriate certificates.

We assume that users protect their private keys or at least, if their private keys
are lost or stolen, a key revocation mechanism is installed and the user generates
new keys. During the ownership verification, we do not assume any interaction
between the users and the OCP. A user can present the OCP-signed proof to
remove links to the data from multiple indexing systems, such as Google and
Yahoo. We also consider an external adversary that could harm credibility of the
user through replay attacks with the intention to make the service unavailable.
For providing confidentiality over the communication network, we assume the
presence of secure channels (such as SSL/TLS [85]) between a user, the OCP, and
the indexing system.

Based on these assumptions, we intend to achieve the following security
objectives:

Minimal Disclosure: An indexing system should not learn anything beyond
what is required for eligibility checking and assessment of lawfulness. The
court decision ruled that the right has to be judged on a case-by-case decision.
Hereby, the right of the individual has to be balanced with the public right
of information. Our system handles removal requests that prove eligibility

3Ownership in this context should not be confused with the legal term. Legally, the OCP can
only assess and certify the individual’s eligibility since, at least in EU context, legal ownership
is not applicable to the right to be forgotten.

47



CHAPTER 4. OBLIVION

but do not reveal any further information beyond what can be found in the
online source in question.4

Request Unforgeability: The system should be designed such that an indexing
system can only verify user requests without any possibility of forging
existing or generating new requests on behalf of the user.

Censorship-Resistance: The system should prevent censorship in the sense
that only requests from provably affected users should be taken into account.

In addition to ensuring these security properties, the system should satisfy
the following system properties in order to be suitable for large-scale deployment.
It should be scalable in order to be able to process a large amount of queries
simultaneously, while at the same time ensuring a thorough treatment of each
individual query. It should blend seamlessly into existing infrastructures, to enable
adoption by current indexing systems and certification authorities; moreover, the
solution should be conceptually independent of the device and the operating
system used. Finally, it should be easy to understand and use even for the general
public.

4.4.3 Key Ideas of the Protocol

Oblivion is built on top of already available infrastructure (as explained in
Section 4.4.1) that includes users, an indexing system and a CA. For the automatic
verification of ownership, we introduce only a single new entity, the OCP, thus
making our framework deployable in practice. In the framework, we distinguish
three main phases: registration, ownership claim, and reporting phases. Figure 4.1
presents the overall architecture for achieving the goals defined in Section 4.4.2.

Registration Phase. During the registration phase, each user registers with the
CA as shown in Figure 4.1. For the registration, a user presents (in Step 1) her
attributes (along with evidence) and her verification key. The verification key
should, for privacy reasons, be generated by the user herself before contacting the
CA, but the generation of the key is orthogonal to our framework. The CA checks
the validity of the attributes presented, certifies them and returns (in Step 2)
a list of signed attributes, where each signed attribute is bound with the user’s
verification key. Typical examples of attributes are the date of birth, name, or a
user’s profile picture.

4Although Oblivion provides for minimal disclosure, the indexing system might request
additional information, such as an author’s name, for liability reasons in a real-world deployment
of Oblivion. Moreover, the assessment of lawfulness could in some cases also require additional
personal information.

48



4.4. CONCEPTUAL OVERVIEW OF OBLIVION

Certification 

Authority

Trust

Indexing System

Incident Handler

Reporting 

Mechanism

Ownership Certification Party

Data Ownership 

Certifier

User

Registration Phase

Ownership Claiming Phase

Reporting Phase

Figure 4.1: Conceptual overview of OBLIVION.

Ownership Claim Phase. Once a registered user finds leakage of her personal
data through the indexing system, she can contact the OCP claiming eligibility
(in Step 3). This is the core phase in which the OCP expects justification of why
the given piece of data affects the user. To make such a justification, the user can
put tags on the given data that consist of her attributes which were signed by
the CA. In order to improve usability, we automate the tagging and verification.
One trivial automation method is to simply check if any user attribute appears
anywhere in the article; if this happens, the matched item could be tagged with
that attribute. The name attribute, say Alice, could be matched in this way.

The exact matching can semi-automate the tagging process but it cannot work
in general because it may not return the correct results for all user attributes.
Let us consider a user attribute in the form of a tuple: 〈Nationality, German〉
(as explained in Section 4.5.1). In order to match this attribute, the OCP has
to check if the user attribute or its synonym has appeared in the article. This
includes semantically linkable formulations, such as being a citizen of Germany
and having German nationality.

Letting the user manually deploy this solution, i.e., forcing the user to find
synonyms of each possible word in the article, is an exhaustive task. Therefore, we
employ an NLP-based technique — the named entity recognizer (NER) [86] in our
case — for efficiently collecting all possible candidates in the article. The NER
detects and classifies the data into various categories, such as person, organization,
location, date and time, and it thus helps to identify if a user has attributes
belonging to the category identified by the NER. If yes, we can perform exact
matching or run a synonym checker [87] on identified categories. Articles containing
a user’s picture are tagged in a corresponding manner.

49



CHAPTER 4. OBLIVION

After the attributes are matched, the user has to generate a proof by preparing
a message that contains a list of signed attributes that are required for the
verification, the tagged article and her verification key. The user signs this
message and sends it to the OCP (in Step 3) as an eligibility claim.

The OCP first verifies the message signature and the signed attributes used
in the tagging. If the claim relates to text attributes, the OCP runs an entity
disambiguator to identify whether the article is about the user. If the claim
includes a picture, the OCP runs a corresponding face recognition algorithm.
Upon successful evaluations of all steps, the OCP presents to the user an ownership
token (in Step 4).

Reporting Phase. After receiving the ownership token from the OCP, the user
sends a request for removal to the indexing system (in Step 5). The indexing
system automatically validates the ownership token and then assesses whether
to remove the links pointing to the user’s personal information from its system.
Finally, it sends (in Step 6) an acknowledgment to the user, which could be a
success or failure message.

4.5 Realization Details of Oblivion

In this section, we provide details of each phase of our framework and explain
the communication protocol to show interaction between different components.
An indexing system and a user are denoted with IS and U, respectively. The
communication protocol steps, described in this section, correspond to the flow
illustrated in Figure 4.1. After that, we provide details on how to securely and
efficiently realize the proposed protocols using cryptographic primitives.

4.5.1 Registration Phase

As we can see in the communication protocol, a user sends (in Step 1) her
attributes, A = {a1, a2, . . . , an}, which characterize her, with supporting proofs
and the verification key vkU to the CA. Each user attribute ai ∈ A is a name
and value key pair 〈NAME, VALUE〉, representing name of the attribute and
value specific to each user, respectively. For instance, an attribute name could be
National, and if say, a user is national of Germany, then the value will be German.
Some general user attribute names include, but are not limited to, Full Name,
Date of Birth, Place of Birth, Current Residence, and ID Picture.

Upon a successful verification of the provided data, the CA issues a list of
signed attributes σUA

= {σUa1
, σUa2

, . . . , σUan
} and sends it back to the user (in

Step 2). Our attribute signing scheme binds every user’s attribute with her
verification key. Note that one of the attributes ai is a profile picture that uniquely
identifies the user.

50



4.5. REALIZATION DETAILS OF OBLIVION

Steps 1 and 2 constitute the registration phase that takes place securely and
out of the band. The concept of digital signature together with user attributes
(signed by the government) is already present in some EU countries [88, 89, 90].

4.5.2 Ownership Claim Phase

In order to make an ownership claim to the OCP, we consider a user client, say a
browser plugin. The plugin sends the claim to the OCP and receives an ownership
token from the OCP in the case the claim can be verified, cf. Figure 4.1. In order
to do so, the first step is that the user client has to formulate the claim, then it
has to identify personal information and finally the actual removal request has
to be generated. In the next step, the OCP has to verify the request. This is
done by first verifying the authenticity of the request and second verifying the
relationship to the data. The latter verification depends on the type of data, e.g.,
face recognition can be used for pictures. The last step is to generate the ownership
token that is then transferred from the OCP to the user. In the following, we
present the details of all these tasks.

Figure 4.2: An article illustrating personal information of Alice Schmidt who has
an ID card with digital credentials issued by the German government.

Identifying Personal Information. For identifying user’s personal information
in an article (as illustrated in Figure 4.2), a user client may run the NER algorithm
locally (assuming it is delivered as a part of the user client) to extract all possible
candidates. The NER algorithm could also be run as a third-party service (e.g., a
web service), called by the user client. After running the NER algorithm, a user
client picks each of the candidates and matches them with the user attributes (see
Figure 4.2).

51



CHAPTER 4. OBLIVION

If the match is not successful, a user client runs a synonym checker. If
both words are synonyms then they are considered matched; otherwise, the next
candidate is picked from the queue for the comparison. The synonym checker
could be delivered as a part of the user client. To make the user client lightweight,
we can assume a third party service (e.g., a web service). In either case, the
synonym checker should be very specific to the attributes issued by the CA.5

Face Detection. Besides the textual description, an article could also contain a
user’s picture, either as a solo or a group picture. Like textual attributes, the user
client can run the face detection algorithm to automatically detect the user’s face.
On successful detection, a user client can automatically include the CA-signed
user picture in the removal request, which is explained next.

Generating Removal Request After identifying personal information, a user
client prepares a removal request. During the preparation, it chooses all signed
attributes required for the ownership claim. Next, it packs them as PσUA∗

so
that the OCP can verify the signed user attributes using a single exponentiation
operation using the CA verification key. This would also require a user client
to include in the message a subset of her attributes A∗ corresponding to the
packed ones, i.e., PσUA∗

. Since a user client signs the message using the user’s
signing key, the user’s verification key vkU is also included in the message to let
the OCP verify the message. For preventing replay attacks, a timestamp TS is
also included in the message. The user client sends to the OCP (in Step 3) the
message M = (TS, vkU , A∗, PσUA∗

, D) along with the signature σM .

Verifying Removal Request. Upon receiving a removal request, an OCP verifies
it before issuing any ownership token. As a first step, the signature σM over the
message M is verified. Next, the OCP checks the timestamp and verifies the
packed version of the user attributes signed by the CA. Then, the OCP checks if
all tagged attributes are valid. This step comprises the exact matching and/or
synonym checking.

Face Recognition. Optionally, the face recognition algorithm could be run
provided there is a user picture in the article. As we explained earlier in this
section, faces are pre-identified by the user client, in order to ease the job of the
OCP. The OCP compares the user-tagged face with one provided as a signed
user attribute in the request (see Figure 4.2). If the face recognition algorithm

5For instance, the user’s date of birth might appear differently in an article, i.e., in the form
of her age as shown in Figure 4.2. If this happens, the age could be compared with the difference
of the user’s date of birth and publication date of the article, if present. As we can see in the
example, 30 years old will be compared with 20.10.2014 - 29.07.1984. Further tests for checking
syntactic equivalence are conceivable, but are postponed to future work.

52



4.6. PERFORMANCE ANALYSIS

discovers similarity with a certain confidence, the user’s picture in the article is
considered matched with her profile picture.

Entity Disambiguation. When the given article contains text, the OCP can
execute the disambiguation algorithm (e.g., AIDA [91]) for ensuring the eligibility
goal, i.e., checking whether the article is about the user. The outcome of this
algorithm is the relation between the user attributes, her name in particular, and
the context of the text. The outcome, say satisfying the predefined threshold
value, would help the OCP to mark the user as being affected by the data in the
article. Figure 4.2 illustrates an example article about Alice Schmidt.

Issuing Ownership Token. On successful evaluations of all the steps performed
by the OCP, the user is issued an ownership token. This is accomplished by the
OCP by sending (in Step 4) an ownership token DU to the user. It is important
to note that the OCP verification protocol is non-interactive.

4.5.3 Reporting Phase

Once the user receives the ownership token, she can report to the indexing system.
In this phase, a user reports by sending (in Step 5) the ownership token DU

(corresponding to D) to the indexing system. The indexing system verifies the
token, fires the incident and sends (in Step 6) an acknowledgment Ack to the user.
If the OCP is a third-party service, the ownership token is signed by the OCP
and could be sent to multiple indexing systems simultaneously.

4.6 Performance Analysis

In this section, we provide implementation details for all components that we
newly developed for Oblivion and name libraries that this implementation relies
on. We subsequently evaluate the performance overhead of this implementation
for each involved component (CA, user client, and OCP).

4.6.1 Implementation Details and Evaluation Parameters

Components of the Implementation. The implementation prototype is
written in Java. To reflect the different involved participants, the implementation
consists of three components: a module for the CA (CA-module), a module for
the OCP (OCP-module), and a module for the user client (user-module). For
the sake of simplicity, the prototypical implementation assumes that the OCP
and the indexing system are managed by the same organization; this avoids an
additional trust level between these institutions and allows us to concentrate

53



CHAPTER 4. OBLIVION

on the performance measurements. The size of each of these modules (without
included libraries; see below) is below 5KB.

Libraries Used. Our prototypical implementation relies on several existing open
source libraries. First, we include the Stanford NER library [92] for identifying
personal information in the textual article. The NER library is of size 3.2 MB
and the NER classifier, for covering seven distinct classes of data, requires 16.6
MB. Second, we rely on OpenCV (Open Source Computer Vision Library), an
open source computer vision and machine learning library [93], for face detection
and recognition. Finally, we include the AIDA (Accurate Online Disambiguation
of Named Entities) framework [91] to achieve ownership disambiguation. In our
experiments, we used the AIDA framework itself and its corresponding web service,
which works with entities registered in the DBpedia [94] or YAGO [95] knowledge
base.

Evaluation Parameters. We have evaluated the performance of the implemen-
tation on a dataset of 150 news articles that we randomly crawled from the inter-
national news agency Reuters6, using the Java-based web crawler crawler4j [96].
These articles cover different topics and range from 1K to about 10K words; the
average length is 1.9K words per article. The actual experiments were run on
a standard notebook with 2.5 GHz dual-core processor and 8 GB RAM. The
experimental results described below constitute the average over 100 independent
executions. Network latency was not considered in the experiments.

4.6.2 Evaluating the CA-Module

Evaluating the performance of the CA-module consists of measuring the overhead
of attribute certification.

Attribute Certification. Figure 4.3 illustrates the computational overhead for
certifying user attributes. In our experiment, we generated up to 50 attributes
and considered CA’s signing keys of varying size, ranging from 512 to 4096 bits.
As we expected, certification time grows linearly in the number of attributes. For
the most complex cases under consideration — the CA signing 50 attributes, and
thus far more than what a user would typically maintain, using a signing key of
size 4096 bits — the attribute certification took 7.5 seconds. For smaller numbers
of attributes, or for all smaller key sizes, this certification takes less than a second.
Since attributes are typically certified only once per user, this computational
overhead should be acceptable as a one-time upfront effort.

6http://www.reuters.com/

54

http://www.reuters.com/


4.6. PERFORMANCE ANALYSIS

0

1

2

3

4

5

6

7

0 10 20 30 40 50

T
im

e
 (

in
 s

e
c
)

Number of attributes (generated)

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

Figure 4.3: Evaluation of the CA-module: Performance overhead for certifying
user attributes.

4.6.3 Evaluating the User-Module

Evaluating the user-module is performed in two steps: identifying suitable at-
tributes in the given sample texts, and pre-processing these attributes for the
subsequent ownership-proof phase.

0 

100 

200 

300 

400 

0 100 200 300 400

T
im

e
 (

in
 m

s
)

Number of unique entities

NER Time

(a) NER overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

T
im

e
 (

in
 m

s
)

Number of attributes (packed)

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

(b) Packing overhead

Figure 4.4: Evaluation of the user-module: Performance overhead of (a) identi-
fying personal information and (b) for packing user attributes.

Identifying Attributes. As explained in Section 4.4.3, the user-module pre-
processes the article using NER techniques and appropriately selects all entities
that are necessary for the identification process. We evaluate the performance
of the user-module on the aforementioned 150 news articles from Reuters, and
measure the time required to identify and extract all entities. The results are
depicted in Figure 4.4(a). The performance overhead varies from 77 to 814
millisecond (ms), with an average of 174 ms per article. The number of unique

55



CHAPTER 4. OBLIVION

entities in the articles ranges from 43 to 590, where the average number of unique
entities per article is 135.

Attribute Packing. After identifying all personal attributes in a given news
article, the user-module pre-processes a set of signed attributes as required for
the ownership proof. This pre-processing in particular reduces the number of
exponentiations that are required to verify the attributes for the OCP, and
thereby avoids a potential bottleneck. In the performance measurement, we again
considered up to 50 attributes and varying key sizes. As shown in Figure 4.4(b),
the time for this pre-processing increases linearly in the number of attributes, with
an additional overhead for larger key sizes. For the maximum of 50 attributes,
the pre-processing only took between 0.1 ms (for a 512-bit key) and 4.1 ms (for a
4096-bit key).

Message Signing. The user client signs the message using her signing key. For
this experiment, we considered the aforementioned 150 news articles. Consider
the overhead of signing a message with a signing key of size 1024 bits. Depending
on the size of the article, the signing took between 2.8 and 3.8 ms, with an average
of 2.9 ms per article.

4.6.4 Evaluating the OCP-Module

We split the performance evaluation of the OCP-module into two parts: First, we
evaluate the time required to verify the validity of requests for varying parameters:
for varying numbers of articles, for varying number of attributes, and for varying
verification requests. Second, we evaluate the time required to decide whether the
request is legitimate, i.e., whether the document under consideration affects the
user’s data, either by means of entity disambiguation or face recognition.

Validating the User Request. Upon receiving a signed message from a user,
the OCP verifies the validity of the signature using the user’s verification key.
This verification time (with a 1024-bit key) ranges from 2.9 to 4.3 ms with an
average of 3.2 ms per article. Figure 4.5(a) illustrates the cumulative verification
time to verify up to 150 articles. It grows linearly, so verifying message validity
for 150 articles takes the OCP less than 0.72 seconds.

Similarly, Figure 4.5(b) displays the time required to verify a certain number
of signed user attributes. Recall that the user sends a packed version of her
signed attributes to ease the verification task of the OCP. Still, the OCP needs to
calculate the hash of each individual attribute and multiply all hashes together
before being able to verify the signature based on the packed version. Verifying
50 user attributes takes 0.37 ms (for a 512-bit key) and 10 ms (for a 4096-bit key),

56



4.6. PERFORMANCE ANALYSIS

0 

100 

200 

300 

400 

0 20 40 60 80 100 120 140

T
im

e
 (

in
 m

s
)

Number of articles

Cumulative Verification Time

(a) Overhead of message verification

0

2

4

6

8

10

0 10 20 30 40 50

Number of attributes (verified)

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

T
im

e
 (

in
 m

s
)

(b) Overhead of attribute verification

0

1

2

3

4

5

6

7

8

0 4000 8000 12000 16000 20000

Number of verification requests

20 Attributes per Request (1024-bit Key)

T
im

e
 (

in
 s

e
c
)

(c) Overhead of request verification

0 

50 

100 

150 

200 

250 

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 m

s
)

Number of entities

AIDA Complexity

(d) Overhead of entity disambiguation

Figure 4.5: Evaluation of the OCP-module: Performance overhead of (a) veri-
fying the messages, (b) verifying user attributes signed by the CA, (c) verifying
user requests and (d) running entity disambiguation.

respectively. For l attributes, the packed version is at least l − 2 exponentiations
faster than verifying each attribute individually.

Finally, Figure 4.5(c) shows the performance overhead for verifying a certain
number of user requests. In our experimentation, we assumed that every request
requires the verification of 20 attributes, each one signed with a key of size 1024
bits. To measure the performance overhead, we gradually increased the number of
user requests from 2,000 to 20,000 and observed an (essentially linearly-growing)
overhead from 0.824 to 7.96 seconds. Processing a single verification request with
20 attributes took less than 0.4 ms on average.

The overall computational overhead of the OCP-module is a combination of the
message verification and the attribute request verification, each one incurring on
average 3.2 ms and 0.4 ms, respectively. Therefore, our implementation manages
to process a removal request within 3.6 ms. In summary, it allows the OCP to
handle 278 requests per second (using the standard laptop that we based these
experiments on).

57



CHAPTER 4. OBLIVION

Eligibility of the User Request. Identifying whether the requested article in-
deed contains personal data of the requesting user relies on appropriate entity
disambiguation. Figure 4.5(d) illustrates the performance overhead for entity
disambiguation with up to 10 entities.

Recall that we require the user client to run the face detection algorithm and
select the appropriate face and send it the OCP along with the standard request.
The performance overhead of the face recognition algorithm depends on multiple
factors such as the picture resolution and the face position in the picture. In
our experiments, we have chosen pictures with well-defined frontal faces. The
resolution of the pictures is up to 3,072 x 4,608 pixels with an average size of 4
MB. Having all these predefined conditions, the runtime of the face recognition
algorithm stays in the range of 150 to 300 ms.

The overall performance overhead, comprising both entity disambiguation and
image recognition, currently constitutes the bottleneck for verifying the validity
of removal requests in the OCP-module. Currently, we are exploring further
optimization here.

4.7 Security Analysis

The framework is supposed to achieve three security objectives: minimal disclosure,
request unforgeability, and censorship-resistance, as discussed in Section 4.4.2. In
the following, we show that we achieved these goals.

Minimal disclosure. Minimal disclosure in this context is the minimization
of knowledge increase for the indexing system in order to verify eligibility of a
request. In the case that OCP and IS are separate, this is given since the IS only
receives a token from the OCP through the user. This token does not need to
contain any information about the user. However, if the OCP and the IS collide,
it has to receive the input to run OCP.VerifyA.

A user who wants to hide her verification key or credentials could potentially
use interactive zero-knowledge proofs on top of our construction. This, however,
would sacrifice efficiency and would not improve the disclosure of information.
The reason is that the verification key is basically a pseudonym, i.e., it is only
linked to the attributes that we send. Thus, the only need to minimize is the
sending of attributes. In Oblivion, we only send those attributes that are indeed
necessary for proving that the user is affected, i.e., that already occur in the link
we report. We implement this by sending only subsets.7

7We stress again that we only show affectedness of the user. Arguing about the legal
implications and whether this minimization of data is sufficient in order to apply them is beyond
the scope of this (and all existing) work.

58



4.7. SECURITY ANALYSIS

Request Unforgeability. For unforgeability we show that even the user cannot
construct a message that verifies without having a signature on every single
attribute. As a consequence, the user cannot show that she is affected by content
concerning other users’ attributes.

Theorem 5 (Request Unforgeability). If OCP.VerifyA returns accept then the
packed attributes correspond to the set A∗. More formally, every A that has access
to a signing oracle S with public key vk can only generate P for subsets A∗ of all
signatures A requested from S.

Proof. Let A be the set of queried attributed signatures of the adversary A
for a given execution. Assume there is a set (B,P ) $← AS(vku) such that
OCP.VerifyA(vk, vkU , P , B) = accept and B 6⊆ A. So there exists b∗ ∈ B
such that b∗ 6∈ A. Then there also exists an adversary A∗ that queries A∪B\{b∗},
i.e., b∗ is the only unqueried attributed in B. Since OCP.VerifyA(vk, vkU , P ,
B) = accept, it follows that P eCA ≡ ∏

b∈BH(b||vkU) by construction. Since we
queried all b except b∗ in B, we can compute σ := P/

∏
b6=b∗∈BH(bi||vkU)dCA . For

this σ, we have σeCA = H(b∗||vkU ). However, this contradicts the Chosen Message
Attack (CMA) security of the underlying signature scheme. Thus, the adversary
A cannot exist.

Censorship-Resistance. Finally, we have to ensure that the overall system
does not enable any user to censor, i.e., to successfully report data that she
is not affected by. There are two possible approaches. First, we could do a
reduction proof to the CMA-security of the signature scheme as done for the
request unforgeability.8 Second, we can formulate the protocol in the applied π-
calculus and automatically verify the properties of interest using tool support. The
outcome can then be leveraged from the protocol to the implementation by using
computational soundness which links symbolic execution traces to computational
execution traces. Thus, we can use tools for symbolic verification and the outcome
transfers to the implementation. In what follows, we pursue the second approach
since the protocol is easy to express and verify using state-of-the-art verification
tools.

8Such a proof would look like this: Assume censorship is possible. That means there is an
execution that ends with a successful report at the indexing system without the user reporting
the data. Therefore, there was a DU sent to the IS that verifies with the key of the OCP.
Either the OCP signed DU or there is a contradiction to the signature scheme’s CMA-property.
Consequently, the OCP signed DU and since we assume the OCP to be trustworthy, it means
that the OCP received an M,σM from a user and verified it. Here, either the user’s signature
σM was forged (contradicting the CMA-property of the signature scheme) or the user forged a
message M that verifies (contradicting the request unforgeability proven before). It follows that
the user could not have generated such a request, proving censorship-resistance.
While this argumentation sounds plausible, it does not consider every possible interleaving or
repetition of executions. In contrast, tool support offers a trustworthy guarantee that we did
not overlook any execution generated by these processes.

59



CHAPTER 4. OBLIVION

The applied π-calculus defines a way of modeling processes (P,Q).
Thereby, the calculus gives constructs for parallel execution of processes
(P|Q), for repetition of processes (!P), for communication between processes
(in(chan,msg),out(chan,x)) and for restricted computation. The restric-
tion is that only symbolic constructors (let x=sig(sk,msg)) and destructors
(let m=verify(vk,sig)) can be used to modify terms which consist of symbols.
The difference is that constructors create symbolically larger symbols, i.e., in
the example x will be handled as the symbol sig(sk,msg) whereas destructors
can give reduction rules to remove or replace constructors. Finally, for symbols,
there are two classes, publicly known symbols and freshly introduced symbols
(new N; P) which are unequal to all other symbols.

For the sake of exposition, we briefly describe the process for the indexing
system (IS). The system receives a message and verifies it with the corresponding
key (computational soundness requires the key to be part of the signature). We
then verify the first part of the signed message with the verification key of the
OCP. This message must be the user’s verification key and the requested data,
i.e., we check for equality before the IS is convinced that the signer is affected.

let IS = in(ch,x); let tmpkey = vkof(x);
let (c,reportData) = verifySig(tmpKey, x) in
let (sigKey, sigData) = verifySig(vkOCP, c) in
if reqData==sigData then if tmpKey==sigKey then
event affected(sigKey,reqData).

The end of the process is a so-called event. These events have no semantic
meaning in the calculus, but can be used by the model checker to prove certain
properties of the protocol. In our example, the event symbolizes the belief of the
IS that the user with verification key sigKey is affected by the data reqData.
The model checker answers queries such as query ev:affected(k,d). which
formalizes that the model checker can prove that this event can be reached in the
protocol execution.

Censorship-resistance can be formulated as a sequence of events that has
to occur whenever the IS thinks a user is affected, i.e., whenever a request is
considered to affect the requesting user, the OCP has verified that this data
belongs to the user that sends the request. This can be done by two queries of
the form query ev:affected(key,d) ==> ev:VerifiedOw(x,key,d). meaning
that whenever the event affected occurs there has to be a corresponding event
verifying the ownership beforehand. Analogously, we prove that the ownership
verification is preceded by the attribute verification of the CA.

The complete formalization in the applied π-calculus can be found online at
the project website9. The protocol verification takes 8 ms.

9https://infsec.cs.uni-saarland.de/projects/oblivion/

60

https://infsec.cs.uni-saarland.de/projects/oblivion/


4.8. DISCUSSION

Other Security Goals. In order to prevent a replay attack, the user includes
the timestamp in her request. One can argue that a replay attack is not an issue
because it is a legitimate request by the authorized user. However, we consider
that a replay attack could harm the credibility of the user if an adversary launches
it to mount a Denial-of-Service (DoS) attack on the OCP.

4.8 Discussion

Deployability and Usability. In order to deploy our solution, Oblivion requires
a national or local government-wide CA that issues credentials to citizens. We
argue that this requirement does not limit practicality of our approach because the
issuance of such credentials is already part of an EU standard [90], implemented
by some member states and meant to be adopted by all the EU member states [88,
89]. The European EID standards also enable the use of digital credentials for
Internet communication (e.g., for online shopping) [88] which also strengthens
usability for Oblivion’s developers as well as end-users.

Scope of Eligibility. First, it is a hard problem to decide on the eligibility of an
ownership claim if two persons have the same attributes, e.g., name. Oblivion
addresses this issue by using attributes that in combination should be sufficiently
unique for most people. Second, our framework cannot decide whether a piece of
content is of public interest (such information falls into the category of freedom
of the press) and outweighs the privacy interest of an individual. This decision
is a legal assessment. This is outside of the scope of Oblivion and subject to
ongoing research about the automation of legal assessments [97].

Privacy and Availability. The OCP could be a third-party service or managed
by the search engine provider. From a privacy point of view, the latter setup
may reveal personal information about citizens. However, we argue that a search
engine provider does not learn more than what is already available in the article.
This is because Oblivion follows a principle of least privilege, where only those
particular attributes that are present in the article are sent to the OCP. The
collection of information and verification makes the OCP a key component of
Oblivion. The availability of the OCP becomes essential in the long-run success
of Oblivion. Therefore, to prevent a single point of failure, we can consider
deploying multiple instances of the OCP.

Robustness. Oblivion relies on NLP and image recognition techniques. The
NLP technique we use in our framework is simple and sufficiently robust in practice.
Concerning robustness of the image recognition technique, recent research has
shown that automated face recognition is almost comparable to human face

61



CHAPTER 4. OBLIVION

recognition accuracy [98]. Therefore, when the removal request includes a picture
that uniquely identifies the user with a certain confidence (part of the deployed
policy), our framework can easily approve the removal request.

4.9 Conclusion

In this chapter, we have introduced a universal framework, providing the foun-
dation to support the enforcement of the right to be forgotten in a scalable and
automated manner both for users and indexing systems. The framework enables
a user to automatically identify personal information in a given article and the
indexing system to automatically verify the user’s eligibility. The framework also
achieves censorship-resistance, i.e., users cannot blacklist a piece of data unless it
affects them personally. This is accomplished using the government-issued digital
credentials as well as applying the entity disambiguator technique. We have
conducted comprehensive evaluations of Oblivion on existing articles, showing
that the framework incurs only minimal overhead and is capable of handling 278
removal requests per second on a standard notebook (2.5 GHz dual core). In these
evaluations, we have observed that the remaining performance bottleneck on the
OCP is caused by the entity disambiguator (i.e., AIDA) and the face recognition
(i.e., OpenCV) algorithms. We believe that optimized versions of both could help
in significantly improving the performance.

62



5
Who Controls the Internet?

Analyzing Global Threats using Property Graph

Traversals

63





5.1. MOTIVATION

5.1 Motivation

About half of the world population is using the Internet every day to communicate
with friends, read newspapers, and carry out financial transactions. These services
rely on core operations such as IP routing, domain name resolution, and email
transfers, which are carried out by organizations ranging from universities and gov-
ernmental agencies to private-sector organizations. Such organizations thus have
extensive power, which, if misused, can result in global-scale security violations.
Service providers can perform various attacks such as advertising false BGP paths
to sensitive targets through their network [9, 10] and injecting HTTP responses
into TCP connections [11]. Even more severe security violations can be performed
when providers cooperate. Recent events have shown that cooperation between
providers and state authorities resulted in global-scale security incidents such as
mass surveillance, e.g., the PRISM program [99], and distributed denial-of-service
(DDoS) attacks, e.g., the Great Cannon attack [12, 100].

Service providers can also be victims of attacks. The Internet is often considered
as a model of resilience due to its distributed and decentralized design. While this
applies in cases of random node failures, it does not guarantee survivability of the
network with targeted attacks [101, 102]. For example, attackers can focus their
efforts against a few, carefully selected providers to disrupt network operations at
large scale. These types of attacks have already been observed against root name
servers, the servers at the top of the DNS hierarchy, so far they have had very
limited impact. However, the skills and power of attackers are increasing, and the
DNS infrastructure of Dyn.com, which serves popular websites, was struck by two
DDoS attacks. While the volume of the attack was never officially confirmed, this
attack caused outages in the name resolution of popular services such as Amazon,
Netflix, Twitter, Reddit, and Spotify.

An increasing number of reports and studies are showing that a limited number
of players have an important influence on the overall security of the Internet
infrastructure. While we have a good understanding of attack techniques [11, 12],
attackers [103], and victims [104], we have a rather limited capability to assess
the impact of attacks against, or performed by, core service providers. In the past
decades, the security of the Internet core infrastructures has been under continuous
scrutiny. Many works focused on different facets, using analysis techniques such
as topological analyses (e.g., [105, 106, 107]) and traditional threat analysis via
attack enumeration (e.g., [108]). However, the contribution of these works is
limited to a single core service, and, to date, the interdependencies between core
services remain largely unexplored.

65



CHAPTER 5. WHO CONTROLS THE INTERNET

5.2 Contributions

In this work, we take a step forward and propose an investigation technique to
assess global-scale threats. We present a model of the Internet infrastructures
based on property graphs. Nodes of our model are servers, organizations, and
autonomous systems, that are connected with edges to represent relationships.
To mine data from our model, we present a combination of taint-style techniques
and propagation rules, which is automatically translated in graph traversals. We
assessed our approach on a model with 1.8 millions of nodes and 4.7 millions of
relationships. Starting from the top 100K Alexa domains, we built our model
using publicly available resources, e.g., RIPE Atlas, and by acquiring relationships
via Web service crawling. Finally, we mined our model to assess the impact of
attacks. We present six metrics to select attacker and victim candidates. Then,
we measure the impact of three different attack scenarios, which are based on the
Great Cannon attack, the PRISM program, and the DDoS against Dyn.com.

Our results show that already just a few players may have an extensive power:
14 countries and 14 autonomous systems can, directly or indirectly, affect the
security of about 23% of websites. Our analysis show that the United States is
the country with the largest fraction of power, i.e., 16% of websites, and that
network operators, albeit of moderate size such as Google1, can match in terms
of affected websites the aggregate result of large countries like Russia, Germany,
Japan, and China. In addition, our results show that little has been learned from
past attacks. For example, 70% of JavaScript (JS) inclusion is still done over
unprotected connections, i.e., via HTTP URLs, which can be used to mount the
Great Cannon attack. Finally, our results indicate that the DDoS attack against
Dyn.com was the result of careful choice. The autonomous systems that belong
to Dyn host authoritative name servers used directly and indirectly by 3% to 5%
of the 100K Alexa domains.

To summarize, this work provides the following contribution:

• We present a first study on attacks based on dependencies between Internet
core services;

• We present a framework to model and reason on global-scale threats;

• We present a taint-style technique based on propagation rules and property
graphs to quantify the impact of security incidents;

• We assess our technique on 1.8M data items acquired from the top 100K
Alexa domains.

1Google is also a network operator as it controls the autonomous system 15169

66



5.3. BACKGROUND

5.3 Background

Before presenting our framework, we describe relevant case studies and introduce
our threat model.

5.3.1 Case Studies

Our study is motivated by three recent, large-scale and well-known security
incidents.

The Great Cannon DDoS Attack. On March 16th, 2015, Greatfire.org, a
non-profit organization monitoring Internet censorship in China, and GitHub, the
hosting provider, were victim of a large DDoS attack, among the largest DDoS
ever experienced by GitHub [100]. The attack was caused by malicious JavaScript
code, which was injected into TCP connections crossing the Chinese network
borders [12, 109]. The injected code turned Web browsers into an HTTP-based
DDoS botnet by aggressively requesting resources from the targets [12, 109, 110].

The PRISM Program. On June 7th 2013, The Guardian documented PRISM,
a National Security Agency surveillance program with direct access to Internet
communications and stored information including emails, chats, and VoIP calls,
from servers of popular tech companies such as Microsoft, Yahoo, Google, and
Facebook [99]. While the direct involvement of popular tech providers is still
unclear, in this work, we make the assumption that establishing this type of
collaboration is possible and can be voluntary, or coerced by authorities by means
of law and court orders.

The DDoS Attack Against Dyn.com. On October 21st 2016, the DNS infras-
tructure of Dyn.com was struck with two DDoS attacks. According to Dyn.com,2
the attack caused increased DNS query latency and delayed zone propagation. As
a result, Dyn.com customers, including Amazon, Netflix, Twitter, Reddit, and
Spotify, experienced outages on the name resolution. Dyn.com later reported that
the attack was sourced from 100,000 malicious endpoints which were part of the
Mirai botnet. The attack was complex, using maliciously targeted, masked TCP
and UDP traffic [111].

5.3.2 Threat Model

Our threat model is motivated by the case studies presented in the previous section.
Our focus is on a large scale attacks that can target big number of individuals and

2http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/

67

http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/


CHAPTER 5. WHO CONTROLS THE INTERNET

organizations around the globe. We represent attacks as a set of three elements:
an attacker, the attack goal, and the attack technique.

Attacker. Attackers can be a service provider, a group of providers, or a country.
In case the attacker is the provider, we consider the attackers: domain name
provider, email provider, network provider, content distribution network, and
domain name owners. Service cooperation can be achieved via collaboration
between two or more attackers, or via a centralized coordinator, e.g., state-
sponsored attacks. In both cases, we assume that colluding attackers have a
shared, collective memory and information acquired by one attacker is available
to other attacker.

Goal. The attack goal answers the question what attackers intend to achieve.
From our case studies, we consider three goals: DDoS via distribution of malicious
JavaScript, acquisition of emails, and DoS against service providers.

Technique. To achieve their goals, attackers can use different techniques. For
example, law enforcement agencies may require access to user’s email boxes.
Network providers may intercept TCP traffic traversing their own autonomous
system (AS) to inject malicious JavaScript code. In this work, we consider the
following techniques: email sniffing, redirection via malicious domain resolution,
in-path content injection, and hosting malicious content.

5.4 Modeling Framework

We now present our modeling framework. We base our model on labeled property
graphs. Labeled property graphs store information in nodes and edges in the form
of key-value properties. We present property graphs in details in Section 5.4.1.
We represent elements such as domain names, IPs, organizations, and countries as
nodes. Then, we use edges to represent relationships between nodes. For example,
if a domain name resolves to an IP, then we add an edge between the two nodes.
In a similar way, we represent relationships between IPs and countries in the sense
that if an IP is located in a country, then we place an edge between the country
and the IP. Finally, we use labels to specify the type of relationship.

We mine information from graphs using graph queries. Graph queries allow
to visit graphs based on nodes, edges, and properties. In this work, we used
a technique based on taint-style propagation technique and propagation rules.
Starting from an initial set of nodes, we propagate a taint value according to a
list of rules. Propagation rules are presented in Section 5.4.2, and queries and
their evaluation are presented in Section 5.4.3.

68



5.4. MODELING FRAMEWORK

google.com

Google Inc. 172.217.18.14

fra02s19-in-f14.1e100.net US AS15169

ns1.google.com aspx.l.google.com

66.102.1.27

theguardian.com

NS MX MXA

A

CTRL_BY

LOC_IN ORIG_FROM
ORIG_FROM

PTR

Figure 5.1: Fragment of property graph for google.com

5.4.1 Property Graph

A labeled property graph G = (V,E, λ, µ) is a directed multigraph where V is a
set of nodes, E ⊆ (V × V ) is a set of edges, λ : V ∪ E → Σ is a function that
labels nodes and edges with symbols of the alphabet Σ, and µ : (V ∪E)×K → S
is a function that associates key-value properties, e.g., (k, s) where k ∈ K is the
key and s ∈ S is the string value, to nodes and edges.

5.1 shows an excerpt of a property graph. We use node labels to type model
elements. For example, we use the label Domain for Internet domain names,
e.g., google.com and Address for IP addresses, e.g., 172.217.18.14. We use
node properties to store element data. For example, we use the key IPv4 for
nodes Address to store the dot-decimal notation for IPv4 addresses. Our model
uses other types of nodes including Organization, Autonomous System (AS), and
Country. The full list of node labels and properties is shown in 5.1.

When we can establish a relationship between elements, we place an edge, with
the label specifying the type of relationship. Relationships can be established, for
example, with DNS queries and publicly available databases such as RIPE Atlas.
We present data acquisition in detail in 5.5. With reference to 5.1, the domain
name google.com resolves to 172.217.18.14 (DNS record type A), which is
hosted in the AS number 15169 and geolocated in the United States. These
three relationships are represented with edges labeled with A, ORIGIN_FROM, and
LOC_IN respectively. Then, google.com has four authoritative DNS server one
of which is ns1.google.com. The domain name google.com has also an email
server aspmx.l.google.com whose IPv4 is 66.102.1.27, also hosted in AS 15169.
When we can also establish ownership of elements such as domain names, then
we place edges between the Organization and the element. For example, in 5.1
we have a node Google Inc. which is the organization that owns the domain
google.com. We represent this relationship with an edge CTRL_BY. Finally, 5.1
shows a relationship that exists between the domain theguardian.com and the
email server aspx.l.google.com. The complete list of edge types is shown in 5.1.

69



CHAPTER 5. WHO CONTROLS THE INTERNET

Labels Description

Address Node for IP address
Domain Node for a domain name; the source data set, e.g., Alexa

or JS, is a node property
DNS Zone The zone administrated by an authoritative name server
AS IANA number assigned to the AS; The hosted IPs is a

node property
Country Code Country code, number of IPs
Organization Service provider name

ORIG_FROM AS where an Address originates from
LOC_IN Country where an element is located
CTRL_BY Organization controlling, e.g., a Domain
A DNS record mapping Address to Domain
MX DNS record mapping Domain for email delivery
NS DNS record for name servers
ZONE DNS record for authoritative information of a DNS zone
CNAME Aliases from Domain to Domain
PTR PTR DNS record type maps an Address to a Domain
INCL_JS_FROM Domain name or Address hosting JS library

Table 5.1: Labels of nodes and relationships

5.4.2 Taint-style Propagation and Rules

A central concept of our framework is taint-style propagation and propagation
rules. These elements are the building blocks to specify queries. The idea behind
propagation rules is that each node of the graph may become compromised by
an attacker. For example, if an attacker controls a host, then the Address node
is considered compromised. As a consequence of this fact, Domain nodes that
resolve to the compromised Address are compromised as well. The “propagation”
of compromise between nodes follow specific rules that depend on the attack.
Attacks may result in less severe consequences for node elements. Consider, for
example, the Great Cannon attack. Web sites that included JS hosted in malicious
networks can be considered compromised as well. However, in the specific case
of the Great Cannon, the malicious JS code did not perform attacks against the
originating server. Thus, in this case, no further entities are compromised.

Our framework supports an arbitrary granularity for compromise levels. In
this work, we use three levels with the following symbols: c ∈ Σ for (completely)
compromised, pc ∈ Σ for partially compromised, and ⊥∈ Σ for non-compromised.
When a node n is compromised (i.e., c), we add the compromise level as a node
property C, e.g., µ(n, C) = c. The propagation is implemented via rules. Each
rule is a pair of preconditions and postconditions. Preconditions are evaluated
on the graph. If they hold, then postconditions will hold in the graph. This is

70



5.4. MODELING FRAMEWORK

achieved by modifying the graph such that postconditions will match. The general
form of a rule is the following:

pre

post
(r)

Where pre and post are two predicates for pre and post-condition, respectively.
With reference to the previous example, the propagation rule based on the A

(name lookup) edge is the following:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = A
µ(m, C) := c

(rA)

This rule can be read as follows: If node n is compromised, there is an edge e
between m and n, and the label of e is A, then we mark m as compromised.

We use similar rules to Rule rA for other type of relationships. For example,
for MX edges we have the following rule:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = MX
µ(m, C) := c

(rMX)

Rules rA and rMX can be applied in sequence. For example, let us assume that
an address node n is compromised. Then, according to Rule rA, any domain m
resolving to n, i.e., (m,n) ∈ E, is also compromised. If m is a domain for mail
exchange, according to Rule rMX, any domain p using m as its mail exchange server,
i.e., (p,m) ∈ E, is also compromised. In general, starting from a compromised
node and a set of rules, we can propagate values c to other nodes.

Propagation rules are also used to represent weaker forms of compromise.
Consider the case in which m is a web server hosting shared JS libraries. If m is
compromised, it can, for example, distribute malicious JS libraries, which can be
included in third-party websites q. As a result of this, users of q will execute the
malicious code. However, this type of compromise may not entirely compromise
the server of q, instead it can be used to attack other servers or compromise a
user session. We model these forms of compromise with the following rule:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = JS
µ(m, C) := pc

(rJS)

5.4.3 Query and Evaluation

We can now define more precisely a query to our model and its evaluation. A
query Q = (I, R, γ) is composed of three elements: initial set of source nodes I, a
set of rules R = {r1, r2, · · · , rn}, and result function γ. The set I contains nodes
in G, i.e., I ⊆ N . For example, if we want to evaluate an attack, source nodes are

71



CHAPTER 5. WHO CONTROLS THE INTERNET

the initial nodes under control of the attacker and we mark them as compromised.
Then, the set R is a set of rules, starting from source nodes, that propagate the
taint to other nodes. Finally, the result function γ is a generic function that given
the graph G transformed by the propagation rules returns a data value.

The algorithm to evaluate a query Q is shown in 5.1. The algorithm is divided
into three parts. The first part from 3 to 7 initializes node labels of G. Each
node n in the initial set of compromised nodes I is marked accordingly, i.e.,
µ(n, C) := c. The remaining nodes are initialized with the symbol ⊥. The second
part of the algorithm from 10 to 16 applies the propagation rules. We use an
auxiliary queue Q where we keep the rules to apply. This part of the algorithm
loops over the queue until it is empty. At each iteration, we retrieve a rule r from
Q, check whether the precondition holds, and apply the post conditions. The
resulting graph is stored in G. If the preconditions of r still holds also in the new
graph, then we enqueue r in Q. The loop terminates when Q is empty, i.e., all
preconditions no longer hold. Finally, we apply the result function and return the
results.

Algorithm 5.1 Attack evaluation

1 def evaluate (G, Q)
2 # Node property initialization
3 for n in N :
4 if n in I:
5 µ(n, C) := c
6 else:
7 µ(n, C) := ⊥
8
9 # Taint Propagation

10 Q := R
11 while Q != ∅:
12 r := Q.pop ()
13 if match_pre (r, G) is True:
14 G := apply_post (r, G)
15 if match_pre (r, G) is True:
16 Q. enqueue (r)
17
18 # Query result
19 return γ(G)

72



5.5. DATA SETS AND ACQUISITION

5.5 Data Sets and Acquisition

We instantiated our model on a data set of 1.8M nodes from which 350K are
unique IP addresses, 1.1M are domain names and 12K are autonomous system.
These nodes are connected with 4.7M relationships. Our acquisition starts from
popular domains and it is expanded with server and network information. Finally,
we add organizations and countries.

5.5.1 Initial Domain Names

We built our data set starting from domains that individuals and organizations
may use for carrying out their daily activities. For this purpose, we used the top
100K Alexa domains, a data set of popular domain names maintained by Alexa.3
For each domain, we created a node Domain. Our model contains additional
domains that were implicitly acquired via Web crawling starting from the Alexa
domains. To distinguish the origin of a domain name, we use a node property O
that flags a node according to its origin.

5.5.2 Servers

Starting from the initial domain names, we resolve hosts that are responsible
for core operations, i.e., web servers, authoritative name servers, email servers,
content distribution servers, and routers. The collection of data is done via
Domain Name System queries and a Web crawler.

Authoritative Name Servers. The DNS records of a domain name are main-
tained by the authoritative name servers. Each authoritative name server is
responsible for a portion of the domain name space, the so-called DNS zone. DNS
zone information is stored in the SOA record type. For each domain, we retrieve
the SOA record, and add a node Zone connected with an edge ZONE to the domain.
Then, we retrieve the fully-qualified domain name of authoritative name servers
which are listed in the NS records. For each NS record, we add a node Domain
connected with an edge NS to the zone node of the domain. In addition, for each
NS domain name, we resolve the IP addresses, and we add a node Address with
the IP and an edge A from the domain to the IP.

Web Servers. Our initial data set is composed of domains of popular websites.
By resolving the domain name, we obtain the IPs of the web server. For each of
these IPs, we add a node Address in our model and place an edge A between the
domain and the address. Domain names may be also have aliases via the DNS
CNAME record. In this case, we add the alias domain in the graph and link with a

3http://www.alexa.com/

73

http://www.alexa.com/


CHAPTER 5. WHO CONTROLS THE INTERNET

CNAME edge. Then, we further resolve the alias domain and add an Address node
with A edge.

Email Servers. Next, we identify email transfer agents. When email clients want
to send an email to a recipient, they request the MX record of the domain name of
the email address. The MX record can be a list of IP addresses and domains. For
each IP, we add a node Address and connect it with an MX edge to the domain.
For each domain, we add a node Domain in the graph and the MX edge. Then,
we resolve the domain name into an IP address and add a node Address with a A
edge to the MX domain.

Content Distribution Networks. More and more websites include JS libraries
that are hosted on third-party servers. For example, websites can include JS code
of advertisement network services to show advertisements to their users. Websites
can also use JS frameworks to support website functionalities, e.g., user interface
or communication with the server side. Among the popular frameworks we have,
for example, jQuery and Angular.js.

Starting from a list of domain names, we identify these JS “include” relation-
ships with a web crawler. We first visit the website and then retrieve all tags to
external JS code. We also extract links to internal web pages, e.g., anchor tags,
and repeat the analysis on the page of the new links. We repeat this operation
for a depth of 2. For each of the retrieved JS URLs, we add an Address node if
the host is an IP, and a Domain node if it is a domain name. For each edge, we
store the URL scheme as property using the key S. For example, if the included
JS is unprotected, i.e., HTTP, then S = HTTP.

5.5.3 Routing Information and Networks

We now add information about servers’ networks.
Autonomous Systems—An autonomous system is a collection of IP networks
and routers which are under the control of a network operator. We retrieve the
origin AS of an IP using the RIPEStat database service by RIPE NCC [112]. For
each AS, we create an AS node and add an edge from the Address node to the
AS node. We additionally retrieve the total number of prefixes announced by an
AS and store this number as a node property.

5.5.4 Countries and Organizations

Finally, we include countries and organization information in the graph. Our goal
is to establish a relationship between these entities and the servers of 5.5.2. There
are three ways to establish that, i.e., at IP level, at AS level, and at domain level.

74



5.6. ENTITY IDENTIFICATION

The first option is to link organizations and countries to individual IPs. This
can be achieved via geolocation. Accordingly, we added geolocation data in our
model using the MaxMind database [113]. While this can be achieved for countries,
we are not aware of a database or an automated technique to associate a single
IP to an organization controlling the server. Given the large number of IPs in
our database, establishing this relationship manually is not a feasible task. The
second option is to link entities to autonomous systems. This mapping is already
available in RIPEstat and we include it in our model. The third is to link entities
to domain names. The Domain WHOIS protocol can be used to query information
about registered domain names including the domain registrant. Depending on
the providing server, the structure and content of the provided information vary.
WHOIS data is optimized for readability to humans [114] and thus does not have
a consistent document format [115]. While a human can easily use WHOIS to
retrieve data items for a single domain, it does not scale to a large volume of
domain names. As an alternative source of data, we used the X.509 certificates
used for HTTPS. X.509 certificates are primarily used to store servers’ public-key
and the domain names on which the certificate is valid. Additionally, a X.509
certificate contains the organization name to which the certificate has been issued.
We included this information in our database.

5.6 Entity Identification

Before assessing attacks, we use our model to select entities that can be either
attack victims or the attackers. The selection criteria are based on metrics that
reflect the popularity and the influence of entities. To this end, we defined six
metrics divided into first- and second-order metrics. First-order metrics are basic
metrics which rank entities according to the number of hosted servers. Second-
order metrics combine basic metrics and measure the level of influence that an
entity may have on third-party services. The most popular entities of our metrics
are shown in Tables 5.2 and 5.3.

5.6.1 First Order Metrics

We start with four first-order metrics, one for each server of our model, i.e., name
servers, web servers, email servers, and JS hosting servers. We calculate these
metrics using two sets of queries, one for ASes and the other for countries.

Metric #1 (Hosted Alexa Domains). The first metric counts the number of
Alexa domains hosted by an AS or a country. For an AS a, the first propagation
rule is the following:

75



CHAPTER 5. WHO CONTROLS THE INTERNET

Metric 1

Country Dom. ASN Name Dom.

United States 30,582 13335 CloudFlare 7,170
Netherlands 4,296 16509 Amazon-1 2,816
Germany 4,178 14618 Amazon-2 1,892
China 4,158 20940 Akamai 1,830
Japan 3,053 16276 Ovh 1,025
France 2,526 37963 Alibaba 779
Great Britain 2,400 24940 Hetzner 725
Russia 1,678 15169 Google 525
Canada 1,186 36351 Softlayer 518
India 1,087 4134 ChinaNet 468
Ireland 986 19551 Incapsula 397
EU 950 54113 Fastly 361
Spain 848 63949 Linode 358
South Korea 755 4808 China Unic. 348

(a)

Metric 2

Country JS ASN Name JS

United States 47,910 16509 Amazon-1 10,085
Germany 7,830 13335 CloudFlare 5,489
China 7,273 20940 Akamai 3,004
Netherlands 6,963 14618 Amazon-2 2,207
Great Britain 4,455 16276 Ovh 1,970
Japan 4,205 24940 Hetzner 1,508
France 4,048 15133 EdgeCast 1,360
Russia 2,865 37963 Alibaba 940
Ireland 1,919 36351 Softlayer 910
EU 1,581 4134 ChinaNet 814
Canada 1,347 15169 Google 814
Italy 1,159 4837 China169 728
Spain 952 54994 Quantil 606
Poland 943 35415Webzilla 551

(b)

Metric 3

Country MX ASN Name MX

United States 41,434 8075 Microsoft 8,503
Germany 12,047 16276 Ovh 2,669
Great Britain 6,811 24940 Hetzner 2,497
France 6,261 46606 Unified L. 1,353
Netherlands 6,091 36351 Softlayer 865
Japan 4,314 26496 GoDaddy 799
Russia 3,923 16509 Amazon-1 643
Italy 3,293 60781 Leaseweb 579
Canada 3,042 15169 Google 568
Ireland 2,897 39572 Advancedh. 522
Spain 2,703 12876 AS12876 452
Turkey 2,094 63949 Linode 438
Iran 1,946 14618 Amazon-2 329
India 1,892 32475 SingleHop 298

(c)

Metric 4

Country NS ASN Name NS

United States 34,235 16276 Ovh 2,415
Germany 6,697 24940 Hetzner 2,131
France 3,865 16509 Amazon 1,907
Great Britain 3,139 46606 Unified L. 1,524
Netherlands 3,116 36351 Softlayer 1,345
Canada 2,244 32475 SingleHop 1,155
Russia 2,167 13335 CloudFlare 699
Turkey 2,143 32244 Liquid Web 674
Japan 2,126 16552 Tiggee 611
Spain 1,662 26496 GoDaddy 535
China 1,617 60781 Leaseweb 398
Iran 1,552 33517 DynDNS 364
Brazil 1,070 12876 AS12876 354
India 954 4808 China Unic. 351

(d)

Table 5.2: First order metrics for identifying possible attackers and victims: (a)
the number of Alexa domains, (b) number of domains hosting JS libraries, (c)
number of mailexchange servers, and (d) number of name server

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = ORIG_FROM
µ(m, C) := c

(rORIG)

followed by Rule rA. These two rules, starting from the source node a, propagate

76



5.6. ENTITY IDENTIFICATION

Metric 5

Country JS|NS ASN Name JS|NS

United States 41,231 16509 Amazon-1 15,429
Germany 3,101 13335 CloudFlare 4,933
Netherlands 3,045 33517 DynDNS 3,570
China 3,009 4837 China169 2,008
Russia 2,254 26496 GoDaddy 1,938
France 2,084 4812 China Tlc. 1,875
Japan 2,000 16552 Tiggee 1,467
EU 1,636 16276 Ovh 1,307
Great Britain 1,364 15169 Google 1,012
Spain 1,219 24940 Hetzner 873
Canada 801 15395 London Off. 822
Singapore 787 36351 Softlayer 753
Poland 540 4808 China Unic. 494
Iran 474 20940 Akamai 414

(a)

Metric 6

Country JS ASN Name JS

United States 28,800 8075 Microsoft 11,596
Netherlands 14,213 13335 CloudFlare 6,790
Ireland 11,440 16509 Amazon-1 2,018
Germany 5,380 16276 Ovh 1,969
Great Britain 3,116 26496 GoDaddy 1,750
France 2,996 24940 Hetzner 1,708
Russia 2,588 33517 DynDNS 1,523
Japan 1,663 36351 Softlayer 575
Spain 1,421 39572 Advancedh. 560
Iran 1,123 60781 Leaseweb 478
Canada 933 16552 Tiggee 475
China 842 49505 Selectel 433
Italy 798 63949 Linode 428
Turkey 797 4837 China169 352

(b)

Table 5.3: Second order metrics for identifying possible attackers and victims:
(a) number of JS servers whose NS is in a country/AS, and (b) number of MX
servers whose NS in a country/AS

the taint value to all IP addresses and then to domain names. Domain names can
originate from the Alexa database, or can be imported during the acquisition. To
filter Alexa domains, we refine Rule rA by adding a check on the node property,
i.e., µ(n,O) = Alexa:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = A, µ(n,O) = Alexa
µ(m, C) := c

(rA,Alexa)

Finally, we define a function γ which returns the number of compromised
domains.

For a country c, we use a similar query and a new rule that propagates the
taint from c to all IPs and ASes located in c. The rule is the following:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = LOC_IN
µ(m, C) := c

(rLOC)

Metric #2 (Hosted JS Libraries Providers). The second metric calculates the
number of JS hosting servers which are located in an AS or a country. The
approach followed is similar to the one illustrated for Metric #1, however, we use
a slightly modified version of Rule rA:

77



CHAPTER 5. WHO CONTROLS THE INTERNET

∆, e′ = (p,m) ∈ E, λ(e′) = JS
µ(m, C) := c

(rA,JS)

where ∆ is the precondition of rA. The new propositions e′ = (p,m) ∈ E and
λ(e′) = JS describe the pattern that uniquely distinguishes JS hosting servers
from other domains, e.g., a domain hosts a JS program if it has an incoming edge
of type JS.

Metric #3 (Hosted Email Servers). The third metric measures the number of
email servers hosted by an attacker or victim. The query is similar to Metric #2
in which we modify Rule rA to consider domains with incoming edges of type MX.

Metric #4 (Hosted Name Servers). The fourth metric measures the number
of name servers hosted by an attacker or victim. Also, this rule is similar to the
previous ones and Rule rA consider domains with incoming edges of type NS.

5.6.2 Second Order Metrics

Starting from the previous metrics, we build more sophisticated ones that quantify
the influence of a provider or a country on third-party servers.

Metric #5 (Name Servers for JS Providers). This metric measures the number
of JS hosting servers whose authoritative name servers are hosted by a victim or
attacker. The rules used for an AS are rORIG and the following one:

· · · , e = (m,n) ∈ E, λ(e) = NS, e′ = (p,m) ∈ E, λ(e′) = JS
µ(m, C) := c

(rNS,JS)

where we used “· · · ” as a place holder for the taint precondition. This rule
propagates the taint from an AS to its own IPs. An IP is counted if two conditions
are met. First the IP n has an incoming edge NS from another node m, i.e., n is
an authoritative server for m. Second, the node m has an incoming edge of type
JS from a node p, i.e., m hosts a JS library for p. The query for the case of a
country contains the Rule rLOC followed by rORIG and rNS,JS.

Metric #6 (Name Servers for Email Servers). This metric measures the number
of domain of email servers whose name server is hosted by a victim/attacker. The
construction of the query is the same as for Metric #5. In the case of AS, the
rules used are rORIG and a modified version of rNS,JS:

· · · , e = (m,n) ∈ E, λ(e) = NS, e′ = (p,m) ∈ E, λ(e′) = MX
µ(m, C) := c

(rNS,MX)

78



5.7. ATTACK EVALUATION

5.7 Attack Evaluation

We now evaluate the impact of attacks. We consider three attack scenarios, namely,
distribution of JS malicious content Section (5.7.1), email sniffing Section (5.7.2),
and DoS against core service providers Section (5.7.3). We present results with
two levels of granularity. First, we show the overall impact of attacks in terms of
total number of affected Alexa domains. Second, for a selection of attacks, we
present attack results on a per-victim base.

Country Host
Collusion

In-path
Injection ASN Name Host

Collusion
In-path

Injection

United States 15,658 12,267 15169 Google 9,469 5,553
Netherlands 3,292 2,639 13335 CloudFlare 4,310 3,165
Russia 1,701 1,409 15133 EdgeCast 3,404 2,306
Germany 1,622 1,317 16509 Amazon-1 3,216 2,264
Japan 1,311 1,151 20940 Akamai 2,279 1,800
China 1,141 1,079 14618 Amazon-2 572 351
Great Britain 1,094 895 35415 Webzilla 515 479
Ireland 1,048 828 24940 Hetzner 379 330
EU 905 824 16276 Ovh 342 287
France 713 603 36351 Softlayer 334 286
Canada 399 246 4837 China169 227 226
Poland 176 151 4134 ChinaNet 198 185
Italy 105 97 37963 Alibaba 148 146
Spain 83 69 54994 Quantil 71 71

Table 5.4: Attack evaluation: Distribution of malicious JS content with hosting
malicious JS content and in-path malicious JS injection

5.7.1 Distribution of JS Malicious Content

For this attack, we consider three techniques: hosting malicious JS content, injec-
tion of malicious JS on in-path TCP connections, and malicious name resolution
redirection. We select attackers according to metrics #2 and #4 in Table 5.2.
Then, for each technique and attacker, we measure attack results as the number of
websites that, as a result of the attack, will distribute the malicious JS content to
their users. Table 5.4 and Table 5.5(a) show the attack results when the attacker
is an AS or a country, respectively.

Hosting Malicious JS Content. In this attack we assume that the attacker is
either an AS or a country that colluded with web servers hosting JS code. For
example, in the case of AS, we assume that the web servers hosted by the AS are
cooperating with the origin AS. Possible attackers can be selected with Metric
#2, which count the total number of domains hosting JS for each AS or country.

79



CHAPTER 5. WHO CONTROLS THE INTERNET

Country DNS
redir. ASN Name DNS

redir.

United States 12,375 15169 Google 7,859
Russia 1,362 33517 DynDNS 4,311
Netherlands 1,225 16509 Amazon-1 3,685
China 1,032 13335 CloudFlare 3,012
Japan 880 4812 China Tlc 595
EU 743 4837 China169 555
Germany 621 4808 China Unic 401
France 454 16552 Tiggee 361
Singapore 317 26496 GoDaddy 316
Great Britain 225 24940 Hetzner 227
Spain 173 16276 Ovh 199
Iran 124 36351 Softlayer 196
Canada 117 20940 Akamai 88
Poland 65 15395 London Off 88

(a)

Country MX
Coll. ASN Name MX

Coll.

United States 24,459 15169 Google 11,127
Germany 2,301 8075 Microsoft 2,465
Great Britain 1,838 26496 GoDaddy 1,267
Russia 1,602 16276 Ovh 565
France 1,382 24940 Hetzner 347
Japan 1,317 16509 Amazon-1 332
Netherlands 1,279 36351 Softlayer 237
Ireland 809 60781 Leaseweb 170
Canada 614 12876 AS12876 134
India 496 46606 Unified L 113
Spain 410 63949 Linode 108
Iran 392 14618 Amazon-2 104
Italy 384 39572 Advancedh 96
Turkey 319 32475 SingleHop 93

(b)

Country MX+NS ASN Name MX+NS

United States 13,077 8075 Microsoft 3,003
Netherlands 3,933 13335 CloudFlare 2,280
Ireland 3,006 4837 China169 1,784
China 2,300 26496 GoDaddy 1,447
Germany 1,405 16509 Amazon-1 1,256
Great Britain 1,735 33517 DynDNS 1,178
Russia 1,466 16276 Ovh 555
France 910 24940 Hetzner 335
Japan 902 16552 Tiggee 227
Iran 344 36351 Softlayer 179
Spain 338 39572 Advancedh. 96
Canada 265 60781 Leaseweb 75
Italy 242 49505 Selectel 65
Turkey 213 63949 Linode 57

(c)

Table 5.5: Attack evaluation: (a) malicious name resolution (b) email sniffing via
malicious email provider, and (c) malicious name resolution for email sniffing

The attack results are shown in Table 5.5. The attack results show that
countries can be very powerful attackers. For example, according to Metric #2,
the United States hosts 47K JS hosting providers (see Table 5.2(b)) which could
distribute malicious code to about 16% of the top 100K Alexa domains. However,
ASes are also very powerful and affect a fraction of websites that is even larger
than that of individual countries, and even groups of countries. For example,
the AS of Google can affect about 9% of Alexa domains, the number of domains

80



5.7. ATTACK EVALUATION

that can be affected by the Netherlands, Russia, Germany, Japan, China, and
Great Britain combined. Even more interestingly, the AS of Google reaches 9%
of websites with only 762 servers compared to 3% of the 10K servers of Amazon.
This result highlights that the power of operators can be more precisely measured
by taking into account to what extent other services depend on them. The AS
of Google is not an isolated case. Other ASes can affect as many domains as
a country. Examples of these ASes are CloudFlare EdgeCast, Amazon-1, and
Akamai. Each of them can distribute malicious code to more domains than the
top six countries (excluding the United States).
Propagation rules—We created this table with the following rules. When the
attacker is the AS, we use Rule rORIG, rA, and rJS. If the attacker is a country,
then we use the Rule rLOC followed by the previous ones, i.e., rORIG, rA, and rJS.
The resulting graph is then processed by the γ function, which counts the number
of tainted Alexa domains.

In-path Malicious JS Injection. Interestingly, a very large fraction, i.e., 82%
(Table 5.4), of JS hosting service distribute JS libraries over unprotected connec-
tions, i.e., HTTP instead of HTTPS. Accordingly, hosting ASes and countries
can intercept TCP connections from border gateways and inject malicious con-
tent similarly as performed for the Great Cannon attack. We may extend the
measurement to protected resources, however, the attacker is required to control
a valid certificate for the domain being hijacked. While this is a possible attack
scenario, it requires additional effort that, considering the low number of protected
resources, will produce a limited increase of the attack result. Table 5.4 shows
the attack results on Alexa Web sites that include an unprotected JS program.

Among the 82% of JS inclusion over unprotected connections, 1,079 of them
are crossing the Chinese network borders. However, China is not the country that
can affect the largest fraction of websites. Other countries could perform better
than China including the United States with 12,267 websites, the Netherlands
with 2,639 websites, and Russia with 1,409 websites. An interesting aspect of
our results is that this type of attack method does not perform any better than
the hosting malicious content attack. In fact, injecting malicious JS code via
web server collusion affects 17% fewer affected domains on average than hosting
malicious content.

Similarly to the attack based on hosting malicious content, we observed that
ASes can affect more domains than countries. For example, the AS of Google
can affect as many domains as the Netherlands, Russia, and Germany together.
However, also in this case, in-path malicious JS injection does not reach as many
domains as the injection via server collusion. For example, an in-path code
injection can cause Google to lose about 41% of total websites.

Now, we present a fine-grained analysis of this attack. We map the attack
results to countries that would be affected if another country decides to perform

81



CHAPTER 5. WHO CONTROLS THE INTERNET

this attack. An excerpt of these results are presented in Table 5.6. Attack results
can be interpreted as a form of dependency among countries. Our results show two
interesting facts. First, with different intensity, almost all the popular countries
(except for six of them) can attack at least one domain of another country. Second,
the dependency among countries is not symmetric. For example, consider the
United States. According to all metrics, the United States is the most powerful
attacker in our model. However, this influence is not symmetric, e.g., when
compared to the Netherlands. While the United States can affect 283 Dutch
domains, 967 US domains can be attacked by the Netherlands.
Propagation rules—The rules for this measurement are similar to those of the
previous attack. However, we modified Rule rJS to limit the propagation to
unprotected JS edges only:

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = JS, µ(e,S) = HTTP
µ(m, C) := pc

(rJS)

where S is the property key that stores the URL scheme of the include JS.

Malicious Name Resolution Redirection. Finally, malicious content can be
distributed to Web browsers via malicious domain name resolution. In this attack,
we assume that the authoritative name server of a domain hosting JS redirects
users to a malicious server. The attack result is the number of websites that include
a resource hosted on a server whose name server is colluded or compromised. This
attack exploits three types of relationships of our model. The first relationship is
between domains and the domains hosting JavaScript. The second relationship is
the domain name resolution which maps, eventually, domain names to IPs. The
third type of relationship is the domain name resolution process with an operator,
e.g., country or network provider.

With this technique, countries do not gain considerably more power than
the previous attacks. In most of the cases, all players can affect a slightly lower
number of websites. Only two players stand out from the rest, i.e., the AS of
Google and DynDNS. Google hosts 73 name servers that can be used to distribute
malicious JS to the users of 7,859 domains. This amounts to an increase of 677%
of the number of controlled name servers. Similarly, DynDNS controls 3,570 name
servers that can affect 4,311 domains. We discuss in detail the role played by
DynDNS in our model in Section 5.7.3.
Propagation rules—We create this table with the following rules. When the
attacker is the AS, we use Rule rORIG, rA, and rJS. If the attacker is a country, then
we use the Rule rLOC followed by the previous ones, i.e., rORIG, rA, and rJS. The
resulting graph is then processed by a γ function that counts the number of tainted
Alexa domains. The number of affected domains is showed in Table 5.5(a). The
used propagation rules are rORIG, rA, rNs and rJS, where rNs is defined as follows:

82



5.7. ATTACK EVALUATION

µ(n, C) = c, e = (m,n) ∈ E, λ(e) = NS
µ(m, C) := c

(rNs)

5.7.2 Email Sniffing

To acquire a large number of emails, an attacker can rely on various techniques.
In this work we consider two. The first one is by acquiring them directly from the
email server. The second one is by redirecting an email client toward a malicious
mail server, which will accept the email, keep a copy, and forward it to the
intended recipient. This attack can be performed by a provider or by a country.
Tables 5.5(b) and 5.5(c) show the attack results. All values are the number of
Alexa domains that will be affected by this attack grouped by technique and
attacker.

Malicious Email Provider. Attackers that can perform this type of attack are
selected using Metric #3, i.e., ASes or countries hosting email servers. This attack
technique shows the predominance of the United States and Google in managing
the email infrastructure of a large fraction of popular websites (See Table 5.5(b)).
The United States alone can acquire emails of 25% of the most popular websites.
Similarly, the AS of Google is hosting only 568 email servers which are used by
11% of the websites. The other players, such as Germany, have still relevant
influence but up to 10 times less than the US or Google. Interestingly, most of
the domains that can be affected by a country are hosted in the same country.
For example 17K of the domains affected by the US are hosted in the US (See
Table 5.7).

Malicious Name Resolution Redirection. Attackers for this attack are se-
lected using Metric #6. This metric measures the number of mail server whose
authoritative name server is hosted by the attacker. Starting from this list of
attackers, we counted the number of Alexa domains that use one of these mail
servers. Table 5.5(c) shows the total number of affected Alexa domains. As
we cannot measure to what extent TLS is used as part of the client-to-MTA or
MTA-to-MTA email transfer, we neglect the fact that malicious name servers
potentially cannot redirect communication. The numbers provided in this scenario
thus rather constitute upper bounds.

With this type of attack, we observe that Google loses most of its power. This
can be explained by the fact that websites use Google email server via name
servers which are not hosted by Google.

83



CHAPTER 5. WHO CONTROLS THE INTERNET

5.7.3 DoS against Core Service Provider

In this section, we consider the case in which a service provider is the victim of an
attack. Here, we do not focus on the specific attack technique, but on the impact
of making a provider unavailable. The metrics of Tables 5.2 and 5.3 can be used
to select a candidate. The queries used for the attack results can be reused for
this type of assessment.

For example, let us consider the DoS attack that on the 21st of October 2016
was launched against Dyn.com. DynDNS is an autonomous system operated
by Dyn.com. According to our model based on the top 100K Alexa domains,
DynDNS does not host a relevant number of mail servers and JS hosting providers.
However, it hosts 364 domain name servers. These name servers are authoritative
for 3,570 (see Table 5.3 (a)) domains hosting JS that provide JS to 5,559 top
100K Alexa domains (not shown in Table 5.4), of which 4,331 are unprotected JS
inclusion. Furthermore, the name servers hosted by DynDNS are authoritative for
1,523 domains running mail servers which are used by 1,178 top Alexa domains.
If the Dyn.com DNS infrastructure is attacked, then a fraction that ranges from
1% to 5% of the top 100K Alexa domains would be affected. The operation of
these domains may be severely compromised, as JS used to deliver services via
Web applications would no longer be available.

CN DE FR GB JP NL RU US Total

US 134 355 223 172 657 290 287 4,248 6,366
RU 0 107 22 14 0 70 364 124 701
NL 12 53 42 42 189 171 55 979 1,543
JP 7 4 1 1 597 7 0 185 802
GB 79 20 15 49 21 29 9 322 544
FR 0 18 84 10 24 10 17 150 313
DE 77 191 31 14 33 38 62 312 758
CN 475 6 3 0 19 0 1 109 613

Total 784 754 421 302 1,540 615 795 6,429 11,640

Table 5.6: JS injection on in-path TCP connections group by countries.

5.8 Limitations

We evaluate the impact of the attacks over static data acquired in a single time
point, which can be seen as a snapshot of the current network status. Therefore
the dependency graph is static. Also, we did not consider different network views
(e.g., from different locations) and the data has been collected from a single
vantage point located at Saarland University in Germany. This vantage points
may have an influence especially for geographically distributed Content Delivery

84



5.9. RELATED WORK

CN DE FR GB JP NL RU US Total

US 1,472 1,060 626 765 455 2,047 229 17,245 23,899
RU 0 179 53 24 0 72 933 268 1,529
NL 5 85 43 72 0 512 21 548 1,286
JP 9 13 0 3 1,149 59 0 112 1,345
GB 9 165 115 766 59 292 16 496 1,918
FR 1 40 918 50 1 66 5 356 1,437
DE 6 1,503 88 144 4 209 37 542 2,533
CN 2,387 31 3 6 18 13 0 281 2,739

Total 3,889 3,076 1,846 1,830 1,686 3,270 1,241 19,848 36,686

Table 5.7: Attack results of malicious email providers grouped by countries

Networks (CDNs), in that our analyses are potentially biased based on the client’s
residence. An interesting direction for future work would be to include different
vantage points. Besides geographic differences based on the Web topology, we
believe that building a dependency graph from different vantage points especially
from countries deploying censorship filters could also reveal other intriguing results
and change the impact of the attacks.

To acquire JavaScript dependencies between domains, we used Scrapy4, a
framework to extract static data from websites. Scrapy does not support the
execution of JavaScript. As a result, our model does not include dependencies
that may originate from the execution of the JavaScript program. The extraction
of these dependencies can be achieved by using advanced Web crawlers (e.g.,
jÄk [116]). While this, as shown by prior research, can increase coverage up to
80% [116], it is not a viable option for large-scale analyses. Crawlers that interpret
JavaScript are considerably slower than classic crawlers as they require more
resources and longer execution time for each website.

5.9 Related Work

The security of the Internet infrastructure has been under constant scrutiny of the
research community. Countless works have been presented by using formal and
empirical analyses. For example, Albert et al. [101] studied Internet robustness
against random errors and targeted attacks. They show that the Internet provides
high error tolerance, but it does not provide adequate robustness against attacks
targeting hubs (i.e., nodes with higher connection degree). Following this seminal
work, other works assessed other aspects of the problem such as hub selection
(e.g., [102, 117]). Following this research line, our work takes an empirical approach
to mine topology of the Internet infrastructures to study the impact of large-scale
attacks.

4See https://scrapy.org/

85

https://scrapy.org/


CHAPTER 5. WHO CONTROLS THE INTERNET

The security of the Internet has been studied also empirically with measure-
ments of BGP infrastructure [107], JS inclusion [118], Web service networks [106],
and HTTPS ecosystem [119]. Frey et al. [107] presented an analysis on the Euro-
pean BGP backbone using publicly available BGP data. Nikiforakis et al. [118]
showed that the vast majority of websites rely on external JS libraries stored on
poorly maintained web servers. Finally, Cangialosi et al. [119] studied dependences
among providers based on shared X.509 certificates, and its implications on the
HTTPS ecosystem security. Our work presents a similar what-if analysis which
complements these papers. However, while these works considered individual
service in isolation, our work is more comprehensive, considering different services,
intra-services relationships, and a framework to support analyses similar to the
aforementioned works.

Classical data mining approaches have been applied to security problems as
well. Data mining has been used to classify system and user behaviors to detect
outliers [120]. Mining techniques have been used also to detect vulnerabilities. For
example, source code can be represented as a property graph, and graph traversals
can be used to identify vulnerable behaviors [121, 122]. Unlike all these works,
that are mainly focused on the analysis of a single protocol, network service, or
network layer, our methodology allows to study the security of the infrastructure
considering the various services involved, organizations, and dependencies between
them.

Finally, another line of works attempts to learn service dependencies via
observations of network traffic (e.g., NSDMiner [123] and Rippler [124]). While
these tools can effectively learn dependencies, they require network traffic which
is not available for the global analyses like the one presented by our and other
works (e.g., [119]).

5.10 Conclusion

In this chapter, we proposed investigation techniques to assess global-scale threats.
We presented a model of the Internet infrastructures based on property graphs.
Moreover, to mine the data from the model, we presented a taint-style propagation
technique for traversing the graph. We evaluated our framework, on a model
built upon the top 100K Alexa domains by passively and actively collecting
publicly available information. Using the presented metrics for selecting attacker
and victim candidates, we assessed the impact of the attackers and identified
the most influential Internet players. Finally, we showed how one country can
influence another by using JS injection on in-path TCP connections and MX
server collusion.

86



6
TTL-based Filtering

On the Feasibility of TTL-based Filtering for DRDoS

Mitigation

87





6.1. MOTIVATION

6.1 Motivation

One of the major hassles for network provides in recent years have been so-called
Distributed Reflective Denial-of-Service (DRDoS) attacks [125]. In these attacks,
an attacker poses as its victim and sends a flood of tiny packets to vulnerable
services which then respond with much larger replies to the victim. This is possible
because the Internet Protocol (IP) does not have means to protect against forgery
of source addresses in its packets, so-called IP spoofing. A variety of different
UDP-based protocols have been known to be vulnerable for this category of attacks
for long [126], but despite the efforts to locate and shut down vulnerable services,
they remain a problem even today.

To ensure that a server does not become unwilling participant in a DRDoS
attack, an appealing defense is to detect spoofed packets at the recipient. One
such technique is to validate certain IP header fields and drop packets that seem
unsound. Most promising, Cheng et al. [127] propose a technique called Hop
Count Filtering (HCF) to leverage the Time-to-Live (TTL) field encoded in the
IP header. The intuition behind a TTL-based filtering approach is that the route
of the actual source of the traffic and the claimed source is likely different, i.e.,
the spoofing source is in a different network than the spoofed IP address. This is
then also reflected in the TTL value, as the attacker’s route to the server differs
from the one of the spoofed system, and hence the number of hops is different.
Thus, it is seemingly possible to filter most spoofed traffic by dropping any traffic
which does not correspond to the expected TTL.

6.2 Contribution

In this work, we evaluate the feasibility of using HCF to defend against DRDoS
attacks. To do so, we analyze several means of probing for the TTL of an alleged
sender, using different types of probes towards a host in question as well as
horizontal probing of its neighbors. We show that this process is prone to errors
and frequently tedious in practice, raising the need for a certain tolerance in
TTL-based defenses. More precisely, we show that an error margin of +/-2 must
be allowed to enable 86.4% of benign traffic to pass, while dropping more than
75% of spoofed traffic.

Any TTL-based defense relies on the tacit assumption that an attacker cannot
learn the correct TTL when spoofing a packet. We, however, show that a spoofing
attacker can subvert TTL-based filters by predicting the TTL value—without
having access to the system or network of either server or impersonated victim.
Our idea is to leverage publicly available traceroute data to learn subpaths that
an IP packet from IPA to IPB will take. We follow the intuition that subpaths
from IPA to any other host on the Internet are quite constant and can be learned

89



CHAPTER 6. TTL-BASED FILTERING

by the attacker. Similarly, we show that the attacker can observe that any packet
to IPB traverses a certain subpath. We augment such subpath information with
an approximation of how the packet is routed on the higher-tier Internet layers.
Given the tolerance required in TTL-based defenses, we can estimate the initial
TTL value that the attacker has to set to enable bypassing of such defenses. These
“negative” results prove that TTL-based spoofing filters are unreliable and (if at
all) a short-sighted solution only. Rather than attacking existing defense systems,
our findings conceptually show that TTL-based defenses cannot work to thwart
the outlined attacks. Hence, we see this work as a valuable contribution to steer
future research towards more fundamental solutions, be it alternative defenses
against spoofing, or conceptual redesigns of the Internet and its protocols. To
summarize, we make the following contributions:

• We re-evaluate the concept of HCF to determine the necessary level of
tolerance required for it to work in practice.

• We describe a methodology which leverages previous knowledge about
routing and statistical models to estimate the number of hops between an
arbitrary victim and an amplifier of the attacker’s choosing.

• In doing so, we show that TTL-based defenses can be circumvented by an
attacker with as little as 40 globally distributed probes.

6.3 Background

In this section, we discuss the background information on routing on the Internet,
Distributed Denial of Service attacks, and Hop Count Filtering as a countermeasure
against such attacks.

6.3.1 Relevant Internet Technologies

The Internet is a globally connected network system that interconnects sub-
networks, which route packets between them based on the established routes. These
smaller networks, also referred to as Autonomous Systems (AS), are collection of
IP routing prefixes under a control of a single administrative entity with internally
defined routing policies.

For a host in network A to connect to a host in network B, a route must
be found through potentially several different ASes. Exchanging traffic between
different autonomous systems is routed based on the Border Gateway Protocol
(BGP), in which routers exchange information about accessible IP ranges and the
corresponding AS paths, i.e., routes to these ranges.

To ensure that a packet is not stuck in a routing loop, the Internet Protocol (IP)
header contains a field named Time-to-Live (TTL). When handling a packet, “[...]

90



6.3. BACKGROUND

every module that processes a datagram must decrease the TTL” and whenever a
packet’s TTL value reached zero, the packet must be discarded by the routing
device [128]. In practice, the TTL is a very simple concept implemented as a
decreasing hop count. The value is initially set by the sending host and it usually
depends on the operating system, e.g., Mac OS X uses 64, Windows 128, and
while Linux distributions nowadays mostly use 64, some even use 255 [129]. When
receiving a packet, analysis of the TTL values therefore allows to approximate
the number of routing devices the packet has passed.

The concept of TTLs can also be used to learn the exact route of a packet
(tracerouting). To that end, the initiator of the tracerouting sends an IP packet
towards the intended destination, initially setting the TTL value to 1. When this
packet reaches the first hop, the TTL is decreased. According to the RFC, the
router must now drop the packet. In such a case, most routers will also send an
Internet Control Message Protocol (ICMP) error message to the original sender,
indicating that the timeout of the packet has been exceeded. This response can
be used by the tracerouting machine to learn the IP address of the first hop. By
repeating this process with increasing TTL values, this method can be used to
learn all IP addresses of routers on the packet’s way to its destination.

6.3.2 Source Spoofing and DRDoS

By design, the Internet Protocol does not feature a means of verifying the source of
a packet. Since IP packets are only directed based on the destination, an attacker
can easily generate an IP packet with a fabricated (or spoofed) source address.
This drawback of the original design of the Internet Protocol gives the adversary
plenty of space for misusing it towards several aims. One example is Denial of
Service (DoS) attacks, where an attacker tries to either saturate the network link
to a server or exhaust resources on the target machine by, e.g., initiating a large
number of TCP handshakes. To defend against this, a network administrator may
configure a firewall to drop packets from the attacker. The attacker, however, can
easily bypass this defense mechanism by spoofing the IP packets making them
appear to come from different addresses.

Moreover, recent years have seen an increase in Distributed Reflective Denial
of Service (DRDoS) attacks. These attacks rely on spoofing packets in conjunction
with services which respond to requests with significantly larger responses. There
are a variety of vulnerable protocols (described in [126, 130]), but recently, the
most nefarious attacks have been misusing protocols such as DNS, NTP, SSDP,
or chargen. As an example, the Network Time Protocol’s (NTP) monlist feature
may generate a response that is more than 4,500 times larger than the request. To
abuse this, an attacker generates a flood of monlist requests to vulnerable servers
while spoofing the source IP address to be that of the victim. Subsequently, a
vulnerable NTP server will send the response to the victim’s IP. As a result, the

91



CHAPTER 6. TTL-BASED FILTERING

attacker massively amplifies his own bandwidth, and at the same time hiding his
real IP address.

Although this kind of attack has been well-known for long [131, 132] and
attempts have been made to shut down vulnerable systems used in such attacks
(e.g., [133]), they still pose a threat to online services. In order to fight such
attacks, several countermeasures dating back to 2001 [134] have been proposed.
One obvious defense strategy would be to limit the number of requests a client
may issue. However, while such mechanisms may help to protect against excessive
abuse of a single amplifier, Rossow’s [126] analysis shows that even with rate
limiting the aggregated attack bandwidth of some protocols is still an issue. This
and many other countermeasures have been evaluated and analyzed by Beitollahi
and Deconinck [135], hence we omit to discuss them further and refer the reader
to their paper. Instead, we discuss the hop count filtering mechanisms relevant
for our work in the following.

6.3.3 Hop Count Filtering

When a packet is received, its TTL depends on (i) the initial TTL value and (ii)
the number of hops the packet has traversed. While it is easy to forge an IP header
as such, Cheng et al. [127] propose to use the TTL to detect nefarious packets.
More precisely, they assume that an attacker trying to impersonate a specific host
cannot ascertain the hop count between the spoofed host and the recipient of the
packet. Based on this assumption, they present a reactive defense against DDoS
attacks. To detect an attack in which the sender spoofs IP addresses to conceal
his true location, they first require a period of observing the legitimate upcoming
traffic (learning state), where the victim builds a mapping between the legitimate
clients (IP addresses) and their respective hop count. Once an attack is detected,
the victim rejects all packets where the TTL values do not match the recorded
hop count. This way, the victim does not have to allocate resources for handling
incoming spoofed traffic.

To increase the accuracy of the hop count filtering (HCF), Mukaddam et
al. [136] proposed a modified version of HCF that aims at improving the learning
phase. Instead of recording only one hop count value per IP, they record a
list of all possible hop count values seen in the past. They justify the need for
such an extension by arguing that the hop count may change due to the use of
different routes. Indeed, such a system decreases the collateral damage by correctly
classifying legitimate traffic. On the other hand, however, this mechanism allows
an attacker to make more guesses in evasion attempts by ascertaining the correct
TTL value.

92



6.4. RE-EVALUATING THE FEASIBILITY OF HOP-COUNT FILTERING

6.4 Re-Evaluating the Feasibility of Hop-Count Fil-
tering

The work by Mukaddam et al. has shown, that the efficiency of the original
HCF approach may be reduced by the nature of routing on the Internet. In
addition, such an approach requires a prior learning phase, e.g., through passive
TCP handshake analysis, to facilitate detection of spoofing. In the following,
we investigate how far the methodology from Cheng et al. can be extended to
filter out spoofed traffic used in DRDoS attacks. In contrast to the original HCF,
this process cannot rely solely on TCP handshakes from previous connections
by the client, as protocols used in DRDoS attacks, such as NTP or DNS, are
connection-less. Simply dropping all packets from any host without a previous TCP
connection would render any benign use of UDP-based services moot. Therefore,
we investigate what is the error margin of the TTL value for an alleged sender
that can be learned by the server to evaluate the efficacy of TTL-based filtering
on the Internet.

6.4.1 Protocol-based Probing

The most intuitive way for a server to ascertain a TTL value of a client is to
receive a genuine (non-spoofed) packet from that host. This can be done after
a successful TCP handshake, as an established connection can only occur if the
alleged sender actually initiated the connection. Due to its connection-less nature,
we cannot rely on such a process for UDP. Instead, we need to prompt the alleged
sender for a non-spoofed packet. To achieve this, we can rely on ICMP, TCP,
or UDP requests to the system in question. The ports we used in our work for
TCP and UDP are derived from the most scanned port discussed by Durumeric et
al. [137]. We realize that it might not be feasible to send a plethora of probes to
an end host whenever a packet to a UDP-based service is received, as this itself
would be an amplification attack. Regardless, we want to investigate how different
protocols and techniques might be leveraged to learn the TTL.

One way of compelling the probed system to send a packet is to use ICMP.
ICMP echo can be used to measure the round trip time of a packet to a given
host. The TTL of the probe target can be extracted from the IP header of an echo
reply. In addition to the echo command, several operating systems also implement
the non-mandated timestamp command. This can be used in the same fashion to
induce a response from the probed system.

Additionally, the probing server can itself try to establish a TCP connection
to the alleged sender. The methodology is independent of the actual application
used underneath, since the TCP handshake is conducted by the operating system
before handing the socket to the underlying application.

In contrast to TCP, where no application data needs to be sent to the probed

93



CHAPTER 6. TTL-BASED FILTERING

host, most UDP-based services require protocol-specific data to be submitted. As
an example, DNS and NTP servers only react to datagrams which are conformant
to the respective protocol. On the other hand, the UDP-based chargen service
“simply sends data without regard to the input” [138]. Therefore, we send protocol-
conformant packets to DNS and NTP ports, and random data to chargen.

6.4.2 Interpreting Responses.

In any of the cases described above, we may receive a positive or negative response.
In the following, we discuss these types of responses and indicate how they can be
used to extract the TTL from probed systems.

Positive Responses. When using ICMP, an echo or timestamp reply suffices
to extract the TTL value from the encapsulating IP packet. For TCP, if a
service listens on the probed port, the operating system will follow the three-way
handshake process and respond with a SYN/ACK packet. In the case of UDP,
the process differs slightly: when a service is listening on the probed port and the
incoming packet adheres to the specification of that service, it sends a response
back to the requesting system. Analogously to ICMP, the TTL value can be
extracted from TCP and UDP responses by simply examining the IP header.

Negative Responses. In addition to responses which indicate that the host
is up or a service is listening on the probed port, we can also leverage negative
responses or error messages to learn the TTL. For example, in cases where a TCP
port is not open, the host system may respond with a packet which has the RST
flag set. Assuming that the packet is usually generated by the probed system (we
discuss exceptions to this rule in Section 6.4.4), we can extract the TTL value in
the same fashion used for positive responses. For UDP, we leverage ICMP Port
Unreachable replies.

Next to these protocol-specific errors, we may also receive a message indicating
that the host is not reachable. For example, the last router on the path can issue
an ICMP Host Unreachable message. In this case, given the assumption that only
the last router will send such a message, we can use the TTL from the incoming
packet and decrease it by one (since the original sender would have had one more
hop). ICMP also features a more generic Destination Unreachable message; this,
however, can be sent by any router on the path and therefore cannot be used
to conclusively calculate the TTL value. Next to these, we may receive ICMP
Communication Administratively Prohibited messages. Such a message can either
be sent by a router or the system itself when a packet is rejected by the firewall.

94



6.4. RE-EVALUATING THE FEASIBILITY OF HOP-COUNT FILTERING

6.4.3 Horizontal Probing

A probed host may not answer, e.g., because it is behind a firewall and drops
any incoming packets. In these cases, we may still gather valuable information on
the path to the host by probing neighboring hosts. A neighbor in this case is a
host which is located within the same subnet as the target. Although assuming
that each subnet consists of exactly 256 IPs is not correct, this measure can still
provide partial insight into the route and give a close estimate of the actual TTL
value. Therefore, we probe neighbors by changing the last octet of the IP address
+/-1, and use previous knowledge from hosts within the same /24 subnet, as this
is the smallest network section generally advertised and accepted via BGP [139].

6.4.4 Caveats of Active Probing

There are several scenarios which can induce errors in probes. Typically, private
customers receive a router for their dial-up account, which uses Network Address
Translation (NAT ) to allow multiple LAN clients access to a single Internet
connection. Unless these routers are configured to forward packets to a machine
behind the NAT, any response to the previously mentioned probes will be generated
by the router. As the router adds an additional hop (and hence decreases the
TTL by one) on the way from the NAT client to the server, the TTL values will
mismatch in such a case.

For negative responses, additional artifacts may skew the results. Specifically,
TCP resets or ICMP error packets may be generated by a firewall located before
the intended probe target. In such a case, the firewall itself must spoof the probed
IP to send these packets to ensure that the packet is attributed correctly on the
system which initiated the connection. Hence, we may assume that negative
responses are indeed generated by the probed system. Since we cannot learn the
number of hops between the firewall and probed system, using negative responses
can yield false results. We discuss the number of false results in Section 6.5.

As outlined before, the initial TTL value depends on the operating system of
the sending host. Considering an example in which a Windows client is located
behind a NAT router, which is running a Linux system with an initial TTL value
of 255. Even though a packet originating from the Windows machine will only
have one additional hop on its way to the probing server, the TTL value received
by the probing system will greatly differ depending on whether the Windows or
Linux host responded to the probing request. To accommodate for this and for
horizontal probing, we normalize all TTL values to values between 0 and 63, i.e.,
TTL = TTL%64. As the maximum TTL of 255 is not divisible by 64, we first
increment TTL values above 128 by one to correct this discrepancy.

95



CHAPTER 6. TTL-BASED FILTERING

6.5 Probing Analysis

To evaluate how well active probing could be used in the wild to enable the use of
HCF, we set up two systems. First, we used a regular NTP server not susceptible
to DRDoS to attract benign clients. Second, we set up a honeypot system running
a vulnerable version of NTP to attract spoofing attackers. In the following, we
describe both data sets, discussing for what fraction of hosts we could learn any
TTL value, and comparing this to the TTL values of incoming packets. Although
we are using NTP servers for our evaluation, it is out of convenience of getting
both spoofed and non-spoofed clients for comparison. In contrast, for protocols
like chargen, getting benign traffic would have been significantly harder. We end
this section with a discussion on the implications of the results of our analysis.

6.5.1 Benign Traffic

To capture benign traffic, we set up an NTP server that does not implement
monlist feature at all, and is therefore not susceptible to amplification vectors. To
attract NTP clients, we joined the NTP pool project. Note that the term client
refers to its role in NTP, i.e., such a host could either be an end user’s computer or
a server synchronizing its clock with us. Within hours, the server was added to the
public pool and started to receive NTP requests. We analyzed the incoming traffic
for patterns of suspicious behavior (especially dreaded monlist requests). Our
analysis showed that such requests were only issued in small numbers by scanners
(e.g., operated by research groups). As we did not respond to such amplification
requests and did not notice any suspicious activity, it is highly unlikely that an
attacker would choose our server for his amplification attack. Hence, we deem
this data set to consist exclusively of unspoofed traffic.

In total, we gathered data for 48 hours, in which we received packets from
543,514 distinct IP addresses. In a first step, we probed each of these hosts
immediately after their first contact using the different types of probes outlined
in Section 6.4.1. In doing so, we could extract TTL values for 316,012 (58.1%) for
probed systems. The most successful type of probe was ICMP echo, which yielded
a result for 257,694 or 47.4% of the hosts. In comparison, the most successful
TCP-based, positive response were SYN/ACKs from TCP port 443 (HTTPS),
which accounted for a mere 31,966 (5.9%) of the hosts. For any UDP-based probes,
we only received negligible amounts of positive responses. Among the negative
responses, ICMP Communication Prohibited for TCP port 4899 (Radmin) was
the most frequent message (113,058 or 20,8%).

To find out how accurate these results actually are, we compared the normalized
TTL values to the ones from the incoming traffic. As stated before, we assume
that the traffic directed to the NTP server is indeed generated by the alleged
senders, i.e., the ground truth value for each sending host can be extracted from

96



6.5. PROBING ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of responsive clients

Comm. Proh. 4899

ICMP echo

SYN/ACK 443

0 1 2 3

Figure 6.1: Deviation differences for selected probe types

these incoming packets. Initially, we consider all probes to a specific host for our
analysis. In cases where the measured TTL values differ between the probe types,
we select the minimum value of any test. The intuition of this is straightforward:
whenever a firewall or router answers instead of the probed system, the number
of hops between them and our probing server is smaller. Hence, by choosing the
minimum TTL value, we ensure that we measure the longest path between us and
the host responding to the probe. Therefore, if the probed system answers to one
probe whereas all others are responded to by the firewall, we still measure the
accurate value for the system in question.

The results of applying this methodology on the data set are shown in Table 6.1.
We observe that, with respect to the total number of responding systems, 26.1%
of the measured TTLs match the ground truth. Moreover, 92.2% of the values
are within a threshold of +/-1, and almost 97% within +/-2. In the following, we
analyze the results for specific tests in more detail, and discuss potential reasons
for the observed deviations.

The deviation between the measured and actual values is shown in Figure 6.1
for ICMP echo, Communication Prohibited to TCP port 4899, and SYN/ACK
for TCP port 443. We can observe that for ICMP echo, 12.8% of measured TTLs
were correct, whereas an additional 78.8% were off-by-one, i.e., 91.6% of the

Deviation Amount Fraction Cumulated Fraction

+/-0 82,629 26.1% 26.1%
+/-1 208,891 66.1% 92.2%
+/-2 14,623 4.6% 96.9%
+/-3 4,684 1.5% 98.4%
more 5,185 1.6% 100%

Table 6.1: Accuracy of measured TTLs (direct probes only)

97



CHAPTER 6. TTL-BASED FILTERING

measured TTLs were within a threshold of +/-1. For Communication Prohibited
on port 4899, we observe that 96.8% of the values are within +/-1, whereas 91%
are off-by-one. This appears natural to the scenarios we discussed: ICMP echo
requests will often be answered by routers and firewalls due to network address
translation. Although SYN on TCP port 443 was only responsive on 5.9% of the
hosts, the results are quite interesting. We observe that for 42.2% of the hosts
which responded to such a probe, the TTL value could be correctly measured.
In addition, another 45.9% were off-by-one, resulting in 88% of the values being
within a threshold of +/-1. We argue that this is caused by nature of TCP, i.e.,
we only receive a SYN/ACK in case a service is listening on the probed system.
This can either occur if the connection directly reached the probed system, i.e., it
is not behind a NAT or the corresponding port is forwarded, or there could be a
chance that a public-facing administrative interface is being exposed for service
needs [140]. Therefore, it is plausible that such routers may respond to HTTPS
requests, explaining the high number of our off-by-one measurements.

Next to probing of the target system itself, we can probe neighboring hosts.
More specifically, we probe direct neighbors (IP +/-1) and additionally rely on
previous measurements aimed towards other hosts within the same /24 network.
In doing so, we find that both types of probing increase the coverage. In our
experiment, we found that directly probing neighbors increases the number of
measurable TTLs by 69,399, resulting in a total coverage of 73.4%. Taking into
account all information from hosts within the same /24 network increases the
coverage more drastically (by 168,730 hosts), yielding TTL values for 91.6% of all
hosts. At the same time, the accuracy remains similar, with 27% of the probed
values matching the ground truth. For +/-1, we can correctly measure the TTL
in 88.9% of the cases, and 94.3% of all measurements are within a threshold of
+/-2. Given these results for coverage and accuracy, we note that combining
different types of probing towards a single host with horizontal probing of the
system’s neighbors, namely 91.6% for coverage and 94.3% for accuracy, allows us
to measure the TTL within a threshold of +/- 2 for 86.4% of all connecting hosts.

6.5.2 Spoofed Traffic

Next to the benign data set, for which we can measure the TTL within a small
threshold for the majority of the hosts correctly, we wanted to investigate how
well HCF would be suited for spoofed traffic. To that end, we set up a honeypot
running a vulnerable version of NTP server prone to becoming an amplifier for
DRDoS attacks. To avoid unnecessarily harming the spoofed targets while still
pretending to be attractive to adversaries, the outgoing bandwidth was limited,
i.e., we answered to at most two monlist requests per host per minute. We did
not announce the IP address of this machine in any manner and hence assume
that no legitimate traffic would be directed to the host. Instead, incoming NTP

98



6.5. PROBING ANALYSIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hop count deviation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

ag
e 

of
 re

sp
on

si
ve

 c
lie

nt
s

Non-spoofed (single) Non-spoofed (/24-subnet) Spoofed (single) Spoofed (/24-subnet)

Figure 6.2: Deviation difference between spoofed and non-spoofed traffic

requests are either due to scanning, or spoofed packets sent by an attacker. In a
time-period of 96 hours, we recorded 5,616 distinct alleged sender addresses, for
which we could gather direct probe results in 3,983 cases (70.9%). This slightly
higher coverage (compared to the benign data) can be explained by the fact that
most attacks are targeting servers, which also are more likely to expose services
we actively probe for.

Before conducting any of our measurements, one property of the spoofed traffic
became apparent: more than 99% of all incoming packets had an assumed initial
TTL of 255. This specific feature, however, should not be used solely to detect
spoofed traffic, since the initial TTL can be changed without much effort by the
attacker. Therefore, we normalized the TTL value as outlined before.

Figure 6.2 shows the comparison between the measured TTL values and the
TTL values extracted from incoming packets, for both benign and spoofed data
sets. While we can clearly observe that for the majority of benign clients, the
TTL can be guessed within a threshold of +/-2, we note that no such trend is
visible for spoofed traffic.

6.5.3 Implications

In this section, we outlined the results of our experiments on benign and spoofed
data sets to evaluate a feasible margin of error for HCF. With respect to those data
sets, we find that distinguishing between benign and spoofed traffic appears to yield

99



CHAPTER 6. TTL-BASED FILTERING

useful results when using a threshold of 2. The reasons for the imprecision of the
measurements are manifold, e.g., when a client is behind a NAT or incoming traffic
to the machine is filtered by a firewall. Therefore, a TTL-based defense mechanism
must make a trade-off between false positives and false negatives, respectively.
Based on the data sets we analyzed, if a TTL-based defense mechanism was to be
deployed to protect a service against becoming an unwilling actor in an attack,
over 86.4% of the benign traffic could pass, while more than 3/4 of spoofed packets
could be dropped, thus avoiding to harm the targets.

Depending on the type of attacked hosts, this distinction might be even easier
to make. Nevertheless, any TTL-based defense relies on one tacit assumption:
an attacker cannot learn the correct TTL value for an arbitrary victim and an
amplifier of his choosing. Therefore, in the following, we discuss the feasibility of a
method in which the attacker can learn the TTL value (within a given threshold).

6.6 Methodology for Estimating Hop Count Value

So far we showed that deploying a TTL-based filtering at the server side would
require some tolerance interval to be functional and avoid collateral damage by
incorrectly classifying legitimate traffic. In this section, we assess if an attacker can
actually bypass the filtering by predicting the correct hop count value between the
hosts and properly adjusting the TTL value. That is, we present a methodology
for estimating the hop count value between amplifiers and victims.

6.6.1 Key Idea and Attacker Model

Our key idea lies on the observation that paths between arbitrary locations to a
selected destination share (small) segments of the path. We leverage the fact that
such path information can be learned by an attacker to estimate the number of
hops a packet has to traverse from one location to another. To learn subpaths, we
(i) probabilistically model known paths obtained via traceroutes, and (ii) combine
this knowledge with BGP routing information. Figure 6.3 shows our idea for
estimating the distance (number of hops) between an amplifier (M) and a victim
(V ). For our methodology, we use the common approach for representing the
Internet, which is a graph where nodes are the autonomous systems and edges
are the peerings (routing links) between them. Additionally, we assign weights to
the nodes to denote the hop count number within the individual AS. One way
to build such a graph that illustrates the AS-level topology of the Internet is to
use available BGP data to discover the connectivity information for the ASes.
Nevertheless, studies have shown that BGP data is only available to a limited
extent, therefore the Internet AS-level topology is partially hidden [141, 142].
However, our methodology does not primarily rely on the available BGP data,
but rather on the traceroute information an attacker can obtain. We use the BGP

100



6.6. METHODOLOGY FOR ESTIMATING HOP COUNT VALUE

AS-M

AS-2 AS-3

AS-V

AS-4

Common subpathCommon subpath

AS-1

Figure 6.3: Approach to estimate the hops between amplifier (M ) and victim (V )

data, when available, as a complement to the traceroute data in order to discover
the missing ASes, and to subsequently calculate the number of hops.

Our attacker (A) aims at evading any TTL-based filter or, at least, reduce its
effectiveness in mitigating amplification attacks. His main goal is to predict the
hop count between the amplifier and the victim as close as possible to the correct
one. Then, he can use this value (i.e., when spoofing the victim’s TTL) to craft
requests which are deemed to be legitimate to the server, i.e., amplifier1.

In theory, there are few approaches that the attacker may follow to learn the
correct TTL value. First, he may learn the TTL value by actively or passively
monitoring traffic anywhere on the route, and then probe the destination in order
to calculate the remaining part of the route. This approach is neither realistic
nor practical because the attacker has to be present at every route Ri between
Mi and the victim V . Second, if the attacker can position a probe either in the
network of M or V , he can easily measure the TTL value by tracerouting to the
other host.

For a more realistic scenario, we restrict the attacker’s capabilities. Figure 6.3
illustrates this attacker model. Similar to the reverse traceroute method [143],
our attacker is capable of probing from random, distributed locations and can use
any publicly available online resources to traceroute to the amplifier and to the
victim (e.g., RIPE Atlas[144] or looking glass servers). However, he does not have

1When spoofing the TTL, the attacker also has to take into account the hop count between
himself and the amplifier. Learning this value is trivial by using some of the methods explained
in Section 6.4.1. In case the attacker does not want to expose his IP address to the amplifier, he
can use different indirect approaches. For example, he can select as a victim, a host, that he has
complete control over and then derive the TTL value from the incoming packet.

101



CHAPTER 6. TTL-BASED FILTERING

Raw data 
collection

Data 
processing

Build 
a model  

Find common 
patterns

Approximate 
the TTL value  

Compare

RIPE DB

Extract the 
ground truth

EDA

Figure 6.4: Workflow of the methodology

control over the amplifier and not necessarily full control over the probes.
We restrict neither the location of the amplifiers nor the victims, i.e., they can

be located at arbitrary network locations. We assume that A can obtain a set of
amplifiers (e.g., NTP, DNS), all of which deploy TTL-based filtering and respond
to valid requests only2.

6.6.2 Methodology

We propose a methodology for estimating the distance between hosts on the
Internet through an Exploratory Data Analysis (EDA)3. Our methodology is
comprised of three main components, namely, data collection, data processing,
and EDA. Figure 6.4 illustrates the methodology we propose in this work.

6.6.2.1 Data Collection

First, depicted in the data collection component, the attacker collects traceroute
data for the victim and the amplifier(s). The attacker launches traceroutes to the
targeted locations from a globally distributed set of hosts on the Internet such as
RIPE Atlas [144]. Note that the distribution of the selected hosts is required to
be global such that there will be a diversity of the paths, allowing us to predict
TTLs for arbitrarily chosen victims.

2We assume that the amplifiers have deployed HCF to protect against amplification attacks,
therefore “valid” protocol requests are those with matching TTL value.

3Exploratory Data Analysis is not a method or a technique, but rather a philosophy for data
analysis that employs a variety of techniques.

102



6.6. METHODOLOGY FOR ESTIMATING HOP COUNT VALUE

6.6.2.2 Data Processing

Second, in the data processing component, we have to ensure that the relevant
data collected in the previous stage is complete and usable. In an ideal world,
tracerouting returns a complete path including all the IP addresses and ASes on
the way up to the destination. In practice, the collected data from the previous
phase is usually imperfect, with a plethora of missing connecting hops [145].
Such data can pose difficulties in effective data analysis; therefore, we need to
develop certain methods for efficient data scrubbing. First, we discard all the
traceroutes that are missing more than a certain percentage (e.g., 50%) of the
intermediate hops. Also, we ignore traceroutes that cannot reach at least the
AS of the destination. In the case where the destination address belongs to the
same AS as the last replying node, we make an intuitive assumption that this
is the last AS in the path, and we supplement the route with the AS number
of the last replying node. We then continue filling up the gaps of the unknown
ASes due to private IP addresses within the traceroute. Private addressing might
occur when a packet passes through someone’s internal network with implemented
Multiprotocol Label Switching (MPLS) routing [146]. In such cases, we assume
that the border AS, the one with a public IP address before the MPLS routing, is
the correct one, and we fill in the gaps accordingly. Finally, to fill in the remaining
missing hops, we apply a technique that employs the publicly available BGP data.
The BGP data assists in the discovering of the neighboring AS 4 and helps us to
bridge the gap between two known autonomous systems. Note that this technique
can only complete the lacking AS numbers, but not the actual hops (and their IP
addresses).

6.6.2.3 Exploratory Data Analysis

Once the data is processed, i.e., prepared for analysis, we dissect the data set
using the EDA approach. This stage of the methodology repeats for every victim
and it involves three subsequent steps.

Find common patterns. Finding common patterns is the first step in the data
exploration. This method transforms the paths from detailed traceroutes with IP
addresses of the hops to coarse-grained ones with only AS-level paths and their
weights, i.e., the number of hops in each AS for a particular traceroute.

Build a model. This method assists in constructing a probabilistic table that
identifies the likelihood of an AS to be part of the route between amplifier and
victim. If all collected traceroutes pass through a particular AS, say AS-1, on the

4A neighbor (or peering) autonomous system is the one that the AS directly interconnect
with in order to exchange traffic.

103



CHAPTER 6. TTL-BASED FILTERING

AS-M

AS-Mi

AS-V
Common subpathCommon subpath

AS-ViAS

ASj ASn

a

b

c

Figure 6.5: Connecting border ASes (AS-Mi and AS-Vi)

way to the target location T, the method denotes the probability of 1 that the
AS-1 exist as a hop on the way to T. Moreover, this method also considers the
average number of hops within the AS and the distance of the AS from the target.
The average number is the AS internal hop count value, and it may vary due to
routing-related reasons such as load balancing. To identify the border autonomous
systems (in the next step), we need to define the distance as a number of hops
that a particular AS is distant from the target AS. For example, the AS the target
T belongs to always has a probability of 1 and distance 0.

Approximate the TTL value. The probabilistic modeling helps in building a
partial path between two hosts. Consider the scenario illustrated in Figure 6.5.
The model identifies with a degree of certainty the common subpaths of the target
and the source. Furthermore, it estimates the hop count value of these subpaths.
To estimate the final hop count value, we need to bridge these two subpaths with
the missing intermediate AS(s). To this end, we apply techniques based on the
available BGP data such that the final result is a fully connected AS-level path.

Initially, we identify the border autonomous systems (labeled as AS-Mi and
AS-Vi in Figure 6.5), i.e., the last certain (most distant) AS in the common
subpaths. With respect to the possible missing hops for connecting these two
subpaths, we distinguish three different scenarios (marked with a, b and c in
Figure 6.5):

Direct connection (a): When a direct peering between the border autonomous
systems exists, i.e., AS-Mi is in the neighborhood5 of AS-Vi and vice versa,
and the intersection set of the AS-Mi and AS-Vi neighbors is empty; we
assume that the border ASes are directly connected (AS-Mi ←→ AS-Vi).

One-hop connection (b): To identify the single connecting point in between,
accordingly, we have to check the neighbors of the border ASes. In the case

5Peering ASes are ASes which directly interconnect with each other. We obtain this informa-
tion from the available BGP data.

104



6.7. EXPERIMENTAL SETUP AND RESULTS

where only one intersecting AS exists, we assume that this particular AS is
the connecting point. If the intersection set contains more than one common
AS, we refer to our probability table. We then accordingly choose the AS
with the biggest probability to be a part of the route.

N-hop connection (c): A more complex scenario is when two or more interme-
diate AS are missing. In such a scenario, we build a tree of possible subpaths
by examining additional two levels6 of neighbors. Upon building up the tree
of all possible paths, we test every branch over the database of available
BGP routes and the pre-computed table of probabilities. In case the branch
is present in the BGP routing database, we deem that particular route to
be the accurate one.

Once the bridging subpath is identified, we add up the average hop count of
the connecting ASes to the sum of the hop count value estimated for the subpaths.

6.7 Experimental Setup and Results

In the following, we describe the data set used to evaluate our approach. Subse-
quently, we present and discuss the experimental results of the evaluation.

6.7.1 Data Set

To evaluate the proposed methodology, we mainly use services provided by the
RIPE Atlas network [144], which is the largest Internet measurement network
built by RIPE NCC. Moreover, they provide an API for creating different types of
measurements and for collecting the data in a structured format. In the following,
we list the services and data sources used for our experimental evaluation.

1. RIPE Atlas probes: To attain a global coverage and also to have a possibility
to obtain the ground truth, we use the RIPE Atlas network of probes [144] as
a basis for our experiments. We observe that this network has around 9,000
active probes, spread across 181 countries and 3,386 ASes [147]. Such a global
coverage fulfills the requirements for our experimental evaluation. Moreover,
the platform give us the flexibility for requesting custom measurements, in
our case traceroutes, by selecting any of the deployed active probes. This
flexibility is of particular importance for our experiments since we can select
a subset of nodes with different geographical and logical locations to collect
the traceroute data. Additionally, when a probe acts as a victim in our
leave-one-out analysis (which we outline in the following), we can easily

6Statistics [144] show that average length of AS-level paths is four, therefore we bound the
subpath examination to two levels, i.e., we can examine paths of at least six hops.

105



CHAPTER 6. TTL-BASED FILTERING

obtain the ground truth by running traceroute measurement from the probes
to the amplifiers.

2. BGP data: When the collected traceroute data is not enough for making the
final assessment of the connectivity between the ASes, we utilize available
BGP data. In order to infer the AS-level connectivity, we use RIPE Atlas
as an accurate source for BGP data. Also the BGP data helps to obtain a
ground truth of individual ASes.

3. Amplifiers: To investigate the real-world implications of our attack, we
scanned for chargen amplifiers on the Internet. In total, we randomly
selected 16 such servers.

6.7.2 Leave-one-out Evaluation

To evaluate the performance of our methodology, we use a leave-one-out (L-1-
O) evaluation approach, in which every probe acts like a victim at a selected
time. Informally, for a data set with P probes, we perform P experiments with
P − 1 training cases and one test case. In other words, for every experiment we
temporarily remove one probe from the data set and select that particular probe
as our victim. Upon fixing the probe Pi as a victim V , the model is rebuilt upon
this newly defined set.

Suppose that P = p1, . . . , pn is a set of probes,M = m1, . . . ,ml set of amplifiers,
and R = r11, . . . , rnm set of traceroutes where rij is a traceroute from pi to mj.
For ease of exposition, we use the notation pi ⇒R M to describe a set of all
traceroutes from pi to every member of the set M . Applying the L-1-0 approach
to the methodology works as follows:

1. Collect the traceroute data (R ⋃ {pi ⇒R P \ {pi}|i = 1, . . . , n}).

2. Process the data and extract the ground truth.

3. Remove probe pi from P (P \ {pi}) and set V = pi, where V is the victim.

4. Extract the ground truth for pi to M i.e., the distance from pi ⇒R M .

5. Run the EDA using the remaining data.

6. Repeat step 3-5 for i = 1, . . . , n

L-1-O in practice. We apply the L-1-O method on a set of 40 random RIPE
Atlas probes, located in different ASes, and 16 randomly distributed chargen
amplifiers. We first collect the required data, namely, we obtain the path from
every probe to all of the 16 amplifiers, and also between the probes within the set.
We use the RIPE Atlas REST API to create IPv4 traceroutes using ICMP packets

106



6.7. EXPERIMENTAL SETUP AND RESULTS

Amount Fraction Cumulated Fraction

+/-0 78 13.2% 13.2%
+/-1 170 28.7% 28.5%
+/-2 132 22.3% 56.3%
+/-3 49 8.3% 69.1%
more 164 27.7% 100%

Table 6.2: Overall performance of the methodology

and hops limit of 32. In order to get more precise paths and avoid measurements
inconsistencies caused by load balancing routers, we employ the paris traceroute
measurement tool [148].

Once the traceroute data is collected and the data set is processed, i.e., cleaned
up using the method described in Section 6.6.2.2, we pass the data through step 3
to 6 from the L-1-0 approach. In such experimental setup, L-1-O theoretically
can evaluate 640 TTL predictions, i.e., paths from 16 amplifiers to 40 victims.
Unfortunately, because of the incompleteness of the traceroute data as well as
instability of some of the probes, the method was able to predict and evaluate
around 593 (92.6%) individual paths.

6.7.3 Overall Performance

Table 6.2 shows the overall performance of our methodology. The experimental
results show that using our methodology, an attacker can predict correctly without
any deviation roughly 13% of the paths between the amplifiers and the victims,
i.e., 13% of the measured hop counts match the ground truth. However, we
showed in Section 6.5 that, with a tolerance of +/-2, a TTL-based defense could
block over 75% of spoofed traffic, while allowing 86.4% of benign traffic to pass.
Therefore, when we take this threshold into consideration, our methodology is
effective for 56.3% of the paths.

Moreover, we observe that applying our methodology to a set of randomly
chosen amplifiers, the attacker can isolate amplifiers for which he can predict
the hop count value between the amplifier and any arbitrary victim with higher
accuracy. Thus, he can bypass the TTL-based defense running on the amplifier
and exploit it for a DRDoS attack. Figure 6.6 illustrates the average hop count
deviation per amplifier and shows that the attacker can, indeed, sample a set
of good amplifiers. We see several explanations for such a deviation among the
amplifiers. The geographical and logical location of the amplifiers and the victims
plays an important role. As we discussed before, the limitation of the BGP
data makes our methodology not equally precise for all the AS. Also another
cause is the inconsistency of the collected data between BGP data and traceroute
path caused by Internet Exchange Points and sibling ASes managed by the same
institution. However, these results show that even with a low threshold value at

107



CHAPTER 6. TTL-BASED FILTERING

the amplifier, by wisely choosing amplifiers to use, an attacker is able to circumvent
any TTL-based defense against DRDoS attacks.

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

Amplifier

0

1

2

3

4

5

6

A
ve

ra
ge

 h
op

 d
iff

er
en

ce

Figure 6.6: Average hop deviation per amplifier

6.8 Conclusion

In this chapter, we evaluated the feasibility of using Hop Count Filtering to
mitigate DRDoS attacks. To that end, we detailed how a server can use active
probing to learn TTLs of alleged packet senders. Based on data sets of benign and
spoofed NTP requests, we find that with a tolerance of +/-2, a TTL-based defense
could block over 75% of spoofed traffic, while allowing 86.4% of benign traffic to
pass. Subsequently, however, we show that an attacker can use a combination
of tracerouting and BGP data to build statistical models, which allows him to
estimate the TTL for his target within that tolerance level. Hence, by wisely
choosing which amplifiers to use, he is able to circumvent any TTL-based defense
against DRDoS attacks. We therefore argue that any (current or future) defensive
system based on TTL values can be bypassed in a similar fashion, and find that
future research must be steered towards more fundamental solutions to thwart
any kind of IP spoofing attacks.

108



7
Conclusion

109





This dissertation presented a line of work that tackles accountability from few
different perspectives. In particular, we make the following fourfold contributions.

Our first contribution is the design of BackRef, an accountability mechanism
for ACNs, in a form of a repudiation technique for the proxy nodes. To the best of
our knowledge, the proposed mechanism is the first that is applicable to low-latency
networks and does not require group managers and credential issuers. BackRef
is provably secure, requires little overhead, and can be adapted to a wide range of
anonymity systems. Our mechanism is based on the newly introduced concept
of pseudonymous signatures that may be of independent interest. We formally
defined the important properties of the proposed mechanism. In particular, we
formalized anonymity and no forward traceability as observational equivalence
relations, and backward traceability and no false accusation as trace properties.
We conducted a formal security analysis using automated cryptographic protocol
verifier ProVerif, establishing the aforementioned security and privacy properties
against a strong adversarial model. We strongly believe that both the definitions
and the security analyses are of independent interest since they are the first
for the onion routing protocol. We analyzed and discussed important systems
issues such as white-listing, log storage, non-cooperating nodes, and the last
mile problem, that any reactive accountable anonymous communication network
might encounter, and presented plausible options towards deploying BackRef in
practice.

Our second contribution is the design of Oblivion, a universal framework
for providing the foundation to support the enforcement of the European right
to be forgotten legislation in a scalable and automated manner. The framework
enables a user to automatically identify personal information in a given article
and the indexing system to automatically verify the user’s eligibility. We formally
defined the protocol in the applied π-calculus and automatically verify the cen-
sorship resistance property using ProVerif. Finally, we conducted comprehensive
evaluations of Oblivion on existing articles, showing that the framework incurs
only minimal overhead.

The third contribution of the thesis is a design of a framework for modeling
and reasoning on global-scale threats. We presented a model of the Internet
infrastructures based on property graphs. To mind the data from our model
and to quantify the results, we presented a combination of taint-style techniques
and propagation rules, which is automatically translated in graph traversals. We
assessed our approach on 1.8M data items acquired from the top 100K Alexa
domains. For selecting attacker and victim candidates, we presented six metrics.
Then, we measured the impact of three different attack scenarios, which are based
on the Great Cannon attack, the PRISM program, and the DDoS against Dyn.com.
Our results showed that already just a few players may have an extensive power.
More precisely, 14 countries and 14 autonomous systems can, directly or indirectly,
affect the security of about 23% of the considered websites. Finally, our results

111



CHAPTER 7. CONCLUSION

indicated that the recent DDoS attack against Dyn.com was the result of a careful
choice.

With our final contribution, we showed that a defensive mechanism for DRDoS
attacks based on TTL values can be easily bypassed by approximating the TTL
value. First, we analyzed several ways of probing for the TTL of an alleged sender,
using different types of probes towards a host in question including horizontal
probing of its neighbors. We showed that this process is prone to errors and
frequently tedious in practice, raising the need for a certain tolerance in TTL-based
defenses. More precisely, we showed that an error margin of +/-2 must be allowed
to enable at least 86.4% of benign traffic to pass, while dropping more than 75%
of spoofed traffic. Then, taking into consideration the error margin, we showed
that an attacker can use a combination of tracerouting and BGP data to build
statistical models, which allows him to estimate the TTL for his target within
that tolerance level. Moreover, we showed that by wisely choosing amplifiers to
use, the attacker is able to circumvent any TTL-based defense against DRDoS
attacks. Finally, we argued that any (current or future) defensive system based
on TTL values can be circumvented in a similar fashion, and find that future
research must be steered towards more fundamental solutions to thwart any kind
of IP spoofing attacks.

112



Bibliography

Author’s Papers

[1] Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and
Peter Druschel. “BackRef: Accountability in Anonymous Communication
Networks.” In: Proceedings of the 12th International Conference on Applied
Cryptography and Network Security (ACNS 2014). 2014.

[2] Milivoj Simeonovski, Fabian Bendun, Muhammad Rizwan Asghar, Michael
Backes, Ninja Marnau, and Peter Druschel. “Oblivion: Mitigating Privacy
Leaks by Controlling the Discoverability of Online Information.” In: Pro-
ceedings of the 13th International Conference on Applied Cryptography and
Network Security (ACNS 2015). 2015.

[3] Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, and Michael
Backes. “Who Controls the Internet?: Analyzing Global Threats using
Property Graph Traversals.” In: Proceedings of the 26th International
Conference on World Wide Web (WWW 2017). ACM.

[4] Michael Backes, Thorsten Holz, Christian Rossow, Teemu Rytilahti, Milivoj
Simeonovski, and Ben Stock. “On the Feasibility of TTL-Based Filtering for
DRDoS Mitigation.” In: Proceedings of the 19th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2016). Springer,
2016.

[5] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael
Backes, and Claudia Diaz. “A Survey on Routing in Anonymous Com-
munication Protocols.” In: ACM Computing Surveys (CSUR) 51.3 (2018),
51:1–51:39.

[6] Muhammad Rizwan Asghar, Michael Backes, and Milivoj Simeonovski.
“PRIMA: Privacy-Preserving Identity and Access Management at Internet-
Scale.” In: Proceedings of the IEEE International Conference on Commu-
nications (ICC 2018). IEEE, 2018.

113



BIBLIOGRAPHY

[7] Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Sime-
onovski, Giancarlo Pellegrino, Joerg Hoffmann, and Michael Backes. “For-
mally Reasoning about the Cost and Efficacy of Securing the Email In-
frastructure.” In: Proceedings of the 3nd IEEE European Symposium on
Security and Privacy (Euro S&P 2018). IEEE, 2018.

[8] Milivoj Simeonovski. “POSTER: Quasi-ID: In Fact, I Am a Human.” In:
Proceedings of the 21st ACM Conference on Computer and Communication
Security (CCS 2014). ACM, 2014.

Other references

[9] The New Threat: Targeted Internet Traffic Misdirection. Online: http:
//research.dyn.com/2013/11/mitm-internet-hijacking/. 2013.

[10] UK traffic diverted through Ukraine. Online: http://research.dyn.com/
2015/03/uk-traffic-diverted-ukraine/. 2015.

[11] Gabi Nakibly, Jaime Schcolnik, and Yossi Rubin. “Website-Targeted False
Content Injection by Network Operators.” In: Proceedings of the 25th
USENIX Security Symposium (SEC 2016). USENIX Association, 2016.

[12] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield,
Sarah McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern
Paxson. “An Analysis of China’s Great Cannon.” In: Proceedings of the
5th USENIX Workshop on Free and Open Communications on the Internet
(FOCI 15). USENIX Association, 2015.

[13] David Chaum. “The dining cryptographers problem: Unconditional sender
and recipient untraceability.” In: Journal of Cryptology 1.1 (1988), pp. 65–
75.

[14] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: accountable anonymous
group messaging.” In: Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS 2010). ACM, 2010.

[15] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. “Anony-
mous Connections and Onion Routing.” In: Proceedings of the 18th IEEE
Symposium on Security and Privacy (S&P 1997). IEEE, 1997.

[16] David Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms.” In: Communications of the ACM (CACM) 24.2 (1981),
pp. 84–90.

[17] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster Protocol—
Version 2. IETF Internet Draft. Online: http://mixmaster.sourceforge.net/.
2003.

114

http://research.dyn.com/2013/11/mitm-internet-hijacking/
http://research.dyn.com/2013/11/mitm-internet-hijacking/
http://research.dyn.com/2015/03/uk-traffic-diverted-ukraine/
http://research.dyn.com/2015/03/uk-traffic-diverted-ukraine/


OTHER REFERENCES

[18] G. Danezis, R. Dingledine, and N. Mathewson. “Mixminion: design of a
type III anonymous remailer protocol.” In: Proceedings of the 24th IEEE
Symposium on Security and Privacy (S&P 2003). IEEE, 2003.

[19] Ceki Gülcü and Gene Tsudik. “Mixing Email with Babel.” In: Proceeding of
the 3rd Symposium on Network and Distributed System Security (SNDSS
1996). The Internet Society, 1996.

[20] Prateek Mittal and Nikita Borisov. “ShadowWalker: peer-to-peer anony-
mous communication using redundant structured topologies.” In: Proceed-
ings of the 2009 ACM Conference on Computer and Communications
Security (CCS 2009). ACM, 2009.

[21] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel,
and Dan S. Wallach. “AP3: cooperative, decentralized anonymous commu-
nication.” In: Proceedings of the 11st ACM SIGOPS European Workshop.
ACM, 2004.

[22] Alexander W. Janssen. Tor madness reloaded. Online: http://itnomad.
wordpress.com/2007/09/16/tor-madness-reloaded/. 2007.

[23] William Weber. Raided for operating a Tor exit node. Online: http://
raided4tor.cryto.net/.

[24] Alexander W. Janssen. The Onion Router: A brief inftroduction and legal
aspects. Online: http://yalla.ynfonatic.de/media/lbw2007/tor_
talk-LBW2007.pdf. 2007.

[25] John Zorabedian. Couple hosting Tor exit node raided by cops investigating
child abuse. Online: https://nakedsecurity.sophos.com/2016/04/07/
couple-hosting-tor-exit-node-raided-by-cops-investigating-
child-abuse/. 2016.

[26] Stefan Köpsell, Rolf Wendolsky, and Hannes Federrath. “Revocable Ano-
nymity.” In: Proceedings of the International Conference on Emerging
Trends in Information and Communication Security (ETRICS 2006). Springer,
2006.

[27] Luis Von Ahn, Andrew Bortz, Nicholas J. Hopper, and Kevin O’Neill.
“Selectively Traceable Anonymity.” In: Proceedings of the 6th Workshop on
Privacy Enhancing Technologies (PET 2006). Springer, 2006.

[28] C. Diaz and B. Preneel. “Accountable anonymous communication.” In:
Security, Privacy, and Trust in Modern Data Management. Springer, 2007.

[29] Philippe Golle. “Reputable mix networks.” In: Proceedings of the 4th Work-
shop on Privacy Enhancing Technologies (PET 2004). Springer, 2004.

115

http://itnomad.wordpress.com/2007/09/16/tor-madness-reloaded/
http://itnomad.wordpress.com/2007/09/16/tor-madness-reloaded/
http://raided4tor.cryto.net/
http://raided4tor.cryto.net/
http://yalla.ynfonatic.de/media/lbw2007/tor_talk-LBW2007.pdf
http://yalla.ynfonatic.de/media/lbw2007/tor_talk-LBW2007.pdf
https://nakedsecurity.sophos.com/2016/04/07/couple-hosting-tor-exit-node-raided-by-cops-investigating-child-abuse/
https://nakedsecurity.sophos.com/2016/04/07/couple-hosting-tor-exit-node-raided-by-cops-investigating-child-abuse/
https://nakedsecurity.sophos.com/2016/04/07/couple-hosting-tor-exit-node-raided-by-cops-investigating-child-abuse/


BIBLIOGRAPHY

[30] Jeremy Clark, Philippe Gauvin, and Carlisle Adams. “Exit Node Re-
pudiation for Anonymity Networks.” In: On the Identity Trail: Privacy,
Anonymity and Identity in a Networked Society. Oxford University Press,
2009.

[31] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith.
“Nymble: Anonymous IP-Address Blocking.” In: Proceedings of the 7th
Workshop on Privacy Enhancing Technologies (PET 2007). Springer, 2007.

[32] Ryan Henry and Ian Goldberg. “Formalizing Anonymous Blacklisting
Systems.” In: Proceedings of the 32nd IEEE Symposium on Security and
Privacy (S&P). IEEE, 2011.

[33] Ian Goldberg, David Wagner, and Eric Brewer. “Privacy-enhancing tech-
nologies for the Internet.” In: Proceedings of the IEEE Compcon. IEEE,
1997.

[34] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: the second-
generation onion router.” In: Proceedings of the 13th USENIX Security
Symposium (SEC 2004). USENIX Association, 2004.

[35] Michael K. Reiter and Aviel D. Rubin. “Crowds: anonymity for Web
transactions.” In: ACM Transactions on Information and System Security
(TISSEC) 1.1 (1998), pp. 66–92.

[36] Ian Goldberg and Adam Shostack. Freedom Network 1.0 Architecture and
Protocols. Tech. rep. Zero-Knowledge Systems, 1999.

[37] Aniket Kate, Greg M. Zaverucha, and Ian Goldberg. “Pairing-Based Onion
Routing with Improved Forward Secrecy.” In: ACM Transactions on Infor-
mation and System Security (TISSEC) 13.4 (2010), 29:1–29:32.

[38] George Danezis and Ian Goldberg. “Sphinx: A Compact and Provably
Secure Mix Format.” In: Proceedings of the 30th IEEE Symposium on
Security and Privacy (S&P 2009). IEEE, 2009.

[39] Oliver Berthold, Hannes Federrath, and Stefan Kopsell. “Web MIXes: A
System for Anonymous and Unobservable Internet Access.” In: Proceedings
of the International workshop on Designing privacy enhancing technologies
(PETS 2000). Springer, 2000.

[40] Michael J. Freedman and Robert Morris. “Tarzan: a peer-to-peer anonymiz-
ing network layer.” In: Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS 2002). ACM, 2002.

[41] Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectabil-
ity, Unobservability, Pseudonymity, and Identity Management. Online:
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf. 2010.

116



OTHER REFERENCES

[42] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. “Dissent in numbers: making strong anonymity scale.” In: Pro-
ceedings of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2012). USENIX Association, 2012.

[43] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. “Proactively
Accountable Anonymous Messaging in Verdict.” In: Proceedings of the 22nd
USENIX Security Symposium (SEC 2013). USENIX Association, 2013.

[44] George Danezis and Len Sassaman. “How to Bypass Two Anonymity
Revocation Schemes.” In: Proceedings of the 8th Symposium on Privacy
Enhancing Technologies (PETS 2008) (PETS 2008). Springer, 2008.

[45] Exonerator: Archive for relays running in the past. Online: https://
metrics.torproject.org/exonerator.html.

[46] Kevin S. Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and
Douglas C. Sicker. “Low-resource routing attacks against tor.” In: Pro-
ceedings of the 6th ACM Workshop on Privacy in the Electronic Society,
(WPES 2007). ACM, 2007.

[47] Andrei Serjantov and Peter Sewell. “Passive Attack Analysis for Connection-
Based Anonymity Systems.” In: Proceedings of the 8th European Symposium
on Research in Computer Security (ESORICS 2003). 2003.

[48] Lasse Øverlier and Paul F. Syverson. “Improving Efficiency and Simplicity
of Tor Circuit Establishment and Hidden Services.” In: Proceedings of the
7th Workshop on Privacy Enhancing Technologies (PET 2007). Springer,
2007.

[49] Aniket Kate and Ian Goldberg. “Using sphinx to improve onion routing
circuit construction.” In: Proceedings of the 14th International Conference
on Financial Cryptography and Data Security (FC 2010). Springer, 2010.

[50] Michael Backes, Aniket Kate, and Esfandiar Mohammadi. “Ace: an efficient
key-exchange protocol for onion routing.” In: Proceedings of the 11th annual
ACM Workshop on Privacy in the Electronic Society (WPES) 2012). ACM,
2012.

[51] Dario Catalano, Dario Fiore, and Rosario Gennaro. “Certificateless onion
routing.” In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009). ACM, 2009.

[52] I. Goldberg, D. Stebila, and B. Ustaoglu. “Anonymity and one-way authen-
tication in key exchange protocols.” In: Designs, Codes and Cryptography
67.2 (2013), pp. 245–269.

[53] J. Camenisch and A. Lysyanskaya. “A Formal Treatment of Onion Routing.”
In: Proceedings of the 25th Annual International Cryptology Conference
(CRYPTO 2005). Springer, 2005.

117

https://metrics.torproject.org/exonerator.html
https://metrics.torproject.org/exonerator.html


BIBLIOGRAPHY

[54] George Danezis, Claudia Díaz, Carmela Troncoso, and Ben Laurie. “Drac:
An Architecture for Anonymous Low-Volume Communications.” In: Pro-
ceedings of the 10th International Symposium on Privacy Enhancing Tech-
nologies (PETS 2010). Springer, 2010.

[55] Erik Shimshock, Matt Staats, and Nicholas Hopper. “Breaking and Provably
Fixing Minx.” In: Proceedings of the 8th International Symposium on
Privacy Enhancing Technologies (PETS 2008). Springer, 2008.

[56] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks.” In: SIAM
Journal on Computing 17.2 (1988), pp. 281–308.

[57] Andreas Haeberlen, Pedro Fonseca, Rodrigo Rodrigues, and Peter Druschel.
Fighting Cybercrime with Packet Attestation. Tech. rep. http://www.mpi-
sws.org/tr/2011-002.pdf. MPI-SWS, 2011.

[58] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. Online:
https://gitweb.torproject.org/torspec.git/tree/HEAD. 2008.

[59] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from
the Weil Pairing.” In: Proceedings of the 7th International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT 2001). Springer, 2001.

[60] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. “High-Speed High-Security Signatures.” In: Proceedings of the 13th
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2011). Springer, 2011.

[61] Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar Mohammadi.
“Provably Secure and Practical Onion Routing.” In: Proceedings of the 25th
IEEE Symposium on Computer Security Foundations (CSF 2012). IEEE,
2012.

[62] Martín Abadi and Cédric Fournet. “Mobile values, new names, and secure
communication.” In: Proceedings of the 28th ACM Symposium on Principles
of Programming Languages (POPL 2001). ACM, 2001.

[63] Ran Canetti. “Universally composable security: A new paradigm for cryp-
tographic protocols.” In: Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science (FOCS 2001). IEEE, 2001.

[64] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules.” In: Proceedings of the 14th IEEE Workshop on Computer
Security Foundations (CSFW 2001). IEEE, 2001.

[65] BackRef. Introducing Accountability to Anonymity Networks (extended
version). Online: http://crypsys.mmci.uni-saarland.de/projects/
BackRef/.

118

http://www.mpi-sws.org/tr/2011-002.pdf
http://www.mpi-sws.org/tr/2011-002.pdf
https://gitweb.torproject.org/torspec.git/tree/HEAD
 http://crypsys.mmci.uni-saarland.de/projects/BackRef/
 http://crypsys.mmci.uni-saarland.de/projects/BackRef/


OTHER REFERENCES

[66] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic
Curve Cryptography. Cambridge University Press, 2005.

[67] Court of Justice of the European Union. JUDGMENT OF THE COURT
(Grand Chamber). Online: http://curia.europa.eu/juris/celex.jsf?
celex=62012CJ0131. 2014.

[68] Google. Google Transparency Report: Search removals under European
privacy law. Online: https://transparencyreport.google.com/eu-
privacy/overview.

[69] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public-key Cryptosystems.” In: Communications of the
ACM 21.2 (1978), pp. 120–126.

[70] Christopher Olston and Marc Najork. “Web Crawling.” In: Foundations
and Trends in Information Retrieval 4.3 (2010), pp. 175–246.

[71] The Web Robots Pages. Online: http://www.robotstxt.org/.
[72] Michael Backes, Sebastian Gerling, Stefan Lorenz, and Stephan Lukas.

“X-pire 2.0 - A User-Controlled Expiration Date and Copy Protection
Mechanism.” In: Proceedings of the 29th ACM Symposium on Applied
Computing (SAC 2014). ACM, 2014.

[73] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy.
“Vanish: Increasing Data Privacy with Self-Destructing Data.” In: Pro-
ceedings of the 18th USENIX Security Symposium (SEC 2009). USENIX
Association, 2009.

[74] Sirke Reimann and Markus Dürmuth. “Timed revocation of user data:
Long expiration times from existing infrastructure.” In: Proceedings of the
11th annual ACM Workshop on Privacy in the Electronic Society (WPES
2012). ACM, 2012.

[75] Radia Perlman. “The Ephemerizer: Making Data Disappear.” In: Journal
of Information System Security 1 (2005), pp. 51–68.

[76] C. Castelluccia, E. De Cristofaro, A. Francillon, and M.-A. Kaafar. “Eph-
Pub: Toward robust Ephemeral Publishing.” In: Proceedings of the 19th
IEEE International Conference on Network Protocols (ICNP 2011). IEEE,
2011.

[77] SrijithK. Nair, MohammadT. Dashti, Bruno Crispo, and AndrewS. Tanen-
baum. “A Hybrid PKI-IBC Based Ephemerizer System.” In: Proceedings
of the 22nd International Information Security Conference. Springer, 2007.

[78] Marco Casassa Mont, Siani Pearson, and Pete Bramhall. “Towards Account-
able Management of Identity and Privacy: Sticky Policies and Enforceable
Tracing Services.” In: Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA 2003). IEEE, 2003.

119

http://curia.europa.eu/juris/celex.jsf?celex=62012CJ0131
http://curia.europa.eu/juris/celex.jsf?celex=62012CJ0131
https://transparencyreport.google.com/eu-privacy/overview
https://transparencyreport.google.com/eu-privacy/overview
http://www.robotstxt.org/


BIBLIOGRAPHY

[79] S. Pearson and Marco Casassa Mont. “Sticky Policies: An Approach for
Managing Privacy across Multiple Parties.” In: Computer 44.9 (2011),
pp. 60–68.

[80] Sruthi Bandhakavi, Charles C. Zhang, and Marianne Winslett. “Super-
sticky and declassifiable release policies for flexible information dissemina-
tion control.” In: Proceedings of the 5th ACM Workshop on Privacy in the
Electronic Society (WPES 2006). ACM, 2006.

[81] David W. Chadwick and Stijn F. Lievens. “Enforcing "sticky" security poli-
cies throughout a distributed application.” In: Proceedings of the Workshop
on Middleware Security (MidSec 2008). ACM, 2008.

[82] Google. Personal Information Removal Request Form (European Data
Protection law). Online: https://support.google.com/legal/contact/
lr_eudpa?product=websearch.

[83] Microsoft. Request to Block Bing Search Results In Europe. Online: https:
//www.bing.com/webmaster/tools/eu-privacy-request.

[84] Yahoo. Requests to Block search results in Yahoo Search: Resource for
European Residents. Online: http://bit.ly/185Lije.

[85] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346 (Proposed Standard). 2006. url: http://www.ietf.
org/rfc/rfc4346.txt.

[86] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. “In-
corporating Non-local Information into Information Extraction Systems
by Gibbs Sampling.” In: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics. The Association for Computer
Linguistics, 2005.

[87] Natural Language Toolkit. WordNet Interface. Online: http://www.nltk.
org/howto/wordnet.html.

[88] Federal Ministry of the Interior. German National Identity Card. Online:
http : / / www . personalausweisportal . de / EN / Citizens / The - New -
Identity-Card/.

[89] The Council of the European Union. Residence permits for third-country
nationals. Online: http://eur-lex.europa.eu/legal-content/en/TXT/
?uri=CELEX:32008R0380. 2008.

[90] European Parliament, Council of the European Union. Regulation (EU) No
910/2014 of the European Parliament and of the Council of 23 July 2014 on
electronic identification and trust services for electronic transactions in the
internal market and repealing Directive 1999/93/EC. Online: http://eur-
lex.europa.eu/legal- content/EN/TXT/?uri=CELEX:32014R0910.
2014.

120

https://support.google.com/legal/contact/lr_eudpa?product=websearch
https://support.google.com/legal/contact/lr_eudpa?product=websearch
https://www.bing.com/webmaster/tools/eu-privacy-request
https://www.bing.com/webmaster/tools/eu-privacy-request
http://bit.ly/185Lije
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.nltk.org/howto/wordnet.html
http://www.nltk.org/howto/wordnet.html
http://www.personalausweisportal.de/EN/Citizens/The-New-Identity-Card/
http://www.personalausweisportal.de/EN/Citizens/The-New-Identity-Card/
http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008R0380
http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008R0380
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0910
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0910


OTHER REFERENCES

[91] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürste-
nau, Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and
Gerhard Weikum. “Robust Disambiguation of Named Entities in Text.”
In: Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2011). ACL, 2011.

[92] Stanford Named Entity Recognizer (NER). Online: http://nlp.stanford.
edu/software/CRF-NER.shtml.

[93] OpenCV. Open Source Computer Vision. Online: http://opencv.org/.
[94] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard

Cyganiak, and Zachary Ives. “DBpedia: A Nucleus for a Web of Open
Data.” In: Proceedings of the 6th International Semantic Web Conference
(ISWC 2007). Springer, 2007.

[95] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: A
Core of Semantic Knowledge.” In: Proceedings of the 16th International
Conference on World Wide Web (WWW 2007). ACM, 2007.

[96] Open Source Web Crawler for Java. Online: https://code.google.com/
p/crawler4j/.

[97] Michael Backes, Fabian Bendun, Joerg Hoffman, and Ninja Marnau. “PriCL:
Creating a Precedent, a Framework for Reasoning about Privacy Case
Law.” In: Proceedings of the 4th International Conference on Principles of
Security and Trust (POST 2015). Springer, 2015.

[98] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. “Deep-
Face: Closing the Gap to Human-Level Performance in Face Verification.”
In: Proceedings of the 27th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2014). IEEE, 2014.

[99] Susan Landau. “Making Sense from Snowden: What’s Significant in the
NSA Surveillance Revelations.” In: IEEE Security & Privacy 11.4 (2013),
pp. 54–63.

[100] Jesse Newland. Large Scale DDoS Attack on github.com.
https://github.com/blog/1981-large-scale-ddos-attack-on-github-com. Blog.
2015.

[101] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and
attack tolerance of complex networks.” In: Nature 406.6794 (2000), pp. 378–
382.

[102] Jichang Zhao, Junjie Wu, Mingming Chen, Zhiwen Fang, Xu Zhang, and
Ke Xu. “K-core-based attack to the internet: Is it more malicious than
degree-based attack?” In: World Wide Web 18.3 (2015), pp. 749–766.

[103] David Wheeler and Gregory Larsen. Techniques for cyber attack attribution.
Tech. rep. Defense Technical Information Center (DTIC), 2003.

121

http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
http://opencv.org/
https://code.google.com/p/crawler4j/
https://code.google.com/p/crawler4j/


BIBLIOGRAPHY

[104] Arman Noroozian, Maciej Korczynski, Carlos Hernandez Gañán, Daisuke
Makita, Katsunari Yoshioka, and Michel van Eeten. “Who Gets the Boot?
Analyzing Victimization by DDoS-as-a-Service.” In: Proceedings of the
19th International Symposium on Research in Attacks, Intrusions, and
Defenses(RAID 2016). Springer, 2016.

[105] W. Jiang, D. Lee, and S. Hu. “Large-Scale Longitudinal Analysis of SOAP-
Based and RESTful Web Services.” In: Proceedings of the 19th IEEE
International Conference on Web Services (ICWS). IEEE, 2012.

[106] Hyunyoung Kil, Seog-Chan Oh, Ergin Elmacioglu, Wonhong Nam, and
Dongwon Lee. “Graph Theoretic Topological Analysis of Web Service
Networks.” In: World Wide Web 12.3 (2009), pp. 321–343.

[107] Sylvain Frey, Yehia Elkhatib, Awais Rashid, Karolina Follis, John Vidler,
Nicholas J. P. Race, and Christopher Edwards. “It Bends But Would It
Break? Topological Analysis of BGP Infrastructures in Europe.” In: Pro-
ceedings of the 1st European Symposium on Security and Privacy (EuroS&P
2016). IEEE, 2016.

[108] Kevin RB Butler, Toni R Farley, Patrick McDaniel, and Jennifer Rexford.
“A Survey of BGP Security Issues and Solutions.” In: Proceedings of the
IEEE 98.1 (2010), pp. 100–122.

[109] Erik Hjelmvik. China’s Man-on-the-Side Attack on GitHub.
http://bit.ly/2kx4zAE. Blog. 2015.

[110] Giancarlo Pellegrino, Christian Rossow, Fabrice J. Ryba, Thomas C.
Schmidt, and Matthias Wählisch. “Cashing Out the Great Cannon? On
Browser-Based DDoS Attacks and Economics.” In: Proceedings of the 9th
USENIX Workshop on Offensive Technologies (WOOT 15). USENIX Asso-
ciation, 2015.

[111] DDoS Attack Against Dyn (Analysis Summary). Online: https://dyn.
com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[112] RIPE NCC. RIPE Stat: Information about specific IP addresses and prefixes.
Online: https://stat.ripe.net/.

[113] MaxMind: IP Geolocation and Online Fraud Prevention. Online: http:
//dev.maxmind.com/.

[114] L. Daigle. WHOIS Protocol Specification. RFC 3912 (Draft Standard).
Internet Engineering Task Force, Sept. 2004. url: http://www.ietf.org/
rfc/rfc3912.txt.

[115] Suqi Liu, Ian Foster, Stefan Savage, Geoffrey M. Voelker, and Lawrence K.
Saul. “Who is .Com?: Learning to Parse WHOIS Records.” In: Proceedings
of the 2015 ACM Conference on Internet Measurement Conference (IMC
2015). ACM, 2015.

122

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://stat.ripe.net/
http://dev.maxmind.com/
http://dev.maxmind.com/
http://www.ietf.org/rfc/rfc3912.txt
http://www.ietf.org/rfc/rfc3912.txt


OTHER REFERENCES

[116] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian
Rossow. “jÄk: Using Dynamic Analysis to Crawl and Test Modern Web
Applications.” In: Proceedings of the 18th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID 2015). Springer,
2015.

[117] Reuven Cohen, Keren Erez, Daniel B. Avraham, and Shlomo Havlin. “Break-
down of the Internet under Intentional Attack.” In: Physical Review Letters
86.16 (Apr. 2001), pp. 3682–3685.

[118] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
“You Are What You Include: Large-scale Evaluation of Remote Javascript
Inclusions.” In: Proceedings of the 19th ACM Conference on Computer and
Communication Security (CCS 2012). ACM, 2012.

[119] Frank Cangialosi, Taejoong Chung, David R. Choffnes, Dave Levin, Bruce
M. Maggs, Alan Mislove, and Christo Wilson. “Measurement and Analysis
of Private Key Sharing in the HTTPS Ecosystem.” In: Proceedings of the
23rd ACM Conference on Computer and Communications Security (CCS
2016). ACM, 2016.

[120] Wenke Lee and Salvatore J. Stolfo. “Data Mining Approaches for Intrusion
Detection.” In: Proceedings of the 7th Conference on USENIX Security
Symposium (SEC 1998). USENIX Association, 1998.

[121] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. “Modeling
and Discovering Vulnerabilities with Code Property Graphs.” In: Proceed-
ings of the 35th IEEE Symposium on Security and Privacy (S&P 2014).
IEEE, 2014.

[122] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian
Yamaguchi. “Efficient and Flexible Discovery of PHP Application Vulnera-
bilities.” In: Proceedings of the 2nd IEEE European Symposium on Security
and Privacy (Euro S&P 2017). IEEE, 2017.

[123] Arun Natarajan, Peng Ning, Yao Liu, Sushil Jajodia, and Steve E. Hutchin-
son. “NSDMiner: Automated discovery of Network Service Dependencies.”
In: Proceedings of the 31st Annual IEEE International Conference on
Computer Communications (INFOCOM 2012). IEEE, 2012.

[124] Ali Zand, Giovanni Vigna, Richard A. Kemmerer, and Christopher Kruegel.
“Rippler: Delay injection for service dependency detection.” In: Proceedings
of the 33st Annual IEEE International Conference on Computer Commu-
nications (INFOCOM 2014). IEEE, 2014.

[125] Technical Details Behind a 400Gbps NTP Amplification DDoS Attack.
Online: https://goo.gl/j7zWEp.

123

https://goo.gl/j7zWEp


BIBLIOGRAPHY

[126] Christian Rossow. “Amplification Hell: Revisiting Network Protocols for
DDoS Abuse.” In: Proceedings of the 21st Annual Network and Distributed
System Security Symposium (NDSS 2014). The Internet Society, 2014.

[127] Cheng Jin, Haining Wang, and Kang G Shin. “Hop-count filtering: an
effective defense against spoofed DDoS traffic.” In: Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS 2003).
ACM, 2003.

[128] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD). Updated
by RFCs 1349, 2474, 6864. Internet Engineering Task Force, Sept. 1981.
url: http://www.ietf.org/rfc/rfc791.txt.

[129] Default TTL Values in TCP/IP. Online: http://www.map.meteoswiss.
ch/map-doc/ftp-probleme.htm.

[130] Fabrice J Ryba, Matthew Orlinski, Matthias Wählisch, Christian Rossow,
and Thomas C Schmidt. “Amplification and DRDoS Attack Defense–A
Survey and New Perspectives.” In: arXiv preprint arXiv:1505.07892 (2015).

[131] Jelena Mirkovic and Peter Reiher. “A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms.” In: ACM SIGCOMM Computer Communication
Review 34.2 (2004), pp. 39–53.

[132] Stephen M. Specht and Ruby B. Lee. “Distributed Denial of Service:
Taxonomies of Attacks, Tools, and Countermeasures.” In: Proceedings of
the 17th International Conference on Parallel and Distributed Computing
Systems (PDCS 2004). ISCA, 2004.

[133] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz.
“Exit from Hell? Reducing the Impact of Amplification DDoS Attacks.” In:
Proceedings of the 23rd USENIX Security Symposium (SEC 2014). USENIX
Association, 2014.

[134] Vern Paxson. “An analysis of using reflectors for distributed denial-of-
service attacks.” In: Computer Communication Review 31.3 (2001).

[135] Hakem Beitollahi and Geert Deconinck. “Analyzing well-known coun-
termeasures against distributed denial of service attacks.” In: Computer
Communications 35.11 (2012), pp. 1312–1332.

[136] Ayman Mukaddam, Imad Elhajj, Ayman I. Kayssi, and Ali Chehab. “IP
Spoofing Detection Using Modified Hop Count.” In: Proceedings of the 28th
IEEE International Conference on Advanced Information Networking and
Applications (AINA 2014). IEEE, 2014.

[137] Zakir Durumeric, Michael Bailey, and J. Alex Halderman. “An Internet-
wide View of Internet-wide Scanning.” In: Proceedings of the 23rd USENIX
Security Symposium (SEC 2014). USENIX Association, 2014.

124

http://www.ietf.org/rfc/rfc791.txt
http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm


OTHER REFERENCES

[138] J. Postel. Character Generator Protocol. RFC 864 (INTERNET STAN-
DARD). Internet Engineering Task Force, May 1983. url: http://www.
ietf.org/rfc/rfc864.txt.

[139] J. Durand, I. Pepelnjak, and G. Doering. BGP Operations and Security.
RFC 7454 (Best Current Practice). Internet Engineering Task Force, Feb.
2015. url: http://www.ietf.org/rfc/rfc7454.txt.

[140] Jaime Fink and Jack Manbeck. Functional Requirements for Broadband
Residential Gateway Devices. Online: https://www.broadband-forum.
org/technical/download/TR-124.pdf.

[141] Enrico Gregori, Alessandro Improta, Luciano Lenzini, Lorenzo Rossi, and
Luca Sani. “On the incompleteness of the AS-level graph: a novel method-
ology for BGP route collector placement.” In: Proceedings of the 12th ACM
SIGCOMM Internet Measurement Conference, (IMC 2012). ACM, 2012.

[142] Ricardo V. Oliveira, Dan Pei, Walter Willinger, Beichuan Zhang, and Lixia
Zhang. “The (In)Completeness of the Observed Internet AS-level Structure.”
In: IEEE/ACM Transactions on Networking 18.1 (2010), pp. 109–122.

[143] Ethan Katz-Bassett, Harsha V Madhyastha, Vijay Kumar Adhikari, Colin
Scott, Justine Sherry, Peter Van Wesep, Thomas E Anderson, and Arvind
Krishnamurthy. “Reverse traceroute.” In: Proceedings of the 7th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
2010). USENIX Association, 2010.

[144] RIPE NCC. RIPE Atlas: Internet data collection system. Online: https:
//atlas.ripe.net/.

[145] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H. Katz.
“Towards an accurate AS-level traceroute tool.” In: Proceedings of the ACM
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM 2003). AMC, 2003.

[146] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
Architecture. RFC 3031 (Proposed Standard). Updated by RFCs 6178,
6790. Internet Engineering Task Force, Jan. 2001. url: http://www.ietf.
org/rfc/rfc3031.txt.

[147] RIPE NCC. RIPE Atlas: Statistics and Network coverage. https://atlas.
ripe.net/results/maps/network-coverage/.

[148] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur
Friedman, Matthieu Latapy, Clémence Magnien, and Renata Teixeira.
“Avoiding traceroute anomalies with Paris traceroute.” In: Proceedings of
the 6th ACM SIGCOMM Internet Measurement Conference (IMC 2006).
ACM, 2006.

125

http://www.ietf.org/rfc/rfc864.txt
http://www.ietf.org/rfc/rfc864.txt
http://www.ietf.org/rfc/rfc7454.txt
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://atlas.ripe.net/
https://atlas.ripe.net/
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/

	Background of this Dissertation
	Introduction
	BackRef
	Motivation
	Contributions
	Background and Related Work
	Anonymous Communication Protocols
	Accountable Anonymity Mechanisms

	Design Overview
	Threat Model and System Goals
	Design Rationale and Key Idea
	Scope of Solution

	Repudiation (or Traceability)
	The OR Protocol: Overview
	The BackRef Protocol Flow
	Cryptographic Details
	Exit Node Whitelisting Policies
	Pseudocode

	Security Analysis
	BLS Signatures
	Bilinear Pairings
	1W-AKE Protocol
	Systems Aspects and Discussion
	Conclusion

	Oblivion
	Motivation
	Contribution
	Related Work
	Conceptual Overview of Oblivion
	Motivating Scenario and System Model
	Threat Model and Security Objectives
	Key Ideas of the Protocol

	Realization Details of Oblivion
	Registration Phase
	Ownership Claim Phase
	Reporting Phase

	Performance Analysis
	Implementation Details and Evaluation Parameters
	Evaluating the CA-Module
	Evaluating the User-Module
	Evaluating the OCP-Module

	Security Analysis
	Discussion
	Conclusion

	Who Controls the Internet
	Motivation
	Contributions
	Background
	Case Studies
	Threat Model

	Modeling Framework
	Property Graph
	Taint-style Propagation and Rules
	Query and Evaluation

	Data Sets and Acquisition
	Initial Domain Names
	Servers
	Routing Information and Networks
	Countries and Organizations

	Entity Identification
	First Order Metrics
	Second Order Metrics

	Attack Evaluation
	Distribution of JS Malicious Content
	Email Sniffing
	DoS against Core Service Provider

	Limitations
	Related Work
	Conclusion

	TTL-based Filtering
	Motivation
	Contribution
	Background
	Relevant Internet Technologies
	Source Spoofing and DRDoS
	Hop Count Filtering

	Re-Evaluating the Feasibility of Hop-Count Filtering
	Protocol-based Probing
	Interpreting Responses.
	Horizontal Probing
	Caveats of Active Probing

	Probing Analysis
	Benign Traffic
	Spoofed Traffic
	Implications

	Methodology for Estimating Hop Count Value
	Key Idea and Attacker Model
	Methodology

	Experimental Setup and Results
	Data Set
	Leave-one-out Evaluation
	Overall Performance

	Conclusion

	Conclusion

