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SUMMARY 

 

Ca2+-dependent regulated exocytosis is major form of exocytosis in neurons and 

neuroendocrine cells. These cells release neurotransmitters and hormones through 

exocytosis of secretory vesicles upon external stimuli. Regulated exocytosis occurs in 

different stages: biogenesis of the secretory vesicles, translocation of these vesicles, 

that are targeted and docked to the plasma membrane (PM). Ultimately when the Ca2+ 

concentration strongly increases, fusion of secretory vesicles with the PM occurs 

inducing release of the neurotransmitter cargo outside the cells. In the last 30 years, 

adrenal medullary chromaffin cells have emerged as a model system to study 

regulated secretory pathway because they are round, rendering them easy to patch 

and because they can be used for membrane capacitance measurements. 

Furthermore, due to their common origin with the sympathetic neurons their molecular 

machinery for regulated secretion is very similar to that found in neurons. Even though 

chromaffin cells are extensively used to study the regulated secretory pathway, 

biogenesis and recycling of the chromaffin secretory granules which are called large 

dense core vesicles (LDCVs) still remains unresolved. 

 

In order to get more insights into these processes, I used adrenal chromaffin cells from 

newborn mice and successfully electroporated them with Neuropeptide Y (NPY)-

mCherry fusion protein construct to specifically label the newly generated LDCVs. I 

followed them by fixing the chromaffin cells at different time intervals from 2 h to 24 h 

post transfection. Immunostaining of the cis-Golgi compartment and the cortical actin 

network was used to analyze the distribution of the newly formed vesicles over time. I 

could show that initial expression of NPY-mCherry was already visible after 2 h post 

transfection but it was localized near Golgi and that few vesicles were formed. Over the 

time LDCVs moved away from the Golgi and distributed in the cytoplasm. LDCVs 

accumulated in the cortical actin ring but not directly adjacent to the PM. Furthermore, 

there was only partial colocalization between NPY and the cis- or trans-Golgi markers 

irrespective of the time used to study colocalization. With the help of correlative 

fluorescence electron microscopy (CLEM), we could show that the non-overlapping 

area near the Golgi, which was neither cis- nor trans-Golgi, was indeed another Golgi 

compartment. The identification of this compartment remains to be elucidated. I was 

also able to show that the vesicular proteins Synaptobrevin-2 (Syb-2), Cellubrevin 

(Ceb), and Synaptotagmin1 (Syt1) gets associated with the newly generated LDCVs at 

a later stage in the biogenesis because their colocalization with NPY-mCherry 

increased over time and was highest at 24 h post transfection. Moreover, I also studied 

the endocytosis of Syt1 in NPY-mCherry transfected chromaffin cells by inducing 
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exocytosis followed by endocytosis with application of 60mM KCl, allowing the uptake 

of lumenal domain anti-Syt1 antibody, and fixing the cells at increasing time of 

recovery. I also used anti-TGN38 and anti-Rab11A antibodies to study the fate of the 

endocytosed Syt1. I counted the number of Syt1 punctae overlapping with NPY-

mCherry after stimulation and the number of Syt1 punctae remaining at the cell 

periphery. We observed that Syt1 required a minimum of 2 h for recycling, and this 

recycling was not mediated by Rab11A positive endosomes because the number of 

punctae positive for endocytosed Syt1 and Rab11A were scarce. The three major 

conclusions from this study were: 

1. Generation of vesicles needs at least 2 h and a new Golgi compartment devoid of 

GM130 and TGN38 retains the expression of NPY-mCherry probably for loading of 

vesicles with neuropeptides and Granins.  

2. Association of vesicular membrane proteins with the newly formed vesicles happens 

at late stage in biogenesis. 

3. Recycling of Syt1 needs a minimum of 2 h after first round of exo/endocytosis and it 

is not dependent on Rab11A positive endosomes. 

 

Our group previously showed that dead-end vesicles which remain attached at the PM 

for a long time without fusing exist in bovine chromaffin cells. We demonstrated that 

target-Soluble NSF Attachment Protein Receptors (t-SNAREs) mediates dead-end 

docking via formation of unproductive t-SNARE acceptor complexes that hinders the 

fusion of docked vesicles with the PM. However, the vesicular component interacting 

with the unproductive t-SNARE acceptor complexes remained unknown. We used 

knock out mouse models for different vesicular proteins like Syb-2, Ceb, Syt1, and 

Syt7. I perfused the mouse chromaffin cells with high free Ca2+ and used the 

combination of membrane capacitance measurement through patch-clamp technique 

and total internal reflection fluorescence microscopy (TIRFM) allowing the analysis of 

single vesicle fusion and of their behavior during the recording period. First I was able 

to show that dead-end vesicles also existed in mouse chromaffin cells. Then I analyzed 

the effect of the absence of the above cited vesicular proteins on dead-end docking. 

Syb-2 KO induced significant reduction in global secretion but no effect on the number 

of dead-end vesicles. Also, there was no docking defect in Syb-2 KO cells. Ceb KO 

showed no effect on any of the TIRFM parameters and no effect on overall secretion. 

Syt1 KO cells showed strong docking defect and a high reduction in single vesicle 

secretion in comparison to control. However, no influence on overall exocytosis or 

number of dead-end vesicles was found. Syt7 KO cells also showed mild but significant 

docking defect and strong decrease in number of vesicles that were secreted in TIRF in 

comparison to WT control. Surprisingly, there was also a massive decline in the 
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number of dead-end vesicles. The specificity of the effect of Syt7 on dead-end docking 

was further tested by overexpressing Syt7 in Syt7 KO, which rescued the number of 

dead-end vesicles. From this study, I concluded that: 

1. Dead-end vesicles also exist in mouse chromaffin cells. 

2. v-SNAREs have no role in dead-end docking. 

3. Syt1 has an important role in productive docking but not in dead-end docking. 

4. Syt7 is the only vesicular protein to be involved in unproductive docking. 
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ZUSAMMENFASSUNG 

 

Ca2+-abhängige regulierte Exozytose ist die Hauptform der Exozytose in Neuronen und 

neuroendokrinen Zellen. Diese Zellen setzen Neurotransmitter und Hormone durch 

Exozytose von sekretorischen Vesikeln auf entsprechende Stimuli hin frei. Die 

regulierte Exozytose erfolgt in verschiedenen Stadien: Biogenese der sekretorischen 

Vesikel, Translokation dieser Vesikel, zur Plasmamembran (PM) und “Andocken” 

dieser Vesikel mit der PM. Nach einem Ansteig der intrazellulären Ca2+-Konzentration 

erfolgt die Fusion von sekretorischen Vesikeln mit der PM ein, die zur Freisetzung der 

Neurotransmitter-Ladung führt. In den letzten 30 Jahren sind Chromaffin-Zellen des 

Nebennierenmarks als Modellsystem etabliert worden, um den regulierten 

sekretorischen Weg zu untersuchen. Dies hat verschiedene Gründe: zum einen sind 

Chromaffine Zellen rund, was sie leicht zu patchen und was für 

Membrankapazitätsmessungen sehr nützlich macht. Darüber hinaus ist aufgrund ihrer 

gemeinsamen Herkunft mit den sympathischen Neuronen aus der Neuralleiste ihre 

molekulare Maschinerie für regulierte Sekretion sehr ähnlich wie bei Neuronen. Obwohl 

Chromaffin-Zellen weitgehend verwendet werden, um den regulierten sekretorischen 

Weg zu untersuchen, bleibt die Biogenese und das Recycling der chromaffinen 

Sekretionsgranula, die hier als große dichte Kern-Vesikel (large dense core vesicles, 

LDCVs) bezeichnet werden, noch ungelöst. 

 

Um mehr Einblicke in diese Prozesse zu erhalten, benutzte ich adrenale Chromaffin-

Zellen der Nebenniere von neugeborenen Mäusen und transfizierte sie erfolgreich mit 

einem Neuropeptid Y (NPY)-mCherry-Fusionsprotein-Konstrukt, um die neu erzeugten 

LDCVs spezifisch zu markieren. Ich untersuchte die Biogenese der chromaffinen 

Granula, indem ich die Chromaffinzellen in verschiedenen Zeitintervallen von 2 h bis 24 

h nach der Transfektion fixierte. Die Immunfärbung des cis-Golgi-Kompartiments und 

des kortikalen Aktin-Netzwerks wurde verwendet, um die Verteilung der neu gebildeten 

Vesikel im Laufe der Zeit zu analysieren. Ich konnte zeigen, dass eine erste 

Expression von NPY-mCherry bereits 2 h nach der Transfektion sichtbar war. Die 

Expression 2 h nach der Transfektion war aber in der Nähe von Golgi beschränkt und 

es wurden nur wenige Vesikel zu diesem Zeitpunkt gebildet. Im Laufe der Zeit 

entfernten sich die LDCVs vom Golgi und verteilten sich im Zytoplasma. LDCVs 

sammelten sich im kortikalen Aktinring an, aber nicht direkt neben der PM. Darüber 

hinaus gab es nur eine partielle Kolokalisierung zwischen NPY und den cis- oder trans-

Golgi-Markern. Mit Hilfe der korrelativen Fluoreszenz-Elektronenmikroskopie (CLEM) 

konnten wir zeigen, dass die nicht überlappende Fläche in der Nähe des Golgi, die 

weder cis- noch trans-Golgi war, tatsächlich ein weiteres Golgi-Kompartiment 
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darstellte. Die Identifizierung dieses unbekannten Golgi-Kompartimentes bleibt 

abzuklären. Ich konnte auch zeigen, dass die vesikulären Proteine Synaptobrevin-2 

(Syb-2), Cellubrevin (Ceb) und Synaptotagmin1 (Syt1) mit den neu erzeugten LDCVs 

in einem späteren Stadium der Biogenese assoziiert werden, weil ihre Kolokalisation 

mit NPY-mCherry erste im Laufe der Zeit sich erhöhte und am höchsten 24 h nach der 

Transfektion war. Darüber hinaus habe ich auch die Endozytose von Syt1 in NPY-

mCherry-transfizierten Chromaffin-Zellen untersucht. Dazu habe ich zunächst mittels 

einer Applikation von 60 mM KCl eine Exozytose induziert, gefolgt von einer 

Endozytose, was die Aufnahme von luminalen Domänen-Anti-Syt1-Antikörpern 

ermöglicht und die Zellen nach unterschiedlichen Zeitpunkten fixiert. Ich habe u.a. Anti-

TGN38 und Anti-Rab11A-Antikörper verwendet, um das Schicksal des endozytosierten 

Syt1 zu untersuchen. Ich zählte die Anzahl der Syt1 Punkte, die mit NPY-mCherry 

nach der Stimulation überlappten, und die Anzahl der Syt1 Punkte, die an der 

Zellperipherie verbleiben. Wir beobachteten, dass Syt1 mindestens 2 h für das 

Recycling benötigte, und dieses Recycling nicht durch Rab11A positive Endosomen 

vermittelt wurde, da die Anzahl der Punkte, die sowohl für endozytierte Syt1 als auch 

für Rab11A positive waren, gering war. Die drei wichtigsten Schlussfolgerungen aus 

dieser Studie waren: 

1. Die Erzeugung von Vesikeln (LDCVs) benötigt mindestens 2 h und benötigt ein 

neues Golgi-Kompartiment, das weder GM130 noch TGN38 aufweist, und 

wahrscheinlich für die Beladung von Vesikeln mit Neuropeptiden und Graninen 

zuständig ist. 

2. Die Verknüpfung von vesikulären Membranproteinen mit den neu gebildeten 

Vesikeln erfolgt im späten Stadium der Biogenese. 

3. Recycling von Syt1 braucht mindestens 2 Stunden nach der ersten Runde der Exo / 

Endozytose und ist nicht abhängig von Rab11A positiven Endosomen. 

 

Unsere Gruppe zeigte zuvor, dass sogenannte “dead-end” Vesikel, die an der PM 

lange haften bleiben, ohne zu fusionieren, auch in Rinder-Chromaffin-Zellen vorhanden 

sind. Wir haben gezeigt, dass sogenannte target-Soluble NSF Attachment Protein 

Receptors (t-SNAREs) das dead-end Docking durch Bildung von unproduktiven t-

SNARE-Akzeptorkomplexen vermitteln, die die Verschmelzung von angedockten 

Vesikeln mit der PM behindern. Die vesikuläre Komponente, die mit den unproduktiven 

t-SNARE-Akzeptorkomplexen interagiert, blieb jedoch unbekannt. Wir verwendeten 

Knock out Maus Modelle für verschiedene vesikuläre Proteine wie Syb-2, Ceb, Syt1 

und Syt7. Ich habe die Maus-Chromaffin-Zellen mit hohen Konzentrationen von freiem 

Ca2+ perfundiert und die Kombination der Membrankapazitätsmessung durch Patch-

Clamp-Technik und Total-Reflexions-Fluoreszenzmikroskopie (TIRFM) verwendet, um 
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die Analyse der Einzelvesikelfusion und ihres Verhaltens während der 

Aufzeichnungsperiode zu ermöglichen. Zuerst konnte ich zeigen, dass dead-end 

Vesikel auch in Maus-Chromaffin-Zellen existierten. Dann analysierte ich die Wirkung 

der Abwesenheit der oben genannten vesikulären Proteine auf dead-end Docking. 

Syb-2 KO induzierte eine signifikante Reduktion der globalen Sekretion, aber keine 

Wirkung auf die Anzahl der dead-end Vesikel. Auch gab es keinen Docking-Defekt in 

Syb-2 KO-Zellen. Ceb KO zeigte keine Wirkung auf einen der TIRFM-Parameter und 

keine Auswirkung auf die Gesamtsekretion. Syt1-KO-Zellen zeigten einen starken 

Docking-Defekt und eine hohe Reduktion der Einzel-Vesikel-Sekretion im Vergleich zur 

Kontrolle. Es wurde jedoch kein Einfluss auf die Gesamt-Exozytose oder die Anzahl 

der dead-end Vesikel festgestellt. Syt7-KO-Zellen zeigten auch einen leichten, aber 

signifikanten Docking-Defekt und eine starke Abnahme der Anzahl von Vesikeln, die im 

Vergleich zur WT-Kontrolle in TIRF sezerniert wurden. Überraschenderweise gab es 

auch einen massiven Rückgang der Anzahl der dead-end Vesikel. Die Spezifität der 

Wirkung von Syt7 auf dead-end Docking wurde weiter durch Überexpression von Syt7 

in Syt7 KO, die die Anzahl der dead-end Vesikel wieder herstellt getestet. Aus dieser 

Studie kam ich zu folgenden Schlussfolgerungen: 

1. Dead-End-Vesikel gibt es auch in Maus-Chromaffin-Zellen. 

2. v-SNAREs haben keine Rolle im dead-end Docking. 

3. Syt1 hat eine wichtige Rolle bei der produktiven Andockung, aber nicht bei dead-end 

Docking. 

4. Syt7 ist das einzige vesikuläre Protein, das sowohl in unproduktives Docking 

involviert ist. 
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1. INTRODUCTION 

1.1 SECRETORY GRANULE EXOCYTOSIS 
 

Regulated exocytosis of secretory granules has been extensively studied in different 

cell types depending on their physiological significance and experimental benefits. 

George Palade (1975) described the pathway of secretory process in pancreatic 

exocrine cells. Recently, one of the most studied cells in that context have been the 

adrenal chromaffin cells and it became a model to investigate the biochemical and 

electrophysiological aspects of exocytosis. Nevertheless, secretory granule exocytosis 

also exists in many different neuroendocrine and endocrine cells for secretion of 

peptides and hormones, and also in exocrine cells for release of digestive enzymes 

(Burgoyne and Morgan, 2003). Subsequent to the discovery of secretory granules by 

electron microscopy, they have been studied comprehensively because they are 

involved in important phenomenon such as the release of hormones and neuropeptides 

via regulated secretory pathway (Borgonovo, Ouwendijk, and Solimena, 2006). 

 

1.2 BIOGENESIS OF DENSE – CORE SECRETORY GRANULES 
 
In eukaryotic cells, the newly formed proteins that are intended for secretion are first 

transported from the cytoplasm to the ER-lumen. Then they advance through the Golgi-

apparatus from the cis-Golgi to the trans-Golgi network (TGN) where they are 

packaged in various secretory pathway depending on the function of these proteins. 

One pathway is the constitutive pathway which exists in all cells. Secretion occurring 

via constitutive pathway is not tightly controlled by the extracellular activity. This type of 

secretion takes place through vesicle budding from the TGN, transport to the PM, and 

fusion with the PM. It is used by cells for their growth, and to renew the protein content 

of the PM. On the other hand, many cells have another secretory pathway called “the 

regulated secretory pathway”, that is used for instance for neurotransmitter release in 

response to extracellular stimuli (Kim et al., 2006, Bowman et al., 2009). In 

neuroendocrine and endocrine cells regulated exocytosis occurs for release of 

hormones, and in other cell types such as immune cells it occurs for the release of 

cytokines and other products (Becherer et al., 2012). Both the pathways are depicted in 

fig. 1. 

 

1.2.1 ROLE OF GOLGI COMPLEX 

The Golgi complex is considered a fundamental part of the secretory pathway where 

cargo proteins and lipids are modified, categorized, filled into specific transporters and 

sent to their final destinations. Golgi stacks have been classified into cis, medial, and 

trans stacks. The newly manufactured proteins are transported to cis-Golgi from the ER 

while the cargo leaves from trans-Golgi by travelling across the stack in approximately 

10-20 min (Ladinsky et al., 1999; Martinez – Menarguez JA, 2013; Martínez-Alonso et 

al., 2013). Large number of transport vesicles are generated at the TGN that are 

specialized for the transport of their contents to different cellular compartments and to 
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the PM for secretion. The TGN is also considered to be a sorting station for soluble 

proteins. Different mechanisms have been proposed for the sorting of proteins, namely 

sorting by selective aggregation, and receptor-mediated luminal protein sorting (Kienzle 

and von Blume, 2014). Chromogranin A (CgA) has been proposed to be involved in the 

sorting mechanisms at the TGN (Kim et al., 2001; Kim et al., 2005; Gerdes and 

Glombik, 2000). 
 

 

Figure 1: Steps 
involved in LDCV 
biogenesis: Two 
distinctive secretory 
pathways are present 
in neuroendocrine 

and endocrine cells to 
mediate constitutive 
or regulated secretion 
of proteins. From Kim 
et al., 2006. 

 

1.2.2 MATURATION OF SECRETORY GRANULES 
 
After the formation of immature secretory granule (ISG) from budding of TGN, they 

apparently undertake a maturation process in order to gain the ability to respond to 

stimulations. Newly formed ISGs possess less electron-dense core than the mature 

granules (Klumperman et al., 1998). It has been proposed that vesicle maturation 

involves reduction in lumen pH, vesicle fusion, and membrane restoration 

(Bonnemaison et al., 2013, fig. 1). In insulin secretory granules and PC12 cells it has 

been shown that the lumen of TGN and the lumen of ISGs have pH 6.3, whereas pH of 

mature secretory granules (MSGs) is more acidic pH 5.5 (lumenal) (Hutton, 1982; Orci 

et al., 1986; Urbé et al., 1997). The proteolytic processing of some prohormones and 

Granins starts in ISGs, not in TGN. pH reduction during the granule maturation is an 

essential step for total processing of granins and prohormones (Husten and Eipper, 

1994). This reduction in pH from TGN to mature granule is facilitated by steady rise in 

the active H+ pump density and decrease in H+ permeability of organelle membranes 

(Wu et al., 2001). On the other hand, increase in Ca2+ concentration in the vesicle 

lumen occurs along with other cations, which is essential to neutralize the charge of the 

largely acidic core proteins (Mahapatra et al., 2004; Steinberg et al., 2010). 
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1.3 CHROMAFFIN CELLS AS MODEL SYSTEM TO STUDY 

REGULATED EXOCYTOSIS 
 

The adrenal glands are made of two main parts, both have their own function and are 

from different embryological origin. The outer part, which is the major portion of the 

adrenal gland is formed from the mesoderm. It is important for mediating the stress 

response through the production and secretion of mineralocorticoids (e.g. aldosterone) 

and glucocorticoids (e.g. cortisol). The adrenal medulla is the inner part, and it is 

responsible for the crucial “fight or flight” response of the body to an attack. The 

adrenal medulla is derived from the neural crest and consists of chromaffin cells that 

secrete epinephrine (adrenaline), norepinephrine (noradrenaline), and also small 

amount of dopamine under stressful conditions (fig. 2, Berridge, 2012). Chromaffin 

cells receive stimulation from preganglionic fibers of the sympathetic nervous system 

that originates from the thoracic spinal cord T5-T11. As it is innervated by the 

preganglionic nerve fibers, the adrenal medulla can be considered as specialized 

ganglia. In contrast to other sympathetic ganglia, adrenal medulla does not form 

distinct synapses, but release their secretions directly into the blood stream for 

systemic effects (García et al., 2006). 

 

 

Figure 2: Adrenal gland 
structure and function. A 
section through the gland 
illustrates the outer cortex, 

which is divided into three 
zones and an inner medulla 
that has the chromaffin cells. 
The latter are innervated by 
the splanchnic nerve. Shown 
on the right are the functions 
of the cells specialized to 
synthesize and secrete 
hormones (yellow arrows). 
Angiotensin II and high K+ 
stimulate aldosterone release, 

corticotrophin (ACTH) 
stimulates the release or 
cortisol, while release of 
acetylcholine (ACh) from the 
splanchnic nerve endings 
activates the chromaffin cells 
to release adrenaline. From 
Berridge 2012. 

 

Chromaffin cells are easily available from cows, share a common origin with 

sympathetic neurons, are easily isolated and prepared for cultures. These advantages 

make them a very good candidate for electrophysiological, neuropharmacological, and 

biochemical studies. Their physiological function, the stress induced release of 

catecholamines in the blood circulation, is a Ca2+ -dependent process. Hence, 

chromaffin cells are widely used as model system to study regulated exocytosis 

(García et al., 2006). 
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1.3.1 LARGE DENSE CORE VESICLES 
 

Secretory granules that exist in chromaffin cells are called chromaffin vesicles. They 

are so-called because they are positive for “chromaffin reaction” i.e. these structures 

exhibit histochemical affinity to chromate salts (Crivellato et al, 2008). Catecholamines 

were found in the cytoplasmic fraction upon differential centrifugation of chromaffin 

cells (Blaschko and Welch, 1953; Hillarp et al., 1953). Electron microscopy analysis 

showed that this cytoplasmic fraction was formed of specialized membrane-bound 

organelles called “chromaffin granules” (Hillarp et al., 1954). These vesicles are 150 to 

350 nm large and they are strongly electron-dense in electron micrographs. Therefore, 

chromaffin granules are also known as LDCVs. Coupland (1965) has shown the 

presence of two types of LDCVs: adrenaline containing vesicles, which are less 

electron-dense and the noradrenaline containing vesicles which are highly electron-

dense. They account for about 13.5% of the cytoplasmic volume of chromaffin cell and 

a typical bovine chromaffin cell contains approximately 10,000 vesicles (Kryvi et al., 

1979, Crivellato et al., 2008). Fig. 3 depicts the structural organization of a chromaffin 

cell. 

 

Chromaffin granules are structurally complex organelles. Not only they contain 

catecholamines, but also contain and secrete CgA, CgB, and Sgs which are a group of 

acidic, soluble proteins. These proteins are ubiquitously dispersed in neuroendocrine 

and nervous system. They also function as valued markers for sympathoadrenal 

activity as well as secretion from normal and neoplastic neuroendocrine cells 

(Taupenot et al., 2003). CgA has been shown to be involved in the formation of dense-

core granules and segregation of hormones in neuroendocrine cells (Kim et al., 2001). 
 

 

 

Figure 3: Structural 
organization of the 
chromaffin cells. 
Chromaffin cells located 
in the adrenal medulla are 
specialized to secrete 

catecholamines into the 
neighboring capillaries. 
Secretion is stimulated by 
acetylcholine released 
from splanchnic nerve 
endings that often 
insinuate themselves in 
between the chromaffin 
cells. Many of the 
chromaffin cells contain a 

single primary cilium that 
extends into the 
intercellular space facing 
the capillaries. From 
Berridge 2012. 

LDCVs release their components in the extracellular space by fusion with the PM in 

response to splanchnic nerve stimulation. LDCVs serve as prototype for regulated 

secretory vesicles. The mechanism of LDCV exocytosis from adrenal chromaffin cells 
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resembles that of synaptic vesicle exocytosis in classical CNS synapses (Crivellato et 

al., 2008). 

NPY – a marker of LDCV 

LDCV also contain other biogenic peptides such as NPY. Tatemoto (1982) deciphered 

the amino acid sequence of NPY and showed that it has 70% sequence homology with 

peptide YY (porcine intestinal peptide) and 50% homology with pancreatic polypeptide. 

It was proposed that NPY, peptide YY, and pancreatic polypeptide belonged to the 

same family.  In the following year, NPY was found in high concentrations in adrenal 

gland of dog, mouse, and rat (Allen et al., 1983). NPY is a small 36 amino acid peptide 

that is highly conserved. It is ubiquitously present in central and peripheral nervous 

system (Nussdorfer and Gottardo, 1998). NPY plays an important part in regulation of 

appetite, blood pressure, learning, and memory (Colmers and Wahlestedt, 1993). 

Majane et al., (1985) showed that NPY concentration was considerably higher in 

adrenal medulla than in adrenal cortex, indicating that chromaffin cells contain the 

highest concentration of NPY. Schalling et al., (1988) showed that the adrenaline as 

well as noradrenaline secreting cells from rat adrenal medulla were positive for NPY, 

indicating that NPY can be used as a marker for LDCVs.  

 

1.4 REGULATED SECRETORY PATHWAY 
 

The synchronized pathway of vesicle exocytosis is also called “stimulus-secretion 

coupling” (Lin and Salton, 2013). This process of stimulus-secretion coupling in adrenal 

chromaffin cells occurs in different steps: first, extracellular Na+ and Ca2+ enters the cell 

when their acetylcholine receptors are stimulated; second, the ensuing short 

depolarization that opens voltage dependent Na+ channels; third, opening of Na+ 

channels results in large depolarization that opens various voltage-sensitive Ca2+ 

channels; lastly, the increase in the intracellular Ca2+ activates secretory vesicles fusion 

with the PM (Aunis and Langley, 1999; fig. 4). 
 

 

 

 

Figure 4: Steps in synaptic 
vesicle fusion. Steps in 
vesicle fusion include vesicle 
tethering, docking, priming 

and finally, fusion. These 
events are driven by high-
affinity interaction between 
v-SNARE and t-SNARE 
proteins, regulated by 
calcium and calcium-binding 
proteins through their 
interaction with the SNARE 
complexes. From 
Ramakrishnan et al., 2012. 

 

Before LDCVs gain fusion capability, they pass different functional stages. Vesicles are 

tethered, then docked to the PM, then they become primed, and finally they can 

release their contents upon fusing with the PM. To ensure that neuroendocrine 
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secretion operates correctly, all these steps are tightly regulated and coordinated both 

spatially and temporally by a large number of proteins. 
 

Tethering: Tethering refers to a process, in which vesicles are transported to the 

release sites so as to enable the contact between the vesicular (v)-SNARE and the 

target (t)-SNARE proteins located in the PM (Whyte and Munro, 2002; Ramakrishnan 

et al., 2012). This process is accompanied by a multitude of proteins among which 

Munc18 is the most prominent as will be described later (Smyth et al., 2010). It is 

followed by the process of docking during which SNARE proteins approach each other 

via SNARE motifs in a Ca2+- independent manner. 
 

Docking: Docking is the first step in regulated secretory pathway in which the vesicles 

comes in close contact with the adjacent PM. This process is being explained in detail 

later. 
 

Priming: Priming is the step that makes the vesicles ready for exocytosis when Ca2+ 

enters through the voltage dependent Ca2+channels in response to an action potential 

(Rizo and Südhof, 2002). Essentially, in this priming step the t-SNAREs, SNAP25 and 

Stx1, and the v-SNAREs, Syb-2 or Ceb, interact to form the fully zippered SNARE 

complex bringing the vesicular membrane in close contact with the PM. It is regulated 

by different cytosolic, vesicular, and PM proteins that interact with each other. It is also 

a Ca2+ dependent process in a range of 150 nM to 600 nM (Voets, 2000). 
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Figure 5: Structures of 
synaptic SNARE and SM 
proteins. (A) Schematic diagram 
of the domain structures of 

syntaxin, SNAP-25, and 
synaptobrevin/VAMP (Habc, 
Habc-domain; TM, 
transmembrane region). (B, C) 
Cartoon of the two modes of 
interaction of the SM protein 
Munc18 with SNARE proteins 
during synaptic exocytosis: 
Binding of Munc18 to the closed 
conformation of syntaxin-1 that 

occludes the SNARE motif (B), 
and binding of Munc18 to 
assembling SNARE trans-
complexes that depends on the 
syntaxin-1 amino terminus (C). 
Note that the precise mode of 
Munc18 binding to assembling 
SNARE complexes is unknown, 
apart from the fact that it is 
anchored by interaction of the 

syntaxin amino terminus 
(indicated by an N) with the N-
lobe ofMunc18; the arrow 
indicates the uncertain atomic 
nature of this binding, which may 
involve wrapping of Munc18 
around the SNARE helical 
bundle analogous to the binding 
ofMunc18 to the closed 
conformation of syntaxin (Südhof 
and Rothman 2009). (i) Atomic 

structures of the fully assembled 
SNARE complex, the synaxin-1A 
Habc domain, and Munc18 
containing a bound syntaxin 
amino-terminal peptide (blue), 
drawn to scale. Modified from 
Südhof and Rizo, 2011. 

SNAREs and other accessory proteins involved in priming 

 

The major molecular players of membrane fusion process are the SNAREs. SNAREs 

are comprised of large family of proteins that are recognized by 60 amino acid residues 

called the SNARE motif. This motif forms a coiled coil domain that is highly conserved 

(Rizo and Südhof, 2002). There is formation of a heterotrimeric SNARE complex 

between t-SNAREs SNAP25 and Stx1 with v-SNARE Syb-2 (Ashery et al., 2009; fig. 

5). SNARE complex is formed in two stages; first there is formation of heterodimeric 

complex between t-SNAREs Stx1 and SNAP25 and second the v-SNARE Syb-2 is 

inserted to form heterotrimeric trans SNARE complex (Chen et al., 2001; Borisovska et 

al., 2005; Walter et al., 2010; Borisovska et al., 2012; Jahn and Fasshauer, 2012; 

James and Martin, 2013). Various studies have shown that the SNARE complex is 

made of very stable four helices that are arranged in a parallel fashion in the core 

complex (Südhof et al., 1993; Fasshauer et al., 1998; Sutton et al., 1998; Dulubova et 

al., 1999). Other accessory proteins like Munc13, Munc18, and CAPS also play a role 

in priming of vesicles. Dulubova et al., (1999) have shown that when Stx1 is in 

isolation, it is in a closed conformation that is incompatible with the formation of 

SNARE core complex. This closed state of Stx1 prevents unrequired interactions with 
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SNARE proteins before priming and is favored by Munc18. Furthermore, Munc18 has a 

chaperone role because in its absence, the transport of Stx1 to PM is reduced resulting 

in the abolishment of exocytosis (Verhage et al., 2000). Also, Schollmeier et al., (2011) 

have shown using liposome assays that Munc18-1 enhances the formation of trans-

SNARE complex thereby accelerating priming when incubated with t-/v-SNAREs. The 

switching of Munc18-1 from inhibitory mode in which it interacts with the closed Stx1 to 

stimulatory mode to enhance priming has been proposed to be accomplished by 

Munc13-1 (Rizo and Südhof, 2012). In hippocampal and cortical neurons Munc13-1 

and Munc18-1 play a role in stabilizing the fusion competent vesicles by inhibiting de-

priming which is mediated by NSF (He et al., 2017). In bovine chromaffin cells the 

overexpression of Munc13-1 resulted in high increase in the fusion of release ready 

vesicles as well as in the sustained component without affecting the number of docked 

vesicles, thereby suggesting a role of Munc13-1 in priming of LDCVs (Ashery et al., 

2000). CAPS has also been implicated to play a role in priming. Deletion of CAPS in 

mouse chromaffin cells resulted in reduction in the amount of exocytosis (Speese et al., 

2007; Liu et al., 2010). Finally, there are other proteins like PKA and PKC that helps in 

the process of priming. High levels of PKA enhances the secretion in neurons as well 

as in chromaffin cells as it phosphorylates SNAP25 that in turn helps to maintain the 

size of SRP and RRP (Trudeau et al., 1996; Nagy et al., 2004). Also, PKC has been 

shown in chromaffin cells to play a role in replenishment of the releasable pools 

thereby making the vesicles available for priming (Gillis et al., 1996, Smith et al., 1998). 

 

Fusion: Fusion is the final step in regulated secretory pathway. As soon as the 

intracellular Ca2+ level increases due to the entry of Ca2+ through voltage dependent 

Ca2+ channels, primed vesicles fuse with the PM. The major molecular determinants for 

fusion are Syts. Syt1 and Syt7 are the two Ca2+ sensors known to exist in chromaffin 

cells. Syt1 is present on the vesicle membrane and possess two C2 domains, C2A and 

C2B that bind three and two Ca2+ ions respectively (Sutton et al., 1995; Fernandez et 

al., 2001). Studies have shown that mutants of Syt1 that either lack or gain the affinity 

for Ca2+ resulted in changes in the release of vesicles, which suggested that Syt1 is a 

Ca2+ sensor for release (Fernández-Chacón et al., 2001; Rhee et al., 2005). Schonn et 

al., (2008) have shown that Syt1 and Syt7 share the function of Ca2+ sensing in mouse 

chromaffin cells suggesting Syt1 as a fast Ca2+ sensor responsible for the release of 

RRP whereas Syt7 as a slow Ca2+ sensor responsible for the sustained component. 

Recently, Complexins have also been implicated in enhancing the synchronous release 

by increasing the affinity for Ca2+ in mouse chromaffin cells (Dhara et al., 2014). They 

have shown that the N-terminal domain of Complexin II decreases the secretory delay 

and enhances the kinetics of Ca2+ dependent exocytosis by interacting with Syt1. 

 

1.4.1 VESICLE DOCKING AND PROTEINS INVOLVED 
 

Docking is considered the first transitional maturation step before LDCVs gain fusion-

competence and release their neurotransmitters. It is the step, which is the least 

understood in comparison to priming and fusion and is subject of some controversies. 
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“Docked vesicle”, this term has been defined originally using electron microscopy, as 

those vesicles been in close contact with the PM. Currently, there are different criteria 

used to define docked vesicles; vesicles lying close to the PM at a distance <30 nm or 

vesicles having a “contact patch” with the PM are considered docked (Verhage and 

Sorensen, 2008). Several studies using evanescent-wave fluorescence microscopy 

suggest that there is a dramatic reduction in LDCV mobility upon reaching the PM, 

presumably reflecting a docking interaction (Robinson and Martin, 1998; Nofal et al., 

2007; Pasche et al., 2012). Vesicles docking can be explained in two ways. 

Morphological docking occurs when vesicles visualized by electron microscopy appear 

to interact with the plasma membrane (Plattner et al., 1997; Steyer et al., 1997). 

Alternatively, a vesicle is defined as biochemically docked when a protein connection is 

established between the two merging membranes (Martin and Kowalchyk, 1997).  

 

Several proteins like Munc18, t-SNAREs, Syt1, and other regulatory proteins have 

been shown to regulate targeting and docking of vesicles in chromaffin cells. Voets et 

al., (2001) revealed that Munc18-1 deficient chromaffin cells had a tenfold reduction of 

“morphologically” docked LDCVs through the ultrastructural analysis of LDCV 

distribution. Also, Munc18-1 expression level was proportional to the degree of LDCV 

docking in a gene-dose dependent manner (Toonen et al., 2006; Gulyás-Kovács et al., 

2007). t-SNARE proteins like Stx1 and SNAP25 have also been shown to play a role in 

docking, since their deletion resulted in reduced number of morphologically docked 

vesicles (de Wit et al., 2006). N-terminal part of Syb-2 has been proposed to be 

involved in LDCV docking in PC12 cells as well as in synaptic vesicle docking in 

hippocampal neurons (Wu et al., 2012, Imig et al., 2014). More recently, Syt1 has been 

identified as a docking factor in chromaffin cells as deficiency of Syt1 resulted in a 

decrease of docked vesicle number. In addition, several other proteins have also been 

associated in docking in different secretory cells, such as Rab27, Rabphilin 3A, 

Granuphilin, and Exophilin4/Slp2a. But these proteins are not essential for LDCV 

docking in chromaffin cells (Ashery et al., 2000; van Weering et al., 2007).  

 

Productive (functional) and unproductive (non-functional or “dead-end”) 

docking 
 

One molecule of SNAP25 interacts with one molecule of Stx1 to form 1:1 t-SNARE 

acceptor complexes (fig. 6), to which one molecule of Syb-2 binds resulting in a 

functional or productive priming complex ultimately allowing fusion of the bound 

vesicle. Additionally, in-vitro experiments performed to study the interaction between 

different SNARE proteins revealed the formation of usual as well as an unusual            

t-SNARE complexes between Stx1 and SNAP25 (Bajohrs et al., 2004). 
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Figure 6: Docking proteins 
and their interaction steps 

leading to priming and fusion. 
Model shows potential 
subsequent steps in the 
exocytosis pathway, starting 
with several initial protein 
complexes consisting of Stx1 
(red), SNAP25 (green), Syt1 
(yellow), and/or Munc18-1 
(blue). This model illustrates a 
functional mechanism leading to 

fusion of vesicle. From de Wit et 
al., 2009. 

 

 

The usual binary complex is formed in 1:1 stoichiometry whereas the unusual tertiary 

complex is formed in a 2:1 stoichiometry between 2 Stx1 molecules binding 1 SNAP25 

molecule. The binding of an additional Stx1 molecule to SNAP25 molecule results in 

the unavailability of the binding site for Syb-2 on SNAP25, ultimately leading to a so 

called dead-end interaction or unproductive SNARE acceptor complex. It was 

hypothesized that in live cells it produces a dead-end docking which is not followed by 

priming and fusion (fig. 7, Verhage and Sørensen, 2008). These dead-end complexes 

are not as stable as the ternary SNARE complexes but these dead-end complexes 

dissociate very slowly, hence they represent kinetically trapped dead-end vesicles or 

liposomes that might require special chaperones for their disassembly, if formed in vivo 

(Weninger et al., 2008).  

 

 

 

Figure 7: Model for 

dead-end docking. Two 
Stx-1 molecules interact 
with one SNAP-25 
molecule. This complex 
has a relatively slow 
dissociating stoichiometry 
resulting in the inhibition 
of priming and fusion of 
the vesicle. Modified from 
de Wit et al., 2009. 

 

 

Previously the existence of dead-end complex was only shown by in-vitro experiments, 

but our group showed in bovine chromaffin cells (Hugo et al., 2013) that the 2:1 

unproductive SNARE acceptor complex is formed in living cells, and that it leads dead-

end docking.  

 
 

1.5 ENDOCYTOSIS AND RECYCLING OF PROTEINS INVOLVED 

IN EXOCYTOSIS 
 

In neuroendocrine cells and neurons, the transmitter release results in an increase in 

the surface area of PM, aggregation of vesicular proteins at the site of fusion as well as 
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exhaustion of the availability of release ready vesicles. To compensate these changes, 

vesicle membrane and proteins are removed from the PM by endocytosis (fig. 8).  

 

Figure 8: Models of synaptic vesicle recycling: (A) The kiss-and –run model. Vesicles transiently fuse with 
the plasma membrane. After the neurotransmitter release, the fusion pore is closed and the vesicles are 
recovered. (B) The clathrin-mediated endocytosis model. A synaptic vesicle fuses and collapses into the 
membrane. A new vesicle is formed in a region distant from the fusion site. (C) A new model of synaptic 
vesicle recycling. After a rapid internalization of the membrane via ultrafast endocytosis, the vesicle membrane 
is delivered to an endosome. Clathrin-mediated regeneration of synaptic vesicles occurs at the endosome. 
From Watanabe, 2017. 

 

Ceccarelli et al (1972) showed that in frog neuromuscular junction within 4 h of 

stimulation, almost 45% of fused vesicles were already endocytosed for the next round 

of exocytosis. Characterization studies from Philips et al., (1983) and Murthy and De 

Camilli, (2003) have shown that endocytosis seems to be a clathrin-mediated 

phenomenon. Similarly, it was also shown previously that clathrin-mediated 

endocytosis is the process undertaken by synaptic vesicles to recycle in nerve 

terminals as well as neuroendocrine cells (Heuser and Reese, 1973; Gad et al., 1998; 

Teng and Wilkinson, 2005, Bittner et al., 2013). Clathrin and other accessory proteins 

play a major role in internalization of different proteins. They also provide a driving 

force for invagination of membrane, after which the GTPase dependent protein 

Dynamin comes into play. It forms a ring surrounding the neck of the invagination, and 

catalyze the fission of clathrin-coated vesicles (Murthy and De Camilli, 2003). This 

process is then followed by uncoating of clathrin and the resulting vesicles fuse with 

early endosomes, ultimately leading to the beginning of a new synaptic vesicle cycle 

(Murthy and De Camilli, 2003). Another mode of endocytosis is “kiss-and-run”. In this 

process vesicles are temporarily attached to the PM but vesicle membrane proteins do 

not mix with the PM components. In its place, the vesicle is recaptured by a rapid 

endocytic process and then again it is refilled with the neurotransmitters for next round 

of exocytosis. This process had a big advantage over the clathrin-mediated 

endocytosis because it does not require the total uptake of the vesicle membrane. This 

process is very rapid in comparison to clathrin-mediated endocytosis because it does 

not involve coating, fusion, and budding of vesicles from the endosomes (Palfrey and 

Artalejo, 1998). However, the “kiss-and-run” and ultrafast endocytosis are not 

advantageous for neuroendocrine cells because in neuroendocrine cells the LDCVs not 

only contain hormones but also neuropeptides and these neuropeptides are filled in 
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LDCVs at the Golgi apparatus. So, for the next round of exocytosis vesicle has to reach 

the Golgi to refill its cargo. 

 

Previous studies have also shown that two independent modes of endocytosis exist in 

bovine adrenal chromaffin cells, compensatory and excess retrieval which are Ca2+ 

regulated (Smith and Neher, 1997; Engisch and Nowycky, 1998; Chan and Smith, 

2001). Other than these two mechanisms, there is also another relatively rapid process 

of endocytosis that retrieves large portion of membrane within seconds and accounts 

for the retrieval of 60% of exocytosed membrane (Smith and Neher, 1997). Also, many 

proteins have been implicated to play a role in the process of endocytosis in neurons 

and neuroendocrine cells namely; Calcineurin (CaN), Calmodulin (CaM), 

Synaprotagmin1 (Syt1), Synaptophysin1 (Syp1) as well as L-type Ca2+channels 

(Mahapatra et al., 2012; Rosa et al., 2012; Wu et al., 2014; Wu et al., 2014; Rajappa et 

al., 2016).  

 

Despite the numerous studies on endocytosis and related mechanisms, exactly how 

the recycling pathway works in neuroendocrine cells and which endosomal 

compartments are involved in this phenomenon is still not well investigated. 
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2. AIM 

LDCVs in chromaffin cells share features of its life cycle with synaptic vesicles. They 

contain epinephrine and norepinephrine, peptides like NPY, other natriuretic peptides, 

as well as core proteins like Chromogranin A (CgA), Chromogranin B (CgB), and 

Secretogranins (Sgs). When chromaffin cells receive stimulation from splanchnic 

nerve, LDCVs are released through regulated exocytosis. However, before the LDCVs 

become release ready, they have to reach the PM. Biogenesis of LDCVs involves 

different steps. First the secretory proteins, peptidergic hormones, and neuropeptides 

are made and are condensed in the TGN where the immature secretory vesicles 

containing the manufactured cargo are generated. While travelling towards the PM, 

these immature vesicles are filled with catecholamines and further gain maturity. This 

pathway of LDCV biogenesis has been studied by several groups in PC12 cells and to 

some extent in bovine chromaffin cells. However, biogenesis of LDCVs in mouse 

chromaffin cells has not been investigated in detail. To gain more insights into this 

aspect of LDCVs, the objective of my work was to study their biogenesis, when and 

where the content is packed in LDCVs, when they get associated with the vesicular 

membrane proteins and how these are recycled in mouse chromaffin cells.  

 

Regulated exocytosis has been studied widely using chromaffin cells. It includes 

several steps like tethering, docking, priming, and finally the release of LDCVs upon 

elevation in the Ca2+ concentration. Docking is the least understood step. It occurs 

when t-SNAREs, SNAP25 and Stx1 form a 1:1 productive t-SNARE complex and 

interact with vesicular protein Syt1 (de Wit et al., 2009). Munc18 stabilizes this complex 

allowing priming and fusion of the LDCVs. However, another docking mechanism 

called “dead-end” docking occurs in bovine chromaffin cells (Hugo et al., 2013) 

involving the unproductive t-SNARE complex formed by interaction of 2 molecules of 

Stx1 and 1 molecule of SNAP25 that renders fusion incompetent vesicles docked at 

this complex. They showed that 15% of LDCVs at the PM are dead-end vesicles and 

their number is modulated by the overexpression of t-SNAREs as well as Munc18. 

However, the identity of the vesicular protein that interacts with the unproductive t-

SNARE complex and mediate dead-end docking is unknown. Hence, another important 

aim of my work was to study the mechanisms of dead-end docking in mouse 

chromaffin cells to identify the vesicular protein that interacts with the unproductive t-

SNARE acceptor complex and mediate dead-end docking. 
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3. Materials and methods 

3.1 Materials 

3.1.1  Reagents 
 

Name Company 

Agarose Carl Roth GmbH 

Albumin   Sigma 

Calcium chloride dihydrate Merck KGaA 

Collagen BD Biosciences 

Disodium hydrogen phosphate dihydrate Merck KGaA 

DMEM Gibco by Life Technologies 

DMSO Sigma 

DPBS Gibco by Life Technologies 

EDTA  Sigma 

Ethanol     Roth 

FCS       Invitrogen 

Glucose monohydrate                                                         Merck KGaA 

Glycin                                                                 Roth 

HEPES  Sigma 

HPLC water Sigma 

HCl  Roth 

ITS – X Gibco by Life Technologies 

KCl Merck KGaA 

L – cysteine Sigma 

Magnesium chloride hexahydrate                                  Merck KGaA     

Neural goat serum                                               Invitrogen 

Paraformaldehyde    Merck KGaA 

Pen/Strep                                                                       Invitrogen 

Sapphire discs Leica 

Sodium chloride                                                             Merck KGaA 

Sodium dihydrogen phosphate monohydrate             Merck KGaA 

Sodium hydroxide  Sigma-Aldrich 

Tris                                                                                Roth 

Triton-X-100                                                                  Roth 

Trypsin inhibitor                                                            Sigma 

Uranyl acetate Science Services 
                                                                  

3.1.2 Enzymes  
Name Company 

Papain Worthington Biochemical Corp. 
          

3.1.3      Antibodies 
Name Company Dilution used 

Anti-CgA (goat anti – rabbit)  Abcam 1:1000 

Anti-Ceb (goat anti – rabbit)            Synaptic Systems 1:1000 

Anti-GM130 (rat anti – mouse)                    BD Biosciences 1:100 

Anti-Syb-2 (monoclonal anti – mouse)  Synaptic Systems 1:100 

Anti-Syt1 (rabbit anti – mouse) Synaptic Systems 1:2000 

Anti-Rab11A (rabbit monoclonal anti - 
human 

Abcam 1:100 

Anti-LAMP1 (monoclonal anti - 
mouse) 

Developmental studies 
hybridoma bank 

1:500 
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Anti–TGN38 (rabbit anti – rat) AbD Serotec 1:200 

Anti-SNAP25 (rabbit anti - human) GenScript 1:500 

Anti-Stx1 (monoclonal anti-mouse) HPC/1 mouse ascites, 
from Prof. Jahn, Max-
Planck-Institut für 
biophysikalische Chemie, 
Göttingen, Germany 

1:500 

Affinity Fab fragments Biomol 1:50 

Alexa 647 Phalloidin                                                Life Technologies 2.5% 

Alexa 488 Phalloidin                                                         Life Technologies 2.5% 

Alexa Fluor 488 goat anti–mouse IgG 
(H+L)             

Life Technologies 1:2000 

Alexa Fluor 488 goat anti–rabbit IgG 
(H+L)               

Life Technologies 1:2000 

Alexa Fluor 647 goat anti–rabbit IgG 
(H+L)               

Life Technologies 1:2000 

Alexa Fluor 647 goat anti–mouse IgG 
(H+L)                       

Life Technologies 1:2000 

 

3.1. 4 Solutions 
 

3.1.4.1 General solutions 
 

1. PBS 
 

Composition Amount 

Na2HPO4. H2O 58 mM 

NaH2PO4. 2H2O 17 mM 

NaCl 83 mM 

pH   7.4 

Osmolarity 310 – 320 mOsm 

Dissolve the contents in 500 mL of distilled water. Adjust the pH to 7.4 with 1N 
NaOH. Make up the volume to 1000 mL and measure the osmolarity. 

 

 
3.1.4.2 Solutions for Chromaffin cell preparation 

 

1. Locke’s solution 
 

Composition Amount 

NaCl 154 mM 

KCl 5.6 mM 

Na2HPO4. H2O 2.15 mM 

NaH2PO4. 2H2O 0.85 mM 

Glucose 10 mM 

pH   7.4 

Osmolarity 312 mOsm 
 

2. Papain solution 
 

Composition Amount 

DMEM 50 mL 

L – Cysteine 10 mg (to activate papain) 

100 mM CaCl2 0.5 mL 

50 mM EDTA 0.5 mL (to activate papain) 

Freezed in the form of 2 and 3 mL aliquots. After thawing:  20 Units of papain to be 
added per mL of this solution and bubbled with carbogen for 20 min. 
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3. Inactivation solution 
 

Composition Amount 

DMEM 50 mL 

FCS 5 mL 

Albumin 125 mg 

Trypsin inhibitor 125 mg 

Freezed in the form of 2 and 3 mL aliquots. 
 

 
4.    Cell culture medium 
 

Composition Amount 

DMEM 40 mL 

ITS – X   400 µL 

Pen/Strep 160 µL 

After mixing all the components incubate at 37°C with 13% CO2. 
 

 
3.1.4.3 Solutions for Immunocytochemistry 

 
1. Fixation solution: 15% PFA 
 

Composition Amount 

Paraformaldehyde 3 g 

Distilled H2O 20 mL 

1N NaOH 20 µL 

pH   7.4 

Heat the distilled water to 60°C and add paraformaldehyde to it. Mix immediately 
well. Add NaOH and mix well. Keep the solution on magnetic stirrer at 60°C and 
allow the solution to become clear. Filter the solution and check the pH. When 
required dilute the solution to 4% and use. 

 

 

2.    Quenching solution 
 

Composition Amount 

Glycin 50 mM 

PBS 50 mL 

1M MgCl2 100 µL 

1M CaCl2 25 µL 
 

 

3.    Permeabilization solution 
 

Composition Amount 

PBS 50 mL 

NGS 1.25 mL (2.5%) 

Triton – X – 100 50 µL (0.1%) 

1M MgCl2 100 µL 

1M CaCl2 25 µL 
 

 

4.    Blocking solution 
 

Composition Amount 

PBS   50 mL 

NGS   1.25 mL (2.5%) 

1M MgCl2 100 µL 

1M CaCl2 25 µL 
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5.    Mounting medium 
 

Composition Amount 

Mowiol 4 – 88 2.4 g 

Glycerol   6.0 g 

Tris – buffer   12 mL 

Distilled H2O 6.0 mL 
 

 

3.1.4.4   Solutions for Electrophysiology 
 

 

1. Intracellular solution: 6 µM Ca2+ solution 
 

Composition Amount 

L-Glutamic acid 110 mM 

H-EDTA 9 mM 

CaCl2 5 mM 

HEPES 40 mM 

Mg-ATP 2 mM 

Na2-GTP 0.3 mM 

HPLC-H2O  20 mL 

pH   7.2 

Osmolarity 297 mOsm 

Dissolve components from 1 to 4 in 14 mL HPLC-H2O and adjust the pH to 7.2 with 
50% CsOH. Then add nucleotides and adjust pH to 7.2 with 10% CsOH and make 
up the total volume to 20 L with HPLC-H2O. Measure the osmolarity. 

 

 

2.  Extracellular solution (10X) 
 

Composition Amount 

NaCl 1520 mM 

KCl 24 mM 

HEPES   100 mM 

MgCl2. 6H2O 12 mM 

CaCl2. 2H2O 25 mM 

pH   7.4 

Osmolarity 310 (1:10) 

Dissolve all the components in 1000 mL of distilled water. Adjust the pH to 7.4 with 
1N NaOH and measure the osmolarity. When required to use, add 10 mM Glucose 
monohydrate to the solution. Measure the osmolarity of the solution. 

 

 

3.2 Methods 
 

3.2.1 Mouse chromaffin cell preparation 
 

In the case of WT, Syt7 KO, and Ceb KO newborn pups age p3 were used, but due to 

the lethal phenotype of Syt1 KO and Syb-2 KO, E18 pups were used. The head of the 

pup was decapitated with a scissor. The pup was dissected under the microscope and 

adrenal glands were carefully removed with forceps and placed in cold Locke’s 

solution. The adrenal glands were cleaned to eliminate the fat with the forceps and 

small scissor. To prepare one 6 well plate adrenal gland from two pups were pooled. 

Adrenal glands were placed in a falcon tube containing 500 µL of papain solution 

(20 U/mL) and digested in shaking water bath at 37°C for 21 min (E18 – 18 min.). The 

enzyme solution was removed after digestion and 500 µL of inactivation solution was 
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added to the glands and incubated in shaking water bath at 37°C for 4 min. The 

inactivation solution was removed and 500 µL of culture medium was added to the 

glands. They were then triturated with 200 µL pipette tip until the tissue was completely 

dissociated. Then the cells were subjected to the electroporation procedure. 

 

3.2.2 Electroporation of mouse chromaffin cells 
 

In our experiments, the transfection efficiency of chromaffin cells was ≈18-20% with 

reasonable cell viability. After the tissue was completely dissociated, the cells were 

transferred to an eppendorf tube and centrifuged at 4000 rpm for 5 min. After 

centrifugation, the culture medium was removed and 500 µL of DPBS was added. Cells 

were again centrifuged at 4000 rpm for 5 min. Neon transfection system was used for 

electroporation of mouse chromaffin cells. 20 µL of R buffer was added and 4 µg of 

plasmid (pmax-NPY-mCherry) was added to the cells. Solution was mixed well and 

10 µL cell solution was used in electroporation (1 pulse of 1400 V with 30 ms pulse 

width). In the overexpression experiments, cells were double transfected with pmax-

NPY-mCherry and Lenti-pSyn-pH-Syt7 constructs. 4 µg total of both plasmids was 

used and procedure was same as before. 

 

3.2.3 Immunocytochemistry 
 

Mouse chromaffin cells were cultured 2 DIV or the indicated time before experiments. 

The culture medium was removed and the cells were washed twice with PBS 

containing Mg2+ and Ca2+. Cells were fixed with 4% PFA for 20 min at room 

temperature. After fixation cells were washed thrice with PBS every 3 min. Then 

quenching was done with 50 mM Glycine for 10 min, and washed thrice with PBS. 

Cells were permeabilized with 0.1 % Triton X–100 solution for 30 min, after which they 

were subjected to blocking by washing twice with 2.5% NGS solution. During the 

incubation time of permeabilization step, primary antibodies were diluted with blocking 

solution as required (Table 1). After blocking, 100 µL of primary antibody solution was 

placed on a parafilm and covered by the coverslips placed upside down. The 

incubation time was 1 h at room temperature in a wet chamber so as to prevent the 

drying of antibody solution. During this incubation, the secondary antibody was diluted 

with blocking solution, typically with a factor 1:2000. The secondary antibody solution 

was subjected to centrifugation for 10 min at 13000 rpm at 4°C to spin down the highly 

fluorescent particles in secondary antibody solution that creates background problems 

during imaging. After incubation, the cells were washed thrice with Triton–X–100 

solution. Then cells were incubated with secondary antibody for 45 min in dark at room 

temperature in wet chamber. Subsequently, the cells were washed 5 times with Triton–

X–100 solution and 2 times with PBS solution. The coverslips were then mounted 

upside down on the microscopic slides with 20 µL mounting medium per coverslip and 

allowed to dry at 37°C for 15 min. Lastly, the edges of coverslips were sealed with nail 

polish to avoid further drying. Dilutions of the antibodies are mentioned previously. 
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In the case of double immunolabeling with antibodies raised in the same species, first 

the above-mentioned protocol was followed upto the step of washing with PBS. Then 

cells were incubated in 2.5% NGS/PBS for 1 h at room temperature. Cells were 

washed thrice for 5 min each with PBS and then incubated with Fab fragments raised 

against immunoglobulins of the same type and species as the primary antibody for 1 h 

at room temperature followed by washing thrice for 10 minutes each with PBS. Cells 

were then immunolabeled for the second protein using the previously mentioned 

protocol with a secondary antibody tagged to a different fluorophore. Then coverslips 

were mounted as mentioned previously. Imaging was done by high resolution 

microscopic technique “Structured Illumination Microscopy”.  

 

3.2.4 Structured Illumination Microscopy (SIM) 
 

SIM is based on laser-wide-field microscopy. It contains a movable grating in the 

excitation beam path. When laser passes through this grating, it generates a stripe like 

pattern which is applied to the sample. The diffraction-limited borders of this so called 

Moiŕe pattern, contain structural information about the sample that cannot be resolved 

by conventional light microscopy. By shifting and rotating the grating, one generate a 

raw image stack, that is then processed vis Fourier transformation, allowing the 

extraction of diffraction-limited structural information. The result is a highly-resolved 

image, with a resolution limit of 100 nm in XY axis and 200-250 nm in Z axis 

(http://www.andor.com/learning-academy/super-resolution-imaging-structured-illuminat-

ion-microscopy-application-note; Bost et al., 2013). 

 

In this study, the SIM setup used was from Carl Zeiss Microscopy GmbH. The objective 

used was plan – apochromat 63X/1.4 NA oil (DIC), the laser lines used were 488 nm, 

561 nm and 647 nm and the images were acquired through Andor iXon EM-CCD 

camera at 100 ms of exposure time. Zen (black edition) software with SIM module was 

used for acquiring and processing the images. 

 

Analysis of SIM Images 
 

The analysis of the distribution of LDCVs in reference to plasma membrane and Golgi 

apparatus was done by using an in-house written software based of Labview 

(developed by Detlef Hof, Hugo et al 2013), called EasyCell. The plasma membrane, 

Golgi apparatus and the LDCVs were marked manually using EasyCell and then this 

software calculated the shortest possible distance between the center of the LDCVs to 

the plasma membrane and Golgi apparatus (fig. 9). The numbers were then transferred 

to IgorPro software to generate the histograms. All the images displayed were 

processed by ImageJ 1.47f software. The colocalization analysis was done by using 

Pearson’s and Mander’s colocalization coefficients from the JACoP plugin in ImageJ 

1.47f software (http://imagej.nih.gov/ij/) and the numbers were then transferred to 

IgorPro to generate the graphs. Pearson’s coefficient is based on the linear relationship 

between the intensities in two channels and is estimated by linear regression. 

Pearson’s coefficient value ranges from -1 to +1, where -1 shows complete negative 



34 

 

correlation and +1 shows complete positive correlation. Mander’s coefficients 

measures the co-existence of structures independent of the signal intensities. It 

requires the thresholding of the images so as to differentiate signal from noise (Bolte 

and Cordelières, 2006; Dunn et al., 2011). 
 

 

Figure 9: Method of analysis. 
Graphical representation of the method 

used to analyse the distance from 
vesicles to the PM and the Golgi 
apparatus. 

 

 

 

3.2.5 Correlative fluorescence electron microscopy (CLEM) 
 

This experiment was done in collaboration with Dr. Claudia Schirra in our lab. For the 

sample preparation, acutely dissociated chromaffin cells transfected with NPY-mCherry 

were plated on collagen coated sapphire discs (Leica) in 4-well plates. They remained 

48 h in culture before fixation to allow good adhesion to the substrate. Then the 

sapphire discs with cultured cells were transferred into flat specimen carriers and 

frozen at high pressure after addition of DMEM-medium with 30% FCS (Leica; EM 

PACT2). Freeze substitution and embedding in Lowicryl was done as described 

previously (Matti et al., 2013). Briefly, all samples were processed in an automatic 

freeze-substitution apparatus (Leica; AFS2). The temperature was increased from -130 

to -90°C for 2 h. Cryosubstitution was performed at -90 to -70 °C for 20 h in anhydrous 

acetone and at -70 to -60°C for 20 h with 0.3% (w/v) uranyl acetate in anhydrous 

acetone. At -60 °C the samples were infiltrated with increased concentrations (30, 60 

and 100%; 1 h each) of Lowicryl (3:1 K11M/HM20 mixture with 0.3% uranyl acetate). 

After 5 h of 100% Lowicryl infiltration, samples were UV polymerized at -60°C for 24 h 

and for an additional 15 h while raising the temperature linearly to 5°C. Until further 

processing the samples were kept in the dark at 4°C. After removing the sapphire 

discs, 100 nm ultrathin sections were cut parallel to the surface using a Leica EM UC7. 

The sections were collected on carbon-coated 200 mesh copper grids (Plano). 

Fluorescence analysis of EM grids was done within 1 day after sectioning, to avoid loss 

of fluorescence in the sections. Prior to SIM imaging, 100 nm resin sections were 

stained in a drop of CellMask deep red (Invitrogen) (1/500 in PBS) for 10 min, and 

washed in a drop of water for 1 min. Grids were then placed in a drop of water between 

two coverslips which were sealed with vacuum grease (Kukulski et al., 2012). Sections 

were imaged using SIM (Elyra PS.1 Zeiss, Göttingen, Germany) with excitation light of 
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561 nm and 642 nm. Nearly one entire field of view of a 200 mesh grid (around 90 µm2) 

can be observed with a 63X objective, allowing a perfect orientation of the sample 

relative to the grid bars in bright field mode. Then the probe was screened using the 

CellMask deep red (642 nm) staining because it allows to find good chromaffin cells 

and to focus on the perfect image plane without bleaching the probes. Then a z-stack 

of 3-8 images (561 nm) was recorded with a step interval of 100 nm. Zen 2010 

software was used for data acquisition and processing of the images for higher 

resolution. The very same grids were stained with uranyl acetate and lead citrate and 

analyzed with a Philips Tecnai12 Biotwin electron microscope. Only chromaffin cells 

with well conserved membranes, LDCVs and nuclei were analyzed and used for 

correlation. For data interpretation, it is important to perfectly align the mCherry SIM 

image within the electron micrograph. CellMask deep red stains the membranes of the 

cells in the resin section, the 642 nm image was used to find the perfect overlay on the 

electron micrograph image. The final alignment with the 561 nm image defines the 

position of the fluorescent signal within the cells of interest. Images were overlaid in 

Corel Draw. 

 

3.2.6 Electrophysiological measurements by Patch-clamp technique 
 

Patch-clamp technique (fig. 10) has been 

extensively used to study the secretion 

from neuroendocrine cells via membrane 

capacitance measurements (Lindau and 

Neher, 1988; Penner and Neher, 1989). 

The method is based on the principle that 

the relation between plasma membrane 

capacitance and membrane area is directly 

proportional to each other (10 fF/µm2). 

Therefore, when exocytosis occurs, 

leading to an increase in membrane area, 

we can measure the changes in the 

capacitance (Kilic G., 2002).   

 

In my work, I performed conventional 

whole cell recordings using 3-5 MΩ 

borosilicate pipettes (GB150F-8P, Science 

products, Germany) filled with 3 µL of 

intracellular solution containing 6 µM free 

Calcium. Capacitance measurements were performed using EPC-9 patch-clamp 

amplifier. The Lindau-Neher technique was implemented as “sine+dc” mode of the 

“software lock-in” extension of Pulse software. 1 kHz, 70 mV peak-to-peak sinusoid 

command potential stimulus was applied to at a DC holding potential of -70 mV. Cells 

were stimulated by perfusing 6 µM free Calcium for 5 min. Simultaneously to the whole 

cell capacitance measurements, TIRF measurements were also performed. 

 
 

Figure 10: General principle of patch-clamp 
recordings. A glass pipette containing electrolyte 
solution is tightly sealed onto the cell membrane 
and thus isolates a membrane patch electrically. 
Currents fluxing through the channels in this patch 
flow into the pipette and can be recorded by an 
electrode that is connected to a highly sensitive 
differential amplifier. In the voltage-clamp 

configuration, a current is injected into the cell via 
a negative feedback loop to compensate changes 
in membrane potential. Recording this current 
allows conclusions about the membrane 
conductance. From: http://www.leica-
microsystems.com/science-lab/the-patch-clamp-
technique/. 
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3.2.7 Measurement of single vesicle exocytosis by TIRFM 
 

TIRFM involves the generation of an electromagnetic field, called the “evanescent 

wave”, that is produced in a confined specimen region immediately adjacent to the 

interface between two media with different refractive indices. The evanescent wave is 

capable of selectively exciting the fluorescent molecules in the liquid near the interface 

within 100 nm (Axelrod, 2001). Contact area between the specimen and a glass 

coverslip is the most commonly used interface in TIRFM. Total internal reflection 

happens when light is travelling through two clear media with different refractive 

indices. Light is partially diffracted and partially reflected. At one angle the light gets 

completely reflected. This angle is called a critical angle. Total internal reflection takes 

place at that time. The evanescent wave intensity decreases exponentially as the 

distance from the interface increases. Therefore, the field of evanescent wave extends 

to only few hundred nanometers in the z-axis into the specimen. This property of 

evanescent wave allows the analysis of single vesicle secretion at the PM.  

(https://www.microscopyu.com/techniques/fluorescence/total-internal-reflection-

fluorescence-tirf-microscopy).  

 

 

Figure 11: Principle of TIRFM. Total 
internal reflection occurs when the light 
travels from a medium with a higher 
refractive index (n) (e.g. glass coverslip, n = 

1.52) to a medium with a lower refractive 
index (e.g. aqueous medium, n = 1.33). The 
critical angle (Θc) of incident light, can be 
determined by Snell’s law:  
Θc = sin-1(n1/n2) where, n1 and n2 are the 
refractive indices of the specimen and the 
coverslip, respectively. (from 
http://www.leica-microsystems.com/science-
lab/total-internal-reflection-fluorescence-tirf-
microscopy/) 

 

 

In my study, the experiments were done using a TIRF setup based on inverted Zeiss 

Axiovert 200 with a Zeiss TIRF-slider and a solid-state laser system emitting at 561 nm. 

The setup was equipped with an Andor iXon EMCCD camera and controlled by in-

house software based on Lab View. Final pixel size was 160 nm. The acquisition rate 

was 10 Hz with an exposure time of 75 ms. 
 

Analysis and normalization of TIRF data: 

Analysis and normalization was as mentioned in Hugo et al., (2013). For normalization 

values were first normalized to the individual footprint area of the cell which showed the 

density of vesicles per m2. The resulting values were then multiplied by the average 

footprint area to get better understanding of the data. 
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3.2.8 Genotyping 
 

In this study, genotyping of different mice was determined using KAPA Mouse 

Genotyping Hot Start Kit from Peqlab. KAPA mouse genotyping kits include KAPA 

Express Extract, a novel thermostable protease and buffer system that allows for the 

extraction of PCR-ready DNA from mouse tissue in as little as 15 min, and KAPA2G 

Fast Genotyping Mix with dye, containing a DNA polymerase engineered via directed 

evolution of high processivity and extreme speed. The combination of KAPA Express 

Extract and KAPA2G Fast Genotyping Mix allows for the reliable extraction and 

amplification of DNA fragments from mouse tissue in as little as 1 hour, as compared to 

≥1 day with conventional protocols. 
 
 

1. Digestion of tail sample 
 

100 L of Kapa lysis buffer (mixture of Kapa express extract enzyme, Kapa express 

extract buffer, and sigma water) was added to each sample. Eppendorfs were placed in 

a thermo mixer at 75⁰C and 1100 rpm for 15 min. Then eppendorfs were continuously 

placed in thermo mixer at 95⁰C for 12 min at 1000 rpm.  
 

Mastermix 
 

For Syb-2; 
 

For wildtype For knockout 

DNA 6.0 µL DNA 6.0 µL 

H2O 19.0 µL H2O 19.0 µL 

10x PCR Buffer 3.0 µL 10x PCR buffer 3.0 µL 

MgCl2 0.5 µL MgCl2 0.5 µL 

Primer1 (forward 1:1) 0.5 µL Primer1 (forward 1:1) 0.5 µL 

Primer2 (reverse 1:1) 0.5 µL Primer2 (reverse 1:1) 0.5 µL 

dNTP’s 0.5 µL dNTP’s 0.5 µL 

RedTag polymerase 3.0 µL RedTag polymerase 3.0 µL 
 

 

For Syt1 and Syt7; 
 

For wildtype For knockout 

DNA 1.0 µL DNA 1.0 µL 

Primer1 (forward) 0.5 µL Primer1 (forward) 0.5 µL 

Primer2 (reverse) 0.5 µL Primer2 (reverse) 0.5 µL 

H2O 10.5 µL H2O 10.5 µL 

Kapa mix 12.5 µL Kapa mix 12.5 µL 
 

 

For Ceb; 
 

For wildtype For knockout 

DNA 2.0 µL DNA 2.0 µL 

H2O 13.25 µL H2O 13.25 µL 

MgCl2 0.5 µL MgCl2 0.5 µL 

DMSO 1.25 µL DMSO 1.25 µL 

Primer1 (forward) 1.25 µL Primer1 (forward) 1.25 µL 

Primer2 (reverse) 1.25 µL Primer2 (reverse) 1.25 µL 

Kapa mix 6.25 µL Kapa mix 6.25 µL 
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2. PCR protocol for Syt1, Syt7, Syb-2, and Ceb mice 
 

PCR protocol for Syt1 and Syt7 were identical: 
 

      For Wildtype: 
Lid               99⁰C 
1. T      =   95⁰C for 3 min 
2. T      =   95⁰C for 15 s 
3. T      =   59⁰C for 11 s 
4. T      =   72⁰C for 11 s 
5. Go to 2 and repeat 31 times 
6. T      =   72⁰C for 2 min 
 7.   Hold at 4⁰C 

      For Knockout: 
Lid               99⁰C 

      1.   T      =   95⁰C for 3 min 
      2.   T      =   95⁰C for 15 s 
      3.   T      =   59⁰C for 13 s 
      4.   T      =   72⁰C for 13 s 
      5.   Go to 2 and repeat 31 times 
      6.   T      =   72⁰C for 2 min 
      7.   Hold at 4⁰C 

 

PCR protocol for Syb-2: 
 

      For Wildtype: 
Lid               99⁰C 
1. T      =   95⁰C for 5 min 
2. T      =   95⁰C for 50 s 
3. T      =   55⁰C for 45 s 
4. T      =   65⁰C for 90 s 
5. Go to 2 and repeat 35 times 
6. T      =   65⁰C for 10 min 
 7.   Hold at 4⁰C 

      For Knockout: 
Lid               99⁰C 

      1.   T      =   95⁰C for 5 min 
      2.   T      =   95⁰C for 30 s 
      3.   T      =   60⁰C for 30 s 
      4.   T      =   72⁰C for 120 s 
      5.   Go to 2 and repeat 40 times 
      6.   T      =   72⁰C for 10 min 
      7.   Hold at 4⁰C 

 

PCR protocol for Ceb: 
 

      For Wildtype: 
Lid               99⁰C 

      1.   T      =   95⁰C for 4 min 
      2.   T      =   95⁰C for 30 s 
      3.   T      =   60⁰C for 30 s 
      4.   T      =   72⁰C for 2 min 
      5.   Go to 2 and repeat 40 times 
      6.   T      =   72⁰C for 10 min 
      7.   Hold at 4⁰C 

      For Knockout: 
Lid               99⁰C 

      1.   T      =   95⁰C for 4 min 
      2.   T      =   95⁰C for 30 s 
      3.   T      =   60⁰C for 30 s 
      4.   T      =   72⁰C for 2 min 
      5.   Go to 2 and repeat 40 times 
      6.   T      =   72⁰C for 10 min 
      7.   Hold at 4⁰C 

 

Primers:  
 

Syt1: 

WT-300 bp 

Syt1_WT forward: 5′ - GTA TTC AGT GCG TCT CAG AGA C - 3′ 

Syt1_WT reverse: 5′ - AAC TAT AAT TTG TCA CAG GCA TTG CCT TTC A - 3′ 

KO-750 bp 

Syt1_KO forward: 5′ - GAG CGC GCG CGG CGG AGT TGT TGA C - 3′ 

Syt1_KO reverse: 5′ - AAC TAT AAT TTG TCA CAG GCA TTG CCT TTC A - 3′ 

Syt7: 

WT – 400 bp 

Syt7_WT forward: 5′ - CAT CCT CCA CTG GCC ATG AAT G - 3′ 

Syt7_WT reverse: 5′ - GCT TCA CCT TGG TCT CCA G - 3′ 

KO – 800 bp 

Syt7_KO forward: 5′ - CCT ACC TGA AGC CTG TGT TCA C - 3′ 

Syt7_KO reverse: 5′ - CAG CTG TGC TCG ACG TTG TCA CTG - 3′ 

Syb-2: 

WT – 500 bp 

Syb-2_WT forward: 5′ - GCC CAC GCC GCA GTA CCC GGA TG - 3′ 
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Syb-2_WT reverse: 5′ - GCG AGA AGG CCA CCC GAT GGG AG - 3′ 

KO – 350 bp 

Syb-2_KO forward: 5′ - CAC CCT CAT GAT GTC CAC CAC - 3′ 

Syb-2_KO reverse: 5′ - CAG CAG ACC CAG GCC CAG CG - 3′ 

Ceb: 

WT – 500 bp 

Ceb_WT forward: 5′ - CAG ACT CAC TGA ACC TAT GAG AG - 3′ 

Ceb_WT reverse: 5′ - CTC ACC TGA TAC ATG CAG CAC - 3′ 

KO – 350 bp 

Ceb_WT forward: 5′ - CAG ACT CAC TGA ACC TAT GAG AG - 3′ 

Ceb_WT reverse: 5′ - CAG CGC ATC GCC TTC TAT CGC - 3′ 
 

 
3.    Agarose gel electrophoresis for detection of DNA 
 

In this study, 2% agarose gels were used in TAE electrophoresis buffer. Quantity of 

agarose used was according to the number of samples to be analyzed. For 5 to 7 

samples: 0.6 g of agarose was dissolved in 30 mL TAE buffer by boiling. After the 

agarose was cooled up to 37⁰C, 1.5 µL of EtBr was added, mixed carefully and poured 

into the gel cassette, avoiding air bubbles. The gel was allowed to solidify at room 

temperature. The solidified gel was placed in the electrophoresis chamber containing 

TAE buffer. 10 µL of DNA samples obtained after PCR were then added into the gel 

pockets. 5 µL of EasyLadder I (Bioline GmbH) marker was used as standard control. 

EasyLadder I is a ready-to-use DNA molecular weight marker, specially designed for 

DNA analysis in standard and high-throughput agarose gels. The ladder is pre-mixed 

with red loading buffer. It contains 5 even intensity bands ranging from 100 to 2000 bp 

for easy identification of the DNA samples analyzed. Electrophoresis was performed at 

80V for 40 min. The results were visualized by UV light illumination (fig. 12). For >10 

samples: 1.8 g of agarose was dissolved in 90 mL of TAE buffer and 4.5 µL of EtBr 

was added. Electrophoresis was performed at 115V for 40 min. Rest of the steps were 

same as described for 5 to 7 samples. 

 

A 

 

B 

 

C 

 
Figure 12: Illustration of genotyping results: (A) Exemplary DNA gel for Syt7, (B) Exemplary DNA gel for 
Syt1, and (C) Exemplary DNA gel for Ceb. Upper lane is always WT primers and lower lane is always knock 

out primers. First and last lanes are always Easyladder I marker. If a band is observed at only upper lane 
then it is a WT. If a band is observed only in the lower lane then it is a KO. If bands are observed in both the 
lanes then it is HZ. Positive control was checked in the initial genotyping to validate the genotyping 
procedure and negative control was loaded every time. 
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4.  Results 

4.1 Biogenesis of LDCVs in adrenal chromaffin cells of 

newborn mice 
 

4.1.1 NPY-mCherry labeled vesicles are LDCVs 
 

In order to study the biogenesis and trafficking of newly generated LDCVs in mouse 

chromaffin cells, I used overexpression of a specific marker protein as a primary tool. I 

took advantage of the fact that LDCVs not only contains catecholamines but also 

contains various peptides, such as Neuropeptide Y (NPY), which I used to label the 

newly synthesized LDCVs. It is a general thought that overexpression of a protein 

might lead to a false packaging of protein. So, it was critical to check whether NPY-

mCherry containing vesicles were in fact true LDCVs. To check this, I used mouse 

chromaffin cells from adrenal glands of newborn pups (p3), transfected them with NPY-

mCherry, and performed immunolabelling for CgA protein that is widely used as a 

marker for LDCVs in chromaffin cells.  

  

 

Figure 13: NPY‐mCherry containing 

vesicles are LDCVs. (A) Single plane 
images of chromaffin cell transfected with 
NPY‐mCherry (red) and maintained in 

culture for 24 h before immunolabeling with 

anti‐CgA antibody (green). (B) 

Co‐localization analysis between 

NPY‐mCherry and CgA shown as 

Pearson’s coefficient (PC), Mander’s 
coefficient for CgA overlapping 

NPY‐mCherry (M1), and Mander’s 

coefficient for NPY‐mCherry overlapping 

CgA (M2). Average co‐localization 

coefficients ± s.e.m. were calculated from 
two different experiments (n=15 cells). (C) 
Chromaffin cells transfected with 
NPY‐mCherry (red) and maintained in 

culture for 24 h before immunolabeling with 

anti‐LAMP1 antibody (green). (D) 

Co‐localization analysis between 

NPY‐mCherry and LAMP1 shown as 

Pearson’s coefficient (PC), Mander’s 
coefficient for LAMP1 overlapping 

NPY‐mCherry (M1), and Mander’s 

coefficient for NPY‐mCherry overlapping 

LAMP1 (M2). Average co‐localization 

coefficients ± s.e.m. were calculated from 
one experiment (n=5 cells). Note the 
difference of scale between B and D. 
Images were acquired by SIM for both 
experiments. Scale bars: 5 μm. 

 

The colocalization analysis between CgA and NPY revealed a Pearson’s correlation 

coefficient of 0.51 ± 0.02 while Mander’s coefficient for CgA overlapping with NPY-

mCherry was 0.6 ± 0.03 and for NPY-mCherry overlapping with CgA was 0.6 ± 0.02, 

which indicated a good colocalization between CgA and NPY (Fig. 13B). Some CgA 

punctae did not colocalized with NPY-mCherry because vesicles generated before 

NPY-mCherry transfection were not labelled red. Moreover, NPY-mCherry 

fluorescence did not entirely overlapped with CgA because a substantial portion of 

NPY-mCherry was localized in the Golgi apparatus (Fig. 13A).  
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As apparent from the result of NPY-mCherry and CgA colocalization study, perfect 

colocalization was not observed. Hence, it was necessary to confirm that the NPY-

mCherry labeled vesicles were not lysosomes. I performed another immunolabelling 

experiment between NPY-mCherry transfected chromaffin cells and LAMP1 which is 

commonly used as a marker for lysosomes (Fig. 13C). Pearson’s correlation coefficient 

was 0.18 ± 0.01. Mander’s coefficient for LAMP1 overlapping to NPY-mCherry was 0.1 

± 0.02 and for NPY-mCherry overlapping to LAMP1 was 0.03 ± 0.01. These values 

signified that there was no correlation between LAMP1 and NPY. These results clearly 

showed that NPY-mCherry containing vesicles were indeed LDCVs and not lysosomes. 
 

4.1.2 Chromaffin cells require a minimum of 2 h to generate new LDCVs 

 
 

 

To investigate how the newly formed LDCVs were distributed, I transfected mouse 

chromaffin cells with NPY-mCherry to label the newly synthesized LDCVs. To follow 

their fate, cells were fixed at increasing time after transfection and 

immunocytochemistry was performed. As it is known that vesicles are synthesized in 

 

Figure 14: First expression of 

NPY-mCherry is visible at 2 h 
post transfection. Mouse 
chromaffin cells were transfected 
with NPY-mCherry (red) and were 
maintained in culture for 
increasing time as shown on the 
left side of the images. After 
fixation, the cortical actin network 
was labeled with Phalloidine 
Alexa-488 (green) and the cis-

Golgi network was immunolabeled 
with the antibody against the 
marker GM130 (blue). Images 
shown are single plane SIM 
images of the exemlary cell for 
each timepoint. Scale bar is 5 µm. 
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Golgi compartments, we used cis-Golgi marker GM130 to label Golgi and used the 

cortical actin network marker Phalloidin Alexa- 488 to delineate the cell border.  

 

The initial NPY-mCherry fluorescence was visible 2 h after transfection and it was 

primarily localized to the immediate vicinity of the cis-Golgi (fig.14, first row). The NPY-

mCherry visible at 2 h only partially colocalized with GM130. Moreover, few vesicles 

(individual puncta) were formed by this time, which suggested that cells need the 

minimum time of 2 h to generate new LDCVs. One hour later, LDCVs were observed in 

the cytoplasm, and few already reached the cortical actin network beneath the PM (fig. 

14, row 2). At later time points, the number of vesicles increased, they were distributed 

throughout the cytoplasm, and started to accumulate next to the PM. 

 

4.1.3 LDCVs pause at or near Golgi for about an hour before moving 

towards the PM 
 

To analyse the distribution of LDCVs over time, the distance between the vesicle and 

the Golgi apparatus or the PM was measured. An inhouse software was used to mark 

the PM, the Golgi apparatus, and vesicles manually in sequential order. Subsequently, 

the software measured the shortest possible distance between the centre of the vesicle 

to the PM/ Golgi apparatus. Fig. 9 shows schematically the method of analysis used to 

measure the distribution of LDCVs over time.  

 

The distribution of newly generated LDCVs was analysed after their first visualization at 

2 h up to 24 h post transfection and is displayed as distance distribution histograms 

(fig. 15). In the initial 2 h, most vesicles were located adjacent to the cis-Golgi 

compartment. Although a majority of vesicles were at/near the cis-Golgi, in some cells 

the Golgi was near the PM which resulted in an apparent vicinity of LDCVs to the PM. 

At 2 h, 34.9 ± 3.2 vesicles were located at a distance of 250 nm of the cis-Golgi. 

Although within 250 nm of the cis-Golgi compartment, there was a reduction in the 

vesicle number to 18.0 ± 3.2 after 3 h, their number increased again to 23.9 ± 7.4 at 4 

h, and it reached maximum of 46.1 ± 7.0 at 8 h. Their number near the cis-Golgi stayed 

comparatively constant after 8 h (fig. 15H). The dual LDCV generation was possibly 

due to the fact that cells were stressed by cell isolation procedure and electroporation, 

resulting into lessened protein production at initial time points. Over the same time 

period, the number of vesicles localized near the PM augmented slowly over time. 
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Figure 15: LDCVs exit the Golgi only one hour after first expression of NPY‐mCherry. Localization of 

LDCVs in cells shown in Fig. 1 was analyzed. Their distance to the cis-Golgi (solid line with filled circle) and the 
PM (PM, dotted line with empty circle) is displayed as an average histogram for various time points after 
transfection (2h(A), 3h(B), 4h(C), 6h(D), 8h(E), 12h(F), 20h(G), and 24h(H)). Plotted are average LDCVs ± 
s.e.m. (n=10 cells for each time point). 

 

 

Furthermore, we counted the number of vesicles located in the cortical actin ring. The 

thickness of the actin ring was about 430 nm, which correspond to the full width half 

maximum of an intensity profile plot measured perpendicular to the Phalloidine staining 

on the SIM images. Fig. 15A-G shows the vesicles in the actin network adjacent to the 

PM in the gray highlight. The newly formed vesicles were accumulating in the cortical 

actin network but were not permanently staying in the actin cortex because within 6 h 
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of transfection these vesicles make up <30% of the red-labeled LDCVs (fig. 15H). 

Hence, most red-labeled LDCVs return to the cytoplasm where they are equally 

distributed. The number of vesicles directly at the PM were stable over time whereas 

vesicle number in the actin cortex increased from 4.6 ± 1.3 after 2h to 46.7 ± 4.0 after 

24 h. This showed that most LDCVs are retined close to the PM by getting trapped in 

the actin cortex and not by either docking or tethering. Also, there was a strong red 

staining and extended structure close to the Golgi apparatus all through the 

experiment. It only partially colocalized with cis-Golgi marker GM130 (fig. 14). 

Moreover, it did not correspond to LDCVs as revealed from the CgA staining (fig. 13). 

This led me to look for another marker that might label this elongated structure as seen 

near the cis-Golgi compartment.  

 

4.1.4 The primary NPY-mCherry expression ascertains a discrete cellular 

compartment that does not correspond to cis/trans-Golgi  
 

To know whether the elongated structures labeled by NPY-mCherry belongs to any 

compartment of the Golgi, I performed a double immunolabelling experiment. I used 

the NPY-mCherry transfected chromaffin cells and labelled them with cis-Golgi marker 

GM130 (blue) and trans-Golgi network marker TGN38 (green) antibodies at three 

different time points 2 h, 3 h, and 24 h (fig. 16A). I chose these time points as the 

previous experiment showed that 2 h is the minimum time required for the generation 

of vesicles, 3 h is the time point when the newly formed vesicles already started leaving 

the Golgi and approaching the PM, and 24 h is the time point when sufficient amount of 

vesicles were produced, to form a reserve pool for exocytosis. The anti-TGN38 stained 

cisternal structures and vesicle like structured that were distributed all over the 

cytoplasm (fig. 16A). However, these vesicluar structures did not overlap with NPY-

mCherry arguing that these organelles were not LDCVs. There was a partial overlap 

between TGN38 and NPY-mCherry during its initial expression. I quantified the 

colocalization of GM130 and TGN38 with NPY-mCherry by using the method of 

Pearson’s and Mander’s coefficients. The analysis was done in two ways: one analysis 

was performed on the whole cell (fig. 6A and 6B) and the second analysis was 

performed on the marked area of the Golgi in order to prevent the interference of the 

vesicle like structures of TGN38 labelling (fig. 5B and 5C). 

 

Pearson’s and Mander’s correlation coefficient values are given in table no. 1 and 2 

respectively. Pearson’s values showed a very low colocalization between NPY and 

GM130/TGN38 at all three time points. Mander’s colocalization analysis also showed 

low values for analysis of whole cell in comparison to the analysis of only Golgi area 

(fig. 16C and 17). 
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Figure 16: NPY-mCherry expression partially overlaps with cis- and trans-Golgi network recognizing a 
discrete cellular compartment. (A) Single plane SIM images of NPY-mCherry (red) transfected chromaffin 
cells maintained in culture for varying times indicated on the left of the images. After fixation, the cells were 
immunolabelled with Golgi markers; TGN38 (green) for trans-Golgi, and GM130 (blue) for cis-Golgi network. 
(B) Co-localization between NPY, TGN38, and GM130 was analyzed with Pearson’s coefficients. (C) Mander’s 
colocalization coeffcients between NPY, TGN38, and GM140 measured on an area close to the Golgi. (D) 
Intensity profiles of NPY (red), TGN38 (green), and GM130 (blue) ana;yzed across the whilte line shown in the 
merge images in A, (i) 2 h, (ii) 3 h, and (iii) 24 h. Intensity profiles of NPY, TGN38, and GM130 signals across 
the white line shown in the merge images in A. Average colocalization coefficients are shown ± s.e.m. (n=7 
cells for each time point). (E) Correlative light electron miroscopy image of a representative NPY-mCherry (red) 

transfected chromaffin cell that was maintained for 2 days in culture. NPY-mCherry signal was acquired with 
SIM and overlayed on the electron micrograph. The Golgi arrea is shown enlarged on the right panels. Red 
fluorescent spots correspond to dense core granules (arrowhead). Arrow indicate a red fluorescent area near 
Golgi corresponding to a semi-dense structure in the electron micrograph. Scale bars: 5 µm. 
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Figure  17: Colocalization 
analysis between NPY, 

TGN38, and GM130 over 
the entire cell. (A) 
Pearson’s coefficients (B) 
Mander’s coeffiients. p* = 
>0.05. 

 

Table 1: Pearson’s correlation coefficients between NPY, GM130, and TGN38. 
 

Time 
(h) 

NPY to GM130 NPY to TGN38 

At Golgi Whole cell At Golgi Whole cell 

2 0.23 ± 0.05 0.31 ± 0.06 0.15 ± 0.06 0.14 ± 0.05 

3 0.16 ± 0.06 0.2 ± 0.05 0.27 ± 0.05 0.21 ± 0.04 

24 0.13 ± 0.03 0.12 ± 0.05 0.14 ± 0.03 0.15 ± 0.04 
 

 

Table 2: Mander’s correlation coefficients between NPY, GM130, and TGN38. 
 

Time 
(h) 

NPY to GM130 GM130 to NPY NPY to TGN38 TGN38 to NPY 

Golgi 
Whole 

cell 
Golgi 

Whole 
cell 

Golgi 
Whole 

cell 
Golgi 

Whole 
cell 

2 
   0.38  
± 0.08 

   0.34 
± 0.07 

   0.44  
± 0.07 

   0.41  
± 0.05 

   0.17  
± 0.04 

   0.16     
± 0.03 

   0.41  
± 0.09 

   0.23  
± 0.07 

3 
   0.37                                          
± 0.06 

   0.32 
± 0.06 

    0.49 
± 0.09 

   0.53  
± 0.07 

   0.27  
± 0.06 

   0.23  
± 0.05 

   0.58  
± 0.08 

   0.31  
 ± 0.06    

24 
   0.19                 
± 0.04 

   0.08 
± 0.03 

   0.35  
± 0.06 

   0.36  
± 0.11 

   0.27  
± 0.03 

   0.14  
± 0.02 

   0.54  
± 0.08 

    0.31  
± 0.06 

 

 

The overlap of cis- and trans-Golgi to NPY showed higher values than the overlap of 

NPY to Golgi markers. This indicated that a large portion of NPY-mCherry localized 

near Golgi area, was not localized to cis- and trans-Golgi, and directed us to plot the 

intensity profiles of NPY-mCherry (red), trans-Golgi (green), and cis-Golgi (blue) across 

the white line shown in the merge images of cells in fig. 16 (fig. 516Di to 16Diii). At all 

three time points, NPY-mCherry showed high fluorescence at the areas where cis- and 

trans-Golgi signals were almost zero (fig. 16Di to Diii areas marked with black arrows). 

To recognize the compartment that contained the NPY-mCherry fluorescence, we 

performed CLEM experiment in collaboration with Dr. Claudia Schirra (fig. 16E). We 

correlated the red NPY-mCherry fluorescent signal with the dense core LDCVs in the 

electron micrographs (fig. 16E inset). Both overlap well, and we also observed a large 

semi-dense structure close to the Golgi area that was stained red. This area could be 

the compartment devoid of cis- and trans-Golgi marker that harbors the vesicles before 

their journey towards the PM. 
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4.1.5 Syb-2, Ceb, and Syt1 are sorted at later stage in the LDCV biogenesis 

 

To understand the biogenesis of LDCVs it is important to know at what stage the newly 

generated LDCVs are associated with the vesicular membrane proteins. In theory, the 

cargo (proteins or peptides) should bud off the trans-Golgi network with a membrane 

containing all proteins necessary for the vesicle’s function. Our previous experimental 

findings suggest that apart from staying in cis- and trans-Golgi network, the newly 

expressed NPY-mCherry also stays at an unknown Golgi compartment. It is possible 

that this compartment might serve as a station where the vesicular proteins gets sorted 

to the new synthesizing vesicles. If this is true then all newly formed NPY-mCherry 

vesicles should contain the vesicular SNARE proteins Syb-2 and Ceb, the Ca2+-sensor 

for exocytosis Syt1, vesicular monoamine transporter to load the vesicle with 

catecholamines, etc. 

 

 

Figure 18: Syb-2 is associated 
with LDCVs at later stage in 

biogenesis. (A) Chromaffin cells 
transfected with NPY-mCherry 
(red) and maintained in culture 
for varying times as indicated on 
the left of the images. After 
fixation, cells were immuno 
labelled with anti-Syb-2 antibody 
(Syb-2, green). Representative 
images were acquired by SIM. 
(B) Colocalization between NPY-

mCherry and Syb-2 over time. 
Pearson’s coefficient and 
Mander’s coefficients were 
analyzed for each time point from 
two different experiments. (C) 
Average number of Syb-2 
punctae that colocalized with 
NPY-mCherry at 2 h quantified 
over the entire stack. N = 15 cells 
for each time point. Plotted are 
average colocalization 

coefficients ± s.e.m. Scale bars: 
5 µm. 

 

However, it is also possible that the vesicular membrane proteins are associated with 

an LDCV precursor containing the protaneous cargo at a later stage by intracellular 
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fusion of two vesicles. To verify this hypothesis, we performed time point experiments. 

We fixed the chromaffin cells transfected with NPY-mCherry (red) at different time 

points after transfection as described in the left panel in the figure 18A, 19A, and 21A; 

then immunolabeled them with anti-Syb-2 (fig. 18, green), anti-Ceb (fig. 19, green), or 

anti-Syt1 (fig. 21, green) antibodies. As can be seen from the images, all three proteins 

are localized to discrete spots in the cytoplasm although a large proportion of them can 

be seen in direct vicinity of the PM (figure 18A, 19A, and 21A). At 2 h, very few spots of 

Syb-2, Ceb, and Syt1 can be seen overlapping with the NPY-mCherry expression. The 

colocalization analysis performed by analyzing Pearson’s (tab. 3) and Mander’s 

coefficients (tab. 4) for all the three vesicular proteins with NPY-mCherry indicated a 

negligible colocalization between NPY and the three vesicular proteins at the initial 

hour of NPY-mCherry expression. If the vesicular proteins are boarded on the newly 

generated vesicles directly from the Golgi then the colocalization value should be high.  
 

Table 3: Pearson’s correlation coefficients between NPY and vesicular proteins. 
 

Time (h) NPY to Syb-2 NPY to Ceb NPY to Syt1 

2 0.18 ± 0.02 0.15 ± 0.01 0.07 ± 0.01 

3 0.25 ± 0.02 0.18 ± 0.01 0.1 ± 0.02 

8 0.4 ± 0.04 0.24 ± 0.01 0.24 ± 0.02 

24 0.57 ± 0.03 0.33 ± 0.01 0.51 ± 0.03 
 

Table 4: Mander’s correlation coefficients between NPY and vesicular proteins. 
 

Time (h) 
NPY to 
Syb-2 

Syb-2 to 
NPY 

NPY to 
Ceb 

Ceb to 
NPY 

NPY to 
Syt1 

Syt1 to 
NPY 

2 
   0.25 ± 

0.03 
   0.05 ± 

0.01 
   0.21 ± 

0.02 
   0.08 ± 

0.01 
   0.09 ± 

0.02 
   0.05 ± 

0.01 

3 
   0.33 ± 

0.03 
   0.21 ± 

0.03 
   0.16 ± 

0.02 
   0.18 ± 

0.01 
   0.09 ± 

0.02 
   0.14 ± 

0.02 

8 
   0.41 ± 

0.03 
   0.36 ± 

0.03 
   0.25 ± 

0.02 
   0.29 ± 

0.01 
   0.16 ± 

0.02 
   0.33 ± 

0.03 

24 
   0.65 ± 

0.03 
   0.69 ± 

0.04 
   0.30 ± 

0.02 
   0.43 ± 

0.01 
   0.52 ± 

0.03 
   0.64 ± 

0.01 
 

In order to get more information, we counted the number of puncta over the Z-stack of 

all the three vesicular proteins that were overlapping with the NPY at 2 h. The values 

are shown in the figure 7C (average number of puncta = 4.2 ± 0.5), 8C (average 

number of puncta = 5.1 ± 0.6), and 10C (average number of puncta = 3.9 ± 0.6) for 

Syb-2, Ceb, and Syt1 respectively. Since the average number of NPY-mCherry labeled 

vesicles is 45.5  4.1 (fig. 15H) these values clearly suggest that the vesicular proteins 

are not loaded on the newly synthesized vesicles as they exit the Golgi. Further at 3 h, 

more individual spots of vesicular proteins overlapped with NPY-mCherry. The 

colocalization analysis revealed values higher than at 2 h (fig. 18B, 19B, and 21B). 

After 8 h a further increase in the colocalization can been seen on the merged images 

in which more yellow spots are visible for all the three vesicular proteins. Colocalization 

analysis showed higher values in comparison to 3 h. 
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Colocalization of Syb-2 and Syt1 with NPY-mCherry was higher than that of Ceb as 

can be seen form the values depicted in table 3 and 4. I also performed double 

immunolabeling with anti-Syb-2 (fig. 20A, green) and anti-Ceb (fig. 20A, blue) in NPY-

mCherry (red) overexpressing chromaffin cells maintained in culture for 24 h to know 

whether LDCVs lacking Syb-2 contained Ceb and if all NPY-mCherry labelled vesicles 

were positive for v-SNAREs. The colocalization between both v-SNAREs was 0.58 ± 

0.03 (fig. 20B, Pearson’s coefficients). The colocalization coefficients of NPY-mCherry 

with both v-SNAREs was measured by combining the blue and green channels and 

comparing this merged image with the red channel of NPY-mCherry. Mander’s 

coefficients of NPY-mCherry localized to both v-SNAREs was 0.68 ± 0.03 (fig. 20C) 

which is similar to Mander’s coefficient for NPY-mCherry localized to Syb-2 alone. This 

indicated that some red labelled vesicles were lacking the v-SNAREs.  
 

 

Figure 19: Ceb is localized to a 
relatively small population of 
LDCVs. (A) Single plane SIM 
images of chromaffin cells 
transfected with NPY-mCherry 
(red) and maintained in culture 
for varying times as described on 
the left-hand side of the images. 
After fixation, cells were labelled 
with anti-Ceb antibody (green). 

(B) Colocalization between NPY-
mCherry and Ceb over time. 
Pearson’s coefficient and 
Mander’s coefficients were 
analyzed for each time point from 
two different experiments. (C) 
Average number of Ceb punctae 
that colocalized with NPY-
mCherry at 2 h quantified over 
the entire stack. N = 15 cells for 

each time point. Plotted are 
average colocalization 
coefficients ± s.e.m. Scale bars: 
5 µm.  

 

 

Highest colocalization between NPY-mCherry and the vesicular proteins was observed 

at 24 h after transfection. Sequential increase of colocalization indicated that the 

vesicular proteins are getting associated with the NPY-mCherry positive vesicles at a 

late stage in the trafficking pathway and not directly from the Golgi. 



50 

 

 

 

Figure 20: Co-immunolabelling of 
Syb-2 and Ceb. (A) Single plane 

SIM images of chromaffin cells 
transfected with NPY-mCherry (red) 
and maintained in culture for 24 h. 
After fixation, cells were labelled 
with anti-Syb-2 (green) and anti-
Ceb antibodies (blue). (B) 
Colocalization between NPY-
mCherry and combined v-SNAREs. 
Pearson’s coefficient and Mander’s 
coefficients from two different 

experiments. (C) Colocalization 
between v-SNAREs. N = 15 cells. 
Plotted are average colocalization 
coefficients ± s.e.m. Scale bars:     
5 µm. 

 

According to our findings, carrier vesicle or transport vesicle serves as a precursor 

vesicle or a recycling vesicle and carry the vesicular membrane proteins to fuse with 

NPY-mCherry containing vesicle when the NPY-mCherry containing vesicle 

approaches the PM. 

 

 

Figure 21: Like v-SNAREs, Syt1 
is sorted to LDCVs at a late 
stage of their biogenesis. (A) 
NPY-mCherry (red) transfected 
chromaffin cells were maintained 
in culture for varying times as 
shown on the left of the images. 

After fixation, cells were 
immunolabelled with anti-Syt1 
antibody (Syt1, green). 
Representative single plane 
images were acquired by SIM. 
(B) Colocalization between NPY-
mCherry and Syt1 over time. 
Pearson’s coefficient and 
Mander’s coefficients were 
analyzed for each time point from 
two different experiments. (C) 

Average number of Syt1 punctae 
that colocalized with NPY-
mCherry at 2 h quantified over 
the entire stack. N = 15 cells for 
each time point. Plotted are 
average colocalization 
coefficients ± s.e.m. Scale bars: 
5 µm. 
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4.1.6 Recycled Syt1 associated with NPY-mCherry labeled vesicles within 

2 h after endocytosis and only a small subset of endocytosed Syt1 is 

transported via Rab11A vesicles 

 

We showed that vesicular proteins get associated to NPY-mCherry stained vesicles at 

later stage in the biogenesis of LDCV. There are two possibilities; one it is possible that 

it happens via recycling directly close to the PM and second it is possible that the 

vesicular protein is taken back to the Golgi and is boarded on to the precursor vesicles 

to associate with the newly formed LDCVs. Hence, we decided to study the 

endocytosis of a vesicular membrane protein. We chose Syt1 as a candidate because 

it is a well-known marker for vesicles and a lumenal domain antibody is available for 

Syt1 which favors endocytosis study. Cells were depolarized with 60 mM KCl to induce 

exocytosis. We incubated the cells that were going through exocytosis with a lumenal 

domain antibody of Syt1. Control group cells were subjected to stimulation with normal 

extracellular solution in the presence of the antibody. This was followed by the recovery 

phase for increasing time (shown in left of the images fig. 22A) at 37⁰C with 13% CO2 

before fixing and permeabilizing them. They were then processed for secondary 

antibody application.  

 

Fixation after 0 min showed the antibody staining at the surface of the cell (fig. 22A). As 

the cells recovered, retrieval of the Syt1 was visible from 30 min to 6h. Number of 

endocytosed punctae increased with time. Colocalization of endocytosed Syt1 with 

NPY-mCherry was visible at 2 h and remained visible at 3 h and 6 h. At 6 h the number 

of Syt1 punctae associating with NPY-mCherry increased. We also analyzed the 

number of Syt1 punctae at the membrane over time (fig. 22B). Highest number of 

punctae were visible in stimulated cells that were fixed after 5 min recovery. 

Progression of time resulted in decreasing number of punctae from the PM due to 

endocytosis. Nevertheless, some Syt1 punctae were always visible at the cell 

periphery.  

 

Further, we wanted to know which transport vesicles play a role in this trafficking. 

Different markers are known for different endosomal compartments like Rab5 for early 

endosomes, Rab7 for late endosomes, and Rab11 for recycling endosomes. We 

wanted to know through which endosomal compartment endocytosed Syt1 is recycled, 

so we decided to use Rab11 as a likely candidate. We stimulated the chromaffin cells 

with 60 mM KCl in presence of anti-Syt1 antibody and allowed the cells to recover for 

2h and 3h at 37⁰C with 13% CO2 (fig. 23). Recovery was followed by fixation of the 

cells at respective time points and co-immunolabeling was performed for either trans-

Golgi network protein TGN38, Rab11A, or resting Syt1 pool (fig. 23A, 23B, and 23C). 

The resting Syt1 pool was labeled with the same lumenal domain antibody after 

treatment with the affinity Fab fragments to differentiate it from the endocytosed Syt1 

(see materials and methods). We observed that endocytosed Syt1 was found in 

TGN38 positive compartment at 2 h and 3 h (fig. 23A). This shows that some 

endocytosed Syt1 is indeed recycled to trans-Golgi network. On the contrary, only few 
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Rab11A vesicles were positive for endocytosed Syt1 (fig. 23E). This indicated that the 

recycling of Syt1 is probably independent of Rab11A. Further, we counted the number 

of punctae containing endocytosed Syt1 that were overlapping with any of the markers. 

We found that some of the endocytosed Syt1 is transported to NPY-mCherry positive 

vesicles, resting Syt1 carrying vesicles, and was also found on the vesicles containing 

NPY-mCherry and resting Syt1 both (fig. 23D). 

 

 

 
 
 

 

Figure 22: Endocytosis of Syt1. (A) Endocytosis of Syt1 (Syt1, green) was studied in NPY-mCherry (red) 
overexpressing chromaffin cells. Cells were stimulated with 60 mM KCl or normal extracellular solution 
(control) for 5 minutes in presence of the anti-Syt1 lumenal domain antibody. Cells were then maintained at 
rest in order to recover for various times as indicated on the left of the images. Represented are single plane 
images acquired by SIM. (B) Analysis of the number of Syt1 punctae localized at the cell periphery at varying 
recovery time post stimulation. Counted were Syt1 punctae touching the border of the region of interest 
delimiting the PM. (C) Schematic representation of the protocol used for labelling of recycling Syt1. Cells were 
incubated in 60 mM KCl/control solution for 5 minutes together with anti-Syt1 lumenal domain antibody. 
Control cells were fixed after 5 minutes and the remaining cells were allowed to recover at 37⁰C with 13% CO2 

for various times before fixation. N = 5 cells for each time point. Plotted are average colocalization coefficients 
± s.e.m. Scale bars: 5 µm. 
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Figure 23: Recycled Syt1 is found on LDCVs and merges with reserve pool of Syt1. Endocytosis of Syt1 
(green) observed in NPY-mCherry (red) overexpressing chromaffin cells that were stimulated with 60 mM KCl 
for 5 minutes in presence of anti-Syt1 lumenal domain antibody, co-immunolabeled with anti-TGN38 antibody 
(A), anti-Syt1 (B), and anti-Rab11A (C). Cells were maintained at rest to recover for 2 h and 3 h. Displayed are 
single plane images acquired by SIM. (D) Analysis of the number of endocytosed Syt1 (Syt1endo) punctae 
that were also stained by NPY-mCherry only, or that contained only reserve pool of Syt1 (Syt1rest), or both. 
(E) Analysis of the number of endocytosed Syt1 punctae that overlapped with vesicles containing only 
Rab11A, and vesicles containing Rab11A and NPY-mCherry both. N = 5 cells for each time point. Displayed 
are average ± s. e. m. Scale bars: 5 µm. 
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4.2 Molecular mechanisms of “dead-end docking” in mouse 

chromaffin cells 
 

4.2.1 Dead-end vesicles exist in mouse chromaffin cells 
 

Our group successfully identified a new pool of vesicles called “dead-end” vesicles by 

using TIRFM and patch clamp method simultaneously in bovine chromaffin cells. We 

defined dead-end vesicles as those vesicles that stay close to the PM and that do not 

fuse even after long stimulation (5 min) with high Ca2+. We found that 15% of LDCVs at 

the cell’s footprint, were dead-end vesicles in bovine chromaffin cells. Furthermore, we 

could show that in bovine chromaffin cells the 2:1 unproductive t-SNARE acceptor 

complex exists and that it is functional in vivo to induce dead-end anchoring (Hugo et 

al., 2013; Kreutzberger et al., 2016). To fully understand the molecular mechanism of 

dead-end anchoring we wanted to find out which vesicular protein interacts with this 2:1 

unproductive t-SNARE acceptor complex inducing dead-end anchoring. For this 

purpose, we decided to study the effect of deleting specific proteins located on LDCVs 

membrane. Since gene knock out is done in mouse, it was necessary to confirm the 

existence of dead-end vesicles in mouse chromaffin cells. For this purpose, I used wild 

type mouse chromaffin cells prepared from newborn pups (p3), and I standardized the 

electroporation of NPY-mCherry in mouse chromaffin cells to label the LDCVs. Then I 

carried out the experiments, in which cells were perfused with a solution containing 

6 µM intracellular free Ca2+ for 5 min to induce steady secretion.  

 

A 

    

 

Figure 24: Exocytosis of LDCVs 
induced by long-lasting and 
strong stimulus. Cells were 
patched with intracellular solution 
containing 6 µM Ca2+. Displayed is 
the average capacitance increase 

(A) and the cumulative number of 
LDCVs exocytozed as monitored by 
TIRFM normalized to the footprint 
area of the cell (B). Ncells = 15.
  

B 
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Simultaneously, I measured the membrane capacitance by patch-clamp technique and 

monitored individual vesicle fusion by TIRFM (Becherer et al., 2007). The high [Ca2+]i 

stimulation produced a nearly linear increase    in the membrane capacitance up to 

654.2 ± 1.3 fF and at the same time 17.8 ± 1.7 LDCVs were secreted at the foot of the 

cells visualized with TIRFM (fig. 24). There was a difference in the time course of 

secretion between membrane capacitance increase and the number of vesicles 

secreted in TIRF. However, our group showed previously (Becherer et al., 2007; Hugo 

et al., 2013) that in bovine chromaffin cells the time course of secretion was identical 

between membrane capacitance increase and the number of vesicles secreted in 

TIRF. One possible explanation for this discrepancy is that NPY-mCherry label a 

subset of young LDCVs that would be secreted first and unlabeled old LDCVs are 

secreted afterwards. To address this possibility, I used FFN511 that labels all the 

vesicles in NPY-mCherry transfected cells and analyzed secretion as mentioned 

earlier. Results showed that there was no difference between the number of FFN511 

labeled vesicles or NPY-mCherry labeled vesicles (see annexure fig. 48A). I also 

tested the effect of collagen coating on the cell’s footprint by transfecting NPY-mCherry 

electroporated cells with semliki forest virus Lifeact-GFP to quantify the amount of actin 

near the PM using TIRFM. Purpose of this experiment was to know if the collagen 

coating was creating more stress fibers at the PM which in turn was affecting the 

number of secreting vesicles in TIRFM. Result showed that there was no change in the 

amount of actin at the PM in coated or uncoated coverslips (see annexure fig. 48B). I 

also used NPY-venus transfected chromaffin cells for similar experiment in order to 

know if there were more kiss-and-run events instead of full fusion which can lead to an 

underestimate of the number of vesicles secreted in TIRFM (Becherer et al., 2007). 

However, it was not the case because there were only few kiss-and-run events (data 

not shown). 
 

 

 

 

 

 

 

 

As revealed from TIRF imaging, some vesicles remained at the foot-print of the cell 

until the end of the recording (fig. 25). These vesicles were mainly of two types: first, 

“newcomers”, which correspond to vesicles that approached the PM during the 

recording, and second, “dead-end vesicles” that were present at the footprint from the 

beginning of the recording, stayed at the PM throughout. If those LDCVs, which stayed 

at the PM for very long time, belong to a separate pool of vesicles, then they will 

appear as a separate component in a survival plot. I analyzed how long the LDCVs, 

which were visible in the first image of the experiment, stayed at the PM before leaving 

either by exocytosis or through undocking. Then I plotted their number as a function of 

time (fig. 26). Fitting this curve revealed that the data was best described with a double 

Figure 25: TIRFM images of WT mouse chromaffin cells. 
Images show the footprint of exemplary cells in TIRFM taken 
immediately before reaching whole-cell configuration (left) and 
after 5 min of perfusion with intracellular solution containing       

6 M Ca2+. Scale bar is 5  µm. 
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exponential decay; suggesting that two kinetic components were present. The time 

constant of first component was 42.1 ± 0.3 s. The second component was ≈10 times 

slower, with a time constant of 477 ± 3 s, demonstrating the existence of an apparently 

unreleasable pool of vesicles. According to the second time constant, the total 

recording time of the experiment should be around 7.95 min to totally deplete this pool 

of vesicles. However, curve fitting showed that the number of unreleasable vesicles 

remaining relatively unchanged from 4.5 to 5 min (fig. 25). Hence, I recorded the cells 

for 5 min. 

 

 

Figure 26: Survival plot of LDCVs at 

the cell’s footprint. Graph represents 
the survival plot of all LDCVs visible in 
the first image of the cells perfused with 
a solution containing 6 µM Ca2+ (black 
line). The data was best fit by double 
exponential decay (orange line) as 
compared to a mono exponential decay 
(green line). Ncells = 15. 

 

There was a lot of movement of vesicles at the cell’s footprint revealing the dynamic 

behavior of vesicles that continuously commute to the PM for fusion. I analyzed 

different parameters from the TIRFM movies, namely the number of vesicles at PM 

before stimulation, the total number of secreted vesicles, the number of vesicles 

moving away from the PM during the acquisition of the movie, and the number of 

vesicles left at the PM after stimulation. Then I backtracked LDCVs from the last image 

of the movie to the first image and divided them in two categories, “dead-end vesicles” 

and “newcomer vesicles”. All the values for the number of vesicles in different 

categories, were normalized to the average size of the footprint (fig. 27) and values are 

given in table 5. For normalization procedure see materials and methods section. 

 

 

Figure 27: Analysis of 
different LDCV 

parameters in TIRFM. 
Represented are the 
average density of 
LDCVs near the PM at 
the beginning and the 
end of the experiment 
and the average total 
secretion. LDCVs visible 
at the end of the 
experiment were 

separated between 
newcomer and dead-end 
vesicles. Ncells = 15. 
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Table 5: Number of vesicles at the footprint of the cell in WT cells.   
  

 
Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

WT 45.2  3.3 17.8  1.7 17.3  3.3 19.9  1.7 12.4  1.6 7.5  1.1 
 

Out of the 45  3 LDCVs present at the beginning, 12  1 were dead-end vesicles. This 

indicated that 27.52% of vesicles visible at the cell’s footprint before stimulation, were 

dead-end vesicles (fig. 27). After confirming the existence of dead-end vesicles in 

mouse chromaffin cells, next step was to identify the vesicular protein that interacts 

with the 2:1 unproductive SNARE acceptor complex to generate dead-end vesicles. 

 

4.2.2 v-SNAREs are not involved in dead-end docking 
 

A 

   

 
Figure 28: Exocytosis of 
LDCVs in WT and Syb-2 KO 
cells. Cells were patched with 
intracellular solution containing 
6 µM Ca2+. Displayed is the 
average capacitance increase 
for (A) and the cumulative 
number of LDCVs secreted as 
monitored by TIRFM 
normalized to the footprint area 

(B) for WT and Syb-2 KO cells. 
Ncells = 10 (WT and Syb-2 KO 

cells).  p value  <0.05. 

 

B 

     
 

It is known that vesicular protein Syb-2 interacts with the t-SNARE complex to mediate 

fusion of vesicles. It has also been shown that Syb-2 and Ceb are functionally 

redundant in mouse chromaffin cells (Borisovska et al., 2005). Also, Syb-2 and Ceb are 

localized to LDCVs (fig. 20). So, it is possible that these proteins might be involved in 

dead-end docking as well. I started by studying the role of Syb-2 in this process using 

the same technique described above comparing Syb-2 KO cells with WT cells from 

littermate controls. Stimulation with intracellular solution containing 6 M Ca2+ resulted 
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in a linear capacitance increase upto 873.4 ± 1.9 fF in WT and 534.5 ± 2.1 fF in Syb-2 

KO cells. This reduction in global secretion was not significant.  

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, the simultaneous measurement of LDCV exocytosis via TIRFM was 

significantly decreased by a factor of nearly 2 between WT and Syb-2 KO cells (fig. 

28). As can be seen from fig. 29, some vesicles remained at the PM at the end of 

stimulation in WT and KO cells. This indicated that dead-end vesicles might be present 

in KO cells. 
 
 
 

 

Figure 30: Analysis of 
different parameters in 
TIRFM. Represented 
are the average density 
of LDCVs near the PM 

at the beginning and the 
end of experiments and 
the average total 
secretion in WT and 
Syb-2 KO cells. LDCVs 
visible at the end of the 
experiment were 
separated between 
newcomer and dead-
end vesicles. Ncells = 10 

(WT and Syb-2 KO 

cells). p value  <0.05. 

Table 6: Number of vesicles at the footprint of the cell in WT and Syb-2 KO cells. 
 

Syb-
2 

Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

WT 61.2  3.7 21.0  2.1 25.2  3.0 33.4  3.3 18.4  2.2 15.0  2.0 

KO 65.3  7.5 12.1  3.9 36.1  4.6 32.2  5.2 17.5  3.6 14.6  3.4 

                                 
 

There was no difference in the number of vesicles present at the PM before stimulation 

in WT and Syb-2 KO cells. Also, number of dead-end vesicles was unchanged (fig. 30, 

table 6). Hugo et. al., (2013) showed that t-SNAREs are the main interacting partners 

Figure 29: TIRFM images of WT and Syb-2 KO mouse 
chromaffin cells. Images show the footprint of exemplary 

cells in TIRFM taken immediately before reaching whole-cell 
configuration (left) and after 5 min of perfusion with solution 

containing 6 M Ca2+. Scale bar is 5 µm. 
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mediating dead-end docking, hence I quantified t-SNAREs, by immunolabeling with 

antibodies against Stx1 and SNAP25 in WT and Syb-2 KO cells using TIRFM (fig.  31). 

A 

 

B 

 

 

Figure 31: Quantification of 
t-SNAREs at the PM in WT 
and Syb-2 KO cells. (A) 
Representative TIRFM images 
for SNAP25 and Stx1 staining 
at the footprint of the cell in 
WT and Syb-2 KO cells. (B) 
Graph showing the average 

fluorescence intensity of 
SNAP25 and Stx1 
immunostaining at the PM. 

Presented are average  
 s.e.m. Ncells = 20 (WT and 

Syb-2 KO cells). Scale bar is 

5 m. 

There was no change in the concentration of t-SNAREs in the PM of WT and Syb-2 KO 

cells. This led to the conclusion that Syb-2 does not play a role in dead-end docking. 

Thus, I investigated the other v-SNARE present on LDCVs, Ceb. 

 

A 

 

Figure 32: Exocytosis of LDCVs 
in WT and Ceb KO cells. Cells 
were patched with intracellular 
solution containing 6 µM Ca2+. 
Displayed is the average 
capacitance increase (A) and the 
cumulative number of secreted 
LDCVs as monitored by TIRFM 
normalized to the footprint area 
(B) for WT and Ceb KO cells. 
Ncells = 7 (WT) and 10 (KO). 

 
 

B 

      
 

 

Long stimulation with 6 M Ca2+ showed a straight increase in capacitance reaching 

upto 858.1  3.8 fF in WT and 880.3  2.0 fF in Ceb KO cells, whereas 36.0  7.7 
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vesicles and 26.6  3.5 vesicles were secreted in WT and KO cells respectively (fig. 

32). There was a lot of variability in the responses of WT cells that was reflected in the 

error bars. Nevertheless, there was no difference in the amount of exocytosis in WT 

and KO cells, neither in membrane capacitance recording by patching nor in individual 

vesicle secretion measured by TIRFM.  

 

 

 
 

 

 

 

 

 

 

 

Similarly, to Syb-2 WT and KO cells, vesicles were    still present at the PM after 5 min 

stimulation with intracellular solution containing high Ca2+ in Ceb WT         and KO cells 

(fig.  33). 
 

 

Figure 34: Analysis of 

different parameters in 
TIRFM. Represented are 
the average density of 
LDCVs near the PM at 
the beginning and the end 
of the experiment and the 
average total secretion in 
WT and Ceb KO cells. 
LDCVs visible at the end 
of the experiment were 
separated between 

newcomer and dead-end 
vesicles. Ncells = 7 (WT) 
and 10 (KO). 

 

Table 7: Number of vesicles at the footprint of the cell in WT and Ceb KO. 
 

Ceb 
Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

WT 54.8  7.7 36.0  7.7 13.4  2.0 28.0  4.1 14.6  2.0 13.4  3.2 

KO 54.3  7.2 26.6  3.5 18.9  1.9 31.7  4.2 16.6  3.8 15.0  3.1 
 

None of the TIRFM parameters in WT and KO cells was changed upon deletion of Ceb 

(fig. 34, table 7). Further quantification of t-SNAREs in TIRFM indicated that there was 

no change in the concentration of SNAP25 and Stx1 in Ceb KO cells as compared to 

WT (fig. 35).  

Figure 33: TIRFM images of WT and Ceb KO mouse 
chromaffin cells. Images show the footprint of exemplary cells 

taken in TIRFM immediately before reaching the whole-cell 
configuration (left) and after 5 min of perfusion with intracellular 

solution containing 6 M Ca2+. Scale bar is 5 m.  
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A 

 

B 

 

Figure 35: Quantification 
of t-SNAREs at the PM in 

Ceb WT and KO cells. (A) 
Representative TIRFM 
images for SNAP25 and 
Stx1 staining at the footprint 
of the cell in WT and Ceb 
KO. (B) Graph shows the 
average fluorescence 
intensity of SNAP25 and 
Stx1 immunostaining at the 
PM. Presented are average 

 s.e.m. Ncells = 20 (WT and 
Ceb KO cells). Scale bar is 

5 m. 

 

Confirming previous studies, these results suggested that absence of Syb-2 or Ceb has 

no major effect on the vesicle secretion because both proteins are functionally 

redundant in mouse chromaffin cells (Borisovska et al., 2005). They had no influence 

on the number of dead-end vesicles, and also no effect on the concentration of 

SNAP25 and Stx1 at the PM. Therefore, I concluded that v-SNAREs do not contribute 

to dead-end docking. 

 

4.2.3 Syt1 has a role in functional docking but not dead-end docking 
 
 
 

A 

 

Figure 36: Exocytosis of LDCVs 
in WT and Syt1 KO cells. Cells 
were patched with intracellular 
solution containing 6 µM Ca2+. 
Displayed is the average 

capacitance increase (A) and the 
cumulative number of secreted 
LDCVs as monitored by TIRFM 
normalized to the footprint area (B) 
for WT and Syt1 KO cells. Ncells = 

14 (WT and KO). p value,  
<0.001. 

B 
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Previously, de Wit et al., (2009) have shown a clear docking defect upon deletion of 

Syt1 proposing that Syt1 is the vesicular protein that docks the secretory vesicles to the 

1:1 Stx1:SNAP-25 productive SNARE. Henceforth, I investigated Syt1.  

 

 

 

 

 

 

 
 

Membrane capacitance measurement showed that deletion of Syt1 did not change 

global secretion in comparison to WT. Although, there was no significant reduction in 

amount of exocytosis, the initial phase of secretion was delayed in Syt1 KO cells (fig. 

36, inset) reproducing previous studies (Schonn et al., 2008). In contrast to 

capacitance    recording, the individual secretion of vesicles measured by TIRFM was 

highly reduced by 32% in the KO cells (fig.  36, table 8). TIRFM recording also revealed 

that there were vesicles still remaining close to the PM even after long stimulation with 

high Ca2+ in WT and Syt1 KO cells (fig. 37). 

 

 

Table 8: Number of vesicles at the footprint of the cell in WT and Syt1 KO cells. 
 

Syt1 
Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

WT 68.4  5.9 21.8  2.5 23.6  2.3 34.5  5.0 16.4  2.4 18.0  3.3 

KO 44.0  3.3 7.0  1.7 30.0  3.0 31.0  3.6 13.0  2.0 17.0  3.9 
 

 

 

Figure 38: Analysis of 
different parameters in 

TIRFM. Represented 
are the average density 
of LDCVs near the PM 
at the beginning and the 
end of the experiment 
and the average total 
secretion in WT and 
Syt1 KO cells. LDCVs 
visible at the end of the 
experiment were 

separated between 
newcomer and dead-
end vesicles. Ncells = 14 
(WT and KO). p value, 

 <0.001. 

Figure 37: TIRFM images of WT and Syt1 KO mouse 
chromaffin cells. Images show the footprint of exemplary cells 

in TIRFM taken immediately before reaching whole-cell 

configuration (left) and after 5 min of perfusion with 6 M Ca2+. 
Scale bar is 5 µm. 
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In KO cells the number of LDCVs visible at the footprint of the cells before stimulation 

was reduced by 64% in comparison to WT control. However, after stimulation their 

number was similar (fig. 38, table 8). Additionally, the number of dead-end vesicles and 

the newcomers was unchanged in KO cells as compared to WT control. Because Syt1 

KO caused a strong docking defect that can be appreciated by the large reduction of 

LDCVs at the PM prior to stimulation, we decided to analyze the number of dead-end 

LDCVs in relation to the number of predocked LDCVs. The percentage of dead-end 

LDCVs from all predocked LDCVs was increased from 24% in WT to 30% in KO cells 

(p=0.154, Ncells = 14 for WT and KO), indicating a proportional increase in dead-end 

docking. This result was also supported by analysis of t-SNAREs at the PM, which 

revealed that there was a slight but not significant decrease in SNAP25, conversely 

Stx1 was significantly increased in Syt1 KO (fig. 39), a situation in which dead-end 

docking is favored. 
 

A 

 

B 

 

Figure 39: Quantification of   
t-SNAREs at the PM in WT 

and Syt1 KO cells. (A) 
Representative TIRFM images 
for SNAP25 and Stx1 staining 
at the footprint of the cell in WT 
and Syt1 KO cells. (B) Graph 
shows the average 
fluorescence intensity of 
SNAP25 and Stx1 
immunostaining at the PM. 

Presented are average  
s.e.m. Ncells = 20 (WT and KO). 

Scale bar is 5  m. p value      

 <0.05. 

 

 

Taking together, all these results suggested that loss of Syt1 had no direct influence on 

the dead-end vesicle number, but indirectly affects dead-end docking by changing the 

relative amounts of t-SNAREs in the PM. Nevertheless, we confirmed previous studies 

showing that Syt1 plays an important role in functional docking (de Wit et. al., 2009) 

because absence of Syt1 resulted in significantly reduced number of vesicles at the PM 

before stimulation. On the other hand, Syt7 is co-expressed in chromaffin cells with 

Syt1 and both appear to have a functional redundancy for triggering exocytosis 

(Schonn et al., 2008). However, the role of Syt7 in docking remain elusive. Therefore, 

Syt7 was my next candidate that could be responsible for dead-end docking. 
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4.2.4 Syt7 is involved in unproductive or dead-end docking 
   

A 

 

Figure 40: Exocytosis of LDCVs 
in WT and Syt7 KO cells. Cells 
were patched with solution 
containing 6 µM Ca2+. Displayed 
is the average capacitance 
increase (A) and the cumulative 
number of LDCVs secreted as 
monitored by TIRFM normalized 
to the footprint area (B) for WT 

and Syt7 KO cells. Ncells = 14 (WT) 

and 15 (KO). p value  <0.001. 

B 

         
 

Measurement of global secretion resulted in a linear increase of the membrane 

capacitance reaching 1.0  0.1 pF in WT and 0.9  0.2 pF in KO cells. Like in Syt1 KO, 

secretion measured in TIRFM was reduced by a factor of 2 in Syt7 KO cells in 

comparison to WT control. Counting the number of LDCVs in the first image of TIRFM 

movie revealed a small but significant decrease in Syt7 KO as compared to WT 

(fig. 40).  
 

 

 

 

 

 

 

 

 

 

 

 

As for the other knockout cells studied earlier in this work, there were vesicles 

remaining at cell’s footprint after 5 min stimulation with 6 M Ca2+ (fig.  41). This 

indicated that dead-end vesicles might also be present in Syt7 KO. Differentiating 

Figure 41: TIRFM images of WT and Syt7 KO mouse 
chromaffin cells. Images show the footprint of exemplary cells in 

TIRFM taken immediately before reaching whole-cell 
configuration (left) and after 5 min of perfusion with intracellular 

solution containing 6 M Ca2+. Scale bar is 5 µm. 
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between dead-end and newcomer LDCVs revealed a surprising large decrease in the 

number of dead-end vesicle in KO cells as compared to WT cells (fig. 42, table 9). Not 

only their average number was decreased by a factor of 2 but also in proportion to 

predocked LDCVs they were significantly reduced from 34% in WT to 20% in KO cells 

(p=0.005, Ncells = 14 and 15 in WT and KO respectively). Simultaneously, the 

newcomers were significantly increased (fig. 42, table 9). 
 

 

Table 9: Number of vesicles at the footprint of the cell in Syt7 WT and KO. 
 

Syt7 
Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

WT 54.3  4.3 22.1  1.8 17.2  1.8 30.2  3.3 18.6  2.3 11.6  1.9 

KO 41.8  3.3 9.0  1.5 25.4  3.0 30.4  3.1 8.6  1.4 21.7  2.9 
 

Not only the newcomers were increased by a factor of 2 in KO as compared to WT 

cells but also in proportion to predocked LDCVs they were increased from 21% in WT 

to 52% in KO cells (p<0.001, Ncells = 14 and 15 in WT and KO respectively) (fig. 42, 

table 9). Additionally, the quantification of t-SNAREs in the punctae revealed that there 

was no difference between WT and KO cells (fig. 43). These results clearly showed 

that absence of Syt7 had a very strong effect on dead-end docking, suggesting a clear 

role of Syt7 in the interaction with 2:1 unproductive SNARE acceptor complex. 
 

A 

 

B 

 

Figure 43: Quantification of 
t-SNAREs at the PM in WT 
and Syt7 KO cells. (A) 
Representative TIRFM 
images for SNAP25 and Stx1 
staining at the footprint of the 
cell in WT and Syt7 KO cells. 
(B) Graph shows the average 
fluorescence intensity of 
SNAP25 and Stx1 staining at 
the PM. Presented are 

average  s.e.m. Ncells = 20 
(WT and KO). Scale bar is 

5 m. 

 

Figure 42: Analysis of 
different parameters 
in TIRFM. Represented 

are the average density 
of LDCVs near the PM 
at the beginning and the 
end of the experiment 
and the average total 
secretion in WT and 
Syt7 KO cells. LDCVs 
visible at the end of the 
experiment were 
separated between 

newcomer and dead-
end vesicles. Ncells = 14 
(WT) and 15 (KO). p 

value,  <0.05 and  
<0.001. 
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In order to confirm the role of Syt7 in dead-end docking, Syt7 was reintroduced in Syt7 

KO cells via co-transfection with NPY-mCherry in Syt7 KO cells. The efficiency of 

double transfection was very low, nevertheless I performed the membrane capacitance 

measurements and TIRFM measurements simultaneously on 8 to 9 transfected cells. 

As it was difficult to hold the gigaseal in the Syt7 overexpressing cells for long time 

during patching, I analyzed the capacitance measurements and TIRFM secretion for 4 

min and 20 s. 
 

A 

 

Figure 44: Exocytosis of 
LDCVs in Syt7 KO and Syt7 
overexpressing cells. Cells 

were patched with intracellular 
solution containing 6 µM Ca2+. 
Displayed is the average 
capacitance increase (A) and 
the cumulative number of 
LDCVs secreted as monitored 
by TIRFM normalized to the 
footprint area (B) for Syt7 KO 
and cells overexpressing Syt7. 
Ncells = 8 (Syt7 KO) and 9 (Syt7 

overexpressing cells). 
 
 

B 

     
 

Membrane capacitance measurement displayed a global increase reaching up to 740.5 

 1.4 fF in Syt7 KO and 702.4  0.9 fF in Syt7 overexpressing cells (fig. 44A). Also, the 

number of individual vesicle secreted in TIRFM was not rescued as 11.8  2.5 vesicles 

secreted in Syt7 KO cells and 13.9  2.9 vesicles secreted in cells transfected with 

Syt7 (fig. 44B). Similarly, to previous findings there were vesicles present at the cell’s 

footprint after long stimulation with intracellular solution containing 6 M Ca2+ in Syt7 

KO cells overexpressing Syt7 (fig. 45). The number of vesicles present at the PM 

before stimulation as well as the number of vesicles moving away from the PM during 

the recording, and the number of vesicles left at the PM after stimulation was not 

different between Syt7 KO and Syt7 overexpressing cells (fig. 46, table 10). This 
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indicated that the docking defect due to Syt7 KO cannot be rescued by Syt7 

overexpression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amazingly, the number of dead-end vesicles and newcomer vesicles were significantly 

changed. Dead-end vesicles were increased by a factor of 2 and newcomer vesicles 

were reduced in Syt7 transfected KO cells as compared to Syt7 KO (fig. 46, table 10).  

 

 

Figure 46: Analysis of 
different parameters in 
TIRFM. Represented are the 

average density of LDCVs 
near the PM at the beginning 
and the end of the experiment 
and the average total 
secretion in Syt7 KO and Syt7 
overexpressing cells. LDCVs 
visible at the end of the 
experiment were separated 
between newcomer and 
dead-end vesicles. Ncells = 8 
(KO) and 9 (Syt7 

overexpressing cells). p 

value,  <0.01 and  
<0.001. 

 

 

Table 10: Number of vesicles at the footprint of the cell in Syt7 KO and Syt7 

overexpressing cells. 

 

Syt7 
Vesicles 
before 

stimulation 

Total 
secretion 

Vesicles 
moving away 

from PM 

Vesicles 
left after 

stimulation 

Dead-end 
vesicles 

Newcomer 
vesicles 

KO 55.4  4.6 11.8  2.5 34.6  3.5 28.2  4.6 9.2  1.2 19.0  3.9 

Ov. 56.2  3.0 13.9  2.9 24.6  2.8 23.7  2.1 18.5  1.8 5.2  0.8 
 

Taking together all the results from different knock out mouse models, I concluded that 

Syt7 is the only vesicular protein which induce non-functional dead-end docking by 

interacting with the 2:1 unproductive t-SNARE complex formed by two Stx1 molecules 

and one SNAP25 molecule. 

Figure 45: TIRFM images of Syt7 KO and Syt7 overexpressing 
mouse chromaffin cells. Images show the footprint of exemplary 
cells in TIRFM taken immediately before reaching whole-cell 
configuration (left) and after 4 min and 20 s of perfusion with 

intracellular solution containing 6 M Ca2+. Scale bar is 5 µm. 
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5.  Discussion 

 

5.1 Biogenesis of LDCVs in adrenal chromaffin cells of newborn mice 
 
 

In the present study, I studied the biogenesis and trafficking of LDCVs in mouse 

chromaffin cells using the overexpression of NPY-mCherry as a marker for LDCVs. We 

favored the method of electroporation over virus transfection because we needed to 

follow the biogenesis of the vesicles for upto 24 h, which is impossible with semiliki 

forest virus transfection because it is lethal for chromaffin cells within 5 to 6 h. We used 

high resolution SIM in our study because it improves the resolution by a factor of 2 in 

all three dimensions and therefore allows a detailed analysis of colocalization between 

proteins (Rego et al., 2012, Bost et al., 2013). From the colocalization experiments with 

CgA and LAMP1, we knew that NPY-mCherry truly labeled the LDCVs (fig. 13). This 

was further confirmed with our CLEM experiment because we could clearly observe an 

overlap between the electron dense granules in the electron micrograph and the NPY-

mCherry containing LDCVs in SIM images (fig. 16E). I tracked the newly generated 

LDCVs over time after transfection, performed immunocytochemistry by co-labeling 

NPY-mCherry transfected cells with cis-Golgi marker together with Phalloidin-Alexa 

488 labeling the cortical actin network to visualize the cell boundary, and analyzed the 

distribution of LDCVs from their first appearance at 2 h upto 24 h (fig. 14, 15). At the 

initial time point stained vesicles were mostly present near the cis-Golgi compartment 

and moved towards PM over time (fig. 16A-G). Accumulation of vesicles in the cortical 

actin ring in the vicinity of PM over time (fig. 16H) indicate the movement and accretion 

of newly formed vesicles which was in agreement with the model proposed by Rudolf 

at al., (2001) where they have shown that immature vesicles accumulate in the cortical 

actin network in PC12 cells. Similarly, Solimena and Gerdes (2003) proposed a model 

for age-dependent distribution of vesicles in bovine chromaffin cells, suggesting that 

youngest granules are found in close proximity to the PM whereas older granules are 

located towards the cell interior. It is possible that vesicles further away from the PM 

corresponds to older granules that are displaced back in the cytoplasm by new vesicles 

that are released first upon secretagogue treatment (Duncan et al., 2003). 

 

Park et al., in 2011 showed that in PC12 cells CgA-RFP did not colocalize with cis- and 

medial-Golgi region but colocalize with Golgin97 trans-Golgi compartment. Similarly, 

our result revealed that NPY-mCherry only partially colocalize with the cis-Golgi, 

indicating that NPY-mCherry might be also localized to the trans-Golgi network. 

Accordingly, the co-immunolabeling of cis- and trans-Golgi network in NPY-mCherry 

transfected cells revealed that there was a partial overlap of NPY with both the Golgi 

markers suggesting that there was a transport of NPY from cis- to trans-Golgi 

compartment to get packed in the newly formed LDCVs (fig. 16A, B, C, and 17). 

Nevertheless, the localization of NPY 2 h after transfection to a relatively large 
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compartment that was neither the cis nor the trans-Golgi indicated that there is an 

additional compartment at/near the Golgi where NPY-mCherry accumulates. The 

CLEM experiment suggested that the extra-cis/trans-Golgi compartment that contained 

NPY-mCherry was indeed located near to the Golgi (fig. 16E). This NPY-mCherry 

containing extra-cis/trans-Golgi compartment needs to be characterized but it could be 

the Golgin97 or Stx6 positive compartment as proposed by Park et al., (2011) and 

Walter et al., (2014). 

 

Transport of vesicular membrane proteins onto the newly generated vesicles is thought 

to occur at the trans-Golgi compartment as the vesicles are formed. However, our 

findings from co-immunolabeling of endogenous vesicular membrane proteins like Syb-

2, Ceb, and Syt1 in NPY-mCherry transfected chromaffin cells suggests otherwise. We 

found no apparent colocalization between NPY and either of the three vesicular 

proteins at 2h (fig. 18, 19, 21, A first lane, B, C), indicating no association of these 

proteins with the newly formed vesicles. On later time points the colocalization 

increased and at 24 h it was highest for all three tested proteins (fig. 18, 19, 21, A 

fourth lane, B, C). Moreover, the double immunolabeling of the two v-SNAREs in NPY-

mCherry tranfected cells showed that not all NPY positive vesicles contained the v-

SNAREs (fig. 9). Sequential increase of colocalization indicates that the vesicular 

membrane proteins are getting associated with the NPY-mCherry positive vesicles at a 

late stage in the trafficking pathway and not directly from the Golgi. Urbé et al., (1998) 

and Tooze SA (2001) described a possible fusion of immature secretory granule with a 

carrier vesicle. Also, Walter et al., (2014) have proposed that Syb-2 and Syt1 are 

associated to LDCVs via transport vesicle in a last step of biogenesis because they are 

needed only for fusion. This type of fusion of immature secretory granule with a 

transport vesicle was also demonstrated in PC12 cells by Wendler et al., (2001). 

According to our findings, this carrier vesicle or transport vesicle could be a precursor 

vesicle or a recycling vesicle carrying the vesicular membrane proteins to fuse with 

NPY-mCherry containing vesicle when it approaches the PM. 

 

Furthermore, we also demonstrated with our Syt1 endocytosis experiment that the 

vesicular membrane proteins might originate from recycling after a round of exo- and 

endocytosis (fig. 22A). Number of endocytosed Syt1 punctae increased with time after 

stimulation together with a decrease of the number of Syt1 punctae at the PM due to 

endocytosis (fig. 22B). However, some Syt1 punctae remained continuously visible at 

the cell periphery, which indicate that after being endocytosed some Syt1 might go 

directly back to PM for next round of exocytosis or all the molecules of Syt1 are not 

endocytosed from the PM at the same time. This would agree with the theory that a 

pool of vesicular membrane protein remain in the PM ready for fast endocytosis (Hua 

et al., 2011). Additionally, similar number of LDCVs positive for NPY-mCherry were 

also positive for endocytosed Syt1, reserved Syt1 or both. This indicates that fusion of 

recycling vesicles including endocytosed Syt1 with the precursor vesicles containing 

newly synthesized Syt1 is not essential for generation of mature LDCVs because these 

proteins can be derived from recycling or de novo synthesis. In conclusion, 
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endocytosed Syt1 needed at least 2 h to associate with NPY-mCherry positive vesicles 

(fig. 22, 23D). This timing agrees well with the recycling of LDCV membrane protein 

Glycoprotein III/clusterin which is recycled to electron dense vesicles within 45 min but 

required 6 h to passage through classical LDCVs in bovine chromaffin cells (Patzak 

and Winkler, 1986). We also showed that the endocytosed Syt1 is not recycled through 

the vesicles containing Rab11A (fig. 23C, E). We know that the recycling pathway 

involves numerous specialized compartments like Rab5(early endosome), Rab7 (late 

endosome), Rab11 (recycling endosome), etc. (Le Roy and Wrana, 2005; Scott et al., 

2014). Hence, next step would be to find out the endosomal pathway through which the 

endocytosed vesicular membrane proteins travels. Finally, for vesicular membrane 

proteins it still remains unclear when these recycled proteins are ready for the next 

round of exocytosis. Our experiments support previous findings showing that 1 h is not 

sufficient recycling time to generate a releasable LDCV with recycled Syt1 (Walter et 

al., 2014). 
 

 
Figure 47: Schematic model for biogenesis and recycling of LDCVs in mouse chromaffin cells. NPY is 
processed within 3 h of synthesis to fully functional LDCV. The transport pathway involves a Stx6 positive sub-
compartment of the TGN. LDCV membrane proteins are added to LDCVs at a late stage after NPY has 
already been packed in immature vesicles. The exocytosis machinery (v-SNAREs and Syt1) is presumably 
taken by clathrin-mediated endocytosis and then recycled within 2 h to LDCVs. These freshly endocytosed 
membrane proteins can mix with proteins from a reserve pool. 

 

In conclusion (fig. 47), our study shows that newly generated LDCVs do not contain 

vesicular membrane proteins as they leave the Golgi apparatus. Their association with 

freshly generated LDCVs occurs within 1 h of budding from the Golgi because some 

NPY-mCherry positive vesicles clearly contain vesicular membrane proteins making 

them possibly fusion competent. This also confirms previous findings by Nofal et al., 

(2007) that in bovine chromaffin cells exocytosis of NPY-mRFP labeled vesicles occurs 

at 12 h post transfection. However, this contradicts the hypothesis by Pinheiro et al., 

(2014) and Walter et al., (2014) that vesicles require one day of maturation to become 

fully fusion competent. Also, we showed that the association of vesicular membrane 

proteins with the newly made immature LDCVs occurs through the fusion with 
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precursor vesicles. Immature LDCVs are generated at the Golgi where they get filled 

with NPY, Cgs, other peptides. The fusion with a precursor vesicle happens at a late 

stage of biogenesis where the vesicular membrane proteins are transferred to the 

LDCV. This process of LDCV biogenesis is very similar to LDCV biogenesis in PC12 

demonstarted by Tooze et al., (1991) where they have shown that it happens at a very 

slow time scale. In this study I analyzed the association of already three vesicular 

membrane proteins with LDCVs but there are many other known vesicular proteins and 

it needs to be determined whether they also follow the same route.  

 

5.2 Molecular mechanisms of “dead-end docking” in mouse chromaffin 

cells 

 

The existence of unproductive t-SNARE acceptor complex formed in 2:1 ratio between 

2 Stx1 and 1 SNAP25 molecule was demonstrated in in vitro experiments by Bajohrs et 

al., (2004) and it was hypothesized that vesicles binding to this complex could undergo 

dead-end docking (Verhage and Sørensen, 2008). We successfully identified this new 

pool of vesicles which we called “dead-end” vesicles using TIRFM and patch clamp 

method simultaneously in bovine chromaffin cells (Hugo et al., 2013). They represent 

15% of LDCVs at the cell’s footprint in bovine chromaffin cells and their pool size was 

affected by the overexpression of Munc18-2, SNAP25, and Stx1. This indicated the 

presence of unproductive t-SNARE acceptor complex in vivo and that it is responsible 

for the generation of dead-end vesicles (Hugo et al., 2013). What remained unclear 

was the nature of the vesicular protein that interacts with the unproductive t-SNARE 

acceptor complex. To identify it we investigated dead-end docking in chromaffin cells 

originating from genetically modified mice in which genes for vesicular proteins that 

have been shown to interact with t-SNAREs have been deleted. However, first it was 

important to demonstrate the presence of dead-end vesicles in mouse chromaffin cells. 

We measured the overall exocytosis of cells through membrane capacitance recording 

using the patch clamp technique and we monitored simultaneously single vesicle fusion 

at the footprint of the cell with TIRFM in WT mouse chromaffin cells. We could show 

that 27.5% of vesicles visible at the cell’s footprint were dead-end vesicles (fig. 27) 

which is substantially more than in bovine chromaffin cells (Hugo et al., 2013). We 

used knock out mouse models for v-SNAREs Syb-2 and Ceb and the Ca2+ sensors 

Syt1 and Syt7. 

 

In WT cells the capacitance change upon perfusion with 6 µM Ca2+ showed a linear 

increase over time whereas secretion in TIRFM was best described as a 

monoexponential rise. This contradicts the studies in bovine chromaffin cells (Becherer 

et al., 2007; Hugo et al., 2013) where they have shown a correlation between the time 

course of capacitance change and indiviual vesicle secretion in TIRFM. It is possible 

that LDCVs generated before the NPY-mCherry transfection were released later in 

comparison to the NPY-mCherry transfected vesicles at the footprint of the cell. But 

experiment with FFN511 that label all vesicles in contrast to NPY-mCherry that label 
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vesicle only after the transfection, which was done 48 h before the experiment, showed 

no difference in the number of vesicles secreted in TIRFM (Annex fig. 48A). Second 

possibility is that there are more kiss-and-run events than full fusion in mouse 

chromaffin cells. When LDCVs are stained with NPY-mCherry, exocytosis is detected 

by the very fast (200 ms) disappearance of the vesicle. However, when kiss-and-run 

occurs, the narrow fusion pore allows only partial and slow release of the cargo 

resulting in slow or no disappearance of the LDCV. Thus, these type of fusion events 

would not be counted as exocytosis inducing an underestimate of exocytosis measured 

by TIRFM. To address this problem we used NPY-venus that is a pH dependent 

fluorescent tag, with which kiss-and-run events can easily be detected in the form of a 

sudden increase in the fluorescence of LDCV when the fusion pore opens followed by 

some dispersion of the cargo. Unfortunately, we couldn’t detect high amount of kiss-

and-run events with NPY-venus transfection (data not shown). It is also possible that 

the collagen coating on the coverslips is resulting in the formation of stress fibers that 

in turn is influencing the secretion in TIRFM by trapping the LDCVs at the interface of 

coverslip and the cell. If this is the case then analyzing the concentration of actin at the 

PM can provide a possible explanation. However, there was no difference in the 

amount of actin at the PM in cells plated on coated or uncoated coverslips (Annex fig. 

48B). Other possibility is that the docking or priming of vesicles is low at the cell’s 

footprint in comparison to the rest of the cell, which would result in the faster depletion 

of releasable pool of vesicles at the footprint of the cell. Different factors could be 

responsible for the later possibility. Presence of different actin network could be one of 

the reason. Lang et al., (2000) showed that in PC12 cells actin filaments are arranged 

in a criss-cross fashion resembling stress fibers that form thick or dense pad at the 

coverslip interface whereas they are thinner in the rest of the cell where PM was facing 

the culture medium. These dense actin fibers could result in low mobility of vesicles 

towards the PM reducing the pool size of docked/primed LDCV at the PM in 

comparison to the rest of the cell, which would result in the rapid depletion of releasble 

vesicles in the TIRFM. If that were true than the dichotomy between the overall 

exocytosis (Cm) and exocytosis at the footprint (TIRFM) should be stronger in cells 

showing a docking/priming defect. We and others showed that docking was strongly 

reduced in Syt1 KO cells (de Wit et al., 2009; fig. 38) while Syt7 deletion induced a 

milder docking phenotype (fig. 42). Syb-2 and Ceb KO did not induce a docking defect 

(Borisovska et al., 2005; fig. 30, 34). However, Syb-2 KO has been shown to induce a 

stronger priming defect than Ceb KO. If our hypothesis is correct than the difference 

between global exocytosis and exocytosis at the footprint should decrease in the 

following order: Syt1>Syt7>Syb-2>Ceb. This is exactly what we found. The various 

KOs did not changed global secretion but decreased exocytosis at the footprint of the 

cells by a factor of 3.2, 2.5, and 2 in Syt1, Syt7, and Syb-2 KO in comparison to WT 

respectively. In Ceb KO no change was observed in global secretion as well as in 

exocytosis at the footprint. Thus, our data suggest that in mouse chromaffin cells a 

barrier probably made out of actin stress fibers reduces docking of LDCVs at the 

footprint of the cells (fig. 28, 32, 36, 40). 
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Syb-2 has been shown to be involved in priming of LDCVs in mouse chromaffin cells 

(Borisovska et al., 2005; Walter et al., 2010; Borisovska et al., 2012), and in docking of 

synaptic vesicle at mouse hippocampal synapses (Imig et al., 2014). The number of 

vesicles before and after stimulation remained unchanged between WT and KO cells. 

The same was true for newcomer and dead-end vesicles (fig. 29, 30). We know that 

concentration of t-SNAREs, SNAP25 and Stx1 play a major role in mediating dead-end 

docking. Our quantification of SNAP25 and Stx1 in Syb-2 KO cells using TIRFM 

showed that their concentration was similar as in WT cells (fig. 31). It has also been 

shown that Syb-2 and Ceb have a functional redundancy in regulated exocytosis of 

chromaffin cells (Borisovska et al., 2005). The phenotype of Ceb KO chromaffin cells 

was very similar to that of Syb-2 KO cells. The vesicular parameters measured with 

TIRFM were unchanged in Ceb KO cells in comparison to WT control. Similarly to Syb-

2 KO, the amount of t-SNAREs in the PM was not affected by deletion of Ceb. 

Therefore, our results confirm and complement the findings from Borisovska et al., 

(2005). Furthermore, we show that like Syb-2, Ceb is not involved in dead-end docking. 

Hence, we conclude that none of the v-SNAREs present on chromaffin cell LDCVs play 

a role in this phenomenon.  

 

de Wit et al., (2009) demonstrated by electron microscopy that deletion of Syt1 results 

in a clear docking defect in mouse chromaffin cells. They proposed that Syt1 is the 

vesicular protein that docks the secretory vesicles to the 1:1 Stx1:SNAP25 productive 

SNARE complex. We confirmed this finding because the number of vesicles at the 

cell’s footprint before stimulation were reduced by 64% (fig. 38). Furthermore, as 

expected the absence of the fast Ca2+ sensor induced a delay in the initial phase of 

secretion indicating a reduced pool of ready releasable vesicles (Voets at al., 2001; 

Schonn et al., 2008). Newcomers and dead-end vesicles were not changed in Syt1 KO. 

If anything, their number was proportionaly increased from 24% in WT to 30% in KO. In 

parallel t-SNAREs quantification at the PM showed that the concentration of Stx1 in the 

PM was significantly increased in Syt1 KO cells (fig. 39). In bovine chromaffin cells 

increasing the concentration of Stx1 resulted in a significant rise in the number of dead-

end vesicles because it increases the amount of unproductive t-SNARE acceptor 

complex (Hugo et al., 2013). Thus, Syt1 increases dead-end docking by increasing the 

availability of unproductive   t-SNARE complexes, but not through its putative 

interaction with the t-SNAREs. In conclusion, Syt1 has an important role in functional 

docking reaction because our results clearly showed that number of vesicles before 

stimulation were significantly reduced but loss of Syt1 did not directly affect the number 

of dead-end vesicles, indicating no direct role of Syt1 in dead-end docking reaction. 

 

Schonn et al., (2008) showed that Syt1 and Syt7 possess a functional redundancy in 

mouse chromaffin cells. They identified Syt7 as a major Ca2+ sensor for regulated 

exocytosis in mouse chromaffin cells because loss of Syt7 resulted in a dramatic 

decrease of Ca2+ mediated exocytosis. In our study, the loss of Syt7 resulted in 

significant decrease in the number of vesicles before stimulation like for Syt1 KO 
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phenotype albeit to a lesser extend (fig. 42). This shows that Syt7 is also involved in 

docking mechanism in mouse chromaffin cells. Interestingly, the number of dead-end 

vesicles were hugely decreased from 34% in Syt7 WT to 20% in Syt7 KO cells and 

concurrently the newcomer vesicles were significantly increased from 21% in Syt7 WT 

to 52% in Syt7 KO cells (fig. 42). Furthermore, the t-SNAREs quantification analysis did 

not show any change between Syt7 WT and KO cells (fig. 43), indicating that absence 

of Syt7 does not affect the formation of unproductive t-SNARE acceptor complex. 

Hence, Syt7 loss had a dramatic effect on dead-end docking, suggesting a new role for 

Syt7 as an interaction partner with the 2:1 unproductive t-SNARE acceptor complex.  

 

The function of Syt7 in dead-end docking was also further demonstrated by rescue 

experiments. We expressed Syt7 together with NPY-mCherry in Syt7 KO cells. There 

was no change in the overall secretion examined by capacitance measurements as 

well as in the number of single vesicle secreted in TIRF between Syt7 KO and the 

overexpressing cells (fig. 44, 46). Similarly, there was no difference in the number of 

vesicles before stimulation, vesicles moving away from PM, and number of vesicles 

after stimulation between Syt7 KO and overexpressing cells (fig. 46). This clearly 

showed that Syt 7 expression in Syt7 KO did not rescue the docking defect. However, 

there was a dramatic increase in the number of dead-end vesicles by a factor of 2 and 

a simlutaneous decrease in the number of newcomer vesicles in Syt7 overexpressing 

cells (fig. 46). These results indicate that Syt7 is not able to rescue the secretion which 

is puzzling. In bovine chromaffin cells, F-actin has a major role in the organization of 

the secretory proteins at the PM (Torregrosa-Hetland et al., 2011). L- and P-Q-type 

Ca2+ channels, Stx1, Syt1 are localized at the edges of cytoskeletal polygonal cages 

formed by F-actin, which are the prefered sites of vesicle exocytosis (Torregrosa-

Hetland et al., 2011). Syt7 has been shown to accumulate in the PM (Rao et al., 2014). 

If overexpression of Syt7 results in very high amount of Syt7 in the PM then there is a 

possibility that it affects the localization of Ca2+ channels and SNARE proteins at the 

edges of the F-actin network. This might affect the fusion of vesicles and as a result 

secretion is not rescued.  

 

In addition to the functional redundancy between Syt1 and Syt7 (Schonn et al., 2008), 

our experiments indicate that both proteins also possess some distinct functions. This 

is supported by recent findings. Both proteins are localized on different population of 

LDCVs rendering Syt7 positive LDCVs more prone for dead-end docking. Furthermore, 

the pattern of fusion is more dispersed with Syt1 granules than for Syt7 containing 

granules which fuse in clusters (Rao et al., 2014), and fusion kinetics of Syt1 granules 

are faster than Syt7 positive granules, finally their requirements for Ca2+ dependent 

activation are different (Rao et al., 2017).  

 

Taking together all our findings from different knock out mouse systems, I reached the 

conclusion that Syt7 is the unique vesicular protein, which is interacting with the 

unproductive 2:1 t-SNARE acceptor complex formed between 2 molecules of Stx1 and 

one molecule of SNAP25. However, further study is needed to know if this dead-end 
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vesicle pool can be regulated. NSFs and SNAPs are known to disassemble the 

functional SNARE complexes after exocytosis (Block et al., 1988; Clary et al., 1990). 

By overexpressing NSFs/SNAPs in chromaffin cells, one can study if the 

overexpression of NSFs also disassembles the unproductive SNARE complexes and 

thereby renders dead-end vesicles release competent. It is also possible that dead-end 

vesicles make a distinct pool (Hugo et al., 2013) that is functional under special 

conditions that are not known yet. Studying Syt7 KO in further detail can shed a light on 

such conditions and can provide more insights into the docking mechanisms in 

chromaffin cells but also other cell types. In pancreatic islet -cells, Syt7 is also a major 

Ca2+ sensor for exocytosis of insulin granules (Gao et al., 2000; Gauthier et al., 2008; 

Gustavsson et al., 2008). Wu et al., (2015) showed that Syt7 is phosphorylated by PKA 

at a single serine residue located in the linker region between the Syt7 transmembrane 

region and its C-terminal Ca2+ binding C2 domain. This phosphorylation enhances the 

secretion of insulin from pancreatic islet -cells. This indicate that PKA might also 

modulate dead-end docking by its effect on Syt7 activity and thereby may confer 

release capability to dead-end vesicles. 
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7.  ANNEX 
 

A 

 

B 

 

Figure 48: (A) Same number of old and newly 

generated LDCVs were secreted in TIRFM. Graph 
represents normalized average number of LDCVs 
secreted in TIRF in NPY-mCherry transfected WT 
mouse chromaffin cells that were loaded with 

FFN511. Presented are average  s.e.m. Ncells = 5. 
(B) There was no effect of collagen coating on 
actin network at PM. Quantification of actin network 
at the PM in NPY-mCherry transfected WT mouse 
chromaffin cells plated on collagen coated and 

uncoated coverslips. Presented are average  s.e.m. 
Ncells = 10. 
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