
Aus der Abteilung für Transplantations- und Infektionsimmunologie 

der Medizinischen Fakultät 

der Universität des Saarlandes, Homburg/Saar 

Leitung: Univ.-Prof. Dr. rer. nat. Martina Sester 

 

 

 

Neuroimmune interactions in allergic airway diseases:  

Studies in mouse models and humans 

 

 

Dissertation zur Erlangung des Grades eines Doktors  

der Naturwissenschaften 

der Medizinischen Fakultät  

der Universität des Saarlandes 

2017 

 

 

 

 

 

Vorgelegt von: 

Duc Dung Le 

geb. am: 25.06.1981 in Nghe An



For my family 

 

 

 

 

 

  



 
1  

Content 

 

List of original papers .............................................................................................................................. 3 

 Summary.......................................................................................................................................... 5 1

 Zusammenfassung ........................................................................................................................... 7 2

 Introduction and aims of the studies ............................................................................................ 10 3

 Respiratory system ................................................................................................................ 10 3.1

 Allergic rhinitis ....................................................................................................................... 10 3.2

 Allergic asthma ...................................................................................................................... 11 3.3

 Allergy .................................................................................................................................... 12 3.4

 Pathomechanism of allergy (Type I hypersensitivity) ........................................................... 13 3.5

 Sensitization .................................................................................................................. 14 3.5.1

 Allergic reactions ........................................................................................................... 15 3.5.2

 Early phase reactions ................................................................................................. 15 3.5.2.1

 Late phase reactions .................................................................................................. 16 3.5.2.2

 Chronic allergic inflammation ................................................................................... 16 3.5.2.3

 Neuroimmune interactions in allergic inflammation ............................................................ 16 3.6

 Airway innervation ................................................................................................................ 17 3.7

 Upper airway innervation .............................................................................................. 18 3.7.1

 Sensory innervation of the upper airway .................................................................. 18 3.7.1.1

 Autonomic innervation of upper airway ................................................................... 18 3.7.1.2

 Lower airway innervation .............................................................................................. 20 3.7.2

 Sensory innervation of the lower airway .................................................................. 21 3.7.2.1

 Autonomic innervation of the lower airway ............................................................. 21 3.7.2.2

 Tachykinins ............................................................................................................................ 22 3.8

 Calcitonin Gene-Related Peptide (CGRP) .............................................................................. 23 3.9

 Mast cells ............................................................................................................................... 24 3.10

 Dendritic cells ........................................................................................................................ 25 3.11

 Aims and Hypotheses ............................................................................................................ 26 3.12

4 Materials and Methods ................................................................................................................. 28 

 Patients and nasal biopsies ................................................................................................... 28 4.1

 Animals .................................................................................................................................. 28 4.2

 HDM-mouse models for allergic airway inflammation ......................................................... 29 4.3

 Preparation of samples ......................................................................................................... 29 4.4



 
2  

 Preparation of bronchoalveolar lavage fluid (BALF) ............................................................. 30 4.5

 Histological staining ............................................................................................................... 30 4.6

 Hematoxylin and eosin (H&E) staining .......................................................................... 31 4.6.1

 Periodic acid–Schiff (PAS) staining ................................................................................ 32 4.6.2

 Diff-Quik staining, BALF and NALF differential cell count analysis ................................ 33 4.6.3

 BALF and NALF differential cell count analysis .............................................................. 35 4.6.4

 Indirect immunofluorescence stain....................................................................................... 35 4.7

 In vivo proliferation study with EdU (5-ethynyl-2’-deoxyuridine) ........................................ 37 4.8

 Total RNA extraction, cDNA synthesis and PCR .................................................................... 39 4.9

 Total RNA extraction ..................................................................................................... 39 4.9.1

 cDNA synthesis .............................................................................................................. 39 4.9.2

 Real-time PCR ................................................................................................................ 39 4.9.3

5 Papers ............................................................................................................................................ 40 

 Paper I .................................................................................................................................... 40 5.1

 Paper II ................................................................................................................................... 53 5.2

 Paper III .................................................................................................................................. 66 5.3

 Paper IV ................................................................................................................................. 76 5.4

6 References ..................................................................................................................................... 87 

7 Abbreviations ................................................................................................................................ 95 

8 Publications ................................................................................................................................... 96 

9 Acknowledgements / Danksagung ................................................................................................ 99 

10 Curriculum vitae / Lebenslauf ................................................................................................. 100 

 

 

 

 

 

  



 
3 List of original papers 

List of original papers 

This thesis is based on the following papers, which are referred to in the text by 

Roman numerals (I - IV):  

I  Le DD, Schmit D, Heck S, Omlor AJ, Sester M, Herr C, Schick B, Daubeuf F, 

Fähndrich S, Bals R, Frossard N, Al Kadah B* and Dinh QT*. Increase of Mast 

Cell-Nerve Association and Neuropeptide Receptor Expression on Mast Cells 

in Perennial Allergic Rhinitis. Neuroimmunomodulation. 2016 Dec 29. DOI: 

10.1159/000453068 

II Le DD, Rochlitzer S, Fischer A, Heck S, Tschernig T, Sester M, Bals R, Welte 

T, Braun A and Dinh QT. Allergic airway inflammation induces the migration of 

dendritic cells into airway sensory ganglia. Respir Res. 2014 Jun 30;15:73. 

III  Le DD*, Funck U*, Wronski S, Heck S, Tschernig T, Bischoff M, Sester M, 

Herr C, Bals R, Welte T, Braun A and Dinh QT. Steroid Treatment Reduces 

Allergic Airway Inflammation and Does Not Alter the Increased Numbers of 

Dendritic Cells and Calcitonin Gene-Related Peptide-Expressing Neurons in 

Airway Sensory Ganglia. Neuroimmunomodulation. 2016;23(1):18-26.  

IV:  Schmit D*, Le DD*, Heck H, Bischoff M, Tschernig T, Herr C, Beisswenger C, 

Kobelt P, Lepper MP, Chung KF, Bals R and Dinh QT. Allergic airway 

inflammation induces migration of mast cell populations into the mouse airway. 

Cell Tissue Res (2017). doi:10.1007/s00441-017-2597-9 

 

 

 

* These authors contributed equally to the study 

The publications are reproduced with the permission of the publishers 

  



 
4 List of original papers 

Additional original papers and manuscripts that were published during the PhD study 

but not included in the thesis:  

1. Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh 

A, Hein C, Kautenburger R, Kickelbick G, Bals R, Nguyen J, Dinh QT. Local 

Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and 

Citrated Gold Nanoparticles in Asthmatic Mice. Small. 2016 Dec 23. doi: 

10.1002/smll.201603070 

2. Heck S, Al-Shobash S, Rapp D, Le DD, Omlor A, Bekhit A, Flaig M, Al-Kadah 

B, Herian W, Bals R, Wagenpfeil S and Dinh QT. High probability of co-

morbidities in bronchial asthma in Germany. Accepted for publication in npj 

Primary Care Respiratory Medicine 

3. Le DD, Schmit D, Heck S, Schick B, Bals R, Frossard N, Al Kadah B anh Dinh 

QT. Increased expression of MrgX1 receptor in human nasal mucosa by 

perennial allergic rhinitis. (in preparation) 

 

 

  



 
5 Summary 

 Summary 1

Allergic airway diseases, such as allergic rhinitis (AR) and allergic asthma, are major 

public health problems in Western Europe and industrial countries, and the 

prevalence of these problems has increased dramatically over the past few decades. 

Allergic inflammation arises due to a complex interaction between the immune and 

nervous systems. Bidirectional neuroimmune interactions during allergic inflammation 

has been proposed, and it is believed to play an important role in allergic diseases. 

Communication between immune cells and nerves can occur through either direct 

contact or via soluble mediators and receptors expressed by immune cells and 

nerves. We investigated the interaction of mast cells (MCs) and dendritic cells (DC) 

with nerves in allergic airway diseases in human and mouse models. 

Mast cells (MCs) and nerves play an important role in allergic rhinitis (AR), but little is 

known about their interactions in AR. We found increased crosstalk of MCs with 

nerves in AR by showing the elevated associations between MCs, especially MCs 

expressing tryptase-chymase (MCtc), and nerves fibres. Additionally, the 

neuropeptide receptors NK1R, NK2R and CGRPR were also found to be expressed 

on MCs. The number of MCs expressing NK1R and NK2R but not CGRPR was 

significantly increased in AR. Interestingly, MCtc mostly expressed these 

neuropeptide receptors. Furthermore, tachykinergic nerve fibres were found to 

express PAR2 and TrkA as receptors for MC mediators. These results suggested 

that the interactions of MCs, especially of MCtc with airway nerves, may play an 

essential role in the pathophysiology of allergic rhinitis (Paper I) 

Neuroimmune interactions can occur not only in target organs innervated by nerve 

fibres but also with their neuropeptides and receptors. Immune cells have been 

shown to interact directly with neurons in airway ganglia (Paper II). Immune cells with 

DC-phenotypes were found to be closely located to vagal sensory neurons in the 
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ganglia jugular–nodosum complex (JNC), which innervate the lower airways. The 

number of DC increased significantly in allergic airway inflammation induced by 

house dust mites (HDM). The proliferation analysis suggested that DC migrated into 

the ganglia during allergic airway inflammation. Furthermore, the number of neurons 

expressing Calcitonin Gene-Related Peptide (CGRP), which can induce the migration 

of DCs, was also found to be increased in HDM-treated mice. 

Fluticasone propionate (FP) has been commonly used for treating bronchial asthma 

and chronic obstructive pulmonary disease (COPD). FP treatment was found to 

suppress allergic airway inflammation. However, this treatment did not have any 

effects on the numbers of DCs and neurons expressing CGRP in JNC (Paper III). 

In another study (Paper IV), we investigated the distribution and proliferation of MC 

populations in different lung compartments, along with the association of mast cells 

with nerve endings, using a house dust mite (HDM) model for allergic airway 

inflammation. HDM treatment caused an increased migration of MCs into bronchi, 

alveolar parenchyma and airway vessels. The number of tryptase-chymase 

expressing MC (MCtc) increased significantly in the bronchi and alveolar parenchyma 

but not in the vascular tissues through allergic airway inflammation. Our analysis 

revealed an anatomical connection between MCs and bronchial nerve fibres. Under 

morphological aspects this connection was not changed after HDM treatment.  

Altogether, the data support the hypothesis that mast cell populations may contribute 

to allergic airway inflammation and that the immune-nerve interaction occurred either 

in the affected organs itself and also in the peripheral airway ganglia. Neuro-immune 

interactions may play a crucial role in the pathophysiology of allergic airway 

inflammation, such as allergic rhinitis and allergic asthma. Understanding these 

underlying mechanisms may provide novel therapeutic targets for the treatment of 

allergic disorders. 
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 Zusammenfassung 2

Allergie ist eine Überempfindlichkeitsreaktion des Immunsystems gegen harmlose 

Proteine, auch als Allergene bekannt, wie Pollen, Tierhaare und Hausstaubmilben. 

Allergische Atemwegserkrankungen, wie allergische Rhinitis und allergisches 

Asthma, sind wegen der steigenden Prävalenz in den letzten Jahrzehnten in Europa 

und in Industrieländern zu einer Volkskrankheit geworden. Allergische Entzündung 

kann nach den gegenwärtigen Forschungsergebnissen weder als eine rein 

immunologische noch als eine ausschließlich neurogene Entzündung angesehen 

werden. Bidirektionale neuroimmune Interaktionen wurden erforscht und spielen 

vermutlich eine wichtige Rolle bei allergischen Erkrankungen. Es wurde gezeigt, dass 

neuroimmune Interaktionen über den direkten Kontakt oder über die Mediatoren und 

Rezeptoren der Immunzellen und Nerven vermittelt werden. In den dieser Arbeit 

zugrunde liegenden Studien wurden Interaktionen von Mastzellen und dendritischen 

Zellen mit der Atemwegsinnervation bei allergischen Erkrankungen der Maus und 

Mensch untersucht. 

Mastzellen (MCs) und Atemwegsinnervation spielen eine wichtige Rolle in 

allergischer Rhinitis (AR), jedoch ist über ihre Interaktion noch wenig bekannt. In 

einer Untersuchung wurde erhöhte Kontakte von Nerven mit Mastzellen, inbesondere 

Mastzellen mit Tryptase und Chymase (MCtc) bei AR beobachtet. Zusätzlich wurde 

auch die Expression der Neuropeptidrezeptoren NK1R, NK2R und CGRPR auf MCs  

nachgewiesen. Die Anzahl der Mastzellen, die NK1R und NK2R, aber nicht CGRPR 

exprimieren, war in AR signifikant erhöht. Interessanterweise, exprimierten ein großer 

Teil der MCtc diese Neuropeptidrezeptoren. Umgekehrt konnte gezeigt werden, dass 

tachykinerge Nervenfasern auch Rezeptoren für Mediatoren von MCs wie PAR2 und 

TrkA exprimieren. Diese Ergebnisse deuten daraufhin an, dass die  Interaktion von 
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MCs, insbesondere von MCtc, mit Atemwegsinnervation eine wesentliche Rolle bei 

der Pathophysiologie der allergischen Rhinitis spielen können (Paper I). 

Die neuroimmunen Interaktionen finden nicht nur in den Zielorganen sondern auch in 

den weit entfernten Atemwegsganglien statt. Die Immunzellen können auch direkt mit 

dem Atemwegsneuron in Wechselwirkung treten (Paper II). Es wurde festgestellt, 

dass Immunzellen mit charakteristischen Phänotypen für dendritische Zellen (DCs) 

direkt an vagalsensiblen Neuronen der Atemwegsganglien des Jugular-Nodosum-

Komplex (JNC) lokalisiert sind. Die Anzahl der DCs hat sich bei der Hausstaubmilben 

(HDM)-induzierten allergischen Atemwegsntzündung deutlich erhöht. 

Untersuchungen mittels Proliferationsanalyse  schlossen eine Proliferation der DCs 

in den Ganglien während der allergischen Atemwegsentzündung aus, so dass eine 

Migration von DCs in den Atemwegsganglien bei HDM-behandelten Mäusen 

angenommen wird. 

Fluticasonpropionat (FP) wird häufig für die Therapie von Asthma bronchiale und 

chronisch obstruktive Lungenkrankheit (COPD) verordnet. FP Behandlung 

unterdrückte die HDM induzierte allergische Atemwegsentzündung im Mausmodell, 

hatte jedoch keine Auswirkungen auf die Anzahl von DCs und Neuronen, die CGRP 

in JNC exprimieren (Paper III). 

In weiteren Studien wurden die Verteilung, die Proliferation und das Überleben von 

MC-Populationen in verschiedenen Kompartimenten der Lunge und die Assoziation 

von Mastzellen mit den Nervenfasern in einen HDM-Mausmodell für allergische 

Atemwegsentzündung untersucht. Behandlung mit HDM führte zu einer gesteigerten 

Migration von MCs zu den Bronchien, dem alveolaren Parenchym und 

Atemwegsgefäßen. Die Anzahl der Tryptase-Chymase exprimierten MCs (MCtc) 

erhöhte sich signifikant in den Bronchien und dem Alveolarparenchym, jedoch nicht 

im Bereich um die Gefäße während der allergischen Atemwegsentzündung. Kontakte 
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von MCs und bronchialen Nervenfasern waren zahlreich, vermehrte Kontakte wurden 

bei allergischer Atemwegsentzündung aber nicht gefunden. Die Ergebnisse dieser 

Arbeiten zeigen, dass die Immunzellen, wie die antigenpräsentierenden Zellen DC 

und Mastzellen, direkt mit den Nervenfasern oder indirekt mit den 

Atemwegsneuronen in den Ganglien in Kontakt stehen, so dass neuroimmune 

Interaktionen in den betroffenen Organen und auch in den Atemwegsganglien 

stattfinden können. Ein besseres Verständnis der neuroimmunen Kommunikation 

kann zu einem besseren Verständnis der Pathophysiologie der allergischen 

Atemwegsentzündung führen und somit auch neue therapeutische Möglichkeit 

eröffnen.  
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 Introduction and aims of the studies 3

  Respiratory system 3.1

The cells and tissues within the body require oxygen to stay alive and to function. The 

respiratory system provides oxygenated blood to the body tissues and removes 

carbon dioxide. Anatomically, the respiratory system can be divided into two main 

components: the upper and lower airways [1]. The upper airway extends from the 

sinonasal area to the larynx. Its functions are conducting ambient air directly into the 

trachea, warming, filtering, and humidifying the inspired air and protecting the lower 

airway from foreign materials [2;3]. The lower airway extends from the trachea to the 

lungs. The inspired air is conducted in the lower airway through the many branches 

of the respiratory tree to the alveoli, which are the small air sacs at the end of the 

respiratory bronchioles where gas exchange takes place [4;5]. Continuous exposure 

to airborne allergens, such as pollen and house dust mites may lead to allergic 

diseases of the airways, including allergic rhinitis and allergic asthma [1]. 

  Allergic rhinitis 3.2

Allergic rhinitis is a common inflammatory disease of the nasal mucosa with a high 

prevalence in developed countries. According to World Allergy Organization (WAO), 

over 400 million people of all ages suffer from allergic rhinitis worldwide [6;7]. Allergic 

rhinitis occurs when the immune system mistakenly identifies a typically harmless 

substance, such as pollen, as an intruder [7-10]. Allergic rhinitis can be categorised 

into two types: seasonal allergic rhinitis and perennial allergic rhinitis. Seasonal 

allergic rhinitis is caused by outdoor allergens, such as pollen, while perennial allergic 

rhinitis is caused by indoor allergens, such a pet dander and house dust mites [6-

9;11].  

The typical symptoms of allergic rhinitis, including sneezing, itching and nasal 

congestion, arise as a result of inflammation caused by an IgE-mediated immune 
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response in which the specific allergens bind to the IgE on the surface of basophils 

and mast cells [8-10;12]. This binding leads to the activation of mast cells, which 

results in the release of various mediators, including histamine, proteases, cytokines 

and other compounds. The end result of this mediator release of mast cells is an 

immediate hypersensitivity [8;13-16]. Moreover, mast cell mediators can also induce 

the infiltration of other immune cells as well as activating the nervous system. 

Immune cells and nerves in turn release further inflammatory mediators and 

neuropeptides that can impair the symptoms of allergic rhinitis or can conversely 

affect the functions of mast cells [12;17-20]. 

  Allergic asthma 3.3

Asthma is designated as a serious public health problem that affects approximately 

300 million people of all ages in the world and prevalence has markedly risen in the 

last few decades [21;22]. Allergic bronchial asthma is a chronic inflammatory 

respiratory disease characterised by airway hyperresponsiveness, mucous secretion, 

airflow obstruction and the structural changes in the airways (airway remodelling) [23-

26]. Allergic asthma is triggered by inhaling a harmless substance, such as pollen, 

house dust mites, pet dander or mould. Environmental triggers can concurrently act 

on airway epithelial cells and airway afferent nerves [25;27-29]. The activation of 

epithelial cells initiates the responses of the immune system by releasing cytokines 

and chemokines, which activate or induce the migration, proliferation and 

differentiation of immune cells [23;30]. The activation of airway afferent nerves may 

lead to the release of their own neuropeptides as well as stimulate reflex responses 

that lead to the release of the bronchoconstrictor acetylcholine. The neuropeptides 

can either influence immune cells or contribute to the symptoms of asthma [29;31-35] 
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  Allergy 3.4

Allergic disease is one major public health problem that affects approximately 25% of 

people in Western Europe and industrial countries, and the prevalence increased 

dramatically over the past few decades [36;37]. The term allergy was used for the 

first time in the year 1906 by Clemens von Pirquet in the “Münchener Medizinische 

Wochenschrift” to describe the unusual tendency of some individuals to develop 

signs and symptoms of reactivity when they were exposed to certain substances 

[36;38].  

Allergy is a hypersensitive adaptive immune response to non-infectious 

environmental substances called allergens that are usually harmless, such as house 

dust mite, pollen, and animal dander [25;26;36]. The exaggerated response of the 

immune system may cause damage to the host. Allergy often arises as allergic 

rhinitis, allergic asthma, dermatitis, and anaphylaxis [26;36]. Based on the 

pathophysiological mechanisms, allergy can be divided into four types: type I, type II, 

type III and type IV [39-41].  

Type I or immediate hypersensitivity, is an IgE-mediated allergic reaction. The 

binding of the allergen to the crosslinking of the IgE-Fc-receptor triggers the release 

of histamine and other proinflammatory mediators from mast cells and basophils 

[26;36;40]. These mediators cause a range of allergic symptoms. The reaction 

usually takes several minutes to develop after exposure to the allergen. Examples 

include allergic asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis [36;39-

41].  

Type II or cytotoxic hypersensitivity reactions are primarily mediated by the 

antibodies of the IgM and IgG classes and their complement. The binding of 

antibodies to antigens on the surface of cells or other tissue components leads to cell 

lysis or extracellular tissue damage via complement activation or antibody-dependent 
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cell-mediated cytotoxicity (ADCC). Examples include transfusion reactions, 

erythroblastosis fetalis, autoimmune haemolytic anaemia and transplant rejection [39-

41]. 

Type III or immune complex reactions are immune complex-mediated allergic 

reactions. Antigen-antibody complexes trigger the complement cascade and 

generate components, including C5a, C3a, C3b. These complement components 

attract polymorphonuclear leukocytes (PMN), which then release lysosomal enzymes 

that lead to inflammatory responses. Antigen-antibody complexes can be deposited 

systemically or locally and cause systemic or local inflammation. Examples include 

systemic lupus erythematosus and serum sickness [39-41].  

Type IV or delayed-type hypersensitivity is a cell-mediated allergic reaction. The 

activation of the CD4+ helper T cells leads to the release of cytokines that activate 

cytotoxic (CD8+) T cells and other immune cells, including macrophages and 

monocytes, which mediate direct cellular and tissue damage. Examples include 

contact dermatitis and granulomatous diseases [39-41]. 

  Pathomechanism of allergy (Type I hypersensitivity) 3.5

Most allergic diseases, including allergic asthma and allergic rhinitis, are type I 

hypersensitivities. The process of allergic inflammation can be divided into two 

stages: sensitization and allergic reactions [40;41] (Figure 1).  
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Figure 1: Mechanisms of type I hypersensitivity. The allergic immune response 

begins with sensitization. Following entry via mucosal surfaces, allergens are taken up by 

local antigen presenting cells, such as dendritic cells. APC then process the allergens and 

they are presented to naïve T-lymphocytes in regional lymph nodes. T cells preferentially 

differentiate to a Th2 phenotype. Cytokines, such as IL4, IL13, and co-stimulatory signals 

from Th2 cells, stimulate B cells to transform memory-activated B cells and antibody 

secreting cells called plasma cells, which produce allergen-specific immunoglobulin E (IgE). 

IgE then sensitizes mast cells and basophils by binding to Fce receptors (FceRs) on their cell 

surfaces. Upon re-exposure, the cross-linking of the IgE–receptor complexes on the surface 

of sensitized mast cells and basophils leads to the degranulation and release of inflammatory 

mediators, including histamine, leukotrienes, and prostaglandins, that cause immediate 

reactions. In late and chronic reactions, the allergens are presented to Th2 by antigen-

presenting cells, such as B cells and dendritic cells. These cells lead to the activation, the 

proliferation and the release of pro-inflammatory cytokines, such as IL-4, IL-5 and IL-13 of 

Th2 cells. Mast cell-derived mediators and Th2 cytokines, such as IL-5, lead to the 

recruitment of eosinophils, which can also release inflammatory mediators. 
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presenting cells (APC), such as dendritic cells (DC) and macrophages [28;36;40;42]. 

The APC then process the allergens into small antigenic peptides (antigen), which 

are displayed on the cell surface by major histocompatibility complex class II (MHC II) 

molecules and presented to the T cell receptors on the naïve T-lymphocytes in 

regional lymph nodes. That presentation leads to the activation and differentiation of 

CD4+ naïve T-cells to T helper type 2 (Th2) cells [36;40;42;43]. Cytokines, such as 

IL4, IL13, and co-stimulatory signals from Th2 cells, stimulate B cells to transform to 

antibody secreting cells called plasma cells, which produce allergen-specific 

immunoglobulin E (IgE). The secreted IgE antibodies bind through its Fc portion to 

the high affinity receptor FcεRI on the cell surface of various cells, such as mast cells 

and basophils [14;25;36;40]. 

 Allergic reactions 3.5.2

The allergic immune response to allergen by re-exposure can be classified into three 

temporal phases. The early phase reactions occur within seconds to minutes after re-

exposure to the allergen. The late-phase reactions are induced within several hours. 

The chronic allergic inflammation is a constant inflammatory response that occurs if 

the allergen-exposure persists [36;40].  

 Early phase reactions 3.5.2.1

Upon re-exposure, the allergens are captured by mast cell/basophil-bound-IgE 

antibodies. The cross-linking of the FcεRI via IgE-antigen complexes activates the 

intracellular signalling pathways that lead to the degranulation of mast cells or 

basophils with the release of inflammatory mediators, including histamine, 

leukotrienes and prostaglandins. These actions cause a range of allergy symptoms, 

such as oedema caused by the increased vascular permeability and vasodilation, 
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sneezing, airway mucus secretion, bronchoconstriction, urticaria, vomiting and 

diarrhoea [26;28;36;40].  

 Late phase reactions 3.5.2.2

The late phase reactions occur approximately 4 to 6 hours after the allergen 

exposure. The mast cell-derived mediators cause the vascular permeability leading to 

recruitment of leukocytes into the tissue. The mediators, such as IL4 and IL5, act as 

chemoattractants that promote the infiltration and activation of inflammatory cells 

such as Th2 cells, eosinophils, basophils and other leukocytes [24;28;36]. After 

activation, these immune cells release an amount of inflammatory mediators. 

Eosinophils produce and store a variety of mediators, including cytotoxic proteins, 

lipid mediators, and cytokines that lead to epithelial damage. The Th2-lymphocyte-

derived cytokines IL-4 and IL-5 induce IgE production, eosinophil survival and 

inflammatory cell recruitment [28;36]. The late phase response was associated with 

various symptoms, including shortness of breath, coughing, continuous mucus 

production, constant blockage of the nasal passages, swelling and oedema 

[36;39;40].  

 Chronic allergic inflammation 3.5.2.3

Continuous allergen exposure causes persistent inflammation, which is characterized 

by the presence of large numbers of inflammatory cells as well as the alteration of 

structural cells, including goblet cell hyperplasia, airway wall fibrosis, smooth muscle 

thickening and increased vascularity [36;39;40]. 

  Neuroimmune interactions in allergic inflammation 3.6

Allergic inflammation is due to a complex interaction between the immune and 

nervous systems. Bidirectional neuroimmune interplay during allergic inflammation 

has been proposed and is believed to be involved in allergic disorders [32;44]. 
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Previous studies supported this assumption by showing the structural and functional 

associations of immune cells and nerves in several allergic diseases [18;45;46]. The 

communication between immune cells and nerves can occur by either direct contact 

(membrane-to-membrane contact) or via soluble mediators released by immune cells 

and nerves [18;47-49]. The activation of afferent nerves by environmental triggers, 

such as HDM, pollen and pet dander, may lead to a release of neuropeptides and to 

the reflex responses of the autonomic nervous system [29;50]. Neuropeptides, 

including SP and CGRP, can act on either structural cells or immune cells, including 

dendritic cells and mast cells, by inducing the proliferation, migration and mediator 

expression or degranulation that contribute to symptomatic disease [29;31;33]. 

Conversely, immune cell-derived mediators, such as proteases and cytokines, can 

mediate signals from the immune system to the nervous system and stimulate the 

synthesis of neuropeptides, which also contribute to symptoms of allergy [17;51-53]. 

Neuroimmune interactions are believed to play an important role in the 

pathophysiology of allergic diseases and have become a focus of allergy research. 

  Airway innervation 3.7

Airways are richly innervated by autonomic and sensory nerve fibres, which regulate 

many aspects of airway function, including airway and vascular tone, mucus 

secretion, vascular permeability, and the migration and activation of immune cells 

[29;54]. According to traditional classification, the nerve supply of the airways is 

divided into a sensory and autonomic efferent system, including sympathetic and 

parasympathetic innervation [29;32;54;55].  
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 Upper airway innervation 3.7.1

 Sensory innervation of the upper airway 3.7.1.1

The functions of sensory nerves are relaying the signals from organs to the central 

nervous system so that suitable responses in the motor outputs can occur. The 

sensory nerve fibres innervating the nasal mucosa originate from the neurons located 

in the trigeminal ganglion and have been found to innervate blood vessels, glands 

and the epithelium of the nasal mucosa [20;55;56]. Sensory neuropeptides, such as 

tachykinins (substance P (SP)) and CGRP, have also been found in nasal-specific 

trigeminal neurons and nerve fibres projecting to the nasal mucosa [55-57]. Through 

mechanoreceptors and chemosensitive nerve endings, sensory nerve fibres can 

protect the lower respiratory tract against inhaled harmful particles and chemicals 

through nasal protective reflexes [8;20]. Stimuli, such as chemicals, cigarette smoke 

and pollen, can activate sensory neurons and lead to the release of proinflammatory 

neuropeptides, such as SP and CGRP [56;57]. These neuropeptides can induce 

vasodilatation of blood vessels, mucous secretion and the activation of various 

immune cells [20;55-58].  

 Autonomic innervation of upper airway 3.7.1.2

The autonomic nervous system controls the functions of the nose, including nasal 

resistance, the air-conditioning action, mucous secretion, mucus blanket and the 

function of the cilia through sympathetic and parasympathetic nerve fibres. The 

functions of the autonomic nerve systems can become unbalanced during nasal 

inflammation, which may lead to an increase in nasal congestion and nasal 

secretions [20;55;59;60]. Autonomic nerve fibres in the nose originate from the 

superior salivatory nucleus in the brain stem (parasympathetic) and superior cervical 

ganglion (sympathetic) via the pterygopalatine ganglion [55;60].  
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Several sympathetic nerve fibres were found around nasal blood vessels, whereas, 

the parasympathetic nerve fibres abundantly innervate mucus glands [20;55]. 

Stimulation of sympathetic nerve fibres may lead to the release of noradrenaline (NA) 

which causes the contraction of blood vessels in nasal mucosa. Another 

neuropeptide of sympathetic nerve fibres is the neuropeptide tyrosine (NPY). NPY is 

able to regulate the vasoconstriction of the blood vessels [19;55;60]. Nasal 

secretions of mucus glands are controlled by parasympathetic nerve fibres through 

neuropeptides, such as acetylcholine (ACh), whereas other parasympathetic 

neuropeptides, including vasoactive intestinal peptide (VIP), stimulate the 

vasodilatation of blood vessels [12;20;55;60;61].  
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 Lower airway innervation 3.7.2

 

Figure 2: Lower airway innervation. The sensory innervation of the lower airway 

originates from the jugular nodose and dorsal root ganglia. Parasympathetic ganglia located 

within the airway wall are connected with the motor nuclei of the brainstem by vagus nerves. 

Sympathetic neurons, which are derived from the cervical and thoracic spinal cord, are 

located in the cervical and thoracic ganglia, and the sympathetic postganglionic fibres reach 

from these ganglia to the lungs [62-65] 
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 Sensory innervation of the lower airway 3.7.2.1

The largest portion of sensory innervation to the mammalian lungs is carried in the 

vagus nerve. The neuron cell bodies are localised in two distinct vagal sensory 

ganglia, including the nodose ganglion and the jugular ganglion, which provide input 

to the nucleus in the brain stem. These ganglia have also been called the nodose 

and jugular ganglia complex (JNC) in the mouse [35;54;55;63;65-67]. The smaller 

part of sensory nerves innervating the lower airways originates from the dorsal root 

ganglia [68]. Based on the functional properties, the sensory nerve endings were 

categorised in three classes: rapidly adapting stretch receptors (RARs), slowly 

adapting stretch receptors (SARs), and C-fibre endings [32;54].  

Stimuli, such as allergens, cigarette smoke and proinflammatory mediators, can 

activate airway sensory nerves that lead to changes in the motoric outputs and the 

release of neuropeptides, such as tachykinins (SP, NKA) and CGRP, which causes 

various respiratory defence reflexes, such as hyperaemia, oedema, mucus 

hypersecretion, bronchoconstriction, changes in blood pressure and cough 

[29;32;54;63;64;67]. Moreover, sensory neuropeptides can also influence the 

function of various immune cells in the lungs, including dendritic cells [49;69-72] 

(Figure 2).  

 Autonomic innervation of the lower airway 3.7.2.2

Autonomic nervous innervation is derived from the parasympathetic and sympathetic 

nerves to the lower airway and plays a major role in regulating airway smooth muscle 

and vascular tone [29;32;34;54;55;73]. There are two clusters of neuronal cell bodies 

involved in the autonomic nerve pathway. One is located in the brain stem or spinal 

cord and is called a nucleus. It is connected by nerve fibres to the other autonomic 

ganglia [33;54;55;73]. 
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Parasympathetic ganglia located within the airway wall are connected with motor 

nuclei of the brainstem by vagus nerves. The ganglia of the sympathetic nerves are 

located outside the spinal cord, and postganglionic fibres reach from these ganglia to 

the lungs [33;55;73].  

The autonomic innervation in mammalian lower airways is composed mostly of 

parasympathetic nerves terminating in bronchial smooth muscle and submucosal 

glands [33;54;55;73]. Parasympathetic nerves in the human lungs contain 

neurotransmitters, such as acetylcholine (Ach), vasoactive intestinal peptide (VIP) 

and the molecular nitric oxide (NO). Neuropeptides, such as SP and CGRP, were 

also found on airway parasympathetic nerve fibres of other species. Stimulation of 

parasympathetic nerves may lead to the release of Ach that causes 

bronchoconstriction, mucus secretion and bronchial vasodilation [29;31;33;55;73;74].  

Sympathetic nerves were sparsely found around bronchial blood vessels and 

submucosal glands [54;55;73]. The neurotransmitter release by airway sympathetic 

nerves are noradrenalin (NA), neuropeptide Y (NPY), VIP and NO [29;31;54;55;73]. 

Relatively little is known about the functions of airways sympathetic nerves. It could 

be that the sympathetic nervous system regulates the airways via noradrenalin 

receptors (α- and ß-adrenergic receptors), which were found in bronchial smooth 

muscle from the trachea to the terminal bronchioles [31;32;54;75]. Due to the release 

of several neuropeptides, sympathetic nerves may play an important role in the 

physiological and pathophysiological conditions of the airways (Figure 2). 

  Tachykinins 3.8

The tachykinins (also called neurokinins) are a family of closely related 

neuropeptides, which represent one of the largest peptide families described in the 

animal organism [31;76]. The tachykinins are derived from two distinct genes: the 

preprotachykinin-I gene (PPT-I or PPT-A) encodes for substance P (SP), neurokinin 
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A (NKA), neuropeptide K (NPK), and neuropeptide γ (NPγ), while the PPT-II gene (or 

PPT-B) encodes for neurokinin B (NKB). The best known members of the family are 

SP, NKA and NKB [67;76;77]. Tachykinins have been shown to be in a distinct 

subpopulation of primary afferent nerves, which are sensitive to capsaicin. The 

release of tachykinins can be evoked by different stimuli, such as histamine, 

bradykinin, prostaglandins, and leukotrienes [31;76;77].  

The tachykinins are known to have various effects on allergic inflammation 

[35;56;57;76]. SP and NKA have been found to induce the constriction of airway 

smooth muscle, the secretion of the submucosal gland and vascular permeability 

[29;31;33;50;76;77]. Additionally, SP and NKA have the capacity to regulate the 

function and migration of various immune cells, such as mast cells, B cells, T cells, 

eosinophils and neutrophils [78-80]. Tachykinins act on specific membrane receptors 

that belong to the family of G-protein-coupled receptors [76;77]. Three well-

characterised tachykinin receptors are the Neurokinin 1 receptor (NK1R), NK2R, and 

NK3R. All three receptors can be activated by tachykinin Calcitonin Gene-Related 

Peptide (CGRP). However, according to the order of tachykinin potency, three 

receptors are recognized: SP > NKA > NKB for NK1R, NKA > NKB > SP for NK2R 

and NKB > NKA > SP for NK3R [76;77]. Additionally, the newly discovered Mas-

related gene X2 (MrgX2) receptor belongs to a mas-related gene family, which has 

been reported to contain receptors of SP [81-84]. 

  Calcitonin Gene-Related Peptide (CGRP) 3.9

CGRP is a member of the calcitonin family of peptides, consists of 37 amino acids 

and is a product of calcitonin/CGRP pre-mRNA alternative splicing [77;85;86]. CGRP 

is expressed predominantly by the sensory nervous system and is often co-localized 

along with tachykinins [85;87]. This neuropeptide was found to be expressed in nerve 

fibres that project to many organs, including the respiratory system [31;77;86;88]. 
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CGRP acts through the high affinity G-protein coupled receptor called calcitonin 

receptor-like receptor (CRLR) and a receptor activity modifying protein 1 (Ramp1) 

[32;77;87]. 

CGRP is reported to have multiple effects in allergic diseases, such as the regulation 

of bronchoconstriction of airway smooth muscle and vasodilation of vessels 

[29;77;86;87]. Furthermore, CGRP has been described to play an immunomodulatory 

role in the regulation of immune cells, such as dendritic cells and mast cells 

[47;69;70;89]. With respect to its pro-inflammatory role, CGRP has the capacity to act 

as a chemoattractant factor for different immune cells, such as CD4+ T-lymphocytes, 

CD8+ T-lymphocytes, eosinophils and DCs, and it is able to induce the proliferation of 

airway epithelial cells [29;49;69;72;90;91]. On the other hand, CGRP has been 

reported to have anti-inflammatory functions, such as suppression of IL-2 production 

and proliferation in murine T cells and induction of TNF-α secretion in murine bone 

marrow-derived dendritic cells (BMDC) by inhibition of the toll-like receptor (TLR) 

ligand [92-95]. 

 Mast cells 3.10

Mast cells (MCs) are key effector cells in allergic diseases [15;96-98]. When MCs are 

activated, they degranulate and release a number of biologically active molecules 

from their secretory granules. These molecules include histamine, prostaglandins 

(PGs), leukotrienes (LTs), nerve growth factor (NGF) and various MC-specific 

proteases, such as tryptase and chymase [14;16;52;99;100]. These mediators can 

have effects on various cell types, such as immune, epithelium, endothelium and 

airway smooth muscle cells in different compartments of the airway [98;101-103]. 

Based on the type of neutral protease content, human mast cells can be classified in 

two subpopulations, including MCt, which contains only tryptase, and MCtc, which 
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contains chymase in addition to tryptase [98;104;105]. In contrast, rodents have been 

shown to express a number of chymases, such as mast cell protease (mMCP)-1, 

mMCP-2, mMCP-4 and mMCP-5 with distinct proteolytic properties. With respect to 

their biological effects, mMCP-4 expressed by mouse MCs have been suggested to 

be a functional homologue of human chymase [105-108].  

Activation of mast cells can be modulated by various mediators, including 

neuropeptides [109]. Sensory neuropeptides, such as tachykinins (SP and NKA), act 

via neurokinin 1 receptor (NK1R), neurokinin 2 receptor (NK2R) and MrgX2, which is 

a newly discovered receptor belonging to a mas-related gene family (MrgX 

receptors), whereas CGRP activates the CGRP receptor (CGRPR) [16-

18;81;110;111]. Reciprocally, a variety of molecules, including histamine, serotonin 

and nerve growth factor (NGF), which are synthesized and released by mast cells, 

can influence neuronal activity as well as the release of neuropeptides [56;112-114]. 

Additionally, protease-activated receptor 2 (PAR2) and the histamine receptor have 

also been found on trigeminal neurons in animals [115;116]. MCs exhibit variable 

functional aspects of both the nervous and immune systems [18;88;113]. MCs were 

found to be associated with nerve fibres in animal and human tissue under 

physiological and pathophysiological conditions [117-119]. However, little is known 

about the mast cell-nerve interaction in allergic airway inflammation, such as allergic 

rhinitis and allergic asthma .  

 Dendritic cells 3.11

Dendritic cells (DCs) are phagocytic cells that are localised in many organs in the 

skin, in the mucosa of the intestines, the upper airways, the lungs and the brain 

[42;43;120;121]. As professional antigen-presenting cells, DCs play a key role in the 

induction of allergic airway inflammation [42;43;122]. They capture the antigen, 
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process it and subsequently present it to naïve T lymphocytes on the MHC class II 

molecules (MHC II) in local lymph nodes, which leads to the initiation of Th2-immune 

allergic inflammatory processes [43;123;124]. It has been shown that the maturation 

and differentiation of DCs can be modulated by various cytokines as well as 

neuropeptides, such as calcitonin gene-related peptide (CGRP) [69;76;125]. In 

contrast, DCs can activate neurons via secretion of neurotrophins leading to the 

production of neuropeptides that cause neurogenic airway inflammation [126;127]. 

Previously, DCs were found to have a frequent anatomic association with CGRP-

containing sensory nerve fibres of the airways and skin [46;128]. However, DCs in 

airway sensory ganglia have been not explored under normal and allergic airway 

inflammation yet. 

 Aims and Hypotheses 3.12

Paper I: Mast cells (MCs) and trigeminal nerves play an important role in allergic 

rhinitis (AR), but little is known about mast cell-nerve interaction in the nasal mucosa. 

This study aimed to investigate the mast cell-nerve association and neuropeptide 

receptor expression on mast cells in the human nasal mucosa during allergic rhinitis. 

Paper II: Neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in 

the lung has recently been reported. However, the presence of DCs in airway 

sensory ganglia under normal and allergic conditions has not been explored. This 

study therefore aimed to investigate the localisation, distribution and proliferation of 

DCs and CGRP immunoreactive (IR)-neurons in vagal sensory jugular-nodose 

ganglia under allergic airway inflammation by using a chronic house dust mite (HDM) 

mouse model. 

Paper III: DCs were found to be localised in JNC under physiological conditions, and 

their number was significantly increased during allergic airway inflammation by 
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migration from outside the ganglia. However, the impact of fluticasone propionate on 

neuropeptide expression and on the migration of DCs in airway sensory ganglia has 

been not explored so far. The present study aimed to investigate the anti-

inflammatory effects of steroid treatment on the presence and distribution of DCs and 

CGRP immunoreactive neurons in vagal sensory jugular nodose ganglia under 

allergic airway inflammation. 

Paper IV: Mast cells (MCs) and airway nerves play an important role in allergic 

asthma. However, little is known about MCs and their interaction with airway nerves 

during allergic airway inflammation. This study aimed to investigate the distribution 

and proliferation of MC populations in different lung compartments, along with the 

association of mast cell with nerve endings, using a house dust mite (HDM) model for 

allergic airway inflammation. 
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4 Materials and Methods 

  Patients and nasal biopsies 4.1

Fourteen subjects were recruited for this study. Subjects with a positive history of 

allergy symptoms and subjects with a positive prick test for common aeroallergens 

(grass or birch pollen, hazel, Dermatophagoides pteronyssinus, Dermatophagoides 

farinae, cat or dog dander) as well as a positive radioallergosorbent test (RAST test) 

were identified as patients with allergic rhinitis. The allergic rhinitis group contained 

eight patients with perennial allergic rhinitis. All patients had symptoms of allergic 

rhinitis, such as sneezing, itching, nasal blockage, and rhinorrhea at the time of nasal 

surgery. The control group contained six healthy subjects without any allergic 

diseases or symptoms of allergic rhinitis at the time of nasal surgery. All subjects 

were prohibited from taking any anti-inflammatory drugs for at least four weeks prior 

to the nasal surgery. Biopsy specimens of the nasal mucosa were collected from 

2013 to 2014 and taken from the turbinate in nasal surgery to reduce the size of the 

turbinate due to airflow limitations with causes, such as deviation of the septum or 

nasal concha hyperplasia. All specimens were divided into two portions, one for 

cryosections and the other for PCR. All samples were then examined blindly and 

independent of the clinical data. This study was approved by the local ethics 

committee, and all participants provided written consent.  

  Animals 4.2

Female wild-type BALB/c-mice (6-8 weeks old) were purchased from Charles River 

and Janvier-Labs. The animals were held in regular 12 h dark/light cycles at a 

temperature of 22°C and received laboratory food and tap water ad libitum. The 

animals were acclimatised for at least 2 weeks prior to the study. All animal 

experiments were performed in strict concordance with the German animal protection 

law and approved by the appropriate governmental authority. 
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  HDM-mouse models for allergic airway inflammation 4.3

BALB/c mice (n = 10) were exposed for 5 consecutive days per week within a total 

period of 7 weeks by intranasal instillation of HDM extract (Greer Inc., USA) with a 

dose of 25 μg protein in 50 μl of saline. The control group (n = 10) was treated 

intranasally with 50 μl of saline. For the proliferation study animals received an 

intraperitoneal (i.p.) injection of 1 mg of 5-ethynyl-2’-deoxyuridine (EdU) (in DMSO) 

(Invitrogen) at a volume of 200 µl 24 h before sacrifice. Analyses were performed 24 

h after the last allergen challenge (Figure 3).  

 

Figure 3: HDM treatment protocol: The animals were systemically sensitised by 

intranasal application of house dust mites 5 days a week for 7 weeks. 5-ethynyl-2’-

deoxyuridine (EdU) was injected (i.p.) one day before analysis 

 

  Preparation of samples 4.4

After dissection, the human nasal biopsies as well as the mouse samples were 

immediately placed in Zamboni solution (Morphisto – Evolutionsforschung und 

Anwendung GmbH, Frankfurt am Main, Germany). After an overnight fixation, 

specimens were rinsed in 0.1 M phosphate buffered saline (PBS) for 24 hours and 

cryoprotected overnight with 30% sucrose in 0.1 M PBS. All steps in the specimen 

processing were performed at 4°C. The biopsy specimens were embedded in 
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30 Materials and Methods 

optimum cutting temperature (O.C.T) medium (Tissue-Tek, Sakura) and frozen in 

liquid nitrogen. Serial 8-µm sections were prepared using a cryostat (Leica CM 1950, 

Nussloch, Germany), placed on APES (3-aminopropyltriethoxysilane) coated glass 

slides, dried at room temperature for 30 min and then stored in the freezer at -80°C. 

  Preparation of bronchoalveolar lavage fluid (BALF) 4.5

The animals were sacrificed 24 hours following the last airway challenge. Mice were 

anesthetized with an intraperitoneal injection of 0.5 – 0.7 ml/kg of a compound of 

Ketamine (90 - 100 mg /kg bodyweight) and Rompun 6 - 8 mg/kg bodyweight) and 

the tracheae were cannulated with an 18 gauge needle (Dispomed). Bronchoalveolar 

lavage (BAL) was performed by instillation of 1 ml ice-cold PBS containing protease 

inhibitors. The total number of cells was counted using a Casy® cell counter or 

Neubauer chamber. The BALF was centrifuged (320 x g, 10 min, 4°C), and the 

supernatants were removed. The cell pellets were resuspended in 1 ml PBS and 100 

µl of BALF for each mouse were used for the preparation of cytospots with cytospin 

(Tharmacspin). The cytospot-slides were fixed with ice-cold 100% methanol and 

stained with Diff-Quik (Medion Diagnostics), and the differential cell counts were 

evaluated.  

  Histological staining 4.6

Most cells are transparent and colourless. Therefore, the histological stains are 

frequently used to make the cells or structures more visible. The techniques can 

either be a non-specific stain, which stains most of the cells, or a specific stain, which 

stains selectively chemical groupings or molecules of cells or tissues. Staining 

techniques usually work with two steps. First, some components of the cells are 

highlighted by a bright colour by using a dye. The following counterstain stains the 

rest of the cell in a different colour to make the stained structure more easily visible. 
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Acidic dyes colour cationic or basic cell components, including proteins and other 

components in the cytoplasm. Basic dyes stain anionic or acidic cell components, 

such as nucleic acids [129]. 

 Hematoxylin and eosin (H&E) staining 4.6.1

The H&E stain is the most common staining technique used in histology, and it is 

usually used for recognizing various tissue types and morphological changes by 

highlighting the structures and cell populations. H&E stain are combined from two 

dyes, hematoxylin and eosin, to stain different tissue elements. Eosin reacts like an 

acidic dye. Therefore, it stains basic or acidophilic structures, including the cell walls, 

cytoplasm and extracellular fibres in various shades of red, pink and orange. 

Haematoxylin is a basic dye. It colours acidic or basophilic structures, such as the 

cell nucleus and organelles, that contain RNA a purplish blue [129]. 

Procedure 

- Dry cryosections at room temperature for 15 minutes 

- Place in Hematoxylin for 3 min 

- Rinse in running tap water 

- Differentiate with 1 % ethanoic acid for 10 sec 

- Rinse in running tap water 

- Stain with eosin for 1 min 

- Dehydrate in ascending ethanol solutions (70 %, 96 %, 99 %) 

- Clear in xylene for 3 minutes 

- Mount coverslip onto glass slides with Entellan (Merck) 

Results 

Nuclei should be stained blue, and cytoplasm should be stained pink to red (Figure 4) 
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Figure 4: H&E staining of the lungs from mice treated with HDM and saline. 

The lung sections from HDM-sensitised and challenged mice showed infiltration of 

mononuclear cells. Scale bars: 100 µm 

 

 Periodic acid–Schiff (PAS) staining 4.6.2

Periodic Acid–Schiff (PAS) staining is used to detect polysaccharides, including 

glycogen, and mucosubstances, such as glycolipids, glycoproteins and mucins, in 

cells and tissues. 

Procedure 

- Dry cryosections at room temperature for 15 minutes 

- Rehydrate sections in PBS for 5 minutes  

- Oxidize in 0.1% periodic acid solution for 5 minutes 

- Wash in lukewarm tap water for 1 minute 

- Rinse in distilled water for 5 minutes 

- Place in Schiff reagent (Roth) for 20 minutes 

- Rinse in distilled water for 5 minutes 

- Counterstain in hematoxylin (Sigma-Aldrich) for 1 minute 

- Wash in tap water for 5 minutes 

- Dehydrate in ascending ethanol solutions (75%, 80%, 99%) 

SalineHDM
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- Clear in xylene for 3 minutes 

- Mount coverslip onto a labelled glass slide with Entellan (Merck) 

Results 

Glycogen, mucin and some basement membranes should be stained red to purple, 

and the nuclei should be stained blue (Figure 5).  

 

Figure 5: PAS staining of lung tissues from mice treated with HDM and saline. 

C and D are larger magnifications of A and B. The lung sections from HDM-sensitised and 

challenged mice showed more mucus-expressing cells (purple) than saline-treated animals. 

Scale bars: 200 µm in A and B, 50 µm in C and D 

 

 Diff-Quik staining, BALF and NALF differential cell count analysis 4.6.3

Diff-Quick is a modification of the Romanowsky Stain technique, which is used in the 

differential staining of basophilic and acidophilic material. Diff-Quick is a 

polychromatic stain combined from Eosin Y (an anionic dye) and thiazine dyes 

(cationic dyes) that consists of Methylene Blue and Azure A. When applied to 
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immune cells, the dyes produce multiple colours based on the ionic charge of the 

stain and the various cell components. The eosin ions are negatively charged and 

stain the granules in the cytoplasm a bright orange to pink colour. The methylene 

blue ions are positively charged and colour the acid cell component nucleoli and 

cytoplasm in varying shades of blue [130]. In these studies, Diff-Quik staining was 

used to stain the cells in BALF. 

Procedure  

Diff-Quik staining set of Medion Diagnostics was used, and the stain was performed 

according to the manufacturer’s recommendations with modifications as described 

below. 

- Dry slides at room temperature for 15 minutes 

- Dip slides in Stain Solution I for 45 seconds 

- Dip slides in Stain Solution II for 45 seconds 

- Rinse slides in distilled water 

- Mount coverslip onto glass slides with Entellan (Merck) 

 

Results  

Nuclei should be stained dark-blue to blue-violet with blue cytoplasm blue, and 

granules that are red to red-orange (Figure 6).  
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Figure 6: Diff-Quik Staining of BALF cells from mice treated with HDM treated: 

M: macrophages, L: lymphocytes, N: neutrophils, E: eosinophils. Scale bars: 50 µm 

 

 BALF and NALF differential cell count analysis 4.6.4

After the Diff-Quick staining, the differential cell counts were evaluated according to 

morphological characteristics of the immune cells using a light microscope. More 

than 300 cells from each sample were counted. 

  Indirect immunofluorescence stain 4.7

Immunofluorescence (IF) is an imaging technique that is based on the use of specific 

antibodies to label a target antigen in cells or tissue sections with a fluorescent dye. 

There are two major types of immunofluorescence stain: direct and indirect 

immunofluorescence. Direct immunofluorescence uses a fluorescent dye-conjugated 

primary antibody to detect the target antigen. Indirect IF uses of an unlabelled 

primary antibody, which binds to the target of interest, and then a fluorescent dye 
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conjugated anti-immunoglobulin antibody (called secondary antibody), which 

recognizes and binds to the constant portion of primary antibody, that indirectly 

localizes the target for detection with a fluorescence microscope. An indirect 

immunofluorescence stain was used in these studies (Figure 7). 

Procedure 

Cryosections were dried at room temperature for 15 minutes and then rehydrated in 

PBS for 5 min. To reduce non-specific antibody binding, the sections were incubated 

for 15 min at room temperature in 5% normal serum of the host species of the 

secondary antibody diluted in 0.1 M PBS. The sections were incubated with primary 

antibodies or the appropriate isotype control antibodies for 1 h at room temperature 

and then overnight at 4°C. After rinsing with 0.1 M PBS twice, the sections were 

incubated with secondary fluorescein-conjugated antibodies for 2 h at room 

temperature. For counterstaining, the sections were incubated with 100 μl of DAPI 

(0.5 μg/ml, Carl Roth, Germany) for 15 min at room temperature. Finally, the sections 

were washed twice with 0.1 M PBS and once with double distilled water, then 

mounted with fluorescent mounting medium Fluoroshield™ (Sigma-Aldrich) or 

Prolong Gold (Invitrogen) and covered with coverslips.  

The slices were visualised with epifluorescence microscopes (Axioskop 2 plus, Axio 

Imager M2 (Carl Zeiss) and Olympus BX5) or a confocal laser scanning microscope, 

LSM 510 META (Carl Zeiss, Jena, Germany). The confocal images were processed 

using Imaris 4.5.2 (Bitplane, Zurich, Switzerland). 
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Figure 7: Principles of an indirect immunofluorescence stain: In the blocking step, 

the IgG in the serum of the host species of the secondary antibody will bind unspecifically to 

the target antigen as well as the non-target antigen. The primary antibody has a high affinity 

to the target antigen and will replace the normal IgG and bind specifically to the epitope on 

the target antigen. The fluorescent dye conjugated secondary antibodies will bind specifically 

to the Fc-portion of the primary antibody. 

 

  In vivo proliferation study with EdU (5-ethynyl-2’-deoxyuridine) 4.8

The Click-iTTM (Invitrogen) method is a technique for labelling DNA in vivo that allows 

researchers to image the replicated DNA in the context of well-preserved cellular and 

chromatin ultrastructure. Click-iTTM reactions using azides and alkynes as specific 

binding moieties in a two-step procedure that first labels and then subsequently 

detects the molecule of interest. In these studies, the 5-ethynyl-2’-deoxyuridine 

(EdU), which contains the alkyne, was used for the labelling step (Figure 8).  
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EdU is a nucleoside analogue of thymidine and is incorporated into DNA during 

active DNA synthesis. Controls and HDM-treated animals received an i.p. injection of 

1 mg of EdU (in DMSO) (Invitrogen) at a volume of 200 µl 24 h before sacrifice.  

Incorporated EdU was detected by using the Click-iTTM Cell reaction buffer kit and 

Alexa Fluor 594 azide (Invitrogen) according to the manufacturer’s protocol. The 

cryosections were rehydrated for 5 min in PBS and then blocked with 5 % normal 

serum. The sections were incubated with 200 µl of the prepared Click-iT reaction 

cocktail for 30 min and then incubated with primary and secondary antibodies as 

described above. 

 

Figure 8: Click-iT technology overview provided by the manufacturer 

(Invitrogen). Click-iTTM reactions use EdU as a specific binding moiety to label replicated 

DNA. Incorporated EdU was detected using an azide tagged with an Alexa FluorTMdye. The 

copper-catalysed click reaction links an alkyne with an azide to form a stable inert product 

(this figure was adapted from Invitrogen materials). 
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  Total RNA extraction, cDNA synthesis and PCR 4.9

  Total RNA extraction 4.9.1

In these studies, total RNA was isolated using an RNeasy Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. To remove genomic DNA, 

additional DNase digestion during RNA isolation was performed. The quality of total 

RNA was assessed with a NanoDrop 8000 (Thermo Scientific). 

  cDNA synthesis 4.9.2

Reverse Transcription (cDNA synthesis) was performed using an Omniscript RT kit 

and random primers (Qiagen, Hilden, Germany), according to the following protocol: 

1x cDNA reaction 

10x Buffer RT    2 μl  

dNTP Mix (5 mM each dNTP)   2 μl  

Oligo-dT primer (10 μM)   2 μl  

RNase inhibitor (10 units/μl)  1 μl  

Omniscript Reverse Transcriptase  1 μl 

Total RNA     variable 

H2O      variable 

Total Volume     20 µl 

  Real-time PCR 4.9.3

Real-time PCR was conducted using a CFX96 Touch™ Real-Time PCR Detection 

System (Bio-Rad, Germany) with a SensiMix SYBR & Fluorescein Kit from Bioline 

(Bioline Germany), and the reactions were conducted based on the manufacturer’s 

manual. All samples were run in duplicate and RNA levels were normalized to the 

level of β-actin. The expression of target genes was calculated relative to the control 

group using the ΔΔCt method. Images of the PCR Midori Green Advance-stained 

agarose gels were acquired with the Gel Doc XR+ System (Bio-Rad). 
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AR   Allergic rhinitis 

APC    Antigen-presenting cell 

APES    3-Aminopropyltriethoxysilane 

BALF   Bronchoalveolar lavage fluid 

CGRP   Calcitonin gene-related peptide 

CGRPR  Calcitonin gene-related peptide receptor 

DC    Dendritic cells 

DAPI    4’, 6-diamidino-2-phenylindol dihydrochloride 

EdU    5-ethynyl-2’-deoxyuridine 

FP    Fluticasone propionate 

GFAP   Glial fibrillary acidic protein 

GS    Glutamine synthetase 

HDM    House dust mite 

H&E    Hematoxylin and eosin 

Iba1    Ionized calcium binding adapter molecule 1 

IR    Immunoreactive 

JNC    Jugular-nodose ganglia complex 

LPS    Lipopolysaccharide 

MC   Mast cells 

MCt   Tryptase expressing mast cells 

MCtc   Tryptase and chymase expressing mast cells 

MHC II   Major histocompatibility class II 

NK1R   Neurokinin-1 receptor 

PAS    Periodic Acid Schiff 

PBS    Phosphate buffered saline 

PGP 9.5   Protein gene product 9.5 

SGC    Satellite glia cell 

SP   Substance P 

VIP    Vasoactive intestinal peptide 
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