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Abstract

Abstract In this thesis, we consider a variety of combinatorial optimization problems
within a common theme of uncertainty and selfish behavior.

In our first scenario, the input is collected from selfish players. Here, we study exten-
sions of the so-called smoothness framework for mechanisms, a very useful technique for
bounding the inefficiency of equilibria, to the cases of varying mechanism availability and
participation of risk-averse players. In both of these cases, our main results are general
theorems for the class of (λ, µ)-smooth mechanisms. We show that these mechanisms
guarantee at most a (small) constant factor performance loss in the extended settings.

In our second scenario, we do not have access to the exact numerical input. Within
this context, we explore combinatorial extensions of the well-known secretary problem
under the assumption that the incoming elements only reveal their ordinal position within
the set of previously arrived elements. We first observe that many existing algorithms
for special matroid structures maintain their competitive ratio in the ordinal model. In
contrast, we provide a lower bound for algorithms that are oblivious to the matroid
structure. Finally, we design new algorithms that obtain constant competitive ratios for
a variety of combinatorial problems.

Zusammenfassung In dieser Dissertation betrachten wir eine Auswahl kombinatori-
scher Optimierungsprobleme, denen allen das Thema der Unsicherheit und des egoisti-
schen Verhaltens zugrunde liegt.

In unserem ersten Szenario wird die Eingabe von egoistischen Spielern empfangen.
Hier studieren wir Erweiterungen des sogenannten

”
Smoothness-Frameworks“ für Me-

chanismen, einer sehr nützlichen Technik um die Ineffizienz von Gleichgewichten zu
beschränken. Wir betrachten den Fall von variierender Mechanismen-Verfügbarkeit und
die Teilnahme von risikoaversen Spielern. In beiden Fällen sind unsere Hauptresulta-
te allgemeine Sätze für Mechanismen, die

”
(λ, µ)-smooth“ sind. Wir zeigen, dass diese

Mechanismen höchstens einen (kleinen) konstanten Faktor Effizienzverlust in den verall-
gemeinerten Situationen garantieren.

In unserem zweiten Szenario haben wir keinen Zugang zur exakten (numerischen)
Eingabe. In diesem Kontext untersuchen wir kombinatorische Erweiterungen des wohl-
bekannten Sekretärinnenproblems unter der Annahme, dass die eingehenden Elemente
nur ihren Rang in der Ordnung der bisher empfangenen Elemente verraten. Wir beob-
achten zunächst, dass viele existierende Algorithmen für spezielle Matroidstrukturen
ihre Kompetitivität in diesem Ordnungsmodell behalten. Im Gegensatz hierzu geben
wir eine untere Schranke für Algorithmen an, die keine Matroidstrukturen erkennen
können. Schließlich entwerfen wir neue Algorithmen mit konstanter Kompetitivität für
eine Auswahl von kombinatorischen Problemen.
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CHAPTER 1

Overview

Algorithmic mechanism design strives towards designing games that have both good
game-theoretical and algorithmic properties. It became a popular topic in the computer
science community only in the last two decades, while traditionally mechanism design
was extensively studied in economics. The algorithmic and computational aspects stem
from a mechanism simply being an algorithm: upon receiving players’ private information
as input, it outputs an outcome for all of the participants. The players, on the other
hand, are assumed to be selfish rational agents that are interested only in achieving the
best possible outcome for themselves. To this end, they might misreport their private
information. The goal of a mechanism, as opposed to a regular algorithm, is to align
the incentives of the players such as to reach a desired objective in an equilibrium. An
equilibrium is generally defined as a state in which no player can improve his outcome
by changing his part of the input and players’ preferences are modeled via valuation
functions over the possible outcomes. It is commonly assumed that the utility a player
experiences from an outcome is equal to his valuation for the outcome minus the payment
imposed by the mechanism (if any). Payments allow the mechanism to encourage players
to report truthfully, through maximizing their utilities for truthful actions.

A simple example of a truthful mechanism is the second price auction.1 In a second-
price auction, the highest bidder wins the item and pays the second highest bid. It is easy
to check that submitting a bid equal to his valuation is each player’s utility maximizing
strategy. Second price auctions stay truthful also if the auctioneer in addition sets a
reserve price such that the item is sold only if the bid of the highest bidder exceeds the
reserve. The highest bidder has to, in this case, pay the maximum of the second highest
bid and the reserve price.2 An example of a non-truthful mechanism is the first price
auction, where the highest bidder wins the item and pays his bid. If a player reports his
valuation for obtaining the item correctly, his utility is zero, independently of whether
he wins or loses.

The two commonly studied objectives in mechanism design are social welfare maxi-
mization and revenue maximization. Social welfare maximization is concerned with the
sum of all the valuations in an equilibrium outcome, while revenue maximization aims
at maximizing the sum of the payments. The second-price auction is maximizing social
welfare, while a second-price auction with an accordingly set reserve maximizes revenue.

The domain of algorithmic mechanism design has a wide range of applications. Some
of the most prominent real world examples are online auctions and exchanges, online
advertising, and search engine’s page ranking. These applications occur on a daily basis

1In fact, the second price auction is a special case of the more general Vickrey-Clark-Groves mechanism
(VCG), applied to the case of assigning one item.

2Second-price auction with reserve price is the application of the more general optimal mechanism
by Myerson [74] to the case of a single item auction.



Chapter 1. Overview

and constitute a multi-billion-dollar industry.

In traditional mechanism design, one of the most fundamental principles is the rev-
elation principle. It states that if there exists a mechanism that implements a social
choice function, then it is possible to implement the same function by an incentive-
compatible mechanism (i.e., by a mechanism that allows every participant to achieve the
best outcome for themselves by truthfully reporting their private information). The two
mechanisms have the same equilibrium outcome and the same equilibrium payoffs. This
postulate enabled researchers to restrict their attention solely to truthful mechanisms
and made incentive compatibility into something of a standard requirement.

In the recent years, it has become apparent that truthful mechanism design is in-
herently complicated from an algorithmic point of view. The question of designing a
mechanism can indeed be viewed as a standard optimization problem, where truthful-
ness is imposed as an additional constraint. The optimization itself, however, is very
often computationally intractable and the resulting mechanism complex and impractical.
Truthful mechanisms are, in fact, very rarely used in practice even in the tractable cases.
For instance, it would be possible to use the celebrated VCG for the sponsored search
application. Instead, simple and non-truthful procedures are used to allocate ads on
search result pages.

A very important example of a non-truthful mechanism that is widely used is the
generalized second-price auction (GSP). It is employed mainly in the context of keyword
auctions, where sponsored search slots are sold on an auction basis. In GSP each bidder
places a single bid. The highest bidder then wins the first sponsored search slot and pays
the second highest bid, the second highest bidder wins the second slot and pays the third
highest bid, and so on. This mechanism is used by Google’s AdWords technology and
has evolved into Google’s main source of revenue, which hints to the fact that we are
indeed dealing with a multi-billion auction market.

A recent trend in algorithmic mechanism design is, therefore, to study non-truthful
and conceptually “simple” mechanisms for allocation in markets and their inherent loss
in system performance. If one, in addition, wants to capture dynamic aspects, e.g., when
agents arrive and depart over time, as is often the case with practically used mechanisms
and specifically also with the multi-billion-dollar example of sponsored search, one needs
to resort to online mechanism design. Once the online aspect is introduced, however,
problems usually become much harder. For instance, if we consider the online version
of a single-item auction, we already arrive at an algorithmic problem of selecting the
maximum element in a worst case sequence that admits no non-trivial online approxi-
mation algorithm. The classical truthfulness objective is, not surprisingly, also harder
to reach in the online setting. Both of these difficulties become less present when one
assumes that the agents are arriving in a random order. In this case, the algorithmic
problem corresponding to the single-item auction translates directly into the well-known
secretary problem. Assuming random arrival, we are left with the problem of choosing
the maximum element in a randomly ordered sequence. The (optimal) solution, rejecting
all the elements in a sampling phase and then accepting the first one that has a higher
value than any element seen so far [35], can be interpreted as a posted-price mechanism
that both gives a constant approximation to the optimal social welfare and is truthful.

In fact, there is a rich interplay between secretary problems and online mechanism
design. Algorithms for secretary problems can be directly transformed into truthful

2



1.1. Part I: Extensions of the Smoothness Framework for Mechanisms

online mechanisms which are constant-competitive for agents with random arrival order.
At the same time, the goal of designing online mechanisms with various combinatorial
constraints has led to the formulation and solution of new secretary problems that are
interesting in their own right.

In this thesis, we consider a variety of combinatorial optimization problems within a
common theme of uncertainty and selfish behavior. All of the considered problems can be
seen from the perspective of studying incentives in dynamic markets, where the objective
is to maximize social welfare either via designing truthful mechanisms or by pointing to
non-truthful mechanisms with good performance guarantees. Our work can be grouped
into two scenarios:

(1) In the first scenario, the input is collected from selfish agents who might misreport
their private information in order to achieve a better outcome for themselves.
Alternatively, the format of the interaction with the agents does not even allow
them to fully express their preferences. This scenario obviously falls within the
domain of Mechanism Design. More precisely, we investigate extensions of the
smoothness framework for mechanisms, a very useful technique for bounding the
inefficiency of equilibria of the induced games, to the cases of varying mechanism
availability and participation of risk-averse players.

(2) In the second scenario, we assume that access to the exact numerical input is not
possible. We nevertheless want to design algorithms with provable performance
guarantees with respect to the optimal solution. This is motivated by problems
where it is either generally difficult or even impossible to assign exact numerical
values to the elements in the input or we believe there might be imprecisions
in the values that we are provided with. Within this Online Mechanism Design
scenario, we explore various extensions of the well-known secretary problem under
the assumption that the incoming elements only reveal their ordinal position with
respect to all elements seen so far, instead of their numerical value.

In what follows, we expand upon the specific problems considered in this thesis and
give a high-level overview of the results. For more details, see Chapter 2 and Chapter 6.

1.1 Part I: Extensions of the Smoothness Framework for
Mechanisms

The study of truthful mechanisms is a classic branch of microeconomics and has resulted
in a variety of fundamental results, such as VCG for social welfare maximization or
Myerson’s revenue-optimal auctions. Strikingly, these techniques are only very rarely used
in practice, as they often involve heavy algorithmic machinery, complicated allocation
techniques, or other hurdles to easy and transparent implementation. This has led to the
study of non-truthful and conceptually “simple” mechanisms, in which bidders might
have the opportunity to gain from non-truthful bids.

The approach of formally analyzing “simple” mechanisms is to study the induced
game among the bidders and bound the quality of (possibly manipulated) outcomes
in equilibrium. In a seminal paper, Syrgkanis and Tardos [85] propose a general frame-
work for bounding social welfare of these equilibria, based on a so-called “smoothness”

3



Chapter 1. Overview

technique. In Part I of this thesis we generalize this framework into two directions
in Chapters 4 and 5. We start by giving further introduction to non-truthful mecha-
nism design in Chapter 2 and introducing the necessary notation and preliminaries in
Chapter 3.

1.1.1 Risk Aversion

A standard assumption in Algorithmic Game Theory is that players are risk neutral,
meaning that they do not distinguish between different strategies that give them the
same expected utility. This is in turn modeled by defining utility to be the difference
between the valuation and payment for any given outcome. So, an agent having a value
of 1 for an item would be indifferent between getting this item with probability 0.1 for
free and getting it all the time, paying 0.9. However, there are many reasons to believe
that agents are not risk neutral. For instance, in the above example the agent might favor
the certain outcome to the uncertain one. Therefore, in Chapter 4, we raise the following
question: What “simple” auction mechanisms preserve good performance guarantees in
the presence of risk-averse agents?

Risk averseness can be formalized in various ways. The two most common models are
(1) defining utility as a concave function of the difference between the valuation and the
payment, or (2) taking into account the standard deviation when computing the utility.
These two are also the ones inspected in Chapter 4. We give bounds on the price of
anarchy for Bayes-Nash and (coarse) correlated equilibria of mechanisms in the presence
of risk-averse agents and expose how the two models lead to different results.

More specifically, our main positive result states that the loss of performance in
model (1) compared to the risk neutral setting is bounded by a small constant if a
slightly stronger smoothness condition is fulfilled. We also prove that this condition is
necessary by showing that the second price auction has an unbounded price of anarchy in
the presence of risk averse players. This is aligned with the intuition that players should
be more unwilling to participate in an all-pay auction than in, say, a first price auction.
The results in Chapter 4 give the first theoretical backup to this observation.

In model (2), we arrive at quite different results: first price and all-pay auctions do not
significantly differ. Furthermore, (λ, µ)-smoothness of a mechanism does not bring any
guarantees in the presence of risk-averse players. These results imply that the variance-
aversion model is not necessarily the most natural model for risk aversion in the setting
studied here.

1.1.2 Simultaneous Composition with Varying Availability

In Chapter 5, we study a variant of simultaneous composition of mechanisms. Our
scenario is motivated by limited availability or admission: Suppose bidders try to acquire
items in a repeated online market, in which m items are sold simultaneously via, say,
first-price auctions. However, in each round only some of the items are actually available
for purchase. More specifically, in each round each item is available for each bidder only
with a certain probability. Our scenario is an elementary case of simple mechanism design
with incomplete information, where availabilities are bidder types. It captures natural
applications in online markets with limited supply and can be used to model access of
unreliable channels in wireless networks. The main question that we pose in Chapter 5

4
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is: What bidding strategies give good performance guarantees in a market composed of
multiple mechanisms and where bidders are facing limited availability?”

To avoid the drawbacks of existing results in terms of plausibility and computational
complexity, we assume that the players learn with no-regret strategies in a way that is
oblivious to their own and all other bidders’ availabilities. Thereby, bidders arrive at what
we term an availability-oblivious coarse-correlated equilibrium — a bid distribution not
tailored to the specific availabilities of bidders, which can be computed (approximately)
in polynomial time. Our main result is that for a large class of valuation functions, we
can apply smoothness ideas in this framework and prove bounds that mirror the known
guarantees for compositions of smooth mechanisms.

In more detail, we prove general composition theorems for smooth mechanisms when
valuation functions of bidders are lattice-submodular. They rely on an interesting con-
nection to the notion of correlation gap of submodular functions over product lattices.
Our results hold for independent and fully correlated bidder availabilities. In addition,
we give an almost logarithmic price of anarchy lower bound for general fractionally
subadditive (XOS) valuation functions.

1.2 Part II: Combinatorial Secretary Problems with Ordi-
nal Information

The secretary problem is a classic model for online decision making. Recently, combi-
natorial extensions such as matroid or matching secretary problems have become an
important tool to study algorithmic problems in dynamic markets. Here the decision
maker must know the numerical value of each arriving element, which can be a demanding
informational assumption. In Part II of this thesis, we initiate the study of algorithms
for combinatorial secretary problems that rely only on ordinal information. We assume
that there is an unknown value for each element, but our algorithms only have access to
the total order of the elements arrived so far, which is consistent with their values. We
term this the ordinal model ; as opposed to the cardinal model, in which the algorithm
learns the exact values. We show bounds on the competitive ratio, i.e., we compare
the quality of the computed solutions to the optima in terms of the exact underlying
but unknown numerical values. Consequently, competitive ratios for our algorithms are
robust guarantees against uncertainty in the input. The guiding question of Part II of
this thesis is: How can we design online algorithms with small competitive ratios for
combinatorial secretary problems in the ordinal model?

In Chapter 6, we give an introduction and motivation to the problems we consider,
together with preliminaries and related work. For the matroid secretary problem, we
observe that many existing algorithms for special matroid structures maintain their
competitive ratios even in the ordinal model. In these cases, the restriction to ordinal
information does not represent any additional obstacle.

In Chapter 7 we show that ordinal variants of the submodular matroid secretary
problems can be solved using algorithms for the linear versions by extending the results
from [39]. In contrast, we also provide a lower bound of Ω(

√
n/(log n)) for algorithms

that are oblivious to the matroid structure, where n is the total number of elements.
This contrasts an upper bound of O(log n) in the cardinal model, and it shows that the

5
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technique of thresholding is not sufficient for good algorithms in the ordinal model.
In Chapter 8, we design new algorithms that obtain constant competitive ratios for a

variety of combinatorial problems, such as bipartite matching, general packing LPs and
independent set with bounded local independence.

6



PART I

Extensions of the Smoothness
Framework for Mechanisms

This part is the result of close collaboration with Martin Hoefer and Thomas
Kesselheim. It is based on an article that appeared in Proceedings of the
Web and Internet Economics - 12th International Conference (WINE) 2016,
pages 294–308, in December 2016 [50], and an article that appeared in Pro-
ceedings of the 45th International Colloquium on Automata, Languages, and
Programming (ICALP) 2018, pages 155:1–155:14, in July 2018 [57]. Full
versions are available at https://arxiv.org/abs/1509.00337 and https:

//arxiv.org/abs/1804.09468, respectively.

https://arxiv.org/abs/1509.00337
https://arxiv.org/abs/1804.09468
https://arxiv.org/abs/1804.09468
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CHAPTER 2

Introduction to Part I

A common way to understand the effects of strategic behavior is to analyze the induced
game among the bidders and bound the quality of (possibly manipulated) outcomes
in equilibrium. That is, one compares the social welfare that is achieved at the (worst)
equilibrium of the induced game to the maximum possible welfare. Typical equilibrium
concepts are Bayes-Nash equilibria and (coarse) correlated equilibria, which extend mixed
Nash equilibria toward incomplete information or learning settings respectively.

In a seminal paper, Syrgkanis and Tardos [85] propose a general technique for bound-
ing social welfare of equilibria of “simple” mechanisms, based on a so-called “smoothness”
technique. These guarantees apply even to mixed Bayes-Nash equilibria in environments
with composition of mechanisms. For example, in a combinatorial auction we might not
sell all items via a complicated truthful mechanism, but instead sell each item simulta-
neously via simple individual single-item auctions. Such a mechanism is obviously not
truthful, since bidders are not even able to express their valuations for all subsets of items.
However, if bidders have complement-free fractionally subadditive (XOS) valuations, the
(expected) social welfare of allocations in a mixed Bayes-Nash equilibrium turns out to
be a constant-factor approximation of the optimal social welfare.

While this is a fundamental insight into non-truthful mechanisms, it is not well-
understood how this result extends under more realistic conditions. In particular, there
has been recent concern about the plausibility and computational complexity of exact
and approximate Bayes-Nash equilibria [18]. For more general Bayesian concepts based
on no-regret learning strategies in repeated games, there are two natural approaches –
either bidder types are drawn newly with bids, or types are drawn only once initially.
While the latter is not really in line with the idea of incomplete information (bidders
could communicate their type in the course of learning [18]), the former is in general
hard to obtain. Also, the composition theorem applies only if bidders’ types are drawn
independently.

In Chapter 5 of this thesis, we study a variant of simultaneous composition of mech-
anisms and show how to avoid the drawbacks of the Bayesian approach. Our scenario is
motivated by limited availability or admission: Suppose bidders try to acquire items in a
repeated online market, in which m items are sold simultaneously via, say, first-price auc-
tions. However, in each round only some of the items are actually available for purchase.
This scenario can be phrased in the Bayesian framework when bidder i’s type is given
by the set of items available to him. To obtain an equilibrium in the Bayesian sense,
each bidder would have to consider a complicated bid vector and satisfy an equilibrium
condition for each of the possible 2m subsets of items.

In contrast, we assume that bidders do not even get to know (or are not able to
account for) their own availabilities before making bids in each round. We assume they
learn with no-regret strategies in a way that is oblivious to their own and all other bidders’
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availabilities. Thereby, bidders arrive at what one might term an availability-oblivious
coarse-correlated equilibrium – a bid distribution not tailored to the specific availabilities
of bidders, which can be computed (approximately) in polynomial time. Our main result
in Chapter 5 is that for a large class of valuation functions, we can apply smoothness
ideas in this framework and prove bounds that mirror the guarantees from [85]. The
guarantees apply even if some bidders learn obliviously and others follow a Bayes-Nash
bidding strategy. In particular, we cover a broad domain with simultaneous composition
of weakly smooth mechanisms in the sense of [85] when bidders have lattice-submodular
valuations. Our study covers cases where availabilities are correlated among bidders and
provides lower bounds for combinatorial auctions with item-bidding and XOS valuations.
As a part of our analysis, we use the concept of correlation gap from [2] for submodular
functions over product lattices.

Another key assumption in analyses of “simple” mechanisms is that agents are risk
neutral : Agents are assumed to maximize their expected quasilinear utility, which is
defined to be the difference of the value associated to the outcome and payment imposed
to the agent. As already discussed, this would imply that an agent having a value of 1
for an item would be indifferent between getting this item with probability 10% for free
and getting it all the time, paying 0.9.

However, there are many reasons to believe that agents are not risk neutral. For
instance, in the above example the agent might favor the certain outcome to the uncertain
one. Therefore, in Chapter 4 of this thesis, we characterize “simple” auction mechanisms
that preserve good performance guarantees in the presence of risk-averse agents.

The standard model of risk aversion in economics (see, e.g., [69]) is to apply a (weakly)
concave function to the quasilinear term. That is, if agent i’s outcome is xi and his
payment is pi, his utility is given as ui(xi, pi) = hi(vi(xi) − pi), where hi : R → R is a
weakly concave, monotone function. Agent i is risk neutral, if and only if hi is a linear
function. If the function is strictly concave, this has the effect that, by Jensen’s inequality,
the utility for fixed xi and pi is higher than for a randomized xi and pi with the same
expected vi(xi)− pi.

We compare outcomes based on their social welfare, which is defined to be the sum
of utilities of all involved parties including the auctioneer. That is, it is the sum of
agents’ utilities and their payments SW(x,p) =

∑
i ui(xi, pi) +

∑
i pi. In the quasilinear

setting this definition of social welfare coincides with the sum of values
∑

i vi(xi). With
risk-averse utilities these two quantities usually differ. However, all our results bound
the sum of values and therefore also hold for this benchmark.

We assume that the mechanisms are oblivious to the hi-functions and work like in
the quasilinear model. Only the individual agent’s perception changes. This makes it
necessary to normalize the hi-functions as they could be on different scales.1 Therefore,
we will assume that ui(x, pi) = vi(x) if pi = 0 and that ui(x, pi) = 0 if pi = vi. That
is, for the two cases that pi is either 0 or the full value, the utility matches exactly
the quasilinear one. However, due to risk aversion, the agents might be less sensitive
to payments. We note here that this will not in turn allow the mechanism to arrive at
huge utility gains, as compared to the quasilinear model, by just cleverly splitting the
quasilinear utility among the players. Indeed, Lemma 4.1 in Section 4.1 will show that

1E.g., the functions could be such that h1(y) = y and h2(y) = 1000 · y, which would be impossible
for the mechanism to cope with without additional information.

10



2.1. Our Contribution

the difference between the two optima is bounded by at most a factor of 2.
For sake of simplicity, after providing the notation and preliminaries in Chapter 3,

we start first with risk aversion in Chapter 4. Then, we present the technically more
demanding material dealing with mechanism availability in Chapter 5.

2.1 Our Contribution

2.1.1 Risk Aversion

We give bounds on the price of anarchy for Bayes-Nash and (coarse) correlated equilibria
of mechanisms in the presence of risk-averse agents. Our positive results are stated
within the smoothness framework, which was introduced by [81]. We use the version
that is tailored to quasilinear utilities by [85], which we extend to mechanism settings
with general utilities (for a formal definition see Section 4.3). Our main positive result
in Chapter 4 states that the loss of performance compared to the quasilinear setting is
bounded by a constant if a slightly stronger smoothness condition is fulfilled.

Main Result 1. Given a mechanism with price of anarchy α in the quasilinear model
provable via smoothness such that the deviation guarantees non-negative utility, then this
mechanism has price of anarchy at most 2α in the risk-averse model.

This result relies on the fact that the deviation action to establish smoothness guar-
antees agents to have non-negative utility. A sufficient condition is that all undominated
strategies never have negative utility. First-price and second-price auctions satisfy this
condition, we thus get constant price-of-anarchy bounds for both of these auction formats.

In an all-pay auction every positive bid can lead to negative utility. Therefore, the
positive result does not apply. As a matter of fact, this is not a coincidence because, as
we show, equilibria can be arbitrarily bad.

Main Result 2. The single-item all-pay auction has unbounded price of anarchy for
Bayes-Nash equilibria, even with only three agents.

This means that although equilibria of first-price and all-pay auctions have very
similar properties with quasilinear utilities, in the risk-averse setting they differ by a
lot. We feel that this to some extent matches the intuition that agents should be more
reluctant to participate in an all-pay auction compared to a first-price auction.

In our construction, we give a symmetric Bayes-Nash equilibrium for two agents. The
equilibrium is designed in such a way that a third agent of much higher value would
lose with some probability with every possible bid. Losing in an all-pay auction means
that the agent has to pay without getting anything, resulting in negative utility. In the
quasilinear setting, this negative contribution to the utility would be compensated by
respective positive amounts when winning. For the risk-averse agent in our example, this
is not true. Because of the risk of negative utility, he prefers to opt out of the auction
entirely.

We also consider a different model of aversion to uncertainty, in which solution
concepts are modified. Instead of evaluating a distribution over utilities in terms of their
expectation, agents evaluate them based on the expectation minus a second-order term.
We find that this model has entirely different consequences on the price of anarchy. For
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example, the all-pay auction has a constant price of anarchy in correlated and Bayes-Nash
equilibria, whereas the second-price auction can have an unbounded price of anarchy in
correlated equilibria.

2.1.2 Simultaneous Composition with Varying Availability

In the simultaneous composition setting, we assume that every mechanism satisfies a
weak smoothness bound (for more details see Section 4.1) with parameters λ, µ1, µ2 ≥
0. It is known that for each individual mechanism, this implies an upper bound of
(max(1, µ1) + µ2)/λ on the price of anarchy for no-regret learning outcomes and Bayes-
Nash equilibria. Furthermore, the same bound also applies for outcomes of multiple
simultaneous mechanisms that are tailored to availabilities, i.e., not oblivious.

In Section 5.2 we consider smoothness for oblivious learning and composition with
independent availabilities, where in each round t, each mechanism j is available to each
bidder i independently with probability qi,j . Our smoothness bound involves the above
parameters and the correlation gap of the class of valuation functions. In particular, if
valuations vi come from a class V with a correlation gap of γ(V), the price of anarchy
becomes γ(V) · (max(1, µ1) + µ2)/λ.

Main Result 3. The price of anarchy for oblivious learning with monotone valuations
that come from a class V with a correlation gap of γ(V) and fully independent admission
is at most γ(V) · (µ2 + max(1, µ1))/λ.

Our construction uses smoothness of simultaneous composition from [85]. However,
since learning is oblivious, the deviations establishing smoothness must be independent
of availability. Here we use correlation gap to relate the value for independent deviations
to that of type-dependent Bayesian deviations. Correlation gap is a notion originally
defined for submodular set functions in [3]. It captures the worst-case ratio between
the expected value of independent and correlated distributions over elements with the
same marginals. We use an extension of this notion from [2] to Cartesian products of
outcome spaces such as product lattices. For the class V of monotone lattice-submodular
valuations, we prove a correlation gap of γ(V) = e/(e− 1), which simplifies and slightly
extends previous results.

In Section 5.3, we analyze oblivious learning for composition with correlated avail-
abilities in the form of “everybody-or-nobody” – each mechanism is either available to
all bidders or to no bidder. The probability for availability of mechanism j is qj , and
availabilities are independent among mechanisms. In this case, we simulate independence
by assuming that each bidder draws random types and outcomes for himself. We also con-
sider distributions where outcomes are drawn independently according to the marginals
from the optimal correlated distribution over outcomes. While these two distributions are
directly related via correlation gap, the technical challenge is to show that there is a con-
nection to the value obtained by the bidder. For lattice-submodular functions, we show
a smoothness bound that implies a price of anarchy of 4e/(e− 1) · (max(1, µ1) + µ2)/λ2.

Main Result 4. The price of anarchy for oblivious learning with monotone lattice-
submodular valuations and everybody-or-nobody admission is at most 4e/(e− 1) · (µ2 +
max(1, µ1))/λ2.

12
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For neither of the results is it necessary that all bidders follow our oblivious-learning
approach. We only require that bidders have no regret compared to this strategy. This
is also fulfilled if some or all bidders determine their bids based on the actually available
items rather than in the oblivious way.

Finally, in Section 5.4 we show a lower bound for simultaneous composition of single-
item first-price auctions with general XOS valuation functions. The correlation gap for
such functions is known to be large [3], but this does not directly imply a lower bound
on the price of anarchy for oblivious learning. We provide a class of instances where
the price of anarchy for oblivious learning becomes Ω((logm)/(logm logm)). This shows
that for XOS functions it is impossible to generalize the constant price of anarchy for
single-item first-price auctions.

Main Result 5. The price of anarchy for pure Nash equilibria with oblivious bidding
can be as large as Ω((logm)/(log logm)) if we allow XOS valuation functions.

Our results have additional implications beyond auctions for the analysis of regret
learning in wireless networks. We discuss these in Section 5.5.

2.2 Related Work

The smoothness framework was introduced by [81, 79] to analyze correlated and Bayes-
Nash equilibria of general games. In [85] it was adjusted to the quasilinear case of
mechanisms, and it was shown that simultaneous or sequential composition of smooth
mechanisms is again smooth. Combinatorial auctions with item bidding are an example
of a simultaneous composition. To show smoothness of the combined mechanism, it
is thus enough to show smoothness of each single auction. Other examples of smooth
mechanisms are position auctions with generalized second price [19, 77] and greedy
auctions [65]. The smoothness approach for mixed Bayes-Nash equilibria shown in [85]
is, in fact, slightly more general and continues to hold for variants of Bayesian correlated
equilibrium [48].

Closely related to our work on mechanism availability are combinatorial auctions
with item bidding, where multiple items are being sold in separate auctions. Bidders are
generally interested in multiple items. However, depending on the bidder, some items may
be substitutes for others. As the auctions work independently, bidders have to strategize
in order to buy not too many items simultaneously. In a number of papers [23, 16, 49, 36]
the efficiency of Nash and Bayes-Nash equilibria has been studied. It has been shown
that, if the single items are sold in first or second price auctions and if the valuation
functions are XOS or subadditive, the price of anarchy is constant. Limitations of this
approach are shown in [24, 80].

The complexity of finding Bayes-Nash equilibria and Bayesian correlated equilibria
has been studied only very recently. It has been shown in [18, 31] that equilibria are
hard to find in some settings. In contrast, in [28] a different auction format is studied
that yields good bounds on social welfare for equilibria that can be found more easily.
Although similar in spirit, our approach is different – it shows that in some scenarios
agents can reduce the computational effort and still obtain reasonably good states with
existing mechanisms.

13
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As such, our approach is closer to recent work [27] that shows hardness results for learn-
ing full-information coarse-correlated equilibria in simultaneous single-item second-price
auctions with unit-demand bidders. As a remedy, a form of so-called no-envy learning
is proposed, in which bidders use a different form of bidding that enables convergence
in polynomial time. While achieving a general no-regret guarantee against all possible
bid vectors is hard, we note here that our approach based on smoothness requires only a
guarantee with respect to bids that are derived directly from the XOS representation of
the bidder valuation. As such, bidders can obtain the guarantees required for our results
in polynomial time. Conceptually, we here treat a different problem – the impact of avail-
abilities, and more generally, different bidder types on learning outcomes in repeated
mechanism design.

A model with dynamic populations in games has recently been considered in [66]. Each
round a small portion of players are replaced by others with different utility functions.
When players use algorithms that minimize a notion called adaptive regret, smoothness
conditions and the resulting bounds on the price of anarchy continue to hold if there are
solutions which remain near-optimal over time with a small number of structural changes.
Using tools from differential privacy, these conditions are shown for some special classes
of games, including first-price auctions with unit-demand or gross-substitutes valuations.
In contrast, our scenario is orthogonal, since we consider much more general classes of
mechanisms and allow changes in each round for possibly all players. However, our model
of change captures the notion of availability and therefore is much more specific than
the adversarial approach of [66].

The notion of correlation gap was defined and analyzed for stochastic optimization
in [3, 2]. It was used in [87] for analyzing revenue maximization with sequential auctions,
which is very different from our approach.

Studying the impact of risk-averseness is a regularly reoccurring theme in the litera-
ture. A proposal to distinguish between money and the utility of money, and to model
risk aversion by a utility function that is concave first appeared in [14]. The expected
utility theory, which basically states that the agent’s behavior can be captured by a
utility function and the agent behaves as a maximizer of the expectation of his util-
ity, was postulated in [86]. This theory does not capture models that are standardly
used in portfolio theory, “expectation minus variance” or “expectation minus standard
deviation” [67], the latter of which we also consider in Section 4.6.

In the context of mechanisms, one usually models risk aversion by concave utility
functions. One research direction in this area is to understand the effects of risk aversion
on a given mechanism. For example, in [42] the authors study symmetric equilibria in
all-pay auctions with a homogeneous population of risk-averse players. They compare
the bidding behavior to the risk-neutral case. In [71] a similar analysis for auctions
with a buyout option is performed; in [54] customers with heterogeneous risk attitudes
in mechanisms for cloud resources are considered. In [34] it is shown that for certain
classes of mechanisms the correlated equilibrium is unique and has a certain structure.
One consequence of this result is that risk aversion does not influence the form of the
equilibria or the revenue.

Another direction is to design mechanisms for the risk-averse setting. For example,
the optimal revenue is higher because buyers are less sensitive to payments. In a number
of papers, mechanisms for revenue maximization are proposed [72, 70, 84, 55, 15, 44].

14
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Furthermore, randomized mechanisms that are truthful in expectation lose their incentive
properties if agents are not risk neutral. Black-box transformations from truthful-in-
expectation mechanisms into ones that fulfill stronger properties are given in [33] and [51].

Studying the effects of risk aversion also has a long history in game theory, where
different models of agents’ attitudes towards risk are analyzed. One major question is,
for example, if equilibria still exist and if they can be computed [41, 53]. Price of anarchy
analyses have so far only been carried out for congestion games. Tight bounds on the
price of anarchy for atomic congestion games with affine cost functions under a range of
risk-averse decision models are given in [78].

It is important to remark here that our approach to risk is different from the one
taken by [73]. They use the smoothness framework to prove generalized price of anarchy
bounds for games in which players have biased utility functions. They assume that players
are playing the “wrong game” and their point of comparison is the “true” optimal social
welfare, meaning that the biases only determine the equilibria but do not affect the social
welfare. We take the utility functions as they are, including the risk aversion, to evaluate
social welfare in equilibria and also to determine the optimum, which makes our models
incomparable.

For precise relation of von Neumann-Morgenstern preferences to mean-variance pref-
erences, see for instance [68]. Mean-variance preferences were explored for congestion
games in [75, 76], while the authors in [62] study the bidding behavior in an all-pay
auction depending on the level of variance-averseness.
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CHAPTER 3

Notation and Preliminaries

3.1 Setting

We consider the following setting: There is a set N of n players and X is the set of
possible outcomes. Each player i has a utility function uθii , which is parameterized by
his type θi ∈ Θi. Given a type θi, an outcome x ∈ X , and a payment pi ≥ 0, his utility
is uθii (x, pi). The traditionally most studied case are quasilinear utilities, in which types
are valuation functions vi ∈ Vi, vi : X → R≥0 and uvii (x, pi) = vi(x)− pi.

For fixed utility functions and types, the social welfare of an outcome x ∈ X and
payments (pi)i∈N is defined as

SWθ(x,p) :=
∑
i∈N

uθii (x, pi) +
∑
i∈N

pi . (3.1)

In the quasilinear case, this simplifies to

SWθ(x,p) =
∑
i∈N

vi(x) . (3.2)

Unless noted otherwise, by OPT(θ), we will refer to the optimal social welfare under
type profile θ, i.e.,

OPT(θ) = max
x,p

SWθ(x,p) . (3.3)

A mechanism M is a triple (A, f, p), where A = ×iAi is the set of actions and Ai is the
set of actions for each player i, f : A → X is an allocation function that maps actions to
outcomes and p : A → Rn≥0 is a payment function that maps actions to payments pi for

each player i. Given an action profile a ∈ A, we will use the short-hand notation uθii (a),

or sometimes even ui(a), to denote uθii (f(a), pi).

We assume that players always have the possibility of not participating, hence any ra-
tional outcome has non-negative utility in expectation over the non-available information
and the randomness of other players and the mechanism.

3.1.1 Simultaneous Composition

In Chapter 5 we will focus on the following generalized setting: There are, as before, n
players but they are participating in m mechanisms, where m ≥ 1. The mechanisms are
not running in isolation, but rather take place simultaneously. Each mechanism Mj has
its own outcome space Xj and consists of a triple (Aj , fj , pj) as described previously,
i.e., Aj = ×iAi,j is the action space, fj : Aj → Xj is the allocation function and
pj : Aj → Rn≥0 the payment function.
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In this case, we assume that a player has a valuation over vectors of outcomes
from the different mechanisms: vi : ×jXj → R≥0. A player’s utility will be quasi-
linear in this extended setting in the sense that his utility from an allocation vector
x = (x1, . . . ,xm) ∈ ×jXj and payment vector pi = (pi,1, . . . , pi,m) is given by:

uvii (x,pi) = vi(x1, . . . ,xm)−
∑m

j=1 pi,j . (3.4)

Players can have valuations that are complex functions of the outcomes of different
mechanisms. The main results for simultaneous composition of mechanisms in [85], which
we will use in Chapter 5, hold for the class of valuation functions knows as XOS.

3.1.2 Valuation Function Classes

Definition 3.1 (XOS). Valuation vi of player i is XOS if there exists a set L of additive
valuations v`i,j : Xj → R≥0,∀` ∈ L, i ∈ N, j ∈ [m], such that: vi(x) = max`∈L

∑
j v

`
i,j(xj).

Our main results in Chapter 5 will hold for the class of lattice-submodular valuations.
We first give the definition of a submodular set function.

Definition 3.2 (Submodular set function). Let Ω be a finite set. A function f : 2Ω → R
is set submodular, if ∀S, T ⊆ Ω such that S ⊆ T and ∀x ∈ Ω \ T

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) .

Equivalently, ∀S, T ⊆ Ω

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) .

Before delivering the definition of a lattice-submodular function, we state the defini-
tion of a lattice.

Definition 3.3 (Lattice). A partially ordered set (L,�) is called a lattice if each two-
element subset {a, b} ⊆ L has a join (i.e., least upper bound) and a meet (i.e., greatest
lower bound), denoted by a ∨ b and a ∧ b, respectively.

Definition 3.4 (Lattice-submodular valuation). Suppose for every mechanism j the set
Xi,j of possible outcomes for bidder i forms a lattice (Xi,j ,�i,j) with a partial order �i,j.
Bidder i has a lattice-submodular valuation vi if and only if it is submodular on the
product lattice (Xi,�i) of outcomes for bidder i:

∀xi, x̃i ∈ Xi : vi(xi ∨ x̃i) + vi(xi ∧ x̃i) ≤ vi(xi) + vi(x̃i) .

Lattice-submodular functions generalize submodular set functions but are a strict
subclass of XOS functions.

A further prominent valuation class is the class of unit-demand valuations.

Definition 3.5 (Unit-demand). Valuation vi of player i is unit-demand, if there exist
valuations vi,j such that

vi(S) = max
j∈S

vi,j .
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3.2 Solution Concepts and Benchmarks

In the setting of complete information, the type profile θ is fixed. We consider (coarse)
correlated equilibria, which generalize Nash equilibria and are the outcome of (no-regret)
learning dynamics.

Definition 3.6. A correlated equilibrium (CE) is a distribution a over action profiles
from A such that for every player i and every strategy ai in the support of a and every
action a′i ∈ Ai, player i does not benefit from switching to a′i whenever he was playing
ai. Formally,

Ea−i|ai [ui(a)] ≥ Ea−i|ai [ui(a
′
i,a−i)], ∀a′i ∈ Ai,∀i .

Definition 3.7. A coarse correlated equilibrium (CCE) is a distribution a over action
profiles from A such that for every player i and every action a′i ∈ Ai, player i does not
benefit from switching to a′i. Formally,

Ea [ui(a)] ≥ Ea

[
ui(a

′
i,a−i)

]
,∀a′i ∈ Ai, ∀i .

In incomplete information, the type of each player is drawn from a distribution Fi
over his type space Θi. The distributions are common knowledge and the draws are
independent among players. The solution concept we consider in this setting is the
Bayes-Nash equilibrium. Here, the strategy of each player is now a (possibly randomized)
function si : Θi → Ai.

Definition 3.8. A Bayes-Nash equilibrium (BNE) is a distribution s over functions si
such that for every player i, every type θi and every strategy ai ∈ Ai, player i does not
benefit from switching to ai whenever he was playing si(θi). Formally,

Eθ−i|θi [u
θi
i (s(θ))] ≥ Eθ−i|θi [u

θi
i (ai, s−i(θ−i))], ∀ai ∈ Ai, ∀θi ∈ Θi, ∀i .

The measure of efficiency is the expected social welfare over the types of the players:
Given a strategy profile s : ×i Θi → ×iAi, we consider Eθ[SWθ(s(θ))]. We compare the
efficiency of our solution concept with respect to the expected optimal social welfare
Eθ[OPT(θ)].

Definition 3.9. The Price of Anarchy (PoA) with respect to an equilibrium concept is
the worst possible ratio between the optimal expected welfare and the expected welfare at
equilibrium. Formally,

PoA = max
F

max
D∈EQ(F )

Eθ∼F [OPT(θ)]

Eθ∼F,a∼D[SWθ(a)]
,

where by F = F1 × · · · × Fn we denote the product distribution of the players’ type
distributions and by EQ(F ) the set of all equilibria, which are probability distributions
over action profiles.

Note that PoA generally depends on the set of considered equilibria and can therefore
differ for different equilibrium concepts.
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3.3 Smoothness Framework

The results in Part I of this thesis will mostly be based on the smoothness framework
for mechanisms, as given in [85]. Here we only introduce the basic definitions and main
theorems. All definitions and theorems in this section assume quasilinear utilities. For
the sake of simplicity, we defer the definition and discussion of further concepts (as, for
instance, “weak smoothness”) to Chapter 4 and Chapter 5.

Definition 3.10 (Smooth Mechanism). A mechanism is (λ, µ)-smooth if for any val-
uation profile v ∈ ×iVi and for any action profile a there exists a randomized action
a∗i (v, ai) for each player i, s.t.:∑

i u
vi
i (a∗i (v, ai),a−i) ≥ λOPT(v)− µ

∑
i Pi(a) (3.5)

for some λ, µ ≥ 0. If a is a vector of randomized strategies, uvii (a) denotes the expected
utility of a player .

The following theorems from [85] reveal the appeal of checking the very technical
condition that a mechanism needs to satisfy in order to be (λ, µ)-smooth.

Theorem 3.11. If a mechanism is (λ, µ)-smooth, then any correlated equilibrium in the
full information setting and any Bayes-Nash equilibrium in the Bayesian setting achieves
efficiency of at least a fraction of λ

max{1,µ} of OPT(v) or of Ev[OPT(v)], respectively.

Lastly, the next theorem bounds the price of anarchy of a simultaneous composition
of (λ, µ)-smooth mechanisms.

Theorem 3.12 (Simultaneous Composition). Consider the mechanism defined by the
simultaneous composition of m mechanisms. Suppose that each mechanism Mj is (λ, µ)-
smooth when the mechanism restricted valuations of the players come from a class of
valuations (Vi,j)i∈N . If the valuation vi : X → R≥0 of each player across mechanisms is
XOS, meaning it can be expressed by component valuations v`i,j ∈ Vi,j, then the global
mechanism is also (λ, µ)-smooth.

20



CHAPTER 4

Risk-Averse Agents

4.1 Model

When modeling risk aversion, one wants to capture the fact that a random payoff (lottery)
X is less preferred than a deterministic one of value E[X]. The standard approach is,
therefore, to apply a concave non-decreasing function h : R→ R to X and consider h(X)
instead. By Jensen’s inequality, we now know E[h(X)] ≤ h(E[X]).

In the case of mechanism design, the utility of a risk-neutral agent is defined as the
quasilinear utility vi(x) − pi. That is, if an agent has a value of 1 for an item and has
to pay 0.9 for it, then the resulting utility is 0.1. The expected utility is identical if the
agent only gets the item with probability 1

10 for free. To capture the effect that the agent
prefers the certain outcome to the uncertain one, we again apply a concave function
hi : R→ R to the quasilinear term vi(x)− pi. We therefore consider utility functions of
the form ui(x, pi) = hi(vi(x) − pi) in the general setting described in Chapter 3. Note
that the mechanisms we consider do not know the hi-functions. They work as if all utility
functions were quasilinear. Throughout this chapter, we will refer to quasilinear utilities
by ûi.

We want to compare outcomes based on their social welfare. We use the definition of
social welfare being the sum of utilities of all involved parties including the auctioneer.
That is,

SW(x,p) =
∑
i∈N

ui(x, pi) +
∑
i∈N

pi . (4.1)

It is impossible for any mechanism to choose good outcomes for this benchmark if the
hi-function are arbitrary and unknown. Therefore, we assume that utility functions are
normalized so that the utility matches the quasilinear one for pi = 0 and pi = vi(x) (see
Figure 4.1). In more detail, we assume the following normalized risk-averse utilities:

(1) uvii (x, pi) ≥ uvii (x, p′i), if pi ≤ p′i (monotonicity)

(2) uvii (x, pi) = 0, if pi = vi(x) (normalization at pi = vi(x))

(3) uvii (x, pi) = vi(x), if pi = 0 (normalization at pi = 0)

(4) uvii (x, pi) ≥ vi(x)− pi, if 0 ≤ pi ≤ vi(x) ;
uvii (x, pi) ≤ vi(x)− pi, otherwise (relaxed concavity)

Assumption (4) is a relaxed version of concavity that suffices our needs for the positive
results. Our negative results always fulfill concavity.

As an effect of normalization, the optimal social welfare of the risk-averse setting
can be bounded in terms of the optimal sum of values, which coincides with the social
welfare for quasilinear utilities.
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pi

ui(x, pi)

vi(x)

vi(x) Figure 4.1: Normalized risk-averse
utility function (bold) and quasilinear
utility function for a fixed allocation
x and varying payment pi.

Lemma 4.1. Given valuation functions (vi)i∈N and normalized risk-averse utilities
(uvii )i∈N , let OPT denote the optimal social welfare with respect to utilities (uvii )i∈N and

ÔPT denote the optimal social welfare with respect to quasilinear utilities (ûvii )i∈N . Then,

OPT ≤ 2ÔPT.

Proof. Let (x, p) denote the outcome and payment profile that maximizes the social
welfare

∑
i∈N u

vi
i (x, pi) +

∑
i∈N pi respectively. We observe we can safely assume that

0 ≤ pi ≤ vi(x). Otherwise, we know from property (4) that uvii (x, pi) + pi ≤ vi(x), so
changing pi to 0 could only increase social welfare.

By monotonicity of uvii (x, ·) and Assumption (3), OPT =
∑

i∈N u
vi
i (x, pi)+

∑
i∈N pi ≤∑

i∈N u
vi
i (x, 0) +

∑
i∈N pi ≤

∑
i∈N vi(x) +

∑
i∈N vi(x) = 2ÔPT.

As a consequence, the optimal social welfare changes only within a factor of 2 by risk
aversion, and we may as well take ÔPT as our point of comparison. A Vickrey-Clark-
Groves mechanism (VCG) mechanism, for example, is still incentive compatible under
risk-averse utilities but optimizes the wrong objective function. Lemma 4.1 shows that it
is still a constant-factor approximation to the optimal social welfare. However, in simple
mechanisms, the agents’ behavior and the resulting equilibria may or may not change
drastically under risk aversion, depending on the mechanism.

4.2 Single-Item Auctions in the Quasilinear Setting

In the standard single-item setting, one item is auctioned among n players, with their
valuations and actions (bids) both being real numbers. In the common auction formats,
the item is given to the bidder with the highest bid.

First Price Auction

In a first price auction, the highest bidder wins the item and pays his bid. In order to
show that this is indeed a (λ, µ)-smooth mechanism, we need to find deviations that
satisfy equation (5.1). If we let the highest value player, with a valuation of vh, deviate
to half of his value and everybody else to 0:∑
i

ûi(a
∗
i ,a−i) ≥ ûh(

1

2
vh,a−h) ≥ 1

2
vh−max

i 6=h
ai ≥

1

2
ÔPT−max

i
ai ≥

1

2
ÔPT−

∑
i

pi(a) ,

where for deriving the second inequality we verify that it holds in both the case of the
highest player winning and also losing. We conclude that first price auction is a (1

2 , 1)-
smooth mechanism and therefore the price of anarchy of its correlated and Bayes-Nash
equilibria is at most 2.
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All-Pay Auction

In an all-pay auctions, the highest bidder wins the item but all the players pay their bid.
If we again let the highest value player deviate to half of his value and everyone else to
0:∑
i

ûi(a
∗
i ,a−i) ≥ ûh(

1

2
vh,a−h) ≥ 1

2
vh−2·max

i 6=h
ai ≥

1

2
vh−2

∑
i

ai =
1

2
ÔPT−2

∑
i

pi(a) ,

therefore all-pay auction is a (1
2 , 2)-smooth mechanism and the price of anarchy of its

correlated and Bayes-Nash equilibria is bounded by 4.

Second Price Auction

In a second price auction, the highest bidder wins the item and pays the second highest
bid. Here, we need an no-overbidding assumption in order to guarantee good performance
in equilibria. In other words, we want to show that second price auction is a (λ, µ1, µ2)-
smooth mechanism. If we let the highest value player deviate to his value and everyone
else to 0:∑

i

ûi(a
∗
i ,a−i) ≥ ûh(vh,a−h) ≥ vh −max

i 6=h
ai ≥ vh −

∑
i

ai = ÔPT−
∑
i

Wi(ai, f(a)) ,

so second price auction is a (1, 0, 1)-weakly smooth mechanism, meaning that the price
of anarchy of its correlated and Bayes-Nash equilibria in which the no-overbidding as-
sumption is satisfied is upper bounded by 2.

These smoothness results were given by [85]. As we saw in Theorem 3.12 of Section 3.3,
a simultaneous composition of (λ, µ1, µ2)-smooth mechanisms is again (λ, µ1, µ2)-smooth,
under a condition that the players’ valuations across mechanism come from a certain
valuation function class, namely XOS. Going back to the presented examples, this in
particular also means that we can state price of anarchy bounds for a simultaneous
composition of an arbitrary number of first price, second price or all-pay auctions.

What is remarkable here is that first-price and all-pay auctions achieve nearly the
same welfare guarantees. We will show that in the risk-averse setting this is not true.
While the first-price auction almost preserves its constant price of anarchy, the all-pay
auction has an unbounded price of anarchy, even with only three players.

4.3 Smoothness Beyond Quasilinear Utilities

Most of our positive results in this chapter rely on the smoothness framework for quasi-
linear mechanism design by [85]. Since our utility functions will not be quasilinear, in this
section we first observe that the framework can be extended to general utility functions.
Note that throughout this section, the exact definition of OPT(θ) is irrelevant. Therefore,
it can be set to the optimal social welfare but also to weaker benchmarks depending on
the setting.

Definition 4.2 (Smooth Mechanism). A mechanism M is (λ, µ)-smooth with respect to
utility functions (uθii )θi∈Θi,i∈N for λ, µ ≥ 0, if for any type profile θ ∈ ×iΘi and for any
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action profile a there exists a randomized action a∗i (θ, ai) for each player i, such that∑
i u

θi
i (a∗i (θ, ai),a−i) ≥ λOPT(θ)− µ

∑
i pi(a). We denote by uθii (a) the expected utility

of a player if a is a vector of randomized strategies.

Mechanism smoothness implies bounds on the price of anarchy. The following the-
orem and its proof are analogous to the theorems in [85]. In cases where the deviation
required by smoothness does not depend on ai, the results extend to coarse correlated
equilibria. The important point is that the respective bounds mostly do not depend on
the assumption of quasilinearity.

Theorem 4.3. If a mechanism M is (λ, µ)-smooth with respect to utility functions
(uθii )θi∈Θi,i∈N , then any correlated equilibrium in the full information setting and any
Bayes-Nash equilibrium in the Bayesian setting achieves efficiency of at least a fraction
of λ

max{1,µ} of OPT(θ) or of Eθ [OPT(θ)], respectively.

Proof. Full Information Setting

Let a be a correlated equilibrium. This means that for every ai in the support of a

Ea−i|ai

[
uθii (ai,a−i)

]
≥ Ea−i|ai

[
uθii (a′i,a−i)

]
, ∀a′i ∈ Ai, ∀i .

Applying the equilibrium property to a′i = a∗i (θ, ai), we know that for every ai in the
support of a:

Ea−i|ai

[
uθii (ai,a−i)

]
≥ Ea−i|ai

[
uθii (a∗i (θ, ai),a−i)

]
,∀i .

If we now take the expectation over ai and add over all players:

Ea

[∑
i

uθii (a)

]
≥ Ea

[∑
i

uθii (a∗i (θ, ai),a−i)

]
≥ λOPT(θ)− µEa

[∑
i

pi(a)

]
,

and further by adding Ea [
∑

i pi(a)] to both sides

Ea

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ Ea

[∑
i

uθii (a∗i (θ, ai),a−i)

]

≥ λOPT(θ) + (1− µ)Ea

[∑
i

pi(a)

]
.

The result follows by doing a case distinction over µ ≤ 1 and µ > 1. In the first case, we
immediately get

Ea

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λOPT(θ) + (1− µ)Ea

[∑
i

pi(a)

]
≥ λOPT(θ) ,

and in the latter case we use the fact that Ea

[∑
i u

θi
i (a)

]
≥ 0. Then also

Ea

[∑
i

uθii (a)

]
+ Ea

[∑
i

pi(a)

]
≥ Ea

[∑
i

pi(a)

]
,
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which results in

Ea

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λOPT(θ) + (1− µ)Ea

[∑
i

uθii (a) +
∑
i

pi(a)

]

and finally

Ea

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λ

µ
·OPT(θ) .

Bayesian Setting

For reasons of clarity, we prove the claim for the simpler case of pure BNE. First, we let
each player i sample a type profile ζ ∼ ×iFi and play a∗i ((θi, ζ−i), si(ζi)).

Eθ

[
uθii (s(θ))

]
≥ Eθ,ζ

[
uθii (a∗i ((θi, ζ−i), si(ζi)), s−i(θ−i))

]
= Eθ,ζ

[
uζii (a∗i ((ζi, ζ−i), si(θi)), s−i(θ−i))

]
= Eθ,ζ

[
uζii (a∗i (ζ, si(θi)), s−i(θ−i))

]
Summing over the players and using the smoothness property, we get

Eθ

[∑
i

uθii (s(θ))

]
≥ Eθ,ζ

[∑
i

uζii (a∗i (ζ, si(θi)), s−i(θ−i))

]

≥ Eθ,ζ

[
λOPT(ζ)− µ

∑
i

pi(s(θ))

]

= λEθ [OPT(θ)]− µEθ

[∑
i

pi(s(θ))

]
,

and therefore

Eθ

[∑
i

uθii (s(θ)) +
∑
i

pi(s(θ))

]
≥ λEθ [OPT(θ)] + (1− µ)Eθ

[∑
i

pi(s(θ))

]
,

from where the result follows by case distinction over µ, as in the proof for the full
information setting.

The generalization to a mixed Bayes-Nash equilibrium is now straightforward.

4.3.1 Weak Smoothness

For second-price auctions and their generalizations, for example, the already stated theo-
rems do not suffice to prove guarantees on the quality of equilibria. For such mechanisms
we additionally need an no-overbidding assumption. To state this assumption, we first
discuss the notion of willingness-to-pay that was originally defined in [85].
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Definition 4.4 (Willingness-to-pay). Given a mechanism (A, f, p) a player’s maximum
willingness-to-pay for an allocation x when using strategy ai is defined as the maximum
he could ever pay conditional on allocation x:

Wi(ai,x) = max
a−i:f(a)=x

pi(a) . (4.2)

Now, we can state weak smoothness.

Definition 4.5 (Weakly Smooth Mechanism). A mechanism M is weakly (λ, µ1, µ2)-
smooth with respect to utility functions (uθii )θi∈Θi,i∈N for λ, µ1, µ2 ≥ 0, if for any type
profile θ ∈ ×iΘi and for any action profile a there exists a randomized action a∗i (θ, ai)
for each player i, s.t.:∑

i

uθii (a∗i (θ, ai),a−i) ≥ λOPT(θ)− µ1

∑
i

pi(a)− µ2

∑
i

Wi(ai, f(a)) .

We denote by uθii (a) the expected utility of a player if a is a vector of randomized strategies.

Note that (λ, µ)-smoothness implies weak (λ, µ, 0)-smoothness. We get the following
generalization of the price-of-anarchy guarantees for equilibria that fulfill the aforemen-
tioned no-overbidding assumption on the players’ willigness-to-pay:

Theorem 4.6. If a mechanism is weakly (λ, µ1, µ2)-smooth with respect to utility func-
tions (uθii )θi∈Θi,i∈N , then any correlated equilibrium in the full information setting and
any Bayes-Nash equilibrium in the Bayesian setting that satisfies

Ea[Wi(ai, f(a))] ≤ Ea[uθii (a) + pi(a)] (4.3)

achieves efficiency of at least a fraction of λ
(µ2+max{µ1,1}) of OPT(θ) or of Eθ[OPT(θ)],

respectively.

In the quasilinear setting, (4.3) simplifies to the no-overbidding assumption

Ea[Wi(ai, f(a))] ≤ Ea[vi(f(a))] (4.4)

that was introduced in [85], and that is a generalization of the no-overbidding assumptions
previously used in the literature [23, 16, 19]. That is, players cannot pay more than their
respective value, regardless of the other players’ actions.

Proof of Theorem 4.6. For the case of a correlated equilibrium in complete information
setting, we start from observing that for every ai in the support of a

Ea−i|ai

[
uθii (ai,a−i)

]
≥ Ea−i|ai

[
uθii (a′i,a−i)

]
, ∀a′i ∈ Ai, ∀i .

Again, applying the equilibrium property to a′i = a∗i (θ, ai), we know that for every ai in
the support of a:

Ea−i|ai

[
uθii (ai,a−i)

]
≥ Ea−i|ai

[
uθii (a∗i (θ, ai),a−i)

]
,∀i .
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Taking the expectation over ai and adding over all players gives

Ea

[∑
i

uθii (a)

]
≥ Ea

[∑
i

uθii (a∗i (θ, ai),a−i)

]
≥ λOPT(θ)− µ1

∑
i

pi(a)− µ2

∑
i

Wi(ai, f(a)) .

Using (4.3),

(1 + µ2)

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λOPT(θ)− (µ1 − 1)

∑
i

pi(a) .

By doing a case distinction over µ1 ≤ 1 and µ1 > 1, we get the claimed result. When
µ1 ≤ 1, then immediately

(1 + µ2)

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λOPT(θ)− (µ1 − 1)

∑
i

pi(a) ≥ λOPT(θ) ,

and when µ1 > 1, we additionally use that
∑

i u
θi
i (a) ≥ 0. So,

∑
i

uθii (a) +
∑
i

pi(a) ≥
∑
i

pi(a) ,

from where it follows that

(1 + µ2)

[∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λOPT(θ)− (µ1 − 1)

[∑
i

uθii (a) +
∑
i

pi(a)

]
,

and finally [∑
i

uθii (a) +
∑
i

pi(a)

]
≥ λ

µ2 + µ1
·OPT(θ) .

For the incomplete information setting, by using the same arguments as in Theorem 4.3
we arrive at

Eθ

[∑
i

uθii (s(θ))

]
≥ λEθ [OPT(θ)]− µ1Eθ

[∑
i

pi(s(θ))

]

− µ2Eθ

[∑
i

Wi(si(θi), f(s(θ)))

]
.

The result now follows by using assumption (4.3) and case distinction, in the same way
as in the full information case.
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4.4 Quasilinear Often Implies Risk-Averse Smoothness

Our main positive result in this chapter is that many price-of-anarchy guarantees that are
proved via smoothness in the quasilinear setting transfer to the risk-averse one. First, we
consider mechanisms that are (λ, µ)-smooth with respect to quasilinear utility functions.
We show that if the deviation strategy a∗ that is used to establish smoothness ensures
non-negative utility, then the price-of-anarchy bound extends to risk-averse settings at
a constant loss.

Theorem 4.7. If a mechanism is (λ, µ)-smooth with respect to quasilinear utility func-
tions (ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations satisfy

ûi(a
∗
i ,a−i) ≥ 0, ∀a−i, ∀i ,

then any correlated equilibrium in the full information setting and any Bayes-Nash equi-
librium in the Bayesian setting achieves efficiency of at least a factor of λ

2·max{1,µ} of the
expected optimal social welfare even in the presence of risk averse bidders.

Using Theorem 4.3, it suffices to prove the following lemma.

Lemma 4.8. If a mechanism is (λ, µ)-smooth with respect to quasilinear utility functions
(ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations satisfy

ûi(a
∗
i ,a−i) ≥ 0, ∀a−i, ∀i , (4.5)

then the mechanism is (λ/2, µ)-smooth with respect to any normalized risk-averse utility
functions (uvii )i∈N,vi∈Vi.

Proof. We start from an arbitrary action profile a and want to satisfy Definition 4.2.
Since there exist smoothness deviations s.t. ûi(a

∗
i ,a−i) = vi(f(a∗i ,a−i))−pi ≥ 0, ∀a−i,∀i,

we know from property (4) of the risk aversion definition that uvii (a∗i ,a−i) ≥ û
vi
i (a∗i ,a−i).

Therefore, ∑
i

uvii (a∗i ,a−i) ≥
∑
i

ûvii (a∗i ,a−i)

≥ λÔPT− µ
∑
i

pi(a)

≥ λ

2
OPT− µ

∑
i

pi(a) ,

where the last inequality follows from Lemma 4.1.

Note that in order for (4.5) to hold, it is sufficient if all undominated strategies
guarantee non-negative quasilinear utility. For example, in a first-price auction, the only
undominated bids are the ones from 0 to vi. Regardless of the other players’ bids, these
can never result in negative utility.

Corollary 4.9. Under normalized risk-averse utilities, the first-price auction has a
constant price of anarchy for correlated and Bayes-Nash equilibria.
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In addition, we note here that the first part of Property (4) of the normalization
assumption, uvii (x, pi) ≥ vi(x) − pi, 0 ≤ pi ≤ vi(x), is not crucial for obtaining a result
similar to Theorem 4.7. Indeed, a relaxation of the form uvii (x, pi) ≥ C · (vi(x)− pi), 0 ≤
pi ≤ vi(x) for 0 < C < 1, C constant, would incur a loss of at most a factor of C in the
efficiency bound of Theorem 4.7.

Formally, let us assume the following relaxed normalized risk-averse utilities:

(1) uvii (x, pi) ≥ uvii (x, p′i), if pi ≤ p′i (monotonicity)

(2) uvii (x, pi) = 0, if pi = vi(x) (normalization at pi = vi(x))

(3) uvii (x, pi) = vi(x), if pi = 0 (normalization at pi = 0)

(4) uvii (x, pi) ≥ C · (vi(x)− pi), if 0 ≤ pi ≤ vi(x), 0 < C < 1, C constant ;
uvii (x, pi) ≤ vi(x)− pi, otherwise (extra relaxed concavity)

Lemma 4.10. If a mechanism is (λ, µ)-smooth with respect to quasilinear utility func-
tions (ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations satisfy

ûi(a
∗
i ,a−i) ≥ 0, ∀a−i,∀i , (4.6)

then the mechanism is (Cλ/2, Cµ)-smooth with respect to any relaxed normalized risk-
averse utility functions (uvii )i∈N,vi∈Vi.

Proof. We start from an arbitrary action profile a and want to satisfy Definition 4.2.
Since there exist smoothness deviations s.t. ûi(a

∗
i ,a−i) = vi(f(a∗i ,a−i))−pi ≥ 0,∀a−i,∀i,

we know from property (4) of the relaxed risk aversion definition that uvii (a∗i ,a−i) ≥
C · ûvii (a∗i ,a−i). Therefore,∑

i

uvii (a∗i ,a−i) ≥
∑
i

C · ûvii (a∗i ,a−i)

≥ Cλ · ÔPT− Cµ
∑
i

pi(a)

≥ Cλ

2
·OPT− Cµ

∑
i

pi(a) ,

where the last inequality follows from Lemma 4.1.

Using Theorem 4.3, we obtain the following theorem.

Theorem 4.11. If a mechanism is (λ, µ)-smooth with respect to quasilinear utility func-
tions (ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations satisfy
ûi(a

∗
i ,a−i) ≥ 0, ∀a−i,∀i, then any Correlated Equilibrium in the full information setting

and any Bayes-Nash Equilibrium in the Bayesian setting achieves efficiency of at least a
fraction of Cλ

2·max{1,Cµ} of the expected optimal social welfare even in the presence of risk
averse bidders.
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4.4.1 Weak Smoothness

We will assume the following pointwise condition:

Definition 4.12 (Pointwise No-Overbidding). A randomized strategy profile a satisfies
the pointwise no-overbidding assumption if for every player i and every action in the
support of a the following holds:

Wi(ai,x) := max
a−i:f(a)=x

pi(a) ≤ vi(x) , (4.7)

i.e., no player is pointwise bidding in a way that he could potentially pay more than his
value, subject to his allocation remaining the same.

Theorem 4.13. If a mechanism is weakly (λ, µ1, µ2)-smooth with respect to quasilinear
utility functions (ûvii )i∈N,vi∈Vi, the actions in the support of the smoothness deviations
satisfy ûi(a

∗
i ,a−i) ≥ 0, ∀a−i,∀i, then any correlated equilibrium in the full information

setting and any Bayes-Nash equilibrium in the Bayesian setting that satisfies the pointwise
no-overbidding assumption achieves efficiency of at least a fraction of λ

2·(µ2+max{µ1,1}) of
the expected optimal social welfare even in the presence of risk-averse bidders.

Proof. First, we show that weak smoothness with respect to quasilinear utility functions
with the additional constraint that players have non-negative utility from the smoothness
deviation implies weak smoothness with respect to risk-averse players.

Lemma 4.14. If a mechanism is weakly (λ, µ1, µ2)-smooth with respect to quasilinear
utility functions (ûvii )i∈N,vi∈Vi and the actions in the support of the smoothness deviations
satisfy ûi(a

∗
i ,a−i) ≥ 0, ∀a−i,∀i, then the mechanism is weakly (λ/2, µ1, µ2)-smooth with

respect to risk-averse utility functions (uvii )i∈N,vi∈Vi.

Proof. We start from an arbitrary action profile a and want to satisfy Definition 4.2. Since
there exist smoothness deviations s.t. ûi(a

∗
i ,a−i) = vi(f(a∗i ,a−i))− pi ≥ 0, ∀a−i,∀i, we

know from property (4) of the risk aversion definition that uvii (a∗i ,a−i) ≥ û
vi
i (f(a∗i ,a−i)).

Therefore, ∑
i

uvii (a∗i ,a−i) ≥
∑
i

ûvii (a∗i ,a−i)

≥ λÔPT− µ1

∑
i

pi(a)− µ2

∑
i

Wi(ai, f(a))

≥ λ

2
OPT− µ1

∑
i

pi(a)− µ2

∑
i

Wi(ai, f(a)) ,

where the last inequality follows from Lemma 4.1.

Next, we will show that pointwise no-overbidding indeed implies the no-overbidding
assumption (4.3):

Using the pointwise no-overbidding assumption vi(x) ≥ pi, we know that uvii (x, pi) ≥
vi(x)− pi. From here, Wi(ai,x) ≤ vi(x) ≤ uvii (a) + pi(a), so we can conclude that

Ea[Wi(ai, f(a))] ≤ Ea[uvii (a) + pi(a)] .

Theorem 4.6 now completes the proof.
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Using that the second-price auction is weakly (1, 0, 1)-smooth with respect to quasilin-
ear utilities, we immediately get that its price of anarchy is also constant in the risk-averse
setting.

Corollary 4.15. Under normalized risk-averse utilities, the second-price auction has
a constant price of anarchy for correlated and Bayes-Nash equilibria with pointwise no-
overbidding.

4.4.2 Budget Constraints

The techniques and results so far have striking similarities to settings with budget con-
straints, where players do not have quasilinear preferences already in the risk neutral case.
As it turns out, under very mild additional assumptions, we can also add (a generalized
form of) hard budget constraints to our consideration.

We now assume that types are pairs θi = (vi, Bi), where Bi : X → R≥0 is an outcome-
dependent budget function. Depending on which outcome is achieved, the agent may
have different amounts of liquidity. We assume that there is a normalized risk-averse
utility function uvii such that for a player of type θi = (vi, Bi)

uθii (x, pi) =

{
uvii (x, pi), if pi ≤ Bi(x),

−∞, otherwise .
(4.8)

In the budgeted setting, one cannot hope to achieve full welfare. This is due to
low budget participants not being able to maximize their contribution. Therefore, we
will replace OPT(θ) in the price-of-anarchy and smoothness definition by the optimal
effective or liquid welfare, given as maxx,p

∑
i min{uθii (x, pi)+pi, Bi(x)}. This benchmark,

introduced in [32], reflects that players with low budgets cannot be expected to be effective
at maximizing their own value.

The effect of budgets on efficiency in the risk neutral case was already studied in [85],
where the authors, in order to be able to prove efficiency bounds, introduced the notion
of a conservatively smooth mechanism that has the following additional assumption on
the smoothness deviations:

max
a−i

pi(a
∗
i (v, ai),a−i) ≤ max

x
vi(x) . (4.9)

Conservatively smooth mechanisms are then shown to allow the budgeted scenario
without any further loss of efficiency. Note that (4.9) is a weaker assumption than
the Condition (4.5) we ask for. Therefore, we can easily extend our results for risk-averse
bidders to the budgeted setting.

Our main result is that if the type space is chosen in a way that taking the pointwise
minimum of a valuation function and a budget function yields again a feasible valuation
function, meaning that we stay within the “permitted” valuation space when applying
the budget constraints, then the price-of-anarchy guarantee is again preserved. The
valuation space being closed under capping is a crucial requirement both for our result
and the result in [85].

Theorem 4.16. If a mechanism is (λ, µ)-smooth with respect to quasilinear utility func-
tions (ûvii )i∈N,vi∈Vi, its valuation space is closed under capping with budget functions,
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the actions in the support of the smoothness deviations satisfy ûi(a
∗
i ,a−i) ≥ 0,∀a−i, ∀i,

then the social welfare at any correlated equilibrium and at any Bayes-Nash equilibrium
is at least a fraction of λ

2·max{1,µ} of the expected maximum effective welfare even in the
presence of risk-averse bidders.

For the proof, as before, we show a lemma connecting smoothness with respect to
quasilinear utilities to smoothness with respect to risk-averse ones.

Lemma 4.17. If a mechanism is (λ, µ)- smooth with respect to quasilinear utility func-
tions (ûvii )i∈N,vi∈Vi, its valuation space is closed under capping with the budget func-
tions, and the actions in the support of the smoothness deviations satisfy ûi(a

∗
i ,a−i) ≥

0,∀a−i,∀i, then the mechanism is (λ/2, µ)-smooth with respect to risk-averse budgeted
utility functions (uθii )θi∈Θi,i∈N .

Proof. We start from an arbitrary action profile a and keep in mind that the risk-averse
budgeted utility function uθii has type θi = (vi, Bi). By ûv̄i , we denote the quasilinear
utility of player i with the capped valuation function v̄i. Formally,

ûv̄ii (x, pi) = v̄i(x)− pi = min{vi(x), Bi(x)} − pi .

Since the valuation space is closed under capping with the budget function, we can
find smoothness deviations a∗i (v̄, ai) s.t. ûv̄ii (f(a∗i ,a−i), pi(a

∗
i ,a−i)) = v̄i(f(a∗i ,a−i)) −

pi(a
∗
i ,a−i) ≥ 0,∀a−i and therefore uv̄ii (a∗i ,a−i) ≥ û

v̄i
i (a∗i ,a−i). It follows that∑

i

uθii (a∗i (v̄, ai),a−i) =
∑
i

uvii (a∗i (v̄, ai),a−i) ≥
∑
i

uv̄ii (a∗i ,a−i) ≥
∑
i

ûv̄ii (a∗i ,a−i)

≥ λ · ÔPTv̄ − µ ·
∑
i

pi(a) ≥ λ

2
·OPTv̄ − µ ·

∑
i

pi(a) ,

where the first equality holds because the deviations are such that the payments are
below the budgets, the first inequality because

uvii (a) = h (vi(f(a))− pi(a)) ≥ h(min{vi(f(a)), Bi} − pi(a)) = uv̄ii (a),∀a ,

and the third because the valuation space is closed under capping.

The generality of Theorem 4.3 allows us to now obtain Theorem 4.16. Note that
OPTv̄, where v̄ is the vector of capped valuation functions, indeed aligns correctly with
the effective welfare benchmark.

4.5 Unbounded Price of Anarchy for All-Pay Auctions

From the previous section, we infer that the constant price-of-anarchy bounds for first-
price and second-price auctions immediately extend to the risk-averse setting. This is
not true for all-pay auctions; by definition there is no non-trivial bid that always ensures
non-negative utility. Indeed, as we show in this section, the price of anarchy is unbounded
in the presence of risk-averse players.

Theorem 4.18. In an all-pay auction with risk-averse players, the price of anarchy is
unbounded.
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The general idea is to construct a Bayes-Nash equilibrium with two players that very
rarely have high values and only then bid high values. We then add a third player who
always has a high value. However, as the first two players bid high values occasionally,
there is no possible bid that ensures he will surely win. This means, any bid has a small
probability of not getting the item but having to pay. Risk-averse players are more
inclined to avoid this kind of lotteries. In particular, making our third player risk-averse
enough, he prefers the sure zero utility of not participating to any way of bidding that
always comes with a small probability of negative utility.

Proof of Theorem 4.18. We consider two (mildly) risk-averse players who both have
the same valuation distributions and a third (very) risk-averse player with a constant
value. For a large number M > 5, the first two players have values v1 and v2 drawn
independently from distributions with density functions of value 2 · (1− (M − 1) · ε) on
the interval [1/2, 1) and value ε on the interval [1,M ], where ε = 1/M2. The third player
always has value 1/3 · ln(M/2) for winning.

We will construct a symmetric pure Bayes-Nash equilibrium involving only the first
two players. It will be designed such that for the third player it is a best response to always
bid 0, i.e., to opt out of the mechanism and never win the item. So, the combination of
these strategies will be a pure Bayes-Nash equilibrium for all three players.

Note that the social welfare of any equilibrium of this form is upper-bounded by the
optimal social welfare that can be achieved by the first two bidders. By Lemma 4.1, it
is bounded by

E [SW] ≤ 2 ·E [max{v1, v2}] ≤ 2 ·E [v1 + v2] = 2 · (E [v1] + E [v2]) = 4 ·E [v1] ≤ 4 .

Furthermore, the third player’s value v3 = 1/3 · ln(M/2) is a lower bound to the optimal
social welfare in the construction containing all three players. So, as pointwise OPT(v) ≥
1/3 · ln(M/2), where v = (v1, v2, v3) ∈ V denotes the valuation profile, this implies that
the price of anarchy can be arbitrarily high.

We define the utility functions by setting

uvii (bi) =


hi(vi − bi)
h(vi)

· vi, if bi is the winning bid,

hi(−bi)
h(vi)

· vi, otherwise .

(4.10)

For the first two players, we use hi(x) := 1 − e−x, i ∈ {1, 2}, which is increasing and
concave. For the third player, we set hi(x) = x for x ≥ 0 and hi(x) = C · x for x < 0,
where C = (16 · 1

3 · lnM/2) ·M2 ≥ 1. Again this function is increasing and concave. We
further note that its slope is not an absolute constant. This is indeed necessary because
the price of anarchy can be bounded in terms of the slopes of the hi-functions as we
show in the following Lemma.

Lemma 4.19. In an all-pay auction with risk-averse players whose utilities are of the
form h(vi(x) − pi), where h is a concave function s.t. h(x) = C · x for x < 0, C ≥ 1
constant, the Price of Anarchy is at most 4(C + 1).

33



Chapter 4. Risk-Averse Agents

Proof. We use the following smoothness deviation: The highest value player with value
vh deviates to 1

2vh and everybody else to 0. Now, it is easy to see that the following
inequality holds independent of whether the highest value player obtains the item or not

uvhh (
vh
2
,a−i) ≥

1

2
vh − (C + 1) max

i 6=h
ai ≥

1

2
ÔPT− (C + 1)

∑
i

ai ,

so then∑
i

uvii (a∗i ,a−i) ≥
1

2
ÔPT− (C + 1)

∑
i

pi(a) ≥ 1

4
OPT− (C + 1)

∑
i

pi(a) .

The claim follows by applying Theorem 4.3.

Note that the utility functions also satisfy normalizations at pi = vi(x) and at pi = 0.
In conclusion, we see that in our example risk aversion has the effect of heavily

penalizing payments without winning the auction.

Claim 1. With the third player not participating, it is a symmetric pure Bayes-Nash
equilibrium for the first two players to play according to bidding function β : Vi → R≥0, i ∈
{1, 2}, such that

β(x) =

∫ x

1
2

f(t)(et − 1)

F (t) + (1− F (t))et
dt , (4.11)

where F denotes the cumulative distribution function of the value and f denotes its
density.

Proof. We will argue that playing according to β is always the unique best response if
the other player is playing according to β, too. Due to symmetry reasons, it is enough
to argue about the first player.

Let us fix player 1’s value v1 = x and consider the function g : R≥0 → R that is
defined by g(y) = E[ux1(b1 = y, b2 = β(v2), b3 = 0)]. We claim that g is indeed maximized
at y = β(x). We have1

g(y) = Pr [β(v2) ≤ y] · h1(x− y)

h1(x)
· x+ (1−Pr [β(v2) ≤ y]) · h1(−y)

h1(x)
· x

=
x

h1(x)

[
F (β−1(y))

(
h1(x− y)− h1(−y)

)
+ h1(−y)

]
= xeyF (β−1(y)) +

x(1− ey)
1− e−x

.

The first derivative of this function is given by

g′(y) = xeyF (β−1(y)) + xey
d

dy
F (β−1(y))− x

1− e−x
ey .

The inverse function theorem implies

d

dy
F (β−1(y)) =

f(β−1(y))

β′(β−1(y))
.

1Note that the first step assumes tie breaking in favor of player 1. This is irrelevant for the future
steps as the involved probability distributions are continuous.
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4.5. Unbounded Price of Anarchy for All-Pay Auctions

Furthermore, as β′(t) = f(t)(et−1)
F (t)+(1−F (t))et , we get for all t that

f(t)

β′(t)
=
F (t) + (1− F (t))et

et − 1
= (1− F (t)) +

1

et − 1
.

This simplifies g′(y) to

g′(y) = xey +
xey

eβ−1(y) − 1
− xey

1− e−x
=

xey

(1− e−x)(eβ−1(y) − 1)

(
1− e−x+β−1(y)

)
.

Notice that the factor xey

(1−e−x)(eβ
−1(y)−1)

is always positive. Therefore, we observe that

g′(y) = 0 if and only if e−x+β−1(y) = 1, which is equivalent to y = β(x). Furthermore,
g′(y) > 0 for y < β(x) and g′(y) < 0 for y > β(x). This means that y = β(x) has to be
the (unique) global maximum of g(y).

Claim 2. If the first two players are bidding according to (4.11), then it is a best response
for the third player to always bid 0.

Proof. We now show that the very risk-averse third player with valuation 1/3 · ln(M/2)
will indeed bid 0 because every bid b′3 > 0 will cause negative expected utility.

We distinguish two cases. For values of b′3 >
1
16 , we use that with a small probability

one of the two remaining players has a valuation of at least M−1, which leads to negative
utility. For b′3 ≤ 1

16 on the other hand, he loses so often that his expected utility is again
negative.

Let us first assume that the third player bids b′3 with 1
16 < b′3 ≤ v3. In this case, with

probability more than ε one of the first two players has value of at least M − 1. The bid
of this player with vi ≥M − 1 can be estimated as follows

β(vi) ≥ β(M − 1)

≥
∫ M−1

M/2

f(t)(et − 1)

1 + (1− F (t))et
dt

=

∫ M−1

M/2

ε(et − 1)

1 + ε(M − t)et
dt

≥ 1

2
(1− e−

M
2 )

∫ M−1

M/2

εet

ε(M − t)et
dt

=
1

2
(1− e−

M
2 ) ln(M/2)

>
1

3
ln(M/2) ,

which means that by bidding b′3 the third player loses with probability of at least ε = 1/M2.
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For the expected utility, this implies

E
[
u3(b′3,b−3)

]
≤ (1− ε) ·

(
1

3
· lnM/2− b′3

)
+ ε ·

(
−
(

16 · 1

3
· lnM/2− 1

)
·M2 · b′3

)
<

1

3
· lnM/2− b′3 −

1

M2
·
(

16 · 1

3
· lnM/2− 1

)
·M2 · b′3

=
1

3
· lnM/2− b′3

(
1 + 16 · 1

3
· lnM/2− 1

)
<

1

3
lnM/2− 1

16
· 16 · 1

3
lnM/2

= 0 .

In the case where the third player bids b′3, 0 < b′3 ≤ 1
16 , we need to be a bit more

careful with estimating the winning probability. We first give a lower bound on the
bidding function of the first player for v1 < 1

β(v1) ≥
∫ v1

1/2

2(1− M−1
M2 )(et − 1)

2(t− 1
2)(1− M−1

M2 ) + (1− 2(t− 1
2)(1− M−1

M2 )) · et
dt

>

∫ v1

1/2

3
2(et − 1)

2t− 1 + 2 · et
dt

=
3

4

∫ v1

1/2

et − 1

et + t− 1
2

dt

≥ 3

4

∫ v1

1/2

(
1− 1√

e

)
dt

=
3

4

(
1− 1√

e

)(
v1 −

1

2

)
>

1

4

(
v1 −

1

2

)
.

For v1 ≥ 1, β(v1) > 1
16 with probability 1. This implies that with b′3, the third player

has a winning probability of at most

Pr
[
β(v1) ≤ b′3

]
≤ Pr

[
1

4

(
v1 −

1

2

)
≤ b′3

]
= Pr

[
v1 ≤ 4b′3 +

1

2

]
< 2 · 4b′3 .

Now, having in mind that C = (16v3) ·M2 ≥ 32 · v3, the utility can be estimated as
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follows

E
[
u3(b′3,b−3)

]
≤ Pr

[
β(v1) ≤ b′3

]
· (v3 − b′3)−Pr

[
β(v1) > b′3

]
· 32 · v3 · b′3

< 2 · 4b′3(v3 − b′3)− (1− 2 · 4b′3) · 32 · v3 · b′3
= 8b′3v3 − 8(b′3)2 − 32b′3v3 + 8 · 32v3(b′3)2

= 8b′3
(
− 3v3 + b′3

(
32v3 − 1

))
≤ 8b′3

(
−3v3 + 2v3 −

1

16

)
= 8b′3

(
−v3 −

1

16

)
< 0 .

So also in this case, the expected utility is negative.

Combining the two claims, we have constructed a class of distributions and Bayes-
Nash equilibria with unbounded price of anarchy.

As a final remark, we note that the first two bidders occasionally bid high only
due to risk aversion. In a symmetric Bayes-Nash equilibrium of the all-pay auction in
the quasilinear setting, all bids are always bounded by the expected value of a player.
Therefore, such an equilibrium would not work as a point of departure.

Claim 3. In a symmetric BNE of the all-pay auction in the quasilinear setting, all bids
are bounded by the expected value of a player.

Proof. Due to symmetry, it is enough to argue about the first player. Let β denote the
equilibrium bidding function. We fix player 1’s value v1 = x and consider his expected
utility for bidding y:

E [ux1(b1 = y, b2 = β(v2))] = Pr [β(v2) < y] · (x− y) + Pr [β(v2) ≥ y] · (−y)

= Pr [β(v2) < y] · x− y
= F (β−1(y)) · x− y .

By taking the derivative and setting it to zero, we arrive at

f(β−1(b))

β′(β−1(b))
· x− 1 = 0 ,

so

β′(x) = x · f(x) .

Now it is obvious that

β(x) =

∫ x

0
t · f(t) ≤ E [v1] .
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Chapter 4. Risk-Averse Agents

4.6 Variance-Aversion Model

In this section, we consider a different model that tries to capture the effect that agents
prefer certain outcomes to uncertain ones. It is inspired by similar models in game theory
and penalizes variance of random variables. Rather than reflecting the aversion in the
utility functions, it is modeled by adapting the solution concept.

In the usual definition of equilibria involving randomization, the utility of a random-
ized strategy profile is set to be the expectation over the pure strategies. The definition
we consider here is modified by subtracting the respective standard deviation. For a
player i, the utility of a randomized strategy profile a is given as

uvii (a) = Eb∼a[ûvii (b)]− γ
√

Var[ûvii (b)] ,

so a player’s utility for an action profile is his expected quasilinear utility for this profile
minus the standard deviation multiplied by a parameter γ that determines the degree
of variance-averseness, 0 ≤ γ ≤ 1. As already mentioned, ûi(a) denotes the quasilinear
utility of player i for the action profile a.

Bayes-Nash equilibria and correlated equilibria can be defined the same way as before,
always replacing expectations by the difference of expectation and standard deviation.
The formal definition for s(v) being a Bayes-Nash equilibrium in this setting is that
∀i ∈ N , ∀vi ∈ Θi, ai ∈ Ai,

Ev−i [û
vi
i (s(v)) | vi]− γ

√
Var[ûvii (s(v)) | vi]

≥ Ev−i [û
vi
i (ai, s−i(v−i)) | vi]− γ

√
Var[ûvii (ai, s−i(v−i)) | vi] .

Note that we again evaluate social welfare as agents perceive it. That is, for a ran-
domized strategy profile a, we set

SWv(a) =
∑
i

uvii (a) +
∑
i

pi(a) .

Our first result shows that first-price and notably also all-pay auctions have a con-
stant price of anarchy in this setting. Note that, even though the proof looks a lot like
smoothness proofs, it is not possible to phrase it within the smoothness framework, since
here we are dealing with a different solution concept.

Theorem 4.20. Bayes-Nash equilibria and correlated equilibria of the first-price and
all-pay auction have a constant price of anarchy in the variance-aversion model.

Proof. For simplicity, we will show the claim only for Bayes-Nash equilibria. The proof
for correlated equilibria works the same way with minor modifications to the notation.

Assume b is a Bayes-Nash equilibrium. We claim that Ev [SWv(b)] ≥ 1
16 ·Ev[OPT] ,

where OPT denotes the value of social welfare in the allocation that maximizes it, i.e.,
maximized sum of utility and payments of the agents.

Consider a fixed player j and a fixed valuation vj . Let q = Pr
[
maxi 6=j bi ≤ 1

4 · vj
]

denote the probability that no other player’s bid exceeds 1
4 · vj .
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4.6. Variance-Aversion Model

Assume first that q ≤ 3
4 . Then, because the total social welfare is lower bounded by

the payments, we have

Ev−j |vj [SWv(b)] ≥ Ev−i|vi

[
ûvii (0, b−i)− γ

√
Var[ûvii (0, b−i)]

]
+ Ev−i|vi

[∑
i

pi(b)

]

≥ Ev−j |vj

[∑
i

pi(b)

]
≥ (1− q)1

4
vj ≥

1

16
vj .

On the other hand, if q ≥ 3
4 , we use that Ev−j |vj [SWv(b)] ≥ Ev−j |vj

[
u
vj
j (

vj
4 ,b−j)

]
.

It follows

Ev−j |vj [SWv(b)] ≥ vjq −
1

4
vj − γvj

√
q(1− q) ≥

(
2− γ

√
3

4

)
vj ≥

1

16
vj ,

where the first inequality is in fact an equality for the all-pay auction.
From here, by taking the expectation over vj and by weighing the right hand side by

the probability that OPT takes a particular agent, the theorem follows.

This is contrasted by a correlated equilibrium with 0 social welfare in a setting with
positive values. Indeed, for the special case of λ = 1, we see that the variance-averse
model further differs from the risk-averse model described in previous sections.

Observation 4.21. The price of anarchy for correlated equilibria of second price auctions
is unbounded if γ = 1.

Proof. Consider two bidders that both have a valuation of 1. They will be in an equi-
librium if they both bid 1 with probability 1

2 and 0 with the remaining probability, but
in a correlated manner, such that always just one player submits a non-zero bid. Let us
now calculate the utilities:

ui(b) = Ea∼b[ûi(a)]−
√

E[û2
i (a)]− (E[ûi(a)])2 =

1

2
−
√

1

2
−
(1

2

)2
=

1

2
− 1

2
= 0 .

Since the payments are also 0, the social welfare in this equilibrium is 0, meaning that
the price of anarchy is unbounded.

This is not only a difference between smoothness and weak smoothness. Our final
result is a mechanism that is (λ, µ)-smooth for constant λ and µ but has unbounded
price of anarchy.

Theorem 4.22. For any constant γ > 0 there is a mechanism that is (λ, µ)-smooth with
respect to quasilinear utility functions for constant λ and µ but has unbounded price of
anarchy in the variance-aversion model.

Proof. Consider a setting with two items and two players, who have unit-demand val-
uation functions (see Definition 3.5) such that 1

cvi,1 ≤ vi,2 ≤ cvi,1 for constant c ≥ 1.
The players’ possible actions are to either report one of the two items as preferred or to
opt out entirely. Our mechanism first assigns player 1 his (claimed) favorite item, then
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assigns player 2 the remaining one unless he opts out. There are no payments. Obviously,
this mechanism is (1

c , 0)-smooth because the allocation is within a 1
c -factor of the optimal

allocation by construction of the valuation functions.
We will now construct a mixed Nash equilibrium of bad welfare. To this end, let

v1,1 = v1,2 = ε for some small ε > 0. This makes player 1 indifferent between items 1
and 2. In particular, it is a best response to ask for item 1 with probability q−1

q and for

item 2 with probability 1
q . We note at this point that in a Bayes-Nash equilibrium we

could make this respective action the unique best response by having random types.
For player 2, we set v2,1 = c, v2,2 = 1. She has the choice of participating or opting

out. Opting out implies utility 0, whereas participating implies

u2(a) =
c+ q − 1

q
− γ

√
(c− 1)2(q − 1)

q2
=

(c− 1)(1− γ
√
q − 1)

q
+ 1

Now, if we set q = c − 1, then u2(a) = 2 − γ
√
c− 2 which is negative for c > 4

γ2
+ 2.

We further set c = 4
γ2

+ 3. That is, player 2 prefers to opt out. This outcome has social
welfare ε whereas the optimal social welfare is c.

Note that this last example shows that variance-averseness yields very strange prefer-
ences for lotteries. In our example, the variance-averse player prefers not to participate
although any outcome in the (free) lottery has positive value.
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CHAPTER 5

Simultaneous Composition of
Mechanisms with Admission

5.1 Model

There are n bidders that participate in m simultaneous mechanisms. The action space
of each player will be limited to bids. Each mechanism j ∈ [m] is therefore a triple
Mj = (Bj , fj , pj), consisting of the bid space Bj , an outcome function and payment
functions. More formally, function fj : Bj → Xj maps every bid vector b·,j on mechanism
j into an outcome space Xj . The function pj = (p1,j , . . . , pn,j) defines a payment for each
bidder. That is, depending on the bid vector, pi,j : Bj → R≥0 defines the non-negative
payment for bidder i in mechanism j. For convenience, we denote by f = (fj)j∈[m]

the composed mechanism and by X = X1 × . . . × Xm its outcome space. We will not
notationally distinguish between scalars and vectors in this chapter, as we will mostly
be working with vectors anyway.

We consider a repeated framework with oblivious learning in a simultaneous com-
position of mechanisms with availabilities. There are T rounds and in each round the
bidders participate in m simultaneous mechanisms. In round t = 1, . . . , T , each bidder
places a bid bti,j for each mechanism, the mechanism determines the outcome and the
payments, and bidder i has a quasilinear utility function ui(b

t) = vi(f(bt))−pi(bt), where
vi is a valuation function over vectors of outcomes and pi =

∑
j pi,j(b

t). In addition, in
each round we assume that each mechanism is available to each bidder with a certain
probability. We let the Bernoulli random variable Ai,j = 1 if mechanism j is available to
bidder i. Due to availability, the mechanisms must also be applicable when only subsets
of bidders are placing bids. For this reason, it will be convenient to assume that the out-
come space for mechanism j ∈ [m] is Xj = X1,j× . . .×Xn,j and xj ∈ Xj is xj = (xi,j)i∈[n].
We assume that each bidder, for whom the mechanism is not available, must place a bid
of “0”. If bidder i bids 0 for mechanism j, we assume fj(0, b−i,j) = ⊥i,j , where ⊥i,j is a
“losing” outcome, and payment pi,j(0, b−i,j) = 0.

Oblivious Learning We assume oblivious learning – each bidder runs a single no-
regret learning algorithm and uses the utility of every round as feedback, no matter how
the availability in each round turns out. In hindsight, the average history of play for
oblivious learning becomes an availability-oblivious variant of coarse-correlated equilib-
rium [17]. Hence, the outcomes of oblivious learning are captured by the coarse-correlated
equilibria in the following one-shot game: First, all bidders simultaneously place a bid
for every mechanism. They know only the probability distribution of the availabilities.
Only after they placed their bids, the availability of each mechanism for each bidder is
determined at random.
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Definition 5.1. An availability-oblivious coarse-correlated equilibrium is a distribution
over bid vectors b (independent of A) such that, in expectation over all availabilities, it
is not beneficial for any bidder i to switch to another bid b′i. For each i and each b′i, we
have E [ui(b

′
i, b−i)] ≤ E [ui(b)].

Indeed, our results also hold for a larger class of equilibria, in which a subset of
bidders might not be oblivious to availabilities. For our guarantees, it is enough to
consider distributions over bidding strategies b which might be dependent on A such
that, in expectation over all availabilities, it is not beneficial for any bidder i to switch to
another bid b′i. For each i and each b′i, we have E [ui(b

′
i, b−i)] ≤ E [ui(b)]. Note that both

ordinary coarse-correlated equilibria and availability-oblivious ones fulfill this property.
We bound the performance of these equilibria by deriving suitable smoothness bounds.

Smoothness We assume that each mechanism j satisfies weak smoothness as defined
in Subsection 4.3.1 of Chapter 4. For any valuations vi,j : Xj → R≥0 there are (possibly
randomized) deviations1 b′i,j for each i ∈ [n] such that for all bid vectors b·,j

E

∑
i∈[n]

vi,j(fj(b
′
i,j , b−i,j))− pi,j(b′i,j , b−i,j)


≥ λ · max

xj∈Xj

∑
i∈[n]

vi,j(xj)− µ1 ·
∑
i∈[n]

pi,j(b·,j)− µ2

∑
i∈[n]

Wi,j(bi,j , fj(b·,j)) , (5.1)

where Wi,j(bi,j , xj) = maxb−i,j :fj(b·,j)=xj pi,j(b·,j). For intuition, assume that (5.1) holds
with µ2 = 0. Consider a learning outcome with a no-regret guarantee where every
bidder i can gain at most ε in any fixed deviation, i.e., E[vi,j(fj(b·,j)) − pi,j(b·,j)] ≥
E
[
vi,j(fj(b

′
i,j , b−i,j))− pi,j(b′i,j , b−i,j)

]
− ε . Applying (5.1) pointwise∑

i∈[n]

E[vi,j(fj(b·,j))− pi,j(b·,j)] ≥ λ · max
xj∈Xj

∑
i∈[n]

vi,j(xj)− µ1 ·
∑
i∈[n]

E[pi,j(b·,j)]− nε,

which implies for social welfare∑
i∈[n]

E [vi,j(fj(b·,j))] ≥ λ · max
xj∈Xj

∑
i∈[n]

vi,j(xj) + (1− µ1) ·
∑
i∈[n]

E[pi,j(b·,j)]− nε .

Every bidder i can stay away from the market and payments are non-negative, so 0 ≤
E[pi,j(b·,j)] ≤ E[vi,j(fj(b·,j))] + ε and

max(1, µ1)
∑
i∈[n]

E [vi,j(fj(b·,j))] ≥ λ · max
xj∈Xj

∑
i∈[n]

vi,j(xj)− (n+ µ1)ε .

Thus, for ε→ 0, the price of anarchy tends to max(1, µ1)/λ. More generally, (5.1) implies
a bound on the price of anarchy of (µ2 +max(1, µ1))/λ for many equilibrium concepts. If
µ2 > 0, then the bound relies on an additional no-overbidding assumption, which directly
transfers to our results. For details see Subsection 4.3.1 in Chapter 4.

1In slight contrast to [85], we here assume that the smoothness deviations of a bidder do not depend
on his own current bid. This serves to simplify our exposition and can be incorporated into our analysis.
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Valuation Functions Our main results in this chapter apply for the class of monotone
lattice-submodular valuations (see Definition 3.4). In this thesis, we concentrate on
distributive lattices, for which this definition is equivalent to the diminishing marginal
returns property:

∀zi �i yi ∈ Xi =⇒ ∀t ∈ Xi : vi(t ∨ yi)− v(yi) ≥ vi(t ∨ zi)− v(zi).

As already mentioned in Subsection 3.1.2, lattice-submodular functions generalize sub-
modular set functions but are a strict subclass of XOS functions. For the definition of
the XOS valuation class, see Definition 3.1.

5.2 Composition with Independent Admission

We first consider simultaneous composition of smooth mechanisms with independent avail-
abilities. Here, all random variables Ai,j are independent, and we let qi,j = Pr [Ai,j = 1].

Definition 5.2. Let v be a valuation function on a product lattice, coming from a class
of valuation functions V. Given vectors x1, . . . , xk and numbers α1, . . . , αk ∈ [0, 1] such
that

∑k
j=1 αj = 1, determine another vector y at random by setting component yi to xji

independently with probability αj. Then, the smallest γ s.t.
∑k

j=1 αjv(xj) ≤ γ ·E [v(y)]
is the correlation gap of class V.

Theorem 5.3. Suppose bidder valuations are monotone and come from a class V with
a correlation gap of γ(V). The price of anarchy for oblivious learning for simultaneous
composition of weakly (λ, µ1, µ2)-smooth mechanisms with valuations from V and fully
independent availability is at most γ(V) · (µ2 + max(1, µ1))/λ.

Before the proof of the main theorem of this section, we prove an upper bound
of e/(e − 1) on the correlation gap of lattice-submodular valuations with diminishing
marginal returns. This result slightly generalizes the result of [2] from composition of
totally ordered sets to arbitrary product lattices.

Lemma 5.4 (Correlation Gap on a Product Lattice). Let v be a function with di-
minishing marginal returns on a product lattice. Given vectors x1, . . . , xk and num-
bers α1, . . . , αk ∈ [0, 1] such that

∑k
j=1 αj = 1, determine another vector y at ran-

dom by setting component yi to xji independently with probability αj. Then E [v(y)] ≥(
1− 1

e

)∑k
j=1 αjv(xj).

Proof. Without loss of generality, let v(x1) ≥ v(x2) ≥ . . . ≥ v(xk). For each component
i ∈ [m], let Ji ∈ [k] be the random variable of the index of the vector from which yi was
taken.

Let z be defined by

zi =

{
⊥i, if Ji = 1,

yi, otherwise .

If Ji 6= 1, we have

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm) = 0 .
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Otherwise, if Ji = 1, we have

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)

≥ v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, yi, zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

= v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm).

That is, in combination, we get

E [v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)]

≥ α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

∣∣ Ji = 1
]

= α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

]
,

where the last step uses the independence of the components.
Note that, by diminishing marginal returns, we have

v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

≥ v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i ∨ zi, zi+1, . . . , zm)

− v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, zi+1, . . . , zm).

Applying furthermore x1
i ∨ zi = x1

i ∨ yi and taking the expectation, we get

E [v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)]

≥ α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i ∨ yi, zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, zi+1, . . . , zm)

]
.

Overall, we get

E [v(y)] = E

[
v(z) +

m∑
i=1

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)

]

≥ E [v(z)] +
m∑
i=1

α1E
[
v(x1

1 ∨ y1, . . . , x
1
i ∨ yi, zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, . . . , zm)

]
= E [v(z)] + α1

(
E
[
v(x1 ∨ y)

]
−E [v(z)]

)
≥ (1− α1) E [v(z)] + α1v(x1) .

By applying this argument inductively, we also get

E [v(y)] ≥
k∑
i=1

αiv(x1)

i−1∏
i′=1

(1− αi′) .

To proceed with the proof, we use the following inequality.
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Fact 5.5 (Generalized Chebyshev’s Sum Inequality (see for instance [47])). Let a1 ≥
a2 ≥ . . .≥ ak and b1 ≥ b2 ≥ · · · ≥ bk be any real numbers, and m1, . . . ,mk non-negative
real numbers whose sum is 1. Then

k∑
i=1

aibimi ≥

(
k∑
i=1

aimi

)(
k∑
i=1

bimi

)
. (5.2)

For ai = v(x1), bi =
∏i−1
i′=1(1− αi′), mi = αi, i ∈ {1, . . . , k}, (5.2) gives us

k∑
i=1

αiv(x1)
i−1∏
i′=1

(1− αi′) ≥

(
k∑
i=1

αi

i−1∏
i′=1

(1− αi′)

)(
k∑
i=1

αiv(x1)

)
,

This further implies

E [v(y)] ≥

(
1

k

k∑
i=1

(
1− 1

k

)i−1
)(

k∑
i=1

αiv(x1)

)
≥
(

1− 1

e

) k∑
i=1

αiv(x1) ,

as the expression
(∑k

i=1 αi
∏i−1
i′=1(1− αi′)

)
is minimized for αi = 1

k , i ∈ {1, . . . , k}. Since

v(x1) ≥ v(xi), i ∈ {1, . . . , k}, the claim is proved.

From here, we arrive at the following corollary of the main theorem.

Corollary 5.6. The price of anarchy for oblivious learning for simultaneous composition
of weakly (λ, µ1, µ2)-smooth mechanisms with monotone lattice-submodular valuations
and fully independent availability is at most e/(e− 1) · (µ2 + max(1, µ1))/λ.

We proceed to prove Theorem 5.3.

Proof Theorem 5.3. We will prove the theorem by defining an availability-oblivious (ran-
domized) deviation b′i for each player i such that the following inequality will hold for
any (not necessarily availability-oblivious) bidding strategy b:∑

i

E
[
ui(b

′
i, b−i)

]
≥ 1

γ(V)
· λ ·

∑
i

E [vi(x
∗)]− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] , (5.3)

where x∗ denotes the (random) optimal outcome. From this inequality, whose form is in
fact exactly that of the smoothness condition (5.1), the claim of the theorem follows as
described in Section 4.1.

In more detail, to attain the aforementioned inequality, we will relate each player’s
utility for deviating to b′i to the utility he could achieve if he was allowed to see and
react upon the availabilities. In that case, he could simply use the smoothness deviation
tailored to the specific availability profile Ai = (Ai,1, . . . , Ai,m) that he is encountering.

We denote this non-oblivious smoothness deviation by bAii . Because the global mechanism
is a simultaneous composition of (λ, µ1, µ2)-smooth mechanisms, it is again (λ, µ1, µ2)-
smooth. Therefore we know that the non-oblivious deviations bAii do exist, and they
satisfy the smoothness inequality (5.1) by definition.
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We proceed to define, for each player i, the availability-oblivious deviation b′i. First,
bidder i assumes for himself a reduced valuation function v̄i = α ·vi, for some appropriate
α to be chosen later. The deviation b′i is a composition of component-wise independent
deviations b′i,j , i.e., b′i = (b′i,1, . . . , b

′
i,m) where each b′i,j is chosen independently. To arrive

at b′i,j , bidder i assumes that mechanism j is available to him and draws all other
availabilities independently according to probabilities qi′,j′ . This means that he draws
availabilities for all other players on all mechanisms and also his own availabilities on
all mechanisms other than j. Now he has a full availability profile, and therefore he can
consider the non-oblivious smoothness deviation. He observes the j-th component of
this smoothness deviation and sets b′i,j to be equal to it. Note that b′i,j will be applied
only with the probability that mechanism j is in fact available to bidder i, i.e., with
probability qi,j .

Next, we want to compare ui(b
′
i, b−i) and ui(b

Ai
i , b−i). Let us focus on the valua-

tion vi(f(b′i, b−i)) first. The non-oblivious smoothness deviation bAii is a vector whose
components are correlated. More precisely, to form this bid we observe Ai, sample the
availabilities A−i and bids b−i of other players, and take the optimal allocation x∗ for the
resulting availability profile A. Then, we determine the ` for which v̄i(x

∗
i ) =

∑
j v̄

`
i,j(x

∗
i,j)

and use v̄`i,j for determining bAii,j (note that Ai can be regarded as bidder i’s type in a

Bayesian sense, for more details see [85]). Therefore, the components of bAii are correlated

through the common choice of `. Our deviation b′i is assembled by setting b′i,j = (bAii,j )kj
independently for each j.

Formally, let r`i,j denote the conditional probability that the optimum yields an out-

come vector x∗ that attains its maximum value for bidder i in v̄`i , given that Ai,j = 1.

Then, the marginal probability of observing bAii,j = (bAii,j )` is r`i,jqi,j . In b′i we pick ` inde-

pendently for each mechanism with probability r`i,j , which yields a combined probability

of r`i,jqi,j for availability and deviation. Thus, b′i simulates the marginal probabilities of

outcomes in bAii , i.e., Pr [fj(b
′
i, b−i) = yi,j | A−i, b−i] = Pr

[
fj(b

Ai
i , b−i) = yi,j | A−i, b−i

]
for all yi,j ∈ Xi,j , for each j ∈ [m]. Hence, for fixed A−i, b−i, the two expected valuations

E [vi(f(b′i, b−i)) | A−i, b−i] and E
[
vi(f(bAii , b−i)) | A−i, b−i

]
are related via correlation

gap.

Thus, setting α = 1/γ(V) and v̄i(x) = 1/γ(V) · vi(x) we get

E
[
vi(f(b′i, b−i)) | A−i, b−i

]
=

∑
y∈X

vi(y) ·Pr
[
f(b′i, b−i) = y | A−i, b−i

]
=

∑
y∈X

vi(y) ·
∏
j

Pr
[
fj(b

′
i, b−i) = yi,j | A−i, b−i

]
≥ 1

γ(V)
·
∑
y∈X

vi(y) ·Pr
[
f(bAii , b−i) = y | A−i, b−i

]
=

1

γ(V)
·E
[
vi(f(bAii , b−i)) | A−i, b−i

]
= E

[
v̄i(f(bAii , b−i)) | A−i, b−i

]
.

In addition, because payments are simply additive across mechanisms, it is straightfor-
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ward to see that for every bidder i

E
[
pi(b

′
i, b−i) | A−i, b−i

]
= E

[
pi(b

Ai
i , b−i) | A−i, b−i

]
.

This allows to apply the smoothness bound for Bayesian mechanisms with independent
types from Subsection 4.3.1 in Chapter 4 to derive∑

i

E
[
ui(b

′
i, b−i)

]
=

∑
i

E
[
vi(f(b′i, b−i))

]
−E

[
pi(b

′
i, b−i)

]
≥

∑
i

E
[
v̄i(f(bAii , b−i))

]
−E

[
pi(b

Ai
i , b−i)

]
≥ λ ·

∑
i

E [v̄i(x
∗)]− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))]

=
λ

γ(V)
·
∑
i

E [vi(x
∗)]− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))]

This proves the desired smoothness guarantee and implies the theorem.

5.3 Composition with Everybody-or-Nobody Admission

We consider the case in which at each point in time each mechanism is either available
to all bidders or to none. We let Aj = Ai,j for all i ∈ [n] and qj = Pr [Aj = 1]. Note that
all Aj are assumed to be independent.

Let the social optimum be denoted by x∗. We assume that x∗j = ⊥j if Aj = 0. Other-
wise, x∗ might have different values, depending on the availabilities of other mechanisms.

Let us denote the possible outcomes by x1
j , x

2
j , . . . and let r`j := Pr

[
x∗j = x`j

∣∣∣ Aj = 1
]
.

That is, r`j is the marginal probability of x`j conditioned on j being available. Theorem
5.7 formulates our main result in this section.

Theorem 5.7. The price of anarchy for oblivious learning for simultaneous composition
of weakly (λ, µ1, µ2)-smooth mechanisms with monotone lattice-submodular valuations
and everybody-or-nobody admission is at most 4e/(e− 1) · (µ2 + max(1, µ1))/λ2.

Proof. We will prove that, for each bidder i and each mechanism j there are randomized
deviation strategies b′i,j that are independent of the availabilities such that the following
smoothness guarantee holds against any (potentially non-oblivious) bidding strategy b:∑

i

E
[
ui(b

′
i, b−i)

]
≥

(
1− 1

e

)
λ2

4

∑
i

E [vi(x
∗)]− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] .

From this guarantee the claim of the theorem again follows as described in Section 4.1.
To define b′i,j , every bidder i draws two vectors zi and t̃i at random as follows. He

sets zij to x`j with probability r`j/α, where α = 2/λ, and to ⊥j with the remaining
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probability. Furthermore, he sets t̃ij to x`j with probability qjr
`
j and to ⊥j with the

remaining probability. These draws are performed independent of any availabilities.
Observe that for each i, we have E

[∑
i′ vi′(t̃

i)
]
≥ (1− 1

e )E [
∑

i′ vi′(x
∗)] by Lemma 5.4.

Due to the random draws, each bidder i′ defines functions wi
′
i,j : Ωj → R for each

bidder i and each mechanism j. Function wi
′
i,j maps an outcome of mechanism j, denoted

by yj , to a real number as follows

wi
′
i,j(yj) = vi(t̃

i′
1 , . . . , t̃

i′
j−1, yj ∧ zi

′
j ,⊥j+1, . . . ,⊥m)− vi(t̃i

′
1 , . . . , t̃

i′
j−1,⊥j , . . . ,⊥m) .

Note that these functions do not necessarily reflect the actual value any outcome might
have. They are only used to define the deviation strategy: bidder i′ pretends all bidders
i, including himself, would have valuations wi

′
i,j for the outcome of mechanism j. This

gives him a deviation strategy b′i′,j by setting b′i′,j = b∗i′,j(w
i′
1,j , . . . , w

i′
n,j) as defined by

the smoothness of mechanism j.

The proofs for the following three lemmas are, for ease of exposition, presented after
the proof of the theorem.

Lemma 5.8. For every bidder i and deviating bids b′i,j = b∗i,j(w
i
1,j , . . . , w

i
n,j),

E
[
vi(f(b′i, b−i))

]
≥
∑
j

E
[
wii,j(fj(b

′
i,j , b−i))

]
− 1

α(α+ 1)
E
[
vi(t̃

i)
]
.

Lemma 5.9. For the adjusted functions w we can apply smoothness to obtain

∑
i

∑
j

E
[
wii,j(fj(b

′
i,j , b−i))− pi,j(b′i,j , b−i)

]
≥ λ

∑
i

∑
j

qjE
[
w1
i,j(z

1
j )
]
− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] .

Lemma 5.10. For function w1, random vectors z1
j and t̃1, and every mechanism j

∑
j

qjE
[
w1
i,j(z

1
j )
]

=
1

α
E
[
vi(t̃

1)
]
.

The bound from Lemma 5.9 has striking similarities to the smoothness bound (5.1).
However, it is expressed in terms of the functions wi

′
i,j rather than the actual valuation

functions vi. The other two Lemmas show that, in expectation, these functions are close
enough to the functions vi so that this bound actually suffices to prove the main result:
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∑
i

E
[
ui(b

′
i, b−i)

]
=
∑
i

E

vi(f(b′i, b−i))−
∑
j

pi,j(b
′
i,j , b−i)


≥
∑
i

∑
j

E
[
wii,j(fj(b

′
i,j , b−i))− pi,j(b′i,j , b−i)

]
− 1

α(α+ 1)

∑
i

E
[
vi(t̃

i)
]

(by Lemma 5.8)

≥ λ
∑
i

∑
j

qjE
[
w1
i,j(z

1
j )
]
− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))]

− 1

α(α+ 1)

∑
i

E
[
vi(t̃

1)
]

(by Lemma 5.9)

=
∑
i

(
λ

α
− 1

α(α+ 1)

)
E
[
vi(t̃

i)
]
− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] .

(by Lemma 5.10)

By setting α = 2
λ

∑
i

E
[
ui(b

′
i, b−i)

]
≥ λ2

4

∑
i

E
[
vi(t̃

1)
]
− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))]

≥
(

1− 1

e

)
λ2

4

∑
i

E [vi(x
∗)]− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] .

The last step follows from Lemma 5.4. This proves Theorem 5.7.

Note that technically the mechanism could be randomized itself. Our results extend
to this case in a straightforward way.

5.3.1 Proof of Lemma 5.8

Let yij = fj(b
′
i,j , b−i) ∧ zij and ẑij = zij if j is available and ẑij = ⊥j otherwise. Notice

that fj(b
′
i,j , b−i) ∧ ẑij = fj(b

′
i,j , b−i) ∧ zij . This is because ẑij = zij when j is available and

fj(b
′
i,j , b−i) = ⊥j when j is not available.

By monotonicity, we have vi(f(b′i, b−i)) ≥ vi(f(b′i, b−i) ∧ zi) = vi(y
i). Furthermore,

we can decompose vi(y
i) into a telescoping sum by

vi(y
i) =

∑
j

vi(y
i
1, . . . , y

i
j ,⊥j+1, . . . ,⊥m)− vi(yi1, . . . , yij−1,⊥j , . . . ,⊥m) .

Next, we bound each of these terms independently using diminishing marginal returns
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multiple times

vi(y
i
1, . . . , y

i
j ,⊥j+1, . . . ,⊥m)− vi(yi1, . . . , yij−1,⊥j , . . . ,⊥m)

≥ vi(ẑi1, . . . , ẑij−1, y
i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1, . . . , ẑij−1,⊥j , . . . ,⊥m)

≥ vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, y
i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

= vi(ẑ
i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, y
i
j ,⊥j+1, . . . ,⊥m)

)
≥ vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1, y

i
j ,⊥j+1, . . . ,⊥m)

)
= vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

)
+ vi(t̃

i
1, . . . , t̃

i
j−1, y

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m) .

That is, by linearity of expectation, we have

E
[
vi(y

i
1, . . . , y

i
j ,⊥j+1, . . . ,⊥m)− vi(yi1, . . . , yij−1,⊥j , . . . ,⊥m)

]
≥

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]︸ ︷︷ ︸
part 1

−E
[
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]︸ ︷︷ ︸
part 2

+ E
[
vi(t̃

i
1, . . . , t̃

i
j−1, y

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]︸ ︷︷ ︸
part 3

.

To simplify part 2, we use the fact that t̃i1, . . . , t̃
i
j−1 and ẑij are independent. Therefore,

we have

E
[
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]
=
∑
`

qjr
`
j

α
E
[
vi(t̃

i
1, . . . , t̃

i
j−1, x

`
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]
=

1

α
E
[
vi(t̃

i
1, . . . , t̃

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]
.
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5.3. Composition with Everybody-or-Nobody Admission

For the same reason, we can also bound part 1 by using

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]
= E

[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ∨ t̃ij ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ
i
j ,⊥j+1, . . . ,⊥m)

]
+ E

[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)
]

≤ E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, t̃

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)
]

+ E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)
]

= (α+ 1)E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)
]
,

which implies

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]
≥ 1

α+ 1
E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]
Finally, part 3 is precisely the definition of E

[
wii,j(y

i
j)
]
. Therefore, in combination,

we get

E
[
vi(y

i
1, . . . , y

i
j ,⊥j+1, . . . ,⊥m)− vi(yi1, . . . , yij−1,⊥j , . . . ,⊥m)

]
≥ 1

α+ 1
E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑij ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑi1 ∨ t̃i1, . . . , ẑij−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]
− 1

α
E
[
vi(t̃

i
1, . . . , t̃

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃i1, . . . , t̃ij−1,⊥j , . . . ,⊥m)

]
+ E

[
wii,j(y

i
j)
]

Taking the sum over all j, we get two telescoping sums, which simplify to E
[
vi(ẑ

i ∨ t̃i)
]

(part 1) and E
[
vi(t̃

i)
]

(part 2). This gives us

E
[
vi(f(b′i, b−i))

]
≥ E

[
vi(y

i)
]

≥ 1

α+ 1
E
[
vi(ẑ

i ∨ t̃i)
]
− 1

α
E
[
vi(t̃

i)
]

+
∑
j

E
[
wii,j(y

i
j)
]

≥
∑
j

E
[
wii,j(y

i
j)
]
− 1

α(α+ 1)
E
[
vi(t̃

i)
]

=
∑
j

E
[
wii,j(f(b′i, b−i))

]
− 1

α(α+ 1)
E
[
vi(t̃

i)
]
.
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5.3.2 Proof of Lemma 5.9

Note that functions wi
′
i,j are identically distributed for different i′ and independent of

any availabilities. Therefore, we have

E
[
wi
′
i,j(fj(b

′
i,j , b−i)

∣∣∣ Aj = 1
]

= E
[
w1
i,j(fj(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))

∣∣ Aj = 1
]

(5.4)

and

E
[
pi,j(b

′
i,j , b−i)

∣∣ Aj = 1
]

= E
[
pi,j(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i)

∣∣ Aj = 1
]
. (5.5)

Next, we apply the smoothness of each separate mechanism. Let us first assume
mechanism j is available and z1 and t̃1 are fixed arbitrarily. This also fixes the functions
w1

1,j , . . . , w
1
n,j . We pretend these are the actual valuation functions. Then smoothness

gives us ∑
i

w1
i,j(fj(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))− pi,j(b∗i,j(w1

1,j , . . . , w
1
n,j), b−i)

≥ λ

(
max
y∈Ωj

∑
i

w1
i,j(y)

)
− µ1

∑
i

pi,j(b)− µ2

∑
i

hi,j(bi, f(b))

≥ λ

(∑
i

w1
i,j(z

1
j )

)
− µ1

∑
i

pi,j(b)− µ2

∑
i

hi,j(bi, f(b)) .

Taking the expectation over z1 and t̃1, we can combine this bound with (5.4) and
(5.5) to get∑

i

E
[
wii,j(fj(b

′
i,j , b−i))− pi,j(b′i,j , b−i)

∣∣ Aj = 1
]

=
∑
i

E
[
w1
i,j(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))− pi,j(b∗i,j(w1

1,j , . . . , w
1
n,j), b−i)

∣∣ Aj = 1
]

≥ E

[
λ
∑
i

w1
i,j(z

1
j )− µ1

∑
i

pi,j(b)− µ2

∑
i

hi,j(bi, f(b))

∣∣∣∣∣ Aj = 1

]
.

If j is not available, then fj(b
′
i,j , b−i) = ⊥j and pi,j(b

′
i,j , b−i) = pi,j(b) = 0. By definition,

however, w1
i,j(z

1
j ) is independent of the fact whether j is available or not. Therefore, we

have∑
i

E
[
wii,j(fj(b

′
i,j , b−i))− pi,j(b′i,j , b−i)

]
≥ qjE

[
λ
∑
i

w1
i,j(z

1
j )

∣∣∣∣∣ Aj = 1

]
− qjE

[
µ1

∑
i

pi,j(b) + µ2

∑
i

hi,j(bi, f(b))

∣∣∣∣∣ Aj = 1

]

= qjE

[
λ
∑
i

w1
i,j(z

1
j )

]
−E

[
µ1

∑
i

pi,j(b)

]
−E

[
µ2

∑
i

hi,j(bi, f(b))

]
.
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We can take the sum over all j to get∑
i

∑
j

E
[
wii,j(fj(b

′
i,j , b−i))− pi,j(b′i,j , b−i)

]
≥ λ

∑
i

∑
j

qjE
[
w1
i,j(z

1
j )
]
− µ1

∑
i

E [pi(b)]− µ2

∑
i

E [Wi(bi, f(b))] . (5.6)

5.3.3 Proof of Lemma 5.10

By simply plugging in the definitions of w1
i,j , z

1, and t̃1, we get∑
j

qjE
[
w1
i,j(z

1
j )
]

=
∑
j

qjE
[
vi(t̃

1
1, . . . , t̃

1
j−1, z

1
j ,⊥j+1, . . . ,⊥m)− vi(t̃11, . . . , t̃1j−1,⊥j , . . . ,⊥m)

]
=
∑
j

qj
∑
`

r`
α

E
[
vi(t̃

1
1, . . . , t̃

1
j−1, x

`
j ,⊥j+1, . . . ,⊥m)− vi(t̃11, . . . , t̃1j−1,⊥j , . . . ,⊥m)

]
=
∑
j

1

α

∑
`

qjr`E
[
vi(t̃

1
1, . . . , t̃

1
j−1, x

`
j ,⊥j+1, . . . ,⊥m)− vi(t̃11, . . . , t̃1j−1,⊥j , . . . ,⊥m)

]
=
∑
j

1

α
E
[
vi(t̃

1
1, . . . , t̃

1
j ,⊥j+1, . . . ,⊥m)− vi(t̃11, . . . , t̃1j−1,⊥j , . . . ,⊥m)

]
=

1

α
E
[
vi(t̃

1)
]
.

5.4 A Lower Bound for General XOS Functions

In this section we consider combinatorial auctions with item bidding and first-price
auctions. We can apply the previous analysis, since for each bidder the outcomes form
a trivial 2-element lattice – winning an item is the supremum outcome, not winning is
the infimum outcome. In the analysis, observe that each bidder determines a random
allocation of items according to the probabilities in the optimum. Based on these al-
locations, bidders determine the valuations wi

′
i,j , which in turn form the basis for the

deviation. The first-price auction with general bidding space is (1−1/e, 1, 0)-smooth [85].
If valuation functions are submodular, the composition theorems can be applied to yield
the following corollary.

Corollary 5.11. The price of anarchy for oblivious learning for simultaneous composi-
tion of single-item first-price auctions with monotone submodular valuations and fully
independent availability is at most 1/(1− 1/e)2; for everybody-or-nobody admission it is
at most 4/(1− 1/e)3.

For more general XOS valuations, we prove a lower bound that with oblivious bidding
we will not be able to show a guarantee based on the smoothness parameters – even for
a single bidder, so the bound applies without assumptions on correlation among bidders.
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Chapter 5. Simultaneous Composition of Mechanisms with Admission

Theorem 5.12. In a simultaneous composition of discrete first-price single-item auctions
with m items and XOS valuations, the price of anarchy for pure Nash equilibria with
oblivious bidding can be as large as Ω((logm)/(log logm)), while each single mechanism
is weakly (1/2, 1, 0)-smooth.

Proof. Consider the following single-item first-price auction with a discrete bidding space.
Each bidder has valuation 0 or 2 for the item, and the set of possible bids is {0, 1, 2}. The
item is sold to one of the bidders with the maximal bid (arbitrary but fixed deterministic
tie-breaking), and only this bidder pays his bid. If all bidders bid 0, the item is not given
away. It is easy to see that if each bidder i in this auction deviates to half of his valuation,
the auction becomes smooth with λ = 1/2, µ1 = 1 and µ2 = 0. Hence, the auction has a
price of anarchy of at most 2.

We compose this auction for a set [m] of m = k2 items, for some integer k > 0, and
every item is sold simultaneously via the first-price auction above. There is a single
bidder, and he has an XOS valuation function v as follows. The items are grouped
into k groups M1, . . . ,Mk of k items each. For a set of items S ⊆ [m] we have v(S) =
max`=1,...,k

∑m
j=1 v

`
j with v`j = 2 if j ∈M` and 0 otherwise, for ` = 1, . . . , k. Consequently,

v(S) = 2 max`=1,...,k |S ∩M`|. We assume each item j ∈ [m] is available independently
with probability qj = 1/k.

If the bidder can deviate depending on the set of available items, a social optimum
b∗ is obvious – he considers the group `∗ with the maximum number of available items
and bids b∗j = 1 for all j ∈ M`∗ and 0 otherwise. This way he always obtains a set S
of items that maximizes the valuation. Furthermore, this is also the best-response since
he obtains the maximum valuation at minimum required payment, and the marginal
utility of every obtained item is 1. In contrast, we show that every oblivious deterministic
best-response bid b allows to recover at most a small fraction of the above described
optimum. Thus, even the price of anarchy for pure equilibria cannot be bounded by the
smoothness guarantee.

In the optimum b∗, the bidder gets all available items from the group with the
maximum number of available items. The number of available items in a group follows
a binomial distribution B(k, 1/k). This scenario is almost identical to throwing k balls
uniformly at random into k bins and recording the maximum number of balls in any bin.
Now in each bin k balls appear independently at random with probability 1/k each, and
an almost identical analysis implies

E [v(S(b∗))] = Θ

(
log k

log log k

)
.

Now consider an oblivious deterministic best-response b. The valuation function v
treats all items of a group in a symmetric way and all groups in a symmetric way. Let
us denote by r` the number of items j ∈M` with bj = 1. For a fixed vector r, expected
value and payments are the same no matter on which particular items j ∈ M` a bid
bj = 1 is placed. For any two groups M` and M`′ , the expected valuation and payments
remain the same if we change the bid to have bj = 1 for r` items in M`′ and r`′ items
in M`′ . Moreover, the expected payment depends only on

∑
` r`. Now suppose there

are two groups M` and M`′ such that r`, r`′ ≤ k/2. This bidding strategy is obviously
dominated by any bid that bids 1 on r` + r`′ items in M` and none in M`′ . In conclusion,

54



5.5. Applications beyond Auctions

w.l.o.g. we can assume that r1 ≥ r2 ≥ r3 ≥ . . . ≥ rk and there is k′ such that r` ≥ k/2
for ` = 1, . . . , k′ − 1, rk′−1 ≥ rk′ ≥ 0 and r` = 0 for ` = k′ + 1, . . . , k.

We show that every oblivious best-response b has E [v(S(b))] = O(1). Let p(b) denote
the total payments, Xj denote the event that item j is available, and Y` =

∑
j∈M`

Xj

the number of available items in group M`, for all ` = 1, . . . , k. Note that

E [v(S(b))− p(b)] = E

 max
`=1,...,k′

 ∑
j∈M`,bj=1

2Xj

− ∑
j∈[m],bj=1

Xj


≤ 2E

[
max

`=1,...,k′
Y`

]
− k′ − 1

2
.

Further, for any d = 1, . . . , k we can use Chernoff bounds to see

Pr

[
max

`=1,...,k′
Y` ≥ d

]
= 1−(1−Pr [Y1 ≥ d])k

′
≤ 1−(1−ed−1/dd)k

′ ≤ min{1, k′ed−1/dd} .

Hence,

E

[
max

`=1,...,k′
Y`

]
=

k∑
d=1

Pr

[
max

`=1,...,k′
Y` ≥ d

]
≤

k∑
d=1

min{1, (k′/e)·(e/d)d} ≤ 3 log k′

log log k′
+

1

ek′
.

Thus, E [v(S(b))− p(b)] < (6 log k′)/(log log k′) + 6/(ek′)− (k′ − 1)/2, which is positive
only for k′ ≤ 34. Every bid b with k′ ≥ 35 is dominated by b′ with b′j = 0 for all j ∈ [m].
Hence, for a best-response b we have E [v(S(b))] < 17. This proves the theorem.

5.5 Applications beyond Auctions

Our results have interesting implications beyond mechanisms that incorporate standard
auction formats. A very intriguing one is channel allocation in wireless networks. The
overall problem is to maximize the utilization of a wireless channel while avoiding
interference. To this end, the following game was defined in [4]: Each player i corresponds
to a pair of a sender si and a receiver ri located in a metric space. The transmission from
si to ri is successful if the signal-to-interference-plus-noise ratio (SINR) is high enough.
This means that the incoming interference from senders transmitting simultaneously
plus ambient noise is by a factor smaller than the intended signal. Formally, transmission
i is successful if

p
d(si,ri)α∑

j∈S\{i}
p

d(sj ,ri)α
+ ν

≥ β ,

where d(sk, rl) denotes the distance between sender sk and receiver rl in the metric space,
p > 0 is the (fixed) power level, S ⊆ [n] is the set of simultaneous transmissions; α > 0,
β > 0, and ν ≥ 0 are constants.

To derive a game, each player has two strategies bi: either he decides to transmit or not
to. The best possible outcome is a successful transmission. An unsuccessful transmission
is the worst possible outcome. Due to the energy consumption, it is considered to be
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even worse than not transmitting at all. This is reflected in the following utility function.

ui(b) =


1, if bi = 1 and i is successful against b−i,

−1, if bi = 1 and i is not successful against b−i,

0, if bi = 0 .

The price of anarchy of this game is constant [9]. In every coarse correlated equilibrium,
the expected number of successful transmissions is only a constant smaller than the
maximum possible number of simultaneous successful transmissions.

Quite surprisingly, this game corresponds to a smooth mechanism as follows. Each
player decides whether to transmit or not; a player always has valuation 2 for making a
successful transmission. However, whenever making a transmission (successful or not),
the bidder has to pay 1. This is comparable to an all-pay auction, where each bidder has
to pay his bid, regardless of whether he wins the respective item.

Theorem 5.13. The mechanism representing the channel-allocation game is weakly
(1, µ1, µ2)-smooth for µ1 = O(1) and µ2 = 0.

Proof. Let S ⊆ N be a maximum set of players that can transmit simultaneously. Define
b′ by setting b′i = 1 for i ∈ S and b′i = 0 for i 6∈ S. That is, ui(b

′
i, b−i) = 0 for all i 6∈ S.

Consider some bid vector b, let T be the set of players making a transmission attempt.
Note that by our definition

∑
i pi(b) = |T |.

Furthermore, i ∈ S is successful under (b′i, b−i) if and only if

p
d(si,ri)α∑

j∈T\{i}
p

d(sj ,ri)α
+ ν

≥ β ,

for which it is sufficient to have∑
j∈T\{i}

d(si, ri)
α

d(sj , ri)α
+
d(si, ri)

α

p
ν <

1

β
,

which is equivalent to

∑
j∈T\{i}

aj,i < 1 where aj,i = min

1,
1

1
β −

d(si,ri)α

p ν

d(si, ri)
α

d(sj , ri)α

 .

This implies ui(b
′
i, b−i) ≥ 1− 2

∑
j∈T\{i} aj,i. Taking the sum over all i ∈ S, we get∑

i∈S
ui(b

′
i, b−i) ≥ |S| − 2

∑
j∈T

∑
i∈S\{j}

aj,i .

Lemma 11 in [9] shows that
∑

i∈S\{j} aj,i ≤ C for some constant C because S \ {j} is a
feasible set. This gives us∑
i∈N

ui(b
′
i, b−i) =

∑
i∈S

ui(b
′
i, b−i) ≥ |S| − 2

∑
j∈T

C = |S| − 2C
∑
i∈N

pi(b) .
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5.6. Extension to Changing Unit-Demand Functions

By applying our composition theorems, we obtain a constant price of anarchy for
oblivious learning in this game even when we have multiple channels with fully indepen-
dent or everybody-or-nobody availability. This simplifies and generalizes an approach
based on sleeping expert learning in [25]. Furthermore, our analysis can also be con-
ducted similarly for other interference models with a bounded independence condition,
see [25, 26] for a discussion.

5.6 Extension to Changing Unit-Demand Functions

We now consider a case in which valuations change over time rather than the supply.
In particular, we consider a unit-demand setting (see Definition 3.5). We assume that
each of the vi,j is an independent random variable in which constantly many outcomes
have a positive probability. So, for a fixed player i, the valuation is defined such that

for k = 1, . . . ,K we let vi,j = v
(k)
i,j with probability q

(k)
i,j ,

∑K
k=1 q

(k)
i,j = 1. Without loss of

generality, let v
(1)
i,j ≥ v

(2)
i,j ≥ . . . ≥ v

(K)
i,j .

To apply availability-oblivious learning, player i now makes K copies of each item

j. The kth copy of item j has value v
(k)
i,j , and it is available whenever vi,j ≥ v

(k)
i,j . Note

that, when restricting the consideration to only the most valuable item, we can equiv-
alently assume that availabilities of items are drawn independently with probability

q
(k)
i,j /

∑K
k′=k q

(k′)
i,j for the kth copy of item j.

By the same argument as in Section 5.2, we then have∑
i

E
[
ui(b

′
i, b−i)

]
=
∑
i

E
[
vi(f(b′i, b−i))

]
−E

[
pi(b

′
i, b−i)

]
≥

(
1− 1

e

)∑
i

E
[
vi(f(bAii , b−i))

]
−E

[
pi(b

Ai
i , b−i)

]
,

when comparing the availability-oblivious deviation b′i with the availability-aware ones
bAii .

Therefore, if each single mechanism is weakly (λ, µ1, µ2)-smooth, the price of anarchy
for oblivious learning is at most e/(e− 1) · (µ2 + max(1, µ1))/λ·.
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PART II

Combinatorial Secretary Problems with
Ordinal Information

This part is the result of close collaboration with Martin Hoefer. It is based
on an article that appeared in the Proceedings of the 44th International
Colloquium on Automata, Languages and Programming (ICALP) 2017, pages
133:1–133:14, in July 2017 [52]. A full version is available at http://arxiv.
org/abs/1702.01290.

http://arxiv.org/abs/1702.01290
http://arxiv.org/abs/1702.01290
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CHAPTER 6

Introduction to Part II

The secretary problem is a classic approach to model online decision making under
uncertain input. The interpretation is that a firm needs to hire a secretary. There are n
candidates and they arrive sequentially in random order for an interview. Following an
interview, the firm learns the value of the candidate, and it has to make an immediate
decision about hiring him before seeing the next candidate(s). If the candidate is hired,
the process is over. Otherwise, a rejected candidate cannot be hired at a later point in
time. The optimal algorithm is a simple greedy rule that rejects all candidates in an
initial learning phase. In the following acceptance phase, it hires the first candidate that
is the best among all the ones seen so far. It manages to hire the best candidate with
optimal probability that tends to 1/e when n→∞. Notably, it only needs to know if a
candidate is the best seen so far, but no exact numerical values.

Since its introduction [35], the secretary problem has attracted a huge amount of
research interest. Recently, a variety of combinatorial extensions have been studied in
the computer science literature [11], capturing a variety of fundamental online allocation
problems in networks and markets, such as network design [63], resource allocation [58],
medium access in networks [45], or competitive admission processes [22]. Prominently, in
the matroid secretary problem [12], the elements of a weighted matroid arrive in uniform
random order (e.g., weighted edges of an undirected graph G). The goal is to select a
max-weight independent set of the matroid (e.g., a max-weight forest of G). The popular
matroid secretary conjecture claims that for all matroids, there exists an algorithm with
a constant competitive ratio, i.e., the expected total weight of the solution computed by
the algorithm is at least a constant fraction of the total weight of the optimum solution.
Despite much progress on special cases, the conjecture remains open. Beyond matroids,
online algorithms for a variety of combinatorial secretary problems with downward-closed
structure have recently been studied (e.g., matching [63, 58], independent set [45], linear
packing problems [59] or submodular versions [39, 60]).

The best known algorithms for matroid or matching secretary problems rely heavily
on knowing the exact weight structure of elements. They either compute max-weight
solutions to guide the admission process or rely on advanced bucketing techniques to
group elements based on their weight. For a decision maker, in many applications it
can be quite difficult to determine an exact cardinal preference for each of the incoming
candidates. In contrast, in the original problem, the optimal algorithm only needs ordinal
information about the candidates. This property provides a much more robust guarantee,
since the numerical values can be arbitrary, as long as they are consistent with the
preference order.

In Part II of this thesis, we study algorithms for combinatorial secretary problems
that rely only on ordinal information. We assume that there is an unknown value for each
element, but our algorithms only have access to the total order of the elements arrived so
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far, which is consistent with their values. We term this the ordinal model ; as opposed to
the cardinal model, in which the algorithm learns the exact values. We show bounds on the
competitive ratio, i.e., we compare the quality of the computed solutions to the optima in
terms of the exact underlying but unknown numerical values. Consequently, competitive
ratios for our algorithms are robust guarantees against uncertainty in the input. Our
approach follows a recent line of research by studying the potential of algorithms with
ordinal information to approximate optima based on numerical values [7, 6, 1, 20].

6.1 Our Contribution

We first point out that many algorithms proposed in the literature continue to work in
the ordinal model. In particular, a wide variety of algorithms for variants of the matroid
secretary problem with constant competitive ratios continue to obtain their guarantees
in the ordinal model (see Table 6.1 for an overview). This shows that many results in
the literature are much stronger than they claim to be, since the algorithms require
significantly less information. Notably, the algorithm of [13] extends to the ordinal model
and gives a ratio of O(log2 r) for general matroids, where r is the rank of the matroid.
In contrast, the improved algorithms with ratios of O(log r) and O(log log r) [12, 64, 37]
are not applicable in the ordinal model.

In Chapter 7 we extend a result of [39] for matroids to the ordinal model: The reduc-
tion from submodular to linear matroid secretary can be done with ordinal information
on marginal weights of the elements.

Main Result 6. Whenever there is an algorithm that solves the matroid secretary
problem in the ordinal model on some matroid class and has a competitive ratio of α,
there is also an algorithm for the submodular matroid secretary problem in the ordinal
model on the same matroid class with a competitive ratio of O(α2).

The ratio can be shown to be better if the linear algorithm satisfies some further properties.
Moreover, we consider the importance of knowing the weights, ordering, and structure
of the domain.

Main Result 7. For algorithms that have complete ordinal information but cannot learn
the specific matroid structure, we show a lower bound of Ω(

√
n/(log n)), even for partition

matroids, where n is the number of elements in the ground set.

This bound contrasts the O(log2 r)-competitive algorithm and indicates that learning
the matroid structure is crucial in the ordinal model. Moreover, it contrasts the cardinal
model, where thresholding algorithms yield O(log r)-competitive algorithms without
learning the matroid structure.

In Chapter 8 we obtain new algorithms for the ordinal model for several combinatorial
secretary problems. For online bipartite matching we give an algorithm that is 2e-
competitive. We also extend this result to online packing LPs with at most d non-zero
entries per variable. Here we obtain an O(d(B+1)/B)-competitive algorithm, where B is a
tightness parameter of the constraints. Another extension is matching in general graphs,
for which we give a 8.78-competitive algorithm. Finally, we give an O(α2

1)-competitive
algorithm for the online weighted independent set problem in graphs, where α1 is the
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local independence number of the graph. For example, for the prominent case of unit-disk
graphs, α1 = 5 and we obtain a constant-competitive algorithm.

Main Result 8. We give algorithms with small competitive ratios for the secretary
versions of (bipartite) matching, packing and weighted independent set in the ordinal
model.

6.2 Related Work

Our work is partly inspired by [7, 8], who study ordinal approximation algorithms for
classical optimization problems. They design constant-factor approximation algorithms
for matching and clustering problems with ordinal information and extend the results to
truthful mechanisms. Our approach here differs due to online arrival. Anshelevich et al. [6]
examine the quality of randomized social choice mechanisms when agents have metric
preferences but only ordinal information is available to the mechanism. Previously, [1, 20]
studied ordinal measures of efficiency in matchings, for instance the average rank of an
agent’s partner.

The literature on the secretary problem is too broad to survey here. We only discuss
directly related work on online algorithms for combinatorial variants. Cardinal versions of
these problems have many important applications in ad-auctions and item allocation in
online markets [46]. For multiple-choice secretary, where we can select any k candidates,
there are algorithms with ratios that are constant and asymptotically decreasing in
k [61, 10]. More generally, the matroid secretary problem has attracted a large amount of
research interest [12, 21, 64, 37], and the best-known algorithm in the cardinal model has
ratio O(log log r). For results on specific matroid classes, see the overview in Table 6.1.
Extensions to the submodular version are treated in [13, 39].

Another prominent domain is online bipartite matching, in which one side of the
graph is known in advance and the other arrives online in random order, each vertex
revealing all incident weighted edges when it arrives [63]. In this case, there is an optimal
algorithm with ratio e [58]. Moreover, our work is related to Göbel et al. [45] who
study secretary versions of maximum independent set in graphs with bounded inductive
independence number ρ. They derive an O(ρ2)-competitive algorithm for unweighted
and an O(ρ2 log n)-competitive algorithm for weighted independent set.

Matroid general k-uniform graphic cographic transversal laminar regular

Ratio O(log2 r)
e

1 +O(
√

1/k) 2e 3e 16 3
√

3e 9e

Reference [13]
[35, 10]

[61]
[63] [83] [29] [56] [30]

Table 6.1: Existing algorithms for matroid secretary problems that provide the same
guarantee in the ordinal model.

63



Chapter 6. Introduction to Part II

In addition, algorithms have been proposed for further variants of the secretary
problem, e.g., the temp secretary problem (candidates hired for a fixed duration) [40],
parallel secretary (candidates interviewed in parallel) [38], or local secretary (several
firms and limited feedback) [22]. For these variants, some existing algorithms (e.g., for
the temp secretary problem in [40]) directly extend to the ordinal model. In general,
however, the restriction to ordinal information poses an interesting challenge for future
work in these domains.

6.3 Notation and Preliminaries

In the typical problem we study, there is a set E of elements arriving sequentially in
random order. The algorithm knows n = |E| in advance. It must accept or reject an
element before seeing the next element(s). There is a set S ⊆ 2E of feasible solutions. S
is downward-closed, i.e., if S ∈ S, then S′ ∈ S for every S′ ⊆ S. The goal is to accept
a feasible solution that maximizes an objective function f . In the linear version, each
element has a value or weight we, and f(S) =

∑
e∈S we. In the submodular version, f is

submodular and f(∅) = 0 (see Definition 3.2).

In the linear ordinal model, the algorithm only sees a strict total order over the
elements seen so far that is consistent with their weights (ties are broken arbitrarily). For
the submodular version, we interpret the value of an element as its marginal contribution
to a set of elements. In this case, our algorithm has access to an ordinal oracle O(S).
For every subset S of arrived elements, O(S) returns a total order of arrived elements
consistent with their marginal values f(e|S) = f(S ∪ {e})− f(S).

Given this information, we strive to design algorithms that will have a small competi-
tive ratio f(S∗)/E [f(Salg)]. Here S∗ is an optimal feasible solution and Salg the solution
returned by the algorithm. Note that Salg is a random variable due to random-order
arrival and possible internal randomization of the algorithm.

In the matroid secretary problem, the pair M = (E,S) is a matroid. We summarize
in Table 6.1 some of the existing results for classes of the (linear) problem that transfer
to the ordinal model. The algorithms for all restricted matroid classes other than the
graphic matroid assume a priori complete knowledge of the matroid – only weights
are revealed online. The algorithms do not use cardinal information, their decisions are
based only on ordinal information. As such, they translate directly to the ordinal model.
Notably, the algorithm from [13] solves even the general submodular matroid secretary
problem in the ordinal model.

6.3.1 Yao’s Principle

Yao’s principle is a commonly used technique for giving lower bound proofs for randomized
algorithms. It states that the expected cost of a randomized algorithm on the worst case
input, is no better than a worst-case random probability distribution of the deterministic
algorithm which performs best for that distribution. Thus, to establish a lower bound on
the performance of randomized algorithms, it suffices to find an appropriate distribution
of difficult inputs, and to prove that no deterministic algorithm can perform well against
that distribution. We present here the formal statement.
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Theorem 6.1 (Yao’s principle [88]). Consider a problem over the inputs X , and let A
be the set of all possible deterministic algorithms that correctly solve the problem. For
any algorithm a ∈ A and input x ∈ X , let c(a, x) ≥ 0 be the cost of algorithm a run on
input x.

Let p be a probability distributions over the algorithms in A, and let A denote a
random algorithm chosen according to p. Let q be a probability distribution over the
inputs X , and let X denote a random input chosen according to q. Then,

max
x∈X

E [c(A, x)] ≥ min
a∈A

E [c(a,X)] ,

i.e., the worst-case expected cost of the randomized algorithm is at least the cost of the
best deterministic algorithm against input distribution q.
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CHAPTER 7

Matroids

7.1 Submodular Matroids

We start our analysis by showing that – in addition to algorithms for special cases men-
tioned in the previous chapter – a powerful technique for submodular matroid secretary
problems [39] can be adjusted to work even in the ordinal model. More formally, in this
section we show that there is a reduction from submodular matroid secretary problems
with ordinal information (SMSPO) to linear matroid secretary problems with ordinal
information (MSPO). The reduction uses Greedy (Algorithm 1) as a subroutine and
interprets the marginal value when added to the greedy solution as the value of an
element. These values are then forwarded to whichever algorithm (termed Linear) that
solves the linear version of the problem. In the ordinal model, we are unable to see the
exact marginal values. Nevertheless, we manage to construct a suitable ordering for the
forwarded elements. Consequently, we can apply algorithm Linear as a subroutine to
obtain a good solution for the ordinal submodular problem.

Let M = (E,S) be the matroid, f the submodular function, and E the ground set
of elements. The marginal contribution of element u to set M is denoted by f(u|M) =
f(M ∪ {u})− f(M). Since f can be non-monotone, Greedy in the cardinal model also
checks if the marginal value of the currently best element is positive. While we cannot
explicitly make this check in the ordinal model, note that f(u|M) ≥ 0 ⇐⇒ f(M∪{u}) ≥
f(M) = f(M ∪ {u′}) for every u′ ∈ M . Since the ordinal oracle includes the elements
of M in the ordering of marginal values, there is a way to check positivity even in the
ordinal model. Therefore, our results also apply to non-monotone functions f .

A potential problem with Algorithm 2 is that we must compare marginal contributions
of different elements w.r.t. different sets. We can resolve this issue by following the steps
of the Greedy subroutine that tries to add new elements to the greedy solution computed
on the sample. We use this information to construct a correct ordering over the marginal
contributions of elements that we forward to Linear.

Lemma 7.1. Let us denote by su the step of Greedy in which the element u is accepted
when applied to M + u. Then su1 < su2 implies f(u1|Mu1) ≥ f(u2|Mu2).

Proof. First, note that Mu1 ⊂ Mu2 when s1 > s2. We denote by mu1 the element of
M that would be taken in step su1 if u1 would not be available. Then we know that
f(u1|Mu1) ≥ f(mu1 |Mu1). Furthermore, since s1 < s2, f(mu1 |Mu1) ≥ f(u2|Mu1). Lastly,
by using submodularity, we know that f(u2|Mu1) ≥ f(u2|Mu2).

When su1 = su2 , then Mu1 = Mu2 so the oracle provides the order of marginal values.
Otherwise, the lemma yields the ordinal information. Thus, we can construct an ordering
for the elements that are forwarded to Linear that is consistent with their marginal values
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Algorithm 1: Greedy [39]

Input : ground set E
Output : independent set M

1 Let M ← ∅ and E′ ← E.
2 while E′ 6= ∅ do
3 Let u← maxu′ f(u′|M) and E′ ← E′ \ {u}
4 if (M ∪ {u} independent in M) ∧ (f(u|M) ≥ 0) then add u to M

Algorithm 2: Online(p) algorithm [39]

Input :n = |E|, size of the ground set
Output : independent set Q ∩N

1 Choose X from the binomial distribution B(n, 1/2).
2 Reject the first X elements of the input. Let L be the set of these elements.
3 Let M be the output of Greedy on the set L.
4 Let N ← ∅.
5 for each element u ∈ E \ L do
6 Let w(u)← 0.
7 if u accepted by Greedy applied to M ∪ {u} then
8 With probability p do the following:
9 Add u to N .

10 Let Mu ⊆M be the solution of Greedy immediately before it adds u to it.
11 w(u)← f(u|Mu).

12 Pass u to Linear with weight w(u).

13 return Q ∩N , where Q is the output of Linear.

in the cardinal model. Hence, the reduction can be applied in the ordinal model, and
all results from [39] continue to hold. We mention only the main theorem. It implies
constant ratios for all problems in Table 6.1 in the ordinal submodular version.

Theorem 7.2. Given an arbitrary algorithm Linear for MSPO that is α-competitive
on a matroid class, there is an algorithm for SMSPO with competitive ratio is at most
24α(3α+ 1) = O(α2) on the same matroid class. For SMSPO with monotone f , it can
be improved to 8α(α+ 1).

7.2 A Lower Bound

Another powerful technique in the cardinal model is thresholding, where we first sample
a constant fraction of the elements to learn their weights. Based on the largest weight
observed, we pick a threshold and accept subsequent elements greedily if they exceed the
threshold. This approach generalizes the classic algorithm [35] and provides logarithmic
ratios for many combinatorial domains [12, 63, 45, 22]. Intuitively, these algorithms learn
the weights but not the structure.

We show that this technique does not easily generalize to the ordinal model. The
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algorithms with small ratios in the ordinal model rely heavily on the matroid structure.
Indeed, in the ordinal model we show a polynomial lower bound for algorithms in the
matroid secretary problem that learn the ordering but not the structure. Formally, we
slightly simplify the setting as follows. The algorithm receives the global ordering of
all elements in advance. It determines (possibly at random) a threshold position in the
ordering. Then elements arrive and are accepted greedily if ranked above the threshold.
Note that the algorithm does not use sampling, since in this case the only meaningful
purpose of sampling is learning the structure. We call this a structure-oblivious algorithm.

For worst-case bounds, we can restrict our attention to instances where all elements
have cardinal weights in {0, 1}. These instances always result in the worst competitive
ratio, as shown in the following lemma.

Lemma 7.3. By converting an arbitrary weighted instance to an instance with weights
in {0, 1}, the competitive ratio between the optimum solution and the solution computed
by an algorithm based on ordinal information can only deteriorate.

Proof. Without loss of generality, we assume that all elements of the original instance
have distinct weights. We denote the elements chosen in the optimal solution by a∗1, . . . , a

∗
k

and the elements chosen by the algorithm by b1, . . . , bm. The numbering respects the
ordering of weights, i.e., a∗1 � a∗2 � . . . a∗k and b1 � b2 � · · · � bm. The competitive ratio
is

OPT

ALG
=
w(a∗1) + · · ·+ w(a∗k)

w(b1) + · · ·+ w(bm)
.

This ratio can only increase if we change the weight of all elements that appear after a∗k in
the global ordering to 0. This effectively shortens the set of elements with a contribution
chosen by the algorithm to b1, . . . , b`, for some suitable ` ≤ m. Furthermore, we change
the weights of all elements between a∗i and a∗i+1 by decreasing them to a∗i+1. We now
denote the elements that the algorithm chose by c1, . . . , cl, since their weights might have
changed. Both of these changes do not influence OPT, but they reduce the weight of the
solution returned by the algorithm. We continue converting the instance, by focusing on
w(a∗k). Then,

OPT

ALG
=
w(a∗1) + · · ·+ w(a∗k)

w(b1) + · · ·+ w(bm)
≤
w(a∗1) + · · ·+ w(a∗k)

w(b1) + · · ·+ w(b`)

≤
w(a∗1) + · · ·+ w(a∗k)

w(c1) + · · ·+ w(c`)
=

A+ w(a∗k)

B + r · w(a∗k)
,

where A = w(a∗1) + · · ·+ w(a∗k−1), B is the sum of the weights of all elements that the
algorithm chose which are not equal to w(a∗k) in the altered instance and r ∈ N0.

Taking the derivative for w(a∗k),

d

d(w(a∗k))

(
A+ w(a∗k)

B + r · w(a∗k)

)
=

B − r ·A
(B + r · w(a∗k))

2
,

we either decrease w(a∗k) to 0 or raise it to w(a∗k−1) (depending what makes the ratio
increase, i.e., the sign of the derivative). We continue this procedure until all weights of
the instance are equal to either to a∗1 or 0. Note that these changes preserve the global
ordering. W.l.o.g., we can finally set w(a∗1) = 1.
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Figure 7.1: Values for the family of instances described in the proof of Theorem 7.4,
where the position of the “valuable edges” is denoted by the thick segment.

Note that we increased the ratio between the solution of the algorithm and the
optimal solution for the original weights, when applying the transformed weights. Note
that none of these transformations change the decisions of the algorithm. In contrast,
the optimum solution for the transformed weights can only become better, which even
further deteriorates the competitive ratio.

Theorem 7.4. Every structure-oblivious randomized algorithm has a competitive ratio
of at least Ω(

√
n/(log n)).

Proof. We give a distribution of such instances on which every deterministic algorithm
has a competitive ratio of Ω(

√
n/(log n)). Using Yao’s principle (see Subsection 6.3.1),

this shows the claimed result for randomized algorithms.
All instances in the distribution are based on a graphic matroid (in fact, a partition

matroid) of the following form. There is a simple path of 1 + k segments. The edges in
each segment have weight of 0 or 1. We call the edges with value 1 in the last k segments
the “valuable edges”. The total number of edges is the same in each instance and equals
n+ 1. All edges in the first segment have value 1 and there is exactly one edge of value 1
in all other segments (that being the aforementioned valuable edges). In the first instance
there are in total k + 1 edges of value 1 (meaning that there is only one edge in the first
segment). In each of the following instances this number is increased by k (in the i-th
instance there are (i−1) ·k+1 edges in the first segment) such that the last instance has
only edges with value 1 (there are n− k + 1 edges in the first segment). The zero edges
are always equally distributed on the last k path segments. The valuable edges are lower
in the ordering than any non-valuable edge with value 1 (see Figure 7.1). Each of the
instances appears with equal probability of k

n (see Figure 7.2 for one example instance).
A deterministic algorithm picks a threshold at position i. The expected value of the

solution is

E[w(Salg)] ≤ 1 +
k

n

i
k∑
`=1

k

`
≤ 1 +

k2

n
log

i

k
≤ k2

n
log

n

k
+ 1 ,

where log denotes the natural logarithm and the expression results from observing that
the algorithm cannot obtain more than a value of 1 if its threshold i falls above the
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Figure 7.2: One instance from the family described in the proof of Theorem 7.4.

valuable 1’s. Otherwise it gets an additional fraction of k, depending on how close the
threshold is positioned to the valuable 1’s. For instance, if the threshold is set between 1
and k positions below the valuable 1’s, the algorithm will in expectation select edges of
total value of at least 1 + k/2. This follows from the random arrival order of the edges
and the fact that the ratio of valuable to non-valuable edges that the algorithm is ready
to accept is at least 1 : 2. Furthermore, we see that for this distribution of instances the
optimal way to set a deterministic threshold is at the lowest position. Using k =

√
n, a

lower bound on the competitive ratio is

k
k2

n log n
k + 1

=
n

k log n
k + n

k

= Ω

( √
n

log n

)
.
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CHAPTER 8

Matching, Packing and Independent Set

8.1 Bipartite Matching

In this section, we study online bipartite matching. The vertices on the right side of
the graph (denoted by R) are static and given in advance. The vertices on the left side
(denoted by L) arrive sequentially in a random order. Every edge e = (r, `) ∈ R× L has
a non-negative weight w(e) ≥ 0. In the cardinal model, each vertex of L reveals upon
arrival the weights of all incident edges. In the ordinal model, we are given a total order
on all edges that have arrived so far, consistent with their weights. Before seeing the
next vertex of L, the algorithm has to decide to which vertex r ∈ R (if any) it wants to
match the current vertex `. A match that is formed cannot be revoked. The goal is to
maximize the total weight of the matching.

The algorithm for the cardinal model in [58] achieves an optimal competitive ratio of
e. However, this algorithm heavily exploits cardinal information by repeatedly computing
max-weight matchings for the edges seen so far. For the ordinal model, our Algorithm 3
below obtains a competitive ratio of 2e. While similar in spirit, the main difference is that
we rely on a greedy matching algorithm, which is based solely on ordinal information. It
deteriorates the ratio only by a factor of 2.

Lemma 8.1. Let the random variable Av denote the contribution of the vertex v ∈ L to
the output, i.e., weight assigned to v in M . Let w(M∗) denote the value of the maximum-
weight matching in G. For ` ∈ {dne e, . . . , n},

E
[
A`
]
≥
bne c
`− 1

· w(M∗)

2n
.

Proof. We first show that e(`) has a significant expected weight. Then we bound the
probability of adding e(`) to M .

In step `, |L′| = ` and the algorithm computes a greedy matching M (`) on G[L′ ∪R].
The current vertex ` can be seen as selected uniformly at random from L′, and L′ can
be seen as selected uniformly at random from L. Therefore, E[w(M (`))] ≥ `

n ·
w(M∗)

2 and

E[w(e(`))] ≥ w(M∗)
2n . Here we use that a greedy matching approximates the optimum by

at most a factor of 2 [5].
Edge e(`) can be added to M if r has not been matched already. The vertex r can

be matched only when it is in M (k). The probability of r being matched in step k is at
most 1

k and the order of the vertices in steps 1, . . . , k − 1 is irrelevant for this event.

Pr [r unmatched in step `] = Pr

 `−1∧
k=dn/ee

r 6∈ e(k)

 ≥ `−1∏
k=dn/ee

k − 1

k
=
dne e − 1

`− 1
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Algorithm 3: Bipartite Matching

Input : vertex set R and cardinality n = |L|
Output : matching M

1 Let L′ be the first bne c vertices of L, and M ← ∅
2 for each ` ∈ L \ L′ do
3 L′ ← L′ ∪ {`}
4 M (`) ← greedy matching on G[L′ ∪R]

5 Let e(`) ← (`, r) be the edge assigned to ` in M (`)

6 if M ∪ {e(`)} is a matching then add e(`) to M

We now know that Pr
[
M ∪ e(`) is a matching

]
≥ bn/ec`−1 . Using this and E[w(e(`))] ≥

w(M∗)
2n , the lemma follows.

Theorem 8.2. Algorithm 3 for bipartite matching is 2e-competitive.

Proof. The weight of matching M can be obtained by summing over random variables
A`.

E[w(M)] = E

[
n∑
`=1

A`

]
≥

n∑
`=dn/ee

bn/ec
`− 1

· w(M∗)

2n
=
bn/ec

2n

n−1∑
`=bn/ec

1

`
· w(M∗)

Since bn/ecn ≥ 1
e −

1
n and

∑n−1
`=bn/ec

1
` ≥ ln n

bn/ec ≥ 1, it follows that

E[w(M)] ≥
(

1

e
− 1

n

)
· w(M∗)

2
.

Here we assumed to have access to ordinal preferences over all the edges in the
graph. Note that the same approach works if the vertices provide correlated (ordinal)
preference lists consistent with the edge weights, for every vertex from R and every
arrived vertex from L. In this case, the greedy algorithm can still be implemented by
iteratively matching and removing a pair that mutually prefers each other the most, and
it provides an approximation guarantee of 2 for the max-weight matching (see, e.g., [5]).
In contrast, if we receive only preference lists for vertices on one side, there are simple
examples that establish super-constant lower bounds on the competitive ratio1.

In the submodular version of the offline problem, the natural greedy algorithm gives a
3-approximation [43]. It builds the matching by greedily adding an edge that maximizes
the marginal improvement of f , which is the information delivered by the ordinal oracle.
When using this algorithm as a subroutine for the bipartite matching secretary problem,
the resulting procedure achieves a 12-approximation in the submodular case [60]. Since
greedy works based on an ordinal oracle, the algorithm can be applied to give the same
ratio in the ordinal model.

1Consider a bipartite graph with two nodes on each side (named A,B and 1,2). If we only know that
both A and B prefer 1 to 2, the ratio becomes at least 2 even in the offline case. Similar examples imply
that the (offline) ratio must grow in the size of the graph.
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8.2. Packing

Algorithm 4: Packing LP

Input : capacities b, total number of requests n, probability p = e(2d)1/B

1+e(2d)1/B

Output : assignment vector y

1 Let L′ be the first p · n requests, and y← 0
2 for each j /∈ L′ do
3 L′ ← L′ ∪ {j}
4 x(L′) ← greedy assignment on the LP for L′

5 yj ← x
(L′)
j

6 if ¬(A(y) ≤ b) then yj ← 0

8.2 Packing

Our results for bipartite matching can be extended to online packing LPs of the form
max cτx s.t. Ax ≤ b and 0 ≤ x ≤ 1, which model problems with m resources and n
requests arriving in random order. Each resource i ∈ [m] has a capacity bi that is known
in advance. The number of requests is also known in advance. Every online request comes
with a set of options, where each option has its profit and resource consumption. Once
a request arrives, the coefficients of its variables are revealed and the assignment to the
variables has to be determined.

Formally, request j ∈ [n] corresponds to variables xj,1, . . . , xj,K that represent K op-
tions. Each option k ∈ [K] contributes with profit cj,k ≥ 0 and has resource consumption
ai,j,k ≥ 0 for resource i. In the ordinal model, we assume access to the global order of
the arrived elements by their cj,k values. Overall, at most one option can be selected,
i.e., there is a constraint

∑
k∈[K] xj,k ≤ 1,∀j ∈ [n]. The objective is to maximize total

profit while respecting the resource capacities. The offline problem is captured by the
following linear program:

max
∑
j∈[n]

∑
k∈[K]

cj,kxj,k s.t.
∑
j∈[n]

∑
k∈[K]

ai,j,kxj,k ≤ bi i ∈ [m]

∑
k∈[K]

xj,k ≤ 1 j ∈ [n]

As a parameter, we denote by d the maximum number of non-zero entries in any
column of the constraint matrix A, for which by definition d ≤ m. We compare the
solution to the fractional optimum, which we denote by x∗. The competitive ratio will

be expressed in terms of d and the capacity ratio B = mini∈[m]

⌊
bi

maxj∈[n],k∈[K] ai,j,k

⌋
.

Kesselheim et al. [58] propose an algorithm that heavily exploits cardinal information
– it repeatedly solves an LP-relaxation and uses the solution as a probability distribution
over the options. Instead, our Algorithm 4 for the ordinal model is based on greedy
assignments in terms of profits cj,k. More specifically, the greedy assignment considers
variables xj,k in non-increasing order of cj,k. It sets a variable to 1 if this does not violate
the capacity constraints, and to 0 otherwise.

Theorem 8.3. Algorithm 4 for online packing LPs is O(d(B+1)/B)-competitive.
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The proof will be based on the following lemma.

Lemma 8.4. Let the random variable A` denote the contribution of request x` to the
output and cτx∗ the value of the optimal fractional solution. For requests xj such that
xj ∈ {pn+ 1, . . . , n}, it holds that

E[Aj ] ≥

(
1− d ·

(
e(1− p)

p

)B) cτx∗

(d+ 1)n
.

Proof. If x
(L′)
j,k = 1, then as in the proof of Lemma 8.1, we get E[cjx

(L′)
j ] = E[cj,kx

(L′)
j,k ] ≥

cτx∗

(d+1)n , where the expectation is taken over the choice of the set L′ and the choice of the
last vertex in the order of arrival.

The algorithm sets yj to x
(L′)
j only if the capacity constraints can be respected. For

the sake of analysis, we assume that the algorithm only sets yj to x
(L′)
j if every capacity

constraint bi that x
(L′)
j affects (x

(L′)
j,k = 1 and ai,j,k 6= 0) is affected by at most B − 1

previous requests. We bound the probability of a capacity constraint bi being affected
in any preceding step s ∈ {pn+ 1, . . . , j − 1}, for a fixed i:

Pr
[
bi affected by x

(L′)
s,k′ = 1

]
≤

∑
xj′∈{1,...,s}

Pr
[
(xj′ is last in the order) ∧ (ai,j′,k′ 6= 0)

]
≤ 1

s

∑
xj′∈{1,...,s}

Pr
[
ai,j′,k′ 6= 0

]
≤ B

s
,

where the last step follows from y being a feasible solution throughout the run of the

algorithm. Now, we bound the probability of not being able to set yj to x
(L′)
j :

Pr [bi is affected at least B times] ≤
∑

C⊆{pn+1,...,j−1},
|C|=B

(∏
s∈C

B

s

)

≤
(

(1− p)n
B

)
·
(
B

pn

)B
≤
(

(1− p)e
p

)B
,

so the probability of succeeding in setting yj to x
(L′)
j is

Pr [Ay ≤ b] ≥ 1− d ·
(

(1− p)e
p

)B
,

because we can do a union bound over all bi that are affected by x
(L′)
j and there are at

most d such, since that is the maximal number of non-zero entries in any column of the
constraint matrix A.

Combining this with the inequality regarding the expected contribution of x
(L′)
j , we

get the claimed result.
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8.3. Matching in General Graphs

Algorithm 5: General Matching

Input : vertex set V and cardinality n = |V |
Output : matching M

1 Let R be the first bn2 c vertices of V
2 Let L′ be the further b n2ec vertices of V , and M ← ∅
3 for each ` ∈ V \ L′ do
4 L′ ← L′ ∪ {`}
5 M (`) ← greedy matching on G[L′ ∪R]

6 Let e(`) ← (`, r) be the edge assigned to ` in M (`)

7 if M ∪ {e(`)} is a matching then add e(`) to M

Proof of Theorem 8.3. Using Lemma 8.4, we get

E[cτy] =

n∑
`=pn+1

E[A`]

≥
n∑

l=pn+1

(
1− d ·

(
e(1− p)

p

)B) cτx∗

(d+ 1)n

=
cτx∗

d+ 1
· 1

1 + e(2d)1/B
·

(
1− d ·

(
1

(2d)1/B

)B)

≥ cτx∗

2(d+ 1)(1 + 2ed1/B)
.

Note that Theorem 8.3 contains the one-sided b-hypermatching problem as a special
case. For the even more special case of b = 1 in the one-sided hypermatching, an algorithm
was given in [63], which also works in the ordinal model. Our ratio in this special case is
similar, but our approach extends to arbitrary capacities b ≥ 1.

8.3 Matching in General Graphs

Here we study the case when vertices of a general undirected graph arrive in random
order. In the beginning, we only know the number n of vertices. Each edge in the graph
has a non-negative weight w(e) ≥ 0. Each vertex reveals the incident edges to previously
arrived vertices and their weights (cardinal model), or we receive a total order over all
edges among arrived vertices that is consistent with the weights (ordinal model). An
edge can be added to the matching only in the round in which it is revealed. The goal is
to construct a matching with maximum weight.

We can tackle this problem by prolonging the sampling phase and dividing the
vertices into “left” and “right” vertices. Algorithm 5 first samples n/2 vertices. These
are assigned to be the set R, corresponding to the static side of the graph in bipartite
matching. The remaining vertices are assigned to be the set L. The algorithm then
proceeds by sampling a fraction of the vertices of L, forming a set L′. The remaining
steps are exactly the same as in Algorithm 3.
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Theorem 8.5. Algorithm 5 for matching in general graphs is 12e/(e+ 1)-competitive,
where 12e/(e+ 1) < 8.78.

The proof is based on the following lemma.

Lemma 8.6. Let the random variable A` denote the contribution of vertex ` ∈ bn/2 + n/(2e)c
to the output, i.e., the weight of the edge assigned to ` in M . Then,

E[A`] ≥
dn2 + n

2ee
`− 1

· 1

2
· w(M∗)

n
.

Proof. The proof is similar to the one of Lemma 8.1, with the additional observation
that each edge is available with probability 1

2 . It is available only if the incident vertices
are assigned to different sides of the bipartition.

Proof of Theorem 8.5. We now use the lemma to bound as follows:

E[w(M)] = E

[
n∑
`=1

A`

]
≥

n∑
`=dn/2+n/(2e)e

bn/2 + n/(2e)c
`− 1

· 1

2
· w(M∗)

n

=
bn/2 + n/(2e)c

n
· w(M∗)

2
·

n−1∑
`=bn/2+n/(2e)c

1

`

≥
(

1

2

(
1 +

1

e

)
− 1

n

)
· w(M∗)

2
· 1

3
.

8.4 Independent Set and Local Independence

In this section, we study maximum independent set in graphs with bounded local inde-
pendence number. The set of elements are the vertices V of an underlying undirected
graph G. Each vertex has a weight wv ≥ 0. We denote by N(v) the set of direct neighbors
of vertex v. Vertices arrive sequentially in random order and reveal their position in the
order of weights of vertices seen so far. The goal is to construct an independent set of G
with maximum weight. The exact structure of G is unknown, but we know that G has a
bounded local independence number α1.

Definition 8.7 (Local independence number). An undirected graph G has local inde-
pendence number α1 if for each node v, the cardinality of every independent set in the
neighborhood N(v) is at most α1.

We propose Algorithm 6, which is inspired by the Sample-and-Price algorithm for
matching in [63]. Note that Göbel et al. [45] construct a more general approach for graphs
with bounded inductive independence number ρ. However, they only obtain a ratio of
O(ρ2 log n) for the weighted version, where a competitive ratio of Ω(log n/ log2 log n)
cannot be avoided, even in instances with constant ρ. These algorithms rely on ρ-
approximation algorithms for the offline problem that crucially exploit cardinal informa-
tion.

Similar to the analysis in [63], we reformulate Algorithm 6 into an equivalent approach
termed “Simulate” (Algorithm 7). Given the same arrival order, the same vertices are
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Algorithm 6: Independent Set in Graphs with Bounded Local Independence
Number

Input :n = |G|, p =
√
α1/(α1 + 1)

Output : independent set of vertices S

1 Set k ← Binom(n, p), S ← ∅
2 Reject first k vertices of G, denote this set by G′

3 Build a maximal independent set of vertices from G′ greedily, denote this set by
M1

4 for each v ∈ G \G′ do
5 w∗ ← max{w | N (v) ∩M1}
6 if (v > w∗) ∧ (S ∪ {v} independent set) then add v to S

Algorithm 7: Simulate

Input :n = |G|, p =
√
α1/(α1 + 1)

Output : independent set of vertices S

1 Sort all vertices in G in non-increasing order of value
2 Initialize M1,M2 ← ∅
3 for each v ∈ G in sorted order do
4 if M1 ∪ {v} independent set then
5 flip a coin with probability p of heads
6 if heads then M1 ←M1 ∪ {v}; else M2 ←M2 ∪ {v}

7 S ←M2

8 for each w ∈ S do
9 if w has neighbors in S then remove w and all his neighbors from S

in the sample. Algorithm 7 drops all vertices from S that have neighbors in S while
Algorithm 6 keeps one of them. Hence, E [w(SAlg6)] ≥ E [w(SAlg7)]. In what follows,
we analyze the performance of Algorithm 7. The first lemma follows directly from the
definition of the local independence number.

Lemma 8.8. E [w(M1)] ≥ p · w(S∗)
α1

, where α1 ≥ 1 is the local independence number of
the graph G.

Lemma 8.9. E
[
|N (v) ∩M2|

∣∣ v ∈M2

]
≤ α1(1−p)

p .

Proof. Let us denote by X1
u and X2

u the indicator variables for the events u ∈ M1 and
u ∈M2 respectively. Then,

E
[
|N (v) ∩M2|

∣∣ v ∈M2

]
= E

 ∑
u∈N (v)

X2
u

∣∣ v ∈M2

 =
∑

u∈N (v)

E
[
X2
u

∣∣ v ∈M2

]
=

1− p
p

∑
u∈N (v)

E
[
X1
u

∣∣ v ∈M2

]
≤ 1− p

p
· α1 .
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Theorem 8.10. Algorithm 7 for weighted independent set is O(α2
1)-competitive, where

α1 is the local independence number of the graph G.

Proof. By using Markov’s inequality and Lemma 8.9,

Pr
[
|N (v) ∩M2| ≥ 1

∣∣ v ∈M2

]
≤ α1 · (1− p)/p

and Pr
[
|N (v) ∩M2| < 1

∣∣ v ∈M2

]
> 1− (α1(1− p)/p) .

Thus, we can conclude that

E [w(S)] ≥
(

1− α1 ·
1− p
p

)
·E [w(M2)] ≥

(
1− α1 ·

1− p
p

)
· 1− p
α1
· w(S∗) .

The ratio is optimized for p =
√

α1
α1+1 , which proves the theorem.

As a prominent example, α1 = 5 in the popular class of unit-disk graphs. In such
graphs, our algorithm yields a constant competitive ratio for online independent set in
the ordinal model.
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CHAPTER 9

Conclusion and Open Problems

In Part I of this thesis, we have studied two extensions of the smoothness framework.
Namely, we were interested in introducing two aspects: risk-averse players and mechanism
availability.

Risk Aversion In Chapter 4, we give bounds on the price of anarchy of Bayes-Nash
and (coarse) correlated equilibria for smooth mechanisms that allow participation of risk-
averse agents. We identify a sufficient and necessary condition that smooth mechanisms
have to fulfill in order to achieve constant price of anarchy bounds in the presence of
risk-averse players. Our main results lie within the concave utility function model.

An interesting further step would be to analyze risk aversion in the same concave
utility function setting but with social welfare being redefined as revenue plus sum of
the risk-averse utilities, but where we apply an inverse of the respective concave function
to each of the summands. Such approach makes the normalization assumption obsolete
and might be a yet better way to model risk aversion. Of course, what also remains open
are settings that lie outside of the smoothness framework.

Simultaneous Composition with Varying Availability In Chapter 5, we have
studied an oblivious variant for no-regret learning in repeated games with incomplete
information and proved a composition theorem for smooth mechanisms. The bounds
show that even if bidders apply learning algorithms independently of their types, they
can still obtain outcomes that approximate the optimal social welfare within a small
ratio.

Our primary motivation were changes over time on the supply side. That is, bidders
value items the same at all times but are constrained when they can buy them. A different
interpretation that leads to the same model is when bidders value items differently from
time to time. Here the valuation for a bundle has the special structure that it is given
by the value of a fixed submodular function evaluated on the intersection of this bundle
with a random set.

There is potential to generalize the type-oblivious approach to other interesting set-
tings where types are not only connected to availability of mechanisms but capture more
general conditions for the bidder. For example, one could consider general independent
types, where the complete availability-vector of a single bidder is drawn from a bidder-
specific distribution, and for each bidder this is done independently. In Section 5.6, we
give a partial answer to this direction of investigation and show how our techniques
can be extended to the case of simultaneous single-item auctions with unit-demand
valuations.

Lastly, within our scenario with admission we succeeded to show composition theorems
for fully independent and “everybody or nobody” availability. It would be interesting
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to see in which way we can change the degree of correlation among bidders and/or
mechanisms and maintain a small price of anarchy. Previous results on channel access in
wireless networks [25] indicate that with arbitrary correlation among bidders, the price
of anarchy increases to Θ(n), even for the constantly smooth all-pay auctions outlined
in Section 5.5 and even if availability remains independent among mechanisms. Again,
it would be interesting to characterize the domains for which a small price of anarchy
can be shown.

Ordinal Secretary Problems In Part II of this thesis, we study algorithms for
combinatorial secretary problems that rely only on ordinal information. We show bounds
on the competitive ratio, i.e., we compare the quality of the computed solutions to the
optima in terms of the exact underlying but unknown numerical values. Consequently,
competitive ratios for our algorithms are robust guarantees against uncertainty in the
input.

Continuing this line of work, it would be interesting to further explore the differences
between the cardinal and ordinal secretary scenarios. For instance, one could try to get
better lower bounds for the ordinal model. As of yet, this matter is not well understood
even in the simplest cases, such as in weighted bipartite matching.

Furthermore, the authors in [82] study secretary problems in which the algorithm
is restricted to an arbitrary downward-closed set system. The broadest domain we
considered in the ordinal model are matroid constraints. It would be of interest to see
whether the ordinal model can also yield results for this more general set of constraints.

Finally, a more general research direction would be to explore different ordinal models
and try to quantify the relation of the amount of information obtainable from the model
and the achievable approximation ratios.
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[23] G. Christodoulou, A. Kovács, and M. Schapira. Bayesian combinatorial auctions.
In Proc. 35th Intl. Coll. Autom. Lang. Program. (ICALP), pages 820–832, 2008.
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[77] R. Paes Leme and É. Tardos. Pure and bayes-nash price of anarchy for generalized
second price auction. In Proc. 51st Symp. Foundations of Computer Science (FOCS),
pages 735–744, 2010.

[78] G. Piliouras, E. Nikolova, and J. S. Shamma. Risk sensitivity of price of anarchy
under uncertainty. ACM Trans. Econom. Comput., 5(1):5:1–5:27, 2016.

[79] T. Roughgarden. The price of anarchy in games of incomplete information. In Proc.
13th Conf. Electr. Commerce (EC), pages 862–879, 2012.

[80] T. Roughgarden. Barriers to near-optimal equilibria. In Proc. 55th Symp. Founda-
tions of Computer Science (FOCS), pages 71–80, 2014.

[81] T. Roughgarden. Intrinsic robustness of the price of anarchy. J. ACM, 62(5):32,
2015.

[82] A. Rubinstein. Beyond matroids: secretary problem and prophet inequality with
general constraints. In Proc. 48th Symp. Theory of Computing (STOC), pages
324–332, 2016.

[83] J. Soto. Matroid secretary problem in the random-assignment model. SIAM J.
Comput., 42(1):178–211, 2013.

[84] M. Sundararajan and Q. Yan. Robust mechanisms for risk-averse sellers. In Proc.
11th Conf. Econom. Comput. (EC), pages 139–148, 2010.
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