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i

Abstract

This thesis has two parts; in the first of which we give new results for various network flow
problems. (1) We present a novel dual ascent algorithm for min-cost flow and show that
an implementation of it is very efficient on certain instance classes. (2) We approach the
problem of numerical stability of interior point network flow algorithms by giving a path
followingmethod that works with integer arithmetic solely and is thus guaranteed to be free
of any numerical instabilities. (3) We present a gradient descent approach for the undirected
transshipment problem and its special case, the single source shortest path problem (SSSP).
For distributed computation models this yields the first SSSP-algorithm with near-optimal
number of communication rounds.

The second part deals with fundamental topics from algebraic computation. (1) We give
an algorithm for computing the complex roots of a complex polynomial. While achieving a
comparable bit complexity as previous best results, our algorithm is simple and promising
to be of practical impact. It uses a test for counting the roots of a polynomial in a region
that is based on Pellet’s theorem. (2) We extend this test to polynomial systems, i.e., we
develop an algorithm that can certify the existence of a k-fold zero of a zero-dimensional
polynomial system within a given region. For bivariate systems, we show experimentally
that this approach yields significant improvements when used as inclusion predicate in an
elimination method.





iii

Kurzfassung

Im ersten Teil dieser Dissertation präsentieren wir neue Resultate für verschiedene Netzw-
erkflussprobleme. (1) Wir geben eine neue Duale-Aufstiegsmethode für das Min-Cost-Flow-
Problem an und zeigen, dass eine Implementierung dieser Methode sehr effizient auf gewis-
sen Instanzklassen ist. (2)Wir behandelnnumerische Stabilität von Innere-Punkte-Methoden
für Netwerkflüsse, indemwir eine solcheMethode angeben diemit ganzzahliger Arithmetik
arbeitet und daher garantiert frei von numerischen Instabilitäten ist. (3) Wir präsentieren
ein Gradienten-Abstiegsverfahren für das ungerichtete Transshipment-Problem, und seinen
Spezialfall, das Single-Source-Shortest-Problem (SSSP), die für SSSP in verteilten Rechen-
modellen die erste mit nahe-optimaler Anzahl von Kommunikationsrunden ist.

Der zweite Teil handelt von fundamentalen Problemen der Computeralgebra. (1) Wir
geben einen Algorithmus zum Berechnen der komplexen Nullstellen eines komplexen Poly-
noms an, der eine vergleichbare Bitkomplexität zu vorherigen besten Resultaten hat, aber
vergleichsweise einfach und daher vielversprechend für die Praxis ist. (2) Wir erweitern den
darin verwendeten Pellet-Test zum Zählen der Nullstellen eines Polynoms auf Polynomsys-
teme, sodass wir die Existenz einer k-fachen Nullstelle eines Systems in einer gegebenen
Region zertifizieren können. Für bivariate Systeme zeigen wir experimentell, dass eine In-
tegration dieses Ansatzes in eine Eliminationsmethode zu einer signifikanten Verbesserung
führt.
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Preface

This thesis has two parts. Part I deals with a very powerful class of optimization problems,
the so-called network flow problems. We give new algorithms for several different variants
of network flow problems (in different models of computation). This part is based on the
following three papers: [BFK16BFK16; BKM16BKM16; Bec+17Bec+17].
[BFK16] Ruben Becker, Maximilian Fickert, and Andreas Karrenbauer. “A Novel Dual

Ascent Algorithm for Solving the Min-Cost Flow Problem”. In: Proceedings of
the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX

2016, Arlington, Virginia, USA, January 10, 2016. Ed. by Michael T. Goodrich and
Michael Mitzenmacher. SIAM, 2016, pp. 151–159.

[BKM16] Ruben Becker, Andreas Karrenbauer, and Kurt Mehlhorn. “An Integer Interior
Point Method for Min-Cost Flow Using Arc Contractions and Deletions”. In:
CoRR abs/1612.04689 (2016). Abstract and Talk at International Network
Optimization Conference 2017 (INOC).

[Bec+17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and
Christoph Lenzen. “Near-Optimal Approximate Shortest Paths and
Transshipment in Distributed and Streaming Models”. In: 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,

Austria. Ed. by Andréa W. Richa. Vol. 91. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017, 7:1–7:16.

Part II is concerned with topics from symbolic-numeric computation. We present new
algorithms for the computation of the complex roots of a univariate complex polynomial
and for counting the number of zero-dimensional polynomial systems within a given
region. The second part is based on the following two manuscripts: [Bec+18Bec+18; BS17BS17].
[Bec+18] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. “A

near-optimal subdivision algorithm for complex root isolation based on the
Pellet test and Newton iteration”. In: J. Symb. Comput. 86 (2018), pp. 51–96.

[BS17] Ruben Becker and Michael Sagraloff. “Counting Solutions of a Polynomial
System Locally and Exactly”. In: CoRR abs/1712.05487 (2017).

Besides the above publications, during my PhD, that I have started in October 2013, I
published the following articles: [BK14BK14; Bec+16Bec+16; Wim+17Wim+17].
[BK14] Ruben Becker and Andreas Karrenbauer. “A Simple Efficient Interior Point

Method for Min-Cost Flow”. In: Algorithms and Computation - 25th International

Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings. Ed. by
Hee-Kap Ahn and Chan-Su Shin. Vol. 8889. Lecture Notes in Computer
Science. Springer, 2014, pp. 753–765.

[Bec+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap.
“Complexity Analysis of Root Clustering for a Complex Polynomial”. In:
Proceedings of the ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. Ed. by
Sergei A. Abramov, Eugene V. Zima, and Xiao-Shan Gao. ACM, 2016, pp. 71–78.

[Wim+17] Ralf Wimmer, Andreas Karrenbauer, Ruben Becker, Christoph Scholl, and
Bernd Becker. “From DQBF to QBF by Dependency Elimination”. In: SAT.
Vol. 10491. Lecture Notes in Computer Science. Springer, 2017, pp. 326–343.

Note that [BK14BK14] contains the results of my master’s thesis.
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Part I

Flows and Paths
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Chapter 1

Introduction to Part I

Networks appear literally everywhere in today’s world. Whenever a discrete set of entities
get into contact with each other, a network is inherent. If their goal is to transport some
sort of good through the network, a network optimization problem appears. The first part
of this thesis deals with a very fundamental and classical class of network optimization
problems, namely network flow problems. The work of mathematicians on this class of
problems goes back to the first half of the previous century [AMO93AMO93]. In fact, the so-called
transportation problem, a special case of the min-cost flow problem that we will consider
later on in this thesis, was already studied independently by mathematicians on different
continents [Hit41Hit41; Koo51Koo51; Kan60Kan60] around 1950. Kantorovich and Koopmans later received
the Nobel Prize in Economic Sciences for their work on this problem. The more general
minimum-cost flow problem was first studied algorithmically by Dantzig [Dan63Dan63] and Ford
and Fulkerson [FF62FF62] around 1960. Their work can be considered as the basis of what we
consider the classic literature on network flow problems today. Besides this, it had a great
influence on the evolution of the whole field of linear optimization [AMO93AMO93]. In addition to
this great impact onmathematics, economics, and computer science, network flow problems
have always been of great interest also because they offer such a vast set of applications
in many different fields [Ahu+95Ahu+95]. Besides applications in other fields of computer science
and mathematics (see, e.g., [Tam87Tam87; II86II86]), network flows have applications in physics (see,
e.g., [Rie98Rie98]), in telecommunications (see, e.g., [BOR80BOR80]), in biology (see, e.g., [Wat89Wat89]),
in image processing (see, e.g., [SG82SG82; Cos98Cos98]), and many more. In fact, many real-world
problems that admit polynomial-time algorithms in the first place can be turned into network
flow problems [Ahu+95Ahu+95].

Naturally, many different variants of the abstract description of transporting a good
through a given network are conceivable. In what follows, we describe the most important
ones in the context of this thesis. The question of how to get from one point in a network
to another point in the shortest manner, i.e., the famous shortest path problem, is the simplest
version of a network flow problem. Here, shortest may just refer to the number of links or,
in the weighted version, lengths are associated to the links in the network and the path of
shortest length is called for. Shortest path problems are of huge importance in logistics and
routing and by now many of us use algorithms to compute shortest paths on a daily basis –
namely, whenever we use a route planner like Google Maps or any other navigation system.
This problem has received a lot of attention both from theoreticians and practitioners [Dĳ59Dĳ59;
Tho99Tho99; Bas+07Bas+07; DGJ09DGJ09]. From a theoretical point of view, the problem can be considered
as solved in the standard RAM model of computation. However, as nowadays computer
systems are more and more distributed and data becomes larger and larger, it becomes
necessary to consider different, more realistic models of computation such as distributed
and streaming models. In this thesis, we will present a result in this scope for the shortest
path problem. Another variant of network flow problems that has also received plenty of
attention by researchers is the max-flow problem and its dual the min-cut problem [Kar73Kar73;
ET75ET75; Kar00Kar00; KT15KT15; Mąd13Mąd13; HRW17HRW17]. In the max-flow problem the question is how to send a
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maximum amount of flow from one point in the graph to another, while respecting capacity
constraints on the links.

The alreadymentionedmin-cost flow problem generalizes both the shortest path and the
max-flow problem. The problem is described as follows: Given a network with costs and
capacities on the links, the goal is to send a good in the cheapest possible way from some set
of sources, i.e., nodes having surplus, to some set of sinks, i.e., nodes having deficit, while
respecting the capacity constraints on the edges. This problem is known as the capacitated

min-cost flow problem or min-cost flow problem in the case where no capacities are given. We
will see that there is a very close relation between the capacitated and the non-capacitated
version of the problem, see Section 1.31.3. Each of the described problems can be thought of in
the setting of a directed graph, where flow is only allowed to be sent in one direction over
the edges or in undirected graphs, where flow can travel in both directions. In the setting
of non-capacitated undirected graphs, the min-cost flow problem is also referred to as the
undirected transshipment problem.

We proceed with more history on network flow problems before giving an overview of
the main results of this part of the thesis.

1.1 Related Work

The literature on network flows is extremely vast. A good overview can be found in standard
books on the topic [AMO93AMO93; Sch03Sch03]. We will focus on the most relevant contributions for
the topics of this thesis. The algorithmic work on the problem starts with the seminal works
of Dantzig [Dan63Dan63] and Ford and Fulkerson [FF62FF62]. Dantzig, in his book on linear program-
ming, focuses on the simplexmethod and its interpretation for network flow problems. Ford
and Fulkerson’s work can be understood as the starting point of an extremely fruitful line
of research: the primal-dual combinatorial algorithms. Edmonds and Karp [EK01EK01] were
the first to give a weakly-polynomial time algorithm for the min-cost flow problem, i.e.,
an algorithm with a run-time that is polynomial in the size of the graph, as well as in the
encoding length of the numbers in the input representing costs, capacities, and demands.
The first strongly-polynomial time algorithm, i.e., an algorithm with polynomial time com-
plexity in the number of nodes and edges, but independent of the size of the numbers
in the input, was given by Tardos [Tar85Tar85]. There have been many further contributions
since then. The strongly-polynomial time algorithms peak in the algorithm of Orlin [Orl88Orl88],
which refines the algorithm of Edmonds and Karp. It solves the uncapacitated min-cost
flow problem by computing a sequence of O(n log(n))many shortest path problems, which
leads to a run-time of O(n log(n)(m + n log n)), where n is the number of nodes and m the
number of arcs. Using a standard reduction that we will review in Section 1.31.3, a run-time
of O(m log(n)(m + n log n)) can be achieved for the capacitated min-cost flow problem. In
terms of weakly-polynomial time algorithms, the scaling algorithms [GT90GT90] finally lead to
the bound of O(nm log log U log(nC)) that is due to Ahuja et al. [Ahu+92Ahu+92]. Here C denotes
an upper bound on the cost and U an upper bound on the capacities and demands.

More recently, a different approach has been very fruitful. It dates back to the work of
Vaidya [Vai89Vai89] who was the first to give a tailored interior point method for network flow
problems. Although his algorithm did not improve over the best combinatorial methods at
that time, the general approach of using continuous optimization techniques for network
flow problems has become extremely successful in the last decade. The first very prominent
result goes back to Daitch and Spielman [DS08DS08]. They gave a randomized Õ(m3/2 log2 U)-
time algorithm11 that heavily relies on nearly-linear time equation solvers [ST04ST04; KMP14KMP14;
Kel+13Kel+13]. This general approach of using nearly-linear time equation solvers as a subroutine

1We use the Õ(·)-notation to hide logarithmic factors, i.e., Õ( f ) :� O( f logc( f )) for any constant c ≥ 0.
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has proven successful also for various other optimization problems. Daitch and Spielman’s
methodwas the first to achieve a sub-quadratic running time in sparse graphs (assuming that
the costs, capacities, and demands are polynomially bounded in n). The same running time
(up to logarithmic factors)was achieved in [BK14BK14] for the classicalmin-cost flowproblemwith
a simple potential reduction algorithm. Even more recently, the breakthrough result of Lee
and Sidford [LS14LS14] yields a very intricate randomized interior point method of complexity
Õ(m
√

n logO(1)U) for the min-cost flow problem. Most recently, Cohen et al. developed
a new framework to analyze interior point methods [Coh+17Coh+17]. They obtain a bound of
Õ(m10/7 log C) for the special case of min-cost flows with unit capacities. The very same
bound has been achieved before by Mądry for the max-flow problem in directed graphs
with unit capacities [Mąd13Mąd13].

For network flow problems in undirected graphs, the picture is slightly different. On the
one side, it is rather easy to see, confer Section 1.31.3, that the undirected setting can be reduced
to the directed one by introducing two directed arcs for every undirected edge and thus all
the previously mentioned asymptotic bounds also apply for the undirected case. However,
the current state of research is that the undirected case actually allows for better results in
some settings. Namely, when allowing for some approximation, i.e., searching for a solution
that is within a factor of 1 + ε of the optimum, both the undirected max-flow as well as the
undirected transshipment problem can be solved in close to linear time. For the max-flow
problem the first results in this scope were simultaneously given by Sherman [She13She13] and
Kelner et al. [Kel+14Kel+14]. Peng improved their run-time from almost linear in m, i.e., O(m1+o(1)),
to nearly-linear in m, i.e., O(m polylog(n)) � Õ(m). For the undirected transshipment
problem without capacity constraints a comparable result, namely an almost-linear time
(1 + ε)-approximation algorithm is due to Sherman [She17She17].

These advances in theoretical run-time bounds, however, did not yet translate into faster
implementations in practice. In fact, the fastest implementations for solving network flow
instances in practice are still based on the classical combinatorial approaches, see for exam-
ple [GK91GK91; Gol97Gol97] or [KK12KK12] for a comparison study. It is one of the ambitions of this thesis
to help narrowing this gap.

1.2 Main Results of Part I

Main Result 1.1. Chapter 22 introduces a fully-combinatorial dual ascent algorithm for the
capacitated min-cost flow problem. We formally prove the correctness of the approach and
show further properties. After presenting a greedy variant of the algorithm’s dual step,
we report on an implementation of the algorithm and several variants of it. We evaluate
these variants experimentally and show that our approach is competitive with recent third-
party implementations of well-known algorithms for the min-cost flow problem and even
outperforms them on certain realistic instance classes such as road networks.

Main Result 1.2. Although the current record bounds for the min-cost flow problem are
achieved by interior point methods, the combinatorial algorithms are still the methods of
choice in practice. In fact, we are not aware of any interior point method that has been
reported superior to combinatorial algorithms for network flow problems in practice. The
striking efficiency of the combinatorial algorithms is partly due to their straightforward
arithmetic. Interior point methods, however, are formulated for real arithmetic and bridg-
ing the gap between real and finite-precision arithmetic requires tedious error analysis. In
Chapter 33, we approach this problem by presenting an interior pointmethod for themin-cost
flow problem that uses integer arithmetic only. The use of arc contractions and deletions
avoids having to deal with huge and small numbers simultaneously, and an initial scaling
guarantees that data stays integral as the algorithm visits only integer lattice points in the



6 Chapter 1. Introduction to Part I

vicinity of the central path of the primal-dual polytope. We provide explicit bounds on the
size of all numbers appearing through the computation. We moreover show that our algo-
rithm runs in time Õ(m3/2) time with high probability and thus, in terms of time complexity,
dominates over the classical combinatorial methods. By eliminating one of the drawbacks
of interior point methods for network flow problems, we hope to narrow the gap between
practically and theoretically efficient algorithms for the min-cost flow problem.

Main Result 1.3. In Chapter 44, we turn to undirected flow problems and make use of one
big opportunity that continuous optimization techniques have to offer for becoming relevant
in practice, namely concurrency. That is, in addition to the standard RAM model, we also
approach the topic from the perspective of distributed and streamingmodels of computation,
more precisely the Broadcast Congest model, the Broadcast Congested Clique model, as
well as the Multipass Streaming model. We present a tailored gradient descent technique
for computing a solution to the undirected transshipment problem that is optimal up to a
(1 + ε)-approximation factor. Besides an interesting result in the RAMmodel that improves
over the work of Sherman [She17She17] in certain settings, we obtain the first non-trivial results
for undirected transshipment in the aforementioned distributed models of computation.
Maybe even more interestingly, when applied to the special case of single source shortest
path, our method is the first to achieve a near-optimal number of communication rounds in
theBroadcast Congest andBroadcast Congested Cliquemodels. Wewould like to note that
the previous best results for distributed single source shortest path follow the framework of
sparse hop sets and that the recent lower bounds by Abboud et al. [ABP17ABP17] had shown that
it is impossible to achieve near-optimality when using approaches based on this framework.

We continue by introducing some basic notation and then proceedwith formally defining
the described network flow problems.

1.3 Preliminaries

1.3.1 Basics

In what follows, we define [n] :� {1, . . . , n} for any natural number n ∈ N≥1. For any set
S and integer k ≤ |S |, we denote with

(S
k

)
the set of all subsets of S that have size k. For a

vector x ∈ Rn and a subset S ⊆ [n] of the indices, we denote x(S) :�
∑

i∈S xi . With 1 we
denote the vector of suitable dimension with all entries being one, while for any index i,
the vector 1i is the vector that is 1 at position i and zero everywhere else. For any vector
x ∈ Rd by ‖x‖1 �

∑d
i�1 |xi | we denote its 1-norm, by ‖x‖2 � (∑d

i�1 x2
i )1/2 we denote its 2-norm,

and by ‖x‖∞ � max{|xi | : i ∈ [d]} its ∞-norm. We will also use ‖x‖W � (∑d
i�1 wi x2

i )1/2 for
the weighted 2-norm with a square and positive weight matrix W ∈ Rn×n

>1 . Moreover, we
use (x)max :� max{xi : i ∈ [d]} to denote the maximum entry in the vector x. We will use
log(·) to denote the logarithm with base 2 and ln(·) to denote the natural logarithm. We
write poly f and polylog f for O( f c) and O(logc( f )) for some constant c, respectively. As
stated in a footnote before, we use the Õ(·)-notation to hide poly-logarithmic factors, i.e.,
Õ( f ) :� O( f polylog f ).

1.3.2 Graphs

We will deal with undirected as well as with directed graphs. An undirected graph G consist of
two sets (V, E): a set of nodes V and a set of edges E. We will, w.l.o.g., assume that V � [n].
The set of edges E is a set of unordered sets of size two, i.e., E ⊆

(V
2
)
. A directed graph consists

of a set of nodes V and a set of arcs A, where A ⊆ V2 is a set of ordered pairs. Whenever an
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undirected or directed graph G is given, n denotes the number of nodes and m the number
of edges or arcs of that graph.

For an undirected graph G, we denote with δG(v) :� {e ∈ E : v ∈ e}, the set of incident
edges to v in G. For a directed graph, we distinguish between the set of ingoing arcs
δin

G (v) :� {a ∈ A : there is u ∈ V with a � (u , v)} and the set of outgoing arcs δout
G (v) :� {a ∈

A : there is w ∈ V with a � (v , w)}. In the directed case, we let δG(v) :� δin
G (v) ∪ δ

out
G (v).

Given a directed graph G � (V,A), after fixing some order σ : [m] → A of the arcs, we
associate the so-called node-arc incidence matrix A ∈ {−1, 0, 1}n×m with G. It is defined as

Av , j �


1, if σ( j) ∈ δin

G (v)
−1, if σ( j) ∈ δout

G (v)
0 otherwise.

Instead of writing Av , j for the entry corresponding to v and j, we just write Av ,a with a � σ( j)
from now on, i.e., we will assume the order implicitly. Note that the matrix −A corresponds
to a graph on the same set of nodes and with the same number of arcs, but the direction of
each arc is flipped. Thus, we will use −A � {−a � (w , v) : a � (v , w) ∈ A} for the set of
reversed arcs analogously.

For an undirected graph G � (V, E), we frequently fix an orientationE→ ⊆ V2 of the edges
E. We then call e ∈ E→ a forward edge and −e a backward edge. After fixing the orientation
E→ of E, we can associate a directed graph G↔ � (V,A) � (V, E→ ∪ −E→) consisting of the
forward and backward edges with G. We call G↔ the bidirected graph corresponding to
G. With a slight abuse of notation, we write δin

G (v) instead of δin
G↔(v) and δ

out
G (v) instead of

δout
G↔(v) for a node v ∈ V . To an undirected graph G we associate the node-arc incidence

matrix A ∈ {−1, 0, 1}n×2m corresponding to its bidirected graph G↔. If the graph G is clear
from the context, we will sometimes entirely omit the subscript and just write δin(v) and
δout(v).

1.3.3 Network Flow Problems

Undirected network flow problems. As described above, there are many different variants
of network flow problems, both in directed as well as in undirected graphs. One of the
most fundamental ones in undirected graphs is the undirected transshipment problem. It
is defined by a tuple (G, b , w), where G � (V, E) is an undirected graph, b ∈ Zn is a demand
vector with one entry per node that satisfies 1T b � 0, and w ∈ Nm

≥1 is a weight or cost vector
with one entry per edge. Let us fix an arbitrary orientation E→ of the edge set E. The task
is to find a flow vector x ∈ R2m

≥0 , i.e., x has an entry xa for every a ∈ A � E→ ∪ −E→, that
is feasible and of minimum cost. We call a flow x feasible, if it fulfills flow conservation, i.e.,
x(δin

G (v))−x(δout
G (v)) � bv holds at every node v ∈ V , or equivalently, Ax � b in vector-matrix

notation. The cost of a flow x is defined as 1TWx �
∑

a∈A wa xa , where W � diag(w , w) ∈ N2m
≥1

is the diagonal matrix given by the weights w and we define w−e � we for any e ∈ E→.
The undirected transshipment problem can then be written as the following minimization
problem with non-negativity and linear equality constraints:

min{1TWx : Ax � b , x ≥ 0}. (1.1)

We remark that every optimal solution x∗ of the above problem satisfies x∗e · x∗−e � 0 for
e ∈ E→ as w > 0. Assume that this is not the case for some e, then x∗ − ε(1e + 1−e) is feasible
for a sufficiently small ε > 0 and has a smaller objective value.

The asymmetric transshipment problem is defined exactly as the undirected transship-
ment problem with the sole difference being that the weight w+

e for a forward edge e ∈ E→
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can be different from theweight w−−e for the corresponding backward edge. That is, the edges
have different cost depending on the direction that the flow travels along them. W.l.o.g., we
assume that w+ ≥ w−, i.e., that we picked the E→ such that the forward weight is at least
the backward weight. The asymmetric transshipment problem can then be written as before
with the definition W � diag(w+ , w−) ∈ N2m

≥1 . Clearly, if w+ � w−, then the asymmetric
transshipment problem reduces to the symmetric or standard undirected transshipment
problem.

Note that the undirected single-source-shortest path problem, where we want to com-
pute the shortest path from one source node to all other nodes, is the special case of the
undirected transshipment problemwith b � 1− n1s . Also for the shortest path problem, we
may allow the weights to be asymmetric.

Directed network flow problems. We now turn to network flow problems in directed
graphs. The min-cost flow problem is defined by a tuple (G, b , c), where G � (V,A) is a
directed graph, b ∈ Zn as before is a demand vector with one entry per node that satisfies
1T b � 0, and c ∈ Nm

≥1 is a cost vector with an entry for every arc. The task in themin-cost flow
problem is to find a flow x ∈ Rm

≥0 that is feasible and of minimum cost. Note the difference
to the undirected problem above: an arc a � (v , w) ∈ A only permits flow to travel in one
direction from v to w, while an edge e � {v , w} results in two arcs (v ,w) and (w , v) in the
bidirected graph and thus permits flow to travel in both directions.22 Again, we call the flow
x feasible, if it fulfills flow conservation, i.e., in vector-matrix notation, if Ax � b is satisfied.
The weight of a flow x ≥ 0 is defined as cT x. Clearly, the min-cost flow problem can be
written as the following linear program:

min{cT x : Ax � b , x ≥ 0}. (1.2)

In a variant of the problem, the so-called capacitated min-cost flow problem, in addition a
capacity vector u ∈ Nm

≥1 is given, i.e., an instance is described by a tuple (G, b , c , u). In this
problem, there is the additional constraints that x ≤ u, i.e., in form of a linear program the
problem writes as

min{cT x : Ax � b , 0 ≤ x ≤ u}. (1.3)

The directed single-source-shortest path problem is a special case of the min-cost flow
problem. We sometimes refer to the standard min-cost flow problem as the uncapacitated

min-cost flow problem if we want to emphasize that there are no capacity constraints.

1.3.4 Relations Between the Problems

We proceed by giving relations between the above introduced problems. It is clear that
the undirected and asymmetric transshipment problems are actually special cases of the
min-cost flow problem with cost vector c � [ w

w ] and c � [ w+

w− ], respectively:

Lemma 1.1. The asymmetric and undirected transshipment problem on a graph with n nodes and m
edges can be solved by solving a min-cost flow problem on a graph with n nodes and 2m arcs.

Now let (G, b , c , u) be an instance of the capacitated min-cost flow problem. There
is a straightforward, well-known reduction to the min-cost flow problem. Recall the LP-
formulationof the capacitatedmin-cost flowproblem from (1.31.3) and consider theLP resulting

2We remark that some authors use the term directed transshipment problem for what we define as the min-
cost flow problem. In this thesis, we will reserve the term transshipment for the undirected case in order to have
a clearer differentiation between the directed and undirected variant of the problem.
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vw

w

v

(ua , ca)

bw

bv

vw

w

v
ca

0

bv

bw − ua

ua

Figure 1.1: The transformation that, when done for every arc a � (v , w), leads
to a min-cost flow problem from a capacitated min-cost flow problem.

from introducing slack variables s for the capacity constraints x ≤ u:

min

{[
c
0

]T [
x
s

]
:
[
A 0
I I

] [
x
s

]
�

[
b
u

]
, x , s ≥ 0

}
.

Wewill now argue how to transform this LP into the form of a min-cost flow problem again.
For this, we need to achieve the form of a node-arc incidence matrix for the constraint matrix
B �

[
A 0
I I

]
∈ {−1, 0, 1}(n+m)×2m . Note that every column Ba for a � (v , w) ∈ A in the first

half of B has three non-zero entries (two +1s and one −1) and every column in the second
half has only one non-zero entry. In order to obtain a node-arc incidence matrix from B, we
subtract the a’th row of [ I I ] from the w’th row of [ A 0 ]. In other words the matrix A′ :�[

A 0
I I

]
− ∑

a�(v ,w)∈A
[ ew

0
] [

eT
a eT

a

]
is again a node-arc incidence matrix. Doing the equivalent

transform for the right-hand side vector
[

b
u
]
leads to the vector b′ :�

[
b
u
]
−∑

a�(v ,w)∈A
[ ew

0
]
ua

as new demand vector. Together with c′ �
[ c

0
]
, we obtain the problem

min{c′T x : A′x � b′, x ≥ 0},

which corresponds to an uncapacitated min-cost flow problem as in (1.21.2) with m + n nodes
and 2m arcs. The applied transformation is equivalent to doing the graph transformation
from Figure 1.11.1 for every arc in the graph. We remark that this is a well-known construction,
see for example [AMO93AMO93, Section 2.4]. We obtain the following lemma.

Lemma 1.2. The capacitated min-cost flow problem on a graph with n nodes and m arcs can be solved

by solving an uncapacitated min-cost flow problem on a graph with n + m nodes and 2m arcs.

Note that depending on the application or the algorithm used, this cost of introducing
a node for every arc might be undesirable, e.g., assume the graph to be dense, i.e., m �

Θ(n2) and the algorithm’s run-time, in terms of n and m, to be Õ(
√

nm). In this case, the
construction would lead to a run-time of Õ(n3) instead of Õ(n5/2). Avoiding this blow-up is
one of the contributions of Lee and Sidford in [LS14LS14].
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Chapter 2

A Dual Ascent Algorithm for
Capacitated Min-Cost Flow

2.1 Introduction

In this chapter, we present an algorithm for the capacitated min-cost flow problem. This
algorithm is inspired by the crossover technique described in [BK14BK14] in the context of an
interior point methods for min-cost flow. In [BK14BK14], the crossover technique was used in
order to round a given fractional dual solution to an optimum integral solution, provided
that the fractional solution is sufficiently close to the optimum solution. In the work that
we report on in this chapter, we notice that even if the given dual solution is far from being
optimal, this technique returns an integer solution that is not worse (and in many cases
much better) than the given one. This observation leads to the idea of using the crossover
procedure as a subroutine in a min-cost flow algorithm that iteratively improves a dual
feasible solution until it becomes optimal. In order to certify optimality of the dual solution,
the algorithm maintains complementary slackness of the dual solution together with some
primal variables. The primal variables always satisfy the property that they are a pseudo-
flow , i.e., a vector x with 0 ≤ x ≤ u that satisfies the capacity constraints butmay violate flow
conservation. As complementary slackness is maintained as an invariant, it holds that as
soon as x becomes feasible, i.e., satisfies flow conservation, we actually have optimumprimal
and dual solutions. This abstract procedure is not different from other dual algorithms such
as successive shortest path, but the novelty is the way we perform the dual update; namely,
we replace the shortest path routine by the crossover technique. In fact, our method can be
considered a generalization of the computation of a shortest path tree. While the shortest
path tree is directed either towards or away from the root, we grow an undirected tree, i.e.,
with some arcs pointing towards and some away from the root. To this end, we also take
the residual demand of the current pseudo-flow into account to decide whether to extend
the current tree and the subgraph it spans by an ingoing or an outgoing arc. We will offer a
precise description in Section 2.22.2. We remark that this dual update is not only different from
the one in the successive shortest pathmethod [Tom71Tom71; EK70EK70], but also substantially different
from the primal-dual method in [Has83Has83] and the dual heuristic improvements in [Gol97Gol97] –
as we take into account the sign of the deficit of the nodes during the dual step, our primal
steps are closely tied to the tree resulting from the dual step, andwe improve node potentials
along n − 1 cuts in each iteration.

Although this approach does not achieve a record complexity bound, it is interesting
from a practical point of view, as we will see that its implementation turns out to be very
efficient on certain instance classes.

Structure of the Remainder of this Chapter. The rest of this chapter consists of three
sections. In Section 2.22.2, we first introduce the dual ascent algorithm, prove that it is correct
and fulfills certain properties. We then present a greedy variant of the algorithm. In
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Section 2.32.3, we describe some implementation choices and details. In Section 2.42.4, we report
on the experimental evaluation. We evaluate several variants of the dual ascent technique.
These include the choice of the starting node, the premature termination of the dual step if
primal progress is already guaranteed. The premature termination of the dual step is similar
to stopping the shortest path search as soon as a sink is reached when starting from a source.
Moreover, we compare our implementation with recent third-party implementations on
instances that have been commonly used for benchmarks in previous works. These include
randomly generated artificial instances and realistic instances. We conclude in Section 2.52.5.

2.2 The Dual Ascent Algorithm

2.2.1 Preliminaries

We have seen in the previous chapter that the capacitated min-cost flow problem can be
written as a linear program. Moreover, when written as a primal-dual pair, the problem
takes the form

min{cT x : Ax � b and 0 ≤ x ≤ u} � max{bT y − uT z : AT y − z ≤ c and z ≥ 0},

where the dual variables y ∈ Rn are called node potentials. We proceed by introducing some
further related notation:

Definition 2.1 (Residual Network, etc.). Let G � (V,A) be a directed graph.

1. A vector x ∈ Rm
that satisfies 0 ≤ x ≤ u is called a pseudo-flow.

2. For a pseudo-flow x ∈ Rm
, we define residual capacities ux

a � ua − xa and ux
−a � xa for all

a ∈ A. We call Gx � (V,Ax), where Ax :� {a ∈ A ∪ −A : ux
a > 0}, the residual network.

3. For a pseudo-flow x ∈ Rm
, we call bx :� b − Ax the residual demands.

4. For node potentials y ∈ Rn
, we call c y

a :� ca + yv − yw the reduced costs of an arc a �

(v , w) ∈ Ax
. Moreover, we define z y

a :� max{0,−c y
a }.

For any given y, the dual constraint of an arc a can always be satisfied by setting za � z y
a ,

which is the optimal choice of z for fixed y.

2.2.2 Algorithm

The algorithm that we present in this chapter is a primal-dual technique in the sense that it
maintains primal as well as dual variables. The algorithmmaintains the following invariants:

(a) The dual variables, i.e., node potentials y and corresponding variables z are dual feasible.

(b) The primal vector x is a pseudo-flow.

(c) The primal and dual variables x , y fulfill complementary slackness, i.e., for all a ∈ A:

c y
a > 0 �⇒ xa � 0, (2.1)

c y
a < 0 �⇒ xa � ua , and (2.2)

0 < xa < ua �⇒ c y
a � 0. (2.3)

The algorithm, see Algorithm 2.12.1 for a pseudo-code formulation, performs a dual and a
primal step in each iteration. The dual step can be understood as calling the crossover
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Algorithm 2.1: DualAscent
Input : directed graph G � (V,A), b ∈ Zn with 1T b � 0, c ∈ Zm

≥0, and u ∈ Zm
≥1

Output: optimal flow x ∈ Zm
≥0 and node potentials y ∈ Zn

x :� 0 and y :� 0
while ‖bx ‖1 > 0 do

Choose starting node s with minimal label such that bx(s) , 0
y , T′← DualStep (Gx , s , bx , y)
x , T ← PrimalStep (x , y ,A ∩ (T′ ∪ −T′))

return flow x and potentials y

Algorithm 2.2: DualStep
Input : directed graph G′ � (V,A′), starting node s ∈ V , deficits b′, and potentials y
Output: node potentials y and spanning tree T′ ⊆ A′

S1 :� {s}.
for k � 1, . . . , n − 1 do

if bx(Sk) < 0 or δin
G′(Sk) � ∅ then

ak � (vk , wk) :� argmin{c y
a : a ∈ δout

G′ (Sk)} and ∆k :� c y
ak .

else
ak � (wk , vk) :� argmin{c y

a : a ∈ δin
G′(Sk)} and ∆k � −c y

ak .

yv ← yv + ∆
k for all v ∈ V \ Sk

Sk+1 ← Sk ∪ {wk} and T′← T′ ∪ {ak}
return potentials y, spanning tree T′.

Algorithm 2.3: PrimalStep
Input : pseudoflow x, potentials y′, and spanning tree T ⊆ A
Output: pseudoflow x′ such that ‖bx′‖1 < ‖bx ‖1
Compute f ∈ Zm \ {0} such that

1. fa � 0 for all a ∈ A \ T,

2. 0 ≤ x + f ≤ u, and

3. min{0, bx(v)} ≤ bx+ f (v) ≤ max{0, bx(v)} for all v ∈ V ,

or return Infeasible if no such flow exists.

procedure from [BK14BK14] on the residual network Gx with the current iterate y. For self-
containment and because of the slightly different setting, we will repeat the description of
the algorithm here, see Algorithm 2.22.2. It iteratively constructs a spanning tree of the graph
on which the primal update will take place. The idea is to shift the potentials along a cut
in each iteration in such a way that the dual objective does not decrease. Each iteration
makes the reduced cost of at least one arc crossing this cut zero, and one of these arcs
enters the spanning tree. In a primal step, the flow variables are updated by a routing over
the constructed spanning tree. If after the primal step all residual demands are zero, the
algorithm terminates; otherwise, a new iteration starts.
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2.2.3 Correctness and Further Properties

The invariants of the algorithm imply correctness as soon as termination is established.
Termination of the algorithm follows by showing that ‖bx ‖1 strictly decreases in every
iteration (see Theorem 2.62.6). We will now formally show that the invariants are maintained.

The following claim is a direct consequence of theminimal choice of∆ among the reduced
costs of all in- or outgoing arcs, respectively.

Claim 2.2. Let x , y be the iterates at the beginning of a specific iteration of Algorithm 2.12.1, and let y′

be the dual iterate after the call of DualStep. If c y
a ≥ 0 for all arcs a ∈ Ax

, then also c y′
a ≥ 0 for all

arcs a ∈ Ax
. Moreover, if c y

a � 0, then also c y′
a � 0.

The following lemma shows that the complementary slackness conditions (2.12.1) and (2.22.2)
are maintained by the algorithm.

Lemma 2.3. Let x , y be the iterates at the beginning of an iteration of Algorithm 2.12.1, and let x′, y′

be the iterates after that iteration. Assume that complementary slackness holds for x , y. Then:

1. If c y′
a < 0, then x′a � ua for any a ∈ A.

2. If c y′
a > 0, then x′a � 0 for any a ∈ A.

Proof. Let a ∈ A, and let T′ be the tree returned by DualStep. If either a ∈ T′ or −a ∈ T′, then
c y′

a � 0, and there is nothing to show. Hence, assume that neither is the case. Then, fa is set
to 0 in step 11 of PrimalStep, and thus, x′a � xa + fa � xa .

1. Let c y′
a < 0, and assume for the sake of contradiction that xa < ua . It follows that

a ∈ Gx . By complementary slackness of x , y, we get that c y
a ≥ 0. Applying Claim 2.22.2

yields c y′
a ≥ 0, which is a contradiction. Hence, xa � ua , and thus, x′a � ua holds.

2. Let c y′
a > 0, and assume for the sake of contradiction that xa > 0. It follows that

−a ∈ Gx . By complementary slackness of x , y, we get that c y
a ≤ 0, or equivalently,

c y
−a ≥ 0. Applying Claim 2.22.2 to −a yields c y′

−a ≥ 0, and thus, c y′
a ≤ 0, which is a

contradiction. Hence, xa � 0, and thus, x′a � 0 holds.

Lemma 2.4. At the beginning of the while-loop of Algorithm 2.12.1, the invariants hold, i.e., (a) y , z
are feasible, (b) x is a pseudo-flow, and (c) the complementary slackness conditions (2.12.1) to (2.32.3) hold.

Proof. Part (a) follows from the definition of z y : Let a � (v , w) ∈ A be any arc, then yw − yv −
z y

a ≤ yw − yv + c y
a � ca . Part (b) is an immediate consequence of step 22 in PrimalStep. For

(c), note that conditions (2.12.1) and (2.22.2) follow together with Lemma 2.32.3. For condition (2.32.3),
apply the contrapositions of the two statements in Lemma 2.32.3.

Let us denote with Gx
s ,t � (V′,A′) the graph with V′ :� V Û∪{s , t} and A′ :� T ∪−T ∪As ,t ,

where
As ,t � {(s , v) : bx

v < 0} ∪ {(v , t) : bx
v > 0}.

Define capacities u′ on Gx
s ,t as

u′a �


ux

a if a ∈ A ∪ −A
−bv if a � (s , v) ∈ As ,t

bv if a � (v , t) ∈ As ,t .
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Lemma 2.5. If the value of a maximum s-t-flow in the graph Gx
s ,t is 0, then the problem is infeasible;

otherwise, PrimalStep returns a flow. Moreover, any non-zero feasible s-t flow restricted to the arcs

A ∪ −A satisfies the conditions in PrimalStep.

Proof. If the max-flow value is 0, then there is an s-t-cut in Gx
s ,t with 0 capacity by the max-

flow/min-cut theorem. Let {s} ∪ S with S ⊆ V be such a min-cut. Since | |bx | |1 > 0, the
min-cut cannot be just {s} itself. Thus, S , ∅ and contains all nodes v ∈ V with bx

v < 0.
For the same reason, S , V , and moreover, it must not contain any v ∈ V with bx

v > 0.
Moreover, there are no outgoing arcs from S on the min-cut because they would have a
non-zero residual capacity. Let a � (v , w) ∈ T ∪ −T be the arc with w ∈ S and v < S that has
first been added to the tree in the dual step. Let Sk ⊂ V denote the set of visited nodes at
that iteration in the dual step. Note that Sk ⊆ S if bx(Sk) < 0 and Sk ⊆ V \ S if bx(Sk) > 0.
This implies that either u(δout(Sk)) < −b(Sk) in the former case or u(δin(S)) < b(Sk) in the
latter case, certifying infeasibility of the min-cost flow problem. If the max-flow value is at
least 1, any non-zero feasible s-t-flow restricted to the arcs in A ∪−A satisfies the conditions
in Algorithm 2.32.3 by construction. Moreover, any flow f returned by the algorithm can be
extended to a feasible s-t-flow by setting the flows on the arcs incident to s and t to the
corresponding value |bx+ f

v |.

Theorem 2.6. Algorithm 2.12.1 terminates after at most ‖b‖1/2 iterations and returns a correct result.

Proof. Let x , y be the iterates at the beginning of an iteration of Algorithm 2.12.1, and let x′, y′

be the iterates afterwards. Wewill show that ‖bx′‖1 < ‖bx ‖1. To this end, we argue that there
are two nodes s and t, s.t. bx(s) < bx′(s) ≤ 0 and bx(t) > bx′(t) ≥ 0. This is sufficient, due to
the requirement of PrimalStep that min{0, bx(v)} ≤ bx′(v) ≤ max{0, bx(v)} for all v ∈ V .

Let the nodes be numbered in the order in which they join S, i.e., Si � [i] for i � 1, . . . , n.
Assume that bx(s) < 0, the case bx(s) > 0 is symmetric. Let k be the number of the first
iteration in which bx(Sk) ≥ 0. It is clear that such k exists since 1T bx � 0, and it is also
clear that bx(wk) > 0. It follows that the tree T ⊆ A contains a directed path P � a1 , . . . , a`
from s to wk with ux

ai
> 0 for all i ∈ [1, k], and thus, together with Lemma 2.52.5, it follows

that at least one unit of flow is sent along P, implying that ‖bx′‖1 < ‖bx ‖1. Optimality of
the output solution directly follows from the fact that the algorithm terminates with x , y
satisfying the invariants (dual feasibility, complementary slackness and the property that x
is a pseudoflow) and ‖bx ‖1 � 0, which implies that x is a feasible flow.

The above proof only gives a very pessimistic estimate for the complexity of DualAscent,
since it only guarantees that ‖bx ‖1 decreases by 2 in every step. Note that a standard
scaling approach for the demands and the capacities can be used to achieve a bound that is
polynomial in the size of the graph and in the encoding length of the data. It is, however,
not evident at first glance whether such a scaling approach would yield to a good behavior
in practice, especially in view of the overhead of multiple phases that would have to be
carried out. In Section 2.4.32.4.3, we will give an experimental estimate for the running time of
DualAscent. We proceed with the below theorem that justifies to call the algorithm a dual

ascent algorithm. The running time analysis presented above relies on convergence in primal
feasibility, whereas the following theorem concerns the dual progress of the algorithm.

Theorem 2.7. Let y , z y
be the dual iterates before a specific iteration k of DualStep, let x be

the current primal iterate, and let y′, z y′
be the iterates after iteration k. Then, b′T y′ − uT z y′ ≥

b′T y − uT z y
.

Proof. Let us denote the current set of nodes Sk ⊆ V with S, and let ∆ � ∆k . Define

Zin :� {a ∈ δin(S) : c y
a < 0} and Zout :� {a ∈ δout(S) : c y

a < 0}.
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First, note that in the case where ∆ � 0, the statement is trivially fulfilled because equality
holds. Otherwise, by non-negativity of the reduced costs of arcs in the residual network, we
obtain that ∆ > 0. Let us consider the case where ∆ � min{c y

a : a ∈ δout
Gx (S)}; the other case

is symmetric. Then, ∆ ≤ c y
a for a ∈ δout(S) \ Zout. Moreover, for every arc a ∈ Zin, it follows

that xa � ua , and thus, −a ∈ δout
Gx (S), and thus, ∆ ≤ c y

−a � −c y
a for all a ∈ Zin. It follows that

bT y′ − uT z y′
� bT y + ∆ · b(V \ S) −

∑
a∈A\δ(S)

ua z y
a

−
∑

a∈δin(S)\Zin

ua max{0,−c y
a − ∆}︸               ︷︷               ︸

�0�z y
a

−
∑

a∈Zin

ua max{0,−c y
a − ∆}︸               ︷︷               ︸

�z y
a −∆

−
∑

a∈δout(S)\Zout

ua max{0,−c y
a + ∆}︸               ︷︷               ︸

�0�z y
a

−
∑

a∈Zout

ua max{0,−c y
a + ∆}︸               ︷︷               ︸

�z y
a +∆

� bT y − uT z y
+ ∆[b(V \ S) + u(Zin) − u(Zout)].

Note that if ∆ � min{c y
a : a ∈ δout

Gx (S)}, then either bx(S) ≤ 0 or δin
Gx (S) � ∅ and bx(S) > 0. In

the latter case, the instance is infeasible, and in the former case, the definition of bx yields
b(V \ S) ≥ x(δout(S)) − x(δin(S)), and thus, we obtain

bT y′ − uT z y′ ≥ bT y − uT z y
+ ∆[x(δout(S)) − u(Zout) − (x(δin(S)) − u(Zin))]

� bT y − uT z y
+ ∆[x(δout(S) \ Zout) − x(δin(S) \ Zin)].

Assume for the purpose of contradiction that there exists an arc a ∈ δin(S) \ Zin with xa > 0.
Then, it follows by complementary slackness that c y

a ≤ 0. Since a < Zin, it follows that c y
a � 0,

and together with xa > 0, this yields that −a ∈ δout
Gx (S)with c y

−a � 0, a contradiction to ∆ > 0.
We conclude that x(δin(S) \ Zin) � 0. This yields the result.

2.2.4 Greedy Dual Ascent

In this section, we describe an extension of the dual ascent algorithm that we call greedy
dual ascent. The underlying observation is the following: Given any cut S ⊂ V and a scalar
∆ ∈ R, consider the potential update yv ← yv + ∆ for all v ∈ V \ S. This is exactly what is
done in DualStep with ∆ set to the minimum reduced cost of all arcs in δout

Gx (S), if bx(S) < 0
or δin

Gx (S) � ∅ or to minus the minimum reduced cost of all arcs in δin
Gx (S) otherwise. Here

we take a different approach of choosing ∆. In fact, we propose to choose ∆ in a way that
greedily maximizes the improvement of the dual objective function.

More precisely, let us define the function fS : R → R that for a given value ∆ ∈ R
evaluates the change in the dual function value under the above change in potentials from y
to y′ � y + ∆1V\S:

fS(∆) : � bT y′ − uT z y′ − bT y + uT z y

� −∆ · b(S) +
∑

a∈δout(S)
ua min{0, c y

a − ∆} +
∑

a∈δin(S)
ua min{0, c y

a + ∆}.

We obtain the following lemma.

Lemma 2.8. Let a1 , . . . , ak be an ordering of δin(S)∪δout(S) such that κ(a1) ≤ κ(a2) ≤ . . . ≤ κ(ak),
where we call

κ(a) �
{

c y
a if a ∈ δout(S)
−c y

a if a ∈ δin(S)
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the event-points.

1. The slope of fS(∆) on (κ(a) − 1, κ(a)) is, for all a ∈ δout(S) ∪ δin(S), described by the function

gS(∆) :� −b(S) − u({e ∈ δout(S) : κ(e) < ∆}) + u({e ∈ δin(S) : κ(e) ≥ ∆}).

2. If the problem is feasible, there exists a ∆ such that gS(∆) ≤ 0.

3. Let i be smallest such that κ(ai) ≤ 0, then ∆̂ � κ(ai−1) is a maximum of fS.

Proof. 1. It is clear that the function fS(∆) is a piecewise linear function whose slope only
changes at the points κ(a) for a ∈ δout(S) ∪ δin(S). We compute the values of

fS(∆) − fS(∆ − 1) � −b(S) +
∑

a∈δout(S)
ua[min{0, c y

a − ∆} −min{0, c y
a − ∆ + 1}]

+

∑
a∈δin(S)

ua[min{0, c y
a + ∆} −min{0, c y

a + ∆ + 1}] � gS(∆).

2. Consider the arc ak with maximal κ(ak). It follows that gS(κ(ak) + 1) � b(V \ S) −
u(δout(S)) ≤ 0, since for every cut S, we must have b(S) ≥ u(δout(S)), provided that the
instance is feasible.

3. This follows because, in addition to being piecewise linear, fS is also unimodal, since
gS(κ(a1)) ≥ gS(κ(a2)) ≥ . . . ≥ gS(κ(ak)).

We conclude that we can maximize fS(∆) by evaluating gS(∆) � f (∆) − f (∆ − 1) at all
event-points κ(a) for a ∈ δout(S) ∪ δin(S) and choose ∆ � κ(ai0−1) for ai0 being the first
event-point for which g(κ(ai0)) ≤ 0.

Algorithm 2.4: GreedyDualStep
Input : starting node s,

pseudo-flow x and
potentials y

Output: potentials y and spanning
tree T ⊆ G

S1 :� {s}.
for k � 1, . . . , n − 1 do
∆k ← argmax{ fSk (∆) : ∆ ∈ R}
and let ak � (vk , wk) ∈ δ(Sk)
such that ∆k � c y

ak

yv ← yv + ∆
k for all v ∈ V \ S

Sk+1 ← Sk ∪ {wk} if vk ∈ Sk and
Sk+1 ← Sk ∪ {vk} otherwise,
T � T ∪ {ak}

return y, T.

Algorithm 2.5: PrimalStep’
Input : pseudo-flow x, potentials y′

and spanning tree T ⊆ A
Output: pseudo-flow x′ such that

‖bx′‖1 < ‖bx ‖1
Compute f ∈ Zm \ {0} such that

1. fa � 0 for all a ∈ A \ T with c y′
a > 0,

2. fa � ux
a for all a ∈ A \ T with c y′

a < 0,

3. 0 ≤ x + f ≤ u, and

4. min{0, bx(v)} ≤ bx+ f (v) ≤
max{0, bx(v)} for all v ∈ V .

or return Infeasible if no such flow
exists.
return x′← x + f .

This leads to the greedy dual ascent algorithm. The pseudo-code of the main routine of
this algorithm is identical to the one of Algorithm 2.12.1, with the calls to the dual and primal
step routines substituted calls to the routines described in Algorithm 2.42.4 and 2.52.5.
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We remark that setting∆ greedily as described abovemay cause violated complementary
slackness constraints that possibly have to be repaired in the subsequent primal step by
saturating and de-saturating arcs, respectively, which in turn may yield a smaller reduction
in ‖bx ‖1 as with the standard non-greedy dual ascent version. It is however not obvious,
whether this gain in the dual objective value compared with the possible loss in primal
feasibility will yield to a faster convergence of the algorithm in theory or practice. We will
investigate the latter at the end of the following section.

2.3 Implementation Details and Variants

We describe some implementation choices and details.

Lazy Potential Update. The update of the potentials in DualStep should not be done in a
naive way, since this would directly imply quadratic running time in n for a single iteration.
Instead, the potentials can be updated lazily, as already described in [BK14BK14], in such a way
that the potential yv of a node v is only set once in each call of DualStep, namely at the time
when v enters Sk for some k.

Choosing the Starting Node. We implemented different ways of choosing the starting
node s ∈ V from which the search in DualStep takes off. The first variant is to start with the
first node and, as soon as this one has deficit 0, move over to the second one, and so on. This
is what is proposed in Section 2.22.2 as well as in the pseudo-code; we refer to it as snbal. The
second variant is to always choose the node with maximal absolute deficit; we call it maxdef.
A third variant is a combination of the previous two: Always choose the node with maximal
absolute deficit and start with this node until it is balanced. Then, go over to the node with
maximal absolute deficit, and so on. We call this variant snbaldef.

Different Tree Updates in Primal Step. The primal update described in the pseudo-code
in Section 2.22.2 can be implemented efficiently as follows: Let T′ be the spanning tree in the
residual network Gx (rooted at the starting node s) that is returned by DualStep, and let T �

A∩(T′∪−T′) be the corresponding spanning tree in G that is given to PrimalStep. Compute
f as follows: Traverse the tree from bottom to top – at a node v ∈ T, let a � ±(v , w) ∈ A be
an arc between v and a node w on the level above v: Now, send that amount of flow fa along
the arc a that minimizes |bx+ f (v)|, respecting the capacity and non-negativity constraints
corresponding to a. More formally, let

fa ← max{0,min{ux
a , |b

x+ f
v |}}, and set xa ← xa + fa .

Then, update the deficits at v and w, accordingly. Thereafter, traverse the tree from top to
bottom and at each node v, for any arc a � ±(v , w) between v and a child w, change f as
follows: Reduce fa such that min{0, bx(v)} ≤ bx+ f (v) ≤ max{0, bx(v)} holds. The idea of
this approach is to first greedily send the maximum amount of deficit up the tree, and in the
second traversal, correct the flows such that the absolute deficit of the nodes never increases
and its sign stays the same.

We implemented another variant of the algorithm that we obtain by using a different
primal update. The idea of this alternative approach is not to traverse the tree back down,
but to stay with the greedily chosen flows f after the first traversal of the tree from bottom
to top. Note that the difference between this and the original approach is that for an arc that
goes up in T from v to w, we ignore the change in |bx+ f (w)| while choosing fa . In particular,
it could be the case that |bx′(w)| > |bx(w)| for some nodes w. We call this update version
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defupt for deficit up tree, and the original version we call rbn for restore balanced nodes.
The latter name originates from the fact that in this version all nodes with deficit zero will
stay at zero deficit after the primal update.

Breaking out of the Dual Step. Another variant of the algorithm is obtained by breaking
out of DualStep after fewer than n − 1 steps. We experimented with several different
approaches here. The first stops as soon as a node with a deficit having a different sign than
the starting node is found. Note that this approach strongly resembles successive shortest
path, with the only difference being that the primal update is still done on a tree and not
only on the path from s to that node. This version did not show to be very efficient on the
instances tested; however, a relaxed version of it brings great advantages. The idea is to only
break out of DualStep in the iteration k when the deficit of the set bx(Sk) changes its sign, or
even only when the deficit hits exactly zero, i.e., bx(Sk) � 0. We call these two variants sc
and def0 for sign changes and deficit zero, respectively. Note that in the lazy potential update
version, the potentials of v ∈ V \ St have to be shifted by the last ∆ in order to maintain the
invariants. The advantage of these approaches is that they do not search through the whole
graph in each iteration. This, of course, comes at the cost of a poorer dual update, but might
be beneficial when large portions of the graph already have optimal node potentials.

Priority Queue. From a theoretical point of view, the in- and outgoing arcs of Sk should be
kept in a priority queue such as a Fibonacci heap [FT87FT87]. In this case, the complexity of Dual-
Step is O(m + n log n), similar to Dĳkstra’s algorithm [Dĳ59Dĳ59]. We implemented the following
two approaches. First, we implemented our algorithm using the STL priority_queue that
is built into C++. Second, we implemented what we call a hybrid_queue. It can be seen
as a hybrid of a bucket queue and the standard priority queue. The hybrid_queue stores
a normal array called bucket, a priority queue Q (we again used the STL implementation),
and a variable called lower_bound. It provides two functions called push() and top(). If
push() is called with an element v with key k � lower_bound, it is stored in bucket. If
v, however, has key k > lower_bound, it is stored within Q. If k < lower_bound, then all
elements in bucket are moved to Q, v is added to bucket, and lower_bound is set to k. If
top() is called, then an element is taken from bucket as long as it is non-empty. If bucket
is empty, the minimum element of Q is returned, and lower_bound is set to the key of that
element. In order to explain the idea underlying this approach, let us assume that the same
starting node s is chosen for several iterations. Then, it is likely that there are a lot of arcs
with reduced costs 0 spanning from s into the graph and these arcs can be taken out of the
bucket at smaller cost using this approach

Greedy Dual Ascent Update. Clearly, the evaluation of gS at all event-points would yield
quadratic run-time for the dual step. However, the arcs on the cut can be kept in a balanced
binary search tree, see for example [AL62AL62] or [GS78GS78], with the keys being the event-points
κ(a). In addition, for every a ∈ δout(S) ∪ δin(S), we store a prefix-sum and a postfix-sum. The
prefix-sum corresponds to the sum of the capacities of all out-going arcs b with κ(b) < κ(a)
and the postfix-sum is equal to the sum of the capacities of all in-going arcs b with κ(b) ≥ κ(a).
The update of the balanced binary search tree can be done in logarithmic time in this way,
as well as the computation of the maximum of fS. We use AVL-trees [AL62AL62] for the cut
edges and complement our own implementation with the ability of computing the prefix-
and postfix-sums as described above. We denote the greedy dual ascent algorithm with
min_cost_flow_gda. We remark that the greedy dual ascent algorithm in the the greedy
dual step in the form as it is described in the pseudo-code implementation above, does not
take any information about the primal iterate into account. An alternative approach, that
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takes the primal iterates into account, is to run the greedy dual step on the residual network
instead of the original network. We call this variant min_cost_flow_gdar.

Since the ambition of min_cost_flow_gda and min_cost_flow_gdar is to yield a bet-
ter progress in terms of dual objective value at the cost of progress in the primal fea-
sibility, it might also be interesting to combine iterations of greedy dual ascent with it-
erations of the standard dual ascent method. We tried out the following two variants
min_cost_flow_gda_aq and min_cost_flow_gdar_aq. In these two methods, the aq stands
for alternating queue, i.e., we use the gda and gdar, respectively, for every second iteration
and the default variant of the dual ascent algorithm for every other iteration.

Experimental Setting and Evaluation Details. We performed experiments on a compute
server with 32 Intel (R) Xeon (R) E5-2680 2.70GHz cores and a total of 256 GB RAM running
Debian GNU/Linux 7 with kernel 3.10.60. The code was compiled with gcc version 4.7.2
using the -O3 flag. In all plots in this chapter, the results are averages over 25 runs, 5 runs
each on 5 graphs of that size. The error bars indicate the 95%-confidence intervals of the
estimated means over 25 runs.

2.4 Experimental Evaluation

2.4.1 Instances

We ran experiments on several different network instances. To this end, we used our own
test instances (feas_grid) as well as third-party instances11 that were generated for the study
in [Pet15Pet15]. In the following, we briefly characterize the test set.

netgen_8 These instances are generated using the Netgen generator [KNS74KNS74]. Netgen in-
stances are random instances. In the case of netgen_8, the networks are sparse, i.e.,
m � 8n, and the capacities and costs are chosen uniformly at random between 1 and
1, 000 and 1 and 10, 000, respectively. There are roughly

√
n sinks and sources and the

total demand is 1, 000
√

n.

netgen_sr Same as netgen_8, but the networks are denser, in fact m ≈ n
√

n.

goto_8 They are generated using the Goto generator [GK91GK91]. Goto instances are grid in-
stances on tori. They are known to be rather hard instances. In the case of goto_8, the
networks are sparse, i.e., m � 8n, and the capacities and costs are chosen uniformly
at random between 1 and 1000 and 1 and 10000, respectively. There is one source and
one sink node, and the supply is adjusted to the capacity [Pet15Pet15].

road_paths These instances are road networks from seven different states in theUSA,where
the edge cost is set to the travel time along the edge. All capacities are set to one, and
there are ≈

√
n/10 randomly selected sources and sinks, each with a demand that

depends on the maximum flow that can be sent between these sources and sinks.

road_flow Same as above but the capacities are not set to 1, but depending on the category
of the road, to either 40, 60, 80 or 100.

feas_grid We created these instances using our own generator: We generate a 2D grid in
which every node has a forward and a backward arc to its neighbors. We then sample
capacities uniformly at random between 1 and U and costs uniformly at random
between −C and C. Initially, all demands are set to zero. Then, arcs with negative

1Kovács, Péter: Benchmark Data for theMinimum-Cost Flow Problem, website retrieved on August, 26, 2015,
https://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowDatahttps://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowData

https://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowData
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costs are saturated, and in this way, demands are generated. More precisely, for an arc
a � (v , w) with ca < 0, the arc −a � (w , v) is introduced with cost c−a � −ca , capacity
ua . Then, bv is increased by ua , and bw is reduced by ua . This always generates feasible
instances. We generate such networks for increasing C and U in order to investigate
the dependence of the running time of our algorithm on u , c and b.

2.4.2 Running Time Hypotheses

We formulate hypotheses on the dependence between the running time of the algorithm and
different parameters of the input. These hypotheses are tested in the next subsection. The
first hypothesis concerns the behavior of the dependence between the running time and the
one-norm of the demand. The second one is related to the magnitude of the costs.

Hypothesis 2.9. The running time of the algorithm with the defupt primal update and a starting

node with maximum absolute deficit scales polynomially in ‖b‖1.

Hypothesis 2.10. The maximal cost C does not have a significant impact on the overall running

time.

2.4.3 Testing the Hypotheses

We created the feas_grid instances for testing the hypotheses from Subsection 2.4.22.4.2. To
this end, we generated grids of size 250 times 250, with increasing values of C and U. In
order to test Hypothesis 2.92.9 that concerns the running time dependence on ‖b‖1, we first
investigate the dependence of ‖b‖1 and U for these instances. We use this detour to generate
demands via saturation of negative cost arcs because randomly sampled demands lead to
a large portion of instances being infeasible, which makes rejection sampling impractical.
Moreover, the randomized construction used suggests a linear behavior between these two
quantities. Indeed, a correlation coefficient of more than 0.9999 and a significant linear
regression clearly support this claim.
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Figure 2.1: On the left: The dependence of the running time (in seconds)
on the maximal capacity U for increasing values of C (64, 128, 256, 512). On
the right: The dependence of the running time on the maximal cost C. The
depicted plots have increasing maximal capacity U (64, 128, 256, 512).

On the left in Figure 2.12.1, the running times are on the y-axis and the maximal capacity
U is on the x-axis. A regression yields the exponents 0.52 ± 0.10, 0.55 ± 0.10, 0.53 ± 0.10,
and 0.49 ± 0.10 for C � 64, 128, 256, and 512, respectively. The coefficients of determination are
above 0.94 in all cases. That is, roughly 94% of the variance of the data can be explained
by the fitted power model. Since the “magical” value of 1/2 is within the 95%-confidence



22 Chapter 2. A Dual Ascent Algorithm for Capacitated Min-Cost Flow

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−01

1e+01

1e+03

1e+05 1e+07
m

tim
e

Algorithm
●

●

●

snbal
snbaldef
maxdef

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−01

1e+01

1e+03

1e+05 1e+07
m

tim
e

Algorithm
●

●

rbn
defupt

Figure 2.2: On the left: Comparison of three different ways of choosing
the starting node. The red circles describe the running time for choosing
the same node until it is balanced and then switching over to the next ones
in the order of their labels. The green circles correspond to choosing the
node that has maximal absolute deficit in each iteration. The blue circles
correspond to a combination of the two – choose the node with maximum
absolute deficit, and stay at that one until it is balanced. On the right: Running
time comparisons of two different primal update routines, both with choosing
a node with maximum absolute deficit as the starting node. Here, rbn (red
circles) stands for the variant described in PrimalStep and defupt (blue circles)
for the variant where the deficits are only sent up the tree, from the leaves to
the root, greedily. Both experiments used the netgen_8 instances.

intervals for the exponents in all cases, we may conjecture the running time to scale with the
square root of ‖b‖1. In order to test Hypothesis 2.102.10, we also measured the running time of
the algorithm on grid instances of size 250 times 250 for different values of U � 64, . . . , 512.
As indicated in the plot on the right in Figure 2.12.1, we cannot refute Hypothesis 2.102.10.

2.4.4 Evaluation of Different Variants

In this section, we evaluate the running time of the different variants of our algorithm
described in Section 2.32.3. Figure 2.22.2 contains two plots. On the right, we evaluate the impact
of the method of choosing the starting node on the running time. We conclude that the
choice does not have a significant impact (on random graphs, here netgen_8). There is,
however, a small advantage to using the node with the largest absolute deficit as the starting
node. Figure 2.22.2 on the right, shows running times of two different primal update methods
on the netgen_8 test set. The greedy variant defupt that only traverses the tree once has a
big advantage over the rbn variant – it is faster by almost a factor of 10 on the considered test
set and also gives a better asymptotic behavior.

On the left in Figure 2.32.3, we can see the impact of breaking out of the dual step. The plot
shows that in practice, not growing a tree of size n − 1 in every step brings a huge advantage
on some instances. In particular, the version where we interrupt the dual step as soon as
the deficit of the set Sk becomes zero gives an asymptotic running time advantage over the
standard version. On the right in Figure 2.32.3, we can see the effect of the hybrid queue. It
seems that the impact is not too large; however, there is a slight advantage to using the hybrid
queue.

2.4.5 Greedy Dual Ascent

We test the following hypothesis concerning the greedy dual ascent variant:
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Figure 2.3: On the left: Experiments with breaking out of the dual step loop
with different criteria. The red circles are without breaking out, the blue ones
are with breaking out if bx(S) becomes zero, and the green ones correspond to
breaking out when the sign of bx(S) changes for the first time. The instances
used for these runs are netgen_8 instances. On the right: The effect of using
the hybrid queue. Both methods do not break out of the dual step. The
red circles correspond to the version using the STL priority queue, whereas
the blue circles correspond to the variant with the hybrid queue. Here, in
both variants, the starting node with the largest absolute deficit is used. The
instances are road_paths instances.

Hypothesis 2.11. The greedy dual step yields to a faster convergence to the optimal dual objective

value, thus to a smaller number of iterations, and thus to better asymptotic dependence of the run-time

on m.

Figure 2.42.4 shows the scaling behavior of the running times of the 4 gda-variants described
above and the default variant of the dual ascent algorithm, respectively, on the netgen_8
graph class. We can see a much worse scaling behavior of all 4 gda-variants as opposed to
the default dual ascent method. In fact a linear regression of log(Tgda) − log(Tmcf) versus
log(m) reveals that we shall reject Hypothesis 2.112.11 at a significance level p < 1.5 · 10−13.

In summary, we can observe that the gain in dual objective value that is achieved by the
greedy variant does not seem to compensate the loss in primal feasibility that it is caused by
saturating or de-saturating arcs whose reduced cost becomes negative.

2.4.6 Comparison with Other Algorithms

Similar to comparing algorithms by asymptotic running times, in this section, we evaluate
the scaling behavior of our implementation and third-party implementations of known al-
gorithms w.r.t. graph size, i.e., number of edges m. Our choice of candidates is based on the
recent study [Pet15Pet15] that claims that today’s fastest min-cost flow code is contained in the
LEMON Graph Library22. Based on their findings, we compare our implementation (our)
with their implementations of three different algorithms: the network simplex algorithm
(ns), the cost scaling algorithm (cos), and the successive shortest path method (ssp). Ac-
cording to [Pet15Pet15], the fastest algorithms on most instances (such as netgen_8, goto_8, and
netgen_sr) are ns and cos. We include ssp because we consider our algorithm to be a
generalization of this approach.

The exponents for the different implementations and graph classes can be found in
Table 2.12.1. The bold numbers indicate the best exponent for the dependence of the running

2https://lemon.cs.elte.hu/trac/lemonhttps://lemon.cs.elte.hu/trac/lemon

https://lemon.cs.elte.hu/trac/lemon
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Figure 2.4: Running time dependence on m of gda variants and the default
variant on the netgen_8 graph class.

our ssp ns cos

netgen_sr 1.34 ± 0.02 1.42 ± 0.01 1.25 ± 0.02 1.17 ± 0.02
netgen_8 1.37 ± 0.02 1.80 ± 0.02 1.69 ± 0.02 1.22 ± 0.01
goto_8 1.66 ± 0.04 2.03 ± 0.02 2.17 ± 0.03 1.53 ± 0.02
road_paths 1.33 ± 0.03 1.40 ± 0.04 1.74 ± 0.03 1.50 ± 0.02
road_flow 1.42 ± 0.03 1.43 ± 0.04 1.76 ± 0.04 1.46 ± 0.03

Table 2.1: Fitted exponents describing the scaling behavior w.r.t. the number
of arcs together with the 95%-confidence intervals.

time on the number of edges for the graphs from the corresponding class. Observe that our
implementation beats the other three on the road networks tested. Moreover, our exponents
are better than the ones of network simplex, except for the dense netgen graphs. Last but not
least, we obtain a better scaling behavior than successive shortest path on all classes, which
is interesting as our approach can be seen as a generalization of successive shortest path. The
coefficients of determination for the corresponding regressions show that the running time
data is well-described by a scaling behavior of the form mc , where c is the corresponding
fitted exponent.

We remark that all the data underlying the regression was generated with the following
version of the algorithm. The potentials are updated lazily. We always choose the node
with maximal absolute deficit as starting node for the dual step. The defupt primal update
version is activated. We use the def0 variant for the termination of the dual step, and we use
the hybrid queue as priority queue.

The source code, the instances, and additional material are available for download on the project page.33

3http://resources.mpi-inf.mpg.de/networkflow/http://resources.mpi-inf.mpg.de/networkflow/

http://resources.mpi-inf.mpg.de/networkflow/
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2.5 Conclusion

In this chapter, we have presented a simple fully-combinatorial algorithm for the capacitated
min-cost flow problem that is competitive with recent third-party implementations of well-
known algorithms and even outperforms them on certain realistic instance classes such as
road networks. We have formally proven correctness of the algorithm and have evaluated
its run-time experimentally. We have seen that this very simple combinatorial approach
leads to extremely fast implementations that solve min-cost flow instances with millions of
arcs within seconds, although its theoretical worst-case run-time bound is not competitive
with the most efficient methods in theory. As described in the introduction, the currently
most efficient methods in theory are based on methods from continuous optimization, more
precisely, on interior point methods. Such an approach and its practicability will be topic of
the following chapter.
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Chapter 3

An Integer Interior Point Method for
Min-Cost Flow

3.1 Introduction

We have seen a combinatorial method for min-cost flow in the previous section and have
seen that an implementation of this method is very fast in practice although its theoretical
time complexity lacks behind the currently best known bounds. We have alreadymentioned
the contributions based on interior point methods11 that achieve the record bounds in the
introduction,we recap themost important results: Theboundof Õ(m3/2 log2 U)wasobtained
by Daitch and Spielman [DS08DS08] and later (up to log factors) the same bound was shown
in [BK14BK14] with a simple potential reduction algorithm.22 The breakthrough result of Lee and
Sidford [LS14LS14] yields the bound of Õ(m

√
n polylog U).

Although the interior point methods achieve these impressive record bounds, this ef-
ficiency did not yet transfer to practical implementations. As a matter of fact, there is no
implementation of an interior point method that was reported to be competitive with the
combinatorial approaches on real world problems. There are many reasons for this. First,
combinatorial algorithms are rather easy to implement and necessary subroutines are readily
available in standard libraries by now. The ingredients needed to achieve the better theoreti-
cal results are however rather involved and use complicated subroutines such as low-stretch
spanning trees [AN12AN12] or spectral vertex sparsifiers [Kyn+16Kyn+16] that are already difficult to
implement efficiently on their own. Second, interior point methods are formulated for real
arithmetic and implementations require high-precision floating point numbers in order to
avoid numerical instabilities, even if all the input data is given by integer numbers. Address-
ing this second issue of interior point methods’ implementations is the central topic of this
chapter. By giving an interior point method that solely uses integer arithmetic on numbers
of polynomial length, we obtain an algorithm that is guaranteed to be free of any numer-
ical instabilities while still improving over the classical combinatorial methods in terms of
worst-case time complexity.

We proceed by highlighting why the challenge of numerical stability appears in interior
point methods, more precisely in path following methods. First, notice that the (uncapaci-
tated) min-cost flow problem given by an instance (G, b , c) can be written as the primal-dual
linear programming pair

min{cT x : Ax � b and x ≥ 0} � max{bT y : AT y + s � c and s ≥ 0}. (3.1)

We remark that themeaning of the slack variables s � c−AT y is the exact same as the reduced
costs c y in the previous chapter. Recall that we had defined c y

a :� ca + yv − yw for every arc

1See for example [MS16MS16], for a gentle introduction to the topic.
2We recall that n is the number of nodes, m the number of arcs, and U an upper bound on the maximal

capacity.
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a ∈ A. In the previous chapter, we also have already made use of the following property: A
pair of primal/dual optimal solutions to (3.13.1) will satisfy complementary slackness, see (2.12.1)
to (2.32.3). In the setting without capacity constraints, the complementary slackness conditions
reduce to xa sa � 0 for all a ∈ A or equivalently to xT s � cT x − bT y � 0. We remark that xT s
is called the duality gap as it measures the gap between primal and dual objective value.

The intuition behind path following interior point methods is to relax this optimality
condition xa sa � 0. More precisely, path following methods maintain a pair of primal/dual
feasible solutions x and (y , s) such that xa sa ≈ µ for all a ∈ A for a positive parameter µ,
which they drive to zero. They thereby follow the so-called central path, which is the set of
all points satisfying xa sa � µ for all a ∈ A. As a consequence of µ approaching zero, the
duality gap xT s ≈ µm goes to zero. It may however happen, that either xa or sa becomes tiny
while the other becomes huge. This behavior is the source of numerical issues as it requires
to simultaneously deal with huge and tiny numbers.

Our way to resolve this issue is to only consider the arcs with sufficiently large values of
xa and sa . That is, whenever xa becomes too small, we delete the arc a from the network and
whenever sa becomes too small, we contract the arc a. We thereby obtain a reduced problem

in form of a minor of the original network. We do not revoke any of these operations until
termination of the algorithm. We show that a near-optimal solution for the reduced problem
can be lifted efficiently to an optimal solution of the original network. Such arc deletions and
contractions have been used in combinatorial optimization before [Tar85Tar85; Orl84Orl84], but, to our
knowledge, not in combination with path-following methods for network flow problems.

For the reduced problem, we can show that one can stay sufficiently close to the central
path by iterating over points in the vicinity of the central path that lie on a lattice that is
such that the lattice points are numbers with not too large representation. More precisely,
we show that if the greatest common divisor (gcd) of the demands β :� gcd(b) and the
gcd of the costs γ :� gcd(c) are sufficiently large, we can perform all arithmetic operations
on integers. The requirement on the gcds can be easily achieved by an initial scaling of
the demands, capacities and costs. Such scaling comes at a very low price because the
expected running time of Õ(m3/2) of our algorithm only depends logarithmically on these
scaling factors. We remark that it appears obvious that integer arithmetic can be achieved
by scaling with a huge number that is, say, doubly exponential in m , n. However, we show
that scaling with numbers that are polynomial in n is sufficient. Moreover, we manage to
make the exact numerical requirements of our algorithm explicit by stating absolute bounds
on the appearing numbers, without hiding anything in O-notation. We prove the following
theorem.

Theorem 3.1. Optimal primal and dual solutions for a min-cost flow problem can be computed in

expected Õ(m3/2) time using only integer arithmetic on numbers bounded by 231m10U2C2
, where U

and C are bounds on the maximum capacity and cost, respectively.

Note that the running time of our algorithmmatches the time bound from [DS08DS08], which
dominates the known bounds for combinatorial algorithms in many settings. For a better
comparison of the two results, note that [DS08DS08] gives a bound on the bit length of the
numbers appearing in their algorithms, as well: The methods work on numbers of bit length
atmost O(log(nU/ε)), where ε � (12m2U3)−1 for solving the standardmin-cost flowproblem
exactly33. If the hidden constant in the O-notation can be made explicit to be, say, k, then this
method could be used with integer arithmetic, as well, the resulting bound on the numbers
there will then be 12k nk m2kU4k , which is larger than our bound already for small k.

3Note that in the case of generalized min-cost flow, the algorithms of Daitch and Spielman only give ε-
approximate solutions in general and thus the numerical requirements will also depend on the desired ε. For
the standard min-cost flow problem they show that an ε of the size as described above is sufficient.
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Note that for robust implementations, it is advantageous to know the exact precision
requirements, as an appropriate scaling can be performed in the beginning without having
to worry about numerical issues or overflows in the course of the algorithm. Alternatively,
one can still use adaptive precision, check the correctness of the output, and repeat the
computation with higher precision, if necessary. However, this approach usually requires
changes to the implementation as insufficient precision may lead to diverging behavior of
sub-routines, see for example [Ket+08Ket+08]. Adding a timer is no solution either as it turns
diverging behavior into worst-case behavior. However, such precautions are mandatory and
the only choice, if the bounds are not known explicitly.

For the potential-reduction method from [BK14BK14], only a bound on the number of arith-
metic operations is given and a strict boundon the size of the emerging numbers is non-trivial
to obtain, if not even impossible. It is essential for our proof for the method presented in this
chapter to exploit arc contractions and deletions and to use a path-following method instead
of a potential-reduction method. It is, furthermore, interesting to note that our lower bound
on the value of primal variables does not depend on the costs, capacities, or demands in the
network, but only on n and m. This might be of interest in the context of strongly polynomial
time algorithms for the capacitated min-cost flow problem, where the current record bound
is Õ(m2), due to Orlin [Orl88Orl88].

Finally, we want to remark that we consider this work rather as a first important step in
the direction of making numerical requirements of interior point methods for combinatorial
problems apparent, than as giving the ultimate final answer to practitioners. We feel that the
work in this chapter, despite the fact that it treats all numerical details, is still fairly elegant.

Structure of theRemainder of thisChapter. The rest of this chapter is structured as follows.
We proceedwith preliminaries in Section 3.23.2. In Section 3.33.3, we introduce the path following
algorithm, Section 3.43.4 contains details about implementing the centering step with integer
arithmetic. We conclude in Section 3.53.5.

3.2 Preliminaries

3.2.1 Arc Contraction and Deletion

We have already discussed the interpretation of the parameter µ > 0. We will measure
the closeness to the central path w.r.t. µ by the relative deviation in the 1-norm | |σ | |1, where
σ ∈ Rm is defined as σa :� xa sa/µ−1. A sufficiently small deviation, more precisely, | |σ | |1 ≤ δ
for some constant δ < 1, will guarantee that both xa and sa remain positive. As mentioned
before, this small deviation however does not prohibit that either xa or sa becomes tiny,
which we want to avoid. We deal with this issue in a radical way: That is, whenever xa
becomes too small, we delete the arc from the network and whenever sa becomes too small,
we contract the arc a. We thereby obtain a minor of the original network. This is captured
formally by the following definition.

Definition 3.2. Let G � (V,A) be a directed graph with m arcs. For ε > 0 and x , s ∈ Rm
≥0, we call

the minor H of G obtained by deleting the arcs in D :� {a ∈ A : xa < ε
m } and contracting the arcs

in C :� {a ∈ A : sa < ε
m } the ε-x-s-minor of G.

This approach has its foundation in classical min-cost flow theory [AMO93AMO93, Section 10.6].
We review a well-known fact from general LP duality.

Lemma 3.3. Let the pair

min{cT x : Ax � b , x ≥ 0} � max{bT y : AT y + s � c , s ≥ 0} (3.2)
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be bounded and feasible.

• A primal optimal solution x∗ of (3.23.2) is also an optimal solution of min{s̄T x : Ax � b , x ≥ 0}
for any dual feasible solution ȳ , s̄ of (3.23.2).

• A dual optimal solution y∗ , s∗ of (3.23.2) is also an optimal solution of min{x̄T s : AT y + s �

c , s ≥ 0} for any primal feasible solution x̄ of (3.23.2).

Proof. • Let y∗ , s∗ be dual optimal solutions to (3.23.2). Define y′ :� y∗ − ȳ and s′ :� s∗ �
c − AT y∗, then AT y′ + s′ � AT y∗ − AT ȳ + s∗ � c − AT ȳ � s̄ and hence y′, s′ are feasible
for max{bT y : AT y + s � s̄ , s ≥ 0}. Moreover, it holds that x∗T s′ � x∗T s∗ � 0. It thus
follows that x∗ , y′, s′ are primal and dual optimal for the pair

min{s̄T x : Ax � b , x ≥ 0} � max{bT y : AT y + s � s̄ , s ≥ 0}.

This shows the claim.

• Suppose for contradiction that y∗ , s∗ is not optimal. Then, since Ax̄ � b,

x̄T s∗ > min{x̄T s : AT y + s � c , s ≥ 0} � min{x̄T(c − AT y) : AT y + s � c , s ≥ 0}
� cT x̄ −max{bT y : AT y + s � c , s ≥ 0} � cT x̄ − bT y∗ � x̄T s∗ ,

which is a contradiction.

The following lemma shows the rationale for deleting arcs with tiny flow x and thus
huge reduced costs s in the vicinity of the central path (respectively, contracting arcs with
tiny reduced costs and huge flow).

Lemma 3.4. Let x , s ∈ Rm
be primal/dual feasible solutions of (G, b , c) with b ∈ Zn

and c ∈ Zm
.

• If sa > xT s for some a ∈ A, then x∗a � 0 for every optimal solution x∗.

• If xa > xT s for some a ∈ A, then s∗a � 0 for every optimal solution s∗.

Proof. Due to the total unimodularity of the node-arc incidence matrix A, all basic solutions
are integral. Thus, it suffices to show the claims for optimal integral basic solutions. All
other optimal solutions are convex combinations of these.

• Assume for contradiction that x∗a > 0 in an optimal integral solution, i.e., x∗a ≥ 1. Then
x∗T s ≥ x∗a sa > xT s, this shows that x∗ is not optimal for min{sT x : Ax � b , x ≥ 0},
contradicting Lemma 3.33.3.

• Assume for contradiction that s∗a > 0 in an optimal integral solution, i.e., s∗a ≥ 1. Then
xT s∗ ≥ xa s∗a > xT s, this shows that s∗ is not optimal for min{xT s : AT y + s � c , s ≥ 0},
contradicting Lemma 3.33.3.

Note that the central path condition
∑

a∈A | xa sa
µ − 1| ≤ δ implies xa sa ∈ [(1− δ)µ, (1+ δ)µ]

for any arc a ∈ A. Now assume that for some arc a ∈ A, the value of xa becomes tiny, i.e.,
xa < ε

m . Then sa ≥ (1−δ)µxa
>
(1−δ)µm

ε ≥ (1 + δ)µm ≥ xT s follows for ε :� 1−δ
1+δ < 1. Thus

Lemma 3.43.4 applies and we can conclude that x∗a � 0 in every optimum primal solution x∗. A
completely symmetric approach shows that, if sa < ε

m for an arc a ∈ A, then s∗a � 0 in every
optimal dual solution s∗.

The analyses of classical combinatorial algorithms that use arc deletion or arc contraction,
respectively, are based on an argument that termination is guaranteed because at least one
arc has to be deleted or contracted after a certain amount of iterations and there are only m
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arcs. However, we have a different termination criterion that mainly depends on the duality
gap. In [BK14BK14], it is shown that it suffices to compute a pair of primal/dual interior points
with duality gap strictly less than 1 to efficiently perform a crossover to an optimum integral
basic feasible solution. Here, we will need to extend that result from [BK14BK14] by showing
that proximity to the optimum solution w.r.t. a minor suffices. To this end, we first formally
define what proximity means in our context.

Definition 3.5. A pair of primal and dual feasible solutions x , s of (G, b , c) with b ∈ Zn
and c ∈ Zm

is called a proxy for the optimum of (G, b , c) if ∑a∈AH xa sa < (1 − ε)2 where AH is the arc-set of an

ε-x-s-minor of G for some ε < 1.

3.2.2 Perturbation

Suppose, for example, that we have an ε-x-s-minor H that differs from G just by the deletion
of a single arc â. Hence, the set of nodes of H coincides with the one of G. However,
projecting x to xH , s to sH , and c to cH by removing the entry corresponding to â does not
yield a pair of primal/dual feasible solutions xH , sH for (H, b , cH), but it is rather a feasible
solution to (H, b̃ , cH) where b̃ � b − A1â1

T
â x. Note that the two demands vectors b and b̃

are almost identical because x â is tiny. We first define formally what we mean by almost
identical instances and then draw the connection to minors.

Definition 3.6. An instance (G, b̃ , c̃) is called ε-perturbed instance of (G, b , c), if ‖b − b̃‖1 ≤ 2ε
and ‖c − c̃‖1 ≤ ε.

We introduce the notation IS :�
∑

a∈S 1a1
T
a for some S ⊆ A and continue by showing that

the instance constructed by contracting arcs of small reduced cost and deleting arcs of small
flow is in fact an ε-perturbed instance of the input instance (G, b , c).

Lemma3.7. Let x , s be a pair of primal/dual feasible solutions of (G, b , c) letC :� {a ∈ AG : sa < ε
m }

and D :� {a ∈ AG : xa < ε
m } for some 0 < ε < 1. Then (G, b̃ , c̃)with b̃ � b−AID x and c̃ � c− ICs

is an ε-perturbed instance of (G, b , c).

Proof. The proof is a simple calculation:

‖b − b̃‖1 � ‖AID x‖1 ≤ 2‖ID x‖1 ≤ 2ε and ‖c − c̃‖1 � ‖ICc‖1 ≤ ε.

The following theorem shows the equivalence of the original and the perturbed problem.
For a given instance (G, b , c) and a given spanning tree T of G, we call x ∈ Rm a primal tree

solution, if Ax � b and xa � 0 for all a ∈ A \ T and we call y , s ∈ Rn+m a dual tree solution if
AT y + s � c and sa � 0 for all a ∈ T.

Theorem 3.8. Let (G, b̃ , c̃) be an ε-perturbed instance of (G, b , c) for some 0 < ε < 1 and let T be a

spanning tree of G.

a) If the unique tree solution w.r.t. T in (G, b̃ , c̃) is primal feasible, then the unique primal tree

solution w.r.t. T in (G, b , c) is feasible.

b) If the unique tree solution w.r.t. T in (G, b̃ , c̃) is dual feasible, then the unique dual44 tree solution

w.r.t. T in (G, b , c) is feasible.

c) If the spanning tree T is optimal for (G, b̃ , c̃), then it is optimal for (G, b , c).
4Here unique dual refers only to the reduced costs because AT (y + t1) � AT y for all t ∈ R.



32 Chapter 3. An Integer Interior Point Method for Min-Cost Flow

Proof. a) Let xT and x̃T denote the unique primal tree solutions corresponding to T in
(G, b , c) and (G, b̃ , c̃), respectively, i.e., AT xT � b and AT x̃T � b̃ holds. Similarly let d
be the unique primal tree solution corresponding to T for the right hand side b − b̃, i.e.,
AT d � b − b̃. Note that in order to show feasibility of xT , it suffices to show that xT ≥ 0.
It follows that

AT d � b − b̃ � AT(xT − x̃T)

and thus by the uniqueness of d, we conclude d � xT − x̃T . It follows that ‖xT − x̃T ‖∞ �

‖d‖∞ ≤ ‖b − b̃‖1/2 ≤ ε, using that (G, b̃ , c̃) is an ε-perturbed instance. However, since
b ∈ Zn also xT ∈ Zm and since ε < 1 it follows that x̃T ≥ 0 implies xT ≥ 0.

b) Let yT , sT and ỹT , s̃T denote the unique dual tree solutions corresponding to T in (G, b , c)
and (G, b̃ , c̃), respectively, i.e., AT yT + sT � c, sT(a) � 0 for a ∈ T and AT ỹT + s̃T � c̃,
s̃T(a) � 0 for a ∈ T holds. Similarly let p , d be the unique dual tree solution corresponding
to T for the right hand side c− c̃, i.e., AT p+d � c− c̃. Note that in order to show feasibility
of yT , sT , it suffices to show that sT ≥ 0. It follows that

AT p + d � c − c̃ � AT(yT − ỹT) + sT − s̃T

and thus by the uniqueness of d, we conclude d � sT − s̃T . Furthermore for a ∈ T, we
have d(a) � 0 and for a ∈ A \ T, it holds that |da | � |ca − c̃a − (pw − pv)| � |ca − c̃a −∑

a′∈P(v ,w) ca′ − c̃a′ | ≤ ‖c − c̃‖1. It follows that ‖sT − s̃T ‖∞ � ‖d‖∞ ≤ ‖c − c̃‖1 ≤ ε, using that
(G, b̃ , c̃) is an ε-perturbed instance. However, since c ∈ Zm also sT ∈ Zm and since ε < 1
it follows that s̃T ≥ 0 implies sT ≥ 0.

c) Assume the tree T is optimal for (G, b̃ , c̃), i.e., the tree is primal and dual feasible (com-
plementary slackness). Together with part aa and bb, we conclude that T is also optimal for
(G, b , c).

We note that in the non-degenerate case, the reverse statements of aa and bb hold as well.
As our algorithm will output a tree solution to the perturbed problem, the above theorem
is sufficient to show that we can use the crossover algorithm from [BK14BK14, Section 2] on the
perturbed instance and obtain a tree that is also an optimal tree for the original problem.

3.3 Integer Interior Point Algorithm

This section is structured as follows. We will first describe how to obtain initial primal/dual
solutions. We remark that this is an easy application of a previous result from [BK14BK14]. We
will then describe the main algorithm and the final crossover step. In the section thereafter,
we will give details on the implementation of the centering step.

3.3.1 Finding Arbitrarily Central Initial Points

In this section, we show how to construct an auxiliary instance and corresponding feasible
interior solutions that are arbitrarily close to the central path. We are actually going to give
a construction that works for the more general capacitated min-cost flow problem. In fact,
we can use a vert similar technique as used in [BK14BK14] for a potential reduction method.
For the sake of completeness, we nevertheless repeat the method here. Let us denote with
(G0 , b0 , c0 , u) a given input instance of a min-cost flow problem with capacity constraints.
Let V0 denote the node set of G0 and let A0 denote its arc set. We are going to describe
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a method that constructs an auxiliary instance (G, b , c). The auxiliary instance is an un-
capacitatedmin-cost flow problem and the method will give corresponding primal and dual
integer interior solutions for it.

The first part of the construction was already presented in Chapter 11 and is illustrated in
Figure 1.11.1: For each a � (v ,w) ∈ A0, insert the two nodes v , w into G as well as a new node
vw together with arcs á � (v , vw) and à � (w , vw), read “a up” and “a down”. Define the
new costs by c á :� ca and c à :� 0. The new demand vector is given by bv :� b0

v − u(δin(v)) for
nodes v ∈ V0 and bvw :� u(v ,w) for the newly inserted nodes.

Our goal now is to find values x , y , s that are primal and dual feasible, integral, as well as
close to the central path, more precisely ‖σ‖1 �

∑
a∈A |xa sa/µ(0) − 1| ≤ δ for some parameters

µ(0) > 0 and δ ≥ 0. We show that the technique from [BK14BK14] can actually achieve this. With
the right choice of parameters, the technique yields closeness to the central path for arbitrary
δ. We proceed as follows:

1. We compute an integral (not necessarily feasible) tree solution z in G0 for an arbitrary
spanning tree T and set x à � x á � ua/2.55

2. We introduce the additional arc â � sign(za − ua/2)(v , w) (if za − ua/2 � 0, we do
not introduce the arc â) and set the flow on â to x â � |za − ua/2| and its cost to
c â � dt/|za − ua/2|e for some t.66

3. The dual variables are set as yv , yw � 0 and yvw � −b2t/uac, which determines
s á � ca + b2t/uac, s à � b2t/uac and s â � c â � dt/|za − ua/2|e.

vw

w

v
c0

a

0

b0
v

b0
w − u0

a

u0
a vw

w

v
c0

a

0

c1
â

b0
w − u0

a

b0
v

u0
a

Figure 3.1: In order to balance the xa sa , we introduce the arc â � (v , w) with
high cost c â and reroute flow along it. The direction of â depends on a tree
solution z in the original graph. It is flipped if za ≤ ua/2. All arcs in the
middle and the right graph have infinite capacity. Only the costs are shown.

We refer the reader to Figure 3.13.1 for a visualization of this construction. Note that the
above routine can be implemented in time O(m). We can now show that x , y , s are arbitrarily
close to the central path.

Lemma 3.9. Let x , y , s be as described above. Then, it holds:

1. For any t > 0, it holds that xa sa ∈ [t − βγUC, t + βγUC] for all a ∈ A.

2. Let t :� 3mβγUC/δ and µ0 :� t − βγUC, then ‖σ‖1 ≤ δ.
5We remark that after scaling u with a factor of 2, we can ensure that x is integral.
6Note that a sufficiently large choice of t guarantees that no flow is routed across â in an optimal solution.

More precisely, for t ≥ 2βγmUC, we obtain c â ≥ t/(2βU) ≥ mγC ≥ 1T c0, where we used that za ≤ ‖b0‖1/2,
and thus the cost of â is at least the cost of any path in G0 and introducing â does not change the optimum of the
problem.
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Proof. 1. Let a ∈ A0 be any arc in G0, then x á � x à � ua/2. It follows that,

x á s á �
ua

2

(
c á +

⌊
2t
ua

⌋ )
≤ t +

ua ca

2
≤ t +

βγUC
2

, and x á s á ≥ t +
ua ca

2
− ua

2
≥ t;

x à s à �
ua

2

(
c à +

⌊
2t
ua

⌋ )
≤ t , and x à s à �

ua

2

(
c à +

⌊
2t
ua

⌋ )
≥ t − ua

2
≥ t − βU

For the newly introduced arc â, we obtain

x â s â ≥
���za −

ua

2

��� t
|za − ua

2 |
� t and x â s â ≤

���za −
ua

2

���( t
|za − ua

2 |
+ 1

)
≤ t + βU.

2. For the sake of readability, let us denote α :� βγUC. From the first part, it follows that
xa sa
µ0
∈ [1, (t + α)/(t − α)] � [1, 1 + 2α/(t − α)] for a ∈ A. This yields xa sa

µ0
∈ [1, 1 + δ/m]

with t ≥ 3mα/δ and hence

‖σ‖1 �

∑
a∈A

����xa sa

µ0
− 1

���� ≤∑
a∈A

δ
m

� δ.

The dual variables defined above are integral, whereas the primal variables are half-
integral. Integrality can be achieved via a simple scaling of b and u with factor 2. From the
above lemma and the lower bound on t that ensures that the optimum is not changed due to
the introduction of the new arcs â, we obtain that choosing µ(0) � t − βγUC ≤ 9m0βγUC/δ
is feasible.

3.3.2 Integer Interior Point Algorithm

We have seen how to construct (in linear time) initial interior points for an auxiliary instance
with the same optimum that fulfill the central path condition ‖σ‖1 ≤ δ for µ0 ≤ 3mβγUC/δ.
The idea of the path following method is to decrease the current µ by roughly a factor of
1 − δ/

√
m, more precisely, we set µ ← d(1 − τ)µe, where τ � δ/

√
m, as long as we have not

achieved a solution that is a proxy for the optimumof (G, b , c) yet. Then, we restore closeness
to the central path w.r.t. the new µ and the minor in the so-called centering step. Observe that
closeness to the central path together with the absence of tiny xa and sa in the minor implies
that xa and sa are bounded by (1 + δ)µ/ε. Thus the size of µ0 yields an upper bound on the
numbers that have to be considered in this algorithm. A pseudocode implementation can
be found in Algorithm 3.13.1.

The following theorem is a more precise formulation of Theorem 3.13.1 and the rest of this
chapter is dedicated to prove it. Recall that β :� gcd(b) and γ :� gcd(c) and observe that if
a given input instance does not satisfy the assumption in the theorem of having sufficiently
large gcd’s, scaling down the instance by dividing by gcd(b) and gcd(c), respectively, and
scaling them up by sufficiently large numbers that satisfy the above theorem is a feasible
approach. This shows that Theorem 3.13.1 follows from Theorem 3.103.10. Moreover, note that the
running time of our algorithm only scales logarithmically with β and γ and thus up-scaling
to meet the condition from the theorem can be achieved at low cost.

Theorem 3.10. Let (G, b , c) be a min-cost flow instance with b ∈ βZn
and c ∈ γZm

. There is a

randomized algorithm to compute x , s ∈ Zm
s.t. x/β, s/γ is a proxy for the optimum of (G, b/β, c/γ)

in Õ(m3/2 log(UC)) time with high probability using only integer arithmetic on numbers bounded

by 28m3γUC, provided that β ≥ 28m3
and γ ≥ 215m4βUC.
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Algorithm 3.1: PathFollow
Input : (G, b , c)with gcd(b) � β and

gcd(c) � γ, feasible interior
x , s ∈ Zm , and µ > 0 s.t.
‖σ‖1 :�

∑
a∈A | xa sa

µ − 1| ≤ δ.
Output: Vectors x , s s.t. x/β and s/γ yield a

proxy for the optimum of
(G, b/β, c/γ).

repeat
H = Minor (G, x , s)
µ← d(1 − τ)µe, where τ � δ/

√
m

x , s = CenteringStep (H, x , s , µ)
until

∑
a∈AH xa sa < (1 − ε)2βγ

return x , s

Algorithm 3.2: Minor (G, x , s)
Let ε :� 1−δ

1+δ .
for a ∈ A do

if xa <
εβ
m then remove a

from G
if sa <

εγ
m then contract a in

G
return G

Note that µ ≥ xT s
m(1+δ) ≥

(1−ε2)βγ
m(1+δ) ≥

βγ
2m for δ ≤ 1/8 and ε ≤ 1/2 holds during the execution

of the algorithm. Thus

µ′ :�
⌈(

1 − δ√
m

)
µ

⌉
≤

(
1 − δ√

m

)
µ + 1 ≤

(
1 − δ√

m

)
µ +

2mµ
βγ
≤

(
1 − δ

2
√

m

)
µ

provided that βγ ≥ 4m3/2/δ, which is satisfied for β, γ fulfilling the conditionsof the theorem.
Let us denote with µ(0) the initial value of µ and likewise let µ( f ) be the final value of µ. Then
after at most t :� d2

√
m log(µ(0)/µ( f ))/δe many iterations, it holds that µ(0) is reduced to µ( f ),

since for the value t′ for which (1 − δ
2
√

m
)t′µ(0) � µ( f ), we have that

t′ � log
(
µ( f )

µ(0)

) [
log

(
1 − δ

2
√

m

)]−1

≤
⌈
log

(
µ(0)

µ( f )

)
2
√

m
δ

⌉
� t .

Since µ(0)/µ( f ) ≤ 2m2UC/δ, we can thus conclude that Algorithm 3.13.1 terminates after at
most O(

√
m log(nUC))many iterations.

It thus remains to describe the following: (1) How to implement the centering step
in nearly-linear time with high probability using only integer arithmetic given the above
assumption on the gcds? This will be discussed in detail in Section 3.43.4. For now it is only
important that it maintains closeness to the central path w.r.t. the arcs in the minor. For
the sake of presentation, we did not maintain the y-variables that can be used to restore the
reduced costs on the arcs that have been deleted. But this can be easily achieved. Moreover,
one can extend the cycles mentioned above from the minor through the contracted nodes to
cycles in the original graph such that one can also keep track of the updates to maintain a
feasible solution in the original graph. (2) How to implement the crossover step? Notice that
fromAlgorithm 3.13.1, we obtain a proxy for the optimumof (G, b , c). However, the variables of
the arcs in the minor describe an interior point of a slightly perturbed instance. We describe
how to handle the situation in Theorem 3.113.11.

3.3.3 Crossover

We repeat the crossover technique from [BK14BK14, Section 2]. We note that we have used a
similar approach in Chapter 22 as dual step. The crossover takes an instance (G, b̃ , c̃) and
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primal/dual feasible points x̃ , ( ỹ , s̃). Given that c̃ is integral, it outputs an integral dual tree
solution y∗ , s∗ with bT y∗ ≥ bT ỹ. In a nutshell, the crossover algorithm works as follows. It
iteratively constructs nested cuts {s} � S1 ⊂ S2 ⊂ . . . ⊂ Sn � V , starting with an arbitrary
node s. During iteration i, the algorithm modifies the potentials y along the cut Si ensuring
that bT y does not decrease. This is done by incrementing the potentials of all nodes in Si ,
if b(Si) ≥ 0, and by decrementing them otherwise. The potentials are increased (decreased)
until the reduced cost of at least one arc a on the cut S,V \ S becomes 0. Then, the node
adjacent to Si through a is being added to Si . Wenote that the amount bywhich the potentials
inside of Si are changed relatively to the nodes outside of Si , is exactly equal to the reduced
cost of the arc a.

Theorem 3.11. Let (G, b , c) be a min-cost flow instance with b ∈ βZn
and c ∈ γZm

. Given

x , s ∈ Zm
s.t. x/β, s/γ is a proxy for the optimum of (G, b/β, c/γ), a pair of primal-dual optimum

solutions x∗ , s∗ of (G, b , c) can be computed in O(m3/2 log n2

m log U) time.

Proof. Let x̄ � x/β, s̄ � s/γ as well as b̄ � b/β and c̄ � c/γ. Consider the projection x̃ of x̄ to
the subspace with x̃a � 0 for all a ∈ D and the projection s̃ of s̄ to the subspace with s̃a � 0
for all a ∈ C. Note that these projections are primal/dual feasible for the ε-perturbation
(G, b̃ , c̃) of (G, b , c), where b̃ � b̄ − AID x and c̃ � c̄ − ICs and their duality gap satisfies
x̃T s̃ �

∑
a∈AH x̄a s̄a < (1 − ε)2. Given feasible s̄, we can compute corresponding feasible

ȳ in linear time by propagation from the root to the leaves of an arbitrary spanning tree.
The same holds for ỹ and s̃. If we perform the crossover procedure with ỹ , s̃ in (G, b̃ , c̃),
we obtain a tree solution w.r.t. some spanning tree T. By Theorem 3.83.8, this spanning tree
also yields a dual feasible solution for (G, b , c). Moreover, the two admissible networks are
combinatorially the same. If the admissible network yields a primal feasible solution w.r.t.
b, we obtain a pair of primal/dual feasible solutions satisfying complementary slackness
and hence the sought optimum solutions x∗ , s∗. Suppose the contrary for a contradiction.
Then, there is a cut S ⊂ V s.t. b(S) > 0 and there are no ingoing arcs with vanishing
reduced costs, i.e., all ingoing arcs have reduced costs of at least 1. Thus, yv could be safely
increased by 1 for all v ∈ S. Moreover, ỹv could be safely increased by 1 − ε. Thus, the
dual objective b̃T ỹ would increase by at least (1 − ε)2 because 1T

S b̃ � 1T
S b − 1SAID x ≥ 1 − ε.

But this contradicts x̃T s̃ < (1 − ε)2. The crossover can be computed in O(m + n log n)
and the transshipment problem in the admissible network that needs to be solved in order
to obtain the corresponding primal solution can be solved by a max-flow computation in
O(m3/2 log n2

m log U) using the algorithm of Goldberg and Rao [GR97GR97].

Note that the additional max-flow computation can be avoided, by using the isolation
lemma [MVV87MVV87] in order tomake the optimal solutionunique [DS08DS08, Lemma3.12]. However,
the perturbation of the cost vector yields non-integral values and, hence, an additional scaling
would be necessary in order to make the input integral. Furthermore, this strategy would
introduce a new source of randomization that we prefer to avoid.

We summarize what we have established: For an input instance (G, b , c), using Al-
gorithm 3.13.1, we can obtain primal/dual feasible solutions x , s to an ε-perturbed solution
(G, b̃ , c̃) of (G, b , c) that can be used in order to compute an optimal primal/dual solution
pair for the input instance.

3.4 Centering Step

In this section, we describe how to implement the centering step by using a variant of the
electrical flow solver from [Kel+13Kel+13]. We would like to stress the fact that we do not rely on
the numerical stability analysis of [Kel+13Kel+13] that would involve an additional scaling of the
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current sources, instead the current sources that we use can be directly defined as integer
values dependent on the iterates x , s.

The centering step takes as input the minor H of G, the variables x , s and the parameter
µ′ � d(1 − τ)µe, with x , s , µ fulfilling ‖σ‖1 ≤ δ, where σa � xa sa/µ − 1 for each a ∈ AH . For
simplicity, we will denote the vectors x and s as vectors over AH , instead of A. The goal
of CenteringStep is to update x and s to x + ∆x , s + ∆s such that ‖σ′‖1 ≤ δ holds, where
σ′a � x′a s′a/µ′ − 1. Note that s uniquely defines feasible potentials y whose update we denote
with ∆y. Since we want the new iterates to be interior solutions again, we require

AH∆x � 0, AT
H∆y + ∆s � 0 and x + ∆x > 0 as well as s + ∆s > 0. (3.3)

Moreover, since we want ‖σ′‖1 ≤ δ, the idea is to require that (x + ∆x)(s + ∆s) ≈ µ′, more
precisely wewill require η :� 1

µ′ [S∆x + X∆s + Xs]−1 to be small, i.e., we omit the quadratic
term ∆x∆s. Here X � diag(x) and S � diag(s), respectively.

Such ∆x ,∆s satisfying (3.33.3) with η � 0 can be obtained from the solution of a linear
equation system. This can be seen as follows: Multiplying the equations η � 0 by µ′AHS−1

from the left yields AH∆x + AHS−1X∆s + AH x − µ′AHS−11 � 0. Using AH∆x � 0 and
AH x � b′ yields AHS−1X∆s � µ′AHS−11− b′.77 Multiplying AT

H∆y +∆s � 0 by AH XS−1 from
the left and plugging in the above equation for AHS−1X∆s yields

AH XS−1AT
H∆y � −AH XS−1∆s � b′ − µ′AHS−11,

which is an equation system with nH equations in nH variables ∆y. Note that the values of
∆x and ∆s can be reconstructed from the solutions ∆y using the equations AT

H∆y + ∆s � 0
and η � 0. The matrix AH XS−1AT

H is the weighted graph laplacian of H with weights XS−1.
Solving such an equation system is equivalent to computing a so-called electrical flow in the
network H with current sources µ′AHS−11 − b′ ∈ RnH and resistances X−1s ∈ RmH

>0 .
We will take exactly this approach, but with the following two crucial differences. (1)

We will have to be satisfied with fulfilling the equation system approximately, i.e., not
having η � 0 but only ‖η‖1 ≤ δ/4. We will achieve this by using an approximate electrical
flow computation. (2) We want to compute with integer arithmetic only, hence defining
the resistances and current sources as described above is not feasible, instead we will use
the rounded resistances ra � dsa/xae and the rounded current sources AHϕ0, where ϕ0

a �

xa − dµ′/sac for all a ∈ AH . We will denote R :� diag(r). Note that, due to the assumption
on the size of β and γ and the closeness to the central path, it holds that sa/xa ≥ 1, see the
proof of Lemma 3.153.15 for a precise derivation.

We need some additional notation concerning electrical flows.88 Let ϕ be a given flow
and let T be a spanning tree of H. For any a � (v , w) ∈ AH \T, we define Ca :� {a} ∪P(w , v),
where P(w , v) ⊆ A ∪ −A is the unique (undirected) path in T between w and v. Similarly,
χ(a) ∈ {−1, 0, 1}m is the corresponding characteristic vector of the cycle Ca , i.e., χ(a)b � 1, if
b ∈ A∩Ca , χ(a)b � −1, if b ∈ −A∩Ca , and χ(a)b � 0 otherwise. Moreover, r(Ca) :�

∑
a′∈Ca ra′

and tcn(T) :�
∑

a∈AH\T
r(Ca)

ra
is the tree condition number of T. The tree induced voltages are

defined as πv :�
∑

a∈P(v0 ,v) ϕa ra , where v0 is an arbitrary root of the spanning tree T.
As previously mentioned, we use an adaption, of the electrical flow solver from [Kel+13Kel+13],

where the authors showhow to compute an approximate electrical flowϕ and corresponding
node voltages π in nearly linear time. See Algorithm 3.33.3 for a pseudo-code implementation
and note that up to the choice of the termination criterion, the choice of the initial current,
and the rounded update value our algorithm is identical to the one from [Kel+13Kel+13]. In the

7Note that b′ ∈ RnH is a perturbed and restricted version of b due to the contraction and deletion of arcs from
G that lead to H.

8For a more detailed depiction of electrical flows see for example [Bol98Bol98; Kel+13Kel+13].
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algorithm, we need to compute a spanning tree and in order to guarantee fast convergence
this spanning tree needs to be of low stretch:

Definition 3.12. Given a weighted undirected graph G � (V, E, r) and a spanning tree T ⊆ E of G.

For two nodes v , w ∈ V , let distT(v , w) �
∑

e∈Pv ,w re denote the length of the unique path Pv ,w from v
to w in T. The stretch of an edge e � (v , w) with respect to T is defined by strT(e) � distT(v , w)/re .

The stretch of the tree T is defined as str(T) � ∑
e∈A\T strT(e) �

∑
e∈A\T distT(v , w)/re .

The current record bounds concerning low stretch spanning trees is achieved by the
algorithm of Abraham and Neiman [AN12AN12]. They show how to compute a tree of stretch
O(m log n log log n) in O(m log n log log n) time. We furthermore remark that, as in the
algorithm from [Kel+13Kel+13], the flow and voltage updates should be performed using a special
tree data structure [Kel+13Kel+13, Section 5], which allowsupdating the flow in O(log n). Moreover,
the update of the dual variables s should be performed only after every m iterations, resulting
in O(1) amortized time per iteration of the centering step for the update of the dual variables.
Thus, in total, every iteration takes O(log n) amortized time.
Algorithm 3.3: CenteringStep (H, x , s , µ)

Define ra :� d sa
xa
e, ϕ0

a :� xa − d (1−τ)µsa
c for a ∈ AH .

Let T :�spanning tree and pa :� r(Ca)
tcn(T)ra

∀a ∈ AH \ T
ϕ :� ϕ0, s′ � s and x′ � x
while

∑
a∈AH |x′a s′a − µ| ≥ δµ do

Sample a ∈ AH \ T according to p

α(a) :� d−
∑

a′∈Ca ra′ϕa′
r(Ca) c, x′← x′ + α(a) · χ(a), ϕ← ϕ + α(a) · χ(a)

occasionally: compute tree induced voltages π for ϕ, s′ :� s − AT
Hπ

return x′, s′

Wewill assume δ to be set to 1/8, µ(0) ≤ 24mβγUC aswe show to be valid in Section 3.3.13.3.1,
and we will denote with x , s , µ the values of the variables at the beginning of the Center-
ingStep and the update values we define by ∆x :� ϕ − ϕ0 and ∆s :� −AT

Hπ. We remark
that, for our choice of δ � 1/8, evaluating the condition of the while-loop can be done easily
with integer arithmetic (by comparing the two integral values resulting from multiplying
the inequality by 8).

Moreover, define τ′ by (1 − τ′)µ � d(1 − τ)µe � µ′ and recall that we set ε :� 1−δ
1+δ . Note

that from arc contraction and deletion as well as closeness to the central path, we obtain
lower and upper bounds on x and s for arcs in the minor, respectively:

xa ∈
[
εβ

m
,
(1 + δ)µm

εγ

]
and sa ∈

[
εγ

m
,
(1 + δ)µm

εβ

]
for all a ∈ AH . (3.4)

We first of all show that the updates are feasible moves. Primal feasibility follows since ∆x
is a circulation. The update for potentials can be computed in such a way that the dual
constraints, except non-negativity of s, are fulfilled as well. For non-negativity of x and
s, consider the following lemma – in fact the closeness to the central path already implies
non-negativity for x and s, respectively.

Lemma 3.13. If ‖σ′‖1 < δ, then xa + ∆xa > 0 and sa + ∆sa > 0 for all a ∈ AH .

Proof. If ‖σ′‖1 < δ, we must have |(xa + ∆xa)(sa + ∆sa)/µ′ − 1| < δ for all a ∈ AH . Thus
(xa + ∆xa)(sa + ∆sa) > 0 for all a ∈ AH . Assume xa + ∆xa ≤ 0 and sa + ∆sa ≤ 0 for some
a ∈ AH . Then

0 ≥ sa(xa + ∆xa) + xa(sa + ∆sa) � µ′ + sa xa > 0, a contradiction.
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In what follows, we will denote with ϕ(t) the value of ϕ in iteration t of CenteringStep
and with gap(t) the corresponding value of the gap. We proceed by upper bounding the
energy of the initial flow. Since the energy of any flow ϕ(t) is upper bounded by the initial
energy, see [Kel+13Kel+13, Lemma 4.2], the upper bound follows for the energy of all flows.

Lemma 3.14. It holds that ‖ϕ(t)‖2R ≤ 10µmH .

Proof. Since the energy of the initial flow ϕ0 is at least the energy of ϕ(t) for any t, we obtain

‖ϕ(t)‖2R ≤ ‖ϕ0‖2R ≤
∑

a∈AH

2sa

xa

[
x2

a − 2xa

⌈
µ′

sa

⌋
+

⌈
µ′

sa

⌋2
]
≤

∑
a∈AH

2xa sa − 2µ′ +
8µ′2

xa sa
(3.5)

≤ mH

[
2(1 + δ)µ − 2(1 − τ′)µ +

8µ(1 − τ′)2
(1 − δ)

]
≤ mH

[
1
2
µ +

8µ(1 − τ′)2
(1 − δ)

]
≤ 10µmH ,

where we used xa sa/µ ≥ 1 − δ, δ ≤ 1
8 , τ

′ ≤ τ � δ/
√

m ≤ δ, and 1 − τ′ ≤ 1 for the
enumerator.

In the following lemma we show that, assuming sufficiently large β and γ, as well as
small gap :� ϕT Rϕ − 2πTAHϕ0 + πTAH R−1AT

Hπ of the electrical flow and voltages yields
small one-norm of η.

Lemma 3.15. Assume β ≥ 24m2

δ and γ ≥ 217m5βUC
δ . Let δ ≤ 1/8 and ϕ ∈ RmH

and π ∈ RnH
such

that gap < 2−8δ2µ
mH

. Then it holds that ‖η‖1 ≤ δ
4 , where η :� 1

µ′ [S∆x + X∆s + Xs] − 1.

Proof. Let us denote with Da :� dµ
′

sa
c − µ′

sa
and Ea :� d sa

xa
e − sa

xa
the errors introduced by the

rounding in the algorithm. Then,

‖η‖1 �

∑
a∈AH

xa

µ′

���� sa

xa
∆xa + ∆sa + sa −

µ′

xa

����
�

∑
a∈AH

xa

µ′

���� sa

xa
(ϕa − ϕ0

a) − (πw − πv) + sa −
µ′

xa

����
�

∑
a∈AH

xa

µ′

����raϕa − (πw − πv) +
sa

xa
Da − Eaϕa

����
≤
‖X(Rϕ − ATπ)‖1

µ′
+
‖s‖1
2µ′

+

∑
a∈AH

xa |ϕa |
µ′

,

(3.6)

since |Ea | < 1 and |Da | ≤ 1/2. Moreover, note that using the upper and lower bounds
on x and s in (3.43.4) and the fact that τ′ ≤ τ ≤ δ yields the following multiplicative errors
introduced by the rounding:

ra �

⌈
sa

xa

⌉
∈

[
sa

xa
, 2 sa

xa

]
and

⌈
µ′

sa

⌋
∈

[
µ′

2sa
,

2µ′

sa

]
, (3.7)
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where we need that sa/xa ≥ 1, which is guaranteed by γ ≥ 26m3βUC and β ≥ 4m. Let us
now first show how to bound the last summand in (3.63.6): Note that∑

a∈AH

xa |ϕa |
µ′

≤ 1
µ′

∑
a∈AH

xa

√
xa

sa
·
√

sa

xa
|ϕa | ≤

1
µ′

√√ ∑
a∈AH

x3
a

sa

√ ∑
a∈AH

sa

xa
|ϕ2

a |

≤ 1
µ′

√√ ∑
a∈AH

x3
a

sa
‖ϕ‖R .

We have shown in Lemma 3.143.14 that ‖ϕ‖2R ≤ 10µmH . The upper bound for x and the lower

bound for s in (3.63.6) yield
√∑

a∈AH x3
a/sa/µ′ ≤

√
(1 + δ)µm5/(ε3γ2), using τ′ ≤ δ. Putting the

two bounds together, we obtain
√

10(1 + δ)µm3/(ε3γ2) as a bound on the third summand
in (3.63.6). Now, for the first summand in (3.63.6), note that gap �

∑
a∈AH\T[raϕa − (πw − πv)]2/ra ,

as shown in [Kel+13Kel+13, Lemma 4.4]. Hence,

‖X(Rϕ − ATπ)‖1
µ′

�

∑
a∈AH\T

|raϕa − (πw − πv)|√
ra

√
ra xa

µ′
≤

√
gap ·‖X2r‖1

µ′
≤

2√gap ·mH
√
µ

using the Cauchy-Schwarz-Inequality, xa sa/µ ≤ 1 + δ and again τ′ ≤ δ. Finally, for the
second summand in (3.63.6), note that ‖s‖12µ′ ≤

(1+δ)µm2

2µ′εβ ≤ m2

2ε2β
. Hence, plugging all bounds

together into (3.63.6) yields

‖η‖1 ≤
2√gap m
√
µ

+
m2

2ε2β
+

√
10(1 + δ)µm3

ε3γ2 ≤ δ
8
+
δ

16
+
δ

16
≤ δ

4
,

with β ≥ 24m2

δ , γ ≥ 212m4βUC
δ , gap ≤ 2−8δ2µ

mH
and the upper bound on µ ≤ µ(0) ≤ 24mβγUC.

Recall the definition of η :� 1
µ′ [S∆x + X∆s + Xs] − 1 from the previous lemma. We next

show that a small one-norm of η actually implies the closeness to the central path of the new
iterates x′ and s′, i.e., implies ‖σ′‖1 ≤ δ, where σ′a :� x′a s′a

µ′ − 1 for a ∈ AH .

Lemma 3.16. Let δ ≤ 1/8. If ‖η‖1 ≤ δ
4 , then ‖σ′‖1 ≤ δ where σ′a :� x′a s′a

µ′ − 1 for a ∈ AH .

Proof. By definition of η, it holds that (1 + ηa)µ′ � ∆xa sa + xa∆sa + xa sa , which yields

∆xa∆sa �
1

2xa sa

[
((1 + ηa)µ′ − xa sa)2 − (∆xa sa)2 − (xa∆sa)2

]
for a ∈ AH . (3.8)

For the one-norm of σ′, we get the following estimate

‖σ′‖1 �

∑
a∈AH

����x′a s′a
µ′
− 1

���� � ∑
a∈AH

����∆xa∆sa

µ′
+ ηa

���� ≤ ∑
a∈AH

����∆xa∆sa

µ′

���� + ‖η‖1.
Using (3.83.8) and the triangle inequality, we obtain for the first summand that∑

a∈AH

����∆xa∆sa

µ′

���� ≤ ∑
a∈AH

[(1 + ηa)µ′ − xa sa]2
2xa saµ′

+
(∆xa sa)2 + (xa∆sa)2

2xa saµ′

�

∑
a∈AH

[(1 + ηa)µ′ − xa sa]2
xa saµ′

,
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because ∆x and ∆s are orthogonal and thus the sum over all arcs in (3.83.8) yields the last
equality. Now let τ′ be such that µ′ � (1 − τ′)µ. Factoring out µ, plugging in the definition
of µ′ and σa and using the lower bound on xa sa

µ yields

∑
a∈AH

����∆xa∆sa

µ′

���� ≤ ∑
a∈AH

µ2 ( (1+ηa)µ′
µ − xa sa

µ

)2

xa saµ′
≤

∑
a∈AH

[(1 − τ′)(1 + ηa) − 1 − σa]2
(1 − τ′)(1 − δ) .

Expanding the square, re-grouping the terms and using 1Tσ ≤ ‖σ‖1 ≤ δ, −1Tη ≤ ‖η‖1, the
equivalence of norms and the Cauchy-Schwarz-Inequality for −ηTσ ≤ ‖η‖2‖σ‖2, yields∑

a∈AH

����∆xa∆sa

µ′

���� ≤ (1 − τ′)2‖η‖21 + [2(1 − τ′)τ′ + 2δ(1 − τ′)]‖η‖1 + δ2 + 2δτ′ + τ′2m
(1 − τ′)(1 − δ) .

Using τ′ ≤ τ �
δ√
m
≤ δ and 1 − τ′ ≤ 1 yields

‖σ′‖1 ≤
‖η‖21 + 4δ‖η‖1 + 4δ2 + (1 − τ′)(1 − δ)‖η‖1

(1 − τ′)(1 − δ) ≤
‖η‖21 + (4δ + 1)‖η‖1 + 4δ2

(1 − δ)2

and ‖η‖1 ≤ δ
4 gives the result for any δ ≤ 1

8 .

Note that Lemmas 3.153.15 and 3.163.16 together yield that the value of the gap is lower bounded
by 2−8δ2µ/mH , if the termination criterion of CenteringStep does not hold. It remains to
argue the convergence behavior of CenteringStep. This is achieved by the following lemma:
The expected decrease in energy is a fraction of the gap provided that the gap fulfills the
mentioned lower bound. The lemma can be seen as the equivalence of [Kel+13Kel+13, Lemma
4.5], with the difference that we obtain an additional factor of 3/4 due to the rounding to
the nearest integer in the definition of α(a). Again, in order for the rounding to not have a
significant influence, we need to ensure β and γ to be sufficiently large.

Lemma 3.17. It holds that E[‖ϕ(t+1)‖2R − ‖ϕ(t)‖2R | gap(t)] ≤ −3 gap(t)
4 tcn(T) , provided that β ≥ 25m3/δ,

γ ≥ 26m3βUC and gap(t) ≥ 2−8δ2µ/mH .

Proof. Let a be the arc that is sampled in iteration t and letΛa :�
∑

a′∈Ca ra′ϕ
(t)
a′ � raϕ

(t)
a −(πw−

πv). Thenϕ(t+1) � ϕ(t)−α(a)·χ(a), where α(a) :� d Λa
r(Ca)c and χ(a) are as in the algorithm. The

change in energy due to this update is ‖ϕ(t)−α(a)·χ(a)‖2R−‖ϕ(t)‖2R � −2α(a)·Λa+α(a)2 ·r(Ca).
Thus, using the definition of the probabilities pa �

r(Ca)
tcn(T)ra

for a ∈ AH \ T, it follows that

E
[
‖ϕ(t+1)‖2R − ‖ϕ(t)‖2R | gap(t)

]
�

∑
a∈AH\T

r(Ca)2α(a)2
tcn(T)ra

− 2r(Ca)α(a)Λa

tcn(T)ra

�

∑
a∈AH\T

[
Λa − α(a)r(Ca)

]2 −Λa
2

tcn(T)ra
.

Now, using gap(t) �
∑

AH\T Λa
2/ra and r(Ca) ≤ ‖r‖1 for all a ∈ AH \ T for the right term in

the enumerator and |Λa − α(a)r(Ca)| ≤ r(Ca)/2 as the rounding error for the left term, yields

E
[
‖ϕ(t+1)‖2R − ‖ϕ(t)‖2R | gap(t)

]
≤ 1

4 tcn(T) ‖r‖1 tcn(T) −
gap(t)

tcn(T) ≤
1

4 tcn(T) ‖r‖1nm −
gap(t)

tcn(T) .
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Here, we used that tcn(T) ≤ nm. This bound follows from the fact that we can always use a
minimum weight spanning tree as our choice for T. Using ra ≤ 2sa/xa , which follows from
γ ≥ 26m3βUC, see (3.73.7) and the upper and lower bounds on x , s in (3.43.4), yields

‖r‖1nm ≤
2(1 + δ)nm4µ

ε2β2 ≤
2(1 + δ)nm4µ

ε2
δ2

210m6 ≤
(1 + δ)

2ε2
δ2µ

28m
≤
δ2µ

28m
≤ gap(t) ,

where we used β ≥ 25m3/δ. This yields E
[
‖ϕ(t+1)‖2R − ‖ϕ(t)‖2R | gap(t)

]
≤ −3 gap(t)

4 tcn(T) .

By applying a so-called multiplicative drift theorem, see for example [DG13DG13; DJW10DJW10], we
obtain the following result.

Lemma 3.18. Let δ � 1/8 and assume that β ≥ 25m3/δ, γ ≥ 26m3βUC, then the expected

number of iterations that CenteringStep takes is Õ(m). Moreover, CenteringStep terminates after

O(m log2 n log log n) many iterations with probability 1 − m−c
for any constant c > 0.

Proof. Let ϕopt � argmin{‖ϕ‖2R : AHϕ � χ}, where χ � AHϕ0. Consider the random process
of sampling non-tree arcs from CenteringStep and let S be the set of values ‖ϕ‖2R − ‖ϕopt‖2R
where ϕ is the flow resulting from any sequence of non-tree arc samples. Define S′ :� {s ∈
S : s ≥ ρ}, where ρ :� 2−8δ2µ/mH and note that S′ is finite and moreover the minimum smin
of S′ is lower bounded by ρ. Now, for t ∈ Z≥0, define

X(t) :�

{
‖ϕt ‖2R − ‖ϕopt‖2R if gap(t) ≥ ρ
0 otherwise.

as a random variable over S′∪{0} and let T be the random variable that denotes the first time
t ∈ Z≥0 where X(t) � 0. Note that the random variable T is an upper bound on the number
of iterations of CenteringStep, since gap(t) < ρ implies that the algorithm terminates, due to
Lemmata 3.153.15 and 3.163.16. We distinguish two cases in order to bound E[X t+1 − X t |X t � s] for
any s ∈ S′. First assume X(t+1) � 0, then E[X t+1 − X t |X t � s] � E[−X t |X t � s] � −s. Second,
if X(t+1) , 0, then E[X t+1 − X t |X t � s] ≤ −3

4 tcn(T) s, since X t ≤ gap(t) using Lemma 3.173.17.
In summary, E[X t+1 − X t |X t � s] ≤ −3

4 tcn(T) s for all s ∈ S′ and hence applying the
multiplicative drift theorem [DJW10DJW10, Theorem 3] yields

E[T |X(0) � s0] ≤ 1+ln(s0/ρ)
3/(4 tcn(T)) � O(tcn(T) log(n)) � O(m log2 n log log n),

where we used that s0 ≤ 10µmH , see Lemma 3.143.14. In addition, using [DG13DG13, Theorem 5],
we obtain the tail bound Pr[T ≥ λ+ln(s0/ρ)

3/(4 tcn(T)) ] ≤ exp(−λ) for any λ. Hence, we conclude that
Pr[T � ω(m log2 n log log n)] ≤ m−c for any c > 0.

We summarize the results so far: Algorithm 3.13.1 takes O(
√

m log(nUC)) many iterations
in each of which it calls CenteringStep that needs O(m log2 n log log n) iterations with prob-
ability 1−O(m−c) each of which takes polylog n time. Thus, after applying the union bound
over all iterations, we obtain that Algorithm 3.13.1 runs in Õ(m3/2 log(UC)) time with high
probability.

3.5 Conclusion

We conclude by deducing the precise bound on the size of the numbers that the algorithm
has to deal with: Note that the voltages, the values of the α, as well as the currents ϕ are
each bounded in absolute value by ‖Rϕ‖1. By using the Cauchy-Schwarz-Inequality, we
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obtain ‖Rϕ‖1 ≤
√
‖r‖1 · ‖ϕ‖R. The first factor can be bounded by

√
2(1 + δ)µ0m3/εβ using

the bounds from (3.73.7) and (3.43.4). The second, analogously to the estimation in (3.53.5), can be
bounded by

√
10µm. Together with µ ≤ µ0 � 3mβγUC/δ and δ � 1/8, we obtain 28m3γUC

as the final bound on all numbers appearing in the centering step. The values of x and s
are bounded by (1 + δ)µm/(εγ) and (1 + δ)µm/(εβ), respectively, which yields the bounds
of 26m2βUC and 26m2γUC. This shows Theorem 3.103.10. Finally, an arbitrary given min-cost
flow instance can first be scaled down, i.e., divided by its gcd, and then scaled up again with
β and γ of size as described in Theorem 3.103.10. It follows that we can always guarantee the
bound on the size of numbers in Theorem 3.13.1.

In this chapter, we have seen an interior point method for the min-cost flow problem
that solely works with integer arithmetic and in this way is guaranteed to be free of any
numerical instabilities. We feel that our approach, despite the fact that it treats all numerical
details, is still fairly elegant. This is due to the fact that we compute in integers, and by this,
avoid the tediousness of floating point error analysis. Although we believe that this is not
the ultimate answer to practitioners, i.e., this approach should not be implemented exactly
as it is described here, we hope that this work can be a first step towards tackling the issue
of numerical stability of network flow interior point methods.
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Chapter 4

A Gradient Descent Approach to
Transshipment and Shortest Path

4.1 Introduction

In this chapter we turn to an undirected network flow problem, namely the asymmetric
transshipment problem that we have defined in Section 1.31.3. We have seen previously that
combinatorial methods for network flows are extremely fast in practice and that, although
methods from continuous optimization give superior worst-case run-time bounds, their
efficiency has not yet been transferred to actual implementations. In this chapter, we are
going to make use of one big opportunity that continuous optimization techniques have to
offer in order to become relevant for network flows in practice. That is, we are going to
make use of their eligibility for concurrent implementation. More specifically, we are going
to present a gradient descent framework for the asymmetric transshipment problem that
allows for efficient implementation in distributed and streaming models of computation,
particularly, in the so-called Broadcast Congest, the Broadcast Congested Clique, and the
Multipass Streaming model of computation. See Section 4.3.14.3.1 for a precise description of
these models. What all these computation models have in common is that they do not
assume that the computing entity has knowledge of the complete input graph during the
execution of the algorithm, be it because it only has a local understanding (distributed
models) or be it because the graph is too large to be stored completely (streaming model).
Such computation models become increasingly interesting as computing systems become
more and more spread and data becomes larger and larger.

Although there has been a lot of research interest in distributed graph algorithms already
for some decades now, the classical network flow problems, such as the max-flow and the
min-cost flow problem, have not received too much attention until recently. The first non-
trivial results for the undirected max-flow problem in the Congest model of computation
(a less restrictive modification of the Broadcast Congest model) only appeared a few years
ago [Gha+15Gha+15]. The technique that this result is based on, goes back to previous work by
Sherman [She13She13] and Kelner et al. [Kel+14Kel+14] for computing almost maximum flows in close
to linear time in the standard RAMmodel of computation.

In this chapter, we report on the first non-trivial result for computing (1+ ε)-approximate
solutions to the (undirected) min-cost flow or transshipment problem in distributed and
streaming models of computation. See Table 4.14.1 for the results that we obtain. For the
asymmetric variant the bounds on the number of rounds and the time complexity include
an additional factor of λ2, where λ > 1 is the maximum ratio of a forward and backward
weight.

We note that the reason for this recent sudden development of distributed methods for
network flow problems is that these methods are based on the continuous optimization
approaches that have only been applied to these problems in the last decade. Implementing
the classical combinatorial methods in distributed computation models seems to be more
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Computation Model Our Results

Broadcast Congest nε−2 polylog n
rounds

Broadcast Congested
Clique

ε−2 polylog n
rounds

Multipass
Streaming

ε−2 polylog n passes
O(n log n) space

RAM Õ(ε−2(m + n3/2))
time

Table 4.1: New results for undirected transshipment in different distributed
and streaming models of computation, as well as in the standard RAMmodel.

challenging or even impossible. In fact, both these techniques, the one for the max-flow
problem from [Gha+15Gha+15] and the one presented here for the transshipment problem, are
based on gradient descent.

The single source shortest path problem, which is a special case of the transshipment
problem (with demand vector b � 1 − n1s for some source node s), has received a lot
of attention of researchers both in standard computation models as well as in distributed,
parallel, and streaming models of computation. For the standard RAM model, thanks to
sophisticated data structures, it has been known already for a longer time how to solve the
single source shortest path problem within (near-)optimal time complexity [FT87FT87; Tho99Tho99].
The picture for the PRAM model and also for distributed and streaming models of compu-
tation is different. Certainly, there have been advances in exact single-source shortest path
algorithms [Spe97Spe97; KS97KS97; Coh97Coh97; BTZ98BTZ98; SS99SS99; Cen+15Cen+15; Gal16Gal16; Elk17Elk17], and also in methods
that compute (1 + ε)-approximate solutions [Coh00Coh00; Mil+15Mil+15; HKN16HKN16; EN16EN16]. Nevertheless,
near-optimal bounds (up to log-factors) have not been known until the work that we report
on in this chapter. Our results and previous best results are summarized in Table 4.24.2.

Computation model Previous results Our results

Broadcast Congest (
√

n + D) · 2O(
√

log n log(ε−1 log n))

rounds [HKN16HKN16]
(
√

n + D)ε−2 polylog n
rounds

Broadcast Congested
Clique

2O(
√

log n log(ε−1 log n))

rounds [HKN16HKN16]
ε−2 polylog n rounds

Multipass
Streaming

(2 + ε−1)O(
√

log n log log n) passes
O(n log2 n) space [EN16EN16]

ε−2 polylog n passes
O(n log n) space

Table 4.2: Previous results and new results for single source shortest path in
different distributed and streaming models of computation. Here D denotes
the diameter of the graph.

Again, for the asymmetric variant, the bounds on the number of rounds and passes in-
clude an additional factor of λ2. We remark that in the Congest model and also in the more
restrictive Broadcast Congest model a lower bound ofΩ(

√
n/log n + D) is known [Sar+12Sar+12],

where D denotes the diameter of the input graph. Thus our result is the first to reach
this lower bound up to logarithmic factors. It is also worthwhile to note that the previous
fastest results for (1 + ε)-approximate single source shortest path in these models of compu-
tation [HKN16HKN16; EN16EN16] follow a similar framework based on sparse hop set. The recent lower
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bounds byAbboud et al. [ABP17ABP17] exclude the possibility of an approach based on this frame-
work that achieves near-optimality like ours does. Also in the Multipass Streaming model,
wematch a lower bound: By setting ε small enough,we can computedistancesup to thevalue
log n exactly in integer-weighted graphs using polylog n passes and O(n log n) space. Thus,
up to poly-logarithmic factors in n, our result matches the lower bound of n1+Ω(1/p)/poly p
space for all algorithms that decide in p passes if the distance between two fixed nodes in an
unweighted undirected graph is at most 2(p + 1) for any p � O(log n/log log n) [GO16GO16].

Structure of the Remainder of this Chapter. The rest of this chapter is structured as
follows: We introduce the gradient descent framework that achieves the above described
results in Section 4.24.2 and present how to implement this framework in the different models
of computation in Section 4.34.3. We conclude in Section 4.44.4.

4.2 Gradient Descent

Recall the asymmetric transshipment problem as defined in (1.11.1). Recall that we denoted
with A ∈ {−1, 0, 1}n×2m the node-arc-incidence matrix of the bidirected graph. As before,
we pick the orientation E→ such that w+ ≥ w− ≥ 111 and denote analogously to the node-arc
incidence matrix with A :� E→ ∪ −E→ the set of directed both forward and backward arcs,
andwith G↔ � (V,A) the bidirected graph corresponding to G � (V, E). Moreover, we define
λ :� max {w+

e /w−e : e ∈ E} ≥ 1 as the maximum ratio over all arcs between a forward and a
backward weight and let W � diag(w+ , w−) denote the 2m × 2m diagonal matrix containing
the forward and backward weights. Thus, (1.11.1) leads to the primal/dual problem pair

Pasym(G, w , b) : min{1TWx : Ax � b , x ≥ 0} � max{bT y : (W−1AT y)max ≤ 1}. (4.1)

Here, the dual program asks for potentials y such that for each arc (v , w) ∈ E, yv− yw ≤ wvw ,
maximizing bT y. In the special case of single source shortest path with source s ∈ V , we
have b � 1− n1s . An optimal primal solution x∗ is given by routing, for each s , v ∈ V , one
unit of flow along a shortest path from s to v, and optimal potentials y∗ are given by setting
y∗v to the distance from s to v.

4.2.1 Gradient Descent Overview

We will employ gradient descent on a suitable potential function to converge to a near-
optimal solution of the asymmetric transshipment problem. Our hope is to require few
(poly-logarithmically many) iterations of the gradient descent that allow for efficient imple-
mentation in the aforementioned distributed and streaming models of computation. Our
(unconstrained, adaptive step size, minimizing) gradient descent algorithmworks as follows:

1. Pick a differentiable convex potential function that reflects the objective well and does
not change too quickly.

2. Find a reasonable starting solution (a poor approximation typically suffices).

3. Proceed in iterations. In each iteration:
1Note that we can exclude 0 as an edge weight, since this is only a mild restriction: Given weights w, we can

always generate new weights w′ with w′e � 1 + dn/εe · we while preserving at least one of the shortest paths
between each pair of nodes as well as (1 + ε)-approximations. As we assume edge weights to be integer we can
assume that ε ≥ 1/(n‖w‖∞) (as otherwise it is required to compute an exact solution) and thus our asymptotic
running time bounds are not affected by this modification.
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(a) Determine the gradient of the potential function at the current solution and a
direction for the update in which the gradient indicates that the potential reduces
quickly.

(b) Choose a large step size, under the constraint that the gradient does not change
too much along the way, and update the solution according to direction and step
size.

(c) Check whether the solution is sufficiently close to the optimum. If yes, terminate
and return the current solution. Otherwise, proceed with the next iteration.

Since the primal and dual program in (4.14.1) both have constraints and we have to handle this
issue somehow (there are several ways of doing this), we rephrase the (dual) problem so that
it includes a single equality constraint.

This strategy requires to overcome a number of challenges, which we discuss before
proceeding to presenting the high-level algorithm. First, we show that a sparse spanner
gives rise to an efficient oracle yielding approximate solutions to transshipment problems in
Section 4.2.24.2.2. This oracle provides a sufficiently good starting solution and,more importantly,
is our tool for determining good update directions for the gradient descent steps. We then
proceed to rephrasing the problem and defining a suitable potential in Section 4.2.34.2.3. We also
analyze its gradient to establish the key properties needed for showing that the update steps
guarantee fast progress and, at termination, a close-to-optimal solution. In Section 4.2.44.2.4, we
state the pseudocode of the algorithm and prove its correctness and running time. As the
algorithm computes a dual solution only, we will then show how to also obtain a primal
solution from one additional call to the oracle, under the condition that the oracle is capable
of providing not only dual, but also primal solutions. The oracle that we will introduce in
Section 4.2.24.2.2 will meet this criterion.

4.2.2 An Efficient Oracle for O(log n)-approximate Solutions

We have mentioned that we need an oracle that provides approximate solutions to the trans-
shipment problem and variants of it, both for the initial solution as well as for determining
a good update direction. We introduce a specific implementation of such an oracle based on
sparse spanners in this section.

Definition 4.1 (Spanner). Given an undirected graph G � (V, E) with (symmetric) edge weights w
and α ≥ 1, an α-spanner of G is a subgraph (V, E′, w |E′), E′ ⊆ E, in which distances are at most by

factor α larger than in G.

In other words, a spanner removes edges from G while approximately preserving dis-
tances. It is well-known that for every undirected graph we can efficiently compute an
α-spanner of size O(n log n)with α � O(log n). We will discuss derandomized implementa-
tions of the Baswana-Sen spanner construction [BS07BS07] suitable for the computational models
under consideration in Section 4.34.3. In all considered models of computation, the sparse
representation of the approximate distance structure of the graph can be kept “available,”
i.e., in the Broadcast Congested Clique and Broadcast Congest models, we can make a
spanner globally known, and in the Multipass Streaming model we may keep a spanner in
memory, see Section 4.34.3.

Note that in the asymmetric case, anundirected α-spanner construction cannot bedirectly
applied to G. However, we can instead consider the symmetrized problem

Psym(G, w , b) : min{1TW−x : Ax � b , x ≥ 0} � max{bT y : (W−1
− AT y)max ≤ 1}, (4.2)

where W− � diag(w− , w−). Note that this is just the undirected transshipment problemwith
symmetric weights w−.



4.2. Gradient Descent 49

Observation 4.2. A feasible primal-dual pair x , y of Psym(G, w , b) is a feasible primal-dual pair of

Pasym(G, w , b), with 1TW−x ≤ 1TWx ≤ λ1TW−x, i.e., the primal objective increases by a factor

between 1 and λ and the dual objective value is the same.

We thus obtain the following lemma.

Lemma 4.3. Given an α-spanner S for the undirected graph G � (V, E) with weights w− and any

demand vector b̃ ∈ Rn
with b̃T1 � 0. Let x , y be an optimal primal-dual pair for Pasym(S, w , b̃).

Then x , α−1 y is a feasible primal-dual pair in Pasym(G, w , b̃) such that 1TWx ≤ αb̃T(α−1 y).
Proof. Observe that any feasible primal solution on the spanner S (padded with 0-entries for
edges not in S) is feasible to the asymmetric transshipment problem on G. We show that
α−1 y, whose objective is by factor α smaller than that of y, is a feasible dual solution for the
asymmetric transshipment problem on G. As the objectives of x and y on the spanner and
the padded x on G are identical, this proves the claim.

Let {v , w} � e ∈ E be arbitrary. By definition of a spanner, there must be a path pe of
weight

∑
e′∈pe w−e′ at most αwe in S. We have

(W−1
− AT y)e ≤

|yw − yv |
w−e

≤
∑
{v′,w′}∈pe |yw′ − yv′ |

w−e
�

∑
e′∈pe w−e′

|(AT y)e′ |
w−e′

w−e
≤

∑
e′∈pe w−e′

w−e
≤ α.

Thus, (W−1
− AT(α−1 y))max ≤ 1, i.e., α−1 y is feasible in G.

As mentioned before, we need to restrict our updates to maintain a certain constraint.
This constraint is that update steps must be orthogonal to b. Thus, for any demand vector b̃,
instead of (4.24.2), we will consider the primal/dual problem pair

Psym⊥(G, w , b̃) :
min{1TW−x : Ax + zb � b̃ , x ≥ 0}

� max{b̃T y : (W−1
− AT y)max ≤ 1 and bT y � 0},

(4.3)

where ⊥ symbolizes that orthogonality with respect to b is enforced in the dual. This
additional constraint is reflected in the primal by relaxing the equality constraints to Ax �

b̃ − zb, i.e., shifting the demands by an arbitrary multiple of b. Note that feasible primal
solutions of (4.34.3) on a spanner are still feasible on G (after padding), and scaling dual
solutions does not affect whether bT y � 0 or not. Hence the same arguments as before yield
that an α-approximate pair can be computed based on an α-spanner of G and an optimal
solution on it.

Corollary 4.4. Given an α-spanner S for G � (V, E) with weights w− and any demand vector

b̃ ∈ Rn
with b̃T1 � 0. Let x , y be an optimal primal-dual pair for Psym⊥(S, w , b̃). Then x , α−1 y is

a feasible primal-dual pair in Psym⊥(G, w , b̃) with 1TW−x ≤ αb̃T(α−1y).

4.2.3 Potential Function for the Gradient Descent

In what follows, we consider a fixed instance of the asymmetric transshipment problem, i.e.,
G, w and b are fixed, and denote by y∗ an optimal solution of the dual of Pasym(G, w , b),
i.e., bT y∗ � max{bT y : (W−1AT y)max ≤ 1}. We relate the dual program to another linear
program that normalizes the objective to 1 and seeks to minimize (W−1AT y)max instead:

Preci(G, w , b) : min{(W−1ATπ)max : bTπ � 1}. (4.4)

Let us denote by π∗ an optimal solution to Preci(G, w , b). There is a straightforward corre-
spondence between feasible solutions of the dual of Pasym(G, w , b) and feasible solutions of
Preci(G, w , b). This correspondence is captured by the following lemma.
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Lemma 4.5. 1. If π is feasible for Preci(G, w , b) and satisfies (W−1ATπ)max > 0, then f (π) :�
π/(W−1ATπ)max defines a feasible solution of the dual of Pasym(G, w , b). Feasible solutions

y of the dual of Pasym(G, w , b) that satisfy bT y > 0 are mapped to feasible solutions of

Preci(G, w , b) via g(y) :� y/bT y.

2. The map f (·) preserves the approximation ratio. Namely, for any γ ≥ 1, if π is a solution of

of Preci(G, w , b) within factor γ of the optimum, i.e., (W−1ATπ)max ≤ γ · (W−1ATπ∗)max,

then f (π) is feasible for the dual in of Pasym(G, w , b) and within factor γ of the optimum, i.e.,

bT f (π) ≥ γ−1bT y∗.

Proof. 1. Let π be feasible for Preci(G, w , b) , i.e., bTπ � 1, with (W−1ATπ)max > 0.
Then clearly (W−1AT f (π))max � (W−1AT π

(W−1ATπ)max
)max � 1 and thus f (π) is feasible

for the dual in Pasym(G,w , b). For the other direction, let y be feasible for the dual
in Pasym(G, w , b) , i.e., (W−1AT y)max ≤ 1, and let y satisfy bT y > 0. Then bT g(y) �
bT y

bT y � 1 and thus g(y) is feasible for Preci(G, w , b) .

2. Recall that b , 0 and bT1 � 0. As b/(W−1AT b)max is feasible for the dual in
Pasym(G, w , b) and bT b > 0, we have that bT y∗ > 0. Thus, y∗ , r · 1 for all r ∈
R, i.e., there are v , w ∈ V with y∗v , y∗w . As G is connected, this entails that
(W−1AT y∗)max > 0. Hence, g(y∗) is feasible for Preci(G, w , b) and has positive ob-
jective, i.e., (W−1AT g(y∗))max � (W−1AT y∗)max/bT y∗ > 0. In particular, we have that
(W−1ATπ∗)max > 0. Accordingly, if π is a γ-approximation of Preci(G,w , b) , then
(W−1ATπ)max > 0 and

bT f (π) � bTπ

(W−1ATπ)max
≥ 1
γ(W−1ATπ∗)max

≥ 1
γ(W−1AT g(y∗))max

�
bT y∗

γ(W−1AT y∗)max
≥

bT y∗

γ
.

In other words, it is sufficient to determine a (1 + ε)-approximation to Preci(G,w , b)
in order to obtain a (1 + ε)-approximation to the dual in Pasym(G, w , b). We have now
translated the dual maximization problem of Pasym(G, w , b) in (4.14.1), which has inequality
constraints, into a minimization problem with a single equality constraint bTπ � 0. This
would enable us to employ projected gradient descent in the bTπ � 0 plane, if it was not
for the fact that the objective (W−1ATπ)max is not differentiable. To overcome this issue, we
use the standard approach of “smoothing” the gradient by approximating the objective by a
differentiable function. For the maximum value of a vector, a suitable candidate is given by
the log-sum-exponent (or softmax) function. For vectors v ∈ Rd , it is defined as

lseβ (v) :� 1
β

ln ©­«
∑
i∈[d]

eβviª®¬ ,
where the parameter β > 0 determines the trade-off between accuracy of approximation and
“smoothness”. More precisely, observe that

(v)max ≤ lseβ (v) ≤
1
β

ln ©­«
∑
i∈[d]

eβ(v)maxª®¬ �
1
β

ln
(
deβ(v)max

)
� (v)max +

ln d
β
, (4.5)

because both ln and e are increasing. Thus for β → ∞, the approximation error tends to
zero. Furthermore, the 1-norm of the gradient ∇ lseβ (·) is β-Lipschitz continuous w.r.t. the
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∞-norm (see, e.g., [She13She13]), i.e.,

∀z , z′ ∈ Rd : ‖∇ lseβ (z) − ∇ lseβ (z′) ‖1 ≤ β‖z − z′‖∞. (4.6)

Recall that our goal is to find π ∈ Rn that is a (1+ε)-approximate feasible solution to (4.44.4).
Accordingly, we define the potential function

Φβ(π) :� lseβ
(
W−1ATπ

)
.

Note that Φβ(·) is convex for any β, as it is constructed by composing lseβ (·), which is convex
for any β with linear functions. We will vary β over the course of the algorithm to balance
the requirement of a sufficiently accurate approximation of (W−1ATπ)max with the need for
small β, i.e., a smooth gradient.

Concerning the approximation guarantee, our target of a (1 + ε)-approximation entails
that the potential must be a more accurate approximation to the objective. Accordingly, we
will ensure that

Φβ(π) ≤
(
1 +

ε
4

)
(W−1ATπ)max. (4.7)

This follows directly by (4.54.5) and 4 ln(2m) ≤ εβ(W−1ATπ)max, which will be an invariant in
the algorithm. For later use, we also record another property this approximation guarantee
entails. As Φβ(·) is convex, it follows that

πT∇Φβ(π) ≥ Φβ(π) −Φβ(0) � Φβ(π) −
ln(2m)
β

>
(
1 − ε

4

)
Φβ(π). (4.8)

To understand the effect of β on the progress of the gradient descent, we examine the
gradient of the potential function. As W−1 and AT are linear functions,

∇Φβ(π) � AW−1∇ lseβ
(
W−1ATπ

)
. (4.9)

We can now show the following lemma. Recall that W− � diag(w− , w−).

Lemma 4.6. For all π, h ∈ Rn
it holds that |∇Φβ(π)T h − ∇Φβ(π − h)T h | ≤ β(W−1

− AT h)2max.

Proof. The proof is an easy calculation that uses Hölder’s inequality22 and the Lipschitz
continuity of the gradient from (4.64.6):��∇Φβ(π)T h − ∇Φβ(π − h)T h

�� (4.94.9)�

��� (∇ lseβ
(
W−1ATπ

)
− ∇ lseβ

(
W−1AT(π − h)

) )T
W−1AT h

���
≤



∇ lseβ
(
W−1ATπ

)
− ∇ lseβ

(
W−1AT(π − h)

)


1



W−1AT h



∞

(4.64.6)
≤ β‖W−1AT h‖2∞ � (W−1

− AT h)2max ,

where the last step uses that w+
e ≥ w−e for all e ∈ E.

Intuitively, we decomposed the gradient into the β-Lipschitz continuous part given by
the lseβ (·) function and the derivative AW−1 of the “inner” function. This means that the
“length” of an update step h will be measured in terms of (W−1

− AT h)max. Using this bound,
for a given step direction h we can now determine the step size that maximizes the progress
in direction of h as a function of ∇Φβ(π).

2It holds that |zT z′ | ≤ ‖z‖p + ‖z′‖q for any p , q ≥ 1 satisfying p−1 + q−1 � 1 (where∞−1 � 0).
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Lemma 4.7 (Additive Decrement of Φβ). Suppose π, h ∈ Rn
satisfy ∇Φβ(π)T h > 0 and

(W−1
− AT h)max ≤ 1. Then, for δ :� ∇Φβ(π)T h it holds that

Φβ

(
π − δh

2β

)
≤ Φβ(π) −

δ2

4β
.

Proof. Let us denote h̃ :� δh
2β . The proof again uses thatΦβ(·) is convex and applies Lemma4.64.6:

Φβ(π − h̃) −Φβ(π) ≤ −∇Φβ
(
π − h̃

)T h̃ + ∇Φβ(π)T h̃ − ∇Φβ(π)T h̃

≤ β(W−1
− AT h̃)2max − ∇Φβ(π)T h̃ �

δ2(W−1
− AT h)2max

4β
− δ

2

2β
≤ − δ

2

4β
.

As this lemma shows, we make β small in order to ensure large progress. However,
progress with respect to Φβ(·) is meaningless if it does not provide a sufficiently accurate
approximationof the true objective (W−1

− AT(·))max, sowewill increase β onlywhen it becomes
necessary to ensure (4.74.7). Upper bounding β turns the additive guarantee into a relative one.

Corollary 4.8 (Multiplicative Decrement of Φβ). Suppose π, h ∈ Rn
satisfy ∇Φβ(π)T h > 0,

(W−1
− AT h)max ≤ 1, and εβΦβ(π) ≤ 10 ln(2m). Then, for δ :� ∇Φβ(π)T h it holds that

Φβ

(
π − δh

2β

)
≤

(
1 − εδ2

40 ln(2m)

)
Φβ(π).

4.2.4 Generic Algorithm

We now present the pseudocode of the generic gradient descent algorithm for a (1 + ε)-
approximate solution to the dual of Pasym(G, w , b) in (4.14.1). As mentioned before, the algo-
rithm actually computes a (1 + ε)-approximate solution π to Preci(G,w , b) in (4.44.4) and then
returns π/(W−1ATπ)max. The algorithm is generic in the sense that the performed compu-
tations need to be implemented in model-specific ways, which is discussed in Section 4.34.3.

Algorithm 4.1: GradientTransship (G, b , ε)
1 compute (αλ)-approximation π to (4.44.4) // use oracle, Obs. 4.24.2, and Lemma 4.54.5
2 set ε′ :� 1
3 repeat
4 set ε′← ε′

2
5 set β :� 8 ln(2m)

ε′(W−1ATπ)max

6 repeat
7 compute α-approximate solution h to

max
{
∇Φβ(π)T h̃ : (W−1

− AT h̃)max ≤ 1 and bT h̃ � 0
}
.

// use oracle with weights w− and demands b̃ � ∇Φβ(π) (Cor. 4.44.4)
8 set δ :� ∇Φβ(π)T h
9 if δ > ε′

8αλ then π← π − δh
2β

10 while β < 4 ln(2m)
ε′(W−1ATπ)max

do β← 2β // happens only when ε′ � 1
2

11 until δ ≤ ε′
8αλ // current π is a (1 + ε′)-approximate solution

12 until ε′ ≤ ε
13 return π/(W−1ATπ)max // Lemma 4.54.5
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The pseudo-code is given in Algorithm 4.14.1. The algorithm first computes a starting
solution. This can be done by calling the oracle on the symmetrized problem (4.24.2), which
by Observation 4.24.2 yields an (αλ)-approximation to (4.14.1), and then rescaling according to
Lemma 4.54.5. As trying to enforce a too precise approximation initially slows down progress,
the algorithm initializes ε′ as a constant (the choice of 1 is, neglecting technicalities, arbitrary).
Then it starts an outer loop decreasing ε′ exponentially. It sets β to a suitable value and then
starts the inner loop, which performs gradient descent steps until the step size becomes too
small to ensure fast progress, i.e., δ ≤ ε′

8αλ2 . As in the first iteration of the outer loop, the
potential may decrease dramatically (we go from an α-approximation to a 1

2 -approximation),
Line 1010 adjusts β if necessary. As we will show, this implies that at termination of the inner
loop, the current solution is a (1 + ε′)-approximation.

Each gradient descent step consists of the following steps:

1. Compute ∇Φβ(π).

2. Compute an α-approximate solution h to

max
{
∇Φβ(π)T h̃ : (W−1

− AT h̃)max ≤ 1 and bT h̃ � 0
}
,

i.e., of (4.34.3)with demands∇Φβ(π). This is done by calling the oracle (for the constrained
problem). This optimization problem maximizes the rate of progress “in units of
(W−1
− AT h̃)max,” which in turn determines the step size, see Corollary 4.84.8.

3. Determine the step size in accordance with Corollary 4.84.8 and check whether δ is small
enough to prove that the current π is a (1 + ε′)-approximation. If yes, the inner loop
terminates; if not, the step is executed.

4. Scale up β if it became too small.

Returning a primal solution. As given, the algorithm relies on a dual oracle only and also
returns only a dual solution. For a primal solution, we require the oracle to provide an
α-approximate primal-dual pair to the constrained problem (4.34.3) (with demands ∇Φβ(π)).33
Denote by π the dual solution that yields the output π/(W−1ATπ)max of Algorithm 4.14.1.

Observation 4.9. The vector x̃ � W−1∇ lseβ
(
W−1ATπ

)
satisfies

x̃ ≥ 0, Ax̃ � ∇Φβ(π), and 1TWx̃ � 1. (4.10)

Proof. By (4.94.9), Ax̃ � ∇Φβ(π). For the other two properties, we let v � W−1ATπ and observe
that for any a ∈ A, it holds that

x̃a �
1

wa
∇ lseβ (v)a �

1
βwa

βeβva∑
a∈A eβva

> 0 and 1TWx̃ �
1
β

∑
a∈A

βeβva∑
a∈A eβva

� 1.

Conveniently, this x̃ is a complimentary byproduct of evaluating ∇Φβ(π) in the last
iteration of the algorithm, by storing the intermediate result before the final multiplication
with A, see (4.94.9). Recall that in its final iteration, the algorithm computes an α-approximate
dual solution h to Psym⊥(G, w ,∇Φβ(π)), see (4.34.3), where π is such that π/(W−1ATπ)max is
the return value of the algorithm. I.e., h is an α-approximate dual solution to the program

min{1TW− f̃ : A f̃ + zb � ∇Φβ(π), f̃ ≥ 0}
� max{∇Φβ(π)T h̃ : (W−1

− AT h̃)max ≤ 1 and bT y � 0},

3Actually, the primal solution is exclusively required on termination to generate a primal solution to (4.14.1).
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where we use f̃ and h̃ to denote the variables for the sake of distinction from the original
problem. An x̃ as above is useful for constructing a primal solution, as we can use it to cancel
out the demands in the primal program and then rescale according to z.

Observation 4.10. For any given β ∈ R>0, π ∈ Rn
with bTπ � 1, primal solution ( f , z) ∈ R2m

≥0 ×R
to Psym⊥(G, w ,∇Φβ(π)) satisfying z > 0, and x̃ ∈ R2m

satisfying (4.104.10), write f � [ f −

f + ] with f +

and f − being of dimension m, respectively. Then a primal solution to Pasym(G, w , b), see (4.14.1), is
given by x :� (x̃ + [ f −

f + ])/z.

Proof. Note that we will see in the proof of Lemma 4.114.11 that z > 0 holds for any feasible
primal solution of Psym⊥(G, w ,∇Φβ(π)). Thus all of x̃, f , and z are non-negative, and the
same follows for x. It holds that Ax � b, since A[ f −

f + ] � −A f � −∇Φβ(π) + zb, as for each
e ∈ E we have a forward and a backward arc.

The intuition regardingwhy this should be a “good” primal solution to (4.14.1) is as follows.
Any π′ minimizing Φβ(·) must satisfy that ∇Φβ(π′)T h � 0 for any h with bT h � 0. Thus,
∇Φβ(π′) is parallel to b. For a near-optimal solution π we have that ∇Φβ(π) is almost parallel
to b, as the gradient restricted to the hT b � 0 plane is small. Accordingly, the “cost” of the
correction, given by 1TW f (which relates to 1TW− f ), is small. The role of the scaling factor
z is to undo the normalization of (4.14.1) we performed by transitioning to problem (4.44.4).

Proof of correctness. We show the approximation guarantee of the algorithm by argu-
ing that for any x̃ satisfying (4.104.10) and ( f , z), h as above, the pair (x , y), where y :�
π/(W−1ATπ)max is the return value of the algorithm, is a (1 + ε)-approximate pair, i.e.,
1TWx ≤ (1+ ε)bT y. In particular, both x and y are (1+ ε)-approximate solutions. We stress,
however, that Algorithm 4.14.1 does not need to compute ( f , z); we merely exploit its existence
for proving the approximation guarantee. The advantage of this approach is that we also
learn that the above recipe for constructing a primal solution works. Thus, to determine a
primal solution in case this is required, all we need is that the oracle indeed can provide
such an ( f , z). Note that, by Corollary 4.44.4, the oracle we use throughout this work has this
capability.

Lemma 4.11 (Correctness of Algorithm 4.14.1). Let 0 < ε ≤ 1,

• π ∈ Rn
be such that y :� π/(W−1ATπ)max is the return value of Algorithm 4.14.1,

• ( f , z) ∈ R2m
≥0 × R and h ∈ Rn

be an α-approximate pair for Psym⊥(G, w ,∇Φβ(π)), where β is
the value of β in the algorithm at termination,

• x̃ ∈ R2m
≥0 satisfying (4.104.10), and

• x :� (x̃ + [ f −

f + ])/z.

Then (x , y) is a (1 + ε)-approximate pair for Pasym(G, w , b), i.e., it holds that Ax � b, x ≥ 0,
(W−1AT y)max ≤ 1, and 1TWx ≤ (1 + ε)bT y.

Proof. Due to termination of the algorithm, we have that ε′ ≤ ε and δ ≤ ε
8αλ , yielding that

∇Φβ(π)T h ≤ ε
8αλ

≤ ε
8α
. (4.11)
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Note that, as f ≥ 0, ‖W− f ‖1 � 1TW− f . As A f + zb � ∇Φβ(π), we get zπT b � πT∇Φβ(π) −
πTA f and since bTπ � 1, it holds that

z � πT∇Φβ(π) − πTA f
(4.84.8)
≥

(
1 − ε

4

)
Φβ(π) − πTAW−1

− W− f

(4.54.5)
≥

(
1 − ε

4

)
(W−1
− ATπ)max − (W−1

− ATπ)TW f

Using Hölder’s inequality and ‖W−1
− ATπ‖∞ � (W−1

− ATπ)max, we get

z ≥
(
1 − ε

4

)
(W−1
− ATπ)max − ‖W−1

− ATπ‖∞‖W− f ‖1

�

(
1 − ε

4
− 1TW− f

)
(W−1
− ATπ)max

Since ( f , z), h is an α-approximate pair, it holds that 1TW− f ≤ α∇Φβ(π)T h. Together
with (4.114.11), this leads

z ≥
(
1 − ε

4
− α∇Φβ(π)T h

)
(W−1
− ATπ)max ≥

(
1 − 3ε

8

)
(W−1
− ATπ)max. (4.12)

In particular, z > 0 and, by Observation 4.104.10 and Lemma 4.54.5, x and y are indeed feasible
primal and dual solutions of Pasym(G, w , b), respectively.

It remains to showthat1TWx ≤ (1+ε)bT y. Wefirst observe that1TW[ f −

f + ] ≤ λ1TW−[ f −

f + ] �
λ1TW− f ≤ λα∇Φβ(π)T h, where the last inequality holds again since ( f , z), h is an α-
approximate pair. Together with 1TWx̃ ≤ 1 +

ε
8 by assumption this gives

1TWx ≤
1 +

ε
8 + λα∇Φβ(π)T h

z

(4.114.11)
≤

1 +
ε
4

z

(4.124.12)
≤

1 +
ε
4(

1 − 3ε
8
)
(W−1− ATπ)max

ε≤1
≤ 1 + ε

(W−1− ATπ)max

� (1 + ε)bT y.

Corollary 4.12. Suppose 0 < ε ≤ 1. Whenever the inner loop of Algorithm 4.14.1 terminates, the

current π is a (1 + ε′)-approximate dual solution to (4.14.1).

Proof. If we ran the algorithm for ε � ε′, it would perform exactly the same computations up
to that point and then terminate. Noting that anoptimal primal solution ( f , z) for theproblem
posed to the oracle in the last iteration and, by Observation 4.104.10, x̃ � W−1∇ lseβ

(
W−1ATπ

)
satisfy the preconditions of Lemma 4.114.11, the claim follows.

Bounding the number of iterations. We now examine howmany iterations Algorithm 4.14.1
requires to terminate. This reduces the task of bounding the overall running time to de-
termining the cost of implementing a single iteration, which depends on the specific model
of computation. To this end, we first prove a helper statement showing that the algorithm
maintains suitable values of β, and how adjusting β affects Φβ(π).
Lemma 4.13. Except immediately after updates of ε′ or π (i.e., before adjusting β in the subsequent

lines), Algorithm GradientTransship maintains the invariant that

4 ln(2m) ≤ ε′β(W−1ATπ)max ≤ ε′βΦβ(π) ≤ 10 ln(2m).

In particular, Φβ(π) ≤ (1 +
ε′
4 )(W−1ATπ)max.

Proof. First, observe that 4 ln(2m) ≤ ε′β(W−1ATπ)max follows immediately from Lines 55 and
1010. By (4.54.5), this implies (4.74.7), i.e., the last statement of the lemma. As (W−1ATπ)max ≤ Φβ(π)
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for any β, it remains to show that ε′βΦβ(π) ≤ 10 ln(2m). Note that ε′β(W−1ATπ)max ≤
8 ln(2m) implies that

ε′βΦβ(π) ≤ ε′β
(
1 +

ε′

4

)
(W−1ATπ)max

ε′≤1
≤ 10 ln(2m).

Thus, the statement always holds after executing Line 55 or adjusting β according to Line 1010.
This leaves only the possibility that updates of π cause a violation while β is not adjusted.
However, Lemma 4.74.7 shows that updates of π may only decrease the potential, completing
the proof.

Lemma 4.14 (Number of iterations of Algorithm 4.14.1). Suppose that 0 < ε ≤ 1. Then Algorithm

GradientTransship performs O((ε−2 + log α + log λ)α2λ2 log n) iterations of its inner loop.

Proof. Denote by π(i) and βi , 0 ≤ i ≤ imax :� dlog ε−1e, the values of π and β at the beginning
the (i+1)-st iterationof the outer loop,whereπ(imax) and βimax denote the values at termination.
Refer to the i-th iteration as phase i and denote by εi � 2−i the value of ε′ during this loop
iteration.

Lemma 4.134.13 shows that the preconditions of Corollary 4.84.8 are satisfied by each update
of π. As δ ≤ εi

8λα implies termination of the inner loop, as long as the inner loop does not
terminate, the corollary shows that the potential decreases by a factor of at least(

1 − εiδ2

40 ln(2m)

)
≤

(
1 −

ε3
i

2560α2λ2 ln(2m)

)
�: qi .

However, when doubling β in Line 1010, the potential might increase. As, after Line 1010we have
that Φβ(π) ≤ (1 +

εi
4 )(W−1ATπ)max again by Lemma 4.134.13 and since, for any β, it holds that

Φβ(π) ≥ (W−1ATπ)max, the increase in potential due to an update of β according to Line 1010
is multiplicatively bounded by 1 +

εi
4 . Observe that β can be doubled no more than

ti :� log
(
(W−1ATπ(i−1))max

(W−1ATπ(i))max

)
≤ log

(
(W−1ATπ(i−1))max

(W−1ATπ∗)max

)
times in phase i. First, note that for i � 1, as π(0) is an (αλ)-approximation, we have
that t1 ≤ log(αλ). For all i > 1, by Corollary 4.124.12, we have that (W−1ATπ(i−1))max ≤
(1 + εi−1)(W−1ATπ∗)max < 2(W−1ATπ∗)max and thus ti < 1, hence ti � 0.44

Denote by β′i the value of β when the inner loop terminates at the end of phase i and by
ki the number of iterations in this phase. Using that Φβi−1(π(i−1)) ≤ (1 +

εi
4 )(W−1ATπ(i−1))max

by Lemma 4.134.13, we can bound

(W−1ATπ∗)max ≤ (W−1ATπ(i))max ≤ Φβ′i (π
(i)) ≤ qki

i

(
1 +

εi

4

) ti
Φβi−1(π(i−1))

≤ qki
i

(
1 +

εi

4

) ti+1
(W−1ATπ(i−1))max.

Now, we distinguish cases. First consider the case i � 1. Then (W−1ATπ(i−1))max �

(W−1ATπ(0))max ≤ αλ(W−1ATπ∗)max. Moreover, using that t1 ≤ log(αλ), we conclude that(
1 +

ε1
4
) t1+1 ≤ 2t1+1 ≤ 2αλ. Thus

(W−1ATπ∗)max < qki
i (W

−1ATπ∗)max · 2α2λ2

4This qualifies the comment in Line 1010 of the algorithm.
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and rearranging and taking the logarithm yields k1 ≤ log(2α2λ2)/log q−1
1 � O(α2λ2 log n ·

log(αλ)). In the other case, where i > 1, it holds that π(i−1) was already an εi−1-approximate
solution, thus (W−1ATπ(i−1))max ≤ (1 + εi−1)(W−1ATπ∗)max and ti � 0. Hence in this case

(W−1ATπ∗)max ≤ qki
i

(
1 +

εi

4

)
(1 + εi−1)(W−1ATπ∗)max < qki

i (W
−1ATπ∗)max · (1 + 3εi),

where the last inequality uses that εi � εi−1/2. Rearranging and taking the logarithm yields
ki <

log(1+εi)
− log qi

� O
(
ε−2

i α2λ2 ln(2m)
)
. Summing over all phases i, the total number of iterations

is bounded by

imax∑
i�1

ki � O
( [

log(αλ) +
imax∑
i�2

ε−2
i

]
α2λ2 log(n)

)
� O

( [
ε−2

+ log α + log λ
]
α2λ2 log(n)

)
.

The bound on the number of iterations of the algorithm readily translates to one on the
specific operations the algorithm performs.

Corollary 4.15. Algorithm GradientTransship can be executed using a total of O((ε−2 + log α +

log λ)α2λ2 log n) operations of the following types:

• oracle call

• computation of (W−1ATπ)max for a given π

• computation of ∇Φβ(π) for given β and π

• scalar product b̃T h for given b̃ and h

• comparisons of and multiplications with scalar values

We summarize the results of this section in the following theorem.

Theorem 4.16. Given an oracle that computes α-approximate dual solutions to (4.34.3), Algorithm
GradientTransship computes a (1+ ε)-approximate dual solution to the asymmetric transshipment

problem (4.14.1) calling the oracle O((ε−2 + log α + log λ)α2λ2 log n) times.

If, on termination of the algorithm, the oracle provides an α-approximate primal-dual pair of

solutions to (4.34.3), the algorithm can compute a (1 + ε)-approximate primal-dual pair of solutions to

(4.14.1) with the same number of oracle calls.

4.2.5 Single-Source Shortest Paths

In the special case of single-source shortest path, the main theorem of the previous section
unfortunately does not provide a satisfactory result. Namely, a (1 + ε)-approximate primal-
dual pair neither provides, for every node, a distance estimate within a factor of 1 + ε, nor
a path from that node to the source that is within factor 1 + ε of the shortest path. What it
does provide is only distance estimates that are good on average as bT y is equal to the sum
of all distance estimates (can be seen by shifting y such that ys � 0 for the source node s). In
this section, our goal is to give a method that delivers both the above mentioned guarantees,
namely, we are going to show how to compute a tree T such that the path along the tree from
any node to the source is a (1 + ε)-approximate shortest path. Moreover, the length of that
path also constitutes a (1 + ε)-approximation to the distance of the node to the source.

We start with a well-known structural result: For any transshipment problem, there is
always an optimal primal solution whose edges with non-zero flow form a forest. This is
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a well-known result of the structure of linear programs, see for example [AMO93AMO93, Theo-
rem 11.1] for the case of the min-cost flow problem. For completeness, we directly prove the
statement here.

Lemma 4.17. The problem Pasym(G, w , b), see (4.14.1), has an optimal primal solution that sends flow

only along the arcs of a forest.

Proof. Suppose x ∈ R2m is an optimal primal solution and let C be any cycle such that for
each a ∈ C, xa , 0. Consistently direct C. Let f ∈ R2m (not necessarily satisfying f ≥ 0)
send min{xa : a ∈ C} units of flow in positive direction around C, so that fa , 0 implies
xa , 0. By construction, both x − f ≥ 0 and x + f ≥ 0 and, as C is a cycle, A f � 0, i.e.,
A(x − f ) � A(x + f ) � Ax � b. Thus, both x − f and x + f are feasible. Note that x − f
or x + f satisfies that there is an arc less on C carrying flow; assume w.l.o.g. it is x − f .
We claim that 1TW(x − f ) � 1TWx. Assuming for contradiction that this is false, either
1TW(x − f ) � 1TWx − 1TW f < 1TWx or 1TW(x + f ) < 1TWx, i.e., either x − f or x + f
has smaller objective than x, contradicting its optimality. We conclude that x − f is also an
optimal solution. The claim now follows by inductively repeating the argument until no
cycles remain.

Our approach to compute the tree solution is based on a simple sampling procedure
using Algorithm 4.14.1 as a subroutine. The idea, which relies on our specific choice of a
spanner-based oracle, is as follows:

1. Run Algorithm 4.14.1 for ε′ :� ε
6 and denote by x the returned primal solution.

2. For each node v ∈ V , partition its incoming arcs a ∈ δin
G (v) with xa > 0 into classes

in which arc weights differ by a factor of at most 2.55 For an ingoing arc a, denoting
by fa the sum of flows of arcs in the class of a, sample a with probability (roughly)
min{(2λα + 1)xa/ fa , 1}.

3. We show that an optimal solution using only sampled and spanner arcs is a (1 + 2ε′)-
approximation with probability at least 2/3, and that we can bound the number of arcs
sampled by the procedure by O(αλn log n)with probability at least 2/3.

4. We abort the procedure if more arcs are selected. Otherwise, we compute and return
an optimum tree solution on the selected arc set. By the union bound, we thus obtain
a (1 + ε)-approximation using only the spanner arcs and O(αλn log n) sampled arcs
with probability at least 1

3 .

5. To obtain a Las Vegas algorithm, we simply repeat the procedure until a good solution
is obtained; this can be checked by comparing the objective value of the obtained tree
solution to the one of the dual solution returned by Algorithm 4.14.1.

The second last step exploits that in the computational models that are considered in this
chapter for the single source shortest path problem, operations on a sparse graph are cheap;
thus, we can compute an optimal tree solution on this set of arcs being of nearly linear size.
Note that thus this strategy is tied to using an oracle based on a sparse graph.

In order to prove the correctness of the above procedure, we decompose x �: x 6◦ +
x◦, where the arcs with non-zero flow in x 6◦ form a directed acyclic graph (DAG). Such a
decomposition is always feasible, which again is a standard property whose proof we give
for completeness. Note that it resembles the proof of Lemma 4.174.17.

5Note that it is straightforward to ensure that there are only O(log n) classes. We will get back to this at the
end of this section.
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Lemma 4.18. Any primal solution x ∈ R2m
≥0 to Pasym(G,w , b) can be decomposed into a feasible

solution x 6◦ inducing a DAG and x◦ ≥ 0 satisfying Ax◦ � 0.

Proof. Let C be any consistently oriented cycle so that for each arc a ∈ C, xa > 0 (if no such C
exists, x 6◦ :� x and x◦ � 0 meet the claim of the lemma). Let f ∈ R2m denote the flow that
sends min{xa : a ∈ C} units of flow in positive direction “around” C. By construction both
f and x − f are feasible, and x − f has one arc less carrying non-zero flow, namely the arc
corresponding to the minimizer in the definition of f . The claim now follows by inductively
repeating the argument until no directed cycles remain. The value of x◦ is the sum of the
flows f from the individual steps.

We would like to sample from x 6◦, but have to face the “disturbance” by x◦. We will
exploit that the flow x◦ is “cheap” to bound its effect on the sampled solution. Let us fix
the following notation. Again, let x ∈ R2m be the primal solution for Pasym(G, w , b) returned
by Algorithm 4.14.1 when called with accuracy parameter ε′ :� ε/6. Decompose x �: x 6◦ + x◦

according to Lemma 4.184.18 and define b 6◦v :� x 6◦(δin
G (v)).

Lemma 4.19. Suppose that bv ≥ 0 for all v ∈ V \ {s}. Let each v ∈ V with b 6◦v > 0 sample one edge,

where the probability to choose arc a ∈ δin
G (v) is x 6◦a/b 6◦v . Then the resulting arc set is a directed tree T

rooted at the source s spanning all nodes with non-zero demand. Moreover, denoting by xT ∈ R2m
the

(unique) flow with AxT � b and xT a � 0 for any arc a ∈ A \ T, it holds that E[1TWxT] � 1TWx 6◦.

Proof. Recall that Ax 6◦ � b. As bv ≥ 0 for all v ∈ V \ {s}, any such v that has an outgoing
arc a ∈ δout

G (v) carrying non-zero flow x 6◦a > 0 or that satisfies bv > 0 must have an incoming
arc a′ ∈ δin

G (v) carrying non-zero flow x 6◦a′ > 0. Thus, we can inductively construct a directed
path ending at any such node by following the incoming arc of the (current) first node of the
path, until this first node is s. Note that it is not possible that we close a directed cycle, as
x 6◦ induces a DAG by construction, see Lemma 4.184.18. Hence, the sampled graph is a DAG in
which each node that sampled an arc is reachable from s and as each node sampled at most
one incoming arc, it is moreover a tree T rooted at s. As we observed that each v with bv > 0
has an incoming edge carrying non-zero flow, each such v sampled an edge, implying that T
spans the nodes of non-zero demand. Accordingly, there exists a unique flow xT on T such
that AxT � b holds.

It remains to show that E[1TWxT] � 1TWx 6◦. We show this by induction on n, where the
base case of n � 1 is trivial. Assuming the claim is true for n nodes, consider n + 1 nodes
and let v be a node so that x 6◦a � 0 for all a ∈ δout(v). Such a node must exist, as x 6◦ induces a
DAG. If bv � 0, then b 6◦v � bv � 0 and the claim is trivially true, so suppose b 6◦v � bv > 0. We
interpret the random choice of v as follows: v picks an in-going arc a � (w , v) and we route
bv units of flow from w to v, changing demands b to b′ accordingly, i.e., b′v :� bv − bv � 0,
b′w � bw + bv . In expectation, this induces cost

C :�
∑

a∈δin(v)
wa bv ·

x 6◦a
b 6◦v

b 6◦v�bv
�

∑
a∈δin(v)

wa x 6◦a .

For all w for which there is a � (w , v) ∈ δin(v)with xa > 0, the modified demands b′ satisfy

1. E[b′w] � bw +
x 6◦(w ,v)

b 6◦v
· bv � bw + x 6◦(w ,v), where the equality follow from b 6◦v � bv ,

2. b′v � 0,

3. b′u � bu at all other nodes u that are not adjacent to v.
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Recall that for independent random variables X and Y, it holds that E[X · Y] � E[X]E[Y].
As the random variable b′ does not depend on the random choices of any nodes but v, it
is independent of the tree T′ sampled by the node set V \ {v}. Denoting by Xw the cost of
routing one unit of flow from s to w ∈ T \ {v , s} on T′, by linearity of expectation we thus
obtain

E
[
1TWxT

]
� C + E

[ ∑
w∈T\{v ,s}

b′wXw

]
� C +

∑
w∈T\{v ,s}

E[b′wXw] � C +

∑
w∈T\{v ,s}

E[b′w]E[Xw].

Examining the sum in the final term, observe that when deleting v from the graph, the
respective restriction of x 6◦ routes exactly demands E[b′w] ≥ bw ≥ 0 from s to each w ∈
V \ {v , s}. Thus, induction hypothesis and linearity of expectation complete the proof∑

w∈T\{v ,s}
E [b′w]E [Xw] � 1TWx 6◦ −

∑
a∈δin(v)

wa x 6◦a � 1TWx 6◦ − C.

Our goal is now to apply Lemma 4.194.19 followed by Markov’s bound in order to show
that sampling edges is sufficient for obtaining a good tree solution. Unfortunately, the
decomposition x � x 6◦ + x◦ is unknown, and Lemma 4.194.19 critically depends on the fact that
x 6◦ is acyclic. A naive solution would be to sample sufficiently often according to x so that
each arc has at least the same probability to be sampled when sampling from the “correct”
distributiongivenby x 6◦. Unfortunately, it is possible that anarc a satisfies x 6◦a � x◦a , conflicting
with the requirement of sampling few arcs. We overcome this obstacle by replacing such
“bad” arc by a corresponding path in the spanner. We first make this notation formal.

Definition 4.20. Denote wmin :� min{wa : a ∈ A} and partition A into sets Av ,k :� {a ∈ δin(v) :
2k−1wmin ≤ wa < 2k wmin and xa > 0}, where v ∈ V and k ∈ Z>0. The set Av ,k , ∅ is called bad,
if 2αλ

∑
a∈Av ,k

x 6◦a ≤
∑

a∈Av ,k
x◦a . We say that a ∈ A is bad if the set Av ,k containing a is bad.

We show that redirecting flow on bad arcs over the spanner only incurs small cost:

Lemma 4.21. Redirecting the flow x 6◦a of each bad arc a � (v , w) over a shortest v-w path on an

(undirected) α-spanner for the graph with weights w− incurs an additional cost of at most ε′1TWx∗.

Proof. As the maximum ratio between the weights of an edge in opposing directions is λ, an
undirected α-spanner for weights w− clearly allows, for any a � (v , w) ∈ A, to find a directed
path of length at most αλwa from v to w. The cost for rerouting the flow on bad edges over
the spanner is thus bounded by∑

badAv ,k

∑
a∈Av ,k

αλwa x 6◦a <
∑

badAv ,k

2kαλwmin
∑

a∈Av ,k

x 6◦a ≤
∑

badAv ,k

2k−1wmin
∑

a∈Av ,k

x◦a

≤
∑

badAv ,k

∑
a∈Av ,k

wa x◦a ≤ 1TWx◦.

Furthermore, since x is (1 + ε)-approximate and 1TWx 6◦ ≥ 1TWx∗ by optimality of x∗,

1TWx◦ � 1TWx − 1TWx 6◦ ≤ (1 + ε′)1TWx∗ − 1TWx∗ � ε′1TWx∗.

Wenoware ready to show that sampling sufficientlymany arcs according to x and adding
the spanner is, in expectation, almost as good as directly sampling according to x 6◦.
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Lemma 4.22. Suppose that bv ≥ 0 for all v ∈ V \ {s}. For each set Av ,k , ∅, sample arc a ∈ Av ,k
with independent probability

pa :� min
{
(2αλ + 1)xa∑

a′∈Av ,k
xa′

, 1
}
,

and repeat this procedure until at least one arc from Av ,k is selected. Add an arbitrary such arc, and

add all spanner arcs. Then the expected cost of an optimal solution on the induced graph is bounded

by (1 + 2ε′)1TWx∗.

Proof. By Lemma 4.194.19, sampling arc a ∈ δin(v) with probability x 6◦a/b 6◦v at v ∈ V with b 6◦v > 0
results in a flow xT on a tree of expected cost at most 1TWx 6◦. Observe that if the probability
to select a ∈ δin(v) is at least as large (and we are guaranteed to select at least one arc from
δin(v) for each v ∈ V), the expected cost can only become smaller. Consider an arc a ∈ Av ,k
with pa < 1 that is not bad. It satisfies that

pa ≥
(2αλ + 1)x 6◦a∑

a′∈Av ,k
xa′

�
(2αλ + 1)x 6◦a∑

a′∈Av ,k
x 6◦a′ +

∑
a′∈Av ,k

x◦a′
>

(2αλ + 1)x 6◦a
(2αλ + 1)∑a′∈Av ,k

x 6◦a′
≥ x 6◦a

b 6◦v
,

i.e., the probability to select such an arc is sufficiently large. The same is trivially true if
pa � 1. Hence, it remains to address bad arcs.

To this end, we apply Lemma 4.214.21 to see that we can reroute their flow over the spanner at
an additive additional cost of at most ε′1TWx∗. Logically, we can reflect this by replacing the
weight of such an arc by the weight of a respective shortest path in the spanner and adding
all bad arcs to the sample (i.e., “sampling” each bad arc with probability 1); denoting the
new weights by w′, we are then guaranteed that the union of the spanner and the actually
sampled arcs contains a solution of expected cost at most

E
[
1TW′xT

]
� 1TW′x ≤ 1TWx + ε′1TWx∗ ≤ (1 + 2ε′)1TWx∗.

It remains to apply Markov’s bound in order to get the following corollary.

Corollary 4.23. Performing the sampling procedure of Lemma 4.224.22 and returning an optimumprimal

tree solution on the graph induced by the sampled arcs and the spanner yields a (1+ ε)-approximation

with probability at least
2
3 .

Proof. Lemma 4.224.22 shows that the expected cost of an optimal solution on the stated arc set is
at most (1+ 2ε′)1TWx∗ � (1+ ε

3 )1TWx∗. Applying Markov’s bound to the (positive) random
variable that is the amount by which this cost exceeds that of an optimal solution shows that
the cost is at most (1 + ε)1TWx∗ with probability at least 2

3 . Lemma 4.174.17 shows that there is
an optimal solution that is a forest, and as there is only one source, it is a tree.

It remains to bound the number of sampled arcs, as this affects the running time of the
procedure.

Lemma 4.24. Suppose kmax ∈ Z>0 is such that w ≤ 2kmax wmin1. Then the number of non-spanner

arcs sampled by the procedure in Lemma 4.224.22 is bounded by O(αλkmaxn) with probability 2
3 .

Proof. When sampling from Av ,k once, in expectation at most (2αλ + 1) arcs are selected. If
p is the probability to select at least one arc from Av ,k in an attempt, we can thus bound the
number of expected arcs chosen by

∑∞
i�0(1 − p)i(2αλ + 1) � 2αλ+1

p . If pa ≥ 1 for any a ∈ Av ,k ,
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then p � 1. Otherwise,

1 − p �

∏
a∈Av ,k

(1 − pa) �
∏

a∈Av ,k

(
1 − (2αλ + 1)xa∑

a′∈Av ,k
xa′

)
<

∏
a∈Av ,k

∑
a′∈Av ,k\{a} xa′∑

a′∈Av ,k
xa′

≤
∏

a∈Av ,k

(
1 − 1
|Av ,k |

)
�

(
1 − 1
|Av ,k |

) |Av ,k |
.

This final term is at most 1
e if |Av ,k | > 1, and trivially only 1 < (2αλ + 1) arcs can be selected

from Av ,k in case |Av ,k | � 1. As the sets Av ,k form a partition of A, by linearity of expectation
we conclude that the expected number of selected arcs is in O(αλkmaxn). By Markov’s
bound, the claim follows.

While in general there is no guarantee that kmax is small, this can be easily fixed by a
preprocessing step.

Observation 4.25. For demands bv ∈ {0, 1} at all v ∈ V \ {s}, we may assume that kmax �

O(log(ε−1n)), at the expense of running the algorithm twice for approximation parameter ε′ ∈ Θ(ε).
Proof. Once an approximation x , y to Pasym(G, w , b) is known that is at least polynomial say
nc for some constant c, i.e., 1TWx ≤ nc bT y ≤ nc1TWx∗, we can safely delete all arcs of
larger weight than 1TWx. This can be seen as follows. As by Lemma 4.174.17, a tree solution
exists and as demands are integers, all flows in an optimal tree solution x∗ are integer as
well. Assume there is an arc with we > 1TWx that carries non-zero flow in x∗. Then x∗e ≥ 1
and thus 1TWx∗ > 1TWx, which is a contradiction. Hence, arcs of weight more than 1TWx
can be deleted from the graph without effecting any optimal solution. On the other hand,
suppose that we computed a (1+ε/2)-approximate (non-tree) solution for Pasym(G, w , b) and
suppose that an arc has weight less than t :� ε1TWx/(2n3). Consider the weights w′ that
are defined as w′a � wa if wa > t and w′a � t if wa ≤ t. It follows that an optimal solution x∗

of Pasym(G, w , b) satisfies

1TW′x∗ �
∑

a:wa>t

wa x∗a + t
∑

a:wa≤t

x∗a ≤
∑

a:wa>t

wa x∗a + t
n3

2

≤
∑

a:wa>t

wa x∗a +
(1 + ε/2)ε

4
1TWx∗ ≤

(
1 +

ε
2

)
1TWx∗ ,

(4.13)

where, in the first inequality, we used that bv ∈ {0, 1} for all nodes v ∈ V \ {s} and that there
are at most n2/2 many arcs. Thus, we can increase the weights of light arcs, delete heavy
arcs, and solve the instance Pasym(G, w′, b) with approximation guarantee 1 + ε/4. Let us
call x′ the primal solution computed. We then get

1TWx′ ≤ 1TW′x′ ≤
(
1 +

ε
4

)
1TW′x∗

(4.134.13)
≤

(
1 +

ε
4

) (
1 +

ε
2

)
1TWx∗ ≤ (1 + ε)1TWx∗.

The new weights satisfy (w)max/wmin ≤ 2n3/ε, which shows the claim.

We summarize our results on constructing a primal tree solution as follows.

Theorem 4.26. Assume that bv ∈ {0, 1} for all v ∈ V \ {s}. There is a Las Vegas algorithm using

the oracle given by Corollary 4.44.4 that computes a (1 + ε)-approximate primal-dual pair, where the

primal solution has non-zero flow only on the arcs of a tree. In each attempt to determine a solution,

the algorithm calls the oracle O((ε−2 + log α + log λ)α2λ2 log n) times, samples O(αλn log n) arcs
from G, computes an optimal tree solution on the union of the sampled arcs and the spanner, and

succeeds with probability at least
1
3 .
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Proof. By Theorem 4.164.16 and Corollary 4.44.4, we can obtain a primal-dual pair of solutions
with approximation guarantee ε′ ∈ Θ(ε) using the stated number of calls to the oracle. By
Observation 4.254.25, we can ensure that kmax � O(log(ε−1n)) without affecting the asymptotic
bounds on the number of oracle calls. Lemma 4.244.24 shows that the sampling procedure of
Lemma 4.224.22 results in the stated number of sampled arcs with probability at least 2

3 . If
this is not the case, we simply abort and this attempt to compute a solution fails. Moreover,
Corollary 4.234.23 states that computing anoptimal tree solutionusingonly sampledand spanner
arcs yields a (1 + ε)-approximate solution with probability at least 2

3 ; we compute such a
solution if the number of sampled arcs is indeed in O(αλn log n). Applying the union bound,
we conclude that with probability at least 1

3 , both the number of sampled arcs is sufficiently
small and the resulting solution is of sufficient quality.

Let us assume that we called the gradient descent algorithm for a (1 + ε/6)-approximate
solution and denote its output solution with y, then the guarantee is that bT y ≥ bT y∗/(1 +

ε/6). Let us assume ys � 0 and let x̄ be the primal tree solution from the above theorem. We
call ȳv the length of the s-v path in the tree. Note that ȳ does not need to be a feasible dual
solution w.r.t. the whole graph. Still using the above theorem, we have in case of success that

bT ȳ � 1TWx̄ ≤
(
1 +

ε
6

)
bT y∗ ≤

(
1 +

ε
6

)2
bT y ≤

(
1 +

ε
2

)
bT y for ε ≤ 1. (4.14)

Let us call a node ε-good, if yv ≥ ȳv/(1 + ε) and note that since (W−1AT y)max � 1, it follows
that for an ε-good node ȳv ≤ (1 + ε)yv ≤ (1 + ε)y∗v , i.e., we know a (1 + ε)-approximation on
its distance to the source s. The following lemma shows that the good nodes constitute at
least a constant fraction of bT y∗.

Lemma 4.27. Let bv ≥ 0 for all v ∈ V \ {s}, y ∈ Rn
with (W−1AT y)max ≤ 1, ys � 0 and

bT y ≥ bT y∗

1+ε/6 , and let X :� {v ∈ V \ {s} : yv < ȳv/(1 + ε)} for ε < 1. Then,
∑

v∈X bv y∗v ≤ 2
3 bT y∗.

Proof. Using (4.144.14) and the definition of X yields

ε
2

∑
v∈X

bv yv ≤
ε
2

∑
v∈X

bv yv +

(
1 +

ε
2

)
bT y − bT ȳ

� (1 + ε)
∑
v∈X

bv yv +

(
1 +

ε
2

) ∑
v∈V\X

bv yv − bT ȳ

<
∑
v∈X

bv ȳv +

(
1 +

ε
2

) ∑
v∈V\X

bv yv − bT ȳ ≤ ε
2

∑
v∈V\X

bv yv ,

where the last inequality follows from yv ≤ y∗v ≤ ȳv for v ∈ V \ X. It thus follows that∑
v∈V\X bv yv > 1

2 bT y and hence for ε ≤ 1
2 , we get∑

v∈X

bv y∗v � bT y∗ −
∑

v∈V\X
bv y∗v ≤

(
1 +

ε
6

)
bT y −

∑
v∈V\X

bv yv <
(1

2
+
ε
6

)
bT y ≤ 2

3
bT y∗.

We conclude that by inspecting the fractions yv/ ȳv for every v, we can identify a set
of good nodes for which we have (1 + ε)-approximate distance estimates. We proceed by
setting their demand bv to zero and recurse on the remaining nodes. As we have proven
in the previous lemma, the good nodes constitute at least a constant fraction of bT y∗ and
thus setting their demand to zero will lead to a reduction in bT y∗ by a constant fraction.
Hence, after a logarithmic (in bT y∗ � O(n2‖w‖∞)) number of iterations this procedure will
terminate and we will know (1+ ε)-approximate distances for every single node v ∈ V . This
yields the following theorem:
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Theorem 4.28. There is an algorithm for the single source shortest path problem that, for every node

v ∈ V \ {s}, computes a path Pv from v to the source node s that is at most (1 + ε) times longer than

the shortest path from v to s by using only Õ((ε−1αλ)2 log2(n) log(‖w‖∞)) many calls to the oracle

given by Corollary 4.44.4.

4.3 Implementation in Various Models of Computation

It remains to describe how to implement the above framework in the different models of
computation. We start by formally defining the models.

4.3.1 Models

Broadcast Congested Clique model

In the Broadcast Congested Cliquemodel, every of the n nodes can talk to every other node,
i.e., there is an underlying communication graph that is complete. Computation proceeds
in rounds. In one round every node does the following three actions: (1) It sends the same

one message of size O(log n) to all other nodes (hence the term broadcast). (2) It receives
the messages from the other nodes. (3) It can perform arbitrary local computations. The
complexity in this model is measured in number of rounds needed.

The input of the problem is distributed among the nodes as well, i.e., initially every node
knows its ID, as well as the ID of its neighbors. In the case of the approximate asymmetric
transshipment problem, every node knows the value of ε, its demand, as well as the forward
and backward weights of its incident edges. Note that for the single source shortest path
problem this means that every node knows whether it is the source or not.

At termination, every node needs to know its part of the output, i.e., it needs to know its
potential or distance in the successive shortest path case. If we are also interested in a primal
solution, in the transshipment problem, every node needs to know the primal values of its
adjacent edges, and in the single source shortest path case, every node should know the next
edge among its incident edges on the path to the source.

Broadcast Congest model

The Broadcast Congest model is identical to the Broadcast Congested Clique model up
to one important difference. Communication is restricted to edges in the input graph G.
This difference has big consequences. Clearly, denoting by D the diameter of the graph,
Ω(D) rounds are necessary in this model in order to solve the transshipment problem.
Furthermore, even if the diameter is logarithmically bounded in n, Das Sarma et al. showed
that Ω(

√
n/log n) are necessary [Sar+12Sar+12].66

Multipass Streaming model

In the Multipass Streaming model, the computation proceeds in passes [HRR98HRR98]. In every
pass, the edge set is given to the algorithm as a stream and the assumption is that the edge
set is too large for the algorithm to store it. The goal is to solve the problem at hand with
little number of passes while keeping the space requirement small.

6The bounds apply also for randomized algorithms and the approximate version of the problem when the
approximation ratio is polynomial in n.
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4.3.2 Implementation

In this section, we describe for each of the above three models and the standard RAM
model of computation how our algorithm can be implemented in them. We first recall our
results from Corollary 4.154.15: Algorithm GradientTransship can be executed using a total of
O((ε−2 + log α + log λ)α2λ2 log n) operations of the following types:

1. oracle call

2. computation of (W−1ATπ)max for a given π

3. computation of ∇Φβ(π) for given β and π

4. scalar product b̃T h for given b̃ and h

5. comparisons of and multiplications with scalar values

We will thus describe for each of the models how to implement these steps. Fortunately, this
is rather straightforward.

Broadcast Congested Clique model

We start with items 22 and 33. Every node v can within one round learn the values πw for
all its neighbors w. Thus, it can locally compute za :� (W−1ATπ)a for all arcs a ∈ δin

G (v).
Then, every node can broadcast max{za : a ∈ δin

G (v)} to all other nodes and thus every
node can learn the value of (z)max � (W−1ATπ)max within a constant number of rounds. Let
us recall the definition of Φβ(π) :� lseβ(W−1ATπ) and the form of its gradient ∇Φβ(π) �
AW−1∇ lseβ(W−1ATπ). Note that for v ∈ V , the gradient takes the form

(AW−1∇ lseβ(z))v �
1

β
∑

a∈A eβza

( ∑
a∈δin(v)

eβza

wa
−

∑
a∈δout(v)

eβza

wa

)
. (4.15)

Thus, as every node knows its incident edges, it can locally compute eβza for all its incident
edges a ∈ δin(v) ∪ δout(v) and thus it can broadcast the value

∑
a∈δin(v) eβza . Then, every

node can learn
∑

a∈A eβza �
∑

v∈V
∑

a∈δin(v) eβza and thus compute (AW−1∇ lseβ(z))v according
to (4.154.15) locally. Items 44 and 55 are even more straightforward, as we can assume that the
values of b̃ and h are globally known every node can do these computations locally for free.
For item 11, i.e, the implementation of the oracle, we have already described in Section 4.2.24.2.2
that the optimal solution to Psym⊥(S, w ,∇Φβ(π)) on an α-spanner S gives an α-apprixmate
solution for the problem Psym⊥(G, w ,∇Φβ(π)). It suffices to compute this α-spanner S
once initially as the weights of all oracle problems are identical, namely w. Whenever, the
algorithm calls the oracle, we can then make sure that every node knows ∇Φβ(π) and can
locally compute an optimal solution to Psym⊥(S, w ,∇Φβ(π)). For the initial computation of
an α-spanner, note that already Baswana and Sen gave a randomized method to construct a
2k − 1 spanner of expected size O(kn1+1/k) within O(k2) rounds in the Broadcast Congest
model [BS07BS07, Theorem 5.1].This strategy can be made deterministic. In [CPS17CPS17], Censor-
Hillel et al. show a comparable result. They show how to, in the Broadcast Congested
Clique model, deterministically construct a (2k − 1)-spanner with O(kn1+1/k log n) edges in
O(k log n) rounds. Thus, for k � log(n), this result directly gives a spanner that fulfills our
requirements. We conclude that after an initial computation of the spanner in O(log2 n)
rounds, every iteration can be implemented within constant number of rounds. Thus, we
obtain the following theorem.
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Theorem 4.29 (Broadcast Congested Clique). 1. There is an algorithm that, for any 0 < ε ≤
1, computes a (1 + ε)-approximate primal/dual solution pair to the asymmetric transshipment

problem in the Broadcast Congested Clique model within Õ(ε−2λ2 polylog n) rounds of
communication.

2. There is an algorithm for the asymmetric single source shortest path problem that, for any

0 < ε ≤ 1, computes a (1 + ε)-approximate shortest path for every node in the Broadcast
Congested Clique model within Õ(ε−2λ2 polylog(n , ‖w‖∞)) rounds of communication.

Broadcast Congest model

In order to transfer our results from the Broadcast Congested Clique to the Broadcast
Congest model, we use two different previous results. The first is a classical result in
distributed computing. The idea is to pipeline information over a BFS tree.

Lemma 4.30 (cf. [Pel00Pel00]). Suppose each v ∈ V holds mv ∈ Z≥0 messages of O(log n) bits each. Let
M :�

∑
v∈V mv . Then all nodes in the graph can receive all M messages within O(M + D) rounds.

For the single source shortest path case we use the following more recent result:

Lemma 4.31 ([HKN16HKN16]). Given any weighted undirected graph G and source node s ∈ V , there is an

Õ(
√

n)-round deterministic distributed algorithm in the Broadcast Congest model77 that computes

an overlay network G′ � (V′, E′) with edge weights w′ : E′→ {1, . . . , poly n} and some additional

information for every node with the following properties.

• |V′ | � Õ(
√

nε−1) and s ∈ V′.

• For ε′ � Θ(ε), each node v ∈ V can infer a (1 + ε)-approximation of its distance to s from

(1 + ε′)-approximations of the distances between s and each t ∈ V′.

Using the above results, we obtain the following theorem.

Theorem 4.32 (Broadcast Congest). 1. There is an algorithm that, for any 0 < ε ≤ 1, com-

putes a (1+ε)-approximate primal/dual solution pair to the asymmetric transshipment problem

in the Broadcast Congest model within Õ(nε−2λ2) rounds of communication.

2. There is a Las Vegas algorithm that, for any 0 < ε ≤ 1, computes a (1+ ε)-approximate shortest

path tree to the asymmetric single source shortest path problem in the Broadcast Congest
model in Õ(

√
n + D)ε−2λ2) rounds.

Proof. 1. We obtain the result by using Lemma 4.304.30 and simulating the broadcast con-
gested clique in every iteration. It holds that M � O(n log n) in this case and thus the
result follows from the first part of Theorem 4.294.29.

2. It is easy to see that the construction fromHenzinger et al. in Lemma 4.314.31 also works in
the asymmetric setting. Hence the bound followsusing the secondpart of Theorem4.294.29
on the overlay network.

7All communication of the algorithm in [HKN16HKN16] meets the constraint that in each round, each node sends
the same message to all neighbors (which is the difference between the Broadcast Congest and the standard
Congest model).
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Multipass Streaming model

The main observation is that we can apply the same approach as before with O(n log n)
space as this enables us to initially compute the spanner and store it during the entire
computation. Similarly, we can store the variables related to the nodes within O(n log n)
space. The gradient ∇Φβ(π) can be evaluated in a single pass. It follows that ε−2λ2 polylog n
passes suffice and O(n log n) space is enough.

Theorem 4.33 (Multipass Streaming). 1. There is an algorihtm that, for any 0 < ε ≤ 1,
computes a deterministic (1 + ε)-approximation to the asymmetric transshipment problem in

the Multipass Streaming model in Õ(ε−2λ2 polylog n) passes with O(n log n) space.

2. There is a Las Vegas algorithm that, for any 0 < ε ≤ 1, computes a (1+ ε)-approximate shortest

path tree to the asymmetric single source shortest path problem in the Multipass Streaming
model in Õ(ε−2λ2 polylog(n , ‖w‖∞)) passes with O(n log n) space.

RAMmodel

We turn back to the classical RAM model of computation and conclude the first part of the
thesis with this. We will see that we can apply the results from Chapter 33 for implementing
the oracle for the gradient descent algorithm and obtain an interesting result for the RAM
model in this way. We need one more technical lemma that shows that we can implement
an oracle for Psym⊥(G, w ,∇Φβ(π)) using an oracle for Pasym(G, w , PT∇Φβ(π)), where P is a
specific projection matrix:

Lemma 4.34. Let π ∈ Rn
be a γ-approximate solution to Preci(G, w , b), i.e., bTπ � 1 and

(W−1ATπ)max ≤ γ(W−1ATπ∗)max. Let P � (I − πbT) and let x , h be an η-approximate pri-

mal/dual solution pair to Pasym(G, w , PT∇Φβ(π)). Then (x , πT∇Φβ(π)), Ph/(1+γ), is an α(1+γ)-
approximate primal/dual solution pair to Psym⊥(G, w ,∇Φβ(π)).

Proof. Let us first check feasibility. Clearly, x ≥ 0 and Ax+ (πT∇Φβ(π))b � PT∇Φβ(π) as well
as bTPh � 0 by the definition of P. Moreover,

(W−1ATPh)max ≤ (W−1AT h)max + (W−1ATπ)max |bT h |

� (W−1AT h)max ·
(
1 +
(W−1ATπ)max |bT h |
(W−1AT h)max

)
≤ (W−1AT h)max ·

(
1 + γ(W−1ATπ∗)maxbT y∗

)
� (W−1AT h)max ·

(
1 + γ

)
,

and thus also Ph/(1 + γ) is feasible. It remains to show the approximation guarantee. Note
that 1TW−x ≤ η(PT∇Φβ(π))T h implies that

1TW−x ≤ η · ∇Φβ(π)TPh � η(1 + γ) · ∇Φβ(π)T
Ph
(1 + γ)

and thus (x , πT∇Φβ(π)), Ph/(1 + γ) is an η(1 + γ)-approximate primal/dual pair.

The proof of Lemma 4.144.14 implies that any iterate π during the run of the algorithm
is a 2α2λ2-approximation. Notice that the naive thought, that any iterate should be an α-
approximation as the initial solution is and the algorithm makes progress, is trappy as the
algorithm guarantees progress in terms ofΦβ(π) and this does not directly imply progress in
terms of (W−1ATπ)max. In summary, the above lemma shows that we can get a primal/dual
pair for Psym⊥(G, w ,∇Φβ(π))with approximation ratio αλ(2α2λ2+1) ≤ 3α3λ3 by computing
an α-spanner and solving Pasym(S, w , PT∇Φβ(π)) optimally on it.
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Recall that the asymmetric transshipment problem is a special case of the directed (unca-
pacitated)min-cost flowproblem, aswehave seen inLemma1.11.1 in the introduction. Thus,we
may use the integer interior point method from Chapter 33 for solving Pasym(S, w , PT∇Φβ(π))
and obtain an oracle running in Õ(m + n3/2 log(‖b , w‖∞)) time. The Õ(m)-term is the result
of the spanner computation, see for example the algorithm of Baswana and Sen [BS07BS07] that
can be used for this purpose. The term Õ(n3/2 log(‖b , w‖∞)) is due to the min-cost flow
computation on the sparse spanner, where m � Õ(n), see Theorem 3.103.10. Hence, we obtain
the following result.

Theorem 4.35. There is a randomized algorithm that, for any 0 < ε ≤ 1, computes a (1 + ε)-
approximation to the asymmetric transshipment problem in Õ(ε−2λO(1)(m + n3/2) log(‖b , w‖∞))
time with high probability.

We remark that in settings where m � Ω(n3/2), our method is thus nearly-linear in
m, thus in terms of m optimal up to log-factors, and dominates over the method due to
Sherman [She17She17] that runs in O(m1+o(1)).

4.4 Conclusion

We have presented a gradient descent approach to the asymmetric transshipment problem
and its special case the single source shortest path problem. When implemented in dis-
tributed and streaming models of computation this leads very efficient algorithms including
the first non-trivial bounds for asymmetric transshipment in the Broadcast Congest and
Broadcast Congested Clique models. We obtain the first algorithms or the single source
shortest path problem in thesemodels with near-optimal number of communication rounds.

This work leaves some interesting research questions open. Clearly, our result for the
RAM model is interesting but also somewhat unsatisfactory. One would hope to find an
algorithm with nearly linear running time in m for all settings of n and m and not only for
m � Ω(n3/2). Another very interesting question that arises is the following: Does a similar
approach work for the single source shortest path problem in the PRAM model? Finding a
PRAM-algorithm for computing single source shortest paths or (1+ ε)-approximate shortest
paths with nearly-linear work and poly-logarithmic depth would be the ultimate goal here.
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Chapter 5

Introduction to Part II

Part II of this thesis deals with a very fundamental problem in computer algebra: the com-
putation of the zeros of univariate polynomials and of systems of multivariate polynomials.
These are very traditional problems [Pan97Pan97; Laz09Laz09]. The history of the univariate case goes
back at least to the time of the Babylonians and Egyptians (approx. 2000 BC), who were
already able to solve quadratic polynomial equations in one variable using what we call the
“quadratic formula” today. However, a complete understanding of this formula was only
attained with the distinction between real and imaginary roots which was only developed
fully in the 19th century by Gauss and others. Many other classical results in mathematics
can be considered milestones in the understanding of this formula. Such an example is the
Pythagoreans’ proof that the square root of 2 cannot be written as a fraction. In fact, the
problem of solving polynomial equations has been a driving force behind the development
of many classical concepts of today’s mathematics, such as irrational numbers, imaginary
numbers, algebraic groups, fields, and ideals [Pan97Pan97]. Indeed, the currently maybe most
active research area in theoretical mathematics, namely algebraic geometry, deals with the
zero sets of polynomial systems.

The fundamental theorem of algebra asserts that every univariate polynomial that is not
a constant has at least one complex root. Clearly, using polynomial division inductively,
the statement is equivalent to saying that a univariate polynomial of degree d has exactly
d complex roots. The first proof of this fundamental result is usually attributed to Gauss.
Together with the advent of Galois Theory, one might argue that the problem of roots
of univariate polynomials is solved from a purely mathematical point of view. However,
although the fundamental theorem of algebra already asserts the existence of the roots,
an algorithmic approach to the problem was not given before the early 20th century by
Brouwer [BL24BL24] and Weyl [Wey24Wey24]. Many fruitful ideas have been contained within this
early work. During the last decades a rich set of different approaches have proven to be
successful. We point the reader to [Sma81Sma81] for a more detailed historic overview and to
Chapter 66 for more details concerning the literature on univariate root finding that is most
relevant to our work.

In this chapter, we will however not only be concerned with the question of determin-
ing the complex roots of a complex univariate polynomial, but we will also consider the
multi-dimensional analogue of this question: Given n multi-variate polynomials, each in
n variables, determine their common zeros. There is a rich literature on the task of com-
puting solutions of such polynomial systems. Depending on whether the system is zero-
dimensional or multi-dimensional, different methods apply. A historical overview is given
by Lazard [Laz09Laz09]. In this thesis, we will consider the case of zero-dimensional polynomial
systems, i.e., the case where the solution set is finite. We review related work on polynomial
system solving in Chapter 77.

In addition to being interesting from a theoretical point of view, methods for the above
problems are of great importance due to their broad applicability in various other scientific



80 Chapter 5. Introduction to Part II

disciplines. These include robotics, coding theory, optimization, statistics, machine learning,
and many others, see [Stu02Stu02] and references therein.

5.1 Main Results of Part II

For both of the above described problems, the problem of univariate root finding and the
problemof solving zero-dimensional polynomial systems, the situation is somewhat unsatis-
factory from the perspective of a (theoretical computer) scientist: The methods that are most
frequently used in practice (e.g. MPsolve [BF00BF00; BR14BR14], eigensolve [For02For02], Bertini [Bat+13Bat+13],
or PHCpack [Ver99Ver99]) usually produce answers quite fast but, other than in special case, they
are not guaranteed to be complete, correct, or even satisfy good worst-case run-time bounds.
Methods, however, that satisfy such guarantees usually lack efficient implementations as
they are either too involved or use machinery that is unlikely to be implemented efficiently.
The ambition of the second part of this thesis is to provide methods to narrow the described
gap for the above two problems.

Main Result 2.1. In Chapter 66, we describe a subdivision algorithm for isolating the complex
roots of a polynomial F ∈ C[x] with complex coefficients. We work in the following very
general model: We assume that the complex coefficients of F are provided to any absolute
error bound by an oracle. For an arbitrary given input square B in the complex plane that
contains only simple roots of F, our algorithm returns disjoint isolating discs for all roots of
F in B. We analyze the complexity of our approach: We show bounds on the absolute error
to which the coefficients of F have to be approximated, the total number of iterations, and
the overall bit complexity. Our analysis also shows that the complexity of the algorithm is
controlled by the geometry of the roots in a near neighborhood of the input squareB, namely,
by the number of roots, their absolute values and their pairwise distances. The number of
subdivision steps of our method is near-optimal. For the special case, where the input
polynomial has integer coefficients of bit-size less than τ and degree d, our algorithm needs
Õ(d3+d2τ) bit operations, which is comparable to previous record bounds. It is, however, the
first time that such a bound has been achieved using subdivision methods, and independent
of divide-and-conquer techniques such as Schönhage’s splitting circle technique, which are
extremely difficult to implement in an efficient manner. Instead, our algorithm uses the
quad-tree construction of Weyl [Wey24Wey24] with two key ingredients: We derive a “soft-test”
to count the number of roots in a disc that is based on Pellet’s Theorem and, in addition,
uses Graeffe iteration. Schröder’s modified Newton operator combined with bisection, in a
form inspired by the quadratic interval method from Abbott [Abb14Abb14], allows us to achieve
quadratic convergence towards root clusters.

Main Result 2.2. In Chapter 77, we turn to the problem of computing the solutions of
polynomial systems: Assume that a numeric method is used in order to determine the
solutions of a zero-dimensional polynomial system. Such methods are usually very fast and
some of them are quite reliable. However, these methods usually do not come with any
guarantees and thus we cannot rely on their result to be correct. This is where our new
method comes into play. We propose a symbolic-numeric algorithm to count the number
of solutions of a polynomial system within a local region exactly. More specifically, given a
zero-dimensional system f1 � · · · � fn � 0, with fi ∈ C[x1 , . . . , xn], and a polydisc ∆ ⊂ Cn ,
our method aims to certify the existence of k solutions (counted with multiplicity) within
this polydisc. In case of success, it yields the correct result under guarantee. Otherwise,
no information is given. However, we show that our algorithm always succeeds if ∆ is
sufficiently small and well-isolating for a k-fold solution z of the system. Our analysis of the
algorithm further yields a bound on the size of the polydisc forwhich our algorithm succeeds
under guarantee. This bound depends on local parameters such as the size and multiplicity
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of z as well as the distances between z and all other solutions. Efficiency of ourmethod stems
from the fact that we reduce the problem of counting the roots in ∆ of the original system
to the problem of solving a truncated system of degree k. In particular, if the multiplicity k
of z is small compared to the total degrees of the polynomials fi , our method considerably
improves upon known complete and certified methods. For the special case of a bivariate
system, we report on an implementation of our algorithm, and show experimentally that our
algorithm leads to a significant improvement, when integrated as inclusion predicate into
an elimination method.

5.2 Notations

We continue by introducing some notation that will be used throughout this part of the
thesis: When feasible, we will use bold font for multidimensional objects such as points
x ∈ Cn .

• As in the previous part of the thesis, for any non-negative integer k, we denote by [k]
the set {1 . . . k} of size k. For any set S and any non-negative integer k, we write

(S
k

)
for

the set of all subsets of S of size k.

• The norm ‖ · ‖ will refer to the infinity norm ‖ · ‖∞ throughout this part of the thesis,
i.e., for any x ∈ Cn , ‖x‖ :� ‖x‖∞ � maxi∈[n] |xi |..

• For points x1 , . . . , xk ∈ Cn , we write M(x1 , . . . , xk) :� max(1, ‖x1‖ , . . . , ‖xk ‖)

• As before log(·) B log2(·) is the binary logarithm. Moreover, for x1 , . . . , xk ∈ Cn , we
define log(x1 , . . . , xk) :� dM(log M(x1 , . . . , xk))e.

• For α � (α1 , . . . , αn) and x � (x1 , . . . , xn), we write xα for xα1
1 · · · x

αn
n .

• For F(x) � ∑
α cαxα ∈ C[x1 , . . . , xn] � C[x], we define ‖F‖ � maxα{|aα |}. We further

define τF :� log(‖F‖), which bounds the number of bits before the binary point in the
binary representation of any coefficient of F.

• We denote the interior of a disc in the complex plane with center m ∈ C and radius
r ∈ R>0 by ∆ � ∆r(m) :� {z ∈ C : |z − m | < r}. For short, we also write λ · ∆ to denote
the disc ∆λr(m) that is centered at m and scaled by a factor λ ∈ R>0.

• For a univariate polynomial F(x) � ∑d
i�0 ai x i , we denote with LC(F) � ad the leading

coefficient of F.

As in the previous part, wewill use the tilde-O notation Õ(·) in order to hide poly-logarithmic
factors, i.e., Õ( f ) � O( f logc( f )) for any constant c.





83

Chapter 6

Univariate Complex Root Isolation
using Pellet’s Test and Newton
Iteration

6.1 Introduction

This chapter deals with a very fundamental and well-studied problem in computer algebra
and numerical analysis: The problem of computing isolating regions for the zeros of a
complex univariate polynomial. Although this can be seen as one of the most classical
problems in computational algebra, it still constitutes a very active research field. This
is undoubtedly due to the great practical importance of the problem, as there are many
problems in different scientific disciplines that make critical use of univariate root solving.
Such disciplines include engineering, computer science and mathematics in general, as well
as natural sciences. Another reason for the steady research effort is that there is still a big
discrepancy between methods that are used by practitioners and methods that are provably
correct and achieve good theoretical run-time bounds. Methods that are most frequently
used in practice are typically based on Newton’s iteration, Aberth’s method, Weierstrass-
Durand-Kerner’s method, the QR algorithm or similar [BF00BF00; For02For02; BR14BR14]. As usually,
when methods are popular in practice, these methods are relatively simple, which makes
it attractive to implement them. The other set of methods, namely the ones for which very
goodworst-case complexity bounds are known [EPT14EPT14; MSW15MSW15; Pan02Pan02], are based on amore
complicated machinery, i.e., they use a series of asymptotically fast subroutines (see [Pan02Pan02,
p. 702]), require a complicated precision management, and are usually presented in a non-
self-contained manner, which makes it difficult for practitioners and even for researchers
working in the same area to understand and implement them.

The goal of the work that this chapter is based on is to resolve the described discrep-
ancy. We present a subdivision algorithm for complex root isolation called CIsolate. For
our method, we mainly combine simple and well-known techniques such as the classical
quad-tree construction by Weyl [Wey24Wey24], Pellet’s Theorem [RS02RS02], Graeffe iteration11 [Bes49Bes49;
Hou59Hou59], and Schröder’s modified Newton operator [Sch70Sch70]. The bounds on its theoretical
worst-case complexity that we prove are similar to the best bounds currently known for this
problem. In this context, it is remarkable that, for the complexity results, we do not require
any asymptotically fast subroutines except the classical fast algorithms for polynomial multi-
plication and Taylor shift computation. We believe that, compared to existing asymptotically
fast algorithms, our method is relatively simple and thus has the potential of being practical.

1We note that the method should probably not be attributed to Gräffe only [Hou59Hou59]. In fact, it was developed
independently by Dandelin in 1826 and Gräffe in 1837. Also, Lobachevsky’s contribution from 1834 is significant
as it contains the key idea of the approach.
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The previously best algorithm for complex root finding goes back to Schönhage’s splitting
circle method [Sch82bSch82b] and was later significantly refined by Pan [Pan02Pan02] and others [Kir98Kir98;
NR96NR96]. Pan gives an algorithm for a slightly different setting, namely for approximate
polynomial factorization, where it is assumed that the coefficients of the input polynomial
are complex numbers that can be accessed to an arbitrary precision. Then, for a polynomial
F with roots z1 , . . . , zd contained in the unit disc and an integer L ≥ d log d, Pan’s algorithm
computes approximations z̃i of zi with ‖F − LC(F) ·∏i∈[d](x − z̃i)‖1 < 2−L · ‖F‖1 using only
Õ(d log L) arithmetic operations with a precision of O(L). In [MSW15MSW15], it is shown how to
obtain an algorithm for computing isolating discs from the approximate factorization that
is given by Pan’s method. The cost for computing these isolating regions can be expressed
in terms of the degree of F and the size of its coefficients, but also in terms of geometric
parameters such as the location of the roots of F. In our work, we will also follow this
approach of measuring the bit complexity of our algorithm in terms of the underlying
geometry of the roots of the input polynomial. For special cases of the problem, namely,
when the input polynomial has integer coefficients, of bit-size τ, we can translate these
geometric parameters back and obtain bounds that solely depend on d , τ. The problem of
isolating the complex roots of an integer polynomial is referred to as the complex benchmark

problem by some authors. We remark that the difficulty of isolating the roots is more directly
dependent on the location of the roots than on the degree d or bit-size τ and thus stating
bounds in terms of the geometric parameter is actually more enlightening.

Using Pan’s method [EPT14EPT14; MSW15MSW15], the complex benchmark problem can be solved
with Õ(d2τ) operations, which constitutes the current record bound for this problem. So
far, this bound can only be achieved by running Pan’s factorization algorithm with an L
of size Ω(d(τ + log d)), which means that Θ̃(d2τ) bit operations are needed for any input
polynomial; see [EPT14EPT14, Theorem 3.1] for details. The adaptive algorithm from [MSW15MSW15]
needs Õ(d3 + d2τ) bit operations, however its cost crucially depends on the aforementioned
geometric parameters (e.g. the separations of its roots).

For the real benchmark problem, that is the isolation of the real roots of a polynomial F
of degree d with integer coefficients of bit-size at most τ, the bound of Õ(d3 + d2τ) can
be achieved by a subdivision algorithm that is based on Descartes’ method and Newton
Iteration [SM16SM16]. Moreover, a recent implementation [KRS16KRS16] of this algorithm is competitive
with the fastest existing implementations [RZ04RZ04] for real root isolation, and it shows superior
performance for hard instances, where roots appear in clusters. Our method works very
similar to the subdivision approach from [SM16SM16] with the main difference being that our
approach does not use Descartes’ method and is thus not bound to the specialized setting
of real roots. While solving the more general complex benchmark problem, our approach
achieves the same bit-complexity of Õ(d3 + d2τ). It is interesting that this bound exactly
matches the corresponding bound for the complex root isolation algorithm from [MSW15MSW15]
that is based on Pan’s method for approximate polynomial factorization.

Another big advantage of our method is that, in contrast to global approaches, it can be
used for a local search for only the roots contained in some given region. In this case, the
number of iterations as well as the cost of the algorithm adapt to geometric parameters that
only depend on the roots located in some neighborhood of this region.

6.1.1 Overview and Main Results

Setting. Throughout this chapter, we assume that we are given an input polynomial

F(x) �
d∑

i�0
ai x i ∈ C[x], with d ≥ 2 and 1

4
< |ad | ≤ 1. (6.1)
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Notice that, the condition on ad can always be achieved by a suitable scaling and that this
scaling does not change the roots. As the coefficients ai are given by arbitrary complex
numbers possibly without finite representation, we have made an assumption on how the
input is given. We assume that the coefficients are given to us via an oracle that, for an
arbitrary integer precision L, provides dyadic approximations ãi of ai that coincide with
ai to L bits after the binary point. The polynomial F̃(x) � ∑d

i�0 ãi x i is then called an L-
bit approximation of F. We assume that the cost for asking the oracle for such an L-bit
approximation is equal to the cost of reading the input if F̃ was the exact input given to the
algorithm. We remark that this is a very general setting, as even algebraic, or transcendental
coefficients can be provided by such an oracle.

Throughout our considerations, we will call z1 , . . . , zd the distinct roots of F. We remark
that as the coefficients are given approximately only, the problem of computing the roots
of F is not well defined if we allow F to have multiple roots. This is due to the fact that
any additional bit of a coefficient that is provided by the oracle could possibly change the
situation from F having a k-fold root to F having a cluster of k roots. Besides this, we
remark that our algorithm can still be used in the setting of multiple roots, however it is
not guaranteed to terminate as given here and an additional stopping criteria needs to be
included. We assume that, in addition to F, the input consists of a closed, axis-aligned square
B in the complex plane. Given this input, our algorithm CIsolate computes isolating discs
for all roots of F contained within B. It may however, also return isolating discs for some
roots of F that are contained within 2B \ B.

Algorithm Overview. The approach underlying CIsolate is based on Weyl’s quad tree
construction as mentioned earlier, i.e., we recursively subdivide the input square B into
smaller sub-squares. For a given sub-square, we check if it can be discarded, as it can be
verified that this sub-square does not contain any root of F. We proceed as follows with
the squares that cannot be excluded: We group them together into maximal connected
components and test whether we can guarantee that they contain exactly one root. We do
this by checking if a specific inclusion predicate holds on thismaximal connected component.

The test that we use in order to implement these inclusion and exclusion predicates is
based on Pellet’s theorem and we use Graeffe iteration to accelerate it, we describe this in
detail in Section 6.36.3. Here, we give a brief overview: Pellet’s theorem [RS02RS02] says that the
number of roots contained within ∆ equals k if the absolute value of the k-th coefficient of
F∆(x) :� F(m + rx) dominates the sum of the absolute values of all other coefficients. For
k � 0 and k � 1, this has been used before in the context of the computation of roots [SY11SY11;
Yak00Yak00]. It is used there that Pellet’s theorem applies if the smaller disc d−c · ∆ contains k
roots and the larger disc dc′ · ∆ contains no further root, where c and c′ are suitable positive
constants. In our work, we derive constants c and c′ such that a corresponding result holds
for any k � 0, . . . , d. Moreover, using the above mentioned Graeffe iterations, more precisely
only O(log log d) of them, the polynomial factors dc and dc′ can be replaced by constants
ρ1 :� 2

√
2/3 ≈ 0.94 and ρ2 :� 4/3. This is based on the observation that a Graeffe iteration on

F∆ leads to a squaring of the roots of F∆. In summary, we give a predicate that if it succeeds
allows us to count the number of roots contained in a disc ∆, provided that ρ2 · ∆ and ρ1 · ∆
contain the same number of roots. As the coefficients of F are only given approximately
and the described test requires exact arithmetic, we also derive a variant of this approach
that uses approximate arithmetic only. This is based on the idea of so-called soft-predicates,
see [YSS13YSS13]. We denote this test by T∗(∆, F). We analyze the precision demand of T∗(∆, F)
and show that is directly related to the maximal absolute value that F takes on ∆.

We obtain the exclusion predicate for a square by inscribing the square within a disc ∆
and testing T∗(∆, F). If the test yields 0, this square can be excluded. As said above, we
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group the squares that cannot be excluded together into maximal connected components.
After inscribing these components into a corresponding disc ∆ as well, we can apply the
T∗(∆, F)-test and check if it yields 1. If so, we store the disc ∆ as an isolating disc. If none of
the above succeeds, we further subdivide each square into four equally sized sub-squares,
group them into maximal connected components, and proceed.

This basic approach leads a classical subdivision algorithm that induces (as any subdivi-
sion algorithm) a so-called subdivision tree. However, it does only lead linear convergence
towards the roots of F, as, intuitively speaking, in every subdivision step one additional bit
of the root gets determined. This can lead to long paths in the subdivision tree without
branching. One class of instances for which this problem classically occurs are the so-called
Mignotte polynomials. These polynomials have two very nearby roots and the length of
such a long path in the subdivision tree can be lower bounded by Ω(dτ). This is where
the second main ingredient of our algorithm comes into play: the Newton iteration. This
approach allows us to shorten the length of such paths to O(log(dτ)) and goes back to what
is known as quadratic interval refinement (QIR) [Abb14Abb14]. Here the secant method was used,
while Newton iteration was introduced to a similar approach in [Sag12Sag12; Sag14aSag14a; SM16SM16]. Our
approach follows these works. We combine basic bisection with Newton-iteration in the
following way. We achieve a situation that leads success of Newton steps on regions where
it is already known that they are isolating for a root or a cluster of roots. In order to check for
such situations, we again use the previously described T∗-test. It exactly allows us to detect
such situations.

Main Result. We get the following first main theoretical result, which shows that the above
described technique actually only produces a near-optimal number of squares:

Theorem 6.1. Let F be a polynomial as in (6.16.1) and suppose that F is square-free. For isolating all

complex roots of F, the algorithm CIsolate produces a number of squares bounded by

Õ
(
d · log(d) · log

(
d · ΓF · log(σ−1

F )
) )
,

where log(x) :� max(1, log |x |) for arbitrary x ∈ C, ΓF :� log(maxd
i�1 |zi |) is the logarithmic root

bound, and σF :� min(i , j):i, j |zi − z j | is the separation of F.

For the complex benchmark problem, the bound in the above theorem can be written as
O(d log(d) log(dτ)), i.e., the bound is nearly-linear in d. Note that already the output consists
of d squares. When we use the algorithm on a restricted area, i.e., if the input square B
does not cover all roots, we can achieve bounds that are adaptive w.r.t. the number of roots
contained in some neighborhood of B as well as with respect to their geometric location.
More precisely, assuming that there are only simple roots within 2B, then we may replace d,
ΓF, and σF in the above bound by the number of roots contained in 2B, the logarithm of the
width of B, and the minimal separation of the roots of F in 2B, respectively. For a precise
result, see Theorem 6.266.26. Our second main result concerns the precision demand and bit
complexity of the algorithm:

Theorem 6.2. Let F be a polynomial as in (6.16.1) and suppose that F is square-free. For isolating all

complex roots of F, the algorithm CIsolate uses a number of bit operations bounded by

Õ
(∑d

i�1
d · (τF + d · log(zi) + log(σF(zi)−1) + log(F′(zi)−1))

)
� Õ(d(d2

+ d log(MeaF) + log(Disc−1
F ))),
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where τF :� dlog ‖F‖e, σF(zi) :� min j,i |zi − z j | is the separation of zi , MeaF :� |ad | ·∏d
i�1 max(1, |zi |) the Mahler Measure, and DiscF the discriminant of F. As input, the algo-

rithm requires an L-bit approximation of F with

L � Õ
(∑d

i�1
(τF + d · log(zi) + log(σF(zi)−1) + log(F′(zi)−1))

)
� Õ(d2

+ d log(MeaF) + log(Disc−1
F )).

For the complex benchmark problem the above bound on the bit complexity can be
simplified to Õ(d3 + d2τ). As above, if the algorithm is run on a restricted region B, we can
also show that the bit complexity and precision demand only depend on local parameters
for some surrounding of B.

6.1.2 Related Work

The literature regarding the computation of the real or complex roots of a univariate poly-
nomial is very rich. In this section, we aim to give a brief overview of the work that is
most related to our approach. We refer the reader to survey articles [MP12MP12; McN02McN02; McN07McN07;
MP13MP13; Pan97Pan97] for a more complete overview.

Real root computation. Due to their simplicity so-called subdivision algorithms are by now
the most popular methods (in theory and practice) in order to compute the real roots of a
polynomial. Most computer algebra systems have incorporated a root computation method
that is based on a subdivision approach. Many different approaches are known and they
all roughly follow the same approach of iteratively subdividing some given initial interval
I0 into sub-intervals while applying inclusion and exclusion predicates to the sub-intervals.
One can roughly group themethods into the following categories, depending on their choice
of the inclusion/exclusion predicate and the way how they subdivide intervals. (1) Methods
that are based on Descartes’ rule of sign [CA76CA76; Eig08Eig08; Eig+05Eig+05; RZ04RZ04; Sag12Sag12; SM16SM16; Sag14bSag14b;
SB15SB15]. Descartes’ rule of signs gives information for the maximum number of roots of a
polynomial as well as for the parity of the number of roots based on the number of sign
changes in the coefficient sequence of the polynomial. (2) Methods that are based on the
Bolzano method [Bec12Bec12; BK12BK12; SY11SY11]. These methods are based on a special case of Pellet’s
theorem, namely, they incorporate a test that can exclude the existence of a root in a given
interval (as in our T∗-test with k � 0). This test is then applied to the function as well as its
derivative. If the test applies to the function itself, it provides an exclusion predicate. If it
applies to the derivative, this shows that the function is monotone and thus if in addition
a sign change of the function on the interval can be verified, this approach provides an
inclusion predicate. (3) Techniques based on Sturm’s method [Dav85Dav85; DSY07DSY07], and the
continued fraction method [AS05AS05; Sha08Sha08; Tsi13Tsi13; TE08TE08] are less related to our approach, thus
we only mention them briefly.

For the above mentioned real benchmark problem, i.e., the problem of isolating all
real roots of a polynomial of degree d with integer coefficients of bit-size at most τ, most
of the above mentioned subdivision methods need Õ(dτ) subdivision steps and their bit
complexity is Õ(d4τ2). This bound on the number of subdivision steps is due to the fact
that the separation of all roots can be lower bounded by 2−Õ(τ) and that these subdivision
methods only achieve linear convergence towards the roots. Moreover, for certain classes
of polynomials with very small separation, e.g. Mignotte polynomials that have separation
2−Ω(dτ), this bound is tight up to poly-logarithmic factors [Col16Col16; Eig+05Eig+05].

The abovemethods that simplyuse exact arithmetic, in each subdivision step incur Õ(d3τ)
bit operations, which is due to the fact that d arithmetic operationswith a precision of Õ(d2τ)
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are needed. The methods from [Sag14bSag14b; SM16SM16] however use approximate arithmetic. More
precisely, the authors show that, for theDescartes’method, it suffices toworkwith a precision
of size Õ(dτ) in order to isolate all real roots, this yields aworst-case bit complexity of Õ(d3τ2).
Interestingly, this has already been empirically observed in [RZ04RZ04] before. A similar result
holds for the Bolzano method, as in [Bec12Bec12] it was shown that a modification of the Bolzano
method that uses approximate arithmetic leads the same bit-complexity bound. Recent
work [Sag12Sag12; SM16SM16; SB15SB15] further improves upon this by combining Descartes’ method and
Newton iteration. Newton iteration is the key to jump from linear to quadratic convergence in
almost all iterations. This approach leads tomethods that only needO(d log(dτ)) subdivision
steps (this is near optimal). The methods from [Sag12Sag12; SB15SB15] work for integer polynomials
only and each computation is carried out with exact arithmetic. An amortized analysis of
their cost yields the bound Õ(d3τ) for the bit complexity. [SM16SM16] introduces an algorithm that
improves upon the methods from [Sag12Sag12; SB15SB15] in two points. It can be used to compute the
real roots of a polynomial with arbitrary real coefficients and, due to the use of approximate
arithmetic, its precision demand is considerably smaller. This line of work leads the bit
complexity bound of Õ(d3 + d2τ). This bound is achieved as follows. The method needs
Õ(d log(dτ)) iterations. In each iteration, Õ(d) arithmetic operations are carried out with an
average precision of size Õ(d + τ).

We remark that this bound essentially matches the bounds achieved by our algorithm
CIsolate for complex root isolation. Our approach is similar to the one from [SM16SM16] that
has already found its way into efficient implementations, see [KRS16KRS16]. However, as we can
handle complex input polynomials and output isolating regions for all complex roots, several
new ideas and techniques were needed. Most prominently, we replace Descartes’ method
with the T∗-test for counting the number of complex roots in a disc.

Complex root computation. For computing the complex roots, there also exist a series
of subdivision methods (e.g. [CK92CK92; MT09MT09; MVY02MVY02; Pan00Pan00; Pin76Pin76; Ren87Ren87; SY11SY11; Wil78Wil78;
Yak05Yak05]); however, only a few algorithms have been analyzed in a way that allows a direct
comparison with our method as they are not formulated for the exact same problem, namely
root isolation, but for root computation in different settings.

The earliest contribution relevant to ours, namely the work byWeyl [Wey24Wey24], also treats a
slightly different problem. His algorithm computes relative 2−b-approximations to all roots
of a given polynomial for a given precision b with O(d3b log d) arithmetic operationswithout
using asymptotically fast polynomial arithmetic. Also, Weyl’s algorithm, as the early real
methods discussed above suffers from the problem that it only achieves linear convergence
towards the roots. Renegar [Ren87Ren87] and later Pan [Pan00Pan00] achieved a faster convergence by
combining subdivisionmethodswithNewton iteration. While Renegar’s algorithm achieves
the bound of O(d2 log b + d3 log d) arithmetic operations for approximating the roots within
a relative 2−b factor (again without using asymptotically fast polynomial arithmetic), Pan’s
method achieves the bound of O((d2 log d) log(bd)). From a highlevel point of view, the
method by Pan and ours are quiet similar. Both use subdivision combined with Newton’s
iteration and even both use Graeffe iteration. The main algorithmic difference is maybe the
use of Pellet’s theorem which we use both for the exclusion predicate and the detection of
clusters. An evenmore important difference between our result andPan’s result from [Pan00Pan00]
is thatwe bound the bit complexity andPan only derives a boundon the number of arithmetic
operations.

Also Yakoubsohn’s work [Yak05Yak05] has some similarities to our approach. Like us, he uses
Pellet’s theorem in a subdivision method based on Weyl’s quad tree approach. However,
again a slighly different problem is considered by Yakoubsohn, namely his method only
allows to approximate the roots and does not apply for isolating them, as, in contrary to us,
he does not use Pellet’s theoremwith k ≥ 1 which allows us to conclude that a certain region
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is isolating for a root/set of roots. A similar approachwas taken by Sagraloff and Yap [SY11SY11],
who have introduced the algorithm Ceval, which uses Pellet’s theorem for k � 0 and k � 1
leading an exclusion and inclusion predicate, and resulting in a very simple subdivision
method. As both these methods [Yak05Yak05; SY11SY11] are based purely on subdivision, they only
lead linear convergence again. The algorithm from [SY11SY11] needs Õ(d2τ) subdivision steps
for the complex benchmark problem leading a bit complexity of Õ(d4τ2).

We note that there are also extensions of Pellet’s theorem for the more general setting of
analytic functions, see for example [Giu+05Giu+05] for such an extension. There, the authors also
show how to detect clusters of roots which can be used in order to achieve a setting where
Schröder’s modified Newton operator yields quadratic convergence to the cluster. The main
difference to our method is that we use a trial-and-error approach, i.e., we always perform
Schröder’s modified Newton operator and check later (again using the test based on Pellet’s
theorem) whether the step succeeded. Another work that is similar to our approach and can
be used in the more general setting of analytic functions is the work from [YSS13YSS13]. Here, an
algorithm for computing ε-clusters of roots of analytic functions is given using a similar test
based on Pellet’s theorem. This algorithm however, does not have quadratic convergence (as
no Newton iteration is used) nor is the complexity of the algorithm analyzed.

Structure of the Remainder of this Chapter. In Section 6.26.2, we introduce the most impor-
tant definitions and further notations. We introduce the test T∗ for counting the roots in a
disc in Section 6.36.3. The algorithm CIsolate is given in Section 6.56.5. Its analysis is split into
two parts. In Section 6.6.16.6.1, we derive bounds on the number of iterations needed by our
algorithms, whereas, in Section 6.6.26.6.2, we estimate its bit complexity. Some of the (rather
technical) proofs are outsourced to an appendix, and we recommend to skip these proofs in
a first reading of this chapter. In Section 6.76.7, we summarize and hint to some future research.

6.2 Definitions and a Root Bound

Let F be a polynomial as defined in (6.16.1) with complex roots z1 , . . . , zd . We fix the following
definitions and denotations:

• As mentioned before, we assume that there is an oracle that, for an arbitrary non-
negative integer L, provides dyadic approximations ãi �

mi
2L+1 of the coefficients ai such

that mi ∈ Z + i · Z are Gaussian integers and |ak − ãk | < 2−L for all k � 0, . . . , d.
We say that ãk approximates ak to L bits after the binary point, and a corresponding
polynomial F̃ �

∑d
i�0 ãi · x i with coefficients fulfilling the latter properties is called an

(absolute) L-bit approximation of F. It is assumed that the cost for asking the oracle for
such an approximation is the cost for reading the approximations.

• For a disc ∆r(m), we denote with F∆(x) the shifted and scaled polynomial F(m + r · x).

• We let ΓF :� log(|z1 |, . . . , |zd |) be the logarithmic root bound of F. For a root zi of F, we let
µ(zi , F) denote its multiplicity. We define σF(zi) :� min j,i |zi − z j | to be the separation

of the root zi and σF :� mind
i�1 σF(zi) the separation of F. For an arbitrary region R ⊂ C in

the complex space, we define σF(R) :� mini:zi∈R σF(zi), which we call the separation of

F restricted to R. We further denote byZ(R) the set of all roots of F that are contained
in R, and by MeaF(R) :� |ad | ·

∏
zi∈Z(R)M(zi) the Mahler measure of F restricted to R.

• A disc ∆ is isolating for a root zi of F if it contains zi but no other root of F. For a set S of
roots of F and positive real values ρ1 and ρ2 with ρ1 ≤ 1 ≤ ρ2, we say that a disc ∆ is

(ρ1 , ρ2)-isolating for S if ρ1 ·∆ contains exactly the roots contained in S and ρ2 ·∆ \ ρ1 ·∆
contains no root of F.
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• We will only consider squares

B � {z � x + i · y ∈ C : x ∈ [xmin , xmax] and y ∈ [ymin , ymax]}

in the complex space that are closed, axis-aligned, and of width w(B) � 2` for some ` ∈ Z
(i.e., |xmax − xmin | � |ymax − ymin | � 2`), hence, for brevity, these properties are not
peculiarly mentioned. Similar as for discs, for a λ ∈ R+, λ · B denotes the scaled square
of size λ · 2` centered at B.

According to Cauchy’s root bound, see e.g. [Yap00Yap00], we have |zi | ≤ 1+maxd
i�0
|ai |
|ad | < 1+4 ·2τF ,

and thus ΓF � O(τF). In addition, it holds that

τF ≤ log(2d ·MeaF) ≤ d(1 + ΓF) ≤ 2dΓF ,

where we use Landau’s inequality, that is, MeaF ≤ ‖F‖2 ≤
√

d + 1 · ‖F‖, see e.g. [Yap00Yap00].
Following [MSW15MSW15, Theorem 1], we can compute an integer approximation Γ̃F ∈ N of ΓF with
ΓF +1 ≤ Γ̃F ≤ ΓF +8 log d+1 using Õ(d2ΓF)many bit operations. For this, the coefficients of F
need to be approximated to Õ(dΓF) bits after the binary point. From Γ̃F, we then immediately
derive an integer Γ � 2γ, with γ :� dlog Γ̃Fe ∈ N≥1, such that

ΓF + 1 ≤ Γ̃F ≤ Γ ≤ 2 · Γ̃F ≤ 2 · (ΓF + 8 log d + 1). (6.2)

It follows that 2Γ � 2O(ΓF+log d) is an upper bound for the modulus of all roots of F, and hence,
when interested in isolating all complex roots of F, we can always restrict ourselves to the
set of all complex numbers of absolute value at most 2Γ.

6.3 Counting Roots in a Disc

In this section, we introduce the T∗(∆)-test, which constitutes our main ingredient to count
the number of roots of F in a given disc ∆. Here, we briefly summarize the main properties
of the T∗(∆)-test. The reader willing to focus on the algorithmic details of the root isolation
algorithm is invited to read the following summary and skip the remainder of this section
on a first read.

• For a given polynomial F as in (6.16.1) and a disc ∆, the T∗(∆)-test always returns an
integer k ∈ {−1, 0, 1, . . . , d}. If k ≥ 0, then ∆ contains exactly k roots of F. If k � −1,
no further information on the number of roots in ∆ can be derived; see Lemma 6.156.15,
part (bb).

• If ∆ is (ρ1 , ρ2)-isolating for a set of k roots of F, where ρ1 �
2
√

2
3 ≈ 0.94 and ρ2 �

4
3 , then

T∗(∆) returns k, see Lemma 6.156.15, part (aa). In particular, T∗(∆) returns 0 if 4
3 · ∆ (and

2
√

2
3 · ∆) contains no root.

• The cost for the T∗(∆)-test is bounded by

Õ(d(τF + d log(m , r) + log(‖F∆‖−1))) � Õ(d(τF + d log(m , r) + log((max
z∈∆
|F(z)|)−1)))

bit operations, and thus directly related to the size of ∆ and the maximum absolute
value that F takes on ∆. For this, the test requires an L-bit approximation of F, with

L � Õ(τF + d log(m , r) + log(‖F∆‖−1)) � Õ(τF + d log(m , r) + log((max
z∈∆
|F(z)|)−1)),
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see Lemma 6.166.16. Here, we used that maxz∈∆ |F(z)| ≤ (d + 1) · ‖F∆‖ as shown in (6.76.7) in
the proof of Theorem 6.106.10.

6.4 Pellet’s Theorem and the Tk-Test

We introduce the so-called Tk-test based on Pellet’s theorem. Both this chapter and the
following chapter heavily rely on this test – it will allow us to count the number of roots of
a univariate polynomial in a given disc. Let F ∈ C[x] be a univariate polynomial of degree
d ≥ 2, let k be an integer with 0 ≤ k ≤ d � deg F, and let K ∈ Rwith K ≥ 1.

Definition 6.3 (The Tk-Test). For a polynomial F ∈ C[x], the Tk-test on a disc ∆ :� ∆r(m) with
parameter K holds if

Tk(m , r, K, F) :
����F(k)(m)rk

k!

���� > K ·
∑
i,k

����F(i)(m)r i

i!

���� (6.3)

or, equivalently, if F(k)(m) , 0 and

Tk(m , r, K, F) :
∑
i<k

����F(i)(m)r i−k k!
F(k)(m)i!

���� +∑
i>k

����F(i)(m)r i−k k!
F(k)(m)i!

���� < 1
K
. (6.4)

Mostly, we will write Tk(∆, K, F) for Tk(m , r, K, F), or simply Tk(∆, K) or Tk(∆, F) if the
omitted arguments are clear from the context. Notice that if the Tk-test succeeds for some
parameter K � K0, then it also succeeds for any K with K ≤ K0. Clearly, Tk(m , r, K, F) is
equivalent to Tk(0, 1, K, F∆), with F∆(x) � F(m + r · x).

The following result is a direct consequence of Rouché’s theorem, and, in our algorithm,
it will be crucial in order to compute the size of a cluster of roots of F; see [RS02RS02, Section 9.2]
for a proof.

Theorem 6.4. If Tk(m , r, K, F) holds for some K ∈ R with K ≥ 1 and some k ∈ {0, . . . , d}, then
∆r(m) contains exactly k roots of F counted with multiplicities.

Proof. The proof uses Rouché’s theorem, see Theorem 7.177.17 in Chapter 77 for a very general
(multidimensional) version. For two univariate polynomials φ and γ, Rouché’s theorem
yields thatφ and γ have the samenumber of zeroswithin adisc∆r(m), if |φ(x)−γ(x)| ≤ |γ(x)|
for all x ∈ ∂∆r(m). We apply the theorem to φ(x) � F(x) and γ(x) � F(k)(m) · (m − x)k/k!.
Note that if Tk(m , r, K, F) holds, it follows that F(k)(m) , 0, thus γ(x) has exactly k zeros at
m. Using Taylor expansion of F around m yields that

|φ(x) − γ(x)| �
���F(x) − F(k)(m)

k!
(m − x)k

��� � ���∑
i,k

F(i)(m)
i!
(m − x)i

��� ≤∑
i,k

���F(i)(m)
i!

r i
���

≤ 1
K

���F(k)(m)
k!

rk
��� ≤ |γ(x)|

for any x ∈ ∂∆r(m). We conclude that φ(x) � F(x) has the same number of roots within
∆r(m) as γ, namely k.

We derive criteria on the locations of the roots z1 , . . . , zd of F under which the Tk-test is
guaranteed to succeed:
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Theorem 6.5. Let k be an integer with 0 ≤ k ≤ d � deg(F), let K ∈ R with K ≥ 1, and let c1 and

c2 be arbitrary real values fulfilling

c2 · d · ln
(

1 + 2K
2K

)
≥ c1 · d ≥

M(k)
ln(1 +

1
8K )

. (6.5)

For a disc ∆ � ∆r(m), suppose that there exists a real λ with

λ ≥ max(4c2 ·M(k) · d3 , 16K ·M(k)2 · d)

such that ∆ is (1, λ)-isolating for the roots z1 , . . . , zk of F, then Tk(c1d · ∆, K, F) holds.

The (rather technical) proof of the above theorem is split into two separate lemmas that
we prove independent of each other.

Lemma 6.6. Let ∆ :� ∆r(m) be a disc that is (1, 4c2 ·M(k) · d3)-isolating for the roots z1 , . . . , zk ,

then, for all z ∈ c2d2 · ∆, it holds that F(k)(z) , 0. Furthermore,

∑d
i�k+1

��� F(i)(m)(c1d·r)i−k k!
F(k)(m)i!

��� < 1
2K .

Proof. 1. For the first part, we may assume that k ≥ 1. Then, for the k’th derivative of F
and any complex z that is not a root of F, it holds that

F(k)(z)
F(z) �

∑
J∈([d]k )

∏
j∈ J

1
z − z j

�

∏
i∈[k]

1
z − zi

+

∑
J∈([d]k ), J,[k]

∏
j∈ J

1
z − z j

.

Assume for contradiction that F(k)(z) � 0 for some z ∈ c2d2 · ∆. Then from the above
inequality, we obtain

∏
i∈[k]

1
|z−zi | ≤

∑
J∈([d]k ), J,[k]

∏
j∈ J

1
|z−z j | .We distinguish cases. First,

let k ≤ d/2. Then, we conclude

1 ≤
∑

J∈([d]k ), J,[k]

∏
i∈[k] |z − zi |∏
j∈ J |z − z j |

�

k−1∑
k′�0

∑
J∈([k]k′ )

∑
J′∈([d]\[k]k−k′ )

∏
i∈[k] |z − zi |∏

i∈ J |z − zi | ·
∏

j∈ J′ |z − z j |

≤
k−1∑
k′�0

(
k
k′

) (
d − k
k − k′

) (
2c2d2r

4c2kd3r − c2d2r

) k−k′

≤
k−1∑
k′�0

(
k
k′

) (
d − k
k − k′

) (
1

2kd

) k−k′

.

We can now apply crude bounds to the binomial coefficients in the above sum in order
to obtain

1 ≤
k−1∑
k′�0

kk−k′

(k − k′)! (d − k)k−k′
(

1
2kd

) k−k′

≤
k−1∑
k′�0

(1/2)k−k′

(k − k′)! < e1/2 − 1 < 1,

which is a contradiction. Now suppose k > d/2. We then have

1 ≤
∑

J∈([d]k ), J,[k]

∏
i∈[k] |z − zi |∏
j∈ J |z − z j |

�

n−k∑
k′�1

∑
J∈( [k]k−k′)

∑
J′∈([d]\[k]k′ )

∏
i∈[k] |z − zi |∏

i∈ J |z − zi | ·
∏

j∈ J′ |z − z j |

≤
d−k∑
k′�1

(
k

k − k′

) (
d − k

k′

) (
2c2d2r

4c2kd3r − c2d2r

) k′

<
d−k∑
k′�1

(
k

k − k′

) (
d − k

k′

) (
2

3kd

) k′

.
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Bounding the binomial coefficients leads

1 ≤
d−k∑
k′�1

kk′

k′!
(d − k)k′

(
2

3kd

) k′

≤
d−k∑
k′�1

1
k′!

(
2
3

) k′

≤ e2/3 − 1 < 1, again a contradiction.

2. Similar as above, with z(k)1 , . . . , z(k)d−k denoting the roots of F(k), it holds that����F(k+i)(m)
F(k)(m)

���� ≤ ∑
J∈([d−k]

i )

∏
j∈ J

1
|m − z(k)j |

≤
(d−k

i

)
(c2d2r)i ,

and thus

d∑
i�k+1

����F(i)(m)(c1dr)i−k k!
F(k)(m)i!

���� ≤ d−k∑
i�1

����F(k+i)(m)
F(k)(m)

���� (c1dr)i
i!

≤
d−k∑
i�1

(d−k
i

)
c i

2d2i r i

(c1dr)i
i!

<
d−k∑
i�1

( c1
c2

) i 1
i!

≤ e c1/c2 − 1 ≤ 1
2K
,

where we used that k!
(k+i)! ≤

1
i! and (6.56.5) for the last inequality.

Lemma 6.7. Le λ be a real value with λ ≥ 16K ·M(k)2 · d and suppose that ∆ :� ∆r(m) is a disc
that is (1, λ)-isolating for the roots z1 , . . . , zk of F, then

∑
i<k
|F(i)(m)|
|F(k)(m)|

(c1d·r)i−k k!
i! < 1

2K .

Proof. We may assume that k ≥ 1. Write F(x) � G(x)H(x) with G(x) � ∏
i∈[k](x − zi) and

H(x) � ∏
j∈[d]\[k](x − z j). By induction over k, it is straightforward to show that F(k)(x) �

k!
∑

I∈([d]k )
∏

i<I(x − zi) � k! ·∑J∈( [d]d−k)
∏

j∈ J(x − z j). It follows that

|F(k)(m)| � k! · |H(m)|
��� ∑

J∈( [d]d−k)

∏
j∈ J(m − z j)∏d

i�k+1 |m − zi |

��� ≥ k! · |H(m)|
(
1 −

∑
J∈( [d]d−k):

J,[d]\[k]

∏
j∈ J |m − z j |∏d

i�k+1 |m − zi |

)

≥ k! · |H(m)|
(
1 −

min(k ,d−k)∑
j�1

∑
J1 , J2: J1∈([k]j )∧J2∈([d]\[k]d−k− j)

∏
j∈ J1 |m − z j |
(λr) j

)
,

where we used that the j distances in the denominator that are left after canceling out the
common factors from the fraction are all lower bounded by λr. Moreover, using that J1 ⊂ [k],
we can upper bound the distances in the enumerator by r and obtain

|F(k)(m)| ≥ k! · |H(m)|
(
1 −

min(k ,d−k)∑
j�1

(
k
j

) (
d − k

d − k − j

)
1
λ j

)
≥ k! · |H(m)|

(
2 −

d∑
j�0

k j
(
d
j

)
1
λ j

)
.

As
∑d

j�0 k j (d
j

)
λ− j ≤ (1 +

k
λ )d ≤ e

1
4 ≤ 3/2. We conclude that |F(k)(m)| ≥ k!|H(m)|/2.

As G(i)(x) � i!
∑

J∈([k]i )
∏

j<J(x − z j), it holds that |G(i)(m)| ≤ i!
(k

i

)
rk−i . In addition, as

|H
(i)(m)

H(m) | ≤
∑

J∈([d]i )
∏

j∈ J
1

|m−z j | ≤ i! ·
(d−k

i

) 1
(λr)i , we obtain

|G(i− j)(m)H( j)(m)| ≤ |H(m)| · (i − j)! j!
(

k
i − j

) (
d − k

j

)
· 1
λ j rk−i . (6.6)
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Morevoer, by induction F(i)(x) � ∑i
j�0

( i
j

)
G(i− j)(x)H( j)(x), thus, using (6.66.6), it follows that

k−1∑
i�0

|F(i)(m)|
|F(k)(m)|

(c1dr)i−k k!
i!

≤
k−1∑
i�0

i∑
j�0

|H(m)|
|F(k)(m)|

(i − j)! j!
(

k
i − j

) (
d − k

j

) (
i
j

)
(c1d)i−k

λ j
k!
i!

≤ 2(c1d)−k
k−1∑
i�0

(
k
i

)
(c1d)i + 2

k−1∑
i�1

i∑
j�1

(
k

i − j

) (
d − k

j

)
(c1d)i−k

λ j ,

where we used that |H(m)|/|F(k)(m)| ≤ 2/k!. We can upper bound the second summand by

2
k−1∑
i�1

i∑
j�1

(
d − k

j

)
k j

λ j lnk−i
(
1 +

1
8K

)
≤ k − 1

8Kk
+

k−1∑
i�2

i∑
j�2

2
(16Kk) j

,

using that λ ≥ 16Kk2 · d and c1d ≥ k/ln
(
1 +

1
8K

)
. In summary, it follows that

k−1∑
i�0

|F(i)(m)|
|F(k)(m)|

(c1dr)i−k k!
i!

< 2 ©­«
k∑

j�0

(
k
j

)
(c1d)− j − 1ª®¬ + 1

4K
≤ 2

(
ek/(c1d) − 1

)
+

1
4K
≤ 1

2K
.

In the two next chapters, we will make use of the following Corollary 6.86.8, which is a
consequence of Theorem 6.56.5 with the specific values K :� 3

2 , c1 :� 16, c2 :� 64, λ � 256d5,
and thus M(k)/ln(1 +

1
8K ) ≈ 12.49 ·M(k) and ln

( 1+2K
2K

)
≈ 0.29.

Corollary 6.8. Let ∆ be a disc in the complex space that is ( 1
16d , 16d4)-isolating for a set of k roots

(counted with multiplicity) of F. Then, Tk(∆, 3
2 , F) holds.

6.4.1 The T G
k -Test: Using Graeffe Iteration

Corollary 6.86.8 guarantees success of the Tk(∆, 3/2, F)-test, with k � |Z(∆)|, if the disc ∆ is
( 1

16d , 16d4)-isolating for a set of k roots. In this section, we use a well-known approach for
squaring the roots of a polynomial, called Graeffe iteration [Bes49Bes49], in order to improve upon
the Tk-test. More specifically, we present a variant of the Tk-test, which we denote T G

k -test,
that allows us to exactly count the roots contained in some disc ∆, if ∆ is (ρ1 , ρ2)-isolating
for a set of k roots, with constants ρ1 and ρ2 of size ρ1 ≈ 0.947 and ρ2 �

4
3 , i.e., the Graeffe

iteration is used in order to reduce the fraction of ρ1 and ρ2 from polynomial in d to constant.

Definition 6.9 (Graeffe Iteration). For a polynomial F(x) � ∑d
i�0 ai x i ∈ C[x], write F(x) �

Fe(x2) + x · Fo(x2), with

Fe(x) :� a2b d
2 c

x b
d
2 c + a2b d

2 c−2x b
d
2 c−1

+ . . . + a2x + a0 , and

Fo(x) :� a2b d−1
2 c+1x b

d−1
2 c + a2b d−1

2 c−1x b
d−1

2 c−1
+ . . . + a3x + a1.

Then, the first Graeffe iterate F[1] of F is defined as: F[1](x) :� (−1)d[Fe(x)2 − x · Fo(x)2].

The first part of the following theorem is well-known (e.g. see [Bes49Bes49]), and we give its
proof only for the sake of a self-contained presentation. For the second part, we have not
been able to find a corresponding result in the literature. Despite the fact that we consider
the result to be of independent interest, we will need it in the analysis later on.

Theorem 6.10. Denote the roots of F by z1 , . . . , zd , then it holds that F[1](x) � ∑d
i�0 a[1]i x i �

a2
d ·

∏d
i�1(x − z2

i ). In particular, the roots of the first Graeffe iterate F[1] are the squares of the roots of



6.4. Pellet’s Theorem and the Tk-Test 95

F. In addition, we have

d2 ·M(‖F‖)2 ≥ ‖F[1]‖ ≥ ‖F‖2 · 2−4d .

Proof. Notice that a[1]d � a2
d follows directly from the definition of F[1]. Furthermore, we have

F[1](z2
i ) � (−1)d · [Fe(z2

i )
2 − z2

i · Fo(z2
i )

2]
� (−1)d · [Fe(z2

i ) − zi · Fo(z2
i )] · [Fe(z2

i ) + zi · Fo(z2
i )]

� (−1)d · [Fe(z2
i ) − zi · Fo(z2

i )] · F(zi) � 0.

Going from F to an arbitrary small perturbation F̃ (which has only simple roots and for
which z̃2

i , z̃2
j for all pairs of distinct roots z̃i and z̃ j of F̃), we conclude that each root z2

i of
F[1] has multiplicity

µ(z2
i , F
[1]) �

∑
j:z2

j �z2
i

µ(z j , F).

Hence, the first claim follows. For the second claim, notice that the left inequality follows
immediately from the fact that each coefficient of F[1] is the sum of at most d2 many products
of the form ±ai · a j , and each of these products has absolute value smaller than or equal
to M(‖F‖)2. For the right inequality, let k ∈ {0, . . . , d} be such that |zi | < 2 for i ∈ [k],
and that |zi | ≥ 2 for i ∈ [d] \ [k]. Let zmax be a point in the closure of the unit disc ∆1(0)
such that |F(zmax)| � maxz:|z |≤1 |F(z)|. Since F takes its maximum on the boundary of ∆1(0),
we must have |zmax | � 1, and using Cauchy’s Integral Theorem to write the coefficients
of F in terms of an integral, we conclude that |F(zmax)| ≥ ‖F‖. In addition, it holds that
|F(zmax)| ≤

∑d
i�0 |ai | · |zmax |d �

∑d
i�0 |ai | ≤ (d + 1) · ‖F‖, and thus

‖F‖ ≤ |F(zmax)| � max
z:|z |≤1

|F(z)| ≤ (d + 1) · ‖F‖. (6.7)

Applying the latter result to the polynomial g(x) :�
∏k

i�1(z − z2
i ) yields the existence of a

point z′ with |z′ | � 1 and |g(z′)| ≥ 1. Hence, it follows that

|F[1](z′)| � |ad |2
∏
i∈[k]
|z′ − z2

i | ·
∏

i∈[d]\[k]
|z′ − z2

i | ≥ |ad |2
∏

i∈[d]\[k]
|(
√

z′ − zi) · (
√

z′ + zi)|

≥ |ad |2 ·
∏
i∈[k]

|zmax − zi |2
9

·
∏

i∈[d]\[k]

|zmax − zi |2
9

≥ |F(zmax)|2
9d

,

where we used that |x − y | < 3 for arbitrary complex points x , y with |x | � 1 and |y | < 2,
and that |x − z | ≥ |y−z |

3 for arbitrary complex points x , y , z with |x | � |y | � 1 and |z | ≥ 2. We
conclude that

‖F[1]‖ ≥ |F
[1](z′)|
d + 1

≥ |F(zmax)|2
(d + 1) · 9d

≥ ‖F‖2 · 2−4d .

Wecannow iteratively applyGraeffe iterations in order to square the roots of apolynomial
F(x) several times. In this way, we can reduce the “separation factor of the Tk-Test” from
polynomial in d (namely 256d5) to a constant value (in our case, this constant will be ≈ 1.41)
whenwe run N , with N � Θ(log log d), Graeffe iterations first, and then apply the Tk-test; see
Algorithm 6.26.2. From Theorem 6.56.5 and Theorem 6.106.10, we then obtain the following result:

Lemma 6.11. Let ∆ be a disc in the complex plane and F(x) ∈ C[x] a polynomial of degree d. Let

N :� dlog(1+ log d)e+5 and ρ1 :� 2
√

2
3 ≈ 0.943 and ρ2 :� 4

3 . Then,
2N
√

1
16d > ρ1, and the following

hold:
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Algorithm 6.1: Graeffe Iteration
Input : Polynomial F(x) � ∑d

i�0 ai x i , and a non-negative integer N .
Output: Polynomial F[N](x) � ∑d

i�0 a[N]i x i . If F has roots z1 , . . . , zd , then F[N] has roots
z2N

1 , . . . , z2N

d , and a[N]d � a2N

d

F[0](x) :� F(x)
for i � 1, . . . ,N do

F[i](x) :� (−1)d[F[i−1]
e (x)2 − x · F[i−1]

o (x)2]
return F[N](x)

Algorithm 6.2: T G
k (∆, K)-Test

Input : Polynomial F(x) of degree d, disc ∆ � ∆r(m), real value K with 1 ≤ K ≤ 3
2

Output: True or False. If the algorithm returns True, ∆ contains exactly k roots of F.
Call Algorithm 6.16.1 with input F∆(x) :� F(m + r · x) and N :� dlog(1 + log d)e + 5,
which returns F[N]

∆

return Tk(0, 1, K, F[N](x))

(a) If ∆ is (ρ1 , ρ2)-isolating for a set of k roots of F, then T G
k (∆,

3
2 ) succeeds.

(b) If T G
k (∆, K) succeeds for some K ≥ 1, then ∆ contains exactly k roots.

Proof. The lower bound on ρ(d) :� 2N
√

1
16d follows by a straight forward computation that

shows that ρ(d), considered as a function in d, is strictly increasing and that ρ(2) ≈ 0.947 >
2
√

2
3 ≈ 0.943. Now, let F[N]

∆
be the polynomial obtained from F∆ after performing N recursive

Graeffe iterations. If∆ is (ρ1 , ρ2)-isolating for a set of k roots of F, then the unit disc∆′ :� ∆1(0)
is also (ρ1 , ρ2)-isolating for a set of k roots of F∆, that is, ∆′ contains k roots of F∆ and all other
roots of F∆ have absolute value larger than 4

3 . Hence, we conclude that F[N]
∆

has k roots of
absolute value less than ρ1

2N
< 1

16d , whereas the remaining roots have absolute value larger
than ρ2N

2 ≥ 16d4. From Corollary 6.86.8, we thus conclude that Tk(∆′, 3
2 , F
[N]
∆
) succeeds. This

shows (a). Part (b) is an immediate consequence of Theorem 6.46.4 and the fact that Graeffe
iteration does not change the number of roots contained in the unit disc.

Note that in the special case where k � 0, the failure of T G
0 (∆) already implies that 4

3 · ∆
contains at least one root. The following result is a direct consequence of Theorem 6.106.10.

Corollary 6.12. Let F∆ and F[N]
∆

be defined as in Algorithm 6.26.2. Then, it holds that

log(‖F[N]
∆
(x)‖ , ‖F[N]

∆
(x)‖−1) � O(log d · (d + log(‖F∆‖ , ‖F∆‖−1)).

6.4.2 The T̃ G
k -Test: Using Approximate Arithmetic

So far, the Tk-test and T G
k -test are formulated in a way such that, in general, high-precision

arithmetic, or even exact arithmetic, is needed in order to compute its output. Namely,
if the two expressions on both sides of (6.36.3) are actually equal, then exact arithmetic is
needed to decide equality. Even worse, in our general setting, we cannot even handle this
case as we have only access to (arbitrary good) approximations of the coefficients of the
input polynomial F and even if the two expression are different but almost equal, then
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we need to evaluate the polynomial F (and its higher order derivatives) with a very high
precision in order to decide the inequality, which induces high computational costs. This is a
typical problem that appears in many algorithms, where a sign predicate P is used to draw
conclusions, which in turn decides which branch of the algorithm is taken. For a predicate
P, we say that P succeeds if it returns True, and, otherwise, we say that it fails. Suppose
that, similar as for the Tk-test (with E` � |F(k)(m)| · rk/k! and Er �

∑
i,k |F(i)(m)| · r i/i!), there

exist two non-negative expressions E` and Er such that P succeeds if and only if E` −Er > 0.
We further denote by P3/2 the predicate that succeeds if and only if the stronger inequality
E` − 3

2 · Er > 0 holds. Then, success of P3/2 implies success of P; however, a failure of P3/2
does, in general, not imply that P fails as well. As already mentioned above for the special
case, where P � Tk(m , r, 1, F), it might be computationally expensive (or even infeasible) to
determine the outcome of P, namely in the case where the two expressions E` and Er are
equal or almost equal. In order to avoid such undesirable situations, we replace the predicate
P by a corresponding so-called soft-predicate [YSS13YSS13], which we denote by P̃. This predicate
P̃ does not only return True or False, but may also return Undecided. If it returns True or
False, the result of P̃ coincides with that of P. However, if P̃ returns Undecided, we may
only conclude that E` and Er are roughly equal, more precisely 2

3 · E` < Er < 3
2 · E` . We

briefly sketch our approach and give details in Algorithm 6.36.3: In the first step, we compute
approximations Ẽ` and Ẽr of the values E` and Er , respectively. Then, we check whether we
can already compare the exact values E` and Er by just considering their approximations
and taking into account the quality of approximation. If this is the case, we are done as
we can already determine the outcome of P. Hence, in this case P̃ returns True or False).
Otherwise, we iteratively increase the quality of approximation until we can either show that
E` > Er , E` < Er , or 2

3 · E` ≤ Er ≤ 3
2 · E` . We may consider the latter case as an indicator that

comparing E` and Er is difficult, and thus P̃ returns Undecided in this case.
It is easy to see that Algorithm 6.36.3 terminates if and only if at least one of the two

expressions E` and Er is non-zero, hence we make this a requirement. In the following
lemma, we further give a bound on the precision to which the expressions E` and Er have to
be approximated in order to guarantee termination of the algorithm.

Algorithm 6.3: Soft-predicate P̃
Input : A predicate P defined by non-negative expressions E` and Er , with E` , 0 or

Er , 0; i.e., P succeeds if and only if E` > Er .
Output: True, False, or Undecided. In case of True (False), P succeeds (fails). In case

of Undecided, we have 2
3 · E` < Er ≤ 3

2 · E` .
L :� 1
while True do

Compute L-bit approximations Ẽ` and Ẽr of the expressions E` and Er ,
respectively.

E±` :� max(0, Ẽ` ± 2−L) and E±r :� max(0, Ẽr ± 2−L)
if E−` > E+

r then return True // It follows that E` > Er .

if E+

` < E−r then return False // It follows that E` < Er .

if 2
3 · E+

` ≤ E−r < E+
r ≤ 3

2 · E−` , then return Undecided
// It follows that

2
3 · E` ≤ Er ≤ 3

2 · E` .
L :� 2 · L
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Lemma 6.13. Algorithm 6.36.3 terminates for an L that is upper bounded by

L0 :� 2 · (log(max(E` , Er)−1) + 4).

Proof. Suppose that L ≥ log(max(E` , Er)−1) + 4. We further assume that E` � max(E` , Er);
the case Er � max(E` , Er) is then treated in analogous manner. It follows that

E+
r ≤ Er + 2−L+1 ≤ E` + 2−L+1 ≤ 9

8
· E` ≤

3
2
· E` − 2−L+2 ≤ 3

2
· E−` .

Hence, if, in addition, 2
3 · E+

` ≤ E−r , then the algorithm returns Undecided in Step 10. Other-
wise, we have 9

8 · E` ≥ E` + 2−L+1 ≥ E+

` >
3
2 · E−r , and thus

E−` ≥ E` − 2−L+1 ≥ 7
8
· E` ≥

3
4
· E` + 2−L+1 ≥ E−r + 2−L+1 ≥ E+

r ,

which shows that the algorithm returns True in Step 6. Since we double L in each iteration,
it follows that the algorithmmust terminate for an L with L < 2 · (log(max(E` , Er)−1)+4).

Notice that if P̃ returns True, then P also succeeds. This however does not hold in the
opposite direction. In addition, if P3/2 succeeds, then E` > Er and E` cannot be a relative
3
2 -approximation of Er , hence P̃ must return True. We conclude that our soft-predicate is
somehow located “in between” the two predicates P and P3/2.

We now return to the special case, where P � Tk(m , r, 1, F), with E` � |F(k)(m)| · rk/k!
and Er �

∑
i,k |F(i)(m)| · r i/i! the two expressions on the left and the right side of (6.36.3),

respectively. Then, success of P implies that the disc ∆ � ∆r(m) contains exactly k roots of F,
whereas a failure of P yields no further information. Now, let us consider the corresponding
soft predicate P̃ � T̃k(∆, F) of P � Tk(∆, F). If P̃ returns True, then this implies success of P.
In addition, notice that success of Tk(∆, 3

2 , F) implies that P̃ returns True, and thus we may
replaceTk(∆, 3

2 , F) by T̃k(∆, F) in the second part of Theorem 6.56.5. Similarly, in Lemma 6.116.11, we
may also replace T G

k (∆,
3
2 , F) by the soft-version T̃ G

k (∆, F) of T
G

k (∆, F). We give more details
for the computation of T̃k(∆, F) and T̃ G

k (∆, F) in Algorithms 6.46.4 and 6.56.5, which are essentially
applications of Algorithm 6.36.3 to the predicates Tk(∆, F) and T G

k (∆, F). The lemma below
summarizes our results. Based on Lemma 6.136.13, we also provide a bound on the precision
L for which Algorithm 6.46.4 terminates and a bound for the bit complexity of Algorithm 6.46.4.
A corresponding bound for the bit complexity of carrying out the T̃ G

k (∆, F)-test for all
k � 0, . . . , d is given in Lemma 6.146.14.

Lemma 6.14. For a disc ∆ :� ∆r(m) in the complex plane and a polynomial F ∈ C[x] of degree d,
the T̃k(∆, F)-test terminates with an absolute precision L that is upper bounded by

L(∆, F) :� L(m , r, F) :� 2 ·
(
4 + log(‖F∆‖−1)

)
. (6.8)

If Tk(∆, 3
2 , F) succeeds, the T̃k(∆, F)-test returns True. The cost for running the T̃k(∆, F)-test for all

k � 0, . . . , d is upper bounded by

Õ(d(d · log(m , r) + τF + L(∆, F)))

bit operations. The algorithm needs an Õ(d · log(m , r) + τF + L(∆, F))-bit approximation of F.

Proof. LetP :� Tk(∆, 1, F) be the predicate that succeeds if and only if E` > Er , with E` :� | fk |
and Er :�

∑
i,k | fi |. Then, E±` :� f ±k and E±r :�

∑
i,k f ±i are lower and upper bounds for E` and

Er , respectively, such that |E±` −E` | ≤ 2−L+1 and |E±r −Er | ≤ 2−L+1. Hence, Lemma 6.136.13 yields
that Algorithm 6.46.4 terminates for an L smaller than 2 · (4 + log(max(E` , Er)−1)) ≤ L(∆, F).
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Algorithm 6.4: T̃k(∆, F)-test
Input : A polynomial F(x) of degree d, a disc ∆ :� ∆r(m) in the complex plane, and

an integer k with 0 ≤ k ≤ d.
Output: True, False, Undecided. If the algorithm returns True, the disc ∆r(m)

contains exactly k roots of F.
L :� 1
while True do

Compute an approximation F̃∆(x) �
∑d

i�0 f̃i x i of the polynomial
F∆(x) :�

∑d
i�0 fi · x i :� F(m + r · x) such that f̃i · 2L+dlog(d+1)e ∈ Z and

| fi − f̃i | < 2−L+dlog(d+1)e for all i.
// (L + dlog(d + 1)e)-bit approximation of F∆.

f −i :� max(0, | f̃i | − 2−L−dlog(d+1)e) for i � 0, . . . , d.
f +i :� | f̃i | + 2−L−dlog(d+1)e for i � 0, . . . , d.

// lower and upper bounds for | fi |.
if f −k −

∑
i,k f +i > 0 then

return True
// It follows that Tk(∆, F) succeeds.

if
∑

i,k f −i − f +k > 0 then
return False

// It follows that Tk(∆, F) fails.
if

∑
i,k f −i −

2
3 · f +k ≥ 0 and

3
2 · f −k −

∑
i,k f +i ≥ 0 then

return False
L :� 2 · L

We have already argued above that success of the predicate P3/2 � Tk(∆, 3
2 , F) implies

that P̃ � T̃k(∆, F) returns True. Hence, it remains to show the claim on the bit complexity
for carrying out the T̃k(∆, F)-test for all k � 0, . . . , d. For a given L, we can compute an
(L + dlog(d + 1)e)-bit approximation F̃∆(x) �

∑d
i�0 f̃i x i of F∆ with a number of bit operations

that is bounded by Õ(d(τF + d log(m , r) + L)); e.g. see the first part of the proof of [SM16SM16,
Lemma 17]. For a fixed k, the computation of the signs of the sums in each of the three IF
clauses needs d additions of dyadic numbers with denominators of bit-size dlog(d + 1)e + L
and with numerators of bit-size O(L + d log(r) + τF), hence the cost is bounded by O(d(τF +

d log(r) + L)) bit operations. Notice that, when passing from an integer k to a k′ , k, the
corresponding sums in one If-clause differ only by two terms, that is, f ±k and f ±k′ . Hence,
we can decide all If-clauses for all k using O(d) additions. Furthermore, we double the
precision L in each step, and the algorithm terminates for an L smaller than L(∆, F). Hence,
L is doubled at most log L(∆, F) many times, and thus the total cost for all k is bounded by
Õ(d(τF + d log(m , r) + L(∆, F))) bit operations.

We now extend the above soft-variant T̃k of the Tk-test to a corresponding soft-variant of
the T G

k -test, which we denote T̃ G
k ; see Algorithm 6.56.5 for details. We further combine T̃ G

k for
all k � 0, . . . , d to obtain T∗(∆, F)with

T∗(∆, F) :�

{
k if there exists a k such that T̃ G

k (∆, F) succeeds
−1 otherwise.

(6.9)

Again, for brevity, we often omit F and just write T∗(∆). We say that T∗ succeeds if it
returns a non-negative value. Otherwise, it fails. Notice the difference between T∗ and T∗,
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Algorithm 6.5: T̃ G
k (∆, F)-Test

Input : Polynomial F(x) ∈ C[x] of degree d, a disc ∆ :� ∆r(m) in the complex space.
Output: True, False, or Undecided. If the algorithm returns True, ∆ contains exactly k

roots of F.
Let F[N]

∆
(x) be the N-th Graeffe iterate of F∆(x) :� F(m + r · x), where

N :� dlog(1 + log d)e + 5
return T̃k(0, 1, F[N]∆ )

which we defined in Chapter 55. The T∗-test uses both Graeffe iteration and approximate
arithmetic while the T∗-test was formulated for exact arithmetic without Graeffe iteration.

The following result, which can be considered as the “soft variant” of Lemma 6.116.11, can
then immediately be deduced from Lemma 6.116.11 and Lemma 6.146.14:

Lemma 6.15 (Soft-version of Lemma 6.116.11). Let ∆ :� ∆r(m) be a disc in the complex plane,

F(x) ∈ C[x] be a polynomial of degree d, and let ρ1 �
2
√

2
3 and ρ2 �

4
3 . Then, the following hold:

(a) If ∆ is (ρ1 , ρ2)-isolating for a set of k roots of F, then T∗(∆) returns k.

(b) If T∗(∆) returns a k ≥ 0, then ∆ contains exactly k roots.

For the complexity analysis of our root isolation algorithm (see Section 6.56.5), we provide
a bound on the total cost for running the T∗-test.

Lemma 6.16. The total cost for carrying out the T∗(∆) is bounded by

Õ(d(τF + d log(m , r) + L(∆, F))) � Õ(d(τF + d log(m , r) + log((max
z∈∆
|F(z)|)−1)))

bit operations. For this, we need an L-bit approximation of F with

L � Õ(τF + d log(m , r) + L(∆, F)) � Õ(τF + d log(m , r) + log((max
z∈∆
|F(z)|)−1)).

Proof. According to Lemma 6.146.14, the computation of T̃k(0, 1, F[N]∆ ) needs an L-bit approxima-
tion F̃[N]

∆
of F[N]

∆
, with L bounded by

Õ(d + τF[N]
∆

+ L(0, 1, F[N]
∆
)) � Õ(d + log(‖F[N]

∆
‖ , ‖F[N]

∆
‖−1)). (6.10)

Given such an approximation F̃[N]
∆

, the cost for running the test for all k � 0, . . . , d is then
bounded by

Õ(d(d + τF[N]
∆

+ L)) bit operations.

In each of the N � O(log log d)Graeffe iterations, the size of log(‖F[i]
∆
‖ , ‖F[i]

∆
‖−1) increases by

at most a factor of two plus an additive term 4d; see Theorem 6.106.10. Hence, we must have

log(‖F[i]
∆
‖ , ‖F[i]

∆
‖−1) � O(log d · log(‖F∆‖ , ‖F∆‖−1) + d log d)

� Õ(d log(m , r) + τF + L(∆, F))

for all i � 0, . . . ,N . We conclude that the above bound (6.106.10) for L can be replaced by
Õ(τF + d log(m , r) + L(∆, F)).

It remains to bound the cost for computing an approximation F̃[N]
∆

of F[N]
∆

with ‖F[N]
∆
−

F̃N
∆
‖ < 2−L. Suppose that, for a given ρ ∈ N we have computed an approximation F̃∆ of F∆,
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with ‖F∆ − F̃∆‖ < 2−ρ. According to [Sch82aSch82a, Theorem 8.4] (see also [KS13KS13, Theorem 14]
and [SM16SM16, Lemma 17]), this can be achieved using a number of bit operations bounded by
Õ(d(d log(m , r)+ τF + ρ)). In each Graeffe iteration, an approximation F̃[i]

∆
of F[i]

∆
is split into

two polynomials F̃[i]
∆,o and F̃[i]

∆,e with coefficients of comparable bit-size (and half the degree),
and an approximation F̃[i+1]

∆
of F[i]

∆
is then computed as the difference of F̃[i]

∆,e and x · F̃[i]
∆,o . If all

computations are carried out with fixed point arithmetic and an absolute precision of ρ bits
after the binary point, then the precision loss in the i-th step, with i � 0, . . . ,N , is bounded by
O(log d+log ‖F[i]

∆
‖) � O(2i(log d+log ‖F∆‖)) � O(log d(log d+log ‖F∆‖)) bits after the binary

point. The cost for the twomultiplications and the addition is boundedby Õ(d(ρ+log ‖F[i]
∆
‖)).

Since there are only N � O(log log d) many iterations, we conclude that it suffices to start
with an approximation F̃∆ of F∆, with ‖F∆ − F̃∆‖ < 2−ρ and ρ � Õ(d log(m , r)+ τF + L(∆, F)).
The total cost for all Graeffe iterations is then bounded by Õ(dρ) bit operations, hence the
claim follows together with the fact that maxz∈∆ |F(z)| ≤ (d + 1)‖F∆‖ as shown in (6.76.7) in the
proof of Theorem 6.106.10.

6.5 CIsolate: An Algorithm for Root Isolation

We can now formulate our algorithm, which we denote by CIsolate. CIsolate computes
isolating discs for all complex roots of a polynomial F within some given closed, axis-aligned
square B ⊂ C under the assumption that the enlarged square 2B contains only simple roots
of F. However, CIsolate might also return isolating discs for some of the roots that are only
contained within the enlarged square 2B. In particular, in the important special case, where
F is square-free and where we start with a square B that is known to contain all complex
roots of F, see the end of Section 6.26.2 for the construction of such a square, the algorithm
isolates all complex roots of F. Before we give details, we need some further definitions.
Thereater, we will give an overview of the algorithm before we provide details and the proof
for termination and correctness.

6.5.1 Connected Components

Given a set S � {B1 , . . . , Bm} of squares B1 , . . . , Bm ⊂ C, we say that two squares B, B′ ∈ S
are connected in S (B ∼S B′ for short) if there exist squares Bi1 , . . . , Bis ∈ S with Bi1 � B,
Bis � B′, and Bi j ∩ Bi j+1 , ∅ for all j � 1, . . . , s′ − 1. This yields a decomposition of S
into equivalence classes C1 , . . . , Ck ⊂ S that correspond to maximal connected and disjoint
components C̄` �

⋃
i:Bi∈C` Bi , with ` � 1, . . . , k. Notice that formally C` is defined as the

set of squares Bi that belong to the same equivalence class, whereas C̄` denotes the closed
region in C that consists of all points that are contained in a square Bi ∈ C` . We will, for
simplicity, abuse notation and simply use C to denote the set of squares B contained in a
component C as well as to denote the set of points contained in the closed region C̄. Now, let
C � {B1 , . . . , Bs} be a connected component consisting of equally sized squares Bi of width
w, then we define (see also Figure 6.16.1):

• BC is the axis-aligned closed square in C of minimal width such that C ⊂ BC and

min
z∈BC
<(z) � min

z∈C
<(z) and max

z∈BC
=(z) � max

z∈C
=(z),

where<(z) denotes the real part and =(z) the imaginary part of an arbitrary complex
value z. The above condition (figuratively speaking) ensures that the square BC is
maximally moved to the “south-east”.
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4∆C :� ∆3w(BC)(m)

2∆C :� ∆ 3
2 w(BC)(m)

∆C :� ∆ 3
4 w(BC)(m)

BC

B1 B2 B3

B4

B5

C1

m :� mC

C2 C3

Figure 6.1: A component C1 :� C consisting of 5 squares B1 , . . . B5, the enclos-
ing square BC with center m :� mC and the discs ∆C , 2∆C and 4∆C . The disc
4∆C intersects the component C2 but does not intersect C3.

• For a component C and corresponding square BC, we denote mC the center of BC, and
∆C :� ∆3w(BC)/4(mC) a disc containing BC, and thus also C and the diameter w(C) of the
component C we define to be the width of BC, i.e., w(C) :� w(BC), and r(C) :� w(C)/2
is the radius of C.

• We define C+ :�
⋃

i:Bi∈C 2Bi as the union of the enlarged squares 2Bi . Notice that C+ is
the w/2-neighborhood of C w.r.t. the∞-norm.

6.5.2 The Algorithm

We start with an informal description ofCIsolate, wherewe focus on themain ideas explain-
ing the ratio behind our choices. For the sake of comprehensibility, we slightly simplified
some steps at the cost of complete formal correctness, hence, the considerations below should
be taken with a grain of salt. A precise definition of the algorithm including all details is
given in the pseudocode in Algorithm 6.66.6 and the subroutines NewtonTest (Algorithm 6.76.7)
and Bisection (Algorithm 6.86.8).

From a high-level perspective, our algorithm follows the classical subdivision approach
of Weyl [Wey24Wey24]. That is, starting from the input square B, we recursively subdivide B into
smaller squares, and we remove squares for which we can show that they do not contain
a root of F. Eventually, the algorithm returns regions that are isolating for a root of F. In
order to discard a square B, with B ⊂ B, we call the T∗(∆B , F)-test with ∆B being the disc
containingB. The remaining squares are then clustered intomaximal connected components.
We further check whether a component C is well-separated from all other components, that
is, we test whether the distance from C to all other components is considerably larger than
its diameter. If this is the case, we use the T∗-test in order to determine the “multiplicity”
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kC of the component C, that is, the number of roots contained in the enclosing disc ∆C;
see Line 99 of Algorithm 6.66.6 for details and Figure 6.16.1 for an illustration. If kC � 1, we
may return an isolating disc for the corresponding unique root. Otherwise, there is a
cluster consisting of two or more roots, which still have to be separated from each other. A
straightforward approach to separate these roots from each other is to recursively subdivide
each square into four equally sized squares and to remove squares until, eventually, each
of the remaining components contains exactly one root that is well-separated from all other
roots; see also Algorithm 6.86.8 (Bisection) and Figure 6.36.3. However, as described above in
the overview, this approach itself yields only linear convergence to the roots, and the main
idea to achieve quadratic convergence here is to consider a cluster of k roots as a single root
of multiplicity k and to use a generalized Newton iteration for multiple roots to compute a
better approximation of this root, see Algorithm 6.76.7 (NewtonTest) and Figure 6.26.2.

The main crux of the NewtonTest is that we never have to check in advance whether
Newton iteration actually yields an improved approximation of the cluster of roots. Instead,
correctness is verified independently using the T∗-test. In order to achieve quadratic con-
vergence in the presence of a well isolated root cluster, an integer NC is assigned to each
component C in each iteration. This speed parameter NC may be thought of as the actual
speed of convergence to the cluster of roots contained in C. In case of success of the Newton-
Test, the component C is replaced by a component C′ ⊂ C of diameter w(C′) ≈ w(C) · N−1

C .
That is the width of the component is reduced by a factor of NC and, in this case, we “square
the speed of convergence”, that is, we set NC′ :� N2

C. If the NewtonTest fails, we fall back
to bisection and “decrease the speed of convergence”, that is, we set NC′ :�

√
NC for all

components C′ into which the component C is split. Our analysis shows that the Newton-
Test is the crucial ingredient for quadratic convergence. More precisely, we prove that, in
the worst-case, the number s of components in each sequence C1 , . . . , Cs as above becomes
logarithmic in the length of such a sequence if only bisectionwould be used; see Lemma 6.216.21.

6.5.3 Termination and Correctness

We now turn to the proof of termination and correctness of the algorithm. In addition, we
derive further properties, which will turn out to be useful in the analysis.

Theorem 6.17. The algorithm CIsolate terminates and returns a correct result. In addition, at any
stage of the algorithm, it holds that:

(a) For any (C,NC) ∈ C, the connected component C consists of disjoint, aligned, and equally-sized

squares B1 , . . . , BsC , each of width 2`C
with some `C ∈ Z.

(b) For any two distinct pairs (C1 ,NC1) ∈ C and (C2 ,NC2) ∈ C, the distance between C1 and C2 is

at least max(2`C1 , 2`C2 ). In particular, the enlarged regions C+

1 and C+

2 are disjoint.

(c) The union of all connected components C covers all roots of F contained in B. In mathematical

terms,

F(z) , 0 for all z ∈ B \
⋃

C:(C,NC)∈C
C.

(d) For each square B produced by the algorithm that is not equal to the initial square B, the enlarged
square 2B contains at least one root of F.

(e) Each component C considered by the algorithm consists of sC ≤ 9 · |Z(C+)| squares. The total
number of squares in all components C is at most 9-times the number of roots contained in 2B,
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BC

B1 B2

B3

C′
m

∆′

Figure 6.2: The NewtonTest: If T∗(∆′) � kC , with ∆′ :� ∆2`C−3/NC
(x̃′C), then ∆′

contains exactly kC roots of F. Since T∗(2∆C) � kC and C+ ⊂ 2∆C , it follows
that ∆′ contains all roots contained in C+. The sub-squares Bi , j of width
2`C−1/NC that intersect ∆′ yield a connected component C′ of width at most
2`C/NC ≤ w(C)/NC . In addition, all roots that are contained in C are also
contained in C′. Further notice that if x̃′C is contained in C, then ∆′ intersects
at most four squares Bi , j . Otherwise, it intersects at most three squares. In
each case, the squares are connected with each other, and the corresponding
connected component C′ has width at most 2`C/NC ≤ w(C)/NC .

∆C :� ∆3
4w(BC)(m)

BC

Figure 6.3: The Bisection routine: The green (brighter) sub-squares are all
squares B forwhichT∗(∆B) , 0. They are grouped together into threemaximal
connected components, which contain all roots contained in C. All other sub-
squares are discarded.
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Algorithm 6.6: CIsolate
Input : A polynomial F(x) ∈ C[x] as in (6.16.1) and a square B ⊂ C of width

w0 :� w(B) � 2`0 , with `0 ∈ Z; F has only simple roots in 2B.
Output: A list O of disjoint discs ∆1 , . . . ,∆s ⊂ C such that, for each i � 1, . . . , s, the

disc ∆i as well as the enlarged disc 2∆i is isolating for a root of F that is
contained in 2B. In addition, for each root z ∈ B, there exists a disc ∆i ∈ O
that isolates z.

1 O � {} // list of isolating discs

2 C � {(B , 4)} // list of pairs (C,NC), with C a connected com-

// ponent consisting of sC equally sized squares,

// each of width 2`C
, where `C ∈ Z≤`0 . NC is an

// integer with NC � 22nC
and nC ∈ N≥1.

// * Preprocessing *//
3 repeat
4 Let (C,NC) be the unique pair in C

// If

⋃
C:(C,NC)∈C C � B, then there exists a

// unique component C with (C,NC) ∈ C.
// * linear step *//

5 {C′1 , . . . , C′`} :� Bisection(C) and C � {(C′1 , 4), . . . , (C′` , 4)}
6 until

⋃
C:(C,NC)∈C C , B

// * Main Loop *//
7 while C is non-empty do
8 Remove a pair (C,NC) from C.
9 if 4∆C ∩ C′ � ∅ for each (C′,NC′) ∈ C with C′ , C and there exists a kC ∈ [d] such that

kC � T∗(2∆C) � T∗(4∆C) then
// If the second condition holds, kC equals the

// number of roots contained in 2∆C and 4∆C.

if kC � 1 then
10 Add the disc 2∆C to O, continue
11 if kC > 1 then
12 Let xC ∈ B \ C be an arbitrary point with distance 2`C−1 from C and

distance 2`C−1 or more from the boundary of B.
// Existence of such a point follows from the

// proof of Theorem 6.176.17. It holds that F(xC) , 0.
13 if NewtonTest(C,NC , kC , xC) � (Success, C′) then

// * quadratic step *//

14 Add (C′,N2
C) to C, continue

// * linear step *//
15 {C′1 , . . . , C′`} :� Bisection(C).
16 Add (C′1 ,max(4,

√
NC)), . . . , (C′` ,max(4,

√
NC)) to C.

17 return O.

that is,22 ∑
C:∃(C,NC)∈C

sC ≤ 9 · |Z(2B)|.

2We will later prove that even the total number of squares produced by the algorithm in all iterations is
near-linear in the numberZ(2B) of roots contained in 2B.
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Algorithm 6.7: NewtonTest
Input : A tuple (C,NC , kC , xC): C � {B1 , . . . , BsC } is a connected component

consisting of equally sized and aligned squares Bi contained in B and of size
2`C , NC is an integer of the form 22nC with nC ∈ N≥1, kC is the number of roots
in 4∆C, and xC is a point with F(xC) , 0.

Output: Either Failure or (Success, C′), where C′ ⊂ C is a connected component that
contains all roots contained in C. C′ consists of at most 4 equally sized and
aligned squares, each of width 2`C−1

NC
.

1 if Algorithm 6.36.3 does not return False for the input E` :� 4r(C)|F′(xC)| and Er :� |F(xC)|
then // This implies |F(xC)| < 6r(C)|F′(xC)|.

2 for L � 1, 2, 4, . . . do
3 Compute L-bit approximations of F(xC) and F′(xC) and derive an

(6 − `C + log NC)-bit approximation x̃′C of the Newton iterate

x′C :� xC − kC ·
F(xC)
F′(xC)

such that |x̃′C − x′C | <
1
64
· 2`C

NC
. (6.11)

// For more details, see the similar computation

// in [SM16SM16, Step 2 of NewtonTest].

4 Let ∆′ :� ∆(x̃′C ,
1
8 · 2`C

NC
).

5 if ∆′ ∩ C � ∅ then
6 return Failure
7

8 if T∗(∆′) � kC holds // Then, ∆′ contains all roots contained in 2∆C.

9 then
10 Decompose each square Bi into 4N2

C many equally sized sub-squares Bi , j

11 return (Success, C′), with C′ the unique connected component consisting of all
squares Bi , j of width 2`C−1

NC
that intersect ∆′.

12 return Failure

(f) Let (C,NC) be a pair produced by the algorithm. The sequence of ancestors of a component C
produced by the algorithm is recursively defined as follows. It consists of the component C′ from
which C resulted followed by the ancestors of C′. We denote with anc∗(C), the first ancestor

of C for which the Newton Test was successful, if such exists, otherwise anc∗(C) � B. Then

w(C) ≤ 2w(anc∗(C))√
NC

≤ 2w(B)√
NC

. Moreover,

(g) It holds that
σF(2B)2

217·d2·w(B) ≤ 2`C ≤ w(B) and 4 ≤ NC ≤
(

29·w(B)
σF(2B)

)2
, where as before σF(2B) :�

mini:zi∈2B σF(zi) is the separation of F restricted to 2B.

Proof. (a) Follows immediately via induction. Namely, a component C consisting of
squares of size 2`C is either replaced by a single connected component consisting
of (at most 4) squares of width 2`C−1/NC in line 1414 after NewtonTest was called, or it
is replaced by a set of connected components C′ ⊂ C, each consisting of squares of size
2`C−1 in line 1616 after Bisection was called.

(b) We can also use induction on the number of iterations. Suppose first that a component
C is obtained from processing a component D in line 1616. If C is the only connected
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Algorithm 6.8: Bisection
Input : A connected component C � {B1 , . . . , BsC } consisting of aligned squares Bi ,

each of width w(Bi) � 2`C .
Output: A list of components C′j ⊂ C, each consisting of aligned and equally sized

squares of width 2`C−1. The union of all C′j contains all roots of F that are
contained in C.

1 C′ :� ∅
2 for each Bi ∈ C do
3 Remove Bi from C and subdivide Bi into four equally sized sub-squares Bi , j , with

j � 1, . . . , 4, and add these to C′.
4 for each B ∈ C′ do
5 if T∗(∆B) � 0 // This implies that B contains no root.

6 then
7 Remove B from C′.

8 Compute maximal connected components C′1 , . . . C
′
` from the squares in C′.

9 return C′1 , . . . C
′
`

component obtained from D, then, by the induction hypotheses, it follows that the
distance to all other components C′, with C′ ∩ D � ∅, is at least max(2`D , 2`C′ ) ≥
max(2`C , 2`C′ ). If D splits into several components C1 , . . . , Cs , with s > 1, their distance
to any component C′, with C′ ∩ D � ∅, is at least max(2`D , 2`C′ ) ≥ max(2`Ci , 2`C′ ) for
all i. In addition, the pairwise distance of two disjoint components Ci and C j is at
least 2`C−1 � 2`Ci for all i. Finally, suppose that, in line 1414, we replace a component
D by a single component C. In this case, C ⊂ D and C consists of squares of width
2`−1/NC. Hence, the distance from C to any other component C′ is also lower bounded
by max(2`C , 2`C′ ).

(c) Notice that in line 77 of Bisection, we discard a square B only if T∗(∆B) � 0. Hence,
in this case, B contains no root of F. It remains to show that each root of F contained
in C is also contained in C′, where C′ ⊂ C is a connected component as produced in
line 1414 after NewtonTest was called. If T∗(∆′) � kC, then ∆′ contains kC roots; see
Lemma 6.156.15. Hence, since ∆′ is contained in 2∆C, and since 2∆C also contains kC roots
(as T∗(2∆C) � kC holds), it follows that ∆′ contains all roots that are contained in C.
The disc ∆′ intersects no other component C′ , C as the distance from C to C′ is larger
than 2`C , and thus, by induction, we conclude that (∆′ ∩ B) \ C contains no root of F.
This shows that C′ already contains all roots contained in C.

(d),(e) Any square B , B that is considered by the algorithm either results from the Bisection
or from the NewtonTest routine. If a square B results from the Bisection routine, then
the disc∆B � ∆w(B)(mB) contains at least one root of F, and thus also 2B contains at least
one root. If a square B results from the NewtonTest routine, then 2B even contains two
roots or more. Namely, in this case, T∗(∆′) � kC holds for the disc ∆′ � ∆r′(m′), with
r′ � 1

4 w(B) and kC > 1, and thus ∆′ contains kC roots. Since 2B contains the latter disc,
2B must contain at least kC roots. This shows (d). From (d), we immediately conclude
that, for each component C , B produced by the algorithm, the enlarged component
C+ contains at least one root of F. In addition, since C+ is contained in 2B, each of these
roots must be contained in 2B. The first part in (e) now follows from the fact that, for
a fixed root of F, there can be at most 9 different squares B of the same size such that



108 Chapter 6. Univariate Complex Root Isolation using Pellet’s Test and Newton Iteration

2B contains this root. From part (b), it follows that, for any two distinct components
C1 and C2, the enlarged components C+

1 and C+

2 do not intersect, and thus the total
number of squares in all components is upper bounded by 9 · |Z(2B)|, which proves
the second part in (e).

(f) We may assume that NC > 4 as, otherwise, the inequality becomes trivial. Let
C1 , . . . , Cs be the sequence of ancestors of C, with C1 :� anc∗(C), Cs � C, and Ci ⊃ Ci+1.
By definition of anc∗(C), we have w(C2) ≤ w(C1)/NC1 � w(C1)/

√
NC2 , since the step

from C1 to C2 is a quadratic step. And since NCi �
√

NCi−1 for i � 2, . . . , s, it follows
that

w(C) � w(Cs) ≤ w(Cs−1) ≤ w(C2) ≤
w(C1)
NC1

�
w(C1)√

NC2

≤ w(C1)√
NCs

�
w(anc∗(C))√

NC
.

Termination and (g): We can now show that the algorithm terminates; the inequalities in
(g) will then follow from the proof of termination: Suppose that the algorithm produces a
sequence C1 , C2 , . . . , Cs of connected components, with s ≥ log n+6 and C1 ⊃ C2 ⊃ · · · ⊃ Cs .
If, for at least one index i ∈ {1, . . . , s − 1}, Ci+1 is obtained from Ci via a quadratic step, then
w(Ci+1) ≤ w(Ci)/NCi ≤ w(Ci)/4. Hence, in this case, we also have w(Cs) ≤ w(C1)/4. Now,
suppose that each Ci+1 is obtained from Ci via a linear step, then each square in Ci has
size 2`C1−i+1, and thus w(Cs) ≤ 9d · 2`C1−s+1 ≤ w(C1)/2. This shows that, after at most
log d + 6 iterations, the width of each connected component is halved. Hence, in order
to prove termination of the algorithm, it suffices to prove that each component C of small
enough width is terminal, that is C is replaced by an isolating disc in line 1010 or discarded
in NewtonTest or Bisection. The following argument shows that each component C of
width smaller than w :� 1

32 · σF(2B) that is not discarded is replaced by an isolating disc.
We have already shown that C+ must contain a root ξ of F, and thus we have |mC − ξ | <
2w(C) < σF(ξ)/16 and rC < σF(ξ)/16. We conclude that the discs 2∆C and ∆(mC , 8rC)
are both isolating for ξ. Then, Lemma 6.156.15 guarantees that T∗(2∆C) � 1 and T∗(4∆C) � 1
hold. Hence, if 4∆C intersects no other component C′ , C, then the algorithm replaces C
by the isolating disc 2∆C in line 1010, because the if-clause in line 99 succeeds with kC � 1.
It remains to show that the latter assumption is always fulfilled. Namely, suppose that
4∆C intersects a component C′ , C, and let B and B′ be arbitrary squares contained in
C and C′, respectively. Then, the enlarged squares 2B and 2B′ contain roots ξ and ξ′,
respectively, and ξ and ξ′ must be distinct as C+ and (C′)+ are disjoint. Hence, the distance
between B and B′, and thus also the distance δ between C and C′, must be larger than
σF(2B)−2`C−2`C′ � 32w−2`C−2`C′ ≥ 31w−2`C′ . Hence, if 2`C′ ≤ 25w, then 4∆C ⊂ ∆(mC , 6w)
does not intersect C′. Vice versa, if 2`C′ > 25w, then the distance between C and C′ is at least
max(2`C , 2`C′ ) > 25w, and thus 4∆C does not intersect C′ as well. Notice that (g) now follows
almost directly from the above considerations. Indeed, let C , B be an arbitrary component
C and let D be any component that contains C. Since D is not terminal, we conclude that
w(D) ≥ w, and thus ND ≤ 4w(B)

w according to (f). Since NC is smaller than or equal to the
square of the maximum of all values ND , the second inequality in (g) follows. The first
inequality follows from the fact that 2`C ≥ minD:C⊂D ·2`D−1/ND ≥ w/(9d ·maxD:C⊂D ND).
Correctness: For correctness, we remark that each disc ∆ returned by the algorithm is
actually isolating for a root of F contained in 2B and that 2∆ also isolates this root. Namely,
for each component C produced by the algorithm, the enlarged component C+ contains
at least one root. Now, if the if-clause in line 99 succeeds on C with kC � 1, it holds that
T∗(2∆C) � 1, and thus the disc 2∆C contains exactly one root ξ. Hence, since ∆C contains
C+, this root must be contained in C+. In addition, if also T∗(4∆C) � 1 holds, then the disc
4∆C isolates ξ as well. Finally, it remains to show that the algorithm returns an isolating disc



6.6. Complexity Analysis 109

for each root ξ that is contained in B. From (a) and (c), we conclude that there is a unique
maximal sequence S � C1 , C2 , . . . , Cs of connected components, with C1 ⊃ C2 ⊃ · · · ⊃ Cs ,
such that each Ci contains ξ. Now, when processing Cs , Cs cannot be replaced by other
connected components C′ ⊂ Cs as one of these components would contain ξ, and this would
contradict the assumption that the sequence S is maximal. Since Cs contains ξ, it cannot
be discarded in Bisection or NewtonTest, hence Cs is replaced by an isolating disc for ξ in
line 1010. This concludes the proof.

Remark. We remark that our requirement on the input polynomial F to have only simple
roots in 2B is only needed for the termination of the algorithm. Running the algorithm on
an arbitrary polynomial (possibly having multiple roots) yields isolating discs for the simple
roots aswell as arbitrarily small connected components converging against themultiple roots
of F in B. Namely, if B is not discarded in the first iteration, then the enlargement C+ of each
component C contains at least one root. Since C consists of at most 9d squares, each of size
2`C , it holds that each point in C approximates a root of F to an error of less than d · 2`C+4. In
addition, the union of all components covers all roots contained inB, and thus our algorithm
yields L-bit approximations of all roots in B if we iterate until `C ≤ −4 − log d − L for all
components C. In the special situation, where we run the algorithm on an input square
that is known to contain all roots and if, in addition, the number k of distinct roots of F is
given as input, our algorithm can be used to return isolating regions for all roots. Namely,
in this situation, we may proceed until the total number of connected components C equals
k. Then, each of the enlarged components C+ isolates a root of F.

6.6 Complexity Analysis

We split the analysis into two parts. In the first part, we focus on the number of iterations
that are needed to isolate the roots of F that are contained in a given square B. We will see
that this number is near-linear33 in |Z(2B)|, the number of roots contained in the enlarged
square 2B. We further remark that, for any fixed non-negative constant ε, the total number
of iterations is near-linear in |Z((1 + ε) · B)|; however, for the sake of simplifying analysis,
we only provide details for the special case ε � 1. Hence, we conclude that our algorithms
performs near-optimal with respect to the number of subdivision steps if the input square B
has the property that each root contained in (1 + ε) · B is also contained in B; in particular,
this is trivially fulfilled if B is chosen large enough to contain all roots of F.

In the second part of the analysis, we give bounds on the number of bit operations that
are needed to process a component C. This eventually yields a bound on the overall bit
complexity that is stated in terms of the degree of F, the absolute values and the separations
of the roots inZ(2B), and the absolute value of the derivative F′ at these roots.

6.6.1 Size of the Subdivision Tree

We consider the subdivision tree TB , or simply T , induced byCIsolate, whereB is the initial
square. More specifically, the nodes of the tree T are the pairs (C,NC) ∈ C produced by
the algorithm, and two nodes (C,NC) and (C′,NC′) are connected via an edge if and only if
C ⊂ C′ (or C′ ⊂ C) and there exists no other component C′′with C ⊂ C′′ ⊂ C′ (C′ ⊂ C′′ ⊂ C).
In the first case, we say that (C,NC) is a child of (C′,NC′), whereas, in the second case, (C,NC)
is the parent of (C′,NC′). For brevity, we usually omit the integer NC, and just refer to C as
the nodes of T . Notice that, according to Theorem 6.176.17, the so obtained graph is indeed a

3More precisely, it is linear in |Z(2B)| up to a factor that is polynomially bounded in log d, log log(w(B)), and
log log(σF(2B)−1). If 2B contains no root, then there is only one iteration.
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tree rooted at B. A node C is called terminal if and only if it has no children. We further use
the following definition to refer to some special nodes:

Definition 6.18. A node (C,NC) ∈ T is called special, if one of the following four conditions

is fulfilled: (1) The node (C,NC) is terminal. (2) The node (C,NC) is the root of T , that is,
(C,NC) � (B , 4). (3) The node (C,NC) is the last node for which Bisection is called in the

preprocessing phase of the algorithm. We call this node the base of T . Notice that the first part of the

tree consists of a unique path connecting the root and the base of the tree. (4) For each child D of C, it

holds thatZ(D+) , Z(C+). We call such nodes split nodes.

Roughly speaking, except for the root and the base of T , special nodes either isolate a
root of F or they are split into two or more disjoint clusters each containing roots of F. More
precisely, from Theorem 6.176.17, we conclude that, for any two distinct nodes C,D ∈ T , the
enlarged regionsZ(C+) andZ(D+) are either disjoint or one of the nodes is an ancestor of the
other one. In the latter case, we have C+ ⊂ D+ or D+ ⊂ C+. Since, for any two children D1 and
D2 of a node C, the enlarged regions D+

1 and D+

2 are disjoint, we have
∑k

i�1Z(D+

i ) ≤ Z(C+),
where D1 to Dk are the children of C. Hence, since each D+

i contains at least one root, the
fourth condition in Definition 6.186.18 is violated if and only if C has exactly one child D and
Z(C+) � Z(D+). The number of special nodes is at most 2 · (1 + |Z(2B)|) as there is one
root and one base, at most |Z(2B)| terminal nodes C with C , B, and each occurrence of
a special node, which fulfills the fourth condition, yields a reduction of the non-negative
number

∑
C(|Z(C+)|−1) by at least one. The subdivision treeT nowdecomposes into special

nodes and sequences of non-special nodes C1 , . . . , Cs , with C1 ⊃ C2 ⊃ · · · ⊃ Cs , that connect
two consecutive special nodes. The remainder of this section is dedicated to the proof that
the length s of such a sequence is bounded by some value smax of size

smax � O
(

log
(
d · log(w(B)) · log(σF(2B)−1)

) )
. (6.12)

For the proof, we need the following lemma, which provides sufficient conditions for the
success of the NewtonTest.

Lemma 6.19 (Success of NewtonTest). • Let C � {B1 , . . . , BsC } be a non-terminal compo-

nent with B \ C , ∅, let BC be the corresponding enclosing square of width w(C) and center

m � mC, and let ∆ :� ∆C � ∆r(m), with r :� 3
4 w(C), be the corresponding enclosing disc.

• Let z1 , . . . , zk be the roots of F contained in the enlarged component C+
, and suppose that all

these roots are contained in a disc ∆′′ :� ∆r′′(m′′) of radius r′′ � 2−20−log d r/NC. Assume that

the disc ∆22 log d+20NC r(m) contains none of the roots zk+1 , . . . , zd .

Then, the algorithm CIsolate performs a quadratic step, that is, C is replaced by a single component

C′ of width w(C′) ≤ w(C)/NC.

Proof. We first argue by contradiction that 4∆ does not intersect any other component C′,
which implies that the first condition of the and in the if-clause in line 99 is fulfilled. If 4∆
intersects C′, then the distance between C and C′ is at most 8r, and thus 2`C′ < 8r as the
distance between C and C′ is at least max(2`C , 2`C′ ). Hence, we conclude that the disc 64 · ∆
completely contains 2B′ for some square B′ of C′. Since 2B′ also contains at least one root and
since each such root must be distinct from any of the roots z1 , . . . , zk , we get a contradiction.

According to our assumptions, each of the two discs∆ and 8∆ contains the roots z1 , . . . , zk
but no other root of F. Hence, according to Lemma 6.156.15, T∗(2∆) � T∗(4∆) � k holds. Since we
assumed C to be non-terminal, we must have k ≥ 2, and thus the algorithm reaches line 1111
and the NewtonTest is called. We assumed that C does not entirely cover the initial square
B, hence, in a previous iteration, we must have discarded a square of width 2`C or more
whose boundary shares at least one point with the boundary of C. Hence, we can choose
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a point in such a square as the point xC ∈ B \ C in the NewtonTest such that the distance
from xC to C is equal to 2`C−1 and such that the distance from xC to the boundary of B is at
least 2`C−1. Notice that also the distance from xC to any other component C′ is at least 2`C−1,
and thus the distance from xC to any root of F is at least 2`C−1 ≥ r

27d , where the inequality
follows from the fact that C consists of at most 9d squares. Thus, for i ≤ k, |xC − m′′ | ≤ 4r
and furthermore

|xC − zi | ≥
r

27d
for i ≤ k , and |xC − zi | ≥ 220d2NCr − 4r > 219d2NCr for i > k.

Using that F′(x)
F(x) �

∑d
i�1

1
x−zi

for any x with F(x) , 0, we can bound the distance from the
Newton iterate x′C as defined in (6.116.11) to the “center” m′′ of the cluster of roots:����1k (xC − m′′)F′(xC)

F(xC)
− 1

���� � �����1k k∑
i�1

xC − m′′

xC − zi
+

1
k

∑
i>k

xC − m′′

xC − zi
− 1

�����
�

1
k

����� k∑
i�1

zi − m′′

xC − zi
+

∑
i>k

xC − m′′

xC − zi

����� ≤ 1
k

k∑
i�1

|zi − m′′ |
|xC − zi |

+

∑
i>k

|xC − m′′ |
|xC − zi |

≤ r′′

r/(27d) +
d − k

k
4r

d2219NCr
<

27dr
rd2220NC

+
4dr

rd2220NC
≤ 1

214dNC
.

Hence, there exists an z ∈ C, with |z | < 1
214dNC

, such that 1
k
(xC−m′′)F′(xC)

F(xC) � 1 + z. This implies

that |F
′(xC)|
|F(xC)| ≥

1
|xC−m′′ | ≥

1
4r , and thus the NewtonTest must reach line 22 as Algorithm 6.36.3 must

return True or Undecided. With x′C � xC − k · F(xC)
F′(xC) , it further follows that

|m′′ − x′C | � |m
′′ − xC | ·

������1 − 1
1
k
(xC−m′′)F′(xC)

F(xC)

������ � |m′′ − xC | ·
����1 − 1

1 + z

���� � ���� z(m′′ − xC)
1 + z

����
≤ 4r

213dNC
≤ r

211dNC
<

2`C

128NC
.

We therefore obtain

|x̃′C − m′′ | ≤ |x̃′C − x′C | + |x
′
C − m′′ | ≤ 2lC

64NC
+ |x′C − m′′ | ≤ 2lC

64NC
+

2lC

128NC
<

2lC

32NC
.

Since the distance between m′′ and any of the roots z1 , . . . , zk is also upper bounded
by r′′ < 2lC/(32NC), we conclude that the disc ∆2lC /(16NC)(x̃

′
C) contains all roots z1 , . . . , zk .

Hence, it follows that that ∆′ :� ∆2lC /(8NC)(x̃
′
C) is (1/2, 4/3)-isolating for the roots z1 , . . . , zk ,

and thus T∗(∆′) � k must hold according to Lemma 6.156.15. This shows that we reach line 1111
and that the NewtonTest returns Success.

In essence, the above lemma states that, in case of a well-separated cluster of roots
contained in some component C, CIsolate performs a quadratic step. That is, it replaces the
component C by a component C′ of width w(C′) ≤ 2`C/NC ≤ w(C)/NC, which contains all
roots that are contained in C. Now, suppose that there exists a sequence C1 , . . . , Cs of non-
special nodes, with C1 ⊃ · · · ⊃ Cs , such that Cs has much smaller width than C1. Then, C1
contains a cluster of nearby roots but no other root of F. Wewill see that, from a considerably
small (compared to the bound in (6.126.12)) index on, this cluster is also well-separated from
the remaining roots (w.r.t. the size of Ci) such that the requirements in the above lemma are
fulfilled. As a consequence, only a small number of steps from Ci to Ci+1 are linear, which in
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turn implies that the whole sequence has small length. For the proof, we need to consider a
sequence (si)i � (xi , ni)i , which we define in a rather abstract way. The rationale behind our
choice for si is that, for all except a small number of indices and a suitable choice for si , the
sequence (si)i behaves similarly to the sequence (2`Ci , log log NCi )i . We remark that (si)i has
already been introduced in [SM16SM16]. The following lemma is shown there:

Lemma 6.20 ([SM16SM16], Lemma 25). Let w, w′ ∈ R+ be two positive reals with w > w′, and let

m ∈ N≥1 be a positive integer. We recursively define the sequence (si)i∈N≥1 :� ((xi , ni))i∈N≥1 as

follows: Let s1 � (x1 , n1) :� (w ,m), and

si+1 � (xi+1 , ni+1) :�

{
(εi · xi , ni + 1) with an εi ∈ [0, 1

Ni
], if

xi
Ni
≥ w′

(δi · xi ,max(1, ni − 1)) with a δi ∈ [0, 1
2 ], if

xi
Ni
< w′,

where Ni :� 22ni
and i ≥ 1. Then, the smallest index i0 with xi0 ≤ w′ is bounded by 8(n1 +

log log max(4, w
w′ )).

We are now ready to prove the bound on the length of a sequence of non-special nodes.

Lemma 6.21. Let P � (C1 ,N1), . . . , (Cs ,Ns), with C1 ⊃ · · · ⊃ Cs , be a sequence of consecutive

non-special nodes. Then, we have s ≤ smax with an smax of size

smax � O
(
log d + log log(w(B)) + log log(σF(B+)−1)

)
� O

(
log

(
d · log(w(B)) · log(σF(2B)−1)

) )
.

Proof. Wedistinguish two cases. First consider the case, whereP is an arbitrary sub-sequence
of the unique initial sequence from the child of the root to the parent of the base. If there
exists no non-special node in between the root and the base of the tree, there is nothing to
prove. Due to Theorem 6.176.17, part (e), Cs consists of at most 9 · |Z(2B)| squares. It follows
that 22s ≤ 9d as Ci consists of at least 22i squares. This yields s � O(log d).

In the second case, we can assume that each Ci is a successor of the base of the tree. In
particular, we have B \ Ci , ∅. W.l.o.g., we may further assume that z1 , . . . , zk are the roots
contained in the enlarged component C+

1 . Since all Ci are assumed to be non-special, each
Ci

+ contains z1 to zk but no other root of F. Let wi :� w(Ci) be the width of the component
Ci , ri :� (3/4) · wi be the radius of the enclosing disc ∆i :� ∆Ci , and 2`i :� 2`Ci be the width
of each of the squares into which Ci decomposes. Notice that, for each index i, the enlarged
component C+

i is contained in the disc 2∆i of radius (3/2) · wi , and thus the disc 2∆s of
radius (3/2) ·ws contains the roots z1 to zk . We now split the sequence P into three (possibly
empty) subsequences P1 � (C1 ,N1), . . . , (Ci1 ,Ni1), P2 � (Ci1+1 ,Ni1+1), . . . , (Ci2 ,Ni2), and
P3 � (Ci2+1 ,Ni2+1), . . . , (Cs ,Ns), where i1 and i2 are defined as follows:

• We let i1 be the first index with 2`1 > 23 log d+32 · Ni1 · 2`i1 . If there exists no such
index, we set i1 :� s. Further notice that, for any index i larger than i1, we also have
2`1 > 23 log d+32 · Ni · 2`i , which follows from induction and the fact that 2`i and Ni are
replaced by 2`i/(2Ni) and N2

i in a quadratic step.

• We define i2 to be the first index larger than or equal to i1 such that the step from i2 to
i2 + 1 is quadratic and 2`s · 23 log d+32 · Ni2 ≥ 2`i2 . If there exists no such index i2, we set
i2 :� s.

From the definition of i2, it is easy to see that |P3 | � O(log d). Namely, if i2 � s, there
is nothing to prove, hence we may assume that the step from i2 to i2 + 1 is quadratic and
2`s ≥ 2−3 log d−32 ·N−1

i2
·2`i2 � 2−3 log d−31 ·2`i2+1 . Hence, we conclude that s−(i2+1) ≤ 3 log d+31

as `i is reduced by at least 1 in each step.
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Let us now consider an arbitrary index i from the sequence P2. The distance from
an arbitrary point in C+

i to the boundary of C+

1 is at least 2`1−1 ≥ 23 log d+31 · Ni · 2`i >

22 log d+20 · Ni · ri , where the latter inequality follows from ri � (3/4)wi ≤ (3/4) · 9d · 2`i .
Since C+

1 contains only the roots z1 , . . . , zk , this implies that the distance from an arbitrary
point in C+

i to an arbitrary root zk+1 , . . . , zd is larger than 22 log d+20 · Ni · ri . Hence, the
second requirement from Lemma 6.196.19 is fulfilled for each component Ci with i ≥ i1. Now,
suppose that 2`s · 23 log d+32 · Ni < 2`i , then the roots z1 to zk are contained in a disc of radius
3
2 ·9d ·2`s < 2−20−log d ·N−1

i · ri , and thus also the first requirement fromLemma 6.196.19 is fulfilled.
Hence, from the definition of i2, we conclude that the algorithm performs a quadratic step if
and only if 2`s ·23 log d+32 ·Ni < 2`i . We now define the sequence si :� (2`i , log log Ni), where i
runs from i1 to the first index, denoted i′1, for which 2`i′1 < 2`s · 2−3 log d−32. Then, according to
Lemma6.206.20, it holds that i′1−i1 ≤ 8(m+log log max(4,w/w′)), with w :� 2`i1 , m :� log log Ni1 ,
and w′ :� 2`s ·23 log d+32. Theorem6.176.17 (g)yields that m � O(log log(w(B))+log log(σF(2B)−1).
Hence, since i2 − i′1 ≤ 3 log d + 32, we conclude that i2 − i1 ≤ O(log d + log log(w(B)) +
log log(σF(2B)−1)).

It remains to show that the latter bound also applies to i1. From the upper bound on
Ni , it follows that there exists an mmax of size O(log d + log log(w(B)) + log log(σF(2B)−1))
such that each sequence of consecutive quadratic steps has length bounded by mmax, and
such that after mmax consecutive linear steps, the number Ni drops to 4. Since the number
`i decreases by at least 1 in each step, there exists an index i′ of size O(log d) such that
2`i′ · 23 log d+34 < 2`1 . Now, if the sequence Ci′ , Ci′+1 , . . . starts with mmax or more consecutive
linear steps, we must have Ni′+mmax � 4, and thus 2`i′+mmax · 23 log d+32Ni′+mmax < 2`1 . Hence,
we conclude that i1 ≤ i′ + mmax in this case. Otherwise, there must exist an index i′′, with
i′ ≤ i′′ < i′ + mmax, such that the step from i′′ to i′′ + 1 is quadratic, whereas the step from
i′′ + 2 is linear. Then, it holds that

Ni′′+2 �

√
Ni′′+1 � Ni′′ and 2`i′′+2 ≤ 2`i′′+1 �

2`i′′

2Ni′′
< 2−3 log d−32 2`1

Ni′′
,

which implies that i1 ≤ i′′+ 2 ≤ i′+ mmax + 1 � O(log d + log log(w(B))+ log log(σF(2B)−1)).
Hence, the claimed bound on i1 follows.

We can now state the first main result of this section, which immediately follows from
the above bound on smax and the fact that there exists at most 2 · (|Z(2B)| + 1) special nodes:

Theorem 6.22. The subdivision tree T induced by CIsolate has size

|T | ≤ 2 · (|Z(2B)| + 1) · smax (6.13)
� O

(
|Z(2B)| · log

(
d · log(w(B)) · log(σF(2B)−1)

) )
.

If B contains all complex roots of F and log(w(B)) � O(ΓF + log d), then the above bound writes as

O
(
d · log

(
d · ΓF · log(σ−1

F )
) )
. (6.14)

Recall from Section 6.26.2 that we can compute a square B that contains all roots of F with
Õ(d2ΓF) bit operations. We proceed by giving simpler bounds for the special case, where the
input polynomial has integer coefficients. Suppose that f (x) ∈ Z[x] has integer coefficients of
bit-size less than τ. We first divide f by its leading coefficient LC( f ) to obtain the polynomial
F :� f /LC( f ), which meets the requirement from (6.16.1) on ad . Then, we have ΓF � O(τ) and
σF � 2−O(d(log d+τ)); e.g. see [Yap00Yap00] for a proof of the latter bound. Hence, we obtain the
following corollary.
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Corollary 6.23. Let f be a polynomial of degree d with integer coefficients of bit-size less than τ, let
F :� f /LC( f ), and let B be a square of width 2O(ΓF+log d)

. Then, the algorithm CIsolate (with input

F and B) uses
O(|Z(2B)| · log(dτ)) � O(d · log(dτ))

iterations to isolate all roots of F that are contained in B.

The above results show that CIsolate performs near-optimal with respect to the number
of components that are produced by the algorithm. In addition, since each component
consists of at most 9d squares, we immediately obtain an upper bound for the total number
of squares produced by the algorithm that exceeds the bound from (6.146.14) by a factor of d.
Indeed, we will see that the actual number of squares is considerably smaller, that is, of size
O(|Z(2B)| · smax · log d), which exceeds the bound in (6.146.14) only by a factor log d. For the
proof, we consider two mappings φ and ψ, where φ maps a component C � {B1 , . . . , BsC }
to a root zi ∈ C+, and ψ maps a square B j to a root zi ∈ 4B j ∩ C+. The claimed bound for
the total number of squares then follows from the fact that we can define φ and ψ in a way
such that the pre-image of an arbitrary root zi ∈ 2B (under each of the two mappings) has
size O(smax · log n). The rest of this section is dedicated to the definitions of φ and ψ and
the proof of the latter claim. In what follows, we may assume that 2B contains at least one
root as, otherwise, all four sub-squares of B are already discarded in the first iteration of the
preprocessing phase.

Definition 6.24. For a root ξ ∈ 2B, we define the canonical path Pξ of ξ as the unique path in the

subdivision tree TB that consists of all nodes C with ξ ∈ C+
.

Notice that the canonical path is well-defined as, for any two nodes C1 and C2, either C+

1
and C+

2 are disjoint or one of the two components contains the other one. We can now define
the maps φ and ψ:

Definition 6.25 (Maps φ, ψ). Let C � {B1 , . . . , BsC } be a node in the subdivision tree TB , and let

B :� B j be an arbitrary square in C. Then, we define maps φ and ψ as follows:

(φ) Starting at C, we descend in the subdivision tree as follows: If the current node D is a non-

terminal special node, we go to the child E that minimizes |Z(E+)|. If D is terminal, we stop.

If D is non-special, then there is a unique child of D to proceed with. Proceeding this way,

the number |Z(D+)| is at least halved in each non-terminal special node D, except for the base

node. Hence, since any sequence of consecutive non-special nodes has length at most smax, it

follows that after at most smax · (logd(|Z(C+)|)e + 1) ≤ smax · (log d + 2)many steps we reach

a terminal node F. We define φ(C) to be an arbitrary root contained inZ(F+).

(ψ) According to part (d) of Theorem 6.176.17, the enlarged square 2B contains at least one root ξ.
Now, consider the unique maximal subpath P′ξ � C1 , C2 , . . . , Cs of the canonical path Pξ that
starts at C1 :� C. If s ≤ dlog(18d)e, we define ψ(B) :� ξ. Otherwise, consider the component

C′ :� Cdlog(18d)e and define ψ(B) :� φ(C′).

It is clear from the abovedefinition thatφ(C) is containedwithinC+ as each root contained
in the enlarged component F+ corresponding to the terminal node F is also contained in C+.
It remains to show that ψ(B) ∈ 4B ∩ C+. If the length of the sub-path P′ξ is dlog(18d)e or
less, then ψ(B) � ξ ∈ 2B, hence, there is nothing to prove. Otherwise, the squares in C′ have
width less than w(B)

18d . Since C′ can contain at most 9d squares, we conclude that w(C′) < w(B)
2 ,

and since ξ is contained in B+ as well as in (C′)+, we conclude that (C′)+ ⊂ 4B, and thus
ψ(B) � φ(C′) ∈ 4B ∩ (C′)+ ⊂ 4B ∩ C+.

Now, consider the canonical path Pξ � C1 , . . . , Cs , with C1 :� B, of an arbitrary root
ξ ∈ 2B. Then, a component C can only map to ξ via φ if C � Ci for some i with s − i ≤
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smax · (log |Z(2B)|+1). Hence, the pre-image of ξ has size O(smax · log |Z(2B)|). For the map
ψ, notice that a square B can only map to ξ if B is contained in a component C � Ci for some
i with s− i � smax · (log |Z(2B)|+1)+ dlog(18d)e. Since, for each component Ci , there exist at
most a constant number of squares B′ ∈ Ci with ξ ∈ 4B′, we conclude that the pre-image of
ξ under ψ is also of size O(smax · logZ(2B)). Hence, the total number of squares produced
by CIsolate is bounded by O(|Z(2B)| · smax · log |Z(2B)|). We summarize:

Theorem 6.26. Let ξ ∈ 2B be a root of F contained in the enlarged square 2B. Then, with mappings

φ and ψ as defined in Definition 6.256.25, the pre-image of ξ under each of the two mappings has size

O(smax · log |Z(2B)|). The total number of squares produced by the algorithm CIsolate is bounded

by

O(smax · |Z(2B)| · log |Z(2B)|) � Õ
(
d · log

(
log(w(B)) · log(σF(2B)−1)

) )
We can also state a corresponding result for polynomials with integer coefficients:

Corollary 6.27. Let f ∈ Z[x] and F :� f /LC( f ) be polynomials and B be a square as in Corol-

lary 6.236.23. Then, for isolating all roots of f contained in B, the algorithm CIsolate (with input F and

B) produces a number of squares bounded by

O(|Z(2B)| · log(dτ) · log d) � O(d log2(dτ)).

6.6.2 Bit Complexity

Weakly centered components. For our analysis, we need to introduce the notion of a square
or component being weakly centered and centered:

Definition 6.28. We say that a square B of width w :� w(B) is weakly centered, if min{|z | : z ∈
B} ≤ 4 · w. Similarly, we say that a square is centered if min{|z | : z ∈ B} ≤ w/4. In addition, we

define a (weakly) centered component to be a component that contains a (weakly) centered square.

Notice that the child of a component that is notweakly centered can never becomeweakly
centered. Hence, it follows that the set of weakly centered components forms a subtree Twcent
of the subdivision treeT that is either empty or contains the root componentB; see Figure 6.46.4
for an illustration.

Moreover, let C and C′ be siblings in Twcent and let w and w′ be the sizes of the squares in
the components C and C′, respectively. We already argued that the distance between C and
C′ is at least max{w , w′}. W.l.o.g. let min{|z | : z ∈ C} ≤ min{|z | : z ∈ C′}, then the distance
of C′ to the origin is at least w′/2, and thus C′ is not centered. We further conclude that a
descendant of depth 3 of C′ is not weakly centered because the width of the squares in the
component is at least halved in each step. It follows that each path in Twcent consisting of
only weakly centered components has length at most 3. From this observation, we conclude
that the subtree Twcent has a very special structure. Namely, it consists of only one (possibly
empty) central path P � C1 , . . . , C` of all centered components, to which some trees of depth
at most 4 of weakly centered components are attached, see Figure 6.46.4. Since there can only be
a constant number of disjoint not weakly centered squares of the same size, it further holds
that the degree of each node is bounded by a constant. Hence, each of the attached trees
has constant size, and each node in the tree contains at most a constant number of weakly
centered squares.

Notice that not weakly centered components C ∈ T \ Twcent have the crucial property
that any two points in C+ have absolute values of comparable size; see Lemma 6.296.29. This is
not true in general for (weakly) centered components as the size of C might be very large
whereas the distance from C+ to the origin is small.
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Lemma 6.29. If B is a not weakly centered square, it holds that

max
z∈4B

log(z) ≤ 5 + min
z∈4B

log z.

Moreover, if C is a not weakly centered component, then it holds that

max
z∈C+

log(z) ≤ log(64d) + min
z∈C+

log z.

Proof. We first prove the claim for a not weakly centered square B. Let z :� argmin{|z | :
z ∈ 4B} and z :� argmax{|z | : z ∈ 4B}. By definition the distance of B to the origin is at
least 4w, where w denotes the size of B. Moreover, with x :� argmin{|z | : z ∈ B}, we get
|z | ≥ |x | − |x − z | ≥ 4w −

√
12.5w ≥ w/4. Thus

|z | − |z | ≤ |z − z | ≤ 4
√

2w ≤ 16
√

2 · |z |,

and the statement follows.
It remains to prove the claim for a not weakly centered component. Let z :� argmin{|z | :

z ∈ C+}, z :� argmax{|z | : z ∈ C+}, and let B ⊂ C be a square in C such that z ∈ 4B. Then,
as above, it follows that z ≥ w/4 and since C contains at most 9n squares it holds that

|z | − |z | ≤ |z − z | ≤
√

2 · (9dw + w) ≤
√

2 · 10dw ≤ 57d |z |,

and thus maxz∈C+ log(z) ≤ log(64d) + minz∈C+ log z.

Mappings φ̂ and ψ̂. In the previous section, we introduced mappings φ and ψ that map
components C and squares B to roots contained in C+ and 4B ∩ C+, respectively, such that
the pre-image (under each of the two mappings) of each root has size at most O(smax ·
log |Z(2B)|) � O(smax · log d), with

smax � O(log(d log(w(B)) log(σF(2B)−1)))

as shown in Lemma 6.216.21. The crucial idea in our analysis is to bound the cost for processing
a certain component C (square B) in terms of values that depend only on the root φ(C)
(ψ(B)), such as its absolute value, its separation, or the absolute value of the derivative F′

at the root; see Lemma 6.346.34. Following this approach, each root in 2B is “charged” only
a small (i.e. logarithmic in the “common” parameters) number of times, and thus we can
profit from amortization when summing the cost over all components (squares). For each
not weakly centered component C, the width of C and the absolute value of any point in C
is upper bounded by 64d · |φ(C)|, which allows us to bound each occurring term log w(C)
by O(log d + log |φ(C)|). However, for weakly centered components (squares), this does
not hold in general, and thus some extra treatment is required. For this, we will introduce
slightly modified mappings φ̂ and ψ̂ that coincide with φ and ψ on all not weakly centered
components and squares, respectively, but map a weakly centered component (square) to a
root of absolute value that is comparable to the size of the component (square). In the next
step, we will show that this can be done in a way such that the pre-image of each root is still
of logarithmic size. We give details:

Let i1 , . . . , is , with 1 ≤ i1 < i2 < . . . < is ≤ `−1, be the indices of components in the central
path P � C1 , . . . , C` such thatZ(C+

i j
) ) Z(C+

i j+1) for j � 1, . . . , s. That is, Ci j are the weakly
centered components that are also special according to Definition 6.186.18. In addition, we say
that z0 :� max{|x | : x ∈ 2B} is the pseudo-root of 2B, and defineZ+(2B) :� Z(2B) ∪ {z0} as
the set consisting of all (pseudo-) roots in 2B.
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Figure 6.4: A possible subdivision tree of CIsolate on an arbitrary input
square. Red nodes (squares and diamonds) correspond to centered compo-
nents, blue nodes (large circles) to weakly centered components and black
nodes (small circles) to not weakly centered components. The subtree Twcent
consists of all red and blue nodes. Note that Twcent consists of one path of
centered components (marked by the red edges) and trees of depth at most
4 attached to it (consisting of blue nodes). The rectangular red nodes corre-
spond to those components Ci1 , . . . , Cis on the central path that are split nodes
according to Definition 6.186.18, that is, components for whichZ(C+

i j
) ) Z(C+

i j+1).
The difference of these two sets contains the roots that we map the (weakly)
centered components to. For instance, the centered component C′ is mapped
to a root φ̂(C′) that is contained in Z(C+

i3
) \ Z(C+

i3+1). All weakly centered
components that have C′ as their first centered predecessor, as for example C,
are mapped to the same root φ(C).

Definition 6.30 (Maps φ̂ and ψ̂). Let C be a component and B ⊂ C be a square contained in C.

1. If the component C is not weakly centered, we define φ̂(C) :� φ(C).

2. If the component C is weakly centered, let Ci ∈ P be the first centered predecessor of C in Twcent.

If there exists no such Ci or if i ∈ [1, i1], we define φ̂(C) � z0. For i ∈ (i2 , `], let j be maximal

with i j < i. Then, there exists a root ξ ∈ Z(C+

i j
) \ Z(C+

i j+1). We define φ̂(C) :� ξ.

3. If B is weakly centered, we define ψ̂(B) :� φ̂(C). Otherwise, we define ψ̂(B) :� ψ(B).

We derive the first crucial property of the mappings φ̂ and ψ̂:

Lemma 6.31. It holds that

max
z∈C+

log z ≤ log(64d) + log φ̂(C) and max
z∈4B

log z ≤ log(64d) + log ψ̂(B) (6.15)

for all components C and squares B.

Proof. For a not weakly centered component C (square B ⊂ C′), this follows directly from
Lemma6.296.29 and the fact that φ̂(C) � φ(C) (ψ̂(B) � ψ(B)) and thatφ(C) ∈ C+ (ψ(B) ∈ 4B∩C+).
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For a centered component C, we either have φ̂(C) � z0 or φ̂(C) < C+ due to the definition
of φ̂. The first case is trivial, hence, we may assume that φ̂(C) < C+. Since C is centered,
it contains a centered square B, and thus the distance of B to the origin is at most w/4. It
follows that C+ contains the disc of radius w/4 around the origin, hence |φ̂(C)| ≥ w/4. Since
the distance between any two points in C+ is upper bounded by 10

√
2dw, we conclude that

|z | ≤ w/4 + 10
√

2dw ≤ (1 + 40
√

2) · |φ̂(C)| ≤ 64d · |φ̂(C)| for all z ∈ C+. The same argument
further shows that |z | ≤ 64d · |ψ̂(B)| for all centered squares and all z ∈ 4B.

It remains to show the claim for a weakly centered component C (square B) that is not
centered. In this case, we either have ψ̂(C) � z0 or ψ̂(C) � φ̂(C′), where C′ is a centered
component on the central path that contains C; see Definition 6.306.30. In the first case, there
is nothing to prove. In the second case, we have have already shown that Inequality (6.156.15)
holds for C′, hence, it must hold for C as well. The same argument also applies to squares B
in C that are weakly centered but not centered.

Notice that, for a centered component C (square B), the image of the corresponding
mapping φ̂ (ψ̂) may no longer be contained in the enlarged component C+ (enlarged square
4B), as it is the case for the mappings φ and ψ. However, it still holds that the pre-image of
its (pseudo-) root under each of the two mappings φ̂ and ψ̂ is of small size:

Lemma 6.32. Let ξ ∈ Z+(2B). Then, the pre-image of ξ under φ̂ and ψ̂ has size at most

O(smax · log |Z(2B)|) � O(smax · log d).

Proof. Since φ̂ coincides with φ on all components C < Twcent, it suffices to show the claim
for the restriction φ̂ |Twcent of φ̂ to the components C ∈ Twcent that are weakly centered. Let
ξ � ψ̂(C), with C ∈ Twcent, be an arbitrary root contained in the image of φ̂ |Twcent , and let Ci
be the first predecessor of C that is central and located on the central path. Then, there exists
a j ∈ {1, . . . , ` − 1} with i j < i ≤ i j+1, and we have ξ ∈ Z(C+

i j
) \ Z(C+

i j+1). In addition, C is
connected with Ci via a path of constant length as the distance from C to the central path
on Twcent is bounded by a constant and there cannot be more than 3 consecutive components
that are weakly centered but not centered. Since there exists at most smax components on
the central path between Ci j and Ci j+1 , it follows that the number of components C ∈ Twcent
that are mapped to ξ is bounded by O(smax). The same argument applies to the special case,
where C is mapped to the pseudo-root z0. Also, from the same argument and the definition
of ψ̂, it further follows that there can be at most O(smax)many weakly centered squares that
are mapped to the same (pseudo-) root, since each component contains at most constantly
many weakly centered squares.

Bounding the Bit Complexity. We can now start with the bit complexity analysis of
CIsolate. Let C � {B1 , . . . , BsC } be any component produced by the algorithm. When
processing C, our algorithm calls the T∗-test in up to three steps. More specifically, in line 99
of CIsolate the T∗(2∆C) and the T∗(4∆C)-test are called. In the NewtonTest, the T∗(∆′)-test
is called, with ∆′ as defined in line 44 in NewtonTest. Finally, in Bisection, the T∗(∆B′)-test
is called for each of the 4 sub-squares B′ into which each square Bi of C is decomposed.
Our goal is to provide bounds for the cost of each of these calls. For this, we mainly use
Lemma 6.166.16, which provides a bound on the cost for callingT∗(∆) that depends on the degree
of F, the value τF, the size of the radius and the center of ∆, and the maximal absolute value
that F takes on the disc ∆. Under the assumption that ∆ has non-empty intersection with C,
we may reformulate the latter value in terms of parameters (such as the absolute value, the
separation, etc.) that depend on an arbitrary root contained in C+.
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Lemma 6.33. Let C be a component, and let ∆ :� ∆r(m) be a disc that has non-empty intersection

with C. IfZ(C+) ≥ 1, then it holds that σF(zi) < d · 2`C+6
and

max
z∈∆
|F(z)| > 2−16d · σF(zi) · |F′(zi)| · (|Z(C+)| ·M(λ))−2d ,

where zi is an arbitrary root of F contained in C+
and λ :� 2`C

r the ratio of the size of a square in C
and the radius of ∆. IfZ(C+) � 0, then C is the component consisting of the single input square B,
and it holds that maxz∈∆ |F(z)| > (2w(B))−d−2

.

Proof. Notice that |Z(C+)| � 0 is only possible if C � B as C+ contains at least one root for
each component C that is not equal to the single input squareB. Hence, each point z ∈ ∆∩C
has distance at least w(B)/2 to each of the roots of F, and thus |F(z)| ≥ (2w(B))−d−2.

In what follows, we now assume that C+ contains at least one root ξ. Let us first bound
the separation of ξ: If there exists another root ξ′ ∈ C+, then wemust have σF(ξ) ≤ |ξ− ξ′ | <
(9 · |Z(C+)| + 1) · 3

2 · 2`C < d · 2`C+5, where we used that each component C consists of at
most 9 · |Z(C+)| squares, each of size 2`C . Now, let |Z(C+)| � 1, and let C′ be the direct
ancestor of C. When processing C′, the NewtonTest failed as its success would imply that
k :� |Z((C′)+)| � |Z(C+)| ≥ 2. In addition, since C′ is non-terminal, the disc 8∆C′ must
contain at least two roots as otherwise T∗(2∆C′) as well as T∗(4∆C′) would return 1. Hence,
we have σF(ξ) < d · 2`C′+5 � d · 2`C+6. Thus, for any root ξ ∈ C+, we have σF(ξ) < d2`C+6.

In the next step, we show that there exists an m′ ∈ ∆∩ C+ whose distance to C is at most
2`C−2 and whose distance to any root of F is at least min(2`C−2 , r)/(2

√
d). Namely, due to our

assumption, there exists a point p ∈ ∆∩C. Then, the two discs ∆′ :� ∆2`C−2(p) and ∆ share an
area of size larger than min(2`C−2 , r)2, and thus there must exist an m′ ∈ ∆′ ∩ ∆ ⊂ C+ whose
distance to any root of F is lower bounded by (min(2`C−2 , r)2/(π · d))1/2.

Now, let zi ∈ C+ be an arbitrary but fixed root of F. If z j is a root not contained in C+,
then |m′ − z j | > 2`C−2, and

|zi − z j |
|m′ − z j |

≤
|zi − m′ | + |m′ − z j |

|m′ − z j |
≤ 1 +

|zi − m′ |
|m′ − z j |

< 1 +
9d2`C+1

2`C−2 < 27d. (6.16)

If z j is a root in C+, then

|zi − z j |
|m′ − z j |

≤ 9d2`C+1

δ
�

18 · d3/2 · 2`C+1

min(2`C−2 , r) ≤ 28 · d3/2 ·M(λ). (6.17)

Hence, using both (6.166.16) and (6.176.17), we get

|F(m′)| � |ad | ·
∏
j∈[d]
|m′ − z j | � |F′(zi)| · |m′ − zi | ·

∏
j,i

|m′ − z j |
|z j − zi |

≥ |F′(zi)| · |m′ − zi | · (28d3/2M(λ))−|Z(C+)| · (27d)−(d−|Z(C+)|).

Moreover, using that σF(zi) < 2`C+6 · d, yields the result

|F(m′)| > |F′(zi)| ·
min(2`C−2 , r)

2
√

d
· (28d3/2M(λ))−d

> |F′(zi)| ·
σF(zi)

29n3/2M(λ)
· (28d3/2M(λ))−d

> 2−16d · σF(zi) · |F′(zi)| · (d ·M(λ))−2d .

We can now bound the cost for processing a component C:
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Lemma 6.34. When processing a component C � {B1 , . . . , BsC } with |Z(C+)| ≥ 1, the cost for all
steps outside the NewtonTest are bounded by

Õ(d · (d log φ̂(C) + log(σF(φ(C))−1) + log(F′(φ(C))−1))) +

Õ(d · (
sC∑
i�1

d log ψ̂(Bi) + τF + log σF(ψ(Bi))−1
+ log F′(ψ(Bi))−1))

(6.18)

bit operations. The cost for the NewtonTest is bounded by

Õ(d(d log φ̂(C) + log σF(φ(C))−1
+ log F′(φ(C))−1

+ |Z(C+)| · log NC)) (6.19)

bit operations. If C+
contains no root, then C is the component consisting of the single input square

B, and the total cost for processing C is bounded by Õ(d(τF + d log(w(B), w(B)−1))) bit operations.

Proof. We start with the special case, where C+ contains no root. Notice that this is only
possible if C � B and 2B contains no root. Hence, in this case, the algorithm performs
four T∗(∆)-tests in the preprocessing phase and then discards B. Due to Lemma 6.166.16 and
Lemma 6.336.33, the cost for each of these tests is bounded by Õ(d(τF + d log(w(B), w(B)−1)) bit
operations. Hence, in what follows, we may assume that C+ contains at least one root. We
first estimate the cost for calling T∗ on a disc ∆ � ∆r(m), where ∆ � 2∆C, ∆ � 4∆C, or ∆ � ∆B′,
where B′ is one of the four sub-squares into which a square Bi is decomposed. If ∆ � 2∆C or
∆ � 4∆C, then log(m , r) � O(log d + log φ̂(C)), and thus the cost for the corresponding tests
is bounded by

Õ(d · (d log φ̂(C) + τF + log σF(φ(C))−1
+ log F′(φ(C))−1))

bit operations, where we again use Lemma 6.166.16 and Lemma 6.336.33. For ∆ � ∆B′, we have
log(m , r) � O(log d + log ψ̂(C)), and thus Lemma 6.166.16 and Lemma 6.336.33 yields the bound

Õ(d · (d log ψ̂(Bi) + τF + log σF(ψ(Bi))−1
+ log F′(ψ(Bi))−1))

for processing each of the four sub-squares B′ ⊂ Bi into which Bi is decomposed. Hence,
the bound in (6.186.18) follows. We now consider the NewtonTest: In line 22 of the NewtonTest,
we have to compute an approximation x̃′C of the Newton iterate x′C such that |x̃′C − x′C | <
2`C/(64NC). For this, we choose a point xC ∈ B\C in line 1212 of CIsolate, whose distance to
C is 2`C−1 and whose distance to the boundary of B is at least 2`C−1. Since the union of all
components covers all roots of F that are contained in B, and since the distance from C to
any other component is at least 2`C , it follows that the distance from xC to any root of F is
larger than 2`C−1. With ∆ :� ∆2`C−3(xC), it thus follows that |F(xC)| ≥ 2−d ·maxz∈∆ |F(z)|, and
using Lemma 6.336.33, we conclude that

log F(xC)−1
� O(d log d + log σF(φ(C))−1

+ log F′(φ(C))−1). (6.20)

It follows that the cost for calling Algorithm 6.36.3 in Line 11 of the NewtonTest is bounded by

Õ(d · (log F(xC)−1
+ τF + d log xC))

� Õ(d · (τF + log σF(φ(C))−1
+ log F′(φ(C))−1

+ d log φ̂(C)))

bit operations, Namely, Algorithm 6.36.3 succeeds with an absolute precision bounded by
O(log |F(xC)|−1) and, within Algorithm 6.36.3, we need to approximately evaluate F and F′

at the point xC to such a precision; see also [KS15aKS15a, Lemma 3] for the cost of evaluating
a polynomial of degree d to a certain precision. If we pass line 11, then we must have
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|F′(xC)| > |F(xC)|/(6r(C)). Hence, in the for-loop of the NewtonTest, we succeed for an L of
size O(log F(xC)−1+d log w(C)− `C + log NC), and thus the cost for computing x̃′C is bounded
by

Õ(d · (log σF(φ(C))−1
+ log F′(φ(C))−1

+ log φ̂(C) + log NC)),

where we again use (6.206.20) and the fact that σF(φ(C)) < d · 2`C+6 and log w(C) � O(log d +

log φ̂(C)). It remains to bound the cost for calling T∗ on ∆′ :� ∆2`C /(8NC)(x̃
′
C) in the Newton-

Test. Again, we use Lemma 6.166.16 and Lemma 6.336.33 to derive an upper bound of size

O(d log d + log σF(φ(C))−1
+ log F′(φ(C))−1

+ |Z(C+)| · log NC)

for log(maxz∈∆′ |F(z)|)−1, and thus a bit complexity bound of size

Õ(d · (log φ̂(C) + log σF(φ(C))−1
+ log F′(φ(C))−1

+ |Z(C+)| · log NC))

forT∗(∆′). This proves correctness of the bound in (6.196.19). Wefinally remark that the cost for all
other (mainly combinatorial) steps are negligible. Namely, the bit-size bC of a square in a com-
ponent C is bounded by O(log(w(C), w(C)−1)+ log d) � O(log d+ log σF(φ(C))−1 + log ˆφ(C)).
Hence, each combinatorial step outside the NewtonTest, such as grouping together squares
intomaximal connected components in Line 88 of Bisection, needs Õ(d) arithmetic operations
with a precision O(bC), and thus a number of bit operations bounded by (6.186.18).

In the NewtonTest, we need to determine the squares Bi , j of size 2`C−1/NC that intersect
the disc ∆′. This step requires only a constant number of additions and multiplication, each
carried out with a precision bounded by O(log(w(C), w(C)−1) + log d + log NC). Hence, the
cost for these steps is bounded by (6.196.19).

When summing up the bound in (6.186.18) over all components C produced by the algorithm,
we obtain the bit complexity bound

Õ
(
d · (d · (|Z(2B)| + log MeaF(2B) + log(w(B), w(B)−1)) + τF · |Z(2B)|

+

∑
zi∈Z(2B)

(log σF(zi)−1
+ log F′(zi)−1))

)
,

(6.21)

for all steps outside the NewtonTest. Here, we exploit the fact that the pre-image of each
(pseudo-) root inZ+(2B) under each of the mappings φ, φ̂, ψ, ψ̂ has size O(smax · log d), and
that |z0 | > w(B)/2 for the pseudo-root z0 ∈ Z+(2B). If we now sum up the bound (6.196.19) for
the cost of the NewtonTest over all components, we obtain a comparable complexity bound;
however, with an additional term d ·∑C |Z(C+)| · log NC, where the sum is only taken over
the components for which the NewtonTest is called. The following considerations show that
the latter sum is also dominated by the bound in (6.216.21).

Lemma 6.35. Let TNew ⊂ T be the set of all components in the subdivision tree T for which the

NewtonTest is called. Then,

∑
C∈TNew

|Z(C+)| · log NC is bounded by

Õ(d · (log w(B) + log MeaF(2B) + |Z(2B)|) + τF · |Z(2B)| +
∑

zi∈Z(2B)
log F′(zi)−1).

Proof. We define T �4
New :� {C ∈ TNew : NC � 4} and T >4

New :� {C ∈ TNew : NC > 4}. Then, we
have ∑

C∈T �4
New

|Z(C+)| · log NC ≤
∑

C∈T �4
New

2d ≤
∑
C∈T

2d ≤ 2d · |Z(2B)| · smax ,
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hence it remains to consider only the components C ∈ T >4
New. For such a component,

let anc∗(C) ∈ T be the last ancestor for which the NewtonTest succeeded. According
to Theorem 6.176.17 (f), we have NC ≤ 4 · (w(anc∗(C))/w(C))2, and thus |Z(C+)| · log NC ≤
2 · |Z(C+)| · (1+ log w(anc∗(C))− log w(C)). In order to bound the later expression in terms of
values that depend on the roots of F, let zi ∈ C+ be an arbitrary root in C+. Then, assuming
w(C) ≤ 1, we obtain

|F′(zi)| � |ad | ·
∏

j,i:z j∈Z(2∆C)
|zi − z j |

∏
j:z j<Z(2∆C)

|zi − z j |

≤ |ad | · (2w(C))|Z(2∆C)|−1 ·
MeaF(zi−x)
|ad |

≤ 22d+τF w(C)|Z(2∆C)|−1 ·M(zi)d ,

where the last inequality follows from Landau’s inequality [GG03GG03, Theorem 6.31], that is,
Meap ≤ ‖p‖2 for any complex polynomial p ∈ C[x], and ‖F(zi − x)‖2 ≤ ‖F(zi − x)‖1 ≤
2τF M(zi)d2d+1. For a more detailed derivation of the latter see [SM16SM16, Lemma 22]. Further-
more, using that Z(2∆C) contains at least two roots (as the NewtonTest is called) and that
C+ ⊂ 2∆C, yields

|F′(zi)| ≤ 22d+τF M(zi)d w(C)
|Z(2∆C )|

2 ≤ 22d+τF M(zi)d w(C)
|Z(C+)|

2 .

With zi :� φ(C) and logφ(C) ≤ log(64d) + log φ̂(C), we conclude that

−|Z(C+)| · log w(C) ≤ 6d log(64d) + 2τF + 2d log φ̂(C) + log F′(φ(C))−1. (6.22)

Notice that the latter inequality is trivially also fulfilled for a component C with w(C) < 1.
In addition, it holds that

|Z(C+)| · log w(anc∗(C)) ≤ |Z(C+)| · (log φ̂(anc∗(C)) + log(128d)). (6.23)

The sum of the term at the right side of (6.226.22) over all C can be bounded by

Õ(smax · (|Z(2B)| · τF +

∑
zi∈Z∗(2B)

d log(zi) +
∑

zi∈Z(2B)
log F′(zi)−1))

� Õ(smax · (|Z(2B)| · τF + d log w(B) + d log MeaF(2B) +
∑

zi∈Z(2B)
log F′(zi)−1)),

as the pre-image of each (pseudo-) root zi ∈ 2B (under φ and φ̂) has size at most smax log d.
We may further omit the factor smax in the above bound as log log σF(zi)−1 � O(log(τF +

d log(zi) + log F′(zi)−1)) for an arbitrary root zi of F, and thus

smax � O(log d + log log w(B) + log log σF(2B)−1)
� O(log d + log log w(B) + log τF + log log MeaF(2B) + log

∑
zi∈Z(2B)

log F′(zi)−1).

It remains to bound the sum of the term |Z(C+)| · log φ̂(anc∗(C)) on the right side of (6.236.23)
over all C ∈ T >4

New. Let Tanc∗ :� {C∗ ∈ T : ∃C ∈ T with anc∗(C) � C∗}. Then, for a fixed
C∗ ∈ Tanc∗ , it holds that any C ∈ T >4

New with anc∗(C) � C∗ is connected with C∗ in T via a path
of length at most ŝ :� log log w(B) + log log σF(2B)−1. Namely, we have already shown that
log log NC ≤ ŝ for all C ∈ T , and thus NC > 4 implies that the path connecting C and C∗
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must have length at most ŝ. Hence, it follows that∑
C∈T >4

New:anc∗(C)�C∗

|Z((C)+)| · log w(anc∗(C)) �
∑

C∈T >4
New:anc∗(C)�C∗

|Z((C)+)| log w(C∗)

≤ (log φ̂(C∗) + log(128d))
∑

C∈T >4
New:anc∗(C)�C∗

|Z(C+)|

As for any two components C1 , C2 in the last sum above, either C+

1 ∩ C+

2 � ∅, C+

1 ⊂ C+

2 , or
C+

2 ⊂ C+

1 , it follows that this sum is upper bounded by ŝ · |Z((C∗)+)| ≤ ŝ · |Z(2B)|. Thus,∑
C∈T >4

New

|Z(C+)| · log w(anc∗(C)) ≤ ŝ · |Z(2B)| ·
∑

C∗∈Tanc∗

(log φ̂(C∗) + log(128d))

� O(smax · ŝ · d log d ·
∑

zi∈Z+(2B)
(log(zi) + log(d)).

Now, we obtain the bound by using the definitions of MeaF(2B) and the pseudo-root z0, and
then the definition of ŝ, as well as the bound on smax:

Õ(smax · ŝ · d · (log w(B) + log MeaF(2B) + |Z(2B)|))
� Õ(d · (log w(B) + log MeaF(2B) + |Z(2B)| + log

∑
zi∈Z(2B)

log F′(zi)−1)).

We summarize our results in the following main theorem.

Theorem 6.36. Let F be a polynomial as defined in (6.16.1) and let B ⊂ C be an arbitrary axis-aligned

square. Then, the algorithm CIsolate with input B uses

Õ
(
d · (d · (|Z(2B)| + log MeaF(2B) + log(w(B), w(B)−1)) + τF · |Z(2B)|

+

∑
zi∈Z(2B)

(log σF(zi)−1
+ log F′(zi)−1))

) (6.24)

bit operations. As input, the algorithm requires an L-bit approximation of F with

L � Õ(d · (Z(2B) + log MeaF(2B) + log(w(B), w(B)−1)) + τF · |Z(2B)|
+

∑
zi∈Z(2B)

(log σF(zi)−1
+ log F′(zi)−1)). (6.25)

Proof. The bound in (6.246.24) on the bit complexity follows immediately from Lemma 6.346.34,
Lemma 6.356.35, and the remark following Lemma 6.346.34. The bound in (6.256.25) on the precision
demand follows directly from the proof of Lemma 6.346.34 and Lemma 6.166.16.

Notice that the above complexity bounds are directly related to the size of the input square
B as well as to parameters that only depend on the roots located in 2B. This makes our
complexity bound adaptive in a very strong sense. In contrast, one might also be interested
in (probably simpler) bounds when using our algorithm to isolate all complex roots of F. In
this case, we may first compute an input square B of width w(B) � 2Γ+2 that is centered at
the origin. Here, Γ ∈ N≥1 is an integer bound for ΓF with Γ � ΓF +O(log d). We have already
argued in Section 6.26.2 that such a bound Γ can be computed using Õ(d2ΓF) bit operations.
Such a square B contains all complex roots of F, and thus running CIsolate with input B
yields corresponding isolating discs. Hence, we obtain the following result:
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Corollary 6.37. Let F be a square-free polynomial as in (6.16.1). Then, for isolating all complex roots of

F, CIsolate needs

Õ(d · (d2
+ d log MeaF +

d∑
i�1

log F′(zi)−1)) � Õ(d · (d2
+ d log MeaF + log Disc−1

F )) (6.26)

bit operations, where DiscF :� |ad |2d−2 ∏
1≤i< j≤d(z j − zi)2 is the discriminant of F. As input, the

algorithm requires an L-bit approximation of F with

L � Õ(d2
+ d log MeaF + log Disc−1

F ) (6.27)

Proof. The above bounds follow directly from the bounds in (6.246.24) and (6.256.25), and the fact
that d log(w(B), w(B)−1) + dτF � O(d2 + d log MeaF) and thus

d∑
i�1

log σF(zi)−1
� O(d2

+ d log(MeaF) +
d∑

i�1
log F′(zi)−1).

The statement now follows using

d∑
i�1

log F′(zi)−1
� O(d2

+ d log MeaF + log Disc−1
F ),

see, e.g. [SM16SM16, Section 2.5] and [SM16SM16, Theorem 31] for proofs of the latter bounds.

Again, we provide simpler bounds for the special case, where F has integer coefficients.

Corollary 6.38. Let f ∈ Z[x] be a square-free integer polynomial of degree d with integer coefficients

of bit-size less than τ, let F :� f /LC( f ), and let B ⊂ C be an axis-aligned square with 2−O(τ) ≤
w(B) ≤ 2O(τ)

. Then, CIsolate with input B needs Õ(d3 + d2τ) bit operations. The same bound

also applies when using CIsolate to compute isolating discs for all roots of f .

Proof. The bound on the number of bit operations for CIsolate on an input square B follows
immediately from (6.266.26) and the fact that DiscF � LC( f )2d−2 · Disc f ≥ 2−(2d−2)τ. For the
second claim, we may simply run CIsolate on a square B of width 2τ+2 centered at the
origin. According to Cauchy’s root bound, B contains all roots of f , and thus CIsolate
yields corresponding isolating discs.

6.7 Conclusion

In this chapter, we have seen a simple and efficient subdivision algorithm to isolate the
complex roots of a polynomial with arbitrary complex coefficients. Our algorithm achieves
complexity bounds that are comparable to the best known bounds for this problem. Pre-
viously, such bounds were achieved only by methods based on fast polynomial factoriza-
tion [EPT14EPT14; MSW15MSW15; Pan02Pan02]. Compared to thesemethods, our algorithm is quite simple and
uses only fast algorithms for polynomial multiplication and Taylor shift computation but no
other, more involved, asymptotically fast subroutines. Thus, there is hope that the algorithm
can be turned into an efficient implementation similar to its real counterpart from [SM16SM16],
see [KRS16KRS16] for an evaluation of its implementation. In fact, there are currently efforts to
include both methods, the real and the complex one, into the computer algebra system
Maple.

A possible direction of future research is to extend the current Newton-bisection tech-
nique and complexity analysis to the analytic roots algorithm in [YSS13YSS13]. See [Str12Str12] for an



6.7. Conclusion 125

alternative approach for the computation of the real roots of analytic functions obtained by
composing polynomials and the functions log, exp, and arctan.

At the end of Section 6.5.36.5.3, we sketched how to use our algorithm to isolate the roots
of a not necessarily square-free polynomial for which the number of distinct complex roots
is given as additional input. Also, we may use our algorithm to further refine the isolating
discs for the roots of a polynomial in order to compute L-bit approximations of all roots.
There exist dedicated methods [KS15aKS15a; MSW15MSW15; Pan02Pan02; PT13PT13; PT14PT14] for refining intervals
or discs, that are already known to be isolating for the roots of a polynomial. For large L,
that is if L dominates other parameters, their bit complexity is Õ(dL). In comparison, using
CIsolate for the refinement directly, its bit complexity would be of size Õ(d2L). We suspect
that this bound can be further improved by using a proper modification of the T∗-test, which
only needs to evaluate F and its first derivative, and approximate multipoint evaluation.
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Chapter 7

Counting Solutions of a Polynomial
System Locally and Exactly

7.1 Introduction

In this chapter, we turn to the problem of computing the solutions of zero-dimensional
polynomial systems. We propose a randomized but certified (i.e. Las-Vegas type) algorithm,
denoted #PolySol, to count the number of solutions of a zero-dimensional polynomial
system F within a given polydisc ∆ ⊂ Cn . More precisely, let

F : f1(x) � . . . � fn(x) � 0, with fi ∈ C[x] � C[x1 , . . . , xn] for all i � 1, . . . , n , (7.1)

be a zero-dimensional11 polynomial system. As for the univariate case before, we assume
that each of the coefficients ci ,α of the polynomials

fi �
∑

α�(α1 ,...,αn)
ci ,α · xα �

∑
α�(α1 ,...,αn)

ci ,α · xα1
1 · · · x

αn
n

can be approximated to any desired precision. That is, for any given non-negative integer
precision ρ, we can ask for a dyadic approximation c̃i ,α ∈ 2−ρ · (Z + i · Z) of ci ,α with
| c̃i ,α − ci ,α | < 2−ρ for the cost of reading the approximations.

Given a polydisc ∆ � ∆r(m) � {z ∈ Cn : ‖z −m‖ < r} of radius r centered at m ∈ Cn , we
aim to compute the number of solutions of F � 0 that are contained in ∆. Here, solutions
are counted with multiplicity. As input, the algorithm #PolySol receives the coefficients of
F , the polydisc ∆, and an integer K ∈ {0, 1, . . . , dF }, where dF :� maxi di is the maximum
of the degrees di of the polynomials fi . As output, it returns an integer k ∈ N ∪ {−1}.
There are two possible outcomes – either the algorithm fails or the algorithm succeeds. If
k � −1, nothing can be said, that is, the algorithm fails to provide an answer to our request.
If the algorithm succeeds however, it guarantees that k equals the number of solutions of
F � 0 in ∆. Furthermore, we show that our algorithm always succeeds under the following
conditions. (1) If r is small enough. (2) The input parameter K is at least the number of
solutions of F in ∆. (3) The smaller polydisc ∆′ :� ∆r′(m), with r′ :� r/64n(K + 1)n , contains
a k-fold solution of F . We also derive a bound on the size of r that guarantees success of
our method if the other two requirements are fulfilled. The given bound is adaptive in the
sense that it does not only depend on global parameters such as the degree and the size of
the coefficients of the polynomials fi , but also on solution-specific parameters, that is, the
multiplicity and the size of z as well as the distances between z and the other solutions of
F . This can be seen as an analogue result to the results from the previous chapter, where
we have seen that the geometry of the roots of the polynomial determines the cost of the
algorithm CIsolate for isolating the roots.

1There are only finitely many solution in complex projective n-space.
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We proceed by stating our main result for the special case, where F is defined over the
integers. For the more general statement, see Theorem 7.227.22.

Theorem7.1. Suppose that z is a k-fold solution of a polynomial systemF as in (7.17.1)with polynomials

fi ∈ Z[x] of total degree di and with integer coefficients ci ,α of bit-size less than τF . Then, for any
K ≥ k, there exists an L∗ ∈ N with

L∗ � Õ
(
DF ·max

i∈[n]

dF + τF
di

+ DF · log(z) + log(∂(z, F )−1) + (K + 1)n · log(σ(z, F )−1)
)

such that, with probability at least 1/2, the algorithm #PolySol(F ,∆, K) returns k for any disc

∆ � ∆r(m) with r ≤ 2−L∗
and ‖m − z‖ < r. Here, we use the definitions dF :� maxi∈[n] di ,

DF :�
∏n

i�1 di ,

σ(zi , F ) :� min
j,i
‖zi − z j ‖ , and ∂(zi , F ) :�

∏
j,i

‖zi − z j ‖µ(z j ,F ) ,

where z1 , . . . , zN denote the distinct solutions of F and µ(zi , F ) the multiplicity of zi .

Notice that the method never yields the exact multiplicity of a solution, even in the case
where there is a well separated k-fold solution z in ∆. Instead, we only obtain the sum of
the multiplicities of all solutions contained in ∆. However, in the considered computational
model, where only approximations of the coefficients of the input polynomials are known, it
is simply not possible to achieve a stronger result. This is due to the fact that arbitrary small
perturbations of the input already destroy the multiplicity structure of non-simple roots.

There is a series of applications of our method. For instance, it can be used to verify
correctness of the result provided by a numerical (non-certified) method such as homotopy
methods (e.g. [Ver99Ver99; Bat+13Bat+13]) or subdivisionmethods (e.g. [MP09MP09; Bur+08Bur+08]). Corresponding
implementations of suchmethods (e.g. Bertini, PHCpack, axel) are available and have proven
to be efficient and reliable in practice. Suppose that such amethod returns an approximation
ζ of a k-fold solutions z such that ‖ζ−z‖ < 2−L, however,without any guarantee on the correctness
of the result. Now, in order to show correctness, we may run the algorithm #PolySol with
input F , K � k, and ∆ � ∆64n(k+1)n ·2−L (ζ). According to the above theorem, the method
returns k if the claimed result is actually correct and L is large enough. Hence, we eventually
succeed if the numerical solver provides a sufficiently good approximation of z together with
the correct multiplicity. Again, we remark that the method does not provide a proof that
there is exactly one root of multiplicity k, but only a proof that there are k roots counted with
multiplicity in ∆.

For polynomial systems that are defined over the integers, there exist complete and
certified methods (e.g. [Rou99Rou99; Laz09Laz09; BS16BS16]) to compute isolating regions for all solutions
together with the correspondingmultiplicities, however, their possible application is limited
in practice. In particular, if the polynomials fi are of large degree, the running time for
the necessary symbolic computations (e.g. that of a Gröbner Basis or resultants) becomes
prohibitive. Combining our method with a numerical solver may instead yield a certified
result on the existence of solutions in a certain region.

In Section 7.57.5, we report on a preliminary implementation of our method. That is, we
integrated an implementation of our method into the Bisolve-routine [Ber+13Ber+13; KS15bKS15b], a
highly efficient algorithm for isolating the solutions of a bivariate polynomial systems with
integer coefficients. There, it serves as an inclusion predicate to verify the existence of a
k-fold solution of the system. Compared to the original approach in Bisolve, we observe a
considerable improvement with respect to running time and precision demand.
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Overview of theAlgorithm. Recall Pellet’s theorem that we have described in the previous
chapter. It can be used for counting the number of roots of a univariate polynomial f ∈ C[x]
in a disc Dr(m) � {x ∈ C : |x − m | ≤ r} of radius r centered at a point m ∈ C. Let us call
f [m](x) :� f (m + x) the shift of f to m, see Section 7.27.2. The test based on Pellet’s theorem
works as follows. We first compute the Taylor-expansion

f [m](x) �
∑

i≥0
ci · x i

�

∑
i≥0

f (i)(m)
i!
· x i

at m and then check whether |ck | · rk >
∑

i,k |ci | · r i for some k. Notice that the latter
inequality implies that the part ck · xk of f [m] of degree k dominates the remaining parts
on the boundary of the disc Dr(0). If this is the case, then Dr(m) contains exactly k roots
of f , which we have proven in Theorem 6.46.4. In the previous chapter, we have also given
sufficient conditions on r and the locations of the roots with respect to m such that the above
inequality is fulfilled. In particular, for m being a k-fold root of f , we gave a bound r0 in
terms of the degree of f and the separation of m such that Pellet’s Theorem applies for any
r < r0. We will summarize the most important results related to Pellet’s theorem for this
chapter in Lemma 7.187.18.

Our algorithm #PolySol can be considered as an extension of Pellet’s Theorem to poly-
nomial systems. Similar as in the one-dimensional case, we make crucial use of the fact that,
for a sufficiently small neighborhood ∆ of a k-fold solution z of F , the system

F [z] : f1(x + z) � · · · � fn(x + z) � 0

obtained by shifting each of the polynomials fi by z is dominated by terms of degree k or
less. Hence, in order to study the local behavior of F at z, it should suffice to consider the
truncation F [z]≤k of F [z], where we only consider the part fi[z]≤k �

∑
α:|α |≤k c′i ,α · xα of each

fi[z] � f (x + z) � ∑
α c′i ,α · xα that is of degree k or less. In fact, in Corollary 7.217.21, we prove

that, for any K ≥ k, the system F [z]≤K has a k-fold solution at the origin, and we give a
bound on its separation in terms of the separation of z as a solution of the original system
F . In Theorem 7.207.20, we even show that if K ≥ k, and if ‖m − z‖ < 2−L for a sufficiently
large L, then we can work with F [m]≤K instead of F [z]. Namely, in this case, F [m]≤K has k
solutions of norm less than 4 · 2−L, whereas all remaining solutions have considerably larger
norm, that is, larger than some value that does not depend on L.

We now provide an overview of our approach. For the sake of simplicity, we omit
technical details and only give the main ideas. Also, we do not treat any special cases, which
considerably simplifies the approach when compared to the actual algorithm as given in
Section 7.37.3. We first define L :� dlog r

32n(K+1)n e such that r
64n(K+1)n ≤ 2−L ≤ r

32n(K+1)n � r′.
Obviously, we cannot check in advance whether the above requirements on m and L are
fulfilled, however, we can check whether F [m]≤K has a cluster of solutions near the origin.
For this, we use a complete and certified algorithm to compute isolating regions of all
solutions of F [m]≤K that are contained in the polydisc ∆ � ∆r(0). Notice that if K is small
compared to the degrees of the polynomials fi , then the cost for computing the solutions of
F [m]≤K is much lower than solving the original system directly. In particular, for K � 1,
the truncated system F [m]≤K becomes a linear system in n variables. Now, suppose that ∆
contains k′ solutions ofF [m]≤K (k′ does not have to be equal to k) that arewell separated from
the remaining solutions, then we are left to show that F [m] contains the same number of
solutions in ∆. For this, we use a generalization of Rouché’s Theorem that applies to analytic
functions in n-dimensional complex space; see Theorem 7.177.17. This approach requires to
compute a lower bound LB for ‖F [m]≤K(x)‖ :� maxi | fi[m]≤K | on the boundary of ∆ as well
as a corresponding upper bound UB on the error ‖F [m](x)≤K − F [m](x)‖ that occurs when
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passing from F [m] to the truncated system F [m]≤K . Whereas the computation of UB is
straightforward (see (7.117.11) in Section 7.37.3), the computation of LB is more involved. Namely,
we first compute the hidden-variable resultant R` :� Res(F [m]≤K , x`) ∈ Q[x`] with respect
to each of the variables x` ; see Section 7.27.2 for details on the hidden variable approach. The
roots of R` are the projections of the solutions of F [m]≤K on the x`-axis, and R` is contained
in the ideal given by the polynomials fi[m]≤K , that is, there exist g`,1 , . . . , g`,n ∈ Q[x]with

R` � g`,1 · fi[m]≤K + · · · + g`,1 · fi[m]≤K . (7.2)

Using a recent result [DKS13DKS13] on the arithmetic Nullstellensatz, we derive upper bounds on
the absolute value of the coefficients of the polynomials g`,1; see Corollary 7.117.11 and (7.137.13) in
Section 7.37.3. In addition, we use our results on Pellet’s Theorem from the previous chapter
in order to derive a lower bound for |R` | on the boundary of the disc Dr(0) ⊂ C, which is
the projection of the polydisc ∆ into one-dimensional space; see Lemma 7.187.18. Combining
the latter two bounds then yields LB. Finally, we check whether LB > UB, in which case we
conclude from Rouché’s Theorem that F [m] has the same number of solution in ∆ as the
truncated system F [m]≤K . If UB < LB, we return −1.

In the analysis of our algorithm,we show that if ‖m−z‖ < r/(64n(K+1)n) for a sufficiently
small r, then LB approximately scales like c · rk for some constant C, whereas UB scales like
C′ · rK+1 for some constant C′. Thus, in this case, our algorithm eventually succeeds if K ≥ k.
As already mentioned, we omitted many details in the above description. In particular, for
completeness, we needed to address certain special cases. In particular, this comprises the
case where F [m]≤k has distinct solutions whose projections on one of the coordinate axis
are (almost) equal or solutions at infinity that yield roots of the hidden variable resultant.
We show how to handle such situations by means of a random rotation of the coordinate
system without harming the claimed complexity bounds.

Implementation for the Bivariate Case. For the special case of a polynomial system F :
f1(x1 , x2) � f2(x1 , x2) � 0 in two variables, with f1 , f2 ∈ Z[x1 , x2], we implemented the
algorithm in Sage. As an oracle for computing an arbitrary good approximation of a solution
z of F , we use a subroutine of the so-called Bisolve algorithm from [Ber+13Ber+13; KS15bKS15b], which
currently constitutes one of the fastest exact and complete algorithms for solving bivariate
systems. Bisolve is a classical elimination approach that projects the solutions of the system
on each of the two coordinate axis in a first step by means of resultant computation and
root isolation. This yields a set of points on a two-dimensional grid that are all possible
candidates for the solutions of the system. Also, the candidates can be approximated to
an arbitrary precision using root refinement for univariate polynomials. Then, in a second
step, in order to check whether a certain candidate is a solution or not, Bisolve combines
interval arithmetic and an inclusion test based on bounds on the cofactors g1 and g2 in the
representation R � g1 · f1 + g2 · f2 of the resultant polynomials R as an element in the ideal
〈 f1 , f2〉. This inclusion test is similar to the approach that we will present in this chapter,
however, no truncation of the original system is considered. Also, it is tailored to the bivariate
case and does not yield the multiplicity of a solution. In our experiments that we will report
on in Section 7.57.5, we replace the original inclusion test in the Bisolve algorithm by #PolySol
and compare the precision demand and the running time to that of the original variant.
In our evaluation, we observe that, for a multiplicity k of z that is small in comparison to
the degrees of the input polynomials, our novel approach outperforms the original variant.
At least, for the considered instances, we observe a sub-linear dependency of the needed
precision on the degrees of the input polynomials. Notice that this is not in line with the
derived bounds on the precision demand, which suggest at least a quadratic dependency.
However, we remark that the given bounds are just worst-case bounds. We also want to
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note that our implementation should rather be considered as a proof-of-concept than as an
implementation that should be directly used as provided. The experiments in Section 7.57.5
should be considered as preliminary, nevertheless they give interesting hints and support
the belief that our approach can lead to very efficient implementations.

Related Work. The literature on solving zero-dimensional polynomial systems is vast and
we can only give an incomplete overview. A historical summary can be found in [Laz09Laz09].
There are roughly two different classes of methods – numeric methods and symbolic meth-
ods. In contrast to symbolic methods, the numeric methods are in general not guaranteed to
be complete or correct. On the other hand they are usually efficient in practice and some of
them seem to be quite reliable.

One very classic approach is Newton’s method, see [Rum10Rum10, Section 13] for a general
description and an approach that usesNewton’s iterationwith interval arithmetic. Moreover,
this work presents techniques for verifying the results of Newton’s iteration. Another very
popular numeric approach are homotopy continuation methods. There has been also quite
some implementation effort, see PHCpack [Ver99Ver99] and Bertini [Bat+13Bat+13]. We also want to
mention the work by Verschelde and Haegemans [VH94VH94]. From a high-level point of view,
their approach is similar to ours as it is also based on Rouché’s theorem. Their method relies
on finding a sparse part of the polynomial system that dominates the rest of the system on
the border of a considered region and can be used as a better starting system for homotopy
based techniques. The main differences to our approach are the following. First, we use our
technique to directly certify the existence of a zero, not only in order to construct a starting
system for a numerical method. Moreover, the system that we use in order to approximate
the input system is of lower degree, more precisely our “dominating part” is always of degree
k if k is the multiplicity of the zero in the given region.22 In contrast to their result, we also
show that the precision that is needed in order to do so directly depends on the arrangements
of the zeros of the system. The subdivision methods [MP09MP09; Bur+08Bur+08] are usually incomplete
in the sense that they only provide exclusion predicates and lack inclusion predicates. Thus
they can be used in order to compute regions that are guaranteed to be free of solutions to the
system but cannot ultimately guarantee that a region contains a zero. We want to stress that
our work now provides an inclusion predicate that could be included in these approaches
in order to turn these methods into complete methods.

A very classical approach are methods based on Groebner Bases. Their theoretical
description goes back to Buchberger [Buc06Buc06]. A very efficient implementation is due to
Faugère, see [Fau02Fau02]. The approach of Rational Univariate Representation (RUR) goes back
to Rouillier [Rou99Rou99], and has found its way into very efficient implementations. Another
quite successful approach are techniques based on resultants, see for example [BS16BS16] for a
recent approach. Other works that aim at certifying solutions of systems include the work
of Hauenstein and Levandovskyy [HL17HL17]. Their approach even applies for a more general
setting, namely systems of polynomial-exponential equations and is based on Newton’s
iteration and Smale’s α-theory.

Structure of the Remainder of this Chapter. In Section 7.27.2, we introduce some further
notation and then work out the basic concepts that we will need later on. In Section 7.37.3, we
present the algorithm #PolySol and describe the main rationale behind it. In Section 7.47.4,
we analyze the algorithm and in Section 7.57.5, we describe the Sage implementation of our
method for the bivariate case and its integration into the Bisolve-like approach.

2Note that it is not strictly necessary to know this parameter k, since a binary search for k can find a good
enough approximation.
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7.2 Preliminaries

7.2.1 Notation and Definitions

We start by introducing further frequently used notation and important definitions.

1. For a polynomial f �
∑
α cαxα ∈ C[x], we define

deg( f ) :� max
α�(α1 ,...,αn):cα,0

α1 + . . . + αn

to be the (total) degree of f . Recall that τ f :� dlog ‖ f ‖e.

2. For a polynomial system F � ( f1 , . . . , fn), with fi ∈ C[x] of total degree di , we define

dF :� max
i∈[n]

di , DF :�
∏
i∈[n]

di , and τF :� max
i∈[n]

τ fi .

DF is also called the Bézout bound in the literature. It constitutes an upper bound on the
total number of solutions (counted with multiplicities) of a zero-dimensional system
F . For a system F with generic coefficients, it actually equals the number of solutions.

3. We further say that a polynomial f �
∑
α cαxα ∈ Z[x] with integer coefficients has

magnitude (d , τ) if d f ≤ d and τ f ≤ τ. A system F � ( f1 , . . . , fn) with fi ∈ Z[x] has
magnitude (d , τ) if each polynomial has magnitude (d , τ).

4. As for univariate polynomials, for a multivariate polynomial f �
∑
α cαxα ∈ C[x] and

a positive integer κ, we say that φ �
∑
α c̃αxα is an (absolute) κ-bit approximation of f

if each c̃α is a dyadic number of the form (m +m′ · i) · 2−(κ+1) ∈ Q+ i ·Q, with m ,m′ ∈ Z,
and ‖ f − φ‖ ≤ 2−κ. In other words, each c̃α approximates cα to κ bits after the binary
point.

5. For z ∈ Cn and a polynomial f ∈ C[x], we define

f [z](x) :� f (x + z) �
∑
α

cα(x + z)α

to be the shift of f to z. For a system F � ( f1 , . . . , fn), we define the shift of F to z as
F [z] � ( f1[z], . . . , fn[z]).

6. For k ∈ [d], we denote with f≤k :�
∑
α:|α |≤k cαxα the truncation of f of degree k. For a sys-

tem F � ( f1 , . . . , fn), we define the truncation of F of degree k as F≤k � ( f1≤k , . . . , fn≤k).

7.2.2 Error Bounds for Shifting, Truncation, and Rotation

We first collect some bounds on the size of | f (z)| and ‖ f [z]‖ depending on the modulus of
some point z ∈ Cn and the norm ‖ f ‖ of some polynomial f ∈ C[x]. We also give bounds on
the error that occurs when computing f (z) or f [z] not exactly at z but at a nearby point ζ.

Lemma 7.2. Let f (x) � ∑
α cαxα ∈ C[x] � C[x1 , . . . , xn] of total degree d and with ‖ f ‖ ≤ 2τ.

Moreover, let k ∈ [d] � {1, . . . , d}, z ∈ Cn
, and ζ be an approximation of z with ‖ζ − z‖ < 2−L

,

then it holds:

(a) | f≤k(z)| ≤
(n+k

k

)
· 2τ ·M(z)k , and in particular | f (z)| <

(n+d
d

)
· 2τ ·M(z)d .

(b) If ‖z‖ ≤ 1, then | f (z) − f≤k(z)| ≤ ‖z‖k+1 ·
(n+d

d

)
· 2τ.
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(c) | f (ζ) − f (z)| ≤ 2τ−L ·
(n+d

d

)
·M(z)d .

(d) ‖ f [z]‖ < dn ·
(n+d

d

)
· 2τ ·M(z)d and ‖ f [ζ] − f [z]‖ < 2τ−L · dn ·

(n+d
d

)
·M(z)d .

Proof. Part (aa) and (bb) follow immediately from the fact that f≤k has at most
(n+k

k

)
coefficients

and each occurring term cα · zα has absolute value bounded by 2τ · ‖z‖ |α |. Part (cc) is a direct
consequence of [MOS11MOS11, Theorem 12], which provides general bounds on the error when
evaluating a multivariate polynomial using floating point computation. For the last claim,
notice that

f [z] �
∑
α∈Zn

≥0

∂α f (z)
α! xα and f [ζ] �

∑
α∈Zn

≥0

∂α f (ζ)
α! xα ,

where α � (α1 , . . . , αn), α! :� α1! · · · αn!, and ∂α f :� ∂|α | f
∂xα1

1 ···∂xαn
n
. The polynomials ∂α f

α! have

total degree bounded by d and their norm is upper bounded by 2τ · dn � 2τ+n log d . Hence,
Part (aa) implies the first part of (dd). The second part follows from Part (cc) because, for any α,
it holds that

| ∂
α f (z)
α! −

∂α f (ζ)
α! | ≤ 2τ−L · dn ·

(
n + d

d

)
·M(z)d .

We further provide the following lemma that investigates the influence of considering
only an approximation of a polynomial f when looking at shift and truncation.

Lemma 7.3. Let f (x) ∈ C[x] be a polynomial of total degree d with norm ‖ f ‖ ≤ 2τ, and let z ∈ Cn

and ζ such that ‖ζ − z‖ < 2−L
. Furthermore, let φ be an approximation of f [ζ]≤k of total degree at

most k, with k ∈ [d], such that ‖φ − fi[ζ]≤k ‖ ≤ 2−(k+1)L
. Then, for any x with ‖x‖ ∈ [2−L , 1], it

holds

|φ(x) − f [ζ](x)| ≤ ‖x‖k+1 · dn2τ+1[M(ζ) · (n + d)2]d .

Proof. We first observe that using the triangle inequality, simple bounds on the number of
monomials of lower (≤ k) and higher (≥ k + 1) degree, and the fact that ‖x‖ ≤ 1 yields

|φ(x) − f [ζ](x)| ≤ | f [ζ](x) − f [ζ]≤k(x)| + |φ(x) − f [ζ]≤k(x)|

≤ ‖x‖k+1 · ‖ f [ζ] − f [ζ]≤k ‖ ·
(
n + d

d

)
+ ‖φ − f [ζ]≤k ‖ ·

(
n + k

k

)
.

Then, applying Lemma 7.27.2 part (dd) to the left summand and the condition on the approxi-
mation ‖φ − f [ζ]≤k ‖ ≤ 2−(k+1)L, we conclude that

|φ(x) − f [ζ](x)| ≤ ‖x‖k+1 · dn ·
(
n + d

d

)2

· 2τ ·M(ζ)d + 2−(k+1)L ·
(
n + k

k

)
≤ ‖x‖k+1 · [dn · 2τ · (n + d)2d ·M(ζ)d + (n + d)d]
≤ ‖x‖k+1 · dn2τ+1[M(ζ) · (n + d)2]d ,

where the second to last inequality follows from ‖x‖ ≥ 2−L.

In our algorithm, we will consider a transformation of the coordinate system induced by
a rotation x 7→ S ·x, where S ∈ SO(n) is a rotation matrix with rational entries. The following
lemma quantifies the impact of such a rotation on the bit-size of the coefficients of a given
polynomial f .

Lemma 7.4. Let f �
∑
α cα ·xα ∈ C[x] be a polynomial of total degree d and S ∈ SO(n) be a rotation

matrix. Then, f ∗ :� f ◦ S, it holds that ‖ f ∗‖ ≤ 2τF ·
(n+d

d

)2
.
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Proof. Notice that each of the entries ar,s of the rotationmatrix S � (ar,s)r,s has absolute value
at most 1. Thus, f ∗(x) � f ◦S(x) � ∑

α:cα cα · [(a11x1+ · · ·+ a1,n xn)α1 · · · (an1x1+ · · ·+ an ,n xn)αn ]
has coefficients of absolute value bounded by 2τF ·

(n+d
d

)2
as, when expanding the product

(a11x1+ · · ·+ a1,n xn)α1 · · · (an1x1+ · · ·+ an ,n xn)αn for a fixed α, there can be at most
(n+d

d

)
terms

contributing to a specific monomial xα′.

7.2.3 The Hidden-Variable Approach

Let us assume that an arbitrary zero-dimensional system F � ( f1 , . . . , fn) as in (7.17.1) is given.
That is, fi has total degree di , ‖ fi ‖ < 2τi for all i, and it is assumed that the total number
of solutions of F � 0, also at “infinity” (see the considerations below for an explanation),
is finite. We now briefly describe the so-called hidden-variable approach that allows us
to project the zeros of the system on an arbitrary coordinate axis. For more details, we
recommend the excellent textbook [CLO05CLO05] by Cox, Little, and O’Shea.

In a first step, we consider a homogenization of the system, that is, we introduce an
additional (homogenizing) variable xn+1 and multiply each occurring term in each fi with
a suitable power of xn+1 such that the so obtained polynomials f h

i ∈ C[x1 , . . . , xn+1] are
homogenous and of total degree di , respectively; see also the example below. Notice that
each solution (x1 , . . . , xn) ∈ C of F � 0 yields a solution (x1 , . . . , xn , 1) of the homogenized
system

F h : f h
1 (x1 , . . . , xn+1) � . . . � f h

n (x1 , . . . , xn+1) � 0 (7.3)

In addition, if (x1 , . . . , xn+1) ∈ Cn+1 is a solution of F h � 0, then (t · x1 , . . . , t · xn+1) is a zero
of F h for all t ∈ C. In particular, if xn+1 , 0, we can set t � 1/xn+1, which yields the solution
(x1/xn+1 , . . . , xn/xn+1) of F � 0. It is thus preferable to consider the set S of solutions of the
above homogenized system as a set of points in the n-dimensional projective space Pn . The
set S then decomposes into the set S<∞ � {(x1 : . . . : xn+1) ∈ S : xn+1 � 1} of so-called affine

solutions, for which xn+1 � 1, and the set S∞ � {(x1 : . . . : xn+1) : xn+1 � 0} of solutions at
infinity, for which xn+1 � 0. Notice that there is a one-to-one correspondence between the
affine solutions of the homogenized system and the solutions of the original system (7.17.1).

As mentioned above, we aim to compute the projections of the solutions of F � 0 on one
of the coordinate axis, say w.l.o.g., x � x1. For this, suppose that we fix some value ξ for x1.
Plugging x1 � ξ into the initial system then yields the specialized system

F [ξ] : f [ξ]1 (x2 , . . . , xn) � . . . � f [ξ]n (x2 , . . . , xn) � 0,

with f [ξ]i (x2 , . . . , xn) :� fi(ξ, x2 , . . . , xn) and the corresponding homogenized system

(F [ξ])h : ( f [ξ]1 )
h(x2 , . . . , xn+1) � . . . � ( f [ξ]n )h(x2 , . . . , xn+1) � 0, (7.4)

where ( f [ξ]i )h denotes the homogenization of f [ξ]i . Notice that, in general, ( f [ξ]i )h does not
equal ( f h

i )[ξ] � f h
i (ξ, x2 , . . . , xn+1), that is, we cannot deduce the system in (7.47.4) from plug-

ging ξ into the homogenized system in (7.37.3). The reason is that the total degree of fi may
become smaller for certain values for ξ, and thus homogenization does not commute with
specialization.

Example. For f :� x1x3
2−2x3

2 +x3x1+x2
3 and ξ � 2, we have f h � x1x3

2−2x3
2x4+x3x1x2

4 +x2
3x2

4,
f [ξ] � f (2, x2 , x3) � 2x3 + x2

3, and ( f [ξ])h � 2x3x4 + x2
3, which does not equal ( f h)[ξ] �
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f h(2, x2 , x3 , x4) � 2x3
2 − 2x3

2x4 + 2x3x2
4 + x2

3x2
4.

Youmaynotice that (7.47.4) is a polynomial system consisting of n homogenous polynomials
in n variables. If the initial homogenized system had a solution with x1 � ξ, then this would
yield a solution of (7.47.4) and vice versa. In otherwords, ξwould be the projection of a solution
of the initial system. The following important result now gives a necessary and sufficient
criteria to check whether this is actually the case.

Theorem 7.5 ([CLO05CLO05], Chapter 3, Theorems 2.3 and 3.1). Let G be a system of n homogeneous

polynomials in n variables of total degrees d1 , . . . , dn . Then, there is a unique polynomial 33 Res(G) �
Resd1 ,...,dn ∈ Z[u] in the coefficients u of G such that Res(G) � 0 if and only if G(x) � 0 has a

non-trivial solution x ∈ Pn−1
. The polynomial Res(G) is homogeneous in the variables of fi of degree

d1 · · · di−1 · di+1 · · · dn and its total degree equals

∑n
i�1 d1 · · · di−1 · di+1 · · · dn .

Example. The homogeneous system G : ax2
1 + bx1x2 + cx2

2 � dx1 + ex2 � 0 (with general
coefficients a , b , c , d, and e) has a solution in P1 if and only if the involved coefficients fulfill
the equality Res(G) � Res2,1 � ae2 − be + cd � 0.

For an arbitrary polynomial system G consisting of n + 1 (not necessarily homogenous)
polynomials in C[x1 , . . . , xn], we simply define Res(G) � Res(Gh). Since G has the same
coefficients as Gh , it still holds that Res(G) is a polynomial in the coefficients of G. In
addition, since there is a one-to-one correspondence between the solutions of G and the
affine solutions of Gh , it follows that Res(G) � 0 if and only if Gh � 0 has a solution in Pn .

Now, in order to compute all values ξ such that there exists a solution (x1 , . . . , xn) of
our initial system F � 0 with x1 � ξ, we aim to apply the above theorem to the system as
defined in (7.47.4), however we now consider ξ as an indeterminate (so called hidden variable)
rather than a fixed value. There are some subtleties with this approach. In particular, the
degrees of the polynomials f [ξ]i may be different for certain values for ξ, which is crucial as
the definition of the resultant polynomial Res strongly depends on the degrees of the given
polynomials. However, we can avoid such critical situations if we assume that the given
polynomials fi fulfill some mild prerequisites.

Lemma 7.6. Suppose that each polynomial fi contains a term of total degree di that does not depend
on x1 and write

fi �
∑

α�(α2 ,...,αn)
ci ,α(x1) · xα2

2 · · · x
αn
n ∈ C[x1][x2 , . . . , xn]

as a polynomial in x2 , . . . , xn with coefficients ci ,α ∈ C[x1]. Furthermore, let

Fi :�
∑

α�(α2 ,...,αn)
ci ,α(x1) · xα2

2 · · · x
αn
n · xdi−α2−...−αn

n+1

be its corresponding homogenization (with respect to the variables x2 , . . . , xn), then it holds:

(a) For all ξ ∈ C, we have ( f [ξ]i )h � F[ξ]i and ( f [ξ]i )h has total degree di .

(b) Each root x1 � ξ ∈ C of R(x1) :� Res(F1 , . . . , Fn) yields a solution (x1 , . . . , xn) ∈ Cn
of

F � 0 with x1 � ξ and vice versa.

Proof. Part (a) follows directly from the fact that the total degree of f [ξ]i is equal to di for all
ξ as there exists a term of degree di that does not depend on ξ. For (b), we first remark
that the resultant of the polynomials Fi is a polynomial in the coefficients of the Fi , and thus

3We remark that Res only depends on the actual degrees of the polynomials.
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a polynomial in x1. Since the degree of each fi does not depend on the choice of x1 � ξ,
we also have R(ξ) � Res(F1 |x1�ξ , . . . , Fn |x1�ξ). Now, let x1 � ξ be a complex root of R, then
according to Theorem 7.57.5, there must exist a solution (ξ2 : . . . : ξn+1) ∈ Pn−1 of the system
(Fi |x1�ξ)i�1,...,n . In order to prove that this solution is an affine solution (i.e. a solution of F ),
we assume for contradiction that ξn+1 � 0. Plugging xn+1 � 0 into the polynomials Fi yields

Fi |xn+1�0 �

∑
α�(α2 ,...,αn):α2+...+αn�di

ci ,α(x1) · xα2
2 · · · x

αn
n .

Hence, each of the terms ci ,α(x1) occurring in the above sum is a constant that does not
depend on x1. Since (ξ : ξ2 : . . . : ξn) is a solution of the system Fi |xn+1�0, we conclude that
(x1 : ξ2 : . . . : ξn) is a solution of Fi |xn+1�0 for any x1. This contradicts our assumption that
F has only finitely many solutions. It follows that (ξ2/ξn+1 , . . . , ξn/ξn+1 , 1) is a solution
of (Fi |x1�ξ)i�1,...,n , and thus (ξ, ξ2/ξn+1 , . . . , ξn/ξn+1) is a solution of F � 0. For the other
direction, let (ξ1 , . . . , ξn) be a solution of F � 0, then (ξ1 : . . . : ξn : 1) is an affine solution of
the corresponding homogenized system, and thus (ξ2 : . . . : ξn : 1) a solution of the system
(Fi |x1�ξ)i�1,...,n � 0. This implies that R(ξ1) � 0.

Obviously, the above considerations apply for any coordinate (hidden-variable) xk onto
which we aim to project the solutions. The corresponding resultant polynomial Res(F , xk) ∈
C[xk] is called the hidden-variable resultant with respect to xk . The following theorem [BS16BS16]
bounds the cost for computing the hidden-variable resultant in the special case where the
polynomials fi have integer coefficients. The technique is based on a method due to Emiris
and Pan [EP05EP05] and an asymptotically fast algorithm for determinant computation due to
Storjohann [Sto05Sto05].

Theorem7.7 ([BS16BS16, Prop. 1]). LetF � ( fi)i�1,...,n be a polynomial systemwith integer polynomials

fi ∈ Z[x1 , . . . , xn] of magnitude (d , τ). There is a Las-Vegas algorithm to compute Res(F , xk) in an

expected number of bit operations bounded by44

Õ(n(n−1)(ω+1)(d + τ)d(ω+2)n−ω−1).

We further remark that a root ξ of Res(F , xk) might origin from several solutions z �

(z1 , . . . , zn) of F � 0 sharing the same xk-coordinate xk � ξ. Under the requirements from
Lemma 7.67.6, it holds that the multiplicity of ξ as a root of Res(F , xk) equals the sum of the
multiplicities of all these solutions z. Also, the roots of Res(F , xk) are exactly the projections
of the finite solutions onto the xk-coordinate, and vice versa. Furthermore, if there are no
solutions at infinity, then Res(F , xk) has degree DF as the system has exactly DF solutions
(counted with multiplicity), which are all finite, and the roots of Res(F , xk) are exactly the
projections of these solutions onto the xk-coordinate.

Lemma7.8. LetF � ( fi)i�1,...,n , with fi �
∑
α:|α |≤di

ci ,α ·xα ∈ C[x] of total degree di , be a polynomial

system in n variables x � (x1 , . . . , xn) with general coefficients ci ,α. Consider the decomposition

fi(x) �
∑

α:|α |�di

ci ,α · xα︸           ︷︷           ︸
:� fi ,di (x)

+

∑
α:|α |<di

ci ,α · xα︸           ︷︷           ︸
�: fi ,<di (x)

of each fi into a sum of terms of degree di and into a sum of terms of degree less than di . Then, for any

k ∈ [n], it holds that the leading coefficient LC(Res(F , xk)) of the (general) hidden variable resultant

4ω denotes the exponent in the complexity of matrix multiplication. The current record bound for ω is
ω ≤ 2.3728639 according to [Gal14Gal14]
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Res(F , xk) ∈ Z[ci ,α][xk] only depends on the coefficients ci ,α of fi ,di (i.e. on the coefficients ci ,α with

|α | � di).

Proof. Let xn+1 be a homogenizing variable and

f h
i �

∑
α:|α |�di

ci ,α · xα +
∑

α:|α |<di

ci ,α · xα · xdi−|α |
n+1

be the corresponding homogenization of fi . For generic choice of the coefficients ci ,α with
|α | � di , the above system is zero-dimensional and has no solution at infinity. Namely, for
xk+1 � 0, the systemwrites as f h

i (x1 , . . . , xn , 0) � fi ,di , and a generic system of n homogenous
polynomials in n variables has no solution. Thus, there exists no solution at infinity, which
also rules out the possibility of the system being non zero-dimensional. Now, suppose
that the coefficients are generically chosen such that all solutions are finite. Then, the total
number of solutions equals the Bézout number DF and the degree of Res(F , xk) equals
DF . According to Theorem 7.57.5, LC(Res(F , xk)) ∈ Z[ci ,α] is a polynomial in the coefficients
ci ,α. Now, if LC(Res(F , xk)) would depend on some coefficient ci ,α with |α | < di , then,
for generic choice of all other coefficients, we could choose such a ci ,α in a way such that
the leading coefficient becomes zero, and thus deg Res(F , xk) < DF , a contradiction. This
shows that, for generic choice of the coefficients ci ,α, the leading coefficient LC(Res(F , xk))
does not depend on the coefficients of the polynomials fi ,<di . From this, we conclude that
LC(Res(F , xk)) does not depend on the coefficients of the polynomials fi ,<di in general.

Corollary 7.9. Let F � ( fi)i�1,...,n be an arbitrary polynomial system as in Lemma 7.87.8 with di � d
for all i, and let

F̄ : f̄i :�
n∑

α:|α |�d+1

ci ,α · xα + fi , with ci ,α ∈ Z for all α with |α | � d + 1,

be the system obtained by adding polynomials of the form

∑n
α:|α |�d+1 ci ,α · xα to each fi . If F̄ does not

have any solution at infinity (which is the case for generic choice of the coefficients ci ,α), then it holds

that LC(Res(F̄ , xk)) ∈ Z,0.

Proof. If F̄ has no solution at infinity, then F̄ is zero-dimensional and, in addition, Res(F̄ , xk)
has degree DF̄ � (d + 1)n . From Lemma 7.87.8, we further conclude that LC(Res(F̄ , xk)) only
depends on the coefficients ci ,α of the degree (d+1)-parts f̄i ,d+1 of the polynomials f̄i . Hence,
we have LC(Res(F̄ , xk)) ∈ Z,0.

Example: Let f̄i �
∑n

j�1 ai j · xd+1
j + fi with fi ∈ C[x]≤d polynomials of total degree at most d.

Then, it holds that
Res(F̄ , xk) � ±det(ai j) · x(d+1)n

k + · · ·

Namely, if det(ai , j) , 0, then F̄ has no solution at infinity as each such solution would yield
a non-trivial solution of the linear system

∑n
j�1 ai , j · X j � 0. Thus, F̄ is zero-dimensional in

this case and Res(F̄ , xk) has degree DF̄ � (d + 1)n . From Lemma 7.87.8, we further conclude
that LC(Res(F̄ , xk)) only depends on the coefficients ai , j of the degree (d + 1)-parts f̄i ,d+1 of
the polynomials f̄i . Hence, we have LC(Res(F̄ , xk)) � LC(Res( f̄1,�d+1 , . . . , f̄n ,�d+1 , xk)), and
using Theorem 2.3 and Theorem 3.5 in [CLO05CLO05] further shows that

Res( f̄1,�d+1 , . . . , f̄n ,�d+1 , xk) � det(ai , j)(d+1)n · Res((xd+1
1 , . . . , xd+1

n ), xk)
� ±det(ai , j)(d+1)n · x(d+1)n

k .
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It is also well known (e.g. this follows from Theorem 7.107.10 below) that Res(F , xk) is
contained in the ideal I :� 〈 f1 , . . . , fn〉 defined by the polynomials f1 , . . . , fn . In particular,
for polynomials fi ∈ Z[x1 , . . . , xn] with integer coefficients, this guarantees the existence of
an integer λ, with λ , 0, and polynomials gi ∈ Z[x1 , . . . , xn]with

λ · Res(F , xk) � g1 · f1 + · · · gn · fn . (7.5)

Recent work [DKS13DKS13] allows us to bound the magnitude of the polynomials gi as well as the
size of λ. For this, we first write fi �

∑
α ci ,α(xk)xα,k as a polynomial in x,k with coefficients

ci ,α ∈ Z[xk], where x,k denotes all but the k’th variable. We further introduce a variable
ui ,α for every coefficient polynomial ci ,α. Let ui � (ui ,α)α be the variables corresponding to
the polynomial fi , and let u � (u1 , . . . , un) denote the variables for all polynomials. Then,
F can be considered as a system consisting of n polynomials in n − 1 variables x,k with
coefficients u. Thus, its resultant Res(F ) is a polynomial in Q[u], which is further contained
in the ideal 〈 f1 , . . . , fn〉 ⊂ Q[u, x,k]. The following theorem, which is a consequence of
Theorem 4.28 in [DKS13DKS13] (see also [DKS13DKS13, pp. 6]), gives bounds on the degree and height
of the polynomials in the cofactor-representation of Res(F ) in this ideal.

Theorem 7.10 ([DKS13DKS13] Consequence of Theorem 4.28). Given a polynomial system Φ �

(ϕ1 , . . . , ϕn+1) with ϕi �
∑
α ui ,αxα ∈ Z[u, x] of total degree di in x � (x1 , . . . , xn). Then,

for any k ∈ [n], there exists a λ ∈ Z,0 and polynomials γi ∈ Z[u, x] such that

λ · Res(Φ) �
∑

i∈[n+1]
γi · ϕi ,

degu j
(γiϕi) ≤

∏̀
, j

d` and

τλRes(Φ,xk ) , τγi ≤ (6n + 10) log(n + 3)DΦ for j ∈ [n] and i ∈ [n + 1],

where τp denotes the bit-size of a polynomial p ∈ Z[u, x].

We can now derive bounds on the degree and the bit-sizes of the polynomials gi as well
as on the bit-size of λ in (7.57.5) from the above theorem:

Corollary 7.11. Given a zero-dimensional polynomial system F � ( f1 , . . . , fn) with polynomials

fi ∈ C[x], we can explicitly compute (see (7.67.6) and (7.77.7)) positive integers AF and BF , with
AF � Õ

(
nDF

)
and BF � Õ(n · DF + τF ·maxi

DF
di
), such that there exists an integer λ ∈ Z,0

and polynomials gi ∈ C[x] with

|λ | ≤ 2AF ,

deg gi ≤ DF , τgi ≤ BF , and

λ · Res(F , xk) �
n∑

i�1
gi · fi .

If all polynomials fi have only integer coefficients, then we may further assume that the polynomials

gi have only integers coefficients as well.

Proof. For each i ∈ [n], write fi(x) �
∑
α ui ,αxα

,k as a polynomial in the variables x,k and
with coefficients ui ,α ∈ C[xk]. Theorem 7.107.10 now guarantees the existence of a positive
λ ∈ Z,0 and polynomials gi ∈ Z[u, x,k] with λ · Res(F , xk) �

∑
i∈[n] gi · fi . Notice that since

u only depends on xk , we may consider each gi as an element in C[x]. In addition, we have
degu j

(gi fi) ≤
∏
`, j d` , and thus degx(gi) ≤ degx(gi fi) ≤ DF � d1 · · · dn as each u j,α has
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degree bounded by d j . We can now write each polynomial gi as gi �
∑
α:|α |≤DF Pi ,α(u) · xα,k

with polynomials Pi ,α �
∑
β�(β1 ,...,βN ):|β |≤DF /di

ci ,α,β · uβ. From Theorem 7.107.10, we conclude
that ci ,α,β are integers of absolute value |ci ,α,β | < 2AF , where

AF :� d(6n + 4) log(n + 2)DF e � O
(
nDF log(n)

)
. (7.6)

In addition, N ≤ ∑n
i�1

(di+n
di

)
≤ n ·

(dF +n
dF

)
≤ n(dF + n)n denotes the number of distinct

coefficients ui ,α. Further notice that, for each β, uβ is a product of at most DF univariate
polynomials in C[xk], each of degree at most dF and of norm bounded by 2τF . Hence, it can
be written as a sum of at most (dF + 1)DF terms, each of absolute value at most 2τF ·DF /di . We
conclude that the norm of gi is bounded by(

DF + N
DF

)
· (dF + 1)DF · 2AF · 2τF ·DF /di ≤ [(n(dF + n)n + DF ) · (dF + 1)]DF · 2AF · 2τF ·DF /di

≤ [(n + 1)(dF + n)n+1]DF · 2AF · 2τF ·DF /di

≤ [(dF + n)6n+4 · 2AF · 2τF ·DF /di ≤ 2BF ,

where we define

BF :� 2 · dDF · (6n + 4) log(dF + n)e + τF ·max
i

DF
di

� Õ(n · DF + τF ·max
i

DF
di
). (7.7)

The final claim follows from the fact that fi ∈ Z[x] for all i implies that ui ,α ∈ Z[xk] for all
i , α, and thus g j ∈ Z[x] for all j.

7.2.4 Generic Position via Rotation

In theprevious subsection,wehaveoutlinedhow toproject the solutions of apolynomial onto
one of the coordinate axis. One subtlety of the approach was that certain mild conditions on
the input polynomials need to be fulfilled in order to guarantee that the roots of the hidden
variable resultant are exactly the projections of the (finite) solutions of the initial system; see
Lemma 7.67.6. Another drawback of the approach is that distinct solutions might be projected
onto the same point or onto two very nearby points on the coordinate axis, that is, the actual
distance between distinct solutions is no longer preserved after the projection. We will show
how to address these issues by using a random rotation of the coordinate system. We first
start with the special case of dimension 2.

Lemma 7.12. Let p` � (x` , y`) ∈ C2
be N points such that ‖p` ‖ , 0 for all ` � 1, . . . ,N . Let k be

chosen uniformly at random from [2L]. Then, with probability at least 1 − N
2L , for each point

p′` �
(
x′`
y′`

)
:� Sk(L) ·

(
x`
y`

)
, with Sk(L) :�

( 1−(k·2−L)2
1+(k·2−L)2 −

2·(k·2−L)
1+(k·2−L)2

2·(k·2−L)
1+(k·2−L)2

1−(k·2−L)2
1+(k·2−L)2

)
∈ SO(2),

it holds that min(|x′` |, |y
′
` |) > 2−(L+2) · ‖p` ‖ for all `.

Proof. Notice that each matrix Sk(L) is a rotation matrix with respect to the angle φk ∈
[0, π/2] with cosφk �

1−(k·2−L)2
1+(k·2−L)2 and sinφk �

2·(k·2−L)
1+(k·2−L)2 . We further note that the function

h(t) � (1−t2

1+t2 ,
2t

1+t2 ) describes the trace of a point on the quarter-circle. Moreover, we have
Ûh(t) � ( −4t

(1+t2)2 ,
−2t2+2
(1+t2)2 ), and since | Ûh(t)| � 2

1+t2 is a decreasing function in t, it follows that the
difference between two consecutive angles φk+1 and φk is decreasing in k. We thus conclude
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that all differences are lower bounded by φ2L − φ2L−1 �
∫ 1

1−2−L
2

1+t2 dt ≥
∫ 1

1−2−L dt � 2−L. Now,
let Lk ⊂ R2 be the line passing through the origin and the point (cosφk , sinφk), and let
L⊥k ⊂ R

2 be line that passes through the origin and is orthogonal to Lk . In addition, for each
point p` � (<(x`) + i · =(x`),<(y`) + i · =(y`)), we define

p̄` �

{
(<(x`),<(y`)) if<(x`)2 +<(y`)2 ≥ =(x`)2 + =(y`)2
(=(x`),=(y`)) otherwise.

.

Then, p̄` is a point in R2 with ‖ p̄` ‖2 ≥ ‖p` ‖/
√

2. Let ∆` ⊂ R2 be the disc centered at p̄` of
radius r` � 2−L−2 · ‖p` ‖. Let q , r ∈ ∆` be any two points in ∆` and α be the angle at the origin
of the triangle given by the origin and the points q and r. Then, it holds that

α ≤ 2 · arctan

(
2−L−2 · ‖p` ‖
‖p` ‖/

√
2

)
< 2 arctan(2−L−1) < 2 · 2−L−1 ≤ 2−L .

Since the angle between any two distinct lines Lk and Lk′ is lower bounded by 2−L, it thus
follows that there can be at most one k such that Lk or L⊥k intersects ∆` . Hence, if we pick a
k ∈ {1, . . . , 2L}uniformly at randomandchoose Lk and L⊥k as the axis of the coordinate system
obtained by rotating the initial system by φk , then, with probability at least 1 − N

2L , the new
coordinates (x̄′` , ȳ′`) of each point p̄` will meet the condition that min(|x̄′` |, | ȳ

′
` |) > 2−L−2 · ‖p` ‖.

Hence, the same holds true for the points Sk(L) · p` .

We now turn to the general n-dimensional case. For integers k and L and distinct indices
i , j ∈ {1, . . . , n}, we define

S[i j]
k (L) :�

©­­­­­­­­­­­­­«

1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 1−(k·2−L)2
1+(k·2−L)2 · · · −

2·(k·2−L)
1+(k·2−L)2 · · · 0

...
...

...
...

...
...

...

0 · · · 2·(k·2−L)
1+(k·2−L)2 · · ·

1−(k·2−L)2
1+(k·2−L)2 · · · 0

...
...

...
...

...
...

...
0 · · · 0 · · · 0 · · · 1

ª®®®®®®®®®®®®®¬
∈ SO(n), (7.8)

to be a rotation matrix that operates on the i-th and j-th coordinate only. We further define
the set of rotation matrices

SN :�


∏
i , j∈[n]2:i< j

S[i j]
ki j
(L) : ki j ∈ [2L] for all i , j

 , where L :� 4dlog(2n2N)e . (7.9)

Lemma 7.13. Let N be a positive integer and p` ∈ Cn
be N′, with N′ ≤ N , points such that

‖p` ‖ , 0 for all ` � 1, . . . ,N′. SN and L are defined as in (7.97.9). Then, it holds

(a) Choosing integers ki j ∈ [2L] for every pair i , j uniformly at random yields, with probability

at least 3/4, a rotation matrix S ∈ SN such that, for each point p′` :� S(L) · p` , it holds that
mini |p′`,i | ≥ (2n2N)−16n · ‖p` ‖.

(b) There is an integer λ of bit-size Õ(n2 log N) such that the entries of λS and λS−1
are integer

numbers of bit-size Õ(n2 log N) as well.
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Proof. The proof follows almost immediately from Lemma 7.127.12. Namely, with probability at
least 1 − N/2L, both entries p′`,i and p′`, j of each point p′` :� S[i j]

ki j
(L) · p` will have absolute

value at least 2−(L+2) ·max(|p`,i |, |p`, j |). Since at least one of the coordinates of p` has absolute
value ‖p` ‖, we conclude that, with probability (1−N/2L)(n2) > (1−N/2L) n2

2 > 1− n2/2
2L/N > 3/4,

each coordinate of each point p′` � S(L) · p` has absolute value at least

2−n·(L+2) · ‖p` ‖ ≥ 2−n·(4(log(2n2N)+1)+2) · ‖p` ‖ ≥ (216 log(2n2N))−n · ‖p` ‖ � (2n2N)−16n · ‖p` ‖.

It remains to show the existence of an integer λ of bit-size Õ(n2 log N) such that the entries
of λS and λS−1 are of that bit-size as well. Each entry of a matrix S[i j]

ki j
(L) is rational number

with denominator 22L + k2
i j of bit-size O(L). The matrix S is a product of O(n2) many such

matrices, thus for λ �
∏

i , j∈[n]2:i< j(22L+k2
i j) ≤ (22L+1)n2

� 2Õ(n2 log N) it holds that λS is integer.
Notice that S is contained in SO(n), which implies that its entries have absolute value at most
1. It thus follows that the integer entries of λS are of bit-size Õ(n2 log N) as well. In addition,
the inverse of S[i j]

ki j
(L) is simply given by S[i j]

−ki j
(L), and thus S−1 �

∏
i , j∈[n]2:i< j S[i j]

−ki j
(L), which

yields comparable bounds for the entries of S−1 as for S.

We will later make use of the above result when considering the set of non-zero solutions
of a polynomial system F � 0. In general, some of these solutions might project (via
resultant computation with respect to some variable xk) onto zero or onto values close to
zero. However, in our algorithm, we are aiming for projections that are of comparable
size as the size of the corresponding solutions. In order to achieve this, we first consider
a random rotation of the system given by some rotation matrix S from the set SN , with
N :� DF the Bézout bound on the total number of solutions. This yields the “rotated
system” F ′ :� F ◦ S−1 whose solutions are exactly the rotations of the initial solutions by
means of the rotation matrix S. Then, with high probability, each of the coordinates of the
solutions of F ′ � 0 are of absolute value comparable to the norm of the solutions of F � 0.
In addition, it is also likely that the rotated system fulfills the condition from Lemma 7.67.6 for
each coordinate.

Lemma 7.14. Let F � ( f1 , . . . , fn) be a polynomial system as in (7.17.1), S ∈ SDF be a randomly

chosen matrix, and let F ′ :� F ◦ S−1
be the corresponding rotated system. Then, with probability

larger than 1/2, it holds:

(a) For each k ∈ [n], each of the polynomials fi ◦ S−1 ∈ F ′ contains a monomial of degree di that

does not depend on xk .

(b) For each solution z ∈ Cn\0 of F � 0, it holds that mini |z′i | ≥ (2n2DF )−16n · ‖z‖, where
z′ � (z′1 , . . . , z′n) :� S · z is the corresponding (rotated) solution of F ′ � 0.

Proof. Since DF constitutes an upper bound on the number of solutions of F � 0, it follows
from Lemma 7.137.13 (with N � DF ) that, with probability at least 3/4, the inequality in (b) is
fulfilled. It thus suffices to prove that, with probability larger than 2/3, the condition in (a)
is fulfilled for each coordinate xk . For this, let

f (x) �
∑
α

cαxα ∈ C[x1 , . . . , xn]

be a polynomial of total degree d, and let S(k)−1 � (ars(k))rs be the matrix depending on the
values k :� (ki j)i , j . Notice that each entry ars(k) is a rational function in k with numerators
anddenominators of total degree (ink) atmost 2n2. Further notice that S(k)−1 maps the point
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(1, 0, . . . , 0) to the first column of S(k)−1 and that a full-dimensional subset T of the strictly
positive part {x ∈ Rn : ‖x‖2 � 1 and x > 0} of the (n − 1)-dimensional sphere Sn−1 ⊂ Rn is
reached via a suitable choice of k ∈ Rn2 . Composing f and S(k)−1 now yields

F(x, k) �
∑

α�(α1 ,...,αn)
cα · (a11(k) · x1 + · · · + a1n(k) · xn)α1 · · · (an1(k) · x1 + · · · + ann(k) · xn)αn ,

and the coefficient C(k) of the monomial xd
1 is thus given by

C(k) �
∑

α:|α |�d

cα · a11(k)α1 · · · an1(k)αn .

We first argue that C(k) does not vanish identically. Let f̂ :�
∑
α:|α |�d cα · xα1

1 · · · x
αn
n be the

corresponding homogenous polynomial of degree d such that f̂ (a11(k), . . . , an1(k)) � C(k).
Assume that C(k) � 0 for all k, then this implies that f̂ vanishes on each point in T. Since
the vanishing set of any non-zero homogenous polynomial in n variables has dimension at
most n − 2, we conclude that f̂ is the zero-polynomial, and thus cα � 0 for all coefficients of
f̂ . This contradicts our assumption on f .

Hence, it follows that C(k) is a non-zero rational function in k. In addition, each term
cα · a11(k)α1 · · · an1(k)αn has a numerator of total degree at most 2n2d in k and a denominator
of the form

∏
i , j(22L + k2

i , j)
ei , j , with ei , j ∈ N, of degree at most 2n2d in k. This shows

that C(k) can be written as a rational function in k of total degree 2n2d + n4d ≤ 2n4d as∏n
i , j�1:i< j(22L + k2

i , j)n
2d constitutes a common denominator of all terms. According to the

Schwartz-Zippel lemma, we thus conclude that choosing ki , j uniformly at random from
{1, . . . , 24dlog(2n2DF )e} guarantees with probability at least ρ :� 1 − 2n4d · 2−4dlog(2n2DF )e that
C(k) , 0. In the case where f � fi is one of the polynomials from F , we thus obtain a
probability of at least

ρi :� 1 − 2n4di · 2−4dlog(2n2DF )e ≥ 1 − 2n4di

(2n2DF )4
≥ 1 − 1

8n4

such that fi contains a term of the form c · xdi
1 with a non-zero constant c. Since the same

argument applies to any variable xk and to any of the n polynomials fi , the claim follows.

From the above lemma, we conclude that by choosing a suitably random rotation matrix
from the set SDF , we can ensure with high probability that there is a one-to-one correspon-
dence between the (finite) solutions ofF and the roots of the resultant polynomialRes(F , xk),
which are the projections of the solutions on the xk-axis. In addition, the absolute value of
each projection compares well to the absolute value of the corresponding solution. In what
follows, we will use the following definition of the set of admissible rotation matrices with

respect to a given system F , i.e., matrices S ∈ SDF such that the statements (aa) and (bb) from
the above Lemma 7.147.14 hold.

Definition 7.15. (Admissible Matrices) For a given polynomial system F we say that a rotation

matrix S ∈ SDF is admissible with respect to F if the statements (aa) and (bb) from Lemma 7.147.14

hold. We further denote by

SF :� {S ∈ SDF : S is admissible with respect to F } ⊂ SDF

the set of admissible matrices with respect to F .
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Notice that, even though it is difficult (probably as difficult as computing all solutions
of F ) to determine whether a certain matrix in SDF is admissible with respect to F , the
previous lemma shows that at least half of the matrices in SDF are admissible.

7.3 The Algorithm

We first sketch our algorithm #PolySol and then prove its correctness. We refer the reader
to the pseudo-code in Algorithm 7.17.1 for details regarding #PolySol. The algorithm can be
roughly split into 3 main steps:

Step 1: Shifting and Truncation. Given a polynomial system F :� ( f1 , . . . , fn), a polydisc
∆ � ∆r(m), and an integer K ∈ {0, . . . , dF }, we define a “precision”

L :�
⌈
log r

32n(K + 1)n

⌉
.

Then, in a first step, we compute a (K + 1) · L-bit approximation

Φ′(x) :� (φ′1 , . . . , φ′n), with φ′i ∈ Q[x]≤K ,

of F [m]≤K(x), i.e., we compute φ′i such that ‖φ′i − fi[m]≤K ‖ < 2−(K+1)L and 2(K+1)L · φ′i ∈ Z[x]
for all i. Recall that the centered polynomial system F [m](x)was defined as

F [m](x) :� ( f1[m](x), . . . , fn[m](x)) � ( f1(m + x), . . . , fn(m + x)),

for m ∈ Cn and that the truncation

F [m]≤K(x) :� ( f1[m]≤K , . . . , fn[m]≤K),

of the centered system F [m], is defined by simply omitting all terms of fi[m](x) of total
degree more than K, as defined in Section 7.2.17.2.1. We further define

Φ(x) :� (φ1 , . . . , φn), with φi :� xK+1
i + φ′i ,

the system obtained by adding the term xK+1
i of degree K + 1 to the polynomial φ′i . This step

seems to be odd at first sight, however, it ensures certain properties of Φ. In particular, Φ is
guaranteed to have no zeros at infinity (and thus being zero-dimensional as well) according
to Corollary 7.97.9 and our considerations in the corresponding example. This further implies
that Φ � 0 has exactly DΦ � (K + 1)n finite solutions counted with multiplicity. Also, our
choice ofΦ allows us to bound the leading coefficient of Res(Φ, x`) for all ` � 1, . . . , n, which
turns out to be useful in the analysis of our approach.

Remark. In practice, the latter step does not seem to be necessary in most cases, and thus
we recommend to simply proceed with Φ :� Φ′ and to check Φ′ for being zero-dimensional.
Also, when implementing our algorithms, we observed that proceeding with Φ′ instead of
Φ only improves the overall performance.

Step 2: Solving Φ. We will later prove that, under the assumption that L is sufficiently
large (or equivalently ∆ is sufficiently small), and z is a k-fold solution of the initial system
with ‖m − z‖ < 2−L, the system Φ (as well as Φ′ for generic choice of its coefficients) yields
a cluster of k (not necessarily distinct) solutions with norm less than 4 · 2−L, whereas all
other solutions have norm larger than δ0 � 2−L. Here, δ0 is a constant that depends on the
polynomial system but not on L; see Theorem 7.207.20 for the exact definition of δ0 and further
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Algorithm 7.1: #PolySol(F ,∆, K)

Input : Zero-dimensional system F � ( f1 , . . . , fn), polydisc ∆ � ∆r(m), and an
integer K ∈ {0, . . . , dF }.

Output: An integer k ∈ N ∪ {−1}. If k ≥ 0, the polydisc ∆ contains exactly k solutions
of F (counted with multiplicity). If k � −1, nothing can be said.

// * Shift and Truncation *//
1 L :� dlog r

32n(K+1)n e
2 Compute a (K + 1) · L-bit approximation Φ′ � (φ′1 , . . . , φ′n) of
F [m]≤K � ( f1[m]≤K , . . . , fn[m]≤K).

// * Adding a degree (K + 1)-perturbation ; as mentioned, this step seems to be only necessary

in theory. In practice, we recommend to directly proceed with Φ :� Φ′. *//
3 Φ(x) :� (φ1 , . . . , φn), with φi :� xK+1

i + φ′i

// * Solving the truncated system *//
4 Compute a list (∆1 , k1), . . . , (∆` , k`) of disjoint polydiscs ∆i � ∆ri (mi) of radius at most

2−L and corresponding multiplicities ki such that each ∆i contains exactly ki
solutions of Φ, and each solution of Φ is contained within one ∆i .

5 k :�
∑

i:‖mi ‖< r
2n

ki

6 k+ :�
∑

i:‖mi ‖<2nr ki

7 if k � k+ then

// * Projection step *//
8 Pick S ∈ SDΦ uniformly at random and compute the rotated system

Φ∗ :� Φ ◦ S−1 � (φi ◦ S−1)i .
9 for ` � 1, . . . , n do

(b−` , k
−
` , LB−` ) :� T∗(∆ r√

n
(0),Res(Φ∗ , x`))

(b+` , k
+

` , LB+

` ) :� T∗(∆√nr(0),Res(Φ∗ , x`)).
10 if

∧
`∈[n] b−` ∧

∧
`∈[n] b+` then

// * Bound Computation and Comparison *//

11

UB(m, r) :� rK+1 · dn
F 2τF +2[M(m) · (n + dF )2]dF

BΦ∗ :� 2 · dDΦ∗ · (6n + 4) · log(dΦ∗ + n)e + τΦ∗ · DΦ∗
k+1

LB(m, r) :� min` min(LB−` , LB+

` ) ·
(
n ·

(DΦ∗+n
DΦ∗

)
· 2BΦ∗

)−1

12 if UB(m, r) ≤ LB(m, r) then
13 return k

14 return −1

details. We first check whether there exists a cluster of solutions of Φ near the origin that is
well separated from all other solutions of Φ. For this, we use a certified method (e.g. [BS16BS16])
to compute all solutions of Φ. Here, by computing all solutions, it is meant to compute a set
of disjoint discs, each of size less than 2−L, together with the number of solutions contained
in each disc such that the union of all discs contains all complex solutions. For the more
involved problem of computing isolating regions of comparable size, the following theorem
applies.

Theorem 7.16. [BS16BS16, Thm. 9, 10] There is a Las Vegas algorithm to compute isolating regions of
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size less than 2−ρ for all complex solutions of a zero-dimensional polynomial system F � ( f1 , . . . , fn),
with integer polynomials fi ∈ Z[x], using

Õ(n(n−1)(ω+1)+1(ndF + τF )dF (ω+2)n−ω−1
+ n · dF n · ρ)

bit operations in expectation.

Since 2(K+1)L · φi is a polynomial of degree K + 1 with integer coefficients of magnitude
τ � O(KL + n + τF + dF log(m)), we conclude from the above theorem that the cost for
solving the system Φ � 0 is bounded by

Õ(n(n−1)(ω+1)+1(nK + KL + τ + dF log(m)) · (K + 1)(ω+2)n−ω−1) (7.10)

bit operations in expectation. Finally, we checkwhether the polydisc∆− :� ∆r/(2n)(0) contains
the same number k′ of solutions of Φ as the enlarged polydisc ∆+ :� ∆2nr(0). Notice that,
from the above remark, this holds true if m is an L-bit approximation of a k-fold zero of F
for large enough L as then 4 · 2−L < r/(2n) and δ0 > 2nr. If the zeros of Φ do not fulfill the
latter condition, we return −1. Otherwise, we proceed.

Remark. We remark that computing the solutions ofΦ is typicallymuchmore affordable than
computing the solutions of the initial system F directly, in particular, in the case where n is
small and K � d. Notice that, for n of constant size, the cost for solving the initial system
directly scales like d(ω+2)n−ω−1τF , whereas the cost for solving the truncated system scales
like (KL+τF +d log(m)) · (K+1)(ω+2)n−ω−1. Hence, for L and m of moderate size, the running
times might differ by factor of size ≈ (d/(K + 1))(ω+2)n−ω−1.

Step 3: Passing from Φ to F . In the final step, we aim to certify that F [m] has the same
number of zeros (i.e. k counted with multiplicity) in ∆ :� ∆r(0) as Φ. In order to do so, we
aim to apply the following generalization of Rouché’s Theorem to Φ and F [m], see [VH94VH94,
Thm. 2.1] or [Llo75Llo75, Thm. 1] for a proof.

Theorem 7.17 (Multidimensional Rouché). Let F � ( f1 , . . . , fn) and G � (g1 , . . . , gn), with
fi , gi ∈ C[x] for all i, define polynomial mappings from Cn

to Cn
. If, for a given bounded domain

D ⊂ Cn
, we have

‖F (x) − G(x)‖ < ‖F (x)‖ for all x ∈ ∂D,

where ∂D is the boundary of D, then F and G have finitely many zeros in D and the number of zeros

(counted with multiplicities) of F and G in D is the same.

In order to apply the above theorem to F :� Φ and G :� F [m], we derive an upper
bound UB(m, r) on the absolute error

sup
x∈Cn :‖x‖�r

‖F [m](x) −Φ(x)‖ � sup
x∈Cn :‖x‖�r

max
i∈[n]
| fi[m](x) − φi(x)|

≤ sup
x∈Cn :‖x‖�r

max
i∈[n]
(| fi[m](x) − φ′i(x)| + |xi |K+1)

≤ rK+1
+ sup

x∈Cn :‖x‖�r
max
i∈[n]
| fi[m](x) − φ′i(x)|

when passing from Φ to F [m] as well as a lower bound LB(m, r) on the norm of Φ(x) on the
boundary of the polydisc ∆. The construction of UB(m, r) is rather straightforward using
Lemma 7.37.3. That is, we may choose

UB(m, r) :� rK+1 · dF n · 2τF +2 · [M(m) · (n + dF )2]dF (7.11)
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In contrast, the construction of LB(m, r) is more involved: We already mentioned that
if L is large enough, then there are k zeros z1 , . . . , zk of Φ that have norm less than 4 · 2−L,
whereas all other zeros have norm δ0 � 2−L. Hence, under this assumption, picking55 a
random rotation matrix S from SDΦ � S(K+1)n and considering a corresponding rotation of
the coordinate system, guarantees (see Lemma 7.147.14), with probability larger than 1/2, that
the projection of any zero of the “rotated system”

Φ∗ � (φ∗1 , . . . , φ∗n) :� Φ ◦ S−1

on any coordinate axis, except for the k solutions S · zi , yields a value that is large compared
to r. Hence, in this case, the hidden-variable resultant R∗` :� Res(Φ∗ , x`) of Φ∗ has k roots of
absolute value less than r, whereas all other roots of R∗` have absolute value� r. Notice that
each φ∗j ∈ Q[x] is a polynomial of degree K + 1 with rational coefficients, and according to
Lemma 7.27.2 and Lemma 7.47.4, we have

‖φ∗j ‖ � 2Õ(n+τF +dF log(m)).

Lemma 7.137.13 further yields the existence of an integer λ of absolute value 2Õ(n3 log K) with
λ · S−1 ∈ Zn×n . Hence, we conclude that each term of degree K + 1 of λK+1 · φ∗j has integer
coefficients, and [CLO05CLO05, Theorem 3.1] further yields that

Res(λK+1 · Φ∗ , x`) � λn(K+1)n · Res(Φ∗ , x`).

It thus follows that

| LC(Res(Φ∗ , x`))| � λ−n(K+1)n · | LC(Res(λK+1Φ∗ , x`))| ≥ λ−n(K+1)n
� 2−Õ((K+1)n) ,

where we use Corollary 7.97.9 to show that | LC(Res(λK+1Φ∗ , x`))| is a positive integer, hence
larger than or equal to 1. Since Res(Φ∗ , x`) is contained in the ideal generated by the
polynomials φ∗j , we may write

Res(Φ∗ , x`) � g`,1 · φ∗1 + · · · + g`,n · φ∗n (7.12)

with polynomials g`, j ∈ Q[x] of total degree bounded by DΦ∗ � (K + 1)n . Corollary 7.117.11
further yields the following upper bound on the size of the coefficients of the g`, j’s:

log ‖g`, j ‖ ≤ BΦ∗ � Õ(DΦ∗ · n + τΦ∗ ·
DΦ∗

K + 1
)) � Õ((K + 1)n + (K + 1)n−1 · (τF + d log(m))).

Using Lemma 7.27.2, part aa, this further yields a corresponding upper bound

γ :�
(
n + DΦ∗

DΦ∗

)
· 2BΦ∗ � 2Õ((K+1)n+(K+1)n−1·(τF +d log(m))) (7.13)

such that max`, j supx:‖x‖≤1 |g`, j(x)| ≤ γ.
Remark. The reader might wonder whywe do not compute the above cofactor representation
(7.127.12) directly and then derive bounds on the size of maxi , j supx:‖x‖�1 |g`, j(x)| using interval
arithmetic, but instead use Corollary 7.117.11? The simple reason is that, at least in practice,
computing the polynomials gi , j turns out to be considerably more costly than computing
the resultant polynomials R∗`(x) � Res(Φ∗ , x`) only. In contrast, our approach of computing

5In practice, we recommend to consider S � idn and thus Φ∗ � Φ as the initial choice as this turns out to be
sufficient in most cases.
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the bound γ does not require to compute the polynomials gi , j , and thus comes at almost
no additional cost. We further remark at this point that we will use the bounds from
Corollary 7.117.11 in our complexity analysis of the algorithm.

In the next step, we compute lower bounds LB−` and LB+

` for |R`(x)∗ | on the boundary of
the two discs D− :� ∆r/

√
n(0) ⊂ C and D+ :� ∆r·

√
n(0) ⊂ C, respectively. For this, we use the

Tk-test that we have already introduced in Chapter 66. We recap its main properties in the
below lemma:

Lemma 7.18. Let f ∈ C[x] be a uni-variate polynomial of degree d and let ∆ :� ∆r(0) ⊂ C be the

disc with radius r centered at 0. The Tk-test returns a pair

Tk(∆, f ) � (b , LB) �
( | f (k)(0)|rk

k!
− 3

2
·
∑
i,k

| f (i)(0)|r i

i!
> 0, 1

3
·
| f (k)(0)|rk

k!

)
. (7.14)

If b � True, we say that Tk(∆, f ) succeeds. If Tk(∆, f ) succeeds, ∆ contains exactly k roots counted

with multiplicity and

5 · LB > | f (x)| > LB for all x ∈ ∂∆r(0). (7.15)

In addition, if ∆r/(16d)(0) as well as ∆16d4r(0) contain exactly k roots, then Tk(∆, f ) succeeds. We

further define

T?(∆, f ) �
{(

True, k , 1
3 ·
| f (k)(0)|rk

k!

)
if Tk(∆, f ) succeeds for some k ,

(False,−1) otherwise.

(7.16)

Proof. In Chapter 66, we have proven all the statements except the bounds in (7.157.15). These
inequalities are shown by simple applications of the triangle inequality: Using Taylor expan-
sion, x ∈ ∂∆r(0), and that Tk(∆, f ) yields

| f (x)| �
��� d∑

i�0

f (i)(0)x i

i!

��� ≥ | f (k)(0)|rk

k!
−

∑
i,k

| f (i)(0)|r i

i!
≥ 1

3
·
| f (k)(0)|rk

k!
� LB

and

| f (x)| �
��� d∑

i�0

f (i)(0)x i

i!

��� ≤ | f (k)(0)|rk

k!
+

∑
i,k

| f (i)(0)|r i

i!
≤ 5

3
·
| f (k)(0)|rk

k!
� 5 · LB .

Now, suppose thatT∗(D− , R∗`) � (b
−
` , k
−
` , LB−` ) aswell asT∗(D+ , R∗`) � (b

+

` , k
+

` , LB+

` ) succeed
for all `, then min(LB−` , LB+

` ) constitutes a lower bound for |R∗` | on the boundary of D− as
well as D+. From (7.127.12), (7.137.13), and the definition of LB(m, r), we now conclude that

‖Φ∗(x)‖ > LB(m, r) :�
min` min(LB−` , LB+

` )
nγ

, for all x with ‖x‖ � r√
n
or ‖x‖ �

√
n · r. (7.17)

Since the maximum and minimum of a holomorphic function (in several variables) on
a bounded domain is taken at its boundary, we further conclude that the above inequality
holds for any x with r/

√
n ≤ ‖x‖ ≤

√
n · r. Notice that the rotation of the system by means of

the rotation matrix maintains the 2-norm ‖.‖2 of any point. Thus, the the norm of any point
x differs from the norm of the rotated point S · x by a factor that is lower and upper bounded
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by r/
√

n and
√

n · r, respectively. Hence, from the above bound on ‖Φ∗‖, we conclude that

‖Φ(x)‖ > LB(m, r) for any x with ‖x‖ � r. (7.18)

Now in order to apply Rouché’s Theorem to Φ and F [m], it suffices to check whether
LB(m, r) > UB(m, r), in which case we have shown that Φ and F [m] have the same number
of roots in ∆r(0). Hence, we return True in this case. Otherwise, the algorithm returns False.

In the next section, we will show that, if m is a sufficiently good approximation (i.e. for
large enough L) of a k-fold solution of F , our algorithm succeeds. Here, we only give an in-
formal argument: Notice that, for large L, the boundUB(m, r) scales like C ·rK+1 for some con-
stant C. The bound γ does not depend on L, hence LB(m, r) scales like min` min(LB−` , LB+

` )
for large enough L. However, in this situation, each R∗` has a cluster of k roots near the
origin that is well separated from all of its remaining roots, and thus min(LB−` , LB+

` ) scales
like [|R∗`

(k)(0)|/(
√

nk k!)] · rk . Hence, we conclude that LB(m, r) scales like C′ · rk for some
constant C′, which implies that LB(m, r) must be smaller than UB(m, r) for large enough L.
We remark that the precise argument is slightly more involved as many subtleties need to
be addressed. In particular, we need to show that |R∗`

(k)(0)|/(
√

nk k!) does not depend on r if
r is small enough, even though the definition of R∗ strongly depends on the choice of m, r,
and the rotation matrix S. We will give details in the next section.

7.4 Analysis

We start by introducing some further notation. For a zero-dimensional polynomial system
F � ( f1 , . . . , fn) in n variables, let z1 , . . . , zN denote its zeros. We define

σ(zi , F ) :� min
j,i
‖zi − z j ‖ and ∂(zi , F ) :�

∏
j,i

‖zi − z j ‖µ(z j ,F )

to be the separation of zi with respect to F and the geometric derivative of F at zi , respectively.
We remark that these terms are derived from the interpretation of these quantities in the
univariate case, where the separation of a root z0 of a polynomial f ∈ C[x] is defined in
exactly the same way, and the first non-vanishing derivative����∂µ(z0 , f ) f

∂zµ(z0 , f )
(z0)

���� � LC( f ) ·
∏

z,z0: f (z)�0

|z − z0 |µ(z , f )

of f at z0 can be expressed as a product involving the leading coefficient of f and the distances
between z0 and the other roots. We first provide some bounds on ‖zi ‖, σ(zi , F ), and ∂(zi , F )
for the special case where each fi has only integer coefficients. For similar bounds that are
also adaptive with respect to the sparseness of the given system, we refer to [EMT10EMT10].
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Lemma 7.19. Let F � ( fi)i�1,...,n be a zero-dimensional system with integer polynomials fi , and let

z1 , . . . , zN denote the zeros of F . Then it holds:

N∑
i�1

µ(zi , F ) · log(zi) � Õ(n · BF ) � Õ(n · [n · DF + τF ·max
i

DF
di
]), with BF as in (7.77.7)

| log σ(zi , F )| � Õ(DF · BF ),
log(∂(zi , F )−1) � Õ(n · DF · [BF + log(zi)]) � Õ(n2 · DF · BF ), and
log(σ(zi , F )−1) � Õ(DF · log(zi) + n · BF + log(∂(zi , F )−1)) � Õ(n2 · DF · BF ).

Proof. From Corollary 7.117.11, we conclude that Res(F , x`) is an integer polynomial of magni-
tude (DF , BF ) for all ` � 1, . . . , n. Since the `-th coordinate zi ,` of each solution of F � 0 is
a root of multiplicity at least µ(zi , F ) of Res(F , x`) and since the Mahler measure

Mea(Res(F , x`)) � LC(Res(F , x`)) ·
∏

z∈C:Res(F ,x`)(z)�0

M(z)µ(z ,Res(F ,x`))

of Res(F , x`) is upper bounded by its 2-norm ‖ Res(F , x`))‖2 ≤
√

DF · 2BF (e.g. see [Yap00Yap00]),
it follows that

N∑
i�1

µ(zi , F ) · log(zi) ≤ DF +

n∑̀
�1

log(Mea(Res(F , x`))) � Õ(nBF ).

For the second claim, notice that σ(zi , F ) ≥ σ(zi ,` ,Res(F , x`)) for at least one ` (as two
distinct solutions must differ in at least one coordinate), and that the separation of an integer
polynomial of magnitude (DF , BF ) is lower bounded by 2−Õ(DF ·BF ); e.g. see [MSW15MSW15] for a
proof. For the bound on ∂(zi , F ), notice that

∂(zi , F ) ≥
∏n
`�1 ∂(zi ,` ,Res(F , x`))∏n

`�1
∏

z,zi ,` :Res(F ,x`)(z)�0 M(z − zi ,`)µ(z ,Res(F ,x`))
.

According to the proof of [MSW15MSW15, Thm. 5], it holds that ∂(z0 , f ) � 2−Õ(dL) for any root z0 of
a polynomial f ∈ Z[x] of magnitude (d , L). This shows that ∂(zi ,` ,Res(F , x`)) � 2−Õ(DF BF )

for all `. It remains to derive an upper bound on the denominator in the above fraction. For
this, we define R` :� Res(F , x`)[zi ,`]. Then, it holds that∏n

`�1

∏
z,zi ,` :Res(F ,x`)(z)�0

max(1, |z − zi ,` |)µ(z ,Res(F ,x`)) �
n∏̀
�1

Mea(R`)
LC(R`)

.

According to Lemma 7.27.2, R` is a polynomial of magnitude (DF , Õ(BF + DF · log(zi ,`))),
and, in addition, it has the same leading coefficient as Res(F , x`). In particular, its leading
coefficient is a non-zero integer, and thus of absolute value larger than or equal to 1. Thus,
we have

Mea(R`)
LC(R`)

≤ ‖R` ‖2 � 2Õ(BF +DF ·log(zi ,`)) � 2Õ(BF +DF ·log(zi)) ,

which shows that log(∂(zi , F )−1) � Õ(nDF (BF + log(zi))).
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For the last claim, notice that σ(zi , F ) appears as one of the factors in the definition of
∂(zi , F ). Since the product of all remaining factors is upper bounded by∏

z j,zi

M(z j − zi)µ(z j ,F ) ≤
∏
z j,zi

[2 ·M(z j) ·M(zi)]µ(z j ,F ) ≤ 2DF ·M(zi)DF ·
N∏

j�1
M(z j)µ(z j ,F ) ,

the claim follows directly from the bound on
∑N

i�1 µ(zi , F )·log(zi) and on log(∂(zi , F )−1).

We are now ready to derive one of the main results of this chapter. More specifically,
the following theorem shows that, in a sufficiently small neighborhood (which we will also
quantify) of a k-fold solution z � zi of F � 0, ‖F (x)‖ scales like c · ‖x‖k with c a constant. We
further argue that this implies that a sufficiently good approximation Φ of the shifted and
truncated system F [z]≤K , with arbitrary K ≥ k, has a cluster of k solutions near the origin,
whereas all remaining solutions are well separated from this cluster. We also give bounds
on the approximation error that involve the quantities σ(z, F ) and ∂(z, F ) that are intrinsic
to the hardness of the given polynomial system.

Theorem 7.20. Let F be a zero-dimensional system, z a zero of F of multiplicity k, and m be an

approximation of z with ‖m − z‖ < 2−L
. Let K ≥ k, and Φ′ � (φ′i)i�1,...,n be a (K + 1) · L-bit

approximation of F [m]≤K with polynomials φ′i of degree at most K, and let a1 , . . . , an ∈ C be

arbitrary complex values of magnitude 0 ≤ |ai | ≤ 1 for all i. Then, the polynomial system

Φ :� (φ′i + ai · xK+1
i )i�1,...,n

is zero-dimensional, and there exists an L0 ∈ N such that, for any L ≥ L0, Φ has exactly k zeros

(counted with multiplicity) of norm smaller than 4 · 2−L
, whereas all other zeros have norm larger

than δ0 :� σ(z,F )
(2n2DF )32n . In the special case, where each polynomial in F has only integer coefficients, it

holds that

L0 � Õ(n · DF · [n3
+ max

i

τF + dF
di

+ log(z)] + log(∂(z, F )−1))).

Proof. We denote z1 , . . . , zN , with z � zi , the zeros of F . Let S ∈ SDF be an admissible
rotation matrix with respect to F as well as with respect to the shifted system F [z]. Notice
that such a matrix exists as more than half of the matrices in SDF are admissible with
respect to F and more than half of the matrices are admissible with respect to F [z]. Let
F ∗ :� F ◦ S−1 be the corresponding “rotation” of F and z∗1 , . . . , z

∗
N be the zeros of F ∗ such

that z∗j � (z
∗
j,1 , . . . , z

∗
j,n) � S ·z j . Since S is admissible with respect to F [z], Lemma 7.147.14 yields

that

|z∗j,` − z∗i ,` | ≥ (2n2DF )−16n · ‖z j − z‖ ≥ σ(z, F )
(2n2DF )16n

for all ` and j , i. In addition, since S is also admissible with respect to F , Lemma 7.67.6
and Lemma 7.147.14 guarantees that each root of the resultant polynomial Res(F ∗ , x`) is the
projection of a finite zero of F ∗ on the x`-coordinate. Thus, Res(F ∗ , x`) has a k-fold root at
z∗i ,` , whereas all other roots z∗j,` of Res(F ∗ , x`) have distance at least σ(z,F )

(2n2DF )16n to z∗i ,` . Now,
applying Lemma 7.187.18 to a disc with center z∗i ,` and arbitrary radius smaller than

r∗0 :�
σ(z, F )

16D4
F · (2n2DF )16n

,
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yields that

| Res(F ∗ , x`)(x)| >
1

3k!
·
����∂k Res(F ∗ , x`)

∂xk
(z∗i ,`)

���� · |x − z∗i ,` |
k for all x ∈ Cwith |x − z∗i ,` | < r∗0.

Denoting LC` :� LC(Res(F ∗ , x`)), this further yields����∂k Res(F ∗ , x`)
∂xk

(z∗i ,`)
���� � | LC` | ·

∏
j,i

|z∗i ,` − z∗j,` |
µ(z∗j,` ,Res(F ∗ ,x`))

≥ | LC` | ·
∏
j,i

( ‖z − z j ‖
(2n2DF )16n

)µ(z j ,F )

≥ | LC` |
(2n2DF )16nDF

· ∂(z, F ),

and thus it follows that

| Res(F ∗ , x`)(x)| >
| LC` |

3k! · (2n2DF )16nDF
· ∂(z, F ) · |x − z∗i ,` |

k

>
| LC` |

4DF ! · (2n2DF )16nDF
· ∂(z, F ) · |x − z∗i ,` |

k

>
| LC` |

(4n2DF )17nDF
· ∂(z, F ) · |x − z∗i ,` |

k if |x − z∗i ,` | < r∗0. (7.19)

Furthermore, Res(F ∗ , x`) is contained in the ideal spanned by the polynomials F ∗ �
( f ∗1 , . . . , f ∗n), that is, there exist polynomials g`, j ∈ C[x] with Res(F ∗ , x`) �

∑n
j�1 g`, j f ∗j .

According to Corollary 7.117.11, we may assume that

log ‖g`, j ‖ ≤ BF ∗ � Õ(n · DF ∗ + τF ∗ ·max
i

DF
di
) � Õ(n · DF + (τF + dF ) ·max

i

DF
di
)

for all `, j, where the last inequality follows from Lemma 7.47.4. Using Lemma 7.27.2 then implies
that

γF ∗ :�
(
n + DF

DF

)
· 2BF ∗ · (M(z) + 1)DF ≥ sup

x:‖x−z∗i ‖≤1
|gi , j(x)| for all `, j. (7.20)

Now, combining (7.197.19) and (7.207.20) yields

‖F ∗(x)‖ ≥
[ min` | LC` |

n · γF ∗ · (4n2DF )17nDF
· ∂(z, F )

]
· ‖x − z∗i ‖

k

for all x ∈ Cn with ‖x − z∗i ‖ < r∗0.
So what can we conclude about our initial (non-rotated) system? Since a rotation main-

tains the Euclidean distance and since the max-norm differs from the Euclidean norm by a
factor of at most

√
n, it follows that a point x of max-norm ‖x‖ is rotated via S (or S−1) onto a

point x′ of max-norm ‖x′‖ ≤ ‖x′‖2 � ‖x‖2 ≤
√

n · ‖x‖. Hence, it holds that every point x∗ � Sx
with ‖x − z‖ < r0 :� r∗0/

√
n satisfies ‖x∗ − z∗i ‖ < r∗0. Thus, for all x with ‖x − z‖ < r0, it holds
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that

‖F (x)‖ ≥
[ min` | LC` |

n ·
√

nk · γF ∗ · (4n2DF )17nDF
· ∂(z, F )

]
︸                                                ︷︷                                                ︸

�:c

·‖x − z‖k
(7.21)

Now, suppose that L ≥ log(8/r0) and thus 2−L < r0
8 . Since m is an approximation of z with

‖z−m‖ < 2−L, F [m] has exactly one solution (namely, ẑ :� z−m) of multiplicity k in ∆r0/2(0)
and

‖F [m](x)‖ � ‖F (x + m)‖ > c
2k
· ‖x‖k for all x ∈ Cn with 2−L+1 < ‖x‖ < r0

2
,

as, for such x, it holds that ‖x‖/2 < ‖x + m − z‖ < r0. Applying Lemma 7.37.3 to each φi and
using the fact that M(m) ≤ 2M(z) then shows that, for all x with 2−L+1 < ‖x‖ < r0/2, it holds
that

‖Φ(x) − F [m](x)‖ ≤ 2−(K+1)L
+ ‖x‖K+1 · dF n · 2τF +dF · [M(z) · (n + dF )2]dF

≤ ‖x‖K+1 · dn
F · 2

τF +dF +1 · [M(z) · (n + dF )2]dF .

Notice that, due to the construction of Φ and Corollary 7.97.9, Φ is zero-dimensional. Hence,
Rouché’s Theorem applied to F [m] and Φ shows that the polydisc ∆ρ(0) contains the same
number of solutions of Φ and F [m] if 2−L+1 < ρ < r0/2 and if, in addition, ρ fulfills the
following inequality

ρK+1 · dn
F · 2

τF +dF +1 · [M(z) · (n + dF )2]dF <
c

2k
· ρk .

Equivalently, we must have 2−L+1 < ρ < r0/2 and

ρK+1−k <
c

2k · dn
F · 2τF +dF +1[M(z) · (n + dF )2]dF

.

Hence, for

L > L0 :� max
[
log 8

r0
, log

2k · dF n2τF +dF +1[M(z) · (n + dF )2]dF
c

]
� Õ(DF · (n + max

i

τF + dF
di

+ log(z)) + log(∂(z, F )−1) + log(σ(z, F )−1)

− | log min
`
| LC` | |). (7.22)

each polydisc ∆ρ′(z), with arbitrary radius ρ′ ∈ (4 · 2−L , r0/4), contains exactly k zeros of Φ.
Since δ0 < r0/4, this proves the first part of the theorem.

It remains to prove the claimed bound on L0 for the special case, where F is a polynomial
system defined over the integers. For this, we need to estimate the size of the leading
coefficient of Res(F ∗ , x`). Notice that there exists an integer λ of size 2Õ(n3 log dF ) with
λ · S−1 ∈ Zn×n , and thus

F ′ : ( f ′1 , . . . , f ′n) � (λdeg f ∗1 · f ∗1 , . . . , λ
deg f ∗n · f ∗n)
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is a polynomial system with integer coefficients, which shows that | LC(Res(F ′, x`))| ≥ 1.
Using [CLO05CLO05, Thm. 2.3 and 3.5] then shows that

| LC` | � λ−nDF · | LC(Res(F ′, x`))| ≥ λ−nDF � 2−O(n4DF ).

Hence, the bound follows from (7.227.22) and the bound for log σ(z, F )−1 from Lemma 7.197.19.

From the previous Theorem, we now immediately obtain the following result by setting
m :� z and Φ :� F [z]≤K for an arbitrary K ≥ k.

Corollary 7.21. Let z be a k-fold zero of a zero dimensional system F and K ≥ k. Then, F [z]≤K

has a k-fold zero at the origin, and all other zeros have norm larger than δ0 :� σ(z,F)
(2n2DF )32n .66

We can now show that Algorithm 7.17.1 terminates and yields a correct result assuming
that L is large enough and the oracle, which provides an approximation m of the solution z,
returns a correct answer.

Theorem 7.22. If #PolySol(F ,∆, K) returns an integer k ≥ 0, then the polydisc ∆ � ∆r(m)
contains exactly k solutions of F counted with multiplicity. Vice versa, suppose that z is a solution

of F of multiplicity k and K ≥ k, then there exists a positive integer L∗ of size

L∗ � Õ(L0 + (K + 1)n · log 1
δ0

+ dF · log(z)).

with L0 and δ0 as in Theorem 7.207.20, such that #PolySol(F ,∆, K) returns k with probability at least

1/2 if r ≤ 2−L∗
and ‖z −m‖ < r

64n(K+1)n . If F has only integer coefficients, it holds:

L∗ � Õ(DF ·max
i

dF + τF
di

+ DF · log(z) + log(∂(z, F )−1) + (K + 1)n · log(σ(z, F )−1))

� Õ((K + 1)n · DF · [DF + τF ·max
`

DF
d`
]).

Proof. For the first part, we proceed similarly as in the proof of Theorem 7.207.20, however, we
work with the system Φ instead of the initial system F . From Line 77 in the algorithm, we
already know thatΦ has exactly k solutions with (‖.‖-) norm less than r/n, whereas all other
solutions have norm at least nr. Now, when considering a random rotation matrix S ∈ SDΦ ,
the corresponding rotated system Φ∗ � Φ ◦ S−1 has exactly k solutions with norm less than
r/
√

n, whereas all other solutions have norm at least
√

n · r. We may now further write

Res(Φ∗ , x`) � γ`,1 · φ∗1 + · · · + γ`,n · φ∗n (7.23)

with polynomials γ`, j ∈ C[x]. From Part dd of Lemma 7.27.2 and Corollary 7.117.11 we conclude
that (

DΦ∗ + n
DΦ∗

)
· BΦ∗ ≥ sup

x:‖x‖≤1
|γ`, j(x)| for all `, j.

In addition, since T∗(∆ r√
n
(0),Res(Φ∗ , x`)) � (True, k−` , LB−` ) and T∗(∆√nr(0),Res(Φ∗ , x`)) �

(True, k+` , LB+

` ) for all ` (Line 1010), we conclude from Lemma 7.187.18 that

| Res(Φ∗ , x`)(x)| > min(LB−` , LB+

` ) for all i and all x with |x` | �
r√
n
or |x` | �

√
nr.

6Weremark thatF [z]≤K does not necessarily have to be zero-dimensional. Rouché’s Theoremonly guarantees
that the polydisc ∆δ0 (0) contains exactly k zeros of F [z]≤K .
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Hence, using (7.237.23), this shows that

‖Φ∗(x)‖ ≥
min`�1,...,n min(LB−` , LB+

` )
n ·

(DΦ∗+n
DΦ∗

)
· BΦ∗

for all x with ‖x‖ � r√
n
or ‖x‖ �

√
nr.

Since a holomorphic mapping cannot take its minimum or maximum in the interior of some
domain, it thus follows that the above inequality even holds for any x with r√

n
≤ ‖x‖ ≤

√
nr.

It thus follows that

‖Φ(x)‖ ≥
min`�1,...,n min(LB−` , LB+

` )
n ·

(DΦ∗+n
DΦ∗

)
· BΦ∗

for all x with ‖x‖ � r.

According to (7.117.11), UB(m, r) constitutes an upper bound on the error ‖F [m](x) −Φ(x)‖ for
any x with ‖x‖ ≤ 1. Hence, in particular, we also have

‖F [m](x) −Φ(x)‖ ≤ UB(m, r) for all x with x with ‖x‖ � r.

Hence, using Rouché’s Theorem, we conclude that F [m] and Φ have the same number of
solutions in the polydisc ∆r(0). This shows the first part.

It remains to prove the second claim. For this, suppose that F has a k-fold solution at z
with ‖m − z‖ < r

64n(K+1)n and that

L :� dlog
32n(K + 1)n

r
e > L1 :� max(L0 , log 1

δ0
+ log[2048 · n2 · (2n2DF (K + 1)n)32n])

� Õ(L0 + log 1
δ0

+ n2 log DF ),
(7.24)

with δ0 �
σ(z,F )

(2n2DF )32n as defined in Theorem 7.207.20. Let Φ be an approximation of F [m]≤K as
defined in Theorem 7.207.20. Then, Φ has k solutions z1 , . . . , zk of norm ‖zi ‖ < 4 · 2−L < r/(2n),
whereas all remaining solutions, denoted by z̄1 , . . . , z̄m , have norm ‖z̄ j ‖ > δ0 > 2nr. We
thus conclude that the if-condition is satisfied in Line 77. Now, when choosing a random
rotation matrix S ∈ SDΦ , the solutions zi near the origin are mapped to solutions z∗i :� S ◦ zi

ofΦ∗ � Φ◦S−1 with norm ‖z∗i ‖ < 4
√

n ·2−L ≤ r
16
√

n(K+1)n , whereas the remaining solutions are
mapped to solutions z̄∗j ofΦ

∗ with norm ‖z̄∗j ‖ > δ0/
√

n > 2
√

nr. In addition, with probability
more than 1/2, we have

|z∗j,` | ≥ ‖z̄ j ‖ · (2n2DΦ∗)−16n > δ0 · (2n2(K + 1)n)−16n > 16 ·
√

n · (K + 1)4n r

for all j ∈ [m] and all ` ∈ [n]. This implies that each of the resultant polynomials Res(Φ∗ , x`)
has k roots of absolute value less than r

16(K+1)n
√

n
, whereas all remaining roots are of absolute

value larger than 16 ·
√

n · (K + 1)4n r. Notice that each polynomial Res(Φ∗ , x`) has degree
(K + 1)n , and thus Lemma 7.187.18 guarantees success in Line 1010 of the algorithm. Now, recall
the lower bounds LB−` and LB+

` for | Res(Φ∗ , x`)| on the boundary of ∆r/
√

n(0) and ∆√nr(0),
respectively, as computed in Line 1111. For arbitrary x ∈ Cwith |x | � r/

√
n, we have

LB−` ≥
| Res(Φ∗ , x`)(x)|

5
>
| LC(Res(Φ∗ , x`))|

5
·
(

r
2
√

n

) k

·
(
δ0 · (2n2(K + 1)n)−16n

2

) (K+1)n−k

> | LC(Res(Φ∗ , x`))| · (2n2(K + 1)n)−32n(K+1)n · rk · δ(K+1)n
0 .
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Using the fact LB+

` ≥
| Res(Φ∗ ,x`)(x)|

5 for all x with |x | � 2
√

nr, an analogous computation shows
that LB+

` fulfills the same bound, that is,

LB+

` ≥ | LC(Res(Φ∗ , x`))| · (2n2(K + 1)n)−32n(K+1)n · rk · δ(K+1)n
0 .

From Lemma 7.97.9 and our construction of Φ∗, the leading coefficient of each polynomial
Res(Φ∗ , x`) is a non-zero integer, hence we obtain that

LB(m, r) �
min`�1,...,n min(LB−` , LB+

` )
n ·

(DΦ∗+n
DΦ∗

)
· 2BΦ∗

≥
δ(K+1)n

0

n(2n2(K + 1)n)32n(K+1)n ·
(DΦ∗+n

DΦ∗
)
· 2BΦ∗︸                                             ︷︷                                             ︸

�:C

·rk .

Notice that, for small r, LB(m, r) scales like C · rk , with a constant C that does not depend on
r. The upper bound

UB(m, r) � rK+1 · dF n2τF +2[M(m) · (n + dF )2]dF︸                                   ︷︷                                   ︸
�:C′

scales like C′ · rK+1, and thus our algorithm succeeds if r fulfills the condition in (7.247.24) (i.e.
dlog 32n(K+1)n

r e ≥ L1) and rK−k+1 < C
C′ . Both condition are fulfilled if

log(1/r) ≥ L∗ :� max(L1 , log C′

C
) � Õ(L0 + (K + 1)n · log 1

δ0
+ dF · log(z)).

The claimed bound on L∗ for the special case where F is defined over the integers follows
directly from the corresponding bound on L0 from Theorem 7.207.20 and our bounds on log(z),
log(σ(z, F )−1), and log(∂(z, F )−1) from Lemma 7.197.19.

7.5 Application: Computing the Zeros of a Bivariate System

In this section, we report on an application of our technique in the context of elimination
methods for the bivariate case. More precisely, we incorporate the algorithm #PolySol as an
inclusion predicate in the Bisolve algorithm [Ber+13Ber+13; KS15bKS15b]. Comparing Sage implementa-
tions of the original Bisolve algorithm and its modified variant, we empirically show that the
idea of truncating the original systemwith respect to the multiplicity of the solution yields a
considerable performance improvement. Bisolve is a classical elimination method for com-
puting the real [Ber+13Ber+13] or complex [KS15bKS15b] zeros within a given polydisc ∆ � ∆1 ×∆2 ⊂ C2

of a bivariate system

F : f1(x1 , x2) � f2(x1 , x2) � 0, with polynomials f1 , f2 ∈ Z[x1 , x2].

It achieves thebest knowncomplexitybound (i.e. Õ(d6
F +d5

F ·τF )bit operations for computing
all complex solution) that is currently known for this problem, and its implementation shows
superior performance when compared to other complete and certified methods. As we aim
to modify the Bisolve algorithm at some crucial steps, we start with a brief description of the
original version.

Bisolve in a Nutshell. In an initial projection phase, Bisolve computes a set C of candidate
regions using resultant computation and univariate root finding. More specifically, we first
compute the hidden-variable resultants R`(x) :� Res(F , x`) for ` � 1, 2. Then, for each root
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z`,i in ∆` , we compute an isolating disc ∆`,i such that T?(∆`,i , R`) � (True, k`,i , LB`,i). That
is, the T?-test succeeds and yields the multiplicity of z`,i as a root of R` as well as a lower
bound for |R` | on the boundary of ∆`,i . By taking the pairwise product of any two discs ∆1,i
and ∆2, j , we obtain a set C of polydiscs ∆i , j :� ∆1,i × ∆2, j in C2. Notice that each solution z
in ∆ of F must be one of the candidate solutions zi , j :� (z1,i , z1, j) as each coordinate of z is a
root of the corresponding polynomial R` . Hence, each solutions must be contained in one
of the candidate regions, even though most candidate regions do not contain any solution.
In addition, each candidate region ∆i , j contains at most one solution, which must be zi , j

In the validation phase, the algorithm checks for every candidate region ∆i , j whether it
contains a solution or not. In other words, we check whether the corresponding candidate
solution z � zi , j is actually a solution or not. The approach used in Bisolve shares many
similarities to the algorithm #PolySol that we proposed here. That is, we write

R` � g`,1 · f1 + g`,2 · f2 with g`,1 , g2,` ∈ Z[x , y] and ` � 1, 2

and compute an upper bound UB for |g`,i(x)| for ` � 1, 2, i � 1, 2, and arbitrary x ∈ ∆i , j .
Similar as in #PolySol, this is achieved without actually computing the polynomials g`,1
and g`,2, but by exploiting the fact that these polynomials can be written as determinants
of “Sylvester-like” matrices77; see [KS15bKS15b] for details. Together with the lower bounds LB1,i

and LB2, j as computed above this yields a lower bound LB∗ �
min(LB1,i ,LB2, j)

2 UB for ‖F ‖ �

max(| f1 |, | f2 |) on the boundary of ∆i , j .
Now, in order to discard or certify z as a solution, Bisolve proceed in rounds, where a

2m-bit approximation ζ of z is computed at the beginning of the m-th round. As an exclusion

predicate, interval arithmetic is used in order to compute a superset� f`(∆2−m (ζ)) of f`(∆2−m (ζ))
for ` � 1, 2. If we can show that either f1 or f2 does not vanish, the candidate is discarded.
As an inclusion predicate the above lower bound LB∗ on the boundary of ∆i , j is compared to
the values that f1 and f2 take at the approximation ζ of the candidate z. More specifically, if
max(| f (ζ)|, |g(ζ)|) < LB∗, then ∆i , j contains a solution; see Theorem 4 in [Ber+13Ber+13]. If neither
the exclusion nor the inclusion predicate applies, we proceed with the next round.

The BisolvePlus Routine. Notice that, even though Bisolve computes the set

Z :� {zi , j ∈ ∆ : f1(zi , j) � f2(zi , j) � 0}

of all solutions of F within ∆, it does not reveal the multiplicity k of a specific solution
z � zi , j � (z1,i , z2, j) ∈ Z. However, due to the properties of the resultant polynomials, it
holds that k � µ(z1,i , R1) if the following two conditions are both fulfilled:

degx2
f1 � deg f1 and degx2

f2 � deg f2 (7.25)
∀x2 ∈ C \ {z2, j} : f1(z1,i , x2) , 0 or f2(z1,i , x2) , 0 (7.26)

The first condition guarantees that there is no solution of F at infinity above any z ∈ C,
whereas the second condition guarantees that there is no other finite (complex) solution of F
that shares the first coordinate with z. We remark that it is easy to check the first condition,
however, checking the second condition is more difficult. This is due to the fact that z might
be the only solution in∆ of F with x1 � z1,i , but there is a another solution of F with x2 � zi ,1

7Notice that this is one crucial point, where our novel approach differs fromBisolve. Namely, for #PolySol, we
use the results from [DKS13DKS13] on the arithmetic Nullstellensatz to derive corresponding bounds on the cofactors
g`, j . This was necessary for generalizing the method to arbitrary dimension. Another crucial difference is that
no truncation of the system is considered in Bisolve.
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Algorithm 7.2: BisolvePlus

Input : Zero-dimensional bivariate system F : f1(x1 , x2) � f2(x1 , x2) � 0 with
f1 , f2 ∈ Q[x], polydisc ∆r(m)

Output: Z+ such that Z+ � {(z, k) : f1(z) � f2(z) � 0, k � µ(z, F )}.
for ρ :� 1, 2, 4, . . .. do

Choose a matrix S ∈ SDF and compute F ∗ � ( f ∗1 , f ∗2 ) � F ◦ S−1

if degx2
f ∗1 � deg f ∗1 and degx2

f ∗2 � deg f ∗2 then
Call Bisolve with input F ∗ and ∆2r(m) to compute (for ` � 1, 2):

• Discs ∆`,i , i � 1, . . . , i` , that isolate the roots z`,i of R` :� Res(F ∗ , x`).

• The multiplicity k`,i � µ(z`,i) of z`,i as a root of R` .

• The set Z :� {zi , j � (z1,i , z2, j) : f ∗1 (zi , j) � f ∗2 (zi , j) � 0} of all solutions of F ∗.

for each solution z � zi , j ∈ Z do
for ` � 1, 2 do

Compute disjoint discs D`,1 , . . . ,D`,s` of radius less than 2−ρ such that

• Each disc D`,s contains at least one root of f ∗` (zi , x2) ∈ C[x2].

•
⋃s`

s�1 D`,s contains all roots of f ∗` (zi , x2) ∈ C[x2].

Determine the set

D∗ :� {D1,s : ∃D2,s′ with D1,s ∩ D2,s′ , ∅}

of all discs D1,s that have non-empty intersection with one of the discs D2,s′.
if for all D1,s ∈ D∗ it holds that D1,s ⊂ ∆i then

Set bi , j � True

if
∧

i , j bi , j then
return {(S−1 ◦ zi , j , ki) : zi , j ∈ Z and zi , j ∈ ∆r(m)}

that is not contained within ∆. We aim to address this problem by the following approach
(see also Algorithm 7.27.2):

Let L ∈ N be fixed non-negative integer. In a first step, we checkwhether (7.257.25) is fulfilled.
If this is not the case, we return False, otherwise, we proceed. Now, for each solution zi , j ∈ Z
and each ` ∈ {1, 2}, we use a complex root finder88 to compute a set of pairwise disjoint discs
D`, j of radius less than 2−ρ such that each disc contains at least one root and the union of
all discs D`, j contains all complex roots of f`(z1,i , x2) ∈ C[x]. Then, we determine all discs
D1, j1 , . . . ,D1, js that have a non-empty intersection with one of the discs D2, j′. It follows that
each common root of f (z1,i , x2) and f (z1,i , x2) must be contained in one of the discs D1, js′ .
Hence, if each of these discs is contained in ∆2,i , then x2 � z2, j is the unique solution of
f (z1,i , x2) � f (z2,i , x2) � 0, and thus (7.267.26) is fulfilled. In this case, we may conclude that
µ(z1,i , R1) equals the multiplicity of z. If we succeed in computing the multiplicities for

8Each of the methods in [Bec+16Bec+16; MSW15MSW15] and the method from the previous chapter apply to polynomials
with arbitrary complex coefficients. Also, for computing only approximations of the roots, there are no re-
strictions on the multiplicities of the roots. In our implementation, we use a strongly simplified variant of the
algorithm from the previous chapter.
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all solutions in Z, we return the solutions together with their corresponding multiplicities.
Otherwise, we return False.

Obviously, the above approach cannot succeed if one of the above conditions is not
fulfilled. However, even if both conditions are fulfilled, it may still fail due to the fact that ρ
has not been chosen large enough.

Lemma 7.23. Suppose that both conditions (7.257.25) and (7.267.26) are fulfilled. Then, there exists a L0 ∈ N
such that Algorithm 7.27.2 succeeds for all L > L0.

Proof. Let ε be a lower bound on the distance between any distinct roots of f1(z1,i , x2) and
f2(z1,i , x2). Now, if 2−L < ε/4, then two discs D1, j′ and D2, j′′ can only intersect if they contain
a common root of f1(zi ,1 , x2) and f2(zi ,1 , x2). Since z2, j is the only common root, we thus
conclude that each of the discs D1, js′ must contain z2, j . Hence, if L is large enough, then ∆2
contains D1, js′ .

The problem with this approach is that we do neither know in advance whether the
condition (7.267.26) is fulfilled nor do we know whether ρ has been chosen sufficiently large. In
order to overcome this issue, we consider a rotation of the system by means of a rotation
matrix S ∈ SDF . Then, with probability at least 1/2, both conditions (7.257.25) and (7.267.26) are
fulfilled for the rotated system F ∗ :� F ◦ S−1. We now proceed in rounds (numbered by m),
where, in each round, we choose a matrix S ∈ SDF at random and run Algorithm 7.27.2 with
input F ∗ � F ◦ S−1 and ρ :� 2m . Since there are only finitely many different choices for S
and since the conditions (7.257.25) and (7.267.26) are fulfilled for at least the half of the systems F ∗,
Lemma 7.237.23 guarantees that, for sufficiently large ρ, Algorithm 7.27.2 returns the solutions of
F ∗ in ∆ together with the corresponding multiplicities with probability at least 1/2.

NewValidationPhase. Wearenowready tomodifyBisolvebyusing an inclusionpredicate
based on the algorithm #PolySol. More specifically, let C :� {zi , j}i , j be the set of candidate
solutions and let ∆i , j � ∆1,i × ∆2, j be the corresponding candidate regions as computed in
the projection phase of Bisolve. The validation routine, see also Algorithm 7.37.3, that is called
for each candidate solution z � zi , j � (z1,i , z2, j) again works in rounds, where in round
m, we compute a L � 2m-bit approximation ζ � (ζ1 , ζ2) of z such that ‖ζ − z‖ < 2−L and
∆64 max(d1 ,d2)2·2−L (ζ) ⊂ ∆2, j . The exclusion predicate is identical to the original Bisolve routine,
i.e., we checkwhetherwe can guarantee that f1 or f2 does not vanish on ∆2−L (ζ) by evaluating
interval extensions� f`(∆2−L (ζ)) for ` � 1, 2using interval arithmetic. The inclusion predicate
nowworks as follows. There is still one tiny detail that prevents us from directly plugging in
#PolySol as an inclusion predicate. Namely, even if the candidate solution would actually
turn out to be a solution of the system, we do not know the multiplicity k of this solution.
Thus, we have to search for the multiplicity k. As we have seen in the previous section that
#PolySol(F ,∆2−L (ζ), K) actually succeeds for any K ≥ k, we can use exponential search for k
by calling #PolySol(F ,∆2−L (ζ), K) for K � 1, 2, 4, . . . , 2dlog(min(k1 ,k2))e , where k` for ` ∈ {1, 2}
is the multiplicity of z` as a root of R`(x) :� Res(F , x`). In the calls to #PolySol, we use the
above described BisolvePlus-routine in order to implement the computation of the solutions
of the truncated system inLine 44 ofAlgorithm7.17.1. We remark that our actual implementation
of the new inclusion predicate differs slightly from the description of #PolySol in one more
detail. For efficiency reasons, we consider a partial change of order of the three considered
steps Solving the truncated system, Projection step, and Bound Computation and Comparison.

7.5.1 Setting

We performed experiments on a compute server with 48 Intel (R) Xeon (R) CPU E5-2680 v3
@ 2.50GHz cores and a total of 256 GB RAM running Debian GNU/Linux 8. All code was
implemented in SageMath version 7.6, release date 2017-03-25.
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Algorithm 7.3: Validate
Input : Zero-dimensional system F � ( f1 , f2)with polynomials f1 , f2 ∈ Z[x] of

degrees d1 and d2, respectively, polydisc ∆ � ∆1 × ∆2 ⊂ C2, candidate
z � (z1 , z2) and multiplicities k` s.t. the multiplicity of z` as a root of
R`(x) :� Res(F , x`) is k` for ` ∈ {1, 2}.

Output: k ∈ N0. If k ≥ 1, then there is a unique solution z of F � 0 of multiplicity k
within the polydisc ∆. Otherwise, ∆ contains no solution.

for L � 1, 2, 4, . . . do
Compute L-bit approximation ζ of z
if ∆2−L+2dlog(min(k1 ,k2))e+6(ζ) ⊂ ∆ then

if 0 < � f1(∆2−L (ζ)) or 0 < � f2(∆2−L (ζ)) then
return 0

for K � 1, 2, 4, . . . , 2dlog(min(k1 ,k2))e do
if #PolySol(F ,∆2−L (ζ), K) � k ≥ 1 then

return k

7.5.2 Instance Generation

The instances on which we compared the implementations are generated as follows. Given
a trivariate polynomial P ∈ Z[x , y , z]. There are several different ways of obtaining two
bivariate polynomials f , g from P that have solutions of higher multiplicity. The different
ways are encoded by the strings 0xx, 0xy, 0yy, x0y, y0x in the file names. The following table
summarizes the meaning of these abbreviations. We denote pv � ∂v p for any polynomial
p ∈ R[v] for some ring R.

0xx f � Res(P, Pz , z) g � fx · fx

0xy f � Res(P, Pz , z) g � fx · fy

0yy f � Res(P, Pz , z) g � fy · fy

x0y f � Res(P, Pz , z) · fx g � fy

y0x f � Res(P, Pz , z) · fy g � fx

From the resulting system f , g, we construct the sheared system f , g ← f (ax + b y , cx +

dy), g(ax + b y , cx + dy)with integers a , b , c , d drawn uniformly at random from [−2, 2]. This
is done in order to make degenerate situations where multiple solutions share the same x
or y-value less likely. We create an even larger set of instances by renaming the variables
of P from x , y , z to x , z , y or y , z , x (or equivalently considering Px and Py instead of Pz).
We abbreviate this choice with xyz, xzy, and yzx. Now, let z be a solution of such a system
f , g of multiplicity k. We pick random polynomials p , q of increasing degrees and consider
the systems f · p , g · q. This results in systems fd , gd of increasing degrees d that have the
same solution z of multiplicity k. For each degree d, we create three such system fd , gd by
multiplying f , g with different random polynomials.

There are two different classes of instances that we consider depending on how the initial
trivariate polynomial P is chosen. In the first class, called herwig_hauser, we pick the
polynomial P from the set of polynomials given as three dimensional surfaces in the Herwig
Hauser Classics gallery [HauHau]. In the second class, called random, we pick P randomly. In
the first class called herwig_hauser we let d � 10, 12, . . . , 40, whereas in the second class
random, we let d � 16, 32, . . . , 4096. We note that in the latter case we pick the random
polynomial with which we multiply f , g in order to get fd , gd as sparse polynomials as



160 Chapter 7. Counting Solutions of a Polynomial System Locally and Exactly

0.1

1.0

10.0

10 20 30 40
degree

tim
e

Method, k=1
standard
truncate

1000

10000

10 20 30 40
degree

pr
ec

is
io

n

Method, k=1
standard
truncate

0.1

1.0

10.0

10 20 30 40
degree

tim
e

Method, k=2
standard
truncate

1000

10000

10 20 30 40
degree

pr
ec

is
io

n

Method, k=2
standard
truncate

0.1

1.0

10.0

10 20 30 40
degree

tim
e

Method, k=4
standard
truncate

1000

10000

10 20 30 40
degree

pr
ec

is
io

n

Method, k=4
standard
truncate

0.1

1.0

10.0

10 20 30 40
degree

tim
e

Method, k=8
standard
truncate

1000

10000

10 20 30 40
degree

pr
ec

is
io

n

Method, k=8
standard
truncate

Figure 7.1: Evaluation for validation of k-fold roots, for k � 1, 2, 4, 8. In all
plots the degree is on the horizontal axis. On the left the validation time is
on the vertical axis and on the right the precision demand is on the vertical
axis. The red dots correspond to the validation method of the original Bisolve
routine, called standard. The blue dots correspond to the validation method
that uses the new inclusion predicate, called truncate.

otherwise evaluating f , g already becomes non-trivial.
The generated instances can be found on the project page.99 A folder corresponding to

9http://resources.mpi-inf.mpg.de/systemspellet/http://resources.mpi-inf.mpg.de/systemspellet/

http://resources.mpi-inf.mpg.de/systemspellet/
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Figure 7.2: Comparison of the dependence of the precision demand on the
degree for different values of k. For herwig_hauser-instances on the left, and
for random-instances on the right.

a candidate contains one file called orig.cnd, which refers to the polynomials f , g. The
remaining files correspond to the polynomials fd , gd as described above. Every file contains
four lines, the first two contain the system, while the third and fourth contain the boundaries
x − r, x + r and y − r, y + r such that the solution is contained within this range.

7.5.3 Experiments and Evaluation Results

In the first experiment, we compare the running time as well as the precision demand of the
two respective validation methods called standard for the method included in the original
Bisolve routine and truncate for the method using the new inclusion predicate on the
instance class herwig_hauser. In Figure 7.17.1, we can see the evaluation for validating k-fold
roots for k � 1, 2, 4, 8. The measurements are repeated three times, for each method and
system. This results in 9 measurements (3 different random polynomials, 3 different runs)
per degree per method. On the left, the running times are on the vertical logarithmic axis,
whereas the degree of the systems is on the linear horizontal axis. On the right, the precision
demand is on the vertical logarithmic axis, whereas the degree of the systems is on the linear
horizontal axis. The error bars indicate 95%-confidence intervals.

We can see a clear advantage for our newmethod truncate. On average over all instances
of degree 40, we obtain an improvement of a factor of 43.6, 37.9, 29.8, 25.2 for k � 1, 2, 4, 8
in the precision demand. In Figure 7.27.2 on the left, we can see the precision demand for the
herwig_hauser instances for different k � 1, 2, 4, 8 for the truncatemethod. We can see that
the precision demand increases with k in a comparable amount as the theoretical worst-case
bounds predict, namely, we can roughly see a quadratic dependence between the precision
demand and the multiplicity k in Figure 7.27.2 on the left.

In Figure 7.27.2 on the right, we can see results for the same experiment for the random
instances. In this experiment, we only include the truncatemethod as the originalmethod
does not scalewell enough for solving instances of that degree. Here both axis are logarithmic
and the degree goes up to 4096. Fitting a linear model to the data points leads an estimate
for the exponent of 0.99 ± 0.05 0.94 ± 0.06, and 0.75 ± 0.13 for k � 1, 2, 4. The coefficients
of determination lie above 0.94 in all three cases that is roughly 94% of the variance of the
data can be explained by the fitted power model. Thus, we may conjecture that the precision
demand depends at most linearly on d. We remark that the plot suggests that the impact of
the degree d dominates over the impact of k for very large d as we cannot see a difference
between the curves for different values of k for large d. Note that the impact of k for small d
explains the smaller exponent in the fitted linear model for k � 4 compared to k � 1, 2.
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The source code, the statistical data underlying the plots, the instances, and the script used for

benchmarking are available for download on the project page.

7.6 Conclusion

We have presented a novel symbolic-numeric algorithm for counting the number of zeros of
a polynomial system within a given region that can be seen as an extension of Pellet’s test
for counting roots of univariate polynomials. The efficiency of our method stems from the
fact that we relate the solutions of the input polynomial system to the solutions of a lower
degree truncated system. We have analyzed the precision requirement of our algorithm,
i.e., we have given a bound on the size of the region for which the algorithm is guaranteed
to succeed. We have shown that this bound is strongly dependent on the geometry of the
solutions of the polynomial system similar to what we have seen for the univariate case in
the previous chapter. We have seen that a Sage implementation of our approach for the
bivariate case can lead to a significant improvement when integrated into a state of the art
solver for bivariate systems.
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