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Abstract 

     Dorsal root ganglion (DRG) neurons transmit sensory information to the central nervous 

system through glutamatergic synaptic transmission that can be modulated by diverse 

neuropeptides packaged in large dense core vesicles (LDCVs). LDCVs fuse at the cell somata and 

in afferent terminals along with synaptic vesicles, in response to a specific stimulus. Cultured DRG 

neurons are an appropriate system to investigate the role of Calcium-dependent Activator Protein 

for Secretion (CAPS) in the release machinery of these two different types of vesicles. CAPS has 

two isoforms that are known to be localized to different neurons in brain and DRGs. Hence DRG 

neurons are a good model to assess any possible differential roles of CAPS isoforms in LDCV and 

SV release. LDCV secretion can be studied in isolation or simultaneously with SV secretion once 

the DRG neurons are co-cultured with the spinal neurons. 

Using RT-PCR, western blot and immunocytochemistry, we verified that both CAPS 

isoforms are expressed in DRGs. CAPS1 is expressed in all neurons while CAPS2 is present in 

half of the population. We visualized NPY-Venus labeled LDCVs in real time using total internal 

fluorescence reflection microscopy. LDCV release was stimulated by a field electrode inducing 

secretion in fifty percent of neurons. Double gene deletion of CAPS1 and 2 strongly reduced the 

number of secreting cells and significantly reduced the amount of exocytosed LDCVs per 

responding cell in comparison to control. Furthermore, CAPS1 or 2b overexpression raised the 

number of WT secreting neurons by 20%, and the responding cells released more than twice as 

many LDCVs in comparison to wild type (WT) controls. Since the density of LDCVs at the plasma 

membrane was not affected by CAPS expression level, our results indicate that CAPS is a priming 

factor for LDCVs in DRG neurons. Further investigation of secreting WT cells revealed that only 

peptidergic neurons secrete LDCV upon stimulation. Interestingly, Isolectin GS-IB4 (iB4) staining 

together with anti-CAPS2 antibody staining showed that eighty percent of peptidergic neurons 

express CAPS2. Overexpressing CAPS2b in non-peptidergic neurons induced secretion while 

CAPS2 KO neurons didn’t secrete LDCVs. This strongly suggest that CAPS2 is the priming factor 

for LDCV release in WT DRG neurons. To address a possible role of CAPS in synaptic 

transmission we established DRG neurons co-cultured with spinal neurons (DRG/S neuron) to 

allow synapse formation. SypHy Lentivirus-based transfection was used to specifically label SVs 
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and visualize their exocytosis. We found that CAPS1 but not CAPS2 promotes synaptic 

transmission. Upon CAPS1 but not CAPS2 deletion, synaptic transmission is dramatically 

decreased. Surprisingly, in-depth analysis of the synaptic transmission suggested that CAPS2 

indirectly affects synaptic transmission through peptide release. CAPS2 induced an 

unsynchronized secretion phenotype, while its absence synchronized synaptic transmission. 

Interestingly, blocking the receptors for the three major peptides, calcitonin gene-related peptide 

(CGRP), substance P (SP) and brain-derived neurotrophic factor (BDNF), led to the silencing of 

the majority of active synapses and induced synchronized synaptic transmission in the remaining 

active synapses. This suggests that the peptide antagonism might induce long-term depression, 

possibly by altering presynaptic calcium.  

Taken together, these findings indicate that CAPS isoforms play differential roles due to their 

differential localization. CAPS2 is localized to DRG cell bodies and primes LDCV secretion, while 

CAPS1 is localized to synapses and primes SV secretion. Additionally, CAPS2 affects synaptic 

transmission by promoting the release of peptides which modulate SV fusion. We conclude that 

CAPS is an indispensable protein with multiple functions that regulate both LDCV secretion and 

synaptic transmission in dorsal root ganglions. 
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Zusammenfassung 

   Spinalganglion (Eng: Dorsal Root Ganglion (DRG)) -Neurone übertragen sensorische 

Informationen an das zentrale Nervensystem durch eine glutamaterge synaptische Transmission, 

die durch verschiedene Neuropeptide moduliert werden kann und in großen dichten Kernvesikeln 

(Eng: Large Dense Core Vesicles (LDCVs)) verpackt sind. LDCVs werden als Reaktion auf einen 

spezifischen Stimulus an den Soma und in afferenten Termini zusammen mit synaptischen 

Vesikeln exocytiert. Die Spinalganglion Kultur ist ein geeignetes System, um die Rolle des 

Calcium-dependent Activator Protein for Secretion (CAPS) in der Freisetzung  zweier 

unterschiedlichen Arten von Vesikeln zu untersuchen. CAPS hat zwei Isoformen, die 

bekanntermaßen auf verschiedene Neuronen im Gehirn, und in DRGs lokalisiert sind. Daher sind 

DRG Neurone ein perfektes Modell, um mögliche Rollen der CAPS Isoformen in der LDCV und 

SV (Synaptic vesicle) Freisetzung zu bewerten. Die LDCV-Sekretion kann isoliert oder gleichzeitig 

mit der SV-Sekretion untersucht werden, sobald die DRG-Neuronen mit den Spinalneuronen co-

kultiviert werden. 

Unter Verwendung von RT-PCR, Western-Blot und Immunzytochemie konnten wir 

nachweisen, dass beide CAPS Isoformen in DRGs exprimiert werden. CAPS1 wird in allen 

Neuronen exprimiert, während CAPS2 nur in der Hälfte der Population vor liegt. Mit Hilfe des 

Total Internal Reflection Fluorescence Mikroskopie konnten  NPY-Venus (Eng: NeuropeptideY 

(NPY)) markierte LDCVs in Echtzeit visualisiert werden. Die Freisetzung wurde durch eine 

Feldelektrode stimuliert, die eine Sekretion in fünfzig Prozent der Neurone induzierte. Die doppelte 

Gendeletion von CAPS1 und 2 verminderte die Anzahl der sekretierenden Zellen stark und 

verringerte signifikant die Menge der exocytosierten LDCVs pro Reaktionszelle im Vergleich zur 

Kontrolle. Darüber hinaus erhöhte CAPS1 oder 2b Überexpression die Anzahl der WT (Wildtyp) 

sezernierenden Neurone um 20%, und die reagierenden Zellen setzten mehr als doppelt so viele 

LDCVs frei im Vergleich zu WT Kontrolle. Da die Dichte der LDCVs an der Plasmamembran nicht 

durch das Expressionsniveau von CAPS beeinflusst wurde, legen unsere Ergebnisse nahe, dass 

CAPS ein Priming faktor für LDCVs in DRG Neuronen ist. Eine weitere Untersuchung des 

Prozentsatzes an sekretierenden WT Zellen ergab, dass nur peptiderge Neurone nach Stimulation 

LDCV sekretieren. Interessanterweise zeigte eine Antikörperfärbung von Isolectin GS-IB4 (iB4) 
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zusammen mit anti-CAPS2-Antikörperfärbung, dass achtzig Prozent peptiderger Neurone CAPS2 

exprimieren. Überexpression von CAPS2b in nicht-peptidergen Neuronen induzierte Sekretion, 

während CAPS2 KO (Knockout) Neurone keine LDCVs sekretierten. Dies deutet stark darauf hin, 

dass CAPS2 der Priming faktor für die LDCV Freisetzung in WT DRG Neuronen ist. Um eine 

mögliche Rolle von CAPS bei der synaptischen Übertragung zu untersuchen, haben wir DRG 

Neurone mit spinalen Neuronen (DRG/S Neuron) co-kultiviert, und somit Synapsenbildungen 

ermöglich. Eine SypHy (Synaptophysin Phluorin) Lenti-Virus basierte Transfektion wurde 

verwendet, um Synaptische Vesikel spezifisch zu markieren und ihre Exocytose zu visualisieren. 

Wir konnten zeigen, dass CAPS1, aber nicht CAPS2 die synaptische Übertragung fördert. Bei 

CAPS1, aber nicht CAPS2 deletion, wird die synaptische Übertragung drastisch verringert. 

Überraschenderweise zeigte eine eingehende Analyse der synaptischen 

Transmissionsexperimente, dass CAPS2 indirekt die synaptische Transmission durch 

Peptidfreisetzung beeinflusst. CAPS2 induzierte einen asynchronen Sekretions Phänotyp, während 

dessen Abwesenheit zu einer synchronisierten synaptische Übertragung führte. Interessanterweise 

führte die Blockierung von drei Hauptpeptiden, einschließlich Calcitonin Gene-Related Peptide 

(CGRP), Substance P (SP), und Brain-Derived Neurotrophic Factor (BDNF), zum silencing der 

Mehrheit der aktiven Synapsen und induzierte synchronische synaptische Übertragung in den 

verbleibenden aktiven Synapsen. Dies deutet darauf hin, dass die Peptidblockade eine Langzeit-

Depression induzieren könnte, indem sie wahrscheinlich präsynaptisches Calcium verändert. 

Zusammengenommen zeigen diese Befunde, dass CAPS Isoformen aufgrund ihrer differentiellen 

Lokalisation differentielle Rollen spielen. CAPS2 ist in DRG Zellkörpern lokalisiert und ist für das 

Priming und die Sekretion von LDCV verantwortlich, während CAPS1 sich in Synapsen befinded 

und das Priming und Sekretion von SVs durchführt. Zusätzlich beeinflusst CAPS2 die synaptische 

Transmission durch die Förderung der Freisetzung von Peptiden, die an ihren präsynaptischen 

Rezeptor binden, wodurch die SV Exozytose induziert wird.  

Wir fassen zusammen, dass CAPS ein leistungsfähiges unentbehrliches Protein mit 

Multifunktionen ist, das sowohl die LDCV Sekretion als auch die synaptische Transmission auf 

unterschiedliche Weise regulieren. 

.
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I. Introduction 

It is vital for living organisms to sense the external world. The brain, through the anterior 

insular cortex, provides us with awareness of the feelings originating outside and inside the 

body  (Craig, 2009). There are countless experiences that can be sensed in our world from the hugs 

of beloved people, to the rain drops splashing on your skin and the feeling of cool breath. 

Incredibly, we are able to differentiate and comprehend these inputs and substantialize them 

through our perception to make things matter for us. Information needed from our environment to 

maintain our awareness of events happening around us are conveyed by different nerve endings 

that innervate our skin and organs. These nerves collectively transfer the sum of information to the 

nervous system. The nervous system serves different major functions, some of which are the 

exteroreceptive and interoceptive functions, then responds to stimuli originating outside or inside 

the body. Another function that is also needed for our perception is proprioception. It helps the 

nervous system keep good command over perception and control of body position and balance 

(Abraira and Ginty, 2013). These functions altogether involve the activation of primary neurons 

whose cell bodies are located in the dorsal root ganglion (DRG). DRG neurons act like a 

“primitive brain”; they can detect information from the periphery and send it to the central nervous 

system in order to be processed (Ibanez and Ernfors, 2007). The information is transmitted to the 

central nervous system via glutamatergic synaptic transmission that is subject to modulation via 

secretion of peptides contained in large dense core vesicles (LDCVs). The vesicular secretion of 

peptides and neurotransmitters is important in many neural and endocrine functions (Zhang and 

Zhou, 2002). Sensory inputs generate action potentials along the DRG axons which induce Ca2+-

dependent vesicle secretion (Huang and Neher, 1996; Zhang and Zhou, 2002). Secretion is 

controlled by a well-orchestrated exocytosis machinery and involves different vesicle pools and 

several fusion steps. Prior to fusion, vesicles undergo the membrane related maturation steps, 

docking, priming and a final fusion step that is calcium dependent. Fusion of the vesicle with the 

plasma membrane marks the release of the vesicular cargo, transmitting the chemical signal from 

the presynapse to the postsynapse (Becherer and Rettig, 2006). The exocytosis machinery has been 

examined in great detail for synaptic vesicles and to some extent for LDCV secretion in brain. 

However, it remains poorly understood in DRG neurons. Particularly, we are interested in the role 
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of CAPS in these neurons. It is widely accepted that CAPS regulates synaptic transmission and 

LDCV secretion in brain neurons (Eckenstaler et al., 2016; Farina et al., 2015; Fujita et al., 2007; 

Klenchin and Martin, 2000; Speidel et al., 2005; Speidel et al., 2003) and mutations in CAPS are 

associated with cerebellar disorders and autism (Okamoto et al., 2011; Sadakata et al., 2012; 

Sadakata et al., 2007a; Sadakata et al., 2007b) but its role in DRG neurons remains unknown. It is 

of great interest to understand how these sensory neurons transmit information and communicate 

with their surroundings and especially how pain is produced (Gu et al., 2010). Discovering how 

these sensory neurons work would help in providing potential treatment for sensory symptoms 

often associated to ataxia and pain. 

I.1 Spinal Cord 

The spinal cord is defined 

by Cambridge dictionary as the set 

of nerves inside the spine that 

connect the brain to other nerves in 

the body. It is a very important 

structure that links the body to the 

foramen magnum part of the 

brainstem where it becomes 

continuous with the medulla 

oblongata (Ibanez and Ernfors, 

2007). In humans, the spinal cord 

is divided into 31 segments that 

includes the cervical, thoracic, 

lumbar and sacral regions 

(Figure 1). The nervous tissue is 

composed of white and gray 

matter, together with supporting 

cells of the spinal cord. These 

tissues begin at the occipital bone 
Figure 1 Cross section of 4 of the spinal cord’s 31 segments.  
Source: Pearson Education Inc. © 2011 
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and extends to the second lumbar vertebrae reaching a length of around 45 cm in men and 43 cm 

in women. Its width varies from 13 mm thick in the cervical and lumbar regions to 6.4 mm thick 

in the thoracic part. In mice, the spinal cord is a white cylindrical slim structure that extends to a 

similar extent as in humans from the foramen magnum to the lower side of the vertebral colum 

(Yaksh et al., 1999). Between the carnium and the sacrum end, there exist about 25 to 30 vertebrae 

(Green, 1941; MJ., 1965). The sensory information travels from the extremities of the body and 

goes through the spinal cord to the central nervous system (CNS) via afferent fibers. The CNS in 

return, can send motor orders via motor neurons located in the ventral horn. These neurons project 

their axons to the body parts, mediating CNS voluntary and involuntary reflexes through muscle 

innervation. The spinal cord connects the brain with the peripheral nervous system, controlling and 

tuning the flow of information. The spinal cord segments are associated with a pair of dorsal root 

ganglia that host the cell bodies of the primary sensory neurons. The central axons of these cells 

project into the spinal cord carrying the information into the CNS second order neurons. 

I.2 DRG Neurons 

DRG neurons are pseudo-unipolar cells, with one axonal branch that extends all the way to 

the periphery and associates with peripheral sites. The second branch, which enters the spinal cord, 

forms synapses with second order neurons in the gray matter of the spinal cord, though few of these 

reach the dorsal column nuclei of the brainstem (Abraira and Ginty, 2013). A single DRG neuron 

nerve ending covers a receptive field of less than a 1 mm in diameter on the skin surface that often 

senses a range of different stimuli (Patapoutian et al., 2003). These neurons are very diverse and 

encompass different subsets that are distinct with respect to their cell body sizes, axonal 

morphologies, physiological properties, and expression of molecular markers. Some subsets 

respond to either thermal, tactile, proprioceptive, or nociceptive stimuli and are classified as 

thermoreceptors, mechanoreceptors, proprioceptors, and nociceptors, respectively (Ryan et al., 

2007). The diversity of the receptive functions is extensive, for example somatosensory subset can 

be further divided into several modalities of somatic sensation that can be further divided into sub-
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modalities. They are basically classified into four main categories that are presented in Table 1. A 

more general and easier classification is to group these neurons as peptidergic and non-peptidergic 

neurons that can be distinguished via isolectin labeling. The isolectin protein (iB4) isolated from 

an African shrub, binds to α-D-galactose carbohydrate residues on small and medium sized neurons 

(Fullmer et al., 2004; Silverman and Kruger, 1990). The iB4 can only bind the unmyelinated non-

peptidergic or “peptide poor” primary neurons hence the name iB4+ neurons (Wang et al., 1994), 

Additionally this substance has been used to label the non-peptidergic neurons expressing the 

exposed isolectin P2X3 receptors (Bradbury et al., 1998; Guo et al., 1999). By default, the 

“peptide rich” myelinated neurons were given the name iB4- neurons. It is now widely accepted 

that these chemical differences on the surface of these neurons represent functionally distinct 

groups of DRG neurons (Snider and McMahon, 1998; Stucky and Lewin, 1999). DRG neurons 

carry out their functions with the help and maintenance provided to them by astrocytes (Fang et 

al., 2006). 

Table 1 The sensory modalities represented by the somatosensory systems.  
DRG neurons are categorized into different somatic modalities that are further divided into sub-modalities (aka 
different types of sensation) and sub-sub-modalities. Each of these sensations are modality specific. For example, 
the somatosensry cold-sensation submodality is naturally stimulated by cold, the perceived sensation is then 
processed by a specific neuron which can not respond to warm or touch signals. Sensory receptors and their 
connections determine the modality specificy by which the responsible neuron will process the information and 
send it to the higher order of central nervous system neurons.  
Source: Modified from Patrick Dougherty, Ph.D., Department of Anesthesiology and Pain Medicine, MD Anderson 
Cancer Center. Content available on: The University of Texas Health Science Center at Houston (UTHealth) website. 
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I.3 Astrocytes 

Michael von Lenhossek introduced the term 

Astrocyte which translates literally into ‘Star-like cell’. 

They can be identified by staining against GFAP1 

(Figure 2). Astrocytes are highly heterogeneous in their 

morphology and the surface markers they express. 

Astrocytes are the most numerous and diverse glial 

cells in the nervous system (Nedergaard and 

Verkhratsky, 2012; Parpura and Verkhratsky, 2012). 

They create the micro-architecture allowing brain 

neurons to thrive and perform their functions. They 

store and distribute energy substrates, control 

development, synaptogenesis and maintenance of 

synapses and synaptic structures. (Kettenmann and 

Verkhratsky, 2011). These cells perform their 

supportive functions by establishing highly organized 

anatomical domains that are extensively connected into networks, dramatically modulating the 

state of neurons (Belanger and Magistretti, 2009). While astrocytes maintain CNS integrity, they 

also do so for the PNS (Guenard et al., 1994). Astrocytes surround the pre- and postsynaptic 

structures in the PNS and stabilize them (Heikkinen et al., 2014). The idea of the functionality and 

participation of astrocytes at synapses became interesting when Alfonso Araque showed, using 

transmission electron microscopy, that astrocytes processes are in the direct proximity of synapses 

(Araque et al., 1999a; Araque et al., 1999b). Further studies revealed that astrocytes release 

molecules that are essential to sustain the maturation, structure and functionality of active synapses 

(Beattie et al., 2002; Pfrieger and Barres, 1997; Slezak and Pfrieger, 2003). The influence of 

astrocytes on synaptic survival, activity and plasticity can be exerted by glial-derived 

neurotrophins, cytokines and metabolites (Faissner et al., 2010). Astrocytes have proven to be 

essential for successful physiological studies involving CNS and PNS neurons. For this reason, we 

                                                 
1 Glial fibrillary acidic protein, a common marker for astrocytes. 

Figure 2 Astrocyte cells.  
Astrocytes fixed with 4% and stained against 
rabbit GFAP and Alexa 488 secondary antibody. 
The displayed image is a bright field overlaid with 
488 confocal acquisition. 



INTRODUCTION 

 

6 
 

monitored and controlled the astrocyte numbers in such a way that there were adequate astrocytes 

for healthy DRG culture but not so many that imaging was impaired.  

I.4 Spinal Neurons 

The primary afferents of different DRG subtypes that innervate the skin and body tissues, 

terminate in the spinal cord. The distribution pattern of this termination is determined by the 

sensory modality and the body region these afferents innervate (Sivilotti and Woolf, 1994). It is an 

orchestrated process that drives the modality specific terminations to the proper position inside the 

spinal cord grey matter. For instance, nociceptive neurons terminate in dorsal horn, 

mechanoreceptors neurons terminate in deeper laminae, while proprioceptive neurons terminate in 

the intermediate zone and in the ventral spinal cord horn (Figure 3).  The grey matter encompasses 

the cell bodies of spinal neurons2 that constitute a part of the CNS and is divided into several 

sections that include dorsal horn, intermediate column, lateral horn and ventral horn column. Spinal 

                                                 
2 In addition to spinal neurons, the grey matter encompass glial cells as well as astroglial and oligodendrocytes. These 

cells provide physical support and regulate the internal environment inside the grey matter 

Figure 3 DRG neuronal connections to spinal neurons. 
Modified from: Marmigère and Ernfors. Nature Reviews Neuroscience 8, 114–127 (February 2007), 
doi:10.1038/nrn2057. 
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neurons process the information from 

DRG neurons through complex 

inhibitory and excitatory circuits 

(Todd, 2010). The information is 

then transmitted from spinal neurons 

to higher order neurons in the brain to 

be further processed. It was 

important for us to study synapses 

formed between DRG neurons and 

spinal neurons in order to assess the 

possible role of CAPS isoforms in 

synaptic transmission and for this 

reason we characterized these cells 

according to morphology. We 

noticed that spinal neurons were 

much smaller in size in comparison 

to DRG neurons and that they were 

morphologically different in terms of 

cell body shape (being more round) and having longer and thicker processes (Figure 4). It was 

relatively easy for us to distinguish both types of neurons once co-cultured. During the course of 

this PhD thesis we will present a detailed characterization of these cells and we will describe the 

time course of synapse formation and function.  

I.5 Exocytosis 

The term exocytosis was conceived by the Belgian Nobel prize winner Christian de Duve 

by combing the Greek words Έξω, meaning "external" and κύτος, meaning "cell" (Blaschko; De 

Duve, 1963). As the meaning of the word implies, it is a process by which a vesicle fuses with the 

membrane of the cell, releasing its cargo to the outside (aka secretion). It is an essential mechanism 

for cells to accomplish their functions and maintain homeostasis (Alberts, 1989) For instance, the 

secretion of neurotransmitter serotonin is essential for brain function and mood regulation, the 

Figure 4 Spinal neurons in culture.  
(A) Confocal bright field acquisition of dorsal horn neurons 6 DIV. 
(B) DRG/S neuron co-culture 6 DIV. S neuron can be distinguished 
from DRG neurons with their relatively smaller size. The white 
arrows point to DRG neurons while the yellow arrow points to 
S neuron. 
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secretion of peptides (for example NPY) and hormones (for example oxytocin) are important for 

regulating food intake/obesity and mental state (De-Miguel and Trueta, 2005; de Kock et al., 2003; 

Gehlert, 1999; Piekut, 1985). There are two modes of exocytosis, the constitutive pathway and 

regulated pathway of secretion (Frick et al., 2001). The first mode provides a continuous way of 

secretion of proteins that are packaged inside vesicles of which undergo direct secretion, delivering 

proteins to the extracellular matrix. Fusion of membrane organelles is also used to deliver proteins 

to the plasma membrane of the cell (Alberts B, 2002; Lacor et al., 2000; Lodish H, 2000). The 

second pathway occurs in specialized cells and is important for regulating peptide, neurotransmitter 

and hormone release. Regulated exocytosis is coupled to transient calcium increase in the cytosol 

which induces the fusion of secretory vesicles with the cell membrane, see figure 5 for more details 

(Alberts, 1989; Robert D. Burgoyne, 1993; Vitale et al., 2002). Exocytosis is a firmly regulated 

mechanism that involves vesicle trafficking, tethering, docking, priming and a final fusion step. 

Vesicle trafficking involves translocation of vesicles, often over long distances, from the Golgi 

apparatus to their destined site. Such translocation requires motor proteins and actin and/or 

microtubule cytoskeletal tracks (Johnson et al., 2012; Kuznetsov et al., 1992; Lang et al., 2000; 

Manneville et al., 2003). Once the vesicles are recruited to the intended site, they are tethered. A 

process known to happen before the interaction of vesicular Soluble N-Ethylmaleimide-sensitive 

factor attachment receptor (v-SNAREs) and transmembrane SNARES (t-SNAREs). Tethering is 

defined as the first attachment of the vesicle with its target membrane and usually covers a distance 

half of the vesicle width (> 25 mm). Tethering factors are known to share common characteristics, 

being either multi-subunit complexes or elongated coiled-coil proteins (Lowe, 2000) that stabilize 

the position of the vesicle long enough ensuring a successful docking for fusion (Toonen et al., 

2006). Once the vesicles are strongly-tethered, they are subjected to tighter membrane positioning 

Figure 5 The constitutive and regulated secretory 
pathways. 
The constitutive secretory pathway ensures the 
renewal of proteins located in the plasma membrane 
and the disposal of metabolites. The regulated 
secretory pathway takes place only in specialized cells 
whereby proteins in the trans-Golgi network are 
sorted into secretory vesicles, waiting a proper signal 
to drive their exocytosis.  
Adapted from: Molecular Biology of the Cell. 4th 
edition. Alberts B, Johnson A, Lewis J, et al. New 
York. Garland Science; 2002. 
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bringing the vesicles in a 

proximity of 5 to 10 nm 

from the plasma 

membrane, a process 

called docking. Docking 

involves the integral 

vesicular proteins, 

synaptotagmin which 

interacts with two 

membrane proteins, 

syntaxin and SNAP-25 

(Bennett and Scheller, 

1994; Jahn and Sudhof, 

1993; Pevsner et al., 

1994). Tethering and 

docking establish physical 

proximity of membranes 

but are not enough to 

initiate vesicle fusion-

competence. Prior to 

fusion, an additional 

biochemical process is 

needed that requires a set of proteins interacting with both the vesicle and the plasma membrane in 

an ATP-dependent fashion, rendering the vesicles fusion competent. This process is called priming 

whereby vesicles are now fusion competent and awaiting the calcium trigger to fuse (Klenchin and 

Martin, 2000; Martin and Kowalchyk, 1997). Fused vesicles are endocytosed and recycled for 

further rounds of fusion (Figure 6). 

I.5.1 SV Exocytosis 

Synaptic vesicles are loaded with neurotransmitters, transferred to the active zones of pre-

synaptic axonal terminal, docked then primed and await calcium signal to trigger fusion, a process 

called SV exocytosis. It takes about 100 µs from the arrival of an action potential to the fusion of 

Figure 6 The synaptic vesicle cycle. 
Synaptic vesicle exocytosis can be divided into several stages. 1: Synaptic 
vesicles are loaded with neurotransmitters by active transport. 2: Newly filled 
synaptic vesicles are then transported to the active zones of synapses, a 
process known as tethering. 3: The synaptic vesicles are then docked to the 
presynaptic membrane. 4: Synaptic vesicles status becomes fusion competent 
after a priming step awaiting calcium signal. 5: Calcium signal triggers fusion 
process. 6: Fused synaptic vesicles are then coated with Clathrin and are 
prepared for endocytosis. 7: Endocytosed synaptic vesicles shed the Clathrin 
coat and are acidified via proton pumps. 8: The synaptic vesicles later fuse with 
early endosomes. 9: Once ready, synaptic vesicles bud from endosomes. It is 
reported that some synaptic vesicles can skip the endosomal intermediate step 
and can go directly from step 7 to step 1. 
Modified from: The Synaptic Vesicle Cycle in the Nerve Terminal. Basic 
Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Siegel 
GJ, Agranoff BW, Albers RW, et al., editors. Philadelphia: Lippincott-Raven; 
1999. 
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SVs at the presynapse (Rizo and Rosenmund, 2008; Sudhof, 2004). Twenty years of accumulating 

research investigating neurotransmitter release shows that neuronal SNAREs that mediate 

exocytosis are the vesicular Synaptobrevin and the plasma membrane proteins SNAP-25 and 

Syntaxin. Synaptobrevin and Syntaxin-1 each have one SNARE motif before the C-terminal 

transmembrane domain while SNAP-25 has two SNARE motifs. The assembly of the four 

SNAREs motifs into a tight SNARE complex consisting of a four-helix bundle (Lin and Scheller, 

1997; Poirier et al., 1998; Rizo and Xu, 2015; Sutton et al., 1998) is required for the primed 

state (Sollner et al., 1993). The energy released by this assembly would trigger membrane 

fusion (Hanson et al., 1997) whereby Synaptobrevin binds to SNAP-25 and Syntaxin, drawing the 

vesicular and cell membranes into close proximity (Figure 7). The SNARE complex is 

disassembled right after fusion with the help of NSF and SNAPs (Sollner et al., 1993). 

 

Figure 7 SV exocytosis.  
SNARE proteins, complexins and synaptotagmin 1 and 2 interaction model during exocytosis. While vesicles are 
docked (panel A). There is no direct interaction of SNARES and synaptotagmins while vesicles are docked (panel A). 
Upon priming (panel B), Complexins (green) bind to fully associated SNARE complexes, followed by association of 
synaptotagmins to the formed SNARE complex. Assembled SNARE complexes force the synaptic vesicle membrane 
and the plasma membrane into close proximity, resulting in an unstable intermediate as shown in the hypothetical 
fusion diagram. Calcium influx would trigger synaptotagmin C2 domains to partly insert into the phospholipids (panel 
C), destabilizing the fusion intermediate state. This causes mechanical perturbation that opens the fusion pore 
ending in full vesicle fusion. 
Adapted from: Thomas C. Sudhof. The Synaptic Vesicle Cycle. Annu. Rev. Neurosci. 2004. 27:509–47. 
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I.5.2 LDCV Exocytosis 

Neurons and neuroendocrine cells secrete transmitters such as neuropeptides, neurohormones and 

amines that are contained in LDCVs (Bauerfeind et al., 1994; Liu et al., 1994; Park and Kim, 2009). 

Unlike, small EM clear core SVs (of about 50 nm in diameter), LDCVs are larger and have electron 

dense cores with vesicles of diameters from 100 to 300 nm. Whereas, neurotransmitters in SVs 

primarily bind to ligand gated ion channels to transmit the signal to the postsynapse in rapid way, 

neuropeptides contained in LDCVs target G protein-coupled receptors (GPCRs), hence modulating 

synaptic activity (Park and Kim, 2009) (see Table 2). LDCVs are secreted at the soma as well as 

near active zones of synapses (Zhao-Wen, 2008). The production of LDCVs can be quite a complex 

process for cells. Unlike SVs that can be locally produced at synapses to ensure fast recycling, 

immature LDCVs are de novo produced at the trans-Golgi network (Yang et al., 2001). Once 

formed, LDCVs undergo maturation steps allowing the transportation to the destined location and 

eventual docking at the plasma membrane, a process coordinated via Rab proteins (Grosshans et 

al., 2006) (Figure 8). Despite, the differences between the morphology and function of both SVs 

and LDCVs, they share common mechanisms of exocytosis whereby calcium is essential to trigger 

their release. In similar fashion to SV exocytosis, a synaptotagmin is required for calcium sensing 

in LDCV exocytosis (Schonn et al., 2008). In a very similar way to what was described in SV 

exocytosis section, the priming of vesicles into a fusion competent state involves the assembly of 

Table 2 Comparison between SSV and LDCV.  
Adapted from: Yongsoo Park and Kyong-Tai Kim. hort-term plasticity of small synaptic vesicle (SSV) and large dense-
core vesicle (LDCV) exocytosis. Volume 21, Issue 10, October 2009, Pages 1465–1470. 

 SVs LDCVs 
Size (nm) ~ 50 100–300 
Location Mainly CNS and clustered in nerve 

terminals 
Mainly PNS and homogeneously 
distributed 

Endocytosis Local recycling by endocytosis Slow endocytosis 
Morphology in EM Clear particle Dense particle 
Neurotransmitters 
contained 

Classical neurotransmitters and 
ATP 

Amines (catecholamine, 
serotonin, and histamine), 
peptide, and ATP 

Receptors stimulated Mainly ligand-gated channel 
(generating postsynaptic 
potential) 

Mainly GPCR (modulating synaptic 
activity) 

Time delay between 
calcium influx and fusion 

~ 0.2 ms after single action 
potential 

> 50 ms, longer latency after 
strong stimulation 

Distance from calcium 
channel to fused vesicle 

~ 20 nm ~ 300 nm 
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trans-SNARE complexes. This process that is further regulated with priming factors such as 

Munc13s. Interestingly, it was shown that Munc-13 does not play an essential role in LDCV 

exocytosis in contrast to the case of SV exocytosis (van de Bospoort et al., 2012). Exogenous 

Munc-13 facilitates LDCV secretion but its absence does not impair the ready releasable pool 

(RRP) (Figure 8) (Sieburth et al., 2007). Another important priming factor CAPS, a highly 

conserved protein through evolution with two isoforms that has been proven to play an important 

role in LDCV secretion (Walent et al., 1992). Most studies however focused on CAPS1, knowing 

that CAPS2 is expressed at eight fold higher than CAPS1 in endocrine cells (Sieburth et al., 2007; 

Speese et al., 2007; Zhou et al., 2007). Understanding the differences between CAPS isoforms 

should provide key insights to understand the differences in priming of SV and LDCV exocytosis. 

Through this thesis, we intended to decipher the role of CAPS isoforms in both SV and LDCV 

exocytosis. 

 

 

 

Figure 8 LDCV exocytosis.  
Molecules that are involved in calcium-dependent exocytosis. Several molecular reactions occurs before calcium-
dependent exocytosis. The transfering of vesicles from the depot pool (DP) to the unprimed pool (UPP) defines the 
docking step. Munc18 stabilize docked state of vesicles.  Docking is followed by a priming step which corresponds to 
the transfer of vesicles from the UPP to the slowly releasable pool (SRP) because of the (partial) formation of the 
SNARE complex from the individual SNAREs SNAP-25, syntaxin, and synaptobrevin. Munc13 functions as a priming 
factor. Complexin modulates the equilibrium between SRP and RRP. The final fusion of vesicles is initiated by the 
binding of Ca2+ to synaptotagmin which acts as a calcium censor.  
Adapted from: Ute Becherer and Jens Rettig, 2006. Vesicle pools, docking, priming, and release. 
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I.6 CAPS 

In 1992, a novel brain protein first named p145 was identified by Thomas Martin’s group. 

The protein was described as a dimer of 145 kd subunits that exhibited Ca2+-dependent interaction 

with a hydrophobic matrix. It was suggested that p145 has a membrane-associated function because 

of its ability to bind phospholipids vesicles. The authors also proposed that the restricted expression 

of p145 suggests that this protein has a key role in the transduction of Ca2+ signals into vectorial 

membrane fusion events (Walent et al., 1992). It took the authors five years to give p145 the current 

name, CAPS (Ca2+-binding protein) and they reported that Ca2+-dependent triggering of vesicle 

fusion required CAPS as an additional cytosolic factor (Ann et al., 1997). A year later, CAPS got 

its final submitted name3 which had a better descriptive meaning of its function. It was directly 

understood how important this novel protein is. CAPS was shown as a functional component of 

the exocytotic machinery that localizes selectively to LDCVs, and probably confers distinct 

regulatory features on neuropeptide and biogenic amine transmitter secretion (Berwin et al., 1998). 

As the attention towards CAPS further grew, more groups started studying it in different cell 

systems. The first study of CAPS effect on LDCV release was performed in calf chromaffin cells 

and showed that CAPS is critical for fusion of LDCVs with the membrane (Elhamdani et al., 1999). 

A second mammalian CAPS isoform was identified by Brose group; the localisation of both 

isoforms in the CNS as well as in other organs was then studied (Speidel et al., 2003). These studies 

reported among other findings that CAPS is expressed in DRG neurons but while CAPS1 was 

found in all DRG neurons, CAPS2 was found in an undefined subpopulation (Sadakata et al., 2006; 

Sadakata et al., 2007b). Later, CAPS4 was studied in Caenorhabditis elegans where it was shown 

that it is required for LDCV but not SV exocytosis (Speese et al., 2007). In 2011, CAPS2 isoform 

was shown to promote BDNF release in the GABAergic interneuron network of the hippocampus 

and to be critical for the development of GABAergic interneuron network (Shinoda et al., 2011). 

CAPS2 was also shown to be essential for regulating LDCV trafficking by interacting with Class 

II ARF small GTPases (Sadakata et al., 2012). Rettig’s group showed in 2014 that CAPS primes 

through its Pleckstrin homology domain and not through the Mun domain and that it doesn’t 

interact with Syntaxin and surprisingly, that its function is not redundant with Munc13 (Nguyen 

                                                 
3 Calcium-dependent Activator Protein for Secretion. 
4 CAPS homolog in C. elegans is named UNC-31. 
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Truong et al., 2014). Recently, it was shown that CAPS1 primes LDCV fusion at synapses in 

mammalian neurons and both CAPS1 and CAPS2 primes SVs (Jockusch et al., 2007). A more 

recent study showed that deletion of CAPS2 does not affect SV release (Farina et al., 2015), 

introducing some  controversy to the field. CAPS isoforms play different roles in LDCV vs SV 

secretion among different species and cell types within species. It is not necessarily the case that 

CAPS acts as a priming factor in one cell type if CAPS does for another. For instance, the two 

powerful priming factors Munc13 and CAPS are not required for the molecular regulation of SV 

secretion in cochlear inner hair cells (Vogl et al., 2015). 

The diverse effects of CAPS 

on LDCV and SV release 

among different species is 

illustrated in table 2. It is 

difficult to predict how CAPS 

would act in DRG neurons 

due to its unorthodox role as 

described in the literature. It 

was very interesting for us to 

investigate both isoforms in 

DRG and DRG/S neuron 

system as its roles remain yet unclear in these cells. 

I.6.1 CAPS Isoforms 

The CAPS protein family is 

encoded by two CADPS genes that 

produce two isoforms, CAPS1 and 

CAPS2. The CADPS1 gene is located on 

chromosome 3 while CADPS2 gene is 

located on chromosome 7 (Figure 9). 

CAPS proteins are widely expressed in all adult and fetal tissues examined, with the strongest 

expression in kidney and pancreas. In brain, it is expressed at high levels in cerebellum, to a lesser 

degree in cerebral cortex, occipital pole, and frontal and temporal lobes. CAPS is weakly expressed 

Species LDCVs SVs 

C. elegans Yes  
(Speese et al., 2007) 

No  
(Speese et al., 2007) 

Drosophila Yes 
(Renden et al., 2001) 

Yes 
(Renden et al., 2001) 

Chromaffin cells Yes 
(Elhamdani et al., 1999) 

- 

Hippocampal 
neurons 

Yes 
(Shinoda et al., 2010) 

Controversial 
(Jockusch et al., 2014) 

(Farina et al., 2015) 
Hair cochlear 

cells 
No 

(Vogl et al., 2015) 
No 

(Vogl et al., 2015) 
DRG neurons ? ? 

Table 3 Role of CAPS in LDCV and SV release across the different studied 
species in the literature. 

Figure 9 CADPS gene map region. 
Source: Modified from GeneLoc Genome Locator. 
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in medulla, spinal cord and putamen (Cisternas et al., 2003). CAPS1 isoform is very important for 

neurons and is abundant among almost all neurons (Figure 10).  

Figure 10 Estimated protein expression level of CAPS1. 
Source: GeneReport for Unigene cluster for CADPS1 Gene Hs.654933. 
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CAPS1 deficiency affects the secretion of catecholamines, neuropeptides and peptide hormones 

(Berwin et al., 1998; Fujita et al., 2007; Speidel et al., 2008; Tandon et al., 1998). In the course of 

my thesis, I will study the effect of CAPS1 - as well as CAPS2 - on LDCV and SV release in DRG 

neuronal culture and DRG/S neurons co-culture, respectively.  

Unlike CAPS1 where there are no known splice variants, CAPS2 isoform has 6 known splice 

variants 2b, 2a, 2c, 2d, 2e and 2f ranging from the longest to the shortest, respectively (Figure 11). 

CAPS2 isoforms are expressed right after birth with an expression peak around the first or second 

postnatal week. In several tissues the estimated expression level of CAPS2 is less important than 

CAPS1 (Figure 12). CAPS2 protein is concentrated in parallel fiber terminals5 of the cerebellum 

                                                 
5 CAPS1 is enriched in Glomeruli and Climbing Fibers (Sadakata et al., 2007a). 

Figure 11 CAPS2 splice variants are 
present in adrenal glands.  
(A) Domain structure of CAPS2 splice 
variants (Sadakata et al., 2007). 
Domains are as follows: DID, C2 domain, 
PH domain, MUN domain. Numbers 
refer to the amino acids defining the 
respective domains. Alternatively 
spliced exons are indicated underneath. 
(B) RT-PCR of adrenal gland (AG) and 
cerebellum (Cb) using primers specific 
for CAPS2 splice variants. Lysates from 
adrenal glands obtained from mouse 
embryos at E18 and postnatal days 1, 
10, and 21 were used as templates for 
lanes 1–4, and for lane 5, cerebellar 
lysate from postnatal day 7 mice was 
used as template. The outer lanes 
contain size markers. 
Source: Nguyen Truong et al., 2014, 
Prof. Jens Rettig lab. Cell Reports 9, 
902–909, November 6, 2014. 
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where it is associated with vesicles containing BDNF. CAPS2 enhances release of BDNF, which 

is essential for normal cerebellar development (Sadakata and Furuichi, 2009). 

Figure 12 Estimated protein expression level of CAPS2.  
Source: GeneReport for Unigene cluster for CADPS2 Gene Hs.649459 
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CAPS2 deficient mice exhibited autistic-like behavioral phenotypes such as impaired social 

interaction, hyperactivity and increased anxiety in an unfamiliar environment (Sadakata et al., 

2007a).  

I.7 Aim of the Thesis 

The secretion machinery that permits the release of both LDCVs and SVs in DRG neurons has 

not been studied. It is not clear which priming factors are involved. A quarter of a century time 

worth of CAPS studies made us understand that this protein plays different and sometimes opposite 

roles among mammalian and invertebrate systems. Due to the diverse and controversial roles of 

CAPS, it was of great interest to investigate whether it primes LDCV secretion or not. If CAPS 

does prime, the second question to address is which isoform is involved? According to (Sadakata 

et al., 2006; Sadakata et al., 2007b), CAPS1 is found in all DRG neurons while CAPS2 is localized 

to an unknown subpopulation. To which subpopulation does CAPS2 localize to and what role does 

it play? Since, DRG neurons are very diverse, this different localization might imply different roles 

of CAPS isoforms. To study whether CAPS primes SV release, it was necessary to establish DRG/S 

neuron co-culture in order to achieve functional synapses (Joseph et al., 2010) in-vitro and test at 

what time these synapses start to form and if they are functionally interconnected or not. We 

hypothesized that CAPS1 might be responsible for SV release because of its presence in all DRG 

neurons and it is known that all these cells form synapses with higher order CNS neurons. Would 

CAPS2 prime SV release as well? What would be the effect of absence of both isoforms on SV 

release? Another question was whether CAPS plays a role in synapses between DRG neurons and 

spinal neurons. The main aim of my thesis was to identify the role of CAPS isoforms in murine 

DRG neurons and to look deeper at the localization and investigate the idea of differential 

regulation at different levels. Unraveling the molecular exocytosis machinery of DRG neurons is 

relevant for controlling pain which is important in medicine.
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II. Materials and Methods 

The used materials were mainly available at the department of Univ.-Prof. Dr. Jens Rettig and 

to lesser extent at the department of Univ.-Prof. Dr. Dieter Bruns. 

II.1 Materials: 

II.1.1 Chemicals 

Product Company 

Agar Roth 

B27-Supplement Life Technologies 

BSA Sigma-Aldrich 

CaCl2 x 2H2O Merck 

Chloroform Sigma-Aldrich 

Cyclotraxin B Tocris 

DMEM Life Technologies 

dNTP-Mix Fermentas 

DPBS Life Technologies 

Ethanol 100% Roth 

EtBr Life Technologies 

EDTA Sigma-Aldrich 

EGTA Sigma-Aldrich 

FCS Life Technologies 

Formaldehyde PolyScience 

Fura-2 AM Life Technologies 

FUDR Sigma-Aldrich 

Glucose Merck 

Glutamax Life Technologies 

Glycerol Roth 

Glycin Roth 

HEPES Sigma-Aldrich 

HEPES-buffer Sigma-Aldrich 

HPLC water Life Technologies 

Isopropanol Roth 

Kanamycin K-1377 Sigma-Aldrich 

KCl Merck 

λ Marker Roche 
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Product Company 

MgATP Sigma-Aldrich 

NaCl Merck 

NaCHO3 Merck 

Na2HPO4 x 2H2O Merck 

NaH2PO4 x H2O Merck 

NEAA Life Technologies 

Neurobasal A Life Technologies 

NGS Panbiotech 

Olcegepant MedChem Express 

Optimem  Life Technologies 

PCR-buffer Sigma-Aldrich 

Penicillin Life Technologies 

Pepton Roth 

pfu-Polymerase Buffer Fermentas 

PDL Sigma-Aldrich 

Phenol Sigma-Aldrich 

RPMI Sigma-Aldrich 

Sodium pyruvate Life Technologies 

Streptomycin Life Technologies 

Sucrose Merck 

Trishydrochlorid Roth 

Triton X-100 Roth 

Uridin Sigma-Aldrich 

Water Sigma-Aldrich 
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II.1.2 Solutions 

II.1.2.1  Base- 10x (Tobias) + 40 mM NH4Cl 

NH4Cl, 40 mM, (0.427 g/l) 

NaCl, 1480 mM, (1.309 g/l) 

KCl, 24 mM, (0.035 g/l) 

HEPES, 100 mM, (0.0476 g/l) 

MgCl2 x 6H2O, 12 mM, (0.0487 g/l) 

CaCl2 x 2H2O, 25 mM, (0.0735 g/l) 

II.1.2.2 Blocking Solution (50 ml) 

NGS, 1.25 ml 

PBS, 48.75 ml 

II.1.2.3 S neurons Cell Culture Medium (50 ml) 

NBA, 45 ml 

FCS, 2.5ml 

Horse serum, 2.5 ml 

NGF, 100 µl 

FUDR, 500 µl 

II.1.2.4 DRG Intracellular Patch-Clamp Solution 

L-Aspartat, 135 mM 

MgCl2 x 6H2O, 1 mM 

HEPES, 10 mM 

CaCl2 x 2H2O, 3 mM 

Cs-EGTA, 5 mM 

MgATP, 2mM 

Na2GTP 0.3 mM 

pH: 7.2 
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Osmolarity: 300~315 mOsm 

II.1.2.5 DRG Extracellular Patch-Clamp Solution 

NaCl, 131 mM 

NaHCO3, 25 mM 

KCl, 2.5 mM 

NaH2PO4 x H2O, 1.25 mM 

MgCl2 x 6H2O, 1 mM 

CaCl2 x 2H2O, 2 mM 

Glucose, 10 mM 

pH: 7.4 (5% CO2 + 95% O2) 

Osmolarity, ~300 mOsm (with glucose) 

II.1.2.6 DRG Extracellular Solution 

NaCl, 147 mM 

KCl, 2.4 mM 

CaCl2 x 2H2O, 2.5 mM 

MgCl2 x 6H2O, 1.2 mM 

HEPES, 10 mM 

Glucose, 10 mM 

pH: 7.4 

Temperature: 34 °C 

Osmolarity: 300 mOsm (with glucose) 

II.1.2.7 DRG Cell Culture Medium 

NBA medium 

FCS 5% 

FUDR 10 µl/ml 

II.1.2.8 FUDR 

FUDR, 8.1 mM 
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Uridin, 20.5 mM 

DMEM 

II.1.2.9 HBS 2X Solution (100 ml) 

HEPES, 50 mM (1.19 g) 

NaCl, 280 mM (1.64 g) 

NaH2PO4, 1.5 mM (0.02 g) 

II.1.2.10  HEPES pH-Buffer Physiological Solution 

NaCl, 30 mM 

KCl, 100 mM 

MgCl2, 2 mM 

Glucose, 10 mM 

HEPES, 20 mM 

II.1.2.11 HEK Cell Culture Complete-Medium (100 ml) 

DMEM + 4.5 g/l Glutamax, 100 ml 

Sodium pyruvate, 1.1 ml 

NEAA, 1.1 ml 

FCS, 10 ml 

Penicillin/Streptomycin, 0.1 ml 

II.1.2.12  iB4 Staining Solution 

iB4 conjugated to Alexa-568, 1 mg/ml (5µl) 

Extra cellular solution, 2 ml 

II.1.2.13  LB-Medium 

Pepton, 8g 

Hefextrakt, 4g 

NaCl, 4 g 

H2O, 800 ml 
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II.1.2.14  Loading Buffer 

Sucrose, 4g 

Bromphenol blue 

Sigma H2O, 10 ml 

II.1.2.15  Liberase S neurons Digestion Solution 

Liberase DH, 2.3 U 

NBA, 1 ml 

II.1.2.16  Locke’s 10x Solution 

NaCl, 1.54 M 

KCl, 56 mM 

NaH2PO4 x H2O, 8.5 mM 

Na2HPO4 x 2H2O, 21.5 mM 

D-Glucose H2O, 100 mM 

II.1.2.17  MES pH-Buffer Physiological Solution 

NaCl, 30 mM 

KCl, 100 mM 

MgCl2, 2 mM 

Glucose, 10 mM 

HEPES, 20 mM 

II.1.2.18  Mounting Medium 

Mowiol 4-88, 2.4 g 

Glycerol, 6 g 

H2O double distilled, 6 ml 

Tris-Buffer, 12 ml 

pH: 8.5 

II.1.2.19  Neurobasal A-Medium 

NBA, 500 ml 
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B27, 5 ml 

Glutamax, 5 ml 

(This solution is either prepared with 1 ml of Penicillin/streptomycin or without antibiotics) 

II.1.2.20  Optimem 

Optimem, 44 ml 

Tryptosephosphate, 5 ml 

HEPES buffer, 1 ml 

Penicillin/Streptomycin, 50 µl 

BSA, 0.1 g 

II.1.2.21  Paraformaldehyde (15% PFA, 10 ml) 

PFA, 1.5 g 

Sigma H2O, 10 ml 

NaOH, 15 µl 

pH: 7.4 

II.1.2.22  PBS (1 l) 

Na2HPO4, 58 mM (10.3234 g/l) 

NaH2PO4, 17 mM (2.345 g/l) 

NaCl, 83 mM (4.850 g/l) 

II.1.2.23  Peptides-Blocking Solution 

L-70,606 oxalate salt hydrate (10 µM) 

BIBN 4096BS Olcegepant (10 nM) 

Cyclotraxin B (1 µM) 

NH4Cl, 40 mM, (0.427 g/l) 

NaCl, 1480 mM, (1.309 g/l) 

KCl, 24 mM, (0.035 g/l) 

HEPES, 100 mM, (0.0476 g/l) 

MgCl2 x 6H2O, 12 mM, (0.0487 g/l) 
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CaCl2 x 2H2O, 25 mM, (0.0735 g/l) 

II.1.2.24 Permeabilization Solution (50 ml) 

Triton x-100, 50 µl 

NGS, 1.25 ml 

PBS 1x, 48.25 ml 

II.1.2.25  PDL 

Poly-D-Lysin Hydrobromid, 0.5 mg/ml 

Sigma H2O 

II.1.2.26  Quenching Solution (50 mM Glycin) 

Glycin, 0.187 g 

PBS, 50 ml 

II.1.2.27  RPMI 

RPMI, 500 ml 

FCS, 50 ml 

Pen/Strep, 5.5 ml 

HEPES, 5.5 ml 

II.1.3 Enzymes 

Liberase DH Research Grade, Sigma-Aldrich from Roche 

Papain, Cellsystems, Worthington Biochemical Corporation 

TrypLEE Express, Gibco from Life Technologies 

Trypsin-EDTA, Invitrogen 

II.1.4  Antibiotics 

Ampicillin Na-Salz, Zchl/Roth Carl, K029.1. 

Pen/Strep, fisher scientific, 10452882. 

Nigericin sodium salt, Zchl/Sigma Aldrich, N7143-10 mg. 

Vancomycin, Zchl/Life Technologies, V-1644. 
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II.1.5  Bacteria and Cell Lines 

II.1.5.1 Bacteria 

DH5α: F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 

Δ(lacZYA-argF) U169, hsdR17 (rK–mK+), λ–. Invitrogen, Life Technologies. 

Stbl3: F- glnV44 recA13 mcrB mrr hsdS20 (rB-, mB-) ara-14 galK2 lacY1 proA2 rpsL20 xyl-5 

leu mtl-1. Invitrogen, Life Technologies. 

II.1.5.2 Cell Lines 

HEK 293FT. Life Technologies. 

II.1.6  Mouse Strains 

C57Bl/6N (Black 6), Stock No: 005304, The Jackson Laboratory 

129/svj, Stock No: 000691 | 129X1. The Jackson Laboratory 

II.1.7  Kits 

EndotFree Plasmid Maxi Kit, Qiagen 

EndoFree Plasmid Mini Kit, Qiagen 

QIAprep Spin Miniprep Kit, Qiagen 

QIAquick Gel Extraction Kit, Qiagen 

QIAquick PCR Purification Kit, Qiagen 

II.1.8  Cell Culture Products 

Product Lot # Company Size 

NBA (1x) 10888022 Gibco 500 ml 

B27 serum-free supplement (50x) 17504044 Gibco 10 ml 

Pen/Strep 15070-063 Gibco 100 ml 

FCS 10500-064 Gibco 500 ml 

HS P30-0701 PAN Biotech 100 ml 

NGF N-245 Alomone Labs 25 mg 

FUDR F0503 Sigma 100 mg 

PDL P0899 Sigma 50 mg 

BSA A8022 Sigma 1 g 

EBSS (+Ca +Mg) 24010043 Gibco 1 g 

Needle-Long (20 Gx23/4:0.9x70 mm) NN2070S Stoss Medica  

Needle-Thick (20Gx1 1/2 09x40 mm) NN2038R Stoss Medica  

Filter small-white (Acrodisc 13 mm 0.2 µm) PN4427T Life Sciences  
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Filter blue-green (32 mm 0.8/0.2 µm) 514-4136 VWR  

Filter white (0.2 µm) 514-0061 VWR  

Petri dish (150x20 mm) 821473 Sarstdet  

Petri dish (92x16 mm) 821473 Sarstdet  

 

 

 

 

II.1.9 Microscope Facilities 

II.1.9.1  Total Internal Reflection Fluorescence Microscope 

 Conventional epifluorescence microscopes are widely used to observe fluorescent samples. 

This technique comes at the cost of spatial resolution as the signal is highly affected by the sample 

brightness and the background fluorescence, which generates a fuzzy image. Meanwhile, confocal 

microscopes employ a Pinhole to limit the diffraction from backgrounds and foregrounds, it 

basically enables one to get specific emitted signals at specific depth but at the cost of speed. On 

the contrary, total internal reflection fluorescence microscopes (TIRFM) takes advantages of the 

properties of totally internally reflected lights which generates electromagnetic evanescent waves 

that illuminate fluorescent probes within a close proximity of the glass/water interface. With 

TIRFM, it is possible to achieve high spatial resolution with fast acquisition rates which enables 

high time resolution recordings, such as LDCV release from DRG neurons as well as synaptic 

transmission from DRG/S neurons co-cultures or any membrane-associated processes.  

TIRFM concept: 

TIRFM technique was initially developed by Danial Axelrod at the University of Michigan in 

beginning of 1980s (Axelrod, 1981). Whenever light passes through interface of two transparent 

media with different refractive indices it will be partially diffracted. Above a certain critical angle 
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of incidence, there will be 

total internal reflection 

inducing an 

electromagnetic field that 

pass through the interface 

forming and evanescent 

waves that decays 

exponentially with depth 

(Axelrod, 1981). Hence it 

excites fluorescent probes 

within the evanescent field 

and keeping the rest of the 

sample dark. The acquired 

images are therefore sharp 

and are not affected less by 

the fluorescence of other cell components or the background (Figure 13).  

Microscope general information: 

 The Olympus TIRFM IX70 microscope setup is custom made with several enhancements that 

enable a wide set of electrophysiological experiments to be performed. For instance it is provided 

with two perfusion systems, one being automated and the other is manual; the manual was heated 

while the other was controlled via a Warner Instruments valve control (model VC-6 VALVE). The 

microscope is equipped with an 100x objective featuring a high numerical aperture (1.45 NA) that 

is equipped with a correction collar to adjust for the thickness of the coverslip. The laser light 

passes through the objective, the immersion oil (n = 1.52), and is reflected at the interface between 

the glass coverslip and the extracellular solution (n ~ 1.33, Temp. 34 °C), achieving TIRF and an 

evanescent field that fades away exponentially with depth of 230 nm (Quintana et al., 2007). 

Excitation can be applied by two laser systems from Spectra-Physics (450, 488 and 514 nm – model 

285-FA11) and a second red (561 nm) laser from Melles Riot (model 85-YCA-615); as well as 

through a high speed visichrome polychromator (model 2261). The laser wave length is modulated 

by an Acousto Optical Tunable Filter (AOTF) from Visitron Systems (model VS AOTF-2). The 

setup is equipped with different AHF filter sets (green/red, UV, mTFP and yellow/red) and a 

Figure 13 Total internal reflection fluorescence microscopy concept.  
Unlike epifluorescence microscopes which covers the entire sample, Olympus 
TIRFM generates an evanescent field that penetrates to a restricted depth into 
the sample enabling to sharply visualize all the vesicles lying within this range. 
Graphical illustration: Abed Shaib. 
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QuantEM 512SC camera from Andor Technology Plc with Dual-View (565dcxr). The setup has 3 

sets of objectives, the 10x, 40x and 100x NA 1.45 Apochromat TIRF objective. The setup is 

operated by VisiView version 2.1.2 software from Visitron Systems. 

Electrical stimulation components: 

 Electrical stimulus was applied via a Stimulator from AM Systems. The Stimulator is connected 

to a custom-made bipolar field electrode that is supported by a micro-manipulator model SM-8 

from Luigs & Neumann Company. The original field electrode was purchased from MicroProbes 

(#PI2ST30.5B10) for Life Sciences, and was later subjected to manual enhancement by eroding 

the heated tapered end. Initially, the company produced only Heat Tappered field electrodes (H in 

Figure 14) that were not stable and air bubbles were generated whenever the applied stimulating 

voltage exceeds 2.5 V. At high voltage applied to a small surface area, the tip of the electrode heats 

which generates air bubbles that erode the tip. To counter this, I trimmed the tip of the electrode to 

approximately 60 µm in diameter and then applied 4 V to induce maximum DRG cells response. 

The electrode was stable enough to handle up to 10 V at 100 Hz without generating air bubbles6. 

The impedance of the field electrode was 0.1 Ω. The company later reported that they added a more 

                                                 
6 My findings were supported by a study of A. Petrossians presented in SFN Chicago, 2015. Talk citation: 

Nanosymposium – Electrodes Arrays III: N227 (talk 565.08: In-vivo characterization of Platinum-Iridium 

electroplated dbs electrodes). 

Figure 14 MicroProbes commercial field electrodes. 

A - Standard tip profile (25:1 Taper). Tungsten - Platinum/Iridium - Pure Iridium - Stainless Steel. 
H - Heat treated tapered tip profile (25:1 Taper). Tungsten - Platinum/Iridium - Pure Iridium Stainless Steel. 
F - Extra fine tip profile (40:1 Taper). Tungsten only. 
B - Blunted tip profile (25:1 Taper). Tungsten - Platinum/Iridium - Pure Iridium - Stainless Steel. 
Source: MicroProbes for Life Technologies. Link: www.science-products.com /Products/CatalogG/MPI-
Electrodes/MPI.html 
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recent bullet-shaped electrode product to their inventory as a result of the numerous feedback from 

many scientists. The exposed length of the wider tip would be less than the sharp long electrode 

that makes it with almost same impedance. Hence isolation can be improved since the blunt pointed 

structure is more stable and less subject to fractures compared to the Heat Tappered end electrode; 

claiming that this provides greater selectivity and more stability of the field electrodes upon high 

voltage vigorous stimuli. The composed material in the selected field electrode was an alloy of 

Platinum and Iridium. Platinum is one of the best highly-unreactive precious conductors of 

electricity but it has a disadvantage that it is malleable. To overcome the malleability of Platinum, 

it was mixed with Iridium, the latter is well known for its high density, it is the second densest 

element after Osmium. Iridium is corrosion-resistant and it can handle temperatures as high as 2000 

°C thus providing a good support to the good conductor Platinum, ensuring a stable break-resistant 

electrodes. The electrode was fixed to metal support exposing its tip and was eroded under 40x 

magnification using a sharp razor (Figure 15). The parylene layer was also removed from the tip 

to make sure it is well exposed so that the electricity is conducted to nearby cells. To test the 

electrode, a glass pipette with metal electrode connected to an oscilloscope was placed between the 

two field electrodes in a good conductor solution and 4 V stimulus was applied. Nearly, four volts 

Figure 15 Magnified image of the original Tappered electrode compared to the custom eroded one. 
In the first panel, the two tips of the field electrode are usually apart from each other with a distance ranging from 
250 to 300 µm. In the second panel, the tip is manually eroded using a sharp razor to make it wider and the 
parylene insulating paint is removed away from the eroded part. 
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were detected by the 

oscilloscope hence 

confirming the effectiveness 

of the stimulus (Figure 16). 

However, the applied voltage 

decays over distance as it 

moves away from the 

electrode poles. In ideal 

condition, if the voltage is 

fixed, the surface area of the 

pointed tip of the electrode 

stays the same and 

considering the material as 

excellent conductor, the 

electric field E would equal to 

voltage divided by distance: 

E=V/d 

E =
4

150
= 0.0267 V/µm  

  0.0267 =
V

50
→ V = 1. 33̅̅̅̅  V  for every 50 µm ∓1. 33̅̅̅̅   V 

As a second way of confirming the functionality of the field electrode, a more physiological test 

was used, whereby DRG neurons were loaded with a calcium dye Fluo-4 AM and 4 V stimulus 

was conducted. Upon depolarization, voltage-dependent calcium channels open, allowing the entry 

of Ca2+. Intracellular calcium concentration increase affecting the fluorescence intensity of Fluo-4. 

Cells in which the fluorescence intensity increased upon stimulation would be marked as 

responding cells to the electrical stimulus. The percentage of depolarized responding cells was 

measured (data is shown in Results chapter). A wider range of voltages were tested starting at 2.5 V 

to 7 V with 4 V having the highest number of responding cells.  

Recording of LDCV evoked release from DRG cultures: 

DRG neurons were transfected with a Lentivirus encoding for NPY-Venus 6 days prior to 

physiological measurements. NPY-Venus is semi-pH sensitive protein that fluoresces weakly at 

Figure 16 Bright field image captured at 100x magnification of DRG 
neuron culture showing field electrode adjustment.  
The real image was edited for display purpose to present the place of the 
pipette that was used to measure the voltage between the two poles of the 
electrode. In the real settings the glass pipette is outside the camera 
detection field. 
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the acidic pH of the vesicle lumen. Upon fusion of the vesicle with the plasma membrane the pH 

lumen neutralises thereby dequenching the fluorescence of Venus. This fluorescence "flash" helped 

me to identify fusion events. A mild stimulus of 4 V at frequency of 10 Hz was applied to the cells 

for 30 s followed by a stronger stimulus of 4 V at 100 Hz to effectively evoke LDCV release 

(Figure 17). Fusion events were recorded in TIRF mode at 514 nm (2% laser) with EM Gain of 

600 for 3 minutes. Exocytosis was essentially recognized by fast disappearance (>200 ms) of NPY-

Venus fluorescence. The number of fusion events were exclusively counted from DRG cell bodies. 

Fusion events may be underestimated as unclear fusion events were dropped in all measured sets. 

To assure the functionality of the field electrode, it was regularly tested every 3 to 4 months with 

calcium imaging and it was replaced with a new electrode every 8 to 9 months as it erodes 

with time. 

 

 

Figure 17 Stimulation protocol to induce LDCV release. 
DRG neurons were transfected with NPY-Venus to visualize exocytosis using 100X objective and excited at514 nm. 
TIRF movies were recorded for 3 minutes. Transfected DRG neurons were stimulated with bipolar field electrode to 
elicit LDCV secretion. The stimulation starts at 10 Hz for 30 sec and followed by 100 Hz, both of which are at 4 V 
intensity, having bipolar pulse width of 3 ms and inter-bipolar pulse duration of 10 ms. The recordings were made 
at 37 °C. 
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SV evoked release recordings from DRG/S neuron co-cultures: 

DRG/S neuron co-cultures were necessary for establishing functional synapses, more 

details would be provided in the Results and Discussion chapters. 24 hrs after taking the DRG 

neurons in culture, we added a Lentivirus encoding for Synaptophysin pHluorin (SypHy) BL-47 

purchased from Viral Core Facility in Berlin. The superecliptic pHluorin was fused to the second 

intravesicular loop of synaptophysin (Granseth et al., 2006). On the third DIV, SypHy was removed 

Figure 18 Synaptic transmission stimulus protocol. 
(A) Graphical illustration of DRG/S neuron co-cultures. DRG neurons extend processes towards S neurons and form 
synapses on their cell bodies as well as on the processes. Upon applying 4 V at 10 Hz stimulus, synaptic vesicles fuse, 
SypHy is exposed to the neutral pH and hence the fluorescence signal increases. Single ROI (red circle) marks 
individual synapses to measure the mean gray value and plot their fluorescence over time. (B) Bright field image of 
DRG/S neuron co-culture acquired at 100x. (C) Snapshot from DRG/S neuron movie acquired at 488 nm in TIRFM. 
(D) Average fluorescent intensity graph of all the synapses displayed with SEM plotted against time. 4 V stimulus at 
10 Hz was applied after 30 seconds of recording for 1 min, then the synapses were left to recover. After 4 min of 
recording, NH4Cl was applied to deprotonate the vesicles at synapses and induce the maximum increase in 
fluorescence signal. Error bars in (D) are SEM. 
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and S neurons were added, thus ensuring that only synapses formed from DRG neurons onto 

S neurons were marked with SypHy, excluding the S neurons/S neurons synapses. DRG/S neurons 

were maintained 9 DIV together before any measurements were carried out. Five minutes 

recording in semi-TIRF mode (a border state between epifluorescence and TIRF acquisition, 

achieving higher signal to noise ratio) was performed. Semi-TIRF acquisitions were necessary to 

include processes and synapses outside the TIRF field. Thirty seconds were recorded prior to a 4 

V at 10 Hz stimulus that was applied for 1 min. Then the synapses were allowed to recover for 3 

min before NH4Cl was applied manually to deprotonate all the vesicles and highlight all synapses 

with maximum intensity. The maximum synapse fluorescence signal after NH4Cl application was 

used to normalize individual synapse response to the stimulus. A ten Hertz stimulus was previously 

in rat hippocampal neurons and cat superior cervical ganglion cells (Applegate and Landfield, 

1988; Pysh and Wiley, 1974). The first reported usage of an external field electrode to stimulate 

DRG/S neuron co-cultures with 10 Hz stimulus date back to mid-80s whereby (Jahr and Jessell, 

1985) showed that glutamate, or a glutamate-like compound is the excitatory transmitter that 

mediates fast excitatory postsynaptic potentials in these types of synapses. For carrying out the 

synaptic transmission experiments, I tested several stimuli, 5 Hz, 10 Hz, 20 Hz and 100 Hz in 

hippocampal and DRG/S neuron. I found that the best stimulus is 4 V at 10 Hz, as I had the 

maximum response with the smallest possible stimulus. 

 

II.1.9.2  Confocal Laser Scanning Microscope   

Laser scanning microscopes (LSM) are able to scan samples either sequentially point by 

point, or multiple points at once whereby the information contained in electrical signals is digitized 

and is integrated into an acquired high optical resolution image. The microscope that I used is 

driven by Zeiss Efficient Navigation (ZEN) 2011 SP27 software that helps in setting the desired 

acquisition parameters to visualize samples. 

LSM concept: 

Sixty years ago, Hiroto Naora was the first to practically use confocal optics by direct 

supervision of Zyun Koana (Naora, 1951). They didn’t generate images but rather used it in high 

                                                 
7 Black edition, version 8.0 
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resolution micro-spectrophotometry. Ten years later, Marvin Minsky took advantage of that and 

added a scanning stage, building a microscope that can acquire images and filed a patent in 1957 

without any scientific publications. LSM improved over time, but it took 30 years to become widely 

available as tool for obtaining High resolution optical images with depth selection, acquiring 

images focused to certain depth, a process called optical sectioning. Obtaining the data at different 

z-levels allows 3-D reconstructions of complex samples. The depth of scanning depends on the 

amount of light that can penetrate the tissues at a given time. Confocal LSMs send a laser beam 

that passes through aperture and then is focused by an objective lens within the surface of the 

fluorescent sample. The reflected laser and fluorescent light from the sample goes back through 

the objective lens and then into the beam splitter that sends part of the signal to a detection system. 

The original excitation wavelength is blocked and only the emitted signal is detected after passing 

through a Pinhole with desired Airy Units and finally to the photomultiplier tube (PMT); changing 

the emitted light signal into digital electrical one and hence digitizing an acquired data into high 

resolution image8. 

LSM 780 microscope general info: 

The microscope is provided with several sets of objectives: 

- 10x dry objective, NA 0.3, EC Plan-Neofluar, M279, Yellow ring color. 

- 20x multi-immersion objective, NA 0.8, Plan-Apochromat, M27, Red/Green ring color. 

- 40x water immersion objective, NA 1.2, C-Apochromat, M27, Blue ring color. 

- 63x oil immersion objective, NA 1.4, Plan-Apochromat, M27, Black ring color. 

- 100x oil immersion objective, NA 1.45, Alpha Plan-Fluar, M27, White ring color. 

- APO Calibration LSM. 

Stage control: 

Controlling the loading and navigation through the sample can be done by an X-Y joystick. The 

focus can be adjusted through a side wheel and the desired focal plane can be saved so that it is 

possible to be loaded automatically for the next sample.  

                                                 
8 Technical information was revised according to “Confocal Basic Concepts” lecture from Nikon by: Stephen W. 

Paddock - Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706 and Thomas J. 

Fellers and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida 

State University, Tallahassee, Florida, 32310. 
9 Thread type.  
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Fluorescence lamp and bright field: 

It is possible to choose between bright field and fluorescence view at the eyepieces while in 

‘Locate’ configuration mode simply by turning on the X-Cite lamp 120PC Q and setting the desired 

filter. Open the lamp shutter with minimal lamp power of 12% to maximum 100% and the sample 

is ready for inspection. Once the intended area of acquisition is defined, hit the light-off to avoid 

photobleaching and switch the configuration mode into ‘Acquisition’. 

Acquisition configuration: 

It is possible through ZEN to devise acquisition parameters from scratch, reuse existing 

configuration or select ‘Smart Setup’ rather than using your own dyes mix with manual 

excitation/emission cut. Live scan settings provides the possibility to acquire at different 

wavelength excitations: Diode 405, Argon 458, HR Diode 488, HR Diode 514, HR DPSS10 561, 

HeNe 633 and HR Diode 642 nm lasers. For every laser, ‘Gain Master’, ‘Digital Offset’ and 

‘Digital Gain’ can be defined as well as the addition of a bright field image (T-PMT) for every 

wave length while a uniform ‘Pinhole’ Airy Units is selected for all channels. Once the channels 

set, Zen also enables to define the ‘Scan Mode’, ‘Frame Size’, ‘Line Step’, ‘Speed’ and/or ‘Pixel 

Dwell’ time, ‘Bit Depth’ and the ‘Averaging Number, Mode and Method’. The size of the scanned 

area can be defined by ‘Scan Area’ panel, a smaller area means lesser acquisition time, a feature 

than can be useful for fast acquisition purposes. There are four scanning possibilities: ‘Live’ as fast 

and continuous scan, ‘Continuous’ for high quality continuous scan but with lesser speed compared 

to ‘Live’, ‘Snap’ to acquire an image with the desired parameters and ‘Do Experiment’ to start the 

acquisition with the selected parameters for a defined number of cycles. While ZEN enables to 

acquire several cycles, it is also possible to do a Z-stack at several positions as a Tile scan at 

different selected positions with the option of correcting focus via infra-red adjustments of the focal 

plane. A slow feature (~ 17 sec) but recommended for long acquisition time to maintain the focal 

plane of interest during the recording. The ‘Z-series’ panel encompasses several options that 

enables the user to select the number of slices at which interval as well the last and first slice to be 

acquired. ‘Tile’ scan panel have several options to determine the regions of interest to be scanned 

as well the possibility of ‘Live stitching’ the acquired tiles with a certain percentage of image 

overlap. The acquired data can be represented in various ways and real time channel and color edit 

                                                 
10 High Repetition rate Diode Pumped solid State Laser. 
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can be applied by stretching collective or individual channel stretch. Areas can be cropped and 

ROIs can be defined and pixel intensities can be measured and displayed in graphs while Live 

acquisition. 2-D or 3-D displays are available and there is a special panel for the metadata. Confocal 

imaging was mainly used during my study for ICC experiments, pH study experiments and real 

time long recording of growth cones movement analysis and synapse formation between DRG and 

S neurons. 

LSM perfusion/suction system: 

The perfusion system was built by Dr. Elmar Krause and myself. The system was optimized in 

such a way to provide six solutions delivered sequentially or simultaneously. Four are automated 

and controlled with an electronic valve that can be switched on and off sequentially or 

simultaneously by a controller and two that are switched on manually by turning a knob 

independently. The perfusion is delivered to the specimen in glass pipette with a tilt angle that can 

be adjusted. The suction system end point is a glass pipette designed in such a way that keeps 

solution at its spherical bottom and sucks the extra solution out from a hole that is situated above 

the spherical bottom by 2 mm. This was necessary to eliminate desiccation of the sample due to 

surface tension and to reduce volume variation in the chamber which alter the focal plane and affect 

the recordings. The perfusion system specifications are as follows: 

- Automated perfusion speed: 144 ± 5 µl/s 

- Manual perfusion speed: 140  ± 5 µl/s 

- Suction speed: 404.4 µl/s 

- Dead-volume: ~ 241 µl 

Perfusion mixing was simulated in similar conditions of the built LSM perfusion system using 

water and Brilliant Black dye to ensure that the mixing covers the entire chamber and not just the 

surface as well as to test whether bubbles are generated or not. 
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II.1.9.3  Structured Illumination Microscope 

Hundred years ago, (Abbe, 1873) showed that 

optical microscopes have limited lateral resolution 

because of the finite wavelength of light. Unlike 

confocal microscopy, the super-resolution structured 

illuminated microscopy (SIM) can achieve a lateral 

resolution well beyond the classical limit without 

discarding light emission through a pinhole (Gustafsson, 

1997; Heintzmann, 1998). 

SIM concept: 

SIM works in a very similar fashion to moiré effect. 

When two or more patterns are slightly tilted in angle 

and superimposed above each other, moiré fringes are 

formed (Figure 8). Similarly, in probes with fluorescent 

signal, SIM applies structured illumination locally at the 

place of interest. This generates a pattern that contains 

moiré fringes proportional to the original pattern but 

much coarser in size because of the limit of light point spread function. But these fringes contain 

information about these structures that can resolve out high resolution information after processing 

the acquired raw data. Specialized algorithms, extract information thereby increasing the axial 

resolution - theoretically - up to 100 nm that is twice the light diffraction limit11. Images of Zeiss 

SIM microscopes can be acquired with up to 5 individual subsets (Grating 1 to 5) with a 60° rotation 

between every captured image set. The higher the grating the sharper the image one can get. As a 

consequence of higher grating, the acquisition speed is dramatically prolonged. SIM importance 

lies in its ability to generate high resolution images by its practical power in resolving signal to 

noise ratio. Starting with a wide-field microscope with inexpensive lasers and saturated structured-

illuminated scanning, SIM microscopes in ideal world can surpass the diffraction limit and go up 

                                                 
11 Superresolution Structured Illumination Microscopy. Contributing authors: Tony B. Gines and Michael W. 

Davidson, National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, 

Tallahassee, Florida, 32310. 

Figure 19 Moiré pattern. 
Two sets of parallel lines with one set being 
slightly inclined and superimposed above the 
other creating a Moiré effect. 
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to 50 nm in resolution whenever there is bright fluorescence and photostable probes (Gustafsson, 

2000, 2005). 

PALM12/ELYRA PS.1 microscope general info: 

The microscope is provided by 3 objectives: 

- 63x oil immersion objective, NA 1.4, Plan-Apochromat, DIC13 M27, Black ring color. 

- 100x oil immersion objective, NA 1.46, alpha Plan-Apochromat, DIC M27 Elyra. 

- 100x oil immersion objective, NA 1.57, alpha Plan-Apochromat, DIC Korr14 M27 Elyra. 

The setup is provided by ZEN 2011 SP315 to operate the microscope, the navigation is very much 

similar to the installed Zen on LSM 780. There are 4 different excitation wave lengths possible on 

ELYRA: HR Diode 405, 488 and 642 nm lasers as well as HR DPSS 561 nm laser. ‘Z-Stack’, 

‘Time Series’, ‘Tile Scan’, ‘Positions’ and ‘Regions’ are adjustable very similarly as in ZEN SP2. 

Image ‘Bit Depth’ can go up to 16 Bit and ‘Averaging’ ranges from 2 till 16 and ‘Continuous’. 

‘Grating’ is possible with 1, 2, 3, 4 or 5 rotations. Experiment acquisition is possible with 4 

channels at a time, each having its ‘EMCCD16 gain’, ‘Digital gain’ and laser wavelength and power. 

The previously mentioned LSM 780 setup is also equipped with ELYRA SIM; just by selecting 

the SIM panel in ZEN, the microscope is ready to acquire data in SIM mode. 

II.1.10  Devices 

The devices were mostly used in Prof. Jens Rettig lab, otherwise it is stated.  

Device Company 

Axiovert 200 microscope Zeiss 

Balance BP 1215 Sartorius 

Bath incubator Memmert 

Centrifuge mini 3-1810 NeoLab 

Centrifuge 5415 C Eppendorf 

Centrifuge 5415 D Eppendorf 

                                                 
12 Superresolution Photoactivated Localization Microscopy. 
13 Differential Interference Contrast. 
14 Correction Ring. 
15 Black edition version 8.1.5. 
16 EMCCD is a quantitative digital camera technology that is capable of detecting single photon events whilst 

maintaining high Quantum Efficiency, from Andor Technology Plc. 
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Centrifuge 5415 R Fast cool Eppendorf 

Centrifuge 5424 Eppendorf 

Centrifuge 5702 R Eppendorf 

Centrifuge 5804 R Eppendorf 

Centrifuge Fresco 17 Thermo Scientific 

Centrifuge Heraeus Labofuge 400 R Thermo Scientific 

Centrifuge mini spin plus Eppendorf 

Centrifuge small Eppendorf 

Combimag RCT IKA 

Eclipse TS 100 microscope Nikon 

Fluor chem M revelation machine ProteinSimple 

FT-14 UV screen Fisher brand 

Fridge 4 °C/-20 °C Liebherr premium 

Hera cell 150i CO2 incubator Thermo Scientific 

Hera Freeze Heraeus -80 °C freezer Thermo Scientific 

Hera Freeze HFUB -80 °C freezer Thermo Scientific 

Hera guard eco Thermo Scientific 

Hera safe cell culture hood Thermo Scientific 

KL 1500 light source Schott 

Master cycler personal Eppendorf 

Master cycler gradient Eppendorf 

Micro-Forge World Precision Instruments Inc. 

Microwave Sererin 

MS2 minishaker IKA 

MSC-Advantage hood Thermo Scientific 

Peq Power PeqLab 

Peq Star PeqLab 

pH meter Scaott 

Power Pac BioRAD 

P-touch 2420 PC Brother 

Puller P-97 Shutter instruments 

RCT basic IKA 

UV-chamber Lab custom-built 

Vortex mixer 7-2020 NeoLab 

Wescor osmometer Kreienbaum 

Wild M3Z dissection microscope Heerbrugg Switzerland 

II.1.11 Consumables 

Product Company 

6-well plate Becton Dickinson (BD) 

6-well plate 3506 Corning Incorporated 

Amicon Ultra-15 centrifugal  filters (100,000 NMWL) Merck Millipore 

Cell-culture flask Becton Dickinson (BD) 
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Coverslip (25 mm) Fiser Scientific 

Coverslip (25 mm) High Precision Marienfled 

Eppendorf 1 ml tube Eppendorf 

Eppendorf safe-lock 2 ml tube Eppendorf  

Multiply µstrip 0.2 ml chain PCR tubes Sarstedt 

One-way pipette 2 ml and 25 ml Falcon 

One-way pipette 5 ml and 10 ml Greine bio-one 

Petri dish (35 mm)  Becton Dickinson (BD) 

Petri dish (92 mm, 150 mm) Sarstedt 

Plastic Pasteur Pipette (0.5, 2, 3 & 5 ml) Ratiolab 

Pipette tips (10 µl) FilterTips Clear Line 

Pipette tips (2-20 µl) Biosphere filter tips Sarstedt 

Pipette tips (1-200 µl) Top-Lipe-Filter-Tips Micro pore filter technology 

Pipette tips (100-1000 µl) Quality pipette tips Sarstedt 

Pipette tips 5 ml Eppendorf 

 

II.1.12 Companies 

Abcam: Cambridge, United Kingdom. Adobe: San Jose, California, United States. AHF: 

Tübingen, Germany. Becton Dickinson: Hidelberg, Germany. Corel: Ottawa, Canada. Cell 

Signaling Technolgies: Danvers, United States. Eppendorf: Hambur, Germany. Fermentas: St. 

Leon-Rot, Germany. Fisher Scientific: Schwerte, Germany. Greiner Bio-One: Frickenhausen, 

Germany. HEKA: Lambercht, Germany. Life Technologies: Darmstadt, Germany. MedChem 

Express: New Jersy, United States. Merck: Mannheim, Germany. Microsoft: Berlin, Germany. 

New England Biolabs: Frankfurt, Germany. Olympus: Hamburg, Germany. Panbiotech: 

Aidenbach, Germany. Photometrics: Tucson, United States. QIAGEN: Hilden, Germany. Roche: 

Grenzach Wyhlen, Germany. Roth: Karlsruhe, Germany. Sarstedt: Nümbrecht, Germany. 

Sartorius: Göttingen, Germany. Schott: Mainz, Germany. Sigma Aldrich: Steinheim, Germany. 

Systat Software Inc.: San Jose, California, United States. Spectraphysics: Darmstadt, Germany. 

The Jackson Laboratory: Bar, Harbor, Maine, United States. Thermo Fisher Scientific: 

Schwerte, Germany. Thomson Reuters: Toronto, Canada. Tocris: Bristol, United Kingdom. 

Visitron Systems: Puchheim, Germany. Warner Instruments: Hamden, United States. 

Wavemetrics: Lake Oswego, United States. Wescor: Logan, United States. World Precision 

Instruments: Berlin, Germany. Zeiss: Jena, Germany. 

 

II.1.13 Software 

 
Adobe Bridge CS5, version 4.0.0529, Adobe Systems Incorporated. 

 
Adobe Photoshop CS5, Adobe Systems Incorporated. 

 
A plasmid Editor (ApE), version 1.17, M. Wayne Davis. 

 CorelDRAW, version 16.1.0.843, Corel Corporation. 

 EasyTrack 2014, Detlef Hof. 
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ImageJ, National Institutes of Health, Federal Government of USA. 

 Igor, version 6.0.4.0, WaveMetrics Inc. 

 
Metamorph, Molecular Devices. 

 
Office 2013, Microsoft. 

 
VisiView, Visitron Systems GmbH. 

 
Pulse, HEKA Elektronik. 

 SigmaPlot Version 13, Systat Software, Inc. 

 SnapGene Viewer 2.8, GSL Biotech LLC 

 Zeiss Efficient Navigator (Zen) 2012, Carl Zeiss. 
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II.2 Methods 

II.2.1 Adult DRG Cell-Culture 

DRG neuronal cell culture is an excellent 

model to study the pathogenic mechanisms of the 

peripheral nervous system and establish new 

therapeutic compounds. These cultures provide a 

powerful tools to study neurodevelopment, neurite 

and axon formation, neuropeptides and 

neurotrophic factors release, neurotransmitter 

release, synapse formation, electrical signaling 

and exocytosis(Melli and Hoke, 2009). Adult 

DRG neurons are superior to embryonic and 

postnatal DRG neurons in terms of survival where 

they survive for 6 DIV and starts gradually to age 

and die while embryonic DRG neurons die much 

faster (Horie and Kim, 1984; Scott, 1977). Our 

group optimized mouse DRG neuronal culture 

whereby the adult cells can live up to 35 DIV, 

consistent with the results of others (Malin et al., 

2007) and embryonic/postnatal DRG neurons can 

survive up to 15 DIV. We performed experiments 

with DRG neurons that were maintained for not 

more than 11 DIV (data explaining why, is shown in the Results chapter). Therefore, we can safely 

assume that the current preparation protocol is fully optimized with the least stress possible on the 

cells to give reproducible results in our experiments. DRGs can be either dissociated by Trypsin 

enzyme or directly seeded onto culture dishes (Horie and Kim, 1984); we chose to dissociate them 

Figure 20 Schematic view of preparation of 
dissociated and explant DRG sensory neuronal 
cultures. 
Source: Expert Opin Drug Discov. 2009 Oct 1; 4(10): 
1035–1045. doi:  10.1517/17460440903266829. 
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(Figure 20) to be able to study exocytosis of LDCVs and SVs at individual cell level. One day 

before the cell culture, coverslips were coated in a 6-well plates with a 3.3 µM aqueous poly D 

lysine solution applied to their center. The 6-well plate is then placed in the incubator. The cell 

culture medium is prepared ahead of time and placed in the incubator so that it adjusts its pH to 

7.4. On the day of cell culture preparation, the Poly-D-Lysine is washed away. PDL, might be toxic 

for the cells if used at high concentrations therefore it should be removed carefully by washing 

each coverslip 2 times with 300 µl Sigma water. Both PDL and Poly-L-Lysine (PLL) promote 

neurite growth in low-density cultures but the D isomer minimizes the aggregation of neurons 

better than the L isomer (Brewer and Cotman, 1989). After washing, the 6-well plate is placed with 

an open lid in the UV chamber for 15 min. The enzymatic digestion solution was prepared with 1 

Figure 21 DRG isolation. 
 Individual DRG are isolated from bony foramen pocket-like structures (gray arrows) and transferred to a Petri dish 
with Lockes solution. The yellow arrow points to the the lumbar section after wich DRG isolation become nearly 
impossible because of their small size it gets. The entire isolation should be carried out within 50 min, to ensure good 
quality of cells. Afterwards DRGs are transferred to a Petri plate with TrypLE Express and incubated for 10 min before 
proceeding with digestion. 
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ml NBA medium that was complemented with 2.31U/mg Unit Liberase and sterile filtered. 

Meanwhile a Petri dish with a 200 µl drop of Locke’s solution and a Petri dish with 200 µl TrypLE 

Express were prepared and placed under the hood. When the UV sterilisation of the coated 

coverslip was over, the remaining water was washed out two times with 50 µl NBA-medium. Later, 

2 ml of cell culture medium were added per well and the plate is placed in the incubator (37°C, 5% 

CO2). Adult mice were sacrificed according to the German Animal Welfare Act17. Animals were 

placed in transparent glass chamber and CO2 was introduced gradually until the animal was 

unconscious. Unconscious animals were killed by decapitation (adult mice) or cervical dislocation 

(pregnant mice for caesarean-section). After ethanol disinfection, the skin over the spine is 

removed. The tissues surrounding the spine are also removed and the spine is incised at the level 

of the back legs as shown in figure 21. The posterior part of the spine is removed away along with 

the spinal marrow. DRGs are isolated and placed in a Petri dish with Locke’s solution. The entire 

process was completed within 50 min. The DRGs were transferred into the prepared Petri dish with 

TrypLE Express solution to allow slow enzymatic dissociation of the DRG connective tissues 

capsule. DRGs are then transferred into a freshly prepared digestion solution and placed in water 

bath (37 °C) with gentle shaking. The DRG tissue was triturate 10 times with a 1 ml pipette. This 

step was repeated 4 times. In the last step the cells were triturated 15 times. Overall the digestion 

period was 20 to 22 min. Digestion was stopped by adding 100 µl FCS. The cell suspension was 

then centrifuged for 4 min at 3000 rpm. The supernatant is removed and the cells were washed by 

adding 600 µl of DPBS. They were centrifuged again for 4 min at 3000 rpm. The supernant was 

removed and 600 µl of cell culture medium with Pen/Strep were added. The cells were plated onto 

the coverslips and placed in the incubator. 

 

II.2.2 Embryonic DRG Cell-Culture 

All LDCV release experiments were done on adult DRG neurons, with the exception of 

CAPS1 and 2 dKO and CAPS 1 KO mice. Mice lacking either CAPS1 (Speidel et al., 2005) or 

both CAPS1 and 2 are not viable and they die right after birth. Genotypes were verified by PCR 

using primers as described in (Jockusch et al., 2007; Speidel et al., 2005). To study the effect of 

                                                 
17 Adopted in May 25, 1998. Primary citation: Federal Law Gazette I, p. 1094. 
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the absence of both CAPS isoforms on LDCV release as well as synaptic transmission, it was 

necessary to carry out these experiments in embryonic DRGs. Embryonic DRG cell-cultures were 

prepared in very similar fashion to adult and postnatal DRG neurons protocol but with minor 

changes. Pregnant mice were sacrificed according to Animal Welfare Act and babies were removed 

by a C-section. All the cell culture procedures are similar to that of adult culture preparation until 

the isolation step, where 350 µl of TrypLE is directly added onto the Petri dish having the DRGs 

in Lockes solution. After 5 min of incubation, with 1 ml tip pipette, DRGs are transferred into the 

Liberase digestion solution. Trituration is required during the entire digestion process which lasts 

between 2.5 to 3 min, depending on the age of embryo whether its E18 or almost P0 right before 

birth. Digestion is stopped by adding 200 µl FCS. Cells are centrifuged and later washed with PBS 

as described in adult DRG prep. The cells were plated on the center of the coverslip and they were 

given 10 min under sterile hood to settle down. Then 2 ml of NBA with Pen/Strep was added and 

the culture was place in the incubator. 

 

II.2.3 DRG/S neuron Co-Culture 

DRG neurons don’t form synapses on their own in vivo or in cultures (Ransom et al., 1977a; 

Ransom et al., 1977b; Wake et al., 2015) rather, they do form synapses with their natural synapse-

forming partner the dorsal and ventral horn neurons (Joseph et al., 2010). To study synaptic 

transmission, it was necessary to establish the DRG/S neuron co-culture system at our laboratory, 

because they are fundamental to study interactions between cell populations. Cell-cell interactions 

in co-cultures are affected by extracellular surrounding; for cell survival, the culture protocol needs 

to be given careful consideration (Goers et al., 2014). Amy MacDermott and her colleagues were 

among the first to study synaptic properties of DRG/S neuron co-cultures (Gu and MacDermott, 

1997; Labrakakis et al., 2000). Because these co-cultures are very complex to establish, only very 

few laboratories based in New York, Wisconsin, Southern Illinois, London and Taketoyo have 

worked with (Cao et al., 2009; Hendrich et al., 2012; Joseph et al., 2011; Ohshiro et al., 2007; Yu 

et al., 2015). DRG/S neuron co-cultures are prepared in two separate steps. DRG prep was carried 

out as previously described. On the second day, DRG neurons are either transfected with the 

required Lentivirus of interest or not. On the third day, the S neurons were added on the DRG 

neurons and left together 9 DIV before carrying out synaptic transmission experiments. To extract 



MATERIALS AND METHODS 

 

48 
 

S neurons, P0 to P1 old mice were sacrificed by decapitation. The skin of the mice was sterilized 

with ethanol and the tissues on the back were cleared to expose the upper part of the spinal cord. 

The lower limbs of the pup were cut and a 21 G syringe capillary filled with EBS solution was 

placed on the upper part of the exposed spinal cord and a pressure was applied to eject the spinal 

cord tissue out. The spinal cord tissue was then transferred to a Carbogen-bubbled EBS solution to 

wash away the sucrosefor optimized papaine activity. Later on, the tissue was digested using 

enzymatic solution consisting of 5 ml DMEM, 10 mg L-Cystein, 100 mM CaCl2 0.5 ml, 50 mM 

EDTA and Papain 20 U/ml. The digestion was carried on at 37°C under constant oxygenation for 

30 min. Mechanical dissociation was needed after the enzymatic treatment is over. To do so, 1 ml 

of S neurons cell culture medium was added to stop digestion. The solution was triturated gently 

5 times and with slightly more pressure 2 times using 1 ml tip, then the tube was left upstanding 

for the precipitation of the tissue. Later, 1 ml of medium was added and then a 5 min centrifugation 

at 800 rpm was applied. The supernatant was discarded and 1 ml of filtered 1/1 solution containing 

Dnase, BSA, Trypsin inhibitor and EBSS was added. Trituration was applied 3-4 times and then 

centrifuged again for 5 min at 800 rpm. The previous step was repeated for a second time and the 

tissue was centrifuged again. The supernatant was again discarded the cells were resuspended fresh 

culture medium. The cells were plated on the coverslips (100 µl per well). The 6-well plate was 

placed in CO2 incubator. On the next day, two thirds of the medium in the wells was discarded and 

replaced with a new fresh medium containing FUDR.  

II.2.4 ICC 

Immunocytochemistry is a technique used to localize targets of interest at cellular level. In 

1941, (Coons, 1941) published the first report describing immunofluorescence antibodies and till 

now this technique is widely used across different labs and is  known as ICC. The idea is to use a 

specific primary antibody against the targeted substance and a secondary fluorescently labelled 
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antibody against the primary antibody to visualize it under the microscope (Ooij, 2009). The 

following ICC protocol was optimized for DRG cultures and DRG/S neuron co-cultures. Special 

steps were implemented to enhance the signal to noise ratio. To fix the cells, the medium was 

removed and the coverslips were washed one time with PBS containing 100 mM CaCl2 and 25 mM 

MgCl2 to improve adhesion of the cells to the coverslip. This PBS was used for the rest of the ICC 

procedure. The cells were fixed in 4% ice-cold Paraformaldehyde in PBS of pH 7.4 for 20 min at 

room temperature or overnight at 4°C in the dark. Some experiments needed 2% PFA for 5 min to 

maintain the fragile structures of the fixed target of interest intact (such as synapses). Then the 

coverslips were washed three times with PBS for 2-5 min. All washing steps were done as quickly 

as possible, to prevent the cells on the coverslip from drying out. Samples were quenched with 

50 mM Glycin in PBS for 10 min. Later, the Glycin is washed out with PBS three times for 2-5 

min each. To permeabilize the cells, PBS containing 0.1% Triton-X-100 and 2.5% NGS was added 

for 30 min at room temperature. In an optional step, it is recommended to add 4 drops of iT-FX18 

to decrease background noise. iT-FX eliminates background staining therefore enhancing the 

signal-to-noise ratio of stained cells. It blocks nonspecific interactions of fluorescent dyes with cell 

constituents. I tested it separately to verify how effective it was and it did indeed significantly 

reduce the cell autofluorescence of DRG neurons when excited at 561 nm. Figure 17 shows the 

                                                 
18 Image enhancer from Life Technologies. 

Figure 22 Image iT-FX Signal 
Enhancer effect on auto-
fluorescence.  
DRG culture was prepared from 2 
weeks old WT mouse and cells 
were fixed after 7 DIV with 4% PFA 
for 20 minutes. Fixed DRGs were 
permeabilized with 0.1% Triton 
and stained with secondary 
antibody Alexa 561 and visualized 
at 561 nm wavelength using 
confocal microscopy. (A) DRG cells 
stained the classical way. (B) iT-FX 
Signal Enhancer was added during 
the permeabilization step for 30 
min. 
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autofluorescence of DRG neurons in comparison to DRG neurons that were treated for 30 minutes 

with iT-FX signal enhancer. To block unspecific free epitopes, the coverslips were washed two 

times with PBS/2.5% NGS for 2-5 min. The primary antibody was diluted to the working 

concentration in PBS containing 2.5% NGS. In a wet chamber, 100 µL diluted primary antibody 

solution was placed on a piece of parafilm for each coverslip which was flipped on it with the cell 

side facing the antibody drop. The wet chamber was incubated for 1 h at room temperature or 4 °C 

over night. After the incubation was over, the coverslips were washed with PBS/2.5% NGS/0.1% 

Triton for 2-5 min. The secondary antibody (1:2000 Alexa 405/488/568/633/647-conjugated 

antibody) was diluted in PBS/2.5% NGS and kept in the dark. To avoid background, the diluted 

secondary antibody should be centrifuged at 13000g for 10 min at 4°C. The samples were incubated 

with the secondary antibody for 45 min in dark at room temperature and the cells were washed 

5 times with PBS/2.5% NGS/0.1% Triton for 2-5 min after the incubation period is over. 

Additional 2 times washing steps with PBS is required. Finally, to mount the coverslip to the glass 

slide, 20 µL mounting medium were added on the microscope slide. The coverslips were then 

dipped in distilled water to reduce salts and excess water was removed by gentle touching the 

coverslip to a fine tissue paper. The coverslips were then mounted upside-down whereby the cells 

were embedded in the mounting medium and left to dry for 3 hours at room temperature or 15 min 

at 37 °C while covered with Aluminum foil. The edges of the coverslips were then sealed with nail 

polish to protect the sample from over drying. The sealed samples were stored at -20 °C or 4 °C in 

dark. For all experiments, the samples were imaged at the same day or latest next day in the 

morning to maintain good quality. When 2% PFA fixation for 5 min was applied, the samples were 

exclusively imaged on the fixation and staining day as the samples were fragile and degrade within 

10 to 15 hours. 

 

II.2.5 Double ICC 

To be able to visualize co-distribution of two or more different targets in the same sample 

using primary antibodies raised in the same species, double ICC is needed with an intermediate 

‘blocking’ step. Blocking of the free epitopes of the antibodies is carried out using anti-(against the 

secondary antibody raised in certain species) affinity Fab fragments. This procedure was divided 

into three parts. Part one is to label the first organelle with anti-x antibodies. To fix the cells, the 
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same procedure described in ICC section was performed. The second part involved blocking the 

free epitopes of previous secondary antibody. To do so, cells were incubated with 2.5% NGS in 

PBS for 1 h at room temperature. Three washing steps for 5 min each with PBS were applied. The 

cells were then incubated with anti-x affinity Fab fragments (1:50 dilution in PBS/2.5% NGS) for 

1 h at room temperature, then, carefully washed 3 times for 10 min each with 1X PBS. The third 

part was to label for the second organelle with anti-y antibodies. The same procedure used for first 

organelle labelling was performed. And finally once the second labeling procedure is completed, 

coverslip were mounted on glass slides as described before. The samples were stored at -20 °C 

or 4 °C in dark. 

 

II.2.6 Calcium Phosphate-Lentivirus Production19 

In order to produce Lentiviruses, human embryonic kidney cells (HEK 283FT) are 

transiently transfected with lentiviral transfer vector plasmid, packaging plasmid and envelope 

glycoprotein (Vigna and Naldini, 2000). Following transfection, lentiviral particles are released 

into HEK cells’ culture medium (Tang et al., 2015). These particles are then harvested in Amicon 

Ultra-15 centrifugal filters (100,000 NMWL). This entire process takes 3 to 4 days depending on 

the Lentivirus generation and the size of protein encoded in the viral vector plasmid. The 

production process is divided into three main steps. On the first day in the morning, the medium of 

the HEK cells was changed to incomplete medium (DMEM + Glutamax) to starve and stress them. 

In the afternoon, the transfection procedure was started. Sterile 1.8 ml Sigma water was added to 

15 ml Falcon tube, then the DNA-mix which contains 45 µg DNA of the vector to be produced and 

10 µg of all the Helper Plasmids 12251 pMDLg/pRRE, 12253 pRSC-Rev and 12259 pMD2.G20 

(Dull et al., 1998) was added to the Falcon tube. Afterwards, 200 µL of freshly made calcium 

Chloride 2.5 M was added to the same Falcon tube. The mixture was vortexed. In a second Falcon 

tube, 2 ml HBS solution was added. The DNA solution was then moved from the first Falcon tube 

into the HBS Falcon tube 2 via a glass pipette. The transfer should be slow and in drop-wise manner 

directly into the center of the falcon tube without touching the plastic wall. The mixture is then 

incubated for 15 min at room temperature (up to 30 min) until a cloudy/milky mixture appear. To 

                                                 
19 This procedure should be carried out entirely in S2- Laboratory. Wearing a lab coat is required. 
20 Third generation lentiviral packaging plasmid; Contains Gag and Pol; also requires pRSV-Rev (Addgene#12253) 

and envelope expressing plasmid (Addgene#12259) from AddGene – USA. 
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transfect the HEK cells, a new glass pipette was used and the mixture was carefully transferred in 

a drop wise manner along the entire cell culture flask while moving it in a gentle circular way. One 

to two cell culture flasks can be transfected with this 4 ml DNA/calcium/HBS mixture. Overnight 

incubation (14 – 16 hrs max) at 5% CO2 / 37o C was required. In the second day, the medium was 

removed with a glass pipette. This used medium was discarded in 20% SDS. 8 ml of complete 

DMEM medium (+ Sodium Pyruvate, FCS and NEAA) was added. The flasks were left for 24 to 

48 h in the incubator. NPY-Venus virus production needs 1.5 days incubation while VGLUT-

mNectarin needs 3 days incubation before harvesting. On the third or fourth day, the color of the 

medium was checked, if it changed to yellowish-orange, the cells were inspected under the 

microscope. If clumps and floating cells were visible, the cells were excited with the specific 

wavelength against the fluorescent protein. Once a fluorescent signal was visible, harvesting is 

recommended as longer incubation periods might increase the apoptotic factors and free radicals 

that eventually will drastically affect the quality of cell cultures as well as the efficacy of 

transfection. The medium was then pipetted out from the flasks into a 50 ml falcon tube and 

centrifuged at 1200 rpm speed for 2 min (or up to 5 min). At this moment, it is possible to interrupt 

the procedure for 24 hrs and continue later; for this purpose, the medium was kept at 4o C. The 

harvested solution was poured in the Millipore Centrifugal Filter of 100,000 MWCO Falcon and 

centrifuged for 15 min at 4 o C at 1,800 rpm. Once concentrating was done, the virus suspension 

was aliquoted into cryo-tubes and closed tightly before dipping into liquid Nitrogen for a brief 

while and stored directly at -80 o C. 

II.2.7 RT PCR 

Reverse Transcription-PCR technique was needed to detect whether CAPS1 and 2 were 

found in DRGs at mRNA level. DRGs were isolated from 5 adult mice and 170 mg of DRG tissue 

was collected and stored at -80 °C. The DRG tissues (50 – 100 mg) were transferred to a 50 ml 

Falcon tube containing 1 ml TRIzol reagent. The mixture was centrifuged at 1240 rpm for 10 min 

at 4 °C. The tissues were lysed by repetitive pipetting and grinding and then transferred to 1.5 ml 

Eppendorf tube. The mixture was then centrifuged at 11400 rpm for 10 min at 4 °C, the supernatant 

was transferred into a fresh Eppendorf tube and incubated for 5 min at room temperature. 

Afterwards, 0.2 ml of chloroform was added and the tube was shaken vigorously by hand for 15 s. 

The mixture was then centrifuged at 11400 rpm for 15 min at 4 °C and the resulting aqueous phase 
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was transferred into a new tube. Glycogen (1-5 µl) and Isopropanol (0.5 ml) was added to 

precipitate the sample which was then incubated for 10 min at room temperature. Another 

centrifuging step at 11400 rpm for 10 min at 4 °C was required. The supernatant was removed and 

the remaining was mixed with 1 ml 75% ethanol mixed in Sigma water. The mixture was then 

centrifuged at 8900 rpm for 5 min at 4 °C. The RNA pellet was left briefly to dry and the resulting 

RNA was dissolved in 30 µl Sigma water. In a second step, cDNA is to be produced from the 

resulting RNA whereby 1 µg of RNA was mixed with 1 µl dNTPs, 1 µl random primers, and H2O. 

This mixture was incubated for 5 min at 65 °C and later 4 µl of 5X strand buffer, 2 µl of 0.1 M 

DTT, 1 µl reverse transcriptase and 1 µl  RNAse were added. Then PCR reaction was run and kept 

on hold at 4 °C. In the last step, the produced cDNA is screened with CAPS1 and CAPS2 primers. 

The PCR reaction components included: 1 µl cDNA, 2 µl 10X buffer, forward and reverse 0.2 µl 

each, 1 µl  Taq Polymerase and 15.4 µl Sigma water. The reaction was run for CAPS1 and CAPS2 

separately in DRG cDNA and brain cDNA that was used as a positive control for both CAPS 

isoforms expression and a negative control with water instead of cDNA. The resulting PCR 

products were run in 0.1% agarose buffer with a PCR marker. 

II.2.8 Western Blot 

Samples were collected from E18 and P7 pups and 11 µg of each Sample was diluted with 5X 

sample buffer and homogenization buffer. The samples were then cooked for 5 minutes at 95 °C 

and were loaded into 8% SDS-polyacrylamide gel. The gel was run for 20 min at 100 V and then 

for 50 min at 160 V. The gels were blotted onto nitrocellulose membranes (wet blot 320 mA for 

2 h) and blocked using 5% milk in TBST for 1 h. Membranes were then incubated with primary 

antibodies either against CAPS1 (1:500) or CAPS2 (1:3000) diluted in 1% milk TBST overnight. 

The membranes were washed the next day with 1% milk TBST 3 times for 15 min each. The 

secondary goat anti-rabbit antibody was used for both primary antibodies at a dilution 1:3000 in 

1% milk plus TBST and was incubated for 1 h. Membranes were washed 3 times for 15 min each 

with TBST. They were then incubated in ECL detection reagent for 5 min and detected by 

FluorChem M system (Protein Simple). ß-actin labelling was also performed to correct for the 

loading of the samples using a primary antibody (1:5000) and a secondary goat anti-mouse 

antibody (1:1000). Quantification of CAPS1 and CAPS2 protein signal in Western blot results were 

based on β-actin as a standard and normalized to protein expression level at P7. 
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II.2.9 iB4 Staining  

Staining against Isolectin GS-iB4 from Griffonia simplicifolia21 coupled to Alexa Fluor 568 is 

used to mark the non-peptidergic unmyelinated DRG neurons. It is a common way as described in 

literature to differentiate between peptidergic myelinated DRG neurons and non-peptidergic 

neurons (Kubo et al., 2012). The advantage of using iB4 over other markers like the NF200 

antibody, is its ability to stain living cells without harming them. It’s a perfect marker for live 

imaging while the NF200 is best optimized for fixed cells in ICC experiments. When iB4 is applied, 

the non-peptidergic neurons are stained. To label the cultured DRG neurons, 5 µl (1 mg/ml) of iB4 

conjugated to Alexa-568 was added to 2 ml extra-cellular solution warmed chamber and incubated 

at 37 °C for 20 min. The coverslip was then dipped into another chamber that contains 4 ml of 

extra-cellular solution and later washed for 10 min with continuous extracellular solution 

perfusion. Neurons with bright red cell membrane staining when excited at 561 nm were defined 

as iB4-positive non-peptidergic neurons. 

                                                 
21 Woody climbing shrub native to Central and West Africa. Isolectin GS-iB4 is isolated from the seeds of this plant. 
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II.2.10  Cloning 

II.2.10.1 CAPS2b-mTFP 

The existing CAPS viral Semliki 

Forest constructs in the laboratory were 

all tagged with eGFP. Since we had to 

co-express each CAPS isoform with 

NPY-Venus to examine the effect of 

CAPS overexpression on LDCV 

secretion, we had to change pSFV1-

CAPS2b-IRES-eGFP to pSFV1-

CAPS2b-IRES-mTFP. It was nearly 

impossible to distinguish between DRG 

neurons co-expressing eGFP and Venus 

and those expressing either construct 

separately (or in isolation). This 

difficulty lies in the close spectral 

overlap of eGFP and Venus. Teal was 

our choice because of its reduced spectral 

overlap with Venus (Figure 23). The 

cloning strategy aimed at replacing the 

existing eGFP with Teal, but since there 

was no convenient direct restriction sites 

up and down-stream of eGFP, a more 

complex cloning strategy was developed 

utilizing non-unique cutter enzymes. The strategy involved cutting the vector backbone with - 

several restriction reactions - into three fragments, main vector backbone, eGFP fragment to be 

replaced by PCR mTFP product and a downstream smaller vector backbone fragment. The first cut 

involved ClaI and SpeI restriction enzymes to generate the vector backbone (fragment A). The 

second independent cut involves XhoI and SpeI to generate the second small vector backbone 

Figure 23 Spectral mixing of mTFP, eGFP and Venus. 
(A) Normalized intensity of excitation wavelength of mTFP, eGFP 
and Venus. (B) Normalized intensity of emission of mTFP, eGFP 
and Venus. 
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fragment B. The third 

fragment (C) was a 

synthesized PCR mTFP 

product with unique 

inserted restriction sites. 

fragment A was 

generated by cutting 2 µl 

CAPS2b vector22 with 

2 µl of each ClaI and 

SpeI restriction enzymes 

and 5 µl of Buffer 4 

mixed with 39 µl HPLC 

water. The digestion mixture was incubated for 3 hrs at 37 °C and 1 µl SAP was added and 

incubated at 37 °C for another 1 hr. Heat inactivation followed the phosphorylation for 15 min at 

75 °C. The product was then kept on ice. Fragment B was produced by adding 2 µl of CAPS2b 

vector DNA digested with 2 µl of each XhoI and SpeI restriction enzymes. Buffer 4 was convenient 

for both enzymes and 39 µl HPLC water was added to this reaction. The mixture was incubated at 

37 °C for 3 hrs. Fragment C was produced by a PCR reaction whereby 0.3 µl of mTFP DNA23 was 

mixed with 0.5 µl FW primer with ClaI Restriction site 5’AAAAAT^CGATGTGAGCAA 

GGGCG3’ and 0.5 µl RV primer with XhoI Restriction site 5’AAAAC^TCGAGCTTG 

TACAGCTC3’, 1 µl dNTPs, 1.2 µl Red Taq polymerase, 5 µl 10X PCR Buffer from Sigma and 

51.5 µl of HPLC water. The PCR program started with 94 °C for 5 min followed by 25 cycles of 

94 °C for 45 s, 60 °C for 45 s, 72 °C for 30 s and 72 °C for 7 min and kept on hold at 4 °C. 

Analytical gel with 1% agarose was used to estimate the amount of DNA to be used in the ligation 

reaction (Figure 24). Samples were extracted from gel using QIAquick Gel Extraction kit according 

to the protocol provided by the company24. According to the following formula: (Vector ng/ 

Vector bp x Insert bp = Insert ng for 1:1 ratio), it was estimated that the concentration of the vector 

is 60 ng/µl, 6 ng/µl for fragment B and 7 ng for fragment C. The ligation reaction was followed 

                                                 
22 Lab reference number #284. 
23 Lab reference number #718. 
24 www.qiagen.com/handbooks - Cat. Nos. 28704 and 28706 - Protocol of September 2010 

Figure 24 ZraI check-digest. 
(A) CAPS2b-eGFP digestion 
pattern. (B) CAPS2b-mTFP 
digestion pattern. (C) Samples 
were run on 1% agarose gel to 
identify the correct clones. 
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according to ratio 1:3:4-4.5 (V:I:P) which included 0.5 µl 

of fragment A, 1 µl of fragment B and 1 µl of fragment C 

mixed with 2 µl T4 ligation buffer and 2 µl of T4 Ligase. 

Water up to 20 µl was added to dilute the glycerol content 

that was used to preserve the enzyme. The ligation control 

included the same components of the ligation reaction but 

without fragment B and C. Both the ligation reaction tube 

and the control tube content were separately transformed 

in DH5α bacterial cells. Ring transformation was carried 

out by thawing the 100 µl bacteria slowly on ice for 20 

min, and the 20 µl of the ligation reaction mixture was 

added and incubated on ice for 30 min. The mixture is 

then transferred to 37 °C and then back on ice for 10 min 

to shock the bacteria. Afterwards 300 µl of LB-medium 

is added and the entire mixture is kept at 37 °C with gentle 

shaking at 300 rpm. The 

content is then streaked on a 

pre-warmed agar Petri dish 

near fire source and incubated 

at 37 °C for 12 to 16 hrs. 

Colonies were picked and 

amplified overnight in the 

presence of Ampicillin. DNA 

was extracted using QIAprep 

Spin Miniprep kit25. To 

quickly verify whether the 

cloning reaction worked, 

check-digest reaction was 

carried out with ZraI 

restriction enzyme for its 

                                                 
25 www.qiagen.com/handbooks - Cat. Nos. 27104 and 27106 - Protocol of October 2011 

Figure 25 1% Agarose analytical gel. 
Fragment A (1 µl) was mixed with 1 µl LB + 3 
µl water. Fragment B (2.5 µl) was mixed with 
1 µl LB + 1.5 water. Fragment C (3 µl) was 
mixed with 1 µl LB mixed with 1 µl water. The 
sample was run at 80 mV for 60 min. 

Figure 26 pSFV-mCAPS2b-IRES-mTFP vector map. 
The construct was added to the lab DNA and assigned a reference #294. 
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unique cutting site in eGFP and two cutting sites in mTFP. The resulting DNA (10 µl) from the 

minipreps was digested with 1 µl ZraI in the presence of 2 µl Buffer 4, 2 µl BSA and 5 µl water. 

The reaction was allowed to proceed for 2 hrs at 37 °C and then the samples were loaded along 

with LB at 1% agarose gel and run for 85 min at 80 mV (see Figure 25). The clones with the correct 

digestion patter were sequenced using mTFP primers to eliminate the possibility of mutations 

during the PCR reaction. Once the sequencing results showed that the sequence is correct (Figure 

26), Maxiprep was performed. The virus was later produced and tested on DRG neurons to verify 

whether it’s functional and to check whether overexpressing it together with Lentivirus encoding 

for NPY-Venus is viable. Cells were imaged at 4 hrs of transfection and 4.5 hrs. The transfection 

efficacy was less than 20%. Cells expressing both CAPS2b and NPY-Venus can be clearly 

distinguished from cells expressing one of them (Figure 27). Hence the idea behind switching the 

fluorescent proteins was valid hence the next step was to apply this strategy to CAPS1 vector. 

Figure 27 CAPS2b-mTFP co-expressed with NPY-Venus in DRG neurons. 
(A) Two DRG neurons where one of them was double transfected with CAPS2b-mTFP and NPY-Venus imaged after 
4 h of CAPS2b overexpression. (B) Two DRG neurons where both of them are overexpressing CAPS2b-mTFP and 
only the lower one is transfected with NPY-Venus imaged after 4.5 h of CAPS2b overexpression. 



MATERIALS AND METHODS 

 

59 
 

II.2.10.2 CAPS1-mTFP 

CAPS1 cloning was a 

more straight forward 

strategy. It involved replacing 

the recently cloned CAPS2b 

in pSFV1-mCAPS2b-IRES-

mTFP with CAPS1. The 

mCAPS2b-IRES segment 

was cut out from pSFV1-

mCAPS2b-IRES-mTFP by 

adding 2 µl of ClaI and 2 µl of 

BamHI mixed with 5 µl 

Buffer 4, 2.5 µl vector DNA 

and 39 µl HPLC water. The 

reaction was allowed for 3 h 

at 37 °C and SAP was added 

for 1 h at 37 °C. Later on, the reaction was heat inactivated for 15 min at 75 °C. To produce the 

CAPS1 insert, mCAPS1-IRES was cut out from pSFV1-CAPS1-IRES-eGFP26 using 2 µl of the 

vector DNA mixed with 2 µl of BamHI and 2 µl of ClaI, 5 µl of Buffer 4 was added and HPLC 

water up 50 µl. The reaction took place for 3 hrs at 37 °C. The vector and the insert was ligated in 

                                                 
26 Lab reference number #175. 

Figure 28 pSFV-CAPS1-IRES-mTFP vector map. 
The assigned reference #293. 

Figure 29 CAPS1-mTFP co-expressed with NPY-Venus in DRG neurons. 
Two DRG neurons are transfected with CAPS1-mTFP. The lower left cell is transfect with NPY-Venus as well. No 
spectral mixing between mTFP and Venus was visualized when imaged at 3% 450 nm laser intensity. Upon higher 
laser intensity, Venus would be weakly excited and hence confused by the signal from CAPS-mTFP. Laser intensity 
lower than 3%, was not enough to visualize the mTFP signal because of the high autofluorescence of DRG neurons 
at that wavelength. 
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1:3 ratio and the cloning was validated by using primers for CAPS1 shown in figure 17 and by 

sequencing. The virus was then produced and tested on DRG neurons (Figure 29) after 4.5 hrs of 

transfection. The transfection efficacy was about 20%. 

II.2.10.3 CAPS1-TagRFP-T 

To measure syna-

ptic activity, it was nece-

ssary at some point to co-

express CAPS1 together 

with SypHy. This comb-

ination of TFP with 

pHluorin nm was not 

doable, hence we decided 

to switch the mTFP with 

Tag-RFP-T27. Roger 

Tsien developed a highly 

photostable Tag-RFP 

which is a monomeric 

derivative of eqFP578 

from Entacmaea quadri-

color which is very stable. 

This fluor-escent protein maintain most of the beneficial qualities of the original proteins and 

perform as reliably as Aequorea victoria GFP derivatives in fusion constructs (Shaner et al., 2008). 

The construct pSFV1-CAPS1-IRES-eGFP was used for exchange of eGFP with Tag-RFP. The 

eGFP was removed out by ClaI and PspXI restriction enzymes and the vector backbone was 

subjected to SAP to prevent the re-ligation on its own. TagRFP was synthesized by PCR to insert 

the ClaI and PspXI restriction sites using FW primer 5’TAGCAT^CGATCCTAGGCACC 

ATGGTGTCTAAGGGCGAAGAG3’ with ClaI site and RV primer 5’TTACCC^TCGA 

GCGGCCGCTTTACTTGTACAGCTCGTCCATG3’ with PspXI site. The FW primer had 

additional restriction site for AvrII that would be used to verify the exchange of fluorescent 

                                                 
27 Lab reference number #1623. 

Figure 30 pSFV-CAPS1-IRES-Tag RFP-T vector map. 
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proteins. The PCR reaction was carried out at 20 cycles to decrease the probability of generating 

mutations. The ligation reaction was carried with a 1:3 ratio and the transformation and DNA 

purification was made as previously described. Resulting samples were digested with BamHI and 

AvrII. Selected clones showed two bands corresponding to the vector backbone and CAPS1-IRES 

fragment. Further verification was performed with sequencing and the virus was produced and 

tested. 

II.2.10.4 VGLUT-mNectarin cloning  

VGLUT-pHluorin obtained from T. A. Ryan could not be used with NPY-Venus because 

both are excited at 488 nm. For this reason, we replaced the fluorescent protein with mNectarine28 

enabling us to study both LDCV and SV exocytosis at the same time. The red fluorescent pH 

biosensor mNectarine was first describe by (Johnson et al., 2009) and its spectral characteristics 

were tested in HEK 293 cells. It was proven to be pH-sensitive with highest fluorescence at 

                                                 
28 pH-sensitive monomeric mNectarine red fluorescent protein. GenBank ID: FJ439505. 

Figure 31 Cloning strategy of vGlut-mNectarine. 
Splicing by overlap extension PCR removed out pHluorin and replaced it with mNectarine. Later VGLUT-mNectarine 
was cloned into second generation Lentivirus. 
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pH = 7.5. The most convenient way to clone mNectarine into the luminal part of VGLUT was to 

remove pHluorin with splicing it out by overlap extension PCR (Figure 31). The strategy involves 

constructing inner primers that bridge different pieces together. These primers should have close 

annealing temperatures for successful PCR. Two end primers with specific restriction enzymes are 

needed to insert the product in the viral vector of interest. The first step is to do the extension PCR 

by which the fragments are separately amplified. In this case its VGLUTi, mNectarine and VGLUT 

ii (see figure 21). Two sequential overlap fusion PCRs are carried on the purified PCR products of 

extension PCR. A final purification PCR is required and the product is then digested with the 

enzymes is extracted and digested with the specific enzymes and hence its read to be inserted into 

the vector. 

 

 

 

 

three independent extension PCR reactions were carried out in order to get the 3 different 

fragments. Fragment VGLUTi was produced by adding FW primer 5’CGTGT^CTAGA 

GCCACCATG GAGTTCCGGCAGG with XbaI restriction site, RV overlap I primer 5’CCTTGC 

TCCACCTGTCCCGC CGCTTC3’, VGLUT-pHluorin 1.3 µl, dNTPs1 µl, Red Taq polymerase 

1.2 µl, PCR buffer 5 µl and Sigma water 41 µl. Fragment mNectarine with the overlaps was 

produced by adding FW overlap I primer 5’GGGACAGGTGGAGTGAGCAAGG 

GCGAGGAG3’, RV overlap II primer 5’TGCCTCCGCTCTTGTACAGCTCGTCCATGC3’, 

mNectarine 1 µl, dNTPs1 µl, Red Taq polymerase 1.2 µl, PCR buffer 5 µl and Sigma water 41 µl. 

The third fragment VGLUTii PCR was done by adding FW overlap II primer 5’3 

GAGCTGTACAAGAG CGGAGGCACAGGTGGC’, RV primer 5’AGGCA^CGCGTTCAGT 

AGTCCCGGACAGGG GGTG3’ with MluI restriction site, VGLUT-pHluorin 1.3 µl, dNTPs1 µl, 

Red Taq polymerase 1.2 µl, PCR buffer 5 µl and Sigma water 41 µl (see Figure 33a). Once the 

Link: http://openwetware.org/wiki/PCR_Overlap_Extension 

 

Figure 32 Splicing by Overlap 
Extension. 
The procedure involves designing 
overlapping primers and two end 
primers with restriction site each. Using 
the proofreading Polymerase, 
‘Extension PCR’ amplifies the segments 
of interest at the right annealing 
temperature. The resulting PCR 
products are used in ‘Overlap PCR’ 
reaction, whereby the template will act 
as primers for each other. To finalize the 
PCR product, use the end primers with 
the restriction sites for ‘Purification 
PCR’. The correct size fragments are 
extracted and cloned into the vector.  
Source: Modified from OpenWetWare 
website, Michael A. Speer, September 
2011.  
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products were purified, a first fusion PCR was applied to the first two fragments. Gradient PCR 

was the choice because we were not certain at which temperature we should carry this reaction, we 

chose 53, 56 ad 58 °C. It turned out all were as efficient (Figure 33 B). Fragment VGLUTi PCR 

product 0.5 µl was mixed with mNectarine PCR product 0.5 µl together with FW primer, RV 

overlap II primer, dNTPs1 µl, Red Taq polymerase 1.2 µl, PCR buffer 5 µl and Sigma water 40 µl. 

The PCR product was purified (Figure 33 C) and extracted. The VGLUTi-mNectarine (0.5 µl) 

product was then used in a second fusion PCR reaction mixed with VGLUTii PCR product 1 µl, 

dNTPs1 µl, Red Taq polymerase 1.2 µl, PCR buffer 5 µl and Sigma water 40 µl. At this step, no 

primers were added and the PCR was run for 10 cycles at 40 °C to allow the fragments to anneal. 

Figure 33 vGlut-mNectarine cloning. 
(A) vGlut I, mNectarine and vGlut ii are produced with extension PCR. The produced products have overlapping ends. 
(B) First fusion gradient-PCR with 3 different extension temperatures whereby vGlut I is fused to mNectarine. (C) The 
correct fragment size was purified and part of it was loaded on a control gel. (D) Second fusion PCR between vGluti-
mNectarine and vGlut ii fragment. The expected size approximately 2600 bp. (E) Analytical estimation of the insert 
and the vector backbone in order to estimate the DNA ligation ratio. (F) The resulting clone’s DNA from the ligation 
reaction were digested with XbaI and MluI. The insert was cut out in clone 1, 2, 4, 9 and 11, indicating that these 
were the correct clones. All gels were 1% agarose gel. Samples were run at 80 mV for 60 min. 
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Later, 0.5 µl of FW primer and RV primer each were added and the PCR was run for 20 cycles at 

60 °C (Figure 33 D). The obtained fusion PCR product was then purified and digested with XbaI 

and MluI. Analytical gel was performed to estimate the amount of products needed for successful 

ligation reaction (Figure 33 E). The ligation reaction involved 0.5 µl of vector, 2 µl insert, 2 µl T4 

buffer, T4 ligase, and 13.5 µl water. A control reaction involved the same components but without 

insert. The first DNA transformation was carried in DH5α cells. We failed to produce correct 

clones. To overcome this problem, different antibiotic concentrations, the agar quality and bacteria 

used (Tiscornia et al., 2006) were separately tested and none managed to produce successful 

resistant clones. (Bichara et al., 2000; Kang and Cox, 1996) Multiple direct repeats in Lentiviral 

vectors cause problems when transformed into DH5α. On the contrary, instability-prone Lentiviral 

vectors are remarkably stable when cloned in Escherichia coli Stbl3 (Faisal A. Al-Allaf, 2012). 

Invitrogen Stbl3 is a chemically stable competent bacteria that reduce the frequency of homologous 

recombination of LTRs in big expression vectors. The company reported that the yielded DNA is 

ten-fold higher than that of DH5α. Unlike DH5α, Stbl3 can be harmful and cause irritation if it 

touches the skin. The transformation carried out in stbl3 worked from the first time and 5 out of 11 

clones showed correct DNA once digested with MluI and XbaI (Figure 33 F). One of the clones 

Figure 34 Tile confocal images showing overexpression of vGlut-mNectarine in DRG-S neurons co-culture. 
DRG culture was transfected with the Lentivirus encoding for vGlut-mNectarine and then S neurons were later added 
and left together for 5 DIV. The cells were then fixed with 4% PFA and excited at 561 nm and acquired in tiles. The 
resulting images were overlaid with bright field. The transfection efficacy was around 60%. 
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was successfully sequenced and the Lentivirus was produced. The virus was effectively tested in 

DRG/S neuron co-culture (Figure 34). 

II.2.11 Analysis 

ICC experiments performed on SIM microscopes were processed using previously mentioned 

ZEN software. The background was subtracted and co-localization was performed using JACoP 

plugin on ImageJ to get Manders’ coefficient (Bolte and Cordelieres, 2006). ICC experiments 

performed on confocal microscope and the data was analyzed in ImageJ v1.49i, the background 

was subtracted and the mean gray value was quantified to compare the true signal with that of 

control. Manders’ coefficient was also calculated through ImageJ. LDCV secretion graphs were 

displayed as cumulative increase of released vesicles normalized to the surface area of individual 

cells. To analyze exocytosis, LDCV secretion was counted as fast disappearance of vesicles within 

200 ms time while slower disappearance indicates that the vesicles are leaving the plasma 

membrane. The figure below is a representative classical example that demonstrates LDCV 

secretion where a vesicle approaches the membrane and fuses completely with it (Figure 35). The 

graph in figure 35 E depicts fluorescence intensity time course of the vesicle approaches the 

membrane, and hence its fluorescence is increased and then fuses inducing a fast disappearance of 

the signal. We also included all other forms of LDCV secretion that encompass kiss and run, kiss 

and stay and these vesicles that are docked at the membrane and fuses, inducing an increase 

Figure 35 Representative example of classical LDCV secretion. 
Cultured DRG neurons were transfect with a Lentivirus encoding for NPY-Venus and left to stay in culture for 7 days.  The cells 
were then transferred to a special metal holder and are incubated with Tobias physiological solution and placed on the TIRFM 
setup. The field electrode is placed next to the cells as shown in (A) and images were acquired in bright field (D.), epifluorescence 
(C) as well as TIRF (D.). (E) Exemplary fluorescence intensity trace during fusion. 
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fluorescence intensity and fast disappearance of the signal because of the dispersion of the NPY-

Venus cargo (Bost et al., 2017). Acquired data was analysed with ImageJ and secretion events were 

documented with specific regions of interest (ROIs). The LDCV secretion curves were displayed 

as average cumulative curves whereby individual cells were normalized to their own surface area 

and multiplied by the average area of all cells. In order to analyze synaptic formation, synapses 

were marked by ROIs and counted via special ImageJ macro written by Dr. Ralf Mohrmann who 

also wrote a second macro to measure distances between individual synapses and neurons. Mature 

synapses were defined by the co-localization of Bassoon, PDS95 and Synaptobrevin (SybKI). The 

number of synapses were normalized to the area of the acquisition, hence the displayed numbers 

in the graph represent synapse per unit of area. The synaptic transmission experiments were 

analyzed through ImageJ. Synapses were defined as SypHy labelled structures and responded to 

the 4 V at 10 Hz electrical stimulus. The background was subtracted by using a macro which 

calculated the average mean grey value over an ROI that selected an empty part of the coverslip 

and subtracted the value frame by frame for the entire acquisition. Synapses were marked by ROIs 

and the mean gray value was measured as a function of time. The displayed graphs were normalized 

to the maximum signal upon NH4Cl application. The time at which maximum fluorescence was 

reached was different between recordings due to the manual application of NH4Cl. For display 

purpose, I corrected for this shift. For each recording, the row contains the maximum values as 

determined and an index offset correction was applied. This offset function shifted the cells 

automatically in such a way that all maximums started at the same time point, before normalizing 

to it. Error bars were standard error of mean and were calculated through Excel or by SigmaPlot. 

Mann Whitney, t-test, one way ANOVA and two way ANOVA were calculated with SigmaPlot 

13. Graphs were generated by SigmaPlot and rarely by Igor or Excel. The graphs were formatted 

with CorelDRAW X6.



RESULTS 

 

67 
 

III. Results 

  Since the description of p145 aka CAPS1 in 1992 by Thomas Martin (Walent et al., 1992) 

and the discovery of the second isoform CAPS2 by Nils Brose (Speidel et al., 2003), there has been 

controversy concerning their function. contradicting roles of these isoforms are ever growing in 

the  literature. The two isoforms and the splice variants of CAPS2 with their different domains as 

well as their developmental expression over time add several layers of complexity. We chose DRG 

and DRG/S neuronal culture and co-culture, respectively to address the role of CAPS in LDCVs 

and SVs in in one system. This neuronal culture enables us to study LDCV and SV release either 

individually or simultaneously. The first experiments investigated whether CAPS isoforms are 

found in DRG neurons at the mRNA and protein developmental expression levels as well as its 

localization at the cellular level. 

III.1  CAPS Localization 

CAPS1 and CAPS2 are distributed among various tissues and cell types in mice. For 

instance, CAPS1 and CAPS2 were shown to be widespread in mouse at mRNA level (Sadakata et 

al., 2004; Speidel et al., 2003). The cellular distribution was well examined by (Sadakata et al., 

2006), whereby he showed that CAPS1 and CAPS2 were complementarily expressed in embryonic 

nervous system. CAPS1 was distributed at different levels while CAPS2 was localized to distinct 

cell types and fibers in various brain regions including olfactory bulb, cerebrum, hippocampal 

formation, thalamus, mesencephalic tegmentum, cerebellum, medulla and spinal cord. Using IHC 

experiments on spinal cord splices, the authors found that while CAPS1 was distributed in all 

DRGs, CAPS2 was in subpopulation only. Though this study gave us a hint about CAPS 

distribution in PNS neurons but it lacked the percentages at which each isoform was distributed 

and it was not providing the distribution of these isoforms at the level of different DRG neuron 

subtypes. 
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III.1.1 CAPS Localization at mRNA Level 

We sought to identify the presence of CAPS 

by using Reverse transcription-PCR on complete 

DRGs.  RT-PCR semi-quantitative results indicate 

that CAPS1 and to lesser extent CAPS2 isoforms are 

found in DRGs isolated from 2 weeks old mice. This 

finding fits well with the previous findings described 

by (Sadakata et al., 2006). We next wanted to 

investigate the expression of CAPS isoforms at 

protein level and during development. This was of 

particular importance because some experiments in 

this work were carried out with adult WT or 

CAPS2 KO mice while others were made with 

CAPS dKO mice at embryonic day 18 because they 

dye at birth (Speidel et al., 2008). 

III.1.2 CAPS Localization at Protein Level 

To investigate the presence of CAPS isoforms at the protein level in DRG neurons, WT 

DRGs were isolated from 12 mice separately and Western blot29 was carried out. To validate the 

specificity of the antibodies we used, dKO mice were used. The age of the mice from which the 

DRGs were isolated was E18 and P7. We chose P7 old mice because for imaging experiments on 

CAPS dKO cells, we waited for the Lentivirus expressing NPY-Venus 7 days before measuring 

                                                 
29 The Western blot was carried out by Mr. Ahmed M. Shaaban. 

Figure 36 RT-PCR from 2 weeks old mice. 
mRNA was produced from 5 adult mice (170 mg of 
tissue) and converted to cDNA by PCR reaction.. In 
a second PCR reaction, screening for CAPS1 and 
CAPS2 was mediated by primers specific against 
each isoform. Cerebellum was used as a positive 
control for both isoforms (Sadakata et al., 2006; 
Sadakata et al., 2007a). 

Figure 37 CAPS developmental protein expression levels. 
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LDCV exocytosis. Both CAPS1 and CAPS2 isoforms were found at the protein level in E18 pups 

(Figure 37 A). To correct for sample loading errors, ß-actin labelling was also performed. 

Interestingly, CAPS1 expression levels doubled as pups grew older. CAPS2 embryonic expression 

levels were high compared to that of CAPS1. While RT-PCR and Western blot experiments 

confirmed the existence of CAPS isoforms in DRGs, they also contain cells other than neurons 

such as astrogial cells and fibroblasts. Therefore, we screened for CAPS at the cellular level to 

exclude the possibility that CAPS was localized to cells other than our neurons. 

III.1.3 CAPS Localization at Cellular Level 

ICC experiments to localize CAPS in DRG 

neurons involves primary antibodies against CAPS 

isoforms that are detected through secondary 

antibodies coupled to IgG Alexa Fluorophore. To 

make sure that the signal from such experiments is 

correct, control samples are essential to prove that 

the primary antibody is specific to the antigen, the 

secondary antibody is specific to the used primary 

antibody and the obtained signal is a result of the 

added label and not due to endogenous 

autofluorescence (Burry, 2011). Furthermore, we 

investigated the autofluorescence profile of these 

cells in order to be able to distinguish the real signal 

from noise that usually arises from cell components 

and free radicals and to choose the appropriate 

fluorophore of the secondary antibody. To do so, an 

adult DRG cell culture was fixed with 4% PFA at 

1, 7 and 14 DIV. The cells were excited with 405, 

458, 488, 514, 561 and 633 nm lasers and the 

Figure 38 DRG neurons autofluorescence profile. 
DRG neurons were fixed with 4% PFA for 20 min and 
images were acquired using confocal microscope. (A) 
Autofluorescence emission intensity was measured 
upon exciting with different wavelengths in 1 day old 
DRG culture, and 7 days old culture in (B.). 

Continuing Figure 37… (A) CAPS developmental protein expression levels was examined by western blot. DRGs were 
isolated from WT and CAPS dKO E18, and WT P7 old mice and the samples were run. Actin was used to standardize 
the protein expression levels. (B) The graph shows actin-based corrected protein expression levels normalized to 
the signal from P7. Results indicate that both CAPS1 and CAPS2 proteins are present prenatal mice and the 
expression levels is elevated in postnatal mice. 
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emission spectrum was plotted in figure 31. We found that one day old fixed DRG neurons exhibits 

autofluorescence at 405, 458 and 488 nm and very low autofluorescence at 561 and 633 nm 

(Figure 31 A).  The longer the neurons stay in culture the stronger the autofluorescence got. The 

autofluorescence was highest with excitation at 458 nm (Figure 31 B). Living DRG neurons 

showed a milder but similar autofluorescence pattern compared to fixed cells. Taking into 

consideration this autofluorescence pattern of DRG neurons both in living cultures and fixed preps, 

all upcoming experiments were optimised accordingly. 

Thus, to localize CAPS isoforms, E18 DRG neurons of WT and CAPS dKO genotype were 

separately produced and left to stay in culture for seven30 days. Then the cells were fixed according 

to the previously described protocols and CAPS isoforms where screened using home produced 

antibodies in collaboration with Dr. Martin Jung. To detect both CAPS isoforms, a 1347/48 – serum 

831 was used. Results indicate that CAPS1 and CAPS2 are found in DRG neurons in both diffuse 

cytoplasmic and punctate staining (Figure 32). It was possible to purify from this serum the 

antibodies that recognize CAPS2 only. Several purified serums were produced, I tested 1403b – 

serum 4, 6 and 10 to finally use serum 6. Controls that ensured the specificity of serum 6 were 

carried out in CAPS2 KO background, to rule out any cross-reactivity with CAPS1 isoform 

(Appendix VI.1). We took advantage of this newly generated serum to perform double 

immunostaining together with serum 8 which recognizes both isoforms and managed to determine 

the distribution of individual isoforms. The results showed that half of the cells were positive for 

CAPS2 (Figure 39) which means that rest of the signal comes either entirely from coexistence of 

CAPS1 in all cells and CAPS2 in half of the population or by random distribution of each isoform 

                                                 
30 DRG neurons are transfected with a Lenti-virus encoding for NPY-Venus to label LDCVs to monitor exocytosis. 

The virus is incubated for seven days in order to achieve a bright labeling of LDCVs. 
31 1347/48 – serum 8 was produced by injecting the full length CAPS2e protein into the rabbit and due to the high 

similarity between CAPS1 and CAPS2 isoforms, this serum can detect both isoforms. 

 
Figure 39 CAPS isoforms are found in DRG 
neurons. 
Adult DRG neurons were fixed with 4 % PFA 
for 20 min and stained with serum 8 
against CAPS1 and CAPS2. Alexa 561 goat 
anti-rabbit secondary antibody was used. 
The fluorescence intensity of serum 8 was 
quantified in WT DRG neurons and 
compared to that of CAPS1 and CAPS2 dKO. 

 
N = 2 mice, n = 37 WT cell, n = 29 dKO cell. Mann Whitney significance test was applied, ** p < 0.01. 
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and not necessarily being expressed together. However, the second possibility is unlikely because 

previous data indicates that CAPS1 is found in all DRG neurons while CAPS2 in a subpopulation 

(Sadakata et al., 2006). CAPS2 staining was remarkably diffuse, suggesting that the punctate 

staining from serum 8 comes from CAPS1. We were also interested to know the subcellular 

localization of CAPS to get a hint about its function, whether it is localized to synapses, in order 

to test its possible effect on SV secretion, using the advantage from DRG/S neuron co-culture 

system. We used serum 8 and carried out double ICC together with anti-synaptophysin antibody in 

DRG/S neuron co-culture. Results showed that CAPS fluorescence signal was intensified at 

synapses between DRG neurons and spinal neurons (Figure 41). Manders’ coefficient of 0.8 ± 0.02 

from synaptophysin to CAPS suggests that the majority of synapses have either CAPS1 or 2 or 

both isoforms, while the lower Manders’ coefficient of 0.6 ± 0.03 from CAPS to synaptophysin 

suggests that CAPS is also found in processes and not just at the synapses. Further analysis of the 

position of synapses indicates that 40% of synapses were found between DRG processes and 

S neurons cell body and about 60% of the synapses were between processes of these neurons. This 

shows that CAPS is indeed found at synapses and confirms that the DRG/S neuron co-culture can 

be used to study the possible differential roles of CAPS isoforms in secretion of LDCVs and SVs. 

However, DRG neurons are silent in culture (Ransom et al., 1977b) and synapses don’t exist 

Figure 40 CAPS1/2 and CAPS2 
double-immunostaining. 
Adult DRG neurons were fixed 
and stained with serum 8 
against CAPS1 and CAPS2. Alexa 
561 goat anti-rabbit was used 
as secondary antibody was. Fab 
fragments were used to block 
serum 8 active sites before 
carrying out the second staining 
with purified serum 6 against 
CAPS2. Alexa 488 goat anti-
rabbit secondary antibody was 
applied against purified serum 
6. The images were acquired by 
confocal microscope and the 
signal from WT DRG neurons 
was compared to dKO neurons. 
(A) Bright field and confocal 
images acquired at, 561 and 
488 nm of WT DRG neurons 488 nm of DRG neurons were compared to dKO cells. (B) Graph displaying the fluorescence intensity of serum 8 and 

serum 6 compared to dKO signal. (C) Distribution of CAPS isoform among cells in percentage. N = 2 adult mice, n = 
28 WT and n = 94 dKO cell. Mann Whitney significance test was applied, *** p < 0.001. 
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between 

DRG 

subpopulations (Joseph et al., 2010; Wake et al., 2015), so it was a prerequisite to establish and 

optimize and stimulation protocol to induce secretion of both LDCVs and SVs in DRG and 

DRG/S neuron cultures, respectively.  

 

III.2 Stimulus Protocol 

Stimulating LDCV and SV secretion was carried out the previously described field electrode 

but at different frequencies. The concept was to pick the mildest stimulus that can induce the 

highest number of cells responding to the stimulus. 

III.2.1 Stimulating DRG Neurons 

The electrical stimulus of four Volts at hundred Hertz to induce LDCV secretion was 

applied via a custom-made bipolar Platinum-Iridium field electrode. The establishment and the 

concept behind the field electrode is explained in details in the Materials and Methods chapter. 

Figure 41 CAPS isoforms localization to synapses in DRG/S neuron co-culture. 
Adult WT DRG neurons were co-cultured with dKO S neurons for five days and were fixed with 4 % PFA for 20 min 
and marked with serum 8 against CAPS1 and CAPS2 which was labelled with Alexa 561 goat anti-rabbit secondary 
antibody was used against serum 8. Fab fragments were used to block serum 8 antibodies active sites before 
carrying out the second staining against synaptophysin. Alexa 488 goat anti-rabbit secondary antibody was used 
against synaptophysin. The images were acquired using confocal microscope.  They were subjected to uniform 
threshold to compute Manders’ coefficients that are shown in the adjacent graph. M1 = Fraction of synaptophysin 
overlaying with CAPS isoforms, M2 = Fraction of CAPS isoforms overlaying with synaptophysin.  N = 2 animals for 
DRG neuronal preparation, N = 8 P0 pups for S neurons preparation, n = 82 cell. 
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III.2.1.1 Stimulus optimization 

To test and optimize the electrical stimulus, cultured DRG neurons were incubated with the 

fluorescent calcium sensor Fluo 4 AM32 for 15 min and then washed. Several voltage intensities at 

different frequencies were tested and fluorescence intensity change was recorded. Results showed 

that a minimum stimulus of 2.5 V induced a slight increase in intracellular calcium, while at 4 V 

about 70% of DRG neurons displayed a strong increase in intracellular calcium (Figure 42), going 

below 2.5 V or above 4 V did not change the percentage of responding cells (data not shown), 

hence we picked 4 V at 100 Hz. The frequency of 100 Hz was chosen because it was shown that 

BDNF release from LDCVs in hippocampal neurons was not evoked at stimulus lower than 50 Hz 

                                                 
32 Fluo 4 AM from ThermoFisher is a fluorescent calcium assay. Upon binding calcium, its structure is modified 

inducing an increased fluorescence once excited at 488 nm. 

Figure 42 Electrical stimulus for DRG neurons. 
 DRG neurons were loaded with Fluo 4 AM dye for 20 min before recording. The cells were stimulated by custom-
made bipolar Platinum-Iridium field electrode at different voltages and the increase of Fluo 4 fluorescence intensity 
was imaged in epifluorescence mode. (A) Representative four DRG neurons are shown in bright field (left), 
epifluorescence at 488 nm before the electrical stimulus (middle) and upon the electrical stimulus (right). Three cells 
showed an increase in fluorescence intensity while the fluorescence in DRG number 4 didn’t change, hence this cell 
didn’t respond to the stimulus. ROIs marked the individual neurons and the fluorescence curves were plotted as a 
function of time in the lower graphs. (B) The graph shows the fluorescence intensity normalized to the baseline of 
individual DRG neurons subjected to 30 seconds stimulus of 2.5 V at 100 Hz as a function of time. (C) DRG neurons 
were stimulated with 4 V at 100 Hz and the fluorescence intensity was plotted against time. 
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(Gartner and Staiger, 2002). It was notable that DRG neurons didn’t exhibit 
measurable calcium signal before the stimulus, supporting the argument that these cells are silent 

in culture and needs stimulus in order to secrete. The field electrode was entirely renewed every 

six month and calcium measurements were carried out every 3 months to ensure the consistency 

and efficacy of the electrical stimulus. 

III.2.1.2 LDCV Secretion 

To visualize secretion, DRG neurons were transfected with NPY-Venus. Venus was tagged 

to NPY to ensure its localization into LDCVs. NPY-Venus was driven by a Lentiviral expression 

system, it was essential to test if NPY-Venus was sorted correctly into LDCVs although 

Lentiviruses are gentle on cells and ensure a high survival rate after infection (Mao et al., 2015). 

NPY-Venus expressing DRG neurons were fixed and stained against Chromogranin A, a marker 

for LDCVs. Colocalization analysis showed that overexpressed NPY-Venus is loaded correctly 

into LDCVs (see Appendix VI.3). 

III.2.2 Stimulating Hippocampal Neurons 

To further verify the efficacy of the stimulus, we tried to stimulate hippocampal neurons 

with 10 Hz according to what is described in the literature (Balkowiec and Katz, 2002; Jacobs and 

Meyer, 1997). Eight days old hippocampal neurons33 were loaded with Fluo 4 AM and stimulated 

with 4 V at 10 Hz and 4 V at 100 Hz. The recordings showed that both stimuli had similar effect 

of about 70% of the neurons exhibited an increase in intracellular calcium (see Appendix VI.1 A. & 

B.), proving the efficacy of the customized field electrode. Unlike DRG neurons, hippocampal 

neurons were active before the stimulus which is normal for neurons that form active synapses in 

culture (Basarsky et al., 1994; Fletcher et al., 1994). This activity was evident in the first thirty 

seconds before the stimulus, as fluctuations of calcium concentration were visible. This, was not 

the case in DRG neurons calcium recordings (see Appendix VI.1 B.). 

                                                 
33 Hippocampal neuronal cultures were kindly provided by Mr. Ali Harb. 
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III.2.3 Stimulating DRG/S neuron co-cultures 

To study the effect of CAPS on SV 

secretion, we tested which stimulation frequency 

should be used to evoke reliable SV exocytosis. 

DRG neurons were infected with synaptophysin-

pHluorin one day before adding the S neurons. Co-

cultured neurons remained 9 days in culture to give 

enough time for synapses to form. Results showed 

that a 10 Hz stimulus was enough to evoke SV 

secretion at synapses. A 100 Hz stimulus 

following the first 10 Hz didn’t evoke further SV 

release, and one 100 Hz stimulus alone didn’t 

managed to evoke higher SV secretion as 

compared to 10 Hz (Figure 43 A, B & C). 

Consistent with hippocampal neurons results, a 10 

Hz stimuli is enough to evoke SV secretion. Now 

that the stimulus protocols to evoke SV and LDCV 

release were established, we could start studying 

the effect of CAPS on the exocytosis machinery. 

III.3 CAPS Isoforms Effect on LDCV 

Secretion 

Unlike central nervous system neurons, the 

exocytosis machinery in DRG neurons is not 

thoroughly studied. For instance it is known that 

exocytosis from the somata of DRGs is calcium- 

(Huang and Neher, 1996) and voltage-dependent 

(Liu et al., 2011) but how it is regulated at the 

molecular level remains poorly understood. Based 

on the differential localization of CAPS in DRG 

Figure 43 Electrical stimulus for DRG/S neuron co-
cultures. 
(A) DRG/S neuron co-cultured neurons were 
transfected with synaptophysin pHluorin and 
stimulated at 10 Hz. Fluorescence intensity was 
quantified as a function of time. A stronger stimulus 
was applied in (B) at 100 Hz and a 10 Hz stimulus 
followed by a 100 Hz stimulus was tested in (C.). 
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neurons (see Figure 40 & 41), we speculated that CAPS isoforms might play a role in the secretion 

machinery of LDCVs and SVs. To test this hypothesis, we prepared DRG neuron cultures from 

CAPS1 and CAPS2 dKO E18 mice, monitoring their LDCV release and compared it to neurons of 

WT E18 mice. 

III.3.1 CAPS Absence Hinders LDCV Secretion 

DRG neuronal cultures of CAPS1 and CAPS2 dKO mice were made at E18 because these 

mice were not viable and died at birth. LDCV secretion was measured in dKO and WT neurons 

that were prepared simultaneously and measured on the same day. The cumulative normalized 

secretion to individual cell surface area in WT cells was in average two vesicles per cell. This was 

significantly decreased to an average of one vesicle being secreted in dKO cells (Figure 44 A). To 

test whether CAPS1 and CAPS2 dKO had an effect on tethering of LDCVs to the plasma 

membrane, the vesicles in the TIRF plane were counted in WT and compared to dKO condition. 

No significant difference was measured (Figure 39 B& C). These results suggest that CAPS has a 

role in LDCV secretion in DRG neurons through priming but not tethering. 

III.3.2 CAPS Rescues LDCV Secretion in CAPS dKO Neurons 

Rescue experiments were performed to test whether the dKO secretion phenotype can be 

reversed by CAPS expression. Both CAPS1 and CAPS2 isoforms were able to restore LDCV 

secretion in CAPS dKO DRG neurons exceeding the WT level. CAPS dKO DRG neurons 

transfected with CAPS1 secreted in average 3.3 ± 0.8 LDCVs in the time of the recording 

comparable to neurons transfected with CAPS2 that secreted in average 3.9 ± 0.3 LDCVs, but 

significantly more than in dKO DRG neurons (Figure 40 A). The number of tethered vesicles were 

significance test was applied, ** p < 0.01 and ns p > 0.05.  

Figure 44 CAPS1 and CAPS2 dKO effect on 
LDCV secretion. 
(A) Cumulative secretion of LDCVs normalized 
to cell surface area in WT compared to CAPS1 
and CAPS2 dKO neurons. (N = 11 E18 pups, n = 
29 for WT and 74 for dKO). (B) Vesicles in the 
TIRF field were counted in both WT and CAPS1 
and CAPS2 dKO neurons and depicted in the 
graph. (C) Representative TIRF image of WT 
neurons and CAPS1 and CAPS2 dKO neurons 
expressing NPY-Venus. Scale bar is equal to 5 
µm. All error bars are SEM, Mann Whitney 
significance test was 
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not different in dKO cells as compared to those that 

overexpress either CAPS1 or CAPS2 with no evident significant change (Figure 40 B & C). These 

data indicate that the reduction of secretion in CAPS1 and 2 dKO neurons is solely due to the 

deletion of the protein and not to some downstream series of effects. 

III.3.3 CAPS Overexpression Increases LDCV Secretion 

 CAPS dKO neurons rescued with either CAPS isoform secreted more LDCV than WT 

neurons. In chromaffin cells, however, LDCV secretion of CAPS dKO cells is rescued by CAPS2 

transfection only to WT level and in WT cells CAPS1 or 2 overexpression failed to increase LDCV 

exocytosis (Liu et al., 2010). Thus we tested if CAPS overexpression in WT DRG neurons would 

affect the LDCV secretion. First, CAPS1 was overexpressed and secretion was compared to WT 

cells. CAPS1 overexpressing neurons secreted 3.6 ± 0.4 LDCVs while control neurons secreted 

1.4 ± 0.3 LDCVs (Figure 46 A) without affecting the number of vesicles tethered to the plasma 

membrane (Figure 46 B & C). This suggests that CAPS1 has no function at the level of tethering 

of vesicles and the effect on secretion is rather due to enhanced LDCV priming. In similar fashion, 

CAPS2 overexpression increased secretion till 3.9 ± 0.3 LDCVs compared to 2.1 ± 0.4 LDCVs in 

WT condition (Figure 47 A) without affecting the overall number of tethered vesicles to the plasma 

Figure 45 CAPS1 and CAPS2 overexpression in 
dKO effect on LDCV secretion. 
(A) LDCV secretion in dKO neurons compared to 
dKO neurons either overexpressing CAPS1 or 
CAPS2b (N = 10 E18 pups, n =25 for dKO, 12 for 
dKO+CAPS1 and 9 for dKO+CAPS2b). (B) The 
number of and the vesicles in TIRF field were 
quantified for every condition. (C) 
Representative TIRF images for dKO, 
dKO + CAPS1 and dKO + CAPS2. All error bars 
are SEM, One Way ANOVA Dunn’s post 
significance test was applied, * p < 0.05, ** p < 
0.01 and ns > 0.05. Scale bar is equal to 5 µm. 
 

(A) Shows averaged normalized cumulative 
secretion of LDCVs to cell surface area in WT 
neurons compared to WT neurons 
overexpressing CAPS2b (N = 7 adult mice, n = 40 
for WT and 28 for WT + CAPS2b). (B) Bar 
diagram of the number of LDCV in the TIRF field 
in both WT and WT + CAPS 1. (C) Representative 
TIRF image of WT neurons and WT neurons 
overexpressing CAPS2b. Scale bar is equal to 5 
µm. All error bars are SEM, Mann Whitney 

Whitney significance test was applied, ** p < 0.01 and ns p > 0.05.  

Figure 46 CAPS2 overexpression effect 
on LDCV secretion in DRG neurons. 
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membrane (Figure 47 B & C). Altogether, this data indicates that CAPS isoforms can affect LDCV 

secretion through priming and not tethering. 

III.4 Half of DRG Neurons Secrete LDCVs 

The secretion from dKO 

neurons was intriguing, as we 

noticed while doing the 

experiments that only a very small 

population secreted from the entire 

measured cells. Further analysis of 

the data showed that half of the 

neurons would respond to the 

stimulus and secrete LDCVs in 

WT system while this percentage 

is significantly decreased to 30% 

in CAPS1 and CAPS2 dKO 

system. Upon overexpressing of either CAPS isoform in WT cells, there was a tendency to have 

more cells that secreted LDCVs. This data emphasize the strong effect of CAPS by showing that 

CAPS not only affects the number of secreted LDCVs but also the number of secreting cells.  

We were also puzzled by the fact that whatever electrical stimulus we applied even with 

higher voltage (data not shown), the number of secreting cells in WT was not changed. Therefore, 

we investigated whether stimulated LDCV secretion is limited to a certain subset of DRG neurons. 

Figure 48 Percentage of secreting cells. 
Percentage of secreting cells was counted in CAPS1 and CAPS2 dKO, 
CAPS1 overexpressing and CAPS2 overexpressing neurons and compared 
to those of WT neurons. Mann Whitney significance test was 
applied, * p < 0.05. 

 (A) Normalized cumulative secretion of LDCVs to 
cell surface area in WT neurons compared to WT 
neurons overexpressing CAPS1 (N = 5 adult mice, 
n = 50 for WT and 33 for WT + CAPS1). (B) 
Vesicles in the TIRF field were counted in both 
WT and WT + CAPS1 neurons and depicted in the 
graph. (C) Representative TIRF image of WT 
neurons and WT neurons overexpressing CAPS1. 
Scale bar is equal to 5 µm. All error bars are SEM, 
Mann Whitney significance test was applied, ** Mann Whitney significance test was applied, ** p < 0.01 and ns p > 0.05. 

Figure 47 CAPS1 overexpression effect on 
LDCV secretion in DRG neurons. 
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III.5 Peptidergic and Non-Peptidergic DRG Neurons  

DRG neurons con-

stitute a very heterogeneous 

population depending on 

their sensory input or 

morphological characteris-

tics. Despite this diversity, 

they can be classified into 

two main categories, the 

peptidergic myelinated 

neurons and the non-

peptidergic un-myelinated 

neurons (Saeed and Ribeiro-

da-Silva, 2012). Peptidergic 

neurons can be marked by 

anti-CGRP antibody 

(Barabas et al., 2012), anti-

NK-1r34 (McLeod et al., 

1998; Takeda et al., 1991; 

Todd et al., 2002), 

anti-Chromogranin A 

(Adams et al., 1993; Schafer 

et al., 2010) and anti-

TRKB35 receptor (Dykes et 

al., 2010; Scott et al., 2011). 

Often, NF-20036 is used as a 

                                                 
34 Neurokinin-1 receptor for substance P, is a G protein coupled receptor that is a product of TACR1 gene and found 

in CNS and PNS (Takeda et al., 1991). 
35 Tyrosine Kinase B receptor that has high specificity to BDNF. 
36 Neurofilament-200 is anti-heavy neurofilaments of around 200-220 kDa that are major component of neuronal 

cytoskeleton. 

Figure 49 Percentage of peptidergic and non-peptidergic DRG neurons. 
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global marker to label all 

peptidergic neurons 

(Ishikawa et al., 2005; 

Pierce et al., 2006; Segond 

von Banchet et al., 2002). 

Non-peptidergic neurons 

are collectively labelled by 

isolectin B4 (Hunt and 

Mantyh, 2001; Molliver et al., 1997; Stucky and Lewin, 1999; Wang and Zylka, 2009; Woolf and 

Ma, 2007) according to the protocol that was described by Kubo et al. (2012). Because iB4 can be 

applied to living cells, we chose this method to identify different neuron subtypes while carrying 

out physiological experiments. To characterize DRG neuronal populations, two adult mice 

preparations were fixed after 7 DIV with 4% PFA and stained with iB4. Extensive washing steps 

were applied with the addition of iT-FX image enhancer. To account for the high diversity of 

neuronal populations, about 436 cells were imaged using confocal microscope. The acquisition 

parameters were set in such a way to increase the signal-to-noise ratio with 1 AU pinhole, low 

digital gain and 2% laser power. Results showed that 49% of the DRG neurons in culture are 

peptidergic neurons and 51% are non-peptidergic neurons. The peptidergic neurons were mainly 

of medium, large and extra-large sized population while non-peptidergic neurons were of medium 

and small size (Figure 49 A & B). The two subtypes were grouped according to size (Figure 44 C). 

We further investigated whether there is a correlation between the strength of iB4 and the size of 

DRG neurons. The fluorescence intensity of iB4-positive cells were plotted against the size in 

Figure 44 D, and the results suggest that there is no correlation. Now that we were able to group 

these cells according to peptidergic and non-peptidergic classes, we screened for CAPS isoforms 

among these two subpopulations and checked whether they have a preferential localization. 

III.6 CAPS Isoforms Localization in DRG Neuron Subtypes 

CAPS isoforms were localized to DRG neurons subtypes using ICC experiments involving 

primary antibodies against CAPS1 and CAPS2. 

Continuing figure 49… (A). Cultured WT DRG neurons were fixed with 4% PFA 
and stained against Isolectin receptor using GS-iB4 coupled to Alexa-561 and 
incubated for 1 hr. Fixed cells were imaged using confocal microscopy and cells 
were counted and screened against positive and negative staining. Positively 
stained cells are non-peptidergic neurons and the unstained cells are the 
peptidergic DRG neurons. N = 436 cells were imaged from two DRG neuron 
cultures. (B) Representative images showing in the upper panel two positively 
medium-sized stained non-peptidergic neurons imaged at 561 nm laser and in 
the lower panel, one larger DRG peptidergic neuron that is not stained. (C) 
Occurrence of DRG neuronal subpopulations versus neuron surface area. (D) 
Plot of the signal intensity of iB4 positive neurons against their surface area, 
N = 226. 
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III.6.1 CAPS1 Isoform Localization into DRG Subtypes 

To localize CAPS1, experiments to ensure the specificity of a new commercial anti-

CAPS137 antibody were carried out involving WT cells that were compared to CAPS1 KO cells 

(Appendix VI.2). WT DRG neurons were fixed with 4% PFA for 20 min and stained against CAPS1 

together with iB4 labelling. Image stacks were acquired using a confocal microscope with 2% laser 

intensity for both 488 and 561 nm wavelength and 500 digital gain. Taking a stack helps in judging 

whether the neuron is peptidergic or not, because some red processes from non-peptidergic neurons 

were wrapped around the base of other neurons, falsifying the identification. A non-peptidergic 

neuron should be entirely outlined with the red signal from the base to its top. CAPS1 fluorescence 

intensity was analysed in iB4 positive and negative neurons. Results indicate that CAPS1 is 

distributed randomly across peptidergic and non-peptidergic neurons. Nevertheless, some 

peptidergic DRG neurons showed brighter CAPS1 fluorescence but it didn’t impact significantly 

the average fluorescence when compared to the non-peptidergic neurons (Figure 50). To further 

characterize CAPS1 localization in peptidergic neurons subtypes, we stained DRG neurons against 

NK-1r and TRKB receptor together with anti-CAPS1. The fluorescence intensity of CAPS1 was 

quantified and we compared it between cells that expressed NK-1r or not. CAPS1 expression was 

                                                 
37 Polyclonal rabbit anti-CADPS1 antibody from Synaptic Systems, cat. no. 262 013 

Figure 50 CAPS1 with iB4 staining. 
Embryonic WT DRG neurons were fixed with 4% PFA for 20 min then stained against CAPS1 (1:1000) and iB4-Alexa 
561. The left panel shows confocal images of DRG neurons in bright field, 561, 488 nm and all 3 channels merged. 
The graph to the right shows CAPS1 fluorescence intensity in peptidergic and non-peptidergic DRG neurons. N = 2 
animals. N = 118 cell. Mann Whitney significance test was applied, ns p > 0.05. All error bars are SEM. 
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significantly higher in NK-1r positive cells (Figure 51 A). The same analysis was done for TRKB 

positive cells and there was no significant preferential localization of CAPS1 to this subtype of 

peptidergic neurons (Figure 51 B). About 22.7%38 of adult DRG neurons are NK-1r positive (Hall 

et al., 1997; Tuchscherer and Seybold, 1985), this probably explains why there is no significant 

difference of CAPS1 expression levels among peptidergic and non-peptidergic neurons. Next we 

examined CAPS2 distribution among different DRG subtypes. 

                                                 
38 13.5% ± 1.9 SEM of all E19.5 DRG neurons express substance P, this fraction gets bigger as the mice develop in 

age (Hall et al., 1997). 

Figure 51 CAPS1 localization into peptidergic neurons. 
Embryonic WT DRG neurons were fixed with 4% PFA for 20 min then stained against CAPS1 and stained either 
against TAC-1 , which is an antibody recognizing NK-1 receptors, or TRKB. (A) The left panel shows confocal images 
for DRG neurons in bright field, 488, 561 nm and all 3 merged channels of CAPS1 and TAC-1 staining. N= 2 animals, 
n = 92 cells. The graph to the right quantifies CAPS1 fluorescence intensity in TAC-1 positive and negative neurons. 
(B) The right panel shows confocal images of DRG neurons in bright field, 488 nm, 561 nm and all 3 channels merged. 
The graph to the right shows CAPS1 fluorescence intensity in TRKB positive neurons compared to TRKB negative 
neurons. N = 2 animals, n = 34 cells. Mann Whitney significance test was applied, ns p > 0.05. * p < 0.05. All error 
bars are SEM. 
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III.6.2 CAPS2 Isoform Localization into DRG Subtypes 

DRG neurons were co-stained against CAPS2 and iB4. Images were acquired in similar 

fashion as the previous experiment. There was a striking difference in CAPS2 localization, for 

instance, its fluorescence signal was four times higher in peptidergic neurons compared to non-

peptidergic neurons (Figure 52). Almost 80% of peptidergic neurons expressed CAPS2. Based on 

our previous data that indicate that CAPS2 is found in half of DRG neurons, this experiment 

accordingly states that this 50% are the peptidergic neurons. To further verify and strengthen these 

findings, we co-stained neurons against CAPS2 and anti-NK-1r or anti-TRKB. The percentage of 

NK-1r expressing cells in vitro was ~25% ± 0.5 SEM (Figure 53 A), which was very close to the 

endogenous in vivo expression levels (Hall et al., 1997). Of those neurons that were positive for 

NK-1r, 60% expressed CAPS2 (Figure 53 B). About 60% of peptidergic neurons were TRKB 

positive (Figure 53 A) of which 80% expressed CAPS2 (Figure 53 B). This data set reinforces the 

idea that CAPS2 expression is restricted to peptidergic neurons and led us to hypothesize that the 

50% LDCV stimulated secretion profile observed in WT neurons might be regulated by CAPS2 

that is found in ~50% of DRG neurons. The next experiments were designed to investigate this 

possibility. 

Figure 52 CAPS2 with iB4 staining. 
Embryonic WT DRG neurons were fixed with 4% PFA for 20 min then stained against CAPS2 and iB4-Alexa 561. Alexa 
488 secondary goat anti-rabbit antibody was used against CAPS2 antibody. The left panel shows confocal acquired 
images of DRG neurons in bright field, 561, 488 nm and merged channels. The graph to the right shows CAPS2 
fluorescence signal distribution among peptidergic and non-peptidergic DRG neurons. N = 2 animals, n = 57 cells. 
Mann Whitney significance test was applied, n*** p < 0.001. All error bars are SEM 
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III.7 LDCV Secretion in Peptidergic and Non-Peptidergic Neurons 

To verify our hypothesis we assessed which neuron subtype can secrete LDCVs. We took 

advantage of the fact that iB4 stains living cells without affecting their physiological properties and 

measured LDCV release from peptidergic and non-peptidergic neurons. 

Figure 53 CAPS2 localization into peptidergic subtypes neurons. 
Embryonic WT DRG neurons were fixed with 4% PFA for 20 min then stained against CAPS2 and stained either against 
TAC-1 or TRKB. (A) The left panel shows confocal images for DRG neurons in bright field, 488, 561 nm and all 3 channels 
merged of CAPS2 and TAC-1 staining. The graph on the upper right shows the percentages of DRG neurons that are 
either TAC-1 or TRKB positive neurons. N= 2 animals, n = 156 cells for TAC-1 and n = 95 cells for TRKB. (B) The lower 
left panel shows confocal images for DRG neurons in bright field, 488, 561 nm and all 3 channels merged of CAPS2 
and TRKB staining. The graph on the lower right shows the percentage of CAPS2 positive neurons of TAC-1 or TRKB 
subtype. N = 2 animals, n = 34 for TAC-1 and n = 53 cells for TRKB. All error bars are SEM. 
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III.7.1 CAPS2 Mediates LDCV Secretion 

DRG neurons from two week old WT mice were transfected with NPY-Venus and labelled 

with iB4 according to the previously described protocol (Figure 54 A). Cells were washed with 

warmed extracellular solution at 34 °C. LDCV secretion was recorded in TIRFM dual-view setting 

which was necessary to eliminate spectral overlaps coming from the bright signal of Alexa-561 

Figure 54 Examining secretion in peptidergic and non-peptidergic DRG neuron subpopulations. 
(A) Schematic diagram explaining iB4-Alexa 568 staining of DRG neurons. Cells are incubated in extracellular solution 
in the presence of 1 mg.ml-1 of iB4-Alexa 568 for 20 min at 37 °C then washed for 10 min with continual perfusion. 
iB4+ neurons were visualized with 561 nm laser. (B) Imaging of iB4 positive non-peptidergic unmyelinated DRG 
neurons. The top panels show a non-peptidergic DRG neuron transfected with NPY-Venus while the middle panels 
show a peptidergic neuron, outlined with white dotted line, the white arrow points out an adjacent non-peptidergic 
DRG neuron. The bottom panel shows a non-peptidergic DRG neuron co-expressing NPY-Venus and CAPS2b-mTFP. 
(C) Average LDCV secretion in iB4+ non-peptidergic neurons (N = 4, n = 34) compared to iB4- peptidergic neurons (N= 
4, n = 30). (D) Average LDCV secretion of iB4 non-peptidergic DRG neurons overexpressing CAPS2b (N = 3, n = 20) 
compared to iB4+ non-peptidergic (N = 3 n = 19) and iB4- peptidergic neurons (N = 3, n = 14). (E) Percentage of iB4 
non-peptidergic DRG neurons overexpressing CAPS2b secreting cells compared to iB4- iB4+ DRG neurons. 2 weeks 
old mice were used for these experiments. Error bars in (C, D & E) are SEM and ***p < 0.001 Mann Whitney test; 
***p < 0.001 one way ANOVA; ***p <0.001 one way ANOVA, respectively. 
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that is coupled to the isolectin product. Measurements from four cultures showed that LDCV 

secretion occurs almost exclusively in peptidergic neurons. Out of 34 non-peptidergic recorded 

neurons only 2 cells secreted. We then overexpressed CAPS2b in WT adult DRG neurons and 

repeated the previous experiment and we measured LDCV secretion from non-peptidergic 

transfected neurons. All of the sudden, these silent cells started to secrete (Figure 54 D) and the 

percentage of secreting cells elevates from almost nil to 60% (Figure 54 E). Although, non-

peptidergic neurons express CAPS1, it seems the presence of this isoform is not sufficient to allow 

LDCV secretion. Therefore, CAPS2 is required for the priming of LDCV secretion from the soma 

of WT DRG neurons. 

 

III.8 Establishing DRG/S neuron Co-Culture 

In order to assess the function of CAPS isoforms in mediating synaptic transmission, we 

established DRG/S neuron co-culture. DRG neurons do not form autaptic synapses, neither in vivo 

nor in cultures (Ransom et al., 1977a). DRG neurons that are located outside the spinal cord, form 

synapses with S neurons by extending their axons mainly to the dorsal horn neurons (Barber and 

Vaughn, 1986; Zeilhofer et al., 2012) and to lesser extent the large axons are extended to the ventral 

horn neurons (Molander and Grant, 1987). The establishment of this sophisticated co-cultures 

involved extensive optimization to enhance cell survival and synapse formation rate in vitro. 

III.8.1 DRG/S neuron Survival in Vitro  

The first challenge was to maintain S neurons living in culture along with DRG neurons. 

Initially it was difficult to keep S neurons in culture for longer than four days but changes in the 

culture conditions helped keep S neurons alive for at least nine days in vitro (Figure 55). Neurons 

grew processes which was an indication that they are in good health condition. We then tested 

whether these neurons form synapses in vitro under these culture preparation conditions. 
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III.8.2 Synapses Form between DRG and S neurons39 

To check whether synapses do form in 

vitro, Mr. Ali Harb performed preliminary 

experiments in which DRG neurons were co-

cultured with S neurons and kept in culture for 

four days. The co-cultured neurons were fixed 

with 4% PFA and stained against MAP-2 to 

mark neurons (Caceres et al., 1986; Fischer et 

al., 1986) and synaptophysin to mark synapses 

between neurons (Jahn et al., 1985; Regnier-

Vigouroux et al., 1991; Wiedenmann et al., 

1985). The red spots opposing the S neuron 

suggest that synapses start forming between the 

two types of neurons at day four in vitro 

(Figure 56). This experiment confirmed that 

synapses form but whether these synapses are 

functional remained unknown. 

                                                 
39 This experiment was carried out by Mr. Ali Harb during his Masters II. 

Figure 55 DRG/S neuron co-cultured neurons morphology over time. 
WT DRG neurons were co-cultured with WT S neurons in culture. Morphology and health state of these cells were 
monitored at DIV 3. 5. 7 and 9 using confocal microscope. 

Figure 56 Marking synapses between DRG neurons and 
S neurons. 
WT DRG/S neuron culture were fixed with 4% PFA and 
stained as MAP-2 (1:1000) shown in blue and against 
synaptophysin (1:1000) shown in red. The upper two 
arrows on the bright field image indicate a DRG neuron 
while the lower arrow points to S neuron. The red dotted 
staining on the S neuron soma and neurite are synapses 
formed between DRG and spinal neurons. 
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III.8.3 Synapses are Functionally Connected40 

To investigate synapse 

functionality, field electrode 

stimulation was ruled out as it would 

stimulate all cells in proximity. Taking 

advantage that some DRG neurons are 

touch sensitive through specialized 

mechanoreceptors (Abraira and Ginty, 

2013; Lumpkin and Bautista, 2005); 

co-cultured DRG/S neuron were loaded 

with Fluo 4 AM and DRG neurons 

were mechanically stimulated in hope 

that they would have mechanoreceptors 

which respond to the stimulus. After 

several trials, we were able to find one 

DRG neuron that responded first steep increase in Fluo 4 fluorescence. In contrast, the S neurons 

displayed a delayed answer to the stimuli indicating that they were not directly activated by the 

touch but instead received their input over synaptic transmission from the DRG neurons (Figure 

57). Attempts to directly mechanically stimulate S neurons were unsuccessful (data not shown). 

Therefore we conclude that DRG neurons form functional synapses with S neurons in our culture 

conditions. To further understand the development of the synapses, we did an extensive study 

involving hundreds of cells and counting thousands of synapses to understand when these synapses 

start to form in our co-culture conditions. 

III.8.4 Characterizing Synapses over Time 

DRG neurons of Synpatobrevin-mRFP knockin (Matti et al., 2013) were co/cultured with 

WT S neurons and fixed with 4% PFA for ten minutes instead of the usual twenty minutes to 

maintain the synapses integrity. The SybKI signal allowed tracing of the processes back to DRG 

neurons and distinguish them from S neurons. The co-cultured neurons were stained against 

bassoon to label presynapses (Brandstatter et al., 1999; Richter et al., 1999; tom Dieck et al., 1998) 

                                                 
40 This experiment was carried out by Dr. Ute Becherer. 

Figure 57 DRG/S neuron Synapses are functional. 
DRG/S neuron co-cultured cells were loaded with Fluo 4 AM. One 
DRG neuron was poked with glass pipette to depolarize the cells 
and induce an increase of the intracellular calcium concentration. 
The bright field image shows One DRG neuron and next to it our 
smaller dorsal horn neurons (DHN). The graph on the right displays 
the change in Fluo4 fluorescence intensity over time. 
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and PSD9541 to label postsynapses (Cho et al., 1992; Hunt et al., 1996). Co-cultured neurons were 

fixed and stained at different time point and synapses were counted (Figure 58 A). We counted two 

types of synapses, those that we called mature synapses that included all three signals from SybKI, 

Bassoon and PSD95 and non-active synapses that encompass the signal of bassoon and PSD95 

near a process that is labelled with SybKI signal. Analysing thousands of synapses, showed that 

mature synapses start to form at day three in vitro and increase as they stay longer while immature 

synapses number remain the same. As the cells grow older in culture, DRG neurons tend to survive 

but S neurons number declines (Figure 58 B). Next, we wanted to understand where these synapses 

are located. In automated fashion, we measured the distances from individual synapses on 

processes back to DRG neurons and S neurons (Figure 58 C). Synapses form in significantly closer 

proximity to S neurons compared to DRG neurons. Thus, TIRFM recordings should be performed 

closer to S neurons to pick up synaptic activity (Figure 58 D). To further ensure a good quality of 

the culture, we made sure that the density of astrocytes remained consistent. This experiment 

enabled us to firmly control the parameters of establishing synapses between DRG and S neurons. 

To achieve a count of 80 synapses per 0.5 mm2, an average number of 3.5 DRG neurons, 5 

S neurons and 3.6 astrocytes are needed per 0.5 mm2 that should be maintained in culture for 9 

DIV. Now that synapses between DRG and S neurons are fully controlled in our co-culture settings, 

studying CAPS isoforms effect on synaptic transmission became feasible. 

 

 

                                                 
41 Post synaptic density 95 
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Figure 58 Synapse formation over time. 
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III.9 CAPS1 Localization at Synapses 

CAPS2 is present in half of the DRG neuronal population and is responsible for the 

secretion of LDCVs in these neurons. We speculated that CAPS1 play an essential role in mediating 

synaptic transmission. If CAPS1 is involved in synaptic transmission by promoting priming of 

synaptic vesicles in DRG neurons then CAPS1 should be localized to synapses. To test this 

hypothesis, we performed an immunostaining of the DRG/S neuron co-culture with anti CAPS1 

antibody and anti synaptophysin which is specifically localized to synapses (Jahn et al., 1985; 

Regnier-Vigouroux et al., 1991; Wiedenmann et al., 1985). To avoid confounding results, the 

culture included DRG neurons that were isolated from WT mice and S neurons that were isolated 

from CAPS dKO mice (Figure 59 E). With this configuration a co-localisation of both proteins can 

only occur at heterologous synapses formed between DRG and S neurons and not at inter S neuron 

synapses. Figure 59 A shows that CAPS1 is aggregating at discrete spots along the neurites partially 

co-localizing with synaptophysin. The co-localization analysis with Manders coefficient showed 

that a large fraction of CAPS1 is not localized to synapses (Figure 59 B) but rather that it was 

spread along the neurites. Additionally, only about 40% of synaptophysin is localized to CAPS1 

because more than 60% of synapses were formed in between S neurons inherently devoid of 

Continuing Figure 58… Co-cultured Synaptobrevin-mRFP Knock-In (SybKI) DRG neurons with WT S neurons were 
fixed with 4% PFA at DIV 03, 05, 07, 09 and 11. To identify fully functional synapses, neurons were stained against 
presynaptic marker Bassoon and postsynaptic marker PSD-95. Synaptobrevin-mRFP in DRG neurons allowed the 
identification of heterotypic synapses that were formed between DRG and S neurons and not homotypic synapses 
in between two S neurons. 
(A) From top to bottom bright field and confocal images of Bassoon (cyan), PSD-95 (yellow) and SybKI (magenta) 
labelling. The fifth row of images corresponds to the overlay of all 4 channels. White arrows point at S neurons and 
yellow arrows indicate synapses in which Bassoon, PSD-95 and SybKI signals co-localize. The last row is a magnified 
portion of the images row 5 delineated by a stippled line. (B) Synapses in which Bassoon, PSD-95 and SybKI signal 
co-localized (top), as well as DRG and S neurons (bottom) were counted manually and plotted against the number 
of DIV. The data was normalized to the acquired surface area. (C) Schematic representation of the analysis method 
used to measure the distance from each heterotypic synapse to the nearest DRG and S neuron cell body of neurons 
that were maintained for 9 days in co-culture. (D) Box plot of the distance between heterotypic synapses and 
neuronal cell bodies at DIV 9. Pink and black lines in the box correspond to the average and median distances, 
respectively. Note that heterotypic synapses were preferentially formed closer to S neurons than to DRG neurons. 
The data originated from two separated cultures. In total DRG neurons were isolated from 2 adult mice while S 
neurons were isolated from 12 P0 mice. Several DRG and S neurons were analyzed and hundreds of synapses were 
counted: DIV 03, nDRG neurons = 75, nS neurons = 139 and nsynapses = 286; DIV 05, nDRG neurons = 84, nS neurons = 157 and 
nsynapses = 258; DIV 07, nDRG neurons = 82, nS neurons = 109 and nsynapses = 845; DIV 09, nDRG neurons = 62, nS neurons = 73 and 
nsynapses = 1401 and DIV 11, nDRG neurons = 31, nS neurons = 58 and nsynapses = 1120. A total of 343 DRG neurons, 536 
S neurons and 4704 synapse were counted. 
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CAPS (Figure 59 C). This indicates that nearly all synapses between DRG and S neuron contained 

CAPS1. Furthermore, CAPS1 fluorescence signal was 2.5 fold higher at synapses in comparison 

to extra synaptic regions (Figure 59 D, F). Therefore, CAPS1 is not only localized to but also 

enriched at synapses suggesting a possible role in synaptic transmission. 

Figure 59 CAPS1 colocalization 
at synapses in co-cultured 
DRG/S neuron. 
(A) Co-cultured P0 WT DRG 
neurons with E18 CAPS dKO 
S neurons that were fixed with 
4% paraformaldehyde at DIV 7 
and stained with antibodies 
directed against CAPS1 and 
synaptophysin. This culture 
condition ensured that CAPS1 
labelling would be exclusively 
localized to DRG and not 
S neurons.  (A) From left to right 
bright field, and confocal 
maximal intensity projected 
images (MIP) of CAPS1 (green) 
and synaptophysin (red) labeling. 
The last panel depicts the overlay 
of both confocal channels. (B) 
Graph showing Manders’ 
coefficients of CAPS1 positive 
pixels co-localizing with 
synaptophysin or of 
synaptophysin positive pixel 
co-localizing with CAPS1 in green 
and red, respectively. (C) 
Percentage of heterotypic 
synapses between DRG/S 
neurons compared to homotypic 
S/S neurons. A total of 1178 
synapse were analyzed, 412 
where heterotypic while 766 
were homotypic. (D) Average 
fluorescence intensity of CAPS1 
labeling measured at 144 
synapse and 135 nearby 
positions on the DRG neuron 
neurites. (E) Schematic 
representation of representation of the experimental design. Yellow dots indicate merged anti CAPS1 and synaptophysin labeling, 

which were localized exclusively to heterotypic synapses by experimental design. (F) Profile diagram of the 
fluorescence intensity of CAPS1 (green line) and synaptophysin (red line) labelling along a DRG neurite shown in 
A right panel. Error bars in (B & D) are SEM and ***p < 0.001 Mann Whitney test for (D). 
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III.10 Measuring Synaptic Transmission via V-GLUT mNectarine 

We initially decided to 

measure synaptic transmission by 

tagging VGLUT with a pH sensitive 

fluorescent protein. Fusion of 

fluorescent protein with synaptic 

vesicle associated proteins like, 

synaptophysin, Synaptobrevin, 

synaptotagmin and VGLUT is a 

common procedure to measure 

synaptic vesicle fusion 

(Miesenbock et al., 1998; 

Sankaranarayanan and Ryan, 2000). 

We were limited in the choice of the 

options of fluorescent proteins 

because CAPS was tagged with 

mTFP and NPY with Venus so we 

selected the pH sensitive m-

Nectarine (Johnson et al., 2009). 

The mNectarine was cloned to the 

N-terminal part of VGLUT so that it 

faces the luminal side of the vesicle 

(See Appendix VI.4). Because of its 

pH sensitive characteristics, 

mNectarine signal was not visible at 

all in acidic environment of 

vesicles. This was one major 

disadvantage, because we would not 

know which cells were transfected. 

Measurements would be carried 

blindly, hoping that the cell was 

Figure 60 Measuring synaptic transmission with vGlut-mNectarine. 
(A) Vesicles that are labelled with vGlut-mNectarine shows no 
fluorescence but once secretion is induced, pH elevates pushing the 
mNectarine to fluoresce. Upon NH4Cl application, NH3 goes inside 
vesicles chelating proton ions and elevating pH inside the vesicles 
which pushes mNectarine to fluoresce serving as a method to reveal 
all synapses in transfected cells. (B) The first panel shows vGlut-
mNectarine signal imaged at 561 nm laser and the second panel 
shows an overlay of the red channel with the bright field. (C) 
Measuring synaptic transmission in transfected cells after inducing 
secretion with 4 V at 10 Hz electrical stimulus. The graph displays the 
fluorescence intensity as a function of time. 
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transfected. Then at the end of the experiment the cells were superfused with NH4Cl to deprotonate 

the content of vesicles and reveal the transfected cells and synapses (Figure 60 A). The production 

of this virus passed through a year of optimization to enhance its transfection efficacy. It required 

a special bacteria to produce the DNA without unwanted genetic recombination. Stbl3 a chemically 

competent E. coli were designed for cloning huge plasmid DNA with direct repeats found in 

lentiviral expression vectors. This bacteria is used to reduce the frequency of homologous 

recombination of long LTRs and often yield ten folds higher DNA compared to the conventional 

DH5α cells. Once transfected it was almost impossible to see the signal in transfected cells and it 

required high laser power which also increase autofluorescence (Figure 60 B). Cells were randomly 

stimulated and no clear response was evident as the noise was very high which made this 

measurements very complicated (Figure 60 C). One layer of complexity was unintentionally added 

to this set of experiments as we were trying to measure synaptic transmission at 5 DIV. We didn’t 

know at that time the optimal time point to measure synaptic transmission. We eventually decided 

to drop this method and replace it by the well-

established synaptophysin-pHluorin lentiviral 

driven expression system. 

III.11 Measuring Synaptic Transmission 

via Synaptophysin-pHluorin 

SypHy held a major advantage over 

VGLUT-mNectarine because the signal is slightly 

visible in transfected cells (Royle et al., 2008). 

Upon vesicle fusion or NH4Cl application and 

therefore pH elevation, an increase in fluorescence 

is recorded (Figure 61). SypHy has been 

established as a powerful tool to record synaptic 

transmission, as it has an excellent signal to noise 

ratio and high transfection efficacy42. Furthermore, 

                                                 
42 The transfection efficacy was about 70% in conventional means of virus production and this percentage is increased 

till +90% in ultra-centrifuged viral batches. 

Figure 61 NH4Cl mode of action on SypHy. 
SypHy is slightly fluorescent at acidic pH, once the 
vesicle fuse with the membrane, the pH elevates 
which increase the fluorescent of SypHy. Upon NH4Cl 
application, the NH3 diffuses into the membrane and 
deprotonates the lumen of vesicles by binding the H+ 
ions inside hence achieving maximal SypHy 
fluorescence intensity. 
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its specificity of marking synaptic vesicles was well documented in the literature (Granseth et al., 

2006; Kwon and Chapman, 2011; Li et al., 2011; Miesenbock et al., 1998; Royle et al., 2008). 

Stimulation protocols were extensively tested (see Materials and Methods chapter) and adjusted to 

evoke robust SV secretion with minimal possible stress to cells. We then used this methodology to 

test the effect of CAPS isoforms on synaptic transmission. We hypothesized that CAPS1 is 

preferentially localized to synapses because it is a priming factor of SV secretion. 

III.11.1 CAPS1 Mediates SV Secretion in DRG/S neuron Co-Culture 

DRG neurons of WT, CAPS1 and 2 dKO, CAPS1 KO and CAPS2 KO genotypes were 

transfected with SypHy, co-cultured with WT S neurons and measured as previously described. 

Raw data of the exemplary measurements are displayed in figure 62. Individual synapses exhibited 

different maximal responses upon NH4Cl application as shown in figure 57 B. For this reason we 

Figure 62 Exemplary traces of averaged synapses from individual recordings of DRG/S neuron co-cultures. 
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normalized all the synapses to their individual maximal response upon 40 mM NH4Cl application 

(Figure 62). Figure 63 shows that the response to 10 Hz depolarization train was maximal in WT 

neurons and reduced to 38.5% in dKO neurons. Similarly, deletion of CAPS1 reduced the peak 

SypHy response to 58%. In contrary, deletion of CAPS2 had little effect on the maximum increase 

of SypHy fluorescence. Hence, in 

DRG neurons synaptic transmission 

appears to be promoted exclusively by 

CAPS1 while CAPS2 seems to be 

responsible for LDCV release. We 

noticed that the average time course of 

SypHy fluorescence intensity change 

of many cells elicited by field 

electrode stimulation was different 

depending on the genotype. The 

question was then whether CAPS2 

might have an indirect effect on 

synaptic transmission. 

III.11.2 A Role for CAPS2 in Synaptic Transmission? 

The average time course of fluorescence intensity change can be influenced by two 

parameters: the fluorescence intensity change of each individual synapse due to spontaneous 

activity or the time point at which they react in delayed fashion within the stimulus range. In the 

latter case, the unsynchronized response to a stimulus would result in a reduced but broader average 

peak. To investigate whether CAPS isoform had an effect on the synchronization of synaptic 

transmission to the stimulus, we measured the delay between the stimulus and the change of 

fluorescence intensity at each synapse. We pooled all synapses that responded with a fluorescence 

increase during immediately upon stimulation. In WT control DRG neurons they represent 80% of 

Figure 63 Synaptic transmission in DRG/S neuron co-culture. 
This graph shows the normalized to individual maximal intensity 
averaged synapses of WT DRG/WT S neurons (black trace), dKO 
DRG-WT S neurons (red trace), 1KO DRG-WT S neurons (light blue 
trace) and 2KO DRG-WT S neurons (navy blue trace). WT set: N = 32 
cell, n = 209 synapse, dKO set: N = 35 cell, n = 252 synapse, 1KO set: 
N = 38 cell, n = 270 synapse and 2KO set: N = 155 synapse. SEM were 
too small to be displayed. 

Continuing Figure 62… (A) Embryonic DRG neurons of WT, dKO, 1KO or 2KO were co-cultured with WT S neurons. 
The first column consists of bright field images of the different co-cultures, the second column shows semi-TIRF 
images before applying the stimulus and the third column display the same cells after the stimulus. The forth column 
shows the application of NH4Cl. (B) Shows the averaged traces from all synapses per one recording. Error bars 
are SEM. 
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all synapses (Figure 64). In CAPS2 

KO neurons the proportion of 

synapses that were synchronous with 

the stimulus decreased slightly to 70% 

while in CAPS dKO and in CAPS2 

KO neurons the percentage of 

synchronous synapses raised 

significantly to more than 90%. In WT 

control neurons the unsynchronized 

released occurred not only with a 

delay after the onset off stimulus but 

also and to a similar extent before the 

stimulus. This finding is intriguing 

because DRG neurons in co-culture 

with S neurons are not spontaneously 

active in vitro (Ransom et al., 1977a). 

Ca2+ concentration measurements 

performed to test the field electrodes show virtually no calcium variation prior field electrode 

stimulation (Figure 42). The asynchronous synaptic transmission prior stimulus was not changed 

in CAPS1 KO neurons when compared to WT neurons. However, SV exocytosis ensuing after the 

onset of stimulus was increased from 11% in WT neurons to 18% in CAPS1 KO neurons. In 

contrast,  in CAPS dKO and CAPS2 KO cells, the unsynchronized response was reduced to less 

than 5% whether the response occurred prior to or after stimulation. Taken together synaptic 

transmission in WT and in CAPS1 KO neurons was considerably more unsynchronized in 

comparison to transmission in CAPS dKO and CAPS2 KO neurons. We hypothesize that 

stimulation of peptidergic DRG neurons, which expressed CAPS2 (Figure 52), induced the release 

of a variety of neuropeptides, which in turn activated their respective presynaptic receptors 

inducing asynchronous synaptic activity. 

Figure 64 Synaptic transmission synchronicity. 
The graph shows synaptic responses synchronicity in different sets 
plotted against time. Synaptic activity was divided into three groups 
that includes the synapses that responded before the stimulus, the 
synapses that responded at the stimulus and the synapses that 
responded in delayed fashion. WT set: N = 32 cell, n = 209 synapse, 
dKO set: N = 35 cell, n = 252 synapse, 1KO set: N = 38 cell, n = 270 
synapse and 2KO set: N = 155 synapse. Error bars are SEM and Mann 
Whitney test significance test was applied, ns non-significant, * p < 
0.5, ** p < 0.01 and ***p < 0.001. 
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III.12 CAPS2 Indirectly Modulates Synapses 

 To test whether CAPS2-mediated secretion peptides affects synaptic transmission, three 

peptide antagonists were used to block the major peptides secreted by peptidergic neurons (Figure 

65). We selected the antagonists based on their selective characteristics reported in the literature. 

We chose the most effective and specific blockers available. For instance, the potent and selective 

TRKB inhibitor Cyclotraxin B was used at 10 µM to alter BDNF related physiological processes 

such as neuronal differentiation and synaptic plasticity (Cazorla et al., 2010; Thibault et al., 2014). 

L-703,606 oxalate salt hydrate was used as a non-peptide NK-1 tachykinin receptor antagonist at 

10 µM (Cascieri et al., 1992; Fong et al., 1992; Greenwood-Van Meerveld et al., 2014; Martinez 

et al., 2015). The third peptide antagonist was Olcegepant to block the binding of CGRP to its 

receptor (Dasgupta et al., 2014; Russo et al., 2009). Olcegepant is known to be not stable for long 

in aqueous solution and can be toxic for cells if incubated with for more than 50 min, for these 

reasons, it was incubated for shorter amount of time at a low concentration (10 nM) (Doods et al., 

2000; Nitzan-Luques et al., 2013) (Figure 65). The three peptide blockers were also added to the 

extracellular solution and the cells were continually perfused during the experiment to ensure 

Figure 65 Blocking CGRP, substance P and BDNF. 
The non-peptides antagonists Olcegepant and oxalate salt hydrate were used to block CGRP and substance P binding 
to their receptors. The peptide antagonist Cyclotraxin B was used to block the binding of BDNF to TRKB receptors. 
The cells were pre-incubated with Cyclotraxin B and oxalate salt hydrate at 10 µM for 2 hrs. Olcegepant was incubated 
for shorter time, about 15 min prior to measurements. During the experiment, the cells were continuously perfused 
with extracellular solution containing the three antagonists to ensure effective blocking of the receptors of interest. 



RESULTS 

 

99 
 

effective blocking. Synaptic transmission was measured in WT with or without peptide blocker 

treatment. We were expecting to see more synchronized synaptic activity coupled to the stimulus 

but the results were far more surprising. Figure 8A shows two exemplary recordings in which WT 

neurons were treated or not (control) by the antagonists. The images are overlays of two successive 

DRG neurites pictures acquired during field electrode stimulation (white) and during 40 mM 

Figure 66 Peptides antagonists reduce active synapses and synchronize them. 
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NH4
+ application that renders all synapses visible (red). In control neurons a large majority of 

synaptic sites were active as can be recognized by the large overlap off red and white pixels. In 

contrary, in neurons treated with inhibitors only few red synaptic sites were also marked white. 

This reveals that only few synapses were active upon depolarization. Overall, nearly 5 times less 

treated synapses responded to the stimulus as in control (Figure 66 B). For responding synapses 

the change in fluorescence intensity of SypHy was nearly identical whether the cells were treated 

or not (Figure 66 C). This indicates that the number of released SV at responding synapse was 

independent of the treatment. More importantly, exocytosis of SV was significantly better 

synchronized to the stimulus upon peptide antagonist treatment when compared to untreated 

control cells (Figure 66 D). In control neurons only 73% of synapses exhibited fluorescence upon 

depolarization whereas in treated neurons this percentage immediately rose to 86% (** p < 0.01). 

Synchronization of synaptic response was essentially due to reduction by a factor greater than 2 of 

the percentage of synapses that were active before the stimulus when comparing control and treated 

neurons (*** p < 0.001). In summary, blocking the effect of CGRP, substance P and BDNF via 

antagonist treatment, reproduced the effect of CAPS2 deletion on unsynchronized synaptic activity. 

Therefore, we can conclude that while CAPS1 directly promotes SV exocytosis, CAPS2 indirectly 

modulates synaptic transmission via control of neuropeptide release contained in LDCVs. 

Continuing Figure 66… Synaptic transmission was measured in WT DRG/S neurons co-culture that were pre-
incubated or not (control) with a cocktail of peptide antagonists containing 10 nM Olcegepant to block CGRP 
receptors, 10 µM L-703,606 oxalate salt hydrate as a non-peptide NK-1 tachykinin receptor antagonist and 1 µM 
Cyclotraxin B to inhibit BDNF binding to TRKB. Cells were stimulated via field electrode at 10 Hz for 1 min and after a 
period of recovery they were superfused with NH4Cl like in Figure 7. Co-cultures were made with 2 adult mice for 
DRG neurons and 12 P0 mice for S neurons. Number of cells was 29 and 50 for control and peptide block, respectively. 
Total number of counted synapses was 241 and 101 for control and for peptides blocking condition, respectively. 
Error bars are SEM and Mann Whitney significance test was applied, ns non-significant, * p < 0.5, ** p < 0.01 and 
*** p < 0.001. (A) Representative overlay of the maximum intensity projection of SypHy epifluorescence images of 
DRG/S neurons acquired prior to (white) and during superfusion with NH4Cl (red). The white image reveals only active 
synapses while the red image depicts all SypHy labeled synapses. Control condition is displayed on the left while cells 
pre-incubated with the blockers are shown on the right. Yellow arrows indicate the synapses that were synchronized 
with the initiation of the stimulus. White arrows point to uncoupled synapses responding before or after stimulus. 
The associated numbers correspond to the delay in seconds. (B) Peptide antagonist pretreatment (grey) reduces the 
average number of active synapses in comparison to control (black). (C) Average synaptic SypHy responses 
normalized to SypHy fluorescence upon NH4Cl application in control compared to cells treated with peptides 
antagonist reveals that the number of SV secreted at each active synapse was not affected by the antagonists. (D) 
Similarly to the deletion of CAPS2, peptide blocker treatment synchronizes the synaptic activity to the stimulus. 
Density dot plot showing the time point of activity and the percentage of synapses that were either synchronized to 
the stimulus or that responded before or after the stimulus. The time point of response of each asynchronized 
synapse is shown by individual symbol whereas all the synchronized synapses are shown as one orange circle. Orange 
dash are the average time point of asynchronized response ± SEM. (E) Model of CAPS1 and CAPS2 function in DRG 
neurons. Our data indicates that SV exocytosis is promoted by CAPS1 and LDCVs are primed by CAPS2. Peptidergic 
cargo released by LDCVs indirectly affects synaptic transmission through binding to their receptors which might 
activate Ca2+ channels or other proteins leading to [Ca2+]i increase and finally SV fusion. 
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IV. Discussion 

Regulation of vesicle release literature had a strong boost in the late 1980s when SNARE 

proteins were first introduced as major elements in regulating membrane fusion (Brunger, 2005; 

Fasshauer, 2003; Hong, 2005; Jahn and Scheller, 2006; Trimble et al., 1988; Wilson et al., 1989). 

It is widely accepted that alterations in the components of the SNARE machinery hinders or even 

abolish vesicle secretion. Many proteins interact with SNARE proteins either prior or subsequent 

to the formation of SNARE complexes (Fiebig et al., 1999; Nicholson et al., 1998) mediating 

together membrane fusion. Accumulating evidence proposes that CAPS regulates the release 

machinery. CAPS is well conserved in evolution. One CAPS isoform (UNC-31) exists in 

C. elegans, whereas two isoforms, CAPS1 and CAPS2 are expressed in vertebrates. CAPS is 

believed to mediate exocytosis in an ATP-dependent step by binding to the vesicle membrane and 

cell membrane (Grishanin et al., 2004). More recent findings indicated that CAPS affects fusion 

pore formation (Eckenstaler et al., 2016). It is well known that mutations in CAPS disturb the 

function of the nervous system, reinforcing the importance of this key player in vesicle fusion. For 

instance, CAPS1 deletion is lethal (Speidel et al., 2003), while CAPS2 deletion is not lethal but 

mutations are often associated with autism (Bonora et al., 2014; Sadakata et al., 2007a). Reviewing 

twenty years of literature concerning CAPS isoforms adds enough complexity about the nature of 

the now-accepted different functions of this protein (Table 3). We aimed to evaluate separately the 

two isoforms, investigate their localization and test their effect on LDCV and SV secretion 

machinery. We believe this is the first time someone has approached the function of CAPS isoforms 

through suggesting that the different localization of both isoforms in brain and DRG tissues 

(Speidel, D. et al., 2003; Sadakata et al., 2006) might imply different functions. Through the course 

of this discussion we will provide compelling arguments showing that CAPS isoforms play 

differential roles in mediating secretion of LDCVs and SVs in DRG neurons. The first experiments 

aimed to identify whether CAPS is found and later to localize CAPS into DRG neurons subtypes. 
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IV.1 CAPS1 is Localized to all DRG Neurons while CAPS2 is Localized to the 

Peptidergic Subtypes 

Localizing CAPS into DRG neurons was not easy, as no good commercial anti-CAPS1 or 

CAPS2 antibodies were not available at the time I started my work. It was necessary to identify 

whether these isoforms were present in DRGs, for this purpose, we made RT-PCR as a first 

approach to address this issue. The presence of glial cells and fibroblast in complete DRGs 

contaminates the observed signal and limits the significance of the conclusions. Nevertheless, RT-

PCR remains a common practice to screen for mRNAs in complete glands. For example full adrenal 

glands have been used to investigate the content of chromaffin cells (Bruder et al., 2007; Nguyen 

Truong et al., 2014); although they contain other cell types such as fibroblasts (Kirshner et al., 

1989; O'Connor et al., 2007) and endothelial cells (Banerjee et al., 1985). A more precise method 

would ultimately be single cell PCR on individual DRG neurons. Previous single cell PCR and 

RNA sequencing showed that these cells are highly heterogeneous (Usoskin et al., 2015) and it is 

therefore very difficult to screen for proteins at individual cell level. Because using RT-PCR was 

a quick and a more convenient approach, we used it to investigate the presence of CAPS isoforms 

at the mRNA level in DRG neurons. RT-PCR semi-quantitative results showed that CAPS1 is 

highly expressed at the mRNA level in DRGs and to lesser extent CAPS2 which was consistent 

with what was previously described (Sadakata et al., 2006). Next we wanted to verify the existence 

of CAPS at the protein level, to show that the detected mRNA is being translated into protein. We 

also wanted to check the developmental expression of CAPS isoforms through time. For this 

reason, we isolated DRGs from embryonic and adult mice. Results showed that both isoforms are 

present in embryonic DRG neurons. These isoforms were differentially regulated during 

development. CAPS1 expression level tripled between the E18 and P7 while CAPS2 levels merely 

increased over this time period. This was not surprising if we took into consideration our later 

findings that show CAPS1 is preferentially localized at synapses and the fact that synapses between 

DRG neurons and spinal neurons start to form at P5-P6 and continues maturation over a period of 

time extending up to P40 in mice (Ashrafi et al., 2014; Betley et al., 2009). Our findings were 

consistent with what was shown of CAPS developmental expression in brain (Speidel et al., 2005). 

With new commercially available CAPS1 antibody and in house made CAPS2 antibody, we were 

able to investigate the cellular and subcellular localisation of CAPS isoform. ICC experiment 
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showed that CAPS1 and/or 2 were present in all DRG neurons. Later on, it was possible to purify 

antibodies specific against CAPS2 from the previous serum. Double ICC experiments showed that 

CAPS1 is found in all DRG neurons while CAPS2 in 45% of the population. This data confirmed 

the immunohistochemistry results of Sadakata et al., (2007). They also agree with findings in other 

regions of the nervous system where it has been shown that CAPS1 was almost expressed in all 

brain cells while CAPS2 was expressed in sub-regions like cerebellum, cortex, hippocampus and 

olfactory bulb (Speidel et al., 2003). Further, using various markers (iB4, anti TRKB, anti NK-1r, 

anti CAPS1 and anti CAPS2) we were able to differentiate between peptidergic and not peptidergic 

neurons. We found that CAPS1 was uniformly localized between the two types while CAPS2 was 

almost localized to all peptidergic medium and large neurons (Figure 67). To further verify this 

finding, we stained against peptidergic subtypes like NK-1r and TRKB and found that CAPS2 

Figure 67 CAPS localization into peptidergic and non-peptidergic neurons. 
DRG neurons were classified according to peptidergic and on-peptidergic neurons using iB4 labeling. Peptidergic 
neurons were exclusively large and extra-large in size and some were of medium sized cells. Non-peptidergic neurons 
on the other hand were either exclusively small sized cells or of medium size. CAPS2 was localized to peptidergic 
neurons while CAPS1 was expressed randomly among peptidergic and non-peptidergic neurons. 
Image courtesy: This image was generated together with the help of Mr. Abed Shaib. 
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localizes to these neurons. This confirms that CAPS2 indeed is localized to peptidergic neurons. 

Interestingly, CAPS2 had a remarkable subcellular cytoplasmic localization, which we failed to 

identify due to time constraints (see Appendix VI.6). Additionally, CAPS1 distribution was not 

uniform among different DRG neurons. Some cells exhibited a stronger CAPS1 fluorescence signal 

compared to other cells. We tried to identify which subtype of these cells had higher CAPS1 

endogenous expression levels. CAPS1 didn’t preferentially localize to cells that were positive with 

TRKB, rather some NK-1r positive neurons exhibited high CAPS1 expression. We showed that 

peptide secretion of WT neurons is not modulated by CAPS1. The elevation of CAPS1 isoform in 

a fraction of peptidergic NK-1r subtype could be explained by the fact that upon nerve injury, some 

larger neurons start to secret substance P that usually do not produce it (Lee et al., 1985; Szucs et 

al., 1999; Weissner et al., 2006). In vivo, substance P secreting neurons represent 13.5% ± 1.9 of 

DRG population (Hall et al., 1997), and this percentage increases to 25% in our DRG neuron 

culture. These newly-secreting substance P stressed neurons need to transmit this information to 

the higher order of CNS dorsal horn neurons (Swett and Woolf, 1985; Yoon et al., 1996). To do 

so, CAPS1 might be upregulated to mediate SV secretion which is in line of our working model. 

After the adequate input, the spinal neurons in return will trigger central sensitization (Khasabov 

et al., 2002). 

IV.2 CAPS2 is the Priming Factor for LDCV Secretion 

Our data showed that CAPS2 and not CAPS1 is responsible for priming LDCVs in DRG 

neurons. It is well documented that CAPS1 is essential for calcium-mediated LDCV exocytosis 

(Ann et al., 1997; Berwin et al., 1998; Grishanin et al., 2004; Renden et al., 2001; Speese et al., 

2007; Tandon et al., 1998). Similarly, CAPS2 has been shown to have a priming function and that 

its function is redundant with CAPS1; for instance, both CAPS1 (Liu et al., 2008) and CAPS2 

primes LDCV secretion in chromaffin cells (Liu et al., 2011). Similarly, CAPS1 (Eckenstaler et 

al., 2016; Farina et al., 2015; Sadakata et al., 2013) as well as CAPS2 (Sadakata and Furuichi, 

2009; Shinoda et al., 2011) can prime LDCV secretion in hippocampal neurons. Consistently, both 

CAPS isoforms have similar function in regulating LDCV release in cerebellum (Sadakata and 

Furuichi, 2009). Unlike the previously cited cell types, in DRG neurons CAPS isoforms not only 

exert distinct functions but also their subcellular localization was different. CAPS2 and not CAPS1 
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is intensely localized to the cytoplasm where it primes LDCVs, while CAPS1 is localized to 

synapses where it primes SVs. The question is whether the differential function of CAPS isoforms 

is due to specific interaction with the two organelles or whether the localization is dictating the 

function of the isoform. We showed that LDCV release is promoted to a similar extent upon 

overexpressing either isoform in WT neurons; it appears that support priming. Moreover, our data 

shows that both isoforms can rescue the CAPS1 and 2 dKO secretion phenotype. We think that 

flooding the cells with viral-driven overexpression overcomes the specific localisation of both 

isoforms and thereby evens their function. In consistence, and while keeping in mind that CAPS1 

is in all DRG neurons, overexpressing CAPS2 in non-peptidergic non-secreting CAPS2-missing 

neurons, secretion is induced (see Figure 54). In line with these findings, CAPS 2 KO DRG 

peptidergic neurons exhibited no LDCV secretion (data not shown). Munc13 exhibits a similar 

phenotype to CAPS1, for example it does not prime LDCV release in chromaffin cells but upon 

Figure 68 CAPS2 primes LDCV release. 
DRG peptidergic neurons endogenously expressing CAPS2 can secrete LDCVs upon stimulating with 4 V at 100 Hz 
while non-peptidergic neurons cannot secrete LDCVs using the same stimulus. This phenotype can be reversed 
upon overexpressing CAPS2 in non-peptidergic neurons driving them to secrete LDCVs. 
Image courtesy: This image was generated together with the help of Mr. Abed Shaib. 
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over expressing it, the secretion is increased (Man et al., 2015). Therefore, we hypothesize that 

both isoforms can prime LDCVs but that due to its somatic localization, CAPS2 is conferring to 

the DRG neurons the ability to secrete LDCVs. Our CAPS priming model allows the possibility of 

extending it to other cell types. For instance, Farina et al., (2015) showed that CAPS1 primes 

LDCV fusion at synapses in hippocampal neurons. They also showed that CAPS1 was localized to 

synapses while CAPS2 was merely present. This fits well our theory that both CAPS isoforms can 

prime LDCVs, it depends on the availability. An important question remains unsolved as how 

would CAPS2 switch the non-peptidergic non-secreting DRG neurons into peptidergic secreting 

neurons? Or simply, CAPS2 derives secretion from non-peptidergic neurons without affecting the 

nature of these cells. 

IV.3 CAPS1 Primes SV Secretion 

To study CAPS effect on synaptic transmission we extensively studied the synapse formation 

between the co-cultured neurons to ensure optimal close-to-physiological conditions for the 

experiments. DRG neurons can be grown with other cell types like skin cells (Koizumi et al., 2004; 

Malin et al., 2007; Reynolds et al., 1997; Taherzadeh et al., 2003) and higher order CNS neurons 

(Gu and MacDermott, 1997; Shepherd et al., 1997). We co-cultured DRG neurons with S neurons 

allowing them to form synapses (Joseph et al., 2010). This co-culture system has been used by only 

very few groups (Cao et al., 2009; Hendrich et al., 2012; Joseph et al., 2011; Ohshiro et al., 2007; 

Yu et al., 2015) and to the best of my knowledge none were using neurons from mice. It was 

important to focus on the synapses that form between DRG neurons and S neurons and exclude all 

the synapses between S neurons. To do so, we initially infected the DRG neurons with adenovirus 

encoding for Life Act-Ruby and added later the S neurons. The processes originating from infected 

DRG neurons were nicely labelled with red and can be differentiated from S neurons processes 

(see Appendix VI.7). But this approach was limited by the transfection efficacy of the adenovirus 

whereby not all DRG neurons would be transfected and therefore excluding some synapses 

between DRG neurons and S neurons. For this reason, we decided to use the SybKI mice (Matti et 

al., 2013) to prepare the DRG neurons co-cultured with WT S neurons. This way, all DRG 

processes were labelled and we could study exclusively the synapses between DRGs and 

S neurons. Through these co-cultures, we confirmed that synapses do form between these neurons. 
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We successfully quantified synapse formation and established the best culture settings, achieving 

Figure 69 CAPS differential role model. 
CAPS2 is localized to peptidergic DRG neurons and is responsible for priming LDCV secretion. CAPS1 is found at all 
DRG neurons and primes SV secretion at synapses with spinal neurons. Our data also indicate that CAPS regulates 
the intravesicular pH by making it more acidic probably by interacting with the proton pumps. 
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high number of synapses with good cell quality suitable for electrophysiological experiments. 

Further, we also confirmed that these synapses are not only linked but also active. We loaded the 

cells with calcium sensitive dye and we stimulated single DRG neuron neighboring S neurons and 

monitored the fluorescence intensity. We did not use the field electrode stimulation as it will 

stimulate all cell simultaneously; rather we took advantage from the fact that cultured DRG neurons 

maintain the ability to sense thermal (Cesare and McNaughton, 1996; Reid and Flonta, 2001), 

chemical (Jordt et al., 2004; Peier et al., 2002) and mechanical stimuli (McCarter et al., 1999). We 

proved that these synapses were functionally connected after trying out several different chemical 

and mechanical stimulating methods. In these well-adjusted co-culture conditions we measured SV 

fusion using the SypHy based imaging technique. We compared exocytosis from WT with CAPS1 

KO, CAPS2 KO or CAPS dKO DRG neurons. Unlike peptide release, measurement of SV fusion 

showed that CAPS1 and not CAPS2 mediates neurotransmitter release (Figure 69). Knocking out 

both CAPS isoforms dramatically reduced SV fusion as compared to WT. While CAPS2 KO didn’t 

have any effect on the scale of SV fusion, CAPS1 KO induced a strong decrease in SV fusion. This 

data is consistent with our ICC experiments where we showed that CAPS2 was concentrated in 

DRG cell bodies while CAPS1 was localized to synapses. This idea is partially supported by a 

recent paper published by Farina et al. (2015) where they show that CAPS1 is present at synapses 

in hippocampal neurons and that CAPS1 primes LDCVs there. Our findings contradict with an 

older paper that showed synaptic vesicles secretion in hippocampal neurons requires both CAPS1 

and CAPS2 (Jockusch et al., 2007). This notion gets puzzling when combined with the fact that 

CAPS2 is weakly present at synapses. Together with the LDCV secretion results, these data also 

indicate that priming can be fulfilled by either isoform in our system, depending on the isoform 

availability and since CAPS1 is localized to synapses, it simply primes SVs. 

IV.4 CAPS2 Indirectly Affects Synaptic Transmission through Peptide Release 

An interesting phenomena was evident while acquiring the synaptic transmission data 

whereby some synapses showed unsynchronized synaptic activity, while the activity of other 

synapses were tightly coupled to the stimulus. In depth analysis showed that synaptic activity in 

dKO DRG neurons was less coupled to the stimulus when compared to the WT genotype. 

Complementary to this, DRG neurons of CAPS2 KO genotype showed a very similar behavior of 
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unsynchronized synaptic activity to dKO DRG neurons. Conversely, CAPS1 KO DRG neurons 

showed synaptic activity that was precisely synchronised to the stimulus as described in WT DRG 

neurons. Altogether, this data infers that CAPS2 is somehow affecting indirectly synaptic 

transmission. Our LDCV secretion data shows that LDCV secretion occurs at a low rate when the 

neurons were stimulated at 10 Hz frequency. Secreted peptides at the cell body or synapses (De 

Camilli and Jahn, 1990; Navone et al., 1989; Scarfone et al., 1988) find their way to peptides 

receptors on the presynaptic membrane, inducing an autocrine feedback on synaptic transmission 

(Figure 70). For instance, it was shown that CGRP receptors are present in CGRP containing nerve 

terminals (Nuki et al., 1994). In hippocampal neurons BDNF does not act on TRKB receptors 

postsynaptically, rather presynaptically modulating long term potentiation (Xu et al., 2000). In 

accordance, NPY was described to have presynaptic activity through multiple NPY receptors that 

Figure 70 CAPS2 indirect effect on synaptic transmission model. 
The electrical stimulation used to induce SV secretion is strong enough to induce LDCV secretion as well. The secreted 
peptides at or near the synaptic cleft find their way to the peptide-receptor on presynapses. Therefore depolarizing 
the membrane to the level of inducing later SV secretion. This model explains the asynchronous synaptic transmission 
that is less coupled to the main stimulus. While CAPS1 regulates SV exocytosis, CAPS2 is responsible for regulating 
LDCV exocytosis. The cargo released from LDCVs affects SV secretion, hence CAPS2 indirectly affects synaptic 
transmission. 
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coexist on pre- and postsynapses (Chen and van den Pol, 1996; Obrietan and van den Pol, 1996). 

Once the peptides are released, their effect is reported to be slower than small sized 

neurotransmitters such as GABA, glutamate and acetylcholine (Schlicker and Kathmann, 2008). 

Perhaps, this could explain the delayed asynchronous synaptic responses. To provide more cues 

elucidating any possible indirect role of CAPS2, we decided to use a cocktail of non-peptide and 

peptide antagonists for the major peptides secreted by DRG neurons. Blocking the effect of CGRP, 

substance P and BDNF induced a synchronization of the synapses with the stimulus suggesting 

that there were no or little other exterior effectors to the synaptic transmission. This evidence 

supports the idea that CAPS2 can regulate the synaptic activity through the secretion of peptide 

contained in LDCVs. The effect of these peptides antagonists was even more pronounced on the 

number of active synapses in control compared to the condition in which the neurons were treated 

with peptide antagonists as their number was significantly reduced from 20 ± 4 to 5 ± 0.3 synapse 

per 0.05 mm2 area. This lasting decrease in synaptic transmission could be due to the fact that the 

absence of these peptides led to an alteration of calcium concentration, subsequently generating 

long term depression (Malenka and Nicoll, 1999). Retrograde signalling involving peptides, 

messengers, conventional transmitters and lipid messengers in neurons often regulates presynaptic 

plasticity (Regehr et al., 2009). These substances can be either released from the neuron cell bodies 

or processes targeting presynaptic structures leading to the modification of synaptic transmission 

in the form of a long-lasting effect (Castillo, 2012; Regehr et al., 2009; Tao and Poo, 2001). Even 

though there is a wide agreement that these messengers trigger LTD and/or LTP, the mechanisms 

and main effectors underlying such changes are unknown (Futai et al., 2007; Gottmann, 2008). 
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V. Conclusion and Perspectives 

CAPS is a complex multi-domain protein that is known to be a strong priming factor in 

several species. Recent evidence indicates that CAPS might be implicated in several functions with 

contradicting roles among different species and within the same species in different cells (Ann et 

al., 1997; Berwin et al., 1998; Eckenstaler et al., 2016; Elhamdani et al., 1999; Farina et al., 2015; 

Grishanin et al., 2004; Jockusch et al., 2007; Liu et al., 2011; Liu et al., 2008; Renden et al., 2001; 

Sadakata and Furuichi, 2009; Sadakata et al., 2013; Shinoda et al., 2011; Speese et al., 2007; 

Speidel et al., 2005; Tandon et al., 1998; Vogl et al., 2015). Through this thesis, we managed to 

demonstrate that CAPS isoforms play differential role in regulating secretion of LDCVs and SVs 

in murine DRG neurons. We showed that CAPS2 is localized to peptidergic neurons and is the 

priming factor for LDCVs while CAPS1 has no function in LDCV exocytosis from DRG neuron 

somata. We also showed that CAPS1 is localized to synapses and is responsible for mediating 

synaptic transmission by direct priming of SVs while CAPS2 had no direct effect. Finally, we 

produced evidence indicating that CAPS2 indirectly affects synaptic transmission by regulating 

peptide release near synapses. 

Our findings provides a probable understanding of pain generation in DRG neurons by 

suggesting a molecular switch for pain synthesis. We propose that CAPS2 might be the molecular 

switch that converts non-peptidergic DRG neurons into neurons that are capable of neuropeptide 

release. By overexpressing the ‘absent’ CAPS2 in non-peptidergic neurons, they start to release 

peptides. It is known that in response to chronic pain injury, the number of peptidergic neurons is 

increased. We speculate that CAPS2 expression in these neurons is activated hence pushing these 

non-peptidergic neurons to secrete. It is unclear though what triggers the change of non-peptidergic 

neurons to peptidergic neurons. To address this important issue, an experiment should be carried 

out by which one would overexpress CAPS2b and stain with iB4 together with CGRP, BDNF, NK-

1r and chromogranin A. The idea is to find a non-peptidergic neuron overexpressing CAPS2 and 

check whether it has any of the peptides inside LDCVs. In order to conduct this experiment 

properly, CAPS2b should be overexpressed slowly using a Lentiviral system to give the cells the 

necessary time for all the possible molecular changes that CAPS2 might induce. In addition to the 



CONCLUSION AND PERSPECTIVES 

 

112 
 

expression speed, additional complexity lies in the transfection efficacy of CAPS-Semileki Forest 

virus in DRG neurons which was as low as 20%. It would be very difficult to find a fixed 

transfected cell that would be stained with iB4 and the other peptidergic subtypes. 

Collectively, we can conclude that CAPS isoforms play differential roles due to its differential 

localization. A lot of questions were answered during this thesis† and a lot of answers still wait to 

be uncovered. For instance, the localization signal that sends CAPS1 to synapses and keeps CAPS2 

in somata of DRG neurons, remains unknown43. It is still unclear whether CAPS2 pushes non-

peptidergic neurons to become peptidergic neurons hence the secretion, or it only derives secretion 

of LDCVs in non-peptidergic neurons once expressed. Furthermore, it is interesting to investigate 

the expression of CAPS2 upon nerve constriction and chronic pain generation in vivo models.  

 

 

 

 

 

 

 

 

                                                 
43 Experiments that attempt to provide evidence about the localization signal of CAPS isoforms were performed but 

are not covered in the course of this book. 

†NB: This thesis book did not include the identification of Munc13 isoforms. Dr. Benjamin Cooper kindly provided 

us with Munc13-eGFP KI mice. We identified two isoforms of Munc13 expressed in DRG neurons, munc13-2 and 

munc13-3. We also investigated the region that is responsible for CAPS1 localization to synapses. Primary results 

favored our speculated region of interest which is also found in munc13-1. Data was not included in this thesis 

awaiting further experiments to support our initial conclusions and other functional experiments. 

It is worth mentioning that with the help of Mr. Ali Harb, we managed to patch adult DRG neurons and induce 

secretion by depolarizing single cells. 
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VI.1 Stimulating Hippocampal Neurons 

Hippocampal neurons were loaded with Fluo 4 AM and were incubated for 20 min before 

recording. The cells were washed by continual perfusion at 37 °C. Hippocampal neurons were 

stimulated through the field electrode with different frequencies while measuring fluorescence 

intensity in epifluorescence at 488 nm. (A) Top graph shows the response of neurons to the 

application of a stimulus of 4 V at 10 Hz, n = 69 cells were stimulated out of which 55 cells 

responded. The lower graph shows the average of Fluo 4 fluorescence intensities. (B) The upper 

graph shows the application of 4 V at 100 Hz stimulus response curves, n = 38 cells were stimulated 

out of which 29 cells responded. The lower graph shows the average of Fluo 4 fluorescence 

intensities. (C) The upper graph shows the fluorescence intensity fluctuations without any 
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stimulation serving as a control. The lower graphs shows the averaging of Fluo 4 fluorescence 

intensities. 

VI.2 CAPS2 Negative Control 

 Anti-CAPS2 Serum 6 was tested with CAPS2 KO control to ensure there is no cross 

reactivity with CAPS1. Embryonic WT DRG neurons were stained against CAPS2 (1:1000) and 

the signal was revealed via staining with goat anti-rabbit secondary antibody coupled to Alexa 488. 

The cells fluorescence was measured via confocal microscopy. Results showed staining in WT 

cells while absence of the signal was evident in CAPS2 KO cells. It is worth to note that anti-

CAPS2 serum 6 staining always had some background noise in CAPS2 KO cells, even with higher 

dilutions, but the signal in WT was significantly higher exhibiting staining pattern in subcellular 

compartments. 
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VI.3 CAPS1 Negative Control 

Similar control involving CAPS1 KO cells were performed to ensure the specificity of 

SynapticSystems anti-CAPS1 antibody (1:1000) and no cross-reactivity with CAPS2. The results 

below shows total absence of punctae staining in CAPS1 KO cells (lower panel in the figure 

below). 

 

VI.4 NPY-Venus is loaded correctly into LDCVs 

NPY-Venus is commonly used for labeling LDCVs with a pH-sensitive fluorescent protein 

(Ramamoorthy et al., 2011). NPY-Venus was cloned into a second generation 

pRRl.sin.cPPT.CMV.WPRE Lentiviral vector in order to drive its expression in DRG neurons. 

Although, Lentiviruses are gentle and express slowly the encoded protein for long term without 

stressing the cells and ensure high survival rate after transfection (Dull et al., 1998; Vigna and 

Naldini, 2000), it was critical to test if NPY-Venus is loaded correctly into LDCVs upon a viral 

overexpression in DRG neurons. To do so, DRG neurons were transfected with the Lentivirus 
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encoding for NPY-Venus and left for 7 days in culture, then fixed with 4% PFA and permeabilized 

with 0.2% triton for 1 h to ensure that LDCV membranes are permeabilized. The primary 

polyclonal antibody against Chromogranin A (ab15160) from Abcam was used in dilution 1/200 

and incubated overnight. Goat anti Rabbit coupled to Alexa 561 was used against the primary 

antibody in dilution 1/2000 and stacks of confocal images were acquired. (A) This panel includes 

a bright field image showing single DRG neuron, NPY-Venus imaged at 514 and assigned to a 

false green color, Chromogranin A signal imaged at 561 nm in red and the merger of the channels. 

(B) Percentage of Chromogranin A positive cells. (C) Manders’ coefficient showing the 

colocalization from NPY to Chromogranin A and the opposite. (D) Line scan analysis to show 

colocalization of NPY with Chromogranin A at individual vesicles. N = 2 adult mice and n = 46 

cells. 
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VI.5 VGLUT-mNectarine structure 

VGLUT-mNectarine was cloned into a second generation Lentivirus pLenti2g-VGLUT-

mNectarine. The mNectarine was inserted near the N-terminal part of VGLUT towards the lumen 

of the vesicle. 

 

VI.6 LDCV Size in Peptidergic and Non-Peptidergic Neurons – STED 

To test if NPY-Venus is loaded in similar vesicles in peptidergic and non-peptidergic neurons 

we decided to measure their size with STED microscopy (Ms Angelina Staudt made the staining 

of the cultures and Dr. Ute Becherer acquired and analysed the STED images). NPY-Venus 

transfected DRG neurons were stained with iB4–Alexa641 to identify peptidergic and non 

peptidergic neurons (see Figure 3). Because STED beam bleaches Venus extremely fast, we fixed 

the DRG neurons with 4% PFA at DIV 7 and performed an immuno-labelling against Venus with 

anti GFP antibody (Life Technology,G10362, at a dilution of 1:20) and anti-rabbit secondary 

antibody (Abberior STAR red). We acquired first a stack of 5 images in confocal mode at 561 nm 

to visualize the IB4 signal (top row: maximum intensity projection). Then we visualized the LDCVs 

in a single section of the cells at 647 nm in confocal (middle row) and STED (bottom row). STED 

allowed us to clearly identify individual vesicles as can be seen on the enlarged portion of the 

images. 
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(A) Vesicles labeled with NPY-Venus had a diameter of 103 ± 2 nm in both DRG neuron subtypes. 

Individual vesicle images were cut out of the image of the cell (top picture), imported in Igor 

(Wavemetrics) and fitted by equation 1 where A is the amplitude, cor the cross-correlation term 

that lays between -1 and 1, xo, yo are the center coordinates and xwidth, ywidth are the x and y half 

width at half maximum of the vesicle displayed in (B). 

(1) 𝑓(𝑥) = 𝐴 ∙ 𝑒𝑥𝑝 [
−1

2(1−𝑐𝑜𝑟2)
((

𝑥−𝑥𝑜

𝑥𝑤𝑖𝑑𝑡ℎ
)

2

+ (
𝑦−𝑦𝑜

𝑦𝑤𝑖𝑑𝑡ℎ
)

2

−
2∙𝑐𝑜𝑟∙(𝑥−𝑥𝑜)(𝑦−𝑦𝑜)

𝑥𝑤𝑖𝑑𝑡ℎ∙𝑦𝑤𝑖𝑑𝑡ℎ
)] 

In the graph we displayed the X and Y full width at half maximum of vesicles from peptidergic 

and non-peptidergic neurons. To insure that we had the resolution to be able to distinguish 

variations in vesicle size we imaged 40 nm large crimson red beads (Invitrogen, bottom picture) 

with the same STED settings as the used to image DRG neurons. Their apparent size was 55.6 ± 1.1 

nm well below the size of NPY-Venus labelled vesicles (n = 10). 

(C) The size distribution of NPY-Venus labeled vesicles show that they represent one population 

whether in peptidergic or non-peptidergic neurons. nneurons = 7 and 6, nLDCVs = 135 and 105 for 

peptidergic and non-peptidergic, respectively. 
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VI.7 Golgi Staining 

In the hopeful efforts to determine CAPS2 subcellular localization, we co-stained with 

CAPS2 purified serum 6 antibody and with anti-GM130 antibody, a cis-Golgi marker from Abcam 

(ab52649). Results showed there is no correlation between CAPS2 signal and cis-Golgi 

compartments. Further staining against other Golgi compartments were not successful. 

Unfortunately, it remains unknown at what subcellular compartment CAPS2 signal is enriched. 

 

 

VI.8 Life Act-Ruby Experiment 

DRG neurons were double transfected by an Adenovirus that was kindly provided by 

Prof. Peter Lipp, encoding for Life Act tagged to Ruby fluorescent protein and a Lentivirus 

encoding for NPY-Venus. S neurons were added on the second day and images were acquired after 

16 hrs using confocal microscope. (A) Bright field image composed of four stitched images with 

12% overlap. (B) NPY-Venus signal imaged at 514 nm. (C) Life Act-Ruby imaged at 561 nm 



 

121 
 

wavelength. (D) Merged image that is magnified in (E.), the white arrows point to a process that 

originates from S neurons. Scale bar is 20 µm. 
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VI.9  List of Antibodies 

Antibody Host Immunogen Manufacturer & 

catalog no. 

Working 

dilution 

  Primary antibody 

CAPS1 Rabbit Recombinant protein (aa 18-

107 of mouse CAPS 1) 

Synaptic systems 

(No 262 013) 

1:1000 

CAPS2 Rabbit Exon 1 of CAPS2e Provided by 

M. Jung 

1:1500 

Synaptophysin1 

(monoclonal)  

 

Mouse Clone 7.2 Synaptic systems 

(No. 101 011) 

1:1000 

 

Bassoon Rabbit Recombinant protein aa 330 

– C terminal (rat) 

Synaptic systems 

(No 141 003) 

1:300 

PSD95 

(monoclonal) 

Mouse Fusion protein aa 77-299 

(human)  

NeuroMab 

(Clone K28/43) 

1:500 

eGFP Rabbit Full length protein Life technologies 

(G10362) 

1:20 

Chromogranin A Rabbit Recombinant fragment from 

the C-terminal (human)  

Abcam 

(ab15160) 

1:1000 

Β-actin Mouse Monoclonal, clone AC-15 Sigma Aldrich 

(A1978) 

1:5000 

 Secondary antibody - Life Technologies, Invitrogen 

Alexa 488  goat anti-mouse A-11001 1:2000 

Alexa 647   goat anti- mouse A-21235 1:2000 

Alexa 488   goat anti-rabbit A-11008 1:2000 

Alexa 647   goat anti-rabbit A-21244 1:2000 

Fab fragments  goat anti-mouse (IgG H&L) Biomol: 

Rockland, 

(810-1102) 

1:50 

STAR Red  goat anti-rabbit (IgG) Abberior 

(2-0012-011-9) 

1:100 

 Table 4 List of used antibodies. 
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