
Numerical Analysis of Stochastic
Biochemical Reaction Networks

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

by
Linar Mikeev

Saarbrücken
2017

Day of Colloquium 31 January 2018
Dean of the Faculty Univ.-Prof. Dr. Frank-Olaf Schreyer

Chair of the Committee Prof. Dr. Holger Hermanns

Reporters
First reviewer Prof. Dr. Verena Wolf
Second reviewer Prof. Dr. Luca Bortolussi
Third reviewer Dr.-Ing. Jan Hasenauer

Academic Assistant Dr. Daniel Stan

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit
selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe. Die aus anderen Quellen oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die
Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ähnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Acknowledgements

I would like to express my deep gratitude to Prof. Dr. Verena Wolf,
my research supervisor, for her enthusiastic encouragement and patient
guidance throughout the course of this research work. Her constructive
suggestions and willingness to dedicate her time have been very much
appreciated. I am profoundly grateful to Dr. Werner Sandmann for
introducing me to the topic of rare events and for his valuable input on
our study on approximative numerical solution methods. Without his aid
and continuous support, this project would have been impossible. I would
also like to express my very great appreciation to Dr. Jan Hasenauer
from Helmholtz Zentrum München whom I met when he visited Saarland
University and whose work on the method of conditional moments served
as inspiration for my research. My grateful thanks are also extended
to Prof. Dr. Tuğrul Dayar whom I was lucky to get to know while
he was visiting our department during his sabbatical leave from Bilkent
University; he guided me at the very beginning of my research with his
valuable constructive suggestions. Special thanks should be given to Prof.
Dr. Luca Bortolussi from University of Trieste for his useful critiques of
this research work.

Additionally, I wish to thank my colleagues, Alexander Andreychenko and
David Spieler, for their assistance with the project on the parameter esti-
mation. I would also like to extend my thanks to the Prof. Dr. Hermanns’
group for fruitful discussions and knowledge sharing: Christian Eisentraut,
Luis María Ferrer Fioriti, Ernst Moritz Hahn, Arnd Hartmanns, Vahid
Hashemi, Hassan Hatefi, Martin R. Neuhäußer, Lei Song and Andrea
Turrini. My thanks also go to everyone whom I had the opportunity
to meet at conferences and workshops, including researchers from the
ROCKS project. And finally, I wish to thank my parents for their support
throughout my research work.

Abstract

Numerical solution of the chemical master equation for stochastic reaction
networks typically suffers from the state space explosion problem due
to the curse of dimensionality and from stiffness due to multiple time
scales. The dimension of the state space equals the number of molecular
species involved in the reaction network and the size of the system of
differential equations equals the number of states in the corresponding
continuous-time Markov chain, which is usually enormously huge and
often even infinite. Thus, efficient numerical solution approaches must
be able to handle huge, possibly infinite and stiff systems of differential
equations efficiently.

In this thesis, we present efficient techniques for the numerical analy-
sis of the biochemical reaction networks. We present an approximate
numerical integration approach that combines a dynamical state space
truncation procedure with efficient numerical integration schemes for
systems of ordinary differential equations including adaptive step size
selection based on local error estimates. We combine our dynamical state
space truncation with the method of conditional moments, and present the
implementation details and numerical results. We also incorporate ideas
from importance sampling simulations into a non-simulative numerical
method that approximates transient rare event probabilities based on a
dynamical truncation of the state space. Finally, we present a maximum
likelihood method for the estimation of the model parameters given noisy
time series measurements of molecular counts. All approaches presented
in this thesis are implemented as part of the tool STAR, which allows
to model and simulate the biochemical reaction networks. The efficiency
and accuracy is demonstrated by numerical examples.

i

Zusammenfassung

Numerische Lösungen der chemischen Master-Gleichung für stochastische
Reaktionsnetzwerke leiden typischerweise an dem Zustandsraumexplosi-
onsproblem aufgrund der hohen Dimensionalität und der Steifigkeit durch
mehrfache Zeitskalen. Die Dimension des Zustandsraumes entspricht der
Anzahl der molekularen Spezies von dem Reaktionsnetzwerk und die
Größe des Systems von Differentialgleichungen entspricht der Anzahl der
Zustände in der entsprechenden kontinuierlichen Markov-Kette, die in
der Regel enorm gross und oft sogar unendlich gross ist. Daher müssen
numerische Methoden in der Lage sein, riesige, eventuell unendlich gros-
se und steife Systeme von Differentialgleichungen effizient lösen zu können.

In dieser Arbeit beschreiben wir effiziente Methoden für die numerische
Analyse biochemischer Reaktionsnetzwerke. Wir betrachten einen inexak-
ten numerischen Integrationsansatz, bei dem eine dynamische Zustands-
raumbeschneidung und ein Verfahren mit einem effizienten numerischen
Integrationsschema für Systeme von gewöhnlichen Differentialgleichungen
benutzt werden. Wir kombinieren unsere dynamische Zustandsraum-
beschneidungsmethode mit der Methode der bedingten Momente und
beschreiben die Implementierungdetails und numerischen Ergebnisse. Wir
benutzen auch Ideen des importance sampling für eine nicht-simulative nu-
merische Methode, die basierend auf der Zustandsraumbeschneidung die
Wahrscheinlichkeiten von seltenen Ereignissen berechnen kann. Schließlich
beschreiben wir eine Maximum-Likelihood-Methode für die Schätzung
der Modellparameter bei verrauschten Zeitreihenmessungen von mole-
kularen Anzahlen. Alle in dieser Arbeit beschriebenen Ansätze sind in
dem Software-Tool STAR implementiert, das erlaubt, biochemische Reak-
tionsnetzwerke zu modellieren und zu simulieren. Die Effizienz und die
Genauigkeit werden durch numerische Beispiele gezeigt.

ii

Contents

Acknowledgements

Abstract i

List of figures vi

List of tables ix

Introduction 1

1 Preliminaries 6
1.1 Chemical reaction networks 6
1.2 Transition classes . 8
1.3 Chemical master equation 8
1.4 Stochatic simulation algorithm 10

2 Approximate Numerical Solution of the CME 12
2.1 Dynamical state space truncation 12
2.2 Explicit methods . 16
2.3 Implicit methods . 18
2.4 Local error control and step size selection 20
2.5 Numerical results . 23

2.5.1 Birth-death process 24
2.5.2 Yeast cell polarization 27

3 Hybrid Numerical Solution of the CME 30
3.1 Stochastic hybrid modeling of biochemical reaction networks 32

3.1.1 Method of conditional moments 33
3.1.2 Example: dimerisation 34

3.2 Numerical algorithm . 35
3.3 Numerical results . 37

3.3.1 Dimerisation . 37

iii

Contents

3.3.2 P53 system . 38

4 Numerical Approximation of Rare Event Probabilities 41
4.1 Importance sampling . 43
4.2 Guided state space exploration 45
4.3 Numerical results . 47

4.3.1 Tandem Jackson networks 48
4.3.2 Enzymatic futile cycle 57

5 Parameter Estimation for Markov Models of Biochemical
Reactions 62
5.1 Parameter inference . 64
5.2 Numerical approximation algorithm 68

5.2.1 Computation of derivatives 68
5.2.2 State-based likelihood approximation 69
5.2.3 Path-based likelihood approximation 71

5.3 Numerical results . 73
5.3.1 Equidistant time series 74
5.3.2 Non-equidistant time series 76
5.3.3 Estimation of initial conditions 77
5.3.4 Parameter identifiability 78

6 STAR : STochastic Analysis of biochemical Reaction net-
works 94
6.1 Architecture . 95
6.2 Model specification . 96

6.2.1 Specification language 97
6.3 Simulation methods . 99

6.3.1 Trajectory generation 100
6.3.2 Discrete-stochastic numerical solution 101
6.3.3 Hybrid numerical solution 102

6.4 Model calibration and sensitivity analysis 103
6.4.1 Sensitivity analysis 103
6.4.2 Optimization . 104
6.4.3 Parameter estimation 105
6.4.4 Parameter scanning 105

7 Conclusions 108

A Model specification language 111

iv

Contents

Bibliography 129

v

List of Figures

1 Chapter dependencies. 4

2.1 State space storage: a) hash table storing the information
about the successor states, b) list of active states with
significant probability mass (> δ). 14

2.2 Average species count for birth-death process (ATOL =
(a) 10−10, (b) 10−12, (c) 10−14). 25

2.3 L2 error for birth-death model (ATOL = (a) 10−10, (b)
10−12, (c) 10−14). 25

2.4 Average step sizes for birth-death process (ATOL = (a)
10−10, (b) 10−12, (c) 10−14). 26

2.5 Numbers of significant states for birth-death process (ATOL =
(a) 10−10, (b) 10−12, (c) 10−14). 27

2.6 Yeast cell polarization: (a,b) average species counts, (c)
number of significant states for different values of ATOL. 28

2.7 (a) Average step sizes and (b) L2 error for yeast polarization
model (ATOL = 10−14). 29

3.1 Results of the full stochastic solution of the dimerisation ex-
ample: a) means of P and P2; b,c) probability distribution
of P and P2 respectively at t = 2. 38

3.2 Absolute difference between the marginal distrubution of
P (a,b) and P2 (c,d) computed using the fully stochastic
numerical approach and the distribution computed using
the hybrid approach MCM1. . . 2 (P) and MCM1. . . 2 (P2) re-
spectively at t = 2. 38

3.3 Means of p53, preMdm2 and Mdm2 computed using (a)
SSA, 1000000 trajectories; (b) MCM1 (∅); (c) MCM4 (∅);
(d) MCM6 (∅). 39

3.4 Probability distribution of (a) p53, (b) preMdm2 and (c)
Mdm2 computed using different approaches. 40

vi

List of Figures

3.5 Means of (a) p53, (b) preMdm2 and (c) Mdm2 computed
using different approaches. 40

5.1 Expected number of complex molecules and two observa-
tion sequences for σ2 = 1 and σ2 = 3. 78

5.2 Generated observation sequences for the gene expression
(a) and multi-attractor (b)-(d) models. Each plot shows
K = 5 sequences with L = 100 time points. 79

5.3 Start points and gradient convergence of the optimization
procedure for the gene expression example: Red pluses
show the potential start points. We use 10, 100, and 1000
start points in case (a), (b), and (c), respectively. The
markers that are connected by lines show the iterative
steps of the gradient convergence while the dashed blue
line shows the true values of the parameters. We chose
K = 5, L = 100 and assume that the parameters are in the
range [10−5, 103]. 81

5.4 Results of the gene expression case study with observable
gene state. The dotted blue rectangle gives the true value
of c1, c2, c3, σ (obs. error), and mRNA(0). The red grid
corresponds to the approximated standard deviation of the
estimators. 82

5.5 Results of the gene expression case study (as in Figure 5.4)
but the state of the gene is not observed. 83

5.6 Illustration of the multi-attractor model. 85
5.7 Parameter estimation results for the multi-attractor model.

The x-axis shows the species that were observed during the
estimation procedure. The dotted blue line corresponds to
the true value of c1, c2, c3, and c4, respectively. The error
bars in (a)-(d) show the mean (plus/minus the standard
deviation) of the estimators. In (e) we plot the running
time of the estimation procedure. 86

5.8 Results of the multi-attractor (as in Figure 5.7), but we
estimate the binding rate of each protein independently. . 87

6.1 Web-based graphical user interface interface of STAR
(model editor (a), experiment editor (b), observing the
time course (c)). 95

vii

List of Figures

6.2 Sample output plots produced by tool STAR: distribu-
tion of mRNA and protein numbers in on-state (a), joint
probability for mRNA and protein numbers in on-state (b). 99

6.3 Absolute difference between the marginal distrubution of
R in on- and off-state computed using the fully stochastic
numerical approach and the distribution computed using
the hybrid approach MCM1. . . 5 (R). 103

6.4 Sensitivities of the three-stage gene expression model with
respect to parameter kp in one (a) and in two (b) dimen-
sions. Parameter scanning and optimization results for the
three-stage gene expression model (c). 104

viii

List of Tables

1.1 Chemical reactions of the simple enzyme reaction network. 7

2.1 Chemical reactions of the birth-death process. 24
2.2 Chemical reactions of the yeast polarization example. . . 26
2.3 Run times for yeast cell polarization model. 28

3.1 Chemical reactions of the simple dimerisation system [Wil11]. 34
3.2 Number of partial conditional moments for a single state

y for varying values of Nz and M 37
3.3 Chemical reactions of the p53 system [AKS13]. 39

4.1 Exact solution results for the two-node tandem network
with parameters λ = 0.04, µ1 = µ2 = 0.48. 49

4.2 Guided state space exploration results for the two-node
tandem network with parameters λ = 0.04, µ1 = µ2 = 0.48.
Six different changes of measure considered: 1. degenerated,
2. 0.48, 0.48, 0.04, 3. 0.6222, 0.3333, 0.0444, 4. 0.4, 0.3, 0.3,
5. 0.6, 0.2, 0.2, 6. 0.8, 0.1, 0.1. 50

4.3 Exact solution results for the two-node tandem network
with parameters B = 100 and λ = 0.1, µ1 = 0.7, µ2 = 0.2. . 51

4.4 Guided state space exploration results for the two-node
tandem network with parameters B = 100 and λ = 0.1,
µ1 = 0.7, µ2 = 0.2. Four different changes of measure con-
sidered: 1. degenerated, 2. (0.2, 0.7, 0.1), 3. (0.4, 0.4, 0.2),
4. (0.3, 0.6, 0.1). 54

4.5 Exact solution results for the two-node tandem network
with slow-down and parameters B = 100, θ = 0.8. Param-
eter set 1: λ = 0.1, µ1 = 0.7, µ2 = 0.2, ν1 = 0.3, parameter
set 2: λ = 0.1, µ1 = 0.7, µ2 = 0.2, ν1 = 0.15. 55

ix

List of Tables

4.6 Guided state space exploration results for the two-node
tandem network with slow-down and parameters B = 100,
θ = 0.8. Parameter sets are as in Table 4.5. Four different
changes of measure considered: 1. degenerated, 2. as sug-
gested in [MSM07], 3. (0.4, 0.4, 0.2, ν1), 4. (0.3, 0.6, 0.1, ν1). 56

4.7 Exact solution results for the eight-node tandem network. 56
4.8 Guided state space exploration results for the eight-node

tandem network. Four changes of measures considered: 1.
degenerated, 2. λ and µ8 exchanged, 3. λ two times faster,
4. λ three times faster. 57

4.9 Chemical reactions of the enzymatic futile cycle. 58
4.10 Exact solution results for the enzymatic futile cycle. . . . 59
4.11 Guided state space exploration results for the enzymatic fu-

tile cycle and parameter biasing vector γ = (1, 1, γ3, 1, 1, 1/γ3)
with varying γ3 . 60

4.12 Guided state space exploration results for the enzymatic
futile cycle for L = 25 and the parameter biasing vector
γ = (1.000, 1.003, 0.320, 1.003, 0.993, 3.008). 61

5.1 Chemical reactions of the simple gene expression model. . 74
5.2 Chemical reactions of the transcription regulation model. 75
5.3 Average of parameter estimates for the simple gene expres-

sion model using equidistant time series. 76
5.4 Standard deviation of parameter estimates for the simple

gene expression model using equidistant time series. . . . 90
5.5 Average of parameter estimates for the transcription regu-

lation model using equidistant time series. 91
5.6 Standard deviation of parameter estimates for the tran-

scription regulation model using equidistant time series. . . 91
5.7 Average of parameter estimates for the enzyme reaction

network. 91
5.8 Standard deviation of parameter estimates for the enzyme

reaction network. 92
5.9 Different approximations of the standard deviations of the

estimators. 92
5.10 Chemical reactions of the multi-attractor model. 93
5.11 Production rate estimation in the multi-attractor model. 93

6.1 Simulation results for the SBML discrete stochastic models
test suite. 107

x

Introduction

The chemical master equation (CME) describes the random dynamics
of many stochastic reaction networks in physics, biology, and chemistry,
amongst other sciences. More specifically, many biochemical reaction
networks can be appropriately modeled by multivariate continuous-time
Markov chains (CTMCs), also referred to as Markov jump processes,
where at any time the system state is represented by a vector of the
numbers of each molecular species present in the reaction network and
the CME is a system of differential equations whose solution, given an
initial probability distribution, provides the transient (time-dependent)
state probabilities.

Exact analytical solutions of the CME are only available for very small
reaction networks or special cases such as, e.g., monomolecular reactions
or reversible bimolecular reactions [JH07, Lau00]. Therefore, in general
computational approaches are required. However, because reaction rates
typically differ by several orders of magnitude, the system dynamics
possess multiple time scales and the corresponding equations are stiff.
Furthermore, the size of the state space typically increases exponentially
with the model dimensionality, that is, with the number of molecular
species in the reaction network. This effect is often referred to as the
curse of dimensionality or state space explosion. Stochastic simulation
of the reaction network and the numerical solution of the CME are
two common complementary approaches to analyze stochastic reaction
networks governed by the CME, both of which must be properly designed
to cope with huge, potentially infinite multidimensional state spaces, and
stiffness.

Stochastic simulation does not solve the CME directly but imitates the
reaction network dynamics by generating trajectories (sample paths)
of the underlying CTMC, where a stochastically exact imitation is in

1

principle straightforward [BKL75, Gil76, Gil77]. Several mathematically
equivalent implementations have been developed [CLP04, GB00, LP06,
MPC+06, San08]. Stochastic simulation does not suffer from state space
explosion, because the state space needs not be explicitly enumerated, but
in particular stochastic simulation of stiff systems becomes exceedingly
slow and inefficient, because simulating all successive reactions in order to
generate trajectories of the underlying CTMC advances only in extremely
small time steps. In order to tackle this problem approximate stochastic
simulation techniques for accelerated trajectory generation have been
developed, in particular various tau-leaping methods [And08, CGP06,
CGP07, Gil01, RES07, RPCG03, San09c, TB04, XC08] where, instead of
simulating every reaction, at any time t a time step size τ is determined
by which the simulation is advanced.

A general problem of stochastic simulation, however, remains also with
approximate techniques: stochastic simulation constitutes an algorith-
mic statistical estimation procedure that tends to be computationally
expensive and only provides estimates whose reliability and statistical
accuracy in terms of relative errors or confidence interval half widths
depend on the variance of the corresponding simulation estimator. Es-
timating the whole probability distribution by stochastic simulation is
enormously time consuming. Therefore, often only statistical estimates
of the expected numbers of molecules are considered, which requires less
effort, but in any case, when estimating expectations, probabilities, or
any other relevant system property, many stochastically independent and
identically distributed trajectories must be generated in order to achieve
a reasonable statistical accuracy [San09b]. Hence, stochastic simulation
is inherently costly. In many application domains it is sometimes even
referred to as a method of last resort.

Several hybrid approximation approaches combine stochastic simulation
with deterministic numerical computations. One way to do this is by
distinguishing between low molecular counts, where the evolution is
described by the CME and handled by stochastic simulation, and high
molecular counts, where an approximation of the CME by the continuous-
state Fokker-Planck equation is viable [HL07, SSDN15]. Another way
is to consider time scale separations where parts of the system (states
or reactions) are classified as either slow or fast and the different parts
are handled by different stochastic simulation approaches and numerical
solution techniques [BTB04, WLVE07, HC06, HR02, MBBS08, MBS08,

2

RA03, SK05, VB04], or even without resorting to stochastic simulation
for any part [BSW06, SW08]. As a major drawback, however, for time
scale separation methods it is in general hard to define what is slow or
fast. In fact, many systems possess multiple time scales rather than only
two and a clear separation of time scales is impossible.

Some numerical approximation approaches tackle the state space explosion
problem by restricting the analysis of the model to certain subsets of
states where the truncated part of the state space has only a sufficiently
small probability. For instance, finite state projection (FSP) algorithms
[BHM+06, MK06, MK07] consider finite parts of the state space that
can be reached either during the whole time period of interest or during
multiple time intervals into which the time period of interest is split.
Then the computation of transient probabilities is conducted based on
the representation of the transient probability distribution as the product
of the initial probability distribution times a matrix exponential involving
the generator matrix of the underlying CTMC restricted to the finite
projection. However, computing matrix exponentials is well known to be
an intricate issue in itself [MVL78, MVL03] and with FSP algorithms it
must be repeated multiple times, corresponding to repeated expansions of
the finite state projection. Alternative state space truncation methods are
based on adaptive wavelet methods [Jah10, JU10], or on a conversion to
discrete time where it is dynamically decided which states to consider at a
certain time step in a uniformized discrete-time Markov chain [MWDH10].

While examples show that these methods can handle the state space
explosion in some cases, for many systems they are still not feasible,
because even the considered finite part of the state space is too large, or
because the specific system dynamics hamper the computational methods
involved. In particular, even if the state space is relatively small or can
be reduced to a manageable size, the stiffness problem must be handled
satisfactorily and it is not clear whether these methods are suitable for
stiff systems.

In Chapter 1, we introduce the notation for stochastic reaction networks,
the underlying CTMC and in particular the CME that describes the
transient probability distribution.

In Chapter 2, we present a novel numerical approximation method that
tackles both the state space explosion problem and the stiffness problem

3

Chapter 1
Preliminaries

Chapter 2
Approximate Numerical

Solution of the CME

Chapter 3
Hybrid Numerical

Solution of the CME

Chapter 5
Parameter Estimation for

Markov Models of
Biochemical Reactions

Chapter 4
Numerical Approximation

of Rare Event
Probabilities

Chapter 6
STAR : STochastic

Analysis of biochemical
Reaction networks

Figure 1 – Chapter dependencies.

where we consider efficient approximate numerical integration based on
the fact that the CME can be cast in the form of a system of ordinary
differential equations (ODEs) and the computation of transient probabili-
ties, given an initial probability distribution, is an initial value problem
(IVP). We combine a dynamical state space truncation procedure, efficient
numerical integration schemes, and an adaptive step size selection based
on local error estimates. The dynamical state space truncation keeps
the number of considered states manageable while incurring only a small
approximation error. It is much more flexible and can reduce the state
space much more than the aforementioned methods. The use of efficient
ODE solvers with adaptive step size control ensures that the method is
fast and numerically stable by taking as large as possible steps without
degrading the method’s convergence order.

In Chapter 3, we present in detail an efficient algorithm for the hybrid
solution of the CME based on the method of conditional moments. We
describe the combined integration of moment and state probability equa-
tions and allow the truncation of insignificant states. We illustrate the
accuracy and efficiency of the algorithm by a number of examples for
which we compare to a pure method of moments solution and to a direct
numerical solution of the CME.

4

In Chapter 4, we address the computation of rare event probabilities
in stochastic models of biochemically reacting systems and Markovian
queueing networks with huge or possibly even infinite state spaces. For
this purpose, we incorporate ideas from importance sampling simulations
into a non-simulative numerical method that approximates transient
probabilities based on a dynamical truncation of the state space. A
change of measure technique is applied in order to accomplish a guided
state space exploration. Numerical results for different example networks
demonstrate the efficiency and accuracy of our method.

In Chapter 5, we propose a numerical technique for parameter inference
in Markov models of biological processes. Based on time-series data of
a process we estimate the kinetic rate constants, initial populations and
parameters representing measurement errors by maximizing the likeli-
hood of the data. The computation of the likelihood relies on a dynamic
abstraction of the discrete state space of the Markov model which suc-
cessfully mitigates the problem of state space largeness. We compare two
variants of our method to state-of-the-art, recently published methods
and demonstrate their usefulness and efficiency on several case studies
from systems biology. Moreover, we provide more complex case studies
and run extensive numerical experiments to assess the identifiability of
certain parameters. In these experiments we assume that not all molec-
ular populations can be observed and estimate parameters for different
observation scenarios, i.e., we assume different numbers of observed cells
and different observation interval lengths.

Finally, in Chapter 6, we present the tool STAR (STochastic Analysis
of Reaction networks), which combines a variety of efficient methods
for stochastic modeling and simulation of complex biochemical reaction
networks. Models can be imported from SBML or can be specified using a
simple human readable language, whereas the simulation methods can be
accessed via the lightweight and easy-to-use scripting language Lua. Along
with the standard sampling methods, the tool provides efficient numerical
methods for the computation of probability distributions and statistical
moments of the model by solving a system of differential equations.
Moreover, the tool efficiently computes derivatives of the probability
distribution w.r.t. model parameters and uses them for sensitivity analysis
and gradient-based optimization methods.

Figure 1 depicts the chapter dependencies.

5

1 Preliminaries

In this chapter, we introduce stochastic models of biochemical reaction
networks which are used throughout the thesis. We also introduce the
underlying CTMC that describes the transient probability distribution.
Finally, we introduce the Gillespie stochastic simulation algorithm (SSA)
which is commonly used for stochastic simulation of biochemical reaction
networks. We assume that the reader is familiar with the basics of the
probability theory and the theory of differential equations.

1.1 Chemical reaction networks
Consider a well-stirred mixture of N ∈ N molecular species S1, . . . , SN
in a thermally equilibrated system of fixed volume, interacting through
R ∈ N different types of chemical reactions, also referred to as chemical
reaction channels, R1, . . . ,RR. At any time t ≥ 0 a discrete random
variable Xi(t) describes the number of molecules of species Si and the
system state is given by the random vector X(t) = (X1(t), . . . , XN(t)).

The system changes its state due to one of the possible reactions, where
each reaction channel Rj, j = 1, . . . , R, is defined by a stoichiometric
equation

Rj : v−j,1S1 + . . .+ v−j,NSN
cj−→ v+

j,1S1 + . . .+ v+
j,NSN , (1.1)

with associated stoichiometric coefficients v−j,1, . . . , v−j,N , v+
j,1, . . . , v

+
j,N and

stochastic reaction rate constant cj. Mathematically, the stoichiometry
is described by the state change vector vj = v+

j − v−j = (v1, . . . , vN),
where vj,i is the change of molecules of species Si due to Rj . That is, if a

6

1.1. Chemical reaction networks

reaction of type Rj occurs when the system is in state x, then the next
state is x + vj, or, equivalently, state x is reached, if a reaction of type
Rj occurs when the system is in state x− vj.

For each reaction channel Rj the reaction rate is given by a state-
dependent propensity function αj, where αj(x)dt is the conditional prob-
ability that a reaction of type Rj occurs in the time interval [t, t+ dt),
given that the system is in state x at time t. That is

αj(x)dt = Pr(Rj occurs in [t, t+ dt) | X(t) = x) . (1.2)

The propensity function is given by cj times the number of possible
combinations of the required reactants and thus computes as

αj(x) = cj
N∏
i=1

(
xi
v−j,i

)
, (1.3)

where xi is the number of molecules of species Si present in state x, and
v−j,i is the stoichiometric coefficient of Si according to (1.1). Because at
any time the system’s future evolution only depends on the current state,
(X(t))t≥0 is a time-homogeneous continuous-time Markov chain (CTMC),
also referred to as a Markov jump process, with N -dimensional state
space X ⊆ NN

0 . Since the state space is countable it is always possible to
map it to N, which yields a numbering of the states.

Table 1.1 – Chemical reactions of the simple enzyme reaction network.

E + S
c1−⇀↽−
c2

C
C c3−→ E + P

As an example, we consider a simple enzyme reaction network with three
reactions given in Table 1.1 that involve four different species, namely
enzymes (E), substrates (S), complex molecules (C), and proteins (P). The
reactions are complex formation (E + S→ C), dissociation of the complex
(C → E + S), and protein production (C → E + P). The corresponding
rate functions are α1(x) = c1 · x1 · x2, α2(x) = c2 · x3, and α3(x) = c3 · x3

where x = (x1, x2, x3, x4). Here, x1 denotes the number of enzymes,
x2 the number of substrates, x3 the number of complex molecules, and
x4 the number of product molecules. The change vectors are given as
v−1 = (1, 1, 0, 0), v+

1 = (0, 0, 1, 0), v−2 = (0, 0, 1, 0), v+
2 = (1, 1, 0, 0),

v−3 = (0, 0, 1, 0), and v+
3 = (1, 0, 0, 1).

7

1.2. Transition classes

1.2 Transition classes
Transition class formalism can be used to describe a Markovian event
system which, in particular, can describe a biochemical reaction network.
It defines the state space of the system and specifies all relevant events
that may trigger state transitions. Also it defines under which conditions a
certain event may occur, how it affects the system state and at which rate
it occurs. Diverse formal specifications of Markovian event systems can
be found in the literature. Here, we adopt the transition class formalism
of [San04b]. Without loss of generality we assume that the state space is
X ⊆ NN . All events that trigger state transitions are classified according
to their effects which yields transition classes. Formally, a transition
class is a triplet Cj = (Uj, uj, αj) where Uj ⊆ NN is the source state
space containing all states in which the event or the corresponding state
transition, respectively, is possible, uj : Uj → NN is the update function
giving the new state uj(x) ∈ NN according to the state transition when
the event occurs in state x ∈ Uj, and αj : Uj → R is the transition
rate function giving the rate αj(x) ∈ R at which the event or transition
occurs in state x ∈ Uj. A particularly appealing feature is that very
different systems can be cast in the same formalism. Any Markovian
event system, in particular any network of biochemical reactions, can be
uniquely described by a set of such transition classes together with an
initial distribution. The numbering of this set is arbitrary but often closely
reflects the actual meaning of the transitions. Thus, a biochemical reaction
network containing R reactions can be described using R transition
classes, where each reaction channel Rj corresponds to a transition class
Cj = (Uj, uj, αj) with Uj = {(x1, . . . , xN) ∈ NN : xi − v−j,i ≥ 0} and
uj(x) = (x1 + vj,1, . . . , xN + vN,1).

1.3 Chemical master equation
The conditional transient (time-dependent) probability that the system is
in state x ∈ X at time t, given that the system starts in an initial state
x0 ∈ X at time t0, is denoted by

px(t) := p(x, t) := p(x, t|x0, t0) = Pr(X(t) = x | X(t0) = x0) (1.4)

and the transient probability distribution at time t is the collection of all
transient state probabilities at that time, represented by the row vector

8

1.3. Chemical master equation

p(t). The system dynamics in terms of the state probabilities’ time
derivatives are described by the chemical master equation (CME)

d

dt
p(x, t) =M(p(t))(x), (1.5)

where the operatorM is defined for any real-valued function g : NN → R
such thatM(g) is the function that maps a state x to the value

M(g)(x) =
R∑
j=1

x≥v+
j

(αj(x− vj)g(x− vj, t)− αj(x)g(x, t)) .

Equation (1.5) is also well known as the system of Kolmogorov forward
differential equations for Markov processes [VK92] and can be written in
the vector-matrix form as

d

dt
p(t) = p(t)Q, (1.6)

where Q is the infinitesimal generator matrix of X with Q(x1,x2) = αj(x1)
if x2 = x1 + vj and x1 − v−j ≥ 0. Note that, in order to simplify
our presentation, we assume here that all vectors vj are distinct. All
remaining entries of Q are zero except for the diagonal entries which are
equal to the negative row sum. These stochastic reaction kinetics are
physically well justified since they are evidently in accordance with the
theory of thermodynamics [Gil92, VK92]. In the thermodynamic limit
the stochastic description converges to classical deterministic mass action
kinetics [Kur72].

Note that (1.5) is the most common way to write the CME, namely as
a partial differential equation (PDE), where t as well as x1, . . . , xN are
variables. However, for any fixed state x = (x1, . . . , xN) the only free
parameter is the time parameter t such that (1.5) with fixed x is an
ordinary differential equation (ODE) with variable t. In particular, when
solving for the transient state probabilities numerical ODE solvers can be
applied. We shall therefore use the notation px(t) in the following.

9

1.4. Stochatic simulation algorithm

Algorithm 1 Stochastic simulation algorithm.
1: t ← 0, x ← x0
2: while t < T do
3: α0 ←

∑R
j=1 αj(x)

4: if α0 = 0 then break
5: sample r1, r2 ∼ U(0, 1)
6: τ ← 1

α0(x) ln
(

1
r1

)
7: j ← the smallest integer satyisfying ∑R

j̃=1 αj̃(x) > r2α0(x)
8: x ← x + vj, t ← t+ τ
9: end while

1.4 Stochatic simulation algorithm
The Gillespie stochastic simulation algorithm (SSA) is commonly used
for the simulation of biochemical reaction networks [Gil76, Gil77]. It
generates a trajectory which represents an exact sample from the prob-
ability mass function that is the solution of the master equation (1.5).
The pseudocode is given in Algorithm 1. Initially, the state of the system
is set to x0. In each iteration, we compute the exit rate which is the
sum of rates of all possible reactions in the current state x. Then we
determine the next reaction to occur with the probability of j-th reaction
to occur of αj(x)

α0(x) . We also sample the time interval after which the next
reaction occurs according to the exponential distribution with the param-
eter α0(x). Finally, we update the simulation time and the state of the
system according to the chosen reaction. We continue iterating until the
final simulation time T is reached or no more reactions are possible in
the current state (line 4 in the pseudocode).

Denote by t1 < t2 < . . . the successive time instants at which reactions
occur and by Rji , ji ∈ {1, R} the reaction that applies at time ti. Let
τi := ti+1 − ti be the time between the i-th and the (i + 1)-th reaction.
Hence, state x(ti) is reached due to the i-th reaction according to Rji at
time ti and remains unchanged for a sojourn time of τi after which the
(i+ 1)-th transition according to Rji+1 occurs at time ti+1 and changes
the state to x(ti+1). Thus, the time evolution of the system is completely
described by the sequence of states and corresponding sojourn times. In
compact form, (x(t0), τ0), (x(t1), τ1), (x(t2), τ2), . . . describes a trajectory
where t0 := 0 and τ0 = t1 is the sojourn time in the initial state x(0).

For a trajectory up to the K-th transition, considering the Markovian

10

1.4. Stochatic simulation algorithm

property which in turn implies exponentially distributed sojourn times,
the path density is given by

dP ((x(t0), τ0), . . . , (x(tK), τK)) =

p(t0)(x(0)) ·
K∏
i=1

αji (x(ti−1)) exp (−α0(x(ti−1))τi−1) (1.7)

where α0(x(ti−1)) := α1(x(ti−1)) + · · · + αR(x(ti−1)) is the parameter
(reciprocal mean) of the exponential sojourn time in state x(ti−1), i =
1, . . . , K. Note that for a given time horizon the number K of transitions
is not known in advance and not deterministic. Formally, it is a random
stopping time, which is in accordance with dP being a density of a
probability measure P defined on the path space of the Markov process.

11

2 Approximate Numerical
Solution of the CME

Numerical integration methods for solving the CME, given p(0) := p(t0),
discretize the integration interval [0, T] and successively compute ap-
proximations p(1) ≈ p(t1),p(2) ≈ p(t2), . . . , p(η) ≈ p(tη), where 0 = t0 <

t1 < t2 · · · < tη = T are the mesh points and hi = ti+1 − ti is the step
size at the i-th step, i = 0, . . . , η − 1. With single-step methods each
approximation p(i+1) ≈ p(ti+1) is computed in terms of the previous
approximation p(i) only, that is, without using approximations p(j), j < i.
For advanced methods the step sizes hi (and thus η, the number of steps)
are not determined in advance, but variable step sizes are determined in
the course of the iteration.

The system of ODEs described by the CME (1.5) is typically large or even
infinite, because there is one ODE for each state in the underlying CTMC,
that is, the size of the system of ODEs equals the size of the CTMC’s state
space. Thus, its solution with standard numerical integration methods
becomes computationally infeasible. However, one can exploit that at
any time only a tractable number of states have “significant” probability,
that is, only relatively few states have a probability that is greater than
a small threshold.

2.1 Dynamical state space truncation
The main idea of our dynamical state space truncation for numerical
integration methods is to integrate only those differential equations in
the CME (1.5) that correspond to significant states. All other state
probabilities are (temporarily) set to zero. This reduces the computational

12

2.1. Dynamical state space truncation

effort significantly since in each iteration step only a comparatively small
subset of states is considered. Based on the fixed probability threshold
δ > 0, we dynamically decide which states to drop or add, respectively.
Due to the regular structure of the CTMC the approximation error of the
algorithm remains small since probability mass is usually concentrated
at certain parts of the state space. The farther away a state is from a
“significant set” the smaller is its probability. Thus, in most cases the total
error of the approximation remains small. Since in each iteration step
probability mass may be “lost” the approximation error at step i is the
sum of all probability mass lost (provided that the numerical integration
could be performed without any errors), that is,

1−
∑
x∈X

p(i)
x . (2.1)

It is important to note that other than static state space truncation
approaches our dynamical approach allows that in the course of the com-
putation states can “come and go", that is, states join the significant
set if and only if their current probability is above the threshold δ and
states in the significant set are dropped immediately when their current
probability falls below δ. Furthermore, states that have previously been
dropped may come back, that is they are re-considered as significant as
soon as they receive a probability that exceeds the threshold δ. This
is substantially different from state space exploration techniques where
only the most probable states are generated but states are never dropped
as time progresses like for instance in [dSeSO92] with regard to approxi-
mating stationary distributions. Our dynamical state space truncation
approach is also much more flexible than finite state projection (FSP)
algorithms [BHM+06, MK06, MK07] which work over pre-defined time
intervals with the same subset of states, where in particular for stiff
systems many reactions can occur during any time interval, so that in
order to safely meet reasonable accuracy requirements the resulting subset
of states is often still extremely large. In contrast to that we update
our set of significant states in each adaptively chosen time step, without
much overhead. Furthermore, by numerically integrating the ODEs we
avoid the intricate computation of matrix exponentials required in FSP
algorithms and by using an efficient data structure we do not even need
to generate any matrices.

In order to avoid the explicit construction of a matrix and in order to

13

2.1. Dynamical state space truncation

● ✕(0,0)

a. State space storage

b. Active states

buckets

1048574 ●

1048573 ✕

0 ✕

2 ✕

1 ●

:

98177 ✕

98178 ●

98179 ●

98180 ✕

:

1048575 ✕

✕…● ● ● ● ● ●

●(1,0)✕

✕ ●(0,1)

●(0,2)✕

state variables

transition rates

static data

dynamic data

(0,0)

(1,0)

(0,1)

(0,2)

(1,1)

…

states

✕●

●●

●●

✕●

✕●

✕●

…
…

✕ ●(1,1)

Figure 2.1 – State space storage: a) hash table storing the informa-
tion about the successor states, b) list of active states with significant
probability mass (> δ).

work with a dynamic set Sig of significant states that changes in each
step, we use a data structure depicted in Figure 2.1. We store the set
Sig of significant states, i.e. active states, as a doubly-linked list where
each element contains a pointer to the element in the hash table which
represents the state (Figure 2.1a) and “dynamic” data which is updated
over the simulation time and is not required after the state is removed
from the list of active states. This data includes state probabilities and
other intermediate variables used during the numerical integration. Note
that each state is mapped into a bucket in the hash table using a hash
function, and the collisions are handled using a separate chaining with
linked lists. Each entry of the hash table representing a state has the
description of the state (i.e. the state variables), so that it can be verified
that an entry corresponds to a state when doing a lookup. We also store
for each state in the hash table a pointer to an element in the list of active
states, if it is currently in the set Sig of significant states. Also, we store a
pointer to the first successor state or a special value if the successor states
haven’t been added yet. Finally, we store some state related “static” data
(e.g. its index) which does not change over the integration time. Each
element of the list of successors contains a pointer to the element in the
hash table representing the successor state, and also contains data related
to the transition to the successor state (e.g. transition rate).

In Figure 2.1a, the hash table contains 5 states: (0, 0), (1, 0), (0, 1), (0, 2)
and (1, 1). States (0, 0) and (0, 2) are mapped into the same bucket due
to the hash collision, and therefore, stored in the same linked list. The

14

2.1. Dynamical state space truncation

Algorithm 2 A numerical adaptive step size integration scheme.
1: Sig ← {x : px(0) > δ}
2: t ← 0, i ← 0
3: compute h0
4: while t < T do
5: compute p(i+1)

6: compute ε̂i, hi+1
7: if step successful then
8: update Sig
9: t ← t+ hi, i ← i+1

10: end if
11: end while

transitions (on the right) correspond to transitons: from state (1, 0) to
state (0, 0), from state (0, 2) to state (0, 1), from state (1, 1) to state (1, 0),
from state (1, 1) to state (0, 0), from state (1, 1) to state (0, 1), and from
state (0, 1) to state (0, 0). Note that state (1, 1) has multiple successor
states which are stored in the same linked list.

The numerical integration algorithm only operates on the list of active
states. Initially, a set of states is added to the list of active states, meaning
that for each state we also add a corresponding element to the hash table.
Note that the allocation of elements in the list of active states and in
the hash table is efficiently implemented using fixed size memory pools.
When doing numerical integration, the successors are firstly looked up in
the hash table, and if they are not set, the successor states are evaluated
using the transition function. Each successor state is then looked up in
the hash table before adding it to the hash table. Note that we only store
reachable states in the list of successor states which makes it memory
efficient in case of a high number of transition classes. Removing a state
only requires several pointer assignments. The corresponding state in the
hash table is not removed, only the pointer to the element in the list of
active states is set to null.

The workflow of the numerical integration scheme is given in pseudocode
in Algorithm 2. We start at time t = 0 and initialize the set Sig as
the set of all states that have initially a probability greater than δ. We
compute the initial time step h0. In each iteration step we compute the
approximation p(i+1) using an explicit or implicit Runge-Kutta method
(see Sections 2.2, 2.3). We check whether the iteration step was successful

15

2.2. Explicit methods

computing the local error estimate ε̂i and ensuring that error tolerance
conditions are met. If so, then for each state we update the field x.p
with x.p2 , and remove the state from Sig if its probability becomes less
than δ. Based on the local error estimate, we choose a time step for
the next iteration (or the repetition of the iteration in case it was not
successful). This and the computation of the initial time step is detailed
in Section 2.4.

2.2 Explicit methods
We consider the whole family of Runge-Kutta methods, which proceed
each time step of given step size in multiple stages. More precisely, a
general s-stage Runge-Kutta method proceeds according to the iteration
scheme

p(i+1) = p(i) + hi
s∑
`=1

b`k
(`), (2.2)

k(`) :=M
p(i) + hi

s∑
j=1

a`jk
(j)

 , (2.3)

which is uniquely defined by weights b1 . . . , bs > 0 with b1 + · · ·+ bs = 1
and coefficients 0 ≤ a`j ≤ 1, ` = 1, . . . , s, j = 1, . . . , s. Thus, k(`) is an
approximation to p(ti +hic`), where c` = a`1 + · · ·+ a`s, and k(`)(x) is the
component of the vector k(`) that corresponds to state x. Hence, k(`)(x)
is the probability of x at stage `. If a`j = 0 for all j ≥ `, then the sum in
Equation (2.3) effectively runs only from 1 to ` − 1, which means that
for each ` = 1, . . . , s the computation of k(`) includes only previous stage
terms k(j), j < `. Therefore, k(1), . . . , k(s) can be computed sequentially,
that is, a`j = 0 for all j ≥ ` yields explicit integration schemes. If there
is at least one j ≥ ` with a`j > 0, then the integration scheme is implicit,
which implies that the solution of at least one linear system of equations
is required per iteration step.

A single iteration step for general explicit s-stage Runge-Kutta schemes
is given in pseudocode in Algorithm 3. We denote the approximated
probabilities p(i)

x and p(i+1)
x , as x.p and x.p2 respectively, We also use

fields x.k1, . . . ,x.ks as the stage terms k(1)(x), . . . , k(s)(x) and initialize

16

2.2. Explicit methods

Algorithm 3 A single iteration step of a general explicit s-stage Runge-
Kutta scheme, defined by s, b1, . . . , bs, and a`j for ` = 1, . . . , s, j < `,
with dynamical state space truncation, which approximates the solution
of the CME.

1: for ` ← 1 to s do
2: for all x ∈ Sig do
3: p̂ ← x.p + h ·∑`−1

j=1 a`j · x.kj
4: for all j ∈ {1, . . . , R} : x+vj ≥ 0 and(

{x + vj} ∈ Sig or h · αj(x) · p̂ > δ̂
)
do

5: if {x + vj} 6∈ Sig then Sig ← Sig ∪ {x + vj} end if
6: x.k` ← x.k` − h · αj(x) · p̂
7: (x + vj).k` ← (x + vj).k` + h · αj(x) · p̂
8: end for
9: end for

10: end for
11: for all x ∈ Sig do
12: x.p2 ← x.p + h ·∑s

j=1 bj · x.kj
13: x.k1 ← 0, . . . , x.ks ← 0
14: end for

them with zero. We compute the approximation of p(i+1) based on
Equation (2.2) by traversing the set Sig s+ 1 times. In the first s rounds
(lines 1-10) we compute x.k1, . . . ,x.ks according to Equation (2.3) and
in the final round (lines 11-14) we accumulate the summands and zero
x.k1, . . . , x.ks. While processing state x in round ` ≤ s, for each reaction
channel j, we transfer probability mass from state x to its successor x+vj ,
by subtracting a term from x.ki and adding the same term to (x + vj).ki
(lines 6-7). We do so after checking (line 4) whether x + vm is already
in Sig, and if not, whether it is worthwhile to add x + vj to Sig, that is,
we guarantee that x + vj will receive enough probability mass and that
x + vj will not be removed in the same iteration. Thus, we add x + vj to
Sig (line 5) only if the inflow h ·αj(x) · (x.p + h ·∑`−1

j=1 a`j ·x.kj) to x + vj
is greater or equal than a certain threshold δ̂ > 0. Obviously, x + vj may
receive more probability mass from other states and the total inflow may
be greater than δ̂. Thus, if a state is not a member of Sig and if for each
incoming transition the inflow probability is less than δ̂, then this state
will not be added to Sig even if the total inflow is greater or equal than
δ̂. This small modification yields a significant speed-up since otherwise
all states that are reachable within at most s transitions will always be
added to Sig, but many of the newly added states will be removed in the

17

2.3. Implicit methods

same iteration.

2.3 Implicit methods
The advantage of implicit methods is that they can usually take larger (and
thus fewer) steps, which comes at the price of an increased computational
effort per step, but paying that price can lead to large speed-up of the
overall integration over the time interval [0, T]. It is common sense that in
general the efficient solution of stiff ordinary differential equations requires
implicit integration schemes [HW96]. In the present paper, with regard to
implicit numerical integration we restrict ourselves to the implicit Euler
method, hence the special case of a one-stage Runge-Kutta method with
a11 = 1 and b1 = 1, which yields

p(i+1) = p(i) + hiM
(
p(i+1)

)
(2.4)

and requires to solve the linear system

p(i+1) − hiM
(
p(i+1)

)
= p(i) (2.5)

for p(i+1) in each step.

Of course, when considering a standard approach to the numerical integra-
tion of the CME, where no state space truncation is considered, then this
linear system is huge, possibly infinite, and its solution is often impossible.
In conjunction with our dynamical state truncation procedure, the linear
system is reduced similarly to the reduction of the state space and the
number of differential equations to be integrated per step, respectively.
However, there a subtleties that must be properly taken into account.

Firstly, since we do not need to maintain huge matrices but we use
the previously described dynamical data structure the solution of the
linear system must be accordingly implemented with this data structure.
Secondly, some states that are not significant at time t may receive
a significant probability at time t + hi and must be included in the
linear system. Thus, a dynamical implementation of the solution of the
linear system is required. Therefore, iterative solution techniques for
linear systems that are usually simply defined by a fixed matrix must
be properly adapted to the dynamical data structure and the dynamical
state space truncation.

18

2.3. Implicit methods

Algorithm 4 A single iteration step of an implicit Euler scheme using the
Jacobi method with dynamical state space truncation, which approximates
the solution of the CME.

1: while convergence not reached do
2: for all x ∈ Sig do
3: for all j ∈ {1, . . . , R} : x+vj ≥ 0 and(

{x + vj} ∈ Sig or h · αj(x) · x.p1 > δ̂
)
do

4: if {x + vj} 6∈ Sig then Sig ← Sig ∪ {x + vj} end if
5: (x + vj).k ← (x + vj).k + αj(x) · x.p1
6: end for
7: end for
8: for all x ∈ Sig do
9: x.p2 ← (x.p+ h · x.k)/(1 + h · α0(x))

10: check convergence for state x
11: x.p1 ← x.p2
12: x.k ← 0
13: end for
14: end while

In fact, when using implicit numerical integration schemes in conjunction
with the dynamical state space truncation procedure, in principle the
solution of a linear system in each integration step is a challenging
potential bottleneck. It is therefore a key point and a key contribution to
implement it efficiently.

We illustrate the solution of the linear system (2.5) using the Jacobi
method, which yields the following iterative scheme

p(i+1,j+1)
x =

p(i)
x + hi ·

∑R
j=1 αj(x− vj) · p(i+1,j)

x−vj

1 + hi · α0(x) , (2.6)

where α0(x) = ∑R
j=1 αj(x). The pseudocode is given in Algorithm 4.

In the (i+ 1)-th iteration of the adaptive numerical integration scheme
(Algorithm 2), we store the “old” approximation of the state probability
p(i+1,j)

x in the field x.p1 and the “new” approximation p(i+1,j+1)
x in the field

x.p2 . We initialize x.p1 with the state probability from the i-th iteration
p(i)

x . In lines 2-7 for each state we compute the sum∑R
j=1 αj(x−vj)·p(i+1,j)

x−vj
and store it in a field x.k. While processing state x, for each reaction
channel j, we transfer probability mass from state x to its successor x+vj .
Similarly to Algorithm 3, we only add a new state to Sig if it receives
enough probability mass. In lines 9-14 for each state we compute the

19

2.4. Local error control and step size selection

“new” approximation of p(i+1)
x according to (2.6) and check whether the

convergence criterion

|p(i+1,j+1)
x − p(i+1,j)

x | ≤ max(rtol ·max(p(i+1,j+1)
x , p(i+1,j)

x), atol), (2.7)

is fulfilled for some relative and absolute tolerances rtol > 0 and atol > 0.
Algorithm 4 terminates if (2.7) holds for all states x ∈ Sig. After the con-
vergence of the Jacobi method, the field x.p2 contains the approximation
p(i+1)

x .

For our numerical experiments we use the Gauss-Seidel method, which is
known to converge faster than the Jacobi method. The iterative solution
is given as

p(i+1,j+1)
x =

p
(i)
x +hi·

∑R

j=1 αj(x−vj)·
[
ξx−vj ·p

(i+1,j+1)
x−vj

+(1−ξx−vj)·p(i+1,j)
x−vj

]
1+hi·α0(x) ,

(2.8)

where ξx−vj is an indicator (or flag) that takes the value 1 if the state
x − vj has been already processed, and 0 otherwise. Thus, in (2.8) in
the summation, we use the “new” approximations of the processed states
and the “old” probability if the approximation was not yet updated in
the current iteration. We modify Algorithm 4 as follows. We compute
the sum as before, but after processing a state x in line 9, we mark it
as processed and propagate αj(x) · (x.p2 − x.p1) to the successor states
which are not marked as processed. After this, the field x.k contains the
sum required for (2.8).

2.4 Local error control and step size selec-
tion

The accuracy as well as the computing time of numerical integration
methods depend on the order p of the method and the step size. The
error in a single step with step size h is approximately chp+1 with a factor
c that varies over the integration interval. Hence, one crucial point for
the efficiency of numerical integration methods is the step size selection.
It is well known that methods with constant step size perform poorly
if the solution varies rapidly in some parts of the integration interval
and slowly in other parts [But08, HNW93, HW96, SGT03]. Therefore,

20

2.4. Local error control and step size selection

adaptive step size selection so that the accuracy and the computing time
are well balanced is highly desirable for explicit and implicit integration
schemes. For both classes of schemes we base our step size selection
strategy on local error estimates.

Our goal is to control the local error and, accordingly, to choose the step
size so that at each step i for all states x ∈ Sig,

|px(ti)− p(i)
x | ≤ RTOL · |px(ti)|+ ATOL, (2.9)

where RTOL and ATOL are user-specified relative and absolute error
tolerances. In particular, note that we use a mixed error control, that is,
a criterion that accounts for both the relative and the absolute error via
corresponding relative and absolute error tolerances, because in practice
using either a pure relative error control or a pure absolute error control
can cause serious problems, see, e.g., Section 1.4 of [SGT03]. Of course,
the true local errors are not available and we must estimate them along
with each integration step.

For the explicit and the implicit Euler method we compute a local error
estimate similarly to the step doubling approach, that is, we approximate
p(i+1) by taking the time step hi and independently taking two consecutive
time steps of length hi/2. The local error estimate is then the vector

ε̂(i) = p(i+1),(hi) − p(i+1),(hi/2) (2.10)

with components ε̂(i)
x ,x ∈ Sig, where p(i+1),(hi) and p(i+1),(hi/2) denote the

approximations computed with time step hi and with two consecutive
time steps of length hi/2, respectively.

The embedded Runge-Kutta methods provide an alternative way for the
step size control. Along with the approximation of order p, they deliver
the approximation of order p− 1 computed as

p̃(i+1) = p(i) + hi
s∑
`=1

b∗`k
(`), (2.11)

where b∗1 . . . , b∗s > 0 with b∗1 + · · ·+ b∗s = 1. Then the local error estimate
is the vector

ε̂(i) = p(i+1) − p̃(i+1) = hi
s∑
`=1

(b` − b∗`)k(`) (2.12)

21

2.4. Local error control and step size selection

with components ε̂(i)
x = p(i+1)

x − p̃(i+1)
x ,x ∈ Sig.

Now, with regard to the step size selection assume we have made a ‘trial’
step with a given step size hi and computed the corresponding local error
estimate. Then we accept the step if for all significant states the local
error estimate is smaller than the prescribed local error tolerance. More
precisely,

∀x ∈ Sig : |ε̂(i)
x | ≤ max(RTOL ·max(p(i)

x , p
(i+1)
x),ATOL) =: τ (i)

x , (2.13)

which implies

∀x ∈ Sig : |ε̂(i)
x | ≤ RTOL ·max(p(i)

x , p
(i+1)
x) + ATOL. (2.14)

If the step is not accepted, then we have to decrease the step size. Other-
wise we can proceed to the next step where it is likely that we can use
an increased step size, because the current one might be smaller than
necessary. In both cases, acceptance or rejection, we have to specify by
how much the step size is decreased or increased, respectively, and in
both cases we do this based on the local error estimate.

Define ε̃(i)
x := ε̂(i)

x /τ
(i)
x ,x ∈ Sig, denote by ε̃(i) the corresponding vector

containing the components ε̃(i)
x , and define

α := p+1

√
1

||ε̃(i)||∞
. (2.15)

It can be easily seen that the largest step size that yields a local error
estimate satisfying (2.13) can be approximated by hiα. Note that α < 1
if (2.13) is satisfied and α ≥ 1 otherwise. This means we can use α as a
factor in both possible cases, that is, for a too large step size that has
been rejected and must be decreased for a retrial, and for an accepted
step size to set an increased step size for the next step. In practice we
also have to account for the fact that the local error is only estimated.
Rejecting a step and re-computing it with a smaller step size should be
avoided as much as possible. Therefore, rather than α we consider ρα
with a safety factor ρ < 1. Besides, step sizes must not be too large and
also too large changes of the step size must be avoided since otherwise the
above approximation of the largest possible step size is not valid [SGT03].

22

2.5. Numerical results

If the step with step size hi is accepted, then we set

hi+1 := min(hmax, hi max(5, ρα)) (2.16)

as the initial trial step size for the next step, where hmax = 0.1 · T .
Otherwise, we decrease the step size for the current step according to

hi := max(hmin, hi max(0.1, ρα)), (2.17)

where hmin = 16 · ε(ti) and ε(ti) is the absolute distance between ti and
the next floating-point number of the same precision as ti. So, hmin is
such that ti and ti + hmin are different in working precision.

For the computation of the initial trial step size, we first compute Ap(t0)
(see (1.5)). This can be done using one stage of Algorithm 3. Then we
compute

h0 = max

hmin,min

hmax, ρ ·
p+1
√
RTOL

RTOL·max
x∈Sig

|x.k1|
max (RTOL · x.p,ATOL)

 .

(2.18)

In the i-th iteration, we stretch the time step hi, if it lies within 10% of
T − ti. Thus, we set the time step hi to (T − ti) if 1.1 · hi ≥ T − ti. Note
that this also covers the case when the time step hi is too large, and using
it would lead to jumping over the final time point T .

2.5 Numerical results
In this section, we present numerical examples in order to demonstrate
the suitability of our approach, its accuracy, run time and the number
of significant states to be processed corresponding to the number of
differential equations to be integrated. As our first example we consider a
birth-death process for which analytical solutions are available such that
we can indeed compare our numerical results with exact values. Then we
consider a more complex yeast cell polarization model.

We compare the accuracies, run times and numbers of significant states
of explicit Euler (referred to as ‘euler’ in the following figures and tables),

23

2.5. Numerical results

implicit (backward) Euler (‘beuler’), and an embedded Runge-Kutta
(‘rk45’) with weights and coefficients chosen according to [DP80] together
with local error control and adaptive step size selection as described in
the previous section. Note that rk45 is similar to the ode45 method of
MATLAB, but while with MATLAB’s ode45 only systems of ODEs of
moderate size can be solved, here, of course, we consider it in conjunction
with our dynamical state space truncation procedure.

For our numerical experiments we fix the relative tolerance RTOL = 10−3.
For the dynamical state space truncation, we use δ = ATOL, which agrees
with the error control property of the ODE solution that the components
smaller than ATOL are unimportant. As a safety factor in the time
step selection procedure we use ρ = 0.8. In the solution of the linear
system required for the implicit Euler method we set rtol = RTOL and
atol = ATOL.

2.5.1 Birth-death process

Our first example is the birth-death process given in Table 2.1 with S1 as
the only species and propensity functions α1(x) = c1, α2(x) = c2x1.

Table 2.1 – Chemical reactions of the birth-death process.

∅
c1−⇀↽−
c2

S1

It is clear that the state space is the infinite set N of all nonnegative
integers so that the corresponding system of differential equations is
infinite, too. We chose the rate constants c1 = 1, c2 = 0.1, the initial
state x1(0) = 1000 and final time horizon T = 50. We analyze the model
with different values of ATOL ∈ {10−10, 10−12, 10−14}. Since reporting
the probabilities of single states over time is not of any practical interest
we focus on representative properties and on informative measures of the
accuracy and the efficiency of our method.

In Figure 2.2 we plot the average number of species S1 over time as
obtained with our approximate numerical integration schemes, where the
run times were less than one second. We also plot the exact solution
obtained according to [JH07]. The plots show for all considered values
of ATOL that there is no visible difference between the exact values and
our approximations, which suggests that our approximations are indeed

24

2.5. Numerical results

extremely accurate.

��

����

����

����

����

����

����

����

����

����

�����

�� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
�

����

�����

������

����

�����

(a)

��

����

����

����

����

����

����

����

����

����

�����

�� ��� ��� ��� ��� ���
�
�
�
��
�
�
��
�

����

�����

������

����

�����

(b)

��

����

����

����

����

����

����

����

����

����

�����

�� ��� ��� ��� ��� ���

�
�
�
��
�
�
��
�

����

�����

������

����

�����

(c)

Figure 2.2 – Average species count for birth-death process (ATOL = (a)
10−10, (b) 10−12, (c) 10−14).

�����

����

����

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

�
�
��
�

����

�����

������

����

(a)

�����

����

����

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

�
�
��
�

����

�����

������

����

(b)

�����

����

����

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

�
�
��
�

����

�����

������

����

(c)

Figure 2.3 – L2 error for birth-death model (ATOL = (a) 10−10, (b) 10−12,
(c) 10−14).

Figure 2.3 depicts plots of the L2 error

||px(tη)− p(η)
x ||2

with tη = T = 50. The norm is computed over all states with positive
probabilities in the exact solution. Note that if there is no corresponding
state in Sig, its probability is taken as 0.

It can be seen that in all cases the L2 error is less than 10−2, which
confirms the high accuracy of the approximations also formally. It can
be further seen that for this example euler is slightly more accurate than
beuler and that rk45 is even by orders of magnitude more accurate than
the Euler schemes. This is well in accordance with the higher order of
rk45.

25

2.5. Numerical results

Figure 2.4 shows the average step sizes taken by the different integration
schemes, where rk45 takes much larger steps than the Euler schemes.

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
��
�

�
�
��
�

����

�����

������

����

(a)

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
��
�

�
�
��
�

����

�����

������

����

(b)

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
��
�
��
�

�
�
��
�

����

�����

������

����

(c)

Figure 2.4 – Average step sizes for birth-death process (ATOL = (a) 10−10,
(b) 10−12, (c) 10−14).

In Figure 2.5 we plot the numbers of significant states used during the
computation. It can be seen that for all considered values of ATOL all
integration schemes only require to handle (integrate) a moderate number
of states (differential equations) where the Euler schemes require roughly
the same number of states and rk45 requires only slightly more, in any
case for any time less than 250 states. Of course, the smaller ATOL
(and thus our truncation probability threshold δ = ATOL) the larger the
number of significant states but with only a slight increase. This shows
that the dynamical truncation procedure indeed substantially reduces the
size of the state space and thus renders possible to integrate numerically
with – as demonstrated by the previous figures – maintaining a high
accuracy of the approximations.

Table 2.2 – Chemical reactions of the yeast polarization example.

∅
c1−⇀↽−
c2

R

L+R
c3−→ RL+ L

RL
c4−→ R

RL+G
c5−→ Ga +Gbg

Ga
c6−→ Gd

Gd +Gbg
c7−→ G

∅ c8−→ RL

26

2.5. Numerical results

��

���

����

����

����

����

�� ��� ��� ��� ��� ���

�
�
��
��
�

����

�����

������

����

(a)

��

���

����

����

����

����

�� ��� ��� ��� ��� ���

�
�
��
��
�

����

�����

������

����

(b)

��

���

����

����

����

����

�� ��� ��� ��� ��� ���

�
�
��
��
�

����

�����

������

����

(c)

Figure 2.5 – Numbers of significant states for birth-death process (ATOL =
(a) 10−10, (b) 10−12, (c) 10−14).

2.5.2 Yeast cell polarization

As another reference example we consider a stochastic model of the
pheromone-induced G-protein cycle in the yeast Saccharomyces cerevisiae
[CNY08, PB00, RDJGP11] given in Table 2.2. We chose the reaction
rate constants c = (0.0038, 0.0004, 0.042, 0.01, 0.011, 0.1, 1050.0, 3.21) and
the initial state x(0) = (50, 2, 0, 50, 0, 0, 0), where the state vector is
given as x = (R,L,RL, G,Ga, Gbg, Gd) and the state space is the infinite
7-dimensional set N7. Note that in order to keep the meaning of the
species here we do not number the species but take the notation from
[RDJGP11].

In Figure 2.6 we plot the average species counts computed using rk45
with ATOL = 10−15 and the numbers of significant states for rk45 over
time for different values of ATOL ∈ {10−10, 10−12, 10−14, 10−15}. Note
that as in the previous example the numbers of significant states as well
as the average numbers of species for euler and beuler only slightly differ
from those for rk45, so that we omit to include them in the plots. It is
clear that in the much more complex yeast cell polarization model there
are many more significant states than in the birth-death process, but
the numbers of significant states are still in a range that allows accurate
approximations in reasonable time.

In Table 2.3 we list the run times for different values of ATOL. We can see
that in this example beuler heavily outperforms the explicit methods euler
and rk45. This confirms the advantages of implicit methods over explicit
methods for stiff systems. In fact, while the birth-death example is not

27

2.5. Numerical results

��

���

���

���

���

���

�� �� �� �� �� ��

�
�
�
��
�
�
��
�

����

�

��

�

��

���

(a)

��

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�� �� �� �� �� ��

�
�
�
��
�
�
��
�

����

��

(b)

��

������

������

������

������

������

������

������

������

�� �� �� �� �� ��

�
�
��
��
�

����

�����

�����

�����

�����

(c)

Figure 2.6 – Yeast cell polarization: (a,b) average species counts, (c)
number of significant states for different values of ATOL.

or only moderately stiff, the yeast cell polarization model constitutes a
very stiff system of differential equations.

Table 2.3 – Run times for yeast cell polarization model.

method ATOL = 10−10 ATOL = 10−12 ATOL = 10−14

euler 761s 1481s 5839s
beuler 35s 76s 139s
rk45 5806s 18603s 26126s

In Figure 2.7 we plot the average step size over time and the L2 error for
ATOL = 10−14. Since there is no analytical solution, we compute the L2
with respect to the distribution obtained using rk45 with a lower absolute
tolerance ATOL = 10−15, applying the rationale that with an even lower
error tolerance the method gives nearly exact values. The respective L2
errors for ATOL = 10−10 and ATOL = 10−12 are similar.

28

2.5. Numerical results

����

����

����

����

���� �� ���� �� ���� �� ���� �� ���� ��

�
�
�
��
�
��
�

�
�
��
�

����

�����

������

����

(a)

�����

�����

����

����

����

����

����

����

����

����

���� �� ���� �� ���� �� ���� �� ���� ��

�
�

�
�
��
�

����

�����

������

����

(b)

Figure 2.7 – (a) Average step sizes and (b) L2 error for yeast polarization
model (ATOL = 10−14).

29

3 Hybrid Numerical Solution of
the CME

The analysis of stochastic models that describe networks of chemical
reactions is either based on Monte Carlo sampling or on a numerical
solution of the underlying chemical master equation (CME). The latter
is advantageous for the estimation of parameters since likelihoods and
their derivatives can be computed simultaneously [AMSW11]. Numerical
methods, however, become slow when too many states have to be consid-
ered. If some species are present in high copy numbers even neglecting
low-probability states is not enough to make a numerical solution feasible.

As an orthogonal approach, moment-based analysis methods have been
developed [Eng06, Hes08, RMASL11, LKK09]. Instead of integrating the
distribution of all states over time, the idea is to represent the distribution
by its (multidimensional) moments up to order M and integrate the
moments over time. The number of equations is, even for, say, M = 10,
very small compared to the number of states and thus the system of
equations that has to be integrated is very small in comparison to the
CME. In addition, the number of moments does not increase as the copy
number of certain species increases.

Moment-based approaches, however, have a number of disadvantages.
First of all, one has to reconstruct the distribution from the moments at
the final time point of the integration, which is a difficult optimization
problem that can only be solved for small dimensions [AMW15b]. Then,
the moment equations often become very stiff, in particular for M > 4.
Moreover, the generation of the correct moment equations is difficult
due to the combinatorial nature of the multidimensional moments and
thus it is non-trivial to implement such approaches. Another problem

30

is that the moment representation of certain systems looses information
about qualitative properties such as oscillation and multistability. For
instance, the stochastic version of the predator-prey model shows damped
oscillations of the predator means for certain parameter combinations.
However, with M = 2 the moment equations are unable to yield a correct
solution [DMW10]. For M > 2 the equations result in a system that is
singular up to working precision.

Hybrid methods have been developed to mitigate the difficulties of
moment-based approaches and ensure scalability as certain chemical
populations become large [HWKT13, HMMW10, MLSH12, Jah11]. The
basic idea is to integrate the marginal distributions of low copy-number
species according to a ”small” master equation and couple this equation
with the conditional moment equations for the large copy-number popu-
lations. This is a natural representation in particular for gene regulatory
networks since low copy-number species represent the state of a gene
(active or inactive) and thus the moment equations are integrated for
all different possible gene states. The resulting system of differential
equations is typically less susceptible to numerical instabilities and for
increasing M the total size of the system is smaller than the size of the
system in a purely moment-based approach. Also, for increasingM hybrid
methods show greater accuracy for all moments of order < M compared to
the moments obtained from a purely moment-based approach [HWKT13].

Hasenauer et al. presented the method of conditional moments (MCM)
where the system of differential equations for the conditional moments
and the small master equation were derived for an arbitrary truncation
order M [HWKT13, KTH14]. When the probability of the condition is
zero this system contains algebraic equations and thus requires the use of
a solver for differential algebraic equations (DAE). In addition, Hasenauer
et al. discuss in detail that transformations to ordinary differential
equations by setting such probabilities to a small value ε may result in
large approximation errors.

In this chapter we show how the equations obtained from the MCM can
be solved by a simple integration of the differential equations without
the need of solving algebraic equations. In addition, we combine the
MCM with state truncation approaches that have been proposed for the
numerical solution of the CME in Chapter 2. In this way, it is possible
to condition on species with an unbounded copy-number which is useful

31

3.1. Stochastic hybrid modeling of biochemical reaction
networks

for any chemical population that has a small mean and is therefore a
driver for the stochasticity of the system. As shown by Hasenauer et
al., for such species a moment representation may be inadequate and a
static truncation was used to keep the population range finite. Here, we
use a dynamic truncation of the range that neglects population numbers
with a probability smaller than a truncation threshold δ. We describe in
detail, how the MCM can be combined with a state truncation and how
the solution of algebraic equations can be avoided without a significantly
larger approximation error.

3.1 Stochastic hybrid modeling of biochem-
ical reaction networks

A numerical solution of the CME is usually extremely slow or infeasible
for large models even when using truncation-based methods, because a
very large number of states has to be processed [HMMW10, AMSW11,
AMSW12, MW12]. An alternative is to use a hybrid state space repre-
sentation, where some species are represented by their distribution whilst
others are represented by their moments. Formally, the set of species is
split into two sets S(y) and S(z) (S = S(y) ∪ S(z)). We consider the process
X(t) = (Y(t) Z(t)), where Y(t) describes the evolution of the discrete
species S(y) over time and Z(t) describes the evolution of the continuous
species S(z) over time. For each reaction j, the change vectors v(y),−

j ,
v(z),−
j and v(y),+

j , v(z),+
j are then the corresponding entries of v−j and v+

j

respectively.

We denote the probability distribution of Y(t) as

p(y|t) = Pr(Y(t) = y) .

Note that
p(x|t) = p(z|y, t)p(y|t).

We denote the conditional non-central moments of Z(t) as

µI,z(y, t) = Ez[ZI(t)|y, t],

32

3.1. Stochastic hybrid modeling of biochemical reaction
networks

and the conditional central moments as

MI,z(y, t) = Ez[(Z(t)− µz(y, t))I|y, t],

where I = (I1, . . . , INz), Ii ≥ 0 and ZI(t) = ∏Nz
i=1 Z

Ii
i (t).

3.1.1 Method of conditional moments

In [KTH14], the equations for the evolution of the marginal probabilities
p(y|t) and the conditional moments µI,z(y, t) are derived for a given
partitioning S(y) ∪ S(z). The corresponding system of DAEs is given by

d

dt
p(y|t) = − p(y|t)

R∑
j=1

Ez[αj(y,Z)|y, t]

+
R∑
j=1

y≥v(y),+
j

p(y− v(y)
j |t)Ez[αj(y− v(y)

j ,Z)|y− v(y)
j , t] (3.1)

p(y|t) d
dt
µI,z(y, t) + µI,z(y, t) d

dt
p(y|t) =

− p(y|t)
R∑
j=1

Ez[αj(y,Z)ZI|y, t] +
R∑
j=1

y≥v(y),+
j

p(y− v(y)
j |t)

×Ez[αj(y− v(y)
j ,Z)(Z + v(z)

j)I|y− v(y)
j , t]

(3.2)

Equation (3.1) is a ”small” master equation for the marginal distributions
of low copy-number species and Equation (3.2) describes the evolution of
the conditional moments of the large copy-number populations. Equa-
tions (3.1) and (3.2) contain the expectation Ez[αj(y,Z)ZI|y, t], which
can be evaluated using a Taylor series expansion (TSE) of αj(y,Z)ZI

about the mean:

Ez[αj(y,Z)ZI|y, t] =
∞∑
I1=0

. . .
∞∑

INz=0

1
I!
∂I
(
αj(y, z)zI

)
∂zI

∣∣∣∣∣∣
z=µz(y,t)

MI,z(y, t),

(3.3)

where ∂I = ∂I1+...+INz , ∂zI = ∂zI11 . . . ∂z
INz
Nz and I! = I1! . . . INz !.

Since the propensity functions are not restricted to be polynomial, their

33

3.1. Stochastic hybrid modeling of biochemical reaction
networks

TSEs are infinite and have to be truncated. We use the low dispersion
closure scheme setting the central moments of order greater than M to
zero, i.e. MI,z(y, t) = 0 if ∑Nz

i=1 Ii > M .

In contrast to [HWKT13, KTH14], our implementation operates on a
dynamical state space which includes only states Sig with significant prob-
ability mass (> δ) (see Section 2.1). Therefore, the term p(y|t) d

dt
µI,z(y, t)

in (3.2) doesn’t become zero. Thus, the DAEs (3.2) can be rewritten
as ODEs for the partial conditional moments µ∗I,z(y, t) = p(y|t)µI,z(y, t).
The right hand hand side of (3.1) and (3.2) contains µI,z(y, t) which can
be computed by dividing µ∗I,z(y, t) by p(y|t) because p(y|t) > 0. For
newly added state y to Sig, the partial conditional moments µ∗I,z(y, t) are
initialized with zero because the state probability is assumed to be 0.

3.1.2 Example: dimerisation

We illustrate the conditional moment equations using a simple dimerisa-
tion system [Wil11], which includes two reactions given in Table 3.1. Note
that the propensity functions for the first and the second reaction are
given as c1

xP (xP−1)
2 and c2xP2 respectively, where xP is the concentrations

of P and xP2 is the concentrations of P2. We set M = 2 and consider
partitionings of the set of species S(y) = {P, P2}, S(z) = ∅ and S(y) = {P},
S(z) = {P2}.

Table 3.1 – Chemical reactions of the simple dimerisation system [Wil11].

2 P
c1−⇀↽−
c2

P2

1. S(y) = {P,P2}, S(z) = ∅

d

dt
p((xP , xP2), t) =− p((xP , xP2), t)

(c1

2 xP (xP − 1) + c2xP2

)
+
[
p((xP + 2, xP2 − 1), t)c1

2 (xP + 2)(xP + 1)
]

xP2≥1

+ [p((xP − 2, xP2 + 1), t)c2(xP2 + 1)]xP≥2

34

3.2. Numerical algorithm

2. S(y) = {P}, S(z) = {P2}

d

dt
p(xP , t) =− p(xP , t)

(
c1

2 xP (xP − 1) + c2µP2(xP , t)
)

+ p(xP + 2, t)c1

2 (xP + 2)(xP + 1)

+ [p(xP − 2, t)c2µP2(xP − 2, t)]xP≥2

d

dt
µ∗P2

(xP , t) =− p(xP , t)
(
c1

2 xP (xP − 1)µP2(xP , t) + c2µP 2
2
(xP , t)

)
+ p(xP + 2, t)c1

2 (xP + 2)(xP + 1)µP2(xP +2, t)

+
[
p(xP − 2, t)c2

(
µP 2

2
(xP − 2, t) + µP2(xP − 2, t)

)]
xP≥2

d

dt
µ∗P 2

2
(xP , t) =− p(xP , t)

(
c1

2 xP (xP − 1)µP 2
2
(xP , t) + c2µP 3

2
(xP , t)

)
+ p(xP + 2, t)c1

2 (xP + 2)(xP + 1)µP 2
2
(xP +2, t)

+
[
p(xP − 2, t)c2

(
µP 3

2
(xP − 2, t) + 2µP 2

2
(xP − 2, t)

+ µP2(xP − 2, t))]xP≥2

Similarly, the systems of ODEs (3.1) and (3.2) can be derived for parti-
tionings of the set of species S(y) = {P2}, S(z) = {P} and S(y) = ∅, S(z) =
{P, P2}.

3.2 Numerical algorithm
In this section we present the implementation details of the solution of
the system of ODEs, which results from the system of DAEs (3.1)-(3.2)
under the assumption that the state probabilities p(y|t) are greater than
zero. Our algorithm for the hybrid solution of the CME is based on the
numerical adaptive step size integraton scheme described in Chapter 2.
Alongside with the state probabilities, for each state y we store the partial
conditional moments µ∗I,z(y).

We consider k-dimensional tetrahedral arrays µ∗,kA,z(y) with A = [a1, . . . , ak]

35

3.2. Numerical algorithm

and 1 ≤ ak ≤ . . . ≤ a2 ≤ a1 ≤ Nz (k = 1 . . .M) such that

µ∗,kA,z(y) = µ∗I,z(y) ⇐⇒ ∀i ∈ 1, . . . , Nz : Ii =
k∑
j=1

1aj=i, (3.4)

where 1aj=i equals 1 if and only if aj = i and equals 0 otherwise. Thus,
we write out indices of species in lexicographic order and each index
is written as many times as the number in I vector. For example, if
I = (2, 3, 1), then A = [1, 1, 2, 2, 2, 3].

Then, for each state y ∈ Sig, the marginal probability p(y) and the
conditional partial moments µ∗z(y) can be stored in a vector u(y) = (p(y),
µ∗,1z (y), µ∗,2z (y), . . . , µ∗,Mz (y)). Thus, we can rewrite the system of ODEs
as:

d

dt
u(t) = F (u) , (3.5)

where F corresponds to the right hand side of the modified system of
equations (3.1) and (3.2).

We denote the number of elements in the array µ∗,kz as len(µ∗,kz). Also,
we denote the indices of p and µ∗I,z in the vector u as loc(p) and loc(µ∗I,z)
respectively. Then we have the following equalities:

len(µ∗,kz) =
(
Nz + k − 1

k

)
,

loc(p) = 0,

loc(µ∗i,z) = 1 + i,

loc(µ∗I,z) = loc(µ∗,kA,z) = 1 +
k−1∑
j=1

len(µ∗,jz) +
k∑
r=1

(
ar + k − r
1 + k − r

)
.

The number of partial conditional moments for a single state y can be
computed as

M∑
j=1

len(µ∗,jz) =
(
M +Nz

M

)
− 1,

and several values are given in Table 3.2. Thus, the total number of

36

3.3. Numerical results

equations in the system of ODEs is equal to

|Sig| ·
(
M +Nz

Nz

)
,

which is the number of states with significant probability times the number
of equations per state.

Nz

M 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 5 9 14 20 27 35 44
3 3 9 19 34 55 83 119 164
4 4 14 34 69 125 209 329 494
5 5 20 55 125 251 461 791 1286
6 6 27 83 209 461 923 1715 3002
7 7 35 119 329 791 1715 3431 6434
8 8 44 164 494 1286 3002 6434 12869

Table 3.2 – Number of partial conditional moments for a single state y
for varying values of Nz and M .

3.3 Numerical results
In this section we investigate two biological systems, with polynomial as
well as non-polynomial propensity functions. We apply our algorithm of
conditional moments using different partitionings of species and compare
the accuracy and the running time. In the following, we denote the
method of conditional moments forM moments and for the set of discrete
species S(y) as MCMM

(
S(y)

)
. Note that MCM/ (S) corresponds to the

full stochastic solution.

3.3.1 Dimerisation

The first example is the dimerisation model from Section 3.1.2 with the
parameters c = (1.66 · 10−3, 0.2) and the initial counts x0 = (301, 0). In
Figure 3.1(a) we plot the means of P and P2 obtained using MCM/ (S).
In Figure 3.1(b,c) we plot their probability distributions for t = 2.

Further, we consider MCM1 (P) and MCM2 (P) and plot the absolute

37

3.3. Numerical results

��

���

����

����

����

����

����

����

�� �� ��� ��� ���

����

�
��

(a)

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�

(b)

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

��� ��� ��� ��� ��� ��� ��� ����

��

(c)

Figure 3.1 – Results of the full stochastic solution of the dimerisation
example: a) means of P and P2; b,c) probability distribution of P and P2
respectively at t = 2.

��

�������

�������

�������

�������

�������

�������

���� ���� ���� ����

�

(a)

��

�������

�������

�������

�������

�������

�������

���� ���� ���� ����

�

(b)

��

�������

�������

�������

�������

�������

�������

��� ��� ���

��

(c)

��

�������

�������

�������

�������

�������

�������

��� ��� ���

��

(d)

Figure 3.2 – Absolute difference between the marginal distrubution of P
(a,b) and P2 (c,d) computed using the fully stochastic numerical approach
and the distribution computed using the hybrid approach MCM1. . . 2 (P)
and MCM1. . . 2 (P2) respectively at t = 2.

difference between the marginal distrubution of P computed using the fully
stochastic numerical approach and the distribution computed using the
hybrid approach MCM1. . . 2 (P). It can be seen that the accuracy slightly
improves at the edge of the distribution when increasing M from 1 to 2.
Similarly, we plot results obtaind for MCM1. . . 2 (P2) in Figure 3.2(c,d).

3.3.2 P53 system

The second example is the oscillatory p53 system, consisting of three
proteins p53, precursor of Mdm2 and Mdm2, which are connected via a
nonlinear feedback loop [AKS13]. The reactions of the system are given
in Table 3.3 where x1, x2 and x3 are the concentrations of p53, preMdm2

38

3.3. Numerical results

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

����

���
�������

����

(a)

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

����

���
�������

����

(b)

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

����

���
�������

����

(c)

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

����

���
�������

����

(d)

Figure 3.3 – Means of p53, preMdm2 and Mdm2 computed using (a) SSA,
1000000 trajectories; (b) MCM1 (∅); (c) MCM4 (∅); (d) MCM6 (∅).

and Mdm2 respectively, and α3 = c3
x3x1
x1+c7 , α4 = c4x1. The parameters of

the system are chosen as c = (90.0, 0.002, 1.7, 1.1, 0.93, 0.96, 0.01) and the
initial counts are x0 = (70, 30, 60). In Figure 3.5 (a) we plot the means of
the protein concentrations computed using 1000000 SSA trajectories.

Table 3.3 – Chemical reactions of the p53 system [AKS13].

∅
c1−⇀↽−
c2

p53
p53 ∗−→ ∅
∅ ∗−→ pMdm2

pMdm2 c5−→ Mdm2
Mdm2 c6−→ ∅

Firstly, we consider the case when S(y) = ∅. We plot the means of the
protein concentrations in Figure 3.5 (b), (c), (d) for M = 1, M = 4 and
M = 6 respectively. The accuracy of the method clearly becomes higher
as the number of moments M increases. For M > 6 we were not able to
obtain the results due to too small time step during the solution of the
system of ODEs.

Further, we consider the case when S(y) = {p53} and M = 1, 2 which
resulted in a very inaccurate solution (see Figures 3.4, 3.5). Choosing
M > 2 or S(y) containing a protein other than p53, resulted in an
impossibility of solving the system of ODEs.

Finally, we consider cases when S(y) = {p53, preMdm2} and S(y) =
{p53,Mdm2} with M = 1, 2. For M = 1 the obtained solution was
inaccurate (see Figures 3.4, 3.5). For M = 2 the solution is very accurate
compared to the solution obtained using SSA. The computation time was
87 hours for S(y) = {p53, preMdm2} and 83 hours for S(y) = {p53,Mdm2}.

39

3.3. Numerical results

��

������

�����

������

�����

������

�����

������

�����

�� ��� ��� ��� ��� ����������������

���

���
����������������
����������������

�������������������
�������������������

�����������
�����������

������

�����

������

��� ��� ��� ���

(a)

��

������

�����

������

�����

������

�� ��� ��� ��� ��� ����������������

�������

���
�������������������
�������������������

�����

������

������

��� ��� ��� ���

(b)

��

������

�����

������

�����

������

�� ��� ��� ��� ��� ���� ���� ����

����

���
����������������
����������������

������

������

�����

��� ��� ��� ���

(c)

Figure 3.4 – Probability distribution of (a) p53, (b) preMdm2 and (c)
Mdm2 computed using different approaches.

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
�

����

����������������
����������������

�������������������
�������������������

�����������
�����������

���

(a)

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

�
��
�
�
�
�

����

����������������
����������������

�������������������
�������������������

�����������
�����������

���

(b)

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ���

�
�
�
�

����

����������������
����������������

�������������������
�������������������

�����������
�����������

���

(c)

Figure 3.5 – Means of (a) p53, (b) preMdm2 and (c) Mdm2 computed
using different approaches.

40

4 Numerical Approximation of
Rare Event Probabilities

In many cases, rare events, that is events that occur with a very small
probability, are particularly important, for instance because they describe
a system behavior of high practical relevance or because they may have
serious consequences. Examples include population sizes exceeding an
exceptionally high level or falling below an exceptionally low level during
some fixed time period, extinction of molecular species, outbreak of
infectious diseases, apoptosis (cell death), or rare but important transitions
between different long-lived stable regions in metastable systems, amongst
many others. Determining the probabilities of such rare but important
events is highly desirable.

Explicit closed-form solutions of the CME are usually not available such
that it has to be solved numerically. However, the size of the multi-
dimensional state space of the underlying CTMC typically increases
exponentially with the number of molecular species, hence with the model
dimensionality. This effect is known as state space explosion and often
causes models to be numerically intractable due to the prohibitively large,
often even infinite state space.

Therefore, the most widespread approach to analyzing stochastic chemical
kinetics is stochastic simulation [Gil76, Gil77], which means to mimic the
time evolution of a biochemically reacting system by repeatedly generating
trajectories (sample paths) of the underlying CTMC with the help of
computer-generated random numbers. Mathematically, this constitutes a
statistical estimation procedure for system properties such as expectations,
moments and cumulants of molecular population sizes, or probabilities of
certain events of interests. Proper statistical output analysis yields point

41

estimators and confidence intervals [AG07, KTB13, San09b].

Stochastic simulation does not suffer from state space explosion because
the state space need not be explicitly enumerated, but stochastic simula-
tion tends to be computationally expensive and can only provide estimates
whose reliability and accuracy in terms of relative errors or confidence
interval half widths depend on the variance of the corresponding sim-
ulation estimator. In particular, estimating rare event probabilities by
‘standard’ simulation is inefficient, because rare events are simulated too
infrequently. The variance and the relative error of the corresponding
standard estimators are much too large to obtain statistically reliable
estimates in reasonable time. Variance reduction and specific rare event
simulation techniques are required [AG07, Buc13, RT+09].

Importance sampling is a variance reduction technique that makes use of
a change of measure. The probability distribution (measure) in the model
is changed such that the rare event of interest becomes less rare. Then the
simulation is conducted under the importance sampling measure and the
systematically biased results are weighted by the likelihood ratio in order
to yield unbiased estimates. However, importance sampling by no means
guarantees variance reduction but may be even counterproductive and
increase the variance. The efficiency of corresponding simulation schemes
and the statistical accuracy of simulation results, usually expressed by
asymptotic robustness properties of the underlying importance sampling
estimators [LBTG10, San07, TLS06], strongly depend on the choice of
the change of measure.

Despite recent progress in the application of such techniques to biochem-
ically reacting systems [San09a, KM08, GRP09, DJRGP11, RDJGP11],
as outlined above a clear disadvantage of stochastic simulation compared
to numerical analysis, provided that such an analysis would be possible, is
the inherent statistical uncertainty of simulation results, that is estimates
of the probabilities of interest. Thus, we argue that if a problem may
be tackled both by stochastic simulation and by numerical analysis, the
latter should be preferred.

In this chapter, we consider a numerical solution approach for the compu-
tation of rare event probabilities. It combines the basic idea of importance
sampling with a numerical solution approach that overcomes the state
space explosion by using a state space truncation described in Chap-

42

4.1. Importance sampling

ter 2.1. The underlying principle is a guided state space exploration
where paths that contribute significantly to the rare event probability are
not truncated. We use parameter biasing strategies similarly as in rare
event simulation to identify the significant parts of the state space and
‘guide’ the exploration of the state space in such a way that an accurate
approximation of the rare event probability is obtained.

4.1 Importance sampling
Importance sampling aims at variance reduction for simulation estimators
by a change of measure. The original system is simulated under a different
probability measure and weighting by a correcting factor, the likelihood
ratio, yields unbiased estimates. In a general measure theoretic setting,
importance sampling is based on the Radon-Nikodym theorem, and all
applications of importance sampling can be derived from this setting.

Consider two probability measures P and Q on a measurable space (Ω,A),
where P is absolutely continuous with respect to Q, that is ∀A ∈ A :
Q(A) = 0⇒ P (A) = 0, or equivalently, ∀A ∈ A : P (A) > 0⇒ Q(A) > 0.
Then, the Radon-Nikodym theorem guarantees the existence of the Radon-
Nikodym derivative L = dP/dQ, often also referred to as the likelihood
ratio, and

∀A ∈ A : P (A) =
∫
A
LdQ. (4.1)

Importance sampling basically exploits that expectations with respect to
P are identical to expectations with respect to Q when weighting by the
likelihood ratio. Hence, for random variables X on (Ω,A),

EP [X] =
∫
XdP =

∫
XLdQ = EQ[XL]. (4.2)

The probability of an event A ∈ A can be expressed as a special case by
P (A) = EP [IA] where IA denotes the indicator function of A.

For CTMCs, the relevant probability measures are path distributions
and absolute continuity corresponds to the condition that all paths that
are possible under the original measure must remain possible under the
importance sampling measure. This can be obviously achieved by the
condition that for all positive rates in the original model the corresponding

43

4.1. Importance sampling

rates under importance sampling are positive. Since we deal with CTMCs
given in terms of transition classes as described in Section 1.2, we need
an appropriate framework for the application of importance sampling to
this model specification.

With importance sampling, the underlying probability measure deter-
mined by the transition rate functions is changed. Since the only re-
quirement is absolute continuity of the probability measures involved,
there is much freedom in how to change the measure. It is only neces-
sary that all paths that are possible (have positive probability) under
the original measure remain possible. This can be achieved by chang-
ing the original transition rate functions αi to ’importance sampling
transition rate function’ α̃i such that for all i ∈ {1, . . . , R} we have
α̃i(x) = 0 ⇒ αi(x) = 0, x ∈ X , or equivalently, starting with the
original propensity functions, αi(x) > 0 ⇒ α̃i(x) > 0, x ∈ X . One then
generates trajectories according to the changed transition rate functions
and multiplies the results with the likelihood ratio to get unbiased esti-
mates for the original system. The trajectory generation now yields a
sequence of states with associated sojourn times and reaction path density
as in (1.7). If we set α̃0(x(ti−1)) := α̃1(x(ti−1)) + · · ·+ α̃R(x(ti−1)) and
keep the same initial distribution at time t0 as for the original model, the
likelihood ratio of a trajectory ω is

L(ω) =
K∏
i=1

αji (x(ti−1)) exp (−α0(x(ti−1))τi−1)
α̃ji (x(ti−1)) exp (−α̃0(x(ti−1))τi−1) (4.3)

which can be efficiently computed during trajectory generation without
much extra computational effort by successively updating its value after
each simulated reaction according to the running product.

However, the results possess variances and are thus subject to statistical
uncertainty since stochastic simulation yet with importance sampling still
remains an estimation procedure. If the change of measure is chosen
properly, it yields enormous variance reduction compared to direct simu-
lation, but as a serious drawback of importance sampling a badly chosen
change of measure can even lead to infinite variance increase. Moreover,
in practice, the true probability as well as the unknown variance of the
estimator must be estimated in course of the simulation and both are
often significantly underestimated, which then leads to wrong conclusions
and much too narrow confidence intervals that may even not contain the

44

4.2. Guided state space exploration

rare event probability of interest. Hence, also the reliability of impor-
tance sampling simulation results is extremely sensitive to the change of
measure.

Nevertheless, the change of measure is an advantageous strategy for sys-
tematically increasing the probability of certain events and thus provides
useful hints how to guide the system under study in order to provoke rare
events of interest. We shall therefore exploit it in order to efficiently com-
pute rare event probabilities without resorting to stochastic simulation,
thereby avoiding both the statistical uncertainty inherent in simulation
results and the danger of accidentally neglecting relevant parts of the
state space as often the case with conventional state space truncation
procedures.

4.2 Guided state space exploration
For many practical applications, the accuracy of the approximation
method in Chapter 2 is sufficient for a moderately small choice of the
truncation thresholds δ and δ̂, respectively. If, however, the probabilities
of rare events have to be calculated, then the truncation approach is no
longer appropriate. As it stands now, the main drawback of the truncation
approach is that rare events of interest may be neglected, that is, the
truncated state space may not include those paths that lead to a certain
rare event because their probability is smaller than the corresponding
truncation threshold. If smaller truncation thresholds are chosen then
the paths that significantly contribute to the rare event probability may
not be truncated, but the number of states that have to be considered
may become too large to be manageable.

In this section we propose an extension of the truncation approach pre-
sented in Chapter 2 that is inspired by ideas from importance sampling
and recent weighted stochastic simulation algorithms for estimating rare
event probabilities [San09a, KM08, GRP09, DJRGP11, RDJGP11]. As-
sume that we are interested in the probability P (A) of a rare event A.
Besides the CTMC (X(t))t≥0, we consider another CTMC (X̃(t))t≥0 with
the same state space and the same reaction channels but with different
propensity functions α̃1, . . . , α̃R instead of the true propensity functions
α1, . . . , αR. We choose these ‘biased’ propensity functions α̃1, . . . , α̃R such
that the occurence of A is more likely than with α1, . . . , αR. Then we use

45

4.2. Guided state space exploration

Algorithm 5 A modification of Algorithm 3 for the computation of rare
event probabilities using the guidance functions α̃1, . . . , α̃R.

1: for ` ← 1 to s do
2: for all x ∈ Sig do
3: p̂ ← x.p + h ·∑`−1

j=1 a`j · x.kj, q̂ ← x.q + h ·∑`−1
j=1 a`j · x.mj

4: for all j ∈ {1, . . . , R} : x+vj ≥ 0 and(
{x + vj} ∈ Sig or h · α̃j(x) · q̂ > δ̂

)
do

5: if {x + vj} 6∈ Sig then Sig ← Sig ∪ {x + vj} end if
6: x.k` ← x.k` − h · αj(x) · p̂, x.m` ← x.m` − h · α̃j(x) · q̂
7: (x + vj).k` ← (x + vj).k` + h · αj(x) · p̂, (x + vj).m` ←

(x + vj).m` + h · α̃j(x) · q̂
8: end for
9: end for

10: end for
11: for all x ∈ Sig do
12: x.p2 ← x.p + h ·∑s

j=1 bj · x.kj, x.q2 ← x.q + h ·∑s
j=1 bj · x.mj

13: x.k1 ← 0, . . . , x.ks ← 0, x.m1 ← 0, . . . , x.ms ← 0
14: end for

the CTMC (X̃(t))t≥0 as ‘guide’ with regard to the state space truncation,
that is essentially the propensity functions α̃1, . . . , α̃R guide us through
the state space exploration in such a way that paths to the rare event of
interest are not truncated. Therefore, we refer to α̃1, . . . , α̃R as guidance
functions.

The idea is to solve X and X̃ simultaneously using the dynamical state
space truncation. Let p̂(t) (q̂(t)) be the corresponding numerical approx-
imation of the distribution of X (of X̃) at time t, respectively. The
algorithm for solving X and X̃ (Algorithm 5) is a modification of Al-
gorithm 3. Instead of a single field x.p for the current probability of
state x we use two fields x.p and x.q. The former refers to the current
probability of state x in X and the latter refers to the probability of x in
X̃. The decision whether we remove a state x from the set Sig at time
t depends only on q̂(t) and not on p̂(t). Thus, at all time instances t for
both the solution of X and X̃ we use the same sets Sig. This ensures
that we do not truncate the paths leading to the rare event A. Intuitively,
X̃ shows the direction to the rare event. Therefore, we refer to this
approach as guided state space exploration. If the guidance functions are
chosen appropriately, then the vectors q̂(t) are computed using those paths
that contribute most to P (A). Hence, the vector p̂(t) may loose a lot of
probability mass over time, that is ∑x∈S p̂

(t)(x) � 1. The probability

46

4.3. Numerical results

mass that remains in p̂(t) then contains those parts that contribute most
to P (A).

Note that the rare event probability P (A) is directly approximated by
the probabilities x.p and the values x.q are only used to determine the
set of states that are considered in each step of the numerical integration.
Actually, it would even be possible to solve X̃ and X not simultaneously
but one after another. During the solution of X̃, we would then record
the elements of Sig for each time interval and use this information for
the subsequent solution of X during which we truncate the state space
in the same way as for X̃. The simultaneous solution, however, has the
advantage that it is faster than two subsequent solutions.

Let Pδ(A) denote the computed approximation with the approach outlined
above where δ is the chosen significance threshold. It is important to note
that, if we ignore errors of the numerical integration method, it holds
that

Pδ(A) ≤ P (A) (4.4)

because some paths leading to A may be truncated. Moreover, as δ → 0
our approximation approaches P (A), that is, limδ→0 Pδ(A) = P (A). In
particular, when we decrease δ the accuracy will improve. Thus, if we
apply the guided state space exploration for decreasing values of δ and
see that Pδ(A) converges, we can estimate the approximation error as
Pδ(A)− Pδ̃(A) where δ < δ̃.

4.3 Numerical results
In this section, we present experimental results for specific rare event
probabilities computed by the guided state space exploration described
above. We consider certain buffer overflow probabilities corresponding
to high numbers of customers in single nodes or in the overall system,
respectively, for two variants of a two-node tandem Jackson network
and an eight-node tandem Jackson network. The two-node networks
are standard examples from the literature for which appropriate changes
of measure have been studied extensively in the context of importance
sampling. The eight-node network is a more complex example for which
appropriate changes of measure for importance sampling have not been

47

4.3. Numerical results

investigated yet. As a benchmark example we also consider the enzymatic
futile cycle.

In the sequel, we present results where we systematically vary the param-
eters determining the change of measure to study the sensitivity of our
approach and consider different values for the truncation threshold δ. We
ran our experiments on an Intel Core i7 at 2.8 GHz with 8 GB main mem-
ory. As an integration method we used the standard explicit fourth-order
Runge-Kutta method with the time step chosen as the smallest average
sojourn time of all states in Sig, that is,

h = minx∈Sig 1/∑R
j=1 αj(x).

4.3.1 Tandem Jackson networks

As a queueing network example consider a N -node tandem Jackson
network with exponentially distributed service times where arrivals occur
only at the first node according to a Poisson process with arrival rate
λ. The service rates are denoted by µ1, . . . , µN and the buffer capacities
(queue sizes) by ν1, . . . , νN . Hence, the different types of transitions are
arrivals at node 1, moves from node i to node i + 1, 0 < i < N and
departures from node N . Therefore, N + 1 transition classes are sufficient:

C1 = (U1, u1, α1), where

• U1 = {(x1, . . . , xN) ∈ NN : x1 < ν1},
• u1(x) = (x1 + 1, x2, x3, . . . , xN),
• α1(x) = λ;

Ci = (Ui, ui, αi), i = 2, . . . , N , where

• Ui = {(x1, . . . , xN) ∈ NN : xi−1 > 0, xi < νi},
• u(x) = (x1, . . . , xi−2, xi−1 − 1, xi + 1, xi+1, . . . , xN),
• αi(x) = µi−1;

CN+1 = (UN+1, uN+1, αN+1), where

• UN+1 = {(x1, . . . , xN) ∈ NN : xN > 0},
• uN+1(x) = (x1, . . . , xN−1, xN − 1),
• αd+1(x) = µN .

48

4.3. Numerical results

State-dependent rates can be easily incorporated just by corresponding
transition rate functions. The state space may be infinite due to one or
more infinite buffers, which can be expressed explicitly by setting the buffer
size to infinity or implicitly just by dropping the corresponding restrictions
on the respective source state spaces. Phase-type distributed interarrival
and service times can be modeled by properly defined transition classes
for any change from one to the next phase.

Two-node tandem network Our first example is a two-node tandem
Jackson network with infinite buffers at both nodes, hence a special case
where now N = 2 and ν1 = ν2 = ∞. The arrival and service rates are
constant whereby we can skip the state dependence of the transition rate
functions and concisely express them by a triplet α := (α1, α2, α3) :=
(λ, µ1, µ2). Similarly, we express the changed measure by α̃ = (α̃1, α̃2, α̃3)
where α̃1 is the changed arrival rate and α̃2, α̃3 are the changed service
rates at nodes 1 and 2, respectively. We are interested in the probability
that the overall population in the system reaches a level L during a busy
cycle, that is, the probability that starting with an arrival to the empty
system the sum of the number of customers in both network nodes is at
least L before the system empties again. Obviously, for low utilizations
and/or high ”target level” L, reaching L during a busy cycle is a rare
event.

Table 4.1 – Exact solution results for the two-node tandem network with
parameters λ = 0.04, µ1 = µ2 = 0.48.

L Pr |Sig|
12 1.4693e-11 90
25 2.8722e-25 350
50 6.0327e-52 1325

Though at a first glance seemingly simple, this example has received a lot
of attention in the rare event simulation literature and has become a major
reference example for judging change of measure strategies. This enormous
interest was basically initiated by a change of measure proposed in [PW89]
where the arrival rate and the smaller service rate (or, respectively, the
service rate at the second node in case of equal service rates) are exchanged.
Though initially supposed to be efficient, this change of measure has
been subsequently proven in [GK95] to perform poorly in certain critical

49

4.3. Numerical results

Table 4.2 – Guided state space exploration results for the two-node
tandem network with parameters λ = 0.04, µ1 = µ2 = 0.48. Six different
changes of measure considered: 1. degenerated, 2. 0.48, 0.48, 0.04, 3.
0.6222, 0.3333, 0.0444, 4. 0.4, 0.3, 0.3, 5. 0.6, 0.2, 0.2, 6. 0.8, 0.1, 0.1.

δ L=12 L=25 L=50
rel.err. |Sig| rel.err. |Sig| rel.err. |Sig|

1 1e-20 3.461e-8 89 1 184 1 184
1e-15 4.881e-3 88 1 103 1 103
1e-10 1 54 1 54 1 54

2 1e-20 3.408e-14 58 1.288e-9 235 5.349e-4 757
1e-15 1.339e-9 46 1.257e-5 185 6.756e-2 591
1e-10 3.397e-5 34 1.817e-3 132 4.220e-1 398

3 1e-20 2.012e-11 47 3.777e-9 192 4.104e-6 650
1e-15 4.589e-8 38 4.186e-6 155 1.149e-3 525
1e-10 8.166e-5 30 2.488e-3 116 9.555e-2 383

4 1e-20 0 89 7.034e-15 343 2.746e-8 1259
1e-15 0 89 1.403e-9 342 5.277e-4 1233
1e-10 6.338e-9 89 1.552e-4 337 1.902e-1 1177

5 1e-20 0 77 7.034e-15 337 1.245e-7 1145
1e-15 6.817e-15 60 1.374e-9 269 7.538e-3 877
1e-10 3.632e-8 42 4.987e-4 180 2.628e-1 524

6 1e-20 7.892e-8 39 1.361e-4 155 2.225e-1 444
1e-15 3.171e-5 33 3.519e-2 121 3.960e-1 309
1e-10 1.082e-2 25 3.241e-1 75 6.209e-1 178

parameter (arrival and service rates) regions. A recent thorough analysis
can be found in [DB06]. As the example has been so extensively studied
in the context of importance sampling it enables us to demonstrate the
advantages of our algorithm over importance sampling. For numerical
analysis, we choose the parameter setting α = (0.04, 0.48, 0.48), hence
arrival rate λ = 0.04 and service rates µ1 = µ2 = 0.48, which belongs
to the critical parameter regions ascertained in [GK95]. We consider
three different levels L ∈ {12, 25, 50} and six different changes of measure
α̃(1), . . . , α̃(6) as follows.

First of all, we keep the original rates, that is, we do not at all apply a
change of measure in this case, which we grasp as the ”degenerated change
of measure” α̃(1) = (0.04, 0.48, 0.48). The second change of measure is

50

4.3. Numerical results

the interchange of the arrival rate and the service rate at the second
node according to [PW89], hence α̃(2) = (0.48, 0.48, 0.04). The third
one is α̃(3) = (0.6222, 0.3333, 0.0444) developed in [San04a] and shown
to provide better results than α̃(2) when used for importance sampling.
Furthermore, we consider α̃(4) = (0.4, 0.4, 0.3), α̃(5) = (0.6, 0.2, 0.2) and
β(6) = (0.8, 0.1, 0.1), none of which developed for rare event simulation
with importance sampling but rather ad hoc chosen by us. They are
simply based on the intuitive reasoning that increasing the arrival rate
and decreasing the service rate obviously guides the tandem network to
a higher population level and thus increases the rare event probability
of interest. Since these ad hoc changes of measure do not yield proper
importance sampling simulation results, they are particularly well suited
to highlight that our algorithm is far less sensitive to the change of
measure than importance sampling and that in contrast to importance
sampling our algorithm does not require intricate pre-analyses.

Table 4.3 – Exact solution results for the two-node tandem network with
parameters B = 100 and λ = 0.1, µ1 = 0.7, µ2 = 0.2.

Pr run time |Sig|
9.2034e-31 87s 36774

In Table 4.1 we list the rare event probabilities (cf. column “Pr”) as well
as the size of the set Sig of significant states obtained using the truncation
threshold δ = 0. The rare event probabilities computed in this way are
exact up to the numerical integration error. We list our guided state
space exploration results in Table 4.2 for different values of δ (listed in
the second column) whereas the first column contains the index of the
change of measure. For all parameters that we chose, the running time of
our algorithm is less than one second.

The six different changes of measures are indicated in the table by their
respective parameter values except for the degenerated change of measure
that is indicated by “degenerated”. For each change of measure the column
with heading “rel.err.” lists the approximation error relative to the rare
event probability.

For the degenerated change of measure, the guided state space explo-
ration is identical to the dynamical state space truncation presented in
Chapter 2 (but in contrast to the exact solution with positive trunca-
tion threshold δ) and it yields accurate approximations only for L = 12

51

4.3. Numerical results

and δ ∈ {10−15, 10−20}. Note that a relative error of one corresponds
to approximating the rare event probability as zero. This is actually
the same as what happens in direct simulation when due to the small
probability the rare event is not observed and the probability of the
non-observed event is estimated as zero. It is important that with our
dynamical state space exploration the relative error is bounded by one
since any error in the approximation is due to neglecting relevant states.
In contrast, with importance sampling the relative error expressed in
terms of the estimator’s coefficient of variation or the relative half width
of the corresponding confidence interval can become arbitrarily large in
cases where the rare event has been observed but the estimator’s variance
is large (cf. [DB06, GK95, San04a]).

For α̃(2) according to [PW89] and α̃(3) according to [San04a] we can see
that for all levels and all truncation thresholds the results provided by
the guided state space exploration are very accurate. In [San04a] it is
shown that with importance sampling α̃(2) performs very poor for high
levels in that for L = 25 it yields results with a relative error of nearly
800%, whereas α̃(3) still yields statistically accurate results. For L = 50,
neither α̃(2) nor α̃(3) yield useful results with importance sampling. Here,
with the guided state space exploration both changes of measure perform
extremely well even for L = 50 where α̃(3) is only slightly better α̃(2).
For the latter case, the relative error is at most of the order of 10−4 if
δ = 10−20 while it is at most of the order of 10−6 in the former case.
Moreover, for α̃(2) the set Sig is slightly larger than for α̃(3). Hence,
altogether both changes of measure perform quite similarly, which clearly
indicates that the guided state space exploration is less sensitive to the
change of measure, or, in other words, the impact of the specific change
of measure on the reliability of the results is far lower.

For the ad hoc changes of measure α̃(4) and α̃(5) we observe that our
results are again very accurate for small enough truncation threshold,
though less accurate than the results for α̃(2) and α̃(3). However, only
if δ is too large the relative error becomes high. Since neither of these
changes of measure properly works with importance sampling, they are
particularly well suited to further corroborate and highlight again that our
algorithm is far less sensitive to the change of measure than importance
sampling and that in contrast to importance sampling our algorithm does
not require intricate pre-analyses.

52

4.3. Numerical results

Finally with the last case, α̃(6) = (0.8, 0.1, 0.1), we test a change of
measure that has disastrous effects when used with importance sampling.
It is beyond our scope here to provide a detailed analysis of this change
of measure in the context of importance sampling but some explanation
of the effects can be given by the notion of overbiasing. Overbiasing is
a well known problem in importance sampling and basically means too
much simulation acceleration. Although the goal is to provoke more of
the rare events of interest in order to reduce the variance of the simulation
estimator, it can be shown that provoking too many of them yields the
contrary effect. More formally, overbiasing in importance sampling yields
extremely small likelihood ratios for most of the corresponding simulation
runs but very large likelihood ratios for a few simulation runs. This
results in an enormous variance of the importance sampling estimators
since this variance is mainly driven by the variance of the likelihood ratio.
This effect is actually one of the main causes for the extreme sensitivity
of importance sampling to the change of measure.

As we can see from our results in Table 4.2 the overbiasing effects seems
to play a role also for the guided state space exploration but it is much
less serious than for importance sampling. Our algorithm, though less
efficient than for other changes of measure, still provides proper results
for reasonably small truncation thresholds. Once again we get evidence
that our algorithm is far less sensitive to the change of measure than
importance sampling.

In Tables 4.3, 4.4, we list further results for the two-node tandem network
but other than before we now do not consider the level of the overall
population but the probability that the second queue reaches some high
buffer content B. For the original network, we consider the parameter
combinations studied in [MSM07], namely λ = 0.1, µ1 = 0.7, µ2 = 0.2,
and we compute the probability that the second queue contains at least
B = 100 customers. In contrast to the previous type of rare event
probabilities as presented in Table 4.2, we solve an infinite system without
an indirectly given bound since now the number of customers in the first
queue is not any longer implicitly bounded by a target level of the overall
population. In addition to the relative error and the average size of Sig,
we list the run time of our method (cf. columns “run time”). The exact
solution takes 87 seconds while a solution with the change of measure
(0.2, 0.7, 0.1) takes only a few seconds. The degenerated change of measure
yields a relative error of one while the other heuristically chosen changes,

53

4.3. Numerical results

Table 4.4 – Guided state space exploration results for the two-node tandem
network with parameters B = 100 and λ = 0.1, µ1 = 0.7, µ2 = 0.2. Four
different changes of measure considered: 1. degenerated, 2. (0.2, 0.7, 0.1),
3. (0.4, 0.4, 0.2), 4. (0.3, 0.6, 0.1).

δ rel.err. run time |Sig|
1 1e-20 1 1s 348

1e-15 1 < 1s 198
1e-10 1 < 1s 93

2 1e-20 1.1419e-15 7s 1769
1e-15 1.2178e-10 4s 1022
1e-10 8.9310e-6 2s 456

3 1e-20 2.8028e-5 42s 8008
1e-15 2.8139e-3 22s 4561
1e-10 1.3226e-1 8s 1974

4 1e-20 4.0291e-3 6s 1198
1e-15 5.3733e-2 3s 707
1e-10 4.0188e-1 2s 325

(0.4, 0.4, 0.2) and (0.3, 0.6, 0.1), yield good results except if δ is chosen too
large.

Two-node tandem network with slow-down Our next example
network is a slight modification of the previous one, the two-node tandem
Jackson network with server slow-down as considered in, e.g., [DLW07,
MSM07, Mir09]. When the length of the second queue reaches B · θ, the
service rate of the first node changes from µ1 to ν1. Similar to the example
above, the network with slow-down has become a reference example for
judging change of measure strategies for systems with state-dependent
rates in the original system. Here, we consider two different parameter
combinations from [MSM07]. The first combination is (λ, µ1, µ2, ν1) =
(0.1, 0.7, 0.2, 0.3) and the second one is (λ, µ1, µ2, ν1) = (0.1, 0.7, 0.2, 0.15)
where λ is the arrival rate, µ2 is the service rate at the second node, and
µ1 and ν1 are the service rates at the first node before and after slow-down.
We compute the probability that starting with an arrival to the empty
system the number of customers in the second network node is at least B
before the system empties again.

We list the exact results for both cases in Table 4.5. We list the guided

54

4.3. Numerical results

Table 4.5 – Exact solution results for the two-node tandem network with
slow-down and parameters B = 100, θ = 0.8. Parameter set 1: λ = 0.1,
µ1 = 0.7, µ2 = 0.2, ν1 = 0.3, parameter set 2: λ = 0.1, µ1 = 0.7, µ2 = 0.2,
ν1 = 0.15.

Pr run time |Sig|
1 5.6009e-31 142s 54049
2 3.5471e-32 172s 71841

state space exploration results in Table 4.6 where the first column refers
to the change of measure. Also, in both cases we let B = 100 and
θ = 0.8. Similar as above, we consider an exact solution (δ = 0) and
the degenerated change of measure. The changes of measure suggested
in [MSM07] are such that, for pcom 1, arrival rate µ2 is chosen, service rate
at the second node is λ, and the service rate at the first node is chosen as
µ1 while the queue length is below B ·θ and ν1 if the queue length is at least
B ·θ (cf. column “as suggested in [MSM07]”). For pcom 2, the parameters
of the change of measure are also chosen as (µ2, µ1, λ) while the queue
length at the first queue is below B ·θ. If the queue length reaches B ·θ, the
parameters of the change of measure are calculated by solving an equation
(see [MSM07]) which yields (0.177263, 0.177263, 0.095474). Again, we
list the results of this change of measure in the column with heading
“as suggested in [MSM07]”. Finally, we consider for both parameter
combinations two heuristically chosen changes of measure, (0.4, 0.4, 0.2, ν1)
and (0.3, 0.6, 0.1, ν1) where ν1 = 0.3 for pcom 1 and ν1 = 0.15 for pcom
2. Similar as for the network without slowdown, the exact solution takes
significantly longer than the solutions based on the dynamical truncation
of the state space. Moreover, the relative error is one for the degenerated
case and high if δ is large and the change of measure is chosen heuristically.
The change of measure suggested in [MSM07] performs well even if δ is
large.

Eight-node tandem network Our final example is a tandem network
with eight nodes. We choose arrival rate λ = 0.04, and equal service rates
µ1 = . . . = µ8 = 0.12 and consider the probability that starting with an
arrival to the empty system the sum of the number of customers in all
network nodes is at least L = 29 before time T . Hence, as in our very
first example we are concerned with the overall population in the system
but we restrict our analysis to the time interval [0, T] where T = 50 or

55

4.3. Numerical results

Table 4.6 – Guided state space exploration results for the two-node tandem
network with slow-down and parameters B = 100, θ = 0.8. Parameter
sets are as in Table 4.5. Four different changes of measure considered:
1. degenerated, 2. as suggested in [MSM07], 3. (0.4, 0.4, 0.2, ν1), 4.
(0.3, 0.6, 0.1, ν1).

δ 1 2
rel.err. run time |Sig| rel.err. run time |Sig|

1 1e-20 1 < 1s 348 1 < 1s 344
1e-15 1 < 1s 198 1 < 1s 197
1e-10 1 < 1s 93 1 < 1s 93

2 1e-20 1.8764e-15 14s 2534 2.7777e-15 32s 5164
1e-15 1.0977e-10 8s 1444 2.6431e-10 21s 3464
1e-10 7.9622e-6 4s 631 4.9194e-5 11s 1851

3 1e-20 3.9418e-5 81s 13730 3.1021e-3 228s 30590
1e-15 3.8105e-3 40s 7009 1.2373e-1 150s 20777
1e-10 1.6369e-1 14s 2699 9.0224e-1 81s 11450

4 1e-20 4.1024e-3 11s 1886 1.1562e-2 70s 10364
1e-15 5.4456e-2 6s 1089 1.2141e-1 44s 6590
1e-10 4.0330e-1 3s 497 6.2285e-1 17s 2480

Table 4.7 – Exact solution results for the eight-node tandem network.

T Pr run time |Sig|
50 1.6643e-23 796s 36984860
100 1.2204e-16 2317s 36984860

T = 100 (cf. column “T ”). In Table 4.7 we list the probabilities P (A) for
two different choices of T as well as the run time and the size of the set
Sig of significant states obtained by setting δ = 0.

To the best of our knowledge, no in-depth study of this system has been
conducted in the context of importance sampling. As it is more complex
than the two-node networks, of course, an appropriate change of measure
is more difficult to obtain. Here, we consider heuristic changes of measure
that seem reasonable with regard to the goal of provoking more rare events
of interest. As before, we start by considering the degenerated change
of measure where no rates are changed and the computation is done
using the parameters of the original network. For the non-degenerated
changes of measure we first apply a quite straightforward generalization
of exchanging the arrival rate with the service rate at the last node, hence

56

4.3. Numerical results

Table 4.8 – Guided state space exploration results for the eight-node
tandem network. Four changes of measures considered: 1. degenerated,
2. λ and µ8 exchanged, 3. λ two times faster, 4. λ three times faster.

δ T = 50 T = 100
rel.err. run time |Sig| rel.err. run time |Sig|

1 1e-20 1 13s 268689 1 178s 1419901
1e-15 1 3s 72524 1 37s 348056
1e-10 1 < 1s 11161 1 3s 43343

2 1e-20 5.9530e-5 106s 1514580 3.8544e-9 1625s 9163634
1e-15 3.3907e-1 34s 479171 1.8114e-4 729s 3943370
1e-10 1 6s 84349 9.5890e-1 136s 684309

3 1e-20 3.5570e-3 577s 3450157 1.3029e-4 1995s 4757788
1e-15 3.5541e-3 201s 1138686 2.8527e-1 452s 1075486
1e-10 3.4976e-3 30s 165803 9.9755e-1 41s 110010

4 1e-20 3.3110e-4 99s 1257158 1.6235e-5 1451s 7418540
1e-15 6.7326e-1 29s 374744 5.3342e-4 581s 2833833
1e-10 1 5s 60968 9.9189e-1 95s 458195

in our case now an exchange of λ and µ8. Then we consider two ad
hoc heuristics based on the reasoning that simply increasing the arrival
rate without changing any service rate increases the probability of a high
overall population. More precisely, we increase the arrival rate by a factor
of two and by a factor of three, respectively. The results obtained by the
guided state space exploration are given in Table 4.8. As we can see once
more, for sufficiently small truncation threshold δ our algorithm provides
very accurate results with quite low computational efforts.

4.3.2 Enzymatic futile cycle

In this section we provide numerical results from comprehensive stud-
ies of our guided state space exploration for the enzymatic futile cycle
benchmark model described by [SPA05] and considered in the context of
weighted stochastic simulation algorithms by [KM08, GRP09, DJRGP11].
In particular, this model is small enough to obtain an (up to numerical
errors) exact solution. That is, by setting δ = 0 no truncation error
is introduced and if we neglect errors due to the numerical integration
method (which is reasonable for this model with our step size chosen as the
smallest average sojourn time of all states), then we have a ‘quasi-exact’
solution. Hence, we are able to evaluate the accuracy of the approxima-

57

4.3. Numerical results

tions obtained by the guided state space exploration in terms of their
relative errors.

Table 4.9 – Chemical reactions of the enzymatic futile cycle.

S1 + S2
c1−⇀↽−
c2

S3

S3
c3−→ S1 + S5

S4 + S5
c4−⇀↽−
c5

S6

S6
c6−→ S4 + S2

The chemical reactions of the enzymatic futile are given in Table 4.9
with c1 = c2 = c4 = c5 = 1, c3 = c6 = 0.1 and initial state x0 =
(1, 50, 0, 1, 50, 0). The goal is to estimate the probability that before
time t = 100 the number of molecules of species S5 drops to ` for some
L ∈ {5, 15, 25}.

It remains to choose the guidance functions α̃1, . . . , α̃R such that the
occurrence of A is more likely than with α1, . . . , αR and the CTMC
(X̃(t))t≥0 properly guides us to the rare event. For this purpose we borrow
ideas from recent weighted stochastic simulation algorithms (wSSAs)
for estimating rare event probabilities based on the well known impor-
tance sampling technique for variance reduction [San09a, KM08, GRP09,
DJRGP11, RDJGP11]. Actually, with importance sampling the goal is
to change the probability measure underlying a stochastic system such
that certain target events of interest become more likely to occur in simu-
lations. Hence, it is nearby that choices of α̃1, . . . , α̃R that are useful for
importance sampling simulations are also useful for our guided state space
exploration. As we shall see, our guided state space exploration is far less
sensitive against the choice of α̃1, . . . , α̃R than importance sampling and
weighted stochastic simulation approaches.

In the next section we present experimental results where our choice of
the guidance functions is inspired by approaches to state-independent
importance sampling as taken in weighted stochastic simulation algorithms
(wSSAs) [KM08, GRP09, DJRGP11]. We choose guidance functions

α̃j(x) := γjαj(x) (4.5)

with positive constants γj > 0. Hence, the parameter biasing consists
in assigning a constant factor to each reaction type and multiplying the
reaction propensity function by this factor, independent of the specific

58

4.3. Numerical results

state in which the reaction occurs. The factors are collected in the biasing
parameter vector γ = (γ1, . . . , γR). Note that γj = 1 for each reaction Rj

whose propensity function is not changed.

In order to keep the choice of the guidance functions as simple as possible,
we do not change all propensity functions α1, . . . , αR but only those for
which an increase or decrease obviously increases the probability of the
rare event of interest. This can be often seen just by inspection. For
instance, if we are interested in a certain species reaching a high or low
population level, then we can select the reactions where this species is
involved as reactant or product, respectively. In many cases, also ‘indirect’
impacts of other species on a certain target species can be easily seen.

More specifically, for the probability that before time t = 100 the number
of molecules of species S5 drops to ` for some ` ∈ {5, 15, 25} in the
enzymatic futile cycle with initial state x0 = (1, 50, 0, 1, 50, 0) we should
suppress the creation of S5 molecules. This can be accomplished by
decreasing the propensity function of reaction R3, which creates S5

molecules, and increasing the propensity function of reaction R6, which
by creating S4 molecules encourages the consumption of S5 molecules via
reaction R4. A similar approach has been taken in [KM08, GRP09] by
setting the parameter biasing vector to γ = (1, 1, 0.5, 1, 1, 2.0).

Table 4.10 – Exact solution results for the enzymatic futile cycle.

L Pr |Sig|
25 1.7382e-07 298
15 6.2866e-13 338
5 1.0015e-19 378

We shall generalize this and study γ = (1, 1, γ3, 1, 1, 1/γ3) for various
choices of γ3 with 0 < γ3 ≤ 1. Hence, in essence the propensity function
of reaction R3 is decreased by the factor γj and the propensity function
of reaction R6 is increased correspondingly by the factor 1/γ3, while
all other propensity functions remain unchanged. In addition we apply
guidance functions proposed by [DJRGP11], where the parameter biasing
vector γ was obtained via the cross-entropy method [DJRGP11, RK13].

In Table 4.10 we list the probabilities P (A) for three different choices
of L as well as the size of the set Sig of significant states. For the
parameter biasing vector we chose γ = (1, 1, γ3, 1, 1, 1/γ3), as explained

59

4.3. Numerical results

Table 4.11 – Guided state space exploration results for the enzymatic
futile cycle and parameter biasing vector γ = (1, 1, γ3, 1, 1, 1/γ3) with
varying γ3

γ3 δ L=25 L=15 L=5
rel.err. |Sig| rel.err. |Sig| rel.err. |Sig|

1 1e-20 1.06e-6 263 2.77e-5 303 1 330
1e-15 1.17e-5 231 1 266 1 266
1e-10 9.55e-1 190 1 190 1 190

0.8 1e-20 1.06e-6 239 1.82e-6 279 1.23e-2 319
1e-15 1.12e-6 211 2.78e-3 251 1 270
1e-10 1.53e-2 173 1 191 1 191

0.65 1e-20 1.06e-6 220 1.80e-6 260 6.44e-6 300
1e-15 1.06e-6 191 8.26e-6 231 3.60e-1 269
1e-10 2.46e-4 155 6.18e-1 193 1 194

0.5 1e-20 1.06e-6 198 1.80e-6 238 2.63e-6 278
1e-15 1.06e-6 167 1.81e-6 207 6.11e-5 247
1e-10 3.88e-6 135 1.90e-3 175 1 205

0.35 1e-20 1.06e-6 167 1.80e-6 207 2.63e-6 247
1e-15 1.06e-6 142 1.80e-6 182 2.63e-6 222
1e-10 1.14e-6 109 3.42e-6 149 4.93e-4 189

0.2 1e-20 1.06e-6 114 1.80e-6 154 2.63e-6 194
1e-15 1.06e-6 86 1.80e-6 126 2.63e-6 166
1e-10 6.51e-5 48 2.60e-6 88 2.72e-6 128

before. In Table 4.11 we list the relative error of the approximated
rare event probability and the size of the set Sig of significant states
for different values of γ3, δ and L. Note that a relative error of one
corresponds to approximating the rare event probability as zero. This is
actually the same as what happens in direct simulation when due to the
small probability the rare event is not observed and the probability of the
non-observed event is estimated as zero. We also considered the parameter
biasing vector γ = (1.000, 1.003, 0.320, 1.003, 0.993, 3.008) proposed in
[DJRGP11] for L = 25. The results are given in Table 4.12. We observe
a slightly better approximation compared to the one corresponding to
γ3 = 0.35 even though the number of significant states was less. For all
parameters that we chose, the running time of our algorithm was less
than one second.

60

4.3. Numerical results

Table 4.12 – Guided state space exploration results for the enzy-
matic futile cycle for L = 25 and the parameter biasing vector γ =
(1.000, 1.003, 0.320, 1.003, 0.993, 3.008).

δ rel.err. |Sig|
1e-20 5.45e-7 162
1e-15 7.38e-7 138
1e-10 1.10e-6 103

61

5 Parameter Estimation for
Markov Models of Biochemi-
cal Reactions

During the last decade stochastic models of networks of chemical reac-
tions have become very popular. The reason is that the assumption
that chemical concentrations change deterministically and continuously
in time is not always appropriate for cellular processes. In particular, if
certain substances in the cell are present in small concentrations the re-
sulting stochastic effects cannot be adequately described by deterministic
models. In that case, discrete-state stochastic models are advantageous
because they take into account the discrete random nature of chemical
reactions. The theory of stochastic chemical kinetics provides a rigorously
justified framework for the description of chemical reactions where the
effects of molecular noise are taken into account [Gil77]. It is based on
discrete-state Markov processes that explicitly represent the reactions as
state-transitions between population vectors. When the molecule num-
bers are large, the solution of the deterministic description of a reaction
network and the mean of the corresponding stochastic model agree up to
a small approximation error. If, however, species with small populations
are involved, then only a stochastic description can provide probabilities
of events of interest such as probabilities of switching between differ-
ent expression states in gene regulatory networks or the distribution
of gene expression products. Moreover, even the mean behavior of the
stochastic model can largely deviate from the behavior of the determin-
istic model [LLBB07]. In such cases the parameters of the stochastic
model rather then the parameters of the deterministic model have to be
estimated [TXGB07, RAT06, UAL10].

Here, we consider noisy time series measurements of the system state
as they are available from wet-lab experiments. Recent experimental

62

imaging techniques such as high-resolution fluorescence microscopy can
measure small molecule counts with measurement errors of less than one
molecule [GPZC05]. We assume that the structure of the underlying
reaction network is known but the stochastic reaction rate constants of
the network are unknown parameters. Then we identify rate constants
that maximize the likelihood of the time series data. Maximum likelihood
estimators are the most popular estimators since they have desirable
mathematical properties. Specifically, they become minimum variance
unbiased estimators and are asymptotically normal as the sample size
increases.

Our main contribution consists in devising an efficient algorithm for the
numerical approximation of the likelihood and its derivatives w.r.t. the
stochastic reaction rate constants. Furthermore, we show how similar
techniques can be used to estimate the initial molecule numbers of a
network as well as parameters related to the measurement error. We
also present extensive experimental results that give insights about the
identifiability of certain parameters. In particular, we consider a simple
gene expression model and the identifiability of reaction rate constants
w.r.t. varying observation interval lengths and varying numbers of time
series. Moreover, for this system we investigate the identifiability of
reaction rate constants if the state of the gene cannot be observed but
only the number of mRNA molecules. For a more complex gene regu-
latory network, we present parameter estimation results where different
combinations of proteins are observed. In this way we reason about the
sensitivity of the estimation of certain parameters w.r.t. the protein types
that are observed.

Previous parameter estimation techniques for stochastic models are based
on Monte-Carlo sampling [TXGB07, UAL10] because the discrete state
space of the underlying model is typically infinite in several dimensions
and a priori a reasonable truncation of the state space is not available.
Other approaches are based on Bayesian inference which can be applied
both to deterministic and stochastic models [BWK08, Hig77, GG10].
In particular, approximate Bayesian inference can serve as a way to
distinguish among a set of competing models [TWS+09]. Moreover, in
the context of Bayesian inference linear noise approximations have been
used to overcome the problem of large discrete state spaces [KFHR09].

Our method is not based on sampling but directly calculates the likelihood

63

5.1. Parameter inference

using a dynamic truncation of the state space. More precisely, we first
show that the computation of the likelihood is equivalent to the evaluation
of a product of vectors and matrices. This product includes the transition
probability matrix of the associated continuous-time Markov process, i.e.,
the solution of the Kolmogorov differential equations (KDEs), which can
be seen as a matrix-version of the chemical master equation. Solving
the KDEs is infeasible because of the state space of the underlying
Markov model is very large or even infinite. Therefore we use an iterative
approximation algorithm from Chapter 2 during which the state space is
truncated in an on-the-fly fashion, that is, during a certain time interval
we consider only those states that significantly contribute to the likelihood.

5.1 Parameter inference
Following the notation in [RAT06], we assume that observations of the
reaction network are made at time instances t1, . . . , tL ∈ R≥0 where
t1 < . . . < tL. Since it is unrealistic to assume that all species can be
observed, we assume w.l.o.g. that the species are ordered such that we
have observations of X1, . . . , Xd for some fixed d with 1 ≤ d ≤ N , i.e.
Oi(t`) is the observed number of species i at time t` for i ∈ {1, . . . , d} and
` ∈ {1, . . . , L}. Let O(t`) = (O1(t`), . . . , Od(t`)) be the corresponding
vector of observations. Since these observations are typically subject to
measurement errors, we assume thatOi(t`) = Xi(t`)+ξi(t`) where the error
term vectors ξ(t`) are independent and identically normally distributed
with mean 0 and covariance matrix Σ = (Cov(ξi1 , ξi2)), i1, i2 ∈ {1, . . . , N}.
Note that Xi(t`) is the true population of the i-th species at time t`.
Clearly, this implies that, conditional on Xi(t`), the random variable
Oi(t`) is independent of all other observations as well as independent of
the history of X before time t`.

We assume further that we do not know the values of the rate constants
c = (c1, . . . , cR) and our aim is to estimate these constants. Similarly,
the initial populations x(0) and the covariance matrix Σ = (Σi1,i2) of the
error terms are unknown and must be estimated.

Let f denote the joint density of O(t1), . . . ,O(tL) and, by convenient
abuse of notation, for a vector x` = (x1, . . . , xd) let X(t`) = x` represent
the event that Xi(t`) = xi for 1 ≤ i ≤ d. In other words, x(t`) = x`
means that the populations of the observed species at time t` equal the

64

5.1. Parameter inference

populations of vector x`. Note that this event corresponds to a set of
states of the Markov process since d may be smaller than N . More
precisely, Pr(X(t`) = x`) = ∑

x̃:x̃i=xi,i≤d p(x̃, t`). Now the likelihood of
the observation sequence O(t1), . . . ,O(tL) is given by

L = f (O(t1), . . . ,O(tL))

= ∑
x1 . . .

∑
xL f (O(t1), . . . ,O(tL) | X(t1) = x1, . . . ,X(tL) = xL)

Pr(X(t1) = x1, . . . ,X(tL) = xL) .
(5.1)

Note that L depends on the chosen rate parameters c and the initial
populations x(0) since the probability measure Pr(·) does. Furthermore,
L depends on Σ since the density f does. When necessary, we will make
this dependence explicit by writing L(x(0), c,Σ) instead of L. We now
seek constants c∗, initial populations x(0)∗ and a covariance matrix Σ∗

such that

L(x(0)∗, c∗,Σ∗) = max
x(0),c,Σ

L(x(0), c,Σ)

where the maximum is taken over vectors x(0), c with strictly positive
components and all feasible values of Σi1,i2 . This optimization problem
is known as the maximum likelihood problem [Lju99]. Note that x(0)∗,
c∗ and Σ∗ are random variables because they depend on the (random)
observations O(t1), . . . ,O(tL).

If more than one sequence of observations is made, then the corresponding
likelihood is the product of the likelihoods of all individual sequences.
More precisely, if Ok(tl) is the k-th observation that has been observed
at time instant tl where k ∈ {1, . . . , K}, then we define Lk(x(0), c,Σ) as
the probability to observe Ok(t1), . . . ,Ok(tL) and maximize

∏K
k=1 Lk(x(0), c,Σ). (5.2)

In what follows, we concentrate on expressions for Lk(x(0), c,Σ) and
its derivatives with respect to x(0), c and Σ. We first assume K = 1
and drop index k. We consider the case K > 1 later. In (5.1) we
sum over all population vectors x1, . . . , xL of dimension d such that
Pr(X(t`) = x`, 1 ≤ ` ≤ L) > 0. Since X has a large or even infinite state
space, it is computationally infeasible to explore all possible sequences.

65

5.1. Parameter inference

In Section 5.2 we propose an algorithm to approximate the likelihoods
and their derivatives by dynamically truncating the state space and using
the fact that (5.1) can be written as a product of vectors and matrices.
Let φΣ be the density of the normal distribution with mean zero and
covariance matrix Σ. Then

f (O(t1), . . . ,O(tL) | X(t1) = x1, . . . ,X(tL) = xL)

= ∏L
`=1 f (O(t`) | X(t`) = x`) = ∏L

`=1 φΣ(O(t`)− x`).

If we write w(x`) for φΣ(O(t`) − x`), then the sequence x1, . . . ,xL has
“weight” ∏L

`=1w(x`) and, thus,

L =
∑
x1

. . .
∑
xL

Pr(X(t1) = x1, . . . ,X(tL) = xL)
L∏
`=1

w(x`). (5.3)

Moreover, for the probability of the sequence x1, . . . ,xL we have

Pr(X(t1) = x1, . . . ,X(tL) = xL) = p(x1, t1)P2(x1,x2) · · ·PL(xL−1,xL)

where P`(x, x̃) = Pr(X(t`) = x̃ | X(t`−1) = x) for d-dimensional popula-
tion vectors x and x̃. Hence, (5.3) can be written as

L =
∑
x1

p(x1, t1)w(x1)
∑
x2

P2(x1,x2)w(x2) . . .
∑
xL
PL(xL−1,xL)w(xL).

(5.4)

Assume that d = N and let P` be the matrix with entries P`(x, x̃) for all
possible states x, x̃. Note that P` is the transition probability matrix of
x for time step t` − t`−1 and thus the general solution eQ(t`−t`−1) of the
Kolmogorov forward and backward differential equations

d
dt
P` = QP`,

d
dt
P` = P`Q.

In this case, using p(t1) = p(t0)P1 with t0 = 0, we can write (5.4) in
matrix-vector form as

L = p(t0)P1W1P2W2 · · ·PLWLe. (5.5)

Here, e is the vector with all entries equal to one and W` is a diagonal
matrix whose diagonal entries are all equal to w(x`) with ` ∈ {1, . . . , L},
where W` is of the same size as P`.

66

5.1. Parameter inference

If d < N , then we still have the same matrix-vector product as in (5.5),
but define the weight w(x) of an N -dimensional population vector as

w(x1, . . . , xN) = w(x1, . . . , xd) = φΣ(O(t`)− x),

i.e. the populations of the unobserved species have no influence on the
weight.

Since it is in general not possible to analytically obtain parameters that
maximize L, we use numerical optimization techniques to find c∗, x(0)∗
and Σ∗. Typically, such techniques iterate over values of c, x(0) and Σ,
and increase the likelihood L(c, σ,Σ) by following the gradient. Therefore,
we need to calculate the derivatives ∂

∂cj
L, ∂

∂xi(0)L and ∂
∂Σß1,ß2

L. For ∂
∂cj
L

we obtain
∂
∂cj
L = ∂

∂cj
(p(t0)P1W1P2W2 · · ·PLWLe)

= p(t0)
(∑L

`=1

(
∂
∂cj
P`
)
W`

∏
`′ 6=` P`′W`′

)
e.

(5.6)

The derivatives of L w.r.t. xi(0) and Σß1,ß2 are derived analogously.
The only difference is that p(t0) is dependent on xi(0) and P1, . . . , PL
are independent of Σß1,ß2 but W1, . . . ,WL depend on Σß1,ß2 . It is also
important to note that expressions for partial derivatives of second order
can be derived in a similar way. These derivatives can then be used for
an efficient gradient-based local optimization.

For K > 1 observation sequences we maximize the log-likelihood

log∏K
k=1 Lk = ∑K

k=1 logLk, (5.7)

instead of the likelihood in (5.2). Note that the derivatives are then given
by

∂
∂λ

∑K
k=1 logLk = ∑K

k=1
∂
∂λ
Lk
Lk

, (5.8)

where λ is cj, xi(0) or Σß1,ß2 . It is also important to note that only the
weights w(x`) depend on k, that is, on the observed sequence Ok(t1), . . . ,
Ok(tL). Thus, when we compute Lk based on (5.5) we use for all k the
same transition matrices P1, . . . , PL and the same initial conditions p(t0),
but possibly different matrices W1, . . . ,WL.

67

5.2. Numerical approximation algorithm

5.2 Numerical approximation algorithm
In this section, we focus on the numerical approximation of the likelihood
and the corresponding derivatives w.r.t. the rate constants c1, . . . , cR, the
initial populations x(0) and the covariance matrix Σ = (Σi1,i2) of the
error terms. For sake of simplicity, we assume that there is no correlation
between measurement errors of different molecular species, e.g. Σ = Iσ2

for some σ > 0. We propose two approximation algorithms for the
likelihood and its derivatives, a state-based likelihood approximation
(SLA) and a path-based likelihood approximation (PLA). Both are based
on a dynamic truncation of the state space as suggested in Chapter 2.
They differ in that the PLA method exploits equidistant time series, that
is, it is particularly efficient if h = t`+1 − t` for all ` and if σ is not too
large. The SLA algorithm works for arbitrarily spaced time series and is
efficient even if σ is large.

5.2.1 Computation of derivatives

We are interested in the partial derivatives of p(t) w.r.t. a certain
parameter λ such as reaction rate constants cj, j ∈ {1, . . . , R} or initial
populations xi(0), i ∈ {1, . . . , N}. Later, they will be used to maximize
the likelihood of observations and to find optimal parameters. In order
to explicitly indicate the dependence of p(t) on λ we may write pλ(t)
instead of p(t) and pλ(x, t) instead of p(x, t). We define the row vector
sλ(t) as the derivative of pλ(t) w.r.t. λ, i.e.,

sλ(t) = ∂pλ(t)
∂λ

= lim∆→0
pλ+∆(t)−pλ(t)

∆ .

We denote the entry in sλ(t) that corresponds to state x by sλ(x, t). Note
that we use bold face for vectors. By (1.6), we find that sλ(t) is the
solution of the system of ODEs

d
dt

sλ(t) = sλ(t)Q+ pλ(t) ∂
∂λ
Q, (5.9)

when choosing λ = cj for j ∈ {1, . . . , R}. In this case, the initial condition
is sλ(x, 0) = 0 for all x since p(x, 0) is independent of cj . If the unknown
parameter is the i-th initial population, i.e., λ = xi(0), then we get

d
dt

sλ(t) = sλ(t)Q, (5.10)

68

5.2. Numerical approximation algorithm

with initial condition sλ(0) = ∂
∂λ

pλ(0) since Q is independent of xi(0).
Similar ODEs can be derived for higher order derivatives of the CME.

5.2.2 State-based likelihood approximation

The SLA algorithm calculates an approximation of the likelihood based
on (5.5) by traversing the matrix-vector product from the left to the right.
The main idea behind the algorithm is that instead of explicitly computing
the matrices P`, we express the vector-matrix product u(t`−1)P` as a
system of ODEs similar to the CME (cf. Eq. (1.5)). Here, u(t0), . . . ,u(tL)
are row vectors obtained during the iteration over time points t0, . . . , tL,
that is, we define L recursively as L = u(tL)e with u(t0) = p(t0) and

u(t`) = u(t`−1)P`W` for all 1 ≤ ` ≤ L,

where t0 = 0. Instead of computing P` explicitly, we solve L systems of
ODEs

d
dt

ũ(t) = ũ(t)Q (5.11)

with initial condition ũ(t`−1) = u(t`−1) for the time interval [t`−1, t`)
where ` ∈ {1, . . . , L}. After solving the `-th system of ODEs we set
u(t`) = ũ(t`)W` and finally compute L = u(tL)e. Since this is the
same as solving the CME for different initial conditions, we can use the
dynamic truncation of the state space proposed in Chapter 2. Since the
vectors ũ(t`) do not sum up to one, we scale all entries by multiplication
with 1/(ũ(t`)e). This simplifies the truncation of the state space using
the significance threshold δ since after scaling it can be interpreted as
a probability. In order to obtain the correct (unscaled) likelihood, we
compute L as L = ∏L

`=1(ũ(t`)e). We handle the derivatives of L in a
similar way. To shorten our presentation, we only consider the derivative
∂
∂cj
L in the sequel. An iterative scheme for ∂

∂σ
L is derived analogously.

From (5.6) we obtain ∂
∂cj
L = uj(tL)e with uj(t0) = 0 and

uj(t`) = (uj(t`−1)P` + u(t`−1) ∂
∂cj
P`)W` for all 1 ≤ ` ≤ L,

where 0 is the vector with all entries zero. Thus, during the solution of
the `-th ODE in (5.11) we simultaneously solve

d
dt

ũj(t) = ũj(t)Q+ ũ(t) ∂
∂cj
Q (5.12)

69

5.2. Numerical approximation algorithm

with initial condition ũj(t`−1) = uj(t`−1) for the time interval [t`−1, t`).
As above, we set uj(t`) = ũj(t`)W` and obtain ∂

∂cj
L as uj(tL)e.

Solving (5.11) and (5.12) simultaneously is equivalent to the computation
of the partial derivatives in (5.9) with different initial conditions. Thus,
we can use the approximation algorithm proposed in Chapter 2 to approxi-
mate uj(t`). Our experimental results show that the approximation errors
of the likelihood and its derivatives are of the same order of magnitude
as those of the transient probabilities and their derivatives (not shown).
Note, however, that, if σ is small only few states contribute significantly
to the likelihood. In this case, truncation strategies based on sorting of
vectors are more efficient without considerable accuracy losses since the
main part of the likelihood concentrates on very few entries (namely those
that correspond to states that are close to the observed populations).

In the case of K observation sequences we repeat the above algorithm
in order to sequentially compute Lk for k ∈ {1, . . . , K}. We exploit (5.7)
and (5.8) to compute the total log-likelihood and its derivatives as a
sum of individual terms. Obviously, it is possible to parallelize the SLA
algorithm by computing Lk in parallel for all k.

In order to find values for which the likelihood becomes maximal, global
optimization techniques can be applied. Those techniques usually use
a heuristic for different initial values of the parameters and then follow
the gradient to find local optima of the likelihood. In this step the
algorithm proposed above is used since it approximates the gradient of
the likelihood. The approximated global optimum is then chosen as the
minimum/maximum of the local optima, i.e, we determine those values
of the parameters that give the largest likelihood. Clearly, this is an
approximation and we cannot guarantee that the global optimum was
found. Note that this would also be the case if we could compute the
exact likelihood. If, however, a good heuristic for the starting points is
chosen and the number of starting points is large, then it is likely that
the approximation is accurate. Moreover, since we have approximated
the second derivative of the log-likelihood, we can compute the entries of
the Fisher information matrix and use this to approximate the standard
deviation of the estimated parameters, i.e., we consider the square root
of the diagonal entries of the inverse of a matrix H which is the Hessian
matrix of the negative log-likelihood. Assuming that the second derivative
of the log-likelihood is computed exactly, these entries asymptotically

70

5.2. Numerical approximation algorithm

tend to the standard deviations of the estimated parameters.

We remark that the approximation proposed above becomes unfeasible if
the reaction network contains species with high molecule numbers since in
this case the number of states that have to be considered is very large. A
numerical approximation of the likelihood is, as the solution of the CME,
only possible if the expected populations of all species remain small (at
most a few hundreds) and if the dimension of the process is not too large.
Moreover, if many parameters have to be estimated, the search space of
the optimization problem may become unfeasibly large. It is however
straightforward to parallelize local optimizations starting from different
initial point.

5.2.3 Path-based likelihood approximation

If ∆t = t` − t`−1 for all ` then the matrices P1, . . . , PL in (5.5) are equal
to the ∆t-step transition matrix T(∆t) with entries Pr(X(t+ ∆t) =
x2 | X(t) = x1). Note that since we consider a time-homogeneous Markov
process x, the matrix T(∆t) is independent of t. The main idea of the PLA
method is to iteratively compute those parts of T(∆t) that correspond to
state sequences (paths) x1, . . . ,xL that contribute significantly to L. The
algorithm can be summarized as follows, where we omit the argument ∆t
of T to improve the readability and refer to the entries of T as T(x1,x2):

1. We compute the transient distribution p(t1) and its derivatives
(w.r.t. c and σ) as outlined in Section 5.2.1 using a significance
threshold δ.

2. For each state x1 with significant probability p(x1, t1) we approx-
imate the rows of T and ∂

∂cj
T that correspond to x1 based on a

transient analysis for ∆t time units. More precisely, if ex1 is the
vector with all entries zero except for the entry that corresponds to
state x1 which is one, then we solve (1.5) with initial condition ex1

for ∆t time units in order to approximate T(x1,x2) and ∂
∂cj

T(x1,x2)
for all x2. During this transient analysis we again apply the dynamic
truncation of the state space proposed in Chapter 2 with threshold
δ.

3. We then store for each pair (x1,x2) the (partial) likelihood a(x1,x2)

71

5.2. Numerical approximation algorithm

and its derivatives:

a(x1,x2) = p(x1, t1) · w(x1) ·T(x1,x2) · w(x2)
∂
∂cj
a(x1,x2) = ∂

∂cj
p(x1, t1) · w(x1) ·T(x1,x2) · w(x2)

+p(x1, t1) · w(x1) · ∂
∂cj

T(x1,x2) · w(x2).

4. We reduce the number of considered pairs by sorting a(x1,x2) for
all pairs (x1,x2) calculated in the previous step and keep the most
probable pairs.

5. Next, we repeat steps 2-4, where in step 2 we start the analysis
from all states x2 that are the last element of a pair kept in the
previous step. In step 3 we store triples of states, say, (x1,x2,x3)
and recursively compute their likelihood and the corresponding
derivatives by multiplication with T(x2,x3) and w(x3), i.e., for the
likelihood we compute

a(x1,x2,x3) = a(x1,x2) ·T(x2,x3) · w(x3)
∂
∂cj
a(x1,x2,x3) = ∂

∂cj
a(x1,x2) ·T(x2,x3) · w(x3)

+a(x1,x2) · ∂
∂cj

T(x2,x3) · w(x3).

Note that we may reuse some of the entries of T since they already
have been calculated in a previous step. In step 4 we again reduce
the number of triples (x1,x2,x3) by sorting them according to their
likelihood. We then keep the most probable triples, and so on. Note
that in step 4 we cannot use a fixed truncation threshold δ to reduce
the number of state sequences (or paths) since their probabilities
may become very small as the sequences become longer.

6. We stop the prolongation of paths x1, . . . ,x` when the time instance
tL = ∆t · L is reached and compute an approximation of L and its
derivatives by summing up the corresponding values of all paths (cf.
Eq. (5.3)).

If we have more than one observation sequence, i.e., K > 1, then we
repeat the procedure to compute Lk for all k and use (5.7) to calculate the
total log-likelihood. Note that the contribution of each path x1, . . . ,xL
to Lk may be different for each k. It is, however, likely that the entries
of T can be reused not only during the computation of each single
Lk but also for different values of k. If many entries of T are reused

72

5.3. Numerical results

during the computation, the algorithm performs fast compared to other
approaches. For our experimental results in Section 5.3.1, we keep the
ten most probable paths in step 4. Even though this enforces a coarse
approximation, the likelihood is approximated very accurately if σ is small,
since in this case only few paths contribute significantly to Lk. On the
other hand, if σ is large, then the approximation may become inaccurate
depending on the chosen truncation strategy. Another disadvantage of
the PLA method is that for non-equidistant time series, the performance
is slow since we have to compute (parts of) different transition matrices
and, during the computation of Lk, the transition probabilities cannot be
reused.

5.3 Numerical results
In this section we present numerical results of our parameter estimation
algorithm applied to a number of models of biochemical reactions. In
subsections 5.3.1, 5.3.2, we present experimental results of the SLA and
PLA methods. For equidistant time series, we compare our approach
to the approximate maximum likelihood (AML) and the singular value
decomposition (SVDL) method described by Reinker et al. [RAT06]. Since
an implementation of the AML and SVDL method was not available to
us, we chose the same examples and experimental conditions for the
time series as Reinker et al. and compared our results to those listed in
the results section in [RAT06]. We also consider non-equidistant time
series. To the best of our knowledge there exists no direct numerical
approach for non-equidistant time series with measurement error that
is based on the maximum likelihood method. In subsection 5.3.3 we
present results of our parameter estimation algorithm applied to enzyme
reaction example where alongside with the estimation of reaction rate
constants and the observation error we estimate the initial conditions. In
subsection 5.3.4 we provide more complex case studies and run extensive
numerical experiments to assess the identifiability of certain parameters.
In these experiments we assume that not all molecular populations can be
observed and estimate parameters for different observation scenarios, i.e.,
we assume different numbers of observed cells and different observation
interval lengths.

For all models of biochemical reaction networks, we generated time
series data using Monte-Carlo simulation where we added white noise

73

5.3. Numerical results

to represent measurement errors, i.e. we added random terms to the
populations that follow a normal distribution with mean zero and a
standard deviation of σ. Our algorithm for the approximation of the
likelihood is implemented in C++ and linked to MATLAB’s optimization
toolbox [MAT15] which we use to minimize the negative log-likelihood.
The global optimization method (Matlab’s GlobalSearch [ULP+07]) uses a
scatter-search algorithm to generate a set of trial points (potential starting
points) and heuristically decides when to perform a local optimization.
We ran our experiments on an Intel Core i7 at 2.8 GHz with 8 GB main
memory. As an integration method we used the standard explicit fourth-
order Runge-Kutta method with the time step chosen as the smallest
average sojourn time of all states in Sig, that is,

h = minx∈Sig 1/∑R
j=1 αj(x).

5.3.1 Equidistant time series

We consider models of the simple gene expression and the transcription
regulation with the reactions given in Table 5.1 and Table 5.2, respectively.

Table 5.1 – Chemical reactions of the simple gene expression model.

DNAON
c1−⇀↽−
c2

DNAOFF

DNAON
c3−→ DNAON + mRNA

In the equidistant case, the length of the observation intervals is ∆t =
t` − t`−1 for all ` ∈ {1, . . . , L}. In Table 5.3 and 5.5 we list the results
given in [RAT06] as well as the results of our methods. Reinker et al. do
not evaluate the AML method for larger intervals than ∆t = 1 because the
approximation error of the AML method becomes huge in that case. Also,
the SVDL method performs poor if σ is large since it does not include
measurement errors in the likelihood. Therefore, no results for σ > 1.0
are provided in [RAT06] for SVDL. In the first three columns we list ∆t,
the number L of observation points and the true standard deviation σ of
the error terms. In column “Time” we compare the average running time
(in seconds) of one parameter estimation (out of 100) for SLA and PLA,
i.e., the average running time of the maximization of the likelihood based
on K = 5 observation sequences. It is not meaningful to compare the
running times with those in [RAT06] since different optimization methods
are used and experiments were run on different machines. Finally, we list

74

5.3. Numerical results

estimation results for all four methods (if available). We list the average
of 100 estimations and the standard deviation of the estimates.

Table 5.2 – Chemical reactions of the transcription regulation model.

mRNA c1−→ mRNA + M
M c2−→ ∅

DNA.D c3−→ mRNA + DNA.D
mRNA c4−→ ∅

DNA + D
c5−⇀↽−
c6

DNA.D

2 M
c7−⇀↽−
c8

D

For the simple gene expression (Tables 5.3, 5.4) and ∆t = 1.0, we find
that SLA and PLA have a similar accuracy for the estimation of σ but
are consistently more accurate than AML and SVDL for estimating the
rate constants. If σ = 0.1, then the total absolute error for the estimation
of c is 0.041, 0.073, 0.016, 0.018 for AML, SVDL, SLA, PLA, respectively.
For σ = 1.0 we have total absolute errors of 0.081, 0.053, 0.026, 0.021
for AML, SVDL, SLA, PLA. Finally, for σ = 3.0, AML has a total
error of 0.139 while the error for SLA and PLA is 0.017 and 0.041. For
∆t = 10, the results of the SLA and PLA method are accurate even
though only 30 observation points are given. Since PLA gives a much
coarser approximation, its running time is always shorter (about three to
ten times shorter). If σ is large, SLA gives more accurate results than
PLA.

In Tables 5.5, 5.6 we compare results of the transcription regulation for
σ = 0. Note that, for this example, Reinker et al. only give results for
the SVDL method with ∆t ≤ 1.0 and σ = 0. Here, we compare results
for ∆t = 1.0 since in this case the SVDL method performs best compared
to smaller values of ∆t. The SLA and PLA method consistently perform
better than the SVDL method since they approximate the likelihood more
accurately. If σ = 0, then the accuracy of SLA and PLA is the same (up
to the fifth digit). Therefore the results of SLA and PLA are combined
in Tables 5.5, 5.6. The running time of SLA is, however, much slower
since it does not reuse the entries of the transition probability matrix T.
For ∆t = 1.0, one parameter estimation based on K = 5 observations
takes about 30 minutes for SLA and only about 2.4 minutes for PLA. For
∆t = 10.0 we have running times about 5 hours(SLA) and 27 minutes
(PLA). As for the gene expression example, we expect for larger values

75

5.3. Numerical results

of σ the results of SLA to be more accurate than those of PLA.

Table 5.3 – Average of parameter estimates for the simple gene expression
model using equidistant time series.

∆t (L) σ method run time c∗1 c∗2 c∗3 σ∗

1.0 (300) 0.1 AML – 0.0268 0.1523 0.3741 0.1012
SVDL – 0.0229 0.1573 0.4594 –
SLA 29.4 0.0297 0.1777 0.3974 0.1028
PLA 2.2 0.0300 0.1629 0.3892 0.1010

1.0 AML – 0.0257 0.1409 0.3461 1.0025
SVDL – 0.0295 0.1321 0.3842 –
SLA 8.3 0.0278 0.1868 0.3946 0.9976
PLA 1.8 0.0278 0.1810 0.3938 0.9938

3.0 AML – 0.0250 0.1140 0.3160 3.0292
SVDL – – – – –
SLA 11.1 0.0285 0.1755 0.3938 2.9913
PLA 1.7 0.0275 0.1972 0.3894 3.0779

10.0 (30) 0.1 AML – – – – –
SVDL – – – – –
SLA 40.9 0.0273 0.1788 0.3931 0.1086
PLA 5.2 0.0277 0.1782 0.4057 0.1234

1.0 AML – – – – –
SVDL – – – – –
SLA 10.2 0.0283 0.1787 0.4018 0.9898
PLA 3.5 0.0243 0.1665 0.4031 1.0329

3.0 AML – – – – –
SVDL – – – – –
SLA 12.3 0.0300 0.1960 0.4025 2.9402
PLA 4.2 0.0210 0.1511 0.4042 3.0629

5.3.2 Non-equidistant time series

Finally, we consider non-equidistant time series, which can only be handled
by the SLA method. During the Monte-Carlo simulation, we generate non-
equidistant time series by iteratively choosing t`+1 = t` + U(0, 5), where
U(0, 5) is a random number that is uniformly distributed on (0, 5) and
t0 = 0. Note that the intervals are not only different within an observation
sequence but also for different k, i.e., the times t1, . . . , tL depend on the

76

5.3. Numerical results

number k of the corresponding sequence. We consider the transcription
regulation model with σ = 1.0 and K = 5 as this is our most complex
example. Note that, since the accuracy of the estimation decreases
as σ increases, we cannot expect a similar accuracy as in Tables 5.5,
5.6. For a time horizon of T = 500 the average number of observation
points per sequence is L = 500/2.5 = 200. The estimates computed by
SLA are c∗1 = 0.0384(0.0343), c∗2 = 0.0010(0.0001), c∗3 = 0.0642(0.0249),
c∗4 = 0.0044(0.0047), c∗5 = 0.0273(0.0073), c∗6 = 0.5498(0.1992), c∗7 =
0.0890(0.0154), c∗8 = 0.5586(0.0716), and σ∗ = 0.9510(0.0211), where we
averaged over 100 repeated estimations and give the standard deviation
in brackets. Recall that the true constants are c1 = 0.043, c2 = 0.0007,
c3 = 0.0715, c4 = 0.00395, c5 = 0.02, c6 = 0.4791, c7 = 0.083, and
c8 = 0.5. The average running time of one estimation was 19 minutes.

5.3.3 Estimation of initial conditions

We consider the enzyme reaction example with the reactions given in
Table 1.1 and initial molecular populations (E(0), S(0), C(0), P (0)) =
(20, 10, 0, 0) for E, S, C, and P. We chose rate constants c = (1, 1, 0.1)
and a time horizon of T = 10. In Fig. 5.1 we plot the expected number
of complex molecules and two observation sequences that we simulated
using σ2 = 1 and σ2 = 3. In Tables 5.7 and 5.8 we list the estimation
results for different numbers of observation points L yielding different
lengths ∆t of observation intervals. We also vary the measurement error
σ2. In the third column we list the execution time of a single estimation
run.

We list the average and standard deviation of estimated rate constants in
columns 4-6. For ∆t = 0.1 and σ2 = 0.1 the maximum absolute error of c
is 0.0852, for ∆t = 0.1 and σ2 = 1 we have 0.0402, and for ∆t = 0.1 and
σ2 = 3 it is 0.1910. In case if ∆t = 1 we get a coarser estimation of c1 and
c2, but the estimation of c3 is still very accurate. This can be explained
by the fact that the third reaction is slower. In the 7th and 8th columns
we list the estimated initial molecular counts of type E and S respectively.
We assume that we know that initially neither complex molecules nor
proteins are present in the system. The intervals for initial molecular
counts were chosen as [0, 50]. For σ2 ≤ 1 the maximum absolute error
is 0.1295, if σ2 = 3 the error is 0.6815. Finally, we list the estimated
covariance of the measurement error. For ∆t = 0.1 the maximum absolute

77

5.3. Numerical results

0

2

4

6

8

10

12

0 2 4 6 8 10

C

time

true mean
σ2 = 1
σ2 = 3

Figure 5.1 – Expected number of complex molecules and two observation
sequences for σ2 = 1 and σ2 = 3.

error is 0.0568 and for ∆t = 1 we have 0.1224.

5.3.4 Parameter identifiability

Simple Gene Expression We consider the simple gene expression
model (Table 5.1) with same parameters chosen as Reinker et al.[RAT06]
multiplied by a factor of 10, i.e., c = (0.270, 1.667, 4.0) and as the initial
condition we have 10 mRNA molecules and the DNA is inactive. We
generated K observation sequences of length T = 100.0 and observed
all species at L equidistant observation time points. We added white
noise with standard deviation σ = 1.0 to the observed mRNA molecule
numbers at each observation time point. For the case K = 5, L = 100 we
plot the generated observation sequences in Figure 5.2 (a).

We estimated the reaction rate constants, the initial molecule numbers,
and the parameter σ of the measurement errors for the case K = 5, L =
100 where we chose the interval [10−5, 103] as a constraint for the rate
constants, the interval [0, 100] for the initial number of mRNA molecules
and [0, 5] for σ. Since we use a global optimization method, the running
time of our method depends on the number of trial points generated by
GlobalSearch. In Figure 5.3 we plot the trial points (red points) and
local optimization runs (differently colored lines) for the case of 10 (a),

78

5.3. Numerical results

��

���

���

���

���

���

���

���

�� ��� ��� ��� ��� ����

�
�
�
�

����

(a)

��

��

���

���

���

���

���

���

���

�� �� �� �� �� ���

�
�
��
�
��
�

����

(b)

��

��

���

���

���

���

���

���

�� �� �� �� �� ���

�
�
���
�
��
�

����

(c)

��

��

��

��

��

���

���

�� �� �� �� �� ���

�
�
�
�
��
�

����

(d)

Figure 5.2 – Generated observation sequences for the gene expression (a)
and multi-attractor (b)-(d) models. Each plot shows K = 5 sequences
with L = 100 time points.

100 (b) and 1000 (c) trial points. The intersection of the dashed blue
lines represents the location of the original parameters. In the case of
10 trial points, the running time was about one minute and the local
optimization was performed only once. In the case of 100 and 1000 trial
points, the running times were about 22 minutes and 1.9 hours respectively
and several local optimization runs converged in nearly the same point.
However, we remark that in general the landscape of the target function
might have multiple local minima and require more trial points resulting

79

5.3. Numerical results

in longer running times.

We ran experiments for varying values of K and L (K,L ∈ {1, 2, 5, 10, 20,
50, 100}) to get insights whether for this network it is more advantageous
to have many observation sequences with long observation intervals or
few observation sequences with a short time between two successive
observations. In addition, we ran the same experiments with the restriction
that only the number of mRNA molecules was observable but not the
state of the gene. In both cases we approximated the standard deviations
of our estimators as a measure of quality by repeating our estimation
procedure 100 times and by the Fisher information matrix as explained
at the end of the previous section. We used 100 trial points for the global
optimization procedure and chose tighter constraints than above for the
rate constants ([0.01, 1] for c1 and [0.1, 10] for c2, c3) to have a convenient
total running time.

The results are depicted in Figure 5.4 for the fully observable system and
in Figure 5.5 for the restricted system, where the state of the gene was
not visible. In these figures we present the estimations of the parameters
c1, c2, c3, σ, and an estimation of the initial condition, i.e. the number
of mRNA molecules at time point t = 0. Moreover, we give the total
running time of the procedure (Figures 5.4(f) and 5.5(f)). Our results
are plotted as a gray landscape for all combinations of K and L. The
estimates are bounded by a red grid enclosing an environment of one
standard deviation around the respective average over all 100 estimates
that we approximated. The real value of the parameter is indicated by a
dotted blue rectangle.

At first, we remark that neither the quality of the estimation nor the
running time of our algorithm is significantly dependent on whether we
observe the state of the gene in addition to the mRNA level or not.
Moreover, concerning the estimation of all of the parameters, one can
witness that the estimates converge more quickly against the real values
along the K axis than the L axis and also the standard deviations decrease
faster. Consequently, at least for the gene expression model, it is more
advantageous to increase the number of observation sequences, than the
number of measurements per sequence. For example, K = 100 sequences
with only one observation each already provide enough information to
estimate c1 up to a relative error of around 2.1%. Unfortunately, in this
case the computation time is the highest since we have to compute K

80

5.3. Numerical results

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

(a)

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

(b)

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

����

����

����

����

����

���

���

���

���

���� ���� ���� ���� ���� ��� ��� ��� ���

�
�

��

(c)

Figure 5.3 – Start points and gradient convergence of the optimization
procedure for the gene expression example: Red pluses show the potential
start points. We use 10, 100, and 1000 start points in case (a), (b), and (c),
respectively. The markers that are connected by lines show the iterative
steps of the gradient convergence while the dashed blue line shows the
true values of the parameters. We chose K = 5, L = 100 and assume that
the parameters are in the range [10−5, 103].

81

5.3. Numerical results

��
��

��
���

���
���

������
��

��
���

���
���

����

����

����

����

����

����

��

�

�

(a)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

��

��

��

��

����������

�

�

(b)

��
��

��
���

���
���

������
��

��
���

���
���

����

����

��

����

��

����

��

�

�

(c)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

��

���

���

���

�������

�

�

(d)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

����

��

����

��

����

��

�

�

(e)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

��

��

��

��

��

�����������

�

�

(f)

Figure 5.4 – Results of the gene expression case study with observable
gene state. The dotted blue rectangle gives the true value of c1, c2, c3, σ
(obs. error), and mRNA(0). The red grid corresponds to the approximated
standard deviation of the estimators.

82

5.3. Numerical results

��
��

��
���

���
���

������
��

��
���

���
���

����

����

����

����

����

����

��

�

�

(a)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

��

��

��

��

����������

�

�

(b)

��
��

��
���

���
���

������
��

��
���

���
���

����

����

��

����

��

����

��

�

�

(c)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

��

���

���

���

�������

�

�

(d)

��
��

��
���

���
���

������
��

��
���

���
���

����

��

����

��

����

��

����

��

�

�

(e)

��
��

��
���

���
���

������
��

��
���

���
���

����

��
��
��
��
��
��
��

�����������

�

�

(f)

Figure 5.5 – Results of the gene expression case study (as in Figure 5.4)
but the state of the gene is not observed.

individual likelihoods (one for each observation sequence). Moreover, if

83

5.3. Numerical results

L is small then the truncation of the state space is less efficient. The
reason is that we have to integrate for a long time until we multiply with
the weight matrix W`. After this multiplication we decide which states
contribute significantly to the likelihood and which states are neglected.
We can, however, trade off accuracy against running time by varying K.

For the measurement noise parameter σ we see that it is more advanta-
geous to increase L. Even five observation sequences with a high number
of observations per sequence (L = 100) suffice to estimate the noise up
to a relative error of around 10.2%. For the estimation of the initial
conditions, both K and L seem to play an equally important role.

The standard deviations of the estimators give information about the
accuracy of the estimation. In order to approximate the standard deviation
we used statistics over 100 repeated experiments. In a realistic setting
one would rather use the Fisher information matrix to approximate the
standard deviation of the estimators since it is in most cases difficult to
observe 100 · K observation sequences of a real system. Therefore we
compare the results of one experiment with K observation sequences and
standard deviations approximated using the Fisher information matrix
to the case where the experiment is repeated 100 times. The results for
varying values of K and L are given in Table 5.9. We observe that the
approximation using the Fisher information matrix is in most cases close
to the approximation based on 100 repetitions as long as K and L are not
too small. This comes from the fact that the Fisher information matrix
converges to the true standard deviation as the sample size increases.

Multi-attractor Model Our final example is a part of the multi-
attractor model considered by Zhou et al. [ZBH11]. It consists of the
three genes MafA, Pax4, and δ-gene, which interact with each other as
illustrated in Figure 5.6. The corresponding proteins bind to specific
promoter regions on the DNA and (de-)activate the genes. The reaction
network has 23 different gene states, also called modes, since each gene can
be on or off. It is infinite in three dimensions since for the proteins there
is no fixed upper bound. The edges between the nodes in Figure 5.6 show
whether the protein of a specific gene can bind to the promoter region of
another gene. Moreover, edges with normal arrow heads correspond to
binding without inhibition while the edges with line heads show inhibition.

84

5.3. Numerical results

between two observation time points the truncation is based
only on the (weighted) probabilities.

For the partial observations, both the hybrid and the dis-
crete approach give estimations that are less accurate com-
pared to full observations. Note that for parameter u = 0.1
the discrete approach is worse than the hybrid approach
because the likelihood becomes maximal for u = 0.1512.
The more accurate value of the hybrid approach is due to
the coarser approximation of the likelihood. For parame-
ters k, d, b, however, the discrete approach is better, which
conforms to our expectations.

6.3 Multi-Attractor model
Our final example is a part of the multi-attractor model con-
sidered by Zhou et al. [21]. It consists of the three genes
MafA, Pax4, and δ-gene, which interact with each other as
illustrated in Figure 3. The corresponding proteins bind to
specific promotor regions on the DNA and (de-)activate the
genes. The reaction network has 23 modes (since each gene
can be on or off) and three continuous populations (the pro-
teins of the three genes). The edges between the nodes in
Figure 3 show whether the protein of a specific gene can bind
to the promotor region of another gene. Moreover, edges
with normal arrow heads correspond to binding without in-
hibition while the edges with line heads show inhibition.

Pax4

δ-gene

MafA

Figure 3: Interactions of the multi-attractor model.

We list all 24 reactions in Appendix B. We consider a time
horizon of t = 10 and initial conditions where all genes are
active and no proteins are present. To simplify the esti-
mation procedure, we assume that there is a common rate
constant for all protein production reactions (k), for all pro-
tein degradations (d), binding (b) and unbinding (u) reac-
tions. We list the chosen true constants and the estimations
based on our hybrid approach in Table 3. As for the ex-
clusive switch, we consider time series data where all pop-
ulations are observed and data where only the number of
protein molecules observed (always with measurement er-
rors represented by σ2 = 1.0, not estimated). We estimate
the standard deviations of the estimators using the Fisher
information matrix. Note that for this example, it becomes
infeasible to use a purely discrete approach if the observa-
tion points are far away from each other (R = 10) since the
number of states that have to be considered becomes too
large. For the hybrid approach, the running time was about
five hours.

For the partial observations (see rows with label “partial”
in Table 3), the estimated values are not very accurate.
This has several reasons. First, the observations are only
five random trajectories of the Markov chain (we did not
choose particularly favorable trajectories but simply gener-
ated them at random). Secondly, for the parameters u and
b, partial observations do not seem to suffice for an accurate
estimation even if we have R = 100 observation time points.

The high standard deviations that we approximated based
on the Fisher information matrix, however, show that more
information is necessary to derive accurate estimations. As
expected, the estimates for the full observations are more
accurate. We remark that it is out of the scope of this paper
to examine when there is enough information available to
estimate certain parameters accurately.

7. RELATED WORK
Several approaches for the estimation of parameters of stoch-
astic hybrid models of chemical reaction networks exist.
Some of them are based on a Markov Chain Monte Carlo
method [8, 12] while Reinker et al. use a maximum likeli-
hood approach, but propose a numerical approximation of
the likelihood for a discrete-state Markov model of biochem-
ical reaction networks [18]. A similar approach is taken by
Tian et al. as well as Angius and Horváth, where the likeli-
hood function is evaluated by Monte Carlo simulation [3, 20].
As opposed to that, here, we use a stochastic hybrid model
and a direct numerical approach to approximate the likeli-
hood of the data. Cinquemani et al. use a similar model as
ours, but minimize prediction errors [4] while we minimize
the (negative) log-likelihood.

Our stochastic hybrid model has the advantage that it does
not suffer from the largeness problem in discrete-state sys-
tems. Moreover, it relies on an explicit representation of
mode probabilities while other models rely on a moment-
based representation [10]. Compared to other estimation
methods, the maximum likelihood approach that we use has
desirable mathematical properties. Specifically, maximum
likelihood estimators become minimum variance unbiased
estimators and are asymptotically normal as the sample size
increases. We remark that it is difficult to compare the ac-
curacy and efficiency of different parameter estimation algo-
rithms since currently implementations of such algorithms
are not publicly available except for our own previously de-
veloped estimation method for purely discrete models [2],
which we use for a comparison in Section 6.

8. CONCLUSION
Parameter inference for purely discrete models of chemical
reaction networks demands huge computational resources.
Here, we use a stochastic hybrid model that relies on an
accurate but computationally cheap approximation of the
dynamics of large chemical populations. In this way we mit-
igate the largeness problem of state spaces of purely discrete
models. We proposed an efficient numerical approximation
method for the stochastic hyb rid model to derive maximum
likelihood estimators for a given set of noisy observations of
the network.

As future work, we plan to integrate our parameter estima-
tion technique into SHAVE [14], a tool for the analysis of
stochastic hybrid models of chemical reactions, and to use it
for the estimation of parameters in more complex networks.
Moreover, we will apply our technique to other application
domains of stochastic hybrid systems.

Acknowledgment
This research has been partially funded by the German Re-
search Council (DFG) as part of the Cluster of Excellence

Figure 5.6 – Illustration of the multi-attractor model.

We list all 24 reactions in Table 5.10. For simplicity we first assume that
there is a common rate constant for all protein production reactions (p),
for all protein degradations (d), binding (b), and unbinding (u) reactions.
We further assume that initially all genes are active and no proteins are
present. For the rate constants we chose c = (p, d, b, u) = (5.0, 0.1, 1.0, 1.0)
and generated K ∈ {1, 5} sample paths of length T = 10.0. We added
normally distributed noise with zero mean and standard deviation σ = 1.0
to the protein levels at each of the L = 100 observation time points. Plots
of the generated observation sequences are presented in Figure 5.2 (b)-(d)
for the case K = 5. For the global optimization we used 10 trial points.
We chose the interval [0.1, 10] as a constraint for the rate constants p, b, u
and the interval [0.01, 1] for d. We estimated the parameters for all
23 − 1 = 7 possibilities of observing or not observing the three protein
numbers where at least one of them had to be observable. In addition
we repeated the parameter estimation for the fully observable system
where in addition to the three proteins also the state of the genes was
observed. The results are depicted in Figure 5.7 where the x-axis of the
plots refers to the observed proteins. For instance, the third entry on the
x-axis of the plot in Figure 5.7(a) shows the result of the estimation of
parameter c1 = 5 based on observation sequences where only the molecule
numbers of the proteins MafAProt and DeltaProt were observed. For
this case study, we used the Fisher information matrix to approximate
the standard deviations of our estimators, plotted as bars in Figure 5.7
with the estimated parameter as midpoint. The fully observable case is
labelled by “full”.

We observe in Figure 5.7 that as expected the accuracy of the estima-
tion and the running time of our algorithm is best when we have full
observability of the system and gets worse with an increasing number
of unobservable species. Still the estimation quality is very high when
five observation sequences are provided for almost all combinations and

85

5.3. Numerical results

���

��

��

��

���

���

���

���

���

��
��

�
�
��
�
��
��
�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
���
�
��
�

�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
�
�
��
�

�
�
��
�
��
�

�
�
���
�
��
�

�
�
�
�
��
�

�
�

���
���

(a)

����

�����

��

�����

����

�����

����

�����

����

��
��

�
�
��
�
��
��
�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
���
�
��
�

�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
�
�
��
�

�
�
��
�
��
�

�
�
���
�
��
�

�
�
�
�
��
�

�
�

���
���

(b)

���

���

��

��

��

���

���

��
��

�
�
��
�
��
��
�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
���
�
��
�

�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
�
�
��
�

�
�
��
�
��
�

�
�
���
�
��
�

�
�
�
�
��
�

�
�

���
���

(c)

���

��

��

��

���

���

���

��
��

�
�
��
�
��
��
�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
���
�
��
�

�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
�
�
��
�

�
�
��
�
��
�

�
�
���
�
��
�

�
�
�
�
��
�

�
�

���
���

(d)

��

����

����

����

����

��
��

�
�
��
�
��
��
�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
���
�
��
�

�
�
���
�
��
��
�
�
�
�
��
�

�
�
��
�
��
��
�
�
�
�
��
�

�
�
��
�
��
�

�
�
���
�
��
�

�
�
�
�
��
�

��
�

�
���

�
��
�

���
���

(e)

Figure 5.7 – Parameter estimation results for the multi-attractor model.
The x-axis shows the species that were observed during the estimation
procedure. The dotted blue line corresponds to the true value of c1, c2, c3,
and c4, respectively. The error bars in (a)-(d) show the mean (plus/minus
the standard deviation) of the estimators. In (e) we plot the running time
of the estimation procedure.

86

5.3. Numerical results

���

���

��

��

��

���

���

������� �������� ���������

�
�
�
�
��
��
�
��
�
��
�

�
��
��

���
���

��

���

���

���

���

���

���

���

���

���

������� �������� ���������

��
�

�
���

�
��
�

���
���

(a)

���

��

��

��

���

���

������� �������� ���������

�
�
��
�
��
��
�
��
�
��
�

�
��
��

���
���

��

���

���

���

���

���

���

������� �������� ���������

��
�

�
���

�
��
�

���
���

(b)

����

��

����

��

����

��

����

��

����

������� �������� ���������

�
�
���
�
��
��
�
��
�
��
�

�
��
��

���
���

��

��

���

���

���

���

���

���

���

������� �������� ���������

��
�

�
���

�
��
�

���
���

(c)

Figure 5.8 – Results of the multi-attractor (as in Figure 5.7), but we
estimate the binding rate of each protein independently.

87

5.3. Numerical results

parameters. When only one observation sequence is given (K = 1),
the parameter estimation becomes unreliable and time consuming. This
comes from the fact that the quality of the approximation highly depends
on the generated observation sequence. It is possible to get much better
and faster approximations with a single observation sequence. However,
we did not optimize our results but generated one random observation
sequence and ran our estimation procedure once based on this.

Recall that we chose common parameters p, d, b, u for production,
degradation, and (un-)binding for all three protein species. Next we
“decouple” the binding rates and estimate the binding rate of each protein
independently. We illustrate our results in Figure 5.8. Again, in case
of a single observation sequence (K = 1) the estimation is unreliable
in most cases. If the true value of the parameter is unknown, then the
high standard deviation shows that more information (more observation
sequences) is necessary to estimate the parameter. In order to estimate
the binding rate of PaxProt, we see that observing MafAProt yields the
best result while for the binding rate of MafAProt observing PaxProt is
best. Only for the binding rate of DeltaProt, the best results are obtained
when the corresponding protein (DeltaProt) is observed. The running
times of the estimation procedure are between 10 and 80 hours, usually
increase with K and depend on the observation sequences.

In Table 5.11 we list the results of estimating the production rate 5.0 in
the multi-attractor model where we chose L = 100. More precisely, we
estimated the production rate of each protein independently when the
other two proteins were observed. Since the population of the PaxProt
is significantly smaller than the populations of the other two proteins,
its production rate is more difficult to estimate. The production rate
of MafAProt is accurately estimated even if only a single observation
sequence is considered. For estimating the production rate of DeltaProt,
K = 5 observation sequences are necessary to get an accurate result.

Finally, we remark that for the multi-attractor model it seems difficult to
predict whether for a given parameter the observation of a certain set of
proteins yields a good accuracy or not. It can, however, be hypothesized
that, if we want to accurately estimate the rate constant of a certain
chemical reaction, then we should observe as many of the involved species
as possible. Moreover, it is reasonable that constants of reactions that
occur less often are more difficult to estimate (such as the production of

88

5.3. Numerical results

PaxProt). In such a case more observation sequences are necessary to
provide reliable information about the speed of the reaction.

89

5.3. Numerical results

Table 5.4 – Standard deviation of parameter estimates for the simple gene
expression model using equidistant time series.

∆t (L) σ method c∗1 c∗2 c∗3 σ∗

1.0 (300) 0.1 AML 0.0061 0.0424 0.0557 0.0031
SVDL 0.0041 0.0691 0.1923 –
SLA 0.0051 0.0361 0.0502 0.0612
PLA 0.0124 0.0867 0.0972 0.0792

1.0 AML 0.0054 0.0402 0.0630 0.0504
SVDL 0.0102 0.0787 0.2140 –
SLA 0.0047 0.0339 0.0419 0.0476
PLA 0.0041 0.0294 0.0315 0.0465

3.0 AML 0.0065 0.0337 0.0674 0.1393
SVDL – – – –
SLA 0.0043 0.0346 0.0508 0.0733
PLA 0.0086 0.0902 0.0722 0.0887

10.0 (30) 0.1 AML – – – –
SVDL – – – –
SLA 0.0069 0.04786 0.0599 0.0630
PLA 0.0080 0.0517 0.0678 0.0523

1.0 AML – – – –
SVDL – – – –
SLA 0.0070 0.0523 0.0681 0.0829
PLA 0.0057 0.0400 0.0638 0.0859

3.0 AML – – – –
SVDL – – – –
SLA 0.0110 0.0788 0.0689 0.1304
PLA 0.0054 0.0534 0.0616 0.2249

90

5.3. Numerical results

Table 5.5 – Average of parameter estimates for the transcription regulation
model using equidistant time series.

∆t (L) method c∗1 c∗2 c∗3 c∗4

1.0 (500) SVDL 0.0477 0.0006 0.0645 0.0110
SLA/PLA 0.0447 0.0007 0.0677 0.0034

10.0 (50) SLA/PLA 0.0417 0.0005 0.0680 0.0038

c∗5 c∗6 c∗7 c∗8

1.0 (500) SVDL 0.0159 0.2646 0.0149 0.0615
SLA/PLA 0.0193 0.4592 0.0848 0.5140

10.0 (50) SLA/PLA 0.0188 0.4359 0.0836 0.4892

Table 5.6 – Standard deviation of parameter estimates for the transcription
regulation model using equidistant time series.

∆t (L) method c∗1 c∗2 c∗3 c∗4

1.0 (500) SVDL 0.0155 0.0004 0.0190 0.0195
SLA/PLA 0.0036 0.0001 0.0115 0.0014

10.0 (50) SLA/PLA 0.0069 0.0002 0.0075 0.0026

c∗5 c∗6 c∗7 c∗8

1.0 (500) SVDL 0.0107 0.0761 0.0143 0.0332
SLA/PLA 0.0008 0.0169 0.0024 0.0166

10.0 (50) SLA/PLA 0.0039 0.0822 0.0016 0.0164

Table 5.7 – Average of parameter estimates for the enzyme reaction
network.

∆t (L) σ2 run time c∗1 c∗2 c∗3 E(0)∗ S(0)∗ σ2,∗

0.1(100) 0.1 704s 1.0640 1.0852 0.0975 19.9978 10.0020 0.1214
1.0 526s 1.0577 0.9598 0.1050 19.9927 9.9892 0.9610
3.0 464s 1.1062 1.1910 0.1058 19.9861 9.5770 3.0568

1.0(10) 0.1 467s 0.9198 0.8124 0.1053 19.9909 9.9825 0.1705
1.0 553s 1.0712 0.8488 0.0914 19.8705 9.9322 0.9296
3.0 507s 1.1793 1.2716 0.1005 19.8262 9.3185 3.1224

91

5.3. Numerical results

Table 5.8 – Standard deviation of parameter estimates for the enzyme
reaction network.

∆t (L) σ2 c∗1 c∗2 c∗3 E(0)∗ S(0)∗ σ2,∗

0.1(100) 0.1 0.2212 0.2355 0.0183 0.0042 0.0050 0.0086
1.0 0.2242 0.2299 0.0254 0.0296 0.1140 0.0167
3.0 0.1889 0.3046 0.0255 0.1056 0.3128 0.0296

1.0(10) 0.1 0.4105 0.2863 0.0194 0.0741 0.1226 0.0266
1.0 0.6441 0.4478 0.0174 0.2736 0.2736 0.0831
3.0 0.6194 0.7898 0.0207 0.4853 0.7931 0.1340

Table 5.9 – Different approximations of the standard deviations of the
estimators.

Method K L c∗1 c∗2 c∗3 σ∗ mRNA(0)∗

Fisher inf. matrix 10 10 0.05451 0.56196 0.93532 0.36434 0.63947
100 experiments 0.03581 0.19870 0.26222 0.39288 0.49031
Fisher inf. matrix 20 20 0.03245 0.29949 0.45148 0.17410 0.59482
100 experiments 0.03042 0.16743 0.28747 0.13451 0.43606
Fisher inf. matrix 50 50 0.01392 0.11071 0.15223 0.04403 0.23803
100 experiments 0.01403 0.07852 0.14623 0.03538 0.18389
Fisher inf. matrix 100 100 0.00866 0.05483 0.07281 0.01826 0.20847
100 experiments 0.00692 0.04301 0.06418 0.02176 0.18797

92

5.3. Numerical results

Table 5.10 – Chemical reactions of the multi-attractor model.

PaxDna p−→ PaxDna + PaxProt
PaxProt d−→ ∅

PaxDna + DeltaProt b−⇀↽−
u

PaxDnaDeltaProt
MafADna p−→ MafADna + MafAProt
MafAProt d−→ ∅

MafADna + PaxProt b−⇀↽−
u

MafADnaPaxProt
MafADnaPaxProt p−→ MafADnaPaxProt + MafAProt

MafADna + MafAProt b−⇀↽−
u

MafADnaMafAProt
MafADnaMafAProt p−→ MafADnaMafAProt + MafAProt

MafADna + DeltaProt b−⇀↽−
u

MafADnaDeltaProt
DeltaDna p−→ DeltaDna + DeltaProt
DeltaProt d−→ ∅

DeltaDna + PaxProt b−⇀↽−
u

DeltaDnaPaxProt
DeltaDnaPaxProt p−→ DeltaDnaPaxProt + DeltaProt

DeltaDna + MafAProt b−⇀↽−
u

DeltaDnaMafAProt

DeltaDna + DeltaProt b−⇀↽−
u

DeltaDnaDeltaProt
DeltaDnaDeltaProt p−→ DeltaDnaDeltaProt + DeltaProt

Table 5.11 – Production rate estimation in the multi-attractor model.

protein K
estimated
rate constant

standard
deviation

time
(hours)

observed
proteins

PaxProt 1 10.0 13.6159 7.45 MafAProt, DeltaProt
5 0.5693 2.1842 6.34

MafAProt 1 4.9998 4.9884 11.62 PaxProt, DeltaProt
5 5.4853 2.3873 13.86

DeltaProt 1 2.5453 1.8075 4.35 PaxProt, MafAProt
5 5.3646 1.4682 12.39

93

6 STAR : STochastic Analy-
sis of biochemical Reaction
networks

The popularity of software tools for stochastic modeling and simulation
of biochemical reaction networks has been steadily growing over the past
decade. A common interface for these tools is the Systems Biology Markup
Language (SBML) ([HFS+03]) and currently over 280 software tools and
packages with SBML support provide different modeling and simulation
features (see [SBM16]).

Several tools were particularly designed for simulating the kinetics of bio-
chemical reaction networks ([RDLN07], [FMJ+08]) and as a standard func-
tionality these tools allow stochastic ([Kie02], [MOB13], [SWR+11], [CH10],
[LADC09]) and deterministic simulation ([ROB05], [Mau09]). Some of
the tools focus on specific analysis methods such as moment closure approx-
imations ([Gil09], [Hes08]) or sensitivity analysis ([SRK13], [KŽS12]).
The list of the tools supporting multiple analysis techniques and a com-
parison of their features can be found in [SBM16].

The main difference to the tool STAR is that it uses a dynamical state
space representation, which is the basis for an efficient numerical approxi-
mation of stochastic models of biochemical reaction networks. This numer-
ical solution is not based on sampling methods but on a direct solution of
the corresponding master equation. The tool CERENA ([KFR+16]) also
provides a direct solution of the master equation but is based on MATLAB
and truncates the underlying state space using the finite state projection
algorithm ([MK06]). STAR is based on the tool SHAVE ([LMW11]),
which was previously developed by the same authors but not specifically
designed for the solution of biochemical reaction networks Also, the tool
STAR includes a higher variety of analysis methods as opposed to the

94

6.1. Architecture

(a) (b) (c)

Figure 6.1 – Web-based graphical user interface interface of STAR (model
editor (a), experiment editor (b), observing the time course (c)).

tool SHAVE which has its main focus on the transient analysis.

In Section 6.1 we provide the implementation details and describe how
users can specify models of biochemical reactions in Section 6.2. Finally,
in Sections 6.3 and 6.4 we describe the analysis techniques that the tool
provides and how they can be used for an efficient simulation of the model.

6.1 Architecture
The tool STAR is available via a web-interface and as a standalone cross
platform application. In order to use the web-interface a user must register.
In Figure 6.1 (a)-(c) we show screenshots of the web-interface of STAR.

After logging in, the user can specify a model of a chemical reaction
network using a simple language or import an SBML model. SBML
import/export functionality is implemented using LibSBML [BKJH08].
Experiments can be set up using the simple scripting language Lua
[IDFC11]. In the experiment script the user can choose the model that
he or she wants to analyse, as well as the desired analysis techniques and
output details. The output includes plots (see Figure 6.2) and data files.

The core application is implemented in C++ and, when using the stan-
dalone cross platform application, it can be run via command line. The
user must provide a path to an experiment file as a command line argu-
ment. The model files must be saved locally and are set for the analysis
by specifying the path to them. The simulation results are saved into
the output directory and are organized by creation date and time. The

95

6.2. Model specification

results can be conveniently viewed by opening the HTML report file in
the browser. For plotting features, Gnuplot [WK+10] must be installed.
For optimization and parameter estimation functionality, NLopt [Joh12]
library must be installed. Also, the command line version provides SBML
import/export utilities. The source code of the standalone command line
version of the tool is released under the General Public License version
3 (GPLv3) and can be compiled using CMake [Mar03] under Linux and
MacOS platforms. In addition, the Boost [Boo12] library is required.

6.2 Model specification
The tool is based on Gillespie’s theory of stochastic chemical kinetics
[Gil77], which considers a well-stirred mixture of N molecular species S =
{S1, . . . , SN} interacting in a volume with fixed size and fixed temperature
through R chemical reactions of the form

Rj : v−j,1S1 + . . .+ v−j,NSN → v+
j,1S1 + . . .+ v+

j,NSN ,

where j ∈ {1, . . . , R} and v−j,i, v+
j,i (i ∈ {1, . . . , N}) are stoichiometric

coefficients. The dynamics of such a network of reactions can be described
by a continuous-time Markov chain {X(t), t ≥ 0}, where the random
vector X(t) = (X1(t), . . . , XN(t)) describes the chemical populations at
time t, i.e., Xi(t) is the number of molecules of type i ∈ {1, . . . , N} at time
t. Thus, if X(t) = x for some x ∈ ZN+ with x + v−j being non-negative,
then X(t+ dt) = x + vj is the state of the system after the occurrence of
the j-th reaction within the infinitesimal time interval [t, t+ dt), where
vj = v−j + v+

j .

For x ∈ ZN+ and t ≥ 0, let p(x|t) denote the probability Pr(X(t) = x)
and let p(t) be the row vector with entries p(x|t). Given some initial
distribution p(0), the Markov chain X is uniquely specified and its
evolution is given by the chemical master equation (CME)

dp(x|t)
dt

=
R∑
j=1

x≥vj

p(x−vj|t)αj(x−vj)− p(x|t)
R∑
j=1

αj(x), (6.1)

where αj is the propensity function such that αj(x) · dt is the probability
that, given X(t) = x, one instance of the j-th reaction occurs within
[t, t+ dt).

96

6.2. Model specification

If law of mass action kinetics are used, the propensity function is given
as

αj(x) = cj
N∏
i=1

(
xi
v−j,i

)
, (6.2)

where cj is the stochastic reaction rate constant and xi is the number of
molecules of species Si present in state x. Note that STAR is not limited
to propensities that follow the law of mass action. In fact, the propensity
function can be given as a rational function dependent on the state vector
x.

6.2.1 Specification language

STAR features a simple human readable language for specifying reaction
networks. As an example, we consider the three-stage gene expression
model [SS08, HWKT13] and specify the model using the STAR modeling
language (see Listing 6.1). In lines 2-6, we define the kinetic constants. In
lines 9-11, we define the variables corresponding to the chemical species
of the model. Here it is important to use appropriate types such that
the simulation routine can exploit constraints such as variables that can
only be 0 or 1. In lines 13-21, we describe the chemical reactions and
their propensities. Here, mass_action(c) refers to the law of mass action
with a reaction rate constant c. Finally, in lines 24-26, we set the initial
conditions, where only the initial numbers of those species must be listed
that are initially present.

Also, the description of a chemical reaction can be supplied with a guard
function. For example,

(R<100) D_on -> D_on + R @ mass_action(k_r)

describes a reaction that is only possible if the number of molecules of
type R is less than 100.

Moreover, the transition classes can be specified in a more general way
using guarded commands [HJW09], where each guarded command consists
of a guard, an update rule and a rate function. Thus, the guarded chemical
reaction above can be written as

97

6.2. Model specification

1 // kinetic constants
2 const
3 tau_on = 1.0, tau_off = 1.0,
4 k_r = 10.0 , k_p = 1.0,
5 gamma_r = 4.0, gamma_p = 1.0,
6 tau_p_on = 0.015
7

8 // chemical species
9 var

10 R, P : species ,
11 D_on , D_off : boolean
12

13 chemical_reactions
14 D_off <-> D_on @ mass_action (tau_on),
15 mass_action (tau_off)
16 D_on -> D_on + R @ mass_action (k_r)
17 R -> R + P @ mass_action (k_p)
18 R -> 0 @ mass_action (gamma_r)
19 P -> 0 @ mass_action (gamma_p)
20 P + D_off -> P + D_on @ mass_action (tau_p_on)
21 end
22

23 // initial conditions
24 init
25 0.7: D_off = 1, R = 4, P = 10;
26 0.3: D_on = 1, R = 4, P = 10;
27 end

Listing 6.1 – Three-stage gene expression model specified in STAR
modeling language.

98

6.3. Simulation methods

��

�����

�����

�����

�����

����

�����

�� ��� ��� ��� ��� ��� ��� ��� ���

�
�

(a)

��

���

���

���

���

���

���

���

���

�� �� ��� ��� ���

�

�

��

������

������

������

������

������

������

������

������

������

(b)

Figure 6.2 – Sample output plots produced by tool STAR: distribution of
mRNA and protein numbers in on-state (a), joint probability for mRNA
and protein numbers in on-state (b).

R<100 and D_on : R′ = R + 1 @ k_r.

Note, that when using guarded commands, one must specify the propensity
function explicitly, since the mass_action command can only be used
in the context of chemical reactions. The formal definition of the model
specification language is given in Appendix A in extended Backus–Naur
form (EBNF) [Sco98].

6.3 Simulation methods
Exact analytical solutions of the CME are only available for very small
reaction networks or special cases [JH07, Lau00] and therefore, in gen-
eral, computational approaches are required. The size of the state space
typically increases exponentially with the model dimensionality, that is,
with the number of molecular species in the reaction network. This effect
is often referred to as the curse of dimensionality or state space explosion.
Furthermore, because reaction rates typically differ by several orders of
magnitude, the system dynamics possess multiple time scales and the
corresponding equations are stiff. Stochastic simulation of the reaction
network and the numerical solution of the CME are two common comple-
mentary approaches to analyze stochastic reaction networks governed by

99

6.3. Simulation methods

1 transient ({
2 model = ’three_stage ’,
3 tspan = linspace (0, 10) ,
4 dump_moments = {
5 {vars = {’R’, ’P’}, nmoments = 2},
6 {vars = {’D_on ’, ’D_off ’}, nmoments = 3, raw = true}
7 },
8 plot = {
9 {’R’, ’P’},

10 {’D_on ’, ’D_off ’}
11 },
12 plot_distr = {
13 {’R’, ’P’},
14 {vars = {’R’, ’P’}, cond = ’D_on =1’}
15 },
16 plot_distr_2d = {
17 {var1 = ’R’, var2 = ’P’},
18 {var1 = ’R’, var2 = ’P’, cond = ’D_off =1’}
19 }
20 })

Listing 6.2 – An experiment specification for the tool STAR.

the CME, both of which must be properly designed to cope with huge,
potentially infinite multidimensional state spaces and stiffness.

The tool STAR combines several efficient methods for the approximative
numerical solution of the CME. The analysis methods of the tool can be
accessed by setting up an experiment, which can be specified using the
scripting language Lua. In the experiment script the user can choose the
model that he or she wants to analyse, as well as the desired analysis
techniques and output details. In Listing 6.2) we show an example of
an experiment for the analysis of the gene expression model specified in
Section 6.2.1. In line 2 we specify the name of the model and in line 3
the time horizon of the simulation and the time points, at which we want
plot the output. The following lines describe the tasks that produce plots
and data files. Figure 6.2 (a) and (b) contains plots corresponding to the
tasks in lines 13 and 17, respectively.

6.3.1 Trajectory generation

Besides the numerical simulation, STAR also provides an implementation
of the stochastic simulation algorithm (SSA), which is a standard Monte-
Carlo simulation approach for chemical reaction networks ([Gil76]). It

100

6.3. Simulation methods

stores the frequencies of visited states for each simulation time point. This
information can be further used for the plotting of probability distributions
and estimation of statistical moments.

6.3.2 Discrete-stochastic numerical solution

STAR implements a method that approximates the solution of the CME
by truncating large, possibly infinite state spaces dynamically in an
iterative fashion (see Chapter 2). At a particular time instant t, we
consider an approximation of the transient probability distribution and
temporarily neglect states with a probability smaller than a positive
threshold δ � 1, that is, their probability at time t is set to zero. The
CME is then solved for an (adaptively chosen) time step h, during which
the truncated state space Sig is adapted to the probability distribution
at time t + h. More precisely, certain states that do not belong to the
truncated part of the state space at time t are added at time t+h, when in
the meantime they receive a significant amount of probability (exceeding δ).
Other states whose probabilities drop below δ are temporarily neglected.
The smaller the significance threshold δ is chosen the more accurate the
approximation becomes. Compared to finite projection and sliding window
methods ([MK06, WGMH10]), this adaptive approach is considerably
more efficient since there is no a priori estimation of significant states.
Instead, states that do or do not significantly contribute are detected in
an on-fly-fashion.

We tested the accuracy and the performance of our software using the
SBML discrete stochastic models test suite [EGW08]. We ran all tests
except tests 001-19, 002-09, 002-10, 003-03, 003-04 because they contain
assignment rules and/or events, which are not supported. For each test we
list in Table 6.1 the maximum relative error of the mean and the standard
deviation over all species and all simulation time points for which the
reference solution was given. We also list the total number of states
that have ever been added to Sig during the simulation, the average step
size and the run time. For the tests we used Runge-Kutta fourth-fifth
order with adaptive step size selection in combination with dynamical
state space truncation. We chose δ = 10−15. Note that our software
also contains an implementation of explicit and implicit Euler schemes
with adaptive step size selection, which can be used if lower accuracy is
acceptable and which perform much faster for certain models. Also, our

101

6.3. Simulation methods

software includes an implementation of the fast adaptive uniformization
[DHMW09, MWDH10].

6.3.3 Hybrid numerical solution

As an orthogonal approach to a direct solution of the CME, moment-based
analysis methods have been developed [Eng06, Hes08, RMASL11, LKK09].
Instead of integrating the distribution of all states over time, the idea is to
represent the distribution by its (multidimensional) statistical moments
up to order M and integrate the moments over time. The number of
equations remains small compared to the number of states and thus the
system of equations that has to be integrated is small in comparison to
that of the (truncated) CME. In addition, the number of moments does
not increase as the copy number of certain species increases.

Moment-based approaches, however, have a number of disadvantages.
First of all, one has to reconstruct the distribution from the moments at the
final time point of the integration, which is a difficult optimization problem
that can only be solved for small dimensions [AMW15a, AMW15b]. Then,
the moment equations often become very stiff, in particular for M > 4.
Another problem is that the moment representation of certain systems
looses information about qualitative properties such as oscillation and
multistability [DMW10].

Hybrid methods have been developed to mitigate the difficulties of
moment-based approaches and ensure scalability as certain chemical
populations become large [Jah11, HWKT13, HMMW10, MLSH12]. The
basic idea is to integrate the marginal distributions of low copy-number
species according to a “small master equation” and couple this equation
with the conditional moment equations for the large copy-number popu-
lations. This is a natural representation in particular for gene regulatory
networks since low copy-number species represent the state of a gene
(active or inactive) and thus the moment equations are integrated for
all different possible gene states. The resulting system of differential
equations is typically less susceptible to numerical instabilities and for
increasing M the total size of the system is smaller than the size of the
system in a purely moment-based approach. Also, for increasingM hybrid
methods show greater accuracy compared to the moments obtained from
a purely moment-based approach [HWKT13].

102

6.4. Model calibration and sensitivity analysis

��

�������

�������

��������

�������

��������

�� �� ��� ��� ��� ��� ���

��������

���

(a)

��

�������

�������

���������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

��������

���

(b)

��

�������

�������

�������

�������

�������

�� �� ��� ��� ��� ��� ���

��������

���

(c)

��

�������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

��������

���

(d)

��

��������

�������

���������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

��������

���

(e)

��

�������

�������

��������

�������

��������

�� �� ��� ��� ��� ��� ���

�������

���

(f)

��

�������

�������

���������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

�������

���

(g)

��

�������

�������

�������

�������

�������

�� �� ��� ��� ��� ��� ���

�������

���

(h)

��

�������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

�������

���

(i)

��

��������

�������

���������

�������

���������

�������

�� �� ��� ��� ��� ��� ���

�������

���

(j)

Figure 6.3 – Absolute difference between the marginal distrubution of R in
on- and off-state computed using the fully stochastic numerical approach
and the distribution computed using the hybrid approach MCM1. . . 5 (R).

STAR implements the method of conditional moments [HWKT13, KTH14]
using the dynamical state space truncation procedure, efficient numerical
integration scheme, and adaptive step size selection based on local error
estimates (see Chapter 3). In Figure 6.3 we plot the absolute differ-
ence between the marginal distrubution of R computed using the fully
stochastic numerical approach and the distribution computed using the
hybrid approach MCM1. . . 5 (R) in on- and off-states, where MCMM

(
S(y)

)
denotes the method of conditional moments for M moments and for the
set of discrete species S(y).

6.4 Model calibration and sensitivity anal-
ysis

Based on the numerical solution of the CME, STAR provides methods
for sensitivity analysis as well as parameter inference.

6.4.1 Sensitivity analysis

The computation of the first and second order derivatives yields sensitivi-
ties with respect to the model parameters and is carried out along with

103

6.4. Model calibration and sensitivity analysis

������

�����

������

��

������

�����

������

�� ��� ��� ��� ��� ��� ��� ��� ���

�
�

(a)

��

���

���

���

���

���

���

���

���

�� �� ��� ��� ���

�

�

������

������

��

������

������

(b)

��

����

��

����

��

����

��

����

��

�� �� ��� ��� ��� ��� ��� ��� ���

�
�

��

��

�������

������

�������

������

�������

������

�������

������

(c)

Figure 6.4 – Sensitivities of the three-stage gene expression model with
respect to parameter kp in one (a) and in two (b) dimensions. Parameter
scanning and optimization results for the three-stage gene expression
model (c).

the computation of the state probabilities using the dynamical state space
representation. In Figure 6.4(a) we plot the derivatives of the marginal
probability distributions over R and P molecule counts with respect to
the model parameter kp. In Figure 6.4(b) we plot the derivatives of the
joint probability distribution over R and P molecule counts with respect
to the same parameter.

6.4.2 Optimization

We consider an objective function of the form

f(T) = ∑
x fxp(x, T) (6.3)

where fx is a boolean formula that depends on the state variables and
p(x, T) is the distribution of the model at some time point T . For example,
let

fx = (xDon =1) ∨ (xP =50), (6.4)

which is the indicator for being in the on-state (xDon = 1) and having
50 proteins (xP = 50). Therefore, the corresponding objective function
computes the probability of having 50 proteins in the on-state at time T .

The optimization method that is implemented in STAR allows to find
the parameters of the model that optimize (e.g. maximize) the objective

104

6.4. Model calibration and sensitivity analysis

function defined as (6.3). The user can choose between a number of
different optimization methods available in the nonlinear optimization
library NLopt. The optimization methods include derivative-based and
derivative-free methods, as well as local and global optimization methods.
In case of derivative-based methods, the derivatives of the objective
function are efficiently computed using the sensitivities described in
Section 6.4.1. In Figure 6.4(c), the zigzag vertices correspond to the
intermediate points used during the optimization of (6.4) at T = 5 with
respect to kr and kp, where the starting point was chosen as kr = 10 and
kp = 4. The intersection of blue lines correspond to the resulting point.

6.4.3 Parameter estimation

For given time-series experimental data, the tool estimates the parame-
ters of the model by maximizing its likelihood given the observed data
[AMSW11, AMSW12]. It is required to specify the minimum and/or
maximum values of the model parameters that need to be estimated. The
time-series data must be uploaded in comma separated value file format.
Note that multiple observation sequences are supported. Moreover, the
observables and/or the observation time points of different observation se-
quences do not necessarily need to match. The user can use any available
optimization method mentioned in Section 6.4.2.

We assume that the structure of the underlying reaction network is
known but the stochastic reaction rate constants and other parameters of
the network, such as initial molecule numbers, are unknown. Then we
identify the parameters of the model that maximize its likelihood given
the observed data. Our algorithm for the computation of the likelihood
and its derivatives w.r.t. the parameters of the model is not based on
sampling but directly calculates the likelihood using a dynamic truncation
of the state space. Extensive experimental results that also give insights
about the identifiability of certain parameters can be found in Chapter 5.

6.4.4 Parameter scanning

Using the parameter scanning feature, an objective function (as defined
in (6.3)) can be analyzed for different model parameters, as well as initial
conditions. The parameters of the model can be iterated over predefined
values and can be sampled from a number of random distributions. In

105

6.4. Model calibration and sensitivity analysis

Figure 6.4(c), we plot the objective function (6.3) at T = 5, where the
parameters kr and kp are randomly sampled 300 times from the uniform
distribution on the interval [8, 16] and [4, 8] respectively.

106

6.4. Model calibration and sensitivity analysis

Table 6.1 – Simulation results for the SBML discrete stochastic models
test suite.

test id
max.

rel. err.
of mean

max.
rel. err.

of std. dev.

total
number
of states

avg.
step size

run
time

001-01 7.588e-08 9.710e-07 339 2.616e-02 3s
001-02 7.588e-08 9.710e-07 339 2.616e-02 3s
001-03 6.974e-06 8.733e-07 376 2.134e-03 5s
001-04 6.624e-07 8.926e-07 176 6.203e-02 3s
001-05 7.597e-08 2.274e-07 3142 7.685e-04 43s
001-06 7.588e-08 9.710e-07 339 2.616e-02 3s
001-07 4.262e-07 3.225e-07 176224 2.769e-02 162s
001-08 7.588e-08 9.710e-07 339 2.616e-02 3s
001-09 7.588e-08 9.710e-07 339 2.616e-02 3s
001-10 7.588e-08 9.710e-07 339 2.616e-02 3s
001-11 9.020e-08 2.192e-07 288 6.046e-02 3s
001-12 7.588e-08 9.710e-07 339 2.616e-02 3s
001-13 7.588e-08 9.710e-07 339 2.616e-02 3s
001-14 7.588e-08 9.710e-07 339 2.616e-02 3s
001-15 7.588e-08 9.710e-07 339 2.616e-02 3s
001-16 7.588e-08 9.710e-07 339 2.616e-02 3s
001-17 7.588e-08 9.710e-07 339 2.616e-02 3s
001-18 9.020e-08 2.192e-07 288 6.046e-02 3s
002-01 2.589e-07 1.294e-07 49 2.415e-01 3s
002-02 2.589e-07 1.294e-07 164 5.537e-02 3s
002-03 2.589e-07 1.658e-06 119 9.091e-02 3s
002-04 2.589e-07 6.091e-07 1450 7.962e-04 24s
002-05 2.589e-07 1.294e-07 164 5.537e-02 3s
002-06 3.782e-07 4.361e-07 35419 5.482e-02 15s
002-07 2.589e-07 1.294e-07 164 5.537e-02 3s
002-08 2.589e-07 1.294e-07 49 2.415e-01 3s
003-01 3.762e-08 1.897e-07 51 2.381e-01 3s
003-02 3.758e-09 8.998e-08 148 7.042e-02 3s
003-05 3.762e-08 1.897e-07 51 2.381e-01 3s
003-06 3.762e-08 1.897e-07 51 2.381e-01 3s
003-07 3.762e-08 1.897e-07 51 2.381e-01 3s
004-01 3.819e-08 1.016e-07 151 6.203e-02 3s
004-02 2.015e-08 4.265e-08 226 2.329e-02 3s
004-03 1.445e-07 1.142e-07 1215 5.509e-04 30s

107

7 Conclusions

In Chapter 2, we have shown that our numerical integration approach
with adaptive step size selection based on local error estimates performed
in combination with dynamical state space truncation provides a versatile
means of approximating the solution of the chemical master equation for
complex stochastic reaction networks efficiently and accurately. The state
space explosion problem is circumvented by considering in each time step
only such states of the overall state space of the reaction network that have
at that time step a significant (sufficiently large according to a flexibly
adjustable bound) probability, that is, in the course of the integration
scheme we keep the number of differential equations to be integrated per
step manageable. By a framework that includes explicit as well as implicit
integration schemes we offer the flexibility to choose an appropriate
integration scheme that is well-suited with regard to the specific dynamics
of a given reaction network. In order to provide meaningful, detailed
comparisons of different methods with different parameter choices and to
study their impact on accuracy, run times and numbers of significant states
to be processed we have considered the explicit Euler method, an explicit
Runge-Kutta as an extension of explicit Euler, and the implicit (backward)
Euler method, all equipped with a well-suited adaptive step size selection
strategy and performed on the dynamically truncated state space. The
results show that the proposed approximate numerical integration of the
chemical master equation indeed yields satisfactorily accurate results in
reasonable time. Future research will be concerned with further advanced
integration schemes, to equip them similarly with adaptive step size
selection strategies and to study the accuracy and the run times. Of course,
also in-depth theoretical investigations of the performance, efficiency and
accuracy of the approximate numerical integration approach are highly

108

desirable.

In Chapter 3, we combined the dynamical state space truncation with the
method of conditional moments, which allowed us to convert the system
of differential algebraic equations into a system of ordinary differential
equations. We presented the implementation details of our method and
demonstrated its accuracy using two biochemical reaction networks, one
of which can only be numerically analyzed using the presented method
presently.

In Chapter 4, we presented an accurate and computationally efficient
numerical method for approximating rare event probabilities in stochas-
tic models of biochemically reacting systems and Markovian queueing
networks with huge or infinite state space. Rather than estimating such
probabilities via stochastic simulation, we numerically integrate the chem-
ical master equation. Our methods combines a dynamical state space
truncation procedure with the change of measure idea of importance sam-
pling. This combination yields a guided state space exploration where the
change of measure is applied in order to guide the analysis algorithm to
the relevant parts of the state space and to avoid truncation of important
states. Our method has the general advantages of numerical methods over
stochastic simulation that it does not require the generation of Markov
chain trajectories and has only a numerical error but no statistical error.
Moreover, our experimental results show that it is not very sensitive to
the specific parameter biasing, that is, our method performs well for a
quite broad range of the biasing factors. This is a significant advantage
over weighted stochastic simulation algorithms, which are known to re-
quire very specific biasing parameters in order to estimate rare event
probabilities efficiently and with high statistical accuracy. Obtaining such
biasing parameters for weighted stochastic simulation algorithms by hand
is intricate and despite recent advances in automated parameter selection
via the cross-entropy method still often the determination of suitable
biasing parameters takes a substantial amount of computational time.

In Chapter 5, we proposed an efficient numerical method to approximate
maximum likelihood estimators for a given set of observations. We consider
the case where the observations are subject to measurement errors and
where only the molecule numbers of some of the chemical species are
observed at certain points in time. In our experiments we show that
if the observations provide sufficient information then parameters can

109

be accurately identified. If only little information is available then the
approximations of the standard deviations of the estimators indicate
whether more observations are necessary to accurately calibrate certain
parameters.

In Chapter 6, we presented a software tool, which provides a variety
of efficient numerical methods for the analysis of stochastic models of
chemical reaction networks. Models can be imported from SBML or can
be specified using a simple human readable language. The tool is available
for use via a user-friendly web-interface and as a standalone cross platform
application. Its striking feature is the powerful numerical engine that
integrates the underlying master equation or the corresponding hybrid
moment equations of the stochastic model. In this way, all probabilities
of interest can be directly computed including likelihoods for measured
data. Hence, parameter inference tasks and sensitivity analyses are very
efficient and give accurate results.

110

A Model specification language

〈model-description〉 ::= {〈type-definitions〉} {〈constant-definitions〉}
{〈variable-definitions〉} {〈function-definitions〉} {〈transition-classes〉}
[〈init-section〉]

〈transition-classes〉 ::= {〈chemical-reactions〉} {〈guarded-commands〉}

〈chemical-reactions〉 ::= ‘chemical_reactions’ {〈chemical-reaction〉}
‘end’

〈chemical-reaction〉 ::= [‘[’ 〈action-identifier〉 ‘]’] [‘(’ 〈guard〉 ‘)’]
〈reactants〉 〈arrow〉 〈products〉 ‘@’ 〈rate〉 [‘;’]

〈arrow〉 ::= ‘->’ | ‘<->’

〈reactants〉 ::= ‘0’ | 〈reactant〉 { ‘+’ 〈reactant〉 }

〈reactant〉 ::= [〈integer-literal〉] 〈variable-identifier〉

〈products〉 ::= 〈reactants〉

〈guarded-commands〉 ::= ‘guarded_commands’ {〈guarded-command〉}
‘end’

〈guarded-command〉 ::= [‘[’ 〈action-identifier〉 ‘]’] 〈guard〉 ‘:’ 〈updates〉
‘@’ 〈rate〉 [‘;’]

〈updates〉 ::= ‘true’ | 〈update〉 { ‘and’ 〈update〉 }

〈update〉 ::= 〈variable-identifier〉‘’’ ‘=’ 〈expression〉

111

〈type-definitions〉 ::= ‘type’ 〈type-definition〉 { ‘,’
〈type-definition〉 } [‘;’]

〈type-definition〉 ::= 〈type-identifier〉 ‘=’ 〈ordinal-type〉

〈constant-definitions〉 ::= ‘const’ 〈constant-definition〉 { ‘,’
〈constant-definition〉 } [‘;’]

〈constant-definition〉 ::= 〈constant-identifier〉 [‘:’ 〈type〉] ‘=’
〈constant-expression〉

〈variable-definitions〉 ::= ‘var’ 〈variable-definition〉 { ‘,’
〈variable-definition〉 } [‘;’]

〈variable-definition〉 ::= 〈variable-identifier〉 { ‘,’ 〈variable-identifier〉 }
[‘:’ 〈ordinal-type〉]

〈function-definitions〉 ::= ‘function’ 〈function-definition〉 { ‘,’
〈function-definition〉 } [‘;’]

〈function-definition〉 ::= 〈function-identifier〉 [‘(’ 〈function-arguments〉
‘)’] [‘:’ 〈type〉] ‘=’ 〈function-return-expression〉

〈function-arguments〉 ::= 〈function-argument〉 { ‘,’
〈function-argument〉
} [‘;’]

〈function-argument〉 ::= 〈function-argument-identifier〉 { ‘,’
〈function-argument-identifier〉 } [‘:’ 〈type〉]

〈init-section〉 ::= ‘init’ (〈initial-state〉 | 〈initial-distribution〉) ‘end’

〈initial-state〉 ::= 〈variable-initialization〉 { ‘,’
〈variable-initialization〉 } [‘;’]

〈initial-distribution〉 ::= { 〈probability〉 ‘:’ 〈initial-state〉 }

〈probability〉 ::= ‘0’ | ‘1’ | 〈floating-literal〉

〈variable-initialization〉 ::= 〈variable-identifier〉 ‘=’ 〈constant-expression〉

〈function-return-expression〉 ::= 〈expression〉

〈guard〉 ::= 〈expression〉

112

〈rate〉 ::= 〈expression〉

〈expression〉 ::= 〈conditional-expression〉

〈constant-expression〉 ::= 〈conditional-expression〉

〈conditional-expression〉 ::= 〈or-expression〉
| 〈or-expression〉 ‘?’ 〈expression〉 ‘:’ 〈expression〉

〈or-expression〉 ::= 〈and-expression〉 | 〈or-expression〉 ‘or’
〈and-expression〉

〈and-expression〉 ::= 〈equality-expression〉 | 〈and-expression〉 ‘and’
〈or-expression〉

〈equality-expression〉 ::= 〈relational-expression〉
| 〈equality-expression〉 ‘=’ 〈equality-expression〉
| 〈equality-expression〉 ‘<>’ 〈equality-expression〉

〈relational-expression〉 ::= 〈additive-expression〉
| 〈relational-expression〉 ‘<’ 〈relational-expression〉
| 〈relational-expression〉 ‘<=’ 〈relational-expression〉
| 〈relational-expression〉 ‘>=’ 〈relational-expression〉
| 〈relational-expression〉 ‘>’ 〈relational-expression〉

〈additive-expression〉 ::= 〈multiplicative-expression〉
| 〈additive-expression〉 ‘+’ 〈multiplicative-expression〉
| 〈additive-expression〉 ‘-’ 〈multiplicative-expression〉

〈multiplicative-expression〉 ::= 〈unary-expression〉
| 〈multiplicative-expression〉 ‘*’ 〈unary-expression〉
| 〈multiplicative-expression〉 ‘/’ 〈unary-expression〉

〈unary-expression〉 ::= [〈unary-operator〉] 〈primary-expression〉

〈unary-operator〉 ::= ‘+’ | ‘-’ | ‘not’

〈primary-expression〉 ::= 〈literal〉 | 〈identifier〉 | ‘(’ 〈expression〉 ‘)’

〈type〉 ::= 〈simple-type〉 | 〈type-identifier〉

〈simple-type〉 ::= 〈ordinal-type〉 | ‘real’

〈ordinal-type〉 ::= ‘boolean’ | ‘integer’ | ‘species’ | 〈subrange-type〉

113

〈subrange-type〉 ::= 〈min-value〉 ‘..’ 〈max-value〉

〈min-value〉 ::= 〈constant-expression〉

〈max-value〉 ::= 〈constant-expression〉

〈type-identifier〉 ::= 〈identifier〉

〈constant-identifier〉 ::= 〈identifier〉

〈variable-identifier〉 ::= 〈identifier〉

〈function-identifier〉 ::= 〈identifier〉

〈function-argument-identifier〉 ::= 〈identifier〉

〈action-identifier〉 ::= 〈identifier〉

〈identifier〉 ::= 〈alpha-char〉 { ‘_’ | 〈alpha-char〉 | 〈digit〉 }

〈literal〉 ::= 〈boolean-literal〉 | 〈integer-literal〉 | 〈floating-literal〉

〈boolean-literal〉 ::= ‘true’ | ‘false’

〈integer-literal〉 ::= 〈digit-seq〉

〈floating-literal〉 ::= 〈digit-seq〉 ‘.’ [〈digit-seq〉] [〈exp-part〉]
| 〈digit-seq〉 〈exp-part〉

〈exp-part〉 ::= (‘e’ | ‘E’) [〈sign〉] 〈digit-seq〉

〈sign〉 ::= ‘+’ | ‘-’

〈alpha-char〉 ::= ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ |
‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘a’ |
‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ |
‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’

〈digit-seq〉 ::= 〈digit〉 {〈digit〉}

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

114

Bibliography

[AG07] Søren Asmussen and Peter W Glynn. Stochastic simulation:
algorithms and analysis, volume 57. Springer Science &
Business Media, 2007.

[AKS13] Angelique Ale, Paul Kirk, and Michael PH Stumpf. A general
moment expansion method for stochastic kinetic models. The
Journal of chemical physics, 138(17):174101, 2013.

[AMSW11] Aleksandr Andreychenko, Linar Mikeev, David Spieler, and
Verena Wolf. Parameter identification for markov models
of biochemical reactions. In Computer Aided Verification,
pages 83–98. Springer, 2011.

[AMSW12] Aleksandr Andreychenko, Linar Mikeev, David Spieler, and
Verena Wolf. Approximate maximum likelihood estimation
for stochastic chemical kinetics. EURASIP Journal on Bioin-
formatics and Systems Biology, 2012(1):1–14, 2012.

[AMW15a] Alexander Andreychenko, Linar Mikeev, and Verena Wolf.
Model reconstruction for moment-based stochastic chemical
kinetics. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 25(2):12, 2015.

[AMW15b] Alexander Andreychenko, Linar Mikeev, and Verena Wolf.
Reconstruction of multimodal distributions for hybrid
moment-based chemical kinetics. Journal of Coupled Systems
and Multiscale Dynamics, 3(2):156–163, 2015.

[And08] David F Anderson. Incorporating postleap checks in tau-
leaping. The Journal of chemical physics, 128(5):054103,
2008.

115

Bibliography

[BHM+06] Kevin Burrage, MARKUS Hegland, Shev Macnamara, Roger
Sidje, et al. A krylov-based finite state projection algorithm
for solving the chemical master equation arising in the dis-
crete modelling of biological systems. In Proc. of The AA
Markov 150th Anniversary Meeting, pages 21–37, 2006.

[BKJH08] Benjamin J Bornstein, Sarah M Keating, Akiya Jouraku,
and Michael Hucka. Libsbml: an api library for sbml. Bioin-
formatics, 24(6):880–881, 2008.

[BKL75] Alfred B Bortz, Malvin H Kalos, and Joel L Lebowitz. A new
algorithm for monte carlo simulation of ising spin systems.
Journal of Computational Physics, 17(1):10–18, 1975.

[Boo12] C++ Boost. Libraries, 2012.

[BSW06] Hauke Busch, Werner Sandmann, and Verena Wolf. A nu-
merical aggregation algorithm for the enzyme-catalyzed sub-
strate conversion. In International Conference on Computa-
tional Methods in Systems Biology, pages 298–311. Springer,
2006.

[BTB04] Kevin Burrage, Tianhai Tian, and Pamela Burrage. A multi-
scaled approach for simulating chemical reaction systems.
Progress in biophysics and molecular biology, 85(2):217–234,
2004.

[Buc13] James Bucklew. Introduction to rare event simulation.
Springer Science & Business Media, 2013.

[But08] John C Butcher. Numerical methods for ordinary differential
equations. John Wiley & Sons, 2008.

[BWK08] Richard J Boys, Darren J Wilkinson, and Thomas BL Kirk-
wood. Bayesian inference for a discretely observed stochastic
kinetic model. Statistics and Computing, 18(2):125–135,
2008.

[CGP06] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient
step size selection for the tau-leaping simulation method.
The Journal of chemical physics, 124(4):044109, 2006.

116

Bibliography

[CGP07] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Adap-
tive explicit-implicit tau-leaping method with automatic tau
selection. The Journal of chemical physics, 126(22):224101,
2007.

[CH10] Emmet Caulfield and Andreas Hellander. Cellmc—a multi-
platform model compiler for the cell broadband engine and×
86. Bioinformatics, 26(3):426–428, 2010.

[CLP04] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation
of the stochastic simulation algorithm for chemically reacting
systems. The journal of chemical physics, 121(9):4059–4067,
2004.

[CNY08] Ching-Shan Chou, Qing Nie, and Tau-Mu Yi. Modeling
robustness tradeoffs in yeast cell polarization induced by
spatial gradients. PloS one, 3(9):e3103, 2008.

[DB06] Pieter-Tjerk De Boer. Analysis of state-independent
importance-sampling measures for the two-node tandem
queue. ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), 16(3):225–250, 2006.

[DHMW09] Frederic Didier, Thomas A Henzinger, Maria Mateescu, and
Verena Wolf. Fast adaptive uniformization of the chemical
master equation. In High Performance Computational Sys-
tems Biology, 2009. HIBI’09. International Workshop on,
pages 118–127. IEEE, 2009.

[DJRGP11] Bernie J Daigle Jr, Min K Roh, Dan T Gillespie, and Linda R
Petzold. Automated estimation of rare event probabilities
in biochemical systems. The Journal of chemical physics,
134(4):044110, 2011.

[DLW07] Paul Dupuis, Kevin Leder, and Hui Wang. Large deviations
and importance sampling for a tandem network with slow-
down. Queueing Systems, 57(2-3):71–83, 2007.

[DMW10] Tugrul Dayar, Linar Mikeev, and Verena Wolf. On the
numerical analysis of stochastic lotka-volterra models. In
Computer Science and Information Technology (IMCSIT),
Proceedings of the 2010 International Multiconference on,
pages 289–296. IEEE, 2010.

117

Bibliography

[DP80] John R Dormand and Peter J Prince. A family of embedded
runge-kutta formulae. Journal of computational and applied
mathematics, 6(1):19–26, 1980.

[dSeSO92] Edmundo de Souza e Silva and Pedro Mejiá Ochoa. State
space exploration in markov models. In ACM SIGMETRICS
Performance Evaluation Review, volume 20, pages 152–166.
ACM, 1992.

[EGW08] Thomas W Evans, Colin S Gillespie, and Darren J Wilkinson.
The sbml discrete stochastic models test suite. Bioinformat-
ics, 24(2):285–286, 2008.

[Eng06] Stefan Engblom. Computing the moments of high dimen-
sional solutions of the master equation. Applied Mathematics
and Computation, 180(2):498–515, 2006.

[FMJ+08] Akira Funahashi, Yukiko Matsuoka, Akiya Jouraku, Mineo
Morohashi, Norihiro Kikuchi, and Hiroaki Kitano. Cellde-
signer 3.5: a versatile modeling tool for biochemical networks.
Proceedings of the IEEE, 96(8):1254–1265, 2008.

[GB00] Michael A Gibson and Jehoshua Bruck. Efficient exact
stochastic simulation of chemical systems with many species
and many channels. The journal of physical chemistry A,
104(9):1876–1889, 2000.

[GG10] Colin S Gillespie and Andrew Golightly. Bayesian inference
for generalized stochastic population growth models with
application to aphids. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 59(2):341–357, 2010.

[Gil76] Daniel T Gillespie. A general method for numerically sim-
ulating the stochastic time evolution of coupled chemical
reactions. Journal of computational physics, 22(4):403–434,
1976.

[Gil77] Daniel T Gillespie. Exact stochastic simulation of cou-
pled chemical reactions. The journal of physical chemistry,
81(25):2340–2361, 1977.

[Gil92] Daniel T Gillespie. A rigorous derivation of the chemical
master equation. Physica A: Statistical Mechanics and its
Applications, 188(1):404–425, 1992.

118

Bibliography

[Gil01] Daniel T Gillespie. Approximate accelerated stochastic sim-
ulation of chemically reacting systems. The Journal of
Chemical Physics, 115(4):1716–1733, 2001.

[Gil09] Colin S Gillespie. Moment-closure approximations for mass-
action models. IET systems biology, 3(1):52–58, 2009.

[GK95] Paul Glasserman and Shing-Gang Kou. Analysis of an impor-
tance sampling estimator for tandem queues. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS),
5(1):22–42, 1995.

[GPZC05] Ido Golding, Johan Paulsson, Scott M Zawilski, and Ed-
ward C Cox. Real-time kinetics of gene activity in individual
bacteria. Cell, 123(6):1025–1036, 2005.

[GRP09] Dan T Gillespie, Min Roh, and Linda R Petzold. Refining
the weighted stochastic simulation algorithm. The Journal
of chemical physics, 130(17):174103, 2009.

[HC06] Leonard A Harris and Paulette Clancy. A “partitioned leap-
ing” approach for multiscale modeling of chemical reaction
dynamics. The Journal of chemical physics, 125(14):144107,
2006.

[Hes08] Joao Hespanha. Moment closure for biochemical networks.
In Communications, Control and Signal Processing, 2008.
ISCCSP 2008. 3rd International Symposium on, pages 142–
147. IEEE, 2008.

[HFS+03] Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid
Bolouri, John C Doyle, Hiroaki Kitano, Adam P Arkin,
Benjamin J Bornstein, Dennis Bray, Athel Cornish-Bowden,
et al. The systems biology markup language (sbml): a
medium for representation and exchange of biochemical
network models. Bioinformatics, 19(4):524–531, 2003.

[Hig77] JJ Higgins. Bayesian inference and the optimality of max-
imum likelihood estimation. International Statistical Re-
view/Revue Internationale de Statistique, 45(1):9–11, 1977.

[HJW09] Thomas A Henzinger, Barbara Jobstmann, and Verena Wolf.
Formalisms for specifying markovian population models. In

119

Bibliography

International Workshop on Reachability Problems, pages 3–
23. Springer, 2009.

[HL07] Andreas Hellander and Per Lötstedt. Hybrid method for
the chemical master equation. Journal of Computational
Physics, 227(1):100–122, 2007.

[HMMW10] Thomas A Henzinger, Linar Mikeev, Maria Mateescu, and
Verena Wolf. Hybrid numerical solution of the chemical
master equation. In Proceedings of the 8th International
Conference on Computational Methods in Systems Biology,
pages 55–65. ACM, 2010.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary
Differential Equations I: Nonstiff Problems. Springer-Verlag,
Berlin Heidelberg, 2nd edition, 1993.

[HR02] Eric L Haseltine and James B Rawlings. Approximate simula-
tion of coupled fast and slow reactions for stochastic chemical
kinetics. The Journal of chemical physics, 117(15):6959–6969,
2002.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differen-
tial Equations II: Stiff and Differential-Algebraic Problems.
Springer-Verlag, Berlin Heidelberg, 2nd edition, 1996.

[HWKT13] J Hasenauer, V Wolf, A Kazeroonian, and FJ Theis. Method
of conditional moments (mcm) for the chemical master equa-
tion. Journal of mathematical biology, pages 1–49, 2013.

[IDFC11] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and
Waldemar Celes. Lua 5.2 reference manual, 2011.

[Jah10] Tobias Jahnke. An adaptive wavelet method for the chemical
master equation. SIAM Journal on Scientific Computing,
31(6):4373–4394, 2010.

[Jah11] Tobias Jahnke. On reduced models for the chemical master
equation. Multiscale Modeling & Simulation, 9(4):1646–1676,
2011.

[JH07] Tobias Jahnke and Wilhelm Huisinga. Solving the chem-
ical master equation for monomolecular reaction systems

120

Bibliography

analytically. Journal of mathematical biology, 54(1):1–26,
2007.

[Joh12] Steven G Johnson. The nlopt nonlinear-optimization package
(version 2.4.2). URL http://ab-initio. mit. edu/nlopt, 2012.

[JU10] Tobias Jahnke and Tudor Udrescu. Solving chemical master
equations by adaptive wavelet compression. Journal of
Computational Physics, 229(16):5724–5741, 2010.

[KFHR09] Michał Komorowski, Bärbel Finkenstädt, Claire V Harper,
and David A Rand. Bayesian inference of biochemical kinetic
parameters using the linear noise approximation. BMC
bioinformatics, 10(1):1, 2009.

[KFR+16] A Kazeroonian, F Fröhlich, A Raue, FJ Theis, and J Hase-
nauer. Cerena: Chemical reaction network analyzer-a tool-
box for the simulation and analysis of stochastic chemical
kinetics. PloS one, 11(1):e0146732, 2016.

[Kie02] Andrzej M Kierzek. Stocks: Stochastic kinetic simulations of
biochemical systems with gillespie algorithm. Bioinformatics,
18(3):470–481, 2002.

[KM08] Hiroyuki Kuwahara and Ivan Mura. An efficient and ex-
act stochastic simulation method to analyze rare events
in biochemical systems. The Journal of chemical physics,
129(16):165101, 2008.

[KTB13] Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Hand-
book of monte carlo methods, volume 706. John Wiley &
Sons, 2013.

[KTH14] Atefeh Kazeroonian, Fabian J Theis, and Jan Hase-
nauer. Modeling of stochastic biological processes with
non-polynomial propensities using non-central conditional
moment equation. 2014.

[Kur72] Thomas G Kurtz. The relationship between stochastic and
deterministic models for chemical reactions. The Journal of
Chemical Physics, 57(7):2976–2978, 1972.

121

Bibliography

[KŽS12] Michał Komorowski, Justina Žurauskienė, and Michael PH
Stumpf. Stochsens—matlab package for sensitivity analysis
of stochastic chemical systems. Bioinformatics, 28(5):731–
733, 2012.

[LADC09] Mieszko Lis, Maxim N Artyomov, Srinivas Devadas, and
Arup K Chakraborty. Efficient stochastic simulation of
reaction–diffusion processes via direct compilation. Bioin-
formatics, 25(17):2289–2291, 2009.

[Lau00] Ian J Laurenzi. An analytical solution of the stochastic
master equation for reversible bimolecular reaction kinetics.
The Journal of Chemical Physics, 113(8):3315–3322, 2000.

[LBTG10] Pierre L’ecuyer, Jose H Blanchet, Bruno Tuffin, and Peter W
Glynn. Asymptotic robustness of estimators in rare-event
simulation. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 20(1):6, 2010.

[Lju99] Lennart Ljung. System identification: Theory for the user,
ptr prentice hall information and system sciences series, 1999.

[LKK09] Chang Hyeong Lee, Kyeong-Hun Kim, and Pilwon Kim. A
moment closure method for stochastic reaction networks.
The Journal of chemical physics, 130(13):134107, 2009.

[LLBB07] Adiel Loinger, Azi Lipshtat, Nathalie Q Balaban, and Ofer
Biham. Stochastic simulations of genetic switch systems.
Physical Review E, 75(2):021904, 2007.

[LMW11] Maksim Lapin, Linar Mikeev, and Verena Wolf. Shave:
stochastic hybrid analysis of markov population models. In
Proceedings of the 14th international conference on Hybrid
systems: computation and control, pages 311–312. ACM,
2011.

[LP06] Hong Li and Linda Petzold. Logarithmic direct method for
discrete stochastic simulation of chemically reacting systems.
Journal of Chemical Physics, 2006.

[Mar03] Ken Martin. The cmake build manager. Dr. Dobb’s Journal
of Software Tools, 28(1):40, 2003.

122

Bibliography

[MAT15] Global Optimization Toolbox MATLAB. User’s guide
(r2015b), 2015.

[Mau09] S Mauch. Cain: Stochastic simulations for chemical kinetics.
URL: http://cain. sourceforge. net, 2009.

[MBBS08] Shev MacNamara, Alberto M Bersani, Kevin Burrage, and
Roger B Sidje. Stochastic chemical kinetics and the total
quasi-steady-state assumption: application to the stochastic
simulation algorithm and chemical master equation. The
Journal of chemical physics, 129(9):095105, 2008.

[MBS08] Shev MacNamara, Kevin Burrage, and Roger B Sidje. Multi-
scale modeling of chemical kinetics via the master equation.
Multiscale Modeling & Simulation, 6(4):1146–1168, 2008.

[Mir09] Denis Miretskiy. Queueing networks: rare events and fast
simulations. University of Twente, 2009.

[MK06] Brian Munsky and Mustafa Khammash. The finite state
projection algorithm for the solution of the chemical master
equation. The Journal of chemical physics, 124(4):044104,
2006.

[MK07] Brian Munsky and Mustafa Khammash. A multiple time
interval finite state projection algorithm for the solution to
the chemical master equation. Journal of Computational
Physics, 226(1):818–835, 2007.

[MLSH12] Stephan Menz, Juan C Latorre, Christof Schütte, and Wil-
helm Huisinga. Hybrid stochastic–deterministic solution
of the chemical master equation. Multiscale Modeling &
Simulation, 10(4):1232–1262, 2012.

[MOB13] Timo RMaarleveld, Brett G Olivier, and Frank J Bruggeman.
Stochpy: A comprehensive, user-friendly tool for simulating
stochastic biological processes. PloS one, 8(11):e79345, 2013.

[MPC+06] James M McCollum, Gregory D Peterson, Chris D Cox,
Michael L Simpson, and Nagiza F Samatova. The sorting di-
rect method for stochastic simulation of biochemical systems
with varying reaction execution behavior. Computational
biology and chemistry, 30(1):39–49, 2006.

123

Bibliography

[MSM07] Denis I Miretskiy, Werner RW Scheinhardt, and MRH Mand-
jes. Efficient simulation of a tandem queue with server
slow-down. Simulation, 83(11):751–767, 2007.

[MVL78] Cleve Moler and Charles Van Loan. Nineteen dubious ways
to compute the exponential of a matrix. SIAM review,
20(4):801–836, 1978.

[MVL03] Cleve Moler and Charles Van Loan. Nineteen dubious ways
to compute the exponential of a matrix, twenty-five years
later. SIAM review, 45(1):3–49, 2003.

[MW12] Linar Mikeev and Verena Wolf. Parameter estimation for
stochastic hybrid models of biochemical reaction networks.
In Proceedings of the 15th ACM international conference on
Hybrid Systems: Computation and Control, pages 155–166.
ACM, 2012.

[MWDH10] M Mateescu, V Wolf, F Didier, and TA Henzinger. Fast
adaptive uniformisation of the chemical master equation.
Systems Biology, IET, 4(6):441–452, 2010.

[PB00] David Pruyne and Anthony Bretscher. Polarization of cell
growth in yeast. Journal of Cell Science, 113(4):571–585,
2000.

[PW89] Shyam Parekh and Jean Walrand. A quick simulation
method for excessive backlogs in networks of queues. Auto-
matic Control, IEEE Transactions on, 34(1):54–66, 1989.

[RA03] Christopher V Rao and Adam P Arkin. Stochastic chemical
kinetics and the quasi-steady-state assumption: application
to the gillespie algorithm. The Journal of chemical physics,
118(11):4999–5010, 2003.

[RAT06] S Reinker, RM Altman, and J Timmer. Parameter estimation
in stochastic biochemical reactions. IEE Proceedings-Systems
Biology, 153(4):168–178, 2006.

[RDJGP11] Min K Roh, Bernie J Daigle Jr, Dan T Gillespie, and Linda R
Petzold. State-dependent doubly weighted stochastic simu-
lation algorithm for automatic characterization of stochastic
biochemical rare events. The Journal of chemical physics,
135(23):234108, 2011.

124

Bibliography

[RDLN07] Nicolas Rodriguez, Marco Donizelli, and Nicolas Le Novère.
Sbmleditor: effective creation of models in the systems biol-
ogy markup language (sbml). BMC bioinformatics, 8(1):79,
2007.

[RES07] Muruhan Rathinam and Hana El Samad. Reversible-
equivalent-monomolecular tau: A leaping method for “small
number and stiff” stochastic chemical systems. Journal of
Computational Physics, 224(2):897–923, 2007.

[RK13] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy
method: a unified approach to combinatorial optimization,
Monte-Carlo simulation and machine learning. Springer
Science & Business Media, 2013.

[RMASL11] J Ruess, A Milias-Argeitis, S Summers, and J Lygeros.
Moment estimation for chemically reacting systems by ex-
tended kalman filtering. The Journal of chemical physics,
135(16):165102, 2011.

[ROB05] Stephen Ramsey, David Orrell, and Hamid Bolouri. Dizzy:
stochastic simulation of large-scale genetic regulatory net-
works. Journal of bioinformatics and computational biology,
3(02):415–436, 2005.

[RPCG03] Muruhan Rathinam, Linda R Petzold, Yang Cao, and
Daniel T Gillespie. Stiffness in stochastic chemically reacting
systems: The implicit tau-leaping method. The Journal of
Chemical Physics, 119(24):12784–12794, 2003.

[RT+09] Gerardo Rubino, Bruno Tuffin, et al. Rare event simulation
using Monte Carlo methods, volume 73. Wiley Online Library,
2009.

[San04a] Werner Sandmann. Fast simulation of excessive population
size in tandem jackson networks. In Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
2004.(MASCOTS 2004). Proceedings. The IEEE Computer
Society’s 12th Annual International Symposium on, pages
347–354. IEEE, 2004.

125

Bibliography

[San04b] Werner Sandmann. Structured description of markovian
network models and its potentials for efficient rare event sim-
ulation. In Proceedings of the 2nd International Conference
on Performance Modelling and Evaluation of Heterogeneous
Networks, HetNets, volume 4, page P39. Citeseer, 2004.

[San07] Werner Sandmann. Efficiency of importance sampling esti-
mators&star. Journal of Simulation, 1(2):137–145, 2007.

[San08] Werner Sandmann. Discrete-time stochastic modeling and
simulation of biochemical networks. Computational biology
and chemistry, 32(4):292–297, 2008.

[San09a] Werner Sandmann. Rare event simulation methodologies in
systems biology. Rare Event Simulation Using Monte Carlo
Methods, pages 243–266, 2009.

[San09b] Werner Sandmann. Sequential estimation for prescribed
statistical accuracy in stochastic simulation of biological
systems. Mathematical biosciences, 221(1):43–53, 2009.

[San09c] Werner Sandmann. Streamlined formulation of adaptive
explicit-implicit tau-leaping with automatic tau selection.
In Winter Simulation Conference, pages 1104–1112. Winter
Simulation Conference, 2009.

[SBM16] SBML.org. Sbml software guide, 2016. http://sbml.org/
SBML_Software_Guide, Accessed on 31 March 2016.

[Sco98] Roger S Scowen. Extended bnf-a generic base standard. Tech-
nical report, Technical report, ISO/IEC 14977. http://www.
cl. cam. ac. uk/mgk25/iso-14977. pdf, 1998.

[SGT03] Lawrence F Shampine, Ian Gladwell, and Skip Thompson.
Solving ODEs with matlab. Cambridge University Press,
2003.

[SK05] Howard Salis and Yiannis Kaznessis. Accurate hybrid
stochastic simulation of a system of coupled chemical or
biochemical reactions. The Journal of chemical physics,
122(5):054103, 2005.

126

http://sbml.org/SBML_Software_Guide
http://sbml.org/SBML_Software_Guide

Bibliography

[SPA05] Michael Samoilov, Sergey Plyasunov, and Adam P Arkin.
Stochastic amplification and signaling in enzymatic futile cy-
cles through noise-induced bistability with oscillations. Pro-
ceedings of the National Academy of Sciences of the United
States of America, 102(7):2310–2315, 2005.

[SRK13] Patrick W Sheppard, Muruhan Rathinam, and Mustafa
Khammash. Spsens: A software package for stochastic pa-
rameter sensitivity analysis of biochemical reaction networks.
Bioinformatics, 29(1):140–142, 2013.

[SS08] Vahid Shahrezaei and Peter S Swain. Analytical distributions
for stochastic gene expression. Proceedings of the National
Academy of Sciences, 105(45):17256–17261, 2008.

[SSDN15] Cosmin Safta, Khachik Sargsyan, Bert Debusschere, and
Habib N Najm. Hybrid discrete/continuum algorithms for
stochastic reaction networks. Journal of Computational
Physics, 281:177–198, 2015.

[SW08] Werner Sandmann and Verena Wolf. Computational prob-
ability for systems biology. In Formal Methods in Systems
Biology, pages 33–47. Springer, 2008.

[SWR+11] Kevin R Sanft, Sheng Wu, Min Roh, Jin Fu, Rone Kwei
Lim, and Linda R Petzold. Stochkit2: software for discrete
stochastic simulation of biochemical systems with events.
Bioinformatics, 27(17):2457–2458, 2011.

[TB04] Tianhai Tian and Kevin Burrage. Binomial leap methods
for simulating stochastic chemical kinetics. The Journal of
chemical physics, 121(21):10356–10364, 2004.

[TLS06] Bruno Tuffin, Pierre L’Écuyer, and Werner Sandmann. Ro-
bustness properties for simulations of highly reliable systems.
Groupe d’études et de recherche en analyse des décisions,
2006.

[TWS+09] Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen,
and Michael PH Stumpf. Approximate bayesian computa-
tion scheme for parameter inference and model selection in
dynamical systems. Journal of the Royal Society Interface,
6(31):187–202, 2009.

127

Bibliography

[TXGB07] Tianhai Tian, Songlin Xu, Junbin Gao, and Kevin Burrage.
Simulated maximum likelihood method for estimating kinetic
rates in gene expression. Bioinformatics, 23(1):84–91, 2007.

[UAL10] Bilge Uz, Erdem Arslan, and Ian J Laurenzi. Maximum
likelihood estimation of the kinetics of receptor-mediated
adhesion. Journal of theoretical biology, 262(3):478–487,
2010.

[ULP+07] Zsolt Ugray, Leon Lasdon, John Plummer, Fred Glover,
James Kelly, and Rafael Martí. Scatter search and local
nlp solvers: A multistart framework for global optimization.
INFORMS Journal on Computing, 19(3):328–340, 2007.

[VB04] Karan Vasudeva and Upinder S Bhalla. Adaptive stochastic-
deterministic chemical kinetic simulations. Bioinformatics,
20(1):78–84, 2004.

[VK92] Nicolaas Godfried Van Kampen. Stochastic processes in
physics and chemistry, volume 1. Elsevier, 1992.

[WGMH10] Verena Wolf, Rushil Goel, Maria Mateescu, and Thomas A
Henzinger. Solving the chemical master equation using
sliding windows. BMC systems biology, 4(1):42, 2010.

[Wil11] Darren J Wilkinson. Stochastic modelling for systems biology.
CRC press, 2011.

[WK+10] Thomas Williams, Colin Kelley, et al. Gnuplot 4.4: an
interactive plotting program. Official gnuplot documentation,
http://sourceforge. net/projects/gnuplot, 2010.

[WLVE07] E Weinan, Di Liu, and Eric Vanden-Eijnden. Nested stochas-
tic simulation algorithms for chemical kinetic systems with
multiple time scales. Journal of computational physics,
221(1):158–180, 2007.

[XC08] Zhouyi Xu and Xiaodong Cai. Unbiased tau-leap methods for
stochastic simulation of chemically reacting systems. Journal
of Chemical Physics, 128(15):154112, 2008.

[ZBH11] Joseph Xu Zhou, Lutz Brusch, and Sui Huang. Predict-
ing pancreas cell fate decisions and reprogramming with a

128

Bibliography

hierarchical multi-attractor model. PloS one, 6(3):e14752,
2011.

129

	Acknowledgements
	Abstract
	List of figures
	List of tables
	Introduction
	Preliminaries
	Chemical reaction networks
	Transition classes
	Chemical master equation
	Stochatic simulation algorithm

	Approximate Numerical Solution of the CME
	Dynamical state space truncation
	Explicit methods
	Implicit methods
	Local error control and step size selection
	Numerical results
	Birth-death process
	Yeast cell polarization

	Hybrid Numerical Solution of the CME
	Stochastic hybrid modeling of biochemical reaction networks
	Method of conditional moments
	Example: dimerisation

	Numerical algorithm
	Numerical results
	Dimerisation
	P53 system

	Numerical Approximation of Rare Event Probabilities
	Importance sampling
	Guided state space exploration
	Numerical results
	Tandem Jackson networks
	Enzymatic futile cycle

	Parameter Estimation for Markov Models of Biochemical Reactions
	Parameter inference
	Numerical approximation algorithm
	Computation of derivatives
	State-based likelihood approximation
	Path-based likelihood approximation

	Numerical results
	Equidistant time series
	Non-equidistant time series
	Estimation of initial conditions
	Parameter identifiability

	STAR : STochastic Analysis of biochemical Reaction networks
	Architecture
	Model specification
	Specification language

	Simulation methods
	Trajectory generation
	Discrete-stochastic numerical solution
	Hybrid numerical solution

	Model calibration and sensitivity analysis
	Sensitivity analysis
	Optimization
	Parameter estimation
	Parameter scanning

	Conclusions
	Model specification language
	Bibliography

