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1 Abbreviations 
ADH Alcohol dehydrogenase 

BCO-I ß,ß-carotene-15,15’–monooxygenase 

BHT Butyl-hydroxytoluene 

BP Blood Pressure 

BPD Bronchopulmonary dysplasia 

bpm Breaths per minute 

BW Birth weight 

CRBP Cellular retinol binding protein 

CYP26 Cytochrome P450 family 26 

DA Dalton 

DNA Deoxyribonucleic acid 

e.t. Endotracheal 

ETT Endotracheal tube 

F Here: Frequency (ventilation settings) 

Fi02 Fraction of inspired oxygen 

GA Gestational age 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

HPLC High-performance liquid chromatography 

HR Heart Rate 

I:E Inspiratory to expiratory time 

i.m. Intramuscular 
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i.v. Intravenous 

IPPV Intermittend positive pressure ventilation 

IVH Intraventricular haemorrhage 

LL Left lung 

LOD Limit of detection 

LOQ Limit of quantification 

LRAT Lecithin:retinol acyltransferase 

NCoA Co-activator complex 

NCoR Co-repressor complex 

p.o. Per os 

PBS Phosphate-buffered saline 

pCO2 Partial pressure of carbondioxide 

PCR Polymerase Chain reaction 

PEEP Positive endexpiratory pressure 

PIP Positive inspiratory pressure 

pO2 Partial pressure of oxygen 

RA Retinoic acid 

RAR Retinoic acid receptor 

RARE Retinoic acid response element 

RBP Retinol binding protein 

RE Retinyl ester  

REH Retinyl ester hydrolase 

RL Right lung 
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RNA Ribonucleic acid 

ROH Retinol 

rRNA Ribosomal ribonucleic acid 

RXR Retinoid X receptor 

SDR Short-chain dehydrogenase/reductase 

sec seconds 

SMRT Silencing mediator of retinoic acid 

STRA6 Thyroid hormone receptor, stimulated by 

retinoic acid gene 6 

THF Tetrahydrofuran 

TTR Transthyretin 

VA Vitamin A 

VAD Vitamin A deficiency 

VARA Vitamin A-Retinoic Acid Complex 

VDR Vitamin D receptor 

VLBW Very low birth weight 

VPT Very preterm 
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2 Summary 
Vitamin A, a fat soluble vitamin and transcription factor, and its active metabolite, retinoic 

acid, is essential for human health due to its effects on growth, maintenance and 

regeneration of many cells and tissues, including the lung tissue.  

The availability of vitamin A is crucial for embryonic lung development, maturation and 

function of the respiratory system including the development of the respiratory epithelium, 

alveologenesis and septation of alveoli. It is known that pregnant women are often at high 

risk for vitamin A deficiency, that vitamin A levels in women are directly proportional to cord 

blood vitamin A levels and that preterm infants suffer from vitamin A deficiency. Vitamin A 

deficiency is associated with the development of bronchopulmonary dysplasia, a 

developmental disorder of lung maturation and function, as well as long-term respiratory 

morbidity in this cohort. Indeed, the pathogenesis of bronchopulmonary dysplasia and 

morphological changes associated with vitamin A deficiency are similar in nature.  

The prevention of bronchopulmonary dysplasia in at-risk infants is an important aspect of 

early neonatal care since the condition affects a large number of survivors of preterm birth. It 

is characterized by chronic inflammation, impaired alveolarization and vascularization, which 

result in chronic lung damage with significant short- and long-term mortality and morbidity.  

Additional vitamin A supplementation in preterm neonates, in particular in infants with an 

extremely low birth weight, has been shown to prevent bronchopulmonary dysplasia and to 

improve long-term pulmonary outcome. However, the best method of its administration 

remains unclear.  

Currently, vitamin A is supplemented in the neonatal cohort for nutritive reasons using lipid- 

soluble intravenous multivitamin preparations, lipid-soluble intramuscular monopreparations 

or lipid-soluble oral solutions. However, when considering additional vitamin A 

supplementation for the prevention of bronchopulmonary dysplasia, there is still no 

consensus with regard to the optimal supplementation regime, since the best substrate, 

method and dose of administration remains to be established. 

The aim of my research project was the evaluation of a new substance, a nano-encapsuled, 

water- and fat-soluble retinyl ester monopreparation, originally used as a commercially 

available nutritional supplement, for its potential use in the neonatal population.  

The substance was applied in a well-established animal model of preterm birth and the 

feasibility of using the intravenous and endotracheal route of administration was explored.  
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Vitamin A distribution in serum, lung and liver tissue was measured, and I studied the 

induction of the mRNA of three retinoid homeostatic genes, STRA6, LRAT and CYP26B1, as 

markers for changes in expression of early vitamin A homeostatic genes. 

Significant increases in retinol and retinyl palmitate levels in serum, lung and liver after 

intravenous and endotracheal administration were found, and I was able to show changes in 

the expression of mRNA of the tested retinoid homeostatic genes, demonstrating a very early 

vitamin A effect through cellular responses on a molecular level. 

The data positively supports the feasibility of using the tested nano-encapsuled, water-

soluble vitamin A monopreparation for vitamin A supplementation in the preterm neonatal 

cohort using either the intravenous or endotracheal route. Further studies are warranted to 

assess practicalities with regard to the mode of application and to explore this substances’ 

kinetics and safety profile, interactions with other medications, short- and long-term effects 

and its long-term influence on bronchopulmonary dysplasia in the preterm neonatal 

population. 
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3 Introduction 

3.1 Vitamin A  

3.1.1 Substance and biological function 

In general linguistic usage, the term vitamin A (VA, ROH, retinol) describes a number of 

different chemical substances, such as retinol, retinal, retinoic acid or retinyl esters, e.g. 

retinyl palmitate or retinyl acetate (UNDERWOOD, 1984), whereby retinol is frequently used 

as a synonym for VA (BIESALSKI, 1989), hereby excluding storage or biologically active 

forms. In this thesis, the term VA will be used to include all different chemical substances. 

Where it is important to differentiate between retinol, retinyl ester and retinoic acid, the 

relevant correct terms will be used. 

In humans, VA cannot be synthesized de novo, and it is therefore essential. It can be either 

ingested directly derived from animal sources (liver, kidney, eggs, and dairy products) or 

from enriched foods (milk, breakfast cereals) as preformed retinoids (mainly retinol and 

retinyl esters). Further, it can be synthesised from provitamin A, carotenes (Figure 1), 

obtained from plant sources (especially dark green leafy and yellow vegetables). In the 

developed world, 25-75% of total VA intake is provided by preformed retinyl esters or retinol, 

with the rest being provided by carotenes (HARRISON, 2005). 

Any analog of all-trans retinol (Figure 2), whether a metabolite of VA compounds or a 

synthetic derivate, exhibiting the same properties as VA is called retinoid. Retinol, including 

its isoforms, all-trans, 11-cis, 13-cis, 9, 13-di-cis, 9-cis, and 11, 13-di-cis and retinyl esters, 

VA’s storage form, primarily function as precursors for the biosynthesis of endogenous, 

biologically active retinoids (THEODOSIOU et al., 2010). Endogenous, biologically active 

retinoids can be generated by intracellular enzymatic conversion from retinol and retinyl 

esters and include retinoic acid, a small, 300 Da, lipophilic substance, and its isomers, all-

trans retinoic acid (Figure 3), 9-cis retinoic acid, 11-cis retinaldehyde, 3,4-didehydro retinoic 

acid, as well as 14-hydroxy-4, 14-retro retinol, 4-oxo RA, and 4-oxo retinol.  

As will be outlined below, retinol’s active metabolites are of significant importance for human 

health due to their effects on embryonic and foetal development as well as growth, 

maintenance and regeneration of many cells and tissues, not only early in life but also 

throughout life (MADEN, HIND, 2003).  
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3.1.2 Metabolism 

Vitamin A metabolism is complex due to the variety of VA homologs involved and due to the 

potential toxic effect retinoic acid may have on cells. It is known that VA metabolism is 

subjected to tight homeostatic control (UNDERWOOD et al., 1979), which means that the 

internal equilibrium is maintained by adjusting physiological processes within the organism. 

These processes are complicated and remain still only partially understood (SCHREIBER et 

al., 2012). In particular, our understanding of VA homeostasis and kinetics in newborns 

remains poorly understood and is a hot topic of current research (TAN et al., 2014).  

Principally, in adults, children and term infants dietary VA (ß-Carotenes, retinol, retinyl ester) 

is absorbed in the small intestine (Figure 4). In young infants, especially in premature infants, 

ß-Carotenes play only an ancillary role. The digestion of retinyl ester (RE) requires a process 

of solubilisation that is catalysed by lipases. They are enzymatically converted to retinol by 

pancreatic lipase and the intestinal brush border enzyme phospholipase B prior to uptake 

into the enterocyte. Co-ingestion of dietary fat markedly enhances the intestinal absorption of 

dietary VA. This is due to the stimulation of pancreatic enzyme secretion, secretion of bile 

salts for micelle production and the provision of other products of lipid digestion such as free 

fatty acids which themselves can build micelles (HARRISON, 2005). This is an important 

aspect when contemplating different routes of administration, in particular when considering 

Figure 2: All-trans retinol 

Figure 3: All-trans retinoic acid 

 

Figure 1: ß-Carotenes 
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oral VA supplementation for infants with an extremely low birth weight (ELBW infants) since 

they are most often not fed for a prolonged period of time after birth. 

Retinol is then taken up by the enterocyte through a saturable carrier-mediated process and 

non-saturable diffusion-dependent process (QUICK, ONG, 1990). The carrier proteins, 

however, have not yet been identified or characterized (BLOMHOFF, BLOMHOFF, 2006). 

The absorption rates of intestinal cells differ between preformed VA from animal sources 

(retinyl ester absorption rate 70-90%), and provitamin A carotenes from plant sources with 

absorption rates of 20-50% (depending on VA status and other dietary/non-dietary factors). 

Transport and storage forms are biologically inactive. The mobilization and homeostatic 

control of retinol from storage sites, thus serum VA levels, depends on enzymatic activities 

from retinyl ester hydrolases. The mechanisms of digestion and absorption of dietary VA 

have been reviewed in detail by Harrison (HARRISON, 2005), and the specific role of retinyl 

ester hydrolases in vitamin A homeostasis was described in detail by Schreiber et al. 

(SCHREIBER et al., 2012). 

After uptake into the intestinal cells, retinol is bound to cellular retinol binding protein II. Once 

retinol is bound to cellular retinol binding protein II for the purpose of solubilisation and 

protection from degradation, it can be delivered to intestinal LRAT for re-esterfication.  

Retinyl esters are subsequently secreted as chylomicrones into the lymphatic system, 

reduced to chylomicron remnants in the general circulation and transported to target tissues 

or the liver for storage (Figure 4). Extrahepatic uptake of chylomicrone remnants (mammary 

tissue, bone marrow, adipose tissue, spleen, lungs) has been described (PAIK et al., 2004). 

This may be an important factor for the immediate delivery of retinyl esters to tissues with 

high demands and may contribute to the regulation of VA homeostasis (BLOMHOFF, 

BLOMHOFF, 2006). The question as to whether chylomicrone-associated retinyl ester can 

act directly as precursors for retinoic acid is currently not known.  

The liver forms the organism’s biggest VA storage site (50-80%) (BLOMHOFF et al., 1985; 

SENOO, 2004), and absorption and hepatic storage of preformed VA is very efficiently 

organized unless a pathological condition develops. Liver uptake of chylomicron remnants is 

facilitated by the apolipoprotein E receptor (BIESALSKI, NOHR, 2004). Within the 

hepatocytes retinyl esters may be stored in hepatic perisinusoidal stellate cells or undergo 

hydrolysis. The extensive storage of retinyl esters in hepatic stellatae cells and the cell’s 

ability to control excretion of retinol ensures a steady blood-plasma retinol concentration 

despite normal fluctuations in VA intake (BLOMHOFF, BLOMHOFF, 2006).  
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Figure 4: Vitamin A metabolism 

From: Theodosiou et al., 2010: From carrot to clinic: an overview of the retinoic acid signaling pathway 
(THEODOSIOU et al., 2010).

BCO-I: ß,ß-carotene-15,15’–monooxygenase, CRBP: cellular retinol binding protein, REH: retinyl ester 
hydrolase, LRAT: lecithin:retinol acetyltransferase RBP: retinol binding protein, TTR: transthyretin  

Before being excreted from the liver, retinol binds intrahepatically to retinol binding protein 

(RBP), a 21-kD plasma protein, and is then excreted and transported to the tissue as holo-

RBP (retinol-RBP) complex (KANAI et al., 1968) coupled to transthyretin to avoid renal 

clearance (BIESALSKI, NOHR, 2004). 4-5% of the circulating RBP-retinol complex is not 

bound to TTR whilst 95 % of the plasma RBP is bound to transthyretin (PETERSON, 1971). 

The kidneys contribute to recycling of the retinol-RBP complex, contributing about 50% of the 

total circulating pool (BLOMHOFF et al., 1991; CHRISTENSEN et al., 1999). The holo-RBP 

complex is under homeostatic control (UNDERWOOD et al., 1979). Only during severe 

vitamin A deficiency (VAD) as in depleted liver retinyl ester stores is the concentration of the 

plasma retinol-RBP complex decreased and extrahepatic stores may further contribute to the 

regulation of VA homeostasis (BLOMHOFF, BLOMHOFF, 2006). 

Active retinoids, e.g. retinoic acid, are synthesized within the target cells. A balanced system 

of synthesis and catabolism is needed to allow control of retinoic acid levels within cells and 

to prevent toxicity (Figure 5). Several intracellular and membranic enzymes and proteins are 

key, including retinyl ester hydroxylase, CRABP, STRA6, LRAT, and CYP26, among others 

(ROSS, 2003; ROSS et al., 2001). These enzymes and proteins are important since they are 
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variably expressed depending on VA status. They seem to exert control over intracellular VA 

status (WU, ROSS, 2010). 

 

Retinol uptake from plasma and extracellular fluids into peripheral cells is mediated by 

STRA6, a multitransmembrane domain protein and a specific membrane receptor for RBP 

and represents a major physiological mediator of cellular VA endocytosis. It also acts as a 

cytokine receptor and transduces signalling by holo-RBP, which is able to regulate insulin 

response. Further, it may not only control influx, but also efflux of retinol from cells, and it 

therefore acts as a bi-directional transporter, with intracellular retinol concentrations 

determining the transport direction (KAWAGUCHI et al., 2007).  

 

Intracellular retinol is bound to RBP and either oxidized to retinoic acid or re-esterified to 

retinyl ester (local in situ storage form) via enzymatic conversion by LRAT. The first step of 

oxidation is the enzymatic conversion of retinol to retinal by the alcohol-dehydrogenases 

(ADHs) and to RA by the retinal dehydrogenases (RALDHs) (DUESTER, 2000). Retinoic 

acid subsequently either exerts its effects via the nuclear cell receptors, transcriptional 

transregulators, the molecular physiology of which was recently reviewed by Duong and 

Rochette-Egly (DUONG, ROCHETTE-EGLY, 2011) or is metabolized (detoxified) by the 

cytochrome P450 systems. 

 

The nuclear retinoic acid receptors (RARα, β and γ), which are multi-domain proteins 

(macromolecular complexes), play a pivotal role in controlling the expression of certain gene 

subsets hereby maintaining homeostasis through regulating cell proliferation and 

differentiation (DUONG, ROCHETTE-EGLY, 2011). Not only RAR receptors but also their 

partners, the RXRs, also play their role in cell homeostasis (IMAI et al., 2001). Furthermore, 

not only VA appears to be crucial for the regulation of cell proliferation and differentiation but 

also vitamin D since the vitamin D receptor (VDR) is obligate within the macromolecular 

complex formed with the retinoid X receptor (RXR) (ZHANG et al., 2011).  

 

The cytochrome P450 systems (P450RAI) are responsible for oxidation of retinol to retinoic 

acid and protect against toxic exposure to retinoic acid. Different enzymes are known, such 

as CYP26B1 and CYP26A1. CYP26B1, identified shortly after CYP26A1, metabolizes all-

trans retinoic acid to the polar metabolites 4-oxo retinoic acid, 4-hydroxy retinoic acid, and 

18-hydroxy-all-trans retinoic acid (WHITE et al., 2000). The oxidative processes are thought 

to be initiated by hydroxylation of the C4 or C18 position of the beta-ionone ring of retinoic 

acid. CYP26 oxidizes all-trans retinoic acid but does not appreciably metabolize the 9-cis-or 

13-cis-RA isomers, which suggests that it plays a unique role in retinoid biologic factors 
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(PETKOVICH, 2001). Enzymes that catalyse the intracellular reactions for retinoic acid 

conversion may be of particular importance since those may act as regulators of tissue 

retinoic acid levels and hence protect the cells from toxic influences. 

 

Further, it should be mentioned that retinol can be conjugated with glucoronic acid, which 

leads to retinoyl- and retinyl glucoronidase and can subsequently be eliminated in faeces and 

urine. This has been studied by analysing urinary, biliary, and faecal metabolites of 

radiolabeled retinol and retinoic acid. Several polar metabolites have been detected. It has 

been suggested that catabolism seems to involve pathways involving retinol as well as 

retinoic acid, but the relative contribution of these as well as the intermediates and enzymes 

involved are not well understood (BLOMHOFF, BLOMHOFF, 2006).  

 

Figure 5: Transcriptional activation 

From: Theodosiou et al., 2010: From carrot to clinic: an overview of the retinoic acid signaling pathway 

(THEODOSIOU et al., 2010).

 

TTR: transthyretin, RBP: retinol binding protein, STRA6: thyroid hormone receptor, stimulated by retinoic acid 
gene 6, ADH: alcohol dehydrogenase, SDR: short-chain dehydrogenase/reductase, CRBP: cellular retinol 
binding protein, REH: retinyl ester hydrolase, LRAT: lecithin:retinol acetyltransferase, CYP26: cytochrome P450 
family 26, RA: retinoic acid, RAR: retinoic acid receptor, RXR: retinoid X receptor, RARE: retinoic acid response 
element, NCoR: co-repressor complex, NCoA: co-activator complex, SMRT: silencing mediator of retinoic acid, 
HAT: histone acetyltransferase, HDAC: histone deacetylase. 
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3.2 The importance of vitamin A for lung development 

Retinoic acid is elementary for the adequate formation of the embryonic axis and limbs due 

to its control of the expression of key developmental target genes (CLAGETT-DAME, 

DELUCA, 2002; DUONG, ROCHETTE-EGLY, 2011). It has the greatest endogenous activity 

as a ligand for retinoid acid nuclear receptors (RAR-α, RAR-β, and RAR-γ) (BASTIEN, 

ROCHETTE-EGLY, 2004), through which it influences development and cell differentiation. It 

is necessary for the orderly development of the central nervous system, vision, 

hematopoietic system, immune system and reproductive system, and also for the embryonic 

and postnatal development of lung tissue (BIESALSKI, 2011; MADEN, HIND, 2004; MALPEL 

et al., 2000). 

Alveologenesis, septation of alveoli and surfactant production are all dependent on the 

influence of VA (MASSARO, MASSARO, 2002; METZLER, SNYDER, 1993; ROTH-

KLEINER, POST, 2005). 

Geevarghese and Chytil demonstrated that during the alveolar stage of lung development 

major accumulation and utilization of retinyl ester occur (GEEVARGHESE, CHYTIL, 1994; 

SHENAI, CHYTIL, 1990). Retinoic acid peaks precede alveolar septation, which is 

accompanied by a simultaneous fall in retinol, suggesting utilization of retinoids during this 

process, (HIND et al., 2002b). Already in 1995, McGowan et al. showed that retinoid acid 

receptors are expressed during alveolar formation (MCGOWAN et al., 1995). The close 

temporal and spatial expressions of the RAR isoforms α1, β2, β4 and γ2 during alveolar 

development have subsequently been characterized in the mouse model (HIND et al., 

2002a). Knockout mice for RARβ gene have smaller, more numerous alveoli, suggesting that 

RARβ may function as a negative regulator of alveolar function (MASSARO et al., 2000) and 

null mutants for the RARγ gene have fewer, larger alveoli, suggesting that RARγ is required 

for alveolar formation (MCGOWAN et al., 2000).  

Changes occur not only on receptor level but also on enzymatic and protein levels. Retinoic 

acid synthesising enzymes (RALDH1 [alveolar parenchyma]; RALDH2 [lung periphery]) have 

been demonstrated to show a close spatial distribution with patterns of alveolar proliferation 

postnatally (HIND et al., 2002b; MADEN, HIND, 2004) and significant changes of the levels 

of RBP (CRBP1 and CRABP1) in both rat (MCGOWAN et al., 1995; ONG, CHYTIL, 1976) 

and mouse (HIND et al., 2002a) are observed during the time of alveolar development.  

There is further strong evidence that retinoic acid is required not only at life’s beginning but 

also throughout life for the maintenance of lung alveoli integrity and elastin formation 

(BLAND et al., 2003; MADEN, HIND, 2004) and may indeed also exhibit regenerative 

properties. It has been proposed that regeneration uses the same pathways as organ or 
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tissue development (MUNEOKA, BRYANT, 1982), and retinoic is known to induce limb 

regeneration and super-regeneration in animals (NIAZI, SAXENA, 1978). With regard to lung 

development, Maden and Hind suggested that RA re-stimulates the same RA-responsive 

gene pathways that are used during normal alveologenesis (MADEN, HIND, 2003). Retinoic 

acid-induced alveolar regeneration was first described by Massaro and Massaro in 1996 

(MASSARO, MASSARO, 1996), and in 1997 they showed that pathological features of 

experimentally induced emphysema can be reversed in the adult rat model (MASSARO, 

MASSARO, 1997). Other studies were able to show similar data (BELLONI et al., 2000; 

TEPPER et al., 2000). 

A lack of vitamin A, in particular during embryogenesis, has therefore significant health 

implications. It has been shown that severe VAD can result in early embryonic death 

(CLAGETT-DAME, DELUCA, 2002), and less severe VAD induces foetal developmental 

malformations (SPIEGLER et al., 2012). Inhibition of retinoic acid synthesis leads to 

disruption of alveolar formation and the development of large air spaces (MADEN, HIND, 

2003). In the animal model, Baybutt et al. showed in 2000 that VAD induced inflammation 

and emphysema and reduced surfactant synthesis in the lungs of rodents. The observed 

histopathological changes are similar to those found in bronchopulmonary dysplasia (BPD) 

and adult emphysema (BAYBUTT et al., 2000). 

3.3 Vitamin A toxicity 

As with any other substance that may be over-consumed, VA shows unwanted and toxic 

effects if taken in large quantities. As it is impossible to describe any universal mode of 

action of VA derivates, it is equally impossible to generalize their toxic effects. When 

administered, VA is nearly completely absorbed and stored to a certain extent by the 

organism. Prolonged and excessive overdosing will give rise to symptoms of intoxication 

(BIESALSKI, 1989). In addition, teratogenic effects are known. 

According to Poisindex®, any VA ingestion o f  more than 1 million IU in adults and more 

than 300,000 IU in children has caused acute toxicity. With regard to chronic toxicity, more 

than 10 times the RDA for weeks or months, or more than 50,000 IU/d in adults and more 

than 25,000 IU/d in children, are associated with toxic effects. 

In children, headaches, fever and gastrointestinal disturbances have been reported following 

therapeutic ingestion of 100,000 IU VA during clinical trials (FLORENTINO et al., 1990). 

Lam et al. reported the casuistic of three children < 6 years who ingested 200,000 to 

300,000 IU and remained asymptomatic, although retinol plasma levels were elevated and 

remained so for months (LAM et al., 2006). With regard to premature infants, data is lacking. 
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Clinical adverse effects associated with acute VA overdoses are various and include 

gastrointestinal effects (such as nausea, vomiting and hepatotoxicity), skin disorders 

(exanthema, dry skin), effects on bone (bone and joint pain), lipid metabolism, and 

neurological disorders (such as headaches, intracranial hypertension, papillaedema, bulging 

fontanelle in infants, and seizures) (BAQUI et al., 1995; DE FRANCISCO, BAQUI, 1996; DE 

FRANCISCO et al., 1993). Humphrey et al. were able to demonstrate that VA-induced 

bulging fontanelle is not associated with developmental delay or adverse growth 

(HUMPHREY et al., 1998). 

Chronic ingestion, so called hypervitaminosis A, may also involve fatigue, anorexia, hair 

loss, weight loss, oedema, anaemia, low-grade fever, polyuria, hypercalcaemia, 

hepatosplenomegaly, muscle pain, bone pain and diplopia. Liver damage or bone 

hyperostosis (early closure of the epiphysis of long bones) in children may be possible. 

Furthermore, hypercalciuria, haemolytic anaemia and renal failure may be seen. Typical 

changes may be present on X-rays (skull, skeleton) (MÜHLENDAHL et al., 2007). 

It is known that hepatotoxicity is one of the most severe outcomes of chronic high-dose VA 

intake (BAUERNFEIND, 1980; GEUBEL et al., 1991; KOWALSKI et al., 1994). It is assumed 

that the mechanisms of hepatic adverse effects are linked to the overloaded hepatic storage 

capacity for VA (EUROPEAN FOOD SAFETY AUTHORITY (EFSA), 2006). Several 

suggestions for underlying reasons for hepatic injury have been made: cell membrane 

damage and lysosomal rupture (ELLIS et al., 1986), obstructed blood flow through VA-

loaded hepatic stellate cells within the sinusoidal space with the consequence of portal 

hypertension (HRUBAN et al., 1974; RUSSELL et al., 1974) or a dysfunction of the excretory 

function of the hepatic stellate cells (production of collagen type III) as responsible for the 

pathophysiology of hepatic cirrhosis (SVEGLIATI-BARONI et al., 2001). Some data on 

animal experiments exist (LEO et al., 1982; SHINTAKU et al., 1998b, a), although, overall 

the data is limited. In most cases toxicity appeared after prolonged ingestion of high doses of 

VA. Hepatotoxicity was very frequently associated with elevated retinol and retinyl ester in 

serum (EUROPEAN FOOD SAFETY AUTHORITY (EFSA), 2006). However, none of the 

clinical studies in premature infants that have been considered in Darlow and Graham’s 

Cochrane review (DARLOW, GRAHAM, 2007) have reported any evidence of hepatic or 

biochemical toxicity, which may be explained by their already deficient body stores. 

On a different note, care should be taken when assessing neonatal VA supplementation with 

regard to immunological effects. It has previously been shown that the risk for atopy was 

increased (AAGE et al., 2015). Clinical studies must continue to observe any unwanted long-

term effects, including effects on the developing immune system. 
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3.4 Vitamin A deficiency 

Vitamin A deficiency is a global health problem. Around 190 million pre-school children and 

19 million pregnant women are affected by VAD worldwide (WHO, 2009). Maternal health 

cannot be separated from newborn health, and it is known that if VA supply to the pregnant 

woman is impaired, negative consequences for the offspring are expected (ROTONDI, 

KHOBZI, 2010). Associations between maternal multiple-micronutrient deficiencies, which 

are commonly exacerbated during pregnancy, and infant health, especially in small for 

gestational age and low birth weight babies, has been shown and extensively investigated, 

(HAIDER, BHUTTA, 2012). It was found that premature infants are particularly susceptible to 

the sequelae of their micronutrient deficiencies due to their fragile health and poor reserves 

(HANSON et al., 2012). Pregnancy, post partum complications and death are known to be 

increased in chronic VAD (GORSTEIN et al., 2003; WEST et al., 1999) and, as pointed out 

above, there are clear indications that VAD is associated with the development of BPD.  

Evidence exists that maternal repletion with VA at recommended dietary levels, before, 

during and after pregnancy improves lung function in the offspring (CHECKLEY et al., 2010), 

and VA supplementation in late pregnancy for the prevention of BPD remains a topic of 

current research (BABU, SHARMILA, 2010). 

3.5 Vitamin A deficiency and prematurity 

Premature infants, who are known to have low VA plasma concentrations, low RBP, and low 

hepatic stores (BRANDT et al., 1978; INDER et al., 1998; KOSITAMONGKOL et al., 2011; 

SHENAI et al., 1981; SHENAI et al., 1985a; WEINMAN et al., 2007), are considered to suffer 

from, and are particularly prone to the consequences of VAD, proving this to be a major 

public health concern. 

Rates of preterm birth vary between countries. Rates between 12-13% in the US (IAMS et 

al., 2008; SLATTERY, MORRISON, 2002) and other developed countries, including 

European countries (FIELD et al., 2009), are given. In Germany, data suggests a rate of 13.9 

VPT/1000 births (excluding termination of pregnancies) (FIELD et al., 2009). Causes of 

preterm labour are multifactorial and include infections, inflammations, uteroplacental 

compromises (ischaemia, haemorrhage, overdistension of uterus) and immunologically 

mediated processes (ROMERO et al., 2006). Consequences of prematurity are significant. 

Complications affect various organ systems such as the brain (e.g. intraventricular 

haemorrhages [IVH], periventricular leukomalacia), the eye (e.g. retinopathy of prematurity), 

the musculoskeletal system (e.g. osteopenia of prematurity), the gut (e.g. necrotizing 

enterocolitis, feeding difficulties) and the lungs (e.g. respiratory distress syndrome, BPD), 

among others.  
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Associations have been made between VAD in premature infants and the occurrence of BPD 

and long-term respiratory morbidity (SHENAI et al., 1985b; SPEARS et al., 2004). It has 

been postulated for some time that VAD predisposes premature infants to BPD (BRANDT et 

al., 1978; HUSMANN et al., 1992; INDER et al., 1998; SPEARS et al., 2004).  

3.6 Prematurity and bronchopulmonary dysplasia 

Bronchopulmonary dysplasia, a developmental disorder of lung maturation and function, 

(COALSON, 2003) constitutes a major complication of prematurity and affects around 17% of 

very preterm babies (VPT, GA 24+0 - 31+6) surviving up to 36 weeks GA, affecting even 

more amongst the population of <28 weeks GA, (28-56%) (GORTNER et al., 2010) and the 

extremely low birth weight (birth weight < 1000g) population (up to 35%) (SMITH et al., 

2005). 

Pathogenesis of the lung injury in BPD reflects an extremely immature lung with impaired 

alveolar and capillary growth caused by developmental arrest as a result of pre- (e.g. 

inflammation, infection) and postnatal (e.g. oxygen toxicity, mechanical ventilation) 

contributing factors and abnormal reparative processes (COALSON, 2003; HAYES et al., 

2010). Those processes give rise to the hallmarks of BPD of chronic inflammation, impaired 

alveolarization and vascularization resulting in chronic lung damage with significant short- 

and long-term mortality and morbidity (KINSELLA et al., 2006).  

It has been known for some time that BPD constitutes a severe clinical problem for 

premature infants (SPEARS et al., 2004; SPEER, SILVERMAN, 1998) since those who 

suffer from BPD are at significant short-term risk, including a heightened risk for IVH, and 

long-term risk for increased morbidity such as increased hospital admissions for respiratory 

infections (SMITH et al., 2004), poorer lung function in adolescence (DOYLE et al., 2006), 

risk of emphysema (WONG et al., 2008), and developmental delays (SHORT et al., 2007) 

including a heightened risk for cerebral palsy (VAN MARTER et al., 2010). The prevention of 

BPD in at-risk infants is one of the most challenging aspects in early neonatal care.  

Treatment options for BPD are limited, and finding measures for the prevention of the 

disease is therefore highly significant.  

3.7 Vitamin A supplementation for the prevention of BPD 

Vitamin A supplementation as a potential measure for the prevention of BPD in the 

premature population has been extensively researched with a significant number of relevant 

clinical studies (AMBALAVANAN et al., 2003; BENTAL et al., 1999; KENNEDY et al., 1997; 

PEARSON et al., 1992; SHENAI et al., 1987; SHENAI et al., 1990; TYSON et al., 1999; 
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WARDLE et al., 2001; WERKMAN et al., 1994) and a large number of scientific reviews 

(BAYBUTT, MOLTENI, 2007; BIESALSKI, 2011; BIESALSKI, NOHR, 2003; BIESALSKI, 

SEELERT, 1989; CHYTIL, 1985, 1992, 1996, 1999; GUIMARAES et al., 2012; MACTIER, 

WEAVER, 2005; MASSARO, MASSARO, 2001, 2003, 2010) indicating the considerable 

research interest in this area.  

Darlow and Graham concluded in their Cochrane Review that “Supplementing very low birth 

weight infants with vitamin A is associated with a reduction in death or oxygen requirement at 

one month of age and oxygen requirement among survivors at 36 weeks postmenstrual age, 

with this latter outcome being confined to infants with birth weight less than 1000 g.” 

(DARLOW, GRAHAM, 2007).  

 

In addition, several translational trials have shown that VA supplementation can positively 

influence the process of reducing lung injury and damage of the respiratory system 

(COUROUCLI et al., 2006; JAMES et al., 2010; VENESS-MEEHAN et al., 2002). In 2003 

Maden and Hind showed that dexamethasone-treated mice in a model of alveolar loss show 

complete regeneration after daily retinoic acid injection (MADEN, HIND, 2003). Bland et al. 

created a lamb model for BPD and showed benefits when treating the animals with VA 

(BLAND et al., 2003). In a 2010 study using the lamb model, Albertine et al showed that VA 

treatment partially improved lung development in chronically ventilated preterm neonates 

(ALBERTINE et al., 2010).  

Thus, we conclude that due to the fact that VA is essential for the growth, development and 

maturation of lung tissue and because it controls in its active form the regulation and 

differentiation of cells including those of the respiratory tract, it is an important micronutrient 

for the preterm neonate who is known to be VA depleted. Early improvement of VA supply in 

the ELBW population is considered to be an important factor for positively influencing the 

progression of BPD, a disease with a high morbidity and (co-) mortality rate. Questions 

remain about the most meaningful way of achieving VA sufficiency in ELBW infants. 

3.8 Problem statement 

3.8.1 Current recommendations and pitfalls 

No general recommendation for the standard use of VA for BPD prevention in the premature 

neonatal population has been made, and current supplementation regimes still do not seem 

to sufficiently correct VAD in the ELBW cohort, whereby the optimal dose as well the most 

appropriate route of administration have yet to be identified (MACTIER, 2013). 
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It is of even more crucial importance to extensively explore all options of postnatal VA 

supplementation in the infant because, despite initial promising results (CHECKLEY et al., 

2010), recent Cochrane reviews did suggest that there is no role for antenatal VA 

supplementation to reduce perinatal mortality (MCCAULEY et al., 2015) and no evidence 

that VA supplementation in postpartum women reduces infant mortality or morbidity 

(OLIVEIRA et al., 2016). However, data on antenatal VA supplementation and peri- or 

postnatal morbidity such as BPD is unfortunately unavailable. Ongoing research in this area 

is still warranted. 

Current regimes for postnatal VA supplementation in ELBW infants use either the oral, 

intravenous or intramuscular route (DARLOW, GRAHAM, 2011; MEYER et al., 2014).  

Oral solutions are available (e.g. Vitadral® drops), and there is currently a multicentre trial 

underway to clarify whether additional early postnatal high-dose oral vitamin A 

supplementation in the form of a lipid-soluble retinyl ester preparation is able to prevent 

bronchopulmonary dysplasia or death in extremely low birth weight infants (MEYER et al., 

2014). However, often due to delayed feeding regimes in this cohort, the necessary co-

ingestion of dietary fat that is needed for enhanced absorption, is reduced. Additionally, 

intestinal brush border enzymes, the synthesis of RE hydrolases, pancreatic enzyme 

secretion, the production of bile salts and carrier mediates processes may all be immature in 

very premature infants which further impede intestinal absorption of orally administered 

dietary or supplementary retinol or retinyl ester. Therefore, intravenous, intramuscular, or 

endotracheal application may be more reliable. 

For intravenous supplementation only multivitamin preparations are at present licensed for 

use. These do not allow for separate dose adjustment and are lipid-soluble substances, 

which are not easily dissolved in aqueous solutions. In 1994 Werkman et al. studied an 

additional high dose intravenous VA (retinyl palmitate monopreparation, Aquasol A) 

supplementation regime added to a commercial lipid emulsion in a cohort of low birth weight 

infants and found that supplemented infants had significantly higher plasma retinol 

concentrations in the first month than infants receiving routine supplementation (WERKMAN 

et al., 1994). Unfortunately, the product used subsequently needed to be withdrawn from 

intravenous use due to anaphylaxis concerns (personal conversation). There is currently no 

VA monopreparation licensed for additional intravenous use. 

Although additional intramuscular VA supplementation in preterm babies has been shown to 

prevent BPD and to improve long-term pulmonary outcome (DARLOW, GRAHAM, 2011), it 

has yet to gain wide acceptance clinically, mainly due to perceived pain in the infant 

(KAPLAN et al., 2010).  
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The optimal dose for ELBW infants has been extensively argued and debated in the past, 

(AMBALAVANAN et al., 2005; KENNEDY et al., 1997; MACTIER, 2013; MACTIER et al., 

2005; MACTIER et al., 2011; MACTIER, WEAVER, 2005; WEST, CUMMINGS, 2005). Tyson 

et al. supplemented 5000 IU of VA intramuscularly three times per week for four weeks in 

extremely low birth weight infants and found a reduction of biochemical evidence of VAD and 

a slightly decreased risk of CLD (TYSON et al., 1999). Wardle et al. administered 5000 

IU/kg of oral VA to 77 premature infants. The incidence of potential side effects, seizures 

and persistent vomiting did not differ between the groups (WARDLE et al., 2001). The 

previously mentioned multicentre trial currently underway is investigating the oral application 

of a dose of 5000 IU VA/kg/day versus placebo in ELBW infants (MEYER et al., 2014). 

Ambalavanan et al. administered doses up to 15.000 IU intramuscularly three times a week. 

They reported a case of transient fullness of fontanelle in one infant (AMBALAVANAN et al., 

2003). There was no evidence of any other significant side effects. However, they did not find 

an advantage of this regime over a dose of 5000 IU three times a week for this patient 

cohort.  

In animal trials, Albertine et al. used 5000 IU/kg daily intramuscular injections in the sheep 

model to investigate effects on lung tissue (alveolar septation, thickness of airspace walls 

and capillary growth) (ALBERTINE et al., 2010).  

The European Food Safety Authority asserts that “the upper level of 3000 µg RE/days is 

appropriate for men, and for infants and children after correction for differences in metabolic 

rate, because it is 2.5-fold lower than the lowest daily intake that has been associated with 

hepatotoxicity during chronic intake” (EUROPEAN FOOD SAFETY AUTHORITY (EFSA), 

2006). As a tolerable upper intake level for preformed vitamin A (retinol and retinyl ester) in 

the vitamin A-sufficient age group of 1-3 years the authors suggest 800 µg RE/days (2,640 

IU). This is considered to be 2.5-fold lower than any assumed hepatotoxic dose. From their 

statement, one can conclude that 6.600 IU (2.5 times 2,640) may be considered the lowest 

dose at which toxicity, in their view, may be expected.  

Because of the above outlined reasons, a dose of 5000 IU/kg body weight as a 

supplementation dose was chosen in this study. 

3.8.2 A nano-encapsuled, water-soluble vitamin A monopreparation 

The availability of a commercially-sold, nano-encapsuled, water-soluble vitamin A 

monopreparation intended for use as nutritional supplement (NovaSOL® A) in humans but, 

due to its composition, principally usable as parenteral substrate, led us to explore the idea 

of investigating this substance, the dose of which can be easily weight-targeted, in a well-

established animal model using preterm lambs (SEEHASE et al., 2012). Using a nano-
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encapsuled, water-soluble mono-substance would potentially have advantages over a lipid-

soluble substance with regard to pharmacological properties, easier handling, administration 

and dose adjustment.  

3.8.3 The animal model 

The pre-clinical lamb model allows the use of neonatal equipment in realistic conditions and 

has been shown to be an adequate model for translation of experimental findings into clinical 

practice (KRAMER, 2008b). Preterm lambs have been used as large animal models for 

investigating BPD in the past (ALBERTINE et al., 1999). At a gestational age of between 

128-133 days (Term: ~ 150 days) lung maturation resembles about 30 weeks of gestation in 

humans (KRAMER, 2008a) (SEEHASE et al., 2012). Preterm lambs have also previously 

already served in VA translational trials when VA was administered intramuscularly 

(ALBERTINE et al., 2010; KRAMER et al., 2008; WILLET et al., 2000). Applying VA as retinyl 

palmitate intravenously and endotracheally in the preterm lamb model is novel, and a 

comparison of those two application modes in this model has not been done before.  

In contrast, piglets have before served in studies investigating the combined endotracheal 

application of VA as retinyl acetate and surfactant. Importantly, no negative influence was 

found on therapeutic surfactant effects, and a combination of both therapies appears feasible 

(SINGH et al., 2010).  

3.8.4 The genetic markers 

Vitamin A in its active form, RA, regulates several genes. A number of them, including 

STRA6, a transmembrane receptor for RBP, which mediates retinol uptake from plasma and 

extracellular fluid into cells (KAWAGUCHI et al., 2007), as well as LRAT and the CYP26 

family, play an important role in VA homeostasis (ROSS et al., 2001). Those enzymes and 

proteins are variably expressed with VA status and seem to exert tight control over 

intracellular VA status (ROSS, 2003). It is known that if retinoic acid is available, which is an 

indication for a sufficient VA status, the expression of LRAT is maintained (ROSS, 2003). 

Conversely, LRAT is down-regulated during VAD (RANDOLPH, ROSS, 1991). A similar 

situation applies to the expression of CYP26B1. It also increases with a rise in the 

concentration of RA (PETKOVICH, 2001) and is maintained at very low levels in VAD 

(WANG et al., 2002; YAMAMOTO et al., 2000).  

These findings were confirmed in a recent translational trial in rodents, a model that can only 

cautiously be used for translation of research findings for human premature neonatal 

application, where it has been shown that when treating neonatal rats orally using a 

combination of VA and different acidic retinoids, lung RE increased and retinol uptake and 
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esterification during the period of absorption correlated with increased expression of both 

STRA6 and LRAT after 6 hours. This working group was also able to show a strong induction 

of levels of CYP26B1 following retinoid treatment and concluded that CYP26B1 may 

therefore play a major role in metabolizing RA in neonatal lungs (WU, ROSS, 2010).  

From the available evidence we concluded that it was useful to determine and analyse the 

early genetic expression of mRNA of VA homeostatic genes (STRA6, LRAT and CYP26B1) 

in order to comment not only on distribution pattern after different modes of VA application 

but also on potential early metabolic effects in our translational model. Further, using two 

different routes of application, any possible difference among the expression pattern may 

also influence any future experimental set-up when investigating VA short- and long-term 

effects as well as dose and mode of delivery. 

3.9 Aim of the study 

Therefore, the aims of this study were three-fold: firstly, to test the feasibility and practicability 

of intravenous and endotracheal application of a new substance, namely a nano-encapsuled, 

water-soluble retinyl ester (retinyl palmitate) monopreparation in an appropriate animal 

model, secondly, to obtain data on VA distribution and VA kinetics in this model comparing 

two different methods of application and thirdly, to examine the effects on early cellular 

responses on a molecular level. For reasons of completion, potential histopathological 

changes that would indicate early hyper-acute systemic toxic effects following VA application 

on different organ systems were investigated.  

This study is meant to inform future research activities with the aim of providing a new 

substrate for VA supplementation in the ELBW neonatal cohort for the prevention of BPD. 

This substrate was never tested in this form before. 

In conclusion, the objectives of this study were to:  

1. Test the feasibility and practicability of substrate administration. 
2. Evaluate VA distribution in serum, urine, lung and liver tissue using intravenous and 

endotracheal application methods. 
3. Determine the expression of mRNA of retinoid homeostatic genes related to VA 

uptake (STRA6), esterification (LRAT), and catabolism (CYP26B1). 
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4 Material and Methods 
This research project was initiated and conceptualized by myself under supervision of Prof. 

Gortner, Department of Paediatrics and Neonatology, Saarland University Medical Centre, 

Homburg/Saar, Germany, in collaboration with the University of Maastricht, Department of 

Paediatrics, Maastricht University Medical Centre, Faculty of Health, Medicine and Life 

Sciences, School for Oncology and Developmental Biology, Maastricht, Netherlands, the 

Department of Biology, Chemistry and Nutrition, University of Hohenheim, Stuttgart, 

Germany and with the Institute of Anatomy and Cell Biology, Saarland University, 

Homburg/Saar, Germany, 

The animal experiments and tissue sampling took place at Maastricht University. Retinol and 

retinyl palmitate analysis of serum and tissue samples were performed at Hohenheim 

University. Histological analysis of tissue samples was performed at the Institute of Anatomy 

and Cell Biology in Homburg. Molecular analysis of mRNA of lung tissue and overall data 

analysis was performed at the Department of Paediatrics and Neonatology in Homburg.  

I organized and coordinated the different working groups, visited all locations and was 

introduced to all research techniques. I performed the molecular analysis of the lung tissue 

samples as well as overall data analysis and interpretation under supervision of Prof. L. 

Gortner. 

4.1 Ethical approval 

The experimental protocol and study design were in line with the institutional guides for 

animal experiments and were approved by the Institutional Animal Ethics Research 

Committee of Maastricht University, Netherlands. 

4.2 Animals and experimental design 

Medication, chemicals and equipment tables can be found at the end of each chapter.  

4.2.1 Animals 

Time-mated Texel ewes were kept in a welfare-oriented animal husbandry and were fed 

species-appropriate fodder containing grass, hay and fermented grain. Ten lambs were 

delivered by caesarean section (modified EXIT procedure) at a gestational age of 128-133 

days. Intramuscular Betamethasone (12mg) was given to the ewe one day prior to the 

experiment in order to induce foetal lung maturation (JOBE et al., 2007). After operative 

delivery, the lambs were weighed, underwent oral intubation and ventilation (ventilator: 

Babylog 8000, mode of ventilation: IPPV, settings of ventilation: FiO2=1, PEEP 8 cm H2O, 
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PIP 30 cm H2O, F: 60/min, I:E 1:2) and arterial and venous catheters were placed in the 

umbilical vessels for BP and HR monitoring as well as blood gas analysis for ventilation 

control and the application of medication (Table 1 and Table 2). The lambs were further 

continuously sedated with intravenous midazolam and ketamine and kept on an open, 

heated incubator maintaining the physiologic body temperature of 38 °C. Parenteral nutrition 

was provided and body temperature was monitored using a rectal temperature probe.  

4.2.2 Retinyl ester dose preparation 

A 10% vitamin-A-palmitate solution (NovaSOL® A) was received from AQUANOVA AG, 

Darmstadt, Germany. NovaSOL® A contains polysorbate 80 (E433, polyoxyethylen-

sorbitant-monooleat), CAS-Nr. 9005-65-6, ascorbic acid (E 300), CAS-Nr. 50-81-7 and mixed 

tocopherol (E306). NovaSOL® A is a solubilisate.  This means that a liposoluble product was 

made water-soluble using micelle technology (nano-encapsulation into a micelle structure). 

The micellar structure has a size of less than 10 nm and a molar mass distributed between 

2e+5 and 6e+5 g/mol. The substance contains at least 170.000 IU/g VA. Prior to application, 

one millilitre of NovaSOL® A 10% was solved in 33 ml of normal saline hereby preparing 

5000 IU/ml solution. This solution was subsequently protected from light, warmed to body 

temperature (37°C) and finally applied to the animal. 

4.2.3 Retinyl ester delivery 

At half an hour of life, the animals randomly received 5000 IU/kg body weight of retinyl 

palmitate diluted in saline (5000 IU/mL) either via the umbilical venous catheter (“i.v.”) or via 

a gastric tube placed within the endotracheal tube (“e.t.”). The vitamin A solution was given 

directly after an endotracheal surfactant bolus. Animals that were not treated served as the 

control group. 

4.2.4 Sample collection, storage and preparation 

During the animal experiment, arterial blood samples of 1 ml for serum ROH and RP analysis 

were taken immediately prior to treatment (pre- treatment value) and at 0.5 h, 1 h, 1.5 h, 2 h, 

2.5 h and at the end of the experiment. Due to technical reasons there was no serum 

available for data analysis in one of the three control animals. Blood was taken in 1.1 ml 

small containers (microtubes), protected from light through wrapping in aluminium foil and 

placed on ice. After the experiment, those samples were placed in a centrifuge and spun for 

10 minutes at 1300 xg to obtain serum. The serum probe was then promptly frozen at -80 

degrees Celsius. Subsequently, the samples were sent to the laboratory on dry ice in a 

Styrofoam box and stored at -80°C prior to analysis. Light protection was maintained 

throughout. 



 

- 24 - 

After the experiment, lambs were euthanized with an overdose of pentobarbital after 3.5 +/- 

0.5 h. After necropsy, solid organs (lung, liver, kidney) and urine were sampled and 

immediately snap frozen. All specimens were shielded from light and preparation steps were 

performed on ice and under yellow light.  Subsequently the specimens were placed in light-

tight Styrofoam boxes and sent for analysis. 

4.2.5 Medication and equipment tables 

Table 1: Medications used during experimental design 

Fodder Common grass and fodder by HAVENS 

Graanhandel NV, Vierlingsbeek, 

Netherlands 

Betamethasone Celestone®, Schering-Plough, North Ryde, 

New South Wales, Australia 

Midazolame Midazolam Actavis®, Hafnafjordur, Iceland 

Ketamine Nimtek, Eurovet®, Bladel, Netherlands 

Surfactant Poractant alfa 100 mg/kg, Chiesi 

Pharmaceuticals, Parma, Italy 

Phenobarbital Euthasol 20%, AST Beheer BV, 

Oudewater, Nederlands 

 

Table 2: Equipment used during experimental design 

Endotracheal-Tube (ETT) Microcuff® 4.5 mm, Kimberly-Clarke, 

Zaventem, Belgium 

Gastric tube 6 Fr., Vygon, Ecouen, France 

Umbilical arterial, venous catheters Argyle®, 3.5 Fr., Covidien, Tullamore, 

Ireland 

Scale Sartorius balance type ICI6000S 

Heated Incubator IW930 Series CosyCot™ Infant Warmer, 

Fisher & Paykel Healthcare, Auckland, 

New Zealand 
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Infant Ventilator Babylog 8000, Draeger, Luebeck, 

Germany 

Microtubes Serum Gel with Clotting Activator, 

Saarstedt, Nümbrecht, Germany 

 

4.3 Retinol and retinyl palmitate analysis 

4.3.1 High-performance liquid chromatography 

All sample preparation steps were performed cooled on ice and under amber light for 

degradation protection. Vitamin A analysis was performed using high-performance liquid 

chromatography (HPLC) (Table 4). 

For tissue samples, BHT was used as an antioxidant. 100 ppm BHT was added to n-hexane 

and 10 ppm BHT was added to ethanol. Samples of between 100 mg to 500 mg were 

measured on an analytical balance in a small tube (Falcon®). 2 ml of PBS (Table 3) and 2 ml 

of ethanol were added, vortexed and subsequently homogenised 20 seconds using an Ultra-

Turrax® disperser on position three of the regulator. Afterwards, the disperser was 

disassembled and thoroughly cleaned using water and ethanol. For extraction, 5 ml n-

hexane was added; the sample was vortexed and rocked for 10 minutes on a nutator before 

centrifuging the sample at 10°C with 4500 g. The hexane supernatant was removed and 

placed in a 50 ml flask. The hexane extraction was performed three times. The pooled 

hexane phases were evaporated using a rotary evaporator (SpeedVac). The water quench 

temperature was < 25°C. 

The liver samples were solved in 2.5 ml HPLC buffer and lung samples in 1 ml HPLC buffer. 

The HPLC mixture was 80% acetonitrile and 20% THF. Two aliquots of each probe were 

filled into HPLC vials. One aliquot was used for HPLC measurement; the other aliquot was 

used as a retained sample and frozen at -80°C. 

Serum and urine samples were tempered at 20°C. 200 µl of ethanol were added to 200 µl in 

a micro-reaction container (Eppi or E-cup) and vortexed. Afterwards, 500 µl N-hexane were 

added, and the sample was vortexed again before it was centrifuged for 1 minute at 16000 g. 

The supernatant (hexane phase) was pipetted and placed into a micro-reaction container. 

The pooled hexane phases were evaporated using a rotary evaporator (SpeedVac), 

subsequently re-suspended in 200 µl HPLC buffer and centrifuged for 1 minute at 16,000 g. 

The supernatant was transferred to an HPLC vial. 
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In order to determine Vitamin A concentrations in tissue and blood samples by means of 

HPLC, a Prominence Modular HPLC with 2 pumps equipped with a Nucleosil 5C18 (300mm 

x 4mm, 3µm) column, an autosampler and a photo-diode array detector (SPD-M20A), 

wavelength set at 325nm were used. 

HPLC results were individually checked for plausibility and confirmed by repeated 

measurements when found to be outside the linear calibration slope. For tissue samples the 

Limit of Detection (LOD) for ROH was at 13 ng/ml and for RP at 47 ng/ml (Limit of 

Quantification [LOQ] for ROH 42 ng/ml and 158 ng/ml for RP). For liquid samples the LOD 

for ROH was at 44 mM and for RP at 87 nM (LOQ for ROH 145 nM and 291 nM for RP). Due 

to occasional significant variation between measurements and where there was doubt with 

regard to the accuracy of measurements these were repeated and individually checked for 

plausibility. Afterwards, mean values of the repeated measurements were calculated to 

ensure high levels of data quality.  

4.3.2 HPLC chemicals and equipment table 

Table 3: HPLC chemicals 

 

  

HPLC buffer Acetonitrile (80%), THF (12%), methanol 

solution (0.1M ammonium acetate in 

methanol, 8%). 

PBS buffer NaCL (8.0 g/L), KCL (0.2 g/L), Na2HPO4 

(1.42 g/L), KH2PO4 ( 0.27 g/L), pH 7.5 

Acetonitrile Carl Roth, Karlsruhe, Germany 

Purity: HPLC Gradient 

Methanol Carl Roth, Karlsruhe, Germany 

Purity: HPLC Gradient 

THF VWR, Darmstadt, Germany 

Standards (retinol, retinolpalmitate) Sigma Aldrich, Steinheim, Germany 

Purity: HPLC (>98%) 
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Table 4: HPLC equipment 

Prominence Modular HPLC (Shimadzu 

Prominence Gradient System) with 2 

pumps (LC20AT) 

Shimadzu, Kyoto, Japan 

HPLC Column: Nucleosil 5C18 (300mm x 

4mm, 3µm) 

Trentec, Gerlingen, Germany 

Autosampler (Sil-20AC) Shimadzu, Kyoto, Japan 

Photo-diode Array detector (SPD-M20A), 

wavelength set at 325nm 

Shimadzu, Kyoto, Japan 

4.4 Molecular analysis of lung tissue samples 

For expression analysis the MIQE guidelines (BUSTIN et al., 2009) were applied. 

4.4.1 RNA isolation 

RNA isolation was performed using the NucleoSpin© RNA II kit according to the 

manufacturer’s instructions (Table 8). 

For RNA isolation, small tissue samples were obtained from frozen lung tissue using a 

scalpel and forceps, ensuring a frozen environment throughout for RNA protection. Lysis of 

cells was performed by using 350 µl of buffer RA1 and 3.5 µl β-mercaptoethanol added to 

small tissue samples and homogenized using a small mortar. The lysate was then filtrated 

through a NucleoSpin© filter by centrifuging with 11,000 x g for 1 minute. The filter was 

discarded, and RNA binding conditions were adjusted using 350 µl 70 % ethanol. In order to 

bind RNA, the lysate was loaded to the NucleoSpin© RNA Column, which was placed in a 

collection tube. This was centrifuged for 30 seconds at 11,000 x g, and the column was 

placed in a new collection tube. Membrane desalting buffer (350 µl) was added, and the 

sample was once again centrifuged at 11,000 x g for 1 minute to dry the membrane. 

DNA digestion as part of the RNA isolation procedure: DNase reaction mixture was prepared 

in a sterile 1.5 ml microcentrifuge tube and for each isolation 10 µl reconstituted rDNase was 

added to 90 µl reaction buffer for rDNase. The sample was mixed by flicking the tube. DNase 

reaction mixture (95 µl) was applied directly onto the centre of the silica membrane of the 

column and incubated at room temperature for 15 minutes. 
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Afterwards the silica membrane was washed three times using 200 µl, 600 µl and 250 µl of 

ready-prepared solutions from the NucleoSpin© RNA II kit and dried by centrifuging at 11,000 

x g at set time intervals (twice at 30 seconds, once at 2 minutes). Ribonucleic acid was 

eluted with 60 µl RNase free water. On some samples this step was performed twice using 

the originally produced volume in the second step in order to try to yield higher RNA 

concentrations. 

After elution, photometric measurement was performed on the samples to check nucleic acid 

concentrations for ongoing analysis.  

4.4.2 Photometric measurement of nucleic acids 

Nucleic acids concentrations can be measured using a photometer (Table 9). Absorbance of 

light is a natural property of DNA and RNA, and maximum absorption of nucleic acids in a 

solution occurs at 260 nm. Proteins absorb naturally at 280 nm. The determination of the 

concentrations follows the Beer-Lambert law.  

 

T = Transmission of light through a substance 

 and = Intensity (power per unit area) 

ε = absorptivity of the attenuator 

Σ = attenuation coefficient of the substance 

ℓ =distance the light travels through the material (path length) 

c = concentration of the attenuating species in the material 

 

Varius other molecules besides DNA and RNA absorb light at 260 nmA, and differentiation 

between RNA and DNA is not possible; this may lead to potentially highly inaccurate 

measurements. However, detection of contamination of an RNA/DNA solution with proteins 

is possible. Aromatic amino acids have an absorption maximum at 280 nm, and using the 

absorbance ratio of 260 nm/ 280 nm, the purity of an RNA/DNA solution can be determined. 

The ratio should be between 1.8 and 2.0; results below this ratio indicate contamination. 

For the photometric measurement of our samples 148 µl of RNA free water was used, and 2 

µl of eluted RNA was added. Measurements were performed using the BioPhotometer®. 
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4.4.3 Agarose-Gel-Electrophoresis 

Agarose-Gel electrophoresis was performed on eluted RNA samples to check the quality and 

integrity of RNA. Nucleic acids are charged negatively due to their sugar-phosphate groups 

and therefore move towards the anode in the electric field. Small fragments move quicker 

through a gel matrix than large fragments and therefore separation due to the length of 

fragments is possible. With non-degraded RNA the 28s and 18s rRNA of cells from 

eukaryotic organisms are visible as distinct bands with a ratio of 2:1 (28s rRNA : 18s rRNA) 

in the gel (see Figure 6). 

A ratio of 2:1 means that the 28s RNA band is twice as intense (brighter and thicker) as the 

18s RNA. If a sample is contaminated with RNase and degradation has occurred, the 

separation of bands will be washed-out, not sharply defined and less intense. 

The gel for the agarose-gel electrophoresis was prepared using agarose, distilled water and 

MOPS, which were added together in an Erlenmeyer flask, mixed and heated in a microwave 

until the agarose was dissolved. After cooling the solution down to approximately 45 °C, 

Formaldehyde 10% was added, and the product was emptied into a gel chamber (with crest).  

For the gel-electrophoresis chamber, 500 ml “running buffer” was prepared by diluting 10 x 

MOPS (Table 8) to 1 x MOPS in RNase free distilled water and added to the electrophoresis 

chamber. 

Sample preparation involved adding 4 µl of RNA to 2 µl “RNA loading buffer” and incubating 

the samples at 50°C for 20 minutes in a Thermomixer. After incubation, the mix of “RNA 

loading buffer” and RNA samples was applied to a pocket in the gel. A current of 80 V was 

applied for approximately 1 hour to separate the bands. The gel was analysed using Imaging 

System Molecular Imager®, Gel Doc™ XR+.  
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Figure 6: Gel electrophoresis of an exemplary RNA sample 

 

 

 

 

 

 

 

 

 

Two distinct bands are visible; one band appears brighter and thicker (28s RNA band), and the bands are sharply 
defined. 

4.4.4 DNA Digestion  

No RNA isolation method can extract RNA that is completely free from DNA contamination. 

However, it is of crucial importance that, prior to transcribing the available RNA into cDNA, 

no DNA contamination is present in the samples. If traces of DNA were detectable (see 

section 5.3.6.8 PCR, Non-RT-PCR) despite DNase digestion during RNA isolation, the 

sample underwent a DNase digestion procedure using the TURBO DNA-freeTM kit according 

to the user manual. “Rigorous DNase treatment”, which is used for high amounts of nucleic 

acids, was chosen. Recommended reaction size according to the user manual is a volume of 

10-100 µL. 10 x TURBO DNase Buffer, which was added to one-tenth of the reaction 

volume, and 2-3 µL TURBO™ DNase were gently mixed together. The mixture was incubated 

for 30 minutes at a temperature of 37°C using the Thermomixer, and 0.2 volumes of DNase 

inactivation reagent (at least 2 µL) were added to the solution. The reaction was continuously 

mixed for 5 minutes whilst incubating at room temperature. Afterwards, the samples were 

centrifuged for 1.5 minutes at 10,000 rpm. The supernatant was pipetted, thereby avoiding 

introduction of the DNase Inactivation Reagent into the RNA solution. The samples were 

subsequently moved to a newly-labelled sample container. 

4.4.5 QubitTM Assay (broad range) - Determination of RNA Concentrations 

QubitTM fluorometer uses specific fluorescent dyes to determine the concentration of nucleic 

acids in a sample. Each dye is specific for one type of molecule, e.g. DNA, RNA or protein. It 

is therefore more precise than those with UV absorbance methods (photometric 

measurement), which are non-selective. This difference is relevant for calculations preparing 

for quantitative PCR. The QubitTM fluorometer uses RNA standards to derive the relationship 
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between RNA concentration and fluorescence. This relationship is then used to calculate the 

concentration of the sample. 

For the measurement of the RNA concentrations the samples were prepared according to 

QubitTM Assay user manual using the QubitTM reagent, QubitTM buffer and QubitTM standards. 

Measurements were taken using the Qubit® 2.0 Fluormeter. 

4.4.6 cDNA synthesis from total RNA (RT-Reaction) 

The cDNA synthesis was performed using the High-Capacity cDNA Reverse Transcription 

Kit (without RNase inhibitor) according to the manufacturer’s instructions. During this 

procedure random primers are used for initiating cDNA synthesis. This ensures an efficient 

first-strand synthesis with all RNA molecules (mRNA and rRNA) present in the sample. To 

commence the procedure 2X reverse transcription (RT) master mix was prepared according 

to the manufacturer’s instructions. Contrary to the manufacturer’s instructions, nuclease-free 

water was not added during the procedure in order to increase the total amount of RNA in 

the reaction. The solution was incubated using a thermal cycler (Mastercycler gradient) with 

the specified thermal cycling conditions (Table 5). Afterwards, the samples were 

appropriately diluted in order to use 10 ng for the PCR reaction. 

Table 5: Thermal cycling conditions 

Temperature 25°C 37°C 85°C 4°C 

Time 10 min 120 min 5 min ∞ 

4.4.7 Primerdesign 

Determination of the primer sequences for gene analysis was performed using the Applied 

Biosystems® database. Firstly, the database was searched for commercially-available 

expression assays for the genes of interest in cattle. The gene transcripts that had been 

used for the primer design of these assays were used for a standard nucleotide blast at 

NCBI. The homologue sequences found for sheep were then used with the Custom TaqMan® 

Assay Design Tool (Applied Biosystems) to design primers and probes for the genes of 

interest for sheep expression assays. An alignment was done for sheep sequences 

(homologue sequences). Ultimately, Applied Biosystems® provided the final sequences that 

were used for PCR analysis in the following four genes: β-Actin, STRA 6, CYP26 and LRAT. 

β-Actin was used as the endogenous control (“housekeeping” gene). 
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The following sequences were used for the primer design: 

Ovis aries clone ACTB_SLIP_1 beta-actin variant 2 (ACTB) mRNA, complete cds, GenBank: 

HM067830.1 

Ovis aries cytochrome P450 26B1-like (LOC101110922), mRNA, NCBI Reference 

Sequence: XM_004006067.1 

Ovis aries lecithin retinol acyltransferase-like (LOC101121235), mRNA 

Ovis aries stimulated by retinoic acid 6 homolog (mouse) (STRA6), mRNA, NCBI Reference 

Sequence: XM_004018101.1 

Primer and probe (-head) combinations were as follows:  

- OVIS_STRA6_F: 5’-GCTGCTAGTGGGTGTGGTA-3’ (forward), 5’-

GGAGACGTCCGTGGTGATC-3’ (reverse), 5’-CCGCCCTCACCTTC-3’ (probe) 

- OVIS_LRAT_F: 5’-TCAAGAAGAAGGCACTGCTCAA-3’ (forward), 5’-

GTGCCCAGCAGCTTCTCT-3’ (reverse), 5’-CTGTGCCACCTCTTCG-3’ (probe)  

- OVIS_CYP26B1_F: 5’-CGCAGGGCAAGGACTACT-3’ (forward), 5’-

CTCCTTGCTGCTCTCGATGAG-3’ (reverse), 5’-CAGACGCGCTGGACAT-3’ (probe)  

- OVIS_ACTB_F: 5’-CTTCCTTCCTGGGCATGGA-3’ (forward),  5’-

ACGTCACACTTCATGATGGAATTGA-3’ (reverse), 5’-CTGCGGCATTCACG-3’ (probe) 

4.4.8 Polymerase Chain reaction (PCR) 

PCR is used to exponentially amplify a small amount of specific regions of a DNA strand to 

generate a huge number of copies of DNA of a defined sequence that is present in a 

particular sample. Thermal cycling and enzymatic replication, which uses short, single-

stranded DNA fragments (oligonucleotides) as primers, are crucial for the amplification 

process. A heat-stable DNA polymerase (e.g. Taq [from a thermophilic bacterium called 

Thermus aquaticus]) is used for enzymatic replication during defined cycles of alternate 

heating and cooling (thermal cycling). 

In this study, PCR was used for three reasons: 

1. Non-RT (reverse transcriptase) PCR 

A qualitative check of the RNA samples for DNA contamination was done using Non-RT 

PCR. If DNA contamination was shown, a further DNase digestion step was performed. 

RNA without reverse transcription was used as a template that should not yield any PCR 

product except in case of DNA contamination. 
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2. Performance of Dynamic range PCR 

This is the range over which an increase in starting material concentration results in a 

corresponding increase in amplification product. Ideally, the dynamic range for real-time 

PCR should be 7-8 orders of magnitude for plasmid DNA and at least a 3–4 log range for 

cDNA or genomic DNA. Standard curve dynamic range validation determines what 

template concentrations are acceptable in a given assay (Reference: Real-time PCR 

handbook). 

3. Quantitative real-time PCR 

Quantitative real-time PCR for β-Actin, STRA6, CYP26B and LRAT was performed with 

the cDNA lung tissue samples. For quality assurance the quantitative real-time PCR was 

performed in triplicates. For each assay a negative control containing no cDNA template 

was performed.  

For data analysis, comparative quantification, not absolute quantification, was used. In 

comparative quantification the level of expression for the gene of interest is assayed for 

up- or down-regulation in a normal (calibrator) sample and one or more experimental 

samples. Precise copy number determination is not necessary. The technique focuses on 

fold change compared to the calibrator sample. As a marker of stable gene expression in 

a given sample, which is independent of the experimental intervention, a housekeeping 

gene is usually used. In this study, β-Actin served as the housekeeping gene (normaliser 

sample). Untreated samples serve as calibrator samples. Comparative quantification (Ct) 

is obtained for expression of the gene of interest from both a test and a calibrator sample. 

The difference between them is the ΔCt. The fold difference is then simply 2 to the power 

of ΔCt. 

Fold difference = 2ΔCt 

In addition, the ΔΔCt method compares results from experimental samples with both a 

calibrator and a normaliser. 

Real-time PCR is different from standard PCR in that the amplified DNA is detected and 

therefore can be quantified during each cycle in “real-time”, as the reaction continues. In 

standard PCR, the product of the reaction is only detected at the end of the reaction and only 

end-point analysis occurs. Real-time PCR uses fluorescent substances for detection of DNA. 

Real-time PCR is time-saving due to the fact that annealing and elongation occur during the 

same reaction step at 60°C. 
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In this study, PCR was performed in triplicates with 10 ng cDNA per 15 µl reaction using 

Custom TaqMan® Gene Expression Assays from Applied Biosystems on an Applied 

Biosystems 7500 Fast Real-Time PCR system. Beta Actin served as an endogenous control. 

Table 6: PCR reaction mix 

Mastermix 7.5 µl 

Assay 0.75 µl 

RNase free water 4.75 µl 

cDNA 2 µl (= 10ng) 

Total Volume 15 µl 

 

TaqMan® Fast Advanced Master Mix, Applied Biosystems™ was used to prepare the 

samples for the PCR reaction. 

The following PCR-Program was used: 

Table 7: PCR program 

7500 

Applied 

Biosystems 

Real-Time 

PCR 

System 

Thermal-cycling profile 

Parameter: 

Polymerase 

Activation 

PCR 

(40 cycles) 

Hold Denature Anneal/extend 

Temp. (C°) 95 95 60 

Time 

(mm:ss) 
00:20 00:03 00:30 

 

4.4.9 Data analysis of PCR results 

The Comparative CT Method (ΔΔCT) using Data Assist™ Software v3.0 was used for data 

analysis. Student t-test was used for comparative assessment. 
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4.4.10 Chemical and equipment tables 

Table 8: Chemicals used for molecular analysis of lung tissue 

NucleoSpin® RNA II kit MACHEREY-NAGEL GmbH & Co. KG, 

Düren, Germany 

Agarose Gel for electrophoresis  0.7 g Agarose, 63 ml Aqua dest., 7 ml 10 x 

MOPS (3-[N- Morpholino] Propane Sulfonic 

Acid) mixed and boiled until all ingredients 

solved, subsequently 3 ml Formaldehyde 

10% added and casted into the appropriate 

gel chamber 

Running buffer for electrophoresis 1 x MOPS (3-[N- Morpholino] Propane 

Sulfonic Acid), see also 10 x MOPS 

RNA loading buffer 72 µl Formamide, 16 µl 10 x MOPS, 44 µl 

DEPC-H2O (see below), 10 µl Midori-Green 

direct, 18 µl Glycerol, small amount of 

“bromphenol blue”, (protected from light in 

4° refrigerator) 

DEPC (RNase free) Water 1 ml of DEPC (diethyldicarbonate) in 1 l of 

aqua dest. 

10 x MOPS 0.2 M MOPS, 0.05 M NaAc (sodium 

acetate), 0.01 M EDTA, pH 5.5 – 7.0, 

incubation overnight, autoclaving, protected 

from light 

TURBO DNA-freeTM Kit 

 

Ambion®, Life Technologies™, Thermo 

Fisher Scientific Inc., Waltham, MA, USA 

QubitTM Assay Life Technologies™, Thermo Fisher 

Scientific Inc., Waltham, MA, USA  

High-Capacity cDNA Reverse Transcription 

Kits for 200 and 1000 reactions 

 

Applied Biosystems™, Life Technologies™, 

Thermo Fisher Scientific Inc., Waltham, MA, 

USA 



 

- 36 - 

TaqMan® Fast Advanced Master Mix,  Applied Biosystems™, Life Technologies™, 

Thermo Fisher Scientific Inc., Waltham, MA, 

USA 

 

AmpliTaq® Fast DNA Polymerase, uracil-N 

glycosylase (UNG), dNTPs with dUTP, 

ROX™ dye (passive reference), optimized 

buffer components. Supplied at a 2X 

concentration. 

 

Table 9: Equipment used for molecular analysis of lung tissue 

Fisher Scientific, Power 300, 

Electrophoresis power supply 

Fisher Scientific UK Ltd, Loughborough, UK 

BioPhotometer Eppendorf AG, Hamburg, Germany 

Qubit® 2.0 Fluorometer InvitrogenTM, life technologiesTM 

Centrifuge 5415R Eppendorf AG, Hamburg, Germany 

Thermomixer comfort Eppendorf AG, Hamburg, Germany 

7500 Fast Real-Time PCR System Applied Biosystems, life technologiesTM 

Mastercycler gradient Eppendorf AG, Hamburg, Germany 

Molecular Imager®, Gel Doc™ XR+  Bio-Rad Laboratories GmbH, München, 

Germany 

4.5 Histology 

4.5.1 Histological analysis of tissue samples 

Post-mortem samples were cut and immediately fixed in formalin by immersion. In the 

laboratory, samples were separated from water and imbedded in paraffin, and at least 4 

histological cuts per organ were performed. Haematoxylin and eosin (H&E) staining was 

performed on paraffin sections using routine procedures. 
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Microphotographs were generated using a Zeiss Axiophot microscope with an Olympus 

camera and software. Light microscopic studies of the anatomy of cells of liver, kidney and 

brain were performed by two independent examiners. Results were reported descriptively. 

Table 10: Chemicals used for histological analysis 

Formalin 3.7 % formaldehyde in phosphate buffered 

saline 

Haematoxylin and eosin (H&E) stainings  

Paraffin  

Table 11: Equipment used for histological analysis 

Zeiss Axiophot microscope Carl Zeiss, Jena 

Olympus camera (ColorView II™) and 

software (CellSens Standard 1.8.1) 

Olympus, Hamburg, Germany 

4.6 Statistical analysis  

HPLC data was prepared using Excel™ and analysed using SPSS statistical software™, 

version 20 (IBM, Armink, NY). In order to compare animal characteristics, retinyl palmitate 

and retinol tissue levels, the non-parametric Kruskal-Wallis H test was used. When 

comparing the various groups of interest, the Mann-Whitney U test was performed.  The 

Friedman test was utilised to compare data from retinol and retinyl palmitate serum level 

measurements. The Student t-test was used for comparative assessment of PCR data. At a 

p-value of less than 0.05, statistical significance was accepted. GraphPad Prism v5.0 

(GraphPad Software, San Diego, CA) was used to draw graphs. 



 

- 38 - 

5 Results 

5.1 Animal Characteristics 

Ten subjects were assigned to three different groups: control (no treatment - three animals), 

intravenous (i.v.) treatment group (three animals) and endotracheal (e.t.) treatment group 

(four animals). Animal characteristics, organ weight and physiological parameters did not 

show significant differences (Table 12 - Table 14). In particular, there were no statistically 

significant differences (Kruskal-Wallis-H test) with regard to gestational age (p = 0.624), birth 

weight (p = 0.943) and organ weight (right lung p = 0.962, left lung p = 0.741, liver p = 0.405, 

left kidney p = 0.882) among the subjects. However, in the e.t. group there was a combined 

acidosis during the whole ventilation period. This can primarily be attributed to a single 

animal with pneumothorax and lung bleeding seen in necropsy. This animal showed 

intrauterine growth restriction (1.8 kg), and the animal needed the highest PIP (40cmH2O), 

compared to a median maximum PIP of 23 cmH2O in all other animals. 

Table 12: Animal characteristics I: Age and weight data 

Animal characteristics control (n=3) i.v. (n=3) e.t. (n=4) p 

GA (days) 131 ± 1.5 131 ± 1 130 ± 1 0.62 
BW (kg) 2.6 ± 0.5 2.3  ± 0.3 2.4  ± 0.3 0.94 
LL weight (g) 32.1 ± 9.5 27.3 ± 6.9 33.9 ± 5.6 0.74 
RL weight (g) 21.7 ± 6.5 21.7 ± 2.3 23.3 ± 1.7 0.96 
Liver weight (g) 39.6 ± 7.1 59.3 ± 15.1 68.1 ± 19.6 0.41 
Left kidney (g) 7.7 ± 1.7 7.5 ± 1.4 8.5 ± 1.1 0.88 
Data given as mean ± SEM; GA: gestational age; BW: birth weight; LL: Left lung; RL: Right lung 

Table 13: Animal characteristics II: Physiological data prior to treatment 

Animal characteristics control (n=3) i.v. (n=3) e.t. (n=4) p 

pH 7.12 ± 0.10 7.25 ± 0.05 7.00 ± 0.08 0.08 

pCO2 (mmHg) 68 ± 26 38 ± 6 86 ± 18 0.08 

pO2 (mmHg) 136 ± 101 95 ± 49 125 ± 61 0.82 
Data given as mean ± SEM; pCO2: partial pressure of carbon dioxide; pO2: partial pressure of oxygen 

Table 14: Animal characteristics: Physiological data at the end of treatment 

Animal characteristics control (n=3) i.v. (n=3) e.t. (n=4) p 

pH 7.26 ± 0.02 7.18 ± 0.04 7.09 ± 0.08 0.29 

pCO2 (mmHg) 54 ± 2 57 ± 8 64 ± 9 0.76 

pO2 (mmHg) 29 ± 1 54 ± 15 57 ± 6 0.10 
Data given as mean ± SEM; pCO2: partial pressure of carbon dioxide; pO2: partial pressure of oxygen 
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5.2 Retinol and retinyl palmitate analysis of serum and tissue 

samples 

5.2.1 Serum ROH and RP analysis 

Serum ROH and RP analysis in untreated animals 

Serum ROH and RE levels during all selected time-points (pre- treatment and at 0.5 h, 1 h, 

1.5 h, 2 h, 2.5 h and at the end of the experiment) in untreated controls were narrowly 

distributed between 99 nM (minimum) and 284 nM (maximum). Serum retinylpalmitate 

values were below the detection limit, which was set at 87 nM, in all untreated animals (Table 

15 and Table 16). Pre-treatment ROH and RP levels in animals treated with VA intravenously 

or endotracheally were similar to those measured in untreated controls (Kruskal-Wallis-test, 

p=0.61 and p=1.00). 

Serum ROH and RP values peak immediately between 0.5 and 1.5 hours after intravenous 

application 

Measured serum retinol and retinyl palmitate levels are at the highest between 0.5 and 1.5 

hours after intravenous application. Retinol falls sharply shortly afterwards; retinyl palmitate 

concentrations remain raised without a significant drop (Figure 7A and B). Overall, levels of 

serum retinol and serum retinyl palmitate after treatment increased significantly in the 

intravenous group (Friedman-Test, p < 0.017) when compared to controls.  

Serum ROH and RP values show a steady but significant incline after endotracheal 

application 

Similarly, both serum ROH and RP levels are significantly increased after endotracheal 

application (Friedman-Test, p <0.018) when compared to controls but demonstrate, in 

comparison to the i.v. application, a slower, but steady incline without a sudden peak and 

subsequent sharp drop (Figure 7A and B). 



 

- 40 - 

Table 15: Serum ROH values during selected time-points 

Group  Mean SD Minimum Maximum 25th Median 75th 
controls ROH_pre 207 86 146 268 110 207 201 
  ROH_05 215 98 146 284 110 215 213 
  ROH_10 209 95 141 276 106 209 207 
  ROH_15 175 54 137 213 103 175 160 
  ROH_20 195 81 137 252 103 195 189 
  ROH_final 152 74 99 204 74 152 153 
intravenous ROH_pre 286 135 150 420 150 287 420 
  ROH_05 11934 9022 1961 19528 1961 14314 19528 
  ROH_10 8527 5995 2669 14650 2669 8262 14650 
  ROH_15 3834 1785 2436 5845 2436 3220 5845 
  ROH_20 2647 2503 684 5465 684 1791 5465 
  ROH_25 1887 23 1871 1903 1403 1887 2794 
  ROH_final 1610 1092 657 2801 657 1372 2801 
endotracheal ROH_pre 249 104 170 403 179 212 357 
  ROH_05 357 58 302 438 310 344 417 
  ROH_10 434 87 336 513 349 444 510 
  ROH_15 434 74 380 542 384 407 512 
  ROH_20 525 110 362 595 410 572 594 
  ROH_25 515 90 459 619 459 468 619 
  ROH_final 525 65 436 591 460 536 579 
Data given in nM; SD: Standard deviation; 25th percentile; 75 percentile 

Table 16: Serum RP values during selected time-points 

Group  Mean SD Minimum Maximum 25th Median 75th 
controls RP_pre 87 0 87 87 65 87 65 
  RP_05 87 0 87 87 65 87 65 
  RP_10 87 0 87 87 65 87 65 
  RP_15 87 0 87 87 65 87 65 
  RP_20 87 0 87 87 65 87 65 
  RP_final 87 0 87 87 65 87 65 
intravenous RP_pre 87 0 87 87 87 87 87 
  RP_05 4214 146 4107 4381 4107 4155 4381 
  RP_10 5141 1727 3859 7104 3859 4459 7104 
  RP_15 3692 660 3925 4454 3295 3328 4454 
  RP_20 3188 146 3020 3289 3020 3255 3289 
  RP_25 2858 169 2738 2977 2054 2858 3055 
  RP_final 2545 1171 1295 3616 1295 2724 3616 
endotracheal RP_pre 87 0 87 87 87 87 87 
  RP_05 357 368 87 866 87 238 747 
  RP_10 420 408 87 920 87 336 836 
  RP_15 562 728 87 1624 87 268 1330 
  RP_20 839 1020 98 2307 123 475 1918 
  RP_25 1318 1855 87 3451 87 415 3451 
  RP_final 1073 1704 109 3626 143 279 2798 
Data given in nM; SD: Standard deviation; 25th percentile; 75 percentile 
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Figure 7A and 7B: Serum ROH and RP levels before and after treatment 

 

Pre-treatment (A) serum ROH and (B) serum RP in i.v. (square) and e.t. (triangle) treated animals 

were similar to those measured in untreated controls (circle) and increased significantly in both groups 

after treatment (*p < 0.05 compared to control). 

5.2.2 Tissue ROH and RP analysis 

Retinol and retinyl palmitate values are equally distributed in lungs and liver 

Retinol and retinyl palmitate analysis in control animals showed retinol and retinyl palmitate 

levels just at or below the detection limit mean (±SD) 17.3 ng/g±13.0. When comparing the 

retinol and retinyl palmitate values for different lung and liver areas, no statistically significant 

difference could be found between retinol and retinyl palmitate distribution in lung apex, lung 

base and lung hilus (p=0.484 and p=0.428 respectively), nor in liver hilus and periphery (p= 

1.0 and p=0.428 respectively) in any of the three study groups.  

Retinol and retinyl palmitate concentrations are increased in lungs and liver after intravenous 

application 

After intravenous application of the study substance, levels of ROH and RP increased at a 

statistically significant rate in lung [ROH (p=0.001); RP (p<0.001)] and liver [ROH (p=0.05); 

RP (p<0.05)] tissue when compared to the control group (Figure 8 and Figure 9). 

No significant changes of concentrations of retinol or retinyl palmitate have been found in the 

kidney after intravenous administration. 
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Retinol and retinyl palmitate levels are increased in lungs but not in liver after endotracheal 

application 

After endotracheal application, ROH (p<0.001) and RP (p<0.001) levels increased 

significantly in lungs but missed an increase with statistical significance in the liver (Mann-

Whitney-Test; p=0.08 [ROH] and p=0.14 [RP] when compared to controls (Figure 8 and 

Figure 9).  

No significant changes could be shown for kidney retinol or retinyl palmitate levels. 

Retinyl palmitate concentrations are increased in lungs and decreased in liver when 

comparison is made between endotracheal and intravenous mode of application  

Retinyl palmitate levels were significantly higher in lungs after endotracheal application than 

after intravenous application (p<0.05), but there was no significant statistical difference in 

retinol levels (p=0.931) between endotracheally or intravenously treated animals.  

Liver concentrations of retinol (p=0.017) and retinyl palmitate (p=0.004) in endotracheally- 

treated animals were significantly lower than of those animals that received intravenous 

treatment.  

No difference could be shown for ROH or RP levels in the kidneys. 

 

Figure 8A and B: Lung tissue concentration of ROH and RP 
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In control animals, (A) ROH and (B) RP levels were found to be just at or below the detection limit. 

Both i.v. and e.t. treated animals showed statistically significant increase of lung tissue concentrations 

of ROH and RP at autopsy (*p=0.001 and **p<0.001 vs. control). 

 

Figure 9A and B: Liver tissue concentration of ROH and RP 

 

In the liver, (A) ROH and (B) RP levels increased after intravenous application (p=0.05 [ROH] and 

*p<0.05 [RP]). However, vitamin A increase in the liver after e.t. administration missed statistical 

significance (p=0.08 [ROH] and p=0.14 [RP]. 

5.3 Molecular analysis 

Intravenously-administered retinylpalmitate induces the expression of CYP26B1 

After intravenous application of VA, I was able to show an increased expression of CYP26B1 

(p=0.029) in lung tissue when compared to controls after four hours post-treatment (Table 17 

and Figure 10). There was no such difference between the endotracheal group and the non-

treatment group. No changes of expressions could be shown for LRAT or STRA6 when 

compared to control animals. 

Endotrachealy-administered retinylpalmitate is associated with a reduced expression of 

LRAT 

After endotracheal application of RP, LRAT showed a significantly reduced expression when 

compared to the non-treatment group (p=0.0399). Neither CYP26B1 nor STRA6 showed a 

change in expression following e.t. treatment (Table 17 and Figure 10). 
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Table 17: P-values of mRNA analysis in different groups 

Assay Type e.t.  i.v.  no VA  

B-Actin Selected Control    

CYP26 Target 0.1819 0.0292* 1 

LRAT Target 0.0399* 0.218 1 

STRA6 Target 0.1462 0.5297 1 
P-Values for examined genes after i.v. and e.t. treatment when compared to controls (no VA) 

Figure 10: Results of molecular analysis 

 

Molecular analysis of enzymes of vitamin A metabolism showed a significant increase in CYP26 mRNA levels in 
the i.v. group and a significant decrease in LRAT mRNA levels in the e.t. group (*p<0.05 vs. control). 

5.4 Histological analysis 

Light microscopic studies performed by two independent examiners on the anatomy of cells 

of liver, kidney, spleen, large and small intestines and brain did not reveal any difference in 

the appearance between the treatment and non-treatment groups. A photo documentation of 

each sectioning was performed in both a wide and detailed view. A collection of photos with 

representations of each group is included in the appendix. 
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6 Discussion 

6.1 Serum and tissue retinol and retinyl ester levels 

The results of this study, which was undertaken in an adequate translational model of 

preterm birth (KRAMER, 2008b), show that both intravenous and endotracheal 

supplementation using 5000 IU/kg body weight of a nano-encapsulated, water-soluble retinyl 

ester (retinyl palmitate) monopreparation increase retinol and retinylpalmitate levels in serum 

and target organs (liver and lungs) in preterm lambs significantly, though differently, 

depending on the method of application. From the available data we conclude that it is 

feasible to use the investigated product as a source for vitamin A supplementation and the 

modes of delivery as potential routes for vitamin A application in future translational trials. 

This is important for clinical reasons since currently-used supplementation regimes do not 

sufficiently correct vitamin A deficiency, which is assumed to be an important contributing 

factor to bronchopulmonary dysplasia in the extremely low birth weight infant cohort. There is 

an urgent need to explore alternative preparations and alternative ways of administration in 

this group of patients (MACTIER et al., 2011). Traditionally, vitamin A is supplemented in 

extremely low birth weight infants for nutritional reasons as a lipid-soluble intravenous 

multivitamin preparation directly after birth. Due to strong evidence that additional 

supplementation may be helpful for the prevention of bronchopulmonary dysplasia 

(DARLOW, GRAHAM, 2007), currently available VA multivitamin preparations for 

intravenous use are neither sufficient nor suitable for increasing dosages. A previously 

available retinyl ester monopreparation for additional intravenous use, which was studied in a 

clinical trial (WERKMAN et al., 1994), is no longer available.  

Additional intramuscular supplementation, which circumvents the oral and gut route, proved 

to be promising (ALBERTINE et al., 2010; DARLOW, GRAHAM, 2007); however, due to the 

painful nature of the procedure, regular intramuscular administrations are not widely 

accepted in clinical practice (KAPLAN et al., 2010).  

Additional vitamin A administration using the oral route has been studied in clinical trials in 

the past (WARDLE et al., 2001) and is currently the subject of an ongoing multicentre trial 

(MEYER et al., 2014). Unfortunately, no clinical studies have thus far been shown to have 

any beneficial treatment effects using this route. The failure of oral supplementation to show 

any significant treatment benefit in the extremely low birth weight cohort might be the result 

of poor absorption, primarily due to multiple, either circumstantial factors such as delayed 

feeding (co-ingestion of dietary fat markedly enhances the intestinal absorption of dietary 

vitamin A) or other factors related to the infants’ gut immaturity that do not allow for the 
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necessary high postabsorbative retinyl ester concentrations to achieve sufficient uptake in 

the lungs.  

Impaired release of retinol from (already depleted) liver stores which occur in protein-energy 

malnutrition due to insufficient synthesis of retinol binding protein (BIESALSKI et al., 1999; 

RAHMATHULLAH et al., 1991) may further contribute to the problem of insufficient vitamin A 

supply to target organs such as the lungs. The problem of organism maturity is supported by 

recent findings in a rodent model, where it has been shown that kinetics and distribution of 

orally supplemented vitamin A greatly differs in neonatal, compared to adult rats (TAN et al., 

2015). Extrahepatic vitamin A stores may therefore play a pivotal role (BLOMHOFF, 

BLOMHOFF, 2006) in sufficient vitamin A supply for crucial target organs such as the lungs. 

Alternatively, it has been claimed that inhalative application may circumvent problems of oral 

administration (BIESALSKI, 1996). Biesalski et al. investigated endotracheally administered 

vitamin A in rodents with promising results (BIESALSKI, 1996) and subsequently showed in 

a placebo-controlled trial that vitamin A supplementation by inhalation of retinyl palmitate 

successfully improved VA status in preschool children (BIESALSKI et al., 1999). Schaffer et 

al. treated guinea pigs with short-term inhalation comparing a formulation of all-trans retinoic 

acid and placebo and found a rise of all-trans retinoic acid levels in lung but not liver or 

plasma (SCHAFFER et al., 2010).  

Subsequent clinical studies using aerolized VA preparations further demonstrated those 

clinical benefits (BIESALSKI et al., 1999; KOHLHAUFL et al., 2002). However, to the best of 

our knowledge, no such trials have thus far been conducted in the extremely low birth weight 

neonatal population, presumably due to the lack of appropriate preparations and due to the 

high ethical standards that would be required for any clinical study in the neonatal population. 

The data shows that both methods, endotracheal and intravenous supplementation of a 

retinyl palmitate preparation, increased serum levels of retinol and retinyl ester at a 

statistically significant rate when compared to controls. Considering animals that were 

treated using the e.t. route, this means that the substrate was not only deposited locally 

within the respiratory tree or the extracellular space but must have also been taken up by the 

respiratory endothelium and distributed within the organism hereby bypassing the liver’s first 

pass effect.  

This is important since it has been postulated that the cells of target organs such as the 

lungs, kidneys and intestine may store retinyl esters in lipid droplets (NAGY et al., 1997), and 

extrahepatic storage of retinyl esters may have an important function for local supply of 

vitamin A to organs with high demand (BLOMHOFF, BLOMHOFF, 2006). Those extracellular 
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stores may further contribute to the synthesis of active retinoid metabolites (BLOMHOFF, 

BLOMHOFF, 2006). From our results we conclude that not only intravenous delivery but also 

endotracheal delivery therefore has the potential to increase extrapulmonary and 

extrahepatic stores. This has important relevance for the premature organism since not only 

the lungs are affected by vitamin A deficiency but also other organs, such as the eyes, where 

earlier studies have shown a trend in reduction of the incidence of retinopathy of prematurity 

(DARLOW, GRAHAM, 2011; SHENAI et al., 1987). In our sample, however, we have not 

been able to show any vitamin A deposition within the kidneys. This remains a surprising 

result, not only in view of renal clearance but also in view of the fact that the kidneys are 

assumed to have their own storage capacity. Future trials should address the issue of 

substance distribution, not least because we used a water-soluble, nano-encapsulated 

product, and the whereabouts of the substance is of crucial importance, mainly but not solely 

out of toxicological concerns. 

In this study, vitamin A was administered in combination with surfactant in the preterm lamb 

model with induced lung injury (KRAMER et al., 2008). With the exception of one animal that 

has shown a pneumothorax and lung bleeding in necropsy, no further adverse effects were 

seen during the clinical phase of the intervention. Nevertheless, future studies need to 

consider the results by Bronshtein et al. who showed 40% lower surface activity when 

vitamin A was combined with surfactant compared to surfactant alone (BRONSHTEIN et al., 

2009). 

The results of this study have confirmed that the studied substance has properties that are 

thought to be advantageous over currently available substances. As a water-soluble retinyl 

ester monopreparation, it allowed for exact weight-adjusted dosing and targeted delivery. 

Preparation and intravenous as well as endotracheal administration of the substance was 

easy and comparable to other medications in the clinical environment. Due to its property of 

water solubility, administration via the endotracheal route when combined with surfactant 

was uncomplicated. It is perceivable that the substance could also be used for nebulisation, 

as was previously done in a clinical trial with a different retinyl ester preparation by Biesalski 

et al. (BIESALSKI et al., 1999).  

Nonetheless, it is important to consider the various principle options for delivering vitamin A, 

which are either delivery by its storage form as retinyl ester preparation as in this trial, among 

others (BIESALSKI, 1996), or in its active form as retinoic acid (SCHAFFER et al., 2010), or 

as a combination of both (WU, ROSS, 2010). Retinyl ester preparations may be more 

advantageous over other supplementation forms such as retinoic acid due to their 

physiological properties: it is known that retinyl esters act as storage forms, and their local 
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accumulation and utilization prior to birth is of crucial importance for lung development, in 

particular during the stages of alveolar septation and for surfactant production 

(GEEVARGHESE, CHYTIL, 1994; GEORGE, SNYDER, 1997; HIND et al., 2002b; 

MCGOWAN et al., 2000; MCGOWAN et al., 1995; ROTH-KLEINER, POST, 2005; SHENAI, 

CHYTIL, 1990; THEBAUD et al., 2001). It is known that in-utero alveolarization starts around 

the 36th gestational week (GALAMBOS, DEMELLO, 2008), and retinyl esters accumulate in 

the lungs in the 3rd trimenon. Those stores are being depleted immediately prior to term birth 

(GEEVARGHESE, CHYTIL, 1994; MASUYAMA et al., 1995) in order to provide retinoic acid 

that in turn induces lung maturation (HIND et al., 2002b). Preterm birth, by definition, occurs 

at an earlier stage highlighting the need for early provision of sufficient vitamin A stores. 

Vitamin deficiencies, including an insufficient vitamin A status at earlier gestational age have 

been associated with adverse outcomes in skeletal and pulmonary health (DOKOS et al., 

2013). Thus the ongoing and sufficient repletion of those vitamin A storing cells in the 

developing lung is of crucial importance since this is seen as an important factor for long-

term lung health (BIESALSKI, 2011; DIRAMI et al., 2004; SHENAI, CHYTIL, 1990).  

In contrast, any direct supplementation with vitamin A active metabolite, retinoic acid, may 

only provide short-term effects and may present the additional problem of up-regulation of 

retinoic acid inhibiting enzymes such as CRABP or CYP26 system (LUU et al., 2001; 

MCGOWAN et al., 1995; SCHAFFER et al., 2010) and therefore may subsequently result in 

diminished retinoic acid effect. An alternative approach, as suggested by James et al., may 

be the supplementation of a combination of retinyl ester and retinoic acid together (VARA). 

This has proven to have synergistic effects on lung retinyl ester concentrations and has 

attenuated the hypoxia-induced lung injury in the newborn mouse model (JAMES et al., 

2010). This may be a promising approach, and future studies should carefully consider 

whether to supplement vitamin A as retinyl ester or retinoic acid preparations alone or, in 

order to possibly enhance their effects, in combination. 

Our results demonstrated that the topical application of retinyl esters using the endotracheal 

route lead to significant rises of retinol and retinyl palmitate concentrations in the lungs.  Our 

results are in line with the results of previous translational and clinical studies that have 

demonstrated a sufficient VA supply when administering retinyl esters directly to the sensitive 

target tissue. All studies demonstrate an increase of intracellular stores of retinol as well as 

an improvement of overall vitamin A status (BIESALSKI et al., 1999; BIESALSKI, 1996; 

KOHLHAUFL et al., 2002). This is important since a pre-existing vitamin A deficiency in 

extremely low birth weight infants (BRANDT et al., 1978; SHENAI et al., 1981; SHENAI et al., 

1985a) and its contribution to the development of bronchopulmonary dysplasia is well 

documented (BRANDT et al., 1978; HUSMANN et al., 1992; INDER et al., 1998; SPEARS et 
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al., 2004) It has been shown that vitamin A must be significantly stored in the lungs in late 

gestation before alveolarization and surfactant synthesis can commence (FRASLON, 

BOURBON, 1994), and supplementation with vitamin A reduces the mortality associated with 

bronchopulmonary dysplasia (SHENAI et al., 1987; SHENAI et al., 1992). In particular, 

surfactant synthesis is crucially important for adequate lung function in premature infants. If 

local stores within the lungs are depleted, as is the case in vitamin A deficiency, 

histopathological changes, including keratinizing metaplasia, that are similar to those of 

bronchopulmonary dysplasia are seen (CHYTIL, 1996). It has been postulated that retinyl 

ester deposits in the respiratory tract act as local stores from which retinol and subsequently 

retinoic acid can be derived following hydrolysis of retinyl ester (BIESALSKI, 1990; 

BIESALSKI et al., 1990; ZACHMAN et al., 1992). Furthermore, previous studies have even 

shown that epithelial cells can directly take up retinyl esters without prior hydrolysis 

(BIESALSKI, NOHR, 2004), and sufficient local vitamin A stores help to induce a normal 

phenotype in cases of damaged epithelial cells (BIESALSKI, NOHR, 2004; SOBECK et al., 

2003). Within the cell, retinyl esters can be hydrolysed to retinol and subsequently converted 

to retinoic acid. However, thus far a process whereby extracellular retinyl ester can be 

utilized for retinoic acid formation is not known. Therefore it is prudent to show in future 

studies that the deposited retinyl esters are indeed taken up intracellularly and are not only 

deposited within the extracelluar space. 

Further, our data shows not only an increase of retinol and retinyl palmitate levels in lung 

tissue for endotracheal application but also for i.v. application. Following i.v. application liver 

retinol and retinyl palmitate levels likewise increased, but those missed statistical significance 

for e.t. administration. 

This result requires careful considerations: although, on the one hand, vitamin A 

supplementation in the neonatal cohort is principally considered to be nontoxic at 

recommended dose (AGOSTONI et al., 2010; EUROPEAN FOOD SAFETY AUTHORITY 

(EFSA), 2006; INSTITUTE OF MEDICINE. FOOD AND NUTRITION BOARD, 2001; 

KOLETZKO et al., 2005; MIRTALLO et al., 2004; ULBRICHT et al., 2012; VAN EYKEN et al., 

2012), toxic effects of long-term use of high doses of vitamin A can result in retinyl ester 

accumulation within the liver and later liver dysfunction and potential cirrhosis since a risk for 

vitamin A toxicity remains when given in high amounts (PENNISTON, TANUMIHARDJO, 

2006). It seems perceivable that particularly premature neonates are vulnerable since the 

metabolic capacity of the liver is still immature and may be further compounded by a number 

of other drugs used in this population such as antibiotics and antifungal, among others. 

Therefore, an effective application mode, such as inhalation or nebulisation, that circumvents 
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the liver metabolism but still results in the desired clinical effect within the main target organ 

may be more advantageous by preventing potential systemic side effects.  

On the other hand, however, it is known that vitamin A stores of extremely low birth weight 

infants, including those of the liver are highly depleted. The liver serves as the main vitamin 

A storage organ, mainly in hepatic stellatae cells with an ability to control excretion of retinol 

which ensures a steady blood-plasma retinol concentration despite normal fluctuations in 

vitamin A intake (BLOMHOFF, BLOMHOFF, 2006). Increasing those stores may provide 

long-term advantages as long as no toxic effects are observed. So far, and in favour of this 

argument, unphysiological formation of retinoic acid after retinyl ester supplementation does 

not seem possible due to the strictly controlled metabolism (BIESALSKI, 2011).  

Interestingly, although we tested a water-soluble vitamin A preparation, no significant levels 

of retinol and retinyl palmitate were shown in the urine or the kidneys of treated animals. This 

favours the conclusion that, during the study period, no significant losses occurred via 

glomerulofiltration or diuresis, and the substance was maintained within the organism. It is 

known that retinol under physiological conditions is bound to retinol binding protein (KANAI et 

al., 1968) and coupled to transthyretin to avoid renal clearance (BIESALSKI, NOHR, 2004). 

Future studies need to determine whether this mechanism remains intact or where exactly 

the substance was deposited and whether, in view of its micellar structure, indeed any other 

risks exist. 

6.2 The genetic markers 

Following on from the data on distribution of retinol and retinyl palmitate, we continued to 

explore, in line with several other working groups and current thought, any possible traceable 

early biological effects through detection of mRNA levels of certain genes.  

Retinoic acid exerts its influence on cells through binding with nuclear retinoid receptors 

(RAR). These receptors build heterodimers with RXR proteins and influence target and 

subsequently downstream genes (BASTIEN, ROCHETTE-EGLY, 2004), of which STRA6, 

LRAT and CYP26 are considered major genes for regulating vitamin A metabolism, among 

others (PETKOVICH, 2001; ROSS, 2003; WU, ROSS, 2010). In line with those previous 

studies we decided to explore the mRNA levels of STRA6, LRAT and CYP26B1 

(SCHAFFER et al., 2010; WU, ROSS, 2010).  

In this study, we did not find increased levels in lung tissue of STRA6, a widely expressed 

multitransmembrane protein in vitamin A dependent tissue that mediates the bi-directional 

cellular uptake of retinol through retinol binding protein from plasma and extracellular fluids 

into cells (KAWAGUCHI et al., 2007). Our results, though obtained through a different route 
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of administration and in a different animal model, are in keeping with the findings by Wu and 

Ross, who showed that when vitamin A was given orally and not in combination with retinoic 

acid, there was also no increase in expression of STRA6 mRNA (WU, ROSS, 2010) in lung 

tissue. Besides the obvious concern that the study timeline may have been too short to see 

an effect, it is also perceivable that the administered retinyl esters were directly absorbed into 

cells, hereby bypassing the common mechanism of cellular uptake via retinol binding protein. 

Supportive of this argument is a previous study by Gerlach et al. that demonstrated direct 

uptake of retinyl ester into different tissues (GERLACH et al., 1989). Wu and Ross have, 

however, demonstrated 3-4 times higher expression of STRA6 when vitamin A was given 

with retinoic acid. They claim that the elevated level of STRA6 mRNA at 6 hours points 

towards an increase in retinol uptake from the extracellular RBP-retinol complex into the 

neonatal lungs via the STRA6 receptor. In their view, this could be a mechanism for the rapid 

response of the neonatal lungs to acidic retinoids (WU, ROSS, 2010). It remains unclear in 

which direction the flow of retinol moves, and future studies that include the administration of 

a combination of vitamin A and retinoic acid may consider measuring transthyretin, which is 

needed for the RBP-Retinol complex to function in direction of cellular uptake. If transthyretin 

were also to be elevated this might suggest a directional flow towards the cell, implying that 

the lung cells are in need of more active retinoids. 

We found, however, a statistically significant reduced expression of mRNA levels of LRAT in 

lung tissue of animals that were treated endotracheally when compared to untreated 

controls. Animals who were treated intravenously did not show the same statistically 

significant effect of LRAT expression in lung tissues. LRAT is responsible for catalysing the 

esterification of retinol into retinyl esters and is variably expressed with vitamin A status. It 

has been shown that lung LRAT mRNA levels closely correlate with LRAT enzymatic 

activities (MATSUURA et al., 1997; ZOLFAGHARI, ROSS, 2000). Our results are in contrast 

to results by Wu et al. who demonstrated that both lung retinyl ester concentrations and 

LRAT expression increased significantly after 6 hours following oral supplementation in the 

rodent model (WU, ROSS, 2010). It is perceivable that the cellular response is clearly 

different depending on the application mode. As in our case, we speculate that by decreased 

expression of LRAT the esterification pathway is turned off, indicating intracellular saturation 

or excessive supply of the VA storage forms within the cells. This could further support the 

notion of carrier-independent uptake of retinyl esters into the cells and be indicative of a 

cellular saturation with retinyl esters. The interpretation of our results is challenging since 

both methods of application, i.v. and e.t., increased retinol and retinyl esters levels in lung 

tissue but only supplementation via the e.t. route showed a statistically significant change in 

LRAT mRNA levels. Overall, absolute levels in ng/g tissue of retinol and retinyl palmitate, 

although not statistically significant, appear to be higher in the e.t. group than in the i.v. 
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group. It is unclear whether this is a sufficient explanation for the observed differences. It 

would allow for the speculation that cellular response may depend primarily upon the level of 

substrate and secondarily on the route of administration. Cellular responses may therefore 

be noticeably different when using different application methods. Nevertheless, despite the 

short time-period of the trial intervention, any statistically significant change of expression of 

mRNA may point towards an early cellular response to a build-up of vitamin A stores within 

the cells. 

As a third genetic marker we explored the mRNA expression of CYP26B1, an enzyme 

system that catalyses the oxidation of retinoic acid to non-toxic metabolites. It is assumed 

that it plays a major role in vitamin A catabolism and detoxification and serves as a cell 

protector (WU, ROSS, 2010). CYP26B1 increases with a rise in the concentration of retinoic 

acid (PETKOVICH, 2001) and is thought to be the cell’s response for detoxification of retinoic 

acid (DAS et al., 2014). CYP26B1 is maintained at very low levels in vitamin A deficiency 

(WANG et al., 2002; YAMAMOTO et al., 2000). 

The results of this study have shown an early increase of mRNA levels of CYP26B1 in lung 

tissue in the i.v. group but not in the e.t. group. The assumption is that an early expression of 

CYP26B1 may be an indication of a high influx of potentially toxic retinoic acid. However, this 

interpretation may not be as straightforward since it is not perceivable why potentially more 

toxic substance should have built up when, in comparison, relatively less substrate was 

found in lung tissue of i.v. treated animals when compared to e.t. treated animals.  

From the results it may be only possible to draw the conclusion that differences in the route 

of application may play an important role with regard to the safety profile. Nevertheless, the 

possible increased expression of CYP26 after intravenous application of retinyl esters may 

be concerning since it may signify possible intracellular toxicity. Those concerns should be 

investigated in future studies. 

6.3 Limitations 

This study was conceptualized as a feasibility study and is limited by the small sample size 

and the short duration of the study protocol. Specifically, the short duration of the study 

protocol does not allow for any conclusions with regard to long-term or disease-modifying 

aspects of the intervention. 

Further, no conclusion can be drawn from this study regarding safety aspects of the 

investigated substance. Although the risk to human health is thought to be minor, little is 

known about the adverse effects on overall health of nano-encapsulated medication.  
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With regard to specific organ effects in this study, we observed a pulmonary complication in 

one animal in the e.t. group.  This animal was unusually small for gestational age and 

required higher ventilation settings in contrast to all other animals. Therefore, individual risk 

factors may have played a role, although it cannot be ruled out, that the intervention may 

have been a contributing factor for the complication. 

There may be less physiological active intracellular or extracellular vitamin A lung content in 

this study than presumed from the data. Overestimation of active substance may occur since 

the likelihood of contamination by deposits within the tracheal tree is high. To overcome this 

concern future research may consider obtaining additional data on effect such as genetic 

expression of further relevant genes or proteins in order to show the metabolic effects of 

vitamin A in more detail.  

6.4 Futures studies 

Future studies should focus on both the intervention and/or on pharmacokinetics and the 

disease-modifying aspect of the substrate. 

Initial data on this novel supplement is promising and warrants ongoing pharmacokinetic 

studies to determine exact kinetic and safety data. Future pharmacokinetic studies may not 

only consider whether to apply this substance using the inhalative or nebulised route but also 

consider whether to use retinyl ester preparations alone or in combination with retinoic acid. 

With regard to inhalation one should be aware that there is a risk that inhalation of 

pharmacological agents may also result in poor delivery and distribution within the respiratory 

tract (LIPWORTH, 1996) and therefore well-conceptualised trials addressing those concerns 

are warranted. As outlined above, it has been postulated that a combination (VARA) of 

vitamin A in the form of retinyl esters and its active form, retinoic acid, may be more 

beneficial than vitamin A alone (WU, ROSS, 2010). This approach may therefore be 

considered when planning future studies. 

Because extremely low birth weight infants regularly receive multiple different medications, 

any interaction between those and a potential vitamin A supplementation must be 

considered. Singh et al. states that in newborn neonates who require surfactant replacement 

therapy, providing vitamin A with surfactant may serve as a less-invasive mode of delivery 

than intramuscular delivery (SINGH et al., 2010). However, when considering applying 

vitamin A via the tracheal route, either by topical application or by inhalation, any interaction 

with surfactant should be examined, and it may be more suitable to administer vitamin A and 

surfactant separately in view of their pharmacological interactions (BRONSHTEIN et al., 

2009). Reassuringly, no influence on the effect of therapeutic surfactant application was 
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demonstrated in an earlier study after endotracheal vitamin A application in lavaged piglets 

(SINGH et al., 2010). 

Further, it is particularly important to consider any interaction between vitamin A and vitamin 

D since both build a common receptor complex (VAD-RXR). Zhang et al. were able to show 

that there is extensive allosteric communication throughout this VAD-RXR complex. They 

suggest that the ligand itself may influence the DNA binding properties of this 

macromolecular complex, and they hypothesize that different classes of ligands may 

differentially alter the DNA binding domains (ZHANG et al., 2011). This opens up a wide 

range of molecular research opportunities in this field and the interaction between vitamin A 

and vitamin D, and their influence on cell proliferation and differentiation should be 

investigated in future studies.  

It will continue to be important, when exploring this substance further, to look for both any 

disease-modifying aspects as well as toxicological effects or unwanted storage sides. Future 

studies may therefore be conceptualised not only to address the influence of the therapeutic 

intervention on the primary target organs such as lung and liver but also to consider 

obtaining data on vitamin A distribution in organs such as the brain or the visual system. So 

far, simple histological data did not reveal any obvious detrimental effect on brain tissue 

samples and may therefore be reassuring with regard to the safety profile. Nevertheless, 

more studies are needed to address those issues. Further, the immune system may play a 

pivotal role as well (AAGE et al., 2015) and therefore potential clinical studies must observe 

any unwanted long-term effects, including effects on the developing immune system. 
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6.5 Conclusion 

The purpose of this study was to investigate a new substance for its potential use as a 

substrate for vitamin A supplementation in the extremely low birth weight infant cohort using 

the preterm lamb model. I conclude that the newly tested substrate is feasible for both 

intravenous and endotracheal weight-targeted vitamin A supplementation and should 

continue to be investigated further in future trials in order to assess practicalities with regard 

to the mode of application and to explore this substances’ kinetics and safety profile as well 

as interactions with other medication such as surfactant among others. The study contributes 

to ongoing research activities in the field of vitamin A supplementation for the prevention of 

bronchopulmonary dysplasia in the extremely low birth weight cohort by adding data about 

the differences in vitamin A distribution, namely different rises of systemic and tissue bond 

vitamin A levels, and about differences in metabolic effects, namely different changes in the 

expression of mRNA of retinoid homeostatic genes after intravenous and endotracheal 

application. The results support the notion that vitamin A metabolism can be influenced 

through timely and appropriately-placed supplementation of retinyl ester.  

Although this study has a number of limitations impacting on its generalisation, in my view, 

impulses are given to continue to investigate the substance’s direct application to the target 

organ, the lungs. Results from this and previous trials are promising and bear the potential to 

encourage future researchers to explore in particular the endotracheal or less invasive 

topical application routes, such as nebulisation, further.  

Finally, clinical trials and safety studies using appropriate substrates are warranted to 

translate the findings of animal studies like this one into human benefit with regard to 

biological and long-term effects for the benefit of a very vulnerable patient population such as  

very low birth weight infants. 
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8 Publications 
The results of this study were presented at the GNPI scientific meeting in Frankfurt on the 3rd 

of June 2016 by myself during an oral presentation with the title “Endotracheale vs. 

intravenöse Gabe eines wasserlöslichen, nano-verkapselten Vitamin A Präparates – 

Pilotstudie in frühgeborenen Lämmern“. 

 

The study, titled “Short term effects of endotracheally vs. intravenously administered nano-

encapsuled, water-soluble vitamin A in preterm lambs”, is currently under review for 

publication at the Journal of Nutrition. 
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