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Summary  

 

The key characteristic of Cushing’s syndrome is an abnormally elevated cortisol plasma level. 

This can be controlled by inhibition of 11β-hydroxylase (CYP11B1), the enzyme catalyzing the 

last step of the biosynthesis of cortisol. 

In the present thesis, lead optimization of the first reported selective CYP11B1 inhibitors resulted 

in an inhibitor with a 50-fold improved potency for human CYP11B1 (IC50= 2 nM). Additional 

investigations revealed a promutagenic potential of the inhibitor and a low oral bioavailability in 

rats (F= 2%). Subsequent structural modifications resulted in a similarly potent and selective 

compound exhibiting no toxicity and a high oral bioavailability in rats (F= 50%). A good candidate 

for further in vivo studies was identified, which exceeds the clinically used inhibitor metyrapone 

in terms of CYP11B1 potency and selectivity. 

Previous studies have shown that inhibition of cortisol biosynthesis in skin leads to accelerated 

wound healing. Here, CYP11B1 inhibitors were optimized for topical application to avoid 

systemic side effects. The resulting very potent, selective CYP11B1 inhibitor exhibited high 

stability toward human plasma (as a substitute for wound fluid) and low stability toward HLS9 

(t1/2 = 19 min) for rapid metabolic clearance after absorption. The inhibitor was able to accelerate 

wound healing in human skin at the applied concentration of 5 µM. 
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Zusammenfassung 

 

Charakteristisch für die Krankheit Morbus Cushing ist ein abnormal erhöhter Cortisol-

Plasmaspiegel. Dieser kann durch Hemmung des Enzyms 11β-Hydroxylase (CYP11B1), welches 

den letzten Schritt der Biosynthese von Cortisol katalysiert, reguliert werden. 

Hier führte eine gezielte Strukturoptimierung von CYP11B1-Inhibitoren zu einer 50-fach 

potenteren Verbindung bezüglich des humanen CYP11B1-Enzyms. Zusätzliche Untersuchungen 

offenbarten ein promutagenes Potential des Inhibitors und eine geringe orale Bioverfügbarkeit in 

Ratten (F = 2%). Nachfolgende strukturelle Modifikationen resultierten in einer ähnlich potenten 

und selektiven Verbindung, die keine Toxizität aufweist und eine hohe orale Bioverfügbarkeit in 

Ratten (F = 50%) zeigt. Somit gelang die Identifizierung eines geeigneten Kandidaten für weitere 

in vivo Studien, welcher den klinisch verwendeten Inhibitor Metyrapon bezüglich CYP11B1-

Potenz und -Selektivität übertrifft. 

Untersuchungen haben gezeigt, dass eine Hemmung der Cortisol-Biosynthese in der Haut zu einer 

beschleunigten Wundheilung führt. Hierfür wurden CYP11B1-Inhibitoren für eine Anwendung 

auf der Haut optimiert. Die dabei erhaltene Verbindung zeigte sowohl eine hohe Stabilität 

gegenüber menschlichem Plasma (als Ersatz für Wundflüssigkeit) als auch eine geringe 

metabolische Stabilität für eine schnelle Ausscheidung nach der Absorption. Der Inhibitor war in 

der Lage, die Wundheilung in der menschlichen Haut bei einer Anwendungskonzentration von 

5 μM zu beschleunigen. 
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Abbreviations 

 

11β-HSD1 11β-Hydroxysteroid dehydrogenase type 1 

11β-HSD2 11β-Hydroxysteroid dehydrogenase type 2 

AIBN Azobisisobutyronitrile 
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CS Cushing’s syndrome 
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CYP11B2 Aldosterone synthase 
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DBPO Dibenzoyl peroxide 
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FFD Factional factorial design 

GC Glucocorticoid 
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n.d. Not determined 
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PLS Partial least- squares analysis 

QSAR Quantitative structure–activity relationship 

Ref Reference 

RT Retention time 

rt Room temperature 

SAR Structure–activity relationship 

SDEC Standard deviation of error of calculation 

SDEP Standard deviation of error of prediction 

SF Selectivity factor = IC50 CYP11B2/ IC50 CYP11B1 
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SRD Smart region definition 

StAR Steroidogenic acute regulatory protein 

t1/2 Half-life 
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1. Introduction 

Hormones are an essential part of the communication system within the body. They are signaling 

molecules which are produced by specific cells and subsequently transported by the circulatory 

system to reach their distinct target receptors (endocrine signaling). This leads to the activation of 

associated signal transduction pathways and cell type-specific responses. Among the diverse 

structural classes of hormones, steroids represent one main class. These, in turn, are classified 

according to the receptors to which they bind, such as mineralocorticoids, androgens, estrogens, 

progestogens and glucocorticoids. Cortisol is a crucial glucocorticoid affecting almost every cell 

in the body. This hormone is released in response to stress and influences the blood pressure, 

increases blood sugar, controls the metabolism of fats, proteins and carbohydrates and supresses 

inflammation. Its secretion is mainly controlled by the hypothalamus in the brain, the pituitary 

gland situated at the base of the brain and the adrenal glands, which are located above the kidneys 

(hypothalamic-pituitary-adrenal axis).[1] 

1.1. Hypothalamic-Pituitary-Adrenal Axis 

The production of the glucocorticoid cortisol is usually mediated through the hypothalamic-

pituitary-adrenal (HPA) axis (Figure 1). In the event of stress, corticotropin-releasing factor (CRF), 

which is secreted by the paraventricular nucleus of the hypothalamus, binds to receptors on the 

pituitary corticotropes. Consequently, adrenocorticotropic hormone (ACTH) is released into the 

systemic circulation and binds to receptors located in the adrenal cortex. Thereby, the cyclic 

adenosine monophosphate (cAMP) level increases, which in turn leads to activation of a cAMP-

dependent protein kinase. The associated cholesterol esterase is activated through phosphorylation, 

which leads to cholesterol release from the lipid droplet storage.[2-3]  

Further, cholesterol transport from the outer membrane to the inner membrane in mitochondria of 

the adrenal cortex is mediated by ACTH-induced gene transcription and subsequent 

phosphorylation of the steroidogenic acute regulatory protein (StAR).[3] In the following, 

cholesterol is transformed to cortisol in a multi-step biosynthesis (see chapter 1.2.). Cortisol is then 

secreted, suppressing ACTH as well as CRF production (negative feedback of the HPA axis) and 

regulating cardiovascular, immune and metabolic processes (Figure 1).[2] 
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Figure 1. The HPA axis. Modified from ref[4].  

1.2. Steroidogenesis 

Steroid hormones such as cortisol are synthesized from cholesterol catalyzed by various 

cytochromes P450 and hydroxysteroid dehydrogenases (HSDs) in the adrenal glands.[5] 

Cytochromes P450 are a large superfamily of heme-containing enzymes catalyzing mixed-

function oxidation reactions. They alter their lipophilic substrates via introduction of molecular 

oxygen using electrons of the cofactor nicotinamide adenine dinucleotide phosphate (NADPH).[5] 

HSDs are oxidoreductases using NADP+ or NAD+ as cofactors. In contrast to HSD mediated 

reactions, hydroxylation, oxidation and carbon-carbon bond cleavage reactions catalyzed by 

CYP450s are mechanistically irreversible.[3] After transport to the inner mitochondrial membrane, 

cholesterol is transformed to pregnenolone (Figure 2) in a rate-limiting first step, which is 

catalyzed by the cholesterol side chain cleavage enzyme (P450scc, CYP11A1).[3] Further, 

pregnenolone is then either hydroxylated to 17α-hydroxypregnenolone by 17α-hydroxylase-

17,20-lyase (CYP17A1) or converted to progesterone by 3β-hydroxysteroid dehydrogenase/Δ5-4 

isomerase (3β-HSD). Both precursors can be modified with the help of either CYP17A1 or 3β-

HSD to obtain 17α-hydroxyprogesterone. Additional hydroxylation by 21-hydroxylase 

(CYP21A1) leads to 11-deoxycortisol. Last, an oxidation reaction to generate the glucocorticoid 

cortisol is conducted by 11β-hydroxylase (CYP11B1). The mineralocorticoid aldosterone, which 

is responsible for the regulation of blood pressure[5], is formed from intermediate progesterone via 

successive hydroxylations in positions C-21 (to deoxycorticosterone by CYP21A1) and C-11 (to 
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corticosterone by CYP11B1 or aldosterone synthase (CYP11B2)).[5-6] Subsequently, 

corticosterone is further hydroxylated and oxidized in position C-18 catalyzed by aldosterone 

synthase.[5-6] 

 

 

Figure 2. Steroidogenesis. 

Precursors of the sex hormones (androgens and estrogens) are formed as well from the 

intermediates 17α-hydroxypregnenolone and 17α-hydroxyprogesterone catalyzed by CYP17A1 

and 3β-HSD. Afterwards, these precursors are transformed to estrogens and androgens in the 

gonads by 17β-hydroxysteroid dehydrogenases (17β-HSD) and additionally by aromatase 

(CYP19A1) in the case of estrogens.[5] 
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1.3. Cortisol and 11β-HSD 

In general, the plasma concentration of cortisol is 100–1000-fold higher compared to the 

aldosterone concentration. Both hormones show similar binding affinities for the 

mineralocorticoid receptor in vitro.[7] Thus, excessive cortisol would trigger, for instance, 

hypertension by occupying the mineralocorticoid receptor in vivo.[8] 

 

 

Figure 3. Regulation of the local cortisol concentrations. 

To overcome this problem, cortisol is converted to the inactive storage form cortisone catalyzed 

by the enzyme 11β-HSD2 (Figure 3). If necessary, cortisone can be reactivated by 11β-HSD1. 

Thus, the local concentration of cortisol is regulated by these enzymes.[8] 11β-HSD1 is expressed 

in a variety of glucocorticoid target tissues such as liver, adrenal, gonad, brain, skin and adipose 

tissue.[9] In contrast, 11β-HSD2 expression is mainly limited to aldosterone-selective tissues such 

as kidney, colon, placenta, sweat and salivary glands.[10] 

1.4. Cushing’s Syndrome 

First described in the 1930s[11], Cushing’s syndrome (CS) is associated with elevated plasma levels 

of the stress hormone cortisol. In the case of CS, plasma cortisol levels are often abnormally 

elevated due to a long-term, high-dose treatment with adrenocorticotrophic hormone (ACTH) or 

a glucocorticoid (exogenously).[8] In rare cases (0.7-5 cases per year per million population)[8, 12], 

the overproduction can be caused within the body (endogenously). This mainly originates from 

pituitary (70%, termed Cushing disease (CD)) or ectopic tumors (10%) generating ACTH (ACTH-

dependent), which leads to an increase of cortisol. Less frequently, the disease is caused by cortisol 

producing adrenal adenomas (10%) or adrenocortical carcinomas (5%) (ACTH-independent).[8, 13] 

Especially in the case of CD and adrenal adenomas, females are much more often affected than 

males (3.5:1 ratio).[12] 
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Diagnosis is challenging as the development of a full symptomatology lasts months to years and 

signs are not necessarily related with CS.[8] Truncal obesity (96%), facial fullness (82%), 

carbohydrate intolerance or diabetes type II (80%), gonadal dysfunction (74%), hirsutism or acne 

(72%), hypertension (68%), muscle weakness (64%), skin atrophy and bruising (62%) as well as 

mood disorders (58%) are typical symptoms of the disease.[8, 14] Particularly, the associated 

cardiovascular and infection risk results in increased morbidity and mortality for the patients.[15] 

Symptoms differ among patients and even the most frequently occurring ones are missing in some 

cases.[14] 

In addition, metabolic syndrome, which is affecting probably one fourth of the world 

population,[16] shares common manifestations with CS such as hypertension, visceral obesity and 

insulin resistance.[16-17] However, plasma cortisol levels in metabolic syndrome patients are not 

elevated to the diagnostic threshold of CS.[16-17] To ensure the diagnosis of CS over metabolic 

syndrome, three main tests are available. As the normal circadian rhythm of cortisol production is 

disturbed in CS, 24 hours urinary-free cortisol tests as well as midnight plasma or late-night 

salivary cortisol measurements are applied. Furthermore, as dexamethasone is a potent agonist for 

the glucocorticoid receptor, a low-dose dexamethasone-suppression test should decrease cortisol 

levels in healthy patients.[12] None of the aforementioned tests is reliable, but one or more abnormal 

results give strong evidence that CS is present.[12, 14] 

For the treatment of exogenous CS, at least gradual reduction of administered corticosteroids to 

the lowest effective dose is required. A complete discontinuation of corticosteroid medication is 

dangerous, as the natural steroids might not be produced endogenously anymore due to their high 

external supply, which could result in Addison’s disease.[18] 

In the case of pituitary or ectopic carcinomas leading to an overproduction of cortisol (endogenous 

CS), surgical tumor removal is the first-line treatment associated with a 65-90% remission rate 

and low morbidity.[8, 19] However, around 25% of patients suffer from a relapse within 10 years.[19-

20] Post-operative treatment with glucocorticoid replacements is necessary for 6-12 months until 

HPA axis normalization.[8] Another effective rapid action is a unilateral or bilateral adrenalectomy, 

especially in cases of cortisol producing adrenal adenomas and carcinomas. Nevertheless, 

corticotroph adenoma progression is discovered in about 30% of cases and a lifelong well-

balanced replacement of glucocorticoids and mineralocorticoids is required.[19] 

For patients which are unsuitable for surgery as well as for inaccessible or invisible tumors, 

radiotherapy is applied.[12] Pituitary irradiation treatment lasts up to two years and is associated 

with inherent side effects such as hypopituitarism.[12, 20] 

Until radiotherapy is effective, medical treatment is required as the patients are still exposed to 

glucocorticoid excess. Furthermore, cortisol-controlling drugs are needed for the preparation of 
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patients before surgery to prevent complications (e.g. bleeding tendency), if tumor resection was 

unsuccessful and for the period until CS diagnosis is assured.[20-21] 

1.5. Medical Treatment of Cushing’s Syndrome 

1.5.1. Pituitary-Targeted Drugs 

There are several approaches to target the tumor and the resulting ACTH overproduction in the 

pituitary by inhibition of the receptors overexpressed in the tumor. For instance, administration of 

the selective somatostatin receptor subtype 5 (sst5) ligand pasireotide (SigniforR, Novartis, Figure 

4) normalized the urinary free cortisol (UFC) level after 12 months in 19.1% of CD patients and 

improved blood pressure and body weight. However, this treatment also resulted in hyperglycemia 

in 73% of cases.[22] Pasireotide was approved in the EU and the US in 2012 for use in patients with 

CD for whom surgery is not an option or has failed.[19, 23] 

It was also shown that dopamine subtype 2 (D2) receptors are expressed in 80-89% of pituitary 

tumors.[24] Cabergoline (Figure 4), a D2 receptor agonist, showed normalization of cortisol levels 

in 37% of patients.[22]  

 

Figure 4. Pituitary-Targeted Drugs and Mifepristone 

Studies published so far did not report any severe side effects (the most frequent among them were 

nausea and dizziness), however, larger multi-center studies to confirm efficacy and safety are 
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missing.[25] Peroxisome proliferator-activated receptor-gamma (PPAR-γ, functions as a 

transcription factor) ligands have been demonstrated to inhibit the growth of several kinds of 

tumors.[19] Unfortunately, efficiency observed in vitro with PPAR-γ ligands such as rosiglitazone 

and pioglitazone (Figure 4) on ACTH secretion and corticotroph tumor cell proliferation has not 

been reproduced in CD patients.[22, 26] 

Inhibition of ACTH release and tumor growth in vitro and in vivo was achieved through action on 

POMC gene transcription by retinoic acid (Figure 4). The compound was well tolerated regarding 

adverse events in a small prospective study (7 patients), but again larger studies are necessary.[25] 

Another approach (still under research) suggested the tyrosine kinase inhibitor gefitinib (Figure 4) 

as a potential drug for treatment as it blocks the epidermal growth factor receptor (EGFR), which 

is overexpressed in a significant proportion of pituitary corticotroph adenomas.[27] 

1.5.2. Glucocorticoid Receptor Antagonists 

Instead of targeting the ACTH overproducing tumor, the effect of cortisol excess can also be 

prevented by blocking the glucocorticoid (GC) receptor with an antagonist such as mifepristone 

(Figure 4).[26] Indeed, clinical symptoms of CS were significantly improved, which is why 

mifepristone was approved by the FDA in 2012 to control hyperglycemia in endogenous CS 

patients. In analogy to pasireotide, the treatment with mifepristone is limited to patients who are 

not suitable candidates for surgery or in whom surgery has failed.[26] However, an abnormally high 

level of cortisol is still present, which results in mineralocorticoid receptor binding and, therefore, 

in hypokalemia, increased blood pressure, edema and worsening of salt retention.[28] Furthermore, 

the negative feedback mechanism of the HPA axis, usually triggered by cortisol binding to the GC 

receptor, is interrupted leading to an increase of plasma ACTH and cortisol levels.[26, 28] 

1.5.3. Cortisol Secretion Inhibitors 

Another promising approach is the inhibition of cortisol overproduction by blocking steroidogenic 

enzymes, especially CYP11B1. As mentioned before, the enzyme catalyzes the last step of the 

biosynthesis of cortisol (Figure 5). Selective inhibition of CYP11B1 is challenging as human 

CYP11B1 and CYP11B2 exhibit a 93% sequence identity[29] on the protein level and only differ 

in 29 out of 479 residues, which are situated outside the substrate recognitions sites.[5, 30] The co-

crystal structure of human CYP11B2 and deoxycorticosterone was recently published,[6] but no 

crystal structure of CYP11B1 is resolved so far. 
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Figure 5. Last step of the biosynthesis of cortisol 

According to a homology model, the position of the heme varies slightly in both enzymes as the 

side chains and their binding loop orientations influence the heme environment differently.[5] In 

addition, the active site of CYP11B1 was predicted to be bigger compared to that of CYP11B2.[5] 

In general, selective inhibition of CYP enzymes is difficult to achieve as they all contain one 

common motif, an iron chelating heme in the active site. Thus, inhibitors interacting with the heme 

can be unselective.[31-32] 

Despite induced side effects caused by unselective inhibition, CYP11B1 inhibitors are commonly 

used in the clinic and rapidly relieve hypercortisolism and related complications.[5, 21, 33] 

 

Figure 6. CYP11B1 inhibitors in clinical use or trial 

For instance, after initial dosing with the potent CYP11B1 inhibitor metyrapone (Figure 6), 

cortisol levels drop within four hours.[21] However, at low doses, which do not influence the 

cortisol synthesis, a strong, CYP11B2-associated effect on aldosterone synthesis was observed.[34] 

Therefore, treatment with metyrapone may result in accumulation of 11-deoxycorticosterone, the 

precursor of aldosterone, which binds to the mineralocorticoid receptor leading to hypokalemia, 

hypertension and edema.[5] As the cortisol synthesis is blocked as well, the negative feedback 

mechanism for ACTH is reduced. Subsequently, production of ACTH increases, which leads to 

elevated levels of mineralocorticoid precursors and androgens. The latter causes acne, hirsutism 
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and voice deepening, which limits longer treatments in women.[24, 35] If overtreatment and 

hypoadrenalism (deficiency of cortisol causing, e.g., dizziness and nausea) are avoided, the drug 

is tolerated well in most patients.[21] Therefore, cortisol levels are usually reassessed after 

administration of a routine starting dose and if necessary, the dose is adjusted until a mean cortisol 

level between 150 and 300 nmol/L is reached.[21] 

Ketoconazole (Figure 6) is another commonly used steroidogenesis inhibitor, which was originally 

developed as an oral antifungal agent. The risks of overtreatment and hypoadrenalism are lower 

as it shows a low onset of action.[21] In contrast to metyrapone, it does not only unselectively inhibit 

CYP11B1 and CYP11B2, but also CYP17A1, CYP11A1 and some hepatic CYP enzymes such as 

CYP3A4.[21, 36] Side effects such as gastrointestinal adverse effects, gynecomastia, hypogonadism 

and rash are observed.[26] More importantly, occurrence of liver enzyme dysfunction in some cases 

leads to severe hepatotoxicity and associated deaths.[21, 26, 37]  

The anesthetic agent etomidate (Figure 6) shows an effective and rapid effect by blocking 

CYP11B1, but as well inhibits CYP11B2, CYP17A1 and CYP11A1.[21] Its use is limited to 

seriously sick patients due to the observed sedative effect and as it has to be administered 

intravenously.[21] 

The unselective 11β-hydroxylase and CYP11A1 inhibitor mitotane (Figure 6) possesses a slow 

onset of action and may persist in circulation over months after finishing treatment.[21, 38] As 

mitotane is teratogenic, pregnancy should be avoided for a long time after discontinuation.[21] 

Furthermore, adverse effects such as diarrhoea, anorexia, nausea, adrenal insufficiency and 

dizziness are observed during treatment.[21]  

The steroidogenesis inhibitors described above have already been in use for decades. Recently, 

osilodrostat (LCI699) was developed and is currently undergoing a Phase III clinical trial to 

evaluate efficacy and safety for Cushing’s disease patients. However, besides potent inhibition of 

CYP11B1, it strongly effects CYP11B2 as well. In Phase II clinical trials, osilodrostat effectively 

and rapidly normalized cortisol levels.[23, 39] Side effects such as fatigue, nausea, headache, 

diarrhoea, adrenal insufficiency, hirsutism and acne were reported so far.[23, 39] It was demonstrated 

that osilodrostat is already effective at much lower doses (~100 times) compared to metyrapone.[23] 

Nevertheless, due to CYP11B2 inhibition, the plasma concentration of 11-deoxycorticosterone 

increased and it was assumed that the resulting hypermineralcorticism may in turn result in 

hypokalemia in some patients.[23] Despite the observed hypermineralcorticism, hypertension did 

not seem to be a serious issue, which might be due to the benefit of lower levels of circulating 

cortisol.[23] Both Phase II studies were conducted in a small number of patients and the effect of 

the drug still has to be assessed in a larger patient population.[39] Extensive clinical trials are 

difficult to conduct due to the rarity of Cushing’s disease.[38] Nevertheless, steroidogenic CYP 
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enzyme inhibitors are most promising for the medical treatment of Cushing’s disease so far, as 

response rates for metyrapone (75%, one study), mitotane (72%, one small study) and osilodrostat 

(79-90%, two small Phase II studies) are higher than for the pituitary-targeting drugs pasireotide 

(17-29%, only one assessed in randomized trial) and cabergoline (25-50%, 4 studies).[38-39] The 

glucocorticoid receptor antagonist mifepristone was evaluated in a study including patients with 

CD and other forms of CS and showed response rates of 38-60%.[38]  

1.5.4. First Selective CYP11B1 Inhibitors 

In 2010, the potent CYP11B1 and CYP11B2 inhibitor R-etomidate (see chapter 1.5.3., IC50 

CYP11B1= 0.5 nM, IC50 CYP11B2= 0.1 nM, Figure 7) was structurally optimized aiming for 

selective CYP11B2 inhibitors.[40-41] Despite the existing high sequence identity of both enzymes 

(93%)[29], elimination of the ester and methyl substituents resulted in the slightly selective 

CYP11B1 inhibitor 1 (IC50 CYP11B1= 135 nM, selectivity factor (SF): IC50 CYP11B2/IC50 

CYP11B1= 3.4, Figure 7).[40-41]  

 

 

Figure 7. Development of the first selective CYP11B1 inhibitors. 

Modification of the phenyl in various positions with substituents differing in electronic properties 

and H-bond acceptor and donor characteristics led to inhibitor 2 (IC50 CYP11B1= 32 nM, SF= 20, 
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Figure 7), which exhibits increased CYP11B1 potency and selectivity towards CYP11B2.[40-41] As 

the compound inhibits CYP17A1 as well (40% at 2 µM), further optimization was performed.[41] 

Exchange of the central phenyl ring of compound 2 by the heterocycles pyridine, thiophene and 

furan resulted in the first selective CYP11B1 inhibitor 3 (IC50 CYP11B1= 107 nM, SF= 13, 

CYP17A1 inhibition: 4% at 2 µM, Figure 7).[41-42] Further attempts to improve potency and 

selectivity via replacement of the phenyl in pyridine 3 with various substituted phenyls or 

heterocycles resulted in the slightly more potent and similarly selective inhibitor 4 (IC50 

CYP11B1= 68 nM, SF= 10, CYP17A1 inhibition: 8% at 2 µM, Figure 7).[42-43] The selectivity 

factors described here for 3 and 4 were re-determined for the studies presented in the following 

and differ from the originally published data due to different enzyme sources. Nevertheless, 

compared to the CYP11B1 inhibitors used in the clinic, 3 and 4 are similarly potent as 

ketoconazole (IC50 CYP11B1= 127 nM, SF= 0.5) but exhibit much higher selectivity towards 

CYP11B2 and CYP17A1.[41-43] Therefore, they are promising lead compounds for further 

optimization studies. 

1.6. Role of Cortisol during Skin Wound Healing 

The epidermis is the outermost layer of the skin and functions as a shield against mechanical, 

biological and chemical harms. In case of an injury, the complex wound healing process is 

accomplished by the highly controlled and timed phases of hemostasis, inflammation, proliferation, 

and remodeling.[44] Interference of this system results in impaired tissue repair and, therefore, in 

delayed acute or chronic wounds associated with pathologic inflammation and severe pain.[44] In 

the USA alone, 3 to 6 million people suffer from chronic wounds, which mainly occur as ulcers 

(70%) caused by diabetes mellitus, ischemia, pressure or venous insufficiency.[44-45] Especially 

elderly people are affected and with the increasing occurrence of diabetes and obesity in an aging 

society, this is an urgent problem requiring immediate care.[44] Current treatments are often 

ineffective and cause a financial burden for the patients and the health care system.[44, 46] 

Glucocorticoids play an important role in regulating migration and proliferation of keratinocytes 

following wound closure.[44, 47] In case of stress, the wound healing process is significantly delayed 

due to the up-regulation of systemic cortisol levels, which is associated with reduced levels of pro-

inflammatory cytokines and suppressed immune response, fibroblast proliferation and collagen 

synthesis.[44] Keratinocytes, which are the main components of the epidermis (90%),[47] synthesize 

cortisol de novo from cholesterol.[46-47] All components for an independent glucocorticoid 

synthesis are present such as the cholesterol transporter StAR, ACTH, CYP11A1, CYP17A1, 3β-
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HSD1, CYP21A1 and CYP11B1.[47] Here, cortisol seems to function as a local negative feedback 

for proinflammatory cytokine IL-1β production and associated signaling molecules, which are 

important for activating keratinocyte migration and proliferation. However, persistent IL-1β 

production would lead to excessive inflammation and further tissue damage.[46] Therefore, IL-1β 

triggers the release of ACTH and subsequently the expression of CYP11B1, which is responsible 

for cortisol synthesis during wound healing.[46] Fine-tuning of the cortisol concentration in skin is 

possible in the same manner as described for the steroidogenesis in the adrenals. The enzymes 

11β-HSD1 and 11β-HSD2 catalyze the transformation of inactive cortisone to active cortisol and 

reversely (Figure 3).[46] In acute wounds (human and porcine), it was demonstrated that CYP11B1 

and cortisol levels gradually increase for 48 hours to control the proinflammatory signals and are 

normalized again by 96 hours after wounding to avoid delay of wound healing.[46] It was shown 

that cortisol synthesis can be blocked by the CYP11B1 inhibitor metyrapone, which resulted in 

increased interleukin IL-1β expression and accelerated wound healing ex vivo in human skin 

explants and in vivo in porcine skin.[46] Additional experiments in mice revealed an increase of 

11β-HSD1 levels during wound healing and enhanced wound repair through blockade of this 

enzyme.[48] Interestingly, CYP11B1 is not expressed in rodent skin and metyrapone is known to 

inhibit 11β-HSD1 as well.[48] A promising approach for new treatments of chronic non-healing 

wounds could be the inhibition of CYP11B1 as the enzyme is overexpressed and the 

glucocorticoid receptor pathway is activated at any time.[49-50] However, further extensive 

investigations are necessary to clarify the individual beneficial effect of CYP11B1 or 11β-HSD1 

inhibition during wound healing in human skin. It is worth mentioning that CYP17A1 and 

CYP19A1 are expressed in skin as well and positively influence wound healing through the 

synthesis of estrogens, which accelerate wound healing, retain skin moisture and avoid skin aging. 

[47, 51-52] 
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2. Aim of the Thesis 

The development of improved or novel treatments for rare diseases such as endogenous Cushing’s 

syndrome is limited due to the small number of patients concerned and the associated little interest 

by the profit-oriented pharmaceutical industry. CYP11B1 inhibitors which are in clinical use for 

Cushing’s disease have been applied for decades but show severe side effects due to unselective 

inhibition of other steroidogenic or hepatic CYP enzymes (see chapter 1.5.3.). A few years ago, 

the first potent and selective CYP11B1 inhibitors, such as 3 and 4 (Chart 1), were reported.[41-43] 

They exceed known CYP11B1 inhibitors regarding selectivity towards CYP11B2 and other 

steroidogenic CYP enzymes.[41-43] However, investigation of their efficiency in a proof of concept 

study in rats was limited due to poor inhibition of rat CYP11B1 (IC50 > 10000 nM).[42] Furthermore, 

the compounds required improvement of human CYP11B1 inhibitory activity (IC50= 68-107 nM) 

to decrease the doses which have to be administered, thus reducing the risks of off-target effects. 

As part of the present thesis, rational lead optimization of compounds 3 and 4 was to be performed 

(Chart 1) aiming at more potent inhibitors of human and rat CYP11B1 while maintaining the 

important selectivity towards CYP11B2.  

Chart 1. Possibilities for structural lead optimization of 3 and 4. 

 

Further, the efficacy of CYP11B1 inhibitors for the acceleration of wound healing in human skin 

was to be investigated. For this purpose, compounds obtained from the previous optimization were 

to be modified for topical application to avoid systemic side effects. Rapid metabolic clearance 

after absorption, stability towards human plasma (as a substitute for wound fluid) and selectivities 

over 11β-HSD1 and CYP19A1 were further requirements which were aimed to be achieved in this 

project. 
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3. Results and Discussion 

3.1. Cushing’s Syndrome: Development of Highly Potent and Selective 

CYP11B1 Inhibitors of the (Pyridylmethyl)pyridine Type 

Results described in this chapter were published in 2013 in J. Med. Chem.  

https://pubs.acs.org/doi/abs/10.1021/jm400240r 

 

Reprinted with permission from J. Med. Chem. 2013, 56, 6022−6032. 

Copyright: © 2013 American Chemical Society. 
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3. Dr. Marco Gargano: Coordination and performance of the metabolic stability assays in human 

and rat liver S9 fraction. 

4. Dr. Jörg Haupenthal: Performance of the cytotoxicity assay. 
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INTRODUCTION 

Cortisol is involved in many important physiological processes. However, excessive cortisol leads 

to Cushing’s syndrome that is characterized by visceral obesity, hypertension, and diabetes. Nearly 

all cases of endogenous Cushing’s syndrome are caused by tumors in the hypothalamus, the 

adrenals or, most frequently, the pituitary. Cases of the last origin are specifically termed 

Cushing’s disease, in which a pituitary adenoma overproduces adrenocorticotropic hormone 

(ACTH), leading to an elevation of plasma cortisol concentrations. Surgical removal of the tumor 

is therefore the first-line treatment. If the tumor recurs or resection is not feasible due to the size 

or location of the tumor, radiotherapy is applied. However, the inherent side effects of irradiation 

make a safe medication therapy desirable.[19] In addition, blockade of steroidogenesis with drugs 

before surgery lowers circulating cortisol levels, leading to a reversion of the metabolic 

consequences of cortisol excess and thus reduces the surgical risks.[21] In the case of metabolic 

syndrome, which shares some symptoms with Cushing’s syndrome and is also accompanied by 

excessive cortisol, albeit in adipose and liver tissue rather than in circulation, 11β-hydroxysteroid 

dehydrogenase type 1 (11β-HSD1) inhibitors are promising therapeutics.[53] However, it is 

doubtful whether 11β-HSD1 inhibitors are able to reduce elevated cortisol plasma levels. By 

contrast, metyrapone, which is in clinical use for the treatment of Cushing’s syndrome, can 

normalize plasma cortisol levels by inhibiting 11β-hydroxylase (CYP11B1).[19] This enzyme 

catalyzes the last step of cortisol biosynthesis: the hydroxylation of 11-deoxycortisol to cortisol. 

However, metyrapone is not selective enough over aldosterone synthase (CYP11B2), which is 

crucial in aldosterone production, and this might lead to hypokalemia.[34, 54] Consequently, novel 

and selective CYP11B1 inhibitors are urgently needed. However, selective inhibition of CYP11B1 

or CYP11B2 is very challenging due to the high degree of homology (93%) between them.[55] In 

spite of this difficulty, we have developed selective CYP11B2 inhibitors.[56-59] A CYP11B1 

inhibitor 3[41, 43] was also identified recently, which is potent (IC50 = 107 nM) and selective over 

17α-hydroxylase-17,20-lyase (CYP17A1), aromatase (CYP19A1) and in particular CYP11B2, for 

which a selectivity factor (SF = IC50 CYP11B2/IC50 CYP11B1) of 13 was achieved. In comparison to the 

most selective inhibitor in clinical use, metyrapone (IC50 = 15 nM, SF = 4.8), selectivity was 

improved. Still, our inhibitors require further enhancement of inhibitory potency to decrease the 

doses which have to be administered, thus reducing the risks of off-target effects. Because the 

introduction of substituents at the methylene bridge of a similar compound class resulted in a very 

potent and selective inhibitor 5[60] (IC50 = 2 nM, SF = 11), various groups, in particular alkyl 

moieties, were introduced onto the methylene bridge of the current scaffold (Chart 2).  
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Chart 2. Metyrapone and the Concept of Inhibitor Design.  

 

Furthermore, the central pyridine ring was replaced by other heterocycles, preserving the aromatic 

N because it was deemed to be important for selectivity.[41] After the most suitable core had been 

identified, the heme-complexing imidazolyl[31] was exchanged by various heterocycles containing 

an sp2-hybridized N. Moreover, isosteric exchange of the methylene bridge by O or NH as well as 

the introduction of substituents at the distal N-containing heterocycle was also performed. These 

efforts led to 28 novel compounds (Chart 2), which were evaluated for inhibition of CYP11B1 and 

selectivities over CYP11B2, CYP17A1 and CYP19A1. Selective compounds were further 

evaluated for metabolic stability, inhibition of hepatic CYP3A4 and CYP2A6 and cytotoxicity. 

Although 3 was potent toward human CYP11B1 (IC50 = 107 nM), it showed a poor inhibition of 

the rat enzyme (IC50 > 10000 nM), which makes it impossible to use rats for pharmacodynamic 

experiments and proof of concept. Therefore, the most potent and selective compound of this series 

was evaluated for rat CYP11B1 inhibition and metabolic stability in rat plasma and S9 fraction to 

identify a candidate for further in vivo studies.  
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CHEMISTRY 

Final compounds 20−29 were synthesized from commercially available 2,5-dibromopyridine 

(Scheme 1). After the transformation of one bromine substituent into a formyl group via 

lithium−halogen exchange followed by a nucleophilic formylation, the aromatic ring R1 was 

introduced via a Suzuki coupling reaction leading to intermediates 7−9. Grignard reactions were 

employed to insert various substituents on the methylene bridge, and the resulting alcohols were 

subsequently converted to compounds 20−29 via a nucleophilic substitution by reacting with 1,1-

carbonyldiimidazole (CDI).  

Scheme 1: Synthesis of Compounds 20−29.a 

 

aReagents and conditions: (a) n-BuLi, Et2O, −80 °C, 1 h; (b) DMF, −80 °C, 1 h, HCl; (c) method A, R1B(OH)2, 

Pd(PPh3)4, Na2CO3, toluene/EtOH/H2O, reflux, 5 h; (d) method B, R2MgCl or R2MgBr, THF; (e) method C, CDI, 

NMP, 170 °C.  

For the synthesis of compounds with different central rings (38−41), the heterocyclic intermediates 

30−33 were obtained via different routes (Scheme 2). Pyridazine compound 30 was synthesized 

from commercially available 3-chloro-6-methylpyridazine and phenylboronic acid via a Suzuki 

reaction, whereas pyrazine intermediate 31 was yielded by nucleophilic addition of propane-1,2-

diamine to phenylglyoxal. A condensation between benzamidine and (E)-3-ethoxy-2-

methylacrylaldehyde led to pyrimidine compound 32. The isoquinoline intermediate 33, in 

contrast, was built via a Wittig reaction of o-bromoacetophenone followed by a bromine−lithium 

exchange and a subsequent nucleophilic substitution by benzonitrile for the ring closure.  
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Scheme 2. Synthesis of Compounds 38−41.a 

 

 

aReagents and conditions: (a) method A, PhB(OH)2, Pd(PPh3)4, Na2CO3, toluene/EtOH/H2O, reflux, 5 h; (b) propane-

1,2-diamine, EtOH, KOH; (c) NaOMe, MeOH, (E)-3-ethoxy-2-methylacrylaldehyde, H2O, RT; (d) 

(methoxymethyl)triphenylphosphonium chloride, KOt-Bu, THF; (e) n-BuLi, PhCN; (f) method D, NBS, DBPO, CCl4, 

reflux, 12 h; (g) method E, imidazole, K2CO3, DMF, 120 °C, 2 h.  

These methyl intermediates 30−33 were subsequently brominated under Wohl−Ziegler conditions 

and modified with imidazolyl via a nucleophilic substitution with imidazole to yield the desired 

final compounds 38−41. Moreover, a common building block 43 was synthesized from 2-bromo-

5-methylpyridine using a Suzuki reaction with phenylboronic acid followed by a Wohl−Ziegler 

bromination (Scheme 3). Further Suzuki coupling of 43 with the boronic acids of the 

corresponding N-containing heterocycles yielded final compounds 44−54. An exception was 

compound 57, where m-bromopyridyl was inserted first, followed by simultaneous Suzuki 

couplings (method A) at both pyridyl moieties to introduce the phenyl groups. It should be noted 

that in the synthesis of compounds 50−54, PdCl2(dppf) was used as the catalyst instead of 

Pd(PPh3)4 and microwave irradiation was employed to facilitate the reaction (method F) because 

of the low yields resulting from the conventional Suzuki coupling conditions with thermal heating 

(method A). The hydroxy compound 54 was obtained from ether cleavage of the methoxy 

precursor 53.  
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Scheme 3. Synthesis of Compounds 44−54 and 57.a 

 

 

aReagents and conditions: (a) method A, corresponding boronic acid, Pd(PPh3)4, Na2CO3, toluene/EtOH/H2O, reflux, 

5 h; (b) method D, NBS, DBPO, CCl4, reflux, 12 h; (c) method F, corresponding boronic acid, PdCl2(dppf), Cs2CO3, 

DME/H2O/EtOH, 150 °C, 150 W, 18 bar, 20 min, microwave; (d) HBr, 130 °C, 12 h.  

To obtain the O (60) and NH (61) isosters of the methylene compound (44), intermediate 58 was 

prepared via selective Suzuki coupling at the 2-position of 5-bromo-2-iodopyridine. A halogen 

exchange converting 5-bromo to iodo (59) was performed, and the latter compound was 

subsequently coupled with 3-hydroxypyridine using CuI, picolinic acid and K3PO4 as catalysts to 

obtain the final compound 60. For the amination of 59 with 3-aminopyridine, Pd-BINAP and 

excessive Cs2CO3 as a base had to be employed instead to give compound 61 (Scheme 4).  

Scheme 4. Synthesis of Compounds 60 and 61.a
 

 

 

aReagents and conditions: (a) method A, PhB(OH)2, Pd(PPh3)4, Na2CO3, toluene/EtOH/H2O, reflux, 5 h; (b) CuI, 

N,N'-dimethylethylenediamine, NaI, dioxane, 110 °C; (c) CuI, 2-picolinic acid, 3-hydroxypyridine, K3PO4, DMSO; 

(d) Pd(OAc)2, (±)BINAP, 3-aminopyridine, Cs2CO3, toluene.   
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BIOLOGICAL RESULTS AND DISCUSSION 

Inhibition of CYP11B1 and CYP11B2. Compounds 20−29, 38−41, 44−54, 57, 60, and 61 were 

evaluated for their inhibitory activities in V79 MZh cells expressing either human CYP11B1 or 

CYP11B2. The IC50 values (n ≥ 3, relative standard deviations < 25%) are presented in tables 1−3 

in comparison to metyrapone. As expected, the introduction of alkyl groups onto the methylene 

bridge of 3 (IC50= 107 nM) significantly increased CYP11B1 inhibition up to 9-fold (compounds 

20−23; IC50 values ranging from 12 to 33 nM). Here, the trend can be observed that with increased 

bulkiness of the alkyl groups (Me < Et < c-prop < i-prop), inhibition of CYP11B1 is enhanced. 

Table 1. Inhibition of CYP11B1 and CYP11B2 by Compounds 20−29.a 

  

Comp R1 R2 
CYP IC50 (nM)a,b 

SFc 
11B1 11B2 

3d 

 

H 107 1423 13.3 

20 Me 33 200 6.1 

21 Et 28 92 3.4 

22 c-Prop 21 25 1.2 

23 i-Prop 12 28 2.4 

24 Furan-2-yl 69 74 1.1 

25 Ph 124 110 0.9 

62d 

 

H 181 1017 5.6 

26 Me 21 151 9.1 

27 c-Prop 11 31 2.8 

4d 

 

H 68 656 9.7 

28 Me 60 273 4.6 

29 c-Prop 151 220 1.5 

metyrapone 15 42 4.8 

aMean value of at least three experiments. The deviations were <25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 /IC50 CYP11B1. dSee ref[43], IC50 

values differ due to different enzyme sources.  

This is probably caused by occupation of an additional hydrophobic pocket near the heme. 

Similarly, introduction of alkyl substituents onto the methylene bridge of 62 (IC50 = 181 nM) led 

to significant increases in CYP11B1 inhibition as well (26, Me, IC50 = 21 nM; 27, c-prop, IC50 = 11 

nM). By contrast, the naphthalene analogues showed similar (28, Me, IC50 = 60 nM) or reduced 
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(29, c-prop, IC50 = 151 nM) potency compared to non-substituted 4 (IC50 = 68 nM), probably 

indicating different binding modes of the phenyl or thienyl compounds. Interestingly, introduction 

of aromatic substituents onto the methylene bridge of 3, such as 2-furan (24, IC50 = 69 nM) and 

phenyl (25, IC50 = 124 nM), entailed weaker inhibition of the target enzyme compared to the alkyl 

analogues, as was similarly observed in the compound class of 5.[60] However, the improvement 

of selectivity over CYP11B2 via introduction of substituents onto the methylene bridge, as seen 

in the compound class of 5,[60] was not observed. Instead, these modifications increased CYP11B2 

inhibition by 3−28-fold, thus leading to a reduction of selectivity (Table 1). Replacement of the 

central pyridine moiety by other heterocycles, with the N remaining at the same position to retain 

selectivity[41] (Table 2), reduced the potency compared to 3 (IC50 = 107 nM), as it was observed 

with the pyridazine (38), pyrazine (39) and pyrimidine (40) compounds. This might be due to the 

electron withdrawing property of the additional nitrogens altering the electrostatic potential of the 

whole molecule. Interestingly, annulation of a benzene moiety resulting in isoquinoline (41) 

slightly increased inhibition (IC50 = 87 nM) at the expense of selectivity, which was reduced to 

3.5. 

Table 2. Inhibition of CYP11B1 and CYP11B2 by Compounds 38−41.  

  

Comp Het 
CYP IC50 (nM)a,b 

SFc 
11B1 11B2 

3d 
 

107 1423 13.3 

38 
 

1711 4539 2.7 

39 
 

610 1025 1.7 

40 
 

1122 > 5000 > 5 

41 

 

87 302 3.5 

metyrapone 15 42 4.8 

aMean value of at least three experiments. The deviations were <25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 /IC50 CYP11B1. dSee ref[43], IC50 

values differ due to different enzyme sources. 
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Therefore, the pyridine moiety was considered as the most suitable central ring balancing potency 

and selectivity and was retained in the further optimization process. Subsequently, the exchange 

of the heme-complexing imidazolyl by other N-containing heterocycles was investigated as well 

(Table 3). 3-Pyridine (44) and isoquinoline (46) significantly enhanced the inhibitory potency to 

32 and 6 nM, respectively, compared to imidazole 3 (IC50 = 107 nM), whereas the 4-pyridine 

compound 45 showed a similar inhibition of CYP11B1 with an IC50 value of 98 nM. By contrast, 

the exchange of imidazolyl by pyrimidine (47) led to a reduction of inhibition (IC50 = 240 nM), 

probably due to the fact that the electron density on the heme-coordinating N was reduced by the 

withdrawing effect of the second N. Although both 3-pyridine and isoquinoline enhanced 

inhibition, only the 3-pyridyl analogue 44 preserved a similar selectivity factor of 10 compared to 

3 (SF = 13), whereas the isoquinoline compound 46 exhibited a reduced selectivity of 4.  

Table 3. Inhibition of CYP11B1 and CYP11B2 by Compounds 44−54, 57, 60, and 61.  

   

Comp 
 

R3 
CYP IC50 (nM)a,b 

SFc 
11B1 11B2 

3d 
 

 107 1423 13.3 

44 
 

 32 322 10.1 

45 
 

 98 621 6.4 

46 

 

 6 23 4.2 

47 
 

 240 3111 12.9 

48 

 

4-Me 8 19 2.4 

49 5-Me 2.2 33.2 15.1 

50 5-CONH2 427 2924 6.9 

51 5-F 125 419 3.4 

52 5-CF3 38 116 3.0 

53 5-OMe 5 25 5.1 

54 5-OH 51 836 16.4 

57 5-Ph 1.3 0.5 0.4 

60   1015 1800 1.9 

61   > 5000 > 5000  

metyrapone 15 42 4.8 

aMean value of at least three experiments. The deviations were <25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 /IC50 CYP11B1. dSee ref[43], IC50 

values differ due to different enzyme sources.  



 32 

Moreover, the isosteric exchange of the methylene bridge by O (60) or NH (61) led to a dramatic 

reduction of activity (IC50 values of 1015 and > 5000 nM, respectively). This probably indicates a 

hydrophobic region around the bridge, where these polar moieties are not tolerated. Therefore, 

optimizations of 3 (IC50 = 107 nM, SF = 13) via substitution on the methylene bridge, replacement 

of the central pyridine moiety by other N-containing heterocycles and isosteric exchange of the 

methylene bridge led to an increase of CYP11B1 inhibition in some cases. However, selectivity 

over CYP11B2 decreased. In contrast, the exchange of the heme-complexing imidazolyl by 3-

pyridyl resulted in a more potent but similarly selective compound 44 (IC50 = 32 nM, SF = 10), 

which was regarded as a suitable scaffold for further optimization. Additional substituents with 

various profiles in terms of bulkiness, electronic properties, and H-bond acceptor and donor 

characteristics were introduced to the 3-pyridyl ring. The electron withdrawing groups 5-CONH2 

and 5-F (compounds 50 and 51) strongly reduced CYP11B1 inhibition by 13- and 4-fold to 427 

and 125 nM, respectively, compared to the non-substituted compound 44 (IC50 = 32 nM). Similar 

effects have also been observed in other classes of CYP11B inhibitors.[60-61] By contrast, 

compound 52 (5-CF3), as an exception, showed a similar inhibition of CYP11B1 (IC50 = 38 nM) 

as the non-substituted compound 44. However, the electron-rich groups significantly improved the 

inhibitory potency, resulting in IC50 values lower than 10 nM. The 4-Me compound 48 showed an 

IC50 value of 8 nM but a reduced selectivity of 2.4 compared to the nonsubstituted compound 44 

(SF = 10). Shifting of the Me group into the 5-position (compound 49) further elevated the 

inhibitory potency, leading to an IC50 value of 2 nM, which is over 50-fold more potent than 3. 

More important is that the selectivity was also enhanced to 15. 5-Ph substitution at the pyridyl led 

to the most potent compound in this study (compound 57, IC50 = 1.3 nM), albeit with a reduced 

SF of 0.4. These results are probably caused by the bulky phenyl group occupying an additional 

hydrophobic pocket near the heme, leading to the elevated inhibition of both CYP11B1 and 

CYP11B2. As expected, a 5-OMe substituent (53) improved the inhibition to 5 nM, whereas the 

SF was reduced to 5.1. By contrast, compound 54, hydroxylated in the 5-position, exhibited a 

slightly reduced inhibition of CYP11B1 (IC50 = 51 nM) compared to the parent compound but 

achieved the highest SF in this study of 16.4. The optimization process yielded many compounds 

that are more potent than the lead compound 3. Some compounds (23, 27, 46, 48, 49, 53, and 57) 

are more potent than the clinically used drug metyrapone (IC50 = 15 nM, SF = 4.8). More 

importantly, among them, compound 49 is also more selective (SF = 15) than metyrapone.  
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3D-QSAR Study. The CYP11B1 crystal structure is not resolved yet, however, a homology model 

was reported before.[29] We decided to employ a ligand based approach to further illustrate the 

structure−activity relationship and built a 3D-QSAR model using the software Open3DQSAR.[62] 

Compounds 22, 40, 46, 49, and 51 were used as the test set to validate the predicting ability of the 

model, whereas the remaining 26 compounds including 3, 4, and 62 were employed as the training 

set. Molecular interaction fields (MIF) regarding steric effects and electrostatic potential were 

calculated for all compounds within a grid box around the molecules with a 0.5 Å step size and a 

5.0 Å margin. The MIF parameters were subsequently regressed with inhibitory potency (pIC50) 

using partial least-squares analysis (PLS). The model was further improved by using smart region 

definition (SRD) and fractional factorial design (FFD) methods. The cross validation of the model 

using the leave-many-out paradigm and challenging the model with the test set compounds 

revealed a q2
L20%O value of 0.836 with a standard deviation of error of calculation (SDEC) of 0.315 

and an r2 

value of 0.958 with a standard deviation of error of prediction (SDEP) of 0.207, indicating 

a high accuracy of prediction (Figure 8).  

 

Figure 8. Predicted vs. determined pIC50 values for both training set (black) and test set compounds (purple).  

The 3D-QSAR model revealed that in area 1, which is located around the distal pyridyl and 

opposite to the N atom, bulky groups are advantageous (Figure 9A, area 1, green). Above the 

methylene bridge, medium-sized groups are favored (Figure 9A, area 2, green), whereas right 

outside of these regions, bulky substituents are prohibited (Figure 9A, area 3, yellow). Areas 

beneath the methylene bridge and near the sp2-hybridized N do not tolerate bulky groups either 

(Figure 9A, area 3, yellow). Moreover, discrete regions around the heme-coordinating pyridyl, the 

methylene bridge and the core show preference for groups with positive partial charges (Figure 

9B, cyan). In contrast, no predilection for negative partial charges was observed at the same level. 

No suggestions were made around the western aromatic moiety due to the limited number of 
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different rings in this area present in the training set. According to these results, further 

modifications seem to be reasonable to potentiate the inhibitory potency, such as introduction of 

bulky substituents onto the meta- or para-positions of the distal pyridine as well as hydrophobic 

groups of suitable size onto the methylene bridge. However, one should have in mind that these 

modifications would increase lipophilicity of the compounds with eventual adverse effects on 

pharmacokinetic properties. 

 

Figure 9. Illustration of the PLS pseudo-coefficient contour maps of the 3D-QSAR model with the superposed 

compounds from both training and test sets. (A) Steric effects. Green (level: 0.015) indicates bulky groups are favored, 

whereas yellow (level: −0.015) indicates bulky moieties are prohibited. (B) Electrostatic potential. Cyan (level: 0.005) 

indicates groups with positive partial charges are favored.  

Selectivities over CYP17A1 and CYP19A1. Because of the crucial roles of CYP17A1 and 

CYP19A1 in the biosynthesis of androgens and estrogens, the inhibitors of CYP17A1[63-64] and 

CYP19A1[65-68] have been applied in clinic for the treatment of prostate and breast cancer, 

respectively. 

Table 4. Inhibition of CYP17A1 and CYP19A1 by Compounds 20, 44, and 49. 

Comp inhibition (%)b 

CYP17A1a,c CYP19A1a,d 

3 2 0 

20 13 1 

44 4 0 

49 5 1 

metyrapone 3 0 

aMean value of at least three experiments. The deviations were <25%. bCompound concentrations 2 μM. Inhibition 

values ≤5% are not significant. cE. coli expressing human CYP17A1; substrate progesterone, 25 μM. dHuman 

placental CYP19A1; substrate androstenedione, 500 nM.  
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However, as for CYP11B1 inhibitors, the inhibition of these enzymes would lead to severe side 

effects due to the same reason. The selectivities over CYP17A1 and CYP19A1 are therefore 

important safety criteria, and inhibition of these enzymes by the selected compounds 20, 44, and 

49 was determined (Table 4). As the tested inhibitors exhibited IC50 values below 35 nM toward 

human CYP11B1, a more than 50-fold higher concentration (2 μM) was regarded as sufficient for 

the determination of CYP17A1 and CYP19A1 inhibition. Compound 20 showed only 13% 

inhibition of CYP17 at a concentration of 2 μM, whereas compounds 44 and 49 were considered 

as inactive as they exhibited no significant inhibition (≤5% at 2 μM). Because these compounds 

are very potent against CYP11B1 (IC50 < 35 nM), they were regarded to be selective over 

CYP17A1. As for CYP19A1, none of the compounds showed inhibitory effects at a concentration 

of 2 μM. These selectivity profiles guarantee no interference with the production of androgens and 

estrogens under therapeutic doses. 

 

Selectivities over Hepatic CYP2A6 and CYP3A4. Because CYP2A6 and CYP3A4 play important 

roles in the metabolism of xenobiotics and drugs, compound 49 was tested for inhibition of these 

enzymes. 49 showed IC50 values of 106 μM for CYP2A6 and 1.1 μM for CYP3A4, respectively. 

In spite of the moderate CYP3A4 inhibition, the safety margin should be sufficient due to the high 

potency toward CYP11B1 (IC50 = 2 nM, factor of 550).  

 

Inhibition of Rat CYP11B1. As 3 showed a poor inhibition of the rat enzyme (IC50 > 10000 nM), 

compound 49 was evaluated for rat CYP11B1 inhibition to identify a new candidate for in vivo 

experiments in rats. Indeed, compound 49 not only elevated the inhibition of human CYP11B1 

but also enhanced the inhibition of the rat enzyme to an IC50 of 2440 nM (mean value of more than 

three repeats). As we have observed with aldosterone synthase (CYP11B2) inhibitors, in vitro 

activities in this range are sufficient to elicit biological effects in rats.[56]  

 

In Vitro Metabolic Stability. Compound 49 showed a moderate metabolic stability toward rat liver 

S9 fraction with a half−life (t1/2) of 16 min (mean value of more than three repeats) as well as an 

extraordinary metabolic stability toward human liver S9 fraction (t1/2 > 150 min) and human and 

rat plasma (t1/2 > 150 min). These properties make compound 49 an appropriate candidate for a 

further proof of concept in rats.  

 

Cytotoxicity. The cytotoxicity of compound 49 was evaluated in HEK293 cells with doxorubicin 

as positive control and rifampicin as negative control. After 24 h of incubation, the compounds 

showed LC50 values of 61.4, 4.3, and >100 μM (mean value of more than three repeats), 
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respectively. Thus, the cytotoxic effect of compound 49 was only weak and should not give rise 

to problems in vivo due to the strong in vitro CYP11B1 inhibitory activity of 49 and the low 

therapeutic doses necessary. 

CONCLUSION 

For a better management of Cushing’s syndrome, CYP11B1 inhibitors that are more potent and 

selective than the clinically used drug metyrapone are urgently needed. Optimizations have been 

performed with the previously identified CYP11B1 inhibitor 3 regarding the potency toward the 

human enzyme as well as the selectivity over CYP11B2 (SF = 13). Modifications such as the 

introduction of various substituents onto the methylene bridge and the heme Fe-complexing 

pyridyl ring, replacement of the central pyridine moiety and the imidazolyl ring by other 

heterocycles and the isosteric exchange of the methylene bridge with NH or O have been 

performed. These efforts resulted in potent CYP11B1 inhibitors with IC50 values lower than 10 

nM (compounds 46, 48, 49, 53 and 57). Among them, compound 49 turned out to be the best one, 

with an IC50 value of 2 nM toward CYP11B1 (50-fold more potent than 3). This compound also 

showed selectivities over CYP11B2 (SF = 15), CYP17A1, and CYP19A1 as well as hepatic 

CYP2A6 and CYP3A4. To facilitate proof of concept (in vivo) studies with the best compound 49, 

inhibition of rat CYP11B1 was investigated and a moderate activity was found (IC50 of 2440 nM, 

3 > 10000 nM). Satisfying metabolic stabilities in both plasma and liver S9 fractions from human 

and rat origin as well as a negligible cytotoxicity were observed. Because these profiles are clearly 

superior to that of metyrapone and 3, compound 49 can be considered as a candidate for further in 

vivo studies in rats.  
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3.2. Lead Optimization Generates CYP11B1 Inhibitors of Pyridylmethyl 

Isoxazole Type with Improved Pharmacological Profile for the Treatment of 

Cushing’s Disease 

Results described in this chapter were published in 2017 in J. Med. Chem.  

https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.7b00437 

 

Reprinted with permission from J. Med. Chem. 2017, 60, 5086−5098. 

Copyright: © 2017 American Chemical Society. 
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INTRODUCTION 

Cushing’s disease, a rare endogenous syndrome with an incidence of 1–2 cases per million 

population[69], is mainly caused by a pituitary adenoma overproducing adrenocorticotropic 

hormone (ACTH).[12] As a consequence, plasma cortisol levels are abnormally elevated and 

patients suffer from diabetes mellitus, hypertension, osteoporosis or psychological 

dysfunctions.[69] Usually, surgical removal of the tumor is the first-line treatment with remission 

rates of 65–90%.[70] However, the recurrence rate is about 10-20%[70] and surgery bears the risk of 

pituitary gland damage. In addition, tumors are not always accessible. Alternatively used radiation 

therapy exhibits a delayed response (2–5 years) and high risk of hypopituitarism.[38] Medications 

which are targeting steroid 11β-hydroxylase (CYP11B1, catalyzes the last step of cortisol 

biosynthesis, Scheme 5), such as the inhibitors metyrapone and ketoconazole (Figure 10), are 

widely used in the clinic.[20]  

Scheme 5. Biosynthesis of cortisol and aldosterone  

 

 

Furthermore, the potent 11β-hydroxylase inhibitor osilodrostat (LCI699, Figure 10) was 

investigated in a phase 2 study as potential new treatment for Cushing’s disease.[23] However, all 

of them induce various side-effects (e.g. hirsutism, acne, hypertension, hypokalemia, 

hypogonadism, rash) caused by additional inhibition of other steroidogenic CYP enzymes such as 

aromatase (CYP19A1), 17α-hydroxylase-17,20-lyase (CYP17A1) or aldosterone synthase 

(CYP11B2).[23, 38, 71] In fact, selective inhibition is challenging especially towards CYP11B2 

(catalyzes the last steps of aldosterone biosynthesis, Scheme 5) since CYP11B1 exhibits a 

sequence identity of 93% to its isoenzyme.[29] 
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Figure 10. CYP11B1 inhibitors. 

Nevertheless, beside the successful development of selective CYP17A1[63-64, 72-73] and CYP19A1 

inhibitors[65-68], we identified highly potent and selective CYP11B2 inhibitors[56, 61, 74-78] which are 

active in vivo.[56] In addition, we recently published the first selective human CYP11B1 

inhibitors.[41-43, 60] In the class of imidazolylmethyl pyridine type of compounds, 3-4 and 63-66 

(Chart 3, IC50= 47–122 nM, SF (IC50CYP11B2/ IC50CYP11B1)= 6–15)[41, 43] were the most active 

and selective ones, which were subsequently optimized regarding potency and selectivity. 

[Chapter 3.1[42]] Exchange of the heme-complexing imidazol-1-yl ring for 5-Me- or 5-OMe-

pyridin-3-yl led to improved compounds regarding potency (49 and 53, Chart 3, IC50= 2–4 nM, 

SF= 6–17). [Chapter 3.1[42]] Inhibitor 49 exhibited selectivities over CYP17A1, CYP19A1 and 

hepatic CYP enzymes (CYP2A6, CYP3A4) as well as negligible cytotoxicity and satisfying 

metabolic stability in human and rat liver S9 fraction. [Chapter 3.1[42]] 

 

Subsequent biological results of 49. Despite the previously shown good in vitro pharmacological 

profile of 49 [Chapter 3.1[42]] in subsequent studies, it became apparent that 49 is a promutagen in 

the TA98 strain (frameshift mutation) of Salmonella typhimurium and, therefore, a potential 

carcinogen. Furthermore, a pharmacokinetic study in rats revealed a very low oral bioavailability 

(F= 2%) of 49. Associated calculated pharmacokinetic parameters of 49 after a single dose in rats 

are summarized in table 5. After intravenous application (i.v., 1 mg/kg), a maximum plasma 

concentration (Cmax) of 4.4 µM and a moderate half-life (t1/2) of 1.5 h was determined. Previously 

identified 49 showed a rat CYP11B1 IC50 of 2.44 µM [Chapter 3.1[42]] (in vitro) and hence plasma 

levels required for a therapeutic effect were reached after i.v. administration. In contrast, following 

peroral application (p.o., 2 mg/kg), only low plasma levels (Cmax= 0.1 µM) were obtained. Based 

on the resulting poor oral bioavailability (F= 2%), 49 was rejected as a potential candidate for 

preclinical development.  
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Table 5. Key pharmacokinetic parameters of 49 after a single dose in rats.a,b 

 

Route 

Dose 

[mg/kg] 

Cmax
 

[µM] 

Tmax 

[h] 

T1/2 

[h] 

Vdss 

[L/kg] 

CL 

[mL/min·kg] 

AUC0-∞ 

[ng·h/mL] 

F 

[%] 

i.v. (n=2) 1  4.4  1.5 2.8 21.7 775  

p.o. (n=3) 2 0.1 0.3 0.9   28.4 2 

aData are mean values. bAbbreviations: i.v., intravenous; p.o., per oral; Cmax, peak plasma concentration of a drug 

after administration; Tmax, time to reach Cmax; T1/2, elimination half-life; Vdss, volume of distribution at steady 

state; CL, plasma clearance; AUC, area under the concentration−time curve; F, bioavailability. 

DESIGN CONCEPT FOR LEAD OPTIMIZATION  

Due to the low oral bioavailability in rats of 49, the inhibitor is a poor candidate for preclinical 

development. This encouraged us to perform lead optimization of 49 to obtain other candidates 

for in vivo studies with the challenge to retain CYP11B1 selectivity and potency. There are several 

possible reasons for low oral bioavailability in vivo such as low aqueous solubility, low 

permeability, high first-pass metabolism in the liver or high renal clearance.  

Chart 3. Lead optimization to find suitable candidates for in vivo evaluations. 

 

 

The calculated log D (pH= 7.4) value for 49 is 3.7[79] and, therefore, structural optimization aiming 

for more polar compounds should balance solubility and permeability properties of the inhibitors 
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under in vivo conditions. Furthermore, the modification of electronic properties and molecular 

geometry of 49 was expected to influence CYP11B1 potency, selectivity over CYP11B2 and in 

vivo pharmacokinetics. Previously, the influence of substitution at the central pyridine ring of the 

imidazolylmethyl pyridine class was explored extensively.[43] Substituents in 2-position of 

pyridine exemplified in 3-4 and 63-66 (R1, Chart 3) improved CYP11B1 inhibition and exhibited 

the best effect on selectivity over CYP11B2 (Table 6). However, a distinct trend within these 

inhibitors could not be identified as the introduced substituents vary in terms of polarity, electronic 

properties and size. Consequently, the phenyl moiety in 49 was substituted with the most 

promising of these substituents (2-F-Ph, furan-3-yl). The 3-NH2-Ph, benzo[b]thiophene and 

naphthalene-1-yl compounds were not synthesized due to anticipated toxicity (carcinogenicity)[80] 

and solubility (lipophilicity) issues. As the possible carcinogen 64 (3-NH2-Ph) exhibited the 

highest selectivity in this series, further hydrophilic substituents differing in size and electronic 

properties such as N-phenylmethanesulfonamide, pyrazoles or polar non-aromatic cycles were 

introduced. To investigate the influence of the molecular shape on selectivity, heteroatom linkers 

(-S-, -SO2-) were used. In the imidazolylmethyl pyridine class exchange of the pyridine core by 

furan or thiophene caused an increase in CYP11B1 potency, but a loss of selectivity towards 

CYP17A1 or CYP19A1.[41] Hence, it could be assumed that the aromatic N is essential for 

selectivity and change of the molecular geometry by introduction of 5-membered heterocycles is 

beneficial for CYP11B1 potency. For further investigation, several azoles differing in electronic 

and steric properties were introduced into the selective lead compounds 3 and 49 with the phenyl 

substituent next to the aromatic N. The optimized central core was subsequently incorporated into 

very potent and moderately selective 53 to get a variety of candidates for further biological 

evaluation. Thus, 27 structurally diverse novel compounds were obtained and evaluated for 

inhibition of CYP11B1 and selectivity towards CYP11B2. Selected inhibitors were further tested 

for CYP17A1 and CYP19A1 inhibition, metabolic stability, toxicity and inhibition of hepatic CYP 

enzymes (CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4). Candidates which exhibited a good 

pharmacological profile were also tested for inhibition of rat CYP11B1 and metabolic stability in 

rat liver S9 fraction. Preliminary pharmacokinetic experiments were performed with the best 

inhibitors to find a suitable candidate for clinical use.  
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CHEMISTRY 

The synthesis of the (5-Me-pyridin-3-yl)pyridine derivatives 67–77 (Scheme 6) was performed 

using the common building block 95, a 3:1 mixture of 2-chloro and 2-bromo compounds. 95 was 

accessible from racemic alcohol 94, which was converted into the chloride by thionyl chloride and 

reductively dehalogenated to obtain 95. The aromatically substituted target compounds 67-71 were 

synthesized using 95 and the corresponding organoboranes under cross coupling conditions.  

Scheme 6. Synthesis of compounds 67-77a 

    

aReagents and conditions: (a) thionyl chloride, 60 °C, 3 h, then Zn, CH3COOH, rt, 24 h. (b) various coupling 

conditions= for 68, 69: method A: corresponding boronic acid, Pd(PPh3)4, Na2CO3, toluene/ EtOH/ H2O, reflux, 4 h 

or overnight; for 67, 71: method G: corresponding boronic acid or boronic acid pinacol ester, Pd(OAc)2, SPhos, LiOH 

(2M), dioxane, 90 °C, 20 h; for 70: boronic acid pinacol ester, Cs2CO3, PdCl2(dppf), DME, water, reflux, overnight; 

for 72, 73: corresponding amine, NaOEt, Pd(OAc)2, SPhos, toluene, 80 °C or reflux, overnight; for 74, 76: 

corresponding thiol, Cs2CO3, DMSO or dimethylacetamid, 90 °C or 150 °C, overnight. (c) corresponding thioether, 

potassium peroxymonosulfate, EtOAc, rt, 4 h. 

In terms of the N-substituted compounds 72 and 73 Buchwald-Hartwig amination of 95 was 

applied, whereas thioethers 74 and 76 were synthesized via nucleophilic attack of the 

corresponding thiolate at 95. Oxidation of thioethers 74 and 76 with potassium peroxymonosulfate 

resulted in the final sulfone compounds 75 and 77. The synthesis of the 4- and 5- substituted 3-

phenylisothiazoles 78–81 (Scheme 7) was performed from the ester-substituted isothiazoles 97 

and 98, which were obtained by decarboxylation of the oxathiazolone 96 and subsequent 1,3-

dipolar cycloaddition with ethyl propiolate.[81] Subsequently, the esters 97 and 98 were reduced to 

the alcohols, transferred into the bromines 99, 100 and reacted to the target compounds 78–81 via 

nucleophilic substitution or Suzuki reaction.  
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Scheme 7. Synthesis of compounds 78-81a 

 

aReagents and conditions: a) ethyl propiolate, CH3Cl, 160 °C, 25 min, 300 W, microwave oven. b) LiAlH4, 

THF, -40 °C, 1 h. c) PPh3, CBr4, DCM, 0 °C–rt, 1 h. d) for 78, 80: method E: imidazole, K2CO3, DMF, 120 °C, 2 h; 

for 79, 81: method A: corresponding boronic acid, Pd(PPh3)4, Na2CO3, toluene/ EtOH/ H2O, reflux, 4h or overnight. 

The 5-membered heteroaromatic derivatives 82–93 (Scheme 8) were synthesized applying 

different routes, in which corresponding halogenomethyl or hydroxymethyl compounds 107–112 

were common intermediates. Bromomethyl thiazole 107 was prepared from 2-bromo-5-

methylthiazole 101 by coupling with phenylboronic acid and subsequent bromination under Wohl-

Ziegler conditions. Intramolecular oxidative cyclization of N-allylbenzamide 102 using 

N-bromosuccinimide (NBS)[82] led to a chloride and bromide (3:1) oxazole mixture 108, whereas 

1,3-dipolar cycloaddition of (E)-benzaldehyde oxime 103 and propargyl bromide[83] resulted in a 

chloride and bromide (1:3) isoxazole mixture 109. In terms of the bromomethyl selenazole 110, 

propargyl selenoamide was first cycloisomerized to methyl selenazole 104 and then brominated 

with NBS.[84] Introduction of bromine to methyl 1-methyl-1H-imidazole-5-carboxylate (105) 

under Wohl- Ziegler conditions, Suzuki coupling and subsequent reduction led to hydroxymethyl 

imidazole 111. Furthermore, reduction of 1-methyl-3-phenyl-1H-pyrazole-5-carboxylic acid 106 

to the alcohol and further reaction with phosphorus tribromide resulted in the bromomethyl 

pyrazole 112. Finally, the desired imidazol-1-yl and pyridin-3-yl derivatives 82–92 were obtained 

either by substitution of the halogen or hydroxyl with an imidazol-1-yl or Suzuki reaction of 

intermediates 107–112. Moreover, N-demethylation of 1-Me-pyrazole 92 using pyridine 

hydrochloride resulted in the pyrazole 93.  
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Scheme 8. Synthesis of compounds 82-93a 

 

aReagents and conditions: a) method A: corresponding boronic acid, Pd(PPh3)4, Na2CO3, toluene/ EtOH/ H2O, reflux, 

4 h; for 91: corresponding boronic acid pinacol ester, PdCl2(dppf), Cs2CO3, DME/ H2O/ EtOH, 150 W, 150 °C, 20 

min, microwave oven. (b) method D: NBS, DBPO, CCl4, 60 °C or reflux, 12 h or 48 h. c) NBS, 1,2-dichloroethane, 

100 °C, 24 h. d) propargyl bromide (80% in toluene), Et3N, DCM, 12% aq. sodium hypochlorite, rt, 8 h. e) AIBN, 

NBS, CCl4, hν (300 W) for 2 h, then 12 h, rt. f) THF, LiAlH4, 0 °C or 0 °C–rt, 1 h or 12 h. g) PBr3, THF, 0 °C - rt, 20 

h. h) method E: imidazole, K2CO3, DMF, 120 °C, 2 h; for 20: NMP, CDI, 190 °C, 16 h. i) pyridine hydrochloride, 2.5 

h, 200 °C, 200 W, microwave oven. 

IN VITRO BIOLOGICAL RESULTS AND DISCUSSION 

Inhibition of Human CYP11B1 and CYP11B2. Inhibitory potencies of the target compounds 67–

93 were determined using V79MZ cells expressing either recombinant human CYP11B1 or 

CYP11B2, with [3H]-labeled 11-deoxycorticosterone as substrate. Obtained IC50-values are shown 

in tables 6–7 in comparison to metyrapone and osilodrostat. Ortho-substitution of the phenyl 

moiety in 49 (IC50= 2 nM, SF (IC50CYP11B2/ IC50CYP11B1)= 17) with electron withdrawing and 

lipophilic fluorine led to the similarly potent, but less selective compound 67 (Table 6, IC50= 3 

nM, SF= 9). In case of substitution in 3-position with an electron withdrawing, but hydrophilic 

methylsulfonamide a very similar result was obtained (68, IC50= 2 nM, SF= 8). Exchange of 

phenyl for π-electron rich and hydrophilic furan-3-yl (69, IC50= 4 nM, SF= 7) was not appropriate 

to increase selectivity towards CYP11B2 either. Introduction of π-electron rich and hydrophilic 1-

Me-pyrazoles resulted in a loss of potency towards both enzymes (70, 71, IC50= 16–42 nM, SF= 

4–6). Interestingly, exchange of the phenyl by the non-aromatic, hydrophilic, H-bond acceptor 

morpholin-4-yl (72) or the hydrophilic H-bond donor cyclopropylamine (73) did not change the 

inhibitory potency for CYP11B1 and CYP11B2 much (Table 6, IC50= 4–22 nM, SF= 4–8). 

Moreover, introduction of a -S- or -SO2- linker (74, 75) between the central pyridine and the phenyl 
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moiety led to similar findings (Table 6). Ortho-fluorine inserted into the phenyl moiety of 74 and 

75 enhanced inhibitory potency for CYP11B1, but did not improve selectivity (76, 77, IC50= 2–3 

nM, SF= 8–9). Hence, structural diverse substituents in 2-position of the central pyridine core 

exhibiting various profiles concerning electronic properties, bulkiness and H-bond acceptor or 

donor properties were tolerated by both enzymes. Nevertheless, six compounds (67–69, 73, 76, 

77) inhibited CYP11B1 with IC50-values of less than 5 nM and exhibited good selectivity over 

CYP11B2 (SF= 7–9), thus exceeding the references metyrapone (IC50= 15 nM, SF= 5) and 

osilodrostat (IC50= 3 nM, SF= 0.07). 

Table 6. Inhibition of CYP11B1 and CYP11B2 by compounds 67–77. 

    

Comp R1/R2 
CYP IC50 (nM)a,b  

SFc 
11B1 11B2  

3d Ph 107 1423  13 

63d 2-F-Ph 122 767  6 

64d 3-NH2-Ph 85 1243  15 

65d Furan-3-yl 112 775  7 

66d 3-Benzo[b]thiophene 47 375  8 

4d Naphthalen-1-yl 68 656  10 

49e Ph 2 33  17 

67 2-F-Ph 3 27  9 

68 3-NHSO2Me-Ph 2 16  8 

69 Furan-3-yl 4 28  7 

70 1-Me-1H-pyrazol-4-yl 42 182  4 

71 1-Me-1H-pyrazol-5-yl 16 97  6 

72 Morpholin-4-yl 22 90  4 

73 Cyclopropanamine 4 32  8 

74 PhS- 5 30  6 

75 PhSO2- 20 173  9 

76 2-F-PhS- 3 24  8 

77 2-F-PhSO2- 2 17  9 

metyrapone 15 72  5 

osilodrostat  3 0.2  0.07 

aMean value of at least two experiments. The deviations were <25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 / IC50 CYP11B1. dSee reference [43], 

IC50 values differ due to different enzyme sources. eSee chapter 3.1[42].   
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Replacement of the central pyridine in imidazolylmethyl pyridine 3 (IC50= 107 nM, SF= 13) by π-

electron rich 5-membered heterocycles led to differing results (Table 7).  

Table 7. Inhibition of CYP11B1 and CYP11B2 by compounds 78–93. 

    

 
Comp 

CYP IC50 (nM)a,b 

SFc 

 

Comp R3 

CYP IC50 (nM)a,b 

SFc 

11B1 11B2  11B1 11B2 

 
 

3d 107 1423 13 

 49d Me 2 33 17 

 53d OMe 4 25 6 

 
78 57 174 3  79 Me 48 152 3 

 
80 14 120 9  81 Me 1 8 8 

 
82 62 459 7  88 Me 9 24 3 

 
83 150 520 4  89 Me 14 116 8 

 
 

84 148 1304 9 
 90 Me 5 82 16 

 91 OMe 2 27 14 

 
85 104 657 6       

 
86 516 507 1       

 
87 58 215 4  92 Me 1 6 6 

 
     93 Me 137 586 4 

- metyrapone 15 72 4       

- osilodrostat 3 0.2 0.07 
      

aMean value of at least two experiments. The deviations were <25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 / IC50 CYP11B1. dSee chapter 3.1[42]. 

Pyridine isosteres isothiazoles 78 and 80 and thiazole 82 caused increased CYP11B1 inhibitory 

potency (IC50= 14–62 nM), but also a loss of selectivity towards CYP11B2. Here, the 3,5-

disubstituted isothiazole 80 (IC50= 14 nM, SF= 9) demonstrated a 4-fold increased potency for the 

target enzyme with a better selectivity compared to the 3,4-disubstituted compound 78 (IC50= 57 
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nM, SF= 3). Interestingly, bioisosteric selenazole 85 (IC50= 104 nM, SF= 6) was not as potent and 

selective as thiazole 82. Exchange of the thiazole for the more electronegative and less bulky 

oxazole (83) or isoxazole (84) led to decreased CYP11B1 inhibition (IC50= 148–150 nM). Here, 

differences regarding electronegativity (O > S, Se) or molecular geometry (size: Se, S > O) might 

influence interaction with the target enzyme. Furthermore, introduction of 1-Me-imidazole (86) 

led to a significant decrease in CYP11B1 inhibition (IC50= 516 nM) with improved potency for 

CYP11B2 (SF=1). Obviously, the N-methyl group is not tolerated by the CYP11B1 enzyme in 

this position, in contrast to the N-methylated pyrazole 87 (IC50= 58 nM). However, 87 is less active 

than the corresponding isothiazole compound 80, which showed an 8-fold improvement of 

CYP11B1 inhibition compared to 3, but a slight loss of selectivity over CYP11B2. Compared to 

the imidazolylmethyl class, similar results were obtained by exchange of the central pyridine in 

49 with π-electron rich 5-membered heterocycles (Table 7). In compounds of the pyridylmethyl 

class, introduction of thiazole did not lead to an enhanced inhibition of the target enzyme (88, 

IC50= 9 nM, SF= 3), though. The isoxazole compound 90 showed only a slight decrease of potency, 

but a retained selectivity (IC50= 5 nM, SF= 16). Hence, isoxazole is a suitable replacement for the 

central pyridine of 49 and derivatization according to 53 was performed (exchange of 5-Me by 5-

OMe) to obtain another potent and selective candidate. Thereby, CYP11B1 inhibition could be 

enhanced (91, IC50= 2 nM, SF= 14). The pyrazole 93 exhibited reduced activity towards the target 

enzyme, indicating that a hydrogen bond donor is not well tolerated. Modification of the central 

pyridine in 49 led to four novel inhibitors with IC50 values of ≤ 5 nM (81, 90–92) with isoxazoles 

90 and 91 (IC50= 2–5 nM, SF= 14–16) showing similar selectivity over CYP11B2 as 49 (IC50= 2 

nM, SF= 17). It is worth mentioning that 90 and 91 were more potent and selective than the 

clinically used inhibitor metyrapone (IC50= 15 nM, SF= 5) or the recently published osilodrostat 

(IC50= 3 nM, SF= 0.07). Albeit significant improvement of CYP11B1 inhibitory potency was 

achieved in the imidazolylmethyl class, the 5-Me-pyridin-3-ylmethyl analogues showed stronger 

inhibition of the target enzyme. Compounds 90 (IC50= 5 nM) and 91 (IC50= 2 nM), exhibiting 

selectivity factors above 10, were chosen for further biological evaluation. 

 

Inhibition of Rat CYP11B1. Inhibition of rat CYP11B1 by isoxazoles 90 and 91 was determined 

in V79MZ cells expressing recombinant rat CYP11B1 as a precondition for in vivo proof-of-

principle experiments. Both inhibitors revealed similar improved potencies towards rat CYP11B1 

(90, IC50= 4.0 μM; 91, IC50= 1.8 μM) compared to metyrapone (IC50= 4.6 μM). The 1.000-fold 

lower rat CYP11B1 potency is in accordance with the low sequence identity between human and 

rat CYP11B1 (64%).[29]  
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Metabolic Stability. To achieve sufficient plasma concentrations of the parent compounds, 

metabolic stability in rat and human liver S9 fraction was determined. Isoxazoles 90 and 91 

exhibited good stabilities in human liver S9 fraction with half-lives of 145 min and 125 min, 

respectively. Furthermore, inhibitors 90 and 91 showed increased metabolic stability in rat liver 

S9 fraction (90: t1/2= 30 min, 91: t1/2= 23 min) compared to 49 (t1/2= 16 min) and metyrapone (t1/2= 

12 min). 

IN VITRO TOXICITY EVALUATION 

Selectivities over Human CYP17A1 and CYP19A1. Since both 17α-hydroxylase-17,20-lyase 

(CYP17A1) and aromatase (CYP19A1) are essential for the production of the sex steroids, their 

inhibition might cause severe side-effects such as hypogonadism[85] or hyperandrogenism,[86] 

respectively. Assays for CYP17A1 and CYP19A1 inhibition were performed with compound 

concentrations of 2 μM.[87-89] This rather high concentration was chosen to provide a selectivity 

factor of at least 400 for the highly potent CYP11B1 inhibitors 90 and 91 showing IC50 values of 

5 nM and 2 nM (Table 7). Compounds 90 and 91 exhibited no significant inhibition (Table 8, ≤ 

9% at 2 μM) and are considered as inactive. 

Table 8. Inhibition of CYP17A1 and CYP19A1 by compounds 90 and 91. 

Comp 
inhibition (%)a  

CYP17A1b CYP19A1c  

49 5 1  

90 2 3  

91 4 9  

metyrapone 3 0  

aCompounds concentration 2 μM. Inhibition ≤ 9 % is not significant. bE. coli expressing human CYP17A1; substrate 

progesterone, 25 μM. cHuman placental CYP19A1; substrate androstenedione, 500 nM. 

Selectivities over Human Hepatic CYP Enzymes. Hepatic CYP enzymes play an eminent role in 

the metabolism of drugs and their inhibition could result in adverse drug reactions or toxicity. 

Thus, derivatives 90 and 91 were tested for inhibition of a series of relevant metabolizing CYP 

enzymes, comprising CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Tested at 

a concentration of 1 μM, compound 90 showed percent inhibition values of 54%, 3%, 28%, 8%, 

0% and 61% and, compound 91 values of 23%, 19%, 17%, 17%, 8% and 33% for CYP1A2, 2B6, 
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2C9, 2C19, 2D6 and 3A4, respectively. Hence, selectivity over hepatic CYP enzymes should be 

sufficient for the highly active compounds. 

 

Cytotoxicity. The effect of compounds 90 and 91 on cell viability was tested in an MTT assay 

using HEK293 cells. No effect on cellular viability was observed up to 28 µM and 42 µM (IC20 

values) after 66 h of incubation for compounds 90 and 91, respectively. Given the strong CYP11B1 

inhibition of these compounds (IC50 ≤ 5 nM), it is expected that no cytotoxic effects will be 

observed at therapeutic concentrations.  

 

Mutagenicity. For determination of the mutagenic potential of compounds 90 and 91, AMES II 

tests were performed using TA98 (frameshift mutation) or TAMix (base-pair substitution, 

TA7001-TA7006) strains of Salmonella typhimurium in the presence or absence of rat liver S9 

fraction. The inhibitors 90 and 91 showed no mutagenic potential up to the highest tested 

concentration of 100 μM in the absence or presence of rat liver S9 fraction. 

 

Aryl Hydrocarbon Receptor Activation. Activation of the aryl hydrocarbon receptor (AhR) 

induces several biochemical responses, such as expression of CYP1A1 and CYP1A2. Both are 

responsible for the metabolic activation of promutagens, which is a potential risk for cancer 

development.[90] Compounds 90 and 91 did not show activation of the AhR in HepG2 

hepatocellular carcinoma cells at a concentration of 3.16 µM and, therefore, no interference with 

the receptor is expected at pharmacologically relevant concentrations. 

 

Cardiotoxicity. Drug-induced arrhythmia caused by blocking the cardiac potassium ion channel 

hERG (human ether-a-go-go related gene) is a potential cause for sudden death among patients. 

Compound 91 was tested using a hERG fluorescence polarization assay[91] and showed an IC50 

value of 23 µM. Due to the high CYP11B1 potency of 91 (IC50= 2 nM), the safety margin can be 

considered as sufficient. 

IN VIVO BIOLOGICAL RESULTS AND DISCUSSION 

Preliminary Evaluation of Plasma Concentrations of 90 and 91 in Rats. Based on the in vitro 

biological evaluation, inhibitors 90 and 91 are promising candidates for a proof-of-principle study 

in rats. Both compounds exhibit different physicochemical properties due to distinct scaffolds 

compared to 49. For instance, the calculated log D (pH= 7.4) value was changed from 3.7 for 49 

to 3.1 and 2.8 for 90 and 91, respectively.[79] This should balance solubility and permeability 
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properties of the compounds under in vivo conditions. In the light of the poor oral bioavailability 

of 49 (F= 2%) in rats, preliminary pharmacokinetic experiments for the novel inhibitors 90 and 91 

were performed first to show their suitability for extensive in vivo experiments. Both compounds 

should be soluble under these conditions as they exhibited good aqueous solubility (>200 µM). 

Plasma concentrations of 90 and 91 in rats were determined using a single dose of 100 mg/kg 

(perorally) per inhibitor (Figure 11). Interestingly, the 5-OMe compound 91 showed much higher 

plasma concentrations of 19.7 μM and 106.4 μM at 1 h and 4 h, respectively, than 5-Me derivative 

90 (1 h, 2.5 μM; 4 h, 0.3 μM). The required plasma levels for a therapeutic effect in rats on the 

basis of the in vitro assay (91, IC50= 2 μM; 90, IC50= 4 μM) were achieved in case of 91 and, 

therefore, the oral bioavailability of 91 was determined in rats.  

 

 

Figure 11. Plasma concentration [µM] in rat versus time after oral application (100 mg/kg) of compounds 90 and 91 

in single dosing experiments (n=1). 

Oral Bioavailability Study of 91 in Rats. The pharmacokinetic parameters of 91 were determined 

after intravenous (5 mg/kg, n= 2) and oral (28 mg/kg, n= 2) application in rats (mean values are 

listed in table 9). Mean maximal concentrations of 27.8 µM (i.v.) and 6.4 µM (p.o.) were achieved. 

As depicted in figure 12, plasma concentrations above the in vitro IC50 value for rat CYP11B1 (2 

µM) were obtained for a duration of up to 7 hours. The compound exhibited long half-lives of 4.8 

hours (i.v.) and 3.3 hours (p.o.) as well as a moderate plasma clearance of 22.6 mL/min·kg. Most 

importantly, absolute oral bioavailability (F) was determined to be 50%. In a previously published 

paper, metyrapone (IC50 in vitro rat= 5 μM) showed an ED50 of 40 mg/kg and EC50 of 3.6 μM for 

inhibition of the corticosterone biosynthesis (CYP11B1 catalyzes the last step of corticosterone 

biosynthesis in rats) in an 8 h experiment.[92] Hence, it can be assumed that inhibitor 91 is able to 

reduce corticosterone plasma levels in rats at higher doses due to high plasma concentrations and, 

therefore, it is a good candidate for a following proof-of-principle study. 
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Table 9. Key pharmacokinetic parameters of 91 after a single dose in rats.a,b 

 

Comp Route 

Dose 

[mg/kg] 

Cmax
 

[µM] 

Tmax 

[h] 

T1/2 

[h] 

Vdss 

[L/kg] 

CL 

[mL/min·kg] 

AUC0-∞ 

[ng·h/mL] 

F 

[%] 

91 i.v. (n=2) 5 27.8  4.8 3.1 22.6 3677  

 p.o. (n=2) 28 6.4 2.5 3.3   10220 50 

aData are mean values. bAbbreviations: i.v., intravenous; p.o., per oral; Cmax, peak plasma concentration of a drug 

after administration; Tmax, time to reach Cmax; T1/2, elimination half-life; Vdss, volume of distribution at steady 

state; CL, plasma clearance; AUC, area under the concentration−time curve; F, bioavailability. 

 

 

Figure 12. Mean profile (±) SD of plasma concentration [µM] in rat versus time after oral (28 mg/kg) and intravenous 

(5 mg/kg) application of compound 91 in single dosing experiments (n=2). At 4 h peroral SD = 4107 nM. Dashed line 

represents the in vitro CYP11B1 IC50 value for 91 in rat. 
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CONCLUSION 

For the treatment of Cushing’s disease, the steroid 11β-hydroxylase (CYP11B1) inhibitor 

metyrapone is used in the clinic. Very high (500-6000 mg per day) and frequent dosing (every 8 

hours) of metyrapone is needed and it causes severe side-effects due to unselective inhibition of 

other steroidogenic CYP enzymes.[38, 71] Previously, we identified the selective and very potent 

CYP11B1 inhibitor 49 (IC50= 2 nM, SF= 17), which exceeded metyrapone in CYP11B1 potency 

and selectivity (IC50= 15 nM, SF= 5) and exhibited an acceptable in vitro pharmacological profile. 

[Chapter 3.1[42]] However, further determination of mutagenicity identified 49 as promutagen in 

the TA98 strain (frameshift mutation) of Salmonella typhimurium and a pharmacokinetic study in 

rats revealed a poor oral bioavailability of 49 (F= 2%). Optimizations of 49 and the less potent, 

but selective compound 3 (IC50= 107 nM, SF= 13) were performed to obtain other candidates for 

further in vivo studies with at least similar CYP11B1 potency and selectivity. For this purpose, the 

phenyl moiety of 49 was exchanged by various substituents and the central pyridine cores of 

selective 3 and 49 were replaced by several azoles differing in electronic and steric properties. Out 

of the 27 synthesized compounds, derivatives 67–69, 73, 74, 76, 77, 81, 90–92 showed IC50 values 

of ≤ 5 nM. Among them, isoxazoles 90 and 91 exhibited the highest selectivity over CYP11B2 

(SF > 10) and, therefore, showed an improved inhibitory profile compared to the clinically used 

metyrapone (IC50= 15 nM, SF= 5) or the recently published CYP11B1 inhibitor osilodrostat (IC50= 

3 nM, SF= 0.07). Both inhibitors showed selectivities over CYP17A1, CYP19A1 and hepatic CYP 

enzymes (CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4), metabolic stability in human liver S9 fraction, 

negligible cytotoxicity, no interference with the aryl hydrocarbon receptor and for 91 negligible 

inhibition of the cardiac potassium ion channel hERG. Furthermore, both compounds exhibited 

increased metabolic stability in rat liver S9 fraction (90: t1/2= 30 min, 91: t1/2= 23 min) compared 

to 49 (t1/2= 16 min) and metyrapone (t1/2= 12 min) and moderately inhibited rat CYP11B1 (90, 

IC50= 4 μM; 91, IC50= 2 μM). Compounds 90 and 91 showed no mutagenic potential and in vivo 

PK evaluation in rats revealed sufficiently high plasma concentrations (1 h, 19.7 μM; 4 h, 106.4 

μM) for therapeutic effects in case of inhibitor 91 (100 mg/kg, perorally). Further pharmacokinetic 

study of orally applied 91 in rats demonstrated plasma levels above the required concentration for 

a therapeutic effect for up to 7 hours (28 mg/kg, perorally) and, thus, a significantly improved oral 

bioavailability of 50%. It is worth mentioning that in spite of the fact that compound 91 is much 

less active towards the rat than the human enzyme (factor of 1000), plasma levels are even high 

enough in rats to expect biological activity. Hence, a novel selective and very potent CYP11B1 

inhibitor was identified, exhibiting high lipophilic efficiency (LiPE= 5.9) and a good 

pharmacological profile with expected ability to reduce corticosterone plasma levels in vivo.  
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3.3. Accelerated Skin Wound Healing by Novel 11β-Hydroxylase (CYP11B1) 

Inhibitors  

Results described in this chapter were published in 2018 in Eur. J. Med. Chem. 

https://doi.org/10.1016/j.ejmech.2017.11.018 

 

Reprinted with permission from Eur. J. Med. Chem. 2018, 143, 591−597. 

Copyright: © 2017 Elsevier Masson SAS 
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INTRODUCTION 

Chronic wounds arise from disorders of the tightly regulated skin healing process comprising the 

overlapping phases of hemostasis, inflammation, proliferation and tissue remodeling .[93] The skin 

defect lasts more than 6 weeks or frequently recurs.[94] Non-healing wounds are mainly ulcers 

(~70%) induced by ischemia, diabetes mellitus, venous stasis disease, or pressure.[45] It is an 

enormous burden for the patient and the health care system as approximately 37 million people 

are affected worldwide.[94] Due to the aging population and a rise in obesity or diabetes, the number 

of patients is expected to increase further.[95] Associated costs for global wound care management 

are estimated to reach $22 billion per year by 2020.[96] Therefore, new therapeutic approaches are 

urgently needed to accelerate the wound healing process and to reduce costs. It has been shown 

that human skin is a steroidogenic organ expressing the corresponding enzymes for the synthesis 

of glucocorticoids, androgens and estrogens.[51] To regulate the wound healing process, the 

glucocorticoid cortisol is formed de novo from cholesterol by keratinocytes,[46, 97] which make up 

90% of the epidermis.[47] In general, excess cortisol (endogenous or exogenous) negatively 

influences the epidermal growth factor signaling, epidermal cell migration and re-epithelialization 

as well as angiogenesis, which results in inhibition of wound healing.[48, 98-99] It was demonstrated 

that in the case of an acute wound, the levels of cortisol and the enzyme catalyzing its last step of 

biosynthesis (Figure 13), 11β-hydroxylase (CYP11B1), are gradually increased in human (ex 

vivo) and porcine skin (in vivo) with a maximum at 48 h and then return to normal levels within 

the next 24 h.[46]  

 

Figure 13. Biosynthesis and regulation of local concentrations of cortisol in human. 

Acceleration of wound healing in these models was observed by topical application of high 

concentrations (1 mM) of metyrapone (Figure 14)[46], a potent CYP11B1 inhibitor (IC50 

CYP11B1= 15 nM). Another study in mice skin showed an increase of 11β-hydroxysteroid 

dehydrogenase type 1 (11β -HSD1, reduces 11-dehydrocorticosterone to corticosterone in 

rodents) expression, but a lack of CYP11B1 expression during wound healing.[48] Blockade of 11

β-HSD1 by subcutaneous application of 113 (IC50 11β-HSD1= 1.1 nM, Figure 14)[100] resulted 

in enhanced wound healing in mice (in vivo).[101]  
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Figure 14. CYP11B1 and 11β-HSD1 inhibitors for wound healing.  

In fact, metyrapone is a non-selective inhibitor of CYP enzymes[102] and, in our studies, inhibits 

11β-HSD1 (54% at 50 μM and 70% at 200 μM, Figure 14) as well. Hence, it remains unclear 

whether improved wound healing of human skin results from CYP11B1 or 11β-HSD1 (reduces 

cortisone to cortisol in human, Figure 13) inhibition. However, blockade of cortisol synthesis in 

skin seems to be a promising approach for the treatment of chronic wounds where CYP11B1 

expression is permanently increased and does not normalize, thereby blocking re-epithelialization, 

re-vascularization and wound healing.[49-50] The aim of this study was to identify an appropriate 

potent CYP11B1 inhibitor which is selective over 11β-HSD1 and demonstrates acceleration of 

wound healing in a human skin explant.  

INHIBITOR REQUIREMENTS AND OPTIMIZATION 

Usually, selectivity of CYP11B1 inhibitors over aldosterone synthase (CYP11B2, 93% 

homology)[55] is challenging to achieve.[41-43, 58, 60, 103-105] However, selectivity is not needed for 

dermal application as CYP11B2 expression and activity have not been identified in human skin.[51, 

106] In contrast, estrogens exhibit an essential role in wound healing as they influence the 

inflammatory phase, act mitogenically on keratinocytes, enhance re-epithelialization and raise 

collagen synthesis.[107] To ensure that there is no interference with this system, selectivity of 

CYP11B1 inhibitors is a precondition. Accordingly, the key enzymes 17α-hydroxylase-17,20-

lyase (CYP17A1) and aromatase (CYP19A1) should not be inhibited. Additionally, we aimed to 

achieve selectivity over 11β-HSD1 to study whether the wound healing effect can be obtained by 

selective CYP11B1 inhibition. Selectivity over 11β-hydroxysteroid dehydrogenase 2 (11β-

HSD2) should also be achieved to avoid inhibition of the conversion of cortisol to inactive 

cortisone. Furthermore, to exclude degradation in wound fluid and related poor in vivo efficacy, 

an ideal candidate should be stable in plasma, whose composition is comparable to wound 

fluid.[108] As the application site is not well defined (intact and injured skin), resorption of a 

CYP11B1 inhibitor after dermal application on wounded skin is expected.  
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Chart 4. Design Concept to Reduce Metabolic Stability 

 

Therefore, rapid systemic clearance of the absorbed potent inhibitor is desired to avoid effects on 

the adrenal steroidogenesis. Metyrapone (Figure 14) exhibits the desired stability in human plasma 

(t1/2= > 150 min), but can be significantly improved, as it shows a relatively long half-life of 49 

min in human liver S9 fractions (HLS9), which is likely to result in systemic side effects after 

dermal application on wounded skin. Previously, we discovered 114 (Figure 14) featuring an 

improved potency for CYP11B1 (IC50= 5 nM), a half-life of 16 min in HLS9 and stability in human 

plasma (t1/2= > 150 min).[52] However, beside weak CYP19A1 inhibition by 114 (26% at 2 μM)[52], 

our further studies revealed that the compound inhibits 11β-HSD1 with an IC50-value of 1.62 μM 

(Figure 14). The published wound healing experiments were performed with a high concentration 

of metyrapone (1 mM).[46] Inhibitor 114 would still inhibit 11β-HSD1 and CYP19A1 even if a 

100-fold lower concentration is used in the described wound healing experiment. Due to these 

drawbacks, 114 is not the most appropriate candidate for a proof of concept study. The structurally 

different and very potent CYP11B1 inhibitors 49, 53, 88, 90 and 92 (Chart 4) [Chapter 3.1[42], 

Chapter 3.2[104]] are more suitable candidates for further optimization due to their high selectivity 

over CYP19A1 (0-3% at 2 μM, Table 10). They mainly differ in their central core and were all 

metabolically stable (t1/2 HLS9= > 60 min). However, exchange of 5-Me-pyridin-3-yl (49, IC50= 

2 nM) by a 5-OH- pyridin-3-yl moiety in 54 [Chapter 3.1[42]], which is able to undergo conjugation 

reactions by Phase II enzymes, resulted in an expected reduced half-life of 31 min in HLS9. Since 

this modification led to a strong decrease of potency towards CYP11B1 (54, IC50= 51 nM), 
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exchange of 5-Me by 5-OH was also performed in 88, 90 and 92, [Chapter 3.2[104]] aiming at 

metabolically labile as well as potent inhibitors (115-117). Introduction of an ortho-fluorine into 

the phenyl moiety of 49 (t1/2 HLS9= > 60 min) led to 67 [Chapter 3.2[104]] exhibiting a decreased 

half-life of 50 min in HLS9. For further investigations, an ortho-fluorine was introduced at the 

phenyl moiety of the potent 5-OMe derivative 53, which is prone to ether cleavage by Phase I 

enzymes and subsequent rapid Phase II metabolism, and the labile compound 54 (5-OH) leading 

to compounds 118 and 119. Inhibitors 115-119 were biologically evaluated for CYP11B1 

inhibition and half-life in HLS9. Subsequently, selectivities over CYP17A1, CYP19A1, 11β-

HSD1 and 11β-HSD2 as well as plasma stability and toxicity were investigated for the most 

promising compounds. One selected CYP11B1 inhibitor was further evaluated for its ability to 

accelerate wound healing in human skin. 

CHEMISTRY  

Hydroxy compounds 115-117 were accessible via a two-step synthesis starting from the previously 

described halogenomethyl derivatives 109, 107 and 112 [Chapter 3.2[104]] and (5-methoxypyridin-

3-yl)boronic acid pinacol ester using Suzuki conditions under microwave irradiation (Scheme 9). 

Subsequently, the crude ether intermediates obtained were cleaved under acidic conditions leading 

to the final compounds 115-117. Coupling of 2-bromo-5-methyl-pyridine with (2-

fluorophenyl)boronic acid resulted in compound 120, which was further brominated under Wohl- 

Ziegler conditions.  

Scheme 9. Synthesis of compounds 115–119.a 

  

aReagents and conditions: (a) Reagents and conditions: (a) (5-methoxypyridin-3-yl)boronic acid pinacol ester, 

PdCl2(dppf), Cs2CO3, DME/H2O/EtOH, 150 °C, 150 W, 18 bar, 20 min, microwave. (b) HBr (48% in water), 130 °C, 

12 h. (c) NBS, AIBN, CCl4, 80 °C, 7 h. (d) (5-methoxypyridin-3-yl)boronic acid pinacol ester, Pd(PPh3)4, Na2CO3, 

toluene/EtOH/H2O, 100 °C, 22 h. (e) BBr3, DCM, -78 °C–rt, 21 h.  
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The bromine intermediate 121 was coupled with the corresponding organoborane resulting in the 

desired methoxy compound 118. In addition, hydroxy derivative 119 was available via ether 

cleavage using boron tribromide (Scheme 9). 

BIOLOGICAL RESULTS AND DISCUSSION 

Inhibition of Human CYP11B1. The final compounds 115-119 were evaluated for inhibitory 

potency using V79MZ cells expressing recombinant human CYP11B1 with [3H]-labeled 11-

deoxycorticosterone as substrate.[109] The IC50-values obtained are shown in table 10 in 

comparison to metyrapone, 114, 49, 53, 88, 90, 92, 54 and 67. 

Table 10. Inhibition of CYP11B1, CYP19A1 and metabolic stability data of metyrapone and compounds 49, 

53, 54, 67, 88, 90, 92 and 114-119. 

Comp 
 

CYP11B1  t1/2 HLS9 CYP19A1c 

R1 
 

R2 IC50 (nM)a (min)b inhibition (%)d 

90e H 

 

Me 4.6 ± 0.6  >60 min 3 ± 2 

115 H OH 120 ± 35 n.d. n. d. 

88e H 

 

Me 8.7 ± 1.8  >60 min 0 ± 0 

116 H OH 77 ± 27 n.d. n. d. 

92e H 

 

Me 1.3 ± 0.2  >60 min 2 ± 2 

117 H OH 17 ± 0.4 33 0 ± 0 

49f H 

 

Me 2.2 ± 0.5  >60 min 1 ± 2 

53f H OMe 4.4 ± 0.7  >60 min 0 ± 0 

54f H OH 51 ± 3 31 0 ± 0 

67e F Me 3 ± 0.6 50 0 ± 0 

118 F OMe 0.8 ± 0.2 19 2 ± 3 

119 F OH 29 ± 1 21 1 ± 1 

metyrapone    15 ± 2 49 0 ± 0 

114g    5 ± 0.7 16 26 ± 2 

aV79 hamster fibroblasts heterologously expressing human CYP11B1, substrate 11-deoxycorticosterone, 100 nM, 

mean ± SD, n≥ 2. bHLS9, human liver S9 fractions. cHuman placental CYP19A1; substrate androstenedione, 500 
nM. dCompound concentrations 2 μM. Inhibition values ≤10% are not significant, mean ± SD, n≥ 2. eSee [chapter 

3.2[104]]. fSee [chapter 3.1[42]]. gSee ref[52]. n. d., not determined. 
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Exchange of lipophilic 5-Me-pyridin-3-yl in 49 (IC50= 2 nM) by hydrophilic, H-bond donating 5-

OH-pyridin-3-yl (54) resulted in a 26-fold decrease of potency (IC50= 51 nM) [Chapter 3.1[42]]. 

The same modification (5-Me to 5-OH) in 88, 90 and 92 (IC50= 1-9 nM), which vary in electronic 

and steric properties due to the different central cores, likewise led to a 9 to 24-fold loss of 

inhibitory activity (115-117, IC50= 17-120 nM). Nevertheless, compound 117 is more potent than 

54. Following this trend, the fluorine-containing compound 119 (5-OH, IC50= 29 nM) 

demonstrated weaker inhibition of CYP11B1 than the 5-Me derivative (67, IC50= 3 nM). However, 

inhibitor 119 (5-OH) was more potent than 54 (5-OH) lacking fluorine substitution. Since 5-OMe 

pyridin-3-yl compound 53 exhibited a slight decrease of potency compared to 49 (5-Me), the same 

was expected for fluorinated 5-OMe inhibitor 118.  

In fact, 118 showed an improved IC50-value of 0.8 nM compared to 67 (5-Me, IC50= 3 nM) and 

exceeds metyrapone (IC50= 15 nM) and 114 (IC50= 5 nM). The most potent inhibitors (117-119) 

were further tested for metabolic stability. 

 

Stability in human liver S9 fraction and plasma. For topical application, a suitable inhibitor 

should be stable in wound fluid but have a rapid metabolic clearance in the liver to avoid systemic 

side effects. In analogy to 54, the hydroxyl compounds 117 (t1/2= 33 min, Table 1) and 119 (t1/2= 

21 min), were more rapidly metabolized in HLS9 compared to the corresponding 5-Me inhibitors 

92 (t1/2= > 60 min) and 67 (t1/2= 50 min), respectively. The rapid metabolism is expected due to 

their ability to undergo conjugation reactions by Phase II enzymes. Additional influence of the 

ortho- fluorine and hydroxyl group on half-life can be observed for compound 119. The same 

effect was observed for the 5-OMe derivative, which is also susceptible towards rapid Phase II 

metabolism after ether cleavage in the liver. Introduction of an ortho-fluorine enhanced 

metabolism for the 5-OMe compound from over 60 min (53) to 19 min (118). Compounds 118 

and 119 were metabolized twice as fast as metyrapone (t1/2= 49 min). We selected inhibitor 118 

for further biologically evaluation as it was 36-fold more potent than 119 at inhibiting CYP11B1. 

Compound 118 exhibited a long half-life in human plasma (t1/2=> 150 min). This was expected, 

as no typical functional groups prone to plasma degradation are present in compound 118.[110] 

Wound fluid and plasma have a comparable composition[108] and, therefore, 118 can be expected 

to be stable in wound fluid. 

 

Selectivity over human CYP17A1 and CYP19A1. Estrogens play a crucial role in the wound 

healing process. Therefore, enzymes which are essential for the biosynthesis of estrogens in skin 

such as CYP17A1 and CYP19A1 should not be influenced by compound 118. Previously 

described assays for CYP17A1 and CYP19A1 inhibition were therefore performed with 118.[87-89] 
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Due to the high CYP11B1 potency of 118 with an IC50 value of 0.8 nM, a 2500-fold higher 

concentration (2 μM) was used to ensure no interference with this system. Compound 118 

demonstrated no significant inhibition of both enzymes (CYP17A1, 5% at 2 μM; CYP19A1, 2% 

at 2 μM, Table 11) and, therefore, was considered inactive. In contrast, the previously discovered 

114 inhibited CYP19A1 by 26% at 2 μM. Here, inhibitor 118 showed a clearly superior safety 

profile for CYP19A1 at higher concentrations. 

Table 11. Inhibition of CYP17A1, CYP19A1, 11β-HSD1 and 11β-HSD2 by metyrapone and compounds 114 

and 118. 

 

Comp 

CYP11B1 CYP17A1b CYP19A1c 11β-HSD1d 11β-HSD2e 

IC50 inhibition (%) 

(nM)a at 2 μM at 200 μM 

metyrapone 15 ± 2 3 ± 3 0 ± 0 70 ± 6 n. i. 

114 5 ± 0.7 10 ± 5 26 ± 2 IC50 1.62 ± 0.2 μM n. i. at 10 μM  

118 0.8 ± 0.2 5 ± 6 2 ± 3 48 ± 1 n. i. 

aV79 hamster fibroblasts heterologously expressing human CYP11B1, substrate 11-deoxycorticosterone, 100 nM, 

mean ± SD, n≥ 2. bE. coli expressing human CYP17A1; substrate progesterone, 25 μM. mean ± SD, n≥ 2. cHuman 

placental CYP19A1; substrate androstenedione, 500 nM. Inhibition values ≤10% are not significant, mean ± SD, n≥ 

2. dLysates of human embryonic kidney cells (HEK-293) transfected with human 11β-HSD1; substrate [1,2-3H]-

cortisone, 200 nM; n= 3, in triplicates; for IC50 n= 3, independent measurements. eLysates of HEK-293 cells 

transfected with human 11β-HSD2; substrate [1,2,6,7-3H]-cortisol, 50 nM; a residual enzyme activity of more than 

70% was considered as no inhibition. n. i., no inhibition.  

Selectivity over human 11β-HSD1 and 11β-HSD2. It is unclear whether accelerated wound 

healing occurs from CYP11B1 or 11β -HSD1 inhibition. Therefore, 11β -HSD1 inhibitory 

activity was measured to ensure that compound 118 selectively inhibits CYP11B1. This was 

performed as previously described using lysates of stably transfected cell lines expressing 11β-

HSD1.[111] Compound 118 exhibited 48% inhibition of 11β-HSD1 only at 200 μM (Table 11), 

which ensures selective inhibition of CYP11B1 at low concentrations due to the high inhibitory 

potency of 118 (IC50 CYP11B1= 0.8 nM). In contrast, metyrapone and 114 showed much higher 

inhibition of 11β- HSD1 (metyrapone, 54% at 50 μM, 70% at 200 μM; 114, IC50 11β-HSD1= 
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1.62 μM, Table 11). Inhibition of the transformation of cortisol to inactive cortisone by 11β-

HSD2 should be avoided, as an additional cortisol reducing effect might be beneficial for wound 

healing. In a previously described assay,[111] compound 118 showed no inhibition at 200 μM and 

can be considered inactive (Table 11). 

  

In vitro toxicity. Cytotoxicity of compound 118 was tested in a MTT reduction assay using normal 

human epidermal keratinocytes. After 72 h of incubation in the presence of up to 11 μM of 118, 

no effect on cell viability was observed (87% cell viability at 11 μM). Therefore, no cytotoxic 

effect is expected at therapeutic concentrations due to the strong CYP11B1 inhibitory potency of 

compound 118 (IC50= 0.8 nM). Mutagenic potential of 118 was evaluated using an AMES II 

mutagenicity assay containing TA98 and TA7001-TA7006 strains of Salmonella typhimurium in 

the presence or absence of rat liver S9 fractions. The inhibitor exhibited no mutagenic potential up 

to the highest tested concentration of 100 μM with or without metabolic activation.  

 

Wound healing. The effect of compound 118 on wound healing was investigated in a human skin 

explant as described previously.[46, 112-113] In order to simulate acute wounds, 2 mm biopsy punches 

on the explants were performed. Subsequently, inhibitor 118 was topically applied once per day 

(5 μM, n= 3) over 3 days and the rate of re-epithelization was evaluated (Figure 15). Control skin 

explants showed progressively increased wound healing over 3 days (24 h, 13%; 48 h, 28%; 72 h, 

100%). The newly epithelialized regions could be identified due to their typical morphological 

appearance, characterized by the presence of two or three cell layers of keratinocytes associated 

with a thin or absent stratum corneum layer. Topical application of compound 118 had no 

significant effect after 24 h (10% re-epithelialization). However, after 48 h, a 3-fold accelerated 

wound closure (89%) was observed compared to the control (28%). The effect was expected to be 

most pronounced after 48 h, since CYP11B1 expression is known to gradually increase during 

wound healing with a maximum after 2 days and drop to the control values at 72 h.[46] As seen in 

the control, re-epithelization was complete after 72 h. This clearly shows that a CYP11B1 inhibitor 

which is selective over 11β-HSD1 is able to accelerate wound healing at the applied concentration 

of 5 μM. 
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Figure 15. Acceleration of wound closure by 118 in ex vivo human skin experiment. aPercentage of re-epithelialization, 

mean ± SEM, n= 3; the inter-group comparisons were performed by an unpaired Student’s t-test. **P= 0.001 to 0.01, 

very significant. 

CONCLUSION 

Chronic wounds cause an extensive period of suffering for patients and immense costs for the 

health care system.[96] Recently, it has been shown that inhibition of cortisol synthesis in skin 

resulted in accelerated wound healing.[46, 101] It remained unclear whether this effect occurs from 

the blockade of CYP11B1 or 11β-HSD1. In the current study, the previously described very 

potent CYP11B1 inhibitors 49, 53, 88, 90 and 92 [Chapter 3.1[42], Chapter 3.2[104]] were optimized 

for topical application on wounds. Here, stability in plasma (comparable composition to wound 

fluid[107]) and rapid systemic clearance of absorbed compound are requirements to ensure safety 

and efficacy. An increase of metabolism in the HLS9 fractions was achieved by exchange of the 

5-Me groups of 49 and 92 (t1/2= > 60 min) by 5-OH substituents (54, 117, t1/2= 31-33 min). 

Introduction of an ortho-fluorine into the labile hydroxy compound 54 (t1/2= 31 min) and the potent 

compound 53 (t1/2> 60 min) further decreased the half-life (118-119; t1/2= 19-21 min). In 

comparison to the CYP11B1 inhibitor metyrapone (t1/2= 49 min), 118 and 119 were metabolized 

twice as fast and, therefore, exhibited the required reduced metabolic stability. Furthermore, 

compound 118 showed the highest CYP11B1 potency in this series (IC50= 0.8 nM) and exceeds 

CYP11B1 inhibitors previously described for wound healing not only in potency (metyrapone, 

IC50= 15 nM and 114, IC50= 5 nM), but also in selectivity over 11β-HSD1 (118, 48% at 200 μM; 

metyrapone, 54% at 50 μM; 114, IC50= 1.62 μM). This fact allowed the usage of 118 as a tool to 

study the effect on wound healing via selective blockade of CYP11B1-catalyzed cortisol synthesis. 

In addition, selectivity over CYP19A1 was also clearly improved (118, 2% at 2 μM; 114, 26% at 
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2 μM) and 118 was stable in plasma, non-cytotoxic to human keratinocytes at >10 μM, and non-

mutagenic. For the first time, it has been shown that a CYP11B1 inhibitor 118 is able to accelerate 

wound healing in human skin without affecting 11β-HSD1 (proof of concept) at the applied 

concentration of 5 μM. Thus, compound 118 is a promising candidate for the treatment of chronic 

wounds and can be considered for further in vivo experiments. 
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4. Final Discussion 

New medical treatments for Cushing’s disease, characterized by abnormally high plasma cortisol 

levels, are urgently needed. CYP11B1 inhibitors in clinical use, which block the last step of 

cortisol biosynthesis, are effective due to the high response rates in affected patients (over 70%).[38-

39] However, selectivity of these inhibitors over CYP11B2 and other steroidogenic or hepatic CYP 

enzymes has to be increased to avoid related severe side effects (see chapter 1.5.3.). Starting from 

the known CYP11B1 inhibitor etomidate, the novel compounds 3 and 4 (Table 12) were 

identified.[41-43] They exceeded known inhibitors regarding selectivity over CYP11B2 and 

exhibited no or minor inhibition of CYP17A1 and CYP19A1 (Table 12). In contrast, human 

CYP11B1 inhibitory potency still needs to be improved in order to reduce the administration dose, 

thus lowering the risks of off-target effects. Furthermore, the compounds showed no inhibition of 

rat CYP11B1, which is a prerequisite for a proof of concept study in rats.[42]  

Table 12. Inhibition of human CYP11B1 and CYP11B2 by clinically used and reported inhibitors.  

 

Comp 

IC50 (nM)a,b 

SFc 

Inhibition (%)d 

CYP11B1 CYP11B2 CYP17A1e CYP19A1f 

3 

107 1422 13 2 0 

4 68 656 10 2 24 

metyrapone 15 72 4.8 3 0 

osilodrostat  3 0.2 0.07 n. d. n. d. 

ketoconazole 127 67 0.5 IC50= 2.78 µM 0g 

etomidate 0.5 0.1 0.5 1 0g 

aMean value of at least two experiments. The deviations were < 25%. bHamster fibroblasts expressing human 

CYP11B1 or CYP11B2; substrate 11-deoxycorticosterone, 100 nM. cSF: IC50 CYP11B2 / IC50 CYP11B1. dCompound 

concentration 2 μM. Inhibition ≤ 10 % is not significant. eE. coli expressing human CYP17A1; substrate progesterone, 

25 μM. fHuman placental CYP19A1; substrate androstenedione, 500 nM. gCompound concentration 0.5 μM. n. d., 

not determined.  
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To overcome these drawbacks, further structural optimization of this compound class was 

performed in the course of the present thesis. In this final discussion, only those structural changes 

are reviewed that had a pronounced impact on the human CYP11B1 inhibitory potency and 

selectivity. The hitherto most selective and potent CYP11B1 inhibitor 3 (IC50= 107 nM, SF (IC50 

CYP11B2/ IC50 CYP11B1)= 13, no significant inhibition of CYP17A1 and CYP19A1, Chart 5) 

was an appropriate lead structure for further development. Previous studies with this compound 

class (see chapter 1.5.4.) revealed the importance of the central pyridine ring for selectivity 

towards CYP17A1 and CYP19A1. Concluding that electronic and steric properties of the central 

core strongly influence CYP11B1 inhibitory activity and selectivity, the impact of a second 

nitrogen in the ring system was further investigated (Chart 5). Hence, the pyridine moiety was 

replaced by pyridazine (→38), pyrazine (→39) and pyrimidine (→40), with the first nitrogen 

remaining at the same position as in compound 3. The additional electron-withdrawing effect 

probably altered the electrostatic potential of the whole molecule, which resulted in a drop of 

CYP11B1 potency (IC50= 610-1711 nM). This indicates that π-electron rich central cores 

containing one nitrogen are needed for CYP11B1 potency and selectivity. Previously discovered 

potent thiophene and furan derivatives are π-electron rich and exhibit a different molecular 

geometry. To balance the observed loss of selectivity of these inhibitors, several azoles differing 

in electronic and steric properties were introduced into lead compound 3, retaining the nitrogen in 

the same position (Chart 5). Indeed, the 3,5-substituted pyridine isostere isothiazole 80 showed an 

8-fold increase of CYP11B1 potency and a moderate selectivity towards CYP11B2 (IC50= 14 nM, 

SF= 9). On the contrary, bioisostere selenazole 85 showed no improvement of CYP11B1 potency 

(IC50= 104 nM). In case of the more electron-poor and less bulky oxazole 83 and isoxazole 84, a 

loss of CYP11B1 potency and selectivity was obtained (IC50= 148-150 nM, SF= 4-9). Interestingly, 

the less selective N-methylated pyrazole 87 exhibited moderate inhibition of CYP11B1 (IC50= 58 

nM), whereas Me-imidazole 86 was less tolerated by the enzyme (IC50= 516 nM). Compound 3 

was used for further optimizations as it still shows the highest selectivity over CYP11B2 within 

this series.  

In another study of a similar compound class, the introduction of alkyl or aromatic substituents 

onto the methylene bridge resulted in the potent and selective CYP11B1 inhibitor 5 (Chart 5, IC50= 

2 nM, SF= 11).[60] The same modifications were performed on the current scaffold expecting an 

increase of CYP11B1 potency and selectivity (Chart 5). In fact, strongly enhanced CYP11B1 

inhibition was achieved by introduction of alkyl substituents (20-23, IC50= 12-33 nM). Due to the 

trend observed when comparing CYP11B1 potency and bulkiness of the substituents (Me (IC50= 

33 nM) < Et (IC50= 28 nM) < c-prop (IC50= 21 nM) < i-prop (IC50= 12 nM)), it was assumed that 
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a hydrophobic pocket near the heme was occupied. However, introduction of furan-2-yl only 

slightly increased CYP11B1 potency (24, IC50= 69 nM), whereas the phenyl substituent caused a 

loss of activity (25, IC50= 124 nM) compared to 3 (IC50= 107 nM). In contrast to the previously 

described compound class of 5, selectivity towards CYP11B2 was strongly reduced upon these 

modifications (SF= 0.9-6.1). Thus, alterations of the central pyridine core and the methylene 

bridge resulted in some more potent but less selective compounds (Chart 5).  

Chart 5. Lead optimization of 3 to improve CYP11B1 potency and selectivity.  

 

 

Subsequently, the imidazolyl of 3 (IC50= 107 nM, SF = 13) was replaced by several heterocycles 

containing an sp2-hybridized nitrogen, as it probably coordinates to the heme complex within the 

CYP enzyme and, therefore, is essential for affinity (Chart 5).[31] Introduction of pyrimidinyl 

(→47) resulted in a loss of CYP11B1 potency (IC50= 240 nM), which is likely caused by the 

electron-withdrawing effect of the second nitrogen associated with reduced electron density on the 

heme-coordinating nitrogen. Exchange of imidazolyl by 4-pyridinyl resulted in the similarly 

potent but less selective inhibitor 45 (IC50= 98 nM, SF= 6.4). In contrast, 3-pyridine 44 showed a 

3.3-fold increase of CYP11B1 potency with almost complete retention of selectivity towards 

CYP11B2 (IC50= 32 nM, SF= 10). The influence of the methylene bridge was further investigated 

for this compound. Isosteric exchange of -CH2- in 44 by -O- (→60) or -NH- (→61) resulted in a 
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strong drop of inhibitory activity (IC50= 1015 nM and > 5000 nM, respectively). This is in line 

with the finding that introduction of lipophilic alkyl groups to the methylene bridge of 3 led to an 

increase of CYP11B1 potency. Polar moieties are probably not tolerated as there is a hydrophobic 

region around the bridge. Annulation of the 3-pyridine to isoquinoline (→46) enhanced CYP11B1 

inhibition by 18-fold compared to 3, but resulted in a loss of selectivity (IC50= 6 nM, SF= 4.2). 

Therefore, the influence of substitution of 44 was further investigated (Chart 6). Substituents 

differing in their steric and electronic properties and H-bond acceptor and donor characteristics 

were introduced. In analogy to pyrimidine 47 (IC50= 240 nM), electron-withdrawing effects caused 

by 5-CONH2 (→50) and 5-F (→51) strongly decreased CYP11B1 potency (IC50= 125-427 nM) 

compared to 44 (IC50= 32 nM). Interestingly, the lipophilic and electron-deficient 5-CF3 derivative 

52 exhibited a similar CYP11B1 potency but a reduced selectivity towards CYP11B2 (IC50= 38 

nM, SF = 3.0). As expected, electron-rich groups such as 5-OMe (→53) and bulky 5-Ph (→57) 

strongly enhanced CYP11B1 inhibitory activity by 6.4 to 25-fold. In case of the 5-Ph substituent, 

this might as well be caused by occupying an additional hydrophobic pocket near the heme. 

However, enhanced inhibition of both enzymes was observed (SF= 0.4-5.1). In contrast, the polar 

electron- and H-bond-donating substituent 5-OH improved selectivity for CYP11B1 but likewise 

caused a loss of potency (54, IC50= 51 nM, SF= 16). Introduction of the lipophilic and electron-

donating 5-Me substituent (→49) resulted in the most potent and selective inhibitor of this series 

(Chart 6, IC50= 2 nM, SF = 17). The same modification in 4-position improved the inhibitory 

potency for both enzymes (48, IC50= 8 nM, SF= 2.4). In summary, exchange of the imidazolyl of 

3 (IC50= 107 nM, SF = 13) by 5-Me-pyridin-3-yl resulted in 49 showing an 54-fold increase of 

CYP11B1 potency and selectivities over steroidogenic CYP11B2 (SF= 17), CYP17A1 (5% 

inhibition at 2 μM), and CYP19A1 (1% inhibition at 2 μM) as well as hepatic CYP2A6 (IC50= 

106 μM) and CYP3A4 (IC50= 1.1 μM). Further, the inhibitor showed metabolic stability toward 

human and rat liver S9 fraction (t1/2= > 150 min and 16 min, respectively), negligible cytotoxicity 

and the desired enhanced inhibition of the rat CYP11B1 enzyme (IC50= 2.4 μM) compared to 3 

(IC50= > 10 μM). Due to the promising in vitro profile of 49, a pharmacokinetic study in rat was 

conducted. There, very low oral bioavailability was observed (F= 2%), and in addition, the 

compound exhibited promutagenic potential in an AMES test using TA98 strains of Salmonella 

typhimurium. As compound 49 was identified as a poor candidate for preclinical development, 

further structural optimization was necessary to obtain other candidates for in vivo studies (Chart 

6). Low bioavailability can be caused, inter alia, by poor aqueous solubility and low permeability. 

To balance both properties, inhibitor 49, which exhibited a calculated log D (pH= 7.4) value of 

3.7, was modified to obtain more polar derivatives.  
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Chart 6. Optimization of 44 to improve CYP11B1 potency and selectivity. 

 

 

However, CYP11B1 potency and selectivity was to be retained. Previously conducted extensive 

structure activity relationship studies in the imidazolyl compound class of 3 revealed that 

substitution of the phenyl moiety with polar 3-NH2 resulted in a potent and selective CYP11B1 

inhibitor. As this structural motif is likely to cause toxicity (carcinogenicity) and to vary several 

molecular properties, other hydrophilic groups differing in size and electronic characteristics such 

as pyrazoles (→70 and 71), N-phenylmethanesulfonamide (→68) or polar non-aromatic cycles 

(→72 and 73) were introduced to 49. Further, the phenyl moiety of 49 was replaced by 2-F-Ph 

(→67) and furan-3-yl (→69), as both derivatives in the imidazolyl class showed good CYP11B1 

potency and selectivity. In the current thesis, it was demonstrated that electronic properties and 

molecular geometry strongly influence CYP11B1 potency and selectivity. Therefore, heteroatom 

linkers such as -S- (→74 and 76) and -SO2- (→75 and 77) were introduced between the central 

pyridine and the phenyl substituents. Many of the thereby obtained derivatives (67-69, 73-74, 76-

77) differing in polarity, electronic properties and size exhibited similar CYP11B1 inhibitory 

activity (IC50= 2-5 nM), but selectivity towards CYP11B2 was not retained (SF= 6-9). A clear 
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trend within the novel synthesized inhibitors (67-77) was not identified. To further investigate the 

influence of the molecular shape and electronic properties, the central pyridine core was replaced 

by similar azoles as for the imidazolyl class before. Interestingly, isothiazole 81, isoxazole 90 and 

1-Me-pyrazole 92 exhibited similar CYP11B1 inhibitory activities (IC50= 1-5 nM), but only the 

isoxazole retained selectivity towards CYP11B2 (SF= 16) compared to 49 (IC50= 2 nM, SF= 17). 

Deprotection of the pyrazole (→93) resulted in a strong loss of CYP11B1 potency (IC50= 137 nM) 

indicating that a hydrogen bond donor in this position is not well tolerated. As described previously, 

substitution of the 3-pyridine core with electron-donating moieties increased CYP11B1 potency. 

Replacement of the 5-Me-pyridin-3-yl of isoxazole 90 to 5-OMe-pyridin-3-yl (→91) resulted in a 

similarly potent and selective derivative (IC50= 2 nM, SF= 14). Thus, the two novel, potent and 

selective compounds 90 and 91 (IC50= 2-5 nM, SF= 14-16), which differ in their structure and, 

therefore, physicochemical properties from 49 were obtained. They exceed inhibitors on the 

market such as metyrapone (IC50= 15 nM, SF= 4.8) and ketoconazole (IC50= 127 nM, SF= 0.5) in 

terms of CYP11B1 potency and selectivity towards CYP11B2. Further, the compounds are 

similarly potent and much more selective than osilodrostat (IC50= 3 nM, SF= 0.07), which is 

currently undergoing a phase III clinical trial. Inhibitors 90 and 91 demonstrated an enhanced rat 

CYP11B1 inhibition (IC50= 1.8-4 μM) and selectivities over steroidogenic (CYP17A1 and 

CYP19A1, ≤9% at 2 μM) and hepatic CYP enzymes (CYP1A1, CYP2B6, CYP2C19, CYP2D6 

and CYP3A4, see chapter 3.2. for values). Both compounds are stable towards human liver S9 

fraction (t1/2= 125-145 min) and exhibited enhanced metabolic stability in rat liver S9 fraction 

(t1/2= 23-30 min) compared to 49 (t1/2= 16 min). In vitro tests for cytotoxicity, cardiotoxicity or 

induction of hepatic CYP enzymes such as CYP1A1 and CYP1A2 were performed and both 

compounds showed a satisfying profile (for further details see chapter 3.2.). Most importantly, the 

compounds exhibited no mutagenic potential in the AMES II test up to the highest tested 

concentration of 100 μM, with or without metabolic activation, in contrast to 49. The inhibitors 

were expected to show an improved pharmacokinetic profile in rats as the calculated log D values 

(pH=7.4) were reduced (3.7 for 49; 3.1 for 90; 2.8 for 91). Thus, balance between permeability 

and solubility under in vivo conditions should be improved. Indeed, the compounds exhibited a 

good aqueous solubility (> 200 μM). Plasma concentrations of 90 and 91 in rats were evaluated 

after perorally administration of 100 mg/kg (single dose) per inhibitor. Only 91 demonstrated 

sufficiently high plasma concentration (1 h, 19.7 μM; 4 h, 106.4 μM) for therapeutic effect in rats 

on the basis of the in vitro assay (IC50 CYP11B1 in rat= 1.8 μM). Subsequently performed 

pharmacokinetic study in rats revealed a significantly improved oral bioavailability of 91 (F= 50%) 

compared to 49 (F= 2%). Summarized, successful, rational lead optimization of CYP11B1 

inhibitor 3 (IC50= 107 nM) resulted in a novel selective compound 91 exhibiting a 54-fold 
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improved potency for human CYP11B1 (IC50= 2 nM) and enhanced inhibition of the rat enzyme 

(91, IC50= 1.8 μM; 3, IC50= >10 μM). Inhibitor 91 demonstrated a good in vitro pharmacological 

profile and high oral bioavailability in rats (F=50%). Thus, an excellent candidate for further in 

vivo studies was obtained.  

Besides the application of CYP11B1 inhibitors in Cushing’s disease, they could be used for the 

treatment of chronic wounds, which are an enormous burden for the patients and cause immense 

costs for the health care system. It was demonstrated that cortisol levels are elevated in acute and 

chronic wounds of human skin. Topical application of high concentrations of the CYP11B1 

inhibitor metyrapone (1 mM) resulted in acceleration of wound healing in human (ex vivo) and 

porcine skin (in vivo). Further investigations are necessary, as metyrapone not only blocks 

CYP11B1 but also 11β-HSD1 at high concentrations (54% at 50 μM), impeding a clear 

identification of the mode of action. Inhibitors developed in the present thesis are not appropriate 

for topical application as they likely cause systemic side effects due to their metabolic stability 

(t1/2= > 60 min in HLS9). Metyrapone as well exhibits a relatively long half-life of 49 min. Fast 

resorption of the compounds was expected due to the not well-defined application site (injured 

skin and intact skin) of wounds. Therefore, potential candidates for a proof-of-concept study have 

to be rapidly cleared after absorption and exhibit selectivity over 11β-HSD1. Another key 

prerequisite is the stability of the compounds towards human plasma as a substitute for wound 

fluid. Replacement of the 5-Me in compound 49 for a metabolically labile group such as 5-OH, 

which is able to undergo conjugation reactions by Phase II enzymes, caused, as expected, a reduced 

half-life in HLS9 (→54, t1/2= 31 min). However, inhibitory potency for CYP11B1 was decreased 

by 26-fold (54, IC50= 51 nM). The same modifications were performed for the very potent 

CYP11B1 inhibitors 88, 90 and 92 differing in their molecular geometry and electronic properties 

with the aim to obtain metabolically labile but potent inhibitors. Loss of CYP11B1 potency was 

observed as well (9-26-fold). Nevertheless, compound 117 still exhibited an inhibitory activity 

below 20 nM (IC50= 17 nM) and the desired reduced half-life in HLS9 (t1/2= 33 min). Interestingly, 

introduction of an ortho-fluorine to the phenyl substituent of 49 caused a slightly reduced 

metabolic stability (→67, t1/2= 50 min) with negligible effects on CYP11B1 potency (IC50= 3 nM). 

For further investigation of this effect, ortho-fluorine was also introduced to the labile, 5-OH-

substituted compound 54 and the very potent 5-OMe derivative 53. Indeed, in both cases, a 

decreased metabolic stability was obtained (→118 and 119, t1/2= 19-21 min), whereas CYP11B1 

potency was even enhanced by 6 or 2-fold, respectively (118, IC50= 0.8 nM; 119, IC50= 29 nM). 

Only inhibitor 118 was further evaluated, as it exhibited the highest CYP11B1 potency of this 

series (Figure 16, 21-36-fold more potent than 117 and 119).  
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Figure 16. Optimization of CYP11B1 inhibitors for wound healing. 

The compound is expected to be stable in wound fluid as it demonstrated a long half-life in human 

plasma (t1/2= >150 min). Importantly, it showed enhanced selectivity towards 11β-HSD1 (48% 

inhibition at 200 μM) in comparison with metyrapone (70% inhibition at 200 μM and 54% at 50 

μM). The inhibitor is selective towards CYP17A1 and CYP19A1 as well. This is important, as 

those enzymes are catalyzing the biosynthesis of estrogens, which play a crucial role in the wound 

healing process. Selectivity over CYP11B2 was not required for dermal application as the enzyme 

has not been identified in human skin. No cytotoxicity in human keratinocytes was observed up to 

a concentration of 11 μM of 118. In contrast to the structurally similar derivative 49, compound 

118 exhibited no mutagenic potential up to a concentration of 100 μM with or without metabolic 

activation. The inhibitor showed the desired in vitro pharmacological profile and was a suitable 

candidate for a proof-of-concept study. For the first time, acceleration of wound healing in human 

skin (ex vivo) was demonstrated at a low applied concentration of 5 μM without affecting 11β-

HSD1 (Figure 16). This clearly shows the potential of selective CYP11B1 inhibitors for the 

treatment of chronic wounds. 
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5. Outlook 

Lead optimization of CYP11B1 inhibitor 3 (IC50= 107 nM, SF= 13) for the treatment of Cushing’s 

syndrome resulted in the novel compound 91 exhibiting a 54-fold improved potency for human 

CYP11B1 (IC50= 2 nM), a good in vitro pharmacological profile and a high oral bioavailability in 

rats (F=50%). To enhance the therapeutic window and reduce possible side effects, improvement 

of selectivity towards CYP11B2 is still an issue. Further, other structurally different candidates 

are needed in case 91 fails in the upcoming in vivo studies in rats and other species. The central 

pyridine was replaced by several azoles differing in electronic properties and molecular geometry. 

Depending on the central core, strong influences on CYP11B1 potency and selectivity were 

obtained. So far, replacement of the central pyridine core by N-substituted or unprotected pyrrol 

was not successful, which likely has a significant impact on the enzyme as well. Further synthetic 

routes or purification methods of the final product have to be investigated.  

Chart 7. Recently published selective CYP11B1 inhibitors and possible examples to be synthesized. 

 

 

As substitution or exchange of the methylene bridge resulted in significant changes of CYP11B1 

potency and selectivity, prolongation (e.g. CH2CH2) or removal of the linker should be studied. In 

addition, based on the observed SAR of the current compound class, a hydrophobic protein region 

near the methylene bridge was assumed (see chapter 3.1). Thus, substitution of the hydrogens by 
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fluorine, which is known to increase the lipophilicity, could have a strong impact on CYP11B1 

inhibition. Recently, rigidification of the linker (derivatives 122-125, Chart 7) was demonstrated 

to be beneficial for CYP11B1 selectivity.[114] Similar modifications can be applied to inhibitors 91 

and 49 as exemplified in Chart 7.  

In terms of the wound-healing project, the metabolite of the tested inhibitor 118 has to be identified, 

synthesized and evaluated regarding toxicity and selectivity to exclude undesired side effects. The 

dose dependency of 118 in comparison to metyrapone for the acceleration of wound healing in 

human skin (ex vivo) has to be investigated. Afterwards, inhibitor 118 can be tested for skin wound 

healing in other species such as pig or monkey (in vivo). 
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6. General Experimental Details 

Biological Test Procedures 

Inhibition of CYP11B1 and CYP11B2. V79MZh cells expressing human or rat CYP11B1 or 

CYP11B2 were incubated with [1,2-3H]-11-deoxycorticosterone (100 nM) as the substrate and 

inhibitor at different concentrations. The assay was performed as previously described.[109, 115]  

 

CYP17A1 Preparation and Assay. Human CYP17A1 was expressed in E. coli (coexpressing 

human CYP17 and rat NADPH-P450 reductase), and the assay was performed using the method 

previously described with progesterone (25 μM) as the substrate and NADPH as the cofactor.[87-

88]  

 

CYP19A1 Preparation and Assay. Human CYP19A1 was obtained from microsomal 

preparations of human placenta, and the assay was performed using the 3H2O-method as 

previously described with [1β-3H]androstenedione (500 nM) as substrate and fadrozole and 

aminoglutethimid as references.[89]  

 

11β-HSD1 and 11β-HSD2 Preparation and Assay. Lysates of human embryonic kidney cells 

(HEK-293) transfected with human 11β-HSD1 were incubated with [1,2-3H]-cortisone (200 nM) 

as the substrate and NADPH (500 μM) as the cofactor. A similar procedure was used in case of 

11β-HSD2, but using [1,2,6,7-3H]-cortisol (50 nM) as the substrate and NAD+ (500 μM) as the 

cofactor. The assay was performed using glycyrrhetinic acid as positive control and as previously 

described.[111] 

 

CYP2A6 and CYP3A4 Assay of 49. The inhibition of CYP2A6 was determined using the 

CYP2A6/coumarin inhibitor screening kit (BD Gentest) with coumarin (3 μM) as the substrate. 

Similarly, the inhibition of CYP3A4 was determined using the CYP3A4/BFC inhibitor screening 

kit (BD Gentest) with 7-benzyloxy-trifluorome-thylcoumarin (50 μM) as the substrate. Both 

assays were performed according to the manufacturer’s instruction. 

 

Human Hepatic CYP Enzyme Assays of 90 and 91. The inhibition of hepatic CYP enzymes 

CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 was determined in microsomes 
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of baculovirus-infected insect cells expressing the recombinant human enzyme according to the 

manufacturer's instruction (BD Gentest). 

 

Metabolic Stability Tests in Human and Rat Liver S9 Fraction. For the evaluation of Phase I 

and II metabolic stability, the compound (1 μM) was incubated with 1 mg/mL pooled mammalian 

liver S9 fraction (BD Gentest), 2 mM NADPH regenerating system, 1 mM UDPGA, and 0.1 mM 

PAPS at 37 °C for 0, 5, 15, and 60 min. The incubation was stopped by precipitation of S9 enzymes 

with 2 volumes of cold acetonitrile containing an internal standard. Concentration of the remaining 

test compound at the different time points was analyzed by LC-MS/MS and used to determine 

half−life (t1/2) and intrinsic clearance (CLint).  

 

Metabolic Stability Tests in Human and Rat Plasma. For the evaluation of mammalian plasma 

stability, the compound (1 μM) was incubated with mammalian plasma (pooled, heparinized) of 

the indicated species at 37 °C for 0, 10, 30, 60, and 150 min. The incubation was stopped by 

precipitation of plasma proteins with 5 volumes of cold acetonitrile containing an internal standard, 

and the remaining compound concentration was analyzed by LC-MS/MS. 

 

Cytotoxicity Assay. HEK 293 cells (2 × 105 cells per well) were seeded in 24-well flat-bottom 

plates. Culturing of cells, incubations, and OD measurements were performed as described 

previously[116] with minor modifications. 4 or 24 h after seeding the cells, the incubation was 

started by addition of the compounds in a final DMSO concentration of 1%. Fluorescence was 

measured in a BMG Labtech Pherastar FS reader. The decrease in fluorescence (at 570 nm) in the 

presence of the test compound compared to the fluorescence in the presence of the vehicle control 

(1% DMSO) was determined after 24 or 66 h followed by the calculation of LC50 or IC20 values 

using GraphPad Prism curve fitting.  

For compound 118: normal human epidermal keratinocytes were incubated with MTT reduced in 

blue formazan crystals by mitochondrial enzymes. This reduction is proportional to the enzymes 

activity. After cell dissociation and formazan crystal solubilisation using DMSO, the optical 

density of the extracts at 540 nm, which is proportional to the number of living cells and their 

metabolic activity, was recorded with a microplate reader (VERSAmax, Molecular Devices). The 

decrease in fluorescence (at 540 nm) in the presence of the test compound compared to the 

fluorescence in the presence of the vehicle control (1% DMSO) was determined after 72 h. 

 

Mutagenicity Testing. Compound 49 was tested at Cerep in the Cerep’s AMES fluctuation assay 

(according to manufacturer's instruction) containing TA98, TA1537 (frameshift mutation) and 
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TA100 as well as TA1535 (base-pair substitution) strains of Salmonella typhimurium in the 

presence or absence of rat liver S9 fraction. The Cerep’s AMES fluctuation assay is equivalent to 

the AMES II mutagenicity assay. Thereby, 49 was identified as a promutagen in TA98 strain in 

the presence of rat liver S9 fraction for compound concentrations of 5-100 μM.  

Mutagenic potential of 90, 91 and 118 was evaluated using Xenometrix AMES II mutagenicity 

assay kit containing TA98 and TA7001−TA7006 strains of Salmonella typhimurium in the 

presence or absence of rat liver S9 fraction according to the manufacturer’s instruction.  

 

HERG Cardiotoxicity Evaluation. Compound 91 was tested using the predictorTM hERG 

fluorescence polarization assay kit (Invitrogen) according to the manufacturer's instruction. The 

high-affinity hERG ligands quinidine and E-4031 were used as positive controls and atenolol 

served as the negative control. Controls and the tested compound were incubated for 3.5 hours. 

 

Aryl Hydrocarbon Receptor Assay. The aryl hydrocarbon receptor agonistic activity of 

compounds was determined in a human hepatocellular carcinoma cell line (HepG2) by measuring 

the CYP1A1 activity. Cells were split on a 24 well plate (each compound in quadruplicate) and 

incubated for 16-24 hours before compounds or vehicle were added to a final DMSO concentration 

of 0.1%. After 48 hours of incubation with the compound (3.16 µM) or vehicle, cells were washed 

with 1 mL of warm PBS (37 °C). Then, 500 µL of 3-cyano-7-ethoxycoumarin (CEC, specific 

CYP1A1 substrate), which forms a fluorescent product, was added to the cells at a final 

concentration of 40 µM in DME medium with 10% fetal calf serum + 1% penicillin + streptomycin 

(37 °C). After an incubation of 30 minutes, fluorescence was measured in the BMG Labtech 

Clariostar reader (excitation: 409 nm; emission 460 nm). The increase in fluorescence induced by 

the test compound was expressed relative to the increase induced by the reference compound, 

omeprazole (50 µM). 

 

Solubility Determination. Aqueous solubility was evaluated as previously described[117]. Briefly, 

final concentrations of 5, 15, 50, 100 and 200 µM of 90 and 91 in an aqueous solution containing 

2% DMSO were prepared and the solution clarity and potential compound precipitation were 

determined after 1 h and 24 h at room temperature (19-24 °C). 

 

Pharmacokinetic Study of 49 in Rats. A pharmacokinetic study in rats was conducted to ensure 

that a scaffold like 49 is capable to enter the systemic circulation with sufficiently high plasma 

concentrations for a therapeutic effect after peroral application. All animal procedures were 

performed in accordance with the Guide for the Care and Use of Laboratory Animals. The 
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pharmacokinetic study of 49 was performed by Pharmacelsus using male Sprague-Dawley rats 

(body weight 250–350 g). Animals were maintained in a 12 h light/12 h dark cycle and housed in 

a separate temperature-controlled room (20-24°C). The test compound was administered at 

1 mg/kg (n= 2, intravenously) or 2 mg/kg (n= 3, perorally) in a mixture of ethanol, PEG300 and 

water (10:60:30). Blood was sampled predose and after 15, 30, 60 minutes and 2, 4, 6, 8 and 24 

hours via a catheter in the jugular vein (inserted 2-3 days prior to blood sampling). Until analysis, 

the obtained plasma samples were stored at -20 °C. Mean key pharmacokinetic parameters were 

estimated by noncompartmental analysis using the computer software Kinetica 5.0.  

  

In Vivo Rat Pharmacokinetics of 90 and 91. All animal procedures were approved by the local 

government animal care committee and performed in accordance with the Guide for the Care and 

Use of Laboratory Animals. Pharmacokinetic analysis of 90 and 91 was conducted on female 

Sprague-Dawley rats (body weight 244–299 g) purchased from Charles River Laboratory 

(Sulzfeld, Germany). After an acclimatization period of 1 week, compounds were administered 

orally at a dose of 100 mg/kg (1 animal) or 28 mg/kg (2 animals) and intravenously at a dose of 5 

mg/kg (2 animals). For oral administration, suspensions of the inhibitors in 0.5% porcine 

gelatin/5% mannitol (w/w) in water were freshly prepared followed by 15 min sonication 60-90 

min before administration. For i.v. administration, 91 was dissolved in PEG300/ethanol/water 

(60/10/30). Before i.v. application (1 mL solution/kg body weight) and oral application (4 mL 

suspension/kg body weight), rats were anesthetized with 2% isoflurane. Blood samples (50 µL) 

were taken from the tail vein and collected in 0.2 mL Eppendorf tubes containing 5 µL of 106 mM 

sodium citrate buffer. After centrifugation at 5000 rpm at 4 °C, the plasma samples were first 

frozen at -20 °C and stored at -80 °C within 24 h. For bioanalysis, plasma samples were thawed 

and 10 μL of plasma were added to 50 μL of acetonitrile containing diphenhydramine (750 nM) 

as internal standard. Samples and calibration standards (in rat plasma) were centrifuged at 2400 

xg for 5 min at 4 °C. The solutions were transferred to fresh vials for HPLC-MS/MS analysis 

(Accucore RP-MS, TSQ Quantum triple quadrupole mass spectrometer, electrospray interface). 

After injection of 10 μL (performed in duplicate), data were analyzed based on the ratio of the 

peak areas of analyte and internal standard. Mean key pharmacokinetic parameters were estimated 

by non-compartmental analysis using the computer software Phoenix WinNonlin. Cmax and Tmax 

were obtained directly from the plasma concentration-time curve. All other parameters (t1/2, Vdss, 

CL, AUC and F) were calculated.  

 

3D-QSAR Study. Ligands were built and energy minimized in the MMFF94s force field with 

MOE before being aligned using the flexible alignment module. Among the top three solutions, 
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which showed similar average strain energy (dU < 0.03), the one with the highest similarity (dF = 

0.0000) was selected as the final alignment. The aligned compounds were subsequently imported 

into Open3DQSAR, where a grid box around the molecules with a 0.5 Å step size and a 5.0 Å 

margin was set up. Molecular interaction fields regarding steric factors and electrostatic potential 

were then calculated. After importing the corresponding activity data, compounds 17, 35, 41, 44, 

and 46 were assigned to the test set, while the rest of the compounds were employed as the training 

set. The MIF parameters were pretreated with zeroing (level = 0.05), max/min cutoff (level = ±30), 

standard deviation cutoff, N-level variable elimination and block unscaled weighting before 

regression with pIC50 data using partial least-squares analysis (PLS). The model was further 

improved with variable selection procedures using smart region definition (SRD) and fractional 

factorial design (FFD) methods. It was subsequently cross-validated using the leave-many-out 

paradigm and challenged with the test set compounds. The PLS pseudocoefficient contour maps 

were finally illustrated with MOE.  

 

Wound Healing Experiments. This study was performed at BIOalternatives (Gencay, France). 

Wound healing was evaluated on human skin explants obtained from mammary plastic surgery of 

one patient. Upon receipt of skin biopsy, 30 punches of 8 mm diameter were performed and put 

on 6-well plates. Three punches were set aside for the non-wounded day 0 control. Then, on the 

remaining 18 punches, a 2 mm diameter punch was performed on the epidermis layer in order to 

create an acute wound. The skin specimens were laid in DMEM supplemented with L-glutamine, 

penicillin-streptomycin and delipidized fetal calf serum (thus not containing steroid hormones like 

cortisol) with the epidermis layer above the culture medium. Compound 118 (5 μM, each time 

freshly prepared in culture medium with a final DMSO concentration of 0.1%) was topically 

applied in the 2 mm diameter “hole” on a daily basis until day 3. Control explants were generated 

in parallel by treating the explants with culture medium containing 0.1% DMSO only. The explants 

were incubated for 24, 48 and 72 hours. All experimental conditions were performed in triplicate. 

After 1, 2 and 3 days of incubation, the explants were paraffin-embedded, sectioned and stained 

using hematoxylin-eosin-saffron. The wound healing was then measured by image analysis 

(NIKON E400 microscope) of the stained sections. To determine the extent of re-epithelialization, 

the linear distance covered by the new epithelium was measured and divided by the linear distance 

between the original wound edges. Measurements were performed using Image J software and 

inter-group comparisons were performed by an unpaired Student’s test.[46, 112-113] 

 

HPLC Purity Control of Final Compounds. A SpectraSystems® LC system consisting of a pump, 

an autosampler and a PDA detector was employed. Mass spectra (LC/MS) were measured on an 
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MSQ® electro spray mass spectrometer (ThermoFisher, Dreieich, Germany). An RP-C18 

NUCLEODUR® 100-5 (125x3 mm) column (Macherey-Nagel GmbH, Düren, Germany) was used 

as stationary phase. All solvents were HPLC grade. The system was operated by the standard 

software Xcalibur®. In a gradient run, the percentage of acetonitrile in water (supplemented with 

0.1% trifluoroacetic acid)a was increased from an initial concentration of 0% at 0 min to 100% at 

15 min and kept at 100% for 5 min. For a part of the compounds, both solvents were used without 

trifluoroacetic acid or with 0.1% formic acid.b The injection volume was 10 μL and the flow rate 

was set to 800 μL/min. MS analysis was carried out at a spray voltage of 3800 V, a capillary 

temperature of 350 °C and a source CID of 10 V. Spectra were acquired in positive mode from 

100 to 1000 m/z and at 254 nm for the UV trace. The relative peak area in the UV chromatogram 

was used to determine the purity of the compounds.  

 

Comp 
RT  Purity   

Comp 
RT  Purity   

Comp 
RT  Purity  

[min] [%]  [min] [%]  [min] [%] 
20 5.68a 99  50 5.75a 99  79 7.80a 99 

21 6.31a 98  51 7.14a 98  80 7.77a 98 

22 6.09a 97  52 7.97a 99  81  8.77a 99 

23 6.92a 98  53 6.18a 99  82 7.20a 99 

24 7.28a 99  54 5.52a 98  83 6.51a 99 

25 7.82a 99  57 7.33a 99  84 7.08a 99 

26 4.99a 99  60 5.92a 99  85 7.47a 99 

27 5.98a 98  61 6.13a 98  86 2.61a 98 

28 7.88a 99  67 11.53 99  87 6.89a 99 

29 8.68a 97  68 7.20b 99  88 8.09a 99 

28 4.39a 99  69 4.87a 99  89 7.40a 99 

39 6.45a 99  70 8.15b 98  90 8.09a 99 

40 6.37a 98  71 5.70a 99  91 8.59a 99 

41 6.09a 99  72 9.09b 99  92 7.92a 99 

44 6.24a 99  73 4.05a 98  93 7.55a 99 

45 7.70a 99  74 12.30b 99  115 4.7c 99 

46 5.91a 99  75 6.36b 99  116 4.5 c 97 

47 5.86a 99  76 13.76b 98  117 4.5 c 98 

48 5.22a 98  77 7.42a 98  118 5.2 c 99 

49 5.31a 99  78 11.58b 99  119 4.2 c 98 
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For compounds 115-119, the following method was used: A Dionex Ultimate 3000 HPLC coupled 

to a Bruker amaZon SL (Thermo Scientific, Germany) system consisting of a pump, an 

autosampler and a UV detector (254 nm) was employed. An RP-18 column (100/2 Nucleoshell 

RP18plus, 2.7 µm from Machery Nagel, Germany) was used as stationary phase. All solvents were 

HPLC grade. In a gradient run, the percentage of acetonitrile in water was increased from an initial 

concentration of 5% at 0 min to 95% at 15 min and kept at 95% for 5 min, both solvents contained 

0.1% formic acidc. The injection volume was 10 μL and the flow rate was set to 600 μL/min. The 

relative peak area in the UV chromatogram was used to determine the purity of the compounds 

(DataAnalysis (Bruker Daltonics, Bremen, Germany). The purity of all compounds was ≥95%.  
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Chemistry 

General Experimental. Reagents and solvents were used as obtained from commercial suppliers 

without further purification or drying. All reactions were performed under a nitrogen atmosphere 

unless otherwise indicated. Yields refer to purified products and are not optimized. Flash 

chromatography was performed on silica gel 60 (40−60 μm). Melting points of samples were 

determined in open capillaries using a SMP3 Melting Point Apparatus of Bibby Sterilin and are 

uncorrected. Microwave irradiation experiments were performed in sealed tubes in a CEM 

Discover Explorer 12 microwave reactor. 1H NMR and 13C spectra were recorded on a Bruker 

DRX-500 or Bruker Fourier 300 instrument. Chemical shifts are given in parts per million (ppm) 

and spectra are obtained from DMSO-d6, CDCl3 or aceton-d6 solutions, in which the hydrogenated 

residues of deuterated solvents were used as internal standard (CDCl3: δ = 7.27, 77.00. Aceton-d6: 

δ = 2.05, 29.92. DMSO-d6: δ = 2.50, 39.51). The following abbreviations are used to denote signal 

multiplicities: s= singlet, d= doublet, dd= doublet of doublet, t = triplet, q = quartet and m = 

multiplet. All coupling constants (J) are given in Hertz (Hz). Several signals were assigned with 

the help of 1H, 1H-COSY, 1H, 13C-HSQC and 1H, 13C-HMBC experiments. Mass spectra (LC/MS) 

were measured on an MSQ® electro spray mass spectrometer (ThermoFisher, Dreieich, Germany). 

High resolution mass spectra were obtained on a Bruker maxis 4G hr-QqToF spectrometer and 

low resolution mass spectra were recovered on a Bruker amaZon SL spectrometer. The data were 

analyzed using DataAnalysis (Bruker Daltonics, Bremen, Germany).  

 

Method A: Suzuki coupling. The corresponding brominated aromatic compound (1 equiv) and 

the boronic acid (1.5 equiv) were dissolved in toluene (10 mL), ethanol (10 mL), and aq Na2CO3 

(2.0 M, 2.5 mL). The mixture was degassed under reduced pressure and flushed with N2 for three 

times before Pd(PPh3)4 (5 mol%) was added. The resulting suspension was then heated under 

reflux for 4-12 h. After cooling down, the phases were separated, and the aqueous phase was 

extracted two times with EtOAc. The combined organic extracts were dried over MgSO4 and 

concentrated under reduced pressure to give the crude product, which was purified with flash 

chromatography on silica gel.  

 

Method B: Grignard reaction. To a solution of the Grignard reagent (2 equiv) in dry diethyl ether 

(10 mL), the corresponding carbonyl compound (1 equiv) in dry diethyl ether (5 mL) was added 

dropwise. The reaction mixture was heated to reflux for 2 h. Afterward, ice was added followed 

by the addition of HCl (1 M) until the resulting precipitate disappeared. The phases were separated, 

and the aqueous phase was extracted twice with diethyl ether. The combined organic layers were 
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washed with saturated sodium hydrogen carbonate solution and brine. After drying over MgSO4 

and concentration under vacuum, the crude product was purified by flash chromatography on silica 

gel.  

 

Method C: CDI reaction. To a solution of the corresponding alcohol (1 equiv) in NMP, CDI (5 

equiv) was added. Then the solution was heated to reflux for 16 h. After cooling to room 

temperature, the reaction mixture was diluted with EtOAc and washed with water and brine. The 

organic phase was dried over MgSO4 and concentrated under vacuum. The crude product was 

purified by flash chromatography on silica gel.  

 

Method D: Wohl−Ziegler bromination. The methyl heteroaromatic compound was dissolved in 

20 mL of dry carbon tetrachloride. To this solution, N-bromosuccinimide (NBS) (1.1 equiv) and 

benzoyl peroxide (5 mol%) were added and the mixture was refluxed overnight. After cooling, the 

succinimide was removed by filtration and the filtrate was concentrated under vacuum. The crude 

product was purified by flash chromatography on silica gel.  

 

Method E: SN reaction. K2CO3 (5 equiv), imidazole (4 equiv), and the corresponding methyl 

heteroaromatic bromide were suspended in DMF (1 mL/mmol) or acetonitrile (1 mL/mmol). The 

resulting mixture was heated to 120 °C for 2 h. After cooling, water (10 mL) was added and the 

aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed 

with brine (10 mL), dried over MgSO4, and evaporated in vacuo. The crude product was purified 

by column chromatography using SiO2.  

 

Method F: Suzuki coupling using microwave irradiation. A mixture of the brominated aromatic 

compound (1 equiv), the corresponding boronic acid or boronic acid pinacolester (1.2 equiv), 

Cs2CO3 (3 equiv) and PdCl2(dppf) (5 mol%) were dissolved in DME/H2O/EtOH (1 mL/1 mL/1 

mL). The reaction mixture was stirred for 20 min at 150 °C, 150 W and 18 bar in the microwave 

oven. After addition of H2O (10 mL) and extraction with ethyl acetate (3 × 15 mL), the combined 

organic phases were dried over MgSO4 and concentrated under reduced pressure. The purification 

was performed by flash chromatography using SiO2. After flash chromatography, the product was 

dissolved in ethyl acetate and a few drops of conc. HCl and water were added. After stirring for 

30 min the phases were separated and the aqueous phase was neutralized with aqueous Na2CO3 

solution (2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was 

removed under vacuum.  
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Method G: Suzuki-Reaction using palladium(II) acetate. The corresponding brominated aromatic 

compound (1.0 eq) was dissolved in degassed 1,4-dioxane (7 mL/mmol) under N2. Subsequently, 

the boronic acid or boronic acid pinacolester (1.7 eq), palladium(II) acetate (0.7 mol%), SPhos (2 

mol%) and 2 M aqueous, degassed LiOH solution (3.5 eq) were added. The reaction mixture was 

stirred at 90 °C for 20 h. After cooling to room temperature water and ethyl acetate were added 

and the suspension was filtered over celite. The phases were separated and the aqueous phase was 

extracted with ethyl acetate thrice. The combined organic layers were washed with 1 M aqueous 

NaOH solution, water and brine, dried over Na2SO4 and concentrated in vacuum. The purification 

was performed by flash chromatography using SiO2. 

 

Method H: Suzuki-Coupling and ether cleavage. A mixture of brominated aromatic compound (1 

eq), corresponding boronic acid pinacolester (1.2 eq), Cs2CO3 (3 eq) and PdCl2(dppf) (5 mol %) 

were dissolved in DME/ H2O/ EtOH (2 mL/ 2 mL/ 2 mL). The reaction mixture was stirred for 20 

min at 150°C, 150 W and 18 bar in the microwave oven. After addition of H2O (10 mL) and 

extraction with ethyl acetate (3 × 15 mL), the combined organic phases were dried over MgSO4 

and concentrated under reduced pressure. Without further purification the crude product was 

suspended in HBr (48 % in water, 10 mL) and the mixture was stirred at 130 °C overnight. After 

cooling down, the aqueous phase was washed with EtOAc and then basified with saturated 

Na2CO3 solution. After extraction with EtOAc, the combined organic phases were dried over 

MgSO4, filtered and concentrated under reduced pressure. Subsequent purification was performed 

by flash chromatography using SiO2. 

 

6-Bromonicotinaldehyde (6). To a suspension of 2,5-dibromopyridine (2.00 g, 8.44 mmol) in dry 

diethyl ether (25 mL) was added n-BuLi (3.55 mL, 8.87 mmol, 2.5 

M solution in hexane) at −80 °C under a nitrogen atmosphere. After 

stirring for 1 h at −80 °C, dry DMF (0.68 mg, 9.28 mmol) was added. 

Reaction mixture was stirred for an additional hour at −80 °C, 

warmed slowly to 0 °C, and HCl (18.0 mL, 1 M) was added. After 

stirring for 15 min, the phases were separated and aqueous layer was extracted twice with diethyl 

ether. The combined organic layers were washed with water (50 mL) and brine (50 mL) and dried 

over MgSO4. The organic phase was concentrated under reduced pressure, and the crude product 

was purified by flash chromatography on silica gel using a mixture of hexane/ethyl acetate (8:1) 

as eluent. White solid. Yield: 1.03 g, 66%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.67−7.71 

ppm (m, 1H), 8.02 (dd, J = 8.2, 2.5 Hz, 1H), 8.84 (dd, J = 2.5, 0.6 Hz, 1H), 10.10 (s, 1H). 13C 
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NMR (CDCl3, 125 MHz): δC (ppm) =129.0, 130.6, 137.5, 148.3, 152.5, 189.4. MS (ESI): m/z = 

187.19 [M + H]+. 

 

6-Phenylnicotinaldehyde (7). Synthesized using compound 6 (1.20 g, 6.44 mmol) and 

phenylboronic acid (1.18 g, 9.65 mmol) according to method A. 

Crude product was purified by flash chromatography on silica gel 

using a mixture of hexane/ethyl acetate (10:1) as eluent. Light-

yellow solid. Yield: 1.10 g, 94%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 7.44−7.52 ppm (m, 3H), 7.87 (d, J = 8.2 Hz, 1H), 8.04− 

8.08 (m, 2H), 8.20 (dd, J = 8.2, 2.2 Hz, 1H), 9.10 (dd, J = 2.2, 0.6 Hz, 1H), 10.11 (s, 1H). 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 120.5, 127.5, 129.0, 129.8, 130.4, 136.5, 138.0, 152.4, 162.2, 

190.4. MS (ESI): m/z = 184.31 [M + H]+.  

 

6-(Thiophen-3-yl)nicotinaldehyde (8). Synthesized using compound 6 (840 mg, 4.52 mmol) and 

thiophen-3-ylboronic acid (867 g, 6.77 mmol) according to Method 

A. Crude product was purified by flash chromatography on silica-

gel using a mixture of hexane / ethyl acetate (8:2) as eluent. Orange 

solid. Yield: 556 mg, 65%. 1H NMR (CDCl3, 500 MHz): δH (ppm) 

= 7.45 (dd, J = 5.0, 2.8 Hz, 1H), 7.72–7.80 (m, 2H), 8.11 (dd, J = 

2.8, 1.3 Hz, 1H), 8.19 (dd, J = 8.2, 2.2 Hz, 1H), 9.06 (dd, J = 2.2, 0.9 Hz, 1H), 10.11 (s, 1H); 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 120.3, 126.3, 126.4, 126.9, 129.6, 136.5, 141.1, 152.6, 158.0, 

190.2; (ESI): m/z = 190.27 [M + H]+.  

 

6-(Naphthalen-1-yl)nicotinaldehyde (9). Synthesized using compound 6 (720 mg, 3.87 mmol) 

and 1-naphthalenboronic acid (1.00 g, 5.81 mmol) according to 

Method A. Crude product was purified by flash chromatography on 

silica-gel using a mixture of hexane / ethyl acetate (8:1) as eluent. 

Orange solid. Yield: 733 mg, 81%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 7.50–7.62 (m, 3H), 7.65–7.69 (m, 1H), 7.77–7.81 (m, 1H), 

7.92–8.00 (m, 2H), 8.10– 8.14 (m, 1H), 8.31 (dd, J = 7.9, 2.2 Hz, 1H), 9.25 (dd, J = 2.2, 0.9 Hz, 

1H), 10.22 (s, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 125.1, 125.2, 125.4, 126.2, 127.0, 

128.0, 128.5, 129.7, 130.0, 130.7, 134.0, 136.1, 137.2, 152.1, 164.6, 190.5; MS (ESI): m/z = 

234.29 [M + H]+.  
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1-(6-Phenylpyridin-3-yl)ethanol (10). Synthesized using compound 7 (210 mg, 1.15 mmol) and 

methylmagnesium bromide (2.29 mL, 2.29 mmol, 1 M in THF) 

according to method B. Crude product was purified by flash 

chromatography on silica gel using a mixture of hexane/ethyl acetate 

(2:1) as eluent. Light-yellow solid. Yield: 201 mg, 88%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 1.51 (d, J = 6.6 Hz, 3H), 3.05 (br, s, 

1H), 4.92 (q, J = 6.6 Hz, 1H), 7.38−7.50 (m, 3H), 7.65 (d, J = 7.9 Hz, 1H), 7.74 (dd, J = 8.2, 2.2 

Hz, 1H), 7.91−7.97 (m, 2H), 8.58 (d, J = 2.2 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

25.0, 67.8, 120.4, 126.9, 128.7, 128.9, 134.0, 139.0, 139.5, 147.2, 156.6. MS (ESI): m/z = 200.32 

[M + H]+.  

 

1-(6-Phenylpyridin-3-yl)propan-1-ol (11). Synthesized using compound 7 (313 mg, 1.71 mmol) 

and ethylmagnesium bromide (3.42 mL, 3.42 mmol, 1 M in THF) 

according to Method B. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (3:1) as eluent. Light yellow solid. Yield: 298 mg, 82%. 1H 

NMR (CDCl3, 500 MHz): δH (ppm) = 0.90–0.95 (m, 3H), 1.71–1.88 

(m, 2H), 4.62 (t, J = 6.62 Hz, 1H), 7.38–7.43 (m, 1H), 7.43–7.49 (m, 2H), 7.64–7.67 (m, 1H), 

7.69–7.73 (m, 1H), 7.92–7.96 (m, 2H), 8.54 (d, J = 2.21 Hz, 1H); 13C NMR (CDCl3, 125 MHz): 

δC (ppm) = 9.9, 31.7, 73.2, 120.3, 126.8, 128.7, 128.8, 134.5, 138.3, 139.0, 147.7, 156.5; MS (ESI): 

m/z = 214.28 [M + H]+. 

 

Cyclopropyl(6-phenylpyridin-3-yl)methanol (12). Synthesized using compound 7 (227 mg, 

1.24 mmol) and cyclopropylmagnesium bromide (4.96 mL, 2.48 

mmol, 0.5 M in THF) according to Method B. Crude product was 

purified by flash chromatography on silica-gel using a mixture of 

hexane / ethyl acetate (3:1) as eluent. Light yellow solid. Yield: 234 

mg, 84%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 0.35–0.44 (m, 

1H), 0.49 (dq, J = 9.4, 4.7 Hz, 1H), 0.55–0.68 (m, 2H), 1.21 (qt, J = 8.1, 5.0 Hz, 1H), 3.00 (br, s, 

1H), 4.05 (d, J = 8.2 Hz, 1H), 7.38–7.44 (m, 1H), 7.44–7.50 (m, 2H), 7.66–7.70 (m, 1H), 7.80–

7.85 (m, 1H), 7.94–8.00 (m, 2H), 8.64–8.69 (m, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

2.8, 3.6, 19.0, 75.9, 120.3, 126.8, 128.7, 128.8, 134.5, 137.7, 139.1, 147.6, 156.5; MS (ESI): m/z 

= 226.28 [M + H]+. 
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2-Methyl-1-(6-phenylpyridin-3-yl)propan-1-ol (13). Synthesized using compound 7 (283 mg, 

1.55 mmol) and isopropylmagnesium chloride (1.55 mL, 3.10 mmol, 

2 M in THF) according to Method B. Crude product was purified by 

flash chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (4:1) as eluent. Orange solid. Yield: 138 mg, 40%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 0.82–0.93 (m, 3H), 1.02 (d, J = 6.6 

Hz, 3H), 1.95– 2.08 (m, 1H), 4.46 (d, J = 6.6 Hz, 1H), 7.39–7.44 (m, 1H), 7.45–7.50 (m, 2H), 

7.68–7.75 (m, 2H), 7.96–8.01 (m, 2H), 8.57 (d, J = 1.9 Hz, H); MS (ESI): m/z = 228.26 [M + H]+. 

 

Furan-2-yl(6-phenylpyridin-3-yl)methanol (14). Synthesized using compound 7 (650 mg, 3.75 

mmol) and furan-2-ylmagnesium bromide (1.85 g, 10.8 mmol, 2 M 

in THF) according to Method B. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (6:1) as eluent. Yellow solid. Yield: 631 mg, 67%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 3.62 (br. s., 1H), 5.86 (s, 1H), 6.17 

(d, J = 3.4 Hz, 1H), 6.33 (dd, J = 3.0, 1.8 Hz, 1H), 7.33–7.51 (m, 4H), 7.69 (d, J = 7.9 Hz, 1H), 

7.83 (dd, J = 8.2, 1.8 Hz, 1H), 7.88–7.99 (m, 2H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 66.7, 

106.7, 109.3, 119.4, 126.0, 127.7, 128.0, 134.0, 134.3, 137.9, 141.8, 147.1, 154.1, 156.1; (ESI): 

m/z = 251.87 [M + H]+. 

 

Phenyl(6-phenylpyridin-3-yl)methanol (15). Synthesized using compound 7 (300 mg, 1.73 

mmol) and phenylmagnesium bromide (1.73 mL, 3.46 mmol, 2 M in 

THF) according to Method B. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (3:1) as eluent. Yellow solid. Yield: 138 mg, 42%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 5.91 (s, 1H), 7.29–7.34 (m, 1H), 

7.35–7.50 (m, 7H), 7.68 (dd, J = 8.2, 0.6 Hz, 1H), 7.73–7.78 (m, 1H), 7.94–7.99 (m, 2H), 8.68 (dd, 

J = 1.6, 0.6 Hz, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 74.1, 120.3, 126.5, 126.9, 128.0, 

128.7, 128.7, 128.9, 135.0, 137.6, 139.0, 143.0, 148.2, 156.7; (ESI): m/z = 261.97 [M + H]+. 
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1-(6-(Thiophen-3-yl)pyridin-3-yl)ethanol (16). Synthesized using compound 8 (260 mg, 1.37 

mmol) and methylmagnesium bromide (2.74 mL, 2.74 mmol, 1 M 

in THF) according to Method B. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (1:1) as eluent. Yellow solid. Yield: 240 mg, 85%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 1.50 (d, J = 6.6 Hz, 3H), 4.90 (q, J 

= 6.3 Hz, 1H), 7.38 (dd, J = 5.0, 2.8 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.61 (dd, J = 5.0, 1.3 Hz, 

1H), 7.70 (dd, J = 8.2, 2.2 Hz, 1H), 7.85 (dd, J = 2.8, 1.3 Hz, 1H), 8.48 (d, J = 2.2 Hz, 1H); 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 25.2, 68.0, 120.4, 123.6, 126.4, 126.5, 134.3, 139.5, 142.0, 

147.4, 152.9; (ESI): m/z = 206.29 [M + H]+. 

 

Cyclopropyl(6-(thiophen-3-yl)pyridin-3-yl)methanol (17). Synthesized using compound 8 (270 

mg, 1.43 mmol) and cyclopropylmagnesium bromide (5.72 mL, 2.86 

mmol, 0.5 M in THF) according to Method B. Crude product was 

purified by flash chromatography on silica- gel using a mixture of 

hexane / ethyl acetate (1:1) as eluent. Yellow solid. Yield: 138 mg, 

42%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 0.37–0.45 (m, 1H), 

0.50 (dq, J = 9.7, 4.8 Hz, 1H), 0.57–0.71 (m, 2H), 1.18–1.29 (m, 1H), 2.48 (br. s., 1H), 4.06 (d, J 

= 8.2 Hz, 1H), 7.39 (dd, J = 5.0, 3.2 Hz, 1H), 7.60 (dd, J = 8.2, 0.6 Hz, 1H), 7.64–7.68 (m, 1H), 

7.78–7.85 (m, 1H), 7.89 (dd, J = 3.0, 1.4 Hz, 1H), 8.60–8.64 (m, 1H); 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 2.8, 3.6, 19.1, 76.1, 120.0, 123.4, 126.2, 126.3, 134.5, 137.2, 141.9, 147.6, 

152.8; (ESI): m/z = 232.26 [M + H]+. 

 

1-(6-(Naphthalen-1-yl)pyridin-3-yl)ethanol (18). Synthesized using compound 9 (231 mg, 0.99 

mmol) and methylmagnesium bromide (1.98 mL, 1.98 mmol, 1 M 

in THF) according to Method B. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (2:1) as eluent. White solid. Yield: 172 mg, 70%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 1.59 (d, J = 6.1 Hz, 3H), 5.00 (m, 

1H), 7.44–7.62 (m, 5H), 7.80–7.86 (m, 1H), 7.90–7.96 (m, 2H), 8.07 (d, J = 7.9 Hz, 1H), 8.74 (s, 

1H); (ESI): m/z = 250.29 [M + H]+. 
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Cyclopropyl(6-(naphthalen-1-yl)pyridin-3-yl)methanol (19). Synthesized using compound 9 

(253 mg, 1.09 mmol) and cyclopropylmagnesium bromide (4.34 mL, 

2.17 mmol, 0.5 M in THF) according to Method B. Crude product 

was purified by flash chromatography on silica- gel using a mixture 

of hexane / ethyl acetate (3:1) as eluent. Light yellow solid. Yield: 

239 mg, 80%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 0.39–0.54 

(m, 2H), 0.60–0.72 (m, 2H), 1.22–1.29 (m, 1H), 4.04–4.14 (m, 1H), 7.42–7.60 (m, 5H), 7.86–7.92 

(m, 3H), 8.04–8.08 (m, 1H), 8.77 (d, J = 2.2 Hz, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

3.3, 3.9, 14.4, 60.6, 125.0, 125.5, 125.9, 126.1, 126.7, 127.7, 128.6, 129.1, 134.2, 137.8, 138.5, 

147.8, 158.5, 171.4; MS (ESI): m/z = 276.34 [M + H]+. 

 

5-(1-(1H-Imidazol-1-yl)ethyl)-2-phenylpyridine (20). Synthesized using compound 10 (164 mg, 

0.82 mmol), CDI (667 mg, 4.12 mmol), and NMP (8 mL) according 

to method C. Crude product was purified by flash chromatography 

on silica gel using a mixture of ethyl acetate/ methanol (9:1) as eluent. 

White solid. Yield: 20 mg, 10%. Melting point: 64−67 °C (ethyl 

acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 1.93 (d, J = 7.3 

Hz, 3H), 5.45 (q, J = 6.9 Hz, 1H), 6.97 (t, J = 1.4 Hz, 1H), 7.11−7.15 (m, 1H), 7.40−7.51 (m, 4H), 

7.64 (s, 1H), 7.71 (dd, J = 8.2, 0.6 Hz, 1H), 7.95−8.00 (m, 2H), 8.58 (dd, J = 1.6, 0.6 Hz, 1H). 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 21.8, 54.2, 117.7, 120.5, 126.9, 128.8, 129.3, 129.9, 134.3, 

135.3, 135.9, 138.5, 147.5, 157.4. MS (ESI): m/z = 250.26 [M + H]+.  

 

5-(1-(1H-Imidazol-1-yl)propyl)-2-phenylpyridine (21). Synthesized using compound 11 (275 

mg, 1.29 mmol), CDI (1.05 g, 6.45 mmol), and NMP (10 mL) 

according to method C. Crude product was purified by flash 

chromatography on silica gel using a mixture of ethyl 

acetate/methanol (9:1) as eluent. Beige solid. Yield: 114 mg, 34%. 

Melting point: 103−104 °C (ethyl acetate). 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 0.76 (t, J = 7.3 Hz, 3H), 1.98−2.13 (m, 2H), 4.87 (t, J = 7.7 Hz, 1H), 6.75 (t, J 

= 1.1 Hz, 1H), 6.89 (s, 1H), 7.16−7.33 (m, 4H), 7.41 (s, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.71−7.79 

(m, 2H), 8.37 (d, J = 2.2 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 10.9, 28.4, 60.8, 117.4, 

120.4, 126.8, 128.8, 129.2, 130.0, 134.1, 134.7, 136.3, 138.5, 148.0, 157.4. MS (ESI): m/z = 

264.37 [M + H]+.  
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5-(Cyclopropyl(1H-imidazol-1-yl)methyl)-2-phenylpyridine (22). Synthesized using 

compound 12 (200 mg, 0.89 mmol), CDI (720 mg, 4.44 mmol), and 

acetonitrile (12 mL) according to method C. Crude product was 

purified by flash chromatography on silica gel using a mixture of 

hexane/ethyl acetate (1:3) as eluent. White solid. Yield: 45 mg, 18%. 

Melting point: 122−124 °C (ethyl acetate). 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 0.50−0.61 (m, 2H), 0.81−0.95 (m, 2H), 1.58 (m, 1H), 4.49 (d, J = 9.5 Hz, 1H), 

6.98 (t, J = 1.3 Hz, 1H), 7.13 (t, J = 0.9 Hz, 1H), 7.40−7.51 (m, 4H), 7.72 (dd, J = 9.9, 1.4 Hz, 2H), 

7.97−8.02 (m, 2H), 8.63 (d, J = 2.2 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 4.9, 5.2, 

16.2, 63.8, 118.2, 120.4, 126.8, 128.8, 129.2, 129.7, 134.0, 134.9, 136.4, 138.5, 148.0, 157.4. MS 

(ESI): m/z = 276.28 [M + H]+.  

 

5-(1-(1H-Imidazol-1-yl)-2-methylpropyl)-2-phenylpyridine (23). Synthesized using compound 

13 (231 mg, 1.02 mmol), CDI (825 mg, 5.09 mmol), and NMP (10 

mL) according to method C. Crude product was purified by flash 

chromatography on silica gel using a mixture of ethyl 

acetate/methanol (9:1) as eluent. Beige solid. Yield: 71 mg, 25%. 

Melting point: 127−129 °C (ethyl acetate). 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 0.93−1.02 (m, 6H), 2.59−2.66 (m, 1H), 4.72 (d, J = 10.4 Hz, 1H), 7.02−7.07 

(m, 1H), 7.09 (s, 1H), 7.40−7.51 (m, 3H), 7.62−7.70 (m, 2H), 7.70−7.76 (m, 1H), 7.95− 8.02 (m, 

2H), 8.67 (d, J = 2.2 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 19.9, 20.2, 32.4, 66.6, 

117.2, 120.5, 126.8, 128.8, 129.3, 130.0, 133.2, 135.3, 136.4, 138.5, 148.8, 157.4. MS (ESI): m/z 

= 278.41 [M + H]+.  

 

5-(Furan-2-yl(1H-imidazol-1-yl)methyl)-2-phenylpyridine (24). Synthesized using compound 

14 (631 mg, 2.51 mmol), CDI (2.04 g, 12.56 mmol), and NMP (4 

mL) according to method C. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate/methanol (9:1) as 

eluent. Brown oil. Yield: 276 mg, 37%. 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 6.25−6.29 (m, 1H), 6.42 (dd, J = 3.5, 1.9 Hz, 1H), 

6.55 (s, 1H), 6.95 (t, J = 1.3Hz, 1H), 7.14 (t, J = 1.1 Hz, 1H), 7.42−7.57 (m, 6H), 7.75 (dd, J = 8.5, 

0.6 Hz, 1H), 7.97− 8.04 (m, 2H), 8.54 (dt, J = 1.6, 0.8 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC 

(ppm) = 56.6, 110.7, 110.8, 118.6, 120.4, 126.9, 128.8, 129.4, 129.9, 131.6, 135.4, 136.8, 138.4, 

143.9, 148.4, 150.1, 157.8. MS (ESI): m/z = 301.96 [M + H]+.  
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5-((1H-Imidazol-1-yl)(phenyl)methyl)-2-phenylpyridine (25). Synthesized using compound 15 

(299 mg, 1.14 mmol), CDI (928 mg, 5.72 mmol), and NMP (8 mL) 

according to method C. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate as eluent. Beige 

solid. Yield: 75 mg, 21%. Melting point: 124−126 °C (ethyl acetate). 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 6.58 (s, 1H), 6.87−6.91 (m, 

1H), 7.11−7.19 (m, 3H), 7.34−7.54 (m, 8H), 7.73 (d, J = 8.2 Hz, 1H), 7.98−8.04 (m, 2H), 8.49 (d, 

J = 2.5 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 62.6, 119.0, 120.2, 126.8, 127.8, 128.7, 

128.8, 129.0, 129.3, 129.8, 133.1, 136.1, 137.2, 138.0, 138.3, 149.2, 157.4. MS (ESI): m/z = 

312.01 [M + H]+.  

 

5-(1-(1H-Imidazol-1-yl)ethyl)-2-(thiophen-3-yl)pyridine (26). Synthesized using compound 16 

(227 mg, 1.11 mmol), CDI (897.0 mg, 5.53 mmol), and NMP (8 mL) 

according to method C. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate/ methanol (9:1) as 

eluent. Brown oil. Yield: 78 mg, 28%. 1H NMR (CDCl3, 500 MHz): 

δH (ppm) = 1.75 (d, J = 6.9 Hz, 3H), 5.25 (q, J = 7.0 Hz, 1H), 6.79 

(t, J = 1.3 Hz, 1H), 6.96 (t, J = 0.9 Hz, 1H), 7.21− 7.28 (m, 2H), 7.40−7.52 (m, 3H), 7.74 (dd, J = 

2.8, 1.3 Hz, 1H), 8.34 (d, J = 2.5 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 21.7, 54.2, 

117.6, 120.2, 123.9, 126.1, 126.5, 129.9, 134.3, 134.9, 135.9, 141.4, 147.5, 153.5. MS (ESI): m/z 

= 256.08 [M + H]+.  

 

5-(Cyclopropyl(1H-Imidazol-1-yl)methyl)-2-(thiophen-3-yl)-pyridine (27). Synthesized using 

compound 17 (116 mg, 0.50 mmol), CDI (407 mg, 2.51 mmol), and 

NMP (5 mL) according to method C. Crude product was purified by 

flash chromatography on silica gel using ethyl acetate as eluent. 

Brown oil. Yield: 70 mg, 50%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 0.49−0.60 (m, 2H), 0.83−0.91 (m, 2H), 1.53−1.64 (m, 1H), 

4.47 (d, J = 9.5 Hz, 1H), 6.97 (t, J = 1.3 Hz, 1H), 7.12 (t, J = 1.1 Hz, 1H), 7.39−7.46 (m, 2H), 

7.59−7.63 (m, 1H), 7.64−7.68 (m, 1H), 7.72 (s, 1H), 7.91 (dd, J = 3.2, 1.3 Hz, 1H), 8.56 (dd, J = 

1.6, 0.6 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 4.9, 5.2, 16.2, 63.8, 118.2, 120.2, 123.9, 

126.1, 126.5, 129.8, 133.7, 134.9, 136.4, 141.4, 148.0, 153.5. MS (ESI): m/z = 282.30 [M + H]+.  
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5-(1-(1H-Imidazol-1-yl)ethyl)-2-(naphthalen-1-yl)pyridine (28). Synthesized using compound 

18 (147 mg, 0.59 mmol), CDI (478 mg, 2.95 mmol), and NMP (6 

mL) according to method C. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate as eluent. Brown 

oil. Yield: 59 mg, 33%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 

1.97 (d, J = 7.3 Hz, 3H), 5.50 (q, J = 6.9 Hz, 1H), 7.02−7.06 (m, 1H), 

7.16 (s, 1H), 7.45−7.63 (m, 6H), 7.69 (s, 1H), 7.92 (td, J = 4.9, 2.5 Hz, 2H), 8.06 (dd, J = 8.2, 0.9 

Hz, 1H), 8.68 (d, J = 2.2 Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 22.1, 54.5, 117.9, 

125.3, 125.5, 125.6, 126.2, 126.8, 127.8, 128.6, 129.4, 130.2, 131.2, 134.1, 134.1, 135.6, 136.2, 

137.9, 147.6, 159.4. MS (ESI): m/z = 300.03 [M + H]+.  

 

5-(Cyclopropyl(1H-imidazol-1-yl)methyl)-2-(naphthalen-1-yl)-pyridine (29). Synthesized 

using compound 19 (210 mg, 0.76 mmol), CDI (619 mg, 3.82 mmol), 

and NMP (8 mL) according to method C. Crude product was purified 

by flash chromatography on silica gel using a mixture of ethyl 

acetate/methanol (9:1) as eluent. Brown oil. Yield: 38 mg, 15%. 1H 

NMR (CDCl3, 500 MHz): δH (ppm) = 0.54−0.66 (m, 2H), 0.86−0.98 

(m, 2H), 1.61−1.68 (m, 1H), 4.54 (d, J = 9.5 Hz, 1H), 7.06 (s, 1H), 7.17 (s, 1H), 7.46−7.64 (m, 

6H), 7.78 (s, 1H), 7.89−7.97 (m, 2H), 8.06−8.12 (m, 1H), 8.75 (dd, J = 1.3, 0.6 Hz, 1H). 13C NMR 

(CDCl3, 125 MHz): δC (ppm) = 5.1, 5.2, 16.4, 64.0, 118.2, 125.0, 125.2, 125.4, 125.9, 126.6, 127.6, 

128.4, 129.2, 129.8, 131.0, 133.9, 134.1, 134.5, 136.4, 137.7, 147.8, 159.3. MS (ESI): m/z = 

325.96 [M + H]+.  

 

3-Methyl-6-Phenylpyridazine (30). Synthesized using 3-chloro-6-methylpyridazine (1.00 g, 7.78 

mmol) and phenylboronic acid (1.42 g, 11.67 mmol) according to 

Method A. Crude product was purified by flash chromatography on 

silica-gel using a mixture of hexane / ethyl acetate (2:1) as eluent. 

White solid. Yield: 1.00 g, 76%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 2.76 (s, 3H), 7.39 (d, J = 8.5 Hz, 1H), 7.46–7.55 (m, 3H), 

7.76 (d, J = 8.5 Hz, 1H), 8.03–8.09 (m, 2H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 22.0, 123.9, 

126.9, 127.2, 128.9, 129.7, 134.4, 136.4, 157.2, 158.5; (ESI): m/z = 170.96 [M + H]+. 
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2-Methyl-5-phenylpyrazine (31). To a stirred solution of propylenediamine (2.94 g, 0.04 mol) in 

ethanol (50 mL) was added phenylglyoxal-monohydrate (5.00 g, 

0.03 mol) at 0°C within 30 minutes. After stirring for 1.5 hours at 

room temperature KOH (2.10 g, 0.04 mol) was added and the 

reaction mixture was refluxed for 12 hours. Then the solvent was 

removed under vacuum and the residue was extracted with ether. 

The organic phases were washed with brine and dried over MgSO4. Crude product was purified 

by flash chromatography on silica- gel using a mixture of hexane / ethyl acetate (7:3→3:7) as 

eluent. After flash chromatography the product was recrystallized from hexane. White solid. Yield: 

780 mg, 15%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 2.57 (s, 3H), 7.38–7.50 (m, 3H), 7.91–

7.99 (m, 2H), 8.43– 8.49 (m, 1H), 8.87 (d, J = 1.5 Hz, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) 

= 21.2, 126.6, 128.9, 129.4, 136.5, 140.9, 143.8, 149.8, 151.9; (ESI): m/z = 170.94 [M + H]+. 

 

5-Methyl-2-phenylpyrimidine (32). To a solution of benzamidine hydrochloride (500 mg, 3.19 

mmol) and 3-ethoxy-2-methylacrylaldehyde (400 mg, 3.51 mmol) 

in methanol (10 mL) was added a NaOMe solution (30% in 

methanol) dropwise under stirring over 30 minutes. After stirring for 

4 hours, water (20 mL) was added and mixture was stirred for further 

30 minutes at room temperature. After filtration, the obtained 

precipitate was washed with water and dried. White solid. Yield: 220 mg, 41%. 1H NMR (CDCl3, 

500 MHz): δH (ppm) = 2.34 (s, 3H), 7.44–7.54 (m, 3H), 8.37–8.45 (m, 2H), 8.64 (d, J = 0.6 Hz, 

2H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 15.7, 128.1, 128.5, 128.8, 130.6, 137.9, 157.6, 

162.7; (ESI): m/z = 170.97 [M + H]+. 

 

4-Methyl-1-phenylisoquinoline (33). Under nitrogen atmosphere methoxymethyl- 

triphenylphosphoniumchlorid (11.0 g, 0.03 mol) was suspensed in 

THF (40 mL) and cooled to -40 °C. Then KOtBu (4.50 g, 0.04 mol) 

was added so that temperature not rised over -10 °C. After complete 

addition of KOtBu immediately 2’-bromacetophenon (4.00 g, 2.71 

mL, 0.02 mol) in THF (25 mL) was added dropwise at less then -

10°C. The reaction mixture was stirred for 1 h at -10 °C and afterwards 18 h at room temperature. 

Then addition of H2O (100 mL) and extraction with hexane (10 × 20 mL) were followed. The 

organic phases were dried over MgSO4 and concentrated under vacuum. The residue was dissolved 

in methanol (100 mL) and water (75 mL) followed by extraction with hexane (10 × 20 mL). Again 

the organic phases were dried over MgSO4 and concentrated under vacuum. The obtained 1-



 94 

bromo-2-(1-methoxyprop-1-en-2-yl)benzene (orange liquid, 4.05 g) was used directly in the next 

step without further purification and characterization. To a stirred solution of 1-bromo-2-(1-

methoxyprop-1-en-2-yl)benzene (3.13 g, 13.8 mmol) in diethyl ether (30 mL) at 0 °C was added 

n-BuLi (1.6M in hexane, 8.60 mL, 13.8 mmol) dropwise. After 1 h PhCN (1.56 g, 1.56 mL, 15.2 

mmol) was added and the reaction temperature was raised to room temperature. H2O (40 mL) was 

added and the organic materials were extracted with diethyl ether (2 × 30 mL). The combined 

extracts were washed with brine (20 mL), dried over MgSO4 and concentrated under vacuum. 

Crude product was purified by flash chromatography on silica-gel using a mixture of hexane / 

ethyl acetate (10:1→5:1) as eluent. Yellow oil. Yield: 1.10 g, 36%. 1H NMR (CDCl3, 500 MHz): 

δH (ppm) = 2.66 (d, J = 0.9 Hz, 3 H), 7.44–7.54 (m, 4 H), 7.64–7.68 (m, 2 H), 7.72 (ddd, J = 8.3, 

6.9, 1.3 Hz, 1 H), 8.00 (m, 1 H), 8.09 (m, 1 H), 8.45 (d, J = 0.9 Hz, 1 H); 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 16.0, 123.5, 126.1, 126.7, 128.1, 128.3, 128.3, 129.8, 129.9, 136.1, 139.8, 142.1, 

159.3; (ESI): m/z = 219.92 [M + H]+.  

 

3-(Bromomethyl)-6-phenylpyridazine (34). Synthesized using compound 30 (982 mg, 5.77 

mmol), NBS (1.13 g, 6.35 mmol) and DBPO (70 mg, 0.29 mmol) in 

carbon tetrachloride according to Method D. Crude product was 

purified by flash chromatography on silica-gel using hexane / ethyl 

acetate (4:1) as eluent. Product was used directly in the next step 

without further characterization. Orange solid. Yield: 53 mg, 4%. 

(ESI): m/z = 250.67 [M + H]+.  

 

2-(Bromomethyl)-5-phenylpyrazine (35). Synthesized using compound 31 (724 mg, 4.25 mmol), 

NBS (832 mg, 4.68 mmol) and DBPO (52 mg, 0.21 mmol) in carbon tetrachloride according to 

Method D. Crude product was purified by flash chromatography on 

silica-gel using a mixture of hexane / ethyl acetate (3:1) as eluent. 

Product was used directly in the next step without further 

characterization. Yellow solid. Yield: 571 mg, 54%. (ESI): m/z = 

250.80 [M + H]+. 
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5-(Bromomethyl)-2-phenylpyrimidine (36). Synthesized using compound 32 (205 mg, 1.20 

mmol), NBS (236 mg, 1.32 mmol) and DBPO (14.6 mg, 0.06 mmol) 

in carbon tetrachloride according to Method D. Crude product was 

purified by flash chromatography on silica-gel using hexane / ethyl 

acetate (10:1) as eluent. Product was used directly in the next step 

without further characterization. White solid. Yield: 89 mg, 30%. 

(ESI): m/z = 250.68 [M + H]+.  

 

4-(Bromomethyl)-1-phenylisoquinoline (37). Synthesized using compound 33 (4.21 g, 19.2 

mmol), NBS (3.76 g, 21.1 mmol) and DBPO (233 mg, 0.96 mmol) 

in carbon tetrachloride according to Method D. Crude product was 

purified by flash chromatography on silica-gel using a mixture of 

hexane / ethyl acetate (8:1→2:1) as eluent. Light yellow solid. Yield: 

710 mg, 12%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.94 (s, 2 H), 

7.47–7.54 (m, 3 H), 7.57 (ddd, J = 8.4, 7.0, 1.1 Hz, 1 H), 7.64–7.67 (m, 2 H), 7.82 (ddd, J=8.4, 

7.0, 1.3 Hz, 1 H), 8.14 (m, 1 H), 8.18 (m, 1 H), 8.64 (s, 1 H); 13C NMR (CDCl3, 125 MHz): δC 

(ppm) = 28.5, 123.3, 126.1, 126.7, 127.4, 128.4, 128.4, 128.5, 128.9, 129.9, 130.0, 130.6, 134.6, 

139.2, 142.6, 162.3; (ESI): m/z = 299.59 [M + H]+. 

 

3-((1H-Imidazol-1-yl)methyl)-6-phenylpyridazine (38). Synthesized using compound 34 (40 

mg, 0.16 mmol), imidazole (44 mg, 0.64 mmol) and K2CO3 (111 mg, 

0.80 mmol) in acetonitrile according to Method E. The crude product 

was purified by flash chromatography on silica-gel using ethyl 

acetate as eluent. After flash chromatography the solid was washed 

with ethyl acetate. Light orange solid. Yield: 22 mg, 58%. Mp: 145–

148 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 5.58 (s, 2H), 7.08 (s, 1H), 7.17–

7.26 (m, 2H), 7.55– 7.61 (m, 3H), 7.72 (s, 1H), 7.88 (d, J = 8.8 Hz, 1H), 8.09–8.14 (m, 2H); 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 50.9, 119.6, 125.1, 125.5, 127.4, 129.4, 130.7, 130.8, 135.8, 

137.8, 157.2, 159.3; MS (ESI): m/z = 236.91 [M + H]+.  
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2-((1H-Imidazol-1-yl)methyl)-5-phenylpyrazine (39). Synthesized using compound 35 (100 mg, 

0.40 mmol), imidazole (109 mg, 1.60 mmol) and K2CO3 (276 mg, 

2.00 mmol) in DMF according to Method E. Crude product was 

purified by flash chromatography on silica-gel using ethyl acetate as 

eluent. Light yellow solid. Yield: 69 mg, 73%. Mp: 152–154 °C 

(ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 5.50 (s, 2H), 

7.24 (t, J = 1.3 Hz, 1H), 7.33 (t, J = 1.1 Hz, 1H), 7.64–7.74 (m, 3H), 7.86 (s, 1H), 8.17–8.23 (m, 

2H), 8.63 (d, J = 1.3 Hz, 1H), 9.18 (d, J = 1.6 Hz, 1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

50.0, 119.2, 126.9, 129.1, 130.2, 130.3, 135.7, 137.5, 141.5, 142.3, 152.3; MS (ESI): m/z = 236.91 

[M + H]+.  

 

5-((1H-Imidazol-1-yl)methyl-2-phenylpyrimidine (40). Synthesized using compound 36 (70 mg, 

0.28 mmol), imidazole (76 mg, 1.12 mmol) and K2CO3 (195 mg, 

1.41 mmol) in acetonitrile according to Method E. Crude product 

was purified by flash chromatography on silica-gel using ethyl 

acetate as eluent. After flash chromatography the product was 

recrystallized in ethyl acetate. Light yellow solid. Yield: 62 mg, 94%. 

Mp: 155–157 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 5.17 (s, 2H), 6.94 (t, J 

= 1.3 Hz, 1H), 7.15 (t, J = 1.1 Hz, 1H), 7.47–7.54 (m, 3H), 7.61 (s, 1H), 8.41–8.46 (m, 2H), 8.63 

(s, 2H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 46.0, 118.8, 127.0, 128.2, 128.7, 130.7, 131.1, 

136.8, 137.2, 156.2, 164.8; MS (ESI): m/z = 236.92 [M + H]+.  

 

4-((1H-Imidazol-1-yl)methyl)-1-phenylisoquinoline (41). Synthesized using compound 37 (110 

mg, 0.37 mmol), imidazole (101 mg, 1.48 mmol), and K2CO3 (256 

mg, 1.85 mmol) in DMF according to method E. Crude product was 

purified by flash chromatography on silica gel using a mixture of 

ethyl acetate/methanol (9:1) as eluent. White solid. Yield: 30 mg, 

28%. Melting point: 138−140 °C (ethyl acetate). 1H NMR (CDCl3, 

500 MHz): δH (ppm) = 5.56 (s, 2H), 6.96 (m, 1H), 7.09 (m, 1H), 7.49−7.60 (m, 4H), 7.62 (s, 1H), 

7.66−7.75 (m, 3H), 7.86 (d, J = 8.2 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 8.49 (s, 1H). 13C NMR 

(CDCl3, 125 MHz): δC (ppm) = 46.5, 119.1, 122.0, 123.4, 126.5, 127.4, 128.3, 128.7, 128.9, 129.8, 

129.8, 131.0, 134.7, 137.1, 139.0, 142.5, 162.4. MS (ESI): m/z = 285.96 [M + H]+.  
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5-Methyl-2-phenylpyridine (42). Synthesized using 2-bromo-5-methylpyridine (2.92 g, 16.95 

mmol) and phenylboronic acid (3.09 g, 25.4 mmol) according to 

method A. Crude product was purified by flash chromatography on 

silica gel using a mixture of hexane/ethyl acetate (8:1) as eluent. 

White solid. Yield: 1.99 g, 70%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 2.38 (s, 3H), 7.37−7.43 (m, 1H), 7.44−7.51 (m, 2H), 

7.54−7.60 (m, 1H), 7.60−7.67 (m, 1H), 7.95− 8.00 (m, 2H), 8.51−8.55 (m, 1H). 13C NMR (CDCl3, 

125 MHz): δC (ppm) = 18.1, 120.0, 126.7, 128.6, 128.7, 131.5, 137.3, 139.4, 150.1, 154.8. MS 

(ESI): m/z = 169.97 [M + H]+.  

 

5-(Bromomethyl)-2-phenylpyridine (43). Synthesized using compound 42 (760 mg, 4.49 mmol), 

NBS (878 mg, 4.93 mmol), and DBPO (54 mg, 0.23 mmol) in carbon 

tetrachloride according to method D. Crude product was purified by 

flash chromatography on silica gel using hexane/ethyl acetate (8:1) 

as eluent. White solid. Yield: 297 mg, 73%. 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 4.54 (s, 2H), 7.42−7.53 (m, 3H), 7.71−7.77 (m, 

1H), 7.80−7.85 (m, 1H), 7.98−8.04 (m, 2H), 8.72−8.76 (m, 1H). 13C NMR (CDCl3, 125 MHz): δC 

(ppm) = 29.7, 120.6, 127.0, 128.4, 128.8, 130.1, 137.6, 138.5, 149.6, 157.36. MS (ESI): m/z = 

249.66 [M + H]+.  

 

2-Phenyl-5-(pyridin-3-ylmethyl)pyridine (44). Synthesized using compound 43 (100 mg, 0.40 

mmol) and 3-pyridineboronic acid (74 mg, 0.61 mmol) according to 

method A. Crude product was purified by flash chromatography on 

silica gel using a mixture of hexane/ethyl acetate (2:1) as eluent. 

After flash chromatography, the product was dissolved in ethyl 

acetate, and a few drops of conc HCl and water were added. After 

stirring for 30 min, the phases were separated and aqueous phase was neutralized with aqueous 

Na2CO3 solution (2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was 

removed under vacuum. Beige solid. Yield: 32 mg, 32%. Melting point: 86−88 °C (ethyl acetate). 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 3.80 (s, 2H), 6.99−7.06 (m, 1H), 7.15−7.20 (m, 1H), 

7.21− 7.35 (m, 4H), 7.45 (d, J = 8.2 Hz, 1H), 7.72−7.77 (m, 2H), 8.28 (dd, J = 4.7, 1.3 Hz, 1 H), 

8.36 (d, J = 1.9 Hz, 1 H), 8.33 (d, J = 1.9 Hz, 1 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 35.9, 

120.4, 123.6, 126.8, 128.7, 128.9, 133.6, 135.4, 136.2, 137.0, 139.0, 148.1, 149.9, 150.1, 155.9. 

MS (ESI): m/z = 246.98 [M + H]+.  
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2-Phenyl-5-(pyridin-4-ylmethyl)pyridine (45). Synthesized using compound 43 (355 mg, 1.43 

mmol) and 4-pyridineboronic acid (264 mg, 2.15 mmol) according 

to method A. Crude product was purified by flash chromatography 

on silica gel using a mixture of hexane/ethyl acetate (2:1) as eluent. 

After flash chromatography the product was dissolved in ethyl 

acetate, and a few drops of conc HCl and water were added. After 

stirring for 30 min, the phases were separated and aqueous phase was neutralized with aqueous 

Na2CO3 solution (2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was 

removed under vacuum. Beige solid. Yield: 140 mg, 40%. Melting point: 72−75 °C (ethyl acetate). 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 3.77 (s, 2H), 6.88−6.93 (m, 2H), 7.15−7.21 (m, 1H), 

7.21− 7.31 (m, 3H), 7.45 (dd, J = 8.2, 0.9 Hz, 1H), 7.72−7.78 (m, 2H), 8.28−8.33 (m, 2H), 

8.33−8.37 (m, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 38.0, 120.3, 124.0, 126.7, 128.7, 

128.9, 132.7, 137.1, 138.9, 148.7, 149.9, 150.0, 156.0. MS (ESI): m/z = 246.85 [M + H]+. 

 

4-((6-Phenylpyridin-3-yl)methyl)isoquinoline (46). Synthesized using compound 43 (109 mg, 

0.44 mmol) and 4-isoquinolineboronic acid (114 mg, 0.66 mmol) 

according to method A. Crude product was purified by flash 

chromatography on silica gel using a mixture of hexane/ethyl acetate 

(3:1) as eluent. After flash chromatography, the product was 

dissolved in ethyl acetate and a few drops of conc HCl and water 

were added. After stirring for 30 min, the phases were separated and aqueous phase was 

neutralized with aqueous Na2CO3 solution (2M). After extraction with ethyl acetate and drying 

over MgSO4, the solvent was removed under vacuum. Beige solid. Yield: 20 mg, 19%. Melting 

point: 133−136 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.43 (s, 2H), 7.37−7.54 

(m, 4H), 7.59−7.65 (m, 2H), 7.65−7.75 (m, 1H), 7.89−8.07 (m, 4H), 8.48 (s, 1H), 8.65−8.70 (m, 

1H), 9.23 (s, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 33.2, 120.3, 123.1, 126.7, 127.2, 128.4, 

128.6, 128.6, 128.7, 128.9, 130.7, 133.6, 134.6, 136.7, 139.0, 143.7, 149.7, 152.3, 155.7. MS 

(ESI): m/z = 296.95 [M + H]+.  

 

5-((6-Phenylpyridin-3-yl)methyl)pyrimidine (47). Synthesized using compound 43 (219 mg, 

0.88 mmol) and pyrimidine-5-boronic acid (164 mg, 1.32 mmol) 

according to Method A. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (1:1) as eluent. After flash chromatography the product was 

dissolved in ethyl acetate and a few drops of conc. HCl and water 
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were added. After stirring for 30 minutes the phases were separated and aqueous phase was 

neutralized with aqueous Na2CO3 solution (2M). After extraction with ethyl acetate and drying 

over MgSO4 the solvent was removed under vacuum. White solid. Yield: 43 mg, 20%. Mp: 128–

130 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.02 (s, 2H), 7.39–7.44 (m, 1H), 

7.44–7.56 (m, 3H), 7.70 (dd, J = 8.2, 0.9 Hz, 1H), 7.95–8.00 (m, 2H), 8.58–8.67 (m, 3 H), 9.13 (s, 

1H); 13C NMR (CDCl3, 125 MHz): δC (ppm) = 33.4, 120.5, 126.8, 128.8, 129.1, 132.2, 133.3, 

136.9, 138.7, 149.7, 156.4, 156.9, 157.3; MS (ESI): m/z = 247.83 [M + H]+.  

 

5-((4-Methylpyridin-3-yl)methyl)-2-phenylpyridine (48). Synthesized using compound 43 (100 

mg, 0.40 mmol) and 4-methylpyridine-3-boronic acid (83 mg, 0.61 

mmol) according to method A. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate as eluent. After 

flash chromatography, the product was dissolved in ethyl acetate and 

a few drops of conc HCl and water were added. After stirring for 30 

min, the phases were separated and aqueous phase was neutralized with aqueous Na2CO3 solution 

(2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was removed under 

vacuum. Light-yellow solid. Yield: 54 mg, 52%. Melting point: 82−84 °C (ethyl acetate). 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 2.22−2.29 (m, 3H), 4.02 (s, 2H), 7.11 (d, J = 5.0 Hz, 1H), 

7.37−7.51 (m, 4H), 7.64 (dd, J = 8.2, 0.6 Hz, 1H), 7.95− 8.01 (m, 2H), 8.38−8.46 (m, 2H), 

8.52−8.57 (m, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 19.3, 33.8, 120.5, 125.7, 126.9, 

129.0, 129.1, 133.2, 133.8, 136.8, 139.2, 146.1, 148.7, 149.9, 150.7, 155.9. MS (ESI): m/z = 

260.85 [M + H]+.  

 

5-((5-Methylpyridin-3-yl)methyl)-2-phenylpyridine (49). Synthesized using compound 43 (70 

mg, 0.28 mmol) and 5-methylpyridine- 3-boronic acid (58 mg, 0.42 

mmol) according to method A. Crude product was purified by flash 

chromatography on silica gel using ethyl acetate as eluent. After 

flash chromatography, the product was dissolved in ethyl acetate and 

a few drops of conc HCl and water were added. After stirring for 30 

min, the phases were separated and aqueous phase was neutralized with aqueous Na2CO3 solution 

(2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was removed under 

vacuum. Light-yellow solid. Yield: 56 mg, 77%. Melting point: 79−81 °C (ethyl acetate). 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 2.30 (d, J = 0.6 Hz, 3H), 3.98 (s, 2H), 7.28−7.32 (m, 1H), 

7.38−7.44 (m, 1H), 7.44−7.55 (m, 3H), 7.67 (dd, J = 8.0, 0.8 Hz, 1H), 7.96 − 8.01 (m, 2H), 8.36 

(d, J = 1.6 Hz, 1H), 8.33 (d, J = 1.6 Hz, 1H), 8.58 (dd, J = 1.6, 0.6 Hz, 1H). 13C NMR (CDCl3, 125 
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MHz): δC (ppm) = 18.3, 35.7, 120.4, 126.7, 128.7, 128.9, 133.1, 133.8, 134.8, 136.8, 137.0, 139.0, 

147.2, 148.6, 149.8, 155.8. MS (ESI): m/z = 260.84 [M + H]+.  

 

5-((6-Phenylpyridin-3-yl)methyl)nicotinamide (50). Synthesized using compound 43 (57.0 mg, 

0.23 mmol) and 5-(4,4,5,5- tetramethyl-1,3,2-dioxaborolan-2-

yl)nicotinonitrile (64.0 mg, 0.28 mmol), Cs2CO3 (225 mg, 0.7 mmol), 

and PdCl2(dppf) (8.40 mg, 0.01 mmol) according to method F. 

Crude product was purified by flash chromatography on silica gel 

using a mixture of ethyl acetate/ methanol (10:1) as eluent. White 

solid. Yield: 18.0 mg, 27%. Melting point: 170−173 °C (ethyl acetate). 1H NMR (DMSO-d6, 500 

MHz): δH (ppm) = 4.11 (s, 2H), 7.36−7.53 (m, 3H), 7.58 (s, 1H), 7.76 (dd, J = 8.2, 1.9 Hz, 1H), 

7.90 (d, J = 7.9 Hz, 1H), 8.05 (d, J = 7.3 Hz, 2H), 8.08−8.22 (m, 2H), 8.61−8.68 (m, 1H), 8.71 (d, 

J = 1.6 Hz, 1H), 8.90 (d, J = 1.6 Hz, 1H); 13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 34.5, 120.1, 

126.4, 128.7, 128.9, 129.6, 134.5, 135.2, 135.9, 137.4, 138.4, 146.6, 149.7, 152.0, 154.3, 166.3. 

MS (ESI): m/z = 290.04 [M + H]+.  

 

5-((5-Fluoropyridin-3-yl)methyl)-2-phenylpyridine (51). Synthesized using compound 43 

(57.0 mg, 0.23 mmol) and 5- fluoropyridine-3-boronic acid (39.0 mg, 

0.28 mmol), Cs2CO3 (225 mg, 0.7 mmol), and PdCl2(dppf) (50 mg, 

0.07 mmol) according to method F. Crude product was purified by 

flash chromatography on silica gel using a mixture of hexane/ethyl 

acetate (2:1) as eluent. White solid. Yield: 20.0 mg, 33%. Melting 

point: 89−92 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.05 (s, 2H), 7.19−7.23 

(m, 1H), 7.39−7.44 (m, 1H), 7.45−7.50 (m, 2H), 7.53 (dd, J = 8.2, 2.5 Hz, 1H), 7.70 (dd, J = 8.2, 

0.6 Hz, 1H), 7.96−8.00 (m, 2H), 8.36−8.40 (m, 2H), 8.57−8.60 (m, 1H). 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 35.6, 120.7, 123.1, 123.3, 127.0, 129.0, 129.2, 133.0, 136.6, 136.8, 137.3, 137.4, 

137.4, 139.1, 146.0, 146.1, 150.1, 156.4, 158.8, 160.8. MS (ESI): m/z = 265.00 [M + H]+.  

 

2-Phenyl-5-((5-(trifluoromethyl)pyridin-3-yl)methyl) pyridine (52). To a solution of 3-bromo-

5-(trifluoromethyl)pyridine (502 mg, 2.22 mmol) in THF (20 mL) 

was added trimethylborate (240 mg, 26.0 mL, 2.31 mmol) under 

nitrogen atmosphere. After the mixture was cooled to −78 °C, n-

BuLi (1.6 M in hexane, 1.45 mL, 2.32 mmol) was added dropwise 

over 10 min, keeping the temperature below 65 °C. Then the reaction 

mixture was slowly warmed to room temperature and stirred for 1 h. Afterward, HCl (1M, 10 mL) 
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was added and the mixture was stirred for 15 min. The phases were separated, and the organic 

phase was washed with HCl (1M, 20 mL). The aqueous layers are combined and washed with 

ethyl acetate (2 × 20 mL). Afterward, the aqueous phases were neutralized with sodium hydroxide 

solution (2M) and extracted with ethyl acetate (2 × 20 mL). The solvent was evaporated in vacuum, 

and 5-(trifluoromethyl)pyridine-3-boronic acid (113 mg, yellow solid) was obtained. The boronic 

acid was directly used in the next step without further characterization and purification. A mixture 

of compound 43 (171 mg, 0.69 mmol), 5-(trifluoromethyl)pyridine-3- boronic acid (113 mg, 0.59 

mmol), Cs2CO3 (684 mg, 2.10 mmol), and PdCl2(dppf) (26 mg, 0.04 mmol) was used for synthesis 

according to method F. Crude product was purified by flash chromatography on silica gel using a 

mixture of hexane/ethyl acetate (5:1) as eluent. White solid. Yield: 22 mg, 10%. Melting point: 

95−98 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.11 (s, 2H), 7.40−7.56 (m, 

4H), 7.69−7.76 (m, 2H), 7.97−8.02 (m, 2H), 8.58−8.61 (m, 1H), 8.73 (s, 1H), 8.80 (s, 1H). 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 35.7, 120.6, 126.8, 128.8, 129.1, 132.4, 133.1, 133.1, 135.7, 

137.0, 138.8, 144.9, 145.0, 149.8, 153.3, 153.3, 156.4. MS (ESI): m/z = 314.87 [M + H]+.  

 

5-((5-Methoxypyridin-3-yl)methyl)-2-phenylpyridine (53). Synthesized using compound 43 

(338 mg, 1.36 mmol), 3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)pyridine (413 mg, 1.76 mmol), Cs2CO3 (1.33 g, 

4.10 mmol), and PdCl2(dppf) (50 mg, 0.07 mmol) according to 

method F. Crude product was purified by flash chromatography on 

silica gel using a mixture of hexane/ethyl acetate (1:1→1:2) as 

eluent. Light-yellow solid. Yield: 145 mg, 39%. Melting point: 102−105 °C (ethyl acetate). 1H 

NMR (CDCl3, 500 MHz): δH (ppm) = 3.82 (s, 3H), 4.01 (s, 2H), 6.98−7.01 (m, 1H), 7.39−7.44 (m, 

1H), 7.45−7.50 (m, 2H), 7.53 (dd, J = 8.2, 2.2 Hz, 1H), 7.68 (dd, J = 8.2, 0.9 Hz, 1H), 7.96−7.99 

(m, 2H), 8.17 (d, J = 1.6 Hz, 1H), 8.21 (d, J = 2.8 Hz, 1H), 8.59 (dd, J = 1.6, 0.6 Hz, 1H). 13C 

NMR (CDCl3, 125 MHz): δC (ppm)= 35.7, 55.5, 120.4, 120.9, 126.7, 128.7, 128.9, 133.6, 135.7, 

136.0, 137.0, 139.0, 142.3, 149.8, 155.8, 155.9. MS (ESI): m/z = 276.95 [M + H]+.  

 

5-((6-Phenylpyridin-3-yl)methyl)pyridin-3-ol (54). Compound 53 (145 mg, 0.53 mmol) was 

suspended in HBr (48% in water, 5 mL), and the mixture was stirred 

at 130 °C overnight. After cooling down to room temperature, 

saturated Na2CO3 solution was added to neutralize the mixture. After 

extraction with ethyl acetate (3 × 10 mL) and drying over MgSO4, 

the solvent was removed under vacuum. The crude product was 

dissolved in ethyl acetate, and a few drops of conc HCl and water were added. After stirring for 
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30 min, the phases were separated and aqueous phase was neutralized with aqueous Na2CO3 

solution (2M). After extraction with ethyl acetate and drying over MgSO4, the solvent was 

removed under vacuum. Light-yellow solid. Yield: 100 mg, 72%. Melting point: 181−183 °C 

(ethyl acetate). 1H NMR (DMSO-d6, 500 MHz): δH (ppm) = 3.97 (s, 2H), 7.02 (dd, J = 2.8, 1.9 Hz, 

1H), 7.39−7.43 (m, 1H), 7.45−7.50 (m, 2H), 7.72 (dd, J = 8.2, 2.2 Hz, 1H), 7.89 (dd, J = 8.2, 0.6 

Hz, 1H), 7.99 (d, J = 2.5 Hz, 1H), 8.01−8.07 (m, 3H), 8.59−8.62 (m, 1H), 9.83 (s, 1H). 13C NMR 

(DMSO-d6, 125 MHz): δC (ppm) = 34.4, 120.0, 122.0, 126.3, 128.7, 128.8, 134.9, 136.1, 136.7, 

137.3, 138.5, 140.4, 149.6, 153.6, 154.2. MS (ESI): m/z = 263.00 [M + H]+.  

 

2-Bromo-5-(bromomethyl)pyridine (55). Synthesized using 2-bromo-5-methylpyridine (2.30 g, 

13.4 mmol), NBS (2.62 g, 14.7 mmol), and DBPO (162 mg, 0.67 

mmol) in carbon tetrachloride according to method D. Crude product 

was purified by flash chromatography on silica gel using a mixture 

of hexane/ethyl acetate (15:1→8:1) as eluent. Yellow solid. Yield: 

1.50 g, 45%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.42 (s, 2H), 

7.49 (dd, J = 8.2, 0.9 Hz, 1H), 7.58−7.62 (m, 1H), 8.39 (dd, J = 2.5, 0.6 Hz, 1H). MS (ESI): m/z 

= 251.62 [M + H]+.  

 

2-Bromo-5-((5-bromopyridin-3-yl)methyl)pyridine (56). Synthesized using compound 55 (283 

mg, 1.13 mmol) and 5-bromopyridine-3-boronic acid (228 mg, 1.13 

mmol) according to method A. Crude product was purified by flash 

chromatography on silica gel using a mixture of hexane/ethyl acetate 

(5:1) as eluent. White solid. Yield: 70.0 mg, 19%. 1H NMR (CDCl3, 

500 MHz): δH (ppm) = 3.94 (s, 2H), 7.33 (dd, J = 8.2, 2.5 Hz, 1H), 7.45 (d, J = 8.2Hz, 1H), 7.61 

(s, 1H), 8.27 (d, J = 2.2 Hz, 1H), 8.42 (s, 1H), 8.58 (s, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) 

= 35.0, 121.1, 128.3, 133.7, 136.5, 138.9, 138.9, 140.8, 147.8, 149.3, 150.2. MS (ESI): m/z = 

328.64 [M + H]+.  

 

2-Phenyl-5-((5-phenylpyridin-3-yl)methyl)pyridine (57). Synthesized using compound 56 

(70.0 mg, 0.21 mmol) and phenylboronic acid (96.0 mg, 0.64 mmol) 

according to method A. Crude product was purified by flash 

chromatography on silica gel using a mixture of hexane/ethyl acetate 

(5:1) as eluent. After flash chromatography, the product was 

dissolved in ethyl acetate and a few drops of conc HCl and water 

were added. After stirring for 30 min, the phases were separated and aqueous phase was 
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neutralized with aqueous Na2CO3 solution (2M). After extraction with ethyl acetate and drying 

over MgSO4, the solvent was removed under vacuum. White solid. Yield: 49.0 mg, 72%. Melting 

point: 115−117 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 4.09 (s, 2H), 7.37−7.44 

(m, 2H), 7.44−7.50 (m, 4H), 7.53−7.59 (m, 3H), 7.67−7.70 (m, 2H), 7.97− 8.02 (m, 2H), 8.53 (d, 

J = 2.2 Hz, 1H), 8.63−8.66 (m, 1H), 8.75 (d, J = 2.2Hz, 1H). 13C NMR (CDCl3, 125 MHz): δC 

(ppm) = 35.8, 120.4, 126.7, 127.1, 128.1, 128.7, 128.9, 129.0, 133.5, 134.6, 135.2, 136.6, 137.0, 

137.4, 138.9, 146.6, 148.6, 149.8, 155.9. MS (ESI): m/z = 322.95 [M + H]+.  

 

5-Bromo-2-phenylpyridine (58). Synthesized using 2-iodo-5-bromopyridine (1.79 g, 6.3 mmol) 

and phenylboronic acid (1 eq, 770 mg, 6.3 mmol) according to Method A. Crude product was 

purified by flash chromatography on silica-gel using a mixture of 

hexane / ethyl acetate (50:1→30:1) as eluent. Product was used 

directly in the next step without further characterization. White solid. 

Yield: 841 mg, 57%. MS (ESI): m/z = 235.83 [M + H]+. 

 

5-Iodo-2-phenylpyridine (59). To a mixture of NaI (2.20 g, 14.8 mmol) and CuI (71.0 mg, 0.37 

mmol) N,N ́-dimethylethylendiamin (65.0 mg, 0.74 mmol), 58 (1.74 

g, 7.42 mmol) and dioxane (30 mL) were added under nitrogen 

atmosphere. The reaction mixture was stirred for 21 h at 110 °C 

followed by the addition of an ammonia solution (30% in water, 5 

mL) and water (20 mL). The aqueous phase was extracted with 

DCM (4 × 30 mL) and then the combined organic phases were dried over MgSO4. The solvent 

was removed under vacuum and the crude product was purified by flash chromatography on silica-

gel using a mixture of hexane / ethyl acetate (40:1) as eluent. Product was used directly in the next 

step without further characterization. Light yellow solid. Yield: 860 mg, 41%. (ESI): m/z = 281.86 

[M + H]+. 

 

2-Phenyl-5-(pyridine-3-yloxy)pyridine (60). A mixture of 59 (230 mg, 0.82 mmol), copper(I) 

iodide (8.00 mg, 0.04 mmol), 2-picolinic acid (10.0 mg, 0.08 mmol), 

3- hydroxypyridine (94.0 mg, 0.98 mmol) and K3PO4 (348 mg, 1.64 

mmol) was dissolved in DMSO (5 mL) under nitrogen atmosphere. 

The reaction mixture was stirred for 24 h at 80 °C. After cooling 

down to room temperature ethyl acetate (10 mL) and H2O (1mL) 

were added and the organic layer was separated. The aqueous layer was extracted with ethyl 

acetate (2 × 10 mL) and the combined organic phases were dried over MgSO4. After filtration the 
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solvent was evaporated under vacuum and the resulting crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane / ethyl acetate (2:1) as eluent. Light yellow 

solid. Yield: 38 mg, 19%. Mp: 150–152 °C (ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) 

= 7.29–7.33 (m, 1 H), 7.34–7.43 (m, 3 H), 7.45–7.50 (m, 2 H), 7.73 (m, 1 H), 7.95–7.99 (m, 2 H), 

8.43 (dd, J = 4.6, 1.4 Hz, 1 H), 8.49 (d, J = 2.8 Hz, 1 H), 8.51 (m, 1 H); 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 121.1, 124.2, 125.4, 126.5, 126.6, 128.8, 128.8, 138.5, 141.1, 141.4, 145.1, 

151.9, 153.2; MS (ESI): m/z = 249.04 [M + H]+. 

 

6-Phenyl-N-(pyridin-3-yl)pyridin-3-amine (61). A mixture of 59 (91.0 mg, 0.32 mmol), 3- 

aminopyridine (37.0 mg, 0.38 mmol) and Cs2CO3 (521 mg, 1.60 

mmol) was dissolved in toluene (15 mL) under nitrogen atmosphere. 

Then, a fresh solution of Pd(OAc)2-BINAP (under nitrogen 

atmosphere) Pd(OAc)2 (2.00 mg, 0.01 mmol) and (±)-BINAP (6.00 

mg, 0.01 mmol) were dissolved in toluene (5 mL) and stirred for 20 

min at room temperature) in toluene was added. The resulting reaction mixture was heated under 

reflux overnight. After mixture was cooled down to room temperature, the solid material was 

filtered off and washed with DCM (100 mL). The filtrate was evaporated and the resulting crude 

product was purified by flash chromatography on silica-gel using a mixture of hexane / ethyl 

acetate (1:1→1:2→ ethyl acetate) as eluent. Orange solid. Yield: 47 mg, 52%. Mp: 157–159 °C 

(ethyl acetate). 1H NMR (CDCl3, 500 MHz): δH (ppm) = 6.50 (s, 1 H), 7.21 (dd, J = 8.2, 4.7 Hz, 1 

H), 7.34– 7.40 (m, 1 H), 7.42–7.51 (m, 4 H), 7.65 (d, J = 8.5 Hz, 1 H), 7.92–7.96 (m, 2 H), 8.23 

(dd, J = 4.7, 1.3 Hz, 1 H), 8.43 (d, J = 2.5 Hz, 1 H), 8.46–8.50 (m, 1 H); 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 120.7, 123.8, 123.9, 124.8, 126.2, 128.3, 128.7, 137.5, 138.9, 139.0, 140.2, 

140.3, 142.6, 150.7; MS (ESI): m/z = 247.97 [M + H]+. 

 

2-(2-Fluorophenyl)-5-((5-methylpyridin-3-yl)methyl)pyridine (67). Synthesized using 

compound 95 (3:1 mixture of chloride and bromide, 150 mg, 0.65 

mmol), 2-fluorophenylboronic acid (160 mg, 1.20 mmol), 

palladium(II) acetate (1.00 mg, 4.45 µmol), SPhos (5.00 mg, 12.2 

µmol) and 2 M aqueous LiOH (1.15 mL, 2.30 mmol) according to 

method G. As the reaction was not completed after 12 h the same 

amount of boronic acid, SPhos , Pd(OAc)2 and LiOH was added and the reaction mixture was 

stirred again for 2 h at 90 °C. Crude product was purified by flash chromatography on silica-gel 

using ethyl acetate as eluent. White solid. Yield: 113 mg, 62%. Mp 71–72 °C. 1H NMR (Aceton-

d6, 500 MHz): δH (ppm) = 8.67 (d, J = 1.6 Hz, 1 H), 8.40 (d, J = 2.5 Hz, 1 H), 8.30 (d, J = 1.6 Hz, 
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1 H), 8.05 (td, J = 8.0, 1.7 Hz, 1 H), 7.78 (ddd, J = 8.2, 2.2, 1.0 Hz, 1 H), 7.73 (dd, J = 8.2, 2.2 Hz, 

1 H), 7.50 (m, 1 H), 7.45 (m, 1 H), 7.30 (td, J = 7.6, 1.3 Hz, 1 H), 7.23 (ddd, J = 11.7, 8.3, 1.4 Hz, 

1 H), 4.07 (s, 2 H), 2.28 (s, 3 H). 13C NMR (Aceton-d6, 125 MHz): δC (ppm) = 

161.5 (d, JC,F = 248.4 Hz), 152.1 (d, JC,F = 1.8 Hz), 151.0, 149.3, 148.2, 137.6, 137.4, 136.3, 133.9, 

132.0 (2 C), 131.4 (d, JC,F = 9.2 Hz), 128.1 (d, JC,F = 11.9 Hz), 125.5 (d, JC,F = 2.8 Hz), 124.9 (d, 

JC,F = 10.1 Hz), 117.0 (d, JC,F = 23.8 Hz), 36.1, 18.3. (ESI): m/z = 279 [M+H]+.  

 

 N-(3-(5-((5-Methylpyridin-3-yl)methyl)pyridin-2-yl)phenyl)methanesulfonamide (68). 

Synthesized using compound 95 (3:1 mixture of chloride and 

bromide, 100 mg, 0.44 mmol) and (3-

(methylsulfonamido)phenyl)boronic acid (120 mg, 0.56 mmol) 

according to method A. The reaction mixture was stirred for 18 

hours at 100 °C. Crude product was purified by flash 

chromatography on silica-gel using a mixture of dichloromethane/ methanol (95:5) as eluent. 

Afterwards the product was washed with diethylether. Beige solid. Yield: 101 mg, 65%. Mp 204–

206 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 9.84 (br s, NH), 8.62 (d, J = 1.3 Hz, 1 H), 8.37 

(br s, 1 H), 8.27 (br s, 1 H), 7.95 (m, 1 H), 7.83 (d, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.50 

(br s, 1 H), 7.43 (t, J = 7.9 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 4.00 (s, 2 H), 3.01 (s, 3 H), 2.25 (s, 

3 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 153.5, 149.6, 147.9, 146.8, 139.5, 138.9, 137.3, 

136.5, 135.4, 135.2, 132.8, 129.6, 121.8, 120.1, 120.1, 117.6, 39.2, 34.5, 17.7. (ESI): m/z = 354 

[M+H]+. 

 

2-(Furan-3-yl)-5-((5-methylpyridin-3-yl)methyl)pyridine (69). Synthesized using compound 

95 (3:1 mixture of chloride and bromide, 200 mg, 0.87 mmol) and 

furan-3-ylboronic acid (128 mg, 1.14 mmol) according to method A. 

The reaction mixture was stirred for 20 h at 100 °C. Crude product 

was purified by flash chromatography on silica-gel using a mixture 

of dichloromethane/methanol (98:2) as eluent. White solid. Yield: 

168 mg, 77%. Mp 69–71 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.45 (m, 1 H), 8.30–8.31 

(m, 2 H), 7.98 (dd, J = 1.5, 0.9 Hz, 1 H), 7.46 (t, J = 1.7 Hz, 1 H), 7.43 (dd, J = 8.1, 2.3 Hz, 1 H), 

7.37 (dd, J = 8.1, 0.8 Hz, 1 H), 7.24 (m, 1 H), 6.89 (dd, J = 1.9, 0.9 Hz, 1 H), 3.92 (s, 2 H), 2.26 

(d, J = 0.5 Hz, 3 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 150.1, 149.8, 148.5, 147.1, 143.8, 

141.0, 136.8, 136.7, 134.8, 133.4, 133.1, 126.7, 119.9, 108.5, 35.7, 18.2. (ESI): m/z = 251 [M+H]+.  
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2-(1-Methyl-1H-pyrazol-4-yl)-5-((5-methylpyridin-3-yl)methyl)pyridine (70). Compound 95 

(3:1 mixture of chloride and bromide, 100 mg, 0.44 mmol), 1-

methylpyrazole-4-boronic acid pinacol ester (119 mg, 0.57 mmol), 

Cs2CO3 (310 mg, 0.95 mmol) and PdCl2(dppf) (14.0 mg, 19.0 µmol) 

were dissolved under N2 in degassed dimethoxyethane (4 mL). The 

reaction mixture was stirred under reflux overnight, afterwards 

diluted with water and extracted three times with diethyl ether. The combined organic layers were 

washed with water, brine, dried over Na2SO4, filtered and concentrated in vacuum. Crude product 

was purified by flash chromatography on silica-gel using a mixture of dichloromethane/methanol 

(98:2) as eluent. White solid. Yield: 37 mg, 32%. Mp 107–109 °C. 1H NMR (DMSO-d6, 500 

MHz): δH (ppm) = 8.60–8.94 (m, 2 H), 8.57 (d, J = 2.5 Hz, 1 H), 8.37 (s, 1 H), 8.25 (s, 1 H), 8.07 

(s, 1 H), 7.92 (dd, J = 8.4, 2.4 Hz, 1 H), 7.79 (d, J = 8.2 Hz, 1 H), 4.18 (s, 2 H), 3.90 (s, 3 H), 2.42 

(s, 3 H). 13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 150.1, 148.4, 146.8, 144.8, 141.4, 140.4, 

140.1, 137.4, 132.7, 130.2, 120.5, 119.7, 38.8, 33.9, 17.7. (ESI): m/z = 265 [M+H]+. 

 

2-(1-Methyl-1H-pyrazol-5-yl)-5-((5-methylpyridin-3-yl)methyl)pyridine (71). Synthesized 

using compound 95 (3:1 mixture of chloride and bromide, 100 mg, 

0.44 mmol), 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)-1H-pyrazole (158 mg, 0.76 mmol), palladium(II) acetate (0.90 

mg, 4.01 µmol), SPhos (3.00 mg, 7.31 µmol) and 2 M aqueous LiOH 

(0.76 mL, 1.52 mmol) according to method G. Crude product was 

purified by flash chromatography on silica-gel using a mixture of dichloromethane/methanol 

(92:8) as eluent. White solid. Yield: 60 mg, 52%. Mp 71–73 °C. 1H NMR (Aceton-d6, 500 MHz): 

δH (ppm) = 8.62 (d, J = 1.6 Hz, 1 H), 8.38 (d, J = 1.9 Hz, 1 H), 8.30 (d, J = 1.9 Hz, 1 H), 

7.73 (dd, J = 8.2, 2.1 Hz, 1 H), 7.67 (dd, J = 8.2, 0.6 Hz, 1 H), 7.49 (m, 1 H), 7.41 (d, J = 2.2 Hz, 

1 H), 6.67 (d, J = 1.9 Hz, 1 H), 4.17 (s, 3 H), 4.05 (s, 2 H), 2.28 (s, 3 H). 13C NMR (Aceton-d6, 

125 MHz): δC (ppm) = 150.2, 149.3, 149.1, 148.2, 141.6, 138.5, 138.1, 137.4, 136.2, 136.0, 133.9, 

123.3, 107.1, 40.0, 36.1, 18.3. (ESI): m/z = 265 [M+H]+. 

 

4-(5-((5-Methylpyridin-3-yl)methyl)pyridin-2-yl)morpholine (72). Compound 95 (3:1 mixture 

of chloride and bromide, 100 mg, 0.44 mmol) and morpholine (66.4, 

0.76 mmol) was dissolved in degassed toluene (3 mL). Afterwards 

NaOEt (62.7 mg, 0.92 mmol), Pd(OAc)2 (17.7 mg, 78.8 µmol) and 

SPhos (62.7 mg, 0.15 mmol) were added and the reaction mixture 

was stirred for 18 h at 80 °C. After cooling to room temperature, the 
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suspension was diluted with ethyl acetate and filtrated over celite. The solvent was removed in 

vacuum and the crude product was purified by flash chromatography on silica-gel using a mixture 

of ethyl acetate/ethanol (9:1) as eluent. White solid. Yield: 72 mg, 61%. Mp 91–92 °C. 1H NMR 

(Aceton-d6, 500 MHz): δH (ppm) = 8.30 (d, J = 1.8 Hz, 1 H), 8.25 (d, J = 1.6 Hz, 1 H), 8.10 (m, 

1 H), 7.40–7.43 (m, 2 H), 6.73 (dd, J = 8.7, 0.6 Hz, 1 H), 3.85 (s, 2 H), 3.42–3.44 (m, 4 H), 2.27 

(s, 3 H). 13C NMR (Aceton-d6, 75 MHz): δC (ppm) = 19.2, 36.5, 47.5, 68.2, 108.7, 127.4, 134.6, 

138.0, 138.2, 139.7, 149.0, 149.4, 149.9, 160.5. (ESI): m/z = 270 [M+H]+. 

 

 N-Cyclopropyl-5-((5-methylpyridin-3-yl)methyl)pyridin-2-amine (73). Compound 95 (3:1 

mixture of chloride and bromide, 800 mg, 3.48 mmol) was dissolved 

under N2 in 40 ml dry toluene and cyclopropylamine (1.27 mL, 1.04 

g, 18.2 mmol), sodium ethoxide (556 mg, 8.17 mmol), Pd(OAc)2 

(8.00 mg, 35.6 µmol) and SPhos (27.9 mg, 68 µmol) were added. 

The reaction mixture was stirred under reflux overnight and 

subsequently quenched with water. After extraction of the water phase with EtOAc thrice the 

combined organic layers were washed with water, brine, dried over Na2SO4, filtered and 

concentrated in vacuum. Crude product was purified by flash chromatography on silica-gel using 

a mixture of ethyl acetate/ethanol (9:1) as eluent. Pale yellow solid. Yield: 182 mg, 22%. Mp 81–

83 °C. 1H NMR (CDCl3, 300 MHz): δH (ppm) = 8.31 (s, 1 H), 8.28 (s, 1 H), 7.81 (dd, J = 2.1, 0.6 

Hz, 1 H), 7.43 (dd, J = 8.8, 2.2 Hz, 1 H), 7.24 (m, 1 H), 6.88 (d, J = 8.8 Hz, 1 H), 6.45 (br s, 1 H), 

3.81 (s, 2 H), 2.52 (m, 1 H), 2.29 (d, J = 0.6 Hz, 3 H), 0.82 (m, 2 H), 0.62 (m, 2 H). 13C NMR 

(CDCl3, 75 MHz): δC (ppm) = 156.8, 148.6, 147.0, 142.3, 140.9, 136.7, 134.7, 133.2, 124.7, 108.3, 

34.9, 23.9, 18.3, 7.5. (ESI): m/z = 240 [M+H]+. 

 

5-((5-Methylpyridin-3-yl)methyl)-2-(phenylthio)pyridine (74). Compound 95 (3:1 mixture of 

chloride and bromide, 500 mg, 2.18 mmol) was dissolved under N2 

in dimethylacetamid (10 mL), followed by addition of caesium 

carbonate (929 mg, 2.85 mmol) and thiophenol (0.23 g, 2.09 mmol). 

The reaction mixture was stirred at 90 °C overnight, quenched with 

water afterwards and extracted with EtOAc thrice. The combined 

organic layers were washed with water, brine, dried over Na2SO4, filtered and concentrated in 

vacuum. Crude product was purified by flash chromatography on silica-gel using ethyl acetate as 

eluent. As product showed some impurities, another column chromatography using a mixture of 

dichloromethane/methanol (97:3) as eluent was applied. Colorless oil. Yield: 75 mg, 12%. 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.32 (m, 1 H), 8.30 (s, 1 H), 8.28 (s, 1 H), 7.56–7.60 (m, 
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2 H), 7.37–7.44 (m, 3 H), 7.21–7.25 (m, 2 H), 6.84 (dd, J = 8.5, 0.6 Hz, 1 H), 3.86 (s, 2 H), 2.28 

(d, J = 0.6 Hz, 3 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 159.5, 149.6, 148.6, 147.0, 137.2, 

136.7, 134.8, 134.7, 133.1, 131.7, 131.1, 129.6, 129.0, 121.4, 35.4, 18.3. (ESI): m/z = 293 [M+H]+. 

 

5-((5-Methylpyridin-3-yl)methyl)-2-(phenylsulfonyl)pyridine (75). To a solution of thioether 

74 (62.0 mg, 0.21 mmol) in ethyl acetate (2 mL) water (2 mL) and 

potassium peroxymonosulfate (261 mg, 0.85 mmol) were added at 

room temperature and the reaction mixture was vigorously stirred 

for 4 h at room temperature. Saturated NaHCO3-solution was added 

and the mixture was extracted with DCM. The combined organic 

layers were dried over Na2SO4 and concentrated in vacuum. Crude product was purified by flash 

chromatography on silica-gel using ethyl acetate as eluent. White solid. Yield: 60 mg, 88%. Mp 

128–129 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.51 (dd, J = 2.2, 0.5 Hz, 1 H), 8.32 (s, 1 

H), 8.16 (s, 1 H), 8.12 (d, J = 8.6 Hz, 1 H), 8.03–8.05 (m, 2 H), 7.66 (dd, J = 7.9, 2.2 Hz, 1 H), 

7.60 (m, 1 H), 7.52 (m, 2 H), 7.22 (m, 1 H), 3.98 (s, 2 H), 2.27 (s, 3 H). 13C NMR (CDCl3, 125 

MHz): δC (ppm) = 157.0, 150.7, 149.0, 147.1, 139.6, 138.9, 138.0, 136.8, 133.7, 133.4, 133.2, 

129.1, 128.8, 122.2, 35.8, 18.2. (ESI): m/z = 325 [M+H]+. 

 

2-((2-Fluorophenyl)thio)-5-((5-methylpyridin-3-yl)methyl)pyridine (76). Compound 95 (3:1 

mixture of chloride and bromide, 100 mg, 0.44 mmol) was dissolved 

under N2 in dimethylacetamid (2 mL), followed by addition of 

caesium carbonate (371 mg, 1.14 mmol) and 2-fluorothiophenol (45 

μL, 4.20 mmol). The reaction mixture was stirred at 90 °C overnight, 

quenched with sat. NaHCO3-solution afterwards and extracted with 

EtOAc thrice. The combined organic layers were washed with water, brine, dried over Na2SO4, 

filtered and concentrated in vacuum. Crude product was purified by preparative thin layer 

chromatography using a mixture of hexane/ethyl acetate (2:8) as eluent. Pale yellow oil. Yield: 40 

mg, 29%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.26–8.29 (m, 3 H), 7.57 (td, J = 7.4, 1.6 Hz, 

1 H), 7.41 (m, 1 H), 7.28 (m, 1 H), 7.25 (dd, J = 8.2, 2.5 Hz, 1 H), 7.19–7.13 (m, 2 H), 6.87 (d, J 

= 8.3 Hz, 1 H), 3.86 (s, 2 H), 2.28 (s, 3 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 162.6 (d, JC,F 

= 249.3 Hz), 157.4, 149.6, 147.5, 146.0, 137.7, 137.1, 136.9, 135.1, 133.6, 131.7, 131.6, 124.9 (d, 

JC,F = 3.7 Hz), 121.1, 117.9 (d, JC,F = 18.3 Hz), 116.3 (d, JC,F = 22.0 Hz), 35.3, 18.2. (ESI): m/z = 

311 [M+H]+. 
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2-((2-Fluorophenyl)sulfonyl)-5-((5-methylpyridin-3-yl)methyl)pyridine (77). To a solution of 

thioether 76 (30 mg, 96.7 µmol) in ethyl acetate (2 mL) was added 

water (2 mL) and potassium peroxymonosulfate (119 mg, 0.39 

mmol) at room temperature and the reaction mixture was vigorously 

stirred for 4 h at room temperature. Saturated NaHCO3-solution was 

added and the mixture was extracted with DCM. The combined 

organic layers were dried over Na2SO4 and concentrated in vacuum. Crude product was purified 

by flash chromatography on silica-gel using ethyl acetate as eluent. Beige solid. Yield: 21 mg, 

64%. Mp 144–146 °C. 1H NMR (CDCl3, 300 MHz): δH (ppm) = 8.49 (s, 1 H), 8.33 (s, 1 H), 

8.28 (s, 1 H), 8.16–8.23 (m, 2 H), 7.73 (d, J = 8.1 Hz, 1 H), 7.62 (m, 1 H), 7.36 (m, 1 H), 7.24 (br 

s, 1 H), 7.10 (dd, J = 9.6, 8.6 Hz, 1 H), 4.01 (s, 2 H), 2.29 (s, 3 H). 13C NMR (CDCl3, 75 MHz): 

δC (ppm) = 159.5 (d, JC,F = 257.2 Hz), 156.5, 150.5, 149.1, 147.2, 140.2, 138.1, 136.9, 136.5, 136.4, 

133.4 (d, JC,F = 13.8 Hz), 131.1, 127.0 (d, JC,F = 13.8 Hz), 124.7 (d, JC,F = 3.8 Hz), 122.8 (d, JC,F = 

1.9 Hz), 117.1 (d, JC,F = 20.9 Hz), 35.9, 18.3. (ESI): m/z = 343 [M+H]+. 

 

4-((1H-Imidazol-1-yl)methyl)-3-phenylisothiazole (78). Synthesized using impure compound 

99 (100 mg), imidazole (107 mg, 1.57 mmol) and K2CO3 (270 mg, 

1.95 mmol) in DMF according to method E. Crude product was 

purified by flash chromatography on silica-gel using ethyl acetate as 

eluent. Off-white solid. Yield: 44 mg. Mp 113–115 °C. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 8.35 (s, 1H, isothiazole H-5), 7.53–

7.47 (m, 5H, Ph H), 7.46 (s, 1H, imidazolyl H-2), 7.09 (s, 1H, imidazolyl H-4), 6.86 (s, 1H, 

imidazolyl H-5), 5.24 (s, 2H, CH2); 
13C NMR (CDCl3, 125 MHz): δC (ppm) = 166.6 (isothiazol C-

3), 148.1 (isothiazol C-5), 137.1 (imidazolyl C-2), 134.5 (Ph Cq), 132.6 (isothiazol C-4), 130.1 

(imidazolyl C-4), 129.4 (Ph C), 128.8 (Ph C), 128.2 (Ph C), 118.9 (imidazolyl C-5), 44.4 (CH2); 

(ESI): m/z = 242 [M+H]+. 

 

4-((5-Methylpyridin-3-yl)methyl)-3-phenylisothiazole (79). Synthesized using impure 

compound 99 (144 mg) and (5-methylpyridin-3-yl)boronic acid (116 

mg, 0.85 mmol) according to method A. Crude product was purified 

by flash chromatography on silica-gel using ethyl acetate as eluent. 

Colorless oil. Yield: 61 mg. 1H NMR (CDCl3, 500 MHz): δH (ppm) 

= 8.31 (d, J = 1.6 Hz, 1H, pyridinyl H-2), 8.23 (d, J = 1.6 Hz, 1H, 

pyridinyl H-6), 8.22 (t, J = 0.8 Hz, 1H, isothiazole H-5) 7.59–7.54 (m, 2H, Ph H), 7.48–

7.40 (m, 3H, Ph H), 7.20–7.17 (m, 1H, pyridinyl H-4), 4.05 (s, 2H, CH2), 2.28 (d, J = 0.6 Hz, 3H, 
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CH3); 
13C NMR (CDCl3, 125 MHz): δC (ppm) = 167.6 (isothiazole C-3),, 148.5 (pyridinyl C-6), 

147.1 (pyridinyl C-2), 146.9 (isothiazole C-5), 136.6 (pyridinyl C-4), 135.4 (pyridinyl C-3), 135.3 

(Ph Cq), 134.5 (isothiazole C-4), 133.0 (pyridinyl C-5), 128.8 (Ph C), 128.5 (Ph C), 128.4 (Ph C), 

31.4 (CH2), 18.3 (CH3); (ESI): m/z = 267 [M+H]+. 

 

5-((1H-Imidazol-1-yl)methyl)-3-phenylisothiazole (80). Synthesized using compound 100 (46 

mg, 0.18 mmol), imidazole (49 mg, 0.72 mmol) and K2CO3 (124 mg, 

0.90 mmol) in DMF according to method E. Crude product was 

purified by flash chromatography on silica-gel using ethyl acetate as 

eluent. White solid. Yield: 17 mg, 40%. Mp 92–94 °C. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 7.91–7.86 (m, 2H), 7.64 (s, 1H), 

7.47–7.38 (m, 3H), 7.37 (t, J = 1.0 Hz, 1H), 7.16 (s, 1H), 7.02 (s, 1H), 5.46–5.41 (m, 2H). 13C 

NMR (CDCl3, 125 MHz): δC (ppm) = 168.1, 163.5, 137.2, 134.2, 130.4, 129.5, 128.8, 126.8, 120.5, 

119.0, 43.6. (ESI): m/z = 242 [M+H]+. 

 

5-((5-Methylpyridin-3-yl)methyl)-3-phenylisothiazole (81). Synthesized using compound 100 

(180 mg, 0.71 mmol) and (5-methylpyridin-3-yl)boronic acid (146 

mg, 1.07 mmol) according to method A. Crude product was purified 

by flash chromatography on silica-gel using ethyl acetate as eluent. 

Colorless oil. Yield: 40 mg, 21%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 8.40 (s, 1H), 8.38 (s, 1H), 7.94–7.87 (m, 2H), 7.45–7.36 (m, 

4H), 7.31 (t, J = 1.0 Hz, 1H), 4.23 (s, 2H), 2.35–2.31 (m, 3H). 13C NMR (CDCl3, 125 MHz): 

δC (ppm) = 168.1, 167.6, 149.4, 147.1, 136.8, 134.9, 133.7, 133.5, 129.4, 128.9, 127.0, 120.9, 31.4, 

18.5. (ESI): m/z = 267 [M+H]+. 

 

5-((1H-Imidazol-1-yl)methyl)-2-phenylthiazole (82). Synthesized using compound 107 

(103 mg, 0.41 mmol), imidazole (110 mg, 1.62 mmol) and K2CO3 

(283 mg, 2.05 mmol) in DMF according to method E. Crude product 

was purified by flash chromatography on silica-gel using a mixture 

of ethyl acetate/methanol (9:1) as eluent. Yellow solid. Yield: 52 mg, 

53%. Mp 118–120 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 

7.92–7.87 (m, 2H), 7.74 (s, 1H), 7.60 (s, 1H), 7.47–7.42 (m, 3H), 7.12 (s, 1H), 6.99 (s, 1H), 5.34 

(s, 2H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 169.9, 142.7, 136.9, 133.2, 133.1, 130.5, 130.3, 

129.0, 126.5, 118.7, 43.1. (ESI): m/z = 242 [M+H]+.  
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5-((1H-Imidazol-1-yl)methyl)-2-phenyloxazole (83). Synthesized using compound 

108 (3:1 mixture of chloride and bromide, 160 mg, 0.78 mmol), 

imidazole (183 mg, 2.69 mmol) and K2CO3 (463 mg, 3.35 mmol) in 

DMF according to method E. Crude product was purified by flash 

chromatography on silica-gel using a mixture of ethyl 

acetate/methanol (9:1) as eluent. White solid. Yield: 102 mg, 58%. 

Mp 119–121 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.03–7.96 (m, 2H, Ph H), 7.62 (s, 1H, 

imidazolyl H-2), 7.49–7.42 (m, 3H, Ph H), 7.17–7.14 (m, 1H, oxazole H-4), 7.13–7.08 (m, 1H, 

imidazolyl H-4), 7.03–6.99 (m, 1H, imidazolyl H-5), 5.22 (d, J = 0.6 Hz, 2H, CH2). 
13C NMR 

(CDCl3, 125 MHz): δC (ppm) = 162.6 (oxazole C-2), 146.0 (oxazole C-5), 137.0 (imidazolyl C-2), 

130.8 (Ph C), 130.1 (imidazolyl C-4), 128.8 (Ph C), 127.0 (oxazole C-4), 126.8 (Ph Cq), 126.4 (Ph 

C), 118.8 (imidazolyl C-5), 41.4 (CH2). (ESI): m/z = 226 [M+H]+. 

 

5-((1H-Imidazol-1-yl)methyl)-3-phenylisoxazole (84). Synthesized using compound 109 (1:3 

mixture of chloride and bromide, 122 mg, 0.54 mmol), imidazole 

(139 mg, 2.04 mmol) and K2CO3 (354 mg, 2.56 mmol) in DMF 

according to method E. Crude product was purified by flash 

chromatography on silica-gel using ethyl acetate as eluent. Beige 

solid. Yield: 89 mg, 74%. Mp 117–119 °C. 1H NMR (DMSO-d6, 500 

MHz): δH (ppm) = 7.87–7.82 (m, 2H, Ph H), 7.81 (t, J = 1.1 Hz, 1H, imidazolyl H-2), 7.52–7.47 

(m, 3H, Ph H), 7.28 (t, J = 1.3 Hz, 1H, imidazolyl H-5), 6.97–6.94 (m, 2H, imidazolyl H-4, 

isoxazol H-4), 5.53 (s, 2H, CH2). 
13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 168.9 (isoxazol C-

5), 162.1 (Isoxazol C-3), 137.7 (imidazolyl C-2), 130.4 (Ph C), 129.1 (Ph C), 128.9 (imidazolyl 

C-4), 128.2 (Ph Cq), 126.6 (Ph C), 119.8 (imidazolyl C-5), 101.3 (isoxazol C-4), 41.2 (CH2). (ESI): 

m/z = 226 [M+H]+. 

 

5-((1H-Imidazol-1-yl)methyl)-2-phenyl-1,3-selenazole (85). To a stirred solution of 

104 (123 mg, 0.55 mmol) in CCl4 (8 mL) was added azo-bis-

(isobutyronitril) (91.0 mg, 0.55 mmol) and N-bromosuccinimid (108 

mg, 0.61 mmol). Subsequently, the reaction mixture was irradiated 

with hν for 2 h (300 W, tungsten lamp). An ice bath was used to 

avoid overheating during irradiation and the reaction mixture was 

stirred for 12 h protected from light afterwards. Subsequently, the succinimide was removed by 

filtration and the filtrate was concentrated under reduced pressure. The residue was purified by 

flash chromatography on silica-gel using a mixture of hexane/ethyl acetate (10:1) as eluent. A 
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suspension of the obtained impure bromine 110 (35 mg, yellow solid), imidazole (32.0 mg, 0.47 

mmol) and K2CO3 (80.0 mg, 0.58 mmol) in DMF was heated to 120 °C for 2 h. Subsequent work 

up and purification was performed according to method E. Crude product was purified by flash 

chromatography on silica-gel using ethyl acetate as eluent. Off-white solid. Yield: 12 mg, 8%. Mp 

115–117 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.86–7.79 (m, 2H, Ph H), 7.70 (t, J = 1.0 

Hz, 1H, selenazole H-4), 7.61 (br s, 1H, imidazolyl H-2), 7.46–7.36 (m, 3H, Ph H), 7.10 (br s, 1H, 

imidazolyl H-4), 6.98 (br s, 1H, imidazolyl H-5), 5.36 (d, J = 1.0 Hz, 2H, CH2). 
13C NMR (CDCl3, 

125 MHz): δC (ppm) = 177.4 (selenazole C-2), 143.6 (selenazole C-4), 140.5 (selenazole C-5), 

137.1 (imidazolyl C-2), 136.1 (Ph C), 131.0 (Ph C), 130.4 (imidazolyl C-4), 129.4 (Ph C), 127.2 

(Ph C), 118.4 (imidazolyl C-5), 45.8 (CH2). (ESI): m/z = 290 [M+H]+. 

 

5-((1H-Imidazol-1-yl)methyl)-1-methyl-2-phenyl-1H-imidazole (86). To a solution of the 

corresponding alcohol 111 (101 mg, 0.54 mmol) in NMP (20 

mL/mmol), CDI (436 mg, 2.69 mmol) was added. Then the solution 

was heated at 190 °C for 16 h. After cooling to room temperature the 

reaction mixture was diluted with ethyl acetate and washed with 

water and brine. The organic phase was dried over MgSO4 and 

concentrated under reduced pressure. The crude product was purified by flash chromatography on 

silica-gel using a mixture of ethyl acetate/methanol (9:1) as eluent. After flash chromatography 

the product was dissolved in ethyl acetate and a few drops of conc. HCl and water were added. 

Mixture was stirred for 5 min followed by separation of the phases and neutralization of the 

aqueous phase with aq. Na2CO3 solution (2.0 M). After extraction with ethyl acetate and drying 

over MgSO4 the solvent was removed under reduced pressure. White solid. Yield: 35 mg, 27%. 

Mp 96–98 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.57 (m, 3H, Ph H, imidazolyl H-2), 7.49–

7.42 (m, 3H, Ph H), 7.24 (s, 1H, imidazol H-4), 7.12–7.10 (m, 1H, imidazolyl H-4), 

6.94 (t, J = 1.3 Hz, 1H, imidazolyl H-5), 5.18 (s, 2H, CH2), 3.47 (s, 3H, CH3). 
13C NMR (CDCl3, 

125 MHz): δC (ppm) = 150.2 (imidazol C-2), 136.7 (imidazolyl C-2), 130.1 (imidazol C-5), 130.1 

(Ph C), 129.8 (imidazolyl C-4), 129.2 (imidazol C-4), 128.9 (Ph C), 128.6 (Ph C), 126.5 (Ph Cq), 

118.6 (imidazolyl C-5), 41.1 (CH2), 31.7 (CH3). (ESI): m/z = 239 [M+H]+. 
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5-((1H-Imidazol-1-yl)methyl)-1-methyl-3-phenyl-1H-pyrazole (87). Synthesized using 

compound 112 (112 mg, 0.45 mmol), imidazole (123 mg, 1.81 

mmol) and K2CO3 (308 mg, 2.23 mmol) in DMF according to 

method E. Crude product was purified by flash chromatography on 

silica-gel using a mixture of ethyl acetate/methanol (10:1) as eluent. 

Colorless oil. Yield: 61 mg, 57%. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 7.77–7.73 (m, 2H), 7.55 (s, 1H), 7.42–7.37 (m, 2H), 7.33–7.29 (m, 1H), 7.12 (m, 1H), 

6.92 (m, 1H), 6.50 (s, 1H), 5.17 (s, 2H), 3.78 (s, 3H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

150.6, 137.6, 136.9, 132.7, 130.2, 128.7, 127.9, 125.4, 118.8, 104.2, 41.7, 36.5. (ESI): m/z = 239 

[M+H]+. 

 

5-((5-Methylpyridin-3-yl)methyl)-2-phenylthiazole (88). Synthesized using compound 107 

(105 mg, 0.41 mmol) and (5-methylpyridin-3-yl)boronic acid (85 

mg, 0.62 mmol) according to method A. Crude product was purified 

by flash chromatography on silica-gel using a mixture of 

hexane/ethyl acetate (1:1) as eluent. Light yellow solid. Yield: 60 

mg, 55%. Mp 89–91 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 

8.36 (d, J = 1.5 Hz, 1H), 8.39 (d, J = 1.5 Hz, 1H), 7.92–7.85 (m, 2H), 7.59 (s, 1H), 7.45–7.39 (m, 

3H), 7.38–7.36 (m, 1H), 4.16 (s, 2H), 2.32 (s, 3H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 168.0, 

149.0, 146.9, 141.5, 137.3, 136.5, 134.3, 133.7, 133.2, 129.9, 128.9, 126.3, 30.4, 18.3. (ESI): m/z 

= 267 [M+H]+. 

 

5-((5-Methylpyridin-3-yl)methyl)-2-phenyloxazole (89). Synthesized using compound 108 (3:1 

mixture of chloride and bromide, 90.0 mg, 0.44 mmol) and 

(5-methylpyridin-3-yl)boronic acid (78.0 mg, 0.57 mmol) according 

to method A. Crude product was purified by flash chromatography 

on silica-gel using a mixture of hexane/ethyl acetate (1:1→ ethyl 

acetate) as eluent. White solid. Yield: 20 mg, 18%. Mp 86–88 °C. 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.42–8.39 (m, 1H, pyridinyl H-2), 8.37 (s, 1H, pyridinyl 

H-6),8.03–7.96 (m, 2H, Ph H), 7.47–7.41 (m, 3H, Ph H), 7.41–7.38 (m, 1H, pyridinyl H-4), 6.90–

6.89 (m, 1H, oxazole H-4), 4.04 (s, 2H, CH2), 2.33 (d, J = 0.6 Hz, 3H, CH3). 
13C NMR (CDCl3, 

125 MHz): δC (ppm) = 161.5 (oxazole C-2), 150.2 (oxazole C-5), 149.0 (pyridinyl C-6), 147.1 

(pyridinyl C-2), 136.7 (pyridinyl C-4), 133.2 (pyridinyl C-5), 131.7 (pyridinyl C-3), 130.2 (Ph C), 

128.7 (Ph C), 127.4 (Ph Cq), 126.1 (Ph C), 125.1 (oxazole C-4), 29.3 (CH2), 18.3 (CH3). (ESI): 

m/z = 251 [M+H]+.  
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5-((5-Methylpyridin-3-yl)methyl)-3-phenylisoxazole (90). Synthesized using compound 109 

(1:3 mixture of chloride and bromide, 127 mg, 0.56 mmol) and 

(5-methylpyridin-3-yl)boronic acid (110 mg, 0.80 mmol) according 

to method A. Crude product was purified by flash chromatography 

on silica-gel using ethyl acetate as eluent. Yellow solid. Yield: 58 

mg, 41%. Mp 62–64 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 

8.42–8.40 (m, 1H, pyridinyl H-2), 8.40–8.38 (m, 1H, pyridinyl H-6), 7.79–7.74 (m, 2H, Ph H), 

7.47–7.40 (m, 4H, Ph H, pyridinyl H-4), 6.26 (t, J = 0.8 Hz, 1H, isoxazol H-4), 4.11 (s, 2H, CH2), 

2.34 (s, 3H CH3). 
13C NMR (CDCl3, 125 MHz): δC (ppm) = 171.6 (isoxazol C-5), 162.8 (isoxazol 

C-3), 149.5 (pyridinyl C-6), 147.3 (pyridinyl C-2), 137.1 (pyridinyl C-4), 133.6 (pyridinyl C-5), 

131.3 (pyridinyl C-3), 130.2 (Ph C), 129.2 (Ph Cq), 129.1 (Ph C), 127.0 (Ph C), 100.5 (isoxazol 

C-4), 30.6 (CH2), 18.5 (CH3). (ESI): m/z = 251 [M+H]+. 

 

5-((5-Methoxypyridin-3-yl)methyl)-3-phenylisoxazole (91). A mixture of compound 109 (1:3 

mixture of chloride and bromide, 315 mg, 1.39 mmol), 3-methoxy-

5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)py-ridine (373 mg, 

1.59 mmol), Cs2CO3 (1.29 g, 3.96 mmol) and PdCl2(dppf) (48.0 mg, 

0.07 mmol) were dissolved in DME/H2O/EtOH (3 mL/ 3 mL/ 3 mL). 

The reaction mixture was stirred for 20 min at 150°C, 150 W and 18 

bar in the microwave oven. After addition of H2O and extraction with ethyl acetate three times, 

the combined organic phases were dried over MgSO4 and concentrated under reduced pressure. 

Crude product was purified by flash chromatography on silica-gel using a mixture of hexane/ethyl 

acetate (1:2) as eluent. After flash chromatography the product was dissolved in ethyl acetate and 

a few drops of conc. HCl and water were added. After stirring for 30 min the phases were separated 

and aqueous phase was neutralized with aqueous Na2CO3 solution (2M). After extraction with 

ethyl acetate and drying over MgSO4 the solvent was removed under reduced pressure. White solid. 

Yield: 107 mg, 29%. Mp: 71–73 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.27 (s, 1H, 

pyridinyl H-6)), 8.21 (s, 1H, pyridinyl H-2), 7.73–7.80 (m, 2H, Ph H), 7.41–7.48 (m, 3H, Ph H), 

7.13–7.17 (m, 1H, pyridinyl H-4), 6.28 (t, J = 0.8 Hz, 1H, isoxazol H-4), 4.13 (s, 2H, CH2), 3.86 

(s, 3H, CH3). 
13C NMR (CDCl3, 125 MHz): δC (ppm) = 171.1 (isoxazol C-5), 162.6 (isoxazol C-

3), 155.8 (pyridinyl C-5), 142.1 (pyridinyl C-2), 136.5 (pyridinyl C-6), 132.1 (pyridinyl C-3), 

130.0 (Ph C), 128.9 (Ph Cq), 128.9 (Ph C), 126.7 (Ph C), 120.9 (pyridinyl C-4), 100.3 (isoxazol 

C-4), 55.6 (CH3), 30.4 (CH2). MS (ESI): m/z = 267 [M+H]+. 
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3-Methyl-5-((1-methyl-3-phenyl-1H-pyrazol-5-yl)methyl)pyridine (92). Synthesized using 

compound 112 (122 mg, 0.49 mmol) and (5-methylpyridin-3-

yl)boronic acid (100 mg, 0.73 mmol) according to method A. Crude 

product was purified by flash chromatography on silica-gel using 

ethyl acetate as eluent. White solid. Yield: 65 mg, 50%. Mp 41–

43 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.39–8.37 (m, 1H), 

8.36–8.35 (m, 1H), 7.78–7.75 (m, 2H), 7.40–7.36 (m, 2H), 7.31–7.26 (m, 2H), 6.31 (s, 1H), 3.99 

(s, 2H), 3.79 (s, 3H), 2.32 (d, J = 0.6 Hz, 3H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 150.2, 

148.9, 146.9, 141.5, 136.5, 133.3, 133.3, 132.4, 128.6, 127.5, 125.4, 103.4, 36.5, 29.1, 18.3. 

(ESI): m/z = 264 [M+H]+. 

 

3-Methyl-5-((3-phenyl-1H-pyrazol-5-yl)methyl)pyridine (93). A mixture of 92 (126 mg, 0.48 

mmol) and pyridine hydrochloride (700 mg, 6.06 mmol) was stirred 

for 2.5 h at 200 °C and 200 W in the microwave oven. After cooling 

to room temperature H2O (10 mL) was added and the obtained 

mixture was extracted with ethyl acetate twice. The combined 

organic phases were dried over MgSO4 and concentrated under 

reduced pressure. Crude product was purified by flash chromatography on silica-gel using ethyl 

acetate as eluent. After flash chromatography the product was dissolved in ethyl acetate and a few 

drops of conc. HCl and water were added. After stirring for 5 min the phases were separated and 

aqueous phase was neutralized with aqueous Na2CO3 solution (2.0 M). After extraction with ethyl 

acetate and drying over MgSO4 the solvent was removed under reduced pressure. Colorless oil. 

Yield: 21 mg, 18%. 1H NMR (DMSO-d6, 500 MHz): δH (ppm) = 12.87 (br s, 1H, NH), 8.34 (s, 1H, 

pyridinyl H-2), 8.28 (s, 1H, pyridinyl H-6), 7.73 (d, J = 7.3 Hz, 2H, Ph H), 7.48 (s, 1H, pyridinyl 

H-4), 7.38 (t, J = 7.7 Hz, 2H, Ph H), 7.31–7.25 (m, 1H, Ph H), 6.48 (s, 1H, pyrazole H-4), 3.96 (s, 

2H, CH2), 2.26 (s, 3H, CH3). 
13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 147.9 (pyridinyl C-6), 

146.8 (pyridinyl C-2), 136.4 (pyridinyl C-4), 134.5 (pyridinyl C-3), 132.6 (pyridinyl C-5), 128.7 

(Ph C), 127.5 (PhC), 125.0 (Ph C), 101.2 (pyrazole C-4), 29.4 (CH2), 17.8 (CH3). (ESI): m/z = 250 

[M+H]+. 
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(6-Bromopyridin-3-yl)(5-methylpyridin-3-yl)methanol (94). To a stirred solution of 3-bromo-

5-methylpyridine (6.30 mL, 9.39 g, 54.6 mmol) in dry diethyl ether 

(760 mL) was added n-butyllithium (2.5 M in hexane, 20.6 mL, 

51.5 mmol) dropwise at –78 °C and the clear solution was stirred for 

additional 5 min at this temperature. Subsequently a solution of 6-

bromonicotinaldehyde (10.1 g, 54.3 mmol) in dry toluene (20 mL) 

and dry THF (30 mL) was added dropwise and the pale brown suspension was stirred for additional 

30 min at -78 °C. The reaction mixture was quenched with sat. aqueous NH4Cl solution, diluted 

with water at room temperature and extracted with diethyl ether thrice. The combined organic 

layers were dried over Na2SO4 and concentrated in vacuum. Crude product was purified by flash 

chromatography on silica-gel using a mixture of ethyl acetate/ethanol (9:1) as eluent. Yellow solid. 

Yield: 9.76 g, 64%. Mp 126–128 °C. 1H NMR (Aceton-d6, 500 MHz): δH (ppm) = 8.46–8.47 (m, 

2 H), 8.32 (d, J = 1.7 Hz, 1 H), 7.74 (ddd, J = 8.2, 2.5, 0.6 Hz, 1 H), 7.60 (m, 1 H), 7.56 (d, J = 

8.2 Hz, 1 H), 5.98 (s, 1 H), 5.41 (br s, 1 H), 3.16 (s, 3 H). 13C NMR (Aceton-d6, 125 MHz): δC 

(ppm) = 151.2, 150.4, 147.2, 142.7, 141.9, 140.8, 139.1, 136.0, 134.9, 129.7, 72.3, 19.3. 

 

Mixture of 2-Chloro-5-((5-methylpyridin-3-yl)methyl)pyridine and 2-Bromo-5 ((5 methyl 

pyridin-3-yl)methyl)pyridine (95). Ice cooled alcohol 94 (9.76 g, 

35.0 mmol) was dissolved under nitrogen atmosphere in fresh 

distilled thionyl chloride (43.0 mL, 595 mmol). The reaction 

mixture was stirred for 3 h at 60 °C. After cooling to room 

temperature, the thionyl chloride was removed in vacuum, the 

residue neutralized with sat. aqueous NaHCO3-solution and extracted with ethyl acetate thrice. 

The combined organic layers were washed successively with sat. NaHCO3 solution, water, brine 

and dried over Na2SO4. The solvent was removed in vacuum and the crude chloride was dissolved 

under nitrogen atmosphere in degassed glacial acetic acid (90 mL). Zinc-powder was added in 

small portions and the reaction mixture was stirred for 24 h at room temperature. Afterwards the 

solvent was evaporated in vacuum, saturated aqueous NaHCO3 solution and ethyl acetate were 

added to the residue and the mixture was filtered over celite. Subsequently the phases were 

separated and the aqueous phase was extracted twice with ethyl acetate. The combined organic 

layers were washed with water and brine, dried over Na2SO4 and concentrated in vacuum. Crude 

product was purified by flash chromatography on silica-gel using ethyl acetate as eluent to yield 

an inseparable mixture of 2-Chloro-5-((5-methyl-pyridin-3-yl)methyl)pyridine and 2-Bromo-5-

((5-methylpyridin-3-yl)methyl)pyridine (3:1). White solid. Yield: 6.25 g, 78%. 2-Chloro-5-((5-

methylpyridin-3-yl)methyl)pyridine. 1H NMR (CDCl3, 300 MHz): δH (ppm) = 8.31 (s, 1 H), 
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8.27 (s, 1 H), 8.25 (d, J = 2.5 Hz, 1 H), 7.40 (dd, J = 8.2, 2.5 Hz, 1 H), 7.20–7.24 (m, 2 H), 3.90 

(s, 2 H), 2.27 (s, 3 H). 13C NMR (CDCl3, 75 MHz): δC (ppm) = 149.7, 149.6, 148.8, 147.0, 139.1, 

136.6, 134.3, 134.1, 133.2, 124.2, 35.2, 18.2. (ESI): m/z = 219 [M+H]+. 2-Bromo-5-((5-

methylpyridin-3-yl)methyl)pyridine. 1H NMR (CDCl3, 300 MHz): δH (ppm) = 8.31 (d, J = 1.6 

Hz, 1 H), 8.28 (d, J = 1.7 Hz, 1 H), 8.24 (d, J = 2.0 Hz, 1 H), 7.39 (d, J = 7.9 Hz, 1 H), 

7.30 (dd, J = 8.2, 2.5 Hz, 1 H), 7.21 (m, 1 H), 3.88 (s, 2 H), 2.28 (s, 3 H). 13C NMR (CDCl3, 75 

MHz): δC (ppm) = 150.2, 148.8, 147.1, 140.2, 138.9, 136.7, 134.8, 134.0, 133.2, 128.0, 35.2, 18.2. 

(ESI): m/z = 263 [M+H]+. 

 

Ethyl 3-Phenylisothiazole-4-carboxylate (97). A mixture of 96 (877 mg, 4.89 mmol) and ethyl 

propiolate (4.90 mL, 4.80 g, 48.9 mmol) in CHCl3 (3 mL/mmol) was 

irradiated for 25 min at 160 °C and 300 W in the microwave oven. 

The solvent was evaporated and the regioisomers 97 and 98 were 

obtained. The mixture was purified by flash chromatography on 

silica-gel using a mixture of hexane/ethyl acetate (25:1) as eluent. A 

mixture of 97 and an impurity (3:1) was isolated, which was not further purified and directly used 

in the next step. Light yellow oil. Yield: 403 mg. Ethyl 3-Phenylisothiazole-4-carboxylate (97). 

1H NMR (500 MHz, CDCl3): δH (ppm) = 9.34 (s, 1H), 7.66–7.61 (m, 2H), 7.47–7.41 (m, 3H), 

4.27 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3,): δC (ppm) = 168.6, 

162.0, 155.7, 135.0, 129.3, 129.1, 129.0, 127.7, 61.1, 14.0. (ESI): m/z = 234 [M+H]+. 

 

 Ethyl 3-Phenylisothiazole-5-carboxylate (98). A mixture of 96 (877 mg, 4.89 mmol) and ethyl 

propiolate (4.90 mL, 4.80 g, 48.9 mmol) in CHCl3 (3 mL/mmol) was 

irradiated for 25 min at 160 °C and 300 W in the microwave oven. 

The solvent was evaporated and the regioisomers 97 and 98 were 

obtained. The mixture was purified by flash chromatography on 

silica-gel using a mixture of hexane/ethyl acetate (25:1) as eluent. 

White solid. Yield: 427 mg, 37%. Mp 70–72 °C. 1H NMR (500 MHz, CDCl3): δH (ppm) = 8.12 (s, 

1H), 7.99–7.95 (m, 2H), 7.50–7.41 (m, 3H), 4.43 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3,): δC (ppm) = 168.3, 160.4, 158.0, 134.3, 129.9, 129.2, 127.1, 125.1, 

62.3, 14.5. (ESI): m/z = 234 [M+H]+. 
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4-(Bromomethyl)-3-phenylisothiazole (99). To a solution of 97 (403 mg, 1.73 mmol) in dry THF 

(10 mL/mmol) was added lithiumaluminiumhydrid (131 mg, 3.45 

mmol) in portions at -40 °C. After 1 h stirring saturated NaHCO3-

solution (10 mL/mmol) was added slowly at -40 °C and the obtained 

mixture was extracted with ethyl acetate twice. The combined 

organic phases were dried over MgSO4 and concentrated under 

reduced pressure. Without further purification the residue (263 mg) was dissolved in CH2Cl2 (15 

mL/mmol) and triphenylphosphine (563 mg, 2.15 mmol) and tetrabrommethane (913 mg, 2.75 

mmol) were added under stirring at 0 °C. The reaction mixture was then stirred for 1 h at room 

temperature, concentrated under reduced pressure and purified by flash chromatography on silica-

gel using a mixture of hexane/ethyl acetate (16:1) as eluent. Obtained mixture of 99 and an 

impurity was directly used in the next step without further purification. Colorless oil. Yield: 295 

mg. 

 

5-(Bromomethyl)-3-phenylisothiazole (100). To a solution of 98 (360 mg, 1.54 mmol) in dry 

THF (10 mL/mmol) was added lithiumaluminiumhydrid (117 mg, 

3.08 mmol) in portions at -40 °C. After 1 h stirring saturated 

NaHCO3-solution (10 mL/mmol) was added slowly at -40 °C and 

the mixture was extracted with ethyl acetate twice. The combined 

organic phases were dried over MgSO4 and concentrated under 

reduced pressure resulting in (3-phenylisothiazol-5-yl)methanol as a white solid (291 mg). 

Without further purification (3-phenylisothiazol-5-yl)methanol (202 mg, 1.06 mmol) was 

dissolved in CH2Cl2 (15 mL/mmol) and triphenylphosphine (433 mg, 1.65 mmol) and 

tetrabrommethane (701 mg, 2.11 mmol) were added under stirring at 0 °C. The reaction mixture 

was then stirred for 1 h at room temperature, concentrated under reduced pressure and purified by 

flash chromatography on silica-gel using a mixture of hexane/ethyl acetate (16:1) as eluent. Brown 

solid. Yield: 208 mg, 77%. Mp 67–70 °C. 1H NMR (500 MHz, CDCl3): δH (ppm) = 7.97–7.90 (m, 

2H), 7.60 (t, J = 0.8 Hz, 1H), 7.49–7.40 (m, 3H), 4.75 (d, J = 1.0 Hz, 2H). 13C NMR (125 MHz, 

CDCl3,): δC (ppm) = 168.1, 164.9, 134.7, 129.6, 129.1, 127.1, 122.2, 21.9. (ESI): 

m/z = 254 [M+H]+. 
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N-allylbenzamide (102). To a mixture of benzoyl chloride (2.40 mL, 2.88 g, 20.5 mol) in CH2Cl2 

(80 mL) was added a solution of allylamine and Et3N in CH2Cl2 (20 

mL) at 0 °C. The reaction mixture was stirred for 12 h at room 

temperature and quenched with water (50 mL) afterwards. The 

aqueous phase was extracted with CH2Cl2 twice followed by 

evaporation of the organic phase under reduced pressure. The 

obtained crude product was purified by flash chromatography on silica-gel using a mixture of 

hexane/ethyl acetate (2:1) as eluent. Colorless liquid. Yield: 3.13 g, 96%. 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 7.84–7.77 (m, 2H), 7.51–7.43 (m, 1H), 7.42–7.35 (m, 2H), 6.78 (br s, 1H), 5.90 

(m, 1H), 5.22 (m, 1H), 5.13 (m, 1H), 4.04 (m, 2H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 

167.4, 134.3, 134.1, 131.3, 128.4, 126.9, 116.3, 42.3. (ESI): m/z = 162 [M+H]+. 

 

5-Methyl-2-phenyl-1,3-selenazole (104). A suspension of lithium aluminium hydride (490 mg, 

12.9 mmol) in dry THF (10 mL) was added to a suspension of 

selenium powder (1.02 g, 12.9 mmol) in dry THF (10 mL) under 

nitrogen at 0 °C. The resulting mixture was stirred for 40 min at the 

same temperature. Lithium hydrogen selenide was formed in situ. 

Meanwhile PCl5 (3.84 g, 18.4 mmol) and DMF (0.03 mL, 0.40 

mmol) were added to a solution of N-(prop-2-yn-1-yl)benzamide (1.47 g, 9.23 mmol) in dry PhMe 

(35 mL) at room temperature. After 30 min stirring at room temperature freshly prepared lithium 

hydrogen selenide solution (0.65 M, 20 mL, 12.9 mmol) was added dropwise. After 1 h stirring 

piperidinium acetate (1.34 g, 9.23 mmol) was added and the mixture was heated under reflux for 

2 h. Subsequently, reaction mixture was stirred for 24 h at room temperature followed by 

evaporation of the solvent. The residue was suspended in water followed by neutralization with 

NaHCO3-solution. The mixture was extracted with ethyl acetate twice, the combined organic 

layers were dried over MgSO4, filtered, and concentrated under reduced pressure. Crude product 

was purified by flash chromatography on silica-gel using a mixture of hexane/ethyl acetate 

(12:1→8:1) as eluent. Yellow oil. Yield: 643 mg, 31%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 

7.83–7.86 (m, 2H), 7.52 (q, J = 1.3 Hz, 1H), 7.40–7.44 (m, 3H), 2.60 (d, J = 1.6 Hz, 3H). 

(ESI): m/z = 224 [M+H]+. 
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5-(Bromomethyl)-2-phenylthiazole (107). Synthesized using 2-bromo-5-methylthiazole (101) 

(945 mg, 5.31 mmol) and phenylboronic acid (970 mg, 7.96 mmol) 

according to method A. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane/ethyl 

acetate (16:1) as eluent. After flash chromatography product was 

used for the next step. 5-Methyl-2-phenylthiazole was obtained as 

colorless oil. Yield: 643 mg, 69%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.93–7.87 (m, 2H, Ph 

H), 7.51 (s, 1H, thiazole H-4), 7.46–7.37 (m, 3H, Ph H), 2.51 (d, J = 0.9 Hz, 3H, CH3). 
13C NMR 

(CDCl3, 125 MHz): δC (ppm) = 166.7 (thiazole C-2), 141.4 (thiazole C-4), 133.9 (Ph C), 133.8 

(thiazole C-5), 129.6 (Ph Cq), 128.9 (Ph C), 126.2 (Ph C), 12.1 (CH3). (ESI): m/z = 176 [M+H]+. 

5-Methyl-2-phenylthiazole (555 mg, 3.17 mmol) was dissolved in 30 mL dry carbon tetrachloride. 

To this solution NBS (621 mg, 3.49 mmol) and benzoyl peroxide (77.0 mg, 0.317 mmol) were 

added and the mixture was refluxed over night. After cooling, the succinimide was removed by 

filtration and the filtrate was concentrated under reduced pressure. Crude product was purified by 

flash chromatography on silica-gel using a mixture of hexane/ethyl acetate (8:1) as eluent. Orange 

solid. Yield: 523 mg, 65%. Mp 75–77 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.96–7.89 (m, 

2H), 7.79 (s, 1H), 7.49–7.43 (m, 3H), 4.76 (d, J = 0.6 Hz, 2H). 13C NMR (CDCl3, 125 MHz): δC 

(ppm) = 169.9, 143.3, 135.6, 133.4, 130.4, 129.0, 126.5, 23.3. (ESI): m/z = 254 [M+H]+. 

 

Mixture of 5-(Bromomethyl)-2-phenyloxazole and 5-(Chloromethyl)-2-phenyloxazole (108). 

A solution of 102 (2.88 g, 17.9 mmol) and NBS (9.54 g, 53.6 mmol) 

in 1,2-dichloroethane (100 mL) was stirred for 24 h at 100 °C. 

Afterwards reaction mixture was quenched with saturated aqueous 

Na2SO3 solution followed by extraction with CH2Cl2 twice. 

Combined organic phases were washed with brine, dried over 

MgSO4 and concentrated in vacuum. Crude product was purified by flash chromatography on 

silica-gel using a mixture of hexane/ethyl acetate (6:1→ 1:1) as eluent to yield an inseparable 

mixture of 5-(chloromethyl)-2-phenyloxazole and 5-(bromomethyl)-2-phenyloxazole (3:1). White 

solid. Yield: 1.57 g, 85%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.09–8.03 (m, 9H), 7.49–

7.43 (m, 12H), 7.19–7.15 (m, 3H), 4.68 (CH2Cl, d, J = 0.63 Hz, 6H), 4.56 (CH2Br, d, J = 0.95 Hz, 

2H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 162.6, 162.5, 147.4, 147.2, 130.7, 130.7, 128.7, 

127.4, 127.4, 126.9, 126.9, 126.4, 125.9, 34.8, 20.1. 
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Mixture of 5-(Bromomethyl)-3-phenylisoxazole and 5-(Chloromethyl)-3-phenylisoxazole 

(109). To a stirred solution of (E)-benzaldehyde oxime (104, 1.80 

mL, 2.00 g, 16.5 mmol), propargyl bromide (80% in toluene, 2.20 

mL, 2.35 g, 19.8 mmol) and triethylamine (2.30 mL, 1.68 g, 16.6 

mmol) in CH2Cl2 (30 mL) was added 12% aqueous sodium 

hypochlorite (49.5 mL, 79.8 mmol) dropwise. After 8 h stirring at 

room temperature phases were separated and aqueous phase was extracted with CH2Cl2 twice. The 

combined organic phases were washed with water, dried over MgSO4, filtered and concentrated 

in vacuum. Crude product was purified by flash chromatography on silica-gel using a mixture of 

hexane/ethyl acetate (9:1) as eluent to yield an inseparable mixture of 5-(chloromethyl)-3-

phenylisoxazole and 5-(bromomethyl)-3-phenylisoxazole (1:3). Orange solid. Yield: 1.48 g, 40%. 

1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.79–7.84 (m, 9H), 7.45–7.50 (m, 12H), 6.63–6.66 (m, 

3H), 4.67 (CH2Cl, d, J = 0.95 Hz, 2H), 4.52 (CH2Br, d, J = 0.63 Hz, 6H). 13C NMR (CDCl3, 

125 MHz): δC (ppm) = 167.9, 162.7, 130.2, 129.9, 129.0, 128.5, 128.5, 126.8, 101.9, 101.8, 34.5, 

18.6. 

 

(1-Methyl-2-phenyl-1H-imidazol-5-yl)methanol (111). To a solution of methyl 1-methyl-1H-

imidazole-5-carboxylate (105, 1.97 g, 14.0 mmol) in dry CCl4 (150 

mL) was added NBS (2.75g, 15.5 mmol) and benzoyl peroxide (170 

mg, 0.70 mmol). The reaction mixture was stirred at 60 °C for 48 h 

and was subsequently filtered. The filtrate was concentrated under 

reduced pressure and the obtained residue was purified by flash 

chromatography on silica-gel using a mixture of hexane/ethyl acetate (6:1→ 4:1) as eluent. Methyl 

2-bromo-1-methyl-1H-imidazole-5-carboxylate was gained as yellow solid. Yield: 1.23 g, 40%. 

Mp 64–67 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.68 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H). 

(ESI): m/z = 219 [M+H]+. Afterwards according to method A reaction of Methyl 2-bromo-1-

methyl-1H-imidazole-5-carboxylate (1.01 g, 4.61 mmol) with phenylboronic acid (840 mg, 6.89 

mmol) was performed. Crude product was purified by flash chromatography on silica-gel using a 

mixture of hexane/ethyl acetate (7:1→ 3:1) as eluent. Methyl 1-methyl-2-phenyl-1H-imidazole-5-

carboxylate was gained as white solid. Yield: 466 mg, 47%. Mp 73–76 °C. 1H NMR (CDCl3, 500 

MHz): δH (ppm) = 7.89 (s, 1H), 7.59–7.56 (m, 2H), 7.50–7.48 (m, 3H), 3.93 (s, 3H), 3.89 (s, 3H). 

(ESI): m/z = 217 [M+H]+. To a stirred suspension of Methyl 1-methyl-2-phenyl-1H-imidazole-5-

carboxylate (364 mg, 1.68 mmol) in dry THF (24 mL) was added lithium aluminium hydride (128 

mg, 3.37 mmol) at 0 °C. After 1 h stirring water (10 mL) was added slowly at 0 °C and the obtained 

mixture was extracted with ethyl acetate twice. The combined organic phases were dried over 
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MgSO4 and concentrated under reduced pressure. Crude product was recrystallized from ethyl 

acetate. White solid. Yield: 273 mg, 86%. Mp 155–157 °C. 1H NMR (DMSO-d6, 500 MHz): δH 

(ppm) = 7.67–7.61 (m, 2H), 7.52–7.46 (m, 2H), 7.45–7.40 (m, 1H), 6.91 (s, 1H), 5.12 (t, J = 5.2 

Hz, 1H), 4.50 (d, J = 5.0 Hz, 2H), 3.68 (s, 3H). 13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 147.4, 

133.6, 131.0, 128.4, 128.4, 128.3, 126.8, 53.0, 31.8. (ESI): m/z = 189 [M+H]+. 

 

5-(Bromomethyl)-1-methyl-3-phenyl-1H-pyrazole (112). To a stirred suspension of 

1-Methyl-3-phenyl-1H-pyrazole-5-carboxylic acid (106, 927 mg, 

4.58 mmol) in dry THF (35 mL) lithium aluminium hydride (348 mg, 

9.17 mmol) was added at 0 °C. Reaction mixture was allowed to 

warm to room temperature and was stirred for 12 h. Afterwards ice 

water (20 mL) was added slowly and the obtained mixture was 

extracted with ethyl acetate twice. The combined organic phases were dried over MgSO4 and 

concentrated under reduced pressure. Crude product was purified by flash chromatography on 

silica-gel using ethyl acetate as eluent. (1-Methyl-3-phenyl-1H-pyrazol-5-yl)methanol was 

obtained as white solid. Yield: 634 mg, 74%. Mp 124–126 °C. 1H NMR (CDCl3, 500 MHz): δH 

(ppm) = 7.78–7.73 (m, 2H), 7.42–7.36 (m, 2H), 7.32–7.28 (m, 1H), 6.44 (s, 1H), 4.65 (s, 2H), 3.90 

(s, 3H), 2.39 (br s, 1H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 150.1, 142.6, 133.3, 128.6, 127.6, 

125.4, 102.9, 55.6, 36.6. (ESI): m/z = 189 [M+H]+. To a solution of (1-Methyl-3-phenyl-1H-

pyrazol-5-yl)methanol (719 mg, 3.82 mmol) in dry THF (50 mL) was added phosphorus 

tribromide (0.72 mL, 2.07 g, 7.65 mmol) dropwise at 0 °C. Reaction mixture was allowed to warm 

to room temperature and was stirred for 20 h. Afterwards ice water (30 mL) was added slowly and 

the obtained mixture was extracted with ethyl acetate twice. The combined organic phases were 

dried over MgSO4 and concentrated under reduced pressure. Crude product was purified by flash 

chromatography on silica-gel using a mixture of hexane/ethyl acetate (6:1) as eluent. White solid. 

Yield: 775 mg, 81%. Mp 127–130 °C. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 7.78–7.72 (m, 2H, 

Ph H), 7.43–7.37 (m, 2H, Ph H), 7.34–7.29 (m, 1H, Ph H), 6.60 (s, 1H, pyrazole H-4), 4.59 (s, 2H, 

CH2), 4.05 (s, 3H, CH3). 
13C NMR (CDCl3, 125 MHz): δC (ppm) = 150.2 (pyrazole C-3), 138.8 

(pyrazole C-5), 132.9 (Ph Cq), 128.6 (Ph C), 127.7 (Ph C), 125.4 (Ph C), 104.0 (pyrazole C-4), 

36.6 (CH3), 20.6 (CH2). (ESI): m/z = 251 [M+H]+. 
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5-((3-Phenylisoxazol-5-yl)methyl)pyridin-3-ol (115). 5-((5-Methoxypyridin-3-yl)methyl)-3-

phenylisoxazole (90) (80 mg, 0.30 mmol) was suspended in HBr 

(48 % in water, 10 mL) and the mixture was stirred at 130 °C 

overnight. After cooling to RT, the aqueous phase was washed with 

EtOAc and then neutralized with saturated Na2CO3 solution. After 

extraction with EtOAc, the combined organic phases were dried over 

MgSO4, filtered and concentrated under reduced pressure. Crude product was purified by flash 

chromatography on silica-gel using a mixture of ethyl acetate / methanol (9:1) as eluent. White 

solid. Yield: 18 mg, 24%. Mp degradation >185 °C. 1H NMR (DMSO-d6, 500 MHz): δH (ppm) = 

9.95 (s, 1 H, OH), 8.06 (d, J = 2.8 Hz, 1 H, pyridinyl H-6), 8.04 (d, J = 1.6 Hz, 1 H, pyridinyl H-

2), 7.87–7.82 (m, 2 H, Ph H), 7.51–7.46 (m, 3 H, Ph H), 7.11 (dd, J = 2.5, 1.9 Hz, 1 H, pyridinyl 

H-4), 6.83–6.80 (m, 1 H, isoxazol H-4), 4.18 (s, 2 H, CH2). 
13C NMR (DMSO-d6, 125 MHz): δC 

(ppm) = 172.5 (isoxazol Cq), 162.5 (isoxazol Cq), 154.1 (Cq), 140.9 (pyridinyl C-2), 137.3 

(pyridinyl C-6), 133.2 (Cq), 130.7 (Ph C), 129.6 (Ph C), 129.1 (Cq), 127.1 (Ph C), 122.7 (pyridinyl 

C-4), 100.9 (isoxazol C-4), 29.7 (CH2). (ESI): m/z = 253 [M+H]+. HRMS: [C15H12N2O2+H]+ calcd: 

253.0972, found: 253.0974. 

 

5-((2-Phenylthiazol-5-yl)methyl)pyridin-3-ol (116). Synthesized using 5-(bromomethyl)-2-

phenylthiazole (107) (297 mg, 1.17 mmol), (5-methoxypyridin-3-

yl)boronic acid pinacol ester (330 mg, 1.40 mmol), Cs2CO3 (1.63 g, 

5.00 mmol) and PdCl2(dppf) (61.0 mg, 0.08 mmol) according to 

method H. Crude product was purified by flash chromatography on 

silica-gel using a mixture of hexane / ethyl acetate (4:1) as eluent. 

Light yellow solid. Yield: 22 mg, 7%. Mp 153–155 °C. 1H NMR (DMSO-d6, 500 MHz): δH (ppm) 

= 9.92 (s, 1 H, OH), 8.03 (dd, J = 2.4, 3.6 Hz, 2 H, pyridinyl H), 7.85–7.89 (m, 2 H, Ph H), 7.74 

(s, 1 H, thiazol H-4), 7.42–7.49 (m, 3 H, Ph H), 7.06 (t, J = 2.4 Hz, 1 H, pyridinyl H-4), 4.20 (s, 2 

H, CH2). 
13C NMR (DMSO-d6, 125 MHz): δC (ppm) = 166.4 (thiazol C-2), 153.6 (pyridinyl C-3), 

141.7 (thiazol C-4), 140.1 (pyridinyl C), 138.3 (Cq), 136.5 (pyridinyl C), 136.2 (Cq), 133.1 (Cq), 

130.0 (Ph C), 129.2 (Ph C), 125.8 (Ph C), 121.8 (pyridinyl C-4), 29.0 (CH2). (ESI): m/z = 269 

[M+H]+. HRMS: [C15H12N2OS+H]+ calcd: 269.0743, found: 269.0745. 
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5-((1-Methyl-3-phenyl-1H-pyrazol-5-yl)methyl)pyridin-3-ol (117). Synthesized using 5-

(bromomethyl)-1-methyl-3-phenyl-1H-pyrazole (112) (245 mg, 

0.98 mmol), (5-methoxypyridin-3-yl)boronic acid pinacol ester (275 

mg, 1.17 mmol), Cs2CO3 (958 mg, 2.94 mmol) and PdCl2(dppf) 

(36.0 mg, 0.05 mmol) according to method H. Crude product was 

purified by flash chromatography twice on silica-gel using ethyl 

acetate and subsequent a mixture of hexane / EtOAc (1:3) as eluent. Off-white solid. Yield: 17 mg, 

7%. Mp degradation >205 °C. 1H NMR (DMSO-d6, 500 MHz): δH (ppm) = 9.87 (br. s., 1 H, OH), 

8.02 (d, J = 2.5 Hz, 1 H, pyridinyl H), 8.00 (d, J = 1.9 Hz, 1 H, pyridinyl H), 7.71–7.76 (m, 2 H, 

Ph H), 7.33–7.39 (m, 2 H, Ph H), 7.23–7.29 (m, 1 H, Ph H), 6.99 (dd, J = 1.9, 2.5 Hz, 1 H, pyridinyl 

H-4), 6.46 (s, 1 H, pyrazole H-4), 4.03 (s, 2 H, CH2), 3.75 (s, 3 H, CH3). 
13C NMR (DMSO-d6, 

125 MHz): δC (ppm) = 153.6 (Cq), 148.5 (Cq), 142.4 (Cq), 140.3, 136.3, 134.3 (Cq), 133.3 (Cq), 

128.6, 127.2, 124.8, 121.9, 102.6 (pyrazole C-4), 36.3 (CH3), 27.8 (CH2). (ESI): m/z = 266 [M+H]+. 

HRMS: [C16H15N3O+H]+. calcd: 266.1288, found: 266.1289. 

 

2-(2-Fluorophenyl)-5-((5-methoxypyridin-3-yl)methyl)pyridine (118). To a solution of 121 

(900 mg, 3.38 mmol), (5-methoxypyridin-3-yl)boronic acid pinacol 

ester (1.02 g, 4.34 mmol) and Pd(PPh3)4 (197mg, 0.17 mmol) in 

degassed toluene/EtOH (27 mL, 1:1), a degassed solution of 2 M 

Na2CO3 (7.8 mL, 15.7 mmol) was added and the reaction mixture 

was stirred for 22 h at 100 °C. After cooling to room temperature, 

water was added and the mixture was extracted with EtOAc. The combined organic layer was 

dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was 

purified by flash chromatography on silica-gel using a mixture of hexane/EtOAc (1:1) as eluent. 

The obtained impure product was dissolved in EtOAc and extracted with 1 M HCl. The aqueous 

phase was washed with DCM, basified with saturated Na2CO3 solution. The aq. layer was extracted 

with DCM (×3) and the combined organic phases were dried over MgSO4, filtered and 

concentrated under reduced pressure. Beige solid. Yield: 367 mg, 38%. Mp 69–71 °C. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 8.61 (d, J = 2.0 Hz, 1 H), 8.21 (d, J = 2.7 Hz, 1 H), 8.16 (d, J = 

1.1 Hz, 1 H), 7.96 (td, J = 7.9, 1.8 Hz, 1 H), 7.73 (dd, J = 8.1, 1.8 Hz, 1 H), 7.53 (dd, J = 8.2, 2.3 

Hz, 1 H), 7.37 (m, 1 H), 7.26 (td, J = 7.5, 1.1 Hz, 1 H), 7.15 (ddd, J = 11.4, 8.2, 1.1 Hz, 1 H), 7.00 

(m, 1 H), 4.01 (s, 2 H), 3.83 (s, 3 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 160.6 

(d, JC,F = 249.6 Hz), 156.2, 152.0, 150.0, 141.7, 136.9, 136.5, 135.0, 133.8, 131.0 (d, JC,F = 3.1 Hz), 

130.6 (d, JC,F = 8.6 Hz), 127.1 (d, JC,F = 12.0 Hz), 124.7 (d, JC,F = 3.6 Hz), 124.6 (d, JC,F = 9.2 Hz), 
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122.0, 116.3 (d, JC,F = 23.1 Hz), 55.8, 35.9. (ESI): m/z = 295 [M+H]+. HRMS: [C18H15FN2O+H]+ 

calcd: 295.1241, found: 295.1244. 

 

5-((6-(2-Fluorophenyl)pyridin-3-yl)methyl)pyridin-3-ol (119). To a solution of 118 (74.0 mg, 

0.25 mmol) in DCM was added a solution of BBr3 in DCM (1 M, 2,5 

mL) at -78 °C and the reaction mixture was allowed to warm up to 

room temperature overnight (21 h). The reaction mixture was 

quenched with ice-water and the aqueous phase washed twice with 

DCM. The aqueous phase was neutralized (pH ~ 8) with saturated 

aq. NaHCO3 solution and extracted with DCM (×3). The combined organic layers were dried over 

Na2SO4, filtered and concentrated in vacuo. Crude product was purified by flash chromatography 

on silica-gel using EtOAc as eluent. White solid. Yield: 11 mg, 16%. Mp 134–135 °C. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 8.53 (s, 1 H), 8.07 (s, 1 H), 7.99 (s, 1 H), 7.86 (t, J = 7.8 Hz, 1 H), 

7.70 (d, J = 8.1 Hz, 1 H), 7.54 (d, J = 8.2 Hz, 1 H), 7.35 (m, 1 H), 7.22 (m, 1 H), 7.13 (m, 1 H), 

7.00 (s, 1 H), 3.94 (s, 2 H). 13C NMR (CDCl3, 125 MHz): δC (ppm) = 160.3 (d, JC,F = 249.6 Hz), 

154.9, 151.8 (d, JC,F = 2.1 Hz), 149.5, 139.6, 137.2, 136.8, 135.7, 134.1, 130.8 (d, JC,F = 2.7 Hz), 

130.6 (d, JC,F = 8.4 Hz), 126.7 (d, JC,F = 11.7 Hz), 124.7 (d, JC,F = 8.3 Hz), 124.5 (d, JC,F = 3.6 Hz), 

124.4, 116.2 (d, JC,F = 7.8 Hz), 35.6. (ESI): m/z = 281 [M+H]+. HRMS: [C17H13FN2O+H]+ calcd: 

281.1085, found: 281.1086. 

 

2-(2-Fluorophenyl)-5-methylpyridine (120). To a solution of 2-bromo-5-methylpyridine (3.00 g, 

17.4 mmol), (2-fluoro-phenyl)boronic acid (3.65 g, 26.1 mmol) and 

Pd(PPh3)4 (780 mg, 0.67 mmol) in degassed toluene/EtOH (160 mL, 

1:1), a degassed aqueous solution of Na2CO3 (2 M, 40 mL, 

80.0 mmol) was added and the reaction mixture was stirred for 20 h 

at 100 °C under nitrogen. After cooling to room temperature, water 

was added and the mixture was extracted three times with ethyl acetate. The combined organic 

layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by flash chromatography on silica-gel using a mixture of hexane/EtOAc (9:1) 

as eluent. Colorless oil. Yield: 3.16 g, 97%. 1H NMR (CDCl3, 500 MHz): δH (ppm) = 8.55 (m, 1 

H), 7.95 (td, J = 7.9, 1.9 Hz, 1 H), 7.68 (dd, J = 8.1, 2.2 Hz, 1 H), 7.56 (dd, J = 8.1, 2.2 Hz, 1 H), 

7.35 (m, 1 H), 7.25 (td, J = 7.5, 1.2 Hz, 1 H), 7.15 (ddd, J = 11.4, 8.2 Hz, 1.2 Hz, 1 H), 2.38 (s, 3 H). 

13C NMR (CDCl3, 125 MHz): δC (ppm) = 160.4 (d, JC,F = 249.2 Hz), 150.6 (d, JC,F = 1.8 Hz), 150.2, 

136.9, 132.0, 130.8 (d, JC,F = 8.6 Hz), 130.0 (d, JC,F = 8.6 Hz), 127.5 (d, JC,F = 11.9 Hz), 124.4 (d, 

JC,F = 3.3 Hz), 123.9 (d, JC,F = 8.8 Hz), 116.1 (d, JC,F = 23.1 Hz), 18.2.  



 126 

 

5-(Bromomethyl)-2-(2-fluorophenyl)pyridine (121). Compound 120 (1.10 g, 5.88 mmol) was 

dissolved in carbon tetrachloride, and NBS (1.05 g, 5.90 mmol) and 

AIBN (49.0 mg, 0.30 mmol) were added. The reaction mixture was 

stirred for 7 h at 80 °C. After cooling to room temperature, the 

suspension was filtered and the filtrate concentrated in vacuum. The 

crude product was purified by flash chromatography on silica-gel 

using a mixture of hexane/EtOAc (95:5→ 9:1) as eluent. Orange oil. Yield: 1.02 g, 65%. 1H NMR 

(CDCl3, 500 MHz): δH (ppm) = 8.73 (t, J = 1.6 Hz, 1 H), 7.99 (td, J = 7.9, 1.9 Hz, 1 H), 7.80 (m, 

2 H), 7.39 (m, 1 H), 7.27 (m, 1 H), 7.16 (ddd, J = 11.5, 8.2, 1.1 Hz, 1 H), 4.53 (s, 2 H). 13C NMR 

(CDCl3, 125 MHz): δC (ppm) = 160.5 (d, JC,F = 250.2 Hz), 153.3 (d, JC,F = 2.7 Hz), 149.7, 137.0, 

132.3, 131.0 (d, JC,F = 2.7 Hz), 130.7 (d, JC,F = 8.8 Hz), 126.8 (d, JC,F = 11.2 Hz), 124.6 (d, JC,F = 

3.5 Hz), 124.4 (d, JC,F = 9.3 Hz), 116.2 (d, JC,F = 22.9 Hz), 29.5. 
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