
Decision Algorithms for Modelling, Optimal Control and
Verification of Probabilistic Systems

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Vahid Hashemi

Saarbrücken, Germany

October 2017

Dean of Faculty Prof. Frank-Olaf Schreyer

Date of Colloquium 21.12.2017

Chair of the Committee Prof. Dr. Christoph Weidenbach

Reviewers Prof. Dr. Holger Hermanns
Prof. Dr. Stefan Kiefer
Prof. Dr. Benoît Delahaye

Academic Assistant Dr. Daniel Stan

Abstract

Markov Decision Processes (MDPs) constitute a mathematical framework for modelling
systems featuring both probabilistic and nondeterministic behaviour. They are widely
used to solve sequential decision making problems and applied successfully in operations
research, artificial intelligence, and stochastic control theory, and have been extended con-
servatively to the model of probabilistic automata in the context of concurrent probabilistic
systems. However, when modeling a physical system they suffer from several limitations.
One of the most important is the inherent loss of precision that is introduced by mea-
surement errors and discretization artifacts which necessarily happen due to incomplete
knowledge about the system behavior. As a result, the true probability distribution for
transitions is in most cases an uncertain value, determined by either external parameters
or confidence intervals. Interval Markov decision processes (IMDPs) generalize classical
MDPs by having interval-valued transition probabilities. They provide a powerful mod-
elling tool for probabilistic systems with an additional variation or uncertainty that reflects
the absence of precise knowledge concerning transition probabilities.

In this dissertation, we focus on decision algorithms for modelling and performance
evaluation of such probabilistic systems leveraging techniques from mathematical opti-
mization. From a modelling viewpoint, we address probabilistic bisimulations to reduce
the size of the system models while preserving the logical properties they satisfy. We also
discuss the key ingredients to construct systems by composing them out of smaller compo-
nents running in parallel. Furthermore, we introduce a novel stochastic model, Uncertain
weighted Markov Decision Processes (UwMDPs), so as to capture quantities like prefer-
ences or priorities in a nondeterministic scenario with uncertainties. This model is close
to the model of IMDPs but more convenient to work with in the context of bisimulation
minimization. From a performance evaluation perspective, we consider the problem of
multi-objective robust strategy synthesis for IMDPs, where the aim is to find a robust strat-
egy that guarantees the satisfaction of multiple properties at the same time in face of the
transition probability uncertainty. In this respect, we discuss the computational complex-
ity of the problem and present a value iteration-based decision algorithm to approximate
the Pareto set of achievable optimal points. Moreover, we consider the problem of comput-
ing maximal/minimal reward-bounded reachability probabilities on UwMDPs, for which
we present an efficient algorithm running in pseudo-polynomial time. We demonstrate
the practical effectiveness of our proposed approaches by applying them to a collection of
real-world case studies using several prototypical tools.

iii

Zusammenfassung

Markov-Entscheidungsprozesse (MEPe) bilden den Rahmen für die Modellierung von
Systemen, die sowohl stochastisches als auch nichtdeterministisches Verhalten beinhalten.
Diese Modellklasse hat ein breites Anwendungsfeld in der Lösung sequentieller Entschei-
dungsprobleme und wird erfolgreich in der Operationsforschung, der künstlichen Intelli-
genz und in der stochastischen Kontrolltheorie eingesetzt. Im Bereich der nebenläufigen
probabilistischen Systeme wurde sie konservativ zu probabilistischen Automaten erweit-
ert. Verwendet man MEPe jedoch zur Modellierung physikalischer Systeme so zeigt es
sich, dass sie an einer Reihe von Einschränkungen leiden. Eines der schwerwiegendsten
Probleme ist, dass das tatsächliche Verhalten des betrachteten Systems zumeist nicht voll-
ständig bekannt ist. Durch Messfehler und Diskretisierungsartefakte ist ein Verlust an
Genauigkeit unvermeidbar. Die tatsächlichen Übergangswahrscheinlichkeitsverteilungen
des Systems sind daher in den meisten Fällen nicht exakt bekannt, sondern hängen von
äußeren Faktoren ab oder können nur durch Konfidenzintervalle erfasst werden. Intervall-
Markov-Entscheidungsprozesse (IMEPe) verallgemeinern klassische MEPe dadurch, dass
die möglichen Übergangswahrscheinlichkeitsverteilungen durch Intervalle ausgedrückt
werden können. IMEPe sind daher ein mächtiges Modellierungswerkzeug für probabilis-
tische Systeme mit unbestimmtem Verhalten, dass sich dadurch ergibt, dass das exakte
Verhalten des realen Systems nicht bekannt ist.

In dieser Doktorarbeit konzentrieren wir uns auf Entscheidungsverfahren für die Mod-
ellierung und die Auswertung der Eigenschaften solcher probabilistischer Systeme in-
dem wir Methoden der mathematischen Optimierung einsetzen. Im Bereich der Model-
lierung betrachten wir probabilistische Bisimulation um die Größe des Systemmodells zu
reduzieren während wir gleichzeitig die logischen Eigenschaften erhalten. Wir betrachten
außerdem die Schlüsseltechniken um Modelle aus kleineren Komponenten, die parallel
ablaufen, kompositionell zu generieren. Weiterhin führen wir eine neue Art von stochastis-
chen Modellen ein, sogenannte Unsichere Gewichtete Markov-Entscheidungsprozesse
(UgMEPe), um Eigenschaften wie Implementierungsentscheidungen und Benutzerprior-
itäten in einem nichtdeterministischen Szenario ausdrücken zu können. Dieses Modell
ähnelt IMEPe, ist aber besser für die Minimierung bezüglich Bisimulation geeignet. Im
Bereich der Auswertung von Modelleigenschaften betrachten wir das Problem, Strategien
zu generieren, die in der Lage sind den Nichtdeterminismus so aufzulösen, dass mehrere
gewünschte Eigenschaften gleichzeitig erfüllt werden können, wobei jede mögliche
Auswahl von Wahrscheinlichkeitsverteilungen aus den Übergangsintervallen zu respek-
tieren ist. Wir betrachten die Komplexitätsklasse dieses Problems und diskutieren einen
auf Werte-Iteration beruhenden Algorithmus um die Pareto-Menge der erreichbaren op-
timalen Punkte anzunähern. Weiterhin betrachten wir das Problem, minimale und maxi-

iv

male Erreichbarkeitswahrscheinlichkeiten zu berechnen, wenn wir eine obere Grenze für
die akkumulierten Pfadkosten einhalten müssen. Für dieses Problem diskutieren wir einen
effizienten Algorithmus mit pseudopolynomieller Zeit. Wir zeigen die Effizienz unserer
Ansätze in der Praxis, indem wir sie prototypisch implementieren und auf eine Reihe von
realistischen Fallstudien anwenden.

Acknowledgments

Throughout my amazing journey towards shaping this dissertation, I have been quite for-
tunate to have invaluable encouragement, support, advice, and friendship of many re-
markable individuals who I wish to acknowledge.

First and foremost, I would like to thank my exceptional doctoral advisor Holger Her-
manns for all his advice and endless support. During my doctoral program, he has pro-
vided me with plenty of freedom to pursue my own research directions. On top of all, he
gave me a wide variety of opportunities to interact and collaborate with several people
around the world.

I am deeply grateful to Benoît Delahaye and Stefan Kiefer for serving as reviewers on
the thesis committee and also for their great feedback and comments. I would also like to
thank Christoph Weidenbach my thesis committee chair and also Daniel Stan for acting as
a part of the committee.

I am sincerely grateful to all my colleagues with whom I have collaborated on vari-
ous projects during my doctoral research: Peter Buchholz, Khaled Elbassioni, Luis María
Ferrer Fioriti, Daniel Gebler, Ernst Moritz Hahn, Hassan Hatefi, Jan Krcál, Morteza Lahi-
janian, Dimitri Scheftelowitsch, Lei Song, K. Subramani, Andrea Turrini and Piotr J. Woj-
ciechowski. I would never have been able to accomplish this milestone without all of you.
In particular, my deep appreciation goes to Andrea Turrini whose mathematical rigor and
patience have always helped me to learn a lot from him. Thank you for all your gener-
ous support. Many thanks to my great office mate Ernst Moritz Hahn for all his support,
careful comments on my manuscripts, and all fruitful scientific and political discussions. I
thank Hassan Hatefi not only for all scientific discussions we had but also for sharing a lot
of pleasant moments with me during these years. I am grateful to Luis María Ferrer Fioriti
for all the long-lasting and deep discussions we had from time to time.

I would like to sincerely thank all former and present members of fabulous Depend-
able Systems and Software chair for their persistence support and a great working atmo-
sphere. In particular, I would like to express my deep appreciation to Christa Schäfer for
all her great help, dedication and correcting my German mistakes. My special thanks
are furthermore extended to my colleagues Sebastian Biewer, Yuliya Butkova, Hernan
Baro Graf, Pepijn Crouzen, Pedro R. D’Argenio, Christian Eisentraut, Gereon Fox, Fe-
lix Freiberger, Hubert Garavel, Alexander Graf-Brill, Arnd Hartmanns, Michaela Klauck,
Martin Neuhässer, Gilles Nies, Florian Schießl, David Spieler and Daniel Stan. Outside the
chair, I have had pleasure to keep in touch with inspiring colleagues including Alexander
Andreychenko, Luca Bortolussi, Bettina Braitling, Carlos E. Budde, Dennis Guck, Abhineet
Gupta, Kangli He, Joost-Pieter Katoen, Thilo Krüger, Charalampos Kyriakopoulos, Linar
Mikeev, Raúl Monti, Silvia Pelozo, Ralf Wimmer and Verena Wolf. I am really thankful to

vi

all of you.
I would like to extend my special thanks to the people outside of Germany whom I

had the opportunity to collaborate or at least to communicate. In particular, many thanks
to Khaled Elbassioni and Hans Raj Tiwary for all their fruitful discussion and also their
constructive comments on my questions. I am sincerely grateful to Daniel Kuhn, Ardaki
Nemirovski and James B. Orlin for all their patience and constructive suggestions to im-
prove my approaches in robust optimization and network flows. I am truly grateful to
K. Subramani and Piotr J. Wojciechowski for their pleasant collaboration. I want to thank
Lijun Zhang for all his constant support and constructive discussion during these years. A
very special thanks to Moshe Y. Vardi for his support which opened up my collaboration
with his former postdoctoral researcher, Morteza Lahijanian.

I am grateful to all my friends who made my time in Saarbrücken more pleasant by
sharing great moments.

I would like to thank my family especially my parents, my sister and my brothers who
always believe in me, support and encourage me to follow my dreams.

And the last but not the least, my deepest and sincere appreciation goes to my wife,
Nafiseh, for all her never-ending love, constant support, and for believing in me especially
during the times when I could not believe in myself. Thank you for being my best friend
and my main source of inspiration.

Contents

1 Introduction 1
1.1 Modelling Real World Systems . 1
1.2 System Specifications . 6
1.3 Formal Verification and Controller Synthesis of Probabilistic Systems . . 7
1.4 Compositional Minimization of Probabilistic Systems 10
1.5 Applications, Case Studies and Tool Development 13
1.6 Main Contributions . 14
1.7 Dissertation Outline . 15
1.8 Origins of the Chapters and Credits . 17

I Background 19

2 Mathematical Background 21
2.1 Mathematical Preliminaries . 21
2.2 Measure and Probability . 24
2.3 Convex Polyhedra . 26
2.4 Systems of Linear Inequalities . 27
2.5 The NP-Completeness Theory . 28

3 Basics of Mathematical Optimization 31
3.1 Linear Programming . 32

3.1.1 Duality Theory . 33
3.1.2 Solution Methods for LPs . 36

3.2 Network Flows . 37
3.3 Robust Optimization . 38

3.3.1 Uncertain Linear Programming (ULPs) 39
3.3.2 Adjustable Robust Counterpart . 40
3.3.3 Affinely Adjustable Robust Counterpart 40

4 An Overview of Probabilistic Systems 41
4.1 Markov Chains . 42
4.2 Markov Decision Processes . 43
4.3 Weighted Markov Decision Processes . 44
4.4 Probabilistic Automata . 45

4.4.1 Parallel Composition and Hiding . 46

ix

x CONTENTS

4.4.2 Weak Transitions . 47
4.5 Interval Markov Decision Processes . 50
4.6 Concluding Remarks . 53

II Modelling and Performance Analysis of Probabilistic Systems 55

5 Efficiency of Deciding Probabilistic Automata Weak Bisimulation 57
5.1 Weak Probabilistic Bisimulation . 58
5.2 Computing the Weak Bisimilarity for Minimizing Automata 59

5.2.1 Deciding Weak Bisimilarity . 59
5.2.2 Minimization and Parallel Composition 61

5.3 Weak Transition Construction as a Linear Programming Problem 63
5.3.1 Network Construction . 63
5.3.2 LP Problem Construction . 64
5.3.3 Complexity Analysis of Deciding Weak Bisimulation 70

5.4 Efficiency of Solving the LP Problem . 70
5.4.1 Efficient Solution: Theory . 71
5.4.2 Efficient Solution: Exploiting Structure 78
5.4.3 Efficient Solution: Unsuitable Approaches 80

5.5 Implementation of Minimization . 83
5.5.1 Implementation Details . 83
5.5.2 Case Studies . 85
5.5.3 Compositional Minimization . 89

5.6 Concluding Remarks . 91

6 Compositional Minimization for Model Checking of Interval MDPs 93
6.1 Probabilistic Computation Tree Logic (PCTL) 94
6.2 Probabilistic Bisimulation for Model Checking IMDPs 94

6.2.1 Complexity Analysis of Deciding ∼(∀) for IMDPs 97
6.2.2 Computational Tractability: An Approximation Algorithm . . . 104

6.3 Compositional Reasoning for Interval Markov Decision Processes 115
6.3.1 Action Agnostic Probabilistic Automata 115
6.3.2 IMDPs vs. PAs . 118
6.3.3 Compositional Reasoning for IMDPs 120
6.3.4 Interleaved approach . 125

6.4 Case Studies . 127
6.5 Concluding Remarks . 128

7 Compositional Minimization for Optimal Control of Interval MDPs 131
7.1 Alternating Probabilistic Bisimulation Relations for IMDPs 132
7.2 A PTIME Decision Algorithm for Bisimulation Minimization 136
7.3 Compositional Reasoning . 140
7.4 Case Studies . 144
7.5 Concluding Remarks . 145

8 Multi-objective Robust Controller Synthesis for Interval MDPs 147

CONTENTS xi

8.1 Multi-objective Robust Controller Synthesis for IMDPs 147
8.1.1 Multi-objective Queries . 149
8.1.2 Robust Controller Synthesis . 152
8.1.3 Multi-objective Robust Controller Synthesis: Other Queries . . . 162
8.1.4 Generation of randomized controllers 163

8.2 Case Studies . 167
8.3 Concluding Remarks . 171

9 Bisimulation Minimization for Model Checking of UwMDPs 173
9.1 Uncertain weighted Markov Decision Processes 174
9.2 Bisimulation Minimization for UwMDPs . 176

9.2.1 Probabilistic Bisimulation . 176
9.2.2 Decision Algorithm . 177

9.3 Reward-Bounded Reachability Probability for UwMDPs 179
9.4 Case Studies . 188

9.4.1 Autonomous Nondeterministic Tour Guides (ANTG) 189
9.4.2 Randomized Consensus Protocol . 191
9.4.3 Randomized Dining Philosophers . 191

9.5 Concluding Remarks . 192

III Conclusion 195

10 Conclusion 197
10.1 Summary . 197
10.2 Future works . 200

Bibliography 202

CHAPTER1
Introduction

The indisputable role of computerized systems in our daily lives is ever accelerating. In
many aspects of our everyday life, we rely on embedded software systems ranging from
mobile phones to medical devices, automobiles and airplanes. Our reliance on embedded
systems manifests the significance of their reliable performance. In particular, software
quality assurance is of greatest importance when human lives or key investments are at
stake or as failures may be economically or physically costly. For instance, the malfunction
of some safety-critical systems in the past such as Therac-25 Radiation Overdosing (1985-
87) or later Pentium FDIV Bug (1994) and Ariane 5 Crash (1996) had fatal consequences.

The ever increasing complexity of modern computerized systems solicits the need for
development of sound mathematical formalisms, algorithmic techniques and tools for
evaluation of qualitative and quantitative properties of such real world systems.

This is the concrete motivation for the present dissertation. We aim to advance quan-
titative evaluation of probabilistic systems despite their complexity from various aspects
ranging from modelling to theory and tools. In particular, from modelling viewpoint, we
introduce a novel stochastic model which encompasses essential features for designing
complex systems and also is capable of capturing quantities like preferences or priorities
in scenarios with uncertainties. From theoretical viewpoint, leveraging techniques from
mathematical optimization and computational geometry, we propose sound and complete
decision algorithms for problems arising in quantitative concurrency and performance
evaluation of probabilistic systems. Finally, we indicate the applicability and efficiency
of the developed algorithms by applying them on several case studies and successfully
integrate them with a state-of-the-art probabilistic model checking tool.

1.1 Modelling Real World Systems

Real world systems are usually too complex to be analyzed in full detail. To reduce the
complexity of such an analysis, a simplified but accurate enough model of the system has
to be constructed and then verified with respect to a number of properties the system is
expected to satisfy. Among others, probability, nondeterminism, and uncertainty are core
aspects of a real world system that are worth considering in the model.

1

2 Chapter 1 : Introduction

Probability. Probability for instance arises when a system, performing an action, is able
to switch to more than one state and the likelihood of each of these states can be
faithfully estimated. Probabilistic choices which are typically known as quantified un-
certainty can model both specific system choices (such as flipping a coin, commonly
used in randomized distributed algorithms) and general system properties (such
as message loss probabilities when sending a message over a wireless medium). In
particular, distributed algorithms like cryptographic protocols [Mao03] such as SSL
are based on random choices to break symmetry or to deliberately insert uncertainty
in order to achieve their goals. Each time a message is transmitted on the network,
in fact, transmission protocols have to manage the potential of corruption of the
messages as well as their loss, as the effect of the interference with other concurrent
transmissions or of physical properties of the transmission medium. For instance,
simultaneous transmissions on the same channel of a wireless network lead to the
collision of the sent messages and their corruption.

Nondeterminism. Nondeterminism represents behaviors that we can not or we do not
want to attach a precise (possibly probabilistic) outcome to. Contrary to the proba-
bilistic approaches, nondeterminism is known as an unquantified uncertainty about
the system behaviour which needs to be resolved amongst several alternative be-
haviours. For example, in a robot motion planning scenario, the robot transitions
in its environment are nondeterministic: we do not know which action the robot is
going to perform; nevertheless, we know the set of different actions the robot can
select from. Nondeterminism can arise deliberately. For instance, it may appear
as a reflection of behaviors we keep undetermined for system simplification or for
allowing different implementations. Apart from that, it might reflect the concurrent
execution of several components at unknown (relative) speeds or might take place
in communication of open systems with other components in their environment.

Parameter Uncertainty. Parameter uncertainty relates to the fact that not all system pa-
rameters may be known exactly, including exact probability values. Parameter
uncertainty almost often arises in partially observable or stochastic environments
due to measurement or systemic errors. The presence of such an unavoidable uncer-
tainty which reflects imperfect or unknown information about some aspects of the
system demands careful handling in the process of decision making.

To study the properties of real-world applications, several models have been proposed in
the literature: the basic model in the discrete time domain is that of discrete time Markov
chains (DTMCs) or, briefly, Markov Chains (MCs) [Ste94, HJ94], where the time is discrete
(i.e., the system performs one operation per clock tick) and probability determines the
states to be reached in their entirety. The continuous-time counterpart is known as the
continuous-time Markov chains (CTMCs) [ASSB00,BHHK03] model, where exponentially
distributed sojourn times distributions control the evolution of the system.

DTMCs and CTMCs are purely probabilistic. They have been extended with nonde-
terminism to permit different operations or behaviors from a specific state. This extension
results Markov decision processes (MDPs) [How60, Bel57, Put05, How07] and continuous-
time Markov decision processes (CTMDPs) [How60,Ber05,BHKH05,Put05,WJ06], respec-
tively. These models, despite being widely used to represent and study real systems, are

1.1. Modelling Real World Systems 3

s̄

t

u

v

τ 1/2

1/3
1

τ

1/6

1a

1b

1c
1

τ

Figure 1.1: The PA P

not closed under composition, that is, there is no guarantee that complex systems can be
obtained by composing smaller components while preserving the intended model class.
This compositionality property is rather important as it is usually much easier to model
and study (a set of) small systems and then combine them together rather than building a
single large system. Moreover, real systems and applications involve several parties each
one composed by modules working together in parallel. Two models have been proposed
to achieve such compositional property: probabilistic automata (PAs) model [Seg95,Seg06]
for discrete time systems and the interactive Markov chains (IMCs) [Her02] model for
continuous-time systems.

Throughout this dissertation, we focus on probabilistic automata in the realm of proba-
bilistic models featuring nondeterministic and probabilistic behaviours. Probabilistic au-
tomata extend classical concurrency models in a simple yet conservative fashion. In proba-
bilistic automata, there is no global notion of time, and concurrent processes may perform
probabilistic experiments inside a transition. This is represented by transitions of the form
s

a−→ µ, where s is a state, a is an action label, and µ is a probability measure on states.
Labelled transition systems are instances of this model family, obtained by restricting to
Dirac measures (assigning full probability to single states). Moreover, foundational con-
cepts and results of standard concurrency theory are retained in full and extend smoothly
to the PA model. Since the PA model is akin to the MDP model, its fundamental beauty
can be paired with powerful model checking techniques, as implemented for instance in
the PRISM tool [KNP11].

Example 1.1. An example of a probabilistic automaton is depicted in Figure 1.1. It includes seven
states each of which represents a specific status of the system being modeled. The model consists
of one internal action τ that cannot be observed from outside the system and three external actions
a, b and c which are presumably shared with an external environment. Nondeterminism can, for
instance, happen in state t in which either an internal or external action can be performed. �

The recently introduced Markov automata (MAs) model [EHZ10b,DH12,Eis17] unifies
and merges all such models in a single framework. This formalism is suitable for studying
systems featuring continuous-time based behaviors as well as probabilistic and nondeter-
ministic choices. Moreover, the Markov automata model provides the semantics to every
generalized stochastic Petri net (GSPN) [EHKZ13], a popular modelling formalism for per-
formance and dependability analysis.

Modelling formalisms like MDPs or PAs are used for representing systems that com-
bine nondeterministic and probabilistic behaviour. They can be viewed as transition sys-
tems where in each step an outgoing transition of the current state is chosen nondeterminis-
tically, i.e., the transition action is performed and the successor state is chosen randomly ac-
cording to a fixed probability distribution assigned to this transition. However, modelling

4 Chapter 1 : Introduction

a physical or artificial system suffers from several limitations. An important limitation
is the inherent loss of precision that is introduced by measurement errors, statistical esti-
mates and discretization artifacts which necessarily happens due to incomplete knowledge
about the system behavior. Thus, assigning fixed probability distributions to transitions is
not realistic [JL91, KU02] in many modelling scenarios and in fact the true probability dis-
tribution to be associated with transitions is in most cases uncertain and is given by either
external parameters or confidence intervals.

Several models have been proposed in the literature to study formally systems where
a combination of probability, nondeterminism and uncertainty is considered. These mod-
elling formalisms have been broadly investigated in the verification and optimal control
community [NG05, BDL+17, DLP16].

Interval Markov chains [KU02, JL91] or abstract Markov chains [FLW06] extend stan-
dard MCs with interval uncertainties. They do not feature nondeterminism among tran-
sitions. Interval MDPs [NG05, WTM12, PLSVS13] (IMDPs) address this need and ex-
tend MDPs by bounding the probabilities of each successor state by an interval instead
of a fixed number. Therefore, the real probability distribution for transitions is in most
cases uncertain and is often given by confidence intervals. Interval MDPs which are
also known as bounded-parameter MDPs (BMDPs) [GLD00] have been extended to the
slightly more general classes of MDPs with incomplete or uncertain transition probabili-
ties [SL73, WE94].

In IMDPs the transition probabilities are not fully specified and this uncertainty again
needs to be resolved nondeterministically. In particular, each time a state is visited, an
outgoing transition is chosen nondeterministically by a scheduler (also called controller or
strategy) and then a transition probability distribution is chosen by a nature from a convex
set of uncountably many choices. Then the successor state is chosen randomly, according
to the selected probability transition.

The two sources of nondeterminism have different interpretation in different applica-
tions:

1. In verification of parallel systems with uncertain transition probabilities [PLSVS13]
the transitions correspond to unpredictable interleaving of computation of the com-
municating agents. Hence, both the choice of transitions and their probability distri-
butions is adversarial.

2. In control synthesis for systems with uncertain probabilities [WTM12, PSVS14] the
transitions correspond to various control actions. We search for a choice of transitions
that is optimal against an adversarial choice of probability distributions satisfying the
interval bounds.

3. In parameter synthesis for parallel systems [HHZ11b] the transition probabilities are
underspecified to allow freedom in implementation of such a model. We search for a
choice of probability distributions that is optimal for adversarial choice of transitions
(again stemming from the possible interleaving).

Furthermore, the choice of probability distributions satisfying the interval constraints
can be either resolved statically [JL91], i.e. at the beginning once for all, or dynami-
cally [Iye05,SVA06], i.e. independently for each computation step. Throughout this disser-
tation, we focus on the dynamic approach that is easier to work with algorithmically and
can be seen as a relaxation of the static approach that is often intractable [BLW13, SVA06,
CSH08, DLL+11].

1.1. Modelling Real World Systems 5
s̄

u v[
1

5
, 1
] [1

3 , 2
3]

a

[14 , 35]

c

[0,1]

[
2 3
, 1
]

b

[0,1]

Figure 1.2: The IMDP M

Example 1.2. An instance of the IMDPs is depicted in Figure 1.2. When the system is at the initial
state s̄, a possible resolution of nondeterminisms can be as follows: the scheduler can select the action
a and afterwards, the nature may choose the probability 2

5 to go to state u and the probability 3
5 to go

to state v. Note that due to the dynamic way of resolving nondeterminisms, this choice of probability
distribution can alter when we get back again to the state s̄. �

The uncertainty set in IMDPs model which features the set of all potential probability
distributions is usually supposed to be closed intervals. Convex MDPs [NG05, WTM12,
PLSVS13] allow more general sets of distributions to be associated with each transition, not
only those described by intervals. In particular, convex MDPs increase the expressiveness
of the IMDPs by generalizing the interval uncertainty with other nonlinear convex sets
such as ellipsoidal or likelihood model of uncertainties. Convexity of the uncertainty set is
usually considered in modelling real world systems to keep the computations tractable.

MDPs with convex uncertainty sets have further been extended. Parametric
MDPs [HHZ11b] to the contrary allow such dependencies as every probability is described
as a rational function of a finite set of global parameters. On the other side, abstract proba-
bilistic automata [DKL+11a] constitutes an abstraction model for PAs in which uncertainty
of the stochastic behavior is modeled by underspecified stochastic constraints.

Central to the content of this dissertation, we introduce uncertain weighted Markov de-
cision processes (UwMDPs) as a novel stochastic modelling formalism to model systems
featuring nondeterminism, probability and uncertainty. Different from IMDPs, each tran-
sition in an UwMDP is associated with a confidence interval of weights such that any inte-
ger value in this interval provides a feasible weight for that transition. Note, however, that
our consideration of only integer weights is without loss of generality and the extension to
rational weights is straightforward.

In the model of UwMDP, weights play a similar role as in GSPN [MCB84] or
EMPA [BG96], namely, they will be used to induce a distribution over all transitions with
the same label. For instance, consider an UwMDP which includes a single transition la-
belled by an action a outgoing from a state s and moves to state s1 and s2 with weight
intervals [1, 3] and [5, 9], respectively. Then, choosing the concrete weights 2 in [1, 3] and
7 in [5, 9] induces a probability distribution over states s1 and s2: the system evolves to
state s1 with probability 2

9 and to state s2 with probability 7
9 .

Similar to IMDP models that include two sources of nondeterminisms which are re-
solved by a scheduler and nature, a notion of scheduler and nature is also needed to reason
on UwMDPs. Hence, the UwMDPs can be observed as a game between a scheduler and
a nature where each time a state is visited, an outgoing transition is nondeterministically
chosen by scheduler and afterwards, nature selects a realization of weights from a set of
feasible weights that is specified in terms of intervals. The selected weights by the nature
then induce a probabilistic transition over successor states.

6 Chapter 1 : Introduction
s̄

u v
[2

,6
] [3,7]

a

[1,4]

c

[0, 1]

[5
,9
]

b

[0, 1]
[2, 4] d

Figure 1.3: The UwMDP W

Example 1.3. Consider the UwMDP presented in the Figure 1.3. When the system is at state v,
the scheduler may nondeterministically choose the probabilistic transition labelled by action c and
nature can select weights 1 and 3 leading to state v and s̄, respectively. This means that v will
evolve into v and s̄ with probabilities 1

4 and 3
4 , respectively. �

In the UwMDPs model, weights can be used to denote priorities or preferences, which
are quantities used to generate probabilistic behaviors. For instance, in a motion planning
scenario, a robot may choose to serve its clients stochastically relative to the preferences
they expressed. In this respect, UwMDPs offer users more flexibility than IMDPs to model
uncertainties.

1.2 System Specifications

Together with a probabilistic model which encodes precisely the behaviour of the system
under consideration, we need a proper language to formally specify the system proper-
ties. A natural way to express such properties is the use of temporal logics. Temporal logics
provide a logical framework to represent and reason about temporal behavior of a sys-
tem [Lam83].

Temporal logics are usually classified as either linear time or branching time logics. Lin-
ear time logics consider properties of individual executions. To the contrary, branch-
ing time logics express properties of a computation tree. The most widely used logic
to describe linear time properties in the model of probabilistic systems is linear temporal
logic (LTL) [Pnu77]. For branching time properties, the most widely used logics is the
Computation Tree Logic (CTL) [CE81]. Later, a probabilistic extension of both LTL and
CTL logic presented in the form of PLTL [CY95] and PCTL [HJ90] which provides a tool
for probabilistic quantification of described properties. The logics LTL and CTL can be uni-
fied to CTL* [EH86] in order to express linear time and branching time properties simulta-
neously. Similarly, the logic PCTL* [BDA95] also proposed as a probabilistic extension of
CTL*. We refer the reader to [BMN00, Eme90] for a survey on temporal logics.

On the specification side, throughout this dissertation, we focus on Probabilistic Com-
putation Tree Logic (PCTL) to express the properties of probabilistic systems. The PCTL
logic permits us to express system properties such as “If a massage is sent in a wireless
sensor network, the probability at which it is delivered within 5 seconds is at least 0.98%".

1.3. Formal Verification and Controller Synthesis of Probabilistic Systems 7

Figure 1.4: Probabilistic model checking in a nutshell

1.3 Formal Verification and Controller Synthesis of Proba-
bilistic Systems

Ubiquitous computerized systems are prone to failure due to their complex nature. The
risk of failure typically correlates positively with the complexity and expectations on the
systems. Hence, powerful formal techniques are required in order to ensure the correctness
of the systems being modeled against the requirements.

Formal verification is the act of mathematically reasoning about the correctness of com-
puter systems. Soon after the emergence of formal verification in seminal works by Clarke
and Emerson [CE81] and by Queille and Sifakis [QS82], it has played a major role in im-
proving reliability of computer systems. Probabilistic model checking is one of the quan-
titative techniques offered by formal verification. In particular, for a given model of a
probabilistic system which encodes all possible behaviour of the system under study at a
certain level of abstraction, and a logical property that specifies the system requirement,
probabilistic model checking automatically verifies if the model satisfies the property of
interest. Therefore, probabilistic model checking provides a broad range of exhaustive
and quantitative analyses of system properties. The probabilistic model checking routine
is summarized in Figure 1.4. Over the past decades, much effort has been spent in the
area of probabilistic model checking. Efficient algorithmic techniques and tools for model
checking CTL formulas on MDPs have been proposed in [CE81]. On the other hand, model
checking LTL logic for MDPs is shown to be polynomial in the size of the model and double
exponential in the size of the LTL property [BK08]. As regards the probabilistic fragment
of CTL, it is shown that model checking of PCTL properties for MDPs is in P [HJ94]. To the
contrary, model checking probabilistic LTL (PLTL) properties of MDPs has been studied
in [CY95] and shown to have the same complexity as for the model checking of LTL formu-
las which is 2EXPTIME-complete. For probabilistic systems under presence of uncertainty,
the model checking of PLTL has been explored in [BLW13] for the interval MCs and proved

8 Chapter 1 : Introduction

to be in EXPTIME and PSPACE-hard. Model checking PCTL properties on interval MCs
has been addressed in [SVA06] and later investigated by Puggelli et al. [PLSVS13, Pug14]
for IMDPs. In particular, in [PLSVS13] the authors presented a polynomial-time algorithm
for model checking PCTL properties on IMDPs.

A closely related problem to the probabilistic model checking is the controller synthesis
problem. The goal of controller synthesis is to construct a controller that limits the behav-
ior of an existing system so as to make it satisfy a certain quantitative objective. This can
be regarded as a game between controller and environment in which the controller has a
winning strategy if the system property can be made to almost surely hold. The controller
synthesis approach has successfully been applied to several application domains such as
robots control [LWAB10] and power management for hardware [FKN+11]. In the con-
troller synthesis setting, Baier et al. [BGL+04] explored the problem of controller synthesis
for MDPs from PCTL and LTL properties. In particular, they showed that the problem
of synthesizing Markovian deterministic strategies for PCTL properties is NP-complete.
Nevertheless, synthesizing history-dependent strategies for LTL properties is elementary.
In [KS05] it is shown that the problem of synthesizing Markovian randomized controllers
for PCTL properties extended with long-run averages is decidable and the authors provide
an algorithmic solution for that. On the other hand, Puggelli et al. studied the problem
of synthesizing PCTL specifications for MDPs with convex uncertainties and proposed a
sound and complete synthesis algorithm to solve it. Finally, the problem of synthesizing
an optimal controller for Convex MDPs which satisfies a fragment of the PLTL logic is in-
vestigated in [WTM12]. satisfying a specification expressed in the fragment of the PLTL
logic. Among other technical tools, all these approaches make use of (robust) dynamic
programming relying on the fact that transition probability distributions are resolved dy-
namically. For the static resolution of distributions, adaptive discretization technique for
PCTL parameter synthesis is given in [HHZ11a].

Thus far we have considered probabilistic model checking and controller synthesis
with respect to a single property. However, in many application scenarios, we may need
to care about several possibly conflicting quantitative properties and therefore, we need
to know whether all properties can be satisfied simultaneously. More specifically, we
will be interested in the trade-off or the Pareto curve for optimizing different properties.
This setting allows us to formulate queries such as: Can an attacker break into our server
with a probability of at least 1%, and can he infect a communication subsystem with a proba-
bility of 2%, provided that some of the attack steps he needs to undertake have a chance of 10-
20% to succeed? An obvious generalization posing several such objectives asks whether
there exists a model instance that fulfills all the given multi-objectives. Multi-objective
approaches have received widespread attention in several areas such as operations re-
search [DSH16, Ehr06], economics [Bra13] and stochastic control [MA04] and probabilistic
verification [RRS15,CMH06,EKN+12,KNPQ13,Mou04,OPW13,PWGH13,FKN+11,FKP12].
In particular, in recent years there has been an increasing interest in multi-objective con-
troller synthesis for probabilistic systems. Among other results, Chatterjee, Majumdar, and
Henzinger in [CMH06] considered multi-objective model checking of MDPs with multiple
discounted reward objectives and afterwards, Etessami et al. extended their approach for
multi-objective probabilistic model checking of MDPs for probabilistic ω-regular proper-
ties. In [Fur80, Whi82, Hen83, Gho90, WT98] multi-objective MDPs have also been inves-
tigated with regards to discounted reward or long-run average reward properties. The
works in [FKN+11,FKP12,KNPQ13] focused on multi-objective verification of MDPs with

1.3. Formal Verification and Controller Synthesis of Probabilistic Systems 9

respect to several other properties. In particular, in [FKN+11] the authors propose multi-
objective verification techniques for quantitative properties of PAs (and also MDPs) includ-
ing ω-regular and expected total reward properties. Later on efficient algorithms relying
on the generation of successive approximations of the Pareto curve for the multi-objective
model checking of MDPs have been proposed in [FKP12]. In [CFK+13], these algorithms
were extended to the more general models of 2-player stochastic games. Moreover, a rigor-
ous complexity analysis of multi-objective model checking of MDPs with respect to several
quantitative properties was undertaken in [RRS15].

Throughout this dissertation, we explore formal verification and controller synthesis of
probabilistic systems in two orthogonal dimensions. We elaborate on our approaches as
follows.

In the area of formal verification, we discuss extreme (maximal/minimal) reward-
bounded reachability probabilities [AHK03] of UwMDPs. Thus each UwMDP is associ-
ated with a reward structure, which assigns to each weighted transition a reward. In this
setting, we compute the extremal reward-bounded reachability probabilities under all res-
olutions of nondeterminism and uncertainty. In particular, we assume that the scheduler
and nature which respectively resolve the nondeterminism and uncertainty are playing
together against the model. On the one hand, this problem is an extension of the work
in [AHK03] enriched with uncertainties, while on the other hand, it can also be seen as
an extension of the work in [PLSVS13] to model with reward structures. Despite the fact
that an UwMDP may represent an equivalent, but exponentially larger, model without
uncertainties, we propose an algorithm to compute extreme reward-bounded reachability
probabilities in pseudo polynomial time – polynomial with respect to the size of the given
UwMDP and quadratic with respect to the reward bound. As a core part, our algorithm
is based on a reduction to the similar problem on IMDPs which uses a construction that
does not, surprisingly, involve an exponential blow up. Afterwards, we formally show
that the extremal probabilities are achieved by deterministic reward-positional schedulers
and natures. Finally, we present a polynomial time algorithm to compute these quantities.
Along the line of [PLSVS13], extremal reachability probabilities without reward bounds
can be computed efficiently for UwMDPs as well.

In the area of controller synthesis, we present a novel technique for robust controller
synthesis of IMDPs with respect to multiple objectives. Our aim is to synthesize a robust
controller that guarantees the satisfaction of the multi-objective property at the same time,
despite the additional uncertainty over the transition probabilities in these models. Here,
the goal is first to provide a complete trade-off analysis of several, possibly conflicting,
quantitative properties and then to synthesize a controller that guarantees the user’s de-
sired behavior. Such properties, for instance, ask to “find a robot controller that maximizes
psafe, the probability of successfully completing a track by safely maneuvering between
obstacles, while minimizing ttravel the total expected travel time.” This example has com-
peting objectives: maximizing psafe, which requires the robot to be conservative, and min-
imizing ttravel, which causes the robot to be reckless. In such contexts, the interest is in the
Pareto curve of the possible solution points: the set of all pairs of (psafe, ttravel) for which an
increase in the value of psafe must induce an increase in the value of ttravel, and vice versa.
Given a point on the curve, the computation of the corresponding controller is asked. Our
approach views the uncertainty as making adversarial choices among the available tran-
sition probability distributions induced by the intervals, as the system evolves along state
transitions. In this respect, we first show that this problem is PSPACE-hard. Then, we

10 Chapter 1 : Introduction

provide a value iteration-based decision algorithm to approximate the Pareto set of achiev-
able points. Our algorithm iterates over a weighted sum of objectives which are in turn
optimized through a value-iteration procedure. It is worthwhile to note that the major
difference between the provided value iteration algorithm and the standard value itera-
tion is its need to optimize a mixture of unbounded and bounded properties. Moreover,
the multi-objective robust controller synthesis for IMDPs cannot be solved on the MDPs
generated from IMDPs by computing all feasible extreme transition probabilities and then
applying the algorithm in [FKP12]. The latter solution approach could be valid if the two
sources of nondeterminisms in IMDPs were resolved cooperatively. As for the sake of ro-
bust controller synthesis we need the competitive semantics, one can instead transform
IMDPs to 2 1

2 -player games [BKW14] and apply the algorithm in [CFK+13]. Unfortunately,
the transformation to (MDPs or) 2 1

2 -player games induces an exponential blow up, adding
an exponential factor to the worst case time complexity of the decision problem. Our pro-
posed algorithm instead prevents this difficulty by solving the robust synthesis problem
directly on the IMDP so that the core part, i.e., optimizing the weighted sum of objectives,
can be solved with time complexity polynomial in the size of the given IMDP model.

1.4 Compositional Minimization of Probabilistic Systems

Given a real system, we can conceive several different probabilistic automata models to
reflect its behavior: for example, we can use different names for the states, we can encode
probabilistic choices as sequences of events or as single events, we can detail or abstract
from particular details, and so on. It is clear that these choices affect the resulting model
whose size may vary even if all these models represent the same real system. A possible
way to abstract away from this modelling details is to use the so-called bisimulation rela-
tions that allow us to declare that two models are bisimilar or equivalent whenever they
are related, respectively. Intuitively, a system S1 is bisimilar to a system S2 if S1 is able to
mimic whatever S2 can do and vice versa. Hence, bisimulation relations provide a powerful
tool to manifest whether two models describe essentially the same system.

The bisimilarity of two systems can be viewed in terms of a game played between a
challenger and a defender. In each step of the possibly infinite bisimulation game, the
challenger chooses one of the two automata, makes a step, and the defender then needs
to match it with a step of the other automaton. Depending on how we want to treat inter-
nal computations, this leads to strong and weak bisimulations: the former requires that
each single step of the challenger automaton is matched by an equally labelled single
step of the defender automaton, the latter allows the matching up to internal computa-
tion steps. On the other hand, depending on how nondeterminism is resolved, proba-
bilistic bisimulations can be varied by allowing the defender to match the challenger’s
step by a convex combination of enabled probabilistic transitions. This results in a spec-
trum of four bisimulations: strong [Seg95, Han91, Var85], strong probabilistic [Seg95],
weak [PLS00, Seg95, EHZ10a, EHZ10b], and weak probabilistic [Seg95, EHZ10b, EHZ10a]
bisimulations. For a recent survey on behavioral equivalences and preorders, we refer the
interested reader to [GHT14].

Besides comparing automata, bisimulation relations allow us to reduce the size of an
automaton without changing its properties (i.e., with respect to logic formulae satisfied by
it). This is particularly useful to alleviate the state explosion problem notoriously encoun-

1.4. Compositional Minimization of Probabilistic Systems 11

tered in model checking. If the bisimulation is a congruence with respect to the operators
of a process calculus used to build up the automata out of smaller ones, this can give rise
to a compositional strategy to associate a small automaton model to a large system with-
out intermediate state space explosion. In several related settings, this strategy has been
proven very effective [CGM+96, HK00, KKZJ07, BHH+09, CHLS09]; it can speed up the
overall model analysis or turn a too large problem into a tractable one.

Both strong and weak bisimilarity are used in practice, with weaker relations leading
to greater reduction. However, this approach has thus far not been explored in the context
of MDPs or probabilistic automata. A striking reason is that until recently no effective de-
cision algorithm was at hand for weak probabilistic bisimilarity on PA. A polynomial
time decision algorithm has been proposed only recently [TH15], based on linear pro-
gramming problems. In particular, the weak bisimilarity decision algorithm follows the
standard partition refinement approach [KS90, PT87, PLS00, CS02], and thereby induces
a polynomial number of linear programming problems that can be solved in polynomial
time [Kar84,Kha79]. This algorithm can be embedded into a procedure to compress a given
PA to its canonical minimal representative [EHS+13]. Since weak probabilistic bisimilar-
ity is a congruence for parallel composition and hiding operators on PAs (we refer the
interested reader to [Seg95, SL95] for more details), this paves the way for compositional
strategies to associate a small PA model to a large system without intermediate state space
explosion.

For probabilistic systems featuring uncertainty in the transition probability values,
compositional specification theory has also been investigated in the literature. In particu-
lar, interval Markov chains [JL91] and abstract probabilistic automata [DKL+11a,DKL+11b]
serve as specification theories for MCs and PAs featuring satisfaction relation, and various
refinement relations. In order to be closed under parallel composition, abstract PA allow
general polynomial constraints on probabilities instead of interval bounds. Since for inter-
val MC it is not possible to explicitly construct parallel composition, the problem whether
there is a common implementation of a set of interval Markov chains is addressed in-
stead [DLL+11]. To the contrary, in the continuous-time setting, the authors in [KKN09]
consider abstract interactive Markov chains which encompass interval MCs and modal
transition systems in a unified framework and show that they are closed under parallel
composition. The reason is that unlike probabilities, the rates do not need to sum up to 1.

In the area of compositional minimization of probabilistic systems, we advance the
state-of-the-art in three dimensions detailed as follows.

First, we consider deciding PA weak bisimulation which is known to be polyno-
mial [HT12]. In particular, we discuss the efficiency of solving the specific LP problems
from both theoretical and practical viewpoints. We first consider the theoretical efficiency
of solving the problem. We first look at rational PAs, i.e, PAs with only rational probability
values, and study the complexity of the decision problem together with several optimiza-
tions. This entails reformulating the original LP problem [TH15] in order to simplify the
construction of the dual LP problem [BT97] which is smaller in size than the original. By
using a state-of-the-art preconditioned conjugate gradient (PCG) algorithm combined with
a partial updating procedure [Ans99] we show that the dual LP problem can be solved ef-
ficiently. On the other hand, taking advantage of the small-sized dual LP problem, we
give an upper bound on the complexity of checking the feasibility of the original LP prob-
lem. We also discuss how the efficiency of solving the decision problem can exploit the
problem structure. In practice one would usually opt for the notoriously efficient simplex

12 Chapter 1 : Introduction

method [Sha87] to solve the LP problems. However a small modification of the under-
lying network [TH15] enables us to adapt the corresponding LP problem into a variant
of a minimum cost flow problem [AMO93] with flow proportional sets. This is a special
class of linear programming problems where the underlying network structure can be ex-
ploited, in particular if it is sparse. Sparsity is indeed frequently observed in practical
applications of probabilistic automata. We therefore compare the simplex method with a
very efficient state-of-the-art network simplex algorithm [BF12] specialized for the mini-
mum cost flow problem with additional side constraints. This is known to outperform the
simplex method [MSJ11,HK95,Cal02] when the number of nodes is an order of magnitude
larger than the number of side constraints. We furthermore discuss different implemen-
tations of the decision algorithm, focusing on effective minimization of PA with respect
to weak probabilistic bisimilarity. One of the implementations exploits that the problem
at hand can be encoded into SAT modulo linear arithmetic. We report on extensive em-
pirical investigations in the context of concurrent probabilistic systems. It turns out that
minimization can be applied effectively to standard PA benchmarks. Several techniques
and heuristics are discussed to further reduce the actual execution time of the algorithm,
by showing how an accurate management of transition computation and minimization
helps in the reduction of large automata, in particular when they are the result of the com-
position of several automata. The problem of efficiently deciding bisimilarities for PAs
and MDPs is of pivotal importance for compositional construction and minimization tech-
niques for complex probabilistic models. Once in place, these techniques can be rolled out
to operations research, automated planning, and decision support applications.

Next, we discuss different interpretations of uncertainty in IMDP models which are
studied in the literature and that result in two different definitions of bisimulations: one
for models where the two nondeterminisms are resolved in a cooperative way and an-
other for models where it is resolved in a competitive way. Furthermore, we provide a
thorough complexity analysis of deciding these bisimulations and show how to compute
these bisimulations by algorithms based on comparing polytopes of probability distribu-
tions associated with each transition. As regards the cooperative semantics, we show that
deciding probabilistic bisimulation is coNP-complete and present an algorithm for its com-
putation which is fixed parameter tractable with respect to the maximal dimension of the
polytopes (i.e. maximal number of different states that an uncertain transition can lead to).
Furthermore, taking advantage of the results from robust optimization setting, especially
theory of uncertain Linear Programming (LP) problems, we show that deciding bisimi-
larity of a pair of states can be encoded as adjustable robust counterpart of an uncertain
LP. Accordingly, we show that using affine decision rules, probabilistic bisimulation re-
lations can be approximated in polynomial time. As regards the competitive semantics,
we define two alternating probabilistic bisimulations to compress the IMDP model size
with respect to the controller synthesis and parameter synthesis semantics while preserv-
ing probabilistic CTL property satisfaction. In this respect, we first show that these two
alternating bisimulations coincide and afterwards, show that the compressed models can
be computed in polynomial time. We furthermore investigate how the parallel compo-
sition operator for IMDPs can be defined so as to arrive at a congruence closure. While
nondeterminism is a genuine asset of IMDPs, a closure property can not be established for
asynchronous parallelism with synchronisation. The possibility of establishing an asyn-
chronous parallelism with synchronisation for IMDP models has been recently investi-
gated in [HHS+16b]. However, the underlying construction is problematic since it does

1.5. Applications, Case Studies and Tool Development 13

not manage correctly the spurious distributions. More precisely, for a pair of IMDP com-
ponents the equality of the emerged sets of spurious distributions as a parallelism result
should be guaranteed in order to establish the congruence result. Alternatively, we show
that for both cooperative and competitive semantics, IMDPs are closed under interleaving
parallelism as well as under synchronous parallelism. This enables us to develop composi-
tionality results with respect to bisimulation for these two facets of parallelism. We finally
argue by several case studies that, if uncertainty stems from a small number of different
phenomena such as node failure or loss of a message, the same shape of polytopes will
repeat many times over the states space. We demonstrate that the redundancy in this case
may result in a massive state space minimization.

Last, we show that UwMDPs are equipped with an efficient minimization theory based
on probabilistic bisimulation. Such a bisimulation minimization approach can be applied
to alleviate state space explosion problems. More concretely, we define probabilistic bisim-
ulation relations for UwMDPs and show that they can be computed efficiently in polyno-
mial time with respect to sizes of UwMDPs in contrast to the (cooperative) bisimulation
for IMDPs which is computationally intractable. This observation indeed elucidates one
of the substantial distinctions between UwMDPs and IMDPs. In particular, UwMDPs not
only enables us more flexibility to model uncertainties but also provides us with a natural
and tractable bisimulation minimization theory.

1.5 Applications, Case Studies and Tool Development

At this point, we briefly point out to the tool supports for the probabilistic model check-
ing of probabilistic systems. As a matter of fact, apart from all aforementioned theoretical
results several powerful model checkers have been developed and applied in practice suc-
cessfully. Among others, tools such as PRISM [PRI], Modest [BDH+12], IscasMC [HLS+14]
and quite recently JANI [BDH+17] and STORM [DJKV17] can be used to analyze a wide
range of probabilistic systems and logic specifications. In parallel to that, tools such as
PARAM [HHWZ10] and PROPhESY [DJJ+15] can be applied for parameter synthesis of
parametric probabilistic systems.

Throughout this dissertation, we indicate the applicability and efficiency of the devel-
oped algorithms by applying them on several case studies: two developed merely for para-
metric probabilistic systems and the rest adapted from PRISM model checker [HKNP06].
In particular, our two developed case studies which are of high practical relevance mo-
tivate the use of parametric probabilistic systems as appropriate modelling formalisms
to capture inherent uncertainties encoded in their scenarios. In the first case study, we
consider robot motion planning under uncertainty in which designers are often interested in
a plan that simultaneously satisfies multiple conflicting objectives, e.g., maximizing the
chances of reaching the target while minimizing the energy consumption. To this aim,
we analyze multi-objective robust controller synthesis of the model aiming at finding a
robust controller which satisfies a given multi-objective property and also compute the
Pareto curve for the property. Our second case study is inspired by Autonomous Nondeter-
ministic Tour Guides (ANTG) in [CRI07], which models a complex museum with a variety
of collections. It is worthwhile to note that the model introduced in [CRI07] is an MDP
and we use both IMDP and UwMDP models to incorporate parameter uncertainties into
the MDP. The IMDP model of ATNG case study is used for multi-objective robust con-

14 Chapter 1 : Introduction

troller synthesis problem while its UwMDP model is used to compute maximal/minimal
reward-bounded reachability probabilities. Apart from applications and developed case
studies, a major part of our algorithms including the bisimulation minimization techniques
for IMDPs under both cooperative and competitive semantics as well as multi-objective
robust controller synthesis approaches have been integrated with IscasMC: a web-based
probabilistic model checker [HLS+14].

1.6 Main Contributions

The current dissertation contributes to the field of probabilistic verification in various
ways. In particular, the thesis focuses on complexity analysis and designing efficient de-
cision algorithms for bisimulation minimization, formal verification and optimal control
of probabilistic systems. While we initially work with probabilistic automata, we gener-
alize these models further to more expressive model of IMDPs as well as a novel model
of UwMDPs featuring parameter uncertainties. For all these models, we provide prob-
abilistic bisimulation equivalences together with decision and minimization algorithms.
In addition to bisimulation minimization techniques, we propose scalable algorithms to
model check and to optimally control parametric models and apply them on a variety of
case studies. Summarizing, our main contributions are classified as follows:

• We provide a thorough complexity analysis of deciding weak probabilistic bisim-
ulation problem for probabilistic automata which in turn considers several practical
algorithms and linear programming problem transformations that enable an efficient
solution. We demonstrate that a small modification of the weak transition LP prob-
lem enables taking advantage of the underlying network structure to improve the
practical efficiency of solving the problem. In addition, we discuss two different im-
plementations of a probabilistic automata weak probabilistic bisimulation minimizer,
one of them employing SAT modulo linear arithmetic as the solver technology. We
have also investigated how compositional minimization techniques can be exploited
for models consisting of several sub-automata running in parallel.

• We define the first probabilistic bisimulation for model checking of interval MDPs
(that is also the first bisimulation for MDPs with uncertain transitions in general)
where the two sources of nondeterminism are resolved in a cooperative way. Our no-
tion of probabilistic bisimulation equivalence allows to reduce the size of such an
interval MDP model while preserving PCTL properties it satisfies. We first show
how to compute the probabilistic bisimulation equivalence by an algorithm whose
core part is based on comparing polytopes of probability distributions associated
with each transition. The algorithm is fixed parameter tractable with respect to the
maximal dimension of the polytopes (i.e. maximal number of different states that an
uncertain transition can lead to). Afterwards, we discuss computational complexity
of the bisimulation minimization and show that the problem is coNP-complete. With
the aim of designing an efficient approximation algorithm, we build a bridge be-
tween probabilistic verification and robust optimization and establish a novel mod-
elling of the probabilistic bisimulation problem for interval MDPs as an instance of
an uncertain LP problem. Furthermore, we show that, by using affine decision rules,
the probabilistic bisimulation problem for IMDPs can be approximately decided in
polynomial time.

1.7. Dissertation Outline 15

• We define novel alternating probabilistic bisimulations for interval MDPs (which are
in turn the first alternating probabilistic bisimulations for MDPs with uncertain tran-
sitions) where the two sources of nondeterminism are resolved in a competitive way.
The alternating probabilistic bisimulations can be applied to reduce the size of inter-
val MDPs while preserving the PCTL properties with respect to the controller syn-
thesis or parameter synthesis semantics. We show that these alternating probabilistic
bisimulations can be decided in polynomial time by formulating the core computa-
tional geometry problem as an LP problem.

• We discuss the key ingredients to build up the operations of parallel composition
for composing interval MDP components at run-time. More precisely, we investi-
gate how the parallel composition operator for interval MDPs can be defined so as to
arrive at a congruence closure. As a result, we show that (alternating) probabilistic
bisimulation for interval MDPs is a congruence with respect to two facets of paral-
lelism, namely synchronous product and interleaving.

• We present a novel technique for multi-objective controller synthesis for IMDPs. Our
aim is to synthesize a robust strategy that guarantees the satisfaction of a multi-
objective property, despite the additional uncertainty over the transition probabilities
in these models. Our approach views the uncertainty as making adversarial choices
among the available transition probability distributions induced by the intervals, as
the system evolves along state transitions. That is to say, we consider controller syn-
thesis semantics in order to resolve the two sources of nondeterminisms in IMDPs.
We first analyze the problem complexity, proving that it is PSPACE-hard then de-
velop a value iteration-based decision algorithm to approximate the Pareto curve.

• We introduce UwMDPs as a novel stochastic model to capture quantities like pref-
erences or priorities in a nondeterministic scenario with uncertainties. The model is
very close to the model of interval MDPs but more convenient to model with when
non-probability uncertainties like weights, preference, priority, etc. are involved. We
consider the problem of computing maximal/minimal reward-bounded reachabil-
ity probabilities on UwMDPs, for which we present an efficient algorithm running
in pseudo polynomial time. In addition we show that, contrary to IMDPs models,
UwMDPs are equipped with an efficient minimization theory based on probabilistic
bisimulation. In particular, we define bisimulation relations for UwMDPs that can
be decided in polynomial time in the size of the UwMDP models.

• We demonstrate the practical effectiveness of our proposed approaches by applying
them on several case studies using a prototypical tool. A major part of our algo-
rithms has been integrated with IscasMC which is a web-based probabilistic model
checker [HLS+14]. The experimental evaluation of our proposed algorithms shows
indeed their advantages in quantitative analysis of real world systems.

1.7 Dissertation Outline

The rest of the dissertation is organized as follows:

In Chapter 2, we provide the necessary mathematical background that will be used
throughout the thesis. In particular, we summarize the definitions and main results from

16 Chapter 1 : Introduction

measure and probability theory, convex polyhedra geometry as well as the theory of
NP-completeness.

In Chapter 3, for a deeper understanding of the forthcoming chapters, we give an
overview on the theory of linear programming, network flows and robust optimiza-
tion. Most of the results in this section are based on the excellent textbooks ‘’Intro-
duction to Linear Optimization” by Dimitris Bertsimas and John N. Tsitsiklis [BT97],
‘’Network Flows: Theories, Algorithms and Applications” [AMO93] and ‘’Robust Opti-
mization” [BTEGN09].

In Chapter 4, we formally introduce the probabilistic modelling formalisms and their
semantics which form the basis of this dissertation. Furthermore, we introduce the nota-
tions and terminologies that are used in the later chapters.

In Chapter 5, we study efficiency analysis of deciding probabilistic automata weak
bisimulation covering both theoretical and practical aspects. From the theoretical side, we
establish an upper bound on the worst case complexity of the decision problem for general
probabilistic automata. From the practical side, we present implementation considerations
together with several cases studies substantiating the effectiveness of the minimization in
particular for compositional analysis.

In Chapter 6, we address the probabilistic bisimulation for model checking PCTL
properties of IMDPs and formally compute the computational complexity of the decision
problem. Afterwards, we present algorithms to compute the probabilistic bisimulation
equivalence. We next discuss compositionality methods for reasoning about IMDPs with
respect to the cooperative semantics. Finally, we demonstrate the effectiveness of our
approach on several case studies.

In Chapter 7, we give the definitions of alternating probabilistic bisimulation for IMDPs
and discuss their properties. We then present a polynomial time decision algorithm to
decide alternating probabilistic bisimulation for IMDPs followed by the compositional
reasoning for these models with respect to the competitive semantics. Finally, we present
effectiveness of our bisimulation minimization on several case studies.

In Chapter 8, we introduce multi-objective robust controller synthesis for IMDPs and
discuss its computational time complexity. Afterwards, we present a value iteration-
based algorithm to solve the problem and also discuss its extension to solve the other
multi-objective queries. We finally illustrate the practical effectiveness of our proposed
approaches by applying them on a couple of real world case studies.

In Chapter 9, we present an efficient probabilistic bisimulation minimization approach
for our novel model of UwMDPs. We next define the notion of maximal reward-bounded
reachability probability for UwMDPs and establish a fixed-point characterization for it.
Afterwards, we present a pseudo polynomial algorithm to compute these probabilities
and apply our solution approach on a variety of case studies.

In Chapter 10, we discuss some future research directions and conclude.

A sketch of the thesis structure is depicted in Figure 1.5 where the solid arrows describe
dependencies between chapters and the dashed arrow indicates a relatively small depen-
dency. The beginning of each chapter provides the motivation as well as the overview of

1.8. Origins of the Chapters and Credits 17

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Chapter 10

Figure 1.5: Chapters roadmap.

the content. Furthermore, we provide references to related publications at each technical
chapter.

1.8 Origins of the Chapters and Credits

The results presented in Chapters 5 to 9 of this dissertation are based on extended version
of the following publications (listed in reverse chronological order):

• [HTH+17] Hashemi, V., Turrini, A., Hahn, E.M., Hermanns, H., and Elbassioni,
K., Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs. In: Sym-
posium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA) 2017. Lecture Notes in Computer Science, vol 10606, pp. 25-41. Springer
International Publishing.

• [HHH+17b] Hahn, E.M., Hashemi, V., Hermanns, H., Lahijanian, M., and Turrini, A.,
Multi-objective Robust Strategy Synthesis for Interval MDPs. In: Quantitative Evalua-
tion of Systems (QEST) 2017. Lecture Notes in Computer Science, vol 10503, pp. 207-
223. Springer International Publishing.

• [FFHHT16] Fioriti, L.M.F., Hashemi, V., Hermanns, H. and Turrini, A., Deciding prob-
abilistic automata weak bisimulation: theory and practice. In: Formal Aspects of Comput-
ing, 28(1), pp. 109-143 (2016).

• [HHHT16] Hahn, E.M., Hashemi, V., Hermanns, H. and Turrini, A., Exploiting Robust
Optimization for Interval Probabilistic Bisimulation. In: Quantitative Evaluation of Sys-
tems (QEST) 2016. Lecture Notes in Computer Science, vol 9826, pp. 55-71. Springer
International Publishing.

• [HHS+16b] Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A. and Wo-
jciechowski, P., Compositional bisimulation minimization for interval Markov decision pro-
cesses. In: Language and Automata Theory and Applications (LATA) 2016. Lecture
Notes in Computer Science, vol 9618, pp. 114-126. Springer International Publishing.

18 Chapter 1 : Introduction

• [HHS16a] Hashemi, V., Hermanns, H. and Song, L., Reward-bounded reachability prob-
ability for uncertain weighted MDPs. In: Verification, Model Checking, and Abstract
Interpretation (VMCAI) 2016. Lecture Notes in Computer Science, vol 9583, pp. 351-
371. Springer Berlin Heidelberg.

• [HHK14] Hashemi, V., Hatefi H., and Krčál, J., Probabilistic Bisimulations for PCTL
Model Checking of Interval MDPs. In: Synthesis of Continuous Parameters (SynCoP)
2014. EPTCS, vol 145, pp. 19-33. Electronic Proceedings in Theoretical Computer
Science.

• [HHT13] Hashemi, V., Hermanns, H., and Turrini, A., On the Efficiency of Deciding
Probabilistic Automata Weak Bisimulation. In: ECEASST, vol 66 (2013).

Further publications not included in this dissertation are

• [SBHH17] Scheftelowitsch, D., Buchholz, P., Hashemi, V., and Hermanns, H., Multi-
objective approaches to Markov decision processes with uncertain transition parameters. In:
Performance Evaluation Methodologies and Tools (ValueTools) 2017. To appear.

• [Has17] Hashemi, V., Reformulation of the linear program for completely ergodic MDPs
with average cost criteria. In: Optimization Letters, 11(7): pages 1477-1487 (2017).

• [Has16] Hashemi, V., Towards a combinatorial approach for undiscounted MDPs: student
research abstract. In: ACM Symposium on Applied Computing (SAC) 2016. ACM,
pp. 1708-1709. ACM.

• [GHT14] Gebler, D., Hashemi, V. and Turrini, A., Computing behavioral relations for
probabilistic concurrent systems. In: Stochastic Model Checking. Rigorous Depend-
ability Analysis Using Model Checking Techniques for Stochastic Systems (ROCKS)
2014. Lecture Notes in Computer Science, vol 8453, pp. 117-155. Springer Berlin
Heidelberg.

The compositional reasoning results in Chapter 6 are new and not published yet.

Part I

Background

CHAPTER2
Mathematical Background

This chapter establishes some of the mathematical notations and concepts that will be used
throughout the dissertation. In particular, in Section 2.1 we start with essential mathemat-
ical concepts together with the notational conventions we adhere to in the remainder of
this dissertation. Afterwards, we provide an abstract introduction to the essential con-
cepts from measure and probability theory in Section 2.2. A compilation of important
definitions and theorems of the theory of convex polyhedra as well as the systems of lin-
ear inequalities is provided in Sections 2.3 and 2.4, respectively. Finally, a brief description
of the theory of NP-completeness which provides a tool to reason about the worst case
time complexity of decision algorithms is discussed in Section 2.5.

2.1 Mathematical Preliminaries

Let us start with a recap of basic mathematical notations and notions that we will make
use of in the rest of this thesis.

Sets and Numbers We denote the empty set by ;. For a given set X , we denote its
power set by 2X which is the set of all of subsets of X including ; and X itself. Given two
sets X and Y , we denote by X] Y the disjoint union of X and Y . We denote by Z the set
of all integers and by N0 the set of non-negative integers. The set {1,2, . . . } of the natural
numbers is denoted by N. Similarly, we refer to the set of rational numbers, real numbers
and non-negative real numbers as Q, R, and R≥0, respectively. The closed interval [a, b]
is defined as the set { x ∈ R | a ≤ x ≤ b }. We denote by I the set of closed sub-intervals
of [0, 1], i.e., I = { [a, b] | a ≤ b; a, b ∈ [0,1] }. For a given [a, b] ∈ I, we denote by inf[a, b]
the lower bound a and by sup[a, b] the upper bound b. For any natural number n ∈ N, we
denote by Rn the set of all n-dimensional vectors of real numbers. We also denote by 1Y
the indicator function of a given set Y , i.e, 1Y (y) = 1 if y ∈ Y and 1Y (y) = 0 for y ∈ X \ Y ,
where Y ⊆ X is an implicitly known set.

Vectors and Norms For a vector x ∈ Rn we denote by x i , its i-th component, and we call
x a weight vector if x i ≥ 0 for all i and

∑n
i=1 x i = 1. Given n ∈ N, we denote by 1 ∈ Rn the

21

22 Chapter 2 : Mathematical Background

unit vector and by ei ∈ Rn the vector with a 1 in the i-th coordinate and 0’s elsewhere. We
denote by the superscript T the transpose of vectors or matrices. In the rest of this thesis,
the comparison between vectors is element-wise and all vectors are column ones unless
otherwise stated.

The Euclidean inner product x · y of two vectors x,y ∈ Rn is defined as
∑n

i=1 x i · yi . For
a set of vectors S = {s1, . . . , st} ⊆ Rn, we say that s is a convex combination of elements of S,
if s =

∑t
i=1 wi · si for some weight vector w ∈ Rt . We define the distance between vectors

x and y in a Euclidean space Rn as d(x,y) :=
p

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.
Intuitively, the distance between two vectors indicates the length of the line segment
connecting them.

Functions and Relations Let X be a finite set and f : X → R be a real-valued function.
For X ′ ⊆ X , we denote by f (X ′) the value f (X ′) =

∑

x∈X ′ f (x). For a function f : X → R≥0,
we denote by Supp(f) the support set Supp(f) = { x ∈ X | f (x) > 0 }. Given a relation
R ⊆ X × Y and x ∈ X , we denote by R(x) the set of elements of Y related to x , i.e., R(x) =
{ y ∈ Y | x R y } and we call R(x) the relation set of x .

Given an equivalence relation R on X , we denote by X/R the set of equivalence
classes induced by R and, for x ∈ X , by [x]R the class C ∈ X/R such that x ∈ C.
In other words, X/R = { [x]R | x ∈ X } and [x]R = { y ∈ X | y R x }. Given
a set X , we denote by IX the identity equivalence relation IX = { (x , x) | x ∈ X }.
We may drop the subscript X from IX when the set X is clear from the context.
Given two relations R ⊆ X × Y and S ⊆ U × V , we denote by R × S the relation
R × S = { ((x , u), (y, v)) ∈ (X × Y) × (U × V) | (x , y) ∈ R, (u, v) ∈ S }. If X is an equiv-
alence relation on X and Y an equivalence relation on Y , then X × Y is an equivalence
relation on X × Y .

Convex Sets and Functions A set is called convex if it contains any point on the line
segment between any two points in the set. Formally,

Definition 2.1 (Convex set [BV04]). A set S ⊆ Rn is convex if for all s1, s2 ∈ S, and all
α ∈ [0, 1], it holds that αs1 + (1−α)s2 ∈ S.

Example 2.1. A half-space is defined as the set H = {x ∈ Rn : aT x ≤ b} where a ∈ Rn and b ∈ R.
The boundary of a half-space is called a hyperplane. According to the Definition 2.1, half-spaces
and hyperplanes are convex sets. �

A real-valued function is convex if and only if any line segment which connects two
points on the graph of the function lies above or on the graph. Formally,

Definition 2.2 (Convex function [BV04]). A real-valued function f : Rn→ R is convex if its
domain D is a convex set, and for all x1,x2 ∈ D and α ∈ [0, 1], it holds that f (αx1+(1−α)x2)≤
α f (x1) + (1−α) f (x2).

For a given set S ⊆ Rn, we denote by CH(S) the convex hull of S which is the set of all
convex combinations of its points. Formally,

2.1. Mathematical Preliminaries 23

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

x

f(
x)
=

x2
(b)

1 1.5 2 2.5 3

0.84

0.86

0.88

0.9

0.92

0.94

(c)

Figure 2.1: (a) Example of convex set. (b) Example of convex function. (c) Example of a
convex hull.

Definition 2.3 (Convex hull [BV04]). Given a set S = {s1, s2, . . . , sk} ⊆ Rn, its convex hull is
defined as:

CH(S) =

¨ |S|
∑

i=1

αisi

�

�

�

�

�

(∀i : αi ≥ 0)∧
|S|
∑

i=1

αi = 1

«

.

Example 2.2. In Figure 2.1, a graphical representation of a convex set, a convex function and a
convex hull is depicted. �

One of the special properties of the convex sets which, as we will see later, plays an
important role in our analysis is the notion of extreme points defined as follows:

Definition 2.4 (Extreme points [BJS11]). A point s in a convex set S ⊆ Rn is called an
extreme point of S if s cannot be represented as a strict convex combination of two distinct
points in S. In other words, if s= αs1+(1−α)s2 with α ∈ (0, 1) and s1, s2 ∈ S, then s= s1 = s2.

We denote by Ext(S) the set of extreme points of S.

In the sequel we recall some other concepts associated to convex sets. For a given
convex set S, we say that a point s ∈ S is on the boundary of S denoted by s ∈ ∂S if, for
every ε > 0 there is a point y /∈ S such that the Euclidean distance between s and y is at
most ε. Furthermore, we denote by S↓ the downward closure of the convex hull of S which
is defined as S↓ = {y ∈ Rn | y≤ z for some convex combination z of S }. We call a set S
downward closed if and only if S↓= S.

As regards the downward-closed sets, we have the following geometric property:

Theorem 2.1 ([BV04, FKP12]). Given a downward closed set S ⊆ Rn, for any z ∈ Rn such
that z /∈ S, there is a weight vector w ∈ Rn such that w · z > w · s for all s ∈ S. Moreover, for
any t ∈ Rn such that t ∈ ∂S, there is a weight vector w ∈ Rn such that w · t≥w · s for all s ∈ S.
We say that w separates t from S↓.

It is worthwhile to note that the above theorem is basically a direct result from the
separation theorems for the convex sets discussed in [BV04].

24 Chapter 2 : Mathematical Background

Given a set Y ⊆ Rk, we call a vector y ∈ Y Pareto optimal in Y if there does not exist a
vector z ∈ Y such that y≤ z and y 6= z. We define the Pareto set or Pareto curve of Y to be the
set of all Pareto optimal vectors in Y , i.e., Pareto set Y = {y ∈ Y | y is Pareto optimal }.

Satisfiability Given a set V of variables taking values in {true, false}, a literal l is either
a variable v or the negation of a variable ¬v, where v ∈ V . A clause Cl is a disjunction of
literals. A formula ϕ is written in conjunctive normal form with three variables per clause
(3-CNF) if ϕ =

∧n
i=1 Cli where each clause Cli is a disjunction of three literals. A formula

ϕ is satisfiable if there exists a logical value assignment for the variables that makes the
formula true. Given a formula ϕ, we denote by Var(ϕ) the set of variables occurring in ϕ,
by Lit(ϕ) the set of literals occurring in ϕ, by Cl(ϕ) the set of clauses of ϕ, and, given a
literal l, we denote by Cl(ϕ, l) the set of clauses of ϕ where l occurs.

2.2 Measure and Probability

Modelling uncertainty in many complex real world systems is of great importance. Prob-
ability theory is an extremely useful tool to provide an understating for such uncertainty
and to manage it. In this section, we present some of the essential notions from measure-
theoretic probability that will be used later in the quantitative evaluation of probabilistic
systems. For a more complete exposition the reader could consult with the standard texts
on probability and measure theory such as [ADD00].

We start with the definition of σ-field:

Definition 2.5 (σ-field). Let X be some set. A σ-field over X is a set F ⊆ 2X if it satisfies the
following properties:

(a) X ∈ F ,

(b) A∈ F =⇒ Ac ∈ F ,

(c) A1, A2, A3, . . . ∈ F =⇒∪∞i=1Ai ∈ F .

A measurable space is a pair (X ,F) where X is a set, also called the sample space, and F
is a σ-field over X . A measurable space (X ,F) is called discrete if F = 2X .

Example 2.3. Let X be a set. According to Definition 2.5, the smallest σ-field of subsets of X is
the set F = {;, X } and the largest σ-field is the set F = 2X . �

The definition of σ-field provides a persuasive link between measure and probability
theory. As a matter of fact, in probability theory the set X is called the sample space which
indicates the set of all possible outcomes or results of a random experiment. Hence, prob-
ability theory is concerned with measuring the probability of events where an even is a
subset of X which belongs to X ’s associated σ-field. Therefore, measurement of an event A
in F provides the probability of occurrence of the event A.

Definition 2.6 (Measure, probability and sub-probability measure). A measure over
a measurable space (X ,F) is a function ρ : F → R≥0 such that, for each countable collection
{X i}i∈I of pairwise disjoint elements of F , ρ(∪i∈I X i) =

∑

i∈I ρ(X i).

2.2. Measure and Probability 25

A probability measure over a measurable space (X ,F) is a measure ρ over (X ,F) such that
ρ(X) = 1. A sub-probability measure over (X ,F) is a measure over (X ,F) such that ρ(X)≤
1.

A measure over a discrete measurable space (X , 2X) is called a discrete measure over X .
The support of a measure ρ over (X ,F), denoted by Supp(ρ), is the set { x ∈ X | ρ(x) > 0 }.
To simplify the notation, we may write ρ(x) instead of ρ({x}), for x ∈ X . We often write
{x : ρ(x) | x ∈ Supp(ρ)} alternatively for a distribution ρ. For instance, {x1 : 0.4, x2 : 0.6}
denotes a distribution ρ such that ρ(x1) = 0.4 and ρ(x2) = 0.6.

We continue by introducing some terminology. Given a set X , we denote by Disc(X)
the set of discrete probability measures over X , and by SubDisc(X) the set of discrete sub-
probability measures over X . For a given discrete sub-probability measure ρ of SubDisc(X),
we denote by ρ(⊥) the value 1− ρ(X). For a discrete sub-probability measure ρ, we also
write ρ = { (x , px) | x ∈ X } where px is the measure ρ(x) of x . We call a discrete (sub-
)probability measure ρ ∈ SubDisc(X) a uniform measure on a set ; 6= Y ⊆ X , denoted by υY ,
if υY (y) =

1
|Y | for each y ∈ Y .

We call a discrete (sub-)probability measure a Dirac measure if it assigns measure 1
to exactly one object x ∈ X (denote this measure by δx), that is, δx(y) = 1 if y = x , 0
otherwise. For a Dirac measure ρ, Supp(ρ) = {x} with x ∈ X . We also call Dirac a discrete
sub-probability measure that assigns measure 0 to all objects, and we denote it by δ⊥.
Given ρ ∈ SubDisc(X), we denote by ρ\z the z-conditional sub-probability measure such
that ρ\z(x) = 0 if x = z and ρ\z(x) = ρ(x)

ρ(X\{z}) otherwise, provided that ρ(X \{z}) 6= 0. Given
ρx ∈ SubDisc(X) and ρy ∈ SubDisc(Y), we denote by ρx × ρy the sub-probability measure
over X × Y defined by ρx ×ρy(u, v) = ρx(u) ·ρy(v) for each (u, v) ∈ X × Y . Given a finite set
I of indexes, a family {pi ∈ R>0}i∈I such that

∑

i∈I pi = 1, and a family {ρi ∈ SubDisc(X)}i∈I ,
we say that ρ is the convex combination of {ρi}i∈I according to {pi}i∈I , denoted by

∑

i∈I pi ·ρi ,
if, for each x ∈ X , ρ(x) =

∑

i∈I pi ·ρi(x).
With these definitions, we are ready to lift relations between sets to relations between

distributions. The lifted relations which play a crucial role in computing behavioral rela-
tions for probabilistic systems are formally defined as follows:

Definition 2.7 (Lifted relations [JL91]). The lifting of a relation R ⊆ X × Y to a relation
L(R) ⊆ Disc(X)×Disc(Y) is defined as follows: for ρX ∈ Disc(X) and ρY ∈ Disc(Y), ρX L(R)
ρY holds if there exists a weighting function ω: X × Y → [0,1] such that

• ω(x , y)> 0 implies x R y ,

•
∑

y∈Y ω(x , y) = ρX (x), and

•
∑

x∈X ω(x , y) = ρY (y).

When R is an equivalence relation on a set X , ρ1 L(R) ρ2 holds if, for each C ∈ X/R, ρ1(C) =
ρ2(C).

When particularly R = I , ρ1 L(I) ρ2 holds if and only if ρ1 = ρ2. This property can
be generalized to: if R ∩ Supp(ρ1) × Supp(ρ2) ⊆ I , then ρ1 L(R) ρ2 holds if and only
if ρ1 = ρ2. By abuse of notation, we extend L(R) to distributions over X/R, i.e., for
ρ1,ρ2 ∈ Disc(X/R), we write ρ1 L(R) ρ2 if for each C ∈ X/R, it holds that ρ1(C) = ρ2(C).

26 Chapter 2 : Mathematical Background

0

1

2

0
0.5

1
1.5

2

0

2

x
y

Figure 2.2: An example of a polytope.

2.3 Convex Polyhedra

Convex polyhedral are useful data structures to describe the feasible region of states tran-
sition probability in probabilistic systems in which the probability distributions are not
known completely. They also form the cornerstone of various systems analysis such
as [Fre05, Hag14, HHK14]. In this section, we present some important definitions and
results from the theory of convex polyhedral. We refer the reader to [Zie95] for a more
complete treatment of this topic.

A polyhedron is specified by the solution set of a finite number of linear inequali-
ties with real coefficients. A bounded polyhedron is called polytope. There are basically
two different representations of convex polyhedral introduced in the literature: the H-
representation, where the polyhedron is presented as intersection of finitely many half-
spaces and the V-representation, where it is presented as convex hull of finitely many points.
Formally,

Definition 2.8 (H- and V-polytopes). An H-polyhedron in Euclidean space Rn is any subset
P = ∩n

i=1Hi ofRn defined as the intersection of a finite number of closed half-spaces Hi ; a bounded
polyhedron is called an H-polytope. A V-polytope is the convex hull P = CH(S) of a finite set of
points S ⊆ Rn.

It is not difficult to see that all V-polytopes are bounded. The main theorem of polytope
theory formalizes the equivalence of H-polytopes and V-polytopes. More precisely,

Theorem 2.2 (Equivalence of H-polytopes and V-polytopes [Zie95, GOR00]). Every
H-polytope can be obtained as the convex hull of its finitely many extreme points; thus every
H-polytope is a V-polytope. Conversely, every V-polytope has a description by a finite system
of inequalities; thus every V-polytope is an H-polytope.

Example 2.4. An example of an H-polytope P is depicted in Figure 2.2. It can be al-
ternatively seen as a V-polytope which is the convex hull of its extreme points, i.e., P =
CH({(0,2, 0), (2, 2,0), (0,1, 3), (2,0, 0), (1, 1,2)}). �

Remark 2.1. It is worthwhile to note that the translations between the H-representation and V-
representation of polytopes in an n-dimensional Euclidean space can be exponential in the space
dimension n.

2.4. Systems of Linear Inequalities 27

One of the polyhedral operations which forms a basis in probabilistic systems analysis
is the projection problem. In principal, the projection problem can have different variants
depending on the representation of the input polytope and the favorable representation
of the projected polytope [Tiw08]. In our setting, if P is a polytope in Rn then for each
i ∈ {1, . . . , n}, we define the projection projei

P of P as the interval [mini P,maxi P] where
mini P = min{ x i | (x1, . . . , x i , . . . , xn) ∈ P } and maxi P = max{ x i | (x1, . . . , x i , . . . , xn) ∈ P }.
We also define

∆n = { (x1, . . . , xn) ∈ Rn
≥0 |

n
∑

i=1

x i = 1 }

as the standard simplex in Rn
≥0.

2.4 Systems of Linear Inequalities

As we have discussed in Section 2.3, a convex polyhedron captures the set of feasible so-
lutions to a system of linear inequalities. Apart from convexity, many properties of poly-
hedra and, as we will see in the next chapter linear programming, rely on characterizing
if a system of linear inequalities has a solution. In this section we discuss the well-known
Fourier-Motzkin (FM) elimination method to solve such systems and afterwards present the
Farkas’s lemma.

The FM elimination method consists of successive elimination of variables from a
system of linear inequalities. More precisely, the main idea of the FM elimination is
to partition all inequalities relevant to y into two sets: {

∑

1≤ j≤n ei j x j ≤ y}1≤i≤m1
and

{
∑

1≤ j≤n ei j x j ≥ y}m1<i≤m, where ei j (1 ≤ i ≤ m, 1 ≤ j ≤ n) are coefficients and y is the
variable to be eliminated. The resulting set of inequalities will contain those in form of
∑

1≤ j≤n ei j x j ≤
∑

1≤ j≤n ei′ j x j for each 1≤ i ≤ m1 and m1 < i′ ≤ m, which defines a projection
of the original H-polytope on variables {x j}1≤ j≤n ∪ {y} to an H-polytope on {x j}1≤ j≤n.

For a given system of linear inequalities, this successive elimination procedure yields
a system of linear inequalities over constants whose satisfiability can be instantly verified.
If the system is satisfiable then a solution to the original linear system can be found from
the successively generated systems of linear inequalities using a backward substitution.
The FM method can also be applied in order to find the projection of a polyhedron into a
subspace.

As regards time complexity, the FM elimination causes an exponential blow-up and
results in 4(m

4)
2d

inequalities in the worst case, where m is the number of inequalities in the
original representation and d the number of variables having been eliminated [Sch98].

The FM elimination method provides an arithmetic proof for a well-known theoretical
result, i.e., Farkas’s lemma. Farkas’s lemma (aka Farkas’ alternative theorem) provides
necessary and sufficient conditions for linear systems of inequalities to have a solution.
Formally,

Lemma 2.1. (Farkas’s Lemma [Sch98]) Let A be a real m× n matrix and b an m-dimensional
real vector. Then, exactly one of the following two statements is true:

• There exists an x ∈ Rn such that Ax= b and x≥ 0.

• There exists a y ∈ Rm such that yT A≥ 0 and yT b< 0.

28 Chapter 2 : Mathematical Background

There are several slightly different (but equivalent) variants of Farkas’s lemma in the
literature. For more details, we refer the reader to [Sch98, BJS11].

2.5 The NP-Completeness Theory

When we come across a computational problem, care should be taken with respect to the
amount of resources such as time, space and communication required to solve the problem.
The theory of computation is concerned with the classification of computational problems
according to the amount of resources their solutions need. Additionally, it also tries to
understand the relation between those classes in a more general sense. This section reviews
briefly the main concepts of complexity theory we need throughout this thesis. We refer the
reader to textbooks on complexity theory such as [AB09, Tre02] for a complete treatment
of the topic.

From computational complexity viewpoint, the computational problems are distin-
guished in two different categories, the tractable problems that can be solved in polynomial
time, and the intractable problems for which there is no efficient algorithm to solve them.

A computational problem that has a yes or no answer is called a decision problem. We
shall denote by P the class of all decision problems which can be solved in polynomial time.
We shall also denote by NP the class of all decision problems for which a candidate solution
can be verified in polynomial time. The class NP stands for non-deterministic polynomial
time as every decision problem in this class can be solved in polynomial time on a non-
deterministic Turing machine. Obviously, P ⊆ NP. However, it remains an open problem
to determine if P=NP. A decision problem A is polynomially reducible to a decision problem
B if problem A can be solved in polynomial time given a polynomial time algorithm for
problem B [Pap03]. A problem is NP-hard if all the problems in NP are polynomially
reducible to it. Furthermore, a problem is NP-complete if it is an NP-hard problem and
also belongs to the class NP. Therefore, NP-complete problems are indeed the hardest
problems in the class NP.

Example 2.5. A Boolean formula is in 3SAT if it in 3CNF form and is also satisfiable. 3SAT is
NP-complete [GJ90]. �

The complements of the problems which belong to the class NP are classified as the
class coNP. In other words, the class coNP is the class of all decision problems whose
no answers can be verified in polynomial time. Similarly to the NP-complete, a decision
problem is coNP-complete if it is in coNP and if every problem in coNP is polynomial-time
reducible to it. In fact, coNP-complete problems are the hardest problems in coNP.

Example 2.6. A Boolean formula is in tautology if it is satisfied by every assignment. Tautology
is coNP-complete [GJ90]. �

The theory of NP-completeness is of great importance in theoretical computer science.
In particular, if a computational problem falls into this class, then it does likely not admit an
efficient (or polynomial time) algorithm. Therefore, a solution approach should primarily
search for efficient approximations or heuristics algorithms [Vaz04].

The complexity class moved beyond NP-complete is the class EXPTIME which is de-
fined as the set of decision problems that can be decided in exponential time O(2p(n))where

2.5. The NP-Completeness Theory 29

P NP

NP-c
co

NP

PSPACE

EXPTIME

Figure 2.3: Comparison of the complexity classes.

p(n) is a polynomial function of n. We also define EXPTIME-complete using the similar
idea as the class of all problems that are in EXPTIME and all other problems in EXPTIME
can be reduced to them in polynomial time. It is shown that problems in the class of
EXPTIME-complete cannot be solved in polynomial time, using the time hierarchy theo-
rem [HS65].

Example 2.7. Computing a perfect strategy for an n× n chess game is EXPTIME-complete [FL81].
�

So far, we have argued the complexity of solving the decision problems based on the
resource time. An alternative approach is to discuss the complexity of solving the problems
within a given amount of space or memory. In particular, the class of PSPACE contains
the set of all problems that can be solved in polynomial space. Accordingly, a problem
is PSPACE-complete if it is in PSPACE and if every other problem in PSPACE can be
transformed to it in polynomial time.

Example 2.8. An instance of Quantified Boolean formula (QBF) is given as ∃x1∀x2∃x3 . . .Qxnϕ
where Q is ∀ if n is even and ∃ if n is odd and ϕ is a Boolean expression. The satisfiability problem
for QBF is PSPACE-complete [SM73]. �

We provide a representation of the relation between complexity classes discussed in
this section in Figure 2.3.

CHAPTER3
Basics of Mathematical Optimization

The focus of this dissertation is on the analysis of discrete-time probabilistic systems where
the time is discrete, i.e., the system execution is modelled as a sequence of discrete time
steps. We consider systems where the transition probabilities are either fixed or not known
with precision but reside in a so-called uncertainty set. In the later chapters, we reason
about efficiency of deciding if two probabilistic systems are similar or equivalent or we
analyze quantitative properties of systems such as the maximum probability of reaching a
target set within a certain time bound.

In this context, there is a need for efficient and scalable algorithms to decide quantita-
tive properties of interest. Examples include the efficiency of deciding if two probabilistic
systems have the same behaviour or of verifying whether the system satisfies a set of prop-
erties. These decision problems are even harder to analyze when the system is uncertain.
In such cases, the analysis shall be robust against all possible adversarial resolutions of the
uncertainty in the state-transition probabilities.

However, we pay for this greater efficiency by more complex analytic tools: in our
setting, we resort to modern mathematical optimization techniques to model and solve
complex optimization problems arising in modelling and analyzing of probabilistic sys-
tems. Therefore, this chapter provides an overview of the optimization techniques which
are used throughout the dissertation.

In Section 3.1, we provide an overview on the theory of linear programming including
formulation, duality theory and a brief survey of the algorithms. Most of the results in
this section are taken from the textbooks “Introduction to Linear Optimization” [BT97]
and “Linear and Nonlinear Programming” [LY84]. A brief introduction on network flows
is provided in Section 3.2. In particular, we discuss maximum flow problem as one of
the fundamental problems in combinatorial optimization which will be significantly used
later in our analysis. The results in this section are based on the textbook “Network Flows:
Theory, Algorithms, and Applications” [AMO93]. Finally, Section 3.3 explains basics of
robust optimization. In this section, we focus on uncertain linear programs and shortly
describe their corresponding robust counterparts. The materials in this section are based
on the textbook “Robust Optimization” [BTEGN09] and also [BTN99, BTGGN04].

31

32 Chapter 3 : Basics of Mathematical Optimization

3.1 Linear Programming

Linear programming (LP) is a powerful and robust algorithmic tool which deals with find-
ing the best possible solution in a mathematical model representing a linear relationship
among resource requirements. Many real-world problems which aim to find the best so-
lution in assigning limited resources such as energy, space and time to achieve maximum
profit or minimum cost can be formulated in this framework.

Formally, an LP problem refers to the problem of optimizing a linear objective function
of several variables subject to a given set of alternatives specified by linear equality or
inequality constraints. Every LP problem can be formulated in the following canonical
form:

max cT x
subject to: Ax≤ b

x≥ 0

In the above formulation, a linear objective function (or cost function) cT x for c ∈ Rn is
maximized subject to linear inequalities Ax ≤ b for A ∈ Rm×n, b ∈ Rm. We often call the
inequality x ≥ 0 as sign constraint. The inequality Ax ≤ b is componentwise; if ai is the
i-th row of A and bi is the i-th element of the vector b, then the inequality is satisfied if
aix ≤ bi for i ∈ {1, . . . , n}. A constraint of the form aix ≤ bi , aix = bi or aix ≥ bi in an LP
is said to be tight (or active) for a certain point y, if aiy = bi . Any decision vector x for
which the inequality Ax ≤ b holds true is called feasible (or a feasible solution). The set
P = {x ∈ Rn

≥0 : Ax ≤ b} of all points satisfying the set of constraints is called the feasible
region or feasible set. An LP problem is said to be feasible if the feasible set is not empty;
otherwise it is said to be infeasible. For any feasible solution x, cT x is the value of x. An
optimal solution x∗ of the LP is a feasible solution x which attains the maximum value (if
it exists) among all feasible solutions and the optimal value of the linear program is cT x∗

for optimal x∗. On the other hand, an LP is unbounded above (or its optimal value is +∞)
if for every real number K we can find a feasible solution x whose value is greater than K .
We sometimes will abuse terminology and say that the problem is unbounded. We finally
note that an LP is said to be in standard form if the linear inequalities Ax ≤ b are of the
form Ax = b. The standard form of an LP is not restrictive and basically every general LP
problem can be transformed into an equivalent problem in standard form.

Example 3.1. Consider the following linear program:

max −2x1 + 7x2
subject to: −3x1 + x2 ≤ 1

−4x1 + 9x2 ≤ 3
6x1 − 11x2 ≤ 1
x1, x2 ≥ 0

In a succinct reformulation, the LP is max{cT x : Ax≤ b,x≥ 0} where

x=
�

x1
x2

�

, A=

−3 1
−4 9

6 −11

 ,b=

1
3
1

 , and c=
�

−2
7

�

The unique optimal solution of this LP is x∗ = (21
5 , 11

5) which has value −2 · 21
5 + 7 · 11

5 = 7. �

3.1. Linear Programming 33

The feasible set of any LP can be described by inequality constraints of the form Ax≤ b
and x ≥ 0; therefore, it is a polyhedron. On the other hand, if the problem has at least one
optimal solution, then an optimal solution can be found among the corners of the feasible
set.

Definition 3.1 (Basic feasible solutions). Consider a polyhedron P defined by linear equal-
ity and inequality constraints, and let x be an element of Rn.

(a) The vector x is a basic solution if:

i. All the equality constraints defining P are active at x;
ii. Of all the constraints that are active at that vector, at least n of them must be linearly

independent.

(b) If x is a basic solution that satisfies all of the constraints, we say that it is a basic feasible
solution.

In the sequel, we provide an algebraic definition of a corner point as a basic feasible
solution. Formally,

Theorem 3.1. Let P be a nonempty polyhedron and let x ∈ P Then, the following are equiva-
lent:

(a) x is a vertex;

(b) x is an extreme point;

(c) x is a basic feasible solution.

As a result of Theorem 3.1, for an LP the vertices (i.e., extreme points) of its feasible
region are precisely its basic feasible solutions. The observations so far provides us a way
to characterize the optimal solution of an LP. Formally,

Theorem 3.2. Consider the linear programming problem of maximizing cT x over a polyhedron
P = {x ∈ Rn | Ax ≤ b }. Suppose that P has at least one extreme point. Then, either the optimal
value is equal to +∞, or there exists an extreme point which is optimal.

3.1.1 Duality Theory
The concept of duality plays an important rule in the theory of LP. Duality acts as a unify-
ing theory which associates to every LP problem another LP problem that can be derived
from it. The original LP problem is called primal while the derived LP is called dual. The
dual form of a primal LP is informally constructed by swapping the role of variables and
constraints between primal and dual problem: for each constraint in the primal LP prob-
lem (other than the sign constraints) , we introduce a variable in the dual problem; for each
variable in the primal, we introduce a constraint in the dual.

A one-to-one correspondence between the constraint type and the variable type for
both the primal and the dual problems is summarized in Table 3.1.

34 Chapter 3 : Basics of Mathematical Optimization

PRIMAL Minimize Maximize DUAL

Constraints
≥ bi ≥ 0
≤ bi ≤ 0 Variables
= bi free

Variables
≥ 0 ≤ c j
≤ 0 ≥ c j Constraints
free = c j

Table 3.1: Relation between primal and dual variables and constraints.

Example 3.2. Consider the following primal LP:

max cT x
subject to: Ax≤ b

x≥ 0

After applying the rules in Table 3.1, the dual LP is derived as:

min bT y
subject to: AT y≥ c

y≥ 0

where A∈ Rm×n and y ∈ Rm. �

From the definition of dual, it immediately follows that the dual of the dual is the
primal itself. Additionally, there are two fundamental principals in the duality theory
which provide an intuition behind the relation between primal and dual problems. The
first principle provides a relation between the optimal solution of primal and dual LPs
and is known as weak duality theorem. Formally,

Theorem 3.3 (Weak duality theorem). Given a pair of primal and dual LPs,

max cT x
(P) subject to: Ax≤ b

x≥ 0

min bT y
(D) subject to: AT y≥ c

y≥ 0

If x is a feasible solution for P and y is a feasible solution for D, then cT x≤ bT y.

An immediate implication of the weak duality theorem is the following.

Corollary 3.1.
(i) (Certificate of Optimality) If x and y are feasible solutions of the primal and dual and

cT x= bT y, then x and y must be optimal solutions to the primal and dual.

(ii) (Infiniteness and Feasibility in Duality) If the optimal value in the primal is +∞, then
the dual must be infeasible. If the optimal value in the dual is −∞, then the primal must
be infeasible.

3.1. Linear Programming 35

The next theorem provides a stronger result than the weak duality and is basically the
central result on LP duality.

Theorem 3.4 (Strong duality theorem). If the primal problem has an optimal solution, so
does the dual, and the respective optimal values are equal.

The weak duality and strong duality theorems can be also characterized by a notion of
duality gap. Formally,

Definition 3.2 (Duality gap). Given a pair of primal and dual LPs,

max cT x
(P) subject to: Ax≤ b

x≥ 0

min bT y
(D) subject to: AT y≥ c

y≥ 0

if p∗ is the primal optimal value and d∗ is the dual optimal value, then the duality gap is equal
to d∗ − p∗.

It is immediate to see that as a result of the weak duality theorem, the duality gap is
always nonnegative. Furthermore, strong duality holds if and only if the duality gap is
equal to zero.

For a given pair of primal and dual LPs, it is useful to know optimality conditions that
must be satisfied by optimal solutions of primal and dual problems. These conditions
which are known as complementary slackness conditions provide a way to compute the dual
optimal solution from the primal optimal solution. Formally,

Theorem 3.5 (Complementary slackness conditions). Let x be a feasible solution to the
primal (P) and y be a feasible solution to the dual (D) where

max cT x
(P) subject to: Ax≤ b

x≥ 0

min bT y
(D) subject to: AT y≥ c

y≥ 0.

Then x,y are optimal solutions for their respective problems if and only if:
• (bi −

∑n
j=1 ai j x j)yi = 0 for i = 1, . . . , m

• (
∑m

i=1 a ji yi − c j)x j = 0 for j = 1, . . . , n

Example 3.3. Consider the following primal LP:

max 2x1 + 5x2
(P) subject to: x1 + 4x2 ≤ 3

4x1 + 7x2 ≤ 11
x1, x2 ≥ 0

The optimal solution of this LP is x∗ = (23
9 , 1

9) which implies the optimal value v(P) = 17
3 . The

36 Chapter 3 : Basics of Mathematical Optimization

dual problem associated with the primal is:

min 3y1 + 11y2
(D) subject to: y1 + 4y2 ≥ 2

4y1 + 7y2 ≥ 5
y1, y2 ≥ 0

The complementary slackness conditions are derived as follows:

y1(3− x1 − 4x2) = 0
y2(11− 4x1 − 7x2) = 0
x1(y1 + 4y2 − 2) = 0

x2(4y1 + 7y2 − 5) = 0.

From the optimal solution of the primal we know that x1 =
23
9 and x2 =

1
9 . If we replace these values

of x1 and x2 in the third and fourth equations of the above linear system, we end up with a linear
system whose solution is the dual optimal solution y∗ = (2

3 , 1
3) with objective value v(D) = 17

3 . As
expected, the primal and dual optimal values are the same and therefore, strong duality theorem is
satisfied. �

3.1.2 Solution Methods for LPs
Several approaches have been developed to solve LP problems. In this section, we very

briefly overview some of these methods. We refer the reader to [LY84] and references
therein for a detailed treatment.

Fourier-Motzkin elimination, also known as FME method is one of the earliest approaches
to solve a linear program. The method is based essentially on the basis of dimensionality
reduction: in each iteration the dimension of an LP reduces by one without changing fea-
sibility. In fact, the FME method solves an LP by transforming it to successive feasibility
checking. The worst case computational complexity of the method is exponential and it
gave way to the simplex method.

The simplex method provides an algorithmic procedure to solve LPs by testing adjacent
vertices of the feasible set. More precisely, it finds a vertex of the feasible set (polyhedron)
of an LP and successively moves to a new neighboring vertex which possibly improves
the objective function. Although the simplex method is very efficient in practice, its worst
case computational complexity is exponential [KM72].

The first worst-case polynomial time algorithm for solving LPs is the Khachiyan’s el-
lipsoid method [Kha79] and it can also be applied to solve convex optimization problems,
a special class of optimization problems which study the problem of minimizing convex
functions over convex sets. Even though the ellipsoid method has a polynomial time com-
plexity, its performance is poor in practice and it suffers from numerical instability and
slow convergence.

Later on, Karmarkar’s interior-point method [Kar84] was introduced with a polyno-
mial time worst case complexity and behaves faster in practice than the ellipsoid method.
The algorithm starts with finding a point inside the feasible set and then moves through
the interior of the feasible set while improving the approximations of the optimal solu-
tion. Karmarkar’s interior-point algorithm was proved also to be faster than Khachiyan’s
ellipsoid method in the worst case.

3.2. Network Flows 37

s

b

d

c t

6
3

5

9
1

5

6
9

Figure 3.1: A flow network with source node s and sink node t. The numbers next to the
edges are the capacities.

3.2 Network Flows

The efficiency of algorithms to solve linear programming problems depends significantly
on the inherent special structures of the problems such as sparsity. Sometimes linear pro-
gramming problems modelling real world applications have a combinatorial structure
meaning that they are formulated over networks or mastoids [Law76]. In such cases the
underlying combinatorial structures can be exploited in order to speed up the overall effi-
ciency of decision algorithms.

Combinatorial optimization deals with optimizing an objective function over a finite
set of alternatives which are in turn described through mathematical structures. Network
flows is a subclass of combinatorial optimization with non-trivial applications to network
reliability, distributed computing, airline scheduling as well as other domains. The net-
work flow problems can be treated in a purely combinatorial term, i.e., they can be solved
using decision algorithms performing operations directly on the network itself [BJS11] and
therefore, most of them admit more efficient algorithms [GTT89].

A flow network is a directed graph G = (V, E) defined by a set V of |V | nodes and a set
E of |E| arcs. Two nodes of the graph are distinguished as the source node s and the sink
node t. The source node s has no entering arcs and the sink node has no leaving arcs. The
capacity of each arc (u, v) ∈ E is a mapping c : E→ R≥0, denoted by c(u, v) or cuv .

Definition 3.3 (Flow). Given a flow network G = (V, E), a flow of the network is a mapping
f : E→ R≥0, denoted by fuv or f (u, v), satisfying the following constraints:

• Capacity constraint: for all (u, v) ∈ E, fuv ≤ cuv .

• Flow conservation: for all u ∈ V \ {s, t},
∑

v∈V fvu =
∑

v∈V fuv .
The value of the flow f is

∑

u∈V fsu which is the amount of flow leaving the source node s.

One of the classical problems in network flows is the maximum flow problem which asks
to compute the flow of maximum possible value in a flow network. As we shall see later,
this problem plays a significant role in our analysis to compute or improve the worst case
time complexity of decision algorithms for probabilistic systems.

The maximum flow problem can be formulated as an LP as follows:

Definition 3.4 (The maximum flow problem). Given a flow network G = (V, E) with arc
capacities c : E→ R≥0, source node s and sink node t, the maximum flow problem is modeled as

38 Chapter 3 : Basics of Mathematical Optimization

the following linear program:

max
∑

v:(s,v)∈E f (s, v)
subject to:

∑

u:(u,v)∈E fu,v −
∑

w:(v,w)∈E fv,w = 0 ∀v ∈ V \ {s, t}
fu,v ≤ cu,v ∀(u, v) ∈ E
fu,v ≥ 0 ∀(u, v) ∈ E

Example 3.4. Consider again the flow network depicted in Figure 3.1. After solving the LP for the
maximum flow problem, the value of the maximum flow is 11 and the optimal flow is depicted as
follows:

s

b

d

c t

6
0

5

5
1

5

0
5

�

As it is clear from the example, the value of maximum flow for the network in Fig-
ure 3.1 which consists of only integer arc capacities is an integer value. This observation is
indeed correct in general. More precisely, as a result of the flow integrality theorem [AMO93],
if the arc capacities of a flow network are integers, then there is always a maximum flow
that is integer-valued. Moreover, from a computational point of view, since the maximum
flow problem is formulated as an LP, it can be solved through any standard LP solver
such as the simplex algorithm. However, as discussed earlier, the inherent combinatorial
structure of the problem enables much faster combinatorial algorithms. Apart from the-
oretical efficiency, these combinatorial algorithms usually run many times faster than the
general-purpose LP solvers [AMO93, Chi06].

3.3 Robust Optimization

Robust optimization is a new approach in mathematical optimization that is concerned
with optimization problems in which a certain level of robustness is desirable against
uncertainty [BTEGN09, BTGGN04]. This approach has been shown to be very useful
in real-world applications that are entirely or to a certain extent affected by uncer-
tainty [BTN99, BBC11, Lof12]. Moreover, this modelling methodology is integrated with
computational tools to treat optimization problems with uncertain data that is only known
to be included in some uncertainty set. For instance, several tools such as PICOS [PIC],
ROPI [Goe14] and YALMIP [Lof04] have been developed and applied successfully in prac-
tice.

In this section, we introduce the concept of uncertain linear programming problems
and afterwards, we provide an overview of the essential background required for the rest

3.3. Robust Optimization 39

of the dissertation. We refer the reader to [BTEGN09, BBC11] for the comprehensive refer-
ences on robust optimization.

3.3.1 Uncertain Linear Programming (ULPs)
As we discussed earlier in Section 3.1, linear programming problems can be described in
the general succinct form as:

min
x∈Rn

�

cT x : Ax≤ b
	

where x ∈ Rn is the vector of decision variables, c ∈ Rn is the vector of coefficients, A∈ Rm×n is
the constant coefficient matrix and b ∈ Rm is the right hand side vector.

The data of an LP problem, i.e., the collection of tuples [c, A,b], are often not known
precisely when the LP encodes a real-world problem. This issue reveals the need for an
approach to produce LP solutions which are immune against uncertainty.

Definition 3.5 (Uncertain linear programs [BTEGN09,BTGGN04]). An Uncertain Linear
Program (ULP) is a family

�

min
x∈Rn
{cT x : Ax≤ b}

	

[c,A,b]∈Z (3.1)

of LP problems minx∈Rn{cT x : Ax≤ b} with the same structure (i.e., same number of constraints
and variables) in which the data ranges over a given nonempty compact uncertainty set Z ⊂
Rn ×Rm×n ×Rm.

To simplify the notation, we may write
�

min{cT x : Ax ≤ b}
	

Z . In contrast to an usual
single LP problem, it is not possible to associate the notions of feasibility/optimal solu-
tions and optimal objective value with a collection of optimization problems like ULPs. In
the setting of ULPs, the feasible solutions are solutions which are robust feasible. Roughly
speaking, feasible solutions are those which satisfy the set of constraints whatever the re-
alization of uncertain data is. More precisely,

Definition 3.6 (Robust feasible/value of an ULP [BTEGN09, BTN99]). A vector x ∈ Rn

is robust feasible to an ULP with uncertainty set Z if for each [c, A,b] ∈ Z , Ax ≤ b.
Given a robust feasible solution x, the robust value ẑ(x) of the objective function is ẑ(x) :=
sup[c,A,b]∈Z cT x.

After carefully defining the robust feasible/optimal solutions as well as their robust
objective value, we can describe the central concept in robust optimization setting that is
the robust counterpart (RC) of an uncertain LP problem. Formally,

Definition 3.7 (Robust counterpart of an ULP [BTN99,BTGGN04]). Given an ULP prob-
lem

�

min{cT x : Ax≤ b}
	

Z , the Robust Counterpart (RC) of ULP is the optimization problem

min
x∈Rn

�

ẑ(x) = sup
[c,A,b]∈Z

cT x : Ax≤ b ∀[c, A,b] ∈ Z
	

that seeks for the best possible value of the objective function among all possible robust feasible
solutions to the ULP. Furthermore, the optimal solution/value to the robust counterpart is called
the robust optimal solution/value to the ULP.

40 Chapter 3 : Basics of Mathematical Optimization

In the RC approach, all the variables are “here and now decisions” which means that they
must be decided before the actual realization of uncertain data is known. However, in
some cases, some part of the variables are “wait and see decisions”, i.e., they tune themselves
to the varying data. We follow the terminology in [BTGGN04] and call the variables that
may depend on the realizations of the uncertain data as adjustable and the other variables
as non-adjustable. Therefore, we can split the vector x in the LP representations (3.1) from
Definition 3.5 as x = (u,v)T where the sub-vectors u and v indicate the non-adjustable and
the adjustable variables, respectively.

3.3.2 Adjustable Robust Counterpart
Splitting the decision variable x to the adjustable and non-adjustable variables allows us
to rewrite the uncertain LP (3.1) as the following equivalent form:

�

min
u,v
{cT u : Uu+Vv≤ b}

	

[c,U ,V,b]∈Z (3.2)

The above presentation of the uncertain linear programming problems is normalized
in such a way that the objective function is independent of adjustable variables. Moreover,
the matrix V is called recourse matrix [DM61] and when it is not uncertain, we call the
uncertain LP (3.2) a fixed recourse one. We can now define the RC and the Adjustable Robust
Counterpart (ARC) as follows:

RC: min
u
{cT u : ∃v : ∀[U , V,b] ∈ Z : Uu+ Vv≤ b}; (3.3)

ARC: min
u
{cT u : ∀[U , V,b] ∈ Z : ∃v : Uu+ Vv≤ b}. (3.4)

It is not difficult to see that ARC is less conservative than RC allowing for better opti-
mal values while still having all realizations of the constraints satisfied. The distinction
between RC and ARC can be very significant (see, e.g., [BTGGN04, BTEGN09]).

3.3.3 Affinely Adjustable Robust Counterpart
The RC of an uncertain LP is a computationally tractable problem in general [BTN99].
On the contrary, this is not the case with ARC and they are in general computationally
intractable. This fact stimulates a very good reason to introduce the notion of Affinely
Adjustable Robust Counterpart (AARC) of an uncertain LP in which we make a simplification
on how the adjustable variables can tune themselves upon the uncertain data. By posing
v=w+Wξ, we consider an affine dependency between adjustable variables and uncertain
parameter. Therefore, the AARC of the uncertain LP (3.2) reads as:

min
u,w,W

�

cT u : Uu+ V (w+Wξ)≤ b,∀(ξ≡ [U , V,b] ∈ Z)
	

≡min
u

�

cT u : ∀(ξ≡ [U , V,b] ∈ Z) : ∃(w, W) : Uu+ V (w+Wξ)≤ b
	

.
(3.5)

The seemingly more simple AARC than general ARC of an ULP is promising in terms
of computational tractability where the ARC is intractable. In [BTGGN04], the authors
provide a thorough analysis of AARCs of ULPs and propose conditions under which this
class of problems admit efficient solutions.

CHAPTER4
An Overview of Probabilistic Systems

This chapter introduces the formal models that we will use throughout the thesis. These
models which are mathematical formalisms to describe the system behaviour in discrete
time, encode nondeterminism and probability as two core features of real systems. Nonde-
terminism represents a non-quantified choice among two or more alternative behaviours
and can be used to model the impact of an unknown environment on the system or in-
dicate lack of knowledge of the system designer about a specific attribute. In contrast to
nondeterminism, probability is a quantified property assigning a precise probability value
to the alternative system choices.

In this overview chapter, we start in Section 4.1 with a concise introduction of Markov
chains as the basic models to describe systems with probabilistic behaviour. In Section 4.2,
we extend Markov chains with nondeterminism and thereby attain Markov decision pro-
cesses. In order to capture quantities like preferences or priorities in nondeterministic
scenarios, we introduce weighted Markov decision processes in Section 4.3 and discuss
how these models relate to Markov decision processes.

Probabilistic automata constitute a mathematical framework for the modelling and
analysis of concurrent probabilistic systems. These models which subsume Markov chains
and Markov decision processes are discussed in Section 4.4. We review the semantics of
the probabilistic automata framework and define the parallel composition operator for
this model. Afterwards, we discuss in detail the notion of weak transitions in probabilistic
automata.

Apart from nondeterminism and probability, uncertainty is another key feature that can
influence the design and operation of complex probabilistic systems. Uncertainty relates to
the fact that not all system parameters may be known exactly, including exact probability
values. In Section 4.5, we introduce interval Markov decision processes as a modelling
formalism to incorporate uncertainty in discrete-time probabilistic systems. These models
are at the core of our studies in the forthcoming chapters. Hence, we provide a more
detailed discussion on their semantics. Throughout this thesis, we consider only finite
models, i.e., systems such that states, actions, and transition relations are finite.

41

42 Chapter 4 : An Overview of Probabilistic Systems

s̄

t

u

0.3

0.7
0.4

0.4

0.2

0.6

0.1

0.3

Figure 4.1: An example of MCs: the MC D

4.1 Markov Chains

Markov chains are a well-known subclass of stochastic processes to model systems which
indicate probabilistic behaviour. Markov chain models that are supported by an elegant
and relatively easy theory are central to model a wide spectrum of stochastic phenomena.
Markov chains are distinguished from other types of stochastic processes by the Markov
property which is also known as the memoryless property. This property informally states
that the future behaviour of a Markov chain is independent of the past given its current
state. A Markov chain with a finite state space can be formally defined as follows:

Definition 4.1 (Markov chain [Ste94, HJ94]). A Markov Chain (MC) is a tuple D =
(S, s̄,AP,P, L) where S is a finite set of states, s̄ is the start state, AP is a finite set of atomic
propositions, P: S × S→ [0,1] is a transition probability matrix such that

∑

s′∈S P(s, s′) = 1
for all s ∈ S, and L : S→ 2AP is a labeling function.

Example 4.1. An example of a MC is shown in Figure 4.1. In the graph representation, states
are depicted as circles and transitions as arrows. Every transition is labelled with its associated
probability value. The state space is S = {s̄, t, u} and the start state is s̄. Given set of atomic
propositions AP = {target}, let L(s̄) = ;, L(t) = ; and L(u) = {target}. Moreover, the
transition probability matrix is given as follows:

P=

0 0.3 0.7
0.6 0.1 0.3
0.4 0.4 0.2

 .

�

A Markov chain model can be unfolded into a set of paths. A path in a Markov chain
D is a finite or infinite sequence of states ξ = s0s1s2 . . . where si ∈ S and P(si , si+1) > 0 for
all i ≥ 0. We denote the sets of all finite and infinite paths in D by Pathsfin

D and Pathsinf
D ,

respectively. The last state of path ξ is denoted by last(ξ). Moreover, let PathsξD = {ξ
′ ∈

Pathsinf
D | ξ is a prefix of ξ′ } denote the set of infinite paths with the prefix ξ ∈ Pathsfin

D which
is also known as the cylinder set of ξ.

The probability matrix P induces a probability measure over the set of infinite paths
Pathsinf

D applying the cylinder construction [KSK66] as follows. The probability PrD of a
state s′ is defined to be PrD[Pathss′

D] which equals 1 if s′ = s̄ and 0, otherwise; and the

4.2. Markov Decision Processes 43

s̄ t

uv

0.7

0.3

a

0.9
b

0.1

0.8

c

0.2

0.5

0.5

b

1 c

Figure 4.2: An example of MDPs: the MDPM

probability PrD[Pathsξs′

D] of traversing a finite path ξs′ equals PrD[PathsξD]·P(last(ξ), s′). This
extends to a unique probability measure on the set of infinite paths Pathsinf

D [KSK66].

4.2 Markov Decision Processes

Markov chain models are suitable for systems exhibiting only probabilistic behaviours,
that is, they are not able to represent systems where different transition options can be
selected in the states. For instance, a system may in a particular state react differently
to different stimuli. This can be modeled by performing different transitions leading to
different distributions over the states of the system. We call this capacity nondeterminism
that is encoded, together with probability, by Markov decision processes.

Definition 4.2 (Markov decision process). A Markov Decision Process (MDP) M is a
tuple M = (S, s̄,A ,AP, L, T), where S is a finite set of states, s̄ ∈ S is the initial state, A
is a finite set of actions, AP is a finite set of atomic propositions, L : S → 2AP is a labeling
function, and T : S ×A → Disc(S) is a transition probability function.

Given an MDPM , we denote byA (s) the set of actions that are enabled from state s.
Markov decision processes [How71, Ber95, Put05] (MDPs) are powerful models for sys-
tems involving both decision-making and probabilistic dynamics [Put05]. MDPs are
used extensively to model long-term sequential decision-making in stochastic situations.
They have been applied broadly in quantitative model checking [FKNP11], operations re-
search [Ye11], machine learning [Mar15] and artificial intelligence [Kol12]. Model checkers
for MDPs, such as PRISM [KNP11], Modest [BDH+12], and IscasMC [HLS+14] have been
developed and applied in practice successfully. These tools mostly rely on Bellmann’s
value iteration [Bel57] and Howard’s policy iteration [How71] algorithms to solve MDPs.
In MDP models, each state is equipped with a finite set of probability distributions each
of which is uniquely identified by an action. Thus, the set of actions in each state indicates
the available nondeterministic choices in that state.

The class of MDPs subsumes the class of MCs. To see this, note that every MC can be
thought of as an MDP with A being a singleton set in Definition 4.2. Conversely, every
MDP whose action setA is a singleton semantically equals to a MC. Therefore, such MDP
model does not include nondeterministic choices in each of its states.

Example 4.2. Figure 4.2 depicts an example of MDP with initial state s̄. The set of states in
S = {s̄, t, u, v} and the set of actions A = {a, b, c}. The labeling of states are given as follows:
L(s̄) = {init}, L(t) = ;, L(u) = ;, L(v) = {success}. At the initial state, a nondeterministic

44 Chapter 4 : An Overview of Probabilistic Systems

choice happens between actions a and b at the initial state s̄. For the rest of the states, there is only
one single action. �

An infinite path through an MDPM is defined as a sequence ξ = s1a1 . . . where si ∈ S,
ai ∈A (si) and T(si , ai)(si+1)> 0 for each i ≥ 1. A finite path is specified as a prefix of an in-
finite path terminating in a state. We denote the sets of all finite and infinite paths inM by
Pathsfin

M and Pathsinf
M , respectively. Moreover, let PathsξM = {ξ

′ ∈ Pathsinf
M | ξ is a prefix of ξ′ }

denote the set of infinite paths with the prefix ξ ∈ Pathsfin
M which is also known as the

cylinder set of ξ.
In order to formally analyze MDPs, we require a probability space over infinite paths.

Nevertheless, the construction of a probability space is feasible once all nondeterministic
choices of the MDP are resolved. The resolution of nondeterminism is done by a scheduler
(also known as strategy or controller) which chooses an action in each state of the MDPM
based on the past history of its execution. Formally,

Definition 4.3 (Scheduler for Markov decision processes). A scheduler for an MDPM =
(S, s̄,A ,AP, L, T) is a function σ : Pathsfin

M → Disc(A) such that σ(ξ)(a) > 0 only if a ∈
A (last(ξ)). A scheduler σ is memoryless if σ(ξ) depends only on last(ξ). Furthermore, a
scheduler σ is called deterministic if the distribution σ(ξ) is Dirac, i.e., it always chooses a
single action with probability 1.

A strategy σ induces a probability measure over infinite paths as follows. The
probability PrσM of a state s′ is defined to be PrσM [Pathss′

M] = δs̄(s′) and the proba-
bility PrσM [Pathsξas′

M] of traversing a finite path ξas′ is defined to be PrσM [Pathsξas′

M] =
PrσM [PathsξM] · σ(ξ)(a).T(last(ξ), a)(s′). Then, PrσM extends uniquely to the σ-field gener-
ated by cylinder sets.

4.3 Weighted Markov Decision Processes

Weighted Markov Decision Processes are modelling formalisms to capture quantities like pref-
erences or priorities in a nondeterministic scenario. In these models, weights can be used
to denote priorities or preferences, which are quantities used to generate probabilistic be-
haviours. Weights in the weighted Markov decision processes play a similar role as in
GSPN [MCB84] or EMPA [BG96], namely, they are used to induce a distribution over all
transitions. For instance, if from a state s, there are transitions leading to s1 and s2 with
weights 2 and 3, respectively, then this means that s will evolve into s1 and s2 with prob-
abilities 2

5 and 3
5 , respectively. Below, we introduce the definition of weighted Markov

decision processes. Formally,

Definition 4.4 (Weighted Markov decision process). A weighted Markov Decision Pro-
cess (wMDP) is a tuple W = (S, s̄,A ,AP, L, W), where S is a finite set of states, s̄ ∈ S is the
initial state,A is a finite set of actions, AP is a finite set of atomic propositions, L : S 7→ 2AP is a
labelling function and W : S ×A × S 7→ N0 defines a transition relation.

We write s
a,w
−→µ if and only if w =

∑

t∈S W (s, a, t) > 0 and µ(t) = W (s,a,t)
w . Let s

a,w
−→c µ,

called combined transitions [SL95], if and only if there exists {µi}i∈I and {pi ∈ [0, 1]}i∈I

4.4. Probabilistic Automata 45

s̄ t

uv

a, 7

a, 3

b, 9
b, 1

c, 8

c, 2

b, 5
b, 5

c, 1

Figure 4.3: An example of wMDPs: the wMDPW

such that
∑

i∈I pi · µi = µ where
∑

i∈I pi = 1 and s
a,w
−→µi for each i ∈ I . In the following, we

formalize the relation between MDPs and wMDPs with respect to the model transforma-
tion.

Remark 4.1. As discussed earlier, in wMDPs weights are used to generate probabilistic be-
haviours. Hence, by normalizing the weights assigned to every transition in the wMDPs, an MDP
is generated. Conversely, given any MDP with rational transition probabilities the corresponding
wMDP is generated as follows: for every transition of the MDP, we multiply each transition prob-
ability value by the least common multiplier of denominators of all transition probability values.
Hence, the models MDPs with rational transition probabilities and wMDPs can be transformed
to each other with a time complexity polynomial in the number of states and transitions. For the
general case, i.e., when some of transition probabilities in the MDP model are irrational, we have
wMDP ⊆MDP.

Example 4.3. Figure 4.3 depicts an example of wMDP which also corresponds to the MDP in
Figure 4.2. �

4.4 Probabilistic Automata

Probabilistic automata (PA) constitute a mathematical framework for the specification of
probabilistic concurrent systems [Seg95, CSV07]. Probabilistic automata extend classical
concurrency models in a simple yet conservative fashion. In probabilistic automata, con-
current processes may perform probabilistic experiments inside a transition. This is rep-
resented by transitions of the form s

a−→ µ, where s is a state, a is an action label, and µ
is a probability measure on states. We now recall the main parts of the probabilistic au-
tomata framework [Seg95] we use in this thesis, following the notation of [Seg06]. Note
that the probabilistic automata we use here correspond to the simple probabilistic automata
of [Seg95].

Definition 4.5 (Probabilistic automata). A probabilistic automaton (PA) is a tuple P =
(S, s̄,A , T), where S is a set of states, s̄ ∈ S is the start state, A is the set of actions, and
T ⊆ S ×A ×Disc(S) is a probabilistic transition relation. We denote by [P], the class of all
finite-state finite-transition PAs.

The start state is also called the initial state. The set A is divided in two disjoint sets
H and E of internal (hidden) and external actions, respectively; we let s, t, u, v, and their
variants with indices range over S; a, b range over external actions; and τ range over

46 Chapter 4 : An Overview of Probabilistic Systems

s̄

r

y

g

0.25τ

0.25

0.5

1

τ 1a

1a

1a
1

τ

Figure 4.4: An example of PAs: the PA E

internal actions. We denote the generic elements of a probabilistic automaton P by S, s̄,
A , H , E, T, and we propagate primes and indices when necessary. Thus, for example,
the probabilistic automaton P′i has states S′i , start state s̄′i , actions A ′i , internal actions H ′i ,
external actions E′i , and transition relation T′i .

A transition tr = (s, a,µ) ∈ T, also denoted by s
a−→ µ, is said to leave from state s, to be

labelled by a, and to lead to the measure µ. We denote by src(tr) the source state s, by act(tr)
the action a, and by trg(tr) the target measure µ, also denoted by µtr. We also say that s
enables the action a, that the action a is enabled from s, and that (s, a,µ) is enabled from
s. We call a transition s

a−→ µ internal or external whenever a ∈ H or a ∈ E, respectively.
Finally, we let T(a) = { tr ∈ T | act(tr) = a } be the set of transitions with label a.

We say that a state s is a deadlock state if it enables no transitions, i.e., { tr ∈ T | src(tr) =
s }= ;.

Given a PA P, we denote by |P|=max{|S|, |T|} the size of P. Throughout this thesis, we
assume that P is finite, that is, both S and T are finite sets; moreover, we assume that each
state of P can be reached from s̄.

Example 4.4. An example of PA is shown in Figure 4.4: the set of states is S =
{s̄, r, y, g, , , }, the start state is s̄, the set of actions A is the union of the set of external
actions E = {a} and of the set of internal actions H = {τ}, and the transition relation T contains
the following transitions: s̄

τ−→ ρ with ρ = {(r, 0.25), (y, 0.25), (g, 0.5)}, r
a−→ δ , y

a−→ δ ,
g

a−→ δ , r
τ−→ δs̄, and g

τ−→ δs̄. , , and are deadlock states and the size of E is |E| = 7.
�

Remark 4.2. The main difference between the definition of probabilistic automata and Markov
decision processes is the probabilistic transition relation: for the former model, a state can enable
multiple transitions with the same label, while for the latter model each transition from the same
state has to have a different label. A second difference is that the PA framework distinguishes be-
tween internal and external actions, the latter used by a PA for the synchronization when composed
in parallel with other PAs. The MDP model, on the contrary, does not make such a distinction and
treats each action in the same manner.

4.4.1 Parallel Composition and Hiding
Real world applications and protocols typically involve several parts each one composed
by modules working together in parallel. Probabilistic automata model has been proposed
to achieve such compositional property. The following definition of parallel composition
is an equivalent rewriting of the definition provided in [Seg06].

4.4. Probabilistic Automata 47

Definition 4.6 (Probabilistic automata parallel composition). Given two PAs P1 and
P2, we say that P1 and P2 are compatible ifA1 ∩H2 = ;= H1 ∩A2.
Given two compatible PAs P1 and P2, the parallel composition of P1 and P2, denoted by
P1 ‖P2, is the probabilistic automaton P= (S, s̄,A , T) where

• S = S1 × S2,

• s̄ = (s̄1, s̄2),

• A = E ∪H where E = E1 ∪ E2 and H = H1 ∪H2, and

• ((s1, s2), a,µ1 ×µ2) ∈ T if and only if

– whenever a ∈A1 ∩A2, (s1, a,µ1) ∈ T1 and (s2, a,µ2) ∈ T2,
– whenever a ∈A1 \A2, (s1, a,µ1) ∈ T1 and µ2 = δs2

, and
– whenever a ∈A2 \A1, (s2, a,µ2) ∈ T2 and µ1 = δs1

.

For a ∈A1\A2, we denote by (s2, a,δs2
) the apparent internal transition corresponding to not

performing any transition from s2 in the combined transition, and similarly for a ∈A2 \A1.

For two compatible PAs P1 and P2 and their parallel composition P1 ‖P2, we refer to
P1 and P2 as the component automata and to P1 ‖P2 as the composed automaton.

Definition 4.7 (Hiding in probabilistic automata). Given a PA P and a set A of actions,
the hiding of A in P, denoted by HideA(P), is the automaton P′ that is the same as P except for
E′ = E \ A and H ′ = H ∪ A.

Remark 4.3. In the above definition of parallel composition between PAs, we require that they are
compatible, i.e., the internal actions of one automaton can not be actions of the other automaton.
This requirement seems to be never fulfilled when we consider the internal action τ.

In the Process Algebra world, usually τ is the only internal action available, and it is used by
every process to denote an internal transition. In the Probabilistic Automata framework, τ is used
as a symbol for referring to internal actions, but usually it is not an actual action of the automaton.
This means that, for two automata P1 and P2, when we write (s1,τ,µ1) ∈ T1 and (s2,τ,µ2) ∈ T2,
we are not requiring that the label is the same for both transitions, but we are just referring to
(s1, a1,µ1) ∈ T1 and (s2, a2,µ2) ∈ T2 for some ai ∈ Hi , i ∈ {1,2}.

The role of τ as symbol for internal actions and not as actual action becomes clear from the
definition of the hiding operator: for a given set A of actions to be hidden, instead of replacing each
action in A with τ as happens in process algebra world, we simply move the actions in A from E to
H ; the actual actions remain unchanged.

Note that it is rather easy to transform two automata P1 and P2 that are not compatible into
compatible ones, by means of the action renaming operator [Seg95] that allows us to rename
actions under the assumption that external actions remain external and internal actions remain
internal. So, we can just rename the internal actions of both P1 and P2 with fresh (internal)
actions and the resulting automata are then compatible.

4.4.2 Weak Transitions
In the setting of labelled transition systems, weak transitions are used to abstract from
internal computations [Mil89]. Intuitively, an internal weak transition is formed by an

48 Chapter 4 : An Overview of Probabilistic Systems

arbitrarily long sequence of internal transitions, and an external weak transition is formed
by an external transition preceded and followed by arbitrarily long sequences of internal
transitions. Note that the empty sequence is a valid arbitrary long sequence of internal
transitions. To lift this idea to the setting of probabilistic automata is a little intricate owed
to the fact that transitions branch into probability measures, and one thus has to work with
tree-like objects instead of sequences, as detailed in the sequel.

An execution fragment of a PA P is a finite or infinite sequence of alternating states
and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by first(α), and, if the
sequence is finite, ending with a state denoted by last(α), such that for each i > 0 there
exists a transition (si−1, ai ,µi) ∈ T such that µi(si) > 0. The length of α, denoted by |α|,
is the number of occurrences of actions in α. If α is infinite, then |α| =∞. We denote
by state(α, i) the state si and by action(α, j) the action a j , provided that 0 ≤ i ≤ |α| and
0 < j ≤ |α|. Denote by frags(P) the set of execution fragments of P and by frags∗(P) the
set of finite execution fragments of P. An execution fragment α is a prefix of an execution
fragment α′, denoted by α ¶ α′, if the sequence α is a prefix of the sequence α′. The trace
of α, denoted by trace(α), is the sub-sequence of external actions of α; we denote by ε
the empty trace and we extend trace(·) to actions by defining trace(a) = a if a ∈ E and
trace(a) = ε if a ∈ H .

Definition 4.8 (PA scheduler). A scheduler for a PA P is a function σ : frags∗(P) →
SubDisc(T) such that for each α ∈ frags∗(P), σ(α) ∈ SubDisc({ tr ∈ T | src(tr) = last(α) })
or, equivalently, Supp(σ(α)) ⊆ { tr ∈ T | src(tr) = last(α) }.

Given a schedulerσ and a finite execution fragment α, the measureσ(α) describes how
transitions are chosen to move on from last(α). We call a scheduler determinate [CS02] if,
for each α,α′ ∈ frags∗(P) such that trace(α) = trace(α′) and last(α) = last(α′), then σ(α) =
σ(α′). Essentially, a determinate scheduler bases its choice only on the current state and
on the past external actions. In other words, a determinate scheduler acts as a history-
independent scheduler between one external action and the following external action (or
the choice of stopping).

A scheduler σ and a state s induce a probability measure µσ,s over execution fragments
as follows. The basic measurable events are the cones of finite execution fragments, where
the cone of α, denoted by Cα, is the set Cα = {α′ ∈ frags(P) | α ¶ α′ }. The probability µσ,s
of a cone Cα is defined recursively as follows:

µσ,s(Cα) =

1 if α= s,
0 if α= t for a state t 6= s,
µσ,s(Cα′) ·

∑

tr∈T(a)σ(α
′)(tr) ·µtr(t) if α= α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to the σ-field
generated by cones. We call the resulting measure µσ,s a probabilistic execution fragment of
P and we say that it is generated by σ from s. Given a finite execution fragment α, we
define µσ,s(α) as µσ,s(α) = µσ,s(Cα) ·σ(α)(⊥), where σ(α)(⊥) is the probability of choosing
no transitions after α has occurred.

Definition 4.9 (Weak combined transition). Given a PA P, we say that there is a weak
combined transition from s ∈ S to µ ∈ Disc(S) labelled by a ∈ A , denoted by s

a
=⇒c µ, if

4.4. Probabilistic Automata 49

there exists a scheduler σ such that the following holds for the induced probabilistic execution
fragment µσ,s:

1. µσ,s(frags∗(P)) = 1;

2. for each α ∈ frags∗(P), if µσ,s(α)> 0 then trace(α) = trace(a);

3. for each state t, µσ,s({α ∈ frags∗(P) | last(α) = t }) = µ(t).

In this case, we say that the weak combined transition s
a
=⇒c µ is induced by σ, that

s
a
=⇒c µ exists in P, and that P enables s

a
=⇒c µ.

Albeit the definition of weak combined transitions is admittedly intricate, it is just the
obvious extension of weak transitions on labelled transition systems to the setting with
probabilities. We refer to Segala [Seg06] for more details on weak combined transitions.

Example 4.5. Consider the automaton E depicted in Figure 4.4 and let ρ be ρ =
{(r, 0.3), (y, 0.1), (g, 0.6)}; E enables the weak combined transition s̄

a
=⇒c µ where µ =

{(, 9
50), (, 8

50), (, 33
50)} via the scheduler σ defined as follows:

σ(α) =

δ
s̄
τ−→ρ

if last(α) = s̄,

δ
r
τ−→δs̄

if α= s̄τr,

δ
r

a−→δ
if α 6= s̄τr and last(α) = r,

δ
y

a−→δ
if last(α) = y ,

{(g τ−→ δs̄, 0.5), (g
a−→ δ , 0.5)} if α= s̄τg,

δ
g

a−→δ
if α 6= s̄τg and last(α) = g,

δ⊥ otherwise.

We now verify the three properties that µσ,s̄ has to satisfy in order to justify s̄
a
=⇒c µ: we start

from the third property, since the first two can be derived from it. Consider the state : it is reached
with probability

µσ,s̄({α ∈ frags∗(E) | last(α) = })
= µσ,s̄({s̄τrτs̄τra }) +µσ,s̄({s̄τgτs̄τra })
+µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτs̄τra , s̄τgτs̄τra })

= µσ,s̄({s̄τrτs̄τra }) +µσ,s̄({s̄τgτs̄τra }) + 0

=

�

�

�

�

(1) · 1 ·
3
10

�

· 1 · 1
�

· 1 ·
3

10

�

· 1 · 1
�

· 1+
�

�

�

�

(1) · 1 ·
6

10

�

·
1
2
· 1
�

· 1 ·
3

10

�

· 1 · 1
�

· 1

=
9

100
+

9
100

=
9

50
= µ(),

as required. The fact that

µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτs̄τra , s̄τgτs̄τra }) = 0

is justified as follows: let α ∈ {β ∈ frags∗(E) | last(β) = } such that α /∈
{s̄τrτs̄τra , s̄τgτs̄τra }; if first(α) = t 6= s̄, then by the recursive definition of µσ,s̄(Cα) we

50 Chapter 4 : An Overview of Probabilistic Systems

have that the base case is µσ,s̄(Ct) = 0, hence µσ,s̄(Cα) = 0 as well. Suppose that first(α) = s̄ and
consider the case α= s̄τra :

µσ,s̄(Cα) = µσ,s̄(Cs̄τra)

= µσ,s̄(Cs̄τr) ·
∑

tr∈T(a)

σ(s̄τr)(tr) ·µtr()

= µσ,s̄(Cs̄τr) · (σ(s̄τr)(r
a−→ δ) ·δ ()

+σ(s̄τr)(y
a−→ δ) ·δ ()

+σ(s̄τr)(g
a−→ δ) ·δ ())

= µσ,s̄(Cs̄τr) · (0 · 1+ 0 · 0+ 0 · 0) = 0.

Finally, the remaining finite execution fragments are such that α ∈ Cs̄τrτs̄τrτs̄ ∪ Cs̄τrτs̄τgτs̄ ∪
Cs̄τgτs̄τrτs̄ ∪ Cs̄τgτs̄τgτs̄. Consider the case α ∈ Cs̄τrτs̄τrτs̄: by the recursive definition of µσ,s̄(Cα)
we have that µσ,s̄(Cα) = µσ,s̄(Cs̄τrτs̄τrτs̄) · p for some value p ∈ R≥0; now, consider µσ,s̄(Cs̄τrτs̄τrτs̄):

µσ,s̄(Cs̄τrτs̄τrτs̄) = µσ,s̄(Cs̄τrτs̄τr) ·
∑

tr∈T(τ)

σ(s̄τrτs̄τr)(tr) ·µtr(s̄)

= µσ,s̄(Cs̄τrτs̄τr) · (σ(s̄τrτs̄τr)(r
τ−→ δs̄) ·δs̄(s̄)

+σ(s̄τrτs̄τr)(s̄
τ−→ ρ) ·ρ(s̄)

+σ(s̄τrτs̄τr)(g
τ−→ δs̄) ·δs̄(s̄))

= µσ,s̄(Cs̄τrτs̄τr) · (0 · 1+ 0 · 0+ 0 · 1) = 0,

and similarly for the remaining cases α ∈ Cs̄τrτs̄τgτs̄, α ∈ Cs̄τgτs̄τrτs̄, and α ∈ Cs̄τgτs̄τgτs̄. This
completes the justification of

µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτs̄τra , s̄τgτs̄τra }) = 0.

A similar analysis shows that µσ,s̄({α ∈ frags∗(E) | last(α) = }) = µ() and µσ,s̄({α ∈
frags∗(E) | last(α) = }) = µ(); for each remaining state s ∈ {s̄, r, y, g}, it is easy to verify that
µσ,s̄({α ∈ frags∗(E) | last(α) = s }) = 0. Regarding the first two properties of the definition of weak
combined transition, we have that µσ,s̄(frags∗(E)) = 1 follows directly from the third condition, as
well as the second property by considering the trace of the finite execution fragments occurring with
non-zero probability. �

4.5 Interval Markov Decision Processes

Real-world systems operate in the presence of uncertainty. There are various types of un-
certainty that can influence the modelling of complex (physical or artificial) systems. One
of the most important types of uncertainty is the inherent imprecision that is introduced by
measurement errors and discretization artifacts which necessarily happen due to incom-
plete knowledge about the system behaviour.

A severe limitation of Markov Decision Processes (MDPs) is that the probability values
used in the transitions are specific, fixed values, which can have a considerable impact
on the outcome of the model checking [KU02, NG05, Kat16]. In fact, due to measurement

4.5. Interval Markov Decision Processes 51

uncertainties or modeling errors, it is possible to obtain two MDP models of an underlying
(physical) system with slightly different values on the transition probabilities such that
they give very different outcomes, even though the two MPDs model the same system. A
favorable method for avoiding this issue is to include such uncertainties and errors in the
model itself.

We now define Interval Markov Decision Processes (IMDPs) as an extension of MDPs,
which allows for the inclusion of transition probability uncertainties as intervals. That
is, the probabilities assigned by transition probability distributions to states are not fixed
numbers; rather, they are known to lie within a given interval. IMDPs belong to the family
of uncertain MDPs and allow to describe a set of MDPs with identical (graph) structures
that differ in distributions associated with transitions. Formally,

Definition 4.10 (Interval Markov decision processes). An Interval Markov Decision
Process (IMDP) M is a tuple (S, s̄,A ,AP, L, I), where S is a finite set of states, s̄ ∈ S is the
initial state,A is a finite set of actions, AP is a finite set of atomic propositions, L : S→ 2AP is
a labelling function, and I : S×A ×S→ I∪{[0,0]} is a total interval transition probability
function with I = { [l, u] ⊆ R | 0 < l ≤ u ≤ 1 }. We denote by [M], the class of all finite-state
finite-transition IMDPs.

We denote the set of available actions at state s ∈ S by A (s). Furthermore, for each
state s and action a ∈ A (s), we write s a−→ha

s if ha
s ∈ Disc(S) is a feasible distribution, i.e.

for each state s′ ∈ S we have ha
ss′ = ha

s (s
′) ∈ I(s, a, s′). By H a

s , we denote the set of feasible
distributions for state s and action a. We require that the set H a

s = {h
a
s | s

a−→ha
s } is non-

empty for each state s and action a ∈A (s). Hence, the set of actions that are enabled from
s can also be described asA (s) = { a ∈A | H a

s 6= ;}.
We extend I to sets of states as follows: given S′ ⊆ S, we let

I(s, a, S′) =

�

min

¨

1,
∑

s′∈S′
inf I(s, a, s′)

«

, min

¨

1,
∑

s′∈S′
sup I(s, a, s′)

«�

.

Remark 4.4. The size of a given M is determined as follows. Let |S| denote the number of states
in M. Then each state has O(|A |) actions and at most O(|A | · |S|) transitions, each of which is
associated with a probability interval. Therefore, the overall size of M i.e., |M| is in O(|S|2 |A |).

The formal semantics of an IMDP is as follows. A path in M is a finite or infinite
sequence of states in the form ξ = s1h

a1
s1s2

s2 · · · , where s1 = s̄ and for each i ≥ 1, si ∈ S,
ai ∈ A (si), the transition probability hai

sisi+1
> 0. Path ξ can be finite or infinite. The sets of

all finite and infinite paths in M are denoted by Pathsfin
M and Pathsinf

M, respectively. The i-th
state and action along the path ξ are denoted by ξ[i] and ξ(i), respectively. For a finite
path ξ ∈ Pathsfin

M, let last(ξ) indicate its last state. Moreover, let PathsξM = {ξ′ ∈ Pathsinf
M |

ξ is a prefix of ξ′ } denote the set of infinite paths with the prefix ξ ∈ Pathsfin
M which is also

known as the cylinder set of ξ.
In order to resolve nondeterministic transitions, schedulers and natures need to be de-

fined for IMDPs. Intuitively, a scheduler is referred to every possible resolution of nonde-
terminism while a nature is referred to every resolution of uncertainty. Formally,

52 Chapter 4 : An Overview of Probabilistic Systems

s̄

t u

ba

[
13
,

23]

[110 , 1]

[
14 ,

23][
2 5
,

3 5
]

c, [1,1] d, [1,1]

Figure 4.5: An example of IMDPs: the IMDP M

Definition 4.11 (Scheduler and nature in IMDPs). Given an IMDP M, a scheduler is a
function σ : Pathsfin

M → Disc(A) that to each finite path ξ assigns a distribution over the set of
actions enabled by the last state of ξ, that is, σ(ξ) ∈ Disc(A (last(ξ)). A nature is a function
π: Pathsfin

M × A → Disc(S) that to each finite path ξ and action a ∈ A (last(ξ)) assigns a
feasible distribution, i.e. an element ofH a

s where s = last(ξ). The sets of all schedulers and all
natures of M are denoted by Σ and Π, respectively.

A scheduler σ is said to be deterministic (D) if σ(ξ) = δa for all finite paths ξ and some a ∈
A (last(ξ)). Similarly, a nature is said to be deterministic if π(ξ, a) = δha

last(ξ)
for all finite paths

ξ, for all a ∈A (last(ξ)), and some ha
last(ξ) ∈H

a
last(ξ). Furthermore, a schedulerσ (natureπ) is

Markovian (M) if it depends only on last(ξ). Given a finite path ξ of an IMDP, a scheduler
σ, and a nature π, the system evolution proceeds as follows. First, an action a ∈ A (si),
where si = last(ξ), is chosen nondeterministically by σ. Then, π resolves the uncertainties
and chooses nondeterministically one feasible distribution ha

si
∈H a

si
. Finally, the next state

si+1 is chosen randomly according to the distribution ha
si

, and path ξ is appended by si+1.
For a scheduler σ and a nature π, let Prσ,π

M denote the unique probability measure over
(Pathsinf

M,B) such that the probability Prσ,π
M [Pathss′

M] of starting in s′ equals 1 if s′ = s̄ and

0, otherwise; and the probability Prσ,π
M [Paths

ξha
last(ξ)s′ s

′

M] of traversing a finite path ξha
last(ξ)s′s

′

equals Prσ,π
M [Paths

ξha
last(ξ)s′ s

′

M] = Prσ,π
M [PathsξM] ·σ(ξ)(a) · π(ξ, a)(s′). Here, B is the standard

σ-algebra over Pathsinf
M generated from the set of all cylinder sets {PathsξM | ξ ∈ Pathsfin

M }.
The unique probability measure is obtained by the application of the extension theorem
(see, e.g. [Bil79]).

It is worthwhile to note that the scheduler does not choose an action but a distribution
over actions. Such a randomization typically simplifies and speeds up the procedure of
solving difficult problems. For instance, it is well-known that randomization is useful in
the context of bisimulations as it allows to define coarser equivalence relations [Seg95]. To
the contrary, nature is not allowed to randomize over the set of feasible distributionsH a

s .
This is in fact not necessary, since the setH a

s is closed under convex combinations.

In order to avoid ambiguity, we sometimes describe the IMDP M as a tuple
(SM, s̄M,AM,APM, LM, IM) by adding the IMDP model symbol as a subindex to its generic
elements.

Example 4.6. An instance of IMDPs is depicted in Figure 4.5. The set of states is S = {s̄, t, u}with

4.6. Concluding Remarks 53

s̄ being the initial one. Furthermore, let AP = {u,v} and L(s̄) = {v}, L(t) = {u} and L(u) = {u,v}.
The transition probability intervals are I(s̄, a, t) = [1

3 , 2
3], I(s̄, a, u) = [1

10 , 1], I(s̄, b, t) = [2
5 , 3

5],
I(s̄, b, u) = [1

4 , 2
3], I(t, c, t) = [1, 1] and I(u, d, u) = [1, 1]. �

4.6 Concluding Remarks

In this chapter, we have discussed the preliminaries of probabilistic systems that are es-
sential for the remainder of the thesis. More details about MCs can be found in the text-
books [KS76, Kul96, KNP07]. MDPs are discussed in a greater detail in [How71, Ber95,
Put05, FKNP11] and the textbook [Put05]. A complete treatment of PAs, along with their
fundamental properties can be found in [Seg95]. Additional information about parallel
composition operator for probabilistic systems can be found in [SDV04].

As regards the parametric probabilistic systems, IMDP models have been introduced
and analyzed with respect to several quantitative properties in [WK08, NG05, WTM12,
PLSVS13]. IMDPs extend classical MDPs where uncertainty is represented by intervals
of probability values. Compositional minimization of probabilistic systems is well under-
stood in the literature; however, it has received less attention for parametric probabilistic
systems. This thesis extends the notion of parallel composition for probabilistic systems
with parameter uncertainty. These contributions are described in detail in the following
chapters.

Part II

Modelling and Performance Analysis of
Probabilistic Systems

CHAPTER5
Efficiency of Deciding Probabilistic

Automata Weak Bisimulation

In this chapter, we address efficiency analysis of deciding weak probabilistic bisimulation
for probabilistic automata which is known to be in class P [TH15] based on a reduction to
a linear programming problem. We analyze the efficiency of solving the decision problem
in two dimensions. In the first dimension, we consider the theoretical efficiency of solv-
ing the problem. In particular, we study the complexity of the decision problem together
with several optimizations and give an upper bound on the complexity of checking the
feasibility of the original LP problem [TH15].

In the second dimension, we discuss the practical efficiency of solving the decision
problem and show how it can exploit the problem structure. We also present an imple-
mentation which can use either linear programming solvers or an SMT solver and can be
used to minimize probabilistic automata under weak probabilistic bisimulation. Such a
minimization has clear implications for reducing the state space explosion problem when
model checking such automata. To further mitigate this problem we investigate how to
use this approach in a compositional manner when systems are expressed as the parallel
composition of a number of sub-automata. The implementation is tested on a number of
case studies both to analyze different optimizations and the advantages of using a compo-
sitional approach.

The material presented in this chapter is an extended version of the results reported
in [HHT13, FFHHT16].

Organization of the chapter. We start in Section 5.1 and introduce weak probabilistic
bisimulation for probabilistic automata. In Section 5.2, we show how to compute the weak
probabilistic bisimulation and how to minimize an automaton. We devote Section 5.3 to
the LP problem construction and in Section 5.4 we focus on the efficiency of solving the
LP problem. Section 5.5 presents implementation considerations together with several
cases studies showing the effectiveness of the minimisation in particular for compositional
analysis.

57

58 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

5.1 Weak Probabilistic Bisimulation

Bisimulation relations constitute a powerful tool that allows us to verify whether two mod-
els describe essentially the same real system. Moreover, they allow us to compute the min-
imal automaton that is bisimilar to the given one [EHS+13]. We now recall the definition
of weak probabilistic bisimulation [Seg95, Seg06], that is the relation that allows us to ab-
stract away from internal computations while solving nondeterministic choices via convex
combinations of the available transitions.

Definition 5.1 (Weak probabilistic bisimulation). Given a PA P, an equivalence relation
R on S is a weak probabilistic bisimulation if, for each pair of states s, t ∈ S such that s R t,
if s

a−→ µs for some probability measure µs, then there exists a probability measure µt such that
t

a
=⇒c µt and µs L(R) µt .

In the following, we may refer to the condition “there exists µt such that t
a
=⇒c µt and

µs L(R) µt” as the step condition of the bisimulation. Specially, when the bisimulation is
seen as a two-player game between the two automata, the step condition is the condition
on the weak transition (or weak step) performed by the defender state t while matching the
transition (or step) performed by the challenger state s.

To check whether two PAs P1 and P2 are weak probabilistic bisimilar, we can either
adapt the above definition to work with pairs of automata, or we can just consider the PA
P = P1]P2 such that S = S1] S2, s̄ = s̄1, H = H1 ∪ H2, E = E1 ∪ E2, T = T1] T2. Note that
the choice s̄ = s̄1 is arbitrary, since it does not affect the weak probabilistic bisimulation;
similarly, we can ignore the requirement E ∩ H = ; since actions are taken into account by
the step condition: if the same action is external for P1 and internal for P2, then P1 and P2
are not bisimilar since the external transition proposed by P1 can not be matched by P2.
Deciding whether two automata are bisimilar then reduces to computing the bisimulation
R on P and to checking whether their start states are related by R, i.e., whether s̄1 R s̄2.

Definition 5.2 (PAs weak probabilistic bisimulation). Given two PAs P1 and P2, we say
that P1 and P2 are weakly probabilistic bisimilar if there exists a weak probabilistic bisimu-
lation R on S1]S2 such that s̄1 R s̄2. We denote the coarsest weak probabilistic bisimulation by
≈, and call it weak probabilistic bisimilarity.

Weak probabilistic bisimilarity is an equivalence relation preserved by standard pro-
cess algebraic composition operators on PA [PS04], such as parallel composition, action
hiding, action renaming, and action prefixing. As we will see in the next section, the com-
plexity of deciding P1 ≈ P2 strictly depends on finding the matching weak combined
transition t

a
=⇒c µt for which determinate schedulers suffice (cf. [CS02, Proposition 3]): in

Section 5.3 we will show how to find them in polynomial time.

Remark 5.1. In this chapter we do not consider the weak bisimulation relation obtained by re-
stricting to weak transitions t

a
=⇒ µt induced by a deterministic (or Dirac) scheduler, i.e., by a

scheduler σ such that for each finite execution fragment α, either σ(α) = δtr for some tr ∈ T, or
σ(α) = δ⊥. In fact, as shown in [Den05], the resulting bisimulation is not transitive and this
makes the usual compositional minimization approach much more difficult to use. In such an ap-
proach a given automaton P0 is decomposed into multiple sub-automata running in parallel, i.e.,

5.2. Computing the Weak Bisimilarity for Minimizing Automata 59

P0 = B1 ‖ B2 ‖ . . . ‖ Bn; then one component Bi at a time is replaced by another component B′i
that is bisimilar to but smaller than Bi . This gives rise to a sequence of automata P0, P1, . . . , Pn
such that for each 0 ≤ i < n, Pi and Pi+1 are bisimilar. If the bisimulation relation is not transi-
tive, then we can not derive that P0 and Pn are bisimilar. Instead, we have to provide a relation
witnessing the bisimilarity of P0 and Pn. Moreover, the construction we present in Section 5.3 to
efficiently find a weak combined transition is not easily extendable to weak (non-combined) transi-
tions; see Remark 5.3 for a more detailed explanation.

Since in this chapter we consider only weak combined transitions and weak proba-
bilistic bisimulation and bisimilarity, from now on we omit the adjectives “combined” and
“probabilistic”, respectively.

5.2 Computing the Weak Bisimilarity for Minimizing Au-
tomata

In this section, we recast the decision procedure of [CS02] that decides whether two proba-
bilistic automata P1 and P2 are weak bisimilar by following the standard partition refine-
ment approach [KS90, PT87, PLS00].

5.2.1 Deciding Weak Bisimilarity
We now study in detail the decision procedure for the weak bisimulation and then we
analyse the complexity of the algorithm.

5.2.1.1 Weak Bisimilarity Decision Algorithm

The decision algorithm for the weak bisimulation is sketched in Figure 5.1; the procedure
Quotient iteratively constructs the set S/≈, the set of equivalence classes of states S under
≈, starting with the partitioning R = {S} and refining it until R satisfies the definition of
weak bisimulation and thus the resulting partitioning is the coarsest one, i.e., we compute
the weak bisimilarity. In the following, we treat R both as a set of partitions and as an
equivalence relation without further mention.

The partitioning is refined by procedure Refine into a finer partitioning as long as
there is a partition containing two states that violate the bisimulation condition, which
is checked for in procedure FindSplit. Procedure Refine splits the partition [s]R into two
new partitions Cs and C¬s according to the discriminating information (s, a,µs) identified
by FindSplit before. More precisely, Cs contains all states belonging to [s]R that are able to
match (s, a,µs), while C¬s contains the remaining states in [s]R that fail to match (s, a,µs).
It is clear that at the termination of the for loop at line 2 of Refine, both Cs and C¬s are
not empty: Cs obviously contains the state s while C¬s contains for sure the state t that
caused FindSplit to return (s, a,µs) at line 4. So far, the procedure essentially agrees with
the DecideBisim(P1,P2) procedure of [CS02].

The real difference between the decision procedure we provide here and the one pre-
sented in [CS02] however appears inside the procedure FindSplit, where we check directly
the step condition by looking for a weak transition t

a
=⇒c µt such that µs L(R) µt , instead

60 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Algorithm 1: Quotient(P)
Input: Probabilistic automaton P
Output: Weak bisimulation R

1 begin
2 R = {S};
3 (s, a,µs) = FindSplit(R);
4 while s 6=⊥ do
5 R = Refine(R, (s, a,µs));
6 (s, a,µs) = FindSplit(R);
7 return R;

Procedure 2: FindSplit(R)
Input: An equivalence relation R
Output: A splitter for the relation R

1 begin
2 forall s ∈ S do
3 forall (s, a,µs) ∈ T do
4 forall t ∈ [s]R do
5 if there does not exist

t
a
=⇒c µt such that
µs L(R) µt then

6 return (s, a,µs);

7 return (⊥,τ,δs̄);

Procedure 3: Refine(R, (s, a,µs))
Input: An equivalence relation R and a splitter (s, a,µs)
Output: Refinement of R

1 begin
2 Cs = C¬s = ;;
3 forall t ∈ [s]R do
4 if there exists t

a
=⇒c µt such that µs L(R) µt then

5 Cs = Cs ∪ {t}
6 else
7 C¬s = C¬s ∪ {t}

8 return R \ {[s]R} ∪ {Cs,C¬s};

Figure 5.1: The decision algorithm for the weak bisimilarity

of computing the information associated by a to s and t, i.e., the set with respect to R of
the probability measures reached from s (and t) via a weak transition labelled by a.

Remark 5.2. In the context of model checking, the definition of bisimulation usually requires that
two related states are labelled with identical sets of atomic propositions. The decision procedure
presented in Figure 5.1 can be easily adapted to such a definition by modifying line 1 of Quotient
as follows: the initial partitioning R is such that for each class C of R, s, s′ ∈ C if and only if s and
s′ are labelled with identical sets of atomic propositions.

5.2.1.2 Complexity of the Decision Algorithm

Assume we are given the PA P; let N = |P|. The for loop at line 2 of the procedure FindSplit
cycles at most N times. Now, consider the for loop at line 3: since T =

⋃

s∈S{ tr ∈ T | src(tr) =
s } and { tr ∈ T | src(tr) = s } ∩ { tr ∈ T | src(tr) = t } = ; for each s, t ∈ S with s 6= t, it follows
that the two for loops together cycle at most N times. In the worst case (that occurs when

5.2. Computing the Weak Bisimilarity for Minimizing Automata 61

[s]R = S and each state t satisfies the step condition), the for loop at line 4 cycles at most
N times as well. This means that the existential check of t

a
=⇒c µt such that µs L(R) µt at

line 5 is performed at most N2 times. Let W (N) be the complexity of such check which will
be discussed later; it is immediate to see that FindSplit ∈O(N2 ·W (N)).

The for loop in procedure Refine can be performed at most N times; this happens when
[s]R = S. In each loop, an instance of the existential check of t

a
=⇒c µt such that µs L(R) µt

has to be computed, with complexity W (N); the resulting complexity of Refine is therefore
O(N ·W (N)).

The while loop in the procedure Quotient can be performed at most N times; this hap-
pens when in each loop the procedure FindSplit returns (s, a,µs) where s 6= ⊥, that is,
not every pair of states in [s]R satisfies the step condition. Since in each loop the proce-
dure Refine replaces such class [s]R with two non-empty classes Cs and C¬s, after at most
N loops every class contains a single state and the procedure FindSplit returns (⊥,τ,δs̄)
since each transition s

a−→ µs is obviously matched by s itself. Since Refine has complexity
O(N ·W (N)) and FindSplit O(N2 ·W (N)), it follows that the overall complexity of Quotient
is O(N · (N2 ·W (N) + N ·W (N))) =O(N3 ·W (N)).

Proposition 5.1. Given two PAs P1 and P2, let S = S1]S2 and N = |P1|+ |P2|; given a state
t ∈ S, an action a ∈ A , the probability measures µs,µt ∈ Disc(S), and an equivalence relation
R on S, let W (N) be the complexity of checking the existence of t

a
=⇒c µt such that µs L(R) µt .

Checking P1 ≈P2 has complexity O(N3 ·W (N)).

Proof. Immediate by the previous analysis. �

5.2.2 Minimization and Parallel Composition
In this section, we explain in detail the practical steps that lead from a PA P to the minimal
automaton M that is weak bisimilar to P, as formalized in [EHS+13, HK00, CGM+96]: the
first step extracts the reachable fragment P� of P, i.e., the states and the corresponding
transitions that can be reached with non-zero probability from the start state. 1 The second
step generates the quotient automaton by computing the weak bisimilarity ≈. Once ≈ is at
hand, the quotient automaton [P�]≈ is extracted in a third step: it has as set of states the set
of equivalence classes of≈ and as the start state the class of s̄; the sets of internal and exter-
nal actions are the same as in P� while the transition relation contains only the transitions
[s]≈

a−→ ρ such that there exists s
a−→ µ ∈ T� where ρ(C) =

∑

t∈C µ(t) for each C ∈ [S�]≈.
The fourth step of the minimization procedure removes from [P�]≈ the transitions that
are redundant, i.e., the transitions that can be removed from the automaton since they can
be weakly matched by the remaining transitions; the fifth and final step normalizes the in-
ternal transitions, i.e., each transition s

τ−→ µ is replaced by s
τ−→ µ\s. Note that the fourth

step ensures that there are no transitions s
τ−→ δs since they are trivially redundant.

The correctness of the above construction is justified by the following properties of
weak probabilistic bisimulation: let A be a set of actions and P, P′, P′′, and Pe be four PAs
such that Pe is compatible with both P and P′. Then the following holds:

• ≈ is transitive [Seg95]: if P≈P′ and P′ ≈P′′, then P≈P′′;

1Note that by our assumptions on the automata we do not need this initial step.

62 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

• ≈ is preserved by parallel composition [Seg95]: if P≈P′, then P ‖Pe ≈P′ ‖Pe;

• ≈ is preserved by the hiding operator: if P≈P′, then HideA(P)≈ HideA(P′);

• P≈P� [EHS+13];

• P≈ [P]≈ [EHS+13];

• removing redundant transitions preserves weak bisimilarity [EHS+13]; and

• normalizing internal transitions preserves weak bisimilarity [EHS+13].
The main computational bottleneck of this overall minimization procedure applied to an
automaton P is the second step, the weak bisimulation computation, that we have already
seen by Proposition 5.1 to be O(N3 ·W (N)).

Therefore, this bottleneck has to be carefully considered, with respect to the size of the
models to be processed by it: when we want to minimize a large automaton that is the
result of the parallel composition of several smaller automata, according to the definition
of parallel composition, the resulting state space is the Cartesian product of the single state
spaces. This means that the state space of the composed automaton grows exponentially
in the number of components, in particular when they are different instances of the same
system, leading quickly to prohibitively large automata. However, it is quite common
to generate in this way states and transitions that are actually useless since they are not
reachable from the start state of the composed automaton, in particular when the resulting
transition has as label an internal action. For instance, suppose that we have a transition
s1

τ−→ µ1 ∈ T1. According to the definition of parallel composition, for each s2 ∈ S2 we have
to generate the transition (s1, s2)

τ−→ µ1 ×δs2
, even when (s1, s2) can not be reached from

(s̄1, s̄2). To alleviate the fast growth of the parallel composition it is advisable to generate
only the reachable fragment or adopt more advanced techniques [GSL96, KM00].

Furthermore, consider the two PAs P1 and P2 such that their only transitions are
{s τ−→ δt , t

a−→ δt} and {x a−→ δy , y
a−→ δy}, respectively: it is immediate to see that both

automata are weak bisimilar to P3 whose only transition is v
a−→ δv and that P1 ‖ P2 is

weak bisimilar to P3 ‖ P3 whose only transition is (v, v)
a−→ δ(v,v). Such weak bisimilarity

between P1 ‖ P2 and P3 ‖ P3 is not fortuitous but derives from the fact that the weak
bisimulation is preserved by the parallel composition. In fact, for any pair of compatible
PAs P1 and P2, we have that P1 ‖ P2 ≈ [P1]≈ ‖ P2 ≈ [P1]≈ ‖ [P2]≈. The first bisimu-
lation is justified by taking P2 as context and the fact that P1 ≈ [P1]≈, and similarly for
the second bisimulation. The compatibility of the pair of automata we compose is ensured
by the fact that an automaton and its quotient have the same sets of actions. In general
[P1]≈ ‖ [P2]≈ is not the minimal automaton that is weak bisimilar to P1 ‖ P2: in fact,
the presence of internal transitions may lead to symmetric constructions that are identified
and collapsed by computing the weak bisimulation. For instance, suppose that we have
the states s1 and s2 enabling the transitions s1

τ−→ δs′1
, s1

a−→ µ1, and s′1
b−→ µ′1 and s2

τ−→ δs′2
,

s2
a−→ µ2, and s′2

b−→ µ′2, respectively. In the parallel composition we obtain the four inter-
nal transitions (s1, s2)

τ−→ δ(s′1,s2), (s1, s2)
τ−→ δ(s1,s′2)

, (s′1, s2)
τ−→ δ(s′1,s′2)

, and (s1, s′2)
τ−→ δ(s′1,s′2)

and the two external transitions (s1, s2)
a−→ µ1 ×µ2 and (s′1, s′2)

b−→ µ′1 ×µ
′
2. It is clear that

the states (s′1, s2), (s1, s′2), and (s′1, s′2) are weak bisimilar, so they can be collapsed. Applying
the hiding operator after a parallel composition increases this effect considerably.

5.3. Weak Transition Construction as a Linear Programming Problem 63

5.3 Weak Transition Construction as a Linear Programming
Problem

As discussed in the previous section, the main source of the worst case behaviour of the
decision algorithms [TH15, CS02] for PA weak probabilistic bisimulation is the recurring
need to check for the existence of a weak transition. This is solved with an exponential
algorithm in [CS02] and a polynomial algorithm in [TH15]. The latter approach takes
inspiration from network flow problems: a weak transition t

a
=⇒c µt of a PA P is described

as an enriched flow problem in which the initial probability mass δt splits along internal
transitions, and precisely one external transition with label a 6= τ for every stream, in order
to reach µt . The enriched flow problem is then translated into a Linear Programming
(LP) problem extended with balancing constraints that encode the need to respect transition
probability measure.

5.3.1 Network Construction
To describe the structure of the enriched LP problem, we first recall the definition of the
network graph corresponding to a weak transition.

Definition 5.3 (Weak transition network graph (cf. [TH15, Sect. 5.2])). Given a PA P, a
state t, an action a, a probability measure µ, and an equivalence relation R on S, the network
graph G(t, a,µ,R) = (V, E) relative to the weak transition t

a
=⇒c µt is defined as follows. Given

v ∈ S, a ∈ E, and tr ∈ T, let va, vtr, and vtr
a be three copies of v. For a ∈ E, the set V of vertices is

V = {Í,È} ∪ S ∪ Str ∪ Sa ∪ Str
a ∪ S/R

where

Str = { vtr | tr= v
b−→ ρ ∈ T, b ∈ {a} ∪H },

Sa = { va | v ∈ S }, and
Str

a = { vtr
a | v

tr ∈ Str }

and the set E of arcs is

E = {(Í, t)} ∪ L1 ∪ La ∪ L2 ∪ La
R

where

L1 = { (v, vtr), (vtr, v′) | tr= v
τ−→ ρ ∈ T, v′ ∈ Supp(ρ) },

La = { (v, vtr
a), (v

tr
a , v′a) | tr= v

a−→ ρ ∈ T, v′ ∈ Supp(ρ) },

L2 = { (va, vtr
a), (v

tr
a , v′a) | tr= v

τ−→ ρ ∈ T, v′ ∈ Supp(ρ) }, and
La
R = { (va,C), (C,È) | C ∈ S/R, v ∈ C }.

For a ∈ H the definition is similar:

V = {Í,È} ∪ S ∪ Str ∪ SR ∪ S/R

64 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Í s̄ s̄tr0

r

y

g

r tr4

g tr5

r tr1
a

y tr2
a

g tr3
a

a

a

a

[]R

[]R

[]R

s̄a s̄tr0
a

ra

ya

ga

r tr4
a

g tr5
a

[r]R

[y]R

[g]R

[s]R

È

Figure 5.2: The network G(s̄, a,µ,R) of Example 5.1

and

E = {(Í, t)} ∪ L1 ∪ L⊥ ∪ LR,

where LR = { (v,C), (C,È) | C ∈ S/R, v ∈ C }.

We refer to the elements of S∪Sa as state nodes, of T = Str∪Str
a as transition nodes, and

of S/R as class nodes.

Example 5.1. Consider again the PA E in Figure 4.4 and suppose that we want to check whether
there exists a weak transition s̄

a
=⇒c ρ such that ρ L(R) µ where µ = {(, 9

50), (, 8
50), (, 33

50)}
and R = I . Note that this implies that ρ = µ. Denote as usual the transitions of E as follows:
tr0 = s̄

τ−→ {(r, 0.3), (y, 0.1), (g, 0.6)}, tr1 = r
a−→ δ , tr2 = y

a−→ δ , tr3 = g
a−→ δ , tr4 =

r
τ−→ δs̄, and tr5 = g

τ−→ δs̄. The network G(s̄, a,µ,R) is shown in Figure 5.2, where we omit the
state vertices , , and as well as the transition vertices r tr1 , y tr2 , and g tr3 since they are not
involved in any arc of the network.

It is worthwhile to note that for a ∈ E, each path in the network graph from Í to È has to pass
through a transition vertex vtr

a where act(tr) = a, i.e., r tr1
a , y tr2

a , or g tr3
a . This construction ensures

that the external action is performed with probability 1. �

5.3.2 LP Problem Construction
As pointed out in [TH15], the fact that the network admits a flow that respects the proba-
bility measure µt does by itself not imply the existence of a corresponding weak transition,
because the flow may not respect probability ratios. To account for the latter, the network
is converted into a linear programming problem for which the feasibility is shown to be
equivalent to the existence of the desired weak transition. The idea is to convert the flow
network into the canonical LP problem and then add the balancing constraints that force
the “flow” to split according to transition probability measures.

5.3. Weak Transition Construction as a Linear Programming Problem 65

Definition 5.4 (LP of the network graph (cf. [TH15, Definition 7])). Given a PA P, a state
t ∈ S, an action a ∈A , a probability measure µ ∈ Disc(S), and a binary relation R on S, for a ∈
E we define the LP problem LP(t, a,µ,R) associated to the network graph (V, E) = G(t, a,µ,R)
as follows.

max
∑

(u,v)∈E − fu,v

subject to: fu,v ≥ 0 for each (u, v) ∈ E
fÍ,t = 1
fC,È = µ(C) for each C ∈ S/R
∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {Í,È}
fvtr,v′ −ρ(v′) · fv,vtr = 0 for each tr= v

τ−→ ρ ∈ T and v′ ∈ Supp(ρ)
fvtr

a ,v′a
−ρ(v′) · fva ,vtr

a
= 0 for each tr= v

τ−→ ρ ∈ T and v′ ∈ Supp(ρ)
fvtr

a ,v′a
−ρ(v′) · fv,vtr

a
= 0 for each tr= v

a−→ ρ ∈ T and v′ ∈ Supp(ρ)

When a ∈ H , the LP problem LP(t, a,µ,R) associated to G(t, a,µ,R) is defined as above with-
out the last two groups of constraints:

max
∑

(u,v)∈E − fu,v

subject to: fu,v ≥ 0 for each (u, v) ∈ E
fÍ,t = 1
fC,È = µ(C) for each C ∈ S/R
∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {Í,È}
fvtr,v′ −ρ(v′) · fv,vtr = 0 for each tr= v

τ−→ ρ ∈ T and v′ ∈ Supp(ρ)

Example 5.2. Consider again the automaton E from Example 4.4 (depicted in Figure 4.4) and a
weak transition s̄

a
=⇒c ρ such that ρ L(R) µ where µ = {(, 9

50), (, 8
50), (, 33

50)} and R =
I . As in Example 5.1, since I is the identity relation, we have that ρ = µ. Denote as usual
the transitions of E as follows: tr0 = s̄

τ−→ {(r, 0.25), (y, 0.25), (g, 0.5)}, tr1 = r
a−→ δ , tr2 =

y
a−→ δ , tr3 = g

a−→ δ , tr4 = r
τ−→ δs̄, and tr5 = g

τ−→ δs̄.
Besides the constraints for the non-negativity of the variables, the LP problem LP(s̄, a,µ,R) has

the following constraints:
• initial flow and challenging probabilities:

fÍ,s̄ = 1 f[]R ,È = 9/50 f[]R ,È = 8/50
f[]R ,È = 33/50 f[s̄]R ,È = 0 f[r]R ,È = 0
f[y]R ,È = 0 f[g]R ,È = 0

• conservation of the flow for vertices in S:

fÍ,s̄ + fr tr4 ,s̄ + fg tr5 ,s̄ − fs̄,s̄tr0 = 0 fs̄tr0 ,r − fr,r tr1
a
− fr,r tr4 = 0

fs̄tr0 ,y − f y,y tr2
a
= 0 fs̄tr0 ,g − fg,g tr3

a
− fg,g tr5 = 0

• conservation of the flow for vertices in Str:

fs̄,s̄tr0 − fs̄tr0 ,r − fs̄tr0 ,y − fs̄tr0 ,g = 0 fr,r tr4 − fr tr4 ,s̄ = 0
fg,g tr5 − fg tr5 ,s̄ = 0

66 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

• conservation of the flow for vertices in Sa:

fr
tr4
a ,s̄a
+ fg tr5

a ,s̄a
− fs̄a ,s̄tr0

a
− fs̄a ,[s̄]R = 0 fr tr1

a , a
− f

a ,[]R = 0
fs̄tr0

a ,ra
− fra ,r

tr4
a
− fra ,[r]R = 0 f y tr2

a , a
− f

a ,[]R = 0
fs̄tr0

a ,ya
− f ya ,[y]R = 0 fg tr3

a , a
− f

a ,[]R = 0
fs̄tr0

a ,ga
− fga ,g tr5

a
− fga ,[g]R = 0

• conservation of the flow for vertices in Str
a :

fs̄a ,s̄tr0
a
− fs̄tr0

a ,ra
− fs̄tr0

a ,ya
− fs̄tr0

a ,ga
= 0 fr,r tr1

a
− fr tr1

a , a
= 0

fra ,r
tr4
a
− fr

tr4
a ,s̄a
= 0 f y,y tr2

a
− f y tr2

a , a
= 0

fga ,g tr5
a
− fg tr5

a ,s̄a
= 0 fg,g tr3

a
− fg tr3

a , a
= 0

• conservation of the flow for vertices in S/R:

fs̄a ,[s̄]R − f[s̄]R ,È = 0 f
a ,[]R − f[]R ,È = 0

fra ,[r]R − f[r]R ,È = 0 f
a ,[]R − f[]R ,È = 0

f ya ,[y]R − f[y]R ,È = 0 f
a ,[]R − f[]R ,È = 0

fga ,[g]R − f[g]R ,È = 0

• balancing constraints for τ-transitions generating L1:

fs̄tr0 ,r − 0.3 · fs̄,s̄tr0 = 0 fs̄tr0 ,y − 0.1 · fs̄,s̄tr0 = 0
fs̄tr0 ,g − 0.6 · fs̄,s̄tr0 = 0 fr tr4 ,s̄ − 1 · fr,r tr4 = 0
fg tr5 ,s̄ − 1 · fg,g tr5 = 0

• balancing constraints for a-transitions generating La:

fr tr1
a , a

− 1 · fr,r tr1
a
= 0 f y tr2

a , a
− 1 · f y,y tr2

a
= 0

fg tr3
a , a

− 1 · fg,g tr3
a
= 0

• balancing constraints for τ-transitions generating L2:

fs̄tr0
a ,ra
− 0.3 · fs̄a ,s̄tr0

a
= 0 fs̄tr0

a ,ya
− 0.1 · fs̄a ,s̄tr0

a
= 0

fs̄tr0
a ,ga
− 0.6 · fs̄a ,s̄tr0

a
= 0 fr

tr4
a ,s̄a
− 1 · fra ,r

tr4
a
= 0

fg tr5
a ,s̄a
− 1 · fga ,g tr5

a
= 0

A solution that maximizes the objective function sets all variables to the value 0 except for the
following variables:

fÍ,s̄ = 50/50 fs̄,s̄tr0 = 80/50 fs̄tr0 ,r = 24/50
fs̄tr0 ,y = 8/50 fs̄tr0 ,g = 48/50 fr,r tr1

a
= 9/50

fr,r tr4 = 15/50 f y,y tr2
a

= 8/50 fg,g tr3
a

= 33/50
fg,g tr5 = 15/50 fr tr4 ,s̄ = 15/50 fg tr5 ,s̄ = 15/50
fr tr1

a , a
= 9/50 f y tr2

a , a
= 8/50 fg tr3

a , a
= 33/50

f
a ,[]R = 9/50 f

a ,[]R = 8/50 f
a ,[]R = 33/50

f[]R ,È = 9/50 f[]R ,È = 8/50 f[]R ,È = 33/50

It is worthwhile to note the value 80/50 for the variable fs̄,s̄tr0 : this is caused by the fact that the
arc (s̄, s̄tr0) is part of a cycle and its flow value is greater than 1, confirming that 1, the maximum
probability, in general is not a proper value for arc capacities, as discussed in [TH15]. �

5.3. Weak Transition Construction as a Linear Programming Problem 67

In the LP problem described in Definition 5.4, the objective function maximizes the total
sum of negated flow routed along the arcs of the network. In fact, the total flow is described
as the sum of negated flow variables which are positive themselves. This prevents routing
large amounts of flow over disconnected components of the network or over cycles that
can be ignored. Furthermore, in the LP problem, there are two different sets of constraints.
The first set is the ordinary set of flow conservation constraints which require the total
flow incoming and outgoing a node of the network to be equal. The second set is the set
of balancing constraints that require the entering amount of flow to a transition node to be
distributed based on probabilities assigned to the outgoing arcs.

It is easy to observe that the LP(t, a,µ,R) LP problem has size that is quadratic in the
size N = |P|: the number of variables is at most 3N2 + 5N + 1 while the number of con-
straints is at most 6N2 + 11N + 2. Moreover, it is also worthwhile to spell out the number
of transition, state, and class nodes of the network G(t, a,µ,R): there are at most 2|T| tran-
sition nodes, at most 2|S| state nodes, and at most |S| class nodes.

The equivalence of the LP problem and the weak transition is formalized by Theorem 9
and Corollary 12(1) of [TH15]:

Proposition 5.2. A weak transition t
a
=⇒c µt such that µ L(R) µt exists if and only if the LP

problem LP(t, a,µ,R) has a feasible solution.

Remark 5.3. The LP problem construction proposed in Definition 5.4 is not easily extendable to
weak non-combined transitions induced by a Dirac scheduler. In fact, in order to obtain for such
setting a result equivalent to Proposition 5.2, we should enforce that the flow leaving the nodes
v and va is not split among several outgoing arcs, but it is routed completely to a single arc. To
obtain such a situation, we should replace, for each v ∈ S ∪ Sa, the flow conservation constraint in
Definition 5.4

∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {Í,È}

by the following set of constraints:
∑

(u,v)∈E fu,v −
∑

(v,w)∈E αv,w fv,w = 0 for each v ∈ V \ {Í,È}
∑

(v,w)∈E αv,w = 1 for each v ∈ V \ {Í,È}
αv,w ∈ {0, 1} for each (v, w) ∈ E

The latter ensures that the flow is sent through a single outgoing arc in its entirety. This change
implies that the resulting problem is no longer a Linear Programming problem but a Mixed Integer
Nonlinear Programming problem (MINLP), known to belong to the class of NP-complete prob-
lems [Sch03]. While it is rather easy to show that the problem of finding a weak transition induced
by a Dirac scheduler is equivalent to the above MINLP problem (the proof is essentially the same of
the one of Proposition 5.2, see [TH15, Lemmas 7 and 8]), such an equivalence is not sufficient to
establish the NP-completeness of the problem. However, it is still possible to show such a result by
a direct reduction from the 3-SAT problem.

We recall that a formula ϕ is written in conjunctive normal form with three variables per clause
(3-CNF) if ϕ =

∧n
i=1 Cli where each clause Cli is a disjunction of three literals. To simplify the

presentation, we assume that each clause contains distinct literals. Given a formula ϕ, we denote
by Var(ϕ) the set of variables occurring in ϕ, by Lit(ϕ) the set of literals occurring in ϕ, by Cl(ϕ)
the set of clauses of ϕ, and, given a literal l, we denote by Cl(ϕ, l) the set of clauses of ϕ where l
occurs.

68 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Proposition 5.3. Given a PA P, a state s ∈ S, an action a ∈ A , and a probability measure
µ ∈ Disc(S), checking whether there exists a Dirac scheduler inducing s

a
=⇒ µ is NP-complete.

Proof. To prove the claim, we have to show two results: the problem is NP-hard and be-
longs to NP.

The fact that the problem belongs to NP follows directly from the fact that the existence
of a weak transition induced by a Dirac scheduler can be encoded as a MINLP problem,
that is in NP.

For showing the NP-hardness, we provide a reduction from the 3-SAT problem. Let
ϕ =

∧n
i=1 Cli be a 3-CNF formula, n= |Cl(ϕ)|, and m= |Var(ϕ)|.

Consider the PA Pϕ whose set of states is S = {ϕ,Ï}∪Var(ϕ)∪{ vfalse, vtrue | v ∈ Var(ϕ) }∪
Cl(ϕ), whose start state is ϕ, whose set of actions isA = {τ}, and whose transitions are:

T = {ϕ τ−→ υVar(ϕ)} ∪ { v
τ−→ δvtrue , v

τ−→ δvfalse | v ∈ Var(ϕ) }

∪ { vtrue τ−→ ρv | v ∈ Lit(ϕ) } ∪ { vfalse τ−→ ρ¬v | ¬v ∈ Lit(ϕ) }

∪ {Cl
τ−→ {(Cl,

1
k
), (Ï,

k− 1
k
)} | Cl ∈ Cl(ϕ), k ∈ {1,2, 3} },

where, for a literal l, ρl is defined as

ρl(t) =

1
n if t ∈ Cl(ϕ, l),
|Cl(ϕ)\Cl(ϕ,l)|

n if t = Ï,
0 otherwise.

We now prove that ϕ is satisfiable if and only if Pϕ exhibits the weak transition ϕ
τ
=⇒ µ

where

µ(t) =

1
n·m if t = Cl for some clause Cl ∈ Cl(ϕ),
1− 1

m if t = Ï, and
0 otherwise.

Suppose that ϕ is satisfiable; this implies that there exists a truth value assignment for
the variables occurring in ϕ that makes the formula true. Moreover, since ϕ is satisfiable,
it follows that at least one literal of each clause Cl ∈ Cl(ϕ) has assignment true. Let σ be
the Dirac scheduler defined as follows:

σ(α) =

δ
ϕ
τ−→υVar(ϕ)

if α= ϕ,

δ
v
τ−→δvtrue

if α= ϕτv and v is true in the assignment,

δ
v
τ−→δvfalse

if α= ϕτv and v is false in the assignment,

δ
vtrue

τ−→ρv
if α= ϕτvτvtrue and v ∈ Lit(ϕ),

δ
vfalse

τ−→ρ¬v
if α= ϕτvτvfalse and ¬v ∈ Lit(ϕ),

δ
Cl

τ−→{(Cl, 1
k),(Ï, k−1

k)}
if α ∈ {ϕτvτvtrueτCl,ϕτvτvfalseτCl} and exactly k literals of Cl are true,

δ⊥ otherwise.

5.3. Weak Transition Construction as a Linear Programming Problem 69

It is rather easy to verify that σ actually induces the weak transition ϕ
τ
=⇒ µ. Consider, for

instance, a clause Cl; let Cl= l1∨ l2∨ l3 and vi be the variable associated to the literal li . The
probability of reaching Cl is:

µσ,ϕ({α ∈ frags∗(Pϕ) | last(α) = Cl })
= µσ,ϕ({ϕτv1τvv

1τClτCl}) if l1 = true and v is the assignment of v1

+µσ,ϕ({ϕτv2τvv
2τClτCl}) if l2 = true and v is the assignment of v2

+µσ,ϕ({ϕτv3τvv
3τClτCl}) if l3 = true and v is the assignment of v3

For each i ∈ {1, 2,3} such that li = true, we have that µσ,ϕ({ϕτviτvv
i τClτCl}) = 1

m ·
1
n ·

1
k ,

where k is the number of literals of Cl that are true. In fact, for each i ∈ {1,2, 3} such that
li = true,

µσ,ϕ({ϕτviτvv
i τClτCl})

= µσ,ϕ(Cϕτviτvv
i τClτCl) ·σ(ϕτviτvv

i τClτCl)(⊥)

= µσ,ϕ(Cϕ) ·
� ∑

tr∈T(τ)

σ(ϕ)(tr) ·µtr(vi)
�

·
� ∑

tr∈T(τ)

σ(ϕτvi)(tr) ·µtr(v
v
i)
�

·
� ∑

tr∈T(τ)

σ(ϕτviτvv
i)(tr) ·µtr(Cl)

�

·
� ∑

tr∈T(τ)

σ(ϕτviτvv
i τCl)(tr) ·µtr(Cl)

�

·σ(ϕτviτvv
i τClτCl)(⊥)

(In the following step, we omit the transitions chosen by σwith probability 0; for instance,
ϕ

τ−→ υVar(ϕ) when α = ϕτvi . For improving readability, we write θCl for the distribution
{(Cl, 1

k), (Ï, k−1
k)}.)

= µσ,ϕ(Cϕ) ·
�

σ(ϕ)(ϕ
τ−→ υVar(ϕ)) ·υVar(ϕ)(vi)

�

·
�

σ(ϕτvi)(vi
τ−→ δvv

i
) ·δvv

i
(vv

i)
�

·
�

σ(ϕτviτvv
i)(v

v
i

τ−→ ρl) ·ρl(Cl)
�

·
�

σ(ϕτviτvv
i τCl)(Cl

τ−→ θCl) · θCl(Cl)
�

·σ(ϕτviτvv
i τClτCl)(⊥)

= 1 ·
� 1

m

�

·
�

1
�

·
�1

n

�

·
�1

k

�

· 1=
1
m
·

1
n
·

1
k

Since µσ,ϕ({ϕτviτvv
i τClτCl}) = 1

m ·
1
n ·

1
k holds for each i ∈ {1, 2,3} such that li = true, it

follows that, for k literals being true in Cl, the overall probability assigned to the state Cl is
k · 1

m ·
1
n ·

1
k =

1
n·m as required. Since this probability is independent from the particular Cl, the

70 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

overall probability assigned to Cl(ϕ) is n× 1
n·m =

1
m ; the remaining probability value 1− 1

m is
assigned toÏ, as required, as it can be easily checked in a similar way. The other properties
the scheduler has to satisfy trivially follow from the previous one and the fact that the PA
Pϕ has E = ;, so σ actually induces the weak transition ϕ

τ
=⇒ µ. This completes the proof

that if ϕ is satisfiable, then there is a Dirac scheduler inducing ϕ
τ
=⇒ µ.

Now, suppose that there exists a Dirac scheduler inducing ϕ
τ
=⇒ µ. We want to derive

a logical value assignment such that the formula ϕ holds. For each variable v ∈ Var(ϕ),
define the assignment θ (v) as follows:

θ (v) =

¨

true if σ(ϕτv) = δ
v
τ−→δvtrue

,

false otherwise.

Since by hypothesis each clause Cl is reached with probability 1
n·m , it means that there exists

at least one finite execution fragment of the form ϕτvτvvτClτCl that occurs with non-zero
probability. In particular,

v=

¨

true if σ(ϕτv) = δ
v
τ−→δvtrue

,

false otherwise,

i.e., v has truth value v. Moreover, the existence of such execution fragment implies that
the literal v occurs in Cl if v = true or the literal ¬v occurs in Cl if v = false. The former
case implies that Cl = v ∨ l ′ ∨ l ′′ for some literal l ′ and l ′′ with v = true, while the latter
case implies that Cl = ¬v ∨ l ′ ∨ l ′′ for some literal l ′ and l ′′ with v = false. In both cases
the clause Cl is satisfied, hence ϕ is satisfied as well since Cl is a generic clause in Cl(ϕ).
This concludes the proof that if there exists Dirac scheduler inducing the weak transition
ϕ

τ
=⇒ µ, then ϕ is satisfiable.

Since we have shown that ϕ is satisfiable if and only if Pϕ exhibits the weak transition
ϕ

τ
=⇒ µ, in order to complete the reduction we have to show that the reduction is poly-

nomial in the size of the formula ϕ: this follows immediately by the construction of Pϕ
whose number of states and transitions is linear in the number of variables and clauses of
ϕ. �

5.3.3 Complexity Analysis of Deciding Weak Bisimulation

Proposition 5.2 allows us to verify the existence of a weak transition t
a
=⇒c µt such that

µs L(R) µt at line 3 of FindSplit efficiently: W (N) is actually p(N) for some polynomial p,
hence the following result holds.

Theorem 5.1. Given two PAs P1 and P2, let N = |P1|+|P2|. Checking P1 ≈P2 is polynomial
in N .

5.4 Efficiency of Solving the LP Problem

The analysis of the LP(t, a,µ,R) LP problem formalized in [TH15, Proposition 6] considers
the theoretical complexity class the problem belongs to. It does not address how efficiently

5.4. Efficiency of Solving the LP Problem 71

the LP problem can indeed be solved in practice. Practical implementation aspects and
empirical results will be presented in Section 5.5. To prepare for that, we first discuss ab-
stract observations concerning the worst case running time needed to solve the LP prob-
lem. Then we recast the LP problem into a flow network problem and exploit the under-
lying network structure to arrive at an efficient LP problem solution approach harvesting
an algorithm in the network optimization setting. We further discuss various alternative
approaches to improve solution efficiency, including approximative methods.

5.4.1 Efficient Solution: Theory
Throughout this section, we define the dimension of an input to an algorithm as the num-
ber of data items in the input. The size of a rational number p/q is defined as the length
of its binary description, i.e., |p/q| = dlog2(p+ 1)e + dlog2(q+ 1)e, where dxe denotes the
smallest integer not less than x . The size of a rational vector or matrix is defined as the
sum of the sizes of its entries.

Deciding the existence of a weak transition in a probabilistic automaton can be done
in polynomial time [TH15, Proposition 6 and Theorem 8]. With the aim to refine this re-
sult, we discuss the problem in the context of the restricted class of rational probabilistic
automata.
Rational PAs. We start our analysis with the class of rational PAs.

Definition 5.5 (Rational PAs). Given a PA P, we say that P is rational if for each (s, a,µ) ∈
T and v ∈ Supp(µ), we have that µ(v) ∈Q.

For this class of PAs, we look for a tighter worst case complexity bound of solving
the LP problem LP(t, a,µ,R). We proceed via a reformulation that reduces the size of
LP(t, a,µ,R). This size reduction directly reduces the solution effort needed for the LP
problem, since the latter depends on the number of variables and constraints, and this will
indeed provide a tighter worst case bound. To reach our goal, we modify the network
provided in Definition 5.3 and reformulate the original LP problem on the basis of these
changes.

Consider the network G(t, a,µ,R) and let G (t, a,µ,R) be a directed network which
is generated from the network G(t, a,µ,R) by removing the source node Í and the sink
node È; let V = V \ {Í,È} and E = E \ ({(Í, t)} ∪ { (C,È) | C ∈ S/R }) be the set of
vertices and directed arcs of G (t, a,µ,R), respectively. Moreover, let Ē ⊆ E be the set
Ē = { (vtr, v′), (vtr

a , v′a) | tr = v
τ−→ ρ ∈ T, v′ ∈ Supp(ρ) } ∪ { (vtr

a , v′a) | tr = v
a−→ ρ ∈ T, v′ ∈

Supp(ρ) }. Then, we define ρi, j = µtr(v′) as the proportionality coefficient corresponding to
the arc (i, j) ∈ Ē where (i, j) = (vtr, v′) or (i, j) = (vtr

a , v′a). Since in both original and modi-
fied networks each arc in Ē belongs to a single transition, the corresponding proportional
coefficient is uniquely determined.

For each node u ∈ V , let bu be a supply/demand value, that is, if bu > 0 the node u is a
supply node and if bu < 0 the node u is a demand node. For the network G (t, a,µ,R), we
define bu for each node u ∈ V so as to take value 1 if u= t, value −µ(C) if u= C ∈ S/R and
0 otherwise. It is immediate to see that

∑

u∈V bu = 0. This fact can be seen as a feasibility
condition in the corresponding flow network [AMO93]. For s ∈ T , assume As to be the set
of all arcs in the node-arc incidence matrix A that should have proportional flow. We define
Ã to be the subset of arcs in A that do not belong to any set As for s ∈ T . More precisely,

72 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Ã= A\
⋃

s∈T As. Based on the definitions, the LP(t, a,µ,R) LP problem can be reformulated
as follows:

LP1: min
∑

(i, j)∈E fi, j

subject to:
∑

(i, j)∈E fi, j −
∑

(j,i)∈E f j,i = bi for each i ∈ V
fi, j

ρi, j
are all equal s ∈ T , (i, j) ∈ As

fi, j ≥ 0 for each (i, j) ∈ E

Lemma 5.1. The LP(t, a,µ,R) LP problem and LP1 are equivalent.

Proof. The statement follows immediately by a simple manipulation of the balancing con-
straints: consider the transition tr = v

τ−→ ρ; it is encoded in the network as the transition
node vtr and the arcs (v, v t r) and (vtr, v′) for v′ ∈ Supp(ρ). The corresponding balancing
constraints are fvtr,v′ −ρ(v′) · fv,vtr = 0, that is, fvtr ,v′

ρ(v′) = fv,vtr . Since fv,vtr is independent on v′,

it follows that the ratio fvtr ,v′

ρ(v′) is equal for all v′ ∈ Supp(ρ), as required.
The same holds for the transition nodes vtr

a and vtr′
a , the latter corresponding to the

transition tr′ = v
a−→ γ. �

By assuming the unit flow cost ci, j = 1 for each arc (i, j) ∈ E , the objective of this
problem is to minimize the total cost of routing the flow on network arcs subject to the
ordinary flow conservation constraints, the proportional flow constraints corresponding
to the balancing constraints of the original LP problem, and the arc flow lower bounds.

It is worthwhile to note that there exists a proportional flow set for each transition node
in the network and that each arc may belong to at most one proportional flow set. The
flow on the arcs in each of these flow proportional sets can be regarded as a single decision
variable. Using this intuition, let ai, j denote the column corresponding to the arc (i, j) in
the node-arc incidence matrix of the network G (t, a,µ,R) and let as =

∑

(i, j)∈As
ρi, j · ai, j for

each s ∈ T . We denote by ak
s the k-th component of the vector as. Since the column vector

ai, j in the node-arc incidence matrix includes only entities 0, +1 and -1 therefore, the k-
th component of the vector as, i.e., ak

s can be equivalently written as ak
s =

∑

(k, j)∈As
ρk, j −

∑

(j,k)∈As
ρ j,k. By using the new notations, LP1 can be reformulated as the following LP

problem which in turn can be regarded as an adaptation of the LP considered in [BF12].

LP2: min
∑

(i, j)∈Ã fi, j +
∑

s∈T fs

subject to:
∑

(i, j)∈Ã fi, j −
∑

(j,i)∈Ã f j,i +
∑

s∈T ai
s · fs = bi for each i ∈ V

fi, j ≥ 0 for each (i, j) ∈ Ã
fs ≥ 0 for each s ∈ T

Lemma 5.2. LP1 and LP2 are equivalent.

Proof. Let f = { fi, j | (i, j) ∈ Ã}∪ { fs | s ∈ T } be a feasible solution for LP2. Define flow f̃ as
follows:

f̃i, j =

fi, j if (i, j) ∈ Ã
ρi, j · fs if s ∈ T and (i, j) ∈ As

0 otherwise.

5.4. Efficiency of Solving the LP Problem 73

We claim that the flow f̃ satisfies the LP1 constrains. To show this, in the first set of con-
straints in LP1 and for each i ∈ V we get the following equivalences:

∑

(i, j)∈E

f̃i, j −
∑

(j,i)∈E

f̃ j,i =

∑

(i, j)∈Ã

f̃i, j +
∑

(i, j)∈E\Ã

f̃i, j

!

−

∑

(j,i)∈Ã

f̃ j,i +
∑

(j,i)∈E\Ã

f̃ j,i

!

=
∑

(i, j)∈Ã

f̃i, j −
∑

(j,i)∈Ã

f̃ j,i +
∑

(i, j)∈E\Ã

f̃i, j −
∑

(j,i)∈E\Ã

f̃ j,i

=
∑

(i, j)∈Ã

f̃i, j −
∑

(j,i)∈Ã

f̃ j,i +
∑

s∈T

∑

(i, j)∈As

f̃i, j −
∑

s∈T

∑

(j,i)∈As

f̃ j,i

by definition of Ã

=
∑

(i, j)∈Ã

fi, j −
∑

(j,i)∈Ã

f j,i +
∑

s∈T

∑

(i, j)∈As

ρi, j · fs −
∑

s∈T

∑

(j,i)∈As

ρ j,i · fs

by definition of f̃

=
∑

(i, j)∈Ã

fi, j −
∑

(j,i)∈Ã

f j,i +
∑

s∈T
fs ·

∑

(i, j)∈As

ρi, j −
∑

(j,i)∈As

ρ j,i

!

by simple term manipulation

=
∑

(i, j)∈Ã

fi, j −
∑

(j,i)∈Ã

f j,i +
∑

s∈T
ai

s · fs

by definition of ai
s

= bi

by definition of LP2. Moreover, for each s ∈ T and (i, j) ∈ As,
f̃i, j

ρi, j
=

ρi, j · fs
ρi, j

= fs. This

means that for each s ∈ T and for all (i, j) ∈ As,
f̃i, j

ρi, j
are all equal. Also, for each (i, j) ∈ Ã,

f̃i, j = fi, j ≥ 0 and for each s ∈ T and (i, j) ∈ As, f̃i, j = ρi, j · fs ≥ 0. Therefore, f̃i, j for (i, j) ∈ E
is indeed a feasible solution for LP1. Next, consider the value of the objective function for
LP1:

∑

(i, j)∈E

f̃i, j =
∑

(i, j)∈Ã

f̃i, j +
∑

(i, j)∈E\Ã

f̃i, j

=
∑

(i, j)∈Ã

f̃i, j +
∑

s∈T

∑

(i, j)∈As

f̃i, j

by definition of Ã

=
∑

(i, j)∈Ã

fi, j +
∑

s∈T

∑

(i, j)∈As

ρi, j · fs

74 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

by definition of f̃

=
∑

(i, j)∈Ã

fi, j +
∑

s∈T
fs ·

1
︷ ︸︸ ︷

∑

(i, j)∈As

ρi, j

by simple term manipulation and the fact that ρi, j = µtr(v′)where (i, j) = (vtr, v′) or (i, j) =
(vtr

a , v′a)

=
∑

(i, j)∈Ã

fi, j +
∑

s∈T
fs.

Therefore, corresponding to this feasible solution, the value of the objective function of
both LP problems are the same. For the reverse side, assume f̄ = { f̄i, j | (i, j) ∈ E } is a
feasible solution for LP1. Define the flow f̂ = { f̂i, j | (i, j) ∈ Ã} ∪ { f̂s | s ∈ T } where f̂i, j = f̄i, j

for (i, j) ∈ Ã and f̂s =
f̄i, j

ρi, j
for each s ∈ T where (i, j) ∈ As. In the following we show that f̂ is

a feasible solution for LP2. For each i ∈ V , it holds:
∑

(i, j)∈Ã

f̂i, j −
∑

(j,i)∈Ã

f̂ j,i +
∑

s∈T
ai

s · f̂s

=
∑

(i, j)∈Ã

f̂i, j −
∑

(j,i)∈Ã

f̂ j,i +
∑

s∈T

∑

(i, j)∈As

ρi, j −
∑

(j,i)∈As

ρ j,i

!

· f̂s

by definition of ai
s

=
∑

(i, j)∈Ã

f̂i, j −
∑

(j,i)∈Ã

f̂ j,i +
∑

s∈T

∑

(i, j)∈As

ρi, j · f̂s −
∑

s∈T

∑

(j,i)∈As

ρ j,i · f̂s

by simple term manipulation

=
∑

(i, j)∈Ã

f̄i, j −
∑

(j,i)∈Ã

f̄ j,i +
∑

s∈T

∑

(i, j)∈As

f̄i, j −
∑

s∈T

∑

(j,i)∈As

f̄ j,i

by definition of f̂

=
∑

(i, j)∈Ã

f̄i, j +
∑

s∈T

∑

(i, j)∈As

f̄i, j −

∑

(j,i)∈Ã

f̄ j,i +
∑

s∈T

∑

(j,i)∈As

f̄ j,i

!

by simple term manipulation

=
∑

(i, j)∈Ã

f̄i, j +
∑

(i, j)∈E\Ã

f̄i, j −

∑

(j,i)∈Ã

f̄ j,i +
∑

(i, j)∈E\Ã

f̄ j,i

!

5.4. Efficiency of Solving the LP Problem 75

by definition of Ã

=
∑

(i, j)∈E

f̄i, j −
∑

(j,i)∈E

f̄ j,i

= bi

by definition of LP1.

Moreover, for each (i, j) ∈ Ã, f̂i, j = f̄i, j ≥ 0 and also for each s ∈ T , f̂s =
f̄i, j

ρi, j
≥ 0. Therefore, f̂

is a feasible solution for the LP2. The amount of the objective function of LP2 correspond-
ing to this feasible solution is:

∑

(i, j)∈Ã

f̂i, j +
∑

s∈T
f̂s =

∑

(i, j)∈Ã

f̂i, j +
∑

s∈T
1 · f̂s

=
∑

(i, j)∈Ã

f̂i, j +
∑

s∈T

∑

(i, j)∈As

ρi, j

!

· f̂s

by the fact that ρi, j = µtr(v′)where (i, j) = (vtr, v′) or (i, j) = (vtr
a , v′a) and that

∑

(i, j)∈As
ρi, j = 1

=
∑

(i, j)∈Ã

f̂i, j +
∑

s∈T

∑

(i, j)∈As

ρi, j · f̂s

by simple term manipulation

=
∑

(i, j)∈Ã

f̄i, j +
∑

s∈T

∑

(i, j)∈As

f̄i, j

by definition of f̂s

=
∑

(i, j)∈Ã

f̄i, j +
∑

(i, j)∈E\Ã

f̄i, j

by definition of Ã

=
∑

(i, j)∈E

f̄i, j .

As a consequence, since every feasible solution for LP1 is a feasible solution for LP2 and
vice versa, and the value of the objective functions is the same, we have that LP1 and LP2
are equivalent. �

Since both LP1 and LP2 are equivalent to the LP(t, a,µ,R) LP problem, we exploit the
structure of LP2 to improve the efficiency of checking for a solution of LP(t, a,µ,R). Si-
multaneously, we also improve the complexity of deciding weak bisimulation. Amongst
all available versions of polynomial algorithms for solving a linear programming problem,
we resort to a state-of-the-art polynomial interior point method [Ans99] which, to the best
of our knowledge, is equipped with the tightest known worst case complexity.

76 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Theorem 5.2. Consider a rational PA P, the action a, the probability measure µ ∈ Disc(S), the
equivalence relation R on S and a state t ∈ S. Let N = |P|. Then, checking the feasibility of the
LP(t, a,µ,R) LP problem can be done in O(N3

ln N · L) where L is the bit size of the problem.

Proof. By Lemmas 5.1 and 5.2, LP(t, a,µ,R) is feasible if and only if LP2 is feasible. Now,
consider the dual of LP2; by assigning the dual variables πs for each s ∈ V , hence O(N)
variables, we get the following dual LP problem:

DLP2: max
∑

s∈V bs ·πs
subject to: πi −π j ≤ 1 for each (i, j) ∈ Ã

∑

t∈V at
s ·πt ≤ 1 for each s ∈ T .

By using a state-of-the-art preconditioned conjugate gradient (PCG) method with a partial
updating procedure [Ans99], this LP problem can be solved optimally in O(N3

ln N · L) where
L is the bit size of the problem. At termination of the algorithm, we have two possible
cases:

1. The dual LP problem has a finite optimal objective value: by the strong duality The-
orem 3.4, the original LP2 is feasible and also has a finite optimal objective value.

2. The dual LP problem is unbounded: by the strong duality Theorem the original LP2
is infeasible.

Thus, by solving the dual LP problem efficiently, we can verify the existence of a weak
combined transition for the given PA. �

Notably, if we were to use the interior point method directly on the original LP prob-
lem instead of LP2, we would face an extra factor N in the complexity bound. This is
because the running time of the method depends on the number of variables: The number
of variables occurring in LP(t, a,µ,R) is O(N2) while the number of variables in LP2 is
O(N). This reduction directly translates into a reduced worst case complexity, and this is
especially appreciable if working with large probabilistic automata.

Corollary 5.1. Given two PAs P1 and P2, let N = |P1|+ |P2|. Checking P1 ≈P2 can be done
in time O(N6

ln N · L) where L is the maximum bit size of the LP problems solved in FindSplit and
Refine.

Proof. Immediate by Proposition 5.1 and Theorem 5.2. �

Since the worst case runtime bound essentially depends on the type of the polynomial
algorithm used to solve the LP problem, any advancement in LP problem solution com-
plexity directly improves the complexity of the weak bisimulation decision problem.

Remark 5.4. If considering the structure of the LP(t, a,µ,R) LP problem, one might observe that
it is in essence a system of linear equations with non-negativity constraints. So, we may consider
instead to use elimination techniques (inspired by Gaussian elimination) to reduce the number of
variables and constraints we have in the LP problem:

1. take one of the linear equations, say fv,vtr −
∑

(vtr,u)∈E fvtr,u = 0 and one variable occurring in
it, say fv,vtr ;

5.4. Efficiency of Solving the LP Problem 77

2. express the variable as linear combination of the other variables, i.e., fv,vtr =
∑

(vtr,u)∈E fvtr,u;

3. replace each occurrence of the variable with such combination, i.e., fv,vtr by
∑

(vtr,u)∈E fvtr,u.
If we iterate this process until no more variables can be isolated at step 2, we obtain another LP
problem that is equivalent to the original one.

Now, since we are not interested in the actual value of the variables, but only on whether the
problem is feasible, we can eliminate the equations we considered at step 1 and the corresponding
variables at step 2. This results in an LP problem no more equivalent to the original one, but it is
easy to show that the latter is feasible if and only if the original problem is.

As an example, consider the following LP problem:

f0 − f1 − f2 − f3 = 0 f0 = 1 f0 ≥ 0 f1 ≥ 0
f1 + f2 − f4 = 0 f4 = 0.5 f4 ≥ 0 f2 ≥ 0
f3 − f5 = 0 f5 = 0.5 f5 ≥ 0 f3 ≥ 0

In a single time, if we replace f0, f4, and f5 with their respective values, we obtain:

1− f1 − f2 − f3 = 0 f0 = 1 1≥ 0 f1 ≥ 0
f1 + f2 − 0.5= 0 f4 = 0.5 0.5≥ 0 f2 ≥ 0
f3 − 0.5= 0 f5 = 0.5 0.5≥ 0 f3 ≥ 0

Now, by replacing f3 with 0.5, the system becomes:

1− f1 − f2 − 0.5= 0 f0 = 1 1≥ 0 f1 ≥ 0
f1 + f2 − 0.5= 0 f4 = 0.5 0.5≥ 0 f2 ≥ 0
f3 − 0.5= 0 f5 = 0.5 0.5≥ 0 0.5≥ 0

and by substituting f1 with 0.5− f2:

1− 0.5+ f2 − f2 − 0.5= 0 f0 = 1 1≥ 0 0.5− f2 ≥ 0
f1 = 0.5− f2 f4 = 0.5 0.5≥ 0 f2 ≥ 0
f3 = 0.5 f5 = 0.5 0.5≥ 0 0.5≥ 0

that is,
0= 0 f0 = 1 1≥ 0 0.5− f2 ≥ 0
f1 = 0.5− f2 f4 = 0.5 0.5≥ 0 f2 ≥ 0
f3 = 0.5 f5 = 0.5 0.5≥ 0 0.5≥ 0

This system is feasible and it has a solution for each 0≤ f2 ≤ 0.5.
This approach looks promising, but in fact is much more expensive than the result achieved by

Theorem 5.2: if we ignore the bit size of the problem, for an n× n matrix, the Gaussian elimination
has complexity O(n3) where n is the number of variables in the system of equations (corresponding
to the number of columns of the matrix). In our setting, we have an m × n matrix with m > n,
thus the actual complexity is larger than O(n3). If we now express the complexity of the Gaussian
elimination approach in terms of N = |P|, since we have O(N2) variables, the resulting complexity
is at least O(N6), without considering the complexity of solving the remaining LP problems.

Non-rational automata. The class of rational probabilistic automata, to the best of our
knowledge, encompasses all PAs that have appeared in practical applications. One may
nevertheless consider relevant also the analysis of PAs with real valued probabilities.

78 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

One possible way to represent LP problems with real data is to use a model of compu-
tation that can perform any elementary arithmetic operation in constant time, regardless
of the type of the operand. Another option is to encode reals as finite precision ratio-
nals. For a survey on the theory of computation over real numbers we refer the reader
to [BSS89, Bel01].

When using finite precision rationals, the representation of the PA must become ap-
proximate, and still the size needed for this can no longer be guaranteed to be bounded
by a polynomial. If assuming the rational approximation scheme being employed by the
user, we are back to the rational setting for the LP problem solution process, and it is left to
the user to interpret the outcome on the real valued PA. If instead the algorithm performs
the approximation prior to solving the induced LP problem, the user may in general lack
knowledge on how to transfer the result back to the original real valued PA.

5.4.2 Efficient Solution: Exploiting Structure
We now consider the practical efficiency of deciding probabilistic automata weak bisim-
ulation. We first discuss available algorithms that can be employed. We show that the
underlying structure of the problem enables us to check feasibility of the LP problem more
efficiently than by just resorting to a general purpose LP solver implicitly finding the opti-
mal solution. Afterwards we discuss other methods that are known to be more efficient in
general but turn out to be unsuitable for solving the LP(t, a,µ,R) LP problem.

Working with a linear programming problem allows practitioners to use the om-
nipresent simplex method as an extremely efficient computational tool. It is worthwhile to
note that the efficiency of the simplex method is measured as the number of pivots needed
to solve the LP problem. Moreover, practical experiments show that although this method
is highly efficient, there exist problems that require an exponential number of pivots. This
means that the worst case theoretical complexity of the simplex method is exponential
time [KM72]. However, computational experience on thousands of real-world problems
reveals that the number of pivots is usually polynomial in the number of variables and of
constraints. For a comprehensive survey on the efficiency of the simplex method, we refer
the interested reader to [Sha87].

Since the LP1 problem is a minimum cost flow problem on the network G (t, a,µ,R)
extended with an additional set of proportional flow constraints, we consider the us-
age of efficient algorithms that solve the problem directly on the flow network itself.
One such algorithm is the network simplex algorithm [BF12] for the minimum cost pro-
portional flow problem that improves the per iteration running time considerably with
respect to the simplex method, as long as the number of nodes in the network is at
least an order of magnitude larger than the number of side constraints in the LP prob-
lem [Cal02, MSJ11, BF12, MSJ13]. So, the network simplex algorithm is a candidate for im-
proving the running time required to solve LP1. However, the number of side constraints
coincides with the number of transition nodes in the LP1 problem. Since the number of
transitions in the automaton is usually larger than the number of states, we have that the
number of side constraints is linear in the number of nodes, and thus the above assump-
tion is not satisfied. Still, a more accurate analysis tells us that, in our setting, the resulting
per iteration running time of both methods is in the same complexity class, as shown in
Table 5.1. Since it is known that the network simplex algorithm without side constraints

5.4. Efficiency of Solving the LP Problem 79

LP(t, a,µ,R) LP1 LP2 DLP2
Variables/Arcs n O(N2) O(N2) O(N) O(N)
Constraints m O(N2) O(N) O(N) O(N)
Proportional Flow Sets p not applicable O(N) not applicable not applicable
Free Arcs n′ O(N2) O(N) O(N) O(N)
Simplex Method O(nm) O(N4) O(N3) O(N2) O(N2)
Network Simplex Algorithm [MSJ13] O(n′ +mp+ p3) not applicable O(N3) not applicable not applicable

Table 5.1: Complexity comparison

performs better than the simplex method [AMO93], it is still worthwhile to consider its
usage in an implementation.

Up to now, we have discussed that the simplex method and the network simplex al-
gorithm [BF12] appear quite competitive in solving the LP1, and that the flow network
structure underlying LP1 motivates the use of the network simplex algorithm. On the
other hand, we can take the dual of the equivalent LP2. This allows us to deal with a
smaller sized LP problem which is still close to a well known combinatorial problem by
itself. To clarify the point, consider the dual DLP2 of the LP2 problem:

DLP2: max
∑

s∈V
bs ·πs

subject to: πi −π j ≤ 1 for each (i, j) ∈ Ã (5.1)
∑

t∈V
at

s ·πt ≤ 1 for each s ∈ T (5.2)

The number of constraints in DLP2 is O(N), just as for LP1. The number of variables in
DLP2 is O(N)which compares favorably with O(N2), the number of variables in the orig-
inal LP1. This observation is particularly important whenever the number of transitions
is considerably larger than the number of states in the network. The dual LP problem
can again be solved very efficiently using a state-of-the-art variant of the interior point
method [Ans99]. This algorithm is a preconditioned conjugate gradient (PCG) method
with a partial updating procedure which works excellent in practice as well. The algo-
rithm is available in the software tools like CPLEX and LOQO. Furthermore, DLP2 has
itself a combinatorial structure, i.e., it is the dual of the well known shortest path prob-
lem although with additional side constraints. Taking the advantage of this combinatorial
property may help in the design of a more efficient algorithm to solve the problem.

Table 5.1 summarizes the size of the proposed LP problems and the per-iteration com-
plexity of the simplex method and of the network simplex algorithm. Since each variable
in the LP problem corresponds to an arc in the network, we identify by n both variables
and arcs; on networks, each arc either belongs to a proportional flow set or is a free arc.
The computational comparison of three LP problems is described based on N which is the
size of the automaton P. It is immediate to see that LP2 and DLP2 are the smallest prob-
lems that are at least one degree smaller than the other LP problems, making them more
suitable as input for the LP solvers.

80 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

5.4.3 Efficient Solution: Unsuitable Approaches
As we have seen, the LP(t, a,µ,R) LP problem can be solved efficiently using the simplex
method or the network simplex algorithm.

Several other solutions have been proposed in the literature to solve variations of LP
problems more efficiently: among others, there are approximation algorithms [Vaz04],
electrical flow representation [CKMS11], network decomposition [Pul89], and Lagrangian
relaxation [BT97]. As we will see in the remainder of this section, all these approaches are
not suitable for solving the LP(t, a,µ,R) LP problem and its equivalent reformulations, but
for different reasons: either because the corresponding model does not enable an encod-
ing of the LP(t, a,µ,R) LP problem at hand, or the answer provided by the algorithm can
not always be mapped into an answer to our problem, or the algorithm is prohibitively
expensive in case of a positive answer.

Despite being unsuitable, we review our findings concerning these methods for two
main motivations: the first is to clearly identify the specific characteristics of the problem
faced, the second motivation is to propose a new challenging problem to both the opti-
mization and the probabilistic automata world.

5.4.3.1 Approximation Algorithms

As a first approach, we consider the use of an approximation algorithm to check the feasi-
bility of the original LP problem by dropping the proportional flow constraints and then
solving the remaining linear programming problem efficiently. This exploits that the re-
maining LP problem is actually a minimum cost flow problem on the network G (t, a,µ,R)
and the general network simplex algorithm can solve it extremely efficiently. If the relaxed
problem is infeasible, so it is the original LP problem; otherwise, we get a feasible solu-
tion that may not be feasible for the original one. In this case, we assign fixed weights
to each proportional flow constraint and increase the weight for the violated side con-
straints as a penalization. This procedure, known as the multiplicative weight update
method [AHK12], is repeated until a feasible solution which is near optimal is found. The
advantage of this approach is that in each iteration we deal with a well structured LP
problem that can be solved efficiently.

The main problem of this approach is that in general a positive result does not imply
the existence of the corresponding weak transition. Consider, for example, the automaton
whose only transitions are s

a−→ µ and t
a−→ δv where µ = {(v, p), (u, 1− p)} for some p ∈

[0, 1]; suppose that u 6R v. It is easy to verify that µ 6L(R) δv for each p 6= 1, so there does
not exist any weak transition t

a
=⇒c ρ such that µ L(R) ρ since the only possible weak

transition enabled by t labelled by a is t
a
=⇒c δv . However the approximation algorithm

gives us a positive answer whenever p is close enough to 1, so a positive answer does
not ensure the existence of the weak transition, unless we force the gap between optimal
and near optimal objective values to be 0. But this may make the overall algorithm very
expensive. However, for practical purposes, approximation algorithms can be used to
refute the existence of a weak transition.

5.4. Efficiency of Solving the LP Problem 81

5.4.3.2 Electrical Flows

As a second approach we consider a physical metaphor for graphs by transforming the
network G (t, a,µ,R) as an electrical network. This comes with replacing the arcs of the
network by resistors. Our goal is to arrive at a setting where we can use the state-of-the-
art max flow algorithm [CKMS11] as an approximation algorithm to solve the original LP
problem. The weakness of this approach is twofold: the approximate nature of the proce-
dure has the same drawback as the previous approach, and furthermore the applicability
of the transformation. Even if an efficient non-approximate algorithm was at hand, the
transformation can not be applied, since it is restricted to undirected networks [CKMS11],
while G(t, a,µ,R) is directed. Extending the results in [CKMS11] to directed networks is
an open problem.

To make the network directed, we may represent each arc by a resistor and a diode that
is a two-terminal component allowing the current to flow in a single direction. Even by
using diodes to direct the network, we still need to solve two problems: cycles and non-
determinism. In an electrical network it is not possible to have the current going through
a passive cycle since the overall potential difference in the cycle is zero, unless we use
some fictitious voltage generator that breaks the cycle, while in probabilistic automata
it is common to have internal cycles: consider for instance the transition s

τ−→ µ where
µ = {(t, 0.3), (s, 0.7)}; by using the determinate scheduler σ that stops in t and performs
s

τ−→ µ in s, we obtain the weak transition s
τ
=⇒c δt , that is, we eventually leave the self-

loop with probability 1. In order to obtain a similar result in an electrical network, we
have to add a fictitious voltage generator in the cycle corresponding to the self-loop that
generates the correct potential difference. Finding such difference is essentially equiva-
lent to defining the scheduler. The second problem is related to nondeterminism: sup-
pose that we have two transitions s

τ−→ µ and s
τ−→ ρ where µ = {(u, 0.3), (v, 0.7)} and

ρ = {(u, 0.7), (v, 0.3)}, so we can reach v with different probabilities by using two different
transitions. When we encode these two transitions in the electrical network, we obtain two
parallel paths from s to v that are subject to the same voltage difference Vsv , so the current
flows in both paths according to Ohm’s law. However the scheduler can choose to perform
only s

τ−→ µ thus in the network we should have a non null current from s to v in the path
modelling such transition and a null current in the path corresponding to s

τ−→ ρ, that is,
the former requires Vsv > 0 while the latter requires Vsv = 0 and this is clearly impossible.

5.4.3.3 Network Decomposition

As a third approach, we consider a natural decomposition of the state space of the un-
derlying network. We aim at designing a parallel algorithm that speeds up the check for
feasibility of the LP problem when a ∈ E. The underlying network can be seen as a net-
work of three layers (here considered in horizontal layout): the left hand side and the right
hand side layers correspond to the internal transitions (sets L1 and L2, respectively) while
the central layer to the external transitions (set La). Moreover it is possible to change layer
only from left to right. Using this intuition, each layer can be treated independently so
that the network simplex algorithm instantiations can find the minimum cost flow in the
left and the right layers in parallel. Then, to connect these two layers via the central one
it is enough to solve a linear system of equations corresponding to the central arcs. This
system can be solved in linear time.

82 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

However, this approach is not suitable as a negative answer does not imply the non-
existence of the weak transition: consider the following PA.

t

u

v

x

y

z

τ
1/2

1/2

1a

1a 1/4
τ

3/4

1
τ

It is immediate to see that t
a
=⇒c δz ; now, consider the identity relation over states I and

the part of the corresponding layered network between source and sink, where numbers
attached to arcs indicate probabilities, and are not part of the graph.

Í t t trt

u

v

utru
a

vtrv
a

xa x trx
a

ya y
try
a

za [z]I È

Left layer Right layer

1/2

1/2

1

1

1

1/43/4

The solution of the left layer is unique and it assigns outgoing flow 1/2 to both vertices u
and v, while the optimal solution for the right layer assigns flow 1 to arcs (xa, x trx

a), (x
trx
a , za)

and flow 0 to arcs (ya, y
try
a), (y

try
a , za), and (y

try
a , ya). By using these two optimal solutions,

there is no way to obtain a solution for the central layer since there is only one path from u
to xa and flow requirements are different. However there exists a solution for the network
as a whole that requires for the right layer the non-optimal feasible solution fxa ,x trx

a
= 1/2,

fx trx
a ,za

= 1/2, f ya ,y
try
a
= 4/2, f y

try
a ,za

= 1/2, and f y
tr y
a ,ya

= 3/2, thus a negative answer from the
layered network decomposition does not imply that there does not exist a feasible solution
for the whole network. The core reason is that the optimal solution of one layer may be not
part of a feasible solution of the whole network: a feasible solution may only be induced
by a sub-optimal layer solution.

5.4.3.4 Lagrangian Relaxation

As a last approach, we consider a Lagrangian relaxation [BT97] algorithm to solve the dual
LP problem efficiently. Consider again the DLP2 problem; in order to form a Lagrangian
relaxation of DLP2, we multiply the set of constraints (5.2) by non-negative Lagrangian
multipliers λs, s ∈ T , and we add them to the objective function, obtaining the following
relaxed dual LP (RDLP) problem:

L(λ): max
∑

t∈V
(bt +

∑

s∈T
λs · at

s) ·πt −
∑

s∈T
λs

subject to: πi −π j ≤ 1 for each (i, j) ∈ Ã

For a fixed vector λ, this LP problem can be efficiently solved using the simple and fast
algorithm described in [HN94].

5.5. Implementation of Minimization 83

Consider the Lagrangian dual LP (LDLP) problem:

LDLP: min L(λ)
subject to: λ≥ 0

The purpose of the LDLP problem is to find the tightest bound L(λ) for the possible values
of λ. Since RLDP is always feasible with solution πt = 0 for each t ∈ V , we can make no
claims on the feasibility of the original DLP2 problem unless (1) actually finding a feasi-
ble solution for the original DLP2 problem, or (2) proving that the optimum solution for
LDLP is bounded. This is the main point that induces the weakness of this approach as an
efficient verification procedure.

5.5 Implementation of Minimization

The results presented thus far provide ample understanding for an implementation of a
quotienting algorithm. This section presents and discusses such an implementation which
is tailored to the computation of the minimal automaton that is weak probabilistic bisimilar
to a given one [EHS+13]. In fact, some intricate problems remained to be overcome to make
the approach effective and scalable. These problems are rooted in numerical aspects of the
computations at hand as well as in the often excessive number of feasibility checks needed.
Both these aspects are genuine to the setting considered and neither occur in the context of
minimizing labelled transition systems, nor in other stochastic minimization contexts.

We here report on our second generation prototype minimizer, implemented in Java. It
has a modular structure and it can delegate the feasibility checks either to an LP solver, or
to an SMT solver. We use LpSolve [LpS] as LP solver, the GLP Kit [GLP] as exact arithmetic
LP solver, and Z3 [dMB08] as SMT solver. We encode our SMT formulation according
to the SMT-LIB format [BST10] allowing the use of other solvers. We can use an SMT
solver instead of an LP solver since Proposition 5.2 relates the existence of the desired weak
transition t

a
=⇒ µt such that µ L(R) µt with the feasibility of the LP(t, a,µ,R) problem, so

we are not interested in the optimal solution, but just in a solution.
We perform the feasibility check directly on the original LP(t, a,µ,R) problem. This

allows us to maintain an undisguised view on the structure of the problem, which we
considered important to ensure the correctness of the prototype implementation, and also
to assess the relative share of the different algorithmic steps to the overall runtime and
space requirements.

5.5.1 Implementation Details
In our prototype we have implemented several heuristics in order to minimize the number
of solver calls needed to compute the coarsest weak bisimilarity. We can classify these
heuristics in two classes: the pre-bisimulation reductions and the in-loop optimizations. Finally,
we consider the extraction of exact solutions from inexact solutions to improve the in-loop
optimizations and the parallelization of the solver calls.

84 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

5.5.1.1 Pre-Bisimulation Reductions

We reduce the automaton before computing the weak probabilistic bisimulation by remov-
ing irrelevant transitions and collapsing states that are trivially bisimilar. In particular, we
remove internal self loops (i.e., transitions as s

τ−→ δs), we merge all deadlock states in a
single one and each pair of states (s, t) in t such that the only transition enabled by s is
s

τ−→ δt . Moreover, we merge states s and t if the transitions they enable reach the same
distributions via the same labels. These reductions are sound since it is easy to prove that
all these merged states are weak bisimilar.

It is also possible to apply a preliminary bisimulation reduction based on strong (prob-
abilistic) bisimulation [Seg06, Seg95] that would collapse some more states; note however
that such reduction does not cover all above reductions; for instance, it does not remove
self-loops as well as usually it does not collapse transitions like s

τ−→ δt .

5.5.1.2 In-Loop Optimizations

We adopt several optimizations in order to reduce the number of weak combined transi-
tions computed by calling the solver. In particular, we implement the internal optimization
that allows us to skip the LP problem construction and solution whenever the challenging
transition at line 3 of the FindSplit procedure is of the form s

τ−→ µs with µs([s]R) = 1. Such
transition is trivially matched by any t ∈ [s]R by performing no transitions at all. Similarly,
by using the direct transition optimization we save a solver call if the state t directly enables
a transition t

a−→ µt matching s
a−→ µs, i.e., we check whether there exists (t, a,µt) ∈ T such

that µs L(R) µt . Finally, we maintain a transition cache containing for each state t, the list of
computed transitions t

a
=⇒c µt where the distribution µt has been generated by the solver

on the LP(t, a,µs,R) problem for some challenging transition s
a−→ µs. This cache allows

us to save a solver invocation whenever the cache contains a matching transition. Suppose
that we have already used the LP or SMT solver in order to find a matching transition
t

a
=⇒c µ

′
t for s

a−→ µ′s such that µ′s L(R
′) µ′t for some partitioning R′. As long as µs L(R) µ′t

holds for the current partitioning R, there is no need to call again the solver since it is go-
ing to give a positive answer, so we can save such call. In order to be effective, we need to
keep the cache updated and this can be achieved easily since the only operation we need
is to add entries to the cache, provided that we store the computed t

a
=⇒c µt transitions.

5.5.1.3 Exact solutions from inexact solutions

The optimizations presented previously need to compare distributions, either when check-
ing µs L(R) µt or while searching for a cached weak combined transition. In order to be
effective, rational numbers cannot be represented using floating-point numbers since small
rounding errors may render floating-point comparisons to become incorrect. For the direct
transition optimization we overcome the problem by using exact representations for prob-
abilities, such as infinite precision integers. For the caching, we need to retrieve the optimal
feasible solution from an LP or SMT solver. This is only possible if we use an SMT solver
or an LP solver equipped with exact arithmetic, since floating-point based LP solvers only
provide inexact solutions for the system of inequalities, making the cache rather useless.
We solve this problem via the inexact to exact optimization, i.e., by finding the exact solu-

5.5. Implementation of Minimization 85

tion as long as the underlying rational number does not have a large denominator. Any
number p ∈ R can uniquely be represented as a simple continuous fraction of the form:

a0 +
1

a1 +
1

...

Therefore any number can be represented canonically by the sequence a0, a1, . . . ; note that
such sequence is finite if and only if p ∈ Q. The canonical representation can be obtained
by using the following inductive definitions [JT80]:

ai = bpic p0 = p pi+1 = (pi − bpic)−1

Any number can be approximated by cn, the continuous fraction obtained from the finite
sequence a0, . . . , an. In fact, cn is the best rational approximation: any other rational number
that is closer to p has a denominator larger than cn. Moreover, cn+1 has a denominator
larger than cn, thus the sequence {ci} converges absolutely to p. We calculate the sequence
of approximations c0, c1, . . . until we find a value cn such that |p − cn| < ε for a predefined
ε > 0.

5.5.1.4 Parallel solvers

In FindSplit, for each state s, for the current partition R we have to check whether all its
enabled transitions have a matching weak transition in all the states in [s]R. During such
a loop the partition R does not change, therefore we can generate all the LP problems in
advance, so as to solve them in parallel. We implemented a simple thread pool where
each single task checks all the matching transitions from a given t ∈ [s]R, i.e., the first task
manages t1, the second task t2, and so on.

5.5.2 Case Studies
We evaluated our prototypical implementation by applying it to several cases studies
taken from the literature. Experiments were run on four AMD® Opteron® 8350 (Quad-
core) 2GHz with 120GB of RAM. We only used 14 out of 16 cores with the memory usage
restricted to 8GB. Time-outs correspond to experiments that took more than 6 hours to
complete. The models we considered are IEEE 802.3 CSMA/CD protocol, dining cryptog-
raphers, IEEE 1394 FireWire root contention protocol, IEEE 802.11 Wireless LAN, and IPv4
Zeroconf protocol that we have taken from the PRISM benchmark suite [PRI] and only
minor changes have been made to manage the shared variables for synchronization. More
information on the case studies and the choice of parameters is directly available from the
benchmark suite [PRI]. We hide the action time in the variant with suffix “-nt” and we
unify similar actions in the “-sa” variant; for example, we rename send1 and send2 to
send.

5.5.2.1 Additional Reductions

Given a PA P, we denote by P1 the automaton resulting from the repeated application of
the pre-bisimulation reductions until such reductions do not change the automaton any-
more. The effectiveness of these reductions is shown in Table 5.2, where we report for

86 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Problem |S| |T| |S1| |T1| tP1
|[S]≈| |[T]≈| t[P1]≈

csma2 1038 1054 835 849 1s 449 459 1s
csma2-sa 1038 1054 621 630 7s 233 237 < 1s

csma2-sa-nt 1038 1054 91 98 < 1s 87 90 < 1s
dining4 2165 4540 161 300 < 1s 1 1 < 1s

firewire3 611 694 425 469 5s 425 469 5s
firewire3-nt 611 694 29 62 < 1s 4 4 < 1s
wlan_dl0dl6 97 148 63 94 < 1s 59 86 1s

wlan0col0 2954 3972 1097 1591 14s 798 1092 120s
zeroconf 670 827 341 433 < 1s 334 420 14s

zeroconf-nt 670 827 52 75 < 1s 41 52 < 1s

Table 5.2: Minimization overview

Problem |T1| ∆ DT CH TC t≈ tSolver |≈|
csma2 849 24297 82337 150 11700 288s 243s 449

csma2-sa 630 9111 66162 0 6067 97s 83s 233
csma2-sa-nt 98 1739 186 14 1118 12s 6s 87

dining4 300 45440 240 2175 145 6s 5s 1
firewire3 469 30842 34070 257 1311 44s 36s 425

firewire3-nt 62 664 833 48 166 2s 1s 4
wlan_dl0dl6 94 107 277 46 405 4s 1s 59

wlan0col0 1591 48284 102296 14902 30204 1h3m 1h1m 798
zeroconf 433 2063 30829 453 2065 59s 47s 334

zeroconf-nt 75 361 265 99 348 5s 2s 41

Table 5.3: Caching overview for SMT

several case studies the state and transitions space size of the original automaton P, of
the corresponding P1, and of the minimal automaton [P]≈. The columns tP1

and t[P1]≈
report the time needed to reduce P to P1 and to generate [P1]≈ from P1 and the given
≈, including the time for the post-quotient reductions of the automaton.

More precisely, we consider in [P1]≈ also the time needed for removing redundant
transitions (that requires further checks for the existence of the weak combined transi-
tions) and for rescaling distributions (cf. Section 5.2.2). In particular, the former reduction
requires to remove one transition at a time and check whether there exists a weak com-
bined transition using only the remaining transitions that reaches the same distribution.
The difference of time of the Wireless LAN case with respect to the other cases depends
on the number of internal transitions still present in the quotient as well as the number of
transitions leaving the state: if a state enables only one transition or only transitions with
different external actions, then there is no need to try to remove such a transition, since we
will obtain a negative answer for sure.

5.5. Implementation of Minimization 87

Problem |T1| ∆ DT CH TC t≈ tSolver |≈|
csma2 849 24289 73229 150 11650 560s 556s 449

csma2-sa 630 9111 67657 0 6078 121s 118s 233
csma2-sa-nt 98 1739 186 14 1118 6s 6s 87

dining4 300 45440 240 2175 145 4s 3s 1
firewire3 469 30842 33878 257 1311 68s 66s 425

firewire3-nt 62 664 833 48 166 1s 1s 4
wlan_dl0dl6 94 107 275 45 410 1s < 1s 59

wlan0col0 1591 53768 109604 16584 30362 1h17m 1h17m 798
zeroconf 433 2258 35098 515 2063 71s 69s 334

zeroconf-nt 75 379 281 105 333 2s 2s 41

Table 5.4: Caching overview for LP with inexact to exact optimization

Problem |T1| ∆ DT CH TC t≈ tSolver |≈|
csma2 849 24297 55499 150 12139 1h2m 1h2m 449

csma2-sa 630 9111 66969 0 6136 555s 544s 233
csma2-sa-nt 98 1739 186 14 1118 18s 17s 87

dining4 300 45440 240 2175 145 7s 6s 1
firewire3 469 30842 34064 257 1311 404s 399s 425

firewire3-nt 62 664 833 48 166 2s 2s 4
wlan_dl0dl6 94 107 275 45 410 2s 2s 59

wlan0col0 1591 —time-out—
zeroconf 433 2009 29781 421 2069 207s 200s 334

zeroconf-nt 75 362 269 99 348 5s 4s 41

Table 5.5: Caching overview for GLP (exact solver)

5.5.2.2 Quotient Performance

Tables 5.3, 5.4, and 5.5 show the effects of the different optimizations and the running
time of the implementation of the Quotient procedure, where the solver used for checking
LP(t, a,µs,R) is SMT, LP, and GLP, respectively.

After the columns with the problem and the number of transitions of P1, the column∆
shows the number of challenging transitions verified via the internal optimization. Note
that this condition trivially holds for each internal transition in the first round of the outer
cycle since the initial partition contains only S1 as class, so every internal transition reaches
such class with probability 1. The column DT shows the number of times the defender
t has been able to use the direct transition optimization, i.e., by a transition t

a−→ µt , to
match a challenging transition s

a−→ µs. Column CH reports the number of cache hits, that
is, the challenging transitions s

a−→ µs that have been matched by a transition stored in the
transition cache. The column TC contains the number of challenging transitions for which
we have solved the LP(t, a,µs,R) problem.

The following two columns show the time t≈ spent computing the weak bisimilarity
≈ including the time tSolver spent by the solvers for verifying all transitions counted in
column TC. Since we use a pool of solvers running in parallel, tSolver is the time spent by

88 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

the slowest solvers in the pool, i.e., the time elapsing from the activation of the first solver
to the completion of all solvers in the pool. Finally, the last column |≈| gives the size of the
partition, i.e., the number of classes of bisimilar states. This value, decreased by 1, is also
the number of refinements we perform in order to terminate the while loop of Quotient.

By comparing the running times for the SMT, LP, and GLP solvers, we can see that GLP
is always the slowest one while SMT is the best performing among them. This can possibly
be explained by the highly optimized code of Z3 and the remarkable results achieved by
the SAT community on satisfaction modulo theory problems. The use of SMT, however,
introduces an overhead in the computation, as highlighted by the comparison between
the columns t≈ and tSolver of Table 5.3. Such overhead is mainly caused by the need of
translating the LP problem construction into the textual SMT-LIB format [BST10] and then
converting the solution (when the problem is satisfiable) back to numeric values. This
induces a considerable usage of string operations and conversions that are not needed for
the other solvers.

It is worthwhile to note that the values relative to the in-loop optimizations, including
∆ and DT, strictly depend on the order in which we check the pairs of states belonging to
the equivalence classes of the current partition R. In fact, if we have a class C that has to
be split in C1, C2, and C3, we may first split out C1, or C2, or C3. This means, for instance,
that if we have to match from a state t ∈ C1 a transition s

τ−→ µ such that µ(C1 ∪ C2) = 1 but
µ(C1) < 1, only the latter split permits to increase ∆. Moreover, the cache hits values are
also affected by the fact that when we solve LP(t, a,µs,R), we look for one possible weak
transition t

a
=⇒c µt such that µs L(R) µt and in case there are several of them, we just

store in the cache the transition computed by the solver. However there is no guarantee
that such transition is the same for all solvers, thus the actual content of the cache can be
different. This influences the successive cache hits, in particular after the split of one class.

It is worthwhile to remark that there are cases where an unlucky order of the partition
splits may scale the transitions to check by a factor 20 that causes a significant increase of
both t≈ and tSolver. For this motivation, we do not fix an order on the pairs of states we
check, and we let it depend on the nondeterministic insertion of states in the classes. In
fact, for a fixed challenger state s, we generate the required LP(t, a,µs,R) problems for each
challenging transition s

a−→ µs and each defender state t and then we use a pool of solvers
running in parallel to verify them. In case of failure, we add the failing defender t to C f
but the order of such additions is nondeterministic since it depends on the solver running
time, the scheduling of the Java threads interacting with the solvers, the operating system
scheduling of the solvers, and so on.

As the tables show, the in-loop optimizations reduce considerably the number of tran-
sitions that have to be checked by calling the LP or SMT solver, thus making the program
faster. In fact, there is a strict correlation between the number of checked transitions and
the time spent by the solver. This can be taken as a justification for the claim that weak
bisimulation minimization does not scale very well to larger automata, unless the automa-
ton is given as the composition of several smaller automata running in parallel.

In particular, the experiments demonstrate that our implementation uses a reasonable
amount of time on automata whose size is the order of up to 3 · 103 states and transitions.
Larger automata are likely to induce a time-out, as exemplified in Table 5.6. In these cases,
compositional minimization is the suggested way to overcome this limitation, as we dis-
cuss in the next section.

5.5. Implementation of Minimization 89

Components |S�| |T�| |[S]≈| |[T]≈| t≈
c3 ‖ p1 114 772 95 643 6s

[c3 ‖ p1]≈ ‖ p2 570 2502 285 1214 1h31m
[[c3 ‖ p1]≈ ‖ p2]≈ ‖ p3 1172 2352 1 1 1h38m

c3 ‖ p1 ‖ p2 ‖ p3 2720 5568 —time-out—

Table 5.6: Compositional minimization of consensus protocol for three parties

Components |S�| |T�| |[S]≈| |[T]≈| t≈
d1 ‖ d2 33 76 6 14 2s

[d1 ‖ d2]≈ ‖ d3 39 92 6 14 4s
[[d1 ‖ d2]≈ ‖ d3]≈ ‖ d4 39 92 1 1 5s

d1 ‖ d2 ‖ d3 ‖ d4 2165 4540 1 1 5s
d1 ‖ d2 ‖ . . . ‖ d8 1687113 6952248 1 1 13s
d1 ‖ d2 ‖ . . . ‖ d10 42906171 220947474 1 1 18s

Table 5.7: Compositional minimization of dining cryptographers: termination

Components |S�| |T�| |[S]≈| |[T]≈| t≈
i1 = d1 ‖ d2 41 92 20 41 4s

i2 = [i1]≈ ‖ d3 105 247 33 75 33s
i3 = [i2]≈ ‖ d4 180 482 45 107 330s
i4 = [i3]≈ ‖ d5 248 706 57 139 20m
[i4]≈ ‖ d6 178 372 7 6 22m

d1 ‖ d2 ‖ d3 ‖ d4 2242 4708 5 4 39s
d1 ‖ d2 ‖ . . . ‖ d5 12042 31184 6 5 335s
d1 ‖ d2 ‖ . . . ‖ d6 63511 196642 7 6 22m
d1 ‖ d2 ‖ . . . ‖ d7 329784 1189626 8 7 59m
d1 ‖ d2 ‖ . . . ‖ d8 1689417 6961480 9 8 2h41m

Table 5.8: Compositional minimization of dining cryptographers: Anonymity

5.5.3 Compositional Minimization
To show the practical effectiveness of the minimization in a compositional context, which
we discussed in theory in Section 5.2.2, we consider two case studies that we fail to reduce
otherwise, due to their prohibitive size: the Consensus Protocol with three parties and the
Dining Cryptographers with four, eight, and ten cryptographers. For instance, by apply-
ing Definition 4.6, the four cryptographers case requires 38416 states and 6380 transitions;
eight and ten cryptographers are essentially intractable since they involve around 1.5 and
300 billions states, respectively. We avoid this by constructing the model compositionally,
applying weak bisimulation minimization on the intermediate automata. Moreover, to
make this compositional minimization more effective, we use the hiding operator as soon
as possible to restrict the visibility of the actions that are “private” between two automata.

Each of the Tables 5.6, 5.7 and 5.8 is split in two parts: the top part contains all interme-
diate steps performed by the compositional minimization leading to the minimization of

90 Chapter 5 : Efficiency of Deciding Probabilistic Automata Weak Bisimulation

0

1 2

3 s

1
2

τ
1
2

1
2

τ

1
2

1
2

τ

1
2

succ

Figure 5.3: The minimized four dining cryptographers (anonymity)

the final automaton; in each row, the column t≈ includes the value of the previous row, thus
reporting the total time used thus far. The bottom part of the table contains the number of
states and transitions of the composed automata without intermediate minimization, and
the time for the corresponding compositional minimization.

For the consensus protocol, we can see from the top part of Table 5.6 that the compo-
sitional minimization allows us to reduce the automaton to a single state and transition,
representing the fact that the consensus is reached with probability 1, whereas the same
reduction can not be obtained within the time-out by first composing the parties and then
minimizing the composed automaton. The time required for the former approach actually
depends on the intermediate step, where we reduce the automaton [c3 ‖ p1]≈ ‖ p2, that
returns an automaton that is essentially half of the original one. The main motivation for
this situation is that the intermediate automaton has still a lot of visible actions that can
not be hidden since they are needed to synchronize with p3.

On the contrary, the dining cryptographers protocol is a good example that shows how
using the hiding operator as soon as possible permits to drastically reduce the size of the
minimized automaton. In fact, since the synchronization happens only between cryptog-
raphers that are neighbors, such as di and di+1, and such synchronization has to be secret,
it makes sense to hide it just after having composed di and di+1. Consider the termination
of the dining cryptographers protocol with n= 4 cryptographers, as shown in the top part
of Table 5.7: the proposed combination of hiding and compositional minimization permits
to reduce any chain d1 ‖ · · · ‖ dl , where 1 < l < n, to an automaton with 6 states and 14
transitions. Then, for l = n−1, the synchronization of d1 and dn−1 with dn closes the circle of
cryptographers that once minimized shows that the protocol terminates with probability
1.

For the anonymity property, the reduction of each chain does not lead to the same size
but to an automaton whose size grows linearly with the number of cryptographers. This
is caused by the fact that we have to keep track of the sequence of agrees announced by the
cryptographers and this number clearly depends on the involved cryptographers. As in
the PRISM benchmark, we assume that one cryptographer is paying and we check a partic-
ular outcome of the agreement, that is, we check that the probability of a given sequence of
agrees and disagrees is 1/2n−1. It is immediate to see that the minimized automaton satisfies
this property; see for instance the anonymity of four cryptographers in Figure 5.3, where
the probability of reaching the state s is 1/23.

5.6. Concluding Remarks 91

It is clear that for the dining cryptographers protocol the compositional minimization
approach outperforms the minimization of the composition and we expect that this ex-
tends to all systems where few components share the same actions.

5.6 Concluding Remarks

In this chapter, we have considered efficiency analysis of deciding PA weak bisimulation
which is known to be polynomial [TH15]. After a survey of available polynomial algo-
rithms to solve an LP problem, we established an upper bound on the worst case complex-
ity of the decision problem for general PA. We demonstrated that a small modification of
the LP problem discussed in [TH15] enables taking advantage of the underlying network
structure to improve the practical efficiency of solving the problem.

In addition, we have presented an implementation of the decision algorithm, in the
form of a quotienting algorithm enabling to minimize probabilistic automata with respect
to weak probabilistic bisimulation. We enhanced this algorithm with several heuristics that
permit to reduce the running time of the program considerably, and have shown that min-
imization can be applied effectively to standard benchmark models. We have also investi-
gated how compositional minimization techniques can be exploited for models consisting
of several sub-automata running in parallel.

Although, probabilistic automata weak bisimulation admits an efficient decision algo-
rithm and also is a congruence for parallel composition, hiding, and other operators on
PAs; defining similar equivalence relations for the probabilistic systems with parametric
uncertainty is not so straightforward in terms of computational complexity and composi-
tionality. The latter will be at the core of our studies in the forthcoming chapters.

CHAPTER6
Compositional Minimization for Model

Checking of Interval MDPs

In this chapter, we define the first bisimulation for model checking PCTL properties of
interval MDPs which is in turn the first bisimulation for MDPs with uncertain transitions in
general. Furthermore, we show how to compute the coarsest bisimulation by an algorithm
based on comparing polytopes of probability distributions associated with each transition.
We also discuss the worst case time complexity of the decision problem and show that it is
coNP-complete. Afterwards, we build a bridge between Probabilistic Verification and Robust
Optimization and establish a novel modelling of the probabilistic bisimulation problem for
interval MDPs as an instance of an uncertain LP problem. In particular, we show that
deciding bisimilarity of a pair of states can be encoded as the adjustable robust counterpart
of an uncertain LP. We prove that using affine decision rules, probabilistic bisimulation
relation can be approximated in polynomial time. We have implemented our approach
and demonstrate its effectiveness on several case studies.

Finally, we address the key ingredients to build up the operations of parallel composi-
tion for composing interval MDP components at run-time. More precisely, we investigate
how the parallel composition operator for interval MDPs can be defined so as to arrive at a
congruence closure. As a result, we show that probabilistic bisimulation for interval MDPs
is congruence with respect to two facets of parallelism, namely synchronous product and
interleaving.

The material presented in this chapter is an extended version of the results reported
in [HHK14, HHS+16b, HHHT16, HHT16].

Organization of the chapter. We start with Probabilistic Computation Tree Logic (PCTL)
in Section 6.1 to express and analyse properties of IMDPs. In Section 6.2 we address the
probabilistic bisimulation for model checking PCTL properties of IMDPs and afterwards,
we focus on the computational complexity of the decision problem and the ways we can
compute it algorithmically. In Section 6.3 we discuss compositionality methods for rea-
soning about IMDPs. Furthermore, we demonstrate the effectiveness of our approach on
several case studies in Section 6.4. Finally, Section 6.5 concludes the chapter.

93

94 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

s |=(∀) true
s |=(∀) x iff x ∈ L(s)
s |=(∀) ¬ϕ iff s 6|=(∀) ϕ
s |=(∀) ϕ1 ∧ϕ2 iff s |=(∀) ϕ1 ∧ s |=(∀) ϕ2

s |=(∀) P1p(ψ) iff ∀σ ∈ Σ,∀π ∈ Π : Prσ,π
s

�

|=(∀) ψ
�

1 p
ξ |=(∀) Xϕ iff s2 |= ϕ
ξ |=(∀) ϕ1U≤kϕ2 iff there exists i ≤ k such that si |=(∀) ϕ2

and s j |=(∀) ϕ1 for every 1≤ j < i
ξ |=(∀) ϕ1Uϕ2 iff there exists k ∈ N such that

ξ |=(∀) ϕ1U≤kϕ2

Table 6.1: PCTL semantics for model checking IMDPs

6.1 Probabilistic Computation Tree Logic (PCTL)

Formal verification of properties of IMDPs requires a proper language to precisely describe
such properties. There are various ways to specify properties of IMDPs. Throughout this
thesis, we focus on Probabilistic Computation Tree Logic (PCTL), a probabilistic logic de-
rived from CTL [HJ94]. The syntax of PCTL state formulas ϕ and PCTL path formulas ψ
is given by:

ϕ := true | x | ¬ϕ | ϕ1 ∧ϕ2 | P1p(ψ)

ψ := Xϕ | ϕ1Uϕ2 | ϕ1U≤kϕ2

where x ∈ AP, p ∈ [0,1] is a rational constant, 1∈ {≤,<,≥,>}, and k ∈ N.
The semantics of the logic PCTL depends essentially on the way nondeterminism is

resolved for the probabilistic operator P1p(ψ). In particular, in the setting of model check-
ing we aim to check if the IMDP M satisfies the PCTL property ϕ under all resolutions of
nondeterminism, resolved by a scheduler and all resolutions of uncertainty, resolved by a
nature. Thus, for the purpose of model checking PCTL properties, we quantify both the
nondeterminisms universally and define the satisfaction relation s |=(∀) ϕ as reported in
Table 6.1. In the semantics description, |=(∀) ψ denotes the set of infinite paths ξ of the
form ξ = s1s2 · · · which satisfy ψ, i.e., {ξ ∈ Pathsinf

M | ξ |=(∀) ψ}. It is easy to show that
the set |=(∀) ψ is measurable for any path formula ψ, hence the definition is correct. We
will explain the PCTL semantics for other ways of resolving nondeterminisms in the next
chapter.

6.2 Probabilistic Bisimulation for Model Checking IMDPs

In modelling real world systems, if uncertainty stems from a small number of different
phenomena such as node failure or loss of a message, there would be a prohibitive redun-
dancy over the states space. In the following example, we explain the redundancy of large
models with a small source of uncertainty.

6.2. Probabilistic Bisimulation for Model Checking IMDPs 95

Example 6.1. Consider a Wireless Sensor Network (WSN) containing N sensors S1, S2 · · ·SN and
a gateway G, all communicating over an unreliable channel. For simplicity, we assume that each
sensor continuously sends some data to the gateway which are then pushed into an external server
for further analysis. As the channel is unreliable, with some positive probability p each message
with data may get lost. The WSN can be seen as the parallel composition of gateway G and sensors
Si depicted below that synchronise over labels sendi ’s and receivei ’s.

rec

receivei ∀i

(a) Gateway G

succ fail

sendi p

1− p

sendi

p

1− p

(b) Sensor Si

For instance environmental effects on radio transmission, mobility of sensor nodes or traffic
burst (see e. g. [Rin09]) cause that the exact probability of failure is unknown. The estimation of
this probability, e.g. by empirical data analysis, usually leads to an interval p ∈ [`, u] which turns
the model into an IMDP.

Let us stress that there is only one source of uncertainty appearing all over the state space no
matter what is the number of sensors N . This makes many states of the model behave similarly.
For example in the WSN, the parallel composition of the above model has 2N states. However one
can show that the bisimulation quotient has only N + 1 states. Indeed, all states that have the same
number of failed sensors have the same behaviour. Thus, for limited source of uncertainty in a model
obtained by compositional modelling, the state space reduction may be enormous. �

In order to mitigate the impact of the resulting state space explosion phenomenon, we
address probabilistic bisimulation to reduce the size of such an IMDP while preserving
the PCTL properties it satisfies. To this end, we consider the notion of probabilistic bisim-
ulation for the cooperative interpretation of IMDPs in which we assume that scheduler
and nature are resolved cooperatively in the most adversarial way: in the game view of the
bisimulation, challenging scheduler and nature work together in order to defeat the de-
fender with a transition that can not be matched. As pointed out earlier, this is a natural
semantics in verification of probabilistic systems.

Besides the cooperative behaviour, the choice of a probability distribution respecting
the interval constraints can be done either statically [JL91], i.e., at the beginning once for
all, or dynamically [SVA06, Iye05], i.e., independently at each computation step. In this
chapter, we focus on the dynamic approach in resolving the stochastic nondeterminism: it
is easier to work with algorithmically and can be seen as a relaxation of the static approach
that is often intractable [BLW13, CSH08, DLL+11, GLD00].

Let s −→ µs denote a transition from s to µs taken cooperatively, i.e., there is a scheduler
σ ∈ Σ and a nature π ∈ Π such that µs =

∑

a∈A σ(s)(a) ·π(s, a). In other words, s −→ µs if
µs ∈ CH(

⋃

a∈A (s)H
a

s).

96 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Definition 6.1 (Probabilistic bisimulation for model checking IMDPs). Given an
IMDP M, let R ⊆ S × S be an equivalence relation. We say that R is a probabilistic bisimu-
lation if for each (s, t) ∈R we have that L(s) = L(t) and

for each s −→ µs

there is t −→ µt such that µs L(R) µt .

Furthermore, we write s ∼(∀) t if there is a probabilistic bisimulation R such that (s, t) ∈R.

Intuitively, each (cooperative) step of scheduler and nature from state s needs to be
matched by a (cooperative) step of scheduler and nature from state t; symmetrically, s also
needs to match t. In order to support the compositional reasoning, ∼(∀) needs to be an
equivalence relation. It is not difficult to see that ∼(∀) is reflexive and symmetric. What
remains is to show that it is also transitive. This is indeed a property of ∼(∀), as stated by
the following proposition:

Theorem 6.1. Given three IMDPs M1, M2, and M3, if M1 ∼(∀) M2 and M2 ∼(∀) M3,
then M1 ∼(∀)M3.

Proof. Let R12 and R23 be the equivalence relations underlying M1 ∼(∀)M2 and M2 ∼(∀)
M3, respectively. Let R13 be the symmetric and transitive closure of the set { (s1, s3) |
∃s2.s1 R12 s2∧s2 R23 s3 }∪{ (s1, s′1) ∈ S1×S1 | (s1, s′1) ∈R12 }∪{ (s3, s′3) ∈ S3×S3 | (s3, s′3) ∈R23 }.
We claim that R13 is a probabilistic bisimulation justifying M1 ∼(∀)M3.

The fact that s̄1 R13 s̄3 is trivial since by hypothesis we have that s̄1 R12 s̄2 and s̄2 R23 s̄3,
so (s̄1, s̄3) ∈R13 by construction.

In the following, assume that s1 ∈ S1 and s3 ∈ S3; the other cases are similar.
The labelling is respected: for each s1 R13 s3, we have that there exists s2 such that

s1 R12 s2 and s2 R23 s3; this implies that L1(s1) = L2(s2) and L2(s2) = L3(s3), thus L1(s1) =
L3(s3) as required.

To complete the proof, consider s1 R13 s3 and s1 −→ µ1. By hypothesis, there exists
s2 such that s1 R12 s2 and s2 R23 s3; moreover, by R12 being a probabilistic bisimulation,
we know that there exists s2 −→ µ2 such that µ1 L(R12) µ2. Since R23 is a probabilistic
bisimulation, we have that there exists s3 −→ µ3 such that µ2 L(R23) µ3. By construction
of R13 and the properties of lifting, it follows that µ1 L(R13) µ3, as required. �

We show that the bisimulation ∼(∀) also preserves the (cooperative) universally quan-
tified PCTL satisfaction |=(∀).

Theorem 6.2 (Soundness of∼(∀) with respect to the PCTL properties). For states s ∼(∀)
t and any PCTL formula ϕ, we have s |=(∀) ϕ if and only if t |=(∀) ϕ.

Proof. We use structural induction on the syntax of PCTL state formula ϕ and PCTL path
formula ψ. This means that we need to prove the following two results simultaneously:

1. s ∼(∀) t implies that s |=(∀) ϕ if and only if t |=(∀) ϕ for any state formula ϕ

2. ξ1 ∼(∀) ξ2 implies that ξ1 |=(∀) ψ if and only if ξ2 |=(∀) ψ for any path formula ψ.

6.2. Probabilistic Bisimulation for Model Checking IMDPs 97

We consider the nontrivial part that is when ϕ = P1p(ψ) where 1=≤ and ψ = ϕ1Uϕ2;
because the other cases are similar. Assume t |=(∀) ϕ, we need to show that s |=(∀) ϕ. To
drive a contradiction, assume s |=(∀) ¬ϕ. Therefore, there exist σ ∈ Σ and π ∈ Π such that
Prσ,π

s {ξ|ξ |=ψ} > p. By induction hypothesis Sat(ϕ1) and Sat(ϕ2) are ∼(∀) closed and they
are indeed union of equivalence classes induced by ∼(∀). It is not difficult to see that the
set {ξ|ξ |= ψ} is ∼(∀) closed and therefore, Prσ,π

t {ξ|ξ |= ψ} = Prσ,π
s {ξ|ξ |= ψ} > p. In other

words, there exist σ ∈ Σ and π ∈ Π such that t |=(∀) ¬ϕ which leads to a contradiction. �

It is worthwhile to mention that the nondeterminism could also dually be resolved exis-
tentially. This corresponds to the setting where we want to synthesise both the scheduler σ
that controls the system and choice of feasible probability distributions π such that σ and
π together guarantee a specified behaviour ϕ. This setting is formalised by the satisfaction
relation |=(∃) which is defined like |=(∀) except for the operator P1p(ψ)where we set

s |=(∃) P1p(ψ) if ∃σ ∈ Σ ∃π ∈ Π : Prσ,π
s

�

|=(∃) ψ
�

1 p.

Note that for any formula of the form P<p(ψ), we have s |=(∃) P<p(ψ) if and only if we
have s |=(∀) ¬P≥p(ψ). This can be easily generalised: for each state formula ϕ we obtain a
state formula ϕ such that s |=(∃) ϕ if and only if s |=(∀) ϕ for each state s. Hence ∼(∀) also
preserves |=(∃).

Corollary 6.1. For states s ∼(∀) t and any PCTL formula ϕ, we have s |=(∃) ϕ if and only if
t |=(∃) ϕ.

6.2.1 Complexity Analysis of Deciding ∼(∀) for IMDPs
In the sequel, we first present a fixed-parameter tractable algorithm for computing proba-
bilistic bisimulation ∼(∀) which in turn provides enough understanding of the problem to
derive the worst case complexity of the decision problem. We start by illustrating the idea
on an example.

Example 6.2. Consider a pair of IMDPs depicted in Figure 6.2. The general sketch of the algorithm
is as follows. We need to construct the polytopes of probability distributions offered by the actions;
in our examples the polytopes are just line segments in two-dimensional space. We get s ∼(∀) s
since the convex hull of P1 and P2 equals to the convex hull of P3 and P4. �

Let us state the results formally. To this end, we fix an IMDP M = (S, s̄,A ,AP, L, I).
Computation of probabilistic bisimulation for IMDPs follows the standard partition re-
finement approach [CSKN05,KS90,PT87], formalized by the algorithm Bisimulation in Fig-
ure 6.3. In particular, we start with R being the complete relation and iteratively remove
from R pairs of states that violate the definition of bisimulation with respect to R. How-
ever, the core part of the algorithm is to find out whether two states “violate the definition
of bisimulation”. Verification of this violation, as described in procedure Violate(∀)(s, t,R),
amounts to checking inclusion of polytopes defined as follows.

Recall that for s ∈ S and an action a ∈A ,H a
s denotes the polytope of feasible successor

distributions over states with respect to taking the action a in the state s. ByP s,a
R , we denote

the polytope of feasible successor distributions over equivalence classes of R with respect to

98 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

s

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0
.2

,0
.6
]

s

` r

c

[0.1,1]

d

[0
,0

.8
]

[0.4,0.9] [0
.2

,0
.4
]

s ∼(∀) s

sa b

`+ r = 1

0.1≤ `≤ 0.3

0.8≤ r ≤ 1

`+ r = 1

0.2≤ `≤ 0.6

0≤ r ≤ 1

P1

`

r

1

1

.1 .3

.8

[0.1,0.2]

P2

`

r

1

1

.2 .6

[0.2,0.6]

sc d

`+ r = 1

0.1≤ `≤ 1

0.4≤ r ≤ 0.9

`+ r = 1

0.2≤ `≤ 0.4

0≤ r ≤ 0.8

P3

`

r

1.1

.4

.9
[0.1,0.6]

P4

`

r

1

1

.2 .4

.8

[0.2,0.4]

Figure 6.2: Description of the algorithm to decide if s ∼(∀) s.

Algorithm 4: Bisimulation(M)
Input: A relation R on S × S
Output: Return a probabilistic bisimulation R

1 begin
2 R← { (s, t) ∈ S × S | L(s) = L(t) };
3 repeat
4 R′←R;
5 forall s ∈ S do
6 D← ;;
7 forall t ∈ [s]R do
8 if Violate(∀)(s, t,R) then
9 D← D ∪ {t};

10 split [s]R in R into D and [s]R \ D;

11 until R =R′;
12 return R;

Procedure 5: Violate(∀)(s, t,R)
Input: States s, t and relation R
Output: Check if s ∼(∀) t

1 begin
2 return P s

R 6=P
t
R;

Figure 6.3: Decision algorithm to decide probabilistic bisimulation ∼(∀) for IMDPs

taking the action a in the state s. Formally, for µ ∈ Disc(S/R) we set µ ∈ P s,a
R if, for each

6.2. Probabilistic Bisimulation for Model Checking IMDPs 99

C ∈ S/R, we have µ(C) ∈ I(s, a,C)where

I(s, a,C) =
�

min

¨

1,
∑

s′∈C
inf I(s, a, s′)

«

,min

¨

1,
∑

s′∈C
sup I(s, a, s′)

«�

.

Note that we require that the probability of each class C must be in the interval of the
sum of probabilities that can be assigned to states of C. Furthermore, we define P s

R =
CH(

⋃

a∈A (s)P
s,a
R). It is the set of feasible successor distributions over S/R with respect to

taking an arbitrary distribution over actions in state s.
As specified in the procedure Violate(∀), we show that it suffices to check equality of

these polytopes.

Proposition 6.1. We have s ∼(∀) t if and only if L(s) = L(t) and P s
∼(∀)
=P t

∼(∀)
.

Proof. Let us first introduce one notation. For each distribution µ ∈ Disc(S), let µ ∈
Disc(S/ ∼(∀)) denote the corresponding distribution such that µ(C) =

∑

s∈C µ(s). As re-
gards the “if” part, for each choice s−→µ, we have µ ∈ P s

∼(∀)
. Similarly, for each ρ ∈ P t

∼(∀)
,

there is a choice t−→ν such that ν= ρ. Hence, s ∼(∀) t. As regards the “only if” part, let us
assume that there is a distribution ρ over equivalence classes such that, say ρ ∈ P s

∼(∀)
\P t
∼(∀)

.
There must be a choice s−→µ such that µ= ρ and there is no choice t−→ν such that ν= ρ.
Hence, s 6∼(∀) t. �

Given an IMDP M, let |S| = n, |A| = m and f be the maximal support of an action
maxs∈S,a∈A (s) |{s′ | I(s, a, s′) 6= [0,0]}|. It is easy to see that the procedure Violate(∀) is called
at most n3-times. Each polytope P s,a

R has at most C = f · 2 f −1 corners, computing the
convex hull P s

R takes O((bC)2) time [CK70]. Checking inclusion of two polytopes then
can be done in time polynomial [Sub09] in the number of corners of these two polytopes.
In total, computing of ∼(∀) can be done in time |M|O(1) · 2O(f).

Theorem 6.3. Given an IMDP M, let f be the maximal fanout, i.e., f =
maxs∈S,a∈A (s) |{ s′ ∈ S | I(s, a, s′) 6= [0, 0] }|. Computing ∼(∀) can be done in time |M|O(1) ·
2O(f).

Proof. Immediate by the previous analysis. �

Given an IMDP M, the computational complexity of computing ∼(∀) strictly depends
on checking bisimilarity of a pair of states as a core part. In the following, we will show
that this verification routine is coNP-complete and therefore, the computation of ∼(∀) as a
whole is coNP-complete.

The definition of bisimulation can be reformulated equivalently as follows:

Definition 6.2 (Reformulation of the bisimulation definition). Let R ⊆ S × S be an
equivalence relation. We say that R is a probabilistic bisimulation if (s, t) ∈ R implies that
L(s) = L(t) and P s

R =P
t
R.

100 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

As it is clear from Definition 6.2, the complexity of verifying bisimilarity of a pair of
states s and t strictly depends on the complexity of the Convex Hull Equivalence (CHE)
problem stated as follows:

Definition 6.3 (Convex hull equivalence problem). Given an IMDP M, a pair of states s
and t, n, ns, nt ∈ N, two sets { Ps,i | i ∈ {1, . . . , ns} } and { P t,i | i ∈ {1, . . . , nt} } where for each
r ∈ {s, t} and i ∈ {1, . . . , nr}, for given lr,i ,ur,i ∈ Rn, P r,i is the convex polyhedron

P r,i =
§

xr,i ∈ Rn

�

�

�

�

lr,i ≤ xr,i ≤ ur,i

1T xr,i = 1

ª

,

the CHE problem asks to determine whether CH(
⋃ns

i=1 Ps,i) = CH(
⋃nt

i=1 P t,i).

We show that CHE problem is in coNP by reducing it to the coNP quantified linear
implication problem [ERSW14];

Lemma 6.1. The CHE problem is in coNP.

Proof. Consider r ∈ {s, t} and the corresponding nr ∈ N according to Definition 6.3. Let
y ∈ CH(

⋃nr
i=1 P r,i). Thus, y is a convex combination of the extreme points of CH(

⋃nr
i=1 P r,i).

Let W = {wk | k ∈ {1, . . . , mr} } be the set of these extreme points. Thus, y =
∑mr

k=1αk ·wk

where
∑mr

k=1αk = 1 and αk ≥ 0 for each k ∈ {1, . . . , mr}.
Since for each k ∈ {1, . . . , mr}, wk is an extreme point of CH(

⋃nr
i=1 P r,i), we know that

there exists an unique i such that wk ∈ P r,i . Let {wki,1 , . . . ,wki,l } ⊆ W be the set of extreme
points that belong to P r,i and let αr,i = αki,1

+ . . .+αki,l
. We have that the vector wr,i defined

as

wr,i =

¨αki,1

αr,i
·wki,1 + . . .+

αki,l

αr,i
·wki,l if αr,i 6= 0

wki,1 otherwise

belongs to P r,i and that
�

αki,1
·wki,1 + . . .+αki,l

·wki,l

�

= αr,i ·wr,i .

Thus, we have that y=
∑nr

i=1αr,i ·wr,i and that
∑nr

i=1αr,i = 1.
This means that y can be written as a convex combination of one point from each P r,i ,

i ∈ {1, . . . , nr}. Let

Qr,i =
§

zr,i ∈ Rn

�

�

�

�

αr,i · lr,i ≤ zr,i ≤ αr,i · ur,i

1T zr,i = αr,i

ª

.

Let zr,i = αr,i ·wr,i ∈Qr,i , thus y=
∑nr

i=1 zr,i .
This means that, if y ∈ CH(

⋃nr
i=1 P r,i), then there exist αr,i and zr,i ∈ Qr,i for each i ∈

{1, . . . , nr} such that
∑nr

i=1αr,i = 1 and y =
∑nr

i=1 zr,i . Conversely, if there exist such αs and
zs, then trivially y ∈ CH(

⋃nr
i=1 P r,i).

Thus, we can represent y ∈ CH(
⋃nr

i=1 P r,i) using the following linear programming prob-
lem, LPr :

∃y, zr,1, . . . , zr,nr , αr,1, . . . , αr,nr

6.2. Probabilistic Bisimulation for Model Checking IMDPs 101

αr,i · lr,i ≤ zr,i ≤ αr,i · ur,i ∀i ∈ {1, . . . , nr} (6.1)

1T zr,i = αr,i ∀i ∈ {1, . . . , nr} (6.2)
nr
∑

i=1

zr,i = y (6.3)

nr
∑

i=1

αr,i = 1 (6.4)

αr,i ≥ 0 ∀i ∈ {1, . . . , nr} (6.5)

In LPr , lines (6.1) and (6.2) ensure that zr,i ∈ Qr,i . Similarly, lines (6.3) and (6.4) ensure that
y is a convex combination of the wr,is. Thus, y is part of a solution to LPr if and only if
y ∈ CH(

⋃nr
i=1 P r,i).

This means that

CH

� nr
⋃

i=1

P r,i

�

=

y ∈ Rn

�

�

�

�

�

�

�

�

�

�

�

∃zr,1, . . . , zr,nr , αr,1, . . . , αr,nr

αr,i · lr,i ≤ zr,i ≤ αr,i · ur,i ∀i ∈ {1, . . . , nr}
1T zr,i = αr,i ∀i ∈ {1, . . . , nr}
∑nr

i=1 zr,i = y
∑nr

i=1αr,1 = 1
αr,i ≥ 0 ∀i ∈ {1, . . . , nr}

.

Thus, CH(
⋃ns

i=1 Ps,i) ⊆ CH(
⋃nt

i=1 P t,i) if and only if the quantified linear implication prob-
lem

∀y, zs,1, . . . , zs,ns , αs,1, . . . , αs,ns
∃zt,1, . . . , zt,nt , αt,1, . . . , αt,nt

LPs → LPt

holds.
Similarly, CH(

⋃nt
i=1 P t,i) ⊆ CH(

⋃ns
i=1 Ps,i) if and only if the quantified linear implication

problem

∀y, zt,1, . . . , zt,nt , αt,1, . . . , αt,nt
∃zs,1, . . . , zs,ns , αs,1, . . . , αs,ns

LP t → LPs

holds. These problems are known to be in coNP [ERSW14]. �

Additionally, we show that CHE problem is coNP-hard by reducing the coNP-hard
tautology problem for 3DNF [GJ90] to CHE.

Lemma 6.2. The CHE problem is coNP-hard.

Proof. We show our claim by reducing in polynomial time the tautology problem for 3DNF
to the CHE problem. Since it is known [GJ90] that the tautology problem for 3DNF is
coNP-hard, then it follows that also the CHE problem is coNP-hard. In particular, for a
given instance ϕ of 3DNF with n variables and m disjuncts, we construct in polynomial
time two sets {Ps} and { P t,i | i ∈ {1, . . . , m} } such that their convex hulls are equal if and
only if ϕ is a tautology.

Let

Ps =

xs ∈ Rn+1

�

�

�

�

�

�

0≤ x s
j ≤

1
n ∀ j ∈ {1, . . . , n}

0≤ x s
n+1 ≤ 1

1T xs = 1

102 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Note that
∑n

j=1 x s
j ≤ 1 holds regardless of the actual value chosen for each element x s

j of
xs with j ∈ {1, . . . , n} (as long as it respects the first constraint), thus we can choose each
element x s

j independently from the others and then set x s
n+1 to be 1−

∑n
j=1 x s

j to take up the
slack so to satisfy 1T xs = 1.

For each literal l appearing in ϕ, let pl = 0 if l = ¬v, and pl =
1
n if l = v, for some

variable v. Define for each disjunct ϕi = (li1 ∧ li2 ∧ li3) of ϕ the set

P t,i =

xt,i ∈ Rn+1

�

�

�

�

�

�

�

�

0≤ x t,1
j ≤

1
n ∀ j ∈ {1, . . . , n} \ {i1, i2, i3}

pl j
≤ x t,i

j ≤ pl j
∀ j ∈ {i1, i2, i3}

0≤ x t,1
n+1 ≤ 1

1T xt,i = 1

.

For example, if the ith disjunct of ϕ is ϕi = (vi1 ∧¬vi2 ∧ vi3), then the corresponding P t,i

is as follows:

P t,i =

xt,i ∈ Rn+1

�

�

�

�

�

�

�

�

�

�

�

�

�

0≤ x t,1
j ≤

1
n ∀ j ∈ {1, . . . , n} \ {i1, i2, i3}

1
n ≤ x t,i

i1
≤ 1

n

0≤ x t,i
i2
≤ 0

1
n ≤ x t,i

i3
≤ 1

n

0≤ x t,1
n+1 ≤ 1

1T xt,i = 1

.

By construction, for each i ∈ {1, . . . , n}, we have that P t,i ⊆ Ps, thus it follows that
CH(

⋃m
i=1 P t,i) ⊆ CH(Ps) = Ps.

To show equality we need to show that Ps ⊆ CH(
⋃m

i=1 P t,i). This can be done by showing
that each extreme point of Ps is in CH(

⋃m
i=1 P t,i).

Let w be an extreme point of Ps.

Remark 6.1. We want to remark that an extreme point w of the polytope Ps is such that w =
(w1, . . . , wn, wn+1) ∈ {0, 1

n}
n ×R where the element wn+1 is uniquely determined by the elements

w1, . . . , wn. In fact, let j ∈ {1, . . . , n} be such that 0 < w j <
1
n and suppose that w is an extreme

point of Ps. Consider the following two points of Ps differing from w only for the components j and
n+ 1:

w′ = (w1, . . . , w j−1, 0, w j+1, . . . , wn, wn+1 +w j)

w′′ = (w1, . . . , w j−1,
1
n

, w j+1, . . . , wn, wn+1 −
1
n
+w j).

We have that w= (1− n ·w j) ·w′+ n ·w j ·w′′. This contradicts the fact that w is an extreme point
of Ps. Thus, for each j ∈ {1, . . . , n}, w j ∈ {0, 1

n}, hence w= (w1, . . . , wn, wn+1) ∈ {0, 1
n}

n ×R.
Let w be a point in Ps such that (w1, . . . , wn, wn+1) ∈ {0, 1

n}
n × R. We have that w is at the

intersection of (n+1) hyperplanes defining Ps, hence w is an extreme point of Ps. This implies that
w is an extreme point of Ps if and only if w= (w1, . . . , wn, wn+1) ∈ {0, 1

n}
n ×R. ◊

If w ∈ CH(
⋃m

i=1 P t,i), then w is extreme point of CH(
⋃m

i=1 P t,i). This holds because
CH(

⋃m
i=1 P t,i) ⊆ Ps. Thus, there has to be an i such that w ∈ P t,i .

6.2. Probabilistic Bisimulation for Model Checking IMDPs 103

Let v be the boolean vector with n components such that v j = true if w j =
1
n and v j =

false if w j = 0, for j ∈ {1, . . . , n}. Note that every possible v can be constructed in this way,
by Remark 6.1. For instance, for ϕi = (vi1 ∧ vi2 ∧¬vi3)we have that

P t,i =

xt,i ∈ Rn+1

�

�

�

�

�

�

�

�

�

�

�

�

�

0≤ x t,i
j ≤

1
n j ∈ {1, . . . , n} \ {i1, i2, i3}

1
n ≤ x t,i

i1
≤ 1

n
1
n ≤ x t,i

i2
≤ 1

n

0≤ x t,i
i3
≤ 0

0≤ x t,i
n+1 ≤ 1

1T xt,i = 1

.

Thus, w ∈ P t,i if and only if wi1 =
1
n , wi2 =

1
n , and wi3 = 0. This corresponds to vi1 = true,

vi2 = true, and vi3 = false. Thus, w ∈ P t,i if and only if v satisfies ϕi .
If every extreme point w of Ps is in CH(

⋃m
i=1 P t,i), then every possible v satisfies at least

one disjunct ofϕ, namely the disjunctϕi so that w ∈ P t,i . This means that Ps ⊆ CH(
⋃m

i=1 P t,i)
implies that ϕ is a tautology.

Let ϕ be a tautology, and let v be a boolean vector. Thus, there exists a disjunct ϕi of ϕ
such that v satisfies ϕi . From v we can construct the point w whose elements are defined
as follows:

w j =

0 if j ∈ {1, . . . , n} and v j = false,
1
n if j ∈ {1, . . . , n} and v j = true,
1−

∑n
k=1 wk if j = n+ 1.

Note that w is an extreme point of Ps and that every extreme point of Ps can be constructed
in this way (cf. Remark 6.1).

Since v satisfies ϕi , we have that w ∈ P t,i . Thus, w ∈ CH(
⋃m

i=1 P t,i). By the ar-
guments made above, every extreme point of Ps is in CH(

⋃m
i=1 P t,i). This means that

Ps ⊆ CH(
⋃m

i=1 P t,i).
Thus, CH(Ps) = CH(

⋃m
i=1 P t,i) if and only if ϕ is a tautology. Since the reduction from

ϕ to the problems Ps and P t,i , for i ∈ {1, . . . , m} is polynomial in the size m and n of ϕ, we
have that deciding CH(Ps) = CH(

⋃m
i=1 P t,i) is coNP-hard as well. Note that this is a special

case of the CHE problem where ns = 1, Ps,1 = Ps, and nt = m, thus also the CHE problem
is coNP-hard. �

Theorem 6.4. The CHE problem is coNP-complete.

Proof. The proof follows directly from Lemma 6.1 and Lemma 6.2. �

With this result at hand, together with Definition 6.2, we know that checking the
bisimilarity of two states of an IMDP M is coNP-complete. Since the standard par-
tition refinement algorithm performs this check a polynomial number of times (see,
e.g., [CS02, TH15, CSKN05, KS90, PT87]), it follows that also computing ∼(∀) is coNP-
complete.

Theorem 6.5. Given an IMDP M, computing ∼(∀) is coNP-complete.

104 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Proof. Immediate by the previous analysis. �

6.2.2 Computational Tractability: An Approximation Algorithm
As discussed in the previous section, given an IMDP, the complexity of computing ∼(∀)
strictly depends on finding t −→ µt : we show how a finer (sub-optimal) equivalence re-
lation can be computed in polynomial time. The bisimulation in Definition 6.1 can be
reformulated equivalently as follows:

Definition 6.4 (Equivalent form of IMDP probabilistic bisimulation). Let R ⊆ S × S
be an equivalence relation. We say that R is a probabilistic bisimulation if (s, t) ∈R implies
that L(s) = L(t) and for each a ∈ A (s) and each µs ∈ P

s,a
R , there exists µt ∈ P t

R such that
µs L(R) µt .

Recall that a probabilistic bisimulation can be seen as a game between two players:
in each round, the challenger, or attacker, s proposes a transition, or step, that has to be
matched by the defender t. The two states s and t are bisimilar if the defender is always
able to match the challenging transitions proposed by the attacker, that is, the game can
be played forever. Correspondingly, in our setting, probabilistic bisimulations require that
each transition proposed by the challenger s which is selected from the setP s,a

R , is matched
by the defender t via a single (combined) transition. The above definition essentially dis-
allows the state s to randomize over the set of its available actions. Therefore, instead
of allowing the challenger to pick a probability distribution from CH(

⋃

a∈A (s)P
s,a
R), we re-

strict his choice to select a distribution for an action from the polytopeP s,a
R . This restriction

does not lead to any loss of generality, since it is routine to check that the bisimulation R
from Definition 6.4 satisfies the condition of Definition 6.1.

6.2.2.1 Robust Methodologies for Probabilistic Bisimulation

We now discuss the key elements of a decision algorithm for probabilistic bisimulation
on IMDPs. As we will see later in this section, the core part and also the main source
of the exponential complexity of the exact decision algorithm in Figure 6.3 is the need
to repeatedly verify the step condition, that is, given a challenging transition µ ∈ P s

R
and (s, t) ∈ R, to check if there exists t −→ µt such that µ L(R) µt . We show that,
using some inspiration from network flow problems, it is possible to treat a transition
t −→ µt of the IMDP M as a flow where the initial probability mass δt flows and splits
along transitions appropriately to the transition target distributions and the resolution
of the nondeterminism fulfilled by the scheduler and nature. This intuition essen-
tially enables us to model the probabilistic bisimulation problem as an adjustable robust
counterpart of an uncertain LP problem that is intractable in general [BTGGN04,BTEGN09].

Adjustable Robust Counterpart for Probabilistic Bisimulation. From now on, we as-
sume that the IMDP M, the state t, the probability distribution µ, and the equivalence
relation R on S are given. We intend to verify or refute the existence of a transition
t −→ µt of M satisfying µ L(R) µt via the construction of a flow through the network
graph G(t,R) = (V, E) defined as follows: the set of vertices is V = {Í,È, t}∪SA∪SR∪(S/R)
where SA = { ta | a ∈ A (t) } and SR = { sR | s ∈ S }, and the set of arcs is E =

6.2. Probabilistic Bisimulation for Model Checking IMDPs 105

{(Í, t)} ∪ { (vR,C), (C,È) | C ∈ S/R, v ∈ C } ∪ { (t, ta), (ta, vR) | a ∈ A (t), v ∈ S }. In the
flow network definition, Í and È are the source node and the sink node of the network,
respectively. The set of transition nodes SA includes vertices that represent the interval tran-
sitions of the IMDP M. More precisely, each transition labelled by a enabled at state t is
represented by a transition node ta ∈ SA . The set SR is a copy of the state set S that is
used to represent the states reached after having performed the transition; for such states,
we connect them to the equivalence class they belong to so to verify the condition of the
lifting. The network construction can be seen as an adaptation to the strong case of flow
networks used in Chapter 5.

We take advantage of the above transformation of the “IMDP into a network graph” to
generate an optimization problem. To this aim, we adopt the same notation of the network
optimization setting so we use fu,v to show the “flow” through the arc from u to v. In for-
mulating the optimization problem, we use in addition the so-called balancing constraints
in order to reflect the probabilistic choices in the given IMDP M and to ensure the correct
splitting of outgoing flows from the transition nodes in the set SA .

Definition 6.5 (Optimization problem for probabilistic bisimulation). The optimiza-
tion problem associated to the network G(t,R) = (V, E) is defined as follows:

min f 0
subject to: fu,v ≥ 0 for each (u, v) ∈ E

fÍ,t = 1
fC,È = µ(C) for each C ∈ S/R
∑

{u∈V |(u,v)∈E } fu,v −
∑

{w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {Í,È}
fta ,vR − pa,v · ft,ta

= 0 for each a ∈A (t) and v ∈ S
pa,v ∈ I(t, a, v) for each a ∈A (t) and v ∈ S

It is not difficult to see that the optimization problem just defined is not an LP
problem, as there are quadratic constraints where the flow variable ft,ta

is multiplied
with the “probability” variable pa,v . As a matter of fact, for a given a ∈ A (t), the
variables pa,v have to lie in the interval defined by the interval transition I(t, a, v) and
they have to induce a probability distribution, i.e., pa,v ≥ 0 for each v ∈ S and
∑

v∈S pa,v = 1. The non-negativity of the variables comes for free from the constraints
pa,v ∈ I(t, a, v) since I(t, a, v) ⊆ [0, 1];

∑

v∈S pa,v = 1 follows by the flow conservation
constraint

∑

{u∈V |(u,v)∈E } fu,v −
∑

{w∈V |(v,w)∈E } fv,w = 0 for v = ta. Therefore, the optimiza-
tion problem can be easily cast as an LP problem by replacing the pair of constraints
fta ,vR−pa,v · ft,ta

= 0 and pa,v ∈ I(t, a, v)with the pair of constraints fta ,vR−inf I(t, a, v)· ft,ta
≥ 0

and fta ,vR−sup I(t, a, v)· ft,ta
≤ 0, i.e., the state v is reached from t with probability pa,v =

fta ,vR
ft,ta

at least inf I(t, a, v) and at most sup I(t, a, v), as required. Taking this modification into ac-
count, we can reformulate the optimization problem in Definition 6.5 as the following LP
problem.

Definition 6.6 (The LP(t,µ,R) LP problem). The LP(t,µ,R) LP problem associated to the

106 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

network graph G(t,R) = (V, E) is defined as follows:

min f 0
subject to: fu,v ≥ 0 for each (u, v) ∈ E

fÍ,t = 1
fC,È = µ(C) for each C ∈ S/R
∑

{u∈V |(u,v)∈E } fu,v −
∑

{w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {Í,È}
fta ,vR − inf I(t, a, v) · ft,ta

≥ 0 for each a ∈A (t) and v ∈ S
fta ,vR − sup I(t, a, v) · ft,ta

≤ 0 for each a ∈A (t) and v ∈ S

The feasibility of the resulting LP problem can be seen as an oracle to verify or refute
the existence of a probabilistic transition t −→ µt . Formally,

Lemma 6.3. Given an IMDP M, t ∈ S, µ ∈ Disc(S), and an equivalence relation R on S,
the LP(t,µ,R) LP problem has a feasible solution if and only if there exist σ ∈ Σ and π ∈ Π
inducing t −→ µt such that µ L(R) µt .

Proof. For the first implication, suppose that there exist a scheduler σ and a nature π in-
ducing t −→ µt such that µ L(R) µt . Consider the LP problem LP(t,µ,R) and consider the
following assignment for the variables: fÍ,t = 1, ft,ta

= σ(t)(a), fta ,vR = σ(t)(a) ·π(t, a)(v)
for each a ∈ A (t) and v ∈ S, and fvR ,C =

∑

a∈A (t)σ(t)(a) · π(t, a)(v) and fC,È = µs(C) for
each C ∈ S/R and v ∈ C.

It is immediate to see that such an assignment is a feasible solution of the LP(t,µ,R)
problem: non-negativity of the variables is trivial since all values are sum of (products of)
probabilities; the constraints fÍ,t = 1 and fC,È = µs(C) are obvious by the definition of the
assignment; the flow conservation constraint for t is immediate since

∑

(u,t)∈E

fu,t = fÍ,t = 1=
∑

a∈A (t)

σ(t)(a)

=
∑

a∈A (t)

ft,ta
=

∑

(t,u)∈E

ft,u;

for each action a ∈A (t), the flow conservation constraint for ta is clear since
∑

(u,ta)∈E

fu,ta
= ft,ta

= σ(t)(a) = σ(t)(a) ·
∑

v∈S

π(t, a)(v)

=
∑

v∈S

σ(t)(a) ·π(t, a)(v) =
∑

v∈S

fta ,vR =
∑

(ta ,u)∈E

fta ,u;

for each state v, the flow conservation constraint for vR is immediate since
∑

(u,vR)∈E

fu,vR =
∑

a∈A (t)

fta ,vR =
∑

a∈A (t)

σ(t)(a) ·π(t, a)(v)

= fvR ,[v]R =
∑

(vR ,u)∈E

fvR ,u;

6.2. Probabilistic Bisimulation for Model Checking IMDPs 107

and for each equivalence class C, the flow conservation constraint for C is clear since
∑

(u,C)∈E

fu,C =
∑

v∈C
fvR ,C =

∑

v∈C

∑

a∈A (t)

σ(t)(a) ·π(t, a)(v)

=
∑

v∈C
µt(v) = µs(C) = fC,È =

∑

(C,u)∈E

fC,u.

The last constraints we have to verify are about the split of probability according to the
transition: for a ∈A (t) and v ∈ S,

fta ,vR = σ(t)(a) ·π(t, a)(v) = π(t, a)(v) ·σ(t)(a) = π(t, a)(v) · ft,ta
.

Since by hypothesis on π we have that π(t, a)(v) ∈ I(t, a, v), it follows that inf I(t, a, v) ≤
π(t, a)(v)≤ sup I(t, a, v), thus inf I(t, a, v) · ft,ta

≤ fta ,vR ≤ sup I(t, a, v) · ft,ta
, as required. This

completes the proof that if there exist a scheduler σ and a nature π inducing t −→ µt such
that µ L(R) µt , then the LP problem LP(t,µ,R) is feasible.

For the second implication, suppose that the LP problem LP(t,µ,R) has a feasible so-
lution f ∗; define the scheduler σ and the nature π as follows: σ(t)(a) = f ∗t,ta

for each

a ∈ A (t) and π(t, a)(v) =
f ∗ta ,vR
f ∗t,ta

for each a ∈ A (t) and v ∈ S if f ∗t,ta
6= 0, an arbitrary distri-

bution inH a
t otherwise. The fact that both σ and π are probability distributions is trivial:

the non-negativity of σ(t)(a) and π(t, a)(v) for each a ∈ A (t) and v ∈ S is ensured by
the non-negativity of the feasible solution f ∗;

∑

a∈A (t)σ(t)(a) =
∑

a∈A (t) f ∗t,ta
= f ∗Í,t = 1; if

f ∗t,ta
= 0, then π(t, a) is a probability distribution by the way it is chosen; if f ∗t,ta

6= 0, then

∑

v∈S

π(t, a)(v) =
∑

v∈S

f ∗ta ,vR

f ∗t,ta

=

∑

v∈S f ∗ta ,vR

f ∗t,ta

=
f ∗t,ta

f ∗t,ta

= 1.

The next step in the proof is to show that for each a ∈ A (t) and v ∈ S, we have that
π(t, a)(v) ∈ I(t, a, v). Fix a ∈A (t) and v ∈ S and suppose that f ∗t,ta

6= 0. f ∗ta ,vR
− inf I(t, a, v) ·

f ∗t,ta
≥ 0 implies that f ∗ta ,vR

≥ inf I(t, a, v) · f ∗t,ta
, that is,

f ∗ta ,vR
f ∗t,ta
≥ inf I(t, a, v), i.e., π(t, a)(v) ≥

inf I(t, a, v); a similar argument shows that π(t, a)(v)≤ sup I(t, a, v).
The last step is about the condition of the lifting: fix an equivalence class C ∈ S/R;

µt(C) =
∑

v∈C
µt(v) =

∑

v∈C

∑

a∈A (t)

σ(t)(a) ·π(t, a)(v)

=
∑

v∈C

∑

a∈A (t)

f ∗t,ta
·

f ∗ta ,vR

f ∗t,ta

=
∑

v∈C

∑

a∈A (t)

f ∗ta ,vR
=
∑

v∈C
f ∗vR,C

= f ∗C,È = µs(C),

as required. Note that here we are assuming that f ∗t,ta
6= 0; if f ∗t,ta

= 0, then also σ(t)(a) = 0,
hence we can just omit it from the sum. This completes the proof that if the LP problem
LP(t,µ,R) is feasible, then there exist a scheduler σ and a nature π inducing t −→ µt such
that µ L(R) µt . �

It is worthwhile to be noted that the resulting scheduler and nature are history-
independent, i.e., they base their choice only on the current state (and action, for nature).

108 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Moreover, solving the generated LP problem from Definition 6.6 can be done in polynomial
time. The polynomial time complexity, however, is not preserved when uncertainty affects
transition probabilities in the model. In fact, in presence of uncertainty, the step condition
needs to be checked for any realization of the probability distribution µs ∈ P

s,a
R . This fact is

essentially the main barrier in designing efficient algorithms for probabilistic bisimulation
on such uncertain systems which particularly leads the problem to be intractable. To this
end, we first model the probabilistic bisimulation problem as the ARC of the uncertain
LP(t,µ,R) LP problem in which the uncertain data is the probability distribution µ. More
precisely, by Lemma 6.3, we can replace in Definition 6.4 the matching transition µt ∈ P t

R
for µs ∈ P

s,a
R such that µs L(R) µt with the check for feasibility of LP(t,µs,R).

Modelling this probabilistic bisimulation game as ARC of an uncertain LP allows the
adjustable flow variables fi, j in the LP(t,µ,R) LP problem to tune themselves to the un-
certain probability distribution µ. However, the ARC is in general computationally hard.
On the other hand, restricting the adjustable flow variables fi, j to be affinely dependent on
the uncertain probability distributions µ allows us to model the bisimulation problem as
affinely adjustable robust counterpart of an uncertain LP problem and thus to arrive at a poly-
nomial time algorithm to compute the equivalence relation R. From the game semantics
viewpoint, such affine dependency restriction reduces the power of the defender to match
the challenger’s choices and therefore, it leads to a finer (sub-optimal) equivalence relation.

Affinely Adjustable Robust Counterpart for Probabilistic Bisimulation. In the sequel,
we adapt the ARC theory presented in Chapter 3 (cf. Section 3.3) to the setting of prob-
abilistic bisimulation by imposing a restriction on adjustable flow variables fi, j to tune
themselves affinely upon the uncertain probability distribution µ in the challenger’s un-
certainty set P s,a

R . Without loss of generality, we let C1, . . . ,Cn be the equivalence classes
induced by R. We encode the affine dependence in the network graph G(t,R) = (V, E) by
restricting, for each arch (i, j) ∈ E, the flow variable fi, j to be

fi, j = li, j +
n
∑

k=1

wk ·µ(Ck),

where the new optimization variables are considered in the vector l and the matrix W .
Plugging affine equivalences of flow variables, we end up with the affinely adjustable
robust counterpart (AARC) of the ULP problem {LP(t,µ,R)}µ∈P s,a

R
shown in Figure 6.4.

In order to show the computational tractability of the AARC, we need to ensure that
the uncertainty set P s,a

R is itself computationally tractable. Formally, a set P s,a
R is compu-

tationally tractable [GLS81] if for any vector µ, there is a tractable “separation oracle” that
either decides correctly µ ∈ P s,a

R or otherwise, generates a separator, i.e., a non-zero vector
r such that rTµ≥maxγ∈P s,a

R
rTγ.

Proposition 6.2. For every state s ∈ S, action a ∈ A (s) and equivalence relation R, the
polytopic uncertainty set P s,a

R is computationally tractable.

Proof. It is easy to see that the polytopic uncertainty setP s,a
R , can be represented by finitely

many linear inequalities. It is in fact a special case of ellipsoidal uncertainty that are known
to be computationally tractable [BTN99, BTEGN09]. �

6.2. Probabilistic Bisimulation for Model Checking IMDPs 109

minl,w 0
subject to: lu,v +

∑n
k=1 wk ·µ(Ck)≥ 0 for each (u, v) ∈ E

lÍ,t +
∑n

k=1 wk ·µ(Ck) = 1
lC,È +

∑n
k=1 wk ·µ(Ck) = µ(Ci) for each Ci ∈ S/R, i = 1, . . . , n

∑

{u|(u,v)∈E }(lu,v +
∑n

k=1 wk ·µ(Ck))−
∑

{u|(v,u)∈E }(lv,u +
∑n

k=1 wk ·µ(Ck)) = 0
for each v ∈ V \ {Í,È}

lta ,vR +
∑n

k=1 wk ·µ(Ck)− inf I(t, a, v) · (lt,ta
+
∑n

k=1 wk ·µ(Ck))≥ 0
for each a ∈A (t) and v ∈ S

lta ,vR +
∑n

k=1 wk ·µ(Ck)− sup I(t, a, v) · (lt,ta
+
∑n

k=1 wk ·µ(Ck))≤ 0
for each a ∈A (t) and v ∈ S

∀µ= (µ(C1), . . . ,µ(Cn)) ∈ P
s,a
R

Figure 6.4: Affinely adjustable robust counterpart of the ULP {LP(t,µ,R)}µ∈P s,a
R

.

Computational tractability of the polytopic uncertainty sets concludes immediately
tractability of the AARC. Formally,

Theorem 6.6. Given the fixed recourse ULP problem {LP(t,µ,R)}µ∈P s,a
R

, the AARC of
{LP(t,µ,R)}µ∈P s,a

R
is computationally tractable.

Proof. We prove the theorem by getting inspiration from [Gus02]. The AARC of the uncer-
tain LP {LP(t,µ,R)}µ∈P s,a

R
can be described in a closed form as the optimization problem

min
l,W

¦

0 : V [l +Wµ]≤ b ∀µ ∈ P s,a
R

©

where V is the adjacency matrix and l, W are the set of variables. It is not difficult to see
that since the recourse matrix V is fixed, the above optimization problem can be rewritten
as

min
x=[l,W]

¦

0 : A(µ)x ≤ b(µ) ∀µ ∈ P s,a
R

©

by appropriately chosen A(µ), b(µ) affinely dependent on µ and with x = [l, W]. The latter
optimization can equivalently be written as

minx

¦

0 : x ∈ S
©

S =
¦

x
�

�

�∀µ ∈ P s,a
R : −A(µ)x + b(µ)≥ 0

©

This optimization problem is basically the robust counterpart of an uncertain LP with
uncertain data that are affinely parametrized by µ ∈ P s,a

R for which the computational
tractability (and therefore, of AARC) is readily given in [BTN99]. �

It is not difficult to see that in the setting of probabilistic bisimulation, the polytopic
uncertainty sets P s

R are closed, convex, and well structured, i.e., they can be described by a
list of linear inequalities. Thus in our setting, the resulting AARC is also well structured
and thus can be solved using highly efficient LP solvers (for instance, CPLEX [cpl] and
Gurobi [GUR]) even for large-scale cases.

110 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Theorem 6.7. Given the fixed recourse ULP problem {LP(t,µ,R)}µ∈P s,a
R

, the AARC of
{LP(t,µ,R)}µ∈P s,a

R
is equivalent to an explicit LP program.

Proof. We prove the theorem by getting inspiration from [Gus02]. The objective function
of the AARC of the ULP {LP(t,µ,R)}µ∈P s,a

R
is linear from the beginning. It is convenient

to assume that the right-hand side vector of the AARC is also affinely dependent on the
uncertain probability distributions µ ∈ P s,a

R . Let us assume that b ∈ Rn denotes the right-
hand side vector of the AARC. Thus, by affine dependency assumption, we let b = b0 +
∑n

k=1µ(Ck)bk. Note that this assumption does not restrict generality as for every entry of
the vector b there is always values for b0 and bk, k = 1, . . . , n such that the above equation
holds. It is also not difficult to see that the description of the feasibility set in the AARC
is demonstrated through the system of (possibly infinite) systems of linear inequalities.
Without loss of generality, we assume that the linear inequalities

V [l +
n
∑

k=1

W k ·µ(Ck)]≤ [b0 +
n
∑

k=1

µ(Ck)b
k] ∀µ ∈ P s,a

R (*)

represent the compact form of the AARC feasibility region in which V is the adjacency
matrix, W k is the kth column of the matrix W ∈ R|E|×n

≥0 and χ = (l, W 1, . . . , W n) is the set of
variables. Moreover, we consider the closed form representation of the polytopic uncer-
tainty set

P s,a
R =

¨

�

µ(C1), . . . ,µ(Cn)
�

�

�

�

n
∑

i=1

µ(Ci) = 1,∀i ∈ {1, . . . , n} : µ(Ci) ∈ I(s, a,Ci)

«

as P s,a
R := {µ = (µ(C1), . . . ,µ(Cn)) | Gµ ≥ d }. In the rest of the proof, we describe how the

(possibly infinite) system of inequalities (*) can be recasted as an explicit finite system of
linear inequalities. To this aim, suppose that

gk
i ≡ gk

i (χ)≡

¨

(−V l + b0)i k = 0; i = 1, . . . , m
(−VW k + bk)i k = 1, . . . , n; i = 1, . . . , m

where n and m are the number of equivalence classes induced by R and the number of
constraints in AARC, respectively. The collection χ is feasible for (*) if and only if for
every i = 1, . . . , m, the following system holds true:

g0
i (χ) +

n
∑

k=1

gk
i (χ)≥ 0 ∀µ ∈ P s,a

R .

Equivalently, χ is feasible for (*) if and only if the optimal value in m LP problems

Opti ≡ Minµ g0
i (χ) +

∑n
k=1 gk

i (χ)
s.t. Gµ≥ d (Pi[χ])

in variable µ are non-negative. Note that (Pi[χ]) is a feasible problem since P s,a
R is non-

empty. By the linear programming duality Theorem 3.4, the optimal value in the feasible

6.2. Probabilistic Bisimulation for Model Checking IMDPs 111

minimization problem is non-negative if and only if the optimal value in the dual LP prob-
lem

Maxy

¦

g0
i (χ) + dT y : GT y = gi(χ)≡

�

g1
i (χ), . . . , gn

i (χ)
�T

, y ≥ 0
©

is non-negative. In other words:

(Pi[χ]) has a non-negative optimal value
m

∃y : GT y = gi(χ)≡
�

g1
i (χ), . . . , gn

i (χ)
�T

, y ≥ 0, g0
i (χ) + dT y ≥ 0

Therefore, χ = (l, W 1, . . . , W n) is feasible for (*) if and only if χ can be extended to a feasible
solution for the following system of (in)equalities by appropriately chosen y1, . . . , ym:

GT yi − gi(l, W 1, . . . , W n) = 0 i = 1, . . . , m
dT yi + g0

i (l, W 1, . . . , W n)≥ 0 i = 1, . . . , m
yi ≥ 0 i = 1, . . . , m

(**)

Since the quantities g0
i (l, W 1, . . . , W n) and gi(l, W 1, . . . , W n) are affine func-

tions of l, W 1, . . . , W n, thus (**) is a system of linear (in)equalities in variables
l, W 1, . . . , W n, y1, . . . , ym. Since χ = (l, W 1, . . . , W n) is feasible for (*) if and only if χ
can be extended to a feasible solution of (**), the AARC is thus equivalent to the prob-
lem of minimizing 0 over the set of feasible solutions of (**), which is an explicit LP
program. �

The “affine decision rules” used to derive the AARC counterpart of the probabilistic
bisimulation problem allow us to compute a sub-optimal (finer) probabilistic bisimulation
defined as follows.

Definition 6.7 (AARC probabilistic bisimulation). Let R ⊆ S × S be an equivalence re-
lation. We say that R is an AARC probabilistic bisimulation if (s, t) ∈ R implies that
L(s) = L(t) and for each a ∈ A (s), the AARC of the ULP problem {LP(t,µ,R)}µ∈P s,a

R
is feasi-

ble.
Furthermore, we write s ∼AARC t if there exists an AARC probabilistic bisimulation R such that
(s, t) ∈R.

An immediate result relating ∼AARC and ∼(∀) is that the former is a refinement of the
latter, as formalized by the following proposition.

Proposition 6.3. Given an IMDP M, if s ∼AARC t, then s ∼(∀) t, i.e., ∼AARC ⊆ ∼(∀).

Proof. The result is trivial: given s ∼AARC t with underlying bisimulation R, for each action
a ∈A (s), the AARC of the uncertain LP {LP(t,µ,R)}µ∈P s,a

R
is feasible. Using affine decision

rules, the feasible solution for the AARC can be projected back to a feasible solution for the
ARC of the uncertain LP problem {LP(t,µ,R)}µ∈P s,a

R
, so by Definition 6.4 and Lemma 6.3

we have that s ∼(∀) t with R as underlying probabilistic bisimulation.

�

112 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Algorithm 6: Bisimulation(M)
Input: A relation R on S × S
Output: Return a probabilistic bisimulation

R
1 begin
2 R← { (s, t) ∈ S × S | L(s) = L(t) };
3 repeat
4 R′←R;
5 forall s ∈ S do
6 D← ;;
7 forall t ∈ [s]R do
8 if Violate(t,R,P s,a

R) then
9 D← D ∪ {t};

10 split [s]R in R into D and [s]R \D;

11 until R =R′;
12 return R;

Procedure 7: Violate(t,R,P s,a
R)

Input: States s, t and relation R
Output: Check if s ∼AARC t

1 begin
2 Construct the AARC of the

ULP {LP(t,µ,R)}µ∈P s,a
R

defined
in Figure 6.4;

3 return is AARC not feasible?;

Figure 6.5: Decision algorithm to decide probabilistic bisimulation ∼AARC for IMDPs

Decision Algorithm. We now present a polynomial algorithm computing the probabilis-
tic bisimulation ∼AARC. The general idea of the algorithm follows the one of the algorithm
in Figure 6.3 and involves the construction of the polytopes of the challenger’s probability
distributions.

In order to compute∼AARC on IMDP M = (S, s̄,A ,AP, L, I), we follow the usual partition
refinement approach formalized by the Bisimulation procedure in the algorithm depicted
in Figure 6.5. The core part is to check whether two states “violate the definition of bisim-
ulation”. This is where the algorithm differs from the exact one depicted in Figure 6.3.

The violation is checked by the procedure Violate. We show that this amounts in solv-
ing the AARC of the uncertain LP problem {LP(t,µ,R)}µ∈P s,a

R
as follows. Recall that for

s ∈ S and an action a ∈ A (s), we denote by P s,a
R the polytope of feasible successor dis-

tributions over equivalence classes of R with respect to taking the action a in the state s, as
discussed in Section 6.2. Note that we require that the probability of each class C must be
in the interval of the sum of probabilities that can be assigned to states of C. As specified
in the procedure Violate, we show that it suffices to check the feasibility of the resulting
AARC of the constructed uncertain LP problem.

Given an IMDP M, let N = max{|S| , |A|}. It is not difficult to see that the procedure
Violate is called at most N4 times. In every call to this procedure, we need to generate and
solve the explicit form of the AARC which is an LP according to Theorem 6.7, solvable
in polynomial time O(poly(N)). This means that computing ∼AARC can be done in time
|M|O(1) ·O(poly(N)).

Theorem 6.8. Algorithm in Figure 6.5 computes ∼AARC in time polynomial in |M|.

6.2. Probabilistic Bisimulation for Model Checking IMDPs 113

s

s1 s2

a

[0
.3

,0
.7
] [0.3,0.7]

t

t1 t2

a

[0
.2

,0
.8
] [0.2,0.8]

Figure 6.6: A pair of states and transitions in an IMDP

Proof. Immediate by the previous analysis. �

Example 6.3. The purpose of this example is to compare the behavior of∼(∀) and∼AARC in splitting
the states of a partition in the partition-refinement algorithm. As stated earlier, ∼(∀) can alterna-
tively be modelled as the ARC of the ULP {LP(t,µ,R)}µ∈P s,a

R
. It is not difficult to see that the core

difference between the approximation scheme ∼AARC and the exact ∼(∀) algorithm can be tracked
back to the procedure Violate to split a pair of states.

As described in Section 6.2, the Violate procedure in the exact ∼(∀) algorithm amounts to check
the equivalence of constructed convex hulls for a given pair of states that can alternatively be verified
by checking the feasibility of the LP(t,µ,R) LP problem for every extreme point µ ∈ P s,a

R which
is in turn the ARC of the uncertain LP {LP(t,µ,R)}µ∈P s,a

R
. Therefore, for a given pair of states

(s, t), we map the difference of the Violate procedure in both algorithms to the difference of∼(∀) and
∼AARC in splitting pairs of states.

Solving ARC or equivalently checking bisimilarity of a pair of states is in general computa-
tionally hard as indicated in Theorem 6.5. However, in our proposed approximation algorithm, the
Violate procedure or ARC is approximated using affine decision rules and is solved in polynomial
time, speaking about AARC. This computational tractability is not often the case as it heavily de-
pends on the geometry of the uncertainty set. However, in the setting of probabilistic bisimulation
for IMDPs, the polytopic uncertainty is computational tractable which consequently ensures the
computational tractability.

In this example, we investigate the result of ∼(∀) and ∼AARC for states (s, t) in the IMDP
M given in Figure 6.6. Let us assume that states with the same color/index are in the same
class in the equivalence relation R, that is, the set of equivalence classes induced by R is
{{s, t}, {s1, t1}, {s2, t2}}. It is not difficult to see that

P s
R = CH(

⋃

a∈A (s)
P s,a

R) = CH(P s,a
R) =

{µ ∈ Disc(S/R) | µ([s1]R) ∈ [0.3,0.7],µ([s2]R) ∈ [0.3,0.7],µ([s1]R) +µ([s2]R) = 1 }

and

P t
R = CH(

⋃

a∈A (t)
P t,a

R) = CH(P t,a
R) =

{µ ∈ Disc(S/R) | µ([t1]R) ∈ [0.2, 0.8],µ([t2]R) ∈ [0.2, 0.8],µ([t1]R) +µ([t2]R) = 1 }.

114 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Therefore, the comparison of convex hulls results in the fact that the states s and t are not bisimilar,
i.e., s 6∼(∀) t, since for instance the distribution µ such that µ([t1]R) = 0.75 and µ([t2]R) = 0.25
belongs to P t

R but not to P s
R.

In the next step, we check bisimilarity of states s and t based on ∼AARC. To this aim, we need
to solve AARC of the uncertain LPs {LP(s,µ,R)}µ∈P t,a

R
and {LP(t,µ,R)}µ∈P s,a

R
extracted from

G(s,R) = (Vs, Es) and G(t,R) = (Vt , Et) network graphs, respectively. Due to symmetry, we
generate AARC of the uncertain LP {LP(t,µ,R)}µ∈P s,a

R
and only report the result of solving AARC

of the other uncertain LP. To this end, we derive the uncertain LP {LP(t,µ,R)}µ∈P s,a
R

extracted from
the G(t,R) = (Vt , Et) network graph depicted as follows:

Í t ta

C1

C2

tR1

tR2

È
[0.2,0.8]

[0.2,0.8]

Note that in the G(t,R) network graph, nodes C1 and C2 are equivalence classes including the
red and blue states, respectively. The ARC of the ULP {LP(t,µ,R)}µ∈P s,a

R
problem after removal of

redundant constraints is extracted as follows.

ARC of the uncertain LP {LP(t,µ,R)}µ∈P s,a
R

min f {0 : ∀µ ∈ P s,a
R :

fta ,tR1
+ fta ,tR2

= 1 ftR1 ,C1
= fta ,tR1

ftR2 ,C2
= fta ,tR2

fta ,tR1
− 0.2≥ 0 fta ,tR1

− 0.8≤ 0 fta ,tR2
− 0.2≥ 0

fta ,tR2
− 0.8≤ 0 ftR1 ,C1

= fC1,È ftR2 ,C2
= fC2,È

fC1,È = µ(C1) fC2,È = µ(C2) fi j ≥ 0 ∀(i, j) ∈ Et}

We proceed by generating AARC of the derived ULP {LP(t,µ,R)}µ∈P s,a
R

problem by using affine
decision rules fi j = li j + w1

i jµ(C1) + w2
i jµ(C1) for all arcs (i, j) ∈ Et as described in the proof

of Theorem 6.7. We have generated the AARC in Python and used PuLP [pul] as a front-end
optimization modeling and Gurobi [GUR] as a back-end optimization solver to solve all linear
programming problems. The extracted AARC is read as in Table 6.2. Note that in the extracted
AARC, all variables are unrestricted in sign. Solving the AARC results in the following optimal
solution indicating that the state t can simulate the state s.

Optimal solution of the AARC (the value of non-reported variables is zero.)
lC1,È = 0 lC2,È = 0 lta ,tR1

= 0.45 lta ,tR2
= 0.55

ltR1 ,C1
= 0.45 ltR2 ,C2

= 0 w1
C1,È = 1.0 w1

ta ,tR1
= 0.55

w1
ta ,tR2

= −0.55 w1
tR1 ,C1

= 0.55 w1
t2R ,C2

= 0.0 w2
C2,È = 1

w2
ta ,tR1

= −0.45 w2
ta ,tR2

= 0.45 w2
tR1 ,C1

= −0.45 w2
tR2 ,C2

= 1

y101 = 0 y104 = 0 y151 = 0.55 y154 = 0.45
y162 = 0.55 y163 = 0.45 y172 = 0.55 y173 = 0.45
y181 = 0.55 y184 = 0.45 y51 = 0 y56 = 0.55

y62 = 0 y65 = 0.55 y75 = 0.45 y86 = 0.45
y93 = 0

6.3. Compositional Reasoning for Interval Markov Decision Processes 115

Following the same procedure for the uncertain LP {LP(s,µ,R)}µ∈P t,a
R

results in the infeasibility
of the extracted AARC and thus incapability of state s to simulate state t. Therefore, s 6∼AARC t.

�

6.3 Compositional Reasoning for Interval Markov Decision
Processes

In this section, we establishes a framework for compositional verification of complex sys-
tems with interval uncertainty. In particular, we provide a compositional reasoning over
interval MDPs to understand better the ways how large models with interval uncertainties
can be composed.

6.3.1 Action Agnostic Probabilistic Automata
We now introduce the action agnostic probabilistic automata which we use in this and
the next chapter, based on the probabilistic automata framework, following the notation
of [Seg06]. Note that the probabilistic automata we consider here correspond to the simple
probabilistic automata of [Seg95]. In practice, we consider the subclass of (simple) prob-
abilistic automata of [Seg95] having as set of actions the same singleton { f }, that is, all
transitions are labelled by the same external action f . Since this action is unique, we just
drop it from the definitions.

Definition 6.8 (Action agnostic PAs). An action agnostic probabilistic automaton (PA)
is a tuple P = (S, s̄,AP, L, T), where S is a set of states, s̄ ∈ S is the start state, AP is a finite
set of atomic propositions, L : S → 2AP is a labelling function, and T ⊆ S × Disc(S) is a
probabilistic transition relation. We denote by [P] the class of all finite-state finite-transition
action agnostic probabilistic automata.

We assume that each state in S is reachable from s̄. The start state is also called the
initial state; we let s, t, u, v, and their variants with indices range over S. We also denote
the generic elements of an action agnostic probabilistic automaton P by S, s̄, AP, L, T, and
we propagate primes and indices when necessary. Thus, for example, the action agnostic
probabilistic automaton P′i has states S′i , start state s̄′i , and transition relation T′i .

We follow the same semantics as PAs for the action agnostic PAs. In particular, a tran-
sition tr = (s,µ) ∈ T, also written as s −→ µ, is said to leave from state s and to lead to the
measure µ. We denote by src(tr) the source state s and by trg(tr) the target measure µ, also
denoted by µtr. We also say that s enables the transition (s,µ) and that (s,µ) is enabled
from s.

Example 6.4. An example of an action agnostic PA is the one shown in Figure 6.7: the set of states
is S = {s̄, r, y, g, , , }, the start state is s̄, the set of atomic propositions is AP= S, the labelling
function L is such that for each s ∈ S, L(s) = s, and the transition relation T contains the follow-
ing transitions: s̄ −→ ρ with ρ = {(r, 0.5), (y, 0.3), (g, 0.2)}, r −→ δ , y −→ δ , g −→ δ , and
r −→ δs̄.

�

116 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

minw,y 0
w1

ta ,tR1
+w1

ta ,tR2
+ y11 − y12 + y15 − y16 = 0 w2

ta ,tR1
+w2

ta ,tR2
+ y13 − y14 + y15 − y16 = 0

−w1
ta ,tR1
−w1

ta ,tR2
+ y21 − y22 + y25 − y26 = 0 −w2

ta ,tR1
−w2

ta ,tR2
+ y23 − y24 + y25 − y26 = 0

−w1
ta ,tR1
+w1

tR1 ,C1
+ y31 − y32 + y35 − y36 = 0 −w2

ta ,tR1
+w2

tR1 ,C1
+ y33 − y34 + y35 − y36 = 0

w1
ta ,tR1
−w1

tR1 ,C1
+ y41 − y42 + y45 − y46 = 0 w2

ta ,tR1
−w2

tR1 ,C1
+ y43 − y44 + y45 − y46 = 0

−w1
ta ,tR2
+w1

tR2 ,C2
+ y51 − y52 + y55 − y56 = 0 −w2

ta ,tR2
+w2

tR2 ,C2
+ y53 − y54 + y55 − y56 = 0

w1
ta ,tR2
−w1

tR2 ,C2
+ y61 − y62 + y65 − y66 = 0 w2

ta ,tR2
−w2

tR2 ,C2
+ y63 − y64 + y65 − y66 = 0

−w1
C1,È +w1

tR1 ,C1
+ y71 − y72 + y75 − y76 = 0 −w2

C1,È +w2
tR1 ,C1

+ y73 − y74 + y75 − y76 = 0

w1
C1,È −w1

tR1 ,C1
+ y81 − y82 + y85 − y86 = 0 w2

C1,È −w2
tR1 ,C1

+ y83 − y84 + y85 − y86 = 0

−w1
C2,È +w1

tR2 ,C2
+ y91 − y92 + y95 − y96 = 0 −w2

C2,È +w2
tR2 ,C2

+ y93 − y94 + y95 − y96 = 0

w1
C2,È −w1

tR2 ,C2
+ y101 − y102 + y105 − y106 = 0 w2

C2,È −w2
tR2 ,C2

+ y103 − y104 + y105 − y106 = 0

w1
C1,È + y111 − y112 + y115 − y116 = 1 w2

C1,È + y113 − y114 + y115 − y116 = 0
−w1

C1,È + y121 − y122 + y125 − y126 = −1 −w2
C1,È + y123 − y124 + y125 − y126 = 0

w1
C2,È + y131 − y132 + y135 − y136 = 0 w2

C2,È + y133 − y134 + y135 − y136 = 1
−w1

C2,È + y141 − y142 + y145 − y146 = 0 −w2
C2,È + y143 − y144 + y145 − y146 = −1

−w1
ta ,tR1
+ y151 − y152 + y155 − y156 = 0 −w2

ta ,tR1
+ y153 − y154 + y155 − y156 = 0

w1
ta ,tR1
+ y161 − y162 + y165 − y166 = 0 w2

ta ,tR1
+ y163 − y164 + y165 − y166 = 0

−w1
ta ,tR2
+ y171 − y172 + y175 − y176 = 0 −w2

ta ,tR2
+ y173 − y174 + y175 − y176 = 0

w1
ta ,tR2
+ y181 − y182 + y185 − y186 = 0 w2

ta ,tR2
+ y183 − y184 + y185 − y186 = 0

−lta ,tR1
− lta ,tR2

+ 0.3y11 − 0.7y12 + 0.3y13 − 0.7y14 + y15 − y16 ≥ −1
lta ,tR1

+ lta ,tR2
+ 0.3y21 − 0.7y22 + 0.3y23 − 0.7y24 + y25 − y26 ≥ 1

lta ,tR1
− ltR1 ,C1

+ 0.3y31 − 0.7y32 + 0.3y33 − 0.7y34 + y35 − y36 ≥ 0
lta ,tR1

+ ltR1 ,C1
+ 0.3y41 − 0.7y42 + 0.3y43 − 0.7y44 + y45 − y46 ≥ 0

lta ,tR2
− ltR2 ,C2

+ 0.3y51 − 0.7y52 + 0.3y53 − 0.7y54 + y55 − y56 ≥ 0
−lta ,tR2

+ ltR2 ,C2
+ 0.3y61 − 0.7y62 + 0.3y63 − 0.7y64 + y65 − y66 ≥ 0

lC1,È − ltR1 ,C1
+ 0.3y71 − 0.7y72 + 0.3y73 − 0.7y74 + y75 − y76 ≥ 0

−lC1,È + ltR1 ,C1
+ 0.3y81 − 0.7y82 + 0.3y83 − 0.7y84 + y85 − y86 ≥ 0

lC2,È − ltR2 ,C2
+ 0.3y91 − 0.7y92 + 0.3y93 − 0.7y94 + y95 − y96 ≥ 0

−lC2,È + ltR2 ,C2
+ 0.3y101 − 0.7y102 + 0.3y103 − 0.7y104 + y105 − y106 ≥ 0

−lC1,È + 0.3y111 − 0.7y112 + 0.3y113 − 0.7y114 + y115 − y116 ≥ 0
lC1,È + 0.3y121 − 0.7y122 + 0.3y123 − 0.7y124 + y125 − y126 ≥ 0
−lC2,È + 0.3y131 − 0.7y132 + 0.3y133 − 0.7y134 + y135 − y136 ≥ 0
lC2,È + 0.3y141 − 0.7y142 + 0.3y143 − 0.7y144 + y145 − y146 ≥ 0
lta ,tR1

+ 0.3y161 − 0.7y162 + 0.3y163 − 0.7y164 + y165 − y166 ≥ 0.2
−lta ,tR1

+ 0.3y161 − 0.7y162 + 0.3y163 − 0.7y164 + y165 − y166 ≥ 0.8
lta ,tR2

+ 0.3y171 − 0.7y172 + 0.3y173 − 0.7y174 + y175 − y176 ≥ 0.2
−lta ,tR2

+ 0.3y181 − 0.7y182 + 0.3y183 − 0.7y184 + y185 − y186 ≥ −0.8

Table 6.2: ARC of the uncertain LP {LP(t,µ,R)}µ∈P s,a
R

6.3. Compositional Reasoning for Interval Markov Decision Processes 117

s̄

r

y

g

0.5

0.3

0.2

1

1

1

1

Figure 6.7: An example of action agnostic PAs: the PA E

From now on, we drop action agnostic since this is the only type of probabilistic au-
tomata we consider in this section.

6.3.1.1 Synchronous Product

The following definition of synchronous product is a variation of the definition of parallel
composition provided in [Seg95,Seg06], where the synchronization occurs for each pair of
enabled transitions. This corresponds to the original definition of parallel composition for
probabilistic automata having all transitions labelled by the same external action.

Definition 6.9 (Synchronous product of PAs). Given two PAs P1 and P2, the syn-
chronous product of P1 and P2, denoted by P1 ⊗ P2, is the probabilistic automaton P =
(S, s̄,AP, L, T) where

• S = S1 × S2;

• s̄ = (s̄1, s̄2);

• AP= AP1 ∪ AP2;

• for each (s1, s2) ∈ S, L(s1, s2) = L1(s1)∪ L2(s2); and

• T = { ((s1, s2),µ1 ×µ2) | (s1,µ1) ∈ T1 and (s2,µ2) ∈ T2 }.

For two PAs P1 and P2 and their synchronous product P1 ⊗P2, we refer to P1 and P2
as the component automata and to P1 ⊗P2 as the product automaton.

6.3.1.2 Probabilistic Bisimulation

As for the definition of synchronous product, the following definition of (strong) proba-
bilistic bisimulation is a variation of the definition provided in [Seg06], where all actions
are treated as being the same external action. We first introduce the definition of combined
transition.

Definition 6.10 (PA combined transition). Given a PA P and a state s, we say that s enables
a combined transition reaching the distribution µ, denoted by s −→c µ, if there exist a finite
set of indexes I , a multiset of transitions { (s,µi) ∈ T | i ∈ I }, and a multiset of real values
{ pi ∈ R≥0 | i ∈ I } such that

∑

i∈I pi = 1 and µ=
∑

i∈I pi ·µi .

The strong action agnostic probabilistic bisimulation for PAs is thus defined as follows:

118 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Definition 6.11 ((strong) (action agnostic) probabilistic bisimulation for PAs). Given
a PA P, an equivalence relation R ⊆ S × S is a (strong) (action agnostic) probabilistic
bisimulation on P if, for each (s, t) ∈ R, L(s) = L(t) and for each s −→ µs, there exists a
combined transition t −→c µt such that µs L(R) µt .
Given two states s and t, we say that s and t are probabilistically bisimilar, denoted by s ∼p

aa t,
if there exists a probabilistic bisimulation R on P such that (s, t) ∈R.
Given two PAs P1 and P2, we say that P1 and P2 are probabilistically bisimilar, denoted by
P1 ∼p

aa P2, if there exists a probabilistic bisimulation R on the disjoint union of P1 and P2
such that (s̄1, s̄2) ∈R.

Proposition 6.4. Given three PAs P1, P2, and P3, if P1 ∼p
aa P2, then P1 ⊗P3 ∼p

aa P2 ⊗P3.

Proof. The proof is a minor adaptation of the corresponding proof (cf. [Seg95]) for the orig-
inal definition of probabilistic bisimulation and parallel composition of PAs.

In the following, we use the subscript “ j, 3” with j ∈ {1, 2} to refer to the component of
the PA P j,3 =P j ⊗P3.

Let R be the probabilistic bisimulation justifying P1 ∼p
aa P2 and R′ = R × IS3

; we
claim that R′ is a probabilistic bisimulation between P1 ⊗P3 and P2 ⊗P3. The fact that
R′ is an equivalence relation follows trivially by its definition and the fact that R is an
equivalence relation. The fact that ((s̄1, s̄3), (s̄2, s̄3)) follows immediately by the hypothesis
that (s̄1, s̄2) ∈R and (s̄3, s̄3) ∈ IS3

.
Let ((s1, s3), (s2, s3)) ∈ R′. Assume, without loss of generality, that s1 ∈ S1 and s2 ∈ S2;

the other cases are similar. The fact that L1,3(s1, s3) = L2,3(s2, s3) is straightforward, since by
definition of synchronous product and the hypothesis that s1 R s2, we have that

L1,3(s1, s3) = L1(s1)∪ L3(s3) = L2(s2)∪ L3(s3) = L2,3(s2, s3),

as required.
Consider now a transition (s1, s3) −→ µ1,3. By definition of synchronous product, there

exist µ1 and µ3 such that s1 −→ µ1 ∈ T1, s3 −→ µ3 ∈ T3, and µ1,3 = µ1 × µ3. Since s1 R s2, it
follows that there exists a combined transition s2 −→c µ2 such that µ1 L(R) µ2. Let I be a
the finite set of indexes, { (s2,µ2,i) ∈ T2 | i ∈ I } be a multiset of transitions, and { pi ∈ R≥0 |
i ∈ I } be a multiset of real values such that

∑

i∈I pi = 1 and µ2 =
∑

i∈I pi ·µ2,i . By definition
of synchronous product, it follows that for each i ∈ I , (s2, s3) −→ µ2,i ×µ3 ∈ T2,3, hence we
have the combined transition (s2, s3) −→c µ2 ×µ3. By standard properties of lifting (see,
e.g., [TH14]), it follows that µ1 ×µ3 L(R′) µ2 ×µ3, as required. �

6.3.2 IMDPs vs. PAs
A cornerstone towards establishing compositional reasoning for IMDPs essentially relies
on transformations from IMDPs to PAs and vice versa. To this aim, we define two mappings
namely, unfolding which unfolds a given IMDP as a PA and folding which transforms a
given PA to an IMDP. Formally,

Definition 6.12 (Unfolding mapping). An unfolding mapping UF: [M]→ [P] is a func-
tion that maps a given IMDP M = (S, s̄,A ,AP, L, I) to the PA P = (S, s̄,AP, L, T) where

6.3. Compositional Reasoning for Interval Markov Decision Processes 119

t

u v

(a)

a

[0.1, 0.3] [0.8, 1]

t

u v

(b)

0.1
0.90.2

0.8

UF

Figure 6.8: Unfolding IMDP M to PA P

t

yx z

P

7
10 1

5
1
10

1
2

2
5

1
10

3
5

2
5

t

yx z

M

f

[0, 7
10]
[1

5 , 3
5]

[1
10 , 2

5]

F

Figure 6.9: Folding a PA P as an IMDP M

T = { (s,µ) | s ∈ S,∃a ∈A (s) : µ ∈ Ext(H a
s) }.

It is worthy to note that the unfolding mapping might transform an IMDP to a PA with
an exponentially larger size. This is in fact due to the exponential blow up in the number
of transitions in the resultant PA which in turn depends on the number of extreme points
of the polytope constructed for each state and action in the given IMDP. An example of
unfolding is given in Figure 6.8.

In order to transform a given PA to an instance of IMDPs, we use the folding mapping
defined as follows:

Definition 6.13 (Folding mapping). The folding mapping F: [P]→ [M] transforms a PA
P = (S, s̄,AP, L, T) to the IMDP M = (S, s̄, { f },AP, L, I) where, for each s, t ∈ S, I(s, f , t) =
projet

CH({µ | (s,µ) ∈ T }), where each component euv of the vector eu ∈ R|S| is defined as euv =
δu(v).

An example of the folding mapping is shown in Figure 6.9. The PA P has three transi-
tions from t with label a; in particular, it is worthwhile to note that for all these transitions
the probability of reaching y is larger than the probability of reaching z, so this has to hap-
pen for every combined transition leaving t. According to Definition 6.13, the folding of P
is the IMDP M. It is immediate to see that the folding mapping is not surjective as there
may be some probabilistic transitions in the generated IMDP specification which cannot
be mapped to a probability distribution in the given PA. In fact, one of such distributions
is µo such that µo(x) =

2
5 , µo(y) =

1
5 , and µo(z) =

2
5 that clearly violates the condition

µo(y) > µo(z). This is better recognizable by comparing the corresponding polytopes in a
graphical way.

120 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

1 1

1

µo

x y

z

Figure 6.10: Comparison of polytopes resulted from folding mapping F

Figure 6.10 shows the three polytopes involved in M: the purplish large trian-
gular polytope is the standard 2-simplex in the three dimensional space; the reddish
small triangular and the bluish parallelogram-like polytopes represent the convex hull
of
��

7
10 , 1

5 , 1
10

�

,
�

1
2 , 2

5 , 1
10

�

,
�

0, 3
5 , 2

5

�	

and the polytope H f
t , respectively, both being a sub-

polytope of the 2-simplex. Clearly there are points inH f
t that do not belong to the reddish

polytope, such as the black dot corresponding to µo.

Lemma 6.4. Given the folding and unfolding mappings F: [P]→ [M] and UF: [M]→ [P],
in general:

1. UF(F(P)) 6=P

2. F(UF(M)) 6=M

Proof. Proof is straightforward. �

As we will discuss later, the general incompleteness property of the folding mapping
does not influence on the generality of our compositional reasoning for IMDP specifica-
tions. We will dive into this point later in Section 6.3.3.

6.3.3 Compositional Reasoning for IMDPs

The compositional reasoning is a widely used technique (see, e.g., [CGM+96, HK00,
KKZJ07]) that permits to deal with large systems. In particular, a large system is decom-
posed into multiple components running in parallel; such components are then minimized
by replacing each of them by a bisimilar but smaller one so that the overall behaviour re-
mains unchanged. In order to apply this technique, bisimulation has first to be extended
to pairs of components and then to be shown to be transitive and preserved by the syn-
chronous product operator. The extension to a pair of components is trivial and commonly
done (see, e.g., [CS02, Seg95]):

Definition 6.14 (Probabilistic bisimulation for IMDP components). Given two IMDPs
M1 and M2, we say that they are probabilistic bisimilar, denoted by M1 ∼(∀) M2, if there

6.3. Compositional Reasoning for Interval Markov Decision Processes 121

M2

M1

P2

P1

P1 ⊗P2 M1 ⊗M2

UF

UF

F

Figure 6.11: Schematic representation of the synchronous product of IMDPs M1 and M2.
In this figure, we let P1 = UF(M1) and P2 = UF(M2).

exists a probabilistic bisimulation on the disjoint union of M1 and M2 such that s̄1 ∼(∀) s̄2.

The next step is to define the synchronous product for IMDPs:

Definition 6.15 (IMDPs synchronous product). Given two IMDPs M1 and M2, we define
the synchronous product of M1 and M2 as

M1 ⊗M2 := F(UF(M1)⊗ UF(M2)).

A schematic representation of constructing the synchronous product of two IMDPs
M1 and M2 is given in Figure 6.11. As discussed earlier, the folding mapping from PA to
IMDP, i.e. the red arrow, is not complete and in principle, this transformation may add ad-
ditional behavior to the resultant system. For each state and action in the resultant IMDP,
these extra behaviors are essentially a set of probability distributions that do not belong
to the convex hull of the enabled probability distributions for that state in the original PA.
At first sight, these extra behaviors generated from the folding mapping might be seen as
an impediment towards showing that ∼(∀) is a congruence for the synchronous product.
Fortunately, as it is shown by the next theorem, these extra probability distributions are in
fact spurious and do not affect the congruence result.

To this aim and in order to pave the way for establishing the congruence result, we first
prove two intermediate results stating that the folding and unfolding mappings preserve
bisimilarity on the corresponding codomains.

Lemma 6.5. Given two IMDPs M1 and M2, if M1 ∼(∀)M2, then UF(M1)∼p
aa UF(M2).

Proof. Let R be the probabilistic bisimulation justifying M1 ∼(∀) M2; we claim that R is
also a PA probabilistic bisimulation for UF(M1) and UF(M2), that is, it justifies UF(M1)∼p

aa
UF(M2).

In the following we assume without loss of generality that s1 ∈ S1 and s2 ∈ S2; the other
cases are similar. The fact that R is an equivalence relation and that for each (s1, s2) ∈ R,
L1(s1) = L2(s2) follow directly by definition of ∼(∀). Let (s1,µ1) ∈ T1: by definition of UF,
it follows that µ1 ∈ Ext(H a1

s1
) for some a1 ∈ A (s1), thus in particular µ1 ∈ H a1

s1
, hence

µ1 ∈ CH(
⋃

a∈A (s1)
H a

s1
). By hypothesis, we have that there exists µ2 ∈ CH(

⋃

a2∈A (s2)
H a2

s2
)

such that µ1 L(R) µ2. Since µ2 ∈ CH(∪a2∈A (s2)H
a2

s2
), it follows that there exist a multiset

of real values { pa2
∈ R≥0 | a2 ∈ A (s2) } and a multiset of distributions {µa2

∈ H a2
s2
| a2 ∈

A (s2) } such that
∑

a2∈A (s2)
pa2
= 1 and µ2 =

∑

a2∈A (s2)
pa2
· µa2

. For each a2 ∈ A (s2), since

122 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

µa2
∈ H a2

s2
, it follows that there exist a finite set of indexes Ia2

, a multiset of real values
{ pa2,i ∈ R≥0 | i ∈ Ia2

} and a multiset of distributions {µa2,i ∈ Ext(H a2
s2
) | i ∈ Ia2

} such that
∑

i∈Ia2
pa2,i = 1 and µa2

=
∑

i∈Ia2
pa2,i ·µa2,i . This means that

µ2 =
∑

a2∈A (s2)

pa2
·
∑

i∈Ia2

pa2,i ·µa2,i =
∑

a2∈A (s2)

∑

i∈Ia2

pa2
· pa,i ·µa2,i .

Since for each a2 ∈ A (s2) and i ∈ Ia2
we have that µa2,i ∈ Ext(H a2

s2
), it follows that

(s2,µa2,i) ∈ T2, thus we have the combined transition s2 −→c µ2 obtained by taking as set of
indexes I = { (a2, i) | a2 ∈ A (s2), i ∈ Ia2

}, as multiset of real values {qa2,i ∈ R≥0 | (a2, i) ∈
I , qa2,i = pa2

· pa2,i }, and as multiset of transitions { (s2,µa2,i) ∈ T2 | (a2, i) ∈ I }: in fact, it is
immediate to see that

∑

(a2,i)∈I

qa2,i =
∑

(a2,i)∈I

pa2
· pa2,i =

∑

a2∈A (s2)

∑

i∈Ia2

pa2
· pa2,i

=
∑

a2∈A (s2)

pa2
·
∑

i∈Ia2

pa2,i =
∑

a2∈A (s2)

pa2
· 1= 1

and that
∑

(a2,i)∈I

qa2,i ·µa2,i =
∑

(a2,i)∈I

pa2
· pa2,i ·µa2,i

=
∑

a2∈A (s2)

∑

i∈Ia2

pa2
· pa2,i ·µa2,i =

∑

a2∈A (s2)

pa2
·
∑

i∈Ia2

pa2,i ·µa2,i

=
∑

a2∈A (s2)

pa2
·µa2

= µ2.

Moreover, by hypothesis, we have µ1 L(R) µ2, as required. �

Likewise computation of probabilistic bisimulation for IMDPs, we use the standard
partition refinement approach as a ground procedure to compute ∼p

aa for PAs. Still the core
part of the approach is to decide bisimilarity of a pair of states. For each state in the given
PA, we construct a convex hull polytope which encodes all possible behaviors that can be
taken by a scheduler. Hence, for a given pair of states, we show that verifying if two states
are bisimilar can be reduced to comparison of their corresponding convex polytopes with
respect to set inclusion. Strictly speaking, for an equivalence relation R on S and s ∈ S, we
denote by Ps

R the polytope of feasible successor distributions over equivalence classes of R
with respect to taking a transition in the state s. Formally,

Ps
R = CH({ [µ]R | (s,µ) ∈ T }),

where, for a given µ ∈ Disc(S), [µ]R ∈ Disc(S/R) is the probability distribution such that
for each C ∈ S/R, it is [µ]R(C) =

∑

s′∈C µ(s
′).

Lemma 6.6 (cf. [CS02, Thm. 1]). Given a PA P, there exists an equivalence relation R on S
such that for each pair of states s, t ∈ S, it holds that s ∼p

aa t if and only if s R t, L(s) = L(t),
and Ps

R = Pt
R.

6.3. Compositional Reasoning for Interval Markov Decision Processes 123

To simplify the presentation of the proof, we first introduce some notation. Given an
equivalence relation R on S, for each distribution µ ∈ Disc(S), let µ̄ ∈ Disc(S/R) denote
the corresponding distribution µ̄ = [µ]R, i.e., µ̄ is such that µ̄(C) =

∑

s′∈C µ(s
′) for each

C ∈ S/R.

Proof. We show the two implications separately. For the implication from left to right,
suppose that s ∼p

aa t; this implies that there exists a probabilistic bisimulation R such that
s R t and L(s) = L(t). We want to show that Ps

R = Pt
R holds. To this aim, let η ∈ Ps

R. By
definition of Ps

R, it follows that there exist a finite set of indexes Iη, a multiset of real values
{ pη,i | i ∈ Iη } and a multiset of distributions

{ηi ∈ Ps
R | i ∈ Iη,∃(s,µs,i) ∈ T : ηi = [µs,i]R }

such that
∑

i∈Iη
pη,i = 1 and

∑

i∈Iη
pη,i · ηi = η. Since s R t and R is a probabilistic bisimu-

lation, it follows that for each i ∈ Iη there exists a combined transition t −→c µt such that
µs,i L(R) µt . By definition of combined transition, it follows that there exist a finite set of
indexes It , a set of transitions { (t,µt,i) ∈ T | i ∈ It } and a multiset of real values

{ pt,i ∈ R≥0 | i ∈ It }

such that
∑

i∈It
pt,i = 1 and µt =

∑

i∈It
pt,i · µt,i . This implies that for each i ∈ It , µ̄t,i ∈ Pt

R.
Moreover, since by definition of lifting we have that for each C ∈ S/R, µs(C) = µt(C), it
follows immediately that µ̄t = µ̄s, thus we have that η = µ̄s = µ̄t ∈ Pt

R, hence Ps
R ⊆ Pt

R. By
swapping the roles of s and t, we can show in the same way that Pt

R ⊆ P
s
R, hence Ps

R = Pt
R

as required.
For the implication from right to left, fix an equivalence relation R on S such that for

each (s, t) ∈ R it holds that L(s) = L(t) and Ps
R = Pt

R; we want to show that R is a proba-
bilistic bisimulation, i.e., whenever s R t and s −→ µs then there exists t −→c µt such that
µs L(R) µt . Let (s, t) ∈ R; if Ps

R = ;, then the step condition of the probabilistic bisimula-
tion is trivially verified since there is no transition s −→ µs from s that needs to be matched
by t. Suppose now that Ps

R 6= ; and consider a transition s −→ µs so that µ̄s ∈ Ps
R. By hy-

pothesis, µ̄s ∈ Ps
R = Pt

R, thus there exist a finite set of indexes I , a multiset of distributions

{µi ∈ Pt
R | i ∈ I }

and a multiset of real values
{ pi ∈ R≥0 | i ∈ I }

such that
∑

i∈I pi = 1 and
∑

i∈I pi · µi = µ̄s. This implies, for each i ∈ I , that there exist a
finite set of indexes Ji , a multiset of real values

{ pi, j ∈ R≥0 | j ∈ Ii }

and a multiset of distributions
{µi, j ∈ Pt

R | j ∈ Ji }

such that
∑

j∈Ji
pi, j = 1,

∑

j∈Ji
pi, j ·µi, j = µi , and for each j ∈ Ji , µi, j = µ̄t,i, j where (t,µt,i, j) ∈

T. Consider now the combined transition t −→c µt obtained by taking as set of indexes
J = { (i, j) | i ∈ I , j ∈ Ji }, as multiset of real values

{qi, j ∈ R≥0 | (i, j) ∈ J , qi, j = pi · pi, j }

124 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

and as set of transitions { (t,µt,i, j) ∈ T | (i, j) ∈ J }: we have that
∑

(i, j)∈J

qi, j =
∑

(i, j)∈J

pi · pi, j =
∑

i∈I

∑

j∈Ji

pi · pi, j

=
∑

i∈I

pi ·
∑

j∈Ji

pi, j =
∑

i∈I

pi · 1= 1

and that

µt =
∑

(i, j)∈I

qi, j ·µt,i, j =
∑

(i, j)∈I

pi · pi, j ·µt,i, j

=
∑

i∈I

∑

j∈Ji

pi · pi, j ·µt,i, j =
∑

i∈I

pi ·
∑

j∈Ji

pi, j ·µt,i, j .

To complete the proof, we have to show that µs L(R) µt , that is, for each C ∈ S/R, µs(C) =
µt(C). Let C ∈ S/R: we have that

µt(C) =
∑

c∈C
µt(c) =

∑

c∈C

∑

i∈I

pi ·
∑

j∈Ji

pi, j ·µt,i, j(c)

=
∑

i∈I

pi ·
∑

j∈Ji

pi, j ·
∑

c∈C
µt,i, j(c) =

∑

i∈I

pi ·
∑

j∈Ji

pi, j · µ̄t,i, j(C)

=
∑

i∈I

pi ·
∑

j∈Ji

pi, j ·µi, j(C) =
∑

i∈I

pi ·µi(C) = µ̄s(C)

=
∑

c∈C
µs(c) = µs(C),

as required. �

Lemma 6.7. Given a PA P and an equivalence relation R on S, for n= |S/R|, it holds that for
each (s, t) ∈R, if Ps

R = Pt
R then (

∏

C∈S/R projeC P
s
R)∩∆n = (

∏

C∈S/R projeC P
t
R)∩∆n where

∆n = { (x1, . . . , xn) ∈ Rn
≥0 |

n
∑

i=1

x i = 1 }

is the standard probability simplex in Rn.

Proof. The proof is trivial, since by Ps
R = Pt

R it follows that for each C ∈ S/R, projeC P
s
R =

projeC P
t
R. This implies that

∏

C∈S/R projeC P
s
R =

∏

C∈S/R projeC P
t
R thus (

∏

C∈S/R projeC P
s
R)∩

∆n = (
∏

C∈S/R projeC P
t
R)∩∆n, as required. �

Lemma 6.8. Given two PAs P1 and P2, if P1 ∼p
aa P2 then F(P1)∼(∀) F(P2).

6.3. Compositional Reasoning for Interval Markov Decision Processes 125

Proof. Let R be the equivalence relation justifying P1 ∼p
aa P2; we claim that R is also an

IMDP probabilistic bisimulation for F(P1) and F(P2), that is, it justifies F(P1)∼(∀) F(P2).
In the following we assume without loss of generality that s1 ∈ S1 and s2 ∈ S2; the other

cases are similar. The fact that R is an equivalence relation and that for each (s1, s2) ∈
R, L1(s1) = L2(s2) follow directly by definition of ∼p

aa. Since P1 ∼p
aa P2, it follows from

Lemma 6.6 that Ps1

R = P
s2

R. Additionally, it is not difficult to see that for s j ∈ {s1, s2},

P s j

R =P
s j , f
R = (

n
∏

i=1

projei
P

s j

R)∩∆n

where

∆n = { (x1, . . . , xn) ∈ Rn
≥0 |

n
∑

i=1

x i = 1 }

is the standard probability simplex in Rn. By Lemma 6.7, this implies that P s1, f
R = P s2, f

R .
Consider now s1 −→ µ1 with µ1 ∈ H f

s1
: this implies that [µ1]R ∈ P

s1, f
R since P s1, f

R = P s2, f
R ,

it follows that [µ1]R ∈ P
s2, f
R as well, thus there exists µ2 ∈H f

s2
such that [µ2]R = [µ1]R. By

definition of [·]R, we have that for each C ∈ S/R,
∑

s∈C
µi(s) = [µi]R

for i ∈ {1,2}, thus [µ2]R = [µ1]R implies that for each C ∈ S/R,
∑

s∈C
µ1(s) =

∑

s∈C
µ2(s),

i.e., µ1 L(R) µ2. This means that we have found s2 −→ µ2 with µ1 L(R) µ2, as required. �

By using Lemmas 6.5 and 6.8 and Proposition 6.4, we can now show that ∼(∀) is pre-
served by the synchronous product operator introduced in Definition 6.15.

Theorem 6.9. Given three IMDPs M1, M2, and M3, if M1 ∼(∀)M2, then M1 ⊗M3 ∼(∀)
M2 ⊗M3.

Proof. Assume that M1 ∼(∀)M2. By Lemma 6.5, it follows that UF(M1)∼p
aa UF(M2), thus,

by Proposition 6.4, we have that

UF(M1)⊗ UF(M3)∼p
aa UF(M2)⊗ UF(M3).

Lemma 6.8 now implies that

F(UF(M1)⊗ UF(M3))∼(∀) F(UF(M2)⊗ UF(M3)),

that is, M1 ⊗M3 ∼(∀)M2 ⊗M3, as required. �

6.3.4 Interleaved approach
In the previous section, we have considered the parallel composition via synchronous pro-
duction, which is working by the definition of a folding collapsing all labels to a single
transition. Here we consider the other extreme of the parallel composition: interleaving
only.

126 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

Definition 6.16 (IMDPs interleaving parallel composition). Given two IMDPs Ml and
Mr , we define the interleaved composition of Ml and Mr , denoted by Ml æMr , as the
IMDP M = (S, s̄,A ,AP, L, I) where

• S = Sl × Sr ;

• s̄ = (s̄l , s̄r);

• A = (Al × {l})∪ (Ar × {r});
• AP= APl ∪ APr ;

• for each (sl , sr) ∈ S, L(sl , sr) = Ll(sl)∪ Lr(sr); and

• I((sl , sr), (a, i), (t l , t r)) =

Il(sl , a, t l) if i = l and t r = sr ,
Ir(sr , a, t r) if i = r and t l = sl ,
[0,0] otherwise.

Theorem 6.10. Given three IMDPs M1, M2, and M3, if M1 ∼(∀)M2, then M1æM3 ∼(∀)
M2 æM3.

Proof. Let R be the probabilistic bisimulation justifying M1 ∼(∀) M2 and define R′ =
R×IS3

; we claim that R′ is a probabilistic bisimulation between M1æM3 and M2æM3.
The fact that R′ is an equivalence relation follows trivially by its definition and the fact
that R is an equivalence relation. The fact that ((s̄1, s̄3), (s̄2, s̄3)) follows immediately by the
hypothesis that (s̄1, s̄2) ∈R and (s̄3, s̄3) ∈ IS3

.
Let ((s1, s3), (s2, s3)) ∈ R′. Assume, without loss of generality, that s1 ∈ S1 and s2 ∈ S2;

the other cases are similar. The fact that L1,3(s1, s3) = L2,3(s2, s3) is straightforward, since by
definition of interleaved composition and the hypothesis that s1 R s2, we have that

L1,3(s1, s3) = L1(s1)∪ L3(s3) = L2(s2)∪ L3(s3) = L2,3(s2, s3),

as required. Consider now a transition (s1, s3) −→ µ1,3. By definition, we have that µ1,3 ∈
CH(

⋃

(a,i)∈A (s1,s3)
H (a,i)
(s1,s3)

). This implies that there exist a multiset of distributions

{µa,i ∈H
(a,i)
(s1,s3)

| (a, i) ∈A (s1, s3) }

and a multiset of real values

{ pa,i ∈ R≥0 | (a, i) ∈A (s1, s3) }

such that
∑

(a,i)∈A (s1,s3)
pa,i = 1 and

∑

(a,i)∈A (s1,s3)
pa,i · µa,i = µ1,3. Consider an action (a, i) ∈

A (s1, s3): by definition of interleaved composition, it is either of the form (a, l) ∈ Al × {l},
or of the form (a, r) ∈Ar × {r}. Consider the two cases separately:
Case (a, i) ∈Al × {l}: this means that µa,i is actually the distribution µa,i = µa × δs3

where µa ∈ H a
s1

is such that for each s′1 ∈ S1, µa(s′1) = µa,i(s′1, s3), thus s1 −→ µa.
Since by hypothesis (s1, s2) ∈ R and R is a probabilistic bisimulation, there ex-
ists µa,2 ∈ CH(

⋃

b∈A (s2)
H b

s2
) such that µa L(R) µa,2. This implies that there exist

a multiset of distributions {µa,2,b ∈ H b
s2
| b ∈ A (s2) } and a multiset of real val-

ues { pa,2,b | b ∈ A (s2) } such that
∑

b∈A (s2)
pa,2,b = 1,

∑

b∈A (s2)
pa,2,b · µa,2,b = µa,2,

6.4. Case Studies 127

Model |Si | |Ii | S/L t∼ (s) |S∼| |I∼|

Consensus-Shared-Coin-3 5 216 13 380 2 0 787 1 770
Consensus-Shared-Coin-4 43 136 144 352 2 2 2 189 5 621
Consensus-Shared-Coin-5 327 936 1 363 120 2 23 5 025 14 192
Consensus-Shared-Coin-6 2 376 448 11 835 456 2 219 10 173 30 861

Crowds-5-10 111 294 261 444 2 1 107 153
Crowds-5-20 2 061 951 7 374 951 2 17 107 153
Crowds-5-30 12 816 233 61 511 033 2 116 107 153
Crowds-5-40 44 045 030 266 812 421 2 464 125 198

Mutual-Exclusion-PZ-3 3 008 10 868 2 0 1 123 3 939
Mutual-Exclusion-PZ-4 48 128 231 040 2 0 7 319 32 630
Mutual-Exclusion-PZ-5 770 048 4 611 072 2 7 32 053 168 151
Mutual-Exclusion-PZ-6 3 377 344 25 470 144 2 98 109 986 649 360

Dining-Phils-LR-nofair-4 9 440 40 120 4 0 1 232 5 037
Dining-Phils-LR-nofair-5 93 068 494 420 4 1 9 408 49 467
Dining-Phils-LR-nofair-6 917 424 5 848 524 4 14 76 925 487 620
Dining-Phils-LR-nofair-7 9 043 420 67 259 808 4 173 646 928 4 804 695

Table 6.3: Experimental evaluation of the bisimulation computation

and µa × δs3
L(R′) µa,2 × δs3

. This means that for each b ∈ A (s2), we have that
µa,2,b × δs3

∈ H (b,l)
(s2,s3)

, thus by taking µa,2,3 =
∑

b∈A (s2)
pa,2,b · (µa,2,b × δs3

) we have that
(s2, s3) −→ µa,2,3 and µa,i L(R′) µa,2,3.

Case (a, i) ∈Ar × {r}: this means that µa,i is actually the distribution µa,i = δs1
×µa where

µa ∈ H a
s3

is such that for each s′3 ∈ S3, µa(s′3) = µa,i(s1, s′3), thus s3 −→ µa. This implies
trivially that (s2, s3) −→ µa,2,3 where µa,2,3 = δs2

×µa and µa,i L(R′) µa,2,3.
From the analysis of the two cases, we have that for each (a, i) ∈ A (s1, s3), there exists a
transition (s2, s3) −→ µa,2,3 such that µa,i L(R′) µa,2,3. This implies that

µ2,3 =
∑

(a,i)∈A (s1,s3)

pa,i ·µa,2,3 ∈ CH(
⋃

(b, j)∈A (s2,s3)

H (b, j)
(s2,s3)

)

and µ1,3 L(R′) µ2,3, as required. �

6.4 Case Studies

We have written a prototypical implementation for computing the bisimulation presented
in this chapter. Our tool reads a model specification in the input language of the probabilis-
tic model checker PRISM [KNP11] (extended to support also intervals in the transitions),
and constructs an explicit-state representation of the state space. Afterwards, it computes
the quotient using algorithm depicted in Figure 6.5.

Table 6.3 shows the performance of our prototype on a number of case studies taken
from the PRISM website [PRI], where we have relaxed some of the probabilistic choices to

128 Chapter 6 : Compositional Minimization for Model Checking of Interval MDPs

intervals. The machine we used for the experiments is a 3.6 GHz Intel Core i7-4790 with
16 GB 1600 MHz DDR3 RAM of which 12GB were assigned to the tool. Despite using an
explicit representation for the model, the prototype is able to manage cases studies in the
order of millions of states and transitions (columns “Model”, “|Si |”, and “|Ii |”). The time
in seconds required to compute the bisimulation relation and the corresponding quotient
IMDP, shown in columns “t∼”, “|S∼|”, and “|I∼|”, is much less than the time expected
from the theoretical analysis of the algorithm: this is motivated by the fact that we have
implemented optimizations, such as caching equivalent LP problems, which improve the
runtime of our algorithm in practice. Because of this, we never had to solve more than
30 LP problems in a single tool run, thereby avoiding the potentially costly solution of LP
problems from becoming a bottleneck.

6.5 Concluding Remarks

In this chapter, we have studied the probabilistic bisimulation problem for IMDPs in order
to speed up the run time of the PCTL model checking algorithms that often suffer from the
state space explosion. IMDPs include two sources of nondeterminism for which we have
considered the cooperative resolution in a dynamic setting.

We presented a fixed-parameter tractable decision algorithm to exactly decide the de-
fined probabilistic bisimulation for IMDPs and showed that the worst case time complexity
is coNP-complete. Afterwards, by exploiting techniques from robust optimisation setting,
we showed that probabilistic bisimulation can be approximated in polynomial time. We
have implemented our approach and demonstrate its effectiveness on several case studies.

Finally, we have provided a framework for compositional verification of complex
systems with interval uncertainty. In particular, we have established the compositional
reasoning by defining the parallel operators for IMDP models which preserve our notion
of probabilistic bisimulation.

Related work Various probabilistic modelling formalisms with uncertain transitions
are studied in the literature. Interval Markov chains [JL91, KU02] or Abstract Markov
chains [FLW06] extend standard discrete-time Markov chains (MC) with interval uncer-
tainties and thus do not feature the nondeterministic choice of transitions. Uncertain
MDPs [NG05, WTM12, PLSVS13] allow more general sets of distributions to be associ-
ated with each transition, not only those described by intervals. Usually, they restrict to
rectangular uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Our general algorithm working with polytopes can be
easily adapted to this setting. Parametric MDPs [HHZ11a] to the contrary allow such de-
pendencies as every probability is described as a rational function of a finite set of global
parameters.

From the side of view of compositional specification, Interval Markov chains [JL91]
and Abstract probabilistic automata [DKL+11a, DKL+11b] serve as specification theories
for MC and PA featuring satisfaction relation, and various refinement relations. In order
to be closed under parallel composition, Abstract PA allow general polynomial constraints
on probabilities instead of interval bounds. Since for Interval MC it is not possible to ex-
plicitly construct parallel composition, the problem whether there is a common implemen-

6.5. Concluding Remarks 129

tation of a set of Interval Markov chains is addressed instead [DLL+11]. To the contrary,
interval bounds on rates of outgoing transitions work well with parallel composition in
the continuous-time setting of Abstract interactive Markov chains [KKN09]. The reason is
that unlike probabilities, the rates do not need to sum up to 1. A different way [Yi94] to
successfully define parallel composition for interval models is to separate synchronising
transitions from the transitions with uncertain probabilities.

We are not aware of any existing compositional bisimulation minimization for uncer-
tain or parametric probabilistic models. Among similar concepts studied in the litera-
ture are simulation [Yi94] and refinement [JL91,DLL+11,DKL+11a] relations for previously
mentioned models.

Many new verification algorithms for interval models appeared in last few years.
Reachability and expected total reward is addressed for Interval MC [CHK13] as well as
Interval MDP [WK08]. PCTL model checking and LTL model checking are studied for In-
terval MC [CSH08, CHK13, BLW13] and also for IMDP [PLSVS13, WTM12]. Among other
technical tools, all these approaches make use of (robust) dynamic programming relying
on the fact that transition probability distributions are resolved dynamically. For the static
resolution of distributions, adaptive discretisation technique for PCTL parameter synthe-
sis is given in [HHZ11a]. Uncertain models are also widely studied in the control commu-
nity [GLD00, NG05, WK08], mainly interested in maximal expected finite-horizon reward
or maximal expected discounted reward.

Finally, as regards the application of Robust Optimization in Probabilistic Verification
community, to the best of our knowledge, we are not aware of any work in the literature.
Therefore, our current approach is novel in this matter. On the other hand, the afore-
mentioned theory has been adapted and applied successfully in control theory realm. For
instance, Abate and El Ghaoui [AEG04] developed a robust modal predictive control using
two-stage robust optimization.

CHAPTER7
Compositional Minimization for Optimal

Control of Interval MDPs

In model checking PCTL properties of interval Markov decision processes, it is natural
to assume that the scheduler and nature are resolved in a cooperative way. In Chapter 6
we discussed in detail a compositional specification theory based on the cooperative in-
terpretation of nondeterminisms. In this chapter, we focus on the competitive semantics
in interpreting the two sources of nondeterminisms in IMDPs. The competitive seman-
tics has different interpretation in different applications. In control synthesis for systems
with uncertain probabilities [WTM12] the transitions correspond to various control ac-
tions. We search for a choice of transitions that is optimal against an adversarial choice of
probability distributions satisfying the interval bounds. In parameter synthesis for paral-
lel systems [HHZ11a] the transition probabilities are underspecified to allow freedom in
implementation of such a model. We search for a choice of probability distributions that is
optimal for adversarial choice of transitions (again stemming from the possible interleav-
ing).

We show that competitive interpretation of nondeterminisms yields two variants of
alternating probabilistic bisimulations: one for models where the two nondeterminisms
are resolved based on the controller synthesis semantics, another for models where they are
resolved based on the parameter synthesis semantics. We prove that these two variants of
alternating probabilistic bisimulations coincide and accordingly provide an efficient com-
positional minimization theory to reduce the size of the IMDPs with respect to the com-
petitive semantics while preserving the probabilistic CTL properties it satisfies. We finally
show promising results on a variety of case studies, obtained by prototypical implementa-
tions of all algorithms.

The material presented in this chapter is an extended version of the results reported
in [HHK14, HTH+17].

Organization of the chapter. In Section 7.1, we give the definitions of alternating prob-
abilistic bisimulation for IMDPs and discuss their properties. A polynomial time decision
algorithm to decide alternating probabilistic bisimulation for IMDPs and also composi-
tional reasoning are discussed in Sections 7.2 and 7.3, respectively. We present the practical

131

132 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

effectiveness of our proposed approaches by applying them on several case studies using
a prototypical tool in Section 7.4. Finally, in Section 7.5 we conclude the chapter.

7.1 Alternating Probabilistic Bisimulation Relations for
IMDPs

In the previous chapter, we discussed how cooperative interpretation of nondeterminisms
yields a neat notion of probabilistic bisimulation to speed up the run time of model check-
ing algorithms for PCTL properties of IMDPs. We now address the competitive way of re-
solving the sources of nondeterminisms and provide other notions of probabilistic bisimu-
lation that can be leveraged in both controller synthesis and parameter synthesis of IMDP
models. In the competitive semantics, the controller and nature are playing in a game
against each other; therefore, they are resolved competitively. Likewise the previous chap-
ter, we focus on the dynamic approach in resolving the stochastic nondeterminism.

We first illustrate how the cooperative and the competitive resolution of nondetermin-
ism result in different behavioural equivalences.

Example 7.1. Consider the three pair of states below.

cooperative - different: cooperative - same: competitive - same:

s

` r

a

[0.3,0.7]

b

[0
.2

,0
.6
]

[0,1] [0
,1
]

s

` r

a

[0.3,0.7]

c

[0
.7

,0
.8
]

[0,1] [0
,1
]

t

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0
.2

,0
.6
]

t

` r

c

[0.1,1]

d
[0

,0
.8
]

[0.4,0.9] [0
.2

,0
.4
]

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0
,0

.6
]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0
.1

,0
.8
]

As regards the cooperative nondeterminism, s has not the same behaviour as s since s can move
to r with probability 0.8 by choosing c and (` 7→ 0.2, r 7→ 0.8), which s cannot simulate. So far the
equivalence might seem easy to check. However, note that t has the same behaviour as t even though
the interval bounds for the transitions quite differ. Indeed, the sets of distributions satisfying the
interval constraints are the same for t and t.

As regards the competitive nondeterminism, observe that u and u have also the same behaviour.
Indeed, the a transitions coincide and both b and c offer a wider choice of probability distributions
than a. If the most adversarial choice of the distribution scheduler lies in the difference [b] \ [a] of
the distributions offered by b and a, the transition scheduler then never chooses b; hence a in u can
simulate both a and b in u. In the other direction it is similar and u and u have the same behaviour
although [b] 6= [c]. �

As we already discussed, there are applications where it is natural to interpret the two
sources of nondeterminism in a competitive way.

Controller synthesis under uncertainty. In this setting we search for a scheduler σ such
that for any nature π, a fixed PCTL property ϕ is satisfied. This corresponds to the satis-
faction relation |=(∃σ∀) defined as in Table 7.1.

7.1. Alternating Probabilistic Bisimulation Relations for IMDPs 133

s |=(∃σ∀) true
s |=(∃σ∀) x iff x ∈ L(s)
s |=(∃σ∀) ¬ϕ iff s 6|=(∃σ∀) ϕ
s |=(∃σ∀) ϕ1 ∧ϕ2 iff s |=(∃σ∀) ϕ1 ∧ s |=(∃σ∀) ϕ2

s |=(∃σ∀) P1p(ψ) iff ∃σ ∈ Σ ∀π ∈ Π : Prσ,π
s

�

|=(∃σ∀) ψ
�

1 p
ξ |=(∃σ∀) Xϕ iff s2 |= ϕ
ξ |=(∃σ∀) ϕ1U≤kϕ2 iff there exists i ≤ k such that si |=(∃σ∀) ϕ2

and s j |=(∃σ∀) ϕ1 for every 1≤ j < i
ξ |=(∃σ∀) ϕ1Uϕ2 iff there exists k ∈ N such that

ξ |=(∃σ∀) ϕ1U≤kϕ2

Table 7.1: PCTL semantics for controller synthesis of IMDPs

As regards bisimulation, the competitive setting is not a common one. We define a
bisimulation similar to the alternating bisimulation of [AHK98] applied to non-stochastic
two-player games. For a decision ρ ∈ Disc(A) of Σ, let us denote by s ρ−→µ that µ is a
possible successor distribution, i.e. there are decisions µa of Π for each a such that µ =
∑

a∈A ρ(a) ·µa.

Definition 7.1 (Alternating probabilistic (∃σ∀)-bisimulation). Given an IMDP M, let
R ⊆ S × S be an equivalence relation. We say that R is an alternating probabilistic (∃σ∀)-
bisimulation if for any (s, t) ∈R we have that L(s) = L(t) and

for each ρs ∈ Disc(A (s))
there is ρt ∈ Disc(A (t))

such that for each t
ρt−→ µt

there is s
ρs−→ µs such that µs L(R) µt .

Furthermore, we write s ∼(∃σ∀) t if there is an alternating probabilistic (∃σ∀)-bisimulation R
such that (s, t) ∈R.

The exact alternation of quantifiers might be counter-intuitive at first sight. Note that it
exactly corresponds to the situation in non-stochastic games [AHK98]. The defined bisim-
ulation preserves the PCTL logic with |=(∃σ∀).

Theorem 7.1 (Soundness of ∼(∃σ∀) with respect to the PCTL properties). For states
s ∼(∃σ∀) t and any PCTL formula ϕ, we have s |=(∃σ∀) ϕ if and only if t |=(∃σ∀) ϕ.

Proof. We use structural induction on the syntax of PCTL state formula ϕ and PCTL path
formula ψ. That is, we need to prove the following two results simultaneously:

1. s ∼(∃σ∀) t implies that s |=(∃σ∀) ϕ if and only if t |=(∃σ∀) ϕ for any state formula ϕ

2. ω1 ∼(∃σ∀) ω2 implies thatω1 |=(∃σ∀) ψ if and only ifω2 |=(∃σ∀) ψ for any path formula
ψ.

134 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

s |=(∃π∀) true
s |=(∃π∀) x iff x ∈ L(s)
s |=(∃π∀) ¬ϕ iff s 6|=(∃π∀) ϕ
s |=(∃π∀) ϕ1 ∧ϕ2 iff s |=(∃π∀) ϕ1 ∧ s |=(∃π∀) ϕ2

s |=(∃π∀) P1p(ψ) iff ∃π ∈ Π ∀σ ∈ Σ : Prσ,π
s

�

|=(∃π∀) ψ
�

1 p
ξ |=(∃π∀) Xϕ iff s2 |= ϕ
ξ |=(∃π∀) ϕ1U≤kϕ2 iff there exists i ≤ k such that si |=(∃σ∀) ϕ2

and s j |=(∃π∀) ϕ1 for every 1≤ j < i
ξ |=(∃π∀) ϕ1Uϕ2 iff there exists k ∈ N such that

ξ |=(∃π∀) ϕ1U≤kϕ2

Table 7.2: PCTL semantics for parameter synthesis of IMDPs

We consider the nontrivial part that is when ϕ = P1p(ψ) where 1=≤ and ψ = ϕ1Uϕ2;
because the other cases are similar. Assume s |=(∃σ∀) ϕ, we need to show that t |=(∃σ∀) ϕ.
To drive a contradiction, assume t |=(∃σ∀) ¬ϕ. Therefore, for each σ ∈ Σ there exists π ∈ Π,
Prσ,π

t {ω|ω |= ψ} > p. By induction hypothesis Sat(ϕ1) and Sat(ϕ2) are |=(∃σ∀) closed and
they are indeed union of equivalence classes induced by |=(∃σ∀). It is not difficult to see that
the set {ω|ω |= ψ} is |=(∃σ∀) closed and therefore, Prσ,π

s {ω|ω |= ψ} = Prσ,π
t {ω|ω |= ψ} > p.

In other words, for each σ ∈ Σ there exists π ∈ Π such that s |=(∃σ∀) ¬ϕ which leads to a
contradiction. �

Similarly to Corollary 6.1, we could define a satisfaction relation with the alternation
∀σ ∈ Σ ∃π ∈ Π that is then preserved by the same bisimulation ∼(∃σ∀). However, we see
no natural application thereof.

Parameter synthesis in parallel systems. Another variant of the alternating probabilistic
bisimulation is defined based on the parameter synthesis semantics. In the setting of pa-
rameter synthesis in parallel systems, we search for a resolution π of the underspecified
probabilities such that for any scheduler σ resolving the interleaving nondeterminism, a
fixed property ϕ is satisfied. This corresponds to the satisfaction relation |=(∃π∀) defined as
in Table 7.2.

This yields a definition of bisimulation similar to Definition 7.1. For a choice (µa)a∈A
of underspecified probabilities, let us denote by s

(µa)−→ µ that µ is a possible successor dis-
tribution, i.e. there is a decision ρ of Σ such that µ=

∑

a∈A ρ(a) ·µa.

Definition 7.2 (Alternating probabilistic (∃π∀)-bisimulation). Given an IMDP M, let
R ⊆ S × S be a symmetric relation. We say that R is an alternating probabilistic (∃π∀)-
bisimulation if for any (s, t) ∈R we have that L(s) = L(t) and

for each (µa)a∈A (s) where s
a
−→ µa for each a ∈A (s)

there is (νa)a∈A (t) where t
a
−→ νa for each a ∈A (t)

such that for each t
(νa)−→ µt

7.1. Alternating Probabilistic Bisimulation Relations for IMDPs 135

there is s
(µa)−→ µs such that µs L(R) µt .

Furthermore, we write s ∼(∃π∀) t if there is an alternating probabilistic (∃π∀)-bisimulation R
such that (s, t) ∈R.

The fact that this bisimulation preserves |=(∃π∀) can be proven analogously to Theo-
rem 7.1.

Theorem 7.2 (Soundness of ∼(∃π∀) with respect to the PCTL properties). For states
s ∼(∃π∀) t and any PCTL formula ϕ, we have s |=(∃π∀) ϕ if and only if t |=(∃π∀) ϕ.

Proof. The proof is similar to the proof of Theorem 7.1. �

As a final result of this section, we show that these two bisimulations coincide. For-
mally,

Theorem 7.3. We have ∼(∃σ∀) = ∼(∃π∀).

Proof. We only prove that ∼(∃σ∀) ⊆ ∼(∃π∀). The other way around is proved similarly. Let
R ⊆ S × S be an equivalence relation that is alternating probabilistic (∃σ∀)-bisimulation.
Let (s, t) ∈R and let ρs ∈ Disc(A). By definition of R, L(s) = L(t). Moreover, for the given
choice ρs, there exists ρt ∈ Disc(A) such that for each t ρt−→ν there exists a transition s ρs−→µ
such that µ(C) = ν(C) for each equivalence class C ∈ S/R. Consider a transition t ρt−→ν.
By definition of (∃σ∀)-bisimulation, there exists a choice (νa)a∈A of nature such that ν =
∑

a∈A ρt(a)νa and also there exists a probabilistic transition s ρs−→µ. Let us assume (µa)a∈A
are the choice of nature such that µ =

∑

a∈A ρs(a) ·µa. Define (ηa)a∈A = (νa)a∈A . For such
realization of uncertainty (ηa)a∈A , let t ηa−→η. Since the realized uncertainty (ηa)a∈A was
an outcome of the choice ρt of the controller, therefore, η =

∑

a∈A ρt(a) · ηa. We define
(ζa)a∈A = (µa)a∈A , ζ =

∑

a∈A ρs(a) · ζa and let s ρs−→ζ. For each C ∈ S/R, we get ζ(C) =
∑

a∈A ρs(a) · ζa(C) =
∑

a∈A ρs(a) ·µa(C) =
∑

a∈A ρt(a) · νa(C) =
∑

a∈A ρt(a) ·ηa(C) = η(C).
Therefore, (s, t) ∈R with respect to the definition of (∃π∀)-bisimulation. �

Thanks to this result, we denote from now on these coinciding bisimulations by ∼(∃∀).

Remark 7.1. It is worthwhile to note that Definitions 6.1, 7.1 and 7.2 can be seen as the con-
servative extension of probabilistic bisimulation for (state-labelled) MDPs. To see that assume the
set of uncertainty for every transition is a singleton. Since there is only one choice for the nature,
the role of nature can be safely removed from the definitions. Moreover, it is worthwhile to note
that Theorems 6.2, 7.1 and 7.2 show the soundness of the probabilistic bisimulation definitions with
respect to PCTL. Unfortunately, it is shown in [Seg95, SL94] that probabilistic bisimulation for
probabilistic automata is finer than PCTL equivalence which leads to the incompleteness in general.
Since MDPs can be seen as a subclass of PAs, it is not difficult to see that the incompleteness holds
also for MDPs.

The notions ∼(∀) and ∼(∃∀) are incomparable, as it is for instance observable in Exam-
ple 7.1. It is shown in the example that t ∼(∀) t and u ∼(∃∀) u. However it is not hard to
verify that t 6∼(∃∀) t and u 6∼(∀) u. For the latter, notice that for example u can evolve to r with

136 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

probability one by taking action b, whereas u cannot simulate. The former is noticeable in
the situation where the controller wants to maximise the probability to reach r, but the
nature declines. In this case t chooses action b and the nature let it go to r with probability
0.8. Nevertheless the nature can prevent t to evolve into r with probability more than 0.6,
despite the fact which action has been chosen by t.

7.2 A PTIME Decision Algorithm for Bisimulation Mini-
mization

Computation of the alternating probabilistic bisimulation∼(∃∀) for IMDPs follows the stan-
dard partition refinement approach [PT87, KS90, CS02, GHT14]. However, the core part is
finding out whether two states “violate the definition of bisimulation”. This verification
routine amounts to check that s and t have the same set of strictly minimal polytopes detailed
as follows.

For s ∈ S and a ∈ A (s), recall that H a
s denotes the polytope of feasible successor dis-

tributions over states with respect to taking the action a in the state s. By P s,a
R , we denote

the polytope of feasible successor distributions over equivalence classes of R with respect to
taking the action a in the state s. Formally, for µ ∈ Disc(S/R) we set µ ∈ P s,a

R if, for each
C ∈ S/R, we have µ(C) ∈ I(s, a,C).

It is not difficult to see that each P s,a
R can be represented as an H-polytope. To simplify

our presentation, we shall fix an order over all equivalence classes in S/R. By doing so,
any distribution ρ ∈ Disc(S/R) can be seen as a vector v such that vi = ρ(Ci) for each
1≤ i ≤ n, where n= |S/R|, Ci is the i-th equivalence class, and vi the i-th element in v. For
the above discussion, ρ ∈ P s,a

R iff ρ(Ci) ∈
�

ls,ai ,us,a
i

�

for any 1 ≤ i ≤ n and ρ ∈ Disc(S/R),
where ls,a and us,a are vectors such that ls,ai =

∑

s′∈Ci
inf I(s, a, s′) and us,a

i =
∑

s′∈Ci
sup I(s, a, s′)

for each 1≤ i ≤ n. Therefore, P s,a
R corresponds to an H-polytope defined by:

§

xs,a ∈ Rn

�

�

�

�

ls,a ≤ xs,a ≤ us,a

1T xs,a = 1

ª

. (7.1)

Definition 7.3 (Strictly minimal polytopes). Given an IMDP M, a state s, an equivalence
relation R ⊆ S×S and a set {P s,a

R | a ∈A (s) }where for each a ∈A (s), for given ls,a,us,a ∈ Rn,
P s,a

R is the convex polytope

P s,a
R =

§

xs,a ∈ Rn

�

�

�

�

ls,a ≤ xs,a ≤ us,a

1T xs,a = 1

ª

,

a polytope P s,a
R is called strictly minimal, if for no ρ ∈ Disc(A (s)\{a}), we have P s,ρ

R ⊆ P s,a
R

where P s,ρ
R is defined as

P s,ρ
R = {xs,ρ ∈ Rn | xs,ρ =

∑

b∈A (s)\{a}

ρ(b) · xs,b ∧ xs,b ∈ P s,b
R }.

Thus, checking violation of a given pair of states amounts to check if the states have the
same set of strictly minimal polytopes. Formally,

7.2. A PTIME Decision Algorithm for Bisimulation Minimization 137

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0
,0

.6
]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0
.1

,0
.8
]

u∼(∃∀) u

ua b

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0≤ `≤ 0.6

0≤ r ≤ 1

P1[0.1,0.6]

P2[0,0.6]

ua c

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0.1≤ `≤ 0.8

0≤ r ≤ 1

P1[0.1,0.6]

P3[0.1,0.8]

Figure 7.1: Description of the algorithm to decide if u∼(∃∀) u.

Lemma 7.1. We have s ∼(∃∀) t if and only if L(s) = L(t) and {P s,a
∼(∃∀)

| a ∈
A ,P s,a

∼(∃∀)
is strictly minimal}= {P t,a

∼(∃∀)
| a ∈A ,P t,a

∼(∃∀)
is strictly minimal}.

Proof. We first address the “if” part. For each choice of nature (µa)a∈A where each s a−→µa ,
let M = {µa | a ∈ A} and M ′ ⊆ M be the subset where each distribution lies within some
strictly minimal polytope P s,b

∼(∃∀)
. Because the strictly minimal polytopes coincide, we can

construct a choice of nature (νa)a∈A such that N = {νa | a ∈A} = M ′. Because N ⊆ M , it is
easy to see that for each t (νa)−→ν there is s (µa)−→µ such that µ(C) = ν(C) for each C ∈ S/R.

As regards the “only if” part, let us assume that there is, say in t, a strictly minimal
polytope P t,b

∼(∃∀)
that is not in the set of strictly minimal polytopes for s. There is a choice of

nature (µa)a∈A for state s such that no convex combination of elements of M = {µa | a ∈A}
lies in P t,b

∼(∃∀)
; in particular no element of M lies in P t,b

∼(∃∀)
. For any choice of nature (νa)a∈A

for state t, νb is not a convex combination of elements from M . Thus, if scheduler chooses
action b, there is no s (µa)−→µ such that µ(C) = νb(C) for each C ∈ S/R and it does not hold
s ∼(∃∀) t. �

Example 7.2. Consider a pair of IMDPs depicted in Figure 7.1. The general sketch of the algorithm
is as follows. We need to construct the polytopes of probability distributions offered by the actions;
in our examples the polytopes are just line segments in two-dimensional space. We get u ∼(∃∀) u
since u and u have the same set of strictly minimal polytopes w.r.t. set inclusion. �

The bottleneck procedure in the analysis of the worst case time complexity of comput-
ing the coarsest alternating probabilistic bisimulation∼(∃∀) is to check the strict minimality

138 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

of a polytope P s,a
R for an action a ∈A (s). In the sequel, we give a polynomial time routine

to verify the strict minimality of a polytope which in turn enables a polynomial time deci-
sion algorithm to decide ∼(∃∀). To this aim, we need the following equivalent form of the
Farkas’ Lemma:

Lemma 7.2. Let A be a real m× n matrix, b ∈ Rm and c ∈ Rn. Then, Ax≤ b implies cT x≤ d if
and only if there exists µ ∈ Rm

≥0 s.t. ATµ= c and bTµ≤ d.

Proof. We first address the “if" part. Assume that there exists µ ∈ Rm
≥0 such that ATµ = c

and bTµ ≤ d. Let Ax ≤ b. Thus, cT x = (ATµ)T x = µT (Ax) ≤ µT b ≤ d. Therefore, Ax ≤ b
correctly implies cT x≤ d. As regards the ”only if" part, consider the following primal-dual
LPs:

max cT x
(P) subject to: Ax≤ b

min bT y
(D) subject to: AT y= c

y≥ 0

Now suppose that the primal problem P is feasible. Therefore, there exists an x ∈ Rn such
that Ax≤ b and by assumption it holds that cT x≤ d. Thus the primal LP has a finite optimal
solution, i.e., there exists an optimal solution x∗ such that max cT x = cT x∗ and cT x∗ ≤ d.
By strong duality Theorem 3.4, the dual problem D has also a finite optimal solution and
these values are equal. Thus there exists a µ ∈ Rm

≥0 such that ATµ = c and bTµ = cT x∗ ≤ d.
This concludes the proof, as required. �

Theorem 7.4. Given an IMDP M, a state s ∈ S, an equivalence relation R ⊆ S × S and a set
{P s,a

R | a ∈A (s) } defined as in Definition 7.3, checking if for each a ∈A (s), the polytopeP s,a
R

is strictly minimal is in P.

Proof. Let A (s) = {a0, a1, . . . , am}, n = |S/R|, and Pi = P
s,ai

R for 0 ≤ i ≤ m. We describe
the verification routine to check the strict minimality of P0; the same routine applies to the
other polytopes. We consider the converse of the strict minimality problem which asks to
decide whether there exist λ1,λ2, . . . ,λm ∈ R≥0 such that

∑m
i=1λi = 1 and

∑m
i=1λi Pi ⊆ P0.

We show that the latter problem can be casted as an LP via Farkas’ Lemma 7.2. To this aim,
we alternatively reformulate the converse problem as “do there exist λ1,λ2, . . . ,λm ∈ R≥0
with

∑m
i=1λi = 1, such that xi ∈ Pi for each 1≤ i ≤ m implies

∑m
i=1λix

i ∈ P0?”.
For every fixed λ1,λ2, . . . ,λm ∈ R≥0 with

∑m
i=1λi = 1, the implication “(∀1 ≤ i ≤ m :

xi ∈ Pi) =⇒
∑m

i=1λix
i ∈ P0” can be written as the conjunction of 2n conditions:

m
∧

i=1

li ≤ xi ≤ ui ∧
m
∧

i=1

1 · xi = 1 =⇒
m
∑

i=1

λix
i
k ≥ l0k (7.2)

m
∧

i=1

li ≤ xi ≤ ui ∧
m
∧

i=1

1 · xi = 1 =⇒
m
∑

i=1

λix
i
k ≤ u0

k (7.3)

for all 1 ≤ k ≤ n. (Note that the condition 1 ·
∑m

i=1λix
i = 1 is trivially satisfied if 1 · xi = 1

for all 1≤ i ≤ m.) Each of the conditions (7.2) and (7.3), by Farkas’ Lemma, is equivalent to

7.2. A PTIME Decision Algorithm for Bisimulation Minimization 139

Algorithm 8: Bisimulation(M)
Input: A relation R on S × S
Output: Return a probabilistic bisimulation R

1 begin
2 R← { (s, t) ∈ S × S | L(s) = L(t) };
3 repeat
4 R′←R;
5 forall s ∈ S do
6 D← ;;
7 forall t ∈ [s]R do
8 if Violate(∃∀)(s, t,R) then
9 D← D ∪ {t};

10 split [s]R in R into D and [s]R \ D;

11 until R =R′;
12 return R;

Procedure 9: Violate(∃∀)(s, t,R)
Input: States s, t and relation R
Output: Checks if s ∼R t

1 begin
2 S, T ← ;;
3 forall a ∈A do
4 if P s,a

R is strictly minimal
then

5 S← S ∪ {P s,a
R };

6 if P t,a
R is strictly minimal

then
7 T ← T ∪ {P t,a

R };

8 return S 6= T ;

Figure 7.2: Alternating probabilistic bisimulation algorithm for interval MDPs

the feasibility of a system of inequalities; for instance, for a given k, (7.2) is true if and only
if there exist vectors µk,i ,νk,i ∈ Rn

≥0 and scalars θ k,i ,ηk,i ∈ R≥0 for each 1≤ i ≤ m satisfying:

µk,i − νk,i + θ k,i1−ηk,i1= −λiek ∀1≤ i ≤ m (7.4)
m
∑

i=1

�

ui ·µk,i − li · νk,i + θ k,i −ηk,i
�

≤ −l0k (7.5)

Similarly, for a given k, (7.3) is true if and only if there exist vectors bµk,i ,bνk,i ∈ Rn
≥0 and

scalars bθ k,i , bηk,i ∈ R≥0 for each 1≤ i ≤ m satisfying:

bµk,i − bνk,i + bθ k,i1− bηk,i1= λiek ∀1≤ i ≤ m (7.6)
m
∑

i=1

(ui · bµk,i − li · bνk,i + bθ k,i − bηk,i)≤ u0
k (7.7)

Thus, the converse problem we are aiming to solve reduces to checking the existence of
vectors µk,i ,νk,i , bµk,i ,bνk,i ∈ Rn

≥0 and scalars λi ,θ
k,i ,ηk,i , bθ k,i , bηk,i ∈ R≥0 for each 1 ≤ i ≤ m

satisfying (7.4)-(7.7) and
∑m

i=1λi = 1. That amounts to solve an LP problem, which is
known to be in P. �

As stated earlier, in order to compute∼(∃∀) we follow the standard partition refinement
approach formalized by the Bisimulation algorithm in Figure 7.2. Namely, we start with
R being the complete relation and iteratively remove from R pairs of states that violate
the definition of bisimulation with respect to R. Clearly the core part of the algorithm is
to check if two states “violate the definition of bisimulation”. The violation of bisimilarity
of s and t with respect to R, which is addressed by the procedure Violate(∃∀), is checked

140 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

by verifying if states s and t have the same set of strictly minimal polytopes. As a result of
Theorem 7.4, this verification routine can be checked in polynomial time. As regards the
computational complexity of the algorithm, let |S| = n, |A| = m. The procedure Violate(∃∀)
in Figure 7.2 is called at most n3 times. The procedure Violate(∃∀) is then linear in m and in
the complexity of checking the strict minimality of polytopes which is O(|M|O(1)). Putting
all these together, we get the following result.

Theorem 7.5. Given an IMDP M, computing of ∼(∃∀) can be done in time O(|M|O(1)).

Proof. Immediate by the previous analysis. �

7.3 Compositional Reasoning

In order to study the compositional minimization, that is, to split a complex IMDP as
parallel composition of several simpler IMDPs and then to use the bisimulation as a means
to reduce the size of each of these IMDPs before performing the model checking for a given
PCTL formula ϕ, we have to extend the notion of bisimulation from one IMDP to a pair of
IMDPs; we do this by following the usual construction (see, e.g., [CS02, Seg95]).

Definition 7.4 (Alternating probabilistic bisimulation for IMDP components). Given
two IMDPs M1 and M2, we say that they are alternating probabilistic (∃∀)-bisimilar, de-
noted by M1 ∼(∃∀) M2, if there exists an alternating probabilistic (∃∀)-bisimulation on the
disjoint union of M1 and M2 such that s̄1 ∼(∃∀) s̄2.

With this definition at hand, we can now establish the first property needed for the
compositional minimization, that is, transitivity of ∼(∃∀):

Theorem 7.6. Given three IMDPs M1, M2, and M3, whenever M1 ∼(∃∀) M2 and
M2 ∼(∃∀)M3, then M1 ∼(∃∀)M3.

Proof. Let R12 and R23 be the equivalence relations underlying M1 ∼(∃∀) M2 and
M2 ∼(∃∀) M3, respectively. Let R13 be the symmetric and transitive closure of the set
{ (s1, s3) | ∃s2.s1 R12 s2 ∧ s2 R23 s3 } ∪ (R12 ∩ S2

1) ∪ (R23 ∩ S2
3). We claim that R13 is a proba-

bilistic bisimulation justifying M1 ∼(∃∀)M3.
The fact that s̄1 R13 s̄3 is trivial since by hypothesis we have that s̄1 R12 s̄2 and s̄2 R23 s̄3,

so (s̄1, s̄3) ∈R13 by construction.
In the following, assume that s1 ∈ S1 and s3 ∈ S3; the other cases are similar.
The labelling is respected: for each s1 R13 s3, we have that there exists s2 such that

s1 R12 s2 and s2 R23 s3; this implies that L1(s1) = L2(s2) and L2(s2) = L3(s3), thus L1(s1) =
L3(s3) as required.

To complete the proof, consider s1 R13 s3. By hypothesis, there exists s2 ∈ S2 such
that s1 R12 s2 and s2 R23 s3; since R12 is an alternating probabilistic (∃∀)-bisimulation,
this implies that for each ρ1 ∈ Disc(A1), there exists ρ21 ∈ Disc(A2) such that for each
s2

ρ21−→ µ21 there exists s1
ρ1−→ µ12 such that µ12 L(R12) µ21. Consider now ρ21 ∈ Disc(A2):

since s2 R23 s3 and R23 is an alternating probabilistic (∃∀)-bisimulation, it follows that

7.3. Compositional Reasoning 141

there exists ρ321 ∈ Disc(A3) such that for each s3
ρ321−→ µ321 there exists s2

ρ21−→ µ2 such that
µ2 L(R23) µ321. This implies that for each ρ1 ∈ Disc(A1), there exists ρ3 ∈ Disc(A3)
(namely, ρ321) such that for each s3

ρ3−→ µ3 (that is, s3
ρ321−→ µ321) there exists s1

ρ1−→ µ1 (that
is, s1

ρ1−→ µ12) such that µ1 L(R13) µ3 (that follows from µ1 = µ12 L(R12) µ21 and µ2 L(R23)
µ321 = µ3, with µ2 being one of the distributions µ21 for which µ1 = µ12 L(R12) µ21 holds,
by construction of R13 and the properties of lifting (cf. [TH14])). �

For the second property needed by the compositional minimization, that is, that ∼(∃∀)
is preserved by the parallel composition operator, we first have to introduce such an op-
erator; to this end, we consider a slight adaption of synchronous product of M1 and M2
as introduced in Chapter 6. Such a synchronous product makes use of a subclass of the
Segala’s (simple) probabilistic automata [Seg95, Seg06], called action agnostic probabilistic
automata (cf. Definition 6.8), where each automaton has as set of actions the same singleton
set { f }, that is, all transitions are labelled by the same external action f . Recall that an
(action agnostic) probabilistic automaton (PA) is a tuple P = (S, s̄,AP, L, T), where S is a set of
states, s̄ ∈ S is the start state, AP is a finite set of atomic propositions, L : S → 2AP is a labelling
function, and T ⊆ S ×Disc(S) is a probabilistic transition relation.

Definition 7.5 (IMDPs synchronous product). Given two IMDPs M1 and M2, we define
the synchronous product of M1 and M2 as

M1 ⊗M2 := F(UF(M1)⊗ UF(M2))

where
• the unfolding mapping UF: [M] → [P] is a function that maps a given IMDP M =
(S, s̄,A ,AP, L, I) to the PA P= (S, s̄,AP, L, T) where T = { (s,µ) | s ∈ S,∃a ∈A (s) : µ ∈
Ext(H a

s)∧H
a

s is a strictly minimal polytope };
• the folding mapping F: [P]→ [M] transforms a PA P = (S, s̄,AP, L, T) into the IMDP
M = (S, s̄, { f },AP, L, I) where, for each s, t ∈ S, I(s, f , t) = projet

CH({µ | (s,µ) ∈ T }),
where each component euv of the vector eu ∈ R|S| is defined as euv = δu(v);

• the synchronous product of two PAs P1 and P2, denoted by P1⊗P2, is the probabilis-
tic automaton P = (S, s̄,AP, L, T) where S = S1 × S2, s̄ = (s̄1, s̄2), AP = AP1 ∪ AP2,
for each (s1, s2) ∈ S, L(s1, s2) = L1(s1) ∪ L2(s2), and T = { ((s1, s2),µ1 × µ2) |
(s1,µ1) ∈ T1 and (s2,µ2) ∈ T2 }, where µ1×µ2 ∈ Disc(S1×S2) is defined for each (t1, t2) ∈
S1 × S2 as (µ1 ×µ2)(t1, t2) = µ1(t1) ·µ2(t2).

As stated earlier, Definition 7.5 is slightly different with its counterpart Definition 6.15.
As a matter of fact, due to the competitive semantics for resolving the nondeterminisms,
only actions whose uncertainty set is a strictly minimal polytope play a role in deciding
the alternating bisimulation relation ∼(∃∀). In particular, for the compositional reasoning
keeping state actions whose uncertainty set is not strictly minimal induces spurious be-
haviors and therefore, influences on the soundness of the parallel operator definition. In
order to avoid such redundancies, we can either preprocess the IMDPs before composing
by removing state actions whose uncertainty set is not strictly minimal or restricting the
unfolding mapping UF to unfold a given IMDP while ensuring that all extreme transitions

142 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

in the resultant probabilistic automaton correspond to extreme points of strictly minimal
polytopes in the original IMDP. For the sake of simplicity, we choose the latter.

Theorem 7.7. Given three IMDPs M1, M2, and M3, if M1 ∼(∃∀)M2, then M1⊗M3 ∼(∃∀)
M2 ⊗M3.

Before proving the theorem, we prove that alternating probabilistic (∃∀)-bisimilar
IMDPs induce probabilistic bisimilar unfolded PA. Formally,

Lemma 7.3. Given two IMDPs M1 and M2, if M1 ∼(∃∀)M2, then UF(M1)∼p
aa UF(M2).

Proof. Due to the Theorem 7.3, we consider without loss of generality the alternating prob-
abilistic bisimulation ∼(∃σ∀). Let R be the alternating probabilistic (∃σ∀)-bisimulation
justifying M1 ∼(∃σ∀) M2; we claim that R is also a probabilistic bisimulation justifying
UF(M1)∼p

aa UF(M2).
The fact that R is an equivalence relation on S1 ∪ S2, that s̄1 R s̄2, and that L1(s1) =

L2(s2) for each s1 R s2 follows immediately by construction of R and the fact that R is the
alternating probabilistic (∃σ∀)-bisimulation.

Consider (s1, s2) ∈ R and assume that s1 ∈ S1 and s2 ∈ S2; the other cases are simi-
lar. Consider s1 −→ µ1. By definition of the unfolding mapping UF, there exists an action
a ∈A (s1) such that µ1 ∈ Ext(H a

s1
) andH a

s1
is a strictly minimal polytope. Since s1 ∼(∃σ∀) s2

therefore, their sets of strictly minimal polytopes are equivalent with respect to set inclu-
sion [cf. Lemma 7.1]. This implies that there exists an action b ∈A (s2) such thatH b

s2
=H a

s1
,

hence by taking µ2 = µ1 ∈ Ext(H a
s1
) = Ext(H b

s2
) we have that s2

b−→µ2. This trivially im-
plies that s2 −→cµ2 with µ1 L(R) µ2. �

We are now ready to prove Theorem 7.7.

Proof. Due to the Theorem 7.3, we consider without loss of generality the alternating prob-
abilistic bisimulation ∼(∃σ∀). Let R12 be the alternating probabilistic (∃σ∀)-bisimulation
justifying M1 ∼(∃σ∀) M2 and consider the relation R = { ((s1, s3), (s2, s3)) | (s1, s2) ∈
R12, s3 ∈ S3 }; we claim that R is an alternating probabilistic (∃σ∀)-bisimulation between
M1 ⊗M3 and M2 ⊗M3.

The fact that R is an equivalence relation on (S1×S3)∪(S2×S3), that (s̄1, s̄3)R (s̄2, s̄3), and
that L13(s1, s3) = L23(s2, s3) for each (s1, s3)R (s2, s3) follows immediately by construction of
R and the fact that R12 is the alternating probabilistic (∃σ∀)-bisimulation.

Consider (s1, s3) R (s2, s3) and assume that s1 ∈ S1 and s2 ∈ S2; the other cases are
similar. By definition of the folding function F, it follows that the only action available
from (s1, s3) and from (s2, s3) is f , i.e.,A (s1, s3) =A (s2, s3) = { f }. This means that checking
whether for each ρ13 ∈ Disc(A (s1, s3)) there exists ρ2,3 ∈ Disc(A (s2, s3)) such that for each
(s2, s3)

ρ2,3−→µ2,3 there exists (s1, s3)
ρ1,3−→µ1,3 such that µ1,3 L(R) µ2,3 reduces to check whether

for each (s2, s3)
δ f−→µ2,3 there exists (s1, s3)

δ f−→µ1,3 such that µ1,3 L(R) µ2,3, sinceρ13 = ρ23 =
δ f . This holds if and only if for each transition ((s2, s3),µ2,3) of UF(M2)⊗ UF(M3) there is
a transition ((s1, s3),µ1,3) of UF(M1) ⊗ UF(M3) such that µ1,3 L(R) µ2,3, that is, if R is a
probabilistic bisimulation between UF(M2)⊗ UF(M3) and UF(M1)⊗ UF(M3).

7.3. Compositional Reasoning 143

By inspecting the equivalence relations used in the proofs of Lemmas 7.3 and 6.4,
it follows that R is indeed a probabilistic bisimulation between UF(M2) ⊗ UF(M3) and
UF(M1)⊗ UF(M3), thus M1 ⊗M3 ∼(∃σ∀)M2 ⊗M3, as required. �

So far we have considered the parallel composition via synchronous production, which
is working by the definition of folding collapsing all labels to a single transition. Here we
consider the other extreme of the parallel composition: interleaving only.

Definition 7.6 (IMDPs interleaving parallel composition). Given two IMDPs Ml and
Mr , we define the interleaved composition of Ml and Mr , denoted by Ml æMr , as the
IMDP M = (S, s̄,A ,AP, L, I) where S = Sl × Sr ; s̄ = (s̄l , s̄r); A = (Al × {l}) ∪ (Ar × {r});
AP= APl ∪ APr ; for each (sl , sr) ∈ S, L(sl , sr) = Ll(sl)∪ Lr(sr); and

I((sl , sr), (a, i), (t l , t r)) =

Il(sl , a, t l) if i = l and t r = sr ,
Ir(sr , a, t r) if i = r and t l = sl ,
[0, 0] otherwise.

Theorem 7.8. Given three IMDPs M1, M2, and M3, if M1 ∼(∃∀)M2, then M1æM3 ∼(∃∀)
M2 æM3.

Proof. Due to the Theorem 7.3, we consider without loss of generality the alternating prob-
abilistic bisimulation ∼(∃σ∀). Let R be the alternating probabilistic (∃σ∀)-bisimulation jus-
tifying M1 ∼(∃σ∀) M2 and define R′ = { ((s1, s3), (s2, s3)) | (s1, s2) ∈ R, s3 ∈ S3 }; we claim
that R′ is an alternating probabilistic (∃σ∀)-bisimulation between M1æM3 and M2æM3.
The fact that R′ is an equivalence relation follows trivially by its definition and the fact that
R is an equivalence relation. The fact that ((s̄1, s̄3), (s̄2, s̄3)) follows immediately by the hy-
pothesis that (s̄1, s̄2) ∈R and (s̄3, s̄3) ∈ IS3

.
Let ((s1, s3), (s2, s3)) ∈ R′. Assume, without loss of generality, that s1 ∈ S1 and s2 ∈ S2;

the other cases are similar. The fact that L1,3(s1, s3) = L2,3(s2, s3) is straightforward, since
by definition of interleaved composition and the hypothesis that s1 R s2, we have that
L1,3(s1, s3) = L1(s1)∪ L3(s3) = L2(s2)∪ L3(s3) = L2,3(s2, s3), as required.

Consider now ρ13 ∈ Disc(A (s1, s3)): by definition of interleaved composition, it follows
that each (a, i) ∈ Supp(ρ13) is either of the form (a, l) ∈ A1 × {l}, or of the form (a, r) ∈
A3 × {r}. Consider now the two distributions ρ1 ∈ Disc(A1) and ρ3 ∈ Disc(A3) defined
as follows: ρ1 is defined for each a ∈ A1 as ρ1(a) =

ρ13(a,l)
∑

b∈A1
ρ13(b,l) if

∑

b∈A1
ρ13(b, l) 6= 0,

otherwise ρ1 is taken arbitrarily from Disc(A (s1)); and similarly ρ3 is defined for each
a ∈A3 as ρ3(a) =

ρ13(a,r)
∑

b∈A3
ρ13(b,r) if

∑

b∈A3
ρ13(b, r) 6= 0, otherwise ρ3 is taken arbitrarily from

Disc(A (s3)). It is easy to see that for each (a, i) ∈ A (s1, s3), we have ρ13(a, i) = ρ1(a) ·
∑

b∈A1
ρ13(b, l) if i = l and ρ13(a, i) = ρ3(a) ·

∑

b∈A3
ρ13(b, r) if i = r.

Since ((s1, s3), (s2, s3)) ∈R′, it follows that (s1, s2) ∈R, thus for the considered ρ1, there
exists ρ2 ∈ Disc(A (s2)) such that for each s2

ρ2−→ µ2 there exists s1
ρ1−→ µ1 such that µ1 L(R)

µ2. Trivially, for the considered ρ3, there exists ρ′3 = ρ3 ∈ Disc(A (s3)) such that for each

s3

ρ′3−→ µ′3 there exists s3
ρ3−→ µ3 such that µ3 L(I3) µ′3 where µ3 = µ′3 and I3 is the identity

relation on S3.

144 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

Consider now the distribution ρ23 ∈ Disc(A (s2, s3)) defined for each (a, i) ∈ A (s2, s3)
as ρ23(a, i) = ρ2(a) ·

∑

b∈A1
ρ13(b, l) if i = l and ρ23(a, i) = ρ3(a) ·

∑

b∈A3
ρ13(b, r) if i = r.

Essentially, ρ23 combines the distributions ρ2 and ρ3 according to the weights of the left ρ1
and right ρ3 choices made in ρ13. This means that, given ρ13 and ρ23, we have that for each
(s2, s3)

ρ23−→ µ23 there exists (s1, s3)
ρ13−→ µ13 such that µ13 L(R′) µ23, by standard properties

of lifting (see, e.g., [TH14]), as required: the required µ13 is obtained by combining the
distributions µ1 and µ3 according to the weights of the left ρ2 and right ρ3 choices made
in ρ23 (that are actually the same as the weights of the left ρ1 and right ρ3 choices made in
ρ13). �

7.4 Case Studies

We implemented the proposed bisimulation minimization and applied them to several
case studies. The goal of these experiments is to assess the impact of bisimulation min-
imization as a pre-processing step to minimize the IMDP models while preserving the
PCTL properties (with respect to the controller (parameter) synthesis semantics) they sat-
isfy.

In our experiments, we implemented in a prototypical tool the proposed bisimulation
minimization algorithm and applied it to several case studies. The bisimulation algorithm
is tested on several PRISM [KNP11] benchmarks extended to support also intervals in the
transitions. For the evaluation, we have used a machine with a 3.6 GHz Intel i7-4790 with
16 GB of RAM of which 12 assigned to the tool; the timeout has been set to 30 minutes. Our
tool reads a model specification in the PRISM input language and constructs an explicit-
state representation of the state space. Afterwards, it computes the quotient using the
algorithm in Figure 7.2.

Table 7.3 shows the performance of our prototype on a number of case studies taken
from the PRISM website [PRI], where we have replaced some of the probabilistic choices
with intervals. Despite using an explicit representation for the model, the prototype is able
to manage case studies in the order of millions of states and transitions (columns “Model”,
“|S|”, and “|I|”). The time in seconds required to compute the bisimulation relation and the
size of the corresponding quotient IMDP are shown in columns “t∼”, “|S∼|”, and “|I∼|”.
In order to improve the performance of the tool, we have implemented optimizations,
such as caching equivalent LP problems, which improve the runtime of our prototype.
Because of this, we saved to solve several LP problems in each tool run, thereby avoiding
the potentially costly solution of LP problems from becoming a bottleneck. However, the
more refinements are needed, the more time is required to complete the minimization,
since several new LP problems need to be solved. The plots in Figure 7.3 show graphically
the number of states and transitions for the Consensus and Crowds experiments, where
for the latter we have considered more instances than the ones reported in Table 7.3. As we
can see, the bisimulation minimization is able to reduce considerably the size of the IMDP,
by several orders of magnitude. Additionally, this reduction correlates positively with the
number of model parameters as depicted in Figure 7.4.

7.5. Concluding Remarks 145

Table 7.3: Experimental evaluation of the bisimulation computation

Model |S| |I| t∼ (s) |S∼| |I∼|

Consensus-Shared-Coin-3 5 216 13 380 1 787 1 770
Consensus-Shared-Coin-4 43 136 144 352 3 2 189 5 621
Consensus-Shared-Coin-5 327 936 1 363 120 26 5 025 14 192
Consensus-Shared-Coin-6 2 376 448 11 835 456 238 10 173 30 861

Crowds-5-10 111 294 261 444 1 107 153
Crowds-5-20 2 061 951 7 374 951 20 107 153
Crowds-5-30 12 816 233 61 511 033 149 107 153
Crowds-5-40 –MO–

Mutual-Exclusion-PZ-3 2 368 8 724 4 475 1 632
Mutual-Exclusion-PZ-4 27 600 136 992 70 3 061 13 411
Mutual-Exclusion-PZ-5 308 800 1 930 160 534 12 732 65 661
Mutual-Exclusion-PZ-6 3 377 344 25 470 144 –TO–

Dining-Phils-LR-nofair-3 956 3 048 1 172 509
Dining-Phils-LR-nofair-4 9 440 40 120 14 822 3 285
Dining-Phils-LR-nofair-5 93 068 494 420 622 5 747 29 279
Dining-Phils-LR-nofair-6 917 424 5 848 524 –TO–

3 4 5 6

103

104

105

106

107

Model parameters

Consensus-Shared-Coin model

5 10 15 20 25 30

102

103

104

105

106

107

108

Model parameters

Crowds model

|S| |I| |S∼| |I∼|

Figure 7.3: Effectiveness of bisimulation minimization on model reduction

7.5 Concluding Remarks

In this chapter, we have analyzed interval Markov decision processes under controller (pa-
rameter) synthesis semantics in a dynamic setting. In particular, we provided an efficient
compositional bisimulation minimization approach for IMDPs under competitive seman-

146 Chapter 7 : Compositional Minimization for Optimal Control of Interval MDPs

3 4 5 6

10−2

10−1

Model parameters

Consensus-Shared-Coin model

5 10 15 20 25 30

10−5

10−4

10−3

10−2

Model parameters

Crowds model

|S∼|/|S| |I∼|/|I|

Figure 7.4: State and transition reduction ratio by bisimulation minimization

tics. In this regard, we proved that the alternating probabilistic bisimulations for IMDPs
can be decided in polynomial time. Moreover, from perspective of compositional reason-
ing, we showed that the alternating probabilistic bisimulations for IMDPs are congruences
with respect to synchronous product and interleaving.

Related work Bisimulation minimization for uncertain or parametric probabilistic mod-
els has been studied in [HHS+16b, HHK14, HHHT16] where the authors explored the
computational complexity and approximability of deciding probabilistic bisimulation for
IMDPs with respect to the cooperative resolution of nondeterminisms. In this chapter, we
showed that IMDPs can be minimized efficiently with respect to the competitive resolu-
tion of nondeterminisms. From the viewpoint of compositional minimization, IMCs [JL91]
and abstract Probabilistic Automata (PA) [DKL+11a, DKL+11b] serve as specification the-
ories for MC and PA, featuring satisfaction relation and various refinement relations.
In [HHT16], the authors discuss the key ingredients to build up the operations of par-
allel composition for composing IMDP components at run-time. In this chapter we follow
this spirit for alternating probabilistic bisimulation on IMDPs.

CHAPTER8
Multi-objective Robust Controller

Synthesis for Interval MDPs

In this chapter, we present a novel technique for multi-objective controller synthesis for
IMDPs. Our aim is to synthesize a robust controller that guarantees the satisfaction of the
multi-objective property at the same time, despite the additional uncertainty over the tran-
sition probabilities in these models. Our approach relies on the controller synthesis seman-
tics under which it views the uncertainty as making adversarial choices among the avail-
able transition probability distributions induced by the intervals, as the system evolves
along state transitions. In this regard, we first analyze the problem complexity, showing
that it is PSPACE-hard and then develop a value iteration-based decision algorithm to ap-
proximate the Pareto curve of achievable points. We finally show promising results on a
variety of case studies, obtained by prototypical implementations of all algorithms.

The material presented in this chapter is an extended version of the results reported
in [HHH+17b, HHH+17a].

Organization of the chapter. In Section 8.1, we introduce multi-objective robust con-
troller synthesis for IMDPs and present our solution approach in detail. Afterwards in
Section 8.2, we present the practical effectiveness of our proposed approaches by applying
them on several case studies using a prototypical tool. Finally, in Section 8.3 we conclude
the chapter.

8.1 Multi-objective Robust Controller Synthesis for IMDPs

In this section, we consider two main classes of properties for IMDPs; the probability of
reaching a target and the expected total reward. The reason that we focus on these properties is
that their algorithms usually serve as the basis for more complex properties. For instance,
they can be easily extended to answer queries with linear temporal logic properties as
shown in [EKVY07]. To this aim, we lift the satisfaction definitions of these two classes of
properties from MDPs in [FKP12,FKN+11] to IMDPs by encoding the notion of robustness
for controllers.

147

148 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

Definition 8.1 (Reachability predicate & its robust satisfaction). A reachability predi-
cate [T]≤k

∼p consists of a set of target states T ⊆ S, a relational operator ∼ ∈ {≤,≥}, a rational
probability bound p ∈ [0, 1]∩Q and a time bound k ∈ N∪{∞}. It indicates that the probability
of reaching T within k time steps satisfies ∼ p.
Robust satisfaction of [T]≤k

∼p by IMDP M under controllerσ ∈ Σ is denoted by M�σ|=Π [T]≤k
∼p

and indicates that the probability of the set of all paths that reach T under σ satisfies the bound
∼ p for every choice of nature π ∈ Π. Formally,

M�σ|=Π [T]≤k
∼p iff PrσM(◊◊◊

≤k T)∼ p

where
PrσM(◊◊◊

≤k T) := opt
π∈Π

Prσ,π
M {ξ ∈ Pathsinf

M | ∃i ≤ k : ξ[i] ∈ T }

and

opt=

¨

min if ∼=≥
max if ∼=≤

Furthermore, σ is referred to as a robust controller.

In order to model reward predicates for an IMDP, we associate a reward to actions
available in each state. This is done by introducing a reward structure:

Definition 8.2 (IMDP reward structure). A reward structure for an IMDP is a function
r: S ×A → R that assigns to each state-action pair (s, a), where s ∈ S and a ∈A (s), a reward
r(s, a) ∈ R. Given a (possibly infinite) path ξ and a step number k ∈ N ∪ {∞}, the total
accumulated reward in k steps for ξ over r is r[k](ξ) :=

∑k−1
i=0 r(ξ[i],ξ(i)).

Note that we allow negative rewards in this definition, but that due to later assump-
tions their use is restricted.

Definition 8.3 (Reward predicate & its robust satisfaction). A reward predicate [r]≤k
∼ r

consists of a reward structure r, a time bound k ∈ N ∪ {∞}, a relational operator ∼ ∈ {≤,≥}
and a reward bound r ∈ Q. It indicates that the expected total accumulated reward within k
steps satisfies ∼ r.
Robust satisfaction of [r]≤k

∼ r by IMDP M under controller σ ∈ Σ is denoted by M�σ|=Π [r]≤k
∼ r

and indicates that the expected total reward over the set of all paths under σ satisfies the bound
∼ r for every choice of nature π ∈ Π. Formally,

M�σ|=Π [r]≤k
∼ r iff ExpTotσ,k

M [r]∼ r

where

ExpTotσ,k
M [r] := opt

π∈Π

∫

ξ∈Pathsinf
M

r[k](ξ)dPrσ,π
M

and

opt=

¨

min if ∼=≥
max if ∼=≤

Furthermore, σ is referred to as the robust controller.

8.1. Multi-objective Robust Controller Synthesis for IMDPs 149

For the purpose of algorithm design, we also consider weighted sum of rewards. For-
mally,

Definition 8.4 (Weighted reward sum). Given a weight vector w ∈ Rn, vector of time bounds
k = (k1, . . . , kn) ∈ (N ∪ {∞})n and reward structures r = (r1, . . . ,rn) for IMDP M, the
weighted reward sum w·r[k] over a path ξ is defined as w.r[k](ξ) =

∑n
i=1 wi .ri[ki](ξ). The

expected total weighted sum is defined as ExpTotσ,k
M [w · r] = maxπ∈Π

∫

ξ
w.r[k](ξ)dPrσ,π

M
for bounds ≤ and accordingly minimises over natures for ≥; for a given controller σ, we have:

ExpTotσ,k
M [w · r] =

n
∑

i=1

wi · ExpTotσ,ki

M [ri].

8.1.1 Multi-objective Queries
Multi-objective properties for IMDPs essentially require multiple predicates to be satisfied
at the same time under the same controller for every choice of the nature. We now explain
how to formalise multi-objective queries for IMDPs.

Definition 8.5 (Multi-objective predicate). A multi-objective predicate is a vector ϕ =
(ϕ1, . . . ,ϕn) of reachability or reward predicates. We say that ϕ is satisfied by IMDP M under
controller σ for every choice of nature π ∈ Π, denoted by M �σ|=Π ϕ if, for each 1 ≤ i ≤ n, we
have M �σ|=Π ϕi . We refer to σ as a robust controller. Furthermore, we call ϕ a basic multi-
objective predicate if it is of the form ([r1]

≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
), i.e., it includes only lower-bounded

reward predicates.

We formulate multi-objective queries for IMDPs in three ways, namely synthesis queries,
quantitative queries and Pareto queries. We first focus on the synthesis queries and discuss
later the other types of queries. We formulate multi-objective synthesis queries for IMDPs
as follows.

Definition 8.6 (Synthesis Query). Given an IMDP M and a multi-objective predicate ϕ,
the synthesis query asks if there exists a robust controller σ ∈ Σ such that M�σ|=Π ϕ.

Note that the synthesis queries check for the existence of a robust controller that satis-
fies a multi-objective predicate ϕ for every resolution of nature.

In order to avoid unusual behaviors in controller synthesis such as infinite total ex-
pected reward, we need to limit the usage of rewards by assuming reward-finiteness for
the controllers that satisfy the reachability predicates in the given multi-objective query ϕ.

Assumption 8.1 (Reward-finiteness). Suppose that an IMDP M and a synthesis query
ϕ are given. Let ϕ = ([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
, [rn+1]

≤kn+1
∼ rn+1

, . . . , [rm]≤km
∼ rm
). We say that ϕ is

reward-finite if for each n + 1 ≤ i ≤ m such that ki = ∞, sup{ExpTotσ,ki

M [ri] | M �σ|=Π
([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
) }<∞.

150 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

In the following, we discuss in detail how reward-finiteness assumption for a given
IMDP M and a synthesis query ϕ can be ensured and also provide a preprocessing proce-
dure that removes actions with non-zero rewards from the end components of the IMDP.

In order to describe the procedure that checks Assumption 8.1, we first need to define
a counterpart of end components of MDPs for IMDPs, to which we refer as a strong end-
component (SEC). Intuitively, a SEC of an IMDP is a sub-IMDP for which there exists a
controller that forces the sub-IMDP to remain in the end component and visit all its states
infinitely often under any nature. It is referred to as strong because it is independent of the
choice of nature. Formally,

Definition 8.7 (Strong End-Component). A strong end-component (SEC) of an IMDP
M is EM = (S′,A ′), where S′ ⊆ S and A ′ ⊆

⋃

s∈S′A (s) such that (1)
∑

s′∈S′ h
a
ss′ = 1 for

every s ∈ S′ and a ∈ A ′(s), and all ha
s ∈ H

a
s , and (2) for all s, s′ ∈ S′ there is a finite path

ξ = ξ[0] · · ·ξ[n] such that ξ[0] = s, ξ[n] = s′ and for all 0 ≤ i ≤ n− 1 we have ξ[i] ∈ S′ and
ξ(i) ∈A ′.

Remark 8.1. The SECs of an IMDP M can be identified by using any end-component-search
algorithm of MDPs on its underlying graph structure. That is, since the lower transition probability
bounds of M are strictly greater than zero for the transitions whose upper probability bounds are
non-zero, the underlying graph structure of M is identical to the graph structure of every MDP it
contains. Therefore, a SEC of M is an end-component of every contained MDP, and vice versa.

Lemma 8.1. If state-action pair (s, a) is not contained in a SEC, then

sup
σ∈Σ

inf
π∈Π

occσπ((s, a))<∞,

where occσπ((s, a)) denotes the expected total number of occurrences of (s, a) under σ and π.

Proof. If (s, a) is not contained in a SEC of M, then starting from s and under action a, the
probability of returning to s is less than one, independent of the choice of controller and
nature. Then, the proof follows from basic results of probability theory. �

Proposition 8.1. Let EM = (S′,A ′) denote a SEC of IMDP M. Then, we have
supσ{ExpTotσ,∞

M [r] |M�σ|=Π ([T1]≤k1
∼p1

, . . . , [Tn]≤kn
∼pn
) } =∞ for a reward structure r of M if

and only if there is a controller σ of M that M �σ|=Π ([T1]≤k1
∼p1

, . . . , [Tn]≤kn
∼pn
), EM is reachable

under σ, and r(ξ[i],ξ(i)) > 0, where ξ is a path under σ with ξ[i] ∈ S′ and ξ(i) ∈ A ′(ξ[i])
for some i ≥ 0.

Proof. We prove this proposition by adapting the proof from [FKN+11, Proposition 1].
Direction ⇒. Assume that, for a reward structure r, sup{ExpTotσ,∞

M [r] | M �σ|=Π
([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
) } =∞. From Lemma 8.1, it follows that if state-action pair (s, a) oc-

curs infinitely often, s and a are contained in a SEC EM . Therefore, to satisfy the assumed
condition, there must exist some controller σ such that M �σ|=Π ([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
) and

8.1. Multi-objective Robust Controller Synthesis for IMDPs 151

a SEC is reachable, in which σ picks action a at reachable state s with positive probability,
and r(s, a)> 0.

Direction ⇐. Assume that there is a controller σ such that M �σ|=Π
([T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
), a SEC EM = (S′,A ′) is reachable, and r(ξ[n],ξ(n)) > 0, where ξ

is a finite path of length n + 1 under σ with ξ[n] ∈ S′ and ξ(n) ∈ A ′(ξ[n]) for some
n ≥ 0. To complete the proof, it is enough to show that there is a sequence of controllers
{σk}k∈N under which (i) the probabilistic predicates [T1]≤k1

∼p1
, . . . , [Tn]≤kn

∼pn
are satisfied and (ii)

limk→∞ ExpTotσk ,k
M [r] =∞.

(i) Let ξ[n] = s and ξ(n) = a. For k ∈ N consider σk that
• for the paths that do not have the prefix ξ, σk emulates σ.

• when the path ξ is performed, σk forces the system to stay in EM containing (s, a).
After k occurrences of (s, a), the next time s is visited, the controller σk emulates σ
again as if the performed path segment after ξ[n] was never executed.

Under σk, the reachability predicates are satisfied for any k ∈ N. To see this, consider
θk that maps each path ξ of σ to the paths of σk. We now have θ (ξ) ∩ θ (ξ′) = ; for all
ξ 6= ξ′, and for all sets Ω and two natures π and πk, where πk emulates π the same way
σk emulates σ, we have Prσ,π

M (Ω) = Prσk ,πk
M (θ (Ω)), independent of the choice of πk during

the execution of the path segment that σk forces the stay in EM . The satisfaction of the
reachability predicates under each σk follows from the fact that, for any path ξ of σ, ξ
satisfies a reachability predicate iff each path in θ (Ω) satisfies the reachability predicate.
(ii) To show that limk→∞ ExpTotσk ,k

M [r] = ∞, recall that the probability of reaching (s, a)
under σk for the first time is some positive value p1. From the properties of SEC, the
probability of returning to s within l steps, where l = |S|, is also some positive value p2.
By construction, (s, a) is picked k times, therefore, ExpTotσk ,k

M [r] ≥ p1p2
k
l r(s, a), and hence,

limk→∞ ExpTotσk ,k
M [r] =∞. �

We can now construct, from M, an IMDP M̄ that is equivalent to M in terms of satis-
faction of ϕ but does not include actions with positive rewards in its SEC. The algorithm
is similar to the one introduced in [FKN+11] for MDPs and is as follows. First, remove ac-
tion a fromA (s) if (s, a) is contained in a SEC and r(s, a)> 0 for some maximizing reward
structure r. Second, recursively remove states with no outgoing transitions and transitions
that lead to non-existent states until a fixpoint is reached.

Proposition 8.2. There is a controllerσ of M such that ExpTotσ,∞
M [r] = x <∞ and M�σ|=Π

ϕ if and only if there is a controller σ̄ of M̄ such that ExpTotσ̄,∞
M̄ [r] = x and M̄�σ̄|=Π ϕ.

Proof. The proof follows straightforwardly from Proposition 8.1. �

Due to Assumption 8.1, in the rest of this section we assume that all queries are reward-
finite. Furthermore, for the soundness of our analysis we also require that for any IMDP M
and ϕ given as in Assumption 8.1: (i) each reward structure ri assigns only non-negative
values; (ii) ϕ is reward-finite; and (iii) for indices n+ 1≤ i ≤ m such that ki =∞, either all
∼is are ≤ or all are ≥.

152 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

8.1.2 Robust Controller Synthesis
We first study the computational complexity of multi-objective robust controller synthesis
problem for IMDPs. Formally,

Theorem 8.1. Given an IMDP M and a multi-objective predicate ϕ, the problem of synthesiz-
ing a controller σ ∈ Σ such that M�σ|=Π ϕ is PSPACE-hard.

In order to prove the theorem, we need to define the multiple reachability problem for
MDPs. Formally,

Definition 8.8 (Multiple reachability problem for MDPs). Given an MDP M and a
reachability predicate described as a vector ϕ = (ϕ1, . . . ,ϕn) where ϕ j = [T j]

≤k j
∼p j

for j ∈
{1, . . . , n}, the multiple reachability problem asks to check if there exists a controller σ of M
such thatM ,σ |=Π ϕ. The almost-sure multiple reachability problem restricts to ∼ = ≥ and
p j = 1 for all j ∈ {1, . . . , n}.

The proof makes use of the following lemma:

Lemma 8.2 (Complexity of the multiple reachability problem for MDPs [RRS15]).
Given an MDP M , the almost-sure multiple reachability problem is PSPACE-complete and
controllers need exponential memory in the query size.

Proof. We reduce the problem in Lemma 8.2 to the one under our analysis. In fact, any
instance of the multiple reachability problem for MDPM can be seen as an instance of the
multi-objective robust controller synthesis problem for an IMDP M generated fromM by
replacing all probability values with point intervals. Since the multiple reachability prob-
lem for MDPs is PSPACE-complete and the reduction is performed in polynomial time
therefore, solving the robust controller synthesis problem for IMDPs is at least PSPACE-
hard. �

As the first step towards derivation of a solution approach for the robust controller
synthesis problem, we need to convert all reachability predicates to reward predicates and
therefore to transform an arbitrarily given query to a query over a basic predicate on a
modified IMDP. This can be simply done by adding, once for all, a reward of one at the
time of reaching the target set and also negating the objective of predicates with upper-
bounded relational operators. We correct and extend the procedure in [FKP12] to reduce a
general multi-objective predicate on an IMDP model to a basic form on a modified IMDP.

Proposition 8.3 (Reduction to basic form). Given an IMDP M = (S, s̄,A ,AP, L, I) and
a multi-objective predicate ϕ = ([T1]≤k1

∼1 p1
, . . . , [Tn]≤kn

∼n pn
, [rn+1]

≤kn+1
∼n+1 rn+1

, . . . , [rm]≤km
∼m rm
), let M′ =

(S′, s̄′,A ′,AP′, L′, I′) be the IMDP whose components are defined as follows:
• S′ = S × 2{1,...,n};

• s̄′ = (s̄,;);
• A ′ =A × 2{1,...,n};

• AP′ = AP;

8.1. Multi-objective Robust Controller Synthesis for IMDPs 153

s

t u

{v}

{u} {u,v}

a, 3 b, 1

[
1 3
,

2 3
]

[1
10 , 1][

2
5
,
3

5
]

[14 , 23]

a, 0
[1, 1]

b, 0
[1,1]

Figure 8.1: An Example of IMDPs.

• for all s ∈ S and v ⊆ {1, . . . , n}, L′(s, v) = L(s); and

• for all s, s′ ∈ S, a ∈A , and v, v′, v′′ ⊆ {1, . . . , n},

I′((s, v), (a, v′), (s′, v′′)) =

¨

I(s, a, s′) if v′ = { i | s ∈ Ti } \ v and v′′ = v ∪ v′,
0 otherwise.

Now, let ϕ′ = ([rT1
]≤k1+1
≥p′1

, . . . , [rTn
]≤kn+1
≥p′n

, [r̄n+1]
≤kn+1

≥r ′n+1
, . . . , [r̄m]

≤km
≥r ′m
) where, for each i ∈

{1, . . . , n},

p′i =

¨

pi if ∼i =≥,
−pi if ∼i =≤;

and rTi
((s, v), (a, v′)) =

1 if i ∈ v′ and ∼i =≥,
−1 if i ∈ v′ and ∼i =≤,
0 otherwise;

and, for each j ∈ {n+ 1, . . . , m},

r ′j =

¨

r j if ∼ j =≥,
−r j if ∼ j =≤;

and r̄ j((s, v), (a, v′)) =

¨

r j(s, a) if ∼ j =≥,
−r j(s, a) if ∼ j =≤.

Then ϕ is satisfiable in M if and only if ϕ′ is satisfiable in M′.

Before proving the proposition formally, we first illustrate the reduction by an example.

Example 8.1. Consider the IMDP M depicted in Figure 8.1. The set of states is S = {s, t, u} with
s being the initial one. The set of actions is A = {a, b}, and the non-zero transition probability
intervals are I(s, a, t) = [1

3 , 2
3], I(s, a, u) = [1

10 , 1], I(s, b, t) = [2
5 , 3

5], I(s, b, u) = [1
4 , 2

3], and
I(t, a, t) = I(u, b, u) = [1,1]. Letters in curly brackets besides each circle denote the labels of each
state and the underlined numbers indicate the reward structure r with r(s, a) = 3, r(s, b) = 1,
and r(t, a) = r(u, b) = 0. Among the uncountable many distributions belonging to H a

s , two
possible choices for nature π on s and a are π(s, a) = {(t, 3

5), (u, 2
5)} and π(s, a) = {(t, 1

3), (u, 2
3)}.

Let us assume that the target set is T = {t1} and also consider ϕ = ([T]≤1
≥ 1

3

, [r]≤1
≥ 1

4

). Execution of

the reduction in Proposition 8.3, converts ϕ to the property ϕ′ = ([rT]
≤2
≥ 1

3

, [r]≤1
≥ 1

4

) on the modified

154 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

(s,;)
{v}

(s, {1})

{v}

(t,;)
{u}

(u,;)
{u,v}

(t, {1})

{u}

(u, {1})

{u,v}

(a,;), 3, 0 (b,;), 1, 0 (a,;), 3, 0 (b,;), 1, 0

[
1 3
,

2 3
]

[1
10 , 1][

2
5
,
3

5
]

[14 , 23] [
1 3
,

2 3
]

[1
10 , 1][

2
5
,
3

5
]

[14 , 23]

(a, {1}), 1, 1

(b,;), 1, 0
(a,;), 1, 0 (b,;), 1, 0

Figure 8.2: The IMDP M′ generated from M

M′ depicted in Figure 8.2. We show two different reward structure r̄ and rT besides each action,
respectively. �

We now prove the proposition as follows.

Proof. Given a state (s, v) ∈ S′, let ve = { i ∈ {1, . . . , n} | s ∈ Ti } \ v. By definition of the
transition probability function, it follows that the only successors (s′, v′) that can be reached
from (s, v)must have v′ = v∪ ve; moreover, the action performed for such a transition must
be of the form (a, ve). This means that the sets ve and v′ are uniquely determined by the
current state (s, v); let ν: S′ → 2{1,...,n} be the function such that ν(s, v) = { i ∈ {1, . . . , n} |
s ∈ Ti } \ v for each (s, v) ∈ S′, νA : S′ ×A → A ′ be the function such that νA ((s, v), a) =
(a,ν(s, v)) for each (s, v) ∈ S′ and a ∈ A , and νS : S′ × S → S′ be the function such that
νS((s, v), s′) = (s′, v ∪ ν(s, v)) for each (s, v) ∈ S′ and s′ ∈ S.

It is immediate to see that every path ξ′ of M′,

ξ′ = (s0, v0) h
(a0,v′0)
(s0,v0)(s1,v1)

(s1, v1) h
(a1,v′1)
(s1,v1)(s2,v2)

(s2, v2) . . . ,

is actually of the form

ξ′ = (s0, v0) h
νA ((s0,v0),a0)
(s0,v0)νS((s0,v0),s1)

(s1, v1) h
νA ((s1,v1),a1)
(s1,v1)νS((s1,v1),s2)

(s2, v2) . . .

where (s j+1, v j+1) = νS((s j , v j), s j+1) for each j ∈ N, i.e., v j+1 = v j ∪ ν(s j , v j). This
means that we can define a bijection]: Pathsinf

M → Pathsinf
M′ as follows: given a path

ξ= s0 h
a0
s0s1

s1 h
a1
s1s2

s2 . . . of M,](ξ) is defined as

](ξ) = (s0, v0) h
(a0,v′0)
(s0,v0)(s1,v1)

(s1, v1) h
(a1,v′1)
(s1,v1)(s2,v2)

(s2, v2) . . .

where v0 = ; and for each j ∈ N, (a j , v′j) = νA ((s j , v j), a j) and (s j+1, v j+1) = νS((s j , v j), s j).

The inverse [: Pathsinf
M′ → Pathsinf

M of] is just the projection on M: given a path ξ′ =

(s0, v0) h
(a0,v′0)
(s0,v0)(s1,v1)

(s1, v1) h
(a1,v′1)
(s1,v1)(s2,v2)

(s2, v2) . . . of M′, [(ξ′) is defined as

[(ξ′) = s0 h
a0
s0s1

s1 h
a1
s1s2

s2

8.1. Multi-objective Robust Controller Synthesis for IMDPs 155

Moreover, since the sequence of sets v0v1v2 . . . is monotonic non-decreasing with re-
spect to the subset inclusion partial order, we have that, for a given i ∈ {1, . . . , n}, if i ∈ vN
for some N ∈ N, then there exists exactly one l ∈ N such that i /∈ v j for each 0 ≤ j < l
and i ∈ v j for each j ≥ l, i.e., sl is the first time a state s ∈ Ti occurs along [(ξ′). There-
fore, it follows that i ∈ ν(sl , vl) while i /∈ ν(s j , v j) for each j ∈ N \ {l}. This implies that
rTi
(ξ′[l],ξ′(l)) = 1 if ∼i = ≥ or rTi

(ξ′[l],ξ′(l)) = −1 if ∼i = ≤ while rTi
(ξ′[j],ξ′(j)) = 0 for

each j ∈ N \ {l}, thus

rTi
[k](ξ′) =

1 if l < k and ∼i =≥,
−1 if l < k and ∼i =≤,
0 otherwise.

Note that, if i /∈ v j for each j ∈ N, then this means that i /∈ ν(s j , v j) for each j ∈ N, thus
rTi
(ξ′[j],ξ′(j)) = 0 for each j ∈ N and rTi

[k](ξ′) = 0.
Similarly, for each h ∈ {n + 1, . . . , m}, we get that r̄h[k](ξ′) = rh[k](ξ) if ∼h = ≥ and

r̄h[k](ξ′) = −rh[k](ξ) if ∼h =≤.
We are now ready to prove the statement of the proposition, by considering the two

implications separately.
Suppose that ϕ is satisfiable in M: by definition, it follows that there exists a controller

σ of M such that M �σ|=Π ϕ, that is, M �σ|=Π [Ti]≤ki
∼i pi

for each i ∈ {1, . . . , n} and M �σ|=Π
[rh]≤kh

∼h rh
for each h ∈ {n + 1, . . . , m}. Let σ′ be the controller of M′ such that, for each

finite path ξ′ ∈ Pathsfin
M′ and action a ∈A , σ(ξ′)(νA (last(ξ′), a)) = σ([(ξ′))(a), 0 otherwise.

Intuitively, σ′ chooses the next action (a, v) exactly as σ chooses a since v is uniquely
determined by ξ′. We claim that σ′ is such that M′ �σ′ |=Π ϕ′.

Let i ∈ {1, . . . , n} and consider ϕ′i = [rTi
]≤ki+1
≥p′i

: there are two cases depending on the
original bound ∼i .

If ∼i = ≥, then [rTi
]≤ki+1
≥p′i

= [rTi
]≤ki+1
≥pi

; M′ �σ′ |=Π′ [rTi
]≤ki+1
≥pi

if and only if

minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ ≥ pi . Since for each path ξ′ ∈ Pathsinf
M′ , rTi

[ki + 1](ξ′) = 1
if there exists l < ki + 1 such that [(ξ′)[l] ∈ Ti , rTi

[ki + 1](ξ′) = 0 otherwise, by the way
I′ and σ′ are defined it follows that minπ′∈Π′

∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ = minπ∈Π Prσ,π
M {ξ ∈

Pathsinf
M | ∃l ≤ k : ξ[l] ∈ Ti }. Since by hypothesis ϕ is satisfiable in M, then it follows that

minπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈ Ti } ≥ pi , thus minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ ≥

pi holds as well, hence M′ �σ′ |=Π′ [rTi
]≤ki+1
≥pi

= [rTi
]≤ki+1
≥p′i

is satisfied, as required.

Consider now the second case: if ∼i = ≤, then [rTi
]≤ki+1
≥p′i

= [rTi
]≤ki+1
≥−pi

; M′ �σ′ |=Π′

[rTi
]≤ki+1
≥−pi

if and only if minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ ≥ −pi . Since for each path

ξ′ ∈ Pathsinf
M′ , rTi

[ki + 1](ξ′) = −1 if there exists l < ki + 1 such that [(ξ′)[l] ∈ Ti , rTi
[ki +

1](ξ′) = 0 otherwise, by the way I′ and σ′ are defined it follows that minπ′∈Π′
∫

ξ′
rTi
[ki +

1](ξ′)dPrσ
′,π′

M′ = −maxπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈ Ti }. Since by hypothesis
we have that ϕ is satisfiable in M, then it follows that maxπ∈Π Prσ,π

M {ξ ∈ Pathsinf
M | ∃l ≤

k : ξ[l] ∈ Ti } ≤ pi , thus minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ ≥ −pi holds as well, hence

M′ �σ′ |=Π′ [rTi
]≤ki+1
≥−pi

= [rTi
]≤ki+1
≥p′i

is satisfied, as required.

156 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

This completes the analysis of the case ϕ′i = [rTi
]≤ki+1
≥p′i

for each i ∈ {1, . . . , n}.

Let h ∈ {n+ 1, . . . , m} and consider ϕ′h = [r̄h]
≤kh

≥r ′h
: there are two cases depending on the

original bound ∼h.
If ∼h = ≥, then [r̄h]

≤kh

≥r ′h
= [r̄h]

≤kh
≥rh

; M′ �σ′ |=Π′ [r̄h]
≤kh
≥rh

holds if and only

if minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ rh holds. Since for each path ξ′ ∈ Pathsinf
M′ ,

r̄h[k](ξ′) = rh[k]([(ξ′)), by the way the components I′, r̄h, and σ′ are defined it fol-
lows that minπ′∈Π′

∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ = minπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M . Since by hypoth-

esis ϕ is satisfiable in M, then it follows that minπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≥ rh, thus

minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ rh holds as well, hence M′ �σ′ |=Π′ [r̄h]
≤kh
≥rh
= [r̄h]

≤kh

≥r ′h
is satis-

fied, as required.
Consider now the second case: if ∼h = ≤, then [r̄h]

≤kh

≥r ′h
= [r̄h]

≤kh
≥−rh

; M′ �σ′ |=Π′

[r̄h]
≤kh
≥−rh

if and only if minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ −rh. Since for each path ξ′ ∈

Pathsinf
M′ , r̄h[k](ξ′) = −rh[k]([(ξ′)), by the way I′, r̄h, and σ′ are defined it follows

that minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ = −maxπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M . Since by hypothe-

sis ϕ is satisfiable in M, then it follows that maxπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≤ rh, thus

minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ −rh holds as well, hence M′ �σ′ |=Π′ [r̄h]
≤kh
≥−rh

= [r̄h]
≤kh

≥r ′h
is

satisfied, as required.
This completes the analysis of the case ϕ′h = [r̄h]

≤kh

≥r ′h
for each h ∈ {n + 1, . . . , m}; since

M′ �σ′ |=Π′ ϕ′j for each j ∈ {1, . . . , m}, it follows that ϕ is satisfiable in M′, as required to
prove that “if ϕ is satisfiable in M, then ϕ′ is satisfiable in M′”.

Suppose now the other implication, namely “if ϕ′ is satisfiable in M′, then ϕ is satis-
fiable in M” and assume that ϕ′ is satisfiable in M′: by definition, it follows that there
exists a controller σ′ of M′ such that M′ �σ′ |=Π′ ϕ′, that is, M′ �σ′ |=Π′ [rTi

]≤ki+1
≥p′i

for each

i ∈ {1, . . . , n} and M′ �σ′ |=Π′ [r̄h]
≤kh

≥r ′h
for each h ∈ {n + 1, . . . , m}. Let σ be the controller of

M such that, for each finite path ξ ∈ Pathsfin
M and action a ∈ A , σ(ξ)(a) = σ′(](ξ))(a, v), 0

otherwise, where (a, v) = νA (last(](ξ)), a). Intuitively, σ chooses the next action a exactly
as σ′ chooses (a, v) since v is uniquely determined by ξ′. We claim that σ is such that
M�σ|=Π ϕ.

Let i ∈ {1, . . . , n} and considerϕi = [Ti]≤ki
∼i pi

: there are two cases depending on the bound
∼i .

If ∼i = ≥, then M �σ|=Π [Ti]
≤ki
≥pi

if and only if minπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈
Ti } ≥ pi . Since for each path ξ ∈ Pathsinf

M, rTi
[ki + 1](](ξ)) = 1 if there exists l < ki + 1 such

that ξ[l] ∈ Ti , rTi
[ki+1](](ξ)) = 0 otherwise, by the way I′ and σ are defined it follows that

minπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈ Ti } = minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ . Since by

hypothesisϕ′ is satisfiable in M′, then it follows that minπ′∈Π′
∫

ξ′
rTi
[ki+1](ξ′)dPrσ

′,π′

M′ ≥ pi ,

thus minπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈ Ti } ≥ pi holds as well, hence M �σ|=Π
[Ti]

≤ki
≥pi
= [Ti]≤ki

∼i pi
is satisfied, as required.

Consider now the second case: If ∼i = ≤, then M �σ|=Π [Ti]
≤ki
≤pi

if and only if

8.1. Multi-objective Robust Controller Synthesis for IMDPs 157

maxπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤ k : ξ[l] ∈ Ti } ≤ pi . Since for each path ξ ∈ Pathsinf
M,

rTi
[ki + 1](](ξ)) = −1 if there exists l < ki + 1 such that ξ[l] ∈ Ti , rTi

[ki + 1](](ξ)) = 0

otherwise, by the way I′ and σ are defined it follows that maxπ∈Π Prσ,π
M {ξ ∈ Pathsinf

M | ∃l ≤
k : ξ[l] ∈ Ti } = −minπ′∈Π′

∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ . Since by hypothesis ϕ′ is satisfiable

in M′, then it follows that minπ′∈Π′
∫

ξ′
rTi
[ki + 1](ξ′)dPrσ

′,π′

M′ ≥ −pi , thus maxπ∈Π Prσ,π
M {ξ ∈

Pathsinf
M | ∃l ≤ k : ξ[l] ∈ Ti } ≤ pi holds as well, hence M �σ|=Π [Ti]

≤ki
≤pi
= [Ti]≤ki

∼i pi
is satisfied,

as required.
This completes the analysis of the case ϕi = [Ti]≤ki

∼i pi
for each i ∈ {1, . . . , n}.

Let h ∈ {n+ 1, . . . , m} and consider ϕh = [rh]≤kh
∼h rh

: there are two cases depending on the
original bound ∼h.

If ∼h = ≥, then M �σ|=Π [rh]
≤kh
≥rh

if and only if minπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≥ rh. Since for

each path ξ ∈ Pathsinf
M, r̄h[k](](ξ)) = rh[k](ξ), by the way I′, r̄h, and σ are defined it follows

that minπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M = minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ . Since by hypothesis ϕ′ is

satisfiable in M′, then minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ rh, thus minπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≥

rh holds as well, hence M�σ|=Π [rh]
≤kh
≥rh
= [rh]≤kh

∼h rh
is satisfied, as required.

Consider now the second case: if ∼h = ≤, then M �σ|=Π [rh]
≤kh
≤rh

if and only if

maxπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≤ rh. Since for each path ξ ∈ Pathsinf
M,−r̄h[k](](ξ)) = rh[k](ξ), by

the definition of the components I′, r̄h, andσ it is the case that maxπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M =

−minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ . Since by hypothesis ϕ′ is satisfiable in M′, then

minπ′∈Π′
∫

ξ′
r̄h[kh](ξ′)dPrσ

′,π′

M′ ≥ −rh, thus maxπ∈Π
∫

ξ
rh[kh](ξ)dPrσ,π

M ≤ rh holds as well,

hence M�σ|=Π [rh]
≤kh
≤rh
= [rh]≤kh

∼h rh
is satisfied, as required.

This completes the analysis of the case ϕh = [rh]≤kh
∼h rh

for each h ∈ {n + 1, . . . , m}; since
M�σ|=Π ϕ j for each j ∈ {1, . . . , m}, it follows that ϕ is satisfiable in M, as required to prove
that “if ϕ′ is satisfiable in M′, then ϕ is satisfiable in M”.

Having proved both implications, the statement of the proposition “ϕ is satisfiable in
M if and only if ϕ′ is satisfiable in M′” holds, as required. �

By means of Proposition 8.3, for robust strategy synthesis we therefore need to only
consider the basic multi-objective predicates of the form ([r1]

≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
) for our pur-

pose of robust controller synthesis. For a basic multi-objective predicate, we define its
Pareto curve as follows.

Definition 8.9 (Pareto curve of a multi-objective predicate). Given an IMDP M and a
basic multi-objective predicate ϕ = ([r1]

≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
), we define the set of achievable values

with respect to ϕ as AM,ϕ := { (r1, . . . , rn) ∈ Rn | ([r1]
≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
) is satisfiable }. We

define the Pareto curve of ϕ to be the Pareto curve of AM,ϕ and denote it by PM,ϕ .

Example 8.2. In Figure 8.3 we show the Pareto curve for the property specified in Example 8.1.
As we see, until required probability 1

3 to reach T , the maximal reward value is 3. Afterwards, the
reward obtainable linearly decreases, until at required probability 2

5 it is just 1. For higher required
probabilities, the problem becomes infeasible. The reason for this behaviour is that, up to minimal

158 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

��

����

��

����

��

����

��

����

���� ����� ����� ����� ����� ����

�
�
�
��
�
��
��
�
�
��

�
�
�
�
��
�
�
�
��

�������������������������������

Figure 8.3: Pareto curve for the property ([rT]≤2
max, [r]≤1

max).

Algorithm 10: Algorithm for solving robust synthesis queries

Input: An IMDP M, multi-objective predicate ϕ = ([r1]
≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
)

Output: true if there exists a controller σ ∈ Σ such that M�σ|=Π ϕ, false if not.
1 begin
2 X = ;; r= (r1, . . . ,rn);
3 k= (k1, . . . , kn); r= (r1, . . . , rn);
4 while r /∈ X↓ do
5 Find w separating r from X↓;
6 Find controller σ maximizing ExpTotσ,k

M [w · r];
7 g := (ExpTotσ,ki

M [ri])1≤i≤n;
8 if w · g<w · r then
9 return false;

10 X = X ∪ {g};
11 return true;

probability 1
3 , action a can be chosen in state s, because the lower interval bound to reach t is 1

3 ,
which in turn leads to a reward of 3 being obtained. For higher reachability probabilities, choosing
action b with a certain probability is required, which however provides a lower reward. There is no
controller with which t is reached with a probability larger than 2

5 . �

It is not difficult to see that the Pareto curve is in general an infinite set, and therefore,
it is not possible to derive an exact representation of it in polynomial time. However, it can
be shown that an ε-approximation of it can be computed efficiently [EKVY07].

In the rest of the section, we describe an algorithm to solve the synthesis query. We fol-
low the well-known normalization approach in order to solve the multi-objective predicate
which is essentially based on normalizing multiple objectives into one single objective. It is
known that the optimal solution of the normalized (single-objective) predicate, if it exists,
is the Pareto optimal solution of the multi-objective predicate [Ehr06].

8.1. Multi-objective Robust Controller Synthesis for IMDPs 159

The robust synthesis procedure is detailed in Algorithm 10. This algorithm basically
aims to construct a sequential approximation to the Pareto curve PM,ϕ while the quality of
approximations gets better and more precise along the iterations. In other words, along the
course of Algorithm 10 a sequence of weight vectors w are generated and corresponding
to each of them, a w-weighted sum of n objectives is optimized through lines 6-7. The
optimal controller σ is then used in order to generate a point g on the Pareto curve PM,ϕ .
We collect all these points in the set X . The multi-objective predicate ϕ is satisfiable once
we realize that r belongs to X↓.

The optimal controllers for the multi-objective robust synthesis queries are constructed
following the approach of [FKP12] and as a result of termination of Algorithm 10. In par-
ticular, when Algorithm 10 terminates, a sequence of points g1, . . . ,gt on the Pareto curve
PM,ϕ are generated each of which corresponds to a deterministic controller σg j for the cur-
rent point g j . The resulting optimal controller σopt is subsequently constructed from these
using a randomized weight vector α ∈ Rt satisfying ri ≤

∑t
j=1αi · gi

j . We will discuss the
generation of randomized controllers in detail later in section 8.1.4.

Remark 8.2. It is worthwhile to mention that the synthesis query for IMDPs cannot be solved on
the MDPs generated from IMDPs by computing all feasible extreme transition probabilities and
then applying the algorithm in [FKP12]. The latter is a valid approach provided the cooperative se-
mantics is applied for resolving the two sources of nondeterminisms in IMDPs. With respect to the
competitive semantics needed here, one can instead transform IMDPs to 2 1

2 -player games [BKW14]
and then along the lines of the previous approach apply the algorithm in [CFK+13]. Unfortunately,
the transformation to (MDPs or) 2 1

2 -player games induces an exponential blow up, adding an expo-
nential factor to the worst case time complexity of the decision problem. Our algorithm avoids this
by solving the robust synthesis problem directly on the IMDP so that the core part, i.e., lines 6- 7 of
Algorithm 10 can be solved with time complexity polynomial in |M|.

Algorithm 11 represents a value iteration-based algorithm which slightly extends the
value iteration-based algorithm in [FKP12] and adjusts it for IMDP models by encoding
the notion of robustness. More precisely, the core difference is indicated in lines 7 and 17
where the optimal controller is computed so as to be robust against any choice of nature.

Theorem 8.2. Algorithm 10 is sound, complete and has runtime exponential in |M|, k, and n.

Proof. In every iteration of the loop in Algorithm 10, a point g on a unique face of the
Pareto curve is identified. The number of faces of the Pareto curve PM,ϕ is, in the worst
case, exponential in |M|, k, and n [EKVY07]. Therefore, termination of Algorithm 10 is
guaranteed and the correctness is ensured as a result of the correctness of Algorithm 1
in [FKP12]. The soundness and completeness of the Algorithm 10 is followed by the fact
that in every iteration of the algorithm through lines 6-7, the individual model checking
problems can be solved in polynomial time in |M| by formulating the weighted sum of n
objectives as a linear programming problem. To see this, without loss of generality, assume
that ki =∞ for all i ∈ {1, . . . , n}. Therefore, following the approach in [Pug14], the problem
of maximizing the ExpTotσ,k

M [w · r] across the range of controllers σ ∈ Σ can be formulated

160 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

Algorithm 11: Value iteration-based algorithm to solve lines 6-7 of Algorithm 10
Input: An IMDP M, weight vector w, reward structures r= (r1, . . . ,rn), time-bound

vector k ∈ (N∪ {∞})n, threshold ε
Output: controller σ maximizing ExpTotσ,k

M [w · r], g := (ExpTotσ,ki

M [ri])1≤i≤n
1 begin
2 x= 0; x1 := 0; . . . ; xn := 0;
3 y= 0; y1 := 0; . . . ; yn := 0;
4 σ∞(s) =⊥ for all s ∈ S
5 while δ > ε do
6 foreach s ∈ S do
7 ys :=maxa∈A (s)(

∑

{ i|ki=∞}
wi · ri(s, a) +minha

s ∈H a
s

∑

s′∈S h
a
s (s
′) · xs′);

8 σ∞(s) := argmaxa∈A (s)(
∑

{ i|ki=∞}
wi · ri(s, a) +minha

s ∈H a
s

∑

s′∈S h
a
s (s
′) · xs′)

9 h̄σ
∞(s)

s (s′) := argminha
s ∈H a

s

∑

s′∈S h
a
s (s
′) · xs′

10 δ :=maxs∈S(ys − xs); x := y;

11 while δ > ε do
12 foreach s ∈ S and i ∈ {1, . . . , n} where ki =∞ do
13 y i

s := ri(s,σ∞(s)) +
∑

s′∈S h̄
σ∞(s)
s (s′) · x i

s′ ;

14 δ :=maxn
i=1 maxs∈S(y i

s − x i
s); x1 := y1; . . . ; xn := yn;

15 for j =max{ kb <∞| b ∈ {1, . . . , n} } down to 1 do
16 foreach s ∈ S do
17 ys :=maxa∈A (s)(

∑

{ i|ki≥ j } wi · ri(s, a) +minha
s ∈H a

s

∑

s′∈S h
a
s (s
′) · xs′);

18 σ j(s) := argmaxa∈A (s)(
∑

{ i|ki≥ j } wi · ri(s, a) +minha
s ∈H a

s

∑

s′∈S h
a
s (s
′) · xs′);

19 h̄σ
j(s)

s (s′) := arg minha
s ∈H a

s

∑

s′∈S h
a
s (s
′) · xs′ ;

20 foreach i ∈ {1, . . . , n} where ki ≥ j do
21 y i

s := ri(s,σ j(s)) +
∑

s′∈S h̄
σ j(s)
s (s′) · x i

s′ ;

22 x := y; x1 := y1; . . . ; xn := yn;

23 foreach i ∈ {1, . . . , n} do
24 gi := y i

s̄ ;

25 σ acts as σ j in j th step when j <maxi∈{1,...,n} ki and as σ∞ afterwards;
26 return σ,g

as the following optimization problem:

min
x

xT 1

subject to: xs ≥
∑n

i=1 wi · ri(s, a) + min
ha

s ∈H a
s

xTha
s ∀s ∈ S,∀a ∈A (s)

We now modify the above optimization problem to simplify derivation of the LP problem.
To this aim, we transform the optimization operator “min” to “max”. Therefore, we get the

8.1. Multi-objective Robust Controller Synthesis for IMDPs 161

following optimization problem:

max
x

−xT 1

subject to: xs ≥
∑n

i=1 wi · ri(s, a) + min
ha

s ∈H a
s

xTha
s ∀s ∈ S,∀a ∈A (s)

As it is clear from the set of constraints in the latter optimization problem, the inner op-
timization problem is not linear. In order to overcome this difficulty and induce the LP
formulation, we use dual of the inner optimization problem. To this aim, consider the
inner optimization problem with fixed x:

P(x) := min
ha

s ∈H a
s

xTha
s

Based on the general description of the interval uncertainty set H a
s = {h

a
s | 0 ≤ ha

s ≤ ha
s ≤

ha
s ≤ 1,1Tha

s = 1 } in which ha
s and ha

s are respectively the lower bound and the upper bound
of interval uncertainty; we can rewrite the latter inner optimization problem as:

P(x) :=min xTha
s

subject to: 1Tha
s = 1

ha
s ≤ ha

s ≤ ha
s

The dual of the above problem is formulated as follows:

D(x) := max
γ

s,a
j,1,γs,a

j,2,γs,a
j,3

γs,a
j,1 + ha

s
Tγs,a

j,2 − ha
s

T
γs,a

j,3

subject to: x− γs,a
j,2 + γ

s,a
j,3 − γ

s,a
j,11= 0

γs,a
j,2 ≥ 0,γs,a

j,3 ≥ 0

Since the latter inner optimization problem with fixed x is an LP, therefore due to the strong
duality theorem 3.4, we have P∗(x) = D∗(x)where P∗(x) and D∗(x) are the primal and dual
optimal values, respectively. Therefore, we can replace the original inner optimization
problem with its dual LP to derive the ultimate LP formulation. Note that the inner opti-
mization operator is removed as the outer optimization operator will find the least under-
estimate to maximize its objective function. Hence, maximizing the expected total reward
for IMDP M with respect to the reward structure w · r is formulated as the following LP
which can in turn be solved in polynomial time.

max
x ,γ

−xT 1

subject to: xs ≥
∑n

i=1 wi · ri(s, a) + γs,a
j,1 + ha

s
Tγs,a

j,2 − ha
s

T
γs,a

j,3 ∀s ∈ S,∀a ∈A (s)
x− γs,a

j,2 + γ
s,a
j,3 − γ

s,a
j,11= 0 ∀s ∈ S,∀a ∈A (s)

γs,a
j,2,γs,a

j,3 ≥ 0 ∀s ∈ S,∀a ∈A (s)

�

Remark 8.3. It is worthwhile to mention that our robust controller synthesis approach can also be
applied to MDPs with richer formalisms for uncertainties such as likelihood or ellipsoidal uncer-
tainties while preserving the computational complexity. In particular, in every inner optimization

162 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

problem in Algorithm 10, the optimality of a Markovian deterministic controller and nature is guar-
anteed as long as the uncertainty set is convex, the set of actions is finite and the inner optimization
problem which minimizes/maximizes the objective function over the choices of nature achieves its
optimum (cf. [Pug14, Proposition 4.1]). Furthermore, due to the convexity of the generated opti-
mization problems, the computational complexity of our approach remains intact.

8.1.3 Multi-objective Robust Controller Synthesis: Other Queries
For the sake of completeness of our approach, in this section we discuss other types of
multi-objective queries and present algorithms to solve them. In particular, we follow the
same direction as [FKP12] and show how Algorithm 10 can be adapted to solve these types
of queries.

We first start with the definition of quantitative and Pareto queries. Formally,

Definition 8.10 (Quantitative Queries). Given an IMDP M and a multi-objective predicate
ϕ, a quantitative query is of the form qnt([o]≤k1

? , (ϕ2, . . . ,ϕn)), consisting of a multi-objective
predicate (ϕ2, . . . ,ϕn) of size n− 1 and an objective [o]≤k1

? where o is a target set T or a reward
structure r, k1 ∈ N∪ {∞} and ? ∈ {min, max}. We define:

qnt([o]≤k1
min , (ϕ2, . . . ,ϕn)) = inf{ x ∈ R | ([o]≤k1

≤x ,ϕ2, . . . ,ϕn) is satisfiable }

qnt([o]≤k1
max, (ϕ2, . . . ,ϕn)) = sup{ x ∈ R | ([o]≤k1

≥x ,ϕ2, . . . ,ϕn) is satisfiable }.

Definition 8.11 (Pareto Queries). Given an IMDP M and a multi-objective predicate ϕ, a
Pareto query is of the form Pareto([o1]≤k1

?1
, . . . , [on]≤kn

?n
), where each [oi]≤ki

?i
is an objective in

which oi is either a target set T or a reward structure r, ki ∈ N∪{∞} and ?i ∈ {min,max}. We
define the set of achievable values as A= {x ∈ Rn | ([o1]≤k1

∼1 x1
, . . . , [on]≤kn

∼n xn
) is satisfiable } where

∼i =

¨

≥ if ?i =max

≤ if ?i =min

Then,
Pareto([o1]

≤k1
?1

, . . . , [on]
≤kn
?n
) = {x ∈ A | x is Pareto optimal }.

Note that the quantitative queries asks to maximize or minimize the reachabil-
ity/reward objective over the set of controllers satisfying ϕ. The Pareto queries ask to
determine the Pareto set for a given set of objectives.

8.1.3.1 Algorithms for Robust Synthesis of Multi-objective Queries

We now discuss algorithmic solutions to solve quantitative and Pareto queries. These
algorithms are in fact designed as an adaption of Algorithm 10 as detailed below and
can also be considered as an extension of their counterparts in [FKP12] under presence of
model uncertainty.

8.1. Multi-objective Robust Controller Synthesis for IMDPs 163

Algorithm 12: Algorithm for solving robust quantitative queries

Input: An IMDP M, objective [r1]≤k1
max, multi-objective predicate ([r2]

≤k2
≥r2

, . . . , [rn]
≤kn
≥rn
)

Output: value of qnt([r1]≤k1
max, ([r2]

≤k2
≥r2

, . . . , [rn]
≤kn
≥rn
))

1 begin
2 X = ;; r= (r1, . . . ,rn);
3 k= (k1, . . . , kn); r= (minσ∈Σ ExpTotσ,k

M [r1], r2, . . . , rn);
4 while r /∈ X↓ or w · g>w · r do
5 Find w separating r from X↓ such that w1 > 0;
6 Find controller σ maximizing ExpTotσ,k

M [w · r];
7 g := (ExpTotσ,ki

M [ri])1≤i≤n;
8 if w · g<w · r then
9 return ⊥;

10 X = X ∪ {g}; r1 :=max{r1,max{ r ′ | (r ′, r2, . . . , rn) ∈ X↓}};

11 return r1;

Quantitative queries. Let us first focus on the quantitative queries. To this end, without
loss of generality, consider the quantitative query qnt([r1]≤k1

max, ([r2]
≤k2
≥r2

, . . . , [rn]
≤kn
≥rn
)). Algo-

rithm 12, similarly to Algorithm 10, generates a sequence of points g on the Pareto curve
from a sequence of weight vectors w. In order to optimize the objective r1 as detailed
in [FKP12], a sequence of lower bounds r1 is generated which are used in the same man-
ner as Algorithm 10. In particular, in the initial step we let r1 be the minimum value for
r1 that can be computed with an instance of value iteration [Pug14]. The sequence of
non-decreasing values for r1 are generated at the next steps based on the set of points X
specified so far. In each step, the computation in the lines 6-7 of Algorithm 12 can again be
done using Algorithm 11.

At this point it is worthwhile to mention that our extended Algorithm 12 is different
from its counterpart in [FKP12] (cf. Algorithm 3) especially in lines 3, 6-7. In fact, all com-
putations in these lines are performed while considering the behaviour of an adversarial
nature as detailed in Algorithm 11.

Pareto queries. We next discuss the Pareto queries. Our algorithm is depicted as Algo-
rithm 13 which is in principle an extension of its counterpart in [FKP12] (cf. Algorithm 3).
Likewise Algorithm 12, the key differences of this algorithm with its counterpart are in
lines 3-4 and 7-8. Following the same direction as in [FKP12], we solely concentrate on
two objectives while in theory this can be extended to an arbitrary number of objectives.
Since the number of faces of the Pareto curve is exponentially large and also the result of
the value iteration algorithm to compute the individual points is an approximation, Algo-
rithm 13 only constructs an ε-approximation of the Pareto curve.

8.1.4 Generation of randomized controllers
At this point we provide a detailed explanation of the randomized controllers generation
in Section 8.1.2 for the robust controller synthesis of multi-objective queries.

164 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

Algorithm 13: Algorithm for solving robust Pareto queries
Input: An IMDP M, reward structures r= (r1,r2), time bounds (k1, k2), ε ∈ R≥0

Output: An ε-approximation of the Pareto curve
1 begin
2 X = ;; Y : R2→ 2R

2
with initial Y (x) = ; for all x ; w= (1, 0);

3 Find controller σ maximizing ExpTotσ,k
M [w · r];

4 g := (ExpTotσ,k1
M [r1], ExpTotσ,k2

M [r2]);
5 X := X ∪ {g}; Y (g) := Y (g)∪ {w}; w := (0,1);
6 while w 6=⊥ do
7 Find controller σ maximizing ExpTotσ,k

M [w · r];
8 g := (ExpTotσ,k1

M [r1], ExpTotσ,k2
M [r2]);

9 X := X ∪ {g}; Y (g) := Y (g)∪ {w}; w :=⊥;
10 Order X to a sequence x1, . . . ,xm such that ∀i : x i

1 ≤ x i+1
1 and x i

2 ≥ x i+1
2 ;

11 for i = 1 to m do
12 Let u be the element of Y (xi)with maximal u1;
13 Let u′ be the element of Y (xi+1)with minimal u′1;
14 Find a point p such that u · p= u · xi and u′ · p= u′ · xi+1;
15 if distance of p from X↓ is ≥ ε then
16 Find w separating X↓ from p, maximising w · p−maxx∈X↓w · x;
17 break;

18 return X ;

We consider a fixed IMDP M and a basic multi-objective predicate
([r1]

≤k1
≥r1

, . . . , [rn]
≤kn
≥rn
). For clarity, we assume that all ki = ∞; we discuss the exten-

sion to ki < ∞ afterwards. In the following, we will describe how we can obtain a
randomized algorithm from the results computed by Algorithms 10, 12, and 13. These
algorithms compute a set X = {g1, . . . ,gm} of reward vectors gi = (gi,1, . . . , gi,n) and their
corresponding set of controllers Σ= {σ1, . . . ,σm}, where controller σi achieves the reward
vector gi .

In the descriptions of the given algorithms, the controllers σi are not explicitly stored
and mapped to the reward they achieve, but they can be easily adapted. All used con-
trollers are memoryless and deterministic; this means that we can treat them as functions
of the form σi : S →A or, equivalently, as functions σi : S ×A → {0, 1} where σi(s, a) = 1
if σi(s) = a and σi(s, ·) = 0 otherwise.

From the set X , we can compute a set P = {p1, . . . , pm} of the probabilities with which
each of these controllers shall be executed. If we execute each σi with its according prob-
ability pi , the vector of total expected rewards is g =

∑m
i=1 pigi . Let r = (r1, . . . , rn) denote

the vector of reward bounds of the multi-objective predicate. To obtain P after having ex-
ecuted Algorithm 10, we can choose the values pi in P such that they fulfill the constraints
∑m

i=1 pigi ≥ r,
∑m

i=1 pi = 1 and pi ≥ 0 for each 1 ≤ i ≤ m. For the other algorithms, P can be
computed accordingly.

To obtain a stochastic process with expected values g, we initially randomly choose
one of the memoryless deterministic controllers σi according to their probabilities in P.
Afterwards, we just keep executing the chosen σi . The initial choice of the controller to

8.1. Multi-objective Robust Controller Synthesis for IMDPs 165

execute is the only randomized choice to be made. We do not perform a random choice
after the initial choice of σi .

This process of obtaining the expected rewards g indeed uses memory, because we have
to remember the deterministic controller which was randomly chosen to be executed. On
the other hand, we only need a very limited way of randomisation.

We like to emphasize that indeed we cannot just construct a memoryless random-
ized controller by choosing the controller σi with probability pi in each step anew.

s t

u v

w

a, 1

b, 0

a, 0

b, 1

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

Figure 8.4: Comput-
ing randomised con-
trollers.

Example 8.3. Consider the IMDP in Figure 8.4. We only have two pos-
sible actions, a and b. The initial state is s and all probability intervals
are the interval [1,1], which we omit for readability; thus, there is also
only one possible nature π. There is only a single reward structure, in-
dicated by the underlined numbers. If we choose a in state s, we end up
in t in the next step and obtain a reward of 1 with certainty, while if we
choose b, we will be in u in the next step and obtain a reward of 0, and
accordingly for the other states.

We consider the controllers σa which chooses a in each state and σb
which chooses b in each state. With both controllers, we accumulate a
reward of exactly 1. Therefore, if we choose to execute σa with probability
0.5 and σb with the same probability, this process will lead to a reward of
1 as well.

Now, consider a controller which chooses the action selected by σa in
each state with probability 0.5, and with the same probability chooses the action selected by σb. It
is easy to see that this controller only obtains a reward of 0.5 ·1+0.5 ·0.5 ·1= 0.75. As we see, this
naive way of combining the two deterministic controllers into a memoryless randomized controller
is not correct. �

Thus, the way to construct a memoryless randomized controller is somewhat more
involved. We will have to compute the state-action frequencies, that is the average number
of times a given state-action pair is seen.

At first, we fix an arbitrary memoryless nature π: Pathsfin
M×A → Disc(S), that is, π: S×

A → Disc(S). The particular choice of π is not important, which is due to the fact that our
algorithms are robust against any choice of nature. We then let xσi (s) denote the probability
to be in state s at step i when controller σ is used (using nature π and under the condition
that we have started in s̄).

For any σ ∈ Σ, we have xσi (s) =
∑

{ξ∈Pathsfin
M|last(ξ)=s,|ξ|=i } Prσ,π

M [PathsξM], which can be
shown to be equivalent to the inductive form xσ0 (s̄) = 1 and xσ0 (s) = 0 for s 6= s̄, and
xσi+1(s) =

∑

s′∈S π(s
′,σ(s′))(s) · xσi (s

′).
The state-action frequency yσ(s, a) is the number of times action a is chosen in state

s when using controller σ. We then have that yσ(s, a) =
∑∞

i=0 xσi (s)σ(s, a). Thus, state-
action frequencies can be approximated using a simple value iteration scheme. The mixed
state-action frequency y(s, a) is the average over all state action frequencies weighted by
the probability with which a given controller is executed. Thus, y(s, a) =

∑m
i=1 pi yσi (s, a)

for all s, a. To construct a memoryless randomized controller σ, we normalize the prob-
abilities to σ(s, a) = y(s,a)

∑

b∈A y(s,b) for all s, a (see also the description for the computation of
strategies/adversaries below Proposition 4 of [FKN+11]).

166 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

Example 8.4. In the model of Figure 8.4, we have yσa(s, a) = 1, yσa(s, b) = 0, yσa(u, a) = 0,
yσa(u, b) = 0, yσb(s, a) = 0, yσb(s, b) = 1, yσb(u, a) = 0, and yσb(u, b) = 1. If we choose
both σa and σb with probability 0.5, we obtain the mixed state-action frequencies y(s, a) = 0.5,
y(s, b) = 0.5, y(u, a) = 0, and y(u, b) = 0.5. The memoryless randomized controller σ we can
construct is then σ(s, a) = 0.5, σ(s, b) = 0.5, σ(u, a) = 0, σ(u, b) = 1, which indeed achieves a
reward of 1. �

For the general case where ki <∞ for some k, we have to work with counting deter-
ministic controllers and natures. Let kmax be the largest non-infinite step bound. The usage
of memory is unavoidable here because it is required already in case of a single objective.
To achieve optimal values, the computed controllers have to be able to make their decision
dependent on how many steps are left before the step bound is reached. Thus, we have
controllers of the form σi : S×{0, . . . , kmax} →A or equivalently σi : S×{0, . . . , kmax}×A →
{0, 1} where σi(s, j, a) = 1 if σi(s, j) = a and σi(s, j, ·) = 0 otherwise. For step i with
i < kmax, a controller σ chooses action σ(s, i) for state s whereas for all i ≥ kmax the decision
σ(s, kmax) is used. Natures are of the form π: S ×A × {0, . . . , kmax} → Disc(S). The compu-
tation of the randomized controller changes accordingly: for any σ ∈ Σ, we have xσ0 (s̄) = 1
and xσ0 (s) = 0 for s 6= s̄, and xσi+1(s) =

∑

s′∈S π(s
′,σ(s′, i′), i′)(s)xσi′ (s

′) where i′ =min{i, kmax}.
Also the state-action frequencies are now defined as step-dependent. For i ∈ {0, . . . , kmax −
1} we define yσ(s, i, a) = xσi (s)σ(s, i, a) and yσ(s, kmax, a) =

∑

i≥kmax
xσi (s)σ(s, kmax, a).

The mixed state-action frequency is then y(s, i, a) =
∑m

j=1 p j yσ j (s, i, a). Again using

normalization we define the counting randomized controller σ(s, i, a) = y(s,i,a)
∑

b∈A y(s,i,b) . Here,
for step i with i < kmax we use decisions from σ(· , i, ·) while for i ≥ kmax we use decisions
from σ(· , kmax, ·).

The bounded step case can be derived from the unbounded step case in the following
sense: we can transform the MDP and the predicate into an unrolled MDP. Here, we encode
the step bounds in the state space as follows: we copy the state space S a number of kmax+1
times to a new state space Sunrolled = ˙⋃

i∈{0,...,kmax}
Si . We call each set of states Si a layer. For

each state s ∈ S and i ∈ {0, . . . , kmax}we have si ∈ Si . If we have a transition from a state s to
a state s′, in the unrolled MDP for all i ∈ {0, . . . , kmax − 1} we have an according transition
from si to si+1 instead. We also have a transition from skmax

to s′kmax
. Formally, for i < kmax we

have Iunrolled(si , a, s′i+1) = I(s, a, s′) for some states s, s′ and some action a and zero else, and
then Iunrolled(skmax

, a, s′kmax
) = I(s, a, s′). Thus, there are only transitions from a one layer to the

next layer, except for layer kmax which behaves like the original MDP.
Reward structures are defined as follows. We assume that each reward property uses

a different reward structure. For unbounded reward properties using reward structure r,
we just let runrolled(si , a) = r(s, a) for all i and states s. For a step bounded reward property
with bound k we define a modified reward structure as follows: for layers 0 to k − 1, the
reward is obtained as usual, that is runrolled(si , a) = r(s, a) for i ∈ {0, . . . , k− 1}. However, to
simulate the step bound, we let r(si , a) = 0 for i ≥ k.

By removing the step bound from predicate, we can now analyze the unrolled MDP
and obtain the same result as in the original MDP using the original step bounded pred-
icate. As we are considering only unbounded properties, we obtain a set of memory-
less deterministic controllers. We can than construct a counting scheduler for the original
model by mapping the layer number to the step number, that is σ(s, i, a) = σunrolled(si , a).
In this way, we can show the correctness of the above scheduler computation for the step

8.2. Case Studies 167

(a) Robot Environment (b) Pareto Curve

Figure 8.5: Robotic Scenario. (a) Environment map, where obstacles and target are shown
in black and gray, respectively. (b) Pareto curve for the property ([rp]≤∞max , [rd]

≤∞
min).

bounded case, because then also the values for the state action frequencies carry over, that
is e.g. y(s, i, a) = yunrolled(si , a). Note that for i < kmax in yunrolled,σ(si , a) =

∑∞
j=0 xσj (si)σ(si , a)

only the summand for j = i is relevant. This is the case because by construction of the un-
rolled MDP for the other j with j 6= i it is xσj (si) = 0. Thus, yunrolled,σ(si , a) = xσi (si)σ(si , a).
Accordingly, for yunrolled,σ(skmax

, a) =
∑∞

j=0 xσj (skmax
)σ(skmax

, a) only j with j ≥ kmax are rele-
vant and thus yunrolled,σ(skmax

, a) =
∑∞

j≥kmax
xσj (skmax

)σ(skmax
, a).

8.2 Case Studies

We implemented the multi-objective robust controller synthesis algorithm and applied it
to several case studies. The goal of these experiments is to quantitatively evaluate the
performance of our proposed multi-objective robust controller synthesis approach on real
world case studies. To this aim, we consider two case studies: (1) motion planning for a
robot with noisy continuous dynamics and (2) autonomous nondeterministic tour guides
drawn from [CRI07, HHS16a]. All experiments took a few seconds to complete on a stan-
dard laptop PC.

8.2.0.1 Robot Motion Planning under Uncertainty

In robot motion planning, designers often seek a plan that simultaneously satisfies multi-
ple objectives [LK16], e.g., maximizing the chances of reaching the target while minimizing the
energy consumption. These objectives are usually in conflict with each other; hence, present-
ing the Pareto curve, i.e., the set of achievable points with optimal trade-off between the
objectives, is helpful to the designers. They can then choose a point on the curve according
to their desired guarantees and obtain the corresponding plan (controller) for the robot.
In this case study, we considered such a motion planning problem for a noisy robot with

168 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

(a) ϕ1 (b) ϕ2 (c) ϕ3

Figure 8.6: Robot sample paths under controllers for ϕ1, ϕ2, and ϕ3

continuous dynamics in an environment with obstacles and a target region, as depicted in
Figure 8.5(a). The robot’s motion model was a single integrator with additive Gaussian
noise. The initial state of the robot was on the bottom-left of the environment. The ob-
jectives were to reach the target safely while reducing the energy consumption, which is
proportional to the travelled distance.

We approached this problem by first abstracting the motion of the noisy robot in the
environment as an IMDP M and then computing controllers on M as in [LLMK14a,
LLMK14c, LLMK14b]. The abstraction was achieved by partitioning the environment into
a grid and computing local (continuous) controllers to allow transitions from every cell to
each of its neighbours. The cells and the local controllers were then associated to the states
and actions of the IMDP, respectively, resulting in 204 states (cells) and 4 actions per state.
The boundaries of the environment were also associated with a state. Note that the transi-
tion probabilities between cells were raised by the noise in the dynamics and their ranges
were due to variation of the possible initial robot (continuous) state within each cell.

The IMDP states corresponding to obstacles (including boundaries) were given deter-
ministic self-transitions, modelling robot termination as the result of a collision. To allow
for the computation of the probability of reaching target, we included an extra state in the
IMDP with a deterministic self-transition and then added incoming deterministic transi-
tions to this state from the target states. A reward structure rp, which assigns a reward of
1 to these transitions and 0 to all the others, in fact, computes the probability of reaching
the target. To capture the travelled distance, we defined a reward structure rd assigning a
reward of 0 to the state-action pairs with self-transitions and 1 to the rest.

The two robot objectives then can be expressed as: ([rp]≤∞max , [rd]
≤∞
min). We first com-

puted the Pareto curve for the property, which is shown in Figure 8.5(b), to find the set
of all achievable values (optimal trade-offs) for the reachability probability and expected
travelled distance. The Pareto curve shows that there is clearly a trade-off between the two
objectives. To achieve high probability of reaching target safely, the robot needs to travel
a longer distance, i.e., spend more energy, and vice versa. We chose three points on the
curve and computed the corresponding robust controllers for

ϕ1 = ([rp]
≤∞
≥0.95, [rd]

≤∞
≤50), ϕ2 = ([rp]

≤∞
≥0.90, [rd]

≤∞
≤45), ϕ3 = ([rp]

≤∞
≥0.66, [rd]

≤∞
≤25).

8.2. Case Studies 169

(a) The ANTG model for n= 14. The yellow, black
and green cells represent the entrance, closed and
exit parts of the museum, respectively. The purple
arrows indicate an example controller.

��

���

���

���

���

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���
�
�
�
�
�
��
�

�
�
�
�
�
���

�������������������������������������

(b) The Pareto Curve

Figure 8.7: The ANTG case study: model and analysis

We then simulated the robot under each controller 500 times. The statistical results of these
simulations are consistent with the bounds in ϕ1, ϕ2, and ϕ3. The collision-free robot tra-
jectories are shown in Figure 8.6. These trajectories illustrate that the robot is conservative
under ϕ1 and takes a longer route with open spaces around it to go to target in order to be
safe (Figure 8.6(a)), while it becomes reckless under ϕ3 and tries to go through a narrow
passage with the knowledge that its motion is noisy and could collide with the obstacles
(Figure 8.6(c)). This risky behaviour, however, is required in order to meet the bound on
the expected travelled distance in ϕ3. The sample trajectories for ϕ2 (Figure 8.6(b)) demon-
strate the stochastic nature of the controller. That is, the robot probabilistically chooses
between being safe and reckless in order to satisfy the bounds in ϕ2.

8.2.0.2 The Model of Autonomous Nondeterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour Guides”
(ANTG) in [CRI07, HHS16a], which models a complex museum with a variety of collec-
tions. We note that the model introduced in [CRI07] is an MDP. In this case study, we use
an IMDP model by inserting uncertainties into the MDP.

Due to the popularity of the museum, there are many visitors at the same time. Dif-
ferent visitors may have different preferences of arts. We assume the museum divides all
collections into different categories so that visitors can choose what they would like to
visit and pay tickets according to their preferences. In order to obtain the best experience,
a visitor can first assign certain weights to all categories denoting their preferences to the
museum, and then design the best controller for a target. However, the preference of a sort
of arts to a visitor may depend on many factors like price, weather, or the length of queue
at that moment etc., hence it is hard to assign fixed values to these preferences. In our
model we allow uncertainties of preferences such that their values may lie in an interval.

For simplicity we assume all collections are organized in an n× n square with n ≥ 10,

170 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

with (0, 0) being the south-west corner of the museum and (n−1, n−1) the north-east one.
Let c = n−1

2 ; note that (c, c) is at the center of the museum. We assume all collections at
(x , y) are assigned with a weight interval [3, 4] if max{|x − c|, |y − c|} ≤ n

10 , with a weight 2
if n

10 < max{|x − c|, |y − c|} ≤ n
5 , and a weight 1 if max{|x − c|, |y − c|} > n

5 . In other words,
we expect collections in the center to be more popular and subject to more uncertainties
than others.

Furthermore, we assume that people at each location (x , y) have four nondeterministic
choices of moving to (x ′, y ′) in the north east, south east, north west, and south west of
(x , y) (limited to the boundaries of the museum). The outcome of these choices, however,
is not deterministic. That is, deciding to go to (x ′, y ′) takes the visitor to either (x , y ′) or
(x ′, y) depending on the weight intervals of (x , y ′) and (x ′, y). Thus, the actual outcome
of the move is probabilistic to north, south, east or west. To obtain an IMDP, weights are
normalized. For instance, if the visitor chooses to go to the north east and on (x , y + 1)
there is a weight interval of [3,4] and on (x + 1, y) there is a weight interval of [2,2], it
will go to (x , y + 1) with probability interval [3/(3 + 2), 4/(4 + 2)] and to (x + 1, y) with
probability interval [2/(2+ 4), 2/(2+ 3)].

Therefore a model with parameter n has n2 states in total and roughly 4n2 transitions,
a few of which are associated with uncertain transition probabilities. An instance of the
museum model for n= 14 is depicted in Figure 8.7(a). In this instantiation, we assume that
the visitor starts in the lower left corner (marked yellow) and wants to move to the upper
right corner (marked green) with as few steps as possible. On the other hand, it wants to
avoid moving to the black cells, because they correspond to exhibitions which are closed.
For closed exhibitions located at x = 2, the visitor receive a penalty of 2, for those at x = 5
it receives a penalty of 4, for x = 8 one of 16 and for x = 11 one of 64. Therefore, there
is a tradeoff between leaving the museum as fast as possible and minimizing the penalty
received. With rs being the reward structure for the number of steps and rp denoting
the penalty accumulated, ([rs]

≤∞
≤40 , [rp]

≤∞
≤70) requires that we leave the museum within 40

steps but with a penalty of no more than 70. The purple arrows indicate a controller which
has been used when computing the Pareto curve by our tool. Here, the tourist mostly
ignores closed exhibitions at x = 2 but avoids them later. We provide the Pareto curve
for this situation in Figure 8.7(b). With an increasing step bound considered acceptable,
the optimal accumulated penalty decreases. This is expected, because with an increasing
step bound, the visitor has more time to walk around more of the closed exhibitions, thus
facing a lower penalty.

In Figure 8.8, we provide controllers for different points on the Pareto curve in Fig-
ure 8.7(b). The lowest expected number of steps in which the museum can be left at all
is 30.9665389. To achieve this number, there is a single optimal controller sketched in Fig-
ure 8.8(a). As we see, the tourist indeed leaves the museum as soon as possible, ignoring
any closed exhibitions and receiving an expected penalty as high as 152.0609886.

In Figure 8.8(b) and Figure 8.8(c), we give the tourist somewhat more time, namely 31
steps, so that the penalty of 151.7077821 is somewhat lower. Here, with a high probability
(0.9894174) the same controller as for the previous case is chosen. With a probability of
0.0105826 however, the less reckless controller of Figure 8.8(c) is used, which takes some
efforts to avoid the last row of closed exhibitions at x = 11.

If we further increase the time bound to 40, as in Figure 8.8(d) and Figure 8.8(e), the
controllers used become even less risky but more time consuming to execute. For a step

8.3. Concluding Remarks 171

bound of 76.8658133 and larger, it is possible to avoid receiving any penalty by using the
controller of Figure 8.8(f), which circumvents all of the closed exhibitions.

8.3 Concluding Remarks

In this chapter, we have analyzed interval Markov decision processes under controller
(parameter) synthesis semantics in a dynamic setting. In particular, we discussed the
problem of multi-objective robust controller synthesis for IMDPs, aiming for controllers
that satisfy a given multi-objective predicate under all resolutions of the uncertainty in
the transition probabilities. We first showed that this problem is PSPACE-hard and then
introduced a value iteration-based decision algorithm to approximate the Pareto set of
achievable points. Finally, we presented results obtained with a prototype tool on several
real world case studies to show the effectiveness of the developed algorithms.

Related work Multi-objective model checking of probabilistic models with respect to var-
ious quantitative objectives has been recently investigated in a few works. The works
in [FKN+11, FKP12, KNPQ13, EKVY07] focused on multi-objective verification of exact
MDPs. In [CFK+13], these algorithms were extended to the more general models of 2-
player stochastic games. These models, however, cannot capture the continuous uncer-
tainty in the transition probabilities as IMDPs do. For the purposes of synthesis though,
it is possible to transform an IMDP into a 2-player stochastic game; nevertheless, such a
transformation raises an extra exponential factor to the complexity of the decision prob-
lem. This exponential blowup has been avoided in our setting.

172 Chapter 8 : Multi-objective Robust Controller Synthesis for Interval MDPs

30.9665389 steps, 152.0609886 penalty

(a) Probability 1

31 steps, 151.7077821 penalty

(b) Probability 0.9894174 (c) Probability 0.0105826

40 steps, 59.0123994 penalty

(d) Probability 0.7230247 (e) Probability 0.2769753

76.8658133 steps, 0 penalty

(f) Probability 1

Figure 8.8: Controllers for different points on the Pareto curve in Fig. 8.7(b).

CHAPTER9
Bisimulation Minimization for Model

Checking of UwMDPs

In this chapter, we introduce Uncertain weighted Markov Decision Process (UwMDP) as a
novel stochastic model to capture quantities like preferences or priorities in a nondeter-
ministic scenario with uncertainties. The model is very close to the model of IMDPs but
more convenient to model with when non-probability uncertainties like weights, prefer-
ence, priority, etc. are involved. In particular, different from IMDPs, each transition in an
UwMDP is associated with a weight interval such that any integer value in this interval
is a feasible weight for that transition. Throughout this chapter, we only consider integer
weights. The extension to rational weights is straightforward.

Weights in UwMDP models play a similar role as in GSPN [MCB84] or EMPA [BG96],
namely, they will be used to induce a distribution over all transitions with the same label.
For instance, if from a state s, there are transitions leading to s1 and s2 with weights 2 and
3, respectively, then this means that s will evolve into s1 and s2 with probabilities 2

5 and 3
5 ,

respectively. The model of UwMDPs has intervals of weights attached to each transition.
One can think of this model as a game between a scheduler and nature. Different from or-
dinary wMDPs, nature might also be nondeterministic (besides being probabilistic). More
precisely, nature selects a realization of weights from a set of feasible weights that is spec-
ified in terms of intervals. The selected weights by the nature then induces a probabilistic
transition over states.

We examine modelling and verification in the context of UwMDPs and discuss our
analysis of UwMDP models from two viewpoints. We first show that UwMDPs are
equipped with an efficient theory on probabilistic bisimulation. This implies that prob-
abilistic bisimulation minimization approaches [CGM+96,BHH+09,BCS10] can be applied
to alleviate state space explosion problem. More concretely, we define bisimulation rela-
tions for UwMDPs and show that quotient of UwMDPs can be computed efficiently in
polynomial time with respect to the size of UwMDPs.

As regards the model analysis, we next discuss extreme (maximal/minimal) reward-
bounded reachability probabilities [AHK03] of UwMDPs. Thus each UwMDP is associ-
ated with a reward structure, which assigns to each weighted transition a reward. On the
one hand, our work is an extension of the work in [AHK03] enriched with uncertainties,

173

174 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

while on the other hand, it can also be seen as an extension of the work in [PLSVS13,Pug14]
to models with reward structures. Despite the fact that an UwMDP may represent an
equivalent, but exponentially larger model without uncertainties, we propose an algo-
rithm to compute extreme reward-bounded reachability probabilities in pseudo polyno-
mial time – linear with respect to the size of the given UwMDP and quadratic with respect
to the reward bound. Along the line of [PLSVS13], extreme reachability probabilities with-
out reward bounds can be computed efficiently for UwMDPs as well.

We finally show promising results on a variety of case studies, obtained by a prototyp-
ical implementation of all algorithms to illustrate the effectiveness of our approaches.

The material presented in this chapter is an extended version of the results reported
in [HHS16a].

Organization of the chapter. The rest of the chapter is organized as follows. We start in
Section 9.1 by formally introducing the model of UwMDPs and provide its semantics. In
Section 9.2, we give the definition of bisimulation for UwMDPs and afterwards, we present
a tractable decision algorithm to compute it. In Section 9.3, we define the notion of max-
imal reward-bounded reachability probability for UwMDPs and show a least-fixed point
characterization. In Section 9.4, we demonstrate our approach on some case studies and
present promising experimental results. Finally we conclude this chapter in Section 9.5.

9.1 Uncertain weighted Markov Decision Processes

In Definition 4.4, all weights have to be given precisely, which sometimes is not possible,
especially when all weights are estimated or based on experiments which are often affected
by uncertainties due, for instance, to measurement errors. On the other hand, the model
of uncertain weighted MDPs relax this condition such that it allows weights to vary as long
as they are in certain intervals. Formally,

Definition 9.1 (Uncertain weighted MDP). An Uncertain weighted Markov Decision
Process (UwMDP) is a tuple W = (S, s̄,A ,AP, L, W) similar as in Definition 4.4 except that
W : S ×A × S 7→ [wl , wh] defines a transition relation with uncertainties, where wl , wh ∈ N0
with wl ≤ wh. We denote by [W], the class of all finite-state finite-transition UwMDPs.

LetA (s) denote the set of available actions at state s ∈ S.
The only difference between Definition 4.4 and Definition 9.1 is that in a wMDP all

transitions are labelled by a weight, while in an UwMDP, transitions are labelled by an
interval specifying all allowed weights. We denote by wa

st a resolution of uncertainties
corresponding to the transition from s to t with label a, i.e., wa

st ∈W (s, a, t). We write s
a,w
−→µ

if and only if there exists wa
st ∈ W (s, a, t) for each t ∈ S such that w =

∑

t∈S w
a
st > 0 and

µ(t) = wa
st

w . Similarly, we can define the combined transitions for UwMDPs.

Remark 9.1. The size of a given W is determined as follows. Let |S| denote the number of states
in W . Then each state has O(|A |) actions, while each action corresponds to at most O(|S|2)
transitions, each of which is associated with a weight interval. Therefore, the overall size of W i.e.,
|W | is in O(|S|2 |A |).

9.1. Uncertain weighted Markov Decision Processes 175

Let us formally state the semantics of an UwMDP W . A transition initialized from state
si in W happens in three steps. First, an action a ∈ A (si) is chosen nondeterministically.
Secondly, a resolution wa

si t
∈W (si , a, t) is chosen for each t ∈ S. The selection of wa

si t
models

uncertainty in the transition. Lastly, a successor state si+1 is chosen randomly, according to
the induced transition probability distribution µ. It is not hard to see that each UwMDP
W corresponds to a wMDP, which may be exponentially larger than W .

A path in W is a finite or infinite sequence of the form ξ = s0w
a0
s0s1

s1w
a1
s1s2

s2 · · · where
si ∈ S, ai ∈A (si) and 0 < wai

sisi+1
∈W (si , ai , si+1) for any i ≥ 0. For a finite path ξ, we denote

by last(ξ) the last state of ξ. The i-th state (action) along a path ξ is denoted by ξ[i] (ξ(i)),
if it exists. The set of all finite paths and the set of all infinite paths in the given W are
denoted by Pathsfin

W and Pathsinf
W , respectively. Furthermore, let PathsξW = {ξ

′ ∈ Pathsinf
W |

ξ is a prefix of ξ′ } denote the set of infinite paths with the prefix ξ ∈ Pathsfin
W which is also

known as the cylinder set of ξ.
Due to the existing of nondeterminism, to resolve which, we need to introduce notions

of scheduler and nature for UwMDPs. Formally,

Definition 9.2 (Scheduler and nature in UwMDPs). Given an UwMDP W , a scheduler
is a function λ : Pathsfin

W → Disc(A) that to each finite path ξ assigns a distribution over the
set of actions. A nature is a function γ : Pathsfin

W ×A → Disc(S) that to each finite path ξ and
action a assigns a feasible distribution, i.e. γ(ξ, a) = µ if and only if last(ξ)

a,w
−→µ for some w.

We denote by Λ the set of all schedulers and by Γ the set of all natures of W .

A scheduler λ is said to be deterministic (D) if λ(ξ) = δa for all finite paths ξ and some
a ∈ A (last(ξ)). Furthermore, a nature is said to be deterministic if γ(ξ, a) = δµ for all finite
paths ξ, for all a ∈ A (last(ξ)) and some µ where last(ξ)

a,w
−→µ for some w. Furthermore, a

scheduler λ (nature γ) is Markovian (M) if it depends only on last(ξ).
For a scheduler λ and a nature γ, let Prλ,γ

W denote the unique probability measure over
(Pathsinf

W ,B) such that the probability Prλ,γ
W [Pathss′

W] of starting in s′ equals 1 if s′ = s̄ and

0, otherwise; and the probability Prλ,γ
W [Paths

ξwa
last(ξ)s′ s

′

W] of traversing a finite path ξwa
last(ξ)s′s

′

equals Prλ,γ
W [Paths

ξwa
last(ξ)s′ s

′

W] = Prλ,γ
W [PathsξW] · λ(ξ)(a) · γ(ξ, a)(s′). Here, B is the standard

σ-algebra over Pathsinf
W generated from the set of all cylinder sets {PathsξW | ξ ∈ Pathsfin

W}.
The unique probability measure is obtained by the application of the extension theorem
(see, e.g. [Bil79]).

Following the same reasoning for IMDPs scheduler and nature, in UwMDPs a sched-
uler does not choose an action but a distribution over actions and a nature is not allowed to
randomise over the set of feasible distributions.

In order to model other quantitative measures of an UwMDP, we associate a reward to
each weighted transition of a state. This is done by introducing a reward structure:

Definition 9.3 (UwMDPs reward structure). A reward structure for an UwMDP is a
function r: S ×A × N0 → N0 that assigns to each state s ∈ S, action a ∈ A (s), and weight
w ∈ N0 a reward r(s, a, w)> 0.

176 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

s̄

t u

ba

[2,3]

[0,1]

[1,2]

Figure 9.1: An example of UwMDPs: the UwMDP W

Note that the definition of reward structure is quite flexible. We could easily
define rewards independent of weights of transitions. Similarly to IMDP models
and in order to avoid ambiguity, we sometimes describe the UwMDP W as a tuple
(SW , s̄W ,AW ,APW , LW , W) by adding the UwMDP model symbol as a subindex to its
generic elements. In such cases, we also denote the UwMDP reward structure with rW .

Example 9.1. Figure 9.1 depicts an instance of UwMDPs. The set of states is S = {s̄, t, u} with
s̄ being the initial one. Let AP = {u,v} and L(s̄) = {v}, L(t) = {u} and L(u) = {u,v}. Moreover,
W (s̄, a, t) = [2,3], W (s̄, a, u) = [0,1], and W (s̄, b, u) = [1, 2]. A reward structure for the W can
be as follows: r(s̄, a, 2) = 3, r(s̄, a, 3) = 1, r(s̄, a, 4) = 5, r(s̄, b, 1) = 4, r(s̄, b, 2) = 3. �

At this point, it is worthwhile to mention that weights in UwMDPs can be used to
denote priorities or preferences, which are quantities used to generate probabilistic be-
haviours. For instance, a robot may choose to serve its clients stochastically relative to the
preferences they expressed. In this respect, UwMDPs offer users more flexibility to model
uncertainties than IMDPs. As we shall see later, UwMDPs provide a tractable bisimula-
tion minimization approach which is essential to address state-space explosion problem in
model checking large systems. The latter, however, is not the case for IMDPs in general as
discussed in Chapter 6.

9.2 Bisimulation Minimization for UwMDPs

In this section we extend the notion of probabilistic bisimulation to UwMDPs and present
an efficient decision algorithm to compute it. Afterwards we discuss the computational
complexity of the decision algorithm.

9.2.1 Probabilistic Bisimulation
Below we define bisimulation relations over states of an UwMDP, which is an extension
of the definition in [CS02]. For simplicity, we omit reward structures in this section, which
can be integrated easily.

Definition 9.4 (Probabilistic bisimulation for UwMDPs). Let W :=
(SW ,AW , W, s̄W ,APW , LW) be an UwMDP. Let R⊆ SW × SW . R is a bisimulation if
and only if s R t implies:
• LW (s) = LW (t);

9.2. Bisimulation Minimization for UwMDPs 177

• whenever s
a,w
−→µ, there exists t

a,w
−→c ν such that µ L(R) ν;

• symmetrically for t.
Two states s and t are bisimilar, written as s ∼ t, if and only if there exists a bisimulation R
such that s R t.

Proposition 9.1. ∼ is an equivalence relation.

Proof. The proof is straightforward from Definition 9.4. �

9.2.2 Decision Algorithm
We now propose a polynomial time decision algorithm to decide bisimulations defined in
Definition 9.4. Our algorithm follows the classical partition-refinement approach [KS90,
CS02, GHT14, HHT13].

Before presenting the algorithm we give an alternative definition of bisimulation and
show that it is equivalent to Definition 9.4. Let W l(s, a, s′) = wl and W h(s, a, s′) = wh, where
W (s, a, s′) = [wl , wh].

Lemma 9.1. Let W := (SW ,AW , W, s̄W ,APW , LW) be an UwMDP. Let R⊆ SW × SW be an
equivalence relation. R is a bisimulation if and only if s R t implies
• LW (s) = LW (t);

• W l(s, a,C) =W l(t, a,C) and W h(s, a,C) =W h(t, a,C) for each C ∈ SW/R,
where W l(s, a,C) =

∑

s′∈C W l(s, a, s′) and W h(s, a,C) =
∑

s′∈C W h(s, a, s′).

Proof. Let ∼′ denote the new definition of bisimulation. We show that ∼ ≡ ∼′.
• ∼ ⊆ ∼′. Trivial.

• ∼′ ⊆ ∼. Let R= {(s1, s2) | s1 ∼′ s2}. We show that R is a bisimulation by Defini-
tion 9.4. Let s R t. Obviously, LW (s) = LW (t). Let s

a,w
−→µ. We show that there exists

t
a,w
−→c ν such that µ L(R) ν. Note whenever s

a,w
−→µ, for each C ∈ SW/R,

W l(s, a,C)≤ µ(C)≤W l(s, a,C).

Since s ∼′ t, W l(s, a,C) =W l(t, a,C) and W h(s, a,C) =W h(t, a,C) for each C ∈ SW/R.
Therefore there exists t

a,w
−→c ν such that µ L(R) ν.

�

Because of Lemma 9.1, we can now present the algorithm to check whether two states
are bisimilar. The key procedure is FindSplitter presented in Algorithm 15, which finds a
pair (C ′, a) of block in the current partition and an action a distinguishing two states in a
block. The found splitter (C ′, a) is then used by Algorithm 14 to further refine the current
partition. The algorithm terminates if no splitter can be found and the current partition
stays stable.

Even though UwMDPs offer a compact manner to encode uncertainties appearing in
a weighted MDP, which may be exponentially larger than its corresponding UwMDP, we

178 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

Algorithm 14: Deciding bisimulation
Input: An UwMDP W := (SW ,AW , W, s̄W ,APW , LW), two states s, t ∈ SW .
Output: ‘true’ if s ∼ t, or ‘false’ otherwise.

1 begin
2 Partition← {{SW}};
3 splitter← FindSplitter(Partition);
4 while (splitter 6= ;) do
5 Partition← Refine(W ,Partition,splitter);
6 splitter← FindSplitter(W ,Partition);
7 if there exists C ∈ Partition such that s, t ∈ C then
8 return true;
9 else

10 return false;

Algorithm 15: Procedure FindSplitter
Input: An UwMDP W := (SW ,AW , W, s̄W ,APW , LW) and Partition.
Output: A splitter of Partition with respect to ∼.

1 begin
2 for (C ∈ Partition and s, t ∈ C) do
3 for (C ′ ∈ Partition and a ∈AW) do
4 if W l(s, a,C ′) 6=W l(t, a,C ′) or W h(s, a,C ′) 6=W h(t, a,C ′) then
5 return (C ′, a);

6 return ;;

do not need to pay extra costs to compute bisimulation relations on UwMDPs. Formally,
Algorithm 14 has the same complexity as Algorithm 1 in [CS02], where n and m are the
numbers of states and (uncertain) transitions in an UwMDP, respectively.

Theorem 9.1. Algorithm 14 terminates in time O(n(n2 +m)) in the worst case.

Proof. Firstly, we show that one round of FindSplitter will terminate in O(n2 + m) time.
In the worst case, we need to compute W l(s, a,C ′) and W h(s, a,C ′) for each s ∈ SW and
C ′ ∈ Partition, which can be done in time O(n2 + m). Secondly, the procedure Refine
will terminate in O(n) time, given all W l(s, a,C ′) and W h(s, a,C ′) having been computed.
Finally, Algorithm 14 will terminate in O(n(n2 + m)) time, since each state belongs to a
distinct equivalence class in the worst case. �

9.3. Reward-Bounded Reachability Probability for UwMDPs 179

9.3 Reward-Bounded Reachability Probability for UwMDPs

In this section we shall first define maximal reward-bounded reachability probabilities
for UwMDPs formally, and then show that they can be computed efficiently in pseudo-
polynomial time. To this end, we first define the accumulated reward of a path before
reaching a set of goal states in an UwMDP.

Definition 9.5 (Accumulated reward in UwMDPs). Given an UwMDP W , a reward
structure rW , a path ξ = s0w

a0
s0s1

s1w
a1
s1s2

s2 · · · ∈ Pathsinf
W and a set GW ⊆ SW of states, we denote

by rew(ξ, GW) the accumulated reward along ξ until GW is reached; Formally, if ξ[t] ∈ GW
for some t ≥ 0 then rew(ξ, GW) =

∑n−1
i=0 rW (si , ai ,w

ai
sisi+1
) where n ∈ N0 is the smallest integer

such that ξ[n] ∈ GW ; otherwise∞ if ξ[t] 6∈ GW for every t ≥ 0.

Below defines maximal reward-bounded reachability probabilities for UwMDPs:

Definition 9.6 (Maximal reward-bounded reachability probabilities for UwMDPs).
Let λ ∈ Λ and γ ∈ Γ be a scheduler and a nature of a given UwMDP W . Let GW be a set
of goal states. Define Prλ,γ

W ,GW
: SW × N0 → [0, 1] by: Prλ,γ

W ,GW
(s, R) := Prλ,γ

W ,s(Ω
R
GW
) where

ΩR
GW

:= {ξ ∈ Pathss
W | rew(ξ, GW)≤ R}. Define Prmax

W ,GW
(s, R) : SW ×N0→ [0, 1] by:

Prmax
W ,GW

(s, R) := sup
λ∈Λ

sup
γ∈Γ

Prλ,γ
W ,GW

(s, R). (9.1)

From the definition, we can see that ΩR
GW

is the set of paths which can reach GW within
the reward bound R. Therefore, Prmax

W ,GW
(s, R) denotes the maximal probability of reaching

states in GW from s within R rewards. It is easy to see that ΩR
GW

is measurable and all
functions in Definition 9.6 are well-defined.

Remark 9.2. Here we follow the convention of model checking MDPs by considering all possible
resolutions of nondeterminism in an UwMDP. Differently, in UwMDPs, there are two levels of
nondeterminism resolved by schedulers and natures, respectively. Therefore, the maximal reacha-
bility probability is achieved by maximizing over all possible schedulers and natures as in Eq. (9.1).
We mention that a distinction between schedulers and natures is not necessary. However, such a
distinction increases readability of proofs and arguments discussed in the chapter.

In order to compute maximal reward-bounded reachability probabilities, we could
have transformed each UwMDP to its equivalent wMDP, for which existing algorithms
[AHK03] can be applied. However, as we mentioned before, the transformation may re-
sult in a wMDP exponentially larger than the original UwMDP, which makes the compu-
tation tedious. Instead, we show that each UwMDP W can be alternatively transformed
into an IMDP M, where maximal reward-bounded reachability probabilities are preserved
and can be computed efficiently. Notably, the size of the resulting M is in O(|W |W), i.e.,
pseudo polynomial, where

W =max{w | ∃s
a,w
−→µ∧ rW (s, a, w)≤ R} (9.2)

for a given reward structure rW and a reward bound R. Clearly, W ≤max{w | ∃s
a,w
−→µ}.

Now we describe in details how an UwMDP can be transformed into an IMDP.

180 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

s̄

t u

{v}

{u} {u,v}

a 2
,2

a 3
,3

b
1 ,1

b
2 ,2

[1,1] [0, 1
2]

[
23
,1]

[0, 1
3]

[1,1]

[
12
,1]

Figure 9.2: The resultant IMDP M generated from the W in Figure 9.1.

Definition 9.7 (Model transformation). Given an UwMDP W =
(SW ,AW , W, s̄W ,APW , LW), a given set of goal states GW ⊆ SW , a reward structure rW , and a
reward bound R∈ N0, the corresponding IMDP M = (SM, s̄M,AM,APM, LM, I) is defined as
follows: SM = SW , s̄M = s̄W , APM = APW , LM = LW ,AM = {aw|a ∈AW , w ∈ {1, · · · , W}},
where W is defined as in Eq. (9.2). The reward structure rM of M is defined
by: rM(s, aw) = rW (s, a, w) for each s ∈ SM and aw ∈ AM(s). Moreover,
I(s, aw, t) := (1

w · W (s, a, t)) ∩ [0, 1] for each s, t ∈ SM and aw ∈ AM(s), provided
I(s, aw, t) 6= ;. Finally, in the resulting IMDP M, the set of goal states is GM = GW and the
initial state and the reward bound are the same as the ones in UwMDP W .

Example 9.2. Consider the UwMDP W depicted in Figure 9.1. Assume the reward bound is
R= 4. The value of W is computed as

W =max{w | ∃s
a,w
−→µ∧ rW (s, a, w)≤ 4}= 3

According to the transformation described in Definition 9.7, we obtain an IMDP M, which is
depicted as in Figure 9.2. The bold numbers indicated besides the actions are the reward structure
for the generated IMDP M. �

Directly from Definition 9.7, we can see that the transformation can be done in time
linear in both the size of the original UwMDP and W defined as in Eq. (9.2). Therefore,
the size of the resultant IMDP is in O(|W |W). Without loss of generality, in the sequel we
assume r(s, a, w) = w, hence W = R.

Remark 9.3. In Definition 9.7, we show a procedure to transform an UwMDP to an IMDP
preserving all maximal reward-bounded reachability probabilities with reward less than a given
value. By setting W to be the largest possible reward associated to transitions in an UwMDP in
Definition 9.7, we can obtain an equivalent IMDP, where all maximal reward-bounded reachability
probabilities coincide with the original UwMDP. Indeed, despite that an UwMDP represents a
discrete set of wMDPs, while an IMDP corresponds to a continuous set of MDPs, UwMDPs and
IMDPs are closely related with respect to properties considered in this chapter:

• Any UwMDP can be transformed into an IMDP by associating its transitions with proper
rewards. However, in order to preserve all maximal reward-bounded reachability probabil-
ities, the size of the IMDP may blow up, as its size depends on the largest reward in the
UwMDP, which can be any positive integer in principle.

9.3. Reward-Bounded Reachability Probability for UwMDPs 181

• Conversely, any IMDP essentially corresponds to an MDP, whose size may be exponentially
larger than the original IMDP. It is obvious that any MDP with rational transition prob-
abilities can be transformed into a wMDP, which in turn can be seen as a special case of
UwMDP. Thus, the transformation from rational IMDPs to UwMDPs may also cause an
exponentially blow-up.

Definition 9.8 (Maximal reward-bounded reachability probabilities for IMDPs). Let
σ ∈ ΣM and π ∈ ΠM be a scheduler and nature of a given IMDP M. Define the func-
tion Prσ,π

M,GM
: SM × N0 → [0, 1] by: Prσ,π

M,GM
(s, R) := Prσ,π

M,s(Ω
R
GM
) where ΩR

GM
:= {ξ ∈

Pathss
M| rew(ξ, GM)≤ R}. Define Prmax

M,GM
(s, R) : SM ×N0→ [0,1] by:

Prmax
M,GM

(s, R) := sup
σ∈ΣM

sup
π∈ΠM

Prσ,π
M,GM

(s, R) (9.3)

for each s ∈ SM and R∈ N0.

In the following proposition, we show that our model transformation preserves maximal
reward-bounded reachability probabilities. More precisely, our transformation guaran-
tees that all optimal resolutions in the IMDP can be projected back to the original given
UwMDP. Formally,

Proposition 9.2. Assume we are given an UwMDP W = (SW ,AW , W, s̄W ,APW , LW), a
state s ∈ SW , a set of goal states GW ⊆ SW , and a reward bound R ∈ N0. Let M =
(SM, s̄M,AM,APM, LM, I) be the corresponding IMDP obtained according to Definition 9.7.
Then:

Prmax
W ,GW

(s, R) = Prmax
M,GM

(s, R). (9.4)

Proof. For any scheduler λ ∈ Λ and nature γ ∈ Γ at state s of the given UwMDP W , a
(simple) scheduler σ ∈ ΣM and nature π ∈ ΠM can be constructed in the corresponding
IMDP M as follows. For any aw ∈AM(s),

σ(s)(aw) =

¨

λ(s)(a) if w=
∑

s′∈SW
γ(s, a)(s′)

0 otherwise

and if σ(s)(aw) 6= 0 then π(s, aw)(s′) =
γ(s,a)(s′)

w . We hence, based on Definitions 9.6 and 9.8,
obtain that

Prmax
W ,GW

(s, R) = sup
λ∈Λ

sup
γ∈Γ

Prλ,γ
W ,GW

(s, R)≤ sup
σ∈ΣM

sup
π∈ΠM

Prσ,π
M,GM

(s, R) = Prmax
M,GM

(s, R).

On the other hand, suppose that σ∗ ∈ ΣM and nature π∗ ∈ ΠM are optimal scheduler and
nature which together achieve the maximum reachability probability in the corresponding
IMDP M. As we shall see later, based on Theorem 9.2, we can assume that the optimal
scheduler and nature are deterministic reward-positional. Hence, we can construct sched-
uler λ ∈ Λ and nature γ ∈ Γ in the given UwMDP W as follows. For any a ∈AW (s),

λ(s)(a) =

¨

1 if ∃ w such that σ∗(s)(aw)> 0

0 otherwise

182 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

and if λ(s)(a)> 0 then γ(s, a)(s′) = bw.π∗(s, aw)(s′)c for all s′ ∈ SW . Thus,

Prmax
W ,GW

(s, R) = sup
λ∈Λ

sup
γ∈Γ

Prλ,γ
W ,GW

(s, R)≥ sup
σ∈ΣM

sup
π∈ΠM

Prσ,π
M,GM

(s, R) = Prmax
M,GM

(s, R).

The conclusion then follows. �

Due to this result, in the rest of this section, we turn our attention to IMDPs to compute
maximal reward-bounded reachability probabilities. Given an IMDP M, a state s ∈ SM,
a set of goal states GM ⊆ SM, and a reward bound R ∈ N0, we shall present a routine to
compute Prmax

M,GM
(s, R).

We first define reward-positional schedulers and natures and then show that deter-
ministic reward-positional schedulers and natures suffice to obtain the maximal reward-
bounded reachability probabilities in an IMDP.

Definition 9.9 (Reward-positional schedulers and natures in IMDPs). Suppose that
R[ξ] is total accumulated reward along a finite path ξ. A scheduler σ is reward-positional if
and only if σ(ξ) = σ(ξ′) whenever last(ξ) = last(ξ′) and R[ξ] = R[ξ′]. Similarly, we can
define reward-positional natures.

In an intuitive description, reward-positional schedulers and natures make their de-
cision entirely on the current state and the reward accumulated so far. Below we show
that a deterministic reward-positional scheduler and nature suffices to achieve maximal
reward-bounded reachability probability in an IMDP.

Theorem 9.2. Given an IMDP M, a set of goal states GM ⊆ SM, there exist a deterministic
reward-positional scheduler σ and nature π such that Prmax

M,GM
(s, R) = Prσ,π

M,s(Ω
R
GM
).

Proof. Let GM ⊆ SM. Let � be a fixed arbitrary linear order onAM. We prove the theorem
in two steps by getting inspiration from [Fu14] as follows.
Step 1. We construct a measurable scheduler σ and nature π for each R ∈ N0. Let us fix

R∈ N0. Define the function

L(s, aw,haw
s , x) :=

∑

s′∈SM

h
aw
ss′ . Prmax

M,GM
(s′, R− x − rM(s, aw))

where haw
s is a feasible probability distribution resolved by the nature from

the uncertainty set H aw
s . Clearly, if s 6∈ GM then Prmax

M,GM
(s, R − x) =

maxaw∈AM(s)maxhaw
s ∈H

aw
s

L(s, aw,haw
s , x). Consider a finite path ξ ∈ Pathsfin

M. Define

Sξ,1
I :=

�

s ∈ SM
�

� ∃ a∗w ∈AM(s),∃ haw
s
∗ ∈H aw

s .
�

L(s, a∗w,haw
s
∗ ,R[ξ]) =

maxaw∈AM(s)maxhaw
s ∈H

aw
s

L(s, aw,haw
s ,R[ξ])

�

∧rM(s, a∗w) 6= 0
	

and Sξ,2
I :=

¦

s ∈ SM
�

�Prmax
M,GM

(s, R−R[ξ]) = 0
©

. The probability distributions σ(ξ, �)
and π(s, aw)(�) are determined by the following routine:

1. If last(ξ) ∈ Sξ,2
I , then σ(ξ, �) = 1{a∗w} and π(s, aw)(�) = 1{haw

s
∗} where a∗w ∈ AM(s)

and haw
s
∗ ∈H aw

s are arbitrarily fixed.

9.3. Reward-Bounded Reachability Probability for UwMDPs 183

2. If last(ξ) ∈ Sξ,1
I \ Sξ,2

I , then σ(ξ, �) = 1{a∗w} and π(s, aw)(�) = 1{haw
s
∗}where a∗w ∈

AM(s) and haw
s
∗ ∈H aw

s satisfy the following two conditions:
i. L(last(ξ), a∗w,haw

s
∗,R[ξ]) :=maxaw∈AM(s)maxhaw

s ∈H
aw

s
L(last(ξ), aw,haw

s ,R[ξ])
ii. rM(s, a∗w) 66= 0

3. If last(ξ) ∈ SM \ (S
ξ,1
I ∪ Sξ,2

I), then σ(ξ, �) = 1{a∗w} and π(s, aw)(�) = 1{haw
s
∗}where

a∗w ∈AM(s) and haw
s
∗ ∈H aw

s satisfy the following two conditions:
i. L(last(ξ), a∗w,haw

s
∗,R[ξ]) :=maxaw∈AM(s)maxhaw

s ∈H
aw

s
L(last(ξ), aw,haw

s ,R[ξ])

ii. there exists s ∈ SM such that ha∗w
last(ξ)s′ > 0 and the distance from s to Sξ,1

I ∪Sξ,2
I

is one step smaller than that from last(ξ).
By definition, σ(ξ, �) and π(s, aw)(�) are reward-positional.

Step 2. We show that Prmax
M,GM

(s, R) = Prσ,π
M,s(Ω

R
GM
) for all s ∈ SM and R ∈ N0. The proof is

done by induction on the remaining value of reward as follows. Let us fix R ∈ N0.
Assume that x ∈ [0,R]∩N0 is the value of residual reward. The base case when x = 0
can be easily seen. Since no transition can be performed, thus the class of scheduler
and nature has no influence. As regards the inductive step, assume x = k. Let σ and
π be reward-positional scheduler and nature that are optimal for residual reward x ,
i.e., Prσ,π

M,s(Ω
x
GM
) = Prmax

M,GM
(s, x). To find the optimal strategy and nature from state s

under the reward bound x = k + 1, we choose an action and nature that lead to the
highest probability under scheduler σ and nature π. The latter is formalized later in
Theorem 9.3.

�

Because of Theorem 9.2, we shall assume all schedulers and natures are deterministic
reward-positional in the sequel.

Corollary 9.1. Given an IMDP M equivalent to some UwMDP W , let σ ∈ ΣM and π ∈ ΠM
be a scheduler and nature of the given M. The function Prσ,π

M,GM
(s, R) satisfies the following

conditions:
1. If s ∈ GM, then Prσ,π

M,GM
(s, R) = 1;

2. If s /∈ GM, then

Prσ,π
M,GM

(s, R) =
∑

aw∈AM(s)∧rM(s,aw)≤R

σ(s)(aw).

(

∑

s′∈SM

h
aw
ss′ . Prσ,π

M,GM
(s′, R− rM(s, aw))

)

where haw
ss′ is a feasible transition probability resolved by π(s, aw), i.e, haw

ss′ = π(s, aw)(s′).

Proof. The result directly follows from Definitions 4.11 and 9.8. �

In the following theorem, we present the fixed-point characterization for Prmax
M,GM

(s, R).

Theorem 9.3 (Fixed-point characterization for Prmax
M,GM

(s, R)). Given an IMDP M equiv-
alent to some UwMDP W , the function Prmax

M,GM
(�, �) is the least fixed-point (w.r.t ≤) of the

high-order operator FGM
: [SM ×N0→ [0,1]]→ [SM ×N0→ [0, 1]] defined as follows:

184 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

• FGM
(h)(s, R) = 1 for all s ∈ GM and R∈ N0 ;

• For any given s /∈ GM ,

FGM
(h)(s, R) = max

aw∈AM(s)∧rM(s,aw)≤R
max

h
aw
s ∈H

aw
s

∑

s′∈SM

h
aw
ss′ . h(s′, R− rM(s, aw))

for each h : SM ×N0→ [0,1].

Proof. Suppose that Prmax ,n
M,GM

is the maximum reward-bounded reachability probability
function within n steps. Formally, the function Prmax ,n

M,GM
: [SM ×N0→ [0, 1]] is defined as:

Prmax ,n
M,GM

(s, R) := sup
σ∈ΣM

sup
π∈ΠM

Prσ,π
M,s(Ω

R
n,GM
)

where ΩR
n,GM

:= {ξ ∈ Pathss
M
�

� rew(ξ, GM) ≤ R and ξ[m] ∈ GM for some 0 ≤ m ≤ n}. We
prove the theorem in three steps by getting inspiration from [Fu14] as follows.
Step 1. We show by induction on n that the following three statements hold.

(a) Prmax ,n
M,GM

(s, R) = 1 if s ∈ GM;

(b) Prmax ,n
M,GM

(s, R) = 0 if s 6∈ GM and R≤ 0;

(c) If n> 0 and s 6∈ GM then Prmax ,n+1
M,GM

= FGM
(Prmax ,n

M,GM
).

The base step when n= 0 can be easily seen. Since

Prmax ,0
M,GM

(s, R) := sup
σ∈ΣM

sup
π∈ΠM

Prσ,π
M,s(Ω

R
0,GM
),

it is obvious that Prσ,π
M,s(Ω

R
0,GM
) = 1GM

(s).1 = 1GM
(s) for all measurable schedulers

σ and natures π. Therefore, (a) and (b) holds true and (c) is vacuum true. For the
inductive step, let n = k + 1 with k ≥ 0. It is easy to see that (a) and (b) holds
true. In the following, we show that (c) also holds true. Let n > 0 and s 6∈ GM. By
Corollary 9.1, for all measurable schedulers σ and natures π,

Prσ,π
M,s(Ω

R
k+1,GM

) =
∑

aw∈AM(s)

σ(s)(aw).

(

∑

s′∈SM

h
aw
ss′ . Prσ,π

M,s′(Ω
R−rM(s,aw)
k,GM

)

)

.

If we modify π to π′ by setting π′(s, aw)(s′) =Óh
aw
ss′ where

Óh
aw
s = arg max

h
aw
s ∈H

aw
s

∑

s′∈SM

h
aw
ss′ . Prσ,π

M,s′(Ω
R−rM(s,aw)
k,GM

)

and modify σ to σ′ by setting σ′(s, �) = σ(s, ba)where

ba = arg max
aw∈AM(s)

∑

s′∈SM

Óh
aw
ss′ . Prσ,π

M,s′(Ω
R−rM(s,aw)
k,GM

)

9.3. Reward-Bounded Reachability Probability for UwMDPs 185

and σ′(ξ, �) = σ(ξ, �) and π′(ξ, aw)(�) = π(ξ, aw)(�) if ξ 6= s; then σ′ and π′ are two
measurable scheduler and nature which satisfy

Prσ,π
M,s(Ω

R
k+1,GM

)≤ Prσ
′,π′

M,s (Ω
R
k+1,GM

).

Thus we have

Prmax ,k+1
M,GM

(s, R) := sup
σ∈ΣM

sup
π∈ΠM

max
aw∈AM(s)

max
h

aw
s ∈H

aw
s

∑

s′∈SM

h
aw
ss′ . Prσ,π

M,s′(Ω
R−rM(s,aw)
k,GM

).

We now prove the inductive step for (c). In particular, we show that the value of

Prmax ,k+1
M,GM

(s, R) := sup
σ∈ΣM

sup
π∈ΠM

max
aw∈AM(s)

max
h

aw
s ∈H

aw
s

J(s, aw,haw
s , R)

where J(s, aw,haw
s , R) :=

∑

s′∈SM
h

aw
ss′ . Prσ,π

M,s′(Ω
R−rM(s,aw)
k,GM

) equals

max
aw∈AM(s)

L(s, aw, R)

where
L(s, aw, R) := max

h
aw
s ∈H

aw
s

L(s, aw,haw
s , R)

and
L(s, aw,haw

s , R) :=
∑

s′∈SM

h
aw
ss′ . Prmax ,k

M,GM
(s′, R− rM(s, aw)).

It is not difficult to see that the latter is greater than the former. In order to
prove the reverse side, assume that aw = argmaxaw∈AM(s)L(s, aw, R) and h

aw
s =

arg maxhaw
s ∈H

aw
s

L(s, aw,haw
s , R). We consider two cases:

Case 1. rM(s, aw) = 0. For all ε > 0, we can choose scheduler σε and nature πε such
that
• σε(s, �) = σ(s, aw);

• πε(s, aw)(s′) = π(s, aw)(s′) = h
aw
ss′

and

• σε(shaw
ss′ s
′ξ, �) = σk,ε(s′ξ, �);

• πε(s′,σk,ε(s′ξ, �))(�) = πk,ε(s′,σk,ε(s′ξ, �))(�)
where σk,ε(s′ξ, �) and πk,ε(s′,σk,ε(s′ξ, �))(�) are measurable scheduler and nature
for such that

Prσ
k,ε ,πk,ε

M,s′ (ΩR
k,GM
)≥ Prmax ,k

M,GM
(s′, R)− ε.

It is not hard to see that for σε and πε ,

max
aw∈AM(s)

max
h

aw
s ∈H

aw
s

∑

s′∈SM

h
aw
ss′ . Prσ

ε ,πε

M,s′ (Ω
R−rM(s,aw)
k,GM

)≥ L(s, aw,haw
s , R)− ε.

Thus, Prmax ,k+1
M,GM

(s, R) = L(s, aw,haw
s , R) by the arbitrary choice of ε.

186 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

Case 2. rM(s, aw) 6= 0. The proof follows the same direction as case 1.

Step 2. We show that limn→+∞ Prmax ,n
M,GM

(s, R) = Prmax
M,GM

(s, R). Suppose that s ∈ SM. Be def-

inition, it is easy to see that Prmax ,n
M,GM

≤ Prmax ,n+1
M,GM

and Prmax ,n
M,GM

≤ Prmax
M,GM

(s, R) for all
n ≥ 0. Therefore, limn→+∞ Prmax ,n

M,GM
(s, R) exists and it is at most Prmax

M,GM
(s, R). As

regards the reverse direction, let us fix an arbitrary ε > 0. Suppose that σ and
π are measurable scheduler and nature such that Prσ,π

M,s(Ω
R
GM
) ≥ Prmax

M,GM
(s, R) − ε.

By definition, Prmax ,n
M,GM

(s, R) ≥ Prσ,π
M,s(Ω

R
n,GM
). It thus follows that limn→+∞ Prmax ,n

M,GM
≥

limn→+∞ Prσ,π
M,s(Ω

R
n,GM
) = Prσ,π

M,s(Ω
R
GM
)≥ Prmax

M,GM
(s, R)− ε. Since ε was arbitrary chosen,

thus limn→+∞ Prmax ,n
M,GM

(s, R) = Prmax
M,GM

(s, R).

Step 3. In the last step, we prove that Prmax
M,GM

is actually the least fixed-point of the high-
order operator FGM

. If s ∈ GM then clearly Prmax
M,GM

(s, R) = 1. By using Monotone Con-
vergence Theorem [Hal50] on (c), we conclude that Prmax

M,GM
(s, R) = FGM

(Prmax
M,GM

)(s, R).
Thus, Prmax

M,GM
is actually the fixed-point of the high-order operator FGM

(�). To see that
it is the least fixed-point of FGM

, we can continue by induction on n ≥ 0 and show
that for any given fixed-point l, Prmax ,n

M,GM
≤ l for all n ≥ 0. Based on the facts that

Prmax ,0
M,GM

≤ l and Prmax ,n+1
M,GM

= FGM
(Prmax ,n

M,GM
), it follows that Prmax

M,GM
≤ l for any fixed-

point l.
�

We show that the problem of computing the maximal reward-bounded reachability
probability in an IMDP can be reduced to solving a sequence of linear programming prob-
lems. The algorithm is shown in Algorithm 16. Intuitively, we let probs store all computed
reachability probabilities such that probs[i][r] is the maximal probability of reaching GM
from si within the reward bound r. We compute probs inductively starting from r = 1 until
r = R. At each step all probabilities probs[i][r] are computed using values probs[i][r ′]with
r ′ < r which have been computed before. From the moment we fix a bound r. Let x i de-
note the probability probs[i][r]. Let yi, j,a,w be the probability of going to s j by choosing the
transition with label aw when at state si . Hence the constraint in line 8 has to be satisfied.
Line 9 guarantees the probability mass from si sums up to 1. The variables yi, j,a,w are not
arbitrary but have to be within their corresponding given bounds. This is guaranteed in
line 10.

In the next lemma, we discuss the time complexity of the proposed routine to compute
Prmax

M,GM
(s, R). Formally,

Lemma 9.2. Algorithm 16 is sound and complete, and it is guaranteed to terminate in time
polynomial with respect to the size of IMDP M and the reward bound R.

Proof. The proof of Lemma 9.2 makes use of the following key result in linear program-
ming:

Proposition 9.3 (cf. [Kha79, Kar84]). Given the linear program:

min cT x
subject to: Ax≤ b

x≥ 0

9.3. Reward-Bounded Reachability Probability for UwMDPs 187

Algorithm 16: Computing maximal reward-bounded reachability
Input: An IMDP M, a state s0, a set of goal states GM, and a reward bound R.
Output: The maximal probability of reaching GM from s0 within the bound R.

1 begin
2 n← |SM|;
3 ∀0≤ i < n, 0≤ r ≤ R. probs[i][r] = (1 if si ∈ GM else 0);
4 for (r = 1 to R) do
5 ∀0≤ i < n. probs[i][r] = x i , where x i is determined by the following LP

problem;
6 min

∑

0≤i<n x i ;
7 for (0≤ i < n and aw ∈AM(si) with rM(si , aw)≤ r) do
8 x i ≥

∑

0≤ j<n probs[j][r − rM(si , aw)] · yi, j,a,w;
9

∑

0≤ j<n yi, j,a,w = 1;
10 ∀0≤ j < n.yi, j,a,w ∈ I(si , aw, s j);

11 return probs[0][R];

in which x represents the vector of variables (to be determined), c and b are vectors of (known)
coefficients, A is an (known) m × n matrix of coefficients, and (·)T is the matrix transpose; the
optimal solution can be found to within error ±ε in time complexity that is polynomial in the size
of problem (n, m) and log(1/ε).

Algorithm 16 has one inner linear program for each r ∈ {1, · · · , R}, totally O(R) linear
programming problems. Each linear program has O(|SM|) unknowns, representing the
maximal probability of reaching goal states GM within the given reward bound. It is
not difficult to see that the number of constraints is linear in the size |M| of the IMDP
M. Each inner LP problem can be solved in time complexity that is polynomial in the
size |M| (cf. Proposition 9.3). Therefore, the overall time complexity of algorithm turns
to be O(pol y(|M|).R) which is polynomial in the size of M and pseudo-polynomial in
R. The soundness and completeness of the Algorithm 16 follows directly by polynomial
algorithms for LP problems and a simple observation that the accuracy error at each
iteration of the outer for loop linearly increases due to the linear constraints in line 8.
More precisely, while each inner problem is solved with accuracy ±εinn in time linear in
log(1/εinn) by Proposition 9.3, linear constraints in line 8 guarantee that the accuracy error
cannot nonlinearly get amplified. To see this, suppose that εr

i is the error accumulated
at step r for state i, x r

i = x r
i,nep + ε

r
i , where x r

i,nep is the solution with no error propagation,
and εR

i the error in the final solution. Also, assume that x r
i and y r

i, j,a,w are the optimal
solutions of the inner linear programming at step r of the Algorithm 16. Due to linear
constraints in line 8, the optimal value x r

i of the inner problem is computed through
∑

0≤ j<n x r−rM(si ,aw)
j · y r

i, j,a,w, with
∑

0≤ j<n y r
i, j,a,w = 1 and y r

i, j,a,w ∈ I(si , aw, s j) for all 0 ≤ j < n.
At the first iteration,

x1
i = x1

i,nep + ε
1
i ≥

∑

0≤ j<n

x0
j · y

1
i, j,a,w + εinn

188 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

and at the second iteration:

x2
i ≥

∑

0≤ j<n

x2−rM(si ,aw)
j · y2

i, j,a,w + εinn =
∑

{0≤ j<n|2−rM(si ,aw)=0}

x0
j · y

2
i, j,a,w+

∑

{0≤ j<n|2−rM(si ,aw)=1}

x1
j · y

2
i, j,a,w + εinn ≥

∑

{0≤ j<n|2−rM(si ,aw)=0}

x0
j · y

2
i, j,a,w+

∑

{0≤ j<n|2−rM(si ,aw)=1}

{
∑

0≤s<n

x0
s · y

1
i,s,a,w + εinn} · y2

i, j,a,w + εinn =
∑

{0≤ j<n|2−rM(si ,aw)=0}

x0
j · y

2
i, j,a,w+

∑

{0≤ j<n|2−rM(si ,aw)=1}

∑

0≤s<n

x0
s · y

1
i,s,a,w · y

2
i, j,a,w +

∑

{0≤ j<n|2−rM(si ,aw)=1}

εinn · y2
i, j,a,w + εinn =

∑

{0≤ j<n|2−rM(si ,aw)=0}

x0
j · y

2
i, j,a,w +

∑

{0≤ j<n|2−rM(si ,aw)=1}

∑

0≤s<n

x0
s · y

1
i,s,a,w · y

2
i, j,a,w + 2εinn.

Following the above inductive procedure, we arrive at a conclusion that the accuracy error
εr

i increases linearly with respect to the iteration r. The desired accuracy error εd of the
final solution can thus be guaranteed by solving each inner linear programming problem
with accuracy εinn =O(εd

R). �

As the transformation in Definition 9.7 is also pseudo polynomial, we obtain the main
result of this section.

Theorem 9.4. Maximal reward-bounded reachability probabilities for an UwMDP W can be
computed in pseudo polynomial time O(|W |R2).

Proof. In order to compute maximal reward-bounded reachability probabilities for an
UwMDP W , we first generate the corresponding IMDP M using the model transformation
procedure in Definition 9.7 that has size O(|W | .R) in the worst case. Afterwards, due to the
preservation of reachability probabilities followed by the Proposition 9.2, maximal reward-
bounded reachability probabilities on the generated M is computed in time O(|M| .R) (cf.
Lemma 9.2). As a result, computing maximal reward-bounded reachability probabilities
for an UwMDP W can be done in time O(|W | .R2) that is linear in the size of W and
pseudo-polynomial in R. �

Remark 9.4. The extension of Algorithm 16 to deal with minimal reward-bounded reachabil-
ity is straightforward. We note that extreme reachability probabilities without reward bounds in
UwMDPs can also be computed efficiently using the technique presented in [PLSVS13]. The only
change we need to make is Definition 9.7, where a reward bound is necessary for the transformation.
However, if the reward bound is not available, we can simply let R be the maximal weight appearing
in the given UwMDP. After that, the algorithm in [PLSVS13] can be applied directly. Along the
same routine in [AHK03], the algorithm can be extended to deal with full PRCTL.

9.4 Case Studies

In order to show the effectiveness of our approaches, we developed a prototype tool and
applied it to some case studies. In particular, the goal of this experiment is two-fold: 1)

9.4. Case Studies 189

quantitatively evaluate the impact of uncertainty on the results of verification of reward-
bounded reachability probabilities of UwMDPs; 2) assess the impact of compositional min-
imization, as a pre-processing step, on speeding up the run time of the model checking
algorithm. Our prototype is built upon the tool presented in [PLSVS13], which is able to
model check PCTL properties over IMDPs. The tool is implemented in Python and re-
lies on MOSEK [MOS] to solve all linear programming problems. All experiments were
obtained on a laptop with an Intel i7-4600U 2.1GHz CPU and 4GB RAM running Ubuntu.

9.4.1 Autonomous Nondeterministic Tour Guides (ANTG)

Our first case study is inspired by “Autonomous Nondeterministic Tour Guides”
(ANTG) in [CRI07], which models a complex museum with a variety of collections. Mod-
els in [CRI07] are MDPs. In our experiment, we will insert some uncertainties in a way that
we will describe in details soon. Due to the popularity of the museum, there are many vis-
itors at the same time. Different visitors may have different preferences of arts. We assume
the museum divides all collections into different categories so that visitors can choose what
they would like to visit and pay tickets according to their preferences. In order to obtain
the best experience, a visitor can first assign certain weights to all categories denoting their
preferences to the museum, and then design the best strategy for a target. However, the
preference of a sort of arts to a visitor may depend on many factors like price, weather,
or the length of queue at that moment etc., hence it is hard to assign fixed values to these
preferences. In our model we allow uncertainties of preferences such that their values may
lie in an interval.

For simplicity we assume all collections are organized in an n× n square with n ≥ 10.
Let m= n−1

2 . We assume all collections at (i, j) are assigned with a weight 1 if |i−m|> n
5 or

| j−m|> n
5 , with a weight 2 if |i−m| ∈ (n

10 , n
5] or | j−m| ∈ (n

10 , n
5]; otherwise they are assigned

with a weight interval [2, 4]. In other words, we expect collections in the middle will be
more popular and subject to more uncertainties than others. Furthermore, we assume that
people at each location (i, j) have two nondeterministic choices: either move to the north
and west, or to the north and east if i ≥ j, while if i ≤ j, they can move either to the
south and west, or to the south and east. Therefore, for a model with parameter n, it has
n2 states in total and roughly 2n2 transitions, 2% of which are associated with uncertain
weights. Notice that a transition with uncertain weights essentially corresponds to several
transitions with concrete weights. In each ANTG model, the 2% transitions with uncertain
transitions contribute to about 20% of transitions in the resultant wMDP.

We define a reward structure denoting the reward one can obtain by visiting each col-
lection. For simplicity, we let the reward be the same as the weight of a collection. Let the
point (0,0) be the entrance and (n− 1, n− 1) the exit. We can ask questions like “Whether
it is possible to go through the museum, i.e., from the entrance to the exit, with probability
greater than 0.9, while the accumulated reward is not greater than R, i.e., Pr≥0.9(F≤Rexit)”.

Our experiment results without computing bisimulation quotients are shown in Ta-
ble 9.1, which presents the time (in minute) taken to compute Pr≥0.9(F≤Rexit) with corre-
sponding reward bounds and models of different sizes. For each case, we keep increasing
the bound until the probability is greater than 0.9. All cells marked with ’-’ denote cases
that we did not reach. We also implemented the algorithm to compute bisimulation re-
lations. Table 9.2 presents the experiment results, where bisimulation minimization was

190 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

H
HHHHn

R
50 100 150 200 250 300 350 400 450 500 550

10 0.08 - - - - - - - - - -
20 0.17 0.42 - - - - - - - - -
30 0.32 0.97 1.68 - - - - - - - -
40 0.56 1.62 3.37 5.04 - - - - - - -
50 1.11 2.85 5.68 8.98 12.33 - - - - - -
60 1.85 4.58 8.79 14.47 20.63 26.71 - - - - -
70 2.95 7.13 12.95 21.63 31.73 42.30 52.69 - - - -
80 5.81 12.59 22.62 37.08 56.42 74.72 94.01 114.19 - - -
90 7.52 17.78 31.54 48.99 70.71 97.10 124.47 154.64 182.80 211.43 -

100 11.55 26.94 46.08 69.88 100.78 140.73 182.40 225.46 266.39 308.30 356.15

Table 9.1: Experiment Results without Bisimulation Minimization(in minute)

H
HHHHn

R
50 100 150 200 250 300 350 400 450 500 550 BisimMin Ratio

10 0.05 - - - - - - - - - - 0.00 0.63
20 0.15 0.30 - - - - - - - - - 0.0 0.71
30 0.13 0.41 0.72 - - - - - - - - 0.14 0.43
40 0.60 1.55 2.49 3.45 - - - - - - - 0.48 0.68
50 0.45 1.53 3.95 6.78 9.20 - - - - - - 1.03 0.75
60 1.43 4.02 7.41 11.68 16.09 20.21 - - - - - 2.40 0.76
70 3.81 8.55 14.51 21.06 29.05 37.27 45.16 - - - - 4.21 0.86
80 6.74 13.09 19.39 27.10 36.07 44.88 52.48 60.01 - - - 5.27 0.53
90 5.51 13.59 23.39 34.32 47.03 61.20 73.67 86.21 98.89 112.90 - 6.50 0.53

100 11.45 25.04 40.85 57.72 77.02 98.34 120.86 143.89 166.11 184.50 202.85 9.66 0.60

Table 9.2: Experiment Results with Bisimulation Minimization (in minute)

100 200 300 400 500

0

50

100

150

200

reward bound

ti
m

e

Without BM
With BM

(a) n= 90

100 200 300 400 500

0

50

100

150

200

250

300

350

reward bound

ti
m

e

Without BM
With BM

(b) n= 100

Figure 9.3: Performance Difference with and without Bisimulation Minimization (in
minute)

conducted before performing verification. In this table, reported time is sum of the time

9.4. Case Studies 191

spent to conduct the minimization and the time spent to check the quotient systems. The
column “BisimMin” of Table 9.2 denotes the time spent to conduct the minimization, while
the column “Ratio” shows ratios between time to compute reachability probabilities with
and without bisimulation minimization. All values in column “Ratio” are obtained by
comparing time corresponding to the maximal reached reward for each case in Table 9.1
and 9.2. For instance, when n = 80, we divide 60.01 by 114.19 (R = 400), hence 0.53 is
obtained. Similarly, for the case with n = 100 and R = 550, bisimulation minimization
accelerated the verification for more than 40%. The time of computing reachability prob-
abilities without/with computing bisimulation quotients is visualized in Figure 9.3(a) for
n = 90 where “BM” denotes “bisimulation minimization”. The counterpart for n = 100 is
depicted in Figure 9.3(b). We shall see that the larger of the model and the reward bound,
the more time we will save by applying bisimulation minimization.

To the best of our knowledge, there is no algorithm or tool, which can deal with
UwMDPs directly. However, we can reduce the model checking of UwMDPs to check-
ing their equivalent wMDPs. For instance if W (s, a, s1) = [1, 2] and W (s, a, s2) = [2,3], then

essentially s has four nondeterministic transitions: s
a,3
−→{ 1

3 : s1, 2
3 : s2}, s

a,4
−→{ 1

4 : s1, 3
4 : s2},

s
a,4
−→{ 1

2 : s1, 1
2 : s2}, and s

a,5
−→{ 2

5 : s1, 3
5 : s2}. After resolving all uncertainties, we can apply

the existing algorithm [AHK03] to compute maximal reward-bounded reachability proba-
bilities. Obviously, this step may cause an exponential blow-up. Indeed, our experiment
showed that when the proportion of states with uncertain weights in an UwMDP is not
trivial, such enumeration is very time consuming. For instance when n = 10 and R= 100,
our algorithm took around 135 seconds, while the naïve approach took more than 10 min-
utes, provided that all transitions are associated with a weight interval [1, 6].

9.4.2 Randomized Consensus Protocol
In the second case study we consider randomized consensus protocol [AH90,KNS01]. Models
are obtained from PRISM benchmarks by adding some uncertainties to the transition prob-
abilities. In order to evaluate how the algorithm scales with respect to weight intervals of
different sizes, i.e., their lower and upper bounds and lengths, we performed experiments
on models after inserting weight intervals of various sizes. Specifically, instead of using a
fair coin, we adopt an unfair coin with uncertainties: After each coin tossing, head and tail
will occur with probabilities according to weights in [6− δ, 7− δ] and [8− δ, 10− δ], re-
spectively, where δ is an integer in [0, 5]. We consider the minimal probability of reaching
a set of goal states within a given reward bound, where the goal states are those labeled
by atomic propositions “finished” and “all_coins_equal_0”. The experiment results are
shown in Figure 9.4, for which we can see that the amount of uncertainties has an impor-
tant impact on the verification time, especially when the reward bound is large. This is
as expected since the size of the underlying wMDP of an UwMDP increases exponentially
with respect to the amount of uncertainties in the UwMDP.

9.4.3 Randomized Dining Philosophers
The above observation is further verified by the third case study – randomized dining philoso-
phers [LR81]. Same as in the second case study, we modify the original PRISM models by

192 Chapter 9 : Bisimulation Minimization for Model Checking of UwMDPs

0 5 10 15 20 25 30

0

1

2

3

reward bound

ti
m

e

δ=0
δ=1
δ=2
δ=3
δ=4
δ=5

(a) 2 processes, 1296 states, 2412 transi-
tions

0 5 10 15 20 25 30

0

1

2

3

·104

reward bound

ti
m

e

δ=0
δ=1
δ=2
δ=3
δ=4
δ=5

(b) 4 processes, 104576 states, 351712
transitions

Figure 9.4: Experiment results of randomized consensus protocols (in seconds)

0 20 40 60 80 100

0

100

200

300

reward bound

ti
m

e

δ=0
δ=1
δ=2
δ=3
δ=4
δ=5

(a) 3 philosophers, 956 states, 3696 tran-
sitions

0 20 40 60 80 100

0

1

2

3
·104

reward bound

ti
m

e

δ=0
δ=1
δ=2
δ=3
δ=4
δ=5

(b) 4 philosophers, 9440 states, 48656
transitions

Figure 9.5: Experiment results of randomized dining philosophers (in seconds)

injecting some uncertainties of various sizes. Figure 9.5 shows the time to compute the
maximal probabilities of reaching states labeled by “eat” within given reward bounds.

9.5 Concluding Remarks

In this chapter, we established a fixed-point characterization for maximal reward-bounded
reachability probabilities in UwMDPs as well as a pseudo polynomial algorithm to com-
pute these probabilities. In particular, for the sake of verification we assumed cooperative
resolution of nondeterminisms in which both scheduler and nature are playing together
to maximize the model performance, i.e., reachability probabilities. We proposed a
notion of bisimulation relations for UwMDPs and showed that they can be computed
efficiently in polynomial time. We have also demonstrated feasibility of our theory via
some case studies. All results proposed in this chapter can be extended to model check the

9.5. Concluding Remarks 193

Probabilistic Reward Computation Tree Logic (PRCTL) [AHK03] in a standard way [BK08].

Related work Related work falls into two main categories: Verification of PCTL [HJ94]
specifications and compositional minimization for uncertain MDPs. Probabilistic mod-
eling formalisms with uncertainties have attracted much attention recently. Interval
Markov chains [JL91, KU02] or abstract Markov chains [FLW06] extend classical discrete-
time Markov chains (MC) with uncertainties; however, they do not reflect nondetermin-
ism in transitions. In uncertain MDPs [NG05, PLSVS13, WTM12] both nondeterminis-
tic and probabilistic choices coexist and more expressive uncertainty sets are allowed to
model transition probabilities. Over the last few years, several new verification algo-
rithms for uncertain Markovian models have been proposed in the literature. The prob-
lems of computing reachability probabilities and expected total reward were studied for
interval Markov chains [CHK13] and interval MDPs [WK08]. Model checking of PCTL
and LTL has been investigated in [BLW13, CSH08, CHK13] for interval Markov chains
and also in [WTM12, PLSVS13] for IMDPs. Strategy synthesis for MDPs with respect to
PCTL properties was first studied in [BGL+04], which was then extended to parametric
MDPs [HHZ11a] and to MDPs with ellipsoidal uncertainty [NG05]. Uncertain Markovian
models were also extensively studied in the control community [GLD00, NG05, WK08],
with the aim to maximize expected finite-horizon (un)discounted rewards. We are not
aware of any existing result related to reward-bounded reachability for uncertain MDPs.
However, our algorithm is inspired by [AHK03], which deals with the model checking of
reachability properties on MCs with rewards.

From the point of view of compositional minimization, interval Markov
chains [KKN09] and abstract probabilistic automata [DKL+11a, DKL+11b] offer extensive
specification theories for Markov chains and probabilistic automata. These theories
support both satisfaction and various refinement relations [DLL+11, DKL+11a, JL91].
In [HHK14] probabilistic bisimulation relations were introduced in order to reduce the
size of interval MDPs while preserving PCTL properties. Moreover, an algorithm was
given to compute the quotients induced by these bisimulations in time polynomial in
the size of the model and exponential in the uncertain branching. Notably, we show
that for UwMDPs, bisimulation quotients can be computed in polynomial time even
with respect to the uncertain branching. Furthermore, bisimulation relations are proved
to be compositional with respect to a parallel operator. This enables compositional
minimization to enhance the model checking of UwMDPs.

Part III

Conclusion

CHAPTER10
Conclusion

Soon after the emergence of embedded systems, their ever increasing complexity has been
the primary concern of system designers. To account for the latter, formal verification
techniques help to design and verify correctness of these systems through an exhaustive
exploration of all possible execution paths of their abstract mathematical model. The in-
terdependency of formal verification methods on the modelling formalisms which provide
abstractions of the underlying systems results in guarantees as good as the models. In the
real world applications, such modelling formalisms are almost always affected by uncer-
tainties due to measurement errors, statistical estimates, or mathematical approximations.
It is thus essential to provide mathematically rigorous techniques for modelling and formal
analysis of such systems.

In this dissertation, we have established a framework for modelling, formal verifica-
tion and optimal control of probabilistic systems. In particular, we provided a thorough
complexity analysis and if applicable, efficient decision algorithm to minimize, verify and
optimally control these systems. We additionally evaluated the effectiveness of our pro-
posed approaches by applying them on several real world case studies.

10.1 Summary

To conclude the dissertation, we first summarize our main achievements.

We started in Chapter 5 with analysis of deciding weak probabilistic bisimulation for
probabilistic automata, a discrete time model for systems exhibiting probabilistic and non-
deterministic behaviour. This problem was already investigated by Cattani and Segala,
who developed an exponential time algorithm in 2002. Some years later, Hermanns and
Turrini [HT12] developed a polynomial time algorithm based on a partition refinement
procedure where the core part is to decide bisimilairty of a pair of states which is modeled
as a linear program that can be solvable in polynomial time. We further refined the com-
plexity analysis to obtain precise polynomial bounds and discussed several optimizations
to improve computation speed in theory and in practice.

197

198 Chapter 10 : Conclusion

We first provided a thorough complexity analysis to decide whether two probabilistic
automata are weakly bisimilar. To this aim, we first derived equivalent but smaller in size
LP problems compared to that of [HT12] by exploiting the underlying network structure of
the original LP. For these LP problems we performed a complexity analysis to compute the
exponent of the polynomial and subsequently the theoretical upper bound on the worst
case complexity of the problem.

We then presented an implementation of the decision algorithm which can use either
linear programming solvers or an SMT solver and can be used to minimize probabilistic
automata under weak probabilistic bisimulation. Such a minimization has clear implica-
tions for reducing the state space explosion problem when model checking such automata.
To further mitigate this problem we investigated how to use this approach in a composi-
tional manner when systems are expressed as the parallel composition of a number of
sub-automata. The implementation is tested on a number of case studies both to analyze
different optimizations and the advantages of using a compositional approach.

Modelling formalisms like Markov decision processes and probabilistic automata are
used to represent systems featuring nondeterminism and probabilistic behaviour. How-
ever, assigning fixed probability distributions to transitions is not realistic in modelling
real life applications. In fact, measurement errors, statistical estimates, or mathematical
approximations all lead to intervals instead of fixed probabilities.

We considered in Chapters 6 and 7, interval MDPs (also called Bounded-parameter
MDPs) to address this need by bounding the probabilities of each successor state by an
interval instead of a fixed number. In such modelling formalisms, the transition probabil-
ities are not fully specified and this uncertainty again needs to be resolved nondetermin-
istically. In order to describe the properties of such systems, we focused on probabilistic
CTL (PCTL), a probabilistic logic which extends CTL by including a probabilistic operator.
The semantics of the PCTL logic varies for different applications. We elucidated different
PCTL semantics in the course of these chapters.

In Chapter 6, we started with cooperative semantics in which both the choice of transi-
tions (resolved by a scheduler) and their probability distributions (resolved by a nature) is
adversarial. This semantics is the case in the verification settings where our goal is to verify
whether the IMDP model satisfies a given PCTL property under all resolutions of the two
sources of nondeterminism. In such cases, we assume that the scheduler and nature are
playing together against the model, i.e., their goal is to make the IMDP fail the PCTL prop-
erty. Verification of PCTL properties of MDPs with convex uncertainties has been investi-
gated recently by Puggelli et al [PLSVS13]. However, model checking algorithms typically
suffer from state space explosion. In this chapter, we address probabilistic bisimulation to
reduce the size of such an IMDP while preserving PCTL properties it satisfies. We defined
the first probabilistic bisimulation for PCTL model checking of interval MDPs (that are
also the first bisimulations for MDPs with uncertain transitions in general). We showed
the worst case time complexity of deciding probabilistic bisimulation for model checking
IMDPs is coNP-complete and then provided an algorithm based on comparing polytopes
of probability distributions associated with each transition. The algorithm is fixed param-
eter tractable with respect to the maximal dimension of the polytopes. With the aim of
designing an efficient approximation algorithm, we exploited the robust optimization and
established a novel modelling of the probabilistic bisimulation problem for IMDPs as an
instance of an uncertain LP problem. Afterwards, we showed that by using affine decision
rules, the probabilistic bisimulation problem for IMDPs can be approximately decided in

10.1. Summary 199

polynomial time. We finally applied a prototypical implementation of our algorithms on a
number of case studies to show the practical effectiveness of our developed approaches.

In Chapter 7, we extended previous results by considering the other way of resolving
two sources of nondeterminism, namely the competitive semantics. There are indeed ap-
plications where it is natural to interpret the two sources of nondeterminism in a competi-
tive way. As discussed earlier, in control synthesis for systems with uncertain probabilities,
the transitions correspond to various control actions. We search for a choice of transitions
that is optimal against an adversarial choice of probability distributions satisfying the in-
terval bounds. Furthermore, in parameter synthesis for parallel systems, the transition
probabilities are underspecified to allow freedom in implementation of such models. We
search for a choice of probability distributions that is optimal for adversarial choice of
transitions. In both applications controllers and natures are playing a game against one
another.

In the context of competitive semantics, we defined two novel alternating probabilistic
bisimulations for different interpretations of the nondeterminisms, i.e. controller synthe-
sis and parameter synthesis, to reduce the size of IMDP models while preserving PCTL
properties they satisfy. We first showed that the two alternating probabilistic bisimula-
tions coincide and then designed a polynomial time decision algorithm to compute it. We
then proved the effectiveness of our algorithm by applying it on various case studies and
argued that, if uncertainty stems from a small number of different phenomena such as
node failure or loss of a message, the same shape of polytopes will repeat many times over
the state space. We demonstrated that the redundancy in this case may result in a massive
state space minimization.

For the sake of understanding better the ways how large models with interval uncer-
tainties can be composed, we additionally discussed in Chapters 6 and 7 the key ingredi-
ents to build up the operations of parallel composition for composing IMDP components at
run-time. More precisely, we investigate how the parallel composition operator for IMDPs
can be defined so as to arrive at a congruence closure. As a result, we proved that all
defined probabilistic bisimulation for IMDPs are congruence with respect to two facets of
parallelism, namely synchronous product and interleaving.

In Chapter 8, we further considered the problem of multi-objective robust strategy syn-
thesis for IMDPs, where the aim is to find a robust strategy that guarantees the satisfaction
of multiple properties at the same time in face of the transition probability uncertainty.
We first proved that this problem is PSPACE-hard. Then, we presented a value iteration-
based decision algorithm to approximate the Pareto set of achievable points. We finally
demonstrated the practical effectiveness of our proposed approaches by applying them on
several case studies.

Our minimization theory for IMDP models reveals the hardness of defining (coopera-
tive) bisimulation relations that can be computed efficiently. To account for the latter, we
introduced in Chapter 9 the UwMDPs as a novel stochastic model to capture quantities
like preferences or priorities in a nondeterministic scenario with uncertainties. The model
is very close to the IMDPs but more convenient to model with when uncertainties like
weights, preference, priority, etc. are involved. Apart from the latter, we also showed that
this modelling formalism admits an efficient bisimulation minimization algorithm.

We also considered the problem of computing maximal/minimal reward-bounded
reachability probabilities on UwMDPs, for which we presented an efficient algorithm run-

200 Chapter 10 : Conclusion

ning in pseudo polynomial time. We finally showed promising results on a variety of case
studies, obtained by a prototypical implementation of all algorithms.

10.2 Future works

The work we have presented in this dissertation gives path to several directions for future
works. We briefly summarize them as follows.

• From modelling formalism aspect, it would be interesting to address richer for-
malisms for uncertainties such as polynomial constraints or even parameters ap-
pearing in multiple states/actions [AD16, DLP16] as well as other convex models
of uncertainties such as likelihood or ellipsoidal uncertainties to capture a less con-
servative analysis.

• From logical characterization viewpoint, in this dissertation we have considered
PCTL to express a wide variety of quantitative properties of systems. Although
this logic is very useful in practice, it suffers from some expressiveness limitations
for instance, arbitrary nested path formulas. It would therefore be interesting to ex-
tend the proposed approaches in this dissertation to more expressive logics such as
ω-PCTL [CSH08] or PCTL* [BDA95].

• In Chapter 5, we discussed efficiency of deciding probabilistic automata weak bisim-
ulation from two different perspectives, namely theoretical and practical efficiency.
From theoretical side, the network simplex algorithm specialized for the minimum
cost flow problem with additional side constraints can be seen itself as the foremost
next step. In fact, designing a new data structure to be able to deal with a large
number of additional side constraints is not only a very significant contribution in
the combinatorial optimization setting but also it improves the practical efficiency of
the decision problem under our consideration. From practical side, it is interesting
to improve the efficiency of proposed heuristics as well as to optimize the code in
order to speed up the response time. Moreover, it would be important to investi-
gate heuristics that allow us to optimize the sequence of the parallel compositions
in order to take advantage from the compositional minimization approach, as done
in [CL11, CH10]. For both facets of efficiency, it would be interesting to see whether
the proposed results in this chapter can be exploited for efficiently deciding weak
bisimilarity over richer modelling formalisms such as Markov automata [EHZ10b]
as well as for the weak bisimilarity over probabilistic timed automata [KNSS02].

• In Chapters 6 and 7, we showed that our novel probabilistic bisimulations for IMDPs
are congruence with respect to two facets of parallelism, namely synchronous prod-
uct and interleaving. That would be an important research direction to explore the
possibility of developing a probabilistic bisimulation minimization approach which
not only preserves the PCTL properties but also is a congruence with respect to the
asynchronous parallelism with synchronization. In the context of compositional rea-
soning for IMDPs, an interesting research direction would be to explore the possibil-
ity of mixing synchronous product and interleaving parallel operators as well as to
investigate partially synchronous product operator.

• Even though we focused in Chapter 8 on robust controller synthesis of IMDPs with
multi-objective reachability and reward properties, the proposed robust synthesis al-

10.2. Future works 201

gorithm can also handle MDPs with convex uncertain sets and any ω-regular prop-
erties such as LTL. This, however, is not so clear for the proposed probabilistic bisim-
ulation algorithm. The core part of this algorithm relies on verifying strictly minimal
polytopes in polynomial time, which depends on the special structure of the uncer-
tainty polytopes. As a future work, it would be worthwhile to explore the possi-
bility of preserving this computational efficiency for MDPs with richer formalisms.
Furthermore, the upper bound of the time complexity of the multi-objective robust
strategy synthesis problem for IMDPs is left open in this thesis which needs further
exploration.

• Finally, in Chapter 9 we introduced a new model of UwMDPs to express quantities
in nondeterministic scenarios with uncertainty. The interval model of uncertainty
in UwMDPs can be extended with other convex uncertainty models such as ellip-
soidal model to capture a less conservative analysis. It is also interesting to discuss
optimal control as well as multi-objective model checking of UwMDPs and support
these theoretical developments by more realistic case studies where the priorities
are introduced more naturally. Furthermore, compositional reasoning for UwMDPs
deserves a more systematic treatment. Understanding better the ways how large
UwMDPs with interval uncertainties can be composed, may bring further ideas for
efficient analysis of these models.

In conclusion, we believe the research area of quantitative verification and synthesis of
probabilistic systems with discrete or continuous parameters has attracted a lot of attention
in recent years. In order to achieve desired goals such as synthesizing suitable parameters
to ensure favorable behavior of a system further research are needed to develop efficient
algorithms, tools and applications in different areas of computer science, bioinformatics
and control engineering.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[AD16] Étienne André and Benoît Delahaye. Consistency in parametric interval prob-
abilistic timed automata. In 23rd International Symposium on Temporal Repre-
sentation and Reasoning, TIME 2016, Kongens Lyngby, Denmark, October 17-19,
2016, pages 110–119, 2016.

[ADD00] Robert B. Ash and Catherine Doléans-Dade. Probability and Measure Theory.
Academic Press, 2000.

[AEG04] Alessandro Abate and Laurent El Ghaoui. Robust model predictive control
through adjustable variables: an application to path planning. In Decision and
Control, 2004. CDC. 43rd IEEE Conference on, volume 3, pages 2485–2490. IEEE,
2004.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared
memory. J. Algorithms, 11(3):441–461, 1990.

[AHK98] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Kupferman, Or-
naand Vardi. Alternating refinement relations. In CONCUR, volume 1466
of LNCS, pages 163–178. Springer, 1998.

[AHK03] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time
rewards model-checked. In FORMATS, volume 2791 of LNCS, pages 88–104,
2003.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights up-
date method: A meta-algorithm and applications. Theory of Computing, 8:121–
164, 2012.

[AMO93] Ravindra K. Ahuja, Thomas J. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[Ans99] Kurt M. Anstreicher. Linear programming in O (n3

ln n L) operations. SIAM J. on
Optimization, 9(4):803–812, 1999.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. Model-
checking continuous-time Markov chains. ACM Transactions on Computational
Logic, 1(1):162–170, 2000.

202

BIBLIOGRAPHY 203

[BBC11] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and
applications of robust optimization. SIAM review, 53(3):464–501, 2011.

[BCS10] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A rigorous, com-
positional, and extensible framework for dynamic fault tree analysis. IEEE
TDSC, 7(2):128–143, 2010.

[BDA95] Andrea Bianco and Luca De Alfaro. Model checking of probabilistic and non-
deterministic systems. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 499–513. Springer, 1995.

[BDH+12] Marius Bozga, Alexandre David, Arnd Hartmanns, Holger Hermanns,
Kim G. Larsen, Axel Legay, and Jan Tretmans. State-of-the-art tools and
techniques for quantitative modeling and analysis of embedded systems. In
DATE, pages 370–375. IEEE, March 2012.

[BDH+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns,
Sebastian Junges, and Andrea Turrini. JANI: Quantitative model and tool
interaction. In TACAS, LNCS, pages 151–168, 2017.

[BDL+17] Anicet Bart, Benoît Delahaye, Didier Lime, Eric Monfroy, and Charlotte
Truchet. Reachability in parametric interval Markov chains using constraints.
In QEST, volume 10503 of Lecture Notes in Computer Science, pages 173–189.
Springer, 2017.

[Bel57] Richard Bellman. A Markovian decision process. Indiana University Mathe-
matics Journal, 6:679–684, 1957.

[Bel01] Peter A. Beling. Exact algorithms for linear programming over algebraic ex-
tensions. Algorithmica, 31(4):459–478, 2001.

[Ber95] Dimitri P. Bertsekas. Dynamic programming and optimal control, volume 1.
Athena Scientific Belmont, MA, 1995.

[Ber05] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-
entific, 2005.

[BF12] Ufuk Bahçeci and Orhan Feyziog̃lu. A network simplex based algorithm
for the minimum cost proportional flow problem with disconnected subnet-
works. Optimization Letters, 6:1173–1184, 2012.

[BG96] Marco Bernardo and Roberto Gorrieri. Extended Markovian process algebra.
In CONCUR, volume 1119 of LNCS, pages 315–330. Springer, 1996.

[BGL+04] Christel Baier, Marcus Größer, Martin Leucker, Benedikt Bollig, and Frank
Ciesinski. Controller synthesis for probabilistic systems. In Exploring New
Frontiers of Theoretical Informatics, pages 493–506. Springer, 2004.

[BHH+09] Eckard Böde, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas
Peikenkamp, Reza Pulungan, Jan Rakow, Ralf Wimmer, and Bernd Becker.
Compositional dependability evaluation for STATEMATE. ITSE, 35(2):274–
292, 2009.

204 BIBLIOGRAPHY

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter
Katoen. Model-checking algorithms for continuous-time Markov chains.
IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[BHKH05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R.
Haverkort. Efficient computation of time-bounded reachability probabilities
in uniform continuous-time Markov decision processes. TCS, 345(1):2–26,
2005.

[Bil79] Patrick Billingsley. Probability and Measure. John Wiley and Sons, New York,
Toronto, London, 1979.

[BJS11] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear programming
and network flows. John Wiley & Sons, 2011.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

[BKW14] Nicolas Basset, Marta Kwiatkowska, and Clemens Wiltsche. Composi-
tional controller synthesis for stochastic games. In CONCUR, pages 173–187.
Springer, 2014.

[BLW13] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model check-
ing of interval Markov chains. In TACAS, volume 7795 of LNCS, pages 32–46.
Springer, 2013.

[BMN00] Pierfrancesco Bellini, Riccardo Mattolini, and Paolo Nesi. Temporal logics for
real-time system specification. ACM Computing Surveys (CSUR), 32(1):12–42,
2000.

[Bra13] Willem K Brauers. Optimization methods for a stakeholder society: a revolution in
economic thinking by multi-objective optimization, volume 73. Springer Science
& Business Media, 2013.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers; NP-completeness, recursive functions and
universal machines. Bullettin of the American Mathematical Society, 21(1):1–46,
1989.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Ver-
sion 2.0. In SMT, 2010.

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 1997.

[BTEGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimiza-
tion. Princeton University Press, 2009.

[BTGGN04] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Ne-
mirovski. Adjustable robust solutions of uncertain linear programs. Math-
ematical Programming, 99(2):351–376, 2004.

[BTN99] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear
programs. Operations research letters, 25:1–13, 1999.

BIBLIOGRAPHY 205

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[Cal02] Herminia I. Calvete. Network simplex algorithm for the general equal flow
problem. European J. Operational Research, 150(3):585–600, 2002.

[CE81] Edmund M Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Workshop on Logic
of Programs, pages 52–71. Springer, 1981.

[CFK+13] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. On stochastic games with multiple objectives. In Interna-
tional Symposium on Mathematical Foundations of Computer Science, pages 266–
277. Springer, 2013.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and
Ferruccio Zulian. Specification and verification of the PowerScale® bus ar-
bitration protocol: An industrial experiment with LOTOS. In FORTE, pages
435–450, 1996.

[CH10] Pepijn Crouzen and Holger Hermanns. Aggregation ordering for massively
compositional models. In ACSD, pages 171–180, 2010.

[Chi06] John W Chinneck. Practical optimization: a gentle introduction. Systems and
Computer Engineering, Carleton University, Ottawa., 2006. http://www.sce.
carleton.ca/faculty/chinneck/po.html/.

[CHK13] Taolue Chen, Tingting Han, and Marta Z. Kwiatkowska. On the complexity
of model checking interval-valued discrete time Markov chains. Inf. Process.
Lett., 113(7):210–216, 2013.

[CHLS09] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe.
Towards performance prediction of compositional models in industrial GALS
designs. In CAV, volume 5643 of LNCS, pages 204–218, 2009.

[CK70] Donald R. Chand and Sham S. Kapur. An algorithm for convex polytopes. J.
ACM, 17(1):78–86, January 1970.

[CKMS11] Paul Christiano, Jonathan A. Kelner, Aleksander Ma̧dry, and Daniel Spiel-
man. Electrical flows, laplacian systems, and faster approximation of maxi-
mum flow in undirected graphs. In STOC, pages 273–282, 2011.

[CL11] Pepijn Crouzen and Frédéric Lang. Smart reduction. In FASE, volume 6603
of LNCS, pages 111–126, 2011.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.
Markov decision processes with multiple objectives. In STACS, volume 3884
of LNCS, pages 325–336, 2006.

[cpl] IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[CRI07] Andrew S. Cantino, David L. Roberts, and Charles L. Isbell. Autonomous
nondeterministic tour guides: improving quality of experience with TTD-
MDPs. In AAMAS, page 22. IFAAMAS, 2007.

http://www.sce.carleton.ca/faculty/chinneck/po.html/
http://www.sce.carleton.ca/faculty/chinneck/po.html/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

206 BIBLIOGRAPHY

[CS02] Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic
bisimulation. In CONCUR, volume 2421 of LNCS, pages 371–385, 2002.

[CSH08] Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-
checking ω-regular properties of interval Markov chains. In FoSSaCS, pages
302–317, 2008.

[CSKN05] Stefano Cattani, Roberto Segala, Marta Kwiatkowska, and Gethin Nor-
man. Stochastic transition systems for continuous state spaces and non-
determinism. In FoSSaCS, volume 3441 of LNCS, pages 125–139, 2005.

[CSV07] Ling Cheung, Mariëlle Stoelinga, and Frits W. Vaandrager. A testing scenario
for probabilistic processes. JACM, 54(6), 2007.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic
verification. Journal of the ACM (JACM), 42(4):857–907, 1995.

[Den05] Yuxin Deng. Axiomatisations and Types for Probabilistic and Mobile Processes.
PhD thesis, École des Mines de Paris, 2005.

[DH12] Yuxin Deng and Matthew Hennessy. On the semantics of Markov automata.
I&C, 222:139–168, 2012.

[DJJ+15] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias
Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Abraham. Prophesy: A
probabilistic parameter synthesis tool. In International Conference on Computer
Aided Verification, pages 214–231. Springer, 2015.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
A STORM is coming: A modern probabilistic model checker. In CAV, pages
592–600, 2017.

[DKL+11a] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen, Falak Sher, and Andrzej Wasowski. Abstract probabilistic au-
tomata. In VMCAI, pages 324–339, 2011.

[DKL+11b] Benoît Delahaye, Joost-Pieter Katoen, Kim Guldstrand Larsen, Axel Legay,
Mikkel Larsen Pedersen, Falak Sher, and Andrzej Wasowski. New results on
abstract probabilistic automata. In ACSD, pages 118–127. IEEE, 2011.

[DLL+11] Benoît Delahaye, Kim Guldstrand Larsen, Axel Legay, Mikkel Larsen Peder-
sen, and Andrzej Wasowski. Decision problems for interval Markov chains.
In LATA, volume 6638 of LNCS, pages 274–285. Springer, 2011.

[DLP16] Benoît Delahaye, Didier Lime, and Laure Petrucci. Parameter synthesis for
parametric interval Markov chains. In Verification, Model Checking, and Ab-
stract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg,
FL, USA, January 17-19, 2016. Proceedings, pages 372–390, 2016.

[DM61] George B. Dantzig and Albert Madansky. On the solution of two-stage linear
programs under uncertainty. In Proc. Fourth Berkeley Symp. on Math. Statist.
and Prob., Vol. 1, pages 165–176, 1961.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In TACAS, volume 4963 of LNCS, pages 337–340, 2008.

BIBLIOGRAPHY 207

[DSH16] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective opti-
mization. In Decision Sciences: Theory and Practice, pages 145–184. CRC Press,
2016.

[EH86] E. Allen Emerson and Joseph Y Halpern. “sometimes" and “not never" re-
visited: on branching versus linear time temporal logic. Journal of the ACM
(JACM), 33(1):151–178, 1986.

[EHKZ13] Christian Eisentraut, Holger Hermanns, Joost-Pieter Katoen, and Lijun
Zhang. A semantics for every GSPN. In PETRI NETS, volume 7927 of Lecture
Notes in Computer Science, pages 90–109, 2013.

[Ehr06] Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Me-
dia, 2006.

[EHS+13] Christian Eisentraut, Holger Hermanns, Johann Schuster, Andrea Turrini,
and Lijun Zhang. The quest for minimal quotients for probabilistic automata.
In TACAS, volume 7795 of LNCS, pages 16–31, 2013.

[EHZ10a] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. Concurrency and
composition in a stochastic world. In CONCUR, volume 6269 of LNCS, pages
21–39, 2010.

[EHZ10b] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic
automata in continuous time. In LICS, pages 342–351, 2010.

[Eis17] Christian Eisentraut. Principles of Markov Automata. PhD thesis, Saarland
University, 2017.

[EKN+12] Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen, Bart Postma, and
Yuri Yushtein. Formal correctness, safety, dependability and performance
analysis of a satellite. In ICSE, pages 1022–1031, 2012.

[EKVY07] Kousha Etessami, Marta Kwiatkowska, Moshe Y Vardi, and Mihalis Yan-
nakakis. Multi-objective model checking of Markov decision processes. In
International Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 50–65. Springer, 2007.

[Eme90] E. Allen Emerson. Temporal and modal logic. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), 995(1072):5, 1990.

[ERSW14] Pavlos Eirinakis, Salvatore Ruggieri, K Subramani, and Piotr Wojciechowski.
On quantified linear implications. AMAI, 71(4):301–325, 2014.

[FFHHT16] Luis María Ferrer Fioriti, Vahid Hashemi, Holger Hermanns, and Andrea
Turrini. Deciding probabilistic automata weak bisimulation: Theory and
practice. FAoC, 28(1):109–143, 2016.

[FKN+11] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Quantitative multi-objective verification for probabilistic sys-
tems. In TACAS, volume 6605 of LNCS, pages 112–127, 2011.

208 BIBLIOGRAPHY

[FKNP11] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Au-
tomated verification techniques for probabilistic systems. In Formal Methods
for Eternal Networked Software Systems (SFM’11), volume 6659, pages 53–113,
2011.

[FKP12] Vojtěch Forejt, Marta Kwiatkowska, and David Parker. Pareto curves for
probabilistic model checking. In International Symposium on Automated Tech-
nology for Verification and Analysis, pages 317–332. Springer, 2012.

[FL81] Aviezri S Fraenkel and David Lichtenstein. Computing a perfect strategy
for n× n chess requires time exponential in n. In International Colloquium on
Automata, Languages, and Programming, pages 278–293. Springer, 1981.

[FLW06] Harald Fecher, Martin Leucker, and Verena Wolf. Don’t know in probabilistic
systems. In SPIN, volume 3925 of LNCS, pages 71–88. Springer, 2006.

[Fre05] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past
hytech. In International conference on hybrid systems: computation and control,
pages 258–273. Springer, 2005.

[Fu14] Hongfei Fu. Maximal cost-bounded reachability probability on continuous-
time Markov decision processes. In FoSSaCS, volume 8412, pages 73–87.
LNCS, 2014.

[Fur80] Nagata Furukawa. Characterization of optimal policies in vector-valued
Markovian decision processes. Mathematics of operations research, 5(2):271–279,
1980.

[Gho90] Mrinal K Ghosh. Markov decision processes with multiple costs. Operations
Research Letters, 9(4):257–260, 1990.

[GHT14] Daniel Gebler, Vahid Hashemi, and Andrea Turrini. Computing behavioral
relations for probabilistic concurrent systems. In Stochastic Model Checking.
Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic
Systems, volume 8453 of LNCS, pages 117–155. Springer Berlin Heidelberg,
2014.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[GLD00] Robert Givan, Sonia M. Leach, and Thomas L. Dean. Bounded-parameter
Markov decision processes. Artif. Intell., 122(1-2):71–109, 2000.

[GLP] GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/
glpk/.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[Goe14] Marc Goerigk. ROPI–a robust optimization programming interface for C++.
Optimization Methods and Software, 29(6):1261–1280, 2014.

[GOR00] Jacob E. Goodman, Joseph O’Rourke, and Kenneth H. Rosen. Handbook of
discrete and computational geometry. cRc Press LLc, 2000.

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

BIBLIOGRAPHY 209

[GSL96] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. Compositional minimi-
sation of finite state systems using interface specifications. Formal Aspects of
Computing, 8(5):607–616, 1996.

[GTT89] Andrew V Goldberg, Éva Tardos, and ROBERTE Tarjan. Network flow algo-
rithm. Technical report, Cornell University Operations Research and Indus-
trial Engineering, 1989.

[GUR] Gurobi 4.0.2. http://www.gurobi.com/.

[Gus02] Elana Guslitser. Uncertainty-immunized solutions in linear programmin. PhD
thesis, Technion-Israel Institute of Technology, 2002.

[Hag14] Willem Hagemann. Reachability analysis of hybrid systems using symbolic
orthogonal projections. In International Conference on Computer Aided Verifica-
tion, pages 407–423. Springer, 2014.

[Hal50] Paul Richard Halmos. Measure Theory. Springer, 1950.

[Han91] Hans A. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Uppsala University, 1991.

[Has16] Vahid Hashemi. Towards a combinatorial approach for undiscounted MDPs:
student research abstract. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1708–1709, 2016.

[Has17] Vahid Hashemi. Reformulation of the linear program for completely ergodic
MDPs with average cost criteria. Optimization Letters, 11(7):1477–1487, 2017.

[Hen83] Mordechai I Henig. Vector-valued dynamic programming. SIAM Journal on
Control and Optimization, 21(3):490–499, 1983.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality,
volume 2428 of LNCS. Springer, 2002.

[HHH+17a] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian,
and Andrea Turrini. Multi-objective robust strategy synthesis for interval
Markov decision processes. CoRR, abs/1706.06875, 2017.

[HHH+17b] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian,
and Andrea Turrini. Multi-objective robust strategy synthesis for interval
MDPs. In QEST, volume 10503 of LNCS, pages 207–223, 2017.

[HHHT16] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, and Andrea Tur-
rini. Exploiting robust optimization for interval probabilistic bisimulation.
In QEST, pages 55–71, 2016.

[HHK14] Vahid Hashemi, Hassan Hatefi, and Jan Krčál. Probabilistic bisimulations
for PCTL model checking of interval MDPs (extended version). In SynCoP,
volume 145 of EPTCS, pages 19–33, 2014.

[HHS16a] Vahid Hashemi, Holger Hermanns, and Lei Song. Reward-bounded reacha-
bility probability for uncertain weighted MDPs. In VMCAI, pages 351–371,
2016.

http://www.gurobi.com/

210 BIBLIOGRAPHY

[HHS+16b] Vahid Hashemi, Holger Hermanns, Lei Song, K. Subramani, Andrea Turrini,
and Piotr Wojciechowski. Compositional bisimulation minimization for in-
terval Markov decision processes. In LATA’16, volume 9618 of LNCS, pages
114–126, 2016.

[HHT13] Vahid Hashemi, Holger Hermanns, and Andrea Turrini. On the efficiency of
deciding probabilistic automata weak bisimulation. ECEASST, 66, 2013.

[HHT16] Vahid Hashemi, Holger Hermanns, and Andrea Turrini. Compositional rea-
soning for interval Markov decision processes. Available at http://arxiv.
org/abs/1607.08484, 2016.

[HHWZ10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
Param: A model checker for parametric Markov models. In International Con-
ference on Computer Aided Verification, pages 660–664. Springer, 2010.

[HHZ11a] Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for PCTL in
parametric Markov decision processes. In NASA Formal Methods, volume
6617 of LNCS, pages 146–161, 2011.

[HHZ11b] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reach-
ability for parametric Markov chains. STTT, 13(1):3–19, 2011.

[HJ90] Hans Hansson and Bengt Jonsson. A calculus for communicating systems
with time and probabilities. In RTSS, pages 278–287, 1990.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reli-
ability. Formal Asp. Comput., 6(5):512–535, 1994.

[HK95] Richard V. Helgason and Jeffery L. Kennington. Primal simplex algorithms
for minimum cost network flows. In Network Models, volume 7 of Handbooks in
Operations Research and Management Science, chapter 2, pages 85–113. Elsevier,
1995.

[HK00] Holger Hermanns and Joost-Pieter Katoen. Automated compositional
Markov chain generation for a plain-old telephone system. Science of Com-
puter Programming, 36(1):97–127, 2000.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker.
PRISM: A tool for automatic verification of probabilistic systems. In TACAS,
volume 3920 of LNCS, pages 441–444, 2006.

[HLS+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. Is-
casMC: A web-based probabilistic model checker. In Nineteenth international
symposium of the Formal Methods Europe association (FM), volume 8442 of Lec-
ture Notes in Computer Science, pages 312–317. Springer, 2014.

[HN94] Dorit S. Hochbaum and Joseph Seffi Naor. Simple and fast algorithms for
linear and integer programs with two variables per inequality. SIAM J. on
Computing, 23(6):1179–1192, 1994.

[How60] Ronald A. Howard. Dynamic Programming and Markov Processes. John Wiley
and Sons, Inc., 1960.

http://arxiv.org/abs/1607.08484
http://arxiv.org/abs/1607.08484

BIBLIOGRAPHY 211

[How71] Ronald A. Howard. Dynamic Probabilistic Systems. John Wiley & Sons, 1971.

[How07] Ronald A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and
Decision Processes. Dover Publications, 2007.

[HS65] Juris Hartmanis and Richard E Stearns. On the computational complexity
of algorithms. Transactions of the American Mathematical Society, 117:285–306,
1965.

[HT12] Holger Hermanns and Andrea Turrini. Deciding probabilistic automata weak
bisimulation in polynomial time. In FSTTCS, pages 435–447, 2012.

[HTH+17] Vahid Hashemi, Andrea Turrini, Ernst Moritz Hahn, Holger Hermanns, and
Khaled Elbassioni. Polynomial-time alternating probabilistic bisimulation for
interval MDPs. In SETTA, volume 10606 of LNCS, pages 25–41, 2017.

[Iye05] Garud N. Iyengar. Robust dynamic programming. Math. Oper. Res., 30(2):257–
280, 2005.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of
probabilistic processes. In LICS, pages 266–277. IEEE Computer Society, 1991.

[JT80] William B. Jones and Wolfgang Joseph Thron. Continued Fractions: Analytic
Theory and Applications. Encyclopedia of Mathematics and its Applications.
Addison-Wesley, 1980.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984.

[Kat16] Joost-Pieter Katoen. The probabilistic model checking landscape. In Pro-
ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 31–45. ACM, 2016.

[Kha79] Leonid Genrikhovich Khachyan. A polynomial algorithm in linear program-
ming. Soviet Mathematics Doklady, 20(1):191–194, 1979.

[KKN09] Joost-Pieter Katoen, Daniel Klink, and Martin R. Neuhäußer. Compositional
abstraction for stochastic systems. In FORMATS, volume 5813 of LNCS, pages
195–211. Springer, 2009.

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen.
Bisimulation minimisation mostly speeds up probabilistic model checking.
In TACAS, volume 4424 of LNCS, pages 76–92, 2007.

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In
Inequalities, volume III, pages 159–175. Defense Technical Information Center,
1972.

[KM00] Jean-Pierre Krimm and Laurent Mounier. Compositional state space genera-
tion with partial order reductions for asynchronous communicating systems.
In TACAS, volume 1785 of LNCS, pages 266–282, 2000.

[KNP07] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model
checking. In International School on Formal Methods for the Design of Computer,
Communication and Software Systems, pages 220–270. Springer, 2007.

212 BIBLIOGRAPHY

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages
585–591, 2011.

[KNPQ13] Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang
Qu. Compositional probabilistic verification through multi-objective model
checking. Information and Computation, 232:38–65, 2013.

[KNS01] Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. Automated
verification of a randomized distributed consensus protocol using cadence
SMV and PRISM. In CAV, volume 2102 of Lecture Notes in Computer Science,
pages 194–206. Springer, 2001.

[KNSS02] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
Automatic verification of real-time systems with discrete probability distri-
butions. TCS, 282:101–150, 2002.

[Kol12] Andrey Kolobov. Planning with Markov decision processes: An AI perspec-
tive. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):1–
210, 2012.

[KS76] John G. Kemeny and James Laurie Snell. Finite Markov Chains. Springer-
Verlang, 1976.

[KS90] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state pro-
cesses, and three problems of equivalence. I&C, 86(1):43–68, 1990.

[KS05] Antonín Kučera and Oldřich Stražovskỳ. On the controller synthesis for
finite-state Markov decision processes. In International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, pages 541–552.
Springer, 2005.

[KSK66] John G. Kemeny, James Laurie Snell, and Anthony W. Knapp. Denumerable
Markov Chains. Van Nostrand Company, 1966.

[KU02] Igor O Kozine and Lev V Utkin. Interval-valued finite Markov chains. Reliable
computing, 8(2):97–113, 2002.

[Kul96] Vidyadhar G Kulkarni. Modeling and analysis of stochastic systems. CRC Press,
1996.

[Lam83] Leslie Lamport. What good is temporal logic? In IFIP congress, volume 83,
pages 657–668, 1983.

[Law76] Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Corporation, 1976.

[LK16] Morteza Lahijanian and Marta Kwiatkowska. Specification revision for
Markov decision processes with optimal trade-off. In Conf. on Decision and
Control, pages 7411–7418. IEEE, Dec. 2016.

[LLMK14a] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E. Kavraki. Asymptot-
ically optimal stochastic motion planning with temporal goals. In The Eleventh
International Workshop on the Algorithmic Foundations of Robotics (WAFR), pages
335–352, Istanbul, Turkey, Aug. 2014.

BIBLIOGRAPHY 213

[LLMK14b] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E. Kavraki. Fast
stochastic motion planning with optimality guarantees using local policy re-
configuration. In IEEE Conference on Robotics and Automation, pages 3013–
3019, Hong Kong, China, May 2014.

[LLMK14c] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E. Kavraki. Optimal
and efficient stochastic motion planning in partially-known environments. In
The Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 2549–2555,
Quebec City, Canada, 2014.

[Lof04] Johan Lofberg. YALMIP: A toolbox for modeling and optimization in MAT-
LAB. In Computer Aided Control Systems Design, 2004 IEEE International Sym-
posium on, pages 284–289. IEEE, 2004.

[Lof12] Johan Lofberg. Automatic robust convex programming. Optimization methods
and software, 17(1):115–129, 2012.

[LpS] LpSolve mixed integer linear programming solver. http://lpsolve.
sourceforge.net.

[LR81] Daniel J. Lehmann and Michael O. Rabin. On the advantages of free choice: A
symmetric and fully distributed solution to the dining philosophers problem.
In POPL, pages 133–138. ACM Press, 1981.

[LWAB10] Morteza Lahijanian, Joseph Wasniewski, Sean B Andersson, and Calin Belta.
Motion planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 3227–3232. IEEE, 2010.

[LY84] David G Luenberger and Yinyu Ye. Linear and nonlinear programming, vol-
ume 2. Springer, 1984.

[MA04] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimiza-
tion methods for engineering. Structural and multidisciplinary optimization,
26(6):369–395, 2004.

[Mao03] Wenbo Mao. Modern cryptography: theory and practice. Prentice Hall Profes-
sional Technical Reference, 2003.

[Mar15] Stephen Marsland. Machine learning: an algorithmic perspective. CRC press,
2015.

[MCB84] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of gen-
eralized stochastic Petri nets for the performance evaluation of multiproces-
sor systems. ACM Trans. Comput. Syst., 2(2):93–122, 1984.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

[MOS] MOSEK. http://www.mosek.com/.

[Mou04] Abdel-Illah Mouaddib. Multi-objective decision-theoretic plan problem. In
IEEE International Conference on Robotics and Automation, volume 3, pages
2814–2819, 2004.

http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
http://www.mosek.com/

214 BIBLIOGRAPHY

[MSJ11] David R. Morrison, Jason J. Sauppe, and Sheldon H. Jacobson. A network
simplex algorithm for the equal flow problem on a generalized network. IN-
FORMS J. on Computing, 25(1):2–12, 2011.

[MSJ13] David R. Morrison, Jason J. Sauppe, and Sheldon H. Jacobson. An algo-
rithm to solve the proportional network flow problem. Optimization Letters,
8(3):801–809, 2013.

[NG05] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision pro-
cesses with uncertain transition matrices. Operations Research, 53(5):780–798,
2005.

[OPW13] Wlodzimierz Ogryczak, Patrice Perny, and Paul Weng. A compromise pro-
gramming approach to multiobjective Markov decision processes. Interna-
tional Journal of Information Technology and Decision Making, 12(5):1021–1054,
2013.

[Pap03] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of
Computer Science, pages 260–265. John Wiley and Sons Ltd., Chichester, UK,
2003.

[PIC] PICOS: A Python interface for conic optimization solvers. http://picos.
zib.de/.

[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for prob-
abilistic systems. In CONCUR, volume 1877 of LNCS, pages 334–349, 2000.

[PLSVS13] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and San-
jit A. Seshia. Polynomial-time verification of PCTL properties of MDPs with
convex uncertainties. In CAV, pages 527–542, 2013.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[PRI] PRISM model checker. http://www.prismmodelchecker.org/.

[PS04] Augusto Parma and Roberto Segala. Axiomatization of trace semantics for
stochastic nondeterministic processes. In QEST, pages 294–303, 2004.

[PSVS14] Alberto Puggelli, Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia.
Robust strategy synthesis for probabilistic systems applied to risk-limiting
renewable-energy pricing. In Proceedings of the 14th International Conference on
Embedded Software, page 13. ACM, 2014.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.
SIAM J. on Computing, 16(6):973–989, 1987.

[Pug14] Alberto Puggelli. Formal Techniques for the Verification and Optimal Control of
Probabilistic Systems in the Presence of Modeling Uncertainties. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2014.

[pul] PuLP. https://pythonhosted.org/PuLP/.

[Pul89] P. Simin Pulat. A decomposition algorithm to determine the maximum flow
in a generalized network. Computers & Operations Research, 16:161–172, 1989.

http://picos.zib.de/
http://picos.zib.de/
http://www.prismmodelchecker.org/
https://pythonhosted.org/PuLP/

BIBLIOGRAPHY 215

[Put05] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Number 594 in Wiley Series in Probability and Statistics. John
Wiley & Sons, Inc., 2005.

[PWGH13] Patrice Perny, Paul Weng, Judy Goldsmith, and Josiah P. Hanna. Approxima-
tion of Lorenz-optimal solutions in multiobjective Markov decision processes.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
pages 92–94, 2013.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-
current systems in cesar. In International Symposium on programming, pages
337–351. Springer, 1982.

[Rin09] Matthias Ringwald. Reducing Uncertainty in Wireless Sensor Networks - Network
Inspection and Collision-Free Medium Access. PhD thesis, ETH Zurich, Zurich,
Switzerland, March 2009.

[RRS15] Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries
in multi-dimensional Markov decision processes. In Computer Aided Verifica-
tion, pages 123–139. Springer, 2015.

[SBHH17] Dimitri Scheftelowitsch, Peter Buchholz, Vahid Hashemi, and Holger Her-
manns. Multi-objective approaches to Markov decision processes with un-
certain transition parameters. In ValueTools, 2017. to appear.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, 1998.

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol-
ume 24 of Algorithms and Combinatorics. Springer, 2003.

[SDV04] Ana Sokolova and Erik P De Vink. Probabilistic automata: system types,
parallel composition and comparison. In Validation of Stochastic Systems, pages
1–43. Springer, 2004.

[Seg95] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, MIT, 1995.

[Seg06] Roberto Segala. Probability and nondeterminism in operational models of
concurrency. In CONCUR, volume 4137 of LNCS, pages 64–78, 2006.

[Sha87] Ron Shamir. The efficiency of the simplex method: A survey. Management
Science, 33(3):301–334, 1987.

[SL73] Jay K. Satia and Roy E. Lave. Markovian decision processes with uncertain
transition probabilities. Operations Research, 21(3):728–740, 1973.

[SL94] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilis-
tic processes. In CONCUR, volume 836 of LNCS, pages 481–496, 1994.

[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilis-
tic processes. Nordic J. Computing, 2(2):250–273, 1995.

216 BIBLIOGRAPHY

[SM73] Larry J Stockmeyer and Albert R Meyer. Word problems requiring exponen-
tial time (preliminary report). In Proceedings of the fifth annual ACM symposium
on Theory of computing, pages 1–9. ACM, 1973.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[Sub09] K. Subramani. On the complexities of selected satisfiability and equivalence
queries over boolean formulas and inclusion queries over hulls. JAMDS,
2009, 2009.

[SVA06] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking Markov
chains in the presence of uncertainties. In TACAS, volume 3920 of LNCS,
pages 394–410. Springer, 2006.

[TH14] Andrea Turrini and Holger Hermanns. Cost preserving bisimulations for
probabilistic automata. Logical Methods in Computer Science, 4(11):1–58, 2014.

[TH15] Andrea Turrini and Holger Hermanns. Polynomial time decision algorithms
for probabilistic automata. Information and Computation, 244:134–171, 2015.

[Tiw08] Hans Raj Tiwary. On computing the shadows and slices of polytopes. arXiv
preprint arXiv:0804.4150, 2008.

[Tre02] Luca Trevisan. Lecture notes on computational complexity.
http://people.eecs.berkeley.edu/ luca/notes/complexitynotes02.pdf,
2002.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS, pages 327–338, 1985.

[Vaz04] Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.

[WE94] Chelsea C. White and Hany K. Eldeib. Markov decision processes with im-
precise transition probabilities. Operations Research, 42(4):739–749, 1994.

[Whi82] DJ White. Multi-objective infinite-horizon discounted Markov decision pro-
cesses. Journal of mathematical analysis and applications, 89(2):639–647, 1982.

[WJ06] Nicolás Wolovick and Sven Johr. A characterization of meaningful sched-
ulers for continuous-time Markov decision processes. In Formal Modeling and
Analysis of Timed Systems, volume 4202 of LNCS, pages 352–367, 2006.

[WK08] Di Wu and Xenofon D. Koutsoukos. Reachability analysis of uncertain sys-
tems using bounded-parameter Markov decision processes. Artif. Intell.,
172(8-9):945–954, 2008.

[WT98] K Wakuta and K Togawa. Solution procedures for multi-objective Markov
decision processes. Optimization, 43(1):29–46, 1998.

[WTM12] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Robust control of uncer-
tain Markov decision processes with temporal logic specifications. In CDC,
pages 3372–3379. IEEE, 2012.

BIBLIOGRAPHY 217

[Ye11] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial
for the Markov decision problem with a fixed discount rate. Mathematics of
Operations Research, 36(4):593–603, 2011.

[Yi94] Wang Yi. Algebraic reasoning for real-time probabilistic processes with uncer-
tain information. In FTRTFT, volume 863 of LNCS, pages 680–693. Springer,
1994.

[Zie95] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science & Busi-
ness Media, 1995.

	1 Introduction
	1.1 Modelling Real World Systems
	1.2 System Specifications
	1.3 Formal Verification and Controller Synthesis of Probabilistic Systems
	1.4 Compositional Minimization of Probabilistic Systems
	1.5 Applications, Case Studies and Tool Development
	1.6 Main Contributions
	1.7 Dissertation Outline
	1.8 Origins of the Chapters and Credits

	I Background
	2 Mathematical Background
	2.1 Mathematical Preliminaries
	2.2 Measure and Probability
	2.3 Convex Polyhedra
	2.4 Systems of Linear Inequalities
	2.5 The NP-Completeness Theory

	3 Basics of Mathematical Optimization
	3.1 Linear Programming
	3.1.1 Duality Theory
	3.1.2 Solution Methods for LPs

	3.2 Network Flows
	3.3 Robust Optimization
	3.3.1 Uncertain Linear Programming (ULPs)
	3.3.2 Adjustable Robust Counterpart
	3.3.3 Affinely Adjustable Robust Counterpart

	4 An Overview of Probabilistic Systems
	4.1 Markov Chains
	4.2 Markov Decision Processes
	4.3 Weighted Markov Decision Processes
	4.4 Probabilistic Automata
	4.4.1 Parallel Composition and Hiding
	4.4.2 Weak Transitions

	4.5 Interval Markov Decision Processes
	4.6 Concluding Remarks

	II Modelling and Performance Analysis of Probabilistic Systems
	5 Efficiency of Deciding Probabilistic Automata Weak Bisimulation
	5.1 Weak Probabilistic Bisimulation
	5.2 Computing the Weak Bisimilarity for Minimizing Automata
	5.2.1 Deciding Weak Bisimilarity
	5.2.2 Minimization and Parallel Composition

	5.3 Weak Transition Construction as a Linear Programming Problem
	5.3.1 Network Construction
	5.3.2 LP Problem Construction
	5.3.3 Complexity Analysis of Deciding Weak Bisimulation

	5.4 Efficiency of Solving the LP Problem
	5.4.1 Efficient Solution: Theory
	5.4.2 Efficient Solution: Exploiting Structure
	5.4.3 Efficient Solution: Unsuitable Approaches

	5.5 Implementation of Minimization
	5.5.1 Implementation Details
	5.5.2 Case Studies
	5.5.3 Compositional Minimization

	5.6 Concluding Remarks

	6 Compositional Minimization for Model Checking of Interval MDPs
	6.1 Probabilistic Computation Tree Logic (PCTL)
	6.2 Probabilistic Bisimulation for Model Checking IMDPs
	6.2.1 Complexity Analysis of Deciding () for IMDPs
	6.2.2 Computational Tractability: An Approximation Algorithm

	6.3 Compositional Reasoning for Interval Markov Decision Processes
	6.3.1 Action Agnostic Probabilistic Automata
	6.3.2 IMDPs vs. PAs
	6.3.3 Compositional Reasoning for IMDPs
	6.3.4 Interleaved approach

	6.4 Case Studies
	6.5 Concluding Remarks

	7 Compositional Minimization for Optimal Control of Interval MDPs
	7.1 Alternating Probabilistic Bisimulation Relations for IMDPs
	7.2 A PTIME Decision Algorithm for Bisimulation Minimization
	7.3 Compositional Reasoning
	7.4 Case Studies
	7.5 Concluding Remarks

	8 Multi-objective Robust Controller Synthesis for Interval MDPs
	8.1 Multi-objective Robust Controller Synthesis for IMDPs
	8.1.1 Multi-objective Queries
	8.1.2 Robust Controller Synthesis
	8.1.3 Multi-objective Robust Controller Synthesis: Other Queries
	8.1.4 Generation of randomized controllers

	8.2 Case Studies
	8.3 Concluding Remarks

	9 Bisimulation Minimization for Model Checking of UwMDPs
	9.1 Uncertain weighted Markov Decision Processes
	9.2 Bisimulation Minimization for UwMDPs
	9.2.1 Probabilistic Bisimulation
	9.2.2 Decision Algorithm

	9.3 Reward-Bounded Reachability Probability for UwMDPs
	9.4 Case Studies
	9.4.1 Autonomous Nondeterministic Tour Guides (ANTG)
	9.4.2 Randomized Consensus Protocol
	9.4.3 Randomized Dining Philosophers

	9.5 Concluding Remarks

	III Conclusion
	10 Conclusion
	10.1 Summary
	10.2 Future works

	Bibliography

