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“Prediction is very difficult,
especially if it’s about the future.”
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Abstract

This thesis is devoted to the nonparametric estimation of risk measures against the back-
ground of the determination of insurance premiums. We will discuss two approaches in this
context. In the first part we will assume the ratio between the collective size and the ob-
servation size to be asymptotically constant, whereas in the second part we will assume the
collective size to be constant and the observations size to tend to infinity.

The goal of this thesis is to determine strong rates and asymptotic distributions of the devi-
ation of the estimated premiums from the true ones. Furthermore we will discuss bootstrap
methods and their applicability to the premium estimation. Our particular attention will be
paid to prove consistency, as well as almost sure bootstrap consistency for the sequence of
estimated premiums. To this end, we will highlight several options how to choose suitable
estimators in the individual model, as well as the collective model of insurance mathemat-
ics. The performance of these estimators will then be assessed with the help of a numerical
simulation.

Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit der nichtparametrischen Schatzung von Risiko-
mafen vor dem Hintergrund der Bestimmung von Versicherungspramien. Hierbei werden
zwei Ansatze naher beleuchtet. Im ersten Teil wird angenommen, dass das Verhaltnis der
Beobachtungsgrofie zur Kollektivgrofle asymptotisch konstant ist, wahrend im zweiten Teil
der Arbeit die Kollektivgrofle als konstant angenommen wird und die Beobachtungsgrofie
wachst.

Das Ziel dieser Arbeit besteht darin starke Raten und asymptotische Verteilungen der Abwe-
ichungen der geschéatzten Pramie von der tatsichlichen herzuleiten. Des Weiteren beschéfti-
gen wir uns mit Bootstrap-Methoden und deren Anwendbarkeit auf die Pramienschatzung.
Ein besonderes Augenmerk liegt dabei darauf Konsistenz, sowie fast sichere Bootstrap-
Konsistenz fiir die Folge der geschatzten Pramien zu zeigen. Wir werden hierzu in den
beiden gangigen Modellen der Versicherungsmathematik, dem individuellen und dem kollek-
tiven Modell, Moglichkeiten zur Wahl nichtparametrischer Schétzer angeben und deren Per-
formanz anschliefend anhand numerischer Simulationen iiberpriifen.
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Introduction

The aim of this thesis is an investigation of several techniques to estimate premiums in
an insurance collective. Given a collective consisting of a certain number of independent,
homogeneous risks, the goal of an insurer is to determine a suitable premium to hedge the
risk of a financial loss. That is, on the one hand the insurance company wants to impose
a certain amount of money to its clients to be able to pay for future claims. On the other
hand the premium imposed on the clients should not be too high in order to keep the price
competitive. The basic idea in insurance mathematics is the so-called balancing of risks.
Roughly speaking, this means that the expected individual risk in an insurance collective
increases much slower than the number of clients in a collective. This thesis is therefore
devoted to a characterization of the asymptotics of the exact premiums in relation to the
estimated premiums if the number of clients in the insurance collective or the number of
collected historical observations tends to infinity. We will approach this question in the first
part of this thesis. The second part will then be devoted to a premium estimation based on
a constant collective size, whereas the number of observations tends to infinity.

In this context different questions have to be dealt with. One obvious question is how to
estimate the claim amount which will arise in the future. Based on formerly observed claims
the insurer should think about an appropriate estimation of future claim amounts. In this
context, the insurance company could be interested in the distribution of the deviation of the
estimated premium from the true premium. Here it is important to know how the error in the
estimation evolves in dependence on the underlying single claim distribution, the collective
size or the number of observations taken into account, for instance. Another question is the
choice of a suitable risk measure. Roughly speaking, the risk measure provides a tool to
“map” the riskiness of the insurance collective to a suitable premium, which will then be
imposed on the whole collective. However, the choice of the risk measure is a nontrivial task.
Finally, the choice of the insurance model of course has a huge impact.

In actuarial practice there are two popular models. The first one is the so-called individual
model of insurance mathematics and the second one is called the collective model of insurance
mathematics. The idea behind the individual model is as follows. Assume an insurer is faced
with an insurance collective consisting of n € N independent, homogeneous risks. We will
identify each of these risks with a real-valued nonnegative random variable. To this end, let
Xi, ..., X, be nonnegative independent and identically distributed (i.i.d.) random variables



on a common probability space (€2, F,P) with unknown distribution u. That is, each of
the X;’s corresponds to a claim amount being reported by the i-th client throughout the
insurance period. These single claim amounts are either equal to zero, if the client does not
report a claim at all, or strictly positive in case of a “true” claim. In this context, the total
claim amount which will arise within the next insurance period is given by the random sum

The distribution of S, is then given by the n-fold convolution of u, which we will denote by
w*™. Using this, an evaluation of an adequate risk measure R at p*” would provide a suitable
premium for the whole collective. Examples 1.2.1-1.2.6 in Chapter 1 will give an overview
over some popular risk measures. A “fair” premium for a single client in the collective would
then be given by R(*")/n. In this case the insurance company would equally distribute the
total premium onto each of the n clients, such that every client would have to pay the same
amount of money. In the following we will call this the individual premium. By so-called
balancing of risks in large collectives, we observe that R(u*")/n is often essentially smaller
than R(u).

Of course in real actuarial practice a rather large number of clients would not report a claim
at all within a certain insurance period. This is reflected by the fact that a rather large
number of the random variables X; would be 0, whereas the remaining “true” claims would
take strictly positive values. That is, we can think of the distribution p of a single claim as
a compound distribution in the following way. Denoting by p € (0,1) the probability of an
actually positive claim to arise, and by g a distribution possessing only mass on the positive
real axis, the single claim distribution has a representation as

poi= (1—=p)do + pp. (1)

We can think of f as a distribution of a claim conditional on its positiveness, that is [ -] :=
wl- N (0,00)]/u[(0,00)]. An advantage of the individual model lies in the fact that the
number of claims is equal to the collective size n. Given an estimator for the true single
claim distribution u, this makes the computability of the total claim distribution, which is
given by the n-fold convolution of the single claim distribution, easier to handle. However,
even in this case an exact computation of the convolution is more or less impossible.

The representation in (1) implies that the probability for a strictly positive claim to happen
is constant. In contrast to this assertion, the collective model assumes the number of claims
to be an integer-valued random variable, such that the whole collective is regarded as the
“producer” of claims rather than the individual client itself. More explicitly, we let (X;) be
a sequence of positive i.i.d. random variables with distribution x on a common probability
space (92, F,P). Each of the X;’s represents a strictly positive single claim and corresponds
to the so-called “true” single claims in the setting of the individual model. In this case the
single claim distribution p only possesses mass on the interval (0, 0o) and does not have point
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mass in 0. Assuming that the number of positive claims is independent of the actual claim
size, we let N be an integer-valued random variable on (€2, F,P) as well, being independent
of the sequence (X;). We identify with X7, ..., Xy the claim sizes being reported throughout
an insurance period. Here we stress the fact again, that both the claim sizes and the number
of claims are random. Then the total claim size is given by

N
SN = ZXZ .
i=1

The distribution of the total claim size is then given by the convolution of the single claim
distribution with respect to the distribution of the number of claims. We will call this a
random convolution. A rigorous definition of the random convolution will follow in Chapter
3. Having noted that the n-fold convolution of a measure p is usually very hard to compute,
the computation of the random convolution is almost impossible. However, for suitable
choices of risk measures, there are ways to compute or at least approximate the corresponding
premium in finite time.

In the literature several approaches about the estimation of risk measures have already been
discussed. Recent work concerning the estimation of asymptotic distributions of plug-in
estimators of certain law-invariant risk measures has been done by [9], [51] and [60], for
instance. Moreover, the functional delta-method in [10] provided a tool to directly derive
the asymptotic distribution of statistical functional, such as risk functionals, to the weak
convergence of the underlying empirical process. An refinement of this method can be found
in [38].

Another problem the insurer is faced with, is the aforementioned problem of an estimation
of the future claim size distribution based on historically collected data. Throughout this
thesis we will mainly discuss approaches motivated by the Glivenko-Cantelli Theorem and
the Central Limit Theorem. The Glivenko-Cantelli Theorem, for instance, proves the strong
consistency of the empirical measure with respect to the unknown distribution p. Thus,
in our setting the empirical measure could be used to estimate the underlying single claim
distribution p on the basis of historically observed single claims. Based on this estimation
one could then try to compute the convolution of the empirical measure, which is either
the n-fold convolution in the individual model, or the random convolution in the collective
model, to obtain an estimator for the total claim distribution. A suitable premium would
then be given by the risk measure evaluated at the estimator for the total claim distribution.
As mentioned before, the difficulty lies in the computability of the convolutions, which makes
this approach often quite unhandy.

Another possibility to estimate the total claim distribution is to use the asymptotic normality
of a suitably centered sum of random variables (always assuming that the second moments
of the underlying single claim distribution exist). This approach is motivated by the Central
Limit Theorem. The computation of this estimator simply boils down a computation of the
empirical mean and the empirical variance of the historical observations and is thus quite
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simple. The corresponding premium is then given by an evaluation of the risk measure at
the normal distribution with estimated parameters. A detailed discussion about the benefits
of both estimators will follow in Chapter 2.

To carry out our estimations, we will discuss two different approaches throughout this thesis.
The first part of this thesis is concerned with an estimation based on a varying collective
size n € N, but only taking into account the last u, € N observations. Throughout the
first part of this thesis we will therefore assume that the collective size n and the number of
observations u,, used in our estimations fulfill

Tim up/n = ¢, (2)

for some integer-valued constant ¢ € (0,00). This approach is motivated by the fact, that
in many actuarial applications insurance companies only use collected observations based
on the last few insurance periods. This setting was first considered by [39]. In actuarial
practice, the insurance company only takes into account data from the last insurance period
or data from the last three insurance periods. Consequently one would choose ¢ =1 or ¢ = 3,
respectively. This restriction of our estimation to observation sizes of the same “dimension”
as the collective sizes makes our theory nonstandard. There are numerous examples giving
a justification for this approach. One could, for instance, think of applications in the field
of car insurances. Here, fast variations of car models or security systems for example make
it important to use actual data for the estimation of future claim distributions. Again it
is important to stress the fact that this restriction provides a new approach in contrast to
the existing literature about constant collective sizes and increasing observation horizons,
as in [52] for instance. We will focus on estimations of the individual premium in both the
individual and the collective model. More explicitly, we are interested in the convergence
of the deviation of the estimated individual premium from the true one. Our interest will
lie on the determination of strong rates of the error in estimations and proving asymptotic
normality of the error distribution in dependence on the collective size.

The second part of this thesis will then be concerned with new results for premium calcu-
lations based on constant collective sizes and increasing observation numbers in the context
of the collective model. In the second part, we will therefore assume that the collective
size n € N is constant, whereas the number of observations u € N tends to infinity. We
will deal with this question in a semiparametric setting, which will be a generalization of
the results in [12]. That is, we will assume knowledge about the class of distributions the
distribution of the number of claims belongs to, such that the estimation of the distribution
of the number of claims is a parametric one. At the same time we will use the standard
nonparametric estimator to estimate the claim size distribution. Hence, the estimation of
the random convolution is a combination of a parametric and a nonparametric approach.

The rest of this thesis is organized as follows. We will first provide some background in
the field of risk measures. In Chapter 1 we will therefore give a rigorous definition of a
risk measure and state some popular examples of risk measures from actuarial practice. In
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Chapter 2 we will formulate the problem of the estimation of individual premiums in the
individual model in the mathematical context and introduce two important estimators for
the total claim size distribution. As we have mentioned before, we will approach this prob-
lem under the restriction of increasing collective sizes n and restricted observation sizes u,,,
such that condition (2) holds true. In Section 2.2 we will then present results on the strong
consistency for both the estimator based on the normal approximation and the convolution
of the empirical measure. Moreover we will prove asymptotic normality of the error in the
estimation for both estimators. The central tool which will be used to prove our assertions
will be a nonuniform Berry-Essén inequality by [46]. In Section 2.3 we will then assess the
performance of both estimators with the help of a numerical simulation. These simulations
will show that both estimators are subject to a negative bias with respect to the true indi-
vidual premium. The size of the bias is strongly affected by the heaviness of the tails of the
underlying distribution g of strictly positive single claims.

Motivated by the results of Chapter 2, we will try to perform a bias-correction of the in-
dividual premium estimators using bootstrap methods. The goal of this chapter will be
to establish a procedure to hopefully alleviate the bias in the former estimations. We will
first give a definition of the bootstrap in our present setting and will then introduce the
corresponding bootstrap estimators. In Section 2.4.2 we will then prove almost sure boot-
strap consistency for our bootstrap estimators. Again, the proofs will strongly rely on the
nonuniform Berry-Essén inequality by [46]. Subsequent to this Section we will carry out a
numerical simulation to point out the performance of the bootstrap estimators in contrast to
the original ones and discuss the benefits of this method. However, our investigations have
shown that the benefits of the bootstrap-based bias correction are rather small compared to
the increasing computation time and a higher mean squared error in the estimation.

Chapter 3 is devoted to the estimation of individual premiums against the background of the
collective model. We will first discuss this issue in the setting of the compound Poisson model
to serve a motivating example and then formulate our problem in a more general setting.
Again, we are interested in strong consistency and asymptotic normality of the individual
premium estimator. In Section 2.1 we will introduce our estimators. In Section 3.2 we will
then prove asymptotic normality and strong consistency of the individual premium estimator
in the compound Poisson model with only mild assumptions on the underlying distributions
and a wide class of risk measures. For the proof we will rely on a new Berry-Essén inequality
for non-randomly centered random sums by [20].

In Chapters 4 and 5 we will turn our focus to the estimation of premiums in the semipara-
metric setting for the case of constant collective sizes and increasing observation numbers.
In contrast to our considerations in the first part, we will assume the collective size n to
be constant and the observation size u to tend to infinity. We will consider the setting of
the compound Poisson model again. However, many results are not restricted to the Pois-
son case and turn out to be valid in more general settings. In Chapter 4 we will present
a summary of existing results about asymptotic normality and almost sure bootstrap con-



sistency for estimated premiums in the individual model. These results are already known
from [12]. Chapter 5 is then devoted to the derivation of the asymptotic distribution of
estimated premiums in the collective model. The latter is the asymptotic distribution of the
deviation of the total premium estimator from the true total premium when the observation
size u tends to infinity. The goal of this chapter is to prove asymptotic normality of the total
premium estimator in the compound Poisson model. The central tool which will be used
to approach this problem is a special functional delta-method in the form of [12]. We will
use this delta-method to derive the asymptotic distribution from a sequence of suitably cho-
sen plug-in estimators with respect to the risk measure R from the asymptotic distribution
of the underlying sequence of estimators. That is, we will introduce our estimators in the
semiparametric setting, serving as our sequence of initial estimators and will determine the
asymptotic distribution of this sequence with the help of the aforementioned delta-method.
We will then present an example pointing out the practical use of our results. Finally we
will give an outlook on the almost sure bootstrap consistency of the sequence of estimated
premiums in Section 5.3.

The main results of the first part of this thesis are already published in two articles, jointly
with Henryk Zéahle. The results of Sections 2.1-2.3 are based on [41]:

Alexandra Lauer and Henryk Zéhle (2015). Nonparametric estimation of risk measures of
collective risks. Statistics and Risk Modeling, 32(2), 89-102.

Sections 2.4-2.5 are based on [42]:

Alexandra Lauer and Henryk Zahle (2017). Bootstrap consistency and bias correction in the
nonparametric estimation of risk measures of collective risks. Insurance: Mathematics and
Economics, 74, 99-108.



Chapter 1

Risk measures and risk functionals

This chapter gives a brief introduction into the theory of risk measures. The question about
the determination of an adequate premium for a collective of individual risks is directly
connected to the investigation of risk measures. In the following we will therefore introduce
some popular risk measures which will be used throughout this thesis and summarize some
basic properties.

1.1 Definitions

Let (Q,F,P) be an atomless probability space. Let X C LY be a vector space containing
the constants, where L° = LY(Q2, F,P) denotes the usual space of all finitely-valued random
variables on (€2, F,P) modulo the equivalence of almost sure identity. An intrinsic example
for X is the space L = LP(§2, F,P) (consisting of all p-fold integrable random variables from
L) for p > 1. We will say that a map p: X — R is

(1
(2
(
(

) monotone if p(X;) < p(X3) for all X, X, € X with X; < X,.
)
3) subadditive if p(X; + X2) < p(X7) + p(X32) for all X, Xy € X.
)

cash additive if p(X +m) = p(X) +m for all X € X and m € R.

4) positively homogeneous if p(AX) = Ap(X) for all X € X and A > 0.

In the sense of [27], we will call p a monetary risk measure if conditions (1) and (2) hold, and
based on the ideas of [5] we will say that p is a coherent risk measure if conditions (1)—(4) are
fulfilled. Furthermore we will call p a law-invariant risk measure, if p(X) = p(Y') whenever
X and Y have the same law. We will restrict ourselves to law-invariant maps p : X — R.
So we may and do associate with p a statistical functional R, : M(X) — R via

Ro(p) = p(Xy.),  pe M(X), (1.1)

7



where M(X) denotes the set of the distributions of the elements of X', and X, € & has
distribution pu.

1.2 Examples of popular risk measures

The first example introduces the risk measure based on the expected value of the future
claims. The premium connected to this risk measure is also called the net premium.

Example 1.2.1 The net premium is the premium derived from the risk measure p : L* — R,

which is defined by
p(X) = E[X].

It 1s easily seen to be a law-invariant and coherent risk measure.

Example 1.2.2 The premium based on the standard deviation principle is the premium,
derived from the risk measure p : L*> — R, which is defined by

p(X) :=E[X] + cy/Var[X],

for any ¢ > 0. One can easily check, that p is cash additive, subadditive and positively
homogeneous but lacks monotonicity. In this context, the constant ¢ > 0 is often referred to
as the safety loading.

The next example introduces one of the most popular risk measures in practice, which is
the Value at Risk at level a € (0,1). It is the lower a-quantile of the distribution function
associated with the claims. In the practical context, the Value at Risk is the amount of
money the insurer has to impose as a premium, which will guarantee for being spared a
financial loss with probability a. More explicitly, the probability for the future claims to
exceed the premium would be at most 1 — a.

Example 1.2.3 The Value at Risk at level a € (0,1) is the map V@R, : L° — R defined
by
V@R, (X) := Fy (o) := inf{zx e R: Fx(z) > a}.

It is clearly law-invariant and it was shown in [5, Section 3] that it satisfies monotonicity,
cash additivity, and positive homogeneity. However in general, the Value at Risk is not
subadditive.

The next example introduces the so-called Average Value at Risk at level a € (0,1). It is
often also referred to as the Tail-conditional expectation or the Expected Shortfall. In contrast
to the Value at Risk of Example 1.2.3, the Average Value at Risk also takes into account
the expected claim amount given the exceedence of the Value at Risk.

8



Example 1.2.4 The Average Value at Risk at level a € (0, 1) is the map AVQR,, : L' - R

defined by
1

—

1
AVOR,(X) = / V@R, (X) ds.

Note, that if the distribution function Fx of X is continuous at VQR,(X), then
AV@R,(X) = E[X | X > V@R, (X)].

It is easily seen to be law-invariant and it was shown in [1] that AVQR,, is a coherent
risk-measure for every a € (0,1).

Example 1.2.5 The one-sided p-th moment-based risk measure forp € [1,00) and a € [0, 1]
is the map OsM,,, : L? — R defined by

OsM,(X) := E[X] + aE[((X — E[X])")"]"/*.

It is clearly law-invariant. It was shown in Lemma 4.1 in [26] that the one-sided p-th
moment-based risk measure provides a coherent risk measure.

Example 1.2.6 The expectiles-based risk measure at level o € [1/2,1) is the map Ept,, :
L? = R defined by

Ept,(X) = argmin,,cg {o]|(X —m) "3 + (1 - a)ll(m — X)*|3}.

The expectiles-based risk measure is easily seen to be law-invariant. It has been shown in [8]
that the expectiles-based risk measure provides a coherent risk measure.

1.3 Distortion risk measures and the Kusuoka repre-
sentation

In this section we will recall the definition of a distortion risk measure. The following
discussion is basically based on the ideas presented in [38].

Let g : [0,1] — [0,1] be a distortion function, that is a nondecreasing cadlag function with
g(0) =0 and ¢g(1) = 1. The distortion risk measure associated with ¢ is then defined by

pX) = = [ aFx@)des [ (- (P da (12)

o0

for every real-valued random variable X (on some given atomless probability space) satisfying
J.-(1 = g(Fix(2))dx < co, where Fx and Fx| denote the distribution functions of X and
| X|, respectively. The set X, C LY of all such random variables forms a linear subspace of
L*; this follows from [19, Proposition 9.5] and [27, Proposition 4.75]. It is known that p, is

9



a law-invariant coherent risk measure if and only if the distortion function ¢ is convex; see,
for instance, [63].

If specifically g(t) = ﬁ max{1 — «, 0} for some o € (0,1), then we have X = L'(Q, F,P)
and p, is nothing but the Average Value at Risk at level a as introduced in Example 1.2.4.
In [38] it was shown that any law-invariant coherent risk measure p admits the following
so-called Kusuoka representation

p(X) = sup py(X), (1.3)
9€g

where G is a class of distortion functions and p, denotes the distortion risk measure (1.2) for
g € G. The one-sided p-th moment-based risk measure of Example 1.2.5 and the expectiles-
based risk measure of Example 1.2.6 are examples of risk measures of the form (1.3) but not
of the form (1.2). Indeed, Lemma A.5 in [39] has shown that the one-sided p-th moment-
based risk measure does not provide a distortion risk measure. It follows from Lemma 8
in [17] that the expectiles-based risk measure is also not a distortion risk measure unless
a = 1/2. This points out that the distortion representation is not a necessary condition for
a risk measure to be coherent.

1.4 Risk functionals and regularity properties

We will first focus on regularity properties based on the (L!)-Wasserstein metric dyass. We
will state assumptions under which certain risk measures are continuous or even (-Holder
continuous for some S > 0 w.r.t. dwas. In the second part of this section we will then
derive corresponding properties w.r.t. the nonuniform Kolmogorov distance dg,, which will
be introduced below.

Let M; be the set of all probability measures on (R, B(R)), and denote by F), the distribution
function of u € M. For every A > 0, let the function ¢, : R — [1,00) be defined by
oa(z) = (1 + |z|}), x € R. For uy, o € My, we say that

Ao (1 r2) 3= SUD [ Fuy (7) = Fi(2)] 92 (7) (1.4)

S

is the nonuniform Kolmogorov distance of j1; and ps w.r.t. the weight function ¢,. It is easily
seen that dy, provides a metric on the set M3 of all u € M; satisfying dy, (1, 8p) < 0.

The (L')-Wasserstein distance on M1 is defined by

o0

dvnas (jn, ) = / |Fy(2) — Foo(w)| da, (15)

— 00

where F),, and F),, denote the distribution functions of ;1; and po, respectively. Lemma
8.1 in [13] has shown that dwu.s indeed defines a metric on M7i. Moreover, it was shown
in Proposition 4 in [29] that the metric dyas induces the L'-weak topology. The latter is

10



defined to be the coarsest topology on M(L') w.r.t. which each of the maps p — [ fdp,
f € Ct, is continuous, where C} is the set of all continuous functions f : R — R for which
there exists a constant C' > 0 such that |f(z)| < Clz| for all x € R.

The following result is already known from Theorem 2.8 and Remark 2.9 in [37].

Theorem 1.4.1 For any law-invariant coherent risk measure p on L', the associated risk
functional R, : M(Ll) — R s continuous w.r.t. the Wasserstein metric dwass-

The following theorem will state a sufficient condition under which a statistical functional
R,, associated with a convex distortion function g is not only continuous, but Lipschitz
continuous w.r.t. the Wasserstein metric dyyass.

Theorem 1.4.2 Let p, : X, — R be the distortion risk measure associated with a convex
distortion function g. Assume that there exists a constant L > 0 such that

1—g(t) < L(1—t) foralltel01]. (1.6)

Then the statistical functional R,, associated with py is Lipschitz-continuous w.r.t. dyass.
That is, for every pi, o € M} we have

|Rpg (/“Ll) - R,Ug(IUQ)l S LdWaSS(,ula M?) (17)

Proof Condition (1.6) and the convexity of the distortion function g together imply |g(t) —
g(t)| < L|t —t'| for all t,¢' € [0,1]. Hence, using (1.2), we observe that

R ) = Ry, 1) < [ la(Foa(e) = g(Fa(o))| o
<L [ 1B - Fulo)de
— Ldwam (i1, ). (18)
This leads to the assertion. O

Choosing ¢(t) := 14,1)(t) for any fixed a € (0,1), the corresponding distortion risk measure
is nothing but the Value at Risk at level o € (0, 1), as defined in Example 1.2.3. Tt is easily
seen, that in this case g does not fulfill condition (1.6) in Theorem 1.4.2. However, the
Value at Risk at level a € (0, 1) is weakly continuous at every a such that the distribution
function of the underlying random variable X takes the value o only once, see for instance
[62], Lemma 21.2.

The following Theorem is basically already known from Lemma 2.14 in [39].

Theorem 1.4.3 Let p > 1. Let p: L? — R be a law-invariant coherent risk measure and
define a function g, : [0,1] — [0,1] by g,(t) = 1 — p(Bi—t), where Bi_; refers to any

11



Bernoulli random variable with expectation 1 —t. Assume that there exist constants L, 3 > 0
such that
1—g,(t) <L(L—t)  forallte[0,1]. (1.9)

Let X\ > 0, such that \3 > 1. Then the statistical functional R, associated with p is B-Holder
continuous w.r.t. dg,. That is, for every pi, s € M7 there exists a constant C > 0 such
that

Ro(1) = Rpl2)| < Cdy, (111, 12)” (1.10)

Proof Since p is defined on L?, we can find a set G, of continuous convex distortion functions
such that g, = inf,eg, g and

p(X) = sup py(X) forall X € LP. (1.11)

9€G,

This follows from Proposition 5.1 and Remark 3.2 in [9] (adapted to our definition of mono-
tonicity and cash additivity); see also [39, 38]. Below we will show that (1.9) implies

lg(t) —g(t)| < Ljt —¢'|° forallt,# €[0,1] and g € G,,. (1.12)

With the help of (1.11) and (1.12) we then obtain

Rp(h1) = Rp(p2)] = | sup Ry, (p1) — sup R, (2)

9€5, 9€G,

< sup Ry, (11) — Ry, (p2)]
9€G,

< sup / 9y (2)) — g(Fo(2)) da
gegp —00

< | LR - Fa@lds

< Cddu(ﬂh/@)ﬁ

for the constant C' := L [ 1/¢x(x)’dx (which is finite due to the assumption A\G > 1).
That is, the assertion of part (ii) holds true, too.

It remains to show (1.12), for which we will adapt the arguments of Section 4.3 in [39]. Let
0 <t <t < 1. Since the underlying probability space was assumed to be atomless, we
may pick a measurable decomposition A; U Ay U A3 of the probability domain such that
P[A;] =1—1t, P[Ay] =t —t and P[A3] = t, where P refers to the corresponding probability
measure. Define random variables By_y := 14,, Bi_; := 14,04, and By_; := 14,, and note
that they are distributed according to the Bernoulli distribution with parameters 1 —¢', 1 —t¢
and t’' —t, respectively. Moreover we clearly have By_; = Bi_y + By_;. By the subadditivity
of p, we can conclude p(Bi_t) < p(Bi—v) + p(By_), and so

g(t/) —gt) = 1- pg<Bl—t') - (1- pg<Blft))
< py(Br—t)

12



A

=
&
:

B,
u€e(0,1] uﬂ
1—g,(1—
< sup gp(ﬁ U’) (t/ . t)ﬁ
u€(0,1] (Y

1 - gP(U) /
< sup —2L(t —t)?
v€[0,1) (1 - U)B

for every g € G,, where the second “<” is ensured by (1.11). By (1.9) we observe that

sup < 00.
veloy (1—0)?
Thus, since every g € G, is also continuous at 1, condition (1.9) indeed implies (1.12). O

If p is the one-sided p-th moment based risk measure for some p € [1,00) and a € [0, 1],
as introduced in Example 1.2.5, then condition (1.9) implies that p is S-Holder continuous
w.r.t. dy, for f=1/p and every A > p.

Theorem 1.4.4 below is about the special case when p refers to a distortion risk measure. It
is worth mentioning that if p is a distortion risk measure with distortion function g, then
g, = g and condition (1.9) boils down to the assumption on the S-Hélder continuity of the
distortion function g as in Theorem 1.4.4.

Theorem 1.4.4 Let p, : X; — R be the distortion risk measure associated with a distortion
function g. Moreover, assume that g is f-Hoélder continuous for some 5 > 0.

Let X > 0, such that A\ > 1. Then the statistical functional R,, associated with p, is [3-
Hélder continuous w.r.t. dg,. That is, for every pi, pa € M7 there exists a constant C' > 0
such that

Ry (1) = Ry, (12)] < O (a1, 12)" (1.13)

Proof The p-Holder continuity of the distortion function g implies that there exists some
constant L > 0, such that |g(t) — g(#')| < L|t — '|° for all t,#' € [0,1]. Hence, using (1.2),
we observe that

R (1) = R ()] < [ Ig(Fy (@) = g(Frao))|
<L [ 1B - Bl do
< Cdy, (1, p12)°, (1.14)

with C' := L ffooo 1/éx(z)? dz. In view of the assumption A3 > 1 it follows that the latter
integral is finite. a
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For the Average Value at Risk AVQR,, at level a of Example 1.2.4 the assumption of Theorem
1.4.4 on the p-Holder continuity of the distortion function g holds for 5 = 1. That is, for
AV@R,, the assertion of Theorem 1.4.4 hold true for every A > 1.
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Part 1

Estimation under a constant ratio of
sampling size and collective size
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Chapter 2

Nonparametric estimation of risk
measures in the individual model

This chapter is devoted to the derivation of premiums with increasing collective sizes. More
explicitly, we focus on the rate of convergence of the error in estimations of risk measures in
dependence on the collective size. In the setting regarded in this chapter the collective size
will also coincide with the number of observations being used in the estimation, or will at
least be proportional to the number of observations. A central task will be the estimation
of the distribution of the total claim size, which will then be plugged into a certain risk
measure to provide an estimator for the total premium. We will deal with this topic in the
individual model of insurance mathematics.

In the setting throughout this chapter we will always consider a homogeneous insurance col-
lective, consisting of n € N clients. What is meant by a “homogeneous” insurance collective
will become apparent in the next section. Throughout the terms of the insurance periods
the insurance company is assumed to collect historical data based on the formerly observed
claims which have been reported. On one hand, much is known about the statistical esti-
mation of the underlying single claim distribution if the number of observations tends to
infinity. However, in practice it might not be sensible to process all the data, which has
been collected over a very long period of time. In the following we will therefore develop an
approach for statistical estimations and numerical approximations of risk measures based on
a certain number wu,, of historically observed claims in a collective of n clients. Here (u,) is a
sequence of positive integers for which u, /n converges to some integer ¢ € (0,00). Roughly
speaking, the number of observations should be of the “same dimension” as the number of
clients. This makes the presented theory nonstandard.

A justification for this approach can be found in the field of car insurances for example. An
insurer who has collected data during the last few decades might however not use all this
information to estimate future claim sizes. Reasons for this might be technical advances
in vehicle safety systems, such as security belts, airbags etc. or because car values as such
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have increased throughout this time. The insurer might therefore not want to include “too
old* data in his estimations for future claim developments. In practice it is therefore often
sensible to just process data from the last one to three years. This is why the presented
theory is of great interest.

First approaches to this theory have been made by [39] for the case of the individual model.
They used the normal approximation with estimated parameters to estimate the distribution
of the total claim size and presented numerical simulations comparing the normal approxi-
mation to the convolution of the empirical measure. In Section 2.1 we will elaborate similar
results for the normal approximation and the convolution of the empirical measure and
present numerical results on our own. The proof of our main theorems, which derive strong
rates of convergence for the individual premium, strongly relies on a Berry-Esséen inequality
w.r.t. the nonuniform Kolmogorov distance dy,, which was introduced in (1.4). The proof
of this inequality can be found in [50]. However in Appendix C we present an alternative
proof, which is of an interest of its own.

2.1 Estimators for the individual premium in the indi-
vidual model

In this section we deal with the individual model of actuarial theory. In this context let (X;)
be a sequence of i.i.d. random variables with distribution u. For every n € N let

S, = z:: X;.

In this case the distribution of .S,, is given by the n-fold convolution x** of x. In our context
S, can be seen as the total claim in a homogeneous insurance collective consisting of n
individual risks, such that p*" refers to the distribution of the total claim size. The premium
w.r.t. a suitable law-invariant risk measure p in the sense of Chapter 1 imposed by the
insurance company is then given by R,(1*"). A suitable individual premium, that is the
premium every single client has to pay, is then given by

R, = %Rp(u*”). (2.1)

In this case the total premium gets equally distributed onto every client in the collective.
Here it is important to note that 2R, (4*") is in most cases essentially smaller than R, (1)

In the following we want to highlight two options to estimate future claim distributions on the
basis of historically observed data. To this end, let Yi,...,Y, be a sequence of historically
observed claims based on a collective consisting of n clients. In real applications the collective
size may of course vary over several insurance periods. In the mathematical context however,
this does not impose a restriction to our theory. To this end, suppose that Y;,... Y, are
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i.i.d. random variables on a common probability space (2, F,P) with distribution px. In
this context let (u,) be any sequence of positive integers for which u, /n converges to some
constant ¢ € (0,00). Motivated by the Central Limit Theorem for instance, one could use
the asymptotic normality of the total claim size .S,, and use the normal distribution with
estimated parameters Nz, 52 to estimate the total claim distribution p*". In this case the
corresponding plug-in estimator

~ 1
NAR, = ERp(/\/mumg%n) (2.2)
provides a reasonable estimator for the individual premium R,, = %Rp(u*”), where m,, and
/S\zn refer to the sample mean and the sample variance of Y;,...,Y, , respectively, assuming
that Yi,...,Y,, have finite second moments. This approach has already been discussed in

[39]. In this article it was shown that for many law-invariant risk measures p we have

n' (NAﬁn — Rn> 2500, n — oo (2.3)
for every r < 1/2, and
law{n1/2 (NAﬁn — Rn>} 5 No. 2, n — oo (2.4)

with s? := Var[X;]. From (2.4) we can also see that the convergence in (2.3) can not hold
for r > 1/2. Again, this approach is nonstandard, because the parameters are estimated on
the basis of a data set of the same “dimension” as the collective size. The assumption that
u, increases to infinity at the same speed as n, reflects the idea that in practical applications
the parameters are typically estimated on the basis of data from the last year or the last few
years. Moreover it was shown in [39] that for the exact mean m and the exact variance s?
of u, and for many law-invariant coherent risk measures p,

sup Ry (Num,ns2) = Rp(1™)] < 00 (2.5)

neN
Both (2.3)-(2.5) and the simulation study in [39] show that the overwhelming part of the
error in the estimated normal approximation of the risk functional is due to the estimation of
the unknown parameters rather than to the numerical approximation itself. Whereas in the
case of known parameters the relative error converges to zero at rate (nearly) 1, in the case
of estimated parameters the relative error converges to zero only at rate (nearly) 1/2. So it
is very important to note that statistical aspects may not be neglected when investigating
approximations of premiums for aggregate risks.

An advantage of the normal approximation with estimated parameters is the fact that the
corresponding premium is very easy to compute. Indeed, whenever p refers to a law-invariant,
cash-additive and positively homogeneous risk measure, the corresponding total premium has
the following representation:

A~

1 ~
NARn = %Suan(N&l) —|—mun (26)
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As the normal distribution is a symmetric distribution and in practical applications claim
size distributions are often skewed to the right (see also Figure 2.1), this approach might only
yield a moderate applicability to a large set of actuarial tasks. Against this background it
might be more sensible to choose an estimator, which takes into account the natural skewness
of the claim size distributions. Motivated by the Glivenko-Cantelli Theorem for example,

one could choose the empirical measure fi,, based on Y,... Y, , which is given by
TR o (2.7)
Py, 2= Uy = Yi :

to estimate the single claim distribution . This is the standard choice for an estimator of
the unknown distribution p in the nonparametric setting. Following this line of reasoning

A= ()™ (28)

provides a reasonable estimator for the total claim size distribution p*”. Thus, we can use
the corresponding plug-in estimator

- 1 Sk
R = Ry () (2.9)

Un
as an approximation for the true premium R,,. In the following we will refer to CEﬁn as the
empirical plug-in estimator.

In general the computation of the n-fold convolution ;" of ji,, is more or less impossible.
However, in real applications the true p has support in ANg := {0, h, 2h, ...} for some fixed
h > 0, where h represents the smallest monetary unit. We stress the fact that continuous
distributions are in fact approximations for the equidistant discrete true single claim distri-
bution, and not vice versa. So the empirical probability measure fi,, is concentrated on an
equidistant grid ANy, too. In this case the estimated total claim distribution ;" can be
computed with the help of the recursive scheme

fa ({0} = i, [{O})" (2.10)

S L N~y iy o
Hay [{51}] I ;(( + Dl = J) b, [{ R} B [{(G — ORY] for j €N, (2.11)

provided fi,,[{0}] > 0. In the literature this scheme is often referred to as the Panjer
recursion, see [49]. To observe that the upper scheme indeed coincides with the Panjer
recursion for the convolution w.r.t. the binomial distribution with parameters n and p,
where p is the probability of a strictly positive claim, see Appendix A.1. Note that ji,,
is the empirical probability measure and therefore has bounded support. Consequently, in
view of (2.10)—(2.11), the estimator R,(jz,") can typically be computed in finite time, even
for tail-dependent functionals R, as, for instance, the one associated with the Average Value
at Risk of Example 1.2.4.
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Section 2.2 will show that for a large class of risk functionals p, any distribution p with a
finite A-moment for some A > 2 and any positive sequence of integers (u,,) for which wu,/n
converges to some constant ¢ € (0,00), we obtain similar results as in (2.3)—(2.4) for the
convolution of the empirical measure i;". More precisely, Theorem 2.2.4 will show that

' (CEﬁn _ Rn> B0 o oo (2.12)
for every r < 1/2, and
law{n1/2 (CEﬁn - Rn)} — No. 2, n— 0o. (2.13)

The results of Theorems 2.2.2 and 2.2.4 will yield even more, namely

NAﬁn — R, = (M, —m) + OP_a.s.(n_l/z), (2.14)
CE,]/én - Rn == (mun - m) + OIP—a.s.(nil/z)? (215>

where 0p_, s (n"1/%) refers to any sequence of random variables (£,) on (€, F,P) for which
V&, converges P-a.s. to zero. What strikes the most in formulae (2.14)—(2.15) is the fact
that the asymptotics of both estimators are exactly the same and are independent of the
concrete choice of the risk measure p. Both asymptotics are purely driven by the convergence
of the sample mean to the true mean. With the help of (2.4) and (2.13), we can now derive
asymptotic confidence intervals at level (1 — «) for the individual premium:

NAS Sun o1 @\ NAD Sup o1 (O
"R = a0l (1-3) MR - 29015

and

CEp /S\un —1 o CEpH /S\un —1 «Q
= Al (1-5) R 2 l(3))
[ R N 2 R Vo Pt\2

where @ ; denotes the distribution function of No;.

As another consequence of Theorem 2.2.4 we observe that the true individual premium always
has an asymptotic representation which is similar to the one of MR, in (2.6), namely
R, (N
R, =m + p(—o’l)s +o(n"1/?). (2.16)
vn
The representation in (2.16) has an astonishing meaning. No matter what the risk measure p
looks like, the individual premium w.r.t. p asymptotically coincides with the premium derived
from the standard deviation principle of Example 1.2.2 with safety loading \/LERP(./\/'OJ).
Likewise we can obtain similar representations for the corresponding estimators:

RpNoa) -

NAﬁn = M, + TSU”, (2.17)
. R
ER, = My, + Maﬂ + 0pas. (n7V?). (2.18)

Vn
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Formulae (2.17)—(2.18) can be interpreted as a justification for the use of the standard
deviation principle, which is widely used in insurance practice. The representations do not
only justify the use of the standard deviation principle, but also make a suggestion on how
to sensibly choose the safety loading. The safety loading as such depends on the concrete
choice of the risk measure evaluated at the standard normal distribution and the square root
of the collective size. The division by 1/n in the safety loading moreover reflects the so-called
balancing of risks in large collectives.

In the following Section we will formulate assumptions under which the above results can be
achieved and state our main theorems.

2.2 Strong rates and asymptotic normality for the indi-
vidual premium estimators in the individual model

Let M, again be the set of all probability measures on (R, B(R)), and denote by F), the
distribution function of u € M;. For every A > 0, let the function ¢, : R — [1,00) be
defined by ¢(z) := (1 + |z|*), z € R. Recall that the nonuniform Kolmogorov distance
w.r.t. the weight function ¢, was introduced in (1.4).

Assumption 2.2.1 Let p : X — R be a law-invariant map, and R, be the corresponding
statistical functional introduced in (1.1). Let (u,) be a sequence in N, and assume that the
following assertions hold for some A\ > 2:

(a) p€ M(L"), that is, E[|Y1]}] < oo.
(b) u,/n converges to some constant ¢ € (0,00).
(c) p is cash additive and positively homogeneous, and M3} C M(X).

(d) The restriction of R, to M2 is (dg,,| - |)-continuous at Ny .

Note that part (d) of Assumption 2.2.1 does not present a strong restriction. The results of
Sections 1.3 and 1.4 have shown that a large variety of risk measures satisfies the imposed
condition. For instance, the Value at Risk of Example 1.2.3, as well as the Average Value at
Risk of Example 1.2.4 and the one-sided p-th moments based risk measure of Example 1.2.5
are amongst the most popular examples satisfying the condition in part (d).

We are now in a position to state our main theorems. Assertions (iv)—(v) in Theorem
2.2.2 describe the asymptotic behavior of the estimator MR, = LR, (N, nzz ) for the

individual premium 1R,(x*"). Note that Ry(Num,, naz, ) is always (F, B(R))-measurable
due to the representation in (2.6).
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Theorem 2.2.2 (Estimated normal approximation) Suppose that Assumption 2.2.1
holds with A > 2. Then the following assertions hold:

(2) %Rp(Nnmun ns2 ) - _R (Nnm, ns2> = (fflun — m) + OIP’-a_s_(nil/Q).
(ZZ) %RP(Nnm, n52> - %Rp(,u*n) = 0(?1_1/2).
(ii1) 1Ry (N, ns2 ) — LRp(1") = (i, — 1) + 0pras. (n7V/2).

(i) 1" (2R (Nusi, ns2. ) — 2 Rp(u*™)) — 0 P-a.s. for every r < 1/2.

(0) Po{\/tn (FRy(Noi, ms2,) = Rp (™)} " = No 2.

The following corollary is a direct consequence of Theorem 2.2.2. It is devoted to the strong
rates and asymptotic normality of the estimator NAR,,.

Corollary 2.2.3 Suppose that the assumptions in 2.2.1 are fulfilled for some A\ > 2. Then
parts () and (v) of Theorem 2.2.2 show that the convergences in (2.8) and (2.4) hold true.

The following result provides the analogue of Theorem 2.2.2 for the empirical plug-in esti-
mator “FR,, = LR, (7i;") for the individual premium R, = LR, (u*"). Assertions (iii)—(iv)
in Theorem 2.2.4 describe the asymptotic behavior of the estimator 2R, (f:").

Theorem 2.2.4 (Empirical plug-in estimator) Suppose that Assumption 2.2.1 holds
with X > 2, and assume that R,(fi;") is (F, B(R))-measurable for every n € N. Then the
following assertions hold:

(Z) %RP(Nnﬁzun,n%n) - %Rp(ﬁss) - O]P’-a.s.(n_l/z).

(iti) n"(ER,([1s") — 2R, (w™)) — 0 P-a.s. for every r < 1/2.

(i) Bo{\/in GR(HE) = 5 Rp (™))} = N, 2.

The below corollary is a direct consequence of Theorem 2.2.4. It is devoted to the strong
rates and asymptotic normality of the empirical plug-in estimator “ER.,.

Corollary 2.2.5 Suppose that Assumption 2.2.1 is fulfilled for some X > 2, and assume
that R,(pi,") is (F, B(R))-measurable for every n € N. Then parts (iii) and (iv) of Theorem

’LL

2.2.4 show that the convergences in (2.12) and (2.13) hold true.
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Before we present the proofs of the upper theorems, we first take our time to discuss some
useful aspects related to these results. As a direct consequence of Theorems 2.2.2 and 2.2.4
we obtain the following representations for the estimated individual premiums:

1 . 1 .
ERP<N”7%“W”§% ) - mun +%Sun7€p(-/\/'0,l>7 (219)

1
—R ) = iy 4 ——
o (1) My, + T
Equation (2.19) is a simple consequence of part (c¢) of Assumption 2.2.1, and (2.20) follows

from (2.19) and part (i) of Theorem 2.2.4. Furthermore it is important to note that the
measurability assumption in Theorem 2.2.4 on R, (1z,") is not very restrictive. This is easily

Sun Rp(No1) + 0poas. (n73). (2.20)

n

seen if the role of the risk measure p is played by the Value at Risk of Example 1.2.3 for
example, or refers to some distortion risk measure in the sense of Section 1.3. The following
remark, which we will also prove, will now guarantee measurability of the estimated premium
based on the convolution of the empirical measure for a wider class of risk functionals.

Remark 2.2.6 Let X = LP for somep € [1,00). Then for every law-invariant coherent risk
measure p : LP — R the estimator R,(i.") is (F, B(R))-measurable for every n € N.
Proof Let p: L — R be a law-invariant coherent risk measure. First, Theorem 2.8 in
[37] ensures that the corresponding risk functional R, : M(LP) — R is continuous for the
p-weak topology O,.,. The latter is defined to be the coarsest topology on M(LP) w.r.t.
which each of the maps u — [ fdp, f € C¥, is continuous, where C? is the set of all continu-
ous functions f : R — R for which there exists a constant C' > 0 such that | f(z)| < C(1+|z[?)
for all x € R. According to Corollary A.45 in [27] the topological space (M(LP), O,) is
Polish. Second, the topology O,.,, is generated by the LP-Wasserstein metric dwass, which is
defined by

1/
v ) = ([ 1)~ B P an)

for every u,v € M(LP). Here we used the notation F~!(z) := inf{y € R: F(y) > x}. The
mapping M(LP) — M(LP), jp = ", is (dwass, , @wass, )-continuous; see Lemma 8.6 in [13].
Third, the mapping w — [y, (w, ) is (F,0(O,w)) -measurable. Indeed, it is easily seen that
the Borel o-algebra 0(0,.) on M(LP) is generated by the maps p— [ fdu, f € CP. So, for
(F,0(Op.w))-measurability of the mapping Q@ — M(LP), w > [y, (w, -), it suffices to show

-1
</f(x) T (. ,dx)) (A)e F forall A€ B(R) and f € CP. (2.21)
Since iy, (w, -) is a probability kernel from (2, F) to (R, B(R)), the mapping

o [ £ i 0,0
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is (F, B(R))-measurable for every f € C}; sce e.g. Lemma 1.41 in [35]. This gives (2.21).
Altogether, we have shown that the mapping w — R,(fi;"(w,-)) is (F, B(R))-measurable.
O

The proofs of Theorems 2.2.2 and 2.2.4 avail the following nonuniform Berry—Esséen in-
equality (2.22). The inequality provides an upper bound for the distance of the distribution
of a suitably centered random sum to the standard normal distribution w.r.t. nonuniform
Kolmogorov distance dy, .

Theorem 2.2.7 Let (X;) be a sequence of i.i.d. random variables on some probability space
(9, F,P) such that Var[X;] > 0 and E[|X;|*] < oo for some A > 2. For everyn € N, let

4 o T - B
nVar|[X;]

Then there exists a universal constant Cy € (0,00) such that
d, (Pz,,No1) < C\ f(Px,)n™"  foralln €N (2.22)
with v := min{1, A — 2}/2, where

E[| X1 — E[X4]]Y]

f(Px,) = Var[X;]*/2

(2.23)

By “universal constant” we mean that the constant is independent of Py, . Inequality (2.22)
has been proven by Nagaev [47] and Bikelis [14] for A = 3 and A € (2, 3], respectively.
Meanwhile there exist several estimates for the constant C) for A € (2,3]; see [48] and

references cited therein. For A\ > 3 the inequality is a direct consequence of Theorem 13 of
Chapter V in [50].

In Appendix C we will present a slightly different version of the nonuniform Berry—Esséen
inequality, which we will also prove. The proof is based on the approach by [46]. However,
as the proof presented in [46] did not make it clear how the constants in the upper inequality

had to be chosen, or how these constants depended on the distribution of the underlying
random variables, we take our time to carry out the proof in a more rigorous way.

Proof of Theorem 2.2.2:

(i): By part (c¢) of Assumption 2.2.1 and the representation (2.6) (and its analogue in the
case of known parameters), we have

,R’P<Nnﬁ1un,n” ) - Rp(Nnm,nSQ) = \/E(é\un - S)RP(NO,I) + n(mun - m) (2'24>

Sun

Since the empirical standard deviation s,, converges P-a.s. to the true standard deviation
s, the claim of part (i) follows through dividing Equation (2.24) by n.
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(ii): Let S, be a random variable on (€2, F,P) with distribution p*", set
Zy = (S — nm) (/)

and write m,, for the law of Z,,. Note that
law{v/nsZ, +nm} = u*".

Write N, for any random variable distributed according to the normal distribution N, ,s2
on the same probability space (€, F,P), and note that Z := (N, — nm)/(y/ns) is Noi-
distributed. Due to part (c) of Assumption 2.2.1, we obtain

RP(-/\[nm,nsg) —R,y(w™) = /)(\/ESZ +nm) — p(\/ﬁSZn + nm)
= Vns(p(Z) — p(Z,))
= Vns(Ry(No1) — Rp(my)). (2.25)
The nonuniform Berry—Esséen inequality of Theorem 2.2.7 shows that there exists a constant

K, € (0,00) such that dy, (No1,m,) < Kyn™ for all n € N. Along with (2.25) and the
(dg,, | - |)-continuity of R, at Ny, part (d) of Assumption 2.2.1, this ensures that we have

nilpr(Nnm,nsz) —Rp(u™)| = ”71/25’7?'/3(-/\/’0,1) —Ry(m,)| = 0(n71/2)

for all n € N. This completes the proof of part (ii).
(iii): The assertion follows from (i)—(ii).

(iv): By the Marcinkiewicz—Zygmund strong law of large numbers, we have that n”(m,,, —m)
converges P-a.s. to zero for every r < 1/2. So the assertion follows from part (iii).

(v): The classical Central Limit Theorem says that the law of (u,)"/?(M,, —m) converges
weakly to Ny ¢2. So the assertion follows from Slutsky’s lemma and part (iii). O

Proof of Theorem 2.2.4:
(i): Analogously to (2.25), we obtain

RN, (@), 152, (@) = Rp(flan (w5 1)) = VNSu, (W) (R, (Not) — Rp(My(wi ) (2:26)

for all w € Q, where m,,(w;-) denotes the law of the random variable
Za() = 220 M ()
for any random variable S¥(-) with distribution [ (w; ) and defined on some probability

space (¥, F¥,P¥). For (2.26) notice that fi,, (w; -) has mean m,,, (w) and standard deviation
Sy, (w) for every fixed w.
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By the nonuniform Berry-Esséen inequality of Theorem 2.2.7, we have

. [z = [y fu, (w;dy)| f, (widz)
dg, No1, My (w;+)) < Cy P 5N 2.27

for all n € N, where C\ € (0,00) is a universal constant depending only on A and being
independent of n and w. As a consequence of part (a) of Assumption 2.2.2 we have that
[ 2]* A, (w; dz) = i S [Yi|* converges to E[|Y;|}] for P-a.e. w. That is, the numerator
of
J 1z = [y i, (@; dy)[* i, (w; d)
{[ @ = [ YT, (w;dy))’ fiu, (w; dz)

is bounded above by an expression that converges to 2*E[|Y;|*] for P-a.e. w. The denominator

(2.28)

is nothing but 3, (w)* and thus converges to s* for P-a.e. w. That is, the expression in (2.28)
converges to a positive constant for P-a.e. w. Together with (2.26), part (d) of Assumption
2.2.1, (2.27), and the P-a.s. convergence of s, to s, this implies

n_l(Rp(Nn'fﬁun(w),nEQ (w)) - Rp(ﬁ;:(wv )) = 0(n_1/2) (229>

for P-a.e. w. This completes the proof of part (i).
(ii): The assertion follows from (i)—(ii) of Theorem 2.2.2 and part (i) of Theorem 2.2.4.

(iii)-(iv): The assertions can be proven in the same way as the assertions (iv)—(v) of Theorem
2.2.2; just replace part (iii) of Theorem 2.2.2 by part (ii) of Theorem 2.2.4. O

The following remark, which we will also prove, will show that we can obtain stronger rates
of convergence as the ones in part (ii) of Theorem 2.2.2 and part (i) of Theorem 2.2.4 if the
underlying risk measure is not only continuous at Ny 1, but S-Holder continuous for some
B € (0,00).

Remark 2.2.8 Note that we can achieve stronger results as the ones in part (ii) of Theorem
2.2.2 and part (i) of Theorem 2.2.4, if we replace part (d) of Assumption 2.2.1 by the
following slightly stronger assumption.:

(d’) For each sequence (m,) C M3 with dg, (m,,No1) — 0, there exist constants C, 3 > 0
such that

[Ry(my) — Rp(Noa)| < Cd, (i, No1)?
for alln € N.

Let v := min{\ — 2,1} /2. Then the following assertions hold true:

(Z) %RP(NMW ns2) - %Rp(,u*n) = O(n_1/2—ﬁ7)
(it) *Ry(Nps, ns2 ) — 2RH(AE") = (M, — m) + Opuass. (n=1/2-687),

Sun
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Here Op.os (n~Y?2787) refers to any sequence of random variables (1,) on some probability
space (Q, F,P) for which the sequence (n'/**%7n,) is bounded P-a.s.

Proof of Remark 2.2.8 We will only show the first part. Part (ii) can be proven analo-
gously.

(i) Following the same line of reasoning as in the proof of Theorem 2.2.2, we observe that
(2.25) along with part (d’) of the upper assumption ensures, that we can find some constants
K, € (0,,00), such that

B Ry N nt) = Ry (0™ < 07V g (N, ma))? < CRynt2797

for all n € N. Here K, € (0,00) is the constant in the Berry-Esséen inequality of Theorem
2.2.7. This leads to the assertion. O

2.3 Numerical simulations

In this section we present some numerical examples to illustrate the results of Section 2.2.
Our results show that both the estimated normal approximation and the empirical plug-
in estimator lead to reasonable estimators for the premium of an individual risk within
a homogeneous insurance collective. Our results also show that these two estimators are
asymptotically equivalent. Nevertheless for small to moderate collective sizes n the goodness
of the estimators can vary from case to case. For example, in the case where p is the Value
at Risk at level a the results of Theorem 2.2.2 show that for both estimators the estimation
error converges almost surely to zero at rate (nearly) 1/2 when E[|Y;|}] < oo for some
A > 2 (where Y] refers to any p-distributed random variable). On the other hand, the latter
condition does not exclude that E[|Y;|*™¢] = co for some small € > 0. In this case the total
claim distribution can be essentially skewed to the right when the number of individual risks
n is small to moderate; cf. Figure 2.1. So one would expect that especially for heavy-tailed
1 and small to moderate n, the estimators perform only moderately well. One would also
expect that for heavy-tailed p (and even for medium-tailed 1) and small to moderate n the
empirical plug-in estimator should outperform the estimated normal approximation. Our
goal in this section is to provide empirical evidence for our conjectures.

To this end let us consider a sequence (Y;) of i.i.d. nonnegative random variables on a common
probability space with distribution

p=(1—=p)do+pPayp

for some p € (0,1), where P, is the Pareto distribution with parameters a > 2 and b > 0.
The Pareto distribution P, is determined by the Lebesgue density

fap(@) == ab™ (07 2 4+ 1) 10 ) (2),
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and the assumption a > 2 ensures that E[|Y;]}] < oo for all A € (2,a). We regard Yi,...,Y,
as a homogeneous insurance collective of size n, the number p as the probability for the event
of a strictly positive individual claim amount, and P, as the individual claim distribution
conditioned on this event. Note that in our example the mean m and the variance s* of
are given by

20%p b2p?

3 and s :(a—l)(a—Q)_(a—l)Q' (2.30)

In the first part of this section, we estimate the total claim distribution p*”, i.e. the distribu-
tion of > | V;, by means of the empirical distribution based on a Monte-Carlo simulation.
The plots in Figure 2.1 were derived from a simulation with 100,000 Monte-Carlo paths.
We set p = 0.1 and chose the parameters a and b in such a way that the expected value of
a single claim was normalized to 1. Each line shows the same set of parameters and each
column shows the same collective size, starting with n = 100 on the left, n = 150 in the
middle and n = 200 on the right. The first line shows the results for a = 2.1 and b = 11, the
second line shows a = 3 and b = 20, the third line shows ¢ = 6 and b = 50 and the fourth
line shows @ = 10 and b = 90. In each plot the continuous line represents the estimator for

1
and s? determined through (2.30). We emphasize that p*" has in fact point mass in zero.

*M

and the dashed line the probability density of the normal distribution N, s with m

But the point mass is equal to (1 —p)™ and therefore extremely small. This is why the point
mass of the empirical estimator is not visible in the plots.

One can see that the empirical total claim distributions in the first line of Figure 2.1 are
strongly skewed to the right even for larger collective sizes. The density of the normal
distribution is very flat and has much mass on the negative semiaxis. The reason for this
shape is the high variance s, which increases rapidly as a gets closer to 2. In the case of
a = 2.1 and b = 11 this rate is close to zero, saying that large collective sizes are needed to
provide a suitable estimator.

In the second line of Figure 2.1 for a = 3 and b = 20 the empirical total claim distributions are
still strongly skewed to the right. One can see that the normal approximation still does not
resemble the empirical distribution. The deviation decreases visibly with increasing collective
size due to the higher rate of convergence in the Berry—Esséen theorem. Compared to the
first line with a = 2.1 and b = 11 the quality of the normal approximation was increased
in the second line with @ = 3 and b = 20, which can be explained by the increasing rate of
convergence in the Berry—Esséen theorem. For A € (2, 3] the convergence rate to the normal
distribution is strictly increasing in A. For A > 3 the convergence rate can not be improved
any more.

In the third and fourth line of Figure 2.1 for a = 6 and b = 50 and a = 10 and b = 90 the
normal approximation provides a good approximation even for small collective sizes. The
empirical total claim distributions are in both cases almost symmetric and the approximation
leads to a good fit of both curves. The third moment of X; exists in both cases and due
to the Berry—Esséen theorem the deviation of *” from the normal distribution converges to

29



0 50 100 150 200 250 300 35 400 o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 35 400

Figure 2.1: The continuous line shows the n-fold convolution p*" of = (1 — p)dy + pPas
for p = 0.1 and the Pareto distribution P,; with parameter a = 2.1 in the first line, a = 3
in the second line, @ = 6 in the third line and a = 10 in the fourth line and collective sizes
n = 100 in the first column, n = 150 in the second column and n = 200 in the third column.
The dashed line shows the density of the respective normal distribution in each case.
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zero with rate 1/2. We can see that there is no remarkable improve in the convergence rate
once the existence of the third moment is guaranteed.

In the second part of this section we compare the estimated normal approximation with the
empirical plug-in estimator where the role of the risk measure p is played by the Value at
risk at level v = 0.99. To save computing time we discretized the Pareto distribution P,
on the equidistant grid 10Ny = {0,10,20,...}. The plots in Figure 2.2 were derived by a
Monte-Carlo method using 100 Monte-Carlo paths in each simulation. Once again we chose
p = 0.1. In order to compare the estimators we first calculated the exact Value at Risks at
level 0.99 of p*" (in fact we estimated it by means of a Monte-Carlo simulation based on
100.000 runs) in dependence on the collective size n. In each plot in Figure 2.2 the dotdashed
line represents the relative Value at Risk R, (*")/n, which we take as a reference to illustrate
the biases of the estimators. The dashed line shows the estimated normal approximation
R, (Nun,., ns2 )/ for the Value at Risk relative to n. The continuous line shows the empirical
plug-in estimator R,(f,:")/n for the Value at Risk relative to n.

The first line shows the relative Value at Risks for the parameters a = 2.1 and b = 11 on
the left and @ = 3 and b = 20 on the right hand side. In the second line we have a = 6 and
b = 50 on the left and @ = 10 and b = 90 on the right hand side. Once again the parameters
were chosen such that the expected value of a single claim was normalized to 1.

For a = 2.1 we can see that both estimators show a large negative bias. The slow convergence
in the Berry-Esséen theorem transfers directly to the convergence of the relative Value at
risk of the distributions (recall that the Value at Risk fulfills condition (d) of Assumption
2.2.1 for § = 1). Due to this slow convergence the collective size has to be chosen very large
to provide a good estimation. What strikes the most is the large bias of the relative empirical
plug-in estimator R,(x*™)/n. The heaviness of the tails causes the empirical distribution
I, to converge very slowly to pu*”. We can see that in the case a = 3 the bias of both
estimators decreases visibly. However in both cases the empirical plug-in estimator yields a
better estimation.

The plots for a = 6 and a = 10 resemble each other very much. In both cases the existence
of the third moment of X is guaranteed, yielding the same rate of convergence in the Berry—
Esséen theorem. We can see that for small n, e.g. n < 40, both estimators show a large
bias. However for n < 100 the empirical plug-in estimator provides a better estimation. For
n > 100 the estimated normal approximation could be preferred over the empirical plug-in
estimator, because the biases of both estimators are more or less the same and the estimated
normal approximation consumes less computing time.

As a conclusion one can say that the estimated normal approximation is not suitable for
heavy-tailed (to medium-tailed) distributions whenever small collective sizes are at hand.
In this case it is sensible to apply the empirical plug-in estimator, which consumes more
computing time compared to the estimated normal approximation. However, both estimators
are subject to a negative bias w.r.t. the true individual premium. In the next chapter we
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Figure 2.2: R,(1*™)/n (dotdashed line) as well as the average of 100 Monte-Carlo paths of
respectively R,(Num,, ns2)/n (dashed line) and R,(72,")/n (continuous line) for p = V@R g9
in dependence on the collective size n, showing a = 2.1 on the left hand side and a = 3 on
the right hand side of the first line and a = 6 on the left hand side and a = 10 on the right
hand side of the second line.

will therefore develop a theory with the scope to alleviate the bias in our estimations.

2.4 Bootstrapping the individual premium in the indi-
vidual model

As we have seen in Section 2.3, a nonparametric estimation of the individual premium is
subject to a negative bias w.r.t. the true individual premium. Especially the cases with
heavy-tailed single claim distributions led to rather large biases in our estimations. In order
to hopefully improve the numerical results of Section 2.3, Section 2.4.1 introduces the so-
called bootstrap-based bias correction. Roughly speaking, the idea behind this procedure
is to “estimate” the bias in an estimation by means of a suitable resampling of the original
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observations, and subtract the estimated bias from the original estimator.

More explicitly, in the former sections we considered the nonparametric estimators

. 1 ~ |
AR, = —R,(Nps, mzz ) and  FR, = =R, (u:") (2.31)
n n n "
for the individual premium R,, based on observed historical single claims Y3, ...,Y, , where

the Y; are assumed to be i.i.d. random variables on some probability space (€2, F,P) with
distribution p. Then, assuming again that

lim w,/n =c¢ for some constant ¢ € (0, c0) (2.32)
n— oo

and some additional mild assumptions on p and the risk measure p, the results of Section
2.2 have shown that the estimators in (2.31) are strongly consistent in the sense that the
deviation of the estimator from the true value converges to zero P-almost surely, that is

NAﬁn - R, — 0 P-as. and CEﬁn - R, — 0 P-as. (2.33)
Furthermore we were able to proof asymptotic normality in the sense that
Po{\un("MR, —Ro)} " S Nye  and  Po{/un(FR, =R} =5 Ny (2.34)

The latter means that for large n the deviation of the estimator from the true value is
distributed according to the normal distribution with mean 0 and variance u,s?. Condition
(2.32) is again motivated by the fact that the premium is typically estimated on the basis of
the historical claims of the same collective from the last year or from the last few years. We
stress the fact again, that this condition is somehow nonstandard, because in the literature
on asymptotic statistical inference for convolutions it is usually assumed that the number of

summands n is fixed and the number of observations u tends to infinity; see, for instance,
[52].

On the other hand, the results of the simulation studies in Section 2.3 have shown that the
estimators in (2.31) are subject to a negative bias for finite sample size n. In particular when
the conditional single claim distribution pso[-] := p[- N (0, 00)]/p[(0,00)] is “heavy-tailed”
the bias can be considerable. For a more detailed discussion and some further background
in the field of bias correction, see for instance [23].

Throughout this section we address the question whether the biases of the estimators NAﬁn
and CEﬁn for the individual premium R,, can be reduced by means of the bootstrap technique
to be explained in Section 2.4.1. For the estimator R ,(fi,) of R,(1t) analogous investigations
have been done by Kim and Hardy [33] for the Value at Risk and the Average Value at
Risk, and by Kim [34] for more general distortion risk measures. Ahn and Shyamalkumar
[2] provided some asymptotic analysis for the Average Value at Risk in this context. Part
(iii) of Remark 2.2.6 below indicates that the bootstrap approach for reducing the bias is
not expedient for the estimator NAﬁn. On the other hand, the bootstrap approach can be
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(slightly) useful for “€R,,. In our numerical examples for “ER,, with p the Value at Risk and
the Average Value at Risk of Example 1.2.3 and 1.2.4, respectively, we obtain results that
are qualitatively comparable to the numerical results of [33, 34]. Whereas for the Value at
Risk an application of the bootstrap-based method of Section 2.3 seems not useful, for the
Average Value at Risk we can observe that on average a small to moderate reduction of the
bias goes along with a small increase of the variance and thus, of the mean squared error.

In the framework of [2, 33, 34] the plug-in estimator R,(jz,) for a distortion risk measure
R,(1) is an L-statistic, and thus bootstrap consistency is known from the literature. For the
Average Value at Risk functional, see also Corollary 4.2 in [12]. Moreover, for L-statistics
even the exact bootstrap mean can be calculated explicitly, see for instance [31]. In our
setting, where the individual premium R, = R,(x*™)/n is estimated by CEﬁn, bootstrap
results seem not to exist so far.

For this reason the results of Theorem 2.4.3 will yield bootstrap consistency for the bootstrap
estimators to give a mathematical justification for the use of the bootstrap-based method of
Section 2.4.1. Theorem 2.4.3 will show almost sure bootstrap consistency for the nonpara-
metric estimators for the individual premium and thus provides the theoretical justification
for the use of the bias correction. Although the method of Section 2.4.1 seems not to be
appropriate for the estimator NAR,, (see part (iii) of Remark 2.2.6 below), in Theorem 2.4.3
we also establish bootstrap consistency for this estimator. In Subsection 2.5 we will present
the results of some numerical simulation studies.

To this end, we will demonstrate a way to estimate the bias in our former estimation by
means of the bootstrap, from which we will derive the bias correction. The bias correction is
the central tool which will be used to construct estimators based on the original data, used in
the former estimations, but with a smaller bias w.r.t. the true value. The bootstrap versions
of our estimators in (2.31) will then be given by the bias-corrected original estimators.

2.4.1 Bootstrap-based bias correction

As we have already mentioned, the estimators defined in (2.31) have a negative bias w.r.t. R,,.
As a countermeasure one can try to “estimate” the bias and subtract it from the original
estimator. The “estimation” of the bias can sometimes be done by means of bootstrap
methods. The idea of the bootstrap was introduced by Efron in 1979 in his seminal paper
[22]. Since then many variants of the bootstrap have been discussed in the literature; for
background and details one may refer to [16, 23, 40, 57] among others.

To explain the bootstrap-based method for correcting the bias more precisely, let ﬁn be an
estimator for a real-valued characteristic R,,, n € N, where R,, may or may not be defined by
(2.1). In any case assume that R, is given by a statistical functional evaluated at a (random)
probability measure which is uniquely determined by observed data Yi,...,Y,, , where the
latter are given by the first u, terms of a sequence (Y;) of i.i.d. random variables defined on
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a probability space (2, F,P). For illustrations of such estimators see (2.31). Assume that
R, is biased, i.e. that
Bias(R,) := E[R, — Ry (2.35)

differs from 0 for finite sample size n. Further assume that
Po {tn(Ry — Ru)} " -5 Ny (2.36)

holds for some s* € (0,00). See (2.34) for an illustration of condition (2.36). Now let
(Q, F',P') be a second probability space and extend the original probability space (€2, F,P)
to the product space
(QLFP)=QxQ,FRF,PaP),

and assume that the result w’ of (2, 7', ") and the original sample Y] (w), ..., Y., (w) specify
a new (random) probability measure. The latter is plugged in the underlying statistical
functional to obtain a “bootstrap version” of R, denoted by RE. Note that R® depends
on w and «’, that is, it is defined on the probability space (Q, F,P). Also note that, up to
some measurability issues, the mapping w’ — ﬁg(w,w’ ) can be seen as a random variable
on (Y, F,P') for any fixed w. For illustrations of RB see (2.40) and (2.42) below. In fact
RB should be called (almost sure) bootstrap version of R, only if

P o {\/un(RE(w, -) = Ru(w)} ' 25 Noe  Poace. w. (2.37)

The left-hand side of (2.37) is often referred to as the conditional distribution of /i, (RB —
R.) given the observation Yj,...,Y, . For a justification of this interpretation see, for
instance, the discussion at the end of Section 2 in [12].

Whenever (2.36) and (2.37) can be shown, we have
Po {ﬁn - Rn}il ~ NO,SQ/un

and
P o {RE(w, ) — Ra(w)} '~ N2/, P-a.e. w

for “large” n. That is, informally,
Po{R, - Ry} ~Po{RE(w, )= Rnw))}" P-a.e. w (2.38)

for “large” m. Sometimes it turns out that the two laws in (2.38) are not only “close” but
even have a similar skewness so that the means of these two laws are close to each other. In
this case the mean of the law on the right-hand side of (2.38) is a reasonable approximation of

Bias(R,) defined in (2.35). Though the law on the right-hand side of (2.38) can be seldomly
specified explicitly, it can be numerically approximated through

L

1

7 Z 5735,((007.)77%”(‘0) with L > n
/=1
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for P-a.e. w due to the Glivenko—Cantelli theorem, where RE(w, -), ..., RBL(w, - ) are i.i.d.

copies of RB(w, -) for every fixed w. In particular

L
Bias, = =3 (RP(w, +) — Ru(w))
=1

h

is a reasonable approximation of Bias(R,) defined in (2.35) and thus

—_—

RP .= R, — Bias, (2.39)

can provide an estimator for R, with smaller bias than 73” At this point it is worth
mentioning that RP° often admits a larger mean squared error than the original estimator
Ron-

2.4.2 Bootstrap consistency for the nonparametric individual pre-
mium estimator

Analogously to Section 2.1 we write NAﬁn for the estimator based on the normal approx-
imation with estimated parameters and CEﬁn for the empirical plug-in estimator. Both
estimators are used to estimate the individual premium R, := %Rp(,u*"). Again, the es-
timators are based on a sequence (Y;) of real-valued i.i.d. random variables on a common
probability space (2, F,P) with distribution g, and can be obtained by plugging the empir-

ical probability measure i, of Y7,...,Y, in the statistical functionals
1 1
NAT (V) = ERR(Nnm(V)mg(V)) and ET.(v) = ﬁRn(y*”) (2.40)

respectively, i.e.
VR, =" (f,)  and R, = FT(A,,).

Here m(v) and s?(v) refer to the mean and the variance of a law v respectively. We regard
w € Q as a sample drawn from P and MR, (w) and ER,,(w) as statistics derived from w,
respectively from (Yi(w),...,Y,, (w)). Let (', F',[P") be another probability space and set

QFP) = (OxY, FF PaP).

The probability measure P’ represents a random experiment which is run independently of
the random mechanism P. For every n € N let

~ 1 &
i (w,w') = — D Wi i(w)dy, ) (2.41)
"oi=1

for some triangular array (W, ;) of nonnegative real-valued random variables on the proba-
bility space (', F',[P'). Note that the sequence (Y;) and the triangular array (W, ;) regarded
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as families of random variables on the product space (Q, F,P) = (A x Q, F@ F,PRP') are
independent. Now we set

VRE="Ta(n)  and R = T (E7) (242)

with NAT, and BT, as defined in (2.40). Theorem 2.2.2 ahead shows that under some
mild assumptions these estimators can be seen as bootstrap versions of NAﬁn and CEﬁn
respectively. In the theorem we will consider the so called weighted exchangeable bootstrap
in the form of Assumption 2.4.1. Efron’s bootstrap and the Bayesian bootstrap are special
cases; see Example 2.4.2 ahead. For background on the weighted bootstrap see also [4, 18,
43, 45, 54, 56, 61] and references cited therein. Recall that exchangeable random variables
are identically distributed.

Assumption 2.4.1 The triangular array (W,;) of nonnegative random wvariables on the
probability space (Y, F' ') satisfies the following conditions:

Al. The random vector (W1, ..., W) is exchangeable for every u € N.
A2. Y7 Wy =u for every u € N.
A3. Wy € L2, F, ) for every u € N, and sup,cy Var'[W, 1] < oc.

A4 \/Lﬂ maxi<i<u |Wu,z - ].’ i) 0 w.r.t P.

Ad. %Z?:l(Wuz —1)? L1 wrt P.

The following example will show that popular bootstrap schemes like Efron’s bootstrap and
the Bayesian bootstrap fulfill the conditions of Assumption 2.4.1.

Example 2.4.2 (i) Efron’s bootstrap [22] is a special form of the weighted exchangeable
bootstrap in the sense of Assumption 2.4.1. In this case the random vector (W1, ..., W)
is multinomially distributed according to the parameters v and p; = --- = p, = % for
every u € N. This choice of the weights (W,;) obviously fulfills conditions Al. through A3.
of Assumption 2.4.1. Moreover it also satisfies conditions A4. and A5. This was already
pointed out in Example 3.6.10 in [61], where one should note that by A2. we have W, :=
%Zle W, = 1 and that, in view of Markov’s inequality, the second condition in Display
(3.6.8) of [61] implies condition A4.

(ii) Another version of the weighted exchangeable bootstrap in the sense of Assumption 2.4.1
can be obtained by choosing W, ; := Z;/Z, for every u € N and i = 1,...,u, where Z, :=
%Z};l Z; and (Z;) is any sequence of nonnegative i.i.d. random variables on (', ', P’)
with E'[Z?] < oo and E/[Z;] = Var'[Z;]"/2 > 0. This choice of the weights (W,,;) obviously
fulfills conditions A1.—A2. of Assumption 2.4.1. It also satisfies conditions A4. and A5, as
was already pointed out in Example 3.6.9 in [61] (again noting that W, := %Z;‘:l Wyi=1
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and that the second condition in Display (3.6.8) of [61] implies condition A4). Moreover, we
have

EW.] = E[(Z/Z.)

= / P2,/ Z, > t"?]dt
0

< / (IP”[Z1 > tY2(1 —e)] + t*P/QuP/QQ(g)u/Z) dt
0

1 oo
_ E/ ZQ p/2 u/Z/ t—p/? dt
(1 . 5)2 [ 1] +u 9(6) 0
for any p > 0, ¢ € (0,1), and some p(¢) € (0,1), where the third step is ensured by
Inequality (5.57) of [54] (assuming without loss of generality E'[Z;] = 1). Choosing p > 2
we can conclude that also conditions A3. of Assumption 2.4.1 is satisfied. In the special

case where Z; is exponentially distributed to the parameter 1, the resulting scheme is the
Bayesian bootstrap of Rubin [56]; see Example 3.1 of [54]. &

The formulation of Theorem 2.4.3 will involve the weighted Kolmogorov distance w.r.t. the
weight function ¢, as introduced in (1.4). Let again M, be the set of all probability measures
on (R, B(R)), and denote by F), the distribution function of p € M;.

Theorem 2.4.3 Let p: X — R be a law-invariant map, let R, be the corresponding statis-
tical functional as defined in (1.1), and assume that Assumptions 2.2.1 and 2.4.1 hold true.
Then, if s*> denotes the variance of , we have

P o {\/un("“"RE(w, - ) = "R, (W) 5 Ny Povee. w. (2.43)

If the mapping ' — ERB(w,w') — R, (w) is (F, B(R))-measurable for every n € N and
w € Q, then we also have

P o {\/ty (FRE(w, ) — FRL(w)} ™ 5 Nye  P-vee. w. (2.44)

Note that it was shown in Section 2.2 that conditions (a)—(d) of Assumption 2.2.1 ensure
(2.34). In this respect Theorem 2.4.3 complements these results. In fact, in Remark 2.2.8
condition (d) was replaced by a slightly stronger regularity condition (with the benefit of
some additional results). However the proof there can be easily modified to obtain (2.34)
under conditions (a)-(d) above. The assumptions of Theorem 2.4.3 will be discussed and
illustrated in the following remarks and examples.

Remark 2.4.4 (i) The measurability assumption in Theorem 2.4.3 on ERB(w, - )—ER,, (w)
is not very restrictive. For instance, when p is a distortion risk measure (see Section 1.3 for
details), then we can show that ERE(w, -) — ER, (w) is (F', B(R))-measurable for every
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fixed w € Q). Furthermore the measurability holds when p is any law-invariant coherent risk
measure on L? for some p € [1,00).

(ii) If p is law-invariant, cash-additive, and positively homogeneous, then we obtain the

representation
<B /
NA75B / Sy ((")7 w ) ~B ’
Ro(w,w) = "2 R, (N me (w,w'), 2.45
Bon) = 2R (NG) + 7, 1) (2.45)
where M and 5% refer to i ’s mean and standard deviation respectively; see (2.50) below.

Due to the representation in (2.45), it is easily seen that MARB(w, - ) is (F', B(R))-measurable
for every w € Q2 and every n € N.

(iii) In view of (2.45) and its analogue for M*R,,, we have

NARE (W, W) =NAR, (w) = n 2R, (Noa ) (88 (w, W)= 5o, (w))+ (M8 (w,w") =7, (W)). (2.46)

Un

Theorem 2.2.2 indicates that, for fixed w, the law of this expression in w’ can be seen as an
approximation of the law of

NARL () = Ry = 0~ VPR,(No 1) B, (1) — 8) + (7, (-) — ). (2.47)

Since m,, is an unbiased estimator for m, and s, is (nearly) an unbiased estimator for s,
the mean of the expression in (2.47) nearly vanishes. So it may be expected that, for fixed
w, the mean of the expression in (2.46) (in w’) is close to 0, too. In particular one cannot
expect that the mean of the expression in (2.46) (in w') is a reasonable “estimator” for the
bias of the estimator NAR,, for R,,.

&

For the proof of the first part of Remark 2.4.4 we can use similar arguments as in the proof
of 2.2.6.

Proof of part (i) of Remark 2.4.4. It suffices to prove the measurability of CEﬁE (w, -) for
every n € N and every fixed w € ). Let p : LP — R be a law-invariant coherent risk measure.
First, Theorem 2.8 in [37] ensures that the corresponding risk functional R, : M(L?) — R is
continuous for the p-weak topology O,.. The latter is defined to the the coarsest topology
on M(LP) w.r.t. which each of the maps u — [ fdu, f € CY, is continuous, where C?
is the set of all continuous functions f : R — R for which there exists a constant C' > 0
such that |f(x)] < C(1 4 |z|P) for all x € R. According to Corollary A.45 in [27] the
topological space (M(LP), O,.) is Polish. Second, the topology O, , is generated by the LP-
Wasserstein metric dwass, and the mapping M(LP) — M(LP), pp — p*", is (dwass, , Awass, )-
continuous; see Lemma 8.6 in [13]. Third, the mapping (w,w’) = 18 (w,w'; ) is (F, 0(Opw))-
measurable. Indeed, it is easily seen that the Borel o-algebra o(O,.,) on M(LP) is generated
by the maps p — f fd,u, f € C. To show the (F,0(0O,.))-measurability of the mapping
Q' = M(LP),w' — 1B (w,w’) for every fixed w € €, it suffices to show that

/f z) g (( );da:))l(A) € F', forevery A€ B(R) and f € C!. (2.48)
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Since fi® (w,w’) is a probability kernel from (Q,F) to (R, B(R)), we can conclude that the
mapping (w,w’) = [ f(z) 8 ((w,w');dz) is (F,B(R))-measurable for every f € C?. This
yields the (F/,B(R))-measurability of the mapping w' — [ f(z) g ((w,w’);dz) for every
fixed w € ), because for every A € B(R) and every w € € we have

([ 1@ (@, idn)) () = {w e / F() 2 (. '); dr) € A}
—{w e e ([ H)a (1) (]} @)

for every n € N. Now by the fact that ([ f(z)a8 (-;dz))"'(A) € F for every A € B(R),
together with [15, Theorem 18.1] we conclude that the right-hand side of (2.49) lies in F'.

Remark 2.4.5 Condition (a) and the second part of condition (c) of Theorem 2.4.3 are
satisfied when the risk measure p is defined on L? and the observations Y;,Ys, ... lie in L*
for some A > pV 2. &

Remark 2.4.6 It was shown in Theorem 2.8 of [37] that the statistical functional R, asso-
ciated with any law-invariant coherent risk measure p on LP with p € [1,00) is continuous
for the so called | - |[P-weak topology. Since for A > p the topology on M7 generated by dg,
is finer than the relative | - [P-weak topology on M3, it follows that condition (d) is fulfilled
for every law-invariant coherent risk measure on LP and A > p. &

To be able to present the proof of Theorem 2.4.3, we will first introduce some notation and
state some useful results which will be needed throughout the proof. To this end, let

@) = [
M) = [ oR(we)ido)
) = [ (o= M) s do)
0w = [ (o @B ) AR (), o)
fnal) = [ lo Rulwsdo)
) = [l (i) (2.50)

for every (w,w’) € Q denote the corresponding moments of Ji,(w) and 7i(w,w’). Further-
more, let 58(w, w’) = (528(w,w’))"? and 3, (w) := (8%(w))"/? denote the standard deviations

under 7i8(w, w’) and fi,(w), respectively.

The following Theorem 2.4.7 is known from Theorem 3.2 in [4]. In the special case of Efron’s
bootstrap it was proven much earlier in [13], Theorem 2.1 (a).
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Theorem 2.4.7 Assume that (W,;) satisfies Assumption 2.4.1. If p € M(L?), then
P o {Vu(mB(w,-) — M, (W)} - Ny P-a.e. w.

Theorem 2.4.8 Assume that (W,;) satisfies Assumption 2.4.1, and let X > 0. If u €
M(L?), then

lim P'[{w' € ' dy, (5 (w,w'), ) >0} =0 foralln >0, P-a.e. w. (2.51)

U— 00

For (2.51), note that the mapping w’ — dg, (18 (w,w’), u) is (F', B(R,))-measurable for any
fixed w. Indeed, denoting by F2((w,w’), -) and F the distribution functions of 71%(w, w’) and
1 respectively, this is ensured by the representation

s, (i (w,0), ) = Sup F2 (w, ), 2) = F(2)|a(x)

and the (F', B(R,))-measurability of the mapping o’ — ﬁf((w, w'), x) for every w € Q and
r e R.

Proof (of Theorem 2.4.8) By choosing » = 0 in Theorem 2.1 in [65], we deduce that
dg, (fu, pr) — 0 P-a.s. That is, the class {¢r(2)1(—oq : © € R} is a Glivenko-Cantelli
class w.r.t. P in the sense of [61]; see p.81 for a definition. Now the claim follows by an
application of Lemma 3.6.16 in [61] (where W, ;/u plays the role of W,; in [61]). Our
assumptions A2. and A4. in Assumption 2.4.1 ensure that the weights (W, ;) satisfy the
assumptions of this lemma. For the application of the lemma in our specific setting, note
that the star * can be skipped in the probability there, because we have seen above that
the mapping w’ > dy, (A8 (w,w’), p) is (F', B(R,))-measurable for any fixed w. Also note
that outer almost sure convergence (as defined in part (iii) of Definition 1.9.1 in [61]) implies
almost sure convergence (i.e. convergence almost everywhere) in the classical sense. The
latter follows from Proposition 1.1 in [21]. O

The moment assumptions in the following two corollaries seem to be slightly too strong in
the sense that it should be possible to replace M;(L*) by M (L) and M (L?) respectively.
However, since we will apply the nonuniform Berry—Esséen inequality (2.22) in the below
proof of Theorem 2.4.3, we assumed A > 2 in Theorem 2.2.2 anyway. That is, the two
corollaries do not cause any additional assumption.

Corollary 2.4.9 Assume that (W,;) satisfies Assumption 2.4.1, and let A > XN > 1. If
€ M(LY), then

lim P'[{w' € Q' |m5  (w,0') —my| =0} =0 foralln >0, P-a.e. w.

U—r 00
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Proof Below we will show that the mapping v — [ |2|*v(dz) is Lipschitz continuous w.r.t.
dg,. Using this, we obtain

P{w' € Qs |, (w ) —my| > n}] <PHo' €Q': Ldy, (fig(w,o), 1) > n}]

for every w € 2 and n > 0, where L denotes the corresponding Lipschitz constant. Now
Theorem 2.4.8 implies the claim of the corollary.

It remains to show the mentioned Lipschitz continuity. The function z + |z|*" generates the
o-finite Borel measure on R with Lebesgue density = — M|z|»~'. Thus integration-by-parts

yields
/|x|’\/1/(d:v) = lim 2N v(dx)
= lim( ()yb\A F,(=b)b]" - / Fl,(a:—))\’]a:\x’ldx>
= (b,

for every Borel probability measure v on R. In particular, for any two such vy, vs,

| [l vi(do) - [ fol v(da)]

< lim <2d¢k,(1/1,u2) —i—d(m(l/l,l/g)/

b—o0 (7b,b]

¢A($—)_1 )\/|:L‘|>"—1 d:p)
< 2y, (11,10) +d¢A(V1>V2)/¢A(37)1 Nz da
- Ld¢>\(y1> l/2>

with L =2+ [ ¢a(z)N|z[¥ L dr < . O

For Efron’s bootstrap the following result is already known from part (b) of Theorem 2.1 in
[13].

Corollary 2.4.10 Assume that (W,;) satisfies Assumption 2.4.1, and let X > 2. If p €

M(L?), then

JLH;OP/[{CU c: |28 w,w)—s* >0} =0 foralln>0, P-a.e. w (2.52)
and

uh_)IgOIP)'[{w eV [Bw,w)—s>n}=0  foralln>0, P-a.e. w. (2.53)

Proof We clearly have

Po € @ [5%(w,w) = | 2 n}] < PHw €Q': |, (w,w) —ma| >n/2}]
+P[{w € Q' [(g (w,w))* —m?| > 1/2}].
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By Corollary 2.4.9 the first summand converges to 0 for every n > 0, for P-a.e. w. The
second summand converges to 0 for every n > 0, for P-a.e. w, by Theorem 2.4.7 and an
w-wise application of Slutsky’s lemma. This proves (2.52). Moreover (2.53) follows by (2.52)

and
[5g (w,0) = 8| = [325 (w, ") = %] /(55 (w, ') + 5) < [50°(w, ') — 5% /5.

This completes the proof. O

Proof of (2.44). For every (w,w’) € Q and w € Q, let S0:“*" and 5% be random variables
on probability spaces (Q««) Fw«) Py and (Qv, F@ P¥), respectively. Assume that for
every (w,w’) € Q the random variable Sy “*“") has distribution (18 )" ((w,w'); ) and that
for every w € Q, §;jn has distribution (i, )*"(w; -). Furthermore, let v ((w,w’); -) denote

the law of the random variable
aB,(w,w’ ~
anwm.)::&m( () = nMd (w,)
o ' VnsE (w,w’)

for every (w,w’) € Q and for every w € Q, let v, (w; - ) denote the law of the random variable

5% (2) = nif, (W)

2= =)

Then we observe that for every (w,w’) €  we have

law{ V2 (w,0) 2B £ n il (w.o)} = (33)" (w,w).

and for every w € €2

law{y/nS,, (w) 25, + 1, (@)} = (fu,) " (@)-

Using part (c) of Assumption 2.4.1 on the positive homogeneity and the cash additivity of
p, we obtain

Vi (SR8, 0,)) = Ry (0, ()

(VD (10,6) B b (0,6)) — - plv B, () Z, + i, ()
)
)

"Ry

Vi (ol

= S (5 ) = 80 ) i (1 ) = 0, ()
e

(w
(w,w

p(
VR (v, (W, ') = Bu, (w) Ry (v, (w ))) + g (g, (W, w') = iy, (W)

- @ 58 (w0, (Ry(VE, (@,0)) = Ry(Noa)) + @ Sun(@) (Ro(Noa) = Ry (10, ()

+ % Rp(Noa) (85, (w,w') = 8u, (W) + Vit (7, (w, ') = i, (w))
= Si(nw,w') + Sa(n;w) + Ss(n;w,w’) + Si(n;w,w’) (2.54)
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for every (w,w’) € Q. In the rest of the proof we will show that

P € Q" : |Si(nyw, )| >0} — 0 foralln >0, P-a.e. w,  (2.55)
So(nyw) — 0 P-a.e. w, (2.56)
P € Q" : |S3(nyw, )| >n} — 0 foralln >0, P-a.e. w, (2.57)

' (2.58)

P o Sy(n;w, )™t =5 AN P-a.e. w,

where P’ o Sy(n;w, - )~! refers to the law of ' +— Sy(n;w,w’) under P'. Then (2.55)—(2.58)
and an w-wise application of Slutsky’s lemma imply (2.44).

To show (2.55), note that by assumption (d) we can find (for given n > 0) some 7" > 0 such
that

]P”Hw’ e ‘Rp(ugn«w,w'))) S(Now)

> H (2.59)

’lL

< P -{w’ € dy, (VB (w,w"), No1) > }]

, ;. f!fﬂ—fyuun w o) dy)l i, (@, )ide)
=7 { = (I v — [yRB ((w,w);dy))? A8 ((w,w);dw))"? 277}]
< P {w cQ 2! —ZAQE‘;(Z’,;A) n~’ > 77’H
< Plfwen |z di‘i Gt

+P’[{w eQ’-
= Suin ,w)+512( )

T 2 0/(Cn2)}]

where the second “<” is justified by the nonuniform Berry—Essén inequality of Theorem
2.2.7 for arbitrary but fixed X € (2,\) (and 7 := min{1, \' — 2}/2). The summand S; 5(n)
obviously converges to 0. Moreover, by Corollaries 2.4.9 and 2.4.10 along Slutsky’s lemma
(applied w-wise) the summand S; ;(n;w) converges to 0 for P-a.e. w. That is, the left-hand
side of (2.59) converges to 0 for P-a.e. w. Moreover by Corollary 2.4.10 we have that 5% (w, -)
converges in P-probability to s for P-a.e. w, and by assumption (b) we have \/u,/n — \/c.
Then another (w-wise) application of Slutsky’s lemma leads to (2.55).

To show (2.56), we note that

Fle = [ st i)
ds, (Vu, (@), NG C 7
dx (V (w) 0’1) g f T — fyﬂun (w; dy))? /ﬁun(w;dx)))\/2 '

< C)\ 2)\71 My (w> n~7

(S, (W)

and that the ordinary strong law of large numbers ensures that the latter expression converges
to 0 for P-a.e. w.
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The convergence in (2.57) follows immediately from Corollary 2.4.10 and assumption (b).
Finally (2.58) follows from Theorem 2.4.7. This completes the proof of (2.44). O

Proof of (2.43). For every (w,w’) € Q, let M) be a random variable on some proba-
bility space (Q@«) Flww) P« and assume that MI];D’,;(W’W is distributed according to the

B

normal distribution with mean M} (w,w’) and variance 528(w,w’). Let

M\l]i;(w,w/)( . ) . nmsn (w’ w/)
VN8 (w,w)

NE@<) has the standard normal distribution and for every (w,w') € Q

N =

Then we observe that N,
we have

law{y/n 3 (w,w’) NP @) | nig (w,w)} =N

Un, ning  (w,w’) 528 (ww')”

Moreover, for every w € €, let Z‘jﬂ and v, (w) be defined as in the proof of (2.44).

Now, we again use part (c¢) of Assumption 2.4.1 on the positive homogeneity and the cash
additivity of p to obtain

1 1
V(RN g o atasifione) — 5 Rol () ")
= \/u_n<3lp( ngB ((JJ’(JJI> NEJ(WM,) —|—77,7’/r\1,5n(w, )) (\/_Su ( )Zw +nmu (w>)>

= /5, (W) = 50, (W) Ry (No) + Vit (T, (w, ) = i, (w))

+\/%§un (w) (Rp(/\fo,l) — Ro(Vu, (@)

= Si(njw,w') + Sa(n;w) + S5(n;w)

for every (w,w’) € Q. Using arguments as in the proof of (2.55)—(2.58), we can conclude that

P{uw € Q' |Si(nw, )| >0} — 0 foralln >0, P-ae. w, (2.60)
P o Sa(njw, - )" = N P-a.e. w, (2.61)
S3(n;w) — 0 P-a.e. w. (2.62)

Then (2.60)—(2.62) and an w-wise application of Slutsky’s lemma imply (2.43). This com-
pletes the proof. a
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2.5 Numerical simulations: The effect of the bootstrap-
based bias correction

In this section we present some numerical examples for the method of correcting the bias
discussed in Section 2.4.1. In our simulations we used Efron’s bootstrap (see Example
2.4.2(i)) to perform a bias correction of the original nonparametric estimator CER, in the
sense of (2.39). Other bootstrap methods are expected to lead to very similar results; see
Table 2.5 and Figure 2.5. We fixed n = 200, chose u,, = n and u, = 3n, and estimated
the individual premium, given by R, = %RP(M*”). In our simulations the role of p is first
played by the Average Value at Risk at level o = 0.95 of Example 1.2.4, that is p = AVQR,,.
Second, we chose p = VQR,,, which is the Value at Risk of Example 1.2.3 at level o = 0.95.
For the conditional single claim distribution

p>ol -] = pl- 1(0,00)]/ (0, 00)]

we considered the Pareto distribution and the log-normal distribution for different sets of
parameters. For computational issues we discretized both distributions to the equidistant
grid 0.1Np := {0,0.1,0.2,...}. Note that p~o and p := u[(0,00)] together determine the
(unconditional) single claim distribution g through the representation

pl-]= (1 —=p)dol-]+ppsol-]

Here p is the probability of a strictly positive claim. We let p = 0.1 in all examples. In
each setting, we simulated 1000 independent observation vectors (Y3,...,Y,, ). For each of
these 1000 vectors we computed “ER,, and CE?@ELC. The bias corrected estimator CEﬁfif in
the fashion of (2.39) were built upon L = 500 bootstrap paths conditional on each of the
1000 “original” paths. The “exact” values were derived from a Monte Carlo simulation with
100000 paths.

Our simulations show ambiguous results. Where on the one hand we experienced a reduction
of the bias for AV@QR,,, quite the contrary holds true for V@R,,. However, these results are
similar to those of Kim and Hardy [33, 34]. Kim and Hardy too stated a good applicability
of the bootstrap-based bias correction to AVQR,,, and observed that the same procedure
might cause an increase of the estimated bias for V@QR,. A reason for this might be the
fact that the Value at Risk lacks subadditivity and does therefore not provide a coherent
risk measure. In both cases the use of the bootstrap-based bias correction has the effect to
increase both the variance and the mean squared error (MSE).

2.5.1 Average Value at Risk

In this subsection we fix p = AVAQR,, and o = 0.95. In the first example we let p~o be the
Pareto distribution Par,; with parameters a > 2 and b > 0. The standard Lebesgue density
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of Par,; is
z— ab (b7 te 4+ 1)7tD 10,00) ()

and the assumption a > 2 ensures again, that E[|Y1|}] < oo for all A € (2,a). In our examples
the parameters of the Pareto distribution were chosen such that the expected value of a single
claim was normalised to 1, i.e. E[Y;] = 1. Tables 2.1-2.3 show the results of the simulation
study in dependence on u, and the choice of estimators. The tables show the (empirical)
bias, standard deviation, and root mean squared error. Each value is shown in percentage
of the true value.

Up =N Uy, = 3N

Bias StD rMSE Bias StD rMSE
CBR, | —18.38% 44.50% 49.88% | —12.86% 38.14% 40.89%
CERbe | _12.90% 50.41% 52.54% | —6.85% 45.46% 46.05%

Table 2.1: Estimators for p = AVQR g5 and p1~9 = Pars o (True value: 2.2585).

Uy, =N Uy = 3N

Bias StD rMSE Bias StD rMSE
CBR, | =7.34% 36.60% 37.45% | —5.31% 20.63% 21.38%
CEﬁEf —2.711% 40.07% 40.17% | —0.25% 25.00% 25.00%

Table 2.2: Estimators for p = AV@R g5 and p~¢ = Parg s (True value: 1.8541).

Up =N Uy = 3N

Bias StD rMSE Bias StD rMSE
CER, | —4.68% 31.88% 32.26% | —3.23% 18.36% 18.66%
CERbe | 1.10% 37.91% 37.92% | 0.83%  22.47% 22.47%

Table 2.3: Estimators for p = AVQR g5 and p1~9 = Paryggo (True value: 1.8114).

In the case a = 3 and b = 20 the conditional single claim distribution is a kind of “heavy-
tailed”. In view of this and the relatively small collective size, it is not surprising that the
estimator shows a large negative bias and a large MSE. The application of the bootstrap-
based method of Section 2.4.1 helps to reduce this bias by a third but has the effect to
increase the MSE. The cases a = 6 and b = 50 and a = 10 and b = 90 refer to “medium-
tailed” conditional single claim distributions. Again the estimator shows a negative bias.
Especially in the case with a = 10 and u,, = 3n, the bootstrap-based method helps to get
rid of the negative bias of CE?@,L and leads to a very small positive bias. Figure 2.3 shows the
(empirical) law of CEﬁn. The vertical line in each plot represents the true value. One can
see that in each case the bias correction has the effect to shift the mass of the distribution
of CE’IQH to the right and thus makes the estimation more conservative. The negative bias
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Figure 2.3: Empirical laws of R, (continuous line) and “ERP¢ (dashed line) for p =
AVQ@Rg59%, u, = n (first column) as well as u,, = 3n (second column), and p~o = Par,,
for the Pareto distribution Par,; with parameter a = 3 in the first line, @ = 6 in the second
line, and a = 10 in the third line.
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is getting reduced. The law of CEﬁEf possesses less mass on the left-hand side of the true
value than the law of “€R,. However the law of CE?@Ef possesses more mass on the outer
right-hand side of the true value than the law of CEﬁn, even in such an extent that both the
variance and the MSE of CE?%ELC become larger than those of CEﬁn. Against the background
of actuarial theory and the insurer’s wish of a preferably conservative estimation, this effect
is not so bad.

In the second example we considered pi~o = LN g9, where LN, ,2 refers to the log-normal
distribution with parameters ¢ € R and ¢? > 0. The log-normal distribution possesses all
moments and can thus be seen as a “light-tailed” distribution. The parameters ¢ and o>
were chosen in such a way that the expected value and the variance of LN, 2 coincided with
the expected value and the variance under Parjg oo respectively. Again, the role of the risk
measure p is played by AVQR,, with a = 0.95. Table 2.4 shows the results of our simulations.
Just like in the Pareto case CEﬁn shows a negative bias. The negative bias is fully eliminated
by the bootstrap-based bias correction, yielding only a much smaller positive bias. Again,
CE'I%” tends to underestimate the risk in the collective quite strongly, whereas CE@;C only
overestimates the risk slightly. Just like in the Pareto case we experience the usual increase
of the variance and the MSE. However, the increase of the variance and the MSE is due to a
right-shift of the mass of the law of R, (see Figure 2.4) which makes the estimation more
conservative.

Up =N Uy = 3N

Bias StD rMSE Bias StD rMSE
R, | —5.12% 34.80% 35.22% | —3.52% 23.36% 23.67%
CERbe | 1.18%  40.29% 40.31% | 1.47%  29.75% 29.79%

Table 2.4: Estimators for p = AV@QR g5 and p1~0 = LN 909 (True value: 1.8246).

We conclude this subsection with the following remark. We do not expect the particular
choice of the bootstrap scheme to affect the outcome of our method essentially. In Table
2.5 and Figure 2.5 the results for Efron’s bootstrap are compared to the analogous results
for the Bayesian bootstrap (see Example 2.4.2 (ii)) for pu~¢ = Paryggo. Figure 2.5 shows the
empirical laws of the original empirical plug-in estimator, the bias-corrected estimator based
on Efron’s bootstrap and the bias-corrected estimator based on the Bayesian bootstrap. One
can see that the empirical laws of the bias-corrected estimators do not differ very much from
each other. Both curves resemble each other strongly, such that the results for the Bayesian
bootstrap are very much comparable to those for Efron’s bootstrap.

Table 2.5 provides a comparison of the perfomance of both bootstrap techniques by means of
the estimated bias, the standard deviation and the root mean squared error. Both procedures
show similar results, that is, the formerly observed alleviation of the biases and the increase
in the standard deviation. We do therefore not expect the choice of the bootstrap procedure
to influence substantially.
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Figure 2.4: Empirical laws of “ER,, (continuous line) and CEﬁEf (dashed line) for p =
AV@Rgsy, u,, = n (first column) as well as u,, = 3n (second column), and 1~ = LN, 2 for
the log-normal distribution LN, 2 with ¢ = 1.9 and % = 0.9.

Figure 2.5: Empirical laws of CER, (continuous line), CEﬁg‘: derived from Efron’s bootstrap
(dashed line), and “ERP¢ derived from the Bayesian bootstrap (dotted line) for p = AV@Rgs¢,
Up = N, and >0 = Par10790.
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Bias StD rMSE
ER, —4.68% 31.88% 32.26%
CEREe (Efron’s bootstrap) 1.10%  37.91% 37.92%
CERbe (Bayesian bootstrap) | 1.66%  36.72% 36.76%

Table 2.5: Estimators for p = AVQR g5, u, = n, and p~¢ = Parjggo (True value: 1.8114).

2.5.2 Value at Risk

In this subsection we fix p = V@R, and o = 0.95. In the first example we again consider
pso = Pargy, with @ > 2 and b > 0. One can see that an application of the procedure of
Section 2.4.1 can also have the effect to worsen the estimation. Again, CEﬁn shows a negative
bias, which increases with the heaviness of the tails of the underlying Pareto distribution.
This effect has already been observed in our investigations in Section 2.3. The bootstrap-
based method of Section 2.4.1 now increases both the bias and the MSE. Tables 2.6-2.8 show
the results of our simulations.

Up =N U, = 3N

Bias StD rMSE Bias StD rMSE
CBR, | —8.21% 43.50% 44.41% | —4.11% 32.27% 32.56%
CERbe | —10.42% 51.04% 52.35% | —8.07% 43.14%  44.02%

Table 2.6: Estimators for p = VQRg g5 and pi~g := Pars oo (True value: 1.7845).

Up =N Uy, = 3N
Bias StD rMSE Bias StD rMSE
CER, | —4.62% 36.32% 36.64% | —2.92% 20.24% 20.47%
CEﬁEf —7.14% 42.88% 43.56% | —8.54% 34.72% 35.94%

Table 2.7: Estimators for p = VQRg g5 and p~g := Parg 50 (True value: 1.6155).

Up =N Uy = 3N
Bias StD rMSE Bias StD rMSE
CE?%” —2.68% 34.80% 35.22% | —1.75% 20.98% 21.05%
CEﬁEf —719% 41.44% 40.30% | —6.57% 31.24% 31.92%

Table 2.9: Estimators for p = VQRg g5 and p~g = LN 909 (True value: 1.5995).

In the second example we again consider p~¢g = LNj 909, where again the parameters were
chosen in such a way that the expected value and the variance coincided with the expected

value and the variance of Parjggp. The results are consistent with those of the Pareto
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Up =N Uy = 3N

Bias StD rMSE Bias StD rMSE
CBR, | =3.07% 28.94% 29.10% | —1.90% 17.83% 17.93%
CEﬁZC —6.49% 35.54% 36.12% | —4.83% 25.68% 26.13%

Table 2.8: Estimators for p = VQRg g5 and pi~o = Parggo (True value: 1.5990).

example. For both CEﬁn we observe a negative bias. This negative bias increases for CEﬁ?f.
Also, the method of Section 2.4.1 has the effect to increase the MSE. Table 2.9 shows the
results of our simulations.

2.5.3 Conclusion

When the underlying risk measure p is the Average Value at Risk AVQR,,, the method of
Section 2.4.1 provides a way to moderately improve the estimator CEﬁn, at least from the
insurer’s point of view. On the other hand, when the underlying risk measure p is the Value
at Risk VQR,,, the method of Section 2.4.1 seems not to be useful for the estimator CEﬁn.
For larger collective sizes the numerical specification (of i and thus) of the estimator CER,
consumes some computing time. Due to the Monte Carlo simulation that comes along with
the bootstrap, the computing time for the bias corrected version CE?@ELC is even much higher.
So, when deciding whether or not to use the method of Section 2.4.1 for the Average Value at
Risk, the required computing time should not be neglected. In our examples, the particular
choice of the bootstrap scheme did not affect the outcome of the results.
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Chapter 3

Nonparametric estimation of risk
measures in the collective model

In the former chapter we have considered the so-called individual model of actuarial theory.
In this model we assumed that every client in the insurance collective would produce a
nonnegative claim during the next insurance period. Here we allowed the case, where several
single claim amounts could be zero, whenever a client would not report a claim within the
next insurance period. In the collective model of actuarial theory however, we assume that
the whole collective produces a random number of strictly positive losses. In this context
let (X;) be a sequence of strictly positive i.i.d. random variables. Moreover let N be an
No-valued random variable on the same probability space, being independent of (X;). The
total claim amount in the collective model is then given by the so-called random sum

N
Sy =) X (3.1)
=1

The investigation of asymptotic distributions of these random sums began with the work of
Robbins ([55]) in 1948. A good summary about asymptotics of random sums can be found
in the books by [25] and [30], for example.

Throughout this chapter we will consider the compound Poisson model, which in actuarial
theory is also referred to as the Cramér-Lundberg model or classical compound Poisson risk
model. It goes back to the work of [44]. The model assumes the times between two successive
single claims to be exponentially distributed at a certain rate A > 0. The stochastic process,
modeling the number of claims occurring in dependence on the time is then a homogeneous
Poisson process. This model is very popular in both non-life insurance mathematics and
ruin theory.

Our aim in this chapter will be an estimation of individual premiums in the compound
Poisson model similar to the individual model of Chapter 2. We will focus on the derivation of
strong rates and asymptotic normality of the estimated individual premiums in dependence

53



on the underlying collective size. In the former chapter the central tool, which was used
to determine the strong rates was the nonuniform Berry-Esséen inequality in the form of
Theorem 13 of Chapter V in [50]. In the setting of the compound Poisson model our
proofs will strongly rely on a new Berry-Esséen type inequality for nonrandomly centered
random sums in the form of [20]. This recently established inequality quantifies the rate
of convergence of a suitably nonrandomly centered random sum to the standard normal
distribution w.r.t. (L')-Wasserstein distance, which was introduced in (1.5).

The rest of this chapter is organized as follows. In Section 3.1 we will introduce the com-
pound Poisson model in a mathematical way and introduce two estimators for the individual
premium. In Section 3.2 we will formulate assumptions under which we will be able to prove
our main theorems. Corollaries 3.2.4-3.2.6 will then state the strong rates and asymptotic
normality of the estimated individual premiums for each choice of the estimators.

3.1 Estimators for the individual premium in the com-
pound Poisson model

In this section we consider the so-called collective model of actuarial theory with respect
to the Poisson distribution. In the literature this model is often referred to as the Cramér-
Lundberg model. We suppose that the collective successively suffers losses at an exponential
rate A, > 0, in dependence on the size n € N of the underlying collective. We assume the
single losses to be independent and identically distributed according to some distribution
p. In this case the total number of losses in a period of length ¢ > 0 is given by N, (t) :=
max{k € N : ¢ W" < t}, where (W) is a sequence of Exp, -distributed random
variables. That is the total claim amount until time ¢ is given by S, (t) := vaz"l(t) X;, where
(X;) is a sequence of i.i.d. random variables with distribution u, which is independent of
(W!). Note that S,, := (S,(t))i>0 provides a compound Poisson process with rate A, and
jump size distribution p, and that N, := (N, (t)):>0 provides a Poisson process with intensity
An. In particular, the total claim distribution in a fixed insurance period of length 7" > 0,
i.e. the distribution of S, (7'), is given by the random convolution

et [ Ji= Y (-] Poissy, r[{k}]

keNy

of p with respect to the Poisson distribution Poissy, r with parameter A, 7. An adequate
individual premium w.r.t. a certain risk measure p is then given by

Ry = LR, (o), 52

where as before R, refers to the statistical functional associated with the risk measure p as
defined in (1.1). We identify with X,..., Xy, () the single claims which will occur within
the next insurance period. As we do not have information about these future claims, we
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will try to construct estimates of the distribution of the total claim amount p*Fos»»7 on the
basis of historically observed claims.

In the following we will introduce two possible estimators for the total claim size distribution
eyt - We will first introduce an approach based on the convolution of the empirical
measure w.r.t. the Poisson distribution with estimated parameter. The resulting estimator
for the individual premium will be called the empirical plug-in estimator. Second, we will
use the normal approximation with estimated parameters to estimate the total claim size
distribution.

To this end, let (Y;) be a sequence of ii.d. random variables with distribution p and
N = (]V (t))i>0 be a Poisson process with rate 1 on a common probability space (2, F,P),
and assume that (Y;) and N are independent. Then N, (t) := N(At), t > 0, defines a
Poisson process with rate \, being independent of (Y;). Let 7 € (0,00) be any (historical)
time horizon. With the choice of 7 we can model the fact that parameters and claim size
distributions are usually estimated on the basis of claims from the last few insurance periods
and not necessarily from the last period only. By choosing 7 = 37T for instance, the insurance
company would use data from the last three insurance periods of length T' to estimate the
future premium.

In this context the random variable ]/\7”(7') can be seen as the number of claims that occurred

within a period of length 7 > 0, and the random variables Y}, . .. sz\?n(r) can be seen as the
corresponding claims. Now
~ n(q—)
Ay 1= 3.3
e (33)

provides an estimator for the exponential rate A, in dependence on the underlying collective
size n € N and time 7 > 0. Thus

Nn ()

R 1

fonr = —= Z Jdy; (3.4)
Nu(T) I

provides a reasonable estimator for the single claim distribution i based on the time horizon
7 > 0 and underlying collective size n € N, whenever the observed number of losses N, (7)
is strictly positive (otherwise we simply set 11, , := dp).

Based on (3.4), we can use

*Poiss<
o~

Mnﬂ- An, 7T = (ﬁnﬂ_)*POiSSX"’TT (35>

xPoissy,,

as an estimator for the total claim distribution g T and the corresponding plug-in

estimator

~ 1 _*Poisss
PCER, = ~R, (,W WT) (3.6)
n

to estimate the individual premium R,, as defined in (3.2). In the following we will refer to
PCER ., as the empirical plug-in estimator. Once again, the Panjer recursion of [49] provides a
way to compute the right-hand side in (3.5) if the single claim distribution g has support in
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hNg := {0, h, 2h, ...} for some h > 0, see Appendix A.2 for a detailed discussion. Although
fn.- has bounded support, the right-hand side in (3.5) has unbounded support. Therefore
the estimator in (3.6) cannot be computed in finite time for tail-dependent risk functionals
R,, such as the Average Value at Risk of Example 1.2.4, for instance. On the other hand,
it can be computed in finite time for the Value at Risk of Example 1.2.3 for instance.
Similarly to the approach in the individual model, we can use the normal approximation
with suitably estimated parameters to estimate the total claim size distribution p*Fesa.
The idea behind this choice is again the asymptotic normality of a suitably centered random
sum. Indeed, Example 3 (i) in [55] has shown that for a Poisson random variable N with
intensity A > 0 and any sequence (&;) of i.i.d. random variables with positive finite variance,
being independent from N, we have

N
law {M} M Now (A= 00), (3.7)

Am/(2)

where m and m® denote the expectation and the second moment of &, respectively. That
is, informally for “large” X\, we have

M*POiSS)\ ~ N)\m,)\m(g) . (38)

Note that, by Wald’s formula, we observe that Am and Am(? are nothing but the mean and
variance of the random variable Zf\il &;, respectively. Using corresponding representations
in our present setting, we let

my, = \,T'm, (3.9)
o2 = N\, Tm?, (3.10)

denote the mean and variance of p*Fosx.7 . Motivated by (3.8), we can use

Nev,- 32,
to estimate the total claim distribution based on an underlying collective of size n € N and
2

n,t

time horizon 7 > 0. Here m,,, and 72 are estimators for the true mean m,, and the true

variance o2 of p*Pm7 . Based on the representations in (3.9) and (3.10)

~

Rr = A T i (3.11)
52 = Aoy TR, (3.12)

provide suitable estimators for m,, and o2, respectively. Here m,, , and fﬁg; refer to the
expected value and the second moment of fi, -, respectively, that is

1
My 1= = Vi, 3.13
e Z (3.13)
L
T — Y2, (3.14)
7 n(T) =



*Poisss
~ A~ . . ~ A
Note that m,,, and 52 _ are nothing but the mean and variance of fi, -

n, 7T

, respectively.
Thus, the corresponding plug-in estimator

~ 1
NAR” = ERP(N]{&H,Tva?LVT)

provides a second estimator for the individual premium in the collective model. In this
context an estimation of the total claim distribution simply boils down to an estimation of
the parameters in the sense of (3.11) and (3.12). Note that we will omit the dependence of
m,, and o2, as well as the dependence of all estimators, on T for the sake of a better reading.

For cash-additive and positively homogeneous risk measures p, the total premium derived
from the normal approximation with estimated parameters has the following representation:

RoNa,.52.) = Onr RpNoa) + My ;. (3.15)

Of course, one can obtain a similar representation for the case of the true parameters. In
the following we will assume the exponential rate A,, > 0 to be proportional to the collective
size n € N. More explicitly, we will assume that A, /n converges to some constant ¢ € (0, 00)
as n — 0o. This notion is compatible with our approach for the estimation in the individual
model and reflects the fact, that the number of expected claims during an insurance period
should increase in the same way as the number of clients in the collective. Under the
above assumptions, the results of Section 3.2 will show that under mild assumptions on the
integrability of the underlying random variables and for a wide class of risk measures we

have
n’ (NAﬁn - Rn) 2%, (3.16)
n" (F’CEﬁn - Rn) 2%y, (3.17)

for every r < 1/2 and

-1
nTt NAAS W
Po {, | ( R — Rn>} s Nozpms, (3.18)

A~

Po { nr <PCERn - Rn>} s Noszame, (3.19)

where m and s? refer to the mean and variance of j, respectively. The results are comparable
to those of Section 2.2. Again, formulae (3.18)—(3.19) imply that the convergences in (3.16)
and (3.17) cannot hold for n > 1/2. For the convergence of the estimated premiums to the
true ones, we will show even more, namely

~ 1

NARn — Rn = E ( n,T mn) + O[p_a_s.<n71/2) (320)
~ 1

PER, — Ry = ~ (B —my) + Op.as.(nY?). (3.21)
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Again, the asymptotics for both estimators are exactly the same and are independent of
the choice of the risk measure p. Keeping in mind that we have m,, = A\, T'm by Wald’s
equation, and that \,/n was assumed to converge to some constant ¢ € (0,00), the results
are comparable formulae (2.14)—(2.15) in the individual model. If we do not focus on the
individual premium as defined in (3.2), but on the total premium divided by the expected
claim amount instead, we obtain the following somehow “nicer” representations:

1 1 «Poi . -
B\\n TT RP(NﬁmT’E%’T) - )\nT Rp('u Fo SS)‘nT) = mnﬂ' —m + OP'a-S-(n 1/2) (322)
_ 1 R (ﬁZPTOiSSXn’TT) . 1 R (,U,*POiSSA"T) — mnT — M+ Op.as (n—1/2>. (323)
AT AT ’ -

In this case the convergence of the estimated quantities to the true ones is purely driven by

the convergence of the sample mean m,, , = % 1(7) Zfﬁf” Y; to the true mean m. This effect

has already been observed in formulae (2.14)—(2.15) in the individual model. Again, the
asymptotics for both estimators are exactly the same and are not affected by the concrete

choice of the risk measure p.

With the help of (3.18) and (3.19) we obtain the following asymptotic confidence intervals
at level (1 — «) for the individual premium:

and

where ®(; denotes the distribution function of Ny;. Moreover, the results of Corollary
3.2.4 allow for the following asymptotic representation of the true individual premium in the
collective model

n UTZ —
Ra = 25+ 5 RolNoa) + o(n™'7). (3.24)
Likewise we can obtain similar representations for the corresponding estimators:

~ ~
S mn,T On,r

NA
n — y 2
o ) (3.25)
PCER  — mg’f n U;‘ Ry(Not) + 0pas (n7112), (3.26)

In the following Section we will formulate assumptions under which the above results can be
achieved and state our main theorems.
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3.2 Strong rates and asymptotic normality for the indi-
vidual premium estimators in the compound Pois-

son model

In this section we will present our main theorems. We will first summarize assumptions
under which our results can be achieved. Then we will first formulate two theorems about
the asymptotics of the total premium estimator divided by the expected number of claims.
As corollaries we will then state the resulting asymptotics for the individual premium es-
timators. The formulation of the assumption involves the Wasserstein metric dwass, which
was introduced in (1.5).

Assumption 3.2.1 Let p : X — R be a law-invariant map, and R, be the corresponding
statistical functional introduced in (1.1). Suppose that the following assertions hold:

(a) u€ M(L?), that is E[|Y1[*] < cc.
(b) A\n/n converges to some constant ¢ € (0, 00).
(c) p is cash-additive and positively homogeneous, and M3 C M(X).

d) The restriction of R, to M3 is (dwass, | - |)-continuous at Ny ;.
P 1 ;

Note that it was shown in Theorem 1.4.1 that part (d) of Assumption 3.2.1 is always fulfilled,
whenever p refers to a law-invariant and convex risk measure on L'. The assumption does
not impose a strong restriction.

Under the above assumptions we are now in a position to state our two main theorems.
Theorems 3.2.2 and 3.2.3 yield strong rates and asymptotic normality for premiums derived
from the normal approximation with both true and estimated parameters and the empirical
plug-in estimator. However, in the formulations of the theorems we do not focus on the
individual premium as defined in (3.2), but on the total premium divided by the expected
value of the claim amount. We do this with the benefit of “nicer” representations. Corollaries
3.2.4 and 3.2.6 will then state the analogue for the individual premiums.

Theorem 3.2.2 (Estimated normal approximation) Suppose that Assumption 3.2.1 is
fulfilled. Then the following assertions hold:

(i) —=R,(Ng, .52 ) — )\T%TRP(N%,U%) = My — M+ Opas. (nY2).

)\n,TT 77'77—70-71,7'

(i1) 5o RpWNanoz2) = 5o Rp(u™5n7) = o(n~1/2).

(iii) 55 RpNanr52.,) = 527 Rp(WFo0nT) = iy =m0 + 0pas(n=1/?).

(iv) (A\T)" (ﬁ Ry(Na,.52.) — AiT R, (uTosnt)) — 0 P-a.s. for every r < 1/2.
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(0) Po (VAT (5 RyWa2,) = 57 Ro( o))} 5 Ny o

Theorem 3.2.3 (Empirical plug-in estimator) Suppose that Assumption 3.2.1 is ful-

filled and assume that R (unT e, ™ s (F, B(R))-measurable for every n € N. Then the
following assertions hold:

*Poisss

) —RW> 5 Ryl ) = oman (7).

*Poisss

(”) (NnT AnJT) - AiT Rp(:u*POiSSA"T) = mn,T — M + Opas. (nil/Z)-
*Poisss .
(111) (A\T)" (/\ R,o(finy: ™7) — o7 Ro(uFonT)) — 0 P-a.s. for every r < 1/2.
*Poisss . _ w
(v) Po{VAT (577 Ryfine "7") = 5hg Rp(pPs5a7))} 7 =5 Ny .

What strikes the most, is the fact, that in Theorem 3.2.2 (v) and Theorem 3.2.3 (iv) the
asymptotic behavior of the estimators in this setting is not affected by the distribution of
the number of claims Poissy 7. Before we turn to the proofs of the above theorems, we first
take our time to state two useful corollaries about the strong rates and asymptotic normality
of the individual premiums.

The first corollary is concerned with the strong rates and asymptotic normality of the individ-
ual premiums derived from the normal approximation. Parts (iv) and (v) of Corollary 3.2.4
describe the asymptotic behavior of the sequence of estimators NAﬁn = % R,,(/\/'ﬁnmg;w) and
their rate of convergence to the true premium R, := %Rp(u*P olssanT),

Corollary 3.2.4 (Estimated normal approximation) Suppose that Assumption 3.2.1
is fulfilled. Then the following assertions hold:

({ﬁn,T - mn) + Op.as. (n_1/2)~

3=

(i) s RoWNa,.52.) = + RoWNm,03) =
(ii) 2R, (N o2) — L R, (Fosmr) = o(n=1/2).
(iii) L R, (Na

52
m"ﬂ' 7Un,7'

) — %Rp(M*POiSSA"T) - % (ﬁ\ln,T - mn) + 0[F’—a.s.<n_1/2)'

(iv) n" (% Rp(./\/'awﬁgw) — L R, (wTsn1)) — 0 P-a.s. for every r < 1/2.
(v) Po {\/ 1;“72 mn 708 ) - %RP(N*POiSS/\"T»}_l — -/\/'(J,82+m2'

The following corollary states the corresponding results for the estimator NA?%”. It is a direct
consequence of parts (iv) and (v) of the above corollary and does therefore not need to be

proved.

Corollary 3.2.5 Under the assumptions in 3.2.1 parts (iv) and (v) of Corollary 3.2.4 show
that the convergences in (3.16) and (3.18) hold true.
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Under the assumptions in 3.2.1, the following result provides the analogue to Corollary 3.2.4
for the empirical plug-in estimator in the collective model for the individual premium. It
also gives an equivalent to Theorem 2.2.4 in the collective model. Assertions (iii) and (iv)

in Corollary 3.2.6 describe the asymptotic behavior of the sequence of estimators PCEﬁn =
*Poisss

LR, (fin,, "™7") for the individual premium R, := LR, (p*FPoissr1).

Corollary 3.2.6 (Empirical plug—in estimator) Suppose that Assumption 3.2.1 is ful-

filled and assume that R (unT e, Y is (F, B(R))-measurable for every n € N. Then the
following assertions hold:

*Poisss

(i) Ry (Nawo2) = 2 Ro(fins ") = 0pas(n2).

*Poisss

(”) %R (,Mnr An TT) o %RP(M*POiSS’\"T) — %({ﬁnﬁ _mn) + OIP-als.(n_l/Q)-

*Poiss<
P

(iii) n" (A Ry(finy ™7") = LR, (rFOMT)) — 0 P-a.s. for every r < 1/2.

*P01SSA

(w) Po {\/ 23—2 ,un T VTT) - %RP(N*POiSSA"T»}_l l) NO,S2+m2'

The following corollary states the corresponding results for the estimator PCER,. Tt is a

direct consequence of parts (iii) and (iv) of the above corollary and does therefore not need

to be proved.

Corollary 3.2.7 Suppose that the assumptions in 3.2.1 are fulfilled and that R (/LnPT P, i
is (F, B(R))-measurable for every n € N. Then parts (iii) and (iv) of Corollary 3.2.6 show

that the convergences in (3.17) and (3.19) hold true.

As a direct consequence of Assumption 3.2.1 and Corollaries 3.2.4 and 3.2.6 we obtain the
following asymptotic representations of the estimated individual premiums:

Ry = 25T+ IR (N,) (3.27)
PCER, = mg” + UZ’TRP(MM) + 0pas (7). (3.28)

Equation (3.27) directly evolves from part (c) of Assumption 3.2.1, whereas equation (3.28)
is a direct consequence of (3.27) in combination with part (i) of Theorem 3.2.3.

Remark 3.2.8 (i) Note that the individual premium estimator NAR.. based on the normal
approximation with estimated parameters of Theorem 3.2.2 and Corollary 3.2.4 is always
(F, B(R))-measurable due to the representation in (3.15).

(i1) Let X = LP for some p € [1,00). Then for every law-invariant coherent risk measure
p: LP — R the estimator PER,, is (F, B(R))-measurable for every n € N.
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Proof of part (ii) Let p : LP — R be a law-invariant coherent risk measure. First,
Theorem 2.8 in [37] ensures that the corresponding risk functional R, : M(LP) — R is
continuous for the p-weak topology O,.. According to Corollary A.45 in [27] the topo-
logical space (M(LP),O,) is Polish. Second, the topology O, is generated by the LP-
Wasserstein metric dwass,- The mapping M(LP) x (0,00) — M(LF), (p, A) — o s
(dwass, » dwass, )-continuous; see Appendix B for the proof. Third, the mappings w /)\\n,T (w)
and w — [, - (w,-) are (F,0(Opy))-measurable. The first statement holds true due to the
representation in (3.3). The latter is easily seen, because the Borel o-algebra o(O,.) on
M(LP) is generated by the maps o+ [ fdu, f € C?. Here CY is again the set of all continu-
ous functions f : R — R for which there exists a constant C' > 0 such that | f(z)| < C(1+]|z|?)
for all x € R. So, for (F, 0(O,.))-measurability of the mapping Q@ — M(LP), w — iy, (w, -),
it suffices to show

( / (@) ﬁn,,(.,dx))_l(A) €F forall A€ B(R)and f € C?. (3.29)

Since i, (w,-) is a probability kernel from (2, F) to (R, B(R)), the mapping

o [ £ s, )

is (F, B(R))-measurable for every f € C}; see e.g. Lemma 1.41 in [35]. This gives (3.29).
Altogether, we have shown that the mapping w Rp((ﬂn77(w))*POISSXWWT) is (F,B(R))-
measurable. O

In the following remark we will discuss an option to obtain better rates of convergence in
part (i) of Theorem 3.2.2 and part (ii) of Theorem 3.2.3 (and of course their analogues for
the individual premiums in Corollaries 3.2.4 and 3.2.6) under a slightly stronger assumption
as the one imposed by part (d) of Assumption 3.2.1. Similar to our investigations in Chapter
2 we can replace the assumption on the (dwass, | - |)-continuity of R, at Ny ; by the stronger
notion of S-Holder continuity for some 8 > 0 with the benefit of better rates of convergence.
We will just state the results. The changes in the corresponding proofs are analogues to the
proof of Remark 2.2.8.

Remark 3.2.9 Note that we can achieve better rates of convergence in part (i) of Theo-
rem 3.2.2 and part (ii) of Theorem 3.2.3 (and of course their analogues for the individual
premiums in Corollaries 3.2.4 and 3.2.6) if we replace part (d) of Assumption 3.2.1 by the
following slightly stronger assumption.:

(d’) For each sequence (v,) C M3 with dwass(Vn, No1) — 0, there exist constants L, 3 > 0
such that
|Rp(yn> - Rp(%,l” S LdWass(Vna-/\/’O,l)ﬁ (330)

for every n € N.
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Then we have:

*Poiss
PN

(Z 7) b\ : T RP(Nfﬁn,Tﬁ%J) X ! T ,R’p(/vbn,‘r kn!TT) = O]P’—a.s. (n71/2(1+ﬁ)).
*Poisss
(” }) b\ ! T RP(Nfﬁn,mE%J) Y ! T RP(//J“”,T AnJ—T) = OP—a.s. (n_1/2(1+5))~

3.2.1 Proof of Theorems 3.2.2 and 3.2.3

The proofs of Theorems 3.2.2 and 3.2.3 strongly rely on the following proposition, which
gives a rate of growth of the Poisson process in relation to the underlying intensity. The
proposition provides a strong law of a Marcinkiewicz-Zygmund type for the Poisson process.

Proposition 3.2.10 Let (N,)nen = ((Nn(t))tz())neN be a sequence of Poisson processes,
such that for every n € N, N, := (]vn(t))tzo is a Poisson process with rate A, > 0. Suppose
that (N\,) C (0,00) and that \,/n converges to some strictly positive constant. Then for
every v < 1/2 and every fized t > 0 we have

N, (t)
Ant

r

—1‘—)0 (n—o0) P-as.

Proof Let (N(t)):>o be a Poisson process with rate 1. Then we observe that
N(t) = NOwt)

holds for every n € N and t > 0. Now the claim is a direct consequence of Theorem 2.5.10
in [25] and the fact that \,/n converges to some ¢ € (0, c0). O

Moreover we will use the following Berry-Esséen inequality for nonrandomly centered random
sums. The inequality provides a rate of convergence of the centered random sum to the
standard normal distribution. The theorem and its proof can be found in [20] Corollary
2.12. Tt involves the Wasserstein metric dywass, which was introduced in (1.5).

Theorem 3.2.11 Suppose (&;) is a sequence of i.i.d. random variables on some probability
space (2, F,P) satisfying E[|&1]?] < oo and E[¢}] > 0, and that N is a Poissy-distributed
random variable on the same probability space for some A > 0, being independent from (&;).
Let m := \E[&] and 0? := AE[&?] and set

W = —Zf:l& —m.

g

Then,

L (2Vle) | SES EIG) | JBG) )

s (P No) < T g7y EGFE  EE

(3.31)
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Note that the conditions in Theorem 3.2.11 are automatically fulfilled in our present setting,
that is under Assumption 3.2.1.

Proof of Theorem 3.2.2 (i) For every w € , let §ﬁ77 be a N, ()52, ()-distributed
random variable on some probability space (¥, F,P*) and let R, be a N, ,2-distributed

random variable. Let R
_ Sﬁ,r(') —m, (W)

L
and
Zn() = —Rn('i_ mn.

Then we observe that both ]\/ZZJT and Z, have the standard normal distribution for every

w € Q. Using part (¢) of Assumption 3.2.1 on the positive homogeneity and cash-invariance
of p, we obtain for every w € (2

T p(on Zyn +my,)

)Rp(/vo,l)

C Mye(w)  my (Em(w) _ on
AT AT AT AT

— m 8n77<w) On
= g (W) —m + <Xm(w)T - AnT) R,(Noa), (3.32)

~

where we used the fact that m, . = \,,Tm,, holds, and the equivalent for the case of
known parameters. The latter holds true by Wald’s equation. Now the claim would follow
by showing that

~

Un,T . On — 71/2
/):n TT )\nT OP-a.s. (TL )
Denoting by m® := [ 22 ju(dz) and N2 = [ 2? i+ (dz), we can use Wald’s equation again,

yielding

On,r On o On,r On ( >\nT _ 1) On,r

ST AT NT AT (3.33)

For the first summand we observe that

Onr On 8,2%7 — o2
AT NI NT (0, +0n)
o
- Mo,

Nr TR — X, Tm®

(AT)?2 vV m®

N,
:(m<2>n)—1/2( %( "(T)—l)m21+ i (m@;—m%). (3.34)




From Theorem 2.5.5 in [25] we can derive the P-a.s. convergence of m%)T —m® to zero.

Part (b) of Assumption 3.2.1 now guarantees that (n/\,)'/?

/2

converges to some constant
€ (0,00) for n — oo. Moreover Proposition 3.2.10 yields the P-a.s. convergence of
]/\\7”(7')/()\”7') — 1 to zero. As ﬁl,(f)T converges to m® P-a.s. by Theorem 2.5.5 of [25], we
conclude that 73\122)7 is also P-a.s. bounded. Hence, we conclude that

= Opas.(n72). (3.35)

For the second summand on the right-hand side of (3.33) we observe that

G b\ #2) 1/2 /
O'n,T ()\ T ) N _1 )
AT - T (A T 1/2 )\ — VM = /2 (3.36)

holds P-a.s. Indeed, part (b) of Assumption 3.2.1 yields that (n/(\, T))'/? converges to a
positive constant again. Moreover we observe that (N, (7)/A\,7)"/? converges to 1 P-a.s. by
Proposition 3.2.10. As mn)T converges to m® P-a.s., we conclude that m%)T is also P-a.s.
bounded. Together with Proposition 3.2.10, that is the fact that (N, (7)/(An7) —1) converges

to zero P-a.s., this yields

which completes the proof of part (i).
(i) Let S, be a N, 02-distributed random variable and set

Sn(+) —my

Then we observe that M, has the standard normal distribution. Moreover, let R, be a

ot _distributed random variable and set

R,(") —my

On

Zn(+) =
Let v,, denote the distribution of Z,,. Then we observe that
law{o, Z, +m,} = prossmr,

Hence, we can use part (c) of Assumption 3.2.1 on the positive homogeneity and cash-
invariance of p to obtain

1 . 1
)\n_T Rp(/\/’mn,o%> . T Rp(MPOISSAnT) — T (p(o’n M, + mn) — p(O’n Zy + mn))
= g (Ry(Noa) =Ry (v2)) (3.37)
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An application of Wald’s equation now yields

On ()\nTm(2))1/2 _ (m(2))1/2_ 1 ( n m(2)>1/2

MT - NT M) T m AT (3:38)
By part (b) of Assumption 3.2.1, we conclude that

On

AT

= C’)(n_l/g).

Now Dobler’s Berry-Esséen inequality of Theorem 3.2.11 ensures that there exists some
constant K > 0, such that dwass(No1, ) < K (M\,T)7Y2 for all n € N. Now we keep in
mind that A, tends to infinity as n — oo. Along with (3.37) and part (d) of Assumption
3.2.1 on the (dwass, | - |)-continuity of R, at N1, this ensures that we have

e (RyNat) = Ry (1) = o™

for every n € N. This completes the proof of part (ii).
(iii) The assertion follows from parts (i) and (ii).

(v) To prove the assertion we will show that

-1
1 1 , w
Po )\nT <A— Rp(./\/ﬁi 52 ) - Rp(,u*PmsSAnT)) — -/V‘O $2T/7- (339)

AR e TXT ’
The claim will then follow by an application of Slutskys Lemma. To this end, for every
w € Q, let S be a Ng, ()52 ()-distributed random variable on some probability space
(Qv, Fv P¥) and set
=, Ome() = W (w)
Mn,T(') T ~

Onr(w)

Then ]\//ZfT has the standard normal distribution for every w. Furthermore let R, be a

*Poissy,, 7 and set

random variable, being distributed according to
R.(-) —m,
Zp(r) i= ———.
()=
Moreover let v, denote distribution of Z,. We observe that
law{o'n I+ mn} = ,U*POiSS’\"T.

Using part (c) of Assumption 3.2.1 on the positive homogeneity and the cash-invariance of
p, we obtain for every w

1 1 |
JNT (A—R Na 152 () — — R (jFO50r )
Ao ()T o Nac@)32) = 3 Rolk )
1 —~
= V\,T <A—p Onr(W) MY+, (w) — — plo, Z, + m, >
VAT (5 e T+ ) = 3o |

66



- Sy -
_ \/;—T(U (Ry(No) = Ry(va) (Xnii)T Frr(0) = 00 ) Ry(Nir))

o 1 (< AnT 1) Far @) Ry (No)

T VAT \X, ()T

; wl—T (B (@) = 0) Ry(Nor) + VAT (7 () —m)

=:51(n) + Sa(n,w) + Ss3(n,w) + Si(n,w). (3.40)
In Steps 1-4 below, we will show that

Si(n) = ol) (3.41)
SQ(”? : ) = OP—a.s.(l) (342)
53 (TL, ' ) = 01F’—a.s.<1) (343)
PoSy(n,-)™" —= Nosr/r, n — oo. (3.44)

Step 1. This assertion has already been proven in part (ii).

Step 2: We observe that

1 ( P 1) - 1 ( AT 1) @ )+ 1 ( AT 1)
= - On,r = - On,s = On B On
VAT N T

Dt
Nn(7)

for every n € N. By Proposition 3.2.10, we conclude that — 1 converges to zero P-a.s.

Moreover using Wald’s equation again, we have
~2 2 X

Ongr — On = n,T n,

- AT (]\KI(T) - 1) T (2 - m®), (3.46)
nT ’

By Proposition 3.2.10 we conclude that N,,(7)/(A.7) — 1 converges to zero P-a.s. Further-
more, by Theorem 2.5.5 in [25], we observe that ﬁu(f)T — m(® converges to zero P-a.s., where
it is important to note that the integrability conditions are trivially satisfied due to part (a)
of Assumption 3.2.1. Finally by part (b) of Assumption 3.2.1, we conclude that

02— 02 = 0pas(n). (3.47)

n,T
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Using (3.47), we observe that

1
—,)\n—T<0'n,r - Un) = O]P’—a.s.(l)' (3'48)

Hence, the first summand on the right-hand side of (3.45) converges to zero P-a.s. To
conclude on the convergence of the second summand in (3.45) we observe that

o M\, Tm2) 1/2
= (2 = (2), 3.49
JINT ( T ) m (349)

This is a direct consequence of Wald’s equation. Thus, the second summand on the right-
hand side of (3.45) converges P-a.s. to zero by Proposition 3.2.10. This proves (3.42).

Step 3. This assertion has already been proven in the second step.

Step 4: We observe that

Na(7)
T (s —m) = /AT (ﬁ 1(7) Z Y, — m)
— (3\"(;) — ) ;(Anf)ﬂm( 'n(T)YZ — N,(7) m)
+ \@ (ar) ™2 ( A‘m Vi — No(r)m)
=:S41(n) + Sa2(n). - (3.50)

Now part (a) of Theorem 2.5.15 in [25] yields that

)
3

Po {()\HT)*l/Z < T)Y; - ]/\7”(7-) m) }_ SN -/\[0,527 n — 00,

i=1

such that
Po 54,2(71)_1 l) ./\/’075271/7., n — oo

follows by Slutsky’s Lemma. Moreover, by another application of Proposition 3.2.10, we
can conclude that Sy1(n) converges to zero in probability as n — co. Hence, the assertion
follows again by Slutsky’s Lemma, which completes the proof of part (v).

(iv) The assertion can be proven in the same way as part (v). Following the same line of
reasoning as in (3.40), we observe that S;(n)-Ss(n) converge to zero P-a.s. The claim now
follows by an application of the Marcinkiewicz-Zygmund SLLN for random sums of Theorem
2.5.5 in [25]. O

Proof of Theorem 3.2.3 (i): Let R} be a random variable being distributed according
*Poiss<
£0 fing T (w; ), with
*Poisss

T ~ *Poisss
fine T (ws ) = (i (W) T[],
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Here, for every w € €, Ry is regarded as a random variable on a probability space
(Q, F“,P¥). Now set
Ry () — my - (w)

On.r(w)

Znr () =

Y

_*Poissg
. ~ o~ An, 7T
with M, ;(w) and &, (w) referring to the mean and the variance of fin, " (w;-), respec-

tively. Then we observe that

_xPoissg

law{Gyr (W) Zyy  + Mpr (W)} = Finr T (ws ) (3.51)

for every n € N and w € Q. Write v, - (w; -) for the distribution of Z¥ . Let S}’ be a random
variable distributed according to the normal distribution with mean m,, ,(w) and variance
0. -(w), and note that

Sr () = My (w)

On,r(w)

has the standard normal distribution. Due to part (c) of Assumption 3.2.1, this yields

M, (+) =

*Poisss

RpNa - )52 @) = Rp(fins "7 (w5 -))
= p(Onr(w) My -+ My 1 (w)) = p(On,r (W) Zyy - + My - (w))
= Onr(w) (p(My ;) = p(Z;,))
= Opr(w) (Rpy(Nop) = Ry(Vnr(w;*))) (3.52)

for every n € N and w € ). Following the same line of reasoning as in the proof of part (ii)
of Theorem 3.2.2, we intend to show that R,(Ny1) — R, (Vs (w;-)) converges to 0 for P-a.e.
w by using part (d) of Assumption 3.2.1. To this end, we have to show, that the constant
in the Berry-Esséen inequality of Theorem 3.2.11 is P-a.s. bounded above. In particular,
Theorem 3.2.11 yields

1 2% 12m) P
dwass (No1, V(w5 ) < S’”(w) 4 L2 (w) s (WY (5 53
)\,”(W)T T(w) (mnﬂ' w)) / (mnT W)) /

for every n € N and P-a.e. w € Q. Here My, -(w), 5, (), Mk (w) and Mk (w) denote
the expected value, the variance, the second moment and the third moment of ji, ,(w;-),
respectively. We will now show, that the second fraction in the bracket on the right-hand side
of (3.53) converges to a constant for P-a.e. w. The convergence of the remaining summands

can be proven in the same way. By Theorem 2.5.5 in [25] we conclude that

1 ]\Afn(T;w)
M) —m® = (< Yi(w)! = m®)
Nu(Tiw) o
N No(r5w) N
= (Nulmw) (Y Yilw)? - Na(riw)m®) (3.54)
=1



converges to zero for P-a.e. w. Here part (a) in Assumption 3.2.1 about the existence of the
third moments of Y] ensures the applicability of the theorem. Following the same line of
reasoning, we conclude that ﬁz%ﬁ(a}) — m® converges to zero for P-a.e. w. Thus, an appli-
cation of Slutskys Lemma now yields the convergence of mr(w)/(Mr)?/? to m® /(m(2)3/2
for P-a.e. w. Using the same arguments as above, we conclude that the bracket on the right-
hand side of (3.53) converges to 2s2/m® + 12m® /(m®)3/2 4+ |m|/(m®)/2 for P-a.e. w.

Moreover by Proposition 3.2.10 along with part (b) of Assumption 3.2.1, we observe that

n o\1/2 T 1/2 "
m _ % <)\n_T> (h) — O(n12) (3.55)

for P-a.e. w. By part (d) of Assumption 3.2.1 on the (dwass, | - |)-continuity of R, at N1,
we can therefore conclude that R,(Ny 1) — R, (V- (w; ) converges to 0 for P-a.e. w. Hence,
the claim would follow by showing that

Onr@) 12y (3.56)
Anr(W)T
for P-a.e. w. An application of Wald’s formula yields
~ N ~(2) 1/2
U,T\L’T(w> _ ()\n,TTlnn,T((U)) / _ L ( A)\nT 77;\7/7(123_ w )1/2( n )1/27 (357)
AT AT VAN, (r;w) " AT

where (n/(A\,T))"? converges to 1/+v/¢T by part (b) of Assumption 3.2.1. Proposition 3.2.10
yields the convergence of A\, 7/ Nn(T; w) to 1 for P-a.e. w. Moreover, we have already shown
the convergence of m\y(w) to m® for P-a.e. w. Thus, we observe that (3.56) holds true.
This completes the proof of part (i).

(ii) The assertion follows from part (i), as well as part (i)—(ii) of Theorem 3.2.2.

(iii) and (iv): The assertions can be proven in the same way as the assertions (iv) and (v)
in Theorem 3.2.2. a

3.2.2 Proof of Corollaries 3.2.4 and 3.2.6

For the proof of part (v) of Corollary 3.2.4 we will need the following Proposition about the
joint asymptotic normality of the empirical mean in the collective model together with the
estimator for the estimator for the parameter in the Poisson distribution.

Proposition 3.2.12 Let (Y;) be a sequence of i.i.d. random variables with finite variance
s2 > 0 on a probability space (2, F,P) and (N,) be a sequence of random variables on
(Q, F,P), being independent of (Y;), such that for every n € N Ny is a Poiss,, -distributed
random variable. Furthermore assume that \,, — 0o. Then

\/E([ALZNLA;YJ _lTDim (3.58)

An
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as n — oo, where Z refers to some bivariate normally distributed random variable with mean

2
[0,0]" and covariance matriz ¥ := [ SO (1) ] .

Proof The claim in (3.58) would follow, if we could prove the pointwise convergence of
the characteristic function of the left-hand side in (3.58) to the characteristic function of Z.
Thus, it suffices to show that

lim IEI[ iAo sk X0 (1 m>+az(”;*1>>} — ¢ bladsito3) (3.59)

n—oo
holds for all a7, ay € R. Now we can use the tower-property of the conditional expectation
to derive

E[eim(alﬁi P (V—m)+a (e 1))]
_ E_E[eialﬁx P (g—m) tiaz Vi (Sn 1))(NA,LH
_ E_E[ zaler)\n(y —m) ‘N } Zazm(%—l))}

) ( [zalrzj " (Y; m)‘N }—e 1o %82) iz VAn (R 1))]
2
ais

+em E[ iaz VAn(2 *1))}
=: S1(n;aq,an) + Sa(n; ay, as). (3.60)
In the following we will show that
nh_}IIOlO Si(n;ar, ) = 0 (3.61)
nhi& So(n;aq, ) = e~ 2(ofs”+a3) (3.62)

hold for all aq, s € R, which would then yield the claim.
Step 1: We will first show that (3.61) holds true. To this use, we observe that

. N NA” )
E ezalﬁ 23:/\171 (Yj—m) ’ N)\n] = E|: H @wﬂﬁ(yj_m) )an}

j=1

=S B[ [T | (N, =k} 1
- i " An — {N/\n:k}

. Ny,
_ E[ezmﬁ(}ﬁ—m)} A , (363)



where for the fourth “=" we used the fact that the sequence (Y;) is independent of N, .
This was used to transform the expectation conditional on N, into a nonconditional one.
For the fifth “=" we then used that (Y;) is a sequence of i.i.d. random variables. To prove
(3.61) we use the representation on the right-hand side of (3.63) to obtain

’E[ (E'eialﬁzy?%m) ‘ N)\ :| N 6750[%52) eimOQ(l\;):l)] ‘

r r . 1 N/\n .
< E[|E[dv7Am T m_m)‘NA | —etets

)

} . (3.64)

¢ivAnez(r 1) H

2.2

- _— N
< E||E i1 7w T2t (15 —m) ‘ N,\n] — ema0ds

2

Y —-m N>\n 1
n

= E||E| Vv — e300

Using a Taylor expansion (in a4), yields

ialyl;m . 1 1 1 1
E[e VAn ]:1+ZCY1\/—)\_TLE[Y1—m]—ﬁ&%)\—nE[(Yi—WOZ]—l—O<>\—n)
1 1 1
:1 — 5&%82)\—” + O<)\—n>, (365)

where we used the facts that E[Y; —m] = 0 and E[(Y; —m)?] = s? for the last step. Note that
it is sufficient to consider the remainder o (1/)\,) in the above Taylor expansion, rather than
“o (—% a?s? /)", because s* was supposed to be constant. Moreover, we might regard a; as
a constant, too, because we only aim to prove the pointwise convergence of the characteristic
functions. Now for every n € N let 7, : R — R be defined by

1 1 1
")/n(Oél) = - 5 CY% 82 )\—n + o ()\—n) . (366)
Then the sequence
1 N, 1
N)\n’}/n<051):—505%82>\—): +N)\n0<)\—n>
LN N ()
_ Lo 24V, An An
=5 " + N 1) (3.67)

converges P-a.s. to —%Oz%SQ for every a; € R as n — oo, because N,, /A, converges to 1
P-a.s. by Proposition 3.2.10 and A0 (ﬁ) converges to zero. Hence (3.65)—(3.67) yield

o, YI=m 1 Nag, 1.2.2
lim E[ e } Y= dim (14 qa(ar)Me = el Paas. (3.68)
n—00 n—00

holds for every a; € R. Now dominated convergence applied to the right-hand side in (3.64)
(because the integrand is obviously bounded), along with (3.68) lead to the assertion in

(3.61).
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Step 2: For the convergence in (3.62) we observe that

Po {\/)\_,L(NA" . 1)}1 s N (3.69)

An

This is a direct consequence of Theorem 2.5.13 in [25], which leads to the assertion in (3.62)
and completes the proof. O

We are now in a position to prove Corollaries 3.2.4 and 3.2.6.

Proof of Corollary 3.2.4 (i) First we observe that

1 1 AT 1
TR W) = Ry Nat) = T (5 RoWae,) = 5 RN
AT 1 1
=: 51(n) + Sa(n). (3.70)

Using part (i) of Theorem 3.2.2 on the first summand, along with the fact that A, /n converges
to some constant ¢ > 0, we arrive at

(mn,fr -—m + Op-a.s. (n_1/2))

AT
)\7;T )mn,‘r + OP-a.s. (n71/2)

1/~ AT

_ (An,TTmn,T - )\nTm> + (1 -
n n
1

AT Ao TN
(-5

—]./2 1
- . T ) Finr + Opas (n”12). (3.71)

For the first summand, we will leave the representation in (3.71) as it is. Our investigations
for the Sy(n) will show that the second summand on the right-hand side of (3.71) will cancel
itself with an expression in (3.72). For Sa(n) we use the representation in (3.15) to derive

Sy = 2o (ML) (222 R, No) + 22)

noA AT AT
VAT [ AT Ny (7) ) MNT /o AT
I oo T ( T 1) iz Rp(Noj1) — - <1 T ) M. (3.72)

Now the claim would follow by showing that

VAT [ AT (Nn(f)
n N TN AT

— 1) mgz%‘)r Rp(NO,l) = Op-a.s. (n*1/2). (373)

By part (b) of Assumption 3.2.1, we conclude that v/, T/n = O(n~'/?). Furthermore,

Proposition 3.2.10 yields
AT AT
= = = = OP-a.s.<1)7
AT N, (1)
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as well as

(B0 1) = ot

Finally, Theorem 2.5.5 in [25] yields the P-a.s. convergence of T?LSf)T to m®, which leads to
the assertion in (3.73) and completes the proof.

(ii) First, we observe that

/\nT< 1 1

1 1 +*Poiss *Poiss
ERP(NWTL,O'%) - ERp(N P AnT) = )\n_TRp(Nmnp%> - T Rp(p : A”T)>- (3.74)

n
Now the claim follows by part (ii) of Theorem 3.2.2 along with the fact that A, /n converges
to some constant ¢ > 0 (part (b) of Assumption 3.2.1).

(iii) The assertion follows from (i) and (ii).

(v) To prove the assertion, we will show that

1 1 . o
Po {\/ﬁ<E Rp(./\/'anma%;) _ = Rp(M*POISS)\nT)> } — NO,c(52+m2)T2/7-- (375)

n
The claim will then follow by an application of Slutskys Lemma. To this end, for every
w € Q, let ¢ be a Ng, ()52 ()-distributed random variable on some probability space
(Qv, Fv P¥) and set
=, () =W (w)
Mn,T(') T ~

Onr(w)

Then J/\/[\;LJT has the standard normal distribution for every n € N, 7 > 0 and w € (2.
Furthermore, let R, be a p*Fsw7_distributed random variable and set
R,() —m,
Zn(r) = ——,

oy
where again m,, and o,, denote the mean and standard deviation of ;*FoSsx7  respectively.
Moreover, let v, denote the distribution of Z,,. Then we observe that

law{an Zn + mn} — M*PoisSAnT‘

Using part (c¢) of Assumption 3.2.1 on the positive homogeneity and cash-invariance of p, we
obtain for every w

1 1 *Poiss
ﬂ(ﬁ Ro(Nai, - ()52 () — - Ry (u A"T)>

= % (p(an,T(w) M, + () = plon Zo + mn>)
= % (371,7(00) Rp(Nojt) = 00 Rp(vn) + My o (w) — mn)
1

- = (7 (Rp(Nos) = Ry(0)) + Bur(w) = 7) Rp(Wo) + i r(e) = my ). (3.76)
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In the following we will show that

On

% (Rp(NO,l) - Rp(”ﬂ)) = o(1), (3.77)
%@,f — o) RyNot) = 0pan(l), (3.78)
Po {n_1/2 (T/I\ln,T - mn)}_l ELEN %,c(32+m2)T2/r7 (379)

such that the assertion would follow by an application of Slutsky’s Lemma.

Step 1: For every n € N we can use Wald’s equation along with part (b) of Assumption 3.2.1
to deduce

=0(1).
= )
Following the same line of reasoning as in the proof of part (ii) of Theorem 3.2.2, we conclude
that (3.77) holds true.

On AT m@ 1/2
(%)

Step 2: Using part (b) of Assumption 3.2.1 again, we observe that

L Gur =) = || L Gur — )
—F—\On,r — Onp s\ Onr — On),
N n I T

such that the claim in (3.78) follows immediately from assertion (3.42) in the proof of part
(v) of Theorem 3.2.2.

Step 3. Using Wald’s equation again yields

= —= (T = AT (= ) + (T = AT) + AT (i = m) )

n
)\n ~ /)\\n,TT 1~ ~
= ET /AT (mn,f —m +m < NT 1>> + % (AT — NT) (M, —m)
= Sg.l(n) -+ S&Q(Tl). (380)

In Steps 3.1-3.2 below we will show that

Po 53,1(71)_1 l) N07c(52+m2)T2/7. (381)
S3.2(n) e 0, ) (3.82)

such that the claim in (3.79) follows by an application of Slutskys Lemma.
Step 3.1: 1t suffices to prove that the following statement holds true:

~ 1 Nn(T)
My, r m N A_Z‘: Y; m d /
AnT ([ AnrT ] - { 1 D = VAT ([ Nn(T)JVn(JT)l J ] a { 1 D Z, (383

AnT AnT
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as n — oo, where Z’ refers to some bivariate normally distributed random variable with
2
s
0
follows directly by an application of the delta-method (see for instance [62], Section 3) w.r.t.

the mapping ¢ : R*? = R, ¢(z,y) = v+ my.

mean [0,0]" and covariance matrix ¥ := [ [1) } In this case the assertion in (3.81)

By
L)y
S [| me e Y _fm
B(r) 1

1Ny (gnr _ 1) 1Ny
= )\nT [ v Z}\?_:ET)( Z m) ] + )\nT [ Nn(T) )\nT ZZ:l ( Z m) (384)
AT

it suffices to show that

N (7)
VAT (N):(:') — 1) )\iT ; (Yi—=m) 250, (n— o0). (3.85)

The convergence in distribution of the first summand on the right-hand side in (3.84) to Z’
is a direct consequence of Proposition 3.2.12, where we observe that for every n € N and
7> 0 fixed, N, (7) is a Poissy, ,-distributed random variable. That is, the assertion in (3.83)
would follow by an application of Slutskys Lemma again.

To prove (3.85), we can use Proposition 3.2.10 to conclude that )\nT/Nn(T) converges to 1
P-a.s. Second, Lemma 2.5.6 in [25] along with an application of Slutskys Lemma yields

)
3

7)

1
IEDO{\/)\n_T‘1

)

(Yimm) ) 5 Moo

Hence, the left-hand side in (3.85) converges to zero in distribution by Slutskys Lemma,
which leads to the convergence in probability. Thus, the assertion in (3.85) holds true. This
completes the proof of part 3.1.

Step 3.2: Following the same line of reasoning as in the proof of (3.85) again, we conclude
that (3.82) holds true. This completes the proof of part (v).

(iv) The assertion can be proven in same way as part (v). Following the same line of reasoning
as in part (v), we can conclude that (3.77)—(3.78) hold true. Then, using arguments as in
the proof of Step 3.2 above, the P-a.s. convergence to 0 of the remaining summand follows
by an application of the Marcinkiewicz-Zygmund SLLN of Theorem 2.5.5 in [25]. O

Proof of Corollary 3.2.6 (i) First, we observe that for every n € N we have

1 1 _#Poissg .
ERp(Nanmag,T) - ER/)(N”J ’ )
)\n TT ( 1 1 _xPoissg ..
- ’ A—R N’\n -,02 - A—R ,Ltnﬂ‘ " )
(e W)~ 1l )
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_ AT Nn(T) ( 1 1 A*PoiSS;nJT)> (3.56)

n T XH’TTRp(Nﬁn,Tﬁ%,T) - me(Mn,T
Hence, we can use part (b) of Assumption 3.2.1 to deduce that A\, T/n converges to some
pAositive constant ¢1'. Furthermore, Proposition 3.2.10 yields the P-a.s. convergence of
N, (7)/(AnT) to 1. Together with part (i) of Theorem 3.2.3 this yields the claim of part
().

(ii) The assertion follows from part (i) together with part (iii) of Corollary 3.2.4.

(iii)—(iv): The assertions can be proven in the same way as assertions (iv)—(v) of Corollary
3.2.4. O
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Part 11

Estimation under constant collective
sizes
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Chapter 4

Nonparametric estimation under
constant collective sizes in the
individual model (revisited)

In the first part of this thesis we have developed a theory to estimate individual premiums
against the background of increasing collective sizes, assuming that estimations were only
based on the last “few” insurance periods rather than the whole observation history. In
contrast to this theory, we now assume that the collective size is constant and the number
of observations is increasing. In this chapter we will basically recall the ideas presented
in [12] to derive the asymptotic distribution and almost sure bootstrap consistency for the
estimated premiums in the individual model.

To this end, let (X;) be a sequence of nonnegative i.i.d. random variables with distribution
. Throughout this chapter we will refrain from our notation used in the former chapters.
From now on we will therefore use the distribution function F' associated with p to develop
our theory, instead of focusing on the distribution pu itself. For every n € N let

In accordance with Chapter 2, we will think of S,, again as the total claim size in a homo-
geneous insurance collective with n individual risks. The distribution function of \S,, is then
given by F*", where [™*" refers to the n-fold convolution of F. That is, F*? := 1}y ) and

For) = / (2 = 20 1) AP (1)
/ / (= 2y — e —21) A (1) - dF (1) (4.1)

for every n € N. We regard F*" as the image of a mapping C,,. To this end, let C,, : F — F
be the functional defined by
Cn(F) = F™, (4.2)
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where F denotes the set of all distribution functions. Hence, an adequate total premium
w.r.t. a risk measure p would then be given by the evaluation of the risk functional R, at
™ that is by

Ry =R, (C.(F)). (4.3)

Note, that in this chapter we regard the risk functional as a functional of the distribution
function F', rather than the measure p. This does clearly not impose a restriction, whenever
p refers to a law-invariant risk measure. In view of (4.3), we stress the fact again, that we
assumed the collective size n € N to be constant throughout the second part of this thesis. Of
course, a suitable individual premium could then be obtained by dividing the total premium
in (4.3) by the collective size n. However, as the collective size does not vary, this would
not change the asymptotic behavior essentially. Throughout the rest of this chapter we will
therefore refer to R,, as the premium rather than the individual premium.

The rest of this chapter is organized as follows. In Section 4.1 we will briefly introduce the
estimator for the premium in the individual model. In Section 4.2 we will then introduce the
notion of uniform quasi-Hadamard differentiability, which will be needed for the determina-
tion of the asymptotic distributions with the help of the delta-method in the form of [12].
Section 4.3 will then be devoted to deriving the asymptotic distribution and establishing al-
most sure bootstrap consistency for the sequence of estimated premiums. The representation
in (4.3) already points out that this will be achieved by an application of the delta-method
and the chain rule in the form of [12]. Again, we stress the fact that the presented theory
throughout this chapter is a recapitulation of the results in [12].

4.1 An estimator for the premium in the individual
model

This section is devoted to the estimation of the premium R,, as in (4.3). To this end, let
u € N, and Y7, ...,Y, be nonnegative i.i.d. random variables on a probability space ({2, F,P)
with distribution function F. We will think of Yj,... Y, as single claims, which have been
reported to the insurance company in the past. For every v € N, an estimator for the
unknown distribution function F' of the single claim distribution would then be given by the
mapping F\u : 2 — F, defined by

u

~ 1
F, ==Y 1y o), 4.4
22 e (4.4)

i=1

where [F denotes the set of all distribution functions. Hence, an estimator for the distribution
function of the total claim amount would then be given by

F .= C,(F)),
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where C,, is as in (4.2). A reasonable estimator for the premium based on a collective of n
clients and u observations, would then be given by the corresponding plug-in estimator

R = R,(Co(EL)). (4.5)

In the following we will be interested in deriving the asymptotic distribution of the estimated
premium in (4.5) as u tends to infinity and n remains constant. Furthermore we will establish
the asymptotic distribution and almost sure bootstrap consistency for the estimator in (4.5).

4.2 The notion of uniform quasi-Hadamard differentia-
bility

In this section we will introduce the notion of uniform quasi-Hadamard differentiability,
which will be used to derive a delta-method and bootstrap results for plug-in estimators
in our present setting. The uniform quasi-Hadamard differentiability, as introduced in [12],
extends the notion of quasi-Hadamard differentiability, as introduced in [10]. To this end,
let V and V be vector spaces. Let E C V and E C V be subspaces equipped with norms
| - |lg and || - ||g. Furthermore, let

G VG — {}
be any map defined on some domain Vi C V.

Definition 4.2.1 Let Eq be a subset of E, and S be a set of sequences in Vg.

(i) The map G is said to be uniformly quasi-Hadamard differentiable w.r.t. S tangentially
to Eo(E) with trace E, if G(y1) — G(y2) € E for all y1,y> € Vi, and there is some
continuous map GS E; — E such that

G(zy + €ury) — G(24)

Eu

GS(ZB) —

lim
U—r 00

=0 (4.6)

holds for each quadruple ((z.),z, (xy), (€4)), with (z,) € S, x € Ey, (x,) C E, satisfy-
ing ||z — z,||lg = 0, as well as (z, + e,2y) C Vg, and (g,) C (0,00) satisfying €, — 0.
In this case the map Gs is called uniform quasi-Hadamard derivative of G w.r.t. S
tangentially to Ey(E).

(ii) If S consists of all sequences (z,) C Vg with z, —z € E, u € N, and ||z, — z||g — 0 for
some fixed z € Vg, then we replace the phrase “w.r.t. 8”7 by “at z” and “‘Gs” by “G.”.

(11i) If S consists only of the constant sequence z, = z, u € N, then we skip the phrase
“uniformly” and replace the phrase “w.r.t. S” by “at z” and “Gs” by “G.”. In this
case we may also replace “G(y1) — G(ya) € E for all yi,y» € Vg7 by ‘Gly) —G(z) € E
for all y € V.
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(i) If E =V, then we skip the phrase “quasi-".

(v) Ifﬁ =V, then we skip the phrase “with trace E”.

The definition extends the classical notion of uniform Hadamard differentiability as intro-
duced in Theorem 3.9.11 in [61] in the following sense. Using the differentiability concept in
(i) with S as in (ii), leads to the classical uniform Hadamard differentiability. Proposition
4.1 in [12] shows that it might turn out to be beneficial to refrain from insisting on E =V
as in part (iv). Of course the condition of the uniform quasi-Hadamard differentiability gets
weaker the smaller the set S gets.

4.3 The asymptotic distribution and almost sure boot-
strap consistency of the estimated premium in the
individual model

In this section we aim to derive results about the asymptotic distribution and almost sure
bootstrap consistency of the estimated premium in the individual model. To this use, we
will first introduce the bootstrap estimator for the premium in our present setting. The
presented theory is based on Example 3.3 in [12]. Subsequent to the introduction of the
bootstrap estimator, we will first state a general theorem about the asymptotic distribution
and almost sure bootstrap consistency of the estimated premium for general risk measures
p. To serve a concrete example, we will then consider the premium derived from the Average
Value at Risk of Example 1.2.4 and state the corresponding asymptotic distribution.

In accordance with the former section, let (Y;) be a sequence of i.i.d. random variables on
a probability space (2, F,P) with distribution function F', and let F,, be as in (4.4). Let
(Q, F', ') be a second probability space and set

(Q,F,P):=(QxQ, FoF ,PaP).

Let (W,;) be a triangular array of nonnegative real-valued random variables on (£, ', '),
such that (Wy1,..., Wy,) is an exchangeable random vector for every u € N, and define the
map FP:Q — F by

FB(w,u) = ZWM ) Ly (@) 00)- (4.7)

Note that the triangular array (W, ;) and the sequence (Y;), regarded as random variables
on the product space (Q, F,P), are independent. Of course we will tactically assume that
(¥, F',IP") is rich enough to host all random variables used below. Let W, := %Z;‘Zl Wi
Now we assume that F' satisfies [ ¢3dF < oo and that the following assertions hold.

Al supyey [y P/ [[Way — Wl > 1]V2 dt < oo.
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A2. \/LEJE’[maxlgigu Wi — WuH — 0.

A3, % (Wuy — W,)? — 1 in P-probability.

Examples 3.6.9 and 3.6.10 in [61] have shown that conditions A1.-A3. are met under the as-
sumptions of parts (i) and (ii) of Example 2.4.2, that is, if the resampling scheme corresponds
to Efron’s bootstrap or the Bayesian bootstrap, for instance.

Note that we might regard (4.7) as a bootstrap version of the estimated distribution func-
tion F, of the single claim distribution. In this context the bootstrap estimator for the
distribution function of the total claim distribution is given by

(F2)™ = Cu(EY).
Hence, the bootstrap estimator for the premium in the individual model is given by

RE, =R, (Cu(FL)). (4.8)

Let D be the space of all cadlag functions. Moreover, let A > 0 and ¢, : R — [1,00) be a
weight function given by ¢y (x) := (1 + |z|)*. Let Dy, be the subspace of D consisting of all
elements v € D, satisfying ||v]|s, = ||[voa]lec < 00 and lim, ,1 |v(z)| = 0. Furthermore,
let Fy, denote the subspace of F consisting of all elements F' € F satisfying [ ¢ dF < oo.
Note that the latter condition is equivalent to [ |z|*dF(x) < oo. Moreover, let Fy denote
the subspace of all elements F' € F satisfying [ |z|* dF(z) < oo.

To guarantee that the composition R, o C, is well defined, we have to assume that the risk
functional is a mapping defined on Fy for some X' > 0. Choosing F' € F,;,, Lemma 2.2 in
52] yields that C,,(F4,) C Fy, for every A > X, such that R, o C, is well defined on Fy, .

The formulation of the following theorem will require the definition of an F-Brownian bridge.
The latter is defined as a centered Gaussian process with covariance function

P(to,tl) = F(to A t1)<1 — F(to V tl)) (49)

Theorem 4.3.1 Let A > X > 1 and F € Fy,,, that is [ $3dF < co. Let R, ﬁn,u,ﬁﬁu be
as in (4.3), (4.5) and (4.8), respectively. Moreover, let B be an F-Brownian bridge.

Let S be the set of all sequences (G,,) C F satisfying G, — Cn(F) pointwise. Furthermore,
assume that R, is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to Dy, (Dy, )
with uniform quasi-Hadamard derivative R, s. Then we have

\/E (ﬁn,u — Rn) % kp,Cn(F) © Cn,F(BF)a in (R7 B(R))

and

5
/N

pey)
S w
s
B

|
o)y

un(w)) d, Rp,cn(p) o C'n,F(BF), in (R,B(R)) P-a.e. w,
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where Cop py = Dgy — Dy,, is defined by

Con;)(v) == nvx XD =p /U( c—x)dF* Y (2). (4.10)

The assertion in Theorem 4.3.1 is an obvious special case of the assertion in Theorem 5.2.1.
We will therefore not prove Theorem 4.3.1 at this point.

As we have seen in Section 1.3, the Average Value at Risk at level a € (0,1) is a distortion
risk measure and thus, possesses an integral representation w.r.t. a distortion function. More
explicitly, let (2, F,P) be an atomless probability space and let L' (2, F,P) denote the usual
L'-space. Then the Average Value at Risk at level a € (0,1) is the map AVAQR,, : L' -+ R
defined by

0

AV@R,(X) := — /

—00

go(Fx(2)) dz + / (1= ga(Fx () de.

where go(t) := == max{0,¢ — a}. In view of the upper identity, we might also think of
AV@R,, as a statistical functional R, : F; — R, defined by

Ru(F) = —/ go(F(2)) dz + /Ooo(l—ga(F(x)))dx. (4.11)

We will now consider the composition of the Average Value at Risk functional R, as defined
in (4.11), and the compound distribution functional C,, as in (4.2). Note that for any A > 1,

Lemma 2.2 in [52] yields C,(Fy,) C Fy, such that the composition R, oC, is well defined on
Fy,. Let Kqp : Fy, — R be defined by

Kan = Ra 0 Cy. (4.12)

Note that in this special case the premium R,,, the premium estimator ﬁn,u, as well as the
bootstrap premium estimator Rg,u are given by kg, (F), kan(F.) and K, (FP), respectively.

Theorem 4.3.2 Let A > 1 and F € Fy,. Furthermore, assume that C,(F) takes the value
1 — « only once. Then the map Koyn = Ra 0 Cy @ Fy, (C D) — R is uniformly quasi-
Hadamard differentiable at F tangentially to Dy, (D, ), and the uniform quasi-Hadamard
derivative Fonr : Dy, — R is given by fonr = Rmcn(p) o C.(mp), i.e.

o (0) = / G (Cal F)(2)) Con ) (0) () iz, (4.13)

where g, (t) = 2= 1a_a)(t) and Ci r is as in (4.10).

l—«o

Proof The proof of the assertion would be a direct consequence of Corollary 4.6 in [12] if
we could show that the mapping C, is uniformly quasi-Hadamard differentiable tangentially
to Dg, (Dg,) with trace Dy, and uniform quasi-Hadamard derivative C(,, r) given by (4.10).
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The latter can be obtained as a special case of Proposition 4.3 in [12] by choosing p, = 1
and py = 0 for every k # n. a

As a direct consequence of Theorems 4.3.2 and 4.3.1 we obtain the following corollary on
the asymptotic distribution and the almost sure bootstrap consistency of the premium in
the individual model.

Corollary 4.3.3 Let A > 1 and let F € Fy,,. Moreover, let E, and ﬁf be as in (4.4) and

(4.7) and let Bp be as in (4.9). Assume that C,(F') takes the value 1 — « only once. Then
we have

Ja <na,n(ﬁu) - ma,n(F)) 4 fanr(Br),  in (RB(R)) (4.14)

and

\/a(ﬁa,n(ﬁf(w, ->>—ﬁa,n(ﬁu(w>>) 4 fanr(Br),  in (RBR)) P-ae w. (4.15)
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Chapter 5

Semiparametric estimation under
constant collective sizes in the
collective model

In this chapter we aim to derive similar results to those of the former chapter for the collective
model. More explicitly, we will aim to derive the asymptotic distribution of the sequence
of estimated premiums in the collective model. Again, we assume that the collective size is
constant and the number of observations is increasing. In contrast to the former chapter, our
theory has to be modified because the quantity to estimate is no longer just the empirical
distribution function, but also the distribution of the number of claims. In the setting of
the former chapter the latter distribution was nothing but the dirac measure at n. In the
following we will therefore expand our theory to a wider class of claim number distributions.

To embed this notion in a mathematical context, let (X;) be a sequence of nonnegative i.i.d.
random variables with unknown distribution function F. Moreover let N be an Ny-valued
random variable being independent of (X;). Furthermore, let

We will think of Sy again as the future total claim size of an insurance collective producing
homogeneous claims. Note that we oppress the dependence of N on n € N throughout
this chapter, as we assume the collective size to be constant. Again, the distribution of N is
unknown. However in many practical applications one does roughly know which parametrical
class of distributions the distribution of N belongs to. In the Cramér-Lundberg model of
Section 3.1 for instance, we know that this role is played by a Poisson distribution with
unknown parameter § € (0,00). In particular, the distribution of the number of claims is
then specified by a nonnegative sequence p(0) := (pi(6))ren, in dependence on the claim
intensity 6 € (0,00). In this particular example, for every k € Ny, pr : (0,00) — R is a
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mapping defined by
oF
pk(g) = E € 0

In this context, the distribution function of the total claim distribution is given by
Poi — 0
*Poissg .__ k-
Frroso = N F e (5.1)
k=0

where F** refers to the k-fold convolution of F', as introduced in (4.1). In accordance with
Chapter 4, we will regard F*Po'% as the image of a mapping defined on the set of parameters
and the underlying distribution functions. To this end, let C : (0,00) x F — FF be defined by

o Qk
C,F):= ZF*RHW. (5.2)
k=0 '

In the following we will refer to C as the compound distribution functional. The corresponding
(total) premium w.r.t. a risk measure p is then given by

R :=R,(C(0, F)). (5.3)

Note that there is a hidden dependence of the premium on the collective size n, because
the parameter modeling the claim intensity ¢ does depend on the size of the underlying
collective. However, as we assumed the number of clients in the collective to be constant,
we will omit this dependence because it does not affect the asymptotic behavior essentially.
Once again, a suitable individual premium could be obtained by dividing the quantity in
(5.3) by n.

Our goal in this chapter is to derive the asymptotic distribution of the estimated premium in
this context. Furthermore, we will give an outlook on the almost sure bootstrap consistency
of the estimated premiums. Section 5.1 will be devoted to the choice of estimators. To
this end, let R, be an estimator for the premium in (5.3), where u refers to the number of
observations taken into account for the estimation. Based on ﬁu, we will aim to derive the
asymptotic distribution, that is, the weak limit of the laws of

Ja (ﬁu - R) (5.4)

as the number of observations u tends to infinity. In practical applications this error distri-
bution can theoretically be used to derive asymptotic confidence intervals for the premium
R. However, in many applications a derivation of the exact asymptotic distribution of the
sequence in (5.4) is more or less impossible. A widely used technique to handle this problem
is again the bootstrap. To this end, let { denote the limit in distribution of the sequence
in (5.4). Section 5.3 will give an outlook on the almost sure bootstrap consistency of the
sequence of estimated premiums. The latter means, that

Va (7@5@, - ﬁu(w)) ¢ Pae w, (5.5)
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holds, where 7/55 is a suitable bootstrap version of ﬁu As the bootstrap version 7/55 only
depends on the bootstrap mechanism and the initial sample w, one can at least numerically
determine the asymptotic error distribution by means of a Monte-Carlo procedure. A central
tool to derive the asymptotic distribution of the initial sequence of estimators will be the
recently established functional delta-method for uniformly quasi-Hadamard differentiable
functionals in the form of Corollary 3.1 in [12]. The representation in (5.3) points out that
we will consider the premium R to be a composition of the mapping C, mapping the claim
intensity parameter and the distribution function onto the compound distribution function,
together with the risk functional R,. To this end, we will also need the chain rule for
uniformly quasi-Hadamard differentiable functionals in the form of Lemma A.5 in [12] to
prove the uniform quasi-Hadamard differentiability of the composition.

The rest of this chapter is organized as follows. In Section 5.1 we will give a brief introduction
to our considered estimators and introduce the estimator for the premium. In Section 5.2 we
will present our main results about the asymptotic distribution of the estimated premiums.
We will first formulate these results w.r.t. a general risk measure p and will then consider
the premium w.r.t. the Average Value at Risk at level a € (0, 1) to serve a concrete example.
Section 5.3 will then give an outlook on the almost sure bootstrap consistency of the sequence
of premium estimators if we could achieve almost sure boostrap consistency of the sequence
of underlying estimators for the claim intensity 6 and the single claim distribution function
F'. In Section 5.4 we will then prove our results of Section 5.2. To this use, we will first recall
the recently established delta-method for uniform quasi-Hadamard differentiable functionals
of Corollary 3.1 in [12], which will be the central tool to determine the asymptotic error
distribution of our sequence of premium estimators. This will be done in Section 5.4.1. In
Section 5.4.2 we will then determine the uniform quasi-Hadamard derivative of the compound
distribution functional C. Furthermore, we will derive the asymptotic distribution of the
estimated compound distribution function, that is, the compound distribution functional C
applied to our estimators for # and F'. This will be done in Section 5.4.3. The latter will be
needed to derive results on the asymptotic distribution of the estimated premiums with the
help of the delta-method.

5.1 A semiparametric estimator for the premium in

the compound Poisson model

Our next goal is again to estimate a suitable premium for the insurance period to come based
on historically observed claim amounts and claim numbers. To this end, let Ny,..., N, be
i.i.d. random variables on a probability space (2, F,P) with N; ~ Poissy for some 6 € (0, 00).
Each N; represents the number of claims, which have been reported to the insurer during
the i-th insurance period. Moreover, let (Y;) be a sequence of i.i.d. random variables on
(Q, F,P) with distribution function F, being independent of (Ny,...,N,). In this case
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Yi,..., YN, 4. 4N, represent the claim sizes, which have been reported to the insurance com-
pany throughout the last v € N insurance periods.

To estimate the unknown parameter 6 of the Poisson-distribution, we can use the standard
Maximum-Likelihood Estimator (MLE). In particular, for every v € N, let 6, : Q© — (0, 00)
be the mapping defined by

—~ 1 &
0, = — N;. 5.6
” ;:1 (5.6)

In this case é\u provides an unbiased estimator for 6 € (0,00). To simplify the notation, let
N(u) :== Ny+...+ N,. Note that the total number of claims N (u) might as well be regarded
as the value of a homogeneous Poisson-process with rate 1 at time uf. Thus, the mapping
ﬁu : Q — F, given by

R TR
F, = —— Liy; 00 (5.7)
N (u) ZZ1 [Yi,00)

is the standard nonparametric estimator for the unknown distribution function F', provided
N(u) > 0. For N(u) = 0 we simply set F,, = ljgo). Here F denotes the space of all
distribution functions. Following this line of reasoning, we can use

~+Poiss~ ~ o~
E, U =C(6,, F,) (5.8)
to estimate the distribution of the total claim, where C is the compound distribution func-

tional as in (5.2). Hence,
Ry :=R,(C(0y, F.)) (5.9)

provides a reasonable estimator for the total premium. Consequently, an estimator for the
individual premium is then given by R, /n.

5.2 Asymptotic distribution of the premium estimator
in the compound Poisson model

In this section we are going to derive results about the asymptotic distribution of the sequence
of estimated premiums. We will first state a general result about the asymptotic distribution
of the estimated premiums. To be able to formulate this result, we will assume the underlying
risk functional to be uniformly quasi-Hadamard differentiable in the sense of Definition 4.2.1.
To serve a concrete example, we will then determine the asymptotic distribution of a sequence
of estimated premiums based on the Average Value at Risk of Example 1.2.4.

Theorem 5.2.1 will be the general formulation of our main theorem in Chapter 5. In the
formulation of the theorem we will consider the premium w.r.t. a general risk measure p.
To guarantee that the composition R, o C is well defined, we have to assume that the risk
functional is a mapping defined on Fy for some A > 0. Choosing F' € Fy4,, Lemma 2.2 in
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[52] yields that C((0,00) x Fy,) C Fy, for every A > X, such that R, o C is well defined on
(0, OO) X Ffﬁ)\'

Theorem 5.2.1 Let A > X > 1, 0 € (0,00) and let F € Fy,,, that is [ ¢3dF < co. Let R
and R, be as in (5.3) and (5.9), respectively. Moreover, let & be a Ny g-distributed random
variable and Br be an F-Brownian bridge, as in (4.9), being independent of &.

Let S be the set of all sequences (G.,,) C Fy, satisfying G, — C(0, F) pointwise. Assume
that R, is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to Dy, ,(Dg,,) with
uniform quasi-Hadamard derivative R, s. Then we have

1

N (ﬁu — 72) L Ry 0.0 0 Ciory <€, %BF>7 in (R, B(R)),

where Cig  : (0,00) x Dy, — Dy, is given by

Cio,r(w,v) —U*Zk‘F*k 2 6 fwe” GZ:F*’C (kOF1 — 6F). (5.10)

The proof of Theorem 5.2.1 can be found in Section 5.4.4.

We will now consider the composition of the Average Value at Risk functional with the
compound distribution functional. More explicitly, we will prove an analogue to Theorem
5.2.1, where the role of p is played by the Average Value at Risk at level a € (0,1). To this
end, let again « € (0,1) and R, : F; — R be as in (4.11). Let x4 : (0,00) x F — R be
defined by

Ko = RaoC. (5.11)

In this special case the premium R and the premium estimator ﬁu are given by k. (0, F)
and Iia(au, F,), respectively. We will use the results of Proposition 4.1 in [12] on the uniform
quasi-Hadamard differentiability of the Average Value at Risk functional. Let A > 1. Note
that Lemma 2.2 in [52] yields C((0,00) x Fy4,) C Iy, such that the composition R, oC is well
defined on (0, 00) x Fy,.

Theorem 5.2.2 Let A > 1, 6 € (0,00) and, F € Fy,,. Assume that C(6,F) takes the
value 1 — a only once. Then the map Ky := Ry 0C : (0,00) X Fy, (C D) — R is uniformly
quasi-Hadamard differentiable at (8, F) tangentially to ((0,00) X Dy, )((0,00) x Dy,), and
the uniform quasi-Hadamard derivative fq o r : R X Dy, — R is given by fqpr = 7.3&76(971:) o
C(QJ-T‘), 1.€.

Fa,0,r (W, V) ::/g;(C(Q, F)(2)) Cip.r) (w, v) () da, (5.12)

for every (w,v) € R x Dy, , where g, (t) := =1(1_a1(t) and C.(97F) is as in (5.10).

As a direct consequence of Theorem 5.2.2 and Corollary 5.4.8 we obtain the following corol-
lary. Note that this is a special case of 5.2.1, where the role of p is played by the Average
Value of Risk at level o € (0, 1).
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Corollary 5.2.3 Let A > 1, § € (0,00) and let F € Fy,,, that is [ ¢3 dF < co. Let 9, and
F, be as in (5.6) and (5.7), respectively. Moreover, let & and Bp be as in Theorem 5.2.1.
Furthermore, assume that the assumptions of Theorem 5.2.2 are fulfilled. Then we have

Ja <na(§u, F) — kal0, F)) 4 fwor (5, %BF), in (R, B(R)).

Proof of Theorem 5.2.2 We intend to apply Lemma A.5in [12] to H :=C: O xF,, — F,
and H = R : F; — R. Note that in this context H refers to the notation used in
the formulation of Lemma A.5 in [12] and is not to be confused with the compound tail
functional of Section 5.4.2. We will show that the following conditions are fulfilled:

(a) For every sequence (6,, F,,) C (0,00) x Fy, satisfying max{|6, — 0|, || F, — F||¢,} — 0,
we have
lim C(0,, F.,)(t) = C(0,F)(t), foreveryt e R.
U— 00
1s uniformly quasi-Hadamard differentiable at (¢, tangentially to ,00) X
b) C i iforml i-Had d diff iabl 0, F iall 0 Dy,
,00) X with trace and uniform quasil-Hadamard derivative .9F satistying
0 Dy, ) with Dy, and unif i-Had d derivative Cg ) f

8(971:) (D¢)\) C D¢>\/ .

(c) Rq is uniformly quasi-Hadamard differentiable tangentially to Dg,,(Dy,,) with trace
Dy,, at every distribution function of Fy,, taking the value 1 — o only once.

To verify that the assumptions of this lemma are fulfilled, we recall from the discussion
above Corollary 5.2.2 that C((0,00) x Fy,) C F;. Conditions (a) and (b) can be proven in
exactly the same way as conditions (a) in (b) in the proof of Theorem 5.2.1. It was shown
in Proposition 4.1 in [12] that R, is uniformly quasi-Hadamard differentiable tangentially
to Dy, (D¢A,> with trace Dgy,, at every distribution function taking the value 1 — a only
once. Hence, with the help of the chain rule of Lemma A.5 in [12] we conclude that the
composition k, := R4 0C : (0,00) x Fy, — R is uniformly quasi-Hadamard differentiable
at (0, F) tangentially to ((0,00) x Dy, )((0,00) x Dy,) and the uniform quasi-Hadamard

derivative is given by K9 r := Rac(s,r) © Cio,F)- O

5.3 An outlook on almost sure bootstrap consistency

of the estimated premiums

Before we present the proofs of the results of the former chapter we first take our time to
give an outlook about almost sure bootstrap consistency for the estimated premiums. To
this end, we will first introduce a bootstrap version for the premium estimator of Section 5.1.
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The main tool to derive these results will be the functional delta method for the bootstrap
of uniformly quasi-Hadamard differentiable functionals of Corollary 3.2 in [12].

Let again, Ni,... NN, be i.i.d. random variables on a probability space (2, F,P) with N; ~
Poissy for some 6 € (0,00). Moreover, let (Y;) be a sequence of i.i.d. random variables on
the same probabﬂlty space with distribution function F', being independent of (Ny,..., N,)
and let 6, and F, be as in (5.6) and (5.7), respectively. Let (2] x Q) F; @ F5,P] @ %) be
another probability space and set

(Q,F,P):=(Qx (U x ), F(F @ F),P (P, @P))).

Now let (Wéll)) be a triangular array of nonnegative real-valued random variables on the
probability space (2}, F;,P}) and assume that for every u € N the random vector

is multinomially distributed according to the parameters v and p; = ... = p, = % Note

that this setting is nothing but Efron’s bootstrap of part (i) of Example 2.4.2. Now let
/9\5’ : Q x Q) — (0,00) be the map defined by

0 (w,w]) = Z (w). (5.13)

Note, that (NV;) and (WL(LlZ)) regarded as families of random variables on the probability space
(Q x Q,F @ F|,P®P)) are independent. Given the value of N(u;w), let (W](VQ()U w).4) be
a second triangular array of nonnegative real-valued random variables on (€, 75, P}) and
assume that for every u € N the random vector

(2) (2)
(WN(u;w),l’ ] WN(u;w),N(u;w))

is multinomially distributed according to the parameters N(u;w) and p; = ... = py(uw) =
m, if N(u;w) > 0. In this setting we may regard (}_/Z) _arii (W](\,Q()u)’i) as families of inde-
pendent random variables on the whole product space (€2, F,P). Furthermore, the bootstrap
weights (WQEIZ)) and (W](\?()u’i) are by construction independent on the whole product space
(Q, F,P). Then for every u € N, let ﬁB : Q0 x Q) — F be the map defined by

N (u;w)

= 2
FP(w,wh) = —— ICT Z W, (h) L0, (5.14)

if N(u;w) > 0 and ﬁf(w, wh) := Ljg) else. Here we will tactically assume that the proba-
bility spaces are rich enough to host all the random variables used above.

With the help of the bootstrap versions of our original estimators, we can now define a
bootstrap estimator for the premium R. To this end, we use C(Q FB) as a bootstrap
estimator for the total claim amount, and let RB Q — R be the mapping defined by

RE .= R,(C(62, FP)). (5.15)
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As mentioned before, we aim to apply Corollary 3.2 in [12] to the sequences of underlying
estimators (672) and F2. More explicitly, if we could show that

Op(w, ) buw@) |\ o [ ¢
Vau ( ﬁu(% )] - ﬁu(w) > — %BF : P-ae. w (5.16)

in (R x Dy,,B(R) @Dy, ,max{| - |, ]| - |lsy}), then we could use the functional delta-method
for the bootstrap of uniformly quasi-Hadamard differentiable functionals in the form of
Corollary 3.2 in [12] to derive almost sure bootstrap consistency for the sequence of estimated
premiums. In this case one could show that under the assumptions of Theorem 5.2.1, the
following assertion holds true

=
Vo

in (R, B(R)), where Cg.r) : (0,00) x Dy, — Dy, is as in Theorem 5.2.1. Of course one could
obtain similar results under the assumptions of Corollary 5.2.3 for the special case when the
role of R, is played by the Average Value at Risk at level o € (0, 1).

\/ﬂ <7€5(w, ) — ﬁu(w)> i> RP’C(Q,F) o C(gf) <§, BF>, P-a.e. W,

5.4 Proofs

5.4.1 A functional delta-method for plug-in estimators of uni-
formly quasi-Hadamard differentiable statistical functionals

This section gives a brief summary of the techniques introduced in [12]. We will then
concretize the delta-method and the bootstrap results from [12] to fit our present setting.

Based on the notion of differentiability in Definition 4.2.1 (as introduced in [12]), we now turn
to a functional delta-method for plug-in estimators of statistical functionals. Due to this,
we have to introduce some further notation. In accordance with the model discussed at the
beginning of this chapter, we will consider a “two-dimensional” set of estimators to estimate
the underlying parameter of the distribution of the number of claims and the distribution of
the single claims. The following notation is an extension of the one used in Section 3 in [12].

To this end, let d € N and let © C R? be an open set and write || - || for the euclidean
metric on RY. Let D be the space of all cadlag functions v on R with finite sup-norm
|vllo = supseg [v(t)|]. Let D be the o-algebra on D generated by the one-dimensional
coordinate projections m(v) = v(t), t € R. Let ¢ : R — [1,00) be a weight-function.
Here we refer to a weight-function as a continuous function, being non-increasing on (—oo, 0]
and non-decreasing on [0, 00). Let D, be a subspace of D, consisting of all elements = € D
satisfying ||z[|y := ||7¢||s < 00 and limpj_o [2(t)| = 0. The latter condition is automatically
satisfied whenever limyy_,o, ¢(t) = co. Let Dy := D N Dy be the trace o-algebra on Dy.
Furthermore we will write B; for the o-algebra on Dy, generated by the || - [[4-open balls.
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It was shown in Lemma 4.1 in [11] that B coincides with Dy. In the following we will write
~~° for the convergence in distribution w.r.t. an open-ball o-algebra, such as Bj.

Let Cy be a || - ||g-separable subspace of Dy and assume that Cy € Dys. Note that for any
distribution function F' the set C, can be chosen to be the set Cy4 p of all v € Dy whose
discontinuities are also discontinuities of F. The separability of Cy » was shown in Corollary
B.4 in [38].

We now equip the product space R? x Dy with the metric c?, defined by J((xl, x9), (y1,92)) :=

max{||z1 — 1], |72 —y2|l4} for every (z1,22), (y1,42) € R?x Dy. We equip the product space
R? x D, with the o-algebra B(R?) ® D,. Furthermore, let

G:DG)—V

be a map defined on a set D(G), such that the domain D(G) is a product space of R? with
a set of distribution functions of finite (not necessarily probability) Borel measures on R.
That is, D(G) C R% x D. Moreover, let V be any vector space.

Let (92, F,P) be a probability space. Let (N;) be a sequence of i.i.d. integer-valued random
variables on (Q, F,P). Let © C R%. Furthermore, assume that the distribution of V; belongs
to a certain class of distributions indexed by a parameter ¥ € ©. More explicitly, we can
characterize the distribution of the count variables (N;) by a sequence p(9) := (pr(?))keny,
satisfying

Zpk(ﬂ) =1, for every ¥ € ©.
k=0
Let U, : © — © be an estimator for the unknown parameter 9. Let (Y;) be another sequence

of i.i.d. random variables on (2, F,P) being independent of (N;). Moreover, let F,, : Q — D
be the empirical distribution function based on a sample of size N;+. ..+ N, and observations

Yi,. .., YN+ 4w, In this context, the empirical distribution function is given by
. 1 Ni+...+Ny
F,=— 1y oo 5.17
Ni+...+ N, ; [¥i.00) (5.17)

Assume that [0y, F,) takes values only in D(G). We are now able to formulate a delta-
method for the upper setting.

Theorem 5.4.1 Let ([J,, Fu]') be a sequence in D(G) and S := {([Vu, Fu]')}. Let (a,) be
a sequence of positive real numbers with a, — oo, and assume that the following assertions

hold:

~

(a) ay ([Uu, FL) — [9u, F]) takes values only in R? x Dy and satisfies

N EE) R —

97

J
F,




in (R? x Dy, B(RY) @ B, max{|| - ||, || - [l4}) for some (R? x Dy, B(R?) ® B3)-valued
random variable [By, Bo]' on some probability space (o, Fo,Po) with [By, Ba]' (o) C
R? x C¢.

~

(b) ay (G(9y, F,) — G0y, F,)) takes values only in E and is (F, B°)-measurable.

(¢) G is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to (O x Cy)(© x Dy)
with trace E and uniform quasi-Hadamard derivative Gs.

Then Gs(By, By) is (Fo, B°)-measurable and

ay (G(0y, F) — G0, F)) ~° Gs(By, By) in (E,B° || - |Iz). (5.19)

The upper Theorem is a special case of Corollary 3.1 in [12] and does therefore not need to
be proved.

5.4.2 On the uniform quasi-Hadamard differentiability of the com-
pound distribution functional

In this section we are going to derive the uniform quasi-Hadamard derivative of the compound
distribution functional. For the case of the compound Poisson model, the corresponding
compound distribution functional was introduced in (5.2). However, in this section we are
going to differentiate the compound distribution functional w.r.t. a more general class of
distributions of count variables. The Poisson case will then be a special case.

Let F denote the set of all distribution functions on R. Let d € N and © C R? be an open

set. Write || - || for the euclidean metric on R Let C : © x F — FF be a mapping with
C(O,F):=>_ F*p(0), (5.20)
k=0

where pr : © — R, is a continuously differentiable map for every k € Ny, and

Z pr(0) = 1 for every 0 € ©.

keNg

Note that in this case (px(0))ren, specifies the distribution of an integer-valued random vari-
able in dependence on the parameter § € ©. If specifically © = (0, 00) and py(6) = =% 0% /k!
for every k € Ny and 6 € (0,00), we observe that C(#, F') as introduced in (5.20) is the
compound distribution function w.r.t. the Poisson distribution of formula (5.2). Moreover,
the setting of the individual model of Chapter 4 can be obtained by choosing p, = 1 and
pr = 0 for every k # n. Note that in this case the distribution of the count variable is not
dependent on a parameter.
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The following theorem states the uniform quasi-Hadamard derivative of C. To this end, for
every k € Ny, write Vpy for the gradient of py, that is

o On|
00, 00y |

For any A > 0, let again ¢, : R — [1,00) be defined by ¢y (x) := (1 + |z|)* and let
F,, = {F cF /qudF < oo}. (5.21)

To be able to prove the assertion we will need two auxiliary results, which will be proved
first.

Theorem 5.4.2 Let A > N >0, 0 € (0,00) and F' € Fy,. Assume that for every k € Ny,
pr is twofold differentiable and that Y-,  kM™MV2py(0) < oo and assume that there eists
an r € (0,00) such that

Zk(H)‘)w sup ||[Vpe(@)|| < oo and (5.22)
keN 0'€B(0)
aQPk 1/2
EUFAVZ gy < ‘ ) < 00, 5.23
2 veBd) \; Z 96,08, (5:25)

keN

where B,.(6) denotes the open ball with radius v around 6. Then the map C : © x Fy, — F is
uniformly quasi-Hadamard differentiable in (6, F') tangentially to (© x Dy, )(© X Dy, ) with
trace Dgy,,. Moreover the uniform quasi-Hadamard derivative C'(g,p) : R? x Dy, — Dg,, s
given by
Ciory(w,v) = v Y Kk F D p(0) + > F* (w, Vpi(0)), (5.24)
k=1 k=0
where

(U*iw*%-ﬂpk(a))(-) = /v(- - x)d(ikF*(k_l)pk(Q))(:E). (5.25)

Note that we had to restrict C to the set © x [y, instead of © x [F, to obtain Dy,, as the
trace. Furthermore, note that if we choose p, = 1 for some n € N and p, = 0 for every
k # n, then the uniform quasi-Hadamard derivative C.(97 F) in Theorem 5.4.3 is nothing but
the uniform quasi-Hadamard derivative in the individual model with n clients as in (4.10).

Furthermore, note that if © := {0} for some 6 € RY, then the assertion of Theorem 5.4.2
boils down to the assertion of Proposition 4.3 in [12]. Theorem 5.4.3 therefore provides an
extension to the existing theory.

To be able to derive the uniform quasi-Hadamard derivate of C in the sense of Definition 4.2.1
and prove Theorem 5.4.2, we will write C as a composition of two auxiliary mappings. The use
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of this approach will become apparent later. To this end, let 7 := {19 )—F : F' € F} denote
the set of all (two-sided) tail functions associated with elements of F and let H : © xF — T
be a mapping, defined by

o)

H(0,F) = Lpo) — > F* pr(0). (5.26)

k=0

In the following we will refer to H as the (two-sided) compound tail functional. Note that H
is not a tail functional in the classical sense, but coincides with the tail functional associated
with the compound distribution function on the nonnegative semiaxis and equals —C on the
negative semiaxis. This approach has been introduced in [53].

Furthermore, let A : 7 — F be a second mapping, defined by
AT) = 1ppe0) — 1. (5.27)

Note that A maps a (two-sided) tail function onto the corresponding distribution function.
Then we observe that
C=AoH. (5.28)

In the next steps we will determine the uniform quasi-Hadamard derivatives of both H and
A. To obtain the uniform quasi-Hadamard derivative of C we will apply the chain rule for
uniform quasi-Hadamard differentiable maps in the form of Lemma A.5 in [12]. Theorem
5.4.3 will state the uniform quasi-Hadamard derivative of H.

Then we stress the fact again, that for every F' € F and 6 € ©, we have H(0, F') € T, because
H is the tail function associated with the random convolution of ' w.r.t. the random measure
characterized by (pg(0))ken,-

Lemma 5.4.3 Let A > X >0, § € (0,00) and F € Fy,. Assume that for every k € Ny, py
is twofold differentiable and that Y, k"M pi(0) < oo and assume that there exists an
r € (0,00) such that

D RV sup [ Vpg(0)]| < 0o and (5.29)
eN 0'c B (6)
d 2 2\ 1/2
SRV g (Z] P (0’)’ ) < o0, (5.30)
eN 0B, (9) ij=1 80186]

where B,.(0) denotes the open ball with radius r around 6. Then the map H : © x Fy, — T
is uniformly quasi-Hadamard differentiable at (6, F') tangentially to (© x Cy, )(© x Dy, ) with
trace Dg,,. Moreover the uniform quasi-Hadamard derivative H(97F) : R x Cy, — Dy,, is
given by

H(Q,F)(w,v) = % ZkF*(k’l ) + Z Lj0,00) — F**) (w, Vpr(0)). (5.31)
k=0
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Proof First we note that for 6,,0, € © and Iy, F; € Fy, we have
[H (01, F1) — H (62, )|, , < [[H(01, F1)ll,,, + |1 H (02, F2)l,,,

/¢,\/ ZFI* Pk 91) z)
/Cb,\’ ZFz*kpk: (62) ) ), (5.32)

by Equation (2.1) in [52]. According to Lemma 2.2 in [52] we can conclude that both integrals
on the right-hand side of (5.32) are finite under the assumptions of the lemma. Hence, the
set Dy, can be seen as the trace.

Second, we have to show that Hg ) is (max{|| - [|,[| - [les 1}, ]l - l|,,)-continuous and that
Heu u 'mFu u Yu _He’mFu 3
hm ( + Eu W + Ey U ) ( ) _ H(H,F)(w7 'U) — 0 (533)
U—00 Eu (]5)\/

holds for every quadrupel ((0,, Fy,), (w,v), (wy, vy), (€4)), with (0, F,) € © x F,, satisfying
max{||0, —0||, || Fu—Flls,} = 0, (w,v) € ©xDy,, (wy,v,) C OxDy,, satisfying max{||w,, —
w||, [[vw — v]lg,} — 0 and (6, + €, wy, Fiy + €,v,) C O x Fy,, and (e,) C (0,00) satisfying
€yx — 0.

Note that for every u € N we have
H(eu +5qu7Fu +5uvu) - H(eiupu)

Eu
1 D
- az [0,00) F +5uvu) )pk(9u+5uwu - E_kz ]1[000) - pk(e )
— = S (EF = (Bt en) 00 + I (FE = (Bt )™ -
k=0 k=0
= " pk(e + 5qu) — ( )
£ 3 (L - F2F) : (531
k=0 u
Hence
HO, +e,wy, Fy, +e,v,) — H(O,, F, .
( ) ( ) Flio.m (11, 0)
Eu "
)\l
1 o
;ZF*k (Fy + e,v,)* )pk —(—U*ZkF*(kl )
=0 (]5)\/
=1
+ Z - F*k F + suvu) ) (pk(eu + 5uwu) - pk(eu))
k=0 Cu 3\
* pk(eu + Euwu =
+ Z(ﬂwoo) o - > (o) = F*) (w, Vipr(0))
k=0 v k=0 N
=: Si(u) + Sa(u) + Ss5(u). (5.35)
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In the following we will show, that Sj(u)-S3(u) converge to zero for u — oo. For the
convergence of Si(u) we observe that

[e.e]

1 [e.o]
— Z (EX% — (B + £4v0)™) pr(0,) + v * Z k F*E=D p(0)

€
Y k=0 k=1

d’y

o

1
_Z«F + e,0,)"* — EXF) (0 —U*ZkF*k 1

Eu
k=0

[e o]

¢A’

L~ (Bt 2uo)™) (a(6) — pu(8))

Eu

n (5.36)

k=0 N

Now the first summand on the right-hand side of (5.36) converges to 0 by Proposition 4.3
n [12]. For the convergence of the second summand on the right-hand side of (5.36), let for
every k € Ng H, : F x F — F be a map defined by

Hi(G1,Gs) = ZG*(k =0 QY (5.37)

with the usual convention that the sum over the empty set equals zero. Then simple algebra
yields
(Gl — GQ) * Hk<G1, GQ) = Gik — G;k (538)

for every G1,Gs € F and every k € Ny. Thus, we conclude that

o0

> (Pt ™) (00~ )
0 2V
= i iu (Fu + euvy — F) % Hy(F, + eyvy, Fu) (pe(0u) — pi(0))
k=0 Y
S s H (Bt e B (01(6.) — pi(0))
k=0 Y
< oy Yol ~p@]2°% (142X V24 (1-1C) 6

for some C > 0. The last inequality in a consequence of part (ii) of Lemma 4.5 in [12]. The
lemma can be applied because ||F, 4+ €,v, — F ||y, — 0, by

HFu‘l’guvu_FHm > ||FU+€UUU_FUH¢>\ + HFU_FH%

= €quu||¢)\ + HFu _F||¢)\‘ (5'40)

Now we assumed that ||F}, — F||s, — 0 and ¢, — 0 for u — oco. Since ||v, — v||y, = 0, we
observe that |lv,|/4, is finite for every u € N. Thus, we conclude that ||F, 4+ e,v, — Fl|s,
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indeed converges to zero and Lemma 4.5 in [12] is applicable. By ' < X and ||v, —v||4, — 0,
we observe that |lv, — v||g,, — 0, such that [|v,|g,, is also finite. Using the finiteness of
|vullg,,, it suffices to show that the sum on the right-hand side of (5.39) converges to zero.
Applying the Mean Value theorem to |px(6,) — pr(@)], ones finds that there exists some
hi. € (0,1), such that

< |16 = Ol I VPe(6 — hiu(00 — 0))]] (5.41)

for every k € Ny. Hence
Z pr(6) = (@] 2F (1+2Y(2 V)@ + (k= )V Cy))

< (6. - 0] Z IVPk(0 = a0 — 0D 2% (14272 VD2 + (k= 1)¥'Cy)), (5.42)

k=0

where the sum converges for every u € N sufficiently large, such that 6 —hy (60, —0) € B,.(0)
for every k € Ny. The latter is due to the assumption (5.29). Thus, S;(u) converges to zero.

Next, we consider the second summand on the right-hand side of (5.35). Using the same
arguments as in (5.39), we arrive at

=1
Z - (F*k (Fu+ 5uvu)*k) (Pr(Ou + evwy) — pr(fu))
k=0 Y 3%
< Nvalloy 3 1pr(u + ) — pi(6,) 2 (1 NV V)24 (k- 2)”101)) . (5.43)
k=0
By
|0 + cvwy — 04| < ey ||w] + eul|w, — wl| (5.44)

we conclude that |0, + e, w, — 0] — 0 as u — oco. Thus, the convergence of the sum on the
right-hand side of (5.43) follows again by an application of the Mean Value theorem. Thus,
Sa(u) converges to zero.

It remains to be shown that

e wiy P (0 + 4wy =
S |2 (oo = F) pll e =2 (oo = ) (w, Vl0))| =0,
k=0 w =0 by ( )
5.45
First, we observe that
>_(Lose) - - = (L) = F*5) (w0, Vi (6))
k=0 v k=0 by
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> . O, + £ywy,) - &
< Z [0,00) - F k) pk( pk Z 1[0 00) T F <w7 Vpk(e»
=0 u k=0 N
+ [ Do = ) -
k=0 by
- * eu =+ EyWy) — 9u
— [ty (PO 2D 70
k=0 “ by
k=0 €u by
For the first summand on the right-hand side of (5.46) we observe that
k=0 Cu by
< kz; To00) = F**],, - — (w, Vpi(0))|. (5.47)
According to Equation (2.4) of [52], we have
1000y = F™H]|,, < (21 v 1)(1 RNV / ]a:\XdF(a:)> (5.48)

for every k € Ny. Thus, || 1) — F**||s,, is bounded above. By the Mean Value Theorem,
we furthermore conclude that for every k£ € Ny and every u € N sufficiently large, there
exists some hy ,, € (0,1), such that

Eu

~ 0. (0)

1
—(Ou + ey — Ou, Vi (Ou + Iy, (Ou + ey, — 0,))) — (w, Vpr(0))

u

’(ww Vi (0 + h;c,u Euly)) — (W, VPk(9)>|
< lwa = wl[ IVor(u + hr cwwi) | + [[wll [VPe(8u + b, cuwn) — Vp(0)]l, (5.49)

where the last inequality holds true due to the Cauchy-Schwarz inequality. Note that we
have to choose u € N sufficiently large to be able to apply the Mean Value Theorem. In
particular, we have to make sure, that {6, + te,w, : t € [0,1]} C ©, which is always
possible with our choices of 6, w, and &,, because © C R? was assumed to be open. Now
we observe that

lw, —w] S ¥V 1) (1 + RNV / \x|XdF(x)> VD100 + T 20| (5.50)
k=0
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converges to zero for u — oo because ||w, — w| — 0 and the sum in (5.50) is finite due to
assumption (5.29). Second, we can apply the Mean Value theorem to || Vpy. (0, + by, €uwn) —
Vpe(0)|| to conclude that

IV Pk (6 + By, Euwn) — Vpr(6)

d
_ Oy Ok (o [2) /2
_<2’ae (Ot Hien) = 5500 )

)
_ (Z ‘(9 9, — h;,uguwu,va];k (0 + i (O + By £0,)))
=1

(Zne 0. = M

; 0*p ;
— 16— 6, hkuauwuH(Z’ae&g (0 + Pri (B + M c00,)

2> 1/2

2\ 1/2
0+ i O +hku5uwu))H )

2> 1/2

2)1/2. (5.51)

apk:

d*p ,
< (19 = 8ull + Bzl ) (Z) Farg (0 O+ i )

Now let u € N be sufficiently large, such that 6 + hy (6, + hku&‘uwu) € B.(f). Then we
observe that

d
*py 2\ 1/2
N1 N1 b\ . /
=y ||§:2 v1)(1+k /| N dF(x (;j:1‘aeiaej(0+hk,w(0u+hk7uauwu))‘)

(5.52)
converges to zero as u — 00, because ||# — 0,|| — 0 and the sum is finite due to assumption
(5.30). Following the same line of reasoning, we conclude that

A SR 0 ) 55 2 0 o)

(5.53)

converges to zero. Hence, the right-hand side of (5.47) converges to zero.
For the second summand, we can use (5.38) again, to obtain

io: ko F*k’ Pr(Ou + €uwy) — pi(bu)

Eu

k=0 3V

< STIF - R« B(E R, :

= Z |(F — F,) * H(F, FU)H%, !(wu, Vi (6, + h?w 5uwu)>|

k=0
< Jwdl Yo IE = B« BBl |[Vp0u+ e[, (5:54)

k=0
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for some h;w € (0,1), where we applied the Mean Value theorem to the difference quotient,
similar to the approach in (5.49). Now we can apply part (ii) of Lemma 4.5 in [12] to obtain

I(F = F)* Hy(F.E)l,, < [Fu = Flloy 2¥ k(1428 @7V 1)@ + (5 - 1)*'Cy))

g,
for every k € Ng. By A > X and ||F, — F[|4, — 0, we can conclude that || F}, — F|4,, — 0 for
u — 0o. Now assume again, that u € N is sufficiently large, such that 6, —{—hk W Eully € B,(6).
In this case the sum on the right-hand side of (5.54) is finite due to assumption (5.29). Hence,
the right-hand side of (5.54) converges to zero. Note that the calculations in (5.49)—(5.53)
also show that

(04 + eqwy) >
lim E Pl 5 — pel(0 g (w, V(6 ‘ 0,
U—00
k=0 v =0

under the assumptions of the lemma. Furthermore, we observe that

Z ]l Q 4 €uZ)u> pk(é’ ) g1 0.00) (Zpk 9 +guwu Zpk(eu)>
“ k=0

k=0 k=0

_o, ) (5.55)

for every u € N, because (6,), (0, + c,w,) C © and we assumed that > ;- pr(f) = 1 for
every 6 € ©. Hence, one finds that

WE

]1[0700) (w, V]?k(e» = 0

e
Il

0

for every w € O, such that the expression in (5.31) is equivalent to

Higpy(w,v) := —v s > kF* ™D pe(0) = > F* (w, Vpi(0)). (5.56)
= k=0
What remains to be shown is the (max{|| - ||,]| - lls,}. | - lls, )-continuity of Hp.ry. To this

aim, let (w,v) € R? x Dy, and (wy,v,) such that max{||w, —w||, |[v, — v|/4, } — 0. Then we
have

HH(H,F) (ww Uu) - H(G,F)(wv v)

P

- H a (vu x i k F* 0 p(0) — v i kF*(k_l)pk(9)>
k=1 k=1

+ ) (o) = F™*) (wa, Vpu(0)) = Y~ (Ljo,) — F**) (w, Vpi(6))

k=0 k=0

(v =) % F g kpi(0) + ) Loy = F™* oy, [(wa — w, Vpr(9))]. - (5.57)

¢>y

<

b_ﬂg

e
Il

1
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Now for every k € N we can apply Lemma 2.3 and Equation (2.4) in [52], yielding

[(vu = v) % F*ED]
< 2 low = vllg, (1Mjo00) IF*V]le = FE Vg, + [IFF D)
2)\ HUU - UHdw (HIL[(),OO) - F*(k_l)Hd’A/ + 1)

< 2V ||v, — v, ((2“1 V1) (1 + (k=1 /|x|” dF(:):)) + 1) . (5.58)

Hence, the first sum on the right-hand side of (5.57) can be bounded as follows

o0

D wu =0y« F | kepi(6)

k=1

<2V v, — v|a, i k pr(6) ((2*’-1 V1) (1 + (k= 1M /W’ dF(:zc)) + 1) . (5.59)

Now the sum converges due to the assumption ), E+2V2 5, (0) < oo, such that the series
converges to zero as |lv, — v||g,, — 0, which is implied by [|v, — v||¢, — 0. For the second
sum on the right-hand side of (5.57) we can use part (i) of Lemma 4.5 in [12] together with
the Cauchy-Schwarz inequality to obtain

100y = F™*lloy K =0, Vpe@)] < = o]l [9pe@) ]| (2¥7 v 1) (14 8165)

for every k € Ny. Hence

S 1 p0e) = FH iy [ (wi — w, Vpi(0))]

k=0

< Jlwa —wll S IIVpe(0))] (2*’-1 v 1) (1 + kXVng) , (5.60)
k=1

where we observe that the series on the right-hand side of (5.60) converges due to the
assumption > 5 || Vpe(0)||ENV! < oo, which is an immediate consequence of assumption
(5.29). That is, the second sum on the right-hand side of (5.57) converges to zero as ||w, —
w|| — 0, such that

— 0, (5.61)

3\

HH(e,F)(wu, va) — Hig,p)(w, v)
as max{|w, — w||, ||[vy — v||4, } — 0. This completes the proof. O
Note that we had to consider the tail functional associated with the compound distribution

function instead of the distribution function itself, to guarantee the finiteness w.r.t. || - [|4,,
of the third summand on the right-hand side of (5.34).

To be able to derive the uniform quasi-Hadamard derivative of the compound distribution
functional, we will now determine the uniform quasi-Hadamard derivate of A. The proof
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of Theorem 5.4.2 will then be a direct consequence of the chain rule for uniformly quasi-
Hadamard differentiable functionals in the form of Lemma A.5 in [12]. The following lemma
will be concerned with the uniform quasi-Hadamard derivative of the map A. To this end,
let for any A > 0

7;”\ = {ﬂ[o,oo) —F; Fe F¢A}.
Then 7y, is nothing but the set of all (two-sided) tail functions associated with distribution
functions in Fy, .

Lemma 5.4.4 Let N > 0 andT € Ty,,. The map A : Ty,, — F is uniformly quasi-Hadamard
differentiable at T tangentially to Cy,,(Dg,,) with trace Dy,,. Moreover, the uniform quasi-
Hadamard derivative A : Dy, — Dy, is given by

Proof First we observe that for every 11,7, € 75, we have

IA(TY) — A(To) g, = T2 — T1llg,,
< |Thllg, + ITz2llg,,

< [at Rl dR@ + [l iRE, 6o

where for every i = 1,2 we denoted by F; = ljg.) — 7; the corresponding distribution
function. The last inequality is due to Equation (2.1) in [52]. According to Lemma 2.2 in
[52] we can conclude that both integrals on the right-hand side of (5.62) are finite under the
assumptions of the theorem. Thus, Dy, can be seen as the trace.

We will now show, that A is indeed the uniform quasi-Hadamard derivative of A. What
remains to be shown is that

lim
uU— 00

+ul| =0, (5.63)

H AT, + eyvy) — AMT)
47)\/

Eu

holds for every quadrupel ((T,),v, (v.), (€.)) With (To,) C Ts,,, satistying || T, — T'||g,, — O,
v € Dy,,, (vu) C Dg,,, [|vu — g, = 0, (T + €uvu) C Ts,,, and (g,) C (0,00), with &, — 0.
Indeed, we observe that for every u € N, we have

H AT, + e,vy,) — A(T) . _ H Lo,00) — (Tu + €uv4) — (Lj0,00) — T) o
“u 2 “u ox
= [lv— UUH%, : (5.64)
Hence, the assertion in (5.63) holds true, because we assumed that [[v — v||, , — 0. More-
over, by the representation —Ap = idDW, we can easily conclude on the (|| - [|g,,, | - [l¢,/)-
continuity of the uniform quasi-Hadamard derivative. This completes the proof. a

We are now in a position to prove Theorem 5.4.2.
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Proof of Theorem 5.4.2 Our goal is to apply the chain rule for uniform quasi-Hadamard
differentiable functionals in the form of Lemma A.5 in [12] to the mappings H : © xF,, — T
and H = A : Ts,, — F. By Lemma 2.2 in [52] we observe that H(© x Fy,) C 7j,,, such
that the composition A o H is well defined on © x Iy, .

Now Lemmas 5.4.3 and 5.4.4 imply that the assumptions of Lemma A.5 in [12] are fulfilled.
With the help of the latter lemma we can now conclude that C = Ao H : © x F,, — F is
uniformly quasi-Hadamard differentiable in (0, F') tangentially to (© x Cy, )(O x Dy, ) with
trace Dgy,, and the uniform quasi-Hadamard derivative C'(a F) 1 R x Dy, — Dy, is given by

C(G,F) = AH(@,F) o H(O,F)-

This yields the claim and completes the proof. O

5.4.3 On the asymptotic distribution of the estimated compound
distribution function

In this section we are going to determine the asymptotic error distribution of the sequence of
plug-in estimators (C(é\u, F\u)) The central tool to be used to prove the assertion will be the
uniform delta-method of Theorem 5.4.1. More explicitly, we aim to derive the asymptotic
error distribution of (C @uv 128)) from the asymptotic error distributions of the sequences of

underlying estimators (6,) and (F,) by an application of the delta-method. We therefore
have to check that all assumptions of the theorems are fulfilled.

In the following the roles of ¥, 1/9\u, F, and F\u in the sense of Theorem 5.4.1 will be played
by 6, é\u, F and F,. Here 0, and F, are as in (5.6) and (5.7), respectively. Moreover, the
roles of (a,), G, By and By will be played by (y/u), C, £ and By, respectively. Here £ and
Br are as in Theorem 5.2.1.

The following lemma will show measurability of the estimators. In particular, Lemma 5.4.5
will show, that part (a) of Theorem 5.4.1 is fulfilled.

Lemma 5.4.5 Let 0, and F, be as in (5.6) and (5.7), respectively, and let F' € Fy, and
2

6 € (0,00). For every u € N
ﬁ( x _{?D (5.65)

takes values only in R x Dy, and is (F,B(R) ® Dy, )-measurable. That is, the first part of
condition (a) in Theorem 5.4.1 holds true.

Proof Let u € N and let ¥, : Q x R — R? be defined by

Bu(w) — 6

Pulwit) =V B
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Now for every ¢t € R, the mapping w — ¥,(w;t) is (F, B(R?))-measurable. Moreover
for every w € Q the mapping ¢t — W¥,(w;t) is right-continuous, such that the mapping
w = Y, (w;-) from Q to D is (F, B(R) ® D)-measurable and takes values only in R x Dy, .
Thus, the quantity in (5.65) can be seen as a (F, B(R) ® Dy, )-measurable mapping. This
leads to the assertion. a

The following theorem will now prove that the second part of part (a) of Theorem 5.4.1 is
fulfilled.

Theorem 5.4.6 Let (N;) be a sequence of Poissg-distributed random variables on a probabil-
ity space (0, F,IP) for some 6 € (0,00), and let (Y;) be a sequence of i.i.d. random variables
on the same probability space with distribution function F', satisfying [ ¢3 dF' < 0o and being
independent of (N;). Let N(u) := >_." | N;. Moreover, let & be a Nyg-distributed random
variable and Br be a F-Brownian bridge, as in (4.9), being independent of .

Let 0, and F), be as in (5. 6) and (5.7), respectively. Then we have

2]) [

1 BF
n (R x Dy, B(R) @ Dy, max{| - [,[| - [lo, })-

~
0.
~

5.66
Fu ? ( )

“

NG

Proof To proof the assertion, we will first show that two auxiliary statements hold true.
More explicitly, we will show that

IN(u)—6 d 3
Nz . 4, 5.67)
uezf Ny o0y — F) 7 Br (
in (R x Dg,, B(R) ® Dy,,max{| - |,|| - [[¢,}) and
N (u) [uf]

(Lpyi00) — \/—QZ vio) — F) 250 (5.68)

w.r.t. Pin (Dg,, Dy,, |l - |ley)- By

1N() 6

IN(u)—6
\/a 1 L qu9]< . F)

N(u
N(a) Zi:(l) Iy o0) = F

al,

0

+Vu . »
N%u) Z’ﬁi(l)(l[yivoo) -F) -2 Z( 1(:[l[y ) — F)

the claim would follow by an application of Slutskys Lemma. To show that (5.67) holds
true, we observe that we have

N (%N(u) —9) 4 ¢ in (R,BR))

110



by the ordinary Central Limit Theorem, where we keep in mind that N(u) = >_;" | N; holds.
With the help of Donskers’ invariance principle, we conclude that

fuf]

1 1 [Tuf] . o 1 ,

— Iy, —F) = —/— 01 (F - — —B D, .D . .
NG, ;( Yisoe) — F) AR, Vw0 (Fruey — F) 75 B in (Dg,, Dy, || - [lgy)

The latter is a direct consequence of Theorem 6.2.1 in [58] along with Slutskys Lemma and
the fact that [uf]/(uf) converges to 1. For (5.68), we can see that

Ji N(u) [ud]
v Ly 00) — 00) —
N (u) Z( \ Z ¥,

=1

uf i SN Ly, ey — F) = S (Lpy; ) — F)
- (N(u) )fﬁzﬂ[“’_ B)+ N
w N\ (Y Upise = F) = 20 (e — F)
(¥ 1)( Vi
=: Si(u) + Sa(u) + S3(u). (5.69)

Hence, it suffices to prove that S;(u), Sa(u) and Ss(u) converge to zero in probability in
(Dgy, Doy || - 6y )- The assertion in (5.68) would then follow by an application of Slutskys
Lemma again. Here we stress the fact, that we can indeed use Slutskys Lemma to conclude on
the convergence in probability, because convergence in probability to a constant is equivalent
to the convergence in distribution to this constant.

Step 1: By the ordinary strong law of large numbers, we conclude that uf/N (u) converges
to 1 P-as. Furthermore, Theorem 6.2.1 in [58] yields the convergence in distribution of

\[9 S Uy, 00) — F) t0 6712 Bp in (Dy,, Dy, || - |ley), such that Sy (u) converges to zero
in probablhty w.r.t. P.

Step 2: We have to show, that

N (u) [uf]

il (St 1St 2], o} =0

1=

for every 0 > 0. To this end, let & € (0,1/2) and § > 0. Then we conclude that

N(w) [u6)]
r{w SIS NN | )
N(U)]l Oo)—F)—%(]l[y ) — F) > 0, M—G 2%
\/_6 — b U u
N( )

{5 (S0 - - St - 1) i)
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| /\

g L)

U u

(ETOTEE o e

ef{] ) —9! 2 uia}]
=: So1(u,d, ) + Saa(u,d, ). (5.71)

Using Proposition 3.2.10 again, together with

e[| -of > 2] - o2 -o] 21

we observe that Sso(u,d, «) converges to zero for every a € (0,1/2) and 6 > 0. For the
convergence of S o(u, d, ) we conclude that

) [uf] |
PH‘W(Z(]lm,o@—F)—Z(ﬂm,oo)—F)) 5 >0 u_a}]
o NG o o] ) Nw g1
Pl (Xt =) = Xt = P, > s, |22 6] < 5}
=1 =1
<B[{| X (e~ |, > Vs }]
=1
_p :{ul/H ull_a Z(ﬂmm) ~p)|, >0 }]
:P:{ul/H ull—_ai: Iy = F||, > 60 H (5.72)

Letting m = u'~®, the right-hand side of (5.72) is nothing but

Coa || ]
P[{m;“i” 1521%,&)
=1

By a € (0,1/2) we conclude that 21(;23) € (0,1/2). Hence, the right-hand side of (5.73)

converges to zero as m — oo for every § > 0 by Theorem 2.1 in [65]. This shows (5.70).

, >0 H (5.73)

Step 3: By the Marcinkiewicz-Zygmund SLLN of Proposition 3.2.10, we deduce that
uf/N(u) — 1 converges to zero P-a.s. Now, following the same line of reasoning as in Step 2
the fraction in S3(u) converges to zero in probability w.r.t. P in (Dy,, Dg,, || - |l4,). Hence,
the assertion follows by an application of Slutskys Lemma again. a

Lemma 5.4.5 and Theorem 5.4.6 have shown that condition (a) of the uniform delta-method
of Theorem 5.4.1 is fulfilled under the particular assumptions. Moreover the examinations
subsequent to (5.32) have shown that

Vu(C(0u.F,) = C(0, F)) = —/u(H(0,.F,) — H(0, F))
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takes values only in Dy ,. That is, the second part of condition (b) in 5.4.1 is also satisfied.
Furthermore, Theorem 5.4.2 has shown the uniform quasi-Hadamard differentiability of the
compound distribution function C at (6, F') tangentially to (© x Dy, )(© x Dy, ). However, to
be able to apply the results on the differentiability of the compound distribution functional
C, we have to check that the assumptions of Theorem 5.4.2 are fulfilled in the setting of the
compound Poisson model. More explicitly, we have to guarantee that >, y k' pi(f) < oo
and that there exists some r € (0,00), such that the following two assertions hold true for
A >0

Zk(H’\)VQ sup  |pi(6)] < oo, (5.74)
keN 6e(6—r,0+r)
Z EOTIV2 sup |ph(0)] < oo (5.75)
keN 56(0—r,9+7")

The convergence of the first series is due to the fact that the Poisson distribution possesses all
moments. For the convergence in (5.74), let r € (0,6). Then we observe that (6 —r,0+r) C

(0,00)(= ©), such that
~ s 1~ -~ ~
Z k(1+>\)v2  sup \p;(Q)’ _ Z k(1+)\)v2  sup ’y(k k-1 _ ek) 679’
keN 0e(0—r,0+r) k—1 0c(0—r,0+r) "
L (1+A)Vv2
<
- k!
keN
— o2 Z ((k + 1)(1+)\)V2 + k(lJr)\)\/Q) (9 + T)ke(GJrr))

k!
keNg

_ €2r Z ((k + 1)(1+/\)V2 + k(1+)\)\/2>pk(9 + 7,)’
keNg

(k(e + ) (6 + r)k> e~ (0=

such that the convergence of the series on the right-hand side follows by the fact that the
Poisson distribution with parameter 8+r € (0, 00) possesses all moments. This proves (5.74)
for any A > 0 and r € (0,6). To show (5.75), similar arguments lead to

~ ad 1 ~ ~ ~
DRIV sup [pi(0) =D kI sup = (k(k — 1)60%7 — 266" 4 6%) e
k=1

~ ~ |
keN 0c(0—r,0+r) 0e(0—r,0+r) k!

<> (k4 2) IV 4 2(k 4+ 1)V 4 BNV (9 4 ).
keNg

Now the series is finite again because the Poisson distribution with parameter 6+ € (0, c0)
possesses all moments. This proves (5.75) for any A > 0 and r € (0,60) and shows that the
assumptions of Theorem 5.4.2 are fulfilled in the setting of the compound Poisson model.

Hence, to be able to apply the functional delta-method of Theorem 5.4.1, we still have
to show the (F,Dy,,) measurability of \/u(C(6,.F,) — C(#, F)). This will be done in the

following Lemma.
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Lemma 5.4.7 Assume that 6 € (0,00) and F' € Fy,. Let C be the compound distribution
functional as defined in (5.20) and let 0, and F, be as in (5.6) and (5.7), respectively. Then
we always have that

Vau(C(8,.F,) — C(0, F))

is (F,Dg,,)-measurable for every u € N.

Proof To show the (F,Dy,,)-measurability of Vu(C(8,.F,) — C(6, F)), write

Va(C(@.(w). Fu(w))(t) — C(0.F)(1) (ZWMwm Zpkm )
— W(w:t), (5.76)

for every t € R and w € Q. Then we observe that the mapping w — V(w;t) is (F, B(R))-
measurable for every ¢t € R. Moreover, the mapping ¢t — ¥(w;t) is right-continuous for every
w € Q. Thus, the mapping is (F,D)-measurable and takes values only in Dg,,. This has
been shown in the examinations subsequent to (5.32). Thus, the mapping w — ¥(w; - ) is a
(F,Dg,, )-measurable map. This proves the assertion. a

The below Corollary 5.4.8 will now state the asymptotic error distribution of the compound
distribution function. The assertion of the corollary follows directly by an application of the
uniform delta-method of Theorem 5.4.1.

The previous examinations have shown that the conditions of Theorem 5.4.1 are fulfilled in
our present setting, where the mapping G is given by the compound distribution function
defined in (5.20). Corollary 5.4.8 will now yield the asymptotic distribution of the sequence
of estimated compound distribution functions.

Note that by

o0

< 1 k—1 ky ,—0 __ 1 k-1 —6 - 1 k_—6 __
k=0 k=0

the uniform quasi Hadamard derivative of the compound distribution functional at (6, F)
Cio,r) : R x Dy, — Dy, has the following representation

9
C(gp)(w v) = U*ZkF*k B —i—we*eZF*k (ko1 —6%). (5.78)

Corollary 5.4.8 Let A > 1 cmd let C be the COmpound dzstmbutzon functional as defined in
(5.20). Moreover, let F € Fy,,, that is [ ¢35 dF < oo, and let § € (0,00). Let 6, and F, be
as in (5.6) and (5.7), respectively. Then for every X' € (0 A)

~ - 1
w (c@,, F, —CG,F) —® —_Bpx k;F*““ o et F*k (RO =0,
Va (¢ F)) - co.F) ¢§FZ ¢ Z )
in (Dg,,, Dy, || - |lg,), where & refers to a Nyg-distributed random variable and Bp is a

F-Brownian bridge, as in (4.9), being independent of &.
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5.4.4 Proof of Theorem 5.2.1

Proof of Theorem 5.2.1 Note that Theorem 5.2.1 is a direct consequence of the chain rule
of Lemma A.5 in [12] along with Theorem 5.4.1.

To apply Lemma A.5 in [12] we have to check that the assumptions of this lemma are fulfilled.
To this use, we have to show that

(a) For every sequence (6, F,,) C (0,00) x Fy, satisfying max{|6, — 6|, || F., — F|ls,} — O,
we have

lim C(0,, F.,)(t) = C(0,F)(t), for everyt e R.

U— 00

(b) C is uniformly quasi-Hadamard differentiable at (6, F') tangentially to ((0,00) X Dy, )
((0, oo) x Dy, ) with trace Dy, and the uniform quasi-Hadamard derivative Clo.r) sat-
isfies C(g,7)(Dg,) C Dg,, -

(c) R, is uniformly quasi-Hadamard differentiable at S tangentially to Dy, (Dy,,) with
trace Dg,, and uniform quasi-Hadamard derivative R, s.

To show that condition (a) holds true, we have to show the pointwise convergence of C(6,, F,,)
to C(6, F) for every sequence (6, F},) C (0, 00) xFy, satisfying max{|0,—0|, ||[F,—F||s, } = 0.
We will show even more, namely (C(0y, F.,) — C(0, F)||g,, — 0. To this end, let (6., F,) C
(0,00) x Fy,. For every k € Ny, let H, : F x F — F be as in (5.37). Then, using the fact
that Y . pr(0) = 1 for every 6 € (0,00), we have

IIC(%F)— (0, F)Ilm,

= Z(l[o,oo) - Z (Ljo,00) — F*) p1e(6)
=0

k=0

i(F*k F*k
k=0

> (F F*’fmw)(((st +| @F*k ~ Fi) (u(62) — 2a(0))

k=0

2\

+ HZ Lio.oo) — F2%) (pr(6u) — pi(0))

IN

Y

IN

¢A’

+HZ Lipoo) = F) (01(6u) — pr(6))

¢)\/

- H(Fu—m*ZHk(Fu,F)pk(e) || (= F) 3 B P (82) — u0)
k=0 k=0

+HZ Loy~ F) (u(6) = mu®)|,
— 510 + Sa(w) + Si(w) (579

P
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where we used (5.38) for the second “=". For the first summand, we apply part (ii) of
Lemma 4.5 in [12] to each of the summands of Hy to derive

$10) < IFu = Flloy 3 m k(14 2@ VDR + (- )MIC). (5.50)

As the series converges, we conclude that Si(u) — 0 as ||F, — F||g, — 0. Using similar
arguments, we can conclude that Sy(u) converges to zero as ||F, — F||s, — 0. For the last
summand we use Inequality (2.4) of [52] to derive

u) < Z 10.00) = F** |,y [Pr(6) — pr(9)]
< Z ) - @@ V) (14 [l dF@). (58D

By the Mean Value Theorem, we conclude that for every k € Ny there exists some 5uk
between 6 and 6, such that

Z!m =@ VD (141 [ o aF(@)
<10~ 0 Y (@) 2 v D) (144 / 2" dF (). (5.82)

Since the series on the right-hand side of (5.82) converges, we conclude that Ss(u) converges
to zero as |0, — 0] — 0. This shows that part (a) of the upper conditions is fulfilled.

According to Theorem 5.4.2, the map C is quasi-Hadamard differentiable at (0, F') tangen-
tially to ((0,00) x Dy, )((0,00) x Dg,) with trace Dg,,, which is the first part of condition
(b). Then the second part follows from

uc'w,m(w,v)r\%,s))v*ko*<k1>pk<e>H +Hw > (o) = FHAE)|
k=1

0

<[k E @)+ 3 ey = Pl 1k(6)
k=1 N k=0
S 2)\’ ||U||¢,>\, Zpk(e) k <]_ + (2>\/—1 V ]_) <1 + ij\/l / |l’|>\l dF(x)))
k=1
0l YOV ) (1 e [l ir@). (5.83)
k=1

for which we applied Lemma 2.3 in [12] and Inequality (2.4) in [52]. Now the claim follows
by [|v|lg, < ||v]lg,, < oo and the fact that both sequences converge. Moreover we assumed
that R, is uniformly quasi-Hadamard differentiable at S tangentially to Dy,, (Dg,,) with trace
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Dy,,. This yields assumption (c). Hence, we observe that the composition T, := R,oC is uni-
formly quasi-Hadamard differentiable at (0, F') tangentially to ((0,00) x Dy, )((0,00) x Dy, )
with trace Dgy,, and the uniform quasi-Hadamard derivative is given by T, 9 r := R, c(o,F) ©

C(o,r). By Corollary 5.4.8 we also know that

~ o~ 1 o0 ok 00 1
Vau (C(@u, E,) —C(0, F)) A ﬁBF > kF*(k‘l)Ee‘e +Ee "y FH o (k gk=1 — ok,
k=1 ) k=0 ’

in (Dg,,, Dy, || - |l¢, ), such that the assertion follows by an application of Corollary 3.1 in
[12]. Here we denote by ~~° the convergence in distribution w.r.t. the o-algebra on D,,,
generated by the || - ||4,,-open balls.

O
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Appendix A

The Panjer recursion

A.1 On the computation of ;1" and R (A*”)

" of 11, is more or less impossible.

In general the computation of the n-fold convolution 1
However, in real applications the true p has support in ANy := {0, h, 2h, ...} for some fixed
h > 0, where h represents the smallest monetary unit. We stress the fact that continuous
distributions are in fact approximations for the equidistant discrete true single claim distri-
bution, and not vice versa. So the empirical probability measure fi, is concentrated on the
equidistant grid hNp, too. In this case the estimated total claim distribution g™ can be

computed with the help of the recursive scheme

1,"[{0}] = mu[{0}]" | (A1)
aon B 1 - SO ,
L iRy = m;«ww 7) i [{en} " [{ (7 — Oh}]  forj €N, (A2)

provided fi,[{0}] > 0; see the discussion below. Note that ji, as an empirical probability

n

measure has bounded support. Therefore, the whole distribution ;" can be computed by
the scheme (2.10)—(2.11) in finitely many steps. In particular, the estimator R,(ji,;") can be
computed in finitely many steps even for tail-dependent functionals R, as, for instance, the

one associated with the Average Value at Risk of Example 1.2.4.

To justify the scheme (A.1)—(A.2) note that the empirical probability probability measure
i, defined in (2.7) has the representation

ﬁu[] = i)\ul//\U[] + (1 _ﬁu)éo["]a
where p, = 11,[(0, 00)] is the mass of 1, on (0,00), and D[] := fi,[- N (0,00)]/11.[(0, 00)] is

the probability measure ji,, conditioned on (0, 00). It is easily seen that the n-fold convolution
" coincides with the random convolution

A*Bn pu . ZA*k npu {k}]
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of 7, w.r.t. the binomial distribution B,, 5, with parameters n and p,, i.e.
i = (A.3)

When p, < 1 and 7, has support in AN := {h,2h, ...} for some h > 0, the random convolu-
tion Dy "7 can be computed with the help of the Panjer recursion [49]:

P [{0}] = Bug,[{0}] (A-4)
i (Y] = %Z[( + 1) = ] Du{eh}) B [{(5 — O} for j €N, (A5)

Since 1—p, = 1, [{0}] and p,v,[{¢h}] = u[{fh}] for ¢ € N = {1,2,...}, the recursive scheme
(A.1)—(A.2) follows from (A.3)—(A.5).

*Poiss~ *Poiss~

A.2 On the computation of 7, ™" and R, (tn,r Aty

A computation of the random convolution of a measure y w.r.t. a Poisson distribution is,
just like in the case of the n-fold convolution, more or less impossible. However, if the
single claim distribution g has support in ANy := {0, h,2h, ...} for some h > 0. In this
case the convolution of the empirical measure w.r.t. the Poisson distribution with estimated
parameter, which is given by

*Poisss
PN

/J/nﬂ_ An, 7T — (ﬂnﬂ_)*POiSSX’ﬂ,‘FT (A‘G)

is nothing but a random convolution of an equidistant discrete distribution w.r.t. a Poisson
distribution. Here i, , and A, , are as in (3.4) and (3.3), respectively. The right-hand side
in (A.6) can then be computed via

e 7" [{0}] = Poiss;,_p[{0}] (A7)
e ST Y] = A’”TZmﬂm{mh}mi‘i"‘“* THG-mB] (A8)

for every j € N. Although fi,, has bounded support, the right-hand side in (A.6) has
unbounded support. Therefore the corresponing plug-in estimator

*Poisst
~ An. T
Rp (unﬂ- v >

cannot be computed in finite time for tail-dependent functionals R,, such as the Average
Value at Risk of Example 1.2.4, for instance. On the other hand, it can be computed in
finite time for the Value at Risk of Example 1.2.3 for instance.
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Appendix B

A proof of the
(max{d Wassp)-continuity of the
mapping M (LF) x (0,00) = M;(LP),
(Na )\) —y M*PoissA

Wassp b

Let p € [1,00). Recall that the LP-Wasserstein metric on M;(L?) is defined by

1/
s, (11, V) / F! ljl(t)\pdt) g (B.1)

where for every pu € My and t € [0,1] F,'(t) := inf{y € R, F,(y) > t} denotes the
generalized inverse of the distribution function F), associated with p. It was shown in Lemma
8.1 in [13] that dwass, defines a metric on M;(LP).

Theorem B.0.1 Let p € [1,00). The mapping My(LP) x (0,00) — My(LP), (u,\) —
prPoissy g (dWass, s Awass, ) -continuous.

Proof Let p,v € M (LP) and A, 3 € (0,00). With the help of the triangle inequality we
clearly have

*Poiss xPoiss *Poiss *Poiss *Poiss xPoiss
dVVaLssp(,u A7 v ﬁ) < dWassp(M B’ 4 B) + dWaSSp(ILL )‘,,U, [j)' (B2>

For the first summand on the right-hand side of (B.2), we can use Lemma 8.5 in [13] to
observe that

dWassp (M*Poi555 *POISSg Z POISSﬁ {k} dWassp ( 7 lc)

< Z k Poissg[{k}] dwass, (14, /)

= 6 dWassp (,u, V)' (BB)
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Hence, the first summand on the right-hand side of (B.2) converges to zero as dass, (11, V) —
0. Now the claim would follow by showing that the second summand on the right-hand side
of (B.2) also converges to 0 as |\ — 5| — 0. To this end, we will use Lemma 8.3 in [13] to
prove that dwass, (11775, 1 converges to zero as |\ — 3| — 0. By Lemma 8.3 in [13]
the claim would follow by showing that the following two assertions hold true:

*Poissg )

i) | [ flx)ptossxy(de) — [ f(z)pFo8 (z)] — 0 for every continuous and bounded real-
valued functlon fand |A— B | — 0.

(i) | [ lzPptosy(da) — [ |afPpete™s (dx)| — 0 for [A — 5] = 0.

To prove part (i), let f be a bounded and continuous real-valued function. Then we can use
the Mean Value Theorem to derive

| [t )~ [ oo ()

= | [ 5@ (3 poissts @) — [ (3 poisslima) @)

< ) |Poissy[{k}] — Poisss[{k}]] / f()* (d)
k=0
o0 )\k k
< M Y| - e
k=0 ’
=1
= =Bl D 5l a ™ —aflem (B4)
k=0

for some a between A and 3. As the series on the right-hand side of (B.4) converges, this
shows that part (i) is fulfilled. For the second part, we use similar arguments as in (B.4)
along with Minkowski’s inequality to derive

k
/‘I|p «Poissy dl‘ /‘x|p *PmssB ‘ Z %6 A__e /|x’17 *k dl‘
k k
/|x|p (dx) ka )\—e A—%e ’
=|\— B|/|x|p (dz) |l<:o/‘” L ofle ™. (B.5)

As the series on the right-hand side of (B.5) converges, we can conclude that part (ii) is also
fulfilled. This yields the convergence of dyass, (1*7", (1*F°5%8) to zero as |A — 3| — 0 and
completes the proof. O

122



Appendix C

A nonuniform Berry-Esséen inequality

The following nonuniform Berry—Esséen inequality is already known from [46]. However, as
the proof presented in [46] did not make it clear how the constants in the upper inequality
had to be chosen, or how these constants depended on the distribution of the underlying
random variables, we take our time to carry out the proof in a more rigorous way.

Theorem C.0.2 Let (X;) be a sequence of i.i.d. random variables on some probability space
(9, F,P) such that Var[X;] > 0 and E[|X;|*] < oo for some A\ > 2. For everyn € N, let

S (O — B

Ly =
nVar|[X;]

Then there ezists a universal constant Cy € (0,00) such that
dg, (Pz,,No1) < C\ f(Px,)n™"  foralln € N (C.1)

with v := min{1, A — 2} /2, where for some universal constant Dy > 0,

E[| X1 —E[X1]]*]
f(Px,) = L N 2eAs? (C.2)
exp <D,\W> , A>3

By “universal constant” we mean that the constant is independent of Py,. Note that the
constant f(Px,) in Theorem (C.0.2) can still be improved. The formulation of Theorem
2.2.7 in the form of Petrov [50], for instance, allows for a better estimation of f(Pyx,).

Proof (of Theorem C.0.2) As discussed above, the case 2 < A < 3 is already known. So we
may and do assume A > 3. In particular, for (C.1) it suffices to show

dgy(Pzr, Noy) < Cy exp(DAE[|X{[M*)n~ 2 forallm € N (C.3)

for Z! = \/Lﬁ ¢ X! and any sequence (X/) of i.i.d. random variables on some probability
space (£, F,P) such that E[X|] = 0, Var[X]] = 1, and E[|X]|*] < co. Indeed, if specifically
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X! = (X; — E[X;])/+/Var[X]] in the setting of Theorem C.0.2, then we have Z,, = Z/ and
E[IX{ 1] = E[[X; — E[X]]Y]/Var[X,]V2.

To verify (C.3), let F,, and ®;; denote the distribution functions of Z; and the standard
normal distribution, respectively. Below we will show in three steps that the inequalities
| Fa() — Poa ()]
[ Fo(2) — Po1(2)]
| Fn(z) — @0 ()|

A E[XI M2 4 27 for |z] < 1, (C4)
e eDEINPE =127 for 1 < || < /(A = 1) logn, (C.5)
ey ePEIXIT =201 2122 for |2| > max{1; /(A — 1)logn} (C.6)

hold for all n € N, where cy,d, > 0 refer to any constants depending only on A and being
independent of the distribution of X7. Inequalities (C.4)—(C.6) clearly imply (C.3).

INIA A

Step 1. Inequality (C.4) follows from Katz' generalization of the classical Berry—Esséen
inequality. In [36], Katz showed the following result. Let g : R — (0, 00) be any function that
is even (i.e. g(—x) = g(z) for all x € R), nondecreasing on R, and satisfies lim, ., g(z) = oo
as well as x/g(z) < y/g(y) for all 0 <z <y. Then for any sequence (Y;) of of i.i.d. random
variables on some probability space (€2, F,P) with E[Y;] = 0, E[Y}!] < co and E[Y*¢(Y)] < o
there exists an universal constant C, € (0,00) (i.e. independent of Py, ) such that

Qoo (P, No) < (CENVZg(V)) ()" forall n € N,

where W,, := """ | Vi;/y/n. Choosing specifically g(x) := |2|*2? and V; := X for i € N, in
particular W,, = Z/ for n € N, we easily obtain (C.4).

Step 2. We now prove (C.5). It suffices to show that there exists some constant ¢, > 0
depending only on A and being independent of the distribution of X such that (C.5) holds
for all n > ngy := [G,E[|X]|*]®] (this observation will be relevant in Steps 2.2.2 and 2.2.3
below). Indeed, for n < ng we get (C.5) from Katz’ generalization of the classical Berry—
Esséen inequality (cf. Step 1) as follows:

sup | Fa() = ®o.(2)](1 + |2])
me[f\/()\fl) logn,\/()\fl) logn]

sup |[Fu(z) = @o.(2)|(1+ |a])
me[f\/(/\—l) log no,\/()\fl) log no]

[F = Dol (14 (A — 1) log o))
e E[XG n /27 (14 (4 - 1) log([RE] X 1P
2 E[[ X 02,

IN

ININ A

Without loss of generality we restrict ourselves to 1 < x < max{l;y/(A —1)logn}. Let
rx € (0, min{1; A — 3}/(2(A — 1))], consider the truncations

Xz’lnﬁ-r = X’L/ ]l{lXZ{IST)\nl/Qx}7 1 S i S n, n E N7
and set Zm® ;= L Yo X

n
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We have
|Fu(r) = @ou(7)] = (1= Fu(x)) — (1= Pga(z))]
< |P[Z. > 2] = P[Z1 > 2| + [P[Z7° > ] — (1 — ®g4(x))]

< . (2
= |P[Z, > z] — P[Z"* > a]| + [P[Z"" > 2] — ®o1(—2))].  (C.7)

n

In Steps 2.1-2.2 below we will show that
IP[Z! > 2] — P[Z7" > z]| < exq B[ X[ n /20 g (C.8)

and

IP[Z0 > 2] — B (—2))| < er2E[| X)) n 22, (C.9)
Then, (C.7)—(C.9) imply (C.5).
Step 2.1. To prove (C.8), note that

P[Z. > 1] = PH{Z. >z}n{X|,=X"" . .. X =X}
+P[{Z], > x} N {there exists 1 <i < n with X| # X""}|
< PUZM" > 2} 0 {X] = X", X} = X2}] + nP[X] £ X[
< P[Z™ > z] + nP[| X! > ran'/?z] (C.10)
and
P2 > 2] = P{ZM >a}n{X|=X"" ... X, = X"}
+P{Z"* > z} N {there exists 1 < i < n with X! # X""}]
< PUZ" > 2} 0 {X| = X", X], = X2} + nP[X] # X
< P[Z, > x| + nP[|X]]| > r\n'/?z]. (C.11)

Then (C.10)-(C.11) and an application of Markov’s inequality give

P[Z! > 2] —P[Z"" > z]| < nP]|X!|> rn'/?]
< o BIXIP
= (rant/2z)

IN

B ) 0
That is, (C.8) holds for cy; := r;*.
Step 2.2. To verify (C.9) we consider the probability measure Q,,, on (R, B(R)) defined by

1
nmA =
Q=50

where f,, , 1= fem*l/%l Pxne(dry). In particular,

/ e T Pyna(dry), A€ B(R),
A

dpx?vz
dQp o

('Tl) - ﬁn,a: 6_23”71/2&:1 fOI' aH 1 & R
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It follows that the n-fold product measure Q" of Q,,, satisfies

1 _ n
Bn4] = / e PR PO (d(wy,. .., x,))  for all A€ B(R")
7 g,x A 1
In particular,
d]:P@CLL,z -1 n
g X%;g (T1,.. . 1) = B e PELE for all (x1,...,2,) € R"™
Using the notation
Mg = Eq,, (X1 = /xl Qe (d1)
we obtain
P[Z"* > ]
= IP’[n_l/2 Z (X" —my,) > — nl/an,x]

i=1
n

— —-1/2 o Qmn
- / ﬂ(z_nl/zmn,x,oo) (n Z('xl mn,w)) ]P)X?,x (d(l’l, N ,l‘n>)

i=1

n

. —1/2 n —zn~ V25" . A®n
- / :[L(xfnl/an,z,oo) (n / E ('TZ - mn,x)) n,ax € i=1 n’z(d(l’l, c

i=1

_ n €—$n1/2mn7x %
- n,r

n

/ I]'(:E—nl/an,z,oo) (n—1/2 Z(l’z - mn,gy)) e_xn_l/Q >y (wimmn,z) %}Z(d(.ﬁh R

=1

1/2 _

n _—an'/?m xz

= n,x e n,xr / (& Hn7$<d2)7
(z—n1/2my, z,00)

7$n))

axn))

where II,, , refers to the image (probability) measure of the probability measure foﬁ w.r.t.
the mapping (21, ...,7,) = n~Y23"" (z; —m,.). Hence, for the left-hand side in (C.9) we

i=1

obtain
P(Z7" > 2] — Bo,(—))|
va 6—xn1/2mn,m / e—xz HnJ(dZ) o (1)071(_x)))
(z—nt/2my, 5,00)

< |Bg e — el

—z2/2

+e

+ ’e‘xz/Q/ e " Nos2 (dz) — <I>071(—x)‘
(z—nt/2my, 5,00) ’

= 527271()\,7%56) + 5'272,2()\,71,3:) + 527273()\,7%35),
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/ e 11, . (dz) — / e * /\/b,sgw(dz)
(z—nt/2my, 5,00) (z—n/2mp, 4,00)
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where 12
Spna = Var@n,m [XIL7$]1/2 - (/I% @n,r(dml) - mi@) ’
In Steps 2.2.1-2.2.3 below we will show that

Soo1(Am,z) < cas eMENXTM =1/2 10— /2, (C.13)
Sapa(An,x) < exs eNSEIXIP =172 42 o=a*/2. (C.14)
5'2’2’3<)\’ n, l’) S AT ecA,SE“Xﬂ’\]Q n_1/2 ZEQ e /27 (Cl5>

which gives (C.9).
Step 2.2.0.a. First of all we observe that

EXT7]] < g B[ XN nmAD2 =000, (C.16)

E[(X77)?] < 1, (C.17)

E(X7)?] > 1= B[ X[ n 22072 (C.18)

E[X]"] < E[X]|} for 2 <r <A, (C.19)

E[(X)te™ T < o g B[ X nr QD02 40 oy € (3,4), (C.20)
E[(X™)em PG < B[XI P O for A > 4. (C.21)

Indeed: In view of X" = X{ — X{1{/x/|5 12,y and E[X{] = 0 we have

EXT) = [EXILgx:srnt2a]]
< E“X/| ]1{|X’\>r>\n1/2z}]
X3
= E[( A2zl L{1x; > rsn/22)
< 7,/1\ )\E[|X/| ] —(A—1)/2 —()\ 1)

which proves (C.16) with cyg = ry . Inequality (C.17) is justified by
E[(X7)] <E[(X7)"] =1,
and inequality (C.18) can be obtained as follows:

(X771 = E[(X])* — (X})?)
= —E[(X))*1 (x5 rynr2a)]

X5
Z _E [W :H_{‘X,|>7‘)\TL1/2;E}
> 2R XN n D2 gm0,

Due to the assumption E[|X]|?] = 1 and Jensen’s inequality we obtain
1= E[X]P7? < E[IXiT" < E[X71YY7,
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which leads to (C.19) for 2 < r < A. Since |X]"*| < ryn'/2z and 22 < (A — 1)logn, we
obtain for A € (3,4) that

E[(X7)ter T < Bl e
[|X/| ](T ’rLl/QZE)4 A r,\()\—l)

_ T;l\k 4—X m(A 1)+(4— )\/2 [|X’|]

IA A

This proves (C.20) with ¢y = r} *. Finally, (C.21) follows by (C.19), | X" < ryn!/2z,
and 22 < (A — 1) logn.

Step 2.2.0.b. Next we will prove that the following auxiliary inequalities hold:

1Bne —1—22/(2n)] < cxnE[| XY n 3225, (C.22)
My —an 2 < exsE[X]Y n e, (C.23)
[sne =1 < euE[X] 0 - ' (C.24)

We first show (C.22). Using (C.17), we obtain

Bz — 1 —m2/<2n>|
_ ‘E[ w] L
— 7! 2n

2

1
< an VR + (1 - BT + g (o PRI

1 — n,xr
a2 B[ e,

On the one hand, for A € (3,4) we can use (C.16), (C.18), (C.19), and (C.20) to conclude
Bre —1 = x2/(2n)|
1
< e PEIXP) 4 enas a0V EIX P 4 g a®n Tt PR]X P

+ — .CE n- C)\,ll]EHX{‘A]nr)‘()\_l)+(4_)\)/2l'4_/\

1
EXIPI 4 a7 IO R Y

IA

S
5
=

< B[ X P n3 2R,

where for the last step we used n=»/2* =1 < n=3/2 (which follows from the assumption
rx < (A—=3)/(2(A—1))). On the other hand, for A > 4 we can use (C.16), (C.18), (C.19),
and (C.21) to conclude

|Bn,x —1- $2/(27’L)|
1
< enr® n VEIX P 4 eniset VRN 4 g et PR

1
+5 2R X P D

128



IA

_ 1 _ (O
B[ XT P 4 et R

< C>\’19 EHX”)\] n_3/2x5,

where for the last step we used n™*~Y=2 < n=3/2 (which follows from the assumption
rx < 1/(2(A —1))). This completes the proof of (C.22).

To prove (C.23), we will show that the following inequalities hold:

M —an Y2 < g B[ XY n 2t (C.25)
an~ V2% — Mpz < Cro21 E[| X[} n " ab. (C.26)
For (C.25) we observe that since 3, , > 1,
Mpo —an V2 = B;iE[X?’xe“””fl/QX?’z] — an~Y?
< E[X{Z’xe‘””_mx?’x] — an Y2
< EIXP| + an V2EIXT) 1) + 5 tn BT

+ % xSn—3/2E[(X{l,z>4e:cn*1/2\Xf“’ﬂ]'

On the one hand, for A € (3,4) we can use (C.16), (C.17), (C.19), and (C.20) to conclude

My g — xn~ 1?2

1
< C)\’gxlf)\n(lf)\)ﬂ]E“X“)\] + il’Qnil]EHX”)\] + a2 x77>\n(17)\)/2+m(Afl)EHXi|)\]

< C)23 ]EHX“)\] TL_lfLA,

where for the last step we used nt=Y/24(=1 < =1 (which follows from the assumption
rx < (A—=3)/(2(A —1))). On the other hand, for A > 4 we can use (C.16), (C.17), (C.19),
and (C.21) to conclude

Mp g — an~ /2

1
CA79I1_>\H(1_)\)/2E[|X{|A] + §x2n_1E[|X{|)‘] + x3n_3/2+”(’\_1)E[|X{|A]

<
< auE[X{Mnta2?,

where for the last step we used n™*~Y=2 < n=3/2 (which follows from the assumption
ry < 1/(2(A—1))). This proves (C.25). We will now prove (C.26). In view of (C.16), (C.18),
(C.19), Bnz > 1, 22 < (A —1)logn, and (C.22) we obtain

an 12 — My g

_ xn—l/Q _ 67;;: E[X{l,l’exnfl/QX?,z]

= a0 V2 = 5L (BIXP] + an VR[] + ot BT

n,x
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IN
8
3

- ;i (—C)HQEHX”)‘]n*( 1)/25.=(A=1) + an 1/2(1 — ey, IOEHX ’ ] —(A=2)/2,— (A~ 2))

Qn_lEﬂXﬂ)‘] — 2n 3/2]E[(an)4€xn*1/2|X"I|]>

< s 'E[IX]Y + 2P0 R e N a2 (1 - 81 )
< c,\25:1: n- [|X’| | +z n_?’/QIE[(X’””)4 an= 12X I] + an 1/2(5,”; 1)
< 2yt [|X{| ]+ 2°n 3/2E[(X"$)4 an” V2IX]E | ]+ zn 1/2<c>\1 °n 3/Q]E[|X'| ]
)
2n
< oo 2 E[| X 4 #Pn B PE[(X) e N

For X\ € (3,4) we can use (C.20) to deduce

C,\2695 n- [|X/| ]+CA,11I7 Apt2mA AR HX,’ ]
exar 2°n T E[IXG]Y, (C.27)
where for the last step we used n'/2=%/2#m(G=1 < n=1 (which follows from the assumption
ry < (A=3)/(2(A = 1))). On the other hand for A > 4 we can use (C.21) to obtain
< C)\,26$ n- HX/‘ ]+ .1' n —3/24+r\(A— 1 “X/| ]
< e 2R XY, (C.28)
where for the last step we used n=3/27G=1) < =1 (which follows from the assumption
ry < 1/(2(A—1))). Now (C.27) and (C.28) lead to (C.26).
To prove (C.24) we will show that the following inequalities hold:
s2.—1 < e E[X]Y n~Y2g? (C.29)
1—s2, < oE[|X{]Pn /22" (C.30)
First we will prove (C.29). By virtue of f,, > 1, (C.17), and (C.19), we obtain
(B, LG —ml ) 1
E[(X})” e ) — 1
E[(XT*)?) 1+ an PE[X]7) + 2P Bt N
en PE[IX]P] + e E(XPT) e N

VA

I
—_
I

INIAIA

For X\ € (3,4) we can use (C.20) to deduce

xnfl/QEHX” ] + CA11 T nl A/24r (A1) HXll ]

<
< aga’n PE[IX]PY,

130



where for the last step we used n!=*2+mO=1) < =12 (which follows from the assumption
ry < (A=3)/(2(A—1))). For A > 4 we can use (C.21) to obtain

52 -1 xnfl/QEHX“)\] + x2n71+m()\fl)EHX1’)\]

Cx,32 $2n_1/2E[|X{|/\]7

IA A

where for the last step we used n='*™*=1 < n=1/2 (which follows from the assumption
ry < 1/2(A—1)). This proves (C.29). We next prove (C.30). Using 3,, > 1 and (C.23), we
obtain

L=, = 1= (BB —ml )
Loty — B B (X ]
L (exasn @ X + a®n ) = L B Per]

1+cygsn™ $12E[|X,| ] - @j;E[(X?x Qeznil/z)qw]- (C.31)

INIA

Now, (C.24) would follow if we can show that
E[(X{)2e 5] > 1 — ey qun 2B X, (C.32)

because (C.31)-(C.32) together with 3, , > 1 and (C.22) imply

—
|
»

< 1+eogn '@ E|XP]? - Bra(l — crza n~ PR X))

< agn P EX 4 esan PEEX + (1 - 8,1)

< ogn 'PEX] + easan PP E XY + (Bap — 1)

< agn P EX{N + ensan” PR X + enipn” 2B XN + 27/ (20)
< enas B[ X2 02002,

To prove (C.32) we use (C.18) and (C.19) to obtain

E[(X]")2em X

> —1/2 '
= B0+ e PRI+ B[ Y S o]

1=2
> 1-— Cx10M —(A— 2)/2 —(A— 2 [|X’| ] xnfl/QEHXH ] _ l.anl]E[(X{L,x)4exn—l/2|XIL,x‘]
> 1 cyggan” VE[|IX] Y] - a?n E[(X) e AN,

If A € (3,4) we can use (C.20) to deduce

n,xr xrn~ / me — — — r —1)—(\—
]EKXl’ )26 2 x7 ] 1— Ca36 TN 1/2EHXH)\] — :CG )\n 1+ra(A=1)—(A 4)/2E[|Xi|/\]

1 — exgr2®n” PR X]Y,

AVARLY,
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where for the last step we used n!=2+mO=1) < p=1/2 (which follows from the assumption
ry < (A=3)/(2(A—1))). For A > 4 we can use (C.21), yielding
E[(X])2e™ X > 1 — ey 3 an B[ XY — 220 OB X
> 1—cgsa’n PE[IX]Y,
where for the last step we used n= ™A1 < n=1/2 (which follows from the assumption

ry < 1/(2(A—1))). This proves (C.32).
Step 2.2.1. In this part we will verify the inequalities

n _—zn'/?m —z2/2 —1/2..7_—x2/2 _cx40B[| XM
2 € nr— e < cagon Txle T e L (C.33)
o 1/2 _ .2 A

e /2 g emm Tmas < gy n 210070 2een BT (C.34)

which imply (C.13). First we will show (C.33). Using the inequality log(f5,.) < Bnas — 1
(which is valid in our case as we have (3, , > 1), the Mean Value theorem, (C.22), (C.23),
and the assumption 22 < (1 — \)logn we obtain

- e—mn1/2mn,x . 6—z2/2

’S o Bn =) —antPman . —2%/2

— @ Pmn s —n(Bna—1) _ —a?/2

< (@2 (@ g —nlBos 1) )

= (2%/2 —ant/ My +1(Bre— 1)) " n(Bn,c=1)—an!/Zmn g

< (m2/2 — an*?( = cxasn 2B XN 4+ 2nY?) + n(eare n 22 B XY + xQ/(Qn))>
enlexzn™?/? 5E[\X'\A]+ﬂc2/(2n))—m1/2( 12 —cy 13 n T T2OE ]| X M)

< ( /24 optan” B X - 2 + enn 2 B[ X + 2/2)

. ooa12 0 2B X A +a2 /2—2 ey 13 0 Y 22 TR X V)
< opasn VTR X ] €2 gonaan A=) logn) VB X{P
< s n-V 7E[|X{|>\} 6—a72/2 ec)\,44E[\XHA]7

where we assumed without loss of generality xnt/ 2mn,x — By — 1) < x? /2 (otherwise we
obtain the trivial upper bound 0). Next we will show that (C.34) holds true. Using the
inequality 1 —e™* < z for z > 0, the inequality 1og(8nz) > Bne — 1 — 3(Bne — 1)? as well as
(C.22), (C.23), and B, > 1 we obtain

1/2

e—x2/2 — B e Fmne
_ 6712/2(1 o2 /2+nlog fn p—znt/? n.z)
—:c2/2(1 n1/2mn,z—x2/2—nlogﬁn,z))
< x2/2(9m Mpe — 2°)2 — nlog Bn.s)
< R (en gy n O EX] ] + on ) = 02/2 = n(Be — 1= (Bua — 1)2/2)
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< e /2 (c,\713 n_1/2x7E[|X{|’\] +22/2 4 n{cx 12 n_3/2m5]E[|X{|’\] —2%/(2n))}

Fn{ern 2B X1 + 2%/ (2n)))/2)

. ~ ~ ~ T
e~/ (c,\lgn V20TR[| X1 + eanen” V2R XY + Ci,l2 n2x'R[| X2 + R)

IN

—2?/2 ., =1/2,.10 cx 46E[| X]|*]
< Case n txTe™ .

where we assumed without loss of generality zn!/ 2mn7$ —nlog B, > 2?/2 (otherwise we
obtain the trivial upper bound 0). Note that this assumption allows us to apply the inequality
1 —e* < zfor z > 0, to the third line in the upper calculations. This proves (C.34).

Step 2.2.2. Next we will prove (C.14). Let Fy,, denote the distribution function of II,, ,,
and note that Fi, ., ®os2 , and U, are of bounded variation on every right-sided half-line,
where W, (z) := e~"*. So integration-by-parts yields

‘/ e 7 Hn,x(dz)—/ e_xzf\/'ojsgw(dz)‘
(x—nt/2my, 5,00) (x—n1/2m,, 5,00)

/:o U, (2)dFy, ,(2) — /OO U, (2) d@oys%’z(z)‘

—nl/2my, 4 z—nl/2my ,

lim (72 B, (0) — e ) By (@ =t )

[ RGme)

—nl/2my 4

1/2mn’w)

— lim (e‘xb Do (b) + e 2@

_1/2
b—>OO On,x QO,S%@ (x n mn7$)

_ / b Do,z () AV (2)) ‘

—’I’Ll/2mn,1'
< e—w(df—nl/an,z) |Fan (ZE _ nl/Qmmx) — (1)075% I(ZL‘ — nl/an@”
00
+ (Fi,..(2) = Do (2)] ds(2)
z—nl/2m, 4

1/2

oo
< 6—:}0(1711 Mn.z) ||an,z — (I)O,S%,mHoo + ”an,z - q)O,S%,mHoo ) / dquﬂ(z)
x—nl/an,z

= el ) |y By | (C.35)
Furthermore we observe that

1Fitne = ®osz, llo = SUD i ($n0y) = Doz, (sna )| = [1F,. = Ponlloes
ye
where ﬁmj refers to the image measure of of the probability measure ;?”; w.r.t. the mapping
(21, ..y m,) = 0 Y230 (25— Mys)/Sne. Hence by the classical Berry—Esséen theorem we
have

f |.§L’1 - mn,:pPQn,x(dml)

nis,

1P, — bl <
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4 f |x1|3 Qnz(dzy) — mi,:p

s,

B8 B o)

s T

8

B[ X7 e 5]

s

< 8 (C.36)

Now for the numerator in (C.36) we can use (C.19) to obtain

n,x zn—1/2 XM > (:Cn_l/2)i .
Bl e ) = | Y X
=0 :
< EHX{%I 3]+xnfl/ZEKX{L,x)4emn—1/2|X?,x|]
< EHXH/\]_l_in—l/ZE[(X?,xfexnfl/z‘X?,zl].

Now for A € (3,4) we can use (C.20) to deduce

E[| X7 [P P X0 < B[ XN 4+ exqg 2¥ 02N O-DE]| X
< CA,47IE2E[|X{|/\]»

where for the last step we used n3/2~2+m(A=1) < 1 (which follows from the assumption
rx < (A=3)/(2(A—1))). For A > 4 we can use (C.21) to obtain

E[| X[ Per X < B[XP] + anVHODE] X
< oustE[| XY,

where for the last step we used n~*/2*(A=1) < 1 (which follows from the assumption r, <
1/2(A —1)). This proves

E[| X[ e X0 < ey a0 22 B XY (C.37)

Furthermore we will assume without loss of generality that n is chosen sufficiently large such
that 52, > 1/2. By (C.24) we have [s2 , — 1| < e\ E[| X{[M*n2 2", ie. it suffices to
assume that n > 4¢3, E[|X][*]*2**. In view of 2% < (A — 1)log(n) this assumption holds
if there is some constant ¢y > 0 such that n > ng for ny := [eA\E[|X]]|*]®]. Recall from the
discussion at the beginning of Step 2 that the assumption n > ny (for this specific choice of
no) does not lead to any loss of generality. This and (C.35)—(C.37) lead to

e_m2/2‘/ e "* Hn,x(dz)—/ e_wzj\/'o’sgm(dz)
(x—nt/2my, 5,00) '

(x—nt/2my, 5,00)

e~7%/2 gma(@=n!/mn 2) Cx,49 ? B[] X] ’)\] n s,

n,x

e %/2 gex s BlIX{ A n /2 a7 C,49 2v/2 2* ]EHX”)\] ot

1A, —1/2 _ /2 _ 2
€50 e EIX [ n T2 (A1) logn) /= ) =1/2 1.2 —= /2E[|X{|A]

—1/2 x26—x2/2 N 51 EHXH)‘}'

VAN VAN VAN VA

Cr50 M
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This proves (C.14).
Step 2.2.3. Finally we will show (C.15). With the transformation a := zs,,} + 5, , we have

_ 2 _
e 1/2/ e xZNO,s%z<dZ)
(z—nt/2my, 5,00) ’

e v/ (271'3721@)_1/2 / e~/ (2s02) 4y

—nl/2m, o
[e o]

2 _ 2.2 _ 2
— ¢ ® /2 (271—53“3) 1/2 e Sp /2 / e (2/8n,z+xsn,z)?/2 dz

z—nl/2m,, 4
00

= (@ms2,) V22 / s da

(wfnl/an,z)/sn,z“l’xSn,z

_ 6712(175%@)/2 /Oo (27T)71/2e’“2/2 da
(

T n1/2mn I)/Sn z+TSn,x
— e*x ( nz /2 {1 _¢0 1( 1/2(.%”71/2 _mn7x)+x8n,$)}
= €_x2(1 (DO 1( {S 1/2( /2 - mnyx) + xSnvx})'

This leads to

)67m2/2 / efxz NQS% z(dZ) — (I)O’l(—l’)
(z— nl/Qm,LdL,oo) ’

= e ORIy (—{s, b2 (an T = ) + wse}) — Doa(—a)]
P WY @01 (— {Snx 1/2(xn 12 Mpz) + TSpat) — Po1(—25n)|
+ |e‘””2(1 )2 — 1| gy (—5,.0)

+|Po1( — x8pz) — Poa(—x)]

S9231(A,n,x) + S2232(A,n,x) + Sa2233(A\,n,x).

We will now show that the following inequalities are valid:

Soos1(An,x) < cmn —1/2 6 o—a?/4 ecAvW]E”X“A]Q, (C.38)
So232(An,x) < Crps n~Y2 gt /4 ec*ﬁ“EuX“A]Q, (C.39)
Soos3( A n,x) < crss n L2 g3/ ec*’“EHX”A]Q, (C.40)

which will lead to (C.15) immediately. We will start with the proof of (C.39). First, by the
Mean Value theorem, (C.24), and z? < (A — 1) logn we have

e (1=sha)/2 _ 1| < ¥ Msnal2
< (af1 - six\/Q) 2?|1=s7 o1/2
< osE[ X nm 2t eer BN M2 n=1/2214 /2
< eamgn V2t e s B I (C.41)
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In particular, using 22 < (A — 1) logn again,
ePN=al/2 < ] (e 1al/2 1| < 1 oy sge EINPE < gy o conmEIXIPE(C42)

First, (C.39) is a consequence of (C.41) and

~Tsne
(I)O,1<_x5n,a:) — \/% €7y2/2 dy
< e Tsha/d B e V4 dy

V2
= 6—(8%’3—1—0—1)%2/4 \/5
\/5 elsi,zil‘x2/4ei‘rz/4

<
< V2 goer o EIXIPE o=a?/a

where we used (C.42) for the latter step. We next prove (C.38). We will assume without
loss of generality that n is chosen sufficiently large such that n'/%|m,, — zn='/2| < 1/4
and s2, > 1/2. By (C.23) and (C.24) we have |m,, — an~'/?| < ¢y 3E[|X]|}n"'2® and
|2, — 1] < ey E[|X{ AP0~ 2212 e it suffices to assume that n > (16¢3 ,5)E[| X{[}]?2!2
and n > (4 ) E[|X]*]*2*!. In view of 2* < (XA — 1)logn, these assumptions holds if
n > ((16c3 15) V (463 13))E[| XTI ((A — 1) logn))'?. That is, there is some constant ¢ > 0
such that n > ng for ng := [\E[|X{|"]®] implies n'/?|m, , — zn~"?| < 1/4 and 52, > 1/2
for all 1 < |z| < /(A —1)logn. Recall from the discussion at the beginning of Step 2 that
the assumption n > ng (for this specific choice of ng) indeed does not lead to any loss of
generality. Now, using (C.23) and (C.42) we obtain

Soozi(An,x) = e * 21-s70)/2 ]q) 1(s, 1/2(1'71’1/2 — Mpz) + TSpa) — Por(Snz)|
bnl‘
o052 ,)/2 _% / /2 dy
1% an,x
a2(1- 1 _
< e sia)/2 —% (bnz — Anz) B € £/2
o afl=sE /2 - 1 1/2 1/2 —£2/2
e o Syl lzn~ Mz | ge[giﬁn,z]e
< ex2|1_8%,1|/2Lﬁnl/Qc,\,lgEHXﬂ’\] n'2% max €72
2w £€lan,z,bn,z]
/ 1
— exsoB[XTM2 2 —1/2 ElX! M 26 —£2/2 C.43
C\,60€ ﬁ n C\,13 [| 1| ]x ée[g}j’?{fn’z]e ) ( . )

where a,,, and b, , refer to respectively the minimum and the maximum of the real num-
bers 3;}5711/2@71*1/2 — My, + xs,w and s, .. By assumption we have z > 1 as well as
nt2|m, . —an~Y2| < 1/4 and s, > 1/2, and therefore s tn'/2(zn=2 —m, ) + v8,, >
—\/5(1 /4)+ 1/ V2 > 0. The imphcatlons are twofold. Flrst an . is nonnegative so that

—£2/2 _ ,—d? /2 2 2 1/2 py—1/2 2
MAX¢c(a, o bno] € ° 12 =€ /2 Second, a, > (xsnm) — (spin*?lan=% —m,, ,])%. Hence,

max 6_52/2 < 6_(z5n,x)2/2 (5L1n1/2|$” mn,x|)2/2 < 6—$2/4 6(\/5(1/4))2/2.
ge[an,mabn,z] B -
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Together with (C.43) this implies (C.38). Finally, we will prove (C.40). By (C.24) we obtain

Sooss A\ n,x) = |Poi(zSn.) — Poa(z)]
L
< o ) g
N \/% Zlsne = 1] max | o
= \/%_w olone 11 max e
e R
< e B X! 2022 max e €72 (C.44)

£€lan,z,bn,q]

where a,, , and b, , refer to respectively the minimum and the maximum of the real numbers
Zsp,, and z. As before we may assume without loss of generality that n is chosen sufficiently
large such that s2, > 1/2. This implies maxee(q, , p,. € ¢ /2 < e /4

(C.44) implies (C.40).

, which together with

Step 3. Finally, we will prove (C.6). Without loss of generality we restrict ourselves to

x > max{1l; /(A = 1)logn}. Let ry :=1/(2A\(A — 1)). As before consider the truncations
X" = Xz, ]]'{\X“Sm\nl/Q:B}? 1<: < n, nec N,

)

and set Zm® ;= L Yo X" The specific choice of the constant ry will be needed in (C.54)

n

below. On the one hand, as in (C.10) we obtain
1— F,(z) = P[Z, > 2] < P[Z™ > z] + nP[|X}| > r\n*/?z]. (C.45)

On the other hand, we can use the transformation a := /22 — 22 to obtain

<1 22
1-— (13071(.23) = / \/% e 2 dz
2252

2 [ 1 d
= e 2 e 2 z
/x V2T
<1 2 a

e~ T da
0o V2T va?+ x?

|
)
vl

< e 2 e 2 da
0 \/271'
2
— 67%

/2
2 22 (A—2)

__= _z(
e 20-1) ¢ 20D /2

(A—1)logn(A—2)
(exix e pesy /2

cxgx A2 (C.46)
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where we used 22 > (A — 1)logn. From (C.45)—(C.46) we can deduce
|Fo(z) — @01 ()] < P20 > 2] + nP[|X]| > rn'z] + cyan V2D =, (C.A47)

By Markov’s inequality we have

: 172 B[ X I, —(V/2-1) A
nP[|X]| > rmn’x] < nm < ez E[|X{]%]n x . (C.48)
Finally, we will show that
IP’[ZZ” >z < ey eNEIXGPT = (V/2=1) 5= (C.49)

Then, (C.47)—(C.49) and the assumption A > 3 imply (C.6).
To prove (C.49), let

o (z) = i%(u —9)logn + 23(\ — 1) log 2)

(note that k,(z) is nonnegative since > 1) and use Markov’s inequality to obtain

~ 1 &
P[Z > 1] = ﬂ;%;;w@>4
— P[ekN(f) 1 XZL’I > eﬁfkn(m)]
E[ekn(ff) 2 inz]
e(A—2)logn+2XA(A—1)logz
E[ekn(x)Xf’l]n
A2 20T

So (C.49) would follow if we can show that
E[ekn(x)X{"m]n < ey €N E[XT1M ), (A=2)/2 .2A(A-2) (C.50)
In the rest of the proof we will show (C.50). We clearly have

[Efe @)

_ J[ 3" (X

7

< 1tk R+ D gy g | 3 el
< 1t k()R 4 P B B[k o) ey Y BT
< 1 k() [BIXT] + ki;”’) E[(X])?] + E[lkn (2) X7 b X7, (C.51)
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We have |E[X{"*]| < E[|X{|1{x1srn120y], because Xi° = X — Xi1f x5y n1/2,) and
E[X]] = 0. Thus, the second summand on the right-hand side in (C.51) can be bounded
above by

B ELXT?) < (@) B[S g oy

X7
= k%@ﬁE[wvﬂpxy_lﬂwwmeﬂ@
11
< (= 2)logn+ 2 = 1loga) (' a) B
< cen TE[XY. (C.52)

Since E[(X]"")?] < E[(X})?] = 1, the third summand on the right-hand side in (C.51) is
bounded above by
kn(2)® o yenangy o Fn(2)’
E[(X" < :
I gy < Bl
Using the same arguments as in (C.19) we observe that E[|X|"*|*] < E[|X]|}]. Thus for the
fourth summand on the right-hand side in (C.51) we have
B, (a) X7 [P 50X

< (@) @t g X

< haa) (0 ) B[l

(C.53)

= (A =2)logn +22\(A — D logz)? n»- 1 22 2 B[| X! ]
= cvrn R X P, (C.54)

where we used the definition of 7, and the fact that (A — 2)/(2A(A — 1)) — 3/2 < —1 for
A>3

Now, (C.51)—(C.54) yield

n,xr k2
BN < 14 eon  BIXIP + 0 o,y

< FRE)/2+ e sE[X]Mn (C.55)

A\

Thus, for every n € N we obtain
E[ekzn(ﬂﬁ)x?’x] < emhn(@)/2+ e sENXT Y, (C.56)
Since x > ((A — 1)logn)'/?, we have
)

n
k2
5 k@

11
= g — —((A=2)*(logn)? + 2A(A — 1)(A — 2)log xlog n + 4 *(\ — 1)*(log z)?)
2 n
A—2 —2 1 , , , 1
< 5 logn)\_l()\—l)logn?+2)\(/\—2)10gx+2/\ (A —1)*(log x) =
A—2
< logn + 2A(A —2)logz + cyp, (C.57)
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with ¢y 9 = 2A%(A — 1)2. Now (C.56)—(C.57) imply

(A=2) log n+2A(A—2) log a-+cx g+ s El| X] |

E[eh@X" " < ez
< o nA=2)/2 x2)\()\—2)€cA78]E[|Xi|A]. (C.58)
This shows (C.50) with ¢4 := ¢y 10 and ¢y 5 := ¢y 8, and the proof is complete. a
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