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“Prediction is very difficult,
especially if it’s about the future.”

Mark Twain (1835–1910)
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Abstract

This thesis is devoted to the nonparametric estimation of risk measures against the back-

ground of the determination of insurance premiums. We will discuss two approaches in this

context. In the first part we will assume the ratio between the collective size and the ob-

servation size to be asymptotically constant, whereas in the second part we will assume the

collective size to be constant and the observations size to tend to infinity.

The goal of this thesis is to determine strong rates and asymptotic distributions of the devi-

ation of the estimated premiums from the true ones. Furthermore we will discuss bootstrap

methods and their applicability to the premium estimation. Our particular attention will be

paid to prove consistency, as well as almost sure bootstrap consistency for the sequence of

estimated premiums. To this end, we will highlight several options how to choose suitable

estimators in the individual model, as well as the collective model of insurance mathemat-

ics. The performance of these estimators will then be assessed with the help of a numerical

simulation.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der nichtparametrischen Schätzung von Risiko-

maßen vor dem Hintergrund der Bestimmung von Versicherungsprämien. Hierbei werden

zwei Ansätze näher beleuchtet. Im ersten Teil wird angenommen, dass das Verhältnis der

Beobachtungsgröße zur Kollektivgröße asymptotisch konstant ist, während im zweiten Teil

der Arbeit die Kollektivgröße als konstant angenommen wird und die Beobachtungsgröße

wächst.

Das Ziel dieser Arbeit besteht darin starke Raten und asymptotische Verteilungen der Abwe-

ichungen der geschätzten Prämie von der tatsächlichen herzuleiten. Des Weiteren beschäfti-

gen wir uns mit Bootstrap-Methoden und deren Anwendbarkeit auf die Prämienschätzung.

Ein besonderes Augenmerk liegt dabei darauf Konsistenz, sowie fast sichere Bootstrap-

Konsistenz für die Folge der geschätzten Prämien zu zeigen. Wir werden hierzu in den

beiden gängigen Modellen der Versicherungsmathematik, dem individuellen und dem kollek-

tiven Modell, Möglichkeiten zur Wahl nichtparametrischer Schätzer angeben und deren Per-

formanz anschließend anhand numerischer Simulationen überprüfen.
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Introduction

The aim of this thesis is an investigation of several techniques to estimate premiums in

an insurance collective. Given a collective consisting of a certain number of independent,

homogeneous risks, the goal of an insurer is to determine a suitable premium to hedge the

risk of a financial loss. That is, on the one hand the insurance company wants to impose

a certain amount of money to its clients to be able to pay for future claims. On the other

hand the premium imposed on the clients should not be too high in order to keep the price

competitive. The basic idea in insurance mathematics is the so-called balancing of risks.

Roughly speaking, this means that the expected individual risk in an insurance collective

increases much slower than the number of clients in a collective. This thesis is therefore

devoted to a characterization of the asymptotics of the exact premiums in relation to the

estimated premiums if the number of clients in the insurance collective or the number of

collected historical observations tends to infinity. We will approach this question in the first

part of this thesis. The second part will then be devoted to a premium estimation based on

a constant collective size, whereas the number of observations tends to infinity.

In this context different questions have to be dealt with. One obvious question is how to

estimate the claim amount which will arise in the future. Based on formerly observed claims

the insurer should think about an appropriate estimation of future claim amounts. In this

context, the insurance company could be interested in the distribution of the deviation of the

estimated premium from the true premium. Here it is important to know how the error in the

estimation evolves in dependence on the underlying single claim distribution, the collective

size or the number of observations taken into account, for instance. Another question is the

choice of a suitable risk measure. Roughly speaking, the risk measure provides a tool to

“map” the riskiness of the insurance collective to a suitable premium, which will then be

imposed on the whole collective. However, the choice of the risk measure is a nontrivial task.

Finally, the choice of the insurance model of course has a huge impact.

In actuarial practice there are two popular models. The first one is the so-called individual

model of insurance mathematics and the second one is called the collective model of insurance

mathematics. The idea behind the individual model is as follows. Assume an insurer is faced

with an insurance collective consisting of n ∈ N independent, homogeneous risks. We will

identify each of these risks with a real-valued nonnegative random variable. To this end, let

X1, . . . , Xn be nonnegative independent and identically distributed (i.i.d.) random variables
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on a common probability space (Ω,F ,P) with unknown distribution µ. That is, each of

the Xi’s corresponds to a claim amount being reported by the i-th client throughout the

insurance period. These single claim amounts are either equal to zero, if the client does not

report a claim at all, or strictly positive in case of a “true” claim. In this context, the total

claim amount which will arise within the next insurance period is given by the random sum

Sn :=
n∑

i=1

Xi .

The distribution of Sn is then given by the n-fold convolution of µ, which we will denote by

µ∗n. Using this, an evaluation of an adequate risk measure R at µ∗n would provide a suitable

premium for the whole collective. Examples 1.2.1–1.2.6 in Chapter 1 will give an overview

over some popular risk measures. A “fair” premium for a single client in the collective would

then be given by R(µ∗n)/n. In this case the insurance company would equally distribute the

total premium onto each of the n clients, such that every client would have to pay the same

amount of money. In the following we will call this the individual premium. By so-called

balancing of risks in large collectives, we observe that R(µ∗n)/n is often essentially smaller

than R(µ).

Of course in real actuarial practice a rather large number of clients would not report a claim

at all within a certain insurance period. This is reflected by the fact that a rather large

number of the random variables Xi would be 0, whereas the remaining “true” claims would

take strictly positive values. That is, we can think of the distribution µ of a single claim as

a compound distribution in the following way. Denoting by p ∈ (0, 1) the probability of an

actually positive claim to arise, and by µ̃ a distribution possessing only mass on the positive

real axis, the single claim distribution has a representation as

µ := (1− p) δ0 + p µ̃. (1)

We can think of µ̃ as a distribution of a claim conditional on its positiveness, that is µ̃[ · ] :=
µ[ · ∩ (0,∞)]/µ[(0,∞)]. An advantage of the individual model lies in the fact that the

number of claims is equal to the collective size n. Given an estimator for the true single

claim distribution µ, this makes the computability of the total claim distribution, which is

given by the n-fold convolution of the single claim distribution, easier to handle. However,

even in this case an exact computation of the convolution is more or less impossible.

The representation in (1) implies that the probability for a strictly positive claim to happen

is constant. In contrast to this assertion, the collective model assumes the number of claims

to be an integer-valued random variable, such that the whole collective is regarded as the

“producer” of claims rather than the individual client itself. More explicitly, we let (Xi) be

a sequence of positive i.i.d. random variables with distribution µ on a common probability

space (Ω,F ,P). Each of the Xi’s represents a strictly positive single claim and corresponds

to the so-called “true” single claims in the setting of the individual model. In this case the

single claim distribution µ only possesses mass on the interval (0,∞) and does not have point
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mass in 0. Assuming that the number of positive claims is independent of the actual claim

size, we let N be an integer-valued random variable on (Ω,F ,P) as well, being independent

of the sequence (Xi). We identify with X1, . . . , XN the claim sizes being reported throughout

an insurance period. Here we stress the fact again, that both the claim sizes and the number

of claims are random. Then the total claim size is given by

SN :=
N∑

i=1

Xi .

The distribution of the total claim size is then given by the convolution of the single claim

distribution with respect to the distribution of the number of claims. We will call this a

random convolution. A rigorous definition of the random convolution will follow in Chapter

3. Having noted that the n-fold convolution of a measure µ is usually very hard to compute,

the computation of the random convolution is almost impossible. However, for suitable

choices of risk measures, there are ways to compute or at least approximate the corresponding

premium in finite time.

In the literature several approaches about the estimation of risk measures have already been

discussed. Recent work concerning the estimation of asymptotic distributions of plug-in

estimators of certain law-invariant risk measures has been done by [9], [51] and [60], for

instance. Moreover, the functional delta-method in [10] provided a tool to directly derive

the asymptotic distribution of statistical functional, such as risk functionals, to the weak

convergence of the underlying empirical process. An refinement of this method can be found

in [38].

Another problem the insurer is faced with, is the aforementioned problem of an estimation

of the future claim size distribution based on historically collected data. Throughout this

thesis we will mainly discuss approaches motivated by the Glivenko-Cantelli Theorem and

the Central Limit Theorem. The Glivenko-Cantelli Theorem, for instance, proves the strong

consistency of the empirical measure with respect to the unknown distribution µ. Thus,

in our setting the empirical measure could be used to estimate the underlying single claim

distribution µ on the basis of historically observed single claims. Based on this estimation

one could then try to compute the convolution of the empirical measure, which is either

the n-fold convolution in the individual model, or the random convolution in the collective

model, to obtain an estimator for the total claim distribution. A suitable premium would

then be given by the risk measure evaluated at the estimator for the total claim distribution.

As mentioned before, the difficulty lies in the computability of the convolutions, which makes

this approach often quite unhandy.

Another possibility to estimate the total claim distribution is to use the asymptotic normality

of a suitably centered sum of random variables (always assuming that the second moments

of the underlying single claim distribution exist). This approach is motivated by the Central

Limit Theorem. The computation of this estimator simply boils down a computation of the

empirical mean and the empirical variance of the historical observations and is thus quite
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simple. The corresponding premium is then given by an evaluation of the risk measure at

the normal distribution with estimated parameters. A detailed discussion about the benefits

of both estimators will follow in Chapter 2.

To carry out our estimations, we will discuss two different approaches throughout this thesis.

The first part of this thesis is concerned with an estimation based on a varying collective

size n ∈ N, but only taking into account the last un ∈ N observations. Throughout the

first part of this thesis we will therefore assume that the collective size n and the number of

observations un used in our estimations fulfill

lim
n→∞

un/n = c, (2)

for some integer-valued constant c ∈ (0,∞). This approach is motivated by the fact, that

in many actuarial applications insurance companies only use collected observations based

on the last few insurance periods. This setting was first considered by [39]. In actuarial

practice, the insurance company only takes into account data from the last insurance period

or data from the last three insurance periods. Consequently one would choose c = 1 or c = 3,

respectively. This restriction of our estimation to observation sizes of the same “dimension”

as the collective sizes makes our theory nonstandard. There are numerous examples giving

a justification for this approach. One could, for instance, think of applications in the field

of car insurances. Here, fast variations of car models or security systems for example make

it important to use actual data for the estimation of future claim distributions. Again it

is important to stress the fact that this restriction provides a new approach in contrast to

the existing literature about constant collective sizes and increasing observation horizons,

as in [52] for instance. We will focus on estimations of the individual premium in both the

individual and the collective model. More explicitly, we are interested in the convergence

of the deviation of the estimated individual premium from the true one. Our interest will

lie on the determination of strong rates of the error in estimations and proving asymptotic

normality of the error distribution in dependence on the collective size.

The second part of this thesis will then be concerned with new results for premium calcu-

lations based on constant collective sizes and increasing observation numbers in the context

of the collective model. In the second part, we will therefore assume that the collective

size n ∈ N is constant, whereas the number of observations u ∈ N tends to infinity. We

will deal with this question in a semiparametric setting, which will be a generalization of

the results in [12]. That is, we will assume knowledge about the class of distributions the

distribution of the number of claims belongs to, such that the estimation of the distribution

of the number of claims is a parametric one. At the same time we will use the standard

nonparametric estimator to estimate the claim size distribution. Hence, the estimation of

the random convolution is a combination of a parametric and a nonparametric approach.

The rest of this thesis is organized as follows. We will first provide some background in

the field of risk measures. In Chapter 1 we will therefore give a rigorous definition of a

risk measure and state some popular examples of risk measures from actuarial practice. In
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Chapter 2 we will formulate the problem of the estimation of individual premiums in the

individual model in the mathematical context and introduce two important estimators for

the total claim size distribution. As we have mentioned before, we will approach this prob-

lem under the restriction of increasing collective sizes n and restricted observation sizes un,

such that condition (2) holds true. In Section 2.2 we will then present results on the strong

consistency for both the estimator based on the normal approximation and the convolution

of the empirical measure. Moreover we will prove asymptotic normality of the error in the

estimation for both estimators. The central tool which will be used to prove our assertions

will be a nonuniform Berry-Essén inequality by [46]. In Section 2.3 we will then assess the

performance of both estimators with the help of a numerical simulation. These simulations

will show that both estimators are subject to a negative bias with respect to the true indi-

vidual premium. The size of the bias is strongly affected by the heaviness of the tails of the

underlying distribution µ̃ of strictly positive single claims.

Motivated by the results of Chapter 2, we will try to perform a bias-correction of the in-

dividual premium estimators using bootstrap methods. The goal of this chapter will be

to establish a procedure to hopefully alleviate the bias in the former estimations. We will

first give a definition of the bootstrap in our present setting and will then introduce the

corresponding bootstrap estimators. In Section 2.4.2 we will then prove almost sure boot-

strap consistency for our bootstrap estimators. Again, the proofs will strongly rely on the

nonuniform Berry-Essén inequality by [46]. Subsequent to this Section we will carry out a

numerical simulation to point out the performance of the bootstrap estimators in contrast to

the original ones and discuss the benefits of this method. However, our investigations have

shown that the benefits of the bootstrap-based bias correction are rather small compared to

the increasing computation time and a higher mean squared error in the estimation.

Chapter 3 is devoted to the estimation of individual premiums against the background of the

collective model. We will first discuss this issue in the setting of the compound Poisson model

to serve a motivating example and then formulate our problem in a more general setting.

Again, we are interested in strong consistency and asymptotic normality of the individual

premium estimator. In Section 2.1 we will introduce our estimators. In Section 3.2 we will

then prove asymptotic normality and strong consistency of the individual premium estimator

in the compound Poisson model with only mild assumptions on the underlying distributions

and a wide class of risk measures. For the proof we will rely on a new Berry-Essén inequality

for non-randomly centered random sums by [20].

In Chapters 4 and 5 we will turn our focus to the estimation of premiums in the semipara-

metric setting for the case of constant collective sizes and increasing observation numbers.

In contrast to our considerations in the first part, we will assume the collective size n to

be constant and the observation size u to tend to infinity. We will consider the setting of

the compound Poisson model again. However, many results are not restricted to the Pois-

son case and turn out to be valid in more general settings. In Chapter 4 we will present

a summary of existing results about asymptotic normality and almost sure bootstrap con-
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sistency for estimated premiums in the individual model. These results are already known

from [12]. Chapter 5 is then devoted to the derivation of the asymptotic distribution of

estimated premiums in the collective model. The latter is the asymptotic distribution of the

deviation of the total premium estimator from the true total premium when the observation

size u tends to infinity. The goal of this chapter is to prove asymptotic normality of the total

premium estimator in the compound Poisson model. The central tool which will be used

to approach this problem is a special functional delta-method in the form of [12]. We will

use this delta-method to derive the asymptotic distribution from a sequence of suitably cho-

sen plug-in estimators with respect to the risk measure R from the asymptotic distribution

of the underlying sequence of estimators. That is, we will introduce our estimators in the

semiparametric setting, serving as our sequence of initial estimators and will determine the

asymptotic distribution of this sequence with the help of the aforementioned delta-method.

We will then present an example pointing out the practical use of our results. Finally we

will give an outlook on the almost sure bootstrap consistency of the sequence of estimated

premiums in Section 5.3.

The main results of the first part of this thesis are already published in two articles, jointly

with Henryk Zähle. The results of Sections 2.1–2.3 are based on [41]:

Alexandra Lauer and Henryk Zähle (2015). Nonparametric estimation of risk measures of

collective risks. Statistics and Risk Modeling, 32(2), 89–102.

Sections 2.4–2.5 are based on [42]:

Alexandra Lauer and Henryk Zähle (2017). Bootstrap consistency and bias correction in the

nonparametric estimation of risk measures of collective risks. Insurance: Mathematics and

Economics, 74, 99–108.
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Chapter 1

Risk measures and risk functionals

This chapter gives a brief introduction into the theory of risk measures. The question about

the determination of an adequate premium for a collective of individual risks is directly

connected to the investigation of risk measures. In the following we will therefore introduce

some popular risk measures which will be used throughout this thesis and summarize some

basic properties.

1.1 Definitions

Let (Ω,F ,P) be an atomless probability space. Let X ⊂ L0 be a vector space containing

the constants, where L0 = L0(Ω,F ,P) denotes the usual space of all finitely-valued random

variables on (Ω,F ,P) modulo the equivalence of almost sure identity. An intrinsic example

for X is the space Lp = Lp(Ω,F ,P) (consisting of all p-fold integrable random variables from

L0) for p ≥ 1. We will say that a map ρ : X → R is

(1) monotone if ρ(X1) ≤ ρ(X2) for all X1, X2 ∈ X with X1 ≤ X2.

(2) cash additive if ρ(X +m) = ρ(X) +m for all X ∈ X and m ∈ R.

(3) subadditive if ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) for all X1, X2 ∈ X .

(4) positively homogeneous if ρ(λX) = λρ(X) for all X ∈ X and λ ≥ 0.

In the sense of [27], we will call ρ a monetary risk measure if conditions (1) and (2) hold, and

based on the ideas of [5] we will say that ρ is a coherent risk measure if conditions (1)–(4) are

fulfilled. Furthermore we will call ρ a law-invariant risk measure, if ρ(X) = ρ(Y ) whenever

X and Y have the same law. We will restrict ourselves to law-invariant maps ρ : X → R.

So we may and do associate with ρ a statistical functional Rρ : M(X ) → R via

Rρ(µ) := ρ(Xµ), µ ∈ M(X ), (1.1)

7



where M(X ) denotes the set of the distributions of the elements of X , and Xµ ∈ X has

distribution µ.

1.2 Examples of popular risk measures

The first example introduces the risk measure based on the expected value of the future

claims. The premium connected to this risk measure is also called the net premium.

Example 1.2.1 The net premium is the premium derived from the risk measure ρ : L1 → R,

which is defined by

ρ(X) := E[X].

It is easily seen to be a law-invariant and coherent risk measure.

Example 1.2.2 The premium based on the standard deviation principle is the premium,

derived from the risk measure ρ : L2 → R, which is defined by

ρ(X) := E[X] + c
√

Var[X],

for any c > 0. One can easily check, that ρ is cash additive, subadditive and positively

homogeneous but lacks monotonicity. In this context, the constant c > 0 is often referred to

as the safety loading.

The next example introduces one of the most popular risk measures in practice, which is

the Value at Risk at level α ∈ (0, 1). It is the lower α-quantile of the distribution function

associated with the claims. In the practical context, the Value at Risk is the amount of

money the insurer has to impose as a premium, which will guarantee for being spared a

financial loss with probability α. More explicitly, the probability for the future claims to

exceed the premium would be at most 1− α.

Example 1.2.3 The Value at Risk at level α ∈ (0, 1) is the map V@Rα : L0 → R defined

by

V@Rα(X) := F←X (α) := inf{x ∈ R : FX(x) ≥ α}.

It is clearly law-invariant and it was shown in [5, Section 3] that it satisfies monotonicity,

cash additivity, and positive homogeneity. However in general, the Value at Risk is not

subadditive.

The next example introduces the so-called Average Value at Risk at level α ∈ (0, 1). It is

often also referred to as the Tail-conditional expectation or the Expected Shortfall. In contrast

to the Value at Risk of Example 1.2.3, the Average Value at Risk also takes into account

the expected claim amount given the exceedence of the Value at Risk.
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Example 1.2.4 The Average Value at Risk at level α ∈ (0, 1) is the map AV@Rα : L1 → R

defined by

AV@Rα(X) :=
1

1− α

ˆ 1

α

V@Rs(X) ds.

Note, that if the distribution function FX of X is continuous at V@Rα(X), then

AV@Rα(X) = E[X |X ≥ V@Rα(X)].

It is easily seen to be law-invariant and it was shown in [1] that AV@Rα is a coherent

risk-measure for every α ∈ (0, 1).

Example 1.2.5 The one-sided p-th moment-based risk measure for p ∈ [1,∞) and a ∈ [0, 1]

is the map OsMp,a : L
p → R defined by

OsMp,a(X) := E[X] + aE[((X − E[X])+)p]1/p.

It is clearly law-invariant. It was shown in Lemma 4.1 in [26] that the one-sided p-th

moment-based risk measure provides a coherent risk measure.

Example 1.2.6 The expectiles-based risk measure at level α ∈ [1/2, 1) is the map Eptα :

L2 → R defined by

Eptα(X) := argminm∈R {α‖(X −m)+‖22 + (1− α)‖(m−X)+‖22}.

The expectiles-based risk measure is easily seen to be law-invariant. It has been shown in [8]

that the expectiles-based risk measure provides a coherent risk measure.

1.3 Distortion risk measures and the Kusuoka repre-

sentation

In this section we will recall the definition of a distortion risk measure. The following

discussion is basically based on the ideas presented in [38].

Let g : [0, 1] → [0, 1] be a distortion function, that is a nondecreasing càdlàg function with

g(0) = 0 and g(1) = 1. The distortion risk measure associated with g is then defined by

ρg(X) := −
ˆ 0

−∞
g(FX(x)) dx+

ˆ ∞

0

(1− g(FX(x))) dx (1.2)

for every real-valued random variableX (on some given atomless probability space) satisfying
´∞
0
(1 − g(F|X|(x))dx < ∞, where FX and F|X| denote the distribution functions of X and

|X|, respectively. The set Xg ⊂ L0 of all such random variables forms a linear subspace of

L1; this follows from [19, Proposition 9.5] and [27, Proposition 4.75]. It is known that ρg is
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a law-invariant coherent risk measure if and only if the distortion function g is convex; see,

for instance, [63].

If specifically g(t) = 1
1−α max{1 − α, 0} for some α ∈ (0, 1), then we have X = L1(Ω,F ,P)

and ρg is nothing but the Average Value at Risk at level α as introduced in Example 1.2.4.

In [38] it was shown that any law-invariant coherent risk measure ρ admits the following

so-called Kusuoka representation

ρ(X) = sup
g∈G

ρg(X), (1.3)

where G is a class of distortion functions and ρg denotes the distortion risk measure (1.2) for

g ∈ G. The one-sided p-th moment-based risk measure of Example 1.2.5 and the expectiles-

based risk measure of Example 1.2.6 are examples of risk measures of the form (1.3) but not

of the form (1.2). Indeed, Lemma A.5 in [39] has shown that the one-sided p-th moment-

based risk measure does not provide a distortion risk measure. It follows from Lemma 8

in [17] that the expectiles-based risk measure is also not a distortion risk measure unless

α = 1/2. This points out that the distortion representation is not a necessary condition for

a risk measure to be coherent.

1.4 Risk functionals and regularity properties

We will first focus on regularity properties based on the (L1)-Wasserstein metric dWass. We

will state assumptions under which certain risk measures are continuous or even β-Hölder

continuous for some β > 0 w.r.t. dWass. In the second part of this section we will then

derive corresponding properties w.r.t. the nonuniform Kolmogorov distance dφλ
, which will

be introduced below.

LetM1 be the set of all probability measures on (R,B(R)), and denote by Fµ the distribution

function of µ ∈ M1. For every λ ≥ 0, let the function φλ : R → [1,∞) be defined by

φλ(x) := (1 + |x|λ), x ∈ R. For µ1, µ2 ∈ M1, we say that

dφλ
(µ1, µ2) := sup

x∈R
|Fµ1(x)− Fµ2(x)|φλ(x) (1.4)

is the nonuniform Kolmogorov distance of µ1 and µ2 w.r.t. the weight function φλ. It is easily

seen that dφλ
provides a metric on the set Mλ

1 of all µ ∈ M1 satisfying dφλ
(µ, δ0) < ∞.

The (L1)-Wasserstein distance on M1
1 is defined by

dWass(µ1, µ2) :=

ˆ ∞

−∞
|Fµ1(x)− Fµ2(x)| dx, (1.5)

where Fµ1 and Fµ2 denote the distribution functions of µ1 and µ2, respectively. Lemma

8.1 in [13] has shown that dWass indeed defines a metric on M1
1. Moreover, it was shown

in Proposition 4 in [29] that the metric dWass induces the L1-weak topology. The latter is
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defined to be the coarsest topology on M(L1) w.r.t. which each of the maps µ 7→
´

f dµ,

f ∈ C1
b, is continuous, where C1

b is the set of all continuous functions f : R → R for which

there exists a constant C > 0 such that |f(x)| ≤ C|x| for all x ∈ R.

The following result is already known from Theorem 2.8 and Remark 2.9 in [37].

Theorem 1.4.1 For any law-invariant coherent risk measure ρ on L1, the associated risk

functional Rρ : M(L1) → R is continuous w.r.t. the Wasserstein metric dWass.

The following theorem will state a sufficient condition under which a statistical functional

Rρg associated with a convex distortion function g is not only continuous, but Lipschitz

continuous w.r.t. the Wasserstein metric dWass.

Theorem 1.4.2 Let ρg : Xg → R be the distortion risk measure associated with a convex

distortion function g. Assume that there exists a constant L > 0 such that

1− g(t) ≤ L(1− t) for all t ∈ [0, 1]. (1.6)

Then the statistical functional Rρg associated with ρg is Lipschitz-continuous w.r.t. dWass.

That is, for every µ1, µ2 ∈ M1
1 we have

|Rρg(µ1)−Rρg(µ2)| ≤ LdWass(µ1, µ2). (1.7)

Proof Condition (1.6) and the convexity of the distortion function g together imply |g(t)−
g(t′)| ≤ L|t− t′| for all t, t′ ∈ [0, 1]. Hence, using (1.2), we observe that

|Rρg(µ1)−Rρg(µ2)| ≤
ˆ ∞

−∞
|g(Fµ1(x))− g(Fµ2(x))| dx

≤ L

ˆ ∞

−∞
|Fµ1(x)− Fµ2(x)| dx

= LdWass(µ1, µ2). (1.8)

This leads to the assertion. ✷

Choosing g(t) := 1[α,1](t) for any fixed α ∈ (0, 1), the corresponding distortion risk measure

is nothing but the Value at Risk at level α ∈ (0, 1), as defined in Example 1.2.3. It is easily

seen, that in this case g does not fulfill condition (1.6) in Theorem 1.4.2. However, the

Value at Risk at level α ∈ (0, 1) is weakly continuous at every α such that the distribution

function of the underlying random variable X takes the value α only once, see for instance

[62], Lemma 21.2.

The following Theorem is basically already known from Lemma 2.14 in [39].

Theorem 1.4.3 Let p ≥ 1. Let ρ : Lp → R be a law-invariant coherent risk measure and

define a function gρ : [0, 1] → [0, 1] by gρ(t) := 1 − ρ(B1−t), where B1−t refers to any
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Bernoulli random variable with expectation 1− t. Assume that there exist constants L, β > 0

such that

1− gρ(t) ≤ L(1− t)β for all t ∈ [0, 1]. (1.9)

Let λ > 0, such that λβ > 1. Then the statistical functional Rρ associated with ρ is β-Hölder

continuous w.r.t. dφλ
. That is, for every µ1, µ2 ∈ Mλ

1 there exists a constant C > 0 such

that

|Rρ(µ1)−Rρ(µ2)| ≤ Cdφλ
(µ1, µ2)

β. (1.10)

Proof Since ρ is defined on Lp, we can find a set Gρ of continuous convex distortion functions

such that gρ = infg∈Gρ g and

ρ(X) = sup
g∈Gρ

ρg(X) for all X ∈ Lp. (1.11)

This follows from Proposition 5.1 and Remark 3.2 in [9] (adapted to our definition of mono-

tonicity and cash additivity); see also [39, 38]. Below we will show that (1.9) implies

|g(t)− g(t′)| ≤ L|t− t′|β for all t, t′ ∈ [0, 1] and g ∈ Gρ. (1.12)

With the help of (1.11) and (1.12) we then obtain

|Rρ(µ1)−Rρ(µ2)| =
∣∣∣ sup
g∈Gρ

Rρg(µ1)− sup
g∈Gρ

Rρg(µ2)
∣∣∣

≤ sup
g∈Gρ

|Rρg(µ1)−Rρg(µ2)|

≤ sup
g∈Gρ

ˆ ∞

−∞
|g(Fµ1(x))− g(Fµ2(x)| dx

≤
ˆ ∞

−∞
L|Fµ1(x)− Fµ2(x)|β dx

≤ C dφλ
(µ1, µ2)

β

for the constant C := L
´∞
−∞ 1/φλ(x)

βdx (which is finite due to the assumption λβ > 1).

That is, the assertion of part (ii) holds true, too.

It remains to show (1.12), for which we will adapt the arguments of Section 4.3 in [39]. Let

0 ≤ t < t′ < 1. Since the underlying probability space was assumed to be atomless, we

may pick a measurable decomposition A1 ∪ A2 ∪ A3 of the probability domain such that

P[A1] = 1− t′, P[A2] = t′− t and P[A3] = t, where P refers to the corresponding probability

measure. Define random variables B1−t′ := 1A1 , B1−t := 1A1∪A2 and Bt′−t := 1A2 , and note

that they are distributed according to the Bernoulli distribution with parameters 1− t′, 1− t

and t′− t, respectively. Moreover we clearly have B1−t = B1−t′ +Bt′−t. By the subadditivity

of ρg we can conclude ρ(B1−t) ≤ ρ(B1−t′) + ρ(Bt′−t), and so

g(t′)− g(t) = 1− ρg(B1−t′)− (1− ρg(B1−t))

≤ ρg(Bt′−t)
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≤ ρ(Bt′−t)

≤ sup
u∈(0,1]

ρ(Bu)

uβ
(t′ − t)β

≤ sup
u∈(0,1]

1− gρ(1− u)

uβ
(t′ − t)β

≤ sup
v∈[0,1)

1− gρ(v)

(1− v)β
(t′ − t)β

for every g ∈ Gρ, where the second “≤” is ensured by (1.11). By (1.9) we observe that

sup
v∈[0,1)

1− gρ(Bv)

(1− v)β
< ∞.

Thus, since every g ∈ Gρ is also continuous at 1, condition (1.9) indeed implies (1.12). ✷

If ρ is the one-sided p-th moment based risk measure for some p ∈ [1,∞) and a ∈ [0, 1],

as introduced in Example 1.2.5, then condition (1.9) implies that ρ is β-Hölder continuous

w.r.t. dφλ
for β = 1/p and every λ > p.

Theorem 1.4.4 below is about the special case when ρ refers to a distortion risk measure. It

is worth mentioning that if ρ is a distortion risk measure with distortion function g, then

gρ = g and condition (1.9) boils down to the assumption on the β-Hölder continuity of the

distortion function g as in Theorem 1.4.4.

Theorem 1.4.4 Let ρg : Xg → R be the distortion risk measure associated with a distortion

function g. Moreover, assume that g is β-Hölder continuous for some β > 0.

Let λ > 0, such that λβ > 1. Then the statistical functional Rρg associated with ρg is β-

Hölder continuous w.r.t. dφλ
. That is, for every µ1, µ2 ∈ Mλ

1 there exists a constant C > 0

such that

|Rρg(µ1)−Rρg(µ2)| ≤ Cdφλ
(µ1, µ2)

β. (1.13)

Proof The β-Hölder continuity of the distortion function g implies that there exists some

constant L > 0, such that |g(t) − g(t′)| ≤ L|t − t′|β for all t, t′ ∈ [0, 1]. Hence, using (1.2),

we observe that

|Rρg(µ1)−Rρg(µ2)| ≤
ˆ ∞

−∞
|g(Fµ1(x))− g(Fµ2(x))| dx

≤ L

ˆ ∞

−∞
|Fµ1(x)− Fµ2(x)|β dx

≤ C dφλ
(µ1, µ2)

β, (1.14)

with C := L
´∞
−∞ 1/φλ(x)

β dx. In view of the assumption λβ > 1 it follows that the latter

integral is finite. ✷
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For the Average Value at Risk AV@Rα at level α of Example 1.2.4 the assumption of Theorem

1.4.4 on the β-Hölder continuity of the distortion function g holds for β = 1. That is, for

AV@Rα the assertion of Theorem 1.4.4 hold true for every λ > 1.
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Part I

Estimation under a constant ratio of

sampling size and collective size
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Chapter 2

Nonparametric estimation of risk

measures in the individual model

This chapter is devoted to the derivation of premiums with increasing collective sizes. More

explicitly, we focus on the rate of convergence of the error in estimations of risk measures in

dependence on the collective size. In the setting regarded in this chapter the collective size

will also coincide with the number of observations being used in the estimation, or will at

least be proportional to the number of observations. A central task will be the estimation

of the distribution of the total claim size, which will then be plugged into a certain risk

measure to provide an estimator for the total premium. We will deal with this topic in the

individual model of insurance mathematics.

In the setting throughout this chapter we will always consider a homogeneous insurance col-

lective, consisting of n ∈ N clients. What is meant by a “homogeneous” insurance collective

will become apparent in the next section. Throughout the terms of the insurance periods

the insurance company is assumed to collect historical data based on the formerly observed

claims which have been reported. On one hand, much is known about the statistical esti-

mation of the underlying single claim distribution if the number of observations tends to

infinity. However, in practice it might not be sensible to process all the data, which has

been collected over a very long period of time. In the following we will therefore develop an

approach for statistical estimations and numerical approximations of risk measures based on

a certain number un of historically observed claims in a collective of n clients. Here (un) is a

sequence of positive integers for which un/n converges to some integer c ∈ (0,∞). Roughly

speaking, the number of observations should be of the “same dimension” as the number of

clients. This makes the presented theory nonstandard.

A justification for this approach can be found in the field of car insurances for example. An

insurer who has collected data during the last few decades might however not use all this

information to estimate future claim sizes. Reasons for this might be technical advances

in vehicle safety systems, such as security belts, airbags etc. or because car values as such
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have increased throughout this time. The insurer might therefore not want to include “too

old“ data in his estimations for future claim developments. In practice it is therefore often

sensible to just process data from the last one to three years. This is why the presented

theory is of great interest.

First approaches to this theory have been made by [39] for the case of the individual model.

They used the normal approximation with estimated parameters to estimate the distribution

of the total claim size and presented numerical simulations comparing the normal approxi-

mation to the convolution of the empirical measure. In Section 2.1 we will elaborate similar

results for the normal approximation and the convolution of the empirical measure and

present numerical results on our own. The proof of our main theorems, which derive strong

rates of convergence for the individual premium, strongly relies on a Berry-Esséen inequality

w.r.t. the nonuniform Kolmogorov distance dφλ
, which was introduced in (1.4). The proof

of this inequality can be found in [50]. However in Appendix C we present an alternative

proof, which is of an interest of its own.

2.1 Estimators for the individual premium in the indi-

vidual model

In this section we deal with the individual model of actuarial theory. In this context let (Xi)

be a sequence of i.i.d. random variables with distribution µ. For every n ∈ N let

Sn :=
n∑

i=1

Xi.

In this case the distribution of Sn is given by the n-fold convolution µ∗n of µ. In our context

Sn can be seen as the total claim in a homogeneous insurance collective consisting of n

individual risks, such that µ∗n refers to the distribution of the total claim size. The premium

w.r.t. a suitable law-invariant risk measure ρ in the sense of Chapter 1 imposed by the

insurance company is then given by Rρ(µ
∗n). A suitable individual premium, that is the

premium every single client has to pay, is then given by

Rn :=
1

n
Rρ(µ

∗n). (2.1)

In this case the total premium gets equally distributed onto every client in the collective.

Here it is important to note that 1
n
Rρ(µ

∗n) is in most cases essentially smaller than Rρ(µ).

In the following we want to highlight two options to estimate future claim distributions on the

basis of historically observed data. To this end, let Y1, . . . , Yun be a sequence of historically

observed claims based on a collective consisting of n clients. In real applications the collective

size may of course vary over several insurance periods. In the mathematical context however,

this does not impose a restriction to our theory. To this end, suppose that Y1, . . . , Yun are
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i.i.d. random variables on a common probability space (Ω,F ,P) with distribution µ. In

this context let (un) be any sequence of positive integers for which un/n converges to some

constant c ∈ (0,∞). Motivated by the Central Limit Theorem for instance, one could use

the asymptotic normality of the total claim size Sn and use the normal distribution with

estimated parameters Nm̂un ,ŝ
2
un

to estimate the total claim distribution µ∗n. In this case the

corresponding plug-in estimator

NAR̂n :=
1

n
Rρ(Nm̂un ,ŝ

2
un
) (2.2)

provides a reasonable estimator for the individual premium Rn = 1
n
Rρ(µ

∗n), where m̂un and

ŝ2un
refer to the sample mean and the sample variance of Y1, . . . , Yun , respectively, assuming

that Y1, . . . , Yun have finite second moments. This approach has already been discussed in

[39]. In this article it was shown that for many law-invariant risk measures ρ we have

nr
(
NAR̂n −Rn

)
a.s.−→ 0, n → ∞ (2.3)

for every r < 1/2, and

law
{
n1/2

(
NAR̂n −Rn

)}
w−→ N0, s2 , n → ∞ (2.4)

with s2 := Var[X1]. From (2.4) we can also see that the convergence in (2.3) can not hold

for r ≥ 1/2. Again, this approach is nonstandard, because the parameters are estimated on

the basis of a data set of the same “dimension” as the collective size. The assumption that

un increases to infinity at the same speed as n, reflects the idea that in practical applications

the parameters are typically estimated on the basis of data from the last year or the last few

years. Moreover it was shown in [39] that for the exact mean m and the exact variance s2

of µ, and for many law-invariant coherent risk measures ρ,

sup
n∈N

|Rρ(Nnm, ns2)−Rρ(µ
∗n)| < ∞. (2.5)

Both (2.3)–(2.5) and the simulation study in [39] show that the overwhelming part of the

error in the estimated normal approximation of the risk functional is due to the estimation of

the unknown parameters rather than to the numerical approximation itself. Whereas in the

case of known parameters the relative error converges to zero at rate (nearly) 1, in the case

of estimated parameters the relative error converges to zero only at rate (nearly) 1/2. So it

is very important to note that statistical aspects may not be neglected when investigating

approximations of premiums for aggregate risks.

An advantage of the normal approximation with estimated parameters is the fact that the

corresponding premium is very easy to compute. Indeed, whenever ρ refers to a law-invariant,

cash-additive and positively homogeneous risk measure, the corresponding total premium has

the following representation:

NAR̂n =
1√
n
ŝunRρ(N0,1) + m̂un . (2.6)
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As the normal distribution is a symmetric distribution and in practical applications claim

size distributions are often skewed to the right (see also Figure 2.1), this approach might only

yield a moderate applicability to a large set of actuarial tasks. Against this background it

might be more sensible to choose an estimator, which takes into account the natural skewness

of the claim size distributions. Motivated by the Glivenko-Cantelli Theorem for example,

one could choose the empirical measure µ̂un based on Y1, . . . , Yun , which is given by

µ̂un :=
1

un

un∑

i=1

δYi
, (2.7)

to estimate the single claim distribution µ. This is the standard choice for an estimator of

the unknown distribution µ in the nonparametric setting. Following this line of reasoning

µ̂ ∗nun
:= (µ̂un)

∗n (2.8)

provides a reasonable estimator for the total claim size distribution µ∗n. Thus, we can use

the corresponding plug-in estimator

CER̂n :=
1

n
Rρ(µ̂

∗n
un
) (2.9)

as an approximation for the true premium Rn. In the following we will refer to CER̂n as the

empirical plug-in estimator.

In general the computation of the n-fold convolution µ̂ ∗nun
of µ̂un is more or less impossible.

However, in real applications the true µ has support in hN0 := {0, h, 2h, . . .} for some fixed

h > 0, where h represents the smallest monetary unit. We stress the fact that continuous

distributions are in fact approximations for the equidistant discrete true single claim distri-

bution, and not vice versa. So the empirical probability measure µ̂un is concentrated on an

equidistant grid hN0, too. In this case the estimated total claim distribution µ̂ ∗nun
can be

computed with the help of the recursive scheme

µ̂ ∗nun
[{0}] = µ̂un [{0}]n (2.10)

µ̂ ∗nun
[{jh}] =

1

j µ̂un [{0}]

j∑

ℓ=1

((n+ 1)ℓ− j) µ̂un [{ℓh}] µ̂ ∗nun
[{(j − ℓ)h}] for j ∈ N, (2.11)

provided µ̂un [{0}] > 0. In the literature this scheme is often referred to as the Panjer

recursion, see [49]. To observe that the upper scheme indeed coincides with the Panjer

recursion for the convolution w.r.t. the binomial distribution with parameters n and p,

where p is the probability of a strictly positive claim, see Appendix A.1. Note that µ̂un

is the empirical probability measure and therefore has bounded support. Consequently, in

view of (2.10)–(2.11), the estimator Rρ(µ̂
∗n
un
) can typically be computed in finite time, even

for tail-dependent functionals Rρ as, for instance, the one associated with the Average Value

at Risk of Example 1.2.4.
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Section 2.2 will show that for a large class of risk functionals ρ, any distribution µ with a

finite λ-moment for some λ > 2 and any positive sequence of integers (un) for which un/n

converges to some constant c ∈ (0,∞), we obtain similar results as in (2.3)–(2.4) for the

convolution of the empirical measure µ̂∗nun
. More precisely, Theorem 2.2.4 will show that

nr
(
CER̂n −Rn

)
a.s.−→ 0, n → ∞ (2.12)

for every r < 1/2, and

law
{
n1/2

(
CER̂n −Rn

)}
w−→ N0, s2 , n → ∞. (2.13)

The results of Theorems 2.2.2 and 2.2.4 will yield even more, namely

NAR̂n −Rn = (m̂un −m) + oP-a.s.(n
−1/2), (2.14)

CER̂n −Rn = (m̂un −m) + oP-a.s.(n
−1/2), (2.15)

where oP-a.s.(n
−1/2) refers to any sequence of random variables (ξn) on (Ω,F ,P) for which√

nξn converges P-a.s. to zero. What strikes the most in formulae (2.14)–(2.15) is the fact

that the asymptotics of both estimators are exactly the same and are independent of the

concrete choice of the risk measure ρ. Both asymptotics are purely driven by the convergence

of the sample mean to the true mean. With the help of (2.4) and (2.13), we can now derive

asymptotic confidence intervals at level (1− α) for the individual premium:

[
NAR̂n −

ŝun√
n
Φ−10,1

(
1− α

2

)
, NAR̂n −

ŝun√
n
Φ−10,1

(α
2

)]

and [
CER̂n −

ŝun√
n
Φ−10,1

(
1− α

2

)
, CER̂n −

ŝun√
n
Φ−10,1

(α
2

)]
,

where Φ0,1 denotes the distribution function of N0,1.

As another consequence of Theorem 2.2.4 we observe that the true individual premium always

has an asymptotic representation which is similar to the one of NAR̂n in (2.6), namely

Rn = m +
Rρ(N0,1)√

n
s + o(n−1/2). (2.16)

The representation in (2.16) has an astonishing meaning. No matter what the risk measure ρ

looks like, the individual premium w.r.t. ρ asymptotically coincides with the premium derived

from the standard deviation principle of Example 1.2.2 with safety loading 1√
n
Rρ(N0,1).

Likewise we can obtain similar representations for the corresponding estimators:

NAR̂n = m̂un +
Rρ(N0,1)√

n
ŝun , (2.17)

CER̂n = m̂un +
Rρ(N0,1)√

n
ŝun + oP-a.s.(n

−1/2). (2.18)
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Formulae (2.17)–(2.18) can be interpreted as a justification for the use of the standard

deviation principle, which is widely used in insurance practice. The representations do not

only justify the use of the standard deviation principle, but also make a suggestion on how

to sensibly choose the safety loading. The safety loading as such depends on the concrete

choice of the risk measure evaluated at the standard normal distribution and the square root

of the collective size. The division by
√
n in the safety loading moreover reflects the so-called

balancing of risks in large collectives.

In the following Section we will formulate assumptions under which the above results can be

achieved and state our main theorems.

2.2 Strong rates and asymptotic normality for the indi-

vidual premium estimators in the individual model

Let M1 again be the set of all probability measures on (R,B(R)), and denote by Fµ the

distribution function of µ ∈ M1. For every λ ≥ 0, let the function φλ : R → [1,∞) be

defined by φλ(x) := (1 + |x|λ), x ∈ R. Recall that the nonuniform Kolmogorov distance

w.r.t. the weight function φλ was introduced in (1.4).

Assumption 2.2.1 Let ρ : X → R be a law-invariant map, and Rρ be the corresponding

statistical functional introduced in (1.1). Let (un) be a sequence in N, and assume that the

following assertions hold for some λ > 2:

(a) µ ∈ M(Lλ), that is, E[|Y1|λ] < ∞.

(b) un/n converges to some constant c ∈ (0,∞).

(c) ρ is cash additive and positively homogeneous, and Mλ
1 ⊂ M(X ).

(d) The restriction of Rρ to Mλ
1 is (dφλ

, | · |)-continuous at N0,1.

Note that part (d) of Assumption 2.2.1 does not present a strong restriction. The results of

Sections 1.3 and 1.4 have shown that a large variety of risk measures satisfies the imposed

condition. For instance, the Value at Risk of Example 1.2.3, as well as the Average Value at

Risk of Example 1.2.4 and the one-sided p-th moments based risk measure of Example 1.2.5

are amongst the most popular examples satisfying the condition in part (d).

We are now in a position to state our main theorems. Assertions (iv)–(v) in Theorem

2.2.2 describe the asymptotic behavior of the estimator NAR̂n = 1
n
Rρ(Nnm̂un , nŝ

2
un
) for the

individual premium 1
n
Rρ(µ

∗n). Note that Rρ(Nnm̂un , nŝ
2
un
) is always (F ,B(R))-measurable

due to the representation in (2.6).
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Theorem 2.2.2 (Estimated normal approximation) Suppose that Assumption 2.2.1

holds with λ > 2. Then the following assertions hold:

(i) 1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(Nnm,ns2) = (m̂un −m) + oP-a.s.(n

−1/2).

(ii) 1
n
Rρ(Nnm,ns2)− 1

n
Rρ(µ

∗n) = o(n−1/2).

(iii) 1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(µ

∗n) = (m̂un −m) + oP-a.s.(n
−1/2).

(iv) nr( 1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(µ

∗n)) −→ 0 P-a.s. for every r < 1/2.

(v) P ◦ {√un (
1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(µ

∗n))}−1 w−→ N0, s2.

The following corollary is a direct consequence of Theorem 2.2.2. It is devoted to the strong

rates and asymptotic normality of the estimator NAR̂n.

Corollary 2.2.3 Suppose that the assumptions in 2.2.1 are fulfilled for some λ > 2. Then

parts (iv) and (v) of Theorem 2.2.2 show that the convergences in (2.3) and (2.4) hold true.

The following result provides the analogue of Theorem 2.2.2 for the empirical plug-in esti-

mator CER̂n = 1
n
Rρ(µ̂

∗n
un
) for the individual premium Rn = 1

n
Rρ(µ

∗n). Assertions (iii)–(iv)

in Theorem 2.2.4 describe the asymptotic behavior of the estimator 1
n
Rρ(µ̂

∗n
un
).

Theorem 2.2.4 (Empirical plug-in estimator) Suppose that Assumption 2.2.1 holds

with λ > 2, and assume that Rρ(µ̂
∗n
un
) is (F ,B(R))-measurable for every n ∈ N. Then the

following assertions hold:

(i) 1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(µ̂

∗n
un
) = oP-a.s.(n

−1/2).

(ii) 1
n
Rρ(µ̂

∗n
un
)− 1

n
Rρ(µ

∗n) = (m̂un −m) + oP-a.s.(n
−1/2).

(iii) nr( 1
n
Rρ(µ̂

∗n
un
)− 1

n
Rρ(µ

∗n)) −→ 0 P-a.s. for every r < 1/2.

(iv) P ◦ {√un (
1
n
Rρ(µ̂

∗n
un
)− 1

n
Rρ(µ

∗n))}−1 w−→ N0, s2.

The below corollary is a direct consequence of Theorem 2.2.4. It is devoted to the strong

rates and asymptotic normality of the empirical plug-in estimator CER̂n.

Corollary 2.2.5 Suppose that Assumption 2.2.1 is fulfilled for some λ > 2, and assume

that Rρ(µ̂
∗n
un
) is (F ,B(R))-measurable for every n ∈ N. Then parts (iii) and (iv) of Theorem

2.2.4 show that the convergences in (2.12) and (2.13) hold true.
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Before we present the proofs of the upper theorems, we first take our time to discuss some

useful aspects related to these results. As a direct consequence of Theorems 2.2.2 and 2.2.4

we obtain the following representations for the estimated individual premiums:

1

n
Rρ(Nnm̂un , nŝ

2
un
) = m̂un +

1√
n
ŝunRρ(N0,1), (2.19)

1

n
Rρ(µ̂

∗n
un
) = m̂un +

1√
n
ŝunRρ(N0,1) + oP-a.s.(n

−1/2). (2.20)

Equation (2.19) is a simple consequence of part (c) of Assumption 2.2.1, and (2.20) follows

from (2.19) and part (i) of Theorem 2.2.4. Furthermore it is important to note that the

measurability assumption in Theorem 2.2.4 on Rρ(µ̂
∗n
un
) is not very restrictive. This is easily

seen if the role of the risk measure ρ is played by the Value at Risk of Example 1.2.3 for

example, or refers to some distortion risk measure in the sense of Section 1.3. The following

remark, which we will also prove, will now guarantee measurability of the estimated premium

based on the convolution of the empirical measure for a wider class of risk functionals.

Remark 2.2.6 Let X = Lp for some p ∈ [1,∞). Then for every law-invariant coherent risk

measure ρ : Lp → R the estimator Rρ(µ̂
∗n
un
) is (F ,B(R))-measurable for every n ∈ N.

Proof Let ρ : Lp → R be a law-invariant coherent risk measure. First, Theorem 2.8 in

[37] ensures that the corresponding risk functional Rρ : M(Lp) → R is continuous for the

p-weak topology Op-w. The latter is defined to be the coarsest topology on M(Lp) w.r.t.

which each of the maps µ 7→
´

f dµ, f ∈ Cp
b, is continuous, where C

p
b is the set of all continu-

ous functions f : R → R for which there exists a constant C > 0 such that |f(x)| ≤ C(1+|x|p)
for all x ∈ R. According to Corollary A.45 in [27] the topological space (M(Lp),Op-w) is

Polish. Second, the topology Op-w is generated by the Lp-Wasserstein metric dWassp which is

defined by

dWassp(µ, ν) :=
(ˆ 1

0

|F−1µ (x)− F−1ν (x)|p dx
)1/p

,

for every µ, ν ∈ M(Lp). Here we used the notation F−1(x) := inf{y ∈ R : F (y) ≥ x}. The
mapping M(Lp) → M(Lp), µ 7→ µ∗n, is (dWassp , dWassp)-continuous; see Lemma 8.6 in [13].

Third, the mapping ω 7→ µ̂un(ω, ·) is (F , σ(Op-w)) -measurable. Indeed, it is easily seen that

the Borel σ-algebra σ(Op-w) on M(Lp) is generated by the maps µ 7→
´

fdµ, f ∈ Cp
b. So, for

(F , σ(Op-w))-measurability of the mapping Ω → M(Lp), ω 7→ µ̂un(ω, ·), it suffices to show

( ˆ
f(x) µ̂un(· , dx)

)−1
(A) ∈ F for all A ∈ B(R) and f ∈ Cp

b. (2.21)

Since µ̂un(ω, ·) is a probability kernel from (Ω,F) to (R,B(R)), the mapping

ω 7→
ˆ

f(x) µ̂un(ω, dx)
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is (F ,B(R))-measurable for every f ∈ Cp
b; see e.g. Lemma 1.41 in [35]. This gives (2.21).

Altogether, we have shown that the mapping ω 7→ Rρ(µ̂
∗n
un
(ω, ·)) is (F ,B(R))-measurable.

✷

The proofs of Theorems 2.2.2 and 2.2.4 avail the following nonuniform Berry–Esséen in-

equality (2.22). The inequality provides an upper bound for the distance of the distribution

of a suitably centered random sum to the standard normal distribution w.r.t. nonuniform

Kolmogorov distance dφλ
.

Theorem 2.2.7 Let (Xi) be a sequence of i.i.d. random variables on some probability space

(Ω,F ,P) such that Var[X1] > 0 and E[|X1|λ] < ∞ for some λ > 2. For every n ∈ N, let

Zn :=

∑n
i=1(Xi − E[X1])√

nVar[X1]
.

Then there exists a universal constant Cλ ∈ (0,∞) such that

dφλ
(PZn ,N0,1) ≤ Cλ f(PX1)n

−γ for all n ∈ N (2.22)

with γ := min{1, λ− 2}/2, where

f(PX1) :=
E[|X1 − E[X1]|λ]

Var[X1]λ/2
. (2.23)

By “universal constant” we mean that the constant is independent of PX1 . Inequality (2.22)

has been proven by Nagaev [47] and Bikelis [14] for λ = 3 and λ ∈ (2, 3], respectively.

Meanwhile there exist several estimates for the constant Cλ for λ ∈ (2, 3]; see [48] and

references cited therein. For λ > 3 the inequality is a direct consequence of Theorem 13 of

Chapter V in [50].

In Appendix C we will present a slightly different version of the nonuniform Berry–Esséen

inequality, which we will also prove. The proof is based on the approach by [46]. However,

as the proof presented in [46] did not make it clear how the constants in the upper inequality

had to be chosen, or how these constants depended on the distribution of the underlying

random variables, we take our time to carry out the proof in a more rigorous way.

Proof of Theorem 2.2.2:

(i): By part (c) of Assumption 2.2.1 and the representation (2.6) (and its analogue in the

case of known parameters), we have

Rρ(Nnm̂un , nŝ
2
un
)−Rρ(Nnm,ns2) =

√
n(ŝun − s)Rρ(N0,1) + n(m̂un −m). (2.24)

Since the empirical standard deviation ŝun converges P-a.s. to the true standard deviation

s, the claim of part (i) follows through dividing Equation (2.24) by n.
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(ii): Let Sn be a random variable on (Ω,F ,P) with distribution µ∗n, set

Zn := (Sn − nm)/(
√
ns),

and write mn for the law of Zn. Note that

law{√nsZn + nm} = µ∗n.

Write Nn for any random variable distributed according to the normal distribution Nnm,ns2

on the same probability space (Ω,F ,P), and note that Z := (Nn − nm)/(
√
ns) is N0,1-

distributed. Due to part (c) of Assumption 2.2.1, we obtain

Rρ(Nnm,ns2)−Rρ(µ
∗n) = ρ(

√
nsZ + nm)− ρ(

√
nsZn + nm)

=
√
ns(ρ(Z)− ρ(Zn))

=
√
ns(Rρ(N0,1)−Rρ(mn)). (2.25)

The nonuniform Berry–Esséen inequality of Theorem 2.2.7 shows that there exists a constant

Kλ ∈ (0,∞) such that dφλ
(N0,1,mn) ≤ Kλn

−γ for all n ∈ N. Along with (2.25) and the

(dφλ
, | · |)-continuity of Rρ at N0,1 part (d) of Assumption 2.2.1, this ensures that we have

n−1|Rρ(Nnm,ns2)−Rρ(µ
∗n)| = n−1/2s|Rρ(N0,1)−Rρ(mn)| = o(n−1/2)

for all n ∈ N. This completes the proof of part (ii).

(iii): The assertion follows from (i)–(ii).

(iv): By the Marcinkiewicz–Zygmund strong law of large numbers, we have that nr(m̂un−m)

converges P-a.s. to zero for every r < 1/2. So the assertion follows from part (iii).

(v): The classical Central Limit Theorem says that the law of (un)
1/2(m̂un −m) converges

weakly to N0, s2 . So the assertion follows from Slutsky’s lemma and part (iii). ✷

Proof of Theorem 2.2.4:

(i): Analogously to (2.25), we obtain

Rρ(Nnm̂un (ω), nŝ
2
un

(ω))−Rρ(µ̂
∗n
un
(ω; ·)) =

√
nŝun(ω)(Rρ(N0,1)−Rρ(m̂n(ω; ·)) (2.26)

for all ω ∈ Ω, where m̂n(ω; ·) denotes the law of the random variable

Ẑω
n (·) :=

Ŝω
n (·)− nm̂un(ω)√

nŝun(ω)

for any random variable Ŝω
n (·) with distribution µ̂ ∗nun

(ω; ·) and defined on some probability

space (Ωω,Fω,Pω). For (2.26) notice that µ̂un(ω; ·) has mean m̂un(ω) and standard deviation

ŝun(ω) for every fixed ω.
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By the nonuniform Berry–Esséen inequality of Theorem 2.2.7, we have

dφλ
(N0,1, m̂n(ω; ·)) ≤ Cλ

´

|x−
´

y µ̂un(ω; dy)|λ µ̂un(ω; dx)

{
´

(x−
´

y µ̂un(ω; dy))
2 µ̂un(ω; dx)}λ/2

n−γ (2.27)

for all n ∈ N, where Cλ ∈ (0,∞) is a universal constant depending only on λ and being

independent of n and ω. As a consequence of part (a) of Assumption 2.2.2 we have that
´

|x|λ µ̂un(ω; dx) =
1
un

∑un

i=1 |Yi|λ converges to E[|Y1|λ] for P-a.e. ω. That is, the numerator

of
´

|x−
´

y µ̂un(ω; dy)|λ µ̂un(ω; dx)

{
´

(x−
´

y µ̂un(ω; dy))
2 µ̂un(ω; dx)}λ/2

(2.28)

is bounded above by an expression that converges to 2λE[|Y1|λ] for P-a.e. ω. The denominator

is nothing but ŝun(ω)
λ and thus converges to sλ for P-a.e. ω. That is, the expression in (2.28)

converges to a positive constant for P-a.e. ω. Together with (2.26), part (d) of Assumption

2.2.1, (2.27), and the P-a.s. convergence of ŝun to s, this implies

n−1(Rρ(Nnm̂un (ω), nŝ
2
un (ω)

)−Rρ(µ̂
∗n
un
(ω; ·)) = o(n−1/2) (2.29)

for P-a.e. ω. This completes the proof of part (i).

(ii): The assertion follows from (i)–(ii) of Theorem 2.2.2 and part (i) of Theorem 2.2.4.

(iii)-(iv): The assertions can be proven in the same way as the assertions (iv)–(v) of Theorem

2.2.2; just replace part (iii) of Theorem 2.2.2 by part (ii) of Theorem 2.2.4. ✷

The following remark, which we will also prove, will show that we can obtain stronger rates

of convergence as the ones in part (ii) of Theorem 2.2.2 and part (i) of Theorem 2.2.4 if the

underlying risk measure is not only continuous at N0,1, but β-Hölder continuous for some

β ∈ (0,∞).

Remark 2.2.8 Note that we can achieve stronger results as the ones in part (ii) of Theorem

2.2.2 and part (i) of Theorem 2.2.4, if we replace part (d) of Assumption 2.2.1 by the

following slightly stronger assumption:

(d’) For each sequence (mn) ⊂ Mλ
1 with dφλ

(mn,N0,1) → 0, there exist constants C, β > 0

such that

|Rρ(mn)−Rρ(N0,1)| ≤ Cdφλ
(mn,N0,1)

β

for all n ∈ N.

Let γ := min{λ− 2, 1}/2. Then the following assertions hold true:

(i) 1
n
Rρ(Nnm,ns2)− 1

n
Rρ(µ

∗n) = O(n−1/2−β γ)

(ii) 1
n
Rρ(Nnm̂un , nŝ

2
un
)− 1

n
Rρ(µ̂

∗n
un
) = (m̂un −m) +OP-a.s.(n

−1/2−β γ).
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Here OP-a.s.(n
−1/2−β γ) refers to any sequence of random variables (ηn) on some probability

space (Ω,F ,P) for which the sequence (n1/2+β γηn) is bounded P-a.s.

Proof of Remark 2.2.8 We will only show the first part. Part (ii) can be proven analo-

gously.

(i) Following the same line of reasoning as in the proof of Theorem 2.2.2, we observe that

(2.25) along with part (d’) of the upper assumption ensures, that we can find some constants

K, β ∈ (0, ,∞), such that

n−1|Rρ(Nnm,ns2)−Rρ(µ
∗n)| ≤ n−1/2K dφλ

(N0,1,mn))
β ≤ CKλ n

−1/2−β γ

for all n ∈ N. Here Kλ ∈ (0,∞) is the constant in the Berry-Esséen inequality of Theorem

2.2.7. This leads to the assertion. ✷

2.3 Numerical simulations

In this section we present some numerical examples to illustrate the results of Section 2.2.

Our results show that both the estimated normal approximation and the empirical plug-

in estimator lead to reasonable estimators for the premium of an individual risk within

a homogeneous insurance collective. Our results also show that these two estimators are

asymptotically equivalent. Nevertheless for small to moderate collective sizes n the goodness

of the estimators can vary from case to case. For example, in the case where ρ is the Value

at Risk at level α the results of Theorem 2.2.2 show that for both estimators the estimation

error converges almost surely to zero at rate (nearly) 1/2 when E[|Y1|λ] < ∞ for some

λ > 2 (where Y1 refers to any µ-distributed random variable). On the other hand, the latter

condition does not exclude that E[|Y1|2+ε] = ∞ for some small ε > 0. In this case the total

claim distribution can be essentially skewed to the right when the number of individual risks

n is small to moderate; cf. Figure 2.1. So one would expect that especially for heavy-tailed

µ and small to moderate n, the estimators perform only moderately well. One would also

expect that for heavy-tailed µ (and even for medium-tailed µ) and small to moderate n the

empirical plug-in estimator should outperform the estimated normal approximation. Our

goal in this section is to provide empirical evidence for our conjectures.

To this end let us consider a sequence (Yi) of i.i.d. nonnegative random variables on a common

probability space with distribution

µ = (1− p) δ0 + pPa,b

for some p ∈ (0, 1), where Pa,b is the Pareto distribution with parameters a > 2 and b > 0.

The Pareto distribution Pa,b is determined by the Lebesgue density

fa,b(x) := ab−1(b−1x+ 1)−(a+1)
1(0,∞)(x),
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and the assumption a > 2 ensures that E[|Y1|λ] < ∞ for all λ ∈ (2, a). We regard Y1, . . . , Yn

as a homogeneous insurance collective of size n, the number p as the probability for the event

of a strictly positive individual claim amount, and Pa,b as the individual claim distribution

conditioned on this event. Note that in our example the mean m and the variance s2 of µ

are given by

m =
p b

a− 1
and s2 =

2b2p

(a− 1)(a− 2)
− b2p2

(a− 1)2
. (2.30)

In the first part of this section, we estimate the total claim distribution µ∗n, i.e. the distribu-

tion of
∑n

i=1 Yi, by means of the empirical distribution based on a Monte-Carlo simulation.

The plots in Figure 2.1 were derived from a simulation with 100,000 Monte-Carlo paths.

We set p = 0.1 and chose the parameters a and b in such a way that the expected value of

a single claim was normalized to 1. Each line shows the same set of parameters and each

column shows the same collective size, starting with n = 100 on the left, n = 150 in the

middle and n = 200 on the right. The first line shows the results for a = 2.1 and b = 11, the

second line shows a = 3 and b = 20, the third line shows a = 6 and b = 50 and the fourth

line shows a = 10 and b = 90. In each plot the continuous line represents the estimator for

µ∗n and the dashed line the probability density of the normal distribution Nnm,ns2 with m

and s2 determined through (2.30). We emphasize that µ∗n has in fact point mass in zero.

But the point mass is equal to (1− p)n and therefore extremely small. This is why the point

mass of the empirical estimator is not visible in the plots.

One can see that the empirical total claim distributions in the first line of Figure 2.1 are

strongly skewed to the right even for larger collective sizes. The density of the normal

distribution is very flat and has much mass on the negative semiaxis. The reason for this

shape is the high variance s2, which increases rapidly as a gets closer to 2. In the case of

a = 2.1 and b = 11 this rate is close to zero, saying that large collective sizes are needed to

provide a suitable estimator.

In the second line of Figure 2.1 for a = 3 and b = 20 the empirical total claim distributions are

still strongly skewed to the right. One can see that the normal approximation still does not

resemble the empirical distribution. The deviation decreases visibly with increasing collective

size due to the higher rate of convergence in the Berry–Esséen theorem. Compared to the

first line with a = 2.1 and b = 11 the quality of the normal approximation was increased

in the second line with a = 3 and b = 20, which can be explained by the increasing rate of

convergence in the Berry–Esséen theorem. For λ ∈ (2, 3] the convergence rate to the normal

distribution is strictly increasing in λ. For λ > 3 the convergence rate can not be improved

any more.

In the third and fourth line of Figure 2.1 for a = 6 and b = 50 and a = 10 and b = 90 the

normal approximation provides a good approximation even for small collective sizes. The

empirical total claim distributions are in both cases almost symmetric and the approximation

leads to a good fit of both curves. The third moment of X1 exists in both cases and due

to the Berry–Esséen theorem the deviation of µ∗n from the normal distribution converges to
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Figure 2.1: The continuous line shows the n-fold convolution µ∗n of µ = (1 − p)δ0 + pPa,b

for p = 0.1 and the Pareto distribution Pa,b with parameter a = 2.1 in the first line, a = 3

in the second line, a = 6 in the third line and a = 10 in the fourth line and collective sizes

n = 100 in the first column, n = 150 in the second column and n = 200 in the third column.

The dashed line shows the density of the respective normal distribution in each case.
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zero with rate 1/2. We can see that there is no remarkable improve in the convergence rate

once the existence of the third moment is guaranteed.

In the second part of this section we compare the estimated normal approximation with the

empirical plug-in estimator where the role of the risk measure ρ is played by the Value at

risk at level α = 0.99. To save computing time we discretized the Pareto distribution Pa,b

on the equidistant grid 10N0 = {0, 10, 20, . . .}. The plots in Figure 2.2 were derived by a

Monte-Carlo method using 100 Monte-Carlo paths in each simulation. Once again we chose

p = 0.1. In order to compare the estimators we first calculated the exact Value at Risks at

level 0.99 of µ∗n (in fact we estimated it by means of a Monte-Carlo simulation based on

100.000 runs) in dependence on the collective size n. In each plot in Figure 2.2 the dotdashed

line represents the relative Value at RiskRρ(µ
∗n)/n, which we take as a reference to illustrate

the biases of the estimators. The dashed line shows the estimated normal approximation

Rρ(Nnm̂n, nŝ2n
)/n for the Value at Risk relative to n. The continuous line shows the empirical

plug-in estimator Rρ(µ̂
∗n
n )/n for the Value at Risk relative to n.

The first line shows the relative Value at Risks for the parameters a = 2.1 and b = 11 on

the left and a = 3 and b = 20 on the right hand side. In the second line we have a = 6 and

b = 50 on the left and a = 10 and b = 90 on the right hand side. Once again the parameters

were chosen such that the expected value of a single claim was normalized to 1.

For a = 2.1 we can see that both estimators show a large negative bias. The slow convergence

in the Berry–Esséen theorem transfers directly to the convergence of the relative Value at

risk of the distributions (recall that the Value at Risk fulfills condition (d) of Assumption

2.2.1 for β = 1). Due to this slow convergence the collective size has to be chosen very large

to provide a good estimation. What strikes the most is the large bias of the relative empirical

plug-in estimator Rρ(µ
∗n)/n. The heaviness of the tails causes the empirical distribution

µ̂n to converge very slowly to µ∗n. We can see that in the case a = 3 the bias of both

estimators decreases visibly. However in both cases the empirical plug-in estimator yields a

better estimation.

The plots for a = 6 and a = 10 resemble each other very much. In both cases the existence

of the third moment of X1 is guaranteed, yielding the same rate of convergence in the Berry–

Esséen theorem. We can see that for small n, e.g. n ≤ 40, both estimators show a large

bias. However for n ≤ 100 the empirical plug-in estimator provides a better estimation. For

n ≥ 100 the estimated normal approximation could be preferred over the empirical plug-in

estimator, because the biases of both estimators are more or less the same and the estimated

normal approximation consumes less computing time.

As a conclusion one can say that the estimated normal approximation is not suitable for

heavy-tailed (to medium-tailed) distributions whenever small collective sizes are at hand.

In this case it is sensible to apply the empirical plug-in estimator, which consumes more

computing time compared to the estimated normal approximation. However, both estimators

are subject to a negative bias w.r.t. the true individual premium. In the next chapter we
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Figure 2.2: Rρ(µ
∗n)/n (dotdashed line) as well as the average of 100 Monte-Carlo paths of

respectively Rρ(Nnm̂n, nŝ2n
)/n (dashed line) and Rρ(µ̂

∗n
n )/n (continuous line) for ρ = V@R0.99

in dependence on the collective size n, showing a = 2.1 on the left hand side and a = 3 on

the right hand side of the first line and a = 6 on the left hand side and a = 10 on the right

hand side of the second line.

will therefore develop a theory with the scope to alleviate the bias in our estimations.

2.4 Bootstrapping the individual premium in the indi-

vidual model

As we have seen in Section 2.3, a nonparametric estimation of the individual premium is

subject to a negative bias w.r.t. the true individual premium. Especially the cases with

heavy-tailed single claim distributions led to rather large biases in our estimations. In order

to hopefully improve the numerical results of Section 2.3, Section 2.4.1 introduces the so-

called bootstrap-based bias correction. Roughly speaking, the idea behind this procedure

is to “estimate“ the bias in an estimation by means of a suitable resampling of the original
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observations, and subtract the estimated bias from the original estimator.

More explicitly, in the former sections we considered the nonparametric estimators

NAR̂n :=
1

n
Rρ(Nnm̂un ,nŝ

2
un
) and CER̂n :=

1

n
Rρ(µ̂

∗n
un
) (2.31)

for the individual premium Rn based on observed historical single claims Y1, . . . , Yun , where

the Yi are assumed to be i.i.d. random variables on some probability space (Ω,F ,P) with

distribution µ. Then, assuming again that

lim
n→∞

un/n = c for some constant c ∈ (0,∞) (2.32)

and some additional mild assumptions on µ and the risk measure ρ, the results of Section

2.2 have shown that the estimators in (2.31) are strongly consistent in the sense that the

deviation of the estimator from the true value converges to zero P-almost surely, that is

NAR̂n −Rn −→ 0 P-a.s. and CER̂n −Rn −→ 0 P-a.s. (2.33)

Furthermore we were able to proof asymptotic normality in the sense that

P ◦ {√un(
NAR̂n−Rn)}−1 w−→ N0,s2 and P ◦ {√un(

CER̂n−Rn)}−1 w−→ N0,s2 . (2.34)

The latter means that for large n the deviation of the estimator from the true value is

distributed according to the normal distribution with mean 0 and variance uns
2. Condition

(2.32) is again motivated by the fact that the premium is typically estimated on the basis of

the historical claims of the same collective from the last year or from the last few years. We

stress the fact again, that this condition is somehow nonstandard, because in the literature

on asymptotic statistical inference for convolutions it is usually assumed that the number of

summands n is fixed and the number of observations u tends to infinity; see, for instance,

[52].

On the other hand, the results of the simulation studies in Section 2.3 have shown that the

estimators in (2.31) are subject to a negative bias for finite sample size n. In particular when

the conditional single claim distribution µ>0[ · ] := µ[ · ∩ (0,∞)]/µ[(0,∞)] is “heavy-tailed”

the bias can be considerable. For a more detailed discussion and some further background

in the field of bias correction, see for instance [23].

Throughout this section we address the question whether the biases of the estimators NAR̂n

and CER̂n for the individual premiumRn can be reduced by means of the bootstrap technique

to be explained in Section 2.4.1. For the estimator Rρ(µ̂n) of Rρ(µ) analogous investigations

have been done by Kim and Hardy [33] for the Value at Risk and the Average Value at

Risk, and by Kim [34] for more general distortion risk measures. Ahn and Shyamalkumar

[2] provided some asymptotic analysis for the Average Value at Risk in this context. Part

(iii) of Remark 2.2.6 below indicates that the bootstrap approach for reducing the bias is

not expedient for the estimator NAR̂n. On the other hand, the bootstrap approach can be
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(slightly) useful for CER̂n. In our numerical examples for CER̂n with ρ the Value at Risk and

the Average Value at Risk of Example 1.2.3 and 1.2.4, respectively, we obtain results that

are qualitatively comparable to the numerical results of [33, 34]. Whereas for the Value at

Risk an application of the bootstrap-based method of Section 2.3 seems not useful, for the

Average Value at Risk we can observe that on average a small to moderate reduction of the

bias goes along with a small increase of the variance and thus, of the mean squared error.

In the framework of [2, 33, 34] the plug-in estimator Rρ(µ̂n) for a distortion risk measure

Rρ(µ) is an L-statistic, and thus bootstrap consistency is known from the literature. For the

Average Value at Risk functional, see also Corollary 4.2 in [12]. Moreover, for L-statistics

even the exact bootstrap mean can be calculated explicitly, see for instance [31]. In our

setting, where the individual premium Rn = Rρ(µ
∗n)/n is estimated by CER̂n, bootstrap

results seem not to exist so far.

For this reason the results of Theorem 2.4.3 will yield bootstrap consistency for the bootstrap

estimators to give a mathematical justification for the use of the bootstrap-based method of

Section 2.4.1. Theorem 2.4.3 will show almost sure bootstrap consistency for the nonpara-

metric estimators for the individual premium and thus provides the theoretical justification

for the use of the bias correction. Although the method of Section 2.4.1 seems not to be

appropriate for the estimator NAR̂n (see part (iii) of Remark 2.2.6 below), in Theorem 2.4.3

we also establish bootstrap consistency for this estimator. In Subsection 2.5 we will present

the results of some numerical simulation studies.

To this end, we will demonstrate a way to estimate the bias in our former estimation by

means of the bootstrap, from which we will derive the bias correction. The bias correction is

the central tool which will be used to construct estimators based on the original data, used in

the former estimations, but with a smaller bias w.r.t. the true value. The bootstrap versions

of our estimators in (2.31) will then be given by the bias-corrected original estimators.

2.4.1 Bootstrap-based bias correction

As we have already mentioned, the estimators defined in (2.31) have a negative bias w.r.t.Rn.

As a countermeasure one can try to “estimate” the bias and subtract it from the original

estimator. The “estimation” of the bias can sometimes be done by means of bootstrap

methods. The idea of the bootstrap was introduced by Efron in 1979 in his seminal paper

[22]. Since then many variants of the bootstrap have been discussed in the literature; for

background and details one may refer to [16, 23, 40, 57] among others.

To explain the bootstrap-based method for correcting the bias more precisely, let R̂n be an

estimator for a real-valued characteristic Rn, n ∈ N, where Rn may or may not be defined by

(2.1). In any case assume that R̂n is given by a statistical functional evaluated at a (random)

probability measure which is uniquely determined by observed data Y1, . . . , Yun , where the

latter are given by the first un terms of a sequence (Yi) of i.i.d. random variables defined on
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a probability space (Ω,F ,P). For illustrations of such estimators see (2.31). Assume that

R̂n is biased, i.e. that

Bias(R̂n) := E[R̂n −Rn] (2.35)

differs from 0 for finite sample size n. Further assume that

P ◦ {√un(R̂n −Rn)}−1 w−→ N0,s2 (2.36)

holds for some s2 ∈ (0,∞). See (2.34) for an illustration of condition (2.36). Now let

(Ω′,F ′,P′) be a second probability space and extend the original probability space (Ω,F ,P)

to the product space

(Ω,F ,P) := (Ω× Ω′,F ⊗ F ′,P⊗ P′),

and assume that the result ω′ of (Ω′,F ′,P′) and the original sample Y1(ω), . . . , Yun(ω) specify

a new (random) probability measure. The latter is plugged in the underlying statistical

functional to obtain a “bootstrap version” of R̂n, denoted by R̂B
n . Note that R̂B

n depends

on ω and ω′, that is, it is defined on the probability space (Ω,F ,P). Also note that, up to

some measurability issues, the mapping ω′ 7→ R̂B
n(ω, ω

′) can be seen as a random variable

on (Ω′,F ′,P′) for any fixed ω. For illustrations of R̂B
n see (2.40) and (2.42) below. In fact

R̂B
n should be called (almost sure) bootstrap version of R̂n only if

P′ ◦ {√un(R̂B
n(ω, · )− R̂n(ω))}−1 w−→ N0,s2 P-a.e. ω. (2.37)

The left-hand side of (2.37) is often referred to as the conditional distribution of
√
un(R̂B

n −
R̂n) given the observation Y1, . . . , Yun . For a justification of this interpretation see, for

instance, the discussion at the end of Section 2 in [12].

Whenever (2.36) and (2.37) can be shown, we have

P ◦ {R̂n −Rn}−1 ≈ N0,s2/un

and

P′ ◦ {R̂B
n(ω, · )− R̂n(ω))}−1 ≈ N0,s2/un

P-a.e. ω

for “large” n. That is, informally,

P ◦ {R̂n −Rn}−1 ≈ P′ ◦ {R̂B
n(ω, · )− R̂n(ω))}−1 P-a.e. ω (2.38)

for “large” n. Sometimes it turns out that the two laws in (2.38) are not only “close” but

even have a similar skewness so that the means of these two laws are close to each other. In

this case the mean of the law on the right-hand side of (2.38) is a reasonable approximation of

Bias(R̂n) defined in (2.35). Though the law on the right-hand side of (2.38) can be seldomly

specified explicitly, it can be numerically approximated through

1

L

L∑

ℓ=1

δR̂B,ℓ
n (ω, · )−R̂n(ω)

with L ≫ n
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for P-a.e. ω due to the Glivenko–Cantelli theorem, where R̂B,1
n (ω, · ), . . . , R̂B,L

n (ω, · ) are i.i.d.
copies of R̂B

n(ω, · ) for every fixed ω. In particular

B̂ias
B

n :=
1

L

L∑

ℓ=1

(R̂B,ℓ
n (ω, · )− R̂n(ω))

is a reasonable approximation of Bias(R̂n) defined in (2.35) and thus

R̂bc
n := R̂n − B̂ias

B

n (2.39)

can provide an estimator for Rn with smaller bias than R̂n. At this point it is worth

mentioning that R̂bc
n often admits a larger mean squared error than the original estimator

R̂n.

2.4.2 Bootstrap consistency for the nonparametric individual pre-

mium estimator

Analogously to Section 2.1 we write NAR̂n for the estimator based on the normal approx-

imation with estimated parameters and CER̂n for the empirical plug-in estimator. Both

estimators are used to estimate the individual premium Rn := 1
n
Rρ(µ

∗n). Again, the es-

timators are based on a sequence (Yi) of real-valued i.i.d. random variables on a common

probability space (Ω,F ,P) with distribution µ, and can be obtained by plugging the empir-

ical probability measure µ̂un of Y1, . . . , Yun in the statistical functionals

NATn(ν) :=
1

n
Rn(Nnm(ν),ns2(ν)) and CETn(ν) :=

1

n
Rn(ν

∗n) (2.40)

respectively, i.e.
NAR̂n = NATn(µ̂un) and CER̂n = CETn(µ̂un).

Here m(ν) and s2(ν) refer to the mean and the variance of a law ν respectively. We regard

ω ∈ Ω as a sample drawn from P and NAR̂n(ω) and CER̂n(ω) as statistics derived from ω,

respectively from (Y1(ω), . . . , Yun(ω)). Let (Ω
′,F ′,P′) be another probability space and set

(Ω,F ,P) := (Ω× Ω′,F ⊗ F ′,P⊗ P′).

The probability measure P′ represents a random experiment which is run independently of

the random mechanism P. For every n ∈ N let

µ̂B
un
(ω, ω′) :=

1

un

un∑

i=1

Wun,i(ω
′)δYi(ω) (2.41)

for some triangular array (Wu,i) of nonnegative real-valued random variables on the proba-

bility space (Ω′,F ′,P′). Note that the sequence (Yi) and the triangular array (Wu,i) regarded
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as families of random variables on the product space (Ω,F ,P) = (Ω×Ω′,F ⊗F ′,P⊗P′) are

independent. Now we set

NAR̂B
n := NATn(µ̂

B
n) and CER̂B

n := CETn(µ̂
B
n) (2.42)

with NATn and CETn as defined in (2.40). Theorem 2.2.2 ahead shows that under some

mild assumptions these estimators can be seen as bootstrap versions of NAR̂n and CER̂n

respectively. In the theorem we will consider the so called weighted exchangeable bootstrap

in the form of Assumption 2.4.1. Efron’s bootstrap and the Bayesian bootstrap are special

cases; see Example 2.4.2 ahead. For background on the weighted bootstrap see also [4, 18,

43, 45, 54, 56, 61] and references cited therein. Recall that exchangeable random variables

are identically distributed.

Assumption 2.4.1 The triangular array (Wu,i) of nonnegative random variables on the

probability space (Ω′,F ′,P′) satisfies the following conditions:

A1. The random vector (Wu,1, . . . ,Wu,u) is exchangeable for every u ∈ N.

A2.
∑u

i=1 Wu,i = u for every u ∈ N.

A3. Wu,1 ∈ L2(Ω′,F ′,P′) for every u ∈ N, and supu∈NVar
′[Wu,1] < ∞.

A4. 1√
u
max1≤i≤u |Wu,i − 1| p−→ 0 w.r.t. P′.

A5. 1
u

∑u
i=1(Wu,i − 1)2

p−→ 1 w.r.t. P′.

The following example will show that popular bootstrap schemes like Efron’s bootstrap and

the Bayesian bootstrap fulfill the conditions of Assumption 2.4.1.

Example 2.4.2 (i) Efron’s bootstrap [22] is a special form of the weighted exchangeable

bootstrap in the sense of Assumption 2.4.1. In this case the random vector (Wu,1, . . . ,Wu,u)

is multinomially distributed according to the parameters u and p1 = · · · = pu = 1
u
for

every u ∈ N. This choice of the weights (Wu,i) obviously fulfills conditions A1. through A3.

of Assumption 2.4.1. Moreover it also satisfies conditions A4. and A5. This was already

pointed out in Example 3.6.10 in [61], where one should note that by A2. we have W u :=
1
u

∑u
i=1 Wu,i = 1 and that, in view of Markov’s inequality, the second condition in Display

(3.6.8) of [61] implies condition A4.

(ii) Another version of the weighted exchangeable bootstrap in the sense of Assumption 2.4.1

can be obtained by choosing Wu,i := Zi/Zu for every u ∈ N and i = 1, . . . , u, where Zu :=
1
u

∑u
j=1 Zj and (Zi) is any sequence of nonnegative i.i.d. random variables on (Ω′,F ′,P′)

with E′[Z2
1 ] < ∞ and E′[Z1] = Var′[Z1]

1/2 > 0. This choice of the weights (Wu,i) obviously

fulfills conditions A1.–A2. of Assumption 2.4.1. It also satisfies conditions A4. and A5, as

was already pointed out in Example 3.6.9 in [61] (again noting that W u := 1
u

∑u
i=1 Wu,i = 1
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and that the second condition in Display (3.6.8) of [61] implies condition A4). Moreover, we

have

E′[W 2
u,1] = E′[(Z1/Zu)

2]

=

ˆ ∞

0

P′[Z1/Zu > t1/2] dt

≤
ˆ ∞

0

(
P′[Z1 > t1/2(1− ε)] + t−p/2up/2̺(ε)u/2

)
dt

=
1

(1− ε)2
E′[Z2

1 ] + up/2̺(ε)u/2
ˆ ∞

0

t−p/2 dt

for any p > 0, ε ∈ (0, 1), and some ̺(ε) ∈ (0, 1), where the third step is ensured by

Inequality (5.57) of [54] (assuming without loss of generality E′[Z1] = 1). Choosing p > 2

we can conclude that also conditions A3. of Assumption 2.4.1 is satisfied. In the special

case where Z1 is exponentially distributed to the parameter 1, the resulting scheme is the

Bayesian bootstrap of Rubin [56]; see Example 3.1 of [54]. ✸

The formulation of Theorem 2.4.3 will involve the weighted Kolmogorov distance w.r.t. the

weight function φλ as introduced in (1.4). Let againM1 be the set of all probability measures

on (R,B(R)), and denote by Fµ the distribution function of µ ∈ M1.

Theorem 2.4.3 Let ρ : X → R be a law-invariant map, let Rρ be the corresponding statis-

tical functional as defined in (1.1), and assume that Assumptions 2.2.1 and 2.4.1 hold true.

Then, if s2 denotes the variance of µ, we have

P′ ◦ {√un(
NAR̂B

n(ω, · )− NAR̂n(ω))}−1 w−→ N0,s2 P-a.e. ω. (2.43)

If the mapping ω′ 7→ CER̂B
n(ω, ω

′) − CER̂n(ω) is (F ′,B(R))-measurable for every n ∈ N and

ω ∈ Ω, then we also have

P′ ◦ {√un (
CER̂B

n(ω, · )− CER̂n(ω))}−1 w−→ N0,s2 P-a.e. ω. (2.44)

Note that it was shown in Section 2.2 that conditions (a)–(d) of Assumption 2.2.1 ensure

(2.34). In this respect Theorem 2.4.3 complements these results. In fact, in Remark 2.2.8

condition (d) was replaced by a slightly stronger regularity condition (with the benefit of

some additional results). However the proof there can be easily modified to obtain (2.34)

under conditions (a)–(d) above. The assumptions of Theorem 2.4.3 will be discussed and

illustrated in the following remarks and examples.

Remark 2.4.4 (i) The measurability assumption in Theorem 2.4.3 on CER̂B
n(ω, · )−CER̂n(ω)

is not very restrictive. For instance, when ρ is a distortion risk measure (see Section 1.3 for

details), then we can show that CER̂B
n(ω, · ) − CER̂n(ω) is (F ′,B(R))-measurable for every
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fixed ω ∈ Ω. Furthermore the measurability holds when ρ is any law-invariant coherent risk

measure on Lp for some p ∈ [1,∞).

(ii) If ρ is law-invariant, cash-additive, and positively homogeneous, then we obtain the

representation

NAR̂B
n(ω, ω

′) =
ŝBun

(ω, ω′)√
n

Rρ(N0,1) + m̂B
un
(ω, ω′), (2.45)

where m̂B
un

and ŝBun
refer to µ̂B

un
’s mean and standard deviation respectively; see (2.50) below.

Due to the representation in (2.45), it is easily seen that NAR̂B
n(ω, · ) is (F ′,B(R))-measurable

for every ω ∈ Ω and every n ∈ N.

(iii) In view of (2.45) and its analogue for NAR̂n, we have

NAR̂B
n(ω, ω

′)−NAR̂n(ω) = n−1/2Rρ(N0,1)(ŝ
B
un
(ω, ω′)−ŝun(ω))+(m̂B

un
(ω, ω′)−m̂un(ω)). (2.46)

Theorem 2.2.2 indicates that, for fixed ω, the law of this expression in ω′ can be seen as an

approximation of the law of

NAR̂n(·)−Rn = n−1/2Rρ(N0,1)(ŝun(·)− s) + (m̂un(·)−m). (2.47)

Since m̂un is an unbiased estimator for m, and ŝun is (nearly) an unbiased estimator for s,

the mean of the expression in (2.47) nearly vanishes. So it may be expected that, for fixed

ω, the mean of the expression in (2.46) (in ω′) is close to 0, too. In particular one cannot

expect that the mean of the expression in (2.46) (in ω′) is a reasonable “estimator” for the

bias of the estimator NAR̂n for R̂n.

✸

For the proof of the first part of Remark 2.4.4 we can use similar arguments as in the proof

of 2.2.6.

Proof of part (i) of Remark 2.4.4. It suffices to prove the measurability of CER̂B
n(ω, · ) for

every n ∈ N and every fixed ω ∈ Ω. Let ρ : Lp → R be a law-invariant coherent risk measure.

First, Theorem 2.8 in [37] ensures that the corresponding risk functional Rρ : M(Lp) → R is

continuous for the p-weak topology Op-w. The latter is defined to the the coarsest topology

on M(Lp) w.r.t. which each of the maps µ 7→
´

f dµ, f ∈ Cp
b, is continuous, where Cp

b

is the set of all continuous functions f : R → R for which there exists a constant C > 0

such that |f(x)| ≤ C(1 + |x|p) for all x ∈ R. According to Corollary A.45 in [27] the

topological space (M(Lp),Op-w) is Polish. Second, the topology Op-w is generated by the Lp-

Wasserstein metric dWassp and the mapping M(Lp) → M(Lp), µ 7→ µ∗n, is (dWassp , dWassp)-

continuous; see Lemma 8.6 in [13]. Third, the mapping (ω, ω′) 7→ µ̂B
un
(ω, ω′; ·) is (F , σ(Op-w))-

measurable. Indeed, it is easily seen that the Borel σ-algebra σ(Op-w) on M(Lp) is generated

by the maps µ 7→
´

fdµ, f ∈ Cp
b. To show the (F ′, σ(Op-w))-measurability of the mapping

Ω′ → M(Lp), ω′ 7→ µ̂B
un
(ω, ω′) for every fixed ω ∈ Ω, it suffices to show that

( ˆ
f(x) µ̂B

un
((ω, · ); dx)

)−1
(A) ∈ F ′, for every A ∈ B(R) and f ∈ Cp

b. (2.48)
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Since µ̂B
un
(ω, ω′) is a probability kernel from (Ω,F) to (R,B(R)), we can conclude that the

mapping (ω, ω′) 7→
´

f(x) µ̂B
un
((ω, ω′); dx) is (F ,B(R))-measurable for every f ∈ Cp

b. This

yields the (F ′,B(R))-measurability of the mapping ω′ 7→
´

f(x) µ̂B
un
((ω, ω′); dx) for every

fixed ω ∈ Ω, because for every A ∈ B(R) and every ω ∈ Ω we have
( ˆ

f(x)µ̂B
un
((ω, · ); dx)

)−1
(A) =

{
ω′ ∈ Ω′ :

ˆ

f(x) µ̂B
un
((ω, ω′); dx) ∈ A

}

=
{
ω′ ∈ Ω′ : (ω, ω′) ∈

( ˆ
f(x) µ̂B

un
( · ; dx)

)−1
(A)
}

(2.49)

for every n ∈ N. Now by the fact that (
´

f(x)µ̂B
un
( · ; dx))−1(A) ∈ F for every A ∈ B(R),

together with [15, Theorem 18.1] we conclude that the right-hand side of (2.49) lies in F ′.

Remark 2.4.5 Condition (a) and the second part of condition (c) of Theorem 2.4.3 are

satisfied when the risk measure ρ is defined on Lp and the observations Y1, Y2, . . . lie in Lλ

for some λ > p ∨ 2. ✸

Remark 2.4.6 It was shown in Theorem 2.8 of [37] that the statistical functional Rρ asso-

ciated with any law-invariant coherent risk measure ρ on Lp with p ∈ [1,∞) is continuous

for the so called | · |p-weak topology. Since for λ > p the topology on Mλ
1 generated by dφλ

is finer than the relative | · |p-weak topology on Mλ
1 , it follows that condition (d) is fulfilled

for every law-invariant coherent risk measure on Lp and λ > p. ✸

To be able to present the proof of Theorem 2.4.3, we will first introduce some notation and

state some useful results which will be needed throughout the proof. To this end, let

m̂u(ω) :=

ˆ

x µ̂u(ω; dx)

m̂B
u(ω, ω

′) :=

ˆ

x µ̂B
u((ω, ω

′); dx)

ŝ2u(ω) :=

ˆ

(x− m̂u(ω))
2 µ̂u(ω; dx)

ŝ2,Bu (ω, ω′) :=

ˆ

(x− m̂B
u(ω, ω

′))2 µ̂B
u((ω, ω

′), dx)

m̂λ,u(ω) :=

ˆ

|x|λ µ̂u(ω; dx)

m̂B
λ,u(ω, ω

′) :=

ˆ

|x|λ µ̂B
u((ω, ω

′); dx) (2.50)

for every (ω, ω′) ∈ Ω denote the corresponding moments of µ̂u(ω) and µ̂B
u(ω, ω

′). Further-

more, let ŝBu(ω, ω
′) := (ŝ2,Bu (ω, ω′))1/2 and ŝu(ω) := (ŝ2u(ω))

1/2 denote the standard deviations

under µ̂B
u(ω, ω

′) and µ̂u(ω), respectively.

The following Theorem 2.4.7 is known from Theorem 3.2 in [4]. In the special case of Efron’s

bootstrap it was proven much earlier in [13], Theorem 2.1 (a).
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Theorem 2.4.7 Assume that (Wu,i) satisfies Assumption 2.4.1. If µ ∈ M(L2), then

P′ ◦ {√u (m̂B
u(ω, ·)− m̂u(ω))}−1 w−→ N0,s2 P-a.e. ω.

Theorem 2.4.8 Assume that (Wu,i) satisfies Assumption 2.4.1, and let λ ≥ 0. If µ ∈
M(Lλ), then

lim
u→∞

P′[{ω′ ∈ Ω′ : dφλ
(µ̂B

u(ω, ω
′), µ) ≥ η}] = 0 for all η > 0, P-a.e. ω. (2.51)

For (2.51), note that the mapping ω′ 7→ dφλ
(µ̂B

u(ω, ω
′), µ) is (F ′,B(R+))-measurable for any

fixed ω. Indeed, denoting by F̂B
u ((ω, ω

′), · ) and F the distribution functions of µ̂B
u(ω, ω

′) and

µ respectively, this is ensured by the representation

dφλ
(µ̂B

u(ω, ω
′), µ) = sup

x∈Q
|F̂B

u ((ω, ω
′), x)− F (x)|φλ(x)

and the (F ′,B(R+))-measurability of the mapping ω′ 7→ F̂B
u ((ω, ω

′), x) for every ω ∈ Ω and

x ∈ R.

Proof (of Theorem 2.4.8) By choosing r = 0 in Theorem 2.1 in [65], we deduce that

dφλ
(µ̂u, µ) → 0 P-a.s. That is, the class {φλ(x)1(−∞,x] : x ∈ R} is a Glivenko–Cantelli

class w.r.t. P in the sense of [61]; see p. 81 for a definition. Now the claim follows by an

application of Lemma 3.6.16 in [61] (where Wu,i/u plays the role of Wu,i in [61]). Our

assumptions A2. and A4. in Assumption 2.4.1 ensure that the weights (Wu,i) satisfy the

assumptions of this lemma. For the application of the lemma in our specific setting, note

that the star * can be skipped in the probability there, because we have seen above that

the mapping ω′ 7→ dφλ
(µ̂B

u(ω, ω
′), µ) is (F ′,B(R+))-measurable for any fixed ω. Also note

that outer almost sure convergence (as defined in part (iii) of Definition 1.9.1 in [61]) implies

almost sure convergence (i.e. convergence almost everywhere) in the classical sense. The

latter follows from Proposition 1.1 in [21]. ✷

The moment assumptions in the following two corollaries seem to be slightly too strong in

the sense that it should be possible to replace M1(L
λ) by M1(L

λ′
) and M1(L

2) respectively.

However, since we will apply the nonuniform Berry–Esséen inequality (2.22) in the below

proof of Theorem 2.4.3, we assumed λ > 2 in Theorem 2.2.2 anyway. That is, the two

corollaries do not cause any additional assumption.

Corollary 2.4.9 Assume that (Wu,i) satisfies Assumption 2.4.1, and let λ > λ′ ≥ 1. If

µ ∈ M(Lλ), then

lim
u→∞

P′[{ω′ ∈ Ω′ : |m̂B
λ′,u(ω, ω

′)−mλ′ | ≥ η}] = 0 for all η > 0, P-a.e. ω.
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Proof Below we will show that the mapping ν 7→
´

|x|λ′
ν(dx) is Lipschitz continuous w.r.t.

dφλ
. Using this, we obtain

P′[{ω′ ∈ Ω′ : |m̂B
λ′,u(ω, ω

′)−mλ′ | ≥ η}] ≤ P′[{ω′ ∈ Ω′ : Ldφλ
(µ̂B

u(ω, ω
′), µ) ≥ η}]

for every ω ∈ Ω and η > 0, where L denotes the corresponding Lipschitz constant. Now

Theorem 2.4.8 implies the claim of the corollary.

It remains to show the mentioned Lipschitz continuity. The function x 7→ |x|λ′
generates the

σ-finite Borel measure on R with Lebesgue density x 7→ λ′|x|λ′−1. Thus integration-by-parts

yields
ˆ

|x|λ′
ν(dx) = lim

b→∞

ˆ

(−b,b]
|x|λ′

ν(dx)

= lim
b→∞

(
Fν(b)|b|λ

′ − Fν(−b)|b|λ′ −
ˆ

(−b,b]
Fν(x−)λ′|x|λ′−1 dx

)

for every Borel probability measure ν on R. In particular, for any two such ν1, ν2,

∣∣∣
ˆ

|x|λ′
ν1(dx)−

ˆ

|x|λ′
ν2(dx)

∣∣∣

≤ lim
b→∞

(
2dφλ′

(ν1, ν2) + dφλ
(ν1, ν2)

ˆ

(−b,b]
φλ(x−)−1 λ′|x|λ′−1 dx

)

≤ 2dφλ
(ν1, ν2) + dφλ

(ν1, ν2)

ˆ

φλ(x)
−1 λ′|x|λ′−1 dx

= Ldφλ
(ν1, ν2)

with L := 2 +
´

φλ(x)
−1λ′|x|λ′−1 dx < ∞. ✷

For Efron’s bootstrap the following result is already known from part (b) of Theorem 2.1 in

[13].

Corollary 2.4.10 Assume that (Wu,i) satisfies Assumption 2.4.1, and let λ > 2. If µ ∈
M(Lλ), then

lim
u→∞

P′[{ω′ ∈ Ω′ : |ŝ2,Bu (ω, ω′)− s2| ≥ η}] = 0 for all η > 0, P-a.e. ω (2.52)

and

lim
u→∞

P′[{ω′ ∈ Ω′ : |ŝBu(ω, ω′)− s| ≥ η}] = 0 for all η > 0, P-a.e. ω. (2.53)

Proof We clearly have

P′[{ω′ ∈ Ω′ : |ŝ2,Bu (ω, ω′)− s2| ≥ η}] ≤ P′[{ω′ ∈ Ω′ : |m̂B
2,u(ω, ω

′)−m2| ≥ η/2}]
+P′[{ω′ ∈ Ω′ : |(m̂B

u(ω, ω
′))2 −m2| ≥ η/2}].
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By Corollary 2.4.9 the first summand converges to 0 for every η > 0, for P-a.e. ω. The

second summand converges to 0 for every η > 0, for P-a.e. ω, by Theorem 2.4.7 and an

ω-wise application of Slutsky’s lemma. This proves (2.52). Moreover (2.53) follows by (2.52)

and

|ŝBu(ω, ω′)− s| = |ŝ2,Bu (ω, ω′)− s2|/(ŝBu(ω, ω′) + s) ≤ |ŝ2,Bu (ω, ω′)− s2|/s.
This completes the proof. ✷

Proof of (2.44). For every (ω, ω′) ∈ Ω and ω ∈ Ω, let Ŝ
B,(ω,ω′)
un and Ŝω

un
be random variables

on probability spaces (Ω(ω,ω′),F (ω,ω′),P(ω,ω′)) and (Ωω,Fω,Pω), respectively. Assume that for

every (ω, ω′) ∈ Ω the random variable Ŝ
B,(ω,ω′)
un has distribution (µ̂B

un
)∗n((ω, ω′); · ) and that

for every ω ∈ Ω, Ŝω
un

has distribution (µ̂un)
∗n(ω; · ). Furthermore, let νB

un
((ω, ω′); · ) denote

the law of the random variable

ẐB,(ω,ω′)
un

( · ) := Ŝ
B,(ω,ω′)
un ( · )− n m̂B

un
(ω, ω′)√

nŝBun
(ω, ω′)

for every (ω, ω′) ∈ Ω and for every ω ∈ Ω, let νun(ω; · ) denote the law of the random variable

Ẑω
un
( · ) := Ŝω

un
( · )− n m̂un(ω)√

nŝun(ω)
.

Then we observe that for every (ω, ω′) ∈ Ω we have

law{√nŝBun
(ω, ω′) ẐB,(ω,ω′)

un
+ n m̂B

un
(ω, ω′)} = (µ̂B

un
)∗n(ω, ω′),

and for every ω ∈ Ω

law{√nŝun(ω) Ẑ
ω
un

+ n m̂un(ω)} = (µ̂un)
∗n(ω).

Using part (c) of Assumption 2.4.1 on the positive homogeneity and the cash additivity of

ρ, we obtain

√
un

( 1
n
Rρ((µ̂

B
un
)∗n(ω, ω′))− 1

n
Rρ((µ̂un)

∗n(ω))
)

=
√
un

( 1
n
ρ(
√
nŝBun

(ω, ω′) ẐB,(ω,ω′)
un

+ n m̂B
un
(ω, ω′))− 1

n
ρ(
√
nŝun(ω) Ẑ

ω
un

+ n m̂un(ω))
)

=

√
un

n

(
ŝBun

(ω, ω′) ρ(ẐB,(ω,ω′)
un

)− ŝun(ω) ρ(Ẑ
ω
un
)
)
+
√
un (m̂

B
un
(ω, ω′)− m̂un(ω))

=

√
un

n

(
ŝBun

(ω, ω′)Rρ(ν
B
un
(ω, ω′))− ŝun(ω)Rρ(νun(ω))

)
+
√
un (m̂

B
un
(ω, ω′)− m̂un(ω))

=

√
un

n
ŝBun

(ω, ω′)
(
Rρ(ν

B
un
(ω, ω′))−Rρ(N0,1)

)
+

√
un

n
ŝun(ω)

(
Rρ(N0,1)−Rρ(νun(ω))

)

+

√
un

n
Rρ(N0,1)(ŝ

B
un
(ω, ω′)− ŝun(ω)) +

√
un(m̂

B
un
(ω, ω′)− m̂un(ω))

=: S1(n;ω, ω
′) + S2(n;ω) + S3(n;ω, ω

′) + S4(n;ω, ω
′) (2.54)
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for every (ω, ω′) ∈ Ω. In the rest of the proof we will show that

P′[{ω′ ∈ Ω′ : |S1(n;ω, ω
′)| ≥ η}] −→ 0 for all η > 0, P-a.e. ω, (2.55)

S2(n;ω) −→ 0 P-a.e. ω, (2.56)

P′[{ω′ ∈ Ω′ : |S3(n;ω, ω
′)| ≥ η}] −→ 0 for all η > 0, P-a.e. ω, (2.57)

P′ ◦ S4(n;ω, · )−1 w−→ N0,s2 P-a.e. ω, (2.58)

where P′ ◦ S4(n;ω, · )−1 refers to the law of ω′ 7→ S4(n;ω, ω
′) under P′. Then (2.55)–(2.58)

and an ω-wise application of Slutsky’s lemma imply (2.44).

To show (2.55), note that by assumption (d) we can find (for given η > 0) some η′ > 0 such

that

P′
[{

ω′ ∈ Ω′ :
∣∣∣Rρ(ν

B
un
((ω, ω′)))−Rρ(N0,1)

∣∣∣ ≥ η
}]

(2.59)

≤ P′
[{

ω′ ∈ Ω′ : dφλ

(
νB
un
((ω, ω′)) , N0,1

)
≥ η′

}]

≤ P′
[{

ω′ ∈ Ω′ : Cλ

´

|x−
´

y µ̂B
un
((ω, ω′); dy)|λ′

µ̂B
un
((ω, ω′); dx)

(
´

(x−
´

y µ̂B
un
((ω, ω′); dy))2 µ̂B

un
((ω, ω′); dx))λ

′/2
n−γ ≥ η′

}]

≤ P′
[{

ω′ ∈ Ω′ : Cλ 2
λ′−1 m̂B

λ′,un
(ω, ω′)

(ŝBun
(ω, ω′))λ′ n

−γ ≥ η′
}]

≤ P′
[{

ω′ ∈ Ω′ :
∣∣∣
m̂B

λ′,un
(ω, ω′)

(ŝBun
(ω, ω′))λ′ −

mλ′

sλ′

∣∣∣n−γ ≥ η′/(Cλ 2
λ′
)
}]

+P′
[{

ω′ ∈ Ω′ :
mλ

sλ′ n
−γ ≥ η′/(Cλ 2

λ′
)
}]

=: S1,1(n;ω) + S1,2(n).

where the second “≤” is justified by the nonuniform Berry–Essén inequality of Theorem

2.2.7 for arbitrary but fixed λ′ ∈ (2, λ) (and γ := min{1, λ′ − 2}/2). The summand S1,2(n)

obviously converges to 0. Moreover, by Corollaries 2.4.9 and 2.4.10 along Slutsky’s lemma

(applied ω-wise) the summand S1,1(n;ω) converges to 0 for P-a.e. ω. That is, the left-hand

side of (2.59) converges to 0 for P-a.e. ω. Moreover by Corollary 2.4.10 we have that ŝBun
(ω, · )

converges in P′-probability to s for P-a.e. ω, and by assumption (b) we have
√

un/n → √
c.

Then another (ω-wise) application of Slutsky’s lemma leads to (2.55).

To show (2.56), we note that

dφλ

(
νun(ω) , N0,1

)
≤ Cλ

´

|x−
´

y µ̂un(ω; dy)|λ µ̂un(ω; dx)

(
´

(x−
´

y µ̂un(ω; dy))
2 µ̂un(ω; dx))

λ/2
n−γ

≤ Cλ 2
λ−1 m̂λ,un(ω)

(ŝun(ω))
λ
n−γ

and that the ordinary strong law of large numbers ensures that the latter expression converges

to 0 for P-a.e. ω.
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The convergence in (2.57) follows immediately from Corollary 2.4.10 and assumption (b).

Finally (2.58) follows from Theorem 2.4.7. This completes the proof of (2.44). ✷

Proof of (2.43). For every (ω, ω′) ∈ Ω, let M̂
B,(ω,ω′)
un be a random variable on some proba-

bility space (Ω(ω,ω′),F (ω,ω′),P(ω,ω′)) and assume that M̂
B,(ω,ω′)
un is distributed according to the

normal distribution with mean m̂B
un
(ω, ω′) and variance ŝ2,Bun

(ω, ω′). Let

N̂B,(ω,ω′)
un

( · ) := M̂
B,(ω,ω′)
un ( · )− n m̂B

un
(ω, ω′)√

n ŝBun
(ω, ω′)

.

Then we observe that N̂
B,(ω,ω′)
un has the standard normal distribution and for every (ω, ω′) ∈ Ω

we have

law{√n ŝBun
(ω, ω′) N̂B,(ω,ω′)

un
+ n m̂B

un
(ω, ω′)} = Nnm̂B

un
(ω,ω′),nŝ2,Bun (ω,ω′).

Moreover, for every ω ∈ Ω, let Ẑω
un

and νun(ω) be defined as in the proof of (2.44).

Now, we again use part (c) of Assumption 2.4.1 on the positive homogeneity and the cash

additivity of ρ to obtain

√
un

( 1
n
Rρ(Nnm̂B

un (ω,ω
′),nŝ2,Bun (ω,ω′))−

1

n
Rρ((µ̂un)

∗n(ω))
)

=
√
un

( 1
n
ρ(
√
n ŝBun

(ω, ω′) N̂B,(ω,ω′)
un

+ n m̂B
un
(ω, ω′))− 1

n
ρ(
√
nŝun(ω) Ẑ

ω
un

+ n m̂un(ω))
)

=

√
un

n

(
ŝBun

(ω, ω′) ρ(N̂B,(ω,ω′)
un

)− ŝun(ω) ρ(Ẑ
ω
un
)
)
+
√
un(m̂

B
un
(ω, ω′)− m̂un(ω))

=

√
un

n

(
ŝBun

(ω, ω′)Rρ(N0,1)− ŝun(ω)Rρ(νun(ω))
)
+
√
un(m̂

B
un
(ω, ω′)− m̂un(ω))

=

√
un

n
(ŝBun

(ω, ω′)− ŝun(ω))Rρ(N0,1) +
√
un(m̂

B
un
(ω, ω′)− m̂un(ω))

+

√
un

n
ŝun(ω)

(
Rρ(N0,1)−Rρ(νun(ω))

)

=: S1(n;ω, ω
′) + S2(n;ω) + S3(n;ω)

for every (ω, ω′) ∈ Ω. Using arguments as in the proof of (2.55)–(2.58), we can conclude that

P′[{ω′ ∈ Ω′ : |S1(n;ω, ω
′)| ≥ η}] −→ 0 for all η > 0, P-a.e. ω, (2.60)

P′ ◦ S2(n;ω, · )−1 w−→ N0,s2 P-a.e. ω, (2.61)

S3(n;ω) −→ 0 P-a.e. ω. (2.62)

Then (2.60)–(2.62) and an ω-wise application of Slutsky’s lemma imply (2.43). This com-

pletes the proof. ✷

45



2.5 Numerical simulations: The effect of the bootstrap-

based bias correction

In this section we present some numerical examples for the method of correcting the bias

discussed in Section 2.4.1. In our simulations we used Efron’s bootstrap (see Example

2.4.2 (i)) to perform a bias correction of the original nonparametric estimator CER̂n in the

sense of (2.39). Other bootstrap methods are expected to lead to very similar results; see

Table 2.5 and Figure 2.5. We fixed n = 200, chose un = n and un = 3n, and estimated

the individual premium, given by Rn = 1
n
Rρ(µ

∗n). In our simulations the role of ρ is first

played by the Average Value at Risk at level α = 0.95 of Example 1.2.4, that is ρ = AV@Rα.

Second, we chose ρ = V@Rα, which is the Value at Risk of Example 1.2.3 at level α = 0.95.

For the conditional single claim distribution

µ>0[ · ] := µ[ · ∩ (0,∞)]/µ[(0,∞)]

we considered the Pareto distribution and the log-normal distribution for different sets of

parameters. For computational issues we discretized both distributions to the equidistant

grid 0.1N0 := {0, 0.1, 0.2, . . .}. Note that µ>0 and p := µ[(0,∞)] together determine the

(unconditional) single claim distribution µ through the representation

µ[ · ] = (1− p) δ0[ · ] + p µ>0[ · ].

Here p is the probability of a strictly positive claim. We let p = 0.1 in all examples. In

each setting, we simulated 1 000 independent observation vectors (Y1, . . . , Yun). For each of

these 1 000 vectors we computed CER̂n and CER̂bc
n . The bias corrected estimator CER̂bc

n in

the fashion of (2.39) were built upon L = 500 bootstrap paths conditional on each of the

1 000 “original” paths. The “exact” values were derived from a Monte Carlo simulation with

100 000 paths.

Our simulations show ambiguous results. Where on the one hand we experienced a reduction

of the bias for AV@Rα, quite the contrary holds true for V@Rα. However, these results are

similar to those of Kim and Hardy [33, 34]. Kim and Hardy too stated a good applicability

of the bootstrap-based bias correction to AV@Rα, and observed that the same procedure

might cause an increase of the estimated bias for V@Rα. A reason for this might be the

fact that the Value at Risk lacks subadditivity and does therefore not provide a coherent

risk measure. In both cases the use of the bootstrap-based bias correction has the effect to

increase both the variance and the mean squared error (MSE).

2.5.1 Average Value at Risk

In this subsection we fix ρ = AV@Rα and α = 0.95. In the first example we let µ>0 be the

Pareto distribution Para,b with parameters a > 2 and b > 0. The standard Lebesgue density
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of Para,b is

x 7→ ab−1(b−1x+ 1)−(a+1)
1(0,∞)(x)

and the assumption a > 2 ensures again, that E[|Y1|λ] < ∞ for all λ ∈ (2, a). In our examples

the parameters of the Pareto distribution were chosen such that the expected value of a single

claim was normalised to 1, i.e. E[Y1] = 1. Tables 2.1–2.3 show the results of the simulation

study in dependence on un and the choice of estimators. The tables show the (empirical)

bias, standard deviation, and root mean squared error. Each value is shown in percentage

of the true value.

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −18.38% 44.50% 49.88% −12.86% 38.14% 40.89%
CER̂bc

n −12.90% 50.41% 52.54% −6.85% 45.46% 46.05%

Table 2.1: Estimators for ρ = AV@R0.95 and µ>0 = Par3,20 (True value: 2.2585).

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −7.34% 36.60% 37.45% −5.31% 20.63% 21.38%
CER̂bc

n −2.71% 40.07% 40.17% −0.25% 25.00% 25.00%

Table 2.2: Estimators for ρ = AV@R0.95 and µ>0 = Par6,50 (True value: 1.8541).

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −4.68% 31.88% 32.26% −3.23% 18.36% 18.66%
CER̂bc

n 1.10% 37.91% 37.92% 0.83% 22.47% 22.47%

Table 2.3: Estimators for ρ = AV@R0.95 and µ>0 = Par10,90 (True value: 1.8114).

In the case a = 3 and b = 20 the conditional single claim distribution is a kind of “heavy-

tailed”. In view of this and the relatively small collective size, it is not surprising that the

estimator shows a large negative bias and a large MSE. The application of the bootstrap-

based method of Section 2.4.1 helps to reduce this bias by a third but has the effect to

increase the MSE. The cases a = 6 and b = 50 and a = 10 and b = 90 refer to “medium-

tailed” conditional single claim distributions. Again the estimator shows a negative bias.

Especially in the case with a = 10 and un = 3n, the bootstrap-based method helps to get

rid of the negative bias of CER̂n and leads to a very small positive bias. Figure 2.3 shows the

(empirical) law of CER̂n. The vertical line in each plot represents the true value. One can

see that in each case the bias correction has the effect to shift the mass of the distribution

of CER̂n to the right and thus makes the estimation more conservative. The negative bias
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Figure 2.3: Empirical laws of CER̂n (continuous line) and CER̂bc
n (dashed line) for ρ =

AV@R95%, un = n (first column) as well as un = 3n (second column), and µ>0 = Para,b
for the Pareto distribution Para,b with parameter a = 3 in the first line, a = 6 in the second

line, and a = 10 in the third line.
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is getting reduced. The law of CER̂bc
n possesses less mass on the left-hand side of the true

value than the law of CER̂n. However the law of CER̂bc
n possesses more mass on the outer

right-hand side of the true value than the law of CER̂n, even in such an extent that both the

variance and the MSE of CER̂bc
n become larger than those of CER̂n. Against the background

of actuarial theory and the insurer’s wish of a preferably conservative estimation, this effect

is not so bad.

In the second example we considered µ>0 = LN1.9,0.9, where LNc,σ2 refers to the log-normal

distribution with parameters c ∈ R and σ2 > 0. The log-normal distribution possesses all

moments and can thus be seen as a “light-tailed” distribution. The parameters c and σ2

were chosen in such a way that the expected value and the variance of LNc,σ2 coincided with

the expected value and the variance under Par10,90 respectively. Again, the role of the risk

measure ρ is played by AV@Rα with α = 0.95. Table 2.4 shows the results of our simulations.

Just like in the Pareto case CER̂n shows a negative bias. The negative bias is fully eliminated

by the bootstrap-based bias correction, yielding only a much smaller positive bias. Again,
CER̂n tends to underestimate the risk in the collective quite strongly, whereas CER̂bc

n only

overestimates the risk slightly. Just like in the Pareto case we experience the usual increase

of the variance and the MSE. However, the increase of the variance and the MSE is due to a

right-shift of the mass of the law of CER̂n (see Figure 2.4) which makes the estimation more

conservative.

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −5.12% 34.80% 35.22% −3.52% 23.36% 23.67%
CER̂bc

n 1.18% 40.29% 40.31% 1.47% 29.75% 29.79%

Table 2.4: Estimators for ρ = AV@R0.95 and µ>0 = LN1.9,0.9 (True value: 1.8246).

We conclude this subsection with the following remark. We do not expect the particular

choice of the bootstrap scheme to affect the outcome of our method essentially. In Table

2.5 and Figure 2.5 the results for Efron’s bootstrap are compared to the analogous results

for the Bayesian bootstrap (see Example 2.4.2 (ii)) for µ>0 = Par10,90. Figure 2.5 shows the

empirical laws of the original empirical plug-in estimator, the bias-corrected estimator based

on Efron’s bootstrap and the bias-corrected estimator based on the Bayesian bootstrap. One

can see that the empirical laws of the bias-corrected estimators do not differ very much from

each other. Both curves resemble each other strongly, such that the results for the Bayesian

bootstrap are very much comparable to those for Efron’s bootstrap.

Table 2.5 provides a comparison of the perfomance of both bootstrap techniques by means of

the estimated bias, the standard deviation and the root mean squared error. Both procedures

show similar results, that is, the formerly observed alleviation of the biases and the increase

in the standard deviation. We do therefore not expect the choice of the bootstrap procedure

to influence substantially.
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Figure 2.4: Empirical laws of CER̂n (continuous line) and CER̂bc
n (dashed line) for ρ =

AV@R95%, un = n (first column) as well as un = 3n (second column), and µ>0 = LNc,σ2 for

the log-normal distribution LNc,σ2 with c = 1.9 and σ2 = 0.9.
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Figure 2.5: Empirical laws of CER̂n (continuous line), CER̂bc
n derived from Efron’s bootstrap

(dashed line), and CER̂bc
n derived from the Bayesian bootstrap (dotted line) for ρ = AV@R95%,

un = n, and µ>0 = Par10,90.
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Bias StD rMSE
CER̂n −4.68% 31.88% 32.26%
CER̂bc

n (Efron’s bootstrap) 1.10% 37.91% 37.92%
CER̂bc

n (Bayesian bootstrap) 1.66% 36.72% 36.76%

Table 2.5: Estimators for ρ = AV@R0.95, un = n, and µ>0 = Par10,90 (True value: 1.8114).

2.5.2 Value at Risk

In this subsection we fix ρ = V@Rα and α = 0.95. In the first example we again consider

µ>0 = Para,b with a > 2 and b > 0. One can see that an application of the procedure of

Section 2.4.1 can also have the effect to worsen the estimation. Again, CER̂n shows a negative

bias, which increases with the heaviness of the tails of the underlying Pareto distribution.

This effect has already been observed in our investigations in Section 2.3. The bootstrap-

based method of Section 2.4.1 now increases both the bias and the MSE. Tables 2.6–2.8 show

the results of our simulations.

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −8.21% 43.50% 44.41% −4.11% 32.27% 32.56%
CER̂bc

n −10.42% 51.04% 52.35% −8.07% 43.14% 44.02%

Table 2.6: Estimators for ρ = V@R0.95 and µ>0 := Par3,20 (True value: 1.7845).

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −4.62% 36.32% 36.64% −2.92% 20.24% 20.47%
CER̂bc

n −7.14% 42.88% 43.56% −8.54% 34.72% 35.94%

Table 2.7: Estimators for ρ = V@R0.95 and µ>0 := Par6,50 (True value: 1.6155).

un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −2.68% 34.80% 35.22% −1.75% 20.98% 21.05%
CER̂bc

n −7.19% 41.44% 40.30% −6.57% 31.24% 31.92%

Table 2.9: Estimators for ρ = V@R0.95 and µ>0 = LN1.9,0.9 (True value: 1.5995).

In the second example we again consider µ>0 = LN1.9,0.9, where again the parameters were

chosen in such a way that the expected value and the variance coincided with the expected

value and the variance of Par10,90. The results are consistent with those of the Pareto
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un = n un = 3n

Bias StD rMSE Bias StD rMSE
CER̂n −3.07% 28.94% 29.10% −1.90% 17.83% 17.93%
CER̂bc

n −6.49% 35.54% 36.12% −4.83% 25.68% 26.13%

Table 2.8: Estimators for ρ = V@R0.95 and µ>0 = Par10,90 (True value: 1.5990).

example. For both CER̂n we observe a negative bias. This negative bias increases for CER̂bc
n .

Also, the method of Section 2.4.1 has the effect to increase the MSE. Table 2.9 shows the

results of our simulations.

2.5.3 Conclusion

When the underlying risk measure ρ is the Average Value at Risk AV@Rα, the method of

Section 2.4.1 provides a way to moderately improve the estimator CER̂n, at least from the

insurer’s point of view. On the other hand, when the underlying risk measure ρ is the Value

at Risk V@Rα, the method of Section 2.4.1 seems not to be useful for the estimator CER̂n.

For larger collective sizes the numerical specification (of µ̂∗nu and thus) of the estimator CER̂n

consumes some computing time. Due to the Monte Carlo simulation that comes along with

the bootstrap, the computing time for the bias corrected version CER̂bc
n is even much higher.

So, when deciding whether or not to use the method of Section 2.4.1 for the Average Value at

Risk, the required computing time should not be neglected. In our examples, the particular

choice of the bootstrap scheme did not affect the outcome of the results.
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Chapter 3

Nonparametric estimation of risk

measures in the collective model

In the former chapter we have considered the so-called individual model of actuarial theory.

In this model we assumed that every client in the insurance collective would produce a

nonnegative claim during the next insurance period. Here we allowed the case, where several

single claim amounts could be zero, whenever a client would not report a claim within the

next insurance period. In the collective model of actuarial theory however, we assume that

the whole collective produces a random number of strictly positive losses. In this context

let (Xi) be a sequence of strictly positive i.i.d. random variables. Moreover let N be an

N0-valued random variable on the same probability space, being independent of (Xi). The

total claim amount in the collective model is then given by the so-called random sum

SN :=
N∑

i=1

Xi. (3.1)

The investigation of asymptotic distributions of these random sums began with the work of

Robbins ([55]) in 1948. A good summary about asymptotics of random sums can be found

in the books by [25] and [30], for example.

Throughout this chapter we will consider the compound Poisson model, which in actuarial

theory is also referred to as the Cramér-Lundberg model or classical compound Poisson risk

model. It goes back to the work of [44]. The model assumes the times between two successive

single claims to be exponentially distributed at a certain rate λ > 0. The stochastic process,

modeling the number of claims occurring in dependence on the time is then a homogeneous

Poisson process. This model is very popular in both non-life insurance mathematics and

ruin theory.

Our aim in this chapter will be an estimation of individual premiums in the compound

Poisson model similar to the individual model of Chapter 2. We will focus on the derivation of

strong rates and asymptotic normality of the estimated individual premiums in dependence
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on the underlying collective size. In the former chapter the central tool, which was used

to determine the strong rates was the nonuniform Berry-Esséen inequality in the form of

Theorem 13 of Chapter V in [50]. In the setting of the compound Poisson model our

proofs will strongly rely on a new Berry-Esséen type inequality for nonrandomly centered

random sums in the form of [20]. This recently established inequality quantifies the rate

of convergence of a suitably nonrandomly centered random sum to the standard normal

distribution w.r.t. (L1)-Wasserstein distance, which was introduced in (1.5).

The rest of this chapter is organized as follows. In Section 3.1 we will introduce the com-

pound Poisson model in a mathematical way and introduce two estimators for the individual

premium. In Section 3.2 we will formulate assumptions under which we will be able to prove

our main theorems. Corollaries 3.2.4–3.2.6 will then state the strong rates and asymptotic

normality of the estimated individual premiums for each choice of the estimators.

3.1 Estimators for the individual premium in the com-

pound Poisson model

In this section we consider the so-called collective model of actuarial theory with respect

to the Poisson distribution. In the literature this model is often referred to as the Cramér-

Lundberg model. We suppose that the collective successively suffers losses at an exponential

rate λn > 0, in dependence on the size n ∈ N of the underlying collective. We assume the

single losses to be independent and identically distributed according to some distribution

µ. In this case the total number of losses in a period of length t ≥ 0 is given by Nn(t) :=

max{k ∈ N :
∑k

i=1 W
n
i ≤ t}, where (W n

i ) is a sequence of Expλn
-distributed random

variables. That is the total claim amount until time t is given by Sn(t) :=
∑Nn(t)

i=1 Xi, where

(Xi) is a sequence of i.i.d. random variables with distribution µ, which is independent of

(W n
i ). Note that Sn := (Sn(t))t≥0 provides a compound Poisson process with rate λn and

jump size distribution µ, and that Nn := (Nn(t))t≥0 provides a Poisson process with intensity

λn. In particular, the total claim distribution in a fixed insurance period of length T > 0,

i.e. the distribution of Sn(T ), is given by the random convolution

µ∗PoissλnT [ · ] :=
∑

k∈N0

µ∗k[ · ] PoissλnT [{k}]

of µ with respect to the Poisson distribution PoissλnT with parameter λnT . An adequate

individual premium w.r.t. a certain risk measure ρ is then given by

Rn :=
1

n
Rρ

(
µ∗PoissλnT

)
, (3.2)

where as before Rρ refers to the statistical functional associated with the risk measure ρ as

defined in (1.1). We identify with X1, . . . , XNn(T ) the single claims which will occur within

the next insurance period. As we do not have information about these future claims, we
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will try to construct estimates of the distribution of the total claim amount µ∗PoissλnT on the

basis of historically observed claims.

In the following we will introduce two possible estimators for the total claim size distribution

µ∗PoissλnT . We will first introduce an approach based on the convolution of the empirical

measure w.r.t. the Poisson distribution with estimated parameter. The resulting estimator

for the individual premium will be called the empirical plug-in estimator. Second, we will

use the normal approximation with estimated parameters to estimate the total claim size

distribution.

To this end, let (Yi) be a sequence of i.i.d. random variables with distribution µ and

N̂ = (N̂(t))t≥0 be a Poisson process with rate 1 on a common probability space (Ω,F ,P),

and assume that (Yi) and N̂ are independent. Then N̂n(t) := N̂(λnt), t ≥ 0, defines a

Poisson process with rate λn being independent of (Yi). Let τ ∈ (0,∞) be any (historical)

time horizon. With the choice of τ we can model the fact that parameters and claim size

distributions are usually estimated on the basis of claims from the last few insurance periods

and not necessarily from the last period only. By choosing τ = 3T for instance, the insurance

company would use data from the last three insurance periods of length T to estimate the

future premium.

In this context the random variable N̂n(τ) can be seen as the number of claims that occurred

within a period of length τ > 0, and the random variables Yi, . . . , YN̂n(τ)
can be seen as the

corresponding claims. Now

λ̂n,τ :=
N̂n(τ)

τ
(3.3)

provides an estimator for the exponential rate λn in dependence on the underlying collective

size n ∈ N and time τ > 0. Thus

µ̂n,τ :=
1

N̂n(τ)

N̂n(τ)∑

i=1

δYi
(3.4)

provides a reasonable estimator for the single claim distribution µ based on the time horizon

τ > 0 and underlying collective size n ∈ N, whenever the observed number of losses N̂n(τ)

is strictly positive (otherwise we simply set µ̂n,τ := δ0).

Based on (3.4), we can use

µ̂
∗Poiss

λ̂n,τ T

n,τ := (µ̂n,τ )
∗Poiss

λ̂n,τ T (3.5)

as an estimator for the total claim distribution µ∗PoissλnT , and the corresponding plug-in

estimator
PCER̂n :=

1

n
Rρ

(
µ̂
∗Poiss

λ̂n,τ T

n,τ

)
(3.6)

to estimate the individual premium Rn as defined in (3.2). In the following we will refer to
PCER̂n as the empirical plug-in estimator. Once again, the Panjer recursion of [49] provides a

way to compute the right-hand side in (3.5) if the single claim distribution µ has support in
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hN0 := {0, h, 2h, . . .} for some h > 0, see Appendix A.2 for a detailed discussion. Although

µ̂n,τ has bounded support, the right-hand side in (3.5) has unbounded support. Therefore

the estimator in (3.6) cannot be computed in finite time for tail-dependent risk functionals

Rρ, such as the Average Value at Risk of Example 1.2.4, for instance. On the other hand,

it can be computed in finite time for the Value at Risk of Example 1.2.3 for instance.

Similarly to the approach in the individual model, we can use the normal approximation

with suitably estimated parameters to estimate the total claim size distribution µ∗PoissλnT .

The idea behind this choice is again the asymptotic normality of a suitably centered random

sum. Indeed, Example 3 (i) in [55] has shown that for a Poisson random variable N with

intensity λ > 0 and any sequence (ξi) of i.i.d. random variables with positive finite variance,

being independent from N , we have

law

{∑N
i=1 ξi − λm√

λm(2)

}
w−→ N0,1 (λ → ∞), (3.7)

where m and m(2) denote the expectation and the second moment of ξ1, respectively. That

is, informally for “large” λ, we have

µ∗Poissλ ≈ Nλm,λm(2) . (3.8)

Note that, by Wald’s formula, we observe that λm and λm(2) are nothing but the mean and

variance of the random variable
∑N

i=1 ξi, respectively. Using corresponding representations

in our present setting, we let

mn := λnTm, (3.9)

σ2
n := λnTm

(2), (3.10)

denote the mean and variance of µ∗PoissλnT . Motivated by (3.8), we can use

N
m̂n,τ ,σ̂2

n,τ

to estimate the total claim distribution based on an underlying collective of size n ∈ N and

time horizon τ > 0. Here m̂n,τ and σ̂2
n,τ are estimators for the true mean mn and the true

variance σ2
n of µ∗PoissλnT . Based on the representations in (3.9) and (3.10)

m̂n,τ := λ̂n,τ T m̂n,τ (3.11)

σ̂2
n,τ := λ̂n,τ T m̂(2)

n,τ , (3.12)

provide suitable estimators for mn and σ2
n, respectively. Here m̂n,τ and m̂

(2)
n,τ refer to the

expected value and the second moment of µ̂n,τ , respectively, that is

m̂n,τ :=
1

N̂n(τ)

N̂n(τ)∑

i=1

Yi, (3.13)

m̂(2)
n,τ :=

1

N̂n(τ)

N̂n(τ)∑

i=1

Y 2
i . (3.14)
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Note that m̂n,τ and σ̂2
n,τ are nothing but the mean and variance of µ̂

∗Poiss
λ̂n,τ T

n,τ , respectively.

Thus, the corresponding plug-in estimator

NAR̂n :=
1

n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)

provides a second estimator for the individual premium in the collective model. In this

context an estimation of the total claim distribution simply boils down to an estimation of

the parameters in the sense of (3.11) and (3.12). Note that we will omit the dependence of

mn and σ2
n, as well as the dependence of all estimators, on T for the sake of a better reading.

For cash-additive and positively homogeneous risk measures ρ, the total premium derived

from the normal approximation with estimated parameters has the following representation:

Rρ(Nm̂n,τ ,σ̂2
n,τ

) = σ̂n,τ Rρ(N0,1) + m̂n,τ . (3.15)

Of course, one can obtain a similar representation for the case of the true parameters. In

the following we will assume the exponential rate λn > 0 to be proportional to the collective

size n ∈ N. More explicitly, we will assume that λn/n converges to some constant c ∈ (0,∞)

as n → ∞. This notion is compatible with our approach for the estimation in the individual

model and reflects the fact, that the number of expected claims during an insurance period

should increase in the same way as the number of clients in the collective. Under the

above assumptions, the results of Section 3.2 will show that under mild assumptions on the

integrability of the underlying random variables and for a wide class of risk measures we

have

n r
(
NAR̂n −Rn

)
a.s.−→ 0, (3.16)

n r
(
PCER̂n −Rn

)
a.s.−→ 0, (3.17)

for every r < 1/2 and

P ◦
{√

nτ

cT 2

(
NAR̂n −Rn

)}−1
w−→ N0,s2+m2 , (3.18)

P ◦
{√

nτ

cT 2

(
PCER̂n −Rn

)}−1
w−→ N0,s2+m2 , (3.19)

where m and s2 refer to the mean and variance of µ, respectively. The results are comparable

to those of Section 2.2. Again, formulae (3.18)–(3.19) imply that the convergences in (3.16)

and (3.17) cannot hold for n ≥ 1/2. For the convergence of the estimated premiums to the

true ones, we will show even more, namely

NAR̂n −Rn =
1

n
(m̂n,τ −mn) + oP-a.s.(n

−1/2) (3.20)

PCER̂n −Rn =
1

n
(m̂n,τ −mn) + oP-a.s.(n

−1/2). (3.21)
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Again, the asymptotics for both estimators are exactly the same and are independent of

the choice of the risk measure ρ. Keeping in mind that we have mn = λnTm by Wald’s

equation, and that λn/n was assumed to converge to some constant c ∈ (0,∞), the results

are comparable formulae (2.14)–(2.15) in the individual model. If we do not focus on the

individual premium as defined in (3.2), but on the total premium divided by the expected

claim amount instead, we obtain the following somehow “nicer” representations:

1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(µ

∗PoissλnT ) = m̂n,τ −m + oP-a.s.(n
−1/2) (3.22)

1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1

λnT
Rρ(µ

∗PoissλnT ) = m̂n,τ −m + oP-a.s.(n
−1/2). (3.23)

In this case the convergence of the estimated quantities to the true ones is purely driven by

the convergence of the sample mean m̂n,τ = 1

N̂n(τ)

∑N̂n(τ)
i=1 Yi to the true mean m. This effect

has already been observed in formulae (2.14)–(2.15) in the individual model. Again, the

asymptotics for both estimators are exactly the same and are not affected by the concrete

choice of the risk measure ρ.

With the help of (3.18) and (3.19) we obtain the following asymptotic confidence intervals

at level (1− α) for the individual premium:

[
NAR̂n −

√
λ̂n,τT 2m̂

(2)
n,τ

n2τ
Φ−10,1

(
1− α

2

)
, NAR̂n +

√
λ̂n,τT 2m̂

(2)
n,τ

n2τ
Φ−10,1

(α
2

)]

and

[
PCER̂n −

√
λ̂n,τT 2m̂

(2)
n,τ

n2τ
Φ−10,1

(
1− α

2

)
, PCER̂n +

√
λ̂n,τT 2m̂

(2)
n,τ

n2τ
Φ−10,1

(α
2

)]

where Φ0,1 denotes the distribution function of N0,1. Moreover, the results of Corollary

3.2.4 allow for the following asymptotic representation of the true individual premium in the

collective model

Rn =
mn

n
+

σn

n
Rρ(N0,1) + o(n−1/2). (3.24)

Likewise we can obtain similar representations for the corresponding estimators:

NAR̂n =
m̂n,τ

n
+

σ̂n,τ

n
Rρ(N0,1), (3.25)

PCER̂n =
m̂n,τ

n
+

σ̂n,τ

n
Rρ(N0,1) + oP-a.s.(n

−1/2). (3.26)

In the following Section we will formulate assumptions under which the above results can be

achieved and state our main theorems.

58



3.2 Strong rates and asymptotic normality for the indi-

vidual premium estimators in the compound Pois-

son model

In this section we will present our main theorems. We will first summarize assumptions

under which our results can be achieved. Then we will first formulate two theorems about

the asymptotics of the total premium estimator divided by the expected number of claims.

As corollaries we will then state the resulting asymptotics for the individual premium es-

timators. The formulation of the assumption involves the Wasserstein metric dWass, which

was introduced in (1.5).

Assumption 3.2.1 Let ρ : X → R be a law-invariant map, and Rρ be the corresponding

statistical functional introduced in (1.1). Suppose that the following assertions hold:

(a) µ ∈ M(L3), that is E[|Y1|3] < ∞.

(b) λn/n converges to some constant c ∈ (0,∞).

(c) ρ is cash-additive and positively homogeneous, and M3
1 ⊂ M(X ).

(d) The restriction of Rρ to M3
1 is (dWass, | · |)-continuous at N0,1.

Note that it was shown in Theorem 1.4.1 that part (d) of Assumption 3.2.1 is always fulfilled,

whenever ρ refers to a law-invariant and convex risk measure on L1. The assumption does

not impose a strong restriction.

Under the above assumptions we are now in a position to state our two main theorems.

Theorems 3.2.2 and 3.2.3 yield strong rates and asymptotic normality for premiums derived

from the normal approximation with both true and estimated parameters and the empirical

plug-in estimator. However, in the formulations of the theorems we do not focus on the

individual premium as defined in (3.2), but on the total premium divided by the expected

value of the claim amount. We do this with the benefit of “nicer” representations. Corollaries

3.2.4 and 3.2.6 will then state the analogue for the individual premiums.

Theorem 3.2.2 (Estimated normal approximation) Suppose that Assumption 3.2.1 is

fulfilled. Then the following assertions hold:

(i) 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(Nmn,σ2

n
) = m̂n,τ −m + oP-a.s.(n

−1/2).

(ii) 1
λnT

Rρ(Nmn,σ2
n
)− 1

λnT
Rρ(µ

∗PoissλnT ) = o(n−1/2).

(iii) 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(µ

∗PoissλnT ) = m̂n,τ −m + oP-a.s.(n
−1/2).

(iv) (λnT )
r ( 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(µ

∗PoissλnT )) −→ 0 P-a.s. for every r < 1/2.
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(v) P ◦ {
√
λnτ (

1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(µ

∗PoissλnT ))}−1 w−→ N0,s2 .

Theorem 3.2.3 (Empirical plug-in estimator) Suppose that Assumption 3.2.1 is ful-

filled and assume that Rρ(µ̂
∗Poiss

λ̂n,τ T

n,τ ) is (F ,B(R))-measurable for every n ∈ N. Then the

following assertions hold:

(i) 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ ) = oP-a.s.(n
−1/2).

(ii) 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
λnT

Rρ(µ
∗PoissλnT ) = m̂n,τ −m + oP-a.s.(n

−1/2).

(iii) (λnT )
r ( 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
λnT

Rρ(µ
∗PoissλnT )) −→ 0 P-a.s. for every r < 1/2.

(iv) P ◦ {
√
λnτ (

1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
λnT

Rρ(µ
∗PoissλnT ))}−1 w−→ N0,s2 .

What strikes the most, is the fact, that in Theorem 3.2.2 (v) and Theorem 3.2.3 (iv) the

asymptotic behavior of the estimators in this setting is not affected by the distribution of

the number of claims PoissλnT . Before we turn to the proofs of the above theorems, we first

take our time to state two useful corollaries about the strong rates and asymptotic normality

of the individual premiums.

The first corollary is concerned with the strong rates and asymptotic normality of the individ-

ual premiums derived from the normal approximation. Parts (iv) and (v) of Corollary 3.2.4

describe the asymptotic behavior of the sequence of estimators NAR̂n := 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
) and

their rate of convergence to the true premium Rn := 1
n
Rρ(µ

∗PoissλnT ).

Corollary 3.2.4 (Estimated normal approximation) Suppose that Assumption 3.2.1

is fulfilled. Then the following assertions hold:

(i) 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(Nmn,σ2

n
) = 1

n
(m̂n,τ −mn) + oP-a.s.(n

−1/2).

(ii) 1
n
Rρ(Nmn,σ2

n
)− 1

n
Rρ(µ

∗PoissλnT ) = o(n−1/2).

(iii) 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ

∗PoissλnT ) = 1
n
(m̂n,τ −mn) + oP-a.s.(n

−1/2).

(iv) n r ( 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ

∗PoissλnT )) −→ 0 P-a.s. for every r < 1/2.

(v) P ◦ {√ nτ
cT 2 (

1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ

∗PoissλnT ))}−1 w−→ N0,s2+m2 .

The following corollary states the corresponding results for the estimator NAR̂n. It is a direct

consequence of parts (iv) and (v) of the above corollary and does therefore not need to be

proved.

Corollary 3.2.5 Under the assumptions in 3.2.1 parts (iv) and (v) of Corollary 3.2.4 show

that the convergences in (3.16) and (3.18) hold true.

60



Under the assumptions in 3.2.1, the following result provides the analogue to Corollary 3.2.4

for the empirical plug-in estimator in the collective model for the individual premium. It

also gives an equivalent to Theorem 2.2.4 in the collective model. Assertions (iii) and (iv)

in Corollary 3.2.6 describe the asymptotic behavior of the sequence of estimators PCER̂n :=
1
n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ ) for the individual premium Rn := 1
n
Rρ(µ

∗PoissλnT ).

Corollary 3.2.6 (Empirical plug-in estimator) Suppose that Assumption 3.2.1 is ful-

filled and assume that Rρ(µ̂
∗Poiss

λ̂n,τ T

n,τ ) is (F ,B(R))-measurable for every n ∈ N. Then the

following assertions hold:

(i) 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ ) = oP-a.s.(n
−1/2).

(ii) 1
n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
n
Rρ(µ

∗PoissλnT ) = 1
n
(m̂n,τ −mn) + oP-a.s.(n

−1/2).

(iii) n r ( 1
n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
n
Rρ(µ

∗PoissλnT )) −→ 0 P-a.s. for every r < 1/2.

(iv) P ◦ {√ nτ
cT 2 (

1
n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )− 1
n
Rρ(µ

∗PoissλnT ))}−1 w−→ N0,s2+m2 .

The following corollary states the corresponding results for the estimator PCER̂n. It is a

direct consequence of parts (iii) and (iv) of the above corollary and does therefore not need

to be proved.

Corollary 3.2.7 Suppose that the assumptions in 3.2.1 are fulfilled and that Rρ(µ̂
∗Poiss

λ̂n,τ T

n,τ )

is (F ,B(R))-measurable for every n ∈ N. Then parts (iii) and (iv) of Corollary 3.2.6 show

that the convergences in (3.17) and (3.19) hold true.

As a direct consequence of Assumption 3.2.1 and Corollaries 3.2.4 and 3.2.6 we obtain the

following asymptotic representations of the estimated individual premiums:

NAR̂n =
m̂n,τ

n
+

σ̂n,τ

n
Rρ(N0,1) (3.27)

PCER̂n =
m̂n,τ

n
+

σ̂n,τ

n
Rρ(N0,1) + oP-a.s.(n

−1/2). (3.28)

Equation (3.27) directly evolves from part (c) of Assumption 3.2.1, whereas equation (3.28)

is a direct consequence of (3.27) in combination with part (i) of Theorem 3.2.3.

Remark 3.2.8 (i) Note that the individual premium estimator NAR̂n based on the normal

approximation with estimated parameters of Theorem 3.2.2 and Corollary 3.2.4 is always

(F ,B(R))-measurable due to the representation in (3.15).

(ii) Let X = Lp for some p ∈ [1,∞). Then for every law-invariant coherent risk measure

ρ : Lp → R the estimator PCER̂n is (F ,B(R))-measurable for every n ∈ N.
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Proof of part (ii) Let ρ : Lp → R be a law-invariant coherent risk measure. First,

Theorem 2.8 in [37] ensures that the corresponding risk functional Rρ : M(Lp) → R is

continuous for the p-weak topology Op-w. According to Corollary A.45 in [27] the topo-

logical space (M(Lp),Op-w) is Polish. Second, the topology Op-w is generated by the Lp-

Wasserstein metric dWassp . The mapping M(Lp) × (0,∞) → M(Lp), (µ, λ) 7→ µ∗Poissλ , is

(dWassp , dWassp)-continuous; see Appendix B for the proof. Third, the mappings ω 7→ λ̂n,τ (ω)

and ω 7→ µ̂n,τ (ω, ·) are (F , σ(Op-w))-measurable. The first statement holds true due to the

representation in (3.3). The latter is easily seen, because the Borel σ-algebra σ(Op-w) on

M(Lp) is generated by the maps µ 7→
´

fdµ, f ∈ Cp
b. Here C

p
b is again the set of all continu-

ous functions f : R → R for which there exists a constant C > 0 such that |f(x)| ≤ C(1+|x|p)
for all x ∈ R. So, for (F , σ(Op-w))-measurability of the mapping Ω → M(Lp), ω 7→ µ̂n,τ (ω, ·),
it suffices to show

(ˆ
f(x) µ̂n,τ (· , dx)

)−1
(A) ∈ F for all A ∈ B(R) and f ∈ Cp

b. (3.29)

Since µ̂n,τ (ω, ·) is a probability kernel from (Ω,F) to (R,B(R)), the mapping

ω 7→
ˆ

f(x) µ̂n,τ (ω, dx)

is (F ,B(R))-measurable for every f ∈ Cp
b; see e.g. Lemma 1.41 in [35]. This gives (3.29).

Altogether, we have shown that the mapping ω 7→ Rρ((µ̂n,τ (ω))
∗Poiss

λ̂n,τ (ω)T ) is (F ,B(R))-
measurable. ✷

In the following remark we will discuss an option to obtain better rates of convergence in

part (i) of Theorem 3.2.2 and part (ii) of Theorem 3.2.3 (and of course their analogues for

the individual premiums in Corollaries 3.2.4 and 3.2.6) under a slightly stronger assumption

as the one imposed by part (d) of Assumption 3.2.1. Similar to our investigations in Chapter

2 we can replace the assumption on the (dWass, | · |)-continuity of Rρ at N0,1 by the stronger

notion of β-Hölder continuity for some β > 0 with the benefit of better rates of convergence.

We will just state the results. The changes in the corresponding proofs are analogues to the

proof of Remark 2.2.8.

Remark 3.2.9 Note that we can achieve better rates of convergence in part (i) of Theo-

rem 3.2.2 and part (ii) of Theorem 3.2.3 (and of course their analogues for the individual

premiums in Corollaries 3.2.4 and 3.2.6) if we replace part (d) of Assumption 3.2.1 by the

following slightly stronger assumption:

(d’) For each sequence (νn) ⊂ M3
1 with dWass(νn,N0,1) → 0, there exist constants L, β > 0

such that

|Rρ(νn)−Rρ(N0,1)| ≤ LdWass(νn,N0,1)
β (3.30)

for every n ∈ N.
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Then we have:

(i’) 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ ) = OP-a.s.(n
−1/2(1+β)).

(ii’) 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ ) = OP-a.s.(n
−1/2(1+β)).

3.2.1 Proof of Theorems 3.2.2 and 3.2.3

The proofs of Theorems 3.2.2 and 3.2.3 strongly rely on the following proposition, which

gives a rate of growth of the Poisson process in relation to the underlying intensity. The

proposition provides a strong law of a Marcinkiewicz-Zygmund type for the Poisson process.

Proposition 3.2.10 Let (N̂n)n∈N := ((N̂n(t))t≥0)n∈N be a sequence of Poisson processes,

such that for every n ∈ N, N̂n := (N̂n(t))t≥0 is a Poisson process with rate λn > 0. Suppose

that (λn) ⊂ (0,∞) and that λn/n converges to some strictly positive constant. Then for

every r < 1/2 and every fixed t > 0 we have

nr
∣∣∣N̂n(t)

λnt
− 1
∣∣∣ −→ 0 (n → ∞) P-a.s.

Proof Let (Ñ(t))t≥0 be a Poisson process with rate 1. Then we observe that

N̂n(t)
d
= Ñ(λnt)

holds for every n ∈ N and t ≥ 0. Now the claim is a direct consequence of Theorem 2.5.10

in [25] and the fact that λn/n converges to some c ∈ (0,∞). ✷

Moreover we will use the following Berry-Esséen inequality for nonrandomly centered random

sums. The inequality provides a rate of convergence of the centered random sum to the

standard normal distribution. The theorem and its proof can be found in [20] Corollary

2.12. It involves the Wasserstein metric dWass, which was introduced in (1.5).

Theorem 3.2.11 Suppose (ξi) is a sequence of i.i.d. random variables on some probability

space (Ω,F ,P) satisfying E[|ξ1|3] < ∞ and E[ξ21 ] > 0, and that N is a Poissλ-distributed

random variable on the same probability space for some λ > 0, being independent from (ξi).

Let m := λE[ξ1] and σ2 := λE[ξ21 ] and set

W :=

∑N
i=1 ξi −m

σ
.

Then,

dWass(PW ,N0,1) ≤
1√
λ

(2Var[ξ1]
E[ξ21 ]

+
3E[|ξ1 − E[ξ1]|3]

E[ξ21 ]
3/2

+
|E[ξ1]|
E[ξ21 ]

1/2

)
. (3.31)
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Note that the conditions in Theorem 3.2.11 are automatically fulfilled in our present setting,

that is under Assumption 3.2.1.

Proof of Theorem 3.2.2 (i) For every ω ∈ Ω, let Ŝω
n,τ be a N

m̂n,τ (ω),σ̂2
n,τ (ω)

-distributed

random variable on some probability space (Ωω,Fω,Pω) and let Rn be a N
mn,σ2

n
-distributed

random variable. Let

M̂ω
n,τ (·) :=

Ŝω
n,τ (·)− m̂n,τ (ω)

σ̂n,τ (ω)

and

Zn(·) :=
Rn(·)−mn

σn

.

Then we observe that both M̂ω
n,τ and Zn have the standard normal distribution for every

ω ∈ Ω. Using part (c) of Assumption 3.2.1 on the positive homogeneity and cash-invariance

of ρ, we obtain for every ω ∈ Ω

1

λ̂n,τ (ω)T
Rρ(Nm̂n,τ (ω),σ̂2

n,τ (ω)
)− 1

λnT
Rρ(Nmn,σ2

n
)

=
1

λ̂n,τ (ω)T
ρ(σ̂n,τ (ω) M̂

ω
n,τ + m̂n,τ (ω))−

1

λnT
ρ(σn Zn +mn)

=
m̂n,τ (ω)

λ̂n,τ (ω)T
− mn

λnT
+
( σ̂n,τ (ω)

λ̂n,τT
− σn

λnT

)
Rρ(N0,1)

= m̂n,τ (ω)−m +
( σ̂n,τ (ω)

λ̂n,τ (ω)T
− σn

λnT

)
Rρ(N0,1), (3.32)

where we used the fact that m̂n,τ = λ̂n,τTm̂n,τ holds, and the equivalent for the case of

known parameters. The latter holds true by Wald’s equation. Now the claim would follow

by showing that
σ̂n,τ

λ̂n,τT
− σn

λnT
= oP-a.s.(n

−1/2).

Denoting by m(2) :=
´

x2 µ(dx) and m̂
(2)
n,τ :=

´

x2 µ̂n,τ (dx), we can use Wald’s equation again,

yielding

σ̂n,τ

λ̂n,τT
− σn

λnT
=

σ̂n,τ

λnT
− σn

λnT
+
( λnT

λ̂n,τT
− 1
) σ̂n,τ

λnT
(3.33)

For the first summand we observe that

σ̂n,τ

λnT
− σn

λnT
=

σ̂2
n,τ − σ2

n

λnT (σ̂n,τ + σn)

≤ σ̂2
n,τ − σ2

n

λnT σn

=
λ̂n,τ T m̂

(2)
n,τ − λnTm

(2)

(λnT )3/2
√
m(2)

= (m(2) n)−1/2
(√ n

λnT

(N̂n(τ)

λnτ
− 1
)
m̂(2)

n,τ +

√
n

λnT
(m̂(2)

n,τ −m(2))
)
. (3.34)
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From Theorem 2.5.5 in [25] we can derive the P-a.s. convergence of m̂
(2)
n,τ − m(2) to zero.

Part (b) of Assumption 3.2.1 now guarantees that (n/λn)
1/2 converges to some constant

c−1/2 ∈ (0,∞) for n → ∞. Moreover Proposition 3.2.10 yields the P-a.s. convergence of

N̂n(τ)/(λnτ) − 1 to zero. As m̂
(2)
n,τ converges to m(2) P-a.s. by Theorem 2.5.5 of [25], we

conclude that m̂
(2)
n,τ is also P-a.s. bounded. Hence, we conclude that

σ̂n,τ

λnT
− σn

λnT
= oP-a.s.(n

−1/2). (3.35)

For the second summand on the right-hand side of (3.33) we observe that

σ̂n,τ

λnT
=

(λ̂n,τTm̂
(2)
n,τ )1/2

λnT
=

1

(λnT )1/2

√
N̂n(τ)

λnτ

√
m̂

(2)
n,τ = O(n−1/2) (3.36)

holds P-a.s. Indeed, part (b) of Assumption 3.2.1 yields that (n/(λnT ))
1/2 converges to a

positive constant again. Moreover we observe that (N̂n(τ)/λnτ)
1/2 converges to 1 P-a.s. by

Proposition 3.2.10. As m̂
(2)
n,τ converges to m(2) P-a.s., we conclude that m̂

(2)
n,τ is also P-a.s.

bounded. Together with Proposition 3.2.10, that is the fact that (N̂n(τ)/(λnτ)−1) converges

to zero P-a.s., this yields

( λnT

λ̂n,τT
− 1
) σ̂n,τ

λnT
= oP-a.s.(n

−1/2),

which completes the proof of part (i).

(ii) Let S̃n be a N
mn,σ2

n
-distributed random variable and set

Mn(·) :=
S̃n(·)−mn

σn

.

Then we observe that Mn has the standard normal distribution. Moreover, let Rn be a

µ∗PoissλnT -distributed random variable and set

Zn(·) :=
Rn(·)−mn

σn

.

Let νn denote the distribution of Zn. Then we observe that

law{σn Zn +mn} = µ∗PoissλnT .

Hence, we can use part (c) of Assumption 3.2.1 on the positive homogeneity and cash-

invariance of ρ to obtain

1

λnT
Rρ(Nmn,σ2

n
)− 1

λnT
Rρ(µ

PoissλnT ) =
1

λnT
(ρ(σnMn +mn)− ρ(σn Zn +mn))

=
σn

λnT
(Rρ(N0,1)−Rρ(νn)). (3.37)
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An application of Wald’s equation now yields

σn

λnT
=

(λnTm
(2))1/2

λnT
=
(m(2)

λnT

)1/2
=

1√
n

( n

λnT
m(2)

)1/2
. (3.38)

By part (b) of Assumption 3.2.1, we conclude that

σn

λnT
= O(n−1/2).

Now Döbler’s Berry-Esséen inequality of Theorem 3.2.11 ensures that there exists some

constant K > 0, such that dWass(N0,1, νn) ≤ K (λnT )
−1/2 for all n ∈ N. Now we keep in

mind that λn tends to infinity as n → ∞. Along with (3.37) and part (d) of Assumption

3.2.1 on the (dWass, | · |)-continuity of Rρ at N0,1, this ensures that we have

σn

λnT
(Rρ(N0,1)−Rρ(νn)) = o(n−1/2)

for every n ∈ N. This completes the proof of part (ii).

(iii) The assertion follows from parts (i) and (ii).

(v) To prove the assertion we will show that

P ◦
{
√
λnT

( 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(µ

∗PoissλnT )
)}−1

w−→ N0,s2T/τ . (3.39)

The claim will then follow by an application of Slutskys Lemma. To this end, for every

ω ∈ Ω, let Ŝω
n,τ be a N

m̂n,τ (ω),σ̂2
n,τ (ω)

-distributed random variable on some probability space

(Ωω,Fω,Pω) and set

M̂ω
n,τ (·) :=

Ŝω
n,τ (·)− m̂n,τ (ω)

σ̂n,τ (ω)
.

Then M̂ω
n,τ has the standard normal distribution for every ω. Furthermore let Rn be a

random variable, being distributed according to µ∗PoissλnT and set

Zn(·) :=
Rn(·)−mn

σn

.

Moreover let νn denote distribution of Zn. We observe that

law{σn Zn +mn} = µ∗PoissλnT .

Using part (c) of Assumption 3.2.1 on the positive homogeneity and the cash-invariance of

ρ, we obtain for every ω

√
λnT

( 1

λ̂n,τ (ω)T
Rρ(Nm̂n,τ (ω),σ̂2

n,τ (ω)
)− 1

λnT
Rρ(µ

∗PoissλnT )
)

=
√
λnT

( 1

λ̂n,τ (ω)T
ρ(σ̂n,τ (ω) M̂

ω
n,τ + m̂n,τ (ω))−

1

λnT
ρ(σn Zn +mn)

)
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=
√

λnT
( σ̂n,τ (ω)

λ̂n,τ (ω)T
Rρ(N0,1)−

σn

λnT
Rρ(νn) +

m̂n,τ (ω)

λ̂n,τ (ω)T
− mn

λnT

)

=
1√
λnT

(
σn (Rρ(N0,1)−Rρ(νn)) +

( λnT

λ̂n,τ (ω)T
σ̂n,τ (ω)− σn

)
Rρ(N0,1)

)

+
√
λnT

(
m̂n,τ (ω)−m

)

=
σn√
λnT

(Rρ(N0,1)−Rρ(νn)) +
1√
λnT

( λnT

λ̂n,τ (ω)T
− 1
)
σ̂n,τ (ω)Rρ(N0,1)

+
1√
λnT

(σ̂n,τ (ω)− σn)Rρ(N0,1) +
√
λnT

(
m̂n,τ (ω)−m

)

=: S1(n) + S2(n, ω) + S3(n, ω) + S4(n, ω). (3.40)

In Steps 1–4 below, we will show that

S1(n) = o(1) (3.41)

S2(n, · ) = oP-a.s.(1) (3.42)

S3(n, · ) = oP-a.s.(1) (3.43)

P ◦ S4(n, · )−1 w−→ N0,s2T/τ , n → ∞. (3.44)

Step 1: This assertion has already been proven in part (ii).

Step 2: We observe that

1√
λnT

( λnT

λ̂n,τT
− 1
)
σ̂n,τ =

1√
λnT

( λnT

λ̂n,τT
− 1
)
(σ̂n,τ − σn) +

1√
λnT

( λnT

λ̂n,τT
− 1
)
σn

=
1√
λnT

( λnτ

N̂n(τ)
− 1
)
(σ̂n,τ − σn) +

1√
λnT

( λnτ

N̂n(τ)
− 1
)
σn,

(3.45)

for every n ∈ N. By Proposition 3.2.10, we conclude that λnτ

N̂n(τ)
− 1 converges to zero P-a.s.

Moreover using Wald’s equation again, we have

σ̂2
n,τ − σ2

n = λ̂n,τTm̂
(2)
n,τ − λnTm

(2)

= (λ̂n,τT − λnT ) m̂
(2)
n,τ + λnT (m̂(2)

n,τ −m(2))

= λnT
(N̂n(τ)

λnτ
− 1
)
+ λnT (m̂(2)

n,τ −m(2)). (3.46)

By Proposition 3.2.10 we conclude that N̂n(τ)/(λnτ) − 1 converges to zero P-a.s. Further-

more, by Theorem 2.5.5 in [25], we observe that m̂
(2)
n,τ −m(2) converges to zero P-a.s., where

it is important to note that the integrability conditions are trivially satisfied due to part (a)

of Assumption 3.2.1. Finally by part (b) of Assumption 3.2.1, we conclude that

σ̂2
n,τ − σ2

n = oP-a.s.(n). (3.47)
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Using (3.47), we observe that

1√
λnT

(σ̂n,τ − σn) = oP-a.s.(1). (3.48)

Hence, the first summand on the right-hand side of (3.45) converges to zero P-a.s. To

conclude on the convergence of the second summand in (3.45) we observe that

σn√
λnT

=
(λnTm

(2)

λnT

)1/2
=

√
m(2). (3.49)

This is a direct consequence of Wald’s equation. Thus, the second summand on the right-

hand side of (3.45) converges P-a.s. to zero by Proposition 3.2.10. This proves (3.42).

Step 3: This assertion has already been proven in the second step.

Step 4: We observe that

√
λnT (m̂n,τ −m) =

√
λnT

( 1

N̂n(τ)

N̂n(τ)∑

i=1

Yi −m
)

=
( λnτ

N̂n(τ)
− 1
)√T

τ
(λnτ)

−1/2
( N̂n(τ)∑

i=1

Yi − N̂n(τ)m
)

+

√
T

τ
(λnτ)

−1/2
( N̂n(τ)∑

i=1

Yi − N̂n(τ)m
)

=: S4,1(n) + S4,2(n). (3.50)

Now part (a) of Theorem 2.5.15 in [25] yields that

P ◦
{
(λnτ)

−1/2
( N̂n(τ)∑

i=1

Yi − N̂n(τ)m
)}−1 w−→ N0,s2 , n → ∞,

such that

P ◦ S4,2(n)
−1 w−→ N0,s2T/τ , n → ∞

follows by Slutsky’s Lemma. Moreover, by another application of Proposition 3.2.10, we

can conclude that S4,1(n) converges to zero in probability as n → ∞. Hence, the assertion

follows again by Slutsky’s Lemma, which completes the proof of part (v).

(iv) The assertion can be proven in the same way as part (v). Following the same line of

reasoning as in (3.40), we observe that S1(n)–S3(n) converge to zero P-a.s. The claim now

follows by an application of the Marcinkiewicz-Zygmund SLLN for random sums of Theorem

2.5.5 in [25]. ✷

Proof of Theorem 3.2.3 (i): Let Rω
n,τ be a random variable being distributed according

to µ̂
∗Poiss

λ̂n,τ T

n,τ (ω; ·), with

µ̂
∗Poiss

λ̂n,τ T

n,τ (ω; · ) := (µ̂n,τ (ω))
∗Poiss

λ̂n,τ (ω)T [ · ].
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Here, for every ω ∈ Ω, Rω
n,τ is regarded as a random variable on a probability space

(Ωω,Fω,Pω). Now set

Zω
n,τ (·) :=

Rω
n,τ (·) − m̂n,τ (ω)

σ̂n,τ (ω)
,

with m̂n,τ (ω) and σ̂2
n,τ (ω) referring to the mean and the variance of µ̂

∗Poiss
λ̂n,τ T

n,τ (ω; ·), respec-
tively. Then we observe that

law{σ̂n,τ (ω)Z
ω
n,τ + m̂n,τ (ω)} = µ̂

∗Poiss
λ̂n,τ T

n,τ (ω; · ) (3.51)

for every n ∈ N and ω ∈ Ω. Write νn,τ (ω; ·) for the distribution of Zω
n,τ . Let S

ω
n,τ be a random

variable distributed according to the normal distribution with mean m̂n,τ (ω) and variance

σ̂2
n,τ (ω), and note that

Mω
n,τ (·) :=

Sω
n,τ (·)− m̂n,τ (ω)

σ̂n,τ (ω)

has the standard normal distribution. Due to part (c) of Assumption 3.2.1, this yields

Rρ(Nm̂n,τ (ω),σ̂2
n,τ (ω)

)−Rρ(µ̂
∗Poiss

λ̂n,τ T

n,τ (ω; ·))
= ρ(σ̂n,τ (ω)M

ω
n,τ + m̂n,τ (ω))− ρ(σ̂n,τ (ω)Z

ω
n,τ + m̂n,τ (ω))

= σ̂n,τ (ω) (ρ(M
ω
n,τ )− ρ(Zω

n,τ ))

= σ̂n,τ (ω) (Rρ(N0,1)−Rρ(νn,τ (ω; ·))) (3.52)

for every n ∈ N and ω ∈ Ω. Following the same line of reasoning as in the proof of part (ii)

of Theorem 3.2.2, we intend to show that Rρ(N0,1)−Rρ(νn,τ (ω; ·)) converges to 0 for P-a.e.

ω by using part (d) of Assumption 3.2.1. To this end, we have to show, that the constant

in the Berry-Esséen inequality of Theorem 3.2.11 is P-a.s. bounded above. In particular,

Theorem 3.2.11 yields

dWass(N0,1, νn,τ (ω; ·)) ≤
1√

λ̂n,τ (ω)T

(2 ŝ2n,τ (ω)
m̂

(2)
n,τ (ω)

+
12 m̂

(3)
n,τ (ω)

(m̂
(2)
n,τ (ω))3/2

+
|m̂n,τ (ω)|

(m̂
(2)
n,τ (ω))1/2

)
, (3.53)

for every n ∈ N and P-a.e. ω ∈ Ω. Here m̂n,τ (ω), ŝ
2
n,τ (ω), m̂

(2)
n,τ (ω) and m̂

(3)
n,τ (ω) denote

the expected value, the variance, the second moment and the third moment of µ̂n,τ (ω; ·),
respectively. We will now show, that the second fraction in the bracket on the right-hand side

of (3.53) converges to a constant for P-a.e. ω. The convergence of the remaining summands

can be proven in the same way. By Theorem 2.5.5 in [25] we conclude that

m̂(3)
n,τ (ω)−m(3) =

( 1

N̂n(τ ;ω)

N̂n(τ ;ω)∑

i=1

Yi(ω)
3 −m(3)

)

= (N̂n(τ ;ω))
−1
( N̂n(τ ;ω)∑

i=1

Yi(ω)
3 − N̂n(τ ;ω)m

(3)
)

(3.54)
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converges to zero for P-a.e. ω. Here part (a) in Assumption 3.2.1 about the existence of the

third moments of Y1 ensures the applicability of the theorem. Following the same line of

reasoning, we conclude that m̂
(2)
n,τ (ω) −m(2) converges to zero for P-a.e. ω. Thus, an appli-

cation of Slutskys Lemma now yields the convergence of m̂
(3)
n,τ (ω)/(m̂

(2)
n,τ )3/2 to m(3)/(m(2))3/2

for P-a.e. ω. Using the same arguments as above, we conclude that the bracket on the right-

hand side of (3.53) converges to 2 s2/m(2) + 12m(3)/(m(2))3/2 + |m|/(m(2))1/2 for P-a.e. ω.

Moreover by Proposition 3.2.10 along with part (b) of Assumption 3.2.1, we observe that

1√
λ̂n,τ (ω)T

=
1√
n

( n

λnT

)1/2 ( λnτ

Nn(τ ;ω)

)1/2
= O(n−1/2) (3.55)

for P-a.e. ω. By part (d) of Assumption 3.2.1 on the (dWass, | · |)-continuity of Rρ at N0,1,

we can therefore conclude that Rρ(N0,1)−Rρ(νn,τ (ω; ·)) converges to 0 for P-a.e. ω. Hence,

the claim would follow by showing that

σ̂n,τ (ω)

λ̂n,τ (ω)T
= O(n−1/2) (3.56)

for P-a.e. ω. An application of Wald’s formula yields

σ̂n,τ (ω)

λ̂n,τT
=

(λ̂n,τT m̂
(2)
n,τ (ω))1/2

λ̂n,τT
=

1√
n

( λnτ

N̂n(τ ;ω)
m̂(2)

n,τ (ω)
)1/2 ( n

λnT

)1/2
, (3.57)

where (n/(λnT ))
1/2 converges to 1/

√
cT by part (b) of Assumption 3.2.1. Proposition 3.2.10

yields the convergence of λnτ/N̂n(τ ;ω) to 1 for P-a.e. ω. Moreover, we have already shown

the convergence of m̂
(2)
n,τ (ω) to m(2) for P-a.e. ω. Thus, we observe that (3.56) holds true.

This completes the proof of part (i).

(ii) The assertion follows from part (i), as well as part (i)–(ii) of Theorem 3.2.2.

(iii) and (iv): The assertions can be proven in the same way as the assertions (iv) and (v)

in Theorem 3.2.2. ✷

3.2.2 Proof of Corollaries 3.2.4 and 3.2.6

For the proof of part (v) of Corollary 3.2.4 we will need the following Proposition about the

joint asymptotic normality of the empirical mean in the collective model together with the

estimator for the estimator for the parameter in the Poisson distribution.

Proposition 3.2.12 Let (Yi) be a sequence of i.i.d. random variables with finite variance

s2 > 0 on a probability space (Ω,F ,P) and (Nλn) be a sequence of random variables on

(Ω,F ,P), being independent of (Yi), such that for every n ∈ N Nλn is a Poissλn-distributed

random variable. Furthermore assume that λn → ∞. Then

√
λn

([
1
λn

∑Nλn
j=1 Yj

Nλn

λn

]
−
[
m

1

])
d−→ Z , (3.58)
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as n → ∞, where Z refers to some bivariate normally distributed random variable with mean

[0, 0]′ and covariance matrix Σ :=

[
s2 0

0 1

]
.

Proof The claim in (3.58) would follow, if we could prove the pointwise convergence of

the characteristic function of the left-hand side in (3.58) to the characteristic function of Z.

Thus, it suffices to show that

lim
n→∞

E

[
ei
√
λn(α1

1
λn

∑Nλn
j=1 (Yj−m)+α2(

Nλn
λn
−1))

]
= e−

1
2
(α2

1s
2+α2

2), (3.59)

holds for all α1, α2 ∈ R. Now we can use the tower-property of the conditional expectation

to derive

E

[
ei
√
λn(α1

1
λn

∑Nλn
j=1 (Yj−m)+α2 (

Nλn
λn
−1))

]

= E

[
E

[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)+iα2

√
λn (

Nλn
λn
−1))

∣∣∣Nλn

] ]

= E

[
E

[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
eiα2

√
λn(

Nλn
λn
−1))

]

= E

[ (
E

[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
− e−

1
2
α2
1s

2
)
eiα2

√
λn(

Nλn
λn
−1))

]

+ e−
1
2
α2
1s

2

E

[
eiα2

√
λn(

Nλn
λn
−1))

]

=: S1(n;α1, α2) + S2(n;α1, α2). (3.60)

In the following we will show that

lim
n→∞

S1(n;α1, α2) = 0 (3.61)

lim
n→∞

S2(n;α1, α2) = e−
1
2
(α2

1s
2+α2

2) (3.62)

hold for all α1, α2 ∈ R, which would then yield the claim.

Step 1: We will first show that (3.61) holds true. To this use, we observe that

E

[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
= E

[ Nλn∏

j=1

e
iα1

1√
λn

(Yj−m)
∣∣∣Nλn

]

=
∞∑

k=0

E

[ Nλn∏

j=1

e
iα1

1√
λn

(Yj−m)
∣∣∣ {Nλn = k}

]
1{Nλn= k}

=
∞∑

k=0

E

[ k∏

j=1

e
iα1

1√
λn

(Yj−m)
∣∣∣ {Nλn = k}

]
1{Nλn= k}

=
∞∑

k=0

E

[ k∏

j=1

e
iα1

1√
λn

(Yj−m)
]
1{Nλn= k}

=
∞∑

k=0

E

[
e
iα1

1√
λn

(Y1−m)
]k
1{Nλn= k}

= E

[
e
iα1

1√
λn

(Y1−m)
]Nλn

, (3.63)
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where for the fourth “=” we used the fact that the sequence (Yi) is independent of Nλn .

This was used to transform the expectation conditional on Nλn into a nonconditional one.

For the fifth “=” we then used that (Yi) is a sequence of i.i.d. random variables. To prove

(3.61) we use the representation on the right-hand side of (3.63) to obtain

∣∣∣E
[ (

E

[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
− e−

1
2
α2
1s

2
)
ei
√
λnα2(

Nλn
λn
−1)
] ∣∣∣

≤ E

[ ∣∣∣E
[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
− e−

1
2
α2
1s

2
∣∣∣ ·
∣∣∣ei
√
λnα2(

Nλn
λn
−1)
∣∣∣
]

≤ E

[ ∣∣∣E
[
e
iα1

1√
λn

∑Nλn
j=1 (Yj−m)

∣∣∣Nλn

]
− e−

1
2
α2
1s

2
∣∣∣
]

= E

[ ∣∣∣E
[
e
iα1

Y1−m
√
λn

]Nλn − e−
1
2
α2
1s

2
∣∣∣
]
. (3.64)

Using a Taylor expansion (in α1), yields

E

[
e
iα1

Y1−m
√
λn

]
= 1 + iα1

1√
λn

E[Y1 −m]− 1

2
α2
1

1

λn

E[(Y1 −m)2] + o
( 1

λn

)

= 1 − 1

2
α2
1 s

2 1

λn

+ o
( 1

λn

)
, (3.65)

where we used the facts that E[Y1−m] = 0 and E[(Y1−m)2] = s2 for the last step. Note that

it is sufficient to consider the remainder o (1/λn) in the above Taylor expansion, rather than

“o (−1
2
α2
1s

2/λn)”, because s
2 was supposed to be constant. Moreover, we might regard α1 as

a constant, too, because we only aim to prove the pointwise convergence of the characteristic

functions. Now for every n ∈ N let γn : R → R be defined by

γn(α1) := − 1

2
α2
1 s

2 1

λn

+ o
( 1

λn

)
. (3.66)

Then the sequence

Nλn γn(α1) = − 1

2
α2
1 s

2 Nλn

λn

+ Nλn o
( 1

λn

)

= − 1

2
α2
1 s

2 Nλn

λn

+
Nλn

λn

o
(

1
λn

)

1/λn

(3.67)

converges P-a.s. to −1
2
α2
1s

2 for every α1 ∈ R as n → ∞, because Nλn/λn converges to 1

P-a.s. by Proposition 3.2.10 and λno
(

1
λn

)
converges to zero. Hence (3.65)–(3.67) yield

lim
n→∞

E

[
e
iα1

Y1−m
√
λn

]Nλn

= lim
n→∞

(1 + γn(α1))
Nλn = e−

1
2
α2
1s

2

, P-a.s. (3.68)

holds for every α1 ∈ R. Now dominated convergence applied to the right-hand side in (3.64)

(because the integrand is obviously bounded), along with (3.68) lead to the assertion in

(3.61).
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Step 2: For the convergence in (3.62) we observe that

P ◦
{√

λn

(Nλn

λn

− 1
)}−1 w−→ N0,1. (3.69)

This is a direct consequence of Theorem 2.5.13 in [25], which leads to the assertion in (3.62)

and completes the proof. ✷

We are now in a position to prove Corollaries 3.2.4 and 3.2.6.

Proof of Corollary 3.2.4 (i) First we observe that

1

n
Rρ(Nm̂n,τ ,σ̂2

n,τ
) − 1

n
Rρ(Nmn,σ2

n
) =

λnT

n

( 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λnT
Rρ(Nmn,σ2

n
)
)

+
λnT

n

( 1

λnT
− 1

λ̂n,τT

)
Rρ(Nm̂n,τ ,σ̂2

n,τ
)

=: S1(n) + S2(n). (3.70)

Using part (i) of Theorem 3.2.2 on the first summand, along with the fact that λn/n converges

to some constant c > 0, we arrive at

S1(n) =
λnT

n

(
m̂n,τ −m + oP-a.s.(n

−1/2)
)

=
1

n

(
λ̂n,τTm̂n,τ − λnTm

)
+

λnT

n

(
1− λ̂n,τT

λnT

)
m̂n,τ + oP-a.s.(n

−1/2)

=
1

n
(m̂n,τ −mn) +

λnT

n

(
1− λ̂n,τT

λnT

)
m̂n,τ + oP-a.s.(n

−1/2). (3.71)

For the first summand, we will leave the representation in (3.71) as it is. Our investigations

for the S2(n) will show that the second summand on the right-hand side of (3.71) will cancel

itself with an expression in (3.72). For S2(n) we use the representation in (3.15) to derive

S2(n) =
λnT

n

( λ̂n,τT

λnT
− 1
)( σ̂n,τ

λ̂n,τT
Rρ(N0,1) +

m̂n,τ

λ̂n,τT

)

=

√
λnT

n

√
λnT

λ̂n,τT

(N̂n(τ)

λnτ
− 1
)√

m̂
(2)
n,τ Rρ(N0,1)−

λnT

n

(
1− λ̂n,τT

λnT

)
m̂n,τ . (3.72)

Now the claim would follow by showing that

√
λnT

n

√
λnT

λ̂n,τT

(N̂n(τ)

λnτ
− 1
)√

m̂
(2)
n,τ Rρ(N0,1) = oP-a.s.(n

−1/2). (3.73)

By part (b) of Assumption 3.2.1, we conclude that
√
λnT/n = O(n−1/2). Furthermore,

Proposition 3.2.10 yields √
λnT

λ̂n,τT
=

√
λnτ

N̂n(τ)
= OP-a.s.(1),
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as well as (N̂n(τ)

λnτ
− 1
)
= oP-a.s.(1).

Finally, Theorem 2.5.5 in [25] yields the P-a.s. convergence of m̂
(2)
n,τ to m(2), which leads to

the assertion in (3.73) and completes the proof.

(ii) First, we observe that

1

n
Rρ(Nmn,σ2

n
)− 1

n
Rρ(µ

∗PoissλnT ) =
λnT

n

( 1

λnT
Rρ(Nmn,σ2

n
) − 1

λnT
Rρ(µ

∗PoissλnT )
)
. (3.74)

Now the claim follows by part (ii) of Theorem 3.2.2 along with the fact that λn/n converges

to some constant c > 0 (part (b) of Assumption 3.2.1).

(iii) The assertion follows from (i) and (ii).

(v) To prove the assertion, we will show that

P ◦
{√

n
( 1
n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ

∗PoissλnT )
)}−1

w−→ N0,c(s2+m2)T 2/τ . (3.75)

The claim will then follow by an application of Slutskys Lemma. To this end, for every

ω ∈ Ω, let Ŝω
n,τ be a N

m̂n,τ (ω),σ̂2
n,τ (ω)

-distributed random variable on some probability space

(Ωω,Fω,Pω) and set

M̂ω
n,τ (·) :=

Ŝω
n,τ (·)− m̂n,τ (ω)

σ̂n,τ (ω)
.

Then M̂ω
n,τ has the standard normal distribution for every n ∈ N, τ > 0 and ω ∈ Ω.

Furthermore, let Rn be a µ∗PoissλnT -distributed random variable and set

Zn(·) :=
Rn(·)−mn

σn

,

where again mn and σn denote the mean and standard deviation of µ∗PoissλnT , respectively.

Moreover, let νn denote the distribution of Zn. Then we observe that

law{σn Zn +mn} = µ∗PoissλnT .

Using part (c) of Assumption 3.2.1 on the positive homogeneity and cash-invariance of ρ, we

obtain for every ω

√
n
( 1
n
Rρ(Nm̂n,τ (ω),σ̂2

n,τ (ω)
)− 1

n
Rρ(µ

∗PoissλnT )
)

=
1√
n

(
ρ(σ̂n,τ (ω) M̂

ω
n,τ + m̂n,τ (ω))− ρ(σn Zn +mn)

)

=
1√
n

(
σ̂n,τ (ω)Rρ(N0,1)− σn Rρ(νn) + m̂n,τ (ω)−mn

)

=
1√
n

(
σn (Rρ(N0,1)−Rρ(νn)) + (σ̂n,τ (ω)− σn)Rρ(N0,1) + m̂n,τ (ω)−mn

)
. (3.76)
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In the following we will show that

σn√
n
(Rρ(N0,1)−Rρ(νn)) = o(1), (3.77)

1√
n
(σ̂n,τ − σn)Rρ(N0,1) = oP-a.s.(1), (3.78)

P ◦ {n−1/2 (m̂n,τ −mn)}−1 w−→ N0,c(s2+m2)T 2/τ , (3.79)

such that the assertion would follow by an application of Slutsky’s Lemma.

Step 1: For every n ∈ N we can use Wald’s equation along with part (b) of Assumption 3.2.1

to deduce
σn√
n
=
(λnTm

(2)

n

)1/2
= O(1).

Following the same line of reasoning as in the proof of part (ii) of Theorem 3.2.2, we conclude

that (3.77) holds true.

Step 2: Using part (b) of Assumption 3.2.1 again, we observe that

1√
n
(σ̂n,τ − σn) =

√
λnT

n

1√
λnT

, (σ̂n,τ − σn),

such that the claim in (3.78) follows immediately from assertion (3.42) in the proof of part

(v) of Theorem 3.2.2.

Step 3: Using Wald’s equation again yields

1√
n
(m̂n,τ −mn)

=
1√
n
(λ̂n,τTm̂n,τ − λnTm)

=
1√
n

(
(λ̂n,τT − λnT ) (m̂n,τ −m) + m (λ̂n,τT − λnT ) + λnT (m̂n,τ −m)

)

=

√
λn

nτ
T
√

λnτ
(
m̂n,τ −m + m

( λ̂n,τT

λnT
− 1
))

+
1√
n
(λ̂n,τT − λnT ) (m̂n,τ −m)

=: S3.1(n) + S3.2(n). (3.80)

In Steps 3.1–3.2 below we will show that

P ◦ S3.1(n)
−1 w−→ N0,c (s2+m2)T 2/τ (3.81)

S3.2(n)
p−→ 0, , (3.82)

such that the claim in (3.79) follows by an application of Slutskys Lemma.

Step 3.1: It suffices to prove that the following statement holds true:

√
λnτ

([
m̂n,τ

λ̂n,τT

λnT

]
−
[
m

1

])
=
√

λnτ

([
1

N̂n(τ)

∑N̂n(τ)
j=1 Yj

N̂n(τ)
λnτ

]
−
[
m

1

])
d−→ Z ′ , (3.83)
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as n → ∞, where Z ′ refers to some bivariate normally distributed random variable with

mean [0, 0]′ and covariance matrix Σ :=

[
s2 0

0 1

]
. In this case the assertion in (3.81)

follows directly by an application of the delta-method (see for instance [62], Section 3) w.r.t.

the mapping φ : R2 → R, φ(x, y) = x+my.

By

√
λnτ

([
1

N̂n(τ)

∑N̂n(τ)
i=1 Yi

N̂n(τ)
λnτ

]
−
[
m

1

])

=
√
λnτ

[
1
λn

∑N̂n(τ)
i=1 (Yi −m)
N̂n(τ)
λnτ

− 1

]
+
√
λnτ

[ (
λnτ

N̂n(τ)
− 1
)

1
λnτ

∑N̂n(τ)
i=1 (Yi −m)

0

]
(3.84)

it suffices to show that

√
λnτ

( λnτ

N̂n(τ)
− 1
) 1

λnτ

N̂n(τ)∑

i=1

(Yi −m)
p−→ 0, (n → ∞). (3.85)

The convergence in distribution of the first summand on the right-hand side in (3.84) to Z ′

is a direct consequence of Proposition 3.2.12, where we observe that for every n ∈ N and

τ > 0 fixed, N̂n(τ) is a Poissλnτ -distributed random variable. That is, the assertion in (3.83)

would follow by an application of Slutskys Lemma again.

To prove (3.85), we can use Proposition 3.2.10 to conclude that λnτ/N̂n(τ) converges to 1

P-a.s. Second, Lemma 2.5.6 in [25] along with an application of Slutskys Lemma yields

P ◦
{ 1√

λnτ

N̂n(τ)∑

i=1

(Yi −m)
}−1 w−→ N0,s2 .

Hence, the left-hand side in (3.85) converges to zero in distribution by Slutskys Lemma,

which leads to the convergence in probability. Thus, the assertion in (3.85) holds true. This

completes the proof of part 3.1.

Step 3.2: Following the same line of reasoning as in the proof of (3.85) again, we conclude

that (3.82) holds true. This completes the proof of part (v).

(iv) The assertion can be proven in same way as part (v). Following the same line of reasoning

as in part (v), we can conclude that (3.77)–(3.78) hold true. Then, using arguments as in

the proof of Step 3.2 above, the P-a.s. convergence to 0 of the remaining summand follows

by an application of the Marcinkiewicz-Zygmund SLLN of Theorem 2.5.5 in [25]. ✷

Proof of Corollary 3.2.6 (i) First, we observe that for every n ∈ N we have

1

n
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

n
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )

=
λ̂n,τT

n

( 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )
)
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=
λnT

n

N̂n(τ)

λnτ

( 1

λ̂n,τT
Rρ(Nm̂n,τ ,σ̂2

n,τ
)− 1

λ̂n,τT
Rρ(µ̂

∗Poiss
λ̂n,τ T

n,τ )
)
. (3.86)

Hence, we can use part (b) of Assumption 3.2.1 to deduce that λnT/n converges to some

positive constant cT . Furthermore, Proposition 3.2.10 yields the P-a.s. convergence of

N̂n(τ)/(λnτ) to 1. Together with part (i) of Theorem 3.2.3 this yields the claim of part

(i).

(ii) The assertion follows from part (i) together with part (iii) of Corollary 3.2.4.

(iii)–(iv): The assertions can be proven in the same way as assertions (iv)–(v) of Corollary

3.2.4. ✷
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Part II

Estimation under constant collective

sizes
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Chapter 4

Nonparametric estimation under

constant collective sizes in the

individual model (revisited)

In the first part of this thesis we have developed a theory to estimate individual premiums

against the background of increasing collective sizes, assuming that estimations were only

based on the last “few” insurance periods rather than the whole observation history. In

contrast to this theory, we now assume that the collective size is constant and the number

of observations is increasing. In this chapter we will basically recall the ideas presented

in [12] to derive the asymptotic distribution and almost sure bootstrap consistency for the

estimated premiums in the individual model.

To this end, let (Xi) be a sequence of nonnegative i.i.d. random variables with distribution

µ. Throughout this chapter we will refrain from our notation used in the former chapters.

From now on we will therefore use the distribution function F associated with µ to develop

our theory, instead of focusing on the distribution µ itself. For every n ∈ N, let

Sn :=
n∑

i=1

Xi.

In accordance with Chapter 2, we will think of Sn again as the total claim size in a homo-

geneous insurance collective with n individual risks. The distribution function of Sn is then

given by F ∗n, where F ∗n refers to the n-fold convolution of F . That is, F ∗0 := 1[0,∞) and

F ∗n(x) :=

ˆ

F (x− xn−1) dF
∗(n−1)(xn−1)

=

ˆ

· · ·
ˆ

F (x− xn−1 − · · · − x1) dF (x1) · · · dF (xn−1) (4.1)

for every n ∈ N. We regard F ∗n as the image of a mapping Cn. To this end, let Cn : F → F

be the functional defined by

Cn(F ) := F ∗n, (4.2)
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where F denotes the set of all distribution functions. Hence, an adequate total premium

w.r.t. a risk measure ρ would then be given by the evaluation of the risk functional Rρ at

F ∗n, that is by

Rn := Rρ(Cn(F )). (4.3)

Note, that in this chapter we regard the risk functional as a functional of the distribution

function F , rather than the measure µ. This does clearly not impose a restriction, whenever

ρ refers to a law-invariant risk measure. In view of (4.3), we stress the fact again, that we

assumed the collective size n ∈ N to be constant throughout the second part of this thesis. Of

course, a suitable individual premium could then be obtained by dividing the total premium

in (4.3) by the collective size n. However, as the collective size does not vary, this would

not change the asymptotic behavior essentially. Throughout the rest of this chapter we will

therefore refer to Rn as the premium rather than the individual premium.

The rest of this chapter is organized as follows. In Section 4.1 we will briefly introduce the

estimator for the premium in the individual model. In Section 4.2 we will then introduce the

notion of uniform quasi-Hadamard differentiability, which will be needed for the determina-

tion of the asymptotic distributions with the help of the delta-method in the form of [12].

Section 4.3 will then be devoted to deriving the asymptotic distribution and establishing al-

most sure bootstrap consistency for the sequence of estimated premiums. The representation

in (4.3) already points out that this will be achieved by an application of the delta-method

and the chain rule in the form of [12]. Again, we stress the fact that the presented theory

throughout this chapter is a recapitulation of the results in [12].

4.1 An estimator for the premium in the individual

model

This section is devoted to the estimation of the premium Rn, as in (4.3). To this end, let

u ∈ N, and Y1, . . . , Yu be nonnegative i.i.d. random variables on a probability space (Ω,F ,P)

with distribution function F . We will think of Y1, . . . , Yu as single claims, which have been

reported to the insurance company in the past. For every u ∈ N, an estimator for the

unknown distribution function F of the single claim distribution would then be given by the

mapping F̂u : Ω → F, defined by

F̂u :=
1

u

u∑

i=1

1[Yi,∞), (4.4)

where F denotes the set of all distribution functions. Hence, an estimator for the distribution

function of the total claim amount would then be given by

F̂ ∗nu := Cn(F̂u),
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where Cn is as in (4.2). A reasonable estimator for the premium based on a collective of n

clients and u observations, would then be given by the corresponding plug-in estimator

R̂n,u := Rρ(Cn(F̂u)). (4.5)

In the following we will be interested in deriving the asymptotic distribution of the estimated

premium in (4.5) as u tends to infinity and n remains constant. Furthermore we will establish

the asymptotic distribution and almost sure bootstrap consistency for the estimator in (4.5).

4.2 The notion of uniform quasi-Hadamard differentia-

bility

In this section we will introduce the notion of uniform quasi-Hadamard differentiability,

which will be used to derive a delta-method and bootstrap results for plug-in estimators

in our present setting. The uniform quasi-Hadamard differentiability, as introduced in [12],

extends the notion of quasi-Hadamard differentiability, as introduced in [10]. To this end,

let V and Ṽ be vector spaces. Let E ⊂ V and Ẽ ⊂ Ṽ be subspaces equipped with norms

‖ · ‖E and ‖ · ‖
Ẽ
. Furthermore, let

G : VG −→ Ṽ

be any map defined on some domain VG ⊂ V.

Definition 4.2.1 Let E0 be a subset of E, and S be a set of sequences in VG.

(i) The map G is said to be uniformly quasi-Hadamard differentiable w.r.t. S tangentially

to E0〈E〉 with trace Ẽ, if G(y1) − G(y2) ∈ Ẽ for all y1, y2 ∈ VG, and there is some

continuous map ĠS : E0 → Ẽ such that

lim
u→∞

∥∥∥∥ĠS(x) − G(zu + εuxu)−G(zu)

εu

∥∥∥∥
Ẽ

= 0 (4.6)

holds for each quadruple ((zu), x, (xu), (εu)), with (zu) ∈ S, x ∈ E0, (xn) ⊂ E, satisfy-

ing ‖x− xu‖E → 0, as well as (zu + εuxu) ⊂ VG, and (εu) ⊂ (0,∞) satisfying εu → 0.

In this case the map ĠS is called uniform quasi-Hadamard derivative of G w.r.t. S
tangentially to E0〈E〉.

(ii) If S consists of all sequences (zu) ⊂ VG with zu− z ∈ E, u ∈ N, and ‖zu− z‖E → 0 for

some fixed z ∈ VG, then we replace the phrase “w.r.t. S” by “at z” and “ĠS” by “Ġz”.

(iii) If S consists only of the constant sequence zu = z, u ∈ N, then we skip the phrase

“uniformly” and replace the phrase “w.r.t. S” by “at z” and “ĠS” by “Ġz”. In this

case we may also replace “G(y1)−G(y2) ∈ Ẽ for all y1, y2 ∈ VG” by “G(y)−G(z) ∈ Ẽ

for all y ∈ VG”.
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(iv) If E = V, then we skip the phrase “quasi-”.

(v) If Ẽ = Ṽ, then we skip the phrase “with trace Ẽ”.

The definition extends the classical notion of uniform Hadamard differentiability as intro-

duced in Theorem 3.9.11 in [61] in the following sense. Using the differentiability concept in

(i) with S as in (ii), leads to the classical uniform Hadamard differentiability. Proposition

4.1 in [12] shows that it might turn out to be beneficial to refrain from insisting on E = V

as in part (iv). Of course the condition of the uniform quasi-Hadamard differentiability gets

weaker the smaller the set S gets.

4.3 The asymptotic distribution and almost sure boot-

strap consistency of the estimated premium in the

individual model

In this section we aim to derive results about the asymptotic distribution and almost sure

bootstrap consistency of the estimated premium in the individual model. To this use, we

will first introduce the bootstrap estimator for the premium in our present setting. The

presented theory is based on Example 3.3 in [12]. Subsequent to the introduction of the

bootstrap estimator, we will first state a general theorem about the asymptotic distribution

and almost sure bootstrap consistency of the estimated premium for general risk measures

ρ. To serve a concrete example, we will then consider the premium derived from the Average

Value at Risk of Example 1.2.4 and state the corresponding asymptotic distribution.

In accordance with the former section, let (Yi) be a sequence of i.i.d. random variables on

a probability space (Ω,F ,P) with distribution function F , and let F̂u be as in (4.4). Let

(Ω′,F ′,P′) be a second probability space and set

(Ω,F ,P) := (Ω× Ω′,F ⊗ F ′,P⊗ P′).

Let (Wu,i) be a triangular array of nonnegative real-valued random variables on (Ω′,F ′,P′),
such that (Wu,1, . . . ,Wu,u) is an exchangeable random vector for every u ∈ N, and define the

map F̂B
u : Ω → F by

F̂B
u (ω, ω

′) :=
1

u

u∑

i=1

Wu,i(ω
′)1[Yi(ω),∞). (4.7)

Note that the triangular array (Wu,i) and the sequence (Yi), regarded as random variables

on the product space (Ω,F ,P), are independent. Of course we will tactically assume that

(Ω′,F ′,P′) is rich enough to host all random variables used below. Let W u := 1
u

∑u
i=1 Wu,i.

Now we assume that F satisfies
´

φ2
λdF < ∞ and that the following assertions hold.

A1. supu∈N
´∞
0

P′[|Wu,1 −W u| > t]1/2 dt < ∞.
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A2. 1√
u
E′[ max1≤i≤u |Wu,i −W u|] → 0.

A3. 1
u

∑u
i=1(Wu,1 −W u)

2 → 1 in P′-probability.

Examples 3.6.9 and 3.6.10 in [61] have shown that conditions A1.–A3. are met under the as-

sumptions of parts (i) and (ii) of Example 2.4.2, that is, if the resampling scheme corresponds

to Efron’s bootstrap or the Bayesian bootstrap, for instance.

Note that we might regard (4.7) as a bootstrap version of the estimated distribution func-

tion F̂u of the single claim distribution. In this context the bootstrap estimator for the

distribution function of the total claim distribution is given by

(F̂B
u )
∗n := Cn(F̂B

u ).

Hence, the bootstrap estimator for the premium in the individual model is given by

R̂B
n,u := Rρ(Cn(F̂B

u )). (4.8)

Let D be the space of all càdlàg functions. Moreover, let λ ≥ 0 and φλ : R → [1,∞) be a

weight function given by φλ(x) := (1 + |x|)λ. Let Dφλ
be the subspace of D consisting of all

elements v ∈ D, satisfying ‖v‖φλ
:= ‖vφλ‖∞ < ∞ and limx→±∞ |v(x)| = 0. Furthermore,

let Fφλ
denote the subspace of F consisting of all elements F ∈ F satisfying

´

φλdF < ∞.

Note that the latter condition is equivalent to
´

|x|λdF (x) < ∞. Moreover, let Fλ denote

the subspace of all elements F ∈ F satisfying
´

|x|λ dF (x) < ∞.

To guarantee that the composition Rρ ◦ Cn is well defined, we have to assume that the risk

functional is a mapping defined on Fλ′ for some λ′ ≥ 0. Choosing F ∈ Fφλ
, Lemma 2.2 in

[52] yields that Cn(Fφλ
) ⊂ Fλ′ , for every λ > λ′, such that Rρ ◦ Cn is well defined on Fφλ

.

The formulation of the following theorem will require the definition of an F -Brownian bridge.

The latter is defined as a centered Gaussian process with covariance function

Γ(t0, t1) = F (t0 ∧ t1)(1− F (t0 ∨ t1)). (4.9)

Theorem 4.3.1 Let λ > λ′ > 1 and F ∈ Fφ2λ
, that is

´

φ2
λ dF < ∞. Let R, R̂n,u, R̂B

n,u be

as in (4.3), (4.5) and (4.8), respectively. Moreover, let BF be an F -Brownian bridge.

Let S be the set of all sequences (Gu) ⊂ F satisfying Gu → Cn(F ) pointwise. Furthermore,

assume that Rρ is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to Dφλ
〈Dφλ

〉
with uniform quasi-Hadamard derivative Ṙρ,S . Then we have

√
u
(
R̂n,u −Rn

)
d−→ Ṙρ, Cn(F ) ◦ Ċn,F (BF ), in (R,B(R))

and

√
u
(
R̂B

n,u(ω, · )− R̂u,n(ω)
)

d−→ Ṙρ, Cn(F ) ◦ Ċn,F (BF ), in (R,B(R)) P-a.e. ω,
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where Ċ(n,F ) : Dφλ
→ Dφλ′

is defined by

Ċ(n,F )(v) := n v ∗ F ∗(n−1) = n

ˆ

v( · − x) dF ∗(n−1)(x). (4.10)

The assertion in Theorem 4.3.1 is an obvious special case of the assertion in Theorem 5.2.1.

We will therefore not prove Theorem 4.3.1 at this point.

As we have seen in Section 1.3, the Average Value at Risk at level α ∈ (0, 1) is a distortion

risk measure and thus, possesses an integral representation w.r.t. a distortion function. More

explicitly, let (Ω,F ,P) be an atomless probability space and let L1(Ω,F ,P) denote the usual

L1-space. Then the Average Value at Risk at level α ∈ (0, 1) is the map AV@Rα : L1 → R

defined by

AV@Rα(X) := −
ˆ 0

−∞
gα(FX(x)) dx +

ˆ ∞

0

(1− gα(FX(x))) dx,

where gα(t) := 1
1−α max{0, t − α}. In view of the upper identity, we might also think of

AV@Rα as a statistical functional Rα : F1 → R, defined by

Rα(F ) := −
ˆ 0

−∞
gα(F (x)) dx +

ˆ ∞

0

(1− gα(F (x))) dx. (4.11)

We will now consider the composition of the Average Value at Risk functional Rα, as defined

in (4.11), and the compound distribution functional Cn as in (4.2). Note that for any λ > 1,

Lemma 2.2 in [52] yields Cn(Fφλ
) ⊂ F1, such that the composition Rα ◦ Cn is well defined on

Fφλ
. Let κα,n : Fφλ

→ R be defined by

κα,n := Rα ◦ Cn. (4.12)

Note that in this special case the premium Rn, the premium estimator R̂n,u, as well as the

bootstrap premium estimator R̂B
n,u are given by κα,n(F ), κα,n(F̂u) and κα,n(F̂

B
u ), respectively.

Theorem 4.3.2 Let λ > 1 and F ∈ Fφλ
. Furthermore, assume that Cn(F ) takes the value

1 − α only once. Then the map κα,n := Rα ◦ Cn : Fφλ
(⊂ D) → R is uniformly quasi-

Hadamard differentiable at F tangentially to Dφλ
〈Dφλ

〉, and the uniform quasi-Hadamard

derivative κ̇α,n,F : Dφλ
→ R is given by κ̇α,n,F := Ṙα,Cn(F ) ◦ Ċ(n,F ), i.e.

κ̇α,n,F (v) =

ˆ

g′α(Cn(F )(x)) Ċ(n,F )(v)(x) dx, (4.13)

where g′α(t) =
1

1−α1(1−α,1](t) and Ċ(n,F ) is as in (4.10).

Proof The proof of the assertion would be a direct consequence of Corollary 4.6 in [12] if

we could show that the mapping Cn is uniformly quasi-Hadamard differentiable tangentially

to Dφλ
〈Dφλ

〉 with trace Dφλ′
and uniform quasi-Hadamard derivative Ċ(n,F ) given by (4.10).
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The latter can be obtained as a special case of Proposition 4.3 in [12] by choosing pn = 1

and pk = 0 for every k 6= n. ✷

As a direct consequence of Theorems 4.3.2 and 4.3.1 we obtain the following corollary on

the asymptotic distribution and the almost sure bootstrap consistency of the premium in

the individual model.

Corollary 4.3.3 Let λ > 1 and let F ∈ Fφ 2λ
. Moreover, let F̂u and F̂B

u be as in (4.4) and

(4.7) and let BF be as in (4.9). Assume that Cn(F ) takes the value 1 − α only once. Then

we have √
u
(
κα,n(F̂u)− κα,n(F )

)
d−→ κ̇α,n,F (BF ), in (R,B(R)) (4.14)

and

√
u
(
κα,n(F̂

B
u (ω, · ))− κα,n(F̂u(ω))

)
d−→ κ̇α,n,F (BF ), in (R,B(R)) P-a.e. ω. (4.15)
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Chapter 5

Semiparametric estimation under

constant collective sizes in the

collective model

In this chapter we aim to derive similar results to those of the former chapter for the collective

model. More explicitly, we will aim to derive the asymptotic distribution of the sequence

of estimated premiums in the collective model. Again, we assume that the collective size is

constant and the number of observations is increasing. In contrast to the former chapter, our

theory has to be modified because the quantity to estimate is no longer just the empirical

distribution function, but also the distribution of the number of claims. In the setting of

the former chapter the latter distribution was nothing but the dirac measure at n. In the

following we will therefore expand our theory to a wider class of claim number distributions.

To embed this notion in a mathematical context, let (Xi) be a sequence of nonnegative i.i.d.

random variables with unknown distribution function F . Moreover let N be an N0-valued

random variable being independent of (Xi). Furthermore, let

SN :=
N∑

i=1

Xi.

We will think of SN again as the future total claim size of an insurance collective producing

homogeneous claims. Note that we oppress the dependence of N on n ∈ N throughout

this chapter, as we assume the collective size to be constant. Again, the distribution of N is

unknown. However in many practical applications one does roughly know which parametrical

class of distributions the distribution of N belongs to. In the Cramér-Lundberg model of

Section 3.1 for instance, we know that this role is played by a Poisson distribution with

unknown parameter θ ∈ (0,∞). In particular, the distribution of the number of claims is

then specified by a nonnegative sequence p(θ) := (pk(θ))k∈N0 in dependence on the claim

intensity θ ∈ (0,∞). In this particular example, for every k ∈ N0, pk : (0,∞) → R+ is a
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mapping defined by

pk(θ) :=
θk

k!
e−θ.

In this context, the distribution function of the total claim distribution is given by

F ∗Poissθ :=
∞∑

k=0

F ∗k
θk

k!
e−θ, (5.1)

where F ∗k refers to the k-fold convolution of F , as introduced in (4.1). In accordance with

Chapter 4, we will regard F ∗Poissθ as the image of a mapping defined on the set of parameters

and the underlying distribution functions. To this end, let C : (0,∞)×F → F be defined by

C(θ, F ) :=
∞∑

k=0

F ∗k
θk

k!
e−θ. (5.2)

In the following we will refer to C as the compound distribution functional. The corresponding

(total) premium w.r.t. a risk measure ρ is then given by

R := Rρ(C(θ, F )). (5.3)

Note that there is a hidden dependence of the premium on the collective size n, because

the parameter modeling the claim intensity θ does depend on the size of the underlying

collective. However, as we assumed the number of clients in the collective to be constant,

we will omit this dependence because it does not affect the asymptotic behavior essentially.

Once again, a suitable individual premium could be obtained by dividing the quantity in

(5.3) by n.

Our goal in this chapter is to derive the asymptotic distribution of the estimated premium in

this context. Furthermore, we will give an outlook on the almost sure bootstrap consistency

of the estimated premiums. Section 5.1 will be devoted to the choice of estimators. To

this end, let R̂u be an estimator for the premium in (5.3), where u refers to the number of

observations taken into account for the estimation. Based on R̂u, we will aim to derive the

asymptotic distribution, that is, the weak limit of the laws of

√
u
(
R̂u −R

)
(5.4)

as the number of observations u tends to infinity. In practical applications this error distri-

bution can theoretically be used to derive asymptotic confidence intervals for the premium

R. However, in many applications a derivation of the exact asymptotic distribution of the

sequence in (5.4) is more or less impossible. A widely used technique to handle this problem

is again the bootstrap. To this end, let ζ denote the limit in distribution of the sequence

in (5.4). Section 5.3 will give an outlook on the almost sure bootstrap consistency of the

sequence of estimated premiums. The latter means, that

√
u
(
R̂B

u (ω, · )− R̂u(ω)
)

d−→ ζ, P-a.e. ω, (5.5)
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holds, where R̂B
u is a suitable bootstrap version of R̂u. As the bootstrap version R̂B

u only

depends on the bootstrap mechanism and the initial sample ω, one can at least numerically

determine the asymptotic error distribution by means of a Monte-Carlo procedure. A central

tool to derive the asymptotic distribution of the initial sequence of estimators will be the

recently established functional delta-method for uniformly quasi-Hadamard differentiable

functionals in the form of Corollary 3.1 in [12]. The representation in (5.3) points out that

we will consider the premium R to be a composition of the mapping C, mapping the claim

intensity parameter and the distribution function onto the compound distribution function,

together with the risk functional Rρ. To this end, we will also need the chain rule for

uniformly quasi-Hadamard differentiable functionals in the form of Lemma A.5 in [12] to

prove the uniform quasi-Hadamard differentiability of the composition.

The rest of this chapter is organized as follows. In Section 5.1 we will give a brief introduction

to our considered estimators and introduce the estimator for the premium. In Section 5.2 we

will present our main results about the asymptotic distribution of the estimated premiums.

We will first formulate these results w.r.t. a general risk measure ρ and will then consider

the premium w.r.t. the Average Value at Risk at level α ∈ (0, 1) to serve a concrete example.

Section 5.3 will then give an outlook on the almost sure bootstrap consistency of the sequence

of premium estimators if we could achieve almost sure boostrap consistency of the sequence

of underlying estimators for the claim intensity θ and the single claim distribution function

F . In Section 5.4 we will then prove our results of Section 5.2. To this use, we will first recall

the recently established delta-method for uniform quasi-Hadamard differentiable functionals

of Corollary 3.1 in [12], which will be the central tool to determine the asymptotic error

distribution of our sequence of premium estimators. This will be done in Section 5.4.1. In

Section 5.4.2 we will then determine the uniform quasi-Hadamard derivative of the compound

distribution functional C. Furthermore, we will derive the asymptotic distribution of the

estimated compound distribution function, that is, the compound distribution functional C
applied to our estimators for θ and F . This will be done in Section 5.4.3. The latter will be

needed to derive results on the asymptotic distribution of the estimated premiums with the

help of the delta-method.

5.1 A semiparametric estimator for the premium in

the compound Poisson model

Our next goal is again to estimate a suitable premium for the insurance period to come based

on historically observed claim amounts and claim numbers. To this end, let N1, . . . , Nu be

i.i.d. random variables on a probability space (Ω,F ,P) with N1 ∼ Poissθ for some θ ∈ (0,∞).

Each Ni represents the number of claims, which have been reported to the insurer during

the i-th insurance period. Moreover, let (Yi) be a sequence of i.i.d. random variables on

(Ω,F ,P) with distribution function F , being independent of (N1, . . . , Nu). In this case
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Y1, . . . , YN1+...+Nu represent the claim sizes, which have been reported to the insurance com-

pany throughout the last u ∈ N insurance periods.

To estimate the unknown parameter θ of the Poisson-distribution, we can use the standard

Maximum-Likelihood Estimator (MLE). In particular, for every u ∈ N, let θ̂u : Ω → (0,∞)

be the mapping defined by

θ̂u :=
1

u

u∑

i=1

Ni. (5.6)

In this case θ̂u provides an unbiased estimator for θ ∈ (0,∞). To simplify the notation, let

N(u) := N1+ . . .+Nu. Note that the total number of claims N(u) might as well be regarded

as the value of a homogeneous Poisson-process with rate 1 at time uθ. Thus, the mapping

F̂u : Ω → F, given by

F̂u :=
1

N(u)

N(u)∑

i=1

1[Yi,∞) (5.7)

is the standard nonparametric estimator for the unknown distribution function F , provided

N(u) > 0. For N(u) = 0 we simply set F̂u = 1[0,∞). Here F denotes the space of all

distribution functions. Following this line of reasoning, we can use

F̂
∗Poiss

θ̂u
u := C(θ̂u, F̂u) (5.8)

to estimate the distribution of the total claim, where C is the compound distribution func-

tional as in (5.2). Hence,

R̂u := Rρ(C(θ̂u, F̂u)) (5.9)

provides a reasonable estimator for the total premium. Consequently, an estimator for the

individual premium is then given by R̂u/n.

5.2 Asymptotic distribution of the premium estimator

in the compound Poisson model

In this section we are going to derive results about the asymptotic distribution of the sequence

of estimated premiums. We will first state a general result about the asymptotic distribution

of the estimated premiums. To be able to formulate this result, we will assume the underlying

risk functional to be uniformly quasi-Hadamard differentiable in the sense of Definition 4.2.1.

To serve a concrete example, we will then determine the asymptotic distribution of a sequence

of estimated premiums based on the Average Value at Risk of Example 1.2.4.

Theorem 5.2.1 will be the general formulation of our main theorem in Chapter 5. In the

formulation of the theorem we will consider the premium w.r.t. a general risk measure ρ.

To guarantee that the composition Rρ ◦ C is well defined, we have to assume that the risk

functional is a mapping defined on Fλ′ for some λ′ ≥ 0. Choosing F ∈ Fφλ
, Lemma 2.2 in
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[52] yields that C((0,∞)× Fφλ
) ⊂ Fλ′ , for every λ > λ′, such that Rρ ◦ C is well defined on

(0,∞)× Fφλ
.

Theorem 5.2.1 Let λ > λ′ > 1, θ ∈ (0,∞) and let F ∈ Fφ2λ
, that is

´

φ2
λ dF < ∞. Let R

and R̂u be as in (5.3) and (5.9), respectively. Moreover, let ξ be a N0,θ-distributed random

variable and BF be an F -Brownian bridge, as in (4.9), being independent of ξ.

Let S be the set of all sequences (Gu) ⊂ Fλ, satisfying Gu → C(θ, F ) pointwise. Assume

that Rρ is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to Dφλ′
〈Dφλ′

〉 with

uniform quasi-Hadamard derivative Ṙρ,S . Then we have

√
u
(
R̂u −R

)
d−→ Ṙρ, C(θ,F ) ◦ Ċ(θ,F )

(
ξ,

1√
θ
BF

)
, in (R,B(R)),

where Ċ(θ,F ) : (0,∞)×Dφλ
→ Dφλ′

is given by

Ċ(θ,F )(w, v) := v ∗
∞∑

k=1

kF ∗(k−1)
θk

k!
e−θ + w e−θ

∞∑

k=0

F ∗k
1

k!
(k θk−1 − θk). (5.10)

The proof of Theorem 5.2.1 can be found in Section 5.4.4.

We will now consider the composition of the Average Value at Risk functional with the

compound distribution functional. More explicitly, we will prove an analogue to Theorem

5.2.1, where the role of ρ is played by the Average Value at Risk at level α ∈ (0, 1). To this

end, let again α ∈ (0, 1) and Rα : F1 → R be as in (4.11). Let κα : (0,∞) × F → R be

defined by

κα := Rα ◦ C. (5.11)

In this special case the premium R and the premium estimator R̂u are given by κα(θ, F )

and κα(θ̂u, F̂u), respectively. We will use the results of Proposition 4.1 in [12] on the uniform

quasi-Hadamard differentiability of the Average Value at Risk functional. Let λ > 1. Note

that Lemma 2.2 in [52] yields C((0,∞)×Fφλ
) ⊂ F1, such that the composition Rα ◦C is well

defined on (0,∞)× Fφλ
.

Theorem 5.2.2 Let λ > 1, θ ∈ (0,∞) and, F ∈ Fφ2λ
. Assume that C(θ, F ) takes the

value 1 − α only once. Then the map κα := Rα ◦ C : (0,∞) × Fφλ
(⊂ D) → R is uniformly

quasi-Hadamard differentiable at (θ, F ) tangentially to ((0,∞) × Dφλ
)〈(0,∞) × Dφλ

〉, and
the uniform quasi-Hadamard derivative κ̇α,θ,F : R×Dφλ

→ R is given by κ̇α,θ,F := Ṙα,C(θ,F ) ◦
Ċ(θ,F ), i.e.

κ̇α,θ,F (w, v) :=

ˆ

g′α(C(θ, F )(x)) Ċ(θ,F )(w, v)(x) dx, (5.12)

for every (w, v) ∈ R×Dφλ
, where g′α(t) :=

1
1−α1(1−α,1](t) and Ċ(θ,F ) is as in (5.10).

As a direct consequence of Theorem 5.2.2 and Corollary 5.4.8 we obtain the following corol-

lary. Note that this is a special case of 5.2.1, where the role of ρ is played by the Average

Value of Risk at level α ∈ (0, 1).
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Corollary 5.2.3 Let λ > 1, θ ∈ (0,∞) and let F ∈ Fφ2λ
, that is

´

φ2
λ dF < ∞. Let θ̂u and

F̂u be as in (5.6) and (5.7), respectively. Moreover, let ξ and BF be as in Theorem 5.2.1.

Furthermore, assume that the assumptions of Theorem 5.2.2 are fulfilled. Then we have

√
u
(
κα(θ̂u, F̂u)− κα(θ, F )

)
d−→ κ̇α,θ,F

(
ξ,

1√
θ
BF

)
, in (R,B(R)).

Proof of Theorem 5.2.2 We intend to apply Lemma A.5 in [12] to H := C : Θ×Fφλ
→ F1

and H̃ := Rα : F1 → R. Note that in this context H refers to the notation used in

the formulation of Lemma A.5 in [12] and is not to be confused with the compound tail

functional of Section 5.4.2. We will show that the following conditions are fulfilled:

(a) For every sequence (θu, Fu) ⊂ (0,∞)× Fφλ
satisfying max{|θu − θ|, ‖Fu − F‖φλ

} → 0,

we have

lim
u→∞

C(θu, Fu)(t) = C(θ, F )(t), for every t ∈ R.

(b) C is uniformly quasi-Hadamard differentiable at (θ, F ) tangentially to ((0,∞) × Dφλ
)

〈(0,∞)×Dφλ
〉 with trace Dφλ

and uniform quasi-Hadamard derivative Ċ(θ,F ) satisfying

Ċ(θ,F )(Dφλ
) ⊂ Dφλ′

.

(c) Rα is uniformly quasi-Hadamard differentiable tangentially to Dφλ′
〈Dφλ′

〉 with trace

Dφλ′
at every distribution function of Fφλ′

taking the value 1− α only once.

To verify that the assumptions of this lemma are fulfilled, we recall from the discussion

above Corollary 5.2.2 that C((0,∞) × Fφλ
) ⊂ F1. Conditions (a) and (b) can be proven in

exactly the same way as conditions (a) in (b) in the proof of Theorem 5.2.1. It was shown

in Proposition 4.1 in [12] that Rα is uniformly quasi-Hadamard differentiable tangentially

to Dφλ′
〈Dφλ′

〉 with trace Dφλ′
at every distribution function taking the value 1 − α only

once. Hence, with the help of the chain rule of Lemma A.5 in [12] we conclude that the

composition κα := Rα ◦ C : (0,∞) × Fφλ
→ R is uniformly quasi-Hadamard differentiable

at (θ, F ) tangentially to ((0,∞) × Dφλ
)〈(0,∞) × Dφλ

〉 and the uniform quasi-Hadamard

derivative is given by κ̇α,θ,F := Ṙα,C(θ,F ) ◦ Ċ(θ,F ). ✷

5.3 An outlook on almost sure bootstrap consistency

of the estimated premiums

Before we present the proofs of the results of the former chapter we first take our time to

give an outlook about almost sure bootstrap consistency for the estimated premiums. To

this end, we will first introduce a bootstrap version for the premium estimator of Section 5.1.
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The main tool to derive these results will be the functional delta method for the bootstrap

of uniformly quasi-Hadamard differentiable functionals of Corollary 3.2 in [12].

Let again, N1, . . . Nu be i.i.d. random variables on a probability space (Ω,F ,P) with N1 ∼
Poissθ for some θ ∈ (0,∞). Moreover, let (Yi) be a sequence of i.i.d. random variables on

the same probability space with distribution function F , being independent of (N1, . . . , Nu)

and let θ̂u and F̂u be as in (5.6) and (5.7), respectively. Let (Ω′1 × Ω′2,F ′1 ⊗ F ′2,P′1 ⊗ P′2) be

another probability space and set

(Ω,F ,P) := (Ω× (Ω′1 × Ω′2),F ⊗ (F ′1 ⊗F ′2),P⊗ (P′1 ⊗ P′2)).

Now let (W
(1)
u,i ) be a triangular array of nonnegative real-valued random variables on the

probability space (Ω′1,F ′1,P′1) and assume that for every u ∈ N the random vector

(W
(1)
u,1 , . . . ,W

(1)
u,u)

is multinomially distributed according to the parameters u and p1 = . . . = pu = 1
u
. Note

that this setting is nothing but Efron’s bootstrap of part (i) of Example 2.4.2. Now let

θ̂Bu : Ω× Ω′1 → (0,∞) be the map defined by

θ̂Bu (ω, ω
′
1) :=

1

u

u∑

i=1

W
(1)
u,i (ω

′
1)Ni(ω). (5.13)

Note, that (Ni) and (W
(1)
u,i ) regarded as families of random variables on the probability space

(Ω × Ω′1,F ⊗ F ′1,P ⊗ P′1) are independent. Given the value of N(u;ω), let (W
(2)
N(u;ω),i) be

a second triangular array of nonnegative real-valued random variables on (Ω′2,F ′2,P′2) and

assume that for every u ∈ N the random vector
(
W

(2)
N(u;ω),1, . . . ,W

(2)
N(u;ω),N(u;ω)

)

is multinomially distributed according to the parameters N(u;ω) and p1 = . . . = pN(u;ω) =
1

N(u;ω)
, if N(u;ω) > 0. In this setting we may regard (Yi) and (W

(2)
N(u),i) as families of inde-

pendent random variables on the whole product space (Ω,F ,P). Furthermore, the bootstrap

weights (W
(1)
u,i ) and (W

(2)
N(u,i) are by construction independent on the whole product space

(Ω,F ,P). Then for every u ∈ N, let F̂B
u : Ω× Ω′2 → F be the map defined by

F̂B
u (ω, ω

′
2) :=

1

N(u;ω)

N(u;ω)∑

i=1

W
(2)
N(u;ω),i(ω

′
2)1[Yi(ω),∞), (5.14)

if N(u;ω) > 0 and F̂B
u (ω, ω

′
2) := 1[0,∞) else. Here we will tactically assume that the proba-

bility spaces are rich enough to host all the random variables used above.

With the help of the bootstrap versions of our original estimators, we can now define a

bootstrap estimator for the premium R. To this end, we use C(θ̂Bu , F̂B
u ) as a bootstrap

estimator for the total claim amount, and let R̂B
u : Ω → R be the mapping defined by

R̂B
u := Rρ(C(θ̂Bu , F̂B

u )). (5.15)

95



As mentioned before, we aim to apply Corollary 3.2 in [12] to the sequences of underlying

estimators (θ̂Bu ) and F̂B
u . More explicitly, if we could show that

√
u

([
θ̂Bu (ω, · )
F̂u(ω, · )

]
−
[

θ̂u(ω)

F̂u(ω)

])
d−→
[

ξ
1√
θ
BF

]
, P-a.e. ω (5.16)

in (R×Dφλ
,B(R)⊗Dφλ

,max{| · |, ‖ · ‖φλ
}), then we could use the functional delta-method

for the bootstrap of uniformly quasi-Hadamard differentiable functionals in the form of

Corollary 3.2 in [12] to derive almost sure bootstrap consistency for the sequence of estimated

premiums. In this case one could show that under the assumptions of Theorem 5.2.1, the

following assertion holds true

√
u
(
R̂B

u (ω, · )− R̂u(ω)
)

d−→ Ṙρ, C(θ,F ) ◦ Ċ(θ,F )

(
ξ,

1√
θ
BF

)
, P-a.e. ω,

in (R,B(R)), where Ċ(θ,F ) : (0,∞)×Dφλ
→ Dφλ′

is as in Theorem 5.2.1. Of course one could

obtain similar results under the assumptions of Corollary 5.2.3 for the special case when the

role of Rρ is played by the Average Value at Risk at level α ∈ (0, 1).

5.4 Proofs

5.4.1 A functional delta-method for plug-in estimators of uni-

formly quasi-Hadamard differentiable statistical functionals

This section gives a brief summary of the techniques introduced in [12]. We will then

concretize the delta-method and the bootstrap results from [12] to fit our present setting.

Based on the notion of differentiability in Definition 4.2.1 (as introduced in [12]), we now turn

to a functional delta-method for plug-in estimators of statistical functionals. Due to this,

we have to introduce some further notation. In accordance with the model discussed at the

beginning of this chapter, we will consider a “two-dimensional” set of estimators to estimate

the underlying parameter of the distribution of the number of claims and the distribution of

the single claims. The following notation is an extension of the one used in Section 3 in [12].

To this end, let d ∈ N and let Θ ⊂ Rd be an open set and write ‖ · ‖ for the euclidean

metric on Rd. Let D be the space of all càdlàg functions v on R with finite sup-norm

‖v‖∞ := supt∈R |v(t)|. Let D be the σ-algebra on D generated by the one-dimensional

coordinate projections πt(v) := v(t), t ∈ R. Let φ : R → [1,∞) be a weight-function.

Here we refer to a weight-function as a continuous function, being non-increasing on (−∞, 0]

and non-decreasing on [0,∞). Let Dφ be a subspace of D, consisting of all elements x ∈ D

satisfying ‖x‖φ := ‖xφ‖∞ < ∞ and lim|t|→∞ |x(t)| = 0. The latter condition is automatically

satisfied whenever lim|t|→∞ φ(t) = ∞. Let Dφ := D ∩ Dφ be the trace σ-algebra on Dφ.

Furthermore we will write B◦φ for the σ-algebra on Dφ, generated by the ‖ · ‖φ-open balls.
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It was shown in Lemma 4.1 in [11] that B◦φ coincides with Dφ. In the following we will write

 
◦ for the convergence in distribution w.r.t. an open-ball σ-algebra, such as B◦φ.

Let Cφ be a ‖ · ‖φ-separable subspace of Dφ and assume that Cφ ∈ Dφ. Note that for any

distribution function F the set Cφ can be chosen to be the set Cφ,F of all v ∈ Dφ whose

discontinuities are also discontinuities of F . The separability of Cφ,F was shown in Corollary

B.4 in [38].

We now equip the product space Rd×Dφ with the metric d̃, defined by d̃((x1, x2), (y1, y2)) :=

max{‖x1−y1‖, ‖x2−y2‖φ} for every (x1, x2), (y1, y2) ∈ Rd×Dφ. We equip the product space

Rd ×Dφ with the σ-algebra B(Rd)⊗Dφ. Furthermore, let

G : D(G) −→ Ṽ

be a map defined on a set D(G), such that the domain D(G) is a product space of Rd with

a set of distribution functions of finite (not necessarily probability) Borel measures on R.

That is, D(G) ⊂ Rd ×D. Moreover, let Ṽ be any vector space.

Let (Ω,F ,P) be a probability space. Let (Ni) be a sequence of i.i.d. integer-valued random

variables on (Ω,F ,P). Let Θ ⊂ Rd. Furthermore, assume that the distribution of N1 belongs

to a certain class of distributions indexed by a parameter ϑ ∈ Θ. More explicitly, we can

characterize the distribution of the count variables (Ni) by a sequence p(ϑ) := (pk(ϑ))k∈N0 ,

satisfying
∞∑

k=0

pk(ϑ) = 1, for every ϑ ∈ Θ.

Let ϑ̂u : Ω → Θ be an estimator for the unknown parameter ϑ. Let (Yi) be another sequence

of i.i.d. random variables on (Ω,F ,P) being independent of (Ni). Moreover, let F̂u : Ω → D

be the empirical distribution function based on a sample of size N1+. . .+Nu and observations

Y1, . . . , YN1+...+Nu . In this context, the empirical distribution function is given by

F̂u :=
1

N1 + . . .+Nu

N1+...+Nu∑

i=1

1[Yi,∞). (5.17)

Assume that [ϑ̂u, F̂u]
′ takes values only in D(G). We are now able to formulate a delta-

method for the upper setting.

Theorem 5.4.1 Let ([ϑu, Fu]
′) be a sequence in D(G) and S := {([ϑu, Fu]

′)}. Let (au) be

a sequence of positive real numbers with au → ∞, and assume that the following assertions

hold:

(a) au ([ϑ̂u, F̂u]
′ − [ϑu, Fu]

′) takes values only in Rd ×Dφ and satisfies

au

([
ϑ̂u

F̂u

]
−
[
ϑu

Fu

])
 
◦
[
B1

B2

]
(5.18)
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in (Rd × Dφ,B(Rd) ⊗ B◦φ,max{‖ · ‖, ‖ · ‖φ}) for some (Rd × Dφ,B(Rd) ⊗ B◦φ)-valued
random variable [B1, B2]

′ on some probability space (Ω0,F0,P0) with [B1, B2]
′(Ω0) ⊂

Rd × Cφ.

(b) au (G(ϑ̂u, F̂u)−G(ϑu, Fu)) takes values only in Ẽ and is (F , B̃◦)-measurable.

(c) G is uniformly quasi-Hadamard differentiable w.r.t. S tangentially to (Θ×Cφ)〈Θ×Dφ〉
with trace Ẽ and uniform quasi-Hadamard derivative ĠS .

Then ĠS(B1, B2) is (F0, B̃◦)-measurable and

au (G(ϑ̂u, F̂u)−G(ϑu, Fu)) 
◦ ĠS(B1, B2) in (Ẽ, B̃◦, ‖ · ‖

Ẽ
). (5.19)

The upper Theorem is a special case of Corollary 3.1 in [12] and does therefore not need to

be proved.

5.4.2 On the uniform quasi-Hadamard differentiability of the com-

pound distribution functional

In this section we are going to derive the uniform quasi-Hadamard derivative of the compound

distribution functional. For the case of the compound Poisson model, the corresponding

compound distribution functional was introduced in (5.2). However, in this section we are

going to differentiate the compound distribution functional w.r.t. a more general class of

distributions of count variables. The Poisson case will then be a special case.

Let F denote the set of all distribution functions on R. Let d ∈ N and Θ ⊂ Rd be an open

set. Write ‖ · ‖ for the euclidean metric on Rd. Let C : Θ× F → F be a mapping with

C(θ, F ) :=
∞∑

k=0

F ∗k pk(θ), (5.20)

where pk : Θ → R+ is a continuously differentiable map for every k ∈ N0, and

∑

k∈N0

pk(θ) = 1 for every θ ∈ Θ.

Note that in this case (pk(θ))k∈N0 specifies the distribution of an integer-valued random vari-

able in dependence on the parameter θ ∈ Θ. If specifically Θ = (0,∞) and pk(θ) = e−θ θk/k!

for every k ∈ N0 and θ ∈ (0,∞), we observe that C(θ, F ) as introduced in (5.20) is the

compound distribution function w.r.t. the Poisson distribution of formula (5.2). Moreover,

the setting of the individual model of Chapter 4 can be obtained by choosing pn = 1 and

pk = 0 for every k 6= n. Note that in this case the distribution of the count variable is not

dependent on a parameter.
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The following theorem states the uniform quasi-Hadamard derivative of C. To this end, for

every k ∈ N0, write ∇pk for the gradient of pk, that is

∇pk :=

[
∂pk
∂θ1

, . . . ,
∂pk
∂θd

]′
.

For any λ ≥ 0, let again φλ : R → [1,∞) be defined by φλ(x) := (1 + |x|)λ and let

Fφλ
:=
{
F ∈ F :

ˆ

φλ dF < ∞
}
. (5.21)

To be able to prove the assertion we will need two auxiliary results, which will be proved

first.

Theorem 5.4.2 Let λ > λ′ ≥ 0, θ ∈ (0,∞) and F ∈ Fφλ
. Assume that for every k ∈ N0,

pk is twofold differentiable and that
∑

k∈N k
(1+λ)∨2 pk(θ) < ∞ and assume that there exists

an r ∈ (0,∞) such that
∑

k∈N
k(1+λ)∨2 sup

θ′∈Br(θ)

‖∇pk(θ
′)‖ < ∞ and (5.22)

∑

k∈N
k(1+λ)∨2 sup

θ′∈Br(θ)

( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ′)
∣∣∣
2)1/2

< ∞, (5.23)

where Br(θ) denotes the open ball with radius r around θ. Then the map C : Θ×Fφλ
→ F is

uniformly quasi-Hadamard differentiable in (θ, F ) tangentially to (Θ × Dφλ
)〈Θ × Dφλ

〉 with

trace Dφλ′
. Moreover the uniform quasi-Hadamard derivative Ċ(θ,F ) : Rd × Dφλ

→ Dφλ′
is

given by

Ċ(θ,F )(w, v) := v ∗
∞∑

k=1

k F ∗(k−1) pk(θ) +
∞∑

k=0

F ∗k 〈w,∇pk(θ)〉, (5.24)

where

(
v ∗

∞∑

k=1

k F ∗(k−1) pk(θ)
)
(·) :=

ˆ

v( · − x) d
( ∞∑

k=1

k F ∗(k−1) pk(θ)
)
(x). (5.25)

Note that we had to restrict C to the set Θ × Fφλ
instead of Θ × F, to obtain Dφλ′

as the

trace. Furthermore, note that if we choose pn = 1 for some n ∈ N and pk = 0 for every

k 6= n, then the uniform quasi-Hadamard derivative Ċ(θ,F ) in Theorem 5.4.3 is nothing but

the uniform quasi-Hadamard derivative in the individual model with n clients as in (4.10).

Furthermore, note that if Θ := {θ} for some θ ∈ Rd, then the assertion of Theorem 5.4.2

boils down to the assertion of Proposition 4.3 in [12]. Theorem 5.4.3 therefore provides an

extension to the existing theory.

To be able to derive the uniform quasi-Hadamard derivate of C in the sense of Definition 4.2.1

and prove Theorem 5.4.2, we will write C as a composition of two auxiliary mappings. The use
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of this approach will become apparent later. To this end, let T := {1[0,∞)−F : F ∈ F} denote
the set of all (two-sided) tail functions associated with elements of F and let H : Θ×F → T
be a mapping, defined by

H(θ, F ) := 1[0,∞) −
∞∑

k=0

F ∗k pk(θ). (5.26)

In the following we will refer to H as the (two-sided) compound tail functional. Note that H

is not a tail functional in the classical sense, but coincides with the tail functional associated

with the compound distribution function on the nonnegative semiaxis and equals −C on the

negative semiaxis. This approach has been introduced in [53].

Furthermore, let Λ : T → F be a second mapping, defined by

Λ(T ) := 1[0,∞) − T. (5.27)

Note that Λ maps a (two-sided) tail function onto the corresponding distribution function.

Then we observe that

C = Λ ◦H. (5.28)

In the next steps we will determine the uniform quasi-Hadamard derivatives of both H and

Λ. To obtain the uniform quasi-Hadamard derivative of C we will apply the chain rule for

uniform quasi-Hadamard differentiable maps in the form of Lemma A.5 in [12]. Theorem

5.4.3 will state the uniform quasi-Hadamard derivative of H.

Then we stress the fact again, that for every F ∈ F and θ ∈ Θ, we have H(θ, F ) ∈ T , because

H is the tail function associated with the random convolution of F w.r.t. the random measure

characterized by (pk(θ))k∈N0 .

Lemma 5.4.3 Let λ > λ′ ≥ 0, θ ∈ (0,∞) and F ∈ Fφλ
. Assume that for every k ∈ N0, pk

is twofold differentiable and that
∑

k∈N k
(1+λ)∨2 pk(θ) < ∞ and assume that there exists an

r ∈ (0,∞) such that

∑

k∈N
k(1+λ)∨2 sup

θ′∈Br(θ)

‖∇pk(θ
′)‖ < ∞ and (5.29)

∑

k∈N
k(1+λ)∨2 sup

θ′∈Br(θ)

( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ′)
∣∣∣
2)1/2

< ∞, (5.30)

where Br(θ) denotes the open ball with radius r around θ. Then the map H : Θ× Fφλ
→ T

is uniformly quasi-Hadamard differentiable at (θ, F ) tangentially to (Θ×Cφλ
)〈Θ×Dφλ

〉 with
trace Dφλ′

. Moreover the uniform quasi-Hadamard derivative Ḣ(θ,F ) : R
d × Cφλ

→ Dφλ′
is

given by

Ḣ(θ,F )(w, v) := −v ∗
∞∑

k=1

k F ∗(k−1) pk(θ) +
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉. (5.31)
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Proof First we note that for θ1, θ2 ∈ Θ and F1, F2 ∈ Fφλ
we have

‖H(θ1, F1)−H(θ2, F2)‖φλ′
≤ ‖H(θ1, F1)‖φλ′

+ ‖H(θ2, F2)‖φλ′

≤
ˆ

φλ′(x) d
( ∞∑

k=0

F ∗k1 pk(θ1)
)
(x)

+

ˆ

φλ′(x) d
( ∞∑

k=0

F ∗k2 pk(θ2)
)
(x), (5.32)

by Equation (2.1) in [52]. According to Lemma 2.2 in [52] we can conclude that both integrals

on the right-hand side of (5.32) are finite under the assumptions of the lemma. Hence, the

set Dφλ′
can be seen as the trace.

Second, we have to show that Ḣ(θ,F ) is (max{‖ · ‖, ‖ · ‖φλ
}, ‖ · ‖φλ′

)-continuous and that

lim
u→∞

∥∥∥∥
H(θu + εuwu, Fu + εu vu)−H(θu, Fu)

εu
− Ḣ(θ,F )(w, v)

∥∥∥∥
φλ′

= 0 (5.33)

holds for every quadrupel ((θu, Fu), (w, v), (wu, vu), (εu)), with (θu, Fu) ∈ Θ× Fφλ
satisfying

max{‖θu−θ‖, ‖Fu−F‖φλ
} → 0, (w, v) ∈ Θ×Dφλ

, (wu, vu) ⊂ Θ×Dφλ
, satisfying max{‖wu−

w‖, ‖vu − v‖φλ
} → 0 and (θu + εuwu, Fu + εu vu) ⊂ Θ × Fφλ

, and (εu) ⊂ (0,∞) satisfying

εu → 0.

Note that for every u ∈ N we have

H(θu + εuwu, Fu + εu vu)−H(θu, Fu)

εu

=
1

εu

∞∑

k=0

(1[0,∞) − (Fu + εuvu)
∗k) pk(θu + εuwu)−

1

εu

∞∑

k=0

(1[0,∞) − F ∗ku ) pk(θu)

=
1

εu

∞∑

k=0

(F ∗ku − (Fu + εuvu)
∗k) pk(θu) +

∞∑

k=0

(F ∗ku − (Fu + εuvu)
∗k)

pk(θu + εuwu)− pk(θu)

εu

+
∞∑

k=0

(1[0,∞) − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu
. (5.34)

Hence∥∥∥∥
H(θu + εuwu, Fu + εu vu)−H(θu, Fu)

εu
− Ḣ(θ,F )(w, v)

∥∥∥∥
φλ′

≤
∥∥∥∥∥
1

εu

∞∑

k=0

(F ∗ku − (Fu + εuvu)
∗k) pk(θu)−

(
− v ∗

∞∑

k=1

k F ∗(k−1) pk(θ)
)∥∥∥∥∥

φλ′

+

∥∥∥∥∥
∞∑

k=0

1

εu
(F ∗ku − (Fu + εuvu)

∗k) (pk(θu + εuwu)− pk(θu))

∥∥∥∥∥
φλ′

+

∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu
−
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉
∥∥∥∥∥
φλ′

=: S1(u) + S2(u) + S3(u). (5.35)
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In the following we will show, that S1(u)–S3(u) converge to zero for u → ∞. For the

convergence of S1(u) we observe that
∥∥∥∥∥
1

εu

∞∑

k=0

(F ∗ku − (Fu + εuvu)
∗k) pk(θu) + v ∗

∞∑

k=1

k F ∗(k−1) pk(θ)

∥∥∥∥∥
φλ′

≤
∥∥∥∥∥
1

εu

∞∑

k=0

((Fu + εuvu)
∗k − F ∗ku ) pk(θ)− v ∗

∞∑

k=1

k F ∗(k−1) pk(θ)

∥∥∥∥∥
φλ′

+

∥∥∥∥∥
∞∑

k=0

1

εu
(F ∗ku − (Fu + εuvu)

∗k) (pk(θu)− pk(θ))

∥∥∥∥∥
φλ′

. (5.36)

Now the first summand on the right-hand side of (5.36) converges to 0 by Proposition 4.3

in [12]. For the convergence of the second summand on the right-hand side of (5.36), let for

every k ∈ N0 Hk : F× F → F be a map defined by

Hk(G1, G2) :=
k−1∑

j=0

G
∗(k−1−j)
1 ∗G∗j2 , (5.37)

with the usual convention that the sum over the empty set equals zero. Then simple algebra

yields

(G1 −G2) ∗Hk(G1, G2) = G∗k1 −G∗k2 (5.38)

for every G1, G2 ∈ F and every k ∈ N0. Thus, we conclude that
∥∥∥∥∥
∞∑

k=0

1

εu
(F ∗ku − (Fu + εuvu)

∗k) (pk(θu)− pk(θ))

∥∥∥∥∥
φλ′

=

∥∥∥∥∥
∞∑

k=0

1

εu
(Fu + εuvu − Fu) ∗Hk(Fu + εuvu, Fu) (pk(θu)− pk(θ))

∥∥∥∥∥
φλ′

=

∥∥∥∥∥
∞∑

k=0

vu ∗Hk(Fu + εuvu, Fu) (pk(θu)− pk(θ))

∥∥∥∥∥
φλ′

≤ ‖vu‖φλ′

∞∑

k=0

|pk(θu)− pk(θ)| 2λ
′
k
(
1 + 2λ

′
(2λ

′ ∨ 1)(2 + (k − 1)λ
′∨1C1)

)
, (5.39)

for some C1 > 0. The last inequality in a consequence of part (ii) of Lemma 4.5 in [12]. The

lemma can be applied because ‖Fu + εuvu − F‖φλ
→ 0, by

‖Fu + εuvu − F‖φλ
≤ ‖Fu + εuvu − Fu‖φλ

+ ‖Fu − F‖φλ

= εu ‖vu‖φλ
+ ‖Fu − F‖φλ

. (5.40)

Now we assumed that ‖Fu − F‖φλ
→ 0 and εu → 0 for u → ∞. Since ‖vu − v‖φλ

→ 0, we

observe that ‖vu‖φλ
is finite for every u ∈ N. Thus, we conclude that ‖Fu + εuvu − F‖φλ
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indeed converges to zero and Lemma 4.5 in [12] is applicable. By λ′ < λ and ‖vu−v‖φλ
→ 0,

we observe that ‖vu − v‖φλ′
→ 0, such that ‖vu‖φλ′

is also finite. Using the finiteness of

‖vu‖φλ′
, it suffices to show that the sum on the right-hand side of (5.39) converges to zero.

Applying the Mean Value theorem to |pk(θu) − pk(θ)|, ones finds that there exists some

hk,u ∈ (0, 1), such that

|pk(θu)− pk(θ)| = |〈θu − θ,∇pk(θ − hk,u(θu − θ))〉|
≤ ‖θu − θ‖ ‖∇pk(θ − hk,u(θu − θ))‖ (5.41)

for every k ∈ N0. Hence

∞∑

k=0

|pk(θu)− pk(θ)| 2λ
′
k
(
1 + 2λ

′
(2λ

′ ∨ 1)(2 + (k − 1)λ
′∨1C1)

)

≤ ‖θu − θ‖
∞∑

k=0

‖∇pk(θ − hk,u(θu − θ))‖ 2λ′
k
(
1 + 2λ

′
(2λ

′ ∨ 1)(2 + (k − 1)λ
′∨1C1)

)
, (5.42)

where the sum converges for every u ∈ N sufficiently large, such that θ−hk,u(θu−θ) ∈ Br(θ)

for every k ∈ N0. The latter is due to the assumption (5.29). Thus, S1(u) converges to zero.

Next, we consider the second summand on the right-hand side of (5.35). Using the same

arguments as in (5.39), we arrive at
∥∥∥∥∥
∞∑

k=0

1

εu
(F ∗ku − (Fu + εuvu)

∗k) (pk(θu + εuwu)− pk(θu))

∥∥∥∥∥
φλ′

≤ ‖vu‖φλ′

∞∑

k=0

|pk(θu + εuwu)− pk(θu)| 2λ
′
(
1 + 2λ

′
(2λ

′ ∨ 1)(2 + (k − 2)λ
′∨1C1)

)
. (5.43)

By

‖θu + εuwu − θu‖ ≤ εu ‖w‖ + εu‖wu − w‖ (5.44)

we conclude that ‖θu+ εuwu− θu‖ → 0 as u → ∞. Thus, the convergence of the sum on the

right-hand side of (5.43) follows again by an application of the Mean Value theorem. Thus,

S2(u) converges to zero.

It remains to be shown that

lim
u→∞

∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu
−
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉
∥∥∥∥∥
φλ′

= 0,

(5.45)

First, we observe that
∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu
−
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉
∥∥∥∥∥
φλ′
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≤
∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗k)
pk(θu + εuwu)− pk(θu)

εu
−
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉
∥∥∥∥∥
φλ′

+

∥∥∥∥∥
∞∑

k=0

(F ∗k − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu

∥∥∥∥∥
φλ′

=

∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗k)

(
pk(θu + εuwu)− pk(θu)

εu
− 〈w,∇pk(θ)〉

)∥∥∥∥∥
φλ′

+

∥∥∥∥∥
∞∑

k=0

(F ∗k − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu

∥∥∥∥∥
φλ′

. (5.46)

For the first summand on the right-hand side of (5.46) we observe that
∥∥∥∥∥
∞∑

k=0

(1[0,∞) − F ∗k)

(
pk(θu + εuwu)− pk(θu)

εu
− 〈w,∇pk(θ)〉

)∥∥∥∥∥
φλ′

≤
∞∑

k=0

∥∥
1[0,∞) − F ∗k

∥∥
φλ′

∣∣∣∣
pk(θu + εuwu)− pk(θu)

εu
− 〈w,∇pk(θ)〉

∣∣∣∣ . (5.47)

According to Equation (2.4) of [52], we have

∥∥
1[0,∞) − F ∗k

∥∥
φλ′

≤ (2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)
(5.48)

for every k ∈ N0. Thus, ‖1[0,∞) − F ∗k‖φλ′
is bounded above. By the Mean Value Theorem,

we furthermore conclude that for every k ∈ N0 and every u ∈ N sufficiently large, there

exists some h′k,u ∈ (0, 1), such that

∣∣∣∣
pk(θu + εuwu)− pk(θu)

εu
− 〈w,∇pk(θ)〉

∣∣∣∣

=

∣∣∣∣
1

εu
〈θu + εuwu − θu,∇pk(θu + h′k,u (θu + εuwu − θu))〉 − 〈w,∇pk(θ)〉

∣∣∣∣
=

∣∣〈wu,∇pk(θu + h′k,u εuwu)〉 − 〈w,∇pk(θ)〉
∣∣

≤
∣∣〈wu − w,∇pk(θu + h′k,u εuwu)〉

∣∣ +
∣∣〈w,∇pk(θu + h′k,u εuwu)−∇pk(θ)〉

∣∣
≤ ‖wu − w‖ ‖∇pk(θu + hk εuwu)‖ + ‖w‖ ‖∇pk(θu + h′k,u εuwu)−∇pk(θ)‖, (5.49)

where the last inequality holds true due to the Cauchy-Schwarz inequality. Note that we

have to choose u ∈ N sufficiently large to be able to apply the Mean Value Theorem. In

particular, we have to make sure, that {θu + t εuwu : t ∈ [0, 1]} ⊂ Θ, which is always

possible with our choices of θu, wu and εu, because Θ ⊂ Rd was assumed to be open. Now

we observe that

‖wu − w‖
∞∑

k=0

(2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)
‖∇pk(θu + hk εuwu)‖ (5.50)
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converges to zero for u → ∞ because ‖wu − w‖ → 0 and the sum in (5.50) is finite due to

assumption (5.29). Second, we can apply the Mean Value theorem to ‖∇pk(θu+h′k,u εuwu)−
∇pk(θ)‖ to conclude that

‖∇pk(θu + h′k,u εuwu)−∇pk(θ)‖

=
( d∑

i=1

∣∣∣∂pk
∂θi

(θu + h′k,u εuwu)−
∂pk
∂θi

(θ)
∣∣∣
2)1/2

=
( d∑

i=1

∣∣∣〈θ − θu − h′k,u εuwu,∇
∂pk
∂θi

(θ + hk,u,i(θu + h′k,u εuwu))〉
∣∣∣
2)1/2

≤
( d∑

i=1

‖θ − θu − h′k,u εuwu‖2
∥∥∥∇∂pk

∂θi
(θ + hk,u,i(θu + h′k,u εuwu))

∥∥∥
2)1/2

= ‖θ − θu − h′k,u εuwu‖
( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ + hk,u,i(θu + h′k,u εuwu))
∣∣∣
2)1/2

≤ (‖θ − θu‖+ h′k,u εu‖wu‖)
( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ + hk,u,i(θu + h′k,u εuwu))
∣∣∣
2)1/2

. (5.51)

Now let u ∈ N be sufficiently large, such that θ + hk,u,i(θu + h′k,u εuwu) ∈ Br(θ). Then we

observe that

‖θ− θu‖
∞∑

k=0

(2λ
′−1∨ 1)

(
1+ kλ′∨1

ˆ

|x|λ′
dF (x)

)( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ+hk,u,i(θu+h′k,uεuwu))
∣∣∣
2)1/2

(5.52)

converges to zero as u → ∞, because ‖θ − θu‖ → 0 and the sum is finite due to assumption

(5.30). Following the same line of reasoning, we conclude that

εu‖wu‖
∞∑

k=0

h′k,u(2
λ′−1∨1)

(
1+kλ′∨1

ˆ

|x|λ′
dF (x)

)( d∑

i,j=1

∣∣∣ ∂2pk
∂θi∂θj

(θ+hk,u,i(θu+h′k,uεuwu))
∣∣∣
2)1/2

(5.53)

converges to zero. Hence, the right-hand side of (5.47) converges to zero.

For the second summand, we can use (5.38) again, to obtain
∥∥∥∥∥
∞∑

k=0

(F ∗k − F ∗ku )
pk(θu + εuwu)− pk(θu)

εu

∥∥∥∥∥
φλ′

≤
∞∑

k=0

‖(F − Fu) ∗Hk(F, Fu)‖φλ′

∣∣∣∣
pk(θu + εuwu)− pk(θu)

εu

∣∣∣∣

=
∞∑

k=0

‖(F − Fu) ∗Hk(F, Fu)‖φλ′

∣∣〈wu,∇pk(θu + h′k,u εuwu)〉
∣∣

≤ ‖wu‖
∞∑

k=0

‖(F − Fu) ∗Hk(F, Fu)‖φλ′

∥∥∥∇pk(θu + h′k,u εuwu)
∥∥∥, (5.54)
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for some h′k,u ∈ (0, 1), where we applied the Mean Value theorem to the difference quotient,

similar to the approach in (5.49). Now we can apply part (ii) of Lemma 4.5 in [12] to obtain

‖(F − Fu) ∗Hk(F, Fu)‖φλ′
≤ ‖Fu − F‖φλ′

2λ
′
k (1 + 2λ

′
(2λ

′−1 ∨ 1)(2 + (k − 1)λ
′∨1C2))

for every k ∈ N0. By λ > λ′ and ‖Fu−F‖φλ
→ 0, we can conclude that ‖Fu−F‖φλ′

→ 0 for

u → ∞. Now assume again, that u ∈ N is sufficiently large, such that θu+h′k,u εuwu ∈ Br(θ).

In this case the sum on the right-hand side of (5.54) is finite due to assumption (5.29). Hence,

the right-hand side of (5.54) converges to zero. Note that the calculations in (5.49)–(5.53)

also show that

lim
u→∞

∣∣∣∣∣
∞∑

k=0

pk(θu + εuwu)− pk(θu)

εu
−
∞∑

k=0

〈w,∇pk(θ)〉
∣∣∣∣∣ = 0,

under the assumptions of the lemma. Furthermore, we observe that

∞∑

k=0

1[0,∞)
pk(θu + εuwu)− pk(θu)

εu
=

1

εu
1[0,∞)

( ∞∑

k=0

pk(θu + εuwu)−
∞∑

k=0

pk(θu)
)

= 0, (5.55)

for every u ∈ N, because (θu), (θu + εuwu) ⊂ Θ and we assumed that
∑∞

k=0 pk(θ) = 1 for

every θ ∈ Θ. Hence, one finds that

∞∑

k=0

1[0,∞) 〈w,∇pk(θ)〉 = 0

for every w ∈ Θ, such that the expression in (5.31) is equivalent to

Ḣ(θ,F )(w, v) := −v ∗
∞∑

k=1

k F ∗(k−1) pk(θ) −
∞∑

k=0

F ∗k 〈w,∇pk(θ)〉. (5.56)

What remains to be shown is the (max{‖ · ‖, ‖ · ‖φλ
}, ‖ · ‖φλ′

)-continuity of Ḣ(θ,F ). To this

aim, let (w, v) ∈ Rd×Dφλ
and (wu, vu) such that max{‖wu−w‖, ‖vu− v‖φλ

} → 0. Then we

have
∥∥∥Ḣ(θ,F )(wu, vu)− Ḣ(θ,F )(w, v)

∥∥∥
φλ′

=
∥∥∥−

(
vu ∗

∞∑

k=1

k F ∗(k−1) pk(θ) − v ∗
∞∑

k=1

k F ∗(k−1) pk(θ)
)

+
∞∑

k=0

(1[0,∞) − F ∗k) 〈wu,∇pk(θ)〉 −
∞∑

k=0

(1[0,∞) − F ∗k) 〈w,∇pk(θ)〉
∥∥∥
φλ′

≤
∞∑

k=1

‖(vu − v) ∗ F ∗(k−1)‖φλ′
k pk(θ) +

∞∑

k=0

‖1[0,∞) − F ∗k‖φλ′
|〈wu − w,∇pk(θ)〉|. (5.57)
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Now for every k ∈ N we can apply Lemma 2.3 and Equation (2.4) in [52], yielding

‖(vu − v) ∗ F ∗(k−1)‖φλ′

≤ 2λ
′ ‖vu − v‖φλ′

(
‖1[0,∞) ‖F ∗(k−1)‖∞ − F ∗(k−1)‖φλ′

+ ‖F ∗(k−1)‖∞
)

= 2λ
′ ‖vu − v‖φλ′

(
‖1[0,∞) − F ∗(k−1)‖φλ′

+ 1
)

≤ 2λ
′ ‖vu − v‖φλ′

(
(2λ

′−1 ∨ 1)

(
1 + (k − 1)λ

′∨1
ˆ

|x|λ′
dF (x)

)
+ 1

)
. (5.58)

Hence, the first sum on the right-hand side of (5.57) can be bounded as follows

∞∑

k=1

‖(vu − v) ∗ F ∗(k−1)‖φλ′
k pk(θ)

≤ 2λ
′ ‖vu − v‖φλ′

∞∑

k=1

k pk(θ)

(
(2λ

′−1 ∨ 1)

(
1 + (k − 1)λ

′∨1
ˆ

|x|λ′
dF (x)

)
+ 1

)
. (5.59)

Now the sum converges due to the assumption
∑

k∈N k
(1+λ)∨2 pk(θ) < ∞, such that the series

converges to zero as ‖vu − v‖φλ′
→ 0, which is implied by ‖vu − v‖φλ

→ 0. For the second

sum on the right-hand side of (5.57) we can use part (i) of Lemma 4.5 in [12] together with

the Cauchy-Schwarz inequality to obtain

‖1[0,∞) − F ∗k‖φλ′
|〈wu − w,∇pk(θ)〉| ≤ ‖wu − w‖ ‖∇pk(θ)‖

(
2λ

′−1 ∨ 1
)(

1 + kλ′∨1C2

)

for every k ∈ N0. Hence

∞∑

k=0

‖1[0,∞) − F ∗k‖φλ′
|〈wu − w,∇pk(θ)〉|

≤ ‖wu − w‖
∞∑

k=1

‖∇pk(θ)‖
(
2λ

′−1 ∨ 1
)(

1 + kλ′∨1C2

)
, (5.60)

where we observe that the series on the right-hand side of (5.60) converges due to the

assumption
∑∞

k=1 ‖∇pk(θ)‖kλ′∨1 < ∞, which is an immediate consequence of assumption

(5.29). That is, the second sum on the right-hand side of (5.57) converges to zero as ‖wu −
w‖ → 0, such that ∥∥∥Ḣ(θ,F )(wu, vu)− Ḣ(θ,F )(w, v)

∥∥∥
φλ′

−→ 0, (5.61)

as max{‖wu − w‖, ‖vu − v‖φλ
} → 0. This completes the proof. ✷

Note that we had to consider the tail functional associated with the compound distribution

function instead of the distribution function itself, to guarantee the finiteness w.r.t. ‖ · ‖φλ′

of the third summand on the right-hand side of (5.34).

To be able to derive the uniform quasi-Hadamard derivative of the compound distribution

functional, we will now determine the uniform quasi-Hadamard derivate of Λ. The proof
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of Theorem 5.4.2 will then be a direct consequence of the chain rule for uniformly quasi-

Hadamard differentiable functionals in the form of Lemma A.5 in [12]. The following lemma

will be concerned with the uniform quasi-Hadamard derivative of the map Λ. To this end,

let for any λ ≥ 0

Tφλ
:=
{
1[0,∞) − F ; F ∈ Fφλ

}
.

Then Tφλ
is nothing but the set of all (two-sided) tail functions associated with distribution

functions in Fφλ
.

Lemma 5.4.4 Let λ′ ≥ 0 and T ∈ Tφλ′
. The map Λ : Tφλ′

→ F is uniformly quasi-Hadamard

differentiable at T tangentially to Cφλ′
〈Dφλ′

〉 with trace Dφλ′
. Moreover, the uniform quasi-

Hadamard derivative Λ̇T : Dφλ′
→ Dφλ′

is given by

Λ̇T (v) := −v.

Proof First we observe that for every T1, T2 ∈ Tφλ′
we have

‖Λ(T1)− Λ(T2)‖φλ′
= ‖T2 − T1‖φλ′

≤ ‖T1‖φλ′
+ ‖T2‖φλ′

≤
ˆ

(1 + |x|)λ′
dF1(x) +

ˆ

(1 + |x|)λ′
dF2(x), (5.62)

where for every i = 1, 2 we denoted by Fi = 1[0,∞) − Ti the corresponding distribution

function. The last inequality is due to Equation (2.1) in [52]. According to Lemma 2.2 in

[52] we can conclude that both integrals on the right-hand side of (5.62) are finite under the

assumptions of the theorem. Thus, Dφλ′
can be seen as the trace.

We will now show, that Λ̇T is indeed the uniform quasi-Hadamard derivative of Λ. What

remains to be shown is that

lim
u→∞

∥∥∥∥
Λ(Tu + εuvu)− Λ(Tu)

εu
+ v

∥∥∥∥
φλ′

= 0, (5.63)

holds for every quadrupel ((Tu), v, (vu), (εu)) with (Tu) ⊂ Tφλ′
, satisfying ‖Tu − T‖φλ′

→ 0,

v ∈ Dφλ′
, (vu) ⊂ Dφλ′

, ‖vu − v‖φλ′
→ 0, (Tu + εuvu) ⊂ Tφλ′

, and (εu) ⊂ (0,∞), with εu → 0.

Indeed, we observe that for every u ∈ N, we have
∥∥∥∥
Λ(Tu + εuvu)− Λ(Tu)

εu
+ v

∥∥∥∥
φλ′

=

∥∥∥∥
1[0,∞) − (Tu + εuvu)− (1[0,∞) − Tu)

εu
+ v

∥∥∥∥
φλ′

= ‖v − vu‖φλ′
. (5.64)

Hence, the assertion in (5.63) holds true, because we assumed that ‖v − vu‖φλ′
→ 0. More-

over, by the representation −Λ̇T = idDφλ′
, we can easily conclude on the (‖ · ‖φλ′

, ‖ · ‖φλ′
)-

continuity of the uniform quasi-Hadamard derivative. This completes the proof. ✷

We are now in a position to prove Theorem 5.4.2.
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Proof of Theorem 5.4.2 Our goal is to apply the chain rule for uniform quasi-Hadamard

differentiable functionals in the form of Lemma A.5 in [12] to the mappings H : Θ×Fφλ
→ T

and H̃ := Λ : Tφλ′
→ F. By Lemma 2.2 in [52] we observe that H(Θ × Fφλ

) ⊂ Tφλ′
, such

that the composition Λ ◦H is well defined on Θ× Fφλ
.

Now Lemmas 5.4.3 and 5.4.4 imply that the assumptions of Lemma A.5 in [12] are fulfilled.

With the help of the latter lemma we can now conclude that C = Λ ◦ H : Θ × Fφλ
→ F is

uniformly quasi-Hadamard differentiable in (θ, F ) tangentially to (Θ× Cφλ
)〈Θ×Dφλ

〉 with
trace Dφλ′

and the uniform quasi-Hadamard derivative Ċ(θ,F ) : R
d ×Dφλ

→ Dφλ′
is given by

Ċ(θ,F ) = Λ̇H(θ,F ) ◦ Ḣ(θ,F ).

This yields the claim and completes the proof. ✷

5.4.3 On the asymptotic distribution of the estimated compound

distribution function

In this section we are going to determine the asymptotic error distribution of the sequence of

plug-in estimators (C(θ̂u, F̂u)). The central tool to be used to prove the assertion will be the

uniform delta-method of Theorem 5.4.1. More explicitly, we aim to derive the asymptotic

error distribution of (C(θ̂u, F̂u)) from the asymptotic error distributions of the sequences of

underlying estimators (θ̂u) and (F̂u) by an application of the delta-method. We therefore

have to check that all assumptions of the theorems are fulfilled.

In the following the roles of ϑu, ϑ̂u, Fu and F̂u in the sense of Theorem 5.4.1 will be played

by θ, θ̂u, F and F̂u. Here θ̂u and F̂u are as in (5.6) and (5.7), respectively. Moreover, the

roles of (au), G, B1 and B2 will be played by (
√
u), C, ξ and BF , respectively. Here ξ and

BF are as in Theorem 5.2.1.

The following lemma will show measurability of the estimators. In particular, Lemma 5.4.5

will show, that part (a) of Theorem 5.4.1 is fulfilled.

Lemma 5.4.5 Let θ̂u and F̂u be as in (5.6) and (5.7), respectively, and let F ∈ Fφλ
and

θ ∈ (0,∞). For every u ∈ N

√
u

([
θ̂u
F̂u

]
−
[

θ

F

])
(5.65)

takes values only in R × Dφλ
and is (F ,B(R) ⊗ Dφλ

)-measurable. That is, the first part of

condition (a) in Theorem 5.4.1 holds true.

Proof Let u ∈ N and let Ψu : Ω× R → R2 be defined by

Ψu(ω; t) :=
√
u

[
θ̂u(ω)− θ

F̂u(ω; t)− F (t)

]
.
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Now for every t ∈ R, the mapping ω 7→ Ψu(ω; t) is (F ,B(R2))-measurable. Moreover

for every ω ∈ Ω the mapping t 7→ Ψu(ω; t) is right-continuous, such that the mapping

ω 7→ Ψu(ω; ·) from Ω to D is (F ,B(R) ⊗ D)-measurable and takes values only in R × Dφλ
.

Thus, the quantity in (5.65) can be seen as a (F ,B(R) ⊗ Dφλ
)-measurable mapping. This

leads to the assertion. ✷

The following theorem will now prove that the second part of part (a) of Theorem 5.4.1 is

fulfilled.

Theorem 5.4.6 Let (Ni) be a sequence of Poissθ-distributed random variables on a probabil-

ity space (Ω,F ,P) for some θ ∈ (0,∞), and let (Yi) be a sequence of i.i.d. random variables

on the same probability space with distribution function F , satisfying
´

φ2
λ dF < ∞ and being

independent of (Ni). Let N(u) :=
∑u

i=1 Ni. Moreover, let ξ be a N0,θ-distributed random

variable and BF be a F -Brownian bridge, as in (4.9), being independent of ξ.

Let θ̂u and F̂u be as in (5.6) and (5.7), respectively. Then we have

√
u

([
θ̂u
F̂u

]
−
[

θ

F

])
d−→
[

ξ
1√
θ
BF

]
, (5.66)

in (R×Dφλ
,B(R)⊗Dφλ

,max{| · |, ‖ · ‖φλ
}).

Proof To proof the assertion, we will first show that two auxiliary statements hold true.

More explicitly, we will show that

√
u

[
1
u
N(u)− θ

1
uθ

∑⌈uθ⌉
i=1 (1[Yi,∞) − F )

]
d−→
[

ξ
1√
θ
BF

]
(5.67)

in (R×Dφλ
,B(R)⊗Dφλ

,max{| · |, ‖ · ‖φλ
}) and

√
u

N(u)

N(u)∑

i=1

(1[Yi,∞) − F )− 1√
uθ

⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
p−→ 0 (5.68)

w.r.t. P in (Dφλ
,Dφλ

, ‖ · ‖φλ
). By

√
u

[
1
u
N(u)− θ

1
N(u)

∑N(u)
i=1 1[Yi,∞) − F

]
=

√
u

[
1
u
N(u)− θ

1
uθ

∑⌈uθ⌉
i=1 (1[Yi,∞) − F )

]

+
√
u

[
0

1
N(u)

∑N(u)
i=1 (1[Yi,∞) − F )− 1

uθ

∑⌈uθ⌉
i=1 (1[Yi,∞) − F )

]

the claim would follow by an application of Slutskys Lemma. To show that (5.67) holds

true, we observe that we have

√
u

(
1

u
N(u)− θ

)
d−→ ξ, in (R,B(R))
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by the ordinary Central Limit Theorem, where we keep in mind that N(u) =
∑u

i=1 Ni holds.

With the help of Donskers’ invariance principle, we conclude that

1√
uθ

⌈uθ⌉∑

i=1

(1[Yi,∞)−F ) =
1√
θ

√
⌈uθ⌉
uθ

√
⌈uθ⌉(F̂⌈uθ⌉−F )

d−→ 1√
θ
BF , in (Dφλ

,Dφλ
, ‖ · ‖φλ

).

The latter is a direct consequence of Theorem 6.2.1 in [58] along with Slutskys Lemma and

the fact that ⌈uθ⌉/(uθ) converges to 1. For (5.68), we can see that

√
u

N(u)

N(u)∑

i=1

(1[Yi,∞) − F )− 1√
uθ

⌈uθ⌉∑

i=1

(1[Yi,∞) − F )

=

(
uθ

N(u)
− 1

)
1√
uθ

⌈uθ⌉∑

i=1

(1[Yi,∞) − F ) +

∑N(u)
i=1 (1[Yi,∞) − F )−∑⌈uθ⌉i=1 (1[Yi,∞) − F )√

uθ

+

(
uθ

N(u)
− 1

)(∑N(u)
i=1 (1[Yi,∞) − F )−∑⌈uθ⌉i=1 (1[Yi,∞) − F )√

uθ

)

=: S1(u) + S2(u) + S3(u). (5.69)

Hence, it suffices to prove that S1(u), S2(u) and S3(u) converge to zero in probability in

(Dφλ
,Dφλ

, ‖ · ‖φλ
). The assertion in (5.68) would then follow by an application of Slutskys

Lemma again. Here we stress the fact, that we can indeed use Slutskys Lemma to conclude on

the convergence in probability, because convergence in probability to a constant is equivalent

to the convergence in distribution to this constant.

Step 1 : By the ordinary strong law of large numbers, we conclude that uθ/N(u) converges

to 1 P-a.s. Furthermore, Theorem 6.2.1 in [58] yields the convergence in distribution of
1√
uθ

∑⌈uθ⌉
i=1 (1[Yi,∞) − F ) to θ−1/2 BF in (Dφλ

,Dφλ
, ‖ · ‖φλ

), such that S1(u) converges to zero

in probability w.r.t. P.

Step 2 : We have to show, that

lim
u→∞

P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ
}]

= 0, (5.70)

for every δ > 0. To this end, let α ∈ (0, 1/2) and δ > 0. Then we conclude that

P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ
}]

= P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ,
∣∣∣N(u)

u
− θ
∣∣∣ ≥ 1

uα

}]

+P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ,
∣∣∣N(u)

u
− θ
∣∣∣ < 1

uα

}]
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≤ P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ,
∣∣∣N(u)

u
− θ
∣∣∣ < 1

uα

}]

+P

[{∣∣∣N(u)

u
− θ
∣∣∣ ≥ 1

uα

}]

=: S2,1(u, δ, α) + S2,2(u, δ, α). (5.71)

Using Proposition 3.2.10 again, together with

P

[{∣∣∣N(u)

u
− θ
∣∣∣ ≥ 1

uα

}]
= P

[{
uα
∣∣∣N(u)

u
− θ
∣∣∣ ≥ 1

}]

we observe that S2,2(u, δ, α) converges to zero for every α ∈ (0, 1/2) and δ > 0. For the

convergence of S1,2(u, δ, α) we conclude that

P

[{∥∥∥ 1√
uθ

(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

> δ,
∣∣∣N(u)

u
− θ
∣∣∣ < 1

uα

}]

= P

[{∥∥∥
(N(u)∑

i=1

(1[Yi,∞) − F )−
⌈uθ⌉∑

i=1

(1[Yi,∞) − F )
)∥∥∥

φλ

>
√
uθδ,

∣∣∣N(u)

u
− θ
∣∣∣ < 1

uα

}]

≤ P

[{∥∥∥
u1−α∑

i=1

(1[Yi,∞) − F )
∥∥∥
φλ

>
√
uθδ

}]

= P

[{
u1/2−α

∥∥∥ 1

u1−α

u1−α∑

i=1

(1[Yi,∞) − F )
∥∥∥
φλ

> θδ
}]

= P

[{
u1/2−α

∥∥∥ 1

u1−α

u1−α∑

i=1

1[Yi,∞) − F
∥∥∥
φλ

> θδ
}]

. (5.72)

Letting m = u1−α, the right-hand side of (5.72) is nothing but

P

[{
m

1−2α
2(1−α)

∥∥∥ 1

m

m∑

i=1

1[Yi,∞) − F
∥∥∥
φλ

> θδ
}]

. (5.73)

By α ∈ (0, 1/2) we conclude that 1−2α
2(1−α) ∈ (0, 1/2). Hence, the right-hand side of (5.73)

converges to zero as m → ∞ for every δ > 0 by Theorem 2.1 in [65]. This shows (5.70).

Step 3 : By the Marcinkiewicz-Zygmund SLLN of Proposition 3.2.10, we deduce that

uθ/N(u)− 1 converges to zero P-a.s. Now, following the same line of reasoning as in Step 2

the fraction in S3(u) converges to zero in probability w.r.t. P in (Dφλ
,Dφλ

, ‖ · ‖φλ
). Hence,

the assertion follows by an application of Slutskys Lemma again. ✷

Lemma 5.4.5 and Theorem 5.4.6 have shown that condition (a) of the uniform delta-method

of Theorem 5.4.1 is fulfilled under the particular assumptions. Moreover the examinations

subsequent to (5.32) have shown that

√
u(C(θ̂u.F̂u)− C(θ, F )) = −√

u(H(θ̂u.F̂u)−H(θ, F ))
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takes values only in Dφλ′
. That is, the second part of condition (b) in 5.4.1 is also satisfied.

Furthermore, Theorem 5.4.2 has shown the uniform quasi-Hadamard differentiability of the

compound distribution function C at (θ, F ) tangentially to (Θ×Dφλ
)〈Θ×Dφλ

〉. However, to
be able to apply the results on the differentiability of the compound distribution functional

C, we have to check that the assumptions of Theorem 5.4.2 are fulfilled in the setting of the

compound Poisson model. More explicitly, we have to guarantee that
∑

k∈N k
1+λ pk(θ) < ∞

and that there exists some r ∈ (0,∞), such that the following two assertions hold true for

λ > 0:

∑

k∈N
k(1+λ)∨2 sup

θ̃∈(θ−r,θ+r)

|p′k(θ̃)| < ∞, (5.74)

∑

k∈N
k(1+λ)∨2 sup

θ̃∈(θ−r,θ+r)

|p′′k(θ̃)| < ∞. (5.75)

The convergence of the first series is due to the fact that the Poisson distribution possesses all

moments. For the convergence in (5.74), let r ∈ (0, θ). Then we observe that (θ− r, θ+ r) ⊂
(0,∞)(= Θ), such that

∑

k∈N
k(1+λ)∨2 sup

θ̃∈(θ−r,θ+r)

|p′k(θ̃)| =
∞∑

k=1

k(1+λ)∨2 sup
θ̃∈(θ−r,θ+r)

∣∣∣ 1
k!
(k θ̃k−1 − θ̃k) e−θ̃

∣∣∣

≤
∑

k∈N

k(1+λ)∨2

k!

(
k(θ + r)k−1 + (θ + r)k

)
e−(θ−r)

= e2r
∑

k∈N0

((k + 1)(1+λ)∨2 + k(1+λ)∨2)
(θ + r)k

k!
e−(θ+r)

)

= e2r
∑

k∈N0

((k + 1)(1+λ)∨2 + k(1+λ)∨2) pk(θ + r),

such that the convergence of the series on the right-hand side follows by the fact that the

Poisson distribution with parameter θ+r ∈ (0,∞) possesses all moments. This proves (5.74)

for any λ > 0 and r ∈ (0, θ). To show (5.75), similar arguments lead to

∑

k∈N
k(1+λ)∨2 sup

θ̃∈(θ−r,θ+r)

|p′′k(θ̃)| =
∞∑

k=1

k(1+λ)∨2 sup
θ̃∈(θ−r,θ+r)

∣∣∣ 1
k!
(k(k − 1)θ̃k−2 − 2kθ̃k−1 + θk) e−θ̃

∣∣∣

≤ e2r
∑

k∈N0

((k + 2)(1+λ)∨2 + 2(k + 1)(1+λ)∨2 + k(1+λ)∨2)pk(θ + r).

Now the series is finite again because the Poisson distribution with parameter θ+ r ∈ (0,∞)

possesses all moments. This proves (5.75) for any λ > 0 and r ∈ (0, θ) and shows that the

assumptions of Theorem 5.4.2 are fulfilled in the setting of the compound Poisson model.

Hence, to be able to apply the functional delta-method of Theorem 5.4.1, we still have

to show the (F ,Dφλ′
) measurability of

√
u(C(θ̂u.F̂u) − C(θ, F )). This will be done in the

following Lemma.
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Lemma 5.4.7 Assume that θ ∈ (0,∞) and F ∈ Fφλ
. Let C be the compound distribution

functional as defined in (5.20) and let θ̂u and F̂u be as in (5.6) and (5.7), respectively. Then

we always have that √
u(C(θ̂u.F̂u)− C(θ, F ))

is (F ,Dφλ′
)-measurable for every u ∈ N.

Proof To show the (F ,Dφλ′
)-measurability of

√
u(C(θ̂u.F̂u)− C(θ, F )), write

√
u(C(θ̂u(ω), F̂u(ω))(t)− C(θ, F )(t)) =

√
u

( ∞∑

k=0

F̂ ∗ku (ω; t) pk(θ̂u(ω))−
∞∑

k=0

F ∗k(t) pk(θ)

)

=: Ψ(ω; t), (5.76)

for every t ∈ R and ω ∈ Ω. Then we observe that the mapping ω 7→ Ψ(ω; t) is (F ,B(R))-
measurable for every t ∈ R. Moreover, the mapping t 7→ Ψ(ω; t) is right-continuous for every

ω ∈ Ω. Thus, the mapping is (F ,D)-measurable and takes values only in Dφλ′
. This has

been shown in the examinations subsequent to (5.32). Thus, the mapping ω 7→ Ψ(ω; · ) is a
(F ,Dφλ′

)-measurable map. This proves the assertion. ✷

The below Corollary 5.4.8 will now state the asymptotic error distribution of the compound

distribution function. The assertion of the corollary follows directly by an application of the

uniform delta-method of Theorem 5.4.1.

The previous examinations have shown that the conditions of Theorem 5.4.1 are fulfilled in

our present setting, where the mapping G is given by the compound distribution function

defined in (5.20). Corollary 5.4.8 will now yield the asymptotic distribution of the sequence

of estimated compound distribution functions.

Note that by
∞∑

k=0

1

k!
(k θk−1 − θk) e−θ =

∞∑

k=1

1

(k − 1)!
θk−1 e−θ −

∞∑

k=0

1

k!
θk e−θ = 0, (5.77)

the uniform quasi Hadamard derivative of the compound distribution functional at (θ, F )

Ċ(θ,F ) : R×Dφλ
→ Dφλ′

has the following representation

Ċ(θ,F )(w, v) = v ∗
∞∑

k=1

kF ∗(k−1)
θk

k!
e−θ + w e−θ

∞∑

k=0

F ∗k
1

k!
(k θk−1 − θk). (5.78)

Corollary 5.4.8 Let λ > 1 and let C be the compound distribution functional as defined in

(5.20). Moreover, let F ∈ Fφ2λ
, that is

´

φ2
λ dF < ∞, and let θ ∈ (0,∞). Let θ̂u and F̂u be

as in (5.6) and (5.7), respectively. Then for every λ′ ∈ (0, λ)

√
u
(
C(θ̂u, F̂u)− C(θ, F )

)
 
◦ 1√

θ
BF ∗

∞∑

k=1

kF ∗(k−1)
θk

k!
e−θ + ξ e−θ

∞∑

k=0

F ∗k
1

k!
(k θk−1 − θk),

in (Dφλ′
,Dφλ′

, ‖ · ‖φλ′
), where ξ refers to a N0,θ-distributed random variable and BF is a

F -Brownian bridge, as in (4.9), being independent of ξ.
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5.4.4 Proof of Theorem 5.2.1

Proof of Theorem 5.2.1 Note that Theorem 5.2.1 is a direct consequence of the chain rule

of Lemma A.5 in [12] along with Theorem 5.4.1.

To apply Lemma A.5 in [12] we have to check that the assumptions of this lemma are fulfilled.

To this use, we have to show that

(a) For every sequence (θu, Fu) ⊂ (0,∞)× Fφλ
satisfying max{|θu − θ|, ‖Fu − F‖φλ

} → 0,

we have

lim
u→∞

C(θu, Fu)(t) = C(θ, F )(t), for every t ∈ R.

(b) C is uniformly quasi-Hadamard differentiable at (θ, F ) tangentially to ((0,∞) × Dφλ
)

〈(0,∞)×Dφλ
〉 with trace Dφλ′

and the uniform quasi-Hadamard derivative Ċ(θ,F ) sat-

isfies Ċ(θ,F )(Dφλ
) ⊂ Dφλ′

.

(c) Rρ is uniformly quasi-Hadamard differentiable at S tangentially to Dφλ′
〈Dφλ′

〉 with

trace Dφλ′
and uniform quasi-Hadamard derivative Ṙρ,S .

To show that condition (a) holds true, we have to show the pointwise convergence of C(θu, Fu)

to C(θ, F ) for every sequence (θu, Fu) ⊂ (0,∞)×Fφλ
satisfying max{|θu−θ|, ‖Fu−F‖φλ

} → 0.

We will show even more, namely ‖C(θu, Fu) − C(θ, F )‖φλ′
→ 0. To this end, let (θu, Fu) ⊂

(0,∞) × Fφλ
. For every k ∈ N0, let Hk : F × F → F be as in (5.37). Then, using the fact

that
∑∞

k=0 pk(θ) = 1 for every θ ∈ (0,∞), we have

‖C(θu, Fu)− C(θ, F )‖φλ′

=
∥∥∥
∞∑

k=0

F ∗ku pk(θu) −
∞∑

k=0

F ∗k pk(θ)
∥∥∥
φλ′

=
∥∥∥
∞∑

k=0

(1[0,∞) − F ∗ku ) pk(θu) −
∞∑

k=0

(1[0,∞) − F ∗k) pk(θ)
∥∥∥
φλ′

≤
∥∥∥
∞∑

k=0

(F ∗ku − F ∗k) pk(θ)
∥∥∥
φλ′

+
∥∥∥
∞∑

k=0

(1[0,∞) − F ∗ku ) (pk(θu) − pk(θ))
∥∥∥
φλ′

≤
∥∥∥
∞∑

k=0

(F ∗ku − F ∗k) pk(θ)
∥∥∥
φλ′

+
∥∥∥
∞∑

k=0

(F ∗k − F ∗ku ) (pk(θu) − pk(θ))
∥∥∥
φλ′

+
∥∥∥
∞∑

k=0

(1[0,∞) − F ∗k) (pk(θu) − pk(θ))
∥∥∥
φλ′

=
∥∥∥(Fu − F ) ∗

∞∑

k=0

Hk(Fu, F ) pk(θ)
∥∥∥
φλ′

+
∥∥∥(Fu − F ) ∗

∞∑

k=0

Hk(Fu, F ) (pk(θu) − pk(θ))
∥∥∥
φλ′

+
∥∥∥
∞∑

k=0

(1[0,∞) − F ∗k) (pk(θu) − pk(θ))
∥∥∥
φλ′

=: S1(u) + S2(u) + S3(u), (5.79)
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where we used (5.38) for the second “=”. For the first summand, we apply part (ii) of

Lemma 4.5 in [12] to each of the summands of Hk to derive

S1(u) ≤ ‖Fu − F‖φλ′

∞∑

k=0

pk(θ)k
(
1 + 2λ

′
(2λ

′−1 ∨ 1)(2 + (k − 1)λ
′∨1C1)

)
. (5.80)

As the series converges, we conclude that S1(u) → 0 as ‖Fu − F‖φλ
→ 0. Using similar

arguments, we can conclude that S2(u) converges to zero as ‖Fu − F‖φλ
→ 0. For the last

summand we use Inequality (2.4) of [52] to derive

S3(u) ≤
∞∑

k=0

‖1[0,∞) − F ∗k‖φλ′
|pk(θu)− pk(θ)|

≤
∞∑

k=0

|pk(θu)− pk(θ)| (2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)
. (5.81)

By the Mean Value Theorem, we conclude that for every k ∈ N0 there exists some θ̃u,k
between θ and θu such that

∞∑

k=0

|pk(θu)− pk(θ)| (2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)

≤ |θu − θ|
∞∑

k=0

|p′k(θ̃u,k)| (2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)
. (5.82)

Since the series on the right-hand side of (5.82) converges, we conclude that S3(u) converges

to zero as |θu − θ| → 0. This shows that part (a) of the upper conditions is fulfilled.

According to Theorem 5.4.2, the map C is quasi-Hadamard differentiable at (θ, F ) tangen-

tially to ((0,∞) × Dφλ
)〈(0,∞) × Dφλ

〉 with trace Dφλ′
, which is the first part of condition

(b). Then the second part follows from

‖Ċ(θ,F )(w, v)‖φλ′
≤
∥∥∥v ∗

∞∑

k=1

k F ∗(k−1)pk(θ)
∥∥∥
φλ′

+
∥∥∥w

∞∑

k=0

(1[0,∞) − F ∗k)p′k(θ)
∥∥∥
φλ′

≤
∥∥∥v ∗

∞∑

k=1

k F ∗(k−1)pk(θ)
∥∥∥
φλ′

+ |w|
∞∑

k=0

‖1[0,∞) − F ∗k‖φλ′
|p′k(θ)|

≤ 2λ
′ ‖v‖φλ′

∞∑

k=1

pk(θ) k
(
1 + (2λ

′−1 ∨ 1)
(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

))

+ |w|
∞∑

k=1

|p′k(θ)| (2λ
′−1 ∨ 1)

(
1 + kλ′∨1

ˆ

|x|λ′
dF (x)

)
, (5.83)

for which we applied Lemma 2.3 in [12] and Inequality (2.4) in [52]. Now the claim follows

by ‖v‖φλ
≤ ‖v‖φλ′

< ∞ and the fact that both sequences converge. Moreover we assumed

thatRρ is uniformly quasi-Hadamard differentiable at S tangentially to Dφλ′
〈Dφλ′

〉 with trace
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Dφλ′
. This yields assumption (c). Hence, we observe that the composition Tρ := Rρ◦C is uni-

formly quasi-Hadamard differentiable at (θ, F ) tangentially to ((0,∞)×Dφλ
)〈(0,∞)×Dφλ

〉
with trace Dφλ′

and the uniform quasi-Hadamard derivative is given by Ṫρ,θ,F := Ṙρ, C(θ,F ) ◦
Ċ(θ,F ). By Corollary 5.4.8 we also know that

√
u
(
C(θ̂u, F̂u)− C(θ, F )

)
 
◦ 1√

θ
BF ∗

∞∑

k=1

kF ∗(k−1)
θk

k!
e−θ + ξ e−θ

∞∑

k=0

F ∗k
1

k!
(k θk−1 − θk),

in (Dφλ′
,Dφλ′

, ‖ · ‖φλ′
), such that the assertion follows by an application of Corollary 3.1 in

[12]. Here we denote by  ◦ the convergence in distribution w.r.t. the σ-algebra on Dφλ′
,

generated by the ‖ · ‖φλ′
-open balls.

✷
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Appendix A

The Panjer recursion

A.1 On the computation of µ̂ ∗n
u and Rρ(µ̂

∗n
u )

In general the computation of the n-fold convolution µ̂ ∗nu of µ̂u is more or less impossible.

However, in real applications the true µ has support in hN0 := {0, h, 2h, . . .} for some fixed

h > 0, where h represents the smallest monetary unit. We stress the fact that continuous

distributions are in fact approximations for the equidistant discrete true single claim distri-

bution, and not vice versa. So the empirical probability measure µ̂u is concentrated on the

equidistant grid hN0, too. In this case the estimated total claim distribution µ̂ ∗nu can be

computed with the help of the recursive scheme

µ̂ ∗nu [{0}] = µ̂u[{0}]n (A.1)

µ̂ ∗nu [{jh}] =
1

j µ̂u[{0}]

j∑

ℓ=1

((n+ 1)ℓ− j) µ̂u[{ℓh}] µ̂ ∗nu [{(j − ℓ)h}] for j ∈ N, (A.2)

provided µ̂u[{0}] > 0; see the discussion below. Note that µ̂u as an empirical probability

measure has bounded support. Therefore, the whole distribution µ̂ ∗nu can be computed by

the scheme (2.10)–(2.11) in finitely many steps. In particular, the estimator Rρ(µ̂
∗n
u ) can be

computed in finitely many steps even for tail-dependent functionals Rρ as, for instance, the

one associated with the Average Value at Risk of Example 1.2.4.

To justify the scheme (A.1)–(A.2) note that the empirical probability probability measure

µ̂u defined in (2.7) has the representation

µ̂u[ · ] = p̂u ν̂u[ · ] + (1− p̂u) δ0[ · ],
where p̂u := µ̂u[(0,∞)] is the mass of µ̂u on (0,∞), and ν̂u[ · ] := µ̂u[ · ∩ (0,∞)]/µ̂u[(0,∞)] is

the probability measure µ̂u conditioned on (0,∞). It is easily seen that the n-fold convolution

µ̂ ∗nu coincides with the random convolution

ν̂
∗Bn,p̂u
u [ · ] :=

n∑

k=0

ν̂ ∗ku [ · ] Bn,p̂u [{k}]
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of ν̂u w.r.t. the binomial distribution Bn,p̂u with parameters n and p̂u, i.e.

µ̂ ∗nu = ν̂
∗Bn,p̂u
u . (A.3)

When p̂u < 1 and ν̂u has support in hN := {h, 2h, . . .} for some h > 0, the random convolu-

tion ν̂
∗Bn,p̂u
u can be computed with the help of the Panjer recursion [49]:

ν̂
∗Bn,p̂u
u [{0}] = Bn,p̂u [{0}] (A.4)

ν̂
∗Bn,p̂u
u [{jh}] =

p̂u/j

1− p̂u

j∑

ℓ=1

[(n+ 1)ℓ− j] ν̂u[{ℓh}] ν̂ ∗Bn,p̂u
u [{(j − ℓ)h}] for j ∈ N. (A.5)

Since 1−p̂u = µ̂u[{0}] and p̂uν̂u[{ℓh}] = µ̂u[{ℓh}] for ℓ ∈ N = {1, 2, . . .}, the recursive scheme

(A.1)–(A.2) follows from (A.3)–(A.5).

A.2 On the computation of µ̂
∗Poiss

λ̂n,τ T

n,τ and Rρ(µ̂
∗Poiss

λ̂n,τ T

n,τ )

A computation of the random convolution of a measure µ w.r.t. a Poisson distribution is,

just like in the case of the n-fold convolution, more or less impossible. However, if the

single claim distribution µ has support in hN0 := {0, h, 2h, . . .} for some h > 0. In this

case the convolution of the empirical measure w.r.t. the Poisson distribution with estimated

parameter, which is given by

µ̂
∗Poiss

λ̂n,τ T

n,τ := (µ̂n,τ )
∗Poiss

λ̂n,τ T (A.6)

is nothing but a random convolution of an equidistant discrete distribution w.r.t. a Poisson

distribution. Here µ̂n,τ and λ̂n,τ are as in (3.4) and (3.3), respectively. The right-hand side

in (A.6) can then be computed via

µ̂
∗Poiss

λ̂n,τ T

n,τ [{0}] = Poissλ̂n,τT
[{0}] (A.7)

µ̂
∗Poiss

λ̂n,τ T

n,τ [{jh}] = λ̂n,τT

j

j∑

m=1

mµ̂n,τ [{mh}] µ̂
∗Poiss

λ̂n,τ T

n,τ [{(j −m)h}], (A.8)

for every j ∈ N. Although µ̂n,τ has bounded support, the right-hand side in (A.6) has

unbounded support. Therefore the corresponing plug-in estimator

Rρ

(
µ̂
∗Poiss

λ̂n,τ T

n,τ

)

cannot be computed in finite time for tail-dependent functionals Rρ, such as the Average

Value at Risk of Example 1.2.4, for instance. On the other hand, it can be computed in

finite time for the Value at Risk of Example 1.2.3 for instance.
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Appendix B

A proof of the

(max{dWassp, | · |}, dWassp)-continuity of the

mapping M1(L
p)× (0,∞) → M1(L

p),

(µ, λ) 7→ µ∗Poissλ

Let p ∈ [1,∞). Recall that the Lp-Wasserstein metric on M1(L
p) is defined by

dWassp(µ, ν) :=
( ˆ 1

0

|F−1µ (t)− F−1ν (t)|p dt
)1/p

, (B.1)

where for every µ ∈ M1 and t ∈ [0, 1] F−1µ (t) := inf{y ∈ R , Fµ(y) ≥ t} denotes the

generalized inverse of the distribution function Fµ associated with µ. It was shown in Lemma

8.1 in [13] that dWassp defines a metric on M1(L
p).

Theorem B.0.1 Let p ∈ [1,∞). The mapping M1(L
p) × (0,∞) → M1(L

p), (µ, λ) 7→
µ∗Poissλ is (dWassp , dWassp)-continuous.

Proof Let µ, ν ∈ M1(L
p) and λ, β ∈ (0,∞). With the help of the triangle inequality we

clearly have

dWassp(µ
∗Poissλ , ν∗Poissβ) ≤ dWassp(µ

∗Poissβ , ν∗Poissβ) + dWassp(µ
∗Poissλ , µ∗Poissβ). (B.2)

For the first summand on the right-hand side of (B.2), we can use Lemma 8.5 in [13] to

observe that

dWassp(µ
∗Poissβ , ν∗Poissβ) =

∞∑

k=0

Poissβ[{k}] dWassp(µ
∗k, ν∗k)

≤
∞∑

k=0

k Poissβ[{k}] dWassp(µ, ν)

= β dWassp(µ, ν). (B.3)
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Hence, the first summand on the right-hand side of (B.2) converges to zero as dWassp(µ, ν) →
0. Now the claim would follow by showing that the second summand on the right-hand side

of (B.2) also converges to 0 as |λ − β| → 0. To this end, we will use Lemma 8.3 in [13] to

prove that dWassp(µ
∗Poissλ , µ∗Poissβ) converges to zero as |λ − β| → 0. By Lemma 8.3 in [13]

the claim would follow by showing that the following two assertions hold true:

(i) |
´

f(x)µ∗Poissλ(dx) −
´

f(x)µ∗Poissβ(x)| −→ 0 for every continuous and bounded real-

valued function f and |λ− β| → 0.

(ii) |
´

|x|pµ∗Poissλ(dx)−
´

|x|pµ∗Poissβ(dx)| −→ 0 for |λ− β| → 0.

To prove part (i), let f be a bounded and continuous real-valued function. Then we can use

the Mean Value Theorem to derive

∣∣∣
ˆ

f(x)µ∗Poissλ(dx)−
ˆ

f(x)µ∗Poissβ(dx)
∣∣∣

=
∣∣∣
ˆ

f(x)
( ∞∑

k=0

Poissλ[{k}]µ∗k
)
(dx)−

ˆ

f(x)
( ∞∑

k=0

Poissβ[{k}]µ∗k
)
(dx)

∣∣∣

≤
∞∑

k=0

|Poissλ[{k}]− Poissβ[{k}]|
ˆ

f(x)µ∗k(dx)

≤ ‖f‖∞
∞∑

k=0

∣∣∣∣
λk

k!
e−λ − βk

k!
e−β
∣∣∣∣

= |λ− β| ‖f‖∞
∞∑

k=0

1

k!
|k αk−1 − αk| e−α (B.4)

for some α between λ and β. As the series on the right-hand side of (B.4) converges, this

shows that part (i) is fulfilled. For the second part, we use similar arguments as in (B.4)

along with Minkowski’s inequality to derive

∣∣∣
ˆ

|x|pµ∗Poissλ(dx)−
ˆ

|x|pµ∗Poissβ(x)
∣∣∣ ≤

∞∑

k=0

∣∣∣∣
λk

k!
e−λ − βk

k!
e−β
∣∣∣∣
ˆ

|x|pµ∗k(dx)

≤
ˆ

|x|pµ(dx)
∞∑

k=0

kp

∣∣∣∣
λk

k!
e−λ − βk

k!
e−β
∣∣∣∣

= |λ− β|
ˆ

|x|pµ(dx)
∞∑

k=0

kp

k!
|k αk−1 − αk| e−α. (B.5)

As the series on the right-hand side of (B.5) converges, we can conclude that part (ii) is also

fulfilled. This yields the convergence of dWassp(µ
∗Poissλ , µ∗Poissβ) to zero as |λ − β| → 0 and

completes the proof. ✷
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Appendix C

A nonuniform Berry-Esséen inequality

The following nonuniform Berry–Esséen inequality is already known from [46]. However, as

the proof presented in [46] did not make it clear how the constants in the upper inequality

had to be chosen, or how these constants depended on the distribution of the underlying

random variables, we take our time to carry out the proof in a more rigorous way.

Theorem C.0.2 Let (Xi) be a sequence of i.i.d. random variables on some probability space

(Ω,F ,P) such that Var[X1] > 0 and E[|X1|λ] < ∞ for some λ > 2. For every n ∈ N, let

Zn :=

∑n
i=1(Xi − E[X1])√

nVar[X1]
.

Then there exists a universal constant Cλ ∈ (0,∞) such that

dφλ
(PZn ,N0,1) ≤ Cλ f(PX1)n

−γ for all n ∈ N (C.1)

with γ := min{1, λ− 2}/2, where for some universal constant Dλ > 0,

f(PX1) :=





E[|X1−E[X1]|λ]
Var[X1]λ/2

, 2 < λ ≤ 3

exp
(
Dλ

E[|X1−E[X1]|λ]2
Var[X1]λ

)
, λ > 3

. (C.2)

By “universal constant” we mean that the constant is independent of PX1 . Note that the

constant f(PX1) in Theorem (C.0.2) can still be improved. The formulation of Theorem

2.2.7 in the form of Petrov [50], for instance, allows for a better estimation of f(PX1).

Proof (of Theorem C.0.2) As discussed above, the case 2 < λ ≤ 3 is already known. So we

may and do assume λ > 3. In particular, for (C.1) it suffices to show

dφλ
(PZ′

n
,N0,1) ≤ Cλ exp(DλE[|X ′1|λ]2)n−1/2 for all n ∈ N (C.3)

for Z ′n := 1√
n

∑n
i=1 X

′
i and any sequence (X ′i) of i.i.d. random variables on some probability

space (Ω,F ,P) such that E[X ′1] = 0, Var[X ′1] = 1, and E[|X ′1|λ] < ∞. Indeed, if specifically
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X ′i := (Xi − E[X1])/
√

Var[X1] in the setting of Theorem C.0.2, then we have Zn = Z ′n and

E[|X ′1|λ] = E[|X1 − E[X1]|λ]/Var[X1]
λ/2.

To verify (C.3), let Fn and Φ0,1 denote the distribution functions of Z ′n and the standard

normal distribution, respectively. Below we will show in three steps that the inequalities

|Fn(x)− Φ0,1(x)| ≤ cλ E[|X ′1|λ]n−(λ/2−1)(1 + |x|λ)−1 for |x| < 1, (C.4)

|Fn(x)− Φ0,1(x)| ≤ cλ e
dλE[|X′

1|λ]2 n−1/2|x|−λ for 1 ≤ |x| ≤
√
(λ− 1) log n, (C.5)

|Fn(x)− Φ0,1(x)| ≤ cλ e
dλE[|X′

1|λ] n−(λ/2−1)|x|−λ for |x| > max{1;
√

(λ− 1) log n} (C.6)

hold for all n ∈ N, where cλ, dλ > 0 refer to any constants depending only on λ and being

independent of the distribution of X ′1. Inequalities (C.4)–(C.6) clearly imply (C.3).

Step 1. Inequality (C.4) follows from Katz’ generalization of the classical Berry–Esséen

inequality. In [36], Katz showed the following result. Let g : R → (0,∞) be any function that

is even (i.e. g(−x) = g(x) for all x ∈ R), nondecreasing on R+ and satisfies limx→∞ g(x) = ∞
as well as x/g(x) ≤ y/g(y) for all 0 ≤ x ≤ y. Then for any sequence (Yi) of of i.i.d. random

variables on some probability space (Ω,F ,P) with E[Y1] = 0, E[Y 2
1 ] < ∞ and E[Y 2

1 g(Y )] < ∞
there exists an universal constant Cg ∈ (0,∞) (i.e. independent of PY1) such that

dφ0(PWn ,N0,1) ≤ (CgE[Y
2
1 g(Y1)]) g(

√
n)−1 for all n ∈ N,

where Wn :=
∑n

i=1 Yi/
√
n. Choosing specifically g(x) := |x|λ−2 and Yi := X ′i for i ∈ N, in

particular Wn = Z ′n for n ∈ N, we easily obtain (C.4).

Step 2. We now prove (C.5). It suffices to show that there exists some constant c̃λ > 0

depending only on λ and being independent of the distribution of X ′1 such that (C.5) holds

for all n ≥ n0 := ⌈c̃λE[|X ′1|λ]8⌉ (this observation will be relevant in Steps 2.2.2 and 2.2.3

below). Indeed, for n < n0 we get (C.5) from Katz’ generalization of the classical Berry–

Esséen inequality (cf. Step 1) as follows:

sup
x∈[−

√
(λ−1) logn,

√
(λ−1) log n]

|Fn(x)− Φ0,1(x)|(1 + |x|λ)

≤ sup
x∈[−

√
(λ−1) log n0,

√
(λ−1) logn0]

|Fn(x)− Φ0,1(x)|(1 + |x|λ)

≤ ‖Fn − Φ0,1‖∞ (1 + ((λ− 1) log n0)
λ)

≤ cλ,1 E[|X ′1|λ]n−(λ/2−1) (1 + ((λ− 1) log(⌈c̃λE[|X ′1|λ]8⌉))λ)
≤ cλ,2 E[|X ′1|λ]2 n−1/2.

Without loss of generality we restrict ourselves to 1 ≤ x ≤ max{1;
√

(λ− 1) log n}. Let

rλ ∈ (0,min{1;λ− 3}/(2(λ− 1))], consider the truncations

Xn,x
i := X ′i 1{|X′

i|≤rλn1/2x}, 1 ≤ i ≤ n, n ∈ N,

and set Z̃n,x
n := 1√

n

∑n
i=1 X

n,x
i .
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We have

|Fn(x)− Φ0,1(x)| = |(1− Fn(x))− (1− Φ0,1(x))|
≤ |P[Z ′n > x]− P[Z̃n,x

n > x]| + |P[Z̃n,x
n > x]− (1− Φ0,1(x))|

= |P[Z ′n > x]− P[Z̃n,x
n > x]| + |P[Z̃n,x

n > x]− Φ0,1(−x))|. (C.7)

In Steps 2.1–2.2 below we will show that

|P[Z ′n > x]− P[Z̃n,x
n > x]| ≤ cλ,1 E[|X ′1|λ]n−(λ/2−1) x−λ (C.8)

and

|P[Z̃n,x
n > x]− Φ0,1(−x))| ≤ cλ,2 E[|X ′1|λ]n−1/2 x−λ. (C.9)

Then, (C.7)–(C.9) imply (C.5).

Step 2.1. To prove (C.8), note that

P[Z ′n > x] = P[{Z ′n > x} ∩ {X ′1 = Xn,x
1 , . . . , X ′n = Xn,x

n }]
+P[{Z ′n > x} ∩ {there exists 1 ≤ i ≤ n with X ′i 6= Xn,x

i }]
≤ P[{Z̃n,x

n > x} ∩ {X ′1 = Xn,x
1 , . . . , X ′n = Xn,x

n }] + nP[X ′1 6= Xn,x
1 ]

≤ P[Z̃n,x
n > x] + nP[|X ′1| > rλn

1/2x] (C.10)

and

P[Z̃n,x
n > x] = P[{Z̃n,x

n > x} ∩ {X ′1 = Xn,x
1 , . . . , X ′n = Xn,x

n }]
+P[{Z̃n,x

n > x} ∩ {there exists 1 ≤ i ≤ n with X ′i 6= Xn,x
i }]

≤ P[{Z̃n,x
n > x} ∩ {X ′1 = Xn,x

1 , . . . , X ′n = Xn,x
n }] + nP[X ′1 6= Xn,x

1 ]

≤ P[Z ′n > x] + nP[|X ′1| > rλn
1/2x]. (C.11)

Then (C.10)–(C.11) and an application of Markov’s inequality give

|P[Z ′n > x]− P[Z̃n,x
n > x]| ≤ nP[|X ′1| > rλn

1/2x]

≤ n
E[|X ′1|λ]
(rλn1/2x)λ

≤ r−λλ E[|X ′1|λ]n−(λ/2−1) x−λ.

That is, (C.8) holds for cλ,1 := r−λλ .

Step 2.2. To verify (C.9) we consider the probability measure Qn,x on (R,B(R)) defined by

Qn,x[A] :=
1

βn,x

ˆ

A

exn
−1/2x1 PXn,x

1
(dx1), A ∈ B(R),

where βn,x :=
´

exn
−1/2x1 PXn,x

1
(dx1). In particular,

dPXn,x
1

dQn,x

(x1) = βn,x e
−xn−1/2x1 for all x1 ∈ R.
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It follows that the n-fold product measure Q⊗nn,x of Qn,x satisfies

Q⊗nn,x[A] =
1

βn
n,x

ˆ

A

exn
−1/2

∑n
i=1 xi P⊗n

Xn,x
1

(d(x1, . . . , xn)) for all A ∈ B(Rn).

In particular,

dP⊗n
Xn,x

1

dQ⊗nn,x

(x1, . . . , xn) = βn
n,x e

−xn−1/2
∑n

i=1 xi for all (x1, . . . , xn) ∈ Rn.

Using the notation

mn,x := EQn,x [X
n,x
1 ] =

ˆ

x1Qn,x(dx1)

we obtain

P[Z̃n,x
n > x]

= P

[
n−1/2

n∑

i=1

(Xn,x
i −mn,x) > x− n1/2mn,x

]

=

ˆ

1(x−n1/2mn,x,∞)

(
n−1/2

n∑

i=1

(xi −mn,x)
)
P⊗n
Xn,x

1
(d(x1, . . . , xn))

=

ˆ

1(x−n1/2mn,x,∞)

(
n−1/2

n∑

i=1

(xi −mn,x)
)
βn
n,x e

−xn−1/2
∑n

i=1 xi Q⊗nn,x(d(x1, . . . , xn))

= βn
n,x e

−xn1/2mn,x ×
ˆ

1(x−n1/2mn,x,∞)

(
n−1/2

n∑

i=1

(xi −mn,x)
)
e−xn

−1/2
∑n

i=1(xi−mn,x)Q⊗nn,x(d(x1, . . . , xn))

= βn
n,x e

−xn1/2mn,x

ˆ

(x−n1/2mn,x,∞)

e−xz Πn,x(dz),

where Πn,x refers to the image (probability) measure of the probability measure Q⊗nn,x w.r.t.

the mapping (x1, . . . , xn) 7→ n−1/2
∑n

i=1(xi−mn,x). Hence, for the left-hand side in (C.9) we

obtain

|P[Z̃n,x
n > x]− Φ0,1(−x))|

=
∣∣∣βn

n,x e
−xn1/2mn,x

ˆ

(x−n1/2mn,x,∞)

e−xz Πn,x(dz)− Φ0,1(−x))
∣∣∣

≤ |βn
n,x e

−xn1/2mn,x − e−x
2/2|

+ e−x
2/2
∣∣∣
ˆ

(x−n1/2mn,x,∞)

e−xz Πn,x(dz)−
ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)

∣∣∣

+
∣∣∣e−x2/2

ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)− Φ0,1(−x)

∣∣∣

=: S2,2,1(λ, n, x) + S2,2,2(λ, n, x) + S2,2,3(λ, n, x), (C.12)

126



where

sn,x := VarQn,x [X
n,x
1 ]1/2 =

( ˆ
x2
1 Qn,x(dx1)−m2

n,x

)1/2
.

In Steps 2.2.1–2.2.3 below we will show that

S2,2,1(λ, n, x) ≤ cλ,3 e
cλ,4E[|X′

1|λ] n−1/2 x10 e−x
2/2, (C.13)

S2,2,2(λ, n, x) ≤ cλ,5 e
cλ,6E[|X′

1|λ] n−1/2 x2 e−x
2/2, (C.14)

S2,2,3(λ, n, x) ≤ cλ,7 e
cλ,8E[|X′

1|λ]2 n−1/2 x9 e−x
2/2, (C.15)

which gives (C.9).

Step 2.2.0.a. First of all we observe that

|E[Xn,x
1 ]| ≤ cλ,9 E[|X ′1|λ]n−(λ−1)/2 x−(λ−1), (C.16)

E[(Xn,x
1 )2] ≤ 1, (C.17)

E[(Xn,x
1 )2] ≥ 1− cλ,10 E[|X ′1|λ]n−(λ−2)/2 x−(λ−2), (C.18)

E[|X ′1|r] ≤ E[|X ′1|λ] for 2 ≤ r ≤ λ, (C.19)

E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |] ≤ cλ,11 E[|X ′1|λ]nrλ(λ−1)+(4−λ)/2 x4−λ for λ ∈ (3, 4), (C.20)

E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |] ≤ E[|X ′1|λ]nrλ(λ−1) for λ ≥ 4. (C.21)

Indeed: In view of Xn,x
1 = X ′1 −X ′11{|X′

1|>rλn1/2x} and E[X ′1] = 0 we have

|E[Xn,x
1 ]| = |E[X ′11{|X′

1|>rλn1/2x}]|
≤ E[|X ′1|1{|X′

1|>rλn1/2x}]

≤ E

[ |X ′1|λ
(rλn1/2x)λ−1

1{|X′
1|>rλn1/2x}

]

≤ r1−λλ E[|X ′1|λ]n−(λ−1)/2 x−(λ−1),

which proves (C.16) with cλ,9 = r1−λλ . Inequality (C.17) is justified by

E[(Xn,x
1 )2] ≤ E[(X ′1)

2] = 1,

and inequality (C.18) can be obtained as follows:

E[(Xn,x
1 )2]− 1 = E[(Xn,x

1 )2 − (X ′1)
2]

= −E[(X ′1)
2
1{|X′

1|>rλn1/2x}]

≥ −E

[ |X ′1|λ
(rλn1/2x)λ−2

1{|X′
1|>rλn1/2x}

]

≥ −r2−λλ E[|X ′1|λ]n−(λ−2)/2 x−(λ−2).

Due to the assumption E[|X ′1|2] = 1 and Jensen’s inequality we obtain

1 = E[|X ′1|2]1/2 ≤ E[|X ′1|r]1/r ≤ E[|X ′1|λ]1/λ,
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which leads to (C.19) for 2 ≤ r ≤ λ. Since |Xn,x
1 | ≤ rλn

1/2x and x2 ≤ (λ − 1) log n, we

obtain for λ ∈ (3, 4) that

E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |] ≤ E[(Xn,x

1 )4] erλx
2

≤ E[|X ′1|λ] (rλn1/2x)4−λ nrλ(λ−1)

= r4−λλ x4−λ nrλ(λ−1)+(4−λ)/2 E[|X ′1|λ].

This proves (C.20) with cλ,11 = r4−λλ . Finally, (C.21) follows by (C.19), |Xn,x
1 | ≤ rλn

1/2x,

and x2 ≤ (λ− 1) log n.

Step 2.2.0.b. Next we will prove that the following auxiliary inequalities hold:

|βn,x − 1− x2/(2n)| ≤ cλ,12 E[|X ′1|λ]n−3/2x5, (C.22)

|mn,x − xn−1/2| ≤ cλ,13 E[|X ′1|λ]n−1x6, (C.23)

|s2n,x − 1| ≤ cλ,14 E[|X ′1|λ]2 n−1/2x12. (C.24)

We first show (C.22). Using (C.17), we obtain

|βn,x − 1− x2/(2n)|

=
∣∣∣E
[ ∞∑

i=0

(xn−1/2Xn,x
1 )i

i!

]
− 1− x2

2n

∣∣∣

≤ xn−1/2|E[Xn,x
1 ]| + x2

2n
(1− E[(Xn,x

1 )2]) +
1

3!
(xn−1/2)3E[|Xn,x

1 |3]

+
1

4!
(xn−1/2)4 E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |].

On the one hand, for λ ∈ (3, 4) we can use (C.16), (C.18), (C.19), and (C.20) to conclude

|βn,x − 1− x2/(2n)|
≤ cλ,9 x

2−λn−λ/2E[|X ′1|λ] + cλ,15 x
4−λn−λ/2E[|X ′1|λ] +

1

3!
x3n−3/2E[|X ′1|λ]

+
1

4!
x4n−2 cλ,11E[|X ′1|λ]nrλ(λ−1)+(4−λ)/2x4−λ

≤ cλ,16E[|X ′1|λ]n−3/2x3 + cλ,11
1

4!
x8−λ n−λ/2+rλ(λ−1) E[|X ′1|λ]

≤ cλ,17E[|X ′1|λ]n−3/2x5,

where for the last step we used n−λ/2+rλ(λ−1) ≤ n−3/2 (which follows from the assumption

rλ ≤ (λ − 3)/(2(λ − 1))). On the other hand, for λ ≥ 4 we can use (C.16), (C.18), (C.19),

and (C.21) to conclude

|βn,x − 1− x2/(2n)|
≤ cλ,9x

2−λn−λ/2E[|X ′1|λ] + cλ,15x
4−λn−λ/2E[|X ′1|λ] +

1

3!
x3n−3/2E[|X ′1|λ]

+
1

4!
x4n−2E[|X ′1|λ]nrλ(λ−1)
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≤ cλ,18E[|X ′1|λ]n−3/2x3 +
1

4!
x4n−2E[|X ′1|λ]nrλ(λ−1)

≤ cλ,19 E[|X ′1|λ]n−3/2x5,

where for the last step we used nrλ(λ−1)−2 ≤ n−3/2 (which follows from the assumption

rλ ≤ 1/(2(λ− 1))). This completes the proof of (C.22).

To prove (C.23), we will show that the following inequalities hold:

mn,x − xn−1/2 ≤ cλ,20 E[|X ′1|λ]n−1x4, (C.25)

xn−1/2 −mn,x ≤ cλ,21 E[|X ′1|λ]n−1x6. (C.26)

For (C.25) we observe that since βn,x ≥ 1,

mn,x − xn−1/2 = β−1n,x E[X
n,x
1 exn

−1/2Xn,x
1 ]− xn−1/2

≤ E[Xn,x
1 exn

−1/2Xn,x
1 ]− xn−1/2

≤ |E[Xn,x
1 ]| + xn−1/2(E[(Xn,x

1 )2]− 1) +
1

2
x2n−1E[|Xn,x

1 |3]

+
1

3!
x3n−3/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |].

On the one hand, for λ ∈ (3, 4) we can use (C.16), (C.17), (C.19), and (C.20) to conclude

mn,x − xn−1/2

≤ cλ,9x
1−λn(1−λ)/2E[|X ′1|λ] +

1

2
x2n−1E[|X ′1|λ] + cλ,22 x

7−λn(1−λ)/2+rλ(λ−1)E[|X ′1|λ]
≤ cλ,23 E[|X ′1|λ]n−1x4,

where for the last step we used n(1−λ)/2+rλ(λ−1) ≤ n−1 (which follows from the assumption

rλ ≤ (λ − 3)/(2(λ − 1))). On the other hand, for λ ≥ 4 we can use (C.16), (C.17), (C.19),

and (C.21) to conclude

mn,x − xn−1/2

≤ cλ,9x
1−λn(1−λ)/2E[|X ′1|λ] +

1

2
x2n−1E[|X ′1|λ] + x3n−3/2+rλ(λ−1)E[|X ′1|λ]

≤ cλ,24 E[|X ′1|λ]n−1x3,

where for the last step we used nrλ(λ−1)−2 ≤ n−3/2 (which follows from the assumption

rλ ≤ 1/(2(λ−1))). This proves (C.25). We will now prove (C.26). In view of (C.16), (C.18),

(C.19), βn,x ≥ 1, x2 ≤ (λ− 1) log n, and (C.22) we obtain

xn−1/2 −mn,x

= xn−1/2 − β−1n,x E[X
n,x
1 exn

−1/2Xn,x
1 ]

= xn−1/2 − β−1n,x

(
E[Xn,x

1 ] + xn−1/2E[(Xn,x
1 )2] + x2n−1E[(Xn,x

1 )3]
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+E

[ ∞∑

i=3

(xn−1/2)i

i!
(Xn,x

1 )i+1
])

≤ xn−1/2

−β−1n,x

(
− cλ,9 E[|X ′1|λ]n−(λ−1)/2x−(λ−1) + xn−1/2(1− cλ,10E[|X ′1|λ]n−(λ−2)/2x−(λ−2))

− x2n−1E[|X ′1|λ] − x3n−3/2E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |]
)

≤ cλ,25 x
2n−1E[|X ′1|λ] + x3n−3/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |] + xn−1/2(1− β−1n,x)

≤ cλ,25 x
2n−1E[|X ′1|λ] + x3n−3/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |] + xn−1/2(βn,x − 1)

≤ cλ,25 x
2n−1E[|X ′1|λ] + x3n−3/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |] + xn−1/2
(
cλ,12 x

5n−3/2E[|X ′1|λ]

+
x2

2n

)

≤ cλ,26 x
6n−1E[|X ′1|λ] + x3n−3/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |].

For λ ∈ (3, 4) we can use (C.20) to deduce

xn−1/2 −mn,x ≤ cλ,26 x
6n−1E[|X ′1|λ] + cλ,11 x

7−λn1/2−λ/2+rλ(λ−1)E[|X ′1|λ]
≤ cλ,27 x

6n−1E[|X ′1|λ], (C.27)

where for the last step we used n1/2−λ/2+rλ(λ−1) ≤ n−1 (which follows from the assumption

rλ ≤ (λ− 3)/(2(λ− 1))). On the other hand for λ ≥ 4 we can use (C.21) to obtain

xn−1/2 −mn,x ≤ cλ,26 x
6 n−1E[|X ′1|λ] + x3n−3/2+rλ(λ−1)E[|X ′1|λ]

≤ cλ,28 x
6n−1E[|X ′1|λ], (C.28)

where for the last step we used n−3/2+rλ(λ−1) ≤ n−1 (which follows from the assumption

rλ ≤ 1/(2(λ− 1))). Now (C.27) and (C.28) lead to (C.26).

To prove (C.24) we will show that the following inequalities hold:

s2n,x − 1 ≤ cλ,29 E[|X ′1|λ]n−1/2x3 (C.29)

1− s2n,x ≤ cλ,30 E[|X ′1|λ]2 n−1/2x12. (C.30)

First we will prove (C.29). By virtue of βn,x ≥ 1, (C.17), and (C.19), we obtain

s2n,x − 1 = (β−1n,xE[(X
n,x
1 )2exn

−1/2Xn,x
1 ]−m2

n,x)− 1

≤ E[(Xn,x
1 )2 exn

−1/2Xn,x
1 ]− 1

≤ E[(Xn,x
1 )2]− 1 + xn−1/2E[|Xn,x

1 |3] + x2n−1E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |]

≤ xn−1/2 E[|X ′1|λ] + x2n−1E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |].

For λ ∈ (3, 4) we can use (C.20) to deduce

s2n,x − 1 ≤ xn−1/2E[|X ′1|λ] + cλ,11 x
3n1−λ/2+rλ(λ−1) E[|X ′1|λ]

≤ cλ,31 x
3n−1/2E[|X ′1|λ],
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where for the last step we used n1−λ/2+rλ(λ−1) ≤ n−1/2 (which follows from the assumption

rλ ≤ (λ− 3)/(2(λ− 1))). For λ ≥ 4 we can use (C.21) to obtain

s2n,x − 1 ≤ xn−1/2E[|X ′1|λ] + x2n−1+rλ(λ−1)E[|X ′1|λ]
≤ cλ,32 x

2n−1/2E[|X ′1|λ],

where for the last step we used n−1+rλ(λ−1) ≤ n−1/2 (which follows from the assumption

rλ ≤ 1/2(λ− 1)). This proves (C.29). We next prove (C.30). Using βn,x ≥ 1 and (C.23), we

obtain

1− s2n,x = 1− (β−1n,xE[(X
n,x
1 )2exn

−1/2Xn,x
1 ]−m2

n,x)

= 1 +m2
n,x − β−1n,x E[(X

n,x
1 )2exn

−1/2Xn,x
1 ]

≤ 1 + (cλ,13 n
−1x6E[|X ′1|λ] + x2n−1/2)2 − β−1n,x E[(X

n,x
1 )2exn

−1/2Xn,x
1 ]

≤ 1 + cλ,33 n
−1x12E[|X ′1|λ]2 − β−1n,x E[(X

n,x
1 )2exn

−1/2Xn,x
1 ]. (C.31)

Now, (C.24) would follow if we can show that

E[(Xn,x
1 )2exn

−1/2Xn,x
1 ] ≥ 1− cλ,34 n

−1/2x3E[|X ′1|λ], (C.32)

because (C.31)–(C.32) together with βn,x ≥ 1 and (C.22) imply

1− s2n,x

≤ 1 + cλ,33 n
−1x12 E[|X ′1|λ]2 − β−1n,x(1− cλ,34 n

−1/2x3E[|X ′1|λ])
≤ cλ,33 n

−1x12 E[|X ′1|λ]2 + cλ,34 n
−1/2x3E[|X ′1|λ] + (1− β−1n,x)

≤ cλ,33 n
−1x12 E[|X ′1|λ]2 + cλ,34 n

−1/2x3E[|X ′1|λ] + (βn,x − 1)

≤ cλ,33 n
−1x12 E[|X ′1|λ]2 + cλ,34 n

−1/2x3E[|X ′1|λ] + cλ,12 n
−3/2x5E[|X ′1|λ] + x2/(2n)

≤ cλ,35 E[|X ′1|λ]2 n−1/2x12.

To prove (C.32) we use (C.18) and (C.19) to obtain

E[(Xn,x
1 )2exn

−1/2Xn,x
1 ]

= E[(Xn,x
1 )2] + xn−1/2E[(Xn,x

1 )3] + E

[ ∞∑

i=2

(xn−1/2)i

i!
(Xn,x

1 )i+2
]

≥ 1− cλ,10 n
−(λ−2)/2x−(λ−2)E[|X ′1|λ]− xn−1/2E[|X ′1|λ]− x2n−1E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |]

≥ 1− cλ,36 xn
−1/2E[|X ′1|λ]− x2n−1E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |].

If λ ∈ (3, 4) we can use (C.20) to deduce

E[(Xn,x
1 )2exn

−1/2Xn,x
1 ] ≥ 1− cλ,36 xn

−1/2E[|X ′1|λ]− cλ,11 x
6−λ n−1+rλ(λ−1)−(λ−4)/2E[|X ′1|λ]

≥ 1− cλ,37 x
3n−1/2E[|X ′1|λ],
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where for the last step we used n1−λ/2+rλ(λ−1) ≤ n−1/2 (which follows from the assumption

rλ ≤ (λ− 3)/(2(λ− 1))). For λ ≥ 4 we can use (C.21), yielding

E[(Xn,x
1 )2exn

−1/2Xn,x
1 ] ≥ 1− cλ,36 xn

−1/2E[|X ′1|λ]− x2nrλ(λ−1)−1E[|X ′1|λ]
≥ 1− cλ,38 x

2n−1/2E[|X ′1|λ],

where for the last step we used n−1+rλ(λ−1) ≤ n−1/2 (which follows from the assumption

rλ ≤ 1/(2(λ− 1))). This proves (C.32).

Step 2.2.1. In this part we will verify the inequalities

βn
n,x e

−xn1/2mn,x − e−x
2/2 ≤ cλ,39 n

−1/2x7e−x
2/2ecλ,40E[|X

′
1|λ], (C.33)

e−x
2/2 − βn

n,x e
−xn1/2mn,x ≤ cλ,41 n

−1/2x10e−x
2/2ecλ,42E[|X

′
1|λ], (C.34)

which imply (C.13). First we will show (C.33). Using the inequality log(βn,x) ≤ βn,x − 1

(which is valid in our case as we have βn,x ≥ 1), the Mean Value theorem, (C.22), (C.23),

and the assumption x2 ≤ (1− λ) log n we obtain

βn
n,x e

−xn1/2mn,x − e−x
2/2

≤ en(βn,x−1)−xn1/2mn,x − e−x
2/2

= e−(xn
1/2mn,x−n(βn,x−1)) − e−x

2/2

≤ (x2/2− (xn1/2mn,x − n(βn,x − 1))) e−(xn
1/2mn,x−n(βn,x−1))

= (x2/2− xn1/2mn,x + n(βn,x − 1)) en(βn,x−1)−xn1/2mn,x

≤
(
x2/2− xn1/2(− cλ,13 n

−1x6E[|X ′1|λ] + xn−1/2) + n(cλ,12 n
−3/2x5E[|X ′1|λ] + x2/(2n))

)

· en(cλ,12 n−3/2x5E[|X′
1|λ]+x2/(2n))−xn1/2(xn−1/2−cλ,13 n−1x6E[|X′

1|λ])

≤
(
x2/2 + cλ,13 n

−1/2x7E[|X ′1|λ]− x2 + cλ,12 n
−1/2x5E[|X ′1|λ] + x2/2

)

· ecλ,12 n−1/2x5E[|X′
1|λ]+x2/2−x2+cλ,13 n

−1/2x7E[|X′
1|λ])

≤ cλ,43 n
−1/2x7E[|X ′1|λ] e−x

2/2 ecλ,44 n
−1/2((1−λ) logn)7/2E[|X′

1|λ]

≤ cλ,43 n
−1/2x7E[|X ′1|λ] e−x

2/2 ecλ,44E[|X
′
1|λ],

where we assumed without loss of generality xn1/2mn,x − n(βn,x − 1) ≤ x2/2 (otherwise we

obtain the trivial upper bound 0). Next we will show that (C.34) holds true. Using the

inequality 1− e−z ≤ z for z ≥ 0, the inequality log(βn,x) ≥ βn,x − 1− 1
2
(βn,x − 1)2 as well as

(C.22), (C.23), and βn,x ≥ 1 we obtain

e−x
2/2 − βn

n,x e
−xn1/2mn,x

= e−x
2/2(1− ex

2/2+n log βn,x−xn1/2 mn,x)

= e−x
2/2(1− e−(xn

1/2mn,x−x2/2−n log βn,x))

≤ e−x
2/2(xn1/2mn,x − x2/2− n log βn,x)

≤ e−x
2/2
(
xn1/2(cλ,13 n

−1x6E[|X ′1|λ] + xn−1/2)− x2/2− n(βn,x − 1− (βn,x − 1)2/2
)
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≤ e−x
2/2
(
cλ,13 n

−1/2x7E[|X ′1|λ] + x2/2 + n{cλ,12 n−3/2x5E[|X ′1|λ]− x2/(2n))}

+n{cλ,12 n−3/2x5E[|X ′1|λ] + x2/(2n))}2/2
)

≤ e−x
2/2
(
cλ,13 n

−1/2x7E[|X ′1|λ] + cλ,12 n
−1/2x5E[|X ′1|λ] + c2λ,12 n

−2x10E[|X ′1|λ]2 +
x4

4n

)

≤ cλ,45 e
−x2/2 n−1/2x10ecλ,46E[|X

′
1|λ],

where we assumed without loss of generality xn1/2mn,x − n log βn,x ≥ x2/2 (otherwise we

obtain the trivial upper bound 0). Note that this assumption allows us to apply the inequality

1− e−z ≤ z for z ≥ 0, to the third line in the upper calculations. This proves (C.34).

Step 2.2.2. Next we will prove (C.14). Let FΠn,x denote the distribution function of Πn,x,

and note that FΠn,x , Φ0,s2n,x
, and Ψx are of bounded variation on every right-sided half-line,

where Ψx(z) := e−xz. So integration-by-parts yields
∣∣∣
ˆ

(x−n1/2mn,x,∞)

e−xz Πn,x(dz)−
ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)

∣∣∣

=
∣∣∣
ˆ ∞

x−n1/2mn,x

Ψx(z) dFΠn,x(z)−
ˆ ∞

x−n1/2mn,x

Ψx(z) dΦ0,s2n,x
(z)
∣∣∣

=
∣∣∣ lim
b→∞

(
e−xb FΠn,x(b)− e−x(x−n

1/2mn,x) FΠn,x(x− n1/2mn,x)

−
ˆ b

x−n1/2mn,x

FΠn,x(z) dΨx(z)
)

− lim
b→∞

(
e−xb Φ0,s2n,x

(b) + e−x(x−n
1/2mn,x) Φ0,s2n,x

(x− n1/2mn,x)

−
ˆ b

x−n1/2mn,x

Φ0,s2n,x
(z) dΨx(z)

)∣∣∣

≤ e−x(x−n
1/2mn,x) |FΠn,x(x− n1/2mn,x)− Φ0,s2n,x

(x− n1/2mn,x)|

+

ˆ ∞

x−n1/2mn,x

|FΠn,x(z)− Φ0,s2n,x
(z)| dΨx(z)

≤ e−x(x−n
1/2mn,x) ‖FΠn,x − Φ0,s2n,x

‖∞ + ‖FΠn,x − Φ0,s2n,x
‖∞
∣∣∣
ˆ ∞

x−n1/2mn,x

dΨx(z)
∣∣∣

= 2e−x(x−n
1/2mn,x) ‖FΠn,x − Φ0,s2n,x

‖∞. (C.35)

Furthermore we observe that

‖FΠn,x − Φ0,s2n,x
‖∞ = sup

y∈R
|FΠn,x(sn,x y)− Φ0,s2n,x

(sn,x y)| = ‖FΠ̃n,x
− Φ0,1‖∞,

where Π̃n,x refers to the image measure of of the probability measure Q⊗nn,x w.r.t. the mapping

(x1, . . . , xn) 7→ n−1/2
∑n

i=1(xi −mn,x)/sn,x. Hence by the classical Berry–Esséen theorem we

have

‖FΠ̃n,x
− Φ0,1‖∞ ≤

´

|x1 −mn,x|3 Qn,x(dx1)

n1/2s3n,x
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≤ 4

´

|x1|3 Qn,x(dx1)−m3
n,x

n1/2s3n,x

≤ 8
β−1n,x E[|Xn,x

1 |3exn−1/2Xn,x
1 ]

n1/2 s3n,x

≤ 8
E[|Xn,x

1 |3exn−1/2Xn,x
1 ]

n1/2 s3n,x
. (C.36)

Now for the numerator in (C.36) we can use (C.19) to obtain

E[|Xn,x
1 |3 exn−1/2Xn,x

1 ] = E

[ ∞∑

i=0

(xn−1/2)i

i!
|Xn,x

1 |i+3
]

≤ E[|Xn,x
1 |3] + xn−1/2E[(Xn,x

1 )4exn
−1/2|Xn,x

1 |]

≤ E[|X ′1|λ] + xn−1/2E[(Xn,x
1 )4exn

−1/2|Xn,x
1 |].

Now for λ ∈ (3, 4) we can use (C.20) to deduce

E[|Xn,x
1 |3exn−1/2Xn,x

1 ] ≤ E[|X ′1|λ] + cλ,11 x
5−λn3/2−λ/2+rλ(λ−1)E[|X ′1|λ]

≤ cλ,47 x
2E[|X ′1|λ],

where for the last step we used n3/2−λ/2+rλ(λ−1) ≤ 1 (which follows from the assumption

rλ ≤ (λ− 3)/(2(λ− 1))). For λ ≥ 4 we can use (C.21) to obtain

E[|Xn,x
1 |3exn−1/2Xn,x

1 ] ≤ E[|X ′1|λ] + xn−1/2+rλ(λ−1)E[|X ′1|λ]
≤ cλ,48 xE[|X ′1|λ],

where for the last step we used n−1/2+rλ(λ−1) ≤ 1 (which follows from the assumption rλ ≤
1/2(λ− 1)). This proves

E[|Xn,x
1 |3 exn−1/2 Xn,x

1 ] ≤ cλ,49 x
2 E[|X ′1|λ]. (C.37)

Furthermore we will assume without loss of generality that n is chosen sufficiently large such

that s2n,x ≥ 1/2. By (C.24) we have |s2n,x − 1| ≤ cλ,14 E[|X ′1|λ]2 n−1/2 x12, i.e. it suffices to

assume that n ≥ 4 c2λ,14 E[|X ′1|λ]4 x24. In view of x2 ≤ (λ − 1) log(n) this assumption holds

if there is some constant cλ > 0 such that n ≥ n0 for n0 := ⌈cλE[|X ′1|λ]8⌉. Recall from the

discussion at the beginning of Step 2 that the assumption n ≥ n0 (for this specific choice of

n0) does not lead to any loss of generality. This and (C.35)–(C.37) lead to

e−x
2/2
∣∣∣
ˆ

(x−n1/2mn,x,∞)

e−xz Πn,x(dz)−
ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)

∣∣∣

≤ e−x
2/2 e−x(x−n

1/2mn,x) cλ,49 x
2 E[|X ′1|λ]n−1/2s−3n,x

≤ e−x
2/2 ecλ,13 E[|X

′
1|λ]n−1/2 x7

cλ,49 2
√
2 x2 E[|X ′1|λ]n−1/2

≤ cλ,50 e
cλ,13 E[|X′

1|λ]n−1/2 ((λ−1) log n)7/2 n−1/2 x2e−x
2/2 E[|X ′1|λ]

≤ cλ,50 n
−1/2 x2e−x

2/2 ecλ,51 E[|X
′
1|λ].
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This proves (C.14).

Step 2.2.3. Finally we will show (C.15). With the transformation a := zs−1n,x + xsn,x we have

e−x
2/2

ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)

= e−x
2/2 (2πs2n,x)

−1/2
ˆ ∞

x−n1/2mn,x

e−xz−z
2/(2s2n,x) dz

= e−x
2/2 (2πs2n,x)

−1/2 ex
2s2n,x/2

ˆ ∞

x−n1/2mn,x

e−(z/sn,x+xsn,x)2/2 dz

= (2πs2n,x)
−1/2 e−x

2(1−s2n,x)/2

ˆ ∞

(x−n1/2mn,x)/sn,x+xsn,x

e−a
2/2 sn,x da

= e−x
2(1−s2n,x)/2

ˆ ∞

(x−n1/2mn,x)/sn,x+xsn,x

(2π)−1/2e−a
2/2 da

= e−x
2(1−s2n,x)/2 {1− Φ0,1(s

−1
n,xn

1/2(xn−1/2 −mn,x) + xsn,x)}
= e−x

2(1−s2n,x)/2 Φ0,1(−{s−1n,xn
1/2(xn−1/2 −mn,x) + xsn,x}).

This leads to
∣∣∣e−x2/2

ˆ

(x−n1/2mn,x,∞)

e−xz N0,s2n,x
(dz)− Φ0,1(−x)

∣∣∣

= |e−x2(1−s2n,x)/2Φ0,1(−{s−1n,xn
1/2(xn−1/2 −mn,x) + xsn,x})− Φ0,1(−x)|

≤ e−x
2(1−s2n,x)/2 |Φ0,1(−{s−1n,xn

1/2(xn−1/2 −mn,x) + xsn,x})− Φ0,1(−xsn,x)|
+ |e−x2(1−s2n,x)/2 − 1|Φ0,1(−xsn,x)

+ |Φ0,1(− xsn,x)− Φ0,1(−x)|
=: S2,2,3,1(λ, n, x) + S2,2,3,2(λ, n, x) + S2,2,3,3(λ, n, x).

We will now show that the following inequalities are valid:

S2,2,3,1(λ, n, x) ≤ cλ,51 n
−1/2 x6e−x

2/4 ecλ,52E[|X
′
1|λ]2 , (C.38)

S2,2,3,2(λ, n, x) ≤ cλ,53 n
−1/2 x14e−x

2/4 ecλ,54E[|X
′
1|λ]2 , (C.39)

S2,2,3,3(λ, n, x) ≤ cλ,55 n
−1/2 x13e−x

2/4 ecλ,56E[|X
′
1|λ]2 , (C.40)

which will lead to (C.15) immediately. We will start with the proof of (C.39). First, by the

Mean Value theorem, (C.24), and x2 ≤ (λ− 1) log n we have

|e−x2(1−s2n,x)/2 − 1| ≤ ex
2|1−s2n,x|/2 − 1

≤ (x2|1− s2n,x|/2) ex
2|1−s2n,x|/2

≤ cλ,57E[|X ′1|λ]2 n−1/2x14 ecλ,14E[|X
′
1|λ]2 n−1/2x14/2

≤ cλ,58 n
−1/2x14 ecλ,59E[|X

′
1|λ]2 . (C.41)
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In particular, using x2 ≤ (λ− 1) log n again,

ex
2|1−s2n,x|/2 ≤ 1 + |ex2|1−s2n,x|/2 − 1| ≤ 1 + cλ,58e

cλ,59E[|X′
1|λ]2 ≤ cλ,60e

cλ,59E[|X′
1|λ]2 . (C.42)

First, (C.39) is a consequence of (C.41) and

Φ0,1(−xsn,x) =

ˆ −xsn,x

−∞

1√
2π

e−y
2/2 dy

≤ e−x
2s2n,x/4

1√
2π

ˆ ∞

−∞
e−y

2/4 dy

= e−(s
2
n,x−1+1)x2/4

√
2

≤
√
2 e|s

2
n,x−1|x2/4e−x

2/4

≤
√
2 cλ,60e

cλ,59E[|X′
1|λ]2 e−x

2/4,

where we used (C.42) for the latter step. We next prove (C.38). We will assume without

loss of generality that n is chosen sufficiently large such that n1/2|mn,x − xn−1/2| ≤ 1/4

and s2n,x ≥ 1/2. By (C.23) and (C.24) we have |mn,x − xn−1/2| ≤ cλ,13E[|X ′1|λ]n−1x6 and

|s2n,x − 1| ≤ cλ,14 E[|X ′1|λ]2n−1/2x12, i.e. it suffices to assume that n ≥ (16c2λ,13)E[|X ′1|λ]2x12

and n ≥ (4c2λ,14)E[|X ′1|λ]4x24. In view of x2 ≤ (λ − 1) log n, these assumptions holds if

n ≥ ((16c2λ,12) ∨ (4c2λ,13))E[|X ′1|λ]4((λ − 1) log n))12. That is, there is some constant c̃λ > 0

such that n ≥ n0 for n0 := ⌈c̃λE[|X ′1|λ]8⌉ implies n1/2|mn,x − xn−1/2| ≤ 1/4 and s2n,x ≥ 1/2

for all 1 ≤ |x| ≤
√

(λ− 1) log n. Recall from the discussion at the beginning of Step 2 that

the assumption n ≥ n0 (for this specific choice of n0) indeed does not lead to any loss of

generality. Now, using (C.23) and (C.42) we obtain

S2,2,3,1(λ, n, x) = e−x
2(1−s2n,x)/2|Φ0,1(s

−1
n,xn

1/2(xn−1/2 −mn,x) + xsn,x)− Φ0,1(xsn,x)|

= e−x
2(1−s2n,x)/2

1√
2π

ˆ bn,x

an,x

e−y
2/2 dy

≤ e−x
2(1−s2n,x)/2

1√
2π

(bn,x − an,x) max
ξ∈[an,x,bn,x]

e−ξ
2/2

= ex
2|1−s2n,x|/2 1√

2π
s−1n,xn

1/2|xn−1/2 −mn,x| max
ξ∈[an,x,bn,x]

e−ξ
2/2

≤ ex
2|1−s2n,x|/2 1√

2π

√
2n1/2cλ,13E[|X ′1|λ]n−1x6 max

ξ∈[an,x,bn,x]
e−ξ

2/2

= cλ,60e
cλ,59E[|X′

1|λ]2 1√
π

n−1/2cλ,13E[|X ′1|λ] x6 max
ξ∈[an,x,bn,x]

e−ξ
2/2, (C.43)

where an,x and bn,x refer to respectively the minimum and the maximum of the real num-

bers s−1n,xn
1/2(xn−1/2 − mn,x) + xsn,x and xsn,x. By assumption we have x ≥ 1 as well as

n1/2|mn,x − xn−1/2| ≤ 1/4 and s2n,x ≥ 1/2, and therefore s−1n,xn
1/2(xn−1/2 −mn,x) + xsn,x ≥

−
√
2(1/4) + 1/

√
2 > 0. The implications are twofold. First, an,x is nonnegative so that

maxξ∈[an,x,bn,x] e
−ξ2/2 = e−a

2
n,x/2. Second, a2n,x ≥ (xsn,x)

2 − (s−1n,xn
1/2|xn−1/2 −mn,x|)2. Hence,

max
ξ∈[an,x,bn,x]

e−ξ
2/2 ≤ e−(xsn,x)2/2 e(s

−1
n,xn

1/2|xn−1/2−mn,x|)2/2 ≤ e−x
2/4 e(

√
2(1/4))2/2.
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Together with (C.43) this implies (C.38). Finally, we will prove (C.40). By (C.24) we obtain

S2,2,3,3(λ, n, x) = |Φ0,1(xsn,x)− Φ0,1(x)|

=
1√
2π

ˆ bn,x

an,x

e−y
2/2 dy

≤ 1√
2π

(bn,x − an,x) max
ξ∈[an,x,bn,x]

e−ξ
2/2

=
1√
2π

x|sn,x − 1| max
ξ∈[an,x,bn,x]

e−ξ
2/2

≤ 1√
2π

x|s2n,x − 1| max
ξ∈[an,x,bn,x]

e−ξ
2/2

≤ 1√
2π

x cλ,14 E[|X ′1|λ]2 n−1/2x12 max
ξ∈[an,x,bn,x]

e−ξ
2/2

≤ cλ,61 E[|X ′1|λ]2 n−1/2x13 max
ξ∈[an,x,bn,x]

e−ξ
2/2. (C.44)

where an,x and bn,x refer to respectively the minimum and the maximum of the real numbers

xsn,x and x. As before we may assume without loss of generality that n is chosen sufficiently

large such that s2n,x ≥ 1/2. This implies maxξ∈[an,x,bn,x] e
−ξ2/2 ≤ e−x

2/4, which together with

(C.44) implies (C.40).

Step 3. Finally, we will prove (C.6). Without loss of generality we restrict ourselves to

x > max{1;
√

(λ− 1) log n}. Let rλ := 1/(2λ(λ− 1)). As before consider the truncations

Xn,x
i := X ′i 1{|X′

i|≤rλn1/2x}, 1 ≤ i ≤ n, n ∈ N,

and set Z̃n,x
n := 1√

n

∑n
i=1 X

n,x
i . The specific choice of the constant rλ will be needed in (C.54)

below. On the one hand, as in (C.10) we obtain

1− Fn(x) = P[Z ′n > x] ≤ P[Z̃n,x
n > x] + nP[|X ′1| > rλn

1/2x]. (C.45)

On the other hand, we can use the transformation a :=
√
z2 − x2 to obtain

1− Φ0,1(x) =

ˆ ∞

x

1√
2π

e−
z2

2 dz

= e−
x2

2

ˆ ∞

x

1√
2π

e
x2−z2

2 dz

= e−
x2

2

ˆ ∞

0

1√
2π

e−
a2

2
a√

a2 + x2
da

≤ e−
x2

2

ˆ ∞

0

1√
2π

e−
a2

2 da

= e−
x2

2 /2

= e−
x2

2(λ−1) e−
x2(λ−2)
2(λ−1) /2

≤ (cλ,1 x
−λ) e−

(λ−1) logn(λ−2)
2(λ−1) /2

= cλ,2 x
−λ n−(λ/2−1), (C.46)
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where we used x2 ≥ (λ− 1) log n. From (C.45)–(C.46) we can deduce

|Fn(x)− Φ0,1(x)| ≤ P[Z̃n,x
n > x] + nP[|X ′1| > rλn

1/2x] + cλ,2 n
−(λ/2−1) x−λ. (C.47)

By Markov’s inequality we have

nP[|X ′1| > rλn
1/2x] ≤ n

E[|X ′1|λ]
(rλn1/2x)λ

≤ cλ,3 E[|X ′1|λ]n−(λ/2−1) x−λ. (C.48)

Finally, we will show that

P[Z̃n,x
n > x] ≤ cλ,4 e

cλ,5E[|X′
1|λ] n−(λ/2−1) x−λ. (C.49)

Then, (C.47)–(C.49) and the assumption λ > 3 imply (C.6).

To prove (C.49), let

kn(x) :=
1

x

1√
n
((λ− 2) log n+ 2λ(λ− 1) log x)

(note that kn(x) is nonnegative since x ≥ 1) and use Markov’s inequality to obtain

P[Z̃n,x
n > x] = P

[ 1√
n

n∑

i=1

Xn,x
i > x

]

= P[ekn(x)
∑n

i=1 X
n,x
i > e

√
nx kn(x)]

≤ E[ekn(x)
∑n

i=1 X
n,x
i ]

e(λ−2) logn+2λ(λ−1) log x

=
E[ekn(x)X

n,x
1 ]n

nλ−2 x2λ(λ−1) .

So (C.49) would follow if we can show that

E[ekn(x)X
n,x
1 ]n ≤ cλ,4 e

cλ,5 E[|X′
1|λ] n(λ−2)/2 x2λ(λ−2). (C.50)

In the rest of the proof we will show (C.50). We clearly have

|E[ekn(x)Xn,x
1 ]|

=
∣∣∣E
[ ∞∑

i=0

(kn(x)X
n,x
1 )i

i!

]∣∣∣

≤ 1 + kn(x)|E[Xn,x
1 ]|+ k2

n(x)

2
E[(Xn,x

1 )2] + E

[ ∣∣∣
∞∑

i=3

(kn(x)X
n,x
1 )i

i!

∣∣∣
]

≤ 1 + kn(x)|E[Xn,x
1 ]|+ k2

n(x)

2
E[(Xn,x

1 )2] + E

[ ∣∣∣(kn(x)Xn,x
1 )3

∞∑

i=0

(kn(x)X
n,x
1 )i

i!

∣∣∣
]

≤ 1 + kn(x)|E[Xn,x
1 ]|+ k2

n(x)

2
E[(Xn,x

1 )2] + E[|kn(x)Xn,x
1 |3 ekn(x)Xn,x

1 ]. (C.51)
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We have |E[Xn,x
1 ]| ≤ E[|X ′1|1{|X′

1|>rλn1/2x}], because Xn,x
1 = X ′1 − X ′11{|X′

1|>rλn1/2x} and

E[X ′1] = 0. Thus, the second summand on the right-hand side in (C.51) can be bounded

above by

kn(x)|E[Xn,x
1 ]| ≤ kn(x)E[|X ′1|1{|X′

1|>rλn1/2x}]

≤ kn(x)E
[ |X ′1|λ
(rλn1/2x)λ−1

1{|X′
1|>rλn1/2x}

]

≤ 1

x

1√
n
((λ− 2) log n+ 2λ(λ− 1) log x) (rλn

1/2x)1−λ E[|X ′1|λ]

≤ cλ,6 n
−1 E[|X ′1|λ]. (C.52)

Since E[(Xn,x
1 )2] ≤ E[(X ′1)

2] = 1, the third summand on the right-hand side in (C.51) is

bounded above by
kn(x)

2

2
E[(Xn,x

1 )2] ≤ kn(x)
2

2
. (C.53)

Using the same arguments as in (C.19) we observe that E[|Xn,x
1 |3] ≤ E[|X ′1|λ]. Thus for the

fourth summand on the right-hand side in (C.51) we have

E[|kn(x)Xn,x
1 |3 ekn(x)Xn,x

1 ]

≤ kn(x)
3 ekn(x) rλn

1/2x E[|Xn,x
1 |3]

≤ kn(x)
3(n

λ−2
2λ(λ−1) x)E[|X ′1|λ]

= ((λ− 2) log n+ 2λ(λ− 1) log x)3 n
λ−2

2λ(λ−1)
− 3

2x−2 E[|X ′1|λ]
= cλ,7 n

−1E[|X ′1|λ], (C.54)

where we used the definition of rλ and the fact that (λ − 2)/(2λ(λ − 1)) − 3/2 ≤ −1 for

λ > 3.

Now, (C.51)–(C.54) yield

|E[ekn(x)Xn,x
1 ]| ≤ 1 + cλ,6 n

−1 E[|X ′1|λ] +
k2
n(x)

2
+ cλ,7 n

−1E[|X ′1|λ]

≤ ek
2
n(x)/2+ cλ,8E[|X′

1|λ]n−1

. (C.55)

Thus, for every n ∈ N we obtain

E[ekn(x)X
n,x
1 ]n ≤ enk

2
n(x)/2+ cλ,8E[|X′

1|λ]. (C.56)

Since x ≥ ((λ− 1) log n)1/2, we have

n

2
k2
n(x)

=
n

2

1

x2

1

n
((λ− 2)2(log n)2 + 2λ(λ− 1)(λ− 2) log x log n+ 4λ2(λ− 1)2(log x)2)

≤ λ− 2

2
log n

λ− 2

λ− 1
(λ− 1) log n

1

x2
+ 2λ(λ− 2) log x + 2λ2(λ− 1)2(log x)2

1

x2

≤ λ− 2

2
log n + 2λ(λ− 2) log x + cλ,9, (C.57)

139



with cλ,9 = 2λ2(λ− 1)2. Now (C.56)–(C.57) imply

E[ekn(x)X
n,x
1 ]n ≤ e

1
2
(λ−2) logn+2λ(λ−2) log x+cλ,9+cλ,8E[|X′

1|λ]

≤ cλ,10 n
(λ−2)/2 x2λ(λ−2)ecλ,8E[|X

′
1|λ]. (C.58)

This shows (C.50) with cλ,4 := cλ,10 and cλ,5 := cλ,8, and the proof is complete. ✷
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