
Approximation Algorithms
for

Vietoris-Rips and Čech Filtrations

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Aruni Choudhary

Saarbrücken
2017

Kolloquium

Tag des Kolloquiums:
11 Dezember 2017

Dekan:
Prof. Frank-Olaf Schreyer

Prüfungsausschuss:
Prof. Dr. Raimund Seidel (Vorsitzender)
Prof. Dr. Michael Kerber
Prof. Dr. Kurt Mehlhorn
Dr. Frédéric Chazal
Dr. Antonios Antoniadis (Akademischer Beisitzer)

Berichterstatter:
Prof. Dr. Michael Kerber
Prof. Dr. Kurt Mehlhorn
Dr. Frédéric Chazal

2

Abstract

Persistent Homology is a tool to analyze and visualize the shape of data from a topological
viewpoint. It computes persistence, which summarizes the evolution of topological and
geometric information about metric spaces over multiple scales of distances. While
computing persistence is quite efficient for low-dimensional topological features, it becomes
overwhelmingly expensive for medium to high-dimensional features.

In this thesis, we attack this computational problem from several different angles:

• We present efficient techniques to approximate the persistence of metric spaces.
Three of our methods are tailored towards general point clouds in Euclidean spaces.
We make use of high dimensional lattice geometry to reduce the cost of the ap-
proximations. In particular, we discover several properties of the Permutahedral
lattice, whose Voronoi cell is well-known for its combinatorial properties. The last
method is suitable for point clouds with low intrinsic dimension, where we exploit
the structural properties of the point set to tame the complexity. In some cases, we
achieve a reduction in size complexity by trading off the quality of the approximation.
Two of our methods work particularly well in conjunction with dimension-reduction
techniques: we arrive at the first approximation schemes whose complexities are only
polynomial in the size of the point cloud, and independent of the ambient dimension.

• On the other hand, we provide a lower bound result: we construct a point cloud
that requires super-polynomial complexity for a high-quality approximation of the
persistence. Together with our approximation schemes, we show that polynomial
complexity is achievable for rough approximations, but impossible for sufficiently
fine approximations.

• For some metric spaces, the intrinsic dimension is low in small neighborhoods of
the input points, but much higher for large scales of distances. We develop a
concept of local intrinsic dimension to capture this property. We also present several
applications of this concept, including an approximation method for persistence.

This thesis is written in English.

3

Zusammenfassung

Persistent Homology ist eine Methode zur Analyse und Veranschaulichung von Daten aus
topologischer Sicht. Sie berechnet eine topologische Zusammenfassung eines metrischen
Raumes, die Persistence genannt wird, indem die topologischen Eigenschaften des Raumes
über verschiedene Skalen von Abständen analysiert werden. Die Berechnung von Per-
sistence ist für niederdimensionale topologische Eigenschaften effizient. Leider ist die
Berechung für mittlere bis hohe Dimensionen sehr teuer.

In dieser Dissertation greifen wir dieses Problem aus vielen verschiedenen Winkeln an:

• Wir stellen effiziente Techniken vor, um die Persistence für metrische Räume zu
approximieren. Drei unserer Methoden eignen sich für Punktwolken im euklidischen
Raum. Wir verwenden hochdimensionale Gittergeometrie, um die Kosten unserer
Approximationen zu reduzieren. Insbesondere entdecken wir mehrere Eigenschaften
des Permutahedral Gitters, dessen Voronoi-Zelle für ihre kombinatorischen Eigen-
schaften bekannt ist. Die vierte Methode eignet sich für Punktwolken mit geringer
intrinsischer Dimension: wir verwenden die strukturellen Eigenschaften, um die
Komplexität zu reduzieren. Für einige Methoden zeigen wir einen Trade-off zwischen
Komplexität und Approximationsqualität auf. Zwei unserer Methoden funktionieren
gut mit Dimensionsreduktionstechniken: wir präsentieren die erste Methode mit
polynomieller Komplexität unabhängig von der Dimension.

• Wir zeigen auch eine untere Schranke. Wir konstruieren eine Punktwolke, für die
die Berechnung der Persistence nicht in Polynomzeit möglich ist. Die bedeutet, dass
in Polynomzeit nur eine grobe Approximation berechnet werden kann.

• Für gewisse metrische Räume ist die intrinsiche Dimension gering bei kleinen Skalen
aber hoch bei großen Skalen. Wir führen das Konzept lokale intrinsische Dimension
ein, um diesen Umstand zu fassen, und zeigen, dass es für eine gute Approximation
von Persistenz benutzt werden kann.

Diese Dissertation ist in englischer Sprache verfasst.

4

Acknowledgments

First and foremost, I would like to express my gratitude towards Michael Kerber, who
advised the work presented in this thesis. Michael introduced me to the field of Com-
putational Topology and helped me develop a footing in this area. In particular, I have
learnt many problem solving techniques and ways to present one’s work in a clear, concise
manner from Michael. I thank Michael again for supporting me for innumerable academic
and non-academic issues.

Next, I thank Kurt for accepting me as a PhD student in the highly vibrant Algorithms
group, and for giving me his valuable guidance on various topics. I also thank Kurt for
arranging me to visit Graz from time to time, which helped me immensely in continuing
research with Michael. I additionally thank the Geometry group at TU Graz for their
hospitality.

I thank Frédéric Chazal for agreeing to examine my thesis. I thank the anonymous
reviewers who gave useful feedback for our papers; this has helped improve the content
and presentation of this thesis considerably. I thank Christina and Ingrid for dealing with
technical and administrative issues quickly and efficiently, including making several travel
arrangements. I thank the graduate school for all their support. I thank colleagues and
friends at MPI for making it a lively and stimulating place to work.

Finally, I want to thank my family for encouraging me to pursue higher academic
studies, and for supporting me unwaveringly through pleasant and difficult times.

5

6

Contents

Abstract 3

Zusammenfassung 4

Acknowledgments 5

List of Figures 9

1 Introduction 11
1.1 Motivation . 11
1.2 Summary of contributions . 16
1.3 Related work . 19
1.4 Outline of the thesis . 19

2 Topological Concepts 21
2.1 Simplicial homology . 21
2.2 Persistent homology . 27
2.3 Stability of persistence modules . 32
2.4 Additional concepts . 36

3 Geometric Concepts 39
3.1 The A∗ Lattice and the permutahedron 39
3.2 Shifted grids and cubes . 50
3.3 Intrinsic dimension . 53
3.4 Locality-sensitive hashing . 56
3.5 Dimension reduction . 59

I Techniques for Euclidean Spaces 61

4 Approximation using the Permutahedron 63
4.1 Approximation scheme . 63
4.2 Computational aspects . 66
4.3 A lower bound for approximation schemes 79
4.4 Discussion . 84

5 Approximation using Grids 85
5.1 Approximation scheme . 85
5.2 Computational complexity . 90
5.3 Discussion . 96

7

6 Digitization 97
6.1 Approximation with cubical pixels . 97
6.2 Discussion . 103

II Techniques for Doubling Spaces 105

7 Well-Separated Simplicial Decomposition 107
7.1 Well-separated simplicial decomposition 107
7.2 Čech approximation . 114
7.3 Discussion . 118

8 Local Doubling Dimension 119
8.1 Definition and net-forests . 119
8.2 Applications . 123
8.3 Discussion . 126

9 Conclusion 127

Bibliography 129

A Strong Interleaving for Barycentric Scheme 137

B Curriculum Vitae 139

List of Figures

1.1 A point sample from a doughnut . 12
1.2 A persistence diagram . 13
1.3 A simplicial complex . 13
1.4 An example of Čech and Rips complexes 14
1.5 A filtration . 14
1.6 An Alpha complex . 16
1.7 Matching of persistence diagrams . 17

2.1 Čech and Rips complex . 24
2.2 Cycles and Boundaries . 26
2.3 Persistence diagrams and bottleneck matching 33

3.1 Hexagonal lattice . 40
3.2 Permutahedra in 3D . 41
3.3 Grid map . 52
3.4 Barycentric subdivision . 53
3.5 Covering for doubling dimension . 54

4.1 An approximation complex in 2-D . 64
4.2 An example of splits . 69

5.1 Barycentric complex . 87

6.1 Digitization . 98
6.2 A claim about permutahedra . 104

7.1 A well-separated tuple . 108
7.2 WSSD construction . 110
7.3 A covering property of Rel-sets . 112

8.1 An almost space-filling curve . 120
8.2 Disparity between Euclidean and Geodesic distances 121

9

10

Chapter 1

Introduction

1.1 Motivation

One of the most common buzzwords of our times is data. Every conceivable process and
object in nature, every action and thought has a wealth of information associated to it.
Some of these can usually be represented in computer-readable formats and with suitable
processing techniques, one can analyze the data to reveal useful insights. The acquired
knowledge can later be utilized for innumerable objectives, some of which include scientific
research and commercial interests. The infinite corpus of available data and its practical
importance demand efficient techniques for analyzing data.

Often, it has been observed that data has shape. This encourages the need to apply
geometric and topological lenses to data analysis in order to understand and interpret
the shape of information. This has given rise to a fast emerging field called Topological
Data Analysis (abbreviated as TDA), which aims at extracting and analyzing geometric
and topological properties of data, so as to make the underlying information apparent
and accessible. Often in practice, data is presented in the form of a metric space, where
each data point has some characteristic property associated to it, and there is a notion
of distance between data points. Perhaps the simplest case is that of a set of points
in Euclidean space, with the usual notion of distance. TDA encompasses a variety of
techniques to analyze metric spaces. We will concentrate on the main component, which
took shape near the beginning of the twenty-first century and has had a profound effect
on the development of this field.

Since data usually has an inherent notion of distance associated to it, it is natural
to talk about the shape of information at a given distance parameter. An elementary
example could be a point sample from a doughnut: at very low distances, the points seem
to be isolated, each in its own cluster. At medium distances, it becomes more clear that
the points have some shape. Finally, at large distances, the point sample seems to come
from a single cluster and does not seem to represent the original shape. See Figure 1.1 to
get an intuition. We usually call this distance parameter as the scale.

Homology is a mathematical notion, which can be used to describe the shape of objects
in some contexts. For a given shape, it describes the number of connected components, the
number of loops, voids, tunnels...(and higher-dimensional analogous topological features)
in the shape, using concepts from abstract algebra. In other words, it characterizes a shape
using the holes present in the shape. In some sense, the homology of a shape depends on
the scale of observation. As an example, for the doughnut-sample, homology can describe
the shape for any given distance parameter. However, it is usually unclear which scale
parameter to choose: the true shape (which is a loop) is apparent only when the scale

11

(a) The original shape. (b) At low scales, points are isolated.

(c) At medium scales, the shape of the
loop is apparent.

(d) At large scales, all points are in one
cluster, so the loop disappears.

Figure 1.1: A point sample from a doughnut, interpreted at different scales of distances.

is chosen in the correct range (Figure 1.1). Moreover, practical data is usually noisy, so
at any given scale several loops can be apparent from the point sample, which do not
represent the correct shape.

The natural solution is to not focus on a particular scale, but rather a multitude of
scales, and to observe the evolution of these topological features as the scale changes.
Ideally, this analysis should show that the important features persist, that is, they should
have long ”lifetimes” over the scales, and noisy features should have short lifetimes. The
formal notion for this intuition was introduced by Edelsbrunner, Letscher and Zomorodian
in their landmark paper [ELZ02]. They coined the term Persistent Homology, which
represents the persistence of topological features in the homology over multiple scales.
They introduced a fast algorithm (which we call the persistence algorithm) to compute
a topological summary called a persistence diagram: this is a collection of points in R2,
each representing the evolution of some topological feature. The co-ordinates of the points
represent the scales at which the features appeared and disappeared. For more details, see
Figure 1.2.

The persistence algorithm utilizes a collection of discrete structures called simplices. A
k-dimensional simplex is the convex hull of (k+1) affinely independent points in Euclidean
space, which means that it is a polytope of dimension k (perhaps the simple/xst polytope).
A collection of simplices which intersect only in their common faces is commonly called a
simplicial complex ; a simple example is shown in Figure 1.3. We briefly describe two types
of simplicial complexes built on point clouds in Euclidean spaces. Most of the concepts
however, extend to arbitrary metric spaces.

To apply the tools of persistent homology, the first step is to construct simplicial
complexes on the point set. Let P be a finite set of n > 0 points in d-dimensional
Euclidean space Rd, and let α ≥ 0 be any scale. Consider the set of Euclidean balls of
radius α, centered at the points of P . Whenever there is a common intersection between
(k + 1) balls, we add a k-simplex on those (k + 1) points of P . That means, whenever two
balls intersect, we add an edge; whenever three balls intersect, we add a triangle, and so
on. The resulting structure is a simplicial complex, commonly known as the Čech complex
at scale α. See Figure 1.4.

12

CHAPTER 1. INTRODUCTION 13

Birth
D
e
a
th

Figure 1.2: A persistence diagram: each point in the diagram corresponds to a topological
feature. The x co-ordinate represents the scale at which it appeared (the birth scale) and
the y co-ordinate represents the scale at which it became disappeared (the death scale).
Points which are far from the diagonal y = x (shown in the figure) have large persistence,
and are typically considered to be important features of the data. On the other hand,
noisy features only survive for a short range of scales, and are represented by points close
to the diagonal. So, it is easy to identify the important features of data without being
misled.

Figure 1.3: A simplicial complex: the 0-simplices are the dark vertices, the 1-simplices are
the edges, the 2-simplices are triangles, and so on...

It is well-known that the Čech complex and the union of balls defining it have the
same homology. This makes it easy to interpret the homology of any union of balls from
the corresponding Čech complex, which is easier to manipulate. A relative of the Čech
complex is the simplicial complex which goes by the name of Vietoris-Rips complex at
scale α, commonly called simply the Rips complex: the simplices of this complex are sets
of points with diameter at most 2α. Another interpretation is that there is a k-simplex in
the Rips complex, if the (k + 1) corresponding α-balls pairwise intersect. See Figure 1.4
for an example in R2.

Both the Čech and the Rips complexes are commonly applied in TDA. However, the
latter is more suited for arbitrary metric spaces which makes it more attractive. At any
given scale, both simplicial complexes have homology groups which give information about
the underlying point cloud. To visualize the persistence of topological features, the scale
α is varied from 0 to ∞. This gives a sequence of nested simplicial complexes called a
filtration. A simple example of the Rips filtration is shown in Figure 1.5. The persistence
algorithm takes as input a filtration and outputs the persistence diagram.

Real world data often includes some amount of noise, usually because of imprecision
in measurement or representation. One of the most attractive properties of persistent

(a) Čech complex on the set of input points (dark
dots) at a certain scale.

(b) Rips complex, at the same scale.

Figure 1.4: An example of Čech and Rips complexes: the Rips complex is a superset of
the Čech complex at the same scale.

(a) Rips complex at some scale (b) ..at a larger scale. (c) ...and at an even larger
scale.

Figure 1.5: A Rips filtration.

homology, which has led to a proliferation in practical applications, is its stability to
noise. For small perturbations in the input data, the corresponding persistence diagram
also changes slightly. As a result, the important features of data, which remain mostly
unaffected with small perturbations, are still captured in the diagram with large persistence.

Applications Persistent homology (PH) has been used for a wide variety of applications,
including those where the input data was of geometric nature, as well as applications
where it was not apparent at first that the data had shape. We mention a few results
in this area. PH has been used to solve coverage problems in sensor networks [dSG06]
and to understand the structure of complex networks [HMR09, PSDV13]. It has been
used to cluster point clouds [CGOS13], to recognize shapes from images [BOOC16], and
to measure the dimension of fractal shapes [MS12]. In astrophysics, persistent homology
has been used to understand the structure of cosmic matter [PEvdW+16, SPK11, Sou11].
There have been many applications of persistent homology in biology. In [PET+14], the
influence of drugs on brain networks was studied. The geometry of neural networks in the
brain and the effect of stimuli was recently explored in [RNS+17]. The effect of mixing
of genetic material in evolution was studied in [CCR13]. PH has been used to study the
organization of biological tissues in [JRVM+17]. In [BEK10], the growth of plant root
systems was studied. For diagnostics, it has been applied for Autism [CBK09] and for
classification of Hepatic lesions [ARC14]. In the field of material science, PH has been
used to study the phase transition of glass [KFH16, NHH+15]. It has been used to study
crystallized packings in [STR+17].

14

CHAPTER 1. INTRODUCTION 15

Challenges Since a filtration consists of a nested sequence of simplicial complexes, the
last complex contains the largest number of simplices. The size of a filtration is the number
of simplices in the last complex. If M is the size of a filtration, the persistence algorithm
takes O(M3) time to compute the persistence diagram. In practice, it has been observed
that the algorithm takes near-linear time in M , which makes it efficient for reasonable
values of M .

Unfortunately, M can be very large in practice. For instance, at high scales the
balls defining the Čech complex can have many intersections among themselves: every
(k + 1)-subset of balls may intersect, which means that the Čech complex can have up
to nO(k+1) k-simplices. The k-skeleton of a complex is a subset which contains simplices
of dimension up to (and including) k. Naturally, the k-skeleton of the Čech complex can
have size nO(k). The same problem occurs for the Rips complexes. While this is tractable
for small k, such as the 1-skeleton, going higher in dimensions leads to a combinatorial
explosion in the complex size. This makes computing the persistence impractical even for
medium dimensional homology, and restricts its practical applications. A common trick
is to cap the construction of the filtration at a scale till which computation is feasible.
However, this method runs the risk of missing out on important topological features, since
they may appear at scales higher than the capped limit.

In two and three dimensions, an efficient alternative to the Čech complex is the Alpha
complex [EH10], which is a subset of the Delaunay triangulation and is defined in a slightly
different manner from the Čech complex. Instead of looking directly at the balls defining
the Čech complex, we restrict the balls to the individual Voronoi regions of the input
points. Then, each non-empty (k + 1)-wise intersection of the restricted balls gives a
k-simplex in the Alpha complex. See Figure 1.6 for an illustration. The Alpha complex
has the same homology as the Čech complex; moreover, because the intersections between
the balls is restricted, it is a subset of the Čech complex. Alpha complexes can be used to
build a filtration and compute persistence. Unfortunately, the size of the Alpha filtration
is as large as nO(bd/2c), which is tractable for low dimensions, but faces the same obesity
issues as the Čech and Rips filtrations in higher dimensions.

An approach to tackle this issue is to try and compute an approximation of the
persistence diagram instead. The approximation is in the sense that there is a partial
matching between the original and the approximate diagrams, where points with signif-
icant persistence and similar lifelines are matched together. See Figure 1.7 for a more
pictorial description. A close matching implies that important topological features are
well-represented in the approximate version, so that the crucial features of the data are
still accessible and distinguishable from noise. The obvious requirement is that computing
the approximation should be much more efficient that the original.

To compute the approximation, a collection of simplicial complexes {Ki | i ∈ I} is
constructed over a set of scales I. At each scale, these complexes approximately represent
the topology and geometry of the original complex. There are homology-preserving maps
{θi | i ∈ I} between the approximate complexes. Such a collection is called a tower and
can be represented in the form:

K1
θ1−→ K2

θ2−→ K3
θ3−→ . . .

θm−1−→ Km.

Typically, θi maps simplices of Ki to simplices of Ki+1, in which case it is known as a
simplicial map. There are efficient algorithms [DFW14, KS17] to compute the persistence
diagram of a tower which is connected with simplicial maps. For efficiency, it is desirable
that the size of the tower should be small. Unlike filtrations, a tower’s size is not determined
by the largest complex in the sequence, since the map θ can contract simplices to make them

(a) The union of balls. (b) ...and the corresponding Čech com-
plex.

(c) Balls restricted to the Voronoi re-
gions. The Voronoi boundaries are
shown in black (dark).

(d) ...the corresponding Alpha complex.

Figure 1.6: The Čech complex and the Alpha complex at the same scale.

disappear. Rather, the number of simplices which are added to the sequence determines
the size of the tower.

1.2 Summary of contributions

We present several results pertaining to the construction of approximation towers. Some
of our techniques are tailored to work with Euclidean spaces, which we discuss in the
first part of the thesis. Further techniques for the special case of point clouds which have
low intrinsic dimensions are discussed in the second part of the thesis. The central idea
behind computing approximation towers is to either sparsify the point cloud using some
coarsening technique, or (perhaps counter-intuitively) in some cases, use additional Steiner
points.

The first three contributions use techniques from lattice geometry in Euclidean space.
In the first two, we build the approximation complexes using the set of lattice points
closest to the input points.

• In Chapter 4, we present our first approximation scheme for Rips filtrations in Rd.
Our scheme yields a O(d)-approximation of the Rips filtration. The k-skeleton of the
tower has size n2O(d log k) per scale, and n2O(d log d) over all scales. The construction
is based on a tessellation of the Euclidean space using Voronoi polytopes of the A∗d
lattice [CSB87]; this polytope is more commonly known as the Permutahedron. We
present several new results about the geometry and topology of the permutahedral
tessellation, that are useful in proving our result.
We also present a lower bound result on the size of approximation towers. We
construct a set of n points in Θ(logn) dimensions, such that it gives rise to nΩ(log logn)

16

CHAPTER 1. INTRODUCTION 17

Birth

D
e
a
th

Figure 1.7: The green points (large) come from the original persistence diagram, while
the blue ones (small) are from the approximation. Green points are matched to blue
points, which are contained in the square centered at the green points. The size of the
square determines the approximation ratio. The green points close to the diagonal can be
unmatched.

features of non-insignificant persistence. More specifically, we show that for any
0 < ε < 1

log1+c n
, c ∈ (0, 1), any (1 + ε)-approximation of the Čech filtration of this

point set has at least that many points in its persistence diagram, which implies
that it is impossible to get a polynomial-sized approximation for this input instance.
The contents of this chapter are based on [CKR16] and [CKRb].

• In Chapter 5, we improve upon our approximation result of Chapter 4. We present
an approximation scheme which has only n2O(d log k) simplices in the tower for the
k-skeleton in the worst case, and 2-approximates the Rips filtration in the metric of
the L∞ norm. This in turn yields a 2d1/4-approximation for the Rips filtration in
the usual L2 metric. Our construction is based on the barycentric subdivision of the
grid lattice. We arrive at our approximation result by the use of Steiner vertices,
which helps in reducing the size complexity.
Further, there are two novel techniques which we use in this chapter. The first is
the use of acyclic carriers for proving our approximation result. In our application,
these are maps which relate the Rips complex and the approximation in a relatively
simple manner and greatly reduce the complexity of showing the approximation
result. Also, they allow for more freedom in designing towers compared to previously
known methods. The second technique is what we refer to as scale balancing, which
is a simple trick to improve the approximation ratio under certain conditions.
The results in this chapter are based on our paper [CKR17].

For high-dimensional point clouds, a common way to reduce the dimension is to embed
them into a lower-dimensional space, while approximately preserving some desirable prop-
erties, such as the set of pairwise distances. Two techniques in this area are the well-known
Johnson-Lindenstrauss Lemma [JLS86], and its generalization by Matoušek [Mat90]. We
apply these dimension-reduction techniques on the input, and then proceed to approximate

the filtration of the modified point cloud. With this pipeline, the aforementioned schemes
give towers of size nO(1), which is completely independent of the original ambient dimen-
sion. These are the first results to achieve true dimension-independent polynomial-sized
approximations.

The take-away message from these results is that for relatively rough approximations,
it is possible to have true polynomial complexity, but it is impossible for very fine
approximations.

Chapter 6 presents an alternative to the above approaches. It relies on digitizing the
Euclidean space with very fine cubes (pixels). With this approach, we can approximate
the Euclidean balls which define the Čech complex with pixels; our approximation complex
is built using these pixels. We give a (1 + ε)-approximation of the Čech filtration, at the
cost of having n(1/ε)O(d)2O(dk) simplices in the k-skeleton, at any scale in the tower, for
any desired 0 < ε ≤ 1. Compared to the permutahedra-based and grid-based schemes,
this gives a much better approximation guarantee, which is independent of the ambient
dimension. On the other hand, the complexity is worse, although it is still an improvement
over previous work (see Section 1.3). The results of this chapter are based on [CKRa].

In practice, it is often the case that data sets come from low-dimensional metric spaces
residing in high dimensional ambient spaces. A common way to capture this structure is
the doubling dimension, which is a notion of intrinsic dimension of any metric space. It is
desirable that algorithms to manipulate data sets with low doubling dimension should
have complexities dependent primarily on the doubling dimension. In such cases, using
the aforementioned techniques to approximate persistence diagrams for such data sets
would be sub-optimal, since the overall complexity is strongly dominated by the ambient
dimension. We address this issue in the second part of the thesis, from two different angles:

• A well-separated pair decomposition [CK95] is a well-known data structure which
approximately captures all pairwise distances of a point set, using only linear space
in n. In [KS13], this concept was generalized to approximately represent all simplices
on the point set, using only linear space; they call the data structure a Well-
separated simplicial decomposition (WSSD). Further, using WSSDs, they provided
an approximation scheme for Čech filtrations. They used a quadtree [HP11] for
their construction, which unfortunately does not capture the intrinsic dimension. In
Chapter 7, we extend their construction to spaces with low doubling dimension.
We present a scheme to construct a WSSD whose size is linear in n and exponential
in the doubling dimension Υ. We present an (1 + ε)-approximation tower for the
Čech filtration, whose size is at most n(1/ε)O(Υ2). We use a data structure which
correctly captures the intrinsic dimension of a space: the net-tree.
The contents of this chapter are based on [CKS].

• In some applications, information is only relevant over a range of scales. The point
set may have a much lower intrinsic dimension in that range, than when looking
at all scales of distances. To model this setting, in Chapter 8 we introduce the
concept of intrinsic dimension on restricted scales, which we call the local doubling
dimension. To use this idea in an algorithmic context, we present an algorithm
to construct a net-forest, which is the part of the net-tree restricted to the range
of relevant scales. This is more efficient than pruning the net-tree. We apply the
net-forest to several applications of relevance, including a Čech approximation built
up to a desired scale, based on Chapter 7.
This chapter is based on [CK15].

18

CHAPTER 1. INTRODUCTION 19

1.3 Related work

The concept of persistent homology was first introduced by Edelsbrunner and others in the
paper [ELZ02]. They also provided a fast algorithm for computing persistence diagrams for
filtrations. The concept and the algorithm were later extended by Carlsson and Zomorodian
in [CZ05]. Further optimizations in the algorithm were introduced in [BKR14, CK11] and
it was later employed in a distributed setting [BKRW17]. The dual of persistent homology,
known as persistent co-homology, was introduced as an alternative to compute persistence
diagrams in [dSMVJ11b], and algorithms were introduced in [BDM15, dSMVJ11a]. The
concept of zig-zag filtrations, where inclusions can occur in both directions was introduced
in [CdS10], and algorithms were presented in [CdSM09, MMv11]. Recently, efficient
algorithms for computing barcodes for simplicial towers have been presented in [DFW14,
KS17]. Also, persistent homology has recently been applied to non-metric spaces [EW17].

The stability of persistence diagrams is one of the main results in the field of persistent
homology. The first result of this kind was shown in [CSEH07] for the notion of bottleneck
distance between persistence diagrams. This was further extended to a wider class of
distance measures in [CSEHM10]. The result was later generalized to arbitrary persistence
modules, abstracting from the geometric setting in [CCSG+09].

The first approximation scheme for filtrations was given by Hudson et. al in [HMOS10].
For the Alpha-filtration of n points P ⊂ Rd, they give a constant-factor approximation
tower of size n2O(d2). They used the Delaunay triangulation of a superset of P to construct
the approximation. The first approximation scheme for Rips filtrations was given by
Sheehy [She13]. For any desired 0 < ε < 1, he constructs a (1 + ε)-approximate tower of
the Rips filtration of arbitrary metric spaces. The approximation tower of [She13] consists
of a filtration of simplicial complexes, whose k-skeleton has size only n(1

ε)O(λk), where
λ is the doubling dimension of the metric. This is a significant improvement over the
result of [HMOS10], since the approximation factor can be chosen at will, and the size
of the approximation is reduced when considering skeletons of low size. Dey et. al gave
an approximation scheme for the Rips filtrations [DFW14] of similar size, along with an
algorithm to compute persistence for simplicial towers. They used vertex collapses to
reduce the size of the approximation, resulting in a simplicial tower. This is in contrast
to [HMOS10] and [She13], whose approximations consisted of filtrations. The scheme was
later optimized in [DSW16], to give significant empirical gains over [DFW14] and [She13].
Similar approximation schemes have also been proposed for Čech filtrations [BS15, CJS15,
KS13], all with comparable size bounds.

In a different direction, there has been work aiming at reducing the dimension of
the point cloud, prior to applying approximation schemes. In analogy to the famous
Johnson-Lindenstrauss Lemma [JLS86], it has been shown that an orthogonal projection
of P to an O(logn/εO(1))-dimensional subspace yields a (1 + ε)-approximation of the Čech
filtration [KR15, She14], for 0 < ε < 1. It is possible to combine dimension reduction with
the aforementioned approximation schemes. However, this yields an approximation of size
nO(k+1) (ignoring factors of ε) and does not improve upon the exact case.

The above approaches work well for instances where λ and k are small. However, even
for medium-sized dimensions and homology, these are prohibitively expensive.

1.4 Outline of the thesis

We start the technical presentation in Chapter 2 by discussing the topological preliminaries.
First, we formally discuss the concept of homology for simplicial complexes. With this

base, we then explore in length the concept of persistent homology, the central target of
this thesis.

Geometric concepts and results are presented in Chapter 3. We start by discussing
properties of the A∗ lattice (which is later used in Chapter 4), and briefly touch upon
some properties of the grid lattice. We further discuss the concepts of doubling dimension,
net-trees, pair decompositions and dimension reduction, among others.

The first part of the thesis comprises of Chapters 4 to 6. In Chapter 4 we present the
approximation scheme based on the permutahedral lattice, along with the lower bound
result for Čech filtrations. We present the approximation scheme based on grid lattices in
Chapter 5. Chapter 6 presents an alternative approach based on digitization of Euclidean
space.

The second part of the thesis comprises of Chapters 7 and 8 and focuses on point
clouds with low doubling dimension. In Chapter 7, we present techniques to construct
WSSDs and an approximation method for Čech filtrations. Chapter 8 introduces the
notion of local intrinsic dimension and applies it to several applications.

Chapter 9 concludes the presentation.

20

Chapter 2

Topological Concepts

We start the exposition by providing an overview of the topological concepts used in this
thesis. For a more detailed exposure, we direct the reader to the books [EH10, Hat02,
Mun84] and articles [BdSS15, Car09, ELZ02] in this area. We assume that the reader is
familiar with basic topological concepts. However, for the sake of completeness, we repeat
some basic concepts.

We begin by discussing the fundamental concepts of simplicial complexes and the
topology carried by such structures in Section 2.1. Then, in Section 2.2 we present the
concept of persistent homology which represents the topological information carried by
special collections of simplicial complexes. We give details about the topological summary
obtained from the pipeline of persistent homology and discuss its computational aspects.
An important idea which we use throughout the thesis concerns with the similarity of
persistence modules, and is presented in Section 2.3. We end the chapter by discussing
some additional concepts in Section 2.4.

Apart from the well-studied topological concepts, we discuss two new contributions,
one in Sub-section 2.3.3 and Sub-section 2.4.2.

2.1 Simplicial homology

In this section we discuss about simplicial complexes and their homology they carry. We
first discuss a few fundamental concepts related to the similarity of topological spaces.

2.1.1 Topological similarity

We discuss the strongest notion of similarity between topological spaces:

Definition 2.1.1 (homeomorphic spaces). Two topological spaces X and Y are said to
be homeomorphic if there exists a bijection f : X → Y such that f and f−1 are continuous
functions. We call the map f a homeomorphism from X to Y .

An alternative and equivalent definition is: X and Y are said to be homeomorphic
if there exist two continuous maps f : X → Y and g : Y → X such that f ◦ g = IDY

and g ◦ f = IDX , where IDX , IDY denote the identity maps of X and Y , respectively.
Homeomorphic spaces are topologically equivalent to each other.

In general, determining whether two spaces are homeomorphic is a difficult problem.
We turn to a weaker form of topological similarity.

Definition 2.1.2 (homotopy). Let f1, f2 : X → Y be two continuous maps between
topological spaces X,Y . A continuous function H : X× [0, 1]→ Y is said to be a homotopy

21

between f1 and f2, if H(x, 0) = f1(x) and H(x, 1) = f2(x). In this case, f1 and f2 are
said to be homotopic to each other, and we record this relation as f1

h' f2.

Informally, the second parameter of H can be interpreted as time, so that H describes
a continuous deformation of f1 into f2, as time varies from 0 to 1.

Definition 2.1.3 (homotopy equivalence). X and Y are said to be homotopy equiva-
lent if there exist continuous maps f : X → Y and g : Y → X such that f ◦ g h' IDY and
g ◦ f h' IDX . We denote this relation as X h' Y .

Intuitively, two spaces are homotopy equivalent if they can be continuously transformed
into one another. In comparison to the conditions of homeomorphisms, the condition
that f and g are inverses of each other is relaxed. Instead, homotopy equivalence only
requires that the compositions of the two functions be homotopic to the identity maps.
As such, homotopy equivalence is a weaker form of homeomorphism. Two spaces which
are homeomorphic are necessarily homotopy equivalent, but the converse is not true. A
special case of homotopy equivalence arises when Y ⊆ X.

Definition 2.1.4 (deformation retract). Let Y ⊆ X and f : X → Y be a continuous
map such that f(y) = y, ∀y ∈ Y , and f

h' IDX . Then, X h' Y and Y is said to be a
retract of X. The map f is a deformation retract realizing the homotopy equivalence.

Definition 2.1.5 (contractability). A space is said to be contractible, if it is homotopy
equivalent to a point.

2.1.2 Simplicial complexes

We will mostly deal with topological spaces which can be represented discretely. We define
the building blocks of these spaces next.

Definition 2.1.6 (simplex). Given a finite collection of elements S, an (abstract)
simplex σ on S is simply a non-empty subset σ ⊆ S. The dimension of σ is dim(σ) :=
|σ| − 1. A face of σ is a subset τ ⊆ σ. A facet of σ is a face of co-dimension 1. A proper
face of σ is a face of co-dimension one or higher.

A common example of simplices are those which have a geometric realization:

Definition 2.1.7 (geometric simplex). A (non-degenerate) geometric k-simplex is the
convex hull of a set of (k + 1)-points {p0, . . . , pk} ⊂ Rd such that the vectors (pj − p0) are
affinely independent, for 1 ≤ j ≤ k ≤ d.

From the definition, it is clear that a 0-simplex is a vertex, a 1-simplex is an edge
between two vertices, a 2-simplex is a triangle, and so on. From the definition, we see that
a k-simplex has (2k+1 − 2) proper faces. We next look at a special collection of simplices.

Definition 2.1.8 (simplicial complex). A simplicial complex K on a finite set of
elements S is a collection of simplices on S such that:

• For each simplex σ ∈ K and each face τ ⊂ σ, it holds that τ ∈ K.

• For any two simplices σ, δ ∈ K, σ ∩ δ is either empty or a common face of both σ
and δ.

A sub-complex K ′ (of K) is a simplicial complex that satisfies K ′ ⊆ K.

22

CHAPTER 2. TOPOLOGICAL CONCEPTS 23

The dimension of a simplicial complex K, dim(K) is the maximum dimension of any
simplex in K. It is known that any abstract simplicial complex of dimension k has a
geometric realization in R2k+1 [EH10].

Definition 2.1.9 (skeleton). The i-skeleton of a simplicial complex K is the maximal sub-
complex Ki ⊆ K such that each simplex of Ki has dimension at most i, for 0 ≤ i ≤ dim(K).

Naturally, K0 consists of just the vertices of K. Then, K1 is a graph on the vertices
of K, and its edges are the 1-simplices of K.

Definition 2.1.10 (flag complex). A simplicial complex K is a flag complex, if for
each subset of vertices {p0, . . . , pk} ⊆ K0 which has the property that each 1-simplex (pi, pj)
is in K1, it holds that the k-simplex (p0, . . . , pk) is in K.

As a consequence, a flag complex is completely determined by its 1-skeleton. Also, a
flag complex is the maximal simplicial complex among the set of complexes having the
same 1-skeleton.

Nerve Theorem

Let U := {U1, . . . , Um} denote a finite collection of sets.

Definition 2.1.11 (nerve). The nerve of U is an abstract simplicial complex nerve(U)
consisting of simplices corresponding to non-empty intersections of elements of U , that is,

nerve(U) := {V ⊆ U | ∩Ui∈V Ui 6= ∅}.

In other words, for every (k + 1)-wise intersection among the sets, there is a k-simplex
in the nerve. While U can be of arbitrary form, nerve(U) is a discrete object. Under
certain conditions, some topological properties of a space can be captured from its nerve.

Theorem 2.1.12 (nerve theorem). Let U := {U1, . . . , Um} be a collection of closed
sets in Euclidean space, such that all intersections of the form

{V ⊆ U | ∩Ui∈V Ui 6= ∅}

are contractible. Then, nerve(U) h' ∪mi=1Ui [Bjö95, Bjö03, Bor48, Wal81].

In particular, if U is a collection of convex sets, then all non-empty common intersections
are contractible, so that the nerve theorem applies to U . We now discuss about two
well-known simplicial complexes.

Definition 2.1.13 (Čech complex). Let P ⊂ Rd be a finite set of points. Let Bα(x)
denote the Euclidean ball of radius α ≥ 0 centered at a point x ∈ Rd. The Čech complex
at scale α is the nerve of the collection of balls (Bα(p))p∈P , that is,

Cα = {σ ⊆ P | ∩p∈σBα(p) 6= ∅}.

See Figure 2.1 for an example. Since Euclidean balls are convex objects, it follows
from Theorem 2.1.12 that Cα

h' ∪p∈PBα(p), that is, the Čech complex on P at scale α is
homotopy equivalent to the union of balls of radius α centered at the points of P .

Let meb(Q) denote the minimum enclosing ball of any finite set of points Q ⊂ Rd. Let
rad(Q) denote the radius of meb(Q). An alternative and equivalent definition of the Čech
complex can then be obtained as

Cα = {σ ⊆ P | rad(σ) ≤ α}.

Let diam(Q) denote the diameter of Q. We define a related complex to the Čech complex:

Figure 2.1: Left: Čech complex. Right: Rips complex, at the same scale (the same figure
was also used in Chapter 1).

Definition 2.1.14 (Vietoris-Rips complex). Let P ⊂ Rd be a finite set of points. The
(Vietoris-)Rips complex on P at a scale α ≥ 0 is defined as

Rα = {σ ⊆ P | diam(σ) ≤ 2α}.

An example is shown in Figure 2.1. By definition, the Rips complex is a flag complex,
so it is completely determined by its 1-skeleton. In fact, the 1-skeleton of Rα is the
intersection graph of the balls Bα(p) defining the Čech complex, meaning that there is an
edge between two points of P if their distance is at most 2α. Therefore, the 1-skeletons of
Cα and Rα are the same. The Rips complex can be obtained from the Čech complex by a
simple method: by adding simplices to Cα so that it becomes a flag complex, that is Rα.

Lemma 2.1.15. For any α ≥ 0, Cα ⊆ Rα ⊆ C√2α.

Proof. For the first relation, let σ ∈ Cα be any simplex. This means that rad(σ) ≤ α.
Since diam(S) ≤ 2rad(S) for any compact set S ⊂ Rd, it follows that diam(σ) ≤ 2α. This
shows that σ ∈ Rα.

For the second relation, let σ ∈ Rα be any simplex so that diam(σ) ≤ 2α. Jung’s
theorem [Jun01] states that

rad(S) ≤ diam(S)
√

d

2(d+ 1) ≤ diam(S)/
√

2

for any compact set S ⊂ Rd. So,

rad(σ) ≤ diam(σ)/
√

2 ≤ (2α)/
√

2 ≤
√

2α

which implies that σ ∈ C√2α. �

We remark that the definition of Rips complexes does not require P to be a geometric
point set: the Rips complex can be defined for any metric space. In particular, for the
metric space induced by the L∞-norm in Rd, we denote the Rips complex at scale α by

R∞α = {σ ⊆ P | diam∞(σ) ≤ 2α},

where diam∞ denotes the diameter in the L∞-metric.

24

CHAPTER 2. TOPOLOGICAL CONCEPTS 25

2.1.3 Homology of simplicial complexes

We discuss the homology carried by a simplicial complex K. First, we discuss a few
preliminaries.

Definition 2.1.16 (chains). A p-chain c of K is a formal sum of p-simplices of K.
Specifically, c is of the form c =

∑
aiσi, where σi ∈ Kp \Kp−1,∀i, the coefficients ai come

from some field F and 0 ≤ p ≤ dim(K) is an integer.

In this thesis, we use the field Z2 to define the coefficients. We add two p-chains
c1 =

∑
aiσi and c2 =

∑
biσi linearly : c1 + c2 =

∑
(ai + bi)σi.

Definition 2.1.17 (chain group). The set of p-chains of K along with the addition
operator is an abelian group Cp(K), called the p-th chain group of K.

It is easy to verify that Cp(K) is a group. The 0-element of Cp(K) is the empty chain
0. The inverse of any chain c is itself, since c+ c = 0 due of addition over Z2. Also, the
definition of addition over Z2 ensures that Cp(K) is associative as well as abelian. To
shorten the notation, we write Cp instead of Cp(K) when K is clear from the context.

For each 0 ≤ p ≤ dim(K), we have a chain group Cp. These chain groups can be
related by homomorphisms, which we discuss next.

Definition 2.1.18 (boundary map). The boundary map ∂p : Cp → Cp−1 is a map
from the group of p-chains to the group of (p− 1)-chains. For a p-simplex σ = (v0, . . . , vp),
the boundary is defined as the (p− 1)-chain

∂σ =
p∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vp),

where v̂i denotes the absence of the vertex vi. The boundary of a p-chain c =
∑
aiσi is

defined as
∂pc = ∂p

∑
aiσi =

∑
ai∂pσi,

which is a (p− 1)-chain.

Since we use the field Z2, we can simplify the definition of the boundary of simplex
σ to ∂σ =

∑p
i=0(v0, . . . , v̂i, . . . , vp). Informally, the boundary of a simplex is an oriented

sum of its facets. In particular, the boundary of a vertex is 0. ∂p commutes with addition,
since ∂p(c1 + c2) = ∂pc1 + ∂pc2. This means that ∂p is a homomorphism from Cp to Cp−1
and we call it a boundary homomorphism. Collecting the boundary homomorphisms for
K, we get:

Definition 2.1.19 (chain complex). The sequence

. . .
∂p+1// Cp(K)

∂p // Cp−1(K)
∂p−1 // Cp−2(K)

∂p−2 // . . .

is called the chain complex of K and is denoted by C∗(K).

Lemma 2.1.20. For any 0 ≤ p ≤ dim(K) and any p-chain c, ∂p−1 ◦ ∂pc = 0.

Proof. Let c =
∑
aiσi. We show that for any simplex σ in the combination, ∂p−1 ◦∂pσ = 0,

which proves the claim.
∂p−1 ◦ ∂pσ consists of a sum of (p − 2)-faces of σ. Each (p − 2)-face of σ is incident

to two (p − 1)-faces of σ. ∂p(σ) consists of all (p − 1)-faces of σ. As such, ∂p−1 ◦ ∂pσ
contains each (p− 2)-face twice, which cancels out because of addition over Z2. The claim
follows. �

Figure 2.2: The figure contains a simplicial complex K which has two triangles, A and B in
addition to the edges labeled from a to l. The following are the 2-chains of K: 0, A,B,A+B.
The 1-boundaries are the boundaries of 2-chains, so they are 0, d+ f + g, k +m+ n,
The 1-chains x := a+b+c+d+e, y := g+h+ i+j+k+ l and z := g+h+ i+j+n+m+ l
are some of the 1-cycles of K. We see that y − z = n+ k +m is a 1-boundary, so y and z
are homologous cycles and it is also apparent from the figure that they are homotopic.
On the other hand, x− y is not a 1-boundary, so x and y are not homologous. H1(K) has
two generators, because of the 1-cycles x and y.

Definition 2.1.21 (p-cycle). An element c of Cp is called a p-cycle, if ∂pc = 0.

Let Zp denote the collection of p-cycles of Cp. It is easy to see that Zp is closed under
addition and taking inverses, so Zp is a sub-group of Cp. Moreover, by definition, Zp is
the kernel of the map ∂p, Zp = ker ∂p.

Definition 2.1.22 (p-boundary). An element c of Cp is called a p-boundary, if there
exists a (p+ 1)-chain τ of Cp+1 such that ∂p+1τ = c.

Let Bp denote the collection of p-boundaries of Cp. It is easy to see that Bp is a
sub-group of Cp. Due to Lemma 2.1.20, it also follows that Bp ⊆ Zp, so Bp is a sub-group
of Zp. Moreover, by definition Bp is the image of all (p+ 1)-chains of Cp+1 under the map
∂p+1, that is, Bp = im∂p+1.

Since Bp is a sub-group of the abelian group Cp, it is a normal group. Therefore, we
can take the quotient of the two groups.

Definition 2.1.23 (homology group). The p-th Homology group of K, Hp(K) is
defined as the quotient group Hp(K) = Zp(K)/Bp(K) = ker ∂p/im∂p+1.

Each element of Hp is obtained by taking any cycle z ∈ Zp and computing z + Bp,
which is the coset of Bp in Zp. If there is a cycle z′ = z + b, b ∈ Bp, then by definition
z′ +Bp = z +Bp. We say that z +Bp is a homology class and z, z′ are homologous cycles
of z +Bp, that is, they differ by a boundary.

Each element h of Hp represents a collections of homologous cycles, which informally
means that all elements of h are homotopic. For an illustration, see Figure 2.2.

Definition 2.1.24 (Betti number). The p-th Betti number of K is the rank of the
group Hp,

βp = rank(Hp) = rank(Zp)− rank(Bp).

Intuitively, βp represents the number of p-dimensional holes in K for p ≥ 1. β0
represents the number of connected components of K.

26

CHAPTER 2. TOPOLOGICAL CONCEPTS 27

2.2 Persistent homology

In the previous section we have seen the homology carried by a single simplicial complex.
In this section we study maps between simplicial complexes and the effect on the homology
groups.

2.2.1 Simplicial maps and induced homomorphisms

Definition 2.2.1 (vertex and simplicial maps). Let K,L be simplicial complexes. A
vertex map f̂ : K0 → L0 is a map which assigns to each vertex v ∈ K, some vertex
f̂(v) ∈ L.

If for each simplex σ = (v0, . . . , vk) ∈ K, the set {f̂(v0), . . . , f̂(vk)} spans a simplex of
L, then the linear extension of f̂ to simplices of K, f : K → L, is called the simplicial
map induced by f̂ . Formally, f is defined using barycentric co-ordinates as: if x =

∑
λivi

is a point in σ, then f(x) =
∑
λif̂(vi), 0 ≤ λi ≤ 1, ∀i.

Simplicial maps are an example of continuous maps between geometric simplicial
complexes, but they are also applicable to abstract simplicial complexes, where the linear
extension of the vertex map is skipped. An elementary observation is that the composition
of any number of simplicial maps is a simplicial map. Simplicial maps do more than just
relate simplicial complexes, which we explain next.

Definition 2.2.2 (chain map). Let K,L be simplicial complexes. A chain map is a
family of homomorphisms f# : Cp(K)→ Cp(L) between the chain complexes of K and L,
that satisfy f# ◦ ∂p,K = ∂p,L ◦ f#, for each p. Here, ∂p,K and ∂p,L are the p-th boundary
maps of K and L, respectively.

A simplicial map f : K → L gives rise to a chain map f# : Cp(K)→ Cp(L) for each
p. For each p-simplex σ ∈ K, we define f#(σ) = f(σ) if dim(f(σ)) = p, and f#(σ) = 0
otherwise. For any chain c =

∑
aiσi, f#(c) is then defined as f#(c) =

∑
aif#(σi). For

σ = (v0, . . . , vp), we note that

∂pf(σ) = ∂p[f(v0), . . . , f(vp)] =
p∑
i=0

(−1)i[f(v0), . . . , ˆf(vi), . . . , f(vp)]

=
p∑
i=0

(−1)if(v0, . . . , v̂i, . . . , vp) = f

(p∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vp)
)

= f(∂p(σ)),

which implies that ∂p ◦ f# = f# ◦ ∂p. We say that f# is the chain map induced by f .
We mention two important properties of chain maps:

• If id : K → K is the identity function on K, then the chain map induced by id,
id# : Cp(K)→ Cp(K) is identity on Cp(K), for all p.

• If f1 : K1 → K2, f2 : K2 → K3 are simplicial maps for simplicial complexes
K1,K2,K3, then (f2 ◦ f1)# = (f2)# ◦ (f1)#.

The two properties exhibit the functorial nature of chain maps induced by simplicial maps:
Cp sends simplices to chain complexes and # sends simplicial maps between two complexes
to chain maps between the respective chain complexes. So (Cp,#) is a functor from the

category of simplicial complexes and simplicial maps to the category of chain complexes
and chain maps.

In this thesis, we mostly concern ourselves with chains maps induced by simplicial
maps, but remark that chain maps are a more general concept, which should be clear from
Definition 2.2.2.

Lemma 2.2.3. The chain map f# : Cp(K)→ Cp(L) induces homomorphisms of the form
f∗ : Hp(K)→ Hp(L) between the respective homology groups, for each p. Since Hp(K) is
a vector space, we say that f∗ is the linear map induced by f .

Proof. For each cycle c ∈ Zp(K), it holds that ∂pf#(c) = f#(∂pc) = 0, so f#(c) is a cycle in
Zp(L). This implies that f#(Zp(K)) ⊆ Zp(L). For each boundary b ∈ Bp(K), there exists
a chain e ∈ Cp+1(K) such that ∂e = b. Then, f#(b) = f#(∂e) = ∂f#(e) so that f#(b) is a
boundary in Bp(L). This implies that f#(Bp(K)) ⊆ Bp(L). Since f# takes boundaries to
boundaries and cycles to cycles, it induces a homomorphism f∗ : Hp(K)→ Hp(L) on the
quotient groups. Also, f∗ is induced by f# which in turn is induced by f . Therefore, we
say that f∗ is induced by f . �

Just like the extension of simplicial maps to chain maps, the extension of chain maps to
linear maps is functorial in nature which means that it respects identity and composition.
Taking into account both these functors, we can say that:

Definition 2.2.4 (homology functor). (H, ∗) is the homology functor from the cate-
gory of simplicial complexes and simplicial maps to the category of abelian groups and
homomorphisms.

2.2.2 Towers and Persistence Modules

Definition 2.2.5 (inclusion). A map inc : X → Y between topological spaces X and Y
is called an inclusion map, if X ⊆ Y and inc(x) = x,∀x ∈ X. We denote this map as
X �
� // Y .

Definition 2.2.6 (filtration). Let I ⊆ R be a set of real values. A filtration (X)α∈I is
a collection of topological spaces Xα such that for each pair {α1 ≤ α2} ∈ I, there is an
inclusion Xα1

� � // Xα2 . The elements of the set I are called the scales of the filtration.

We can obtain filtrations of simplicial complexes using concepts from Definition 2.1.14
and Definition 2.1.13.

• For any two scales 0 ≤ α ≤ β, the Rips complexes at those scales satisfy Rα ⊆ Rβ,
so there is a natural inclusion from Rα to Rβ . This gives a Rips filtration (Rα)α≥0
over the range of scales [0,∞).

• Similarly, the Čech complexes at those scales satisfy Cα ⊆ Cβ which gives the Čech
filtration (Cα)α≥0 over the range of scales [0,∞).

The above filtrations can also be defined for any subset of the range of scales [0,∞) with
the same conditions. We next look at a more general collection of simplicial complexes:

Definition 2.2.7 (tower). Let J ⊂ R be a discrete index set. A (simplicial) tower over
J is a sequence of simplicial complexes (Kα)α∈J indexed over J , along with simplicial
maps fα : Kα → Kα′ for every pair of consecutive scales α ≤ α′ ∈ J .

28

CHAPTER 2. TOPOLOGICAL CONCEPTS 29

For any collection of consecutive scales {α1 ≤ . . . ≤ αm} ∈ J , we can compose simplicial
maps to get fα1,αm : Kα1 → Kαm by defining fα1,αm = fαm−1 ◦ . . . ◦ fα1 . This turns the
tower into a category, where the objects are the simplicial complexes at different scales
and the morphisms are simplicial maps between them. The simplest example of a tower is
a filtration such as the Rips filtration restricted to a discrete number of scales, where the
simplicial maps are simply inclusions.

Each tower can be written in the form

K1
f1−→ K2

f2−→ . . .
fm−1−→ Km

where each Ki differs from Ki−1 in an elementary fashion:

• either Ki contains precisely one simplex more than Ki−1, in which case we call the
simplicial map fi−1 : Ki−1 → Ki an elementary inclusion and say that the simplex
σ = Ki \Ki−1 is included in the tower at scale i.

• or, there is exactly one pair of vertices (u, v) ∈ Ki−1 such that fi−1(u) = fi−1(v). In
this case, we say that fi−1 is an elementary contraction at scale i.

The size of a tower is the number of simplices which are included over all scales. For
the special case of filtrations, the size of the tower is simply the largest complex in the
sequence. However, this is not true for in general for simplicial towers, since simplices
can collapse in the tower, and the size of the complex at a given scale may not take into
account the collapsed simplices which were included at earlier scales in the tower.

Definition 2.2.8 (persistence module). A persistence module V over an index set
I ⊆ R is a collection of vector spaces (Vα)α∈I connected with homomorphisms of the form
φα,β : Vα → Vβ for α ≤ β ∈ I, that satisfy:

• φα,α is the identity map on Vα for each α ∈ I.

• φα,γ = φβ,γ ◦ φα,β for all α ≤ β ≤ γ ∈ I.

We can construct a persistence module from the concepts defined earlier. Let (Kα)α∈I
be a tower connected with maps {fα}α∈I . As mentioned earlier, (Kα)α∈I along with the
composition of simplicial maps {fα,β}α≤β∈I forms a category. Applying the homology
functor from Definition 2.2.4 gives a collection of vector spaces (Hp(Kα))α∈I connected with
linear maps fα,β∗ : Hp(Kα)→ Hp(Kβ) which satisfy the conditions for being a persistence
module, for all p [BS14, Mun84]. Therefore, (Hp(Kα))α∈I is the p-th persistence module
of (Kα)α∈I . We denote by H(Kα) the direct sum of Hp(Kα) for all p, and in short say
that (H(Kα))α∈I is the persistence module of the tower.

2.2.3 Persistence Barcodes

Next, we discuss a compact representation of persistence modules.

Definition 2.2.9 (interval module). Given an index set J ⊆ R and a pair {b < d} ∈ J ,
an interval module Ib,d over a field F is a persistence module that consists of the following
collection of vector spaces Vi and linear maps:

Vi =

0 for i < b ⊆ J
F for i ∈ [b, d] ⊆ J
0 for i > d ⊆ J

and φi =

0 for i < b ⊆ J
id for i ∈ [b, d− 1] ⊆ J
0 for i ≥ d ⊆ J

,

where φi is the linear map from Vi to the next space, and id is the identity function.
Pictorially, this can be represented as:

0 0−→ . . .
0−→ 0︸ ︷︷ ︸

i<b

0−→ F id−→ . . .
id−→ F︸ ︷︷ ︸

i∈[b,d]⊆J

0−→ 0 0−→ . . .
0−→ 0︸ ︷︷ ︸

i>d

.

We consider interval modules over Z2. Let V := (Vα)α∈J be a persistence module over
an index set J . If each Vi is finite-dimensional, then V is isomorphic to a direct sum of
interval modules [CdS10]:

V '
⊕

Ibi,di .

Definition 2.2.10 (persistence barcode). Let V be a persistence module which can be
decomposed in the form V ' Ib1,d1

⊕
. . .
⊕

Ibm,dm. The collection of intervals

{(b1, d1), . . . , (bm, dm)}

is called the persistence barcode of V.

It is evident that the algebraic structure of V is completely determined by its decom-
position into interval modules. Therefore, the barcode completely characterizes V up to
isomorphism.

We concern ourselves with persistence modules generated by towers of the form (Kα)α∈J .
Since (H(Kα))α∈J is a persistence module, it allows a decomposition into intervals. The
barcode of such a module has a simple interpretation: each interval [b, d] represents a
homology class which existed in the sequence of groups H(Kb), . . . ,H(Kd−1).

A more intuitive explanation is possible for the special case of filtrations. Let (Lα)α∈J
be a filtration. Applying the homology functor, we get a persistence module (H(Lα))α∈J
where the vector spaces are Hp(Lα) with linear maps φα,β : Hp(Lα)→ Hp(Lβ) for all p
and α ≤ β ∈ J . Let there be a homology class γ ∈ Hp(Lα) such that γ 6∈ imφα−ε,α for any
ε > 0. Then, we say that the class γ was born at scale α. Let β be the smallest scale such
that φα,β(γ) ∈ imφα−ε,β for some ε > 0. We say that γ dies at scale β. In other words,
the homology class γ persists for the range of scale [α, β]. This range [α, β] corresponds to
an interval in the barcode of (H(Lα))α∈J .

Definition 2.2.11 (persistent homology groups and Betti numbers). The p-th
persistent homology groups of the module (H(Lα))α∈J are the images of the linear maps
Ha,b
p = imφa,b. The p-th persistent Betti numbers are the ranks of the p-th homology

groups, βa,b = rank(Ha,b
p).

In other words, the persistent Betti numbers determine the barcode of the persistence
module. A persistence module V with linear maps φ.,. is said to be tame, if all the linear
maps φα,β have finite rank. In this thesis we only consider persistence modules which are
tame. The condition for tameness allows for a different, but equivalent representation of
the barcode [CdSGO16].

Definition 2.2.12 (persistence diagram). Let V be a persistence module with barcode
{(b1, d1), . . . , (bm, dm)}. The persistence diagram (dgm) of V is the multi-set of points

dgm(V) = {(bi, di)}1≤i≤m

in the extended Euclidean plane [−∞,∞]2. We say that the value (di−bi) is the persistence
of the interval (bi, di).

Since di ≥ bi for each interval [bi, di] in the barcode, all the points in the persistence
diagram lie on or above the diagonal y = x. See Figure 2.3 for an example.

30

CHAPTER 2. TOPOLOGICAL CONCEPTS 31

2.2.4 Computing the barcode

We discuss an algorithm [EH10, ELZ02] to compute the persistence barcode from the
persistence module induced by a filtration K := (Kα)α≥0.

Let {σ1, . . . , σm} denote the simplices of K, in the order of inclusion. Let M denote a
m×m matrix whose rows and columns represent the simplices {σ1, . . . , σm} in order and
M(i, j) = 1 if and only if σi is a facet of σj . M is called the boundary matrix of K.

From the definition, it is clear that M is an upper triangular matrix. For any 1 ≤ j ≤ m,
let col(j) and row(j) denote the j-th columns and rows of M , respectively. For any col(j),
let anchor(j) = {max i |M(i, j) = 1} denote the index of the lowest row which contains a
1 in col(j). If col(j) has only zero entries, then we let anchor(j) = 0. We call the matrix M
as reduced, if for each row(i) of M , there is a unique column col(j) such that anchor(j) = i.
In general, the boundary matrix M is not reduced. With a simple procedure, we transform
M in to a reduced form.

Algorithm 1 Matrix Reduction
R = M
for j = 1 to m do

while there exists k < j such that anchor(k) = anchor(j) do
Set col(j)← col(j) + col(k) (in R).

end while
end for

Algorithm 1 transforms M in to R, a reduced matrix. The matrix R has the following
properties:

• Each zero column corresponds to a positive simplex, whose addition creates a
homology class. The number of zero columns corresponding to the p-simplices of K
is the rank of Zp.

• Each non-zero column corresponds to a negative simplex, whose addition destroys a
homology class. The number of non-zero columns corresponding to the p-simplices
of K is the rank of Bp.

• Consider a zero column col(i) and the corresponding row, row(i). There are two
possibilities:

– row(i) contains an anchor, that is, anchor(j) = i for some j. Then σj is said to
be paired with σi. This means that σj destroys a class which was added by σi,
and therefore [αi, αj] is an interval in the barcode of Hp(K), where dim(σi) = p.

– row(i) does not contain an anchor. Then, σi remains un-paired, so σi corre-
sponds to a class which was born but not destroyed and gives an interval [αi,∞)
in the barcode of Hp(K), where dim(σi) = p.

While the reduced matrix R is not unique, the above properties hold for any matrix
reduced from M . Therefore, collecting the column-anchor pairs as above gives the barcode
of the filtration.

From the description of the algorithm, it is apparent that the runtime complexity is
O(m3), accounting for the two loops and the addition of two columns. For practical data
sets, however, it has been observed that the runtime is usually near-linear in m, because
M is usually sparse.

Recent developments While we have briefly mentioned the simplest algorithm for
computing persistence barcodes, there have been several advancements in this area.
Algorithms to compute the barcode of filtrations have been improved to exploit the
sparsity and the structure of the boundary matrix [BKR14, CK11]. Techniques have also
been employed in a distributed setting [BKRW17]. Another way to get the barcode is
to compute persistence cohomology, which is a dual to homology [BDM15, dSMVJ11a,
dSMVJ11b]. A generalization of filtrations are zig-zag sequences, where inclusions can
occur in both directions [CdS10] in the sequence of simplicial complexes, unlike filtrations
where inclusions are monotonic. Algorithms have been developed to compute zig-zag
persistence [CdSM09, MMv11]. Until now, we have only discussed about computing
persistence for filtrations. However, our main concern are general simplicial towers.
Fortunately, there have been recent developments in computing barcodes for general
simplicial towers efficiently [DFW14, KS17].

2.3 Stability of persistence modules

In this section we discuss the notion of closeness of persistence modules. First, we look at
a way to compare two barcodes.

2.3.1 Distance between barcodes

Let V,W be two persistence modules. We discuss a way to compare the persistence
diagrams dgm(V) and dgm(W) (Definition 2.2.12).

Definition 2.3.1 (bottleneck distance). A bottleneck matching M ⊆ dgm(V)×dgm(W)
between points of dgm(V) and dgm(W) with cost µ is a matching which satisfies:

• each point of dgm(V) is matched to at most one point of dgm(W) and vice-versa,
with ‖v − w‖∞ ≤ µ for each (v, w) ∈M .

• for each unmatched point of u ∈ dgm(V) ∪ dgm(W), the L∞-distance of u from the
diagonal y = x is at most µ.

The bottleneck distance between dgm(V) and dgm(W) is defined as

dB(dgm(V), dgm(W)) = inf
M⊆dgm(V)×dgm(W)

cost(M),

where cost(M) is the cost of the matching M .

For simplicity of notation, we write dB(V,W) instead of dB(dgm(V),dgm(W)) when
it is clear from context. Informally, features of low persistence are represented by points
which are close to the diagonal and do not contribute to the bottleneck distance when
comparing diagrams. The points with high persistence are matched to determine the
bottleneck distance. See Figure 2.3 for an illustration.

Definition 2.3.2 (log-scale bottleneck distance). Let V,W be persistence modules
and let log dgm(V) denote the transformation of each point (x, y) ∈ dgm(V) to (log x, log y).
The multi-set of points log dgm(V) is called the log-scale persistence diagram of V. The
log-scale bottleneck distance between the persistence diagrams of V and W is defined as
dB(log dgm(V), log dgm(W)).

32

CHAPTER 2. TOPOLOGICAL CONCEPTS 33

Figure 2.3: The collection of blue points (large dots) represents the persistence diagram
of some persistence module. Similarly, the collection of green points (small dots) is the
persistence diagram of some other persistence module. We have drawn each point with
multiplicity one.
The figure also shows a matching between the two diagrams. When a green point and a
blue point are in the same box, they are a matched pair in the bottleneck matching. Blue
points in empty boxes are matched to the diagonal. The side-length of the box determines
the cost of the matching.

2.3.2 Interleavings

Now we elaborate the conditions which can be used to compare persistence modules.

Definition 2.3.3 (weak interleaving [CCSG+09]). Let V,W be persistence modules
over an index set I ⊆ R with linear maps φ, ψ, respectively. V,W are said to be (multiplica-
tively) weakly ε-interleaved if there exist a pair of families of linear maps γα : Vα →Wεα

and δα : Wα → Vεα for all α ∈ I and ε > 0, such that the diagram

. . . // Vαε
γ

""

φ // Vαε3 // . . .

. . . //Wα
ψ //

δ
==

Wαε2
//

δ
;;

. . .

(2.1)

commutes for all α ∈ I (the subscripts of the maps have been removed for readability).

Theorem 2.3.4 (weak stability theorem [CCSG+09]). If two persistence modules
V,W are weakly ε-interleaved, then dB(log dgm(V), log dgm(W)) ≤ 3ε. We say that V,W
are 3ε-approximations of each other.

Under more stringent conditions, the approximation factor can be improved:

Definition 2.3.5 (strong interleaving [CCSG+09]). Persistence modules V,W in-
dexed over R with respective linear maps φ, ψ are said to be (multiplicatively) strongly ε-
interleaved if there exist a pair of families of linear maps γα : Vα →Wεα and δα : Wα → Vεα

for ε > 0, such that the diagrams

Vα
ε

φ //

γ

!!

Vεα′ Vεα
φ // Vεα′

Wα
ψ //Wα′

δ
<<

Wα
ψ //

δ

==

Wα′

δ
<<

Vα
φ // Vα′

γ

""

Vα
φ //

γ

!!

Vα′
γ

""
Wα

ε

ψ //

δ

==

Wεα′ Wεα
ψ //Wεα′

(2.2)

commute for all α ≤ α′ ∈ R.

Theorem 2.3.6 (strong stability theorem [CCSG+09]). If two persistence modules
V,W are strongly ε-interleaved, then dB(log dgm(V), log dgm(W)) ≤ ε. We say that V,W
are ε-approximations of each other.

We remark that interleavings satisfy the triangle inequality. This result is folklore;
see [BS14, Theorem 3.3] or [CdSGO16, Proposition 5.3] for a proof in a generalized context.

Lemma 2.3.7 (transitivity of interleavings). Let V1, V2, and V3 be persistence
modules. If V1 is a ε-approximation of V2 and V2 is a η-approximation of V3, then V1 is
a (εη)-approximation of V3.

We end this part by discussing an important result which relates to the equivalence of
persistence modules.

Theorem 2.3.8 (persistence equivalence theorem [CZ05, GOT17]). Two persis-
tence modules V = (Vα)α∈I and W = (Wα)α∈I on linear maps φ, ψ respectively are
isomorphic, if there exists an isomorphism f : Vα → Wα for each α ∈ I such that the
diagram

. . . // Vα
φ //

f

��

Vβ //

f

��

. . .

. . . //Wα
ψ //Wβ

// . . .

(2.3)

commutes for all α ≤ β ∈ I. Isomorphic persistence modules have identical persistence
diagrams, that is, dgm(V) = dgm(W).

2.3.3 Scale balancing

Scaling a tower Let A := (Aα)α∈I be a tower connected with simplicial maps φ over
an index set I. We denote by A′α := Aαε a complex at a scale factored by some ε > 0 such
that α, αε ∈ I and there exist simplicial maps φ : A′α → A′β for all α, β ∈ I. Then, we can
build a tower A′ := (A′α)α∈I using φ. Essentially, A′ is a shifted version of A with respect
to the scales involved, so the persistence barcodes of the two towers are related.

Let (x, y) be an interval in the barcode of the persistence module of A. This means
that there is a homology class which is born at scale x in the complex Ax and dies at

34

CHAPTER 2. TOPOLOGICAL CONCEPTS 35

scale y in the complex Ay. The complex Ax corresponds to A′x/ε and Ay corresponds to
A′y/ε. Therefore, the homology class corresponding to the interval [x, y] in A appears in
the interval [x/ε, y/ε] in A′. This leads to a injective map from the barcode of A to the
barcode of A′. The same argument also works in the opposite direction, from A′ to A.
Therefore, we have a bijection between the two barcodes, which sends any interval [b, d]
of A to [b/ε, d/ε] of A′. The two barcodes are scaled versions of each other. Computing
either barcode is equivalent, and in this thesis we treat the barcode of any tower and any
shifted version as equivalent, without being explicit.

Scaling and interleaving Let V = (Vα)α∈I and W = (Wα)α∈I be two persistence
modules over linear maps fv, fw, respectively. Let there be linear maps φ : Vα/ε1 →Wα

and ψ : Wα → Vαε2 for 1 ≤ ε1, ε2 such that all α, α/ε1, αε2 ∈ I. Suppose that the following
diagram commutes, for all α ∈ I.

. . . //Wα

ψ

!!

fw //Wαε1ε2
// . . .

. . . // Vα/ε1
fv //

φ
<<

Vαε2
//

ψ
;;

. . .

(2.4)

Let ε := max(ε1, ε2). Then, by replacing ε1, ε2 by ε in Diagram (2.4), the diagram still
commutes, so V is a 3ε-approximation of W, by Theorem 2.3.4.

We improve the approximation factor by interpreting the scale a little differently. We
define a new vector space V ′cα := Vα, where c =

√
ε1
ε2

and cα ∈ I. This gives rise to a
new persistence module, V′ = (Vcα)α∈I . The maps φ and ψ can then be interpreted as
φ : V ′α/√ε1ε2 → Wα, or φ : V ′α → Wα

√
ε1ε2 and ψ : Wα → V ′α√ε1ε2 . Then, Diagram (2.4)

can be re-interpreted as

. . . //Wα
√
ε1ε2

ψ

$$

fw //Wα(ε1ε2)3/2 // . . .

. . . // Vα′
fv //

φ
;;

V ′αε1ε2
//

ψ
99

. . .

(2.5)

which still commutes. Therefore, V′ is a 3√ε1ε2-approximation of W, which is an im-
provement over V, since √ε1ε2 ≤ max(ε1, ε2). As discussed earlier, V and V′ have the
same barcode up to scaling. Therefore, by re-interpreting the scales differently, we have
improved the approximation factor.

This scaling trick also works when V and W are strongly interleaved. If we have the
diagrams which commute (where we have skipped the maps for readability):

Wα
//

""

Wα′ε1ε2 Wαε1
//Wα′ε1

Vαε2
// Vα′ε2

::

Vα //

<<

Vα′

;;

Wαε1
//Wα′ε1

$$

Wα
//

""

Wα′

##
Vα //

<<

Vα′ε1ε2 Vαε2
// Vα′ε2

(2.6)

then V and W are max(ε1, ε2)-approximations of each other. By defining V′ as before, the
following diagrams

Wα
//

!!

Wαc2 Wαc
//Wα′c

V ′αc // V ′α′c

;;

V ′α //

==

V ′α′

<<

Wαc
//Wα′c

##

Wα
//

!!

Wα′

""
V ′α //

==

V ′α′c2 V ′αc // V ′α′c

(2.7)

commute for c = √ε1ε2, so we can improve a max(ε1ε2)-approximation to an √ε1ε2-
approximation.

We end the section by discussing an important relation between Čech and Rips
filtrations.

Lemma 2.3.9. The Čech persistence module (H(Cα))α≥0 and the Rips persistence module
(H(Rα))α≥0 are 4√2-approximations of each other.

Proof. Recall from Lemma 2.1.15 that

Cα ⊆ Rα ⊆ C√2α.

Using this result, it is straightforward to see that the following diagrams

Cα �
� //
� _

��

Cεα′ Cεα �
� // Cεα′

Rα �
� // Rα′

-

<<

Rα �
� //
. �

==

Rα′
-

<<

Cα �
� // Cα′� _

��

Cα �
� //
� _

��

Cα′� _

��
Rα

ε

� � //
. �

>>

Rα′ Rα �
� // Rα′

commute for ε =
√

2 and all α′ ≥ α ≥ 0. The claim follows from Theorem 2.3.6 and from
applying the scale balancing technique for strongly interleaved modules on C and R. �

2.4 Additional concepts

We discuss two additional concepts, which is useful for our results.

2.4.1 Acyclic carriers

Definition 2.4.1 (acyclicity). We call a simplicial complex K acyclic, if K is connected
and all homology groups Hp(K) are trivial.

In particular, if K is contractible, then it is also acyclic.

36

CHAPTER 2. TOPOLOGICAL CONCEPTS 37

Definition 2.4.2 (acyclic carrier). For simplicial complexes K and L, an acyclic carrier
Φ is a map that assigns to each simplex σ in K, a non-empty subcomplex Φ(σ) ⊆ L such
that Φ(σ) is acyclic, and whenever τ is a face of σ, then Φ(τ) ⊆ Φ(σ).

We say that a chain c in Cp(K) is carried by a subcomplex K ′ ⊆ K, if c takes value 0
except for p-simplices in K ′. A chain map φ : C∗(K)→ C∗(L) is carried by Φ, if for each
simplex σ ∈ K, φ(σ) is carried by Φ(σ). We make use of the acyclic carrier theorem:

Theorem 2.4.3 (acyclic carrier theorem [Mun84]). Let Φ : K → L be an acyclic
carrier.

• There exists a chain map φ : C∗(K)→ C∗(L) such that φ is carried by Φ.

• If two chain maps φ, ψ : C∗(K)→ C∗(L) are both carried by Φ, then φ h' ψ and hence
the induced linear maps φ∗ = ψ∗.

Sometimes, we use an alternative form of the acyclic carrier theorem, which was stated
in [Wal81], and guarantees that for an acyclic carrier Φ : K → L,

• There exists a continuous function ψ : |K| → |L| which is carried by Φ.

• If two continuous functions f1, f2 : |K| → |L| are both carried by Φ, then f1
h' f2,

that is, they are homotopic and the induced linear maps are equal.

We mention a special case of acyclic carriers for simplicial maps:

Definition 2.4.4. Let K,L be simplicial complexes and let f, g : K → L be simplicial
maps. f and g are said to be contiguous maps, if for each simplex σ = (p0, . . . , pk) ∈ K,
the vertex set

{f(p0), . . . , f(pk), g(p0), . . . , g(pk)}

forms a simplex in L. In this case, the homomorphisms induced by f and g between H(K)
and H(L) are equal [Mun84].

2.4.2 Co-face distances

In the Čech filtration (Cα) of a point set P , every simplex is associated with a radius value

rad(σ) := min{α ≥ 0 | σ ∈ Cα},

which is the radius of the minimal enclosing ball of its boundary vertices. If P is finite, the
Čech filtration consists of a finite number of simplices, and we can define a simplex-wise
filtration

∅ = C0 (C2 (. . . (Cm,

where exactly one simplex is added from Ci to Ci+1, and where τ is added before σ
whenever rad(τ) ≤ rad(σ). The filtration is not unique and ties can be broken arbitrarily.

In a simplex-wise filtration, passing from Ci to Ci+1 means adding some k-simplex σ.
The effect of this addition is that either a k-homology class comes into existence, or a
(k − 1)-homology class is destroyed. Depending on the case, we call σ positive or negative,
respectively. In terms of the corresponding persistent barcode, there is exactly one interval
associated to σ, either starting at i (if σ is positive) or ending at i (if σ is negative).

Definition 2.4.5 (co-face distance). We define the face (co-face) distance Dσ (D∗σ) of
σ as the minimal distance between σ and its facets (co-facets),

Dσ := min
τ facet of σ

(
rad(σ)− rad(τ)

)
and D∗σ := min

τ co-facet of σ

(
rad(τ)− rad(σ)

)
.

Note that Dσ and D∗σ can be zero. Nevertheless, we show that they constitute lower
bounds for the persistence of the associated barcode intervals:

Lemma 2.4.6. If σ is negative, the barcode interval associated to σ has persistence at
least Dσ.

Proof. σ kills a (k− 1)-homology class by assumption, and this class is represented by the
cycle ∂σ. However, this cycle came into existence when the last facet τ of σ was added.
Therefore, the lifetime of the cycle destroyed by σ is at least rad(σ)− rad(τ). �

Lemma 2.4.7. If σ is positive, the homology class created by σ has persistence at least
D∗σ.

Proof. σ creates a k-homology class; every representative cycle of this class is non-zero for
σ. To turn such a cycle into a boundary, we have to add a (k + 1)-simplex τ with σ in its
boundary (otherwise, any (k + 1)-chain formed will be zero for σ). Therefore, the cycle
created at σ persists for at least rad(τ)− rad(σ). �

38

Chapter 3

Geometric Concepts

In this chapter we discuss several geometric concepts that are crucial for our results. Some
of the concepts are already well-known in literature, and we elaborate mostly on the parts
relevant for our results. We direct the reader to the appropriate sources for more details.
In addition, there are new results in most of the sections.

In Section 3.1 we explore the A∗ lattice and its Voronoi polytope, which has many
interesting combinatorial and geometric properties. The basic concepts can be found in
textbooks [CSB87, Zie95]. Next we turn to the more familiar grid lattice in Section 3.2,
where we discuss some properties of the cubical tessellation. In Section 3.3 we discuss a
concept which captures the intrinsic dimension of any metric space [Ass83, Tal04]. Further,
we discuss a data structure from [HPM06] for hierarchical clustering on metric spaces of low
intrinsic dimension. We also revise the well-known concepts of pair decompositions, both
in Euclidean space and general metric spaces [AHP12, CK95, PM13, Var98]. Section 3.4
presents a data structure [DIIM04, IM98] which can answer near-neighbor queries efficiently.
We end the chapter by discussing techniques from [Bou85, JLS86, Mat90] to reduce the
dimension of metric spaces in Section 3.5.

3.1 The A∗ Lattice and the permutahedron

We begin the section by explaining a few basics of lattice geometry.

Definition 3.1.1 (lattice and basis). A d-dimensional lattice L ⊂ Rd is the collection
of all integer combinations of d independent vectors {v1, . . . , vd} in Rd,

L = {x ∈ Rd | x =
d∑
i=1

mivi,where (m1, . . . ,md) ∈ Zd}.

The collection of vectors {v1, . . . , vd} is a basis of L.

One of the simplest lattices is the integer lattice Zd, where the basis vectors are the
standard basis of Rd, {e1, . . . , ed}. From the definition, we see that each lattice contains
the origin O.

Definition 3.1.2 (Voronoi cells of lattices). For a lattice L and any point x ∈ L, the
Voronoi cell of x in L, denoted by V orL(x) ⊂ Rd is the collection of points of Rd for which
x is among the nearest lattice points,

V orL(x) = {y ∈ Rd | ∀z ∈ L, ‖y − x‖ ≤ ‖y − z‖}.

For simplicity, we call the Voronoi cell of the origin O as the Voronoi polytope of L.

39

The Voronoi polytope of a lattice is a convex polytope. The lattice is invariant under
translation by any basis vector, so the Voronoi cell of each lattice point is simply a
translation of the Voronoi polytope. For our elementary example of Zd, the Voronoi
polytope is a d-cube of sidelength 1 centered at O.

Definition 3.1.3 (neighbors and Voronoi vectors). For a lattice L and a point x ∈ L,
the (lattice) neighbors of x are the set of lattice points (including x) whose Voronoi cells
intersect the Voronoi cell of x. We denote this set of points by

NBR(x) = {y ∈ L | V orL(y) ∩ V orL(x) 6= ∅}.

The vectors {~y − ~x | y ∈ NBR(x), y 6= x} are called the Voronoi vectors of L.

For the lattice Zd, it is easy to see that NBR(O) are the points {0, 1,−1}d, and the
Voronoi vectors are the corresponding vectors, excluding (0, . . . , 0). See Figure 3.1 for a
different example.

Figure 3.1: The figure shows a portion of the hexagonal lattice in the plane: the squares
represent the lattice points. O represents the origin and the red (darkly shaded) hexagon
is the Voronoi polytope of the lattice. The green (lightly shaded) hexagons intersect
the Voronoi polytope. NBR(O) consists of the points {a, b, c, d, e, f, O}. The vectors
{Oa, . . . , Of} are the Voronoi vectors.

Definition 3.1.4 (dual lattice). Let L be a lattice. The dual lattice of L, denoted by
L∗ is the set of points

L∗ = {y ∈ Rd | ~y · ~x ∈ Z,∀x ∈ L}.

As an example, the integer lattice Zd is self-dual. The lattices 2Zd and 1
2Z

d are dual
to each other. In three dimensions, the well-known lattices FCC (Face-centered cubic) and
BCC (Body-centered cubic) are dual to each other1.

Definition 3.1.5 (Ad lattice). The d-dimensional Ad lattice consists of the set of points
(x1, . . . , xd+1) ∈ Zd+1 satisfying

∑d+1
i=1 xi = 0. A basis for Ad consists of vectors of the

form (ei,−1), i = 1, . . . , d.
1After suitable unitary transformations.

40

CHAPTER 3. GEOMETRIC CONCEPTS 41

While the Ad lattice is defined in Rd+1, all points lie on the hyperplane HP defined
by
∑d+1
i=1 yi = 0. After a suitable change of basis, we can express Ad by d vectors in Rd, so

it is indeed a d-dimensional lattice. In low dimensions, A2 is more commonly known as
the hexagonal lattice, and A3 is a translated and rotated version of the FCC lattice that
realizes the best sphere packing configuration in R3 [Hal05].

Definition 3.1.6 (A∗d lattice). The d-dimensional A∗d lattice is the dual lattice to Ad.
The standard basis for A∗d consists of the vectors

1
(d+ 1)(t, . . . , t︸ ︷︷ ︸

d+1−t

, t− (d+ 1), . . . , t− (d+ 1)︸ ︷︷ ︸
t

), t = 1, . . . , d.

From the definition, it follows that Ad ⊆ A∗d, and that A∗d lies in HP . A∗2 is the
hexagonal lattice, same as A2. A∗3 is a translated and rotated version of the BCC lattice
that realizes the thinnest sphere covering configuration among lattices in R3 [Bam54]. We
are mostly interested in the Voronoi polytope of A∗d.

Definition 3.1.7 (permutahedron). The d-dimensional permutahedron, denoted by
Πd, is the Voronoi polytope of the A∗d lattice. Πd has (d+ 1)! vertices obtained by taking
all permutations of the coordinates 2 of

1
2(d+ 1)(d, d− 2, d− 4, . . . ,−d+ 2,−d).

See Figure 3.2 for an three-dimensional example. For brevity, we write A∗ := A∗d and
Π := Πd when d is clear from the context. Π is a d-dimensional convex polytope and lies
in the hyperplane HP . The A∗ lattice is sometimes also called the permutahedral lattice.

Figure 3.2: The left figure shows the 1-skeleton of a three dimensional permutahedron,
which is a truncated octahedron. The right figure shows a tessellation of R3 using
permutahedra. Both figures are taken from Wikipedia [Per] (authors: Tilman Piesk, Tom
ruen, licensed under CC BY 3.0).

2Often a scaled, translated and rotated version is considered, in which the vertices of the permutahedron
are all permutations of the point (1, . . . , d + 1).

3.1.1 Combinatorial properties

The k-faces of Π are in correspondence to ordered partitions of the set of coordinate indices
[d+ 1] := {1, . . . , d+ 1} into (d+ 1− k) non-empty subsets S1, . . . , Sd+1−k. That means,
each vertex v of any k-face is such that all coordinates of v at the indices of Si are smaller
than all coordinates of v at the indices of Sj for all 1 ≤ i < j ≤ d+ 1− k. For example,
with d = 3, the partition ({1, 3}, {2, 4}) is the 2-face spanned by all points for which the
two smallest coordinates appear at the first and the third position. This is an example of
a facet of Π, for which we need to partition the indices in exactly 2 subsets. Equivalently,
the facets of Π are in one-to-one correspondence to non-empty proper subsets of [d+ 1],
so Π has 2d+1 − 2 facets.

The vertices of Π are the (d+ 1)-fold ordered partitions of [d+ 1], which correspond
to permutations of [d + 1], reinstating the fact that Π has (d + 1)! vertices. Moreover,
any two faces σ, τ of Π with dim σ < dim τ are incident if the partition of σ is a
refinement of the partition of τ . Continuing our example from before, the four 1-faces
bounding the 2-face ({1, 3}, {2, 4}) are ({1}, {3}, {2, 4}),({3}, {1}, {2, 4}), ({1, 3}, {2}, {4}),
and ({1, 3}, {4}, {2}). Vice-versa, we obtain co-faces of a face by combining consecutive
partitions into one larger partition. For instance, the two co-facets of ({1, 3}, {4}, {2}) are
({1, 3}, {2, 4}) and ({1, 3, 4}, {2}).

Lemma 3.1.8. Let σ and τ be two facets of Π, defined using the two ordered partitions
(Sσ, [d+ 1] \ Sσ) and (Sτ , [d+ 1] \ Sτ), respectively. Then σ and τ are adjacent in Π iff
either Sσ ⊆ Sτ or Sτ ⊆ Sσ.

Proof. Two facets are adjacent if they share a common face. By the properties of the
permutahedron, this means that the two facets are adjacent if and only if their partitions
permit a common refinement, which is only possible if one set of defining indices is
contained in the other. �

We have already established that Π has “few” (2d+1 − 2 = 2O(d)) (d − 1)-faces and
“many” ((d + 1)! = 2O(d log d)) 0-faces. We give an interpolating bound for all faces of
intermediate dimensions.

Lemma 3.1.9. The number of (d− k)-faces of Π is upper bounded by 23(d+1) log2(k+1).

Proof. By our characterization of faces of Π, it suffices to count the number of ordered
partitions of [d+ 1] into (k+ 1) subsets. That number equals (k+ 1)! times the number of
unordered partitions. The number of unordered partitions, in turn, is known as Stirling
number of the second kind [RD69] and is bounded by 1

2
(d+1
k+1
)
(k + 1)d−k. To get an upper

bound for the number of (d− k)-faces, we multiply the Stirling number with (k + 1)! and
get

1
2

(
d+ 1
k + 1

)
(k + 1)d−k(k + 1)! ≤ (d+ 1)k+1(k + 1)d−k(k + 1)!

≤ (d+ 1)k+1(k + 1)d−k(k + 1)k+1 ≤ (d+ 1)k+1(k + 1)d+1

≤ (k + 1)3(d+1) = 23(d+1) log2(k+1),

where we have used the fact that (d+ 1)k+1 ≤ (k + 1)2(d+1) for k ≤ d. �

42

CHAPTER 3. GEOMETRIC CONCEPTS 43

3.1.2 Geometric properties

All vertices of Π are equidistant from O, and a simple calculation shows that this distance
is
√

d(d+2)
12(d+1) . Using the triangle inequality, we obtain:

Lemma 3.1.10. The diameter of Π is at most
√
d.

Definition 3.1.11 (tessellation and triangulation). The union of permutahedra cen-
tered at all lattice points of A∗ is the Voronoi tessellation of A∗. The nerve of this
tessellation is the Delaunay triangulation D of A∗.

Definition 3.1.12 (remainder point). We call a point v ∈ Rd+1 as a remainder-k
point, if it is of the form

v = 1
(d+ 1)(a0, . . . , ad)

such that ai ≡ k mod(d+ 1), ∀i for some k ∈ Z.

An important property of A∗ is that D is non-degenerate, unlike the Delaunay trian-
gulation of the integer lattice.

Lemma 3.1.13. Each vertex of Π has precisely (d+ 1) permutahedral cells incident to it.
In other words, the points of the A∗d lattice are in general position. As a consequence, we
can identify Delaunay simplices incident to O with faces of Π.

Proof. The proof idea is to look at any vertex of Π and argue that it has precisely (d+ 1)
equidistant lattice points. See [BA09, Theorem 2.5] for a concise argument. Here, we
rephrase the proof idea of [BA09, Theorem 2.5] in slightly simplified terms.

We show that all Delaunay cells of the A∗d lattice are d-simplices, which proves
our claim. Let ~v be a vertex of Π. Without loss of generality, we can assume that
~v = 1

2(d+1)(d, d− 2, . . . ,−d). The A∗d lattice points closest to ~v define the Delaunay cell
corresponding to ~v.

Recall that the basis vectors of A∗d are of the form

gt = 1
(d+ 1)(t, . . . , t︸ ︷︷ ︸

d+1−t

, t− (d+ 1), . . . , t− (d+ 1)︸ ︷︷ ︸
t

)

for 1 ≤ t ≤ d [CSB87]. From Definition 3.1.12, we see that gt is a remainder-t point. Since
any lattice point y ∈ A∗d can be written as a integral combination of the vectors gts, y turns
out to be a remainder-k point for some k ∈ Z. So we can write ~y = 1

d+1
(
~m(d+ 1) + k~1

)
,

where ~m ∈ Zd+1. y lies in HP , which means that ~y · ~1 = 0, and that translates to
~m ·~1 = −k.

We fix k and find the remainder-k point y, which is closest to v. To do so, we minimize
the distance between v and y by choosing a suitable value for ~m. In other words, we wish

to find argmin~m||~y − ~v||2. We see that

argmin~m||~y − ~v||2 = argmin~m
∑

(mi + k

d+ 1 − vi)
2

= argmin~m
∑

(mi − vi)2 + 2(mi − vi)
k

d+ 1

= argmin~m
∑

(mi − vi)2 + 2k
d+ 1

∑
mi

= argmin~m
∑

(mi − vi)2 + 2k
d+ 1 · (−k)

= argmin~m
∑

(mi − vi)2

= argmin~m||~m− ~v||2

= argmin~m||~m−
1

2(d+ 1)(d, . . . ,−d)||2

Using ~m ·~1 = −k and an elementary calculation, we see that ||~y−~v||2 is minimized for

~m = (0, . . . , 0︸ ︷︷ ︸
d+1−k

,−1, . . . ,−1︸ ︷︷ ︸
k

),

given any fixed k. This means that there is a unique remainder-k nearest lattice point to
~v, for k ∈ {0, . . . , d}. Moreover, the corresponding lattice points ~y are Delaunay neighbors
of the origin, and are equidistant from ~v. The Delaunay cell corresponding to ~v contains
precisely (d+ 1) points, one for each value of k, which proves the claim for the vertex ~v.

Recall that any other vertex ~u of Π can be written as some permutation π of ~v, that
is, ~u = π(~v). Following the above derivation, the nearest lattice points for ~u can be found
by simply applying the permutation π on the nearest lattice points for ~v. As a result,
the vertex ~u also has (d+ 1) nearest lattice points, and the corresponding d-simplices are
congruent for all ~u. This proves the claim. �

Proposition 3.1.14. The (k− 1)-simplices in D that are incident to O are in one-to-one
correspondence to the (d− k + 1)-faces of Π and, hence, in one-to-one correspondence to
the ordered k-partitions of [d+ 1].

This means that if σ, τ ∈ D are simplices such that σ is a face of τ , then the partition
corresponding to τ is a refinement of the partition corresponding to σ.

Let V := NBR(O) denote the set of lattice points that share a Delaunay edge with
the origin. The following statement shows that the point set V is in convex position, and
the convex hull encloses Π with some “safety margin”. The proof is a mere calculation,
deriving an explicit equation for each hyperplane supporting the convex hull and applying
it to all vertices of V and of Π.

Lemma 3.1.15. Let σ be any d-simplex incident to O. The facet τ ⊂ σ which is opposite
to O lies on a hyperplane that is at least a distance 1√

2(d+1) to Π and all points of V are
either on the hyperplane or on the same side as O.

Proof. Consider the d-simplex σ incident to O that is dual to the vertex of Π with
coordinates

v = 1
d+ 1

(
d/2, d/2− 1, . . . , d/2− (d− 1), d/2− d

)
.

44

CHAPTER 3. GEOMETRIC CONCEPTS 45

The (d− 1)-facet τ of σ opposite to O is spanned by lattice points of the form

`k = 1
(d+ 1)(k, . . . , k︸ ︷︷ ︸

d+1−k

, k − (d+ 1), . . . , k − (d+ 1)︸ ︷︷ ︸
k

), 1 ≤ k ≤ d,

(see the proof of Lemma 3.1.13 above). All points in V can be obtained by permuting the
coordinates of `k.

We can verify at once that all points of τ lie on the hyperplane −x1 + xd+1 + 1 = 0, so
this plane supports τ . The origin lies on the positive side of the plane. All points in V
either lie on the plane or are on the positive side as well. For the vertices of Π, observe that
the value x1−xd+1 is minimized for the point v above, for which x1−xd+1 + 1 = 1/(d+ 1)
is obtained. It follows that v as well as any vertex of V is at least in distance 1√

2(d+1)
from H (the

√
2 comes from the length of the normal vector). This proves the claim for

the simplex dual to v.
Any other choice of σ is dual to a permuted version of v. Let π denote the permutation

on v that yields the dual vertex. The vertices of τ are obtained by applying the same
permutation on the points `k from above. Consequently, the plane equation changes to
−xπ(1) + xπ(d+1) + 1 = 0. The same reasoning as above applies, proving the statement in
general. �

Lemma 3.1.16. If two lattice points are not adjacent in D, then the corresponding Voronoi
polytopes have a distance of at least

√
2

d+1 .

Proof. Lemma 3.1.15 shows that Π is contained in a convex polytope C, which is the
convex hull of V . Also, the distance of Π to the boundary of C is at least 1√

2(d+1) . Let
o′ be a lattice point not in NBR(O). Let Π′ be the Voronoi cell of o′, and C ′ be convex
hull of NBR(o′). C ′ is interior-disjoint from C. To see that, note that the simplices in
D incident to the origin triangulate the interior of C, and likewise for o′. Any interior
intersection would be covered by a simplex incident to O and one incident to o′, and
since they are not connected, the simplices are distinct, contradicting the fact that D is a
triangulation. Having established that C and C ′ are interior-disjoint, the distance between
Π and Π′ is at least 2√

2(d+1) , as required. �

Recall the definition of a flag complex as the maximal simplicial complex that one can
form from a given graph (Definition 2.1.10). We next show that D is of this form. Our
proof exploits certain properties of the A∗ lattice, but we could not exclude the possibility
that the Delaunay triangulation of any lattice is a flag complex and leave it as an open
question. For the proof, we need the following fact, which is straightforward to prove:

Lemma 3.1.17. For any natural number N ≥ 2, consider any two vectors in RN ,
U = (u1, . . . , uN) and W = (w1, . . . , wN) with u1 ≤ . . . ≤ uN and w1 ≤ . . . ≤ wN . Let π
be a permutation over [N], and let π(W) be the vector with the corresponding permuted
coordinates of W . Then, maxπ{U · π(W)} = U ·W .

An implication of the following result is that D is a flag complex. We use this to prove
the main result.

Lemma 3.1.18. Consider any two facets f1 and f2 of Π that are disjoint, that is, they
do not share a vertex. In the tessellation, there are permutahedra Π1 6= Π attached to f1
and Π2 6= Π attached to f2, respectively. Then, Π1 and Π2 are disjoint.

Proof. We prove the claim by explicitly constructing a hyperplane which strictly separates
Π1 and Π2.

Let (S1, [d + 1] \ S1), (S2, [d + 1] \ S2) be the partitions defining facets f1 and f2,
respectively. Since f1 and f2 are disjoint, we have that S1 6⊂ S2 and S2 6⊂ S1 by
Lemma 3.1.8. Let us define the sets T1 = S1 \ S2, T2 = S2 \ S1, T3 = S1 ∩ S2 and
T4 = [d + 1] \ S1 ∪ S2. Also, let |T1| = a, |T2| = b and |T3| = c with a, b, c ≥ 1. Then,
|T4| = d+ 1− (a+ b+ c), let |S1| = k := a+ c and |S2| = p := b+ c.

Let `1, `2 denote the lattice points at the centers of the permutahedra Π1, Π2 that are
attached to Π on the faces f1 and f2, respectively. We can derive the coordinates of `1 and
`2 easily: an elementary calculation shows that barycenter of the face f1 has coordinates
k−(d+1)
2(d+1) = k

2(d+1) −
1
2 at indices in S1 and k

2(d+1) at the rest of the positions. Similarly, the
barycenter of f2 has coordinates p−(d+1)

2(d+1) = p
2(d+1) −

1
2 at indices in S2 and p

2(d+1) otherwise.
Since Π is centered at the origin, the coordinates of `1 and `2 are obtained by multiplying
the coordinates of the barycenters with 2. See Table 3.1 for details.

Let B denote the bisector hyperplane between `1 and `2. We show that B is a separating
hyperplane for Π1 and Π2 with no point of either on the hyperplane, which proves the
claim. The vector n = (n1, . . . , nd+1) := `2 − `1 is a normal vector to B. Then, we define
B by n · (x−m) = 0 with m = (`1 + `2)/2 being the midpoint of `1 and `2. See Table 3.1
for a description of n and m.

indices `2 `1 n = `2 − `1 m = (`2 + `1)/2 count
T1

p
d+1

k
d+1 − 1 (p−k)

d+1 + 1 = α+ 1 (p+k)
2(d+1) −

1
2 = β − 1/2 a

T2
p
d+1 − 1 k

d+1
(p−k)
d+1 − 1 = α− 1 (p+k)

2(d+1) −
1
2 = β − 1/2 b

T3
p
d+1 − 1 k

d+1 − 1 p−k
d+1 = α (p+k)

2(d+1) − 1 = β − 1 c

T4
p
d+1

k
d+1

p−k
d+1 = α p+k

2(d+1) = β e

Table 3.1: `1, `2, n,m. Here, e = d+ 1− (a+ b+ c).

Since permutahedra tile space by translation, the vertices of Π1 are of the form
x1 = `1 + π where π is any permutation of y = 1

d+1
(
d
2 ,

d
2 − 1, . . . , −d2

)
. Writing B(x1) :=

n · (x1 −m) for the function whose sign determines the halfspace of x1 with respect to B,
we can write B(x1) = B(`1 + π) = n · (`1 + π −m) = n · `1 − n ·m+ n · π. Similarly, for
any vertex x2 = `2 + π of Π2, B(x2) = n · `2 − n ·m+ n · π. We show that B(x1) < 0 and
B(x2) > 0 for all permutations π. First, we calculate n · `1, n · `2 and n ·m using Table 3.1:

n · `1 =(α+ 1)
(k

d+ 1 − 1
)
a+ (α− 1) k

d+ 1b

+ α
(k

d+ 1 − 1
)
c+ α

(k

d+ 1
)
{d+ 1− (a+ b+ c)}

Upon simplification, this reduces to n · `1 = −a+ k
d+1(a− b). Similarly, we calculate that

n · `2 = b+ p
d+1(a− b). Next,

n ·m = (α+ 1)(β − 1/2)a+ (α− 1)(β − 1/2)b+ α(β − 1)c+ αβ[d+ 1− (a+ b+ c)]

This simplifies to n ·m = −(a− b) (d+1)−(p+k)
2(d+1) . Subtracting, we get

n · `1 − n ·m = −a+ k

d+ 1(a− b) + (a− b)(d+ 1)− (p+ k)
2(d+ 1)

46

CHAPTER 3. GEOMETRIC CONCEPTS 47

which reduces to n · `1 − n ·m = −a+b
2 + (b−a)2

2(d+1) .
Since `1 −m = −(`2 −m), hence n · (`2 −m) = −n · (`1 −m). Also,

n · `1 − n ·m = −a+ b

2 + (b− a)2

2(d+ 1) < −
a+ b

2 + (b+ a)2

2(d+ 1)

< −a+ b

2
(
1− a+ b

d+ 1
)
< 0.

Hence, n · `1 − n ·m is negative and n · `2 − n ·m is positive. Substituting these values in
B(x1) and B(x2), we get

B(x1) = −a+ b

2 + (b− a)2

2(d+ 1) + n · π,B(x2) = a+ b

2 − (b− a)2

2(d+ 1) + n · π

We now calculate the maximum absolute value of n · π and use it to show that B(x1) is
always negative and B(x2) is always positive.

The dot product n · π is obtained by first multiplying each component yi of the vector
y = 1

d+1
(
d
2 ,

d
2 − 1, . . . , −d2

)
with a component of n, which has one of 3 values: α + 1 for

indices in T1, α for T3 ∪ T4, α− 1 for T2 (refer Table 3.1); the intermediate products are
then added up. The permutation of y maximizing n · π is found using Lemma 3.1.17.

Let us denote the sum of the q smallest components of y by Nq and the sum of the q
largest components of y by Mq. It is easy to verify that Mq +Nq = 0, Nq = Nd+1−q and
Mq = Md+1−q. Then,

max(|n · π|) = (α+ 1)Ma + (α− 1)Nb + α(Nd+1−a −Nb)
= α(Ma +Nd+1−a) +Ma −Nb

= 0−Na −Nb = −
[a{a− (d+ 1)}

2(d+ 1) + b{b− (d+ 1)}
2(d+ 1)

]
= a+ b

2 − a2 + b2

2(d+ 1) <
a+ b

2 − (b− a)2

2(d+ 1)

The last inequality implies that

B(x1) = −a+ b

2 + (b− a)2

2(d+ 1) + n · π < 0,

and similarly, B(x2) > 0. The claim follows. �

Lemma 3.1.19. D is a flag complex.

Proof. We first claim that if any k facets of Π are pairwise intersecting, they also have a
common intersection. Assume that the k facets {f1, . . . , fk} of Π are pairwise intersecting.
For any facet fi, there is a partition (Si, [d+1]\Si) associated to it. By Lemma 3.1.8, we have
that either Si ⊂ Sj or Sj ⊂ Si for each i 6= j. This means that the Si are totally ordered,
that means, there exists an ordering π of {1, . . . , k} such that Sπ(1) ⊂ Sπ(2) ⊂ . . . ⊂ Sπ(k).
Now, the partition(

Sπ(1), Sπ(2) \ Sπ(1), Sπ(3) \ Sπ(2), . . . , Sπ(k) \ Sπ(k−1), [d+ 1] \ Sπ(k)
)

is a common refinement of all the partitions, which implies that the corresponding face is
incident to all k facets. This shows that the k facets have a common intersection.

The lemma follows directly with this claim and Lemma 3.1.18: consider k + 1 vertices
of D, for which each pair has an edge in D. We can assume that one point is the origin,
and the other k points are the centers of permutahedra that intersect Π in a facet, without
loss of generality. By the contrapositive of Lemma 3.1.18, all these facets have to intersect
pairwisely, because all vertices have pairwise Delaunay edges. By the auxiliary claim, there
is some common vertex of Π to all these facets, and its dual Delaunay simplex contains
the k-simplex spanned by the vertices. �

Lemma 3.1.20. The shortest Voronoi vector of the A∗d lattice has length
√

d
d+1 .

Proof. Recall that the Voronoi vectors of the A∗d lattice are permutations of the vectors

vt = 1
(d+ 1)(t, . . . , t︸ ︷︷ ︸

d+1−t

, t− (d+ 1), . . . , t− (d+ 1)︸ ︷︷ ︸
t

), t = 1 . . . d.

The lengths of the vectors are of the form

|vt| =
1

d+ 1

√
t2(d+ t− 1) + (d+ 1− t)2t =

√
t(d+ 1− t)

d+ 1 ,

which is minimum for t = 1 and t = d, so |v1| = |vd| =
√

d
d+1 is the shortest length of any

Voronoi vector. �

For any β > 0, by scaling the lattice vectors of the A∗d lattice by β, we get a scaled A∗d
lattice. The Voronoi cells of this scaled lattice are permutahedra which scaled by β. We
show an additional property for scaled permutahedra:
Lemma 3.1.21. Let π and π′ denote the permutahedral cells at the origin at scales β and
β′, respectively where β > β′ > 0. Then,
• π′ ⊂ π, and

• the minimum distance between any facet of π′ and any facet of π is at least
(β−β′)

2

√
d
d+1 .

In particular, this implies that the Minkowski sum3 of π′ with a ball of radius (β−β′)
2

√
d
d+1

(with the ball’s center being the reference point) lies within π.
Proof. The first claim, π′ ⊂ π, follows since both permutahedra are scalings of a convex
object centered at the origin.

For the second claim, consider any Voronoi vector v of the standard A∗d lattice. The
corresponding vectors at scales β and β′ are vβ and vβ′, respectively. Let f and f ′

be facets of π and π′, corresponding to vβ and vβ′, respectively. Then f and f ′ lie in
parallel hyperplanes, which are separated by distance |(vβ− vβ′)/2| = |v|(β−β′)/2. From
Lemma 3.1.20, we know that the shortest Voronoi vector has length

√
d
d+1 for the standard

A∗d lattice. This quantity scales linearly for any scaling of the lattice. This means that the
minimal distance between facets of the form f, f ′ is δ := (β−β′)

2

√
d
d+1 .

Let f ′ be any facet of π′ and, g be any facet of π. Then there is a facet g′ of π′ which
is a scaled version of g. Let H be the supporting hyperplane of g′. Since π′ is convex, f ′
lies in the half-space of H (on H if f ′ = g′) containing the origin. On the other hand,
g lies in other half-space. Moreover, g is at a distance at least δ from g′. Therefore, f ′
is separated from g by distance at least δ. This is true for any choice of f ′ or g, so the
second claim follows. �

3The Minkowski sum of two sets X, Y ⊂ Rd is the set X ⊕ Y = {x + y | x ∈ X, y ∈ Y }.

48

CHAPTER 3. GEOMETRIC CONCEPTS 49

3.1.3 Closest point in A∗

Definition 3.1.22 (closest vector problem). The closest vector problem (CVP) asks
for a given lattice L ⊂ Rd and a point x ∈ Rd, what is (are) the lattice point(s) y ∈ L that
minimizes ‖x− y‖?

In other words, CVP asks for the point(s) y ∈ L such that x ∈ V orL(y). While it is
known that it is NP-hard to solve this problem in general [DKRS03], there are efficient
algorithms for some lattices such as the Ad, A∗d lattices. We first detail an algorithm which
solves CVP for the Ad lattice [CSB87]. Then we make use of the algorithm to solve CVP
for the A∗d lattice [CSB87].

Let z(u) : R→ Z denote a function, which takes u ∈ R to the closest integer. In case
of ties, z(u) is the integer with the smaller absolute value. We also define another function
δ : R→ [−1/2, 1/2] as δ(u) := z(u)− x.

Algorithm 2 CV PAd(x)
For x = (x0, . . . , xd) ∈ HP , compute the point z(x) = (z(x0), . . . , z(xd)) and let
y =

∑d
i=0 z(xi).

if y = 0 then
return z(x).

else
Sort the vector x in ascending order of the values of δ(xi), to get an arrangement

−1
2 ≤ δ(xi0) ≤ . . . ≤ δ(xid) ≤

1
2

where (i0, . . . , id) is a permutation of (0, . . . , d).
if y > 0 then

Subtract one from the co-ordinates z(xi0), . . . , z(xiy−1) of z(x) to get a point
z′(x) ∈ HP .
return z′(x).

else
Add one to the co-ordinates z(xid−y+1), . . . , z(xid) of z(x) to get a point z′(x) ∈ HP .

return z′(x).
end if

end if

In Algorithm 2, x is a point on the hyperplane HP and z(x) is the closest integer
point of Zd+1 to x. If y =

∑d
i=0 z(xi) = 0, then z(x) lies in HP , so z(x) is the closest

point of Ad to x. If y > 0, then z(x) does not lie in HP . The steps in the algorithm find
an integer point on HP by subtracting 1 from the |y| smallest components of z(x). The
steps make the least changes to the norm of ‖z(x)− x‖ to make y vanish, so ‖z′(x)− x‖
is indeed the second closest integer point to x, and the closest integer point of HP . A
similar argument applies for the case y < 0, to show that the algorithm works correctly.
The algorithm can be implemented to run in O(d) time [CSB87, Chapter 20].

Let Φ be an algorithm that returns the closest point of a lattice L. Let v be a vector
and L+ v denote the set of points

L+ v := {l + v | l ∈ L}.

With a simple transformation, Φ can be used to find the closest point for L+ v. Given a
query point x,

Φ(x− v) + v

is the closest point of L+ v to x [CSB87].
Let {v1, . . . , vd} be the standard basis of A∗d and let v0 be the vector at the origin.

In [CSB87], it was shown that

A∗d = {∪di=0Ad + vi}.

This immediately gives an algorithm to solve CVP for A∗: let x be the query point.
Calculate the set of points {p0, . . . , pd} such that

pi = CV PAd(x− vi) + vi, ∀i.

The closest point of A∗ to x is the point pi, that minimizes ‖pi−x‖. Overall, the algorithm
runs in O(d2) time.

3.2 Shifted grids and cubes

In this section, we take a look at simple modifications of the integer lattice.
We denote by I := {αs := λ2s | s ∈ Z} with λ > 0, a discrete set of scales. For each

scale in I, we define grids which are scaled and translated (shifted) versions of the integer
lattice inductively:

Definition 3.2.1 (scaled and shifted grids). For each scale αs ∈ I, we define the
scaled and shifted grid Gαs (or simply Gs) as:

• For s = 0, Gs is simply the scaled integer grid λZd, where each basis vector has been
scaled by λ.

• For s ≥ 0, we choose an arbitrary Os ∈ Gs and define

Gs+1 = 2(Gs −Os) +Os + αs
2 (±1, . . . ,±1), (3.1)

where the signs of the components of the last vector are chosen independently and
uniformly at random (and the choice is independent for each s).

• For s ≤ 0, we define

Gs−1 = 1
2(Gs −Os) +Os + αs−1

2 (±1, . . . ,±1), (3.2)

where the last vector is chosen as in the case of s ≥ 0.

It is then easy to check that Equation (3.1) and Equation (3.2) are consistent at s = 0.
A simple example of the above construction is the sequence of grids with Gs := αsZd for
even s, and Gs := αsZd + αs−1

2 (1, . . . , 1) for odd s.
Next, we motivate the shifting of the grids. Using Definition 3.1.2, we see that for any

point x ∈ Gs, V orGs(x) is a cube of side length αs centered at x. For shorter notation, we
write V ors(x) instead of V orGs(x). The shifting of the grids ensures that each x ∈ Gs lies
in the Voronoi region of a unique y ∈ Gs+1. Using an elementary calculation, we show a
stronger statement:

50

CHAPTER 3. GEOMETRIC CONCEPTS 51

Lemma 3.2.2. Let x ∈ Gs, y ∈ Gs+1 be such that x ∈ V ors+1(y). Then,

V ors(x) ⊂ V ors+1(y).

Proof. Without loss of generality, we can assume that αs = 2 and x is the origin, using
an appropriate translation and scaling. Also, we assume for the sake of simplicity that
Gs+1 = 2Gs + (1, . . . , 1); the proof is analogous for any other translation vector. In that
case, it is clear that y = (1, . . . , 1). Since Gs = 2Zd, the Voronoi region of x is the set
[−1, 1]d. Since Gs+1 is a translated version of 4Zd, the Voronoi region of y is the cube
[−1, 3]d, which covers [−1, 1]d. The claim follows. �

3.2.1 Cubical complexes

The integer grid Zd naturally defines a cubical complex, where each element is an axis-
aligned, k-dimensional cube with 0 ≤ k ≤ d. To define it formally,

Definition 3.2.3 (faces of Zd). Let � denote the set of all integer translates of faces
of the unit cube [0, 1]d, considered as a convex polytope in Rd. We call the elements of �
faces of Zd.

Each face has a dimension k; the 0-faces, or vertices are exactly the points in Zd. The
facets of a k-face E are the (k − 1)-faces contained in E. We call a pair of facets of E as
opposite facets, if they are disjoint. Naturally, these concepts carry over to scaled and
shifted versions of Zd, so we define �s as the cubical complex defined by Gs.

We define a map gs : �s → �s+1 as follows: for vertices of �s, we assign to x ∈ Gs the
(unique) vertex y ∈ Gs+1 such that x ∈ V ors+1(y) (see Lemma 3.2.2). For a k-face f of �s

with vertices (p1, . . . , p2k) in Gs, we set gs(f) to be the convex hull of {gs(p1), . . . , gs(p2k)};
the next lemma shows that this is a well-defined map. In this thesis, we sometimes call gs
a cubical map, since it is a counterpart of simplicial maps for cubical complexes.

Lemma 3.2.4. {gs(p1), . . . , gs(p2k)} are the vertices of a face e of Gs+1. Moreover, if
e1, e2 are any two opposite facets of e, then there exists a pair of opposite facets f1, f2 of
f such that gs(f1) = e1 and gs(f2) = e2.

Proof. First claim: We prove the first claim by induction on the dimension of faces of
Gs. Base case: for vertices, the claim is trivial using Lemma 3.2.2. Induction case: let
the claim hold true for all (k − 1)-faces of Gs. We show that the claim holds true for all
k-faces of Gs.

Let f be a k-face of Gs. Let f1 and f2 be opposite facets of f , along the m-th co-
ordinate. Let the vertices of f1 be (p1, . . . , p2k−1) and f2 be (p2k−1+1, . . . , p2k) taken in the
same order, that is, pj and p2k−1+j differ in only the m-th coordinate for all 1 ≤ j ≤ 2k−1.
By definition, all vertices of f1 share the m-th coordinate, and we denote coordinate of
these vertices by z. Then, the m-th coordinate of all vertices of f2 equals z + αs. By
induction hypothesis, e1 = gs(f1) and e2 = gs(f2) are two faces of Gs+1. We show that
the vertices of e1 ∪ e2 are vertices of a face e of Gs+1.

The map gs acts on each coordinate direction independently. Therefore, gs(pj) and
gs(p2k−1+j) have the same coordinates, except possibly the m-th coordinate. This further
implies that e2 is a translate of e1 along the m-th coordinate.

There are two cases: if e1 and e2 share the m-th coordinate, then e1 = e2 and therefore
gs(f) = e1 = e2 = e, so the claim follows. On the other hand, if e1 and e2 do not share
the m-th coordinate: e1’s m-th coordinate is gs(z), while for e2 it is gs(z + αs). From the
structure of gs, we see that gs(z) and gs(z + αs) differ by αs+1. It follows that e1 and e2

-

6

x2

x1

e1 e2

h

h′′

i

i′

f

h′

e

Figure 3.3: The face f is a square, for which g(f) = e is a line segment. The horizontal and
vertical directions are x1 and x2 respectively. The rest of the labels are self-explanatory in
relation to the proof of Lemma 3.2.4.

are two faces of �s+1 which differ in only one coordinate by αs+1. So they are opposite
facets of a codimension-1 face e of Gs+1. Using induction, the claim follows.

Second claim: Without loss of generality, assume that x1 is the direction in which
e2 is a translate of e1. Let h denote the maximal face of f such that gs(h) = e1. Clearly,
h 6= f , since that would imply gs(f) = e1 = e, which is a contradiction. See Figure 3.3 for
a simple illustration.

Suppose h has dimension less than k − 1. Let h′ be the face obtained by translating
h along x1. As in the first claim, it is easy to see that gs(h′) = e2, from the structure of
gs. This means that there is a facet i of f containing h and h′ such that gs(i) = e. Let
i′ be the opposite facet of i in f and let x2 be the direction which separates i from i′.
Then, gs(i′) = e otherwise gs(f) = e does not hold. Let h′′ be the face of f , obtained by
translating h along x2. Then, from the structure of gs, gs(h′′) = e1 holds. The facet of f
containing h and h′′ also maps to e1 under gs. This is a contradiction to our assumption
that h is the highest dimensional face of f such that gs(h) = e1.

Therefore, the only possibility is that h is a facet f1 of f such that gs(f1) = e1. Let f2
be the opposite facet of f1. From the structure of gs, it is easy to see that gs(f2) = e2.
The claim follows. �

3.2.2 Barycentric subdivision

We discuss a special triangulation of �s.

Definition 3.2.5 (flags). A flag in �s is a set of faces {f0, . . . , fk} of �s such that

f0 ⊆ . . . ⊆ fk.

Definition 3.2.6 (barycentric subdivision). The barycentric subdivision of �s, de-
noted by sds, is the (infinite) simplicial complex whose simplices are the flags of �s.

In particular, the 0-simplices of sds are the faces of �s. An equivalent geometric
description of sds can be obtained by defining the 0-simplices as the barycenters of the
faces in sds, and introducing an k-simplex between (k+1) barycenters if the corresponding
faces form a flag. For a simple example, see Figure 3.4. It is easy to see that sds is a flag
complex. Given a face f in �s, we write sd(f) for the subcomplex of sds consisting of all
flags that are formed only by faces contained in f .

52

CHAPTER 3. GEOMETRIC CONCEPTS 53

(a) A portion of the grid in two dimen-
sions. The dots are the grid points
which form the 0-faces of the cubical
complex.

(b) The barycentric subdivision of the
grid. The tiny squares are barycenters
of the 1-faces and 2-faces of the cubical
complex.

Figure 3.4: Barycentric subdivision in two dimensions.

3.3 Intrinsic dimension

We now turn to a notion of intrinsic dimension of metric spaces.

3.3.1 Doubling dimension

Often in practice, a metric space may lie in an ambient space of high dimension, but it may
have a low-dimensional structure. A common example of such a space is a low-dimensional
manifold embedded in high-dimensional Euclidean space. In such cases, the ambient space
does not capture the real dimension of the manifold. We discuss a notion which correctly
captures the intrinsic dimension.

Definition 3.3.1 (discrete ball). For a metric space X, a discrete ball of radius r
centered at a point x ∈ X is the collection of points Y ⊆ X that satisfy ‖x− y‖ ≤ r for all
y ∈ Y .

Definition 3.3.2 (doubling dimension). For a metric space X, the doubling constant
λX is the smallest integer such that for all x ∈ X and all r > 0, the discrete ball of radius
r centered at x is covered by at most λX discrete balls of radius r/2.

The doubling dimension of X, denoted by Υ(X) is dlog2 λXe. A family of metrics is
called doubling if its doubling dimension is bounded.

A simple example of covering by balls of half the radius is shown in Figure 3.5. For Rd
space with the `p norm, the doubling dimension is Θ(d) [GKL03]. For any finite metric
space X, it is easy to see that Υ(X) = O(log |X|). The doubling dimension of a metric
depends on its structure, and can be upper bounded using the dimension of the space
in which it is embedded. For example, a point set that is sampled from a k-dimensional
subspace of Rd has a doubling dimension of Θ(k), and since k ≤ d, it is upper bounded by
Θ(d), the doubling dimension of Rd. In contrast, the d boundary points of the standard
(d− 1)-simplex form a doubling space of dimension dlog2 de. Even worse, we can construct
a subset of doubling dimension Θ(d) by placing 2Θ(d) points inside the unit ball in Rd
such that any two points have a distance of at least 3/2 (the existence of such a point set
follows from a simple volume argument).

(a) The green dots are the input points.
The shaded disk is centered at the (en-
larged) dot.

(b) The points in the green ball are cov-
ered by 4 balls (shaded orange) of half
the radius.

Figure 3.5: An illustration of covering balls.

3.3.2 Nets and Net-trees

We discuss a data structure which represents a metric space in terms of hierarchical
clusters, while capturing the doubling dimension of the space. This makes it convenient
to design algorithms which utilize the structure of the clusters, and ensures that the
algorithms have complexities which are dominated by the doubling dimension, instead of
the ambient dimension.

Definition 3.3.3 (spread). Let X be any finite metric space. We denote by diam(X)
the diameter of X and by CP (X) the closest-pair distance in X. The spread of X is the
ratio

∆X = diam(X)
CP (X) .

Definition 3.3.4 (nets). For any metric space X, we call a subset Nα,β ⊆ X an (α, β)-
net, if all points of X are in distance at most α from some point in Nα,β and the minimum
distance between any pair of points in Nα,β is at least β.

Usually, α and β are coupled, that is, β = Θ(α), in which case we simply call Nα,β as
a net at scale α for simplicity. Informally, nets are subsets which capture the geometry of
the metric space at a given resolution.

Definition 3.3.5 (net-tree). Given a finite metric space X, we represent a nested se-
quence of nets on X for increasing scales using a rooted tree T , called the net-tree [HPM06].
T has n leaves, each of which represents a point of X, and each internal node of T has at
least two children. Every tree-node v

• represents the subset of points given by the sub-tree rooted at v and we denote this
set by Pv.

• has a representative, repv ∈ Pv that equals the representative of one of its children if
v is not a leaf.

• is associated with an integer `(v) called the level of v which satisfies `(v) < `(par(v)),
where par(v) is the parent of v in the tree.

54

CHAPTER 3. GEOMETRIC CONCEPTS 55

We denote by scalev := 2τ`(v)+1

τ−1 , where τ = 11 is a constant. Finally, each node satisfies
the following properties:

• covering :
Pv ⊆ B(repv,

2τ
τ − 1τ

`(v)) = B(repv, scalev).

• packing :

Pv ⊇ P
⋂

B(repv,
τ − 5

2τ(τ − 1)τ
`(par(v))) = B(repv,

τ − 5
4τ2 scale(par(v))).

where B(p, r) denotes the discrete ball centered at p with radius rt.

The covering and packing properties ensure that each node v has at most λO(1)
X children.

Moreover, for any α ≥ 0, a net at a desired scale can be accessed from the net-tree simply by
collecting the representatives of the nodes of a suitable scale: collecting the representatives

N (`) = {repv | `(v) < ` ≤ `(par(v)}

gives a (4τ `, τ`−1

4)-net.
There are algorithms to construct a net-tree on X in 2O(Υ)n logn log ∆X time deter-

ministically, or 2O(Υ)n logn time in expectation [HPM06], where |X| = n. The net-tree
construction is oblivious to knowing the value of Υ, and in fact the constructed net-tree
can be used to get a constant approximation of Υ [HPM06].

The net-tree can be augmented to maintain for each node u ∈ T , a list of close-by
nodes with similar diameter. Specifically, for each node u ∈ T the data structure maintains
the set

Rel(u) := {v ∈ T | `(v) ≤ `(u) < `(par(v)) and
‖repu − repv‖ ≤ 14τ `(u)}.

Informally, net-trees can be interpreted as a generalization of the well-known quad-trees
to general metric spaces. Several algorithms which are applicable to quad-trees have been
adapted to work with net-trees.

3.3.3 Pair decompositions

An n-point metric space X has O(n2) pairwise distances. By allowing for an arbitrarily
small multiplicative error in the pairwise distances, the collection of distances of X can be
represented using just linear space in n. We discuss a well-known data structure which
achieves this.

Definition 3.3.6 (well-separation). Let X be a finite metric space and let ε > 0 any
value. Let A,B ⊂ X be disjoint subsets of X. The pair (A,B) is said to be ε-well-separated,
if

max(diam(A), diam(B)) ≤ εd(A,B),

where d(A,B) is the minimum separation between points of A and points of B.

Definition 3.3.7 (well-separated pair decomposition). Let X be a finite metric
space and ε > 0. An ε-Well-Separated Pair Decomposition (WSPD) [CK95] of X consists
of pairs of the form (Ai, Bi) ⊂ X such that

• each (Ai, Bi) is ε-well-separated, and

• for each pair of points p, q ∈ X, there exists a pair (Aj , Bj) in the WSPD such that
either (p ∈ Aj , q ∈ Bj) or (p ∈ Bj , q ∈ Aj). That means, a WSPD covers each pair
of points of P .

Let W be an ε-WSPD on X. For each pair (A,B) ∈W , we denote by PA ⊂ X the set
of points of A and by PB ⊂ X denote the set of points of B. We select a representative
point for A, which we call rep(A), by taking an arbitrary point rep(A) ∈ PA. Similarly,
we select a representative rep(B) ∈ PB for B. For the pair (A,B), we denote the distance
between the representatives by d̂(A,B) := ‖rep(A)− rep(B)‖. With this, it follows that
d(A,B) ≤ d̂(A,B) ≤ d(A,B) + diam(A) + diam(B), which can be simplified to

d(A,B) ≤ d̂(A,B) ≤ d(A,B)(1 + 2ε), or d̂(A,B)
1 + 2ε ≤ d(A,B) ≤ d̂(A,B).

For Euclidean spaces, an ε-WSPD of size at most n(1/ε)O(d) can be computed in time
n logn2O(d) + n(1/ε)O(d) using quad-trees (see, for instance [CK95, HP11, Smi07]). In
metric spaces with doubling dimension Υ, a net-tree can be used to compute an ε-WSPD
of size at most n(1/ε)O(Υ) in n logn2O(Υ) + n(1/ε)O(Υ) time [HPM06].

While WSPDs are useful in many applications, they can pose a drawback. For a
WSPD W on an n-point metric space, the quantity

∑
(Ai,Bi)∈W (|Ai|+ |Bi|), which is the

total weight of the pairs involved, can be as large as Ω(n2) [AHP12]. To overcome this, a
related concept is used sometimes:

Definition 3.3.8 (semi-separation). Let X be a finite metric space and let ε > 0. Let
A,B ⊂ X be disjoint subsets of X. The pair (A,B) is said to be ε-semi-separated, if

min(diam(A), diam(B)) ≤ εd(A,B).

This is a weaker notion than well-separation, because it only requires that the smaller
diameter of the participating sets be small compared to the distance between them.

Definition 3.3.9 (semi-separated pair decomposition). For a finite metric space X
and any ε > 0, an ε-Semi-Separated Pair Decomposition (SSPD) [AHP12, Var98] of X
consists of pairs of the form (Ai, Bi) ⊂ X such that

• each (Ai, Bi) is ε-semi-separated, and

• for each pair of points p, q ∈ X, there exists a pair (Aj , Bj) in the SSPD such that
either (p ∈ Aj , q ∈ Bj) or (p ∈ Bj , q ∈ Aj).

The main advantage of using a SSPD over a WSPD is reduced weight: an ε-SSPD of
expected weight ε−O(Υ)n logn can be calculated in ε−O(Υ)n logn expected time [AHP12],
for a n-point metric space with doubling dimension Υ.

3.4 Locality-sensitive hashing

In this section, we discuss a technique which can answer near-neighbor queries for points
in Euclidean spaces efficiently. First, we define the problem formally:

Definition 3.4.1 ((r, c)-nearest neighbor problem). Let S ⊂ Rd be a set of n points.
For a given query point q ∈ Rd, the (r, c)-nearest neighbor query returns any point of S
in distance at most cr from q, if there exists a point in distance at most r from q, where
r > 0, c ≥ 1.

56

CHAPTER 3. GEOMETRIC CONCEPTS 57

To tackle the problem, we use the notion of locality-sensitive hashing (LSH), which
was introduced by [IM98] for the Hamming metric, and was extended to Euclidean spaces
in [DIIM04]. LSH is a popular approach to find approximate near-neighbors in high
dimensions because of its near-linear complexity in n and d. Informally, LSH collects
points of S in a data structure U such that close-by points are stored together with a high
probability. This makes answering near-neighbor queries efficient. The scheme relies on
the use of hash functions, which we describe next.

Definition 3.4.2 ((r1, r2, p1, p2)-sensitive hash functions). A family of hash functions
H = {h : S → U} from S to a collection of buckets U is called (r1, r2, p1, p2)-sensitive if
for all a, b ∈ S, the following holds:

• p1 ≥ p2 and r1 ≤ r2,

• if ‖a− b‖ ≤ r1, Pr1 := P [h(a) = h(b)] ≥ p1, and

• if ‖a− b‖ ≥ r2, Pr2 := P [h(a) = h(b)] ≤ p2.

We amplify the ratio between Pr1 and Pr2 by concatenating k hash functions from
a family of (r1, r2, p1, p2)-sensitive hash functions. This creates a new family of hash
functions G = {g : S → Uk} such that g(x) = (h1(x), . . . , hk(x)) with {h1, . . . , hk} ∈ H
being independently chosen hash functions. For any g ∈ G in this family, we have the
modified properties:

• if ‖a− b‖ ≤ r1, P [g(a) = g(b)] ≥ pk1, and

• if ‖a− b‖ ≥ r2, P [g(a) = g(b)] ≤ pk2.

We describe the LSH scheme next. The input is a n-point set S ⊂ Rd and a distance
parameter r > 0.

• Pre-processing: We choose l hash functions {g1, . . . , gl} uniformly at random from G
[DIIM04, Section 3] and hash each p ∈ S to the buckets gi(p), ∀i ∈ [1, l].

• Querying: Given a query point q ∈ Rd, the set of buckets {g1(q), . . . , gl(q)} is
inspected, and for each point of S encountered, we check whether the distance to q is
at most cr. As soon as we encounter such a point, we output it as the c-approximate
near-neighbor of q.

To complete the description, we need to specify the parameters of LSH. The parameters
should be such that

• with high probability, the output contains a point in distance cr from q.

• the buckets should have small size so that the query does not have to filter out too
many false positives.

We choose the parameters p1, p2, r1 and r2 of the hashing scheme such that ρ := log p1
log p2

= r1
r2

(see [DIIM04] for more details on the choice). The length of the hash functions is
k := d− logp2 ne and the number of buckets is l := dnρe. With these parameters, the
algorithm reports a near-neighbor correctly with probability greater than 1/2 [IM98,
Theorem 5] in O(kl) evaluations of the hash functions from H.

In this thesis, we require a slight modification of the above problem:

Definition 3.4.3 (all near neighbors problem). Given a point set S ⊂ Rd and a
distance parameter r > 0, the r-near neighbors query returns all points of S at distance at
most r from any query point q.

We only consider the case when the query point q ∈ S. To achieve this, we modify
the algorithm and the construction slightly. We use l := d2nρ ln n√

δ
e where δ < 1 is

an arbitrarily chosen constant. Also, in the query for q, we inspect all the buckets
{g1(q), . . . , gl(q)} and for each point encountered, we report it if the distance to q is at
most r. The complexity of our method is summarized in the following lemma:

Lemma 3.4.4. Let r1 := r and r2 := r/ρ, k := d− logp2 ne and l := d2nρ ln n√
δ
e with an

arbitrarily chosen constant δ < 1. The near-neighbor primitive has the following properties:

(i) With probability at least 1− δ, all points in distance at most r are reported for all
query points of S.

(ii) For any query point q, the expected aggregate size of the buckets {g1(q), . . . , gl(q)} is
at most l(C̃ + 1), where C̃ is the number of points in S with distance at most r2 to q.

(iii) The pre-processing runtime is O(dnkl) and the expected query runtime for a point is
O(dl(k + C̃)), where C̃ is defined as in (ii).

Proof. First we bound the expected aggregate size of the buckets. A bucket contains
“close” points which are in distance at most r2 from q and “far” points which are further
away. However, since the probability of a far point falling in the same bucket as q is at
most pk2, the expected size of a single bucket is at most C̃ + npk2 ≤ C̃ + 1 by our choice of
k. Since there are l buckets, (ii) is satisfied.

For (i), fix two points q1, q2 ∈ S such that ‖q1 − q2‖ ≤ r1. We have to ensure that
gj(q1) = gj(q2) for some j ∈ {1, . . . , l}; this implies that q1 will be reported for query point
q2, and vice versa for at least one of the l buckets. The probability for gj(q1) = gj(q2) for a
fixed j is at least pk1, which is p

− logp2 n
1 = n−ρ. Hence the probability that gj(q1) 6= gj(q2)

holds for all j ∈ {1, . . . , l} is at most (1 − n−ρ)l because we choose the hash functions
uniformly at random. There are less than n2 pairs of points within distance at most r1.
By union bound, the probability that at least one such pair maps into different buckets is
at most n2(1− n−ρ)l. Now we can bound

n2(1− n−ρ)l = n2(1− n−ρ)2nρ ln n√
δ

= n2(1− 1
nρ

)nρ ln n2
δ

≤ n2e− ln n2
δ = δ,

where we used the fact that (1− 1/x)x ≤ 1/e for all x ≥ 1. It follows that the probability
that all pairs of points in distance at most r1 fall in at least one common bucket is at least
1− δ. This implies (i).

It remains to show (iii): in the pre-processing step, we have to compute kl hash
functions for n points. Computing the hash value for a point p, hi(p) takes O(d) time
[DIIM04, Section 3.2]. For a query, we have to identify the buckets to consider in O(dkl)
time and then iterate through the (expected) l(C̃ + 1) candidates (using (ii)), spending
O(d) for each. �

58

CHAPTER 3. GEOMETRIC CONCEPTS 59

3.5 Dimension reduction

In this section, we discuss about dimension reduction techniques for Euclidean spaces.
Given a finite point set in Rd, a natural question is whether it can be embedded in a lower
dimensional space while preserving some geometric properties. We begin by defining such
a notion.

Definition 3.5.1 (distortion). Let P ⊂ Rd be a point set. Let f : P → Rm be an
injective map, such that there exist numbers ξ1, ξ2 ≥ 0 satisfying

ξ1‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ ξ2‖x− y‖

for all x, y ∈ P . Then, the distortion of the map f is ξ2/ξ1.

Informally, the distortion measures the changes in the pairwise distances of P , when
embedded into Rm. In general, it is not possible to have an isometric embedding of P into
a lower-dimensional space, that is, a map with distortion equal to unity is not possible in
general. However, allowing for a small distortion makes it possible to reduce the dimension
significantly. We mention the most celebrated result in this area.

Theorem 3.5.2 (Johnson-Lindenstrauss lemma [JLS86]). Let P ⊂ Rd be any set
of n points. For any 0 < ε < 1, there is a one-to-one map f : P → Rk such that

(1− ε)‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε)‖x− y‖

for all x, y ∈ P and k := λ logn/ε2, where λ is an absolute constant.

In fact, a random orthogonal projection of P into a subspace of dimension k yields
such a map with high probability. The result shows that for point clouds in arbitrary
dimensions, a random projection can greatly reduce the dimension while still preserving
pairwise distances to a high precision. A more general result is due to Matoušek [Mat90]:

Theorem 3.5.3. Let P be an n-point set in Rd. Then, a random orthogonal projection
into Rk for 3 ≤ k ≤ C logn distorts pairwise distances in P by at most O(n2/k√logn/k).
The constants in the bound depend only on C.

Random projections also preserve the radius of minimum enclosing balls:

Lemma 3.5.4 (distortion of minimum enclosing balls [KR15]). Let P ⊆ Rd be a
set of n points and f : P → Rm with m = Θ(logn/ε3), ε ≤ 1/2 be a random projection.
For each subset S ⊆ P ,

(1− 2ε)rad(S) ≤ rad(f(S)) ≤ (1 + 2ε)rad(S).

3.5.1 Dimension reduction for towers

The following statement is a simple application of interleaving distances from Section 2.3.

Lemma 3.5.5 (Dimension reduction for Rips filtration). Let f : P → Rm be an
injective map such that

ξ1‖p− q‖ ≤ ‖f(p)− f(q)‖ ≤ ξ2‖p− q‖

for some constants ξ1 ≤ 1 ≤ ξ2. Let Rα denote the Rips complex of the point set f(P).
Then, the persistence module (H(Rα))α≥0 is an ξ2

ξ1
-approximation of (H(Rα))α≥0.

Proof. The map f is a bijection between P and f(P). The properties of f ensure that
the vertex maps f−1 and f , composed with appropriate inclusion maps, induce simplicial
maps

R α
ξ2/ξ1

φ
↪→ Rα

ψ
↪→ Rαξ2/ξ1 .

It is straightforward to show that the following diagrams commute on a simplicial level,

Rα
β

inc //

ψ

Rβα′ Rβα
inc // Rβα′

Rα inc // Rα′

φ
<<

Rα inc //

φ
==

Rα′

φ
<<

Rα inc // Rα′
ψ

""

Rα inc //

ψ

!!

Rα′
ψ

""
Rα

β

inc //

φ
>>

Rβα′ Rβα
inc // Rβα′

(3.3)

for all 0 ≤ α ≤ α′, where β = ξ2/ξ1 and inc is the inclusion map. Hence, the strong
interleaving result from Theorem 2.3.6 implies that both persistence modules are ξ2

ξ1
-

approximations of each other. �

Suppose that for any set of n points P ⊂ Rd, there exists an algorithm to construct an
approximate persistence module V, that is a φ(d)-approximation of the Rips filtration of P ,
φ(d) being a function only dependent on d. When the ambient dimension d is large, such
an approximation scheme can play nice with dimension reduction techniques, potentially
improving the approximation quality and the size of the approximate tower.

To use dimension reduction in this context, there are two steps:

1. Use a dimension reduction technique to embed P ⊂ Rd into P ′ ⊂ Rm with some
distortion γ.

2. Apply the approximation scheme on P ′.

Using Lemma 3.5.5, we see that the Rips filtration of P ′ is a γ-approximation of the
Rips filtration of P . Applying the approximation scheme on P ′ and using transitivity
of interleavings of persistence modules, we get that V is a γφ(m)-approximation of the
Rips filtration of P . Moreover, the size of the approximation depends on m rather than d.
Therefore, we can potentially reduce the size of the approximation and improve the quality
to a great extent. With the help of Lemma 3.5.4, this pipeline can also be extended to the
case of Čech filtrations.

We mention another relevant result in this area, which concerns with embedding for
general metric spaces.

Theorem 3.5.6 (Bourgain’s embedding [Bou85]). Every n-point metric space has
an embedding into Rk with distortion O(logn), where k = λ log2 n and the constant λ is
independent of n.

To use dimension reduction techniques for a general metric space, we first use Bourgain’s
technique to embed it into Euclidean space. Then use the pipeline as in the Euclidean case.
This yields an approximation ratio of O(γφ(m) logn), where m, γ, φ(m) are as defined
earlier.

60

Part I

Techniques for Euclidean Spaces

61

62

Chapter 4

Approximation using the
Permutahedron

In this chapter we present the first approximation result of this thesis, which concerns
with point clouds in Euclidean spaces. We show two main results in this chapter. The first
is an approximation scheme for Rips filtrations, which is discussed in Sections 4.1 and 4.2.
The second result is a lower bound on the size of approximations of Čech filtrations, and
is detailed in Section 4.3. For both results, we make intensive use of the A∗ lattice from
Section 3.1 of Chapter 3.

4.1 Approximation scheme

We detail our approximation complex for any set of n points P ⊂ Rd. We denote our
approximation complex by Xβ for any fixed scale β > 0.

Let Lβ denote a scaled version of the A∗d lattice in Rd, where each lattice vector has
been scaled by β. Recall from Section 3.1 that the Voronoi cells of these lattice points
are scaled permutahedra which tile Rd. The bounds for most quantities, including the
diameter as well as for the distance between non-intersecting Voronoi cells remain valid
when multiplying them with the scaling factor. Hence, any cell of Lβ has diameter at most
β
√
d, using Lemma 3.1.10. Moreover, any two non-adjacent cells have a distance at least

β
√

2
d+1 , from Lemma 3.1.16.

We call a permutahedron full, if it contains at least one point of P , and empty
otherwise. Here, we have assumed for simplicity that each point of P lies in the interior
of some permutahedron, which can be ensured with well-known methods to remove
degeneracies [EM90]. Clearly, at any given scale, there are at most n full permutahedra for
a given P . We define Xβ as the nerve (Definition 2.1.11) of the full permutahedra defined
by Lβ . An equivalent formulation is that Xβ is a subset of the Delaunay triangulation D
of A∗, that is induced by the lattice points of full permutahedra. This implies that Xβ is
a flag complex, just like D (using Lemma 3.1.19). We usually identify a permutahedron
at scale β by its center in Lβ and interpret the vertices of Xβ as a subset of Lβ. See
Figure 4.1 for a simple example in two dimensions.

4.1.1 Interleaving

We construct a tower using Xβ at different scales. To do so, we first define simplicial maps
connecting the complexes on related scales.

63

Figure 4.1: An example of Xβ: the darkly shaded hexagons are the full permutahedra,
which contain the input points marked as small, dark disks. Each dark square corresponds
to the center of a full permutahedron and represents a vertex of Xβ. If two full permu-
tahedra are adjacent, there is an edge between the corresponding vertices. The clique
completion on the edge graph constitutes the complex Xβ.

Let Vβ denote the subset of Lβ corresponding to full permutahedra. We define two
maps

• vβ : P → Vβ , which maps each point p ∈ P to its closest lattice point, corresponding
to a full permutahedron.

• wβ : Vβ → P maps a vertex in Vβ to the closest point of P . We assume for simplicity
that this closest point is unique.

Our assumption of general position ensures that the two maps are well-defined. Note that
vβ ◦ wβ is the identity map for Vβ, while wβ ◦ vβ is not in general. We show that these
maps establish a connection between the approximation complexes and Rips complexes on
P .

Lemma 4.1.1. The map vβ induces a simplicial map

φβ : R β√
2(d+1)

→ Xβ.

Proof. Since Xβ is a flag complex, to show that φβ is simplicial, it suffices to show that
for any edge (p, q) ∈ R β√

2(d+1)
, (vβ(p), vβ(q)) is an edge of Xβ. This follows at once from

the contra-positive of Lemma 3.1.16. �

Lemma 4.1.2. The map wβ induces a simplicial map

ψβ : Xβ → Rβ2
√
d.

Proof. It is enough to show that for any edge (p, q) in Xβ, (wβ(p), wβ(q)) is an edge of
Rβ2

√
d, since the Rips complex is a flag complex. Note that wβ(p) lies in the permutahedron

of p and similarly, wβ(q) lies in the permutahedron of q, so ‖wβ(p)− wβ(q)‖ is bounded
by twice the diameter of the permutahedron. Using Lemma 3.1.10, this distance is upper
bounded by β2

√
d. The claim follows. �

64

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 65

Since β2
√
d < β2(d+ 1), there is a natural inclusion map inc : Rβ2

√
d → Rβ2(d+1). We

compose the map ψβ from Lemma 4.1.2 with inc to get a simplicial map (which we denote
by ψβ as well for simplicity), ψβ : Xβ → Rβ2(d+1).

Similarly, since 1
2(d+1) <

1√
2(d+1) , there is an inclusion inc : R 1

2(d+1)
→ R 1√

2(d+1)
, which

we compose with φβ (Lemma 4.1.1) to get a simplicial map (again, with the same name)
φβ : R 1

2(d+1)
→ Xβ.

Composing the simplicial maps ψ and φ, we obtain simplicial maps of the form

θβ : Xβ → Xβ(2(d+1))2

for any β > 0. This gives rise to the tower(
Xβ(2(d+1))2k

)
k∈Z

.

Collecting the simplicial complexes and the simplicial maps between them, we get the
following diagram (we have omitted the scale indices of the maps for readability):

. . . // Rβ2(d+1)
φ

&&

inc // Rβ8(d+1)3 // . . .

. . . // Xβ

ψ
;;

θ // Xβ4(d+1)2

ψ
88

// . . .

, (4.1)

where, inc is the inclusion map between the corresponding Rips complexes. Applying the
homology functor from Definition 2.2.4 yields a sequence of vector spaces and linear maps
between them, which we represent in the following diagram:

. . . // H(Rβ2(d+1))
φ∗

((

inc∗ // H(Rβ8(d+1)3) // . . .

. . . // H(Xβ)

ψ∗
88

θ∗ // H(Xβ4(d+1)2)

ψ∗
66

// . . .

,

(4.2)
where the asterisk subscripts denote the linear maps corresponding to the respective
simplicial maps.

Lemma 4.1.3. Diagram (4.2) commutes for any β > 0, that is,

θ∗ = φ∗ ◦ ψ∗ and inc∗ = ψ∗ ◦ φ∗.

Proof. We make use of Diagram (4.1) to prove the claim. For the first statement, since θ is
defined as θ := φ ◦ ψ, so the maps commute at the simplicial level. Since the construction
of the persistence module is functorial, the corresponding linear maps commute as well.

The second identity is not true on a simplicial level in general. Instead, we show that
the maps inc and h := ψ ◦ φ are contiguous (see Definition 2.4.4), which means that for
every simplex (x0, . . . , xk) ∈ Rβ2(d+1), the vertices

(inc(x0), . . . , inc(xk), h(x0), . . . , h(xk))

form a simplex in Rβ8(d+1)3 . Contiguity implies that the induced maps on the homology
level, inc∗ and h∗ = ψ∗ ◦ φ∗ are equal [Mun84].

For the second statement, it suffices to prove that any pair of vertices among

{inc(x0), . . . , inc(xk), h(x0), . . . , h(xk)}

is at most β16(d+ 1)3 apart. This is immediately clear for any pair (inc(xi), inc(xj)) and
(h(xi), h(xj)), so we can restrict to pairs of the form (g(xi), h(xj)). Note that inc(xi) = xi
since inc is the inclusion map. Moreover, h(xj) = ψ(φ(xj)),and ` := φ(xj) is the closest
lattice point to xj in Xβ4(d+1)2 . Since ψ(`) is the closest point in P to `, it follows that
‖xj − h(xj)‖ ≤ 2‖xj − `‖. With Lemma 3.1.10, we know that ‖xj − `‖ ≤ β4(d+ 1)2√d,
which is the diameter of the permutahedron cell . Using triangle inequality, we obtain

‖inc(xi)− h(xj)‖ ≤ ‖xi − xj‖+ ‖xj − h(xj)‖
≤ β4(d+ 1) + β8(d+ 1)2√d
< β16(d+ 1)3.

The claim follows. �

Theorem 4.1.4. The persistence module
(
H(Xβ(2(d+1))2k)

)
k∈Z

approximates the persis-
tence module (H(Rβ))β≥0 by a factor of 6(d+ 1).

Proof. Lemma 4.1.3 proves that on the logarithmic scale, the two persistence modules are
weakly 2(d+ 1)-interleaved, in the sense of Definition 2.3.3. Then, Theorem 2.3.4 asserts
that the two persistence modules are 6(d+ 1)-approximations of each other. �

4.2 Computational aspects

We now discuss the computational aspects of the approximation scheme. We discuss
arguments to bound the size of the approximate tower in Sub-section 4.2.1. Then, we
present two algorithms to compute the tower efficiently in Sub-section 4.2.2.

We utilize the non-degenerate configuration of the permutahedral tessellation (refer
to Lemma 3.1.13) to prove that Xβ is not too large, for any scale β > 0. In the rest
of the chapter, we make no distinction between a vertex of Xβ and the corresponding
permutahedron, when it is clear from the context.

Theorem 4.2.1. For any scale β > 0, each vertex of Xβ has at most 2O(d log k) incident
k-simplices. This means that the k-skeleton of Xβ has at most n2O(d log k) simplices.

Proof. We fix 1 ≤ k ≤ d and any vertex v of Xβ. v represents a permutahedron, which
we denote by Π(v). By definition, any k-simplex containing v corresponds to a common
intersection of a set of (k + 1) permutahedra, involving Π(v). By Proposition 3.1.14, such
an intersection corresponds to a (d− k)-face of Π(v). Therefore, the number of k-simplices
incident to v is upper bounded by the number of (d − k)-faces of the permutahedron,
which is 2O(d log k), using Lemma 3.1.9. The first claim follows.

Using the first statement, the k-skeleton incident to v has size at most

k∑
i=1

2O(d log i) = 2O(d log k).

The second bound follows from the fact that at any scale, Xβ has at most n vertices. �

66

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 67

Range of scales

Let CP (P) denote the closest-pair distance of P and diam(P) the diameter of P . Then,
∆ = diam(P)

CP (P) is the spread of the point set P (see Definition 3.3.3). At the scale β0 := CP (P)
3d

and lower, no two points of P lie in adjacent cells, since the minimal separation between
any two points is more than twice the diameter of the cells. Therefore, the complex at
such scales consists of n isolated vertices.

At scale βm := diam(P)(d+ 1) and higher, all points of P lie in a collection of adjacent
cells, by the contra-positive of Lemma 3.1.16. Therefore, the nerve of the cells at scales
βm and higher is a contractible simplicial complex (Definition 2.1.5), and hence has trivial
homology in all dimensions. As a result, the persistence barcodes for scales lower than β0
and greater than βm are known explicitly. We restrict our attention only to the range of
scales [β0, βm] to construct the tower.

In our tower, the scales jump by a factor of c := (2(d+ 1))2 from one scale to the next.
The total number of scales to be inspected is at most

dlogc βm/β0e = dlogc
diam(P)
CP (P) 3d(d+ 1)e = dlogc ∆ + logc 3d(d+ 1)e

≤ dlogc ∆ + 1e = O(log ∆).

The scales of the tower can be written as βi = β0c
i, for i = 0, . . . ,m.

In Theorem 4.2.1, we showed that the size of the k-skeleton at each scale is upper
bounded by n2O(d log k). Accounting for the O(log ∆) scales, a simple upper bound on the
size of the k-skeleton of the tower is then n2O(d log k) log ∆. The spread of a point set can
be arbitrarily large, independent of the number of points or the ambient dimension, and
this makes the upper bound unattractive.

To mitigate this undesirable dependence, we introduce a slight modification in the
construction: at each scale β of the tower, we apply a random translation to the A∗d lattice.
More specifically, let π be the permutahedron at the origin at scale β. We translate the
origin uniformly at random inside π, so that the lattice and the cells translate by the
same amount. With this randomization, we show that the expected size of the tower is
independent of the spread. More specifically, we use the random translations to bound
the expected number of vertex inclusions in the tower, which leads to the main result.
The expectation is taken over the random translation of the origin, and does not depend
on the choice of the input. We emphasize that the selection of the origin is the only
randomized part of our construction. Also, Lemma 4.1.3 and Theorem 4.2.1 hold for any
unitary transformation (and in particular, any random translation) of the lattice, so the
approximation results of Section 4.1 still hold true.

Critical scales

First, we discuss a concept that is helpful in bounding the number of vertex inclusions
of the tower. Let W be an ε-WSPD (Definition 3.3.7) on P with ε = 1

6d2 . Recall that
for each subset A appearing as some pair in (A,B) ∈W , we have a representative point
rep(A) ∈ PA, where PA ⊂ P is the set of points of A (similarly for B). Also, for any pair
(A,B) ∈ W , the distance between the representatives is d̂(A,B) := ‖rep(A) − rep(B)‖
and satisfies

d(A,B) ≤ d̂(A,B) ≤ d(A,B)(1 + 2ε) or d̂(A,B)
1 + 2ε ≤ d(A,B) ≤ d̂(A,B),

where d(A,B) is the distance between A and B.

Definition 4.2.2 (critical scales). For any pair (A,B) ∈W , let i be the largest integer
such that d̂(A,B) > (1 + 2ε)βi2

√
d. We say that the scales {βi+1, βi+2} are critical for

(A,B). All higher scales are non-critical for (A,B).

For any permutahedron π, we denote by NBR(π) the union of π and its neighboring
cells, that is, those cells which are adjacent to π in the tessellation.

Lemma 4.2.3. Let (A,B) ∈W be any WSPD pair. Let {β < δ} denote the critical scales
for (A,B).

• At scale β, let π, π′ denote the permutahedra containing rep(A), rep(B), respectively.
Then PA lies in NBR(π). Similarly, PB lies in NBR(π′).

• At scale δ, let Π denote the permutahedron that contains rep(A). Then, PA ∪ PB
lies in NBR(Π).

Proof. For the first claim, we have d̂(A,B)
1+2ε ≤ β2

√
d by definition, which implies that

diam(A) ≤ d(A,B)
6d2 ≤ d̂(A,B)

6d2 ≤ (1 + 2ε)β2
√
d

6d2 <
β
√

2
d+ 1 .

Using Lemma 3.1.16, we get that PA lies in NBR(π). The argument for PB follows similarly.
For the second claim, we have

diam(PA ∪ PB) ≤ diam(A) + d(A,B) + diam(B) ≤ (1 + 2ε)d(A,B)

≤ (1 + 2ε)d̂(A,B) ≤ (1 + 2ε)2β2
√
d ≤ (1 + 2ε)2δ2

√
d

c
.

Substituting ε = 1
6d2 and c = (2(d + 1))2, we get that diam(PA ∪ PB) < δ

√
2

d+1 . Using
Lemma 3.1.16, it follows that PA ∪ PB lies in NBR(Π). �

Lemma 4.2.4. Let (A,B) ∈W be any WSPD pair. Let {β < δ} denote the critical scales
for (A,B). Consider any arbitrary pair of points (a ∈ PA, b ∈ PB). Let α′ < α be the pair
of consecutive scales such that

• at scale α′, a and b lie in distinct non-adjacent permutahedra,

• but at scale α, they lie in adjacent (or the same) permutahedra.

Then α is a critical scale for (A,B), that is, either α = β or α = δ.

Proof. We prove the claim by contradiction. There are two cases:

• α < β: From the definition of critical scales, we have that

d(A,B) ≥ d̂(A,B)
1 + 2ε > α(2

√
d),

that is, the minimum distance between points of PA and PB is more than twice
the diameter of the cells at scale α. This means that for all pairs of the form
(a ∈ PA, b ∈ PB), the cells containing a and b are not adjacent. This contradicts our
assumption that at scale α, there exists a pair of points (a ∈ PA, b ∈ PB), such that
they lie in adjacent (or the same) cells.

68

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 69

Figure 4.2: The red permutahedron (small) contains three input points, denoted as red
(dark) dots. The other permutahedra are at a larger scale. The three points which lie in a
single small permutahedron lie in three different blue (shaded) permutahedra, leading to
splits.

• α > δ: In such a case, we have α′ ≥ δ. From Lemma 4.2.3, we know that if rep(A)
lies in a cell π at scale δ or higher, then PA ∪ PB lies in NBR(π). This contradicts
our assumption that at scale α′, there exists a pair of points (a ∈ PA, b ∈ PB) which
lies in distinct non-adjacent cells.

The claim follows. �

4.2.1 Size of the tower

Splits

In a cubical tessellation, with a suitable translation and scaling it is easy to ensure that
each cell at a given scale is contained entirely in a cell at a larger scale (for instance, in a
quad-tree like decomposition). However, in the permutahedral tessellation, each cell at a
given scale may not be entirely contained within a single cell at larger scales, irrespective
of the choice of translation and scaling. This can lead to cases where the input points
contained in a single cell map to several distinct cells at a higher scale. We define such
events formally:

Definition 4.2.5 (splits). At a given scale β > 0, let π be a non-empty permutahedral
cell and denote by Pπ ⊂ P the set of input points contained in π. At the next scale β′, let

{Π0, . . . ,Πm}

be the collection of cells to which Pπ maps, with π mapping to Π0.
We call each pair (Π0,Πi) for 1 ≤ i ≤ m a split at scale β′. For each split (Π0,Πi),

there exists at least one pair of points {a, b} ⊂ P such that

{a, b} ∈ π, a ∈ Π0, b ∈ Πi.

We call (a, b) a split inducing pair (SIP).

For an elementary example of splits, see Figure 4.2. Each split is induced by at least
one SIP. This also means that several SIPs may induce the same split. In any case, the
number of SIPs is an upper bound for the number of splits.

Let W be a 1
6d2 -WSPD as before and let (A,B) ∈W be any well-separated pair. We

upper bound the number of splits induced by SIPs of the form (a, b) where (a ∈ PA, b ∈ PB)
over all scales. Counting this for each element of W gives an upper bound on the number
of splits for all SIPs, since each pair of points of P is covered by some element of W (see
Definition 3.3.7).

Lemma 4.2.6. Let (A,B) ∈W be any well-separated pair. The expected number of splits
for SIPs of the form (a ∈ PA, b ∈ PB) is upper bounded by 2O(d).

Proof. First, we count the expected number of scales at which splits may be induced by
pairs of points of the form (a ∈ PA, b ∈ PB).

We see that at scales below the critical scales for (A,B), points of A and B never lie
in the same cell. So, there are no splits induced by such SIPs, and we ignore those scales.
There are two relevant cases:

1. Critical scales: let {β < δ} denote the two critical scales for (A,B). Suppose that
there is a split at scale β. Then there exists some SIP (a ∈ PA, b ∈ PB) which was in
a single cell at the scale immediately lower than β, but is in different cells at scale
β. From the definition of the critical scales (Definition 4.2.2), we see that a and b
must lie in non-adjacent permutahedra at all scales lower than β, so the assumption
above is not possible. Therefore, there are no splits at scale β.
Splits may occur at the next critical scale δ. If rep(A) lies in cell π, then the points
of PA ∪ PB lie in NBR(π), using Lemma 4.2.3. Therefore, an upper bound on the
number of full cells occupied by the points of PA ∪ PB at scale δ is the number of
cells in NBR(π), which is 2O(d).

2. Non-critical scales: we denote these scales by µi = ciδ, i ≥ 1. Let π denote the
permutahedron at scale µi that contains rep(A). Using the proof of Lemma 4.2.3, it
holds that

diam(PA ∪ PB) ≤ (1 + 2ε)2δ2
√
d

c

≤ (1 + 2ε)2µi2
√
d

ci+1 <
µi
di
.

Therefore, points of PA ∪ PB lie in NBR(π), using Lemma 3.1.16, so that an upper
bound on the number of cells occupied by PA∪PB is 2O(d). We show that with a high
probability, points of PA ∪ PB lie in π, so that it is unlikely that they occupy many
cells. We give an upper bound for the expected number of scales where PA ∪ PB
does not lie in a single cell.
If rep(A) has distance greater than diam(PA ∪ PB) from all facets of π, then all
points of PA ∪ PB lie in π. Without loss of generality, assume that π is centered at
the origin. Set x := µi − 3diam(PA ∪ PB) and let π′ denote the permutahedron at
the origin at scale x. Using Lemma 3.1.21, the Minkowski sum of π′ with a ball of
radius µi−x

2

√
d
d+1 lies inside π. It follows that

µi − x
2

√
d

d+ 1 ≥
3diam(PA ∪ PB)

2

√
d

d+ 1
> diam(PA ∪ PB).

Because of the random translation of the lattice at each scale, the location of rep(A)
inside π is uniformly distributed. Let Qi be the probability that rep(A) lies in π′, and
Q′i = 1−Qi its complement. As before, diam(PA ∪ PB) < µi

di
, so diam(PA∪PB)

µi
< 1

di
.

70

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 71

Using this fact, we see that

Qi = V ol(π′)
V ol(π) =

(x
µi

)d
=
(
1− 3diam(PA ∪ PB)

µi

)d
=⇒ Qi >

(
1− 3

di

)d
.

Using Bernoulli’s inequality [Ber], Qi > 1 − 3d
di

, so Q′i <
3

di−1 . Let Ti denote the
probability that at scale µi, PA ∪ PB lies in π, with T ′i = 1 − Ti denoting the
complement. Since Ti ≥ Qi, we have that T ′i ≤ Q′i <

3
di−1 . The expected number

of scales where PA ∪ PB does not lie in π, implying that splits can occur, is upper
bounded by

∞∑
i=1

T ′i <
∞∑
i=1

3
di−1 < 6.

The total number of scales where splits can occur for (A,B) is seven in expectation,
one being the critical scale δ and six being non-critical scales. At each such scale, points of
PA ∪ PB lie in 2O(d) cells, so a simple upper bound for the number of splits is the number
of combinations of two cells from the full cells, which is

(2O(d)

2
)
. This is again 2O(d), so the

claim follows. �

We now bound the size of our approximation tower.

Lemma 4.2.7. The expected number of vertex inclusions in the tower is upper bounded
by n2O(d log d).

Proof. At scale β0, there are n vertex inclusions in the tower due to n full permutahedra.
To prove the claim, we first show that each vertex inclusion at higher scales is caused by a
split.

Let α′ < α be any two consecutive scales in the tower, with the set of full vertices
being V ′ and V , respectively and let θ be the simplicial map from the complex at α′ to
the complex at α. Let v ∈ V \ θ(V ′) denote a vertex inclusion. There is an input point
p ∈ Π(v), which is the full cell corresponding to v. Let Π(u) denote the full cell at scale
α′, which contains p. Since θ(u) 6= v, there exists another input point p′ ∈ Π(u) at scale
α′ such that p′ is the closest input point to u. Then (θ(u), v) is a split induced by the SIP
(p, p′), implying that v was created from a split.

There are at most n(6d2)O(d) = n2O(d log d) pairs in the WSPD, so the total number of
expected splits is upper bounded by n2O(d log d) · 2O(d), using Lemma 4.2.6. �

Theorem 4.2.8. The expected size of the tower is upper bounded by n2O(d log d).

Proof. By definition, the size of a tower is the number of simplex inclusions involved. From
Lemma 4.2.7, we know that the expected number of vertex inclusions in the tower is upper
bounded by n2O(d log d). Each simplex included in the tower is attached to one of these
vertices. From Theorem 4.2.1 we know that each vertex has at most 2O(d log k) k-simplices
attached to it. Therefore, using a simple charging argument, the expected number of
simplex inclusions is upper bounded by n2O(d log d)

(∑d
i=1 2O(d log i)

)
= n2O(d log d). �

Note that we do not explicitly construct the WSPD W to argue about the size of the
tower. The existence of W suffices to prove our claims.

For the computation of the approximate tower, we need another result, whose proof is
similar to that of Lemma 4.2.6. We show that under the images of the simplicial maps,
each simplex inclusion collapses to a vertex very soon, within the next few scales:

Lemma 4.2.9. Let σ be any k-simplex (k ≥ 1), and let δ1 denote the scale at which it
is included in the tower. Let δi+1 = ciδ1, i ≥ 1 denote the next scales. Let the simplicial
complexes and simplicial maps at these scales be

Xδ1
θ1−→ Xδ2

θ2−→

Let θi = θi◦θi−1◦ . . .◦θ1 denote the i-fold composition of simplicial maps over i consecutive
scales. Then,

• θ1(σ) is a vertex with probability greater than 1/2.

• Let j denote the smallest integer such that θj(σ) is a vertex. We say that σ survives
for j scales. Then, the expected value of j is at most four.

Proof. Let σ be a simplex with vertices as full cells (π0, . . . , πk), included in the tower at
scale δ1. The diameter of this collection of cells is no more than 2δ1

√
d, from Lemma 3.1.10.

Let s be any point of Rd in π0, and denote by Π the permutahedron at scale δ2 that
contains s. Without loss of generality, assume that Π is centered at the origin.

Let Pri denote the probability that θi(σ) is a vertex given that θi−1(σ) was not. Then,
Pr1 is the probability that θ1(σ) = Π. If s lies at distance at least 2δ1

√
d from the facets

of Π, then {π0 ∪ . . .∪ πk} lies inside Π, guaranteeing that θ1(σ) = Π. Set x := δ2 − 6δ1
√
d

and denote by Π′ the permutahedron centered at the origin at scale x. From Lemma 3.1.21,
the Minkowski sum of Π′ with a ball of radius δ2−x

2

√
d
d+1 lies inside Π. We see that

δ2−x
2

√
d
d+1 > 2δ1

√
d, so if s lies in Π′, then it is further than 2δ1

√
d from the facets of

Π. Since the origin is randomly translated at each scale, the position of s is uniformly
distributed in Π. Let Qr denote the probability that s lies in Π′. Then,

Qr = V ol(Π′)
V ol(Π) =

(
x

δ2

)d
=
(

1− 6δ1
√
d

δ2

)d
=
(

1− 6
√
d

c

)d

=
(

1− 3
√
d

2(d+ 1)2

)d
.

Using Bernoulli’s inequality [Ber], Qr > 1 − 3d
√
d

2(d+1)2 > 1/2. Since Pr1 ≥ Qr > 1/2, the
first claim follows.

If θi(σ) is a vertex, it remains so for all higher scales. Because the origin is chosen
uniformly at random at each scale, and the ratio of any two consecutive scales is a constant,
we have that Pri ≥ Qr, for all i.

Let Pr′i denote the complement of Pri. Then, the probability that σ survives for j
scales is (Pr′1 . . . P r′j−1)Prj . Since Pri > 1/2, we have (Pr′1 . . . P r′i) < 1/2i. The expected
number of scales for which σ survives is

∞∑
j=1

j(Pr′1 . . . P r′j−1)Prj <
∞∑
j=1

j(Pr′1 . . . P r′j−1) <
∞∑
j=1

j/2j−1 = 4.

The claim follows. �

72

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 73

4.2.2 Computing the tower

We now discuss two algorithms to compute the tower. As a precursor, we first need to
determine the range of relevant scales.

Determining the range of scales If the range of scales [β0, βm] is provided as an input,
we construct the tower by building the approximation complexes at each of the relevant
scales. If the range is not provided, we calculate diam(P) and CP (P) to determine the
relevant scales. For our purpose, it suffices to calculate constant-factor approximations of
these quantities. Taking an arbitrary point p ∈ P and calculating maxq∈P ‖p− q‖ gives
a 1/2-approximation of diam(P). CP (P) can be computed exactly using a randomized
algorithm in n2O(d) expected time [KM95]. Using this information, we calculate the range
of scales [β0, βm].

Algorithm A We construct the tower scale-by-scale, inductively. At the lowest scale β0,
we locate the nearest lattice points for points of P using the algorithm in Sub-section 3.1.3.
The complex consists of n vertices at this scale.

Let α′ < α be any two consecutive scales and X ′, X the respective complexes, with
θ : X ′ → X being the induced simplicial map. Suppose we have already constructed X ′.
There are two steps in constructing the complex X:

• Adding vertices and edges to X: we translate the lattice by picking a point uniformly
at random from the cell at the origin, which can be done using random walks in
polytopes [LS93]. We compute the set of full permutahedra by finding the closest
lattice point for each point in P , using Algorithm 2 (Chapter 4). Then, for each full
cell π, we go over NBR(π) \ π to find neighboring full cells; whenever a full neighbor
is found, we add an edge between π and its neighbor. This completes the 1-skeleton
of X.

• Adding simplices to X: each simplex in X is one of two kinds:

– those which are in the image θ: to add these, we first construct θ for vertices of
X ′. To do this, we simply compute the nearest input point for each full cell of
X ′, and then compose it with the pre-computed map from P to vertices of X.
After this, we go over each simplex σ = (v0, . . . , vk) ∈ X ′ and add the simplex
θ(σ) on the vertices (θ(v0), . . . , θ(vk)) to X.

– those which are not in the image of θ, that is, the simplices which are included
in the tower at scale α. Each such simplex σ must contain at least one edge
which is not in the image of θ, since otherwise all edges of σ and hence σ itself
would be in the image of θ, since X is a flag complex (Lemma 3.1.19).
We first enumerate all the edges which are not in the image of θ. To do this,
for each edge (u, v) ∈ X ′, we exclude (θ(u), θ(v)) from the list of edges of X, to
get the list of new edges.
We construct the k-skeleton from the 1-skeleton, by going over the new edges of
the complex in an arbitrary order, and at each step we add the new simplices
induced by the current edge. Let e = (u, v) be the edge under consideration.
We construct the simplices incident to e inductively by dimension.
The base case is the 1-skeleton, with simplex e. Assume that we have completed
the (j − 1)-simplices incident to e. Let σ be a j-simplex incident to e. Then, σ
is of the form σ = (w, γ), where γ is a (j − 1)-simplex incident to e and w is a

full cell which is a common neighbor of u and v. To find σ, we go over each of
the 2O(d) common neighbors of u and v and each (j − 1)-simplex γ containing
e, and test whether (w, γ) is a j-simplex in the complex. The test works by
checking whether each (w, γi) is a (j − 1)-simplex in the complex, where γi is
a facet of γ. Since we enumerate all the simplices attached to each new edge,
this step generates all simplices included in the tower at scale α. It is easy to
see that the order in which the edges are processed is irrelevant.

Theorem 4.2.10. Algorithm A takes

n2O(d) log ∆ +M2O(d)

time in expectation, and M space to compute the k-skeleton, where M is the size of the
tower. Further, the expected runtime is upper bounded by

n2O(d) log ∆ + n2O(d log d)

and the expected space is upper bounded by n2O(d log d).

Proof. At each scale, picking the origin takes poly(d) time [LS93]. Finding the closest
lattice vertex for any given input point takes O(d2) time (see Sub-section3.1.3). Therefore,
finding the full vertices at each scale takes O(nd2) time per scale, and in total O(nd2 log ∆)
time. Each cell has 2O(d) neighbors, so finding the full neighbors and adding the edges
takes n2O(d) per scale. Computing the map θ for the vertices of X ′ takes time O(nd) per
scale. In total, these steps take n2O(d) log ∆ time.

For each simplex of X ′, we compute the image under θ. This takes time O(d) per
simplex of X ′, since the vertex map has already been established. From Lemma 4.2.9,
each simplex in the tower survives at most four scales (in expectation), until it collapses
to a vertex. Therefore, for each simplex in the tower, we compute its related images four
times in expectation. This step takes 4MO(d) time over the tower, in expectation.

Computing θ for the edges of X ′ takes time O(1) time per edge, since we already
computed the vertex map. Finding new edges takes n2O(d) time, since that is the maximum
number of edges at any scale. In total, finding new edges takes n2O(d) log ∆ time. To
complete the k-skeleton, the testing technique requires an overhead of k22O(d) = 2O(d) for
each simplex in the tower. Since we do the k-completion only for newly added edges, the
test is not repeated for any simplex. The time bound follows.

The space complexity follows by storing the tower. The expected size of the tower is
upper bounded by n2O(d log d), from Theorem 4.2.8. The claims follow. �

In Algorithm A, we scan the neighborhood of each full cell to construct the edges
of the complex at each scale. By adding the edges in more careful method, we reduce
the complexity of this step. Let W denote a 1

6d2 -WSPD on P . Let α′ < α be any two
consecutive scales of the tower, with X ′, X being the complexes at the respective scales. Let
θ : X ′ → X be the induced simplicial map. For any permutahedron π, let NBR(NBR(π))
denote the union of the collections of cells NBR(πi), for each cell πi ∈ NBR(π).

Definition 4.2.11 (types of edges). Let π1 6= π2 be any pair of distinct full cells at
scale α such that (π1, π2) is an edge in X. There are three possibilities:

• There exist adjacent full cells {u, v} ∈ X ′ such that θ(u, v) = (π1, π2), that is, (π1, π2)
is the image of an edge from the previous scale. In such a case, we call (π1, π2) an
inherited edge.

74

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 75

• There exist full cells {u, v} ∈ X ′ such that θ(u) = π1 and θ(v) = π2, but (u, v) is not
an edge in X ′. We call (π1, π2) an interactive edge.

• At least one of {π1, π2} have no pre-image in X ′ under θ, that is, there do not exist
cells {u, v} ∈ X ′, such that θ(u) = π1 and θ(v) = π2 both hold. In such a case we
call (π1, π2) a split edge.

Since the three edge classes are exhaustive, each edge of X is either an inherited edge,
or an interactive edge, or a split edge.

Lemma 4.2.12. Let (π1, π2) be an interactive edge of X. Then,

• There exists a pair (A,B) ∈W such that α is a critical scale for (A,B).

• Let π3 be the permutahedron containing rep(A) at scale α. Then, π1 and π2 are cells
in NBR(NBR(π3)).

Proof. For the first claim, let {u, v} be distinct non-adjacent full cells at scale α′ such
that θ(u) = π1 and θ(v) = π2. Since u and v are full cells, there exist points {p1, p2} ∈ P
such that p1 ∈ u, p2 ∈ v, and p1 and p2 are the closest points to centers of u and v,
respectively. At scale α, p1 ∈ π1 and p2 ∈ π2, by the definition of θ. Let (A,B) ∈W be a
WSPD pair which covers (p1, p2), that is, {p1 ∈ PA, p2 ∈ PB}. Using Lemma 4.2.4 (setting
a := p1, b := p2 in the lemma), it immediately follows that α is a critical scale for (A,B).

For the second claim, using Lemma 4.2.3, points of PA lie in NBR(π3), so π1 ∈ NBR(π3).
Since π2 ∈ NBR(π1), the claim follows. �

Algorithm B There are two stages in the algorithm.

Stage 1 We compute a 1
6d2 -WSPD W on P . For each WSPD pair (A,B) ∈ W , the two

critical scales are determined using d̂(A,B) (see Definition 4.2.2). For each critical
scale in the tower, we store the WSPD pairs for which the scale is critical.

Stage 2 We construct the complex scale-by-scale. For this, let α′ < α be any two consecutive
scales. Suppose we have constructed the complex X ′ at α′. We choose the origin at
α as in Algorithm A. To construct the complex X at α, we start by finding the full
vertices by mapping points of P to their closest lattice point. Then we calculate the
vertex map from X ′ to X which induces the simplicial map θ : X ′ → X.
The simplices in X are of two kinds: those which are images of θ and those which
are not. For simplices of the former kind, we use the vertex map to compute the
image under θ, and add it to X. For the latter case, each simplex must contain
a new edge, since otherwise the simplex would already be in the image of θ. To
compute these new edges at α, we use Lemma 4.2.12: the only new edges at this
scale are the interactive and split edges.

Step 1 We process all WSPD pairs which are critical at scale α, one by one. Let
(A,B) ∈ W be the current pair and let π denote the permutahedron which
contains rep(A). For each cell π′ ∈ NBR(π), we add edges of π′ with full cells
of NBR(π′) \ π′. This amounts to adding edges between all pairs of adjacent
full cells in NBR(NBR(π)). By Lemma 4.2.12, all interactive edges are added
by this procedure.

Step 2 We collect the full cells which do not have a pre-image under θ. This is done
by excluding the images of the vertices of X ′ under θ, from the set of vertices
of X. For each such full cell π, we go over NBR(π) \ π and add edges with full
cells. This step enumerates all split edges.

Step 3 Steps 1 and 2 generate the new edges of X. Together with the image of the
1-skeleton of X ′, this completes the 1-skeleton of X. With this information, we
enumerate the k-skeleton of X, using the technique from Algorithm A.

Theorem 4.2.13. Algorithm B takes(
O(nd2) + poly(d)

)
log ∆ + n logn2O(d) + (M + |W |)2O(d)

time in expectation and M +O(|W |) space, where M is the size of the tower and |W | is
the size of the WSPD. Further, the expected runtime is upper bounded by(

O(nd2) + poly(d)
)

log ∆ + n logn2O(d) + n2O(d log d)

and the expected space is upper bounded by n2O(d log d).

Proof. In Stage 1, we compute a 1
6d2 -WSPD, which takes time n logn2O(d) + |W |. For

each WSPD pair we calculate two critical scales. This takes O(1) time per pair, so O(|W |)
in total. Stage 1, therefore, takes n logn2O(d) +O(|W |) time.

In Stage 2, at each scale, we select the origin as in Theorem 4.2.10, which takes poly(d)
time per scale [LS93]. Then, we compute the full vertices at each scale. This takes time
O(nd2) per scale. Computing the vertex map which induces θ also takes O(nd2) per scale.
In total, these steps take

(
O(nd2) + poly(d)

)
log ∆ time. Taking the image of simplices of

X ′ takes O(d) time per simplex, as the vertex map is already computed. As argued in
Theorem 4.2.10, this step takes 4MO(d) time in expectation. For the remaining simplices
of X,

• In Step 1, we add edges between adjacent full cells of NBR(NBR(π)). There are
2O(d) such cells, so it takes 2O(d) time per WSPD pair per critical scale. Since there
are 2|W | such instances, in total this step takes 2O(d)|W | time.

• In Step 2, we inspect the neighbors of full cells which do not have a pre-image under
θ. The number of such full cells is the number of vertex inclusions in the tower,
which is upper bounded by M . Per cell, this takes 2O(d) time, so this step takes no
more than 2O(d)M time in total.

• In Step 3, the new edges are the inherited and split edges. Each such edge survives
four scales in expectation, from Lemma 4.2.9, so the expected number of new edges
in the tower is upper bounded by 4M . This is also the time required to find the
new edges. Completing the k-skeleton has an overhead of k22O(d) per simplex in the
tower as in Algorithm A, so it takes M2O(d) time in total.

In total, Stage 2 takes time (O(nd2) + poly(d)) log ∆ + (M + |W |)2O(d). The time bound
follows.

Storing the critical scales for each WSPD pair takes O(1) space per pair. Additionally,
we store the tower. The space bound follows.

In the worst case, |W | = n(6d2)O(d) = n2O(d log d) andM is upper-bounded by n2O(d log d)

in expectation. The claim follows. �

76

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 77

It is possible to compute the persistence barcode of towers in a streaming setting [KS17],
where instead of storing the entire tower in memory, the complex is constructed at each
scale and fed to the output stream. In this setting, the memory consumption of Algorithm
B is O(|W |) + Mi, where Mi is the size of the complex at any scale. Since |W | can
be as large as n2O(d log d) and Mi can be at most n2O(d log k)(Theorem 4.2.1), the space
requirement is at most n2O(d log d). The same bound also holds for Algorithm A, although
it does not need to compute and store the WSPD.

If the spread is a constant, then Algorithm A has better a runtime, since it does not
compute the WSPD. Also, Algorithm A does not have to store the critical scales of the
WSPD, neither in the normal setting nor in the streaming environment, so it is more
space-efficient. However, if the spread is large, then Algorithm B achieves a better runtime,
since it avoids the n2O(d) log ∆ factor in the complexity of Algorithm A.

4.2.3 Dimension reduction

When the ambient dimension d is large, our approximation scheme plays nicely together
with dimension reduction techniques, which were discussed in Section 3.5. We show that
we can shrink the expected approximation size from Theorem 4.2.8 for the case d� logn,
only worsening the approximation quality by a constant factor.

Theorem 4.2.14. Let P be a set of n points in Rd.

• There exists a constant c and a tower of the form
(
X̄(c logn)2k

)
k∈Z

which gives rise
to a (3c logn)-approximation of the Rips persistence module of P .

• The approximation tower has only nO(log logn) simplices in expectation.

• With high success probability, we can compute the tower in deterministic expected
running time

n(logn)2O(log ∆) + nO(log logn)

using Algorithm B.

Proof. The Johnson-Lindenstrauss Lemma [JLS86] (also Theorem 3.5.2) asserts the exis-
tence of a dimension-reduction map for Rips filtrations, f as in Lemma 3.5.5. The map
f has the parameter m = λ logn/ε2 with some absolute constant λ and ξ1 = (1 − ε),
ξ2 = (1 + ε). Choosing ε = 1/2, we obtain that m = O(logn) and ξ2/ξ1 = 3.

LetRα denote the Rips complex after the Johnson-Lindenstrauss transform on P . From
Lemma 3.5.5, we have that (H(Rα))α≥0 is a 3-approximation of (H(Rα))α≥0. Moreover,
using the approximation scheme from Section 4.1, we can define a tower (Xβ)β≥0 on the
Johnson-Lindenstrauss transform of P , whose induced persistence module is a 6(m+ 1)-
approximation of (H(Rα))α≥0. Substituting m = O(logn) and using the property of
transitivity of persistence modules from Lemma 2.3.7, the first claim follows.

The expected size of the approximation tower is upper bounded by n2O(m logm) =
nO(log logn), from Theorem 4.2.8. The second claim follows.

The Johnson-Lindenstrauss lemma further implies that an orthogonal projection to a
randomly chosen subspace of Rd of dimension m will yield a map f as above, with high
probability. Our algorithm picks such a subspace, projects all points into it (this requires
O(dn logn) time) and then applies the approximation scheme for the projected point set.
The runtime bound follows from Theorem 4.2.13, by substituting the value of m. �

The approximation complex from the previous theorem has size nO(log logn), which
is super-polynomial in n. Using a slightly more elaborate dimension reduction result
by Matoušek [Mat90] (Theorem 3.5.3), we can get a size bound polynomial in n, at the
price of an additional O(logn)-factor in the approximation quality. First, we note that
by setting k := 4 logn

log logn in Matoušek’s result in Theorem 3.5.3, we get an embedding of n
points of Rd into k dimensions with a distortion of at most O(

√
logn log logn).

Theorem 4.2.15. Let P be a set of n points in Rd.

• There exists a constant c and a discrete tower of the form(
X̄(

c logn
log logn

)2k)
k∈Z

,

which gives rise to a
(
3c logn

(logn
log logn

)1/2)-approximation of the Rips persistence
module on P .

• The expected size of the approximation tower is upper bounded by nO(1).

• Moreover, we can compute, with high success probability, the approximation tower in
deterministic expected running time

n(logn)2O(log ∆) + nO(1)

using Algorithm B.

Proof. The proof follows the same pattern of Theorem 4.2.14 with a few changes. We use
Matoušek’s dimension reduction result described in Theorem 3.5.3 with the projection
dimension beingm := 4 logn

log logn . Hence, ξ2/ξ1 = O(
√

logn log logn) for the Rips construction.
The final approximation factor is 6(m+ 1)ξ2/ξ1 which simplifies to O(logn

(logn
log logn

)1/2).
The size and runtime bounds follow by substituting the value of m in the respective
bounds. �

Finally, we consider the important generalization that P is not given as an embedding
in Rd, but as a point sample from a general metric space. Recall the classical result
by Bourgain [Bou85] (also Theorem 3.5.6) to embed P in Euclidean space with small
distortion. Bourgain’s result permits an embedding into m = O(log2 n) dimensions with a
distortion ξ2/ξ1 = O(logn), where the constants are independent of n and d.

As discussed in Section 3.5, we can use this embedding in a pipeline to approximate
Rips filtrations. The results are similar to Theorems 4.2.14 and 4.2.15, except that the
approximation quality further worsens by a factor of O(logn). Note that we could have used
Theorem 4.2.14 as the dimension reduction step, but that does not lead to a polynomial
complexity in n. Therefore, we only state the generalized version of Theorem 4.2.15. The
proof is straight-forward with the same techniques as before.

Theorem 4.2.16. Let P be a general metric space with n points.

• There exists a constant c and a discrete tower of the form(
X̄(

c logn
log logn

)2k)
k∈Z

,

which gives a persistence module that
(
3c log2 n

(
logn

log logn

)1/2)
-approximates the Rips

persistence module on P .

78

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 79

• The expected size of the approximation tower is upper bounded by nO(1).

• Moreover, we can compute, with high success probability the tower with this property
in deterministic expected running time

n(logn)2O(log ∆) + nO(1)

using Algorithm B.

Remark 4.2.17. The Čech filtration is a 4√2-approximation of the Rips filtration, from
Lemma 2.3.9. While the approximation results in Section 4.1 and Sub-section 4.2.3 have
been presented for the Rips filtration, they also apply to Čech filtrations on the same space
with a multiplicative factor of 4√2 in the approximation quality. This is true because of the
transitivity of interleavings from Lemma 2.3.7.

4.3 A lower bound for approximation schemes

Recall that the Čech filtration is associated with a barcode, which represents persistent
features (Definition 2.2.12). We construct a point configuration P in Euclidean space
such that its Čech filtration gives rise to a large number (say N) of features with “large”
persistence, relative to the scales on which the features appear. From the definition of
bottleneck matching (Definition 2.3.1), it is easy to see that any ε-approximation of such
a Čech filtration has to contain at least one interval in its persistent barcode per such
persistent feature of the Čech filtration, if ε is sufficiently small. As a result, any such
approximation will yield a barcode of size at least N .

If the approximation stems from a simplicial tower, then the appearance of any interval
in the barcode requires that a new simplex be added to the tower. Therefore, N is a lower
bound on the number of simplices in the approximation. Also more generally, because of
the interval decomposition of persistence modules (see Definition 2.2.10), it makes sense
to assume that any representation of a persistence module is at least as large as the size
of the resulting persistence barcode. We formalize the intuition of large persistent features
and the corresponding lower bounds:

Definition 4.3.1. For a point set P , we call an interval [α, α′] of of the Čech persistence
module (H(Cα(P)))α≥0 δ-significant for 0 < δ < α′−α

2α′ .

Lemma 4.3.2. For 0 < δ < 1/2, let N denote the number of δ-significant intervals of
(H(Cα))α≥0. Then, any persistence module (Vα)α≥0 that is an (1 + δ)-approximation of
(H(Cα))α≥0 has at least N intervals in its barcode.

Proof. First, we claim that

• If [α, α′] is δ-significant, then there exists some ε > 0 and c ∈ (α, α′) such that

α

(1− ε) ≤
c

(1 + δ) < c(1 + δ) ≤ α′. (4.3)

• Any persistence module that is an (1 + δ)-approximation of (H(Cα))α≥0 needs to
represent an approximation of the interval [α, α′] in the range (c(1− ε), c). In other
words, there is an interval in the approximation corresponding to [α, α′].

We first argue that δ-significance implies the existence of ε > 0 and c ∈ [α, α′] such
that Equation (4.3) holds. We choose c := α′/(1+δ), so that the last inequality is satisfied.
For the first inequality, we first note that (1− 2δ) < 1

(1+δ)2 for all δ < 1/2. By assumption,
α′ − α > 2α′δ, so α < α′(1 − 2δ) < α′

(1+δ)2 = c
1+δ . Since the inequality is strict, we can

choose some small ε > 0, such that α/(1− ε) ≤ c
1+δ .

By the definition of (1 + δ)-approximation using strong interleaving, we have a com-
mutative diagram

H(C c(1−ε)
(1+δ)

) inc //

φ

%%

H(Cc(1+δ))

Vc(1−ε)
h // Vc

ψ
;;

(4.4)

where inc is the linear map corresponding to the inclusion map, h is the linear map
connecting the approximation module, and φ, ψ are the maps connecting the two modules.
Let γ be the element in H(C c(1−ε)

(1+δ)
), corresponding to the δ-significant interval [α, α′]. By

definition, inc(γ) 6= 0. It follows that h(φ(γ)) 6= 0 either, since the diagram needs to
commute; so there is a interval corresponding to γ in the approximation. �

Setup We next define our point set for a fixed dimension d. Consider the A∗d lattice with
origin O. O has 2d+1−2 neighbors in the Delaunay triangulation D of A∗d, because its dual
Voronoi polytope, the permutahedron Π, has that many facets. We define P := NBR(O),
that is, the union of O with all its Delaunay neighbors, yielding a point set of cardinality
2d+1 − 1. As usual, we set n := |P |, so that d = Θ(logn).

We write DP for the Delaunay triangulation of P . Since P contains O and all its
neighbors, the Delaunay simplices of DP incident to O are the same as the Delaunay
simplices of D incident to O. Thus, according to Proposition 3.1.14, a (k − 1)-simplex of
DP incident to O corresponds to a (d−k+ 1)-face of Π, and thus to an ordered k-partition
of [d+ 1].

Fix a integer parameter ` ≥ 3, which we define later.

Definition 4.3.3 (good partition). We call an ordered k-partition (S1, . . . , Sk) good, if
|Si| ≥ ` for every i = 1, . . . , k. We define good Delaunay simplices and good permutahedron
faces accordingly using Proposition 3.1.14.

Our proof has two main ingredients. First, in Sub-section 4.3.1 we show that a good
Delaunay simplex either gives birth to or kills an interval in the Čech persistence module
that has a lifetime of at least `

8(d+1)2 . This justifies our notion of “good”, since good
k-simplices create features that have to be preserved by a sufficiently precise approximation.
Secondly, in Sub-section 4.3.2 we show that there are 2Ω(d log `) good k-partitions, so good
faces are abundant in the permutahedron.

4.3.1 Persistence of good simplices

Let us consider our first statement. Recall from Sub-section 2.4.2 that for any simplex
σ, rad(σ) is the radius value of σ in the Čech filtration, which means that σ is included
in the tower at scale rad(σ). For our arguments, it will be convenient to have an upper
bound for rad(σ). Clearly, such a value is given using the diameter of P . It is not hard to
see the following bound (compare Lemma 3.1.10), which we state for reference:

80

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 81

Lemma 4.3.4. The diameter of P is at most 2
√
d, which implies that rad(σ) ≤ 2

√
d for

each simplex σ of the Čech filtration.

From Sub-section 2.4.2, we know that a Čech filtration can be transformed into a
simplex-wise tower. In such a case, for a Čech filtration, it makes sense to talk about
the persistence of an interval associated to a simplex. Fix any (k − 1)-simplex σ of DP
incident to O. σ lies in the Čech filtration for some scale.

Lemma 4.3.5. Let f be the (d−k)-face of Π dual to σ, and let bc(f) denote its barycenter.
Then, rad(σ) is the distance ‖bc(f)−O‖.

Proof. bc(f) is the closest point to O on f because the vector bc(f)−O is orthogonal to
the vector bc(f)− v for any boundary vertex v of f . Since f is dual to σ, all vertices of σ
are in same distance to bc(f). �

Recall from Sub-section 2.4.2 that Dσ and D∗σ denote the difference of the radius values
of σ and its (co-)facets, that is,

Dσ := min
τ is facet of σ

rad(σ)− rad(τ), and D∗σ := min
τ is co-facet of σ

rad(τ)− rad(σ).

Theorem 4.3.6. For each good simplex σ ∈ DP , both Dσ and D∗σ are at least `
24(d+1)3/2 .

Proof. We start with D∗σ. Let σ ∈ DP be a (k − 1)-simplex and let τ be a co-facet of σ.
First, we will bound the quantity rad(τ)2 − rad(σ)2. Let e be the face of Π dual to τ

and let bc(e) denote the barycenter of e. Let f be the face of Π dual to σ. By Lemma 4.3.5,
the radius values of τ and σ are the squared norms of the barycenters bc(e) and bc(f),
respectively. It is possible to derive an explicit expression of the coordinates of bc(f) and
bc(e).

Let S1, . . . , Sk be the ordered partition of [d + 1] corresponding to σ. We obtain
the partition corresponding to τ by splitting some set Si in the corresponding partition
(S1, . . . , Sk) of σ, into two non-empty parts, from Proposition 3.1.14. Assume without loss
of generality that

• Sk is split into S′k and S′k+1, that is, Sk = (S′k, S′k+1) (splitting any other Si yields
the same bound),

• and that Sk is of size exactly ` (a larger cardinality only leads to a larger difference
in the quantity rad(τ)2 − rad(σ)2).

Let si and pi denote the quantities si := |Si| and pi =
∑i−1
j=1 sj , for all i. Π is spanned

by the permutations of a particular point in Rd+1, defined in Section 3.1; we order these
coordinates values by size in increasing order. Then, the indices in Si will contain the
coordinate values of order pi + 1, . . . , pi + si. Let ai denote the average of the coordinate
values of orders pi + 1, . . . , pi + si. The symmetric structure of Π implies that bc(f) has
value ai in each coordinate j ∈ Si. Doing the same construction for τ , we observe that the
coordinates of bc(f) and bc(e) coincide for every coordinate j ∈ S1, . . . , Sk−1. The only
differences appear for coordinate indices of Sk, that is, the partition set that was split to
obtain τ from σ. Writing ak, a′k, a′k+1 for the average values for Sk, S′k, S′k+1, respectively,
and t := |S′k|, we get

rad2(τ)− rad2(σ) =
t∑
i=1

(
(a′k)2 − a2

k

)
+
∑̀
i=t+1

(
(a′k+1)2 − a2

k

)
= t

(
(a′k)2 − a2

k

)
+ (`− t)

(
(a′k+1)2 − a2

k

)

To obtain ak, a′k, and a′k+1, we only need to explicitly compute the average of the
appropriate coordinate values. A simple calculation shows that

ak = (d+ 1)− `
2(d+ 1) , a′k = (d+ 1)− i

2(d+ 1) , and a′k+1 = (d+ 1)− `− i
2(d+ 1) .

Plugging in these values yields

rad2(τ)− rad2(σ) = (d+ 1 + `)t(`− t)
4(d+ 1)2 ,

whose minimum is achieved for t = 1 and t = `− 1. Therefore,

rad2(τ)− rad2(σ) ≥ (d+ 1 + `)(`− 1)
4(d+ 1)2 ≥ `− 1

4(d+ 1) .

Moreover, rad(τ) ≤ 2
√
d by Lemma 4.3.4. This yields

rad(τ)− rad(σ) = rad2(τ)− rad2(σ)
rad(τ) + rad(σ) ≥

rad2(τ)− rad2(σ)
2rad(τ)

≥ `− 1
16(d+ 1)

√
d
≥ `

24(d+ 1)3/2

for ` ≥ 3. The claim for D∗σ follows.
For Dσ, note that minγ is facet of σD

∗
γ ≤ Dσ, so it is enough to bound D∗γ for all facets

γ of σ. The (k − 1)-simplex σ has two kind of facets:

• (k − 2)-facets which are attached to the origin O. The faces of Π dual to these
(k − 2)-facets of σ are co-faces of f . As a result, these (k − 2)-facets are obtained by
merging two consecutive Si and Si+1. However, the obtained partition is again good
(because σ is good), so the first claim yields the lower bound result for all these
facets.

• The facet of σ which is opposite to O. The face of the permutahedral tessellation
dual to this facet of σ is not contained in Π, so the previous argument does not apply
directly. To handle this case, we change the origin to any vertex of σ. Through the
combinatorial properties of Π, it can be observed that with respect to the new origin,
σ has the representation of the form (Sj , . . . , Sk, S1, . . . , Sj−1), one for each choice
of the (k − 1) origins, thus the partition is cyclically shifted.
In particular, σ is still good with respect to the new origin. We obtain the missing
facet by merging the (now consecutive) sets Sk and S1, which is also a good face,
and the first part of the statement implies the result.

The claims follow. �

As a consequence of Theorem 4.3.6, the interval associated with a good simplex has
length at least `

24(d+1)3/2 using Lemma 2.4.6 and 2.4.7. Moreover, the interval cannot
persist beyond the scale 2

√
d by Lemma 4.3.4. It follows

Corollary 4.3.7. The interval associated to a good simplex is δ-significant for

δ <
`

24(d+ 1)3/2
1

4
√
d
<

`

192(d+ 1)2 .

82

CHAPTER 4. APPROXIMATION USING THE PERMUTAHEDRON 83

4.3.2 The number of good simplices

We assume for simplicity that d+ 1 is divisible by `. We call a good partition (S1, . . . , Sk)
uniform, if each set consists of exactly ` elements. This implies that k = (d+ 1)/`.

Lemma 4.3.8. The number of uniform good partitions is exactly (d+1)!
`!(d+1)/` .

Proof. Choose an arbitrary permutation and place the first ` entries in the S1, the second
` entries in S2, and so forth. In each Si, we can interchange the elements and obtain the
same k-simplex. Thus, we have to divide out `! choices for each of the (d+ 1)/` bins. �

We use this result to bound the number of good k-simplices in the upcoming theorem.
Theorem 4.3.9. For any constant ρ ∈ (0, 1), ` = (d + 1)ρ, k = (d + 1)/` and d large
enough, there exists a constant λ ∈ (0, 1) that only depends only on ρ, such that the number
of good k-simplices is at least (d+ 1)λ(d+1) = 2Ω(d log d).

Proof. From Lemma 4.3.8, we know that the number of good simplices is at least (d+1)!
`!(d+1)/` .

Stirling’s approximation [RD69] states that for any positive integer n,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n),

where e ≈ 2.71828 is the Euler’s number. We rephrase the upper bound as
√

2πnn+1/2e−n+1/(12n) ≤
√

2πe1/(12n)nn+1/2e−n ≤ enn+1/2e−n

for n ≥ 2 and the lower bound simply as
√

2πnn+1/2e−n+1/(12n+1) ≥ nne−n.

In this way, we can lower bound the number of good simplices as

(d+ 1)!
`!(d+1)/` ≥

(d+ 1)(d+1)e−(d+1)

(e``+1/2e−`)(d+1)/`

≥ (d+ 1)(d+1)e−(d+1)

e(d+1)/``(d+1)+(d+1)/(2`)e−(d+1)

≥ exp
(

(d+ 1) log(d+ 1)− (d+ 1)
`

− (d+ 1) log `(1 + 1
2`)
)
.

Choose ` = (d+ 1)ρ with some constant 0 < ρ < 1. The above simplifies to

exp
(

(d+ 1) log(d+ 1)− (d+ 1)1−ρ − ρ(d+ 1) log(d+ 1)(1 + 1
2(d+ 1)ρ)

)
= exp

(
(d+ 1) log(d+ 1)(1− ρ(1 + 1

2(d+ 1)ρ))− (d+ 1)1−ρ
)
.

Now, pick some λ ∈ [0, 1] such that ρ < 1− 2λ < 1. We have that

ρ

(
1 + 1

2(d+ 1)ρ
)
< 1− 2λ

for d large enough. Thus, for d large enough,

exp
(

(d+ 1) log(d+ 1)(1− ρ(1 + 1
2(d+ 1)ρ))− (d+ 1)1−ρ

)
≥ exp

(
2λ(d+ 1) log(d+ 1)− (d+ 1)1−ρ

)
≥ exp (λ(d+ 1) log(d+ 1)) ,

which proves the claim. �

Putting everything together, we prove our lower bound theorem:

Theorem 4.3.10. There exists a point set of n points in d = Θ(logn) dimensions, such
that any (1 + δ)-approximation of its Čech filtration contains 2Ω(d log d) intervals in its
persistent barcode, provided that δ < 1

192(d+1)1+ε with an arbitrary constant ε ∈ (0, 1).

Proof. Setting ρ := 1 − ε, Theorem 4.3.9 guarantees the existence of 2Ω(d log d) good
simplices, all in a fixed dimension k. In particular, the intervals of the Čech persistence
module associated to these intervals are all distinct. Since ` = (d+ 1)1−ε, Corollary 4.3.7
states that all these intervals are significant because δ < 1

192d1+ε = `
192(d+1)2 . Therefore,

by Lemma 4.3.2, any (1 + δ)-approximation of the Čech filtration has 2Ω(d log d) intervals
in its barcode. �

Replacing d by logn in the bounds of theorem, we see the number of intervals appearing
in any approximation is nΘ(log logn), which is super-polynomial in n if δ is small enough.

4.4 Discussion

In this chapter, we presented upper and lower bound results on approximating Rips and
Čech filtrations of point sets in arbitrarily high dimensions. For Čech complexes, the
major result can be summarized as: for a dimension-independent bound on the complex
size, there is no way to avoid a super-polynomial complexity for fine approximations of
quality about O(log−1 n), while polynomial size can be achieved for rough approximation
of quality about O(log2 n).

Filling in the large gap between the two approximation factors is an attractive avenue
for future work. A possible approach is to look at other lattices. It seems that lattices
with good covering properties are correlated with a good approximation quality, and it
may be worthwhile to study lattices in higher dimension which improve largely on the
covering density of A∗ (e.g., the Leech lattice [CSB87]).

It is however, noteworthy that the Permutahedral lattice is one among a very small
number of lattices that are in general position. As a result, any technique which works
with non-degenerate lattices has to use a smarter triangulation than just using the nerve of
the non-empty Voronoi cells. Also, efficient algorithms for closest point location are only
known for a few lattices. From an algorithmic viewpoint, any alternative lattice should be
efficient in this regard.

84

Chapter 5

Approximation using Grids

In this chapter we present a new scheme to approximate the Rips filtration in Euclidean
space, improving upon the approximation results of Chapter 4. To build our approximation
tower, we use scaled and shifted versions of the integer lattice, which we defined earlier
in Section 3. A particularly interesting contribution in this chapter is the application of
acyclic carriers (see Definition 2.4.2) to prove the interleaving of the approximation tower
with the Rips filtration. In Section 5.1 we define our approximation scheme and detail the
connection with the Rips filtration. In Section 5.2 we discuss the computational aspects of
computing the approximation tower.

5.1 Approximation scheme

We define our approximation complex for a finite set of points in Rd. Recall from
Definition 3.2.1 that we can define a collection of scaled and shifted integer grids Gαs
over a collection of scales I := {αs = 2s | s ∈ Z} in Rd. For shorter notation, we write s
instead of αs, and Gs instead of Gαs when it is clear from context. Also, let �s denote the
cubical complex corresponding to Gs (see Definition 3.2.3). Let sds denote the barycentric
subdivision of �s (see Definition 3.2.6 for more details). To make the exposition simple,
we define our complex in a slightly generalized form.

5.1.1 Barycentric spans

Fix some s ∈ Z and let V denote any non-empty subset of Gs.

Definition 5.1.1 (vertex span). We say that a face f ∈ �s is spanned by V , if the set
of vertices V (f) := f ∩ V

• is non-empty, and

• not contained in any facet of f .

Trivially, the vertices of �s which are spanned by V are precisely the points in V .
Any face of �s which is not a vertex must contain at least two vertices of V in order to
be active. We point out that the set of spanned faces of �s is not closed under taking
sub-faces. For instance, if V consists of two antipodal points of a d-cube, the only faces
spanned by V are the d-cube and the two vertices; all other faces of the d-cube contain at
most one vertex and hence are not active.

A simple technique reveals whether any k-face f ∈ �s is spanned. For any axis-aligned
k-cube �, there exists a partition of {1, . . . , d} into sets S, S′ with |S| = d−k and |S′| = k

85

such that � spans the sub-space of Rd defined by the co-ordinate directions of S′. The
co-ordinates of all points of � are common for the indices in S. Since f is a k-cube, it
also has a partition S, S′ as in the case of �. Let T be the set of common co-ordinates of
the points in V (f). T is always a superset of S. If T is a strict superset of S, then the
points V (f) lie in a lower dimensional face of f , which means that f is not active. If T is
precisely S, then f is active. T can be computed in |V (f)|O(d2) = O(2kd2) time.

Definition 5.1.2 (barycentric span). The barycentric span of V is the subcomplex of
sds defined by all flags {f0, . . . , fk} of �s such that each fi is spanned by V .

The barycentric span of V is indeed a subcomplex of sds because it is closed under
taking subsets of V . For any face f ∈ �s that is spanned by V , we define the f-local
barycentric span of V as the set of all flags of the form {f0, . . . , fk} in the barycentric
span such that fi ⊆ f for all i. This is a subcomplex both of the barycentric subdivision
of sd(f), and of the barycentric span of V . An elementary observation is that the f -local
barycentric span is a flag complex.

Lemma 5.1.3. For each face f ∈ �s, the f-local barycentric span of V is either empty
or acyclic.

Proof. We assume that the f -local barycentric span of V is not empty. Then, f contains
a unique active face e of maximal dimension that is spanned by V .

A simplex in a simplicial complex K is called maximal if no other simplex in K contains
it. It is well-known that if a simplicial complex K contains a vertex x that lies in every
maximal simplex, then K is acyclic (in this case, K is called star-shaped).

In our situation, the vertex e belongs to every maximal simplex in the f -local barycentric
span, because every simplex not containing e is a flag that can be extended by adding e
to it. The claim follows. �

Furthermore, for any non-empty subset W ⊆ V , it is easy to see that the faces of �s

that are spanned by W are also spanned by V . Consequently, the barycentric span of W
is a subcomplex of the barycentric span of V .

5.1.2 Approximation complex

We denote by P ⊂ Rd a finite set of points. We define two maps:

• as : P → Gs: for each point p ∈ P , we let as(p) denote the grid point in Gs that is
closest to p, that is, p ∈ V orGs(as(p)). We assume for simplicity that this closest
point is unique, which can be ensured using well-known methods [EM90]. We define
the active vertices of Gs as

Vs := im(as) = as(P) ⊂ Gs,

that is, the set of grid points that have at least one point of P in their Voronoi cells.

• bs : Vs → P : bs takes an active vertex of Gs to its closest point in P . We assume
for simplicity that the assignment is unique, which is easy to ensure by using an
arbitrary total order on P .

Naturally, bs(v) is a point inside V orGs(v) for any v ∈ Vs. With this, it is easy to see that
the map bs is a section of as, that is, as ◦ bs : Vs → Vs is the identity on Vs. However, this
is not true for bs ◦ as in general.

Recall that the map gs : �s → �s+1 from Section 3.2 maps grid points of Gs to grid
points of Gs+1. Using Lemma 3.2.2, it follows at once that:

86

CHAPTER 5. APPROXIMATION USING GRIDS 87

(a) A two-dimensional grid, shown along
with its cubical complex. The green
points (small dots) denote the points in
P and the red vertices (encircled) are
the active vertices.

(b) The generated approximation com-
plex, whose vertices are the encircled
vertices from the left figure and the blue
vertices (small dots). The blue vertices
are the barycenters of active faces.

Figure 5.1: The approximation complex.

Lemma 5.1.4. For all αs ∈ I and each x ∈ Vs, gs(x) = (as+1 ◦ bs)(x).

Recall from Chapter 2 that R∞α denotes the Rips complex at scale α for the L∞-norm.
The next statement is a direct application of the triangle inequality; let diam∞() denote
the diameter in the L∞-norm.

Lemma 5.1.5. Let Q ⊆ P be a non-empty subset such that diam∞(Q) ≤ αs. Then, the
set of grid points as(Q) is contained in a face of �s.

Equivalently, for any simplex σ = (p0, . . . , pk) ∈ R∞αs/2 on P , the set of active vertices
{as(p0), . . . , as(pk)} is contained in a face of �s.

Proof. We prove the claim by contradiction. Assume that the set of active vertices as(Q)
is not contained in a face of �s. Then, there exists at least one pair of points {x, y} ∈ Q
such that as(x), as(y) are not in a common face of �s. By the definition of the grid Gs,
the grid points as(x), as(y) therefore have L∞-distance at least 2αs. Moreover, x has
L∞-distance less than αs/2 from as(x), and the same is true for y and as(y). By triangle
inequality, the L∞-distance of x and y is more than αs, which is a contradiction to the
fact that diam∞(Q) ≤ αs. �

We now define our approximation tower. For any scale αs, we define Xαs as the
barycentric span (Definition 5.1.2) of the active vertices Vs ⊂ Gs. See Figure 5.1 for a
simple illustration.

To simplify notations, we call

• the faces of �s spanned by Vs as active faces, and

• the simplices of Xαs as active flags.

To complete the description of the approximation tower, we need to define simplicial maps
of the form g̃s : Xαs → Xαs+1 , which connect the simplicial complexes at consecutive scales.
We show that such maps are induced by gs.

Lemma 5.1.6. Let f be any active face of �s. Then, gs(f) is an active face of �s+1.
Proof. Using Lemma 3.2.4 from Chapter 3, e := gs(f) is a face of �s+1. If e is a vertex,
then it is active, because f contains at least one active vertex v, and gs(v) = e in this
case. If e is not a vertex, we assume for a contradiction that it is not active. Then, it
contains a facet e1 that contains all active vertices in e. Let e2 denote the opposite facet
of e1 in e. By Lemma 3.2.4, f contains opposite facets f1, f2 such that gs(f1) = e1 and
gs(f2) = e2. Since f is active, both f1 and f2 contain active vertices; in particular, f2
contains an active vertex v. But then the active vertex gs(v) must lie in e2, contradicting
the fact that e1 contains all active vertices of e. �

By definition, a simplex σ ∈ Xαs is a flag (f0 ⊆ . . . ⊆ fk) of active faces in �s. We set

g̃s(σ) := (gs(f0), . . . , gs(fk)),

where (gs(f0) ⊆ . . . ⊆ gs(fk)) is the active flag of faces in �s+1 by Lemma 5.1.6, and hence
is a simplex in Xαs+1 . It follows that g̃s : Xαs → Xαs+1 is a simplicial map. This completes
the description of the simplicial tower

(X2s)s∈Z.

5.1.3 Interleaving with Rips module

First, we relate our tower with the L∞-Rips filtration of P by showing that it gives rise to
a constant-factor approximation. We then show that this also relates our approximation
tower to the Euclidean Rips filtration of P .

We start by defining two acyclic carriers. We abbreviate α := αs = 2s to simplify
notation.

• Cα1 : R∞α/2 → Xα: for any simplex σ = (p0, . . . , pk) in R∞α/2, we set Cα1 (σ) as the
barycentric span of U := {as(p0), . . . , as(pk)}, which is a subcomplex of Xα. Using
Lemma 5.1.5, U lies in a face f of �s, so that Cα1 (σ) is also the f -local barycentric
span of U . Using Lemma 5.1.3, we see that Cα1 (σ) is acyclic. The barycentric span
of any subset of U is a subcomplex of the barycentric span of U (see the remark
after Lemma 5.1.3), so Cα1 is a carrier. Therefore, Cα1 is an acyclic carrier.

• Cα2 : Xα → R∞α : let σ be any flag (e0 ⊆ . . . ⊆ ek) of Xα. Let {q0, . . . , qm} be the set
of active vertices of ek. We set Cα2 (σ) := {bs(q0), . . . , bs(qm)}. We see that

‖bs(qi)− bs(qj)‖∞ ≤ ‖bs(qi)− qi‖∞ + ‖qi − qj‖∞ + ‖qj − bs(qj)‖∞
< α/2 + α+ α/2 ≤ 2α.

So, Cα2 (σ) is a simplex in R∞α , hence it is acyclic. Cα2 is also a carrier by definition,
so it is an acyclic carrier.

Using the acyclic carrier theorem (Theorem 2.4.3), there exist chain maps

cα1 : C∗(R∞α/2)→ C∗(Xα) and cα2 : C∗(Xα)→ C∗(R∞α),

between the chain complexes, which are carried by Cα1 and Cα2 respectively, for each α ∈ I.
Aggregating the chain maps, we have the following diagram:

. . . // C∗(R∞α)

c1
��

inc // C∗(R∞2α) // . . .

. . . // C∗(Xα) g̃ //

c2
99

C∗(X2α) //

c2
99

. . .

(5.1)

88

CHAPTER 5. APPROXIMATION USING GRIDS 89

where inc corresponds to the chain map for inclusion maps, and g̃ denotes the chain map
for the corresponding simplicial maps (we removed indices of the maps for readability). The
chain complexes give rise to a diagram of the corresponding homology groups, connected
by the induced linear maps c∗1, c∗2, inc∗, g̃∗:

. . . // H(R∞α)

c∗1
��

inc∗ // H(R∞2α) // . . .

. . . // H(Xα) g̃∗ //

c∗2
99

H(X2α) //

c∗2
99

. . .

(5.2)

Lemma 5.1.7. For all α ∈ I, the linear maps in the lower triangle of Diagram (5.2)
commute, that is,

g̃∗ = c∗1 ◦ c∗2.

Proof. To prove the claim, we look at the corresponding triangle in Diagram (5.1). We
show that the chain maps g̃ and c1 ◦ c2 are carried by a common acyclic carrier. The claim
then follows from the acyclic carrier theorem.

We choose the map C1 ◦ C2 : Xα → X2α. Since C2(σ) is a simplex for any simplex
σ ∈ Xα, it is easy to see that C1 ◦C2 is an acyclic carrier. Clearly, C1 ◦C2 carries the map
c1 ◦ c2 by definition. We show that it also carries the map g̃.

Let σ be any flag (f0 ⊆ . . . ⊆ fk) in Xα and let V (fi) denote the active vertices of fi,
for all i. Then, C1 ◦ C2(σ) is the barycentric span of

U := {as+1 ◦ bs(q) | q ∈ V (fk)} = {gs(q) | q ∈ V (fk)}

(using Lemma 5.1.4). On the other hand, V (fi) ⊆ V (fk) so that g(V (fi)) ⊆ U . Then, g(fi)
is spanned by U : indeed, since fi is active, g(fi) is active and hence spanned by all active
vertices, and it remains spanned if we remove all active vertices not in U , since they are
not contained in fi. It follows that the flag (g(f0) ⊆ . . . ⊆ g(fk)), which is equal to g̃(σ),
is in the barycentric span of U . This shows that g̃ is carried by C1 ◦ C2, as required. �

Lemma 5.1.8. For all α ∈ I, the linear maps in the upper triangle of Diagram (5.2)
commute, that is,

inc∗ = c∗2 ◦ c∗1.

Proof. The proof technique is analogous to the proof of Lemma 5.1.7. We define an acyclic
carrier D : R∞α → R∞2α which carries both inc and c2 ◦ c1.

Let σ = (p0, . . . , pk) ∈ R∞α be any simplex. The active vertices

U := {a(p0), . . . , a(pk)} ⊂ Gs+1

lie in a face f of Gs+1, using Lemma 5.1.5. We can assume that f is active, as otherwise,
we argue about a facet of f that contains U . We set D(σ) as the simplex on the subset of
points in P , whose closest grid point in Gs+1 is any vertex of f . Using a simple application
of triangle inequalities, D(σ) ∈ R∞2α, so D is an acyclic carrier. The vertices of σ are a
subset of D(σ), so D carries the map inc. Showing that D carries c2 ◦ c1 requires further
explanation.

Let δ be any simplex in X2α for which the chain c1(σ) takes a non-zero value. Since
c1(σ) is carried by C1(σ), we have that δ ∈ C1(σ), which is a subcomplex of the f -local
barycentric span. Furthermore, for any τ ∈ C1(σ), C2(τ) is of the form {b(q0), . . . , b(qm)}
with {q0, . . . , qm} being vertices of f . It follows that C2(τ) ⊆ D(σ). In particular, since c2
is carried by C2, c2(c1(σ)) ⊆ D(σ) as well. �

Using Lemma 5.1.7 and Lemma 5.1.8, we see that the persistence modules (H(X2s))s∈Z
and (H(R∞α))α≥0 are weakly 2-interleaved. Applying the scale balancing technique from
Sub-section 2.3.3, this improves to a weak

√
2-interleaving.

With a minor modification in the definition of X and g̃, we can get a tower of the
form (Xα)α≥0. Further, with minor changes in the interleaving arguments, we show that
the corresponding persistence module is strongly 2-interleaved with the L∞-Rips module
(Lemma A.0.5). Since the techniques used in the proof are very similar to the concepts
used in this section, we defer all further details to Appendix A.

Using the strong stability theorem for persistence modules (Theorem 2.3.6) and taking
scale balancing into account, we immediately get that:

Theorem 5.1.9. The persistence module
(
H(X2α)

)
α≥0 and the L∞-Rips persistence

module
(
H(R∞α)

)
α≥0 are 2-approximations of each other.

For any pair of points p, p′ ∈ Rd, it holds that

‖p− p′‖2 ≤ ‖p− p′‖∞ ≤
√
d ‖p− p′‖2.

With this, it is easy to infer that the L2- and the L∞-Rips filtrations are strongly
√
d-

interleaved. Using the scale balancing technique for strongly interleaved persistence
modules, we get:

Lemma 5.1.10. The persistence modules (H(Rα/d0.25))α≥0 and (H(R∞α))α≥0 are strongly
d0.25-interleaved.

Using Theorem 5.1.9, Lemma 5.1.10 and the fact that interleavings satisfy the triangle
inequality [BS14, Theorem 3.3], we see that (H(X2α))α≥0 is strongly 2d0.25-interleaved
with the scaled Rips module (H(Rα/d0.25))α≥0. We can remove the scaling in the Rips
filtration simply by multiplying the scales on both sides with d0.25 and obtain our final
approximation result:

Theorem 5.1.11. The persistence module
(
H(X2 4√

dα
)
)
α≥0 and the Euclidean Rips per-

sistence module
(
H(Rα)

)
α≥0 are 2d0.25-approximations of each other.

5.2 Computational complexity

In this section we discuss the computational aspects of constructing the approximation
tower. In Sub-section 5.2.1 we discuss the size complexity of the tower. An algorithm to
compute the tower efficiently is present in Sub-section 5.2.2.

Range of relevant scales Set n := |P | and let CP (P) denote the closest pair distance
of P . At scale α0 := CP (P)

3d and lower, no two active vertices lie in the same face of the grid,
so the approximation complex consists of n isolated 0-simplices. At scale αm := diam(P)
and higher, points of P map to active vertices of a common face (by Lemma 5.1.5), so the
generated complex is acyclic using Lemma 5.1.3. We inspect the range of scales [α0, αm]
to construct the tower, since the barcode is explicitly known for scales outside this range.
The total number of scales is

dlog2 αm/α0e = dlog2 ∆ + log2 3de = O(log ∆ + log d).

90

CHAPTER 5. APPROXIMATION USING GRIDS 91

5.2.1 Size of the tower

The size of a tower is the number of simplices that do not have a preimage, that is, the
number of simplex inclusions in the tower (see Chapter 2). We start by considering the
case of 0-simplices of the approximation tower.

Lemma 5.2.1. The number of vertices included in the tower is at most n2O(d).

Proof. Recall that the vertices of Xα are the active faces of the cubical complex �α at
the same scale, and that the simplicial map g̃ restricted to the vertices corresponds to the
cubical map g acting on the active faces of �α.

We first consider the active vertices. At scale α0, there are n inclusions of 0-simplices
in the tower, due to n active vertices. Using Lemma 3.2.2, g is surjective on the active
vertices of � (for any scale). Hence, no further active vertices are added to the tower.

It remains to count the active faces of dimension ≥ 1 without preimage. We will use a
charging argument, charging the existence of such an active face to one of the points in P .
We show that each point of P is charged at most 3d times, which proves the claim. For
that, we first fix an arbitrary total order ≺ on P . Each active vertex on any scale has a
non-empty subset of P in its Voronoi region; we call the maximal such point with respect
to the order ≺ the representative of the active vertex. For an active face f (of dimension
one or higher) without preimage under g, f has at least two incident active vertices, with
distinct representatives. We charge the inclusion of f to the minimal representative among
the incident active vertices.

Let M be the number of faces incident to a vertex in the cubical complex � (for
any scale). As one can easily see with combinatorial arguments, M = 3d. Assume for
a contradiction that a point p ∈ P is charged more than M times. Whenever any face
fi is charged to p, there is an active vertex vi whose representative is p. We enumerate
these as the set of active vertices {v0, . . . , vm} on the scales α0, . . . , αm such that p is the
representative of vi on scale αi, for all i. Naturally, for any vi and vj , there is a canonical
isomorphism between the M faces incident to vi and the M faces incident to vj .

Since we assumed that p is charged for > M active faces, by pigeonhole principle,
there must be two vertices vi and vj with i < j such that a pair of isomorphic incident
faces are charged for vi and for vj . There is a sequence of isomorphic faces fi, fi+1, . . . , fj
corresponding to vi, vi+1, . . . , vj , respectively, such that p is charged for fi and fj . Since
fi and fj both have no preimage, there must be some f` with i < ` < j such that f`
is not active. That means, however, that the Voronoi region of v` is the union of at
least two Voronoi regions of vertices incident to vi. In that case, because we choose the
representative by minimizing over the maximal representatives, we see that p is not the
representative of v`, and hence, not of vj . This is a contradiction to our claim that p is
the representative of v`, so p can not be charged more than M times. �

The next lemma follows from a simple combinatorial counting argument for the number
of flags in a d-dimensional cube.

Lemma 5.2.2. Each vertex of Xα has at most 2O(d log k) incident k-simplices.

Proof. A vertex in Xα corresponds to an active face f in the cubical complex �α. A
simplex incident to f corresponds to an active flag of �α involving f . Let c be a d-cube of
�α that contains f . We simply count the number of flags of length (k + 1) contained in
c (regardless of whether they contain f or not) and show that this number is 2O(d log k).
Since f is contained in at most 2d d-cubes, the bound in our claim follows.

To count the number of flags contained in c, we use similar ideas as in [EK12]: first, we
fix any vertex v of c and count the flags of the form v ⊆ . . . ⊆ c. Every `-face in c incident
to v corresponds to a subset of ` coordinate indices, in the sense that the coordinates
not chosen are fixed to the coordinates of v for the face. With this correspondence, it
is not hard to see that a flag from v to c of length (k + 1) corresponds to an ordered
k-partition of {1, . . . , d}. The number of such partitions is known as k! times the quantity{
d
k

}
, which is the Stirling number of second kind [RD69], and is upper bounded by

2O(d log k) [CKR16]. Since c has 2d vertices, the total number of flags v ⊆ . . . ⊆ c of length
(k + 1) with any vertex v is hence 2dk!2O(d log k) = 2O(d log k).

For flags which do not start with a vertex and do not end with c, we can simply extend
them by adding a vertex and/or the d-cube and obtain flags of length k + 2 or k + 3. The
above argument again shows that the number of such flags is bounded by 2O(d log k). �

Theorem 5.2.3. The k-skeleton of the tower has size at most n2O(d log k).

Proof. Let σ = (f0 ⊆ . . . ⊆ fk) be a flag included at some scale α in the tower. The crucial
insight is that this can only happen if at least one face fi in the flag is included in the tower
at scale α. Indeed, if each fi has a preimage ei on the previous scale, then (e0 ⊆ . . . ⊆ ek)
is a flag on the previous scale that maps to σ under g̃, which is a contradiction to the
inclusion of σ at scale α.

We charge the inclusion of the flag to the inclusion of fi. Clearly, fi is only charged
at the scale at which it is included in the tower. By Lemma 5.2.2, the vertex fi of X is
charged at most

∑k
i=1 2O(d log i) = 2O(d log k) times in this way, and by Lemma 5.2.1, there

are at most n2O(d) vertices that can be charged. The claim follows. �

5.2.2 Computing the tower

From Section 3.2, we know that Gs+1 is built from Gs by making use of an arbitrary
translation vector (±1, . . . ,±1) ∈ Zd. In our algorithm, we pick the components of this
translation vector uniformly at random from {+1,−1}, and independently for each scale.
The choice behind choosing this vector randomly becomes more clear in the next lemma.

From the definition, it is easy to see that the cubical maps gs : �s → �s+1 can be
composed for multiple scales. For a fixed s, we denote by g(j) : �s → �s+j the j-fold
composition of g, that is,

g(j) = gs+j−1 ◦ gs+j−2 ◦ . . . ◦ gs+1 ◦ gs,

for j ≥ 1.

Lemma 5.2.4. For any k-face f ∈ �s with 1 ≤ k ≤ d, let Y denote the minimal integer j
such that g(j)(f) is a vertex, for a given choice of the randomly chosen translation vectors.
Then, the expected value of Y satisfies

E[Y] ≤ 3 log k,

which implies that no face of �s survives more than 3 log d scales in expectation.

Proof. Without loss of generality, assume that the grid under consideration is Zd and f
is the k-face spanned by the vertices {{0, 1}, . . . , {0, 1}︸ ︷︷ ︸

k

, 0, . . . , 0}, so that the origin is a

vertex of f . The proof for the general case is analogous.
Let y1 ∈ {−1, 1} denote the randomly chosen first coordinate of the translation vector,

so that the corresponding shift is one of {−1/2, 1/2}.

92

CHAPTER 5. APPROXIMATION USING GRIDS 93

• If y1 = 1, then the grid G′ on the next scale has some grid point with x1-
coordinate 1/2. Clearly, the closest grid point in G′ to the origin is of the form
(+1/2,±1/2, . . . ,±1/2), and thus, this point is also closest to (1, 0, 0, . . . , 0). The
same is true for any point (0, ∗, . . . , ∗) and its corresponding point (1, ∗, . . . , ∗) on
the opposite facet of f . Hence, for y1 = 1, g(f) is a face where all points have the
same x1-coordinate.

• Contrarily, if y1 = −1, the origin is mapped to some point which has the form
(−1/2,±1/2, . . . ,±1/2) and (1, 0, . . . , 0) is mapped to (3/2,±1/2, . . . ,±1/2), as one
can directly verify. Hence, in this case, in g(f), points do not all have the same x1
coordinate.

We say that the x1-coordinate collapses in the first case and survives in the second. Both
events occur with the same probability 1/2. Because the shift is chosen uniformly at
random for each scale, the probability that x1 did not collapse after j iterations is 1/2j .

f spans k coordinate directions, so it must collapse along each such direction to contract
to a vertex. Once a coordinate collapses, it stays collapsed at all higher scales. As the
random shift is independent for each coordinate direction, the probability of a collapse is
the same along all coordinate directions that f spans. Using union bound, the probability
that gj(f) has not collapsed to a vertex is at most k/2j . With Y as in the statement of
the lemma, it follows that

P (Y ≥ j) ≤ k/2j .
Hence,

E[Y] =
∞∑
j=1

jP (Y = j) =
∞∑
j=1

P (Y ≥ j)

≤ log k +
∞∑
c=1

(c+1) log k∑
j=c log k

P (Y ≥ j)

≤ log k +
∞∑
c=1

(c+1) log k∑
j=c log k

P (Y ≥ c log k)

≤ log k +
∞∑
c=1

log k k

2c log k

≤ log k + log k
∞∑
c=1

1
kc−1

≤ log k + 2 log k ≤ 3 log k.

�

As a consequence of the lemma, the expected “lifetime” of k-simplices in our tower
with k > 0 is rather short: given a flag e0 ⊆ . . . ⊆ e`, the face e` will be mapped to a
vertex after O(log d) steps, and so will be all its sub-faces, turning the flag into a vertex.
It follows that summing up the total number of k-simplices with k > 0 over all Xα yields
an upper bound of n2O(d log k) as well.

Algorithm description

Recall that a simplicial map can be written as a composition of simplex inclusions and
contractions of vertices [DFW14, KS17] (see also Chapter 2). That means, given the
complex Xαs , to describe the complex at the next scale αs+1, it suffices to specify

• which pairs of vertices in Xαs map to the same image under g̃, and

• which simplices in Xαs+1 are included at scale Xαs+1 .

The input is a set of n points P ⊂ Rd. The output is a list of events, where each event
is of one of the three following types:

• A scale event defines a real value α and signals that all upcoming events happen at
scale α (until the next scale event).

• An inclusion event introduces a new simplex, specified by the list of vertices on its
boundary (we assume that every vertex is identified by a unique integer).

• A contraction event is a pair of vertices (i, j) from the previous scale, and signifies
that i and j are identified as the same from that scale.

In a first step, we estimate the range of scales that we are interested in. We compute a
2-approximation of diam(P) by taking any point p ∈ P and calculating maxq∈P ‖p− q‖.
Then we compute CP (P) using a randomized algorithm in n2O(d) expected time [KM95].

Next, we proceed scale-by-scale and construct the list of events accordingly. On the
lowest scale, we simply compute the active vertices by point location for P in a cubical grid,
and enlist n inclusion events (this is the only step where the input points are considered
in the algorithm).

For the data structure, we use an auxiliary container S and maintain the invariant
that whenever a new scale is considered, S consists of all simplices of the previous scale,
sorted by dimension. In S, for each vertex, we store an id and a coordinate representation
of the active face to which it corresponds. Every `-simplex with ` > 0 is stored just as a
list of integers, denoting its boundary vertices. We initialize S with the n active vertices
at the lowest scale.

Let α < α′ be any two consecutive scales with �,�′ the respective cubical complexes
and X ,X ′ the approximation complexes, with g̃ : X → X ′ being the simplicial map
connecting them. Suppose we have already constructed all events at scale α.

• First, we enlist the scale event for α′.

• Then, we enlist the contraction events. For that, we iterate through the vertices of
X and compute their value under g, using point location in a cubical grid. We store
the results in a list S′ (which contains the simplices of X ′). If for a vertex j, g(j) is
found to be equal to g(i) for a previously considered vertex i, we choose the minimal
such i and enlist a contraction event for (i, j).

• We turn to the inclusion events:

– We start with the case of vertices. Every vertex of X ′ is an active face of �′
and must contain an active vertex, which is also a vertex of X ′. We iterate
through the elements in S′. For each active vertex v encountered, we go over all
faces of the cubical complex �′ that contain v as a vertex, and check whether
they are active. For every active face encountered that is not in S′ yet, we add
it to S′ and enlist an inclusion event of a new 0-simplex. At termination, all
vertices of X ′ have been detected.

– Next, we iterate over the simplices of S of dimension ≥ 1, and compute their
image under g̃ using the pre-computed vertex map; we store the result in S′.

94

CHAPTER 5. APPROXIMATION USING GRIDS 95

– To find the simplices of dimension ≥ 1 included at X ′, we exploit our previous
insight that they contain at least one vertex that is included at the same scale
(see the proof of Theorem 5.2.3). Hence, we iterate over the vertices included
in X ′ and find the included simplices inductively in dimension.
Let v be the current vertex under consideration; assume that we have found
all (p− 1)-simplices in X ′ that contain v. Each such (p− 1)-simplex σ is a flag
of length p in �′. We iterate over all faces e that extend σ to a flag of length
p + 1. If e is active, we have found a p-simplex in X ′ incident to v. If this
simplex is not in S′ yet, we add it and enlist an inclusion event for it. We also
enqueue the simplex in our inductive procedure, to look for (p+ 1)-simplices in
the next round. At the end of the procedure, we have detected all simplices in
X ′ without preimage, and S′ contains all simplices of X ′. We set S ← S′ and
proceed to the next scale.

This ends the description of the algorithm.

Theorem 5.2.5. To compute the k-skeleton, the algorithm takes

n2O(d) log ∆ + 2O(d)M

time in expectation and M space, where M denotes the size of the tower. In particular,
the expected time is bounded by

n2O(d) log ∆ + n2O(d log k)

and the space is bounded by n2O(d log k).

Proof. In the analysis, we ignore the costs of point locations in grids, checking whether a
face is active, and searches in data structures S, since all these steps have negligible costs
when appropriate data structures are chosen.

Computing the image of a vertex of X costs O(2d) time. Moreover, there are at most
n2O(d) vertices altogether in the tower in expectation (Lemma 5.2.1), so this bound in
particular holds on each scale. Hence, the contraction events on a fixed scale can be
computed in n2O(d) time. Finding new vertices requires iterating over the cofaces of a
vertex in a cubical complex. There are 3d such cofaces for each vertex. This has to be
done for a subset of the vertices in X ′, so the running time is also n2O(d). Since there are
O(log ∆ + log d) scales considered, these steps require n2O(d) log ∆ over all scales.

Computing the image of g̃ for a fixed scale costs at most O(2d|X |). M is the size of
the tower, that is, the simplices without preimage, and I is the set of scales considered.
The expected bound for

∑
α∈I |Xα| = O(log dM), because every simplex has an expected

lifetime of at most 3 log d by Lemma 5.2.4. Hence, the cost of these steps is bounded by
2O(d)M .

In the last step of the algorithm, we find the simplices of X ′ included at α′. We
consider a subset of simplices of X ′, and for each, we iterate over a collection of faces in
the cubical complex of size at most 2O(d). Hence, this step is also bounded by 2O(d)|X |
per scale, and hence bounded 2O(d)M as well.

For the space complexity, the auxiliary data structure S gets as large as X , which is
clearly bounded by M . For the output complexity, the number of contraction events is at
most the number of inclusion events, because every contraction removes a vertex that has
been included before. The number of inclusion events is the size of the tower. The number
of scale events as described is O(log ∆ + log d). However, it is simple to get rid of this
factor by only including scale events in the case that at least one inclusion or contraction
takes place at that scale. The space complexity bound follows. �

5.2.3 Dimension reduction

When the ambient dimension d is large, our approximation scheme can be combined dimen-
sion reduction techniques to reduce the final complexity, very similar to the application in
Chapter 4. For a set of n points P ⊂ Rd, we apply the dimension reduction schemes of
Johnson-Lindenstrauss (JL) (Theorem 3.5.2), Matoušek (Theorem 3.5.3), and Bourgain’s
embedding (Theorem 3.5.6). We only state the main results in Table 5.1, leaving out the
proofs since they are very similar to those from Chapter 4 and Section 3.5.

technique approximation ratio size runtime
JL O(log0.25 n) nO(log k) nO(1) log ∆ + nO(log k)

Matoušek O((logn)3/4(log logn)1/4) nO(1) nO(1) log ∆
Bourgain + Matoušek O((logn)7/4(log logn)1/4) nO(1) nO(1) log ∆

Table 5.1: Comparison of dimension reduction techniques: here JL stands for Johnson-
Lindenstrauss, the approximation ratio is for the Rips module, and the size refers to the
size of the k-skeleton of the approximation.

5.3 Discussion

In this chapter we presented an approximation scheme for the Rips filtration, with improved
approximation ratio, size and computational complexity than previous approaches for the
case of high-dimensional point clouds. In particular, we improved upon the scheme of
using the permutahedral tessellation in Chapter 4.

An important technique that we used in our scheme is the application of acyclic carriers
to prove interleaving results. An alternative would to be explicitly construct chain maps
between the Rips and the approximation towers; unfortunately, this make the interleaving
analysis significantly more complex. While the proof of the interleaving in Section 5.1.3 is
still technically challenging, it greatly simplifies by the usage of acyclic carriers. There is
also no benefit in knowing the interleaving maps because they are only required for the
analysis of the interleaving, and not for the actual computation of the approximation tower.
We believe that this technique is of general interest for the construction of approximations
of cell complexes.

Our tower is connected by simplicial maps; there are (implemented) algorithms to
compute the barcode of such towers [DFW14, KS17]. It is also quite easy to adapt our
tower construction to a streaming setting [KS17], where the output list of events is passed
to an output stream instead of being stored in memory.

Our approximation scheme has more freedom over previous approaches [CKR16,
DFW14, She13], since they used simplicial maps for the interleaving, which induce an
elementary form of chain maps and are therefore more restrictive. An interesting question
is whether persistence can be computed efficiently for more general chain maps, which
would allow even more freedom in building approximation schemes.

96

Chapter 6

Digitization

This chapter presents a slightly different approach towards approximating filtrations, com-
pared to the techniques presented in chapters 4 and 5. We present a (1 + δ)-approximation
of the Čech filtration of point sets in Euclidean spaces, for any desired constant 0 < δ ≤ 1.
This is in strong contrast to the previous schemes presented in this thesis, where the
approximation ratio depended on the ambient dimension of the point set. On the flip
side, the scheme has a significantly higher computational complexity. Our scheme uses a
digitization of Rd using the integer lattice.

6.1 Approximation with cubical pixels

We describe our approximation scheme for a set of n points P ⊂ Rd. For a fixed scale
α > 0, let Lα := (εα

3
√
d
)Zd denote a scaled grid lattice in Rd, that is, the grid whose basis

vectors have been scaled by εα
3
√
d
, for some ε ∈ (0,

√
2− 1]. Throughout this chapter, we

assume ε to be a quantity in this interval. The Voronoi cells of this lattice are cubes
centered at the grid points, each of sidelength εα

3
√
d

and diameter εα/3.
Let B(p, α) denote the Euclidean ball of radius α, centered at any input point p ∈ P .

We denote by
Bα := (B(p, α))p∈P ,

the set of α-balls centered at the input points. Naturally, the Čech complex on P at scale
α is the nerve of Bα, that is, Cα = nerve(Bα) (Definition 2.1.13). Let α0 > 0 denote a
finite real. We denote by

I := {αk = α0(1 + ε)k | k ∈ Z}

a discrete set of scales.

6.1.1 Approximation complex

We define our approximation structures for each scale in R+:

• for any α ∈ I, consider the set of lattice points Vα := Lα ∩ Bα, that is, those lattice
points which lie in Bα. We call Vα the digital vertices at scale α. Let Sα denote
the set of cubes (Voronoi cells) centered at points of Vα; we call these cubes as the
pixels at scale α. We define our approximation complex at scale α as the nerve
Xα := nerve(Sα).

• for any α ∈ [αi, αi+1), we define Sα := Sαi , and Xα := Xαi , for all i ∈ Z.

97

(a) A collection of balls (shaded disks)
centered at the input points (small
shaded disks).

(b) The pixels corresponding to the
union of balls.

Figure 6.1: An example of digitization in the plane.

Therefore, the pixels and the approximation complexes change only at discrete scales. In
particular, all pixels and the respective complexes for the range [αi, αi+1) are the same.
For an elementary example, see Figure 6.1.

For simplicity, we identify a pixel with its corresponding lattice point, which we call
the center of the cube. Also, we drop the scale subscript from Sα and Xα, when it is clear
from context. Before we build towers on S and X at different scales, we need the following
result:

Lemma 6.1.1 (sandwich lemma). For any α ∈ I,

B(1−ε/6)α ⊆ Sα ⊆ B(1+ε/6)α.

In particular, this implies that

Sα ⊆ B(1+ε/6)α ⊆ B(1+ε)(1−ε/6)α ⊆ S(1+ε)α.

Proof. For the first statement, we show two inclusions:

• For the first inclusion B(1−ε/6)α ⊆ Sα, fix any point x ∈ B(1−ε/6)α. Let p denote the
closest input point to x. Then, ‖x− p‖ ≤ (1− ε/6)α. The point x lies in some cube
of the grid Lα. Let the center of that cube be c. Since the diameter of the cube is at
most εα/3, ‖x− c‖ ≤ εα/6. By triangle inequality, ‖c− p‖ is at most α. Hence, the
cube, and thus x, lies in Sα.

• For the second inclusion Sα ⊆ B(1+ε/6)α, let y be any point in Sα. Let y lie in some
cube of Sα with center c, so that ‖y−c‖ ≤ εα/6. Since the cube is in Sα, ‖c−p‖ ≤ α
for some p ∈ P . Using triangle inequality, we obtain ‖x− p‖ ≤ (1 + ε/6)α, which
implies that x ∈ B(1+ε/6)α.

The second statement follows from the fact that (1+ε/6)
(1−ε/6) ≤ (1 + ε) holds for 0 ≤ ε ≤ 1. �

Therefore, there is a natural inclusion from Sα to S(1+ε)α, when α ∈ I. In the range
[α, (1 + ε)α), S does not change, so in general we have an inclusion from Sβ to Sγ for any
0 < β ≤ γ. With this observation and the definition of B, we can construct two continuous
filtrations,

(Sα)α>0 and (Bβ)β≥0,

both connected with inclusion maps.

98

CHAPTER 6. DIGITIZATION 99

Theorem 6.1.2. The persistence module (H(Sα))α>0 is a (1 + δ)-approximation of the
persistence module (H(Bα))α≥0; here (1 + δ) := (1 + ε)2 which implies that 0 < δ ≤ 1.

Proof. Consider the diagrams

Bα
c

� � //
� p

Bcα′ Bcα �
� // Bcα′

Sα �
� // Sα′

. �

==

Sα �
� //
. �

>>

Sα′
. �

==

Bα �
� // Bα′ � p

!!

Bα �
� //
� p

Bα′ � p

!!
Sα
c

� � //
. �

>>

Scα′ Scα �
� // Scα′

(6.1)

where each arrow is an inclusion, c = (1 + ε)2 and 0 < α ≤ α′. A quick inspection
shows that each diagram commutes, for all 0 < α ≤ α′, using Lemma 6.1.1. The claim
follows from the strong-interleaving result for the persistence modules induced by the two
filtrations (Theorem 2.3.6). �

6.1.2 Connecting scales

We turn our attention to the complex X . Let Xα and Xβ be the approximation complexes
defined at any pair of consecutive scales α ∈ I and β := (1 + ε)α ∈ I, respectively. Let Lα
and Lβ be the scaled grid lattices at the respective scales. We define a map ĝα : Lα → Lβ
as: each grid point v ∈ Lα lies in the Voronoi cell of some point of Lβ, and we set ĝα(v)
as this lattice point. Without loss of generality, we assume that v does not lie on the
boundary of any cell of Sβ , so that this assignment is unique. This map is well-defined by
definition. We are interested in the image of this map when the domain is restricted to
Vα, which are the vertices of Xα. To simplify notation, we write ĝ := ĝα. We show that:

Lemma 6.1.3. ĝ maps vertices of Xα to vertices of Xβ.

Proof. Let v be a vertex of Xα. By definition, v is in distance at most α from some
input point p ∈ P . Let ĝ(v) denote the lattice point in Lβ that v maps to. By definition,
‖v − ĝ(v)‖ ≤ εβ/6. By triangle inequality,

‖p− ĝ(v)‖ ≤ α+ εβ/6 ≤ (1 + ε(1 + ε)/6)α < (1 + ε)α = β,

which implies that ĝ(v) is indeed a vertex of Xβ. �

Since ĝ is well-behaved on vertices of Xα, we take its restriction ĝ|Vα : Vα → Vβ, and
we denote it by ĝ as well. We show that ĝ extends to a simplicial map g : Xα → Xβ on
the simplices of Xα. Before we present the proof, we need the result:

Lemma 6.1.4. The nerve of the Voronoi cells of the grid lattice is a flag complex.

Proof. We show that if there is a set of (k + 1) cubes {A0, . . . , Ak} (which are Voronoi
cells of the grid lattice) such that they pairwise intersect, then all of them have a common
intersection. The claim follows immediately.

Since all cubes are axis-aligned, each m-cube can be written as a product of d intervals
I1 × . . . × Id, such that m (non-degenerate) intervals are of the form [y1, y2] for some
y1 6= y2 ∈ R, and (d−m) (degenerate) intervals are of the form [y3, y3] for some y3 ∈ R.

Whenever two cubes intersect, they intersect in d intervals out of which some are (at
least one is) degenerate. Consider any co-ordinate direction x. Along x, each pair of cubes
Ai, Aj has an intersection interval.

Helly’s theorem [Hel23] states that if there are n > d convex sets in Rd such that
the intersection of every (d + 1)-subset is non-empty, then all the sets have a common
intersection. We apply Helly’s theorem in our context, for the 1-dimensional space along
the co-ordinate direction x and the set of intersecting intervals along x. Since an interval
is a convex object, it follows that all cubes have a common interval intersection along x,
which proves the claim. �

Using Lemma 6.1.4 on the appropriately scaled grid, it follows that X is a flag complex.
Therefore, to show that the map g is simplicial on Xα, it is enough to argue that it is
simplicial for edges.

Lemma 6.1.5. Let c1, c2 be vertices of Xα such that (c1, c2) is an edge in Xα. Then,
either g(c1) = g(c2), or there is an edge (g(c1), g(c2)) in Xβ.

Proof. Let c1 lie in a cube M ∈ Sβ. There are two cases:

• c2 lies in M : in this case, g(c1) = g(c2) so we are done.

• c2 does not lie in M . We prove that c2 lies in a cell adjacent to M , so that
(g(c1), g(c2)) is an edge in Xβ. Assume for contradiction that it is not the case, so
that c1 and c2 lie in non-adjacent cells of Sβ. In that case, ‖c1 − c2‖∞ ≥ β(ε

3
√
d
),

which is the sidelength of the pixels at scale β. Since the grids at both scales are
axis-aligned, it follows that ‖c1 − c2‖∞ > α(ε

3
√
d
). This implies that c1 and c2 are

centers of non-adjacent cells of Sα, which is a contradiction.

The claim follows. �

Hence, we have proven that

Lemma 6.1.6. The map g : Xα → Xβ is a well-defined simplicial map.

Moreover, since X is the same for all scales δ, γ ∈ [α, β), there is an identity map
between Xδ and Xγ . We set g to be identity in the range [α, β). This gives rise to the
tower

(Xα)α>0.

6.1.3 Interleaving with the Čech filtration

We establish a connection between the approximation tower and the Čech filtration on P .
The main step in our analysis is the establishment of a relationship between the towers
(Sα)α>0 and (Xα)α>0. From the nerve theorem (Theorem 2.1.12), at each scale S h' X , so
they have the same homology. We investigate the relationship when the two spaces are
connected using inclusion maps (for S), and g maps (for X) to towers. We make use of
the acyclic carrier theorem from [Wal81] for the analysis (see also Sub-section 2.4.1).

Let α ∈ I and β := (1 + ε)α ∈ I be any two scales of I. Let {A0, . . . , AN} denote the
pixels of Sα. Without loss of generality, we assume an order≺ on these cells, A0 ≺ · · · ≺ AN .
Also, let g(Ai) = Bi denote cells in Sβ for all i, that is, the centre of Ai lies within the
cube Bi (the Bis need not be all unique).

To make matters simple, we look the barycentric subdivision of the two spaces. Let
S̄ := sd(S) and X̄ := sd(X) denote the abstract barycentric subdivisions of S and X ,

100

CHAPTER 6. DIGITIZATION 101

respectively. We use the space and its subdivision interchangeably when clear from context.
We now define two continuous maps which relate S̄ and X̄ .

• ψ : X̄ → S̄: first, we define an acyclic carrier CR : X̄ → S̄. This guarantees the
existence of the continuous map ψ, which is carried by CR [Wal81]. The precise
form of ψ is irrelevant for us.
Each simplex in X can be written in the form (A0 . . . Am), which corresponds to
the intersection A0 ∩ . . . ∩ Am in the nerve and is geometrically realized on the
vertices {A0, . . . , Am}. To define CR, consider any simplex σ ∈ X̄ ; without loss
of generality, let the flag representing σ be {(A0A1 . . . Am), . . . , (A0A1 . . . Ak)} (in
increasing order of dimension). The lowest dimensional simplex here is (A0 . . . Am).
We set CR(σ) = A0 ∩ . . . ∩Am. It is easy to see that this is an acyclic carrier.

• φ : S̄ → X̄ : first, we define a function φ̂ : S → X which assigns faces of cells of
S to simplices of X . Let � be a face of S such that � is a face of the d-cubes
{Ai1 , . . . , Aim} of S. We set φ̂(�) = (Ai1 . . . Aim), which is a simplex of X .
Any simplex σ ∈ S̄ can be represented as a flag of faces of S, which are of the form
{�0, . . . ,�k}. We set φ(σ) := {φ̂(�k), . . . , φ̂(�0)}, which is a flag of simplices of X ,
and hence lies in X̄ .

In [Bjö03], it was shown that the maps φ and ψ induce isomorphisms of the homology
groups H(S̄) and H(X̄) (in the language of partially ordered sets and isotone maps).
Using the persistence equivalence theorem (Theorem 2.3.8), if the diagram

. . . // H(X̄α) g∗ //

ψ∗

��

H(X̄β) //

ψ∗

��

. . .

. . . // H(S̄α) inc∗ // H(S̄β) // . . .

(6.2)

commutes, where inc is the inclusion map, then the two persistence modules are isomorphic
(the asterisks denote the corresponding induced linear maps). In the diagram, we have
ignored scales other than those in I, since the diagram captures those cases implicitly.

Lemma 6.1.7. Diagram (6.2) commutes, that is,

inc∗ ◦ ψ∗ = ψ∗ ◦ g∗.

Proof. To prove the claim, we look at the corresponding diagram of spaces:

. . . // X̄α
g //

ψ
��

X̄β //

ψ
��

. . .

. . . // S̄α inc // S̄β // . . .

We define an acyclic carrier D : X̄α → S̄β , which carries both inc ◦ ψ and ψ ◦ g. Then, the
acyclic carrier theorem shows that inc ◦ ψ h' ψ ◦ g, which implies our claim.

Let σ be any simplex of X̄α; suppose that the flag of simplices of X representing σ is:
{(A0A1 . . . Am), . . . , (A0A1 . . . Ak)}, in ascending order of dimension. Under the order ≺,
the lowest ordered cube incident to σ is A0 and under the map g, A0 maps to B0 = g(A0).
We set D(σ) as the union of the pixels in the neighborhood of B0, D(σ) := NBR(B0)∩Sβ .

D(σ) is acyclic because its nerve is star-shaped. It is straightforward to see that for any
simplex τ ⊆ σ, D(τ) ⊆ D(σ) holds, so D is an acyclic carrier.

By definition, ψ(σ) = A0 ∩ . . . ∩Am, which is a subset of A0. Using a simple triangle
inequality, we see that A0 lies within D(σ). It follows that inc ◦ ψ is carried by D.

We now argue about ψ ◦ g. From the definition of g, we see that g(γ) is the flag of
simplices {(B0B1 . . . Bm), . . . , (B0B1 . . . Bk)}. Then, ψ(g(σ)) = B0 ∩ . . . ∩Bm ⊂ D(σ), so
D carries ψ ◦ g. �

We thus see that the two persistence modules of S̄ and X̄ are isomorphic. Since
H(S) ' H(S̄) and H(X) ' H(X̄), it follows that the persistence modules (H(Xα))α>0
and (H(Sα))α>0 are isomorphic. Applying Theorem 6.1.2, the transitivity of interleavings,
and the fact that (H(Bα))α≥0 and (H(Cα))α≥0 are isomorphic, we conclude that

Theorem 6.1.8. The persistence module (H(Xα))α>0 and the Čech persistence module
(H(Cα))α≥0 are (1 + δ)-approximations of each other.

6.1.4 Computation

At scales below CP (P)/2, the balls centered at the input points do not intersect. Also,
at scales at and beyond diam(P), all balls intersect, leading to an acyclic complex.
Therefore, we construct the approximation complexes only for the range of scales in
[CP (P)/2, diam(P)]. Since consecutive scales jump by a factor of (1 + ε), the number of
scales to be considered is dlog(1+ε)

diam(P)
CP (P)/2e = dlog(1+ε) 2∆e.

Theorem 6.1.9. The k-skeleton of the approximation tower has size

n

(1
ε

)d
2O(d log d+dk)dlog(1+ε) 2∆e.

Proof. At any scale β > 0, the sidelength of any cube is εβ/(3
√
d), so a ball of radius half

this value is contained inside the cube. Using a simple packing argument, we see that
each ball in Bβ is covered by no more than

(2β(1+ε)
εβ/(3

√
d)
)d = (12

√
d/ε)d cubes. There are n

balls of Bβ. Hence, in total there are no more than n(12
√
d/ε)d pixels. Each such cube

has (3d − 1) neighbors, which implies that the number of k-simplices incident to a cube is
2O(dk). In total, the k-skeleton of X has size

n(12
√
d/ε)d2O(dk) = n(1/ε)d2O(d log d+dk).

Since there are dlog(1+ε) 2∆e scales of the tower, the bound follows by multiplying the size
at each scale with the number of scales. �

Let P = {p1, . . . , pn} and let β be a given scale of the tower. The scales of the tower
can be computed using the techniques mentioned in Chapter 4. To construct the complex
at scale β, we use point location in Lβ , to find the closest grid points to P . Let {x1, . . . , xn}
denote the cubes whose centers are closest to {p1, . . . , pn} respectively. For each xi, we
inspect the set of cubes at L∞-distance at most (1 + ε)β and check whether the inspected
cube lies within B(pi, β): if true, we add a digital vertex to Xβ . Since the inspected set of
cubes is a superset of B(pi, β), each digital vertex is correctly identified. To construct the
edges of Xβ , we simply go over the 3d − 1 = 2O(d) neighbors of each digital vertex and add
edges between adjacent vertices. Having the 1-skeleton of Xβ , we complete the k-skeleton
using the technique used in Algorithm A from Chapter 4. Constructing the simplicial

102

CHAPTER 6. DIGITIZATION 103

map g is straightforward, by point location for Vβ in the grid L(1+ε)β. The cost of the
remaining operations is dominated by the upper bound on the cost of constructing the
k-skeleton. Accounting for the fact that the complex has to be constructed independently
for each scale, we get the result:

Theorem 6.1.10. The k-skeleton of the approximation tower can be computed in time

n

(1
ε

)d
2O(d log d+dk)dlog(1+ε) 2∆e.

6.2 Discussion

In this chapter, we presented a scheme to approximate the Čech filtration with an
approximation quality of (1 + δ). The approximation quality is better than the schemes of
Chapter 4 and Chapter 5, but at the cost of significantly worse complexity. At the same
time, this is an improvement over the previously known (1 + δ)-approximation schemes,
since the exponent of δ in the complexity bound is de-coupled from the dimension of the
skeleton.

Our method can be interpreted as adding Steiner points to approximate the union
of balls. This digitization accounts for a factor of 2O(d log d+d log(1/ε)) in the size of the
complex. An important question is whether it is possible to compress the pixels to get an
approximation complex on the input points, so that this factor is mitigated. For instance,
a natural idea is to associate each pixel to its nearest input point. More formally, we
define a coloring D : S → P as: for a cube � ∈ S, D(�) = pi if pi is the closest point
in P to �. This gives a partition of the pixels of S into n colors. With this coloring,
a natural choice for constructing a simplicial complex on the input points can be: D is
a vertex map from X to P . We can interpret D as a map on the simplices of X . The
image of D can be considered as a candidate for approximation. A common issue with
this approach is that these colored regions may not be connected, that is, D−1(pj) may
not be a connected set (for an example in 2D, see [CET15]). Such issues can also arise
for any k-wise intersection of the partitions. In general, the partition may not be a good
cover of space, and that makes it unclear whether such an approach can guarantee the
desired topological properties.

Another question is whether such complexes can be constructed without going through
the digitization step. This would make the algorithm computationally attractive.

Digitizing with Permutahedra

We mention another line of thought, that has the potential to bring down the cost of the
approximation significantly. In our digitizing scheme, we can replace the cubical pixels
by pixels coming from any other lattice. In particular, we can use the A∗ lattice for this
purpose: for a fixed scale α, we scale the Voronoi vectors of this lattice by εα

3
√
d
, to get

permutahedra whose diameters are less than εα/3. The pixels are then defined as the
permutahedral cells whose centers lie in the union of α-balls. The approximation complex
is the nerve of the pixels.

Most of the properties of the cubical pixels carry over to the permutahedral pixels.
For instance, Lemma 6.1.1, Theorem 6.1.2 and Lemma 6.1.3 hold for pixelization by any
lattice. A counterpart of Lemma 6.1.4 for permutahedra was proved in Chapter 3 (see
Lemma 3.1.19). Unfortunately, we do not yet have a counterpart of Lemma 6.1.5 for
permutahedra: we need the counterpart for permutahedra to show that the (corresponding)
map g is simplicial. In a more general setting, we claim that

Figure 6.2: O represents the origin and the red (darkly shaded) hexagon is the Voronoi
polytope of the lattice. The points a, b, c, d, e, f are the neighbors of O. The green (lightly
shaded) hexagons intersect the Voronoi polytope. The vectors Oa, . . . , Of are the Voronoi
vectors. The Minkowski sum of π with the six corresponding line segments is the shaded
region. This shows that any line segment parallel to (and shorter than) one of these vectors
and with an endpoint inside π must lie in the shaded region (This figure was also used in
Chapter 3 in a different context).

Claim 6.2.1. Let π be the permutahedron centered at the origin and {v1, . . . , vm} be the
collection of Voronoi vectors of the origin. Consider a line segment ` parallel to any given
Voronoi vector vi with an endpoint in the interior of π. If ‖`‖ < ‖vi‖, then ` is completely
contained in the union of π and the permutahedra adjacent to π.

We illustrate the claim for d = 2 in Figure 6.2. The claim is also easy to verify for
d = 3. Surprisingly, we could not find a way to prove the claim for d > 3. Also, we are
unsure whether this claim holds for any lattice in general. The corresponding claim for
cubes is easy to prove, since the union of a cube and its adjacent cells is convex. However,
this convenient property does not hold for permutahedra. We did some experiments to test
the claim and had positive observations for the permutahedral lattice. We hope to find a
proof in the future. For now, assuming that the claim is true, we get a tower (Kα)α>0
constructed on permutahedral pixels, connected with the map g.

With some minor modifications in the interleaving analysis, we arrive at the result:

Theorem 6.2.2. Under the assumption that Claim 6.2.1 is true, the persistence module
(H∗(Kα))α>0 is a (1 + δ)-approximation of the Čech persistence module (H∗(Cα))α≥0.

Moreover, at any given scale, the k-skeleton of X has size n(1
ε)d2O(d log d). The compu-

tation time for the k-skeleton has the same bound. Here, (1 + δ) = (1 + ε)2 as before.

Since the A∗ lattice is in general position, the approximation complex has significantly
smaller size than the cubical case.

104

Part II

Techniques for Doubling Spaces

105

106

Chapter 7

Well-Separated Simplicial
Decomposition

In chapters 4 to 6, we investigated approximation techniques for filtrations built on
arbitrary point clouds in Euclidean space. For practical data sets, it is often the case that
inputs come from spaces of low intrinsic dimension, such as the case of point samples of
manifolds embedded in high dimensional Euclidean space. In such cases, the aforementioned
techniques do not correctly exploit the structure of the point cloud and therefore, do not
give attractive theoretical guarantees. In this chapter and the next, we ameliorate this
issue by presenting a few techniques which make use of these structural properties. We
use the notion of doubling dimension (Definition 3.3.2) to capture the intrinsic dimension
of the input.

In the current chapter, we present a generalization of the well-separated pair decom-
position from Chapter 3 to higher dimensions. We use the concept of net-trees from
Chapter 3 for our construction. Using this concept, we present a simplicial tower which
(1 + ε)-approximates the Čech filtration and whose complexity primarily depends on the
doubling dimension of the underlying point cloud. The results presented in this chapter
are a generalization of [KS13] to doubling spaces.

7.1 Well-separated simplicial decomposition

First, we look at some notation. Let P = {p1, . . . , pn} ⊂ Rd be a set of n points with
doubling dimension Υ and doubling constant λ (Definition 3.3.2). Let T denote a net-tree
on P (Definition 3.3.5). Let {v0, v1, . . .} denote the nodes of T . Let Pvi denote the set of
input points covered by vi, and repvi ∈ Pvi denote the representative of vi, for all i.

Definition 7.1.1 (minimum enclosing ball for tuples). Let γ = (v0, . . . , vk) be a
tuple of net-tree nodes. We say that the minimum enclosing ball of the tuple γ, denoted
by meb(γ), is the smallest ball enclosing the point set {repv0 , . . . , repvk}. We denote the
radius of meb(γ) by rad(γ).

For any e > 0 and an Euclidean ball B of radius r > 0, we denote by eB the ball of
radius er concentric to B. We state the following property, which is a simple consequence
of the triangle inequality, and is used several times in our arguments:

Observation 7.1.2. Let B be a ball of radius r such that it has a non-empty intersection
with some point set M ⊂ Rd. If the diameter of M is at most er for some e > 0, then
M ⊆ (1 + e)B.

107

(a) A 3-tuple of nodes; each
node of the tuple is repre-
sented by points of different
colors (and shapes).

(b) A ball which contains at
least one point of each node.

(c) An ε-inflation of the ball
covers all points.

Figure 7.1: A well-separated tuple.

In this chapter, whenever we refer to the quantity ε, we always assume that it lies
in the interval (0, 1). Consider any ε-WSPD W on T (Definition 3.3.7). Recall that the
elements of W are pairs of nodes (u, v) ∈ T such that they are ε-well-separated, which
means that they satisfy max{diam(u), diam(v)} ≤ εdist(u, v), where dist(u, v) denotes
the minimal distance between Pu and Pv. Informally speaking, all pairs of points (p, q)
with p ∈ Pu, q ∈ Pv have a similar distance to each other. Each pair of nodes in T × T is
covered by some pair of W . Intuitively, W is a 1-dimensional structure, since it covers the
set of pairs of nodes.

We state a simple consequence of well-separation which may appear as somewhat
unrelated at first, but is useful in generalizing WSPDs to longer tuples:

Lemma 7.1.3. Let (q, q′) ∈ W be any pair. For any ball B that contains at least one
point each of Pq and Pq′, it holds that

Pq ∪ Pq′ ∈ (1 + 2ε)B.

Proof. Let B be a ball with radius r which intersects both q and q′, which means that
dist(q, q′) ≤ 2r. Because (q, q′) is well-separated,

diam(q) ≤ εdist(q, q′) ≤ 2εr,

which implies that (1+2ε)B contains all of Pq, from Observation 7.1.2. The same argument
applies for q′. �

Definition 7.1.4 (well-separated tuple). A (unordered) (k + 1)-tuple (v0, . . . , vk) of
net-tree nodes of T is called an ε-well separated tuple (ε-WST), if for any ball B which
contains at least one point of each Pvi, it holds that

Pv0 ∪ . . . ∪ Pvk ∈ (1 + ε)B.

See Figure 7.1 for an intuitive example. We say that a WST (v0, . . . , vk) covers a
k-simplex σ = (p0, . . . , pk) if there is a permutation π of (0, . . . , k) such that pπ(`) ∈ Pv`
for all 0 ≤ ` ≤ k.

Definition 7.1.5 (well-separated simplicial decomposition). For k ≥ 1, we define
an ε-Well-Separated Simplicial Decomposition ((ε, k)-WSSD) as a set of (k + 1)-tuples
Γk = {γ1, . . . , γl} such that

108

CHAPTER 7. WELL-SEPARATED SIMPLICIAL DECOMPOSITION 109

• each γi ∈ Γk is an ε-WST, and

• each k-simplex on P is covered by some γi ∈ Γ.

An ε-WSSD is the union of (ε, k)-WSSDs for all 1 ≤ k ≤ Υ.

It is straightforward to see with Lemma 7.1.3 that an ε
2 -WSPD is an (ε, 1)-WSSD. On

an intuitive level, an (ε, k)-WSSD is a k-dimensional structure since it captures precisely
the set of k-simplices, and hence can be seen as a higher dimensional analogue of WSPDs.

7.1.1 Construction

We describe an algorithm to construct an ε-WSSD for P , using the net-tree T . The
algorithm proceeds inductively in dimension. For k = 1, we simply compute an ε

2 -WSPD
using the WSPD algorithm from [HPM06].

For any k > 1, we construct an (ε, k)-WSSD Γk by extending each tuple of the previously
constructed (ε, k − 1)-WSSD Γk−1. Consider any tuple γ = (v0, . . . , vk−1) ∈ Γk−1. Recall
that meb(γ) is the minimum enclosing ball of the representative points of the nodes. We
compute an ε-approximation of rad(γ) using an algorithm of [BC03]; more precisely, we
compute a value r such that there is a ball of radius r covering all representatives and

rad(γ) ≤ r ≤ (1 + ε)rad(γ) (7.1)

Recall from Definition 3.3.5 that any node u ∈ T is associated with a level `(u) and
a scale scaleu, which are related as scaleu = 2τ`(u)+1

τ−1 . The diameter of Pu satisfies
diam(u) ≤ 2scaleu. We find the lowest ancestor u of v0 in T that satisfies

τ − 5
4τ2 scaleu ≥ 8r. (7.2)

To find suitable nodes to be added to γ, we inspect all the nodes w ∈ {u ∪ Rel(u)}. For
each w, we traverse its sub-tree to find the highest descendants whose diameters are small
enough for them to be valid candidates. Specifically, we find w’s highest descendants x
satisfying

εr

4 ≥ 2scalex. (7.3)

For each such node x, we add a (k + 1)-tuple (v0, . . . , vk−1, x) to Γk. A simple example is
shown in Figure 7.2.

7.1.2 Correctness

In order to prove the correctness of our construction procedure, we need to show that the
generated tuples indeed form a (ε, k)-WSSD. This requires showing that each generated
tuple is an ε-WST, and that all k-simplices on P are covered by the set of (k + 1)-tuples.

Lemma 7.1.6. Each tuple added by the algorithm is an ε-WST.

Proof. We prove the claim by induction: for k = 1, the statement is true because an
(ε,1)-WSSD is an ε

2 -WSPD, each tuple of which is ε-well-separated.
For k > 1, suppose that all (k−1)-tuples are ε-well-separated. Consider a (k−1)-tuple

γ = (v0, . . . , vk−1). Suppose that the algorithm appends x to this tuple to form the k-tuple
γ′ = (v0, . . . , vk−1, x). Now, consider any ball B that contains a point of each of Pvi and
a point of Px. By induction hypothesis, (1 + ε)B contains all of Pvi . To show that γ′ is
ε-well-separated, it suffices to show that (1 + ε)B also contains all of Px.

Figure 7.2: An example of constructing tuples of Γ5 from a tuple of Γ4: the green (small
shaded) disks inside P are the nodes of a tuple γ ∈ Γ4. Region U along with Rel(U)
(depicted as R(U)) in the figure is examined for appending nodes to γ. In this example,
the nodes represented by blue disks (small disks outside P) are individually appended to
γ to form tuples of Γ5.

Let r′ denote the radius of B. By Observation 7.1.2, it suffices to show that diam(x) ≤
εr′. Using induction hypothesis again, the ball (1 + ε)B contains all representatives
repvi . That means, (1 + ε)B is an enclosing ball of the representatives and henceforth,
(1+ε)r′ ≥ rad(γ). Recall that we approximate rad(γ) by r, that satisfies r ≤ (1+ε)rad(γ),
so r ≤ (1 + ε)2r′ ≤ 4r′ for ε ≤ 1. From the algorithm, x is chosen such that

diamx ≤ 2scalex ≤
εr

4 ≤ εr
′,

which proves the claim. �

For showing that all k-simplices on P are covered by the generated (k + 1)-tuples, we
need several preparatory results. The first result is taken from [BC08]: while our claim
also follows as a simple corollary of the main result of [BC08], we give a more detailed
argument for clarity.

Lemma 7.1.7. Let M ⊂ Rd be a point set with |M | ≥ 3. Then, there exists some point
p ∈M such that

p ∈
(√

1 + 1/d√
1− 1/d

)
meb(M \ {p}).

In particular, p ∈ 2meb(M \ {p}) for d ≥ 2.

Proof. The claim is trivial if there exists a point p ∈M whose removal does not change
the minimum enclosing ball. Therefore, assume without loss of generality that |M | ≤ d+ 1,
and that all points of M are on the boundary of meb(M). Let c be the center of meb(M)
and r := rad(M).

Let Π denote the convex hull of M . Take the largest ball B centered at c that is
contained in Π; y [BC08, Lemma 3.2], its radius is at most r/d. Moreover, B touches at
least one facet of Π. Let p be the point of M opposite to this facet, set M ′ := M \ {p} and

110

CHAPTER 7. WELL-SEPARATED SIMPLICIAL DECOMPOSITION 111

let c′ and r′ denote the center and radius of meb(M ′). Following the arguments of [BC08,
Lemma 3.3], it holds that

r′ ≥ r
√

1− 1/d2

and moreover, c′ is the point where B touches the facet, so that ‖c− c′‖ ≤ r/d. By the
triangle inequality,

‖p− c′‖ ≤ ‖p− c‖+ ‖c− c′‖ ≤ r + r/d

≤ (1 + 1/d) r′√
1− 1/d2 ≤

(√
1 + 1/d√
1− 1/d

)
rad(M ′),

which implies the first part of the claim.
The second part follows simply by noting that

(√
1+1/d√
1−1/d

)
≤ 2 for all d ≥ 2. �

Lemma 7.1.8. Let u be any internal node of the net-tree T . Then

diam(u) ≥ τ − 5
4τ2 scaleu

Proof. Since u is internal, it has at least two distinct children v1, v2. Let p = repv1 . By
the packing property of the net-tree (Definition 3.3.5), the ball centered at p with radius
τ−5
4τ2 scalepar(v1) only contain points of Pv1 . Since par(v1) = u and v2 contains at least one
point not in Pv1 , the statement follows. �

Lemma 7.1.9. Let u be any node of the net-tree T with diam(u) ≥ 4R, for some given
R > 0. Then, for any ball B of radius R that contains at least one point of Pu, the set
{u ∪ Rel(u)} covers the set of points in P ∩ 2B.

Proof. Consider any point x ∈ P ∩ 2B. The net-tree T contains a path from the root to a
leaf such that x ∈ Pw for all nodes w on that path. In particular, there exists a node v
with x ∈ Pv and `(v) ≤ `(u) < `(par(v)). It can be observed with the help of Figure 7.3
that

‖repu − repv‖ ≤ diam(u) + 3R+ diam(v) < 3diam(u)

≤ 6scaleu ≤
12τ
τ − 1τ

`(u) < 14τ `(u).

From the definition of the Rel set, it follows that v ∈ Rel(u). �

Lemma 7.1.10. Γk covers all k-simplices over P .

Proof. We prove the claim by induction over the dimension of the tuple. Base case: for
k = 1, the 1-simplices are pairs of points from P which are covered by the WSPD, by
definition.

Induction case: suppose that Γk−1 cover all (k − 1)-simplices. Consider any k-simplex
σ = (p0, . . . , pk). From Lemma 7.1.7, it follows that there exists a point, say pk, which
lies in 2meb(σ′), where σ′ := σ \ {pk}. σ′ is a (k − 1)-simplex and hence is covered by
some k-tuple γ = (v0, . . . , vk−1) ∈ Γk−1. We show that when processing γ, the algorithm
produces a (k + 1)-tuple (γ, x) with pk ∈ Px, implying that σ is covered by that tuple.
This completes the proof.

Let r′ := rad(σ′), and let r denote the approximate radius for meb(γ) as computed in
the algorithm. Let B denote the corresponding enclosing ball of radius r, which contains the

Figure 7.3: P represents a ball B of radius R and Q denotes 2B. Disk U denotes a node
such that diam(u) ≥ 4R and it intersects B. Disk U represents a node covering a point
in 2B. The dark disks in U and V are their representatives. A simple triangle inequality
gives a bound on the distance ‖repU − repV ‖.

representatives of γ. Since γ is an ε-WST, (1 + ε)B contains {p0, . . . , pk−1}. Therefore, we
have that r′ ≤ (1 + ε)r ≤ 2r. Because of Lemma 7.1.8 and Equation 7.2, the net-tree node
u (ancestor of v0) computed in the algorithm satisfies diam(u) ≥ τ−5

4τ2 scaleu ≥ 8r ≥ 4r′.
Applying Lemma 7.1.9 on u, r′, and B yields that the set {u ∪ Rel(u)} covers P ∩ 2B.
Thus, there is some node w ∈ {u ∪ Rel(u)} that covers pk. By construction, one of the
descendants x of w for which a tuple (γ, x) is created satisfies pk ∈ Px. �

With Lemma 7.1.6 and Lemma 7.1.10, it follows that the constructed set Γk is an
(ε, k)-WSSD, for all 1 ≤ k ≤ Υ.

7.1.3 Properties

We bound the size of the (ε, k)-WSSD generated by our algorithm and the total time
taken to compute it.

Lemma 7.1.11. The size of (ε, k)-WSSD Γk computed by the algorithm is

n(2/ε)O(Υk).

Proof. We proceed by induction on k to prove our claim. For k = 1, size of a ε
2 -WSPD is

n(2/ε)O(Υ) which conforms with our claim.
Induction case: assume that the size of Γk−1 is n(2/ε)O(Υ(k−1)). Consider any tuple

γ = (v0, . . . , vk−1) ∈ Γk−1. Let r be the approximate radius of meb(γ) as computed in the
algorithm. We bound the number of nodes explored by the algorithm for extending γ.

In the course of the algorithm, we find the lowest ancestor u of v0 which satisfies
Equation (7.2) and then explore the highest descendants of {u ∪ Rel(u)} until we reach
nodes x satisfying Equation (7.3). Let us denote by τ ′ := τ−5

4τ2 . The child u′ of u that is
an ancestor of v0 satisfies scaleu′τ ′ < 8r because the algorithm would not have chosen u
otherwise. By a similar argument the parent x′ of x satisfies 2scalex′ > εr

4 . It follows that

scaleu′
scalex′

<
8r
τ ′
εr
8
<

64
ετ ′

.

Because scalepar(v)
scalev ≥ τ for any node v ∈ T , u and x are at most ` := 2 + dlogτ 64

ετ ′ e levels
apart in the net-tree. Since any node has at most λO(1) children, it immediately follows that
the total number of nodes explored is λO(`) which simplifies to (2/ε)O(Υ), since λ=2O(Υ).
Because we add at most one tuple for each explored node, the bound follows. �

112

CHAPTER 7. WELL-SEPARATED SIMPLICIAL DECOMPOSITION 113

Corollary 7.1.12. The total size of an ε-WSSD is upper bounded by
Υ∑
k=1

n(2/ε)O(Υk) = n(2/ε)O(Υ2).

Lemma 7.1.13. Computing an (ε, k)-WSSD takes

2O(Υ)dn logn+ nd(2/ε)O(Υk)

time.
Proof. Again, the proof follows an inductive argument on k. For k = 1, we compute Γ1,
which is an ε

2 -WSPD. This requires

d
(
2O(Υ)n logn+ n(2/ε)O(Υ)

)
time in expectation to construct [HPM06, Section 5]; the multiplicative factor of d comes
from distance computations in Rd which requires O(d) time.

For k ≥ 2, consider the construction of Γk from Γk−1. For each tuple γ ∈ Γk−1, we
compute the approximate minimum enclosing ball B and then explore ancestors and the
descendants of their Rel sets to find suitable nodes to be added.

Computing the approximate minimum enclosing ball of the representatives takes
O(kd/ε+ ε−5) time [BC03]. From the arguments of Lemma 7.1.11, the number of nodes
explored is (2/ε)O(Υ), and only a constant amount of time is spent per node. Hence, the
total time spent for each γ ∈ Γk−1 is:

O(kd/ε+ ε−5) + (2/ε)O(Υ).

As the size of Γk−1 is n(2/ε)O(Υ(k−1)), the additional time required to compute Γk from
Γk−1 is

n(2/ε)O(Υ(k−1))
(
O(kd/ε+ ε−5) + (2/ε)O(Υ)

)
= n(2/ε)O(Υk)d.

The total time required to compute Γ1,. . . ,Γk is

d
(
2O(Υ)n logn+ n(2/ε)O(Υ)

)
+

k∑
i=2

n(2/ε)O(Υi)d = d
(
2O(Υ)n logn+ n(2/ε)O(Υk)

)
.

�

We conclude the section with a property of our computed WSTs which will be useful
in the next section.
Lemma 7.1.14. For any ε-WST t=(v0, . . . , vk) generated by our algorithm, it holds that
scalevi ≤ εrad(t) for all vi.
Proof. Again, the proof is by induction: for k = 1, we construct a ε

2 -WSPD using the
algorithm of [HPM06, Section 5]. For any pair (a, b) in the generated WSPD, their
construction ensures that max(scalea, scaleb) ≤ ε

2dist(a, b). Since dist(a, b) ≤ 2rad(a, b), it
follows that max(scalea, scaleb) ≤ εrad(a, b).

For k ≥ 2, assume that the statement is true for each tuple of Γk−1. Consider any tuple
γ = (v0, . . . , vk−1) ∈ Γk−1 and let r denote the radius of the ε-approximation of meb(γ)
as computed by our algorithm. A node x is appended to γ to form γ′ = (v0, . . . , vk−1, x)
only if

2scalex ≤
ε

4r ≤
ε(1 + ε)

4 rad(γ) < εrad(γ)

from Equation (7.1). As rad(γ) ≤ rad(γ′), it follows that scalex ≤ εrad(γ′), which proves
the claim for γ′. The result follows by induction. �

Indeed, this result shows that for any node in a well-separated tuple generated by our
algorithm, the diameter of the node is much smaller than the radius of the ball which
covers the tuple.

7.2 Čech approximation

In this section, we present a simplicial tower to (1 + ε)-approximate the Čech filtration of
P . The construction is based on the concept of WSSDs from the previous section. First,
we introduce some further notation to simplify the presentation.

For a level ` ∈ Z of the net-tree T , we denote by

T` := {u ∈ T | `(u) ≤ ` < `(par(u))},

the highest set of nodes in T , whose levels are at most `. For any node v ∈ T of level i or
less, we denote by vcell(v, i) its ancestor in Ti, that is, its highest ancestor having level at
most i. Then, T−∞ simply denotes the leaves of T representing the input.

We fix the following additional parameters:

• for any integer i, set θi :=
(
1 + 2ε

5
)i. The set of discrete values {θi|i ∈ Z} determine

the scales at which our approximation complex may change. More concretely, the
approximation complex will be the same for all scales in the interval α ∈ [θi, θi+1),
for all i.

• For a given α > 0, let ∆α denote the integer

∆α = blog(1+ 2ε
5) αc, that is, θ∆α ≤ α < θ∆α+1.

∆α helps in determining the interval of scales in which α falls.

• We define hα as the integer which satisfies
2τ
τ − 1τ

hα ≤ εθ∆α

7 <
2τ
τ − 1τ

hα+1. (7.4)

The parameter hα determines the level of the net-tree using which the approximation
is constructed at scale α. Note that hα depends on ∆α, rather than on α itself.
Consequently, for any α ∈ [θk, θk+1), the same hα is chosen.

When there is no ambiguity about α, we skip the subscripts and simply write ∆ := ∆α and
h := hα. Let W denote an ε

154 -WSSD on T . Before we formally describe our construction,
we prove the following useful lemma:

Lemma 7.2.1. For some α > 0, let ∆ := ∆α and h := hα. If an ε
154 -WST t = (v0, . . . , vk)

satisfies rad(t) ≤ θ∆+1, then the level of each vi in T is h or smaller.

Proof. By Lemma 7.1.14, each vi of t satisfies

scalevi ≤
ε

154rad(t) ≤ ε

154θ∆+1

≤ ε

154

(
1 + 2ε

5

)
θ∆ ≤

εθ∆
77 .

Using the fact that τ = 11 and Equation 7.4, we have

2τ `(vi)+1

τ − 1 = scalevi ≤
1
11

(
εθ∆

7

)
≤ 1

11

(2τ
τ − 1τ

h+1
)

= 2τh+1

τ − 1 .

It follows that `(vi) ≤ h, for all i. �

114

CHAPTER 7. WELL-SEPARATED SIMPLICIAL DECOMPOSITION 115

7.2.1 Approximation tower

For any scale α > 0, we denote our approximation complex at scale α by Aα. The vertices of
Aα are the nodes of Th. The simplices of Aα can be found as: for any WST t = (v0, . . . , vk)
with all vi at level h or less, Aα contains the simplex t′ = (vcell(v0, h), . . . , vcell(vk, h)), if
rad(t′) ≤ θ∆.
Lemma 7.2.2. Aα is a simplicial complex.
Proof. Consider any simplex γ = (v0, . . . , vk) ∈ Aα. To prove the claim, we show that all
faces of γ lie in Aα. Without loss of generality, let t = (v0, . . . , vl) be a face of γ. To show
that t belongs to Aα, we first note that rad(t) ≤ rad(γ) by definition. We only need to
show that there exists a WST with nodes at level h or lower, such that taking the ancestor
of each node in Th gives the simplex t.

Consider the simplex σ = (repv0 , . . . , repvl). There exists a WST t′ = (v′0, . . . , v′l) which
covers σ, from Lemma 7.1.10. The ball (1 + ε/154)meb(σ) is an enclosing ball for all
points of the (ε/154)-WST t′. Therefore,

rad(t′) ≤
(
1 + ε

154
)
rad(σ) =

(
1 + ε

154
)
rad(t)

≤
(
1 + ε

154
)
rad(γ) ≤

(
1 + ε

154
)
θ∆ ≤ θ∆+1,

which implies that the level of each v′i is at most h, from Lemma 7.2.1. Then, for all i we
have vcell(v′i, h) = vi because v′i and vi share the point repvi , and vi has level at most h
by construction. Hence, by definition, the simplex t belongs to Aα. �

We define maps connecting Aα at different scales. Consider any two scales 0 ≤ α1 < α2.
We set ∆1 := ∆α1 , h1 := hα1 , and define ∆2, h2 accordingly. Since h1 ≤ h2, there is a
natural vertex map gα2

α1 : Th1 → Th2 , which takes a net-tree node of Th1 to its ancestor in
Th2 . This naturally extends to a map on the complexes

gα2
α1 : Aα1 → Aα2 ,

by mapping any simplex σ = (v0, . . . , vk) ∈ Aα to gα2
α1 (σ) := (gα2

α1 (v0), . . . , gα2
α1 (vk)).

Lemma 7.2.3. g := gα2
α1 : Aα1 → Aα2 is a simplicial map.

Proof. Let t = (v0, . . . , vk) be any k-simplex of Aα1 . Let g(vi) = v′i denote the ancestor of
vi in Th2 , for all i. We show that t′ := (v′0, . . . , v′k) ∈ Aα2 . If ∆1 = ∆2, the statement is
trivial since h1 = h2, Aα1 = Aα2 and g is the identity map. So, we assume that ∆1 < ∆2.

Consider the minimum enclosing ball of t. It contains the representatives of all nodes
vi and hence at least one point of each of v′i. If we inflate the ball by the largest diameter
of a node at level h2, all v′i will be covered completely. We show that the inflated radius is
less than θ∆2 , which immediately implies the claim using Lemma 7.2.1.

The diameter of a node u at level h2 is at most 2scaleu ≤
2εθ∆2

7 . Also, since ∆1 < ∆2,
we have θ∆1 ≤

θ∆2
1+ 2ε

5
. Therefore,

rad(t′) ≤ rad(t) + 2εθ∆2

7 ≤ θ∆1 + 2εθ∆2

7

≤ θ∆2

1 + 2ε
5

+ 2εθ∆2

7 ≤
1 + 2ε

7 + 4ε2
35

1 + 2ε
5

θ∆2 < θ∆2 ,

for ε ≤ 1. Hence t′ ∈ Aα2 . �

When the scales α1, α2 are clear from the context, we abbreviate gα2
α1 as g. This

complete the description of the approximation tower (Aα)α≥0.

7.2.2 Interleaving

To establish the approximation result, we first define maps between the Čech complexes
and the approximation complexes.

We define a map φ : C α
1+ε
→ Aα for any α ≥ 0. For any vertex p ∈ C α

1+ε
(which

is a point of P), we set φ(p) as the net-tree node in Th that covers p. For any simplex
(v0, . . . , vk) ∈ C α

1+ε
, define φ(v0, . . . , vk) = (φ(v0), . . . , φ(vk)).

Lemma 7.2.4. φ is a simplicial map.

Proof. Let σ = (p0, . . . , pk) be any simplex in C α
1+ε

. Let t = (v0, . . . , vk) be a WST which
covers σ. By the WSSD property, we have that

rad(t) ≤
(

1 + ε

154

)
rad(σ) ≤

1 + ε
154

1 + ε
α < θ∆+1.

Hence all vi are at level at most h, using Lemma 7.2.1. Let t′ = (v′0, . . . , v′k) where
v′i = vcell(vi, h). We need to show that t′ ∈ Aα. Similar to the proof of Lemma 7.2.3, if we
inflate meb(t) by 2εθ∆

7 , we cover t′ and that proves the claim. Using α ≤ θ∆+1 = (1+ 2ε
5)θ∆,

rad(t′) ≤ rad(t) + 2εθ∆
7 ≤

1 + ε
154

1 + ε
α+ 2εθ∆

7

≤
1 + 533

770ε+ 111
385ε

2

1 + ε
θ∆ ≤ θ∆

for ε ≤ 1. It follows that t′ ∈ Aα. �

In the other direction, we define a map ψ : A α
1+ε
→ Cα that takes a net-tree node v to its

representative repv. For a simplex t = (v0, . . . , vk) ∈ A α
1+ε

, we set ψ(t) = (repv0 , . . . , repvk).
It follows that

rad(ψ(t)) ≤ (1 + ε)rad(t) ≤ (1 + ε) α

1 + ε
≤ α,

so that ψ(t) ∈ Cα. Therefore, ψ is a well-defined simplicial map.
(C)α≥0 and (A)α≥0 give rise to persistence modules (H(Cα))α≥0 and (H(Aα))α≥0,

respectively. The respective modules are connected by linear maps f∗ and g∗, where f
is the inclusion map and the asterisks denote the induced linear maps on the homology
groups. Let φ∗ : H(C α

1+ε
) → H(Aα) and ψ∗ : H(A α

1+ε
) → H(Cα) be the linear maps

corresponding to φ and ψ, respectively.

Lemma 7.2.5. For all 0 ≤ α ≤ α′, the diagrams

H(Cα) f∗ // H(Cα′)
φ∗

&&
H(A α

1+ε
) g∗ //

ψ∗
88

H(A(1+ε)α′)

H(Cα) f∗ //

φ∗

''

H(Cα′)
φ∗

&&
H(A(1+ε)α) g∗ // H(A(1+ε)α′)

commute, that is, φ∗ ◦ f∗ ◦ ψ∗ = g∗ for the upper diagram and φ∗ ◦ f∗ = g∗ ◦ φ∗ for the
right diagram.

116

CHAPTER 7. WELL-SEPARATED SIMPLICIAL DECOMPOSITION 117

Proof. The maps commute on the simplicial level, that is, φ ◦ f ◦ ψ = g and φ ◦ f = g ◦ φ,
respectively, as can be easily verified from the definition of the maps. As a result, the
induced linear maps also commute. �

Lemma 7.2.6. For all 0 ≤ α ≤ α′, the diagram

H(C α
1+ε

) f∗ //

φ∗

%%

H(C(1+ε)α′)

H(Aα) g∗ // H(Aα′)

ψ∗
88

commutes, that means, ψ∗ ◦ g∗ ◦ φ∗ = f∗.

Proof. In this case, the corresponding simplicial maps ψ ◦ g ◦ φ and f do not commute
in general. We will show instead that they are contiguous (see Definition 2.4.4). We
fix any simplex σ = (p0, . . . , pk) ∈ C α

1+ε
. For all i, let q′i := g(φ(pi)). By definition,

q′i is a net-tree node that covers pi, at the level h′ corresponding to α′. By definition
wi := ψ(q′i) = ψ(g(φ(pi)) is the representative of q′i. From the definition of Aα′ , we have
that rad(w0, . . . , wk) = rad(q′0, . . . , q′k) ≤ θ∆′ ≤ α′, where ∆′ := ∆α′ .

Since q′i contains both pi and wi, inflating meb(w0, . . . , wk) by the largest diameter of
any node at the level h′, will cover the simplex σ = (p0, . . . , pk, w0, . . . , wk). The diameter
of nodes at level h′ is at most 2εθ∆′

7 . The radius of a ball required to cover σ is at most

rad(p0, . . . , pk, w0, . . . , wk) ≤ rad(w0, . . . , wk) + 2εθ∆′

7
≤ α′ + 2ε

7 α
′ < (1 + ε)α′.

Therefore, the simplex (p0, . . . , pk, w0, . . . , wk) is in C(1+ε)α′ , so ψ◦g◦φ and f are contiguous.
As a result, the induced linear maps commute. �

Lemma 7.2.7. For all 0 ≤ α ≤ α′, the diagram

H(C(1+ε)α) f∗ // H(C(1+ε)α′)

H(Aα) g∗ //

ψ∗
88

H(Aα′)

ψ∗
88

commutes, that means, ψ∗ ◦ g∗ = f∗ ◦ ψ∗.

Proof. Again, the corresponding simplicial maps ψ ◦g and f ◦ψ do not commute in general
(they do only if hα = hα′). We show that the simplicial maps are contiguous, which
implies the claim. Fix some t = (q0, . . . , qk) ∈ Aα and let v` be the representative of q`; in
particular f ◦ ψ(q`) = v`. Now, set q′` := g(q`). It is clear that Pq` ⊆ Pq′

`
and therefore,

v` ∈ q′`. Set w` := ψ(g(q`)) = ψ(q′`) to be the representative of q′`. By the same argument
as in Lemma 7.2.6, rad(v0, . . . , vk, w0, . . . , wk) ≤ (1 + ε)α′, which implies the claim. �

Theorem 7.2.8. The persistence module (H(Aα))α≥0 and the Čech persistence module
(H(Cα))α≥0 are (1 + ε)-approximations of each other.

Proof. The diagrams in lemmas 7.2.5-7.2.7 commute, which implies that the two persistence
modules are strongly (1 + ε)-interleaved. The claim then follows from Theorem 2.3.6. �

Theorem 7.2.9. The approximation tower has size at most n(2/ε)O(Υ2).

Proof. A net-tree has n leaves and at most n internal nodes, which form the vertices of the
approximation tower. Therefore, the number of vertex inclusions is upper bounded by 2n.

We bound the number of simplex inclusions in the tower. Consider any WST t =
(v0, . . . , vk). Let ∆ be the smallest integer and h the corresponding level in the net-tree
such that rad(t′) ≤ θ∆, where t′ := (vcell(v0, h), . . . , vcell(vk, h)). Then, the simplex t′

exists in the complex Aθ∆ . For all integers ∆′ lower than ∆, t does not contribute a
simplex in the tower, since rad

(
(vcell(v0, h

′), . . . , vcell(vk, h′))
)
> θ∆′ at those scales, by

our choice of ∆. This means that the simplex t′ is included in the tower at the scale θ∆.
Let ∆′′ be any scale larger than ∆ such that rad

(
(vcell(v0, h

′′), . . . , vcell(vk, h′′))
)
≤ θ∆′′ .

By definition, t contributes a simplex to Aθ∆′′ . However, this simplex is simply the image
of t′ under the map g : Aθ∆ → Aθ∆′′ . Therefore, the WST t contributes to only one simplex
inclusion in the entire tower. As a result, the number of simplex inclusions in the tower is
upper bounded by the size of the WSSD, which is n(2/ε)O(Υ2) from Corollary 7.1.12. �

7.3 Discussion

In this chapter, we gave a generalization of WSPDs to higher dimensions and showed that
they are useful in representing all simplices on a point set, in a compact manner. We
considered the setup in doubling spaces; a similar result was presented in [KS13] without
the assumption of doubling dimension. They used quad-trees for their scheme, while we
used net-trees to arrive at an equivalent result, which is superior when Υ is low.

We also presented a tower to (1 + ε)-approximate the Čech filtration for point sets
of low doubling dimension. On the other hand, we did not explicitly give an algorithm
for our method. The naive algorithm is rather expensive, since at each scale, it requires
the computation of minimum enclosing balls and vcell for each WST tuple. Computing
vcell can be quite expensive since requires O(n2) space. Finding an efficient algorithm to
compute the approximation tower is an item for future agenda.

An alternative idea to construct the Čech-approximation would be to directly use
the net-tree, bypassing the step of constructing WSSDs. An approximation complex at
scale α can be derived by building a Čech complex directly on the set of nodes of Th; the
simplicial maps can be built using the ancestor relationship. However, it remains to see if
this method can lead to an efficient algorithm.

We believe that the concept of WSSDs is interesting in its own right and hopefully
applicable in different contexts. It may be worthy to identify further application scenarios
in the future.

118

Chapter 8

Local Doubling Dimension

Doubling dimension (Definition 3.3.2) is a way to capture the intrinsic structure of a
metric space. It is evident from the definition that it depends on the global properties of
the metric space. In some applications, information is only relevant for a fixed range of
distances, and the associated metric may have a lower intrinsic dimension in this range.
In such cases, the doubling dimension may not be the ideal representative for capturing
the structure at those scales.

To utilize this structural property, we introduce a notion of local intrinsic dimension
of metric spaces in this chapter, which follows naturally from the concept of doubling
dimension. We make use of this concept in an algorithmic context by presenting a method
to construct a hierarchical net-tree up to the desired scale, that avoids inspecting higher
scales. This ensures that computing the tree takes time that is dominated by the local
intrinsic dimension. The construction utilizes Locality-sensitive hashing for Euclidean
spaces (Section 3.4). We also apply our concepts to various applications, where the range
of interesting scales is restricted.

8.1 Definition and net-forests

Let P ⊂ Rd be a point set with doubling dimension Υ and n := |P |.

Definition 8.1.1 (restricted doubling dimension). Given t > 0, the t-restricted
doubling constant of P is the smallest positive integer λt such that all the points of P in
any ball centered at any p ∈ P of radius r are covered by at most λt non-empty balls of
radius r/2, for 0 ≤ r ≤ t .

The t-restricted doubling dimension of P is Υt := dlog2 λte.

As is evident, this is a re-definition of the doubling dimension such that the defining
balls have bounded radius, so that Υt ≤ Υ. More precisely, Υt is zero for t smaller than
the closest-pair distance of P , and equals Υ when t is at least the diameter of P . We
sometimes call the restricted doubling dimension as the local doubling dimension.

We give a motivating example to illustrate the utility of the local doubling dimension.
For point samples from an affine subspace of dimension k, Υ is bounded by Θ(k). This
is not true in general for samples of k-manifolds, where Υ increases due to curvature.
To sketch an extreme example, consider an almost space-filling curve γ in Rd which has
distance at most ε to any point of the unit ball, for a small enough value of ε. We let P
be a sufficiently dense sample of γ. For small values of t, Υt = 1 since the underlying
structure is 1-dimensional. On the other hand, Υt = Θ(d) for t = 1; indeed, any sparser
covering of the unit ball with balls of radius 1/2 would leave some portion of the ball

119

(a) A curve which approximates the unit
ball.

(b) A point sample: connecting vertices
which are a small distance apart gives
back the original curve, so Υ = 1 at such
scales. At large scales it is almost a uni-
form sample of the ball, so Υ depends
on the ambient dimension.

Figure 8.1: An almost space filling curve.

uncovered, and by construction, γ goes through that uncovered region, so that some point
in P is missed. See Figure 8.1 for an intuition. Therefore, choosing the right value of t is
critical to understand the structure of the hidden manifold.

The “badness” of the previous example stems from the discrepancy between the
Euclidean and geodesic distances of points lying on a lower-dimensional manifold. A
common technique for approximating the geodesic distance is through the shortest-path
metric: let G = (P,E) denote the graph whose edges are defined by the pairs of points of
P with Euclidean distance at most t; we call such a graph a t-intersection graph. The
geodesic distance of two points p and q is then defined as the length of the shortest path
from p to q in G (we assume for simplicity that G is connected). The concept of doubling
dimension extends to any metric space, so let Υ′ denote the doubling dimension of P
equipped with the shortest path metric. While Υt and Υ′ appear to be related, Υ′ can be
much larger than Υt: an example is shown in Figure 8.2. Moreover, using the shortest-path
metric raises the question of how to compute shortest path distances efficiently, if the cost
of metric queries is taken into account.

8.1.1 Net-forest

Next, we discuss a data structure for point sets, whose properties are primarily dependent
on the local doubling dimension.

Definition 8.1.2 (net-forest). For a desired parameter t > 0, a net-forest on a point set
P is defined as a collection of net-trees with roots {v1, . . . , vk} such that their representatives
{repv1 , . . . , repvk} form a (t, t)-net, and the point sets {Pv1 , . . . , Pvk} are a partition of P .

We define Rel(u) for a node u in the net-forest in the same way as for net-trees: it is the
set of net-forest nodes that are close to u and have similar diameter (see Sub-section 3.3.2).
Similar to net-trees, we call a net-forest augmented if each node u is equipped with
information about Rel(u). See Sub-section 3.3.2 for more details.

The natural way to build a net-forest is to simply construct a net-tree, and to truncate
it up to scale t to get a forest of sub-trees. Since the nodes of this forest only interact
at distances of the form O(t), the properties of this forest are dependent on ΥO(t).

120

CHAPTER 8. LOCAL DOUBLING DIMENSION 121

Figure 8.2: Consider a regular k-gon in the plane with all vertices on the unit circle. To
each vertex, attach an “arm” of length 4 in the direction outwards from the origin. We call
the endpoint of such an arm a tip. Let X denote the obtained shape, as depicted in the
figure. Let P be a sufficiently dense point sample of X and G be the t-intersection graph
on P . We choose t appropriately so that the shortest path metric on G approximates
the distances on X very closely. Fixing an arbitrary vertex of the k-gon, the furthest
tip has a distance of at most 4 + π < 8 on X, so there is a ball (on the shortest path
metric) of radius less than 8 containing all of P . However, any pair of tips has a distance
of more than 8, so no metric ball of radius less than 4 can contain two tips. It follows that
any covering of P with metric balls of radius less than 4 requires at least one metric ball
per tip. Therefore, the doubling dimension Υ′ of this metric is at least dlog2 ke. On the
other hand, for the Euclidean metric on R2, we can easily see that the doubling dimension
Υ = O(1), and therefore, Υt is a constant as well.

Unfortunately, the net-tree construction proceeds in a top-down fashion (see [HPM06] or
Sub-section 3.3.2 for more details), considering the large scales of the point set first. Thus,
the algorithm has a complexity that depends on the doubling dimension of the point set.
Therefore, such a construction suffers from potentially bad large-scale properties of the
point set, even when they are irrelevant for the given application. To tackle this problem,
we use a slightly different construction, that avoids exploring scales above O(t), thereby
avoiding the complexities associated with large scales.

Construction

We discuss our algorithm for constructing a net-forest, which is a simple adaptation of the
net-tree algorithm. First, we construct a (t, t)-net on P by clustering the point set and
assigning to each point in P its closest net-point. Each root in the net-forest represents one
of the clusters. We also compute Rel(u) for each root by finding the close-by clusters to
node u. Having this information, we can simply run the net-tree algorithm from [HPM06]
individually on each cluster to construct the net-forest. For augmenting the forest, we
use the top-down traversal strategy as described in [HPM06, Section 3.4], that infers the
neighbors of a node from the neighbors of its parent. Since we have set up Rel(·) for the
roots of the forest, this strategy is guaranteed to detect neighboring nodes for all internal
nodes, even if they belong to different trees of the forest.

Both the initial net construction and the Rel()-construction require solving the all near
neighbors problem (Definition 3.4.3). We use the near neighbor primitive from Section 3.4
based on Locality-sensitive Hashing (LSH) to tackle the problem. Recall that LSH has
three main parameters: r denotes the query radius, 0 < ρ < 1 is a tunable parameter, and
S denotes the set of points on which LSH acts. We use this notation in the rest of the
section.

Net construction We construct the net using a greedy scheme: for each input point
p, we store a pointer N(p) pointing to the net point assigned to point p. Initially, we
set N(p) ← ∅ for all p ∈ P . As long as there is a point p such that N(p) = ∅, we set
N(p)← p and query the near-neighbor primitive to get a list of points with distance at
most t from p. For each point q in the list we update N(q) ← p if either N(q) = ∅ or
‖p − q‖ < ‖N(q) − q‖. Then we pick the next point p with N(p) = ∅. At the end, the
set of points p with N(p) = p represents the net at scale t and the points q satisfying
N(q) = p constitute p’s cluster. The net thus constructed is a (t, t)-net. Moreover, we set
the level `(v) = blogτ

(τ−1)t
2τ c for each root node v, where τ = 11 is the constant from the

definition of net-trees (Definition 3.3.5). To find the nearby neighbors, we simply initialize
the near-neighbor primitive with r ← t and S ← P , and query the appropriate points.

Computing the Rel set for the roots After finding the net-points and their
respective clusters, we need to augment the root nodes with neighboring information.
Recall that for any node u, Rel(u) contains nodes in distance at most 14τ `(u) from repu.
Since we have a (t, t)-net, the level of any root node u satisfies 14τ `(u) ≤ 7t. Hence we need
to find neighbors of net-points within distance 7t, where the minimum distance between
any two net-points is at least t. By the doubling property and [Tal04, Proposition 1], any

root net-node can have at most λ
log2

7t
t/2

7t such neighbors which simplifies to 14Υ7t . We use
the near-neighbor primitive to compute such neighbors. Let M denote the set of net-points
and m := |M |. We simply have to find all pairs of points of M that have distance at most
7t; and to do so we call the near neighbor primitive with r ← 7t and S ←M for all q ∈M .

Lemma 8.1.3. The expected time to construct the (t, t)-net using LSH is

O

(
dn1+ρ logn

(
logn+

(2
ρ

)Υt/ρ))
,

where 0 < ρ < 1 is the LSH parameter.

Proof. We consider the time spent on all near-neighbor queries. The resulting net consist
of m ≤ n points. This implies that the algorithm proceeds in m rounds and queries the
near-neighbors of m points. Let C̃i denote the number of points in distance t/ρ from the
i-th query point. By Lemma 3.4.4, the total complexity for all near-neighbor queries is:

O

(
ndkl +

m∑
i=1

dl(k + C̃i)
)

= O(ndkl + dl
m∑
i=1

C̃i),

where k, l are LSH parameters. We only need to bound the sum of the quantities C̃i. For
that, we fix some q ∈ P and count in how many sets C̃i may it appear. Let pi denote the
net-point chosen in the i-th iteration. We call such a net-point close to q if the distance to
q is at most t/ρ. By definition, the net-points close to q lie in a ball of radius t/ρ centered
at q. Since any pair of net-points has a distance of more than t, any ball of radius t/2 can
contain at most one close net point. Following the definition of the t-restricted doubling

dimension, the number of such net-points can be at most λ
log2

t/ρ
t/2

t/ρ which simplifies to(2
ρ

)Υt/ρ . It follows that
∑m
i=1 C̃i ≤ n

(
2
ρ

)Υt/ρ
. Hence, we get the claimed running time, by

substituting k = O(logn) and l = O(nρ logn) from Lemma 3.4.4. All additional operations
in the net construction besides the calls of the near-neighbor primitive are dominated by
the claimed bound. �

122

CHAPTER 8. LOCAL DOUBLING DIMENSION 123

Lemma 8.1.4. Computing the Rel sets using LSH takes expected time

O

(
dn1+ρ logn

(
logn+

(14
ρ

)Υ7t/ρ
))

.

Proof. The proof is analogous to the proof of Lemma 8.1.3: let C̃i (for i = 1, . . . ,m)
denote the number of net-points in distance at most 7t

ρ to the i-th net point. A packing
argument similar to the one in the previous Lemma shows that any C̃i can be at most(14
ρ

)Υ7t/ρ , so that their sum is bounded by m
(14
ρ

)Υ7t/ρ . Since m ≤ n, the runtime follows
by plugging in the respective values in Lemma 3.4.4. �

Theorem 8.1.5. The expected time for constructing the net-forest using LSH is

O

(
dn1+ρ logn

(
logn+

(14
ρ

)Υ7t/ρ
))

.

Proof. Using Lemma 8.1.3 and Lemma 8.1.4, constructing the root clusters and its Rel
sets are within the stated complexity bound. Constructing a single net-tree for a root node
containing ni points takes time at most 214Υ2tdni logni (the factor of 14 in the exponent can
be seen by a careful analysis of [HPM06, Section 3.4]). Constructing individual net-trees
for the clusters takes time:

∑m
i=1 214Υ2tdni logni. Since

∑m
i=1 ni = n, the above runtime is

upper bounded by 214Υ2tdn logn. Augmenting the net-forest takes time dn214Υ7t [HPM06,
Section 3.4]. The runtimes for the net-tree constructions and augmentation are dominated
by the Rel- and net-construction for sufficiently large values of n. �

In comparison, constructing the full net-tree takes n logn2O(Υ) time [HPM06]. Compar-
ing the complexity bound in Theorem 8.1.5 with the naive step of constructing the full net-
tree and pruning it at the appropriate level, our approach makes sense if nρ logn� 2O(Υ)

and ΥO(t) � Υ. We also see how the choice of ρ affects the complexity bound: for ρ
very close to zero, we get an almost linear complexity in n, for the price that we have to
consider larger balls in our algorithm and thus increase the restricted doubling dimension.

8.2 Applications

We now discuss a few applications of net-forest. The first deals with WSPDs (Def-
inition 3.3.7) and SSPDs (Definition 3.3.9) from Chapter 3. The second deals with
approximation schemes for Rips filtration [She13] and Čech filtrations (Chapter 7). For
brevity, we only discuss the extensions of these concepts in this section.

8.2.1 Pair decompositions

Well-separated pair decomposition Using a net-tree on P , one can build an
ε-WSPD of size nε−O(Υ) in time d

(
2O(Υ)n logn+ n(1/ε)O(Υ)

)
[HPM06], for ε > 0. A

WSPD considers pairs of points over all scales of distance, because it has to cover any
pair of points of P . We only require that all pairs of points of P in distance at most t are
covered; and we call the resulting structure a t-restricted ε-WSPD.

We construct the t-restricted ε-WSPD as follows: we start by constructing the corre-
sponding augmented net-forest; let {u1, . . . , um} denote the root nodes. Since we know
the Rel set for any root, we can identify pairs (ui, uj) such that ui is in Rel(uj) and vice
versa (this also includes pairs where ui = uj). For any such pair, we call genWSPD(ui, uj)

from [HPM06, Section 5], which simply traverses the sub-trees until it finds well-separated
pairs. We output the union of all pairs generated in this way.

Theorem 8.2.1. For any 0 < ε < 1 and t > 0, our algorithm computes a t-restricted
ε-WSPD of size nε−O(Υ7t) in expected time NF + dnε−O(Υ7t), where NF is the complexity
for computing the net-forest from Theorem 8.1.5.

Proof. We prove correctness first; we already know by definition that each pair of nodes
which is generated is ε-well-separated. To show that each pair of points in distance t is
covered, consider any pair of points (p, q) ∈ P in distance at most t. There are roots u1,
u2 in the net-forest with p ∈ Pu1 and q ∈ Pu2 . Since the diameters of u1 and u2 both are
at most 2t, the distance of repu1 and repu2 is at most 5t < 7t. Therefore, u2 ∈ Rel(u1)
(and vice-versa), which ensures that the algorithm of [HPM06] ensures that there will be
a generated pair that covers (p, q).

For the size bound, we use the same charging argument as in [HPM06, Section 5]. We
additionally ensure by our construction that in all doubling arguments, the radii of the
balls in question are at most 7t and therefore replace the doubling dimension by Υ7t in
the bound. The running time follows because the number of recursive calls of genWSPD is
proportional to the output size, and we spend O(d) time per recursion step. �

Semi-separated pair decomposition Recall that for a given ε > 0, an ε-SSPD
of expected weight O(ε−O(Υ)n logn) can be calculated in O(ε−O(Υ)n logn) expected
time [AHP12]. We adapt the algorithm of [AHP12, Section 4] slightly to compute a
t-restricted SSPD, which requires that only pairs of points in distance at most t be covered
by the decomposition. First we construct the net-forest at scale t/5. Let {u1, . . . , um}
denote the root nodes of the net-forest. We invoke the algorithm of [AHP12, Section 4]
on each of the sets {ui ∪ Rel(ui)} and output the union of the pairs generated by each
invocation. The pairs involved in the SSPD have the property that their diameter is at
most 3.2t.

Theorem 8.2.2. For any 0 < ε < 1, our algorithm computes a t-restricted ε-SSPD of P
of expected weight n logn

(
2
ε

)O(Υ3.2t) in n logn
(

2
ε

)O(Υ3.2t) expected time, after computing
the net-forest at scale t.

Proof. To prove correctness, consider points p, q ∈ P such that ‖p− q‖ ≤ t. Let ui and uj
be the root nodes covering p and q, respectively. By the triangle inequality,

‖repui − repuj‖ ≤ ‖repui − p‖+ ‖p− q‖+ ‖q − repuj‖
≤ t/5 + t+ t/5 ≤ 7t/5.

Hence, ui ∈ Rel(uj) and vice-versa. This ensures that the algorithm creates a semi-
separated pair which covers the pair (p, q). For the diameter, let us say that we work with
the set Pm = {u∪Rel(u)} and wish to upper bound diam(Pm). For any pair of root nodes
ui, uj ∈ Rel(u) covering points a and b respectively, it follows from the triangle inequality
that ‖a− b‖ ≤ 3.2t.

Next we bound the weight of the SSPD. Consider the individual invocations of the
algorithm of [AHP12] after constructing the net-forest. Let Ni denote the number of
points in ui ∪ Rel(ui). Then the total weight of the SSPD is

m∑
i=1

ε−O(Υ3.2t)Ni logNi ≤ ε−O(Υ3.2t) logn
m∑
i=1

Ni.

124

CHAPTER 8. LOCAL DOUBLING DIMENSION 125

To bound the sum S :=
∑m
i=1Ni, consider any point p covered by ui. This point participates

in at most 2O(Υ7t/5) invocations of the algorithm, since that is precisely the maximum
possible size of the Rel sets of the roots. This implies that the contribution of point p to S
is at most 2O(Υ7t/5). Hence the sum S is at most 2O(Υ7t/5)n, and bound follows. A similar
argument bounds the runtime as well. �

8.2.2 Čech and Rips filtrations

In practice, it is common to truncate Rips and Čech filtrations up to a certain scale, which
is of interest in the application. For the case that the highest scale in the construction
is bounded by t, we can improve the complexities of approximation schemes based on
net-trees, in the sense that Υ can be replaced with Υ7t in the complexity bounds. This is
done by replacing the net-tree with a net-forest at scale t in the respective algorithms.

Theorem 8.2.3. There exist (1 + ε)-approximate towers for Rips and Čech filtrations,
with k-skeletons of size at most n

(
2
ε

)O(kΥ7t), for the range of scales [0, t], where ε ∈ (0, 1).

Proof. For Rips filtrations, this follows directly by applying the algorithm of [She13,
Section 10] on a net-forest of scale t. For a root node u, w := {u ∪ Rel(u)} successfully
captures all edges of length at most 5t > t between a point p ∈ Pu and q ∈ Pw, which is
the main requirement of the algorithm of [She13, Section 10], thereby yielding a tower of
size at most n(2

ε)O(kΥ7t).
To prove the same for Čech filtrations, we use our net-forests to construct well-separated

simplicial decomposition (Chapter 7) first. We give the details in the rest of the section. �

Well-separated simplicial decomposition For some t > 0, we define a t-restricted
(ε, k)-WSSD to be a collection of ε-well-separated tuples such that each k-simplex on P
whose minimum enclosing ball has radius at most t, is covered by some tuple.

Construction of the t-restricted WSSD

We describe the algorithm to construct the t-restricted (ε, k)-WSSD and prove its correct-
ness and runtime. We heavily rely on the notations and results presented in Chapter 7.

The algorithm proceeds iteratively in dimension; for k = 1, we construct a (2t)-
restricted ε/2-WSPD using the algorithm from Sub-section 8.2.1. To construct Γk+1
from Γk, we iterate over the tuples γ ∈ Γk. We use the scheme of Chapter 7, computing
an approximate meb of γ and then exploring ancestors of v0 and their descendants at
appropriate levels. The only complication arises when the algorithm requests for an
ancestor higher than root of the tree of v0. In such a case, our algorithm uses the root as
the ancestor. In the following lemma, we will show that with this approach, we still cover
all simplices with minimum enclosing radius of at most t.

Lemma 8.2.4. The algorithm computes a t-restricted (ε, k)-WSSD.

Proof. We show by induction that with the modified ancestor search, we still cover all
simplices with meb radius at most t. For k = 1, the correctness of the algorithm follows
from Theorem 8.2.1. Let Γk−1 cover all (k − 1)-simplices γ on P which satisfy rad(γ) ≤ t.
Consider any k-simplex σ = (m0, . . . ,mk) with rad(σ) ≤ t and let σ′ := σ \ {mk}.
Since σ′ is a (k − 1)-simplex and rad(σ′) ≤ rad(σ) ≤ t, it is covered by some k-tuple
γ = (v0, . . . , vk−1) ∈ Γk−1. To prove correctness, when our algorithm reaches tuple γ, it

should produce a (k + 1)-tuple (γ, x) such that mk ∈ Px which implies that the simplex σ
is covered by the (k + 1)-tuple (γ, x).

When handling γ, the algorithm searches for an ancestor of v0 (say) at an appropriate
scale. If this ancestor is found within the tree containing v0 in the net-forest, the arguments
from Lemma 7.1.10 carry over to ensure that a suitable x is found. So let us assume that
the algorithm chooses the root of the tree of the net-forest that v0 lies in; call that root
node a0. The algorithm considers all nodes in Rel(a0) and creates new tuples with their
descendants. Moreover, let a′ denote the root of its tree which the point mk. To prove our
claim, it suffices to show that a′ ∈ Rel(a0). Since rad(σ) ≤ t, the distance of m0 and mk is
at most 2t. Moreover, the distance of m0 to repa0 is at most t, because the representatives
of the roots form a (t, t)-net. The same holds for mk and a′. Using triangle inequality, the
distance of repa0 and repa′ is at most 4t, which implies that a′ ∈ Rel(a0). �

Lemma 8.2.5. The size of the computed t-restricted (ε, k)-WSSD Γk is n(2
ε)O(Υ7tk).

Proof. The proof of Lemma 7.1.11 carries over directly – indeed, we can replace all
occurrences of Υ by Υ7t. This comes from the fact that a node u has at most 14Υ7t

nodes in Rel(u), and for any node in Rel(u) we search descendants of a level of at most
O(log(2/ε)) smaller than u (see the proof of Lemma 7.1.11 for details). Since every node in
the net-forest has at most 2O(Υt) children, we create at most 14Υ7t

(
2
ε

)O(Υt)
=
(

2
ε

)O(Υ7t)

tuples in Γk from a tuple in Γk−1. With that, the bound can be proved by induction. �

Lemma 8.2.6. Computing a t-restricted (ε, k)-WSSD takes time nd(2/ε)O(Υ7tk) after
computing the net-forest at scale t.

Proof. The proof is analogous to Lemma 7.1.13, plugging in the running time for t-restricted
ε-WSPD from Theorem 8.2.1 and the size bound from Lemma 8.2.5. �

Approximation tower for Čech filtration We use the scheme of Section 7.2
to construct the (1 + ε)-approximate filtration on the t-restricted WSSD. The original
construction works without modification. Using the notation from Section 7.2, for any
WST σ = (v0, . . . , vk) with `(vi) ≤ h for all i, we add σ′ = (vcell(v0, h), . . . , vcell(vk, h))
to Aα if rad(σ′) ≤ θ∆. The only potential problem with the t-restricted case is that
such a vcell() might be a node higher than a root of the net-forest. This cannot happen,
however, since h is chosen such that 2τ

τ−1τ
h ≤ ε

7α. Since α ≤ t and ε ≤ 1, we have that
h < blogτ τ−1

2τ tc = `(u) for any root u in the net-forest, by construction. This gives rise
to an approximation tower (Aα)α∈[0,t] of size n(2

ε)O(Υ2
7t) whose persistence module is an

(1 + ε)-approximation of the truncated Čech filtration (Cα)α∈[0,t].

8.3 Discussion

We presented an algorithm to construct the relevant part of the net-tree without exploring
larger scales, and avoid unfavorable properties of large scales. We also presented a few
applications based on the net-forest. The main technical contribution is the adaptation
of locality sensitive hashing to solve the all-near-neighbors problem. This technique is
however exclusive to Euclidean spaces, which is also the domain of our results. An efficient
alternative to compute near-neighbors in general metric spaces would allow us to adapt
our construction to cover more scenarios and it is an agenda for future exploration.

126

Chapter 9

Conclusion

We briefly summarize some of the results obtained in this thesis and compare them.
For simplicity, we call the approximation schemes from Chapters 4, 5, 6 and 7 as the
permutahedral-scheme, the barycentric-scheme, the digital-scheme and the wssd-scheme,
respectively. For a point set P ⊂ Rd with doubling dimension Υ and n := |P |, the qualities
of the schemes can be summarized in Table 9.1. To have a uniform comparison, we have
interpreted the schemes as approximations of Čech filtrations.

scheme approximation ratio size of k-skeleton
Permutahedral 6 4√2(d+ 1) min

(
n2O(d log d), n2O(d log k) log ∆

)
Barycentric 25/4d1/4 n2O(d log k)

Digital (1 + ε) n(1/ε)O(d)2O(dk) log ∆
WSSD (1 + ε) n(1/ε)O(Υ2)

Table 9.1: Comparison of approximation schemes: we have 0 < ε ≤ 1 and ∆ denotes the
spread of P .

It is clear that the digital and wssd schemes have strictly better approximation factors
than the permutahedral and the barycentric schemes. On the other hand, the size com-
plexity of digital is strictly (exponentially) worse than the permutahedral and barycentric
schemes. In this way, we achieve a trade-off between tower size and approximation quality.
Some further observations are:

• Among the permutahedral and barycentric schemes, the latter is strictly better than
the former, both in approximation quality and size. Although, the permutahedral
scheme is a little simpler to describe.

• While the digital scheme de-couples the skeleton size from the exponent of (1/ε), it
adds a factor of spread compared to the wssd scheme. Therefore, in general neither
is clearly superior than the other. On the other hand, the digital scheme is much
simpler to describe and implement.

• When Υ� d, the wssd scheme fares better than all other schemes.

Future work

In the discussion sections of Chapters 4–8, we discussed some possibilities for future work.
Here, we mention some additional research questions which naturally arise out of this
thesis.

127

In Chapter 4 we gave a lower bound result for approximating Čech filtrations, for a
very fine approximation quality. There is no counterpart of this result for general metric
spaces. This could be an avenue for future work. Better lower bounds for Euclidean point
sets are also desirable, especially when the target approximation quality is a constant, and
hence is more reasonable than our result.

The digital scheme is exclusive to Euclidean spaces. It is unclear what would be the
counterpart in general metric spaces. Perhaps in special cases such as manifolds, it may be
possible to arrive at a similar discretization scheme, which could be an interesting research
question.

In all our approximation schemes, we approximate the geometry of the Rips or Čech
complex in some sense. Further, for efficient computation of persistence, we have to restrict
ourselves to simplicial towers. Both these constraints restrict the choices in designing
approximation towers. A simple example stands out in the barycentric scheme from
Chapter 5: in order to establish a simplicial tower, we use the barycentric subdivision,
which leads to a lot of extra triangulation. Efficient algorithms to compute persistence for
chain maps could possibly relax the constraint of sticking to geometric approximations to
some extent.

We have only considered simplicial persistent homology in this thesis. There is also the
concept of cubical complexes and the associated cubical persistent homology, which is more
suited for some applications. Cubical complexes avoid the problem of over-triangulation
and are therefore much smaller in size. Extending our techniques to cubical complexes is
another attractive research question.

The theoretical results presented in this thesis are geared towards providing practical
improvements in TDA. For two of our approximation schemes, the approximation factor
depends on the ambient dimension, and gets progressively worse as the dimension increases.
It is still possible that the approximation factor and runtimes fare much better in practice.
It may be worthy to implement the schemes and to observe the amount of discrepancy
between theory and practice. The digitization method needs further optimizations before
a practical implementation can be realized. As of now, there is no known implementation
of the net-tree, which is a roadblock in constructing WSSDs. There is an implementation
of the cover-tree [BKL06], that has been shown to be related to the net-tree [JS16]. It
may be worthy to see if our techniques adapt to the cover-tree.

128

Bibliography

[AHP12] M. Abam and S. Har-Peled. New Constructions of SSPDs and their Applica-
tions. Computational Geometry Theory and Applications, 45(5-6):200–214,
July 2012.

[ARC14] A. Adcock, D. Rubin, and G. Carlsson. Classification of Hepatic Lesions
using the Matching Metric. Computer Vision and Image Understanding,
121:36–42, 2014.

[Ass83] P. Assouad. Plongements Lipschitziens dans Rn. Bulletin de la Societe
Mathematique de France, 111:429–448, 1983.

[BA09] J. Baek and A.Adams. Some Useful Properties of the Permutohedral Lattice
for Gaussian Filtering. Technical report, Stanford University, 2009.

[Bam54] R. Bambah. On Lattice Coverings by Spheres. Proceedings of the National
Institute of Sciences of India, 20:25–52, 1954.

[BC03] M. Bădoiu and K. Clarkson. Smaller Core-sets for Balls. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 801–802, 2003.

[BC08] M. Bădoiu and K. Clarkson. Optimal Core-sets for Balls. Computational
Geometry: Theory and Applications, 40:14–22, 2008.

[BDM15] J.-D. Boissonnat, T.K. Dey, and C. Maria. The Compressed Annotation
Matrix: an Efficient Data Structure for Computing Persistent Cohomology.
Algorithmica, 73(3):607–619, 2015.

[BdSS15] P. Bubenik, V. de Silva, and J. Scott. Metrics for Generalized Persistence
Modules. Foundations of Computational Mathematics, 15(6):1501–1531,
2015.

[BEK10] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing Robustness and
Persistence for Images. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1251–1260, 2010.

[Ber] Bernoulli’s Inequality. https://goo.gl/GZXpBE.

[Bjö95] A. Björner. Topological methods. In R. L. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics (Volume 2), pages 1819–1872.
MIT Press, 1995.

[Bjö03] A. Björner. Nerves, Fibers and Homotopy groups. Journal of Combinatorial
Theory Series A, 102(1):88–93, 2003.

129

https://goo.gl/GZXpBE

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford. Cover Trees for Nearest
Neighbor. In Proceedings of the 23rd International Conference on Machine
Learning, pages 97–104, 2006.

[BKR14] U. Bauer, M. Kerber, and J. Reininghaus. Clear and Compress: Computing
Persistent Homology in Chunks. Topological Methods in Data Analysis
and Visualization III: Theory, Algorithms, and Applications, pages 103–117,
2014.

[BKRW17] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT - Persistent
Homology Algorithms Toolbox. Journal of Symbolic Computation, 78(C):76–
90, January 2017.

[BOOC16] T. Bonis, M. Ovsjanikov, S. Oudot, and F. Chazal. Persistence-based
Pooling for Shape Pose Recognition. In Proceedings of the 6th International
Workshop on Computational Topology in Image Context (CTIC), pages
19–29, 2016.

[Bor48] K. Borsuk. On the Imbedding of Systems of Compacta in Simplicial Com-
plexes. Fundamenta Mathematicae, pages 217–234, 1948.

[Bou85] J. Bourgain. On Lipschitz Embedding of Finite Metric Spaces in Hilbert
Space. Israel Journal of Mathematics, 52(1-2):46–52, 1985.

[BS14] P. Bubenik and J.A. Scott. Categorification of Persistent Homology. Discrete
& Computational Geometry, 51(3):600–627, 2014.

[BS15] M. Botnan and G. Spreemann. Approximating Persistent Homology in
Euclidean Space through Collapses. Applied Algebra in Engineering, Com-
munication and Computing, 26(1-2):73–101, 2015.

[Car09] G. Carlsson. Topology and Data. Bulletin of the American Mathematical
Society, 46:255–308, 2009.

[CBK09] M. Chung, P. Bubenik, and P. Kim. Persistence Diagrams of Cortical Surface
Data. In Proceedings of the 21st International Conference on Information
Processing in Medical Imaging, pages 386–397, 2009.

[CCR13] J. Chan, G. Carlsson, and R. Rabadan. Topology of Viral Evolution.
Proceedings of the Natural Academy of Sciences, 110(46):18566–18571, 2013.

[CCSG+09] F. Chazal, D. Cohen-Steiner, M. Glisse, L. Guibas, and S. Oudot. Prox-
imity of Persistence Modules and their Diagrams. In ACM Symposium on
Computational Geometry (SoCG), pages 237–246, 2009.

[CdS10] G. Carlsson and V. de Silva. Zigzag Persistence. Foundations of Computa-
tional Mathematics, 10(4):367–405, 2010.

[CdSGO16] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The Structure and Stability
of Persistence Modules. Springer International Publishing, 2016.

[CdSM09] G. Carlsson, V. de Silva, and D. Morozov. Zigzag Persistent Homology and
Real-valued Functions. In Proceedings of the 25th Annual Symposium on
Computational Geometry (SoCG), pages 247–256, 2009.

130

BIBLIOGRAPHY 131

[CET15] T. Cao, H. Edelsbrunner, and T. Tan. Triangulations from Topologically
Correct Digital Voronoi Diagrams. Computational Geometry: Theory and
Applications, 48(7):507–519, 2015.

[CGOS13] F. Chazal, L. Guibas, S. Oudot, and P. Skraba. Persistence-based Clustering
in Riemannian Manifolds. Journal of ACM, 60(6):41:1–41:38, 2013.

[CJS15] N. Cavanna, M. Jahanseir, and D. Sheehy. A Geometric Perspective on
Sparse Filtrations. In Proceedings of the 27th Canadian Conference on
Computational Geometry (CCCG), pages 116–121, 2015.

[CK95] P. Callahan and S. Kosaraju. A Decomposition of Multidimensional Point
Sets with Applications to k-Nearest Neighbors and n-body Potential Fields.
Journal of the ACM, 42(67–90), 1995.

[CK11] C. Chen and M. Kerber. Persistent Homology Computation with a Twist.
In Proceedings of the 27th European Workshop on Computational Geometry,
2011.

[CK15] A. Choudhary and M. Kerber. Local Doubling Dimension of Point Sets. In
Proceedings of the 27th Canadian Conference on Computational Geometry
(CCCG), pages 156–164, 2015.

[CKRa] A. Choudhary, M. Kerber, and S. Raghavendra. Improved Topological
Approximations by Sampling. Manuscript.

[CKRb] A. Choudhary, M. Kerber, and S. Raghavendra. Polynomial-Sized Topologi-
cal Approximations using the Permutahedron (extended version). Accepted
to Discrete and Computational Geometry.

[CKR16] A. Choudhary, M. Kerber, and S. Raghavendra. Polynomial-Sized Topo-
logical Approximations using the Permutahedron. In Proceedings of the
32nd International Symposium on Computational Geometry (SoCG), pages
31:1–31:16, 2016.

[CKR17] A. Choudhary, M. Kerber, and S. Raghavendra. Improved Approximate
Rips Filtrations with Shifted Integer Lattices. In Proceedings of the 25th
Annual European Symposium on Algorithms (ESA), pages 28:1–28:13, 2017.

[CKS] A. Choudhary, M. Kerber, and R. Sharathkumar. Approximate Čech
Complexes in Low and High Dimensions. Manuscript.

[CSB87] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere-packings, Lattices
and Groups. Springer-Verlag, 1987.

[CSEH07] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of Persistence
Diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

[CSEHM10] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko. Lipschitz
Functions have Lp-stable Persistence. Foundations of Computational Math-
ematics, 10(2):127–139, 2010.

[CZ05] G. Carlsson and A. Zomorodian. Computing Persistent Homology. Discrete
& Computational Geometry, 33(2):249–274, 2005.

http://people.mpi-inf.mpg.de/~achoudha/Files/AppCech.pdf

[DFW14] T.K. Dey, F. Fan, and Y. Wang. Computing Topological Persistence
for Simplicial Maps. In Proceedings of the 30th Annual Symposium on
Computational Geometry (SoCG), pages 345–354, 2014.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni. Locality-Sensitive
Hashing Scheme based on P-stable Distributions. In Proceedings of the 20th
Annual Symposium on Computational Geometry (SoCG), pages 253–262,
2004.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to Within
Almost-Polynomial Factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

[dSG06] V. de Silva and R. Ghrist. Coordinate-free Coverage in Sensor Networks
with Controlled Boundaries via Homology. International Journal of Robotics
Research, 25(12):1205–1222, 2006.

[dSMVJ11a] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Dualities in Persistent
(Co)homology. Inverse Problems, 27(12), 2011.

[dSMVJ11b] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent Cohomology
and Circular Coordinates. Discrete & Computational Geometry, 45(4):737–
759, 2011.

[DSW16] T.K. Dey, D. Shi, and Y. Wang. SimBa: An Efficient Tool for Approximating
Rips-Filtration Persistence via Simplicial Batch-Collapse. In 24th Annual
European Symposium on Algorithms (ESA), pages 35:1–35:16, 2016.

[EH10] H. Edelsbrunner and J. Harer. Computational Topology - An Introduction.
American Mathematical Society, 2010.

[EK12] H. Edelsbrunner and M. Kerber. Dual Complexes of Cubical Subdivisions
of Rn. Discrete & Computational Geometry, 47(2):393–414, 2012.

[ELZ02] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persistence
and Simplification. Discrete & Computational Geometry, 28(4):511–533,
2002.

[EM90] H. Edelsbrunner and E.P. Mücke. Simulation of Simplicity: a Technique to
Cope with Degenerate Cases in Geometric Algorithms. ACM Transactions
on Graphics, pages 66–104, 1990.

[EW17] H. Edelsbrunner and H. Wagner. Topological Data Analysis with Bregman
Divergences. In 33rd International Symposium on Computational Geometry
(SoCG), volume 77, pages 39:1–39:16, 2017.

[GKL03] A. Gupta, R. Krauthgamer, and J.R. Lee. Bounded Geometries, Fractals,
and Low-Distortion Embeddings. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2003.

[GOT17] J.E. Goodman, J. O’Rourke, and C.D. Tóth, editors. Handbook of Compu-
tational Geometry. CRC Press, 2017.

[Hal05] T. Hales. A Proof of the Kepler Conjecture. Annals of Mathematics,
162:1065–1185, 2005.

132

BIBLIOGRAPHY 133

[Hat02] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[Hel23] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.

[HMOS10] B. Hudson, G. Miller, S. Oudot, and D. Sheehy. Topological Inference via
Meshing. In Proceedings of the 26th Annual Symposium on Computational
Geometry (SoCG), pages 277–286, 2010.

[HMR09] D. Horak, S. Maletić, and M. Rajković. Persistent Homology of Com-
plex Networks. Journal of Statistical Mechanics: Theory and Experiment,
2009(03):03–34, 2009.

[HP11] S. Har-Peled. Geometric Approximation Algorithms. American Mathematical
Society, 2011.

[HPM06] S. Har-Peled and M Mendel. Fast Construction of Nets in Low-dimensional
Metrics, and their Applications. SIAM Journal of Computing, 35(5):150–158,
2006.

[IM98] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC), pages 604–613, 1998.

[JLS86] W.B. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions of Lipschitz
Maps into Banach Spaces. Israel Journal of Mathematics, 54(2):129–138,
1986.

[JRVM+17] M. J. Jimenez, M. Rucco, P. Vicente-Munuera, P. Gómez-Gálvez, and
L. M. Escudero. Topological Data Analysis for Self-organization of Biolog-
ical Tissues. In Proceedings of the Eighteenth International Workshop on
Combinatorial Image Analysis (IWCIA), pages 229–242, 2017.

[JS16] M. Jahanseir and D. Sheehy. Transforming Hierarchical Trees on Metric
Spaces. In CG Week: Young Researchers Forum, 2016.

[Jun01] H. Jung. Über die kleinste Kugel, die eine räumliche Figur einschliesst.
Journal für die reine und angewandte Mathematik, 123:241–257, 1901.

[KFH16] G. Kusano, K. Fukumizu, and Y. Hiraoka. Persistence Weighted Gaussian
Kernel for Topological Data Analysis. In Proceedings of the Thirty-third
International Conference on Machine Learning (ICML), volume 48, pages
2004–2013, 2016.

[KM95] S. Khuller and Y. Matias. A Simple Randomized Sieve Algorithm for the
Closest-Pair Problem. Information and Computation, 118(1):34 – 37, 1995.

[KR15] M. Kerber and S. Raghvendra. Approximation and Streaming Algorithms
for Projective Clustering via Random Projections. In Proceedings of the
27th Canadian Conference on Computational Geometry (CCCG), 2015.

[KS13] M. Kerber and R. Sharathkumar. Approximate Čech Complex in Low and
High Dimensions. In Algorithms and Computation - 24th International
Symposium (ISAAC), pages 666–676, 2013.

[KS17] M. Kerber and H. Schreiber. Barcodes of Towers and a Streaming Algorithm
for Persistent Homology. In Proceedings of 33rd International Symposium
on Computational Geometry (SoCG), pages 57:1–57:15, 2017.

[LS93] L. Lovász and M. Simonovits. Random Walks in a Convex Body and an
Improved Volume Algorithm. Random Structures and Algorithms, 4(4):359–
412, 1993.

[Mat90] J. Matoušek. Bi-Lipschitz Embeddings into Low-dimensional Euclidean
Spaces. Commentationes Mathematicae Universitatis Carolinae, 1990.

[MMv11] N. Milosavljević, D. Morozov, and P. Škraba. Zigzag Persistent Homology in
Matrix Multiplication Time. In Proceedings of the 27th Annual Symposium
on Computational Geometry (SoCG), pages 216–225, 2011.

[MS12] R. MacPherson and B. Schweinhart. Measuring Shape with Topology.
Journal of Mathematical Physics, 53(7):1–13, 2012.

[Mun84] J.R. Munkres. Elements of Algebraic Topology. Westview Press, 1984.

[NHH+15] T. Nakamura, Y. Hiraoka, A. Hirata, E. Escolar, and Y. Nishiura. Persistent
Homology and Many-body Atomic Structure for Medium-range Order in
the Glass. Nanotechnology, 26(30), 2015.

[Per] The Permutahedron, Wikipedia. https://goo.gl/bb9MRY.

[PET+14] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. Hellyer,
and F. Vaccarino. Homological Scaffolds of Brain Functional Networks.
Journal of the Royal Society Interface, 11(101), 2014.

[PEvdW+16] P. Pranav, H. Edelsbrunner, R. van de Weygaert, G. Vegter, M. Kerber,
B. Jones, and M. Wintraecken. The Topology of the Cosmic Web in Terms
of Persistent Betti Numbers. Monthly Notices of the Royal Astronomical
Society, 465:4281–4310, 2016.

[PM13] E. Park and D. Mount. Output-Sensitive Well-separated Pair Decomposi-
tions for Dynamic Point Sets. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 354–363, 2013.

[PSDV13] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino. Topological Strata of
Weighted Complex Networks. PLoS One, 2013.

[RD69] B.C. Rennie and A.J. Dobson. On Stirling Numbers of the Second Kind.
Journal of Combinatorial Theory, 7(2):116–121, 1969.

[RNS+17] M. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi,
P. D lotko, R. Levi, K. Hess, and H. Markram. Cliques of Neurons Bound into
Cavities Provide a Missing Link between Structure and Function. Frontiers
in Computational Neuroscience, 11:48, 2017.

[She13] D. Sheehy. Linear-size Approximations to the Vietoris-Rips Filtration.
Discrete & Computational Geometry, 49(4):778–796, 2013.

134

https://goo.gl/bb9MRY

BIBLIOGRAPHY 135

[She14] D. Sheehy. The Persistent Homology of Distance Functions Under Random
Projection. In Proceedings of the 30th Annual Symposium on Computational
Geometry (SoCG), pages 328:328–328:334, 2014.

[Smi07] M. H. M. Smid. The Well-Separated Pair Decomposition and its Applications.
In Handbook of Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, 2007.

[Sou11] T. Sousbie. The Persistent Cosmic Web and its Filamentary Structure I:
Theory and Implementation. Monthly notices of the Royal Astronomical
Society, 414(1):350–383, 2011.

[SPK11] T. Sousbie, C. Pichon, and H. Kawahara. The Persistent Cosmic Web and
its Filamentary Structure II: Illustrations. Monthly Notices of the Royal
Astronomical Society, 414(1):384–403, 2011.

[STR+17] M. Saadatfar, H. Takeuchi, V. Robins, N. Francois, and Y. Hiraoka. Pore
Configuration Landscape of Granular Crystallization. Nature Communica-
tions, 8, 2017.

[Tal04] K. Talwar. Bypassing the Embedding: Algorithms for Low Dimensional
Metrics. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pages 281–290, 2004.

[Var98] K.R. Varadarajan. A Divide-and-Conquer Algorithm for Min-cost Perfect
Matching in the Plane. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS), pages 320–331, 1998.

[Wal81] J.W. Walker. Homotopy Type and Euler Characteristic of Partially Ordered
Sets. European Journal of Combinatorics, 2(4):373 – 384, 1981.

[Zie95] G.M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

136

Appendix A

Strong Interleaving for
Barycentric Scheme

Recall that in the barycentric scheme (Chapter 5), we build the approximation tower over
the set of scales I := {αs = 2s | s ∈ Z}. The tower (Xα)α∈I connected with the simplicial
map g̃ can be extended to the set of scales α ≥ 0 with simple modifications:

• for α ∈ I, we define Xα in the usual manner. The map g̃ stays the same as before
for complexes at such scales.

• for all α ∈ [αs, αs+1), we set Xα = Xαs , for any αs ∈ I. That means, the complex
stays the same in the interval between any two scales of I, so we define g̃ as the
identity within this interval.

This gives rise to the tower (Xα)α≥0, that is connected with the simplicial map g̃. This
modification helps in improving the interleaving with the Rips persistence module.

First, we extend the acyclic carriers C1 and C2 from before to the new case:

• Cα1 : R∞α → X4α, α > 0: we define C1 as before, simply changing the scales in the
definition. It is straightforward to see that C1 is still a well-defined acyclic carrier.

• Cα2 : Xα → R∞α , α ≥ 0: this stays the same as before. It is simple to check that C2
is still a well-defined acyclic carrier.

These gives rise to chain maps between the chain-complexes:

cα1 : C∗(R∞α)→ C∗(X4α) and cα2 : C∗(Xα)→ C∗(R∞α),

using the acyclic carrier theorem as before (Theorem 2.4.3).

Lemma A.0.1. The diagram

C∗(R∞α) inc //

c1

%%

C∗(R∞α′)
c1

%%
C∗(X4α) g̃ // C∗(X4α′)

(A.1)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof. Consider the acyclic carrier C1 ◦ inc : R∞α → X4α′ . It is simple to verify that this
carrier carries both c1 ◦ inc and g̃ ◦ c1, so the induced diagram on the homology groups
commutes, from Theorem 2.4.3. �

137

Lemma A.0.2. The diagram

C∗(R∞α) inc // C∗(R∞α′)

C∗(Xα) g̃ //

c2
99

C∗(Xα′)

c2
99

(A.2)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof. We construct an acyclic carrier D : Xα → R∞α′ which carries inc ◦ c2 and c2 ◦ g̃,
thereby proving the claim (Theorem 2.4.3).

Consider any simplex σ = (e0 ⊂ . . . ⊂ ek) ∈ Xα. We set D(σ) as the simplex on the
set of input points of P , which lie in the Voronoi regions of the vertices of g(ek). By
triangle inequality, D(σ) is a simplex of R∞α′ , so that D is a well-defined acyclic carrier. It
is straightforward to verify that D carries both c2 ◦ g̃ and inc ◦ c2. �

Lemma A.0.3. The diagram

C∗(R∞α) inc // C∗(R∞α′)
c1

%%
C∗(Xα) g̃ //

c2
99

C∗(X4α′)

(A.3)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof. The diagram is essentially the same as the lower triangle of Diagram 5.1, with a
change in the scales. As a result, the proof of Lemma 5.1.7 also applies for our claim
directly. �

Lemma A.0.4. The diagram

C∗(R∞α) inc //

c1

%%

C∗(R∞4α′)

C∗(X4α) g̃ // C∗(X4α′)

c2
88

(A.4)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof. The diagram can be re-interpreted as:

C∗(R∞α) inc //

g̃◦c1

%%

C∗(R∞4α′)

C∗(X4α′)

c2
88

(A.5)

The modified diagram is essentially the same as the upper triangle of Diagram 5.1, with a
change in the scales and a replacement of c1 with g̃ ◦ c1, that is equivalent to the chain map
at the scale α′. Hence, the proof of Lemma 5.1.8 also applies for our claim directly. �

Using lemmas A.0.1, A.0.2, A.0.3, A.0.4, and the scale balancing technique for strongly
interleaved persistence modules (Subsection 2.3.3), it follows that

Lemma A.0.5. The persistence modules
(
H(X2α)

)
α≥0 and

(
H(R∞α)

)
α≥0 are strongly

2-interleaved.

138

Appendix B

Curriculum Vitae

Aruni Choudhary
Contact Information
Algorithms and Complexity Department,
Max-Planck-Institut für Informatik,
Campus E-1 4, 66123 Saarbrücken, Germany
Email: aruni.choudhary@mpi-inf.mpg.de
Web: http://mpi-inf.mpg.de/∼achoudha/

Personal Information
Date of birth: 21 December 1989
Nationality: Indian

Educational Background

April 2014 - Present PhD student, Max Planck Institute for Informatics and
Saarland University.
Advisors: Kurt Mehlhorn, Michael Kerber.

July 2007 - May 2012 Bachelor and Master of Technology in Computer Science and
Engineering, Indian Institute of Technology Kharagpur.
Advisors: Pallab Dasgupta, Susmita-Sur Kolay.

March 1993 - May 2007 CBSE Higher secondary, Jamshedpur Public School.

Positions

October 2013 - Present Member, Saarbrücken Graduate School of Computer Science.

June 2012 - August 2013 Member of Technical Staff, Oracle India, Bengaluru.

May 2010 - July 2010 Intern, Processor Architecture Laboratory, École Polytech-
nique Fédérale de Lausanne. Host: Paolo Ienne.

Teaching

Saarland University Tutor for Algorithms and Data Structures, 2014, 2016.

IIT Kharagpur Tutor for Discrete Structures, 2011. Teaching assistant for
Programming & Data Structures, 2012.

139

mailto:aruni.choudhary@mpi-inf.mpg.de
http://people.mpi-inf.mpg.de/~achoudha/
http://people.mpi-inf.mpg.de/~mehlhorn/
http://www.geometrie.tugraz.at/kerber/
http://cse.iitkgp.ac.in/~pallab/
http://www.isical.ac.in/~ssk/

Publications and Articles

1. A. Choudhary and A. Ghosh. Delaunay Triangulations of Lattices obtained by
Diagonally Distorting the Integer Grid. Manuscript, 2017.

2. A. Choudhary, S. Kachanovich and M. Wintraecken. Coxeter Triangulations have
good Quality. In submission, 2017.

3. A. Choudhary, M. Kerber, and S. Raghvendra. Polynomial-sized Topological
Approximations using the Permutahedron. Discrete and Computational Geometry,
November 2017.
Extended abstract in 32nd International Symposium on Computational Geometry
(SoCG), pages 31:1–31:16, 2016.

4. A. Choudhary, M. Kerber, and S. Raghvendra. Improved Approximate Rips
Filtrations with Shifted Integer Lattices. Proceedings of the European Symposium
on Algorithms (ESA), pages 28:1–28:13, 2017.

5. A. Choudhary, M. Kerber, and S. Raghvendra. Improved Topological Approximations
by Sampling. Manuscript.

6. A. Choudhary, M. Kerber, and S. Raghvendra. Local Structures for Approximating
the Rips Filtration. Preliminary version presented at Young Researchers Forum,
Symposium on Computational Geometry (SoCG), 2016.

7. A. Choudhary and M. Kerber. Local Doubling Dimension of Point Sets. Proceedings
of the 27th Canadian Conference on Computational Geometry (CCCG), pages 156–
164, 2015.

8. A. Choudhary, M. Kerber, and R. Sharathkumar. Approximate Čech Complexes in
Low and High Dimensions. Manuscript, 2014.

9. A. Choudhary. Floorplanning of 3D Integrated Circuits. Master’s thesis, Indian
Institute of Technology Kharagpur, 2012.

Saarbrücken, Datum:

Aruni Choudhary
(Unterschrift)

140

http://people.mpi-inf.mpg.de/~achoudha/Files/AppCech.pdf

	Abstract
	Zusammenfassung
	Acknowledgments
	List of Figures
	Introduction
	Motivation
	Summary of contributions
	Related work
	Outline of the thesis

	Topological Concepts
	Simplicial homology
	Persistent homology
	Stability of persistence modules
	Additional concepts

	Geometric Concepts
	The Lattice and the permutahedron
	Shifted grids and cubes
	Intrinsic dimension
	Locality-sensitive hashing
	Dimension reduction

	I Techniques for Euclidean Spaces
	Approximation using the Permutahedron
	Approximation scheme
	Computational aspects
	A lower bound for approximation schemes
	Discussion

	Approximation using Grids
	Approximation scheme
	Computational complexity
	Discussion

	Digitization
	Approximation with cubical pixels
	Discussion

	II Techniques for Doubling Spaces
	Well-Separated Simplicial Decomposition
	Well-separated simplicial decomposition
	Čech approximation
	Discussion

	Local Doubling Dimension
	Definition and net-forests
	Applications
	Discussion

	Conclusion
	Bibliography
	Strong Interleaving for Barycentric Scheme
	Curriculum Vitae

