
Universität des Saarlandes
Fakultät für Mathematik und Informatik (MI)

(ehemals Naturwissenschaftlich-Technische Fakultät I)

A Theory of Types for
Security and Privacy

Fabienne Sophie Eigner

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Saarbrücken, 2015

Tag des Kolloquiums: 12. Dezember 2016

Dekan: Prof. Dr. Frank-Olaf Schreyer

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Bernd Finkbeiner
Berichterstattende: Prof. Dr. Matteo Maffei

Prof. Dr. Michael Backes
Prof. Dr. Véronique Cortier

Akademischer Mitarbeiter: Dr. Robert Künnemann

Zusammenfassung

Im modernen Internet sind kryptographische Protokolle allgegenwärtig. Ihre En-
twicklung ist jedoch schwierig und eine manuelle Sicherheitsanalyse mühsam und
fehleranfällig. Ein Mangel an exakten Sicherheitsbeweisen führt daher zu oft
gravierenden Sicherheitsmängeln in vielen Protokollen.

Um Datenschutz und Sicherheit kryptographischer Protokolle zu verbessern
und deren Verifikation zu vereinfachen, konzentriert sich ein Großteil der Forschung
auf formale Protokollanalyse. Dies führte zur Entwicklung automatischer Tools,
die auf symbolischen Kryptographie-Abstraktionen basieren. Jedoch gibt es weit-
erhin zahlreiche Protokolle und Sicherheitseigenschaften, deren Analyse zu kom-
plex für aktuelle Systeme ist.

Diese Dissertation stellt drei neuartige Frameworks zur Verifikation von Sicher-
heitsprotokollen und ihren Implementierungen vor. Sie nutzen eine leistungsstarker
Typisierung für Sicherheit und Datenschutz und verbessern damit die aktuelle,
Beschränkungen unterworfene Situation. Mit AF7 präsentieren wir die erste
statische Typisierung von Protokollimplementierungen bezüglich Sicherheitseigen-
schaften, die in affiner Logik formuliert sind. Zudem sorgt unsere neuartige
typbasierte, automatische Analysetechnik von elektronischen Wahlsystemen für
Datenschutz und Überprüfbarkeit im Wahlprozess. Schließlich stellen wir mit
DF7 das erste affine Typsystem zur statischen, automatischen Verifikation der
sogenannten Distributed Differential Privacy in Protokollimplementierungen vor.

I

Abstract

Cryptographic protocols are ubiquitous in the modern web. However, they are
notoriously difficult to design and their manual security analysis is both tedious
and error-prone. Due to the lack of rigorous security proofs, many protocols have
been discovered to be flawed.

To improve the security and privacy guarantees of cryptographic protocols
and their implementations and to facilitate their verification, a lot of research
has been directed towards the formal analysis of such protocols. This has led
to the development of several automated tools based on symbolic abstractions of
cryptography. Unfortunately, there are still various cryptographic protocols and
properties that are out of the scope of current systems.

This thesis introduces three novel frameworks for the verification of security
protocols and their implementations based on powerful types for security and
privacy, overcoming the limitations of current state-of-the-art approaches. With
AF7 we present the first type system that statically enforces the safety of crypto-
graphic protocol implementations with respect to authorization policies expressed
in affine logic. Furthermore, our novel approach for the automated analysis of
e-voting systems based on refinement type systems can be used to enforce both
privacy and verifiability. Finally, with DF7, we present the first affine, distance-
aware type system to statically and automatically enforce distributed differential
privacy in cryptographic protocol implementations.

III

Preface

The following thesis is based on several published research papers to which I
contributed as a main author during my Ph.D. studies in Computer Science at
Saarland University, Germany.

Chapter 2 presents the results of a long-standing research collaboration with
Michele Bugliesi∗, Stefano Calzavara∗, and Matteo Maffei† on resource-aware au-
thorization policies. Preliminary results were presented at the 24th IEEE Com-
puter Security Foundations Symposium [1] in 2011 and at the 7th International
Symposium on Trustworthy Global Computing [2] in 2012. This chapter mainly
focusses on the most recent and comprehensive results of this research project
that significantly extend the previous work. These results were presented at the
2nd Conference on Principles of Security and Trust [3] in 2013, where they have
been awarded the EATCS Award for the best theory paper at ETAPS. A compre-
hensive journal version [4] was published in ACM Transactions on Programming
Languages and Systems in August 2015.

Chapter 3 results from an international research collaboration with Véronique
Cortier‡, Steve Kremer‡, Matteo Maffei∗, and Cyrille Wiedling§ on type-based
verification of electronic voting systems. The resulting paper was presented at the
4th Conference on Principles of Security and Trust [5] in 2015. The corresponding
technical report [6] was published in the IACR Cryptology ePrint Archive.

Chapter 4 is the outcome of a joint project with Matteo Maffei† on distributed
differential privacy. The results were presented at the 26th IEEE Computer
Security Foundations Symposium [7] in 2013.

In addition to the above papers closely related to this dissertation, I was also
strongly involved in the development of PrivaDA, a generic framework for privacy-
preserving data aggregation with optimal utility. The framework is the result of
a collaboration with Aniket Kate†, Matteo Maffei†, Francesca Pampaloni¶, and
Ivan Pryvalov†. This work was accepted at the 30th Annual Computer Security
Applications Conference [8] in 2014. The corresponding technical report [9] was
published in the IACR Cryptology ePrint Archive and a revised version was
published as a book chapter [10].

∗Università Ca’ Foscari Venezia, Italy
†Saarland University and CISPA, Germany
‡LORIA, CNRS & INRIA & University of Lorraine, France
§Université Catholique de Louvain, Belgium
¶formerly IMT Lucca, Italy

V

Acknowledgments

First and foremost, I would like to express my deep gratitude to Matteo Maffei,
whose enthusiasm for security and formal methods and whose optimism, trust,
and support were invaluable for the completion of this thesis.

In addition, I would like to thank Michael Backes for agreeing to review this
dissertation and for introducing me to the world of cryptography and security
many years ago.

There are many wonderful researchers that I had the pleasure of collaborating
with during my PhD studies and whom I would like to thank for their enthusi-
asm and the fruitful discussions. In particular, I would like to thank Michele
Bugliesi and Stefano Calzavara for our long and strong collaboration on affine
type-checking, Véronique Cortier, Steve Kremer, and Cyrille Wiedling for their
expertise on electronic voting, as well as Aniket Kate, Francesca Pampaloni, and
Ivan Pryvalov for making the journey into the world of secure multi-party com-
putations such an interesting one. A special thanks goes to Stefano for endless
Skype sessions full of proofs, laughter, desperation, and never-wavering optimism.

I would like to thank my colleagues at the Secure and Privacy-preserving
Systems group and CISPA for creating a nice and fun work environment and
for lots of great discussions. In particular, I would like to thank Kim Pecina,
for starting this journey with me, back when our research group was just tiny.
Furthermore, my thanks go to our administrative staff who always lent a friendly
ear whenever needed.

I am grateful for the love and acceptance of my friends and family, who always
showed me that there is a life outside of work and I thank Fanie for making this
life so much brighter.

VII

Contents

I Introduction 1

1 Introduction 3
1.1 Protocol analysis: state-of-the-art 3

1.1.1 Automated theorem provers 3
1.1.2 Type systems . 5
1.1.3 Comparing the two approaches 6

1.2 Limitations of existing approaches. 7
1.3 Contributions . 9

1.3.1 AF7: A type system for resource-aware authorization policies 9
1.3.2 A logical theory for the type-based analysis of electronic

voting protocols . 9
1.3.3 DF7: A type system for distributed differential privacy . . 10

1.4 Outline . 10

II Type-Based Verification of Authorization Policies 11

2 AF7: A Type System for Resource-Aware Authorization Policies 13
2.1 Introduction . 14
2.2 Overview of the framework . 15

2.2.1 Protocol verification with (affine) refinement types 16
2.2.2 Exponential serialization for protecting affine formulas . . 17
2.2.3 Serializers for security type-checking 19

2.3 Review: affine logic . 21
2.4 Metatheory of exponential serialization 22
2.5 Review of RCFAF7 and safety . 24

2.5.1 Syntax of RCFAF7 . 24
2.5.2 Sematics of RCFAF7 . 24
2.5.3 Resource-aware safety . 26

2.6 The AF7 type system . 27
2.6.1 Types, typing environments, and base judgements 28
2.6.2 Environment rewriting . 29
2.6.3 Kinding . 30
2.6.4 Subtyping . 32

IX

CONTENTS

2.6.5 Typing values . 34
2.6.6 Typing expressions . 35
2.6.7 Formal results . 37
2.6.8 Discussion: encoding affine types 38

2.7 A library for communication and cryptography in RCFAF7 39
2.7.1 An encoding of channels and messaging 39
2.7.2 A sealing-based encoding of cryptography 40

2.8 Example: EPMO . 42
2.8.1 Protocol description . 42
2.8.2 Protocol analysis and challenges 43
2.8.3 Type-checking the customer 43

2.9 Example: Kerberos . 45
2.9.1 Protocol description . 45
2.9.2 Protocol analysis and challenges 46
2.9.3 Implementing and typing timestamps 46
2.9.4 Typing the session key using self-dependent key types . . . 48
2.9.5 Type-checking the initiator 50

2.10 Algorithmic type-checking (AF7alg) 52
2.10.1 Overview . 52
2.10.2 Key ideas . 53
2.10.3 Base judgements . 55
2.10.4 Kinding . 55
2.10.5 Subtyping . 56
2.10.6 Typing values and expressions 57
2.10.7 Formal results . 60
2.10.8 Example . 61

2.11 Related work . 63
2.12 Conclusion . 65

3 Type-Based Verification of Electronic Voting Protocols 67
3.1 Introduction . 68
3.2 Background . 69

3.2.1 Refinement types for cryptographic protocols 69
3.2.2 Helios . 73

3.3 Verifiability . 75
3.3.1 Individual verifiability . 76
3.3.2 Universal verifiability . 77
3.3.3 End-to-end verifiability . 79
3.3.4 Verifiability analysis of Helios 80

3.4 Privacy . 81
3.4.1 Definition of privacy . 82
3.4.2 rF*: A type system for observational equivalence properties 82
3.4.3 Type-based verification of vote privacy 83
3.4.4 Privacy analysis of Helios 86

3.5 Related work . 87

X

CONTENTS

3.6 Conclusion . 88

III Type-Based Verification of Distributed Differential
Privacy 89

4 DF7: A Type System for Distributed Differential Privacy 91
4.1 Introduction . 92
4.2 Distributed differential privacy . 94

4.2.1 Definition of differential privacy 94
4.2.2 Definition of distributed differential privacy 94
4.2.3 What can go wrong? . 96

4.3 Review of RCFDF7 . 97
4.3.1 Syntax . 97
4.3.2 Modeling cryptographic protocols 98
4.3.3 Semantics . 98

4.4 Differential privacy by typing . 100
4.4.1 Types . 101
4.4.2 Distance on types . 101
4.4.3 Signature . 102
4.4.4 Type-based k-sensitivity and differential privacy 102

4.5 The DF7 type system . 103
4.5.1 Typing environment and judgments 103
4.5.2 Well-formedness judgments 104
4.5.3 Kinding and subtyping . 104
4.5.4 Typing values . 106
4.5.5 Typing expressions . 108
4.5.6 Formal results . 109

4.6 Algorithmic type-checking (DF7alg) 110
4.6.1 Key ideas . 110
4.6.2 Base judgements and kinding 111
4.6.3 Subtyping . 111
4.6.4 Typing values and expressions. 112
4.6.5 Formal results . 116

4.7 A sealing-based cryptographic library 116
4.7.1 Standard sealing-based libraries 116
4.7.2 Affine sealing-based library 116
4.7.3 Implementation of the cryptographic library 117
4.7.4 Symbolic soundness of cryptographic library 121

4.8 Case study . 124
4.8.1 System overview . 124
4.8.2 Attacking and Fixing the protocol 125
4.8.3 Analysis of the revised protocol 126
4.8.4 Code of the analysis . 127

4.9 Extension to other noise mechanisms 133
4.9.1 A general extension . 134

XI

CONTENTS

4.9.2 Instantiating the general mechanism primitive. 136
4.10 Related work . 138
4.11 Conclusion . 139

IV Conclusion 141

5 Conclusion 143

6 Directions for Future Research 145

V Appendix 161

A Proofs of Chapter 2 163
A.1 Soundness of AF7 . 163

A.1.1 Properties of the logic . 164
A.1.2 Basic results . 167
A.1.3 Properties of kinding and subtyping 169
A.1.4 Properties of substitution 180
A.1.5 Inversion lemmas . 185
A.1.6 Properties of extraction 195
A.1.7 Proof of subject reduction 201
A.1.8 Proof of (robust) safety . 220

A.2 Soundness of AF7alg . 223
A.2.1 Logical properties . 223
A.2.2 Soundness and completeness of the algorithmic judgements 225

B Proofs of Chapter 4 245
B.1 Soundness of DF7 . 245

B.1.1 Basic properties . 245
B.1.2 Assumptions on the signature 252
B.1.3 Distance of expressions . 252
B.1.4 Type and distance preservation 254
B.1.5 Differential privacy results 266

B.2 Soundness of DF7alg . 269

XII

List of Tables

2.1 The entailment relation ∆ ` F (AF7) 21
2.2 Syntax of RCFAF7 expressions . 25
2.3 Reduction semantics for RCFAF7 26
2.4 Heating relation for RCFAF7 . 27
2.5 Structures and static safety . 27
2.6 Syntax of types (AF7) . 28
2.7 Auxiliary functions and base judgements (AF7) 29
2.8 Kinding relation (AF7) . 31
2.9 Subtyping relation (AF7) . 32
2.10 Typing rules for values (LTS) . 34
2.11 Typing rules for expressions (AF7) 36
2.12 The extraction relation (AF7) . 37
2.13 Exponential types (AF7) . 40
2.14 Selected algorithmic rules for typing values and expressions (AF7alg) 53
2.15 Algorithmic well-formedness judgements (AF7alg) 55
2.16 Algorithmic kinding relation (AF7alg) 56
2.17 Syntax of annotated AF7alg types and annotation erasure 58
2.18 Algorithmic subtyping relation (AF7alg) 59
2.19 Syntax of annotated RCFAF7 expressions 60
2.20 Algorithmic typing of values (AF7alg) 61
2.21 Algorithmic typing of expressions (AF7alg) 62
2.22 The extraction relation for annotated expressions (AF7alg) 63

3.1 Syntax of RCFVOTE expressions 70
3.2 Syntax of types (VOTE) . 71

4.1 Syntax of RCFDF7 . 97
4.2 Semantics of RCFDF7 . 99
4.3 Syntax of Types (DF7) . 101
4.4 Typing environment and judgements (DF7) 104
4.5 Well-formedness judgments (DF7) 104
4.6 Kinding and subtyping relations (DF7) 105
4.7 Environment sum (DF7) . 106
4.8 Typing rules for values (DF7) . 107
4.9 Typing rules for expressions (DF7) 108
4.10 Algorithmic subtyping relation (DF7alg) 113

XIII

LIST OF TABLES

4.11 Algorithmic typing of values (DF7alg) 114
4.12 Algorithmic typing of expressions (DF7alg) 115

A.1 Alternative rules for typing values (AF7) 202
A.2 Intermediate subtyping relation <:alg (AF7) 244

B.1 Full semantics of extended RCFDF7 255

XIV

List of Figures

2.1 A variant of the EPMO protocol 42
2.2 The Kerberos protocol (mutual authentication) 45

3.1 Modeling of a voter. 75
3.2 Judge function for Helios . 77
3.3 Model of Alice . 83
3.4 Model of Bob . 83
3.5 Model of the ballot box . 84

4.1 System for Non-Tracking Web Analytics [11] 94
4.2 Code of the NTWA protocol . 134

XV

Part I

Introduction

1

1
Introduction

Cryptographic protocols are ubiquitous, their applications range from exchanging
keys and establishing secure communication channels to complex protocols, e.g.,
for e-commerce, e-payments, targeted advertising, electronic voting, and secure
multi-party computations that can be used to let multiple mutually distrusting
parties jointly and safely compute a result. However, security protocols and
their implementations are notoriously difficult to design and their manual security
analysis is both hard and prone to errors. In fact, security flaws have been
discovered for both early academic protocols like Needham-Schroeder [12] and
carefully designed de facto standards like SSL [13], PKCS #11 [14], and the
SAML-based Single Sign-On for Google Apps [15].

To improve the security and privacy guarantees of cryptographic protocols and
their implementations and to facilitate their verification a substantial research
effort has been directed towards the formal analysis of cryptographic protocols,
which has led to the development of several automated tools based on symbolic
abstractions of cryptography.

1.1 Protocol analysis: state-of-the-art

The majority of tools for the automated analysis of cryptographic protocols builds
on one of the following two approaches.

1.1.1 Automated theorem provers

One line of research has focused on automated theorem provers, which build on
a term-based abstraction of cryptography. Examples include ProVerif [16] and
the CASPA [17] and Scyther [18] tools. Such approaches have been used success-
fully for enforcing various trace properties [16–19] and observational equivalence

3

CHAPTER 1. INTRODUCTION

relations [20–22].
We will exemplify the intuition behind automated theorem provers for pro-

tocol verification on the example of the ProVerif tool. Intuitively, in ProVerif,
a protocol is represented by a set of Horn clauses, i.e. logical formulas that are
either simple logical predicates of the form p(M1, . . . ,Mn) (called facts) or log-
ical implications of the form F1 ∧ . . . ∧ Fn ⇒ F (called Horn clauses), where
F, F1, . . . , Fn are facts. Though several predicates p can be used, we will focus on
the predicate attacker(M), which expresses the fact that the messageM might be
known to the attacker. The message M (also referred to as a term M) can either
be a variable x, a name a representing an atomic value such as a key or a nonce
(i.e., a random number), or the application of a function f . Names can be created
by all principals and are fresh for all runs of the protocols. Typically, functions
f model cryptographic or arithmetic operations such as encryption, hashing, or
signatures. There exist two kinds of functions: constructors and destructors.
Constructors, e.g., the encryption function enc, appear explicitly in the terms
that represent messages. Destructors manipulate terms and are defined by a set
of rewrite rules that model their symbolic meaning. For instance, decryption can
be represented by the destructor dec, which is defined by the following rewrite
rule: dec(M1, enc(M1,M2))→M2. This rewrite rule expresses that decrypting a
ciphertext encrypted with the same secret key returns the cleartext.

Consider the following easy, but fundamentally flawed, key exchange protocol:

A B
k //

enc(k,m)oo

Alice first outputs the secret key k that she wants to share with Bob on the
network in plain. Bob then uses k to encrypt the secret message m. Here, m
and k are both fresh names, and the function enc is applied to the pair (k,m) to
denote the encryption of m with key k.

Obviously, this protocol provides no secrecy at all: by outputting an allegedly
secret key on the network, the attacker is given everything he needs to know
to decrypt all messages encrypted with that key. While this flaw can be easily
detected on such a small protocol by manual inspection, we will use this as a toy
example to demonstrate how one can use ProVerif to formally verify the security
of this and larger protocol. In this example, we will employ ProVerif for checking
the secrecy of the key k and of the message m. This translates to checking
whether attacker(k) and attacker(m) are satisfiable by the set of Horn clauses
representing the protocol, symbolic cryptography, and attacker capabilities, i.e.
whether the attacker can learn k and/or m from the message exchange. Here,
the Dolev-Yao style attacker is assumed to be able to intercept all messages sent
on the network, to synthesize new messages from the received ones, and to send
all messages under his control. We will now exemplify some of the encoding of
the protocol and the computation capabilities of the attacker as set of (slightly
simplified) Horn clauses to show one possible attack the tool discovers. During
his computations, an attacker can apply all functions to the messages he knows.

4

1.1. PROTOCOL ANALYSIS: STATE-OF-THE-ART

In our example, this is for instance modeled by the Horn clause

attacker(x1) ∧ attacker(x2)⇒ attacker(enc(x1, x2)).

To allow an attacker the application of destructors, the rewrite rules are encoded
like this one for decryption (dec(M1, enc(M1,M2))→M2):

attacker(M1) ∧ attacker(enc(M1,M2))⇒ attacker(M2)

The two protocol steps are modeled by the following two clauses: step 1 is modeled
as

attacker(k)

(since the key is simply output on the network in plain) and step 2 is modeled as

attacker(k)⇒ attacker(enc(k,m)).

The latter expresses the fact that Bob only sends his message after receiving the
key that he uses for encryption and that his output message is then known to the
attacker. From step 1 we can immediately deduce that the key k is known to the
attacker (and thus not secret). Using this knowledge and step 2 together with
the destructor rule for dec enables us to derive that attacker(m) is also satisfiable,
i.e., m is not kept secret. ProVerif would thus output an attack and reject the
protocol.

As mentioned before, ProVerif can additionally be used for verifying vari-
ous trace properties and observational equivalence (for protocols with the same
control-flow) following similar techniques. Unfortunately, there exist sophisti-
cated cryptographic primitives (e.g., homomorphic encryption) and properties
(e.g., differential privacy and some electronic voting properties like verifiability
and coercion-resistance) that are currently not supported by ProVerif and the
other automated tools mentioned above.

1.1.2 Type systems

Another line of research has focused on the design of type systems for crypto-
graphic protocol analysis. Type systems are well-known tools from the area of
programming languages. They are used to statically enforce the safety of a pro-
gram and avoid running a faulty program, which could lead to a run that will
crash. For instance, the typing rule

Add
Γ `M : int Γ ` N : int

Γ `M +N : int

states that two values M and N can be added together safely under the typing
environment Γ that binds variables to their types if both M and N are integers.
Their sum M + N will then also be given type int. Assuming that there are no
further typing rules for the syntactic case of addition, this rule ensures that in a
well-typed program all additions will succeed at run-time.

5

CHAPTER 1. INTRODUCTION

For example, the program x+4 will type-check under the environment Γ = x :
int, which specifies that the variable x is used to denote an integer. In contrast,
the program ’hello’+4 will not type-check under any environment, since adding
a string ’hello’ to an integer is forbidden by the typing rules, as it makes no
semantic sense and such a program would crash at run-time.

Type systems for security and privacy build on a similar approach. As a very
simple example, consider a type system that checks whether a message is allowed
to be output on a certain channel or not. For example, posting a public picture
on a public Facebook page should be OK, whereas posting a user’s credit card
information on such a site should be prevented, while sending this information
over a trusted and secure connection to an online store should be fine as well.
Consider the following simple typing rule:

Output
Γ ` C : chan(T) Γ `M : T

Γ ` output(C,M) : ok
.

It specifies that an output of messageM on channel C type-checks with type ok if
the message M has some type T and the channel is of the corresponding channel
type chan(T).

We assume the following typing environment Γ that binds both messages and
channels to the following types that correspond to our intuition described above:

Γ = facebook : chan(public), ssl2store : chan(private), pic1 : public, card : private.

Given the above typing rule, it can be easily seen that the first example
protocol output(facebook , pic1) type-checks under Γ, while the second example
protocol output(facebook , card) does not. Outputting credit card information on
a secure connection, i.e., the protocol output(ssl2store, card), type-checks as well.
Thus, a system with the above typing rule can be used to enforce the privacy of
sensitive resources and to statically prevent data leakage.

Type systems, in particular, refinement type systems that allow for tracking
pre- and post-conditions on security-sensitive code, have been used successfully
for enforcing various trace properties such as authentication [23–29], and classical
authorization policies [30–33]. Furthermore, they also proved capable to enforce
even observational equivalence relations, such as secrecy [34] and relational prop-
erties [35].

1.1.3 Comparing the two approaches

On the one hand, type systems are to some extent less precise than theorem
provers and are not suitable to automatically report attacks, in that (contrary to
ProVerif for example) they do not explicitly compute abstractions of execution
traces, though investigating why a certain protocol does not type-check can often
lead to the discovery of previously overlooked attacks.

On the other hand, one central advantage of type system is their inherent mod-
ularity, e.g., the code of multiple participants can be checked separately (even in

6

1.2. LIMITATIONS OF EXISTING APPROACHES.

parallel) and the security of the overall protocol then follows by compositionality.
Therefore, this approach scales better to large-scale protocols. The modularity
of type-checking can be seen by comparing the two examples in Section 1.1.1
and Section 1.1.2. In Section 1.1.1, the analysis of ProVerif needs to take the
whole protocol, i.e., the code of both participants Alice and Bob, into account.
This is necessary to generate the complete set of attacker knowledge in order to
deduce the secrecy of message m by checking the satisfiability of the predicate
attacker(m). When we imagine to type-check the same protocol using intuitions
similar to the ones in Section 1.1.2, it is clear that type-checking only the code of
Bob individually will already reveal the flaw: the key k received on the public net-
work will automatically be assigned a public type and will thus not be available for
encrypting a private message. Hence, the code of Bob (and by compositionality
the overall protocol) will not type-check.

Furthermore, as we mentioned before, type systems enable reasoning about
sophisticated cryptographic schemes [31–34].

1.2 Limitations of existing approaches.

Although type systems look promising and seem to be an optimal choice for the
automated verification of cryptographic protocol implementations, previous type
systems, though powerful, fall short in offering support to verify a variety of
security and privacy properties, either due to them being out of the scope of the
respective systems or due to the fact that it is unknown whether, and how, it is
possible to enforce them using a type-based approach.

In this thesis, we aim at closing this gap by developing and using type systems
to address the following three classes of properties and protocols that were out
of the scope of previous approaches (type-based or other).

Resource-aware authorization policies. Authorization policies provide a well-
established device for the security analysis and specification of distributed
protocols and applications. Given an access request to a sensitive resource
in a system, an authorization policy (expressed in some authorization logic)
determines whether the request should be allowed.

For instance, the authorization policy defined by the formula

Req(C, S,m) ∧ Paid(C, S,m) ∧ Available(m)⇒ Grant(C, S,m)

can be used to express the property that a client C of an online streaming
service S is only granted permission to watch a requested movie m if that
movie is available and the client paid for it.

However, this policy allows the client to watch each movie arbitrarily often,
which falls short in capturing many real-life scenarios in which the stream-
ing service might want to ensure that paying once does not grant infinite
access to a resource. Such a more restrictive resource-aware property can
be expressed using affine logic, which treats affine formulas as resources

7

CHAPTER 1. INTRODUCTION

that can be used only once in a proof derivation. The corresponding policy
expressed in affine logic looks as follows:

!(Req(C, S,m)⊗ Paid(C, S,m)⊗ Available(m)(Grant(C, S,m)).

Here, ⊗ represents affine, i.e., resource-consuming, conjunction,(denotes
affine implication, and the replication operator ! expresses the fact that
the overall policy itself is not affine but instead holds arbitrarily often.
According to this policy, each payment predicate Paid(C, S,m) will only
justify one permission Grant(C, S,m).

Type systems can be used to prove that a cryptographic protocol complies
with a given authorization policy. Previous type systems, however, are often
parametric in their choice of underlying authorization logic but do not allow
for the verification of authorization policies expressed in affine logic.

Electronic voting. Electronic voting promises a lot of advantages over tradi-
tional voting: it is not only fast and convenient to use (e.g., in the case of
remote electronic voting, it can be used from the comfort of home, using a
personal device such as a laptop or smartphone), but it also features addi-
tional security properties that cannot be achieved with traditional voting.
Typical examples of such properties are individual or universal verifiability
of correctness, i.e. the chance to verify that one’s own vote has been in-
cluded in the election result, and that the complete election result has been
calculated correctly.

To achieve such properties, electronic voting protocols commonly employ
advanced cryptographic primitives. This makes their design as well as a
rigorous security and privacy analysis quite challenging. As a matter of
fact, existing automated analysis techniques, which are mostly based on
automated theorem provers, are inadequate to deal with commonly used
cryptographic primitives, such as homomorphic encryption, mix-nets, and
zero-knowledge proofs, as well as some fundamental security properties,
such as verifiability.

Distributed differential privacy. ’How many people in Germany suffer from
diabetes? How many of them are members of your insurance?’ Such sta-
tistical information about data collected in databases is often released to
the public. On the one hand, disclosing this kind of information is often
desirable for analyzing trends, performing marketing studies, or conducting
research. On the other hand, this information leakage may also seriously
compromise the privacy of the entries in the databases. This can easily
be seen on the (somewhat artificial) example of a more precise query of
the form ’How many people in Germany who are called Alice WithARe-
allyComplicatedName and have insurance number 123456789 suffer from
diabetes?’. It is rather obvious that the result of such a query will be ei-
ther 0 or 1, and that the correct answer immediately implies whether Alice
WithAReallyComplicatedName has diabetes or not.

8

1.3. CONTRIBUTIONS

Differential privacy is a confidentiality property for database queries which
allows for the release of statistical information about the content of a
database without disclosing personal data. The variety of database queries
and enforcement mechanisms has recently sparked the development of a
number of mechanized proof techniques for differential privacy [36–39]. Per-
sonal data, however, are often spread across multiple databases and queries
have to be jointly computed by multiple, possibly malicious, parties. Many
cryptographic protocols have been proposed to protect the data in transit
on the network and to achieve differential privacy in a distributed, adver-
sarial setting. Proving differential privacy for such protocols is hard and,
unfortunately, out of the scope of the aforementioned mechanized proof
techniques.

1.3 Contributions

This thesis proposes three frameworks for the verification of security protocols
and their implementations based on powerful types for security and privacy.

It introduces two novel affine type systems, namely AF7 and DF7, that al-
low for the automated verification of different security and privacy properties in
cryptographic protocol implementations. We furthermore propose a generically
applicable logical theory, which, based on pre- and post-conditions for security-
critical code, guides existing type-checkers towards the verification of e-voting
protocols.

1.3.1 AF7: A type system for resource-aware authorization
policies

We propose AF7, the first type system that statically enforces the safety of crypto-
graphic protocol implementations with respect to authorization policies expressed
in affine logic. Such substructural logics can be used to express resource-aware
properties that were out of the scope of previous type-based analysis techniques.
AF7 builds on previous powerful type systems [31–34] that leverage general-
purpose theorem proving techniques, extending them to support our fragment
of intuitionistic affine logic. To protect affine formulas from duplication AF7
relies on the novel notion of “exponential serialization”. We demonstrate the ef-
fectiveness of AF7 on two case studies. Furthermore, we propose a sound and
complete algorithmic variant of the system called AF7alg, which is the key to
deriving an efficient implementation of our analysis technique.

1.3.2 A logical theory for the type-based analysis of elec-
tronic voting protocols

We present a novel approach for the automated analysis of e-voting protocols
based on refinement type systems. Specifically, we design a generically applica-

9

CHAPTER 1. INTRODUCTION

ble logical theory which, based on pre- and post-conditions for security-critical
code, captures and guides the type-checker towards the verification of two fun-
damental properties of e-voting protocols, namely, vote privacy and verifiability.
We provide a code-based cryptographic abstraction of the cryptographic primi-
tives commonly used in e-voting protocols, showing how to make the underlying
algebraic properties accessible to automated verification through logical refine-
ments. We demonstrate the effectiveness of our approach by developing the first
automated analysis of Helios, a popular web-based e-voting protocol, using an
off-the-shelf type-checker.

1.3.3 DF7: A type system for distributed differential pri-
vacy

We propose a symbolic definition of differential privacy for distributed databases,
which takes into account Dolev-Yao intruders and can be used to reason about
compromised parties. We then introduce DF7, an affine, distance-aware type
system to statically and automatically enforce this notion of distributed differ-
ential privacy in cryptographic protocol implementations. Our system builds
on and extends a previous type system for the non-distributed case [36]. We
also provide a sound and complete algorithmic variant of our type system called
DF7alg and tested our analysis technique on a recently proposed protocol for
privacy-preserving web analytics: we discovered a new attack acknowledged by
the authors, proposed a fix, and successfully type-checked the revised variant.

1.4 Outline

The dissertation is organized as follows: Chapter 2 presents the affine AF7 type
system. Chapter 3 introduces our framework for the type-based verification of
electronic voting protocols. Chapter 4 presents the affine DF7 type system. Chap-
ter 5 concludes and Chapter 6 gives directions for future research.

The appendix consists of two parts: Appendix A contains the proofs of Chap-
ter 2, while the proofs of Chapter 4 are given in Appendix B.

10

Part II

Type-Based Verification of
Authorization Policies

11

2
AF7: A Type System for Resource-Aware

Authorization Policies

Recent research has shown that it is possible to leverage general-purpose the-
orem proving techniques to develop powerful type systems for the verification
of a wide range of security properties on application code. Although successful
in many respects, these type systems fall short of capturing resource-conscious
properties that are crucial in large classes of modern distributed applications. In
this chapter, we propose AF7, the first type system that statically enforces the
safety of cryptographic protocol implementations with respect to authorization
policies expressed in affine logic. Our type system draws on a novel notion of
“exponential serialization” of affine formulas, a general technique to protect affine
formulas from the effect of duplication. This technique allows to formulate an
expressive logical encoding of the authentication mechanisms underpinning dis-
tributed resource-aware authorization policies. We discuss the effectiveness of our
approach on two case studies: the EPMO e-commerce protocol and the Kerberos
authentication protocol. We finally devise a sound and complete type-checking al-
gorithm, which is the key to achieving an efficient implementation of our analysis
technique.

Publication. In this chapter we present the work that was published under the
title ’Affine Refinement Types for Secure Distributed Programming’ in the ACM
Transactions on Programming Languages and Systems [4] in 2015. An earlier ver-
sion of this work was presented at the 2nd Conference on Principles of Security
and Trust [3] in 2013, where it has been awarded the EATCS Award for the best
theory paper at ETAPS. Preliminary results were presented at the 24th IEEE
Computer Security Foundations Symposium [1] in 2011 and at the 7th Inter-
national Symposium on Trustworthy Global Computing [2] in 2012. This line of

13

CHAPTER 2. AF7

research was a joint project with Michele Bugliesi, Stefano Calzavara, and Matteo
Maffei. Both the author of this thesis and Stefano Calzavara contributed equally
to the development of the AF7 type system and the corresponding soundness
proofs as the main authors. These joint contributions and additionally his work
on the proofs of exponential serialization also contributed to Stefano Calzavara’s
PhD thesis [40]. The details and proofs of the algorithmic variant AF7alg are due
to the author of this thesis and were not part of [40].

2.1 Introduction

Verifying the security of modern distributed applications is an important and
complex challenge, which has attracted the interest of a growing research commu-
nity audience over the last decade. Recent research has shown that it is possible
to leverage general-purpose theorem proving techniques to develop powerful type
systems for the verification of a wide range of security properties on application
code, thus narrowing the gap between the formal model designed for the analy-
sis and the actual implementation of the protocols [31–33, 35]. The integration
between type systems and theorem proving is achieved by resorting to a form of
dependent types, known as refinement types. A refinement type {x : T | F (x)}
qualifies the structural information of the type T with a property specified by the
logical formula F : a value M of this type is a value of type T such that F (M)
holds true.

Authorization systems based on refinement types use the refinement formulas
to express (and gain static control of) the credentials associated with the data
and the cryptographic keys involved in the authorization checks. Clearly, the ex-
pressiveness of the resulting analysis hinges on the choice of the underlying logic,
and indeed several logics have been proposed for the specification and verification
of security properties [41]. A number of proposals have thus set logic parametric-
ity as a design goal, to gain modularity and scalability of the resulting systems.
Though logic parametricity is in principle a sound and wise design choice, current
attempts in this direction draw primarily (if not exclusively) on classical (or intu-
itionistic) logical frameworks. That, in turn, is a choice that makes the resulting
systems largely ineffective on large classes of resource-aware authorization poli-
cies, such as those based on consumable credentials, or predicating over access
counts and/or usage bounds.

The natural choice for expressing and reasoning about such classes of policies
are instead substructural logics, such as linear and affine logic [42, 43]. On the
other hand, integrating substructural logics with existing refinement type systems
for distributed authorization is challenging, as one must build safeguards against
the ability of an attacker to duplicate the data exchanged over the network,
and correspondingly duplicate the associated credentials, thus undermining their
bounded nature [1].

Contributions In this chapter, we present AF7, an affine refinement type sys-
tem for RCF [31], a concurrent λ-calculus which can be directly mapped to a

14

2.2. OVERVIEW OF THE FRAMEWORK

large subset of a real functional programming language like F#. The type sys-
tem guarantees that well-typed programs comply with any given authorization
policy expressed in affine logic, even in the presence of an active opponent.

This type system draws on the novel concept of exponential serialization, a
general technique to protect affine formulas from the effect of duplication. This
technique makes it possible to factor the authorization-relevant invariants of the
analysis out of the type system, and to characterize them directly as proof obli-
gations for the underlying affine logical system. This leads to a rather general
and modular design of our proposal, and sheds new light on the logical founda-
tions of standard cryptographic patterns underpinning distributed authorization
frameworks. Furthermore, the concept of serialization enhances the expressive-
ness of the type system, capturing programming patterns out of the scope of
many substructural type systems.

The clean separation between typing and logical entailment has the additional
advantage of enabling the formulation of an algorithmic version of our system,
in which the non-deterministic proof search distinctive of substructural type sys-
tems can be dispensed with. Intuitively, we can shift all the burden related to
substructural resource management into a single proof obligation to be discharged
to an external theorem prover. This proof obligation can be efficiently generated
from a program in a syntax-directed way: this is the key to achieve a practical
implementation of our framework.

We show the effectiveness of our approach on two case studies, namely the
EPMO e-commerce protocol [44] and the Kerberos authentication protocol [45].
For both case studies we discuss the advantages in expressiveness enabled by the
adoption of an underlying substructural logic.

Outline. Section 2.2 overviews the challenges and the most important aspects
of our theory on a simple example. Section 2.3 reviews intuitionistic affine logic.
Section 2.4 presents the meta-theory of exponential serialization. Section 2.5
reviews RCF and defines our notion of safety. Section 2.6 outlines the type system.
Section 2.7 discusses encodings of network communication and our treatment of
formal cryptography. Sections 2.8-2.9 present the case studies. Section 2.10
discusses the algorithmic formulation of our type system. Section 2.11 overviews
the related work. Section 2.12 concludes.

For the proof of soundness of exponential serialization, which is due to Stefano
Calzavara and Michele Bugliesi, we refer to [4, 40]. The proofs of the remaining
main theorems are provided in the appendices: Section A.1 details a soundness
proof for the AF7 type system and Section A.2 provides proofs of the soundness
and completeness of the algorithmic version AF7alg of the type system.

2.2 Overview of the framework

Our protocol specification language is an affine variant of RCF, a concurrent λ-
calculus with message passing and refinement types originally introduced in [31]

15

CHAPTER 2. AF7

that we will refer to as RCFAF7. We anticipate that RCFAF7 is very expressive and
can be mapped to a large subset of F#. For better readability, in the examples
we use F#-like syntax with polymorphic types: our theoretical framework lacks
full-fledged polymorphism, but that can be recovered by duplicating definitions
at multiple monomorphic types when needed.

2.2.1 Protocol verification with (affine) refinement types

Verifying distributed authorization protocols with refinement types presupposes
that protocols be annotated with security assumptions and assertions. The for-
mer are formulas that are assumed to hold at a given point in time, and they are
employed to specify authorization policies and to encode the credentials avail-
able to request authorization. In contrast, assertions act as guards defining the
properties to be entailed by the assumptions and the underlying policy, to grant
authorization [31,46,47].

An example will help in making the discussion concrete. We introduce a
system to place and ship orders in a distributed online service governed by a
simple authorization policy, establishing that an order can be cleared for shipping
to a user only if that user has indeed placed the order. For example, we could
start by assuming the authorization policy encoded by the first-order formula:
P , ∀x, y.(Order(x, y)⇒ Ship(x, y)). The security-annotated code corresponding
to the online service scenario is given below:

let place_order = fun ch id item skey →
assume Order(id,item);
let pkt = sign skey (id ,item) in send ch pkt

let ship_order = fun ch vkey →
let pkt = recv ch in
let (xc, xit) = verify vkey pkt in
assert Ship(xc,xit)

The assumption Order(id,item) makes the required credential available to the
place_order function, enabling the subsequent code to sign a request with the
key skey and send it off over channel ch. Upon receiving the message, ship_order
verifies the signature using the verification key vkey, retrieves the two components
xc and xit of the request and asserts the formula Ship(xc,xit).

A client and a server will execute the two functions, communicating on a
shared channel ch and using a pair of corresponding signing and verification keys,
as shown below (the server runs ship_order recursively to serve multiple requests):

let prot_spec ch =
assume P;
let sk = mksigkey () in
let vk = mkverkey sk in
let client = (place_order ch "alice" "book" sk) in
let rec server = (ship_order ch vk) � (server ch vk) in

16

2.2. OVERVIEW OF THE FRAMEWORK

client � server
The protocol specification given above may be proved robustly safe by existing
refinement type systems: this ensures that the conjunction of all the assertions
which will become active at run-time (i.e., Ship("alice", "book")), is entailed by
the active assumptions (i.e., P , Order("alice", "book")), despite the best efforts of
an arbitrary opponent. Unfortunately, a closer look reveals that the authorization
policy P is too weak to enforce desirable resource-aware access constraints: for
instance, in our example the online service is presumably interested in ensuring
that each user’s order can be cleared and shipped only once, but in first-order
logic we can prove:

∀x, y.(Order(x, y)⇒ Ship(x, y)),Order(id, item) ` Ship(id, item) ∧ Ship(id, item),

i.e., a single payment by the user can lead to the same order being shipped twice,
without violating the previous authorization policy and (robust) safety.

Remarkably, the desired resource-aware authorization policy can be naturally
encoded in affine logic by assuming the formula: Pokay , !∀x, y.(Order(x, y) (
Ship(x, y)), where the bang modality (!) allows using the authorization policy ar-
bitrarily many times in a proof, while the multiplicative implication (() ensures
that formulas of the form Order(id, item) are consumed when proving Ship(id, item).
Verifying the desired injective correspondence between placed and shipped orders
amounts then just to reinterpreting the standard notion of (robust) safety by
taking into account the multiplicative conjunction (⊗) of the top-level assertions
rather than the standard conjunction of first-order logic: roughly, this ensures
that the (multi-)set of assumptions can be partitioned in different (multi-)sets,
each proving one specific assertion, hence the same assumption is never used in
the proof of two different assertions.

Extending refinement type systems to show compliance with respect to affine
logic policies like Pokay is challenging. Technically, these type systems support
a form of compositional reasoning enabled by the structure of the cryptographic
key types, and the typing discipline enforced on them. Briefly, cryptographic key
types are associated with refinement types of the form Key({x : T | F}), enforcing
the following invariants: (i) to package a value M : T with a key of this type, one
must be able to prove F (M) and consequently, (ii) upon extracting a value w : T
packaged under a key of this type, one may in turn assume the formula F (w) to
hold. These two invariants are enough to derive static proofs of robust safety in
traditional refinement type systems drawing on classical and intuitionistic logics,
but they fall short of providing the necessary guarantees in resource-conscious
settings such as the one we consider here.

2.2.2 Exponential serialization for protecting affine formu-
las

Given the nature of affine formulas as consumable resources, an affine refine-
ment type system must additionally provide protection against an unconstrained

17

CHAPTER 2. AF7

assumption of the refinement formulas conveyed by the key types [1]. For in-
stance, when receiving a packet signed with a key of type SigKey(x : T, {x :
U | Order(x, y)}), we must ensure that each time we verify the signature (and
assume Order(x, y)) at the receiver side, a corresponding assumption has indeed
been introduced at the sender side.

Ensuring this kind of injective correspondence in distributed settings is known
to require some protective measures, as an adversary may easily break it by
mounting a replay attack and fool a receiver into deriving multiple assertions
corresponding to one single assumption. We can see that in our running exam-
ple: given the protocol specification defined above, assume we let it run over
an untrusted network by passing the function prot_spec as a parameter to the
function adversary defined below, which intercepts the message by the client and
sends it twice to the server:

let adversary prot =
let ch = mkchan () in
prot ch;
let m = recv ch in (send ch m) � (send ch m)

The replay attack mounted by the adversary breaks the desired injective corre-
spondence between assumptions and assertions, since the system admits a run
in which the adversary intercepts the message exchanged on ch and duplicates
it, leading to two assertions Ship("alice", "book") being made against just one
assumption Order("alice", "book"). More technically, in affine logic we have:

!∀x, y.(Order(x, y)(Ship(x, y)),Order(id, item) 6` Ship(id, item)⊗Ship(id, item),

hence the protocol above is not robustly safe in our affine setting.
The problem we just outlined is, in fact, rather general and may be stated as

follows: data exchanged over the network is inherently exposed to replays, hence
their credentials, occurring as refinements of cryptographic key types, must be
protected so that replicating the data does not duplicate the credentials. In the
type system, this may be achieved by guarding the refinements of the key types
with control formulas, which are guaranteed to be assumed in at most one point
of the protocol code.

The resulting typing discipline leverages the underlying computational mea-
sures to counter replay attacks. Though the details vary for the different compu-
tational mechanisms, the intuition applies uniformly. The types of cryptographic
keys are built around guarded refinements of the form:

{w̃ : T̃ , x̃ : Ũ | !(C(w̃)(F (x̃))},

protecting the credential F (x̃) with the control formula C(w̃). In a nonce-
handshake protocol, for instance, w̃ may represent a challenger-generated nonce,
call it n, and C(n) may be the corresponding guard assumed by the challenger,
modeling that the nonce has been freshly generated. Upon receiving the nonce,
a responder willing to transmit M will package the pair (n,M) under a key with

18

2.2. OVERVIEW OF THE FRAMEWORK

the above type as a payload: intuitively, the receiver can then open the crypto-
graphic packet to assume the implication above and derive the desired formula
F (M) by consuming the formula C(n), which was never sent on the network and
remained thus under the control of the challenger.

Notice that guarded refinement types as the one above contain an exponential
formula prefixed by the bang modality, hence opening messages packaged under
a key with this type more than once does not really provide additional infor-
mation to the receiver and is perfectly safe. We call this packaging technique
exponential serialization, as it provides us with a safe way to transmit payload
with affine refinement types over an untrusted network, using an encoding based
on exponential formulas.

2.2.3 Serializers for security type-checking

There is one problem left with the intuition above. A responder possessing the
credential F (M) and willing to prove it to the challenger will not be able to do so,
as in affine logic an assumption F (M) does not entail the guarded exponential
formula !(C(n) (F (M)), which the responder would need to prove to type-
check the response. To close this gap, each affine assumption in the code must
be associated with a corresponding serializer, to enable its use in the guarded
refinements of the key types. Serializers have the general form:

!∀x̃.w̃(F (x̃)(!(C(w̃)(F (x̃)))),

and explicitly enable the transformation of the credential F (M̃) into its serialized
form !(C(ñ(F (M̃))), for appropriate terms ñ and M̃ .

Back to our example, assume we extend the protocol to include the nonce-
handshake mentioned above:

let place_order’ = fun ch1 ch2 id item skey →
let nonce = recv ch1 in
assume Order(id, item);
let pkt = sign skey (id ,item,nonce) in send ch2 pkt

let ship_order’ = fun ch1 ch2 vkey →
let mknonce = (fun () → let x = mkfresh () in assume N(x); x) in
let nonce = mknonce () in
send ch1 nonce;
let pkt = recv ch2 in
let (xc, xit ,xn) = verify vkey pkt in
if (xn = nonce) then
assert Ship(xc, xit)

else
failwith "unauthorized"

We assume to be given access to a library function mkfresh : unit→ bytes, which
generates fresh bit-strings. The function mknonce: unit → {x : bytes | N(x)} is

19

CHAPTER 2. AF7

a wrapper around mkfresh, which additionally assumes the control formula N(x)
over the returned value x. The new assumption is reflected by the refined return
type of mknonce. Then, the typing of the signing and verification keys may be
structured as follows:

skey : SigKey({x : string, y : string, z : bytes | !(N(z)(Order(x, y))})
vkey : VerKey({x : string, y : string, z : bytes | !(N(z)(Order(x, y))})

conveying the affine formula Order(xc, xit) conditionally to the guard N(nonce)
assumed by ship_order’. If the guard can be proved only once, Order(xc, xit) can
also be retrieved only once, irrespectively of the number of signature verifications
performed. To type-check the protocol, we need to assume the expected serializer:

S , !∀x, y.z.(Order(x, y)(!(N(z)(Order(x, y))).

Overall, we get the following revised protocol:

let prot_spec’ ch1 ch2 =
assume Pokay;
assume S;
let sk = mksigkey () in
let vk = mkverkey sk in
let client ’ = (place_order’ ch1 ch2 "alice" "book" sk) in
let rec server ’ = (ship_order’ ch1 ch2 vk) � (server’ ch vk) in

client ’ � server’

We briefly discuss how the two protocol components type-check. We start from
the server. Upon creating nonce, server’ assumes the control formula N(nonce)
based on the return type of the function mknonce by calling ship_order’. Upon
verifying the received signature, it extracts the refinement !(N(xn)(Order(xc, xit))
based on the type of the verification key. Then, from the assumption N(nonce)
and the nonce-checking test xn = nonce that protects the assertion, it derives
N(xn). Now, with two (elimination steps, using the refinement above and the
policy Pokay, it derives the asserted formula Ship(xc, xit). As to the client, upon
receiving the challenge, by calling the function place_order’, client’ assumes the
formula Order("alice", "book") and then signs the triple (cid,item,nonce) with vk.
Typing the signature requires the serializer, which provides a direct way to prove
the desired formula.

We notice here that serializers may be generated automatically for any given
affine formula, and we prove that introducing them as additional assumptions is
sound, in that it does not affect the set of entailed assertions, under the sufficient
conditions discussed in Section 2.4. Furthermore, serializers capture a rather
general class of mechanisms for ensuring timely communications, like session keys
or timestamps, which are all based on the consumption of an affine resource to
assess the freshness of an exchange. We discuss these patterns in our case studies
in Sections 2.8-2.9.

20

2.3. REVIEW: AFFINE LOGIC

2.3 Review: affine logic

In our framework we focus on a simple, yet expressive, fragment of intuitionistic
affine logic [43]. We presuppose an underlying signature Σ of predicate symbols,
ranged over by p, and function symbols, ranged over by f . The syntax of terms
t and formulas F is defined by the following productions:

t ::= x | f(t1, . . . , tn) terms (f of arity n in Σ)
A ::= p(t1, . . . , tn) | t = t′ atoms (p of arity n in Σ)
F ::= A | F ⊗ F | F (F | ∀x.F | !F | 0 formulas

This is the multiplicative fragment of affine logic with conjunction (⊗) and impli-
cation ((), the universal quantifier (∀), the exponential modality (!) to express
persistent truths, logical falsity (0) to express negation, and syntactic equality.
The logical truth is written 1 and encoded as () = (), where () is the nullary
function symbol encoding the RCFAF7 “unit” value1. The negation of F , written
F⊥, is encoded as F (0, while inequality, written t 6= t′, is encoded as (t = t′)⊥.
For simplicity, we do not consider disjunction and existential quantification: the
logic considered here suffices for our purposes and we leave further extensions as
future work.

(Ident)
F ` F

(Weak)
∆ ` F ′

∆, F ` F ′

(Contr)
∆, !F, !F ` F ′

∆, !F ` F ′

(⊗-Left)
∆, F1, F2 ` F ′

∆, F1 ⊗ F2 ` F ′

(⊗-Right)
∆1 ` F1 ∆2 ` F2

∆1,∆2 ` F1 ⊗ F2

((-Left)
∆1 ` F1 ∆2, F2 ` F ′
∆1, F1 (F2,∆2 ` F ′

((-Right)
∆, F1 ` F2

∆ ` F1 (F2

(∀-Left)
∆, F{t/x} ` F ′
∆, ∀x.F ` F ′

(∀-Right)
∆ ` F x /∈ fv(∆)

∆ ` ∀x.F

(!-Left)
∆, F ` F ′
∆, !F ` F ′

(!-Right)
!∆ ` F
!∆ ` !F

(False)
0 ` F

(=-Subst)
∃σ = mgu(t, t′)⇒ ∆σ ` Fσ

∆, t = t′ ` F

(=-Refl)
∆ ` t = t

Table 2.1: The entailment relation ∆ ` F (AF7)

The entailment relation ∆ ` F from multiset of formulas to formulas is given
in Table 2.1. Observe that, in affine logic, rule (Weak) can be liberally applied
to disregard formulas along a proof derivation, while rule (Contr) is restricted

1We mention here that RCFAF7 terms can be encoded into the logic using the locally name-
less representation of syntax with binders [48], as shown in [31].

21

CHAPTER 2. AF7

to exponential formulas, allowing for their unbounded duplication. Intuitively,
the combination of the two rules enforces the following usage policy for formulas:
“every formula must be used at most once in a proof, with the exception of
exponential formulas, which can be used arbitrarily many times”. This is in
contrast with linear logic, where each formula must be used exactly once [42].

As informally discussed before, affine logic provides multiplicative counter-
parts of standard logical connectives: for instance, rule (⊗-Right) states that to
prove the multiplicative conjunction F1 ⊗ F2 from the hypotheses ∆ = ∆1,∆2,
we have to prove F1 from ∆1 and F2 from ∆2, thus each affine hypothesis in ∆ is
used either to prove F1 or to prove F2. Analogously, rule ((-Left) formalizes
the intuition that the multiplicative implication F1 (F2 acts as a sort of reac-
tion, which consumes the resources needed to prove the premise F1 to produce
the conclusion F2.

Rule (!-Left) is often called the dereliction rule and allows exponential as-
sumptions to be degraded to affine assumptions, which can be used at most once.
Rule (!-Right), instead, is typically referred to as the promotion rule, which
allows one to prove exponential formulas starting from the proof of an affine for-
mula: the notation !∆ means that every formula in ∆ must be of the form !F .
The two rules for equality (=-Subst) and (=-Refl) are borrowed from [49];
in rule (=-Subst), if the terms t and t′ are not unifiable, then we consider the
premise as trivially fulfilled.

2.4 Metatheory of exponential serialization

Recall from Section 2.2.3 that we had to explicitly assume a serializer S to make
our example protocol type-check. In principle, the introduction of this serializer
among the assumed hypotheses could alter the intended semantics of the autho-
rization policy Pokay, due to the subtle interplay of formulas through the entail-
ment relation defined in Table 2.1. Here, we isolate sufficient conditions under
which exponential serialization leads to a sound protection mechanism for affine
formulas. This contribution is due to Stefano Calzavara and Michele Bugliesi and
we solely include it for the sake of completeness. More details and proofs can be
found in [4, 40].

We presuppose that the signature Σ of predicate symbols is partitioned in two
sets ΣA and ΣC . Atomic formulas A have the form p(t1, . . . , tn) for some p ∈ ΣA;
control formulas C have the same form, though with p ∈ ΣC . We identify various
categories of formulas defined by the following productions:

B ::= A | B ⊗B | B(B | ∀x.B | !B base formulas
P ::= B | C | P ⊗ P payload formulas
G ::= C (P | !G guarded formulas

Base formulas B are formulas of an authorization policy, built from atomic for-
mulas using logical connectives. We use base formulas as security annotations in
the application code. For simplicity, we dispense in this section with equalities

22

2.4. METATHEORY OF EXPONENTIAL SERIALIZATION

and 0 to ensure logical consistency: these elements are used in our typed analysis,
but we stipulate that they are never directly assumed in the protocol code (and
thus never serialized).

Payload formulas P are formulas which we want to serialize for communica-
tion over the untrusted network. Importantly, payload formulas comprise both
base formulas and control formulas, which allows, e.g., for the transmission of
fresh nonces to remote verifiers: this pattern is present in several authentication
protocols [50]. Finally, guarded formulas G are used to model the serialized ver-
sion of payload formulas, suitable for transmission. Notice also that serializers
are not generated by any of the previous productions, so we let S stand for any
serializer of the form !∀x̃.(P (!(C (P)). We write ∆ ` F n for ∆ ` F ⊗ . . .⊗F
(n times), with the proviso that ∆ ` F 0 stands for ∆ 0 F .

Intuitively, given a multiset of assumptions ∆, the extension of ∆ with the
serializers S1, . . . , Sn is sound if ∆ and its extension derive the same payload
formulas. As it turns out, this is only true when ∆ satisfies additional conditions,
which we formalize next.

Definition 2.1 (Rank). Let rk : ΣC → N be a total, injective function. Given
a formula F , we define the rank of F with respect to rk, denoted by rk(F), as
follows:

rk(p(t1, . . . , tn)) = rk(p) if p ∈ ΣC

rk(F1 ⊗ F2) = min {rk(F1), rk(F2)}
rk(F) = +∞ otherwise

Definition 2.2 (Stratification). A formula F is stratified with respect to a rank
function rk if and only if: (i) F = C (P implies rk(C) < rk(P); (ii) F = P (
G implies that G is stratified; (iii) F = ∀x.F ′ implies that F ′ is stratified; (iv)
F = !F ′ implies that F ′ is stratified. We assume F to be stratified in all the other
cases. We say that a multiset of formulas ∆ is stratified if and only if there exists
a rank function rk such that each formula in ∆ is stratified with respect to rk.

For instance, the multiset C1 (C2, C2 (C3, where C1, C2, C3 are built over
distinct predicate symbols, is stratified, given an appropriate choice of a rank
function, while the multiset C1 (C2, C2 (C1 is not stratified. Stratification is
required precisely to disallow these circular dependencies among control formulas
and simplify the proof of our soundness result, Theorem 2.1 below. To prove that
result, we need a further definition:

Definition 2.3 (Controlled Multiset). Let ∆ = P1, . . . , Pm, S1, . . . , Sn be a strat-
ified multiset of formulas. We say that ∆ is controlled if and only if ∆ ` Ck

implies k ≤ 1 for any control formula C.

The intuition underlying the definition may be explained as follows. Consider
a multiset ∆, a payload formula P such that ∆ ` P and let S = !∀x̃.(P (!(C (
P)) be a serializer for P . Now, the only way that S may affect derivability is
by allowing for the duplication of the payload formula P via the exponential
implication !(C (P), since the latter can be used arbitrarily often in a proof

23

CHAPTER 2. AF7

derivation. However, this effect is prevented if we are guaranteed that the control
formula C guarding P is derived at most once in ∆: that is precisely what the
condition above ensures.

Theorem 2.1 (Soundness of Serialization). Let ∆ = P1, . . . , Pm. If ∆′ =
∆, S1, . . . , Sn is controlled and ∆′ ` P , then ∆ ` P for all payload formulas
P .

Proof. See [4, 40].

Notice that checking if a multiset of formulas is controlled may be difficult,
since this depends on logical entailment, hence it may be not obvious when the
theorem above can be applied. Fortunately, however, we can isolate a sufficient
criterion to decide whether a multiset of formulas is controlled, based on a simple
syntactic check.

Proposition 2.1 (Checking Control). If ∆ = P1, . . . , Pm, S1, . . . , Sn is stratified
and the control formulas occurring in P1, . . . , Pm are pairwise distinct, then ∆ is
controlled.

Proof. See [4, 40].

2.5 Review of RCFAF7 and safety

We now review RCFAF7 [31], a concurrent λ-calculus with message passing prim-
itives, which provides the core language around which our theory is developed.
We also formally introduce the resource-aware variant of the standard notion of
safety for RCF, which we have been mentioning.

2.5.1 Syntax of RCFAF7

We assume collections of names (a, b, c,m, n) and variables (x, y, z). The syntax
of values and expressions of RCFAF7 is introduced in Table 2.2. The notions of
free names and free variables arise as expected, according to the scope defined in
the table.

Values include variables, unit, pairs, functions and constructions; constructors
account for the creation of standard tagged unions and iso-recursive types. We
also encode the boolean values true , inl() and false , inr(). Expressions of
RCFAF7 include standard λ-calculus constructs like values, applications, equality
checks, lets, pair splits, and pattern matching, as well as primitives for concurrent,
message-passing computations in the style of process algebras.

2.5.2 Sematics of RCFAF7

The semantics is mostly standard. The function application (λx.E) N evalu-
ates to E{N/x}; the syntactic equality check M = N evaluates to true when
M is equal to N and to false otherwise; the let expression let x = E in E ′

24

2.5. REVIEW OF RCFAF7 AND SAFETY

M,N ::= values
x variable
() unit
(M,N) pair
λx.E function
h M construction (h ∈ {inl, inr, fold})

D,E ::= expressions
M value
M N application
M = N syntactic equality
let x = E in E ′ let (scope of x is E ′)
let (x, y) = M in E pair split (scope of x, y is E)
match M with h x then E else E ′ match (scope of x is E)
(νa)E restriction (scope of a is E)
E � E ′ fork
a!M message send
a? message receive
assume F assumption
assert F assertion

Table 2.2: Syntax of RCFAF7 expressions

first evaluates E to a value N and then behaves as E ′{N/x}; the pair splitting
let (x, y) = (M,N) in E evaluates to E{M/x}{N/y}; and the pattern matching
match M with h x then E else E ′ evaluates to E{N/x} when M is equal to h N
for some N , while it evaluates to E ′ otherwise. We then have some constructs
reminiscent of process algebras: expression (νa)E generates a globally fresh chan-
nel name a and then behaves as E. Expression E � E ′ evaluates E and E ′ in
parallel, and returns the result of E ′. Expression a!M asynchronously outputs
M on channel a and returns (). Expression a? waits until a term N is available
on channel a and returns N . These message-passing expressions can be used to
model the sending and receiving functions “send” and “recv” that are used in the
code of our examples and that we further explain in Section 2.7.1. Assumptions
and assertions are stuck expressions, which are just needed to state our safety
notion (see below). The formal semantics of RCFAF7 expressions is defined by
the reduction rules in Table 2.3.

The reduction semantics depends upon the heating relation E V E ′, an asym-
metric version of the standard structural congruence, to perform some syntactic
rearrangements of expressions and allow reductions. We write E ≡ E ′ to denote
that both E V E ′ and E ′ V E. The definition of the heating relation is presented
in Table 2.4, the only difference with respect to the original RCF presentation is
the introduction of the rule (Heat Assert ()), which simplifies our definition of
safety.

25

CHAPTER 2. AF7

(λx.E) N → E{N/x} (Red Fun)
let (x, y) = (M,N) in E → E{M/x}{N/y} (Red Split)
match M with h x then E else E ′ → (Red Match){

E{N/x} if M = h N for some N
E ′ otherwise

M = N →
{

true if M = N

false otherwise
(Red Eq)

a!M � a?→M (Red Comm)
let x = M in E → E{M/x} (Red Let Val)
let x = E in E ′′ → let x = E ′ in E ′′ if E → E ′ (Red Let)
(νa)E → (νa)E ′ if E → E ′ (Red Res)
E � E ′′ → E ′ � E ′′ if E → E ′ (Red Fork 1)
E ′′ � E → E ′′ � E ′ if E → E ′ (Red Fork 2)
E → E ′ if E V D,D → D′, D′ V E ′ (Red Heat)

Table 2.3: Reduction semantics for RCFAF7

2.5.3 Resource-aware safety

We are now ready to adapt the formal notion of safety defined for RCFAF7 ex-
pressions to our resource-aware setting. Intuitively, an expression E is safe if,
for all runs, the multiplicative conjunction of the top-level assertions is entailed
by the top-level assumptions. Giving a precise definition, however, is somewhat
tricky and it is convenient to introduce the notion of structure for this purpose.

Let e denote an elementary expression, i.e., any expression that is not an
assumption, assertion, restriction, let, fork, or send. Structures formalize the
idea that a computation state has four components: (1) a multiset of assumed
formulas Fi; (2) a multiset of asserted formulas F ′j ; (3) a series of messages Mk

sent on channels but not yet received; and (4) a series of elementary expressions
e` being evaluated in parallel contexts. The definition of a structure S is given in
Table 2.5. Structures are convenient, since their syntactic form already exhibits
all the necessary ingredients to state a simple notion of static safety, the basic
building block for safety.

We can prove that every expression E can be transformed into a structure by
heating, hence we can define a suitable notion of safety for any expression.

Lemma 2.1 (Structure). For every expression E, there exists a structure S such
that E V S.

Proof. By induction on the structure of E.

Definition 2.4 (Safety). A closed expression E is safe if and only if, for all E ′
and S, if E →∗ E ′ and E ′ V S, then S is statically safe.

The real property of interest, however, is stronger than the previous one: we
desire protection despite the best efforts of an active opponent. We let an oppo-
nent be any closed expression of RCFAF7 which does not contain any assumption

26

2.6. THE AF7 TYPE SYSTEM

E V E (Heat Refl)
E V E ′′ if E V E ′ and E ′ V E ′′ (Heat Trans)
let x = E in E ′′ V let x = E ′ in E ′′ if E V E ′ (Heat Let)
(νa)E V (νa)E ′ if E V E ′ (Heat Res)
E � E ′′ V E ′ � E ′′ if E V E ′ (Heat Fork 1)
E ′′ � E V E ′′ � E ′ if E V E ′ (Heat Fork 2)
() � E ≡ E (Heat Fork ())
a!M V a!M � () (Heat Msg ())
assume F V assume F � () (Heat Assume ())
assert F V assert F � () (Heat Assert ())
E ′ � (νa)E V (νa)(E ′ � E) if a /∈ fn(E ′) (Heat Res Fork 1)
(νa)E � E ′ V (νa)(E � E ′) if a /∈ fn(E ′) (Heat Res Fork 2)
let x = (νa)E in E ′ V (νa)(let x = E in E ′) if a /∈ fn(E ′) (Heat Res Let)
(E � E ′) � E ′′ ≡ E � (E ′ � E ′′) (Heat Fork Assoc)
(E � E ′) � E ′′ V (E ′ � E) � E ′′ (Heat Fork Comm)
let x = (E � E ′) in E ′′ ≡ E � (let x = E ′ in E ′′) (Heat Fork Let)

Table 2.4: Heating relation for RCFAF7

Πi∈[1,n]Ei , () � E1 � · · · � En
L[e] ::= e | let x = L[e] in E
S ::= (νã)((Πi∈[1,m]assume Fi) � (Πj∈[1,n]assert F ′j) � (Πk∈[1,o]ck!Mk) � (Π`∈[1,p]L`[e`]))

The structure S above is statically safe if and only if F1, . . . , Fm ` F ′1 ⊗ . . .⊗ F ′n.

Table 2.5: Structures and static safety

or assertion. The latter is a standard restriction, since opponents containing ar-
bitrary assertions could vacuously falsify the property we target; this does not
involve any loss of generality in practice, since we want to verify application code
with respect to the security annotations placed therein. We note that security
annotations are simply considered a tool for verification but that they hold no
semantic meaning and are thus not necessary for the opponent code.

Definition 2.5 (Robust Safety). A closed expression E is robustly safe if and
only if, for any opponent O, the application O E is safe2.

2.6 The AF7 type system

Our refinement type system builds on previous work by Bengtson et al. [31],
extending it to guarantee the correct usage of affine formulas and to enforce our
revised notion of (robust) safety.

2Here, we use the standard syntactic sugar O E for the expression let x = O in let y =
E in x y.

27

CHAPTER 2. AF7

2.6.1 Types, typing environments, and base judgements

The syntax of types is defined in Table 2.6.1. Again the notions of free names
and free variables arise as expected, according to the scope defined in the table.

T, U, V ::= types
unit unit type
x : T → U dependent function type (scope of x is U)
x : T ∗ U dependent pair type (scope of x is U)
T + U sum type
µα. T iso-recursive type (scope of α is T)
α type variable
{x : T | F} refinement type (scope of x is F)

Table 2.6: Syntax of types (AF7)

The unit value () is given type unit. Sum types have the form T + U , iso-
recursive types are denoted by µα. T , and type variables are denoted by α. There
exist various forms of dependent types: a function of type x : T → U takes as an
input a value M of type T and returns a value of type U{M/x}; a pair (M,N)
has type x : T ∗ U if M has type T and N has type U{M/x}; a value M has
a refinement type {x : T | F} if M has type T and the formula F{M/x} holds
true. We use type Un , unit to model data that may come from, or be sent to the
opponent, as it is customary for security type systems.3 Type bool , unit + unit
is inhabited by true , inl() and false , inr().

The type system comprises several typing judgements of the form Γ; ∆ ` J ,
where Γ; ∆ is a typing environment collecting all the information which can be
used to derive J . In particular, Γ contains the type bindings, while ∆ comprises
logical formulas that are supposed to hold at run-time. Formally, we let Γ be an
ordered list of entries µ1, . . . , µn and ∆ be a multiset of affine logic formulas. Each
entry µi in Γ denotes either a type variable (α), a kinding annotation (α :: k),
or a type binding for channels (a l T) or variables (x : T). We let ε denote
the empty list and ∅ the empty multiset. The domain of Γ, written dom(Γ),
is defined as follows: dom(α) = {α}; dom(α :: k) = {α}; dom(a l T) = {a};
dom(x : T) = {x}; and dom(µ1, . . . , µn) = dom(µ1) ∪ . . . ∪ dom(µn). The set of
free variables and free names is denoted by fnfv . The definition is standard.

We first discuss the base judgements of the type system. We use the judgement
Γ; ∆ ` � to denote that the typing environment Γ; ∆ is well-formed, i.e., it satisfies
some standard syntactic conditions (for instance, it does not contain duplicate
type bindings for the same variable). The only remarkable point in the definition
of Γ; ∆ ` � is that we forbid variables in Γ to be mapped to a refinement type:
indeed, when extending a typing environment with a new type binding x : T ,
we will use the function ψ to place the structural type information in Γ and the
function forms to place the associated refinements in ∆. We also write Γ; ∆ ` T
to denote that type T is well-formed in Γ; ∆ and Γ; ∆ ` F when the formulas

3Note that other types built over Un are available to the opponent through subtyping.

28

2.6. THE AF7 TYPE SYSTEM

in ∆ entail the formula F . We often abuse notation and write Γ; ∆ ` F1, . . . , Fn
to stand for Γ; ∆ ` F1 ⊗ . . . ⊗ Fn, with the proviso that Γ; ∆ ` ∅ is equivalent
to Γ; ∆ ` 1. A complete formal definition of the described elements is given in
Table 2.6.1 below.

ψ(U) =

{
ψ(T) if U = {x : T | F}
U otherwise

forms(y : U) =

{
F{y/x}, forms(y : T) if U = {x : T | F}
∅ otherwise

(Env Empty)
ε; ∅ ` �

(Type Env Entry)
Γ; ∆ ` �

dom(µ) ∩ dom(Γ) = ∅ µ = x : T ⇒ T = ψ(T) ∧ fnfv(T) ⊆ dom(Γ)

Γ, µ; ∆ ` �

(Form Env Entry)
Γ; ∆ ` � fnfv(F) ⊆ dom(Γ)

Γ; ∆, F ` �

(Type)
Γ; ∆ ` � fnfv(T) ⊆ dom(Γ)

Γ; ∆ ` T

(Derive)
Γ; ∆ ` � fnfv(F) ⊆ dom(Γ) ∆ ` F

Γ; ∆ ` F

Table 2.7: Auxiliary functions and base judgements (AF7)

2.6.2 Environment rewriting

We stipulate that all the type information stored in Γ can be used arbitrarily often
in the derivation of any judgement of our type system, hence we dispense with
affine types4. The treatment of the formulas in ∆ is subtler, since affine resources
must be used at most once during type-checking: in particular, we need to split
the environment ∆ among subderivations to avoid the unbounded duplication of
the formulas therein. However, a simple splitting of the formulas in ∆ would lead
to a very restrictive type system. To illustrate, let ∆ , A,A (!B: if we just
distributed the formulas A and A(!B between two distinct subderivations, then
the formula !B would be available only in (at most) one subderivation, despite it
being an exponential formula, which we may want to use arbitrarily often during
type-checking.

4In Section 2.6.8 we thoroughly discuss why this does not involve any loss in expressiveness,
by showing an encoding of affine types through exponential serialization.

29

CHAPTER 2. AF7

The general structure of the rules of our system then looks as follows:

Γ; ∆1 ` J1 . . . Γ; ∆n ` Jn Γ; ∆ ↪→ Γ; ∆1, . . . ,∆n

Γ; ∆ ` J

where Γ; ∆ ↪→ Γ; ∆′ denotes the environment rewriting of Γ; ∆ to Γ; ∆′. This
relation is defined by rule (Rewrite) below:

(Rewrite)
∆ ` ∆′ Γ; ∆ ` � Γ; ∆′ ` �

Γ; ∆ ↪→ Γ; ∆′

where we write ∆ ` F1, . . . , Fn to denote that ∆ ` F1 ⊗ . . .⊗ Fn, again with the
proviso that ∆ ` ∅ stands for ∆ ` 1. Coming back to our previous example, notice
that we have A,A(!B ` !B⊗ !B in affine logic, hence we can obtain two copies
of !B upon rewriting and distribute them between two distinct subderivations
upon type-checking. As we will explain in Section 2.6.5, for soundness reasons
we will often rely on rewriting of the form Γ; ∆ ↪→ Γ; !∆′, where !∆′ is a so-called
exponential environment, i.e., an environment of the form !F1, . . . , !Fn.

The adoption of the environment rewriting relation as an house-keeping device
for the formulas in ∆ greatly improves the expressiveness of the type system in
a very natural way. This idea of extending to the typing environment a number
of context manipulation rules from the underlying substructural logic was first
proposed by Mandelbaum et al. [51], even though their solution is technically
different from ours. Namely, the authors of [51] allow for applications of arbitrary
left rules from the logic inside the typing environment, while our proposal is
reminiscent of the (Cut) rule typical of sequent calculi. We find this solution
simpler to present and more convenient to prove sound.

Interestingly, all the non-determinism introduced by the application of the
rewriting rules and the splitting of the logical formulas among the premises of
the type rules can be effectively tamed by the algorithmic type system discussed
in Section 2.10.

2.6.3 Kinding

Security type systems often rely on a kinding relation to discriminate whether
or not messages of a specific type may be sent to the attacker or generated by
it. The kinding judgement Γ; ∆ ` T :: k denotes that type T is of kind k. We
distinguish between two kinds: kind k = pub denotes that the inhabitants of a
given type are public and may be sent to the attacker, while kind k = tnt denotes
that the inhabitants of a given type are tainted and may come from the attacker.
We let pub , tnt and tnt , pub.

The complete kinding relation is given in Table 2.6.3. Most of the rules
resemble those presented in other security type systems [31–33] and only differ in
the treatment of affine formulas, which is similar to the one we employ for typing
values and expressions. We postpone the discussion on this point until the next

30

2.6. THE AF7 TYPE SYSTEM

section, where it will be easier to provide an intuitive understanding. Here, we
just point out some simple observations, which should hopefully guide the reader
in understanding a few important aspects.

(Kind Var)
Γ; ∆ ` � (α :: k) ∈ Γ

Γ; ∆ ` α :: k

(Kind Unit)
Γ; ∆ ` �

Γ; ∆ ` unit :: k

(Kind Fun)
Γ; !∆1 ` T :: k Γ, x : ψ(T); !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U :: k

(Kind Pair)
Γ; !∆1 ` T :: k Γ, x : ψ(T); !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U :: k

(Kind Sum)
Γ; !∆1 ` T :: k Γ; !∆2 ` U :: k

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U :: k

(Kind Rec)
Γ, α :: k; !∆′ ` T :: k

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T :: k

(Kind Refine Public)
Γ; ∆ ` {x : T | F} Γ; ∆ ` T :: pub

Γ; ∆ ` {x : T | F} :: pub

(Kind Refine Tainted)
Γ; ∆1 ` ψ(T) :: tnt Γ, y : ψ(T); ∆2 ` forms(y : T)

Γ; ∆ ↪→ Γ; ∆1,∆2 T refined
Γ; ∆ ` T :: tnt

Table 2.8: Kinding relation (AF7)

The type unit is assumed to be both public and tainted by (Kind Unit).
According to (Kind Pair), a pair type is public if both its components are public
and can be disclosed to the opponent. Conversely, by the same rule, a pair type
is tainted if both its components are tainted, since, if even a single component
of the pair is untainted, then the pair cannot come from the opponent. The
kinding of sum types (Kind Sum) behaves analogously. By rule (Kind Fun) a
function type is public (thus available to the attacker) only if its return type is
public (otherwise λx.Msecret could be public and leak a secret to the attacker)
and its argument type is tainted such that it can be called by the attacker. The
treatment of tainted function types is dual. To give kind k to an iso-recursive type
with a bound variable α, the rule (Kind Rec) proceeds recursively and extends
the typing environment in the premise with the kinding annotation α :: k. These
kinding annotations are used when kinding a type variable (Kind Var). By

31

CHAPTER 2. AF7

(Kind Refine Public) a refinement type is public if the structural type it
refines is public, while by (Kind Refine Tainted) it is tainted if its structural
information is tainted and its refinements are entailed by the typing environment.

2.6.4 Subtyping

The subtyping judgment Γ; ∆ ` T <: U expresses the fact that T is a subtype
of U and, thus, values of type T can be safely used in place of values of type U .
The complete presentation of the subtyping relation can be found in Table 2.6.4.

(Sub Refl)
Γ; ∆ ` T

Γ; ∆ ` T <: T

(Sub Pub Tnt)
Γ; ∆1 ` T :: pub Γ; ∆2 ` U :: tnt

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` T <: U

(Sub Fun)
Γ; !∆1 ` T ′ <: T Γ, x : ψ(T ′); !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U <: x : T ′ → U ′

(Sub Pair)
Γ; !∆1 ` T <: T ′ Γ, x : ψ(T); !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U <: x : T ′ ∗ U ′

(Sub Sum)
Γ; !∆1 ` T <: T ′ Γ; !∆2 ` U <: U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U <: T ′ + U ′

(Sub Pos Rec)
Γ, α; !∆′ ` T <: T ′ α occurs only positively in T and T ′

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T <: µα. T ′

(Sub Refine)
Γ; ∆1 ` ψ(T) <: ψ(U) Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : U)

Γ; ∆ ↪→ Γ; ∆1,∆2 T and/or U refined
Γ; ∆ ` T <: U

Table 2.9: Subtyping relation (AF7)

We first note that subtyping is reflexive by (Sub Refl). Furthermore, the

32

2.6. THE AF7 TYPE SYSTEM

subtyping judgment makes public types subtype of tainted types through rule
(Sub Pub Tnt), and further describes standard subtyping relations for types
sharing the same structure: for instance, pair and sum types are covariant (cf. (Sub
Pair) and (Sub Sum)), while function types are contravariant in their arguments
and covariant in their return types (cf. (Sub Fun)). Intuitively, this means that
a function can safely replace another function if it is “more liberal” in the types
it accepts and “more conservative” in the types it returns.

The rule for iso-recursive types (Sub Pos Rec) is borrowed from [32,33] and
it differs from the standard Amber rule proposed in the original presentation of
RCF: the rule we consider here is easier to prove sound and the loss of expressive-
ness is very mild. We refer the interested reader to [32,33] for further discussion
on this technical point.

The most interesting subtyping rule in Table 2.6.4 is (Sub Refine), which
subsumes the rules (Sub Refine Left) and (Sub Refine Right) from the
original presentation of RCF, which are shown below:

(Sub Refine Left)
Γ ` {x : T | F} Γ ` T <: U

Γ ` {x : T | F} <: U

(Sub Refine Right)
Γ ` T <: U Γ, x : T ` F

Γ ` T <: {x : U | F}

The first rule allows discarding unneeded logical formulas and conforms to the
core idea of “refinement” typing: values of type {x : T | F} can be safely replaced
for values of type T , since they are just values of type T further qualified by
the information encoded by the formula F . The second rule, instead, generalizes
the substitution principle underlying subtyping to the refinement formulas: for
instance, we have ∅; ε ` {x : Un | x = 5} <: {x : Un | x > 0}, since the logical
condition x = 5 is stronger than the condition x > 0.

A natural adaptation of (Sub Refine Right) to our affine setting would be:

(Sub Refine Wrong)
Γ; ∆1 ` T <: U Γ, x : ψ(T); ∆2, forms(x : T) ` F Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` T <: {x : U | F}

Unfortunately, this rule is unsound, since the affine formulas of T could actually
be duplicated and we could prove, for instance: ∅; ε ` {x : Un | F} <: {z : {x :
Un | F} | F} by using (Sub Refl) in the left premise of (Sub Refine Wrong).
This cannot happen with our new rule, since F 0 F ⊗ F in affine logic.

While it is in principle possible to find out other sound counterparts of (Sub
Refine Right) in an affine setting, previous work [1] highlighted that the techni-
cal treatment of these rules is rather complicated, and we find rule (Sub Refine)
more convenient for proofs. The previous discussion should have also provided an
intuition on the reasons behind a slightly more restrictive treatment for subtyping
pairs and functions with respect to the original RCF paper, i.e., we must take
care in applying the refinement stripping function ψ before extending the typing
environment in the second premise of the corresponding rules.

33

CHAPTER 2. AF7

2.6.5 Typing values

The typing judgement Γ; ∆ `M : T denotes that value M is given type T under
environment Γ; ∆. The typing rules for values are given in Table 2.6.5.

(Val Var)
Γ; ∆ ` � (x : T) ∈ Γ

Γ; ∆ ` x : T

(Val Unit)
Γ; ∆ ` �

Γ; ∆ ` () : unit

(Val Fun)
Γ, x : ψ(T); !∆′, forms(x : T) ` E : U

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` λx.E : x : T → U

(Val Pair)
Γ; !∆1 `M : T Γ; !∆2 ` N : U{M/x}

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` (M,N) : x : T ∗ U

(Val Refine)
Γ; ∆1 `M : T Γ; ∆2 ` F{M/x}

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M : {x : T | F}

(Val Inl)
Γ; !∆′ `M : T Γ; !∆′ ` U

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` inl M : T + U

(Val Inr)
Γ; !∆′ `M : U Γ; !∆′ ` T

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` inr M : T + U

(Val Fold)
Γ; !∆′ `M : T{µa. T/α}

Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` fold M : µα. T

Table 2.10: Typing rules for values (LTS)

The rules for variable and unit typing are standard: variables are typed by
looking up their type binding in the typing environment Γ using (Val Var);
the unit value can be given type unit under any well-formed environment using
(Val Unit). Rule (Val Refine) is a natural adaptation to an affine setting of
the standard rule for refinement types: a value M has type {x : T | F} if M
has type T and the formula F{M/x} holds true. Rules (Val Fun) and (Val
Pair) are more interesting: recall, in fact, that our type system does not include
affine types, since the type information in Γ is propagated to all the premises
of a typing rule. It is then crucial for soundness that both pairs and functions
are type-checked in an exponential environment, i.e., an environment of the form
!F1, . . . , !Fn. Indeed, using an affine formula F from the typing environment to
give a pair (M,N) type x : T ∗{y : U | F} would lead to an unbounded duplication
of F upon repeated pair splitting operations on (M,N). Similar restrictions apply

34

2.6. THE AF7 TYPE SYSTEM

also to sum types (cf. (Val Inl) and (Val Inr)) and iso-recursive types (cf. (Val
Fold)).

Notice that allowing for affine refinements, but forbidding affine types, con-
fines the problem of resource management to the formula environment ∆, thus
simplifying the technical development of the type system, as well as its algo-
rithmic variant. In Section 2.6.8 we explain how our exponential serialization
technique can be leveraged to encode affine types in our framework, hence our
choice does not lead to any loss of expressiveness.

2.6.6 Typing expressions

The typing judgement Γ; ∆ ` E : T denotes that expression E is given type T
under environment Γ; ∆. The typing rules for expressions are given in Table 2.6.6.

Several typing rules make use of the extraction relation E [∆ | D] that
destructively collects all the assumed formulas ∆ from the expression E and
returns the expression D obtained by purging E of its assumptions. The relation
is defined in Table 2.6.6 and will be explained further in the context of rule Exp
Fork.

Rule (Exp Subsum) is a standard subsumption rule for expressions: if E can
be given type T , then it can be conservatively given any supertype of T . The rule
for typing function applications (Exp Appl) divides the formula environment
∆ among its premises and checks that the type of the argument corresponds
to the expected function argument type; in the return type we substitute the
argument to the variable bound in the function type, thus implementing a form
of value dependent typing. In rule (Exp Split) we exploit the logic to keep
track of the performed pair splitting operation and make type-checking more
precise; a similar technique is used also in (Exp Match) and (Exp Eq). The
treatment of channels is mostly standard: For each new channel a, a message
type is determined (a l T) and added to the typing environment Γ (cf. Exp
Res) that is used to type-check the remaining expression. The rules for sending
(Exp Send) and receiving (Exp Recv) messages on such channel assure that the
sent/received messages have the correct type. Rule (Exp Assert) is standard
and requires an asserted formula F to be derivable from the formulas collected by
the typing environment: in fact, these formulas under-approximate the formulas
which will be assumed at run-time. As we will see in the explanation of the
rule (Exp Fork) below, due to the affine nature of the logic, the treatment
of assumptions is a delicate task. Assumptions can be typed using either rule
(Exp True) or (Exp Assume). The former describes the trivial case of a truth
assumption 1 that is always given type unit, the latter is used for more complex
formulas F , which are added to the formula environment ∆. Intuitively, the
intended usage of these rules to type-check an assumption assume F with type
T is as follows: (1) Prove Γ; ∆, F ` assume 1 : unit by rule (Exp True); (2)
Refine the type unit into T by subtyping; (3) Use (Exp Assume) to conclude
Γ; ∆ ` assume F : T .

The most complex rule is (Exp Fork): intuitively, when type-checking the

35

CHAPTER 2. AF7

(Exp Subsum)
Γ; ∆1 ` E : T Γ; ∆2 ` T <: T ′

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` E : T ′

(Exp Appl)
Γ; ∆1 `M : x : T → U Γ; ∆2 ` N : T

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M N : U{N/x}

(Exp Let)
E ∅ [∆′ | D]

Γ; ∆1 ` D : T Γ, x : ψ(T); ∆2, forms(x : T) ` E′ : U x /∈ fv(U)
Γ; ∆,∆′ ↪→ Γ; ∆1,∆2

Γ; ∆ ` let x = E in E′ : U

(Exp Split)
Γ; ∆1 `M : x : T ∗ U

Γ, x : ψ(T), y : ψ(U); ∆2, forms(x : T), forms(y : U), !((x, y) = M) ` E : V
{x, y} ∩ fv(V) = ∅
Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` let (x, y) = M in E : V

(Exp Match)
Γ; ∆1 `M : T

Γ, x : ψ(H); ∆2, forms(x : H), !(h x = M) ` E : U Γ; ∆2 ` E′ : U
(h,H, T) ∈ {(inl, T1, T1 + T2), (inr, T2, T1 + T2), (fold, T ′{µα. T ′/α}, µα. T ′)}

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` match M with h x then E else E′ : U

(Exp Eq)
Γ; ∆1 `M : T Γ; ∆2 ` N : U x /∈ fv(M) ∪ fv(N)

Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ `M = N : {x : bool | !(x = true(M = N)}

(Exp Assume)
Γ; ∆, F ` assume 1 : T F 6= 1

Γ; ∆ ` assume F : T

(Exp True)
Γ; ∆ ` �

Γ; ∆ ` assume 1 : unit

(Exp Assert)
Γ; ∆ ` F

Γ; ∆ ` assert F : unit

(Exp Send)
Γ; ∆ `M : T (a l T) ∈ Γ

Γ; ∆ ` a!M : unit

(Exp Recv)
Γ; ∆ ` � (a l T) ∈ Γ

Γ; ∆ ` a? : T

(Exp Res)
E a [∆′ | D] Γ, a l T ; ∆,∆′ ` D : U

a /∈ fn(U)

Γ; ∆ ` (νa)E : U

(Exp Fork)
E1 ∅ [∆1 | D1] E2 ∅ [∆2 | D2]

Γ; ∆′1 ` D1 : T1 Γ; ∆′2 ` D2 : T2

Γ; ∆,∆1,∆2 ↪→ Γ; ∆′1,∆
′
2

Γ; ∆ ` E1 � E2 : T2

Table 2.11: Typing rules for expressions (AF7)

36

2.6. THE AF7 TYPE SYSTEM

parallel expressions E1 � E2, assumptions in E1 can be safely used to type-check
assertions in E2 and vice-versa. On the other hand, we need to prevent an affine
assumption in E1 from being used twice to justify assertions in both E2 and E1.
This is achieved by the extraction relation, i.e., through the premises of the form
Ei [∆i |Di]: the extraction operation destructively collects all the assumptions
from the expression Ei and returns the expression Di obtained by purging Ei of
its assumptions. The typing environment is then extended with the collected
assumptions and partitioned to type-check the purged expressions D1 and D2.
For instance, we can show that the expression assume F � assert F is well-typed,
while the expression (assume F � assert F) � assert F is not: indeed, notice that
the latter is not safe according to Definition 3.1.

The extraction relation E ã [∆ | D] is formally defined in Table 2.6.6. Note
that we annotate the arrow with a list of names ã to prevent formulas containing
free names from being extracted outside the scope of the respective binders. For
instance, in the expression ((νa)assume F (a)) � assert F (a) we do not want to use
the assumption to type-check the parallel assertion, since the scope of the name a
is limited to the assumption itself. The extraction relation is used to type-check
any expression possibly containing “active” assumptions, i.e., lets (cf. (Exp Let)),
restrictions (cf. (Exp Res)), and assumptions themselves (cf. (Exp Assume),
which hardcodes the extraction).

(Extr Fork)
E1 ã [∆1 | D1] E2 ã [∆2 | D2]

E1 � E2 ã [∆1,∆2 | D1 � D2]

(Extr Let)
E1 ã [∆ | D1]

let x = E1 in E2 ã [∆ | let x = D1 in E2]

(Extr Res)

E a,̃b [∆ | D]

(νa)E b̃ [∆ | (νa)D]

(Extr Assume)
F 6= 1 fn(F) ∩ {ã} = ∅

assume F ã [F | assume 1]

(Extr Exp)
no other rule applies

E ã [∅ | E]

Table 2.12: The extraction relation (AF7)

2.6.7 Formal results

The main soundness results for our type system are given below.

Theorem 2.2 (Safety). If ε; ∅ ` E : T , then E is safe.

Proof. See Appendix A.1.

Theorem 2.3 (Robust Safety). If ε; ∅ ` E : Un, then E is robustly safe.

37

CHAPTER 2. AF7

Proof. See Appendix A.1.

Theorem 3.1 above and Theorem 2.1 (Soundness of Serialization) constitute
the two building blocks of our static verification technique, which we may fi-
nally summarize as follows. Given any expression E, we identify the payload
formulas assumed in E, and construct their serializers S1, . . . , Sn. Let then
E? = assume S1 ⊗ · · · ⊗ Sn � E be the original expression extended with the
serializers. By Theorem 3.1, if ε; ∅ ` E? : Un, then E? is robustly safe. By The-
orem 2.1, so is the original expression E, provided that a further invariant holds
for E?, namely that all multisets of formulas assumed during the evaluation of
E? are controlled.

While this latter invariant is not enforced by our type system, the desired
guarantees may be achieved by requiring that the assumption of control formulas
be confined within system code packaged into library functions, providing certi-
fied access and management of the capabilities associated with those formulas.
The certification of the system code provided by the library function, in turn,
may be achieved with limited effort, based on the sufficient condition provided
by Proposition 2.1. Actually, we observe that the syntactic criterion proposed
by the proposition becomes a semantic property of the program to type-check,
since programs contain variables to be replaced at run-time: we will discuss for
our examples how we verify that the typing environment satisfies the conditions
required for robust safety.

2.6.8 Discussion: encoding affine types

We now discuss how we can take advantage of exponential serialization to encode
affine types in our type system. For the sake of simplicity, we focus on the
encoding of affine pairs, but the same ideas applies uniformly to other data types
(i.e., tagged unions and iso-recursive types).

Consider the typing environment Γ; ∆ , x : Un, y : Un;A(x), B(y). Standard
refinement type systems [31] allow for the following type judgement:

Γ; ∆ ` (x, y) : {x : Un | A(x)} ∗ {y : Un | B(y)}

If the formulas A(x) and B(y) are interpreted as affine resources, however, the
previous type assignment is sound only as long as the pair (x, y) can be split only
once, since every application of rule (Exp Split) for pair destruction introduces
the formulas A(x), B(y) into the typing environment of the continuation. Since
our type system does not feature affine types and has no way to enforce a single
deconstruction of a pair, it conservatively forbids the previous type judgement, in
that the premises of rule (Val Pair) require an exponential typing environment.

Nevertheless, the following type judgement is allowed by our type system:

x : Un, y : Un;A(x), B(y), S1, S2 ` (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

where A′(x) , !(C1(x)(A(x)) and B′(y) , !(C2(y)(B(y)) are the serialized
variants of A(x) and B(y) respectively, while S1 , !∀x.(A(x) (A′(x)) and

38

2.7. A LIBRARY FOR COMMUNICATION AND
CRYPTOGRAPHY IN RCFAF7

S2 , !∀y.(B(y)(B′(y)) are the corresponding serializers. Here, the main idea
for type-checking is to appeal to environment rewriting to consume the affine
formulas A(x) and B(y), and introduce their exponential counterparts A′(x) and
B′(y) into the typing environment before assigning a type to the components of
the pair. In fact, notice that we have:

x : Un, y : Un;A(x), B(y), S1, S2 ↪→ x : Un, y : Un;A′(x), B′(y),

hence we can prove the following type judgement:

x : Un, y : Un;A′(x) ` x : {x : Un | A′(x)}
x : Un, y : Un;B′(y) ` y : {y : Un | B′(y)}

x : Un, y : Un;A(x), B(y), S1, S2 ` (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}
The interesting point now is that the pair (x, y) can be split arbitrarily often,

but the affine formulas A(x) and B(y) can be retrieved at most once, as long as
the control formulas C1(x) and C2(y) are assumed at most once in the application
code. In this way, we recover the expressiveness provided by affine types. We
actually even go beyond that, allowing for a liberal usage of the value itself, as
opposed to enforcing the affine usage of any data structure which contains an
affine component, as dictated by many earlier substructural frameworks (see [52]
for a thorough discussion on this point).

2.7 A library for communication and cryptography
in RCFAF7

In this section we describe the primitives for communication that we use through-
out the examples in this work and discuss how we encode cryptography using
sealing. We note that our encoding of both communication and cryptography
benefits from the notion of exponential serialization: we will never use channels,
references, or cryptographic operations directly for messages with affine refine-
ments, but we instead rely on exponentially serialized versions of such refinements.
Formally, our libraries build on so-called exponential types that do not carry an
affine refinement and are defined in Table 2.7. Since these types do not need
to be protected from replication we can immediately leverage existing non-affine
libraries [31].

For the sake of simplicity, the definitions of the necessary functions and types
are parametric in a type variable γ used to denote exponential types. We recall,
however, that our system does not support full polymorphism, but we can recover
its effects by replicating library code to specialize it to the different types we need.
Most of the content of this section is taken from [31] and included for the reader’s
convenience to make the chapter self-contained.

2.7.1 An encoding of channels and messaging

In RCFAF7 channels are not values, hence they cannot be shared dynamically
among principals. That same effect may however be recovered with the follow-

39

CHAPTER 2. AF7

T exponential if

T ∈ {unit, α}
U exponential for T = {x : U | !F}
T1 exponential and T2 exponential for T = x : T1 → T2

T1 exponential and T2 exponential for T = x : T1 ∗ T2

T1 exponential and T2 exponential for T = T1 + T2

U exponential for T = µα. U

Table 2.13: Exponential types (AF7)

ing encoding of channels for messages of exponential type γ (and the associated
primitives for message passing).

We report both the communication interface and its implementation below.

type Ch(γ) = (γ → unit) ∗ (unit→ γ)
val mkchan : unit→ Ch(γ)
val send : Ch(γ)→ γ → unit
val recv : Ch(γ)→ γ

let mkchan = fun _ → (new a)(fun x → a!x, fun _ → a?)
let send = fun c x → let (s, r) = c in s x
let recv = fun c → let (s, r) = c in r ()

We note that references can be encoded analogously.

type Ref(γ) = Ch(γ)
val mkref : γ → Ref(γ)
val setref : Ref(γ)→ γ → unit
val deref : Ref(γ)→ γ

let mkref = fun x → let r = mkchan () in send r x; r
let setref = fun r x → let _ = recv r in send r x
let deref = fun r → let x = recv r in send r x; x

In the following we typically write “r := v” for “setref r v” and “!r” for “deref r”.
Note that the code for dereferencing a reference will not type-check for types

that are not exponential, since the value retrieved from the reference is used
twice: it is stored back into the reference and returned. Without the serialization
approach, we would thus need to change the implementation, for instance, by
using destructive references that erase their content after a read.

2.7.2 A sealing-based encoding of cryptography

Formal cryptography can be encoded inside RCFAF7 in terms of sealing [53,54]. A
seal for a type T is a pair of functions: a sealing function T → Un and an unsealing
function Un→ T . Intuitively, for symmetric cryptography, these functions model

40

2.7. A LIBRARY FOR COMMUNICATION AND
CRYPTOGRAPHY IN RCFAF7

encryption and decryption operations, respectively. A payload of type T can be
sealed to type Un and sent over the untrusted network; conversely, a message
retrieved from the network with type Un can be unsealed to its correct type
T . This mechanism is implemented in terms of a list of pairs, which is stored
in a global reference that can only be accessed using the sealing and unsealing
functions. Upon sealing, the payload p is paired with a fresh, public value h (the
handle) representing its sealed version, and the pair (p, h) is stored in the list;
conversely, the unsealing function looks for the handle h in the list and returns
the associated payload p.

Since for symmetric cryptography the possession of the key allows to perform
both encryption and decryption operations, for such cryptographic schemes we
identify the key with the seal, i.e., we give access to both the sealing and the
unsealing functions to any owner of the key and we let SymKey(T) , (T →
Un) ∗ (Un → T). Different cryptographic primitives, like public key encryptions
and signature schemes, can be encoded following the same recipe: for instance,
since the owner of a signing key is typically able to verify her own signature, the
sealing-based abstraction of a signing key may consist of both the sealing and
the unsealing functions, and be given type SigKey(T) , (T → Un) ∗ (Un → T).
The corresponding verification key, instead, should comprise only the unsealing
function and be given type VerKey(T) , Un → T . The functions “sign” and
“verify” introduced in Section 2.2 can then be straightforwardly implemented:
signM N just extracts the first component of M and calls it with parameter N ,
while verifyM N simply invokes M with parameter N .

As stated above, another important benefit of exponential serialization is that
we can immediately leverage the sealing-based cryptographic library proposed by
Bengtson et al. [31], since we will define cryptographic operations to be performed
only on messages of exponential type. Without the serialization approach, we
would need to define a different implementation of the sealing/unsealing func-
tions: namely, we would have to enforce that an affine payload is never extracted
more than once from the list stored in the global reference, hence the derefer-
encing/unsealing function would have to remove the payload from the secret list.
This would complicate the sealing-based abstraction of cryptography and require
additional reasoning to justify its soundness [55]. Instead, with our approach, the
unsealing function does not need to be changed: we can invoke it an arbitrary
number of times to retrieve the payload, but the associated refinements will be
retrieved at most once through exponential serialization.

We give full details of the cryptographic API used throughout this chapter
(just the types, not the code) below.

type Seal(γ) = (γ → Un) ∗ (Un→ γ)
type SealRef(γ) = Ref(List(γ ∗ Un))

val mkseal : string→ Seal(γ)
val seal : SealRef(γ)→ γ → Un
val unseal : SealRef(γ)→ Un→ γ

41

CHAPTER 2. AF7

type SymKey(γ) = Sym of Seal(γ)
val mksymkey : unit→ SymKey(γ)
val sencrypt : SymKey(γ)→ γ → Un
val sdecrypt : SymKey(γ)→ Un→ γ

type SigKey(γ) = SK of Seal(γ)
type VerKey(γ) = VK of (Un→ γ)
val mksigkey : unit→ SigKey(γ)
val mkverkey : SigKey(γ)→ VerKey(γ)
val sign : SigKey(γ)→ γ → Un
val verify : VerKey(γ)→ Un→ γ

type DecKey(γ) = DK of Seal(γ)
type EncKey(γ) = EK of (γ → Un)
val mkdeckey : unit→ DecKey(γ)
val mkenckey : DecKey(γ)→ EncKey(γ)
val encrypt : EncKey(γ)→ γ → Un
val decrypt : DecKey(γ)→ Un→ γ

2.8 Example: EPMO

We are finally ready to see our type system at work. We consider a variant of
EPMO, a nonce-based e-payment protocol proposed by Guttman et al. [44].

2.8.1 Protocol description

The protocol narration is informally represented in Figure 2.1 (the meaning of
the security annotations is explained below).
A:24 Michele Bugliesi et al.

Table XIV A variant of the EPMO protocol

Customer Merchant Bank

encrypt(ek(kM), (C, nC , g, p))

assume 8y.(Pay(y, p, M, nM)(Ship(M, g, C))

encrypt(ek(kC), sign(skM , (nC , nM , M, g, C, p)))

encrypt(ek(kB), (C, nC , nM , p))

assume 8y.Pay(B, p, y, nM)

encrypt(ek(kC), sign(skB , (B, C, nC , nB , nM , p)))

assert Ship(M, g, C)

encrypt(ek(kM), sign(skB , (B, C, nC , nB , nM , p)))

encrypt(ek(kB), sign(skM , (B, M, nB , nM)))

cation process, based on lightweight logical annotations. For the sake of simplicity, we
focus only on the aspects of the verification connected to the guarantees provided to C,
which are the most interesting ones.

We define two predicates used in the analysis: Pay(B, p, M, nM) states that B autho-
rizes the payment p to M in reference to the order identified by nM , while Ship(M, g, C)
formalizes that M will ship the goods g to C. After the first step of the protocol, we
let the merchant M state the formula 8y.(Pay(y, p, M, nM)(Ship(M, g, C)), to signify
that she does not care about which bank is going to authorize the payment, but, as long
as there is one authorizing bank, she will ship the good g to the client C at the end of
the transaction. Conversely, after the appropriate checks on the client’s account, we let
the bank B assume the formula 8y.Pay(B, p, y, nM), to model that she authorizes the
payment for the transaction nM to any merchant chosen by the client. These two cre-
dentials allow the customer C to assert the formula Ship(M, g, C), a formal assurance
on the validity of the transaction.

8.3. Type-checking the customer
The protocol code for the customer, enriched with the most relevant type annotations
and the necessary serializers, is shown below. For the sake of readability, we use again
F#-like syntax and some standard syntactic sugar like tuples, refined tuple types, al-
gebraic types, and pattern matchings: all these can be encoded in RCF and our type
system using standard techniques [Bengtson et al. 2011].

(⇤ Serializer for M, needed to type-check M ⇤)
assume !8xp, xM , xnM , xg , xC , xnC .

(8y.(Pay(y, xp, xM , xnM)(Ship(xM , xg , xC))(
!(N1(xnC)((8y.(Pay(y, xp, xM , xnM)(Ship(xM , xg , xC))))

(⇤ Serializer for B, needed to type-check B ⇤)
assume !8yB , yp, ynC , ynM .

(8y.(Pay(yB , yp, y, ynM))(!(N2(ynC)((8y.(Pay(yB , yp, y, ynM))))

(⇤ Typing the message from M to C ⇤)
type MsgMC = MsgMC of (xnC : bytes ⇤ xnM : bytes ⇤ xM : string ⇤ xg : string

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 2.1: A variant of the EPMO protocol

42

2.8. EXAMPLE: EPMO

Initially, a customer C contacts a merchantM to buy some goods g for a given
price p; the request is encrypted under the public key of the merchant, ek(kM)
(which we use as shorthand for “mkenckey kM ” throughout the example), and
includes a fresh nonce, nC . IfM agrees to proceed in the transaction by providing
a response signed with the signing key skM , C informs her bank B to authorize
the payment. The bank replies by providing C a receipt of authorization, called
the money order, which is then forwarded to M . Now M can verify that C is
entitled to pay for the goods and complete the transaction by sending a signed
request to B to cash the money order. At the end of the run, the bank transfers
the funds and the merchant ships the goods to the customer.

2.8.2 Protocol analysis and challenges

A peculiarity of the protocol is that the identifier nC is employed by C to au-
thenticate two different messages, namely the replies by M and B. This pattern
cannot be validated by most existing type systems, since the mechanisms hard-
coded therein to deal with nonce-handshakes enforce the freshness of each nonce
to be checked only once. Our framework, instead, allows for a very natural treat-
ment of such authentication pattern, whose implementation can be written mostly
oblivious of the security verification process, based on lightweight logical annota-
tions. For the sake of simplicity, we focus only on the aspects of the verification
connected to the guarantees provided to C, which are the most interesting ones.

We define two predicates used in the analysis: Pay(B, p,M, nM) states that B
authorizes the payment p to M in reference to the order identified by nM , while
Ship(M, g, C) formalizes that M will ship the goods g to C. After the first step
of the protocol, we let the merchantM state the formula ∀y.(Pay(y, p,M, nM)(
Ship(M, g, C)), to signify that she does not care about which bank is going to
authorize the payment, but, as long as there is one authorizing bank, she will
ship the good g to the client C at the end of the transaction. Conversely, after
the appropriate checks on the client’s account, we let the bank B assume the
formula ∀y.Pay(B, p, y, nM), to model that she authorizes the payment for the
transaction nM to any merchant chosen by the client. These two credentials
allow the customer C to assert the formula Ship(M, g, C), a formal assurance on
the validity of the transaction.

2.8.3 Type-checking the customer

The protocol code for the customer, enriched with the most relevant type annota-
tions and the necessary serializers, is shown below. For the sake of readability, we
use again F#-like syntax and some standard syntactic sugar like tuples, refined
tuple types, algebraic types, and pattern matchings: all these can be encoded in
RCFAF7 and AF7 using standard techniques [31].

(∗ Serializer for M, needed to type-check M ∗)
assume !∀xp, xM , xnM , xg , xC , xnC .

43

CHAPTER 2. AF7

(∀y.(Pay(y, xp, xM , xnM)(Ship(xM , xg , xC))(
!(N1(xnC)((∀y.(Pay(y, xp, xM , xnM)(Ship(xM , xg , xC))))

(∗ Serializer for B, needed to type-check B ∗)
assume !∀yB , yp, ynC , ynM .

(∀y.(Pay(yB , yp, y, ynM))(!(N2(ynC)((∀y.(Pay(yB , yp, y, ynM))))

(∗ Typing the message from M to C ∗)
type MsgMC = MsgMC of (xnC : bytes ∗ xnM : bytes ∗ xM : string ∗ xg : string
∗ xC : string ∗ xp : int)
{!(N1(xnC)(∀y.(Pay(y, xp, xM , xnM)(Ship(xM , xg , xC))}

(∗ Typing the message from B to C ∗)
type MsgBC = MsgBC of (yB : string ∗ yC : string ∗ ynC : bytes ∗ ynB : bytes
∗ ynM : bytes ∗ yp : int){!(N2(ynC)(∀y.(Pay(yB , yp, y, ynM))}

(∗ Generate transaction identifiers ∗)
let mktid : unit→ {x : bytes | N1(x)⊗ N2(x)} = fun () →
let xf = mkfresh () in assume (N1(xf)⊗ N2(xf)); xf

(∗ Customer code ∗)
let cust C addC M addM B addB g p kC ekM ekB

(vkM: VerKey(MsgMC + MsgMB) (vkB: VerKey(MsgBC)) =
let nC = mktid () in
(∗ N1(nC) and N2(nC) hold true ∗)
let msgCM1 = encrypt ekM (C, nC, g, p) in send addM msgCM1;
let signMC = decrypt kC (receive addC) in
let plainMC = verify vkM signMC in
match plainMC with MsgMC (=nC, xnM, =M, =g, =C, =p) →

(∗ !(N1(nC)(∀y.(Pay(y, p,M, xnM)(Ship(M, g, C)) holds true ∗)
let msgCB = encrypt ekB (C, nC, xnM, p) in send addB msgCB;
let signBC = decrypt kC (receive addC) in
let plainBC = verify vkB signBC in
match plainBC with MsgBC (=B, =C, =nC, xnB, =xnM, =p) →
(∗ !(N2(nC)(∀y.(Pay(B, p, y, xnM)) holds true ∗)
assert Ship(M, g, C);
let msgCM2 = encrypt ekM signBC in send addM msgCM2

Initially, we let the customer call the library function mktid, which generates
a fresh transaction identifier, corresponding to nC in the protocol specification,
and provides via its return type two distinct capabilities N1(nC) and N2(nC),
later employed to authenticate the two different messages received by C.

Since the signing key of M is used to certify messages of two different types
(at steps 2 and 6 of the protocol), the corresponding verification key available to
the customer through the variable vkM refers to a sum type. We present only the

44

2.9. EXAMPLE: KERBEROS

MsgMC component of this type, since it is the one needed to type-check the code
of C: the refined formula in the corresponding type definition is retrieved upon
verification of signMC and describes the promise by M to ship the goods as soon
as the requested payment has been authorized by any bank chosen by the client.

We finally use vkB to convey the other formula which is needed to type-check
C, namely a statement that B authorizes the payment to any merchant to whom
C wishes to transfer the money order: this statement is available after verifying
the message signBC. The hypotheses collected by C are enough to prove her
assertion, i.e., to be sure that the request by M has been fulfilled and the goods
will be shipped, hence the implementation is well-typed.

Notice that, to conclude that the code actually respects the authorization
policy despite the introduction of the serializers, we also have to show that the
program ensures the invariant that each control formula is assumed at most once,
corresponding to the sufficient condition for control dictated by Proposition 2.1.
This is an easy task to carry out, since we can just observe that control formulas
are only assumed in the body of the mktid function, which in turn only performs
these assumptions over the results of the mkfresh function for the generation of
fresh bitstrings.

2.9 Example: Kerberos

In the EPMO protocol presented before, the nonce nC is checked twice by the
customer C and plays the role of a transaction identifier. Interestingly, there are
protocols where these identifiers are not just checked multiple times, but also by
different parties. This is exactly the case for the mutual authentication step of
the Kerberos protocol [45].

2.9.1 Protocol description

An informal narration of the protocol is shown in Figure 2.2 (the meaning of the
security annotations is explained below).

A:26 Michele Bugliesi et al.

the mktid function, which in turn only performs these assumptions over the results of
the mkfresh function for the generation of fresh bitstrings.

9. EXAMPLE: KERBEROS
In the EPMO protocol presented before, the nonce nC is checked twice by the customer
C and plays the role of a transaction identifier. Interestingly, there are protocols where
these identifiers are not just checked multiple times, but also by different parties. This
is exactly the case for the mutual authentication step of the Kerberos protocol [Steiner
et al. 1988].

9.1. Protocol description
An informal narration of the protocol is shown in Table XV (the meaning of the security
annotations is explained below).

Table XV The Kerberos protocol (mutual authentication)

Alice Bob Server

A, B

assume Key(kAB , A, B)

sencrypt(kAS , (tS , kAB , B, sencrypt(kBS , (tS , kAB , A))))

sencrypt(kBS , (tS , kAB , A)), sencrypt(kAB , tA)

assume Auth(kAB , A, B)

sencrypt(kAB , tA + 1)

assert Session(kAB , A, B)

The goal of the protocol is to establish a fresh session key kAB between principals A
and B through a trusted server S, which shares a symmetric key with both A and B.
Kerberos employs timestamps like tS and tA to prove session recentness and protect
against replay attacks. Initially, A contacts the server S, providing the identities of
the two agents A and B who want to establish a session. The server generates a fresh
timestamp tS and a new session key kAB , then it packages all this information into
a message for A and a message for B, which are combined by a nested encryption at
step 2 of the protocol. Later, A removes the outer layer of the encryption, checks tS and
retrieves kAB . If the timestamp is fresh, she forwards the inner encrypted message
to B; additionally, A includes a fresh timestamp tA encrypted under kAB . Now B can
decrypt the message encrypted by S, check its freshness, and retrieve the session key
kAB . Using this key, B can disclose the timestamp tA and reply to A with tA + 1, thus
authenticating herself.

9.2. Protocol analysis and challenges
An intriguing point for our static verification technique is that the timestamp tS gen-
erated by the server is checked by both A and B to ensure that the session key kAB

is fresh. As anticipated, this pattern is more sophisticated than the one we discussed
for EPMO, but the expressiveness of our underlying affine logic framework allows for
a simple encoding, discussed in the next section. For the sake of simplicity, in the fol-
lowing we will just focus on the verification of the initiator A.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 2.2: The Kerberos protocol (mutual authentication)

45

CHAPTER 2. AF7

The goal of the protocol is to establish a fresh session key kAB between prin-
cipals A and B through a trusted server S, which shares a symmetric key with
both A and B. Kerberos employs timestamps like tS and tA to prove session
recentness and protect against replay attacks. Initially, A contacts the server
S, providing the identities of the two agents A and B who want to establish a
session. The server generates a fresh timestamp tS and a new session key kAB,
then it packages all this information into a message for A and a message for B,
which are combined by a nested encryption at step 2 of the protocol. Later, A
removes the outer layer of the encryption, checks tS and retrieves kAB. If the
timestamp is fresh, she forwards the inner encrypted message to B; additionally,
A includes a fresh timestamp tA encrypted under kAB . Now B can decrypt the
message encrypted by S, check its freshness, and retrieve the session key kAB .
Using this key, B can disclose the timestamp tA and reply to A with tA + 1, thus
authenticating herself.

2.9.2 Protocol analysis and challenges

An intriguing point for our static verification technique is that the timestamp tS
generated by the server is checked by both A and B to ensure that the session
key kAB is fresh. As anticipated, this pattern is more sophisticated than the
one we discussed for EPMO, but the expressiveness of our underlying affine logic
framework allows for a simple encoding, discussed in the next section. For the
sake of simplicity, in the following we will just focus on the verification of the
initiator A.

We start by defining two predicates used in the analysis: Key(kAB, A,B) states
that kAB is a fresh symmetric key intended to establish a session between A and
B, while Auth(kAB , A,B) formalizes that B wishes to communicate with A using
key kAB . Intuitively, these are the guarantees available to A after steps 2 and 4
of the protocol, respectively: by combining these two assurances, A can conclude
that kAB is a fresh session key which can be safely used to communicate with B.
We model this last information through the predicate Session(kAB , A,B) and we
formalize the previous deduction by assuming the authorization policy:

!∀x, y, z.(Key(x, y, z)⊗ Auth(x, y, z)(Session(x, y, z)).

We next discuss how we can show the compliance of the protocol against the
previous policy by refinement type-checking.

2.9.3 Implementing and typing timestamps

We turn our attention to the implementation. We build on a very simple library
for timestamp management, that we allow the principals to access. We note that
timestamps are modeled as monotonic counters. To guarantee the freshness of a
timestamp in the case that the opponent executes the protocol function multiple
times, we pair the counter with a global, instance-dependent, fresh random bit-
string rand that is created at the beginning of the protocol specification using the

46

2.9. EXAMPLE: KERBEROS

function mkfresh. This usage of a random bitstring models the assumption that
different sessions of Kerberos running in parallel will use different timestamps. Of
course, we could consider more realistic and complicated implementations, but
the following one suffices to convey the intuition about our methodology:

(∗ Typing a timestamp ∗)
type TStamp = TS of (bytes ∗ int)

(∗ Increment a timestamp by 1 ∗)
let inc_ts t =
match t with TS (rt, tt) →
TS (rt, tt + 1)

(∗ Pick a fresh timestamp, based on the value stored in r ∗)
let get_ts r = fun () →
r := inc_ts !r; !r

(∗ Check a timestamp t for freshness , based on the value stored in r ∗)
let check_ts r id t ’ =
match !r with TS (rt, tt) →
match t’ with TS (=rt, tt’) →
if (tt ’ > tt) then
r := t ’; assume F(id, t’)

else
failwith "not_a_fresh_timestamp"

(∗ The handle to access the two functions above ∗)
let init_ts rand glob id =
let tss = !glob in
let res = search tss id in
match res with
| Some(r) −> (get_ts r, check_ts r id)
| None −> let newref = mkref TS (rand, 0) in

glob := (id,newref)::tss; (get_ts newref, check_ts newref id)

Each principal stores the last received timestamp in a reference, created by
an invocation to the function init_ts, described below. The function inc_ts:
TStamp → TStamp is used to increment a timestamp by 1, the function get_ts:
Ref(TStamp) → unit → TStamp is used to create fresh timestamps, and the de-
pendent function check_ts: Ref(TStamp) → x : string → y : TStamp → {_ :
unit | F(x, y)} is used to check whether a received timestamp y is fresh and can
be used to deem timely a communication with the principal x. The code of the
function performs a conditional branch: if the timestamp is fresh, it assumes the
logical formula encoding such a fact; otherwise, it fails. The function failwith
throws an exception, so it can be safely given the polymorphic type string → α;

47

CHAPTER 2. AF7

as a consequence, check_ts can be given the previous dependent function type,
whose refined return type provides the freshness assumption.

The function init_ts is more complicated. It takes three parameters: the
global instantiation-specific nonce rand, the identity of a principal id and a global
reference glob, containing a list of pairs (id’,r’), where id’ is the identity of a
principal and r’ is a reference containing the last timestamp presented by id’
(TS (rand, 0) if none). The function starts by retrieving this list from glob,
bounding it to tss, and then uses an auxiliary function search to detect if there
exists an entry of the form (id,r) in tss. If this is the case, init_ts returns a pair
of functions (get_ts r, check_ts r id), which will allow the caller to get a fresh
timestamp and to check the freshness of the timestamps received by id. If id has
never presented a timestamp when init_ts is invoked, the function creates a fresh
reference containing TS (rand, 0) and updates the list stored in the reference glob
to preserve the expected invariant, then it returns again a pair of functions for
timestamp management. This implementation ensures that different instances
of a protocol participant with the same identity will share the same counter for
timestamps, which is important to protect the protocol against replay attacks.
The init_ts function has type:

bytes→ Ref(List(string ∗ TStamp))→ x : string→
((unit→ TStamp) ∗ (y : TStamp→ {_ : unit | F(x, y)})).

2.9.4 Typing the session key using self-dependent key types

Before discussing the implementation of the principal A, we must first consider a
subtle issue related to verification. We pointed out that, at step 4 of the protocol,
A must be able to infer that kAB has been previously authenticated by B. The
problem for verification is that the formula Auth(kAB , A,B) modeling this fact
must be conveyed by the type of the key kAB itself, but neither the key kAB nor
the two identifiers A and B occur in the payload of the last protocol message,
hence we cannot predicate on them using dependent typing. While the problem
of letting the payload of the key refer to the identifiers A and B can be solved
quite easily, since the referred to identities are globally and publicly known, the
problem of letting the payload of a key predicate over the key itself is more
involved due to lexical scoping. We show how to devise an encoding to solve the
problem of self-dependent key types, which is close in spirit to the session key
treatment advocated in some of our previous work [2].

Here we rely on a sealing-based encoding, where the self-dependent key kAB

consists of a key identifier iAB and a pair k′AB composed of the sealing and
unsealing functions, thus having the form kAB = (iAB , k

′
AB). The predicate Auth

of the protocol refers to the identifier iAB of the key kAB , i.e., we actually assume
Auth(iAB , A,B) rather than Auth(kAB , A,B) as we were discussing in the previous
informal overview. The link between each self-dependent key k and its respective
key identifier i is logically modeled by the predicate KeyIdent(k, i), which holds
true for all valid key-identifier pairs. The adapted authorization policy then looks

48

2.9. EXAMPLE: KERBEROS

as follows:

!∀w, x, y, z.(Key(x, y, z)⊗ KeyIdent(x,w)⊗ Auth(w, y, z)(Session(x, y, z)).

In the following we present the definition of our sealing-based library for the
self-dependent session key kAB . For presentation convenience, we make use of the
following notation:

type MsgAB<x,y,z> = ({t : TStamp | !(F(y, t)(Auth(x, y, z))}+ TStamp

to denote the (open) type MsgAB of the session key payload. Here, x ∈ fv(MsgAB<x,y,z>)
refers to the key identifier, while y, z ∈ fv(MsgAB<x,y,z>) refer to the glob-
ally available public identifiers A and B respectively. Note that this type is a
sum type, since the key kAB will be used by B to encrypt a timestamp of type
(t : TStamp){!(F(B, t)(Auth(x, y, z))} and by A to encrypt a non-refined times-
tamp of type TStamp (since we do not focus on the verification of B here). The
sealing-based library for the dependent key kAB shared between A and B is given
below:

(∗ Closed type of the session key established by Kerberos.
Here, w stands for the key identifier discussed above ∗)

type DSymKey = DSym of (w : string ∗ ((MsgAB<w,A,B> → Un) ∗
(Un→ MsgAB<w,A,B>)))

(∗ Generate a fresh identifier ∗)
val new_fresh_id: unit→ string

(∗ Create a new self-dependent key ∗)
let mkdepkey: unit→ DSymKey = fun () →
let id = new_fresh_id () in
let s = mkseal "dsymkey" in
DSym (id,s)

(∗ Get the key identifier corresponding to a self -dependent key ∗)
let get_key_ident k: (k : DSymKey→ {x : string | !KeyIdent(k, x)}) =

match k with DSym (x, _) → assume !KeyIdent(k, x); x

(∗ Self -dependent symmetric encryption function ∗)
let depencrypt x k m: (x : string→ DSymKey→ MsgAB<x,A,B> → Un) =

match k with DSym (=x, (seal, _)) → seal m

(∗ Self -dependent symmetric decryption function ∗)
let depdecrypt x k c: (x : string→ DSymKey→ Un→ MsgAB<x,A,B>) =

match k with DSym (=x, (_, unseal)) → unseal c

In the function mkdepkey we call the existing seal creation function mkseal, which
is used to generate a new seal that is paired with a fresh key identifier. Specifically,
recall that we have:

49

CHAPTER 2. AF7

type Seal(α) = (α→ Un) ∗ (Un→ α)
val mkseal: string→ Seal(α)

In the case of the key generation function mkdepkey, the placeholder α is replaced
by the monomorphic type MsgAB<id,A,B>. Hence we must ensure that id is in
scope when specializing the mkseal function.

Finally, we can briefly comment the other functions of our small library. The
function get_key_ident extracts the identifier i from a dependent key k and tracks
the logical dependence KeyIdent(k, i) through its refined return type. Contrary
to standard sealing-based encryption and decryption, the functions depencrypt
and depdecrypt take the key identifier as an additional argument and perform
a pattern-matching operation to bridge the dependent typing allowed by pair
splitting and the dependent typing enabled by the definition of these functions.
In the syntax of types, the need for this pattern matching operation is made
apparent by the occurrence of the same variable x in both the function type of
depencrypt/depdecrypt and the data type MsgAB<x,A,B>.

2.9.5 Type-checking the initiator

We finally have all the ingredients to discuss how the initiator A is type-checked.
The code of the principal looks as follows:

(∗ Authorization policy ∗)
assume !∀w, x, y, z.(Key(x, y, z)⊗ KeyIdent(x,w)⊗ Auth(w, y, z)(Session(x, y, z))

(∗ Typing the message from A to B, where MsgAB<x,y,z> will be
closed by instantiating it in the definition of the session key type ∗)

type MsgAB<x,y,z> = MsgAB of {t : TStamp | !(F(y, t)(Auth(x, y, z))}+ TStamp

(∗ Typing the session key established by Kerberos ∗)
type DSymKey = DSym of (w : string ∗ ((MsgAB<w,A,B> → Un)∗

(Un→ MsgAB<w,A,B>)))

(∗ Typing the message from S to A, where MsgSA<x> will be
closed by instantiating it in the initiator function ∗)

type MsgSA<x> = MsgSA of (xts : TStamp ∗ xkAB : DSymKey ∗ xB : string ∗ y : Un)
{!(F(xB , xts)(Key(xkAB , x , xB))}

(∗ Initiator code, where rand is a fresh global bitstring and
glob denotes a global reference, which are both provided in the
protocol specification and are not under the control of the opponent ∗)
let initiator rand glob A addA B addB S addS (kAS: SymKey(MsgSA<A>)) =

let (get_tsB, check_tsB) = init_ts rand glob B in
send addS (A,B);
let msgSA = receive addA in
let plainSA = sdecrypt kAS msgSA in

50

2.9. EXAMPLE: KERBEROS

match plainSA with
MsgSA (xts, xkAB, =B, y) →
(∗ !(F(B, xts)(Key(xkAB , A,B)) holds true ∗)
let _ = check_tsB xts in
(∗ F(B, xts) holds true ∗)
let tA = get_tsB () in
let iAB = get_key_ident xkAB in
(∗ !KeyIdent(xkAB , iAB) holds true ∗)
let msgAB = depencrypt iAB xkAB tA in
send addB (y,msgAB);
let msgBA = receive addA in
(∗ tA′ = tA + 1 ∗)
let tA’ = inc_ts tA in
let (=tA’) = depdecrypt iAB xkAB msgBA in
(∗ !(F(B, tA′)(Auth(iAB , A,B)) holds true ∗)
let _ = check_tsB tA’ in
(∗ F(B, tA′) holds true ∗)
assert Session(xkAB , A,B)

Decryption and pattern-matching introduce the guarded formulas needed to
type-check the initiator, while invocations to the timestamp library extend the
typing environment with the control formulas needed to retrieve the payload
formulas of interest. Specifically, the initiator starts by creating the handle to
the timestamp library through the call init_ts B, which returns the two functions
get_tsB and check_tsB. The interesting point here is the type of check_tsB, i.e.,
y : TStamp→ {_ : unit | F(B, y)}, hence a successful call to this function allows
for deeming a communication with B as timely. To understand why the function
is given that type, recall that init_ts has the following type:

bytes→ Ref(List(string ∗ TStamp))→ x : string→
((unit→ TStamp) ∗ (y : TStamp→ {_ : unit | F(x, y)})).

and observe that check_tsB is obtained by projecting the second component of
the pair returned by the call init_ts rand glob B. Now, the logical environment
is populated as follows:

(i) when A decrypts the message from S and performs pattern matching, we
introduce the formula !(F(B, xts) (Key(xkAB , A,B)), based on the type
of the symmetric key kAS : SymKey(MsgSA<A>);

(ii) when A calls the check_tsB function on the timestamp xts received by S,
we introduce the formula F(B, xts), based on the typing discussed above;

(iii) when A calls the get_key_ident function on the self-dependent key xkAB
shared with B, we introduce the formula !KeyIdent(xkAB , iAB), where iAB
is the key identifier associated to xkAB;

51

CHAPTER 2. AF7

(iv) when A decrypts the message from B using the self-dependent key xkAB
identified by iAB, we introduce the formula !(F(B, tA′)(Auth(iAB , A,B)),
based on the type of the depdecrypt function associated to xkAB, where tA′

corresponds to tA incremented by 1;

(v) finally, when A calls the check_tsB function on the timestamp tA′ received
by B, we introduce the formula F(B, tA′), similarly to what we do at point
(ii).

Using (i) and (ii), we can prove Key(xkAB , A,B), while using (iv) and (v) we can
prove Auth(iAB , A,B). These two formulas, along with !KeyIdent(xkAB , iAB)
at point (iii), allow to derive the assertion Session(xkAB , A,B) based on the
underlying authorization policy, hence the initiator is well-typed.

To conclude that the protocol actually respects the authorization policy de-
spite the introduction of the serializers, it is enough to ensure that F(B, t) is
assumed at most once for any possible choice of t. To prove it, we must guaran-
tee that at the beginning of the protocol specification function:

1. the global fresh value rand is freshly generated using the function mkfresh
that never generates the same value twice;

2. the global reference glob storing the received timestamps is correctly in-
stantiated to the empty list and is not provided by the opponent as an ar-
gument to the protocol specification function. We thus note that different
participants running with identity A share the same counter for timestamps
management by construction of our library (cf. Section 2.9.3) and that each
invocation to check_tsB always returns an assumption predicating over in-
creasing values of t.

2.10 Algorithmic type-checking (AF7alg)

The type system presented in Section 2.6 includes several non-deterministic rules,
which make it hard to implement an efficient decision procedure for typing. In
this section we outline an algorithmic variant of the type system, which we prove
sound and complete. We first focus on presenting the main intuitions behind the
algorithmic type system design and then show the complete formalization.

2.10.1 Overview

While standard sources of non-determinism (like subtyping or refining value
types) can be eliminated using type annotations, the rewriting of logical envi-
ronments, which is the distinctive source of non-determinism of our system, is
harder to deal with. The core idea underlying the algorithmic version of the type
system is to dispense with the logical environment ∆ and to construct bottom-up
a single logical formula that characterizes all the proof obligations that would
normally be introduced along the type derivation. In such a way, all the burden

52

2.10. ALGORITHMIC TYPE-CHECKING (AF7ALG)

(Val Var Alg)
Γ `alg � (x : T) ∈ Γ

Γ `alg x : T ;1

(Val Fun Alg)
Γ, x : ψ(T) `alg E : U ;F ′ fnfv(T) ⊆ dom(Γ) ∪ {x}
Γ `alg λx : T.E : (x : T → U); !∀x.(forms(x : T)(F ′)

(Val Ref Alg)
Γ `alg M : T ;F ′ fnfv(F) ⊆ dom(Γ) ∪ {x}
Γ `alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(Val Pair Alg)
Γ `alg M : T ;F1 Γ `alg N : U{M/x};F2

Γ `alg (M,N) : x : T ∗ U ; !F1⊗!F2

(Exp Let Alg)
E ∅ [∆′ | E′]

Γ `alg E′ : T ;F1 Γ, x : ψ(T) `alg D : U ;F2 x /∈ fv(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg let x = E in D : U ; ∆′((F1 ⊗ ∀x.(forms(x : T)(F2))

Notation: Here E := 〈E〉 denotes the expression obtained from E by erasing all
its typing annotations.

Table 2.14: Selected algorithmic rules for typing values and expressions (AF7alg)

due to resource management can be shifted to an external affine logic theorem
prover, which has to deal with this issue anyway.

More in detail, every typing judgement of the form Γ; ∆ ` J is matched by an
algorithmic counterpart of the form Γ `alg J ;F . Intuitively, typing an expression
algorithmically constitutes of two steps:

1. The expression (decorated with type annotations whenever needed) is type-
checked using the algorithmic type system. This process is syntax-directed
and fully deterministic, and in case of success yields one proof obligation
F .

2. The proof obligation is verified, e.g., using an external theorem prover.

If both steps succeed, then the expression is well-typed.

2.10.2 Key ideas

We illustrate the main ideas behind our algorithmic type system on some repre-
sentative rules, shown in Table 2.14. The algorithmic rules for kinding (cf. Sec-
tion 2.10.4), subtyping (cf. Section 2.10.5), and typing the remaining values and
expressions (cf. Section 2.10.6) follow along the same lines. For the sake of read-
ability we often abuse notation and we let the multiset F1, . . . , Fn stand for the
formula F1 ⊗ . . .⊗ Fn.

53

CHAPTER 2. AF7

We first notice that, according to standard practice, we rely on typing anno-
tations to deal with non-structural rules. Annotated terms and expressions are
denoted by M and E, respectively. Their syntax is given in Table 2.19. The
explicit erasure of all typing annotations of an expression is denoted by 〈E〉. For
instance, we explicitly annotate values that are expected to be given a refinement
type (cf. (Val Ref Alg)) with the expected refinement F and use annotations
to assign an explicit argument type T to functional values (cf. (Val Fun Alg)).
In this way, every possible syntactic form for expressions is matched by a single
type rule and the selection of appropriate types and refinements does not rely on
non-determinism.

We now exemplify the general concepts underlying our technique by contrast-
ing the standard typing rule (Val Fun) with its algorithmic counterpart (Val
Fun Alg). The main source of non-determinism in (Val Fun) is the rewriting
of ∆ to !∆′. As previously mentioned, our goal is to dispense with logical environ-
ments and their rewriting, by collecting a single proof obligation that accounts
for the proof obligations generated in the original type system. In the algorithmic
version, the proof obligation obtained by giving λx : T.E type V = x : T → U
in the environment Γ is:

!∀x.(forms(x : T)(F ′),

where F ′ is the proof obligation collected by giving E type U in Γ, x : ψ(T).
In the following, we briefly justify why this approach is sound, i.e., we argue

why Γ `alg λx : T.E : V ; !∀x.(forms(x : T)(F ′) implies that Γ; ∆ ` λx. 〈E〉 : V
for any ∆ such that Γ; ∆ ` !∀x.(forms(x : T) (F ′). Notice that the latter
judgement is equivalent to assuming that ∆ entails !∀x.(forms(x : T)(F ′) and
both the multiset and the formula are well-formed with respect to Γ. Using the
rules of the logic, we can show that a proof of Γ; ∆ ` !∀x.(forms(x : T) (F ′)
implies that there exists ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and:

Γ; !∆′ ` ∀x.forms(x : T)(F ′.

Intuitively, this means that we can eliminate the exponential modality by rewrit-
ing the logical environment in exponential form. Furthermore, the well-formedness
of the (algorithmic) environment Γ, x : ψ(T) and the (non-algorithmic) environ-
ment Γ; !∆′ ensures that x /∈ dom(Γ) and thus x /∈ fv(!∆′): in this case, the logic
allows us to further eliminate the universal quantification, adding a type binding
for x in order to keep the logical environment well-formed (the actual type is not
relevant from the logic point of view). Thus, we have:

Γ, x : ψ(T); !∆′ ` forms(x : T)(F ′.

Using rule ((-Left), we can finally prove:

Γ, x : ψ(T); !∆′, forms(x : T) ` F ′.
By inductive reasoning, Γ, x : ψ(T); !∆′, forms(x : T) ` 〈E〉 : U , hence (Val
Fun) allows us to derive Γ; ∆ ` λx. 〈E〉 : V . The proof of completeness is
similar.

54

2.10. ALGORITHMIC TYPE-CHECKING (AF7ALG)

The other algorithmic (typing) rules are constructed along the same lines,
using the following additional observations:

• If a typing rule contains no kinding, subtyping, or typing premise (e.g., (Val
Var)), the proof obligation of the corresponding algorithmic rule is set to
1 (cf. (Val Var Alg)) and thus trivially fulfilled.

• If a typing rule contains multiple premises (e.g., (Val Pair)), then we
combine the proof obligations obtained from the premises conjunctively
(cf. (Val Pair Alg)).

• If a typing rule relies on extraction (e.g., (Exp Let)) and adds the extracted
environment ∆′ to the environment before rewriting, the algorithmic variant
of the rule (Exp Let Alg) creates a proof obligation of the form ∆′(F ,
where F is the proof obligation obtained by combining the proof obligations
of the premises using the techniques described above.

With these insights in mind, we now show the complete formalization of the
algorithmic type system.

2.10.3 Base judgements

The base judgements of the algorithmic type system are reported in Table 2.10.3.

(Env Empty Alg)
ε `alg �

(Type Env Entry Alg)
Γ `alg � dom(µ) ∩ dom(Γ) = ∅

µ = x : T ⇒ T = ψ(T) ∧ fnfv(T) ⊆ dom(Γ)

Γ, µ `alg �

(Type Alg)
Γ `alg � fnfv(T) ⊆ dom(Γ)

Γ `alg T

Table 2.15: Algorithmic well-formedness judgements (AF7alg)

The only remarkable point here is that we do not have any algorithmic coun-
terpart of rule (Derive). In fact, we never need to prove a formula in the algo-
rithmic formulation of the type system, but we just collect the proof obligation
for the external affine logic theorem prover.

2.10.4 Kinding

Table 2.16 presents the algorithmic kinding rules. The non-inductive standard
kinding rules (Kind Var) and (Kind Unit), which just check well-formedness of
the environment (or environment membership) and which do not contain a proof

55

CHAPTER 2. AF7

obligation of the form Γ; ∆ ` F amongst their hypotheses, are translated into
algorithmic rules that generate the proof obligation 1. All other (recursive) rules
(e.g., (Kind Fun)) strongly resemble their algorithmic counterparts (e.g., (Kind
Fun Alg)). The proof obligation that is generated in the algorithmic variant
consists of a conjunction of the proof obligations that are recursively generated by
the premises of that rule, following the same principles of the algorithmic typing
rules for values and expressions that we discussed in Section 2.10.2. Note that
a premise that checks the well-formedness of an environment or type does not
generate a proof obligation (cf. (Kind Refine Public Alg)).

(Kind Var Alg)
Γ `alg � (α :: k) ∈ Γ

Γ `alg α :: k;1

(Kind Unit Alg)
Γ `alg �

Γ `alg unit :: k;1

(Kind Fun Alg)
Γ `alg T :: k;F1

Γ, x : ψ(T) `alg U :: k;F2

Γ `alg x : T → U :: k; !F1 ⊗ !F2

(Kind Pair Alg)
Γ `alg T :: k;F1

Γ, x : ψ(T) `alg U :: k;F2

Γ `alg x : T ∗ U :: k; !F1 ⊗ !F2

(Kind Sum Alg)
Γ `alg T :: k;F1

Γ `alg U :: k;F2

Γ `alg T + U :: k; !F1 ⊗ !F2

(Kind Rec Alg)
Γ, α :: k `alg T :: k;F

Γ `alg µα. T :: k; !F

(Kind Refine Public Alg)
Γ `alg {x : T | F} Γ `alg T :: pub;F ′

Γ `alg {x : T | F} :: pub;F ′

(Kind Refine Tainted Alg)
Γ `alg ψ(T) :: tnt;F ′ Γ, x : ψ(T) `alg � T refined

Γ `alg {x : T | F} :: tnt; (∀x.forms(x : T))⊗ F ′

Table 2.16: Algorithmic kinding relation (AF7alg)

2.10.5 Subtyping

The algorithmic subtyping rules are presented in Table 2.18. They resolve the
non-determinism related to the environment splitting by following the key insights
of algorithmic typing presented in Section 2.10.2.

Furthermore, the algorithmic subtyping rules resolve the non-determinism
that arises due to the fact that standard subtyping is not syntax-driven as de-
scribed in the following. We use T 6=> U to denote that T and U are not refined
and do not share the same top-level constructor.

The algorithmic type system makes use of the following observation: for all
non-refined types T, U there are at most three standard subtyping rules appli-
cable, namely (Sub Refl), (Sub Pub Tnt), and in the case that T and U
share the same top-level constructor one corresponding structural subtyping rule,

56

2.10. ALGORITHMIC TYPE-CHECKING (AF7ALG)

e.g., (Sub Fun) or (Sub Pair). In the case that T or U are refined, the three
standard subtyping rules (Sub Refl), (Sub Pub Tnt), or (Sub Refine) might
be applicable.

To reduce this level of non-determinism the algorithmic subtyping rules allow
the reflexivity rule (Sub Refl Alg) to be applied only to the non-inductive type
unit and type variables α. Furthermore, we restrict the application of the kinding
based rule (Sub Pub Tnt Alg) to types T, U that are structurally different
and not refined, i.e., T 6=> U . Therefore, we can determine the appropriate
subtyping rule by simple syntactic checks. Note that two types T, U , which share
the same top-level constructor can still be subtyped using reflexivity or kinding
by recursively applying the corresponding structural subtyping rule until one of
the subgoals matches the premise of either the (Sub Refl Alg) or (Sub Pub
Tnt Alg) rule. Similarly, if either T or U or both are refined they can be typed
using reflexivity or kinding by first applying the refinement rule (Sub Refine
Alg) and then applying either the (Sub Refl Alg) or (Sub Pub Tnt Alg)
rule to the subgoal.

This approach is sound and complete for all but the subtyping of two iso-
recursive types. This is related to our choice of adapting the iso-recursive sub-
typing proposed by Backes et al. [32,33], which requires the recursive variable to
occur only positively in the iso-recursive type, instead of the Amber rule (cf. (Sub
Pos Rec) in Section 2.6.4). For instance, given the above constraints, subtyping
Γ `alg µα. (x : α → T) <: µα. (x : α → T);F or Γ `alg µα. (x : α → unit) <:
µα. (x : α → unit + unit);F would not be possible, thus lacking reflexivity and
kinding based algorithmic subtyping for iso-recursive types. Therefore, our al-
gorithmic type system contains three rules for subtyping two iso-recursive types:
(Sub Refl Rec Alg), (Sub Pub Tnt Rec Alg), and (Sub Pos Rec Alg),
respectively. While checking whether or not to apply rule (Sub Refl Rec Alg)
can be done by performing a simple equality check on the types, the decision
between (Sub Pub Tnt Rec Alg) and (Sub Pos Rec Alg) requires some
guidance, leading to the introduction of manual annotations of the form SPT to
denote that the rule (Sub Pub Tnt Rec Alg) should be applied. This anno-
tation appears in the subtyping rule for expressions (cf. (Exp Subsum Alg)),
which we explain in Section 2.10.6.

The syntax of annotated types T is introduced in Table 2.17. Intuitively, we
allow type annotations SPT only on iso-recursive types and require them to not
be nested. We let 〈T 〉 denote the explicit erasure of all annotations SPT from
an annotated type T . To facilitate readability we often write T to denote the
non-annotated counterpart 〈T 〉 of the annotated type T . We can easily extend
the definition of the function ψ (used for the removal of top-level refinements) to
annotated types.

2.10.6 Typing values and expressions

The algorithmic typing rules for values and expressions are given in Table 2.10.6
and Table 2.10.6, respectively. The rules follow according to the intuition de-

57

CHAPTER 2. AF7

T , U, V ::= annotated types
unit unit
α type variable
x : T → U dependent function type (scope of x is U)
x : T ∗ U dependent pair type (scope of x is U)
T + U sum type
µα. T iso-recursive type without top-level annotation
(µα. T)SPT iso-recursive type with top-level annotation
{x : T | F} refinement type (scope of x is F)

ψ(U) =

{
ψ(T) if U = {x : T | F}
U otherwise

〈U〉 =

unit if U = unit

α if U = α

x : 〈U1〉 → 〈U2〉 if U = x : U1 → U2

x : 〈U1〉 ∗ 〈U2〉 if U = x : U1 ∗ U2

〈U1〉+ 〈U2〉 if U = U1 + U2

µα. 〈T 〉 if U = µα. T

µα. T if U = (µα. T)SPT

{x : 〈T 〉 | F} if U = {x : T | F}

Table 2.17: Syntax of annotated AF7alg types and annotation erasure

scribed in Section 2.10.2. We furthermore rely on type annotations to guide the
selection of applicable typing rules and appropriate types. The syntax of anno-
tated values and expressions is given in Table 2.19. Here “_” is used to denote
a type that is derived by the typing rules and thus does not need to be speci-
fied by the annotator. We denote the recursive erasure of all typing annotations
by 〈E〉 and often use E to denote the expression 〈E〉 obtained from the anno-
tated expression E by erasing all its typing annotations. The extraction relation
E ∅ [∆ | D] for annotated expressions (cf. Table 2.10.6) extracts formulas as in
the non-annotated case while keeping annotations on the expressions intact but
for the case of assumptions, where it changes the type annotation in the original
assumption to a subtyping annotation in the extracted assumption for all types
different from unit. The notions of free names and free variables correspond to
the non-annotated case.

Since in the typing rule (Val Fun) for functions the type of the input is
chosen non-deterministically, we use the annotation λx : T.E to guide the algo-
rithmic type system (Val Fun Alg) in the selection of a suitable input type
T . The annotation M{x:_ | F} explicitly triggers the rule (Val Ref Alg) and

58

2.10. ALGORITHMIC TYPE-CHECKING (AF7ALG)

(Sub Refl Alg)
Γ `alg T T ∈ {unit, α}

Γ `alg T <: T ;1

(Sub Pub Tnt Alg)
Γ `alg T :: pub;F1 Γ `alg U :: tnt;F2 T 6=> U

Γ `alg T <: U ;F1 ⊗ F2

(Sub Fun Alg)
Γ `alg T ′ <: T ;F1 Γ, x : ψ(T ′) `alg U <: U ′;F2

Γ `alg x : T → U <: x : T ′ → U ′; !F1 ⊗ !F2

(Sub Pair Alg)
Γ `alg T <: T ′;F1

Γ, x : ψ(T) `alg U <: U ′;F2

Γ `alg x : T ∗ U <: x : T ′ ∗ U ′; !F1 ⊗ !F2

(Sub Sum Alg)
Γ `alg T <: T ′;F1 Γ `alg U <: U ′;F2

Γ `alg T + U <: T ′ + U ′; !F1 ⊗ !F2

(Sub Pos Rec Alg)
Γ, α `alg T <: T ′;F T 6= T ′ α occurs only positively in T and T ′

Γ `alg µα. T <: µα. T ′; !F

(Sub Refl Rec Alg)
Γ `alg µα. T

Γ `alg µα. T <: µα. T ;1

(Sub Pub Tnt Rec Alg)
Γ `alg µα. T :: pub;F1 Γ `alg µα. U :: tnt;F2

s = SPT⊕ s′ = SPT

Γ `alg (µα. T)s <: (µα. T ′)s′ ;F1 ⊗ F2

(Sub Refine Alg)
Γ `alg ψ(T) <: ψ(U);F T and/or U refined Γ `alg T Γ `alg U

Γ `alg T <: U ;F ⊗ ∀y.(forms(y : T)(forms(y : U))

Notation: We write T 6=> U to denote that T and U are not refined and do not
share the same top-level constructor. ⊕ denotes the exclusive or. We use T to
denote the non-annotated counterpart 〈T 〉 of the annotated type T .

Table 2.18: Algorithmic subtyping relation (AF7alg)

expects M to type-check with refinement F , while the annotations (inl M)_+U

and (inl M)T+_ are used to provide the respective missing type in the sum type
T + U that will be assigned to inl M and inr M (cf. (Val Inl Alg) and (Val

59

CHAPTER 2. AF7

Inr Alg)). Furthermore, the rule (Exp Subsum) is highly non-deterministic,
since its application can be tried at any time using any combination of possible
sub- and supertypes. In the algorithmic version of the type system we prevent
the unnecessary application of subtyping and help the choice of an appropriate
supertype T ′ by annotating an expression E as E_<:T ′ whenever subtyping is
necessary (cf. (Exp Subsum Alg)). Note that the type T ′ will additionally be
annotated with SPT in case that the subtyping should make use of rule (Sub
Pub Tnt Rec Alg), resulting in the annotated type T ′. Since the typing rule
(Exp Assume) non-deterministically chooses a type T , its algorithmic counter-
part (Exp Assume Alg) requires an explicit annotation of the form (assume F)T
to provide the expected type T .

M,N ::= values
x variable
() unit
(M,N) pair
λx : T.E annotated function with input of type T
(inl M)_+T annotated left constructor
(inr M)T+_ annotated right constructor
fold M fold constructor
M{x:_ | F} value to be refined with F
M_<:T value to be subtyped to T

D,E ::= expressions
M value
M N application
M = N syntactic equality
let x = E in E

′ let (scope of x is E′)
let (x, y) = M in E pair split (scope of x, y is E)
match M with h x then E else E′ match (scope of x is E)
(νa)E restriction (scope of a is E)
E � E′ fork
a!M message send
a? message receive
assume 1 non-annotated truth assumption
(assume F)T annotated assumption with expected type T
assert F assertion
E_<:T expression to be subtyped to T

Table 2.19: Syntax of annotated RCFAF7 expressions

2.10.7 Formal results

We can state and prove the following formal results, which highlight the correct-
ness and the accuracy of the algorithmic type system.

60

2.10. ALGORITHMIC TYPE-CHECKING (AF7ALG)

(Val Var Alg)
Γ `alg � (x : T) ∈ Γ

Γ `alg x : T ;1

(Val Unit Alg)
Γ `alg �

Γ `alg () : unit;1

(Val Fun Alg)
Γ, x : ψ(T) `alg E : U ;F ′ fnfv(T) ⊆ dom(Γ) ∪ {x}
Γ `alg λx : T.E : x : T → U ; !∀x.(forms(x : T)(F ′)

(Val Pair Alg)
Γ `alg M : T ;F1 Γ `alg N : U{M/x};F2

Γ `alg (M,N) : x : T ∗ U ; !F1 ⊗ !F2

(Val Ref Alg)
Γ `alg M : T ;F ′ fnfv(F) ⊆ dom(Γ) ∪ {x}
Γ `alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(Val Inl Alg)
Γ `alg M : T ;F ′ Γ `alg U
Γ `alg (inl M)_+U : T + U ; !F ′

(Val Inr Alg)
Γ `alg M : U ;F ′ Γ `alg T

Γ `alg (inr M)T+_ : T + U ; !F ′

(Val Fold Alg)
Γ `alg M : T{µa. T/α};F ′

Γ `alg fold M : µα. T ; !F ′

Notation: Here M = 〈M〉 denotes the value obtained from M by erasing all its
typing annotations.

Table 2.20: Algorithmic typing of values (AF7alg)

Theorem 2.4 (Soundness of Algorithmic Typing). If Γ `alg E : T ;F and Γ; ∆ `
F , then Γ; ∆ ` 〈E〉 : T .

Proof. See Appendix A.2.

Theorem 2.5 (Completeness of Algorithmic Typing). If Γ; ∆ ` E : T , then
there exist E,F such that 〈E〉 = E and Γ `alg E : T ;F and Γ; ∆ ` F .

Proof. See Appendix A.2.

2.10.8 Example

The proof obligation assigned to the cust function in Section 2.8 by the algorithmic
formulation of our type system is shown below:

∀C.∀M.∀B.∀g.∀p.
∀nC .((N1(nC)⊗ N2(nC))(
∀xnM .(!(N1(nC)((∀y.Pay(y, p,M, xnM)(Ship(M, g, C)))(

!(N2(nC)((∀z.Pay(B, p, z, xnM)))(
Ship(M, g, C)))

61

CHAPTER 2. AF7

(Exp Subsum Alg)
Γ `alg E : T ;F1

Γ `alg T <: T ′;F2

Γ `alg E_<:T ′ : T ′;F1 ⊗ F2

(Exp Appl Alg)
Γ `alg M : x : T → U ;F1

Γ `alg N : T ;F2

Γ `alg M N : U{N/x};F1 ⊗ F2

(Exp Let Alg)
E ∅ [∆′ | E′] Γ `alg E′ : T ;F1

Γ, x : ψ(T) `alg D : U ;F2 x /∈ fv(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg let x = E in D : U ; ∆′((F1 ⊗ ∀x.(forms(x : T)(F2))

(Exp Split Alg)
Γ `alg M : x : T ∗ U ;F1 Γ, x : ψ(T), y : ψ(U) `alg E : V ;F2 {x, y} ∩ fv(V) = ∅

Γ; ∆ `alg let (x, y) = M in E : V ;
F1 ⊗ ∀x.∀y.(forms(x : T)⊗ forms(y : U)⊗ !((x, y) = M)(F2)

(Exp Match Alg)
Γ `alg M : T ;F1 Γ, x : ψ(H) `alg E : U ;F2 Γ; ∆2 `alg D : U ;F3

(h,H, T) ∈ {(inl, T1, T1 + T2), (inr, T2, T1 + T2), (fold, T ′{µα. T ′/α}, µα. T ′)}
fnfv(H) ⊆ dom(Γ) ∪ {x}

Γ; ∆ `alg match M with h x then E else D : U ;
F1 ⊗ ∀x.(forms(x : H)⊗ !(h x = M)(F2)⊗ F3

(Exp Eq Alg)
Γ `alg M : T ;F1 Γ `alg N : U ;F2 x /∈ (fv(M) ∪ fv(N))

Γ `alg M = N : {x : bool | !(x = true(M = N)};F1 ⊗ F2

(Exp True Alg)
Γ `alg �

Γ ` assume 1 : unit;1

(Exp Assume Alg)
Γ `alg (assume 1)_<:T : T ;F ′

F 6= 1 fnfv(F) ⊆ dom(Γ)

Γ `alg (assume F)T : T ;F (F ′

(Exp Assert Alg)
Γ `alg �

fnfv(F) ⊆ dom(Γ)

Γ `alg assert F : unit;F

(Exp Res Alg)
E a [∆′ | E′] Γ, a l T `alg E′ : U ;F

a /∈ fn(U) fnfv(∆′) ⊆ dom(Γ)

Γ `alg (νa l T)E : U ; ∆′(F

(Exp Send Alg)
Γ `alg M : T ;F

(a l T) ∈ Γ

Γ `alg a!M : unit;F

(Exp Recv Alg)
Γ `alg �

(a l T) ∈ Γ

Γ `alg a? : T ;1

(Exp Fork Alg)
E1 ∅ [∆1 | D1]

E2 ∅ [∆2 | D2] Γ `alg D1 : T1;FA Γ `alg D2 : T2;FB fnfv(∆1,∆2) ⊆ dom(Γ)

Γ `alg E1 � E2 : T2; (∆1,∆2)((FA ⊗ FB)

Notation: Here E = 〈E〉 denotes the expression obtained from E by erasing all its typing
annotations.

Table 2.21: Algorithmic typing of expressions (AF7alg)

For the sake of readability we removed all unnecessary occurrences of 1 and all
unused quantified variables. In this example, as well as in the other protocol
we considered, the problem of solving equalities is reduced to the unification of

62

2.11. RELATED WORK

(Extr Fork)
E1 ã [∆1 | D1] E2 ã [∆2 | D2]

(E1 � E2)s ã [∆1,∆2 | (D1 � D2)s]

(Extr Let)
E1 ã [∆ | D1]

(let x = E1 in E2)s ã [∆ | (let x = D1 in E2)s]

(Extr Res)

E a,̃b [∆ | D]

((νa)E)s b̃ [∆ | ((νa)D)s]

(Extr Assume Unit)
F 6= 1 fn(F) ∩ {ã} = ∅

((assume F)unit)s ã [F | (assume 1)s]

(Extr Assume)
F 6= 1 fn(F) ∩ {ã} = ∅ T 6= unit

((assume F)T)s ã [F | ((assume 1)_<:T)s]

(Extr Exp)
no other rule applies

E ã [∅ | E]

Remark: Note that here s is either SPT or ε (i.e., no annotation).

Table 2.22: The extraction relation for annotated expressions (AF7alg)

variables. This allows us to use the llprover [56] theorem prover, which at
the time of writing does not support equality theories. The above formula is
discharged in less than 20 ms.

2.11 Related work

Several papers develop type systems for (variants of) RCF [31–35, 57] but, with
the exception of F∗ [35], they do not support resource-aware policies: in fact, even
for simple linearity properties like injective agreement they rely on hand-written
proofs [58].

F∗ [35] is a dependently typed functional language for secure distributed pro-
gramming, featuring refinement types to reason about authorization policies and
affine types to reason about stateful computations on affine values. Similarly to
companion proposals for RCF, however, the type system of F∗ assumes the ex-
istence of the contraction rule in the underlying logic, hence it does not support
authorization policies built over affine formulas. While some simple authentica-
tion patterns (e.g., basic nonce handshakes) may certainly be expressed by encod-
ing affine predicates in terms of affine values, other more complex authentication
mechanisms are much harder to handle in these terms. The EPMO protocol we
analyze in Section 2.8 provides one such case, as (i) the nonce it employs may
not be construed as an affine value because it is used twice, and (ii) the logical
formulas justified by cryptographic message exchanges are more structured than
simple predicates. Though it might be possible to come up with sophisticated

63

CHAPTER 2. AF7

encodings of these authentication mechanisms in the programming language (by
resorting to, e.g., pairs of affine tokens to encode a double usage of the same
nonce and special functions to eliminate logical implications), such encodings are
hard to formulate in a general manner and, we argue, are much better expressed
in terms of policy annotations than in some ad-hoc programming pattern.

Bhargavan et al. [59] propose a technique for the verification of F# proto-
col implementations by automatically extracting ProVerif models [16], using an
extension of the functions-as-processes encoding proposed by Milner [60]. Re-
markably, the analysis can deal with injective agreement. On the other hand, the
analysis carried out with ProVerif is not modular and has been shown less robust
and scalable than type-checking [57]. Furthermore, the fragment of F# consid-
ered is rather restrictive: for instance, it does not include higher-order functions
and admits only very limited uses of recursion and state.

A formal account on the integration of refinement types and substructural log-
ics was first proposed by Mandelbaum et al. [51] with a system for local reasoning
about program state built around a fragment of intuitionistic linear logic. Later,
Bierhoff and Aldrich developed a framework for modular type-state checking of
object-oriented programs [61–63]. However, none of these systems deals with the
presence of hostile (or untyped) program components, or attackers, a feature that
is instead distinctive of our system: adapting the previous frameworks to take into
account interactions with an untyped context would require fundamental changes
to their typing rules. The original RCF type-checker [31], for instance, employs a
security-oriented kinding relation to reason about messages sent to and received
from the attacker, which we also adopt in our type system. Recent variants of
the RCF type-checker dispense with the kinding relation and even with concur-
rency [35], but they rely on manually proven logical invariants capturing security
properties of the cryptographic library and, in some cases, of the protocol itself.

Tov and Pucella [64] have recently shown how to use behavioral contracts
to link code written in an affine language to code written in a conventionally
typed language. The idea is to coerce affine values to non-affine ones that can
be shared with the context, but can still be reasoned about safely using dynamic
access counts. There are intriguing similarities between this approach and the
usage of nonces and session keys to enforce linearity properties in an adversarial
setting, which are worth to be investigated in the future. The two type systems
are, however, fundamentally different, since our present work deals with an affine
refinement logic and an adversarial setting, which makes a precise comparison
hard to formulate.

Various techniques have been proposed to statically analyze authenticity prop-
erties of cryptographic protocols [18, 19, 65–68], among which several types and
effects systems [23,25–30,50,69,70]. These type systems incorporate ad-hoc mech-
anisms to deal with nonce handshakes and, thus, to enforce injective agreement
properties. Our exponential serialization technique can be seen as a logic-based
generalization of such mechanisms, independent of the language and the type
system. As a consequence, our type system is similarly able to verify authentic-
ity in terms of injective agreement, while allowing for expressing also a number

64

2.12. CONCLUSION

of more sophisticated properties involving access counts and usage bounds. As
a downside, the current formulation of our AF7 type system does not allow to
validate some specific nonce-handshake idioms, like the SOSH scheme [23]. Still,
this can be recovered by extending AF7 with union and intersection types, as
shown in [32,33].

In previous work [1,2], we made initial steps towards the design of a sound sys-
tem for resource-sensitive authorization, drawing on techniques from type systems
for authentication and an affine extension of existing refinement type systems for
the applied pi-calculus [71]. That work aims at analyzing cryptographic protocols
as opposed to their implementations. Furthermore, such a type system is designed
around a specific cryptographic library: the consequence is that extending the
analysis to new primitives requires significant changes in the soundness proof of
the type system. In contrast, the usage of a λ-calculus in this chapter allows
us to encode cryptography in the language using a standard sealing mechanism
(cf. Section 2.7.2), which makes the analysis technique easily extensible to new
cryptographic primitives. Finally, the non-standard nature of our previous type
system makes it difficult to devise an efficient algorithmic variant, which in turn
can be cleanly designed for the work presented in this chapter.

2.12 Conclusion

We presented AF7, the first type system for statically enforcing the (robust)
safety of cryptographic protocol implementations with respect to authorization
policies expressed in affine logic. AF7 benefits from the novel concept of expo-
nential serialization to achieve a general and flexible treatment of affine formulas
in distributed systems: we showed the effectiveness of this technique on two exist-
ing cryptographic protocols. We finally proposed AF7alg, an efficient, sound, and
complete algorithmic variant of the type system, which is the key for a practical
implementation of our analysis technique.

65

3
Type-Based Verification of Electronic

Voting Protocols

E-voting protocols aim at achieving a wide range of sophisticated security prop-
erties and, consequently, commonly employ advanced cryptographic primitives.
This makes their design as well as rigorous analysis quite challenging. As a mat-
ter of fact, existing automated analysis techniques, which are mostly based on
automated theorem provers, are inadequate to deal with commonly used cryp-
tographic primitives, such as homomorphic encryption and mix-nets, as well as
some fundamental security properties, such as verifiability.

This chapter presents a novel approach based on refinement type systems for
the automated analysis of e-voting protocols. Specifically, we design a generically
applicable logical theory which, based on pre- and post-conditions for security-
critical code, captures and guides the type-checker towards the verification of two
fundamental properties of e-voting protocols, namely, vote privacy and verifia-
bility. We further develop a code-based cryptographic abstraction of the cryp-
tographic primitives commonly used in e-voting protocols, showing how to make
the underlying algebraic properties accessible to automated verification through
logical refinements. Finally, we demonstrate the effectiveness of our approach by
developing the first automated analysis of Helios, a popular web-based e-voting
protocol, using an off-the-shelf type-checker.

Publication. In this chapter we present the work that was presented under the
title ’Type-Based Verification of Electronic Voting Protocols’ at the 4th Confer-
ence on Principles of Security and Trust [5] in 2015. The corresponding technical
report [6] was published in the IACR Cryptology ePrint Archive. Preliminary
results on our analysis of privacy were joint work with Cyrille Wiedling and also
included in his PhD thesis [72].

67

CHAPTER 3. ELECTRONIC VOTING

3.1 Introduction

While cryptographic protocols are notoriously difficult to design and their man-
ual security analysis is extremely complicated in general, e-voting protocols are
particularly tricky, since they aim at achieving sophisticated security properties,
such as verifiability and coercion-resistance, and, consequently, employ advanced
cryptographic primitives such as homomorphic encryptions, mix-nets, and zero-
knowledge proofs. Not surprisingly, this makes the attack surface even larger,
as witnessed by the number of attacks on e-voting protocols proposed in the
literature (see e.g., [73–75]).

As we discussed in Chapter 1, the substantial research effort on the formal
analysis of cryptographic protocols has led to the development of several auto-
mated tools based on symbolic abstractions of cryptography:

• Automated theorem provers build on a term-based abstraction of cryptog-
raphy and proved successful in the enforcement of various trace proper-
ties [16–19] and even observational equivalence relations [20–22]. While
some of these tools have also been used in the context of e-voting [76–79],
they fall short of supporting the cryptographic primitives and security prop-
erties specific of this setting. For instance, none of them supports the com-
mutativity property of homomorphic encryption that is commonly exploited
to compute the final tally in a privacy-preserving manner (e.g., [80–82]), and
the proof of complex properties like verifiability or coercion-resistance must
be complemented by manual proofs [78, 83] or encodings [77] respectively,
which are tedious and error-prone.

• Another line of research has focused on the design of type systems for cryp-
tographic protocol analysis. Although they look promising, type systems
have never been used in the context of e-voting protocols. This task is chal-
lenging since, for guiding the type-checking procedure, one needs to develop
a dedicated logical theory, capturing the structure of e-voting systems and
the associated security and privacy properties.

For further information about the related work we refer to Section 3.5.

Our contributions. We devise a novel approach based on refinement type
systems for the formal verification of e-voting protocols. Specifically,

• we design a generically applicable logical theory based on pre- and post-
conditions for security-critical code, which captures and guides the type-
checker towards the verification of two fundamental properties, namely, vote
privacy and verifiability;

• we formalize in particular three different verifiability properties (i.e., in-
dividual, universal, and end-to-end verifiability), proving for the first time
that individual verifiability plus universal verifiability imply end-to-end ver-
ifiability, provided that ballots cannot be confused (no-clash property [75]);

68

3.2. BACKGROUND

• we develop a code-based cryptographic abstraction of the cryptographic
primitives commonly used in e-voting protocols, including homomorphic
encryption, showing how to make its commutativity and associativity prop-
erties accessible to automated verification through logical refinements;

• we demonstrate the effectiveness of our approach by analyzing Helios [82],
a popular, state-of-the-art, voting protocol that has been used in several
real-scale elections, including elections at Louvain-la-Neuve, Princeton, and
among the IACR [84]. We analyze the two main versions of Helios that re-
spectively use homomorphic encryption and mix-net based tally. For this we
use F* [35], an off-the-shelf type-checker supporting the verification of trace
properties and observational equivalence relations, as required for verifiabil-
ity and vote privacy, through refinement and relational types, respectively.
Analyzing Helios with homomorphic encryption was out of reach of existing
tools due to the need of a theory that reflects the addition of the votes. A
strength of our approach is that proof obligations involving such theories
can be directly discharged to SMT solvers such as Z3 [85].

Outline. Section 3.2 reviews the most important concepts of type-based anal-
ysis and presents the Helios electronic voting protocol. Section 3.3 presents our
modeling of individual, universal, and end-to-end verifiability and provides an
analysis of the verifiability properties guaranteed by Helios. Section 3.4 explains
our definition of vote privacy and shows how to enforce it on the example of He-
lios by using type-based analysis. Section 3.5 discusses related work. Section 3.6
concludes.

For the proof of Theorem 3.2, stating that no clash, individual, and universal
verifiability entail end-to-end verifiability, we refer to the technical report [6].
This contribution is due to Véronique Cortier and Steve Kremer.

3.2 Background

We review the fundamental concepts underlying the typed-based analysis of se-
curity protocols and we present the Helios e-voting protocol that constitutes our
case study.

3.2.1 Refinement types for cryptographic protocols

Review of RCFVOTE. The protocols we analyze are implemented in a vari-
ant of Computational RCF [34] by Fournet et al., a λ-calculus with references,
assumptions, and assertions. The only difference to the original version that was
presented in [34] is the lack of the probabilistic sampling primitive, which is not
required for our purposes. To distinguish this variant from the RCF variants used
in Chapter 2 and Chapter 4 we will refer to it as RCFVOTE. Below, we briefly
review the syntax and semantics of the language. The full syntax of RCFVOTE is

69

CHAPTER 3. ELECTRONIC VOTING

a, b, c label

x, y, z variable

h ::= inl | inr | fold constructor

F,G first-order formula

M,N ::= value
x, y, z variable
() unit
(M,N) pair
h M construction
fun x→ A function (x bound in A)
reada reference read
writea reference write

A,B ::= expression
M value
M N application
let x = A in B let (x bound in B)
let (x, y) = M in A split (x, y bound in A)
match M with h x then A else B constructor match (x bound in A)
ref M reference creation
assume F assumption
assert F assertion

true , inl () and false , inr ()

Table 3.1: Syntax of RCFVOTE expressions

presented in Table 3.1. The semantics is standard: we refer to [34] for the com-
plete formalization. Constructors, ranged over by h, include inl and inr, which
are used to construct tagged unions, and fold, which is used to construct recur-
sive data structures. Values, ranged over by M,N , comprise variables x, y, z, the
unit value (), pairs (M,N), constructor applications h M , functions fun x → A,
and functions reada and writea to read from and write to a memory location a,
respectively. The syntax and semantics of expressions are mostly standard. M N
behaves as A{N/x} (i.e., A where x is replaced by N) if M = fun x→ A, other-
wise it gets stuck; let x = A in B evaluates A toM and then behaves as B{M/x};
let (x, y) = M in A behaves as A{N/x,N ′/y} if M = (N,N ′), otherwise it gets
stuck; match M with h x then A else B behaves as A{N/x} if M = h N , as B
otherwise; ref M allocates a fresh label a and returns the reading and writing
functions (reada,writea). The code is decorated with assumptions assume F and
assertions assert F . The former introduce logical formulas that are assumed to
hold at a given program point, while the latter specify logical formulas that are
expected to be entailed by the previously introduced assumptions.

Definition 3.1 (Safety). A closed expression A is safe iff the formulas asserted
at run-time are logically entailed by the previously assumed formulas.

The code is organized in modules, which are intuitively a sequence of function

70

3.2. BACKGROUND

T,U, V ::= type
unit unit type
α type variable
µα.T iso-recursive type (α bound in τ)
T + U sum type
x : T ∗ U dependent pair type (x bound in U)
x : T → U dependent function type (x bound in U)
x : T{F} dependent refinement type (x bound in F)

Table 3.2: Syntax of types (VOTE)

declarations. A module may export some of the functions defined therein, which
can then be used by other modules: we let B · A denote the composition of
modules B and A, where the functions exported by B may be used in A.

Types and typing judgements. Table 3.2 shows the syntax of types consid-
ered in this chapter. Types bool for boolean values and bytes for bitstrings can
be constructed from unit by encoding1. The singleton unit type is populated by
the value (); µα.T describes values of the form fold M , whereM has the unfolded
type T{µα.T/α}; T + U describes values of the form inl M or inr M , where M
has type T or U , respectively; the dependent type x : T ∗U describes pairs of val-
ues (M,N), where M has type T and N has type U{M/x}; the dependent type
x : T → U describes functions taking as input a value M of type T and returning
a value of type U{M/x}; the dependent refinement type x : T{F} describes val-
ues M of type T such that the logical formula F{M/x} is entailed by the active
assumptions. Notice that a refinement on the input of a function expresses a
pre-condition, while a refinement on the output expresses a post-condition.

The typing judgement I ` A : T says that expression A can be typed with
type T in a typing environment I . Intuitively, a typing environment binds the
free variables and labels in A to a type. The typing judgement I ` B I ′ says
that under environment I module B is well-typed and exports the typed interface
I ′.

Modeling the protocol and the opponent. The protocol is encoded as a
module, which exports functions defining the cryptographic library as well as the
protocol parties. The latter are modeled as cascaded functions, which take as
input the messages received from the network and return the pair composed of
the value to be output on the network and the continuation code 2. Concur-
rent communication is modeled by letting the opponent, which has access to the
exported functions, act as a scheduler.

1E.g., boolean values are encoded as true , inl () and false , inr ()
2For the sake of readability we use the standard message-passing-style syntax in our examples

and some additional syntactic sugar (e,g., sequential let declarations) that are easy to encode.

71

CHAPTER 3. ELECTRONIC VOTING

Modeling the cryptographic library. We rely on a sealing-based abstraction
of cryptography [53, 54]. A seal for a type T consists of a pair of functions: the
sealing function of type T → bytes and the unsealing function of type bytes →
T . The sealing mechanism is implemented by storing a list of pairs in a global
reference that can only be accessed using the sealing and unsealing functions.
The sealing function pairs the payload with a fresh, public value (the handle)
representing its sealed version, and stores the pair in the list. The unsealing
function looks up the public handle in the list and returns the associated payload.
For symmetric cryptography, the sealing and unsealing functions are both private
and naturally model encryption and decryption keys, respectively: a payload of
type T is sealed to type bytes and can be sent over the untrusted network, while
a message retrieved from the network with type bytes can be unsealed to its
correct type T . Different cryptographic primitives, like public key encryptions
and signature schemes, can be encoded in a similar way, by exporting the function
modeling the public key to the opponent. We will give further insides on how to
build sealing-based abstractions for more sophisticated cryptographic primitives,
such as homomorphic encryptions and proofs of knowledge in Section 3.4.

Type-based verification. Assumptions and assertions can be used to express
a variety of trace-based security properties. In this chapter, we consider policies
expressed in first-order logic. For instance, consider the very simple e-voting
protocol below, which allows everyone in possession of the signing key kV , shared
by all eligible voters, to cast arbitrarily many votes.

V T

assume Cast(v)
sign(kV ,v) //

assert Count(v)

The assumption Cast(v) on the voter’s side tracks the intention to cast vote
v. The authorization policy ∀v.Cast(v) ⇒ Count(v), which is further defined
in the system as a global assumption expresses the fact that all votes cast by
eligible voters should be counted. Since this is the only rule entailing Count(v),
this rule actually captures a correspondence assertion: votes can be counted only
if they come from eligible voters. The assertion assert Count(v) on the tallying
authority’s side expresses the expectation that vote v should be counted.

In order to type-check the code of authority T , it suffices to prove Cast(v)
on the authority’s side, which entails Count(v) through the authorization policy.
Since the type-checking algorithm is modular (i.e., each party is independently
analyzed) and Cast(v) is assumed on the voter’s side, this formula needs to be
conveyed to T . This is achieved by giving the vote v the refinement type x :
bytes{Cast(x)}. In order to type v on the voter’s side with such a type, v needs
to be of type bytes and additionally, the formula Cast(v) needs to be entailed by
the previous assumptions, which is indeed true in this case. In our sealing-based
library for signatures signing corresponds to sealing a value and verification is
modeled using the unsealing function and thus the types of signing and verification

72

3.2. BACKGROUND

are sigkey(T) , T → bytes and verkey(T) , bytes → T , while the types of the
signing and verification functions are sig : sigkey(T) → T → bytes and ver :
verkey(T) → bytes → T , respectively.3 Here T is x : bytes{Cast(x)}, thereby
imposing a pre-condition on the signing function (before signing x, one has to
assume the formula Cast(x)) and a post-condition on the verification function
(after a successful verification, the formula Cast(x) is guaranteed to hold for the
signed x).

When reasoning about the implementations of cryptographic protocols, we
are interested in the safety of the protocol against an arbitrary opponent.

Definition 3.2 (Opponent and Robust Safety). A closed expression O is an
opponent iff O contains no assumptions or assertions. A closed module A is
robustly safe w.r.t. interface I iff for all opponents O such that I ` O : T for
some type T , A ·O is safe.

Following the approach advocated in [34], the typed interface I exported
to the opponent is supposed to build exclusively on the type bytes, without any
refinement. This means that the attacker is not restricted by any means and
can do whatever it wants with the messages received from the network, except
for performing invalid operations that would lead it to be stuck (e.g., treating a
pair as a function). In fact, the well-typedness assumption for the opponent just
makes sure that the only free variables occurring therein are the ones exported by
the protocol module. Robust safety can be statically enforced by type-checking,
as stated below.

Theorem 3.1 (Robust Safety). If ∅ ` A I then A is robustly safe w.r.t. I .

3.2.2 Helios

Helios [82] is a verifiable and privacy-preserving e-voting system. It has been
used in several real-life elections such that student elections at the University of
Louvain-la-Neuve or at Princeton. It is now used by the IACR to elect its board
since 2011 [84]. The current implementation of Helios (Helios 2.0) is based on
homomorphic encryption, which makes it possible to decrypt only the aggregation
of the ballots as opposed to the individual ballots. Homomorphic tally, however,
requires encrypted ballots to be split in several ciphertexts, depending on the
number of candidates. For example, in case of 4 candidates and a vote for the
second one, the encrypted ballot would be {0}r1pk, {1}r2pk, {0}r3pk, {0}r4pk. In case the
number of candidates is high, the size of a ballot and the computation time
become large. Therefore, there exists a variant of Helios that supports mix-
net-based tally: ballots are shuffled and re-randomized before being decrypted.
Both variants co-exist since they both offer advantages: mix-nets can cope with

3We note that the verification function only takes the signature as an input, checks whether
it is indeed a valid signature and if so, retrieves the corresponding message that was signed.
This is a standard abstraction and used for convenience, an alternate approach would be to
have verification take both the signature and message as an input and return a boolean value.
The sealing-based library functions for both versions are very similar.

73

CHAPTER 3. ELECTRONIC VOTING

a large voting space while homomorphic tally eases the decryption phase (only
one ballot needs to be decrypted, no need of mixers). We present here both
variants of Helios, which constitute our case studies. For simplicity, in the case of
homomorphic tally, we assume that voters are voting either 0 or 1 (referendum).

The voting process in Helios is divided in two main phases. The bulletin
board is a public webpage that starts initially empty. Votes are encrypted using
a public key pk. The corresponding decryption key dk is shared among trustees.
For privacy, the trust assumption is that at least one trustee is honest (or that
the trustees do not collaborate).

Voting phase. During the voting phase, each voter encrypts her vote v using
the public key pk of the election.She then sends her encrypted vote {v}rpk (where r
denotes the randomness used for encrypting), together with some auxiliary data
aux, to the bulletin board through an authenticated channel. In the homomorphic
version of Helios, aux contains a zero-knowledge proof that the vote is valid, that
is 0 or 1. This avoids that a voter gives e.g. 100 votes to a candidate. In the
mix-net variant of Helios, aux is empty. Provided that the voter is entitled to
vote, the bulletin board adds the ballot {v}rpk, aux to the public list. The voter
should check that her ballot indeed appears on the public bulletin board.

The voter’s behavior is described in Figure 3.1. It corresponds to the mix-net
version but could be easily adapted to the homomorphic version. Note that this
description contains assume and assert annotations that intuitively represent
different states of the voter’s process. These annotations are crucially used to
state verifiability, cf. Section 3.3.

The voting phase also includes an optional audit phase allowing the voter to
audit her ballot instead of casting it. In that case, her ballot and the correspond-
ing randomness are sent to a third party that checks whether the correct choice
has been encrypted. Here, we do not model the auditing phase, since a pre-
cise characterization would probably require probabilistic reasoning, which goes
beyond the scope of this work.

Tallying phase. Once the voting phase is over, the bulletin board contains a
list of ballots {v1}r1pk, . . . , {vn}rnpk (we omit the auxiliary data). We distinguish the
two variants.

• Homomorphic tally. The ballots on the bulletin board are first homomor-
phically combined. Since {v}rpk ∗ {v′}r

′

pk = {v + v′}r+r′pk anyone can compute
the encrypted sum of the votes {∑n

i=1 vi}r∗pk. Then the trustees collaborate
to decrypt this ciphertext. Their computation yields

∑n
i=1 vi and a proof

of correct decryption.

• Mix-net tally. Ballots are shuffled and re-randomized, yielding

{vi1}
r′1
pk, . . . , {vin}

r′n
pk

with a proof of correct permutation. This mixing is performed successively
by several mixers. For privacy, the trust assumption is that as least one

74

3.3. VERIFIABILITY

Voter(id, v) = assume Vote(id, v);
let r = new() in
let b = enc(pk, v, r) in
assume MyBallot(id, v, b);

send(net, b);
let bb = recv(net) in
if b ∈ bb then
assert VHappy(id, v, bb)

Figure 3.1: Modeling of a voter.

mix-net is honest (that is, will not leak the permutation). Then the trustees
collaborate to decrypt each (re-randomize) ciphertext and provide a corre-
sponding proof of correct decryption.

3.3 Verifiability

Verifiability is a key property in both electronic as well as paper-based voting
systems. Intuitively, verifiability ensures that the announced result corresponds
to the votes such as intended by the voters. Verifiability is typically split into
several sub-properties.

• Individual verifiability ensures that a voter is able to check that her ballot
is on the bulletin board.

• Universal verifiability ensures that any observer can verify that the an-
nounced result corresponds to the (valid) ballots published on the bulletin
board.

Symbolic models provide a precise definition of these notions [86].
The overall goal of these two notions is to guarantee end-to-end verifiability :

if a voter correctly follows the election process her vote is counted in the final
result. In our terminology, strong end-to-end verifiability additionally guarantees
that at most k dishonest votes have been counted, where k is the number of
compromised voters. This notion of strong end-to-end verifiability includes the
notion of what is called eligibility verifiability in [86]. For simplicity, we focus
here on end-to-end verifiability.

We will now explain our modeling of individual, universal, and end-to-end
verifiability. One of our contributions is a logical formalization of these properties
that enables the use of off-the-shelf verification techniques, in our case a type
system, at least in the case of individual and universal verifiability. End-to-end
verifiability may be more difficult to type-check directly. Instead, we formally
prove for the first time that individual and universal verifiability entail end-to-
end verifiability provided that there are no “clash attacks” [75]. A clash attack
typically arises when two voters are both convinced that the same ballot b is
“their” own ballot. In that case, only one vote will be counted instead of two.
The fact that individual and universal verifiability entail end-to-end verifiability
has two main advantages. First, it provides a convenient proof technique: it is

75

CHAPTER 3. ELECTRONIC VOTING

sufficient to prove individual and universal verifiability, which as we will show
can be done with the help of a type-checker. Second, our results provide a better
understanding of the relation between the different notions of verifiability.

Notations. Before presenting our formal model of verifiability we introduce a
few notations. Voting protocols aim at counting the votes. Formally, a counting
function is a function ρ : V∗ → R, where V is the vote space and R the result
space. A typical voting function is the number of votes received by each candidate.
By a slight abuse of notation, we may consider ρ(l) where l is a list of votes instead
of a sequence of votes.

If l is a list, #l denotes the size of l and l[i] refers to the ith element of the list.
a ∈ l holds if a is an element of l. Given a1, . . . , an, we denote by {|a1, . . . , an|}
the corresponding multiset. ⊆m denotes multiset inclusion. Assume l1, l2 are
lists; by a slight abuse of notation, we may write l1 ⊆m l2 where l1, l2 are viewed
as multisets. We also write l1 =m l2 if the two lists have the same multisets of
elements.

In order to express verifiability and enforce it using a type system, we rely on
the following assumptions:

• assume Vote(id, v, c) means that voter id intends to vote for c possibly using
some credential c. This predicate should hold as soon as the voter starts to
vote: he knows for whom he is going to vote.

• assume MyBallot(id, v, b) means that voter id thinks that ballot b contains
her vote v. In case votes are sent in clear, b is simply the vote v itself. In
the case of Helios, we have b = {v}rpk, aux. Typically, this predicate should
hold as soon as the voter (or her computer) has computed the ballot.

An example of where and how to place these predicates for Helios can be found
in Figure 3.1. The credential c is omitted since there is no use of credentials in
Helios.

3.3.1 Individual verifiability

Intuitively, individual verifiability enforces that whenever a voter completes her
process successfully, her ballot is indeed in the ballot box. Formally we define the
predicate VHappy as follows:

assume VHappy(id, v, c, bb) ⇔ Vote(id, v, c) ∧ ∃b ∈ bb. MyBallot(id, v, b)

This predicate should hold whenever voter id has finished her voting process,
and believes she has voted for v. At that point, it should be the case that the
ballot box bb contains the vote v (in some ballot). We therefore annotate the
voter function with the assertion assert VHappy(id, v, c, bb). This annotation is
generally the final instruction, see Figure 3.1 for the Helios example.

Definition 3.3 (Individual Verifiability). A protocol with security annotations

76

3.3. VERIFIABILITY

Judge(bb, r) = let vbb = recv(net) in
let zkp = recv(net) in
if vbb = removeDuplicates(bb) ∧ check_zkp(zkp, vbb, r) then
assert JHappy(bb, r)

Figure 3.2: Judge function for Helios

• assume Vote(id, v, c), assume MyBallot(id, v, b);

• and assert VHappy(id, v, c, bb)

as described above guarantees individual verifiability if it is robustly safe.

3.3.2 Universal verifiability

Intuitively, universal verifiability guarantees that anyone can check that the result
corresponds to the ballots present in the ballot box. Formally, we assume a
program Judge(bb, r) that checks whether the result r is valid w.r.t. ballot box
bb. Typically, Judge does not use any secret and could therefore be executed
by anyone. We simply suppose that Judge contains assert JHappy(bb, r) at some
point, typically when all the verification checks succeed. For Helios, the Judge
program is displayed Figure 3.2. We first introduce a few additional predicates
that we use to define the predicate JHappy.

Good sanitization. Once the voting phase is closed, the tallying phase pro-
ceeds in two main phases. First, some “cleaning” operation is performed in bb,
e.g., invalid ballots (if any) are removed and duplicates are weeded, resulting
in the sanitized valid bulletin board vbb. Intuitively, a good cleaning function
should not remove ballots that correspond to honest votes. We therefore define
the predicate GoodSan(bb, vbb) to hold if the honest ballots of bb are not removed
from vbb.

assume GoodSan(bb, vbb)⇔ ∀b.[(b ∈ bb ∧ ∃id, v.MyBallot(id, v, b))⇒ b ∈ vbb]

Good counting. Once the ballot box has been sanitized, ballots are ready to be
tallied. A good tallying function should count the votes “contained” in the ballots.
To formally define that a vote is “contained” in a ballot, we consider a predicate
Wrap(v, b) that is left undefined, but has to satisfy the following properties:

• any well-formed ballot b corresponding to some vote v satisfies:
MyBallot(id, v, b) ⇒ Wrap(v, b)

• a ballot cannot wrap two distinct votes: Wrap(v1, b) ∧ Wrap(v2, b) ⇒ v1 =
v2

77

CHAPTER 3. ELECTRONIC VOTING

If these two properties are satisfied, we say that Wrap is voting-compliant. For a
given protocol, the definition Wrap typically follows from the protocol specifica-
tion.

Example 3.1. In the Helios protocol, the Wrap predicate is defined as follows.

assume Wrap(v, b) ⇔ ∃r. Enc(v, r, pk, b)

where Enc(v, r, pk, b) is a predicate that holds if b is the result of the encryption
function called with parameters pk, v and r. It is easy to see that Wrap is voting-
compliant and this can in fact be proved using a type-checker. It is sufficient to
add the annotations

• assert MyBallot(id, v, b)⇒ Wrap(v, b) and

• assert ∀v1, v2. Wrap(v1, b) ∧Wrap(v2, b)⇒ v1 = v2

to the voter function (Figure 3.1) just after the MyBallot assumption. The second
assertion is actually a direct consequence of our modeling of encryption which
implies that a ciphertext cannot decrypt to two different plaintexts.

We are now ready to state when votes have been correctly counted: the result
should correspond to the counting function ρ applied to the votes contained in
each ballot. Formally, we define GoodCount(vbb, r) to hold if the result r cor-
responds to counting the votes of rlist , i.e., the list of votes obtained from the
ballots in vbb′. The list vbb′ is introduced for technical convenience and either
denotes the list of valid votes vbb itself (in the homomorphic variant) or any
arbitrary permutation of vbb (for mix-nets).

assume GoodCount(vbb, r) ⇔ ∃vbb′, rlist . [#vbb = #rlist ∧ vbb =m vbb′∧
∀b, i.[vbb′[i] = b
⇒ ∃v.(Wrap(v, b) ∧ (rlist [i] = v))] ∧
r = ρ(rlist)]

Note that the definition of GoodCount is parameterized by the counting function ρ
of the protocol under consideration. We emphasize that for GoodCount(vbb, r) to
hold, the sanitized bulletin board may only contain correctly wrapped ballots, i.e.,
we assume that the sanitization procedure is able to discard invalid ballots. In the
case of mix-net-based Helios we therefore require that the sanitization discards
any ballots that do not decrypt. This can for instance be achieved by requiring
a zero knowledge proof that the submitted bitstring is a correct ciphertext. We
may however allow that a ballot decrypts to an invalid vote, as such votes can be
discarded by the tallying function.

Universal verifiability. Finally, universal verifiability enforces that whenever
the verification checks succeed (that is, the Judge’s program reaches the JHappy
assertion), then GoodSan and GoodCount should be guaranteed. Formally, we
define the predicate

assume JHappy(bb, r) ⇔ ∃vbb. (GoodSan(bb, vbb) ∧ GoodCount(vbb, r))

and add the annotation assert JHappy(bb, r) at the end of the judge function.

78

3.3. VERIFIABILITY

Definition 3.4 (Universal Verifiability). A protocol with security annotations

• assume MyBallot(id, v, b), and

• assert JHappy(bb, r)

as described above guarantees universal verifiability if it is robustly safe and the
predicate Wrap(v, b) is voting-compliant.

3.3.3 End-to-end verifiability

End-to-end verifiability is somehow simpler to express. It ensures that whenever
the result is valid (that is, the judge has reached his final state), the result con-
tains at least all the votes of the voters that have reached their final states. In
other words, voters that followed the procedure are guaranteed that their vote
is counted in the final result. To formalize this idea we define the predicate
EndToEnd as follows:

assume EndToEnd ⇔ ∀bb, r, id1, . . . , idn, v1, . . . , vn, c1, . . . , cn.
(JHappy(bb, r) ∧ VHappy(id1, v1, c1, bb) ∧ . . . ∧ VHappy(idn, vn, cn, bb))
⇒ ∃rlist . r = ρ(rlist) ∧ {|v1, . . . , vn|} ⊆m rlist

To ensure that this predicate holds we can again add a final assertion assert EndToEnd.

Definition 3.5 (End-to-End Verifiability). A protocol with security annotations

• assume Vote(id, v, c), assume MyBallot(id, v, b);

• and assert VHappy(id, v, c, bb), assert JHappy(bb, r), assert EndToEnd

as described above guarantees end-to-end verifiability if it is robustly safe.

For simplicity, we have stated end-to-end verifiability referring explicitly to a
bulletin board. It is however easy to state our definition more generally by letting
bb be any form of state of the protocol. This more general definition does not
assume a particular structure of the protocol, as it is also the case in a previous
definitions of end-to-end verifiability in the literature [87].

It can be difficult to directly prove end-to-end verifiability using a type-
checker. An alternative solution is to show that it is a consequence of individual
and universal verifiability. However, it turns out that individual and universal
verifiability are actually not sufficient to ensure end-to-end verifiability. Indeed,
assume that two voters id1 and id2 are voting for the same candidate v. Assume
moreover that they have built the same ballot b. In case of Helios, this could
be the case if voters are using a bad randomness generator. Then a malicious
bulletin board could notice that the two ballots are identical and could display
only one of the two. The two voters would still be “happy” (they can see their
ballot on the bulletin board) as well as the judge since the tally would correspond
to the bulletin board. However, only one vote for v would be counted instead of
two. Such a scenario has been called a clash attack [75].

79

CHAPTER 3. ELECTRONIC VOTING

We capture this property by the predicate NoClash defined as follows.

NoClash⇔ ∀id1, id2, v1, v2, b. MyBallot(id1, v1, b) ∧ MyBallot(id2, v2, b)
⇒ id1 = id2 ∧ v1 = v2

The assertion assert NoClash is then added after the assumption MyBallot.

Definition 3.6 (No Clash). A protocol with security annotations

• assume MyBallot(id, v, b) and

• assert NoClash

as described above guarantees no clash if it is robustly safe.

We can now state our result that no clash, individual, and universal verifia-
bility entail end-to-end verifiability. The proof is due to Véronique Cortier and
Steve Kremer and can be found in the technical report [6] of the corresponding
conference paper that this chapter builds on.

Theorem 3.2. If a protocol guarantees individual and universal verifiability as
well as no clash, then it satisfies end-to-end verifiability.

3.3.4 Verifiability analysis of Helios

Using the F* type-checker (version 0.7.1-alpha) we have analyzed both the mix-
net and homomorphic versions of Helios. The corresponding files can be found
in [88]. The (simplified) model of the voter and judge functions is displayed
in Figures 3.1 and 3.2.

Helios with mix-nets. Using F*, we automatically proved both individual
and universal verifiability. As usual, we had to manually define the types of the
functions, which crucially rely on refinement types to express the expected pre-
and post-conditions. For example, for universal verifiability, one has to show
that GoodSan and GoodCount hold whenever the judge agrees with the tally.
For sanitization, the judge verifies that vbb is a sublist of bb, where duplicate
ballots have been removed. Thus, the type-checker can check that the function
removeDuplicates(bb) returns a list vbb whose type is a refinement stating that
x ∈ bb ⇒ x ∈ vbb, which allows us to prove GoodSan. Regarding GoodCount,
the judge verifies a zero-knowledge proof that ensures that any vote in the final
result corresponds to an encryption on the sanitized bulletin board. Looking at
the type of the check_zkp function we see that this information is again conveyed
through a refinement of the boolean type returned by the function:

check_zkp : zkp : bytes→ vbb : list ballot→ res : result→ b : bool{b = true⇒ ϕ}

where ϕ , ∃vbb′. [#vbb = #res ∧ vbb =m vbb′ ∧
∀b, i.[vbb′[i] = b⇒ ∃v, r.(Enc(v, r, pk, b) ∧ (res [i] = v))]]

80

3.4. PRIVACY

In the case where check_zkp returns true we have that the formula ϕ holds. The
formula ϕ is similar to the GoodCount predicate (with ρ being the identity function
for mix-net based Helios) except that it ensures that a ballot is an encryption,
rather than a wrap. This indeed reflects that the zero-knowledge proof used in
the protocol provides exactly the necessary information to the judge to conclude
that the counting was done correctly.

The no clash property straightforwardly follows from observing that the logi-
cal predicate MyBallot(id, v, b) is assumed only once in the voter’s code, that each
voter has a distinct id, and that, as argued for Wrap(v, b), the same ciphertext
cannot decrypt to two different plaintexts. By Theorem 3.2, we can conclude
that the mix-net version of Helios indeed satisfies end-to-end verifiability.

Type-checkers typically support lists with the respective functions (length,
membership test, etc.). As a consequence, we prove individual and universal
verifiability for an arbitrary number of dishonest voters, while only a fixed num-
ber of dishonest voters can typically be considered with other existing protocol
verification tools.

Helios with homomorphic tally. The main difference with the mix-net ver-
sion is that each ballot additionally contains a zero-knowledge proof, that ensures
that the ballot is an encryption of either 0 or 1. The judge function also differs
in the tests it performs. In particular, to check that the counting was performed
correctly, the judge verifies a zero-knowledge proof that ensures that the result
is the sum of the encrypted votes that are on the sanitized bulletin board. This
ensures in turn that the result corresponds to the sum of the votes. Considering
the “sum of the votes” is out of reach of classical automated protocol verifica-
tion tools. Here, F* simply discharges the proof obligations involving the integer
addition to the Z3 solver [85] which is used as a back-end.

Finally, as for the mix-net based version, we proved individual and universal
verifiability using F*, while the no clash property relies on (the same) manual
reasoning. Again, we conclude that end-to-end verifiability is satisfied using The-
orem 3.2.

3.4 Privacy

The secrecy of a ballot is of vital importance to ensure that the political views of
a voter are not known to anyone. Vote privacy is thus considered a fundamental
and universal right in modern democracies.

In this section we review the definition of vote privacy based on observational
equivalence [83] and present a type-based analysis technique to verify this prop-
erty using rF*, an off-the-shelf type-checker. We demonstrate the usefulness of
our approach by analyzing vote privacy in the homomorphic variant of Helios,
which was considered so far out of the scope of automated verification techniques.

81

CHAPTER 3. ELECTRONIC VOTING

3.4.1 Definition of privacy

Observational equivalence. We first introduce the concept of observational
equivalence, a central tool to capture indistinguishability properties. The idea is
that two runs of the same program with different secrets should be indistinguish-
able for any opponent. The definition is similar to the natural adaption of the
one presented in [34] to a deterministic, as opposed to probabilistic, setting.

Definition 3.7 (Observational Equivalence). For all modules A,B we say that A
and B are observationally equivalent, written A ≈ B, iff they both export the same
interface I and and for all opponents O that are well-typed w.r.t the interface I
it holds that A ·O →∗ M iff B ·O →∗ M for all closed values M .

Here, A →∗ N denotes that expression A eventually evaluates to value N ,
according to the semantic reduction relation.

Privacy. We adopt the definition of vote privacy presented in [76]. This prop-
erty ensures that the link between a voter and her vote is kept secret. Intuitively,
in the case of a referendum this can only be achieved if at least two honest vot-
ers exist, since otherwise all dishonest voters could determine the single honest
voter’s vote from the final tally by colluding. Furthermore, both voters must vote
for different parties, thus counter-balancing each other’s vote and ensuring that
it is not known who voted for whom. Our definition of privacy thus assumes the
existence of two honest voters Alice and Bob and two candidates v1 and v2. We
say that a voting system guarantees privacy if a protocol run in which Alice votes
v1 and Bob votes v2 is indistinguishable (i.e., observationally equivalent) from the
protocol run in which Alice votes v2 and Bob votes v1.

In the following, we assume the voting protocol to be defined as fun (vA, vB)→
S[Alice(vA),Bob(vB)]. The two honest voters Alice and Bob are parameterized over
their votes vA and vB. Here, S[•, •] describes a two-hole context (i.e., an expres-
sion with two holes), which models the behavior of the cryptographic library, the
public bulletin board, and the election authorities (i.e., the surrounding system).

Definition 3.8 (Vote Privacy). P = fun (vA, vB) → S[Alice(vA),Bob(vB)] guar-
antees vote privacy iff for any two votes v1, v2 it holds that P (v1, v2) ≈ P (v2, v1).

3.4.2 rF*: A type system for observational equivalence
properties

To prove privacy for voting protocols we rely on rF*, an off-the-shelf existing
type-checker that can be used to enforce indistinguishability properties. rF* was
introduced by Barthe et al. [89] and constitutes the relational extension of the
F* type-checker [35]. The core idea is to let refinements reason about two runs
(as opposed to a single one) of a protocol. Such refinements are called relational
refinements. A relational refinement type has the form x : T{|F |}, where the
formula F may capture the instantiation of x in the left run of the expression
that is to be type-checked, denoted L x, as well as the instantiation of x in

82

3.4. PRIVACY

Alice vA =
let bA = create_ballotA(vA) in
send(cA, bA)

Figure 3.3: Model of Alice

Bob vB =
let bB = create_ballotB(vB) in
send(cB, bB)

Figure 3.4: Model of Bob

the right run, denoted R x. Formally, A : x : T{|F |} means that whenever A
evaluates to ML and MR in two contexts that provide well-typed substitutions
for the free variables in A, then the formula F{ML/L x}{MR/R x} is valid. We note
that relational refinements are strictly more expressive than standard refinements.
For instance, x : bytes{H(x)} can be encoded as x : bytes{|H(L x) ∧ H(R x)|}.
A special instance of relational refinement types is the so-called eq-type. Eq-
types specify that a variable is instantiated to the same value in both the left
and the right protocol run. Formally, eq T , x : T{|L x = R x|}. The authors
show how such types can be effectively used to verify both non-interference and
indistinguishability properties.

3.4.3 Type-based verification of vote privacy

In the following, we show how to leverage the aforementioned technique to stat-
ically enforce observational equivalence and, in particular, vote privacy. The
key observation is that whenever a value M is of type eq bytes it can safely be
published, i.e., given to the opponent. Intuitively, this is the case since in both
protocol runs, this value will be the same, i.e., the opponent will not be able
to observe any difference. Given that both runs consider the same opponent O,
every value produced by the opponent must thus also be the same in both runs,
which means it can be typed with eq bytes.

We denote typed interfaces that solely build on eq bytes by Ieq and following
the above intuition state that if a voting protocol can be typed with such an
interface, the two runs where (i) Alice votes v1, Bob votes v2 and (ii) Alice votes
v2, Bob votes v1 are observationally equivalent, since no opponent will be able to
distinguish them.

Theorem 3.3 (Privacy by Typing). For all P = fun (vA, vB)→ S[Alice(vA),Bob(vB)]
and all M,M ′, v1, v2 such that M : x : bytes{|L x = v1 ∧ R x = v2|} and
M ′ : x : bytes{|L x = v2 ∧ R x = v1|} it holds that if ∅ ` P (M,M ′) Ieq,
then P provides vote privacy.

Modeling a protocol for privacy verification. We demonstrate our ap-
proach on the example of Helios with homomorphic encryption. For simplicity,
we consider one ballot box that owns the decryption key dk and does the complete
tabulation. An informal description of Alice and Bob’s behavior is displayed in
Figures 3.3 and 3.4, respectively. The voters produce the relationally refined bal-
lots using the ballot creation functions create_ballotA, create_ballotB respectively.

83

CHAPTER 3. ELECTRONIC VOTING

BB = let bA = recv(cA) in
let bB = recv(cB) in
send(net, (bA, bB));
let bO = recv(net) in
if check_zkp(bA) true then
match check_zkp(bB) with true then
match check_zkp(bO) with true then
match (bA 6= bO ∧ bA 6= bB ∧ bB 6= bO) with true then
let bAB = add_ballot(bA, bB) in
let bABO = add_ballot(bAB, bO) in
let result = dec_ballot(bABO) in
send(net, result)

Figure 3.5: Model of the ballot box

The ballots bA, bB consist of the randomized homomorphic encryption of the votes
and a zero-knowledge proof of correctness and knowledge of the encrypted vote.
The ballots are then sent to the ballot box over secure https-connections cA and
cB respectively.

The behavior of the ballot box is described in Figure 3.5. For the sake of
simplicity, we consider the case of three voters. The ballot box receives the ballots
of Alice and Bob and publishes them on the bulletin board. It then receives the
ballot of the opponent and checks that the proofs of validity of all received ballots
succeed. Furthermore, it checks that all ballots are distinct before performing
homomorphic addition on the ciphertexts. The sum of the ciphertexts is then
decrypted and published on the bulletin board.

Intuitively, all outputs on the network are of type eq bytes, since (i) all ballots
are the result of an encryption that keeps the payload secret and thus gives
the opponent no distinguishing capabilities, and (ii) the homomorphic sum of all
ciphertexts bABO = {vA+vB+vO}pk is the same in both runs of the protocol up to
commutativity. Indeed, L bABO = {v1+v2+vO}pk and R bABO = {v2+v1+vO}pk =
L bABO.

However, since the application of the commutativity rule happens on the level
of plaintexts, while the homomorphic addition is done one level higher-up on
ciphertexts, we need to guide the type-checker in the verification process.

Sealing-based library for voting. While privacy is per se not defined by
logical predicates, we rely on some assumptions to describe properties of the
cryptographic library, such as homomorphism and validity of payloads, in order
to guide the type-checker in the derivation of eq-types. The (simplified) type of
the sealing reference for homomorphic encryption with proofs of validity is given
below:4

4The actual library includes marshaling operations, which we omit for simplicity.

84

3.4. PRIVACY

m : bytes ∗ c : eq bytes{|Enc(m, c) ∧ Valid(c)∧
(FromA(c) ∨ FromB(c) ∨ (FromO(c) ∧ L m = R m))|}

Here, predicates FromA,FromB,FromO are used to specify whether an encryption
was done by Alice, Bob or the opponent, while Enc(m, c) states that c is the
ciphertext resulting from encrypting m and Valid(c) reflects the fact that the
message corresponds to a valid vote, i.e., a validity proof for c can be constructed.
Note that if a ballot was constructed by the opponent, the message stored therein
must be the same in both runs (L m = R m), i.e., the message must have been of
type eq bytes. These logical predicates are assumed in the sealing functions used
by Alice,Bob, and the opponent, respectively. These functions, used to encode the
public key, share the same code, and in particular they access the same reference,
and only differ in the internal assumptions.

Similarly, there exist three ballot creation functions create_ballotA, create_ballotB,
and create_ballotO, used by Alice, Bob and the opponent, respectively, only dif-
fering in their refinements and internal assumptions. Their interfaces are listed
below:

create_ballotA : m : x : bytes{|L x = v1 ∧ R x = v2|} →
c : eq bytes{|Enc(m, c) ∧ FromA(c)|}

create_ballotB : m : x : bytes{|L x = v2 ∧ R x = v1|} →
c : eq bytes{|Enc(m, c) ∧ FromB(c)|}

create_ballotO : eq bytes→ eq bytes

Notice that, as originally proposed in [89], the result of probabilistic encryption
(i.e., the ballot creation function) is given an eq bytes type, reflecting the intuition
that there always exist two randomnesses, which are picked with equal probabil-
ity, that make the ciphertexts obtained by encrypting two different plaintexts
identical, i.e., probabilistic encryption does not leak any information about the
plaintext.

The interfaces for the functions dec_ballot, check_zkp, add_ballot for decryp-
tion, validity checking of the proofs, and homomorphic addition are listed below.
The public interfaces for the latter two functions, built only on eq-types, are ex-
ported to the opponent. The interface for decryption is however only exported
to the ballot box.

dec_ballot : c : eq bytes→ privkey→ m : bytes{|∀z.Enc(z, c)⇒ z = m|}
check_zkp : c : eq bytes→ b : bool{|b = true⇒ (Valid(c) ∧ (∃m.Enc(m, c))∧

(FromA(c) ∨ FromB(c) ∨ (FromO(c) ∧ L m = R m)))|}
add_ballot : c : eq bytes→ c′ : eq bytes→

c′′ : eq bytes{|∀m,m′.(Enc(m, c) ∧ Enc(m′, c′))⇒ Enc(m+m′, c′′)|}

Intuitively, the type returned by decryption assures that the decryption of the
ciphertext corresponds to the encrypted message. The successful application of
the validity check on ballot c proves that the ballot is a valid encryption of either
v1 or v2 and that it must come from either Alice, Bob, or the opponent. In the
latter case it must be the same in both runs. When homomorphically adding two
ciphertexts, the refinement of function add_ballot guarantees that the returned
ciphertext contains the sum of the two. The implementation of dec_ballot is

85

CHAPTER 3. ELECTRONIC VOTING

standard and consists of the application of the unsealing function. The imple-
mentation of check_zkp follows the approach proposed in [32, 33]: in particular,
the zero-knowledge proof check function internally decrypts the ciphertexts and
then checks the validity of the vote, returning a boolean value. Finally, the
add_ballot homomorphic addition function is implemented in a similar manner,
internally decrypting the two ciphertexts and returning a fresh encryption of the
sum of the two plaintexts.

Global assumptions. In order to type-check the complete protocol we fur-
thermore rely on three natural assumptions:

• A single ciphertext only corresponds to one plaintext, i.e., decryption is a
function:

assume ∀m,m′, c.(Enc(m, c) ∧ Enc(m′, c))⇒ m = m′

• Alice and Bob only vote once:

assume ∀c, c′.(FromA(c) ∧ FromA(c′))⇒ c = c′

assume ∀c, c′.(FromB(c) ∧ FromB(c′))⇒ c = c′

Modeling revoting would require a bit more work. Revoting requires some
policy that explains which ballot is counted, typically the last received one. In
that case, we would introduce two types depending on whether the ballot is really
the final one (there is a unique final one) or not.

3.4.4 Privacy analysis of Helios

Using the rF* type-checker (version 0.7.1-alpha) we have proved privacy for the
homomorphic version of Helios. The corresponding files can be found in [88].
Our implementation builds on the above defined cryptographic library and global
assumptions as well as Alice, Bob, and the ballot box BB as defined in the previous
section.

We briefly give the intuition why the final tally result = dec_ballot(bABO)
can be typed with type eq bytes, i.e., why both runs return the same value by
explaining the typing of the ballot box BB.

• The ballots bA, bB, bO that are received by the ballot box must have the fol-
lowing types (by definition of the corresponding ballot creation functions):

bA : c : eq bytes{|Enc(vA, bA) ∧ FromA(bA)|}
bB : c : eq bytes{|Enc(vB, bB) ∧ FromB(bB)|}
bO : eq bytes

• Adding bA and bB together using add_ballot thus yields that the content of
the combined ciphertext corresponds to vA + vB and in particular, due to
commutativity, this sum is the same in both protocol runs.

86

3.5. RELATED WORK

• The most significant effort is required to show that the payload vO contained
in bO is indeed of type eq bytes, i.e., L vO = R vO, meaning the sum of
vA + vB + vO is the same in both runs. Intuitively, the proof works as
follows: From checking the proof of bO it follows that there exists vO such
that Enc(vO, bO)∧ (FromA(bO)∨ FromB(bO)∨ (FromO(bO)∧ L vO = R vO)).
From checking the distinctness of the ciphertexts we furthermore know that
bA 6= bO 6= bC . Given FromA(bA) and FromB(bB), the second and third
global assumptions imply that neither FromA(bO) nor FromB(bO) hold true.
Thus, it must be the case that FromO(bO) ∧ L vO = R vO.

3.5 Related work

Many symbolic protocol verification techniques have been applied to analyze e-
voting systems [74, 76–79, 83, 86, 90]. In all of these works, the cryptographic
primitives are modeled using terms and an equational theory, as opposed to the
code-based abstractions we use in this chapter. While code-based abstractions of
cryptography may look at a first glance more idealized than the modeling using
equational theories, they are actually closer to ideal functionalities in simulation-
based cryptographic frameworks. Although a formal computational soundness
result is out of the scope of this work, the code-based abstractions we use are
rather standard and computational soundness results for similar abstractions have
been proven in [34,55].

One of the main advantages of symbolic protocol verification is the potential
for automation. However, current automated protocol verification tools are not
yet mature enough to analyze most voting protocols. Firstly, existing tools do
not support equational theories modeling homomorphic encryption. Thus, ex-
isting analyses of systems that rely on homomorphic tallying all rely on hand
proofs [74, 86, 90], which are complicated and error-prone due to the complexity
of the equational theories. Secondly, most current automated tools offer only
limited support for verifying equivalence properties, which is required for veri-
fying vote privacy. For instance, in [77] the analysis of Civitas using ProVerif
relies on manual encodings and many other works, even though the equational
theory is in the scope of the tools, again rely on hand proofs of observational
equivalences [76, 83]. Although some recent tools, such as AKiSs [21] succeed in
analyzing simple protocols such as [91], more complicated protocols are still out
of reach. In [79], the privacy of the mix-net based version of Helios was shown us-
ing AKiSs, but mix-nets were idealized by simply outputting the decrypted votes
in a non-deterministic order. In contrast, our model manipulates lists to express
the fact that a mix-net produces a permutation. ProVerif was used to check some
cases of verifiability [78], but automation is only supported for protocols without
a homomorphic tally.

Other work on e-voting protocols considers definitions of privacy [92, 93] and
verifiability [87, 94, 95] in computational models. However, no computer aided
verification techniques have yet been applied in this context. Furthermore, prior
work [96] demonstrated that individual and universal verifiability in general do

87

CHAPTER 3. ELECTRONIC VOTING

not imply end-to-end verifiability, not even by assuming the no-clash property,
using as an example the ThreeBallot voting system [97]. In this chapter, we have
shown on the contrary that individual and universal verifiability do imply end-to-
end verifiability. This is due to the fact that our individual verifiability notion is
actually stronger and assumes that the board can be uniquely parsed as a list of
ballots. This is the case for many voting systems but not for ThreeBallot where
each ballot is split into three components.

3.6 Conclusion

In this chapter we proposed a novel approach, based on type-checking, for an-
alyzing e-voting systems. It is based on a novel logical theory which allows to
verify both verifiability and vote privacy, two fundamental properties of election
systems. We were able to put this theory into practice and use an off-the-shelf
type-checker to analyze the mix-net-, as well as homomorphic tallying-based ver-
sions of Helios, resulting in the first automated verification of Helios with homo-
morphic encryption. Indeed, the fact that the type-checker can discharge proof
obligations on the algebraic properties of homomorphic encryption to an external
solver is one of the strengths of this approach. Providing the right typing annota-
tions constitutes the only manual effort required by our approach: in our analysis
this was, however, quite modest, thanks to the support for type inference offered
by rF*.

88

Part III

Type-Based Verification of
Distributed Differential Privacy

89

4
DF7: A Type System for Distributed

Differential Privacy

Differential privacy is a confidentiality property for database queries, which allows
for the release of statistical information about the content of a database without
disclosing personal data. The variety of database queries and enforcement mech-
anisms has recently sparked the development of a number of mechanized proof
techniques for differential privacy.

Personal data, however, are often spread across multiple databases and queries
have to be jointly computed by multiple, possibly malicious, parties. Many cryp-
tographic protocols have been proposed to protect the data in transit on the
network and to achieve differential privacy in a distributed, adversarial setting.
Proving differential privacy for such protocols is hard and, unfortunately, out of
the scope of the aforementioned mechanized proof techniques.

In this chapter, we present the first framework for the mechanized verifica-
tion of distributed differential privacy. We propose a symbolic definition of dif-
ferential privacy for distributed databases, which takes into account Dolev-Yao
intruders and can be used to reason about compromised parties. Furthermore,
we develop an affine, distance-aware type system to statically and automatically
enforce distributed differential privacy in cryptographic protocol implementations
(expressed in the RCF calculus). We also provide an algorithmic variant of our
type system, which we prove sound and complete. Finally, we tested our analysis
technique on a recently proposed protocol for privacy-preserving web analytics:
we discovered a new attack acknowledged by the authors, proposed a fix, and
successfully type-checked the revised variant.

Publication. In this chapter we extend the work c© 2013 IEEE that was pre-
sented under the title ’Differential Privacy by Typing in Security Protocols’ at

91

CHAPTER 4. DF7

the 26th IEEE Computer Security Foundations Symposium [7] in 2013.

4.1 Introduction

Personal information (e.g., patient records, browsing histories, social graphs, and
behavioral data used for advertising) is disseminated in a wealth of databases
spread across different institutions and services. On the one hand, disclosing in-
formation about these data is often desirable for improving services, analyzing
trends, performing marketing studies, conducting research, and so on. On the
other hand, this information leakage may irremediably compromise the privacy
of users. Narayanan and Shmatikov [98] have shown that anonymized and aggre-
gated data, which at first glance look seemingly harmless, may actually reveal an
incredible amount of information on each user. The research community has long
struggled to understand what privacy means in the context of database queries
and how to measure the amount of information leaked by each query.

Differential privacy (DP). Today, differential privacy [99] is recognized as
one of the fundamental notions of privacy for queries on statistical databases.
Intuitively, a query is differentially private if it behaves statistically similarly on
any pair of databases differing in one entry. In other words, the contribution of
each single entry to the query result is bounded by a small constant factor, even if
all remaining entries are known. A deterministic query can be made differentially
private by perturbing the result with a certain amount of noise, thus reducing
the accuracy of the answer.

Mechanized certification of differential privacy. Many works on differen-
tial privacy focus on specific classes of queries and noise mechanisms, proving
properties thereof manually and in an ad-hoc manner. The disadvantage of this
approach is that each new database type or each new query requires its own
separate proof.

Taking up this challenge, recent research focused on the development of mech-
anized certification techniques for differential privacy. For instance, Reed and
Pierce [36] showed how to automatically and statically enforce differential privacy
for a large class of database queries based on a type system for a higher-order
functional language. Gaboardi et al. [37] extended this type system to allow
the certification of a larger class of queries whose sensitivity might depend on
run-time information. Barthe et al. have presented CertiPriv [38], a mechanized
framework based on interactive theorem proving that can be used to derive for-
mal guarantees of differential privacy for a variety of sanitization mechanisms. In
later work, Barthe et al. [39] have proposed an approach that verifies sanitization
mechanisms with respect to the more general notion of approximative differential
privacy using Hoare logic specifications. In a follow-up work [100], the authors
present a relational refinement type system for the more general verification of

92

4.1. INTRODUCTION

mechanism design and approximative differential privacy. For a more detailed
discussion of the related work, we refer to Section 4.10.

Distributed differential privacy (DDP). So far, we focused on the concept
of differential privacy for single databases. In reality, data are often distributed
across different databases, or stored on personal devices, and one has to com-
pute statistical functions on the dataset obtained by joining these data, yet in
a privacy-preserving manner. Since data may be read and manipulated by net-
work attackers as well as compromised parties, these computations necessarily
involve cryptographic protocols. A growing body of recent work has been fo-
cusing on the development of cryptographic protocols for distributed differential
privacy (e.g., verifiable secret sharing [101], secure function evaluations [102],
secure multi-party computations [103], multi-party distributed data aggregation
algorithms [104–108], and local learning algorithms [109]) and on computational
definitions of differential privacy against polynomially-bounded opponents [103].
So far, however, the differential privacy guarantees offered by such protocols had
to be proven by hand.

Contributions. In this chapter, we introduce the first mechanized verification
technique for distributed differential privacy, taking the first steps to reconcile
the formal analysis of cryptographic protocols with the growing body of work on
the formal certification of differential privacy guarantees. Specifically, we propose
a symbolic definition of differential privacy for distributed databases. Our defi-
nition considers an attacker model that takes Dolev-Yao intruders1 into account
and can also be used to reason about compromised parties. Furthermore, we
present an affine type system to statically enforce this privacy property in cryp-
tographic protocol implementations. Our framework uniformly captures a variety
of perturbation mechanisms, such as (discrete) Laplace noise addition [110, 111]
and the exponential mechanism by McSherry and Talwar [112].

We also provide a sound and complete algorithmic variant of our type sys-
tem called DF7alg, which allows for automating the analysis. Finally, we tested
our analysis technique on a protocol for privacy-preserving web analytics [11]:
we discovered a new attack acknowledged by the authors, proposed a fix, and
successfully type-checked the revised variant.

Outline. This chapter is organized as follows: Section 4.2 introduces the sym-
bolic definition of distributed differential privacy. Section 4.3 presents the calcu-
lus. Section 4.4 explains the link between differential privacy and typing. Sec-
tion 4.5 illustrates the DF7 type system. Section 4.6 explains the algorithmic
variant DF7alg of the type system. Section 4.7 discusses our symbolic model of
cryptography. Section 4.8 shows our type system at work on a cryptographic
protocol for non-tracking web analytics. Section 4.9 shows how to extend the

1A Dolev-Yao intruder can overhear, intercept, and synthesize the cryptographic messages
exchanged on the network, but it cannot break the cryptographic algorithms.

93

CHAPTER 4. DF7

Clients Publisher Website Data Aggregator
1. Visit site //
2. Queriesoo

3. Execute queries
& encrypt answers << 4. Encrypted answers //

5. Add Noise_P
& mix

<< 6. Noisy encrypted answers //
7.Decrypt & aggregate
& add Noise_A & signbb8. Signed noisy resultsoo

9. Remove Noise_P
& get noisy results <<

Figure 4.1: System for Non-Tracking Web Analytics [11]

type system to other sanitization mechanisms. Section 4.10 discusses the related
work. Section 4.11 concludes the chapter and gives directions for future research.

For the proofs we refer to Appendix B. Section B.1 details the soundness
proof of the DF7 system and Section B.2 presents the soundness proof of the
algorithmic variant DF7alg.

4.2 Distributed differential privacy

In this section we explain the key ideas behind our definition of distributed differ-
ential privacy. We also demonstrate the need for a mechanized proof technique for
distributed differential privacy by showing a previously overlooked attack against
a protocol on distributed databases.

4.2.1 Definition of differential privacy

A query is differentially private if it behaves statistically similarly on all databases
D,D′ differing in one entry, written D ∼ D′. This means that the result of the
query is not significantly changed by the presence or absence of each individual
database entry.

The definition of differential privacy is parameterized by a number ε, which
measures how strong the privacy guarantee is: the higher ε, the stronger the risk
to join the database.

Definition 4.1 (Differential Privacy (ε-DP) [99]). A randomized function f is
ε-differentially private iff for all databases D,D′ such that D ∼ D′ and every set
S ⊆ Range(f),

Pr[f(D) ∈ S] ≤ eε · Pr[f(D′) ∈ S]

A deterministic query can be made ε-differentially private by perturbing the result
with a certain amount of noise, thus reducing the accuracy of the answer. We
will describe some of these perturbation mechanisms throughout the chapter.

4.2.2 Definition of distributed differential privacy

As previously mentioned, data are frequently distributed across different databases
or stored on user devices, and it is often desirable to compute statistical func-

94

4.2. DISTRIBUTED DIFFERENTIAL PRIVACY

tions on the dataset obtained by joining these data. The exchange of data such
as query results or fragments of a local database over an untrusted network nec-
essarily involves cryptographic protocols.

Distributed differential privacy has to be defined with respect to the overall
protocol and, particularly, against an opponent that can query the databases as
well as interfere with the cryptographic messages exchanged on the network (e.g.,
by forging messages or replaying them).

The intuition underlying our definition of differential privacy is to think of
the protocol as a query mechanism at disposal of the opponent. The database is
distributed among protocol participants and, by interacting with them, the op-
ponent can learn information about the database. The opponent is active in that
it can choose how to interact with protocol participants based on the information
acquired in the previous message exchanges. As usual in protocol analysis [31],
we formalize the protocol as a function, which takes as input the database and
can be called by the opponent. Typically, this function creates the cryptographic
material, distributes the database across the protocol participants, and finally
returns the functions implementing each of these parties. The opponent can call
and schedule the execution of these functions at will.

Intuitively, a protocol P is ε-differentially private if for all databases D,D′
differing in a single entry, the probability that the opponent outputs 1 when
interacting with PD is approximately the same as when interacting with PD′.

Definition 4.2 (Distributed differential privacy (ε-DDP)). P is ε-differentially
private iff for all databases D,D′ such that D ∼ D′ and all opponents O,

Pr[O(PD)→∗ 1] ≤ eε · Pr[O(PD′)→∗ 1]

This definition is the symbolic counterpart of the definition of εk-IND-CDP
differential privacy for interactive protocols against polynomially-bounded oppo-
nents proposed by Mironov et al. [103]. Here the attacker is not polynomially
bounded, since we work in a symbolic setting and under the perfect cryptography
assumption: the Dolev-Yao attacker can only access the cryptographic libraries
exported by the program, which model the idealized semantics of cryptographic
primitives by constructs of the language and are, thus, suitable for automated
verification.

Furthermore, we remark that the above definition can be used to reason about
malicious parties, a common ingredient in the threat model of cryptographic
protocols for distributed differential privacy, by simply letting these parties be
under the control of the attacker (cf. Section 4.8).

Finally, notice that our definition can be used to reason about secrecy proper-
ties of cryptographic protocols in general, by simply letting the database be the
set of secrets of protocol participants and by splitting the database so as to give
each participant her own secret. In contrast to the existing symbolic definitions
of secrecy for cryptographic protocols, which are based on reachability proper-
ties [113] or observational equivalence relations [114], this definition is quantitative
in that it provides a bound on the amount of sensitive information leaked in a
certain protocol execution.

95

CHAPTER 4. DF7

4.2.3 What can go wrong?

Many new systems for distributed differential privacy are emerging. Analyzing
the privacy properties of these systems by hand is not only tedious but, due to the
complex nature of the systems and their underlying cryptographic protocols, also
prone to overlooking attacks. For instance, we discovered a previously unknown
attack on a recently proposed protocol for privacy-preserving web analytics by
Akkus et al. [11].

The core part of this protocol is depicted in Figure 4.1. Intuitively, the
provider of a website (publisher) uses a third party web analytics service (data ag-
gregator) to gain aggregated information about the users visiting the site (clients).
Such information can include user demographics (e.g., “how many men over 50
visited the website last week?”), browsing behavior, and information about the
clients’ systems. In order to achieve this goal in a privacy-preserving manner, the
publisher acts as a proxy between the clients and the aggregator: it collects en-
crypted information sent by multiple clients visiting the website, mixes them with
some fake “noisy” data, and forwards them to the aggregator. The aggregator de-
crypts all received ciphertexts and (not being able to distinguish between real
and fake user information) combines the results. It adds noise to the produced
analytics and forwards the “double noisy” results to the publisher.

Overall, both the publisher and the data aggregator obtain analytics about
the clients that visited the publisher’s webpage, but both results are not exact:
the publisher cannot remove the noise that the aggregator added and vice-versa.
Assuming that the noise mechanisms used by the publisher and aggregator to
perturb the client data are differentially private and that the publisher and the
data aggregator do not collude, one would assume that the overall protocol can
be proved to enforce distributed differential privacy. As it turns out, this is not
the case.

Consider the following new “snapshot” attack. Upon receiving the encrypted
data of an individual client, a malicious publisher can duplicate these values
multiple times and forward several copies either directly to the data aggregator,
or to another publisher, thus allowing this client’s data to influence the overall
aggregated result multiple times.

This means that, even if a client stops answering queries about its personal
data after its privacy budget2 is spent, the publisher still possesses a “snapshot”
of the previous answers and can replay them. The privacy budget is thus not
under the control of the client, making it impossible to show ε-DDP for a fixed ε.

In the remainder of this chapter, we introduce a type system to statically
enforce differential privacy in cryptographic protocol implementations. We use
our type system to analyze the previously illustrated protocol in Section 4.8,
where we give more details about the attack, propose a fix, and verify the resulting
variant.

2privacy budget : the number of queries a client can safely answer in order to still guarantee
ε-DDP

96

4.3. REVIEW OF RCFDF7

a label

h ::= inl | inr | fold constructor

M,N,D ::= value
x variable
c constant from Σ
f function from Σ
(M,N) multiplicative pair
h M construction
λx.A function (x bound in A)
reada:τ reference read
writea:τ reference write

A,B, P,Q ::= expression
M value
M N application
let x = A in B let (x bound in B)
let (x, y) = M in A split (x, y bound in A)
case M of x in A else B case (x bound in A and B)
unfold M as x in A else B unfold (x bound in A)
M = N syntactic equality
refτ reference creation
add_noisesZ→Z M discrete Laplace noise addition

Table 4.1: Syntax of RCFDF7

4.3 Review of RCFDF7

The λ-calculus used in this chapter (which we refer to as RCFDF7) is a dialect
of RCF, a formal core of F# introduced by Bengtson et al. [31] to reason about
cryptographic protocol implementations. Specifically, we adopt the computa-
tional variant proposed by Fournet et al. [34], which features mutable references
and omits the fork operator. Contrary to RCFAF7, which we presented in Chap-
ter 2, RCFDF7 lacks the assumption and assertion primitives present in previous
RCF presentations [31,34], since they are only needed to specify policies but are
of no semantic significance. We extend the calculus with a primitive for adding
discrete Laplace noise [111], similar to the one for real-valued Laplace noise in
the λ-calculus for differential privacy introduced by Reed and Pierce [36].

4.3.1 Syntax

The syntax of the calculus (cf. Table 4.1) includes standard functional construc-
tors, values, and expressions. The language further supports discrete Laplace
noise addition and references, by providing reference creators, readers, and writ-
ers. References are pairs of functions that read and write on a memory location.
The execution of refτ allocates a fresh label a and returns a pair (reada:τ ,writea:τ)
of functions for reading and writing at location a. We statically annotate refer-

97

CHAPTER 4. DF7

ences with the type τ of the values stored therein. Note that type annotations
do not have any semantic import.

The calculus and the type system are parameterized by a signature Σ, which
exports constants, functions, and the respective types, as discussed in Section 4.4.
This enhances the expressivity of our framework by making it extensible to new
primitives. We assume that the constants exported by the signature include
integers, ranged over by z, the unit value (), and sets, ranged over by S. We can
encode boolean values as true , inl () and false , inr (). The constructors some
and none for option types can be encoded similarly. Lists can be encoded using
the iso-recursive fold operator.

Remark (Discrete domains). Due to the physical limitations of actual machines
we tacitly assume all types and the constants exported by the signature to range
over discrete domains. For example, to include reals in the signature they must
be expressed in some discrete fixed or floating point representation Rdisc of R.
Whenever the context is clear we will just write R.

4.3.2 Modeling cryptographic protocols

In order to model cryptographic protocols, we follow the approach proposed by
Fournet et al. [34], for which computational soundness guarantees have been
proved: the protocol is modeled as a function that is given to the opponent,
who acts as a scheduler. In our setting such a protocol function expects a secret
database as an input, splits the database entries amongst the n honest protocol
participants, and returns n functions that model the behavior of each individual
participant. If a participant is required to perform multiple message exchanges,
the corresponding function is cascaded, expecting a message from the network as
an input, and returning both the outgoing message and the code of the continu-
ation function, which models the remaining protocol steps of that participant.

4.3.3 Semantics

We formalize the semantics of the calculus (cf. Table 4.2) using a labelled proba-
bilistic reduction relation [S,A]

`→p [S ′, A′] between configurations [S,A] consist-
ing of a store S and an expression A. We track the probability p that a certain
reduction takes place as well as the rule ` applied.

Non-deterministic reduction. The only non-deterministic primitive
add_noisesZ→Z z1, which returns z1+z2, where z2 is drawn according to the discrete
Laplace distribution DLaps (also known as the two-sided symmetric distribution)
that has the probability mass function Pr [x] = 1−s

1+s
s|x| [111]. Following common

practice in the literature on differential privacy [110], we use Pr[x] to denote
probability mass and probability density for both discrete and continuous ran-
dom variables. In Section 4.4 we show that discrete Laplace noise addition is
crucial to achieve ε-differential privacy. The label Noise (z1, z2, s) keeps track of
the arguments z1, z2 and of the parameter s of the discrete Laplace distribution.

98

4.3. REVIEW OF RCFDF7

[S, (λx.A)N]
det−−→1 [S,A{N/x}] Red-Fun

[S, let (x, y) = (M,N) in]A
det−−→1 [S,A{M/x}{N/y}] Red-Split

[S, case inl M of x in A else B]
det−−→1 [S,A{M/x}] Red-CaseL

[S, case inr M of x in A else B]
det−−→1 [S,B{M/x}] Red-CaseR

[S, unfold fold M as x in A else B]
det−−→1 [S,A{M/x}] Red-Match

[S, unfold M as x in A else B]
det−−→1 [S,B]

if ∀N.M 6= fold N Red-Match-Fail

[S, let x = M in A]
det−−→1 [S,A{M/x}] Red-LetVal

[S, let x = A in B]
`−→p [S′, let x = A′ in B]

if [S,A]
`−→p [S′, A′] Red-Let

[S, refτ]
det−−→1 [S] {a : τ 7→ none}, (reada:τ ,writea:τ)] Red-Ref

[S ∪ {a : τ 7→M}, reada:τ ()]
det−−→1 [S ∪ {a : τ 7→ none},M] Red-Read

[S ∪ {a : τ 7→M},writea:τN]
det−−→1 [S ∪ {a : τ 7→ some N}, ()] Red-Write

[S, add_noisesZ→Z z1]
Noise (z1,z2,s)−−−−−−−−−→DLaps(z2) [S, z]

where z1, z2 ∈ Z and z = z1 +Z z2 Red-Noise

[S,M = M]
det−−→1 [S, true] Red-Eq-True

[S,M = N]
det−−→1 [S, false] where M 6= N Red-Eq-False

[S, f F]
det−−→1 [S,C] if f(F) =Σ C Red-Sig

Table 4.2: Semantics of RCFDF7

Remark (Probabilistic semantics). Reed and Pierce [36] model perturbed results
as distributions that are represented by monads and are given a deterministic,
big-step denotational semantics. We found it more convenient to work with a
probabilistic, small-step operational semantics, which is closer to the semantics
traditionally used in type systems for cryptographic protocols and allows for
leveraging existing proof techniques.

Deterministic reductions. The remaining deterministic primitives are la-
belled with det. The store is a finite map from references to values. The content
of each reference can be either none, if the reference is empty, or some M . De-
parting from RCF, we define the semantics of references in a message-passing
style, which is reminiscent of the concept of M-structures [115]: data are auto-
matically removed from the referenced memory after being read, thus preventing
data duplication. This choice simplifies the formalization of our affine type sys-
tem and does not affect the expressivity of the language, since destructive and
non-destructive read operators can be obtained from each other by encoding (e.g.,
non-destructive reads can be encoded by rewriting the read data).

Finally, the semantics of the calculus is parameterized by the semantics of
the functions exported by Σ. These functions must be deterministic, take as

99

CHAPTER 4. DF7

argument functional terms, and return constant terms, which are defined below:

F := f | c | (F1, F2) | h F functional term
C := c | (C1, C2) | h C constant term

Notice that these functions may be higher-order and can be called by passing the
arguments in uncurried form. Enforcing a clear separation between the functions
exported by the signature and the values of our calculus is crucial to leverage
existing results on function sensitivity and, thus, to make our framework easily
extensible to new primitives and types. We write f(F) =Σ C to denote that C is
the result of f(F) in Σ and just use f(F) to denote C whenever Σ is clear from
the context.

Reduction probability. We finally define the probability that a certain ex-
pression P reduces into another expression Q, as required by the definition of
ε-differential privacy stated in Section 4.1.

Definition 4.3 (Reduction probability). For all expressions P,Q and probabili-
ties p, r, all n ∈ N>0, and all evaluation rules `i for i ∈ [1, n],

• P `1,...,`n ∗−−−−−−→p·r Q iff there exist S, S ′, P ′ such that [∅, P]
`1,...,`n−1 ∗−−−−−−−→p [S ′, P ′]

and [S ′, P ′]
`n−→r [S,Q],

• Pr[P →∗ Q] =
∑

`1,...,`n:P
`1,...,`n ∗−−−−−−→pQ

p.

4.4 Differential privacy by typing

In this section we explain the intrinsic interplay between differential privacy and
types in more detail.

As previously mentioned, a query can be made differentially private by per-
turbing the result with some noise. An important observation is that the amount
of noise depends on the query: the more a single entry contributes to the query
result, the stronger the noise has to be. The property we are interested in is the
sensitivity of queries to quantitative differences in their inputs [110]. The sensitiv-
ity of a function measures how much this function amplifies the distance between
inputs. Intuitively, queries of low sensitivity map nearby inputs to nearby out-
puts. The distance between values depends on their type: for the query below,
the distance between databases is the Hamming distance, while the distance be-
tween real numbers is the Euclidean one. For instance, the query “how many
foreigners are registered in the hospital database?” has sensitivity 1, since adding
or removing a single entry will change the result by at most 1.

Reed and Pierce [36] showed there is an intimate connection between resource
usage and function sensitivity: for instance, a deterministic function f that uses
each entry of the database only k times and calls only 1-sensitive functions is
at most k-sensitive, that is, it can magnify the distance of the inputs at most
by a factor of k. Based on this intuition, they proposed an affine type system

100

4.4. DIFFERENTIAL PRIVACY BY TYPING

τ, ρ ::= !kφ type (k ∈ R≥0 ∪ {∞})
φ, ψ ::= core type

b base type
α type variable
µα.τ iso-recursive type (α bound in τ)
τ + τ sum type
τ ⊗ τ multiplicative pair type
τ (τ function type

Convention: We write !k(!k′φ) to denote !k·k′φ.

Table 4.3: Syntax of Types (DF7)

that statically bounds the usage of resources and, thus, can be used to statically
over-approximate the sensitivity of a function and to enforce differential privacy.

4.4.1 Types

Table 4.3 shows the syntax of types. As usual in affine or linear type systems,
the type of a value serves a double purpose: it describes the nature of the value
(e.g., real number) as well as the number of times this value can be used at run-
time. Consequently, the syntax of types is defined by mutual induction around
the concept of type and core type.

Types of the form !kφ, with replication index k, describe values of core type
φ that can be used at most k times at run-time. In this sense, our type system
is affine, and thus more liberal than a linear type system would be, since it
enforces an upper bound on the number of times a certain resource is used, as
opposed to the exact number. In particular, if a function is given type !kφ(τ ,
then the argument can be used at most k times in the body of the function.
Notice that values of type !∞φ can be used arbitrarily often and we call these
types exponential. For the sake of readability, we often omit replication index !1.
Replication indexes are non-negative real numbers (i.e., k ∈ R≥0 ∪ {∞}). Here
a replication index of 0 denotes that a value cannot be used, while replication
indexes k such that 0 < k < 1 are helpful to express a sensitivity < 1. Core types
comprise the base types b defined in the signature Σ, type variables, iso-recursive
types, sum types, pair types, and function types. Note that the system by Reed
and Pierce [36] includes additive pair types of the form τ&τ : although we could
easily add them to our system, we decided to omit them for simplicity, since they
are not useful for the examples we considered.

4.4.2 Distance on types

We require a notion of distance for all types and core types in our type system.
Note that this means that the signature has to provide a metric for all base
types. We adopt the metric for types introduced by Reed and Pierce [36], which
we overview below. For types with replication index k, we define the distance as
the distance of the core type multiplied by k, thus δ!kφ(x, y) = k ·δφ(x, y). For core

101

CHAPTER 4. DF7

pair types, the distance is defined as the sum of the distances of the components
δτ⊗ρ((x1, x2), (y1, y2)) = δτ (x1, x2)+δρ(y1, y2). The distance of functions is defined
as the maximal distance of the outputs that the two functions produce for the
same input δτ(ρ(f, g) = maxx∈τ (δρ(f(x), g(x))). The distance on core sum types
is defined as

δτ+ρ(x, y) =

δτ (x′, y′) if x = inl x′ and y = inl y′

δρ(x
′, y′) if x = inr x′ and y = inr y′

∞ otherwise

Intuitively, inl x and inr x have distance ∞ since one can perform a pattern-
matching operation on them and, based on the result, produce arbitrarily dis-
tant results. The distance of two values of an iso-recursive core type is intu-
itively defined by unfolding the two values. Note that the following definition
δµα.τ (fold x, fold y) = δτ{µα.τ/α}(x, y) of distance for iso-recursive types is not
well-founded in all cases (e.g., for the type µα.α). We do not consider types for
which this distance is not well-founded, as they are not needed in any practical
example we considered.

Example 4.1. δ!3(R⊗R)((1, 2), (0, 3)) = 3·(1+1) = 6 and δR(R(λx.x, λx.x+1) = 1
and δR(R(λx.x, λx.x+ x) =∞.

4.4.3 Signature

As mentioned in Section 4.3, our framework is parameterized by a signature Σ,
which exports constants, functions, and the respective types. In this chapter,
we assume that integers are given type Z, the unit value type Unit, while sets
of values of type τ are given type Set〈τ〉. The signature additionally needs to
provide a distance δb for each base type b: δZ is the Euclidean distance between
integers, δUnit is the null distance, while δSet〈τ〉 is the symmetric difference (the
number of entries that are contained in one but not in the other set). Given these
types, we can define standard encodings for the (core) types Bool, Option〈τ〉, and
List〈τ〉, as shown below:

Bool ,!∞Unit+!∞Unit boolean type
Option〈τ〉 ,!∞Unit + τ option type
List〈τ〉 , µα.!1(!∞Unit + (!1(τ⊗!1α))) list type

4.4.4 Type-based k-sensitivity and differential privacy

The notion of sensitivity can be generalized to arbitrary types τ for which a
metric δτ exists, as shown below:

Definition 4.4 (Type-Based k-Sensitivity [36]). A function f is k-sensitive in
τ1 → τ2 iff δτ2(f(x), f(y)) ≤ k · δτ1(x, y) for all x, y ∈ τ1.

Example 4.2. The function f1(x, y) = x+y is 1-sensitive in (Z⊗Z)→ Z. Notice
that each argument is used only once. The function f2(x) = 3x has sensitivity 3

102

4.5. THE DF7 TYPE SYSTEM

in Z → Z. One might say that here the argument is used only once, but since
multiplication is defined using addition, f2(x) = x+x+x in fact uses the argument
three times.

The sensitivity of a function determines the amount of noise that one has to
add to the result for rendering the function in question ε-differentially private.

Proposition 4.1 (Sensitivity and DP [116]). Suppose f is k-sensitive in Dn → Z.
Define the random function q = λx.add_noisee

−ε/k

Z→Z f(x). Then q is ε-differentially
private.

Notice that k-sensitivity can be reduced to 1-sensitivity.

Proposition 4.2 (k-Sensitivity vs 1-Sensitivity [36]). A function f is k-sensitive
in τ1 → τ2 if and only if it is a 1-sensitive function in !kτ1 → τ2.

Example 4.3. The function f2 defined in Example 4.2 is 1-sensitive in type
!3Z→ Z.

In the type system by Reed and Pierce, !kτ1 (τ2 is the type of k-sensitive
functions in τ1 → τ2 (or, equivalently, 1-sensitive functions in !kτ1 → τ2). This
holds true for deterministic functions in our type system and, in the next section,
we generalize this property to stateful randomized expressions.

4.5 The DF7 type system

In this section, we introduce a distance-aware type system that enforces ε-differential
privacy in cryptographic protocol implementations. We will refer to the system
as DF7. The key idea is to enforce a distance preservation property for well-typed
configurations, which is close in spirit to the notion of sensitivity for determin-
istic functions but additionally takes into account the store and the reduction
probabilities. Given two configurations that share the same structure and only
differ in some of their constants, their distance is defined by summing the dis-
tance of the differing constants. Intuitively, the distance preservation property
says that two well-typed configurations sharing the same structure reduce with
approximately the same probability into configurations whose distance does not
exceed the distance of the initial configurations.

4.5.1 Typing environment and judgments

The definition of typing environments and the judgements of DF7 are listed in
Table 4.4. The typing environment is a list of type bindings for variables, kind
bindings for type variables, and type variable declarations of the form x : τ, α :: κ,
and α, respectively. The type system comprises six typing judgments: the well-
formedness judgments Γ ` � and Γ ` τ for typing environments and types,
respectively; the kinding judgments Γ ` τ :: κ and Γ ` φ :: κ, which classify types
and core types based on whether the corresponding values may be sent to the

103

CHAPTER 4. DF7

µ ::= environment entry
x : τ type binding
α :: κ kind binding (κ ∈ {pub, tnt})
α type variable

Γ,∆ ::= ∅ | Γ, µ environment
Γ ` � well-formedness of environments
Γ ` τ well-formedness of types
Γ ` φ :: κ kinding for core types
Γ ` τ :: κ kinding for types
Γ ` τ <: ρ subtyping
Γ ` A : τ typing of expressions

Table 4.4: Typing environment and judgements (DF7)

(Type)
Γ ` � ft(θ) ⊆ dom(Γ)

Γ ` θ

(Env Empty)

∅ ` �

(Env Entry)
Γ ` � ft(µ) ⊆ dom(Γ) dom(µ) ∩ dom(Γ) = ∅

Γ, µ ` �

Notation: We write θ to denote both types and core types.

Table 4.5: Well-formedness judgments (DF7)

opponent (kind pub) or be received from the opponent (kind tnt); the subtyping
judgment Γ ` τ <: ρ, which enhances the expressivity of the type system by
allowing values of type τ to be used in place of values of type ρ; and the typing
judgment for expressions Γ ` A : τ .

4.5.2 Well-formedness judgments

The well-formedness rules are stated in Table 4.5. A type τ is well-formed in Γ
if the type variables occurring free in τ are bound in Γ. A typing environment
Γ is well-formed if the variables bound in Γ are all distinct and their types are
well-formed.

The domain of environments is defined as dom(∅) , ∅, dom(Γ, α) , dom(Γ)∪
{α}, dom(Γ, α :: κ) , dom(Γ)∪{α}, and dom(Γ, x : τ) , dom(Γ)∪{x}. The set
of free type variables in τ =!kφ is denoted by ft(τ) , ft(φ), where ft(x : τ) , ft(τ)
and ft(α) , ∅.

4.5.3 Kinding and subtyping

As we show in Chapter 2, one of the standard ingredients of type systems for
cryptographic protocols is the kinding relation [31–33]: a type has kind public if

104

4.5. THE DF7 TYPE SYSTEM

(Kind Sig)
Γ ` �

Γ ` b :: κ

(Kind Sum)
Γ ` τ :: κ
Γ ` ρ :: κ

Γ ` τ + ρ :: κ

(Kind Pair)
Γ ` τ :: κ Γ ` ρ :: κ

Γ ` τ ⊗ ρ :: κ

(Kind Fun)
Γ ` τ :: κ Γ ` ρ :: κ

Γ ` τ (ρ :: κ

(Kind Var)
α :: κ ∈ Γ Γ ` �

Γ ` α :: κ

(Kind Rec)
Γ, α :: κ ` τ :: κ

Γ ` µα.τ :: κ

(Kind Tnt)
Γ ` φ :: tnt

Γ `!kφ :: tnt

(Kind Pub)
Γ ` φ :: pub

Γ `!∞φ :: pub

(Sub Kind)
Γ ` τ :: pub Γ ` ρ :: tnt

Γ ` τ <: ρ

(Sub Repl)
Γ `!1φ <:!1ψ k ≤ t

Γ `!tφ <:!kψ

(Sub Refl)
Γ ` τ

Γ ` τ <: τ

(Sub Sum)
Γ ` τ <: τ ′ Γ ` ρ <: ρ′

Γ `!1(τ + ρ) <:!1(τ ′ + ρ′)

(Sub Pair)
Γ ` τ <: τ ′ Γ ` ρ <: ρ′

Γ `!1(τ ⊗ ρ) <:!1(τ ′ ⊗ ρ′)

(Sub Fun)
Γ ` τ ′ <: τ Γ ` ρ <: ρ′

Γ `!1(τ (ρ) <:!1(τ ′(ρ′)

(Sub Pos Rec)
Γ, α ` τ <: ρ α occurs only positively in τ and ρ

Γ `!1(µα.τ) <:!1(µα.ρ)

Notation: pub = tnt and tnt = pub.

Table 4.6: Kinding and subtyping relations (DF7)

messages of that type can be sent to the opponent and kind tainted if messages of
that type can be received from the opponent. The types that are both public and
tainted are equivalent by subtyping (i.e., they are subtypes of each other). This
is crucial to prove the opponent typability lemma which says that all opponents
are well-typed. This property allows us to assume that the attacker is well-typed
in the proof of soundness without fearing that our typing discipline limits the
power of the attacker. A property of our type system is that a type is both public
and tainted if and only if all replication indexes occurring therein are set to ∞.
We call such types opponent types. Formally, we write [τ]∞ to denote the type
obtained by replacing all replication indexes in τ with ∞ and we define the set
OPP of opponent types as the set of types τ such that τ = [τ]∞.

The kinding and subtyping relations of DF7 are reported in Table 4.6. The
rules are mostly standard [31]. The kind of type variables is determined by the
typing environment Γ (Kind Var). A type is public only if it has the form !∞φ,
since the opponent can use the received values arbitrarily often, and φ is public
(Kind Pub). A type of the form !kφ is tainted only if φ is tainted (Kind Tnt):
we do not place any constraint on k, since we can choose to limit the number
of times our code is allowed to use the values received from the opponent. The
core types defined in Σ are both public and tainted, since the constants in the
signature can be used by the opponent (Kind Sig). A sum or pair type is public
only if both of its components are public and tainted if both components are
tainted (Kind Sum) and (Kind Pair) respectively. A function type is public if

105

CHAPTER 4. DF7

∅+ ∅ = ∅
(Γ, α) + (∆, α) = (Γ + ∆), α

(Γ, α :: κ) + (∆, α :: κ) = (Γ + ∆), α :: κ
(Γ, x :!kτ) + (∆, x :!k′τ) = (Γ + ∆), x :!k+k′τ

Notation: kΓ denotes the environment obtained by multiplying all replication indexes
of the type bindings in Γ by a factor k

Table 4.7: Environment sum (DF7)

it outputs public values and accepts tainted values as inputs and tainted in the
opposite case (Kind Fun). The kinding of an iso-recursive type is determined
by recursively kinding under an environment extended with the binding of the
type variable to the expected kind (Kind Rec).

Similarly, subtyping is mostly standard: the subtyping relation is reflexive
(Sub Refl), sum and pair types are covariant in their components (Sub Sum)
and (Sub Pair), iso-recursive types are subtyped recursively if the type variable
occurs only positively in both types (Sub Pos Rec), and function types are
contravariant in their inputs and covariant in their outputs (Sub Fun). The only
aspect that is worth pointing out is that the subtyping relation is contravariant in
the replication index (Sub Repl), i.e., Γ `!kτ <:!jτ only if j ≤ k. In particular,
this means that values of type !kτ for k <∞ can never be sent to the opponent,
since public types have replication index ∞ and the replication index can never
be increased by subtyping. This is crucial for the soundness of the type system,
since the opponent can use any value it receives arbitrarily often, in particular
k + 1 times. However, values received from the attacker at type !∞τ can be
super-typed to !jτ and be treated as confidential.

4.5.4 Typing values

One of the goals of our type system is to statically enforce that values of type !kτ
are used at most k times at run-time. Intuitively, this is achieved by formalizing
the typing derivations for values and expressions in a way that the environment
used in the thesis is the sum of the environments used in the hypotheses (or
reading the typing rules upside down, the environment is split along the typing
derivations). This prevents multiple usages of the same resource.

The sum of environments is formalized in Table 4.7. Type variables and kind
bindings are not subject to cardinality constraints, since they are not associated
to any values.3 If the two typing environments contain type bindings of the
form x :!kτ and x :!k′τ , respectively, their sum returns an environment containing
x :!k+k′τ .

The rules for typing values are reported in Table 4.8 and are mostly stan-
dard [36]. Variables are given the type they are bound to in the typing environ-

3Indeed, the reason why we do not need to add the environments along the kinding and
subtyping derivations is that they only depend on the type variables and kind bindings in the
environment.

106

4.5. THE DF7 TYPE SYSTEM

(Var)
Γ ` � x :!kφ ∈ Γ

k ≥ 1

Γ ` x :!1φ

(Sig)
M : φ ∈ Σ M ∈ {c, f}

Γ ` � ∅ ` φ
Γ `M :!1φ

(⊗I)
∆ `M1 : τ1 Γ `M2 : τ2

∆ + Γ ` (M1,M2) :!1(τ1 ⊗ τ2)

(+/µI)
h : (τ, φ) Γ `M : τ Γ ` φ

Γ ` h M :!1φ

((I)
Γ, x : τ ` A : ρ

Γ ` λx.A :!1(τ (ρ)

(Read)
Γ ` τ

Γ ` reada:τ :!1Read〈τ〉

(Read Opp)
Γ ` τ τ ∈ OPP

Γ ` reada:τ :!1[Read〈τ〉]∞

(Write)
Γ ` τ

Γ ` writea:τ :!1Write〈τ〉

(!kI)
Γ `M :!1φ k > 0

kΓ `M :!kφ

Notation: inl : (τ, τ + τ ′)
inr : (τ, τ ′ + τ)
fold : (τ{µα.τ/α}, µα.τ)

Read〈τ〉 , !∞Unit(!1Option〈τ〉
Write〈τ〉 , τ (!∞Unit

Table 4.8: Typing rules for values (DF7)

ment Γ under the condition that the corresponding replication index is at least 1.
For typing pairs, one has to type each of the components individually and sum
the typing environments, thus avoiding duplication of resources (⊗I). Sum and
iso-recursive constructors are typed recursively using rule (+/µI). Functions are
typed by typing the body of the function under an environment extended with
the binding of the argument variable to the expected argument type ((I). As
discussed in Section 4.4, the signature Σ defines a core type φ for each constant
and function. These are given the core type specified in Σ with an affine repli-
cation factor (Sig). The function reada:τ to read from reference a is given type
!1(!∞Unit (!1Option〈τ〉) (Read), since it takes as input the unit value and re-
turns either some M , if M is the value currently stored in the reference, or none,
if the reference is empty. Rule (Read Opp) applies to references whose content is
not subject to any cardinality constraint (i.e., τ ∈ OPP): in this case, the value
read from the reference can be used arbitrarily often and the replication index of
the option type can thus be ∞. This rule is needed to type-check the opponent.
The function writea:τ is instead given type !1(τ (!∞Unit), since it takes as input a
value of type τ to be stored in the reference and returns the unit value (Write).
Finally, we can introduce types with arbitrary positive replication index using
rule (!kI): ifM is given type !1φ under Γ, then it is possible to type-checkM with
type !kφ given the environment kΓ.

107

CHAPTER 4. DF7

(Sub)
Γ ` A : τ Γ ` τ <: ρ

Γ ` A : ρ

(⊗E)
∆ `M :!1(τ1 ⊗ τ2) Γ, x :!rτ1, y :!rτ2 ` A : τ ′

r∆ + Γ ` let (x, y) = M in A : τ ′

(+E)
Γ `M :!1(τ1 + τ2) ∆, x :!rτ1 ` A : τ ′ ∆, x :!rτ2 ` B : τ ′

∆ + rΓ ` case M of x in A else B : τ ′

(µE)
Γ `M :!1µα.τ ∆, x :!rτ{µα.τ/α} ` A : τ ′ ∆ ` B : τ ′

∆ + rΓ ` unfold M as x in A else B : τ ′

((E)
∆ `M1 :!1(τ (τ ′)

Γ `M2 : τ

∆ + Γ `M1M2 : τ ′

(Let)
Γ ` A : τ ∆, x : τ ` B : τ ′

∆ + Γ ` let x = A in B : τ ′

(Add-Noise)
Γ `M :!1Z

Γ ` add_noisesZ→Z M :!∞Z

(Ref)
Γ ` τ

Γ ` refτ :!∞Ref〈τ〉

(Ref Opp)
Γ ` τ τ ∈ OPP

Γ ` refτ : [!∞Ref〈τ〉]∞

(Eq)
Γ `M :!∞τ ∆ ` N :!∞τ

Γ + ∆ `M = N :!∞Bool

Notation: Ref〈τ〉 ,!∞Read〈τ〉⊗!∞Write〈τ〉

Table 4.9: Typing rules for expressions (DF7)

4.5.5 Typing expressions

The typing rules for expressions are reported in Table 4.9. The subsumption rule
(Sub) is standard since subtyping does not rely on the addition of environments.
The rule for eliminating function types ((E) is straightforward, checking that the
argument is given the expected function argument type and returning the result
type. In the case of standard let expressions (Let), the variable x is bound to
the type of expression A and expression B is typed under the environment that is
extended with this binding. The rules for eliminating pair types (⊗E), sum types
(+E), and iso-recursive types (µE) are standard [36], adding the environments
created along the subderivations. Note that in these cases, the variable x (and y
respectively) is assumed to be used with replication factor r in the scope of the
elimination. The cost of this choice is that the environment Γ that was used to
type the value M must be multiplied by the same factor r. The add_noisesZ→Z M
expression is given type !∞Z (Add-Noise), since the amount of noise added to
M suffices to hide any dependency on secret data. We will see later on that
the noise parameter s has to correspond to the replication index of the database
type in order to achieve ε-DDP. The equality check between two values M,N
is well-typed with type !∞Bool if the two values are of the same exponential
type !∞τ (Eq). The constraint on the replication factor is crucial to enforce

108

4.5. THE DF7 TYPE SYSTEM

distance preservation, as the possible results false and true of an equality check
have distance∞. Finally, the expression refτ creates a fresh reference and returns
the pair of functions to read from and write into this reference: the type of this
expression is thus obtained by pairing the types of the reader and writer (Ref).
Similar to the case of the typing of the reader function (Read Opp), in the case
that τ ∈ OPP , the reference can also be given replication factor ∞ throughout
by applying the opponent typing rule (Ref Opp).

4.5.6 Formal results

In the following section we show the main soundness results of DF7. For the
proofs we refer to Section B.1.

The proof of the differential privacy theorem relies on an opponent typability
lemma, saying that all opponents are well-typed. As usual in type systems for
cryptographic protocols [31], we require the opponent to be a closed expression
that is annotated only with an untrusted type (Un in the literature, τ ∈ OPP
in our case), which characterizes the values that can be sent to and received
from the opponent. Note that we are not constraining the opponent, since typing
annotations do not affect the semantics of expressions.

Our main theorem uses the following generalized definition of distributed dif-
ferential privacy that considers constant terms D,D′ of arbitrary type and arbi-
trary distance as inspired by Reed and Pierce [36].

Definition 4.5 (Generalized ε-DDP (ε, τ -DDP)). P is ε, τ -differentially private
iff for all constant terms D,D′ of type τ and all opponents O,

Pr[O(PD)→∗ 1] ≤ eε·δτ (D,D′) · Pr[O(PD′)→∗ 1]

Theorem 4.1 below states that all well-typed expressions are ε, τ -differentially
private. Note that we actually prove a more general property, parameterized by
the noise added in the protocol execution.

Theorem 4.1 ((ε/k, τ)-Differential Privacy). For all k ∈ R>0, all types τ , and
all closed expressions P such that the following conditions hold:

• the parameter of all noise addition primitives is set to e−ε/k (i.e., they are
of the form add_noisee

−ε/k

Z→Z M)

• ∅ ` P : τ (ρ for some ρ ∈ OPP

P is ε/k, τ -differentially private.

We also remark that DF7 can be used to enforce a strong secrecy property [34]
based on probabilistic observational equivalence for expressions that do not con-
tain any noise addition primitives, as formalized below.

Corollary 4.1 (Strong Secrecy). For all opponents O, all types τ , and all closed
expressions P such that the following conditions hold:

109

CHAPTER 4. DF7

• P does not contain any noise addition primitives

• ∅ ` P : τ (ρ for some ρ ∈ OPP

we have that Pr[O(PD)→∗ 1] = Pr[O(PD′)→∗ 1]

Finally, one might wonder how this approach scales to multiple protocol ses-
sions. For example, let us consider a protocol that is given type τ (ρ, where
ρ ∈ OPP in which the parameter of all noise addition primitives is e−ε. By
Theorem 4.1, this protocol achieves ε, τ -DDP. We might want to allow this pro-
tocol to be executed i times. Intuitively, such a multisession protocol will have
type !iτ (ρ, since the secret database will have to be accessed i times, and will
thus be ε, !iτ -differentially private. This means that the ratio between the prob-
ability of outputting 1 when the protocol is initialized with database D and the
probability of outputting 1 when the protocol is initialized with D′ is bounded
by eε·δ!iτ (D,D′). By the distance definition, this is equivalent to eε·i·δτ (D,D′). This
means that the multisession protocol is (ε · i), τ -differentially private. Intuitively,
privacy losses are summed up over multiple sessions (or queries), as stated by the
principle of composition formulated by McSherry [117].

4.6 Algorithmic type-checking (DF7alg)

The treatment of type bindings, as formulated in Section 4.5, results in several
non-deterministic rules. This non-determinism complicates the implementation
of an efficient decision procedure. In the following section, we present a sound
and complete algorithmic version of the type system.

4.6.1 Key ideas

It is well-known that standard sources of non-determinism like subtyping and
typing constructors of sum or iso-recursive types can be resolved using type an-
notations.

We first focus on the distinctive source of non-determinism of DF7, the split-
ting of typing environments, which is much harder to deal with in an algorithmic
way, before providing the full details of the algorithmic type system DF7alg.

The core idea underlying the algorithmic version of the type system is inspired
by the work of Cervesato et al. [118] on efficient resource management for linear
logic proof search. Intuitively, the algorithmic variant of a typing rule that relies
on the splitting of the typing environment among its premises proceeds as follows:
all resources (i.e., type bindings) are first used to prove the first premise of a typing
rule; the resources that were not consumed in the derivation of that premise are
then returned and used in the derivation of the second premise and so on.

Algorithmic typing judgements are of the form Γ `alg A : τ ; Γ′, where Γ
denotes the typing environment that is given as input in order to type-check
expression A with type τ and Γ′ denotes the environment entries that were not
consumed in this derivation and can be used to prove further subgoals.

110

4.6. ALGORITHMIC TYPE-CHECKING (DF7ALG)

We note that every typing judgment of the form Γ ` A : τ is matched by
an algorithmic counterpart of the form Γ `alg A : τ ; Γ′, which is sound and com-
plete. Intuitively, this means that if Γ `alg A : τ ; Γ′ then Γ ` A : τ (soundness).
Furthermore, if Γ ` A : τ then there exists Γ′ such that Γ `alg A : τ ; Γ′ (complete-
ness).

We demonstrate the approach on the following algorithmic variants of the
typing rules for variables (Var Alg) and pairs (⊗I Alg):

(Var Alg)
Γ ` � x :!kφ ∈ Γ k ≥ 1

Γ′ = Γ{x :!k−1φ/x :!kφ}
Γ `alg x :!1φ; Γ′

(⊗I Alg)
Γ `alg M1 : τ1; Γ′ Γ′ `alg M2 : τ2; Γ′′

Γ `alg (M1,M2) :!1(τ1 ⊗ τ2); Γ′′

A variable x can be type-checked with type !1φ under typing environment Γ if
x is bound to core type φ with replication index k ≥ 1 in Γ. In the returned
environment Γ′ that can be used to type-check further subgoals, x is instead
bound to φ with reduced replication index k − 1.

The rule ⊗I Alg for pairs (M1,M2) exemplifies the treatment of environment
splitting: the complete typing environment Γ is used to type-check M1 with type
τ1. The resulting (possibly reduced) environment Γ′ is then used to type-check
M2 with type τ2, which upon success returns the final remaining environment Γ′′

and allows us to type-check the pair (M1,M2) with type !1(τ1 ⊗ τ2).

Example 4.4. As an example, take Γ = x :!4Z, A = (x, x), and τ =!1(!1Z⊗!1Z).
The algorithmic typing derivation to type-check A with type τ under Γ looks as
follows:

x :!4Z `alg x :!1Z;x :!3Z x :!3Z `alg x :!1Z;x :!2Z
x :!4Z `alg (x, x) :!1(!1Z⊗!1Z);x :!2Z

We first type-check the left pair component x with type !1Z under environment
x :!4Z and return the remaining environment !3Z, which is then used to type-
check the right pair component x again with type !1Z. The pair is thus assigned
type !1(!1Z⊗!1Z) and the remaining resources x :!2Z are returned.

4.6.2 Base judgements and kinding

Both the well-formedness judgement and the kinding relation of our type system
are already algorithmic. In particular, we will make use of the fact that deciding
whether or not a type has kind tnt or pub is deterministic in the algorithmic
version of the subtyping rules.

4.6.3 Subtyping

We introduce the rules of the algorithmic subtyping relation in Table 4.10. Since
subtyping does not consume resources that are stored in the typing environment
Γ, there is no need for a deterministic splitting of the typing environment. How-
ever, the algorithmic subtyping rules need to resolve the non-determinism of the

111

CHAPTER 4. DF7

original DF7 system that is due to the fact that the original subtyping rules are
not syntax-driven. In fact, in DF7 there are (at most) four rules applicable to
subtype Γ ` ρ <: τ : (Sub Refl), (Sub Repl), (Sub Kind), and in the case
that two types share the same top-level constructor one corresponding structural
subtyping rule (e.g., (Sub Pair) in the case of pairs).

To remove the non-structural rule (Sub Repl) that encodes the fact that a
resource can be used less often than its replication index, we hardcode it into all
remaining rules that only operate on replication factor 1 in the original system.
Additionally, we require all structural algorithmic subtyping rules to only operate
on types τ =!tφ and ρ =!kψ, where k ≤ t and φ 6= ψ, thus avoiding a clash with
the reflexivity rule (Sub Refl Alg) that operates on types with the same core
type.

The only remaining issue lies in resolving the non-determinism of the original
(Sub Kind) rule, a rule that can be applied to show that a public type is a subtype
of a tainted type. We resolve this non-determinism by letting the algorithmic
kinding-based rule (Sub Kind Alg) only be applicable to two types ρ, τ that
do not share the same top-level constructor, i.e. they are structurally different,
which we denote by ρ 6=str τ . Note that two types that share the same top-
level constructor can still be subtyped using kinding by recursively applying the
matching structural subtyping rules until one of the subgoals matches the premise
of the rule (Sub Kind Alg).

This approach is both sound and complete for all but the case of subtyping
two iso-recursive types. This is an artifact of our choice of not adapting the
Amber rule but the iso-recursive subtyping proposed by Backes et al. [32, 33],
which requires the recursive variable to occur only positively in the iso-recursive
type (cf. (Sub Pos Rec) in Section 4.5.3).

For instance, given the above constraints, subtyping

Γ `alg!∞(µα.!∞(!∞α(!∞Unit)) <:!∞(µα.!∞(!∞α(!∞(!∞Unit⊗ !∞Unit)))

would not be possible, thus lacking kinding-based algorithmic subtyping for iso-
recursive types. Therefore, our algorithmic type system contains two rules for
subtyping two iso-recursive types: (Sub Kind Rec Alg), and (Sub Pos Rec
Alg), respectively. The choice of which rule to apply is made deterministic by
first checking whether the types are public and tainted.

4.6.4 Typing values and expressions.

The algorithmic typing rules for values are presented in Table 4.11, those for
expressions in Table 4.12. The rules straightforwardly follow the intuition de-
scribed in Section 4.6.1. We rely on typing annotation to guide the selection of
appropriate rules and types, which we will explain in the following. With some
abuse of notation, we let A range also over expressions with typing annotations.

In the case of sum and iso-recursive types the algorithmic system DF7alg relies
on annotating the constructor as hφ M to help with the choice of the appropriate
missing type φ (+/µI Alg). Since in the typing rule ((I) the type of the input is

112

4.6. ALGORITHMIC TYPE-CHECKING (DF7ALG)

(Sub Kind Alg)
Γ `alg τ :: pub Γ `alg ρ :: tnt τ 6=str ρ

Γ `alg τ <: ρ

(Sub Refl Alg)
Γ ` φ k ≤ t
Γ `alg!tφ <:!kφ

(Sub Sum Alg)
Γ `alg τ <: τ ′ Γ `alg ρ <: ρ′

k ≤ t τ + ρ 6= τ ′ + ρ′

Γ `alg!t(τ + ρ) <:!k(τ
′ + ρ′)

(Sub Pair Alg)
Γ `alg τ <: τ ′ Γ `alg ρ <: ρ′

k ≤ t τ ⊗ ρ 6= τ ′ ⊗ ρ′
Γ `alg!t(τ ⊗ ρ) <:!k(τ

′ ⊗ ρ′)

(Sub Fun Alg)
Γ `alg τ ′ <: τ Γ `alg ρ <: ρ′

k ≤ t τ (ρ 6= τ ′(ρ′

Γ `alg!t(τ (ρ) <:!k(τ
′(ρ′)

(Sub Kind Rec Alg)
Γ `!t(µα.τ) :: pub Γ `!k(µα.ρ) :: tnt

τ 6= ρ

Γ `alg!t(µα.τ) <:!k(µα.ρ)

(Sub Pos Rec Alg)
Γ, α `alg τ <: ρ α occurs only positively in τ and ρ k ≤ t

¬(Γ `!t(µα.τ) :: pub ∧ Γ `!k(µα.ρ) :: tnt) τ 6= ρ

Γ `alg!t(µα.τ) <:!k(µα.ρ)

Notation: Here τ 6=str ρ denotes that τ and ρ do not share the same top-level con-
structor (disregarding replication indices).

Table 4.10: Algorithmic subtyping relation (DF7alg)

chosen non-deterministically, in the algorithmic variant we annotate the input as
λx : τ.A to guide type-checking ((I Alg). To select an appropriate replication
factor k, the rule (!I Alg) uses annotations of the form M!k. We note that the
typing of references already relies on typing annotations. The intuition behind
the algorithmic typing of variables (Var Alg) and pairs (⊗I Alg) was shown in
Section 4.6.1. The typing of signature values does not consume any entries from
the typing environment Γ and thus simply returns the complete environment
untouched (Sig Alg).

The subtyping rule Sub is highly non-deterministic and can be applied at any
time. We thus rely on manual annotations of the form (A)_<:ρ, describing the
expected supertype ρ to only trigger the application of subtyping when explicitly
necessary (Sub Alg). In the case of (⊗E), (+E), and (µE) typing relies on
the choice of an appropriate replication factor r of the value M . We eliminate
the non-deterministic choice by requiring an explicit annotation of the form M!r

(⊗E Alg), (+E Alg), (µE Alg). In the latter two rules we make use of the
environment operation min(Γ,Γ′) to always select the lower replication factor of
a variable binding that is contained in both of the environments Γ and Γ′. min
does not affect type variables or their kinding. The cases of ((E Alg), (Let
Alg), and (Eq Alg) are rather straightforward: the environment is first used in
the left premise and the remaining environment is then used in the right premise.
Since the typing of references does not consume any entries from the environment

113

CHAPTER 4. DF7

(Var Alg)
Γ ` � x :!kφ ∈ Γ k ≥ 1 Γ′ = Γ{x :!k−1φ/x :!kφ}

Γ `alg x :!1φ; Γ′

(Sig Alg)
M : φ ∈ Σ M ∈ {c, f} Γ ` � ∅ ` φ

Γ `alg M :!1φ; Γ

(⊗I Alg)
Γ `alg M1 : τ1; Γ′ Γ′ `alg M2 : τ2; Γ′′

Γ `alg (M1,M2) :!1(τ1 ⊗ τ2); Γ′′

(+/µI Alg)
h : (τ, φ) Γ `alg M : τ ; Γ′ Γ ` φ

Γ `alg hφ M :!1φ; Γ′

((I Alg)
Γ, x : τ `alg A : ρ; Γ′

Γ `alg λx : τ.A :!1(τ (ρ); Γ′\x

(Read Alg)
Γ ` τ τ /∈ OPP

Γ `alg reada:τ :!1Read〈τ〉; Γ

(Read Opp Alg)
Γ ` τ τ ∈ OPP

Γ `alg reada:τ :!1[Read〈τ〉]∞; Γ

(Write Alg)
Γ ` τ

Γ `alg writea:τ :!1Write〈τ〉; Γ

(!I Alg)
Γ `alg M :!1φ; Γ′ k > 0

kΓ `alg M!k :!kφ; kΓ′

Notation: We write (Γ, x : τ,Γ′)\x to denote Γ,Γ′.

Table 4.11: Algorithmic typing of values (DF7alg)

114

4.6. ALGORITHMIC TYPE-CHECKING (DF7ALG)

(Sub Alg)
Γ `alg A : τ ; Γ′ Γ `alg τ <: ρ

Γ `alg (A)_<:ρ : ρ; Γ′

(⊗E Alg)
Γ `alg M!r :!r(τ1 ⊗ τ2); ∆ ∆, x :!rτ1, y :!rτ2 `alg A : τ ′; Γ′

Γ `alg let (x, y) = M!r in A : τ ′; (Γ′\x)\y

(+E Alg)
Γ `alg M!r :!r(τ1 + τ2); ∆ ∆, x :!rτ1 `alg A : τ ′; Γ′ ∆, x :!rτ2 `alg B : τ ′; Γ′′

Γ `alg case M!r of x in A else B : τ ′; min(Γ′,Γ′′)\x

(µE Alg)
Γ `alg M!r :!rµα.τ ; ∆ ∆, x :!rτ{µα.τ/α} `alg A : τ ′; Γ′ ∆ `alg B : τ ′; Γ′′

Γ `alg unfold M!r as x in A else B : τ ′; min(Γ′\x,Γ′′)

((E Alg)
Γ `alg M1 :!1(τ (τ ′); ∆ ∆ `alg M2 : τ ; Γ′

Γ `alg M1M2 : τ ′; Γ′

(Let Alg)
Γ `alg A : τ ; ∆ ∆, x : τ `alg B : τ ′; Γ′

Γ `alg let x = A in B : τ ′; Γ′\x

(Add-Noise Alg)
Γ `alg M :!1Z; Γ′

Γ `alg add_noisesZ→Z M :!∞Z; Γ′

(Ref Alg)
Γ ` τ τ /∈ OPP

Γ `alg refτ :!∞Ref〈τ〉; Γ

(Ref Opp Alg)
Γ ` τ τ ∈ OPP

Γ `alg refτ : [!∞Ref〈τ〉]∞; Γ

(Eq Alg)
Γ `alg M :!∞τ ; ∆ ∆ `alg N :!∞τ ; Γ′

Γ `alg M = N :!∞Bool; Γ′

Notation: min((Γ, x :!kτ), (Γ′, x :!rτ)) = min(Γ,Γ′), x :!min(k,r)τ ; min((Γ, α), (Γ′, α)) =

min(Γ,Γ′), α; min((Γ, α :: κ), ((Γ′, α :: κ)) = min(Γ,Γ′), α :: κ; min(∅, ∅) = ∅. min is
undefined in all other cases.

Table 4.12: Algorithmic typing of expressions (DF7alg)

Γ, the whole Γ is returned (Ref Alg) and (Ref Opp Alg). In the case of the
easy inductive rule (Add-Noise), the returned environment inductively arises
from the premise (Add-Noise Alg).

115

CHAPTER 4. DF7

4.6.5 Formal results

Below we state the completeness and soundness result of the algorithmic variant
DF7alg of our type system.

We write 〈A〉 to denote the expression obtained by removing the typing an-
notations from A.

Theorem 4.2 (Completeness and Soundness of DF7alg). For every Γ, A, and τ ,
the following conditions hold:

1. If Γ ` A : τ then there exist Γ′, A′ such that Γ `alg A′ : τ ; Γ′ and A = 〈A′〉.

2. If Γ `alg A : τ ; Γ′ then there exists Γ′′ such that Γ′′ ` 〈A〉 : τ and Γ = Γ′+Γ′′.

4.7 A sealing-based cryptographic library

Originally, Morris [53] proposed the notion of dynamic sealing as a mechanism
to protect program modules. While defining the semantics for a λ-calculus with
dynamic sealing, Sumii and Pierce [54] later on observed a close correspondence
with symmetric encryption. Bengtson et al. [31] showed how to encode a sealing-
based cryptographic library for RCF using pairs, functions, references, and lists.
In the following we propose a sealing-based cryptographic library for randomized
symmetric cryptography that is well-typed in our type system.

4.7.1 Standard sealing-based libraries

The core idea of using seals to model cryptography is the following: a global
reference is used to store a list of message-ciphertext pairs. This reference can
only be accessed via the sealing and unsealing functions. The plaintext that is to
be encrypted is paired with a fresh value, which represents the ciphertext. This
message-ciphertext pair is added to the list (sealing). To decrypt a ciphertext, the
latter is looked up in the list. If the ciphertext is in the list, then the corresponding
message is returned (unsealing).

The symmetric key consists of the pair of the sealing and unsealing func-
tion. As shown by Bengtson et al. [31], we can model public-key cryptography
(and other primitives) in a similar way: the sealing function corresponds to the
encryption key, the unsealing function corresponds to the decryption key.

4.7.2 Affine sealing-based library

As we have shown in Section 4.4, the crucial ingredient to enforce differential
privacy is the affine usage of resources. In a distributed setting, one has to
make sure that the sensitive (affine) data that is exchanged over the network
does not get duplicated and processed more than once. Otherwise a single entry
in the (distributed) database could have a huge, and not statically predictable,
impact on the final result. Since we cannot prevent the opponent from duplicating

116

4.7. A SEALING-BASED CRYPTOGRAPHIC LIBRARY

public ciphertexts, we must enforce that the content of each ciphertext cannot be
processed more than once.

This can be achieved by encoding the sealing mechanism using a affine refer-
ence to store the list of message-ciphertext pairs. The resulting sealing function
behaves as in the non-affine setting. In the unsealing function, the list is auto-
matically removed from the referenced memory after being read. The list is then
searched for the message-ciphertext pair. If the pair is contained in the list, the
function will return the message and store the list pruned of the pair back into
the reference. Thus, further decryptions of the same ciphertext are no longer pos-
sible. If the pair is not found, the complete list is stored back into the reference4.
We will present the full implementation of our affine cryptographic library in the
next section.

4.7.3 Implementation of the cryptographic library

Below, we present the details of our cryptographic library. We first show the typed
interface of the cryptographic library functions and then their implementation.

Typed interface. We now list a typed interface of the most important func-
tions in our cryptographic library. Except for the use of affine references and the
possibility to re-store message-ciphertext pairs into the seal reference, the code
of the functions is mostly standard. Note that all functions can be typed under
the empty environment and can thus be given an arbitrary replication index.
Sealing and Unsealing. The type of the references we use for seals is defined as
SealRef〈τ〉 , Ref〈List〈τ⊗!∞Z〉〉. The sealing and unsealing functions are both
initialized with the seal reference. The sealing function can then be used to seal
a value of type τ , the unsealing function to unseal a public value of type !∞Z.

seal :!∞SealRef〈τ〉(!∞((τ + (τ⊗!∞Z))(!∞Z)
unseal :!∞SealRef〈τ〉(!∞(!∞Z(Option〈τ〉)

A seal is a pair of the initialized sealing and unsealing functions Seal〈τ〉 ,!∞((τ +
(τ⊗!∞Z))(!∞Z)⊗!∞(!∞Z(Option〈τ〉). To create a seal the following function
mkSeal is available:

mkSeal :!∞Unit(!∞Seal〈τ〉

Key Generation and Enc-/ Decryption. A symmetric key is a seal: it can be
used for encrypting (by calling the sealing function) and for decrypting (using the
unsealing function). We define SKey〈τ〉 , Seal〈τ〉 and provide the following typed
interface for the functions for key generation, randomized symmetric encryption,
and symmetric decryption:

mkSKey :!∞Unit(!∞SKey〈τ〉
senc : SKey〈τ〉((τ (!∞Z)
sdec : SKey〈τ〉((!∞Z(Option〈τ〉)

4Note that in the case of non-affine payloads the decrypt-once restriction is not necessary.
The sealing mechanism for such values could thus be encoded using a standard non-destructive
reference.

117

CHAPTER 4. DF7

Implementation details. A lot of the functions we define on lists will be re-
cursive. In [36] the authors describe how a fixpoint combinator can be simulated
in a standard way. They also explain how an explicit fixpoint operator can be
added to the type system. To aid the legibility of our code we thus add the
following typing rule

Fix
Γ, f :!∞(τ (τ ′) ` A : τ (τ ′

∞Γ ` fix f.A : τ (τ ′

Convention: Here and in the following we write true to denote inl () as well
as false to denote inr (). Furthermore, we use the notations none , inl () and
some x , inr x and nil , fold inl () as well as cons h t , fold inr (h, t)
To concatenate two lists we can use the following function:

concat :
!1List〈τ〉(!1(!1List〈τ〉(!1List〈τ〉)

let concat =
fix g.λl1.λl2.
unfold l1 as l′1 in

case l′1 of l′′1 in l2
else let (h, t) = l′′1 in

let r = g t l2 in
cons h r;

Lookup Function. Given a list of pairs with exponential second component and
a handle of the same exponential type, this function will be used to look up the
first occurrence of that handle as the second component of an entry in the list
and return the pair containing the first component of that entry in the list and
the list from which the entry has been removed.

lookupR :
!∞φ(!1(!1List〈τ⊗!∞φ〉(
!1(List〈τ⊗!∞φ〉(
!1(!1Option〈τ〉⊗!1List〈τ⊗!∞φ〉)))

let lookupR =
fix g.λc.λo.λl.
unfold l as l′ in

case l′ of l′′ in (none, o)
else let (h, t) = l′′ in

let (h1, h2) = h in
let comp = (c = h2) in
case comp of x in

(some h1, concat(o, t))
else g c (cons (h1, h2) o) t;

Seals. The sealing function is defined as follows:

118

4.7. A SEALING-BASED CRYPTOGRAPHIC LIBRARY

let seal =
λs.λm.
let (r, w) = s in
let state = r() in
case m of m′ in

let c = create_new() in
let p = (m′, c) in
case state of l in

let upd = w (some (cons p nil)) in
c

else
let upd = w (some (cons p l)) in
c

else
let (mo, co) = m′ in
let p = (mo, co) in
case state of l in

let upd = w (some (cons p nil)) in
co

else
let upd = w (some (cons p′ l)) in
co ;

Here the function create_new :!∞Unit (!∞Z creates a fresh public value.
This can be encoded by creating a fresh reference (ref !∞Z) and then using sub-
typing to give the reference type !∞Z.
The unsealing function is defined as follows:

let unseal =
λs.λc.
let (r, w) = s in
let state = r() in
case state of l in none
else

let res = lookupR c nil l in
let (m, l′) = res in
let upd = w (some l′) in
m;

The following function can be used to create a seal:

let mkSeal =
λ_.
let (r, w) = ref in
(seal (r, w), unseal (r, w));

Cryptographic Operations. Symmetric key generation is defined as follows:

119

CHAPTER 4. DF7

let mkSKey =
λ_.
let (e, d) = mkSeal() in
(e, d);

Symmetric encryption is defined as:

let senc =
λk.λm.
let (e, d) = k in
e (inl m);

The corresponding decryption function looks as follows:

let sdec =
λk.λc.
let (e, d) = k in d c;

Public key cryptography. As shown by Bengtson et al. [31], we can model random-
ized public-key cryptography (as well as other primitives) in a similar way: the
sealing function corresponds to the encryption key, while the unsealing function
corresponds to the decryption key. For instance, the type of an encryption key for
a secret number of type !1Z is !∞(!1Z (!∞Z). The kinding relation guarantees
that this type is public and, thus, that the encryption key can be made available
to the opponent, who can later use it by giving it the supertype !∞(!∞Z(!∞Z).
Honest parties will give decrypted messages type !1Z, which is indeed a super-
type of !∞Z. Indeed, the type !1Z is tainted, that is, it does not provide any
authenticity guarantee.

Formally, asymmetric public key encryption is defined as follows:

120

4.7. A SEALING-BASED CRYPTOGRAPHIC LIBRARY

DKey〈τ〉 , Seal〈τ〉

EKey〈τ〉 , (τ + (τ⊗!∞Z))(!∞Z

mkDKey :!∞Unit(!∞DKey〈τ〉

let mkDKey =
λ_.
let (e, d) = mkSeal() in
(e, d);

mkEKey :!∞DKey〈τ〉(!∞EKey〈τ〉

let mkEKey =
λdk .
let (e, d) = dk in
e;

aenc :!1EKey〈τ〉(!1(τ (!∞Z)

let aenc =
λek .λm.
ek (inl m);

adec :!1DKey〈τ〉(!1(!∞Z(!1Option〈τ〉)

let adec =
λdk .λc.
let (e, d) = dk in d c;

4.7.4 Symbolic soundness of cryptographic library

Backes et al. [55] proved the computational soundness of a standard sealing-based
library, establishing a semantic link between sealing-based cryptographic libraries
and traditional Dolev-Yao constructor-based libraries. Here we show that our
affine sealing-based cryptographic library can be proven sound with respect to a
standard sealing-based library.

Intuitively, we have to make sure that the content of each ciphertext is not
processed more than once, that is, the protocol is secure against replay attacks.
There exist many standard techniques to defend against replay attacks, e.g.,
nonce-handshakes or session keys. We generalize this concept to the notion of
guarded decryption. Intuitively, we let the cryptographic library contain multiple
guarded decryption functions dec&check i, which replace the original decryption
functions. A guarded decryption function takes as input the decryption key and
the ciphertext as well as an additional guard. It then unseals the ciphertext,
applies a boolean check to the content of the ciphertext and the guard and only

121

CHAPTER 4. DF7

returns the plaintext if the check succeeded (otherwise, the plaintext is stored
back into the seal). Below we demonstrate the concept of guarded decryption on
a concrete example. We will introduce another guarded decryption function in
the case study (cf. Section 4.8).

Guarded decryption (example). For instance, nonce-handshakes can be en-
coded in terms of a corresponding guarded decryption function dec&checknonce

that takes the nonce as a guard and performs an equality check between the guard
and the nonce that is contained in the ciphertext alongside the payload. Here,
dec&checknonce is of the following type:

!1DKey〈!∞Nonce⊗ τ〉(!1(!∞Z(
!1(!∞Nonce(!1Option〈τ〉))

The function is implemented as follows:

let dec&checknonce =
λk.λc.λg.
let r = adec k c in
case r of r′ in none
else

let (n,m) = r′ in
case (n = g) of z in some m
else

let (e, d) = k in
let restore = e (inr (m, c)) in
none;

Symbolic soundness In order to show the soundness of the affine sealing-
based library, we have to put a restriction on the guarded decryption functions
and on the usage of the guards in the protocol code. Intuitively, we say that a
cryptographic library is valid if for each ciphertext c and key k, there exists at
most one i and one guard g such that dec&check i k c g succeeds (guard unique-
ness). We also say that a program P is Llin

crypto-valid if for every opponent O and
every i, O(Llin

crypto;P) never calls dec&check i more than once with the same guard
(guard usage affinity). We give some insights on how to check guard uniqueness
and guard usage affinity at the end of this chapter.

We now give a formal definition of guard uniqueness and guard usage affinity.
The definitions rely on the notion of well-formed keys. A key is well-formed if
the list of message-ciphertext pairs in the corresponding seal does not contain the
same ciphertext twice.5

Definition 4.6 (Guard Uniqueness). A cryptographic library Llin
crypto is valid if

for each ciphertext c, each well-formed key k, and each guard g there exists a

5In our cryptographic library all keys are well-formed by construction.

122

4.7. A SEALING-BASED CRYPTOGRAPHIC LIBRARY

function dec&check i ∈ Llin
crypto and a value M such that for all N and all functions

dec&check j ∈ Llin
crypto it holds that if

dec&check j c k g →∗ some N

then N = M and i = j. We say that each guard is unique for Llin
crypto.

Definition 4.7 (Guard Usage Affinity). A program P is Llin
crypto-valid for a cryp-

tographic library Llin
crypto if for every opponent O, every guard g, and every function

dec&check i ∈ Llin
crypto it holds that whenever there exist an evaluation context C,

a ciphertext c, and a key k such that

O(Llin
crypto;P)→∗ C[dec&check i c k g]→∗ C[some N]

for some value N then there does not exist an evaluation context C ′ such that

C[some N]→∗ C ′[dec&check i c
′ k′ g]

for some key k′ and ciphertext c′.

In the following, we write Lcrypto to denote the standard sealing-based library,
which is essentially obtained from Llin

crypto by replacing destructive references with
non-destructive references. We can finally state the soundness result for our affine
sealing-based cryptographic library.

Theorem 4.3 (Symbolic soundness of the cryptographic library). Let Llin
crypto be

a valid cryptographic library and P be a Llin
crypto-valid program. For all opponents

O and values M , O(Llin
crypto;P)→∗p M if and only if O(Lcrypto;P)→∗p M .

Proof Sketch. The result can be proven by observing that Lcrypto and Llin
crypto be-

have in the same manner as long as the dec&check i functions in Lcrypto do not
successfully decrypt the same ciphertext more than once. This property is en-
forced by guard uniqueness and guard usage affinity..

Checking guard uniqueness. Guard uniqueness is a semantic property on the
cryptographic library that is most often trivial to check. For instance, in the case
of the guarded decryption function dec&checknonce , which checks whether the
nonce N that is contained in the ciphertext alongside the payload corresponds
to the guard nonce Ng, it is clear that there exists only one guard Ng, for which
this check will succeed, namely N .

Checking guard usage affinity. The affine usage of guards can be checked
using existing techniques, e.g., AF7, the type system presented in Chapter 2 for
enforcing affine authorization policies in RCFAF7. Since RCFDF7 and RCFAF7

constitute only slightly different variants of RCF, AF7 can be applied to our
protocol code by considering the add_noisesZ→Z primitive as a library function
typed with Un → Un. The other primitives can be defined by encoding. We
exemplify how to check that the guard is used only once per guarded decryption

123

CHAPTER 4. DF7

on the function dec&checknonce . In AF7 this decryption function is type-checked
with type

k : DKey〈Un ∗ τAF7〉 → c : Un→
g : {x : Un | FreshGuard i(x)} → Option〈τAF7〉

where the predicate FreshGuard i(x) may be assumed at most once per nonce x.
Intuitively, this means that the code will only type-check in AF7 if each guarded
decryption function is called at most once per guard, thus enforcing the affine
guard usage.

Although we could have embedded one of these techniques in our type system,
we intentionally factored out the problem of preventing replay attacks to keep the
presentation clean and simple and to focus on the novel concepts introduced in
this chapter.

4.8 Case study

In this section we demonstrate the usefulness of our approach by analyzing a
recently proposed protocol for non-tracking web analytics (NTWA) by Akkus et
al. [11]. The system promises both differential privacy guarantees to the clients
visiting a webpage and good quality analytics to the publishers of a webpage.
It requires no additional authority that is not present in current web analytics
scenarios.

Although the authors manually prove that the deployed noise mechanism that
protects aggregated user data is indeed differentially private and they show how
the system prevents different attacks, there is no formal proof that the overall
system provides distributed differential privacy guarantees to the clients. In fact,
it is not clear in general how to transfer the privacy results of the noise mechanism
to establish privacy results for the overall protocol.

In the following, we give a brief description of the NTWA system and show
the results of our analysis that include a newly discovered attack, a fix for the
protocol, and the verified differential privacy result for the revised system.

4.8.1 System overview

The NTWA system comprises the three entities that can be found in standard
web analytics scenarios: clients, publishers, and data aggregators. Intuitively,
the provider of a website (publisher) uses a third party web analytics service
(data aggregator) to gain aggregated information about the users visiting the site
(clients). In today’s systems, the aggregator collects user information by tracking
the client’s behavior across the web and constructing a user profile, which poses
a threat to the client’s privacy. The NTWA system follows a different approach
by assuming the clients voluntarily answer queries about their personal data in
exchange for better privacy guarantees.

The query mechanism of the NTWA system is depicted in Figure 4.1 (cf. Sec-
tion 4.2). Intuitively, the client stores its personal information in a local database

124

4.8. CASE STUDY

(e.g., demographics and browsing history). When visiting a webpage (step 1 in
Figure 4.1), a client will be asked to answer some queries (step 2). These queries
are stored at a fixed URL on the webpage. They may come from either the pub-
lisher or the aggregator and can be rather complex (e.g., SQL) but only allow
for ’yes’ or ’no’ answers, e.g., “Are you between 35 and 50 years old?’’ The client
encrypts its answers to these queries with the public key of the data aggregator
(step 3) before sending them to the publisher, that acts as a proxy (step 4). The
publisher collects answers from multiple clients and creates some fake answers
(noise), encrypts them, and mixes the real and fake answers (step 5), which it
then forwards to the aggregator (step 6). The data aggregator decrypts all the
received query results, adds them together, adds some own noise to the results
(step 7), and sends the signed “double noisy” results back to the publisher (step
8). The publisher subtracts its own noise from the received analytics to obtain
its final aggregated result (step 9).

Overall, both the publisher and the data aggregator obtain analytics about
the clients that visited the publisher’s webpage, but both results are not exact:
the publisher cannot remove the noise that the aggregator added and vice-versa.
As the authors show, the noise addition mechanisms they employ (variations of a
discretized Laplace noise addition) are both differentially private, thus, intuitively,
one should not be able to draw conclusions about a client’s personal database
given the aggregated and noisy query results.

The trust assumptions underlying the NTWA protocol are as follows: (i) The
client is trusted; (ii) the publishers can be selfishly malicious; (iii) the aggregator
is honest-but-curious (HbC); (iv) the aggregator and the publisher do not collude,
which is crucial to prevent the removal of the “double noise”.

We finally mention that the complete NTWA system also includes an auditing
mechanism that is used to detect malicious publisher behavior, like dropping
client answers. This mechanism is not necessary to achieve differential privacy
and thus we omit it from our analysis, although it is useful in practice to detect
attacks and identify malicious parties. For a more comprehensive overview of the
system we refer to the original paper [11].

4.8.2 Attacking and Fixing the protocol

As we have shown in Section 4.7, the soundness of our approach relies on the affine
usage of each ciphertext content. However, the NTWA protocol does not impose
any restriction on the decryption of the encrypted client answers performed by
the aggregator, thus allowing the same ciphertext to be decrypted multiple times,
which leads to the replay attack described in Section 4.2.

The fix. We propose the following minor modification to the protocol to prevent
the snapshot attack. As we have seen, the problem is that one answer of a
client may influence the final tally multiple times. We note that each query is
associated with a query ID and a query end time after which answers to that
query will no longer be processed. To ensure that each encrypted client answer

125

CHAPTER 4. DF7

is processed only once, we require the aggregator to perform the following steps:
For each query identifier the aggregator stores the encrypted answers it received
in response to that query in a duplicate-free list. At the query end time, all
ciphertexts associated to a query will be decrypted and the aggregator will check
that the query identifier inside the client’s answer corresponds to the expected
one. If so, it will add the client’s answer to the tally and proceed as expected, if
not, it will discard the answer. In other words, the decryption is guarded and the
guard consists of the query identifier paired with the ciphertext. Note that this
requires a public encryption scheme that does not allow for re-encryption. After
the query end time, the stored ciphertexts will be discarded.

4.8.3 Analysis of the revised protocol

The analysis of the protocol has to take two different threat-levels into account:
the protocol has to be secure both against a network-level attacker and against
compromised parties, such as a malicious publisher or an HbC data aggregator.

As usual in protocol analysis, the fact that an opponent has control over the
network can be modeled by writing the protocol participants as cascaded func-
tions that can be called and scheduled by the opponent at will. These functions
take messages sent over the network as arguments when called by the oppo-
nent and return the messages they would otherwise output on the network. The
potential compromise of the non-collaborating publisher and aggregator can be
modeled by implementing two versions of the protocol: The former models the
attack scenario in which the publisher is assumed to be honest and the aggrega-
tor to be HbC, the latter assumes an honest aggregator and a selfishly malicious
publisher. In the former, the aggregator follows the protocol but leaks all data
to the attacker, while in the latter the publisher role is directly played by the
attacker.

While it is easy to verify the protocol under the assumption that all partici-
pants are honest and differential privacy has to be proven only with respect to a
network-level opponent, verifying the protocol for an honest publisher and HbC
data aggregator is currently out of the scope of our analysis technique. This
is due to the fact that the noise mechanism employed by the publisher (a dis-
cretized version of Laplace noise with resampling) is a mechanism that gives only
a weaker form of ε, δ-approximate differential privacy. Extending our type system
to enforce approximate differential privacy is an interesting direction for future
work.

We thus focus on the attack scenario in which the publisher is considered
malicious and the data aggregator is honest. When analyzing the original NTWA
protocol under this trust assumption we discovered the snapshot attack. As we
will show in the next section, we can model the fixed protocol using a guarded
decryption function dec&checkNTWA for the encrypted client answers. The de-
cryption function takes the pair of the ciphertext and the associated query iden-
tifier as guard and checks that the query identifier corresponds to the one given
in the client’s answer. We successfully type-checked the fixed protocol, showing

126

4.8. CASE STUDY

ε-DDP against a malicious publisher and a network level opponent. The exact
details of this analysis are presented in the next section.

4.8.4 Code of the analysis

In this section we provide our model of the fixed NTWA protocol in which we
assume the aggregator to be fully trusted, but the publisher to be selfishly ma-
licious (under the complete control of the opponent). As described above, we
model the fact that the opponent has control over the network by writing the
protocol participants as cascaded functions to be called and scheduled by the
opponent at will. We model both the honest client for whose data we want to
guarantee ε-differential privacy and the honest aggregator.

First, we show the signature functions and types that are used in the model.
We then explain some necessary auxiliary functions before showing the guarded
decryption function dec&checkNTWA. We conclude by showing the implementa-
tions of the honest protocol participants.

Note that the NTWA protocol uses Laplace noise addition to provide noisy
bucket counts. Since these counts are integers, the protocol applies a round-
ing function (floor) to the drawn Laplace noise in order to operate on integers.
Since the discrete Laplace distribution is the discrete counterpart of the continu-
ous Laplace distribution, we directly use our discrete add_noisesZ→Z operation to
model the combination of real-valued Laplace noise and rounding.

Signature functions and types used in the model. In order to model the
protocol we assume our signature Σ to contain the types and functions explained
in the following. We note that any function contained in the signature must be
1-sensitive.

We will use the type Z to model (discrete) buckets and counts. Note that while
we use integers, these counts will in fact be natural numbers, i.e., we will never
encounter negative counts. Furthermore, we make use of type Set〈φ〉 describing
multisets of elements of (core) type φ and assume them to be also contained in
signature Σ. Sets are used to model databases and also prove helpful in counting
buckets as we will describe below. The distance on sets δSet〈φ〉 is the symmetric
difference (the number of entries that are contained in one but not in the other
set.

We now focus on some helpful functions that we include in the signature. For
integers it can easily be seen that the following conversion function has sensitivity
1 and can thus be added to Σ:

Z2set : !2kZ(!kSet〈Z〉 k ∈ R≥0 ∪ {∞}

This function can be used to create the singleton set {z} given an integer z
as input. Note that while the two numbers 4 and 5 have a distance of 1, the
distance of the set {4} and {5} is 2, thus requiring the argument of Z2set to have
replication index 2 to guarantee 1-sensitivity.

127

CHAPTER 4. DF7

In order to model the protocol, we furthermore assume the following 1-sensitive
functions to be contained in the signature (we always assume k ∈ R≥0 ∪ {∞}):

<,>,≤,≥: (!∞Z⊗!∞Z)(!∞Bool
+,− : (!kZ⊗!kZ)(!kZ
∪,∩, \ : (!kSet〈φ〉⊗!kSet〈φ〉)(!kSet〈φ〉
setfilter : (!∞(!∞φ(!∞Bool)⊗!kSet〈φ〉)(!kSet〈φ〉
setmap : (!∞(φ1 (φ2)⊗!kSet〈φ1〉)(!kSet〈φ2〉

The mathematical operations and inequalities and the set operations behave
as expected. The function setmap(f, S) applies the function f to all elements
of the set S. The function setfilter(f, S) returns the set of all elements in S for
which the function f returns true.

All of the above functions (or slightly modified versions) have been shown
to be 1-sensitive by Reed and Pierce [36] (either by hand or by encoding and
type-checking them using their type system).

We furthermore can implement the following functions (see [36] or slight mod-
ifications thereof).

setsplit : (!∞(!∞φ(!∞Bool)⊗!kSet〈φ〉)(
(!kSet〈φ〉⊗!kSet〈φ〉)

sum : (!∞(!∞b(!kZ)⊗!kSet〈b〉)(!kZ
size : !kSet〈φ〉(!kZ
map : !∞(τ (ρ)((List〈τ〉(List〈ρ〉)
length : !kList〈τ〉((!kList〈τ〉⊗!∞Z)

The function setsplit takes a boolean function f and a set S and returns two sets:
one containing all the elements of S for which the function f returned true, the
other containing all the remaining elements of S. The function size S returns the
size of the set S as an integer. The size function is a special case of the function
sum (f, S) which returns

∑
s∈S clip(f s), where clip clips an integer number to

an integer in [−1, 1]. The clipping is crucial to guarantee that sum is 1-sensitive.
A function of sensitivity 1 preserves the distance between inputs. Consider two
sets of type Set〈Z〉: S1 = {1} and S2 = {101}. By our definition of distance, the
two sets have a (symmetric) distance of 2, but their elements have a distance of
100. If the sum function did not use clipping, the result of applying sum (λx.x)
to the two databases would have a distance of 100. The function map applies a
function to all the elements of a list, the function length returns the pair of the
list itself and its length.

Using the above functions we can model a histogram function that takes a set
s of (non-negative) integers and an upper bound B and returns a list of integers
with B elements. The i-th entry in the list represents how often the number i
occurs in s.

Buckets are encoded using natural numbers, which we represent by integers.
We assume B ∈ Z buckets, where B ≥ 0, and one bucket N /A for query results
for which no other bucket is applicable. We write 0 to denote the N /A-bucket
and i ∈ Z to denote the i-th bucket, where i ∈ {1, . . . ,B}. Integers z > B or
z < 0 do not describe a valid bucket.

128

4.8. CASE STUDY

We write QId ,!∞Z to denote the query ID of the query that the selected
bucket was given as answer to.

We let Un ∈ OPP denote an arbitrary opponent type, e.g., !∞Z.

Guarded decryption. Our implementation of the modified protocol uses a
guarded decryption function dec&checkNTWA that is encoded below.
Here, dec&checkNTWA has the following type:

!1DKey〈QId⊗!1Z〉(!1(!∞Z(
!1(!1(!∞Z⊗ QId)(!1Option〈!1Z〉))

The function is implemented as follows:

let dec&checkNTWA =
λk.λc.λg.
let (gc, gq) = g in
case (c = gc) of check c in

let r = adec k c in
case r of r′ in none
else

let (q,m) = r′ in
case (q = gq) of z in some m
else none

let (e, d) = k in
let restore = e (inr (m, c)) in
none

else none;

It takes a pair of a ciphertext and the current query identifier as guard and
checks whether it is decrypting that particular ciphertext and whether the query
identifier that was encrypted by the client corresponds to the one of the guard.
We can prove uniqueness and affinity of each guard pair, thus showing that each
ciphertext will only be decrypted once per correct query identifier.

Auxiliary functions. We present some of the auxiliary functions that are nec-
essary for implementing the protocol participants. Using the above mentioned
signature functions we can model a histogram function that takes a set s of non-
negative integers and an upper bound B and returns a list of integers with B
elements. The i-th entry in the list represents how often the number i occurs in
s.

hist ′ : !∞Z((!∞Z((!∞Set〈Z〉(!∞List〈!∞Set〈Z〉〉))
hist ′ = fix g.λB.λc.λs.

let y = (c > B) in
case y of x in nil
else let (s1, s2) = setsplit((λz.z < c), s) in

cons s1 (g B (c+ 1) s2)

hist : !∞Z((!1Set〈Z〉(!1List〈!1Z〉)
hist = λB.λs. map size (hist ′ B 0 s)

129

CHAPTER 4. DF7

Since the histogram function works on sets, we also introduce the following
function to transform a list of numbers into a multiset containing all the list
elements.

list2set ′ : !kSet〈Z〉((!1List〈!2kZ〉(!kSet〈Z〉)
list2set ′ = fix g.λs.λl.

unfold l as l′ in
case l′ of l′′ in s
else let (h, t) = l′′ in

g (s ∪ (Z2set h)) t
else ′error′

list2set : !1List〈!2kZ〉(!kSet〈Z〉
list2set = λl. list2set ′ ∅ l

The following function is purely used for type-checking reasons and allows us
to transform a list of type !1List〈!∞τ〉 into a list of type !∞List〈!∞τ〉. Intuitively, if
we can use each list element arbitrarily often, we can also use the list unboundedly
often.

explist : !1List〈!∞τ〉(!∞List〈!∞τ〉
explist = fix g.λl.

unfold l as l′ in
case l′ of l′′ in nil
else let (h, t) = l′′ in

let t′ = g t in
cons h t′

else ′error′

The following function checks whether an exponential value is contained in a
list and if so, returns true and the complete list.

member :
!∞φ((!1List〈!∞φ〉((!∞Bool⊗!1List〈!∞φ〉))

member =
fix g.λc.λl.
unfold l as l′ in

case l′ of l′′ in (false, nil)
else let (h, t) = l′′ in

case c = h of x in
(true, cons h t)

else let (r, t′) = g c t in
(r, cons h t′)

else ′error′

The following function removes all duplicates from a list.

130

4.8. CASE STUDY

remove_duplicates :
!1List〈!∞φ〉(!1List〈!∞φ〉

remove_duplicates =
fix g.λl.
unfold l as l′ in

case l′ of l′′ in nil
else

let (h, t) = l′′ in
let (m, t′) = member h t in
case m of m′ in g t′

else
let t′′ = g t′ in
cons h t′′

else ′error′

The following function takes a list l of values of an option type and returns
the list consisting of all x such that some x was in the list l.

removenone :
!1List〈!1Option〈τ〉〉(!1List〈τ〉

removenone =
fix g.λl.
unfold l as l′ in

case l′ of l′′ in nil
else

let (h, t) = l′′ in
case h of h′ in g t
else cons h′ (g t)

else ′error′

Main protocol functions. We now define the main functions of the protocol.
Since we assume the publisher to be malicious and thus under the control of the
attacker, we will not model it but instead expect the attacker to perform some
arbitrary operations of his choosing instead.

To keep the presentation as intuitive as possible, we model the protocol for
a single client database query q, which we assume to be a 1-sensitive signature
function of type !kDB (!kZ. Furthermore, we we assume the query to be an-
swered by one bucket (out of B many). Multiple queries and queries that allow
multiple buckets as a result can be modeled similarly.

We model the NTWA protocol as a function that takes the secret database
D as an input and returns a tuple containing the query identifier, the public key
of the aggregator, and the functions that model the behavior of the client client
and the data aggregator agg . The code of the protocol implementation is given
in Figure 4.2.

Note that in the definition of ε-DDP, we consider an opponent O that takes
the result of NTWA D as an input. In particular, this means that NTWA D needs

131

CHAPTER 4. DF7

to be given a type Un ∈ OPP , so that the result is available to the opponent.
Once the opponent is given a query function, he can use it arbitrarily often.

We model the use of a client database in our protocol as described below. If
we were to simply use the confidential (affine) client database D in the function
that describes the behavior of the client client , the environment under which this
function were to type-check would not be exponential, meaning we would fail
in assigning an opponent type to the client function. Instead, we store D in a
affine reference. The reference itself is exponential - which means that it can be
used arbitrarily often (and the client function type-checked under an exponential
environment) - but its content is not. After retrieving a database once from a
reference, the reference will be “empty”, so trying to access the secret a second
time (if the query is called more than once) will fail.

Note that this corresponds to a real world setting. In general, ε-differential
privacy only holds for one call to the query. Repeating the query n-times results
in a weaker guarantee of n · ε-differential privacy, as discussed in Section 4.5.

We now explain how to type-check the overall protocol NTWA and its partic-
ipant functions client , agg with the following types:

NTWA : !2DB((Un((!∞Z(Un))
client : !∞(Un(Un)
agg : !∞(Un(!∞List〈!∞Z〉)

Note that all types τ that contain only exponential replication indexes (e.g., the
types of the client and of the agg function, as well as the type of the output of
NTWA) are both super- and subtype of Un ∈ OPP .
Remark: The factor 2 in the type of the NTWA function and in the types specified
below is a minor artifact of our implementation in which we move from lists of
integers to sets.

The protocol NTWA first sets a flag to activate the query and stores the
database in the manner described above. It then creates the enc-/ and decryption
keys ekA :!∞EKey〈QId⊗!2Z〉 and kA :!∞DKey〈QId⊗!2Z〉, respectively, which are
used to encrypt and decrypt the client’s query result. The encryption key will
be used in the code of the client function, where it is used to encrypt the query
identifier (of type QId) together with the result (of type !2Z) of executing query
q on the client database D. The encryption produces a public ciphertext of type
!∞Z <: Un that is returned to the opponent.

Furthermore, if the query end time has not yet passed (flag false) the agg
function removes all duplicates of the ciphertexts it received and then uses its de-
cryption key to decrypt and check the ciphertexts using the guarded decryption
function dec&checkNTWA. The decryption will succeed at most once per cipher-
text, in which case it returns a secret value of type !2Z. The list of all decrypted
query results is transformed into a histogram of type !1List〈!1Z〉. We add noise to
each histogram bucket and subtract the offset. Due to the discrete Laplace saniti-
zation mechanism, the resulting list is of type !1List〈!∞Z〉 and can be transformed
into a list that has the public type !∞List〈!∞Z〉︸ ︷︷ ︸

<:Un

which can be published.

132

4.9. EXTENSION TO OTHER NOISE MECHANISMS

Note that the keys have an exponential type. This in particular means that
the client and aggregator functions will be type-checked under an exponential
typing environment that contains the exponential keys as well as exponential
functions to access the affine references. We can apply rule !kI to give each
participant function the above specified public types. We can thus return the
two server functions together with the public encryption key of the aggregator
and the public query identifier to the opponent.

As we have seen, the overall protocol function NTWA type-checks with type
!2DB((Un((!∞Z(Un). Thus, by Theorem 4.1 we know that the protocol
provides 2ε-distributed differential privacy.

4.9 Extension to other noise mechanisms

The discrete Laplace noise addition and its continuous counterpart are well-
established mechanisms for achieving differential privacy but of course not the
only ones. In this section we show how our framework can easily be extended
to other privacy mechanisms, for which security has been shown independently,
e.g., manually or using CertiPriv [38].

Remark (Limitations of finite-precision semantics). We would like to point out
that while the theoretical definitions of sanitization mechanisms for DP often
operate on idealized infinite-precision semantics, on an implementation level the
semantics is necessarily finite-precision. As we have stated before, due to the phys-
ical limitations of actual machines we tacitly assume all types and the constants
exported by the signature to range over discrete domains. While our system so
far considered a mechanism for integers, we note that to include infinite-precision
types in the signature they must be expressed in some discrete approximation.
For instance, to include reals, they must be rounded according to some level of
precision and they must be encoded in some fixed- or floating-point representation
of R.

In their works, Mironov [119] and Gazeau et al. [120] show that this mis-
match between idealized mechanisms and their finite-precision implementations
gives rise to several attacks. The authors show that approximation errors of finite-
precision representation of reals can lead to the disclosure of secrets, even if the
underlying sanitization mechanisms have been proven to provide differential pri-
vacy in an idealized infinite-precision setting. Both papers also provide solutions
to fix such privacy breaches for a large class of sanitization mechanisms. The
solutions are based on different forms of rounding and truncation and provide a
limited (but acceptable) variant of differential privacy.

We would like to emphasize that these results should be taken into account
when including a differentially private mechanism that might be affected by these
limitations in a finite-precision environment.

133

CHAPTER 4. DF7

NTWA : !2DB((Un((!∞Z(Un))
NTWA = λD.ekP .λoff .

let define library L in
let qid = 1 in
let (rended , wended) = ref !∞Bool in
let _ = wended false in
let (rC , wC) = ref !2DB in
let storeC = wC D in
let kA = mkDKey () in
let ekA = mkEKey kA in
(qid , ekA, client , agg)

client : !∞(Un(Un)
client = λekP .

let dC = rC () in
case dC of d′C in ′error′

else
let res = q d′C in
let res ′ = aenc ekA (qid , res) in
let res ′′ = aenc ekP (qid , res ′) in
res ′′

agg : !∞(Un(!∞List〈!∞Z〉)
agg = λw.

let ended = rended () in
case ended of e in

let (i, l) = w in
let idok = (i = qid) in
case idok of id ′ok in

let lunique = remove_duplicates l in
let fcheck = λx.(dec&checkNTWA kA x (x, qid)) in
let lvalid = removenone (map fcheck lunique) in
let s = list2set lvalid in
let lhist = hist B s in
let fN = λx.((add_noiseεZ→Z x)− off) in
let lnoise = map fN lhist in
let finished = rended true in
explist lnoise

else ′error′

else ′error′

Figure 4.2: Code of the NTWA protocol

4.9.1 A general extension

We now extend the type system to include a general mechanism primitive that can
be instantiated with any privacy mechanism for which security has been shown
134

4.9. EXTENSION TO OTHER NOISE MECHANISMS

independently, e.g., manually or using CertiPriv [38]. The revised type system is
thus easily extendable and the later inclusion of further noise mechanisms through
the general mechanism primitive will not require additional soundness proofs.

We first show the extension of DF7 and then show how to instantiate the
general noise primitive with the discrete Laplace mechanism, thus rendering the
respective hard-coded primitive add_noisesZ→Z M obsolete (though convenient).
Furthermore, we demonstrate how to exemplarily include two other sanitization
mechanisms into the system using the new primitive.

Extending the syntax and semantics. We now show how to extend the
syntax and semantics of our calculus to include arbitrary sanitization mechanisms
Xs
b1→b2 . Here s denotes the privacy parameter of the mechanism that takes inputs

of type b1 and returns sanitized values of type b2. The following primitive is added
to the set of expressions:

san_Xs
b1→b2 M.

It is annotated with the parameter s and the appropriate type b1 → b2, where
both the domain b1 and the range b2 of the mechanism are base types in our
type system. Its non-deterministic semantics is defined similarly to that of the
add_noisesZ→Z primitive:

[S, san_Xs
b1→b2 c1]

San (Xs
b1→b2

,c1,c2)

−−−−−−−−−−−→p [S, c2],

where p = Pr [Xs
b1→b2(c1) = c2] and ci : bi ∈ Σ. Intuitively, san_Xs

b1→b2 c1 reduces
to some constant value c2 in the query range, where c2 is drawn according to the
distribution Xs

b1→b2(c1).
Here, the safety parameter s has the same function as its counterpart in DLaps.

Intuitively, we will assume it to be set to s := ε. We assume each mechanism
Xs
b1→b2 that we include into our system as san_Xs

b1→b2 to provide s-differential
privacy (for instance, by relying on previous security results by the mechanisms’
developers).

Extending the type system. To type-check the general sanitization mecha-
nism primitive, the following rule is added to the type system

(San)
Γ `M :!1b1

Γ ` san_Xs
b1→b2 M :!∞b2

.

Here, the argumentM of the mechanism that is parameterized by its type b1 → b2

must be of the domain type b1 of the query with replication factor !1 (since it
might be private). The sanitized result is then given the query range type b2,
replicated by a factor of !∞, since it may be published.

The corresponding algorithmic typing rule (San Alg) follows the same prin-
ciple and is listed below:

(San Alg)
Γ `alg M :!1b1; Γ′

Γ `alg san_Xs
b1→b2 M :!∞b2; Γ′

.

135

CHAPTER 4. DF7

Adapting the theorem. We need to modify Theorem 4.1 to accommodate
the occurrences of other mechanism primitives.The revised theorem is given be-
low and requires san_Xs

b1→b2 M to be annotated with an appropriate security
parameter s to guarantee ε/k, τ -differential privacy:

Revision 4.1 (of Theorem 4.1). For all k ∈ R>0, all types τ ,and all closed
expressions P such that the following conditions hold:

• the parameter of all noise addition primitives occurring in P is set to s :=

eε/k (i.e., they are of the form add_noisee
−ε/k

Z→Z M)

• the parameter of all general mechanism primitives san_Xs
b1→b2 M for the

mechanism Xs
b1→b2 occurring in P is set to s := ε/k (i.e., they are of

the form san_Xε/k
b1→b2 M) and the respective mechanism Xs

b1→b2 provides
s-differential privacy

• ∅ ` P : τ (ρ for some ρ ∈ OPP

P is ε/k, τ -differentially private.

The proof of the revised theorem above does not depend on any specific prop-
erty of the noise mechanisms Xs

b1→b2 ∈ X that are included as san_Xs
b1→b2 , just

on the fact that they are assumed to be s-differentially private.

4.9.2 Instantiating the general mechanism primitive.

In the following we will exemplify how to instantiate the general mechanism
primitive to capture the discrete Laplace mechanism. Furthermore, we show
how to include another sanitization mechanism into the system by using the
exponential mechanism and the continuous Laplace mechanism as an example.

Discrete Laplace mechanism. Instead of using the hard-coded noise-addition prim-
itive add_noisesZ→Z M we can instantiate the general primitive san_Xr

b1→b2 M
with the distribution DLrZ→Z defined as

DLrZ→Z(x) = x+ z, where z ← DLape
−r
.

As we have seen before, addition of noise drawn according to the discrete
Laplace distribution DLape

−r
provides r-differential privacy. We can thus

replace add_noisee
−s

Z→Z M (which adds noise drawn according to the distribu-
tion DLape

−s
) with san_DLsZ→Z M , which has the same privacy guarantees.

Laplace mechanism. One of the oldest and most popular sanitization mecha-
nisms that supports the addition of real-valued noise is the Laplace mech-
anism [110]. We stress that depending on the choice of finite-precision
representations of reals, Mironov [119] and Gazeau et al. [120] have shown
that the differential privacy guarantees of the mechanism might not carry
over to an implementation. They provide modifications of the mechanism

136

4.9. EXTENSION TO OTHER NOISE MECHANISMS

that employ rounding and truncation to guarantee a modified variant of
differential privacy. However, for the sake of giving the reader an intuitive
introduction of how to include mechanisms into our calculus via the use of
the general mechanism primitive, here we show how to include the original
Laplace mechanism. The more complex versions by Mironov and Gazeau
et al. could be included analogously, depending on the underlying assumed
finite-precision representation of reals.

The Laplace mechanism is defined by adding a random number drawn ac-
cording to the Laplace distribution Laps to the correct query result. In
an idealized setting, the Laplace mechanism is ε-differentially private if the
parameter s is set to k/ε [110], where k denotes the sensitivity of the query.

An intuitive way to include the Laplace mechanism into the system would
thus be to instantiate the general primitive san_Xr

b1→b2 M with the distri-
bution LrR→R defined as

LrR→R(x) = x+ z, where z ← Lap1/r.

Exponential mechanism. There exist many scenarios in which the query result is
non-numerical (e.g., queries returning strings or trees) and adding noise
leads to nonsensical results or is not well-defined. McSherry and Tal-
war [112] proposed a general technique to optimize the quality (and ex-
actness) of a query result while still preserving ε-differential privacy. Their
so-called exponential mechanism works on queries on databases D of some
type D that are expected to return a query result a of an arbitrary type R
for which a base measure β exists. Furthermore, it assumes the existence
of a utility function q : (D × R) → R, which assigns a real valued score
to each possible input-output pair (D, a), thereby measuring the quality of
the result a with respect to input D. The higher the score, the better (e.g.,
more exact) the result. The goal of the mechanism εεq(D) is to output the
“best” possible result a ∈ R, while enforcing differential privacy.

The exponential mechanism is defined as follows [112]: For all q : (D×R)→
R and all base measures β over R the randomized exponential mechanism
εεq(D) for D ∈ D is defined as

εεq(D) := return a ∈ R with probability
proportional to eεq(D,a) · β(a).

McSherry and Talwar show that this definition captures the entire class
of differential privacy mechanisms and give an encoding of Laplace noise
addition by choosing an appropriate utility function q. The link between
the exponential mechanism and differential privacy is defined as follows:
εεq(D) gives 2ε∆q-differential privacy. Here, ∆q is defined as the largest
possible difference in the utility function when applied to two inputs that
differ only on a single user’s value.

137

CHAPTER 4. DF7

Before showing how one could include the mechanism into our system we
again stress that depending on the choice of q, the choice of the types D,R
and the choice of finite-precision representations, the privacy guarantees
of the idealized mechanism might not straightforwardly carry over to our
system but might instead require a modification similar to the techniques
proposed by Gazeau et al. [120].

To include the mechanism into our system we could instantiate the general
primitive san_Xr

b1→b2 M with the respective distribution (Eq)
r
b1→b2 defined

as
(Eq)

r
b1→b2 = εr/(2∆q)

q , where q : (b1 × b2)→ R.

By the differential privacy guarantees of the mechanism we know that
ε
r/(2∆q)
q gives 2(r/(2∆q))∆q-, i.e., r-differential privacy.

4.10 Related work

The formal verification of differential privacy has recently received increasing at-
tention by the academic community. Barthe et al. have presented CertiPriv [38],
a machine-checked framework for reasoning about differential privacy built on top
of the Coq proof assistant. This framework nicely complements our approach,
allowing one to derive formal guarantees of differential privacy for a variety of
sanitization mechanisms, such as the one based on Laplace noise, whose correct-
ness is instead assumed in our approach. In later work, Barthe et al. [39] have
proposed an alternative approach to verify sanitization mechanisms with respect
to the weaker notion of ε, δ-approximate differential privacy using Hoare logic
specifications. Both approaches, however, have not been used to reason about
complex cryptographic protocols and network-level attacks and proofs are not au-
tomated. While the former restrictions remain, the latter restriction is no longer
present in a recent follow-up work [100], in which the authors present a relational
refinement type system for the more general verification of mechanism design
and approximative differential privacy. Tschantz et al. [121] showed how to verify
differential privacy properties based on I/O-automata. They focus on the usage
of differentially private sanitization mechanisms within interactive systems, but
they do not explicitly consider cryptographic protocols. Recently, Chaudhuri et
al. [122] have introduced a generic robustness property for programs that en-
compasses sensitivity and can be statically enforced even for programs featuring
complex branching structures and loops. This could be useful to further enhance
the expressivity of our framework.

While this chapter focuses on the notion of differential privacy, we would
like to mention some recent works that discuss some limitations of differential
privacy [123, 124] and propose alternative notions of privacy for queries on sta-
tistical databases, such as relaxations of differential privacy [125], noiseless defi-
nitions [126], and zero-knowledge based definitions for social networks [127].

Finally, since the seminal work by Abadi on “secrecy by typing in security
protocols” [128], type systems acquired growing popularity in the analysis of

138

4.11. CONCLUSION

cryptographic protocols and their implementations, and they have been applied
to statically enforce secrecy definitions based on reachability properties [29,113],
strong secrecy [34] properties based on observational equivalence relations, as well
as privacy [129,130], authenticity [23,25–27,50,69] and authorization policies [31–
33, 57, 68] None of these type systems, however, enforces quantitative secrecy
properties.

4.11 Conclusion

This chapter introduced the first mechanized verification technique for distributed
differential privacy. Our framework comprises a symbolic definition of differential
privacy for distributed databases, which takes into account Dolev-Yao intrud-
ers, and DF7, an affine, distance-aware type system to verify this property in
cryptographic protocol implementations. DF7alg, a sound and complete algorith-
mic variant of the type system allows for mechanizing our analysis technique.
To the best of our knowledge, this is first automated verification technique for
cryptographic protocols that supports a quantitative secrecy property. We have
evaluated our system on a protocol for non-tracking web analytics and discovered
a new attack. We proposed and verified a revised version of the protocol.

We demonstrated the flexibility of our approach by showing how to easily
incorporate other sanitization techniques into our framework.

139

Part IV

Conclusion

141

5
Conclusion

In this thesis we presented three frameworks for the verification of security proto-
cols and their implementations based on powerful types for security and privacy.
In all three cases, our approaches improve the state-of-the-art and allow for the
verification of cryptographic protocols and properties that were out of the scope
of previous systems.

We first proposed AF7, the first type system that statically enforces the safety
of cryptographic protocol implementations with respect to authorization policies
expressed in affine logic. Affine logic can be used to express resource-aware prop-
erties that were out of the scope of previous type-based analysis techniques. AF7
leverages general-purpose theorem proving techniques, and extends previous sys-
tems to support affine logic. To protect affine formulas from duplication we
introduced the novel notion of “exponential serialization”, which AF7 relies on.
We demonstrated the effectiveness of AF7 on two case studies, the EPMO and
the Kerberos protocols. Furthermore, we proposed a sound and complete algo-
rithmic variant of the system called AF7alg, which is the key to achieving an
efficient implementation of our analysis technique.

Second, we presented a novel approach for the automated analysis of e-voting
protocols based on refinement type systems. Specifically, we designed a gener-
ically applicable logical theory which, based on pre- and post-conditions for
security-critical code, guides existing type-checkers towards the verification of
two fundamental properties of e-voting protocols, namely, vote privacy and veri-
fiability, which were out of the scope of previous automated analysis techniques
(type-based or other). We provided a code-based cryptographic abstraction of
the cryptographic primitives commonly used in e-voting protocols, showing how
to make the underlying algebraic properties accessible to automated verification
through logical refinements. We demonstrated the effectiveness of our approach
by developing the first automated analysis of both the mix-net and the homo-

143

CHAPTER 5. CONCLUSION

morphic version of Helios, a popular web-based e-voting protocol, using an off-
the-shelf type-checker.

Finally, we proposed a symbolic definition of differential privacy for distributed
databases, which takes into account Dolev-Yao intruders and can be used to rea-
son about compromised parties. We then introduced DF7, an affine, distance-
aware type system to statically and automatically enforce this notion of dis-
tributed differential privacy in cryptographic protocol implementations. DF7
builds on and significantly extends a previous type system [36] for the non-
distributed case of differential privacy, which did not need to consider network
attackers or compromised parties. We also provided a sound and complete algo-
rithmic variant of our type system called DF7alg and tested our analysis technique
on a recently proposed protocol for privacy-preserving web analytics: we discov-
ered a new attack acknowledged by the authors, proposed a fix, and successfully
type-checked the revised variant.

144

6
Directions for Future Research

Based on the work presented in this thesis there are several directions for future
research that appear to be of great interest.

One crucial building block that is missing to reliably automate the type-
checking approach introduced in Chapter 2 and that seems to be of independent
interest to both the security and the formal methods community is the develop-
ment of a powerful and expressive automated theorem prover for affine logic.

Once such a tool exists, it would be interesting for the development of a type-
checker that implements AF7 to investigate how to reduce the need for manual
type annotations, e.g., by taking advantage of recent research on type inference
in intuitionistic linear logic [131]. A similar approach could prove helpful in the
implementation of a type-checker for DF7.

A natural extension of our framework for e-voting is to extend the logical
theory to handle even more cryptographic primitives and security properties. For
instance, a next step could be to investigate strong end-to-end verifiability, which
additionally takes the notion of eligibility verifiability into account. This stronger
notion is not satisfied by Helios, but the Helios-C protocol [95] was designed to
achieve this property, providing an interesting case study for our approach.

Furthermore, it would be interesting to apply our approach to more e-voting
protocols, e.g., the protocol recently deployed in Norway for a political election.
The privacy of this protocol was analyzed in [90], but due to the algebraic prop-
erties of the encryption, the proof was completely done by hand. Our approach
looks promising to enable automation of proofs for this and other protocols.

A further exciting direction for future research would be to investigate how to
extend the DF7 type system to deal with sanitization mechanisms that provide
the weaker notion of ε, δ-approximate differential privacy, for instance using some
insights from the recent work by Barthe et al. [39] that considers such mechanisms.

145

Bibliography

[1] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei, “Resource-aware Au-
thorization Policies in Statically Typed Cryptographic Protocols,” in Proc.
24th IEEE Symposium on Computer Security Foundations (CSF). IEEE
Computer Society Press, 2011, pp. 83–98.

[2] ——, “Affine Refinement Types for Authentication and Authorization,”
in Proc. 7th International Symposium on Trustworthy Global Computing
(TGC), ser. Lecture Notes in Computer Science, vol. 8191. Springer-
Verlag, 2012, pp. 19–33.

[3] ——, “Logical Foundations of Secure Resource Management in Protocol
Implementations,” in Proc. 2nd International Conference on Principles of
Security and Trust (POST), ser. Lecture Notes in Computer Science, vol.
7796. Springer-Verlag, 2013, pp. 105–125.

[4] ——, “Affine Refinement Types for Secure Distributed Programming,”
ACM Transactions on Programming Languages and Systems, vol. 37, no. 4,
pp. 11:1–11:66, Aug. 2015. [Online]. Available: http://doi.acm.org/10.
1145/2743018

[5] V. Cortier, F. Eigner, S. Kremer, M. Maffei, and C. Wiedling, “Type-Based
Verification of Electronic Voting Protocols,” in Proc. 4th International Con-
ference on Principles of Security and Trust (POST), ser. Lecture Notes in
Computer Science, vol. 9036. Springer-Verlag, 2015, pp. 303–323.

[6] ——, “Type-Based Verification of Electronic Voting Protocols,” Cryptology
ePrint Archive, Report 2015/039, 2015.

[7] F. Eigner and M. Maffei, “Differential Privacy by Typing in Security Pro-
tocols,” in Proc. 26th IEEE Symposium on Computer Security Foundations
(CSF). IEEE Computer Society Press, 2013, pp. 272–286.

[8] F. Eigner, A. Kate, M. Maffei, F. Pampaloni, and I. Pryvalov, “Differen-
tially Private Data Aggregation with Optimal Utility,” in Proc. 30th Annual
Computer Security Applications Conference (ACSAC). ACM Press, 2014,
pp. 316–325.

[9] ——, “Differentially Private Data Aggregation with Optimal Utility,” Cryp-
tology ePrint Archive, Report 2014/482, 2014.

147

http://doi.acm.org/10.1145/2743018
http://doi.acm.org/10.1145/2743018

BIBLIOGRAPHY

[10] ——, “Achieving Optimal Utility for Distributed Differential Privacy Using
SMPC,” in Applications of Secure Multiparty Computation, ser. Cryptology
and Information Security Series. IOS Press, 2015, vol. 13, ch. 5, pp. 81 –
105.

[11] I. E. Akkus, R. Chen, M. Hardt, P. Francis, and J. Gehrke, “Non-tracking
Web Analytics,” in Proc. 19th ACM Conference on Computer and Commu-
nications Security (CCS). ACM Press, 2012, pp. 687–698.

[12] G. Lowe, “Breaking and Fixing the Needham-Schroeder Public-Key Proto-
col using FDR,” in Proc. 2nd International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), ser. Lecture
Notes in Computer Science, vol. 1055. Springer-Verlag, 1996, pp. 147–166.

[13] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 Protocol,” in Proc.
2nd USENIX Workshop on Electronic Commerce. USENIX Association,
1996, pp. 29–40.

[14] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, “Attacking and
Fixing PKCS#11 Security Tokens,” in Proc. 17th ACM Conference on
Computer and Communications Security (CCS). ACM Press, 2010, pp.
260–269.

[15] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra, “For-
mal Analysis of SAML 2.0 Web Browser Single Sign-on: Breaking the
SAML-based Single Sign-on for Google Apps,” in Proc. 6th ACM Work-
shop on Formal Methods in Security Engineering (FMSE). ACM Press,
2008, pp. 1–10.

[16] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on Pro-
log Rules.” in Proc. 14th IEEE Computer Security Foundations Workshop
(CSFW). IEEE Computer Society Press, 2001, pp. 82–96.

[17] M. Backes, S. Lorenz, M. Maffei, and K. Pecina, “The CASPA Tool:
Causality-Based Abstraction for Security Protocol Analysis,” in Proc. Com-
puter Aided Verification’08 (CAV), ser. Lecture Notes in Computer Science,
vol. 5123. Springer-Verlag, 2008, pp. 419–422.

[18] C. Cremers, “The Scyther Tool: Verification, Falsification, and Analysis of
Security Protocols,” in Proc. Computer Aided Verification’08 (CAV), ser.
Lecture Notes in Computer Science, vol. 5123, 2008, pp. 414–418.

[19] M. Backes, A. Cortesi, and M. Maffei, “Causality-based Abstraction of Mul-
tiplicity in Cryptographic Protocols,” in Proc. 20th IEEE Symposium on
Computer Security Foundations (CSF). IEEE Computer Society Press,
2007, pp. 355–369.

148

BIBLIOGRAPHY

[20] B. Blanchet, M. Abadi, and C. Fournet, “Automated Verification of Se-
lected Equivalences for Security Protocols,” Journal of Logic and Algebraic
Programming, vol. 75, no. 1, pp. 3–51, 2008.

[21] R. Chadha, Ş. Ciobâcă, and S. Kremer, “Automated Verification of Equiva-
lence Properties of Cryptographic Protocols,” in Proc. 21st European Sym-
posium on Programming (ESOP), ser. Lecture Notes in Computer Science,
vol. 7211. Springer-Verlag, 2012, pp. 108–127.

[22] V. Cheval, “APTE: An Algorithm for Proving Trace Equivalence,” in Proc.
20th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. Lecture Notes in Computer Science,
vol. 8413. Springer-Verlag, 2014, pp. 587–592.

[23] A. D. Gordon and A. Jeffrey, “Types and Effects for Asymmetric Cryp-
tographic Protocols,” Journal of Computer Security, vol. 12, no. 3, pp.
435–484, 2004.

[24] M. Bugliesi, R. Focardi, and M. Maffei, “Principles for Entity Authentica-
tion,” in Proc. 5th International Conference Perspectives of System Infor-
matics (PSI), ser. Lecture Notes in Computer Science, vol. 2890. Springer-
Verlag, 2003, pp. 294–306.

[25] ——, “Authenticity by Tagging and Typing,” in Proc. 2nd ACM Workshop
on Formal Methods in Security Engineering (FMSE). ACM Press, 2004,
pp. 1–12.

[26] ——, “Analysis of Typed Analyses of Authentication Protocols,” in Proc.
18th IEEE Computer Security Foundations Workshop (CSFW). IEEE
Computer Society Press, 2005, pp. 112–125.

[27] ——, “Dynamic Types for Authentication,” Journal of Computer Security,
vol. 15, no. 6, pp. 563–617, 2007.

[28] M. Backes, A. Cortesi, R. Focardi, and M. Maffei, “A Calculus of Chal-
lenges and Responses,” in Proc. 5th ACM Workshop on Formal Methods in
Security Engineering (FMSE). ACM Press, 2007, pp. 101–116.

[29] R. Focardi and M. Maffei, “Types for Security Protocols,” in Formal Mod-
els and Techniques for Analyzing Security Protocols, ser. Cryptology and
Information Security Series. IOS Press, 2011, vol. 5, ch. 7, pp. 143–181.

[30] M. Backes, M. P. Grochulla, C. Hriţcu, and M. Maffei, “Achieving security
despite compromise using zero-knowledge,” in Proc. 22nd IEEE Symposium
on Computer Security Foundations (CSF). IEEE Computer Society Press,
2009, pp. 308–323.

[31] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis, “Re-
finement Types for Secure Implementations,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 33, no. 2, pp. 8:1–8:45, 2011.

149

BIBLIOGRAPHY

[32] M. Backes, C. Hriţcu, and M. Maffei, “Union and Intersection Types for
Secure Protocol Implementations,” in Proc. Theory of Security and Ap-
plications (TOSCA), ser. Lecture Notes in Computer Science, vol. 6993.
Springer-Verlag, 2011, pp. 1–28.

[33] ——, “Union and Intersection Types for Secure Protocol Implementations,”
Journal of Computer Security, vol. 22, no. 2, pp. 301–353, 2014.

[34] C. Fournet, M. Kohlweiss, and P.-Y. Strub, “Modular Code-Based Cryp-
tographic Verification,” in Proc. 18th ACM Conference on Computer and
Communications Security (CCS). ACM Press, 2011, pp. 341–350.

[35] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang,
“Secure Distributed Programming with Value-Dependent Types,” in Proc.
16th ACM SIGPLAN International Conference on Functional Programming
(ICFP). ACM Press, 2011, pp. 266–278.

[36] J. Reed and B. C. Pierce, “Distance Makes the Types Grow stronger: A
Calculus for Differential Privacy,” in Proc. 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP). ACM Press, 2010,
pp. 157–168.

[37] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce, “Linear
Dependent Types for Differential Privacy,” in Proc. 40th Symposium on
Principles of Programming Languages (POPL). ACM Press, 2013, pp.
357–370.

[38] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin, “Probabilistic
Relational Reasoning for Differential Privacy,” in Proc. 39th Symposium on
Principles of Programming Languages (POPL). ACM Press, 2012, pp.
97–110.

[39] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, C. Kunz, and P. Strub,
“Proving Differential Privacy in Hoare Logic,” in Proc. 27th IEEE Sympo-
sium on Computer Security Foundations (CSF). IEEE Computer Society
Press, 2014, pp. 411–424.

[40] S. Calzavara, “Static Verification and Enforcement of Authorization Poli-
cies,” Ph.D. dissertation, Università Ca’ Foscari Venezia, Italy, 2013.

[41] P. C. Chapin, C. Skalka, and X. S. Wang, “Authorization in Trust Manage-
ment: Features and Foundations,” ACM Computing Surveys, vol. 40, no. 3,
pp. 9:1–9:48, 2008.

[42] J.-Y. Girard, “Linear Logic: Its Syntax and Semantics,” in Advances in Lin-
ear Logic, ser. London Mathematical Society Lecture Note Series, vol. 22,
1995, pp. 3–42.

150

BIBLIOGRAPHY

[43] A. S. Troelstra, “Lectures on Linear Logic,” CSLI Stanford, Lecture Notes
Series Nr. 29, 1992.

[44] J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J. D. Ramsdell,
and B. T. Sniffen, “Trust Management in Strand Spaces: A Rely-Guarantee
Method,” in Proc. 13th European Symposium on Programming (ESOP), ser.
Lecture Notes in Computer Science, vol. 2986. Springer-Verlag, 2004, pp.
325–339.

[45] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An Authentication
Service for Open Network Systems,” in Proc. USENIX Summer Conference.
USENIX Association, 1988, pp. 191–202.

[46] C. Fournet, A. D. Gordon, and S. Maffeis, “A Type Discipline for Authoriza-
tion Policies,” in Proc. 14th European Symposium on Programming (ESOP),
ser. Lecture Notes in Computer Science, vol. 3444. Springer-Verlag, 2005,
pp. 141–156.

[47] ——, “A Type Discipline for Authorization in Distributed Systems,” in
Proc. 20th IEEE Symposium on Computer Security Foundations (CSF).
IEEE Computer Society Press, 2007, pp. 31–45.

[48] N. G. de Bruijn, “Lambda Calculus Notation with Nameless Dummies, a
Tool for Automatic Formula Manipulation, with Application to the Church-
Rosser Theorem,” Indagationes Mathematicae (Proceedings), vol. 75, no. 5,
pp. 381 – 392, 1972.

[49] A. Tiu and A. Momigliano, “Cut Elimination for a Logic with Induction
and Co-induction,” Journal of Applied Logic, vol. 10, no. 4, pp. 330–367,
2012.

[50] A. D. Gordon and A. Jeffrey, “Authenticity by Typing for Security Proto-
cols,” Journal of Computer Security, vol. 11, no. 4, pp. 451–519, 2003.

[51] Y. Mandelbaum, D. Walker, and R. Harper, “An Effective Theory of Type
Refinements,” in Proc. 8th ACM SIGPLAN International Conference on
Functional Programming (ICFP). ACM Press, 2003, pp. 213–225.

[52] M. Fähndrich and R. DeLine, “Adoption and focus: practical linear types
for imperative programming,” in Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM Press,
2002, pp. 13–24.

[53] J. Morris, “Protection in Programming Languages,” Communications of the
ACM, vol. 16, no. 1, pp. 15–21, 1973.

[54] E. Sumii and B. Pierce, “A Bisimulation for Dynamic Sealing,” Theoretical
Computer Science, vol. 375, no. 1-3, pp. 169–192, 2007.

151

BIBLIOGRAPHY

[55] M. Backes, M. Maffei, and D. Unruh, “Computationally Sound Verifica-
tion of Source Code,” in Proc. 17th ACM Conference on Computer and
Communications Security (CCS). ACM Press, 2010, pp. 387–398.

[56] N. Tomura, “llprover - A Linear Logic Prover,” 1995, http://bach.istc.
kobe-u.ac.jp/llprover/.

[57] K. Bhargavan, C. Fournet, and A. D. Gordon, “Modular Verification of
Security Protocol Code by Typing,” in Proc. 37th Symposium on Principles
of Programming Languages (POPL). ACM Press, 2010, pp. 445–456.

[58] K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer,
“Cryptographic Protocol Synthesis and Verification for Multiparty Ses-
sions,” in Proc. 22nd IEEE Symposium on Computer Security Foundations
(CSF). IEEE Computer Society Press, 2009, pp. 124–140.

[59] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified Interoper-
able Implementations of Security Protocols,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 31, no. 1, pp. 1–61, 2008.

[60] R. Milner, “Functions as Processes,” Mathematical Structures in Computer
Science, vol. 2, no. 2, pp. 119–141, 1992.

[61] K. Bierhoff and J. Aldrich, “Modular Typestate Checking of Aliased
Objects,” in Proc. 22nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications (OOPSLA). ACM Press,
2007, pp. 301–320.

[62] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter, “First-Class
State Change in Plaid,” in Proc. 26th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems and Applications (OOP-
SLA). ACM Press, 2011, pp. 713–732.

[63] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff, “A Type System for
Borrowing Permissions,” in Proc. 39th Symposium on Principles of Pro-
gramming Languages (POPL). ACM Press, 2012, pp. 557–570.

[64] J. Tov and R. Pucella, “Stateful Contracts for Affine Types,” in Proc. 19th
European Symposium on Programming (ESOP), ser. Lecture Notes in Com-
puter Science. Springer-Verlag, 2010, vol. 6012, pp. 550–569.

[65] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani,
S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turu-
ani, L. Viganò, and L. Vigneron, “The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications,” in Proc. Com-
puter Aided Verification’05 (CAV), ser. Lecture Notes in Computer Science,
vol. 3576. Springer-Verlag, 2005, pp. 281–285.

152

http://bach.istc.kobe-u.ac.jp/llprover/
http://bach.istc.kobe-u.ac.jp/llprover/

BIBLIOGRAPHY

[66] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols,” in Proc. Computer Aided
Verification’13 (CAV), ser. Lecture Notes in Computer Science, vol. 8044.
Springer-Verlag, 2013, pp. 696–701.

[67] B. Blanchet, “Using Horn Clauses for Analyzing Security Protocols,” in
Formal Models and Techniques for Analyzing Security Protocols, ser. Cryp-
tology and Information Security. IOS Press, 2011, vol. 5, ch. 7, pp. 86–111.

[68] M. Backes, C. Hriţcu, and M. Maffei, “Type-checking Zero-knowledge,” in
Proc. 15th ACM Conference on Computer and Communications Security
(CCS). ACM Press, 2008, pp. 357–370.

[69] M. Bugliesi, R. Focardi, and M. Maffei, “Compositional Analysis of Authen-
tication Protocols,” in Proc. 13th European Symposium on Programming
(ESOP), ser. Lecture Notes in Computer Science, vol. 2986. Springer-
Verlag, 2004, pp. 140–154.

[70] M. Maffei, “Tags for Multi-Protocol Authentication,” in Proc. 2nd Interna-
tional Workshop on Security Issues in Coordination Models, Languages, and
Systems (SECCO), ser. Electronic Notes on Theoretical Computer Science.
Elsevier Science Publishers Ltd., 2004, pp. 55–63.

[71] M. Abadi and C. Fournet, “Mobile Values, New Names, and Secure Com-
munication,” in Proc. 28th Symposium on Principles of Programming Lan-
guages (POPL). ACM Press, 2001, pp. 104–115.

[72] C. Wiedling, “Formal Verification of Advanced Families of Security Proto-
cols,” Ph.D. dissertation, LORIA, Nancy, France, 2014.

[73] S. Estehghari and Y. Desmedt, “Exploiting the Client Vulnerabilities in
Internet E-voting Systems: Hacking Helios 2.0 as an Example,” in Proc.
Electronic Voting Technology Workshop/ Workshop on Trustworthy Elec-
tions (EVT/WOTE). USENIX Association, 2010.

[74] V. Cortier and B. Smyth, “Attacking and Fixing Helios: An Analysis of Bal-
lot Secrecy,” in Proc. 24th IEEE Symposium on Computer Security Foun-
dations (CSF). IEEE Computer Society Press, 2011, pp. 297–311.

[75] R. Küsters, T. Truderung, and A. Vogt, “Clash Attacks on the Verifiabil-
ity of E-Voting Systems,” in Proc. 33rd IEEE Symposium on Security &
Privacy (S&P). IEEE Computer Society Press, 2012, pp. 395–409.

[76] S. Kremer and M. D. Ryan, “Analysis of an Electronic Voting Protocol in
the Applied Pi Calculus,” in Proc. 14th European Symposium on Program-
ming (ESOP), ser. Lecture Notes in Computer Science, vol. 3444. Springer-
Verlag, 2005, pp. 186–200.

153

BIBLIOGRAPHY

[77] M. Backes, C. Hriţcu, and M. Maffei, “Automated Verification of Remote
Electronic Voting Protocols in the Applied Pi-calculus,” in CSF’08. IEEE
Computer Society Press, 2008, pp. 195–209.

[78] B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh, “Towards automatic
analysis of election verifiability properties,” in Proc. Joint Workshop on Au-
tomated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security (ARSPA-WITS), ser. Lecture Notes in Computer Science, vol.
6186, 2010, pp. 165–182.

[79] M. Arapinis, V. Cortier, S. Kremer, and M. D. Ryan, “Practical Everlasting
Privacy,” in Proc. 2nd International Conference on Principles of Security
and Trust (POST), ser. Lecture Notes in Computer Science, vol. 7796.
Springer-Verlag, 2013, pp. 21–40.

[80] J. D. Cohen and M. J. Fischer, “A Robust and Verifiable Cryptographically
Secure Election Scheme,” in Proc. 26th IEEE Symposium on Foundations
of Computer Science (FOCS). IEEE Computer Society Press, 1985, pp.
372–382.

[81] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Optimally
Efficient Multi-Authority Election Scheme,” in Advances in Cryptology -
Proc. 16th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT), ser. Lecture Notes in
Computer Science, vol. 1233. Springer-Verlag, 1997, pp. 103–118.

[82] B. Adida, “Helios: Web-based Open-audit Voting,” in Proc. USENIX Con-
ference. USENIX Association, 2008, pp. 335–348.

[83] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying Privacy-Type Properties
of Electronic Voting Protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 435–487, 2009.

[84] IACR. Elections page at http://www. iacr.org/elections/.

[85] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc. 14th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. Lecture Notes in Computer Science, vol.
4963. Springer-Verlag, 2008, pp. 337–340.

[86] S. Kremer, M. D. Ryan, and B. Smyth, “Election Verifiability in Electronic
Voting Protocols,” in Proc. 15th European Symposium on Research in Com-
puter Security (ESORICS), ser. Lecture Notes in Computer Science, vol.
6345. Springer-Verlag, 2010, pp. 389–404.

[87] R. Küsters, T. Truderung, and A. Vogt, “Accountabiliy: Definition and
Relationship to Verifiability,” in CCS’10. ACM Press, 2010, pp. 526–535.

154

BIBLIOGRAPHY

[88] V. Cortier, F. Eigner, S. Kremer, M. Maffei, and C. Wiedling, “Source-code
of Helios Analysis,” http://sps.cs.uni-saarland.de/voting.

[89] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Z. Béguelin,
“Probabilistic Relational Verification for Cryptographic Implementations,”
in Proc. 41st Symposium on Principles of Programming Languages (POPL).
ACM Press, 2014, pp. 193–206.

[90] V. Cortier and C. Wiedling, “A formal analysis of the Norwegian E-voting
protocol,” in Proc. 1st International Conference on Principles of Security
and Trust (POST), ser. Lecture Notes in Computer Science, vol. 7215.
Springer-Verlag, Mar. 2012, pp. 109–128.

[91] A. Fujioka, T. Okamoto, and K. Ohta, “A Practical Secret Voting Scheme
for Large Scale Elections,” in Advances in Cryptology - Proc. Workshop on
the Theory and Application of Cryptographic Techniques (AUSCRYPT),
ser. Lecture Notes in Computer Science, vol. 718. Springer-Verlag, 1992,
pp. 244–251.

[92] R. Küsters, T. Truderung, and A. Vogt, “A Game-Based Definition of
Coercion-Resistance and its Applications,” in CSF’10. IEEE Computer
Society Press, 2010, pp. 122–136.

[93] D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi, “Adapt-
ing Helios for Provable Ballot Secrecy,” in Proc. 16th European Symposium
on Research in Computer Security (ESORICS), ser. Lecture Notes in Com-
puter Science, vol. 6879. Springer-Verlag, 2011, pp. 335–354.

[94] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-Resistant Electronic
Elections,” in Towards Trustworthy Elections: New Directions in Electronic
Voting, ser. Lecture Notes in Computer Science. Springer-Verlag, 2010,
vol. 6000, pp. 37–63.

[95] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène, “Election Verifia-
bility for Helios under Weaker Trust Assumptions,” in Proc. 19th European
Symposium on Research in Computer Security (ESORICS), ser. Lecture
Notes in Computer Science, vol. 8713. Springer-Verlag, 2014, pp. 327–344.

[96] R. Küsters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and
Coercion-Resistance: New Insights from a Case Study,” in S&P’11. IEEE
Computer Society, 2011, pp. 538–553.

[97] R. L. Rivest and W. D. Smith, “Three Voting Protocols: ThreeBallot,
VAV, and Twin,” in Proc. USENIX Workshop on Accurate Electronic Voting
Technology (EVT). USENIX Association, 2007, pp. 16–16.

[98] A. Narayanan and V. Shmatikov, “Robust De-anonymization of Large
Sparse Datasets,” in Proc. 29th IEEE Symposium on Security & Privacy
(S&P). IEEE Computer Society Press, 2008, pp. 111–125.

155

http://sps.cs.uni-saarland.de/voting

BIBLIOGRAPHY

[99] C. Dwork, “Differential Privacy,” in Proc. 33rd International Colloquium
on Automata, Languages and Programming (ICALP), ser. Lecture Notes in
Computer Science, vol. 4052. Springer-Verlag, 2006, pp. 1–12.

[100] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and P. Strub,
“Higher-Order Approximate Relational Refinement Types for Mechanism
Design and Differential Privacy,” in Proc. 42nd Symposium on Principles
of Programming Languages (POPL). ACM Press, 2015, pp. 55–68.

[101] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
Data, Ourselves: Privacy Via Distributed Noise Generation,” in Advances
in Cryptology - Proc. 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), ser. Lec-
ture Notes in Computer Science, vol. 4004. Springer-Verlag, 2006, pp.
486–503.

[102] A. Beimel, K. Nissim, and E. Omri, “Distributed Private Data Analysis:
Simultaneously Solving How and What,” in Advances in Cryptology - Proc.
28th Annual International Cryptology Conference (CRYPTO), ser. Lecture
Notes in Computer Science, vol. 5157. Springer-Verlag, 2008, pp. 451–468.

[103] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan, “Computational Dif-
ferential Privacy,” in Advances in Cryptology - Proc. 29th Annual Interna-
tional Cryptology Conference (CRYPTO), ser. Lecture Notes in Computer
Science, vol. 5677. Springer-Verlag, 2009, pp. 126–142.

[104] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song, “Privacy-
Preserving Aggregation of Time-Series Data,” in Proc. 18th Network and
Distributed System Security Symposium (NDSS). Internet Society, 2011.

[105] V. Rastogi and S. Nath, “Differentially Private Aggregation of Distributed
Time-Series with Transformation and Encryption,” in Proc. 36th ACM
SIGMOD International Conference on Management of Data (SIGMOD-
/PODS). ACM Press, 2010, pp. 735–746.

[106] J. Hsu, S. Khanna, and A. Roth, “Distributed Private Heavy Hitters,”
CoRR - Computing Research Repository, vol. abs/1202.4910, 2012.

[107] A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. P.
Vadhan, “The Limits of Two-Party Differential Privacy,” in Proc. 51th IEEE
Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 2010, pp. 81–90.

[108] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards Statistical
Queries over Distributed Private User Data,” in Proc. 9th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI). USENIX
Association, 2012.

156

BIBLIOGRAPHY

[109] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What Can We Learn Privately?” in Proc. 49th IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 2008.

[110] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to
Sensitivity in Private Data Analysis,” in Proc. 3rd Theory of Cryptogra-
phy Conference (TCC), ser. Lecture Notes in Computer Science, vol. 3876.
Springer-Verlag, 2006, pp. 265–284.

[111] A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally Utility-
Maximizing Privacy Mechanisms,” in Proc. 41st Annual ACM Symposium
on Theory of Computing (STOC). ACM Press, 2009, pp. 351–360.

[112] F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,” in
Proc. 48th IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society Press, 2007, pp. 94–103.

[113] M. Abadi and B. Blanchet, “Secrecy Types for Asymmetric Communica-
tion,” in Proc. 4th International Conference on Foundations of Software
Science and Computation Structures (FOSSACS), ser. Lecture Notes in
Computer Science, vol. 2030. Springer-Verlag, 2001, pp. 25–41.

[114] B. Blanchet, “Automatic Proof of Strong Secrecy for Security Protocols,”
in Proc. 25th IEEE Symposium on Security & Privacy (S&P). IEEE Com-
puter Society Press, 2004, pp. 86–100.

[115] P. S. Barth, R. S. Nikhil, and Arvind, “M-structures: Extending a paral-
lel, non-strict, functional language with state,” in Proc. 5th Conference on
Functional Programming Languages and Computer Architecture, (FPCA),
ser. Lecture Notes in Computer Science, vol. 523. Springer-Verlag, 1991,
pp. 538–568.

[116] T.-H. H. Chan, E. Shi, and D. Song, “Privacy-Preserving Stream Aggrega-
tion with Fault Tolerance,” in Proc. 16th Financial Cryptography Confer-
ence (FC), ser. Lecture Notes in Computer Science, vol. 7397. Springer-
Verlag, 2012, pp. 200–214.

[117] F. McSherry, “Privacy Integrated Queries: an Extensible Platform for
Privacy-Preserving Data Analysis,” in Proc. 35th ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD/PODS). ACM
Press, 2009, pp. 19–30.

[118] I. Cervesato, J. S. Hodas, and F. Pfenning, “Efficient Resource Management
for Linear Logic Proof Search,” Theoretical Computer Science, vol. 232, no.
1-2, pp. 133–163, 2000.

157

BIBLIOGRAPHY

[119] I. Mironov, “On Significance of the Least Significant Bits for Differential
Privacy,” in Proc. 19th ACM Conference on Computer and Communica-
tions Security (CCS). ACM Press, 2012, pp. 650–661.

[120] I. Gazeau, D. Miller, and C. Palamidessi, “Preserving differential privacy
under finite-precision semantics,” in Proc. 11th International Workshop
on Quantitative Aspects of Programming Languages and Systems (QAPL),
2013, pp. 1–18.

[121] M. C. Tschantz, D. Kaynar, and A. Datta, “Formal Verification of Differen-
tial Privacy for Interactive Systems (Extended Abstract),” Electronic Notes
on Theoretical Computer Science, vol. 276, pp. 61–79, 2011.

[122] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving
Programs Robust,” in Proc. 19th ACM SIGSOFT Symposium and 13th Eu-
ropean Conference on Foundations of Software Engineering (ESEC/FSE).
ACM Press, 2011, pp. 102–112.

[123] D. Kifer and A. Machanavajjhala, “No Free Lunch in Data Privacy,” in
Proc. 37th ACM SIGMOD International Conference on Management of
Data (SIGMOD/PODS). ACM Press, 2011, pp. 193–204.

[124] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential Privacy under
Fire,” in Proc. USENIX Conference. USENIX Association, 2011.

[125] S. P. Kasiviswanathan and A. Smith, “A Note on Differential Privacy:
Defining Resistance to Arbitrary Side Information,” 2008, cryptology ePrint
Archive, Report 2008/144.

[126] R. Bhaskar, A. Bhowmick, V. Goyal, S. Laxman, and A. Thakurta, “Noise-
less Database Privacy,” in Advances in Cryptology - Proc. 17th International
Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), ser. Lecture Notes in Computer Science, vol. 7073.
Springer-Verlag, 2011, pp. 215–232.

[127] J. Gehrke, E. Lui, and R. Pass, “Towards Privacy for Social Networks:
A Zero-Knowledge Based Definition of Privacy,” in Proc. 8th Theory of
Cryptography Conference (TCC), ser. Lecture Notes in Computer Science,
vol. 6597. Springer-Verlag, 2011, pp. 432–449.

[128] M. Abadi, “Secrecy by Typing in Security Protocols,” Journal of the ACM,
vol. 46, no. 5, pp. 749–786, 1999.

[129] M. Backes, M. Maffei, and K. Pecina, “Automated Synthesis of Privacy-
Preserving Distributed Applications,” in Proc. 19th Network and Dis-
tributed System Security Symposium (NDSS). Internet Society, 2012.

[130] M. Maffei, K. Pecina, and M. Reinert, “Security and Privacy by Declarative
Design,” in Proc. 26th IEEE Symposium on Computer Security Foundations
(CSF). IEEE Computer Society Press, 2013, p. 8196.

158

BIBLIOGRAPHY

[131] P. Baillot and M. Hofmann, “Type Inference in Intuitionistic Linear Logic,”
in Proc. 12th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP). ACM Press, 2010, pp. 219–230.

159

Part V

Appendix

161

A
Proofs of Chapter 2

A.1 Soundness of AF7

We present a complete soundness proof for our AF7 type system. The structure
of the proof is standard: we first establish a Subject Reduction theorem, which
shows that types are preserved upon reduction, and then we prove that well-typed
programs are statically safe. By combining these two guarantees, we establish
that the type system enforces our safety notion. Finally, we prove an Opponent
Typability lemma, which states that any opponent is trivially well-typed: this
allows us to carry out a simple proof of robust safety, based on our safety theorem.

The present appendix is organized as follows:

• Appendix A.1.1 develops basic properties of affine logic, which are needed
in the soundness proof of the AF7 type system;

• Appendix A.1.2 establishes some basic results about AF7 and the environ-
ment rewriting relation;

• Appendix A.1.3 presents the main properties of kinding and subtyping,
most notably the transitivity of the subtyping relation;

• Appendix A.1.4 establishes a standard substitution lemma;

• Appendix A.1.5 provides the inversion lemmas for the constructed values
of our framework;

• Appendix A.1.6 presents the fundamental properties of the extraction rela-
tion;

• Appendix A.1.7 details the proof of the Subject Reduction theorem, build-
ing upon the results of the previous sections;

163

APPENDIX A. PROOFS OF AF7 AND AF7ALG

• Appendix A.1.8 presents the proof of robust safety.

A.1.1 Properties of the logic

We first show that affine logic is closed under substitution of variables with closed
terms. This is important to prove the substitution lemma of our type system.

Lemma A.1 (Substitution for the Logic). For all ∆, F and all substitutions σ
of variables with closed terms, it holds that ∆ ` F implies ∆σ ` Fσ.
Proof. By induction on the derivation of ∆ ` F .
Case (Ident): we can immediately conclude by (Ident).

Case (∀-Right): we know that F = ∀x.F ′ and:
∆ ` F ′ x /∈ fv(∆)

∆ ` ∀x.F ′

We define the slightly modified substitution σ′ as follows:

yσ′ :=

{
yσ if x 6= y

y if x = y

It follows that (∀x.F ′)σ = ∀x.(F ′σ′). Since x /∈ fv(∆), we know that ∆σ = ∆σ′.
We apply the induction hypothesis to ∆ ` F ′ and σ′, so we get ∆σ′ ` F ′σ′.
Using the previous observations, we conclude ∆σ ` (∀x.F ′)σ by an application
of (∀-Right). Notice that the rule can be applied, since x /∈ fv(∆σ) by the
assumption that σ does not introduce variables.

Case (∀-Left): we know that ∆ , ∆′,∀x.F ′ and:
∆′, F ′{t/x} ` F
∆′,∀x.F ′ ` F

We define the slightly modified substitution σ′ as follows:

yσ′ :=

{
yσ if x 6= y

y if x = y

By the induction hypothesis we know that (∆′, F ′{t/x})σ ` Fσ. This is equiv-
alent to ∆′σ, (F ′{t/x})σ ` Fσ, which is equivalent to ∆′σ, (F ′σ′){tσ/x} ` Fσ
by the definition of σ and σ′ and the fact that both σ and σ′ do not introduce
variables. We can apply (∀-Left) to derive:

∆′σ, (F ′σ′){tσ/x} ` Fσ
∆′σ,∀x.(F ′σ′) ` Fσ

We know that by definition of σ, σ′ it holds that ∆′σ, ∀x.(F ′σ′) ` Fσ is equivalent
to ∆′σ, (∀x.F ′)σ ` Fσ and thus to (∆′,∀x.F ′)σ ` Fσ, which is the conclusion.

164

A.1. SOUNDNESS OF AF7

Case (=-Subst): we know that ∆ , ∆′, t = t′ and:

∃σ′ = mgu(t, t′)⇒ ∆′σ′ ` Fσ′
∆′, t = t′ ` F

We need to show that (∆′, t = t′)σ ` Fσ, which by definition of substitution
is equivalent to showing that ∆′σ, tσ = t′σ ` Fσ. We distinguish two cases: if
there does not exist a most general unifier σ′′ = mgu(tσ, t′σ), the premise for
concluding by an application of (=-Subst) is immediately met and we are done.

Otherwise, we know that there exists σ′′ = mgu(tσ, t′σ). By definition of most
general unifier, we know that (tσ)σ′′ and (t′σ)σ′′ are identical, which in particular
means that σ ◦ σ′′ is a unifier for t and t′; this also implies the existence of a
most general unifier σ′ = mgu(t, t′) and a (potentially empty) substitution σ′′′

such that σ ◦σ′′ = σ′ ◦σ′′′. We can apply the induction hypothesis to ∆′σ′ ` Fσ′
and σ′′′ and derive that (∆′σ′)σ′′′ ` (Fσ′)σ′′′. As we have seen above, this is
equivalent to (∆′σ)σ′′ ` (Fσ)σ′′. We can then apply (=-Subst) to conclude
that:

σ′′ = mgu(tσ, t′σ) (∆′σ)σ′′ ` (Fσ)σ′′

∆′σ, tσ = t′σ ` Fσ

Case (=-Refl): we can immediately conclude by (=-Refl).

Case (False): we can immediately conclude by (False).

In all other cases we apply the induction hypothesis to the premises of the rule
and conclude by applying the rule again.

In the next result we recall that we write ∆ ` ∆′ to stand for ∆ ` F1⊗. . .⊗Fn
whenever ∆′ = F1, . . . , Fn. If ∆′ is empty, we let ∆ ` ∆′ stand for ∆ ` 1.

Lemma A.2 (Properties of Conjunction). The following properties hold:

1. For all n ≥ 0, we have ∆, F1, . . . , Fn ` F iff ∆, F1 ⊗ . . .⊗ Fn ` F .

2. For all ∆,∆′ it holds that ∆′ ⊆ ∆ implies ∆ ` ∆′.

Proof. We proceed as follows:

1. We show both directions separately:

• ∆, F1 ⊗ . . .⊗ Fn ` F ⇒ ∆, F1, . . . , Fn ` F : by induction on n.
– The case for n = 1 is trivial.
– We show the case for n = 2 in detail.

We know that ∆, F1⊗F2 ` F and need to show that ∆, F1, F2 ` F .
We know that:

Ident
F1 ` F1 F2 ` F2

Ident

F1, F2 ` F1 ⊗ F2

⊗-Right

Since F1, F2 ` F1 ⊗ F2 and ∆, F1 ⊗ F2 ` F we can apply a Cut
elimination argument to derive that ∆, F1, F2 ` F .

165

APPENDIX A. PROOFS OF AF7 AND AF7ALG

– In the remaining cases n > 2 we know that F1⊗ . . .⊗Fn actually
denotes a formula of the form (F1 ⊗ . . .⊗ Fi)⊗ (Fi+1 ⊗ . . .⊗ Fn),
where F1⊗ . . .⊗Fi and Fi+1⊗ . . .⊗Fn also contain disambiguat-
ing parentheses, for i ∈ {1, . . . , n − 1}. We apply the induction
hypothesis (for 2 < n) to the top-level conjunction, which lets us
derive that ∆, (F1⊗ . . .⊗Fi), (Fi+1⊗ . . .⊗Fn) ` F . We then apply
the induction hypothesis (for i < n) to F1 ⊗ . . . ⊗ Fi and derive
that ∆, F1, . . . , Fi, (Fi+1 ⊗ . . .⊗ Fn) ` F . Applying the induction
hypothesis (for n− i < n) to Fi+1 ⊗ . . .⊗ Fn lets us conclude.

• ∆, F1, . . . , Fn ` F ⇒ ∆, F1 ⊗ . . .⊗ Fn ` F : by induction on n.
The case n = 1 is trivial, the case for n = 2 follows by (⊗-Left). The
remaining cases n > 2 follow by applying the induction hypothesis
three times, similar to the previous direction.

2. Let ∆′ = ∅. We interpret ∆ ` ∅ as ∆ ` 1, which is defined as ∆ ` () = ().
This immediately follows by (=-Refl).
Let ∆′ = F1, . . . , Fn for some F1, . . . , Fn. By (Ident) we know that F1 ⊗
. . . ⊗ Fn ` F1 ⊗ . . . ⊗ Fn. Using property (1) it follows that F1, . . . , Fn `
F1 ⊗ . . .⊗ Fn, which is equivalent to ∆′ ` ∆′ using our standard notation.
We can conclude using (Weak) repeatedly.

The next result is a generalization to multisets of formulas of the standard
Cut rule, characteristic of sequent calculi presentation of formal logic.

Lemma A.3 (Multicut). If ∆ ` ∆′ and ∆′,∆′′ ` ∆′′′, then ∆,∆′′ ` ∆′′′.

Proof. Let ∆′ = ∅. We know that ∆′′ ` ∆′′′ and can immediately conclude by
repeated applications of (Weak). Let then ∆′ = F1, . . . , Fn for some F1, . . . , Fn.
We know that ∆ ` F1, . . . , Fn, which denotes ∆ ` F1⊗. . .⊗Fn. Using Lemma A.2
we also know that F1 ⊗ . . .⊗ Fn,∆′′ ` ∆′′′. We can conclude by a standard Cut
elimination argument.

The next technical lemma formalizes the intuition that exponential formulas
can be proved an arbitrary number of times.

Lemma A.4 (Properties of Contraction). The following properties hold:

1. For all ∆ it holds that !∆ ` !∆, !∆.

2. For all ∆,∆′ it holds that if ∆ ` !∆′, then ∆ ` !∆′, !∆′.

Proof. We proceed as follows:

1. We know that !∆, !∆ ` !∆, !∆ by Lemma A.2. We can conclude by applying
(Contr) to each element in !∆.

2. Using property (1) we know that !∆′ ` !∆′, !∆′. Since ∆ ` !∆′, we can
conclude using Lemma A.3.

166

A.1. SOUNDNESS OF AF7

A.1.2 Basic results

The next results are completely standard. In the following we typically let J
range over the judgements {�, T, F, T :: k, T <: U,E : T}.

Lemma A.5 (Derived Judgements). It holds that:

1. If Γ; ∆ ` �, then fnfv(∆) ⊆ dom(Γ) and ∀∆′ ⊆ ∆ : Γ; ∆′ ` � .

2. If Γ; ∆ ` � and (x : T) ∈ Γ, then T = ψ(T).

3. If Γ; ∆ ` T , then Γ; ∅ ` ψ(T).

4. If Γ; ∆ ` T , then Γ; ∆ ` � and fnfv(T) ⊆ dom(Γ).

5. If Γ; ∆ ` F , then Γ; ∆ ` � and fnfv(F) ⊆ dom(Γ).

6. If Γ; ∆ ↪→ Γ; ∆′, then Γ; ∆ ` � and Γ; ∆′ ` �.

7. If Γ; ∆ ` T :: k, then Γ; ∆ ` T .

8. If Γ; ∆ ` T <: T ′, then Γ; ∆ ` T and Γ; ∆ ` T ′.

9. If Γ; ∆ ` E : T , then Γ; ∆ ` T and fnfv(E) ⊆ dom(Γ).

Proof. By induction on the depth of the derivation of the judgements.

Lemma A.6 (Joining Envs). If Γ; ∆ ` � and Γ; ∆′ ` �, then Γ; ∆,∆′ ` �.

Proof. By induction on the size of ∆′, using Lemma B.3 (point 1).

Notation A.1 (Environment Entry η). We define an environment entry η to be
either a type environment entry µ or a formula F .

Notation A.2 (Environment Join •). We introduce the following notation for
environment join:

(Γ; ∆) • µ ,
{

Γ, x : ψ(T); ∆, forms(x : T) if µ = x : T

Γ, µ; ∆ otherwise

(Γ; ∆) • F , Γ; ∆, F

(Γ; ∆) • (Γ′; ∆′) , Γ,Γ′; ∆,∆′

Lemma A.7 (Weakening). If (Γ; ∆) • (Γ′; ∆′) ` J and (Γ; ∆) • η • (Γ′; ∆′) ` �,
then (Γ; ∆) • η • (Γ′; ∆′) ` J .

Proof. By induction on the derivation of (Γ; ∆) • (Γ′; ∆′) ` J .

The next lemma establishes some basic properties of the rewriting relation.
Intuitively, we show that this relation is consistent with logical entailment, in
that it satisfies some expected properties which hold true for the latter.

167

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Lemma A.8 (Properties of Rewriting). The following statements hold true:

1. If Γ; ∆ ` � and ∆′ ⊆ ∆, then Γ; ∆ ↪→ Γ; ∆′.

2. If Γ; ∆1 ↪→ Γ; ∆′1 and Γ; ∆2 ↪→ Γ; ∆′2, then Γ; ∆1,∆2 ↪→ Γ; ∆′1,∆
′
2.

3. If Γ; ∆ ↪→ Γ; ∆′ and Γ; ∆′ ↪→ Γ; ∆′′, then Γ; ∆ ↪→ Γ; ∆′′.

4. If Γ; ∆ ↪→ Γ; !∆′, then Γ; ∆ ↪→ Γ; !∆′, !∆′.

Proof. We proceed as follows:

1. Since ∆′ ⊆ ∆, we know that Γ; ∆′ ` � by Lemma B.3. By Lemma A.2 we
know that ∆ ` ∆′, hence Γ; ∆ ↪→ Γ; ∆′ by (Rewrite).

2. By inverting (Rewrite) we know that Γ; ∆1 ` �, Γ; ∆′1 ` �, Γ; ∆2 ` �,
Γ; ∆′2 ` �, ∆1 ` ∆′1 and ∆2 ` ∆′2. By Lemma A.6 we have Γ; ∆1,∆2 ` �
and Γ; ∆′1,∆

′
2 ` �. By (⊗-Right) we get ∆1,∆2 ` ∆′1,∆

′
2 from ∆1 ` ∆′1

and ∆2 ` ∆′2, hence we conclude Γ; ∆1,∆2 ↪→ Γ; ∆′1,∆
′
2 by (Rewrite).

3. By inverting (Rewrite) we know that Γ; ∆ ` �, Γ; ∆′ ` �, Γ; ∆′′ ` �,
∆ ` ∆′ and ∆′ ` ∆′′. By Lemma A.3 we know that ∆ ` ∆′ and ∆′ ` ∆′′

imply ∆ ` ∆′′, hence we conclude Γ; ∆ ↪→ Γ; ∆′′ by (Rewrite).

4. By inverting (Rewrite) we know that Γ; ∆ ` �, Γ; !∆′ ` � and ∆ `
!∆′. Since Γ; !∆′ ` � implies fnfv(!∆′) ⊆ dom(Γ) by Lemma B.3, we
get Γ; !∆′, !∆′ ` � by multiple applications of (Form Env Entry). By
Lemma A.4 we know that ∆ ` !∆′ implies ∆ ` !∆′, !∆′, hence we conclude
Γ; ∆ ↪→ Γ; !∆′, !∆′ by using (Rewrite).

The next result states that, if an environment Γ; ∆ can be rewritten to an
environment Γ; ∆′, then it can derive all the judgements provable by the latter.

Lemma A.9 (Rewrite Weak). If Γ; ∆′ ` J and Γ; ∆ ↪→ Γ; ∆′, then Γ; ∆ ` J .

Proof. We distinguish on J :

1. J = �: This case follows immediately by the definition of (Rewrite).

2. J = T : By definition of rule (Type) we know that Γ; ∆′ ` � and fnfv(T) ⊆
dom(Γ). We also know that Γ; ∆ ↪→ Γ; ∆′, which by (Rewrite) implies
Γ; ∆ ` �. Since Γ; ∆ ` � and fnfv(T) ⊆ dom(Γ), we conclude Γ; ∆ ` T by
using (Type).

3. J = F : By definition of rule (Derive) we know that Γ; ∆′ ` �, fnfv(F) ⊆
dom(Γ) and ∆′ ` F . We also know that Γ; ∆ ↪→ Γ; ∆′, which by (Rewrite)
implies Γ; ∆ ` � and ∆ ` ∆′. We can apply Lemma A.3 to ∆ ` ∆′ and
∆′ ` F , and get ∆ ` F . Since Γ; ∆ ` �, fnfv(F) ⊆ dom(Γ) and ∆ ` F , we
conclude Γ; ∆ ` F by (Derive).

168

A.1. SOUNDNESS OF AF7

4. J = T :: k: We proceed by induction on the derivation of Γ; ∆′ ` T :: k.
The cases (Kind Var) and (Kind Unit) follow immediately by proof part
(1). The case (Kind Refine Public) follows by proof part (2) and an
application of the induction hypothesis. All other cases contain a rewrit-
ing statement of the form Γ; ∆′ ↪→ Γ; ∆′′ among their hypotheses. By
Lemma A.8 (point 3) it follows that Γ; ∆ ↪→ Γ; ∆′′, thus allowing us to
immediately conclude by applying the original rule.

5. J = T <: U : By induction on the derivation of Γ; ∆′ ` T <: U , using the
same reasoning as in the previous case.

6. J = E : T : By induction on the derivation of Γ; ∆′ ` E : T , using the same
reasoning as in the previous cases.

The next technical lemma states that rewriting does not introduce free vari-
ables.

Lemma A.10 (Rewriting and Variables). If x /∈ dom(Γ) and Γ; ∆ ↪→ Γ; ∆′, then
x /∈ fv(∆′).

Proof. Immediate by Lemma B.3 (point 1), since Γ; ∆ ↪→ Γ; ∆′ implies Γ; ∆′ ` �
by inverting rule (Rewrite).

The next lemma is an expected property of the refinement stripping function
ψ, i.e., that it removes all the refinement formulas from a type.

Lemma A.11 (Soundness of ψ). For every type T , we have forms(x : ψ(T)) = ∅.
Proof. By induction on the structure of T .

The next lemma states that the stripping function ψ is idempotent, i.e., there
is no purpose in stripping refinements twice from the same type.

Lemma A.12 (Idempotent ψ). For every type T , we have ψ(ψ(T)) = ψ(T).

Proof. By induction on the structure of T .

A.1.3 Properties of kinding and subtyping

The next result states that, whenever a typing environment can assign a kind to
a type T , then it can be rewritten so as to be split in two distinct components:
the first one is exponential and it is needed to kind-check the structural informa-
tion ψ(T), while the second one can be used to derive the refinement formulas
forms(x : T) when T is tainted. This result is extensively used in the proofs,
most likely to deal with the subtleties introduced by environment splitting.

Lemma A.13 (Bare Kinds). If Γ; ∆ ` T :: k, then there exist !∆′ and ∆′′ such
that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` ψ(T) :: k. Moreover, if k = tnt, we can also
require ∆′′ ` forms(x : T) for any x /∈ dom(Γ).

169

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Proof. By induction on the derivation of Γ; ∆ ` T :: k:

Case (Kind Var): assume that Γ; ∆ ` α :: k by the premise (α :: k) ∈ Γ with
Γ; ∆ ` �. Since forms(x : α) = ∅ and ψ(α) = α, we just need to show that
Γ; ∆ ↪→ Γ; !∆′ for some !∆′ such that Γ; !∆′ ` α :: k. We note that Γ; ∆ ` �
implies Γ; ∅ ` � by Lemma B.3 (point 1), hence Γ; ∅ ` α :: k by (Kind Var).
Since Γ; ∆ ↪→ Γ; ∅ by Lemma A.8 (point 1), this is the desired conclusion.

Case (Kind Unit): assume that Γ; ∆ ` unit :: k by the premise Γ; ∆ ` �. Since
forms(x : unit) = ∅ and ψ(unit) = unit, we just need to show that Γ; ∆ ↪→ Γ; !∆′

for some !∆′ such that Γ; !∆′ ` unit :: k. We note that Γ; ∆ ` � implies Γ; ∅ ` � by
Lemma B.3 (point 1), hence Γ; ∅ ` unit :: k by (Kind Unit). Since Γ; ∆ ↪→ Γ; ∅
by Lemma A.8 (point 1), this is the desired conclusion.

Case (Kind Fun): assume that Γ; ∆ ` x : T → U :: k by the premises Γ; !∆1 `
T :: k and Γ, x : ψ(T); !∆2 ` U :: k with Γ; ∆ ↪→ Γ; !∆1, !∆2. Since ψ(x : T →
U) = x : T → U and forms(x : (x : T → U)) = ∅, the conclusion is immediate.

Case (Kind Refine Public): assume that Γ; ∆ ` {x : T | F} :: pub by the
premises Γ; ∆ ` {x : T | F} and Γ; ∆ ` T :: pub. By inductive hypothesis
Γ; ∆ ↪→ Γ; !∆1,∆2 for some !∆1,∆2 such that Γ; !∆1 ` ψ(T) :: pub. Since
ψ({x : T | F}) = ψ(T) by definition, we can conclude.

Case (Kind Refine Tainted): We know that Γ; ∆ ` {x : T | F} :: tnt by the
premises Γ; ∆1 ` ψ({x : T | F}) :: tnt and Γ, x : ψ({x : T | F}); ∆2 ` forms(x :
{x : T | F}) with Γ; ∆ ↪→ Γ; ∆1,∆2. We apply the inductive hypothesis to
get Γ; ∆1 ↪→ Γ; !∆11,∆12 for some !∆11 and ∆12 such that Γ; !∆11 ` ψ(ψ({x :
T | F})) :: tnt and ∆12 ` forms(x : ψ({x : T | F})). Note that the former
judgement is equivalent to Γ; !∆11 ` ψ({x : T | F}) :: tnt by Lemma A.12.
By inverting (Derive) we have ∆2 ` forms(x : {x : T | F}). Since Γ; ∆ ↪→
Γ; !∆11,∆2 by Lemma A.8, we can conclude.

The cases for rules (Kind Pair), (Kind Sum) and (Kind Rec) are identical
to the case for (Kind Fun).

The next technical lemma is needed in the proof of Lemma B.14 below. It
states that the assignment of a public kind does not depend on the refinement
formulas associated to the type, but only on structural information.

Lemma A.14 (Bare Kinds Reverse). If Γ; ∆ ` T and Γ; ∆ ` ψ(T) :: pub, then
Γ; ∆ ` T :: pub.

Proof. By induction on the structure of T . In most cases T = ψ(T), allowing
us to immediately conclude. In the case where T = {x : U | F}, assume that
Γ; ∆ ` ψ({x : U | F}) :: pub and Γ; ∆ ` {x : U | F}. We observe that the
latter implies Γ; ∆ ` U . By definition we have ψ({x : U | F}) = ψ(U), hence
by inductive hypothesis we get Γ; ∆ ` U :: pub. Since Γ; ∆ ` {x : U | F} by
hypothesis and Γ; ∆ ` U :: pub, we conclude Γ; ∆ ` {x : U | F} :: pub by (Kind
Refine Public).

170

A.1. SOUNDNESS OF AF7

The next result is similar in spirit to Lemma A.13, but it applies to subtyping.
Again the goal is to identify a possible rewriting of the typing environment such
that the structural subtyping relation and the refinement formulas can be proved
separately. This is needed in a number of places to deal with the complications
introduced by environment splitting.

Lemma A.15 (Bare Subtypes). If Γ; ∆ ` T <: U , then there exist !∆′ and ∆′′

such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` ψ(T) <: ψ(U) and ∆′′, forms(x : T) `
forms(x : U) for any x /∈ dom(Γ).

Proof. By induction on the derivation of Γ; ∆ ` T <: U :

Case (Sub Refl): assume that Γ; ∆ ` T <: T by the premise Γ; ∆ ` T . Since
Γ; ∅ ` ψ(T) by Lemma B.3 (point 3), we have Γ; ∅ ` ψ(T) <: ψ(T) by (Sub
Refl). Moreover, we note that forms(x : T) ` forms(x : T). This leads to the
desired conclusion, since Γ; ∆ ↪→ Γ; ∅ by Lemma A.8 (point 1).

Case (Sub Pub Tnt): assume that Γ; ∆ ` T <: U by the premises Γ; ∆1 `
T :: pub and Γ; ∆2 ` U :: tnt with Γ; ∆ ↪→ Γ; ∆1,∆2. We apply Lemma A.13
to Γ; ∆1 ` T :: pub and we get Γ; ∆1 ↪→ Γ; !∆11,∆12 for some !∆11,∆12 such
that Γ; !∆11 ` ψ(T) :: pub. Then we apply Lemma A.13 to Γ; ∆2 ` U :: tnt and
we get Γ; ∆2 ↪→ Γ; !∆21,∆22 for some !∆21,∆22 such that Γ; !∆21 ` ψ(U) :: tnt
and Γ; ∆22 ` forms(x : U). By an application of (Sub Pub Tnt) we then get
Γ; !∆11, !∆21 ` ψ(T) <: ψ(U). Now we notice that Γ; ∆ ↪→ Γ; !∆11,∆12, !∆21,∆22

by Lemma A.8, which implies Γ; ∆ ↪→ Γ; (!∆11, !∆21),∆22 again by Lemma A.8,
hence we conclude.

Case (Sub Fun): assume that Γ; ∆ ` y : U1 → U2 <: y : U3 → U4 by the
premises Γ; !∆1 ` U3 <: U1 and Γ, y : ψ(U3); !∆2 ` U2 <: U4 with Γ; ∆ ↪→
Γ; !∆1, !∆2. Since ψ(y : U1 → U2) = y : U1 → U2 and ψ(y : U3 → U4) = y :
U3 → U4 and forms(x : (y : U1 → U2)) = forms(x : (y : U3 → U4)) = ∅, the
conclusion is immediate.

Case (Sub Refine): assume that Γ; ∆ ` T <: U by the premises Γ; ∆1 `
ψ(T) <: ψ(U) and Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : U) with Γ; ∆ ↪→
Γ; ∆1,∆2. We apply the inductive hypothesis to Γ; ∆1 ` ψ(T) <: ψ(U) and
we get that there exist !∆11,∆12 such that Γ; !∆11 ` ψ(ψ(T)) <: ψ(ψ(U)) and
Γ; ∆1 ↪→ Γ; !∆11,∆12. The former judgement is equivalent to Γ; !∆11 ` ψ(T) <:
ψ(U) by Lemma A.12, while by inverting rule (Derive) we have ∆2, forms(y :
T) ` forms(y : U); hence, to conclude we just note that Γ; ∆ ↪→ Γ; !∆11,∆2 by
Lemma A.8.

The cases for rules (Sub Pair), (Sub Sum) and (Sub Pos Rec) are identical
to the case for (Sub Fun).

The next technical lemma is needed in the proof of Lemma B.14 below. It
states that only refinement formulas are relevant for many judgements of our type
system, so we can always replace a purely structural type ψ(T) with any other
(well-formed) purely structural type ψ(T ′) in the typing environment.

171

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Lemma A.16 (Replacing Unrefined Bindings). For all J ∈ {�, U, F, U :: k, U <:
U ′} it holds that if Γ, x : ψ(T),Γ′; ∆ ` J and Γ; ∅ ` ψ(T ′), then Γ, x : ψ(T ′),Γ′; ∆ `
J . Moreover, the depth of the two derivations is the same.

Proof. We prove all statements separately by induction on the derivation of Γ, x :
ψ(T),Γ′; ∆ ` J , making use of Lemma B.3 when needed.

Definition A.1 (Compartmental Notation for Environments). Let Γ[(µi)
i∈{1,...,n}]

denote the environment obtained by inserting the entries µ1, . . . , µn at fixed posi-
tions between the entries of the environment Γ.

The next technical lemma is needed in the proof of Lemma B.14 below. Intu-
itively, it states that kinding annotations for type variables do not play any role
for many judgements of our type system.

Lemma A.17 (Type Variables and Kinding). For all Γ = Γ0[(αi)
i∈{1,...,n}] and

Γ̂ = Γ0[(αi :: ki)
i∈{1,...,n}] it holds that:

1. dom(Γ) = dom(Γ̂);

2. Γ; ∆ ` � if and only if Γ̂; ∆ ` �;

3. Γ; ∆ ↪→ Γ; ∆′ if and only if Γ̂; ∆ ↪→ Γ̂; ∆′;

4. Γ; ∆ ` T if and only if Γ̂; ∆ ` T ;

5. Γ; ∆ ` F if and only if Γ̂; ∆ ` F ;

6. If Γ; ∆ ` T :: k, then Γ̂; ∆ ` T :: k.

Proof. We proceed as follows:

1. We note that dom(αi) = dom(αi :: ki) by the definition of dom and we
easily conclude.

2. Γ; ∆ and Γ̂; ∆ only differ in αi and αi :: ki respectively. The statement
follows noting that dom(αi) = {αi} = dom(αi :: ki).

3. By definition of (Rewrite), using (2).

4. By definition of (Type), using (1) and (2).

5. By definition of (Derive), using (1) and (2).

6. By induction on the derivation of Γ; ∆ ` T :: k, using the previous state-
ments.

The next lemma states that any subtype of a public type is public, while
any supertype of a tainted type is tainted. This is needed to prove Lemma B.16
below.

172

A.1. SOUNDNESS OF AF7

Lemma A.18 (Public Down/Tainted Up). For all environments Γ; ∆ and types
T, T ′ it holds that:

1. If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T ′ :: pub, then Γ; ∆,∆′ ` T :: pub.

2. If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T :: tnt, then Γ; ∆,∆′ ` T ′ :: tnt.

Proof. The lemma is an instance (for n = 0) of the following more general state-
ment: For all environments Γ; ∆ and types T, T ′ such that Γ = Γ0[(αi)

i∈{1,...,n}]
and Γ̂ = Γ0[(αi :: ki)

i∈{1,...,n}] it holds:

1. If Γ; ∆ ` T <: T ′ and Γ̂; ∆′ ` T ′ :: pub, then Γ̂; ∆,∆′ ` T :: pub.

2. If Γ; ∆ ` T <: T ′ and Γ̂; ∆′ ` T :: tnt, then Γ̂; ∆,∆′ ` T ′ :: tnt.

Both statements are proved by simultaneous induction on the derivation of
Γ; ∆ ` T <: T ′. We distinguish the last applied subtyping rule and we often
implicitly appeal to Lemma B.3 and Lemma A.17. Notice in particular that,
by using Lemma B.3 and Lemma A.17, we can derive both Γ; ∆,∆′ ` � and
Γ̂; ∆,∆′ ` �.

Case (Sub Refl): In this case T = T ′, hence we know in the two cases that:

1. Γ̂; ∆′ ` T :: pub. As seen above, we know that Γ̂; ∆,∆′ ` �, hence Γ̂; ∆,∆′ `
T :: pub follows by Lemma B.8.

2. Γ̂; ∆′ ` T ′ :: tnt. Using the same reasoning as in the previous case we can
conclude that Γ̂; ∆,∆′ ` T ′ :: tnt follows by Lemma B.8.

Case (Sub Pub Tnt): In this case it holds that Γ; ∆ ↪→ Γ; ∆1,∆2 such that
Γ; ∆1 ` T :: pub and Γ; ∆2 ` T ′ :: tnt. Notice again that Γ; ∆,∆′ ` � as before.
In the proof of statement (1) we need to show that Γ̂; ∆,∆′ ` T :: pub. By
Lemma A.8 we know that Γ; ∆,∆′ ↪→ Γ; ∆1. We derive that Γ; ∆,∆′ ` T :: pub
by an application of Lemma A.9. We apply Lemma A.17 to conclude that
Γ̂; ∆,∆′ ` T :: pub.

In the proof of statement (2) we need to show that Γ; ∆,∆′ ` T ′ :: tnt. By
Lemma A.8 we know that Γ; ∆,∆′ ↪→ Γ; ∆2. We conclude by an application of
Lemma A.9 that Γ; ∆,∆′ ` T ′ :: tnt. Using Lemma A.17 we can conclude that
Γ̂; ∆,∆′ ` T ′ :: tnt.

Case (Sub Refine): In this case we know that Γ; ∆ ↪→ Γ; ∆1,∆2 such that
Γ; ∆1 ` ψ(T) <: ψ(T ′) and Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : T ′).

We show both statements separately. We first note that by Lemma B.3 we know
that Γ; ∅ ` T and Γ; ∅ ` T ′ and thus by Lemma A.17 Γ̂; ∅ ` T and Γ̂; ∅ ` T ′.

1. By Lemma A.13 we know that there exist ∆′1,∆
′
2 such that:

• Γ̂; ∆′ ↪→ Γ̂; !∆′1,∆
′
2,

• Γ̂; !∆′1 ` ψ(T ′) :: pub.

173

APPENDIX A. PROOFS OF AF7 AND AF7ALG

We can apply the induction hypothesis to derive that:

Γ̂; ∆1, !∆
′
1 ` ψ(T) :: pub.

By Lemma A.14 we can immediately derive that:

Γ̂; ∆1, !∆
′
1 ` T :: pub.

We can derive that Γ̂; ∆,∆′ ↪→ Γ̂; ∆1, !∆
′
1 using Lemma A.8 in combination

with Lemma A.17, hence we conclude Γ̂; ∆,∆′ ` T :: pub by Lemma A.9.

2. By Lemma A.13 we know that there exist ∆′1,∆
′
2 such that:

• Γ̂; ∆′ ↪→ Γ̂; !∆′1,∆
′
2,

• Γ̂; !∆′1 ` ψ(T) :: tnt, and
• ∆′2 ` forms(y : T) for some y /∈ dom(Γ).

We can apply the induction hypothesis to derive that:

Γ̂; ∆1, !∆
′
1 ` ψ(T ′) :: tnt.

If ψ(T ′) = T ′, we observe that Γ̂; ∆,∆′ ↪→ Γ̂; ∆1, !∆
′
1 by Lemma A.8 in

combination with Lemma A.17, hence we conclude Γ̂; ∆,∆′ ` T :: tnt by
Lemma A.9.
Otherwise, we know that T ′ is refined. We stated that Γ, y : ψ(T); ∆2, forms(y :
T) ` forms(y : T ′), thus, by inverting (Derive), we know that ∆2, forms(y :
T) ` forms(y : T ′). Using Lemma A.3 we get:

∆′2,∆2 ` forms(y : T ′),

hence, by applying (Derive) and some simple observations, we know that
Γ̂, y : ψ(T ′); ∆′2,∆2 ` forms(y : T ′). By (Kind Refine Tainted) we then
get:

Γ̂; ∆1, !∆
′
1 ` ψ(T ′) :: tnt Γ̂, y : ψ(T ′); ∆′2,∆2 ` forms(y : T ′)

Γ̂; !∆′1,∆
′
2,∆2 ` T ′ :: tnt

By Lemma A.8 in combination with Lemma A.17, we know that Γ̂; ∆,∆′ ↪→
Γ̂; ∆1,∆2, !∆

′
1,∆

′
2, hence we conclude Γ̂; ∆,∆′ ` T ′ :: tnt by Lemma A.9.

Case (Sub Sum): In this case we know that T = T1 + T2 and T ′ = T ′1 + T ′2 and
Γ; ∆ ↪→ Γ; !∆1, !∆2 such that Γ; !∆i ` Ti <: T ′i for i ∈ {1, 2}.

1. By the definition of the only applicable kinding rule (Kind Sum) we also
know that Γ̂; ∆′ ↪→ Γ̂; !∆′1, !∆

′
2 such that Γ̂; !∆′i ` T ′i :: pub for i ∈ {1, 2}. We

apply the induction hypothesis twice and derive that Γ̂; !∆i, !∆
′
i ` Ti :: pub.

Since we know that Γ̂; ∆,∆′ ↪→ Γ̂; !∆1, !∆2, !∆
′
1, !∆

′
2 = Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2

by Lemma A.8 and Lemma A.17, we conclude Γ̂; ∆,∆′ ` T :: pub by an
application of (Kind Sum).

174

A.1. SOUNDNESS OF AF7

2. Analogous to the case for statement (1).

Case (Sub Pos Rec): We know that T = µα. U and T ′ = µα. U ′ and Γ; ∆ ↪→
Γ; !∆1 such that Γ, α; !∆1 ` U <: U ′ and α occurs only positively in U and U ′.

1. By the definition of the only applicable kinding rule (Kind Rec) we also
know that Γ̂; ∆′ ↪→ Γ̂; !∆′1 such that Γ̂, α :: pub; !∆′1 ` U ′ :: pub. We define
αn+1 , α and Γ′ , Γ, α = Γ0[(αi)

i∈{1,...,n+1}]. Furthermore, we define
kn+1 , pub and Γ̂′ , Γ̂, α :: pub = Γ0[(αi :: ki)

i∈{1,...,n+1}]. We can thus
apply the induction hypothesis and derive that Γ̂′; !∆1, !∆

′
1 ` U :: pub,

which is equivalent to Γ̂, α :: pub; !∆1, !∆
′
1 ` U :: pub. Since we know

that Γ̂; ∆,∆′ ↪→ Γ̂; !∆1, !∆
′
1 by Lemma A.8 and Lemma A.17, we conclude

Γ̂; ∆,∆′ ` µα. U :: pub by an application of (Kind Rec).
2. Analogous to the case for statement (1).

Case (Sub Pair): In this case T = x : T1 ∗T2 and T ′ = x : T ′1 ∗T ′2. We know that
Γ; ∆ ↪→ Γ; !∆1, !∆2 such that Γ; !∆1 ` T1 <: T ′1 and Γ, x : ψ(T1); !∆2 ` T2 <: T ′2.

1. By the only applicable kinding rule (Kind Pair), we have Γ̂; ∆′ ↪→ Γ̂; !∆′1, !∆
′
2

such that Γ̂; !∆′1 ` T ′1 :: pub and Γ̂, x : ψ(T ′1); !∆′2 ` T ′2 :: pub.
We apply the induction hypothesis to derive that:

Γ̂; !∆1, !∆
′
1 ` T1 :: pub.

We apply Lemma A.16 to transform Γ̂, x : ψ(T ′1); !∆′2 ` T ′2 :: pub into:

Γ̂, x : ψ(T1); !∆′2 ` T ′2 :: pub,

allowing us to apply the induction hypothesis a second time to derive that:

Γ̂, x : ψ(T1); !∆2, !∆
′
2 ` T2 :: pub.

We conclude Γ̂; ∆,∆′ ` T :: pub by an application of (Kind Pair), since we
know that Γ̂; ∆,∆′ ↪→ Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2 by Lemma A.8 and Lemma A.17.

2. Analogous to the case for statement (1).

Case (Sub Fun): In this case T = x : T1 → T2 and T ′ = x : T ′1 → T ′2. We know
that Γ; ∆ ↪→ Γ; !∆1, !∆2 such that Γ; !∆1 ` T ′1 <: T1 and Γ, x : ψ(T ′1); !∆2 `
T2 <: T ′2.

1. By the only applicable kinding rule (Kind Fun), we have Γ̂; ∆′ ↪→ Γ̂; !∆′1, !∆
′
2

such that Γ̂; !∆′1 ` T ′1 :: tnt and Γ̂, x : ψ(T ′1); !∆′2 ` T ′2 :: pub.
We apply the induction hypothesis (2) to derive that:

Γ̂; !∆1, !∆
′
1 ` T1 :: tnt.

We apply the induction hypothesis (1) to derive that:

Γ̂, x : ψ(T ′1); !∆2, !∆
′
2 ` T2 :: pub.

175

APPENDIX A. PROOFS OF AF7 AND AF7ALG

We apply Lemma A.16 to transform Γ̂, x : ψ(T ′1); !∆2, !∆
′
2 ` T2 :: pub into:

Γ̂, x : ψ(T1); !∆2, !∆
′
2 ` T2 :: pub.

We conclude Γ̂; ∆,∆′ ` T :: pub by an application of (Kind Fun), using the
fact that Γ̂; ∆,∆′ ↪→ Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2 by Lemma A.8 and Lemma A.17.

2. Analogous to the case for statement (1).

The next result is central to proving the transitivity of our subtyping relation.
It establishes a standard characterization of public and tainted kinds: a type is
public iff it is a subtype of Un, while it is tainted iff it is a supertype of Un.

Lemma A.19 (Public Tainted). For all environments Γ; ∆ and types T we have:

1. Γ; ∆ ` T :: pub if and only if Γ; ∆ ` T <: Un.

2. Γ; ∆ ` T :: tnt if and only if Γ; ∆ ` Un <: T .

Proof. By definition Un , unit and thus by (Kind Unit) it holds that Γ; ∅ ` Un ::
pub and Γ; ∅ ` Un :: tnt. We can immediately prove the forward implication by
applying the subtyping rule (Sub Pub Tnt), since Γ; ∆ ↪→ Γ; ∆ by Lemma A.8.
The reverse implication follows immediately by Lemma B.14.

The next technical lemma details a relationship between the stripping function
ψ and the subtyping relation. It is invoked only once in the proof of transitivity
for the subtyping relation.

Lemma A.20 (Subtyping and ψ). The following statements hold true:

1. If Γ; ∅ ` T , then Γ; ∅ ` T <: ψ(T).

2. If Γ; ∆ ` ψ(T) <: U and Γ; ∅ ` T , then Γ; ∆ ` T <: U .

Proof. We proceed as follows:

1. By induction on the structure of T :

• Whenever T = ψ(T), we can conclude by an application of (Sub
Refl).

• Otherwise, we know that T = {x : U | F}. We know that Γ; ∅ `
T , hence Γ; ∅ ` ψ(T) by Lemma B.3 (point 3). Applying (Sub
Refl) lets us derive that Γ; ∅ ` ψ(T) <: ψ(T), which is equiva-
lent to Γ; ∅ ` ψ(T) <: ψ(ψ(T)) by Lemma A.12. Furthermore, we
know that forms(y : ψ(T)) = ∅ by Lemma A.11, hence we have
Γ, x : ψ(T); forms(y : T) ` forms(y : ψ(T)). We thus conclude
Γ; ∅ ` T <: ψ(T) by an application of (Sub Refine).

176

A.1. SOUNDNESS OF AF7

2. By induction on the derivation of Γ; ∆ ` ψ(T) <: U . We distinguish upon
the last applied subtyping rule:

• In the case where the last applied rule was (Sub Fun), (Sub Pair),
(Sub Sum), or (Sub Pos Rec) we know that T = ψ(T) and we can
immediately conclude.

• (Sub Refl): In this case we know that U = ψ(T). We can thus
conclude by an application of statement (1) and Lemma B.8.

• (Sub Pub Tnt): In this case we know that there exist ∆1,∆2 such
that Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 ` ψ(T) :: pub and Γ; ∆2 ` U :: tnt.
By Lemma A.14 we thus know that Γ; ∆1 ` T :: pub, allowing us to
conclude by an application of (Sub Pub Tnt).

• (Sub Refine): In this case we know that U must be refined. Fur-
thermore, we know that there must exist ∆1,∆2 such that Γ; ∆ ↪→
Γ; ∆1,∆2 and Γ; ∆1 ` ψ(ψ(T)) <: ψ(U) and Γ, x : ψ(ψ(T)); ∆2, forms(x :
ψ(T)) ` forms(x : U). Note that by Lemma A.12 we know that
ψ(ψ(T)) = ψ(T) and by Lemma A.11 we know that forms(x : ψ(T)) =
∅. Thus, it follows that Γ; ∆1 ` ψ(T) <: ψ(U) and Γ, x : ψ(T); ∆2 `
forms(x : U). We can apply Lemma B.8 to derive that Γ, x : ψ(T); ∆2, forms(x :
T) ` forms(x : U). This allows us to conclude by an application of
(Sub Refine).

We are finally ready to prove the transitivity of the subtyping relation. This
is a standard formulation for an affine setting.

Lemma A.21 (Transitivity). If Γ; ∆ ` T <: T ′ and Γ; ∆′ ` T ′ <: T ′′, then
Γ; ∆,∆′ ` T <: T ′′.

Proof. By induction on the sum of the depth of the derivations of the antecedent
judgements. We proceed by case analysis on the last subtyping rule R1 applied
in the derivation Γ; ∆ ` T <: T ′ and the last applied rule R2 in the derivation
of Γ; ∆′ ` T ′ <: T ′′. We first note that by Lemma B.3 it must be the case that
Γ; ∆ ` � and Γ; ∆′ ` � and thus by Lemma A.6 it holds that Γ; ∆,∆′ ` �.

Case R1 = (Sub Refl): Since in this case T = T ′, we can immediately conclude
by applying Lemma B.8 to Γ; ∆′ ` T ′ <: T ′′.

Case R2 = (Sub Refl): Since in this case T ′ = T ′′, we can immediately conclude
by applying Lemma B.8 to Γ; ∆ ` T <: T ′.

Case R1 = (Sub Pub Tnt): By definition of (Sub Pub Tnt) it follows that
Γ; ∆1 ` T :: pub, Γ; ∆2 ` T ′ :: tnt, where Γ; ∆ ↪→ Γ; ∆1,∆2. We can ap-
ply Lemma B.14 to derive that Γ; ∆′,∆2 ` T ′′ :: tnt and since we know that
Γ; ∆,∆′ ` � and Γ; ∆,∆′ ↪→ Γ; ∆1,∆2,∆

′ by Lemma A.8 we apply rule (Sub
Pub Tnt) to conclude.

177

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case R2 = (Sub Pub Tnt): By definition of (Sub Pub Tnt) it follows that
Γ; ∆′1 ` T ′ :: pub, Γ; ∆′2 ` T ′′ :: tnt, where Γ; ∆′ ↪→ Γ; ∆′1,∆

′
2. We can apply

Lemma B.14 to derive that Γ; ∆,∆′1 ` T :: pub and since we know that Γ; ∆,∆′ `
� and Γ; ∆,∆′ ↪→ Γ; ∆,∆′1,∆

′
2 we apply rule (Sub Pub Tnt) to conclude.

Case R1 = R2 = (Sub Sum): Follows immediately by applying the induction hy-
pothesis twice to the premises of the applied rule (Sub Sum) and then applying
(Sub Sum) to the resulting statements.

Case R1 = R2 = (Sub Pos Rec): Follows immediately by applying the induction
hypothesis to the premise of the applied rule (Sub Pos Rec) and then applying
(Sub Pos Rec) to the resulting statement.

Case R1 = (Sub Refine): In this case we know that Γ; ∆ ↪→ Γ; ∆1,∆2 such
that Γ; ∆1 ` ψ(T) <: ψ(T ′) and (Γ; ∆2) • y : T ` forms(y : T ′).
We distinguish all possible rules R2, that are not captured by previous cases:

• R2 is either (Sub Fun), (Sub Pair), (Sub Sum), or (Sub Pos Rec):
In this case we know that ψ(T ′) = T ′ and we can immediately apply the
induction hypothesis to derive that:

Γ; ∆1,∆
′ ` ψ(T) <: T ′′.

By Lemma A.20 it follows that:

Γ; ∆1,∆
′ ` T <: T ′′.

By Lemma A.8 we know that Γ; ∆,∆′ ↪→ Γ; ∆1,∆
′, allowing us to conclude

by an application of Lemma A.9.
• R2 = (Sub Refine): In this case we know that Γ; ∆′ ↪→ Γ; ∆′1,∆

′
2 such

that Γ; ∆′1 ` ψ(T ′) <: ψ(T ′′) and (Γ; ∆′2) • y : T ′ ` forms(y : T ′′).
We can apply the induction hypothesis to Γ; ∆1 ` ψ(T) <: ψ(T ′) and
Γ; ∆′1 ` ψ(T ′) <: ψ(T ′′), leading to:

Γ; ∆1,∆
′
1 ` ψ(T) <: ψ(T ′′).

By the definition of “•”, inverting rule (Derive), we know that ∆2, forms(y :
T) ` forms(y : T ′) and ∆′2, forms(y : T ′) ` forms(y : T ′′). Using Lemma A.3
we can derive that ∆2,∆

′
2, forms(y : T) ` forms(y : T ′′). By applying rule

(Derive) and Lemma A.16, we can then get:

(Γ; ∆2,∆
′
2) • y : T ` forms(y : T ′′).

We also know by definition of (Sub Refine) that T and/or T ′ refined
and T ′ and/or T ′′ refined. This implies that either T ′ is the only refined
type or at least one type in {T, T ′′} is refined. In the latter case we can
immediately conclude by an application of (Sub Refine). In the former
case we know that ψ(T) = T and ψ(T ′′) = T ′′. Since Γ; ∆,∆′ ↪→ Γ; ∆1,∆

′
1

by Lemma A.8 and Γ; ∆1,∆
′
1 ` ψ(T) <: ψ(T ′′) = T <: T ′′, we conclude

Γ; ∆,∆′ ` T <: T ′′ by Lemma A.9.

178

A.1. SOUNDNESS OF AF7

Case R2 = (Sub Refine): In this case we know that Γ; ∆′ ↪→ Γ; ∆′1,∆
′
2 such

that Γ; ∆′1 ` ψ(T ′) <: ψ(T ′′) and (Γ; ∆′2) • y : T ′ ` forms(y : T ′′).

Note that all possible rules R1 that are not captured by previous cases (Sub
Fun), (Sub Pair), (Sub Sum), or (Sub Pos Rec) entail that T = ψ(T) and
T ′ = ψ(T ′), and T ′′ must be refined by definition of (Sub Refine).

In particular, this means that we can apply the induction hypothesis to Γ; ∆ `
T <: T ′ and Γ; ∆′1 ` ψ(T ′) <: ψ(T ′′), yielding:

Γ; ∆,∆′1 ` ψ(T) <: ψ(T ′′).

By inverting (Derive) we have ∆′2, forms(y : T ′) ` forms(y : T ′′). By Lemma A.11
we know that forms(y : T ′) = forms(y : T) = ∅, hence ∆′2, forms(y : T) `
forms(y : T ′′). By applying rule (Derive) and Lemma A.16, we can then get:

Γ, y : ψ(T); ∆′2, forms(y : T) ` forms(y : T ′′).

We conclude by an application of (Sub Refine).

Case R1 = R2 = (Sub Fun): In this case T = x : U → V , T ′ = x : U ′ → V ′,
and T ′′ = x : U ′′ → V ′′.

Furthermore, there must exist ∆1,∆2,∆
′
1,∆

′
2 such that:

• Γ; ∆ ` Γ; !∆1, !∆2,

• Γ; !∆1 ` U ′ <: U ,

• Γ, x : ψ(U ′); !∆2 ` V <: V ′,

• Γ; ∆′ ` Γ; !∆′1, !∆
′
2,

• Γ; !∆′1 ` U ′′ <: U ′, and

• Γ, x : ψ(U ′′); !∆′2 ` V ′ <: V ′′.

We note that by applying Lemma A.16 to the third statement we get Γ, x :
ψ(U ′′); !∆2 ` V <: V ′, where the depth of the derivation has not changed. We
apply the inductive hypothesis to Γ; !∆′1 ` U ′′ <: U ′ and Γ; !∆1 ` U ′ <: U , and
we get:

Γ; !∆′1, !∆1 ` U ′′ <: U.

We apply the inductive hypothesis to Γ, x : ψ(U ′′); !∆2 ` V <: V ′ and Γ, x :
ψ(U ′′); !∆′2 ` V ′ <: V ′′, and we get:

Γ, x : ψ(U ′′); !∆2, !∆
′
2 ` V <: V ′′.

The conclusions Γ; ∆ ` T <: T ′′ follows by (Sub Fun).

Case R1 = R2 = (Sub Pair): Completely analogous to the previous case.

No other combination of rules is possible.

179

APPENDIX A. PROOFS OF AF7 AND AF7ALG

A.1.4 Properties of substitution

The next result establishes for value typing judgements a property we already
showed for kinding and subtyping judgements. Namely, if a typing environment
Γ; ∆ can assign a type T to a value M , then it can be rewritten into two distinct
typing environments: an exponential environment Γ; !∆′ where M is assigned the
structural type ψ(T) and a possibly non-exponential environment Γ; ∆′′ where
the refinement formulas forms(x : T) can be proved on the value M .

Lemma A.22 (Bare Types). Let fv(M) = ∅. If Γ; ∆ ` M : T , then there
exist !∆′ and ∆′′ such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` M : ψ(T) and ∆′′ `
forms(x : T){M/x} for any x /∈ dom(Γ).

Proof. By induction on the derivation of Γ; ∆ `M : T :

Case (Val Var): assume that Γ; ∆ ` y : T by the premise (y : T) ∈ Γ with
Γ; ∆ ` �. We have T = ψ(T) by Lemma B.3, hence forms(x : T) = ∅ by
Lemma A.11 and we just need to show that Γ; ∆ ↪→ Γ; !∆′ for some !∆′ such
that Γ; !∆′ ` y : T . Now we note that Γ; ∆ ` � implies Γ; ∅ ` � by Lemma B.3,
hence Γ; ∅ ` y : T by (Val Var). This leads to the desired conclusion, since
Γ; ∆ ↪→ Γ; ∅ by Lemma A.8.

Case (Val Unit): assume that Γ; ∆ ` () : unit by the premise Γ; ∆ ` �. Since
ψ(unit) = unit and forms(x : unit) = ∅, we just need to show that Γ; ∆ ↪→ Γ; !∆′

for some !∆′ such that Γ; !∆′ ` () : unit. By Lemma B.3 we have Γ; ∅ ` �,
hence Γ; ∅ ` () : unit by (Val Unit). This leads to the desired conclusion, since
Γ; ∆ ↪→ Γ; ∅ by Lemma A.8.

Case (Val Fun): assume that Γ; ∆ ` λy.E : y : U1 → U2 by the premise
(Γ; !∆′) • y : U1 ` E : U2 with Γ; ∆ ↪→ Γ; !∆′. Since ψ(y : U1 → U2) = y : U1 →
U2 and forms(x : (y : U1 → U2)) = ∅, the conclusion is immediate.

Case (Val Refine): assume that Γ; ∆ ` M : {x : U | F} by the premises
Γ; ∆1 ` M : U and Γ; ∆2 ` F{M/x} with Γ; ∆ ↪→ Γ; ∆1,∆2. Notice that
Γ; ∆2 ` F{M/x} implies ∆2 ` F{M/x} by inverting rule (Derive). By in-
ductive hypothesis Γ; ∆1 ↪→ Γ; !∆11,∆12 with Γ; !∆11 ` M : ψ(U) and ∆12 `
forms(x : U){M/x}. Notice that the former is equivalent to Γ; !∆11 ` M :
ψ({x : U | F}) by definition. Now by applying (⊗-Right) we get ∆12,∆2 `
forms(x : U){M/x} ⊗ F{M/x}, which is equivalent to ∆12,∆2 ` forms(x :
{x : U | F}){M/x}. Since Γ; ∆ ↪→ Γ; !∆11, (∆12,∆2) by Lemma A.8, we can
conclude.

Case (Exp Subsum): assume that Γ; ∆ `M : T by the premises Γ; ∆1 `M : U
and Γ; ∆2 ` U <: T with Γ; ∆ ↪→ Γ; ∆1,∆2. By inductive hypothesis Γ; ∆1 ↪→
Γ; !∆11,∆12 with Γ; !∆11 ` M : ψ(U) and ∆12 ` forms(x : U){M/x}. By the
premise Γ; ∆2 ` U <: T and Lemma A.15, we have Γ; ∆2 ↪→ Γ; !∆21,∆22 with
Γ; !∆21 ` ψ(U) <: ψ(T) and ∆22, forms(x : U) ` forms(x : T). Now we note that

180

A.1. SOUNDNESS OF AF7

x /∈ dom(Γ) implies x /∈ fv(∆22) by Lemma A.10. Given that logical entailment
is closed under substitution of closed values for variables by Lemma A.1, we get:

∆22, forms(x : U){M/x} ` forms(x : T){M/x},

hence by Lemma A.3 we have:

∆12,∆22 ` forms(x : T){M/x}.

Moreover, by (Exp Subsum) we get Γ; !∆11, !∆21 ` M : ψ(T), hence we con-
clude, since Γ; ∆ ↪→ Γ; (!∆11, !∆21), (∆12,∆22) by Lemma A.8.

The cases for rules (Val Pair), (Val Inl), (Val Inr) and (Val Fold) are
identical to the case for (Val Fun).

The next lemma states that multiplicative conjunctions occurring in refine-
ment types can be equivalently broken into their atomic components. This is
needed in the proof of Lemma A.24 below.

Lemma A.23 (⊗ Sub). If Γ; ∆ ` {x : T | F1 ⊗ F2}, then Γ; ∅ ` {x : T | F1 ⊗
F2} <:> {x : {x : T | F1} | F2}.

Proof. By applying (Sub Refine), using simple observations.

The next result is a very convenient lemma, which is needed in the proof of
our substitution lemma. It essentially states that, if a typing environment Γ; ∆
can assign a type T to a value M , then it can be rewritten into two distinct
typing environments: an exponential environment Γ; !∆′ where M is assigned the
structural type ψ(T) and a possibly non-exponential environment Γ; ∆′′ whereM
is assigned the original type T . Hence, purely structural typing judgements can
be proved arbitrarily many times. This is again needed to deal with the subtleties
introduced by environment splitting.

Lemma A.24 (Affine Typing). If Γ; ∆ ` M : T , then there exist !∆′ and ∆′′

such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ `M : ψ(T) and Γ; ∆′′ `M : T .

Proof. Let Γ; ∆ ` M : T and consider any x /∈ dom(Γ). By Lemma A.22
there exist !∆′ and ∆′′ such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and Γ; !∆′ ` M : ψ(T)
and ∆′′ ` forms(x : T){M/x}. By Lemma A.8 we have Γ; ∆ ↪→ Γ; !∆′, !∆′,∆′′.
Now we note that Γ; !∆′,∆′′ ` M : {x : ψ(T) | forms(x : T)} by (Val Re-
fine), hence Γ; !∆′,∆′′ ` M : T by using (Exp Subsum) in combination with
Lemma A.23. Hence, we proved Γ; ∆ ↪→ Γ; !∆′, (!∆′,∆′′) with Γ; !∆′ ` M : ψ(T)
and Γ; !∆′,∆′′ `M : T .

The next simple lemma states that, if a value M is assigned a refinement
type T , then the refinement formulas forms(x : T) can be proved on M from the
formulas in the typing environment.

Lemma A.25 (Formulas). If Γ; ∆ `M : T and x /∈ dom(Γ), then ∆ ` forms(x :
T){M/x}.

181

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Proof. Since Γ; ∆ ` M : T and x /∈ dom(Γ), we apply Lemma A.22 and we
get that there exist !∆′,∆′′ such that Γ; ∆ ↪→ Γ; !∆′,∆′′ and ∆′′ ` forms(x :
T){M/x}. By inverting (Rewrite) we know that ∆ ` !∆′,∆′′. By multiple ap-
plications of (Weak) we get !∆′,∆′′ ` forms(x : T){M/x}, hence ∆ ` forms(x :
T){M/x} by Lemma A.3.

The next lemma establishes some basic syntactic properties of substitution.

Lemma A.26 (Basic Substitution). The following statements hold true:

1. For every type T , we have ψ(T){M/x} = ψ(T{M/x}).

2. If x 6= y, then forms(y : T){M/x} = forms(y : T{M/x}).

Proof. Point (1) is proved by induction on the structure of T , while point (2)
follows by definition of forms and standard syntactic properties of substitution.

Finally, we can state and prove our substitution lemma, showing that typing
is preserved by substitution of closed values for variables with the same type.
The statement is complicated by the necessity to join different environments, but
the formulation is consistent with standard presentations of substructural type
systems.

Lemma A.27 (Substitution). Suppose that Γ; ∆ ` M : U and fv(M) = ∅. The
following statements hold true:

1. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` �, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` �.

2. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` F , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} `
F{M/x}.

3. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ↪→ Γ, x : ψ(U),Γ′; ∆∗, then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; ∆∗{M/x}.

4. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` T , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} `
T{M/x}.

5. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` T :: k, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} `
T{M/x} :: k.

6. If (Γ; ∆′)•x : U •(Γ′; ∆′′) ` T <: T ′, then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} `
T{M/x} <: T ′{M/x}.

7. If (Γ; ∆′) • x : U • (Γ′; ∆′′) ` E : T , then Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} `
E{M/x} : T{M/x}.

Proof. The proof is by simultaneous induction on the derivation of the antecedent
judgements:

182

A.1. SOUNDNESS OF AF7

1. Rule (Env Empty) cannot be applied. For the other two rules the con-
clusion follows by inductive hypothesis, using Lemma B.3 and standard
syntactic properties of substitution.

2. Let (Γ; ∆′) • x : U • (Γ′; ∆′′) ` F . The previous typing environment is
equivalent to Γ, x : ψ(U),Γ′; ∆′, forms(x : U),∆′′, thus by inverting rule
(Derive) we have (Γ; ∆′) • x : U • (Γ′; ∆′′) ` � and fnfv(F) ⊆ dom(Γ, x :
ψ(U),Γ′) and ∆′, forms(x : U),∆′′ ` F .
By inductive hypothesis we have Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` �. Since
Γ; ∆ ` M : U implies fnfv(M) ⊆ dom(Γ) by Lemma B.3, it is easy
to observe that fnfv(F{M/x}) ⊆ dom(Γ,Γ′{M/x}). Given that logical
entailment is closed under substitution of closed values for variables by
Lemma A.1, we have:

(∆′, forms(x : U),∆′′){M/x} ` F{M/x}.

Now we note that by Lemma A.25 we have ∆ ` forms(x : U){M/x}, hence
∆, (∆′,∆′′){M/x} ` F{M/x} by Lemma A.3.

The conclusion Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` F{M/x} then follows by
applying (Derive).

3. Let (Γ; ∆′)•x : U •(Γ′; ∆′′) ↪→ Γ, x : ψ(U),Γ′; ∆∗. We first note that the en-
vironment (Γ; ∆′)•x : U•(Γ′; ∆′′) is equivalent to Γ, x : ψ(U),Γ′; ∆′, forms(x :
U),∆′′, thus by inverting rule (Rewrite) we have (Γ; ∆′)•x : U •(Γ′; ∆′′) `
� and ∆′, forms(x : U),∆′′ ` ∆∗ and (Γ; ∅) • x : ψ(U) • (Γ′; ∆∗) ` �.
We apply the inductive hypothesis to (Γ; ∆′) • x : U • (Γ′; ∆′′) ` � and we
get Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ` �.
Given that logical entailment is closed under substitution of closed values
for variables by Lemma A.1, we have:

(∆′, forms(x : U),∆′′){M/x} ` ∆∗{M/x},

Now we note that by Lemma A.25 we have ∆ ` forms(x : U){M/x}, hence
∆, (∆′,∆′′){M/x} ` ∆∗{M/x} by Lemma A.3.

By Lemma A.24 we have Γ; ∆ ↪→ Γ; !∆1,∆2 for some !∆1,∆2 such that
Γ; !∆1 `M : ψ(U) and Γ; ∆2 `M : U . We then apply the inductive hypoth-
esis to (Γ; ∅)•x : ψ(U)•(Γ′; ∆∗) ` � and we get Γ,Γ′{M/x}; !∆1,∆

∗{M/x} `
�. By Lemma B.3 this implies Γ,Γ′{M/x}; ∆∗{M/x} ` �, hence we con-
clude by applying (Rewrite).

4. We just need to consider rule (Type). The conclusion follows by inverting
the rule, using point (1), Lemma B.3 and standard syntactic properties of
substitution.

5. Rules (Kind Var) and (Kind Unit) use point (1). Rule (Kind Refine
Public) uses point (3) and the inductive hypothesis. The rules involving

183

APPENDIX A. PROOFS OF AF7 AND AF7ALG

both logical rewriting and splitting are the most interesting, we show (Kind
Pair) as an example.

Assume then that (Γ; ∆′) • x : U • (Γ′; ∆′′) ` y : T1 ∗ T2 :: k by the premises
Γ, x : ψ(U),Γ′; !∆1 ` T1 :: k and Γ, x : ψ(U),Γ′, y : ψ(T1); !∆2 ` T2 :: k with
(Γ; ∆′) • x : U • (Γ′; ∆′′) ↪→ Γ, x : ψ(U),Γ′; !∆1, !∆2.

We note that we can state the two premises as (Γ; !∆1) •x : ψ(U) • (Γ′; ∅) `
T1 :: k and (Γ; !∆2)•x : ψ(U)•(Γ′, y : ψ(T1); ∅) ` T2 :: k. By Lemma A.24 in
combination with Lemma A.8 we have that Γ; ∆ ` M : U implies Γ; ∆ ↪→
Γ; !∆′1, !∆

′
1,∆

′
2 for some !∆′1 and ∆′2 such that Γ; !∆′1 ` M : ψ(U) and

Γ; ∆′2 `M : U .

We now apply the inductive hypothesis twice, and get:

Γ,Γ′{M/x}; !∆′1, !∆1{M/x} ` T1{M/x} :: k,

and:

Γ,Γ′{M/x}, y : ψ(T1){M/x}; !∆′1, !∆2{M/x} ` T2{M/x} :: k.

Notice that, by Lemma A.26, the latter is equivalent to:

Γ,Γ′{M/x}, y : ψ(T1{M/x}); !∆′1, !∆2{M/x} ` T2{M/x} :: k.

We then proceed by considering the premise (Γ; ∆′)•x : U•(Γ′; ∆′′) ↪→ Γ, x :
ψ(U),Γ′; !∆1, !∆2. We apply the inductive hypothesis (point 3) there and
we get Γ,Γ′{M/x}; ∆′2, (∆

′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; (!∆1, !∆2){M/x}.
Now we note that:

Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; (!∆′1, !∆1{M/x}), (!∆′1, !∆2{M/x}),

hence we can conclude by applying (Kind Pair).

6. Rule (Sub Refl) uses point (4). Rule (Sub Pub Tnt) uses point (5).
The remaining cases mostly rely on the same arguments applied to prove
the case (Kind Pair) of the previous point. We show (Sub Refine) as an
example case.

Assume then that (Γ; ∆′) • x : U • (Γ′; ∆′′) ` T1 <: T2 by the premises
Γ, x : ψ(U),Γ′; ∆1 ` ψ(T1) <: ψ(T2) and (Γ, x : ψ(U),Γ′; ∆2) • y : T1 `
forms(y : T2) with (Γ; ∆′) • x : U • (Γ′; ∆′′) ↪→ Γ, x : ψ(U),Γ′; ∆1,∆2.

We note that we can state the two premises as (Γ; ∆1) • x : ψ(U) • (Γ′; ∅) `
ψ(T1) <: ψ(T2) and (Γ; ∆2) • x : ψ(U) • (Γ′, y : ψ(T1); forms(y : T1)) `
forms(y : T2). By Lemma A.24 in combination with Lemma A.8 we have
that Γ; ∆ ` M : U implies Γ; ∆ ↪→ Γ; !∆′1, !∆

′
1,∆

′
2 for some !∆′1 and ∆′2

such that Γ; !∆′1 `M : ψ(U) and Γ; ∆′2 `M : U .

We now apply the inductive hypothesis twice, and get:

Γ,Γ′{M/x}; !∆′1,∆1{M/x} ` ψ(T1){M/x} <: ψ(T2){M/x},

184

A.1. SOUNDNESS OF AF7

and:

Γ,Γ′{M/x}, y : ψ(T1){M/x}; !∆′1, (∆2, forms(y : T1)){M/x} ` forms(y : T2){M/x}.

By Lemma A.26, the former is equivalent to:

Γ,Γ′; !∆′1,∆1{M/x} ` ψ(T1{M/x}) <: ψ(T2{M/x}),

while the latter is equivalent to:

Γ,Γ′, y : ψ(T1{M/x}); !∆′1,∆2{M/x}, forms(y : T1{M/x}) ` forms(y : T2{M/x}).

We then proceed by considering the premise (Γ; ∆′)•x : U•(Γ′; ∆′′) ↪→ Γ, x :
ψ(U),Γ′; ∆1,∆2. We apply the inductive hypothesis (point 3) there and we
get Γ,Γ′{M/x}; ∆′2, (∆

′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; (∆1,∆2){M/x}.
Now we note that:

Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↪→ Γ,Γ′{M/x}; (!∆′1,∆1{M/x}), (!∆′1,∆2{M/x}),

hence we can conclude by applying (Sub Refine).

7. All cases follow by the previous points and the inductive hypothesis, us-
ing standard syntactic properties of substitution and replicating the same
arguments as before.

A.1.5 Inversion lemmas

The next result is a standard bound weakening lemma: any occurrence of a type
T in the typing environment can be safely replaced with a subtype T ′.

Lemma A.28 (BoundWeak). Let Γ; ∆ ` T ′ <: T . If Γ, x : ψ(T),Γ′; ∆′, forms(x :
T) ` J , then Γ, x : ψ(T ′),Γ′; ∆,∆′, forms(x : T ′) ` J .
Proof. For each judgement J the proof proceeds by induction on the derivation of
Γ, x : ψ(T),Γ′; ∆′, forms(x : T) ` J . We frequently use the fact that dom(Γ, x :
ψ(T),Γ′) = dom(Γ, x : ψ(T ′),Γ′). Furthermore, we often use Lemma B.8 implic-
itly.

1. J = �: The induction proof uses the fact that by Lemma B.3 we know that
fnfv(T ′) ⊆ dom(Γ) and fnfv(∆) ⊆ dom(Γ).

2. J = U : By Lemma B.3 we know that fnfv(U) ⊆ dom(Γ, x : ψ(T),Γ′),
which means that also fnfv(U) ⊆ dom(Γ, x : ψ(T ′),Γ′). We conclude by
applying statement (1) and rule (type).

3. J = F : The proof makes use of statement (1), Lemma B.3, and the fact
that dom(Γ, x : ψ(T),Γ′) = dom(Γ, x : ψ(T ′),Γ′). Furthermore, it applies
Lemma A.15 to Γ; ∆ ` T ′ <: T (showing that formulas in ∆ and T ′ entail
those in T) in combination with Lemma A.3 to conclude.

185

APPENDIX A. PROOFS OF AF7 AND AF7ALG

4. J = U :: k: The proof makes uses of the previous statements. It also uses
Lemma A.16 to show that replacing x : ψ(T) by x : ψ(T ′) is safe. It applies
Lemma A.15 to Γ; ∆ ` T ′ <: T (showing that formulas in ∆ and T ′ entail
those in T) in combination with Lemma A.3 to conclude.

5. J = U <: U ′: The proof uses similar reasoning as the proof of statement
(4) and makes use of the previous statements.

6. J = E : U : The proof makes use of the previous statements and relies on
Lemma A.15 and Lemma A.3.

We now present two technical lemmas which are needed to establish the in-
version result for iso-recursive type constructors.

Lemma A.29 (Type Variables and Kinding). If Γ, α,Γ′; ∆ ` T :: k, then α /∈
fnfv(T).

Proof. By induction on the derivation of Γ, α,Γ′; ∆ ` T :: k.
The case (Kind Unit) follows immediately, since fnfv(unit) = ∅. The case

(Kind Var) implies that T = β for some type variable β and β :: k ∈ (Γ, α,Γ′).
It must be the case that β 6= α, since Γ, α,Γ′; ∆ ` T :: k implies Γ, α,Γ′; ∆ ` �
by Lemma B.3 and having both α and α :: k in the same environment would
violate the well-formedness conditions enforced by (Type Env Entry), given
that dom(α) = dom(α :: k). The case (Kind Refine Tainted) follows by an
application of the induction hypothesis to the first premise of the kinding rule,
using the fact that α ∈ fnfv(T) if and only if α ∈ fnfv(ψ(T)). The remaining
cases follow by the induction hypothesis.

Lemma A.30 (Type Substitution). For all T, T ′ such that T = ψ(T) and T ′ =
ψ(T ′) it holds that:

1. If Γ, α,Γ′; ∆ ` J and Γ; ∆′ ` T , then Γ, (Γ′{T/α}); ∆,∆′ ` J {T/α}.

2. If Γ, α :: k,Γ′; ∆ ` � and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ ` �.

3. If Γ, α :: k,Γ′; ∆ ` U and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ `
U{T/α}.

4. If Γ, α :: k,Γ′; ∆ ` U :: k′ and Γ; ∆′ ` T :: k, then Γ, (Γ′{T/α}); ∆,∆′ `
U{T/α} :: k′.

5. We have:

• If Γ, α,Γ′; ∅ ` U and α only occurs positively in U and Γ; !∆ ` T <: T ′,
then Γ, (Γ′{T/α}); !∆ ` U{T/α} <: U{T ′/α}.
• If Γ, α,Γ′; ∅ ` U and α only occurs negatively in U and Γ; !∆ ` T <: T ′,
then Γ, (Γ′{T/α}); !∆ ` U{T ′/α} <: U{T/α}.

186

A.1. SOUNDNESS OF AF7

6. If Γ, α,Γ′; ∆ ` U <: U ′ and α only occurs positively in U,U ′ and Γ; ∆′ `
T <: T ′, then Γ, (Γ′{T/α}); ∆,∆′ ` U{T/α} <: U ′{T ′/α}.

Proof. We would like to note that the core statements of this lemma are points
(4) and (6), the other points are just needed to prove them. In particular, point
(1) is often used in the proof of the later statements; point (2) is used in the proof
of point (3), which in turn is used in the proof of point (4); point (5) is used in
the proof of point (6). We provide a proof sketch below.

1. By induction on the derivation of Γ, α,Γ′; ∆ ` J , making use of Lemma B.3
and Lemma A.6.

2. By induction on the derivation of Γ, α :: k,Γ′; ∆ ` �, making use of
Lemma B.3 and Lemma A.6.

3. By the definition of (Type), using point (2), Lemma B.3 and Lemma A.6.

4. Since we know that T = ψ(T), we can apply Lemma A.13 in combination
with Lemma A.8 to show that there exists a ∆′′ such that Γ; ∆′ ↪→ Γ; !∆′′

and Γ; !∆′′ ` T :: k.

We now prove the following modified statement: if Γ, α :: k,Γ′; ∆ ` U :: k′

and Γ; !∆′′ ` T :: k, then Γ, (Γ′{T/α}); ∆, !∆′′ ` U{T/α} :: k′.

The proof proceeds by induction on the derivation of Γ, α :: k,Γ′; ∆ ` U ::
k′, using point (3) and making use of Lemma A.8 whenever needed to per-
form the rewriting Γ; !∆′′ ↪→ Γ; !∆′′, !∆′′ and apply the inductive hypothesis
twice.

The conclusion then follows by Lemma A.9.

5. We prove both points simultaneously by induction on the structure of U .

6. Since we know that T = ψ(T) and T ′ = ψ(T ′), we can apply Lemma A.15
in combination with Lemma A.8 to show that there exists a ∆′′ such that
Γ; ∆′ ↪→ Γ; !∆′′ and Γ; !∆′′ ` T <: T ′.

We now prove the following modified statement: if Γ, α,Γ′; ∆ ` U <:
U ′ and α only occurs positively in U,U ′ and Γ; !∆′′ ` T <: T ′, then
Γ, (Γ′{T/α}); ∆, !∆′′ ` U{T/α} <: U ′{T ′/α}.
The proof proceeds by induction on the derivation of Γ, α,Γ′; ∆ ` U <: U ′,
using point (5) and making use of Lemma A.8 whenever needed to perform
the rewriting Γ; !∆′′ ↪→ Γ; !∆′′, !∆′′ and apply the inductive hypothesis twice.

The conclusion then follows by Lemma A.9.

We can finally state and prove a number of inversion results for the constructed
values of our framework. The goal is showing that the elementary components of
these constructed values have indeed the expected types. There is a substantial
amount of work to do, but the technical details are mostly standard.

187

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Lemma A.31 (Inversion for Functions). The following statements hold:

1. If Γ; ∆ ` λx.E : V , then there exist ∆1,∆2, T, U such that Γ; ∆ ↪→ Γ; ∆1,∆2

and Γ; ∆1 ` λx.E : x : T → U (by a top-level application of Val Fun) and
Γ; ∆2 ` x : T → U <: ψ(V).

2. If Γ; ∆ ` x : T → U <: x : T ′ → U ′, then there exist ∆1,∆2 such that
Γ; ∆ ↪→ Γ; !∆1, !∆2 and Γ; !∆1 ` T ′ <: T and Γ, x : ψ(T ′); !∆2 ` U <: U ′.

3. If Γ; ∆ ` λx.E : x : T → U , then there exists a ∆′ such that Γ; ∆ ↪→ Γ; !∆′

and (Γ; !∆′) • x : T ` E : U .

4. If Γ; ∆ ` λx.E : x : T → U , then (Γ; ∆) • x : T ` E : U .

Proof. We show the four statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ; ∆ ` λx.E : V . We know that Γ; ∆ `
λx.E : V . We distinguish three cases, depending on the last applied typing
rule:

Case (Val Fun): In this case we know that V = x : T → U for some T, U ,
hence ψ(V) = V . Since ∆; ∅ ` ψ(V) by Lemma B.3, we immediately
derive Γ; ∅ ` x : T → U <: ψ(V) by (Sub Refl). Since Γ; ∆ ↪→ Γ; ∆ by
Lemma A.8, we can conclude.

Case (Val Refine): In this case we know that V = {y : V ′ | F} and
Γ; ∆ ↪→ Γ; ∆1,∆2 for some ∆1,∆2 such that Γ; ∆1 ` λx.E : V ′ and
Γ; ∆2 ` F{λx.E/y}.
We can apply the induction hypothesis to Γ; ∆1 ` λx.E : V ′, letting us
derive that there exist ∆11,∆12, T, U such that:

• Γ; ∆1 ↪→ Γ; ∆11,∆12,
• Γ; ∆11 ` λx.E : x : T → U by a top-level application of (Val Fun),

and
• Γ; ∆12 ` x : T → U <: ψ(V ′).

By the definition of ψ we know that ψ(V) = ψ(V ′), thus we know that:

• Γ; ∆11 ` λx.E : x : T → U by a top-level application of (Val Fun),
and
• Γ; ∆12 ` x : T → U <: ψ(V).

Since Γ; ∆ ↪→ Γ; ∆11,∆12 by Lemma A.8, we can conclude.

Case (Exp Subsum): In this case we know that there exist ∆1,∆2 such that
Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 ` λx.E : V ′ and Γ; ∆2 ` V ′ <: V .
We can apply the induction hypothesis to Γ; ∆1 ` λx.E : V ′, letting us
derive that there exist ∆11,∆12, T, U such that:

• Γ; ∆1 ↪→ Γ; ∆11,∆12,

188

A.1. SOUNDNESS OF AF7

• Γ; ∆11 ` λx.E : x : T → U by a top-level application of (Val Fun),
and
• Γ; ∆12 ` x : T → U <: ψ(V ′).

We apply Lemma A.15 to Γ; ∆2 ` V ′ <: V and we get that there ex-
ist !∆21,∆22 such that Γ; ∆2 ↪→ Γ; !∆21,∆22 and Γ; !∆21 ` ψ(V ′) <:
ψ(V). Since Γ; ∆2 ↪→ Γ; !∆21 by Lemma A.8 point 1, we have Γ; ∆2 `
ψ(V ′) <: ψ(V) by Lemma A.9. By transitivity of the subtyping relation
(Lemma B.17) we thus have:

Γ; ∆12,∆2 ` x : T → U <: ψ(V),

which allows us to conclude.

2. By induction on the derivation of Γ; ∆ ` x : T → U <: x : T ′ → U ′. We
implicitly use Lemma B.3 whenever needed. We distinguish three cases,
depending on the last applied subtyping rule:

Case (Sub Refl): In this case we know that T = T ′ and U = U ′ and conclude
by two applications of (Sub Refl) that Γ; ∅ ` T ′ <: T and Γ; ∅ ` U <:
U ′. Using suitable alpha-renaming and Lemma B.8 to extend Γ with x :
ψ(T ′) in the second judgement, we can conclude, since Γ; ∆ ↪→ Γ; ∅ by
Lemma A.8.

Case (Sub Fun): The statement follows immediately by the premises of the
subtyping rule.

Case (Sub Pub Tnt): In this case we know that Γ; ∆ ↪→ Γ; ∆1,∆2 for some
∆1,∆2 such that Γ; ∆1 ` x : T → U :: pub and Γ; ∆2 ` x : T ′ → U ′ :: tnt.
By the only applicable kinding rule (Kind Fun) it follows that there ex-
ist ∆11,∆12 and ∆21,∆22 such that Γ; ∆1 ↪→ Γ; ∆11,∆12 and Γ; ∆2 ↪→
Γ; ∆21,∆22 such that Γ; !∆11 ` T :: tnt and Γ; !∆21 ` T ′ :: pub and
Γ, x : ψ(T); !∆12 ` U :: pub and Γ, x : ψ(T ′); !∆22 ` U ′ :: tnt.
Applying (Sub Pub Tnt) to Γ; !∆11 ` T :: tnt and Γ; !∆21 ` T ′ :: pub
yields:

Γ; !∆11, !∆21 ` T ′ <: T.

We apply Lemma A.16 to Γ, x : ψ(T); !∆12 ` U :: pub and we get:

Γ, x : ψ(T ′); !∆12 ` U :: pub.

Applying (Sub Pub Tnt) to Γ, x : ψ(T ′); !∆12 ` U :: pub and Γ, x :
ψ(T ′); !∆22 ` U ′ :: tnt yields:

Γ, x : ψ(T ′); !∆12, !∆22 ` U <: U ′,

thus allowing us to conclude.

3. We know that Γ; ∆ ` λx.E : x : T → U and ψ(x : T → U) = x : T → U
by definition. We apply part (1) and derive that there exist ∆1,∆2, T

′, U ′

such that:

189

APPENDIX A. PROOFS OF AF7 AND AF7ALG

• Γ; ∆ ↪→ Γ; ∆1,∆2,

• Γ; ∆1 ` λx.E : x : T ′ → U ′ by a top-level application of (Val Fun),
and

• Γ; ∆2 ` x : T ′ → U ′ <: x : T → U .

By the definition of (Val Fun) the second statement lets us derive that:

Γ, x : ψ(T ′); !∆′1, forms(x : T ′) ` E : U ′,

for some ∆′1 such that Γ; ∆1 ↪→ Γ; !∆′1, which is equivalent to (Γ; !∆′1) • x :
T ′ ` E : U ′.

Applying part (2) to the third statement yields that there exist ∆21,∆22

such that:

• Γ; ∆2 ↪→ Γ; !∆21, !∆22,

• Γ; !∆21 ` T <: T ′, and

• Γ, x : ψ(T); !∆22 ` U ′ <: U .

Applying Lemma A.16 to the latter yields:

Γ, x : ψ(T ′); !∆22 ` U ′ <: U.

We apply (Exp Subsum) to (Γ; !∆′1)•x : T ′ ` E : U ′ and Γ, x : ψ(T ′); !∆22 `
U ′ <: U , which leads to:

(Γ; !∆′1, !∆22) • x : T ′ ` E : U.

Applying Lemma B.10 to the latter statement and Γ; !∆21 ` T <: T ′ lets
us derive:

(Γ; !∆′1, !∆22, !∆21) • x : T ` E : U.

Since Γ; ∆ ↪→ Γ; !∆′1, !∆22, !∆21 by Lemma A.8, we can conclude.

4. Follows immediately from statement (3) by an application of Lemma A.9.

Lemma A.32 (Inversion for Pairs). The following statements hold:

1. If Γ; ∆ ` (M,N) : V , then there exist ∆1,∆2, T, U such that Γ; ∆ ↪→
Γ; ∆1,∆2 and Γ; ∆1 ` (M,N) : x : T ∗ U (by a top-level application of
Val Pair) and Γ; ∆2 ` x : T ∗ U <: ψ(V).

2. If Γ; ∆ ` x : T ∗ U <: x : T ′ ∗ U ′, then there exist ∆1,∆2 such that
Γ; ∆ ↪→ Γ; !∆1, !∆2 and Γ; !∆1 ` T <: T ′ and Γ, x : ψ(T); !∆2 ` U <: U ′.

3. If Γ; ∆ ` (M,N) : x : T ∗ U , then there exist ∆1,∆2 such that Γ; ∆ ↪→
Γ; !∆1, !∆2 and Γ; !∆1 `M : T and Γ; !∆2 ` N : U{M/x}.

190

A.1. SOUNDNESS OF AF7

Proof. We show the three statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ; ∆ ` (M,N) : V . The proof is analogous
to that of Lemma A.31, part (1).

2. By induction on the derivation of Γ; ∆ ` x : T ∗U <: x : T ′ ∗U ′. The proof
is analogous to that of Lemma A.31, part (2).

3. We know that Γ; ∆ ` (M,N) : x : T ∗ U and that ψ(x : T ∗ U) = x : T ∗ U .
We apply part (1) and derive that there exist ∆1,∆2, T

′, U ′ such that:

• Γ; ∆ ↪→ Γ; ∆1,∆2,

• Γ; ∆1 ` (M,N) : x : T ′ ∗ U ′ by a top-level application of (Val Pair),
and

• Γ; ∆2 ` x : T ′ ∗ U ′ <: x : T ∗ U .

By the definition of (Val Pair) the second statement lets us derive:

Γ; !∆11 `M : T ′,

and:
Γ; !∆12 ` N : U ′{M/x},

for some ∆11,∆12 such that Γ; ∆1 ↪→ Γ; !∆11, !∆12.

We can also apply part (2) to the third statement, which let us derive that
there exist ∆21,∆22 such that:

• Γ; ∆2 ↪→ Γ; !∆21, !∆22,

• Γ; !∆21 ` T ′ <: T , and

• Γ, x : ψ(T ′); !∆22 ` U ′ <: U .

We apply (Exp Subsum) to Γ; !∆11 `M : T ′ and Γ; !∆21 ` T ′ <: T , which
yields:

Γ; !∆11, !∆21 `M : T.

We know that Γ, x : ψ(T ′); !∆22 ` U ′ <: U , which by applying Lemma B.8
implies that (Γ; !∆22) • x : T ′ ` U ′ <: U (we implicitly use the definition of
“•”).
Since Γ; !∆11 ` M : T ′, we can apply Lemma B.12 to the latter statement
and derive:

Γ; !∆11, (!∆22{M/x}) ` U ′{M/x} <: U{M/x}.

Note, however, that since x /∈ dom(Γ) and Γ; ∆2 ↪→ Γ; !∆21, !∆22, we know
that x /∈ fv(∆22) by Lemma A.10. Thus, the previous judgement is equiv-
alent to:

Γ; !∆11, !∆22 ` U ′{M/x} <: U{M/x}.

191

APPENDIX A. PROOFS OF AF7 AND AF7ALG

We apply (Exp Subsum) to Γ; !∆12 ` N : U ′{M/x} and Γ; !∆11, !∆22 `
U ′{M/x} <: U{M/x}, which leads to:

Γ; !∆12, !∆11, !∆22 ` N : U{M/x}.

Using Lemma A.8 we know that:

Γ; ∆ ↪→ Γ; (!∆11, !∆21), (!∆12, !∆11, !∆22),

which allows us to conclude.

Lemma A.33 (Inversion for Sum Constructors). The following statements hold:

1. Let h ∈ {inl, inr}. If Γ; ∆ ` h M : V , then there exist ∆1,∆2, T, U such that
Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 ` h M : T + U (by a top-level application of
Val H) and Γ; ∆2 ` T + U <: ψ(V).

2. If Γ; ∆ ` T + U <: T ′ + U ′, then there exist ∆1,∆2 such that Γ; ∆ ↪→
Γ; !∆1, !∆2 and Γ; !∆1 ` T <: T ′ and

3. If Γ; ∆ ` inl M : T + U , then there exist !∆ such that Γ; ∆ ↪→ Γ; !∆ and
Γ; !∆ `M : T and Γ; !∆ ` U .

4. If Γ; ∆ ` inr M : T + U , then there exist ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and
Γ; !∆′ `M : U and Γ; !∆′ ` T .

5. If Γ; ∆ ` inl M : T + U , then Γ; ∆ `M : T .

6. If Γ; ∆ ` inr M : T + U , then Γ; ∆ `M : U .

Proof. We show the six statements separately, using the first results in the proof
of the later ones.

1. By induction on the derivation of Γ; ∆ ` h M : V . The proof is analogous
to that of Lemma A.31, part (1).

2. By induction on the derivation of Γ; ∆ ` T + U <: T ′ + U ′. The proof is
analogous to that of Lemma A.31, part (2).

3. We know that Γ; ∆ ` inl M : T +U and that ψ(T +U) = T +U . We apply
part (1) and derive that there exist ∆1,∆2, T

′, U ′ such that:

• Γ; ∆ ↪→ Γ; ∆1,∆2,

• Γ; ∆1 ` inl M : T ′ + U ′ by a top-level application of (Val Inl), and

• Γ; ∆2 ` T ′ + U ′ <: T + U .

192

A.1. SOUNDNESS OF AF7

By the definition of (Val Inl) the second statement lets us derive that:

Γ; !∆′1 `M : T ′,

and:
Γ; !∆′1 ` U ′,

for some ∆′1 such that Γ; ∆1 ↪→ Γ; !∆′1.

Applying part (2) to the third statement yields that there exist ∆21,∆22

such that:

• Γ; ∆2 ↪→ Γ; !∆21, !∆22,

• Γ; !∆21 ` T ′ <: T , and

• Γ; !∆22 ` U ′ <: U .

We apply (Exp Subsum) to Γ; !∆′1 ` M : T ′ and Γ; ∆21 ` T ′ <: T , which
leads to:

Γ; !∆′1, !∆21 `M : T.

Furthermore, by Lemma B.3 we know that:

Γ; !∆22 ` U.

Using Lemma B.8 we can derive that:

Γ; !∆′1, !∆21, !∆22 `M : T,

and:
Γ; !∆′1, !∆21, !∆22 ` U.

Since Γ; ∆ ↪→ Γ; !∆′1, !∆21, !∆22 by Lemma A.8, we can conclude.

4. The proof follows analogously to that of statement (3).

5. The statement follows immediately by an application of statement (3) and
Lemma A.9.

6. The statement follows immediately by an application of statement (4) and
Lemma A.9.

Lemma A.34 (Inversion for Recursive Constructors). The following statements
hold:

1. If Γ; ∆ ` fold M : V , then there exist ∆1,∆2, T such that Γ; ∆ ↪→ Γ; ∆1,∆2

and Γ; ∆1 ` fold M : µα. T (by a top-level application of Val Fold) and
Γ; ∆2 ` µα. T <: ψ(V).

193

APPENDIX A. PROOFS OF AF7 AND AF7ALG

2. If Γ; ∆ ` µα. T <: µα. T ′, then there exists ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and
Γ; !∆′ ` T{µα. T/α} <: T ′{µα. T ′/α}.

3. If Γ; ∆ ` fold M : µα. T , then there exist ∆′ such that Γ; ∆ ↪→ Γ; !∆′ and
Γ; !∆′ `M : T{µα. T/α}.

4. If Γ; ∆ ` fold M : µα. T , then Γ; ∆ `M : T{µα. T/α}.
Proof. We show the four statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ; ∆ ` fold M : V . The proof is analogous
to that of Lemma A.31, part (1).

2. By induction on the derivation of Γ; ∆ ` µα. T <: µα. T ′. We implicitly
use Lemma B.3 whenever needed. We distinguish three cases, depending
on the last applied subtyping rule:

Case (Sub Refl): In this case we know that T = T ′ and thus we have
T{µα. T/α} = T ′{µα. T ′/α}. By an application of (Sub Refl) we have
Γ; ∅ ` T{µα. T/α} <: T ′{µα. T ′/α}. Since Γ; ∆ ↪→ Γ; ∅ by Lemma A.8,
we can conclude.

Case (Sub Pos Rec): By the premises of the subtyping rule we know that:

Γ, α; !∆′ ` T <: T ′

for some ∆′ such that Γ; ∆ ↪→ Γ; !∆′. Moreover, we know that α occurs
only positively in T, T ′. Since Γ; !∆′ ↪→ Γ; !∆′ by Lemma A.8, we can apply
(Sub Pos Rec) to derive that:

Γ; !∆′ ` µα. T <: µα. T ′.

By point (6) of Lemma B.13, we then get:

Γ; !∆′, !∆′ ` T{µα. T/α} <: T ′{µα. T ′/α}.
Since Γ; ∆ ↪→ Γ; !∆′, !∆′ by Lemma A.8, we can conclude.

Case (Sub Pub Tnt): In this case we know that Γ; ∆ ↪→ Γ; ∆1,∆2 for some
∆1,∆2 such that Γ; ∆1 ` µα. T :: pub and Γ; ∆2 ` µα. T ′ :: tnt.
By the only applicable kinding rule (Kind Rec) it follows that there ex-
ist ∆′1,∆

′
2 such that Γ; ∆1 ↪→ Γ; !∆′1 and Γ; ∆2 ↪→ Γ; !∆′2 with Γ, α ::

pub; !∆′1 ` T :: pub and Γ, α :: tnt; !∆′2 ` T ′ :: tnt.
Since Γ; !∆′1 ↪→ Γ; !∆′1 and Γ; !∆′2 ↪→ Γ; !∆′2 by Lemma A.8, we can apply
(Kind Rec) to derive that Γ; !∆′1 ` µα. T :: pub and Γ; !∆′2 ` µα. T ′ :: tnt.
By part (4) of Lemma B.13 we then get Γ; !∆′1, !∆

′
1 ` T{µα. T/α} :: pub

and Γ; !∆′2!, !∆′2 ` T ′{µα. T ′/α} :: tnt, hence we can apply (Sub Pub Tnt)
to get:

Γ; !∆′1, !∆
′
1, !∆

′
2, !∆

′
2 ` T{µα. T/α} <: T ′{µα. T ′/α}.

Since Γ; ∆ ↪→ Γ; !∆′1, !∆
′
1, !∆

′
2, !∆

′
2 by Lemma A.8, we can conclude.

194

A.1. SOUNDNESS OF AF7

3. We know that Γ; ∆ ` fold M : µα. T and that ψ(µα. T) = µα. T . We apply
part (1) and derive that there exist ∆1,∆2, T

′ such that:

• Γ; ∆ ↪→ Γ; ∆1,∆2,

• Γ; ∆1 ` fold M : µα. T ′ by a top-level application of (Val Fold), and

• Γ; ∆2 ` µα. T ′ <: µα. T .

By the definition of (Val Fold) the second statement lets us derive that:

Γ; !∆′1 `M : T ′{µα. T ′/α},

for some ∆′1 such that Γ; ∆1 ↪→ Γ; !∆′1.

Applying part (2) to the third statement yields that there exists ∆′2 such
that:

• Γ; ∆2 ↪→ Γ; !∆′2,

• Γ; !∆′2 ` T ′{µα. T ′/α} <: T{µα. T/α}.

We apply (Exp Subsum) to Γ; !∆′1 ` M : T ′{µα. T ′/α} and Γ; !∆′2 `
T ′{µα. T ′/α} <: T{µα. T/α}, which leads to:

Γ; !∆′1, !∆
′
2 `M : T{µα. T/α},

Since Γ; ∆ ↪→ Γ; !∆′1, !∆
′
2 by Lemma A.8, we can conclude.

4. We can immediately conclude by an application of statement (3) and Lemma A.9.

A.1.6 Properties of extraction

We first present some simple, but useful properties of the extraction relation.

Lemma A.35 (Extraction and Free Values). If E ã [∆ | D], then fnfv(∆) ∪
fnfv(D) ⊆ fnfv(E).

Proof. By induction on the derivation of E [∆ | D].

Lemma A.36 (Extending Extraction). If E b̃ [∆ | D] and a /∈ fn(E), then
E a,̃b [∆ | D].

Proof. By induction on the derivation of E b̃ [∆ | D].

Lemma A.37 (Restricting Extraction). If E ã [∆ | D] and E b̃ [∆′ | D′]
with {b̃} ⊆ {ã}, then D b̃ [∆′′ | D′], where ∆′ = ∆,∆′′.

Proof. By induction on the structure of E:

195

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case E = assume F with F 6= 1 and fn(F) ∩ {ã} = ∅: we have E ã

[F | assume 1] by (Extr Assume). Since {b̃} ⊆ {ã}, we know that fn(F)∩{b̃} =

∅, hence we have E b̃ [F | assume 1] by (Extr Assume). We know that
assume 1 b̃ [∅ | assume 1] by (Extr Exp), which allows us to conclude.

Case E = assume F with F 6= 1 and fn(F) ∩ {ã} 6= ∅: we have E ã

[∅ | assume F] by (Extr Exp). Now we distinguish two cases: if fn(F) ∩
{b̃} 6= ∅, then we also have E b̃ [∅ | assume F] by (Extr Exp), i.e., we
have assume F b̃ [∅ | assume F] and we conclude. Otherwise, whenever
fn(F)∩{b̃} = ∅, we have E b̃ [F | assume 1] by (Extr Assume), i.e., we have
assume F b̃ [F | assume 1] and we conclude again.

Case E = E1 � E2: we know by the definition of the only applicable extraction
rule (Extr Fork) that:

• E ã [∆1,∆2 | D1 � D2] and

• E b̃ [∆′1,∆
′
2 | D′1 � D′2], where

• Ei ã [∆i | Di] and

• Ei b̃ [∆′i | D′i] for i ∈ {1, 2}.

By applying the induction hypothesis to the latter two statements we know that
there exist ∆′′1,∆

′′
2 such that:

Di b̃ [∆′′i | D′i],

where ∆′i = ∆i,∆
′′
i for i ∈ {1, 2}. By (Exp Fork) we can conclude that:

D1 � D2 b̃ [∆′′1,∆
′′
2 | D′1 � D′2],

where ∆′1,∆
′
2 = ∆1,∆

′′
1,∆2,∆

′′
1 = ∆1,∆2,∆

′′
1,∆

′′
2.

Case E is a restriction or let: in this case both E ã [∆ | D] and E b̃ [∆′ | D′]
must have been derived by a top-level application of the same extraction rule R.
We apply the induction hypothesis to the premise of the extraction rule R and
conclude by applying R to the result, similarly to the previous case of forks.

Case E has a different form: in this case both E ã [∅ | E] and E b̃ [∅ | E] by
(Extr Exp), so we immediately conclude.

Lemma A.38 (Transitivity of Extraction). Let E b̃ [∆′ | E ′] and E ′ c̃

[∆′′ | E ′′], where {c̃} ⊆ {b̃}, then E c̃ [∆′,∆′′ | E ′′].

Proof. By induction on the structure of E:

196

A.1. SOUNDNESS OF AF7

Case E = assume F , where F 6= 1 and fn(F) ∩ {b̃} = ∅. In this case we
know, by definition of the only applicable extraction rule (Extr Assume), that
E b̃ [∆′ | E ′] with ∆′ = F and E ′ = assume 1. It immediately follows by the
only applicable extraction rule (Extr Exp) that E ′ c̃ [∆′′ | E ′′] with ∆′′ = ∅
and E ′′ = assume 1. Since we know that {c̃} ⊆ {b̃} and fn(F) ∩ {b̃} = ∅, we
know that fn(F) ∩ {c̃} = ∅. We can thus apply (Extr Assume) to derive
E c̃ [F | assume 1] and conclude.

Case E is a restriction, fork, or let: in this case both E b̃ [∆′ | E ′] and E ′ c̃

[∆′′ | E ′′] must have been derived by a top-level application of the same extraction
rule R. We apply the induction hypothesis to the premise(s) of the extraction
rule R and conclude by applying R to the result(s).

Case E has a different form: In this case we know that E b̃ [∅ | E ′] with E ′ = E.
Since we know that E ′ c̃ [∆′ | E ′′], it immediately follows that E c̃ [∆′ | E ′′]
and we conclude.

Lemma A.39 (Idempotent Extraction). If E ã [∆ | D], then D ã [∅ | D].

Proof. By induction on the derivation of E ã [∆ | D].

The next result shows that heating preserves logic: if E V E ′, then the
formulas extracted from E are exactly the same of the formulas extracted from
E ′. Moreover, the purged expressions D and D′ obtained after extracting the
assumptions from E and E ′ respectively are again related by heating. All this
information is needed to show that heating preserves typing (Lemma A.45 below).
In the following proofs we often write E [∆ | D] whenever E ã [∆ | D] for
some ã clear from the context.

Lemma A.40 (Heating Preserves Logic). If E V E ′ and E ã [∆ | D], then
E ′ ã [∆ | D′] for some D′ such that D V D′. Moreover, the depth of the
derivation of D V D′ equals that of E V E ′.

Proof. By induction on the derivation of E V E ′:

Case (Heat Refl): the case is trivial.

Case (Heat Trans): assume E V E ′′ by the premises E V E ′ and E ′ V E ′′.
Assume further E [∆ | D]. We apply the induction hypothesis on E V E ′

and we get E ′ [∆ | D′] with D V D′. We then apply the induction hypothesis
on E ′ V E ′′ and we get E ′′ [∆ | D′′] with D′ V D′′. Since D V D′′ by (Heat
Trans), we can conclude.

Case (Heat Let): assume let x = E in E ′′ V let x = E ′ in E ′′ by the premise
E V E ′. Assume further let x = E in E ′′ [∆ | let x = D in E ′′], which must
be derived by the premise E [∆ | D]. We apply the induction hypothesis
and we get E ′ [∆ | D′] with D V D′. Hence, we have let x = E ′ in E ′′
[∆ | let x = D′ in E ′′] by (Extr Let) and the conclusion follows by observing
that let x = D in E ′′ V let x = D′ in E ′′ by (Heat Let).

197

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case (Heat Res): assume (νa)E V (νa)E ′ by the premise E V E ′. Assume
further (νa)E b̃ [∆ | (νa)D], which must be derived by the premise E a,̃b

[∆ | D]. We apply the induction hypothesis and we get E ′ a,̃b [∆ | D′] with
D V D′. Hence, we have (νa)E ′ b̃ [∆ | (νa)D′] by (Extr Res) and the
conclusion follows by observing that (νa)D V (νa)D′ by (Heat Res).

Case (Heat Fork 1): assume E � E ′′ V E ′ � E ′′ by the premise E V E ′.
Assume further E � E ′′ [∆,∆′′ | D � D′′], which must be derived by the
premises E [∆ | D] and E ′′ [∆′′ | D′′]. By inductive hypothesis E ′
[∆ | D′] with D V D′. Hence, we have E ′ � E ′′ [∆,∆′′ | D′ � D′′] and the
conclusion follows by observing that D � D′′ V D′ � D′′ by (Heat Fork 1).

Case (Heat Fork 2): the case is analogous to (Heat Fork 1).

Case (Heat Fork ()): assume () � E V E. Let E [∆ | D], we have
() � E [∆ | () � D]. Since () � D V D by (Heat Fork ()), we can conclude.
The other direction is analogous.

Case (Heat Msg ()): assume a!M V a!M � (). We have a!M [∅ | a!M] and
a!M � () [∅ | a!M � ()], hence the conclusion follows by (Heat Msg ()).

Case (Heat Assume ()): let assume F V assume F � (). We have two possi-
bilities: either assume F [F | assume 1] or assume F [∅ | assume F]. In
the first case we also have assume F � () [F | assume 1 � ()], while in the
second case we have assume F � () [∅ | assume F � ()]. In both cases we can
conclude by (Heat Assume ()).

Case (Heat Assert ()): let assert F V assert F � (). We have assert F
[∅ | assert F] and assert F � () [∅ | assert F � ()], hence the conclusion follows
by (Heat Assert ()).

Case (Heat Res Fork 1): assume E � (νa)E ′ V (νa)(E � E ′) with a /∈ fn(E).
The only possible extraction derivation is the following:

Extr Fork
E b̃ [∆ | D]

E ′ a,̃b [∆′ | D′]
(νa)E ′ b̃ [∆′ | (νa)D′]

Extr Res

E � (νa)E ′ b̃ [∆,∆′ | D � (νa)D′]

Since a /∈ fn(E), we can apply Lemma A.36 and get E a,̃b [∆ | D]. Hence, we
can construct the following derivation:

Extr Fork
E a,̃b [∆ | D] E ′ a,̃b [∆′ | D′]

E � E ′ a,̃b [∆,∆′ | D � D′]
(νa)(E � E ′) b̃ [∆,∆′ | (νa)(D � D′)]

Extr Res

Since a /∈ fn(E) implies a /∈ fn(D) by Lemma A.35, we have D � (νa)D′ V
(νa)(D � D′) by (Heat Res Fork 1) and we conclude.

198

A.1. SOUNDNESS OF AF7

Case (Heat Res Fork 2): the case is analogous to (Heat Res Fork 1).

Case (Heat Res Let): assume let x = (νa)E in E ′ V (νa)(let x = E in E ′)
with a /∈ fn(E ′). The only possible extraction derivation is the following:

Extr Let

E a,̃b [∆ | D]

(νa)E b̃ [∆ | (νa)D]
Extr Res

let x = (νa)E in E ′ b̃ [∆ | let x = (νa)D in E ′]

Hence, we can construct the following derivation:

Extr Let
E a,̃b [∆ | D]

let x = E in E ′ a,̃b [∆ | let x = D in E ′]

(νa)(let x = E in E ′) b̃ [∆ | (νa)(let x = D in E ′)]
Extr Res

Since a /∈ fn(E ′) implies a /∈ fn(D) by Lemma A.35, we have let x = (νa)D in E ′ V
(νa)(let x = D in E ′) by (Heat Res Let) and we conclude.

Case (Heat Fork Assoc): assume (E � E ′) � E ′′ V E � (E ′ � E ′′). The only
possible extraction derivation is the following:

Exp Fork

Exp Fork
E [∆ | D] E ′ [∆′ | D′]
E � E ′ [∆,∆′ | D � D′] E ′′ [∆′′ | D′′]

(E � E ′) � E ′′ [∆,∆′,∆′′ | (D � D′) � D′′]
Hence, we can construct the following derivation:

Exp Fork
E [∆ | D]

E ′ [∆′ | D′] E ′′ [∆′′ | D′′]
E ′ � E ′′ [∆′,∆′′ | D′ � D′′] Exp Fork

E � (E ′ � E ′′) [∆,∆′,∆′′ | D � (D′ � D′′)]
We observe that (D � D′) � D′′ V D � (D′ � D′′) by (Heat Fork Assoc) to
conclude. The other direction is analogous.

Case (Heat Fork Comm): assume (E � E ′) � E ′′ V (E ′ � E) � E ′′. The only
possible extraction derivation is the following:

Exp Fork

Exp Fork
E [∆ | D] E ′ [∆′ | D′]
E � E ′ [∆,∆′ | D � D′] E ′′ [∆′′ | D′′]

(E � E ′) � E ′′ [∆,∆′,∆′′ | (D � D′) � D′′]
Hence, we can construct the following derivation:

Exp Fork

Exp Fork
E ′ [∆′ | D′] E [∆ | D]

E ′ � E [∆,∆′ | D′ � D] E ′′ [∆′′ | D′′]
(E ′ � E) � E ′′ [∆,∆′,∆′′ | (D′ � D) � D′′]

where we note that the order of the formulas is immaterial, since we interpret
the ∆’s as multisets. We observe that (D � D′) � D′′ V (D′ � D) � D′′ by
(Heat Fork Comm) to conclude. The other direction is analogous.

199

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case (Heat Fork Let): assume let x = (E1 � E2) in E3 V E1 � (let x =
E2 in E3). We have let x = (E1 � E2) in E3 [∆1,∆2 | let x = (D1 � D2) in E3]
with E1 [∆1 | D1] and E2 [∆2 | D2]. In fact, the only possible extraction
derivation is the following:

Extr Let

Extr Fork
E1 [∆1 | D1] E2 [∆2 | D2]

E1 � E2 [∆1,∆2 | D1 � D2]

let x = (E1 � E2) in E3 [∆1,∆2 | let x = (D1 � D2) in E3]

Hence, we can construct the following derivation:

Extr Fork
E1 [∆1 | D1]

E2 [∆2 | D2]

let x = E2 in E3 [∆2 | let x = D2 in E3]
Extr Let

E1 � (let x = E2 in E3) [∆1,∆2 | D1 � (let x = D2 in E3)]

Since let x = (D1 � D2) in E3 V D1 � (let x = D2 in E3) by (Heat Fork
Let), we can conclude. The other direction is analogous, since we can invert
the construction and transform the second derivation, which is the only possible
one, into the first one.

The next lemma is in the same spirit of Lemma A.40, but it predicates over
the reduction relation rather than on heating and it is slightly more complicated.
This is needed in the proof of Subject Reduction (Theorem A.1 below).

Lemma A.41 (Reduction Preserves Logic). If E → E ′ and E ã [∆ | D], then
D → D′ and E ′ ã [∆,∆′ | D′′] for some D′, D′′,∆′ such that D′ ã [∆′ | D∗]
with D∗ V D′′. Moreover, the depth of the derivation of D → D′ equals that of
E → E ′.

Proof. By induction on the derivation of E → E ′. We note that, whenever
E [∅ | E], the conclusion is trivial, hence we focus on the remaining cases:

Case (Red Let): assume let x = E1 in E2 → let x = E ′1 in E2 with E1 → E ′1
and let x = E1 in E2 [∆1 | let x = D1 in E2] with E1 [∆1 | D1]. By
induction hypothesis D1 → D′1 and E ′1 [∆1,∆

′
1 | D′] with D′1 [∆′1 | D′′1]

and D′′1 V D′. We then have let x = D1 in E2 → let x = D′1 in E2 by (Red
Let). Now we observe that let x = E ′1 in E2 [∆1,∆

′
1 | let x = D′ in E2] and

let x = D′1 in E2 [∆′1 | let x = D′′1 in E2], so we conclude by (Heat Let).

Case (Red Res): assume (νa)E → (νa)E ′ with E → E ′ and (νa)E b̃ [∆1 | (νa)D1]

with E a,̃b [∆1 | D1]. By induction hypothesis D1 → D′1 and E ′ a,̃b

[∆1,∆
′
1 | D′] with D′1 a,̃b [∆′1 | D′′1] and D′′1 V D′. We then have (νa)D1 →

(νa)D′1 by (Red Res). Now we observe that (νa)E ′ b̃ [∆1,∆
′
1 | (νa)D′] and

(νa)D′1 b̃ [∆′1 | (νa)D′′1], so we conclude by (Heat Res).

200

A.1. SOUNDNESS OF AF7

Case (Red Fork 1): assume E1 � E2 → E ′1 � E2 with E1 → E ′1 and E1 �
E2 [∆1,∆2 | D1 � D2] with E1 [∆1 | D1], E2 [∆2 | D2]. By induction
hypothesis D1 → D′1 and E ′1 [∆1,∆

′
1 | D′] with D′1 [∆′1 | D′′1] and D′′1 V D′.

We then have D1 � D2 → D′1 � D2 by (Red Fork 1). Now we observe that
E ′1 � E2 [∆1,∆

′
1,∆2 | D′ � D2] and D′1 � D2 [∆′1 | D′′1 � D2], since

D2 [∅ | D2] by Lemma A.39. Thus, we conclude by (Heat Fork 1).

Case (Red Fork 2): analogous to the previous case.

Case (Red Heat): assume E → E ′ by the premises E V EA, EA → EB,
EB V E ′. Assume further E [∆1 | E1]. By Lemma A.40 we have EA
[∆1 | E ′A] with E1 V E ′A. By inductive hypothesis we get E ′A → E ′B and
EB [∆1,∆

′
1 |DB] with E ′B [∆′1 | E ′′B] and E ′′B V DB. Again by Lemma A.40

we have E ′ [∆1,∆
′
1 | E ′′] with DB V E ′′. Since we can derive E1 → E ′B by

(Red Heat) and E ′′B V E ′′ by (Heat Trans), we can conclude.

A.1.7 Proof of subject reduction

In the proof of Lemmas A.43, A.44, A.45 and Theorem A.1 below we rely on
an observation about the structure of the type derivations to simplify the formal
reasoning and carry out the proofs. First, we consider an alternative formulation
of typing for values, presented in Table A.1, which removes the non-structural rule
(Val Refine). We also assume to keep the original typing rules for expressions.

We can show that the original and the alternative formulation coincide.

Lemma A.42 (Alternative Typing). Γ; ∆ ` E : T if and only if Γ; ∆ `alt E : T .

Proof. We show both directions independently:

(⇒) By induction on the derivation of Γ; ∆ ` E : T :

Case (Val Var): let Γ; ∆ ` x : T by the premises Γ; ∆ ` � and (x : T) ∈ Γ.
We can construct the following type derivation:

Val Var Refine
(x : T) ∈ Γ Γ; ∆ ` 1

Γ; ∆ `alt x : {y : T | 1}
Γ; ∅ ` ψ(T) <: ψ(T) Γ, y : ψ(T);1 ` 1

Γ; ∅ ` {y : T | 1} <: T
Sub Refine

Γ; ∆ `alt x : T
Exp Subsum

Case (Val Refine): let Γ; ∆ `M : {x : T | F} by the premises Γ; ∆1 `M : T
and Γ; ∆2 ` F{M/x}. By inductive hypothesis Γ; ∆1 `alt M : T . By
inspection of the alternative typing rules, this judgement can be derived
only though an application of a structural rule after an arbitrary number
of applications of (Exp Subsum), hence in the type derivation there must
be an instance of one of the alternative type rules R of the form:

R
(. . .) Γ; ∆∗ ` F ′{M/x} Γ; ∆′ ↪→ Γ; (. . .),∆∗

Γ; ∆′ `alt M : {x : U | F ′}

201

APPENDIX A. PROOFS OF AF7 AND AF7ALG

[Val Var Refine]
(x : T) ∈ Γ Γ; ∆ ` F{x/y}

Γ; ∆ `alt x : {y : T | F}

[Val Unit Refine]
Γ; ∆ ` F{()/y}

Γ; ∆ `alt () : {y : unit | F}

[Val Fun Refine]
(Γ; !∆1) • x : T `alt E : U

Γ; ∆2 ` F{λx.E/y}
Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt λx.E : {y : x : T → U | F}

[Val Pair Refine]
Γ; !∆1 `alt M : T

Γ; !∆2 `alt N : U{M/x}
Γ; ∆3 ` F{(M,N)/y}
Γ; ∆ ↪→ Γ; !∆1, !∆2,∆3

Γ; ∆ `alt (M,N) : {y : x : T ∗ U | F}

[Val Inl Refine]
Γ; !∆1 `alt M : T Γ; !∆1 ` U

Γ; ∆2 ` F{inl M/y} Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt inl M : {y : T + U | F}

[Val Inr Refine]
Γ; !∆1 `alt M : U Γ; !∆1 ` T

Γ; ∆2 ` F{inr M/y} Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt inr M : {y : T + U | F}

[Val Fold Refine]
Γ; !∆1 `alt M : T{µa. T/α}

Γ; ∆2 ` F{fold M/y} Γ; ∆ ↪→ Γ; !∆1,∆2

Γ; ∆ `alt fold M : {y : µα. T | F}

Table A.1: Alternative rules for typing values (AF7)

where Γ; ∆1 ↪→ Γ; ∆′,∆′′ and Γ; ∆′′ ` {x : U | F ′} <: T . (Notice that in
this process we appeal to the transitivity of both the subtyping relation,
proved in Lemma B.17, and the environment rewriting relation, proved in
Lemma A.8.) Since Γ; ∆∗ ` F ′{M/x} and Γ; ∆2 ` F{M/x}, we know that
Γ; ∆∗,∆2 ` (F ′ ⊗ F){M/x} by (⊗-Right), so we have:

R
(. . .) Γ; ∆∗,∆2 ` (F ′ ⊗ F){M/x} Γ; ∆′,∆2 ↪→ Γ; (. . .),∆∗,∆2

Γ; ∆′,∆2 `alt M : {x : U | F ′ ⊗ F}

Now we note that Γ; ∆′′ ` {x : U | F ′} <: T implies Γ; ∆′′ ` ψ(U) <: ψ(T)
by Lemma A.15 in combination with Lemma A.9. Hence, we also have:

Sub Refine
Γ; ∆′′ ` ψ(U) <: ψ(T) Γ, x : ψ(U);F ′ ⊗ F ` F

Γ; ∆′′ ` {x : U | F ′ ⊗ F} <: {x : T | F}

Hence, Γ; ∆′,∆2,∆
′′ `alt M : {x : T | F} by (Exp Subsum). Since we have

202

A.1. SOUNDNESS OF AF7

Γ; ∆ ↪→ Γ; ∆′,∆′′,∆2 by Lemma A.8, we conclude Γ; ∆ `alt M : {x : T | F}
by a variant of Lemma A.9 predicating over the alternative typing relation.

For all the other rules for values, the proof strategy is similar to the case of
(Val Var). The cases for expressions which are not values are immediate,
since the two formulations share the same rules.

(⇐) By induction on the derivation of Γ; ∆ `alt E : T :

Case (Val Var Refine): let Γ; ∆ `alt x : {y : T | F} by the premises (x :
T) ∈ Γ and Γ; ∆ ` F{x/y}. The latter implies Γ; ∆ ` � by Lemma B.3,
hence Γ; ∅ ` � again by Lemma B.3 and we can conclude as follows:

Val Refine

Val Var
Γ; ∅ ` � (x : T) ∈ Γ

Γ; ∅ ` x : T Γ; ∆ ` F{x/y}
Γ; ∆ ` x : {y : T | F}

Case (Val Fun Refine): let Γ; ∆ `alt λx.E : {y : x : T → U | F} by
the premises (Γ; !∆1) • x : T `alt E : U and Γ; ∆2 ` F{λx.E/y} with
Γ; ∆ ↪→ Γ; !∆1,∆2. By inductive hypothesis (Γ; !∆1)•x : T ` E : U , hence
we can conclude as follows:

Val Refine

Val Fun
(Γ; !∆1) • x : T ` E : U Γ; !∆1 ↪→ Γ; !∆1

Γ; !∆1 ` λx.E : x : T → U Γ; ∆2 ` F{λx.E/y}
Γ; ∆ ` λx.E : {y : x : T → U | F}

The case for (Val Unit Refine) is similar to the case for (Val Var
Refine). For all the other rules for values, the proof strategy is similar to
the case of (Val Fun Refine). The cases for expressions which are not
values are immediate, since the two formulations share the same rules.

Now the idea is to appeal to the transitivity of both the subtyping relation
(Lemma B.17) and the environment rewriting relation (Lemma A.8) to rearrange
the structure of any type derivation constructed under the alternative typing
rules. Namely, we observe that for any expression E the general form of such a
type derivation is as follows:

Γ; ∆1 `alt E : T1 Γ; ∆2 ` T1 <: T2 Γ; ∆3 ↪→ Γ; ∆1,∆2

...
Γ; ∆2n−1 `alt E : T2n−1 Γ; ∆2n ` T2n−1 <: T Γ; ∆ ↪→ Γ; ∆2n−1,∆2n

Γ; ∆ `alt E : T

where the last rule applied to derive Γ; ∆1 `alt E : T1 is not (Exp Subsum).
Without loss of generality, we reorganize the derivation as follows:

Γ; ∆1 `alt E : T1 Γ; ∆∗ ` T1 <: T Γ; ∆ ↪→ Γ; ∆1,∆
∗

Γ; ∆ `alt E : T

203

APPENDIX A. PROOFS OF AF7 AND AF7ALG

with ∆∗ = ∆2,∆4, . . . ,∆2n. Notice that also derivations which do not use rule
(Exp Subsum) can be rearranged as detailed, since the subtyping relation is
reflexive. Moreover, given that original typing and alternative typing coincide by
Lemma A.42, we note that the previous transformation can be applied to any
type derivation.

Now we can show that extraction preserves typing: this is needed to show
that heating preserves typing (Lemma A.45 below).

Lemma A.43 (Extraction Preserves Typing). If Γ; ∆ ` E : T and E ã

[∆′ | E ′], then Γ; ∆,∆′ ` E ′ : T .

Proof. By a case analysis on the structure of E:

Case E is any expression such that E [∅ | E]: the conclusion is trivial.

Case E = assume F with F 6= 1 and fn(F) ∩ {ã} = ∅: we have E ã

[F | assume 1] and Γ; ∆ ` assume F : T . The typing judgement must follow by an
instance of (Exp Assume) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` assume F : U and Γ; ∆B ` U <: T with Γ; ∆ ↪→ Γ; ∆A,∆B

and Γ; ∆A, F ` assume 1 : U . The conclusion Γ; ∆, F ` assume 1 : T follows by
(Exp Subsum).

Case E = (νa)D: we have E b̃ [∆′ | (νa)D′] with D a,̃b [∆′ | D′] and Γ; ∆ `
(νa)D : T . The typing judgement must follow by an instance of (Exp Res) after
an instance of (Exp Subsum), hence it must be the case that Γ; ∆A ` (νa)D : V
and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• D a [∆′′ | D′′]
• Γ, a l T ′; ∆A,∆

′′ ` D′′ : V

By Lemma A.37 we know that D′ a [∆′′′ | D′′], for some ∆′′′ such that ∆′′ =
∆′,∆′′′. We can then construct the following type derivation:

Exp Res
D′ a [∆′′′ | D′′] Γ, a l T ′; ∆A,

∆′′︷ ︸︸ ︷
∆′,∆′′′ ` D′′ : V

Γ; ∆A,∆
′ ` (νa)D′ : V Γ; ∆B ` V <: T

Γ; ∆,∆′ ` (νa)D′ : T
Exp Subsum

Case E = let x = E1 in E2: we have E ã [∆′ | let x = D′ in E2] with
E1 ã [∆′ | D′] and Γ; ∆ ` let x = E1 in E2 : T . The typing judgement must
follow by an instance of (Exp Let) after an instance of (Exp Subsum), hence
it must be the case that Γ; ∆A ` let x = E1 in E2 : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E1 ∅ [∆′′ | D′′]
• Γ; ∆A,∆

′′ ↪→ Γ; ∆1,∆2

204

A.1. SOUNDNESS OF AF7

• Γ; ∆1 ` D′′ : U
• (Γ; ∆2) • x : U ` E2 : V

By Lemma A.37 we know that D′ ∅ [∆′′′ | D′′], for some ∆′′′ such that ∆′′ =
∆′,∆′′′. Hence, we have Γ; ∆A,∆

′,∆′′′ ↪→ Γ; ∆1,∆2 and we can then construct
the following type derivation:

Exp Let
D′ ∅ [∆′′′ | D′′] Γ; ∆1 ` D′′ : U (Γ; ∆2) • x : U ` E2 : V

Γ; ∆A,∆
′ ` let x = D′ in E2 : V Γ; ∆B ` V <: T

Γ; ∆,∆′ ` let x = D′ in E2 : T
Exp Subsum

Case E = E1 � E2: similar to the previous case.

Similarly to the previous result, we can also show that inverting an extraction
preserves typing: again, this is needed to prove that heating preserves typing
(Lemma A.45 below).

Lemma A.44 (Inverting Extraction Preserves Typing). Let E b̃ [∆′ | E ′]. If
Γ; ∆,∆′ ` E ′ : T , then Γ; ∆ ` E : T .

Proof. By a case analysis on the structure of E:

Case E is any expression such that E [∅ | E]: the conclusion is trivial.

Case E = assume F with F 6= 1 and fn(F) ∩ {b̃} = ∅: we know that E b̃

[F | assume 1] and Γ; ∆, F ` assume 1 : T . The conclusion Γ; ∆ ` assume F : T
immediately follows by (Exp Assume).

Case E = (νa)D: we have E b̃ [∆′ | (νa)D′] with D a,̃b [∆′ | D′] and
Γ; ∆,∆′ ` (νa)D′ : T . The typing judgement must follow by an instance of
(Exp Res) after an instance of (Exp Subsum), hence it must be the case that
Γ; ∆A ` (νa)D′ : V by a top-level application of (Exp Res) and Γ; ∆B ` V <: T
with Γ; ∆,∆′ ↪→ Γ; ∆A,∆B.

Since we know that Γ; ∆A ` (νa)D′ : V by (Exp Res), it must be the case that
D′ a [∆′′ | D′′] and Γ, a l W ; ∆A,∆

′′ ` D′′ : V with a /∈ fn(V).

By Lemma A.38 we know that D a,̃b [∆′ | D′] and D′ a [∆′′ | D′′] imply:

D a [∆′,∆′′ | D′′].

By Lemma B.8 we know that Γ; ∆B ` V <: T implies:

Γ, a l W ; ∆B ` V <: T.

Applying (Exp Subsum) to the latter and Γ, a l W ; ∆A,∆
′′ ` D′′ : V , we get:

Γ, a l W ; ∆A,∆
′′,∆B ` D′′ : T.

205

APPENDIX A. PROOFS OF AF7 AND AF7ALG

We observe that Γ, a l W ; ∆,∆′,∆′′ ↪→ Γ, a l W ; ∆A,∆
′′,∆B, so we can apply

Lemma A.9 and get:
Γ, a l W ; ∆,∆′,∆′′ ` D′′ : T.

Finally, we note that a /∈ fn(T) by applying Lemma B.3 to Γ; ∆B ` V <: T ,
hence we conclude Γ; ∆ ` (νa)D : T by an application of (Exp Res).

Case E = let x = E1 in E2: We know that E b̃ [∆′ | let x = D1 in E2], where
E1 b̃ [∆′ | D1] and Γ; ∆,∆′ ` let x = D1 in E2 : T .

The typing judgement must follow by an instance of (Exp Let) after an instance
of (Exp Subsum), hence it must be the case that Γ; ∆A ` let x = D1 in E2 : V
by a top-level application of (Exp Let) and Γ; ∆B ` V <: T with Γ; ∆,∆′ ↪→
Γ; ∆A,∆B.

Since we know that Γ; ∆A ` let x = D1 in E2 : V by (Exp Let), it must be the
case that D1 ∅ [∆′′ | D′1] and Γ; ∆1 ` D′1 : W and (Γ; ∆2) • x : W ` E2 : V ,
for some ∆1,∆2 such that Γ; ∆A,∆

′′ ↪→ Γ; ∆1,∆2.

By Lemma A.38 we know that E1 b̃ [∆′ | D1] and D1 ∅ [∆′′ | D′1] imply:

E1 ∅ [∆′,∆′′ | D′1].

By Lemma B.8 we know that Γ; ∆B ` V <: T implies:

Γ, x : ψ(W); ∆B ` V <: T.

Applying (Exp Subsum) to the latter and (Γ; ∆2) • x : W ` E2 : V , we get:

(Γ; ∆2,∆B) • x : W ` E2 : T.

We conclude Γ; ∆ ` let x = E1 in E2 : T by applying (Exp Let) to the collected
statements:

• E1 ∅ [∆′,∆′′ | D′1]

• Γ; ∆1 ` D′1 : W

• (Γ; ∆2,∆B) • x : W ` E2 : T , and

• Γ; ∆,∆′,∆′′ ↪→ Γ; ∆1, (∆2,∆B), which holds by Lemma A.8.

Case E = E1 � E2: similar to the previous case.

The next result, sometimes called Subject Heating, shows that typing is pre-
served by heating. This is needed in the proof of the Subject Reduction theorem,
since the reduction relation is closed under heating.

Lemma A.45 (Heating Preserves Typing). If Γ; ∆ ` E : T and E V E ′, then
Γ; ∆ ` E ′ : T .

206

A.1. SOUNDNESS OF AF7

Proof. By induction on the derivation of E V E ′:

Case (Heat Refl): the case is trivial.

Case (Heat Trans): assume E V E ′′ by the premises E V E ′ and E ′ V E ′′.
Assume further that Γ; ∆ ` E : T . We apply the inductive hypothesis twice and
we conclude Γ; ∆ ` E ′′ : T .

Case (Heat Let): assume let x = E in E ′′ V let x = E ′ in E ′′ by the premise
E V E ′. Assume further that Γ; ∆ ` let x = E in E ′′ : T , which must follow by
an instance of (Exp Let) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` let x = E in E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E [∆′ | D]

• Γ; ∆,∆′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` D : U

• (Γ; ∆2) • x : U ` E ′′ : V

By Lemma A.40 we know that E V E ′ implies E ′ [∆′ | D′] with D V D′.
Since Lemma A.40 is depth-preserving, we can apply the inductive hypothesis
and get Γ; ∆1 ` D′ : U , hence the conclusion Γ; ∆ ` let x = E ′ in E ′′ : T follows
by applying (Exp Let) and (Exp Subsum).

Case (Heat Res): assume (νa)E V (νa)E ′ by the premise E V E ′. Assume
further that Γ; ∆ ` (νa)E : T . The typing judgement must follow by an instance
of (Exp Res) after an instance of (Exp Subsum), hence it must be the case
that Γ; ∆A ` (νa)E : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E a [∆′ | D]

• Γ, a l T ′; ∆,∆′ ` D : V

By Lemma A.40 we know that E V E ′ implies E ′ a [∆′ | D′] with D V D′.
Since Lemma A.40 is depth-preserving, we can apply the inductive hypothesis
and get Γ, a l T ′; ∆,∆′ ` D′ : V , hence the conclusion Γ; ∆ ` (νa)E ′ : T follows
by applying (Exp Res) and (Exp Subsum).

Case (Heat Fork 1): assume E � E ′′ V E ′ � E ′′ by the premise E V E ′.
Assume further that Γ; ∆ ` E � E ′′ : T . The judgement must follow by an
instance of (Exp Fork) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` E � E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E [∆′ | D]

• E ′′ [∆′′ | D′′]

207

APPENDIX A. PROOFS OF AF7 AND AF7ALG

• Γ; ∆A,∆
′,∆′′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` D : U

• Γ; ∆2 ` D′′ : V

By Lemma A.40 we know that E V E ′ implies E ′ [∆′ | D′] with D V D′.
Since Lemma A.40 is depth-preserving, we can apply the inductive hypothesis
and get Γ; ∆1 ` D′ : U , hence the conclusion Γ; ∆ ` E ′ � E ′′ : T follows by
applying (Exp Fork) and (Exp Subsum).

Case (Heat Fork 2): the case is analogous to Heat Fork 1.

Case (Heat Fork ()): assume () � E V E with Γ; ∆ ` () � E : T . The
judgement must follow by an instance of (Exp Fork) after an instance of (Exp
Subsum), hence it must be the case that Γ; ∆A ` () � E : V and Γ; ∆B ` V <: T
with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• () [∅ | ()]

• E [∆′ | E ′]
• Γ; ∆A,∆

′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` () : U

• Γ; ∆2 ` E ′ : V

Notice that both Γ; ∆1 ` � and Γ; ∆2 ` � by Lemma B.3, thus Γ; ∆1,∆2 ` �
by Lemma A.6. By Lemma B.8 we then know that Γ; ∆2 ` E ′ : V implies
Γ; ∆1,∆2 ` E ′ : V , hence we have Γ; ∆A,∆

′ ` E ′ : V by Lemma A.9 and this
implies Γ; ∆A ` E : V by Lemma A.44. The conclusion Γ; ∆ ` E : T follows by
(Exp Subsum).

Assume now E V () � E with Γ; ∆ ` E : T . The judgement must follow by an
instance of a structural rule after an instance of (Exp Subsum), hence it must
be the case that Γ; ∆A ` E : V and Γ; ∆B ` V <: T with Γ; ∆ ↪→ Γ; ∆A,∆B. By
Lemma B.3 we know that Γ; ∆A ` E : V implies Γ; ∆A ` �, hence Γ; ∅ ` � again
by Lemma B.3 and Γ; ∅ ` () : unit by (Val Unit). Let then E [∆′ | E ′]:
since Γ; ∆A ` E : V , we have Γ; ∆A,∆

′ ` E ′ : V by Lemma A.43. Hence, we
have:

• () [∅ | ()]

• E [∆′ | E ′]
• Γ; ∅ ` () : unit

• Γ; ∆A,∆
′ ` E ′ : V

which imply Γ; ∆A ` () � E : V by (Exp Fork). The conclusion Γ; ∆ ` () �
E : T follows by (Exp Subsum).

208

A.1. SOUNDNESS OF AF7

Case (Heat Msg ()): let a!M V a!M � () with Γ; ∆ ` a!M : T . The judgement
must follow by an instance of (Exp Send) after an instance of (Exp Subsum),
hence it must be the case that Γ; ∆A ` a!M : unit and Γ; ∆B ` unit <: T with
Γ; ∆ ↪→ Γ; ∆A,∆B. By Lemma B.3 we know that Γ; ∆A ` a!M : unit implies
Γ; ∆A ` �, hence Γ; ∅ ` � again by Lemma B.3 and Γ; ∅ ` () : unit by (Val
Unit). Thus, we have:

• a!M [∅ | a!M]

• () [∅ | ()]

• Γ; ∆A ` a!M : unit

• Γ; ∅ ` () : unit

which imply Γ; ∆A ` a!M � () : unit by (Exp Fork). Hence, the conclusion
Γ; ∆ ` a!M � () : T follows by (Exp Subsum).

Case (Heat Assume ()): let assume F V assume F � () with Γ; ∆ ` assume F :
T . We distinguish two cases. Let F = 1, then Γ; ∆ ` assume 1 : T must follow
by an instance of (Exp True) after an instance of (Exp Subsum), hence it
must be the case that Γ; ∆A ` assume 1 : unit and Γ; ∆B ` unit <: T with
Γ; ∆ ↪→ Γ; ∆A,∆B. Now notice that assume 1 [∅ | assume 1] and () [∅ | ()],
hence we can construct the following type derivation:

Exp Fork
Γ; ∆A ` assume 1 : unit

Γ; ∅ ` �
Γ; ∅ ` () : unit

Val Unit

Γ; ∆A ` assume 1 � () : unit Γ; ∆B ` unit <: T

Γ; ∆ ` assume 1 � () : T
Exp Subsum

Let now F 6= 1, then Γ; ∆ ` assume F : T must follow by an instance of
(Exp Assume) after an instance of (Exp Subsum), hence it must be the case
that Γ; ∆A ` assume F : V and Γ; ∆B ` V <: T with Γ; ∆ ↪→ Γ; ∆A,∆B and
Γ; ∆A, F ` assume 1 : V . The latter must have been derived by an instance
of (Exp True) after an instance of (Exp Subsum), hence we have Γ; ∆1 `
assume 1 : unit and Γ; ∆2 : unit <: V with Γ; ∆A, F ↪→ Γ; ∆1,∆2. Now notice
that assume F [F | assume 1] and () [∅ | ()], hence we can construct the
following type derivation:

Exp Fork

Exp True
Γ; ∅ ` �

Γ; ∅ ` assume 1 : unit

Val Unit
Γ; ∆1 ` �

Γ; ∆1 ` () : unit Γ; ∆2 ` unit <: V

Γ; ∆A, F ` () : V
Exp Subsum

Γ; ∆A ` assume F � () : V Γ; ∆B ` V <: T

Γ; ∆ ` assume F � () : T
Exp Subsum

Case (Heat Assert ()): the case is analogous to (Heat Msg ()).

Case (Heat Res Fork 1): let E ′ � (νa)E V (νa)(E ′ � E) with a /∈ fn(E ′).
Assume further Γ; ∆ ` E ′ � (νa)E : T . The judgement must follow by an

209

APPENDIX A. PROOFS OF AF7 AND AF7ALG

instance of (Exp Fork) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` E ′ � (νa)E : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E ′ ∅ [∆′ | D′]
• (νa)E ∅ [∆′′ | (νa)D] with E a [∆′′ | D]

• Γ; ∆A,∆
′,∆′′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` D′ : U
• Γ; ∆2 ` (νa)D : V

The latter judgement must follow by an instance of (Exp Res) after an instance
of (Exp Subsum). Notice that E a [∆′′ | D] implies D a [∅ | D] by
Lemma A.39, hence we simply have Γ, a l T ′; ∆21 ` D : U and Γ; ∆22 ` U <: V
with Γ; ∆2 ↪→ Γ; ∆21,∆22. We also notice that E ′ ∅ [∆′ | D′] and a /∈ fn(E ′)
imply E ′ a [∆′ | D′] by Lemma A.36, hence E ′ � E a [∆′,∆′′ | D′ � D] by
(Extr Fork). Moreover, we know that E ′ ∅ [∆′ | D′] implies D′ ∅ [∅ | D′]
by Lemma A.39, hence we can construct the following type derivation:

Exp Res

Exp Fork
D ∅ [∆′′′ | D′′]

Γ; ∆1 ` D′ : U
Γ, a l T ′; ∆1 ` D′ : U

(1)

Γ, a l T ′; ∆2,∆
′′′ ` D′′ : V

Γ, a l T ′; ∆A,∆
′,∆′′ ` D′ � D : V

Γ; ∆A ` (νa)(E′ � E) : V

where (1) is constructed as follows:

Exp Subsum

(2)

Γ, a l T ′; ∆21,∆
′′′ ` D′′ : U

Γ; ∆22 ` U <: V

Γ, a l T ′; ∆22 ` U <: V

Γ, a l T ′; ∆2,∆
′′′ ` D′′ : V

and (2) is derived from Γ, a l T ′; ∆21 ` D : U and D ∅ [∆′′′ | D′′] using
Lemma A.43. We conclude Γ; ∆ ` (νa)(E ′ � E) : T by (Exp Subsum).

Case (Heat Res Fork 2): the case is analogous to (Heat Res Fork 1).

Case (Heat Res Let): assume let x = (νa)E in E ′ V (νa)(let x = E in E ′) with
a /∈ fn(E ′). Assume further Γ; ∆ ` let x = (νa)E in E ′ : T . The judgement must
follow by an instance of (Exp Let) after an instance of (Exp Subsum), hence
it must be the case that Γ; ∆A ` let x = (νa)E in E ′ : V and Γ; ∆B ` V <: T
with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• (νa)E ∅ [∆′ | (νa)D] with E a [∆′ | D]

• Γ; ∆A,∆
′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` (νa)D : U

• (Γ; ∆2) • x : U ` E ′ : V

210

A.1. SOUNDNESS OF AF7

Now we note that Γ; ∆1 ` (νa)D : U must follow by an instance of (Exp Res)
after an instance of (Exp Subsum). Since E a [∆′ | D] implies D a [∅ | D]
by Lemma A.39, we note that we simply have Γ, a l T ′; ∆11 ` D : U ′ and
Γ; ∆12 ` U ′ <: U with Γ; ∆1 ↪→ Γ; ∆11,∆12. Notice also that E a [∆′ | D]
implies let x = E in E ′ a [∆′ | let x = D in E ′] by (Extr Let). We can then
construct the following type derivation:

Exp Res

Exp Let
D ∅ [∆′′ | D′]

(1)

Γ, a l T ′; ∆1,∆
′′ ` D′ : U

(Γ; ∆2) • x : U ` E′ : V
(Γ, a l T ′; ∆2) • x : U ` E′ : V

Γ, a l T ′; ∆A,∆
′ ` let x = D in E′ : V

Γ; ∆A ` (νa)(let x = E in E′) : V

where (1) is constructed as follows:

Exp Subsum

(2)

Γ, a l T ′; ∆11,∆
′′ ` D′ : U ′

Γ; ∆12 ` U ′ <: U

Γ, a l T ′; ∆12 ` U ′ <: U

Γ, a l T ′; ∆1,∆
′′ ` D′ : U

and (2) is derived from Γ, a l T ′; ∆11 ` D : U ′ and D ∅ [∆′′ | D′] using
Lemma A.43. We conclude Γ; ∆ ` (νa)(let x = E in E ′) : T by (Exp Subsum).

Case (Heat Fork Comm): assume (E � E ′) � E ′′ V (E ′ � E) � E ′′ with
Γ; ∆ ` (E � E ′) � E ′′ : T . The judgement must follow by an instance of (Exp
Fork) after an instance of (Exp Subsum), hence it must be the case that
Γ; ∆A ` (E � E ′) � E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• E ′′ [∆3 | D3]

• Γ; ∆A,∆1,∆2,∆3 ↪→ Γ; ∆′1,∆
′
2

• Γ; ∆′1 ` D1 � D2 : U

• Γ; ∆′2 ` D3 : V

Now we notice that Γ; ∆′1 ` D1 � D2 : U must have been derived by an instance
of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma A.39, it must be the case that Γ; ∆′11 ` D1 � D2 : U2

and Γ; ∆′12 ` U2 <: U with:

• Γ; ∆′1 ↪→ Γ; ∆′11,∆
′
12

• Γ; ∆′11 ↪→ Γ; ∆′A,∆
′
B

• Γ; ∆′A ` D1 : U1

• Γ; ∆′B ` D2 : U2

211

APPENDIX A. PROOFS OF AF7 AND AF7ALG

We have E ′ � E [∆1,∆2 | D2 � D1] by applying (Extr Fork) to E
[∆1 | D1] and E ′ [∆2 | D2], hence we can construct the following type deriva-
tion:

Exp Fork

Exp Fork
Γ; ∆′B ` D2 : U2 Γ; ∆′A ` D1 : U1

Γ; ∆′B,∆
′
A ` D2 � D1 : U1 Γ; ∆′2 ` D3 : V

Γ; ∆A ` (E′ � E) � E′′ : V

since Γ; ∆A,∆1,∆2,∆3 ↪→ Γ; (∆′B,∆
′
A),∆′2 can be derived by Lemma A.8. Fi-

nally, we conclude Γ; ∆ ` (E ′ � E) � E ′′ : T by (Exp Subsum).

Case (Heat Fork Assoc): assume (E � E ′) � E ′′ V E � (E ′ � E ′′) with
Γ; ∆ ` (E � E ′) � E ′′ : T . The judgement must follow by an instance of (Exp
Fork) after an instance of (Exp Subsum), hence it must be the case that
Γ; ∆A ` (E � E ′) � E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• E ′′ [∆3 | D3]

• Γ; ∆A,∆1,∆2,∆3 ↪→ Γ; ∆′1,∆
′
2

• Γ; ∆′1 ` D1 � D2 : U

• Γ; ∆′2 ` D3 : V

Now we notice that Γ; ∆′1 ` D1 � D2 : U must have been derived by an instance
of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma A.39, it must be the case that Γ; ∆′11 ` D1 � D2 : U2

and Γ; ∆′12 ` U2 <: U with:

• Γ; ∆′1 ↪→ Γ; ∆′11,∆
′
12

• Γ; ∆′11 ↪→ Γ; ∆′A,∆
′
B

• Γ; ∆′A ` D1 : U1

• Γ; ∆′B ` D2 : U2

We have E ′ � E ′′ [∆2,∆3 | D2 � D3] by applying (Extr Fork) to E ′
[∆2 | D2] and E ′′ [∆3 | D3]. Moreover, we know that E ′′ [∆3 | D3]
implies D3 [∅ | D3] by Lemma A.39, hence we can construct the following
type derivation:

Exp Fork
Γ; ∆′A ` D1 : U1

Γ; ∆′B ` D2 : U2 Γ; ∆′2 ` D3 : V

Γ; ∆′B,∆
′
2 ` D2 � D3 : V

Exp Fork

Γ; ∆A ` E � (E′ � E′′) : V

since Γ; ∆A,∆1,∆2,∆3 ↪→ Γ; ∆′A, (∆
′
B,∆

′
2) can be derived by Lemma A.8. Fi-

nally, we conclude Γ; ∆ ` E � (E ′ � E ′′) : T by (Exp Subsum).

212

A.1. SOUNDNESS OF AF7

Case (Heat Fork Let): assume let x = (E � E ′) in E ′′ V E � (let x =
E ′ in E ′′) with Γ; ∆ ` let x = (E � E ′) in E ′′ : T . The judgement must follow by
an instance of (Exp Let) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` let x = (E � E ′) in E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• Γ; ∆A,∆1,∆2 ↪→ Γ; ∆′1,∆
′
2

• Γ; ∆′1 ` D1 � D2 : U

• (Γ; ∆′2) • x : U ` E ′′ : V

Now we notice that Γ; ∆′1 ` D1 � D2 : U must have been derived by an instance
of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma A.39, it must be the case that Γ; ∆′11 ` D1 � D2 : U2

and Γ; ∆′12 ` U2 <: U with:

• Γ; ∆′1 ↪→ Γ; ∆′11,∆
′
12

• Γ; ∆′11 ↪→ Γ; ∆′A,∆
′
B

• Γ; ∆′A ` D1 : U1

• Γ; ∆′B ` D2 : U2

We have let x = E ′ in E ′′ [∆2 | let x = D2 in E ′′] by (Extr Let), hence we
can construct the following type derivation:

Exp Fork
Γ; ∆′A ` D1 : U1

Exp Subsum
Γ; ∆′B ` D2 : U2 Γ; ∆′12 ` U2 <: U

Γ; ∆′B,∆
′
12 ` D2 : U (Γ; ∆′2) • x : U ` E′′ : V

Γ; ∆′B,∆
′
12,∆

′
2 ` let x = D2 in E′′ : V

Exp Let

Γ; ∆A ` E � (let x = E′ in E′′) : V

since Γ; ∆A,∆1,∆2 ↪→ Γ; ∆′A, (∆
′
B,∆

′
12,∆

′
2) can be derived by Lemma A.8. We

conclude Γ; ∆ ` E � (let x = E ′ in E ′′) : T by (Exp Subsum).

Assume now E � (let x = E ′ in E ′′) V let x = (E � E ′) in E ′′ with Γ; ∆ `
E � (let x = E ′ in E ′′) : T . The judgement must follow by an instance of
(Exp Fork) after an instance of (Exp Subsum), hence it must be the case
that Γ; ∆A ` E � (let x = E ′ in E ′′) : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E [∆1 | D1]

• let x = E ′ in E ′′ [∆2 | let x = D2 in E ′′] with E ′ [∆2 | D2]

• Γ; ∆A,∆1,∆2 ↪→ Γ; ∆′1,∆
′
2

• Γ; ∆′1 ` D1 : U1

• Γ; ∆′2 ` let x = D2 in E ′′ : V

213

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Now we notice that Γ; ∆′2 ` let x = D2 in E ′′ : V must have been derived by an
instance of (Exp Let) after an instance of (Exp Subsum). Since E ′ [∆2 |D2]
implies D2 [∅ | D2] by Lemma A.39, it must be the case that Γ; ∆′21 ` let x =
D2 in E ′′ : U3 and Γ; ∆′22 ` U3 <: V with:

• Γ; ∆′2 ↪→ Γ; ∆′21,∆
′
22

• Γ; ∆′21 ↪→ Γ; ∆′A,∆
′
B

• Γ; ∆′A ` D2 : U2

• (Γ; ∆′B) • x : U2 ` E ′′ : U3

We have E � E ′ [∆1,∆2 | D1 � D2] by (Extr Fork). Moreover, we know
that E [∆1 | D1] implies D1 [∅ | D1] by Lemma A.39, hence we can
construct the following type derivation:

Exp Let

Exp Fork
Γ; ∆′1 ` D1 : U1 Γ; ∆′A ` D2 : U2

Γ; ∆′1,∆
′
A ` D1 � D2 : U2

(1)

(Γ; ∆′B,∆
′
22) • x : U2 ` E′′ : V

Γ; ∆A ` let x = (E � E′) in E′′ : V

where Γ; ∆A,∆1,∆2 ↪→ Γ; (∆′1,∆
′
A), (∆′B,∆

′
22) can be derived by Lemma A.8,

and the derivation (1) is constructed as follows:

Exp Subsum
(Γ; ∆′B) • x : U2 ` E′′ : U3

Γ; ∆′22 ` U3 <: V

Γ, x : ψ(U2); ∆′22 ` U3 <: V

(Γ; ∆′B,∆
′
22) • x : U2 ` E′′ : V

We conclude Γ; ∆ ` let x = (E � E ′) in E ′′ : T by (Exp Subsum).

The next simple lemma states that tautologies can be safely removed from any
typing environment. This is used in some cases of the Subject Reduction proof, to
deal with the logical formulas we explicitly introduce in the typing environment
to make type-checking more precise (cf. Exp Split).

Lemma A.46 (Removing Tautologies). If Γ; ∆, F ` E : T and ∅ ` F , then
Γ; ∆ ` E : T .

Proof. We know that Γ; ∆, F ` E : T implies Γ; ∆, F ` � by Lemma B.3. More-
over, the latter implies Γ; ∆ ` � again by Lemma B.3. Since ∆, F ` ∆, F by
Lemma A.2, we can derive Γ; ∆ ↪→ Γ; ∆, F as follows:

Rewrite
Γ; ∆ ` � (*)

∅ ` F ∆, F ` ∆, F

∆ ` ∆, F Γ; ∆, F ` �
Γ; ∆ ↪→ Γ; ∆, F

Here (*) follows by using a standard Cut elimination argument. Since Γ; ∆, F `
E : T , the conclusion Γ; ∆ ` E : T follows by Lemma A.9.

214

A.1. SOUNDNESS OF AF7

We can finally prove the Subject Reduction theorem. Its statement is remark-
ably simple: this is mainly due to our type system design, which discharges to the
underlying affine logical framework all the complicated issues related to resource
consumption. Thus, we do not need to explicitly track in the semantics which
resources are consumed upon reduction, unlike to many other substructural type
systems.

Theorem A.1 (Subject Reduction). Let fv(E) = ∅. If Γ; ∆ ` E : T and E → E ′,
then Γ; ∆ ` E ′ : T .

Proof. By induction on the derivation of E → E ′. In the proof we implicitly
appeal to Lemma B.3 and Lemma A.8 several times:

Case (Red Fun): assume (λx.E) N → E{N/x} and Γ; ∆ ` (λx.E) N : T . The
typing judgement must follow by an instance of (Exp Appl) after an instance
of (Exp Subsum), hence it must be the case that Γ; ∆A ` (λx.E) N : U ′{N/x}
and Γ; ∆B ` U ′{N/x} <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• Γ; ∆A ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` λx.E : x : T ′ → U ′

• Γ; ∆2 ` N : T ′

By Lemma A.31 we know that Γ; ∆1 ` λx.E : x : T ′ → U ′ implies (Γ; ∆1) • x :
T ′ ` E : U ′. Now notice that x /∈ dom(Γ) by Lemma B.3, hence x /∈ fv(∆1)
by Lemma A.10. By applying Lemma B.12, we then get Γ; ∆1,∆2 ` E{N/x} :
U ′{N/x}. Since Γ; ∆ ↪→ Γ; (∆1,∆2),∆B, the conclusion Γ; ∆ ` E{N/x} : T
follows by an application of (Exp Subsum).

Case (Red Split): assume let (x, y) = (M,N) in E → E{M/x}{N/y} and
Γ; ∆ ` let (x, y) = (M,N) in E : T . The typing judgement must follow by an
instance of (Exp Split) after an instance of (Exp Subsum), hence it must be
the case that Γ; ∆A ` let (x, y) = (M,N) in E : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• Γ; ∆A ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` (M,N) : x : T ′ ∗ U ′

• (Γ; ∆2) • x : T ′ • y : U ′ • !((x, y) = (M,N)) ` E : V

• {x, y} ∩ fv(V) = ∅

By Lemma A.32 we know that Γ; ∆1 ` (M,N) : x : T ′ ∗ U ′ implies:

• Γ; ∆1 ↪→ Γ; ∆11,∆12

• Γ; ∆11 `M : T ′

• Γ; ∆12 ` N : U ′{M/x}

215

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Now notice that x /∈ dom(Γ) by Lemma B.3, hence x /∈ fv(∆2) by Lemma A.10.
By applying Lemma B.12 twice and noting that {x, y}∩ fv(V) = ∅, we then get
Γ; ∆11,∆12,∆2, !((M,N) = (M,N)) ` E : V . Since ∅ ` !((M,N) = (M,N)),
the latter judgement implies Γ; ∆11,∆12,∆2 ` E : V by Lemma A.46. Since
Γ; ∆ ↪→ Γ; (∆11,∆12,∆2),∆B, the conclusion Γ; ∆ ` E : T follows by (Exp
Subsum).

Case (Red Match): assume match h N with h x then E else E ′ → E{N/x}
and Γ; ∆ ` match h N with h x then E else E ′ : T . The typing judgement must
follow by an instance of (Exp Match) after an instance of (Exp Subsum),
hence it must be the case that Γ; ∆A ` match h N with h x then E else E ′ : V
and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• Γ; ∆A ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` h N : T ′

• (Γ; ∆2) • x : U ′ • !(h x = h N) ` E : V

• Γ; ∆2 ` E ′ : V
• (h, T ′, U ′) ∈ {(inl, T1 +T2, T1), (inr, T1 +T2, T2), (fold, µα. T1, T1{µα. T1/α})}

According to the form of h, we invoke either Lemma A.33 or Lemma A.34.
and we get Γ; ∆1 ` N : U ′. Now we notice that Γ; ∆2 ` E ′ : V implies
fnfv(V) ⊆ dom(Γ) by Lemma B.3, hence the fact that x /∈ dom(Γ) implies
x /∈ fv(V). Moreover, x /∈ dom(Γ) implies x /∈ fv(∆2) by Lemma A.10. By ap-
plying Lemma B.12 we then get Γ; ∆1,∆2, !(h N = h N) ` E{N/x} : V . Since
∅ ` !(h N = h N), the latter judgement implies Γ; ∆1,∆2 ` E{N/x} : V by
Lemma A.46. Since Γ; ∆ ↪→ Γ; (∆1,∆2),∆B, the conclusion Γ; ∆ ` E{N/x} : T
follows by (Exp Subsum).

Assume now match M with h x then E else E ′ → E ′ with M 6= h N for all
N . The type derivation has the same structure as before, but for the obvious
changes. Since Γ; ∆2 ` E ′ : V and Γ; ∆ ↪→ Γ; ∆2,∆B, the conclusion Γ; ∆ ` E ′ :
T follows by (Exp Subsum).

Case (Red Eq): assume we have M = M → true and Γ; ∆ ` M = M : T . The
typing judgement must follow by an instance of (Exp Eq) after an instance of
(Exp Subsum), hence it must be the case that:

Γ; ∆A `M = M : {x : bool | !(x = true(M = M)}

and:
Γ; ∆B ` {x : bool | !(x = true(M = M)} <: T.

with Γ; ∆ ↪→ Γ; ∆A,∆B. Recall now that true , inl() and bool , unit + unit, so
it is easy to show that we have Γ; ∆A ` true : bool. Now we note that:

Γ; ∅ ` !(true = true(M = M),

216

A.1. SOUNDNESS OF AF7

thus we get Γ; ∆A ` true : {x : bool | !(x = true(M = M)} by (Val Refine)
and the conclusion Γ; ∆ ` true : T follows by an application of (Exp Subsum).

Assume, instead, that M = N → false with M 6= N and Γ; ∆ ` M = N : T .
The typing judgement must follow by an instance of (Exp Eq) after an instance
of (Exp Subsum), hence it must be the case that:

Γ; ∆A `M = N : {x : bool | !(x = true(M = N)}

and:
Γ; ∆B ` {x : bool | !(x = true(M = N)} <: T.

with Γ; ∆ ↪→ Γ; ∆A,∆B. Now we note that:

Γ; ∅ ` !(false = true(M = N),

thus we get Γ; ∆A ` false : {x : bool | !(x = true(M = N)} by (Val Refine)
and the conclusion Γ; ∆ ` false : T follows by an application of (Exp Subsum).

Case (Red Comm): assume a!M � a? → M and Γ; ∆ ` a!M � a? : T . The
typing judgement must follow by an instance of (Exp Fork) after an instance
of (Exp Subsum), hence it must be the case that Γ; ∆A ` a!M � a? : V and
Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• a!M [∅ | a!M]

• a? [∅ | a?]

• Γ; ∆A ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` a!M : U

• Γ; ∆2 ` a? : V

We notice that Γ; ∆1 ` a!M : U must follow by an instance of (Exp Send) after
an instance of (Exp Subsum), hence:

• Γ; ∆1 ↪→ Γ; ∆11,∆12

• Γ; ∆11 ` a!M : unit

• Γ; ∆12 ` unit <: U

• (a l T ′) ∈ Γ

• Γ; ∆11 `M : T ′

We also notice that Γ; ∆2 ` a? : V must follow by an instance of (Exp Recv)
after an instance of (Exp Subsum), hence:

• Γ; ∆2 ↪→ Γ; ∆21,∆22

• Γ; ∆21 ` a? : T ′, since (a l T ′) ∈ Γ

• Γ; ∆22 ` T ′ <: V

217

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Thus we get Γ; ∆11,∆22 `M : V by (Exp Subsum). Since Γ; ∆ ↪→ Γ; ∆11,∆22,∆B,
the conclusion Γ; ∆ `M : T follows by an application of (Exp Subsum).

Case (Red Let Val): assume let x = M in E → E{M/x} and Γ; ∆ ` let x =
M in E : T . The typing judgement must follow by an instance of (Exp Let)
after an instance of (Exp Subsum). Notice that M [∅ | M], hence it must
be the case that Γ; ∆A ` let x = M in E : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• Γ; ∆A ↪→ Γ; ∆1,∆2

• Γ; ∆1 `M : U

• (Γ; ∆2) • x : U ` E : V

• x /∈ fv(V)

Now notice that x /∈ dom(Γ) by Lemma B.3, hence x /∈ fv(∆2) by Lemma A.10.
By applying Lemma B.12 and noting that x /∈ fv(V), we then get Γ; ∆1,∆2 `
E{M/x} : V . Since Γ; ∆ ↪→ Γ; (∆1,∆2),∆B, the conclusion Γ; ∆ ` E{M/x} : T
follows by an application of (Exp Subsum).

Case (Red Let): assume let x = E in E ′′ → let x = E ′ in E ′′ with E → E ′ and
Γ; ∆ ` let x = E in E ′′ : T . The typing judgement must follow by an instance of
(Exp Let) after an instance of (Exp Subsum), hence it must be the case that
Γ; ∆A ` let x = E in E ′′ : V and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E [∆′ | D]

• Γ; ∆A,∆
′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` D : U

• (Γ; ∆2) • x : U ` E ′′ : V

By Lemma A.41 we know that E → E ′ and E [∆′ | D] imply that there
exist D′,∆′′, D′′, D∗ such that D → D′ and E ′ [∆′,∆′′ | D′′] with D′
[∆′′ | D∗] and D∗ V D′′. Since Lemma A.41 is depth-preserving, we can apply
the inductive hypothesis and get Γ; ∆1 ` D′ : U . Given that D′ [∆′′ | D∗]
and Γ; ∆1 ` D′ : U , we get Γ; ∆1,∆

′′ ` D∗ : U by Lemma A.43. Since D∗ V D′′

and Γ; ∆1,∆
′′ ` D∗ : U , we get Γ; ∆1,∆

′′ ` D′′ : U by Lemma A.45. Hence, we
have:

• E ′ [∆′,∆′′ | D′′]
• Γ; ∆A,∆

′,∆′′ ↪→ Γ; (∆1,∆
′′),∆2

• Γ; ∆1,∆
′′ ` D′′ : U

• (Γ; ∆2) • x : U ` E ′′ : V

We can then apply rule (Exp Let) to get Γ; ∆A ` let x = E ′ in E ′′ : V . The
conclusion Γ; ∆ ` let x = E ′ in E ′′ : T follows by (Exp Subsum).

218

A.1. SOUNDNESS OF AF7

Case (Red Res): assume (νa)E → (νa)E ′ with E → E ′ and Γ; ∆ ` (νa)E : T .
The typing judgement must follow by an instance of (Exp Res) after an instance
of (Exp Subsum), hence it must be the case that Γ; ∆A ` (νa)E : V and
Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E a [∆′ | D]

• Γ, a l U ; ∆A,∆
′ ` D : V

By Lemma A.41 we know that E → E ′ and E a [∆′ | D] imply that there
exist D′,∆′′, D′′, D∗ such that D → D′ and E ′ a [∆′,∆′′ | D′′] with D′ a

[∆′′ | D∗] and D∗ V D′′. Since Lemma A.41 is depth-preserving, we can apply
the inductive hypothesis and get Γ, a l U ; ∆A,∆

′ ` D′ : V . Given that D′ a

[∆′′ | D∗] and Γ, a l U ; ∆A,∆
′ ` D′ : V , we get Γ, a l U ; ∆A,∆

′,∆′′ ` D∗ : V by
Lemma A.43. By Lemma A.45 we get Γ, a l U ; ∆A,∆

′,∆′′ ` D′′ : V . Hence, we
have:

• E ′ a [∆′,∆′′ | D′′]
• Γ, a l U ; ∆A,∆

′,∆′′ ` D′′ : V

We can then apply rule (Exp Res) to get Γ; ∆A ` (νa)E ′ : V . The conclusion
Γ; ∆ ` (νa)E ′ : T follows by (Exp Subsum).

Case (Red Fork 1): assume E � E ′′ → E ′ � E ′′ with E → E ′ and Γ; ∆ ` E �
E ′′ : T . The typing judgement must follow by an instance of (Exp Fork) after
an instance of (Exp Subsum), hence it must be the case that Γ; ∆A ` E � E ′′ : V
and Γ; ∆B ` V <: T with:

• Γ; ∆ ↪→ Γ; ∆A,∆B

• E [∆′ | D1]

• E ′′ [∆′′ | D2]

• Γ; ∆A,∆
′,∆′′ ↪→ Γ; ∆1,∆2

• Γ; ∆1 ` D1 : U

• Γ; ∆2 ` D2 : V

By Lemma A.41 we know that E → E ′ and E [∆′ | D1] imply that there
exist D′1,∆∗, D′′, D∗ such that D1 → D′1 and E ′ [∆′,∆∗ | D′′] with D′1
[∆∗ | D∗] and D∗ V D′′. Since Lemma A.41 is depth-preserving, we can apply
the inductive hypothesis and get Γ; ∆1 ` D′1 : U . Given that D′1 [∆∗ | D∗]
and Γ; ∆1 ` D′1 : U , we get Γ; ∆1,∆

∗ ` D∗ : U by Lemma A.43. By Lemma A.45
we get Γ; ∆1,∆

∗ ` D′′ : U . Hence, we have:

• E ′ [∆′,∆∗ | D′′]
• E ′′ [∆′′ | D2]

• Γ; ∆A,∆
′,∆∗,∆′′ ↪→ Γ; (∆1,∆

∗),∆2

219

APPENDIX A. PROOFS OF AF7 AND AF7ALG

• Γ; ∆1,∆
∗ ` D′′ : U

• Γ; ∆2 ` D2 : V

We can then apply rule (Exp Fork) to get Γ; ∆A ` E ′ � E ′′ : V . The conclusion
Γ; ∆ ` E ′ � E ′′ : T follows by (Exp Subsum).

Case (Red Fork 2): analogous to the previous case.

Case (Red Heat): assume E → E ′ with E V D, D → D′ and D′ → E ′.
Assume further that Γ; ∆ ` E : T . By Lemma A.45 we have Γ; ∆ ` D : T . By
inductive hypothesis Γ; ∆ ` D′ : T , hence Γ; ∆ ` E ′ : T again by Lemma A.45.

A.1.8 Proof of (robust) safety

We first show that well-typed structures are statically safe.

Lemma A.47 (Static Safety). If ε; ∅ ` S : T , then S is statically safe.

Proof. Consider an arbitrary structure:

(νa1) . . . (νar)((E1 � E2) � E3) � E4,

where:

• E1 = Πi∈[1,m]assume Fi,

• E2 = Πj∈[1,n]assert F ′j ,

• E3 = Πk∈[1,o]ck!Mk, and

• E4 = Π`∈[1,p]L`[e`].

We need to show that F1, . . . , Fm ` F ′1 ⊗ . . .⊗ F ′n.
We know that ε; ∅ ` S : T . This must have been derived by r applications of

(Exp Res) followed by three applications of (Exp Fork), possibly interleaving
with multiple applications of (Exp Subsum). Note that each application of
(Exp Res) and (Exp Fork) will make use of extraction, but by Lemma A.38
we can simplify an arbitrary chain of extraction steps with decreasing index sets
{a1, . . . , ar}, . . . , {ar}, ∅ into a single extraction step with index set ∅. Note that,
by definition, extraction does not affect E2, E3, and E4, since they do not contain
assumptions, but extracts all the assumed formulas Fi 6= 1 from E1. Also note
that repeatedly extracting with the same index set ∅ does not yield any new result,
as can be seen using Lemma A.39. By transitivity of subtyping and rewriting,
using the previous facts, without loss of generality we have:

• ((E1 � E2) � E3) � E4 ∅ [∆1 | ((D1 � E2) � E3) � E4],

• where E1 ∅ [∆1 | D1] with ∆1 = {Fi | Fi 6= 1} and D1 = Πi∈[1,m]assume 1.

220

A.1. SOUNDNESS OF AF7

• Γ; ∆1 ↪→ Γ; (∆A1 ,∆A2 ,∆A3 ,∆A4),∆B with Γ = a1 l T1, . . . , ar l Tr
• Γ; ∆A1 ` D1 : U1 and Γ; ∆Ai ` Ei : Ui for all i ∈ {2, 3, 4}

• Γ; ∆B ` U4 <: T .

Hence, we know that Γ; ∆A2 ` E2 : U2, where E2 is the parallel composition
of the top-level assertions of S. Such a typing derivation must contain n −
1 applications of (Exp-Fork) and n applications of (Exp Assert), possibly
interleaved with multiple applications of (Exp Subsum). Again without loss of
generality we have:

• Γ; ∆A2 ↪→ Γ; (∆C1 , . . . ,∆Cn),∆D

• for all j ∈ {1, . . . , n}: Γ; ∆Cj ` assert F ′j : Vj

• for all j ∈ {1, . . . , n}: Γ; ∆Cj ↪→ Γ; ∆′Cj ,∆
′′
Cj

for some ∆′Cj ,∆
′′
Cj

such that:

– Γ; ∆′Cj ` F ′j , and
– Γ; ∆′′Cj ` unit <: Vj

• Γ; ∆D ` Vn <: U2.

By applying (⊗-Right) and rule (Derive), it follows that:

Γ; ∆′C1
, . . . ,∆′Cn ` F ′1 ⊗ . . .⊗ F ′n.

Using Lemma A.8 we get Γ; ∆1 ↪→ Γ; ∆′C1
, . . . ,∆′Cn . By Lemma A.9 it follows

that Γ; ∆1 ` F ′1 ⊗ . . . ⊗ F ′n. Since ∆1 = {Fi | Fi 6= 1}, we get Γ;F1, . . . , Fm `
F ′1 ⊗ . . .⊗ F ′n by Lemma B.8. By inverting rule (Derive) this implies:

F1, . . . , Fm ` F ′1 ⊗ . . .⊗ F ′n.

The safety theorem below states that any well-typed expression is safe. Its
proof is simple and relies on the previous results.

Restatement A.1 (of Theorem 2.2). If ε; ∅ ` E : T , then E is safe.

Proof. In order to prove that E is safe it suffices to show that, for all expressions
E ′ and structures S such that E →∗ E ′ and E ′ V S, it holds that S is statically
safe.

By Theorem A.1, ε; ∅ ` E : T implies ε; ∅ ` E ′ : T . By Lemma A.45, E ′ V S
implies ε; ∅ ` S : T . We can conclude that S is statically safe by Lemma A.47.

The next lemma is important to show that any opponent is trivially well-
typed: it identifies Un with a number of structural types built around Un itself.

Lemma A.48 (Universal Type). If Γ; ∅ ` �, then Γ; ∅ ` T <:> Un for all
T ∈ {unit, x : Un→ Un, x : Un ∗ Un,Un + Un, µα.Un}.

221

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Proof. By inspection of the syntax-driven kinding rules it follows immediately
that Γ; ∅ ` T :: k for all T ∈ {unit, x : Un → Un, x : Un ∗ Un,Un + Un, µα.Un}
and k ∈ {pub, tnt}. We can then conclude by applying Lemma B.16.

We can now show that any opponent is well-typed. The statement is slightly
more general than expected, since we appeal to inductive reasoning in the proof.

Lemma A.49 (Opponent Typability). Let Γ; ∅ ` �. Let O be an expression that
does not contain any assumption or assertion such that (a l Un) ∈ Γ for each
a ∈ fn(O) and (x : Un) ∈ Γ for each x ∈ fv(O), then Γ; ∅ ` O : Un.

Proof. By induction on the structure of O. In each case we apply the value/-
expression typing rule corresponding to the structure of O (applying the in-
duction hypothesis to the premises of the typing rule whenever needed). This
allows us to derive that Γ; ∆ ` O : T for some T ∈ {unit, x : Un → Un, x :
Un ∗ Un,Un + Un, µα.Un} by using the following strategies:

• We first note that O ã [∅ | O] for any ã, since by definition O does not
contain any assumption.

• In the case of typing a constructor h ∈ {inl, inr}, we choose the “free” type
to be Un.

• If O is of the form M = N , we additionally apply (Exp Subsum) with
subtyping rule (Sub Refine).

• If O is a split or a match operation, we appeal to Lemma B.8.

• We can easily switch between T ∈ {unit, x : Un → Un, x : Un ∗ Un,Un +
Un, µα.Un} and Un by Lemma A.48, using (Exp Subsum) whenever needed.

We conclude by an application of (Exp Subsum), using Lemma A.48.

Finally, we can prove our main result of interest: if an expression E is assigned
type Un by our type system, then it is robustly safe. The proof is an easy
consequence of Theorem 2.2 and Lemma A.49.

Restatement A.2 (of Theorem 3.1). If ε; ∅ ` E : Un, then E is robustly safe.

Proof. Consider an arbitrary opponent O, we need to show that the application
O E is safe. Recall that:

O E , let f = O in let x = E in f x.

Let Γ = a1 l Un, . . . , an l Un with fn(O) = {a1, . . . , an}. Since the opponent
O is closed by definition, by Lemma A.49 we know that Γ; ∅ ` O : Un. We can
apply (Exp Subsum) and Lemma A.48 to derive:

Γ; ∅ ` O : Un→ Un. (A.1)

222

A.2. SOUNDNESS OF AF7ALG

We can apply Lemma B.8 to ε; ∅ ` E : Un and get Γ; ∅ ` E : Un. Assume now
E [∆ | D], by Lemma A.43 we have Γ; ∆ ` D : Un. By Lemma B.8 we then
get:

Γ, f : Un→ Un; ∆ ` D : Un. (A.2)

Since O ∅ [∅ | O], we can construct the following type derivation:

(A.1)
. . .

Γ; ∅ ` O : Un→ Un

(A.2)
. . .

Γ, f : Un→ Un; ∆ ` D : Un

. . .

Γ, f : Un→ Un, x : Un; ∅ ` f x : Un
Exp Appl

Γ, f : Un→ Un; ∅ ` let x = E in f x : Un
Exp Let

Γ; ∅ ` let f = O in let x = E in f x : Un
Exp Let

Since O E b̃ [∅ | O E] for all b̃, we can get ε; ∅ ` (νa1) . . . (νan)(O E) : Un by
applying n times rule (Exp Res) to the conclusion of the derivation above. By
Theorem 2.2, we then know that (νa1) . . . (νan)(O E) is safe. Since restrictions
do not affect safety, we can conclude.

A.2 Soundness of AF7alg
In this section we prove the soundness (Theorem 2.4) and completeness (Theo-
rem 2.5) of the algorithmic variant of our type system.

A.2.1 Logical properties

We begin by showing some important properties of the logic that play a pivotal
role in the bottom-up construction of the unique proof obligation in the algorith-
mic type system and the corresponding proofs of soundness and completeness.

We use the following convenient notation to denote all logical entailment rules
that modify the set of premises.

Definition A.2 (Left Rules `L). We say ∆ `L F if the last applied logical en-
tailment rule is a rule of the form (R-Left) or (Contr) or (Weak).

Lemma A.50 (Implication). 1. For all ∆, F, F ′ we have that ∆ ` F (F ′

iff ∆, F ` F ′.

2. For all Γ,∆, F, F ′ we have that Γ; ∆ ` F (F ′ iff Γ; ∆, F ` F ′.

Proof. 1. We show both directions separately:

• ∆ ` F (F ′ ⇒ ∆, F ` F ′:

We proceed by induction on the derivation of ∆ ` F (F ′. By
inspection of the rules, we know that either ∆ ` F (F ′ by an
application of ((-Right) or (Ident) or (False) or ∆ `L F (F ′.

Case ((-Right): We know that ∆, F ` F ′ by the premise of the rule.
We can immediately conclude.

223

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case (Ident): In this case ∆ = F (F ′. Using ((-Left) and (Ident)
we can immediately derive that

F ` F F ′ ` F ′
F (F ′, F ` F ′ .

Case (False): In this case we know ∆ = 0. We can apply (False) to
derive that ∆ ` F ′ and conclude by (Weak).

Case ∆ `L F (F ′ for some rule R:
By part (A.2) we know

∆′ ` F (F ′

∆ `L F (F ′
R

for some environment ∆′. We apply the induction hypothesis and
derive that ∆′, F ` F ′.
We apply R to derive that ∆, F ` F ′, and conclude.

• Γ; ∆, F ` F ′ ⇒ Γ; ∆ ` F (F ′:
In this case we can immediately conclude by an application of ((-
Right).

2. Follows immediately by the definition of (Derive) and (Form Env En-
try), property (1) and Lemma B.3.

Lemma A.51 (Universal Quantification). It holds that:

1. For all x,∆, F such that x /∈ fv(∆), we have that ∆ ` F iff ∆ ` ∀x.F .

2. For all Γ, x, T,∆, F such that Γ, x : ψ(T); ∆ ` � and x /∈ fnfv(∆), we have
that Γ, x : ψ(T); ∆ ` F iff Γ; ∆ ` ∀x.F .

Proof. 1. We assume that x /∈ fv(∆). We show both directions separately:

• ∆ ` F ⇒ ∆ ` ∀x.F :
Since x /∈ fv(∆) we can immediately apply (∀-Right) and derive that

∆ ` ∀x.F.

• ∆ ` ∀x.F ⇒ ∆ ` F :
We proceed by induction on the derivation of ∆ ` ∀x.F . By inspection
of the rules, we know that either ∆ ` ∀x.F by an application of (∀-
Right) or (Ident) or (False) or ∆ `L ∀x.F .

Case (∀-Right): By definition of the rule we know that x /∈ fv(∆) and
∆ ` F and conclude.

Case (Ident:) In this case ∆ = ∀x.F . We know that ∀x.F ` F by
(∀-Left) and (Ident).

224

A.2. SOUNDNESS OF AF7ALG

Case (False): In this case we know ∆ = 0. We can apply (False), and
derive ∆ ` F .

Case ∆ `L ∀x.F for some rule R:
By Definition A.2 we know that

∆′ ` ∀x.F
∆ `L ∀x.F R

.

for some ∆′. We apply the induction hypothesis and derive that
∆′ ` F .
We can apply R to derive that ∆ ` F .

2. Follows immediately by the definition of (Derive) and (Form Env En-
try) and fnfv , property (1) and Lemma B.3.

A.2.2 Soundness and completeness of the algorithmic judge-
ments

Lemma A.52 (Soundness and Completeness of Algorithmic Well-formedness).
For all Γ, the following holds true:

1. Γ `alg � iff Γ; ∅ ` �

2. for all T , Γ `alg T iff Γ; ∅ ` T

Proof. By induction on the derivation of the respective well-formedness state-
ment.

Lemma A.53 (Soundness and Completeness of Algorithmic Kinding). For all
Γ, T, k, the following holds true:

1. for all F,∆ such that Γ `alg T :: k;F and Γ; ∆ ` F , we have that Γ; ∆ `
T :: k.

2. for all ∆ such that Γ; ∆ ` T :: k, there exists F such that Γ `alg T :: k;F
and Γ; ∆ ` F ;

Proof. 1. We first prove part (1). The proof proceeds by induction on the
length of Γ `alg T :: k;F . The base cases are (Kind Var Alg) and
(Kind Unit Alg): they follow by an inspection of the typing rules and by
Lemma A.52.

We now discuss the induction step.

Case (Kind Fun Alg): Γ `alg x : T → U :: k; !F1⊗!F2 is derived by Γ `alg T ::
k;F1 and Γ, x : ψ(T) `alg U :: k;F2. We also know that Γ; ∆ `!F1⊗!F2.

225

APPENDIX A. PROOFS OF AF7 AND AF7ALG

To show: Γ; ∆ ` x : T → U :: k We know that that Γ; ∆ ↪→ Γ; !F1, !F2

by (Rewrite) and (Derive) and Γ; !F1 ` F1, and Γ; !F2 ` F2 by
(Ident), (!-Left), and (Derive).
By induction hypothesis, Γ; !F1 ` T :: k and Γ, x : ψ(T); !F2 ` U :: k.
The result follows from (Kind Fun).

Case (Kind Pair Alg): The proof is analogous to the one for (Kind Fun
Alg).

Case (Kind Sum Alg): The proof is analogous to the one for (Kind Fun
Alg).

Case (Kind Rec Alg): Γ `alg µα. T :: k; !F is proved by Γ, α :: k `alg T :: k;F .
We also know that Γ; ∆ `!F .

To show: Γ; ∆ ` µα. T :: k By (Rewrite) and (Derive) and Lemma B.3,
Γ; ∆ ↪→ Γ; !F and Γ; !F ` F by (Ident), (!-Left), and (Derive).
By induction hypothesis, Γ, α :: k; !F ` T :: k. The result follows from
(Kind Rec).

Case (Kind Refine Public Alg): The proof follows immediately from the
induction hypothesis.

Case (Kind Refine Tainted Alg): Γ `alg T :: tnt; (∀x.forms(x : T))⊗ F ′,
where T is refined is proved by Γ `alg ψ(T) :: tnt;F ′, Γ, x : ψ(T) `alg �,
and Γ `alg T . We also know that Γ; ∆ ` (∀x.forms(x : T))⊗ F ′.
To show: Γ; ∆ ` T :: tnt By (Rewrite), (Derive), and Lemma B.3 we

know that that Γ; ∆ ↪→ Γ; (∀x.forms(x : T)), F ′ and Γ; (∀x.forms(x :
T)) ` (∀x.forms(x : T)) and Γ;F ′ ` F ′ by (Ident) and (Derive).
By induction hypothesis, Γ;F ′ `alg ψ(T) :: tnt. By (∀-Left), (Ident),
and (Derive), Γ, x : ψ(T); (∀x.forms(x : T)) ` forms(x : T). The
result follows from (Kind Refine Tainted).

2. We now prove part (2). The proof proceeds by induction on the length
of Γ; ∆ ` T :: k. The base cases are (Kind Var) and (Kind Unit):
they follow by an inspection of the typing rules, by Lemma A.52, and by
observing that Γ; ∆ ` 1 for any ∆ such that Γ; ∆ ` �. We now discuss the
induction step.

Case (Kind Fun): Γ; ∆ ` x : T → U :: k is proved by Γ; !∆1 ` T :: k,
Γ, x : ψ(T); !∆2 ` U :: k, and Γ; ∆ ↪→ Γ; !∆1, !∆2. By induction hypothesis,
there exist F1, F2 such that Γ `alg T :: k;F1, Γ, x : ψ(T) `alg U :: k;F2,
Γ; !∆1 ` F1, and Γ; !∆2 ` F2.

To show: Γ `alg x : T → U :: k; !F1⊗!F2 The result follows from (Kind
Fun Alg).

To show: Γ; ∆ `!F1⊗!F2 We use (Derive) as needed. By (!-Right)
we can derive that Γ; !∆1 `!F1 and Γ; !∆2 `!F2. By (⊗-Right),
Γ; !∆1, !∆2 `!F1⊗!F2. The result follows from Lemma A.9.

Case (Kind Pair): The proof is analogous to the one for (Kind Fun).

226

A.2. SOUNDNESS OF AF7ALG

Case (Kind Sum): The proof is analogous to the one for (Kind Fun).

Case (Kind Rec): Γ; ∆ ` µα. T :: k is proved by Γ, α :: k; !∆′ ` T :: k
and Γ; ∆ ↪→ Γ; !∆′. By induction hypothesis, there exists F such that
Γ, α :: k `alg T :: k;F and Γ; !∆′ ` F .
To show: Γ `alg µα. T :: k; !F The result follows from (Kind Rec Alg).
To show: Γ; ∆ `!F Using (Derive) and (!-Right) we can derive that

Γ; !∆′ `!F . The result follows from Lemma A.9.

Case (Kind Refine Public): The proof follows immediately from the induc-
tion hypothesis.

Case (Kind Refine Tainted): Γ; ∆ ` T :: tnt, where T is refined is proved by
Γ; ∆1 ` ψ(T) :: tnt, Γ, x : ψ(T); ∆2 ` forms(x : T), and Γ; ∆ ↪→ Γ; ∆1,∆2.
By induction hypothesis, there exists F ′ such that Γ `alg ψ(T) :: tnt;F ′

and Γ; ∆1 ` F ′.
To show: Γ `alg T :: tnt; (∀x.forms(x : T))⊗ F ′ The result follows from

(Kind Refine Tainted Alg) and Lemma B.3.
To show: Γ; ∆ ` (∀x.forms(x : T))⊗ F ′ By Lemma B.3, Γ, x : ψ(T); ∆2 `
� and, thus, x /∈ dom(Γ). Since Γ; ∆ ↪→ Γ; ∆1,∆2, we also have that
Γ; ∆1,∆2 ` � and, thus, x /∈ fnfv(∆2) ⊆ dom(Γ). By Lemma A.51,
Γ; ∆2 ` ∀x.forms(x : T). By (⊗-Right), Γ; ∆1,∆2 ` (∀x.forms(x :
T))⊗ F ′. The result follows from Lemma A.9.

In order to prove soundness and completeness of subtyping we will proceed in
two steps: we first introduce an intermediate algorithmic variant of the standard
subtyping relation Γ; ∆ ` T <:alg U for annotated types that extends the standard
one by adding the side conditions in (Sub Refl) and (Sub Pub Tnt) present
in algorithmic subtyping and provides three disjoint rules for subtyping two iso-
recursive types, following the insights given in Section 2.10.5.

We will then show that we can find annotations to prove the standard sub-
typing and intermediate subtyping equivalent and show the soundness and com-
pleteness of algorithmic subtyping with respect to intermediate subtyping <:alg.

The full definition of the intermediate subtyping rules can be found in Ta-
ble A.2. The rules make use of the previously introduced annotated types T that
might contain type annotation SPT. As in algorithmic subtyping, we assume the
function ψ to extend to annotated types and we write T = 〈T 〉 to denote the
type that results from erasing all type annotations from T . We say T and T are
equal up to type annotations.

The soundness and completeness proof of intermediate subtyping makes use
of the following propositions and lemmas. We write T = {xm : . . . {x2 : {x1 :
U | F1} | F2} . . . | Fm} to denote nested (annotated) refinement types, for m = 0
this notation simply denotes the annotated type U .

The following proposition states that all types are also annotated types by
construction, which we will use implicitly throughout the following proofs.

227

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Proposition A.1 (Types and Annotated Types). Let T be a type. Then T is
also an annotated type, such that 〈T 〉 = T .

Lemma A.54 (Refinement Erasure of Annotated Types). For all types T and
annotated types T such that T = 〈T 〉 it holds that ψ(T) = ψ(〈T 〉) = 〈ψ(T)〉.

Proof. Proof by induction on the structure of T using the definitions of ψ and
the erasure of annotations 〈•〉.

Lemma A.55 (Nested Refinements). For all types T it holds that there exist
m ≥ 0 and Tmin and F1, . . . , Fm, x1, . . . , xm (if m > 0) such that T = {xm :
. . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm} and ψ(T) = ψ(Tmin) = Tmin .

Proof. Proof by induction on the structure of T using the definition of ψ.

Lemma A.56 (Annotated Refinement Types). For all types T = {xm : . . . {x2 :
{x1 : Tmin | F1} | F2} . . . | Fm}, where ψ(T) = ψ(Tmin) = Tmin , and all annotated
types Tmin and T = {xm : . . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm} such that
Tmin = 〈Tmin〉 it holds that

• 〈T 〉 = T and

• ψ(T) = Tmin .

Proof. The first statement follows by induction on m using the definition of 〈•〉.
For the second statement we first note that Tmin = ψ(Tmin). By the definition
of 〈•〉 we know that Tmin and Tmin are equal up to typing annotations and thus
by definition of ψ it must be the case that Tmin = ψ(Tmin). We conclude by
induction on m, using the definition of ψ.

Lemma A.57 (Soundness and Completeness of Intermediate Subtyping). For
all Γ,∆, T, U it holds that:

1. If Γ; ∆ ` T then Γ; ∆ ` T <:alg T .

2. If there exist ∆1,∆2 such that Γ; ∆ ↪→ Γ; ∆1,∆2 and Γ; ∆1 ` T :: pub and
Γ; ∆2 ` U :: tnt then there exist annotated types T and U such that T = 〈T 〉,
U = 〈U〉, and Γ; ∆ ` T <:alg U .

3. If Γ; ∆ ` T <:alg U and T = 〈T 〉, U = 〈U〉, then Γ; ∆ ` T <: U .

4. If Γ; ∆ ` T <: U then there exist T , U such that T = 〈T 〉, U = 〈U〉, and
Γ; ∆ ` T <:alg U .

Proof. Throughout the proof we make us of Proposition A.1 that allows us to
consider each type T as an annotated type such that 〈T 〉 = T .

1. Proof by induction on the structure of T .

If T ∈ {α, unit} we can immediately conclude by an application of (Sub
Refl *).

228

A.2. SOUNDNESS OF AF7ALG

If T is an iso-recursive type we can immediately conclude by an application
of (Sub Refl Rec *).

If T is a pair, sum, or function type the proofs follow the same strategy,
which we show exemplarily for T = x : T1∗T2. We know that Γ; ∆ ↪→ Γ; ∅, ∅
by Lemma A.8. Using Lemma B.3 we apply the induction hypothesis to T1

to derive that Γ; ∅ ` T1 <:alg T1 and to T2 to derive that Γ, x : ψ(T1); ∅ `
T2 <:alg T2. We conclude by an application of (Sub Pair *).

If T = {x : U | F} we can apply the induction hypothesis and Lemma B.3 to
derive that Γ; ∅ ` ψ(T) <:alg ψ(T). It is easy to see that Γ, y : ψ(T); forms(y :
T) ` forms(y : T). Since we know that Γ; ∆ ↪→ Γ; ∅ by Lemma A.8 we can
conclude by an application of (Sub Refine *).

2. Proof by induction on the structure of T . Note that whenever it is the
case that T 6=> U no annotations are necessary and we can immediately
conclude by an application of (Sub Pub Tnt *). In the following we thus
assume that T and U share the same top-level constructor, or that one of
them is refined.

Case In the case where T = U and T ∈ {α, unit} we can immediately conclude
by applying (Sub Refl *) to T := T and U := U using Lemma B.3.

Case In the case where T is of the form µα. T1 and U is of the form µα. U1 for
some T1, U1 we can immediately conclude by annotating U with SPT such
that we can apply (Sub Pub Tnt Rec *) to T := T and U := USPT. We
note that 〈USPT〉 = U by definition.

Case The proofs of the cases where T, U are a couple of pair, sum, or function
types all follow the same strategy, which we show exemplarily for the case
T = x : T1 ∗T2 and U = x : U1 ∗U2 (note that the reasoning for sum types
will be somewhat simplified).
We know that Γ; ∆1 ` x : T1 ∗ T2 :: pub which by definition of the
only applicable kinding rule (Kind Pair) implies that there must exist
∆11,∆12 such that Γ; ∆1 ↪→ Γ; !∆11, !∆12 and Γ; !∆11 ` T1 :: pub and
Γ, x : ψ(T1); !∆12 ` T2 :: pub.
Using the same reasoning, we know that Γ; ∆2 ` x : U1 ∗ U2 :: tnt by
definition of the only applicable kinding rule (Kind Pair) implies that
there must exist ∆21,∆22 such that Γ; ∆2 ↪→ Γ; !∆21, !∆22 and Γ; !∆21 `
U1 :: tnt and Γ, x : ψ(U1); !∆22 ` U2 :: tnt.
Applying the induction hypothesis to Γ; !∆11 ` T1 :: pub and Γ; !∆21 ` U1 ::
tnt (implicitly using Lemma A.8) lets us derive that there exist annotated
types T1, U1 such that

Γ; !∆11, !∆21 ` T1 <:alg U1,

where T1 = 〈T1〉 and U1 = 〈U1〉.
By Lemma A.16 we know that Γ, x : ψ(U1); !∆22 ` U2 :: tnt implies Γ, x :
ψ(T1); !∆22 ` U2 :: tnt. We apply the induction hypothesis to the latter

229

APPENDIX A. PROOFS OF AF7 AND AF7ALG

statement and Γ, x : ψ(T1); !∆12 ` T2 :: pub, allowing us to derive that
there exist annotated types T2, U2 such that

Γ, x : ψ(T1); !∆12, !∆22 ` T2 <:alg U2,

where T2 = 〈T2〉 and U2 = 〈U2〉.
By Lemma A.8 we know that

Γ; ∆ ↪→ Γ; !∆11, !∆21, !∆12, !∆22

and can thus conclude by an application of (Sub Pair *), for T := x :
T1 ∗ T2 and U := x : U1 ∗ U2. By definition of 〈•〉 we know that 〈T 〉 = x :
〈T1〉 ∗ 〈T2〉 = x : T1 ∗ T2 = T and analogously 〈U〉 = U .

Case In the case that T or U (or both) are refined we proceed as follows. First
we note that by Lemma A.55 there must thus exist m ≥ 0, n ≥ 0 (where
m > 0 or n > 0 or both) and Tmin , Umin and F1, . . . , Fm, x1, . . . , xm and
F ′1, . . . , F

′
n, x

′
1, . . . , x

′
n such that T = {xm : . . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm}

and U = {x′n : . . . {x′2 : {x′1 : Umin | F ′1} | F ′2} . . . | F ′n} and ψ(T) =
ψ(Tmin) = Tmin and ψ(U) = ψ(Umin) = Umin .
We know that Γ; ∆1 ` T :: pub, which by Lemma A.13 implies that there
exist ∆11,∆12 such that Γ; ∆1 ↪→ Γ; !∆11,∆12 and Γ; !∆11 ` ψ(T) :: pub.
Furthermore, by Lemma A.13 we know that Γ; ∆2 ` U :: tnt implies that
there exist ∆21,∆22 such that Γ; ∆2 ↪→ Γ; !∆21,∆22 and Γ; !∆21 ` ψ(U) ::
tnt and ∆22 ` forms(y : U) for some y /∈ fv(Γ).
We can apply the induction hypothesis to Γ; !∆11 ` ψ(T) :: pub (which
is equivalent to Γ; !∆11 ` Tmin :: pub) and Γ; !∆21 ` ψ(U) :: tnt (which
is equivalent to Γ; !∆21 ` Umin :: tnt) to derive that there exist Tmin, Umin

such that
Γ; !∆11, !∆21 ` Tmin <:alg Umin,

where ψ(T) = Tmin = 〈Tmin〉 and ψ(U) = Umin = 〈Umin〉.
We construct the annotated types T and U as follows: T := {xm :
. . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm} and U := {x′n : . . . {x′2 : {x′1 :
Umin | F ′1} | F ′2} . . . | F ′n}. By Lemma A.56 we know that T = 〈T 〉 and
U = 〈U〉 and ψ(T) = ψ(Tmin) = Tmin and ψ(U) = ψ(Umin) = Umin .
Weakening in the logic allows us to derive that ∆22 ` forms(y : U) im-
plies that ∆22, forms(y : T) ` forms(y : U). By applying (Derive) and
Lemma B.3 we can conclude that

Γ, y : ψ(T); ∆22, forms(y : T) ` forms(y : U).

We use Lemma A.8 to derive that

Γ; ∆ ↪→ Γ; (!∆11, !∆21),∆22

and conclude that Γ; ∆ ` T <:alg U by an application of (Sub Refine *).

230

A.2. SOUNDNESS OF AF7ALG

3. Straightforward induction on the derivation of Γ; ∆ ` T <:alg U .

In the case where the last applied rule was Sub Refl * we know that
T = U = T = U and T ∈ {α, unit} and Γ; ∆ ` T , which allows us to
conclude by an application of Sub Refl.

In the case where the last applied rule was (Sub Pub Tnt *) we know
that T = T and U = U and Γ; ∆ ↪→ Γ; ∆1,∆2 for some ∆1,∆2 such that
Γ; ∆1 ` T :: pub and Γ; ∆2 ` U :: tnt. We can immediately conclude by an
application of (Sub Pub Tnt).

In the case where the last applied rule (Sub Refl Rec *) we match the
necessary premise to conclude with an application of (Sub Refl), in the
case of (Sub Pub Tnt Rec *) we can conclude with an application of
(Sub Pub Tnt).

In all other cases R * we apply the induction hypothesis to the premises of
R * and conclude by an application of R. Note that for (Sub Refine *)
we make use of Lemma A.54, which lets us deduce that ψ(T) = 〈ψ(T)〉 and
ψ(U) = 〈ψ(U)〉.

4. Proof by induction on the derivation of Γ; ∆ ` T <: U . We distinguish
upon the last applied subtyping rule R:

Case (Sub Refl): In this case we can immediately conclude by an application
of statement (1) of this lemma, choosing T := T and U := U .

Case (Sub Pub Tnt): In this case we can immediately conclude by an appli-
cation of statement (2) of this lemma.

Case (Sub Pos Rec) and T = U : In this case we can immediately conclude
by an application of (Sub Refl Rec *), choosing T := T and U := U .

Case (Sub Pos Rec) and T 6= U : In this case we know that T = µα. T1

and U = µα. U1. We apply the induction hypothesis to the subtyping
premise of the rule to derive that Γ, α; !∆′ ` T1 <:alg U1 for some T1, U1

such that T1 = 〈T1〉 and U1 = 〈U1〉 and Γ; ∆ ↪→ Γ; !∆′. We conclude by an
application of (Sub Pos Rec *), choosing T := µα. T1 and U := µα. U1.
Note that by definition of 〈•〉 we know that 〈T 〉 = µα. 〈T1〉 = µα. T1 = T
and analogously 〈U〉 = U .

Case R is (Sub Pair), (Sub Fun), (Sub Sum): These cases follow similarly to
the previous case of distinct iso-recursive types by applying the induction
hypothesis to the subtyping premises of the rule and concluding by an
application of R *.

Case (Sub Refine): In this case we know that T or U (or both) are refined.
First we note that by Lemma A.55 there exist m ≥ 0, n ≥ 0 (where
m > 0 or n > 0 or both) and Tmin , Umin and F1, . . . , Fm, x1, . . . , xm and
F ′1, . . . , F

′
n, x

′
1, . . . , x

′
n such that T = {xm : . . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm}

and U = {x′n : . . . {x′2 : {x′1 : Umin | F ′1} | F ′2} . . . | F ′n} and ψ(T) =
ψ(Tmin) = Tmin and ψ(U) = ψ(Umin) = Umin .

231

APPENDIX A. PROOFS OF AF7 AND AF7ALG

By the definition of (Sub Refine) we know that there exist ∆1,∆2 such
that Γ; ∆ ↪→ Γ; !∆1,∆2 and Γ; ∆1 ` ψ(T) <: ψ(U) and Γ, x : ψ(T); ∆2, forms(y :
T) ` forms(y : U).
We can apply the induction hypothesis to Γ; ∆1 ` ψ(T) <: ψ(U) (which
is equivalent to Γ; ∆1 ` Tmin <: Umin) to derive that there exist Tmin, Umin

such that
Γ; ∆1 ` Tmin <:alg Umin,

where ψ(T) = Tmin = 〈Tmin〉 and ψ(U) = Umin = 〈Umin〉.
We construct the annotated types T and U as follows: T := {xm :
. . . {x2 : {x1 : Tmin | F1} | F2} . . . | Fm} and U := {x′n : . . . {x′2 : {x′1 :
Umin | F ′1} | F ′2} . . . | F ′n}. By Lemma A.56 we know that T = 〈T 〉 and
U = 〈U〉 and ψ(T) = ψ(Tmin) = Tmin and ψ(U) = ψ(Umin) = Umin .
We conclude that Γ; ∆ ` T <:alg U by an application of (Sub Refine *).

Lemma A.58 (Soundness and Completeness of Algorithmic Subtyping). 1. For
all Γ,∆, T , U , the following holds true:

(a) For all F such that Γ `alg T <: U ;F and Γ; ∆ ` F , we have that
Γ; ∆ ` T <:alg U .

(b) If Γ; ∆ ` T <:alg U , then there exists F such that Γ `alg T <: U ;F
and Γ; ∆ ` F ;

2. For all Γ,∆, T, U , the following holds true:

(a) For all T , U, F such that Γ `alg T <: U ;F and Γ; ∆ ` F and T = 〈T 〉,
U = 〈U〉, we have that Γ; ∆ ` T <: U .

(b) If Γ; ∆ ` T <: U then there exist T , U, F such that T = 〈T 〉, U = 〈U〉,
and Γ `alg T <: U ;F and Γ; ∆ ` F .

Proof. 1. We first prove part (1a). The proof proceeds by induction on the
length of Γ `alg T <: U ;F . We use the non-annotated types T := 〈T 〉 and
U := 〈U〉 whenever applicable.
The base cases (Sub Refl Alg) and (Sub Refl Rec Alg) follow by an
inspection of the typing rules and by Lemma A.52.

We now discuss the induction step by analyzing the last applied algorithmic
subtyping rule.

Case (Sub Pub Tnt Alg): Γ `alg T <: U ;F1 ⊗ F2 is proved by Γ `alg T ::
pub;F1 and Γ `alg U :: tnt;F2, where T = T and U = U are not annotated.
We also know that Γ; ∆ ` F1 ⊗ F2 and T 6=> U .
To show: Γ; ∆ ` T <:alg U By (Rewrite), (Derive), and Lemma B.3

we know that Γ; ∆ ↪→ Γ;F1, F2 and Γ;F1 ` F1 and Γ;F2 ` F2 by
(Ident) and (Derive). By Lemma A.53, Γ;F1 ` T :: pub and Γ;F2 `
U :: tnt. The result follows from (Sub Pub Tnt *).

232

A.2. SOUNDNESS OF AF7ALG

Case (Sub Pub Tnt Rec Alg): The proof follows the same structure as the
one for (Sub Pub Tnt Alg) and concludes with an application of (Sub
Pub Tnt Rec *).

Case (Sub Fun Alg): Γ `alg x : T1 → T2 <: x : U1 → U2; !F1⊗!F2 is derived
by Γ `alg U1 <: T1;F1 and Γ, x : ψ(U1) `alg T2 <: U2;F2. We also know
that Γ; ∆ `!F1⊗!F2.

To show: Γ; ∆ ` x : T1 → T2 <:alg x : U1 → U2 By (Rewrite), (Derive),
and Lemma B.3 we know that Γ; ∆ ↪→ Γ; !F1, !F2 and Γ; !F1 ` F1, and
Γ; !F2 ` F2 by (Ident), (!-Left), and (Derive).
By induction hypothesis, Γ; !F1 ` U1 <:alg T1 and Γ, x : ψ(U1); !F2 `
T2 <:alg U2. The result follows from (Sub Fun *).

Case (Sub Pair Alg): The proof is analogous to the one for (Sub Fun Alg).

Case (Sub Sum Alg): The proof is analogous to the one for (Sub Fun Alg).

Case (Sub Pos Rec Alg): Γ `alg µα. T1 <: µα. U1; !F is proved by Γ, α `alg
T1 <: U1;F . We also know that Γ; ∆ `!F and that α occurs only positively
in T1 and U1.

To show: Γ; ∆ ` µα. T1 <:alg µα. U1 By (Rewrite), (Derive), and Lemma B.3
we know thatΓ; ∆ ↪→ Γ; !F and Γ; !F ` F by (Ident), (!-Left), and
(Derive).
By induction hypothesis, Γ, α; !∆′ ` T1 <: U1. The result follows from
(Sub Pos Rec *).

Case (Sub Refine Alg): Γ; ∆ `alg T <: U ;F ⊗ ∀y.(forms(y : T)(forms(y : U))
is proved by Γ `alg ψ(T) <: ψ(U);F . We also know that Γ; ∆ ` F ⊗
∀y.(forms(y : T)(forms(y : U)) and that at least one of the types T , U
is refined.

To show: Γ; ∆ ` T <:alg U By (Rewrite), (Derive), and Lemma B.3
we know that Γ; ∆ ↪→ Γ;F, ∀y.(forms(y : T)(forms(y : U)), Γ;F `
F and Γ;∀y.(forms(y : T) (forms(y : U)) ` ∀y.(forms(y : T) (
forms(y : U)) by (Ident) and (Derive).
By induction hypothesis, Γ;F ` ψ(T) <:alg ψ(U).
Without loss of generality, let us assume y /∈ dom(Γ) and, thus, y /∈
fnfv(∀y.(forms(y : T) (forms(y : U))). (This assumption can be
fulfilled by α-renaming y if necessary.)
By Lemma B.3, we can easily see that Γ, y : ψ(T);∀y.(forms(y : T)(
forms(y : U)) ` �. By Lemma A.51, Γ, y : ψ(T);∀y.(forms(y : T) (
forms(y : U)) ` forms(y : T) (forms(y : U). By Lemma A.50,
Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : U).
The result follows from (Sub Refine *).

We then prove part (1b). The proof proceeds by induction on the length
of Γ; ∆ ` T <:alg U . The base cases (Sub Refl *) and (Sub Refl Rec
*), follow by an inspection of the subtyping rules, by Lemma A.52, and
by observing that Γ; ∆ ` 1 for any ∆ such that Γ; ∆ ` �. We now discuss

233

APPENDIX A. PROOFS OF AF7 AND AF7ALG

the induction step by distinguishing the last applied intermediate subtyping
rule.

Case (Sub Pub Tnt *): Γ; ∆ ` T <:alg U is proved by Γ; ∆1 ` T :: pub,
Γ; ∆2 ` U :: tnt, Γ; ∆ ↪→ Γ; ∆1,∆2, and T 6=> U . Note that here T = T
and U = U are not annotated.

To show: Γ `alg T <: U ;F1 ⊗ F2 By Lemma A.53, there exist F1, F2 such
that Γ `alg T :: pub;F1, Γ `alg U :: tnt;F2, Γ; ∆1 ` F1, and Γ; ∆2 ` F2.
The result follows from (Sub Pub Tnt Alg).

To show: Γ; ∆ ` F1 ⊗ F2 By (⊗-Right), Γ; ∆1,∆2 ` F1 ⊗ F2. The re-
sult follows from Lemma A.9.

Case (Sub Pub Tnt Rec *): The proof follows the same structure as the one
for (Sub Pub Tnt *) and concludes with an application of (Sub Pub
Tnt Rec Alg).

Case (Sub Fun *): Γ; ∆ ` x : T1 → T2 <:alg x : U1 → U2 is proved by Γ; !∆1 `
U1 <:alg T1, Γ, x : ψ(U1); !∆2 ` T2 <:alg U2, and Γ; ∆ ↪→ Γ; !∆1, !∆2. By
induction hypothesis, there exist F1, F2 such that Γ `alg U1 <: T1;F1,
Γ, x : ψ(U1) `alg T2 <: U2;F2, Γ; !∆1 ` F1, and Γ; !∆2 ` F2.

To show: Γ `alg x : T1 → T2 <: x : U1 → U2; !F1⊗!F2 The result follows from
(Sub Fun Alg).

To show: Γ; ∆ `!F1⊗!F2 By (!-Right) and (Derive) and Lemma B.3
we know that Γ; !∆1 `!F1 and Γ; !∆2 `!F2. By (⊗-Right) and (De-
rive), Γ; !∆1, !∆2 `!F1⊗!F2. The result follows from Lemma A.9.

Case (Sub Pair *): The proof is analogous to the one for (Sub Fun *).

Case (Sub Sum *): The proof is analogous to the one for (Sub Fun *).

Case (Sub Pos Rec *): Γ; ∆ ` µα. T1 <:alg µα. U1 is proved by Γ, α; !∆′ `
T1 <:alg U1 and Γ; ∆ ↪→ Γ; !∆′. We furthermore know that α occurs only
positively in T1 and U1. By induction hypothesis, there exists F such that
Γ, α `alg T1 <: U1;F and Γ; !∆′ ` F .
To show: Γ `alg µα. T1 <: U1; !F The result follows from (Sub Pos Rec

Alg).
To show: Γ; ∆ `!F By (Derive) and (!-Right) we know that Γ; !∆′ `

!F . We conclude using Lemma A.9.

Case (Sub Refine *): Γ; ∆ ` T <:alg U is proved by Γ; ∆1 ` ψ(T) <:alg ψ(U),
Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : U), and Γ; ∆ ↪→ Γ; ∆1,∆2. By
induction hypothesis, there exists F such that Γ `alg ψ(T) <: ψ(U);F and
Γ; ∆1 ` F . We also know that at least one of the types T , U is refined.

To show: Γ; ∆ `alg T <: U ; (∀y.forms(y : T)(forms(y : U))⊗ F The re-
sult follows by (Sub Refine Alg).

To show: Γ; ∆ ` (∀y.forms(y : T)(forms(y : U))⊗ F We know that (Γ, y :
ψ(T); ∆2, forms(y : T)) ` forms(y : U). By ((-Right), (Γ, y :
ψ(T); ∆2) ` forms(y : T)(forms(y : U).

234

A.2. SOUNDNESS OF AF7ALG

By Lemma B.3, Γ, x : ψ(T); ∆2 ` � and, thus, x /∈ dom(Γ). Since
Γ; ∆ ↪→ Γ; ∆1,∆2, we also have that Γ; ∆1,∆2 ` � and, thus, x /∈
fnfv(∆2) ⊆ dom(Γ).
By Lemma A.51, (Γ; ∆2) ` ∀y.forms(y : T) (forms(y : U). By
(⊗-Right), Γ; ∆1,∆2 ` F ⊗ ∀y.(forms(y : T)(forms(y : U)). The
result follows from Lemma A.9.

2. Part (2a) follows immediately from statement (1a) and the soundness of
intermediate subtyping, shown in Lemma A.57, statement (3).

Part (2b) follows immediately from statement (1b) and the completeness of
intermediate subtyping, shown in Lemma A.57, statement (4).

The following lemma is used in the proof of soundness and completeness of algo-
rithmic typing and states that for algorithmic subtyping type annotations need
only occur in either the sub- or supertype.

Lemma A.59 (One-Sided Type annotations). For all Γ, T , U, T, UF such that
Γ `alg T <: U ;F such that T = 〈T 〉 and U = 〈U〉 it holds that:

1. there exist U ′ such that 〈U〉 = 〈U ′〉 = U and Γ `alg T <: U
′
;F ;

2. there exist T ′ such that 〈T 〉 = 〈T ′〉 = T and Γ `alg T ′ <: U ;F .

Proof. The proof proceeds by simultaneous induction on the length of the deriva-
tion of Γ `alg T <: U ;F . For the base cases (Sub Refl Alg), (Sub Refl Rec
Alg), and (Sub Pub Tnt Alg) we know that T , U are not annotated and thus
〈T 〉 = T = T and 〈T 〉 = T = T . We immediately conclude by selecting T ′ := T

and U ′ := U .
We now show the inductive cases:

Case (Sub Fun Alg) : Notice that the subtyping rule is contravariant in the
input.

1. Statement (1) follows by applying the induction hypothesis (2) to the first
subtyping premise and the induction hypothesis (1) to the second subtyping
premise. We conclude by an application of (Sub Fun Alg).

2. Statement (2) follows by applying the induction hypothesis (1) to the first
subtyping premise and the induction hypothesis (2) to the second subtyping
premise. We conclude by an application of (Sub Fun Alg).

Case (Sub Pair Alg):

1. Statement (1) follows by applying the induction hypothesis (1) to the first
subtyping premise and the induction hypothesis (1) to the second subtyping
premise. We conclude by an application of (Sub Pair Alg).

235

APPENDIX A. PROOFS OF AF7 AND AF7ALG

2. Statement (2) follows by applying the induction hypothesis (2) to the first
subtyping premise and the induction hypothesis (2) to the second subtyping
premise. We conclude by an application of (Sub Pair Alg).

Case (Sub Sum Alg):

1. Statement (1) follows by applying the induction hypothesis (1) to the sub-
typing premise. We conclude by an application of (Sub Sum Alg).

2. Statement (2) follows by applying the induction hypothesis (2) to the sub-
typing premise. We conclude by an application of (Sub Sum Alg).

Case (Sub Pos Rec Alg):

1. Statement (1) follows by applying the induction hypothesis (1) to the sub-
typing premise. We conclude by an application of (Sub Pos Rec Alg).

2. Statement (2) follows by applying the induction hypothesis (2) to the sub-
typing premise. We conclude by an application of (Sub Pos Rec Alg).

Case (Sub Pub Tnt Rec Alg): In this case we know that T = (µα. T ′)s
and U = (µα. U ′)s′ , where s = SPT ⊕ s′ = SPT. Furthermore, we know that
T = 〈T 〉 = µα. T ′ and U = 〈U〉 = µα. U ′ by definition of 〈•〉.

1. We immediately conclude by selecting U ′ = (µα. U ′)SPT and applying (Sub
Pub Tnt Rec Alg).

2. We immediately conclude by selecting T ′ = (µα. T ′)SPT and applying (Sub
Pub Tnt Rec Alg).

Case (Sub Refine Alg): We observe that refinements types are never annotated
on a top-level, only the core type stored therein may be.

1. Statement (1) follows by applying the induction hypothesis (1) to the sub-
typing premise and using Lemma A.55 and Lemma A.56. We conclude by
an application of (Sub Refine Alg).

2. Statement (2) follows by applying the induction hypothesis (2) to the sub-
typing premise and using Lemma A.55 and Lemma A.56. We conclude by
an application of (Sub Refine Alg).

The following proposition is used in the proof of soundness and completeness of
algorithmic typing and states that extraction is unaffected by typing annotations.

Proposition A.2 (Annotated Extraction). For all ã,∆ it holds that:

1. for all E,D such that E ã [∆ | D] it must be the case that 〈E〉 ã [∆ | 〈D〉];

2. for all E,D,D such that D = 〈D〉 and E ã [∆ | D] it must be the case that
there exists an annotated expression E such that E = 〈E〉 and E ã [∆ | D].

236

A.2. SOUNDNESS OF AF7ALG

Lemma A.60 (Typing Truth Assumption). For all Γ,∆, T such that Γ; ∆ `
assume 1 : T it holds that Γ; ∅ ` assume 1 : T and Γ; ∆ ` unit <: T .

Proof. By induction on the length of the derivation Γ; ∆ ` assume 1 : T . We first
note that Γ; ∅ ` assume 1 : unit by (Exp True). By Lemma B.3 we know that
Γ; ∆ ` T . In the base case (Exp True) we know that T = unit and conclude
that Γ; ∆ ` unit <: unit by (Sub Refl).

In the inductive case we know that the last applied rule must have been (Exp
Subsum) and thus there exist T ′,∆1,∆2 such that Γ; ∆1 ` assume 1 : T ′ and
Γ; ∆2 ` T ′ <: T , where Γ; ∆ ↪→ Γ; ∆1,∆2. By induction hypothesis we know that
Γ; ∆1 ` unit <: T ′ and we can thus conclude by an application of Lemma B.17
and Lemma A.9.

Restatement A.3 (of Theorems 2.4 and 2.5). For all Γ,∆, T , the following holds
true:

1. for all E,F such that Γ `alg E : T ;F and Γ; ∆ ` F , we have that Γ; ∆ `
〈E〉 : T ;

2. for all E such that Γ; ∆ ` E : T , there exist E,F such that 〈E〉 = E,
Γ `alg E : T ;F , and Γ; ∆ ` F .

Proof. 1. The proof proceeds by induction on the length of Γ `alg E : T ;F .
The base cases are (Val Var Alg), (Val Unit Alg), (Exp True Alg),
(Exp Recv Alg), and (Exp Assert Alg): in all of these cases E = 〈E〉
(meaning E does not contain annotations) and they follow by an inspection
of the typing rules and by Lemma A.52.

We show the induction cases in the following. Most cases follow a very
similar structure so we show detailed examples for standard proof strategies
and omit the details for analogous cases.

Case (Val Fun Alg): Γ `alg λx : T1. D : x : T1 → T2; !∀x.(forms(x : T1)(F ′)
is proved by Γ, x : ψ(T1) `alg D : T2;F ′. We also know that Γ; ∆ `!∀x.(forms(x :
T1)(F ′).

To show: Γ; ∆ ` 〈λx : T.D〉 : x : T1 → T2 We first note that 〈λx : T.D〉
is equal to λx. 〈D〉. By (Rewrite), (Derive), and Lemma B.3 we
know that Γ; ∆ ↪→ Γ; !∀x.(forms(x : T1) (F ′) and Γ; !∀x.(forms(x :
T1) (F ′) ` ∀x.(forms(x : T1) (F ′) by (Ident), (!-Left), and
(Derive).
Without loss of generality, let us assume x /∈ dom(Γ) and, thus, x /∈
fnfv(!∀x.(forms(x : T1)(F ′)). (This assumption can be fulfilled by
α-renaming x if necessary.)
By Lemma B.3, we can easily see that Γ, x : ψ(T1); !∀x.(forms(x :
T1) (F ′) ` �. By Lemma A.51, Γ, x : ψ(T1); !∀x.(forms(x : T1) (
F ′) ` forms(x : T1)(F ′. By Lemma A.50, Γ, x : ψ(T1); !∀x.(forms(x :
T1)(F ′), forms(x : T1) ` F ′.

237

APPENDIX A. PROOFS OF AF7 AND AF7ALG

By induction hypothesis, Γ, x : ψ(T1); !∀x.(forms(x : T1)(F ′), forms(x :
T1) ` 〈D〉 : T2.
The result follows by an application of (Val Fun).

Case (Val Pair Alg): Γ `alg (M,N) : x : T1 ∗ T2; !F1⊗!F2 is proved by
Γ `alg M : T1;F1 and Γ `alg N : T2{M/x};F2, where M := 〈M〉. We also
know that Γ; ∆ `!F1⊗!F2.
To show: Γ; ∆ ` 〈(M,N)〉 : x : T1 ∗ T2 We first note that 〈(M,N)〉 is equal

to (〈M〉, 〈N〉). By (Rewrite), (Derive), and Lemma B.3 we know
that Γ; ∆ ↪→ Γ; !F1, !F2 and Γ; !F1 ` F1 and Γ; !F2 ` F2 by (Ident),
(!-Left), and (Derive).
By applying the induction hypothesis twice we know that Γ; !F1 `
〈M〉 : T1 and Γ; !F2 ` 〈N〉 : T2{〈M〉/x}.
The result follows by an application of (Val Pair).

Case (Val Inl Alg): Γ `alg (inl M)_+T2 : T1 + T2; !F ′ is proved by Γ `alg M :
T1;F1 and Γ `alg T2. We also know that Γ; ∆ `!F ′.
To show: Γ; ∆ ` 〈(inl M)_+T2〉 : T1 + T2 We first note that 〈(inl M)_+T2〉

is equal to inl 〈M〉. By (Rewrite), (Derive), and Lemma B.3 we
know that Γ; ∆ ↪→ Γ; !F ′ and Γ; !F ′ ` F ′ by (Ident), (!-Left), and
(Derive).
By applying the induction hypothesis we know that Γ; !F ′ ` 〈M〉 : T1.
By Lemma A.52 we know that Γ; ∅ ` T2 and thus by Lemma B.8
Γ; !F ′ ` T2.
The result follows by an application of (Val Inl).

Case (Val Inr Alg): The proof is analogous to the one for (Val Inl Alg).
Case (Val Fold Alg): Γ `alg fold M : µα. T ′; !F ′ is proved by Γ `alg M :

T ′{µa. T ′/α};F ′. We also know that Γ; ∆ `!F ′.
To show: Γ; ∆ ` 〈fold M〉 : µα. T ′ We first note that 〈fold M〉 is equal to

fold 〈M〉. By (Rewrite), (Derive), and Lemma B.3 we know that
Γ; ∆ ↪→ Γ; !F ′ and Γ; !F ′ ` F ′ by (Ident), (!-Left), and (Derive).
By applying the induction hypothesis we know that Γ; !F ′ ` 〈M〉 :
T ′{µa. T ′/α}.
The result follows by an application of (Val Fold).

Case (Val Ref Alg): Γ `alg M{x:_ | F} : {x : T ′ | F};F ′ ⊗ F{〈M〉/x} is proved
by Γ `alg M : T ′;F ′ and fnfv(F) ⊆ dom(Γ) ∪ {x}. We also know that
Γ; ∆ ` F ′ ⊗ F{〈M〉/x}.
To show: Γ; ∆ ` 〈M{x:_ | F}〉 : {x : T ′ | F} We first note that 〈M{x:_ | F}〉

is equal to 〈M〉. By (Rewrite), (Derive), and Lemma B.3 we know
that Γ; ∆ ↪→ Γ;F ′, F{〈M〉/x} and Γ;F ′ ` F ′ and Γ;F{〈M〉/x} `
F{〈M〉/x} by (Ident). By induction hypothesis, Γ;F ′ ` 〈M〉 : T .
The result follows from (Val Refine).

Case (Exp Appl Alg): The proof follows straightforwardly from (Rewrite),
(Derive), Lemma B.3, (Ident) by applying the induction hypothesis
twice.

238

A.2. SOUNDNESS OF AF7ALG

Case (Exp Let Alg): Γ `alg let x = E1 in E2 : T ; ∆′ ((F1 ⊗ (∀x.forms(x :
U)(F2)) is proved by E1 ∅ [∆′ | E ′1], Γ `alg E ′1 : U ;F1, Γ, x : ψ(U) `alg
E2 : T ;F2, x /∈ fv(T). We also know that Γ; ∆ ` ∆′((F1⊗ (∀x.forms(x :
U)(F2)).

To show: Γ; ∆ ` 〈let x = E1 in E2〉 : T We first note that 〈let x = E1 in E2〉
is equal to let x = 〈E1〉 in 〈E2〉. By Lemma A.50 and Lemma A.2,
Γ; ∆,∆′ ` F1 ⊗ (∀x.forms(x : U)(F2).
By (Rewrite), (Derive), and Lemma B.3 it holds that Γ; ∆,∆′ ↪→
Γ;F1, (∀x.forms(x : U) (F2) and Γ;F1 ` F1 and Γ; ∀x.forms(x :
U)(F2 ` ∀x.forms(x : U)(F2 by (Ident) and (Derive).
Without loss of generality, let us assume x /∈ dom(Γ) and, thus, x /∈
fnfv(∀x.forms(x : U) (F2). (This assumption can be fulfilled by
α-renaming x if necessary.)
By Lemma B.3, we can easily see that Γ, x : ψ(U);∀x.forms(x : U)(
F2 ` �. By Lemma A.51, Γ, x : ψ(U);∀x.forms(x : U) (F2 `
forms(x : U)(F2. By Lemma A.50, Γ, x : ψ(U);∀x.forms(x : U)(
F2, forms(x : U) ` F2.
We note that by statement (1) of Proposition A.2 it holds that 〈E1〉 ∅
[∆′ | 〈E ′1〉].
By induction hypothesis, Γ;F1 ` 〈E ′1〉 : T and Γ, x : ψ(U);∀x.forms(x :
U)(F2, forms(x : U) ` 〈E2〉 : U .
The result follows from (Exp Let).

Case (Exp Split Alg): The proof follows a similar strategy as the one for
(Exp Let Alg).

Case (Exp Match Alg): The proof follows a similar strategy as the one for
(Exp Let Alg).

Case (Exp Eq Alg): The proof follows straightforwardly from (Rewrite),
(Derive), (Ident), Lemma B.3, the induction hypothesis, (⊗-Right),
and Lemma A.9.

Case (Exp Assume Alg): Γ `alg (assume F1)T : T ;F1 (F2 is proved by
Γ `alg (assume 1)_<:T : T ;F2 and fnfv(F) ⊆ dom(Γ), where F1 6= 1. We
also know that Γ; ∆ ` F1 (F2.

To show: Γ; ∆ ` 〈(assume F1)T 〉 : T We first note that 〈(assume F1)T 〉 is
equal to assume F1.
By Lemma A.50 we know that Γ; ∆, F1 ` F2.
By applying the induction hypothesis we know that Γ; ∆, F1 ` assume 1 :
T .
The result follows by an application of (Exp Assume) .

Case (Exp Res Alg): The proof follows a similar and slightly simplified strat-
egy as the one for (Exp Let Alg).

Case (Exp Send Alg): The proof follows straightforwardly from the induction
hypothesis using the fact that 〈a!M〉 is equal to a!〈M〉.

239

APPENDIX A. PROOFS OF AF7 AND AF7ALG

Case (Exp Fork Alg): The proof follows a similar strategy as the one for
(Exp Let Alg).

2. The proof proceeds by induction on the length of Γ; ∆ ` E : T . The base
cases are (Val Var), (Val Unit), (Exp True), (Exp Recv), and (Exp
Assert): in these cases we choose E := E and F := 1. The statement
follows by an inspection of the typing rules and by Lemma A.52.

We show the induction cases in the following. Most cases follow a very
similar structure so we show detailed examples for standard proof strategies
and omit the details for analogous cases.

For all cases the proof is split into two parts: we first show that there
exists an annotated term E and a formula F such that Γ `alg E : T ;F and
〈E〉 = E. We then prove that Γ; ∆ ` F .

Case (Val Fun): Γ; ∆ ` λx.D : x : T1 → T2 is proved by Γ, x : ψ(T1); !∆′, forms(x :
T1) ` D : T2 and Γ; ∆ ↪→ Γ; !∆′.
By induction hypothesis, there exist D,F ′ such that 〈D〉 = D, Γ, x :
ψ(T1) ` D : T2;F ′ and Γ, x : ψ(T1); !∆′, forms(x : T1) ` F ′.
To show: Γ `alg λx : T1. D : x : T1 → T2; !∀x.(forms(x : T1)(F ′) By Lemma B.3,

fnfv(T1) ⊆ dom(Γ) ∪ {x}. The result follows from (Val Fun Alg).
We note that 〈λx : T1. D〉 = λx.D.

To show: Γ; ∆ `!∀x.(forms(x : T1)(F ′) By ((-Right), Γ, x : ψ(T1); !∆′ `
forms(x : T1)(F ′.
By Lemma B.3, Γ, x : ψ(T1) ` � and x /∈ fnfv(!∆′) ⊆ dom(Γ). By
Lemma A.51, Γ; !∆′ ` ∀x.(forms(x : T1) (F ′). By (!-Right),
Γ; !∆′ `!∀x.(forms(x : T1)(F ′).
The result follows from Lemma A.9.

Case (Val Pair): Γ; ∆ ` (M,N) : x : T1 ∗ T2 is proved by Γ; !∆1 ` M : T1

Γ; !∆2 ` N : T2{M/x} and Γ; ∆ ↪→ Γ; !∆1, !∆2.
By applying the induction hypothesis twice we know that there exist
M,N,F1, F2 such that 〈M〉 = M and 〈N〉 = N and Γ ` M : T1;F1

and Γ ` N : T2{M/x};F2 and Γ; !∆1 ` F1 and Γ; !∆2 ` F2.

To show: Γ `alg (M,N) : x : T1 ∗ T2; !F1⊗!F2 The result follows immedi-
ately from (Val Pair Alg). We note that 〈(M,N)〉 = (M,N).

To show: Γ; ∆ `!F1⊗!F2 We apply (!-Right) to derive that Γ; !∆1 `!F1

and Γ; !∆2 `!F2. By (⊗-Right), Γ; !∆1, !∆2 `!F1⊗!F2.
The result follows from Lemma A.9.

Case (Val Inl): Γ; ∆ ` inl M : T1 + T2 is proved by Γ; !∆′ ` M : T1 and
Γ; !∆′ ` T2 and Γ; ∆ ↪→ Γ; !∆′.
By applying the induction hypothesis we know that there existM,F ′ such
that 〈M〉 = M and Γ `M : T1;F ′ and Γ; !∆′ ` F ′.

240

A.2. SOUNDNESS OF AF7ALG

To show: Γ `alg (inl M)_+T2 : T1 + T2; !F ′ We know that Γ; ∅ `alg T2 by
Lemma B.3 and thus Γ `alg T2 by Lemma A.52. The result follows
immediately from (Val Inl Alg). We note that 〈(inl M)_+T2〉 =
inl M .

To show: Γ; ∆ `!F ′ By (!-Right) we know that Γ; !∆′ `!F ′. The result
follows from Lemma A.9.

Case (Val Inr): The proof is analogous to the case of (Val Inl).
Case (Val Fold): Γ; ∆ ` fold M : µα. T ′ is proved by Γ; !∆′ `M : T ′{µα. T ′/α}

and Γ; ∆ ↪→ Γ; !∆′.
By applying the induction hypothesis we know that there existM,F ′ such
that 〈M〉 = M and Γ `M : T ′{µα. T ′/α};F ′ and Γ; !∆′ ` F ′.
To show: Γ `alg fold M : µα. T ′; !F ′ We know that Γ; ∅ `alg T2 by Lemma B.3

and thus Γ `alg T2 by Lemma A.52. The result follows immediately
from (Val Inl Alg). We note that 〈inl M〉 = inl M .

To show: Γ; ∆ `!F ′ By (!-Right) we know that Γ; !∆′ `!F ′. The result
follows from Lemma A.9.

Case (Val Refine): Γ; ∆ ` M : {x : T ′ | F ′} is proved by Γ; ∆1 ` M : T ′,
Γ; ∆2 ` F ′{M/x}, and Γ; ∆ ↪→ Γ; ∆1,∆2.
By induction hypothesis, there exist M,F ′′ such that 〈M〉 = M , Γ `alg
M : T ′, and Γ; ∆1 ` F ′′.
To show: Γ `alg M{x:_ | F ′} : {x : T | F ′};F ′′ ⊗ F ′{M/x} By Lemma B.3,

fnfv(F ′) ⊆ dom(Γ) ∪ {x}. The result follows from (Val Ref Alg).
We note that 〈M{x:_ | F ′}〉 = M .

To show: Γ; ∆ ` F ′′ ⊗ F ′{M/x} The result follows from (⊗-Right) and
Lemma A.9.

Case (Exp Subsum): Γ; ∆ ` E : T is proved by Γ; ∆1 ` E : T ′ and Γ; ∆2 `
T ′ <: T and Γ; ∆ ↪→ Γ; ∆1,∆2.
By applying the induction hypothesis we know that there exist E,F ′ such
that 〈E〉 = E and Γ ` E : T ′;F ′ and Γ; ∆1 ` F ′.
Furthermore, by Lemma B.23 we know that there exist T ′, T , F ′′ such that
that T ′ = 〈T ′〉, T = 〈T 〉, and Γ `alg T ′ <: T ;F ′′ and Γ; ∆2 ` F ′′. By
Lemma A.59 it follows that there exists T ∗ such that that T = 〈T ∗〉 and
Γ `alg T ′ <: T

∗
;F ′′

To show: Γ `alg E_<:T
∗ : T ;F1 ⊗ F2 The result follows immediately from

(Exp Subsum Alg). We note that 〈E〉 = E as stated above.
To show: Γ; ∆ `!F ′ By (!-Right) we know that Γ; !∆′ `!F ′. The result

follows from Lemma A.9.
Case (Exp Appl): The proof follows straightforwardly from the induction hy-

pothesis using (⊗-Right) and Lemma A.9.
Case (Exp Let): Γ; ∆ ` let x = E1 in E2 : T is proved by E1 ∅ [∆′ | E ′1],

Γ; ∆1 ` E ′1 : U , Γ, x : ψ(U); ∆2, forms(x : U) ` E2 : T , x /∈ fv(T), and
Γ; ∆,∆′ ↪→ Γ; ∆1,∆2.

241

APPENDIX A. PROOFS OF AF7 AND AF7ALG

By induction hypothesis, there exists E ′1, F1 such that 〈E ′1〉 = E ′1, Γ `alg
E ′1 : U ;F1, and Γ; ∆1 ` F1. By induction hypothesis, there exists E2, F2

such that 〈E2〉 = E2, Γ, x : ψ(U) ` E2 : T ;F2, and Γ, x : ψ(U); ∆2, forms(x :
U) ` F2.
We note that by statement (2) of Proposition A.2 it holds that there exists
E1 such that E1 ∅ [∆′ | E ′1].

To show: Γ `alg let x = E1 in E2 : T ; ∆′((F1 ⊗ ∀x.(forms(x : U)(F2))
By Lemma B.3, fnfv(∆1) ⊆ dom(Γ). The result follows from (Exp
Let Alg). We note that 〈let x = E1 in E2〉 is equal to let x =
E1 in E2.

To show: Γ; ∆ ` ∆′((F1 ⊗ ∀x.(forms(x : U)(F2)) By ((-Right),
Γ, x : ψ(U); ∆2 ` forms(x : U)(F2. By Lemma B.3, x /∈ fnfv(∆2) ⊆
dom(Γ). By Lemma A.51, Γ, x : ψ(U); ∆2 ` ∀x.(forms(x : U)(F2).
By (⊗-Right), Γ; ∆1,∆2 ` F1 ⊗ ∀x.(forms(x : U) (F2). By
Lemma A.9, Γ; ∆,∆′ ` F1⊗∀x.(forms(x : U)(F2). By ((-Right),
Γ; ∆ ` ∆′((F1 ⊗ ∀x.(forms(x : U)(F2)).

Case (Exp Split): The proof follows a similar strategy as the one for (Exp
Let).

Case (Exp Match): The proof follows a similar strategy as the one for (Exp
Let).

Case (Exp Eq): The proof follows straightforwardly from applying the induc-
tion hypothesis twice and using (⊗-Right) and Lemma A.9.

Case (Exp Assume): Γ; ∆ ` assume F ′ : T is proved by Γ; ∆, F ′ ` assume 1 :
T , where F ′ 6= 1.
We first note that by Lemma A.60 it holds that Γ; ∅ ` assume 1 : unit and
Γ; ∆, F ′ ` unit <: T .
By combining Lemma B.23 and Lemma A.59 we know that there exist
T , F ′′ such that that T = 〈T 〉, and Γ `alg unit <: T ;F ′′ and Γ; ∆, F ′ ` F ′′.
By inspection of the algorithmic subtyping rules it follows that T must not
contain any annotations (T = T) and thus Γ `alg unit <: T ;F ′′.
By applying the induction hypothesis (see proof of base case (Exp True))
to Γ; ∅ ` assume 1 : unit it follows that Γ `alg assume 1 : unit;1 and
Γ; ∅ ` 1.

To show: Γ `alg (assume F ′)T : T ;F ′((1⊗ F ′′) We first apply (Exp Sub-
sum Alg) to derive that Γ `alg (assume 1)_<:T : T ;1⊗ F ′′.
We know that Γ; ∅ `alg T2 by Lemma B.3 and thus Γ `alg T2 by
Lemma A.52. The result follows from (Exp Assume Alg). We note
that 〈(assume F ′)T 〉 = assume F ′.

To show: Γ; ∆ ` F ′((1⊗ F ′′) As stated above we know that Γ; ∅ ` 1
and Γ; ∆, F ′ ` F ′′. By (⊗-Right) it holds that Γ; ∆, F ′ ` 1⊗ F ′′

Case (Exp Res): The proof follows a similar strategy as the one for (Exp
Let).

242

A.2. SOUNDNESS OF AF7ALG

Case (Exp Send): The proof follows straightforwardly from the induction hy-
pothesis.

Case (Exp Fork): The proof follows a similar strategy as the one for (Exp
Let).

243

APPENDIX A. PROOFS OF AF7 AND AF7ALG

(Sub Refl *)
Γ; ∆ ` T T ∈ {unit, α}

Γ; ∆ ` T <:alg T

(Sub Pub Tnt *)
Γ; ∆1 ` T :: pub Γ; ∆2 ` U :: tnt Γ; ∆ ↪→ Γ; ∆1,∆2 T 6=> U

Γ; ∆ ` T <:alg U

(Sub Fun *)
Γ; !∆1 ` T ′ <:alg T

Γ, x : ψ(T ′); !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T → U <:alg x : T ′ → U ′

(Sub Pair *)
Γ; !∆1 ` T <:alg T ′

Γ, x : ψ(T); !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` x : T ∗ U <:alg x : T ′ ∗ U ′

(Sub Sum *)
Γ; !∆1 ` T <:alg T ′ Γ; !∆2 ` U <:alg U ′

Γ; ∆ ↪→ Γ; !∆1, !∆2

Γ; ∆ ` T + U <:alg T ′ + U ′

(Sub Pos Rec *)
Γ, α; !∆′ ` T <:alg T ′

α occurs only positively in T and T ′
T 6= T ′ Γ; ∆ ↪→ Γ; !∆′

Γ; ∆ ` µα. T <:alg µα. T ′

(Sub Refl Rec *)
Γ; ∆ ` µα. T

Γ; ∆ ` µα. T <:alg µα. T

(Sub Pub Tnt Rec *)
Γ; ∆1 ` µα. T :: pub Γ; ∆2 ` µα. U :: tnt
s = SPT⊕ s′ = SPT Γ; ∆ ↪→ Γ; ∆1,∆2

Γ; ∆ ` (µα. T)s <:alg (µα. U)s′

(Sub Refine *)
Γ; ∆1 ` ψ(T) <:alg ψ(U) Γ, y : ψ(T); ∆2, forms(y : T) ` forms(y : U)

Γ; ∆ ↪→ Γ; ∆1,∆2 T and/or U refined
Γ; ∆ ` T <:alg U

Notation: We use T to denote the non-annotated counterpart 〈T 〉 of the anno-
tated type T .

Table A.2: Intermediate subtyping relation <:alg (AF7)

244

B
Proofs of Chapter 4

B.1 Soundness of DF7

In the following section we prove the the soundness of the DF7 type system
presented in Chapter 4.

We first show some basic properties of DF7. We then introduce some assump-
tions on the signature, before explaining the notion of distance of expressions.
This allows us to then prove the type and distance preservation theorem needed
to show the final differential privacy results of our approach.

B.1.1 Basic properties

To simplify notation we let J denote judgements that range over {�, τ, θ :: κ, τ <:
ρ,A : τ}.

Proposition B.1 (Adding Environments Preserves Ordering). If Γ = Γ1 + Γ2,
Γ′ = Γ′1 + Γ′2 and Γ′′ = Γ′′1 + Γ′′2, then Γ,Γ′,Γ′′ = Γ1,Γ

′
1,Γ

′′
1 + Γ2,Γ

′
2,Γ

′′
2.

Proposition B.2 (Domains of Added Environments). If Γ = Γ1 + Γ2, then
dom(Γ) = dom(Γ1) = dom(Γ2).

Lemma B.1 (Pruning Preserves Well-formation). If Γ,Γ′ ` �, then Γ ` �.

Proof. By induction on the structure of Γ′.

Lemma B.2 (Well-formation of Added Environments). The following statements
hold:

1. if Γ ` � and Γ = Γ1 + Γ2, then Γ1 ` � and Γ2 ` �;

2. if Γ = Γ1 + Γ2, Γ1 ` � and Γ2 ` �, then Γ ` �.

245

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Proof. Point 1 is proved by induction on the derivation of Γ ` � using Proposi-
tion B.2, while point 2 is proved by induction on the derivation of Γ = Γ1 + Γ2,
using Proposition B.2 and Lemma B.1.

Lemma B.3 (Derived Judgments). The following statements hold:

1. if Γ ` θ, then Γ ` �, ft(θ) ⊆ dom(Γ);

2. if Γ ` θ :: κ, then Γ ` θ;

3. if Γ ` τ <: ρ, then Γ ` τ and Γ ` ρ;

4. if Γ ` A : τ , then Γ ` τ and ft(A) ∪ fv(A) ⊆ dom(Γ).

Proof. We first observe that for every core type φ it holds that ft(φ) = ft(!kφ).
The first statement follows immediately by the rule Type. The last three state-
ments are proven in the order that they are stated by induction on the depth of
the derivation of the judgment using the previous results as well as Lemma B.1
and Lemma B.2.

Lemma B.4 (Exchange). If Γ, µ1, µ2,Γ
′ ` J and dom(µ1) ∩ ft(µ2) = ∅, then

Γ, µ2, µ1,Γ
′ ` J .

Proof. By induction on the depth of the derivation of Γ, µ1, µ2,Γ
′ ` J .

Lemma B.5 (Type Variable Strengthening). For some environments Γ,Γ′ and
some entry µ ∈ {α, α :: κ} for some type variable α, where dom(µ) ∩ ft(Γ′) = ∅
it holds that

• if Γ, µ,Γ′ ` �, then Γ,Γ′ ` �;

• if Γ, µ,Γ′ ` θ :: κ and dom(µ) ∩ ft(θ) = ∅ , then Γ,Γ′ ` θ :: κ;

• if Γ, µ,Γ′ ` τ <: ρ and dom(µ) ∩ ft(τ, ρ) = ∅, then Γ,Γ′ ` τ <: ρ.

Proof. The statements are proven by induction on the derivation of Γ, µ,Γ′ ` �in
the order that they are stated, using previous results for the later ones.

Lemma B.6 (Variable Binding Strengthening). For some environments Γ,Γ′ and
some type binding of the form x : τ and x :!0φ, core types φ, types ρ, ρ′, (core)
types θ, and kinds κ it holds that

1. if Γ, x : τ,Γ′ ` �, then Γ,Γ′ ` �;

2. if Γ, x : τ,Γ′ ` θ, then Γ,Γ′ ` θ;

3. if Γ, x : τ,Γ′ ` θ :: κ, then Γ,Γ′ ` θ :: κ;

4. if Γ, x : τ,Γ′ ` ρ <: ρ′, then Γ,Γ′ ` ρ <: ρ′;

5. if Γ, x :!0φ,Γ
′ ` A : ρ, then Γ,Γ′ ` A : ρ.

246

B.1. SOUNDNESS OF DF7

Proof. The first four statement are proven in order by induction on the derivation
of Γ, x : τ,Γ′ ` J , using the previous results. Intuitively, subtyping and kinding
rules never consider variable bindings. The last statement is proven by induction
on the derivation of Γ, x :!0φ,Γ

′ ` A : ρ. Note that the rules Var and !I both
require an index > 0, meaning x :!0φ is never used.

Definition B.1 (Exponential Fragment). For all environments Γ we define the
exponential fragment of Γ to be an exponential environment Γ′ such that Γ =
Γ + Γ′.

Note that there might exist multiple exponential fragments of the same envi-
ronment.

Lemma B.7 (Properties of Exponential Fragments). For all environments Γ and
all exponential fragments Γ′ of Γ the following properties hold:

1. if Γ ` J , where J ∈ {�, θ, θ :: κ, τ <: ρ} then Γ′ ` J .

2. for all environments Γ′′ such that Γ+Γ′′ ` � it holds that Γ′ is an exponential
fragment of Γ + Γ′′.

3. if ∆′ is an exponential fragment of Γ then Γ′ + ∆′ is also an exponential
fragment of Γ.

Proof. 1. By induction on the derivation of Γ ` J , using the definition of
environment sum, Proposition B.2, Lemma B.2, and Lemma B.6.

2. Follows immediately by Definition B.1 and Proposition B.2.

3. Follows immediately by Definition B.1 and Proposition B.2.

Lemma B.8 (Weakening). For all environments Γ,Γ′, environment entries µ,
and judgements J it holds that if Γ,Γ′ ` J and Γ, µ,Γ′ ` � then Γ, µ,Γ′ ` J .

Proof. By induction on the derivation of Γ,Γ′ ` J using the fact that

dom(Γ, µ,Γ′) ⊇ dom(Γ,Γ′)

.

Lemma B.9 (Weakening by Environment Adding). It holds that:

1. For all environments Γ, environment entries µ, and judgements J it holds
that if Γ ` J and Γ + µ ` � then Γ + µ ` J .

2. For all environments Γ,Γ′ and judgements J it holds that if Γ ` J and
Γ + Γ′ ` � then Γ + Γ′ ` J .

Proof. 1. By induction on the derivation of Γ ` J .

247

APPENDIX B. PROOFS OF DF7 AND DF7ALG

2. By induction on the size of Γ′ by applying the first property multiple times.

Lemma B.10 (Bound Weakening). For all environments Γ,Γ′,Γ′′, all types τ, ρ,
and all jugements J such that Γ′ is an exponential fragment of Γ such that Γ′ `
τ <: ρ and Γ, x : ρ,Γ′′ ` J it holds that Γ, x : τ,Γ′′ ` J and for all non-typing
judgements J the depth of the second derivation equals that of the first.

Proof. By induction on the derivation of Γ, x : ρ,Γ′′ ` J . As we have noticed
before, kinding and subtyping are not affected by variable bindings at all. For
typing judgements the only interesting case is Var which is extended by an
application of Sub if necessary.

Lemma B.11 (Typing Replicated Terms). For all environments Γ, terms M ,
reals k > 0, and types τ it holds that if Γ `M : τ then

1. kΓ `M :!kτ and

2. kΓ `M :!k′τ for all k′ such that 1 ≤ k′ ≤ k.

Proof. 1. In the case of k = 1 there is nothing to prove. For k 6= 1 it follows
immediately by !kI.

2. Follows by the previous statement and Lemma B.9.

Lemma B.12 (Substitution). For all environments Γ1,Γ2,Γ3, terms M , expres-
sions B, and types τ, τ ′ for which it holds that Γ1 `M : τ and Γ2, x :!kτ,Γ3 ` B :
τ ′ for some k it follows that kΓ1 + (Γ2,Γ3) ` B{M/x} : τ ′.

Proof. By induction on the derivation of Γ2, x :!kτ,Γ3 ` B : τ ′ . We use the fact
that by Lemma B.3 Γ1 ` � and that by the same Lemma together with Lemma B.6
it must be the case that Γ2,Γ3 ` � and thus by Lemma B.2 kΓ1 +(Γ2,Γ3) ` �. We
also note that kΓ1 +(Γ2,Γ3) ` τ ′ by the definition of Type, Proposition B.2, and
Lemma B.3. This immediately takes care of the base cases Sig, Read, Read
Opp, Write, Ref, and Ref Opp. In the base case Var it must be the case
that B = y for some variable y. We distinguish whether y 6= x or x = y. In the
first case we know that B{M/x} = y{M/x} = y and that y : τ ′ ∈ Γ2,Γ3. We can
apply rule Var to derive that Γ2,Γ3 ` y : τ ′ and then conclude by Lemma B.9.
In the case that B = x we need to show that rΓ1 + (Γ2,Γ3) `M : τ ′.

By the definition of Var we know that x : τ ′ ∈ Γ2, x :!kτ,Γ3 and thus τ ′ =!kτ .
Thus, we need to show that kΓ1 + (Γ2,Γ3) ` M :!kτ , which follows immediately
by application of Lemma B.11 and Lemma B.9.

The inductive cases +/µI, !kI,(I, Add-Noise, Exp-Mech, and San follow
all similarly by applying the induction hypothesis to the hypotheses of the applied
rule and then applying the same rule again on the result.

Case ⊗I is of the form

∆1 `M1 : τ2 ∆2 `M2 : τ2

Γ2, x :!kτ,Γ3 ` (M1,M2) : !1(τ1 ⊗ τ2)︸ ︷︷ ︸
τ ′

248

B.1. SOUNDNESS OF DF7

for some M1,M2, τ1, τ2,∆1,∆2 such that Γ2, x :!kτ,Γ3 = ∆1 + ∆2. We distinguish
three cases: either there exists k′, such that 0 < k′ < k and x :!kτ ∈ ∆1 and
x :!k′−kτ ∈ ∆2 or x :!kτ ∈ ∆1 and x; !0τ ∈ ∆2 or x :!0τ ∈ ∆1 and x :!kτ ∈ ∆2. In
the first case we apply the induction hypothesis to both premises and conclude
by applying ⊗I. The last two cases are symmetric so without loss of generality
we assume that x :!kτ ∈ ∆1 and x :!0τ ∈ ∆2. By Lemma B.6 we know that the
latter implies that ∆′2 `M2 : τ2, where ∆′2 := ∆2 \ x :!0τ , thus x /∈ dom(∆′2). We
apply the induction hypothesis to the first hypothesis. Furthermore, we know by
Lemma B.3 that x /∈ fv(M2) and that thus M2{M/x} = M2. We can conclude
by applying ⊗I. The remaining cases ⊗E, +E, µE, (E, Let, and Equal are
treated very similarly to the previous one.

In the case Sub we apply the induction hypothesis and Lemma B.6 together
with Lemma B.9 and conclude by applying Sub.

Definition B.2 (Type Substitutions). For convenience we define the following
notation:

• Γ{τ/α} = µ1{τ/α}, . . . , µn{τ/α}, where α /∈ dom(Γ) and Γ = µ1, . . . , µn

• µ{τ/α} =

{
y : τ ′{τ/α} if µ = y : τ ′

µ otherwise

• A{τ/α} is recursively defined. We just show the base cases, the inductive
cases are standard.

A{τ/α} =

refτ ′{τ/α} if A = refτ ′

reada:τ ′{τ/α} if A = reada:τ ′

writea:τ ′{τ/α} if A = writea:τ ′

A if A ∈ {x, c, f}

• Using this we define (A : τ ′){τ/α} = A{τ/α} : τ ′{τ/α}.

Lemma B.13 (Core Type Substitution). It holds that:

1. For all environments Γ,Γ′, type variables α, core types φ and judgements
J such that Γ, α,Γ′ ` J and Γ ` φ it holds that Γ,Γ′{φ/α} ` J {φ/α}.

2. For all environments Γ,Γ′, type variables α, core types φ and kinds κ such
that Γ, α :: κ,Γ′ ` � and Γ ` φ :: κ it holds that Γ,Γ′{φ/α} ` �.

3. For all environments Γ,Γ′, type variables α, core types φ, kinds κ, and
(core) types θ such that Γ, α :: κ,Γ′ ` θ and Γ ` φ :: κ it holds that
Γ,Γ′{φ/α} ` θ{φ/α}.

4. For all environments Γ,Γ′, type variables α, core types φ and kinds κ, κ′,
and (core) types θ such that Γ, α :: κ,Γ′ ` θ :: κ′ and Γ ` φ :: κ it holds that
Γ,Γ′{φ/α} ` θ{φ/α} :: κ′.

249

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Proof. 1. Individual proof by induction on the derivation of Γ, α,Γ′ ` J for
each judgement J .

2. By induction on the derivation of Γ, α :: κ,Γ′ ` θ using Lemma B.3.

3. By rule Type, point (1), and Lemma B.3.

4. By induction on the derivation of Γ, α :: κ,Γ′ ` θ :: κ′.

Lemma B.14 (Public Down - Tainted Up). For all environments Γ and types
τ, ρ it holds that

1. if Γ ` τ <: ρ and Γ ` ρ :: pub then Γ ` τ :: pub;

2. if Γ ` τ <: ρ and Γ ` τ :: tnt then Γ ` ρ :: tnt.

Proof. Both statements are proven simultaneously by induction on the derivation
of Γ ` τ <: ρ.

Lemma B.15 (OPP Public Tainted). For all opponent types τ ∈ OPP it holds
that ∅ ` τ :: κ for κ ∈ {tnt, pub}.
Proof. By induction on the structure of τ . We note that by definition of OPP
all replication indexes in τ must be set to ∞, so τ = [τ]∞.

Lemma B.16 (Public Tainted). For all environments Γ and types τ it holds that

1. Γ ` τ :: pub if and only if Γ ` τ <: ρ, for all ρ ∈ OPP;

2. Γ ` τ :: tnt if and only if Γ ` ρ <: τ , for all ρ ∈ OPP.
Proof. We first note that by Lemma B.15 ∅ ` ρ :: κ for κ ∈ {tnt, pub}. The
forward implication thus follows immediately by application of rule Sub Kind.
The inverse implication follows by Lemma B.14.

Lemma B.17 (Transitivity). For all environments Γ and types τ, ρ, τ ′ it holds
that if Γ ` τ <: ρ and Γ ` ρ <: τ ′ then Γ ` τ <: τ ′.

Proof. By induction on the sum of the depth of the derivations of Γ ` τ <: ρ and
Γ ` ρ <: τ ′. We denote the last applied rule of the derivation Γ ` τ <: ρ by R1

and the last applied rule of the derivation Γ ` ρ <: τ ′ by R2 and proceed by case
analysis of the applied rules (R1, R2).

Case R1 and/or R2 are Sub Refl: We immediately conclude by Lemma B.9.

Case R1 is Sub Kind: In this case we know that Γ ` τ :: pub and Γ ` ρ :: tnt.
We can apply Lemma B.14 to derive that Γ ` τ ′ :: tnt. We immediately conclude
by applying Sub Kind.

Case R2 is Sub Kind: In this case we know that Γ ` ρ :: pub and Γ ` τ ′ :: tnt.
We can apply Lemma B.14 to derive that Γ ` τ :: pub. We immediately conclude
by applying Sub Kind.

250

B.1. SOUNDNESS OF DF7

Case R1 = R2: For all cases in which neither R1 nor R2 are equal to Sub Refl
or Sub Kind all types τ, τ ′, ρ have the same structure and we can thus conclude
by applying the induction hypothesis whenever necessary.

Case No other case can be possible.

Lemma B.18 (Inversion). It holds that:

1. If Γ `!1φ <:!1ψ then the last applied subtyping rule in that derivation must
not be Sub Kind.

2. For all environments Γ, types τ , and expressions A it holds that if Γ ` A : τ
then either the last applied rule of the derivation Γ ` A : τ is not equal
to Sub or the last applied rule of the derivation is Sub and there exists a
typing rule R different from Sub and a type ρ such that Γ ` A : ρ, where
the last applied typing rule in that derivation is R and Γ ` ρ <: τ .

3. For all environments Γ, types τ , and expressions A it holds that if Γ ` A : τ
there exists a type ρ such that the derivation Γ ` A : ρ ends with the
application of a rule that is not equal to Sub and Γ ` ρ <: τ .

Proof. 1. By inspection of the kinding rules we see that Γ `!1φ :: pub can never
be fulfilled, thus the premises for applying Sub Kind are not fulfilled.

2. By induction on the derivation of Γ ` A : τ . We proceed by case distinction
on the last applied rule R. The only interesting case is R equal to Sub.
In this case we know that Γ ` A : τ ′ for some τ ′ and Γ ` τ ′ <: τ . If the
last applied rule in the derivation of Γ ` A : τ ′ is different from Sub we
can conclude immediately. Otherwise, by an application of the induction
hypothesis we can derive that there exists a ρ such that Γ ` ρ <: τ ′ and
Γ ` A : ρ′ with a last applied rule different from Sub. We conclude by
applying Lemma B.17 by which Γ ` ρ <: τ .

3. Follows immediately from the previous statement and Sub Refl.

Lemma B.19 (Inequalities for Fractions). For all n ∈ N>0 and all a ∈ R and
all cj, dj ∈ R≥0 it holds that if cj

dj
≤ a for all j ∈ [1, n] then

∑n
i=1 ci∑n
i=1 di

≤ a.

Proof. By induction on n.

Case n = 1: Follows immediately.

Case n = 2: We first note that for m := maxi∈{1,2}(
ci
di

) it holds that m ≤ a. This
follows immediately since otherwise we would contradict the assumption that
ci
di
≤ a for all i ∈ {1, 2}. It thus suffices to show that c1+c2

d1+d2
≤ m. Note that

ci
di
≤ m ⇔ ci ≤ m · di for i ∈ {1, 2}, since di ≥ 0 by definition. We conclude as

follows:
c1 + c2

d1 + d2

≤ m · d1 +m · d2

d1 + d2

=
m · (d1 + d2)

d1 + d2

= m.

251

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Case n ≥ 2: We know that cn
dn
≤ a and that by applying the induction hypothesis

for n− 1 we can derive that
∑n−1
i=1 ci∑n−1
i=1 di

≤ a. Since this number must be ≥ 0 we can

thus apply the induction hypothesis for 2 to derive that (
∑n
i=1 ci)+cn

(
∑n
i=1 di)+dn

≤ a, which
is equivalent to the statement.

B.1.2 Assumptions on the signature

As mentioned in Section 4.4, functions of type τ1 (τ2 are 1-sensitive in τ1 → τ2.
For the soundness of our type system, this invariant must be respected also by the
types of the functions exported by the signature Σ. We formalize this property
by introducing a notion of validity for signatures. We write Γ ` 6<: A : τ to denote
typing derivations that do not make use of the subtyping rule Sub. This is useful
to derive a precise type τ for A on which to apply the metric.

Definition B.3 (Valid Signature). A signature Σ is valid if it only exports (core)
type bindings of the form:

1. c : b where c : b is the only type definition for c in Σ

2. f : τ1 (τ2 where f is 1-sensitive in the type τ1 → τ2 and if f F
det−→1 C

then ∅ 6̀<: F : τ1 and ∅ 6̀<: C : τ2.

By encapsulating the reasoning about the sensitivity of deterministic functions
within the signature, we make it possible to leverage existing results on function
sensitivity and easily incorporate new primitives and datatypes in our framework.
Notice that, for enhancing the expressivity of our type system, we allow the
signature to export multiple types for the same function.

Example B.1. Following the proof by Reed and Pierce [36], it can be shown that
the addition operator (+) is 1-sensitive in type φ = (!1Z⊗!1Z) (!1Z and + : φ
can thus be added to the signature.

B.1.3 Distance of expressions

One of the fundamental properties ensured by our type system is type and distance
preservation, that is, the type of and the distance between expressions is preserved
by reduction. First, we introduce the notion of distance for expressions. This is
defined on expressions that share the same structure and only differ in some of
their constants. 1 Intuitively, the distance between similar expressions is defined
by summing the distance between the differing constants.

1A similar structural property for expressions is used in ProVerif [20] and in the type system
for Computational RCF [34] to deal with observational equivalence relations.

252

B.1. SOUNDNESS OF DF7

Definition B.4 (Constant Substitutions). Let σ1, σ2 be substitutions mapping
variables into constants such that dom(σ1) = dom(σ2).

We say that σ1, σ2 is a pair of constant substitutions if for all x ∈ dom(σ1)
there exists a core type φ such that xσ1 : φ ∈ Σ and xσ2 : φ ∈ Σ.

Definition B.5 (Similar Expressions). We say that two closed expressions A1

and A2 are (A, σ1, σ2)-similar denoted by A1 mA;σ1;σ2 A2 for expression A and
constant substitutions σ1, σ2 if Ai = Aσi for all i ∈ {1, 2}. We say A is the
skeleton of A1, A2 with respect to σ1, σ2.

We aim at showing that the distance between expressions is preserved by
reduction: this holds true only if we take the typing environment that is used to
type-check the corresponding skeleton into account. For instance, consider the
skeleton expression A := let z = (y+y) in z and the two substitutions σ1 := {4/y}
and σ2 := {5/y}. We have Aσ1 →∗ 8 and Aσ2 →∗ 10. The skeleton expression
A can only be typed in a typing environment giving y type !2Z (or a subtype
thereof). If we define the distance between Aσ1 and Aσ2 as the distance between
the corresponding constant substitutions multiplied by the replication index in
the typing environment (that is, 1 · 2), we see that the distance is preserved
by reduction. The intuition is that the typing environment used to type-check
the skeleton expression statically characterizes how much the distance between
the differing values may be amplified at run-time. For this reason, the notion
of distance is parameterized by the typing environment used to type-check the
skeleton expression.

Definition B.6 (Constant Environment). Let σ1, σ2 be a pair of constant substi-
tutions and Γ be a typing environment such that Γ ` � and dom(σ1) = dom(Γ).

We call Γ a constant environment for σ1, σ2 if for all x ∈ dom(Γ), xσ1 : φ ∈ Σ
implies x :!kφ ∈ Γ for some k.

We can now define the notion of distance for pairs of constant substitutions
and for expressions.

Definition B.7 (Distance of Constant Substitutions). Let σ1, σ2 be a pair of
constant substitutions and let Γ be a constant environment for σ1, σ2. We define
the distance between σ1 and σ2 with respect to Γ as follows:

distΓ(σ1, σ2) =
∑
x:τ∈Γ

δτ (xσ1, xσ2).

Definition B.8 (Distance of Expressions). Let A1, A2 be (A, σ1, σ2)-similar and
Γ be a constant environment for σ1, σ2. The distance between A1 and A2 with
respect to Γ is defined as distΓ(A1, A2) = distΓ(σ1, σ2).

These definitions similarly extend to stores and configurations.

253

APPENDIX B. PROOFS OF DF7 AND DF7ALG

B.1.4 Type and distance preservation

We first introduce two convenient notations. We define the notion of well-
typedness for configurations, written Γ ` [S,A] : τ . The idea is to split Γ so
that the resulting environments can be used to give A type τ and to also type
the content of each reference in S.

Definition B.9 (Well-typed Configurations). For all expressions A, stores S =
{a1 : τ1 7→ M1, . . . , an : τn 7→ Mn}, types τ , and environments Γ, we write that
Γ ` [S,A] : τ if and only if there exist some environments Γ1, . . . ,Γn,ΓA such
that Γ = Γ1 + . . . + Γn + ΓA and ΓA ` A : τ and Γi ` Mi :!1Option〈τi〉 for all
i ∈ [1, n]. We refer to ΓA as envA(Γ ` [S,A] : τ).

The second notation is used to characterize a set of possible continuations for
a given expression.

Definition B.10 (Set of Continuations). Let [S,A] be a configuration, ˜̀ :=

`1, . . . , `n, p̃ := p1, . . . , pn and [̃S ′, B] := [S ′1, B1], . . . , [S ′n, Bn]. We write [S,A]
˜̀−→p̃

[̃S ′, B] if and only if [S,A]
`i−→pi [S ′i, Bi] for all i ∈ [1, n]. (Notice that there can be

more than one continuation only if the primitive to be executed is add_noisesZ→Z M
or san_Xs

b1→b2 M .)

Proposition B.3 (Same Derivation for Set of Continuations). For all configura-
tions [S,A], sets of configurations [̃S ′, B], sets of probabilities p̃, and sets of rules˜̀ it holds that if [S,A]

˜̀−→p̃ [̃S ′, B] then all derivations of [S,A]
`i−→pi [S ′i, Bi] use

the same semantic reduction rules.

Definition B.11 (Structural Typing). We write Σ ` A : τ to denote that ∅ ` 6<:

A : τ .

Lemma B.20 (Similar Functional Terms). Let F1, F2 be two functional terms,
such that (M,σ1, σ2)-similar for some term M and some constant substitutions
σ1, σ2. Let Γ be a constant environment for σ1, σ2. If Σ ` Fi : τ for all j ∈ [1, 2]
and some type τ then δτ (F1, F2) ≤ distΓ(F1, F2).

Proof. By induction on the structure of F1, F2.

Lemma B.21 (Similar Constant Terms). For some constant terms C1, C2 such
that Σ ` Cj : τ for all j ∈ [1, 2] and some type τ it holds that if δτ (C1, C2) <
∞ then there exist two constant substitutions σ1, σ2, a term M , and a constant
environment Γ for σ1, σ2 such that C1, C2 are (M,σ1, σ2)-similar and δτ (C1, C2) =
distΓ(C1, C2).

Proof. By induction on the structure of C1, C2. Since δτ (C1, C2) < ∞ it is easy
to see that C1, C2 must share the same structure. The base case c1, c2 follows
immediately by choosing M := x, σi := {ci/x}, Γ = x : τ for some fresh variable
x. It is easy to see, that these values fulfill the requirements. In the other cases
we conclude using the induction hypothesis either once or twice.

254

B.1. SOUNDNESS OF DF7

[S, (λx.A)N]
det−−→1 [S,A{N/x}] Red-Fun

[S, let (x, y) = (M,N) in]A
det−−→1 [S,A{M/x}{N/y}] Red-Split

[S, case inl M of x in A else B]
det−−→1 [S,A{M/x}] Red-CaseL

[S, case inr M of x in A else B]
det−−→1 [S,B{M/x}] Red-CaseR

[S, unfold fold M as x in A else B]
det−−→1 [S,A{M/x}] Red-Match

[S, unfold M as x in A else B]
det−−→1 [S,B] if ∀N.M 6= fold N Red-Match-Fail

[S, let x = M in A]
det−−→1 [S,A{M/x}] Red-LetVal

[S, let x = A in B]
`−→p [S′, let x = A′ in B] if [S,A]

`−→p [S′, A′] Red-Let

[S, refτ]
det−−→1 [S] {a : τ 7→ none}, (reada:τ ,writea:τ)] Red-Ref

[S ∪ {a : τ 7→M}, reada:τ ()]
det−−→1 [S ∪ {a : τ 7→ none},M] Red-Read

[S ∪ {a : τ 7→M},writea:τN]
det−−→1 [S ∪ {a : τ 7→ some N}, ()] Red-Write

[S, add_noisesZ→Z z1]
Noise (z1,z2,s)−−−−−−−−−→DLaps(z2) [S, z]

where z1, z2 ∈ Z and z = z1 +Z z2 Red-Noise

[S, san_Xs
b1→b2 c1]

San (Xs
b1→b2

,c1,c2)
−−−−−−−−−−−−→p [S, c2]

where p = Pr [Xs
b1→b2(c1) = c2] and ci : bi ∈ Σ and Xs

b1→b2 ∈ X . Red-San

[S,M = M]
det−−→1 [S, true] Red-Eq-True

[S,M = N]
det−−→1 [S, false] where M 6= N Red-Eq-False

[S, f F]
det−−→1 [S,C] if f(F) =Σ C Red-Sig

Notation: We let X denote the set of all mechanisms included into the system via the
general mechanism primitive.

Table B.1: Full semantics of extended RCFDF7

The semantic rules of our calculus together with the reduction rule names are
stated again in Table B.1, now also including the semantic rule for the general
mechanism primitive san_Xs

b1→b2 c1.

Note that our typing rules are not deterministic due to subtyping and rule !kI
of the form

Γ `M : τ

kΓ `M :!kτ
.

We assume that in the following proof we always consider the shortest typing
derivation where all occurrences of

Γ `M : τ

k′Γ `M :!k′τ

k · (k′Γ) `M :!k(!k′τ)

are (recursively) replaced by the equivalent rule application

Γ `M : τ

(k · k′)Γ `M :!k·k′τ
.

255

APPENDIX B. PROOFS OF DF7 AND DF7ALG

We furthermore assume that for all applications of !kI k 6= 1 (since applying
the rule for k = 1 is redundant). We also consider the shortest derivation w.r.t.
subsequent applications of the subtyping rule. For instance,

Γ ` A : τ Γ ` τ <: τ ′

Γ ` A : τ ′
Γ ` τ ′ <: τ ′′

Γ ` A : τ ′′

can be (recursively) replaced with the equivalent derivation

Γ ` A : τ Γ ` τ <: τ ′′

Γ ` A : τ ′′

by using the transitivity of the subtyping relation (Lemma B.17).
We can now state the type and distance preservation theorem. Given two sim-

ilar configurations, this theorem says that each reduction of the first configuration
can be associated with a reduction of the second configuration (item 1) so that the
target configurations are similar (item 2) and well-typed (item 3). In the case of
det reductions (item 4a), the distance between the target configurations is smaller
or equal to the one between the initial configurations and there exists exactly one
possible reduction. In the case of noise addition (item 4b), the distance between
the target configurations is the distance between the initial configurations minus
the distance between the arguments of the add_noisee

−ε/k

Z→Z primitive (the noise in
the two configurations is chosen so that add_noisee

−ε/k

Z→Z z1 and add_noisee
−ε/k

Z→Z z2

give the same result) and, for each set of corresponding reductions, the ratio be-
tween the reduction probabilities is bounded by e

ε·δZ(z1,z2)

k . This bound plays a
crucial role in linking distance preservation and differential privacy. The case of
the general mechanism primitive (item 4c) closely resembles the previous case.
In this case, the distance between the target configurations is the distance be-
tween the initial configurations minus the distance between the arguments c1, c2

of the san_Xs
b→b′ primitive. The ratio between the probabilities of the mecha-

nism Xs
b→b′ reducing to the same result c′1 = c′2 in both reductions is bounded by

e
ε·δb(c1,c2)

k , which is crucial in linking distance preservation and differential privacy.
If no additional mechanism is included in the calculus via the general mechanism
primitive (i.e., X = ∅), this item can be dropped.

Theorem B.1 (Type and Distance Preservation). Let [S1, A1] and [S2, A2] be
([S,A], σ1, σ2)-similar. Let τ be a type, Γ a typing environment, and Γ′ a constant
environment for σ1, σ2, where distΓ′([S1, A1], [S2, A2]) <∞.

Let X denote the set of all noise mechanisms that are included into the system
via the general mechanism primitive occurring in [S,A]. We assume the following
conditions to hold:

• the parameter of all noise addition primitives occurring in [S,A] is set to
s := k/ε (i.e., they are of the form add_noise

k/ε
Z→Z M);

256

B.1. SOUNDNESS OF DF7

• the parameter of all general mechanism primitives san_Xs
b→b′ M for the

mechanism Xs
b→b′ ∈ X occurring in [S,A] is set to s := ε/k (i.e., they are

of the form san_Xε/k
b→b′ M) and the respective mechanism Xs

b→b′ provides
s-differential privacy.

If Γ,Γ′ ` [S,A] : τ and [S1, A1]
˜̀
1−→p̃1

˜[T1, B1] then there exist a set of labels ˜̀2
(with

∣∣∣ ˜̀1∣∣∣ =
∣∣∣ ˜̀2∣∣∣), a set of configurations ˜[T2, B2], a set of probabilities p̃2, and an

environment Γ′′ such that

1. [S2, A2]
˜̀
2−→p̃2

˜[T2, B2];

Furthermore, for every (`2, p2, [T2, B2]) ∈ ˜(`2, p2, [T2, B2]), there exists a distinct
(`1, p1, [T1, B1]) ∈ ˜(`1, p1, [T1, B1]), a skeleton [T,B], and a pair of constant sub-
stitutions σ′1, σ′2 for which Γ′′ is a constant environment such that

2. [T1, B1] m[T,B];σ′1;σ′2
[T2, B2],

3. Γ,Γ′′ ` [T,B] : τ , and

4. the distance and reduction probabilities are bounded as follows:

(a) either p1 = p2 = 1 and distΓ′′([T1, B1], [T2, B2]) ≤ distΓ′([S1, A1], [S2, A2])

(b) or `i = Noise (zi, z
′
i, k/ε) for i ∈ {1, 2} and z1 + z′1 = z2 + z′2 and

distΓ′′([T1, B1], [T2, B2]) = distΓ′([S1, A1], [S2, A2])− δZ(z1, z2) and p1

p2
≤

e
ε·δZ(z1,z2)

k

(c) or `i = San (X
ε/k
T , ci, c

′
i) for i ∈ {1, 2} and

c′1 = c′2 and distΓ′′([T1, B1], [T2, B2]) = distΓ′([S1, A1], [S2, A2])−δb(c1, c2)

and p1

p2
≤ e

εδb(c1,c2)

k , where T = b→ b′ and Xε/k
T ∈ X .

Proof. Notation: By Definition B.9 we know that the store S must have length
n ∈ N and there must exist environments Γ1,Γ

′
1 . . . ,Γn,Γ

′
n,ΓA,Γ

′
A such that

Γ = Γ1 + . . . + Γn + ΓA and Γ′ = Γ′1 + . . . + Γ′n + Γ′A, where ΓA,Γ
′
A ` A : τ and

Γi,Γ
′
i types the i-th entry of S for all i ∈ [1, n]. We will denote ΓC := Γ1 + . . .+Γn

and Γ′C := Γ′1 + . . .+ Γ′n.

By Proposition B.3 we know that all derivations in [S1, A1]
˜̀
1−→p̃1

˜[T1, B1] have
the same structure and depth. The proof is by induction on the depth of the

derivations in [S1, A1]
˜̀
1−→p̃1

˜[T1, B1]. We first consider all rules but Red-Sig, Red-
Noise, Red-Exp, Red-San, and Red-Let. These rules are all deterministic,
meaning there exists only one continuation [T1, B1] := ˜[T1, B1] and p1 := p̃1 = 1

and they are all labeled with l1 := l̃1 = det.
By inspection of the rules and basic properties of substitution it immediately

follows that in all of these cases there exists a configuration [T2, B2] such that
[S2, A2]

det−→1 [T2, B2], where [T1, B1] m[T,B];σ1;σ2 [T2, B2], for some skeleton [T,B].

257

APPENDIX B. PROOFS OF DF7 AND DF7ALG

We will show this exemplarily for the rule Red-Split and omit it in the other
cases.

Furthermore, we will also show that Γ,Γ′ ` [T,B] : τ . It then immediately
follows that (item 4a) is fulfilled since distΓ′([T1, B1], [T2, B2]) = distΓ′(σ1, σ2) =
distΓ′([S1, A1], [S2, A2]).

Case Red-Split: We know that A1 must be of the form A1 = let (x, y) =
(M1, N1) in P1. This can be rewritten as A1 = let (x, y) = (Mσ1, Nσ1) in Pσ1

and as A1 = (let (x, y) = (M,N) in P)σ1, where A must be of the form A =
let (x, y) = (M,N) in P .
This also implies that there exists a B1 of the form B1 = P1{M1/x}{N1/y} which
is rewritable as B1 = Pσ1{Mσ1/x}{Nσ1/y} and B1 = (P{M/x}{N/y})σ1.
We additionally know that since A1 and A2 share the same structure it must be
the case thatA2 = (let (x, y) = (M,N) in P)σ2 = let (x, y) = (Mσ2, Nσ2) in Pσ2

= let (x, y) = (M2, N2) in P2 and that thus by the definition of Red-Split it
holds that [S2, A2]

det−→1 [S2, B2] where

B2 = P2{M2/x}{N2/y} = Pσ2{Mσ2/x}{Nσ2/y} = (P{M/x}{N/y})σ2.

Thus, we can immediately see that [S1, B1] m[S,B];σ1;σ2 [S2, B2] where B =
P{M/x}{N/y}.
Since ΓA,Γ

′
A ` A : τ we know by Lemma B.18 and the definition of the only

applicable typing rule ⊗E that there must exist r,∆1,∆2 such that ΓA,Γ
′
A =

r∆1 + ∆2, where ∆1 ` (M,N) :!1(τ1⊗ τ2) for some τ1, τ2 and ∆2, x :r τ1, y :r τ2 `
P : ρ for some type ρ such that ΓA,Γ

′
A ` ρ <: τ .

By Lemma B.18 and the definition of ⊗I it must furthermore be the case that
there exist ∆M

1 ,∆
N
1 such that ∆1 = ∆M

1 + ∆N
1 and that ∆M

1 ` M : τ ′1 and
∆N

1 ` N : τ ′2 for some types τ ′1, τ ′2 such that ∆M
1 + ∆N

1 `!1(τ ′1 ⊗ τ ′2) <:!1(τ1 ⊗ τ2).
By Lemma B.18 this implies that the last applied rule in the subtyping derivation
must have been Sub Pair and thus ∆M

1 ` τ ′1 <: τ1 and ∆N
1 ` τ ′2 <: τ2. We

apply Sub to derive that ∆M
1 `M : τ1 and ∆N

1 ` N : τ2.
By applying Lemma B.12 twice we can derive that

r∆M
1 + r∆N

1 + ∆2 ` P{M/x}{N/y} : ρ.

We apply rule Sub and derive that r∆M
1 +r∆N

1 +∆2 ` P{M/x}{N/y} : τ , which
is equivalent to ΓA,Γ

′
A ` P{M/x}{N/y} : τ . Since S = T by Definition B.9 we

can conclude that Γ,Γ′ ` [T,B] : τ .

Case Red-Fun: In this case we can apply the same reasoning as above to derive
that the skeleton A must be of the form A = (λx.P)N and that there exists a
skeleton B = P{N/x} such that for T := S the skeleton configuration [T,B]
fulfills all necessary criteria. It remains to be shown that Γ,Γ′ ` [T,B] : τ .
By multiple applications of Lemma B.18 and the definitions of (E and (I it
must be the case that
ΓA,Γ

′
A = ∆1 + ∆2 for some environments ∆1,∆2 such that

258

B.1. SOUNDNESS OF DF7

• ∆1 ` λx.P :!1(τ1 (τ2),
• ∆2 ` N : τ1,
• ΓA,Γ

′
A ` τ2 <: τ ,

• ∆1, x :1 τ
′
1 ` P : τ ′2,

• ∆1 `!1(τ ′1 (τ ′2) <:!1(τ1 (τ2),
• ∆1 ` τ1 <: τ ′1,
• ∆1 ` τ ′2 <: τ2

for some types τ1, τ2, τ
′
1, τ
′
2.

We can apply the rule Sub to derive that ∆2 ` N : τ ′1 and that ∆1, x :1 τ
′
1 ` P :

τ2.

By applying Lemma B.12 to these two premises we can derive that 1 ·∆2 + ∆1 `
P{N/x} : τ2.

We apply the rule Sub to derive that ΓA,Γ
′
A ` P{N/x} : τ .

Since S = T by Definition B.9 we can conclude that Γ,Γ′ ` [T,B] : τ .

Case Red-CaseL, Red-CaseR, Red-Match, Red-Match-Fail, and Red-
LetVal : These cases are standard and analogous to the previous two, repeat-
edly making use of rule Sub, Lemma B.18, and Lemma B.9, whenever necessary.
We omit the details and focus on the more interesting cases.

Case Red-Eq-True: We use the same reasoning as in previous cases to derive
that the skeleton A must be of the form A = (M = N) and that there exists a
skeleton B = true such that for T := S the skeleton configuration [T,B] fulfills
all necessary criteria (note that Bσ1 = Bσ2 = B = true).

We note that true , inl () and Bool ,!∞Unit+!∞Unit.

It remains to be shown that Γ,Γ′ ` [T,B] : τ .

By Lemma B.18 and the definition of Equal it must be the case that ΓA,Γ
′
A =

∆1 + ∆2 for some environments ∆1,∆2 such that

• ∆1 `M :!∞ρ,
• ∆2 ` N :!∞ρ,
• ΓA,Γ

′
A `!∞Bool <: τ ,

for some type ρ.

By applying Sig we can derive that ∅ ` () :!1Unit. We apply !kI to derive that
∞∅ ` () :!∞Unit. By +/µI it follows that ∞∅ ` inl () :!1(!∞Unit+!∞Unit) and
thus by !kI it holds that ∞∞∅︸ ︷︷ ︸

∅

` inl () : !∞(!∞Unit+!∞Unit)︸ ︷︷ ︸
!∞Bool

.

We apply Lemma B.9 to derive that ΓA,Γ
′
A ` true :!∞Bool and using Sub

conclude that ΓA,Γ
′
A ` true : τ .

Since S = T by Definition B.9 we can conclude that Γ,Γ′ ` [T,B] : τ .

259

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Case Red-Eq-False: Analogous to the previous case Red-Eq-True.

Case Red-Ref: We use the same reasoning as in previous cases to derive that
the skeleton A must be of the form A = refρ for some type ρ and there exists
a skeleton B = (reada:ρ,writea:ρ) such that for T := S] {a : ρ 7→ none} the
skeleton configuration [T,B] fulfills all necessary criteria.

Note that there are two typing rules for references: Ref and Ref Opp. We
assume without loss of generality that the references are typed using Ref. The
proof for Ref Opp is analogous and only changes minimally by replacing Read
by Read Opp in the following. By Lemma B.18 and the definition of Ref it
must be the case that ΓA,Γ

′
A ` refρ :!∞Ref〈ρ〉 and ΓA,Γ

′
A `!∞Ref〈ρ〉 <: τ .

We note that Ref〈ρ〉 ,!∞Read〈ρ〉⊗!∞Write〈ρ〉.
Let ∆∞ be an exponential fragment of ΓA,Γ

′
A.

Using Read and !kI we derive that ∆∞ ` reada:ρ :!∞Read〈ρ〉.
Using Write and !kI we derive that ∆∞ ` writea:ρ :!∞Write〈ρ〉.
By application of ⊗I and !kI we derive that

∆∞ ` (reada:ρ,writea:ρ) :!∞(!∞Read〈ρ〉⊗!∞Write〈ρ〉).

By Lemma B.9 and Lemma B.7 it follows that ΓA,Γ
′
A ` B :!∞Ref〈ρ〉. Using

Sub we deduce that ΓA,Γ
′
A ` B :!∞τ .

Additionally, we can easily show that ∅ ` none :!1Option〈ρ〉, by unfolding the
syntactic definitions of none and Option〈ρ〉 (similar to the typing of true in case
Red-Eq-True). This allows us to conclude that Γ,Γ′ ` [T,B] : τ by Defini-
tion B.9.

Case Red-Read: We use reasoning similar to the previous cases to derive that
there exists a j ∈ [1, n] such that the skeleton store S must be of the form
S = S ′ ∪ {aj : τj 7→ Mj} for some skeleton store S ′. and that the skeleton
expression A must be of the form A = readaj :τj(). Furthermore, there exists a
skeleton B of the form B = Mj, and skeleton store T = S ∪ {aj : τj 7→ none}.
Note that as in the previous case there are two typing rules for reference reading:
Read and Read Opp. We assume without loss of generality that the references
are typed using Read, the other case follows very similarly.

By Lemma B.18 and the definitions of(E and Read it must be the case that
ΓA,Γ

′
A = ∆1 + ∆2 for some environments ∆1,∆2 such that

• ∆1 ` readaj :τj :!1(ρ1 (ρ2),

• ∆2 ` () : ρ1,

• ΓA,Γ
′
A ` ρ2 <: τ ,

• ∆1 ` readaj :τj :!1(!∞Unit(!1Option〈τj〉),
• ∆1 `!1(!∞Unit(!1Option〈τj〉) <:!1(ρ1 (ρ2),

260

B.1. SOUNDNESS OF DF7

• ∆1 ` ρ1 <:!∞Unit,

• ∆1 ` Option〈τj〉 <: ρ2

for some types ρ1, ρ2.

We know by Definition B.9 that Γj,Γ
′
j `Mj : Option〈τj〉.

We can apply Lemma B.9 to derive that ΓA,Γ
′
A ` Option〈τj〉 <: ρ2. This allows

us to apply Lemma B.17 to yield ΓA,Γ
′
A ` Option〈τj〉 <: τ . Since both ΓA,Γ

′
A

and Γj,Γ
′
j are fragments of Γ,Γ′ we can use Lemma B.9 and Lemma B.7 to

derive that Γj,Γ
′
j ` Option〈τj〉 <: τ .

Thus, an application of Sub results in Γj,Γ
′
j `Mj : τ .

It remains to be shown that ΓA,Γ
′
A ` none : Option〈τj〉. This follows similarly

to the previous case Red-Ref, by first proving the easier statement ∆∞ `
none : Option〈τj〉 for some exponential fragment ∆∞ of ΓA,Γ

′
A and then applying

Lemma B.9.

This allows us to conclude that Γ,Γ′ ` [T,B] : τ by Definition B.9.

Case Red-Write: Similar to the previous case we derive that there exists a j ∈
[1, n] such that the skeleton store S must be of the form S = S ′∪{aj : τj 7→Mj}
for some skeleton store S ′. and that the skeleton expression A must be of the
form A = writeaj :τjN . Furthermore, there exists a skeleton B of the form B = (),
and skeleton store T = S ∪ {aj : τj 7→ some N}.
By Lemma B.18 and the definitions of(E and Write it must be the case that
ΓA,Γ

′
A = ∆1 + ∆2 for some environments ∆1,∆2 such that

• ∆1 ` writeaj :τj :!1(ρ1 (ρ2),

• ∆2 ` N : ρ1,

• ΓA,Γ
′
A ` ρ2 <: τ ,

• ∆1 ` writeaj :τj :!1(τj (!∞Unit),

• ∆1 `!1(τj (!∞Unit) <:!1(ρ1 (ρ2),

• ∆1 ` ρ1 <: τj,

• ∆1 `!∞Unit <: ρ2

for some types ρ1, ρ2.

Using Lemma B.9 it follows that ΓA,Γ
′
A ` N : ρ1 and that ΓA,Γ

′
A ` ρ1 <: τj.

We apply Sub to derive that ΓA,Γ
′
A ` N : τj.

We know that some B , inr N and that Option〈τj〉 =!∞Unit + τj. Using +/µ I
we derive that ΓA,Γ

′
A ` some N : Option〈τj〉

It can be easily seen that as in previous cases by applying Sig and !kI together
with Lemma B.9 and Lemma B.7 and Lemma B.17 we can derive that Γj,Γ

′
j `

() :!∞Unit <: τ .

This allows us to conclude that Γ,Γ′ ` [T,B] : τ by Definition B.9.

261

APPENDIX B. PROOFS OF DF7 AND DF7ALG

We now consider the next deterministic case Red-Sig.

Case Red-Sig: Again, there exists only one continuation [T1, B1] := ˜[T1, B1] and
p1 := p̃1 = 1 and the reduction is labeled with l1 := l̃1 = det.

We know that [S1, A1] and [S2, A2] are ([S,A], σ1, σ2)-similar.

Thus, since the dom(σi) for i ∈ [1, 2] only contains constants A must be of the
form A = f M for some term M such that Mσj =: Fj and Aj = f Fj for
j ∈ [1, 2].

Furthermore, Bj = Cj, where f(Fj) =Σ Cj for j ∈ [1, 2].

Note that the stores S1, S2 are unaffected by the reduction rule, so Tj := Sj.
For the sake of readability we will completely drop the stores from the following
reasoning on distance preservation. They could be included in the reasoning by
separating the substitutions σ1, σ2 into the parts needed for proving the struc-
tural equivalence of A1, A2 and the one needed for proving structural equivalence
of S1, S2.

Since we know that Γ,Γ′ ` [S, f M] : τ by Lemma B.18 we know that f : τ1 (
τ2 ∈ Σ for some type τ1, τ2.

By Definition B.13 we know that this implies that Σ ` Fi : τ1 and Σ ` Ci : τ2.

This allows us to apply Lemma B.20 and to derive that δτ1(F1, F2) ≤ distΓ′(F1, F2).
Notice that by Definition B.7 and Definition B.8 this also implies that δτ1(F1, F2) ≤
distΓ′(F1, F2) = distΓ′(σ1, σ2) = distΓ′(A1, A2).

Using Definition B.13 we also know that f is 1-sensitive in τ1 → τ2, which by
Definition 4.4 implies that δτ2(f(F1), f(F2)) ≤ δτ1(F1, F2), which is equivalent to
δτ2(C1, C2) ≤ δτ1(F1, F2).

Adding this to the list of previous inequalities leads to δτ2(C1, C2) ≤ δτ1(F1, F2) ≤
distΓ′(F1, F2) = distΓ′(σ1, σ2) = distΓ′(A1, A2).

Since distΓ′([S1, A1], [S2, A2]) < ∞ by assumption, we can apply Lemma B.21.
Thus, there exist two constant substitutions σ′1, σ′2, a term M ′, and a con-
stant environment Γ′′ for σ′1, σ′2 such that C1, C2 are (M ′, σ′1, σ

′
2)-similar and

δτ2(C1, C2) = distΓ′′(C1, C2).

It immediately follows that

distΓ′′(C1, C2) = δτ2(C1, C2) ≤ δτ1(F1, F2)
≤ distΓ′(F1, F2) = distΓ′(σ1, σ2) = distΓ′(A1, A2).

The only remaining part (item 3) of the statement follows easily by Definition B.9
using the fact that S = T as well as Lemma B.18 together with the definition of
the rules(E and Sig.

We now consider the two non-deterministic base cases Red-Noise and Red-San.
Their proofs follow the same strategy..

262

B.1. SOUNDNESS OF DF7

Case Red-Noise: In this case it must be the case that A1 = add_noisesZ→Z z1

for s = e−ε/k and some z1 ∈ Z and all T1 ∈ T̃1 are equal to S1.

It is easy to see that eitherA2 = A1 = add_noisesZ→Z z1 orA2 = add_noisesZ→Z z2,
for some z2 ∈ Z such that z2 6= z1.

In the first case, the first two items to be shown follow immediately. Since the
proof of (item 3) and (item 4b) is equivalent to the one in the second case, we
will solely focus on that one.

We can immediately deduce that A = add_noisesZ→Z x, where xσj = zj for
j ∈ [1, 2].

Furthermore, any rule `1i ∈ ˜̀1 must be of the form `1i = Noise (z1, z
′
1i, s) for

some z′1i ∈ Z. Furthermore, this implies that p1i = DLaps(z′1i) and T1i = S1 and
B1i = z1 +Z z

′
1i︸ ︷︷ ︸

=:z′′1 i

.

We choose `2i := Noise (z2, z
′
2i, s), where z

′
2i := z′′1 i−R z2, p2i := DLaps(z′2i) and

T2i := S2 and B2i := z2 +Z z
′
2i. It follows immediately that B2i = z′′1 i = B1i.

We can easily verify that this fulfills (item 1).

We now show that for every (`2i, p2i, [T2i, B2i]) for i ∈ [1, n] the tuple

(`1i, p1i, [T1i, B1i])

satisfies the remaining conditions (item 2), (item 3), and (item 4b).

For the sake of readability, we now fix i for the remainder of this proof and drop
it from all the previous indexes.

We know that T1 = S1 and T2 = S2. Thus we define T := S as a skeleton
store for T1, T2. Since B1 = B2 we choose B := B1 as an appropriate skeleton
expression for B1, B2.

We know that z1, z2 ∈ Z and that xσj = zj for j ∈ [1, 2] and that thus x :!lZ ∈ Γ′

for some index l. We select Γ′′ := Γ′{x :!l−1Z/x :!lZ}. Furthermore, we define

the substitutions σ′1, σ′2 as follows: yσ′j :=

yσj if y 6= x

yσj if y = x and l > 1

⊥ otherwise

This means, that if l = 1 then x is neither contained in the domain of Γ′′ nor
in the domain of σ′1, σ′2. If l > 1 the substitutions and the domain of Γ′ remain
unchanged.

In the latter case, (item 2) follows immediately, since the substitutions have not
changed.

In the former case, x is no longer contained in the domain of the constant
environment and that of the constant substitutions. Since B1 = B2 it follows
immediately that B1 mB;σ′1;σ′2

B2, but proving that T1 mT ;σ′1;σ′2
T2 requires some

more reasoning: we know that x :!1Z ∈ Γ′ and that Γ,Γ′ ` [S, add_noisesZ→Z x] :

263

APPENDIX B. PROOFS OF DF7 AND DF7ALG

τ . Since x ∈ fv(add_noisesZ→Z x), it must be the case that x :!1Z ∈ Γ′A, since this
binding is needed to type-check the skeleton expression add_noisesZ→Z x. This
in particular means that by the definition of environment addition x /∈ dom(Γ′C)
and thus x /∈ fv(Sj). This immediately implies that Sσj = Sσ′j.

We now focus on (item 3).

We know that ΓA,Γ
′
A ` add_noisesZ→Z x : τ and that Γ′ = Γ′C + Γ′A. As seen

above it must be the case that x ∈ dom(Γ′A). We define Γ′′C := Γ′C and Γ′′A in
such a way that Γ′A = Γ′′A + x :!1Z.
By Lemma B.18 and rule Add-Noise it must be the case that
ΓA,Γ

′
A ` add_noisesZ→Z x :!∞Z and ΓA,Γ

′
A `!∞Z <: τ .

By Lemma B.6 and Lemma B.8 it follows that ΓA,Γ
′′
A `!∞Z <: τ (note that

variable bindings have no influence on subtyping).

We know that B = z′′1 ∈ Z. By rule Sig it holds that ∅ ` B :!1Z. We apply !kI
to derive that ∅ ` B :!∞Z. Using Lemma B.9 this also implies that ΓA,Γ

′′
A ` B :

!∞Z. Applying Sub yields ΓA,Γ
′′
A ` B : τ .

Since T = S and ΓC,Γ′C = ΓC,Γ′′C by Definition B.9 it follows that Γ,Γ′′ ` [T,B] :
τ .

The first part of (item 4b) follows immediately by our selection of Γ′′, σ′1, σ
′
2,

Definition B.7 and Definition B.8. The second part follows from the relation
between noise addition, sensitivity, and differential privacy as shown by Chan et
al. [116].

Case Red-San: In this case it must be the case that A1 = san_Xs
b→b′ c1 for

s = ε/k and some c1 ∈ b and all T1 ∈ T̃1 are equal to S1.

It is easy to see that either A2 = A1 = san_Xs
b→b′ c1 or A2 = san_Xs

b→b′ c2, for
some c2 ∈ b such that c2 6= c1.

In the first case, the first two items to be shown follow immediately. Since the
proof of (item 3) and (item 4c) is equivalent to the one in the second case, we
will solely focus on that one.

We can immediately deduce that A = san_Xs
b→b′ x, where xσj = cj for j ∈ [1, 2].

Furthermore, any rule `1i ∈ ˜̀1 must be of the form `1i = San (Xs
b→b′ , c1, c

′
1i)

for some c′1i ∈ b′. Furthermore, this implies that p1i = Pr [Xs
b→b′(c1) = c′1i] and

T1i = S1 and B1i = c′1i.

We choose `2i := San (Xs
b→b′ , c2, c

′
2i), where c

′
2i := c′1i, p2i := Pr [Xs

b→b′(c2) = c′2i]
and T2i := S2 and B2i := c′2i. It follows immediately that B2i = c′2i = c′1i = B1i.

We can easily verify that this fulfills (item 1).

We now show that for every (`2i, p2i, [T2i, B2i]) for i ∈ [1, n] the tuple

(`1i, p1i, [T1i, B1i])

satisfies the remaining conditions (item 2), (item 3), and (item 4c).

264

B.1. SOUNDNESS OF DF7

For the sake of readability, we now fix i for the remainder of this proof and drop
it from all the previous indexes.

We know that T1 = S1 and T2 = S2. Thus we define T := S as a skeleton
store for T1, T2. Since B1 = B2 we choose B := B1 as an appropriate skeleton
expression for B1, B2.

We know that c1, c2 ∈ b and that xσj = cj for j ∈ [1, 2] and that thus x :!lb ∈ Γ′

for some index l. We select Γ′′ := Γ′{x :!l−1b/x :!lb}. Furthermore, we define the

substitutions σ′1, σ′2 as follows: yσ′j :=

yσj if y 6= x

yσj if y = x and l > 1

⊥ otherwise

This means, that if l = 1 then x is neither contained in the domain of Γ′′ nor
in the domain of σ′1, σ′2. If l > 1 the substitutions and the domain of Γ′ remain
unchanged.

In the latter case, (item 2) follows immediately, since the substitutions have not
changed and the store is not affected.

In the former case, x is no longer contained in the domain of the constant
environment and that of the constant substitutions. Since B1 = B2 it follows
immediately that B1 mB;σ′1;σ′2

B2, but proving that T1 mT ;σ′1;σ′2
T2 requires some

more reasoning: we know that x :!1b ∈ Γ′ and that Γ,Γ′ ` [S, san_Xs
b→b′ x] : τ .

Since x ∈ fv(san_Xs
b→b′ x), it must be the case that x :!1b ∈ Γ′A, since this

binding is needed to type-check the skeleton expression san_Xs
b→b′ x. This in

particular means that by the definition of environment addition x /∈ dom(Γ′C)
and thus x /∈ fv(Sj). This immediately implies that Sσj = Sσ′j.

We now focus on (item 3).

We know that ΓA,Γ
′
A ` san_Xs

b→b′ x : τ and that Γ′ = Γ′C + Γ′A. As seen above
it must be the case that x ∈ dom(Γ′A). We define Γ′′C := Γ′C and Γ′′A in such a
way that Γ′A = Γ′′A + x :!1b.

By Lemma B.18 and rule San it must be the case that
ΓA,Γ

′
A ` san_Xs

b→b′ x :!∞b′ and ΓA,Γ
′
A `!∞b′ <: τ .

By Lemma B.6 and Lemma B.8 it follows that ΓA,Γ
′′
A `!∞b′ <: τ (note that

variable bindings have no influence on subtyping).

We know that B = c′1 ∈ b′. By rule Sig it holds that ∅ ` B :!1b
′. We apply !kI

to derive that ∅ ` B :!∞b′. Using Lemma B.9 this also implies that ΓA,Γ
′′
A ` B :

!∞b′. Applying Sub yields ΓA,Γ
′′
A ` B : τ .

Since T = S and ΓC,Γ′C = ΓC,Γ′′C by Definition B.9 it follows that Γ,Γ′′ ` [T,B] :
τ .

The first part of (item 4c) follows immediately by our selection of Γ′′, σ′1, σ
′
2,

Definition B.7 and Definition B.8. The second part follows immediately from
the hypothesis that Xε/k

b→b′ provides ε/k-differential privacy.

We conclude with the only inductive case Red-Let.

265

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Case Red-Let: In this case A1 must be of the form let x = P1 in Q1. Since A1

and A2 are (A, σ1, σ2)-similar it must be the case that A2 = let x = P2 in Q2

and A = let x = P in Q such that Pσj = Pj and Qσj = Qj for j ∈ [1, 2].

By definition of Red-Let this means that [Sj, Aj]
˜̀
1−→p̃1

˜[T1, let x = P ′j in Qj],

where [Sj, Pj]
˜̀
1−→p̃1

˜[T1, P ′j].

We know that ΓA,Γ
′
A ` A : τ . By Lemma B.18 and Let it must be the case

that there exist ∆1∆′1,∆2,∆
′
2 such that Γ

(′)
A = ∆

(′)
1 + ∆

(′)
2 and

• ∆1,∆
′
1 ` P : ρ1,

• ∆2,∆
′
2, x : ρ1 ` Q : ρ2,

• ΓA,Γ
′
A ` ρ2 <: τ .

for some types ρ1, ρ2.

It follows by Definition B.9 that (ΓC,Γ′C) + (∆1,∆
′
1) ` [S, P] : ρ1.

It can be easily seen that (dom(∆′2) \ dom(∆′1)) ∩ fv(P) = ∅, since otherwise
∆1,∆

′
1 ` P : ρ1 would not have succeeded.

We can thus define the constant substitutions σ∗1, σ∗2 as

xσ∗j :=

{
xσ∗j if x ∈ dom(Γ′C,∆

′
1)

⊥ otherwise
.

It is easy to see that Γ′C,∆
′
1 is a constant environment for σ∗1, σ∗2. Furthermore,

it holds that [S1, P1] m[S,P];σ∗1 ;σ∗2
[S2, P2].

All necessary conditions for applying the induction hypothesis are fulfilled. The
statement follows immediately by applying the induction hypothesis and con-
structing Γ′′, σ′1, σ

′
2 using similar reasoning as in the beginning of this case.

B.1.5 Differential privacy results

The proof of the differential privacy theorem relies on the opponent typability
lemma, saying that all opponents are well-typed. As usual in type systems for
cryptographic protocols [31], we require that the opponent is annotated with an
untrusted type (Un in the literature, τ ∈ OPP in our case), which characterizes
the values that can be sent to and received from the opponent. Note that we
are not constraining the opponent, since typing annotations do not affect the
semantics of expressions.

Definition B.12 (Opponent). A closed expression is an opponent if it is only
annotated with types in OPP.

266

B.1. SOUNDNESS OF DF7

In order to type-check the opponent, we further need to make the functions
exported by the signature available to the opponent. This can easily be achieved
by making all function types exponential, as formalized below.

Definition B.13 (Extended Signature). Let Σ be a signature. We define Σ+ as
the smallest signature satisfying the following conditions

1. if c : φ ∈ Σ, then c : φ ∈ Σ+

2. if f : φ ∈ Σ, then f : φ ∈ Σ+

3. if f : φ ∈ Σ, then f : [φ]∞ ∈ Σ+.

It is easy to show that validity is preserved by extension.

Proposition B.4 (Validity Preservation). Σ is valid if and only if Σ+ is valid.

Throughout this paper, we assume the signature Σ to be valid and we type-check
expressions using Σ+.

Lemma B.22 (Opponent Typability). For every opponent O, ∅ ` O :!∞(τ1 (
τ2) for all τ1, τ2 ∈ OPP.

Proof. By induction on the structure of O, using Lemma B.15 and Lemma B.16.

By combining Theorem B.1, Lemma B.22, and a counting argument on re-
duction probabilities, we can finally prove the extended version of Theorem 4.1,
that is, all well-typed expressions are ε, τ -differentially private. Notice that we
actually prove a more general property, parameterized by the noise added in the
protocol execution. The second condition in the theorem can be dropped if one
considers the system without the exponential mechanism.

Restatement B.1 (of the Generalization of Theorem 4.1). For all k ∈ R>0, all
types τ ,and all closed expressions P such that the following conditions hold:

• the parameter of all noise addition primitives occurring in P is set to s :=

e−ε/k (i.e., they are of the form add_noisee
−ε/k

Z→Z M)

• the parameter of all general mechanism primitives san_Xs
b1→b2 M for the

mechanism Xs
b1→b2 occurring in P is set to s := ε/k (i.e., they are of

the form san_Xε/k
b1→b2 M) and the respective mechanism Xs

b1→b2 provides
s-differential privacy

• ∅ ` P : τ (ρ for some ρ ∈ OPP

P is ε/k, τ -differentially private.

267

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Proof. In the following proof we let X denote the finite universe of sanitization
mechanismsXs

b1→b2 that are used in the general mechanism primitives san_Xs
b1→b2 M

occurring in P . We assume that X = {(X1)
s
W 1 , . . . , (Xw)sWw}. Note that if we

want to consider protocols that do not make use of the general mechanism prim-
itive X = ∅.

By Lemma B.22, ∅ ` O :!∞(ρ (ρ′) for some ρ′ ∈ OPP . We also know
that ∅ ` P :!∞(τ (ρ) and, thus, ∅ ` O(PD) : ρ′ and ∅ ` O(PD′) : ρ′ for all
databases D,D′ of type τ .

By Theorem B.1, for each execution trace O(PD)
`1,...,`m ∗−−−−−−→p 1, there exists

an execution trace O(PD′)
`′1,...,`

′
m ∗−−−−−−→p′ M , constant substitutions σ, σ′, a skeleton

N and a constant environment Γ such that Nσ = 1, Nσ′ = M , and Γ ` N : ρ′.
We know that because ρ′ ∈ OPP it holds that ρ′ = [ρ′]∞. By an inspection of
the typing rules for values, it must be the case that Γ =∞Γ′ for some Γ′, i.e., all
variables are bound to types with replication index !∞.

We now show that p
p′
≤ e

ε·δτ (D,D′)
k . Let p = p1 · . . . · pm and p′ = p′1 · . . . · p′m,

where pi is the probability associated to `i and p′i the one associated to `′i. By
Theorem B.1, either

• pi
p′i

= 1 and the distance between matching configurations is preserved by
the reduction (item 4a) or

• `i = Noise (zi, z̄i, e
−ε/k) and `′i = Noise (z′i, z̄

′
i, e
−ε/k), in which case pi

p′i
≤

e
ε·δZ(zi,z

′
i)

k and the distance between matching configurations is reduced by
δZ(zi, z

′
i) (item 4b) or

• `i = San (X
ε/k

b̄→¯̄b
, c̄i, d̄i) and `′i = San (X

ε/k

b̄→¯̄b
, c̄′i, d̄

′
i) for some Xε/k

b̄→¯̄b
∈ X , in

which case pi
p′i
≤ e

ε·δb̄(c̄i,c̄
′
i)

k and the distance between matching configurations
is reduced by δb̄(c̄i, c̄′i) (item 4c).

Let

• S := {i | `i = Noise (zi, z̄i, e
−ε/k)} and

• T j := {i | `i = San ((Xj)
ε/k

W j , c̄i, d̄i)}, where W j = b̄j → ¯̄bj, for j ∈ [1, w].

We have that
p

p′

=
p1

p′1
· . . . · pm

p′m

≤
∏
i∈S

e
ε·δZ(zi,z

′
i)

k +
∏
i∈T 1

e
ε·δ
b̄1

(c̄i,c̄
′
i)

k + . . .+
∏
i∈Tw

e
ε·δb̄w (c̄i,c̄

′
i)

k

=e
∑
i∈S

εδZ(zi,z
′
i)

k + e
∑
i∈T1

εδ
b̄1

(c̄i,c̄
′
i)

k + . . .+ e
∑
i∈Tw

εδb̄w (c̄i,c̄
′
i)

k

≤e ε·δτ (D,D′)
k

268

B.2. SOUNDNESS OF DF7ALG

where the last inequality is a direct consequence of the inequalities ruling the
distance between matching configurations expressed in Theorem B.1 (item 4a,
item 4b, and item 4c).

Furthermore, since Γ = ∞Γ′, distΓ(1,M)
def
= distΓ(σ, σ′) can be finite only if

σ = σ′, that is, M = 1.
So far, we have reasoned about a single pair of matching execution traces.

We have to extend this result to all executions traces leading to 1. Let p̂1, . . . , p̂n
be the probabilities of each of the n possible execution traces of O(PD) leading
to 1 and let p̂′1, . . . , p̂′n be the probabilities of the matching execution traces of
O(PD′). For every i ∈ [1, n], we know that p̂i

p̂′i
≤ e

ε·δτ (D,D′)
k by the previous result.

We now use Lemma B.19 to conclude that Pr[O(PD)→∗1]=p̂1+...+p̂n
Pr[O(PD′)→∗1]=p̂′1+...+p̂′n

≤ e
ε·δτ (D,D′)

k , that
is, P is ε/k,τ -differentially private.

B.2 Soundness of DF7alg
This chapter contains the proof the soundness and completeness of the algorithmic
DF7alg type system that was introduced in Section 4.6.

We first show the that algorithmic subtyping is both sound and complete,
which will be needed in the proof of the complete algorithmic system DF7alg.

Lemma B.23 (Soundness and Completeness of Algorithmic Subtyping). For
every Γ, τ, τ ′, φ, ψ, the following statements hold:

1. If Γ ` τ , then Γ `alg τ <: τ .

2. If Γ ` τ :: pub and Γ ` τ ′ :: tnt , then Γ `alg τ <: τ ′.

3. For all k, t ∈ R>0 ∪ {∞} it holds that if Γ `alg!1φ <:!1ψ and k ≤ t then
Γ `alg!tφ <:!kψ.

4. Γ ` τ <: τ ′ if and only if Γ `alg τ <: τ ′.

Proof. 1. Follows immediately by the definition of Sub Refl Alg.

2. We proceed by induction on the structure of τ . If τ 6=str τ
′ we can immedi-

ately conclude by an application of Sub Kind Alg. Otherwise, if τ and τ ′
share the same top-level constructor we first note that that τ =!∞φ for some
φ such that Γ ` φ :: pub by definition of the only applicable kinding rule
Kind Pub and τ ′ =!kψ for some ψ, k such that Γ ` ψ :: tnt by definition
of the only applicable kinding rule Kind Tnt and φ and ψ share the same
top-level constructor. We further note that k ≤ ∞.

Case φ = ψ = α or φ = ψ = b ∈ Σ: We can immediately conclude using
statement (1).

269

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Case φ = ρ1⊗ρ2 and ψ = ρ′1⊗ρ′2: We know that Γ ` ρ1 :: pub and Γ ` ρ2 :: pub
and Γ `alg ρ′1 :: tnt and Γ `alg ρ′2 :: tnt by Kind Pair. We can apply the
induction hypothesis twice to derive that Γ ` ρ1 <: ρ′1 and Γ ` ρ2 <: ρ′2.
We conclude by an application of Sub Pair Alg.

Case φ = ρ1 (ρ2 and ψ = ρ′1 (ρ′2: We proceed similar to the previous case,
using the definition of Kind Fun, applying the induction hypothesis twice
to the results and concluding by an application of Sub Fun Alg.

Case φ = ρ1 + ρ2 and ψ = ρ′1 + ρ′2: We proceed similar to the previous case,
using the definition of Kind Sum, applying the induction hypothesis twice
to the results and concluding by an application of Sub Sum Alg.

Case φ = µα.ρ and ψ = µα.ρ′: We can immediately conclude by an application
of Sub Kind Rec Alg.

3. Proof by case analyis of the last applied subtyping rule in the derivation
of Γ `alg!1φ <: 1ψ. We first note that Γ 0!1φ :: pub by inspection of the
kinding rules, since public types must have replication indices ∞. This in
particular means that the last applied subtyping rule cannot have been Sub
Kind Alg or Sub Kind Rec Alg.

Note that in all remaining cases there exists a premise that compares the
replication indices. In the derivation of Γ `alg!1φ <: 1ψ this premise of the
last applied rule R Alg will be set to 1 ≤ 1. Since we know that k ≤ t
we can replace the premise by k ≤ t and apply R Alg to derive that
Γ `alg!tφ <: kψ.

4. • The direction “ Γ `alg τ <: τ ′ ⇒ Γ ` τ <: τ ′” follows by straight-
forward induction on the derivation of Γ `alg τ <: τ ′. We know that
τ =!tφ and τ ′ =!kψ for some φ, ψ, t, k. We inspect the last applied
algorithmic typing rule

Case Sub Refl Alg: We know that φ = ψ and k ≤ t. Using Sub Refl
we can show that Γ `!1φ <:!1ψ1 and we can conclude that !tφ <:!kψ
by an application of Sub Repl.

Case Sub Pair Alg: We know that φ = ρ1 ⊗ ρ2 and ψ = ρ′1 ⊗ ρ′2 and
Γ `alg ρ1 <: ρ2 and Γ `alg ρ′1 <: ρ′2 and k ≤ t. We can apply the
induction hypothesis twice to derive that Γ ` ρ1 <: ρ2 and Γ ` ρ′1 <:
ρ′2. We conclude by first applying Sub Pair and then Sub Repl.

Case Sub Fun Alg: Similar to the previous case, by applying the induc-
tion hypothesis twice and concluding by an application of Sub Fun
and Sub Repl.

Case Sub Sum Alg: Similar to the previous cases, by applying the in-
duction hypothesis twice and concluding by an application of Sub
Sum and Sub Repl.

Case Sub Pos Rec Alg: Similar to the previous cases, by applying
the induction hypothesis to the subtyping premise of the rule and
concluding by an application of Sub Pos Rec and Sub Repl.

270

B.2. SOUNDNESS OF DF7ALG

Case Sub Kind Rec Alg: We can immediately conclude using Sub
Kind.

Case Sub Kind Alg: We can immediately conclude using Sub Kind.

• The direction “ Γ ` τ <: τ ′ ⇒ Γ `alg τ <: τ ′” is proven by induction
on the derivation of Γ ` τ <: τ ′. We distinguish the following cases,
depending on the last applied rule:

Case Sub Refl: We conclude by statement (1).
Case Sub Kind: We conclude by statement (2).
Case Sub Repl: We apply the induction hypothesis to the premise and

conclude by statement (3).
Case Sub Pair: We know that τ =!1(ρ1 ⊗ ρ2) and τ ′ =!1(ρ′1 ⊗ ρ′2) for

some ρ1, ρ2, ρ
′
1, ρ
′
2 and Γ ` ρ1 <: ρ′1 and Γ ` ρ2 <: ρ′2. We can apply

the induction hypothesis twice to derive that Γ `alg ρ1 <: ρ′1 and
Γ `alg ρ2 <: ρ′2. Since 1 ≤ 1 we can conclude by an application of
Sub Pair Alg.

Case Sub Fun: The case is similar to the previous one, we apply the
induction hypothesis to both premises of Sub Fun and conclude by
an application of Sub Fun Alg, using the fact that 1 ≤ 1.

Case Sub Sum: The case is similar to the previous ones, we apply the
induction hypothesis to both premises of Sub Sum and conclude by
an application of Sub Sum Alg, using the fact that 1 ≤ 1.

Case Sub Pos Rec: We know that τ =!1(µα.ρ) and τ ′ =!1(µα.ρ′) and
Γ, α ` ρ <: ρ′ for some ρ, ρ′ and α occurs only positively in ρ, ρ′. In
particular, by the only possibly applicable kinding rule Kind Pub we
know that Γ 0!1(µα.ρ) :: pub, since public types must have replication
indices ∞. We can apply the induction hypothesis to derive that
Γ, α `alg ρ <: ρ′ and conclude by an application of Sub Pos Rec
Alg, using the fact that 1 ≤ 1.

Lemma B.24 (Algorithmic Weakening). For every Γ, A, τ,Γ′,∆ such that Γ `
A : τ ; Γ′ and Γ + ∆ ` �, we have that Γ + ∆ ` A : τ ; Γ′ + ∆.

Lemma B.25 (Derived Algorithmic Judgments). If Γ `alg A : τ ; Γ′ then Γ′ ` τ
and dom(Γ) = dom(Γ′).

We now have all the ingredients to prove the soundness and completeness of
DF7alg. In the following, we write 〈A〉 to denote the typing environment obtained
by removing the typing annotations from A.

Restatement B.2 (of Theorem 4.2). For every Γ, A, and τ , the following con-
ditions hold:

1. If Γ ` A : τ then there exist Γ′, A′ such that Γ `alg A′ : τ ; Γ′ and A = 〈A′〉.

2. If Γ `alg A : τ ; Γ′ then there exists Γ′′ such that Γ′′ ` 〈A〉 : τ and Γ = Γ′+Γ′′.

271

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Proof. We first prove item 1. The proof proceeds by induction on the length of
the derivation of Γ ` A : τ (i.e., on the number of expression typing rules therein).
We first discuss the base cases:

Case Var [A := x, τ :=!1φ, Γ := ∆, x :!kφ] We know that ∆, x :!kφ ` x :!1φ is
derived by Γ, x :!kφ ` � and k ≥ 1. We set A′ := x and Γ′ = ∆, x :!k−1φ. Since
A = A′ = x, 〈A′〉 = A. By Var, we obtain Γ `alg A′ : τ ; Γ′.

Case Sig [A := M , τ :=!1φ] We set A′ := A and Γ′ := Γ. The proof is straight-
forward, since the hypotheses of Sig and Sig Alg coincide.

Case Read The proof is similar to the one for Sig.

Case Read Opp The proof is similar to the one for Sig.

Case Write The proof is similar to the one for Sig.

Case Ref The proof is similar to the one for Sig.

Case Ref Opp The proof is similar to the one for Sig.

We now discuss the induction step:

Case ⊗I [A := (M1,M2), τ :=!1(τ1⊗ τ2), Γ := ∆1 + ∆2] We know that ∆1 + ∆2 `
(M1,M2) :!1(τ1 ⊗ τ2) is proved by ∆1 ` M1 : τ1 and ∆2 ` M2 : τ2. By induction
hypothesis, there exist ∆′1,M

′
1 such that ∆1 `alg M ′

1 : τ ; ∆′1 and 〈M ′
1〉 = M1, and

there exist ∆′2,M
′
2 such that ∆2 `alg M ′

2 : τ ; ∆′2 and 〈M ′
2〉 = M2.

By Lemma B.3 and Lemma B.2, ∆1 + ∆2 ` �. By Lemma B.24, ∆1 + ∆2 `alg
M ′

1 : τ ; ∆′1 + ∆2. By Lemma B.25 and Lemma B.3, ∆2 + ∆′1 ` � (we recall that
∆2 + ∆′1 = ∆′1 + ∆2). By Lemma B.24, ∆2 + ∆′1 `alg M ′

2 : τ ; ∆′2 + ∆′1.

We set A′ := (M ′
1,M

′
2) and Γ′ := ∆′2 + ∆′1. By ⊗I Alg, we obtain Γ ` A′ : τ ; Γ′.

Case +/µI Straightforward, by induction hypothesis.

Case (I [A := λx.B, τ :=:!1(ρ (ρ′)] We know that Γ ` A : τ is proved
by Γ, x : ρ ` B : ρ′. By induction hypothesis, there exist ∆, B′ such that
Γ, x : ρ ` B′ : ρ′; ∆ and 〈B′〉 = B.

We set A′ := λx : ρ.B′ and Γ′ := ∆\x. By(I Alg, Γ ` A′ : τ ; Γ′.

Sub Straightforward, by the induction hypothesis and Lemma B.23.

Case !I Straightforward, by induction hypothesis.

Case ⊗E [Γ = r∆ + ∆′, A := let (x, y) = M in B] We know that r∆ + ∆′ `
let (x, y) = M in B : τ is proved by ∆ ` M :!1(τ1 ⊗ τ2) and ∆′, x :!rτ1, y :!rτ2 `
B : τ .

By induction hypothesis, there exists ∆′′ such that ∆ `alg M ′ :!1(τ1 ⊗ τ2); ∆′′

and 〈M ′〉 = M . By !I Alg, r∆ `alg M ′
!r :!r(τ1 ⊗ τ2); r∆′′.

272

B.2. SOUNDNESS OF DF7ALG

By Lemma B.3 and Lemma B.2, r∆ + ∆′ ` �. By Lemma B.24, r∆ + ∆′ `alg
M ′

!r :!r(τ1 ⊗ τ2); r∆′′ + ∆′.

By induction hypothesis, there exists ∆′′′ such that ∆′, x :!rτ1, y :!rτ2 ` 〈B〉 :
τ ; ∆′′′. By Lemma B.25 and Lemma B.3, ∆′+ r∆′′ ` �. By Lemma B.3, we also
know that ∆′, x :!rτ1, y :!rτ2 ` � and, thus, ∆′, x :!rτ1, y :!rτ2 + r∆′′, x :!0τ1, y :
!0τ2 ` �. By Lemma B.24, (∆′, x :!rτ1, y :!rτ2) + (r∆′′, x :!0τ1, y :!0τ2) ` 〈B〉 :
τ ; ∆′′′ + (r∆′′, x :!0τ1, y :!0τ2). Notice that (∆′, x :!rτ1, y :!rτ2) + (r∆′′, x :!0τ1, y :
!0τ2) = (∆′ + r∆′′), x :!rτ1, y :!rτ2.

We set Γ′ := (∆′′′\x)\y + r∆′′.

By ⊗E Alg, Γ `alg let (x, y) = M ′
!r in 〈B〉 : τ ; Γ′.

Case +E The proof is similar to the one for ⊗E.

Case µE The proof is similar to the one for ⊗E.

Case (I The proof is similar to the one for ⊗E.

Case Let The proof is similar to the one for ⊗E.

Case Add-Noise Straightforward, by induction hypothesis.

Case San Straightforward, by induction hypothesis.

Case Eq The proof is similar to the one for ⊗E.

We now prove item 2. The proof proceeds by induction on the length of the
derivation of Γ `alg A : τ ; Γ (i.e., on the number of expression typing rules
therein). We first discuss the base cases:

Case Var Alg [A := x, τ :=!1φ, Γ := ∆, x :!kφ, Γ′ := ∆, x :!k−1φ] We know that
∆, x :!kφ `alg x :!1φ; ∆, x :!k−1φ is proved by ∆, x :!kφ ` � and k ≥ 1.

We set Γ′′ := ∆, x :!1φ. Notice that Γ = Γ′ + Γ′′. We can easily see that
∆, x :!1φ ` �. By Var, Γ′′ ` 〈A〉 : τ .

Case Sig Alg [A := M , τ :=!1φ, Γ′ := Γ] Set Γ′′ := ∅. The result follows from
Sig, observing that ∅ ` �.

Case Read Alg The proof is similar to the one for Sig Alg.

Case Read Opp Alg The proof is similar to the one for Sig Alg.

Case Write Alg The proof is similar to the one for Sig Alg.

Case Ref Alg The proof is similar to the one for Sig Alg.

Case Ref Opp Alg The proof is similar to the one for Sig Alg.

We now discuss the induction step:

273

APPENDIX B. PROOFS OF DF7 AND DF7ALG

Case ⊗I Alg [A := (M1,M2), τ :=!1(τ1 ⊗ τ2)] We know that

Γ `alg (M1,M2) :!1(τ1 ⊗ τ2); Γ′

is proved by Γ `alg M1 : τ1; ∆ and ∆ `alg M2 : τ2; Γ′.

By induction hypothesis, there exists ∆′ such that ∆′ ` 〈M1〉 : τ1 and Γ =
∆ + ∆′. By induction hypothesis, there exists ∆′′ such that ∆′′ ` 〈M2〉 : τ2 and
∆ = Γ′ + ∆′′. We choose Γ′′ := ∆′ + ∆′′. By ⊗I, Γ′′ ` 〈(M1,M2)〉 :!1(τ1 ⊗ τ2).
We also have that Γ = ∆ + ∆′ = Γ′ + ∆′ + ∆′′ = Γ′ + Γ′′.

Case +/µI Alg Straightforward, by induction hypothesis.

Case (I Alg [A := λx : ρ.B, τ :=!1(ρ (ρ′), Γ′ : ∆\x] We know that
Γ `alg λx : ρ.B :!1(ρ(ρ′); ∆\x is proved by Γ, x : ρ `alg B : ρ′; ∆. By induc-
tion hypothesis, there exists Γ′′, ρ′′ such that Γ′′, x : ρ′′ ` 〈B〉 : ρ′ and Γ, x : ρ =
∆ + Γ′′, x : ρ′′. We set Γ′′ := Γ′′. By (I, Γ′′ ` λx.B :!1(ρ (ρ′). Notice that
Γ = Γ′ + Γ′′.

Case !I Alg [A := M , τ :=!kφ, Γ := k∆, Γ′ := k∆′] We know that k∆ `alg M!k :
!kφ; k∆′ is proved by ∆ `alg M :!1φ; ∆′. By induction hypothesis, there exists
∆′′ such that ∆′′ ` 〈M〉 :!1φ and ∆ = ∆′ + ∆′′. We set Γ′′ = k∆′′. By !I, we get
k∆′′ ` 〈M〉 :!kφ. Notice that Γ = k∆ = k∆′ + k∆′′ = Γ′ + Γ′′.

Case Sub Alg Straightforward, by the induction hypothesis and Lemma B.23.

Case ⊗E Alg [A := let (x, y) = M!r in B, Γ′ := (∆\x)\y] We know that
Γ `alg let (x, y) = M!r in B : τ ; (∆\x)\y is proved by Γ `alg M!r :!r(τ1 ⊗ τ2); ∆′

and ∆′, x :!rτ1, y :!rτ2 `alg B : τ ; ∆.

By induction hypothesis, there exists ∆′′ such that ∆′′ ` 〈M〉 :!r(τ1 ⊗ τ2) and
Γ = ∆′ + ∆′′. By an inspection of the typing rules, this means that ∆′′ = r∆′′′

and ∆′′′ ` 〈M〉 :!1(τ1 ⊗ τ2).

By induction hypothesis, there exists ∆′′′′ such that ∆′′′′ ` 〈B〉 : τ and ∆′, x :
!rτ1, y :!rτ2 = ∆ + ∆′′′′. We set Γ′′ := r∆′′′ + ((∆′′′′\z)\y).

By ⊗E, we get Γ′′ ` let (x, y) = 〈M〉 in 〈B〉 : τ .

Notice that Γ = ∆′ + ∆′′ = (((∆\x)\y) + ((∆′′′′\x)\y)) + r∆′′′ = Γ′ + Γ′′.

Case +E Alg [A := case M!r of x in B1 else B2 , Γ′ := min(∆1,∆2)\x] We know
that Γ `alg case M!r of x in B1 else B2 : τ ; min(∆1,∆2)\x is proved by Γ `alg
M!r :!r(τ1 + τ2); ∆, ∆, x :!rτ1 `alg B1 : τ ; ∆1, and ∆, x :!rτ2 `alg B2 : τ ; ∆2.

By induction hypothesis, there exists ∆′ such that ∆′ ` 〈M〉 :!r(τ1 ⊗ τ2) and
Γ = ∆ + ∆′. By an inspection of the typing rules, this means that ∆′ = r∆′′

and ∆′′ ` 〈M〉 :!1(τ1 ⊗ τ2).

By induction hypothesis, there exist ∆′1,∆
′
2 such that ∆′1 ` 〈B1〉 : τ , ∆′2 `

〈B2〉 : τ , ∆, x :!rτ1 = ∆1 + ∆′1, and ∆, x :!rτ2 = ∆2 + ∆′2. We set Γ′′ :=
r∆′′ + max(∆′1,∆

′
2)\x, where max is defined analogously to min.

274

B.2. SOUNDNESS OF DF7ALG

By ⊗E and Lemma B.9, we get Γ′′ ` case 〈M〉 of x in 〈B1〉 else 〈B2〉 : τ . Notice
that Γ = ∆ + ∆′ = (∆1 + ∆′1)\x+ r∆′′ = (∆2 + ∆′2)\x+ r∆′′=min(∆1,∆2)\x+
max(∆′1,∆

′
2)\x+ r∆′′=Γ′ + Γ′′.

Case µE Alg The proof is similar to the one for +E Alg.

Case (E Alg The proof is similar to the one for ⊗E Alg.

Case Let Alg The proof is similar to the one for ⊗E Alg.

Case Add-Noise Alg Straightforward, by induction hypothesis.

Case San Alg Straightforward, by induction hypothesis.

Case Eq Alg The proof is similar to the one for ⊗E Alg.

275

	I Introduction
	Introduction
	Protocol analysis: state-of-the-art
	Automated theorem provers
	Type systems
	Comparing the two approaches

	Limitations of existing approaches.
	Contributions
	AF7: A type system for resource-aware authorization policies
	A logical theory for the type-based analysis of electronic voting protocols
	DF7: A type system for distributed differential privacy

	Outline

	II Type-Based Verification of Authorization Policies
	AF7: A Type System for Resource-Aware Authorization Policies
	Introduction
	Overview of the framework
	Protocol verification with (affine) refinement types
	Exponential serialization for protecting affine formulas
	Serializers for security type-checking

	Review: affine logic
	Metatheory of exponential serialization
	Review of RCFAF7 and safety
	Syntax of RCFAF7
	Sematics of RCFAF7
	Resource-aware safety

	The AF7 type system
	Types, typing environments, and base judgements
	Environment rewriting
	Kinding
	Subtyping
	Typing values
	Typing expressions
	Formal results
	Discussion: encoding affine types

	A library for communication and cryptography in RCFAF7
	An encoding of channels and messaging
	A sealing-based encoding of cryptography

	Example: EPMO
	Protocol description
	Protocol analysis and challenges
	Type-checking the customer

	Example: Kerberos
	Protocol description
	Protocol analysis and challenges
	Implementing and typing timestamps
	Typing the session key using self-dependent key types
	Type-checking the initiator

	Algorithmic type-checking (AF7alg)
	Overview
	Key ideas
	Base judgements
	Kinding
	Subtyping
	Typing values and expressions
	Formal results
	Example

	Related work
	Conclusion

	Type-Based Verification of Electronic Voting Protocols
	Introduction
	Background
	Refinement types for cryptographic protocols
	Helios

	Verifiability
	Individual verifiability
	Universal verifiability
	End-to-end verifiability
	Verifiability analysis of Helios

	Privacy
	Definition of privacy
	rF*: A type system for observational equivalence properties
	Type-based verification of vote privacy
	Privacy analysis of Helios

	Related work
	Conclusion

	III Type-Based Verification of Distributed Differential Privacy
	DF7: A Type System for Distributed Differential Privacy
	Introduction
	Distributed differential privacy
	Definition of differential privacy
	Definition of distributed differential privacy
	What can go wrong?

	Review of RCFDF7
	Syntax
	Modeling cryptographic protocols
	Semantics

	Differential privacy by typing
	Types
	Distance on types
	Signature
	Type-based k-sensitivity and differential privacy

	The DF7 type system
	Typing environment and judgments
	Well-formedness judgments
	Kinding and subtyping
	Typing values
	Typing expressions
	Formal results

	Algorithmic type-checking (DF7alg)
	Key ideas
	Base judgements and kinding
	Subtyping
	Typing values and expressions.
	Formal results

	A sealing-based cryptographic library
	Standard sealing-based libraries
	Affine sealing-based library
	Implementation of the cryptographic library
	Symbolic soundness of cryptographic library

	Case study
	System overview
	Attacking and Fixing the protocol
	Analysis of the revised protocol
	Code of the analysis

	Extension to other noise mechanisms
	A general extension
	Instantiating the general mechanism primitive.

	Related work
	Conclusion

	IV Conclusion
	Conclusion
	Directions for Future Research

	V Appendix
	Proofs of Chapter 2
	Soundness of AF7
	Properties of the logic
	Basic results
	Properties of kinding and subtyping
	Properties of substitution
	Inversion lemmas
	Properties of extraction
	Proof of subject reduction
	Proof of (robust) safety

	Soundness of AF7alg
	Logical properties
	Soundness and completeness of the algorithmic judgements

	Proofs of Chapter 4
	Soundness of DF7
	Basic properties
	Assumptions on the signature
	Distance of expressions
	Type and distance preservation
	Differential privacy results

	Soundness of DF7alg

